SRC Technical Note
1997-029

December 1, 1997

WebL — A Programming Language for the Web

Thomas Kistlert and Hannes M ar ais?

1 Information and Computer Science Department,
Univerdty of Cdiforniad Irvine
E-mal: kistler@ics.uci.edu

2 DIGITAL Systems Research Center
E-mail: marais@pa.dec.com

Systems Resear ch Center
130 Lytton Avenue
Palo Alto, CA 94301
http:/Amww.research.digital.com/SRC/

© Copyright 1997 Digitd Equipment Corporation. All rights reserved

Abstract

In this paper we introduce a programming language for Web document processing called
WebL. WebL is a high level, object-oriented scripting language that incor porates two novel
features. service combinators and a markup algebra. Service combinators are language
constructs that provide reliable access to web services by mimicking a web surfer's behavior
when a failure occurs while retrieving a page. The markup algebra extracts structured and
unstructured values from pages for computation, and is based on algebraic operations on
sets of markup elements. WebL is used to quickly build and experiment with custom web
crawlers, meta-search engines, page transducers, shopping robots, etc.

ld14

1. A Computation Model for theWeb

The architecturd, physicd and adminigtrative congraints of the Internet require new models for computing over
planet-wide structures such as the World-Wide-Web. Some of the characteristics of the web, like itswide area
digtribution, unrdiable services, lack of referentid integrity, security mode, and lack of datatyping, differ
immensaly from those of traditional programming models, which presupposes a non-distributed, well-structured,
and predictable infrastructure. Furthermore, because of the web's geographica distribution, latency and
bandwidth — not CPU speed and memory size — become the limiting factors that need to be addressed. So what
kind of programming modes and programming constructs are needed to compute on the web? To understand
this question, we first have to study typical web computations. In our view, atypica web computation can be
divided into three phases.

The input phase involves fetching one or more web pages for processing. During this phase we have to contend
with the web's geographic digtribution and architectura inefficiencies. For example, one or more of the following
Stuations might apply when retrieving a page from aweb service:

The page is avalable and can be retrieved successtully.

The server is unavailable or provides intermittent service due to a high load.

The page is (perhaps temporarily) unavailable or was redirected to another server.

The connection is unexpectedly terminated or the data transfer speed varies, sdling or dropping to an
unacceptable rate.

* The pageis mirrored geographicdly, perhaps on servers with different capacity.

Consequently, a programming model for the web not only has to expect severd modes of falure (for which many
programs are typicaly not designed) but should aso provide functiondity to overcome these problems, for
example, to explait the inherent pardellism of replicated servers. Our approach isto use service combinatorsto
make access to services more reliable and to smplify the handling of failures (see section 3).

The processing phase of atypica web computation involves extracting data values from pages and performing
computations on these data values. We assume pages to be marked-up in either XML or HTML, so asto exploit
the structural content of the page. Our data extraction technique is based on amarkup algebra that performs
operations on sets of eementsin a page (see section 4).

The output phase of atypical web computation covers the generation of web documents from va ues computed
during the processing phase, and storing them back on the web (for example, by publishing the page on aweb
server).

Figure 1 depictsthis generd mode of aweb computation. Web pages flow through a pipdine of service
combinators for fetching pages, a markup parser, the markup agebrafor extracting (or "searching” for) data
vaues from (on) apage, computing on those val ues, and page manipulation. Searching, computing and
manipulation is repeated as often as needed. Findly the page is regenerated from itsinterna representation by the
markup generator, and stored back on the web.

