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Abstract

A combinational circuit can be tested for the presence of a single stuck-at fault
by applying a set of inputs that excite a verifiable output response in that circuit.
If the fault is present, the output will be different than it would be if the fault were
not present. Given a circuit, the goal of an automatic test pattern generation sys-
tem is to generate a set of input sets that will detect every possible single stuck-at
fault in the circuit.

These two papers describe a new method for generating test patterns: the
Boolean satisfiability method. The new method is quite general and allows for the
addition of any heuristic used by the structural search methods. The Boolean
satisfiability method has produced excellent results on popuiar test pattern genera-
tion benchmarks. The first paper, Efficient Generation of Test Patterns Using
Boolean Difference, gives an overview of a successful test pattern generation sys-
tem using the Boolean satisfiability method. The second paper, A Framework for
Evaluating Test Pattern Generation Strategies, describes potential test pattern
generation heuristics and their efficacy in the Boolean satisfiability system.



Efficient Generation of Test Patterns Using Boolean Difference

Tracy Larrabee

March 1990

 Abstract

Most automatic test pattern generation systems for combinational circuits gen-
erate a test for a given fault by directly searching a data structure representing the
circuit to be tested. This paper describes a new system that divides the problem into
two parts: First, it constructs a formula expressing the Boolean difference between
the unfaulted and faulted circuits. Second, it applies a Boolean satisfiability algo-
rithm to the resulting formula. The new system can incorporate any of the heuristics
used by structural search techniques. It is not only quite general, but is able to test
or prove untestable every fault in the popular Brglez-Fujiwara benchmark system.

This report 1s a slightly revised version of a paper appearing in the 1989 proceedings of
International Test Conference.
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1 Introduction

A combinational circuit can be tested for the presence of a single stuck-at fault by applying
a set of inputs (a test pattern) that excite a verifiable output response in that circuit.
Given a circuit, the goal of an automatic test pattern generation (ATPG) system is not
only to generate a set of test patterns that will detect every possible single stuck-a fault in
the circuit, but also to identify all untestable faults in the circuit.

The time needed to generate one test pattern that will detect the presence of a single
stuck-at fault is, in the worst case, exponential in the size of the circuit under test [5].
Many test generation systems have been designed and implemented [9, 6, 4, 10] with the
idea of avoiding those worst cases—of keeping the time needed to generate a test, in the
expected case, within the realm of computational possibility. These systems all perform
their search for a solution in a topological manner.

This paper describes a new approach to algorithmic generation of test patterns for
combinational circuits. The method consists of two parts: First, given a circuit and a fault
site in that circuit, construct a formula expressing the Boolean difference of a circuit with
respect to a given fault. Second, apply a Boolean satisfiability algorithm to the resulting
formula. Since the Boolean difference formula defines the complete set of tests capable of
distinguishing between the faulted and unfaulted circuits, satisfying this formula will give
us a set of inputs that detect the fault.

The Boolean difference of a circuit and a fault has long been considered theoretically
important [11, 8], but the tedious nature of the algebraic manipulations involved in solving
the Boolean difference led to its disfavor as a practical tool for test pattern generation.
Fortunately, the Boolean difference need not be solved to be useful for generating tests:
satisfying the formula is rewarding. Our system correctly tests or proves untestable every
fault in the Brglez-Fujiwara benchmark system|2].

Our method of generating a test pattern for a stuck-at fault is to first generate a formula
describing the set of possible patterns that detect that fault, and then satisfy the resulting
formula. The following two sections describe these two steps in detail; the remainder of
this section describes the complete test pattern generation system.

After wirelist translation, the first phase of test pattern generation begins. Pseudo-
random vectors are produced 32 at a time and simulated using a Parallel Pattern, Single
Fault Propagation (PPSFP) system modeled after the one reported by Waicukauski et
al [12]. When one complete PPSFP pass produces fewer than a predetermined number of
vectors (currently two), the second phase, algorithmic pattern generation, begins.

The attempt to generate a pattern for the first fault remaining on the fault list may
terminate successfully or unsuccessfully. An attempt is successful if a pattern is generated
or it is proven that no pattern exists; an attempt is unsuccessful if too much time has
passed without reaching a successful conclusion. If a pattern is generated, this pattern is
simulated against each of the remaining faults using a simple single pattern, single fault
propagation fault simulator. Algorithmic pattern generation terminates when every fault
has been declared covered, uncoverable, or aborted. The performance of the complete



system is reported in Section 4.

