SRC Technical Note
1997-028

November, 1997

1997 SRC Summer Intern Projects

Compiled by James Mason

Systems Resear ch Center
130 Lytton Avenue
Palo Alto, CA 94301
http://www.research.digital.com/SRC/

Copyright 1997 Digital Equipment Corporation. All rights reserved

This document featuresinformal reports by interns who spent the summer of 1997 working with researchers at
DIGITAL Systems Research Center (SRC). The interns were graduate students in computer science or electria
engineering Ph.D. programs. Each worked for about three months at SRC, collaborating on a project with the
research gtaff. The primary goa of thistechnical note isto describe the summer research projects. However, the
interns were encouraged to write their reports in whatever format or yle they preferred, so that non-technica
observations (such as background and impressions arising from their stay) could aso be included.

1. Data Cache Optimizations for Java Programs
Nawaaz Ahmed

2. Min-Wise I ndependent Permutations
Moses Charikar

3. Control Flow Graphs for Java Bytecode
Ned Glew

4. Extended Static Checking of programs with cyclic dependencies
Rajeev Joshi

5. WebL - Searching in Structured Text
Thomas Kistler

6. Generating Juno-2 Figures as Java Bytecodes
James Leifer

lof2

7. A High speed Interface from PCI to FireWire

Oskar Mencer
8. SPHINX: Site-specific Processors for Html INformation eXtraction
Robert Miller

9. Vis:. A Unified Graphical User Interface For DCPI
Robert O'Callahan
10. Using Inexpensive CMOS Cameras with StrongARM
Matt Podolsky
11. The Connectivity server
Suresh Venkatasubramanian
12. Performance Comparison of Alphaand Intel NT Systems using DCPI
Xiaolan (Catherine) Zhang

20f2

Data Cache Optimizations for Java Programs

Nawaaz Ahmed, Cornell University

| interned at SRC from May 19th to August 26th during the summer of 1997. My host for the period of the
internship was Mark VVandevoorde.

At Corndl, (where I'm doing my PhD), | work with Prof. Keshav Pingdi on compilers for numerical applications.
We are working on a different way of looking at programsthat is "data-centric’ -- Snce we are concerned about
how data is being produced and consumed, we are looking at ways of directly reasoning about data flow instead
of manipulating loops as is done currently. The architectures we are concentrating on are distributed shared
memory systems (both software and hardware).

| have spent the summer here at SRC exploring methods to reduce data cache stals. My project was to measure
how effectively the caches are being used, to evauate the potentia benefits of cache-related optimizations (e.g.,
restructuring data), and to suggest how one might perform such optimizations automeatically.

To put the work in perspective, a the beginning of the summer the DCHI (Digital Continuous Profiling
Infrastructure) group a SRC was looking towards using the data collected by its profiling tools to drive
optimizations. DCPI profiles of various benchmarks, e.g., SPEC95, indicate that a significant portion of execution
time is spent in gals due to data cache misses.

Asaresult, Mark and | developed amethodology for automating optimizations by searching for access patterns
in program execution traces. | implemented atracer that collectsinformation required to suggest the optimizations
aswdl asimplementing a cache-amulator which we used to smulate optimizations.

Overview of Specifics

Early on, | decided to focus on Java programs for severd reasons. First, the Java Virtual Machine (VM) makes
no guarantees to programmers about data layout, S0 it is eader to restructure data in Java than in languages like
C. Second, to study a program's access patterns, | wanted accurate type information for each instruction that
reads or writes data. Java codes (.classfiles) contain this information. For example the GETFIELD bytecode,
which reads afield of an object, identifies the class and the field of the object being read. In principle, C
executables could contain smilar informetion in the symbol table section. In practice, with the C compilers that
were available to us, rendered the information inaccurate or nonexistent.

Cache Simulator

To measure how well the caches were being used, | converted Sanjay Ghemawat's Java runtime system into a
cache smulator that dlows for the creation of amulti-levd memory hierarchy. Each levd of the memory hierarchy
is parameterised by the size of the cache at that leve, the associativity, the size of the cache-line, and whether
alocation is done on read or write accesses. To amplify the smulator, transfer of data between the various
memory levelsis modeed as being ingantaneous. Also, because the WM is a stack machine, the smulator
ignores dl stack references rather than smulating stack operations that are unnecessary when registers are

lof4

avalable,

For each cache, the smulator reports the number of read and write hits and misses for the whole cache, for each
class, for each field of each class, and for each array type. Thus, one can easily identify the data structures
accounting for the mgority of cache hits and misses. The cache smulator also keeps track of the fraction of each
cache-linethat is actudly accessed before the cache-lineis evicted. This dlows us to measure cache-pollution,
i.e., the amount of usdless data brought into the cache.

| ran the smulator on a suite conssting of three programs:

¢ javac -- acompiler for java programs
* javacup -- alar parser generator
* juno -- anon-linear congraint solver

Using these as benchmarks on an EV5-like cache hierarchy, 50-60% of the evictions take place at the first leve
cache while only 25% of the cache-line was used. The average number of bytes accessed turns out to be around
13, which represents a cache utilization of just 41%. These numbers get worse for an EV6 like architecture (first
level cacheline Sze of 64 bytes vs. 32 bytes on EV5) -- the effective cache-line szeis only 21 bytes (33%).
Thus as the Sze of the cache-line increases, optimizations that reduce cache-pollution become more important.

Trace-Driven Optimization

Once the smulator was working, | focussed on the problem of how one might automate memory-related
optimizations such as restructuring data to improve locdity and prefetching data to mask latencies. A key
problem seems to be how to identify common access patternsin a program. Given the common access patterns,
one can then attempt to either restructure data to improve locdlity, or to insert prefetches to mask cache miss
latencies.

| built atool, called tracer, that collects information about access patternsin a program. The information from the
tracer can be used to drive severd optimizations. | evauated two optimizations by smulating them in the cache
smulator to observe the reduction in the number of read misses. Unfortunately, with only javac and aJIT
compiler available, the quaity of the code was sufficiently poor that trying to measure a Speedup was not feasible:
the lack of optimizations like common subexpression eimination, lifting code out of loops, etc. meant that the
overhead of data gtdls was somewhat dwarfed by other inefficiencies.

Reordering Fields

The firgt optimization was intended to reorder the fields of a class so that the more frequently accessed fidlds are
clustered together. The god isto pack frequently accessed datainto fewer cache lines.

Reordering did not help much in reducing the number of read misses for our benchmark suite. The reductionsin
misses ranged from 12% (juno) to 2% (javac) for 32-byte cache lines. For 64-byte cache lines, there was only

about a 2% reduction in the number of misses. The reason is that the benchmarks had few objects that were
more than 64 byteslong.

Prefetching

20f4

The second optimization was to prefetch the target of a handle at the point where the handle is obtained.

