Firefox Workstation M-Bus Specification

Revision 2.1

Michael Nielsen (DECWSE ::NIELSEN)

Workstation Systems Engineering
Digital Equipment Corporation
100 Hamilton Avenue
Palo Alto, CA 94301
415-853-6779

December 29, 1987

RESTRICTED DISTRIBUTION

Copyright 1986, 1987 by Digital Equipment Corporation

The information in this document is subject to change without notice and should not be construed as a com-
mitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for
any errors that may occur in this document. This specification does not describe any program or product
which is currently available from Digital Equipment Corporation. Nor does Digital Equipment Corpora-
tion commit to implement this specification in any product or program. Digital Equipment Corporation
makes no commitment that this document accurately describes any product it might ever make.

Blank Page

ii

Table of Contents

4. Firefox M-Bus Specification

4.1, TEITNNOLOZY vvreeiciieireieeieeetteertestesteesneessesetetaesascrteeseansassresnsssssessssssnsenssessesesssnssessseesssans

4.2. Operation ...

...

4.3 AAAIESSINE cooiiiiiiciie ettt et ette e e st e saeteebaessarase e eesaesaeseeeestasassaes sosuesansernnrens

B.8.1.1. MBROQ oo ee e es e eesesess e ees e eee et eeese e seeee s eeses e reseeeeenee
B.4.1.2. MBUSY oot eeeseees e see e seseses e ss o ses e essessess e ses e ses e sereeesesese e

4.4.2. Data Transfer

G2 1 MOMD et et e sresa e a e

4422 MSTAT ...
4423 . MDAL

4.4.2.4. MXPAR oottt et e bt s st s a e et et

4425 MSHARED ...

4.4.2.6. MDATINV Lottt sttt st sseensesases e ebesaas s saasaesaassaesnts st emsenn

443 1 MID ittt et e e e e e et e b e et e e be smtne
4.4.3.2. MRESETcoiviiiinmiiniiiiiicriissssss s seecness st ssaessssesessesessessasssssessessrenssanss
4433 . MPOK oot sr e en e st eae

B.4.3.5. MRUN oooooreoeeeeeeseeeeeees e seses s ssssenssseesesessesseses e seesssesesemses e sess e essesenssrees
4.8.3.6. MIRQ oooooeeeeeeeeee e eeeeeseeseeeeseesesesesesessseseeseses e sesesesensessesmssssseeesossessensseessone
A4.3.7. MHALT ooooooeoeeeeeeeeeeeeeer s e eeeseees e seee s seses e sases e ssessesassessemessesseseeeseee

4.4 4. Clock Distribution

4.44.1 MCLKA ...
4442 MCLKB ...
4443 MCLKI ...

4.5. Transactions

...

He et T rE NN e et EaE e e ear et Tt aeretee bttt iiuaetacatetitacaostetvIetttetantretevattracteterertrans

4.5.1. Transaction NOWHOMcccooviiiiiiiniiiii e e
4.52. Memory-Space Readsccccoveiiiiniiiniiiniie e
4.5.3. Memory-Space WIIIESccoouiieiiiiiiieciiie et st

4.5.4. 1/O-Space Reads
4.5.5. 1/0O-Space Writes

1ii

O O »n W N

12
14
14
15
15

15

16
16
16
17
17
17
17
17

18

19
19
19

19

21
21
22
23
24

4.5.6. Intertocked TTANSACHONScc.ccvveveuiirieieeeecnniieiere et ce e estesasesee e e eseene
4.5.7. Interrupt-Acknowledge TransaCtionsccocevveiiiiiiinenrecnine oo nens

4.6. Example TTaNSaCHONSccocciviiicniintineeinecneerentcntisne s st ercneseetease et s enanes

4.6.1. Memory Read to Unshared Lineccccooceiiiiiiiiiininieciectcee e e
4.6.2. Memory Read to Shared Clean Lineocooviiviiiivniennsenieeteserceesee s
4.6.3. Memory Read to Shared Dirty Lineccccoviiniiniiiiiciinnc oo
4.6.4. Memory Read with Uncormrectable ECC EITOTccoiviiiiiniennieeieie e
4.6.5. Memory Read to Non-EXistent MEMOIYc.ccocoviniiiercnennreeerenneieenescsie e
4.6.6. VICHIN WTHE .ooviiiiiiitiict ittt srs s es s e eaete s s sasseaas s st sasba s s enenes
4.6.7. Victim Write with Intemnal Parity EITOTc.ccoooeiviiiiiniiiii e
4.6.8. Write-Through to Unshared Linec.coccooccenvininvininininiinienre e ceeseenees
4.6.9. Write-Through to Shared Linecccoceeiviiiiiniiniiniinnine e eeees
4.6.10. Victim Write with Address Parity EfTOrccccocciieniiicienencnncnineiineccen
4611 JJOREAA ...ocoveeiiiiiiiiiinticieietrc st e s er et et s st s b r e
4.6.12. I/O Read with No Slave ReSPONSEccoeveieniiiniieniii et
4.6.13. IO WIHIE ..ocecciice ettt st ses s bbb ses e sesta b st snen ot st sasassssmaes
4.6.14. I/O Write with No Slave RESPOMSEocociiviemnriviiciiciiin et
4.6.15. Interrupt Acknowledgeocovminiiiiniinin s
4.6.16. Interrupt Acknowledge with No Slave Responsecccoccecviivininineniieineenins

4.7. M-Bus INterface REGISIETScoviiiiiiiriniriirrrsieee et etese st resaesasae et e sasse e e e aesseasnsesanens
4.7.1. M-Bus MODTYPE Interface REZISIETccccovirririenrriiereceieirrecsaeneeseeseceeseanes

4.8. Initialization

...

