RGL/11 Programmer’s
Reference Manual

AA-M837A-TC

August, 1982

This manual describes the RGL/11 (ReGIS Graphics Library)
package of graphic subroutines for RT-11 and RSX-11M
operating systems.

This is a new document.

OPERATING SYSTEM: RT-11, V4.0

RSX-11M, V4.0
SOFTWARE: RGL/11, V1.1
On RT-11: FORTRAN IV, V2.5

On RSX-11M: , FORTRAN 77, V4.1

Software and manuals should be ordered by title and order number. In the United States, send orders
to the nearest distribution center. Outside the United States, orders should be directed to the nearest
DIGITAL Field Sales Office or representative.

Northeast/Mid—Atlantic Region Central Region Western Region

Digital Equipment Corporation Digital Equipment Corporation Digital Equipment Corporation

PO Box CS2008 Accessories and Supplies Center Accessories and Supplies Center

Nashua, New Hampshire 03061 1050 East Remington Road 632 Caribbean Drive

Telephone:(603)884-6660 Schaumburg, Itincis 60195 Sunnyvale, California 94086
Telephone:(312)640-5612 Telephone:(408)734—-4915

digital equipment corporation e marlboro. massachusetfts

First Printing, August 1982

Copyright ©, 1982, Digital Equipment Corporation. All Rights Reserved.

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any'errors that may
appear in this document.

The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

The following are trademarks of Digital Equipment Corporation:

DEC DECnet IAS
DECUS DECsystem—10 MASSBUS
DECSYSTEM-20 PDT PDP
DECwriter RSTS UNIBUS
DIBOL RSX VAX
EduSystem VMS vT

ol il RT

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user’s critical evaluation to assist us in preparing future
documentation.

Contents

Preface

Chapter 1

Chapter 2

Introduction

1.1 Introduction to the RGL/11 Package 1-1

1.2 Introduction to the VT125 Graphics Terminal 1-2
121 TheVT125TextMode 1-3
1.2.2 The VT125 GraphicMode 1-3
123 VT125Graysand Color 14
1.2.4 Setting VT125 Characteristics 14
1.2.5 Controlling Data Being Transmitted to the Screen14

Picture Drawing

2.1 General Strategy for Drawing Graphic Objects 2-2
2.1.1 ClearingtheScreen 2-4
2.1.2 Modifying a Graphic Program 24
2.2 Defining Coordinate Systems. 2-6
2.3 Drawing Graphic Objects from Data Arrays 2-10
2.4 Changing the Line Pattern. 2-11
2.5 Shading Picture Objects 2-13
2.6 Marking Locations. 2-15
2.7 Retrieving Location Coordinates 2-16
2.8 Labeling the Picture. 2-17
29 Using WritingModes 2-19
291 OverlayMode 2-20
292 ReplaceMode 2-21
293 EraseMode 2-22
294 ComplementMode. 2-23
295 ReverseMode 2-27
296 No-ReverseMode 2-28
2.9.7 Initialize Mode. 2-28
2.10 Selecting Gray Shadesor Color 2-28

iii

Chapter 3 Data Plotting

Chapter 4

Chapter 5

iv

3.1 Data Plotting with One Subroutine 3-3
3.2 Creating the Graph Paper 34
3.2.1 Gridded and Ungridded Graph Paper. 3-5
3.2.2 Linear and Logarithmic Graph Paper 3-5
3.3 Scaling and Labelingthe Axes. 3-7
3.3.1 Scaling in Rounded Numbers. 3-7
3.3.2 Autoscaling Lo 3-8
3.3.3 Multi-Scaled Graphs. 3-9
3.3.4 Labeling the Cellsof an Axis 3-11
3.4 Selecting Line Patterns and Markers. 3-12
3.5 SmoothingDataCurves, 3-14
3.6 Creating Shaded Graphs., 3-16
3.7 Selecting Gray Shadesor Color 3-18
3.8 PlottingtheData 3-18
3.8.1 Plotting Data from Stored Files 3-18
3.8.2 Interactive Data Plotting. 3-19
Program Development
4.1 Writing a Graphic Source Program. 4-2
411 String Expressions.o 4-2
4.1.2 Initializing Your Program 4-2
413 ProgramOverlays 4-3
4.2 Creating and Editing the Source File. 4-3
4.3 Program Development on an RT-11 System 44
4.3.1 Compiling the Program (RT-11) 44
4.3.2 Linking the Program RT-11) 45
4321 TheLINKCommand. 45
4.3.2.2 The Indirect Command File, RGLLNK 4-6
4.3.2.3 The Indirect Command File, RGLOVR 4-8
4.3.3 Running the Program RT-11) 4-10
4.4 Program Development on an RSX-11M System 4-11
4.4.1 Compiling the Program (RSX-11M) 411
4.42 Task Building the Program (RSX-11M) 4-11
4.42.1 The Task Build Command 4-12
4.4.2.2 The Indirect Command File, RGLLNK.CMD4-12
44.2.3 The Indirect Command File, RGLOVR.CMD4-13
4.4.3 Running the Program (RSX-11M) 4-13
RGL/11 Subroutines
ARC — draws an arc e u e e e e .. .53
ARCC — draws an arco e e e e e e e e e 5-6
BOX —drawsabox. 5-9
CIRCC — drawsacircle. e 5-10

CIRCLE
CIRCXY
CLRSCR
CLRTXT
CPYSCR
DPAPER
GCLOSE
GETLOC
GETSTA
GLOAD
GSAVE
INITGR
LCHRST
LFIXED
LFREE
LINE
LINETX
LNAXIS
LOCATE
LTAXIS
MARKER
MOVE
PDATA
POLYGC
POLYGN
POLYGX
POLYLN
PPOINT
RELBOX
RELLIN
RELMKR
RELMOV
RELPLN
SCHRST
SCOLOR
SDEBUG
SDGREE
SLNPAT
SNDBUG
SNSHAD
SRADNS
SSHADE
STXSIZ
SWINDO
SWMODE
TEXT

— drawsacircle. 5-13

drawsacircle. 5-15
clears graphic-mode screen 5-17
clears text-mode screen 5-18
sends a copy request to hardcopy device 5-19
draws the graphpaper 5-21
closesa GSAVEdfile 5-25
returns coordinates of graphic cursor’s position 5-26
returns error statuscode 5-27
loads a graphicfile 5-30
saves a graphicfile 5-32
initializes the terminal attributes and defaults. 5-35
loads a characterset 5-37
creates cursor to track pointsonadataline 540
creates cursor on graph for interactive. 545
drawsaline. 5-49
displaystext . . .°. Lo 5-50
labels and scales graph’saxis 5-52
creates cursor for interactive movement 5-56
labels and scales graph’saxis 5-59
displaysamarker. 5-63
moves the graphiccursor 5-65

creates graph and plotsdata arrays 566
drawsapolygon. 5-71
drawsapolygon.o 5-74

drawsapolygon. 5-76
draws connected lines 5-78
plotsdatapoints 5-80
drawsabox. 5-83
drawsaline. o L0, 5-85
displaysamarker. 5-87
moves the graphiccursor 5-89
draws connected lines 5-90
selects a characterset. 5-93
sets screen color and drawingcolors 5-95
enables error messages to be displayed on screen 5-97
sets unit of measure for angles to be degrees. 5-98
selects the linepattern 5-99
stops error messages from being displayed 5-101
turns off shading function. 5-102
sets unit of measure for angles to be radians. 5-103
enables shading and selects shading pattern. 5-104
sets size of TEXT characters.b-106

defines a coordinate system 5-108
selects a writingmode. 5-111
— displays graphictext 5-113

Appendix A Summary of RGL/11 Subroutines

Appendix B RGL/11 Error Messages

Glossary

Figures

vi

1-1
2-1
2-2
2-3

2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
3-1
3-2
3-3
34
3-5
3-6
3-7

3-8
3-9
3-10
3-11
3-12
3-13
3-14
5-1
5-2
5-3

5-b
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13

5-14
5-15
5-16

The VT125 Graphics Terminal 1-3
Picture Drawn by Program OBJECT 24
VT125 Screen Coordinates 2-6
SWINDO Arguments L .27
SWINDO Example 1. 2-9
SWINDO Example 2. 2-9
SWINDO Example 3. 2-10
POLYLN Example in the STAR Program 2-11
SLNPAT Example in the LINPAT Program 2-12
Picture Drawn by the SHADE1 Program. 2-14
Objects Drawn by the SHADE2 Program. 2-15
Picture Drawn by the MARK Program. 2-16
Picture Drawn by the LABEL1 Program 2-18
Example of Drawing with Overlay Mode 2-21
Example of Drawing with Replace Mode 2-22
Example of Drawing with Erase Mode 2-23
Example of Drawing with Complement Mode. 2-25
Example of Erasing with Complement Mode 2-26
Example of Drawing with Reverse Mode 2-28
Example from the HILITE Program 2-31
Sample Layout of a RGL/11 Graph. 3-2
Example of Basic, One—Call Data Plotting 34
Variations of the One-Call Data Plotting Subroutine. 34
Gridded, Linear Graph Paper 3-5
Semi-Log Graph Paper 3-6
3-Cycle Semi—Log Paper. 3-7
Non—Autoscaled, Exact—-Numbered Graph Paper and Autoscaled,
Round-Numbered Graph Paper 3-8
Multi-Scaled Graph Plotted by the MULTI Program 3-11
Graph Plotted by the LABEL2 Program (A Labeled Graph). 3-12
Graph with Alternate Line Patterns and Markers 3-14
Smoothed Data Lines 3-15.
Straight Data Lines 3-16
Shaded Graph with Two Setsof Data. 3-17
PPOINT Example 3-19
Illustration of the ARC Subroutine. 5-3
Picture Illustratingan ARCCall. 5-5
Illustration of the ARCC Subroutine 5-6
Picture lllustratingan ARCC Call 5-8
Picture Illustratinga BOX Call 5-9
Illustration of the CIRCC Subroutine. 5-10
CIRCC’s Placement of a 0.76 Radian Angle. 5-11
CIRCC’s Placement of a —0.76 Radian Angle 5-11
Illustration of the CIRCLE Subroutine. 5-13
Illustration of the CIRCXY Subroutine. 5-15
Picture Illustrating the CPYSCR Program Example 5-20
Ungridded Linear Graph Paper 5-23
Gridded Linear X—Axis and Ungridded Logarithmic

Y-Axis Graph Paper. 5-23
Picture Illustrating a GETSTA ErrorCode 5-29
Picture Illustrating a GSAVE Call, First Screen e 5-34
Picture Illustrating a GSAVE Call, Last Screen 5-34

Tables

Glossary

Index

5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25

5-26

5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37
5-38
5-39

2-1
5-1
5-2

5-3

Picture Illustrating First Screen of LFIXED Program 544
Picture Illustrating Final Screen of LFIXED Program 544
Picture Illustrating LFREE, First Screen. 547
Picture Illustrating LFREE, Last Screen. 548
Graph that Illustrates Labeling and Scaling by LNAXIS 5-55
Graph Illustrating the LTAXIS Example. 5-60
Second Graph Illustrating LTAXISCall 5-62
Illustration of the POLYGC Subroutine 5-T71
Picture Illustrating a POLYGC Call that

Contains a Negative Angle. 5-72
Picture Illustrating a POLYGC Call that

Contains a Positive Angle 5-73
Picture Illustrating a POLYGN Call 5-74
Picture Illustrating a POLYGX Call 5-76
Picture Illustrating a POLYLN Call 5-79
Graph Illustrating PPOINT Calls 5-82
Ilustration of RELBOX Calls 5-83
IMlustration of a RELLINCall 5-86
Picture Illustratinga RELMKR Call. 5-88
Picture Illustratinga RELPLN Call 5-90
Picture Illustratinga RELPLN Call 5-92
Sample STXSIZ Character Sizes 5-106
Illustrations of SWINDO Calls. 5-110
Examples of Overlay, Replace, and Complement Modes. 5-111
IMustration of a TEXT Call 5-114
Examples of World Coordinate Systems 2-8
RGL/11Error Codes v v v v i i s 5-27
Greek Equivalences in the English Character Set

andin ASCIICode. 5-37, 5-93
Markers and Their Identifying Numbers 5-63
Line Patterns and Their Identifying Numbers 5-99

vii

Preface

Audience

RGL/11 is a package of picture-drawing and data—plotting subroutines that
run on RT-11 and RSX-11M operating systems. RGL/11 requires a VT125
graphics terminal.

“RGL/11” is a mnemonic for the ReGIS Graphics Library. “ReGIS” is a
mnemonic for the “Remote Graphics Instruction Set.” The VT125 terminal
uses this instruction set to generate graphic images on the terminal screen.

RGL/11 is a subset of the full VAX—11 RGL library. All subroutine names,
argument names, and the order of the arguments are upward—compatible
with the VAX-11 RGL package.

In order to program graphic applications, you do not need to know graphic
hardware or ReGIS commands. You need only include the appropriate
RGL/11 subroutine(s) in your FORTRAN programs.

This manual assumes you know your operating system — RT-11 or
RSX-11M — FORTRAN programming, and how to set up your VT125
terminal.

Associated Documentation

For information on the VT125 terminal, refer to:

o VT125 User’s Guide (EK-VT125-UG)

For information about installing RGL/11 on an RSX-11M operating system
and building executable programs, refer to:

® RGL/11 Installation Guide (AA-M838A-TC)

ix

e RSX-11M/M-PLUS MCR Operations Manual (AA-H263A-TC)

e RSX-1IM/FEP and RSX-1IM/FRP Installation and User’s Guide
(AA—J303C-TC)

For information about installing RGL/11 on an RT-11 operating system
and building executable programs, refer to:

e RGL/11 Installation Guide (AA-M838A-TC)

e RT-11/FEP and RT-11/FRP Installation and User’s Guide
(AA-MO079B-TC)

e RT-11 System User’s Guide (AA-5279B-TC)

For information on FORTRAN 77 (for RSX systems), refer to:

e PDP-11 FORTRAN 77 Language Reference Manual (AA-1855E-TC)
e PDP-11 FORTRAN 77 User’s Guide (AA-1884D-TC)

e PDP—11 FORTRAN 77 Installation Guide/Release Notes
(AA-K503B-TC)

For information on FORTRAN IV (for RT-11 systems), refer to:

e PDP-11 FORTRAN Language Reference Manual (AA-1855D-TC)
e RT-11/RSTS/E FORTRAN IV User’s Guide (AA-5749B-TC)
e RT-11 FORTRAN IV Installation Guide (AA-5240D-TC)

Manual Organization

Chapter 1 introduces the RGL/11 subroutine package and the VT125
terminal.

Chapter 2 introduces picture—drawing concepts and strategy.
Chapter 3 introduces data—plotting concepts and strategy.

Chapter 4 describes creating programs that have RGL/11 subroutine calls
in them.

Chapter 5 describes each RGL/11 subroutine, giving:
e its purpose

e its syntax

o descriptions of its arguments

e an example of a call

e related subroutines

e restrictions on its effect

e error messages it can produce

e a sample program fragment that uses it

Appendix A presents a one—sentence summary of the subroutines listed
alphabetically.

Appendix B lists RGL/11 error messages and error codes, the subroutine or
subroutines that can cause the error, and a description of the circumstances
that caused the error.

Glossary contains the graphics vocabulary used in the manual.

Manual Conventions

Braces{ }

RET)

DEL

filespec

LUNs

indicate that the enclosed arguments are optional. For exam-
ple, the following statement means that all arguments are
optional:

CALL MARKER ({number}, {x}, {y}

Although the arguments are optional, the parentheses and
commas must be supplied.

indicates that you should press the RETURN key.
indicates that you should press the DELETE key.
In RT-11, the format is:

dev:filnam.ext

For more information about file specifications, refer to the
RT-11 System User’s Guide.

In RSX-11M, the format is:
dev:[group,member]filename.extension;version

For more information about file specifications, refer to the
RSX-11IM/M-PLUS MCR Operations Manual.

To reference a file extension, you must supply one.
Logical Unit Numbers. RGL/11 reserves two LUNs:
LUN Reserved for

1 the error—handling subroutine
5 the terminal

RGL/11 establishes certain LUNS as follows: LUN 2 as the
device that GLOAD and LCHRST read from, and LUN 3 for
the device GSAVE writes to.

xi .

xii

The LUN default setting enables six LUNs to be open at the
same time. To enable more LUNs in an RT-11 system, you
must use the /UNITS: option at compile time (for more infor-
mation refer to the RT-11/RSTS/E FORTRAN IV User’s
Guide). To create more LUNs in an RSX-11M system, you
must use the /UNITS= option at task—build time (for more

information, refer to the RSX—11M/M-PLUS Task Builder
Manual).

Chapter 1
Introduction

This chapter gives an overview of the RGL/11 subroutines and the VT125
graphics terminal.

1.1 Introduction to the RGL/11 Package

“RGL/11” (ReGIS Graphics Library for RT-11 and RSX-11M operating
systems) is the name of a package of graphic subroutines that can draw
pictures and plot data on the VT125 terminal. When you want to draw
images or graphs, you write an application program that calls the appropri-
ate RGL/11 subroutines. The subroutines then generate the ReGIS com-
mands that create and display the graphic objects or graphs on the screen.

“Graphic objects” refer to both picture objects and graphic text. A picture
object is any graphic object except graphic text, such as a line, polygon,
circle, or arc. Nine different line patterns are available for drawing the
picture objects. If you want to shade a picture object, you can use a shading
option and select the shading pattern and color you want. You can select
one of four gray shades or, if you have the optional color monitor, one of
four colors.

The RGL/11 subroutines are treated individually in Chapter 5 and are
summarized in Appendix A. Using the subroutines, you can:

e plot data by calling just one subroutine, PDATA.
e plot data from stored arrays or interactively plot individual data points.
e create linear and logarithmic grids.

e create multi-scaled graphs that have two y—axes scaled and one x—axis
scaled.

1-1

e label the cells of an axis with either number labels or text labels, and
label the axis with a title.

e find the coordinates of points on a graph interactively.
¢ add points to an existing graph.

e draw regular polygons, circles, and arcs anywhere on the screen having
the size, the location, and, for polygons, the number of sides you specify.
You can select the type of line (such as a solid line, or a line of dots and
dashes) and whether or not an area is shaded. If the area is shaded, you
have a choice of shade pattern and color.

e produce graphic images on the screen from files stored on any storage
medium your operating system supports.

e interactively get the coordinates of any location on the screen.

e draw pictures relative to the current graphic cursor location or to the
origin location.

e save graphic files on mass—storage devices and restore them.

e control whether or not RGL/11 error messages are displayed on your
screen.

e control whether angle arguments are interpreted as radians (the default)
or as degrees.

e specify the coordinate system of your picture.

e write graphic text which you can easily place anywhere on the screen
(RGL/11 handles the necessary FORMAT instructions), enlarge the
graphic text to up to 16 times its normal size, and write it in any one of
four colors.

e write in the Greek character set as well as in the English (default) set.

e write in different “modes” so that you can create effects of overwriting,
reversing color, and so forth.

e erase the screen completely or selectively.

e use an optional LA34-VA printer to print copies of images that are on the
graphic screen.

1.2 Introduction to the VT125 Graphics Terminal

1-2

The VT125 terminal is a VT100 terminal with additional firmware that
enables the terminal to display graphic images as well as text. The termi-
nal’s black—and-white monitor can display up to four shades of gray. If you
want color displays, you can connect a color monitor to the VT'125. You also
have the option of attaching a LA34-VA printer to the VT125 for hard
copies of graphs and other graphic images.

Introduction

RGL/11 uses two modes of the VT125 terminal: text mode and graphic
mode. In text mode, it operates as a standard VT100. In graphic mode, it
can process instructions to draw lines, circles, polygons, and arcs as well as
text. When the terminal is first turned on, it is in text mode.

Figure 1-1: The VT125 Graphics Terminal

. MR-S-909-80

1.2.1 The VT125 Text Mode

Text mode is the initial default state of the VT125 terminal. In text mode,
the terminal operates like a regular ASCII VT100 terminal. It displays a
text mode cursor, the regular VT100 cursor, that indicates where text will
be displayed. The software that controls the terminal specifies where a
message is displayed by row and column. There are 24 rows and 80 col-
umns. After the message is written, the cursor is at the end of the message.

1.2.2 The VT125 Graphic Mode
NOTE

When you plan to use graphic programs, set the terminal
driver so that the operating system will not insert carriage
return/line feeds into lines whose width is longer than the
terminal’s line width (NOCRLF for RT, NOWRAP for RSX).
For the commands that set the terminal driver, refer to
Chapter 4, Program Development.

When the terminal is in graphic mode, the graphic cursor is displayed. The
cursor is a blinking, diamond=shaped object. Like the text cursor, it marks
where the graphic object will be displayed. Often when graphic programs
are executing, the cursor moves so fast it is invisible; however, its location
is always stored internally. The “current graphic cursor location” refers to
this stored location.

In text mode, the text screen is addressed by row and column. In graphic
mode, there are many more addressable locations because the graphic
screen is addressed by individual pixels. A pixel is a picture element, the

Introduction 1-3

14

smallest displayable unit on the screen. (For addressing the screen in
graphic mode, see Section 2.2, Defining Coordinate Systems.) If, however,
you want to write text in graphic mode and address the graphic screen by
row and column coordinates, not pixels, you can do so. The subroutine
LINETX addresses the graphic screen by row and column.

In graphic mode, the terminal interprets special graphic commands sent to
it by the RGL/11 software to plot linear and logarithmic graphs, draw
graphic objects, write graphic text in sizes that range from standard size to
16 times larger than standard, and perform other features of graphics such
as shading, line pattern variations, and so forth. These graphic commands
are in the RGL/11 package, described in Section 1.1.

1.2.3 VT125 Grays and Color

The VT125 is equipped with a black—and-white monitor that can display
four shades of gray. If you attach a color monitor, the terminal will display
in black and white on its screen and simultaneously display colors on the
color monitor’s screen. The gray shades, GRAYO through GRAY3, on the
color monitor are displayed as dark, blue, red, and green, respectively.

One of the shades, GRAYO, acts as the default screen color. The other three
colors are available to draw and shade graphic objects; the color selected for
drawing or shading is the drawing color.

1.2.4 Setting VT125 Characteristics

You can alter some of the terminal’s characteristics either before using the
terminal (in a login command file, for example) or while the terminal is in
use. See the VT'125 User’s Guide for more information.

1.2.5 Controlling Data Being Transmitted to the Screen

When the VT125 displays a file, it displays the data continuously until it
reaches the end of the file. If you want to halt the display of data, you have
two choices. You can halt the display and resume it with no loss of data, or
you can halt it and “discard” the data being transmitted.

To halt the display and discard data, type (hold down the <CTRL>
key while you type the letter “O”). To cause the display to resume, type
again. The display resumes, but all data transmitted to the terminal
since you first typed is lost.

To halt the display without losing data, press the <NO SCROLL> key
which is located at the bottom left of the main keyboard. To cause the
display to resume, press <NO SCROLL> again. The display resumes
where it left off when you first pressed <NO SCROLL>. No data has been
lost.

Introduction

For this <NO SCROLL> mechanism to be available to you, you must set
the terminal characteristic AUTO XOFF/XON to ON. You set it by using
the terminal’s SET UP keys as follows:

1.

Press the SET-UP key at the upper left of the keyboard to put the
terminal in SET-UP A mode.

Press the 5 key on the main keyboard to put the terminal in SET-UP B
mode. ‘

The terminal displays five groups of binary values. Look at the fourth
entry in the second group of values. If that value is one, then AUTO
XOFF/XON is correctly set; press the SET-UP key again to return the
terminal to normal operation and ignore steps 4, 5, 6, and 7 below. If
that value is zero, then AUTO XOFF/XON is not set, and you should
perform steps 4, 5, 6, and 7. ’

Press the right-arrow (—) key, which is located at the upper right
corner of the main keyboard, until the cursor is positioned over the
fourth entry in the second group of displayed values.

When the cursor is correctly positioned over the fourth entry, press the
6 key on the main keyboard to change the value from zero to one.

Save the current SET-UP features by typing GHF/S). The terminal
clears the screen, displays WAIT, and returns to SET-UP A mode.

Press the SET-UP key again to return the terminal to normal
operation.

This procedure is explained in the VT125 User’s Guide referenced in
Section 1.2.4.

For information on how to erase the screen completely, see Section 2.1.1.

Introduction 1-5

Chapter 2
Picture Drawing

This chapter describes each aspect of picture drawing, and gives sample
programs. It describes how to draw graphic objects, generate different line
patterns, set shading, set writing modes, set the drawing color, and so forth.
The subroutines that perform these tasks are described in detail in Chapter
5, and information on creating and running graphic programs is given in
Chapter 4.

If you are interested only in data plotting, you do not need to read this
chapter. Instead, refer to Chapter 3, Data Plotting.

The sections of this chapter are:

Section Title

2.1 General Strategy for Drawing Graphic Objects
2.2 Defining Coordinate Systems

2.3 Drawing Graphic Objects from Data Arrays
2.4 Changing the Line Pattern

2.5 Shading Picture Objects

2.6 Marking Locations

2.7 Retrieving Location Coordinates

2.8 Labeling the Picture

2.9 Using Writing Modes

2.10 Selecting Gray Shades or Color

This list does not include all the picture—drawing subroutines. Those that
are not included are subroutines that copy the graphic images to hard copy
(CPYSCR), define what unit of measure the angle argument will use
(SRADNS and SDGREE), and determine whether or not RGL/11 error mes-
sages will be displayed on the screen (SDEBUG and SNDBUG).

2-1

NOTE

The sample programs in this chapter are also files on your
distribution volume. These demonstration files use the file
extension .DEM. This extension makes it easy to get a direc-
tory listing of all demo programs. When you use the
RGLLNK/ indirect command file to run them, you need to
supply both the file name and the .DEM extension. (For
RGLLNK on RT-11 systems, see Section 4.3.2.2); on
RSX-11M systems, see Section 4.4.2.2).

The file names, but not extensions, are given in the following
sections.

2.1 General Strategy for Drawing Graphic Objects

2-2

When you write a graphic program, you must first initialize the terminal so
that all its attributes (such as character size and graphic cursor location)
are at a known value. You do this by calling the INITGR (Initialize
Graphics) subroutine. Next you make sure the screen is clear of graphic or
text images with calls to CLRSCR (Clear Screen) and CLRTXT (Clear
Text). Third, you usually establish the world coordinate system you want
with a SWINDO (Set Window) call.

Next you move the graphic cursor to the location where you want to start
drawing the object, specifying the location in the world coordinate system
you established. Then you use the subroutine to draw the object. After the
object is drawn, the graphic cursor may be at the location where you want
to draw the next graphic object. If so, you can call the subroutine that
draws that object; if not, you call the MOVE subroutine to move the graphic
cursor. (Three subroutines have arguments for coordinates of a starting
location, and therefore they do not need to be preceded by a call to MOVE:
BOX, LINETX, and MARKER.)

The following example, named OBJECT on your distribution volume,
draws several graphic objects and graphic text. It also enables the locator
cursor so that you can read locator coordinates and/or experiment by adding
objects to the picture (see Section 2.1.2). Figure 2—1 shows the picture cre-
ated by this example.

C OBJECT

C
CALL INITGR (5)
CALL CLRSCR
CALL CLRTXT

CALL SWINDDO (0,0, 41000,625.)
C This call to BOX creates the Ppicture’s frame.
CALL BOX (0, 4+0,,1000, 4825,
C
C These calls create the suny arcs in waters and ravs in sKv.

CALL MOVE (180, ,478.)
CALL CIRCLE (GB0O,)
CALL SDGREE

Picture Drawing

oOoOonoOno

10

50

100

CALL ARC (-35.+27542304)
CALL ARC (-35. 4300, ,200,)
CALL ARC (-35.,325.,1304)

CALL MOVE (300,,:323.)
CALL LINE (483.,:5373.)
CALL MOVE (285, :444.)
CALL LINE (302.,.,404,)

This loop creates the waves,
=30,
HKH{=80,
DO 10 I=1,20
CALL MOVE (X :350.)
CALL ARC (-100, sX{X 325,
H=K+50,
RH=RH+30,

CONTINUE

These arcs form the seadulls,
CALL MOUE (590, ,496.)
CALL ARC (-73.:600, 356,
CALL MOVE (BS2., +496.)
CALL ARCC (-73.,BB5., :440,)

CALL MDVE (835, .444.)
CALL ARCC (B0, »BOO, »444,)
CALL MOVE (838..444,)
CALL ARCC (-70,:880,.:384.)

These calls create the boat,
CALL MOVE (550, +260.)
CALL LINE (350,100,
CALL LINE (B50.,100,)
CALL LINE (3350, +250,)
CALL MOVE (330, +90,)
CALL LINE (B70.:84,)
CALL STHSIZ (24
CALL MOVE (370,165,
CALL TEXT (/57)

This section enables the locator cursor, MWhen vou
type any Key but the SHIFT Kev s ESCAPE Kev+ or RETURN
Kevs the location of the locator cursor is disrlaved
on the screens, MWhen vou tvepe RETURN: the prodram
terminates, Move the cursor by means of the arrow
Kevs at the upper right of the Kevboard,

CALL LOCATE (X Y KEY)

IF (KEY.EQ,"177) GO TO 30

TYPE 100, X3 ¥+ KEY

FORMAT (' THE LOCATION IS ‘+2F8.2, ' AND KEY I8 'AL)
IF (KEY.NE.,"013) GO TO 50

END

Picture Drawing

2.3

24

Figure 2-1: Picture Drawn by Program OBJECT

—~ ™
(J — ™ No—

B VL N NP N N P NP N N N N N

e [\‘\
—___,_,—o/ H \‘\
Eﬁ'_,—!—""fr

5
y

2.1.1 Clearing the Screen

To clear the image and text from the screen we create and run the CLEAR
program. The text of this file is:

CALL INITGR(5)
CALL CLRTXT
CALL CLRSCR
END

2.1.2 Modifying a Graphic Program

Now we decide to add another sailboat to the picture, to change the line
pattern of the picture frame, and to make the sun a solid.

Good programming practice suggests that we copy the original file and
experiment on the copy. Therefore we copy OBJECT.DEM to a file we name
OBJ2.DEM.

To add a sailboat to the picture, we use the locator cursor to get coordinates
for three points of the sail and two points for the prow and stern of the boat.
Then we add the necessary commands to OBJ2.DEM to make the changes
we have decided on.

First, we compile, link, and run OBJ2.DEM. When the picture appears, we
decide where we want the sailboat to go, and use the locator cursor to get
the coordinates we need. We choose these coordinates:

X—coordinates Y—coordinates

743. 251. (apex of sail)

743. 160. (lower left corner)
808. 160. (lower right corner)
738. 151. (prow)

812. 154. (stern)

Picture Drawing

You may want to use these coordinates or you may want to get your own set
of coordinates. When you are finished, use the RETURN key to exit the
program, and then clear the screen.

Next we edit OBJ2.DEM. After the line:

CALL TEXT (’5")

we insert the following code:

C This code adds the new sail.
CALL MOVE (743,251
CALL LINE (743.:160,)
CALL LINE (808, 180.)
CALL LINE (740, :251.)

C This code adds the hull,
CALL MOVE (728,151,
CALL LINE (B12,154,)

Now we change the line pattern of the picture frame. Before the line:

CALL BOX (0,0, +1000.,,B25.)

we insert this line:

CALL SLNPAT (7:3)

This line uses line pattern 7 (see other possible line patterns in Chapter 5,
SLNPAT) and multiplies the size of the basic pattern 5 times.

To return the line pattern to a solid line, the default pattern, we insert after
the CALL BOX line:

CALL SLNPAT ()

Next we change the sun to a solid circle by inserting a new call before this
call:

CALL CIRCLE (G0O.)

We want the sun to be shaded with the “%” character, so we insert this
command:

CALL SBHADE (+7%7)

To keep the rest of the picture objects unshaded, we return to the default
(no—shade) state by inserting this call after the CALL CIRCLE line:

CALL SNSHAD

After the edits are complete, we compile, link, and run OBJ2.

Picture Drawing 2-5

2.2 Defining Coordinate Systems

2-6

NOTE

The programs that created the figures in this section are not
on your distribution volume.

Coordinate systems are the x—axis and y-axis values that define the space
on the screen. RGL/11 subroutines work with two types of coordinate sys-
tems: the physical screen coordinate system and the world coordinate
system.

The physical screen coordinates are the coordinates the terminal hardware
understands. For the VT125, they range from 0 to 767 in the x—direction
and 0 to 479 in the y—direction. (The terminal has its origin location in the
upper left corner of the screen, but RGL/11 sets it to the lower left because
that is where most people expect it to be.) Figure 2-2 shows the physical
screen coordinate range that RGL/11 uses.

Figure 2-2: VTI125 Screen Coordinates

0.,479. 767.,479.

0.0. 767.,0.

However, you are not restricted to the screen coordinates. The images you
work with may use ranges other than 0 to 767 and 0 to 479, you may want
the entire screen to display just a segment of the images, or you may want
to shrink the image to a small portion of the screen. The RGL/11 subroutine
SWINDO gives you a way to redefine the coordinates you use to address the
screen. The coordinates you establish using SWINDO are called world coor-
dinates. The SWINDO format is:

SWINDO (xleft, ybot, xright, ytop)

where:

e xleft is the x—coordinate at the left edge of the picture
e ybot is the y—coordinate of the bottom edge

Picture Drawing

e xright is the x—coordinate of the right edge
e ytop is the y—coordinate of the top edge

Figure 2-3: SWINDO Arguments

xleft, ytop xright, ytop

xleft, ybot xright, ybot

When you establish a world coordinate system, you usually want to main-
tain the aspect ratio of the screen; the aspect ratio is the ratio of the hori-
zontal axis to the vertical. The aspect ratio is 768 to 480, or 8 to 5. If the
aspect ratio is different from 768 to 480, then picture objects will be dis-
torted. For example, circles look more like ellipses if the aspect ratio is
different.

Some examples of world coordinate systems follow.

Picture Drawing 2-7

2-8

Table 2-1: Examples of World Coordinate Systems

xleft ybot xright ytop Example
0.,479. 767.,479.
0.0 0.0 767.0 479.0
0.,0. 767.,0.
0.,1100. 1000.,1100.
0.0 0.0 1000.0 1100.0
0.,0., 1000.,0.
0.,0., 1000.,0.
0.0 1100.0 1000.0 0.0
0.,1100. 1000.,1100.
100.,550. 500.,550.
100.0 200.0 500.0 550.0
100.,200. 500.,200.

MR-S-1598-81

1. SWINDD (0,0, 0,0, 767,04 479.0)

This SWINDO call reestablishes the screen coordinate system. Notice
that the arguments are in floating—point notation.

2. SWINDD (0,04 0,0, 1000,0, 1100,0)

If you wanted to draw a map that was measured in meters, you would
want your world coordinate system to be in meters. This call gives the
map a scale of 1100 meters high by 1000 wide.

Picture Drawing

Figure 2-4: SWINDO Example 1

(0., 1100.)

(1000., 1100.)

ap

“P

\aH

-

% :\.r"“n. ‘

\.

[}

A
_/‘
(

g,

> /wf”jj“”\
73

L

@., 9.)

3. SBWINDO (0,0 1100,0, 1000,0,50,0)

(1e¢e.,

0.}

If you wanted to change the origin location of your coordinate system,
you would define the arguments accordingly. A common alternate ori-
gin location is the top left, as in this call; this location is the origin
location of some digitizers. When a digitizer supplies your map’s coordi-
nates and its origin location is in the upper left corner of the digitizer
pad, you would match its orientiation by defining the upper left of your
coordinate system as the origin location. You do this by defining the
ytop and xleft arguments as 0.0 and the ybot and xright arguments as
some larger number. The picture below was created by making a call to
SWINDO to set the origin to the upper left and then redrawing the map

in Figure 2—4.
Figure 2-5: SWINDO Example 2
(0., 9.,)

(1006., 9.2

o
N,

\

e ‘\)Q

A\

{

(0., 1109.)

(190¢.,

Picture Drawing

itee.)

2-9

4. SWINDO (750,04 150,00, 900,05 400,0)

You can also use SWINDO to display only a portion of your entire
picture. For example, this call displays only the part of the map that is
between 750 and 900 units in the x—direction and between 150 and 400
units in the y-direction. The picture below was drawn by a call to
SWINDO with the smaller coordinate range followed by the call to
redraw the picture again. All points not within the window are clipped
by the software.

Figure 2-6: SWINDO Example 3

(730, 4004 (800, 5 400,

W
AN

N

Yoo/

(7500 # 1500) (9000 H 150&)

2.3 Drawing Graphic Objects from Data Arrays

You can draw graphic objects from data that is stored in arrays by calling
either the POLYLN (Poly Line) or RELPLN (Relative Poly Line) subrou-
tine. The POLYLN subroutine uses absolute locations, the x— and
y—coordinates of the endpoints of the lines. The RELPLN subroutine uses
relative locations, the x— and y—distances from the current graphic cursor
location. The arguments for both subroutines are the number of lines to
draw and the names of the arrays containing the x and y data points.

The following program, named STAR on your distribution volume, uses the
POLYLN subroutine.

C STAR
C This prodram uses the POLYLN subroutine to draw a star.
C

DIMENSION XSTAR (3) s YSTAR (5)

DATA XKE8TAR /800,04700,0,200,0,800,0,300,0/

DATA YSTAR /560,0,110,0,410,04410,04110,0/

2-10 Picture Drawing

o0

e

Move

Draw

CALL INITGR (3)

CALL CLRSCR

CALL CLRTXT

CALL SWINDD (0.0 0.0, 1000,0 B25,0)
CALL BOX (0, 20,1000, B254)

to the starting location.
CAaLL MOVE (300.,0 110,00
the star.

CALL POLYLN (54 XSTAR: YBTAR)
END

Figure 2-7: POLYLN Example in the STAR Program

2.4 Changing the Line Pattern

When you draw graphic objects, you can change the pattern of the line by
calling a subroutine named SLNPAT (Set Line Pattern). The line patterns
you can select are:

SLNPAT Line Patterns

Pattern Number 9 (an invisible line)
¢ Pattern Number {

Pattern Number 2 ~ <~ "-~=7"

Pattern Number 3 —=r-s=rmmememe

Pattern NuMbeY‘ 4

Pattern NuMbEY‘ 5 -remicmismasmrsmasemanman

Pattern Number € ----r-cccccteice

Pattern Number 7

Pattern Numwber 8 =" 7rroreiere

Pattern Number & <~ - - - -

Picture Drawing

2-11

Each line pattern has a number assigned to it. You call SLNPAT as follows:
CALL SLNPAT ({number}, {mult})

where “number” specifies the line pattern, and “mult” specifies the pattern
multiplier. The new line pattern stays in effect until changed by another
SLNPAT call or by an INITGR call. The multiplier multiplies the size of
each component of the pattern. For example, line pattern 3 uses a long
dash, a space, and a short dash. Each of those components is multiplied by
the pattern multiplier.

The following program, named LINPAT on your distribution volume, uses
the SLNPAT subroutine.