For our three benchmark programs using the EV'5 cache moded, the heuristic prefetched 34% of the firgt-level
misses (introducing an overhead of 6% more load ingtructions) for javacup; 14.6% (overhead: 3.8%) for javec;
and 4.9% (overhead : 0.4%) for juno. Juno did not do particularly well because we did not include uniform array
sride access prefetch in our suggestions. Prefetching performed smilarly with the EV6 cache modd.

Challenges and Future Directions

| found the project very interesting. In my mind it Started a chain of speculation about the fundamenta issues
involved in memory systems. While alot of work has gone into studying control and deta flow, | know of very
little work that actudly talks about the control flow pattern of the data flow. | think this issue needs to be studied
if we wish to underdand what is aling memory systems and how to make them more efficient.

Appendix

JAVACUP
Si nul at ed readni sses on evb5

L1 L2 L3
base 5302668 790216 268644 Act ual count
reordered 5052562 791017 267562
prefetched 4006014 623427 268953
both 3741982 621708 268177

base 1.0000 1.0000 1.0000 Percent of base
reordered 0.9528 1.0010 0.9960
prefetched 0.7555 0.7889 1.0012

both 0.7057 0.7868 0.9983

Si nul at ed on ev6

L1 L2
base 2836101 185490 Act ual count
reordered 2798603 186224
prefetched 1745693 131252
both 1701881 131720

base 1.0000 1.0000 Percent of base
reordered 0.9868 1.0040
prefetched 0.6155 0.7076

both 0.6001 0.7101

JAVAC

Si nul at ed readnm sses on ev5

L1 L2 L3
base 1420800 240719 49399 Act ual count

30f4

reordered 1395944
prefetched 1304044
both 1285798

1. 0000
0. 9825
0.9178
0. 9050

base
reor der ed
pref et ched
bot h

Si nul at ed readni sses

L1
773516
755820
679728
672758

base
r eor der ed
prefetched
bot h

1. 0000
0.9771
0.8788
0. 8697

base
r eor der ed
prefetched
bot h

JUNO
Si nul at ed readni sses

L1
base 2502983
reordered 2210184
pref et ched 2385292
bot h 2298945

1. 0000
0. 8830
0. 9530
0.9185

base
reordered
prefetched
bot h

Si mul at ed readni sses

L1
550187
544109
522144
535400

base
reordered
prefetched
bot h

1. 0000
0. 9890
0. 9490
0.9731

base
r eor der ed
pref et ched
bot h

231566
215274
208995

. 0000
. 9620
. 8943
. 8682

(oMol

on evé6
L2
35406
33598
31746
28226

. 0000
. 9489
. 8966
. 7972

(oMol

on evb
L2
37875
37954
37136
37091

. 0000
. 0021
. 9805
. 9793

O OPRr Pk

on ev6
L2

1034
860
983
840

. 0000
. 8317
. 9507
. 8124

[oNeNoN

47033
48529
44960

1. 0000
0. 9521
0.9824
0.9101

Act ual

Percent of base

count

Percent of base

L3

2247
2263
2243
2279

. 0000
. 0071
. 9982
. 0142

R OR P

Act ual

Actual count

Percent of base

count

Percent of base

404

Min-Wise I ndependent Permutations

Moses Charikar, Stanford University

| ntroduction

| have just completed two years of graduate study in the PhD program in Computer Science a Stanford. | work
with Rgeav Motwani. My research interests are in the design and analyss of dgorithms, more specificdly online
agorithms and approximation agorithms. Still in the exploratory phase of my PhD, | have tried to work on
severd different problems within these sub-fidds. Some of the work | have done includes agorithmsfor online
page migration, online load bdancing, incrementd dustering, gpproximation agorithms for vehicle routing and
congtructing Steiner treesin directed graphs.

I chose SRC for my summer internship because it has a strong theory group. | saw my internship as a good
opportunity to make connections with theory folk at SRC, possibly continuing to work with them after the
summer was over. Also, the problems that my host, Andrei Broder said he wanted to look at sounded interesting
to me. He was pretty flexible about what exactly 1 would spend my summer doing and that gppeded to me. | dso
reglised that gpart from Andrel, | would be able to interact with other theoreticians here and that was attractive.

Resear ch problem
| sudied families of permutations which have a particular property cdled "Min-Wise Independence’.

The problem that | studied arisesin determining document similarity for documents on the World Wide Web. A
mechanism for determining document smilarity based on document content is essentia for preventing the
AltaVista spider from getting caught in spider traps and diminating spam submitted to AltaViga through the
submit URL button. Reducing the Sze of the index is very vauable since a 20% reduction would reduce the
number of TurboL asers needed by four. Also, the sheer magnitude of data we need to ded with makes speed an
absolute necessity. Thistheoretical problem arisesin devising afagt scheme for determining document Similarity.

Overview Specifics

About ayear ago, researchers at SRC came up with the concept called document shingling and devised a
mechanism usng permutations to extract congtant Sze samples from shingle sets of documents. The congtant Sze
samples could then be compared to estimate document resemblance fairly accurately.

For this scheme to work, samples need smdl, ample families of permutations which have a property cdled
min-wise independence. For afamily F of permutationson {1,2, .. n}, roughly this property meansthat for any
subset of X={x_1,..x_K}, for apermutation s chosen uniformly and at random from F, S(x_i) has probability 1/k
of being the minimum of S(X) ={s(x_1),9x_2),.s(x_k)}. Clearly the set of dl permutationsis min-wise
independent. The question is: Can we come up with smdler families that are min-wise independent?

Thisbasic problem is termed the "exact" problem. This requires that the property hold for dl subsets of sizeup to
n. We studied the following variants of the ‘exact’ problem:

1o 3

1. Szelimited

Thisrequires that the property hold for sets of sze up to some threshold k. (Thisis because for the web
goplication, n=2"64. However, the maximum size of the subsets for which we need this property istwice
the maximum document size which is about 2°18).

2. Approximate

This requires that for a subset of Sze k, the probability that an eement be the minimum of this set under a
random permutation from the family be (1+-epslon)/k. (Since we are estimating resemblance anyway, we
can tolerate asmall deviation in the exact property).

We looked a combinations of the Size Limited and Approximate problem. We were dso interested in small
families of permutations with weighted probability digtributions,

We were ds0 interested in the performance of smple families such aslinear transformations - ax+b (mod p) and
in generd, pair-wise independent families. For a set of size k, we wanted to bound the probability that an element
of this set was the minimum under the family of linear transformations. We wanted to bound the minimum and
maximum of this quantity for aset of szek in the worst case as well as bound the expected vaues of the min and
max in the average case.

We could prove alower bound of about €*n on the Size of exact families. This was complemented with a
congtruction of an exact family of sze about 4™n. We proved alower bound of Omega(sgrt(n)2™n) on the size of
weighted exact families and had a non-congtructive upper bound of n.2{n-1}. We gave randomized
congtructions of approximate families of sze "2/epsilon™2 We dso gave randomized congructions of size
limited approximate families of sze k"2 log n/epslon™2.