4.8. 1. POWEIUD ...ooovniiiiiiiiicrinnntent st s s st s s s sensn st sen s st eneaes
B.8.2. POWETHOWIL c.oeevveeiiieiiieieecetttieeeeeeeeeeseteseessesssassssseseeseseses sosessrssssesesessnsssrasesssersnsnnn
4.8.3. WOTKSIAtON RESEL ..vviveriiiiiieieiiieetieciieeeecnresssseessneesssesssaessssesesssesssaessasessnsares

4.9. Electrical

4.9.1. M-Bus Transceivers/Drivers and Input Loadscccoooevenmnnnrininnenncnnn,
4.9.2. M-Bus Driver/Receiver DC CharacCteriStiCsccvrreerrierverrverseneseserssesscssseanns
4.9.3. M-Bus Signal Capacitancec..ocvvvneneienmniennssse s
4.9.4. M-BUS TIMNE ..cuooiiiriniiiiitiienieierenieenteestesrstesestestetsaentsseseasssesesesnesessssssessseensaseses
4.9.5. Module AC CharaCteriStCScceerierveeriieesierireerseseeesnesesssessasssresssessosssessnnenes
4.9.6. DO POWET ...c.oooiieirieeerenresseestansnecsasssssssssssassessasssessessessnsstessastanstssesssssesncensassase
B.9.7. AC POWET ..coeueeeiecteeeetteeceeete et teese s eesaee st e esssestesaneers et esesbbesnsesssessssstestessssansnes

4.9.7.1. Operation of M-Bus with Extended MOGUIESooooocereeresoceersrseserreesrs
4.9.8. Backplane Signal ASSIZNMENLScc.ccoevmininrinirenscntininierennsssnnsisirisessossasssssssesecsss

4.10. Mechanical

iv

24
25

25

26
28
30
32
34
35
36
37
38
40
41
42
43

45
46
47
47

48

48
49
49

49

50
51
52
52
53
53
53

54
54

56

Revision History

| Date

| Version

Changes

26 Dec 87

30 Apr 87

2.1

1.1

1.0

on

|

i Added READU transaction

Added MRUN signal

Added M-bus state diagram

Added slave MBRQ assertion during MWP6
Revised M-bus timing

Arbitration priority changed to LRU

Support two simultaneous interlocks

MSHARED MDATINV MBUSY ,MHALT added
Local I/O space added

MACKOK renamed to MPOK

More reserved signals added

-12 volt etch added (for future use)

MACOK added; MDCOK updated
First external release

Preliminarv draft

Blank Page

vi

4. Firefox M-Bus Specification

This is the design specification of the Firefox M-bus. The M-bus is a synchronous memory interconnect
between Firefox modules. The M-bus protocol allows the processor snoopy caches to maintain consistent
data in all caches on a cycle-by-cycle basis.

The M-bus supports a maximum of eight modules that arbitrate for the M-bus via a least-recently-used-
priority, distributed-resolution scheme. The M-bus can transfer up to 32 bits of address or data in a single
M-bus cycle. M-bus memory-space transactions always transfer 4 longwords of data between caches and
memory. Memory-space reads and cache victim writes are unmasked transfers. Cache write-throughs are
masked transfers. M-bus I/O-space transactions always transfer one masked longword of data between pro-
cessors and I/O devices. M-bus interrupt-acknowledge transactions transfer an interrupt vector between a
processor and I/O device. M-bus transactions nominally complete in 4 to 10 cycles, depending on the
number of data longwords transferred. Slave devices may insert additional wait cycles before completing
M-bus transactions.

The target M-bus cycle time is 70 ns. The internal module logic need not be synchronous to the M-bus
clock. Nevertheless, modules that participate in memory space must meet the timing for indicating shared
status. Consequently, some processor modules may require a longer minimum M-bus cycle time. M-bus
modules are not required to support M-bus cycle times in excess of 100 ns.

The M-bus time-multiplexes and encodes its control signals to minimize signal count and power consump-
tion. Even though signals are time-multiplexed, the protocol design is such that different modules never
drive the same signal on consecutive M-bus cycles, which eliminates problems with overlapping in the
backplane tristate dnver.

The M-bus supports single-bit error detection on its command and data signals with parity. The M-bus
supports detection of single-bit errors on its M-bus arbitration signals with distributed protocol checking.
The M-bus does not support hardware error correction.

The following sections describe the M-bus terminology, M-bus operation, M-bus addressing, M-bus sig-
nals, M-bus transaction types and sequences, M-bus example transactions, M-bus interface registers, and
M-bus electrical specifications.

In all discussions of M-bus signals, values will be described as asserted or deasserted. This refers to their
logical value, independent of their physical active-high or active-low signal levels. In all figures, M-bus
signals will be shown with a high level for asserted, and a low level for deasserted. All addresses are in
hexadecimal.

4. Firefox M-Bus Specification December 29, 1987 Firefox System Specification 1

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.1. Terminology.
The following terms describe the operations of the M-bus:

Cycle

Transaction

Master

Slave

Longword
Octaword

Line
Victim

Shared
Dirty
Masked

Unm asked

Undefined

Ore cycle is the period of time between rising edges on the bus A clock. During a given
cycle, the M-bus may be idle, arbitrating, transferring an address or data between
modules, or waiting for a module to respond to a request.

A transaction is the sequence of bus cycles that accomplish a logical operation. An
example would be, reading four longwords of data from memory. Transactions are
atomic sequences of bus cycles; there are no pending transactions.

The M-bus module that arbitrates for the M-bus and initiates a bus transaction is the
master. For read class transactions the master specifies an address and waits for a slave
to supply read data. For write class transactions the master specifies an address and sup-
plies write data to a slave.

The M-bus module that monitors bus transactions and responds to a request initiated by
a master is the slave. Some M-bus transaction requests may be completed by more than
one slave, in which case the slaves arbitrate for the right to complete the transaction.

A longword is 32 bits of data, which can be transferred between modules in a single bus
cycle.

An octaword is 128 bits of data, which can be transferred between modules in four
sequential bus cycles.

A line is one entry of a cache. Firefox cache lines are octaword in size.
A victim is the cache entry that will be removed to make room for a new cache entry.

A cache line is marked as shared when the same octaword address may be present in
more than one cache.

A cache line is marked as dirty when it has been modified in the cache since it was read
from memory.

If a data transfer is masked, then only some of the bytes in a longword should be
read/written.

If a data transfer is unmasked, then all of the bytes in a longword must be read/written.

For masked transfers, the value of nonrequested bytes in the longword is undefined; that
is, the value may not correspond to the transaction address. However, the data-bus sig-
nals are still driven with some specific value, and this value is used in any parity calcula-
tions.