C LINPAT
C The following prodram sets the line pattern to a dashed line
C and then draws a star by calling the subroutine POLYLN,
C
£ Fill the x- and v-arravs with the endroints of the lines.
DIMENSION XB8TAR (S5), YSTAR (5)
DATA XETAR /300,0, 700,04 200,0, B0O0,0, 300,0/
DATA YBTAR /360,00 110,00 410,04 410,04, 110,07/
C
CALL INITGR (3)
CALL CLRSCR
CALL CLRTX
CALL SWINDDO (0,0 0,0 1000,0, B25,0)
CALL BOX (0, 40,1000, :625,)
C
C Set the line Pattern to be Pattern B with a multirlier of 2.
C
CALL SLNPAT (B, 2)
C
C Move to the starting location.
(N
CALL MOVE (300.0, 110.0)
C
C Draw the star.,
C

CALL POLYLN (3 XSTAR» YSTAR)
END

Figure 2-8: SLNPAT Example in the LINPAT Program

2-12 Picture Drawing

2.5 Shading Picture Objects

To “shade” picture objects means to affect every pixel from every point in
the picture object to a shade line you specify, using the shade pattern and
color of your choice. The SSHADE (Set Shade) subroutine enables you to
shade picture objects with the line patterns listed in the SLNPAT subrou-
tine or with the characters of the character set you have enabled.

SSHADE does not use a “fill” algorithm; it shades to the shade line you
define; the line itself is not a visible line on the screen.

After you call SSHADE, every point that makes up a picture object shades
to the shade line. To shade a circle or arc, the shade line must pass through
the center of the figure. Otherwise, the outermost point on the curve shades
to the shade line and overshadows the arc as it curves inward. SSHADE
shades every point in the picture object to the shade line you select even if
the area to be shaded is outside the boundaries of the picture object. The
following programs illustrate the effect of the shade line’s location. The
easiest way to understand how SSHADE works is to run the SSHADE
program, SSHADE1.DEM.

The following program, named SHADE]1 on your distribution volume, illus-
trates the effects of where the shade line is placed.

C SHADE1
C This program draws three boxes: one without shadings one with
C shadindg enabled to a proper shade lines and one with the shade
C line above the top of the box.
C
CALL INITGR (5)
CALL CLRTXT
CALL CLRSCR
CALL SWINDDO (0.0 0,0, 1000,0, BZ3.,0)
Cc
C This BOX call creates a frame for the illustration,
Cc
CALL BOX (0.0, 1000, 6825,
C
C Draw the first box (shading off is the initial default).
C
CALL BOX (50,0, 100,0, 130,0, 300,0)
C
C Draw the second box. We select solid shadinds the initial default,
C by not specifvying a pattern, WYalid vlines could be: LtoP OT
C bottom of boxs or any horizontal line between,
C We select the tor.
C
CALL SSHADE (300.,0y 1)
CALL BOX (250,0, 100,0, 350,0, 300,0)
C
C Draw the third boxs using "%2" as the shade character and
C wusing a shade line above the box, MNotice that the box looks
C as if we had drawn it to the shade line’s coordinate
C of 400.0,
C

CALL SSHADE (400,0, "043)
CALL BOX (430,00 100.0 350.0, 300.,0)
END

Picture Drawing 2-13

Figure 2-9: Picture Drawn by the SHADE1 Program

LA
eeneanning
NI
Ty
oo g
ol

The following program, named SHADEZ2 on your distribution medium, il-
lustrates the effect of where the shade line is placed, and how to shade
circles properly.

SHADEZ

This prodram draws three circles and three arcs, The first
circle and arc are drawn with shadind turned off, The
second pair with the shade line set to the middle of

the obdectss and the third Ppair with the shade line

set above the middle,

agoaooOoOon

CALL INITGR (3)

CALL CLRSCR

CALL CLRTXT

CALL SWINDD (0.0 0,0, 1000.,0, B25,0)
CALL BOX (0.0, 1000, »B825.)

All andles will be interpreted in dedrees.,

oon

CALL SDGREE

Draw the first circle and arcs with shading off
as the initial default.

o000

CALL MDVE (130.0, 150.,0)

CALL CIRCLE (100,0)

CALL MOVE (130.,0, 400,0)

CALL ARC (130.,0, 130.0 300.0)

Turn shading on and select solid fill, Draw the circle.
Notice the shade line must be at the center of the
circle.

v EeReRwR

CALL S58HADE (130.0, 1)
CALL MOVE (400.,0, 130.0)
CALL CIRCLE (100.,0)

Moue the shade line up to the center of the arc, Since the arc
is only 150 dedrees londs the shading stors where the arc stors
maKing the shade line obvious.,

o I B B B

2-14 Picture Drawing

CALL SSHADE (400,00, 1)
CALL MOVE (400,05 400.0)
CALL ARC (150.04 400,0, 300.,0)

Now draw the third pair with a shade line above
the centers, Notice how the outermost points of
the circle and arc overshadow the inner points.,

oOooon

CALL SSHADE (200.0, 1}

CALL MOVE (750,04 150.0)

CALL CIRCLE (100.,0)

CALL SSHADE (430.0, 1)

CALL MOVE (730,04 400,0)

CALL ARC (130.,0, 730.,0, 300.,0)
END

Figure 2-10: Objects Drawn by the SHADEZ2 Program

.,
8l .

2.6 Marking Locations

You can mark a location on the screen by calling either the MARKER
subroutine or the RELMKR (Relative Marker) subroutine. If you call
MARKER, you specify the absolute location where you want the marker to
appear. If you call RELMKR, you specify the x— and y—-distances from the

current location of the graphic cursor. RGL/11 uses the location you specify
as the center of the marker.

A marker can be a simple dot or any of the symbols listed in the MARKER
subroutine, Chapter 5.

The following program, named MARK on your distribution volume, places
a marker at each vertex of a star. (The program is the STAR program listed
in Section 2.3 plus additional statements to mark the vertices.) Figure 2—-11
shows the picture created by MARK.

C MARK
C This prodgram draws a star by calling POLYLN
C and then markKs the vertices by calling MARKER.

Picture Drawing 2-15

DIMENSION X8TAR (5) s YBTAR (3)
DATA XKB8TAR /500,0, 700,00, 200,0, BOO0.,0, 300,0/
DATA YB8TAR /560,00, 110.,0, 410,05 410,0, 110,0/

C
CaLL INITGR (3)
CALL CLRSCR
CALL CLRTXT
CALL SWINDD (0.0, 0,0, 1000,0, B25,0)
CALL BOX (0,0, 1000, 825,
C
C Move the drarhic cursor to the starting location.
C
CALL MOVE (300,0, 110.,0)
C
C Drawthe star,
C
CALL POLYLN (5, XS8TAR, YSTAR)
C
C NMNow marK the vertices with an "X" (number 5},
C
DO 10, I = 1,8
CALL MARKER (5, X8TAR(I) s YSTAR(I))
10 CONTINUE

END

Figure 2-11: Picture Drawn by the MARK Program

2.7 Retrieving Location Coordinates

When you want to know the coordinates of a location, you can use either
the LOCATE or GETLOC (Get Location) subroutines. GETLOC returns the
coordinates of the current location of the graphic cursor, storing them in
variables named X and Y.

LOCATE creates a special locator cursor that you can interactively move
around on the screen to the location or locations you want. The cursor is a
large white crosshair with a blinking diamond-shaped polygon in the cen-
ter. You move the cursor by pressing the arrow keys on the top right of the
terminal keyboard. When you first call LOCATE, the cursor moves a dis-
tance of ten pixels every time you press an arrow key. To slow it down for
more precise placement, press the PF3 key; thereafter the cursor moves one

2-16 Picture Drawing

pixel at a time. To speed it up again, press the PF4 key. When you have
located the cursor at a point whose coordinates you want, press any key but
an arrow key, a SHIFT, ESCAPE, or DELETE key. LOCATE puts the
point’s coordinates in the X and Y variables. By placing a LOCATE call
along with a READ or TYPE call inside a FORTRAN loop, you can read
and store the coordinates of several locations.

In the following program, named LOCAT on your distribution volume, you
can move the locator cursor repeatedly and see the coordinates you want
printed out on the screen. To end the program, you type the “X” key.

C LOCAT
C This prodgram uses the locator cursor and the LOCATE
C subroutine to retrieve the coordinates of a Point
C orpPoints: as the user chooses.,
C
CALL INITGR (3)
CALL CLRSCR
CALL CLRTXT
CALL SWINDD (0, 0, 1000, B25,)
CALL BOX (0.0, +1000,,:B625,)
CALL LINETH (131 4+'Tvpre urpercase ""M"" to exit,’)
C
C Define X and ¥ to 300, and 300, respectively and call LOCATE.
Cc
R=300,
¥=300,
10 CALL LOCATE (XY +KEY)
C
L The locator cursor is at location (500,:300.), You
C can bedin to move it using the arrow Kevs. Select
C the locations whose coordinates vou want hy tvping
C anv Kev but "X", the DELETE Kevs» or the arrow Kevs.
C The coordinates will ke printed on the screen. To
C end the loor and close the prodram,s tvyPe an UPPET-
C case "¥,*
c)
TYPE 100G Xy ¥ KEY
IF {(KEY.NE."130) GO TO 10
100 FORMAT (7 7y 'X= ‘s FB.+O s BXy 'Y= Y FB.0 43X,
1/KEY= ",03)
END

Other LOCATE examples are in the OBJECT program in Section 2.1 and
in Chapter 5, the LOCATE subroutine.

2.8 Labeling the Picture

You can use graphic text to label picture objects using either the LINETX
or TEXT subroutines. The LINETX (Line Text) subroutine displays text
strings on the screen, beginning at the row and column location you specify.
LINETX can display text strings of alternate character sets, but it always
uses characters in standard size only. To get a more varied display of
graphic text, use the TEXT subroutine. TEXT will use the character size,
character set, and location you have specified in preceding calls to MOVE,
STXSIZ (Set Text Size), and the LCHRST (Load Character Set) and
SCHRST (Set Character Set) subroutines.

Picture Drawing 2-17

2-18

Using the MOVE subroutine, you can place the graphic cursor at the loca-
tion where you want the text to start. The current graphic cursor location
marks the top left corner of the first character cell of the TEXT string.
TEXT leaves the graphic cursor at the end of the string.

Using the STXSIZ subroutine and then TEXT, you can display graphic
characters in sixteen different heights and sixteen widths.

In addition to the standard character set, the Greek character set is also
available on your distribution volume. It is in a file called GREEK.FNT. To
use the Greek character set, you first load it into character set 1, using the
LCHRST (Load Character Set) subroutine. Then you enable that set by the
SCHRST (Set Character Set) subroutine.

When you want to return to the standard character set, you need only call
SCHRST with a character set argument of 0, for the standard set. You do
not need to load the standard set, because it is always in memory.

The following program, named LABEL1 on your distribution volume, illus-
trates labeling subroutines.

C LABEL1
C This prodram Jsraws two boxes and uses the
C English character set to label one and the
C GreeKk character set to label the other,
C
CALL INITGR (8)
CALL CLRSCR
CALL CLRTXT
CALL SWINDO (0,0, 1000, :825.)
CALL BOX (0,0, ,1000, :B25,)
C
CALL BOX (200,200, 2400, ,400,)
CALL MOVE (200, +1530,)
CALL TEXT (‘This is Box A')
C

CALL BOX (500,200,700, ,400,)
CALL MOVE (525, 4+1350,)

CALL LCHRST (1, GREEK.FNT')
CALL SCHRST (1)

CALL TEXT ('This is B’}

END

Figure 2-12: Picture Drawn by the LABEL1 Program

This is Box A Totr v B

Picture Drawing

2.9 Using Writing Modes

When drawing graphic objects on the screen, you can draw in any of the
following writing modes:

Mode Effect

Overlay covers objects transparently; the underlying pattern is
still visible.

Replace covers objects opaquely; the underlying pattern is no
longer visible.

Erase erases selected graphic objects from the screen, and re-
places them with the screen color.

Complement highlights intersecting graphic objects or erases objects by
replacing them with the color of the underlying object.

Reverse interchanges screen color and drawing color.
No-Reverse negates the reverse writing mode.
Initialize re—establishes overlay mode and no-reverse mode as the

current writing mode; that is, it re—establishes the initial
conditions in one step, not two.

You enable a writing mode by calling the SWMODE (Set Writing Mode)
subroutine. That writing mode stays in effect until you call SWMODE
again or INITGR. When you first call INITGR, at the beginning of a
graphic program, the overlay mode is in effect, with reverse writing mode
turned off.

To understand the different modes, you need to understand a little about
how the terminal draws picture objects and graphic text on the screen. The
screen is composed of “pixels,” which are “picture elements”, the smallest
displayable elements on the screen. When the terminal is turned on, they
are all displayed in GRAYO, the default screen color.

When you set overlay mode on and draw a non—solid figure on top of a line,
the line is still visible. When you set replace mode on and draw a figure (of
either a solid or non—solid pattern) on top of a line, the line will no longer
be visible; all pixels in that line will be redrawn in the figure’s drawing
color.

If erase mode is on and you redraw the line, you “erase” it because you
replace the pixels’ color with the screen color. Suppose, however, that a
circle overlaid the line and you wanted to erase the circle but not the line
(as the erase mode would do); the complement mode accomplishes that. To
use complement mode to erase, you must invoke complement mode, draw
the figure, and then draw it again. The second time the figure is drawn, it
will be erased (but any underlying object remains).

Most picture objects require just one drawing color. Some, however, require
both a drawing color and the screen color. For example, in a line of dashes,
the terminal draws the dash in the drawing color and draws the space
between the dashes in the screen color.

Picture Drawing 2-19

2-20

Writing graphic text also requires both screen color and drawing color.
Graphic text writes a character into a “character cell”, a matrix of 10 pixels
high, eight pixels wide. The graphic characters are written in a row/column
format. For example, the character cell for the letter T looks like this:

0

SO O OO ODOO O
SO OO OO OO

OO O OO OO MmO
SO OO O OO O O
O O i ki ok ok e e O
SO OO OO OO MO
OO OO OO O O
SO OO O OOO MO

where 1 is the drawing color and 0 is the screen color

In sum, the writing modes affect how each pixel changes as you draw
graphic objects on the screen, particularly when the graphic object being
drawn intersects with another graphic object already on the screen. The
writing modes govern whether or not a pixel will be overwritten by the new
color, will remain unchanged, or will revert to a default color. It is by this
process that you can, in effect, place an object “in front of” or “behind”
another object, and can achieve other visual effects.

The next sections describe the writing modes in detail, so that you will
know which writing mode is best suited for your purposes.

2.9.1 Overlay Mode

The effect of overlay mode is to draw a graphic object while having an
underlying pattern remain visible also. This mode gives you the most com-
plete picture of two intersecting graphic objects. The effect of overlay mode
is only noticeable for non—solid shade patterns.

The following FORTRAN program, named OVERLY on your distribution
volume, shows an example of writing with overlay mode. Figure 2-13
shows the picture created by the example.

C OVERLY

€C This Pprodram draws two boxes in overlay mode., Fach box is

C shaded with a different character to show vou how thevy overlar,
o .

CALL INITGR (3)

CALL CLRSCR

CALL CLRTXT

CALL SWINDD (0.0 0,0, 1000.,0 B25,0)
CALL BOX (0,40, 41000, +825,)

CALL SWMODE (’0QU ")

Set shading to the '/’ character and draw a box.

aonon

CALL SSHADE (300,04 "57)
CALL BOX (250,04 300,05 500,0, 525,0)

Picture Drawing

C
C
c

Set shading to the ‘\’ character and

CALL SSHADE (200.,0, "134)

draw a box.

CALL BOX (350.0, 200,0, B00.0, 425.0)

END

Figure 2-13: Example of Drawing with Overlay Mode

111 1 KKKKAKKKKKK:

1111/,
;//;///////////// (s

;////////////////5////5/

Araaanaane

111117771 0000000¢X

11111141 ROKXXXX

111717771 RXXXXXX

171117777 0000000000

177171111 DO00000X

FEEET1171 Y

N\
\\\\\\\\\\\\\\\\\\\\\ \\‘
[ARAAASHREEERARARSRNTNNY
\\\\\\\\\\\\\\\\\\\\\\\\‘
BALALAAARARRARARARRANANY

|||||||||

2.9.2 Replace Mode

When you draw in replace mode, you completely cover any underlying pat-
tern with the new drawing color and drawing pattern. The effect is that the
more recently drawn image appears to be “in front of” the other, and ap-
pears opaque; its pattern is unaffected by the underlying image.

The following FORTRAN program, named REPLAC on your distribution
volume, shows how to write in replace mode. Figure 2—14 shows the picture
created by this program.

C
C
C
C

aonn

oon

REPLAC

This prodram draws two boxes that overlar,
written in the replace writing mode.,

CALL INITGR (3)
CALL CLRSCR
CALL CLRTXT

CALL SWINDO (0.0 0,0, 1000.0, BEZ5.0)
CALL BOX (0. ,0,+1000,,625,)

CALL SWMODE ('RE ")}

Draw the first box with a solid fill (default).,

CALL SSHADE (300,05)

CALL BOX (250,0, 300.0, 300,0, 325.0)

Draw the second box with the shading character “\",

CALL 88HADE (200.0, "134)
CALL BOX (350,0, 200.0, BO0O.0s 425.0)

END

Picture Drawing

The boxes are

2-21

Figure 2-14: Example of Drawing with Replace Mode

AAAAAARRAY
ALV
AN AN

\
AALAAARRRRRRRRRARANAANNN
AR A VNN

AL
AUV
SAMAATVARR RV VNV
AANAARARARAANSRARMARARANN

An example of replace mode in combination with reverse mode is given in
Section 2.9.5, Reverse Mode.

2.9.3 Erase Mode

Erase mode causes the pixels of a graphic object to revert to the screen
color, no matter what color they had. Thus, when you want to selectively
erase graphic objects from the screen, you redraw them with erase mode
enabled. The writing mode you used to draw the object originally in no way
affects the results of erase mode. You can have used overlay, replace, or
complement mode; the pixels are returned to the screen color.

The following FORTRAN program, named ERASE on your distribution
volume, shows an example of writing with erase mode. Figure 2-15 shows
the picture created by the program.

C ERASE
C This prodram draws two shaded boxes, When vou tvre the
C <“RETURN> on the Kevboards the second box is erased.,
C
CALL INITGR (5)
CALL CLRSCR
CALL CLRTXT
CALL SWINDD (0,04 0,0, 1000,0 BZ5.,0)
CALL BOX (0.0, 41000, 825,)
C
C Set solid shadinsg and draw two boxes.
C
CALL SSHADE (300,04)
CALL BOX (150,0, 300.,0, 325,0, 525.,0)
CALL BOX (350,0, 300,04 325,0 325.,0)
C
C Wait until the user tvyres {RETURN:,
C
TYPE 100
100 FORMAT (’ Tvrpe <RETURN> when vou want to see one box erased.,’)
ACCEPT 200
200 FORMAT ¢* 7))
C

2-22 Picture Drawing

Now erase the second hox, Remember that shading is
5till enableds so the shaded box is erased,

om0

CALL SWMODE (’ER’)
CALL BOX (350,05 300,0, 325,00 323.,0)
END

Figure 2-15: Example of Drawing with Erase Mode

Tgre <RETURN> when you want to see one box erased.

TyTe <RETURN> when you want to see one box erased.

2.9.4 Complement Mode

Using complement mode, you can erase an intersecting object and get back
the original, underlying, object (not the screen color as in erase mode). You
can also use complement mode to highlight graphic objects that intersect
other graphic objects.

When you use complement mode to highlight graphic objects, it
“complements” the color number of each affected pixel according to the
following chart:

Picture Drawing 2 23

2-24

Pixel Color Number Before Pixel Color Number After

the Complement Mode Call the Complement Mode Call
0 3
1 2
2 1
3 0

The drawing—color number has no effect on the resultant color in comple-
ment mode. Only the current color number of each affected pixel is signifi-
cant. To understand the distinction between color number and color name,
read Section 2.10, Selecting Gray Shades or Color.

The color actually displayed on the screen depends upon what color has
been associated with the pixel’s color number. For example, if GRAY?2 is
associated with color number 2, and GRAY1 associated with 1, then a pixel
with color number 2 which is rewritten in complement mode has its color
number complemented to 1 and so its new color is GRAY1. However, if
GRAYS3 is associated with color number 1, the pixel with color number 2
would receive GRAY3 color, because the color number is complemented, not
the color itself.

Notice again that, with complement mode, the drawing color of the object
being drawn is not used at all when you draw; rather the pixels are colored
by the complement of the color number they already have.

The following program, named COMPLE on your distribution volume,
shows how complement mode highlights graphic objects that intersect.
Figure 2-16 shows the picture created by this program.

C COMPLE
C This Program draws a shaded box and then writes
C drarhic text over it in complement mode.
C
CALL INITGR (3)
CALL CLRSCR
CALL CLRTXT
CALL SWINDO (O, +0, 41000, +s6825,0)
CALL BOX (0, 40,1000, sB825,)
C
C Set solid shading for the box to be drawn.
C
CALL SSHADE (150,)
C
C Draw the boxs using overlay mode and GRAYD
£ (the initial defaults),
C
CALL BOX (300,150, +300, +400,)
C
C Nowwrite text across the box in complement mode.
C

CALL SWMODE ('CO‘)

CALL MOVE (250, ,250,)
CALL 8TXSBIZ (24)

CALL TEXT (/COMPLEMENT ")
END

Picture Drawing

Figure 2-16: Example of Drawing with Complement Mode

Complement mode can also erase graphic objects. In erase mode, the pixels
that comprise the object revert to the screen color. Thus if an object inter-
sects a second object that is being drawn in erase mode, the first object will
have “holes” in it when the erase mode operation is completed (because
erase mode returns the screen color). However, if you use complement
mode, the first object will remain intact after the second object is erased.
Use complement mode to erase overlapping objects so as not to erase under-
lying objects.

To erase a graphic object when writing in complement mode, you must:
1. Draw the object in complement mode when you first draw it.

2. Redraw the object with complement mode when you want to erase it.
You must redraw it exactly as it was first drawn; for example, redraw a
line in the same direction as the original line, as well as drawing it
between the same two points.

The following program, named ERASEC on your distribution volume,
shows an example of erasing with complement mode.

C ERASEC
C This program draws two shaded boxes$ the second box is
C drawn using complement mode, MWhen vou tvyre <RETURN: on
C the Kevboards the second box is erased using complement
C mode.
C

CaLL INITGR (3)

CalLL CLRSCR

CALL CLRTKT

CALL SWINDO (0,0,0,0,1000,0,825.0)

CALL BOX (0,0, 51000, 3B25,)
C
C Shade with the /7 character and draw the first box.
C

CALL SSHADE (300,0,"37)
CALL BOX (230,0,300,0,500,0,325.0)

Picture Drawing 2-25

Shade the second box with the '\’ character and draw
it in comPplement mode.

oooOon

CALL SWMODE ('CO7)
CALL SSHADE (200.,0,"134)
CALL BOX (350.0,200,0,600,0,425,0)

C
C MWait until the user tvyres <RETURN>.
C

TYPE 100

100 FORMAT (’ Tvre “RETURN>» to see one box erased, ')
ACCEPT 200

200 FORMAT (7 7))

C

C Now erase the second box by redrawindg the box.
C Complement mode is still evnabled,

C

CALL BOX (350.,04+200.,0,B800,0,425.,0)
END

Figure 2-17: Example of Erasing with Complement Mode

Tufe <RETURN> to see one box erased. -

FEETEEATE
P
17 /
mmn)

;

T, .//f;/
I 17711701777

FPIFPFFRFFTEFIIZ77478077

Igre <RETURN: to see one box erased.

2-26 Picture Drawing

2.9.5 Reverse Mode

Reverse writing mode displays graphic objects in reverse image: the screen
color number becomes the drawing color number and vice versa. With a
solid shade pattern, nothing is drawn in reverse mode; therefore, use re-
verse mode with patterns other than solid patterns. You can combine re-
verse mode with overlay, replace, complement or erase writing modes.

The following program, named REVERS on your distribution volume,
shows how to write using reverse mode. Figure 2-18 shows the picture
created by the program.

aOnooOOon

oo OO

oOon

REVERS

This prodgram writes a message in reverse writing mode. The
prodram then shows an example of combining reverse and replace
Wwritindg modes.

CALL INITGR (3)

CALL CLRSCR

CALL CLRTXT

CALL SWINDD (0.0+ 0.0 1000,0, B25.0)
CALL BOX (0.0, 51000, B23.)

CALL STHSIZ (24)

Set the reverse writing mode and write a grarhic text messade,

CALL SWMODE (‘RV ")
cALL MOVE (100,0, 100.0)
CALL TEXT (‘This is reverse writing mode’)

Now combine reverse mode with rerlace mode and see what haprens.,
Firsts draw a box with solid shading and no reverse.

CALL SWMODE (’NR)
CALL SSHADE (130,04)
CALL BOX (300,04 130,05 BOO.0y 325.0)

Now write text across the box in reverse and replace modes,

CALL SWMODE (‘RY)

CaLL SWMODE ('RE")

CALL MOVE (230, ﬂ, 450,0)

CALL TEXT (‘This is rerlace and reverse’)
END

Picture Drawing 2-27

Figure 2-18: Example of Drawing with Reverse Mode

2.9.6 No—-Reverse Mode

The no-reverse mode cancels the effect of the reverse mode. In no-reverse
writing mode, the drawing color is the drawing color, the screen color is the
screen color; they are not reversed. The no-reverse writing mode and the
overlay mode are in effect after an INITGR call.

2.9.7 Initialize Mode

The initialize mode re—establishes the no-reverse and the overlay writing
modes. One call to this writing mode controls two writing mode features.
Thus this mode is a “labor-saving” call.

2.10 Selecting Gray Shades or Color

The VT125 can display four shades of gray on its black—and—white monitor.
If you attach a color monitor, it can simultaneously display four colors on
the color monitor.

The four shades of gray on the VT125 black-and-white monitor are fixed;
you cannot change their intensity. They are:

Color Names Description

GRAYO Dark, the absence of light on the screen (this is the usual
screen color)

GRAY1 Dark gray

GRAY2 Light gray

GRAY3 White

You use the SCOLOR (Set Color) subroutine to control the colors RGL/11
uses in the picture-drawing subroutines and in one data—plotting subrou-
tine, PPOINT. (For other data-plotting subroutines, see Section 3.7,
Selecting Gray Shades or Color.) SCOLOR’s format is:

2-28 Picture Drawing

SCOLOR ({'name’}, number)

The color names in the above list are the values you supply for the ‘name’
argument, and color numbers 0 through 3 are the values for the number
argument. The numbers 1, 2, and 3 control the current drawing color; num-
ber 0 controls the screen color.

SCOLOR has three functions:

1. It associates the specified color name with the color number.

2. If you specify a color number of 1, 2, or 3, SCOLOR changes the current
drawing color number to the specified color number, and also changes
any picture image drawn with that color number to the new color asso-
ciated with it. For example, if you associate GRAY2 with color number
3, then all subsequent objects are drawn in GRAY2, and any previously

drawn objects that were drawn with color number 3 are now drawn in
GRAY2.

3. (this function of SCOLOR is more rarely used) If you specify O as the
color number, SCOLOR changes the screen color to the color now associ-
ated with 0. But it also establishes that color as the drawing color, so
you need to call SCOLOR immediately to establish a new drawing
color.

One color name can be associated with several color numbers, but each
number can reference only one color name at a time. By an INITGR call,
GRAYO is associated with O (the initial screen color), GRAY1 with 1,
GRAY2 with 2, and GRAY3 with 3 (the drawing color).

The following program, HILITE on your distribution volume, shows how
the shade changes when you associate a new shade with a color number.

C HILITE
C This prodram shows how the UT125 can hidhlidht obdects
C during a prodram. The prodram draws five obdects in
C GRAY3, but with different color numbers, When the
C wuser tvPpes the RETURN Kevs the prodram reassidns
C colors to color numbers so that three obdects immediately
C chande to GRAY1 and one to GRAYZ,
C
CALL INITGR ¢3)
CalLL CLRSCR
CALL CLRTX
CALL SWINDD (0,0, 1000, :625,)
CALL BOX (0.0, 51000, :6825,)
C
C Enable shadind, usindg the default line patterns.
C
CALL SSHADE (300, 4)
C
C Draw three obdects in color number 1+ using GRAY3,
C

CALL SCOLOR ('GRAY3' +1)

CALL BOX (25,200, +225,,400,)
CALL MOVE (500.,300.)

CALL POLYGN (3+100.)

CALL MOVE (900, ,300.)

CALL CIRCLE (100,

Picture Drawing 2-29

Draw the fourth obdect in color number 2+ using GRAY3Z,

oo

CALL SCOLOR ('GRAY3’ +2)
CALL BOX (250,200, :375,:,400,)

Draw the fifth obdect in color number 3+ using GRAY3,

[ReRw)

CALL SCOLOR ('GRAY3'+3)
CALL MDVE (700, +300,)
CALL PODLYGN (8:100,)

C
C MWhen the user tvres <RETURN*s the rrodram reassigns color
C number 1 to GRAY1s and 2 to GRAY2, causindg the first four
C obdects to be changed,

C

TYPE 100
100 FORMAT (/ Trre <RETURN> to see the colors chande,’)
. ACCEPT 200
200 FORMAT (7)

CALL SCOLOR ¢ ‘GRAY1’ 1)
CALL SCOLOR (‘GRAYZ2',2)
END

2-30 Picture Drawing

Figure 2-19: Example from the HILITE Program

Type | <RETURN> to see the colors chanse.

yre | {RETURN> to see the colors chanse.

An optional color monitor can be attached to the back of a VT125
black—and—white monitor. For more information on attaching a color moni-
tor to a VT'125, see the VT'125 Graphics Terminal User Guide. When you
add a color monitor, the VT125 displays four colors on the color monitor
screen while displaying the same images in black and white on its own
screen.

The gray shades appear on the color monitor as follows:

GRAYO appears as dark
GRAY1 appears as blue
GRAY2 appears as red
GRAYS3 appears as green

Picture Drawing 2-31

Chapter 3
Data Plotting

Seven RGL/11 subroutines are data—plotting subroutines. They enable you
to plot data on two—dimensional graphs, using data that you have collected
before the plot is made or data you plot point by point. Thus data can be
entered from stored files or on a point-by—point basis.

The data plotting subroutines are:
DPAPER — (Draw Paper) creates a grid on which to plot the data.

LNAXIS — (Label Numeric Axis) labels and scales an x— or y—axis, la-
beling the cell boundaries on the axis with numeric values,
and labeling the axis.

LTAXIS — (Label Text Axis) labels and scales an x— or y—-axis, labeling
‘ the cell boundaries on the axis with alphanumeric values,
and labeling the axis.

LFIXED — (Locate Fixed) displays an interactive cursor on top of the
data line of a graph, and returns pointers into the two arrays
passed to LFIXED for up to ten points on the data path of a
graph in the units of the graph’s axes.

LFREE — (Locate Free) displays an interactive cursor anywhere within
the graph’s boundaries, returns the x— and y—coordinates of
a point anywhere in the graph in the units of the graph’s
axes.

PDATA — (Plot Data) plots arrays of data on the grid you select, using
data that has already been collected.

PPOINT — (Plot Point) adds single data points to an existing graph.

The data—plotting “environment” is different from the picture—drawing en-
vironment in that the defaults for some terminal settings are different. The
data—plotting environment is created by either the PDATA or the DPAPER
subroutine.

3-1

NOTE

A certain set of parameters are changed in data plotting op-
erations by DPAPER or PDATA and are not reset. The
parameters are: '

e color assignment (color name to color number)
e current drawing color

e line pattern

e world coordinates

e shading ’

o text size

e writing mode

To reset these parameters, use the appropriate subroutine:
SCOLOR, SLNPAT, SWINDO, SSHADE, STXSIZ, or
SWMODE.

Figure 3-1: Sample Layout of a RGL/11 Graph

TOF X—AaxXIS LaBEL &REA

JaN FEB HAR APR tOMAY JUN ?—J«
] 0O
q i ——— i
m H T H : H H } H H H H ! H B B H : H H H s E’
I g - i - f
i
i %
mogs, 4 & H
a W
i
w4 ERTTRS
H i
% m
T o L
- T
P
! * g. M
T

LEFT

The simplest way to create a graph uses just one RGL/11 subroutine,
PDATA. That subroutine is described in Section 3.1, Data Plotting with
One Subroutine.

Using other subroutines, you can plot on logarithmic grids and further
customize the data—plotting process.

The sections in this chapter are:

Section Title

3.1 Data Plotting with One Subroutine
3.2 Creating the Graph Paper

3.3 Scaling and Labeling the Axes

3.4 Selecting Line Patterns and Markers
3.5 Smoothing Data Curves

3.6 Creating Shaded Graphs

3-2 Data Plotting

3.7 Selecting Gray Shades or Color
3.8 Plotting the Data

NOTE

As in Chapter 2, the sample programs in this chapter are also
files on your distribution volume and use the file extension of
.DEM. This extension makes it easy to get a directory listing
of all demo programs. When you use the RGLLNK indirect
command file to run them, you need to supply both the file
name and .DEM extension. (For RGLLNK on RT-11 systems,
see Section 4.3.2.2; on RSX-11M systems, see Section
44.22)

The file names, but not extensions, are given in the following
sections.

3.1 Data Plotting with One Subroutine

You can use just one subroutine, PDATA, to create a graph. If you supply
just two of its ten arguments (the number of coordinate pairs to be plotted
and the name of the array containing the coordinate values for the y—axis)
and you supply commas to delineate the other arguments, PDATA will
draw a graph and plot the data on it. The graph will have these
characteristics:

e the graph is linear on both the x— and y—axes.

e the graph is “ungridded;” that is, its axes have long tickmarks at the cell
boundaries and short tickmarks at the subcell boundaries.

e the axes have no labels, but the cell markers have numeric labels. The
numeric labels are autoscaled, and have rounded numbers based on the
data. The bottom x—axis and left y—axis are scaled.

e each axis has five cell divisions, and each cell has five subcell divisions.

The following program, named XYPLOT on your distribution volume, illus-
trates the PDATA subroutine with only three argument values supplied.
Figure 3—-2 shows the plot generated by the example.

C XYPLOT

C 4
DIMENSION XDATA (10} YDATA (10)
DATQ){DATA/‘)O‘)’ 100 9200 9300 s 404 5000 3600 i?O; 9800 10,0/
DATA YDATAZ104 20,218, 215, 9224 +25, 324,26, 424,27,/

CALL INITGR (3)

CALL CLRTHT

CALL CLRSCR

CALL PDATA (104 XDATA s YDATA s+ 444 44)
END

Data Plotting 3-3

Figure 3-2: Example of Basic, One—Call Data Plotting

32.

T T I T .

27.6 [' -

. ;_,./”:

ey~ -~ e x

23.2 [. e —

8.8 [”*»\h / -
-/ I #
oy S

14,4 [/ i -

10. | | ;1 | .

) 18 3% 54 72 90

Using the same program and changing just some arguments in the PDATA
call, you can introduce variations. For example, the following PDATA call
gives the graph shown in Figure 3-3.

CALL PDATA (10+XDATAYDATA 'R’ 'GRAYL ' +9+5:, TRUE,. ++ TRUE,)

Figure 3-3: Variations of the One-Call Data Plotting Subroutine

Other arguments in the PDATA subroutine change the line pattern, the
marker, and so forth. (You can also use PDATA with only the DPAPER
subroutine to create logarithmic graphs, or with DPAPER, LNAXIS, and
LTAXIS to create labeled graphs. See Section 3.8.1, Plotting Data from
Stored Files.)

3.2 Creating the Graph Paper

Using the DPAPER subroutine, you can draw gridded or ungridded graph
paper, and you can create two types of graph paper, linear and logarithmic.
You establish these characteristics by arguments in the DPAPER subrou-
tine. When you establish the number of major divisions (cells) of the x—axis
and y—axis and you intend to use rounded values for the graph, be sure to

34 Data Plotting

supply values for the cell arguments which are multiples of 2 or 5 to allow
the rounded—number algorithm to function properly. (See Section 3.3.1,
Scaling in Rounded Numbers.)

3.2.1 Gridded and Ungridded Graph Paper

Gridded graph péper consists of a series of parallel lines drawn across the
entire grid. Ungridded graph paper has tickmarks on the top and bottom
x—axes and on the left and right y—axes.

Each axis has major divisions called cells. The number of cells is estab-
lished by the DPAPER subroutine. Cell boundaries are drawn in either
solid lines across the graph or long tick marks, depending upon whether the
graph is gridded or ungridded. Subcells are subdivisions of a cell. They are
also created by the DPAPER subroutine. They are drawn either in dotted
lines across the graph or in short tickmarks. See Figure 3-2 for an example
of ungridded graph paper, and Figures 3-4 and 3-5 for examples of gridded
paper with cell and subcell lines.

Figure 3-4: Gridded, Linear Graph Paper

3.2.2 Linear and Logarithmic Graph Paper

Linear graph paper consists of uniformly spaced horizontal and vertical
lines. You can space the lines as close together or as far apart as you want,
but horizontal and vertical lines are always equidistant from each other.

Logarithmic graph paper, on the other hand, consists of horizontal and
vertical lines that are not equally spaced. Logarithms are numbers that
indicate the power to which a fixed base must be raised to produce a given
number. DPAPER creates logarithmic graph paper that uses a logarithmic
scale with a fixed base of 10, that is, it uses common logarithms, not loga-
rithms to the base e.

The lines along a logarithmic axis are not separated by equal distances
because logarithms do not increase linearly in value. The distances along
the logarithmic axis reflect the logarithmic ratio and the distances along
the linear axis represent the linear ratio.

Data Plotting 3-5

3-6

The logarithmic scale can be on the horizontal or the vertical axis or on
both. When only one axis is used to represent a logarithmic scale, the graph
paper is called semi-log graph paper. Semi-log paper is usually linear
along the horizontal axis and logarithmic along the vertical axis. Figure
3-5 is configured in this way. ’

Figure 3-5: Semi-Log Graph Paper

Semi-log graph paper can be either single—cycle or multi-cycle (as in
Figure 3-5). Single—cycle paper shows only one logarithmic scale, the num-
bers in a single decade (a single power of 10). Thus, single—cycle paper can
be used to plot the logarithms of numbers from 1 to 10, 10 to 100, 100 to
1000, and so on.

The spacing of numbers in a logarithmic scale is constant only for that
scale. Therefore, to plot logarithms of a wider range than a single power of
10, you must add additional cycles to the paper. Figure 3-6 is an example of
3—cycle semi-log graph paper. On such paper, if the first cycle represents
the logarithmic scale of 1 through 10, then the second cycle represents the
logarithms of 10 through 100, and the third cycle represents the logarithms
of 100 through 1000. On logarithmic axes, one cell equals one decade.

The arguments of the DPAPER subroutine enable you to choose the scale
(linear or logarithmic) and the density of lines in the graph. You can select
one scale for the x—axis, and another for the y—axis; you can create two
y—axis scales if they are both based on the same x-axis scale. When you
create multi—cycle graph paper, you can plot data with respect to either the
left or right y—axis. This is described in Section 3.3, Scaling and Labeling
the Axes.