We had explicit congtructions of size limited approximate families usng previoudy known congtructions of
approximately k-wise independent distributions.

We proved severd lower bounds for Sze limited and gpproximate families. In particular, we proved alower
bound of Omega(k.2"k log n) for the size limited problem. This bound involved the notion of Graph Entropy.

For linear transformations, we could prove that the min probability for a set of Sze k was no smdler than 72k in
the worst case. The max probability on the other hand could be as large as Omega(log k/k). In fact for the set
{0,1,2,... k-1} we determined that the ement O has a probability of 3/pi*2 log k/k (asymptotically) of being the
minimum. This result involved playing around with Farey sequences and the Mobius inverson formula. We do not
have an upper bound on the max probability but conjecture that it is O(log k/Kk). In the average case, we can
prove better bounds on the max probability. Theoreticaly, we can prove an upper bound of something like 8.3/k
on the expected vaue of the max probability for arandom set of Sze k. Empirica tests show that in fact, the min
and max probability seem to be very strongly concentrated around 1/k. We believe that both of them are
{1+-0(1)} /K in the average case.

For some of the results mentioned above, we used Maple extensvely to facilitate the manipulation of formulae
and plot graphs.

The family of linear trandformationsiis pretty close to the family thet is actudly used in the implementation of the

20f3

document smilarity testing. The fact that the linear family is pretty good from the min-wise independence point of
view (in the average case) can be viewed as some sort of theoreticd guarantee that the implementation is sound,
that is, the family of permutations it uses satisfies the property that it isrequired to satisfy.

The Fun and Challenging Parts

A lot of interesting mathematica problems came up in the course of the project. We employed severd interesting
(and sometimes exotic) mathematica tools to answer the questions that arose - drawing from number theory,
graph theory, combinatorics and probability theory. It was alearning experience. | certainly widened my
repertoire of mathematica tools. All the questions were challenging as nobody had looked at this problem before
and we did not have any prior resultsto go by. It was definitdy alot of fun being able to answer (at least most of)
the questions which we encountered.

Concluding Observations

The most important outcome of my internship was that | made contacts with researchers at SRC, | think the
summer internship wasimmensdly fruitful asit laid the foundation for future collaborations with researchers which
will undoubtedly be beneficid for me and contribute to my research at Stanford.

| was dso impressed by the amount of interaction between the theory folk and systems people at SRC. Such a
high leve of interaction benefits both the theory and systems communities - massaging good theoreticd ideasinto
something that is implementable and works well, as well as abstracting interesting theoretica questions from
problems that arise in practice proved . It is redly commendable how the theory people consult extensively on
systems projects and still manage to maintain an active theory sde by working on pure research problems. |
would gtrive to achieve agood hedthy baance of this sort.

30f3

Control Flow Graphsfor Java Bytecode

Neal Glew, Cornell University

About Myself

| was bornin New Zedand and earned a BSc in Mathematics and Computer Science in 1992 and a BSc(Hons)
first dassin Computer Science in 1993, both from Victoria University of Wdlington. In 1994 | travelled to the
USfor the firgt time and began my PhD program in computer science a Corndl University. My Cornell advisor is
Dexter Kozen whose interests are mainly in theory: agorithms, decidability & complexity of variouslogics. | dso
work with Greg Morrisett whose interests are in language theory and implementation. | work on low leve type
sysems. The god isto produce alanguage that is close to the machine but probably machine independent yet
srongly statically typed with atype safety theorem. This language would be used as the target for trandation of a
number of high level source languages. Thisis motivated by the desire to build type-directed compilers and to
build secure code download systems. | choose SRC for an internship because of its strength and research
interests aswell asits West Coast locetion.

SRC Research

The origind project wasto look at register alocation in Sanjay's Ghamawat's Java J T. Unfortunately there
wasn't enough infrastructure in place to dive into this project so we started to build one and found it to be
interesting initself. | ended up looking at control flow graphs for Java bytecodes and their uses. Thisforms a part
of improving the overdl quality of code generated by jrun. The main problems were how to ded with exceptions
and subroutines. We aso looked at how to get larger blocks over which aloca alocator can work and devised
the idea of a superblock. We looked at register alocation and had some ideas. However, time congraints
prevented us from exploring further. We did however implement asmple change, that of not saving dead
variables at basic block boundaries. The find problem we looked a was how to encode the CFG asahintina
Javaclassfile so that aJIT can quickly build and verify the CFG. We managed to devise a scheme that is quick
but which is not verifiable and understand some of this tradeoff.

Specifics

I implemented or helped with: A procedure to compute control flow graphs; a procedure to compute
superblocks; a procedure to compute live variables, a new code generation infrastructure to support new register
alocation schemes, asmple improvement to the present dlocator; an experiment with another register alocation

ideg; and a procedure to compute the sizes of a CFG hint in java classfiles. This was implemented in C as part of
Sanjay'sjruntime. | also used DCPI to successfully investigate some performance problems.

Other

| found my project fun and chdlenging, in particular thinking about how to do register dlocation, and the
difficultiesin making CFGs.

lof2

| learnt alot about Digitd, about SRC, and about industria research labs. | also learnt dot about the researcr
done a SRC in the past through reading many of the SRC research reports. My project taught me alot about
how to measure performance and think about how to improve code quality and measure such improvements.

20f2

Extended Static Checking of programswith
cyclic dependencies

Rajeev Joshi, University of Texasat Austin

This page describes a summer project undertaken by Rgeev Joshi (UT Austin) while asummer intern at SRC,
summer 1997, hosted by Rustan Leno.

Overview

Thegod of Extended Static Checking (ESC) isto check, a compile time, for common runtime errors, eg.,
dereferencing ani | pointer, accessng an array out of bounds. Given a program annotated with a specification,
an ESC compiler produces averification condition, a predicate in first-order logic, which expresses that the
program meets the given specification. This verification condition is then given to atheorem prover, which checks
whether or not it isvalid. In most cases, the prover is expected to report either that the condition isvalid or that it
isinvaid (and then aso provide an error context); in some cases, the prover may just give up.

My project this summer (under Rustan Leino) was to study some of the difficulties that arise in reasoning about
programs with recursive data structures such as linked lists. To track our progress, we chose an example based
on the Sieve of Eratosthenes dgorithm for generating primes; the example seemsto be fairly representative of the
class of programs we were interested in. Over the course of the summer, we manually sketched a proof of
correctness of this program and determined that we needed to modify one of the origina axioms, as the prover is
not equipped with induction. | aso extended Rustan's ESC/Ecdtatic compiler to generate appropriate verification
conditions for programs with data abstraction and smple recursive data types. We then tried running the prover
on the resulting conditions and found that, with the exception of one axiom schema which we had to indantiate
oursdaves, the entire example could be checked automaticaly.

In the remainder of this note, | shdl give abrief introduction to ESC and describe the problem that | worked on
during the summer.