2 Firefox System Specification December 29, 1987 Firefox M-Bus Specification 4.2.

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.2. Operation

The M-bus supports communication between modules for memory-space operations, I/O-space operations,
and interrupt operations.
Memory-space references are always cached and only generate M-bus transactions to support:

. Read-miss fills

. Write-miss fills

° Dirty-victim writes

. Shared-cache-line write-throughs
. Interlocked reads

. Unlock writes

When a cache reference misses, the cache entry is reallocated and filled with a M-bus memory read. This
applies to either a cache read or write. If the victim entry in the cache line targetted for reallocation is
dirty, a M-bus memory write flushes the data out to memory before the reallocation and a M-bus memory
read occurs. After cache writes to lines that are shared, the cache generates a M-bus memory write-through
to update the other caches and memory. Cache writes to unshared cache lines do not generate M-bus tran-
sactions.

Whenever a M-bus memory read or write-through occurs, all caches probe their tag store to determine
whether or not they contain the specified octaword. If a cache contains the octaword referenced by a
memorv read and the octaword is dirty. the cache supplies the read data in place of a memorvy module
This ensures that the data from dirty cache entries is used rather than stale memory data. All caches that
contain the octaword referenced by a memory write-through update their data store with the supplied write
data. This ensures that shared cache lines remain consistent. After every M-bus memory read or write-
through, caches that contain the octaword update the shared bit of their tag store that indicates whether or
not the line is in more than one cache.

The M-bus supports two simultaneous interlocked transactions to different hexaword addresses. Internal
interlocked reads and unlock writes always generate M-bus reads and writes. Unlock writes are function-
ally equivalent to write-through transactions. Every M-bus interface contains a two-entry content-
addressable-memory that records addresses that are currently locked. This algorithm allows all M-bus
interfaces in the workstation to stall conflicting interlocked reads from their internal logic until the current
interlocked transaction is completed. Stalled interlocked reads do not generate M-bus traffic until the
current interlocked transaction is completed. Noninterlocked transactions proceed regardless of whether or
not an interlocked transaction is in progress.

M-bus memory-space read transactions to nonexistent memory modules abort the M-bus cycle after a
memory module normally responds.

Global 1/O-space references are never cached and always generate M-bus transactions. M-bus I/O-space
references to non-existent modules abort the M-bus cycle after an /O module normally responds. M-bus
I/0-space references to address-space holes in I/O modules abort after a imeout of tens of microseconds.
M-bus [/O space references may terminate with an indication that the reference should be retried later to
avoid deadlocks between the M-bus and busses accessed through adapters.

Global interrupt-acknowledge references always generate M-bus transactions. Since multiple modules
may service the same interrupt level, interrupt-acknowledge races are resolved by passive-release termina-
tion to all but the first module to issue an M-bus interrupt acknowledge. Passive release means that the
interrupt is not seen by software.

4.2. Firefox M-Bus Specification December 29, 1987 Firefox System Specification 3

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

Table 4-1 lists the peak bandwidth of the M-bus for the various transaction types in Mbytes/second.

Table 4-1: M-Bus Peak Transaction Bandwidth

Transaction Minimum Cycles Bytes BW@70ns BW@80ns BW@90ns BW @ 100 ns
Memory read 10 16 229 20.0 17.8 16.0
Memory write 6 16 38.1 333 29.6 26.7

1/O read 4 4 143 12.5 11.1 10.0

1/O write 4 4 143 12.5 11.1 10.0

4.3. Addressing

The M-bus supports a 2-Gbyte memory address space and a separate 2-Gbyte I/O address space. Each
module is assigned a 32-Mbyte region of I/O space as a function of its backplane slot. Table 4-1 lists the
address-space assignments.

Table 4-2: Address-Space Assignments for the M-Bus Module

M-Bus Address Range VAX Address Range Mbytes Function
00000000..1FFFFFFF 00000000..1FFFFFFF 512 Memory space
20000000..7FFFFFFF 1536 Reserved memory space
80000000..87FFFFFF 20000000..27FFFFFF 128 Global I/O space
88000000..8FFFFFFF 28000000..2FFFFFFF 128 Local /O space
90000000..91FFFFFF 30000000..31FFFFFF 32 Slot 0 I/O space
92000000..93FFFFFF 32000000..33FFFFFF 32 Slot 1 I/O space
94000000..9SFFFFFF 34000000..35FFFFFF 32 Slot 2 I/O space
96000000..97FFFFFF 36000000..37FFFFFF 32 Slot 3 I/O space
98000000..99FFFFFF 38000000..39FFFFFF 32 Slot 4 1/O space
9A000000..9BFFFFFF 3A000000..3BFFFFFF 32 Slot 5 I/O space
9C000000..9DFFFFFF 3C000000..3DFFFFFF 32 Slot 6 1/O space
9E000000..9FFFFFFF 3E000000..3FFFFFFF 32 Slot 7 1/O space
A0000000.. FFFFFFFF 1536 Reserved 1/O space

Memory modules and processor caches jointly maintain the memory-space region. There are no precon-
ceived ideas about memory-space assignments as a function of backplane slot. Memory modules have pro-
grammable memory-space base addresses via a register in their I/O-space assignment. Other modules that
might reside in memory space (graphics modules, for example) should have similar functionality. Pro-
grammable base addresses need only resolve to 1-Mbyte boundaries. This allows the address range of mul-
tiple memory modules to form a single, contiguous region of memory starting at address 00000000.

Current VAX processors cannot access the reserved memory space. Processors that generate 32-bit physi-
cal addresses can access the full 2 Gbytes of memory space.

The global I/O space is defined by the implementation; that is, some VLSI I/O devices have hardwired base
addresses that fall in this region. I/O modules that require more than the 32 Mbytes associated with their
backplane slot can map some of their resources to the global 1/O space.

The local I/O space is also defined by the implementation. It is for use by modules that have strictly local
resources in I/O space. For example, processor modules could implement special purpose coprocessors in
local I/O space so that the coprocessor appears at the same physical address for each processor.

The slot-specific I/O space should contain all of the I/O resources associated with a module. There is one
M-bus interface register required of all modules that serves to identify the module class and M-bus inter-
face chip. This register is mapped to the top of the slot-specific I/O-space region. The remainder of the
slot-specific I/O-space region is dependent on the implementation. A M-bus module must not respond to
the slot-specific region for another backplane slot.