20014

WIWW
1

Document
Retrieval

Markup
Parsing
l

Input Phase

1
Search
[
Computation
]

Modification

Processing Phase

i_

Markup
Generation

i

WA

Output Phase

Service
Combinators

Markup Algebra

Figure 1.A Modd for Computation on the Web

2. The Programming L anguage WebL

Our implementation of this computation modd is caled WebL. WebL isahigh leve, dynamicaly typed, object
oriented scripting language that was specificaly designed for performing web computations. It incorporates two
nove features. service combinators and a markup algebra. WebL aso provides functionality to generate new
web pages or to modify existing ones, and provides specia modules to smplify web-related tasks. Besides the
features that are tailored towards manipulating HTML and XML, the language supports modules, closures,
exceptions, sats, lids, asociative arrays, multithreading, built-in load baancing, and channd-based
synchronization. These features make WebL a convenient language to prototype computations on the web and an
excellent tool for web masters. WebL's syntax isamix of C, C++, Modula-2 [Wir82], and Obliq [Car94]. Even
though we incorporated many features into the language, we believe WebL is ill smple and easy to learn.

Some of the gpplications we constructed with WebL so far include:

* Cugiomizable web crawlers

* Meta-search engines for popular search engines on the web

¢ Meta-newspapers that collect articles from severa Stes according to your interests
* Toolsto build a newspaper from CDF-based descriptions [CDF97]

= Shopping robots that shop for the cheapest books at severd e ectronic bookstores

* Toolsto extract financid information from stock pages

¢ Toolsto extract and compute project information from DIGITAL's intranet
* Toolsto concatenate L atex2HTML-generated documents for printing

* Toolsto vaidate links in web pages

3014

The WebL prototype isimplemented in pure Java To complement writing WebL programs, WebL functions are
aso directly accessible from within Java code. This asssts programmers that want to use the WebL functiondity,
but don't want to learn yet another programming language. This mixed gpproach dso dlowed usto easly extend
WebL with support for existing Java APIs, for example libraries that implement web-servers and libraries to
access relational databases.

In the remainder of the paper we will concentrate on the two nove aspects of WebL, namely service
combinators (section 3) and the markup agebra (section 4). These sections are followed with related work
(section 5) and conclusions (section 6). An gppendix lists example programs.

3. Service Combinators

An experienced web surfer exploits a repertoire of behaviors when confronted with the Situations introduced in
section 1 (e.g. server falure, stdling or dropping service rates, etc.). We cdl these behaviors web reflexes. For
example, users may

reload apage on adaled link

retry requests, taking short pauses in between requests

terminate a request that takes too long

switch to less usad servers with the same information

switch to aternate sources of information

monitor the transfer rate and decide whether to wait for the page to arrive

run fetches in pardld, waiting for the firgt to finish, and sopping the other requests

A drategy for making computations on the web more religble is to use programming congtructs caled service
combinators [CD97]. The main purpose of service combinaorsisto mimic these reflexes or, in amore generd
way, to make any adgorithmic behavior of web users scriptable. Therefore, under the basic premise that by
providing the programmer with easier ways to express these reflexes and it becomes easier to write robust
scripts, service combinators provide explicit language condructs to automate handling of time-out and failure,
exploitation of replicated data, etc. Asin the gpproach suggested in [CD97], WebL maps service combinators
directly onto operators of the language. Aswill be noticed from the following examples, service combinators are
aso convenient language congtructs for handling exceptions.

For the remainder of this section Sand T to denote operands (caled services), which may contain primitivesto
fetch pages or general WebL computations.

Services
get page(string, [. paraml=val 1, paranl=val2,],
[. headerl=val 1, header2=val2 .])
post page(string, [. paranil=vall, paranR=val2,],

[. headerl=val 1, header2=val 2 .])

The getpage function fetches with the HT TP GET protocol the resource associated with the string URL.
The result returned is a page object that encapsulates the resource. The function failsif the fetch fails. The
second and third arguments to getpage are optiona —when specified, they provide the server with query
arguments and HT TP headers respectively. A smilar function cdled postpage uses the HTTP POST
protocol, used to fill in web-based input forms.

4014

/'l This programsinply attenpts to fetch the named URL.
page := getpage("http://ww.digital.cont)

/1 This program | ooks up the word "java" on the

/1 AltaVista search engine.

page := getpage("http://ww. altavista.digital.confcgi-bin/query",
[pg="g", what="web", g="java' .])

Sequential Execution S?2T

The"?' combinator alows a secondary service to be consulted in the case the primary service failsfor
some reason. Thus, the service S? T actslike the service S except that if Sfalsthen it executes the
sviceT.

