SRC Technical Note
2001-004

December 2001

Selected 2001 SRC Summer Intern Reports
Compiled by

Cathy Miller, M.L.I.S.

COMPAQ

Systems Resear ch Center
130 Lytton Avenue
Pdo Alto, CA 94301
http://www.research.compag.com/SRC/

Copyright 2001 Compag Computer Corporation. All rights reserved

This document features informa reports by interns who spent the summer of 2001 working with researchers a
Compag Systems Research Center (SRC). The interns were graduate students in computer science or eectrid
engineering Ph.D. programs. Each worked for about three months at SRC, collaborating on a project with
members of the research gaff. The primary god of thistechnica noteisto describe the summer research
projects. The interns were encouraged to write their reports in whatever format or style they preferred, so that
non-technical observations (such as background and impressions arising from their stay) could aso be included.

lof2



1 Typsy: A Type-Based Search Tool for Java Programmers

Chrigtie Bolton

2 A Fast | ncremental Update Scheme for PageRank

Steve Chien

3 OS Support for Speculative /O Prefetching

Keir Fraser

4 Porting the FastVM from Alphato | A-32

M atthias Jacob

5 Verifying TLA+ Invariantswith ACL 2

Carlos Pacheco

6 Combining Thread-M odular and Procedure-M odular Verification

Sanjit A. Seshia

20f2



Typsy: atype-based search tool for java programmers

Christie Bolton
University of Oxford

1. Introduction

This summer | spent avery enjoyable three and ahdf months at SRC. Greg
Nelson, my host, and | built Typsy, atype-based tool for java programmers.

Java programmers using unfamiliar packages often need to gpoend a significant
amount of time searching for methods or procedures to perform routine tasks.
This search time is spent reading the documentation, thumbing through indexes
and grepping through interface files. Our god for the summer wasto build a
tool to diminate or greatly reduce this search time. Theideaiisthat even if the
programmer doesn't know the name of the method they probably know
something about its argument types and result type. This suggests a search tool
that accepts both the sgnature of the method and a context specifying the
relevant libraries. It then returns alist of combinations of methods, fields and
congtructors with the correct signature.

2. Example

An example of when the tool might be used arose during its congruction. We
wished to extract the first word from a stream of input. Had we dready built
the tool our query would have been asfollows: our god typeisastring; our
given argument is an input sream that we shdl cal “"in"; and our context isthe
java.io package. The tool comes up with alist of type-correct suggestions
each with hyper-text links to the java documentation. These suggestions use
combinations of methods, fields and congructors. The fifth suggestion, the
procedure that we were looking for, proposes that we construct a
StreamTokenizer with our given InputStream, in, asits argument, and then
cdl the sval field on the StreamTokenizer.

(new java.io.StreamTokenizer (java.io.InputStream in)).sval

3. Outline of project

Our initid step was afeasibility study: could we build atool that produced a
singlesmallest term of the correct type? We were able to use an in-house
package, built as part of ESC/Java, to extract the methods, fields, constructors
and supertypes of classes from their java source files. We defined a cost
function as amessure of the size of each term and then applied an dgorithm

lof2



based on Knuth's generdization of Dijksiras shortest path agorithm. Our tool
then identified aminima-cost term of the correct type. Having completed our
feashility sudy and established that it was possible to extract asngle minimd
cost term of our desired god type, the next step was to extend thisto finding,
say twenty smalest cost terms. We decided to adopt a breadth-first search
approach.

For each query, the tool congtructs a tree with the desired god type asits root
node and with each layer containing any types that might be directly used in the
congruction of atypein the layer above. The treeispruned so that the bottom
layer contains only given arguments and every other layer contains only those
types that can be congtructed from the types remaining in the layer below.
Various dynamic adjustment heurigtics are gpplied to ensure an appropriate
number of suggestions. If there are too few suggestions then afew basic types
such as boolean and integer may be included in suggested procedures. If there
are too many suggestions we snip and flag: we snip the tree a any nodes with
too many children and flag the fact that we have done thisin our ligt of
suggestions. It is then up to the user to investigate this branch further if they
believe that that iswhere their solution lies,

We gave Typsy an html interface with hyper-links from the methods, fidds and

congtructors included in suggested procedures to Sun's java documentation.
We used perl cgi-script to provide the link between the interface and the tool.