2 Extracting the Formula

A circuit is represented as a directed acyclic graph with the sources of the graph being
the outputs of the circuit and the sinks being the inputs of the circuit. By walking the
graph starting at any output, each of the nodes that can affect the value of that output
are reached. Each node of the dag, a gate or a fanout point, is tagged with the logic
formula, in 3-element conjunctive normal form, or 3CNF (also known as product of sums
form). The formula associated with a logic element is a characteristic formula that is true
if and only if the truth values assigned the variables representing the wires connected to
the gate are consistent with the truth table for the element. For example, the formula for
the AND gate shown in Figute 1 is (D+ 4)-(D+ B)-(D + 4 + B) . This formula is true
if the varibles A, B, and D take on values consistent with the formula D = 4. B. For
comparison, the disjunctive normal form (or sum of products) version of the same formula
isA-B-D+A-B-D+A-B-D+4-B-D.

(C + E)
(€ +E)

Figure 1: A Circuit

- A formula describing the value of one of the circuit outputs in terms of its inputs can
be obtained by walking the graph and taking the conjunction of all of the formulas for the
visited nodes. Since variables are used to represent every wire of the circuit, the desired
formula can be obtained in time and space that is linear in the size of the circuit. The
formula for the output of the circuit in Figure 1 is (X + D) - (X +E)- (X + D+ E)- (D + A) -
(D+B)-(D+A+B)-(C+E)-(C+E).

A faulted circuit is represented by a copy of its associated unfaulted circuit with renamed
variables. Because the unfaulted and faulted circuits will have identical behavior except
in those nodes that are affected by the fault, only the variables that are associated with
wires that lie on a path betwgen the fault site and a primary output need to be renamed.
Figure 2 shows a faulted circuit corresponding to the unfaulted circuit in Figure 1 with line
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Figure 2: A Faulted Circuit

D stuck-at 1. The formula for the output of the circuit in Figure 2 is (X' + D") - (X' + E) -
(X7 + D' +E)-(D')-(C+E)-(C+E).

The Boolean difference of a circuit with respect to a particular fault is defined as the
XOR of the output of the unfaulted circuit and its associated faulted circuit output. The
formula for the Boolean difference is obtained by walking the unfaulted circuit and the
faulted circuit (as just described), and taking the conjunction of their formulas together
with the formula for the XOR of the unfaulted output variable and the faulted output
variable. The formula BD = X @ X’ is translated to (BD=V1+V2)- (Vi =X . X'). (Vo = X - X')
where V; and V; are automatically generated new variables.

The formula for the Boolean difference resulting from the XOR of the output of the
unfaulted circuit of Figure 1 and the faulted circuit of Figure 2is (X + D). (X +E)- (X+ D+
E)-(D+A)-(D+B)-(D+A+B)-(C+E)-(C+E) (the clauses contributed by the unfaulted
circuit) (X' 4+ D')- (X' +E)- (X’ + D' + E)-(D') (the clauses contributed by the faulted circuit)
(X+V)(X'+ V) (Vi+ X +X) (X +V2)-(X'+V3)-(Va+ X + X')-(BD+V1+ V3)-(Vi+ BD)- (V3 + BD),
(the clauses contributed by BD = X @ X').

Generating a test pattern for the given fault is now a matter of satisfying this 3CNF
Formula. If the formula cannot be satisfied, the fault is undetectable.

3 Satisfying the Formula

The problem of satisfying a 3CNF formula, $SAT, can be viewed as searching a binary
tree. Each node of the tree corresponds to a variable in the formula to be satisfied, and the
two branches of a node correspond to the two possible Boolean assignments to the variable
associated with that node. A path from the root node to any other tree node is consistent
with the formula if the partial binding associated with that path causes no 3CNF clause
of the formula to evaluate to false (in the sense that all its literals evaluate to false). In
order to satisfy the formula, a consistent path from the root node to any leaf node must
be found.



The 3SAT problem was one of the first to be proven NP-complete {3]. This means
that we have transformed one potentially exponential problem into another. However, the
class of formulas generated by combinational circuits is an interesting sub-class of all 3CNF
formulas, and we can use this fact to try to avoid the worst case behavior of 3SAT: At least
two thirds of the clauses generated for the Boolean difference of a combinational circuit
have only two disjuncts (are in 2CNF). This is true because each two-input unate gate
contributes two binary (2CNF) clauses and one ternary clause. Unate gates with more
than two inputs contribute more than two thirds binary clauses, and fanout points, buffers,
and inverters contribute only binary clauses. In practice we have found that 80% to 90%
of the clauses are in 2CNF. The problem of satisfying a 2CNF formula, 2SAT, is satisfiable
in time linear in the number of clauses plus the number of variables [1]. We may have
an exponential number of 2SAT solutions, but we can use information from the ternary
clauses to guide the iteration through the 2SAT assignments.