/1l This programfirst attenpts to connect to AltaVista
// in California, and in the case of failure, attenpts to
/'l connect to a mrror in Australia
page := getpage("http://ww. altavista.digital.conl') ?
get page("http://ww. al tavi sta.yell owpages. com au")

Concurrent Execution S| T

The"|" combinator allows two services to be executed concurrently. The service S| T starts both services
Sand T a the same time and returns the result of whichever succeedsfirdt. If both Sand T fail, then the
combined service dso fals.

/1 This programattenpts to fetch a page fromone of the two
// alternate sites. Both sites are attenpted concurrently, and the
/'l result is that from whichever site successfully conpletes first.
page := getpage("http://ww. altavista.digital.conl') |

get page("http://ww. al tavi sta. yel | owpages. com au")

Time-out ti meout (t, S)

The time-out combinator alows atime limit to be placed on aservice. The service timeout(t, S) actslike
S except that it falls after t milliseconds if S has not completed within that time.

/1l This program attenpts to connect to AltaVista, but
/!l gives alimt of 10 seconds to succeed.
page : = timeout (10000, getpage("http://ww.altavista ...") |

getpage("http://www. altavista... "))
Repetition repeat (S)
The repeat combinator provides away to repeatedly invoke a service until it succeeds. The service

repeat(S) actslike S, except that if Sfalsthen S starts again. The loop can be terminated by writing
timeout(t,repeat(S)).

50f 14

/1 This program makes a repeated attenpts in the
/'l case of failure, alternating between two services.

page : = repeat(getpage("http://ww.altavista ...") ?
getpage("http://ww. altavista ..."))
Non-termination stall ()

The stdl combinator never completes or fails.

/'l This programrepeatedly tries to fetch the URL, but

/1l waits 10 seconds between attenpts.
page : = repeat(getpage("http://ww.digital.con) ? tinmeout(10000, stall())

4. Structured Text Search on Web Pages
4.1 An Algebrafor Text Search

One of the chalengesin structured text search isto support a unified mode of different views of adocument. In
one view we are interested in the linear text flow of the page (without tags), for example to locate words and
character patterns. In another view, we are interested in the hierarchica organization of the document, for
example to use markup as "'landmarks' for guiding data extraction. Other views, such as a publishers view that
divides the document into lines, paragraphs, and columns are dso imaginable. In addition, we observe that
different views of the document are not dways properly nested, as are rows in tables, or words in titles. Rether,
different views might overlgp. Sentences usudly go across multiple lines and images might gpan multiple columns.
As aconsequence, aunified mode has to dlow searching on severd views, mixing of query results from different
views, and handling of overlgpping dementsin the same or different views.

WebL 's data extraction language addresses these problems with the notion of a markup algebra. The markup
algebra is based upon the concepts of pieces, piece-setsand adgebraic operators that are applied to
piece-sets.

Fird, we define a piece as a contiguous text region in a document, identified by the starting and the ending
pogition of the region. For this paper we can imagine pogtions asindices that indicate a character offset in the
page, which makes it easy to determine by numerical comparison the relationship between two regions, such as
whether two pieces overlap, are contained in each other, or follow each other. The length of a piece is defined
as the difference between the starting and ending position. (Our actud WebL implementation uses amore
complicated data structure for pieces that smplifies searching and page modification.) We further define a
piece-set as acollection of pieces. Pieces within piece-sets may overlap, be nested, or may belong to different
pages. However, unlike mathematical setsthat do not impose a particular ordering on their elements, piece-sets
are dwaysin acanonical representation in which pieces are ordered accordingly to their sarting position, and
then their ending position in the document. This dlowsiterating over piecesin a set in the sequence they gppear in
the document, and aso to pick the n'th occurrence of a pattern (by indexing into the piece-set). Both pieces and
piece-sets are mapped to specia objectsin WebL, which means that they can have attributes and be manipul ated

by program.
A common way to create apiece-set isto search for dl the HTML or XML eements with a specific name (we

cdl thisastructured search). For example, the following program returns al the anchors (hyperlinks) that occur
on the DIGITAL homepage by caling amethod caled Elem of the page object P

60 14

P .= getpage("http://ww.digital.conl");
links := P.Elem("A") /1 returns a piece-set of "A" elements

After the method invocation, the varidble | i nks contains a piece-set thet, for every matching HTML or XML
element, contains a piece that points to the sarting and ending position of the eement. In addition, dl the dement
names and attributes are made visible to the programmer by associating them with the appropriate piece object.