20f2



A Fast Incremental Update Scheme for PageRank

Steve Chien
Univergity of California at Berkeley

1 I ntroduction

We began with the broad god of exploiting changes in the link structure of the web. For our raw data we used
the results of two large crawls of the web made at SRC from May and November 2000, and their compact
representation in the connectivity server, aso built at SRC. While we made a number of observations on the
evolution of link structure over time, our most substantia result was an increased understanding of Google's very
popular PageRank measure of web page importance and an gpplication of thisto a very fast incrementa update
dgorithmfor PageRank.

2 PageRank

PageRank is Google' s highly successful method for evauaing the importance of web pages and is based on
interpreting the web as a very large graph in which pages are vertices and links are directed edges. It is then
naturd to think of a Markov chain, or a randomwak on this graph; from our current page, we choose a random
edge to follow. We then modify this random walk so that at any step there is a certain probability that we jump to
arandom page. PageRank is then the stationary probability distribution of this Markov chain. While PageRank is
therefore only an eigenvector computation, the Sze of the web graph limits us to usng power iteration, arddivey
dow approach.

PageRank works very wel in practice, and some effort has been spent andlyzing its effectiveness. In particular,
Andrew Ng, Alice Zheng, and Michael Jordan reported that one nice feature of PageRank s its gability under
sgnificant changes to the web graph and concluded that it is the random jump that is respongble for this.

3 Our Analysis

We andyzed PageRank from a amilar perspective, asking how changes to the links out of a sngle page affects
the PageRank of other pages. Our andysis showed that the random jump probability has the effect of locdizing
the impact of such updates to a amdl subgraph surrounding the modified page. This suggested the following
update dgorithm: We assume we are given the current web graph and the correct PageRank for it. We then
discover that a new edge has been added. We respond by congructing a smdl subgraph around the affected
page, and consolidate the remainder of the web graphinto a sngle superpage that smulaes the interaction of the
rest of the graph with the subgraph. We then compute the new PageRank on the amdl subgraph, and assume that
PageRank has not changed in the superpage. Our andyss shows that this should be an excdlent approximation
to the updated PageRank.

As an extraresult, we showed that PageRank (and a large class of other Markov chains) is dso monotonic in the

lof2



sense that if a page receives a new incoming edge, its PageRank increases.

4 Our Experiments

We implemented our dgorithm on the raw data from the May and November 2000 web crawls. In a series of
andl experiments, we started with the 61 million pages from the May 2000 web crawl and added sngle edges.
We found that our gpproximations on these changes were extremdy accurate. We then tried a much larger scae
experiment in which we incrementdly incorporated dl of the edge changes between May and November, for a
total of over 17 million edge additions and deetions. Once again, we showed that our agorithm worked
extremdy wdl. [We are preparing to publish a more rigorous and detailed description of our experiments] In
each case, our dgorithm peformed far fewer computations than full-blovn power iteraion.

5 Acknowledgements
In dl of the above, the firg person plurd includes primarily my summer advisor Cynthia Dwork, who made the
summer an especidly rewarding and enjoyable experience. | aso greetly appreciate Janet Wiener’ s indispensable

hep with the connectivity server, as wdl as conversations with Li Zhang, Yunhong Zhao, Marc Ngjork, Mike
Burrows, Lyle Ramshaw, and many others.