Background
Congder the following sample specification:
cl ass Rati onal

{ field num den : integer
spec field ok : boolean = (den # 0)

}

procedure normalise(r : Rational)

{ pre r.ok
nodi fies r.num r.den
post r.num* r.den'" = r.num * r.den

lof4

ClassRat i onal hasthreefidds: two integer fields representing the numerator and the denominator, and &
specification field, whose vaue is afunction of the values of other fidds. In ESC jargon, the specification fidd is
said to depend on the fidds of which it isafunction. In the example above, for dl objectsr of typeRat i onal ,
we havethat r . ok dependsonr . den .

The specification of procedure nor mal i se has three clauses which refer, in order, to the precondition, the
modification ligt, and the postcondition respectively. The precondition is afirg-order predicate which is assumed
to hold upon entry into the procedure; it is expected to be established by the caller. The postconditionisa
firgt-order predicate which is required to hold upon exit from the procedure bodly; it relates unprimed variables
(dencting variable vaues upon entry) and primed variables (denoting variable vaues upon exit) and it is expected
to be stisfied by the procedure implementation. The modification list describes the varidbles that the
implementation is dlowed to modify; it istrandated into predicates, cdled modification constraints which are
conjoined to the postcondition.

Informaly spesking, a modification condraint asserts that the vaue of afidd (such asden above) changesonly in
those objects where the procedure is dlowed to modify it. Modification lists may mention specification fieds; in
such cases, the ligt isfirgt desugared (i.e., rewritten) into another list before modification congraints are
generated. The rulesfor desugaring modification lists are somewhat complex -- they are based on engineering
decisions intended to make them easier for programmers to use -- but, to get some idea of how they work,
condder the modification list

modi fies r.ok
for the example above. Thislist would be desugared into
modi fies r.ok , r.den

which produces the following modification congtraints, where s ranges over objects of typeRat i onal :

(Al s :: s.ok = s.o0k' \/ s =17)
(Al s :: s.den = s.den" \/ s =)
(Al s :: s.num= s.num)

In more complex examples in which severd leves of abstraction are layered one on top of another, desugaring a
modification ligt typicdly involves computing atrangtive closure of the dependency relation.

Cyclic Dependencies

To undergand the difficulties that may arise with recursve data sructures, consder the following definition of a
linked lidt:

cl ass List
{ field value : integer
field next : List
spec field valid : boolean = (value # 0 /\ (next = nil \/ next.valid))

}

procedure Init(l : List)
{ modifies 1.valid
post [.valid'

20f4

}

Note that the declaration of field val i d introduces the following dependency:
for al objects| of typeLi st ,1.validdependsonl . next.valid.

Such adependency of aspecification field (val i d a object |) onitsdf (val i d at object| . next) iscadled a
cyclic dependency. A prdiminary difficulty with cyclic dependenciesis finding a compact representation for
modification lists. Recdl that desugaring typicaly requires computing the trangitive closure of the dependency
relation. In the presence of cyclic dependencies, this closure is no longer finite. For instance, a naive desugaring of
the modification list for procedure | ni t aboveyidds

modifies I.valid, |.next.valid, |.next.next.valid, ...
| .value, |.next.value, |.next.next.value, ..
| .next, |.next.next, |.next.next.next,

S0 we need away to represent such infinite sets succinctly. A smple solution is to use a closure operator ™ "
(pronounced "star") which denotes "0 or more occurrences of" ; then, the modification list above may be written
as

modi fies |.next*.valid, |.next*.value, |.next*.next .

The next difficulty isto determine how to generate gppropriate modification congtaints for such expressons. A
naive trandation of

nodi fies |.next*.val ue
would give
(Al s :: s.value = s.value' \/ (s \in |.next*)) .

Since the prover is ot equipped to reason about such closures, we rewrite the second digunct using a
4-argument predicate REACH, introduced in 1983 by Greg Nelson (who aso provided a set of useful axioms for
it). Informally speeking, (REACH u z f x) assertsthat it is possible to reach object z from object u by
following the pointer fidd f , without ever following thef pointer of object x. For the example above, the
modification condraint would be written as

(Al s :: s.value = s.value' \/ (REACHI| s next nil)) .

Some Discoveries

In proving the Sieve of Eratosthenes example, we found that we needed only two axioms about REACH (viz., Al
and A2 from Nelson's paper). We dso discovered that we had to modify the pointwi seness axiom schema for
cyclic dependencies (due to Dave Detlefs), which, for the example above, yielded

(Al s ::
(Al w: w#nil /\ (REACH s w next nil)
: w.value = w.value'" /\ w. next = w. next')
==>
s.valid = s.valid)

30f4

We found that, since the prover is not equipped for induction, this axiom was not enough to prove even the
following smple Hoare triple (due to Jm Saxe):

{ s.valid /\ s #1t /\ (REACH s t next nil) /\ t.valid}
t.next :=nil

{ s.valid }
Our new axiom schema now yields

(Al s ::
(Al w: w#nil /\ (REACH s w next nil)
: (w.value = w.value' /\ w. next = w. next')
\/ wvalid = wvalid)
==>
s.valid = s.valid)

which seems sufficient, at least for the examples we have considered.

Future Work

There are a least two directions for future work. The first isto study programs with recursive data structuresin
which more than one field isinvolved in the recursgon. (An exampleis abinary tree, with pointers for |eft- and
right- children.) Thisinvolves generdisng the REACH predicate to accept arelation (or a set of fields) asitsthird
argument. Since we have used only 2 axioms about REACH S0 far, this extenson may turn out to be reasonably
sraightforward. The second direction of research isto find sufficient conditions under which users may not
introduce inconsigtencies into the checker. Currently, as pointed out by Jm Saxe, it is possible to introduce an
incongstency by using cyclic dependencies. As an example, consder changing the definition of val i d to

spec field valid : boolean = (value # 0 /\ (next =nil \/
~next.valid))

where ~ denotes negation. Suppose initidly that there is only one object t , whose val ue fidd is nonzero and
whosenext fiddisni | . Then the assgnment

t.next =1t

introduces an incongstency, since now thereis no solution to the recursive equationin val i d.

40 4

WebL --Searching in Structured Text

ThomasKistler, University of Californiaat Irvine

| am athird year Ph.D. sudent at the Univergty of Cdiforniain Irvine, working with Michagl Franz on anew
operating system that reconciles the advantages of portable executables with high performance. For portable
executables, most of the traditional optimizations cannot be performed at compile time any longer, resulting in
serious performance problems. Thisflaw can only be overcome by delaying optimization until runtime (or load
time) and enriching current operating systems with runtime optimization infrastructures. Our new operating system
implements such an infrastructure and continuoudly and gradualy optimizes programs in the background or on
Specific request of the programmer. It also utilizes an adaptive profiler to custom-tailor optimizations towards
system- and user-behavior.