4 Fircfox System Specification December 29, 1987 Firefox M-Bus Specification 4.3.

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

Current VAX processors cannot access the reserved 1/0O space. Processors that generate 32-bit physical
addresses can access the full 2 Gbytes of I/O space.

Current VAX processors only generate 30-bit physical addresses. Table 4-2 lists the connection of their
address signals to MDAL signals for cycle P2 of M-bus transactions. For all other M-bus cycles the VAX
DAL <31:00> is directly connected to MDAL<31:00>.

Table 4-3: VAX 30-Bit Physical Address to M-Bus 32-Bit Physical Address Mapping

M-Bus Address VAX Address

MDAL<31> DAL<29>
MDAL<30> 0
MDAL<29> 0

MDAL<28:00> DAL<28:00>

4.4. Signals

The M-bus consists of four groups of signals that implement M-bus arbitration, data transfer, workstation
control, and clock distribution. Table 4-4 lists the M-bus signals and their functions. The asserted column
indicates the active assertion state on the backplane.

Table 4-4: Summary of M-Bus Signals

Signal Count Type Asserted Function

MBRQ 8 TTL Low Bus requests
MBUSY 1 ocC Low Module busy
MCMD 4 TRI High Bus cycle command
MSTAT 2 TRI High Bus cycle status
MDAL 32 TRI High Data and address
MXPAR 3 TRI High Parity

MSHARED 1 ocC Low Shared line
MDATINY 1 ocC Low Data invalid

MID 3 TIL High Module ID
MRESET 1 ocC Low Workstation reset
MABORT 1 ocC Low Transaction abort
MIRQ 4 oC Low Interrupt requests
MHALT 1 oC Low Halt processors
MPOK 1 ocC High AC power OK
MDCOK 1 oC High DC power OK
MRUN: = 1 oC Low System running
MCLKA 1 TTL Bus clock-A phase
MCLKB 1 TTL Bus clock-B phase
MCLKI 1 oC Interval clock
Total 68

4.4. Firefox M-Bus Specification December 29, 1987 Firefox System Specification 5

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

Table 4-5 shows the cycles composing a single minimum-length, read-class, M-bus transaction. The
module column indicates the module driving the MDAL signals. The wait cycles (P3 through P5) are used
for cache probes in processor modules and memory-array access in memory modules. During cycle P6, if
a cache hits on the address it asserts the MSHARED signal. If a cache hits and the line is dirty, the cache
also asserts its MBRQ signal and supplies the read data in place of a memory module. If no cache hits with
a dirty line, then a memory module provides the read data. The slave module may insert wait cycles start-
ing with P7.

Table 4-5: Cycles in a M-Bus Read Transaction

Cycle Module Action

P1 Master Bus arbitration
P2 Master Address

P3 Wait
P4 Wait
P5 Wait
P6 Shared status

P7 Slave Read data
P8 Slave Read data
P9 Slave Read data
P10 Slave Read data

Table 4-6 shows the cycles composing a single minimum-length, write-class, M-bus transaction. The
module column indicates the module driving the MDAL signals. During cycles P3 through P6, processor
caches that hit on the address, together with the selected memory module, write the data. Any caches that
hit indicate this by asserting their MSHARED signal during cycle P6.

Table 4-6: Cycles in a M-Bus Write Transaction

Cycle Module Action
P1 Master Bus arbitration
P2 Master Address
P3 Master Write data
P4 Master Write data
P5 Master Write data
P6 Master Write data, shared status

The M-bus cycle boundaries, Pn, are defined by the rising edge of MCLKA. Unless otherwise noted in the
following sections, all transitions of M-bus signals are synchronous with respect to MCLKA.

4.4.1. M-Bus Arbitration

The MBRQ signals perform arbitration for the M-bus among the modules within a Firefox workstation.
M-bus arbitration serves three functions: determination of the next M-bus master, determination of the M-
bus slave for some types of transaction, and indication of the module driving the M-bus. M-bus arbitration
employs a least-recently-used-priority, distributed-resolution algorithm.

4.4.1.1. MBRQ

Each module drives exactly one of the eight MBRQ signals and monitors the MBRQ signals from the other
7 backplane slots. The MBRQ signal for a given slot corresponds to the backplane slot number. For exam-
ple, slot 0 drives MBRQ<0> and monitors MBRQ<1:7>, and slot 4 drives MBRQ<4> and monitors
MBRQ<0:3,5:7>.

6 Firefox System Specification December 29, 1987 Firefox M-Bus Specification 4.4.1.1.

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

Each module asserts its MBRQ signal on a standard connector pin during an idle M-bus cycle when it
needs to acquire the M-bus. Otherwise, a module deasserts its MBRQ signal. A module may not assert its
MBRQ signal during arbitrary M-bus cycles: it may do so only during idle M-bus cycles and when it is
driving the M-bus. After winning the arbitration cycle, the M-bus master continues to assert its MBRQ sig-
nal during P2 and P3 of all transactions, and during P4 and P5 of memory-space transactions. During the
course of some M-bus transactions, multiple potential M-bus slaves arbitrate for the slave role. These
potentdal slaves use the MBRQ signals to arbitrate. After winning the slave-arbitration cycle or being
selected by the transaction address, the slave asserts its MBRQ signal during P4 of I/O-space transactions,
during P4 and PS5 of interrupt-acknowledge transactions, during P6 of memory-write transactions, and dur-
ing P7, P8, and P9 of memory-read transactions.

Each module monitors the state of the remaining seven MBRQ signals to independently resolve a M-bus
arbitration. The seven other MBRQ signals are connected to a fixed set of backplane connector pins in a
slot-dependent fashion. These pins are called MBRM<0:6> to identify them as the slot-dependent wiring
of the MBRQ signals.

Table 4-7 shows the backplane permutation of the MBRQ signals for each slot. During a P1 arbitration
cycle, a module loses if any MBRM signal at a higher priority is asserted. The decision as to whether or
not a particular MBRM signal is at a higher priority for this particular cycle is implemented as a MBRM
mask maintained by each module. If the mask bit for a given MBRM signal is set, that module is at a
higher priority. If the mask bit for a given MBRM signal is clear, that module is at a lower priority. The
MBRM mask is only updated after P1 M-bus arbitration; slave arbitration does not update the MBRM
mask.