20f2



OS Support for Speculative I/O Prefetching

Ker Fraser
Univergty of Cambridge

1. Introduction

Speculative execution is a technique for prefetching disk blocks before they are
required, by pre-executing application code whenever the CPU isidle. Disk requests
found by speculative execution are turned into prefetches. The origind SpecHint tool,
written by Fay Chang, was implemented entirely within user space. Although it was
effective for many benchmarks, it is hard to control resource utilisation without
assgtance from the operating system. This means that SpecHint can harm gpplication
performance if, for example, memory is scarce.

My work this summer explored the potentia advantages of removing this condraint
by implementing and evaluaing a design that includes specia operating system
support for the speculative execution approach. Somewhat to our surprise, our
results indicate that alowing such support will not produce larger performance
improvements. Nevertheless, where adding such support is feasible, our new design
has improved resource control which makes it amore practicd dternaiveto

SpecHint.

2. Design overview

Each time anew processis cregted, an additiona processis aso forked and marked
as the shadow of the primary process. The shadow exists for the entire lifetime of its
parent, and remainsidle until the primary process requests afile region which must
be fetched from disk. At that point the shadow is synchronized by copying the
primary processs memory and file tables, and becomes runnable.

We take particular care when allocating shared resources to a shadow process to
ensure that this does not impact the performance of higher-priority operations.
Critica resources which we consder are processing time, memory, and disk
bandwidth.

The mogt difficult resource to control is memory, because it is generdly impossible to
alocate amemory page to a shadow process without evicting pages which may be
more vauable. It is common practice to alocate most of physicd memory to either
file cache or gpplication virtud memory. Only asmal number of pages will typicaly
be available for immediate dlocation, and a kernd daemon will periodicdly run to
keep the freelist "topped up'. A page alocated to a shadow process may therefore
cause another page to be evicted at some later time, when the reclaim daemon runs,

lof2



but it isimpossible to determine that page's vaue, or even which page it will be. We
implement asmple scheme in which shadow pages are initidly alocated onto a
low-priority page ligt, thus making them good candidates for eviction, and by
preventing shadow processes from marking pages as referenced. Our intention is that
high memory demands by a shadow process will cause its own pages, or pages from
another shadow process, to be evicted before those of a primary process.

3. Results

We implemented our design within Linux 2.4.8, and evauated it using a range of
disk-intensive applications. These included

* Gnuld: object code linker

Agrep: text-file pattern matching

XDataSice: three-dimensond datavisudization
PostgresQL : flexible DBMS, based on POSTGRES

Sohinx: speech-recognition system

Our experiments were conducted on an 866MHz Pentium [11 with 128MB of
memory, running our modified kernel. The test filesystem system consisted of four
Compagq RZ1CB Ultra SCSl discs (12ms average seek time) striped into a 16GB
aray. The maximum transfer rate supported by the discs and the SCSl interface was
40MBY/s.

With 128MB of memory, which was more than adequate for the benchmarks we
used, the performance improvements were Smilar to those achieved by the origina

SpecHint toal.

When memory was reduced to 64MB, we were able to prevent speculative
execution from significantly reducing performance on those benchmarks which
required alarge amount of memory (for example, Sphinx).

20f2



Porting the FastVM from Alphato | A-32

M atthias Jacob
Princeton Univer sty

1. Introduction

The god of the project was to port the existing Java Fast Virtud Machine
(FastVM) on the Alpha platform to 1A-32. This includes the whole runtime
environment as well as the just-in-time compiler. The work during the summer
was mainly focused on the just-in-time compiler. The important parts of the
project were to bridge the differences between the Alphaand [A-32
architecture and especiadly to design afast and efficient register dlocator on the
|A-32 platform.

2. AlphavslA-32

Apat from the generd difference of processing 32 bit instead of 64 bit the Intel
architecture complicates the implementation of the just-in-time compiler in
various aspects.

» nofixed indruction length

« few multi-purpose registers

* floating-point stack instead of registers
* regigters bound to certain ingructions

Thisleads to design issues such as having a higher register pressure on the
| A-32 architecture and implementing 64-bit operations usng multiple 32-bit
ingtructions and alocating additiond regigers.