3.1 2SAT

We use a well-known algorithm for satisfying a 2CNF formula [1]. The first step is to
construct an implication graph. Each 2CNF clause (X+Y) can be viewed as two implications:
X =Y and Y = X. The implication graph for a 2CNF formula shows all of the constraints
imposed by 2CNF clauses on the logic values of the variables involved.

More formally, for each variable X occurring in the 2CNF clauses, there are two vertices
in the graph, labeled X and X. For every 2CNF clause (X + Y) there are two edges in the
graph: one from X to Y, and one from Y to X. The edge represents the logical implication
between the two literals. We can now bind logic values to the variables in the graph. Any
assignment is legal as long as it does not cause a node labelled true to preceed (or imply)
a node labelled false. Before we label the graph, we can simplify it by reducing strongly
connected components to single nodes. A strongly connected component is a maximal set
of nodes in a graph such that every node in the set is reachable from every other node in
the set.

A strongly connected component represents a set of variables that are in an equivalence
class. If any equivalence class contains both a literal and its negation, the formula is
unsatisfiable. After each strongly connected component is reduced to a single node, the
graph will not contain any cycles. Now we can find a binding for the 2CNF formula by
visiting the vertices in any topological order. We choose a topological order that maximizes
the number of variables in ternary clauses that are bound to false and thus narrowed to
2CNF or unary clauses.

As an example of how 2SAT works, consider the small circuit in Figure 3; imagine that
we wish to iterate through all possible bindings to the variables 4, A1, 42, B, and C. The
formula for Cis (A+A4;)-(A+A41)-(A+43)-(A+43)-(A1+B)- (A, + B)-(C+43)-(C+B)-(A2+ B+C).
The implication graph of the 2CNF portion of this formula is shown in Figure 4. After
the strongly connected components of this graph are reduced to unit nodes, the resulting
graph is shown in Figure 5. The final graph clearly shows that ¢ = C, and therefore C
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Figure 3: A Circuit

Figure 4: The Implication Graph

must be bound to false. Given this restriction, only one node in the graph remains, and it
can assume either Boolean value and remain consistent with the ternary clause.

3.2 Iterating through 2SAT Bindings

We've just described a method for constructing a satisfying assignment for the 2CNF
portion of the formula by assigning values to the literals so that no node labelled true has a
directed path to a node labelled false. Clearly there are many such assigments. We would
like to iterate through these assignments in an order that maximizes our chances of quickly
discovering a 2SAT solution that can be extended to a satisfying assignment for the entire
3CNF formula.

We begin our iteration by ordering the variables by a metric that combines the number
of constraints the variable places on the other variables within the implication graph and
the number of times the variable appears in the ternary clauses. This defines a total
order on the 2SAT solutions: One assignment preceeds another if the n-bit binary number
representing the values of the variables (in the previously fixed order) preceeds the n-bit
binary number for the other assignment. We consider the 25AT solutions in this order,
using standard search techniques to attempt to extend each 2CNF solution to a solution
for the entire formula.

There is an intuitive rationale behind the metrics used to heuristically order the search:
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Figure 5: The Reduced Implication Graph

If a partial binding is going to lead to a contradiction, we want to discover this as quickly
as possible. By beginning our construction of a 2SAT solution with those variables with
the largest number of constraints on other variables, we are more likely to discover any
conflicts early in the construction.

4 Minimizing the Search Tree

The algorithm we have described is complete: If a solution exists, the system will eventually
find it. However, we can speed up the satisfier tremendously by making sure that it does
not explore parts of the search tree that are known to contain no solutions. The search

tree may be reduced both by subtracting clauses from the formula and by adding clauses
to the formula.

4.1 Removing Clauses

We can remove a variable from the formula (along with all the clauses containing the
variable) if we are guaranteed that removing the variable will not cause a satisfiable formula
to appear to be an unsatisfiable one. We can use the determines relation presented below
to identify and remove extraneous variables from the formula.

We say that variable V determines variable W if both assignments to V cause W to
appear in the formula only negated or only unnegated. In this case, we may remove all
clauses containing W from the formula and postpone the assignment of W until after the
final assignment of V has been made.