Another way to create a piece-set isto search for character patterns, ignoring the markup (we cal this
unstructured search or pattern search). The Pat method of a page object extracts dl the occurrences of a Perl
5-gyle regular expression [Fri97] in the text of a page. The following example extracts the occurrences of the
word "Digitd" or "digitd" in the Digita home page.

P := getpage("http://ww.digital.com");
words := P.Pat("(Dld)igital")

If the regular expression contains Perl-5 groups, the matching groups are accessible as atributes of the piece.
Like the Elem method, the Pat method computes a set that, for every match, contains a piece that points to the
garting and ending position of the match.

Findly, we define aset operator S T as an agebraic operation & between two piece-sets Sand T that returns
athird piece-set as aresult. For the remainder of this section, Sand T denote piece-sets, the dementsof Sand T
arereferred to assandt, and P stands for a page object. WebL divides set operators into groups of basic set
manipulation operators, positional set operators, and hierarchical set operators, which will be discussed in the
following sections. In the interest of conciseness, we will not describe the negated operators (those starting with
an exclamation point), as their behavior is easy to deduce.

4.2 Basic set operators

Uni on S+ T
Intersection § * T

Excl usi on S- T

Basic set operators are used for basic set manipulation. They contain a set union operator, a set intersection
operator, and a set exclusion operator. The set union operator merges the two sets Sand T and €liminates
duplicate pieces. The set intersection operator returns the set of al pieces that are contained both in Sand T, and
the set exclusion operator caculates the set of piecesthat are contained in Sbut not in T. As an example, the
following program retrieves dl the level one and leve two headingsin apage:

titles := P.Elem("HL") + P.Elen("H2")

4.3 Positional operators

7014

S before T S !before T
S after T S lafter T
S directlybefore T S !directlybefore T
S directlyafter T S !directlyafter T

S overlap T Sloverlap T

Pogtiona operators provide functiondity to query on the locdlity property of pieces, such as searching for pieces
that are located above or below other piecesin the linear text flow of the document.

Thebef or e operator computes the set of piecesin S that are located before some piecein T. We define a piece
sto belocated before apiecet, if the ending position of s precedes the starting position of t. Correspondingly,
theafter operator returnsthe set of the piecesin Sthat are located after some piecein T. Although being
very effective, these two operators are not dways sufficient. As an example, in some cases we might not be
interested in al the occurrences of alink after aspecid keyword, but only in the very first occurrence of alink
after the specid keyword. In this case, we use the stronger operatorsdi rect | ybef ore anddi rect | yafter
that return the set of only the closest piecesin Sthat follow or precede some piecein T. We dso cdl the latter
non-trandtive versons of thebef or e and af t er operator. The following example depicts the differences
between these operators:.

<I MG SRC="napa.gif">
<I>Fig 1. Sonona and Napa</|> /111

<I MG SRC="t ahoe. gi f">
<I>Fig 2. Lake Tahoe</I|> 112

<| >Northern California</I|> /1 13

<I MG SRC="nendoci no. gi f">
<I>Fig 3. Mendocino</1> 11 14

In order to retrieve the title of the first image we write the following program, assuming that the first text sretchin
italicsin our excerpt isd <o the firg text retch in itdics in the whole document:

/'l retrieve the first italic text stretch -> {11}
title := P.Elen("1")[0]

Searching for dl thewords in itaics that follow an image yields the result set containing pieces 11, 12, 13, and 14.