Data Plotting

Figure 3-6: 3-Cycle Semi-Log Paper

4+

3.3 Scaling and Labeling the Axes

The LNAXIS subroutine enables you to create one or more linear or loga-
rithmic scales on the grid DPAPER created.

3.3.1 Scaling in Rounded Numbers

“Scaling” an axis defines the range, the first and last values for that axis.
When you plot numeric data, you can scale the axis either with the exact
values of the given data or with a set of rounded numbers that RGL/11 can
derive from the given data.

Rounded numbers are numbers that allow you to interpolate values by
sight. For example, it is easier to estimate the midpoint between 0 and 10
than it is between 2.0115 and 9.3714, making 0 and 10 easier to work with.
RGL/11 calculates rounded numbers according to the scale on which you
want to plot your data.

For linear scales, it calculates rounded numbers by finding multiples of 2,
5, or 10 (multiplied by the appropriate power of 10) that are less then or
equal to the lowest value specified and greater than or equal to the highest
value specified. For example, if the data’s minimum and maximum values
were 11 and 22, the resulting range of rounded numbers is 10 through 22.
These figures result because 10 is the nearest multiple of 2, 5, or 10 that is
less than 11, and 22 is the nearest multiple of 2 that is greater than or
equal to 22. In another example, if the data’s minimum and maximum are
1.3 and 7.9, the resulting range of rounded numbers is 1.2 through 8.0,
because 1.2 is the nearest multiple of 0.2 that is less than 1.3, and 8.0 is the
nearest multiple of .2 that is greater than 7.9.

Data Plotting = 3-7

3-8

NOTE

RGL/11 rounds only the minimum and maximum values that -
are displayed at the first and last cells. If you want
rounded-number labels on the intervening cells, you must
specify a number of cells (in your call to DPAPER) that is a
multiple of 2, 5, or 10.

For logarithmic scales, RGL/11 calculates the minimum rounded number
by finding the power of 10 that is lower than the lowest value in the given
data. The maximum is found using the following equation:

maximum = minimum * 10°
where ¢ is the number of cycles on that axis

For example, if the minimum value was 6., the minimum rounded number
would be 1. If the graph paper had been drawn with four cycles, the axis
would be scaled from 1. to 10000. If the graph paper had three cycles, it
would be scaled from 1. to 1000.

RGL/11 automatically generates rounded numbers and numeric labels
whenever you select log paper, even if you supply a value of “ TRUE.” in
the “exact” argument of the LNAXIS subroutine.

3.3.2 Autoscaling

Autoscaling is the procedure RGL/11 uses in certain circumstances. It es-
tablishes the range of values against which to plot your data (the numbers
within the range can be either rounded numbers or exact numbers).
RGL/11 derives this range from the given data. It can autoscale either the
x—axis or y—axis or both. To invoke autoscaling, you default the “minvalue”
and “maxvalue” arguments in the LNAXIS subroutine call, or use just the
PDATA subroutine call to plot your data (see Section 3.1).

Figure 3-7 shows two pieces of graph paper: the top one uses the
user—specified scale and exact values at the cell boundaries, the bottom one
is autoscaled and uses rounded numbers at the cell boundaries.

Figure 3-7: Non-Autoscaled, Exact-Numbered Graph Paper and
Autoscaled, Round-Numbered Graph Paper

124.5

D 1306

2 tot.62

! 90.18

78.74

67.3

55.86

44,42

32.98

21.54

T N ANR S BT R NAT N RUES RSN AR RSN RS BT N
4 .92 1,74 2.5 3.38 4.2 5.02 5.84 6.66 7.48 8.3

T 1 1 1 ¢ T] T T T T -

:]:

Y
|
sl bl

:

TETETITITiTe
|

NONAUTOSCALED

NONAUTOSCALED X—AXIS

Data Plotting

140,
126,
112.

|
:L:

70.
56.
42.

N0 N I R

]:].r]:

:l:

T

14,
P AT BT R T T B N I A
0. .84 1.68 2.52 3.36 4.2 5.0¢ 5.88 6.72 7.56 8.4

AUTOSCALED Y-AXIS

AUTOSCALED X—-AXIS

3.3.3 Multi-Scaled Graphs

Multi—scaled graphs have one x—axis and multiple y—axis scales. Using this
type of graph, you can plot two different sets of data against a common
variable represented on the x—axis scale.

To create a multi-scaled graph, call the DPAPER subroutine, then the
LNAXIS subroutine once to scale the x—axis, then call it twice again to
scale the two y—axis options: y—left and y-right. Once you have established
the grid paper, you can call the PDATA routine twice to plot the successive
sets of data against the appropriate y—axis.

To identify the axis you want affected by the LNAXIS call, specify one of
the following codes in its “ ‘axisid’ ” argument:

e XB (x-bottom) o YL (y-left)
o XT (x—top) o YR (y—right)

You can create two y—axis scales only if they both use the same x—axis
scale.

After you have drawn and scaled the multi-scaled paper, you can instruct
RGL/11 to plot data against the appropriate x— and y—scale combination by
passing a “‘yaxis’” argument that is a single character representing the
axes as follows:

o L (y-left)
o R (y-right)

The following program, named MULTI on your distribution volume, plots
two sets of data against a common x-axis scale and two y-—axis scales.
Figure 3-8 shows the plot generated by the example.

MULTI

This prodram plots the cumulative freauency distribution of a
set of hvrpothetical test scores adainst the left v-axis and
"the fresguency distribution polvdon" of the same data adainst
the right v-axis.

oooaon

Data Plotting 3-9

DIMENSION SCORES (11), CUMFRO (11) s FREQ (11)

DATA SCORES /04 410, 20, +30, 440, +30, +B0., 70,80, ,90,,100.,/
DATA CUMFRQ /300, 283, 285,265,215, 4145, 485,35+ 13.:353.+0./
DATA FREQ /0. 3,510,320, 330,370,360, 9304920, +10,3./

CALL INITGR (3)
CALL CLRBCR
CALL CLRTXT

Draw linear-bhy-linear grid with 10 cells and 2 subcells on
the x-axis and 5 cells and 3 subcells on the v-axis. Grid
color is GRAYZ and the axes are undgridded,

aOoOoon

CALL DPAPER ('LIN’ 10,2, LIN’:3:5:'GRAYZ’)

Scale hottom Xx-axis with values between O and 100 ands at each
of the boundaries, diseplay a label "0",y "10", and so forth;
using exact values, Give the axis the labkel "SCORES."

oo

CALL LNAXIB ('XB’+/'SCORES' +0, 100+, TRUE)

Scale left v-axis with values between O and 3003 label each
of the 5 cells (0. B0y 120, 180, 240, 3004) s using
exact values’ label the axis "CUMULATIVE FREQUENCY."

cooOoaon

CALL LNAXIS ('YL’ 'CUMULATIVE FREQUENCY ' 04 +300.
i JTRUEW)

Scale ridght v-axis with values between O and 1003 label
each of the 3 cells (0. 20, 40, B0, BO,» 100,) s using
exact valuesi label the axis "FREQUENCY."

o B B o B B

CALL LNAXISB ('YR‘, 'FREQUENCY ’+0.0,100.,0,:,TRUE)

Plot cumulative freauency distribution of eleven elements
from the SCORES array and the CUMFRO array adainst the left
y-axiss writing the data line in GRAY1s using marKer 1

(a dot)s and linetyre 1 (a solid line)r with the smoothing
furiction enableds shading disableds and shadeline ardument
defaulted.

aoOooOooonn

CALL PDATA (11 ,8CORES CUMFRO L7+ 'GRAY1 141
1 JTRUE. s .FALSE.)

Now plot freauency distribution Ppolvdon of eleven elements

from SCORES and FREQ arravs adainst the right v-axis, writing in
GRAYZ s usind marker 2 (an octadon) s linetvre 1+ with

smoothing and shading both off,

coOooOon

CALL PDATA (11:SCORESFREQ 'R’ 'GRAYZ27+2+1+.FALBE, »
1 JFALSE.)
END

3-10 Data Plotting

Figure 3-8: Multi-Scaled Graph Plotted by the MULTI Program

g

.3 100,
- J""":g—_._ T - T - T 1 T 1T 7 1 "
0 :: qé'“*‘-u_‘ .
g . - 4 ee.
3 - g - -
8 ", - pil
N . 0. m
o 180. |- X . o
- =, . C
: PN 1, B
i 120, [~, Y O 4. Z
> " / N \] &
P - m b] <
T s [N -1 ee.
d S
3 B =
§ ¢ | | | | 1 | 0
0 (] 10 20 30 40 50, 60, 70 80 90 100

SCORES

3.3.4 Labeling the Celis of an Axis

The above example shows how the LNAXIS subroutine can scale and label
the cells of an axis with numeric values and give the axis a title. Notice
that the number of labels is one more than the number of cells. If there are
four cells, for example, there are always five labels.

Another subroutine, LTAXIS, can also label the cells of an axis and assign
numeric values to the cell boundaries, but LTAXIS can display either text
or numeric labels, not just numeric labels, at the cell boundaries.

Both LNAXIS and LTAXIS write in overlay mode, the mode established by
the DPAPER call. (DPAPER must be called before a LNAXIS or LTAXIS
call.) Refer to Figure 3—1 to see the areas on a graph where the LNAXIS
and LTAXIS labels are displayed.

The following program, named LABEL2 on your distribution volume, de-
fines a grid and gives it both numeric and text labels. Figure 3—9 shows the
plot generated by the program.

C LABELZ
C This prodram draws a drid with numeric and text labels.,
C
CALL INITGR (3)
CALL CLRSCR
CALL CLRTXT
c
C Drawa dgrid with a blank linear x-axis having 13 cells and 1
C subcell each (in effects» no subcells since it is coextensive
C with the cell itself) and a blanK linear v~-axis having 10
C cells and 2 subcells eachs, The lines will be drawn in GRAY3.
C
CALL DPAPER (‘LIN’+13+1+'LIN’+10,2,,'GRAY3")
c
C Scale the bottom Xx-axis with values between 0 and 13 and label
C it "MONTHS OF THE YEAR." Label each of the 13 cells with
C 3-character labels (the first is blanK, the second JANs and so
C forth),

Data Plotting 3-11

CALL LTAXIS (‘XB’ s ‘MONTHS OF THE YEAR’+ 0,0 13,0,
1347 JANFEBMARAPRMAY JUNJULAUGSEPOCTNOVDEL /)

Scale the left v-axis with values between -10 and 10 and label
it "PERCENT VARIANCE." Label each of the 10 cells with exact
values,

aooonon

CALL LNAXIS ('YL’ 'PERCENT VARIANCE’ +-10,04+10,0,,TRUE,)
END

Figure 3-9: Graph Plotted by the LABEL2 Program (A Labeled

Graph)

10.

8 .. i { 1 | | I | | i i I 1 B

o -]
3 6. [—
<Z[s [-
H .o acd
T F .
$ o 2
- -2. — -
Z -, []
Ll .. N
O -6, . —
14 . -
11} -8. - pu—
LN S N D R D B B I B I I

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

MONTHS OF THE YEAR

3.4 Selecting Line Patterns and Markers

3-12

RGL/11 can connect points on a graph with nine different line patterns and
mark them with 11 different markers. These are the same line patterns and
markers as in the SLNPAT and MARKER subroutines of the
picture—drawing subroutines. However, when you are plotting data, you
can select the line pattern and marker you want by arguments in the

PDATA subroutine, and you can select the marker by an argument in
PPOINT.

The most commonly used line patterns are:

Dashed line (Pattern 9) — This is the default line pattern when the shad-
ing option is in effect.

Solid line (Pattern 1) — This is the initial default.

Blank line (Pattern 0) — RGL/11 plots the coordinate pairs, but does not
connect them (in effect, creating a “point
plot”).

The other line patterns are listed in the SLNPAT subroutine description in
Chapter 5.

Data Plotting

The marker codes are integers from O through 10 and from 100 through
110. Each number from 0 through 10 represents a different marker. The
markers they represent are listed in the MARKER subroutine description
in Chapter 5.

When you specify a number in the 0-10 range, RGL/11 places the marker
at every point. The numbers from 100 through 110 represent the same
eleven markers. However, when you specify a number in this range,
RGL/11 places the marker at every tenth point.

If you default the marker argument, no marker is displayed.

The following program, named LINTYP on your distribution volume, plots
two sets of data in different line patterns and marks the points with differ-
ent markers. Figure 3—10 shows the data lines generated by the program
example.

C LINTYP

C This prodram plots the data path of two eaquations:
C Y = Log X and ¥ = Log R/2

C

DIMENSION XDATA (10) . YDATAL(10) s YDATAZ(10)
DATA XDATA /1,424 34444503684 +74:84+58, 4104/
DATA YDATAI /10 920 930 ?do 750 769 770 iBo iQo ’100/
DATA ‘IIDATAZ /oS’lo 9105!20 ’205930 1345344 24.,5454/
CALL INITGR (3)

CALL CLRSCR

CALL CLRTXT

Draw a drid with a blank linear x-axis havind nine
cells and two subcellss and a blank single-cvele
lodarithmic v~axis having nine subcellsi the dgrid
lines will be drawn in GRAY3,

aooOoOoOo

CALL DPAPER ('LIN’84+2,'L0OG' +1,84+'GRAY3")

Scale the bottom x-axis in exact values from 1, to 10,
and label it "X VALUES.," Autoscale the left v-axis and
label it "LOG X.*"

aOooOoOon

CALL LNAXIS ('XB‘ X VALUES »1,10, . TRUE)
CALL LNAXIS ('YL’ »'LOG X' s14sls)

Plot the ten elements in XDATA and YDATAL adainst the
left v~axiss marking the data Ppoints with a sauare and
drawing a solid line colored GRAY3,:, Smoothind and
shadind are both disabled.

ooOoOoOoOon

CALL PDATA (10 XDATAYDATAL 'L+ 'GRAY3 " +1+1 . FALSE, s
1.FALSE. s}

Plot XDATA and YDATAZ, using an ¥ to mark the data rpoints
and a dashed line for the plot., Again both smoothing and
shading are disabled,

cooOoon

CALL PDATA (10 +XDATAYDATAZ,’L ' +'GRAY1 ' +3+4,:.FALSE .+
1.FALSE. s)
END

Data Plotting 3-13

Figure 3-10: Graph with Alternate Line Patterns and Markers

10.

LOG X

X VALUES

3.5 Smdothing Data Curves

3-14

When you plot a set of coordinates, RGL/11 provides the option of connect-
ing the points either with a series of straight lines or with a smooth curve.
You select the type of line by supplying either “.TRUE.” or “.FALSE.” as
the value for the “smooth” argument of the PDATA subroutine, the eighth
PDATA argument. The value “.TRUE.” gives the smoothed data line,
“.FALSE.” gives straight lines. The default is “FALSE.”, straight lines.

The algorithm that performs the smooth—curve interpolation is called a
spline—fitting algorithm. It requires that the x—coordinates in the input
array be passed in ascending order. If they are not, the data path will be
erratic.

Sometimes smoothing a curve causes the new curve to “overshoot” and
extend beyond the edges of the graph without being clipped. When this
happens, one way to correct the problem is to “scale down” the data by
changing the scale on the appropriate axis; that is, by changing the max-
value and minvalue arguments of a LNAXIS call for that axis.

The following program, named SMOOTH on your distribution volume, il-
lustrates the smoothing option. Figure 3-11 shows the data path generated
by this program.

C SMOOTH
C This prodram plots the data rpath of the polvnomial function:
C Y = X[31 + 3X[2] - X - 3
C
DIMENSION XARRAY (8), YARRAY (9)
DATA XARRAY /-3+7 343453341724 3-141+04s 414143 41.6/
DATA YARRAY /-7 33,8390+ 234 +043-341+0,35.83+7./
C

CALL INITGR (3)
CALL CLRSCR
CALL CLRTXT

Data Plotting

aoOoooOon

oo n

oo

Draw a dridded linear Xx-axis with nine cells and no subcells,
("1" subcell is coextensive with the cell,) Draw a similar
vy-aXxis with fourteen cells and no subcellss The drid lines
are drawn in GRAY3.

CALL DPAPER ('GLIN’84+1,'GLIN’ »14,+14+'GRAY3")

Scale the bottom x-axis from -5, to 4,3 use exact values at the
cell boundaries and suprly an axis title, Scale the left
v-axis from -7, to 7+ and use rounded numbers at the cell
boundaries.

CALL LNAXIS ('XB',’Y = X-CUBED + 3(X-8QUARED) - X - "y
1-5,+4, 4+ TRUE)
CALL LNAXIS ('YL s’ 7474374+ TRUE)

Plot the nine elements in XARRAY and YARRAY with resrpect to
left v-axis, Draw the data line and marKers in GRAY3» marKing
the points with a sauare and using a solid line, Smoothing is
enabled, shadindg is disabled,

CALL PDATA (9,:XARRAY »YARRAY »/'L 7 'GRAY3 ' +1+1 . TRUE, »
1.FALSE.s)
END

Figure 3-11: Smoothed Data Lines

}‘"
5. i
; i
S ‘/_m_\' +
i 3 H
{ / 5 /
7 /
| 1 ——F
/ L
-1, !E’ e’
-5, /
#
7
-7, a
5. -4 3. -2 . e 1. 2 3 &
Y = X—CUBED + 3(X-SQUARED> — X — 3

Figure 3-12 uses the same program, changing only the “smooth” argument
in the PDATA call:

CALL PDATA(B :XARRAY +¥YARRAY » 'L’ + 'GRAY3 ' +1 41+ . FALSE. » . FALSE . +)

Data Plotting 3-15

Figure 3-12: Straight Data Lines

"5 4. 3. 2. . e 1. 2 3 &

Y = X—CUBED + 3(X-SQUARED)> — X — 3

3.6 Creating Shaded Graphs

3-16

A shaded graph is a graph which is shaded from the apex of the data line
downward to a horizontal shade line along the y-axis.

To turn shading on, you use the following arguments in the PDATA
subroutine:

o Specify “ TRUE.” in the shade argument, the ninth PDATA argument.

e Specify a shade line value in the tenth argument (yvalue) or use the
default value which is the minimum value on the appropriate y—axis.

e Specify a linetype (for the shade pattern) in the seventh argument, or use
the default value.

Each time a program calls PDATA with the shading enabled and a default
linetype, the shading pattern changes. This change makes it easier to dif-
ferentiate between shaded regions. PDATA has four special line patterns it
uses before, on the fifth such call, it duplicates the first shade pattern.

You do not have to use the default line patterns, however. They apply only
if you do not specify a linetype.

The following program, named SHADE4 on your distribution volume, cre-
ates a shaded graph with two sets of data, two overlapping shaded areas.
Figure 3-13 shows the plot generated by the program example.

C SHADE4

C This prodram creates a surface drarh from two sets of
C datas it shades the area under each curve in a

C different shade pattern.,

Data Plotting

oaoOooOoon aooooOon

aoaooooan

aooOooa

DIMENSION XUALS (21) s YUALL (21), YVALZ (21)

DATA XUALS /36,39, +44, :49, 434,38, 469,70, +79,,89, »
189,109, 91190 91350 91“50 » 149, '159. 1y 160, 91890 71791 518991
DATA YUALL /70,33.033.293.0334. 4443214230324, 327540, 350,
2474440, 3373304110,489,:4510,24+7.18./

DATA YUALZ /704445040142 414 914352453455, 915,933, 436,39,
3304210, 3402013001041 4702

CALL INITGR (3)
CALL CLRSCR
CALL CLRTXT

Draw a blank linear drid in GRAY3 with the x-axis having
sixteen cells,» two subcells eachy and the v-axis having
eleven cells, two subcells.,

CALL DPAPER ('LIN‘+1B+2:'LIN’+11,2,4/GRAY3")

Scale the bottom X-axis with exact numbers from 30, to
190+ and label the axis "X VALUES." Scale the left
vy-axis with exact numbers from O, to 55, and labkel the
axis "¥Y UJALUES."

CALL LNAXIS ('XB’, X VALUES ' +30,.:190, . TRUE .}
CALL LNAXIS ('YL ‘'Y VALUES 0,55, +,TRUE,)

Plot the 21 elements from the XVALS and YVUALI arravs adainst the
left v-axis. Draw in GRAY3: using a sauare marker and a

dashed line, ©Smoothing is disabled and shading is enabled,
Shading extends to a horizontal line at point 0.0 on the left
Y-aXis,

CALL PDATA (21 sXVALG»YUALL 'L’ +/GRAY3 +1+4 4+ . FALSE . s v TRUE. +0.,0)

Plot the second data set in YUALZ, chanding the marKer to an
octadon and the line pattern to a solid line.

CALL PDATA (21 XVALSYVALZ» ‘'L’ »GRAY3’+2+1 ++FALSE, »+TRUE . 0,0}
END

Figure 3-13: Shaded Graph with Two Sets of Data

¥ VALUES

90. 110, 130.

X VALUES

Data Plotting 3-17

3.7 Selecting Gray Shades or Color

To select gray shades or color for a graph, use the color arguments in the
DPAPER subroutine, the PDATA subroutine, or both. The four possible
colors are:

GRAYO dark, the screen color
GRAY1 dark gray

GRAY2 light gray

GRAY3 white

On a color monitor, these colors are displayed as dark, blue, red, and green,
respectively.

Typically, color number 0 (set to GRAYO0) is the screen color and color
number 1 (set to GRAY3) is the color for the grid lines, so there are two
color numbers available for a program. Color numbers 2 and 3 alternate by
default. They are set to GRAY2 and GRAYS3 respectively by DPAPER. A
program may use one color for data and another for the graph labels, for
example, or two colors for data. It cannot use more than two colors for data.
If it does, each color change after the second one changes the colors of points
plotted two calls before it.

3.8 Plotting the Data

3-18

You can plot data from stored files or you can perform interactive data
plotting.

3.8.1 Plotting Data from Stored Files

To plot data from stored files and exercise the many options RGL/11 makes
available in creating graphs, you use the subroutines in the following
sequence: :

1. Using the DPAPER subroutine, you define the type of graph (linear or
logarithmic) and type of axis (gridded or ungridded) that you want to
use. (Section 3.2)

2. Using the LNAXIS subroutine, you assign numeric values to the cell
divisions of a graph’s axes; the values are printed at each cell boundary
along the axis you specify. (Since the first cell is labeled at both its
boundaries, there is one more label than there are cells along an axis.)
LNAXIS also gives the entire axis the label you write into the
“ ‘axislabel’ ” argument. (Section 3.3)

3. Using the LTAXIS subroutine, you assign text labels to the cell divi-
sions of the top or bottom x—axis and left and right y—axes, and to the
axis as a whole. (Section 3.3)

4. Using PDATA, you select the data arrays themselves, and also options
such as shading and smoothing. You can use PDATA: (1) alone, (2) in
combination with DPAPER so that you can have gridded and

Data Plotting

logarithmic graphs, or (3) in combination with DPAPER and the label-
ing subroutines LNAXIS and/or LTAXIS. When you select PDATA ar-
gument values, they must agree with any values in preceding calls.
(Section 3.4 to 3.7)

5. Using PPOINT, you can plot a single data point on a graph.
(Section 3.8.2)

3.8.2 Interactive Data Plotting

To plot data interactively, you use the PPOINT subroutine. PPOINT en-
ables you to plot single data points from the x— and y-coordinates you
supply in the argument list. The y—coordinate can apply to either the left or
right y-axis. You select the marker to mark the data point from the list of
markers in the MARKER subroutine in Chapter 5; the default is 0, a dot.

An example, named POIN on your distribution volume, follows. In this

example, you create a grid, label it, and call up the locator cursor. When -
you have moved the cursor to the location you want, you should exit from

locator mode. You accomplish this by typing any key but the SHIFT, ESC,

or DELETE key or arrow keys. After the exit from locator mode, the x and

y values of the point at which you left the mode are printed on the screen. If
they are what you want, you type an uppercase “Y” and PPOINT uses those

values to plot the data point on the graph. The DO loop establishes five

iterations of this procedure.

Figure 3—14: PPOINT Example

X AXIS
9. 30. 60, 28, 120,

12¢.

I : I : I
= 30.0 ¥=.60.0
L YOU WANT TO HAVE THIS POINT PLOTTED?Y

- — 9.

= 60.0 Y= 27.8
3 YOU WANT) TO HAVE THIS POINT PLOTTED?Y
— o | 6@,
X= 50.8 Y5 74.7
D0 YOU WANT[TO HAVE THIS POINT PLOTTED?Y

SIXY A

¥=106.7 Y= 45.7
DO YOU WANT-TO HAVE THIS POINT PLOTTED?Y

; : | : | : .
X=106.7 Y= €0.0
DO YOU WANT TO HAVE THIS POINT PLOTTED?N

o —

POIN

This prodram uses the locator cursor to establish
points on a drarh’ the PPOINT subroutine then
plots the Points.

Establish data tvrpes and initialize the terminal,

ooooOonn

LOGICAL*1 RESPON

REAL XY ! CODRDINATES OF DATA POINT
CALL INITGR (3)

CALL CLRSCR

CALL CLRTXT

Data Plotting 3-19

C
C Draw and label the drarh.,
C

CALL DPAPER ('LIN‘ 42+ LIN' 4,2, 'GRAY3 ")
CALL LNAXISO'MT /X AXIS ' 40, 2120, TRUE,)
CALL LNAXIS(/YR’+'Y AXIB 40,120, 3, TRUE)

C
C Use the locator cursor to mark points on a draprh.
£ If they are the ones vyou want to plots tvPe an
C uppercase "Y.,"
C
PO 100 I=1,5
CALL LFREE(X Y sKEY»'R")
TYPE 203¥ Y
20 FORMAT (7 K=/ yF3.12X+'Y="'3F58,1)
TYPE 30
50 FORMAT (/ DO YOU WANT TO HAVE THIS POINT PLOTTED? +%)
ACCEPT 200 RESPON
200 FORMAT (Al)
IF (RESPON.NE., 'Y ’) GO TO 100
CALL PPDINT{(Xs¥Y 'R’ 1)
100 CONTINUE

END

The x— and y—coordinates for PPOINT can be supplied in other ways as
well. For example, they can be typed from the keyboard or read from a file.

3-20 Data Plotting

Chapter 4
Program Development

This chapter details the procedure for creating and running graphic pro-
grams. The procedure is called “program development.” It consists of the
following steps:

e Writing a graphic program, called the “source program”

e Using an editor to create a file, called a “source file”, which contains the
program, and then using the editor to edit the file as needed

e Using the FORTRAN compiler to convert the source file into an object
module

e Using a linker or task—builder utility to generate an executable program

¢ Running the program

This chapter provides only an introduction to program development, and it
contains information for creating and running graphic programs specifi-
cally for RT-11 and RSX-11M systems. Another source of information on
program development is the RSX-11M/M-PLUS Guide to Program
Development or the RT—11 System User’s Guide.

NOTE

Sections 4.1 and 4.2 of this chapter describe writing and edit-
ing a source program. They concern both RT-11 and
RSX-11M systems. Section 4.3 concerns compiling, linking,
and running a program on an RT-11 system, and Section 4.4,
compiling, task building, and running a program on an
RSX-11M system.

4-1

4.1 Writing a Graphic Source Program

4-2

This section reviews the following RGL/11 conventions you should use in
your graphic programs:

e Conventions for string expressions (Section 4.1.1)
e Initializing your program (Section 4.1.2)

e Program overlays (Section 4.1.3)

Other requirements for successful programs, such as the correct settings for
your terminal, are in the sections on running the program (Section 4.3.3 for
RT-11 systems and 4.4.3 for RSX-11M systems), in the VT125 User’s
Guide, and in the user’s guide for your system.

NOTE

Do not use VT125 macrographs in your graphic programs.
The RGL/11 package uses all 26 macrographs. If macro-
graphs also occur in user programs, they will overwrite the
existing ones and cause indeterminate results.

4.1.1 String Expressions

When you pass a data string expression to a RGL/11 subroutine, its data
type must be a LOGICAL¥*1 or byte data type, and the last element of the
array must be a null (zero) byte.

When you pass a text string to a RGL/11 graphic text subroutine (either
LINETX or TEXT) and you want to include a double quotation mark ("),
you must precede it with another double quotation mark, for example:

TEXT (‘Type ""START"" to bhedin Prodram,’)

The double quotation mark is a ReGIS command string terminator; there-
fore it requires this procedure in text strings of LINETX and TEXT subrou-
tines, and in the axis labels of LNAXIS and LTAXIS.

4.1.2 |Initializing Your Program

In order to set the initial conditions for your program to known values and
to clear the screen, you should call these subroutines first:

e INITGR — sets the terminal

NOTE

INITGR must be the first RGL/11 subroutine your program
calls; if it is not, the program’s performance will be
unpredictable.

Program Development

e CLRSCR — clears graphic images from the screen
e CLRTXT — clears regular text from the screen

e SWINDO — if you want to define your own coordinate system

Chapter 5 has the detailed descriptions of these subroutines, and Chapters
2 and 3 have some examples. The SWINDO concepts are described in
Section 2.2, Defining Coordinate Systems.

4.1.3 Program Overlays

RGL/11 programs can be run in one of two ways: overlaid or non—overlaid.
An overlaid program consists of two or more program segments. When an
overlaid program is executed, only one program segment is in low memory
at any one time. ‘

Overlays provide a way to execute programs that would otherwise exceed
the size of memory while sacrificing only some execution speed. Using over-
lays, you can build programs that are larger than the 32K word limit im-
posed by the PDP-11 architecture. But since overlays involve disk I/O, the
execution speed of an overlaid program may be slower than it would be if
not overlaid.

One type of RGL/11 application program that usually must be overlaid
because of size is one that calls many RGL/11 data—plotting subroutines. A
program that calls only RGL/11 picture—drawing subroutines probably does
not need to be overlaid.

On RT-11 systems, there are two kinds of overlays: disk resident and ex-
tended memory resident. If the program will run under an SJ or FB moni-
tor, the segments are stored on disk; if it will run under an XM monitor, the
segments can be stored either on disk or in extended memory.
Extended—memory overlays do not involve disk I/O, and therefore they are
faster than disk—resident overlays. Another advantage of programs with
extended—memory overlays is that they are run as virtual jobs, and there-
fore they have access to all 32K of memory.

For further information on overlays, see the PDP—11 FORTRAN Language
Reference Manual, the RT-11 System User’s Guide, or the
RSX-11IM/M-PLUS Task Builder Manual. Information on whether to use
disk—resident or extended—memory—resident overlays (for RT-11 users) is
in Sections 4.3.2.2 and 4.3.2.3 of this manual.

4.2 Creating and Editing the Souirce File

When you have created the source program, use a text editor to enter the
program into a file. The file is the “source file” for your program.

As you type your program, be sure the program lines do not exceed 72
characters in length. The compiler, unless otherwise instructed, does not

Program Development 4-3

process characters beyond position 72. If the lines are longer than 72 char-
acters, the compiler might print confusing error messages or cause your
program to execute incorrectly even though it compiled correctly. On a
VT125 terminal, you can enable the margin bell to sound when you reach
position 72. See SETUP mode in the VT'125 User’s Guide for instructions.

4.3 Program Development on an RT-11 System

44

This section describes the steps for compiling, linking, and running a pro-
gram on an RT-11 system.

4.3.1 Compiling the Program (RT-11)

“Compiling” is the process by which your FORTRAN compiler attempts to
translate your source file into an object program (which is a program con-
sisting of machine instructions). That procedure, made specific for graphic
programs, is summarized below. If the compiler prints error messages, refer
to the RT-11, RSTS/E FORTRAN IV User’s Guide or the RT—11 System
Message Manual.

There are two ways to compile your graphic program. You can choose
to use:

1. The FORTRAN command

2. The indirect command file RGLLNK, which is especially written to
compile, link, and run graphic programs

If you choose to use the FORTRAN command, type:

+FORTRAN Prog

where:
prog is the name of your program

If you choose to use the RGLLNK command file, it asks you questions and
then uses your answers for the program development process you selected.
(You can run RGLLNK from any terminal, but to execute a graphic pro-
gram, you must be using a VT'125 terminal.) To invoke RGLLNK, type:

+BRGLLNK

The RGLLNK questions are:

Program name [P] ?

Do you want to compile [Y] ?

Do you want listings [N] ?°

What device do you want the listings to go to [LP:] ?
Do you want to link [Y] ?

Do you want a map [N] ?

What device do you want the listings to go to [LP:] ?
Do you want overlays [Y] ?

Program Development

Do you want extended memory overlays [N] ?
Do you want to run [Y] ?

RGLLNK is treated in detail in Section 4.3.2.2.

4.3.2 Linking the Program (RT-11)

When you have successfully compiled your program so that you have it as
an object file, the next and final step in generating an executable program
is to link the object file the compiler created with the object files of libraries
or other subprograms. The linker creates the executable program, which is
called a load module, and in addition links your program to any subpro-
grams your program calls.

For RGL/11 programs, you need to link your object file with:

1. One of the three RGL/11 libraries: RGLLIB.OBJ, PRMLIB.OBJ, or
REXLIB.OBJ

2. BLODAT, the block data file

The decision about which RGL/11 library to use is dependent upon whether
you want to use non—overlaid programs, overlaid programs (disk-resident
or extended—memory-resident), or programs that use the alternate
extended—-memory overlay structure. When you have made that decision
and linked your program accordingly, your program is linked to the correct
library.

You may also want to link your object files with:

1. Your own library of subroutines

2. Other object files, libraries, or subprograms you name individually in
the command line

There are three ways you can link a graphic program. You can:

e Use the RGLLNK command file, which you can use for any graphic pro-
gram (described above and in detail in Section 4.3.2.2)

e Use the LINK command, which you should use only for a program that is
not overlaid (Section 4.3.2.1)

e Edit and then run the command file RGLOVR.COM, which you should
use only for programs that will use the alternate extended—memory over-
lays and need additional RGL/11 routines overlaid and, possibly, some
additional user routines. (Section 4.3.2.3)

4.3.2.1 The LINK Command —

Use the LINK command only for a graphic program that you do not intend
to overlay. To use it, type:

+R LINK GED
*myerod = myprod sBLODAT »RGLLIB/B:1200/P:1000 [+filesrecI@D

Program Development 4-5

4-6

where:
myprog is the name of your program

BLODAT is the name of the object file that defines the initial graphic
defaults

RGLLIB is the name of the graphics library for non—overlaid programs
/B:1200 ensures there will be enough room in the monitor stack
/P:1000 allows table space for the linker program

filespec is the name or names (separated by commas)for optional sub-
routines, or for optional libraries

If the linker encounters no fatal errors, it produces an executable program
called myprog.SAV.

Like the LINK command, the RGLLNK command file can also produce a
non—overlaid program, so you have a choice which procedure to use.
RGLLNK has the advantage of automatically linking your program with
the correct RGL/11 library.

4.3.2.2 The Indirect Command File, RGLLNK —

RGLLNK creates and executes a command file called RGL.COM that en-
ables you to compile, link, and execute your program. If you are running
under the XM monitor and you want to use overlays, you have the option of
using low memory overlays or extended—memory overlays. If you choose
extended memory overlays, your program will be created as a virtual job. If
you are running under FB or SJ and want to use overlays, you can use only
low memory overlays. You can default all answers to RGLLNK except the
program name. The default for each questlon 1s given in square brackets at
the end of each question.

To invoke RGLLNK, type:

+BRGLLNKRED

A sample RGLLNK dialog follows. It compiles, links, and runs a program
named prog:

+BRGLLNKGD

+RUN RGLLNK

Prodgram vame [P1? prodGD

Do vou want to compile [¥] 7
Do vou want listings [N1 7

Type YG@ED if you want listings and if you do not. If you answer Yes,
RGLLNK prompts with the further question:

What device do vou want the listings to g0 to [LP:z] 7

Program Development

Type to have the listing go to the line printer, or type the name of the
device, such as DL_O:, where you want the listings sent.

Do vyou want to link [Y¥1 7 @D
Do vou want a map CNI 7

Type Y@ if you want a load map; type G if you do not. If you answer Yes,
RGLLNK prompts with the further question:

)

What device do vou want the mar to g0 to [LP:1 7

Type G to have the load map go to the line printer, or type the name of the
device, such as DLO:, where you want it sent.

Do vou want overlarvs [Y1 7 GBED

Type to overlay your programs; type NG to avoid overlays. A Yes
answer links your program to PRMLIB.OBJ., and RGLLNK prompts with
the further question:

Do vyou want extended memory overlavs [NI 7 B

Type Y@ if you are running under XM and want extended—memory over-
lays, otherwise type GED. '

Do vou want to run [Y1 7

Type @D if you have a VT'125 and want to run the program; type NGED if you
do not.

If you are running under SJ, FB, or XM and want to compile, link, and run
a program called PROG1 using low memory overlays, RGL.COM, the file
RGLLNK creates, would look like this:

FORT/CODE:THR PROGIL

R LINK

PROG1=PROG] +BLODAT PRMLIB/B:1200/A/W/P:1000//
LFIXEDLDCATZ/0:1)
LFREE :LOCATE/D:1

PPOINT/0:1

PDATA/D:1

DPAPER/0:1

LNAXIB/0:1

LTAXIB/0:1

LNNICE sLINMINSLINMAX/D:2
PRINUMPRISTRTEXT sXLABEL +YLABEL/D:2
FMINMK sLGNICE sEXPTET/0:2

DPALOG sDPALINDEFALT sDRWBOX/0:2

LINE ;MARKER sMOVE »SWINDO/0:3
GENOUR/0:3)
INITGRCLIPIT+SSBTATE/D:3//

e

RUN PROGI

Program Development — 4-7

4-8

If you are running under the XM monitor and want to compile, link, and
run PROGI1 using extended—-memory overlays, RGL.COM looks like this:

FORT/CODE: THR PROGI1

R LINK
SY:PROGL1=PROG1 +BLODAT +PRMLIB/I/A/W/P:1000//
LFIXEDLOCATZ/V:1

LFREE +LOCATE/V:1

PPOINT/Vz1

PDATA/V:1

DPAPER/V:1

LNAXIS/V:1

LTAXIS/V:1

LNNICE»LINMIN,LINMAX/U:2
PRINUMPRISTR sTEXT sXLABEL s YLABEL/V:2
FMINMX,LGNICE sEXPTST/V:2
DPALOG,DPALINDEFALT sDRWBOX/V:2
LINE»MARKER sMOVE »SWINDD/V:3
GENDUR/U:3
INITGRCLIPIT8STATE/V:3//

$0BLK

“C
R PROG1

4.3.2.3 The Indirect Command File, RGLOVR —

Using the indirect command file RGLOVR is the third way to link a pro-
gram. Use it for programs that use extended-memory overlays. It provides
an alternate extended—memory overlay structure. This overlay structure
will overlay additional RGL/11 subroutines. You should use RGLOVR only
if you are running under XM, are going to use extended—memory
overlays, and:

® Your program is too large for the extended—memory overlay structure
provided by RGLLNK and you would like to overlay more RGL/11 sub-
routines, or

e Your program is too large and you would like to overlay more RGL/11
subroutines and add your own virtual overlay segments to overlay
region 4.