This technique can be used to mimic the behavior of the FAN algorithm [4], which stops
its backtrace operation at head lines, wires guaranteed not to be involved in reconvergent
fanout loops.

As an example, in the Boolean difference formula presented for the circuit in Figure 1,
E determines C but C does not determine E. In fact, every variable in the formula but BD is
determined by some other variable. Since the circuit from which we produced the formula

is completely fanout free, it is not surprising that a satisfying binding can be found with
no search.
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Figure 6: The Formula for G can be reduced to (E + E1)- (E+ E1) - (E + E;) - (E + Ez) -
(F+E)-(G+E,y)-(G+F) (G+ E; +G).

A more interesting example appears in Figure 6. The characteristic formula for G would
normally consist of 13 clauses, but the removal of all clauses containing variables 4, B,
and C will leave only 8 clauses in the remaining formula because F determines 4, and E
determines B and C .

Unfortunately, our technique as stated will not remove as many variables as may be
safely removed from the formula: the technique will not remove variables corresponding to
input wires for XOR gates not involved in reconvergent fanout loops. We are working on a
modification that will correctly deal with XOR gates.

4.2 Adding Clauses

We can take the basic formula to be satisfied and add clauses that explicitly state informa-
tion that can be derived by the satisfier, but may only be derived after a certain amount
of case-splitting. The simplest example of such redundant information is the value of the
unfaulted wire with the fault. For example, the formula for the fault shown in Figure 2
contains the unary clause (D’). The satisfier can derive that the variable (D) must take on
the value false in order for the XOR of the faulted and unfaulted circuits to be equal to true,
but can add that information explicitly, by adding the clause D to the formula. Adding
this kind of derivable information can speed up the satisfier by an order of magnitude. The
effects of the added clauses mentioned here are fully described in another paper [7], but
three different kinds of redundant information to be added are described in this section.

4.2.1 Active Clauses

One important class of redundant information is a set of clauses that speed fault propaga-
tion. If a fault is detectable, there must be at least one path from the fault site to a primary
output such that every wire on that path has different unfaulted and faulted values. There
may be more than one such path, but we only need to find one.
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Figure 7: If X is active, Z must be active: (Actx + Actz)

X,
X

X;

Figure 8: If X is active, either X; or X; must be active: (Actx + Actx, + Actx,)

For every wire that lies on a path between the fault site and a primary output, we
allocate an active variable. If the active variable for a wire is true, then the faulted value
of the wire differs from the unfaulted value. For example, for the circuit in Figure 2 we
allocate the variables Actp and Actx , and add the clauses (Actp + D + D'), (Actp + D + D'),
(Actx + X + X'), and (Actx + X + X') to the formula to be satisfied. We also add clauses that
state that if an input to a single-output node is active, the output is active; if an input to a
multi-output gate is active, one of the outputs is active; and the fault site is always active.
Figure 7 and Figure 8 show the clauses that are added for circuit elements with fanin and
for circuit elements with fanout.

It is important to notice that the active implication clauses (as shown in Figures 7 and
8) for the circuit as a whole can be used to determine all of the unique sensitization points
(points of total reconvergence) in a circuit.

4.2.2 Critical Clauses

If a node is on the active path, we know that node must propagate the fault (discrepancy).
This means that the non-active inputs to the node must have taken on critical values that
allow the fault to be propogated. Non-active inputs to XOR and X NOR gates on the active
path must not have a discrepancy. Non-active inputs to gates implementing monotonic
functions must either have a discrepancy identical to that of the active input, or have no
discrepancy and assume a static critical value (AND and NAND gates require static critical
values of true, and OR and NOR gates require static critical values of false). Figure 9 shows
two legal critical assignments for a 4-input AND gate (the active path is shown by a bold
line), and Figure 10 shows an illegal assignment for the same gate. In these illustrations,
the notation 0/1 means that the wire takes on the value 0 (false) in the unfaulted circuit,
and 1 (true) in the faulted circuit. For example, the OR gate in Figure 2 will cause the
clause (Actp + E) to be added to the formula to be satisfied.
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Figure 9: Legal critical assignments
1 1 —
0 0/1
1 0 1 0
1/0 1/ 0 enmemm

Figure 10: Illegal critical assignment

4.2.3 Non-local Implications

As pointed out by Schulz et al {10], it is possible to explicitly derive non-local implications
by examining the reconvergent fanout in a circuit. Figure 11 presents a circuit that demon-
strates this idea: If wire B has the value true, wire F has the value true. This means that
we know that if wire F has the value false, wire B has the value false. This implication
can be discovered by performing a structural analysis of the circuit, or it may be found by
analyzing the formula representing the circuit.