/1l retrieve all the titles that follow an image -> {11, 12, 13, 14}
titles := P.Elem(I") after P.Elem("IMG")

Toretrieve dl thetitles of the figureswe usethedi rect | yaf t er operator that does not return the word
"Northern Cdifornid', snce it does not directly follow animage.

/1 retrieve all the titles of the figures -> {11, 12, 14}

80f 14

titles := P.Elem("I") directlyafter P.Elem("IM3")

Findly, theover | ap operator returns al the piecesin Sthat overlgp with some piecein T.

4.4 Hierarchical operators

SinT S!linT
S contain T Slcontain T
Sdirectlyin T S !directlyin T

S directlycontain T S !directlycontain T

In contrast to positional operators that provide functiondity to express locdity relationships between pieces,
hierarchical operators provide functiondity to express containment and inclusion relationships between piece.

Thei n operator returns the set of piecesin Sthat are contained in some piecein T. We define apiece sto be
contained in apiecet, if the Sarting position of sfollows or is equivaent to the starting position of t, and the length
of sissmdler or equd than the length of t. Equivdently, the cont ai n operator returns the set of piecesin Sthat
contain some piecein T. As an example, to search for dl the rowsin the third table of a page, we write,

rows := P.Elen("TR') in P.El en("TABLE")[2]
and to search for dl the levd two headings that mention the word UCI we write

titles := P.Elem("H2") contain P.Pat("UCl ")
Aswdl asfor postiond operators, we define two stronger, non-tranditive operatorsdi r ect | yi n and
di rect | ycont ai n that address direct containment and direct inclusion properties. They return the set of only

thefirg piecesin Sthat contain or are contained in some piece in T. The following example depicts the
differences

First Section /1 LIl
Second Section /1 L2
Third Section /1 LI3

First Subsection /1 L4
Second Subsecti on /1 LI5S
</ UL>

<Ll >Fourth Section /1 LI6
</ UL>

Toretrieve dl thelig itemsin this unnumbered ligt, we write the following program, assuming thet there is no other
unnumbered list preceding this section in the document:

90 14

/] retrieves all the subsections -> {LI1, LI2, LI3, LI4, LI5 LI6}
subsections := P.Elem("LI") in P.El em("UL")[0]

However, in many cases we are not interested in nested lists and would only like to retrieve the ligt items of the
top-leve ligt. Therefore we usethedi rect | yi n operator and write:

/1 retrieve only the toplevel subsections -> {LI1, LI2, LI3, LI®6}
subsections := P.Elem("LI") directlyin P.El em("UL")[O0]

5. Related Work

Service combinators have first been presented by Cardelli and Daviesin [CD97]. Their semantics for service
combinators differs dightly from the WebL semanticsin that their combinators include an extra combinator
limit(t, r, S that actslike the service S, except that each connection is congdered to have failed if the rate ever
drops below r Kbytes/sec after the first t seconds of the connection. They can formally mode the Satus of a
sarvice a a paticular time elther by the current transfer rate, the done status, or the fail status. The consequence
of including the transfer rate is that their service combinators can only operate on web services, and not generd
computations. Idedly, we would like to make the service combinators more orthogonal, so that a serviceand a
computation on that service can be expressed as a service itsdf. For example, afailure might occur when apage
was fetched successtully but the content of the pageisinvaid or unexpected (as determined by a script that
checks the page). We obtain this orthogondity by removing the limit combinator, which is not gpplicable to
generd computations (as they do not have a"rate"). Without the limit combinator, a computation's satus is either
running, completed, or failed, and we can we map failure to a programming exception. We can reintroduce the
rate limit feature as part of the getpage and postpage primitives themselves (for example as separate arguments),
which fail gppropriately when the rate requirement is not met.

In practice, the most widely employed technique for searching in text documentsiis pattern matching using
regular expressions [Fri97, IEEE92]. Regarding structured text search, the limitations of regular expressons are
twofold: they completely lack information about the structure of the document and they apply a"leftmost longest
match" rule which is often ingppropriate for nested data structures. Searching for atable, for example, only
returns a correct match if there is only one table in the document. A discussion of this problem isfound in
[CCaT7].