Table 4-7: MBRQ Wiring to MBRM Pins for Each Backplane Slot

Slet . MBRM<0> MBRM<1l> MBRM<2> MBRM<3> MBRM<«4> MBRM<5> MBRM<6>
0 MBRQ<1> MBRQ<> MBRQ<3> MBRQ<4> MBRQ<5> MBRQ<6> MBRQ<7>
MBRQ<0> MBRQ<2> MBRQ<3> MBRQ<4> MBRQ<5> MBRQ<6> MBRQ<7>
MBRQ<0> MBRQ<l1> MBRQ<3> MBRQ<4> MBRQ<5> MBRQ<6> MBRQ<7>
MBRQ<0> MBRQ<1> MBRQ<2> MBRQ<4> MBRQ<5> MBRQ<6> MBRQ<7>
MBRQ<0> MBRQ<l> MBRQ<2> MBRQ<3> MBRQ<5> MBRQ<6> MBRQ<7>
MBRQ<0> MBRQ<1> MBRQ<2> MBRQ<3> MBRQ<«4> MBRQ<6> MBRQ<7>
MBRQ<0> MBRQ<l> MBRQ<2> MBRQ<3> MBRQ<4> MBRQ<5> MBRQ<7>
MBRQ<0> MBRQ<I> MBRQ<2> MBRQ<3> MBRQ<4> MBRQ<5> MBRQ<6>

NV b WN -

i
!
|
|
|
|
|
!
t

The MBRM mask is initialized after MRESET or MABORT from a decoded value of the MID signals that
makes slot O the highest priority and slot 7 the lowest priority. Table 4-8 shows the initial MBRM-mask
values for each module. For example, the module in slot 2 initializes its MBRM<0:6> mask to 1100000#2
so that slots 0 and 1 are initially at higher priority, and slots 2 though 6 are initially at lower priority.

Table 4-8: Initialization Values for MBRM Masks

Slot i.MBRM<0> MBRM<1> MBRM<2> MBRM<3> MBRM<4> MBRM<5> MBRMc<6>

0 |0 0 0 0 0 0 0
1!1 0 0 0 0 0 0
2 1 1 0 0 0 0 0
301 1 1 0 0 0 0
4 1 1 1 1 0 0 0
5 01 1 1 1 1 0 0
6 1 1 1 1 1 1 0
7 01 1 1 1 1 1 1

4.4.1.1. Firefox M-Bus Specification December 29, 1987 Firefox System Specification 7

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

Whenever a module wins a M-bus arbitration, it sets all its MBRM mask bits; that is, the winner views all
other modules as higher priority for the next M-bus arbitration. Whenever a M-bus-arbitration cycle com-
pletes, all modules clear the MBRM mask bit of the winner; that is, the winner is viewed as lowest priority
for the next M-bus arbitration. Table 4-9 shows the change in the MBMR mask from the initial value after
the module in slot 2 wins a P1 arbitration cycle.

Table 4-9: Initialization Values MBRM Masks

Siot | MBRM<0> MBRM<1> MBRM<2> MBRM<3> MBRM<4> MBRM<5> MBRM<6>

0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
2 1 1 1 1 1 1 1
3 1 1 0 0 0 0 0
4 1 1 0 1 0 0 0
5 1 1 0 1 1 0 0
6 1 1 0 1 1 1 0
7 1 1 0 1 1 1 1

When a module loses an arbitration cycle to a higher-priority module, it must deassert its MBRQ signal
until the end of the current M-bus transaction. The module that wins an arbitration cycle continues to
assert its M-bus request until the M-bus slave takes over the M-bus. Whenever a slave module is driving
the MSTAT and MDAL signals, it must assert its MBRQ signal.

When a module loses an arbitration cycle, it must still monitor the M-bus transaction to maintain synchron-
ization with the other modules.

During idle M-bus cycles, all MBRM signals are monitored to determine the start of M-bus transactions
initiated by other modules.

Each module should implement M-bus-monitoring logic that detects assertion of other MBRQ signals
when it is driving the M-bus. If multiple modules erroneously believe they won a M-bus arbitration, they
will observe each other’s MBRQ signal as asserted and signal a M-bus error. If multiple slaves errone-
ously respond to a M-bus transaction, they will observe each other’s MBRQ signal as asserted and signal a
M-bus error. This serves as a form of single-bit error detection on the MBRQ signals.

Table 4-10 lists cycles in which exactly one M-bus master, M, or exactly one M-bus slave, S, should be
asserting its MBRQ signal.

Table 4-10: M-bus Cycles Requiring MBRQ Checking

Transaction P1

Memory Read
Memory Write
I/O Read
I/O Write
Interrupt Ack.

PS P6 P7 P8 P9
M S S S
M

TXRRE S
TTRRZ3
nwnuZF

S

Modules must also assert their MBRQ signal when MRESET is asserted. This allows M-bus-monitoring
logic to determine which backplane slots contain modules, even if the modules have hardware failures that
prevent them from responding as M-bus slaves during M-bus transactions. Because of timing restrictions,
assertion of MBRQ during reset must be pipelined; that is, MRESET is ORed into the next cycle state for
MBRQ. This implies that the MBRQ signals will still be asserted during the first cycle that MRESET
becomes deasserted. Consequently, M-bus-interface state machines must not interpret MBRQ assertion
during this cycle as M-bus arbitration. This may be implemented by using a one-cycle-delayed copy of
MRESET to reset internal logic.

8 Firefox System Specification December 29, 1987 Firefox M-Bus Specification 4.4.1.1.

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

Figure 4-1 shows a workstation with modules in backplane slots 0. 4, and S. In response to the assertion of
MRESET, all modules reset their internal logic and their M-bus-interface logic asserts their MBRQ signals.
Backplane termination resistors maintain a deasserted level on the slot 1, 2, 3, 6, and 7 MBRQ signals.
During cycle P4, a M-bus-interface register may latch and save the value of MBRQ<0:7> for use by
software. Cycle PS is the first M-bus cycle that a M-bus transaction can start.

| PO | P1 | P2 | P3 | P4 | P5 | P6 |

MBRQ<0> | |

MBRQ<1>

MBRQ<2>

MBRQ<3>

MBRQ<4> f

MBRQ<5> ‘ !