Figure 11: Non-local implications: Add (B + F).

We can list all of the non-local implications of a given variable assignment by binding
the variable and then noting the implications that use a ternary clause. Any implication
that involves a ternary clause must come from reconvergent fanout. If variable B non-locally
implies variable F , the clause (B + Fjmay be added to the formula to be satisfied.
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5 Experimental Results

We produced test sets for ten sample circuits collected by Franc Brglez [2] and described
by a paper in the Proceedings of the 1985 ISCAS Conference.

Time in Seconds
Circuit | Random Algorithmic
C0432 .9 9.0
C0499 1.0 8.2
C0880 2.1 38.1
C1355 9.6 16.2
C1908 10.5 109.3
C2670 5.4 350.0
C3540 38.9 271.3
C5315 8.7 92.1
C6288 130.8 63.1
C17552 24.2 570.4

Table 1: Timing

The test generation was run on a Titan, an experimental RISC machine developed at
the Digital Equipment Corporation Western Research Laboratory. A Titan is about 10
times faster than a VAX-11/780. The implementation is written in Modula-2.

Table 1 shows the total time spent for each individual circuit. Tables 2 and 3 report on
the faults tested, and proved untestable by the different phases of the program (every fault
was either covered or proved untestable). In each case, the largest percentage of the faults
were covered by the patterns generated by the first phase of the system. (For the C6288
circuit, every pattern was produced by the pseudo-random phase, and the algorithmic phase
was restricted to proving that all remaining faults were uncoverable.) Table 4 shows the
number of patterns produced by each phase.

We believe that these experimental results show that the generation of test patterns
by extracting a formula and then satisfying it is a general and practical alternative to
traditional structural search methods.
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Percentage of Faults
Circuit | Covered Redundant Aborted
C0432 99.03 0.97 0.0
C0499 98.64 1.36 0.0
C0880 100.00 0.0 0.0
C1355 99.45 0.55 0.0
C1908 99.48 0.52 0.0
C2670 94.84 5.16 0.0
C3540 95.89 4.11 0.0
C5315 08.76 1.24 0.0
C6288 99.55 0.45 0.0
C7552 98.15 1.85 0.0

Table 2: Coverage
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Abstract

This paper presents a formal approach for the analysis of heuristics used in auto-
matic test pattern generation for combinational circuits. We start with a test pattern
generation system that constructs a satisfying assignment for a Boolean formula de-
scribing the legal set of tests. We then describe heuristics as modifications to the
formula or to the satisfier acting on the formula. We provide experimental results for
the system as a whole, and for the effects of four heuristics.
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1 Introduction

A combinational circuit can be tested for the presence of a single stuck-at fault by applying
a test pattern that excites a verifiable output response in that circuit. If the fault is present
the output will differ from the value required by the test. Given a circuit, the goal of an
automatic test pattern generation (ATPG) system is to generate a set of tests that will
detect every possible single stuck-at fault in the circuit.

Our method for generating test patterns consists of two parts: First, construct a formula
expressing the Boolean difference between the unfaulted and faulted circuits. Second, apply
a Boolean satisfiability algorithm to the resulting formula. This differs from most programs
now in use (3, 4, 6, 7], which directly search the circuit data structure instead of constructing
a formula from it. Our method is quite general and allows for inclusion of a variety of
heuristics—including those used by programs now in use.

This paper describes how four common test pattern generations strategies may be in-
corporated into our new ATPG system, and how these strategies affect the behavior of
the new system. First we give an overview of the complete system and report its perfor-
mance on the Brglez-Fujiwara test circuits [1]. Next, we describe how the four strategies
are incorporated in our system, and how they affect the system’s performance.

2 The Framework

Our system consists of a wirelist translator, two phases of test pattern generation, and
two simulators [5]. The ATPG method used by the second stage—extracting a formula
and then satisfying it—has been the focus of our research. We describe each of the test
pattern generation strategies as modifications to this second stage, so we will review it
before discussing the strategies.