The contents of RGLOVR.COM are:

R LINK
SY:MAINPR=MAINPR ;BLODAT REXLIB/I/A/W/P:1000//
LFIXEDLOCATZ2/V:1

LFREELOCATE/V:1

PPOINT/V:1

PDATA/V:1

DPAPER/V:1

LNAXIS/V:1

LTAXIS/V:1

ARCOVR/V: 1

RELOVR/YV:1

SAVOUR/YV: L

GNZOVR/V:1

LNNICE LINMIN,LINMAX/U=2

PRINUM sPRISTR yTEXT s XLABEL »YLABEL/V:2

Program Development

FMINMX :LGNICE sEXPTST/V:Z
DPALOGDPALINsDEFALT sDRWBOX /W2
LINE sMARKER »MOVE +SWINDO/V:3
GENOUR/V:3
INITGRsCLIPITS8TATE/V:3//
$GBLK

“C

If you want to just overlay more RGL/11 subroutines, do the following:

1.
2.

Make a copy of RGLOVR.COM

Edit the copy by replacing all occurrences of “MAINPR” with the name
of your own program

After the copy has been edited, it is ready to be run.

If you want to overlay more RGL/11 subroutines and overlay parts of your
application program, do the following:

1.
2.

Make a copy of RGLOVR.COM
Edit the copy to:

e Replace all occurrences of MAINPR with the name of your program

e Include your segments in virtual overlay region 4. Remember to re-
move the /7 at the end of line 21 of RGLOVR.COM
(“INITGR,CLIPIT,SSTATE/V:3//’) and place it after your last user
segment. If you choose to do this, you reduce the address space of the
root by 4K (see the RT System User's Guide, Extended Memory
Overlays).

An example of a RGLOVR command file containing user overlay segments
follows. The example file is an edited copy of RGLOVR named
PROG1.COM. The name PROG1 replaces MAINPR throughout, and two

user overlay segments are added to region 4.

R LINK
SY:PROG1I=PROGL »BLODAT »REXLIB/I/A/W/P:1000//
LFIXED LOCATZ/V:1

LFREE +LOCATE/V: 1

PPOINT/V:1

PDATA/V: 1
DPAPER/V:
LNAXIG/V:
LTAXIG/V:
ARCOVR/V:
RELOVR/V:
SAVOVR/V:
GN2OVR/V: 1

LNNICE sLINMIN LINMAX/V:Z
PRINUMPRISTR+TEXT +XLABEL »¥LABEL/V:2
FMINMX +LGNICE sEXPTET/V: 2

DPALOG +DPALINDEFALT ;DRWBOX/Y:2

LINE sMARKER s MOVE ySWINDO/V: 3
GENOUR/V:3

P b ek e ek e

Program Development 4-9

4-10

INITGRCLIPIT8STATE/V:3

USER1/V:d
USERZ/Y:d//
$OBLK

o

Execute RGLOVR (the edited copy of RGLOVR named PROG1) by typing:

+EBPROG1
When PROG1 successfully completes, it produces on the system device an
executable program or load module named PROG1 with a .SAV extension.

RGL/11 extended—memory overlays are run as virtual jobs and use the R
command, rather than the RUN command. The R command can load pro-
grams only from the system disk. To run a file named PROG1.SAV that
was created by PROG1.COM, you would type:

+R PROGI

4.3.3 Running the Program (RT-11)

If you are running under the FB or XM monitor or SJ with multi—terminal
support, you must set your terminal to prevent RT-11 from sending
carriage-return/line—feed characters. To do so, type:

+8ET TT NOCRLF

To avoid typing this command every time you use RGL/11, add it to your
startup indirect command file, which 1is either STARTS.COM,
STARTF.COM, or STARTX.COM.

To run most RGL/11 programs, type:

+RUN Prod

where:
prog is the name of your program

If your program uses RGL/11 extended—-memory overlays, however, it must
be run from the system disk. The reason for this is that RGL/11 creates the
program as a virtual job and RT-11 looks on the system disk for virtual
Jjobs. The command line to run a virtual job uses the R command:

«R Prog

where:

prog is the name of the program using RGL/11 extended—memory
overlays

Program Development

When you issue either form of the RUN command, RT-11 attempts to exe-
cute the load module, prog.SAV. If it encounters a condition that prevents
it from doing so, it prints a FORTRAN OTS (Object Time System) error
message. For help in understanding the error message, see the
RT-11, RSTS/E FORTRAN IV User’s Guide.

4.4 Program Development on an RSX-11M System

This section describes the steps for compiling, task building, and running a
program on an RSX-11M system.

4.4.1 Compiling the Program (RSX-11M)

“Compiling” is the process by which your FORTRAN compiler attempts to
translate your source file into an object program (which is a program con-
sisting of machine instructions). That procedure, made specific for graphic
programs, is summarized below. If the compiler prints error messages, refer
‘to Appendix C of the PDP-11 FORTRAN 77 User’s Guide.

NOTE

The commands in this chapter give both MCR and DCL com-
mands when these commands differ. All RGL/11 command
files can handle both DCL and MCR commands.

There are two ways to compile your graphic program. You can use:

1. The FORTRAN compiler command. To do so, type:

in MCR mode: *F77 prod=prod GO
in DCL mode: *FORT/F77 prod
where:

prog is the name of your program

2. The RGLLNK.CMD, an indirect command file that enables you to com-
pile, link, and run your program. Since RGLLNK was copied to the
system disk when RGL/11 was installed, you invoke it by typing:

ELB:L1,202TRGLLNK

RGLLNK is copied into area LB:[1,202]. You may want to copy it into
your own area for convenience. You can run RGLLNK from any termi-

nal; however, to run the graphic program it builds you must have a
VT125. RGLLNK is treated in detail in Section 4.4.2.2.

4.4.2 Task Building the Program (RSX-11M)

When you have successfully compiled your program so that you have it as
an object file, the next and final step in generating an executable program
is to link the object file the compiler created with the object files of libraries

Program Development 4-11

4-12

or other subprograms. The task buildcr creates the executable program,
which is called a task image, and in addition links your program to any
subprograms your program calls.

For RGL/11 programs, you need to link your object file with:
e The RGL/11 library: RGLLIB.OLB
e The block data file: BLODAT

Besides the RGLLNK.CMD command file, which can be used for any
graphic program, overlaid or not (Section 4.4.2.2), there are two other ways
you can task build a graphic program. You can:

e Run the task builder command, TKB (if your terminal is in DCL mode,
the command is LINK), for programs that are not overlaid (Section
4.4.2.1)

e Run the RGLOVR.CMD indirect command file for programs that are
overlaid (Section 4.4.2.3)

4.4.2.1 The Task Build Command —
The task builder command line for non—overlaid graphic programs is:

in MCR mode:

*TKB prod/FP=prod LB:[1+202IRGLLIB/LB:BLODAT +LB:[1+202IRGLLIB/LBL filesrecs]

where:
/FP indicates that your system has a floating point unit
prog is the name of your program

BLODAT is the “block data” file that sets initial defaults for all vari-
ables in the common area; you must explicitly reference it

RGLLIB/LB is the library for non—overlaid RGL/11 programs

filespecs is the name (or names, separated by commas) of any subrou-
tine or subprogram you want to include (use the /LB switch if
it is a library)

In DCL mode:

»LINK/CODE:FPP prog+LB:[1,20Z1RGLLIB/LIB/INC:BLODAT LB:[1,202IRGLLIB/LIBL sfilesrecs]

4.4.2.2 The Indirect Command File, RGLLNK.CMD —
To invoke RGLLNK, type:

»BLB:L1 202 IRGLLNK

Program Development

You may use this command line whether your terminal is set for MCR or
DCL commands. RGLLNK sets the CLI (Command Language Interpreter)
to the appropriate setting. To avoid having to type the LB:[1,202] UIC for
RGLLNK each time you use it, you may prefer to copy RGLLNK to your
area.

The following example compiles a program called MYPROG.FTN and task
builds it with RGLLIB:

*BLB:[1,:202IRGLLNKGED

SRGLLNK.CMD AUTOMATIC COMPILE AND LINK TO RGL/11 LIBRARY
*SET TERM MCR

+% Enter file name of prodgram [51: MYPROGGEED

»>% Do vou want to compile [Y/ND:V1:e

*»% Do vou want listinds [Y/N D:NJ

% Do vou want to taskK build? [Y/ND:Y1: GET

*% Do you want overlavs? [Y/N D:Y]

»% Do vyou want a map [Y/N D:N1

% Do vou want to run ? [Y/ND:2Y1:

If you answer Yes to the questions about listings and a map, RGLLNK asks
these additional questions:

*% Do vou want the listinds to g0 to the line printer? [Y/N D:N1:
% Do vou want the map to g0 to the line printer? [Y¥Y/N D:N1:

If you answer No to the question, a file is created with a file name of
MYPROG on the default device and default UIC. The listings file has a
default of .LST and the map file has a default of .MAP.

4.4.2.3 The Indirect Command File, RGLOVR.CMD —

A third way to task build your program is to use RGLOVR.CMD to gen-
erate a task image from an overlaid program. RGLOVR.CMD provides a
way to link your program using overlays without having to run RGLLNK.
RGLOVR.CMD uses the RGLOVR.ODL file, which contains the overlay
description used by the task builder. (Print out RGLOVR.ODL if you want
to see the RGL/11 overlay structure.) To use RGLOVR.CMD, replace all
occurrences of MAINPR with the name of your source file in both
RGLOVR.CMD and RGLOVR.ODL.

To use RGLOVR, you must copy RGLOVR.CMD and RGLOVR.ODL to
your own area, not leaving them in LB:[1,202].

4.4.3 Running the Program (RSX-11M)

When you successfully task build your program, you have a runnable pro-
gram. You must run your graphic programs on a VT125, but before run-
ning them, be sure the terminal driver is set to prevent the operating
system from sending carriage-return/line—feed characters. These charac-
ters interfere with the operations of the RGL/11 subroutines. To set your
- terminal to prevent RSX—11M from sending carriage-return/line—feed
characters to the terminal, type:

Program Development 4-13

4-14

for MCR mode *GET /NOWRAP=TI: @
for DCL mode *GET TERM NOWRAP

Add this command to the system STARTUP.CMD file or to your
LOGIN.CMD file to avoid typing it each time you use RGL/11.

Before you run your program, be sure that RGL/11’s ERRTXT.TXT file is in
your default area. Having it there will insure that RGL/11 error messages

can be displayed on your screen. If it is not in your area, copy it from
LB:[1,202].

To run the program, type:

*RUN prod

RSX-11M attempts to run the task image, prog. TSK. If it encounters a
condition that prevents it from executing the program, it prints a
FORTRAN Object Time System (F4POTS) error message. For help in un-
derstanding the error message, see Appendix C of the PDP—11 FORTRAN
77 User’s Guide.

Program Development

Chapter 5
RGL/11 Subroutines

This chapter contains descriptions of all RGL/11 subroutines. The subrou-
tines are listed in alphabetical order according to their 6-character mne-
monic name. Where necessary for clarity, the mnemonic is expanded. Each
subroutine starts on a new page so that you can easily skim to find the one
you want.

The subroutine descriptions contain the following paragraphs:

PURPOSE
explains what the subroutine does and how it affects the position of
the graphic cursor. If the subroutine has an initial default, it is
listed here.

FORM
shows the format of the subroutine statement. All its arguments are
listed in order. Optional arguments are enclosed in braces { }). To
call the subroutine, you use the CALL command with the subrou-

tine statement as its argument. For example, the format for the
CIRCLE subroutine is:

CIRCLE (radius)

A sample call to the CIRCLE subroutine is:

CALL CIRCLE (30.0)

ARGUMENT DESCRIPTION
gives each argument’s name, data type, and effect. Data types are
floating point, integer, or string. Arguments enclosed in single
quotes indicate a string data type; the argument requires either a
literal string or a variable that contains ASCII strings.

5-1

5-2

If the argument can be either a constant or a variable, it is called an
expression. You can use either a string literal or a string variable in
a string expression. A string expression must be a LOGICAL*1 data
type (or array if longer than one character) that ends in a null (zero)
byte, or a byte data type that is the default string data type for your
RT-11 or RSX-11M system. A text string can pass a double quota-
tion mark (*) within the text only when two consecutive double quo-
tation marks are used (*”). To display one, you must pass two.

Optional arguments are enclosed in braces ({ }). If you do not supply
a value for an optional argument, the subroutine assumes a default,
(see Section 4.1.2, Default Settings).

NOTE

Even when you do not supply a value for an optional
argument, you must still include the punctuation that
delimits it, for example:

MARKER (» 10,0+ 20,0)

In this example, the first argument is omitted and
MARKER will use 0, a dot, as the default.

EXAMPLE
shows how to call the subroutine with sample arguments, and de-
scribes what the call does. If the subroutine takes no argument, it is
simply named here.

RELATED SUBROUTINES
lists the subroutines that affect this subroutine or that are affected
by it, that perform a similar function, or that perform the opposite
function.

RESTRICTIONS
gives the limitations of the subroutine.

ERROR MESSAGES
lists any RGL/11 error messages that the subroutine can generate,
suggests possible causes, and describes the circumstances of the
error.

PROGRAM EXAMPLE
shows a program or program fragment that uses the subroutine in
context.

RGL/11 Subroutines

ARC

PURPOSE
ARC draws an arc beginning at the location specified by the x and y
arguments and ending at a point determined by the specified angle.
The arc’s center is at the current graphic cursor location.

The angle subtended by the arc has one side that is the line from the
current graphic cursor location to the x,y coordinates you specify;
the other side of the angle is the line drawn from the current
graphic cursor location to the end of the arc, the arc being drawn
until that line will form an angle of the specified size.

ARC draws in a counterclockwise direction when the angle is a posi-
tive number, and clockwise when it is negative.

After the arc is drawn, the graphic cursor is again at its starting
location, the center of the arc. Figure 5-1 illustrates the ARC call.

Figure 5-1: Illustration of the ARC Subroutine

direction of
drawing for
positive angle

user—specified
angle

current graphic user—specified
cursor position coordinates (x,y)
FORM
ARC (angle, x, y)
ARGUMENT DESCRIPTION
angle is a floating point expression that defines the length
of the arc. The unit of measure can be radians
(default) or degrees. The sign of the angle affects the
position of the angle, as being above or below the
radius.
x and y are floating point expressions that define the start-
ing location of the arc in world coordinates.
EXAMPLE

ARC (2,29, 400,0, 300,0)

draws an arc whose starting location is at (400.0,300.0) and whose
center is at the current graphic cursor location. The arc spans a

RGL/11 Subroutines 5-3

ARC

54

length of 2.29 radians (about 135 degrees). After the arc is drawn,
the graphic cursor is left at the center of the arc.

RELATED SUBROUTINES

SDGREE and SRADNS determine whether the angle argument is
interpreted as degrees or radians (SRADNS is the default).

SLNPAT determines the line pattern that draws the arc (a solid line
is the default).

SSHADE creates shading. for the arc.

ARCC draws an arc beginning at the current graphic cursor loca-
tion, rather than at the location you specify, and so the angle you
define occurs at the current graphic cursor location, rather than at
the specified location.

CIRCC, CIRCLE, and CIRCXY draw circles.

RESTRICTIONS

none

ERROR MESSAGES

none

PROGRAM EXAMPLE

The following program initializes the terminal and draws a box to
frame the screen. It then draws an arc starting at location
(400.,300.) with the current graphic cursor location (250.,300.) as the
center of the circle of which the arc is a part. The distance between
the starting location and the current graphic cursor location is the
radius of the circle; the greater the distance, the larger the circle.
The length of the arc is 2.29 radians. See Figure 5-2.

C Initialize UTI1Z2S
CALL INITGR(3)
CALL CLRSCR
CaLL CLRTHT
CALL SWINDOC(O, 0, 1000, 6825,

C Place a box around the whole screen
CALL BOX(0,,0,:1000,,625,)

CALL MOVE(230.,300,)

C Place an ‘X’ at the current cursor location
CALL MARKER(S)

C Draw an arc
CALL ARC(2.,294+400,4+300.,)

C
C MNow pPut a box at the x and v coordinates
C sepecified in the call to ARC

CALL MARKER (1,400, ,300.,)

END

RGL/11 Subroutines

ARC
Figure 5-2: Picture Illustrating an ARC Call

Another example is given in Section 2.1, General Strategy for
Drawing Graphic Objects.

RGL/11 Subroutines 5-5

ARCC

PURPOSE
ARCC draws an arc beginning at the current graphic cursor location
and ending at a point determined by the specified angle. The arc’s
center is at the coordinates you specify.

One side of the angle is the line from the location you specify to the
current graphic cursor location. The other side of the angle is the
line drawn from the location you specify to the end of the arc, the arc
being drawn until the angle between the lines is the specified size.

ARCC draws in a counterclockwise direction when the angle is a
positive number, and in a clockwise direction when it is negative.

ARCC leaves the graphic cursor location at the end of the arc. See
Figure 5-3.

Figure 5-3: Illustration of the ARCC Subroutine

user—specified
coordinates (x,y)

current cursor

-~ —_— l
position N
\
\
\
N
\
\

user—specified S
angle \

direction
of drawing
for positive

angle
MR-5-2222-82

FORM
ARCC (angle, x, y)
ARGUMENT DESCRIPTION
angle is a floating point expression that defines the length
of the arc. The unit of measure can be radians
(default) or degrees. If angle is a positive number,
ARCC draws in a counterclockwise direction; other-
wise, it draws clockwise.
x and y are floating point expressions that define the center

of the arc in world coordinates.

5-6 RGL/11 Subroutines

ARCC

EXAMPLE
ARCC (2,29, 400,04 300,0)

draws an arc that starts at the current graphic cursor location and
spans 2.29 radians. The center of the arc is at location (400.0,300.0).
After the arc is drawn, the graphic cursor is left at the end of
the arc.

RELATED SUBROUTINES
SDGREE and SRADNS determine whether the angle argument is
interpreted as degrees or as radians; SRADNS is the default.

SLNPAT determines the line pattern.
SSHADE creates shading for the arc.

ARC draws an arc beginning at the location you specify, rather than
at the current graphic cursor location, and so the angle you define
occurs at that location rather than at the current graphic cursor
location.

CIRCC, CIRCLE, and CIRCXY draw circles.

RESTRICTIONS
none

ERROR MESSAGES
none

PROGRAM EXAMPLE
The following program draws an arc of 1.7 radians, starting at loca-
tion (100.,200.), and having its center at location (200.,250.). See
Figure 5-4.

C Initialize VTI1ZS
CALL INITGR(5)
CALL CLRSCR
CALL CLRTHT
CALL SWINDOC(O, +0, 41000, sB25,)

C

C Place a box around the whole screen
CALL BOX(0Q,0,,1000, :6825,)

C
CALL MOVECLOO, 4200,

C

C Place a box at the current cursor location
CALL MARKER (144}

C Nowcall ARCC,
CALL ARCC(1.7+200,,250,)

C
C Now pPut an "X’ at the x and v coordinates
C specified in the call to ARCC

CALL MARKER(DS +200,,230,)

END

RGL/11 Subroutines 5-7

ARCC

Figure 5-4: Picture Illustrating an ARCC Call

Another example is given in Section 2.1, General Strategy for
Drawing Graphic Objects.

5-8 RGL/11 Subroutines

BOX

PURPOSE
BOX draws a rectangle, defined by the two pairs of coordinates you
supply to locate diagonally opposite corners of the box.

After the box is drawn, the graphic cursor is again at the first
corner.

FORM
BOX (x1, y1, x2, y2)

ARGUMENT DESCRIPTION
x1, y1, x2, and y2 are floating point expressions that define, in
world coordinates, the coordinates for two diago-
nally opposite corners of the box.

EXAMPLE

BOX (300, 200, s300, ,400,)

draws a box whose corners are defined by the coordinate pairs
(300.,200.), (500.,200.), (500.,400.), and (300.,400.). The graphic cur-
sor is left at location (300.,200.)

Figure 5-5: Picture Illustrating the BOX Call

300, 400, 500.,400.

300.,200. 500.,200.

RELATED SUBROUTINES
SLNPAT determines the line pattern.

SSHADE creates shading for the figure.

RELBOX also draws a box, but its arguments are the width and
height of the box rather than the coordinates of two opposing
corners.

RESTRICTIONS

none

ERROR MESSAGES
none

PROGRAM EXAMPLE
An example is given in Section 2.1, General Strategy for Drawing
Graphic Objects.

RGL/11 Subroutines 5-9

CIRCC

PURPOSE
CIRCC draws a circle using the current graphic cursor location as a
point on the circumference. You supply a value for the radius and a
value for the angle of the radius to the invisible horizontal line that
passes through the current graphic cursor location.

After CIRCC draws the circle, the graphic cursor is left at its origi-
nal location. See Figure 5-6.

Figure 5-6: Illustration of the CIRCC Subroutine

user—specified
angle

current cursor
position MR-5-2223-82

FORM
CIRCC (radius, angle)

ARGUMENT DESCRIPTION
radius is a floating point expression that defines the radius of the
circle in world coordinates.

angle is a floating point expression that defines the angle formed
at the graphic cursor location between the radius and the
horizontal. The unit of measure can be radians (default) or
degrees. If the angle is positive, CIRCC draws in a coun-
terclockwise direction; if the angle is negative, it draws
clockwise.

EXAMPLE
CIRCC (100.0y +76)

draws a circle using the current graphic cursor location as the start-
ing point for drawing the circumference of a circle. The circle has a
radius of 100 units and the center of the circle is 0.76 radians (about
45 degrees) above the current graphic cursor location. The graphic
cursor is left at its starting location. See Figure 5-7.

5-10 RGL/11 Subroutines

Figure 5-7:

CIRCC

CIRCC’s Placement of a 0.76 Radian Angle

current cursor
position

et}
MR-§-2224-82

CIRCC (125.0, -.76)

draws a circle using the current graphic cursor location as the start-
ing point for drawing the circumference of a circle. The circle has a
radius of 125 units. The center of the circle, at —0.76 radians, is
below the graphic cursor. See Figure 5-8.

Figure 5-8: CIRCC’s Placement of a -0.76 Radian Angle

current cursor
position

.-"'“ __-— " .\"a
N ~76 %
N\ radians i
i

MR-$-2225-82

RGL/11 Subroutines 5-11

CIRCC

RELATED SUBROUTINES
SDGREE and SRADNS determine whether the angle argument is
interpreted as degrees or radians; SRADNS is the default.

SLNPAT determines the line pattern.
SSHADE creates shading for the arc.

CIRCLE and CIRCXY also draw circles, but the current graphic
cursor location defines the center of the circle instead of a point on
the circumference.

ARC and ARCC draw arcs.

RESTRICTIONS
none

ERROR MESSAGES
none

PROGRAM EXAMPLE

none

5-12 RGL/11 Subroutines

CIRCLE

PURPOSE
CIRCLE draws a circle using the current graphic cursor location as
the center; you supply the value for a radius.

After the circle is drawn, the graphic cursor location is at its start-
ing location in the center of the circle. See Figure 5-9.

Figure 5-9: Illustration of the Circle Subroutine

user-specified

radius

current cursor
position

MR-S-2226-82

FORM
CIRCLE (radius)

ARGUMENT DESCRIPTION
radius is a floating point expression that defines the radius
of the circle in world coordinates.

EXAMPLE
CIRCLE (100,0)

draws a circle whose center is at the current graphic cursor location
and whose radius is 100 units long. After the circle is drawn, the
graphic cursor is again at the center of the circle.

RELATED SUBROUTINES
SLNPAT determines the line pattern.

SSHADE creates shading for the circle.

CIRCC also draws a circle, but the current graphic cursor location
defines a point on the circumference of the circle instead of defining
its center.

CIRCXY also draws a circle, but it requires that you specify a point
on the circumference instead of specifying the radius.

ARC and ARCC draw arcs.

RGL/11 Subroutines 5-13

CIRCLE

RESTRICTIONS
none

ERROR MESSAGES

none

PROGRAM EXAMPLE

An example is given in Section 2.1, General Strategy for Drawing
Graphic Objects.

5-14 RGL/11 Subroutines

CIRCXY

PURPOSE
CIRCXY draws a circle using the current graphic cursor location as
the center, and a point you specify as the starting location of the
circumference.

After the circle is drawn, the graphic cursor is at its starting loca-
tion at the center of the circle. See Figure 5-10.

Figure 5-10: Illustration of the CIRCXY Subroutine

user—specified
coordinates (x,y)

/

current cursor

pos“ion MR-§-2227-82
FORM
CIRCXY (x,y)
ARGUMENT DESCRIPTION
x and y are floating point expressions that define a location
on the circumference of the circle in world
coordinates.
EXAMPLE

CIRCXY (150.0, 200,0)

draws a circle whose center is at the current graphic cursor location
and whose circumference passes through location (150., 200.). After
the circle is drawn, the graphic cursor is left at the center of the
circle.

RELATED SUBROUTINES
SLNPAT determines the line pattern.

SSHADE creates shading for the circle.

CIRCC draws a circle, but it uses the current graphic cursor location
as a point on the circumference rather than as the center of the
circle.

CIRCLE draws a circle, but it requires that you specify the radius
rather than a point on the circumference.

ARC and ARCC draw circles.

RGL/11 Subroutines 5-15

CIRCXY
RESTRICTIONS

none

ERROR MESSAGES

none

PROGRAM EXAMPLE
none

5-16 RGL/11 Subroutines

CLRSCR

PURPOSE
CLRSCR (Clear Screen) clears the graphic screen; that is, it clears
all images that were created when the terminal was in graphic
mode, including graphic text displayed by LINETX and TEXT.
CLRSCR does not affect images created when the terminal was in
text mode.

FORM
CLRSCR

ARGUMENT DESCRIPTION
none

EXAMPLE
CLRSCR

RELATED SUBROUTINES

CLRTXT erases the VT100 screen; that is, it erases images that
were created when the terminal was in text mode.

RESTRICTIONS
CLRSCR erases all graphic images. To erase only selected ones,
rewrite them in erase mode or complement mode.

ERROR MESSAGES

none

PROGRAM EXAMPLE
An example is given in Section 2.1, General Strategy for Drawing
Graphic Objects, and in Section 2.1.1, Clearing the Screen.

RGL/11 Subroutines 5-17

CLRTXT

PURPOSE
CLRTXT (Clear Text) erases the VT100 screen; that is, it erases the
images that were created with the terminal in text mode. It does not
erase images created when the terminal is in graphic mode.

FORM
CLRTXT

ARGUMENT DESCRIPTION
none

EXAMPLE
CLRTXT

RELATED SUBROUTINES
CLRSCR erases the graphic screen.

RESTRICTIONS
none

ERROR MESSAGES

none

PROGRAM EXAMPLE
An example is given in Section 2.1, General Strategy for Drawing
Graphic Objects, and in Section 2.1.1, Clearing the Screen.

5-18 RGL/11 Subroutines

CPYSCR

PURPOSE
CPYSCR (Copy Screen) transfers the entire contents of the graphic
(VT125) screen to the LA34—VA printer, an optional device con-
nected to the back of the VT125 by cable.

A call to CPYSCR can occur within a program to copy the screen for
that program, or you can use it to create a 1—call, “stand—alone”
program you can use any time to copy the screen.

FORM
CPYSCR

ARGUMENT DESCRIPTION
none

EXAMPLE
CPYSCR

RELATED SUBROUTINES

none

RESTRICTIONS
CPYSCR copies only the graphic images. It does not copy text writ-
ten on the screen in regular text mode.

ERROR MESSAGES
none

PROGRAM EXAMPLE
The following program draws several graphic objects on the screen,
then calls CPYSCR to copy them to the LA34—VA printer.

C Initialize VTiZS
CALL INITGR(S)
CALL CLRSCR
CALL CLRTXT
c
C Drawvarious grarhics obJects on the screen
CALL BOX(0O. 0,767, :479.,)
CALL BOX(Z200., 2200, s400, +400,)
CALL MOVE(3B4., +240.)
CALL CIRCLE(200.)
CALL POLYGN(3,150.,)
CALL LINETX (2:23'This picture should appear on the LAZ4-UA, ')
C
C Nowcall CPYSCR to copy the YT125 drarhics,
CALL CPYSCR

END

RGL/11 Subroutines 5-19

CPYSCR

Figure 5-11:

Pictures Illustrating the CPYSCR Program
Example

i
f

/

e
o
.-""Mw. i
‘”"""—N—M—-M"MM

-

/

5-20 RGL/11 Subroutines

PURPOSE

DPAPER

DPAPER (Draw Paper) clears the screen and creates a grid similar
to a sheet of graph paper, on which to plot data. You can draw linear
and/or logarithmic grids, can draw lines fully across the grid or indi-
cate tickmarks along the four edges of the grid, and can select a
color for the grid lines.

See Section 3.2, Creating the Graph Paper, for more information.
For the parameters that DPAPER resets, see the NOTE at the be-
ginning of Chapter 3.

FORM

DPAPER ({'xaxistype’}, {xa}, {xb}, {‘yaxistype’}, {ya}, {yb},

{gridcolor’})

ARGUMENT DESCRIPTION

‘xaxistype’

xa

xb

is an optional string expression; it specifies the type
of scale for the x—axis, and whether the axis will be
gridded (lines fully drawn across the screen) or un-
gridded (tickmarks only). If unspecified, xaxistype
defaults to LIN, a ungridded linear graph. Valid ar-
guments are:

‘LIN’ Ungridded linear

‘LOG’ Ungridded logarithmic (base 10)
‘GLIN’ Gridded linear

‘GLOG’ Gridded logarithmic (base 10)

is an optional integer expression; it specifies the
number of cells (major divisions) along the x—axis. If
‘xaxistype’ is LOG or GLOG, the cells are cycles, xa
specifies the number of cycles, and xa’s default value
is 3. Values 1 through 20 are valid. If ‘xaxistype’ is
LIN or GLIN, xa’s default value is 5. The recom-
mended values for linear paper are multiples of 2
and 5, so that the rounding algorithm will give the
desired results.

is an optional integer expression; it signifies the
number of minor, subcell, divisions within each ma-
jor division along the x—axis. For example, if xb is 4,
there are 3 lines drawn within the major division,
creating four subdivisions. A value of 1 indicates
that the subcell is coextensive with the cell. When
the ‘xaxistype’ argument is LIN or GLIN and you
want the number of subcells to be greater than one,
the number of cells must be 20 or less; if the number
of subcells can be one, you can have any number of
cells. The number of subcells should always be 20 or
less.

RGL/11 Subroutines 5-21

DPAPER

5-22

‘yaxistype

ya

yb

‘gridcolor’

EXAMPLE

)

When the ‘xaxistype’ argument is LOG or GLOG,
you can use only 1, 2, 5, 9, or 18.

The xb argument defaults to 5 for LIN and GLIN,
and 9 for LOG and GLOG.

is an optional string expression; it specifies the type
of scale for the y—axis, and whether the axis will be
gridded or ungridded. Valid arguments are the same
as for ‘xaxistype’. The ‘yaxistype’ default is LIN.

is an optional integer expression, specifying the
number of cells along the y—axis. Values 1 through
20 are valid. If the ‘yaxistype’ is LOG or GLOG, ya
defaults to 3. If ‘yaxistype’ is LIN or GLIN, it de-
faults to 5. A value of zero is invalid. The recom-
mended values are multiples of 2 and 5, so that the
rounding algorithm will give the desired results.

is an optional integer expression; it signifies the
number of subcells for each cell along the y—axis.
When the ‘yaxistype’ is LIN or GLIN, the number of
subcells should always be 20 or less. When
‘yaxistype’ is LOG or GLOG, it can take only 1, 2, 5,
9, or 18. yb defaults to 5 when LIN or GLIN is the
‘yaxistype’; it defaults to 9 with LOG or GLOG.

is an optional string expression; it specifies the color
of the grid lines, GRAY1, GRAY2, or GRAY3. Its
default is the GRAY3.

DPAPER (84453104 4)

draws an ungridded linear graph with eight cells on the x—axis, 10
cells on the y-axis, and five (default) subcells per cell on both axes.
As you see in Figure 5-12, the cell boundaries show as long tick-
marks, and the subcell boundaries show as smaller ones.

DPAPER ('GLIN‘+10,2,°L0OG’ 249, 'GRAYZ2")

draws a gridded linear x—axis with 10 cells that have two subcells
each, and draws an ungridded logarithmic y—axis with two cells
(cycles) that have nine subcells each. The grid lines are drawn in
GRAY2. See Figure 5-13.

" RGL/11 Subroutines

DPAPER

Figure 5-12: Ungridded Linear Graph Paper

s edsasy
HE

:]::x:l:!::l!:::':::: (i1
::I:

sfseen
338t

EI‘.::E 14

Figure 5-13: Gridded Linear X-Axis and Ungridded
Logarithmic Y-Axis Graph Paper

RELATED SUBROUTINES 7
LNAXIS assigns numeric values to the cells of the specified axis,

labels the cells with those values, and labels the axis itself with the
text you supply.

LTAXIS assigns number values to the cells of the specified x—axis,
displays a text label at each cell boundary, and labels the axis itself
with the text you supply.

RESTRICTIONS

none

RGL/11 Subroutines 5-23

DPAPER

5-24

ERROR MESSAGES
After each of the following error messages is printed and you press
the carriage return, the default value is supplied and the program
continues.

1.

Error Code 010
ARGL-W-CNF sy color "%/ niot found

means that you misspelled the gridcolor or referenced a nonexis-
tent color.

2. Error Code 460
ARGL-W-NCX s ‘%’ is an invalid number of cells (X axis)
means that you specified a value for the xa argument that is not
legal.

3. Error Code 470
ARGL-W-NCY s ‘%’ is an invalid number of cells (Y axis)
means that you specified a value for the ya argument that is not
legal.

4. Error Code 500
ARGL-W-NXT» "%’ is anonexistent X axis tvpe
means that you specified a string expression for the xaxistype
argument that does not match any value defined for that
argument.

5. Error Code 510
ARGL-W-NYT» ‘%7 is anonexistent ¥ axis tvre
means that you specified a string expression for the yaxistype
argument that does not match any value defined for that
argument.

6. Error Code 5z0
ARGL-W-NSX+ ‘%’ is an invalid number of subcells (X axis)
means that you specified a value for the xb argument that is not
legal for the scale to which the argument applies.

7. Error Code 530
ARGL-W-NSY s ‘%’ is an invalid number of subecells (Y axis)
means that you specified a value for the yb argument that is not
legal for the scale to which the argument applies.

PROGRAM EXAMPLE
See DPAPER used in examples in Section 3.2, Creating the Graph
Paper.

RGL/11 Subroutines

GCLOSE

PURPOSE
GCLOSE closes a file that was opened by a call to GSAVE.

FORM
GCLOSE

ARGUMENT DESCRIPTION
none

EXAMPLE
GCLOSE

RELATED SUBROUTINES
GSAVE opens a file whose contents will be all subsequent graphic
commands. If you call GSAVE a second time, it closes that file and

opens another one. Therefore, you can close a graphic file either by a
call to GCLOSE or by a second call to GSAVE.

RESTRICTIONS
As a precautionary measure, your application program should close
any open file before it exits.

ERROR MESSAGES

none

PROGRAM EXAMPLE
See the example in the GSAVE subroutine description.

RGL/11 Subroutines 5-25

GETLOC

PURPOSE
GETLOC (Get Location) retrieves the coordinates of the current
graphic cursor location and returns them in the x and y arguments.

You may want to use GETLOC:

e when you specified relative coordinates in your program and now
you would like to know the absolute position of the cursor

e when you used a GLOAD command (which reads in a saved
graphic file that may have changed the graphic cursor location)
and you would now like to know where the RGL/11 subroutines
last placed the graphic cursor

e when you wrote a message with graphic text, which leaves the
graphic cursor at the end of the message, and you would like to
know where that location is

FORM
GETLOC (x, y)

ARGUMENT DESCRIPTION
xand y are floating point variables where GETLOC stores
the coordinates of the current graphic cursor loca-
tion; they are stored as world coordinates.

EXAMPLE
GETLOC (X ¥)

RELATED SUBROUTINES
LOCATE uses its own cursor, which the user can position, and re-
turns the coordinates of that location.

RESTRICTIONS
none

ERROR MESSAGES
none

PROGRAM EXAMPLE
See the example in the MOVE subroutine description.

5-26 RGL/11 Subroutines

GETSTA

PURPOSE

GETSTA (Get Status) returns in its argument the error code of the
most recent error, if one has occurred. The initial value of the status
variable is “001, the code for an error—free condition. It is set in all
calls to INITGR and is set by GETSTA itself after the status vari-
able has been read.

The initial error—-handling procedure is that errors cause a message
to be displayed on the screen and also cause an error code (in octal
notation) to be stored in istat. If you call the SNDBUG (Set No
Debug) subroutine, the messages are not displayed, but the istat
variable continues to be updated. By calling GETSTA at appropriate
times, you can continue to get error information even when the ter-
minal is in no—debug mode.

FORM

GETSTA (istat)

ARGUMENT DESCRIPTION

istat

is an integer variable, which is a number in octal notation,
representing the error status variable. The numbers and
their corresponding messages are listed below (the identifi-
cation “RGL-W-"that is displayed on the screen is omitted
here):

Table 5~1: RGL/11 Error Codes

Error

Code | Message

001 NORMAL, normal successful completion

010 CNF, color X’ not found

100 INVWINCOORD, invalid window coordinates
110 OUTRANGE, coordinates out of range

150 INVCHARSET, ‘¥’ is not a valid character set
160 INVSHADPAT, X’ is not a valid shading pattern
170 INVTEXSIZ, ¥’ is not a valid text size

200 INVLINE, X’ is not a valid line pattern

210 INVMODE, ¥’ is not a valid writing mode
220 INVSIDES, invalid number of sides

230 OPENIN, error opening ‘%’ as input

240 OPENOUT, error opening X’ as output

250 RER, read error on unit ‘X’

260 WER, write error on unit ‘x’

continued on next page

RGL/11 Subroutines 5-27

GETSTA
Table 5-1: RGL/11 Error Codes (Cont.)

Error
Code | Message

270 BADMARKER, ¥’ is not a valid marker

330 NOCHARSET, character set ‘x’ has not been loaded
340 INVNUMEL, %X’ is an invalid number of elements
460 NCX, ¥’ is an invalid number of cells (X axis)

470 NCY, ¥’ is an invalid number of cells (Y axis)

500 NXT, X’ is a nonexistent X axis type

510 NYT, ‘¥’ is a nonexistent Y axis type

520 NSX, ¥’ is an invalid number of subcells (X axis)
530 NSY, %X’ is an invalid number of subcells (Y axis)
560 IMM, %X’ is an invalid maximum and/or minimum

570 POW, all points are outside the window

600 AID, ¥’ is an invalid axis identifier

610 TCC, X’ is too many characters per cell

640 XNS, X axis has not been scaled

650 YNS, Y axis has not been scaled

740 NPL, logarithm of non—positive number

750 NOPAPER, no graph paper has been drawn

770 FIP, function is invalid with current graph paper

Appendix B, RGL/11 Error Messages, lists the subroutines that generate
each error, and explains the circumstances of the error more completely.

EXAMPLE

GETETA (ISTAT)

RELATED SUBROUTINES
SDEGUG enables error messages to be displayed on the screen.

SNDBUG stops display of error messages on the screen.

RESTRICTIONS
none

ERROR MESSAGES
none

5-28 RGL/11 Subroutines

GETSTA

PROGRAM EXAMPLE
The following example produces an error by calling GLOAD with an
invalid file name, then displays the error code returned by GETSTA
(see Figure 5-14).