2. Stack Frames

Compared to the standard GNU stack frame specification, severd things had
to be changed for the Java just-in-time compiler. For example, Snce some
vaues are represented as 64-bit values within Java the stack frame needsto be
aigned to 8 byte boundaries instead of 4 byte boundaries. Furthermore, a
stack check needs to be introduced in order to be able to do appropriate
exception handling. Also, Snce it wasthe goa to make as many regisers as
possible available for genera purpose areserved stack dot isintroduced to
distinguish the parent from the current stack frame which makes the frame
pointer redundant.

lof2



3. Floating-Point oper ations

The floating-point unit in 1A-32 uses a floaing-point stack insteed of directly
accessble registersin order to store floating-point values. Floating-point
operations can be executed ether on the first two eements of the stack or on
an dement in memory and on top of the stack, whereas the result is stored on
top of the stack. There are no transfers possible between the processor
registers and the floating-point stack which can become a performance
problem if the register dlocator doesn't take it into account.

4. Register Allocation

The design god of the regigter dlocator isto minimize the compile time, and
optimize the generated code as much as possible. In totd there are 7 registers
avallable for generd purpose vaues depending on whether the ingtructions are
able to address these registers. In addition the floating-point stack can carry 7
floating-point vaues as wdll.

The regigter dlocator for the Alphaverson of the FastVM uses adata
Sructure that assigns each entity in the program a home location and mapsthis
to temporary locations in the registers. The register dlocation itsdf works on a
local scheme for each Java bytecode instruction and doesn't use any globd
agorithm since this can become expengve.

5. Results

When comparing the ratio of the SpecINT and SpecVM benchmarks of
different VM implementations on different platforms, the FastVM is one of the
leading implementations. It is the question whether it is possble to preserve the
performance of the implementation on a different platform. We compared the
firgt prototype implementation of the FastVM for 1A-32 to exising VM
implementations by Sun and IBM and found that on severa of the SpeciVM
benchmarks the FastVM s doing better by about 10%. However, there are
il benchmarks that do alarge number of floating-point operations, where
performance is decreasing. This has to do with the complicated floating-point
handling on |A-32. But after all, this project shows that the FastVM can be
ported to a different architecture with a minimum amount of work in afew
months.

202



Verifying TLA+ Invariants with ACL2

Carlos Pacheco
University of Texasat Austin

1. Introduction

Reasoning in TLA [5] consgs largely of reasoning about actions. By most
accounts, 90% of al reasoning in TLA+ specifications[4] occurs at the action
level, where tempord logic has been eiminated. Action reasoning aone, for
example, isinvolved in dl but the last step of establishing an invariant of a
specification. Condder a system with sarting sate Init and next-state relation
Next. In order to establish an invariant Inv of the system, we need two lemmeas:

1. Init=> Inv
2. Inv/\ Next => Inv'

Once we establish these two lemmas, one gpplication of a TLA inferencerule,
aong with smple tempora reasoning, lets us establish the invariant at the
tempord leve (the formula[]inv). In the Disk Synod dgorithm [1], establishing
[[Inv from formulas like (1) and (2) above takes up one page, while the cregtion
of an invariant and its verification at the action level spans 18 pages.

Our god isto provide mechanica support for proving TLA+ invariants a the
action levd. A system that deds effectively with action-level formulas would teke
us along way in mechanicaly checking the correctness of specifications

Our platform of choice for mechanicd verificationisACL2 [1]. The ACL2
system is atractive for severd reasons. It is among the most automated in the
spectrum of theorem provers. It blends arithmetic decision procedures with
rewriting techniques. Findly, it is a stable and robust system, designed to tackle
indudtrid-size verification projects.

2. A Mechanical Trandator

A firg experiment & the Univergity of Texasat Austin [7] conssted in manualy
trandating the Disk Synod dgorithm into ACL 2 and verifying two invariants of
the dgorithm. The god of the summer project was to automate the trandation.
We wrote a proof-of-concept TLA/ACL2 mechanica trandator. The trandation
schemeislargely based on ACL2'sfinite set theory [6]. Note the keyword finite
in the previous sentence: the trandator handles a subset of TLA+ concepts, and
infinite sets are not alowed.