2.1 Extracting the Formula

A circuit is represented as a directed acyclic graph (dag) with the sources of the graph
being the primary outputs of the circuit and the sinks being the primary inputs of the
circuit. Each node of the dag, a gate or a fanout point, is tagged with a characteristic
logic formula, in 3-element conjunctive normal form (3CNF), describing the behavior of
that node in terms of its graph edges (or circuit wires). A formula describing the value of
one of the circuit outputs can be obtained by walking the graph starting from the output
and taking the conjunction of all of the formulas for the composite nodes. Figure 1 shows
an unfaulted circuit and its associated formula.

A faulted circuit is represented by a copy of its associated unfaulted circuit with renamed

variables. Because the unfaulted and faulted circuits will have identical behavior except in
those nodes that are affected by t?e fault, only the nodes that lie on a path between the



(c + E)
(C+E)

Figure 1: The formula for the output is (X + D)- (X + E)- (X + D+ E)-(D+ A)- (D +
B)- (D+A+B)-(C+E)-(C+E).

faulted node and a primary output need to be renamed. Figure 2 shows a faulted circuit
corresponding to the unfaulted circuit in Figure 1 with line D stuck-at 1.

(C + E)-
(€ + E)

Figure 2: The Formula for the output is (X'+D’)-(X'+E)-(X'+D'+E)-(D')-(C+E)-(C+E)

A fault is detectable if there exists some set of inputs that cause the output of the
unfaulted and faulted circuits to differ. A formula describing all legal tests for a given fault
can be found by taking the XOR of the two outputs: this formula is called the Boolean
difference of a circuit with respect to a fault. The formula for the Boolean difference
is obtained by walking the unfaulted circuit, walking the faulted circuit, and taking the
conjunction of all formulas encountered together with the formula for the XOR of the two
circuit output variables.

Generating a test pattern for the given fault is now a matter of satisfying this formula.
If the formula cannot be satisfied, the fault is undetectable. Note that this formula is

in conjunctive normal form, since the formulas describing the circuit elements are CNF
formulas.



2.2 Satisfying the Formula

The problem of satisfying a 3CNF formula (3SAT) was one of the first to be proven NP-
complete [2]. This means that in the worst case a 3SAT problem could take time exponential
in the number of its variables, but it does not mean that the average time is as extreme.
Our system exploits the fact that 25AT , unlike 3SAT , is satisfiable in time linear in the
number of clauses plus the number of variables. We can do this since a minimum of two-
thirds of the clauses in formulas generated as the Boolean difference of a combinational
circuit have only two disjuncts (are in 2CNF). If the circuit contains many inverters or
gates with fanout greater than one, the percentage of 2CNF clauses increases. In practice,
we have found that 80% to 90% of the clauses are 2CNF .

We iterate through the satisfying assignments of the 2CNF portion of the formula until
we find a partial binding that is consistent with the ternary clauses and can be extended
to satisfy them as well. We give priority in the iteration order to 2SAT assignments that
cause many ternary clauses to be narrowed.

An attempt to satisfy a formula may terminate successfully or unsuccessfully. An at-
tempt is successful if the formula is satisfied or it is proved that the formula is unsatisfiable;

an attempt is unsuccessful if too much time has passed without reaching a successful con-
clusion.

2.3 Simulation

The first phase of test pattern generation produces random test patterns that are simulated
against each fault. The first phase allows us to cover (generate a test for) 80% to 90% of the
faults in less than one tenth of the time required by the second phase. We take advantage
of the available word operations to generate and simulate patterns 32 at a time. This
approach to simulation is similar to one reported by Waicukauski et al [9], who named it
Parallel Pattern, Single Fault Propagation (PPSFP) simulation. Each pattern generated
by extracting and satisfying a formula is simulated against each of the remaining faults
using a simple single pattern, single fault propagation fault simulator.

2.4 System Performance

In Table 1 we present the results of our base-level system (which exploits the first three
heuristics described in the next section but not the last one) when run on the ten sample
circuits collected by Franc Brglez and described by a paper in the Proceedings of the
1985 ISCAS Conference. The first column of the table reports how many seconds elapsed
processing the circuit, and the last three report on the percentage of total faults for which
we generate a test (covered), prove that no test exists (proved redundant), or fail to test
or prove untestable (aborted).

The test generation was run on a Titan, an experimental RISC machine developed at
the Digital Equipment Corporation Western Research Laboratory. A Titan is about 10



times faster than a VAX-11/780. The implementation is written in Modula-2. The most
memory that the system has ever used is 15 megabytes (on the largest input set).

Our system either tests or proves untestable every fault in the Brglez-Fujiwara bench-
mark.