At SRC this summer | have been working with Hannes Marais on the implementation of WebL. WebL isanew
Web scripting language that has been designed to automate tasks such as retrieving Web documents, extracting
structured and unstructured data from Web documents (for example HTML -, and XM L-based Web pages), and
creating and manipulating Web documents. One of the main problems that we were trying to solve this summer
was the design of an expressive, powerful and concise query language for WebL that dlows searching on the
sructure and on the flat text of HTML- or XML-pages. Traditionally, approaches for searching in structured text
documents have focused on either searching documents by content (e.g. searching with regular expressions) or by
dructure (e.g. subtree matching or context-free grammar matching), but not both at the same time. Most of the
query languages dso lack orthogondlity and compostiondity, and, in most cases, do not dlow the expresson of
overlapping of search results. To overcome these problems, we developed anovel combined gpproach for
searching in Web documents that alows mixing content and structure in asmple, orthogonad, and concise query
language. Rather than being based on trees or grammars, it is based on set agebra. The basic components of the
proposed search algebra are sets of pieces and set-operators. A pieceis a continuous region in the text that can
ether be congtructed by searching the text with a regular expression or searching for markup eementsin the
structure. Set operators allow combining piece-sets to construct more powerful queries. WebL currently
supports acombination of structura, positional, and basic set operators (e.g. in, contain, after, before, union,
etc.).

One of the most important things that | learnt this summer is thet the design of a programming language is much
more difficult than it would gppear when reading the final language specification. Finding the essence of the
problem and the right mix between smplicity and expressivenessis a tedious process that involves alot of
discussion and often requires starting from scratch again and discarding previous ideas and implementations.

lofl

Generating Juno-2 Figures as Java Bytecodes

James L eifer, Cambridge University

| am two yearsinto my Ph.D. at the Cambridge Universty Computing Lab (in the UK) where | work with Robin
Milner on process dgebras (pi-caculus and action calculi). My work is funded by the U.S. Nationa Science
Foundation and the British Goverment. | did an undergraduate degree at Oxford ("the Other Place” asthey say at
Cambridge) where | worked under Bernard Sufrin and C. A. R Hoare. Despite dl that, I'm aNew Y orker (or at
least can pretend to be one).

| decided to gpply for a SRC internship because of SRC's reputation for combining systems and theory work,
which suited my interests exactly. From Cambridge, | discussed possible projects with Greg Nelson and we
agreed to do work involving some "honest programming” - - -- something that | had not done very much of while

pursuing my Ph.D.

The god of the "honest programming” was to extend Juno ---a dua-view graphics editor built by Greg Nelson
and Allan Heydon a SRC--- to dlow it to emit Java applets that render Juno graphics on the Web. Juno hasa
programming |language based on Dijkgtras guarded commands (extended with geometrica congtraint solving)
and its approach to graphics and animation is to create a program that renders the graphics as a Sde effect of
execution. Internaly, Juno compiles programs to a bytecode and runsthem onaVM.

This summer | built a compiler that trandates a Juno program into a Java classfile, and | constructed alibrary of
Java classes that provides run-time support. The compiler trandates modules to classes, global variables and
condants to fields, and procedures to methods. The compiler handles amost dl Juno congtructions, including
modules and imports, globa variables and constants, procedures, functions, predicates, control structures, and
expressons. The run-time system provides mathematics and PostScript drawing support. Both the compiler and
run-time system do not yet handle closures and congraint solving, nor do the graphics libraries do
double-buffering, which is necessary for flicker-free animation, but tatic graphics are working well.

There were severd differences between Juno and Java which influenced the design of the trandator.

1. Juno programs are dynamically typed ---values range over numbers, strings, pairs, etc., and thiswas
mirrored in Java by creating aclass V (for "Juno vaue') and subclasses of JV corresponding to Juno's

vauetypes.

2. Juno's procedures can return multiple out-parameters but Java's methods cannot. In our implementation a
method returns areference to an array containing the out-parameters.

3. InJuno certain expressons are not gtrict, that is, they are defined even when subexpressions are not.
This doesn't fit well with Javals notion of exceptions, because when a Java exception is thrown, the entire stack is
deleted, not just the items placed on the stack in the surrounding try-catch block. We got around this by creating

agloba bit that is set as certain parts of an expresson are evaluated and tested so as to obtain the correct
semantics.

lof2

This project was the largest engineering artifact | have ever congtructed and | learned much from working witt
Greg and Allan on how to structure a complicated system and how to test it. | dso had many lively talks with
othersin the lab who gave me good advice and discussed with me their research interests. And, of course, |
thoroughly enjoyed the California weather and food!

20f2

A High speed Interface from PCI to FireWire

Oskar Mencer, Stanford University

About Me

I'm athird year PhD student at the Department of Electrica Engineering in Stanford. I'm working with Mike
Flynn and Martin Morf in the Computer Architecture and Arithmetic Group. Currently | am working with the PCI
Pamette on various aspects of adaptive computing. Before joining Stanford, | earned an undergraduate degree at
the Technion - the Isradl Indtitute of Technology. | chose SRC for my internship because | think that SRC is one
of the most interresting places for research in computer systems.

Summary of the Project at SRC

We designed a high-speed interface between PCl and the Link Layer of the IEEE 1394 FireWire chipset from
Texas Ingruments. Our environment alows us to exercise dl the various festures of the FireLink chipset from
Texas Ingruments. Highlights of the design are: PCI write bursts from CPU to PCI, DMA back to host memory,
and flexible buffersto ded with variable latency Link Layer chips. Theinterface isimplemented on the PCI
Pamette FPGA board.

FireWire: thelnterconnect for Multimedia and more

FireWire, |IEEE standard 1394, isa serid interconnect developed by Apple and Texas Insruments. The standard
regulates the physical and link layer. The primary target applications are Audio Video and today's SCS
connections. The highlights are: 200 Mbits/s of physical bandwidth, user-friendly hot plugging, low cost andit'sa
non-proprietary environment. Didier Roncin developed a FireWire daughter board for the DEC PCI Pamette,
called FireLink, conssting of two FiréWire Channds and one Xilinx XC4010E for control. Strict compliance
with the Firewire standard and flexible FPGA technology make this board a useful platform for exploring
Firewire.

TheFireLink Library

The software interface to FireLink is aso designed with performance as the main target. Therefore we chose the
C programming language and macros for communication with the FireLink hardware, Smilar to ANL macros.
The library implements a message passing abstraction on to the FiréWire.

Performance

Performance is analyzed for three parts of the FireWire network. "Send”, the time to write a burst-block of a
specific Sze into the transmit FIFO, has a maxima bandwidth of 70 Mbitg/s for block sizes of 240 quadpackets.
ReadAck, or the time for the link layer to send al the data from the transmit FIFOs to the destination and receive
an acknowledgement from the other side, trandates into a bandwidth of 140 Mbits/s. (According to the
documentation from Texas Instruments, the physica layer tranamits data a 200 Mbits/s.) Recv, or the time to

lof2

move the data from the receive FIFO at the link layer chips to main memory, resultsin a bandwidth of 110
Mbitg/s. Thisis achieved by DMA bursts from the PCl Pamette board to main memory.