Our trandator not only trandates TLA+ specifications, but also structured
proofs|[3] of conjectures about the specifications. In writing a structured proof,

lof4



we mark some reasoning steps as *checked by ACL2" and leave others
unmarked (Figure 1). We use ACL 2 to check only those steps marked as ACL.2
gseps. Theideais that, short of mechanicdly verifying every step of aproof, a
user might first want to explore pieces of aproof that are not entirely clear or
where he lacks confidence. Also, we want to use ACL2 only on stepswhereit is
gppropriate to use ACL2: low-leve, quantifier-free formulas.

HInvl A HNext = Hinvl'
ASSUME:
Prove: Hinvl'

(1)1. cAsg: StartBallot(p)

ASSUME: 1. CONSTANT b € Ballot(p)

2. A b > dblock[p).mbal
A dblock’[dblock EXCEPT ![p].mbal = b
Prove: Hinvl'
ProoFr: By ACL2.

(1)2. caAsE: Phaselor2Write(p,d)

Proor: By ACL2.

8. Q.E.D.
Proor: Cases are exhaustive.

Figure 1. A portion of the proof of invariant Hinv1 in the Disk Synod
algorithm.

3. Results

Our trandator handled the entire TLA+ specification of Disk Synod and two
Sructured proofs of invariants of the dgorithm (invariants 12a and 12c in the Disk
Paxos paper [1]). We used ACL 2 to check most steps of these invariants. The
few steps we avoided were obvioudy correct high-level steps such as step <1>8
in Figure 1 above, whose correctness follows by the fact that steps <1>1 through
<1>7 (not shown in detail in Figure 1) establish the invariant for every digunct of
HNext, the next-state action.

Our effort led us to discover some needed hypotheses that were absent in the
origind gructured proofs.

20f4



4. Conclusion

ACL 2 is agenerd-purpose theorem prover, and one can useit to verify every
gep of aproof in dmost any mathematical domain, from real analysis to circuit
design. In our first experiments, we used ACL 2 to verify every step in the proofs
of 12a and 12c. More than hdf our time was spent trying to reason about Smple
sepsin higher-level concepts like quantification. The main drawback in using
ACL2 isthe different levels of abstraction at which TLA+ and ACL2 users
commonly operate. ACL2 theories are usudly fairly low-leve, concrete and
computationa. On the other hand, TLA+ specifications tend to be more
descriptive than congructive, and make libera use of higher-level concepts which
are difficult to handle in ACL2's firgt-order, essentidly quantifier-free logic.

Our second approach was to use ACL 2 only where it might be suitable--closer
to the leaves of a proof, where quantification has been iminated and dl that
remains are large but low-levd formulas. Although low-levd, these formulas are
nontrivial and can be a chalenge for any theorem prover. Moreover, it is most
often in these elaborate steps where errors are uncovered. It isto ACL2's credit
that it did so much work with little guidance. At the correct leve of dostraction,
the prover not only helped us verify statements, but it aso pointed the way to
omissions and errors with remarkable precision.

In further work, we would continue focusing ACL 2's attention on low-leve
segments of TLA+ proofs, refining our tools and lemmallibraries to increase the
prover's power in this restricted domain. For the remaining high-level steps of
TLA+ proofs, we might recruit a different theorem prover with alogic more
expressve than ACL2's. A future proof checker for TLA+ might, in addition to
steps labeled " checked by ACL2," dso have steps labeled " checked by X"
where X is adifferent theorem prover. The framework for structured proofs we
have followed alows for collaboration among multiple provers (each with its own
particular strengths) in attacking a verification project.