Severd improved approaches to extracting information from semi-structured text documents have recently been
proposed. The most prominent techniques are based on tree matching, grammar parsing, and set algebras.

In tree matching, the search problem is reduced to searching a subtree (i.e. pattern) in a parse-tree (i.e. view).
The main disadvantage of tree matching is the lack of orthogondity and compositiondity regarding different views
(i.e. different parse trees). Queriesthat search for character patterns cannot be mixed with searches for specid
sructures in the document. In addition, many of the tree matching problems cannot be solved in linear time, but
have polynomid runtime. Some problems (such as unordered path inclusion) are even NP-complete [Ki192].
Severd recent programming and searching languages are based on tree matching, among them the programming
language Turquois[MM97].

Context free grammar s pursue an gpproach, in which the search pattern is specified as a context free grammar

[ST96]. The result of asearch query are dl the substrings in the document that are accepted by the specified
grammar. On the one hand, context free grammars are very expressive in that they alow the definition of

100 14

recursive search queries. On the other hand, they suffer from the same problems as tree matching: they do not
dlow expressng view-spanning and overlapping queries and require polynomid runtime.

Lately, several new techniques have been published that are based on a set dgebra[ST92, K95, CCBY4]. The
Sandard Document Query Language (SDQL) of the Document Style Semantics and Specification
Language or DSSSL. [DSSSL 96] introduces the concept of nodes and node-lists, which are loosely related to
our pieces and piece-lists. Some of the WebL operators are provided and the user can also program new onesin
aLigp-likelanguage. The data structure SDQL operates on — called agrove—is essentidly atree of nodes
corresponding to eements in the document, and thus multiple views and overlgpping € ements cannot be
moddled. PAT expressions[ST92] use a set-at-artime algebra for manipulating sets of match-points and sets of
regions. In contrast to the WebL search dgebra, PAT expressions do not support an orthogonal and unified
model. Sets of match-points and sets of regions cannot be arbitrarily composed and, in regard to document
transformation, match points are not very practical since only the starting position of amatch is recorded.
However, most of these problems can be avoided. Clarke, Cormack, and Burkowski propose a compositional
structured text algebra that is based on the notion of sets and ranges [CCB94]. Apart from the WebL
set-algebra, thisisthe only other gpproach that supports overlappings between views. Unfortunately, the idea has
not completely been taken to the end. Although the modd supports overlgppings the language does not
(remember that WebL has an explicit overlap operator). Additiondly, nestings are avoided by sdlecting the
minima segments from those set dements that nest. Concerning runtime complexity, dl of the set dgebra
problems can be solved in linear time if no two eementsin aset overlap [NY 96]. In the worst casg, if dl the
elementsin the sat overlgp with each other, the runtime complexity is quadratic in the number of dementsin the
set. Congdering the unlikelyness of such an event and the importance of overlgppings, thisis a price that we are
willing to pay in WebL.

In contrast to the above high-level search languages, their are aso efforts to specify low-level programming API's
that provides users with the functiondity for document navigation and manipulation, such as navigating through the
document parse tree, or modifying HTML and XML dements. The most prominent activity in thisareaisW3C's
document object modd [DOM97]. In contrast to WebL, DOM is redtricted to manipulating and searching sngle
HTML and XML eements, it does not provide a notion of character patterns, does not support multiple
overlgpping views, and inherently cannot perform computation.

There are 50 severd recent proposals for automating tasks on the web. The Web Interface Definition Language
or WIDL [MA97] enables automation by mapping web content into program variables using declartive
descriptions of resources. WIDL provides features to submit queries and to extract features from the resulting
pages. WIDL does not determineitself how search isto be done, but rather uses the Java Page Object Model
[JS] or the Document Object Modd [DOM97]. Page manipulation is not supported. WebSQL [AMM97] isa
declardtive query language for extracting informeation from the web. The language emphasisis on extracting
connectivity information from pages (for example to locate pages that are two hops away from a specific page).
WebSQL regards HTML documents as monolithic objects, and therefore its analyses are limited to Smple text
meatching techniques. The Internet Fish Congtruction Kit (IFISH) isatoal to build dynamic information getherers
on the web [LaM97]. Internet Fish use "info-chunks', possibly extracted from web pages, or created by other
independent fish, to place new info-chunks on a shared black-board. The basic ideais that many fishes
speciaized for specific tasks (for example looking for telephone numbersin a page) make it easer to extract
information from web pages that continudly change. IFISH is mainly concerned with the fish control structure
and not so much with the page fetching and data extracting steps.