MBRQ< 6>

MBRJN 2>

MRESET

Figure 4-1: MBRQ Assertion During MRESET

It is recommended that M-bus-interface logic monitor its own MBRQ backplane signal and verify that it is
driven with the correct state.

4.4.1.2. MBUSY

Commencement of a new M-bus transaction can be stalled by asserting the MBUSY signal. Assertion of
MBUSY during a transaction has no effect on the current transaction. Assertion of MBUSY suppresses
transition of the M-bus state from P1 to P2. The primary use of MBUSY is to stall commencement of a
new transaction until a memory-write transaction completes in all slaves. This is necessary because
memory writes are broadcast transactions and may complete in a different number of M-bus cycles in the
slaves.

4.4.2. Data Transfer

Data transfer between two or more modules is accomplished via the MDAL signals under the control of the
MCMD and MSTAT signals. The MXPAR signals enable single-bit error detection of the MCMD,
MSTAT, and MDAL signals.

The MDAL signals are driven by M-bus masters to specify addresses, write data, and interrupt-
acknowledge levels. The MDAL signals are driven by M-bus slaves to specify read data and interrupt vec-
tors. The MCMD signals are driven by M-bus masters to specify the transaction type and I/O-space byte
masks. The MSTAT signals are driven by M-bus slaves to indicate the status of the current transaction.

4.4.2.1. Firefox M-Bus Specification December 29, 1987 Firefox System Specification 9

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.4.2.1. MCMD

‘When a M-bus master is driving the MDAL signals, the MCMD signals indicate the contents of the MDAL
signals. There are three uses of the MCMD signals: transaction type, memory write-through byte mask,
and I/O-read/write byte mask. Table 4-11 lists the interpretation of MCMD during various transaction
cycles. All transactions are shown without slave wait cycles.

Table 4-11: Interpretation of MCMD During Transaction Cycles

Transaction Cycle Interpretation
All transactions P1 <Not driven>
All transactions P2 Transaction type
Memory read P3 <Not driven>
Memory read P4 <Not driven>
Memory read PS5 <Not driven>
Memory read P6 <Not driven>
Memory read P7 <Not driven>
Memory read P8 <Not driven>
Memory read P9 <Not driven>
Memory read P10 <Not driven>
Memory write P3 Byte mask
Memory write P4 Byte mask
Memory write PS5 Byte mask
Memory write P6 Byte mask
I/O read P3 Byte mask
I/O read P4 <Not driven>
I/O write P3 Byte mask
1/O write P4 <Not driven>
Interrupt acknowledge P3 <Not driven>
Interrupt acknowledge P4 <Not driven>
Interrupt acknowledge PS5 <Not driven>

10 Firefox System Specification December 29, 1987 Firefox M-Bus Specification 4.4.2.1.

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

Table 4-12 lists the encoding of the MCMD field during cycle P2 of all M-bus transactions. A memory-
space versus an I/O-space transaction is specified by MDAL<31> of a read or write address; MDAL<31>
is 0 for memory space and 1 for I/O space. M-bus masters must drive MDAL<31> to 1 for interrupt-
acknowledge transactions.

Table 4-12: MCMD Encoding During Cycle P2 of Transactions

Value Mbnemonic Function

0000 RESERVED
0001 RESERVED
0010 RESERVED
0011 RESERVED
0100 RESERVED

0101 READ Request read

0110 RESERVED

0111 WRITET Request write-through
1000 RESERVED

1001 READI Request read interlocked
1010 WRITE Request victim or 1/O write

1011 WRITEU Request write unlock
1100 RESERVED

1101 INTACK Request interrupt acknowledge
1110 READU Request read unshared

1111 RESERVED

When the M-bus master issues an I/O-space read or write. the MCMD signals specify the byte mask for the
longword address. For both I/O reads and writes, the M-bus master supplies the byte mask during cycle P3
of a M-bus transaction. Table 4-13 lists the correspondence of mask bits to MDAL bytes. If MCMD<n> is
asserted, then the corresponding byte of the longword is to be transferred. If MCMD<n> is deasserted,
then the cormresponding byte of the longword contains undefined data. When some bytes of MDAL are
undefined because of byte masks, they still enter into the calculation of MDPAR.

Table 4-13: Correspondence Between Mask Bits and MDAL Bytes

Mask Bit MDAL Byte

MCMD<3> MDAL<31:24>
MCMD<2> MDAL<23:16>
MCMD<1> MDAL<15:08>
MCMD<0> MDAL<07:00>

A M-bus master should only drive the MCMD signals during a cycle in which it is specifying a transaction
type or byte mask. When a M-bus master is driving the MCMD signals, it must specify valid parity on
MCPAR.

4.4.2.2. Firefox M-Bus Specification December 29, 1987 Firefox System Specification 11

4.4.2.2. MSTAT

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

When a M-bus slave responds to a M-bus transaction, it asserts its MBRQ signal, specifies transaction
status on the MSTAT signals, and supplies data on the MDAL signals for read-class transactions. Table
4-14 lists the interpretation of MSTAT during each cycle of the various M-bus transactions. All transac-
tions are shown without slave wait cycles.

Table 4-14: Interpretation of MSTAT During Transaction Cycles

Transaction Cycle Interpretation
All transactions Pl <Not driven>

All ransactions P2 <Not driven>

All transactions P3 <Not driven>
Memory read P4 <Not driven>
Memory read PS5 <Not driven>
Memory read P6 <Not driven>
Memory read P7 Data status
Memory read P8 Data status
Memory read P9 Data status
Memory read P10 Data status
Memory write P4 <Not driven>
Memory write PS <Not driven>
Memory write P6 <Not driven>

1/O read P4 Transaction status
1/O write P4 Transaction status
Interrupt ack P4 <Not driven>
Interrupt ack PS5 Transaction status

If no MBRQ signal is asserted during the first M-bus slave cycle of a transaction, then no slave responded
and the transaction is immediately terminated. Table 4-15 lists the first M-bus slave cycle for each transac-

tion type.