A. References

[1] Eli Gafni and Ledie Lamport. Disk Paxos. in Maurice Herlihy, editor,
Digtributed Computing: 14th International Conference, DISC 2000 Lecture
Notes in Computer Science number 1914, pages 330-344, Springer-Verlag,
2000. [2] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore,
Computer-Aided Reasoning: An Approach, Kluwer Academic Publishers,
2000.

[3] Ledie Lamport. How to Write a Proof. American Mathematica Monthly
102, 7 (August-September 1993)} pages 600-608.

[4] Ledie Lamport. Specifying Concurrent Systems with TLA+. In M. Broy

and R. Steinbruggen, editors, Cdculational System Design. 10S Press,
Amsterdam, 1999.

30f4



[5] Ledie Lamport. The Temporal Logic of Actions. ACM Transactions or
Programming Languages and Systems, 16(3):872-923, May 1994.

[6] JMoore. Finite Set Theory in ACL2. TPHOLS 2001, Edinburgh,
September 2001.

[7] Carlos Pacheco. Reasoning about TLA Actions. Undergraduate Honors

Thesis. Technica Report TRO1-16, Department of Computer Sciences, The
Universty of Texasa Austin, May 2001.

404



Combining Thread-Modular and Procedure-Modular Verification

Sanjit A. Seshia
Carnegie Méllon University

This report describes work done this summer with Shaz Qadeer, my hogt at
SRC.

1. Introduction

Multithreaded software systems are susceptible to awide range of errors.
Many of these errors are synchronization errors arising from dataraces, i.e,
when two threads access or update the same memory location at the same
time. To avoid this, programmers place redtrictions on when shared locations
can be read or written. The most common way of avoiding dataracesisto
associate locks with shared data. However, in practice there can be many
different kinds of locking disciplines, and sometimes, correct access may be
guaranteed by other techniques, such astempora separation of accesses. In
addition, it is often degrable to check invariants on shared data

Many techniques have been devised for checking multithreaded programs for
ample locking disciplines. However, more complicated ways of avoiding data
races cannot be easily handled. Thread-modular verification(TMV) [2]
addresses this problem. TMV is atechnique for verifying synchronization
properties of multithreaded programs without procedures. It works by
andyzing one thread at atime, using assumptions on other threadsin the
environment. Techniques and tools for verifying sequentid programs, such as
ESC/Java[1], can then be leveraged.

To make TMV useful, one needs to add to it the ability to reason about
procedures in a modular manner. Procedure-modular verification is a technique
for verifying sequential programs with procedures, one procedure at atime, by
using precondition/postcondition specifications at cal stes. The god of our
work, then, is to combine the above methods to achieve modular verification of
multithreaded programs with procedures. We redlized that
precondition/postcondition specifications for procedures do not suffice for
modular verification in the presence of multiple threads. To overcome this
problem, we propose a new procedure specification that overcomes some of
the problems with precondition/postcondition specifications.

2. Insufficiency of pre/post conditions

Consder a concurrent program with a single shared variable x. This program

lof4



uses areaders-writer (shared-exclusive) lock rwl to mediate access to x.
Suppose that we want x to obey theinvariant that it is aways podtive when no
thread holds rwl in write mode. A fragment of Java code for this program is
shown below with ESC/Java style annotationg(the "run" method is executed by
the thread that is being anayzed):

int x;
ReadersWiterLock rw ;
/*@ gl obal _invariant !'rwl.hasWiter ==> (x > 0) */

void run() {
rw . begi nRead() ;
X++;
assert(x > 1);
rw . endRead();

One can convince onesdf that the assert enclosed within the beginRead() and
endRead() combination should pass. However, we are unable to show this
using just pre and post conditions of beginRead(). The pre/post condition
specification of beginRead() is shown below:

/*@ensures i sReader[current Thread] && !'hasWiter */
voi d begi nRead() {

[* body */
}

Notice that we cannot state anything stronger about the post-condition. In
particular, we would like to strengthen the post-condition with "x>0", but we
cannot because x is only in scope in the client code for the reeders-writer lock
and not in the code for the lock itsdlf. In fact, different clients might need
different, possibly contradictory, ways of strengthening the post-conditions.