INTEGER istat

C Initialize YUTI125 and put a box around the screen.
CALL INITGR({Z)
cAaLL CLRSCR
CALL CLRTXT
CALL BD)’((Qo '00 77570 91179.)

C
C Call SNDBUG so that GETSTA is the only
C source for error codes.
CALL SNDBUG
C

C Nowcall GLDOAD with an invalid file name to produce an error.,
CALL GLOAD(’'INVALID.NAME')

C
C Call GETSTA to det the error code and
¢ diseplavy it on the screen in octal form,
CALL GETSTA(istat)
C
TYPE 100sistat
100 EORMAT(10¥,'The error code returned by GETSTA is 7,03)
C

END

Figure 5-14: Picture Illustrating a GETSTA Error Code

The error code returned by GETSTA is 230

RGL/11 Subroutines 5-29

GLOAD

PURPOSE

GLOAD reads a graphic file saved by GSAVE and displays on the
screen all the graphic images that are in the file. GLOAD reads the
file in the device designated by the Logical Unit Number. The
LUN’s initial default value is 2.

After GLOAD reads in the graphic file, it resets the terminal’s at-
tributes to the values they had immediately prior to the GLOAD
call, thus ensuring that the terminal’s attributes will again be what
the RGL/11 subroutines expect. (The file that GLOAD reads in con-
tains ReGIS commands that affect the terminal, but do not affect the
internal RGL/11 tables; therefore, the file could affect terminal at-
tributes and throw off subsequent RGL/11 commands. GLOAD rees-
tablishes the synchronization between the terminal’s attributes and
its internal RGL/11 state tables.)

FORM

GLOAD (filespec’, {LUN})

ARGUMENT DESCRIPTION

‘filespec’ is a string expression that supplies the identification of
the file you want loaded. See Preface, Documentation
Conventions, for the arguments of a file specification.

LUN is an optional argument; its value is an integer expres-
sion that specifies the Logical Unit Number of the device
where the file is stored. The LUN you specify is used for
the current and subsequent calls to GLOAD and LCHRST
until you change it with another GLOAD or LCHRST
call. The initial default LUN is 2. Do not use LUNs 1 or 5
(see Manual Conventions, in the Preface).

If you do not specify a LUN, GLOAD uses the last LUN
given by a call to GLOAD or LCHRST, and, if none, it
then uses the initial default.

EXAMPLE

CALL GLOAD ('EUROPE.MAP ', 4)

reads the contents (ReGIS graphic commands) of the EUROPE.MAP
file from the device on Logical Unit Number 4.

LCHRST, which loads character—set files, has a LUN argument. The
LUN it names affects the default LUN of GLOAD, and vice versa.

GSAVE saves the files GLOAD reads.

RESTRICTIONS

If you do not supply a file extension, FORTRAN supplies a default
extension of .DAT.

5-30 RGL/11 Subroutines

GLOAD

ERROR MESSAGES

1. Error Code 230
YRGL-W-0OPENIN: error orening ‘X’ as inpPut

means that the file you specified could not be found. The call is
ignored.

2. Error Code z50
%RGL-W-RER read error on unit "x’

means that the file could not be found on the device the LUN
accessed, or it could not be read; for example, the file had no
records in it or was an invalid type. The call is ignored.

PROGRAM EXAMPLE
See the Program Example in GSAVE.

RGL/11 Subroutines 5-31

GSAVE

PURPOSE

GSAVE opens a file and saves into it all ReGIS commands from the
RGL/11 subroutines that you call subsequent to the GSAVE call. To
end the GSAVE operation, either call GCLOSE to close the file or
GSAVE which closes the open file and opens another one.

GSAVE does not affect the processing of the RGL/11 calls being
saved; the calls still take effect normally, as well as being saved in
the GSAVE file.

The initial default value for the Logical Unit Number is 3; the de-
vice addressed through the LUN is the device to which the file will
be written.

FORM

GSAVE (filespec’, {LUN})

ARGUMENT DESCRIPTION

‘filespec’ is a string expression that supplies the identification of
the file GSAVE creates.

LUN is an optional argument; it is an integer expression that
specifies the Logical Unit Number of the device to which
the file will be written. When you specify a LUN, that
value is used in the current and subsequent GSAVE calls.
Do not use LUNs 1 or 5 (see Manual Conventions in the
Preface).

If you do not specify a LUN, GSAVE uses the LUN speci-
fied in the last call to GSAVE, or, if there was no previous
call to GSAVE, it uses the initial default of 3. If you spec-
ify a LUN that is out of range, GSAVE will default first
to the previous GSAVE LUN, then to the initial default
LUN, and will display a warning error message.

EXAMPLE

CALL GSAVE ('EUROPE.MAP')

opens a file named EUROPE.MAP on logical unit 3. All subsequent
ReGIS commands, generated by the RGL/11 subroutine calls you
make, are saved in that file.

RELATED SUBROUTINES

GCLOSE closes a file opened by a call to GSAVE.
GLOAD retrieves a file saved by a call to GSAVE.

RESTRICTIONS

If you do not supply a file extension, FORTRAN supplies .DAT as
the file extension.

Only one graphic file can be open at any one time. A second call to
GSAVE closes the file that was open before opening a second file.

5-32 RGL/11 Subroutines

GSAVE

GSAVE does not save the RGL/11 subroutine calls; it saves only the
ReGIS commands they generate. Some RGL/11 subroutines do not
generate ReGIS strings and, therefore, they are not saved. Specifi-
cally, LFIXED, LFREE, LOCATE, SDEBUG, and SNDBUG are not
saved.

ERROR MESSAGES

1. Error Code z40
ARGL-W-OPENDUT s error orPening ‘X’ as output

means that you did not specify a valid file name or extension.
The call is ignored; no file is created.

2. Error Code 250
WRGL-W-WER s write error on unit LUN

means that the RGL/11 software could not write a ReGIS string
in the file because of a hardware error. This error is not caused
by the call to GSAVE, but by RGL/11 subroutine calls that occur
between a call to GSAVE and a call to GCLOSE. The RGL/11
subroutines might be able to draw the graphic object on the
screen, but GSAVE will not be able to write the ReGIS string to
the file.

PROGRAM EXAMPLE
The following program opens a file named EXAMPL.DAT, fills it
with REGIS strings from RGL/11 subroutine calls, saves the file by
a GCLOSE call, and uses one call to GLOAD to re—create the pro-
gram on the screen.

C Initialize UTIZS
CALL INITGR(S3)
CALL CLRSCR
CALL CLRTXT
CALL SWINDO(O: +0, +1000, +B25,)

C All Redis commands between GSAVE and GCLOSE are saved,
CALL GSAVE('EXAMPLDAT +)
CALL BOX(O,.0,,1000,,:625.,)
CALL BOX(100,,110,4250,:200,)
CALL MOVE(QO, +225,)
CALL TEXT(‘Write above the bhox’)
CALL GCLOSE

C
C Nowwait until the user tvres a <RETURN:,
CALL LINETK(Z2,2:'Hit <RETURNX to continue.,’)
C
ACCEPT 100
100 FORMAT (" ‘)
C

C Clear the screen and then re-display the picture using GLOAD.,
CALL CLRSCR
CALL GLOAD('EXAMPL.DAT "’ +)

END

RGL/11 Subroutines 5-33

GSAVE

Figure 5-15: Picture Illustrating a GSAVE Call, First Screen

Hit <RETURN o continue.

¥rite above the box

Figure 5-16: Picture Illustrating a GSAVE Call, Last Screen

drite above the box

!
i
H

5-34 RGL/11 Subroutines

INITGR

PURPOSE
INITGR (Initialize Graphics) sets all RGL/11 device characteristics
to their initial default values. It must be the first graphic subroutine
called by a graphic program.

The INITGR argument, LUN, lets you change the Logical Unit
Number through which all graphic input and output is transmitted.
The one you will probably use is 5, your terminal. All graphic input
and output to and from the terminal is transmitted through this
logical unit number: even if you change the LUN, you would con-
tinue to type your commands on your login terminal and error mes-
sages continue to be displayed. there. Thus by changing the LUN,
you can have one terminal to execute a program and another termi-
nal to receive the output. See the Preface, Documentation
Conventions, for LUN numbers.

The initial values INITGR supplies do the following:

e Set the physical screen coordinates to define the VT'125 screen so
that the (0, 0) location is at the lower left, the x axis has a range of
0 to 767, and the y—axis has a range of 0 to 479.

e Set the world coordinates equal to the screen coordinates.

e Set the graphic cursor at the (0,0) origin location, the bottom left
of the graphic screen.

e Set the graphic text to the standard English character set and
standard size.

e Set the line pattern to a solid line and the pattern multiplier to 2.

o Set writing mode to overlay and turns reverse image writing off
(initialize mode).

o Set the shade pattern to the line pattern, sets the shade line to the
bottom of the screen, and turns shading off.

e Set the angle unit of measure to radians.
¢ Enable the displaying of error messages on the screen.

e Set the value in the error—status variable (ISTAT, accessible by
the GETSTA subroutine) to “001”.

e Assign GRAYO (dark) to color number 0, GRAY1 (dark gray) to 1,
GRAY?2 (light gray) to 2, and GRAY3 (white) to 3. On an optional
color monitor, GRAYO is dark, GRAY1 is blue, GRAY2 is red, and
GRAYS is green.

e Set color number 3 as the drawing color.

e Set hardware smoothing off.

RGL/11 Subroutines 5-35

INITGR

5-36

FORM
INITGR (LUN)

ARGUMENT DESCRIPTION
LUN is an integer expression that specifies the Logical Unit
' Number of the graphic input and output device. Ordinar-
ily use 5, your terminal. If you use another number so you
can use another device, put OPEN and CLOSE state-
ments in your program; INITGR does not affect the device
itself.

EXAMPLE
INITGR (5)

resets all device—independent characteristics to their predefined val-
ues and establishes the device addressed by LUN 5 as the input and
output device for RGL/11 graphic commands. You continue to use
your login terminal to input commands and to receive error
messages.

RELATED SUBROUTINES
GSAVE’s first subroutine call should be to INITGR so that the saved
program begins with the terminal’s attributes set to known values.
Otherwise, it begins with the attributes that are current at the time
GLOAD reads the file in, and results are unpredictable.

RESTRICTIONS
INITGR does not clear the screen. If you want to clear the screen,
you must call CLRSCR to clear graphic objects, and CLRTXT to
clear text-mode images.

INITGR does not open or close the device the LUN specifies; you
must do that within your program (see the PROGRAM EXAMPLE
below).

ERROR MESSAGES

1. Error Code z60
YRGL-W-WER s write error on unit ‘x’

PROGRAM EXAMPLE
The following program fragment shows you how to specify a LUN
other than 5 in your program.

OPEN (UNIT=10, NAME='TT41: ")
CALL INITGR (10)

+

+

CLOSE (UNIT=10)

Another example is in Section 2.1, General Strategy for Drawing
Graphic Objects.

RGL/11 Subroutines

LCHRST

PURPOSE

LCHRST (Load Character Set) loads the alternate character
set — Greek characters — into, the terminal’s memory from a
specified file. The character set is identified by the number 1. After
you call LCHRST, you must call SCHRST to activate the
character set.

The default character set is the standard ASCII set. To return to it
after using the Greek set, you need to use only SCHRST; the default
set is permanently loaded in the terminal’s memory.

To access the characters in the Greek character set, you type either
their English equivalents or their ASCII code. Table 5-2 lists these
values.

Table 5-2: Greek Equivalences in the English Character Set
and in ASCII Code

reek. Equivalences in the English Character Set and in ASCII Code
| B T U ¥ W 127 Y ok 153)) 951
B B ie2 8 X 130 p 1 154 # % QB2
T ¢ o2 2 060 ¥om 155 + + 953
4 D 104 1 1 061 i n 156 , P 254
[E 165 7 2 ee ¢ 0 157 - - @85
Z F 106 3 3 o63 T P 180 . . 056
B 6 107 4 4 064 P] i64 /4 097
g H 10 § & 065 d r i62 : H a72
1 I 111 € 6 066 T 5 163 ; H 073
K J 112 77 067 ¢ t 164 { < o074
A K 143 8 8 070 ¢ u 165 = = 975
N L 114 § g oo X v 166) 276
N M 115 ¢ a 14 v w167 7 7 @77
5 N 116 § b 142 ¥ X 17 g e 100
[o 447 Y ¢ 143 ! ! 041 ! : 174
P 120) d 144 ! " 242 i L 133
a 124 £ e 145 # # 943 \ \ 134
I R 122 § f 146 i % 044 1 1 135
T S 123 |} q 147 M % 945 s A 136
P T 124 [} h 150 g & 048
U 125 ! i 154 ? ! 047
X v 126 X J 152 ({ 050
FORM
LCHRST (number, ‘filespec’, {LUN})
ARGUMENT DESCRIPTION

number is an integer expression that references the character set
to be loaded. The only valid number is 1, for the Greek
character set that is on your distribution volume.

‘filespec’ is a string expression that identifies the file where the
character set is stored.

RGL/11 Subroutines 5-37

LCHRST

5-38

LUN

EXAMPLE

is an optional argument; it is an integer expression that
specifies the Logical Unit Number of the device you
want LCHRST to read the file from. The LUN you spec-
ify will also be used as the default for subsequent calls to
LCHRST and GLOAD.

If you do not specify a LUN, the LUN last specified in a
GLOAD or LCHRST call is used, or, if no LUN was spec-
ified, LCHRST uses LUN 2 as the initial default. If you
specify a LUN that is out of range, LCHRST uses the
previous GLOAD or LCHRST LUN, or, if none, the ini-
tial LUN default, and it displays a warning error mes-
sage on the screen.

LCHRST (1 "GREEK.FNT "+ 3)

loads the file GREEK.FNT, the Greek character set, into character
set 1 from LUN 3.

RELATED SUBROUTINES
SCHRST activates the character set you load with LCHRST.

The currently active character set is displayed on the screen when
you call any of the following subroutines: LINETX, LNAXIS,
LTAXIS, SSHADE, TEXT, and PDATA.

GLOAD has a LUN argument; the LUN it names can affect the
default LUN of LCHRST and vice versa.

RESTRICTIONS

none

ERROR MESSAGES

1. Error Code 150
ARGL-W-INVCHARSET s ‘%’ is not avalid character set

means that the character set number was not a 1. The call is
ignored; the previous font continues to be used.

2. Error Code 230
ARGL-W-0OPENINs error openindg ‘X’ as inpPut

means that the file you specified either could not be found or
could not be read. The call is ignored; the previous font contin-
ues to be used.

3. Error Code 250
ARGL-W-RER s read error on unit LUN

means that the file could not be read. The call is ignored; the
previous font continues to be used

RGL/11 Subroutines

LCHRST

PROGRAM EXAMPLE
The following program fragment loads the Greek character set into
alternate character set 1 in the terminal’s memory, and writes five
characters of the set. The current default value for the LUN is used.

CALL LCHRST (1 ‘GREEK.FNT’,)
CALL SCHRST (1) °
CALL TEXT (’abecde’)

RGL/11 Subroutines 5-39

LFIXED

PURPOSE

LFIXED (Locate Fixed) enables you or the user of your program to
guide a special locator cursor along the data path of a graph and find
the coordinates of up to ten points by typing a numeric key (1, 2,...0).
After you or the user of your program selects the points, LFIXED
returns an array of integers, called the index array, that points into
the X and Y data arrays that define the plot.

When your program calls LFIXED, the locator cursor is displayed on
the terminal screen over the first point on the data path. (The loca-
tor cursor consists of two straight lines configured as a crosshair
with a blinking, diamond-shaped polygon in the center.) To move
the locator cursor, you press the left— or right-arrow key. The
left—arrow key moves the cursor backward along the data path from
one point to the next, and the right—arrow key moves it forward. Do
not hold an arrow key down in order to move the cursor continu-
ously; instead press the key repeatedly. To move the cursor faster,
press the key labeled PF4 on the auxiliary keypad. Thereafter the
cursor moves over 10 data points each time you press an arrow key.
To return it to the slower rate, press the PF3 key.

To get a pointer value into the index array, you press one of the
numeric keys on the main keyboard, 1 through 0. (Type only the
number; the RETURN key or any other key is not necessary unless
you want to terminate the LFIXED sequence.) After you have lo-
cated the cursor where you want it, press 1. That puts an integer
into the index array at element 1 that indicates the point in the
array; that is, this integer points to the locations in the xarray and
yarray that contain the coordinates for that location. Then move the
locator cursor to the second location you want, press 2 (which loads
the second element of the index array), and so on. Type O to load the
tenth element.

To terminate LFIXED, type any key except the left and right arrow
keys, or the numeric keys on the main keyboard. After you type a
terminating key, control returns to the calling program.

FORM

LFIXED (number, {xarray}, yarray, {‘yaxis’}, indexarray)

ARGUMENT DESCRIPTION

number is an integer expression that specifies the number of
points in the data path you want to select from. It
must be less than or equal to the smaller of the two
arrays (xarray or yarray). If it is not, results are
indeterminate.

xarray is an optional argument; it is the name of the
floating—point array that contains the x—coordinates
of the data path along which the locator cursor will

5-40 RGL/11 Subroutines

yarray

‘yaxis’

indexarray

EXAMPLE

LFIXED

move. It must be the same array name as in the
PDATA subroutine that is displaying the plot. Its
default values are sequential integers from one to n.

is the name of the floating—point array that contains
the y—coordinates of the data path. It must be the
same array name as in the PDATA subroutine that
created the graph.

is an optional single—character string expression
that indicates the y—axis scale to which the yarray
argument applies. Valid forms for this argument are:
‘L’ (for left y—axis) or ‘R’ (for right y—axis). Its default
value is conditional on whether the y—axis (axes) is
scaled:

e If only the right y—axis is scaled, the default is ‘R,
and program continues.

e If only the left y—axis is scaled, the default is ‘L,
and program continues.

e If both left and right are scaled, the default is ‘L,
and program continues.

o If neither one is scaled, the default is ‘L,” error 650,
axis not scaled, is invoked, and control returns to
the calling program.

is the name of an integer array to be filled with num-
bers that act as pointers into the xarray and yarray
that created the graph. You must dimension the in-
dexarray to contain ten elements. LFIXED zeroes
the elements in the array before using it. Therefore
any element that is still zero when LFIXED termi-
nates was never loaded.

LFIXED (30 XDATA,» YDATA+ s+ INDEX)

sets up the INDEX array so that when you move the locator cursor
and strike a numeric key, LFIXED will put into INDEX a number
that points into the XDATA and YDATA arrays to get the coordi-
nates for the location of the locator cursor. The 30 indicates that the
first 30 elements of the arrays specified can be accessed by the loca-
tor cursor. The default y—axis is the y—axis that was scaled.

RELATED SUBROUTINES
LFREE also displays the locator cursor. It returns x and y coordi-
nates of any point within the graph, not necessarily on the data
path. The coordinates are based on the scale of a graph’s axes.

RGL/11 Subroutines 5-41

LFIXED

LOCATE uses the locator cursor for picture-drawing subroutines. It
returns the world coordinates of a single location.

RESTRICTIONS
If the data arrays are not scaled to the graph or vice versa so that
- they produce locations outside the graph’s scale, LFIXED does not
work properly; it produces error 640 (x—axis problem) or 650 (y—axis
problem). If the xarray is in random order, the first point of the data
path may not be the left—-most point.

ERROR MESSAGES
1. Error Code 340

WRGL-W-INUNUMEL s "x‘ is an invalid number of elements

means that you specified the number of elements in an array to
be less than or equal to zero. RGL/11 immediately returns con-
trol to the calling program.

2. Error Code 570
ZRGL-W-POWy all Ppoints are outside the window

means that all the data points passed to LFIXED lie outside the
data—plotting window.

When this error occurs, LFIXED terminates and returns control
to the calling program.

3. Error Code 600
ARGL-W-AIDy ‘%’ is an invalid axis identifier

means that you specified an axis identifier that does not match
either of the codes defined for ‘yaxis’ (I’ or ‘R’).

When this error occurs, the yaxis assumes the default value and
the program continues.

4. Error Code 540
#RGL-W-XNS s x-axis has not been scaled

means that you did not scale the x—axis by a call to LNAXIS,
LTAXIS or PDATA. When this error occurs, LFIXED termi-
nates and returns control to the calling program.

5. Error Code 650
WRGL-W-'YNS s v-axis has not been scaled

means that you did not scale the y—axis by a call to either
LNAXIS, LTAXIS, or PDATA. When this error occurs, LFIXED
terminates and returns control to the calling program.

6. Error Code 750
#RGL-W-NOPAPER s no drarh Pparer has been drawn

5-42 RGL/11 Subroutines

LFIXED

means that you did not call DPAPER or PDATA before calling
LFIXED. LFIXED terminates and returns control to the calling
program.

PROGRAM EXAMPLE
The following program draws a sine wave, then calls LFIXED. The
user can enter up to 10 points into the index array using LFIXED.
The points selected are then marked using PPOINT.

REAL xarrav(100), varrav(100Q)
INTEGER index(10)

C

C Inmitialize VYTLZS
CALL INITGR (3)
CALL CLRSCR
CALL CLRTXT

C

C Put a sine wave into the x and v arravs and Plot the results,
DO 100 i = 14100
xarray (i) FLOAT (i)
varray(i) SIN (xarrav(i))
100 CONTINUE
CALL PDATA (100 xarravsvarravs’ "4/ " 43134)

C MNow use LFIXED to pick off up to ten points on the grarh.
CALL LINETX(1:1+'Use the arrow Kevs to move the locator:’)
CALL LINETX(Z2+1s'Use the numeric Kevs (1-0) to save the values
1 of up to 10 Points.)
CALL LFIXED (100,.xarravsvarray ‘L’ sindex)

c
€ MNow Put 2 marKer at the coordinates of the user selected Points
C wusing PPOINT,
CALL SCOLOR (7+3)
CALL LINETX(24+1:'Now the points vou selected will be
i displaved,’)
DO 300 i = 1,10
n = index{i)
IF (n +EQ, 0) GOTO 200
®x = xarrav(n)
¥y = varrav(n)
CALL PPOINT(x sy 'L’ +i)
200 CONTINUE
300 CONTINUE
C

END

RGL/11 Subroutines 5-43

LFIXED

Figure 5-17: Picture Illustrating First Screen of LFIXED
Program

Figure 5-18: Picture Illustrating Final Screen of LFIXED
Program

g N—

T 3. 43,

Now the points you selected will be displayed.

544 RGL/11 Subroutines

LFREE

PURPOSE
LFREE “reads” the coordinates of a point in a graph. You select the
coordinates by means of a locator cursor, and LFREE puts them into
x and y variables. The coordinates are returned in terms of the scale
for the axes.

When your program calls LFREE, the locator cursor is displayed at
the center of the plotting area. You move the locator cursor by press-
ing the arrow keys, up, down, left, or right. Each time you press one
of these keys, the locator cursor moves by 10 pixels. If you want to
slow it down to a 1-pixel move, press the PF3 key on the auxilliary
keypad. To speed it up again to 10-pixel moves, press the PF4 key.
Do not hold an arrow key down in order to move the cursor continu-
ously; instead press the key repeatedly.

When you have moved the locator cursor to the location whose coor-
dinates you want, press any key on the keyboard except the arrow
keys, SHIFT, ESC, and DELETE keys. The x and y variables receive
the new values, LFREE terminates, and the locator cursor is erased
from the screen. The DELETE key returns the coordinates of the
center position of the data plotting window; SHIFT has no effect; do

not use ESC.
FORM
LFREE (x, y, key, {‘yaxis’})
ARGUMENT DESCRIPTION
x and y are names of floating—point variables that receive
the x— and y—coordinates of the locator cursor’s loca-
tion at the time you terminate LFREE. They are de-
fined in terms of the x— and y-axis scales,
respectively, that were defined in the previous
LNAXIS, LTAXIS, or PDATA call.
key is the name of a byte variable. When you press a key
to terminate LFREE, LFREE puts that key’s ASCII
code in the key argument.
‘yaxis’ is an optional single—character string expression to

specify the y—axis whose coordinates you want. Valid
arguments are: ‘L’ (left y—axis) or ‘R’ (right y—axis).
Its default value is conditional on which y-axis
(axes) is scaled:

e If only the right y—axis is scaled, the default is ‘R,
and program continues.

e If only the left y—axis is scaled, the default is ‘L,
and program continues.

o If both left and right are scaled, the default is ‘L,
and program continues. .

RGL/11 Subroutines 5-45

LFREE

5-46

e If neither one is scaled, the default is ‘L,’ error 650,
axis not scaled, is invoked, and control returns to
the calling program.

EXAMPLE
LFREE (XCOORD s YCOORD » KEY s 'R*)

puts the x—coordinate of the current locator cursor location in
XCOORD, and the y—coordinate in YCOORD; the y—coordinate is
determined in relation to the right y—axis scale. The ASCII value of
the key that terminates LFREE is put into the byte variable KEY.

RELATED SUBROUTINES
LFIXED also displays the locator cursor; it returns up to 10 coordi-
nate pairs of locations on a data path.

LOCATE displays the same locator cursor, but for the
picture—drawing subroutines. It returns world coordinates of a sin-
gle location.

RESTRICTIONS
none

ERROR MESSAGES

1. Error Code so0
WRGL-W-AIDy v~axis is an invalid axis identifier

means that you specified an axis identifier that does not match
either of the codes defined for ‘yaxis’ ('L’ or ‘R’).

When this error occurs, the yaxis defaults to the y—axis that is
scaled and the program continues. (If no y—axis is scaled, it gen-
erates error 650 described below.)

2. Error Code ca0
ARGL-W-ANSs ‘xaxis’ has not been scaled

means that you did not call either the LNAXIS, LTAXIS, or
PDATA subroutine to scale the x—axis. When this error occurs,
LFREE terminates and returns control to the calling program.

3. Error Code 50
ARGL-W-‘YNSs ‘vaxis’ has not been scaled

means that you did not call either the LTAXIS, LNAXIS, or
PDATA subroutine to scale the y—axis LFREE referenced. When
this error occurs, LFREE terminates and returns control to the
calling program.

4. Error Code 750
“RGL-W-NOPAPER s no drarh parer has been drawn

RGL/11 Subroutines

LFREE

means that you did not call DPAPER or PDATA before calling
LFREE. LFREE terminates and returns control to the calling
program.

PROGRAM EXAMPLE
The following program calls LFREE ten times and prints each coor-
dinate pair and the value of Key at the terminal. It also displays
each coordinate pair on the graph using PPOINT.

REAL x v
LOGICAL*1 Kev

C Initialize VT1ES
CALL INITGR(S)
CALL CLRSCR
CALL CLRTXT

C Draw drarh parer and scale the axes
CALL DPAPER(s+ 43 9)
CALL LNAXIS(/'XT s’ X DATA 0, 4100, 4)
CALL LNAXISC/YL ' +’Y DATA +0. 4100,)

Now call LFREE 10 times and display the user selected coordinates
and a marKker at those coordinates using PPOINT.
DO 200 i=1,10
CALL LFREE(x sv skev s+ 'L")
CALL CLRTXT
TYPE 1004+isxsv sKey
100 FORMAT(Y “s’Coords s #7412+ = "42(FB.237+7) s’ Key = ‘1Al)
CALL PPOINT(xasy+'L7 i)
200 CONTINUE

END

0o

Figure 5-19: Picture Illustrating LFREE, First Screen

o

IIlli!!

T T gy

RGL/11 Subroutines 5-47

LFREE

Figure 5-20: Picture Illustrating LFREE, Last Screen

ol
W
&
[F)
«liiy
[7F
it
e
®

T T T T T T T T ¢ T
- .]

- =
{ =5 ; —f
- -
>- . :_ - - N
- ® + -
a, N T D N S S R T T i R E : oo

548 RGL/11 Subroutines

LINE

PURPOSE

LINE draws a line from the current graphic cursor location to the
specified location.

After the line is drawn, the graphic cursor is at the end of the line.

FORM
LINE (x, y)
ARGUMENT DESCRIPTION
x and y are floating point expressions that define the end-
point of the line in world coordinates.
EXAMPLE

LINE (100,00, 100,0)

draws a line from the current graphic cursor location to location
(100.,100.). The graphic cursor is left at location (100.,100.).

RELATED SUBROUTINES
SLNPAT determines the line pattern.

RELLIN also draws a line, but its arguments are the distances in
the x and y directions rather than the destination’s coordinates.

RESTRICTIONS

none
ERROR MESSAGES
1. Error Code 100
ARGL-W-INVWINCOORD s invalid window coordinates

means that you tried to move the cursor more than 32767 pixels.
The call is ignored.

PROGRAM EXAMPLE
The following program fragment sets the window, moves the cursor
to location (100.,125.), then draws a line from there to (300.,350.).
The graphic cursor is left at location (300.,350.).

CALL SWINDO (0.0 0,04 1000,04 B25,0)
CALL MOVE (100,0, 125,0)
CALL LINE (300,04 350,0)

Another example of LINE, with an illustration, is in the RELMKR
subroutine description.

RGL/11 Subroutines 5-49

LINETX

PURPOSE

LINETX (Line Text) displays in graphic text the message you spec-
ify beginning at the row and column you specify. There are 24 rows
and 80 columns. Numbering begins at the screen’s origin location,
the upper left corner of the screen. The message is always displayed
in the standard size and in replace mode. You can use either reverse
mode, for reverse writing, or no-reverse mode; the default is
no—reverse. LINETX can display text strings of alternate character
sets, such as GREEK.FNT.

After LINETX writes the message, it returns the graphic cursor to
the location it had before the call.

FORM

LINETX (irow, icol, ‘string’)

ARGUMENT DESCRIPTION

irow and icol are integer expressions that define the row and col-
umn where the message begins. The screen has 24
rows, numbered 1-24 from top to bottom, and 80 col-
umns, numbered 1-80 from left to right.

‘string’ is a string expression containing the message to be
displayed. The length of the string can be 80 charac-
ters or less; any message longer than 80 characters is
truncated at the 80th character. If you want a double
quotation mark displayed within the text string, you
must use two double quotation marks (“”); this is
true whether you pass the message as a string literal
or as a string variable. If you want an apostrophe (as
in “call’s”), you must use two in a row (”). The string
is written in replace mode.

EXAMPLE

LINETX (10 204 ‘Say " "HELLO" " /)
displays the message:
Say “HELLO”

beginning at row 10, column 20 of the screen.

RELATED SUBROUTINES

SCHRST determines the character set (standard or Greek) that
LINETX will use.

CLRSCR erases LINETX messages.

TEXT also displays a message, but the message begins at the cur-
rent graphic cursor location, and the size of the characters can be
changed to the size specified in a call to STXSIZ. (STXSIZ does not
affect LINETX.)

5-50 RGL/11 Subroutines

LINETX

RESTRICTIONS
If a message extends beyond the window, the message is automat-
ically clipped on the window boundary and no error message is
generated.

Any message over 80 characters is truncated at the 80th character.
If you want to use a series of quotation marks (for example, as a
border), you can use only 40 on a line since you must use two double
quotation marks to get one.

The characters of the message are always standard size; STXSIZ
does not affect LINETX displays.
ERROR MESSAGES
1. Error Code 110
ARGL-W-OUTRANGE » coordinates out of rande

means that irow is either less than 1 or more than 24, or that
icol is either less than 1 or more than 80. The call is ignored; no
message is displayed.

PROGRAM EXAMPLE
See LINETX used in the example in Section 2.7, Retrieving
Location Coordinates.

RGL/11 Subroutines 5-51

LNAXIS

PURPOSE

LNAXIS (Label Numeric Axis) enables you to scale and label an
axis.

It supplies numeric values for the cells (major divisions established
by the DPAPER subroutine) of the axis you specify, and labels the
cell boundaries with scaled numbers. You can make the values ei-
ther exact or rounded numbers, and you can control whether the
scale will be user—scaled or autoscaled. When LNAXIS prints the
numeric labels, it uses floating—point notation. If a label exceeds six
characters, LNAXIS prints the label in exponential notation with
the exponent printed on the following line. LNAXIS also enables
you to label the axis as a whole.

An application program should call LNAXIS once for each axis that
requires a scale. For example, it would call LNAXIS twice to scale
two y—axes and once to scale an x—axis.

Section 3.3, Scaling and Labeling the Axes, describes ways to use
the subroutine and gives sample programs.

FORM
LNAXIS (‘axisid’, {axislabel’}, {minvalue}, {maxvalue}, {exact})
ARGUMENT DESCRIPTION
‘axisid’ is a two—character string expression that specifies
the axis you want to scale and label. Valid strings
are:
XT — upper x—axis
XPB’ — bottom x—axis
YL — left y—axis
‘YR® — right y—axis
‘axislabel’ is an optional string expression that gives a title to

the whole axis; it is printed centered and adjacent to
the specified axis. This label contains information
about the axis function, the scaling variable, or other
information about the axis. There can be 40 or less
characters in an x—axis label, and 20 or less in a
y—axis label. Its default value is a blank label.

minvalue is an optional floating—point expression that specifies
the value of the first cell on the axis. This argument
controls autoscaling. If it is unspecified or if you
make minvalue equal to maxvalue, LNAXIS per-
forms autoscaling when you next call PDATA. Oth-
erwise, it scales according to the minvalue and
maxvalue range. The minvalue argument also pro-
vides the label that is displayed at the first cell

5-52 RGL/11 Subroutines

LNAXIS

boundary, if exact numbers are requested. The first
cell boundary is at the left side of the first cell. There
is always one more label than there is cell. For exam-
ple, when there are three cells, there are four cell
labels. :

maxvalue is an optional floating—point expression that specifies
the value of the last cell on the axis. If it is unspeci-
fied or if you set maxvalue equal to minvalue,
LNAXIS performs autoscaling when you next call
PDATA. Otherwise, it scales the axis according to
the range in minvalue and maxvalue. The maxvalue
argument also provides the label that is displayed at
the last cell, if exact numbers are requested.

exact is an optional logical expression that determines
whether LNAXIS generates rounded numbers for la-
bels or not. When the argument is “TRUE.”
LNAXIS generates numeric labels based on exactly
what is implied by the minvalue and maxvalue argu-
ments. When the argument is “.FALSE.,” LNAXIS
generates rounded numbers for the label. The default
value is false, for rounded number labels. The exact
argument can be true only for linear, not loga-
rithmic, axes. For log axes, the exact argument is
ignored; you always get rounded numbers.

EXAMPLE
LNAXIS ('XB’ s %-AXIS VALUES’+0,0,+10,0,,TRUE.)

labels the bottom x—axis with numbers between 0 and 10. The scale
is user—scaled, and the cell labels are exact. If the x—axis has 10
cells, the labels will be integers from 0 to 10; otherwise, LNAXIS
generates numeric labels in equal increments based on the number
of cells along the axis. It also gives the bottom x—axis the character
label “X—~AXIS VALUES.” The “.TRUE.” argument implies a linear
scale, since it cannot be used with logarithmic scales.

LNAXIS (YR’ +/¥-AXIS VALUES ' +3.55,12.469,)

labels the right y—axis with a set of rounded numbers (the default)
derived from the given data, and uses a user—specified scale of 3.55
to 12.469 for the axis. It also gives the axis the label “Y-AXIS
VALUES.”

RELATED SUBROUTINES
DPAPER creates the graph paper to be labeled.

RGL/11 Subroutines 5-53

LNAXIS

LTAXIS scales and labels the cell divisions along a graph’s axis, and
displays alphanumeric labels at each cell boundary (not just nu-
meric labels, as LNAXIS does). It also gives the entire axis a label.

RESTRICTIONS
If the minvalue or maxvalue argument is equal to or less than .01 or

equal to or greater than 10,000, LNAXIS prints the label in expo-
nential notation with the exponent printed on the following line.

ERROR MESSAGES

1.

Error Code 550
ARGL-W-IMM+’ %’ is an invalid maximum and/or minimum

means that you specified an illegal number for either the min-
value argument, the maxvalue, or both. When this error occurs,
LNAXIS attempts to write the label and allows PDATA to auto-
scale after the error message is displayed.

2. Error Code oo _
ARGL-W-AIDs 'x’ is an invalid axis identifier
means that you specified a code for ‘axisid’ that was not XT,
‘XB’, ‘YL, or ‘YR’. LNAXIS terminates and returns control to
the calling program.

3. Error Code 740
ARGL-W-NPLs logarithm of non-rPositive number
means that you specified either a negative number or a 0.0 for
the minvalue or maxvalue argument when you were labeling a
logarithmic axis. When this error occurs, LNAXIS immediately
returns control to the calling program.

4. Error Code 750
4ZRGL-W-NOPAPER) no grarh rarer has been drawn
means that you did not call DPAPER before calling LNAXIS. If
this error occurs, control returns immediately to the calling
program.

5. Error Code 770
ARGL-W-FIP, function is invalid with current drarh Parer
means that the axis you specified is already scaled. When this
error occurs, LNAXIS terminates and returns control to the call-
ing program.

PROGRAM EXAMPLE

The following program fragment calls DPAPER to draw in GRAY2
a linear grid with four cells and five subcells along the x-axis, and
six cells and two subcells along the y-axis. It then calls LNAXIS
three times to scale and label the left and right y—axes and the

5-54 RGL/11 Subroutines

Population in Millions

LNAXIS

bottom x—axis. The graph uses user—specified scaling and exact cell
labels. Figure 5-21 shows the graph that is displayed.

CAaLl DPAPER ('LIN‘ +4+8+'LIN'+B+2» GRAYZ)
CALL LNAXIS (/YL‘+’Population in Millions’ +0,:30,+.TRUE.)
CALL LNAXIS (YR’ s+’'Income in Billions’»0,+30,,.TRUE.)
CALL LNAXIS (‘%B’+’'Study Grour Number’ 0,4, ., TRUE.)

Figure 5-21: Graph that Illustrates Labeling and Scaling

3e.

5.

20.

i5.

ie.

by LNAXIS

Study

Sroupr MNMumber

RGL/11 Subroutines

25.

20.

15.

1e.

SUOTIITH WUT BWODUT

5-55

LOCATE

PURPOSE

LOCATE displays a special cursor, a “locator cursor”, on the screen.
It handles instructions from the keyboard to move the locator cursor
around on the screen, and stores the coordinates of its locafion in
response to a keyboard inquiry. The locator cursor is two lines,
crossed, with a blinking diamond-shaped polygon in the center; it is
always displayed in GRAYS3.

When your program calls LOCATE, the locator cursor is displayed
on the screen at the x and y coordinate you specify, or, if you do not
specify a location, at the current graphic cursor location. If location
of the graphic cursor is off the screen, the locator cursor is brought
up on the closest edge of the screen.

You move the locator cursor by pressing the arrow keys, up, down,
left, or right. Each stroke moves the locator cursor by 10 pixels; If
you want to move the cursor slower, press the PF3 key on the auxili-
ary keypad; thereafter the cursor moves by one pixel each time you
press an arrow key. To return to the faster cursor movement, press
the PF4 key. Do not hold an arrow key down in order to move the
cursor continuously; instead press the key repeatedly. If you try to
move the cursor beyond the edge of the screen, it stays at the edge
until you move it back toward the center.