Table 4-15: First Slave Cycle of Transactions

Transaction

First Slave Cycle
Memory read P7
I/O read = P4
1/O write P4
Interrupt acknowledge P4

12 Firefox System Specification

December 29, 1987

Firefox M-Bus Specification 4.4.2.2.

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

When a M-bus slave does respond, it specifies cycle status on the MSTAT signals. Table 4-16 lists the
MSTAT encodings.

Table 4-16: MSTAT Encoding

Value Mnemonic Function
00 WAIT Stall transaction
01 GOOD I/O write complete/good read data
CORRECTED/RETRY Corrected memory-read-data/retry-1/O transaction
11 ERROR Transaction error

If a M-bus slave requires additional cycles to complete the current transaction, it specifies WAIT status. A
M-bus slave must not specify WAIT status after returning the first longword of a memory-space read. If
WAIT is specified during P8, P9, or P10 of a memory read, the M-bus master should treat it as GOOD
status.

A M-bus slave specifies GOOD status when it completes an I/O write, and also when it returns memory-
read data, I/O-read data, or an interrupt vector.

A M-bus slave specifies CORRECTED status while it retums memory-read data that has a corrected
single-bit error. A M-bus slave specifies RETRY status when I/O-space transactions must be retried or
when a deadlock with another resource would result.

A M-bus slave specifies ERROR status for I/O-space transactions that reference non-existent resources
Non-existent-resource references should be minimized, as they take up to 256 M-bus cycles to time out.

When a M-bus slave is driving the MSTAT signals, it must specify valid parity on MSPAR.

4.4.2.3. Firefox M-Bus Specification December 29, 1987 Firefox System Specification 13

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.4.2.3. MDAL

The MDAL signals transfer information between modules during M-bus transactions. Table 4-17 lists the
interpretation of MDAL during the various M-bus transaction cycles. All transactions are shown without
slave wait cycles. Modules may only drive MDAL when acting as a M-bus master or slave, Whenever a
module is driving the MDAL signals, it must specify valid parity on MDPAR.

Table 4-17: Interpretation of MDAL During Transaction Cycles
Transaction Cycle Signals Interpretation
All transactions P1 <Not driven>

Memory read P2 MDAL<31:04> Octaword address
Memory read P3 <Not driven>

Memory read P4 <Not driven>

Memory read PS5 <Not driven>

Memory read P6 <Not driven>

Memory read P7 MDAL<31:00> Data

Memory read P8 MDAL<31:00> Data

Memory read P9 MDAL<31:00> Data

Memory read P10 MDAL<31:00> Data

Memory write P2 MDAL<31:04> Octaword address
Memory write P3 MDAL<31:00> Data

Memory write P4 MDAL<31:00> Data

Memory write PS5 MDAIL<31:00> Data

Memory write P6 MDAL<31:00> Data

1/0 read P2 MDAL<31:02> Longword address
I/O read P3 <Not driven>

1/O read P4 MDAL<31:00> Data

1/O write P2 MDAL<31:02> Longword address
I/O write P3 MDAL<31:00> Data

1/O write P4 <Not driven>

Interrupt acknowledge P2 MDAL<06:02> Level

Interrupt acknowledge P3 <Not driven>

Interrupt acknowledge P4 <Not driven>

Interrupt acknowledge PS5 MDAL<15:00> Vector

For read and write transactions, a memory-space versus an I/O-space transaction is specified by
MDAL<31> of the address; MDAL<31> is 0 for memory space, or 1 for I/O-space or interrupt-
acknowledge transactions.

4.424. MXPAR

The MCPAR signal specifies even parity for the MCMD signals. The MSPAR signal specifies even parity
for the MSTAT signals. The MDPAR signal specifies even parity for the MDAL signals. Even parity
means that there is an even number of 1s in a signal group and its corresponding parity bit.

Whenever a module drives any signal of MCMD, MSTAT, or MDAL, it must drive all signals of the
group, plus the corresponding MXPAR signal.

14 Firefox System Specification December 29, 1987 Firefox M-Bus Specification 4.4.2.4,

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

Table 4-18 lists the M-bus cycles for which modules must check M-bus parity. The five types of M-bus
transactions are shown, together with an indication of which cycle C , §, or D checking is required for the
MCMD/MCPAR, MSTAT/MSPAR, and MDAI/MDPAR signals. All transactions are shown without
slave wait cycles. MDAL parity errors must be ignored during slave wait cycles.

Figure 4-2: M-bus Cycles Requiring Parity Checking

Transaction Pl P2 P3 P4 PS5 P6 P7 P8 P9 P10
Memory read ‘ CD SD SD SD SD
Memory write | Cb Cb Cb Cb CD

I/O read ,‘ CD C SD

1/O write | CD CD S

Interrupt acknowledge I CD SD

4.4.2.5. MSHARED

When memory-read, memory-read-unshared, memory-read-interlocked, memory-write-through, and
memory-write-unlock transactions start on the M-bus, all caches probe their tag store to determine whether
or not they contain the octaword. If a cache does contain the octaword, it asserts MSHARED during P6.
Caches that contain the octaword update their tag-shared bit with the value of MSHARED during P7.

4.4.2.6. MDATINV

Whenever a module drives data onto MDAL that is known to contain a parity error, it asserts MDATINV.
Local parity errors occur when cache data stores have parity errors, memory modules have uncorrectable
ECC errors, or devices have hardware failures. When modules receive data with MDATINYV asserted,
either they must indicate an error to the transaction request and not use the data, or they must retain an indi-
cation that the data is invalid along with the data. For example, when caches receive invalid data during fill
operations, they could intentionally write the data store with invalid parity. This prevents the undetected
spread of invalid data.

4.4.3. Workstation Control

The MID, MRESET, MPOK, MDCOK, MRUN, MIRQ, MHALT, and MABORT signals initialize and
coordinate the various modules in a Firefox workstation.