6. Conclusions and Future Work

1o 14

In this paper, we presented a nove programming language WebL for document processing on the
World-Wide-Weh. WebL features two distinguishing features, namely service combinators and a markup
agebra. Service combinators alow the congtruction of reliable services and the markup agebra supports the
extraction of data values from web pages. The language provides fegtures to perform computations on data
vaues, and generate or manipulate web pages appropriately. The resulting tool iswell-suited for automating tasks
on the web and building and experimenting with web computations. We currently plan to experiment with WebL
for awhile, to build larger gpplications with it, and to extend it with additiond librariesin the generd domain of
information retrieva. One of the extensons we are currently investigeting is to generate WebL scripts
automatically by demondration. Another interesting topic of investigation is how service combinators and the
markup agebra can be incorporated into the W3C's Document Object Model [DOM97].

References

[AMM97] Gugtavo O. Arocena, Alberto O. Mendelzohn, and George A. Mihaila. Applications of a Web
Query Language. Proceedings of WWW6, 1997, Santa Clara, Cdifornia
http://atl anta.cs.nchu.ed u.tw/www/PAPER267.html

[Car94] LucaCarddli. Oblig: A language with distributed scope. Research Report 122, Digita Equipment
Corporation Systems Research Center, Palo Alto, Cdifornia. June 1994.
ftp://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/sre-rr-12 2.html

[CC97] C.L.A.Clarkeand G. B. Cormack. On the Use of Regular Expressions for Searching Text.
ACM Transactions on Programming Languages and Systems, 19(3), pp 413-426. March 1997.

[CCBY] C.L.A.Clake G.V. Cormack, and F. J. Burkowski. An Algebra for Structured Text Search
and a Framework for its Implementation. Department of Computer Science, University of
Waterloo, Canada, Technical Report CS-94-30. August 1994.

[CD97] LucaCarddli and Rowan Davies. Service combinators for Web Computing. Research Report
148, Digita Equipment Corporation Systems Research Center, Pao Alto, Cdifornia. June 1997.
ftp://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-14 8.html

[CDF97] Channd Definition Format (CDF). Published by Microsoft Corp. September, 1997.
http:/Avww.microsoft.comv/stand ards/cdf.htm

[DOM97] W3C DOM working group. Document Object Model Specification. October 1997.
http://mww.w3.org/ TR/WD-DOM/

[DSSL96] Document Style Semantics and Soecification Language (DSSSL), |SO/IEC 10179:1996.
http://Aww.jclark.com/dssd/

[Frig97] Jeffrey E. F. Friedl. Mastering Regular Expressions. Powerful Techniques for Perl and Other
Tools (Nutshell Handbook). O'Rellly and Associates, 1997

[IEEE9Q2] |EEE 1992. Sandard for information technology - Portable Operating System Interface
(PO X) - Part 2(Shell and utilities) - Section 2.8 (Regular expression notation). IEEE Std
1003.2, Ingtitute of Electrica and Electronics Engineers, New Y ork 1992,

[JK95] J Jaakkolaand P. Kilpelainen. SGREP. University of Helsnki, Department of Computer Science,
1995.
http:/Amww.cs.hesinki.fi/ ~jjaakkol/sgrep.html

[J9 Netscape Corp. JavaScript Guide.
http://devel oper.netscape.comvlibrary/documentati on/communi cator/jsgu ided/index.htm

[Kil92] P.Kilpeanen. Tree Matching Problems with Applications to Sructured Text Databases. Ph.
D. Dissertation, Department of Computer Science, University of Helsinki, Report A-19992-6,
Helsinki, Finland. November 1992.