Time Percent of Faults
Circuit | (seconds) Covered Redundant Aborted
C0432 10.5 99.03 0.97 0.0
C0499 10.2 98.64 1.36 0.0
C0880 41.3 100.00 0.00 0.0
C1355 27.6 99.45 0.55 0.0
C1908 127.3 99.48 - 0.52 0.0
C2670 365.5 94.84 5.16 c.0
C3540 314.5 95.89 4.11 0.0
C5315 107.8 98.76 1.24 0.0
C6288 200.8 99.55 0.45 0.0
C17552 603.3 98.15 1.85 0.0

Table 1: Base-level System Performance

3 The Strategies

In this section we will describe four heuristics used in test pattern generation, describe
how they can be incorporated into our system, and report their effect on the system’s
performance.

3.1 Speeding Fault Propagation

We wish to take advantage of heuristics, first implemented for the D-Algorithm (6], that
order their operations in an attempt to propagate the effect of the fault to an output. For
a fault to be successfully propagated to an output, there must be at least one path from
the fault to that output such that every line on that path has a discrepancy (the unfaulted
value differs from the faulted value). We would like to find one such path, which we call an
active path. Each line that is a member of the active path is an active line. Every active
line must have a discrepancy, but not all lines with discrepancies are active wires.

To find an active path, we add clauses describing the restrictions of the active path to
the formula to be satisfied. For each line that lies between the fault and a primary output
we allocate a variable (called the active variable for the wire), and for each gate that lies
between the fault and a primary output we add several clauses. These clauses ensure that if




Figure 4: If X is active, either X; or X, must be active: (Actx + Actx, + Acty,)

an input to a single output node is active, the output is active; if an input to a multi-output
gate is active, one of the outputs is active; the fault site is always active. Figures 3 and 4
show examples of these clauses.

We also add clauses that guarantee that if a line is on the active path, the wire must
have different faulted and unfaulted values. For example, for the circuit in Figure 2 we
allocate the variables Actp and Actx , and add the clauses (Actp + D + D'), (Actp + D + D),
(Actx + X + X'), and (Actx + X + X') to the formula to be satisfied.

Time Percent of Faults
Circuit | (seconds) Covered Redundant Aborted
C0432 10.6 99.03 0.38 0.76
C0499 155.1 98.64 0.00 1.36
C0880 75.9 99.87 0.00 0.13
C1355 310.2 99.45 0.00 0.55
C1908 525.6 98.79 0.52 0.69
C2670 2234.6 94.49 1.08 4.53
C3540 37061.0 93.34 1.72 4.94
C5315 1826.7 98.48 0.71 0.81
C6288 84535.1 99.55 0.24 0.21
C17552 25983.5 97.66 0.14 2.20

Table 2: System Performance without Active Clauses

The effectiveness of this strategy is shown in Table 2, which shows the system’s per-
formance when no clauses containjng active variables are added to the satisfied formula.
Clearly the active clauses are a vegy important addition to our system.
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Figure 5: Legal critical assignments
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Figure 6: Illegal critical assignment

Many systems place great importance on preprocessing the circuit structure to derive
the unique sensitization points (points of total reconvergence) in the circuit [3, 7]. We can
use the active implication clauses (as shown in Figures 3 and 4) for the circuit as a whole
to determine all of the unique sensitization points. We have experimented with explicitly
adding information concerning the unique sensitization points, but we have found that this
information never improves performance over merely adding the active implication clauses
and letting the satisfier derive the active path as it runs.

3.2 Requiring critical values

If a node is on the active path, we know that that node must propagate the discrepancy.
This means that the non-active inputs to the node must have taken on critical values that
allow the fault to be propagated. Non-active inputs to XOR and XNOR gates on the active
path must not have a discrepancy. Non-active inputs to gates implementing monotonic
functions must either have a discrepancy identical to that of the active input, or have no
discrepancy and assume a static critical value (AND and NAND gates require static critical
values of true, and OR and NOR gates require static critical values of false). Figure 5 shows
two legal critical assignments for a 4-input AND gate (the active path is shown by a bold
line), and Figure 6 shows illegal assignments for the same gate. In these illustrations, the
notation 0/1 means that the wire takes on the value 0 (false) in the unfaulted circuit, and 1
(true) in the faulted circuit.

We can see from Table 3, which reports on the performance of the system when no
clauses requiring critical value assignments are included, that this heuristic has little effect
on system performance. Even though the clauses added to insure critical value assignments
can provide for many more assignments of values indispensable for propagating the fault
than a structural analysis during a preprocessing phase, the information added by the
critical clauses is usually easily derived by the satisfier.