When the locator cursor is where you want it and you want to know
the coordinates of that location, you type any key on the keyboard
except the DELETE key or the arrow keys. LOCATE puts the coor-
dinates in the x and y variables, erases the locator cursor, and ter-
minates its operation. To terminate the LOCATE operation without
getting the location, type the DELETE key.

Refer to Section 2.7, Retrieving Location Coordinates, for more
information.

FORM

LOCATE (x, y, key) -

ARGUMENT DESCRIPTION

x and y are floating point expressions that can be used in two
ways: (1) they can define the starting location for the
locator cursor in world coordinates, or (2) they can
store the coordinates of the current location of the
locator cursor. If you want to define the starting posi-
tion of the locator cursor, you must define x and y
before calling LOCATE.

When you type any key but a DELETE or an arrow
key, LOCATE replaces the contents of x and y with
the world coordinates of the locator cursor location
and then terminates its operation. If you type the

5-56 RGL/ 11 Subroutines

LOCATE

DELETE key, the contents of x and y are not
changed, and the operation terminates.

key is a byte variable into which LOCATE puts the
ASCII value of the terminating character.

EXAMPLE
LOCATE (X Y Kev)

displays the locator cursor at the current graphic cursor location.
You can move the cursor to the location you want and press any key
so that LOCATE puts the coordinates of that location into the x and
y variables, and terminates.

RELATED SUBROUTINES
GETLOC returns the current location of the graphic cursor.

LFIXED and LFREE work with the data—plotting subroutines in
the same way as LOCATE works with the picture-drawing
subroutines. '

RESTRICTIONS

If you or the user of your application program aborts the LOCATE
sequence by returning to the monitor (rather than to the calling
program) while the terminal is displaying the locator cursor, the
terminal is left in graphic mode and does not respond to the monitor.
To recover, you must execute the “reset” SET-UP function (de-
scribed in the VT125 User Guide). You may want to disable user
commands that return to the monitor while the LOCATE sequence
is in operation.

ERROR MESSAGES
none

PROGRAM EXAMPLE
The following program calls LOCATE and checks for a terminating
character of either DELETE or RETURN. It displays the x and y
coordinates selected, and the key used.

REAL % v
LOGICAL*1 Kev
C Initialize UT125 and draw some drarhics obJects.
CALL INITGR (3)
CALL CLRSCR
CALL CLRTXT
CALL BOX (0. 0,767, +478.)
CALL MOVE (384, ,240.)
CaLl CIRCLE (200,
CALL BOX (200,200, :400.,400,)

C
x = 350,
y = 215,
10 CONTINUE
20 CONTINUE

CALL LOCATE (x¥ +Kev)

RGL/11 Subroutines 5-57

LOCATE

5-58

C
C The cursor is displaved at (350, 215,)4% the execution
C of the prodram does not continue until the user tvres a
C Kevs If the user presses a DELETE Kev» (177 o0ctal)s the
C pProdram loors so the user can continue selecting locations
C without displaving values on the screen.
Cc
IF (Kev +EQ, "177) GOTO 20
C
C Otherwises the prodram tvyres the location coordinates
C and the KEY ‘s contents.,
C
TYPE 100sxsvsKey
100 FORMAT{(’ The location is "+2F8.2+’ and the KEY is ‘A1)
C
C If the Kev that is tvped is not the RETURN Kev (15 octal)
C the prodram dets another location., If it is RETURN, the
C pProdram leaves the loor and exits.,
C
IF (Kev +NE, "013) GOTO 10
C

END

Other LOCATE examples are in the OBJECT.FOR program in
Section 2.1, General Strategy for Drawing Graphic Objects, and in
Section 2.7, Retrieving Location Coordinates.

RGL/11 Subroutines

PURPOSE

LTAXIS

LTAXIS (Label Text Axis) assigns a set of numeric values to the cell
(major) divisions of a graph’s x— or y-axis, labels those divisions
with alphanumeric labels of equal length, and gives the whole axis a
character label, which can serve as the axis title or the graph title.

Section 3.3.4, Labeling the Cells of an Axis, describes ways to use
this subroutine. A demonstration program, named LABEL2.FOR is
on your distribution medium.

FORM

LTAXIS (‘axisid’, {axislabel’}, minvalue, maxvalue, {maxchars},

{'string’})

ARGUMENT DESCRIPTION

‘axisid’

‘axislabel’

minvalue

maxvalue

is a string expression that specifies the axis you want
to label. Valid strings are:

‘XT’ — upper x—axis
‘XB’ — bottom x—axis
‘YL’ — left y—axis
‘YR’ - right y—axis

is an optional string expression that serves as the
title of the axis or of the graph. LTAXIS centers this
title and places it adjacent to the axis specified by
the ‘axisid’ argument. The string for the x—axis can
contain 40 characters or less. LTAXIS writes in over-
lay mode. The default value is a blank label. The
string for the y—axis can be 20 characters or less. If a
title exceeds these limits, the middle of the title is
centered and the left and right ends of the title are
clipped.

is a floating—point expression that specifies the value
(not the label) of the first cell on the axis. If this
argument is unspecified or if you make minvalue
equal to maxvalue, autoscaling is invoked and the
scales are not displayed until PDATA is called. Oth-
erwise, if you specify the minvalue and maxvalue,
the scales are in exact values and are immediately

~ displayed.

is a floating—point expression that specifies the value
(not the label) of the outer boundary of the last cell
on the axis. If this argument is unspecified or if you
make minvalue equal to maxvalue, autoscaling is in-
voked and the scales are not displayed until PDATA
is called. Otherwise, if you specify the minvalue and
maxvalue, the scales are in exact values and are im-
mediately displayed.

RGL/11 Subroutines 5-59

LTAXIS

5-60

maxchars is an optional integer expression; it specifies the
number of characters from the ‘string’ argument to
be printed at each cell boundary. Its maximum value
varies with the number of labels, but for the y—axis
only, the maximum number of characters printed at
each cell boundary is 6. The number of labels is al-
ways one more than the number of cells. The number
of labels times “maxchars” cannot exceed 64. The de-
fault value is 0, no characters printed.

‘string’ is an optional string expression that consists of all
the cell-boundary labels. The labels are conca-
tenated in the ‘string’ argument; LTAXIS displays
each label centered about each cell boundary in
groups of characters maxchars long. There is one
more label than there are cells; the first label is dis-
played at the left boundary of the first cell. This ar-
gument is defaultable if you default the maxchars
argument or give it a value of 0.

EXAMPLE
LTAXIS ('XT’ s 'XT LABEL AREA’ 40,5, 4, 19501960197019801990)

labels the upper x—axis with the title XT LABEL AREA, scales the
cells of the x—axis from 0.0 to 5.0, and establishes 4 as the number of
characters in the cell-boundary labels. The first four characters of
the cell-label string are blank, so that the first visible label is dis-
played under the first cell’s second boundary. The labels 1950, 1960,
1970, 1980, and 1990 are centered under each succeeding cell bound-
ary. See Figure 5-22.

Figure 5-22: Graph Illustrating the LTAXIS Example

XT LABEL AREA
1950 1960 1970 1989 1520

! B H H : , B : H B x B H B H !

RGL/11 Subroutines

LTAXIS

RELATED SUBROUTINES
DPAPER creates the grid whose axes are to be labeled.

LNAXIS assigns a set of numeric values to the cell divisions along
an axis, displays those values at each cell boundary, and gives the
entire axis a character label that identifies its purpose.

RESTRICTIONS

none

ERROR MESSAGES

1.

Error Code 5680
ARGL-W-IMMs ‘x/ is an invalid maximum and/or minimum

means that you specified a minvalue argument that was greater
than or equal to the maxvalue argument. When this occurs,
LTAXIS terminates and returns control to the calling program.
If this is the only call to scale the axis, PDATA will autoscale
when it is called.

Error Code 500
YRGL-W-AIDs ‘x’ is an invalid axis identifier

means that you specified a code for ‘axisid’ that was not YL, YR,
XT, or XB. LTAXIS terminates and returns control to the call-
ing program.

Error Code 510
WRGL-W-TCCs ‘%’ is too many characters Per cell

means that the number of labels along the axis times the value
for “maxchars” exceeds 64. When this error occurs, the max-
chars argument defaults to the largest number of characters
that are possible to write at each cell boundary without any of
the labels overwriting each other. The first 64 letters of the
string argument are used.

Error Code 740
ARGL-W-NPL s+ logarithm of non-pPositive number

means that you specified either a negative number or a zero for
the minvalue or maxvalue argument when you were labeling a
logarithmic axis. When this error occurs, LTAXIS immediately
returns control to the calling program.

Error Code 750
ZRGL-W-NOPAPER s no drarh parer has been drawn

means that you did not call DPAPER before calling LTAXIS.
Control is returned to the calling program.

RGL/11 Subroutines 5-61

LTAXIS

6. Error Code 770
WRGL-W-FIP,s function is invalid with current drarh parer

means that the axis you specified is already scaled. When this
error occurs, LTAXIS terminates and returns control to the call-

ing program.

PROGRAM EXAMPLE

The following program fragment calls DPAPER to draw a linear
graph in GRAY2 with six cells and one subcell along the x—axis and
five cells and two subcells along the y—axis. It then calls LNAXIS to
scale and label the left y—axis, labeling it “% OF ALL PUBLIC
SCHOOLS,” scaling it from 0.0 to 100.0, and using exact values for
the cell-boundary labels. Next it calls LTAXIS to scale the bottom
x—axis, titling it “REGIONS OF THE USA,” and to display labels of
nine characters in length at each of the cell boundaries along the
bottom x-axis. Notice there are six labels. The first one is nine
blank spaces; the others are “SOUTHEAST”, “SOUTHWEST”,
“NORTHEAST”, “WEST”, and “MIDWEST”.

CALL DPAPER ('LIN‘sB+1'LIN’+3,2,'GRAYZ")
CALL LNAXIS (’YL’,'% OF ALL PUBLIC SCHOOLS',0,,100,,,TRUE.)
CALL LTAXIS (‘XB’+'REGIONS OF THE USA’ 0. 46,9,

1 SOUTHEASTSOUTHWESTNORTHEAST WEST MIDWEST)

Figure 5-23: Second Graph Illustrating LTAXIS Call

BOHOOLLE

FLIEL. I

EST NORTHEAST HEST HIDUEST

W DF el

REGIONS OF THE USa

5-62 RGL/11 Subroutines

PURPOSE

MARKER

MARKER displays a marker at the location you specify in such a
way that the marker’s center is on that location. The default marker
is a dot, marker number O.

After the marker is drawn, the graphic cursor is left at that location.

FORM

MARKER ({number}, {x}, {y}
ARGUMENT DESCRIPTION

number

x and y

is an optional argument; it is an integer expression
from 0 through 10 that identifies the marker you
want to display. If you do not specify a number,
MARKER displays marker number 0, a dot, by de-
fault. The markers and their identifying
numbers are:

Table 5-3: Markers and Their Identifying

‘Numbers
Number Marker Number Marker Number Marker
0 4 + g8 -
1 o 5 « S =z
2 o 8 1@ -
3 - 7 e

are optional floating point expressions that define
in world coordinates the location where you want
the marker displayed. If you do not specify a value
for x, MARKER uses the x—coordinate of the cur-
rent graphic cursor location; if you do not specify a
value for y, it uses the y—coordinate of the current
graphic cursor location.

RGL/11 Subroutines 5-63

MARKER

EXAMPLE
MARKER (24)

displays an octagon that is centered on the current graphic cursor
location; that location remains unchanged.

MARKER (3, 200.0, 300.0)

displays a triangle whose center is at location (200., 300.). The
location of the graphic cursor is moved to (200., 300.).

RELATED SUBROUTINES
RELMKR also displays a marker, but its arguments are the dis-
tances in the x— and y-directions from the current graphic cursor
location, rather than the coordinates of the desired location.

PPOINT displays a marker on a graph.
RESTRICTIONS

none

ERROR MESSAGES

1. Error Code z70
ARGL-W-BADMARKER s+ n is not avalid marKer

means that you specified a marker number that is less than 0 or
greater than 10. RGL/11 uses the default marker and continues.

PROGRAM EXAMPLE
See program example in Section 2.6, Marking Locations.

5-64 RGL/11 Subroutines

MOVE

PURPOSE
MOVE moves the graphic cursor to the specified location. It does not
draw a graphic object of any kind.

FORM
MOVE x, y)
ARGUMENT DESCRIPTION
xandy are floating point expressions that define the new
location of the graphic cursor in world coordinates.
EXAMPLE

MOVE (100,0, 100,0)
moves the graphic cursor to location (100.0, 100.0).

RELATED SUBROUTINES
RELMOV also moves the graphic cursor, but its arguments are dis-
tances in the x— and y—directions from the current graphic cursor
location, rather than the coordinates for the destination location.

RESTRICTIONS

none

ERROR MESSAGES

1. Error Code 100
YRGL-W-INUVWINCOORD s invalid window coordinates

means that you tried to move the cursor more than 32767 pixels.
The call is ignored.

PROGRAM EXAMPLE :
The following program fragment sets the window, moves the graphic
cursor to location (100., 125.), and writes a message beginning at
that location. The graphic cursor is left at the end of the message,
and the GETLOC call puts the coordinates of that location into the
X and Y variables and displays them on the screen.

CALL SWINDDO (0,040,0,+1000,0,625.,0)
CALL MOVE (100,04,125,0)
CALL TEXT (‘Mrite starting at location (100, +125,)7)
CALL GETLOC (x ¥
TYPE 100 sx sy
100 FORMAT (’ The current cursor location is ‘22(FB.2:1X))

RGL/11 Subroutines 5-65

PDATA

PURPOSE

A single call to PDATA (Plot Data) can create linear graphs and plot
data from stored files. You can also use PDATA in combination with
other data—plotting subroutines. By using it with just DPAPER, you
can draw and plot logarithmic graphs; using it with DPAPER,
LNAXIS, and LTAXIS, you can exercise full control over the grid,
the numeric and text labels you supply for each axis, and other data
plotting options.

If a DPAPER call does not precede a PDATA call, PDATA clears the
screen and draws the grid. PDATA accepts 10 input arguments. The
first three arguments specify the data arrays you want to plot and
their size. The other seven arguments specify data plotting options
such as the y—axis to be used, the color and type of the data line, the
marker of the data points, and whether or not the smoothing and
shading functions are in effect.

Section 3.1 describes using only PDATA to create graphs. Sections
3.2 to 3.8 describe using it in combination with other subroutines.
For the parameters that PDATA resets, see the NOTE at the begin-
ning of Chapter 3.

FORM

PDATA (n, {xarray}, yarray, {‘yaxis’}, {‘colorname’}, {marker},
{linetype}, {smooth}, {shade}, {yvalue})

ARGUMENT DESCRIPTION

n is an integer expression that specifies the number of
points you want to plot. The x— and y—arrays must
contain at least this number of elements. If they do
not, results are indeterminate.

xarray is the name of an optional floating—point array that
contains the values for the x—axis coordinates.

If xarray is unspecified and the x—axis is autoscaled,
xarray values default to sequential integers from one
to n. (The x—axis is autoscaled when PDATA is used
as the only data—plotting subroutine, or with certain
LNAXIS calls.) If xarray is unspecified and the
x—axis is user—scaled, PDATA supplies values for the
xarray by subtracting “minvalue” from “maxvalue”
and dividing the answer by the value in the n argu-
ment. This formula ensures that the points to be
plotted are spread evenly across the grid.

yarray is the name of a floating—point array that contains
the values for the y-axis coordinates. When the
graph paper you are using has two y—axes, you spec-
ify which y-axis is to be used with these values by
the next argument, ‘yaxis.’

5-66 RGL/11 Subroutines

‘yaxis’

‘colorname’

marker

linetype

PDATA

is an optional single—character string expression
that specifies which y—axis scale PDATA is to use.
Valid arguments are ‘L’ (for left y—axis) or ‘R’ (for
right). Its default value is conditional on which
y—axis (axes) is scaled:

¢ If only the right y—axis is scaled, the default is ‘R,
and program continues.

o If only the left y—axis is scaled, the default is ‘L,
and program continues. ‘

e If both left and right are scaled, the default is ‘L,
and program continues.

e If neither one is scaled, the default is ‘L,” autoscal-
ing is subsequently invoked, and the program
continues.

is an optional string expression that specifies the
color of the data line. Valid arguments are ‘GRAY0’,
‘GRAYY1, ‘GRAY2, and ‘GRAY3’. The default is
GRAY3. (See Section 3.7.)

is an optional integef expression that specifies what
marker to display at each of the points to be plotted.
The MARKER subroutine lists the eleven possible
markers. The marker argument can assume a value
in either of two ranges:

0 to 10 (displays the marker at every point)

100 to 110 (displays the marker at every 10th
point)

If this argument is defaulted, no marker is displayed.
If you plan to plot a large number of points, it is
strongly recommended that you default the marker
argument. By doing so, you speed up execution of the
graph.

is an optional integer expression that specifies the
line pattern connecting the points being plotted. It
can be any number from 0 through 9, representing
the line patterns explained in the SLNPAT subrou-
tine. If you do not want the points connected, specify
a linetype of 0.

The linetype default is 1, a solid line, when shading
is disabled. When shading is enabled, its default is a
special line pattern. Each time you call PDATA with
linetype unspecified and shading enabled, the line

RGL/11 Subroutines 5-67

PDATA

5-68

pattern changes. After four such calls to PDATA, the
special line patterns repeat. (This feature is recom-
mended for shaded graphs; it gives increased legibil-
ity to the graph’s data.)

smooth is an optional logical expression that determines
whether the points being plotted are connected by a
smooth curve or whether they are connected by a
series of straight lines. When smooth is “.TRUE.”,
the plot line forms a smooth curve; when it is false,
the plot line is a series of connected straight lines. Its
default is “.FALSE.”, straight lines.

shade is an optional logical expression that determines
whether the area under the plot line is shaded. When
shade is “. TRUE.”, PDATA shades the area between
the curve and the user—specified shade line on the
y—axis (this shade line is determined by the next ar-
gument). The shade pattern PDATA uses is the one
specified in the linetype argument. When the shade
argument is “.FALSE.”, PDATA does not shade the
area under the curve. Its default value is “.FALSE.”,
shading disabled.

yvalue is an optional floating—point argument that specifies
the shade line to which the shade pattern is drawn.
Its default value is the minimum value on the appro-
priate y—axis scale (the y—axis specified in the ‘yaxis’
argument).

EXAMPLE

PDATA (105 :YVALS» 'L 3+ 'GRAYZ +1 444 4)

plots 10 points whose x—axis coordinates are the integers from 1 to
10 (default), and whose y—axis coordinates are values in the YVALS
array. The y—axis coordinates are plotted with respect to the left
y-axis. The points are marked with marker type 1 (a square), and
connected by a solid line (default); the line color is GRAY2. Shading
and smoothing functions are disabled.

PDATA (200 yXVAL (100) sYUAL(100) s 'R’ »+105+8 s TRUE, +» TRUE. 1)

plots 200 points defined by array elements 100 to 300 from each
input array. The y-axis coordinates are plotted against the right
y—axis. Marker 5 (a cross) marks every tenth point. The points are
connected by a smooth curve in line pattern 6, and the shading
function is enabled.

RELATED SUBROUTINES

PPOINT plots a single data point to an existing graph.

RGL/11 Subroutines

PDATA

RESTRICTIONS
You cannot use more than two colors to plot data. The screen color
and the grid color use two of the four color numbers, leaving two
color numbers to receive the values of the colorname argument. If
you attempt to use more than two colors, each call after the second
one changes the color of the points plotted two calls before it.

When smoothing is enabled, the x—axis coordinate values must be
passed from the input array in ascending order. If they are not,
PDATA can produce a curve that follows an erratic path. Another
restriction that smoothing imposes is that it prevents clipping from
occurring at the top x—axis. It is possible that a line between two
points may pass outside of the data plotting window and not be
clipped.

If the shading operation is enabled when a plot is clipped at the top
x—axis, (or when smoothing causes the arc to appear above the
x—axis), PDATA does not shade the region between the two points
that intersect the top x—axis.

ERROR MESSAGES

1. Error Code 010
4RGL-W-CNF s color ‘%’ not found

means that you misspelled the color name or referenced a nonex-
istent color name. The color defaults to the current drawing
color and the program continues.

2. Error Code zo0
YRGL-W-INVLINE, ‘%’ isnot avalid line pattern

means that you specified a value for the linetype argument that
was not from 0 through 9. When this error occurs, the argument
assumes the default value and the program continues.

3. Error Code 270
YRGL-W-BADMARKER s ‘%’ is not avalid marKer

means that you specified a value for the marker argument that
was not from 0 through 10 or from 100 through 110. When this
error occurs, the argument assumes the default value and the
program continues.

4. Error Code 340
YRGL-W-INUNUMEL s %’ is an invalid number of elements

means that you specified a value for the number argument that
was zero or negative. Control returns to the calling program.

5. Error Code 00
ARGL-W-AID: ‘x’ is an invalid axis identifier

RGL/11 Subroutines 5-69

PDATA

5-70

means that you specified a value for the yaxis argument that
was not “L” or “R.” When this error occurs, one of three actions
occur, depending on the condition of the graph:

e If both y—axes are scaled or just the left y-axis is scaled,
PDATA uses “L” as the default.

e If only the right y-axis is scaled, PDATA uses “R” as the
default.

e If neither y—axis is scaled, PDATA uses “L” as the default and
autoscales the left y—axis.

Error Code 40
WRGL-W-XNS» X axis has not been scaled

means that one of two conditions occurred:

e Autoscaling was invoked but all values in the xarray are the
same.

e The x-axis is logarithmic, autoscaling is invoked, but the
xarray contains at least one non—positive number.

When this error occurs, PDATA terminates and returns control
to the calling program.

Error Code 650
LRGL-W-YNS s+ ¥ axis has not been scaled

means that one of two conditions occurred:

e Autoscaling is invoked but all values in the yarray are the
same.

e The y-axis is logarithmic, autoscaling is invoked, but the
yarray contains at least one non—positive number.

When this error occurs, PDATA terminates and returns control
to the calling program.

Error Code 740
ARGL-W-NPL s lodarithm of non-Positive number

means that an input array contained a non—positive coordinate
for a logarithmic axis. When this error occurs and autoscaling is
not in effect, it does not interrupt the data plotting sequence.
However, the point will not be plotted. When this error -occurs
and autoscaling is in effect, control is immediately returned to
the calling program because autoscaling requires all data points
to be valid.

PROGRAM EXAMPLE
See Chapter 3 for several examples.

RGL/11 Subroutines

POLYGC

PURPOSE _
POLYGC draws a regular polygon according to your specifications
for the number of sides, the radius, and the angle that the polygon
will rotate around one vertex. The current graphic cursor location
defines the location of the vertex. A non-rotated polygon is symmet-
rical about a horizontal line which passes through the current
graphic cursor location.

After the polygon is drawn, the graphic cursor is again at its start-
ing location, the vertex. See Figure 5-24.

Figure 5-24: Illustration of the POLYGC Subroutine

£

user—specified
radius

user—specified
angle

current cursor
position

MR-$-2228-82

FORM
POLYGC (nsides, radius, angle)
ARGUMENT DESCRIPTION
nsides is an integer expression that defines the number of
sides of the polygon. This argument must be greater
than two.
radius is a floating point expression that defines the dis-
tance in world coordinates from the center to any
vertex of the polygon.
angle is a floating point expression that defines the angle

about which the polygon is to rotate. You can specify
the angle in the positive (counterclockwise) direction
or in the negative (clockwise) direction. The angle’s
unit of measure can be radians (default) or degrees.

RGL/11 Subroutines 5-71

POLYGC

EXAMPLE
POLYGE (B+ 100,05 -, 765)

draws a hexagon with its vertices 100 units from the center of the
hexagon. The current graphic cursor location defines the location of
the first vertex to be drawn; the -0.765 radian angle indicates that
the vertex is located above and to the left of the hexagon’s center.
(The angle is formed in a clockwise direction from the horizontal
line drawn through the current location of the graphic cursor be-
cause the angle is negative.) After the hexagon is drawn, the
graphic cursor is again at its starting location, the first vertex. See
Figure 5-25.

Figure 5-25: Picture Illustrating a POLYGC Call that
Contains a Negative Angle

current cursor
position

radius H

/

*”’]\

MR-5-2229-82

POLYGC (8 125.0, 90.,0)

draws an octagon with the vertices 125 units from the center of the
octagon. The first vertex is at the current graphic cursor location
and is located directly to the right of the center of the polygon
(because of the 90-degree angle). After the octagon is drawn, the
graphic cursor is again at the first vertex. See Figure 5-26.

5-72 RGL/11 Subroutines

POLYGC

Figure 5-26: Picture Illustrating a POLYGC Call that
Contains a Positive Angle

p - ’fv\“\

. /
‘ﬂ-"'*s _________

current cursor
position

MR-§-2230-82

RELATED SUBROUTINES
SLNPAT determines the line pattern.

SDGREE and SRADNS determine whether the angle is interpreted
in degrees or radians (SRADNS is the default).

SSHADE shades the space enclosed by a non-rotated polygon if yoﬁ
specify the center of the polygon as the shade line. Some polygons
cannot be shaded properly. See RESTRICTIONS.

POLYGN also draws a polygon, but its arguments are just the num-
ber of sides and the radius, not including the angle argument of
POLYGC.

POLYGX also draws a polygon, but its arguments are the number of
sides and the coordinates of one of the vertices.

BOX and RELBOX draw rectangles.
ARC, ARCC, CIRCC, CIRCLE, and CIRCXY draw arcs and circles.

RESTRICTIONS
See Section 2.5, Shading Picture Objects.

ERROR MESSAGES

1. Error Code zzo
#RGL-W-INWSIDES s invalid number of sides

means that you specified less than 3 as a value for the nsides
argument. (More than 35 is, by RGL/11 definition, a circle).

PROGRAM EXAMPLE
none

RGL/11 Subroutines 5-73

POLYGN

PURPOSE

POLYGN draws a regular polygon of the number of sides you specify
and determines the size of the polygon from the radius you specify.
The current graphic cursor location defines the center of the poly-
gon. POLYGN draws in a counterclockwise direction, the first ver-
tex being directly to the right of the center of the polygon. The
polygon is symmetrical along the horizontal line that extends from
the center.

After the polygon is drawn, the graphic cursor is again at its start-
ing location, the center of the polygon. See Figure 5-27.

Figure 5-27: Picture Illustrating a POLYGN Call

current cursor
position

x

user—specified
radius

MR-S-2231-82

FORM

POLYGN (nsides, radius)

ARGUMENT DESCRIPTION

nsides is an integer expression that defines the number of
sides of the polygon. The value for nsides must be
greater than two.

radius is a floating point expression that defines the dis-
tance in world coordinates from the center to any
vertex of the polygon.

EXAMPLE

POLYGN (5, 200,0)

draws a pentagon whose center is at the current graphic cursor loca-
tion and whose vertices are 200 units from the center of the penta-
gon. After the polygon is drawn, the graphic cursor is again at its
starting location, the center of the pentagon.

RELATED SUBROUTINES

SLNPAT determines the line pattern.

5-74 RGL/11 Subroutines

POLYGN

SSHADE shades the space enclosed by a non—-rotated polygon if you
specify the center of the polygon as the shade line. There are certain
polygons that cannot be shaded properly. See RESTRICTIONS.

POLYGC also draws a polygon, but its arguments are the number of
sides, the radius, and the angle of the radius. The current graphic
cursor location defines the location of a vertex, rather than the cen-
ter of the polygon.

POLYGX also draws a polygon, but its arguments are the number of
sides and the coordinates of one of the vertices.

BOX and RELBOX draw rectangles.
ARC, ARCC, CIRCC, CIRCLE, and CIRCXY draw arcs and circles.

RESTRICTIONS
See Section 2.5, Shading Picture Objects.

ERROR MESSAGES

1. Error Code zzo
IRGL-W-INVSIDESs invalid number of sides

means that you specified a value of less than three for the nsides
argument. (More than 35 is, by RGL/11 definition, a circle.)

PROGRAM EXAMPLE
none

RGL/11 Subroutines 5-75

POLYGX

PURPOSE

POLYGX draws a regular polygon according to the number of sides
and vertex location you specify. The current graphic cursor location
defines the center of the polygon. POLYGX starts drawing at the
vertex location you specify.

After the polygon is drawn, the graphic cursor is again at its start-
ing location, the center of the polygon. See Figure 5-28.

Figure 5-28: Picture Illustrating a POLYGX Call

current cursor
position

user—specified T
coordinates (x,y) e

FORM
POLYGX (nsides, x, y)
ARGUMENT DESCRIPTION
nsides is an integer expression that defines the number of

sides of the polygon. The value for the argument
must be greater than two.

xand y are floating point expressions that define in world
coordinates the location of one of the vertices of the

polygon.

EXAMPLE

POLYGX (3 300,00, 400.0)

draws an equilateral triangle with one vertex at location (300.,
400.).

RELATED SUBROUTINES

SLNPAT determines the line pattern.

SSHADE shades the space enclosed by a non-rotated polygon if you
specify the center of the polygon as the shade line. See
RESTRICTIONS.

POLYGN also draws a polygon, but its arguments are the number of
sides and the radius.

5-76 RGL/11 Subroutines

POLYGX

POLYGC also draws a polygon, but its arguments are the number of
sides, the radius, and the angle of the radius, and it uses the current
graphic cursor location as the location of a vertex, not the center, of
the polygon.

BOX and RELBOX draw rectangles.
ARC, ARCC, CIRCC, CIRCLE, and CIRCXY draw arcs and circles.

RESTRICTIONS
See Section 2.5, Shading Picture Objects.

ERROR MESSAGES

1. Error Code zz0
ARGL-W-INVSIDES s invalid number of sides

means that you specified a value for nsides that is less than
three. (More than 35 is, by RGL/11 definition, a circle.)

PROGRAM EXAMPLE

none

RGL/11 Subroutines 5-77

POLYLN

PURPOSE
POLYLN (Poly Line) draws connected lines using data from the x
and y arrays to define the endpoints of the lines. The current

graphic cursor location is the first point on the line drawn by
POLYLN.

After the lines are drawn, the graphic cursor is left at the last
endpoint.

See Section 2.3, Drawing Graphic Objects from Data Arrays, for
more information.

FORM
POLYLN (number, xarray, yarray)
ARGUMENT DESCRIPTION '
number is an integer expression that specifies the number of
lines to draw. The value for this argument must be
less than or equal to the number of elements in the
smaller array.
xarray is an array of floating point values that specify the
x—axis coordinates for the lines to be drawn; xarray
values use world coordinates.
yarray is an array of floating point values that specify the
y—axis coordinates for the lines to be drawn; yarray
values use world coordinates.
EXAMPLE

POLYLN (20 XDATA» YDATA)

draws twenty lines. The x and y coordinates of the endpoints of the
lines are in the arrays XDATA and YDATA.

RELATED SUBROUTINES
SLNPAT determines the line pattern.

RELPLN also draws connected lines from X and Y .arrays, but it
requires that the data specify the x— and y—distances from the cur-
rent graphic cursor location.

LINE and RELLIN alse draw connected lines, but these subroutines
draw only one line each time they are called.

RESTRICTIONS
The number argument must be less than or equal to the number of
elements in the smaller of the two arrays, xarray and yarray. If it is
larger, the resultant graphic object is indeterminate.

5-78 RGL/11 Subroutines

POLYLN

ERROR MESSAGES

1. Error Code 340
ARGL-W-INUNUMEL s ‘x’-is an invalid number of elements
means that you specified a value for the number argument that
was zero or negative. POLYLN immediately returns control to
the calling program.
PROGRAM EXAMPLE

The following program draws a 5-sided figure (see Figure 5-29).

aoaon

DIMENSION xdata (5): vdata (5)
DATA xdata /B00, 500,300,200, 400,/
DATA vdata /300,400,300, 200,200,/

Initialize VYTI25 and draw a box around the screen.
CALL INITGR(3)
CALL CLRSCR
CALL CLRTXT
CALL SWINDD (0O, 0, ,1000,,6825,)
CALL BOX (0.50,,1000,+625,)

Move to the final x+v coords, in the XDATA and YDATA
arrays. This is done to close the fidure drawn by POLYLN,
CALL MOVE (400, ,200,)
CALL POLYLN (Ssxdatasvdata)

END

Figure 5-29: Picture Illustrating a POLYLN Call

xf;ff \\
- AN
~ S
/ "
_-"F-P !

RGL/11 Subroutines 5-79

PPOINT

PURPOSE
PPOINT (Plot Point) plots a single data point. It plots with respect
to either linear or logarithmic graph paper, using one or more
y—axes. It can use any marker you specify to mark the data point.

See Section 3.8.2, Interactive Data Plotting, for more information.

FORM
PPOINT (x, y, {'yaxis’}, {marker})

ARGUMENT DESCRIPTION
x and y are floating—point expressions that specify the x and
y coordinates of the point to be plotted.

‘yaxis’ is an optional single—character string expression
that specifies the y—axis PPOINT will use. Valid ar-
guments are ‘L’ (for left y—axis) or ‘R’ (for right
y—axis). Its default value is conditional on which
y—axis (axes) is scaled:

e If only the right y—axis is scaled, the default is ‘R’
and the program continues.

e If only the left y—axis is scaled, the default is ‘L’
and the program continues.

e If both left and right are scaled, the default is ‘L’
and the program continues.

o If neither one is scaled, the default is ‘L, error 650
(axis not scaled) is invoked, and control returns to
the calling program.

marker is an optional integer expression that specifies the
marker to be used to display the point. There are 11
markers, 0 through 10; refer to the marker code
listed in the MARKER subroutine for the list of
markers. The default is 0, a dot.

EXAMPLE

PPOINT (3.2:+3.44+'R" 1)

plots a point marked by a square at x—coordinate 3.2, y—coordinate
5.4. The y—coordinate refers to the right y—axis.

RELATED SUBROUTINES
DPAPER creates the grid to plot data on.

LNAXIS assigns a set of numeric values to the cell divisions of an
axis and labels the cell divisions with those values. It also gives the
entire axis a label that identifies its purpose.

5-80 RGL/11 Subroutines

PPOINT

LTAXIS assigns a set of numeric values to the cell divisions of a
graph’s top or bottom x—axis or left or right y—axis, and displays a
text label at each cell boundary. It also labels the axis as a whole.

PDATA maps data arrays into rectangular coordinates .and plots
them on the graph paper you specitfy.

SCOLOR controls the drawing color PPOINT uses.

RESTRICTIONS
You must scale the x— and y—axes before you call PPOINT. You can
do this either (1) by calling DPAPER and then either LTAXIS or
LNAXIS, or (2) by calling PDATA.

If you want to change the drawing color PPOINT will use for the
marker, you must precede a call to PPOINT with a SCOLOR call.
You can use only color numbers 2 and 3 for setting the color. Color
numbers 0 and 1 are used for the screen color and the grid lines,
respectively. If you use 0 or 1, you alter the screen or grid colors.

ERROR MESSAGES

1. Error Code 270
YROGL-W-BADMARKER s ‘X’ isnot avalid marKer

means that you specified a value for the marker argument that
was not from 0 through 10. When this error occurs, the argu-
ment assumes the default value and the program continues.

2. Error Code 600
WRGL-W-AIDy ‘%’ is an invalid axis identifier

means that you specified a value for the yaxis argument that
was not “L” or “R,” or that did not match the axisid argument of
the LNAXIS subroutine. When this error occurs, the argument
assumes the default value and the program continues.

3. Error Code 640
ZRGL-W-XNS s ¥ axis has not been scaled

means that you established the type of graph with a call to
DPAPER but did not call LNAXIS, LTAXIS, or PDATA to scale
the x—axis. When this error occurs, PPOINT returns control to
the calling program.

4. Error Code 650
YROGL-W-YNGS s ¥ axis has not been scaled

means that you called DPAPER but you did not call either
LNAXIS or PDATA to scale the y—axis. When this error occurs,
PPOINT returns control to the calling program.

RGL/11 Subroutines 5-81

PPOINT

5. Error Code 740
ARGL-W-NPL s+ logarithm of non-rositive number

means the value for either the x or y argument was non—positive
and was to be used on a logarithmic axis. When this error oc-
curs, it does not interrupt the data plotting sequence. However,
the point will not be plotted.

6. Error Code 750
ZRGL-W-NOPAPER s no grarh parer has been drawn

means that you did not call DPAPER or PDATA before calling
PPOINT. The call is ignored and control returns to the calling
program.

PROGRAM EXAMPLE
The following program fragment creates a piece of 4—cycle semi-log
graph paper and plots three data points on it. See Figure 5-30.
Other examples of PPOINT calls are in the LFREE and LFIXED
Program Example sections.

CALL DPAPER ('LIN‘s4,:2,+'LOG" 4,5, 'GRAYZ)

CALL LNAXIS ('XB’,'EXPONENTS OF BASE 10/ 40,5, +,TRUE.)
CALL LNAXIS ('YL, 'POWERS OF BASE 10,1, 41000, »,TRUE,)
CALL PPOINT (14410, 4/L7 1)

CALL PPOINT (2,100, 4+°L" 1)

CALL PPOINT (341000, ,°L" 1)

Figure 5-30: Graph Illustrating PPOINT Calls

10000.

g
|
o
|

109, -] -

-
S
::I H
a
|

POWERS OF BASE 1@

L : | ; |
1.25 2.5 3.75

[y
.

®

w

EXPONENTS OF BASE 10

5-82 RGL/11 Subroutines

PURPOSE

RELBOX

RELBOX (Relative Box) draws a box according to the width and
height you specify and beginning at the current graphic cursor loca-
tion. You can determine the orientation of the box in relation to the
current graphic cursor location by specifying positive or negative
values for the width and height.

After the box is drawn, the graphic cursor is again at its original

location.

FORM

RELBOX (dx, dy)
ARGUMENT DESCRIPTION

dx and dy

Figure 5-31:

are floating point expressions; dx, the width of the
box, is the distance along the x—axis from the current
graphic cursor location, and dy, the height, is the
distance along the y-—axis. These arguments use
world coordinates; they can be positive or negative.
The sign of each value determines the starting cor-
ner of the box.

When dx is a positive number, the line is drawn to
the right of the starting location; when the width is a
negative number, the line is drawn to the left. When
the height, dy, is a positive number, the line is
drawn upward from the end of the dx line; when it is
negative, the line is drawn downward. Thus, given
any cursor location, there are four different direc-
tions from which you can draw the box. Figure 5-31
shows the possible starting corners of the boxes. The
SWINDO subroutine was first called with the follow-
ing arguments: (0.,0.,1000.,625.).

IMlustration of RELBOX Calls

x marks the starting corners

dx =200 dx =-200
dy=-200 dy=-200
dx =200 dx=-200
dy =200 dy =200

MR-$-2233-82

RGL/11 Subroutines 5-83

RELBOX

EXAMPLE

RELBOX (-100.0, 200,0)

draws a box that has the current graphic cursor location as the
lower right corner of the box, and leaves it there after completing
the drawing. The box is 100 units wide and 200 units high.

RELATED SUBROUTINES .
SLNPAT determines the line pattern.

BOX also draws a box, but its arguments are the coordinates for two
diagonally opposite corners of the box.