Future Work

One possible extension to this project isto create clusters of machines, examine the performance and compare
with other competing interconnection technologies. In addition, a software interface to Memory Channd
technology would integrate dl the Memory Channd gpplications with FireWire. A more esoteric project would
be to think of the FireLink hardware as a distributed system of custom computing machines (Pamette's). The
objective could be to speed up computation intensive pardld gpplications by accelerating each node with custom
FPGA designs.

What | learned from my internsnhip
| srongly improved my FPGA design skills. Asasde project | dso implemented a Java interface which talked to

the PCI Pamette through an HTTP link and adedicated Tcl Webserver. In concluson, DEC SRC has met dl my
expectations and more.

20f2

SPHINX: Site-specific Processorsfor Html
| Nfor mation eXtraction

Robert C. Miller, Carnegie Mellon University

| ntroduction

I'm a second-year CS PhD student at Carnegie Mellon University, | work with Brad Myers on
programming-by-demonstration and the Amulet user interface toolkit. My recent reseerch at CMU hasinvolved
animationsin Amulet, and applying programming-by-demonsgtration to the World Wide Web. | developed a
demondrationd system that infers, from a Sngle demondtration, how to construct a" composite Web page” by
extracting pieces from other Web pages and combining them.

| chose SRC for my internship this summer over Xerox PARC and FXPAL (both of which made me offers)
mainly because I've taked to other grad students who had very positive summer experiences at SRC, and the
SRC project was most closdly aigned with my interests. SRC aso responded to my internship application very
quickly -- less than two days after | submitted it -- which is acompliment to their organization and preparation.

Crawlers, also caled robots or spiders, are programs that traverse and process the World Wide Web
automatically. Examples of crawling applications include indexing, link-checking, meta-services (like meta-search
engines), and site downloading. It turns out that crawlers are difficult to write for severd reasons: (1) alack of
good library support, so even smple crawlers take work; (2) multithreading is required for good performance;
and (3) writing ste-specific crawlers (like meta-searchers) takes much trid-and-error to figure out which linksto
crawl and how to parse pages, and then the Web site's format changes and the work must be thrown away.

My host for thiswork was Krishna Bharat.

Solution

We built asystem caled SPHINX (Site-specific Processors for Html INformation eXtraction). SPHINX isa
user interface and Java class library that supports developing and running crawlers from a user's Web browser.
For users, the SPHINX user interface offers anumber of advantages. One advantage is that common crawling
operations can be specified interactively, such as saving, printing, or extracting data from multiple Web pages,
which makes ample crawlers smple to write. Another isthat the pages and links explored by the crawler can be
digplayed in severd visudizations, including agraph view and an outline view. For Java programmers writing
custom crawlers, the SPHINX library provides multithreaded crawling, HTML parsing, pattern matching, and
Web visudization, dong with the ability to configure and run the custom crawler in the SPHINX user interface.

Observations and Future Work

The SPHINX user interface runs as a Java gpplet hosted by a Web browser. This decison to run SPHINX
insde aWeb browser, as a privileged Java applet, turned out to be an effective strategy. As a consequence,
SPHINX crawlers are portable, require no special configuration to access the Web, and see the Web exactly as

lof2

the user seesit. In particular, when a SPHINX crawler requests a page, it uses the same cache, authentication,
proxy, cookies, and user-agent as the user, ensuring that it gets the same response back from the server that the
user would.

For future work, it would be interesting to scale the SPHINX architecture to Web-wide crawlers, such as search
engineindexing or Web archiving, which retrieve and process millions of pages. Such crawlerstypicdly runon a
farm of workgations, raising interesting issues such as how to divide the crawling workload fairly and how much
information must be shared by cooperating crawlers. Also, the platform-independence and safety of Javaimply
that SPHINX crawlers could be moved around the network easily, to access the Web at the most convenient

point. Exploring the architecture and security policies of server-sde crawlers would be an interesting direction for
future work.

20f2

Vis. A Unified Graphical User Interface for
DCPI

Robert O'Callahan, Carnegie Mellon University

Background

I'm athird year PhD student at Carnegie Mdlon. My work is primarily in large-scale program andysistoals. |
chose SRC because | thought it would be afun place to spend a summer and it has many interesting people and
projects. | was looking forward to getting experience working as part of agroup, and a doing something alittle
different from my main line of work.

The Project

The Digital Continuous Prafiling Infragtructure (DCP1) is a suite of tools that performs sample-based profiling
with very low overhead. The profiles cover the entire system, including the kernd, and the system is very
convenient to set up and operates transparently. There are many tools for reviewing the data, including tools that
etimate execution frequencies, average ingruction stall times and reasons for those stdls. Thus DCPI givesthe
user accessto alot of information a the level of entire binaries right down to individud indructions,

One problem with the system is that there are many digtinct tools used to view and interpret the data, and these
tools are not integrated. Furthermore, they are mostly text-based, which limits the ways information can be
displayed, and they mostly do not give the user ways to interact with the data. Therefore | was given the job of
cresting a graphicd user interface that would:

1. subsumethe displays of most of the tools
2. usegraphicsto increase the dengty of information display and make the interface eesier to use
3. provide interaction and integration so that dl features would be easily accessible.

Approach

| created a Java gpplication that communicates with the DCPI librariesusing HTTP. The libraries are packaged
up into a CGl server that answers queries sent by the gpplication. The resulting Java application can be run on
any VM, including insde a Web browser, and can view profile data from any machine on the network.

For theinterface itsdlf, | used Scott Hudson's Subarctic toolkit. Thisis basicaly awidget library on top of AWT
that provides easy handling of common input behaviours such as dragging, a condraint system that provides
powerful ways to position Ul eements dynamicaly, and some other useful hacks such as double-buffering.

When designing the interface, we focused on afew design principles. One was consstency. We made globally
consgtent choices of colors for different dements (e.g. cycle counts). Globaly choosing scaesisimpractica
because the scales of ingtruction counts can be orders of magnitude different from the scales of counts for entire
programs, so we chose scales to be consistent within windows but not necessarily between windows. Of course,

lof2

we followed sandard guiddinesin trying to make dl the Ul widgets behave in smilar (and generdly familiar)
ways.

Another principle was configurability. Colors, fonts, Szes and orientations of dmost everything in the interface can
be easily modified by the user, often by directly manipulating the interface itsdf using the mouse.

Another principle was economy. The display is organised as a set of views of five different kinds (lists of binary
images, lists of procedures, lists of basic blocks, listings of entire procedures, and control-flow graphs of entire
procedures). Each view displays alimited amount of data about just the objects in that view. More details about
objectsin the view can be obtained by holding the mouse cursor steady over an object; atemporary "tip" will

pop up to display the information. Furthermore, when the user clicks on an object in one view to highlight it, other
views will automaticaly scrall to and highlight any related objects. Thus the multiple views work together to
display more informetion.