Time Percent of Faults
Circuit | (seconds) Covered Redundant Aborted
C0432 11.6 99.03 0.97 0.00
C0499 9.9 08.64 1.36 0.00
C0880 41.5  100.00 0.00 0.00
C1355 27.2 99.45 0.55 0.00
C1908 225.6 99.43 0.51 0.06
C2670 582.0 94.84 5.17 0.00
C3540 340.5 95.89 4.11 0.00
C5315 101.8 98.76 1.24 0.00
C6288 185.9 99.55 0.45 0.00
C7552 886.5 98.15 1.82 0.03

Table 3: System Performance without Critical Clauses

3.3 Non-local Implications

As pointed out by Schulz et al [7], it is possible to explicitly derive non-local implications
by examining the reconvergent fanout in a circuit. Figure 6 presents a circuit that demon-
strates this idea: If wire B has the value true, wire F has the value true; therefore if wire
F has the value false, wire B has the value false. This implication can be discovered by
performing a structural analysis of the circuit, or it may be found by analyzing the formula

representing the circuit.

Figure 7: Non-local implications: Add (B + F).

We can list all of the non-local i
the variable and then noting the diredt implications that use a ternary clause. Any impli-
ust come from reconvergent fanout. All non-local
implications can be added to the formula to be satisfied. We only add the non-local im-

lications of a given variable assignment by binding

t

cation that involves a ternary clause




plications if the satisfier fails to satisfy or prove unsatisfiable the original formula. Table 4
reports that the non-local implications were needed for only one of the benchmark circuits.

Time Percent of Faults
Circuit | (seconds) Covered Redundant Aborted
C0432 10.5 99.03 0.97 0.00
C0499 10.2 98.64 1.36 0.00
C0880 41.3 100.00 0.00 0.00
C1355 27.6 99.45 0.55 0.00
C1908 127.3 99.48 0.52 0.00
C2670 301.5 94.84 4.62 0.44
C3540 314.5 95.89 4.11 0.00
C5315 107.8 98.76 1.24 0.00
C6288 | 200.8 99.55 0.45 0.00
| C7552 603.3 98.15 1.85 0.00

Table 4: System Performance without Non-local Implications

3.4 Avoiding Fanout-Free Subcircuits

We can also take advantage of topological features first exploited by the FAN algorithm [3].
By stopping its backtrace operation at head lines, wires guaranteed not to be involved in
any fanout loop, FAN restricts its search-space size. We can restrict our search space in a
manner similar to FAN’s method.

We say that variable V determines variable W if both assignments to V cause W to
appear only negated or only unnegated. In this case, we may remove all clauses containing
W from the formula and postpone the assignment of W until after the final assignment of
V has been made.

In the circuit shown in Figure 8, F determines A and E determines B and C. The char-
acteristic formula for G would normally consist of 13 clauses, but the removal of all clauses
containing variables A , B, and C will leave only 8 clauses in the remaining formula.

Unfortunately, our technique as stated will not remove as many variables as may be
safely removed from the formula: the technique will not remove variables corresponding to
input wires for XOR gates not involved in reconvergent fanout loops. We are working on a
modification that will correctly deal with XOR gates.

Table 5 shows us that the FAN heuristic does not help our system. We find this result
surprising, and have not completely determined the underlying reason. We speculate that
our satisfier does not spend much time in the portion of the search tree being eliminated
by the FAN heuristic, but we need to design further experiments to confirm this. The
deficiency of our technique in the presence of XOR gates might be partially blamed for our



A
B
(E+B) » (G+F) o
. | (E*C) . (G+E,)
C | E+B+0) (G+F+E,)

Figure 8: The Formula for G can be reduced to (E + E1) - (E 4+ Ey) - (E + E))-(E+ Ey)-
(F+E) - (G+E;) - (G+F)-(G+ E; +G).

lack of success, but XOR gates appear only in the two smallest circuits, so this cannot be
an acceptable explanation.

4 Conclusions

We have presented a flexible system that generates test patterns by extracting formulas
and then satisfying them. Using this system, we have experimented with four heuristics
that have been reported in the literature: fault propagation acceleration, requiring critical
values, adding non-local implications, and avoiding fanout-free subcircuits. We found that
the first and third of these were very valuable, the second was of some slight value on large
circuits, and the last was of no value.
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