RESTRICTIONS
none

ERROR MESSAGES
none

PROGRAM EXAMPLE
The following program fragment sets the window, moves the graphic
cursor to location (500., 500.), and draws a box that has that location
as its upper right corner and has sides 200 units long. After the box
is drawn, the graphic cursor is left at location (500., 500.).

CALL SWINDD (0,04 0,0, 1000,0, B25,0)
CALL MOVE (3500.0, 300.,0)
CALL RELBOX (-200.,0, -200.0)

5-84 RGL/11 Subroutines

RELLIN

PURPOSE
RELLIN (Relative Line) draws a line from the current graphic cur-
sor location to a point determined by the x— and y—distances you

supply.
RELLIN leaves the graphic cursor at the end cf the line it draws.

FORM
RELLIN (dx, dy)

ARGUMENT DESCRIPTION
dx and dy are floating point expressions that define the x— and
y—distances in world coordinates from the current
graphic cursor location to the endpoint of the line.

EXAMPLE

RELLIN (200,0, 125.,0)

draws a line from the current graphic cursor location to a location
that is 200 units away in the x—direction and 125 units away in the
y—direction.

RELATED SUBROUTINES
SLNPAT determines the line pattern.

LINE also draws a line, but its arguments are the x and y coordi-
nates of the endpoint of the line, rather than the x— and y—distance
from the current graphic cursor location.

RESTRICTIONS

none

ERROR MESSAGES
none

PROGRAM EXAMPLE
The following program sets the window, moves the graphic cursor to
location (200., 200.), and draws a line that is 150 units in the
x—direction and 100 units in the y—direction. The graphic cursor is
left at location (350., 300.). Markers are placed at the beginning and
end of the line. See Figure 5-32.

C Initialize UT125 and draw a box around the screen.,
CALL INITGR (3)
CALL CLRSCR
CALL CLRTXT
CALL SWINDO (0.0, 1000, ,6825,)
CALL BOX (0.0, 41000,,B25,)
C
C Moue to the start of the line and draw an "X’
CALL MOVE (200, ,200,)
CALL MARKER (5+34)

RGL/11 Subroutines 5-85

RELLIN

C Nowcall RELLIN to draw a line and then draw a
C box at the final cursor location.

CALL RELLIN (130, ,100,)

CALL MARKER (1,350, :300,)

END

Figure 5-32: Illustration of a RELLIN Call

5-86 RGL/11 Subroutines

RELMKR

PURPOSE
RELMKR (Relative Marker) displays a marker at the distance you
specify from the current graphic cursor location. The location you
specify is where the marker’s center is displayed. The default
marker is a dot, marker number 0.

After the marker is displayed, RELMKR leaves the graphic cursor
at the center of the marker.

FORM
RELMKR ({number}, dx, dy)
ARGUMENT DESCRIPTION
number is an optional argument,; it is an integer expression
that identifies the marker you want to display. If you
do not specify a number, RELMKR uses the default
marker, number 0, a dot. There are eleven markers,
whose numbers range from 0 to 10. They are the
same as listed in Table 5-3 in the MARKER
subroutine:
0 — point
1 — square
2 — octagon
3 — triangle
4 — cross
5 — X
6 — Y
7 — diamond
8 — arrowhead
9 — hourglass
10 — point within a circle
dx and dy are floating point expressions that define the x and y
distances in world coordinates from the current
graphic cursor location to the location where the
marker is to be displayed.
EXAMPLE

RELMKR (24 10,04 20.,0)

displays an octagon that is 10 units in the x—direction and 20 units
in the y-direction from the current graphic cursor location. The
graphic cursor is left at the specified location.

RELATED SUBROUTINES
MARKER also displays a marker, but it displays it either at the
current graphic cursor location or at an absolute location you
specify.

PPOINT plots individual points on a graph using a specified
marker.

RGL/11 Subroutines 5-87

RELMKR

RESTRICTIONS
none

ERROR MESSAGES

1. Error Code 270
ARGL-W-BADMARKER + % is not avalid marKer

means that you specified a marker number that is less than 0 or
more than 10. RELMKR defaults to a marker number of 0, a dot,
and continues.

PROGRAM EXAMPLE
The following program draws a line across the screen, then places a

marker 20 units away in the x direction from the end of the line. See
Figure 5-33.

C Initialize UYT125 and draw a box around the screen.
CALL INITGR (3)
CALL CLRSCR
CaLl CLRTHT
CALL SWINDO (0, 0,,1000,0,625,)
CALL BOX (0,40, ,1000,B25,)

Draw a line from 100, ,400 to 300,400, then draw
a box twenty world coordinates away from the
line in the x direction using RELMKR.

CALL MOVE (100, ,400,)

CALL LINE (300.,,400,)

CALL RELMKR (1:20.,40,)

oooon

END

Figure 5-33: Picture Illustrating a RELMKR Call

5-88 RGL/11 Subroutines

RELMOV

PURPOSE
RELMOYV (Relative Move) moves the graphic cursor by the specified
x— and y—distances from its current location. RELMOV does not
draw a graphic object of any kind.

FORM
RELMOV (dx, dy)
ARGUMENT DESCRIPTION
dx and dy are floating point expressions that define the dis-
tance in world coordinates for the graphic cursor to
move from its current location. You can use either
positive or negative values.
EXAMPLE

RELMOY (100,0, 150.,0)

moves the graphic cursor 100 units in the x—direction and 150 units
in the y—direction from its current location.

RELATED SUBROUTINES
MOVE also moves the graphic cursor, but to an absolute location.

RESTRICTIONS

none

ERROR MESSAGES

none

PROGRAM EXAMPLE
none

RGL/11 Subroutines 5-89

RELPLN

PURPOSE
RELPLN (Relative Poly Line) draws connected lines using data
from dxarrays and dyarrays to define the x— and y—distances of the

lines. The current location of the graphic cursor is the location of the
first point RELPLN draws from.

RELPLN leaves the graphic cursor at the end of the last line.

FORM
RELPLN (number, dxarray, dyarray)
ARGUMENT DESCRIPTION
number is an integer expression that specifies the number of
lines to draw. This argument must be less than or
equal to the number of elements in the smaller
array.
dxarray is an array of floating point values that specify the
x—distances of the line lengths in world coordinates.
dyarray is an array of floating point values that specify the
y—distances of the line lengths in world coordinates.
EXAMPLE

RELPLN (20, DXDATA: DYDATA)

draws 20 lines. The x and y distances of the lines are defined in
arrays called DXDATA and DYDATA. See Figure 5-34.

Figure 5-34: Picture Illustrating a RELPLN Call

AWM

5-90 RGL/11 Subroutines

RELPLN

RELATED SUBROUTINES
SLNPAT determines the line pattern.

POLYLN also draws connected lines using coordinates in xarrays
and yarrays, but the data specifies the endpoints of the lines instead
of the lengths.

LINE and RELLIN draw lines, but they draw only one line each
time they are called.

RESTRICTIONS
The number argument must be less than or equal to the number of
elements in the smaller array. If it is larger, the resultant graphic
object is indeterminate.

ERROR MESSAGES
1. Error Code 340
YRGL-W-INUNUMEL » ‘%’ is an invalid number of elements

means that you specified a value for the number argument that
was zero or negative. RELPLN immediately returns control to
the calling program.

PROGRAM EXAMPLE
The following program sets the window, moves the graphic cursor to
where the graphic object will start, and draws a triangle. The
graphic cursor is left at location (100.,100.). See Figure 5-35.

DIMENSION dxdata (3)s dvdata (3)

C
C Notice that x coordinates and the v coordinates
C in DXDATA and DYDATA add up to zeros, This ensures
C aclosed fidure.
DATA dxdata /100,100, 0./
DATA dyvdata /0,100, -100,/
C
C Initialize UTL125 and draw a box around the screen.
CALL INITGR (3)
CALL CLRSCR
CALL CLRTXT
CALL SWINDD (0.0, 1000, B25.)
CALL BOX (0,0, +1000,:625.)
C
C Move to where we want one of the triandle’s vertices:
C draw an ‘¥’ then use RELPLN to draw the triandle.
CALL MOVE (100, ,100,)
CALL MARKER (53 :)
CALL RELPLN (3sdxdatasdvdata)
C

END

RGL/11 Subroutines 5-91

RELPLN

Figure 5-35: Picture Illustrating a RELPLN Call

5-92 RGL/11 Subroutines

SCHRST

PURPOSE

Creek. Equivalences in the English Character Set and in ASCII Code

g A 10 by W 127) . 153)) 951
B B @2 8 X 130 b 1 154 + ® 0B
T ¢ 103 0 060 vy m 1585 + + 953
4 D 104 1 1 06l f n 156 , ’ 054
[E 165 2 2 9e2 6 o 187 - - 058
7 F 106 3 3 063 TP 160 . . 056
B 6 107 4 4 064 P q 164 /7 087
g H 119 5 5 065 g r 162 : : a7z
I I 111 6 6 266 T 5 163 ; H 973
¥ J 142 T 7 067 y ot 164 { < 074
A K443 § 8 070 ¢ u 165 = = @975
BL 114] 9 o X v 166) > Q76
N M 115 q4 a 144 ’ w 167 ? ? 977
5 N 6 p b 142 ¥ X 170 @ e 100
g © 117 Y ¢ 143 ! ! 041 ' ‘ 174
I P 120 i d 144 e 42 I [133
P 8 12 13 e 145 LI | 943 AN 134
y R 122 i f 146 F 08 044 1 1 135
T S 123 g 147 A % 045 4 A 136
TT 124] h 150 g & 048

) U 128 L i 154 ! ! 047

X Vv 126 K J 162 ({ 050

SCHRST (Set Character Set) invokes a character set for writing all
subsequent graphic text, that is, for text generated by TEXT,
LINETX, LNAXIS, LTAXIS, and PDATA calls. In addition to the
standard character set resident in your terminal, RGL/11 provides a
Greek character set on your distribution volume, in a file named
GREEK.FNT. '

To access the characters in GREEK.FNT, you can use the corre-
sponding English character or the ASCII code for that character.
Table 5-2 lists the characters in GREEK.FNT and their

equivalences.

Table 5-2: Greek Equivalences in the English Character Set
and in ASCII Code

The standard set in the terminal is invoked by the INITGR call,
which should be the first call in every graphic program, or by the
SCHRST call. Since the standard set always resides in the terminal,
it does not need to be loaded. However, to invoke any other charac-
ter set, you must first load it with a call to LCHRST before calling
SCHRST to make it the current writing text.

FORM

SCHRST (number)

ARGUMENT DESCRIPTION

number is an integer expression that specifies the number of
the character set to be used: 0, the standard English
character set, or 1, for the alternate character set.

RGL/11 Subroutines 5-93

SCHRST

EXAMPLE

SCHRST (0}

invokes character set 0, the standard character set. Any graphic text
displayed on the screen after this call is written in the standard
character set.

SCHRST (1)

invokes the alternate character set previously loaded by a LCHRST
call. Any graphic text displayed on the screen after this call is writ-
ten in that character set.

RELATED SUBROUTINES

LCHRST loads the character definitions from a file into the alter-
nate character set in the terminal’s memory.

LINETX, TEXT, LNAXIS, LTAXIS, PDATA, and SSHADE are the
subroutines that use the character set that LCHRST loads and
SCHRST invokes.

RESTRICTIONS

none

ERROR MESSAGES

1. Error Code 150
YRGL-W-INVCHARSET ¢+ number is not avalid character set

means that the character set number you specified is less than 0
or greater than 1. SCHRST supplies 0, the default, and the pro-
gram continues.

2. Error Code 330
ZRGL-W-NOCHARSET s character set ‘X’ has not been loaded

means that you are trying to invoke a character set that has not
been loaded. RGL/11 assumes you wanted to invoke a character
set that was loaded previously. The result will depend on your
programs. If a character set was loaded in a previous program,
RGL/11 uses that set and continues. If one was not, RGL/11 does
not load one; therefore there will be no character set to use,
blank text will be printed.

PROGRAM EXAMPLE

The following program fragment loads the Greek character set in-
cluded on your distribution volume into alternate character set 1 in
the terminal’s memory using the current default LUN, and causes
five characters of the set to be displayed.

CALL LCHRST (1, 'GREEK.FNT')
CALL SCHRST (1)
CALL TEXT (‘abede’)

5-94 RGL/11 Subroutines

SCOLOR

PURPOSE
SCOLOR (Set Color) associates a color name with a color number
and establishes the current drawing color number. Color number 0
controls the screen color; color numbers 1, 2, and 3 control the cur-
rent drawing color. Color names GRAYO, GRAY1l, GRAYZ2 or
GRAY3 can be associated with any color number. These four colors
appear on a color monitor as black, blue, red, and green respectively.

If you specify color number 1, 2, or 3, and any color name, all objects
you subsequently draw are displayed in that color, and all objects
previously written with that color number are now displayed in the
color you specified, regardless of their previous color.

If you specify color number 0 and any color name, the screen color
immediately changes to the color you specified, and the drawing
color is also that color name (so objects would appear invisible un-
less you immediately change the drawing color). It is not recom-
mended to change the screen color until you are completely familiar
with the SCOLOR and SWMODE subroutines.

When you follow recommended procedure and call INITGR at the
beginning of each program, INITGR makes the following assign-
ments for the VT125 screen. INITGR makes the screen color
GRAYO, color number 1, GRAY1, 2, GRAYZ2, and 3, GRAY3. It also
enables color number 3 as the current drawing color. If you do not
call INITGR, the screen and drawing colors are indeterminate.

See Section 2.10, Selecting Gray Shades or Color, for more
information.

FORM
SCOLOR ({'name’}, number)

ARGUMENT DESCRIPTION
name is an optional string expression that defines the color
name. Valid names are GRAY0, GRAY1, GRAY2,
and GRAY3. They are displayed on black—and—white
and color monitors as follows:

Valid Black—and—White Color
Names Monitor Monitor
GRAYO black black
GRAY1 dark gray blue
GRAY2 light gray red
GRAY3 white green

If you do not specify a name, the color name last
associated with the color number is retained.

RGL/11 Subroutines 5-95

SCOLOR

5-96

number

EXAMPLE

is an integer expression that represents a logical
color number. The number argument indicates which
number in the terminal’s memory is to be loaded and
used as the drawing color number for subsequent
calls.

When you associate a new color name with a color
number used in previous drawings, all objects drawn
with that color number change to the new color name
now associated with it. For example, if a box was
drawn in GRAY1 when it was paired with number 2,
a new SCOLOR call that paired GRAY3 with num-
ber 2 would change the box to GRAY3.

An argument of 0 affects both the background color
and the drawing color; you should usually restrict
the argument to 1, 2, or 3.

CALL SCOLOR (‘GRAYZ ', 1)

associates GRAY2 with logical color 1 and immediately changes all
graphic objects that were drawn with color number 1 to the shade
GRAYZ2. In addition, the writing color for subsequent drawing is set
to GRAY2. If you have a color monitor, the objects are displayed

in red.

‘RELATED SUBROUTINES
Data plotting subroutines have arguments to define the drawing
color; they are DPAPER, PDATA, and PPOINT.

RESTRICTIONS

none

ERROR MESSAGES

1. Error Code 010
ZRGL-W-CNF s color ‘%’ not found

means that you misspelled the color name or referenced a
non—existent color name. SCOLOR defaults to the current draw-
ing color, associates that color with the color number specified,
and the program continues.

PROGRAM EXAMPLE
The following program fragment sets the window, sets the drawing
color, and then draws a line.

CALL SWINDO (0.0 0,0, 1000,05 B25,0)
CALL SCOLOR ('GRAY3’ s 1)
CALL MOVE (100,04 100,0)
CALL LINE (250,0, 300,0)

RGL/11 Subroutines

SDEBUG

PURPOSE
SDEBUG (Set Debug) directs the RGL/11 subroutines to display
error messages on the terminal. It is the initial default, so you need
to call it only if you want to cancel a previous call to SNDBUG.

FORM
SDEBUG

ARGUMENT DESCRIPTION

none

EXAMPLE
SDEBUG

RELATED SUBROUTINES
SNDBUG prevents RGL/11 subroutines from displaying error
messages.

GETSTA returns a value, an error code, in its istat argument
whether or not an error message is displayed on the screen. You can
read this value any time you want to see if an error occurred. For
example, you may want to call GETSTA if the program is operating
in a set-no—debug mode, after a subroutine call, to see what the last
error was. After the istat argument has been read, GETSTA returns
it to “001, the code for an error—free condition.

RESTRICTIONS

none

ERROR MESSAGES

none

PROGRAM EXAMPLE
none

RGL/11 Subroutines 5-97

SDGREE

PURPOSE
SDGREE (Set Degree) causes angle arguments to be interpreted in
degrees, rather than radians. The initial default is to treat angle
arguments as radians.

FORM
SDGREE

ARGUMENT DESCRIPTION

none

EXAMPLE
SDGREE

RELATED SUBROUTINES
SRADNS causes angle arguments to be interpreted in radians.

ARC, ARCC, CIRCC, and POLYGC take angle arguments.

RESTRICTIONS
none

ERROR MESSAGES
none

PROGRAM EXAMPLE
none

5-98 RGL/11 Subroutines

SLNPAT

PURPOSE
SLNPAT (Set Line Pattern) sets the pattern for lines in any subse-
quent picture objects. There are ten patterns. You can specify a mul-
tiplier with each one to lengthen the pattern.

You can change the line pattern as often as you want by making
repeated calls to SLNPAT.

The initial default for SLNPAT is 1, a solid line.
See Section 2.4, Changing the Line Pattern, for more information.

FORM
SLNPAT ({number}, {mult})

ARGUMENT DESCRIPTION
number is an optional integer expression that defines the line
pattern. Valid line pattern numbers range from 0
through 9. The default is 1, a solid line. The numbers
and the patterns they represent are:

Table 5-4: Line Patterns and Their Identifying Numbers

SLNPAT Line Patterns

Pattern Nuwber @ (an invisible line)
Pattern Number § — — —
Pattern Nuwber 2 —~ - -~~~ 7=~
Pattern Number 3 === = = oo
Pattern Number 4 s
Pattern Number § <~ = —=momo .
Pattern Number 6 ~-"-"-"trtocteete
Pattern Number 7

Pattern Number 8

Pattern Number & -~~~ ===~

mult is an optional argument; it is an integer expression
that defines the pattern multiplier. Valid values
range from 2 through 9. The default value is 2.

EXAMPLE
SLNPAT (3, 4)

draws subsequent picture objects in line pattern 3, a dot—dash line.
Each element — the dot, dash, and space between — is enlarged to
four times its regular size before the pattern is repeated.

SLNPAT (1)

draws picture objects in line pattern 1, a solid line. The pattern
multiplier is 2 by default.

RGL/11 Subroutines 5-99

SLNPAT

RELATED SUBROUTINES
SSHADE shades with the current line pattern or a shade character.

ARC, ARCC, BOX, CIRCC, CIRCLE, CIRCXY, LINE, POLYGC,
POLYGN, POLYGX, POLYLN, RELBOX, RELLIN, RELPLN, use
the line pattern.

Among the data plotting subroutines, PDATA has an argument that
defines the line pattern, using the same numbers as in the Line
Pattern Chart.

RESTRICTIONS
none

ERROR MESSAGES

1. Error Code =00
ARGL-W-INVLINEs ‘%’ isnot avalid line pattern

means that you specified a line pattern that is outside the range
of 0 through 9 or a pattern multiplier outside the range of 2
through 9. RGL/11 defaults to a line pattern of 1 and a multi-
plier of 2 and continues.

PROGRAM EXAMPLE
The following program fragment sets the window, sets the line pat-
tern to pattern 2 (a pattern of dashes), and draws a line from loca-
tion (200., 200.) to location (100., 100.).

CALL SWINDO (0.0 0.0 1000,0, B25,0)
CALL SLNPAT (24

CALL MOVE (200.,0, 200,0)

CALL LINE (100,05 100,0)

5-100 RGL/11 Subroutines

SNDBUG

PURPOSE
SNDBUG (Set Nodebug) prevents RGL/11 subroutines from display-
ing error messages on the terminal. SDEBUG is the initial default,
so you need to call SNDBUG only if you want to stop the displaying
of error messages.

FORM
SNDBUG
ARGUMENT DESCRIPTION

none

EXAMPLE
SNDBUG

RELATED SUBROUTINES
SDEBUG directs the RGL/11 subroutines to display error messages
on the terminal. '

GETSTA returns a value, an error code, in its istat argument,
whether or not error messages are displayed on the screen. You can
read this value any time you want to see if an error occurred during
the time frame you are interested in. For example, you may want to
call GETSTA after a subroutine call to see what the state of the last
error was. After the istat argument has been returned, GETSTA
returns it to “001, the code for an error—free condition.

RESTRICTIONS

none

ERROR MESSAGES
none

PROGRAM EXAMPLE
none

RGL/11 Subroutines 5-101

SNSHAD

PURPOSE
SNSHAD (Set No Shade) turns off the shading that you specified
with a call to SSHADE. The initial default is to have shading turned

off, so you do not have to call SNSHAD unless you want to cancel a
call to SSHADE.

FORM
SNSHAD

ARGUMENT DESCRIPTION
none

EXAMPLE
SNSHAD

RELATED SUBROUTINES
SSHADE lets you shade picture objects.

RESTRICTIONS
none

ERROR MESSAGES

none

PROGRAM EXAMPLE
none

5-102 RGL/11 Subroutines

SRADNS

PURPOSE
SRADNS (Set Radians) causes angle arguments to be interpreted in
radians rather than degrees. The initial default is to treat angle

arguments as radians, so you need to call SRADNS only if you want
to cancel a call to SDGREE.

FORM
SRADNS

ARGUMENT DESCRIPTION
none

EXAMPLE
SRADNS

RELATED SUBROUTINES
SDGREE causes the angle arguments to be interpreted as degrees.

ARC, ARCC, CIRCC, and POLYGC take angle arguments.
RESTRICTIONS

none

ERROR MESSAGES
none

PROGRAM EXAMPLE
none

RGL/11 Subroutines 5-103

SSHADE

PURPOSE

SSHADE (Set Shade) shades the space within subsequent picture
objects to the horizontal shade line you specify. SSHADE uses either
the line pattern or character that you choose. If you want to shade a
circle, arc, or polygon, you must specify the line through the center
as the shade line. There are some figures that cannot be “filled in”
by the shading function since SSHADE does not use a “fill” algo-
rithm; rather, it shades to a shade line.

Shading stays in effect until you call SNSHAD or INITGR. The

- default condition is no shading.

See Section 2.5, Shading Picture Objects, for more information.

FORM

SSHADE ({yline}, {ipat})

ARGUMENT DESCRIPTION

yline is an optional argument,; it is a floating point expres-
sion that defines the horizontal shade line in world
coordinates. All picture objects shade to this line. If
you do not specify yline, the y—coordinate of the cur-
rent graphic cursor location is used as the default.

ipat is an optional argument; it is a byte expression that
indicates the line pattern or character to shade with.
Valid octal numbers are “1, and “40 through “176
(octal). If the value is “40 through “176, ipat uses the
character that corresponds to that ASCII value. If
you do not specify a value or if you give ipat a value
of 1, SSHADE uses the current line pattern as the
default.

EXAMPLE

SSHADE (200.,0, "100)
SSHADE (200,04 ‘")

These examples are equivalent; they shade all subsequent picture
objects to the yline of 200 using the character whose ASCII value is
an octal 100 (the @ character in the standard character set).

SSHADE (400.04)

shades all subsequent picture objects to the yline of 400, using the
current line pattern as the default.

RELATED SUBROUTINES

SLNPAT determines the current line pattern.
LCHRST and SCHRST determine the character set you shade with.
SNSHAD turns off shading.

5-104 RGL/11 Subroutines

SSHADE

RESTRICTIONS
See Section 2.5, Shading Picture Objects.

ERROR MESSAGES
1. Error Code 1&0
SRGL-W-INUSHADPAT, irpat isnot avalid shading pattern

means that you specified an octal number that is (1) less than or
equal to zero, (2) between “2 to “37, or (3) equal to or greater
than “177. SSHADE supplies the default value (the current line
pattern) and the program continues.

PROGRAM EXAMPLE
See Section 2.5, Shading Picture Objects, for programming
examples.

RGL/11 Subroutines 5-105

STXSIZ

PURPOSE

STXSIZ (Set Text Size) lets you define the size of the graphic charac-
ters that TEXT displays. After you call STXSIZ, all messages that
you write by calling TEXT are written at the specified size, until
you call STXSIZ again and give it a specification of 1, standard size,
or until an INITGR call. You can draw characters up to and includ-
ing 16 times standard size. The first twelve character sizes are illus-
trated in Figure 5-36.

Figure 5-36: Sample STXSIZ Character Sizes

H
1

HMMMMME

FORM
STXSIZ ({iwide}, {ihigh})
ARGUMENT DESCRIPTION
iwide is an optional integer expression that defines the
scale for the width of the graphic characters. Its
value is from 1 through 16; its default is 1.
ihigh is an optional argument; it is an integer expression
that defines the scale for the height of the graphic
characters. Its value is from 1 through 16. If you do
not specify a value for ihigh, it becomes the integer
nearest to 1.5 times the width or 16, whichever is
less.
EXAMPLE
STXSIZ (2,)

makes all subsequent graphic text twice the standard size.
STXSIZ (1)

returns all subsequent graphic text to the standard size.

5-106 RGL/11 Subroutines

STXSIZ

RELATED SUBROUTINES
SCHRST determines the character set for writing graphics
messages.

INITGR returns the character size to its initial default.

RESTRICTIONS
STXSIZ does not affect the size of graphic text that is written with a
call to DPAPER, LINETX, LNAXIS, LTAXIS, or PDATA.

ERROR MESSAGES

1. Error Code 170
ARGL-W-INVTEXSIZ s ‘x’ is not avalid text size

means that either iwide or ihigh is less than 0 or more than 16.
If you gave ihigh an invalid value, RGL/11 sets ihigh to 1.5
times iwide and continues. Also if you defaulted the iwide para-
meter or gave it an invalid value, RGL/11 sets iwide to 1 and
ihigh to 2 and continues.

PROGRAM EXAMPLE
The following program fragment sets the window, writes a message
at standard size, sets the character size to twice that size, and writes
a second message.

CALL SWINDD (0,0 0,0, 1000,0s B25,0)
CALL MOVE (100,0, 125,0)

CALL TEXT (’Redular size characters’)
CALL STHSIZ (2)

CALL MOVE (100,00, 200,0)

CALL TEXT (’Double size characters’)

Also see the program LABEL1 in Section 2.8, Labeling the Picture.

RGL/11 Subroutines 5-107

SWINDO

PURPOSE

SWINDO (Set Window) defines the window. The window is that
portion of your coordinate system that is displayed on the graphic
screen. The coordinates that you establish by this subroutine are
called “world coordinates.” The initial default condition sets the
coordinates to be the same as the physical screen coordinates, and
sets the origin location at the lower left of the graphic screen.

To maintain the same aspect ratio as the screen coordinates, use an
8 to 5 ratio (for example, 1000 units on the x—axis and 625 on the
y—axis). When you use the screen’s aspect ratio, units on the x—axis
and the y—axis measure equal distances, and the ARC and CIRCLE
commands create circles, not ellipses.

See Section 2.2, Defining Coordinate Systems, for more information
on how to use SWINDO.

FORM

SWINDO (xleft, ybot, xright, ytop)

ARGUMENT DESCRIPTION

xleft, ybot, xright, ytop are floating point expressions that define
the edges of the window in world
coordinates:

e xleft is the left edge of the window.

e ybot is the bottom of the window.

e xright is the right edge of the window.
e ytop is the top of the window.

EXAMPLE

SWINDO (0.0, 0.0, 1000,0 B25.,0)

establishes a window that retains the aspect ratio and puts the ori-
gin in the lower left corner.

RELATED SUBROUTINES

INITGR resets the window coordinates to their initial default
values.

RESTRICTIONS

The width and height of your window should be proportionate to the
aspect ratio of the screen. Otherwise your picture will be distorted.

If you use SWINDO to window in on a very small part of a picture,
unexpected results may occur. To avoid this problem, do not make
the x—axis of the new window any smaller than one—twentieth of the
x—axis of the original window, and do not make the y—axis any
smaller than one-thirtienth of the original y—axis. Suppose you

5-108 RGL/11 Subroutines

SWINDO

draw a picture in which there is a box in the lower left corner and a
box in the upper right corner. Then you reduce the size of the win-
dow beyond the ratios mentioned above and redraw the entire im-
age, including those elements outside the window. You will be
requiring the graphic cursor to make such large moves that it will
exceed the capabilities of the terminal. The picture will “wrap
around” and may draw lines in unexpected locations.

ERROR MESSAGES

1. Error Code 100
ARGL-W-INVWINCOORD s invalid window coordinates

means that xleft is equal to xright or that ybot is equal to ytop.
The call is ignored and the previous coordinate system remains
in effect.

PROGRAM EXAMPLE
The following program sets the window, draws a box, resets the
window, and redraws the same box. See Figure 5-37.

C Initialize YT125 and draw a box and a title on the screen.
CALL INITGR (3)
CALL CLRSCR
CALL CLRTXT
CALL BOX (0, 40,3767, +479.)
CALL LINETX(2+2'Two identical boxes with different windows.,’)

C Nowcall SWINDO and draw and label a box.
CALL SWINDD (0, 40,500, +300,)
CALL BOX (100,100, ,180,:180.)
CALL MOVE (180, 4+180.)
CALL TEXT (/ This box was drawn with a window of
1 (040,500, +300,)7)

an

CALL SWINDO for a different window but draw the same box.
CALL SWINDO (O, G, #1500, :800.)
CALL BOX (100, +100, 4180, :180.)
CALL MOVE (180, ,180,)
CALL TEXT (’ This box was drawn with a window of
1 (0,40, 1300.,,900,)7)

END

RGL/11 Subroutines 5-109

SWINDO

Figure 5-37: Illustrations of SWINDO Calls

Teo identical box

This box was drawn with a window of (@.,0.,500.,308.)

! { This box was drawn with a window of (9.,0.,1500.,900.)

5-110 RGL/11 Subroutines

SWMODE

PURPOSE
SWMODE (Set Writing Mode) enables you to draw graphic objects
in overlay, replace, or complement mode, to erase them, or to display
them in reverse mode.

The overlay mode with the reverse writing turned off is the initial
default. It is established as the default mode when you call the
INITGR subroutine. (INITGR must be the first RGL/11 subroutine
call in every program in order to set all the terminal’s attributes to
known values.) A writing mode remains in effect until changed by
another SWMODE, or by an INITGR call.

Refer to Section 2.9, Using Writing Modes, for more information on
how to use the SWMODE subroutine.

Figure 5-38: Examples of Overlay, Replace, and Complement
Modes

LA S A A '

£ KHHRKLANN
NN
17 7R
NN

TR

;;;;;

FORM
SWMODE (‘mode’)
ARGUMENT DESCRIPTION

‘mode’ is a two—character string expression that defines the
writing mode:

‘CO’ draws graphic objects in complement mode. All sub-
sequent graphic objects are drawn in complement
mode until you call SWMODE again and enable ei-
ther the overlay, replace, or erase writing mode or
until you call INITGR.

‘ER’ draws graphic objects in erase mode. All subsequent

graphic objects are drawn in erase mode until you
call INITGR or SWMODE again and enable either
the overlay, complement, or replace writing mode.

RGL/11 Subroutines 5-111

SWMODE

IN’ enables you to reproduce the initial writing mode de-
faults in one step, not two; that is, it establishes
overlay mode with reverse writing turned off as the
current writing mode.

‘NR’ cancels the reverse writing mode.

oV’ draws graphic objects in overlay mode. All subse-
quent graphic objects are drawn in overlay mode un-
til you call SWMODE again and enable either the
complement, replace, or erase writing mode.

‘RE’ draws graphic objects in replace mode. All subse-
quent graphic objects are drawn in replace mode un-
til you call INITGR or SWMODE again and enable
either the overlay, complement, or erase writing
mode.

‘RV’ writes graphic objects in reverse. What would nor-
mally be displayed as the screen color is displayed as
the drawing color, and vice versa. Reverse mode can
be used in combination with either the overlay, re-
place, complement, or erase writing modes (by issu-
ing two consecutive calls to SWMODE). Reverse
writing mode stays in effect until you call INITGR or
SWMODE again and enable no-reverse mode.

EXAMPLE
SWMODE (’0V)

sets the writing mode to overlay mode.

RELATED SUBROUTINES
none

RESTRICTIONS
You can specify only one writing mode each time you call
SWMODE. For example, if you want reverse and overlay writing
modes to be in effect simultaneously, you must call SWMODE two
times before drawing any graphic objects.

ERROR MESSAGES
1. Error Code 210
“RGL-W-INVMODE:s ‘%’ is not avalidwriting mode

means that you misspelled the writing mode or specified an un-
defined writing mode. The call is ignored and the current writ-
ing mode continues.

PROGRAM EXAMPLE
See Section 2.9, Using Writing Modes, for examples.

5-112 RGL/11 Subroutines

TEXT

PURPOSE ‘
TEXT displays in graphic text the message you specify, beginning at
the current graphic cursor location. TEXT uses the current writing
mode as the default writing mode, but it can use any writing mode
you establish with SWMODE. To position the TEXT starting loca-
tion where you want it, use the MOVE subroutine to move the
graphic cursor to the top left pixel of the first character to be
displayed.

After the message has been displayed, the graphic cursor is at the
end of the message, at the top right of the last character.

See Section 2.8, Labeling the Picture, for more information.

FORM
TEXT (‘string’)

ARGUMENT DESCRIPTION
‘string’ is a string expression of the message to be displayed.
The length of the string must be 80 characters or
less; any message that exceeds 80 characters is trun-
cated at the 80th character. The string is written in
the current writing mode.

If you want to display a double quotation mark
within the text string, you must pass two double quo-
tation marks (*”).

EXAMPLE

TEXT (‘Send this message”’)

displays the message

Send this message

starting at the current graphic cursor location.
TEXT (‘Say " "Hello" " /)

displays the message

Say “Hello”

starting at the current graphic cursor location.

RELATED SUBROUTINES
SCHRST determines the character set TEXT uses.

STXSIZ determines the size of the characters.
CLRSCR erases TEXT’s display.

LINETX displays a message with graphic characters, but their size
is not affected by STXSIZ calls and LINETX begins the message at a
location you specify.

RGL/11 Subroutines 5-113

TEXT
RESTRICTIONS

The message is limited to 80 characters. Any message that exceeds
80 characters is truncated at the 80th character.

To include a double quotation mark as part of the message, you
must precede it with another double quotation mark (). This is
true whether you pass the message as a string literal or as a string
variable.

ERROR MESSAGES
none

PROGRAM EXAMPLE
The following program fragment sets the window and writes a mes-
sage starting at location (100., 125.). This location represents the
upper left pixels of the first letter, “W”. See Figure 5-39.

CALL SWINDO (0.0s 0,0, 1000,0, G25.,0)

CALL MOVE (100,0, 125,0)
CALL TEXT (‘Write starting at location (100, 125,37}

Figure 5-39: Illustration of a TEXT Call

grite starting at location {188..135.;

5-114 RGL/11 Subroutines

Appendix A
Summary Of RGL/11 Subroutines

This appendix lists the RGL/11 subroutines in alphabetical order. The
braces ({ }) indicate optional arguments; parentheses and commas are al-
ways required.

ARC (angle, x, y)
Draws an arc of the specified length beginning at the specified loca-
tion. The center of the arc is at the current graphic cursor location.

ARCC (angle, x, y)
Draws an arc of the specified length beginning at the current
graphic cursor location. The center of the arc is at the specified
location. '

BOX (x1, y1, x2, y2)
Draws a box that passes through the specified diagonally opposite
corners.

CIRCC (radius, angle)
Draws a circle whose radius and angle of rotation are specified. The
circumference passes through the current graphic cursor location.

CIRCLE (radius)
Draws a circle whose radius is specified. The center is at the current
graphic cursor location.

CIRCXY (%, y)
Draws a circle whose circumference passes through the specified
location. The center is at the current graphic cursor location.

CLRSCR
Clears all objects on the graphic (VT125) screen; regular text is not
cleared.

A-2

CLRTXT
Clears all objects on the text—-mode (VT100) screen; graphic objects
are not cleared.

CPYSCR
Copies all graphic objects on the screen to the LA34-VA printer.
(Regular text is not copied.)

DPAPER ({*xaxistype’}, {xa}, {xb}, {"yaxistype’}, {ya}, {yb}, {gridcolor’})
Draws a grid on which to plot data.

GCLOSE
Closes the graphic file that was opened by a call to GSAVE.

GETLOC (x, y)
Returns the coordinates of the current location of the graphic cursor.

GETSTA (istat)
Returns the error code of the last RGL/11 error, if one has occurred;
otherwise it returns “001, the code for an error—free condition.

GLOAD (*filespec’, {LUN)}
Transmits to the terminal the commands that are stored in the spec-
ified file. The commands are in ReGIS format.

GSAVE (‘filespec’, {LUN})
Saves all subsequent graphic commands in the specified file. The
commands are saved in ReGIS format.

INITGR (LUN)
Sets all graphic attributes to their default values. INITGR uses the
LUN specified as the LUN for the input and output device. It usu-
ally uses 5, your terminal.

LCHRST (number, ‘filespec’, {LUN})
Loads a character set into the terminal from the specified file.

LFIXED (number, {xarray}, yarray, {‘yaxis’}, indexarray)
Returns the coordinates of up to ten locations on a data path of a
graph in the units of the graph’s axes.

LFREE (x, y, key, {‘'yaxis’})
Returns the coordinates of a location anywhere on a graph in the
units of the graph’s axes.

LINE (%, y)
Draws a line from the current graphic cursor location to the speci-
fied location.

LINETX (irow, icol, ‘string’)
Displays a text string of standard size at the specified row and
column.

Summary of RGL/11 Subroutines

LNAXIS (‘axisid’, {axislabel’}, {minvalue}, {maxvalue}, {exact})
Assigns numeric values to the cells (divisions) along each axis and
labels each cell boundary with that label. It also gives the specified
axis a character label that identifies its function.

LOCATE (x, y, key)
Displays a cursor that can be moved with the arrow keys on the
keyboard. Typing a non-arrow key returns the location of the
cursor.

LTAXIS (‘axisid’, {‘axislabel’}, minvalue, maxvalue, {maxchars},
{*string’})
Assigns numeric labels to the cells (divisions) of a graph’s top or
bottom x—axis and labels each cell boundary with a text label. It also
gives the specified axis a character label.

MARKER ({number}, {x}, {y})
Displays a marker at the current graphic cursor location or at the
specified location.

MOVE (x, y) ;
Moves the graphic cursor to the specified location:

PDATA (n, {xarray}, yarray, {‘yaxis’}, {‘colorname’}, {marker},
{linetype}, {smooth}, {shade}, {yvalue})
Maps the xarray and yarray data into x— and y—coordinates and
plots them on a “sheet” of graph paper.

POLYGC (nsides, radius, angle)
Draws an n—sided regular polygon with one vertex passing through
the current graphic cursor location.

POLYGN (nsides, radius)
Draws an n-sided regular polygon whose center is at the current
graphic cursor location.