Results

It was fun to build the system and try out different ways of displaying the data We learned that Smple displays
were often the best fit for people's needs. While complex visudizations could have looked prettier, in this case
they don't seem to be required.

Subarctic encourages the programmer to use the "structured graphics' model, where each graphica element has
an underlying widget. Thus, in gpplications such as Vis that can have thousands of dataitemsto display, the
number of widgets can become very large. This can easily lead to performance problems due to the large amount
of gpace and time required to manage these data structures. In Vis, these problems are barely managegble. An
interesting question (outside the scope of my work) is whether thereis away to maintain the ease of programming
and code reuse that derive from the structured graphics modd while iminating the need for huge data structures
that cause the performance problems.

In order to get the tool to work acceptably on large data sets, we had to do afair amount of tuning. It turned out
that different Java VMs have greetly different performance characteridtics; relative speeds vary alot depending
on the kind of code being executed. In other words, in addition to the architecturd innovations that make
performance ever harder to understand, we now have an extra software layer that aso adds to the problem, and
the number of architecture’lVM combinationsis significantly larger than the number of architectures.

Future Work

Some of the lower-level lessons | learned, such as how large Java programs are structured and how their
performance can behave, will hedp mein my work a CMU as| apply my program andyss techniquesto Java. |
hope that the Vistool itsdf will be used by the DCPI group and its users. As DCPI evolves, the tool will need to
be updated; in particular, when new kinds of information become available, new views may have to be created.

20f2

Using I nexpensive CM OS Cameras with
StrongARM

Matt Podolsky, University of California at Berkeley

I'vejust finished my third year of graduate school at U.C. Berkeley, where | study dectrica engineering. | work
with Martin Vetterli and Steve McCanne, and my generd interests concern signal processing and networks.
Specificdly, 1've been sudying the use of Forward Error Correction for redl-time audio over the Internet.
Various Internet audio tools (e.g. rat, fregphone) have added extra redundancy to their audio streams to protect
againg packet loss. I'm interested in trying to determine how much redundancy to add, and aso in determining
how things change as network conditions (e.g. traffic digtributions) change. In the near future I'll be studying
amilar issues with video.

While at SRC, | worked on attaching small cameras to SHARKs (the Digita Network Appliance Reference
Design). The sensors for these cameras are made from a standard CM OS process (as opposed to atraditiond
CCD sensor), and so they can be fully integrated with other logic on asingle board. Other advantages over CCD
systems include low price (only $15-$20 for one of these camera sensors and a plagtic lens, when purchased in
quantity) and low power (between 250 and 375 milliwetts). Mark Hayter and | originaly envisoned my project
as studying image and video processing dgorithms on the StrongARM microprocessor using a SHARK
connected to one of these cameras. However, when | started work this summer much needed to be done before
the camera could send video to a SHARK. As such, my summer was spent working on the following e ements.

1. Writing device drivers for two different CMOS sensors. The camera sensors were connected to arev 1
SHARK through its ROM card dot. A board consisting of an ADC, apair of dua FIFOs, and a PAL
acted as a bridge between the sensor and the SHARK' ROM card. Device drivers were written in C, and
accessed the camera and FIFOs through memory mapped addresses on the SHARK. The camera
sensors configuration datais read and written viaan 12C serid bus interface; the driver | wrote included
code to handle this serid communication.

2. Porting the UCB multicast tools to SHARK. | ported UCB MASH multicast toolkit and got the shared
media board (mb) and video conferencing toal (vic) to run on a SHARK. With vic you can display
refreshing video locdly and dso multicadt it to other workstations. Because smply displaying the video on
the locd machine with the camera dtill involves doing an encode and decode for each frame, the video
frame rate was only about two frames per second (fps).

3. Adapted asmpler Td/Tk digplay program for displaying video. Using a program Mark Hayter had written
for displaying video from one of these sensors on a Lectrice, a tablet-based computer, | modified it to
work on SHARK S with my device driver. Its smplicity alowed me to study where time was being spent
to process and display video, aswell as display video faster than vic (by the end of the summer we had
about 4 fps using this program). | also adapted Tk widgets to controls various camera parameters, like
ADC gain, black cdibration levels, and color baance.

4. Improving picture qudity. The initial video out of the analog V5426 camera sensor we used was quite
noisy. The noise came from the power supply interfering with the ADC, and this was solved by moving on

lof2

to the V5404 digital sensor. This one took advantage of the CMOS nature of the sensor to put an ADC
right on the board with the sensor. The resulting picture was noise free and extremey sharp. However, the
color was rather unattractive, and using the Tcl/Tk program | was able to determine that the red and blue
levels needed to be boosted, while the green levels should be reduced. Other parameters like black levels
and gain were varied and used to further improve picture qudity.

5. Performance optimizations. Findly, | was able to sudy the performance of the camera. One of the areas |
focused on was the color extraction process. The CMOS camera sensors consst of an array of dternating
color filters (one line has RGRGRG..., while the next has GBGBGB..., and back to RGRGRG, where
R=red, G=green, and B=blue) in front of light sensors. In order to obtain afull color picture, the software
supplied with the cameras uses a Bayer dgorithm to interpolate the missing colors. However, even though
you start off with one-third of the color information you need (one haf of the green and one-quarter each
of the red and blue), the full-color output image is offset from the camerainput image by one-hdlf apixd in
the X and Y directions, so that every output pixd requires that al three colors be averaged. | implemented
asmpler symmetric filter which uses only shifts and adds, and reduced the color interpolation time by
33%. | ds0 saved timein the next step of image extraction, a high-frequency emphasisfilter, by removing
some unnecessary thresholding checks and hard-coding in color gains.

The most fun part of this project was getting the digital sensor working with corrected color and seeing good
quality images come into the SHARK through a $20 camera. One of the most chalenging aspects of the project
was working with the sensors, for | was dedling with extremely limited documentation. This meant thet | had to
reverse engineer the vendor software and some of their data modes in order to determine functiondlity. It also
meant finding and debugging inaccuraciesin supplied data sheets. Deding with SHARK s was aso rewarding and
fun, because their capabilities and state of development frequently amazed me, but dso chdlenging because they
were gill prototypes. All indl | found this to be avery rewarding project, and a great opportunity to work a
SRC and interact with so many talented and capable people.

20f2

The Connectivity Server

Suresh Venkatasubramanian, Stanford University

I'm athird year Ph.D student in Computer Science at Stanford University. At Stanford, | work with Rgjeev
Motwani and Jean-Claude Latombe on problems in geometric pattern matching (with application to drug design).
In generd, I'm interested in theoretica work as gpplied to red-world problems, and within that framework, the
project that was proposed to me at SRC sounded interesting.