3. Atomic specifications of procedures

The fundamentd problem described in the previous section (with using pre and
post conditions) is that the specification we need is one which captures the
atomic trangtion within beginRead() from the point when thereis no writer to
the point where the thread executing beginRead() atomically gets the read lock.
We cdll this more precise specification as a"aomic specification” (aso cdled a
"performs’ gpecification in our implementetion).

/*@performs (isReader[currentThread])
{ Vold(!hasWiter) && isReader[currentThread] } */
voi d begi nRead() {
/* body */
}

The meaning of a"performs (v) {P}" specification isthat aomicaly, on some
trangtion in the procedure whose pre-state is governed by P, the thread
executing the procedure changes the vaue of v according to P. The thread

20f4



executing the procedure leaves v unchanged at dl other points.

Given the "performs’ specification of beginRead(), we can now useit at the call
Ste to reason that the assert passes. To seethis, notice that in the pre-state of
the atomic action, !hasWriter istrue. In addition, the invariant holds &t this
point. These two factsimply that x > 0. The predicate x > 0 continuesto be
true until the end of beginRead() and hence we can conclude that the assert
passes.

The performs specification must o be checked on the method
implementation. We do this usng a monitoring sate machine.

4. Implementation

We have extended ESC/Java to do thread-modular verification and to reason
about procedures with atomic specifications. The mgor changes we made to
ESC/Javawere in generating and placing code that models actions by the
environment (constrained by TMV assumptions), code to check for TMV
guarantees, and code to check for "performs” specifications. We took an
atomic block of statements executed by athread to be one in which only one
read or write to aword-sized shared data |ocation occurs. We mode actions
by other threads as occuring between atomic blocks; these actions can modify
shared gtate only in away that is congstent with environment assumptions of
the thread being andyzed.

5. Experimental Results

We ran the modified verson of ESC/Java on severd examples. The largest
example was the part of the Mercator Web crawler [3] that deals with
readers-writer locks. This code comprises about 1500 lines of Java source
code, and we checked it for violations of congtraints on writing shared data,
and for afew data invariants. We did not find any bugsin Mercator, but we did
find aknown bug in java.util.Vector.

We ds0 studied the annotation overhead in usng TMV. We took the rather
non-modular, but low-annotation-overhead, gpproach of inlining adl non-public
methods, and checking specifications only of interfaces (viz. public methods
and fidlds). Even with the blow-up in the Sze of methods from inlining,
ESC/Java and Smplify scaed well: for example, checksfor al but two
methods in Mercator took less than 10 minutes.

6. Conclusonsand FutureWork

Our initid experiments indicate that threed-modular verification extended with
atomic specifications for procedures is a useful technique to check generd
synchronization properties and data invariants. The tool we built for Java has
scaled well to work on real programs. Annotations tend to concentrate at the
interfaces; if there is much interface reuse then the cost of adding annotations at

30f4



the interface can be amortized over severd uses.

There are many avenues for future work. We are currently working on safe
optimizations to reduce the checking code and the number of places we have
to insert checks, some of these have dready been implemented. Reducing the
annotation burden by infering "boilerplate’ annotations (such as those for smple
locks) can be added; more complicated annotation inference remains a
chdlenge. Findly, exploring richer method specifications provides many
avenues for further work.

References

[1] David Detlefs, K. Rustan M. Leino, Greg Nelson and James Saxe.
Extended Static Checking. Research Report 159, Compaq Systems Research
Center, Palo Alto, CA, December 1998.

[2] Cormac FHanagan, Steve Freund and Shaz Qadeer. Thread-Modular
Verification. Submitted to POPL 2001.

[3] Allan Heydon and Marc Ngork. Mercator: A Scaable, Extensible Web
Crawler. World Wide Web conference, December 1999.

404