POLYGX (nsides, X, y)
Draws an n-sided regular polygon with one vertex at the specified
location.

POLYLN (number, xarray, yarray)
Draws connected lines using X and Y arrays to define the endpoints.

PPOINT (x, y, {"yaxis’}, {marker}) ,
Displays a marker at the specified x,y coordinates on the graph.

RELBOX (dx, dy)
Draws a box of the specified size.

RELLIN (dx, dy) _ .
Draws a line from the current graphic cursor location to a location
whose distance is dx,dy away.

Summary of RGL/11 Subroutines A-3

A4

RELMKR ({number}, dx, dy)
Displays a marker on the screen at a location whose distance is dx,
dy from the current graphic cursor location.

RELMOYV (dx, dy)
Moves the graphic cursor to a location whose distance is dx, dy
away.

RELPLN (number, dxarray, dyarray)
Draws connected lines using dx and dy arrays to define the points
.which are to be connected.

SCHRST (number)
Selects a character set with which all subsequent graphic text is
written; the number can be 0, the standard set, or 1, the Greek set.

SCOLOR ({'name’}, n)
Sets the color attributes for the terminal.

SDEBUG
Enables the displaying of error messages on the terminal.

SDGREE
Causes angles to be interpreted as degrees rather than radians.

SLNPAT ({number}, {mult})
Selects the line pattern for subsequent picture objects.

SNDBUG
Stops all error messages from being displayed on the terminal.

SNSHAD
Turns off shading.

SRADNS
Causes angles to be interpreted as radians rather than degrees.

SSHADE ({yline}, {ipat})
Selects shading and the shade pattern.

STXSIZ ({iwide}, {ihigh})
Sets the size of text written by TEXT.

SWINDO (xleft, ybot, xright, ytop)
Defines the portion of the coordinate system that is to be displayed.

SWMODE (‘mode’)
Selects the writing mode for drawing graphic objects.

TEXT (‘string’)
Displays the text string starting at the current graphic cursor
location.

Summary of RGL/11 Subroutines

Appendix B
RGL/11 Error Messages

The initial RGL/11 error-handling procedure is to display the error mes-
sage on the screen when an error occurs in a RGL/11 subroutine and also to
set a status word indicating the status of the error. (The status word is
returned to you only if you call the GETSTA (Get Status) subroutine and
read its argument.)

The error message is displayed at the bottom of the VT100 screen in regu-
lar text, not graphic text.

Once your program is debugged, you may not want error messages dis-
played on the screen. You may prefer to handle errors by calling the
GETSTA subroutine. To stop error messages from being displayed on the
screen, use the SNDBUG (Set No Debug) subroutine.

The ISTAT argument of GETSTA always registers the code of the last
error. It is set to “001, the status of an error—free condition, by the INITGR
subroutine and by the GETSTA subroutine itself after it has returned the
current error status.

NOTE

All RGL/11 error messages are warnings; there are no fatal
error messages. However, after an error message is displayed
on the screen, you must type the RETURN key to have the
program continue.

If an error occurs when SNDBUG is in effect and the message
is not displayed, the program does not halt; however, RGL/11
continues to set the error code in the ISTAT variable.

The RGL/11 subroutines cannot protect against bad data, such as a string
that is not terminated by a null byte or integer coordinates used when
floating point coordinates are required. These conditions cannot be detected
by the subroutines and will usually cause unexpected results on the screen.

B-1

B-2

RGL/11 error messages begin “RGL-W-" to indicate that RGL/11 is the
error—handler and that the error is classed as a warning (-W-), not a fatal
error. The following list of RGL/11 errors does not include that identifica-
tion. The ¥’ in single quotes indicates a variable that the error message
replaces with the appropriate value. The code numbers are in octal
notation.

NOTE

If the program hangs in graphic mode and you use the
VT125’s SET-UP and reset keys to restart, your program
may be adversely affected.

Error
Code Message and Circumstances that Caused the Error

010 CNF, color *x’ not found
indicates that you misspelled the color name or referenced a
nonexistent color name. The current drawing color is associated
with the color number given and the program continues

Message can be generated by: DPAPER, PDATA, SCOLOR

100 INVWINCOORD, invalid window coordinates
indicates the following conditions in the call that caused the
error:

LINE You tried to move the cursor more than 32767 pixels.
MOVE The call is ignored.

SWINDO You specified either a leftmost x—value that was equal
‘ to the rightmost x—value or a bottom y—value that was
equal to the top y—value. The call is ignored; the pre-

vious coordinate system remains in effect.

Message can be generated by: LINE, MOVE, SWINDO

110 OUTRANGE, coordinates out of range
indicates that the coordinate specifications for irow and icol were
outside the number of screen lines and columns.

Message can be generated by: LINETX

150 INVCHARSET, ‘X’ is not a valid character set
indicates an attempt to select a character set that was greater
than 1 or less than 0.

Message can be generated by: LCHRST, SCHRST

160 INVSHADPAT, ‘X’ is not a valid shading pattern
indicates that you specified a value for the shade pattern that was
either (1) less than or equal to zero, (2) between “2 and “87 (octal),
or (3) greater than “127 (octal).

Message can be generated by: SSHADE

RGL/11 Error Messages

Error
Code

170

200

210

220

230

240

250

260

270

Message and Circumstances that Caused the Error

INVTEXSIZ, X’ is not a valid text size

indicates that either iwide or ihigh was less than O or greater
than 16. If you gave ihigh an invalid value, RGL/11 sets it to 1.5
times iwide and continues. If you defaulted iwide or gave it an
invalid value, RGL/11 sets iwide to 1 and ihigh to 1.5 times iwide
and continues.

Message can be generated by: STXSIZ

INVLINE, ‘¥’ is not a valid line pattern
indicates an attempt to specify a pattern multiplier that was out-

side the range of 2 through 9 or a 11ne pattern outside the range of
0 through 9.

Message can be generated by: PDATA, SLNPAT

INVMODE, ‘X’ is not a valid writing mode
indicates that you either misspelled the wrltmg mode or specified
an undefined writing mode.

Message can be generated by: SWMODE

INVSIDES, invalid number of sides
indicates an attempt to specify nsides to be less than three.

Message can be generated by: POLYGC, POLYGN, POLYGX

OPENIN, error opening ‘x’ as input
indicates an attempt to specify a file that could not be located.

Message can be generated by: GLOAD, LCHRST

OPENOUT, error opening ‘x’ as output
indicates an attempt to specify an invalid filename.

Message can be generated by: GSAVE

RER, read error on unit ‘x’
indicates an attempt to specify a file that could not be read.

Message can be generated by: GLOAD, LCHRST

WER, write error on unit ‘x’
indicates that the file or‘LUN could not be written to.

Message can be generated by: GSAVE, INITGR

BADMARKER, X’ is not a valid marker

means you specified a marker number that is less than 0 or
greater than 10. RGL/11 uses the default marker, a dot, and
continues.

Message can be generated by: MARKER, RELMKR, PDATA,
PPOINT

RGL/11 Error Messages ~ B-3

B4

Error
Code

330

340

460

470

500

510

520

530

Message and Circumstances that Caused the Error

NOCHARSET, character set ‘x’ has not been loaded
indicates an attempt to enable a character set that had not been
loaded.

Message can be generated by: SCHRST

INVNUMEL, ‘%’ is an invalid number of elements

indicates that you specified a value for the number—of-elements
argument that was zero or negative. RGL/11 immediately returns
control to the calling program.

Message can be generated by: LFIXED, POLYLN, RELPLN,
PDATA ‘

NCX, ¥’ is an invalid number of cells (X axis)
indicates you specified an illegal number of cell divisions for the
x—axis scale. The default is supplied and the program continues.

Message can be generated by: DPAPER

NCY, X’ is an invalid number of cells (Y axis)
indicates you specified an illegal number of cell divisions for the
y—axis scale. The default is supplied and the program continues.

Message can be generated by: DPAPER

NXT, ‘%’ is a nonexistent X axis type

indicates you specified an x-axis type that does not match any
code defined for the ‘xaxistype’ argument. The default is supplied
and the program continues.

Message generated by: DPAPER

NYT, ‘x’ is a nonexistent Y axis type
indicates you specified an y-axis type that does not match any
code defined for the ‘yaxistype’ argument.

Message generated by: DPAPER

NSX, ‘%’ is an invalid number of subcells (X axis)

indicates you specified an illegal number of subcell divisions for
the x-axis scale. The default is supplied and the program
continues.

Message can be generated by: DPAPER

NSY, ¥’ is an invalid number of subcells (Y axis)

indicates you specified an illegal number of subcell divisions for
the y-axis scale. The default is supplied and the program
continues.

Message can be generated by: DPAPER

RGL/11 Error Messages

Error
Code

560

570

600

610

640

Message and Circumstances that Caused the Error

IMM, ‘x’ is an invalid maximum and/or minimum
indicates the following conditions in the call that caused the
error:

LNAXIS You specified a value for minvalue that was greater
than maxvalue. Autoscaling is invoked and the pro-
gram ‘continues.

LTAXIS You specified a value for minvalue that was greater
than or equal to maxvalue. No action is taken and con-
trol returns to the calling program.

Message can be generated by: LNAXIS, LTAXIS

POW, all points are outside the window

indicates that all the data points passed to LFIXED lie outside the
data—plotting window. When this occurs, no action is taken and
control returns to the calling program.

Message can be generated by: LFIXED -

AID, X’ is an invalid axis identifier

indicates you specified an axis identifier code that does not match
either the codes defined for the argument. If LFIXED, LFREE,
PDATA, or PPOINT caused the error, the default is supplied and
the program continues. If LNAXIS or LTAXIS caused the error,
no action is taken and control returns to the calling program.

Message can be generated by: LFIXED, LFREE, LNAXIS,
LTAXIS, PDATA, PPOINT '

TCC, ‘X’ is too many characters per cell

indicates you included more characters in the ‘string’ argument
than can fit between the first and last cell of a graph’s axis. The
maxchars argument defaults to the largest number of characters
that are possible to write at each cell boundary without any of the
labels overwriting each other. The first 64 letters in the string
argument will be used.

Message generated by: LTAXIS

XNS, x—axis has not been scaled
indicates one of the following conditions prevailed:

1. If LFIXED, LFREE, or PPOINT caused the error, then the
x—axis has not been scaled by LTAXIS, LNAXIS, or PDATA.

2. If PDATA caused the error, then:
a. autoscaling was invoked but all values in the xarray are
the same.

b. the x—axis is logarithmic, autoscaling was invoked, but the
xarray contained at least one non—positive number.

RGL/11 Error Messages B-5

B-6

Error
Code

650

740

750

770

Message and Circumstances that Caused the Error

When this error occurs, control returns immediately to the calling
program.

Message generated by: LFIXED, LFREE, PDATA, PPOINT

YNS, y—axis has not been scaled
indicates the following conditions prevailed:

1. If LFIXED, LFREE, or PPOINT caused the error, then the
y—axis has not been scaled by LNAXIS, LTAXIS, or PDATA.

2. If PDATA caused the error, then:

a. autoscaling was invoked but all values in the yarray are
the same.

b. the y—axis is logarithmic, autoscaling was invoked, but the
yarray contained at least one non—positive number.

When this error occurs, control returns immediately to the calling
program.

Message generated by: LFIXED, LFREE, PDATA, PPOINT

NPL, logarithm of non—-positive number
indicates the following conditions in the call that caused the
error:

LNAXIS, you specified a non—positive number for the minvalue
LTAXIS or maxvalue argument when labeling a logarithmic
axis.

PDATA the input data array(s) contain a non—positive coordi-
nate for a logarithmic axis.

PPOINT one of the input variables was non—positive and was to
be used for a logarithmic axis.

Message generated by: LNAXIS, LTAXIS, PDATA, PPOINT

NOPAPER, no graph paper has been drawn
indicates that you did not call DPAPER or PDATA before the
subroutine that generated the message.

Message generated by: LFIXED; LFREE, LNAXIS, LTAXIS,
PPOINT

FIP, function is invalid with current graph paper

indicates that the axis specified is already scaled. The call to
LNAXTIS or LTAXIS is ignored and control is returned to the call-
ing program.

Message can be generated by: LNAXIS, LTAXIS

RGL/11 Error Messages

Glossary

Absolute location

a point on the screen whose x— and y—coordinates are based on its distance from
the origin location; that is, its coordinates are measured as displacement from the
(0.,0.) screen location, regardless of the location of the graphic cursor or text cur-
sor. The coordinates’ units are defined by the user. (See Origin location, Relative
location.)

Alternate character set
the Greek character set.

Argument
a variable or constant in a subroutine call.

Argument default

the value for an argument used by a subroutine when that argument is not speci-
fied in the subroutine call. (See Initial default.)

Arrow keys

the keys in the upper right row of the main keypad that are usually used to move a
cursor up, down, left, and right.

Autoscaling

the process the data plotting subroutines use to automatically select the range of
numeric values against which to plot data.

Glossary-1

Auxiliary keypad

the section of the keyboard to the right of the main keypad,; it consists of a numeric
pad and program function keys; the latter are often programmed for
application—specific purposes. (See Program function keys.)

Brightness

the intensity of images on the terminal screen. You control screen brightness on
the VT125 by pressing the up-arrow key to increase the brightness and pressing
the down—arrow key to decrease it when the terminal is in SET-UP A or B mode.

Byte expression

a data type indexed on single byte boundaries, that is, a data type that requires
only eight bits of storage.

Cell
a major division of a graph’s axis. A cell boundary is displayed as a long tickmark
or a solid line across a graph. (See Subcell, and the LNAXIS or LTAXIS
subroutine.)

Character

an 8-bit ASCII code. For this terminal, displayable characters are represented by
an eight-by—ten dot pattern that is the basic unit in each of the four character
sets.

Character cell
a block of eight pixels by ten.

Character cell origin
the top left corner of a character cell.

Character set

the set of standard English alphanumeric characters and special characters such
as commas, periods, percent signs; or the alternate-character set of Greek letters.

Character size
the width and the height of a character. (See the STXSIZ subroutine.)

Clipping
a calculation used by the data—plotting subroutines to cut off (make invisible) the
data line of a graph at the data plotting window, and by the picture drawing
subroutines to clip lines at the screen boundaries.

Glossary-2

Complement writing

one of the writing modes that allows two intersecting graphic objects to be
highlighted. (See the SWMODE subroutine.)

Coordinate

one of two values that define a location. RGL/11 uses two coordinate schemes:
world coordinates and screen coordinates.

Coordinate pair
an x—coordinate and a y—coordinate that together define a location.

Current character set
the most recently specified character set. (See SCHRST subroutine.)

Cursor keys
see Arrow Keys.

Cycle (logarithmic)
the numbers in a single power of ten.

Default

a value the system supplies to certain variables (parameters, attributes) when no
choice is specified for that variable in the subroutine call or when the choice was
invalid. The defaults that the system supplies when it is first loaded are the
“initial defaults.” Defaults that use values from a previous subroutine call are
called “argument defaults.”

Drawing color

a shade of gray used to draw graphic objects. If a color monitor is attached to the
VT125, the gray shades map to colors.

Erase mode

one of the writing modes; it removes previously drawn objects.

Expression

an argument in a command statement of a RGL/11 subroutine; it-can be either a
constant or a variable.

Floating—point expression

an expression that requires real (decimal) numbers; the decimal point is a required
part of the number.

Glossary—3

Graphic cursor

a blinking, diamond-shaped cursor that indicates that the terminal is operating in
graphic mode.

Graphic cursor location

the location RGL/11 maintains internally that is a pointer to the location on the
screen last moved to or displayed.

Graphic mode

one of two modes of the VT125 terminal which RGL/11 uses. In this mode, the
ReGIS interpreter is enabled to perform graphics.

Graphic object

any portion of a picture that you perceive as an entity. Examples are a line, circle,
or a message written in graphic text; there are the two types of graphic objects:
picture objects and graphic text.

Graphic screen

or VT125 screen, the screen to which the terminal writes when it is in graphic
mode. (See VT100 screen.) '

Graphic text

text written and displayed when the terminal is in graphic mode; It differs from
regular text (text you write when the terminal is in text mode) in that you have

more ways to display it, it is displayed on the graphic screen, and it is erasable by
the CLRSCR call rather than by CLRTXT.

Gray scale

the levels of intensity the screen can display with the standard black—and-white
monitor.

Image
all objects that are displayed on the screen, that is, any combination of drawings

and text displayed on the screen.

Initial default
the default value-established by the INITGR subroutine. (See_Argument default.)

Keyboard
the main keypad and auxiliary keypad of the VT125.

Glossary—4

Line pattern

the sequence of dots and dashes used in drawing a line. (See SLNPAT, the subrou-
tine that sets the line pattern.)

Location
a point defined by the x and y coordinate pair.

Locator cursor ‘
the cursor displayed by the LOCATE, LFIXED, and LFREE subroutines.

LUN

Logical Unit Number. (See the Preface, Documentation Conventions, for LUN
numbers.) '

Main keypad

that portion of the VT125 keyboard above the space bar and separated from the
auxiliary keypad; it consists of the alphanumeric and special-character keys.

Mnemonic
an abbreviation or acronym that is easy to remember.

Monitor

a video device containing a Cathode Ray Tube (CRT) which the terminal uses to
display screen images.

Offset

the distance from a given location; it is usually used to define locations relative to
the current graphic cursor location.

Optional arguments

arguments that do not have to be specified in a RGL/11 subroutine call; however
the punctuation that delimits them must be specified.

Origin location

the location of the first x—coordinate and first y—coordinate. The default origin
location is at the bottom left.

Overlay writing

one of the writing modes; it provides a user with a transparent overlay of two
intersecting graphic objects. (See the SWMODE subroutine.)

Glossary—5

Physical screen coordinates
the coordinates the terminal uses to define how the screen is addressed.

Picture
any combination of drawing and text that is displayed on the screen.

Picture object
any graphic object except graphic text, for example, lines, arcs, polygons, circles.

Pixel
picture element; it is the smallest displayable unit on the VT125 screen.

Program function keys

top four keys on the auxiliary keypad, labeled PF1, PF2, PF3, and PF4. PF3 and
PF4 are used by the LFREE, LFIXED, and LOCATE subroutines.

Radian

a unit of angular measure. One radian is equal to 360 degrees divided by two pi, or

approximately 57 degrees 17 minutes. A circle is an arc of two pi radians. (See
SRADNS subroutine.)

ReGIS

the Remote Graphics Instruction Set, the set of internal commands used by the
RGL/11 subroutines to draw pictures and plot data.

RGL/11
the ReGIS Graphics Library for the FORTRAN Enhancement Package, Version 2.

Relative location

a point on the screen whose coordinates are based on its distance from the current
graphic cursor location rather than from the origin location. The coordinates’ units
are defined by the user. (See Absolute location.)

Replace writing
one of the writing modes; it forces the pattern of a graphic object onto the terminal

screen no matter what is already on the screen. (See the SWMODE subroutine.)

Reverse writing
one of the writing modes; it reverses the intensity of the colors.

Glossary—6

Screen

that portion of the video monitor on which images are displayed. The screen can
display two kinds of images simultaneously: (1) text images created when the
terminal is acting like a text—processing ASCII terminal (and the screen is a
“VT100 screen”), and (2) images displayed when the terminal is operating as a
graphic terminal (and the screen is a “VT125 screen”).

Screen color

the background shade of gray of the screen; it is usually black, GRAYO, the ab-
sence of any light.

Shade character

a user—selected character that the terminal uses when it shades picture objects.
(See the SSHADE, SLNPAT, and PDATA subroutines.)

Shade line

the y—coordinate that delimits the area to be shaded during a write operation. (See
the SSHADE subroutine.)

Shade pattern

the line pattern or character the terminal uses during a write operation when the
shading option is enabled. (See the SLNPAT and SSHADE subroutines.)

Standard character set

the 128 ASCII character set: the alphanumeric characters, punctuation characters,
and special characters; of the 128, 95 are displayable.

Subcell

a division of a cell; that is, a subdivision in a graph’s axis. A subcell boundary is
displayed as a short tickmark or a dotted line across a graph. (See Cell and the
LNAXIS subroutine.)

Subtend

to be opposite to and to delimit. For example, the side of a triangle subtends the
opposite angle.

Text cursor

a VT100 cursor that indicates the terminal is in text mode and also indicates
where on the screen the text will be displayed.

Text mode

one of the two operating modes of a VT'125 terminal that RGL/11 uses; in text
mode the terminal operates as a standard ASCII text terminal.

Glossary—7

Vector

a directed line, specified by a magnitude and a direction. The numbers (x, y) are
components of the vector.

VT100 screen
the screen addressed when the VT'125 terminal is in text mode.

VT125 screen
the screen addressed when the VT125 terminal is in graphic mode.

Window

the part of the user’s picture that RGL/11 displays. When RGL/11 is entered, the
window is set to be the same as the screen’s coordinates; the window is the full
screen. (See the SWINDO subroutine.)

World coordinates

the user—specified coordinate range that defines how the screen is addressed.

Glossary-8

Index

Absolute location, 2-10, 2-15
Angle units, 5-35, 5-98, 5-103
ARC Subroutine, 5-3 to 5-5, A-1
ARCC Subroutine, 5-6 to 5-8, A-1
Arrow keys, 2-16, 540, 545, 5-56
Aspect ratio, 2-7, 5-108
Autoscaling, 3-8, 5-52 to 5-53
Axis

labeling, 3-11

scaling an, 3-7 to 3-10, 541, 5-52

to 5-53, 5-59

BOX Subroutine, 5-9, A-1

Cell (character), 2-20
Cell (of an axis), 3-4, 318, 5-21, 5-52, 5-60
Character set
alternate, 5-93
default, 5-37
Greek, 2-18, 5-37, 5-93
standard, 2-18, 5-37, 5-93
Character size, 5-106
CIRCC Subroutine, 5-10 to 5-12, A-1
CIRCLE Subroutine, 5-13 to 5-14, A-1
CIRCXY Subroutine, 5-15 to 5-16, A-1
Clearing the screen, 2—4
Clipping, 2-10, 3-14, 5-50, 5-68
CLRSCR Subroutine, 5-17, A-1
CLRTXT Subroutine, 5-18, A-2
Color
drawing, 1-4, 2-20, 2-23, 2-28, 5-95
grid color, 5-22, 5-68, 5-81
screen, 1-4, 5-66, 5-83
Color monitor, 1-2, 14, 2-31, 3-18, 5-95
Color names, 2-23, 228, 567, 5-95
Color numbers, 2-23, 2-28, 5-68, 5-81, 5-95
Common logarithms, 3-6
Compiling (RSX-11M), 4-11
Compiling (RT-11), 44

Complement writing mode, 2-19, 2-23
to 2-26, 5-111
drawing with, 2-24
erasing with, 2-24
Controlling
character size, 5-106
color, 3-18
data sent to screen, 14
gray shades and color, 2-28 to 2-31, 3-18
line pattern, 2-11 to 2-12, 3-12
markers, 2-15, 3—-12
picture labels, 2-17 to 2-18
shading, 2-13 to 2-15, 5-104
writing modes, see Writing modes
Coordinate systems, 2—6
defining, 2-6
physical screen, 2-6
world, 2—-8, 5-108
Coordinates, location, 2-16
CPYSCR Subroutine, 5-19, A-2
Creating RGL/11 programs, 4-1
Current graphic cursor location, 1-3
Cursor
graphic, 1-3
locator, 2-16, 540, 545, 5-56 to 5-57
text, 1-3

Data curve
clipping, 3-14
smoothing, 3—-14
Data plotting, 3—1, 3-18
environment, 3-1
from stored files, 3—18
interactive, 3-19, 5-80
with one subroutine, 3-3 to 3—4
with PDATA, 3-3 to 3—4
Data plotting, see also Graph
Data sent to screen, 1-4
Data types, 5-1

Index-1

DCL mode, 4-11

Defining coordinate systems, 2-6 to 2-10
.DEM programs, see Sample Programs
Distribution volume, 22, 3-3

Double quotation mark, 5-50 to 5-51, A—1

DPAPER Subroutine, 3-1, 3—4 to 3-20, 4-2,

. 5-21 to 5-23, 5-66, A-2

Drawing
color, 14, 2-20, 2-23, 2-28, 5-95
from data files, 2-10 to 2-11
picture objects, 2—1
strategy, 2-2 to 2—4
with complement mode, 2-23 to 2-25
writing modes, 5-111 to 5-112

Ellipses, 5-108

Erase writing mode, 2-19, 2-22 to 2-23,
5-111 to 5-112

Erasing the screen, 2—4

Error codes, 5-27, 5-97, 5-101, B-2 to B-6

Error handling, B-1 to B-6

Error messages, 5-27 to 5-28, 5-35, 5-97,
5-101, B-2 to B-6

Error status variable, 5-27, 5-35, 5-97,

5-101, B-1

Exact numbers, 3-8, 5-52

Exponential notation, 5-54

File specification formats, iii
Floating—point notation, 5-52
FORTRAN FORMAT statements, 1-2

GCLOSE Subroutine, 5-25, A—2
GETLOC Subroutine, 2-16, 5-26, A-2
GETSTA Subroutine, 5-27 to 5-29, 5-97,

5-101, A-2
GLOAD Subroutine, 5-30 to 5-31, A-2
Graph

gray shades and color, 3—18

grid color, 5-22

gridded, 3-5

labeling, 3-11 to 3-12

layout of, 3-2

line patterns, 3—12

linear, 3-5

logarithmic, 3-5

markers, 3-12

multi—cycle, 3-6

multi-scaled, 3-9

plotting from stored files, 3—18

plotting interactively, 3—-19

plotting with one subroutine, 3-3 to 3—4

scaling, 3-7 to 3-9

semi-log, 3-6

shaded, 3-16

single—cycle, 3-6

Index-2

Graph (cont.),
smooth data curve, 3-14
ungridded, 3-5
Graphic
cursor, 1-3, 5-35
mode, 1-3
objects, 1-1, 2-1
intersecting, 2-23
screen, 5-17
text, 2-17, 5-35, 5-113
Gray shades, 2-28 to 2-31
Greek character set, 2-18, 5-93
GREEK.FNT, 2-18, 5-93
Grid color, 5-22, 5-68, 5-83
Grid lines, 5-64, 5-77
GSAVE Subroutine, 5-32 to 5-33, A-2

INITGR Subroutine, 4-2 to 4-3, 5-35
to 5-36, A2
Initialize writing mode, 2-19, 2-28, 5-112
Initializing your program, 4-2
ISTAT variable, 5-27, 5-35, 5-97, 5-98

LA34-VA printer, 1-2, 5-19
Labeling a picture, 2-17 to 2-18
Labeling an axis, 3—-11
Layout of RGL/11 graph, 3-2
LCHRST Subroutine, 2-17, 5-37 to 5-39,
A2
LFIXED Subroutine, 3-1, 540 to 542, A-2
LFREE Subroutine, 3—-1, 5-45 to 548, A-2
Line pattern, 2-11 to 2-12, 5-35, 5-67, 5-99
changing the, 2-11 to 2-12
selecting, 3-12
LINE Subroutine, 549, A-2
Linear axes, 5-53
Linear graph paper, 3-5
Linear scales, 3-7
Lines
connected, 5-78, 5-90
shade, 5-35
smoothing data, 3—4, 3-14, 5-68
LINETX Subroutine, 2-17, 5-50 to 5-51, A-2
Linking (RT-11), 4-5
LNAXIS Subroutine, 3-1, 3-18, 5-52 to 5-55,
5-66, A-3

LOCATE Subroutine, 2-16, 5-56 to 5-58,
A-3
Location
absolute, 2-10, 2-15
coordinates
retrieving, 2—-16
marking, 2-15
relative, 2-10, 2-15, 5-83, 5-85, 5-87,
5-89 to 5-90

Locator
cursor, 2-16, 540, 5-45, 5-56 to 5-57
mode, 3-18

Logarithmic axes, 5-53

Logarithmic graph paper, 3-5

Logarithmic scales, 3-8

Logarithms common, 3-5

LTAXIS Subroutine, 3-1, 3—-18, 5-59 to 5-62,
5-66, A-3

LUNs (Logical Unit Numbers), iii, 5-30,
5-32, 5-38

Macrographs, VT125, 4-2
MARKER Subroutine, 2-15, 5-63 to 5-64,
A-3
Markers, 5-63 to 5-64, 5-67, 5-87
selecting, 3—-12
Marking locations, 2-15
MCR mode, 4-11
Mode
graphic, 1-3
locator, 3—-19
text, 1-3
writing, see Writing modes
MOVE Subroutine, 5-65, A-3
Multi-log graph paper, 3—-6
Multi-scaled graph, 3-9

NOCRLF Setting, 4-10
No-Reverse writing mode, 2-19, 2-28, 5-112
NOWRAP setting, 4-14
Numbers
exact, 3-8, 5-52
rounded, 3-7, 5-52

Octal notation, 5-27
Operating system
RSX-11M, i, 4-11
RT-11, ii, 44
Origin location, 2-6, 2-9, 5-35, 5-50, 5-108
Overlay writing mode, 2-19 to 2-20, 5-111 to
5-112
Overlays, see Program Overlays

Pattern multiplier, 5-99
Pattern shading, 3-16
PDATA Subroutine, 3-1, 3-3 to 3—4, 3-9 to
3-10, 3-12 to 3-18, 5-66 to 5-70, A-3
PF3 key, 2-16, 540, 5-45
PF4 key, 2-17, 540, 545
Physical screen coordinates, 2—6, 5-35
Picture objects, 1-1, 2-1
drawing strategy, 2-2
from data files, 2-10
gray shades and color, 228 to 2-31
labeling, 2-17 to 2-18

Picture objects (cont.),
line patterns, 2—-11 to 2-12
marking locations, 2-15 to 2-16
retrieving locations, 2-16 to 2-17
shading, 2-13 to 2-15
writing modes, 2-19 to 2-28
Pixel, 1-3, 2-19 to 2-20, 5-113
color, 2-23
Plotting, see Data Plotting
POLYGC Subroutine, 5-71 to 5-73, A-3
POLYGN Subroutine, 5-74 to 5-75, A-3
Polygons, non—rotated, 5-71, 5-74
POLYGX Subroutine, 5-76 to 5-77, A-3
POLYLN Subroutine, 2-10, 5-78 to 5-79,
A-3
PPOINT Subroutine, 2-28, 3—1, 3—-19,
5-80 to 5-82, A-3
Printer
LA34-VA, 1-2, 5-19
Program Development
on RSX-11M, 44 to 4-11
on RT-11, 4-11 to 4-14
Program Overlays, 4-3
Programs, see Sample Programs

Quotation mark, 5-50 to 5-51, A-1

ReGIS commands, i, 5-30, 5-32 to 5-33
Relative location, 2-10, 2-15, 5-83, 5-85,
5-87, 5-89 to 5-90
RELBOX Subroutine, 5-83 to 5-84, A-3
RELLIN Subroutine, 5-85 to 5-86, A—3
RELMKR Subroutine, 2-15, 5-87 to 5-88,
A4
RELMOYV Subroutine, 5-89, A—4
RELPLN Subroutine, 2-10, 5-90 to 5-92,
A4
Replace writing mode, 2-19, 2-21, 5-111 to
5-112
Retrieving location coordinates, 2-16 to 2-17
Reverse writing mode, 2-19, 2-29, 5-111 to
5-112
RGL Package, i
RGL/11
conventions, 4-1
error codes, 527
error handling, B-1
error messages, 5-27 to 5-28, B-1 to B—6
graph layout, 3—2
installation, 4-1
package, 1-1, 4-1
SET-UP key, 1-5, 5-57
RGLLNK (RSX-11M), 4-11 to 4-13
RGLLNK (RT-11), 44, 4-6 to 4-8
RGLOVR (RSX-11M), 4-13
RGLOVR (RT-11), 4-8 to 4-10

Index-3

Rounded numbers, 3—7, 5-52
Rows and columns, 5-50
RSX~-11M operating system, ii, 4-11
RT-11 operating system, ii, 44
Running programs

on RSX-11M, 4-13

on RT-11, 4-10

Sample programs, 2-2, 3-3
COMPLE, 2-24
ERASE, 2-22
ERASEC, 2-25
HILITE (shading), 2-29
LABEL]1, 2-18
LABEL2, 3-11
LINPAT, 2-12
LINTYP, 3-13
LOCAT, 2-17
MARK, 2-15
MULTI, 3-9
OBJECT (strategy), 2-2
OVERLY, 2-20
POIN, 3-19
REPLAC, 2-21
REVERS, 2-27
SHADEL, 2-13
SHADE2, 2-14
SHADE4, 3-16
SMOOTH, 3-14
STAR (POLYLN Subroutine), 2-10
XYPLOT (PDATA Subroutine), 3-3
Scaling an axis, 3-7 to 3-9, 541, 5-52 to
5-53, 5-59
SCHRST Subroutine, 2-18, 5-93 to 5-94,
A4
SCOLOR Subroutine, 2-28, 3-2, 5-95 to
5-96, A4
Screen color, 14, 5-81
Screen coordinates, see Physical Screen,
World
SDEBUG Subroutine, 5-97, A—4
SDGREE Subroutine, 3-2, 5-98, A4
Selecting gray shades, 2-28
Semi—log graph paper, 3-6
Setting VT125 Characteristics, 14
SET-UP key, 1-5, 5-57
Shade line, 2-13 to 2-15, 3-16, 5-35, 5-104
Shade pattern, 3-16, 5-35, 5-104
Shading, 5-35, 5-68 to 5-69, 5-102, 5-104 to
5-105
Shading picture objects, 2-13 to 2-15
Single—cycle graph paper, 3—6
SLNPAT Subroutine, 2-11, 3-2, 5-99 to
5-100, A4

Index—4

Smoothing the data curve, 3-14, 568
SNDBUG Subroutine, 5-101, A—4
SNSHAD Subroutine, 5-102, A—4

Source file, 4-3

Source program, 4—2

Splinefitting algorithm, 3-14

SRADNS Subroutine, 3-2, 5-103, A—4
SSHADE Subroutine, 2-13, 3—-2, 5-104 to

5-105, A—4

Standard character set, 2-17, 5-93
Status variable, see Error status variable
String expression, 4-2, 5-2

STXSIZ Subroutine, 3-2, 5-106 to 5-107,

A4

Subroutines

ARC, 5-3 to 5-5, A-1

ARCC, 5-6 to 5-8, A-1

BOX, 5-9, A-1

CIRCC, 5-10 to 5-12, A-1

CIRCLE, 5-13 to 5-14, A-1

CIRCXY, 5-15 to 5-16, A—1

CLRSCR, 5-17, A-1

CLRTXT, 5-18, A-2

CPYSCR, 5-19 to 5-20, A-2

DPAPER, 3-1, 3-5 to 3-20, 5-21 to 5-24,
5-66, A-2

GCLOSE, 5-25, A-2

GETLOC, 2-16, 5-26, A-2

GETSTA, 5-27 to 5-29, 5-97, 5-101, A-2

GLOAD, 5-30 to 5-31, A-2

GSAVE, 5-32 to 5-33, A-2

INITGR, 4-2 to 4-3, 5-35 to 5-36, A-2

LCHRST, 2-17, 5-37 to 5-39, A-2

LFIXED, 3-1, 5-40 to 542, A-2

LFREE, 3-1, 545 to 548, A-2

LINE, 549, A-2

LINETX, 2-17, 5-50 to 5-51, A-2

LNAXIS, 3-1, 3-18, 5-52 to 5-55, 5-62,
A-3

LOCATE, 2-16, 5-56 to 5-58, A-3

LTAXIS, 3-1, 3-18, 5-59 to 5-62, 566,
A-3

MARKER, 2-15, 5-63 to 5-64, A-3

MOVE, 5-65, A-3

PDATA, 3-1, 3-3 to 3-4, 3-9 to 3-10, 5-66
to 5-70, A-3

POLYGC, 5-71 to 5-73, A-3

POLYGN, 5-74 to 5-75, A-3

POLYGX, 5-76 to 5-77, A-3

POLYLN, 2-10, 5-78 to 5-79, A-3

PPOINT, 2-28, 3-1, 3-19 to 3-20, 5-80 to
5-82, A-3

RELBOX, 5-83 to 5-84, A-3

RELLIN, 5-85 to 5-86, A-3

Subroutines (cont.),

RELMKR, 2-15, 5-87 to 5-88, A—4

RELMOV, 5-89, A4

RELPLN, 2-10, 5-90 to 5-92, A4

SCHRST, 2-18, 5-93 to 5-94, A4

SCOLOR, 2-28, 3-2, 5-95 to 5-96, A—4

SDEBUG, 5-97, A4

SDGREE, 3-2, 5-98, A—4

SLNPAT, 2-11, 3-2, 5-99 to 5-100, A—4

SNDBUG, 5-101, A4

SNSHAD, 5-102, A4

SRADNS, 3-2, 5-103, A4

SSHADE, 2-13, 3-2, 5-104 to 5-105, A—4

STXSIZ, 3-2, 5-106 to 5-107, A—4

SWINDO, 2-6, 5-108 to 5-109, A—4

SWMODE, 2-19 to 2-28, 5-111 to 5-112,
A4

TEXT, 2-17, 5-113, A-1, A4

SWINDO Subroutine, 2-6 to 2-10, 5-108 to

5-109, A4

SWMODE Subroutine, 2-19 to 2-28, 5-111 to

5-112, A4

Task Building (RSX~11M), 4-11
Terminals

VT100, 1-2
VT125, see also VT125, 1-1 to 1-5

Text mode, 1-3
cursor, 1-3
TEXT Subroutine, 2-17, 5-113, A-1, A4

VT100 terminal, 1-2

VT125, 1-2
error messages on, 5-97, 5-101
graphic mode, 1-3
gray shades, 1-4, 2-28 to 2-31, 3-18, 5-95
macrographs, 4-2
margin bell, 44
screen coordinates, 2-6
SET-UP key, 1-5, 5-57
terminal, i, 1-2
text mode, 1-3

Window, 2-10, 5-51, 5-108

World coordinate systems, 2—6

World coordinates, 2-6, 5-35, 5-108

Writing modes, 2-19 to 2-31, 5-35
complement, 2-19, 2-23 to 2-26, 5-111
erase, 2-19, 2-22 to 2-23, 5-111 to 5-112
initialize, 2-19, 2-28, 5-35, 5-112
no-reverse, 2-19, 2-28, 5-112
overlay, 2-19 to 2-21, 5-111 to 5-112
replace, 2-19, 2-21, 5-111 to 5-112
reverse, 2-19, 2-27, 5-111 to 5-112

Index-5

RGL/11 Prograrmmer’s
Reference Manual
AA-M837A-TC

READER’S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on
this form at the company’s discretion. If you require a written reply and are eligible to
receive one under Software Performance Report (SPR) service, submit your com-
ments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make sugges-
tions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

(] Occasional programmer (experienced)
[0 User with little programming experience
[J Student programmer
] Other (please specify)

Name Date

Organization Telephone

Street

City State Zip Code

or Country

—————— Do Not Tear — Fold Hereand Tape — — — = — — ~ — = = — — — e o —

gl Il

No Postage
Necessary
if Mailed in the
United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SOFTWARE PUBLICATIONS
200 FOREST STREET MRO01-2/L12
MARLBOROUGH, MA 01752