The problem isthe following: Using link information on web pages, congtruct a database that maintains the graph
of web pages (and the edges between them) and answer connectivity queries about this structure. This
information is useful for avariety of reasons. One of the most important is as afilter for ranking agorithms that
use connectivity information to determine the relevance of query results.

What | mainly worked on was designing and implementing the architecture for this server. Some of the design
issues were the following:

1. Resources We use a4GB machine with alarge disk, so we can handle large amounts of main memory
storage.

2. Updates: We chose an update mode that is batched (due to the fact that we obtain updates from the
AltaViga crawler once aday).

3. Querying flexibility: We keep the APl smple so asto dlow avariety of search mechanismsto be built on
top of it.

4. Communication with dlients: Our current interface isHT TP based, viaa cusom HTTP server - again, this
isflexible

The graph gructure is relatively straightforward. We maintain arecord for each node containing aligt of itsinlinks
and outlinks. In the actud implementation, thisligt is actudly a pointer into atable of dl the (in/out)ligts. The nodes
are represented not as URLS, but using an interna node I1D.

Designing the URL database turned out to be the non-trivid part. Initidly, we were using the Altavisa-assigned
fingerprint as anode 1D, and used a huge file containing the ID-URL correspondence to compute the mapping
from an ID to aURL. The forward mapping is a function computation. However, this gpproach was not useful
for two reasons:

1. Fingerprints are 64 bit objects, which is unnecessarily large (we only have 250 million URLs right now).
Thistrandates into a space wastage both in the URL database and in the graph structure.

2. Theligt of sorted URLsisover 19 GB. Thisis very difficult to manage, and we need to compress the data
to improve space and |ookup.

Asaresult, we use assigned 32 bit numbers as node IDs, and use an encoding scheme to represent the URLS.
This schemeis a ddta-encoding scheme, where each string is Stored not in its entirety, but as the difference
between it and the string before it. This dlows usto sgnificantly compress the data - down to about 5.3 GB.
Note that each compressed entry also contains the node ID stored within it.

lof2

We dso build an index to search this database (delta-encoding afile forces the search to be linear, so we need an
index containing fully formed URLs which we can use asastart point for decoding the URL).

In addition to building the above structure, we aso built a system for updates that takes a formatted Altavista
crawl result and mergesiit into the database. This system is non-trivid, owing to the Sizes involved and the need to
perform updates quickly.

Theinteresting part of the work was designing the data Structures. We came up with avariety of schemes that
could be used to represent the URL database, and even toyed with the idea of changing the graph representation
to something more intricate. Ultimately though, and thisis probably the main lesson to be drawn, smplicity should
not be underrated. Our fina structures are quite Smple, which means that writing code for them is easy, and
performance is generdly acceptable. Moreover, asmple structure dlows usto (potentidly) play with many
different types of query families without introducing a biasinto performance. The largest Sngle amount of effort
however, went into initiaizing the databases from the latest AV crawl (about a month old).

Thiswork has no red connection to the work | do at Stanford, (which is more theoretica in nature), but | found it
interesting mainly because it is agood example of the sort of problem I'm interested in, namely, where there are
theoretical issuesto explore aswell as non-trivia system-building problems. Due to time condraints, | was unable
to look at related graph-theoretic work (mostly because of time), but this project gave me alot of experiencein
the nitty-gritty of data dructure desgn and implementation.

Acknowledgements:. I'd like to thank Puneet Kumar and Andrei Broder for their constant help and support, and
for making sure | didn't keep veering off the focus of the project. A specid thanks to Hannes Marais for dways
being around as a"covert" third host. | would dso like to thank Krishna Bharat, Mike Burrows, Sanjay
Ghemawat, and Monika Henzinger for their help.

20f2

Performance Comparison of Alphaand Intel NT
Systems using DCPI

Xiaolan (Catherine) Zhang, Harvard University

| ntroduction

| am athird year Ph.D. student at Harvard University where | work with Brad Chen on the Morph project.
Morph is asystem that aims to provide a framework for automatically monitoring and optimizing software that
runs on an end user's compuiter. | have developed the Morph Continuous Monitor that monitors the execution of
the application by sampling the PC (program counter) of the executable. The samples collected by the Monitor
are then fed to a profile-driven optimizer.

| was an intern from August 23 to November 21; Mark VVandevoorde was my hogt. | chose SRC for internship
because of its excellence in computer science research and the high reputation of its intern program.

SRC project
While a SRC, | worked on comparing an Alpha 21164 (Miata) NT system with a Pentiumll NT system using
the DCPI (Digita Continuous Profiling Infrastructure) tools. The god was to figure out why some gpplications run

faster on one system than the other and try to look for ways to improve applications running on the AlphaNT
system.

Experimental Setup

The two systems we compared were a 500 MHz Alpha 21164 EV56 (Miata) system and a 266MHz Pentiuml |
system. The gpplications we studied were the BAPCo SY Smark NT4.0, Aladdin ghostscript 5.0.3, and
MicroSoft SQL Server 6.5 running the TPC-B benchmark as the workload.

For performance andysis, we used the aggregate event counts collected usng DCP!I and the DCPI tools that

provide ingtruction level gl analysis (Alphaverson only). Ntprof was used to discover undigned loads. For
(manua) optimizations, we used the NT Atom ingrumentation tool to perform binary rewriting.

Results

Overall performance

In terms of running times of the benchmarking programs, the performance of the two systems are pretty close
except for Ghostscript and PowerPoint. For Ghostscript, the Miatais much faster. PowerPoint is a 16-bit
Windows gpplication and is interpreted on Alpha, which results in amuch dower running time.

One interesting finding is that the number of Pentiumll micro-ops (one Intel CISC ingruction is decoded into
RISC-like micro-ops before execution) and the number of Alpha RISC ingtructions are pretty comparable. For

lof2

system code, the number of Pentiumll micro-ops are consstenly larger by asmall fraction.

We d o discovered that for the BAPCo SY Smark programs, the ingtruction cache performance for Pentiuml|
system is much better than the Alpha, which is responsible for alarge fraction of the stals for Excel and Word.

For SQL Server 6.5, both systems performed smilarly because the server was not CPU-bound. We dso
discovered that the Alpha verson was compiled for debugging!

Detailed Examples

+ Case 1l Weidentified an undigned load in ghogtscript for Alpha NT that is responsible for 29% of the
total cycles, and we worked with Peter Deutsch to fix the problem. The fix will appear in the next release
of Alladin Ghogtscript.

¢ Case2 Weidentified amisuse of mb ingruction in the Alphamga device driver which isrespongble for
16% of the total cyclesfor ghostscript. A driver that is optimized for Alpha can be downloaded from the
Digitd Web ste which fixes this problem.
¢ Caxe 3. A ample prefetching optimization on Texim improves running time by 9%.
Thefun and challenging parts

A chdlenging part of the project was to work with tools that were not yet stable and to provide ussful feedback
to the authors to help improve the tools. | have learned agreat dedl about hardware architectures and Windows
NT.

20f2