120 14

[LaM97] Brian A. LaMacchia The Internet Fish Construction Kit. Proceedings of WWW86, 1997, Santa
Clara, Cdifornia
http://atlanta.cs.nchu.ed u.tw/imwww/PAPER138.html

[MA97] Pnillip Merrick, Charles Allen. Web Interface Definition Language (WIDL). Published by
webM ethods Inc. September 1997.
http://Amww.w3.org/ TR/INOTE-widl

[MM97] R.C. Miller and B. A. Myers. Creating Dynamic World Wide Web Pages By Demonstration.
Carnegie Méelon University School of Computer Science Tech Report CMU-CS-97-131. May
1997.

[NY96] G. Navarro and R. Baeza-Y ates. A Class of Linear Algorithms to Process Sets of Segments In
Proceedings of PANEL'96, Volume 2, pp. 671-682, 1996

[ST92] A.Sdminenand F. W. Tompa. PAT expressions. an algebra for text search. ActaLinguigica
Hungarica, Vol. 41 (1-4), pp. 277-306, 1992-93.

[ST96] A.Sdminenand F. W. Tompa Grammars++ for Modelling Information in Text. Department of
Computer Science, University of Waterloo, Canada, Technica Report, CS-96-40. November
1996.

[Wir82] Niklaus Wirth. Programming in Modula-2 (Texts and Monographs in Computer Science).
Springer Verlag, 1982.

Appendix

Although we can't give afull description of WebL in this paper, we can give aflavor of the language itsalf. Listing
1 implements a smple function to retrieve a tock quotation from a service. Listing 2 implements amore
complicated function to search for books by title or author at the eectronic book store Amazon.com. It fillsin
the query form, analyses the results, and returns alist of book objects for each book found.

Date Time Open High Low Last Change Volume

Earnl Shr ‘PIE DiviShr 52-wk Price Range

stockQuote : = fun(synbol)

page := getpage("http://fast.quote.conm fqg/quotecon quote", [. synbol s=synbol .]
(page. Elem("B") in (page. El en{"TABLE") contain page.Pat("Stock Quotes"))[0])[1]
end;
s := stockQuot e("DEC")

Listing 1. Retrieving a stock price from Quote.com

130f 14

The Chamber ~ Ships in 2-3 days
John Grisham ! Paperback / Published 1995
Cur Price: $6.00 ~ You Save: §$1.50 (20%)
SEET s ahon e e

The Client ~ Ships in 2-3 days
Johm Grisham ! Hardeower ! Published 19932
Cur Price: $16.45 ~ Vou Save: §7.05 (30%)
Faad sore shond M e

The Client ~ Ships in 2-3 days
John Grisharn, Blair Brown ! Audio Cassette ! Published 1993
Our Price: $16.45 ~ Vou Save: $7.05 (304)
Aagd mrore shout e s

shopAmazon : = fun(title, authorfirst, authorlast)
books :=1];
params :=[. .];
paranms["author"] := authorfirst + " " + authorl ast;
par ans["aut hor - node"] := "full";
parans["title"] :=title;
parans["titl e-nmode"] := "word";
parans["subject"] :="";
par ans[" subj ect - node"] := "word";
page := postpage("http://ww. amazon. com exec/ obi dos/ ats-query/", paramns);

itens := page. Elenm("dd");
every book in itens do
infol := substring(book. Text (), “\w([~]*) (/ ([™M]1*))2(/ [MNdl*(\d*))?)[0]
info2 := substring(book. Text(), “Qur Price: \$(\d*.\d*));
if (size(info2) > 0) and (infol[3] !'= "Audio Cassette") then
books = books + [[.
title = (page. Elem("a") directlybefore book)[0]. Text (),
link = (page. Elem("a") directlybefore book)[O0]. href,

author = infol[1],
type = infol[3],
year = (select(infol[5],-2,-1) ? "NA"),

price = info2[0][1]
11
end
end;
books
end

Listing 2. A WebL function to shop for books

14014