4.4.3.1. Firefox M-Bus Specification December 29, 1987 Firefox System Specification 15

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.4.3.1. MID

The MID signals uniquely identify each M-bus backplane slot with a value from 0 to 7. The MID signals
are connected to the backplane +5-volt and ground planes to achieve the value for a given slot. Table 4-18
lists the MID connections for each slot. The MID value is used in the M-bus-arbitration logic and I/O-
space-address decoding to eliminate the need for switches or jumpers on M-bus modules. The MID value
must be available to each module via a CSR.

Table 4-18: MID Slot Connections

Siot MID<2> MID<1> MID<0>

0 GND GND GND
1 GND GND +5V
2 GND +5V GND
3 GND +5V +5V
4 +5V GND GND
5 +5V GND +5V
6 +5V +5V GND
7 +5V +5V +5V

Since the MID signals are tied directly to power planes, modules must provide a series resistor for each
MID signal as appropriate for their interface logic to avoid device damage.

4.43.2. MRESET

The MRESET signal is asserted to initiate a workstation-wide reinitialization. While MRESET is asserted,
all logic on M-bus modules must be set to a known state and the current M-bus transaction must be
aborted. On the asserted to deasserted transition of MRESET, modules that perform self-testing or that
require more extensive internal restart processing should commence their tests or processing. Such
modules should provide a status bit accessible at all times via a CSR in their M-bus interface that other
modules can use to ascertain whether or not their services are available for use.

The preceding paragraph does not imply that modules must perform self-testing when MRESET first
becomes deasserted. Some modules may require software coordination or direction of self-testing. For
example, if all memory modules perform self-testing in parallel, the power-distribution capacity of the
workstation might be exceeded.

MRESET has a minimum assertion width of eight M-bus cycles. MRESET must be asserted for a
minimum of 70 milliseconds after DC power is available on powerup. MRESET must be asserted when-
ever the MDCOK signal is deasserted. Transitions of the MPOK signal have no effect on MRESET.

Any module or any package-switch logic may be used to assert MRESET.

4.43.3. MPOK

The MPOK signal is asserted by the workstation power supplies when the AC line power is within
specification. When MPOK becomes deasserted, modules should initiate power-failure actions. Deasser-
tion of MPOK does not reset or abort M-bus transactions; it is a higher-level indication that a shutdown is
imminent.

The transitions of MPOK are asynchronous with respect to the M-bus clocks.

Since Firefox workstations do not support battery backup of memory, the only activity expected, when
MPOK transitions from asserted to deasserted, is completion of disk sector writes in progress. Modules
must not stop responding as M-bus slaves when MPOK is deasserted.

16 Firefox System Specification December 29, 1987 Firefox M-Bus Specification 4.4.3.4.

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.4.3.4. MDCOK

The MDCOK signal is asserted by the workstation power supplies when they are supplying DC power
within specification. When MDCOK becomes deasserted, modules may freeze internal resources as
appropriate and stop responding to M-bus transactions.

The transitions of MDCOK are asynchronous with respect to the M-bus clocks.

4.4.3.5. MRUN

The MRUN signal may be asserted by a workstation module to indicate that the workstation is running.
The MRUN signal is typically connected to a front-panel LED as an indication that the workstation has
passed module self-test and is either booting or running the operating system. The MRUN signal may be
driven by any module, though typically is only driven by the workstation [/O module.

The transitions of MRUN are asynchronous with respect to the M-bus clocks.

4.4.3.6. MIRQ

The MIRQ signals are asserted to indicate a pending interrupt. When intemnal logic on a module has a
pending interrupt, it asserts its interrupt-request signal. The M-bus interface propagates this interrupt
request onto one of the MIRQ signals. The M-bus interface of a module that is servicing interrupts pro-
pagates the MIRQ signal onto its local interrupt request.

M-bus-intertace logic shouid provide a mechanism that both masks propagation of mnternal interrupt
requests onto MIRQ signals and propagation of MIRQ signals onto internal interrupt requests. This
scheme is based upon the assumption that a module either requests or services interrupts for a given level
but never does both.

Transitions of the MIRQ signals are asynchronous to the M-bus clocks.

4.43.7. MHALT

When the MHALT signal is asserted, workstation processors should halt. Any module or any package-
switch logic may assert MHALT.

Transitions of the MHALT signal are asynchronous to the M-bus clocks.

4.4.3.8. MABORT

The MABORT signal is asserted by any module detecting an error condition during a M-bus transaction.
Transaction errors are the following:

. M-bus-arbitration errors (multiple masters or slaves)

. - Parity errors on the MCMD, MSTAT, or MDAL signals
. Reserved values of the MCMD codes

»- Too many slave wait/busy cycles

® Interlock violations

. Cache tag-parity errors

M-bus-arbitration errors occur when multiple MBRQ signals are asserted when only one module, either the
M-bus master or the M-bus slave, should be in control of the M-bus. When a master or slave detects a
MBRQ signal from another module asserted while it is driving the M-bus, it should assert its MABORT
signal. M-bus errors should also be generated if the M-bus master/slave MBRQ signal is prematurely
deasserted during a transaction.

Parity errors on the MCMD, MSTAT, and MDAL signals occur when there are M-bus transceiver failures,
connector failures, logic failures that cause no module to drive the M-bus, logic failures that cause multiple
modules to drive the M-bus, and failures in the parity-checking logic. Parity errors can also result when
AC timing is marginal, in which case only some of the modules may detect the error. When any module

4.4.3.8. Firefox M-Bus Specification December 29, 1987 Firefox System Specification 17

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

detects a parity error on MCMD, MSTAT, or MDAL during one of the M-bus cycles specified by the table
in the MXPAR section, that module should assert its MABORT signal.

Only 7 of the possible 16 MCMD encodings are valid during P2 of M-bus transactions. Invalid encodings
result when there is a hardware failure in the M-bus master’s M-bus-interface MCMD logic, when there is
a hardware failure in the monitoring module’s M-bus-interface MCMD logic, or when the monitoring
module is out of sync in a different transaction phase than the M-bus master. When any module detects an
invalid encoding during P2 of a M-bus transaction, it should assert its MABORT signal.

If a M-bus slave specifies WAIT status for more than 256 M-bus cycles, MABORT should be asserted.
M-bus slave interfaces should implement their own timeout logic for M-bus-initiated, internai-bus transac-
tions. If an internal timeout occurs, the slave module’s M-bus interface should specify ERROR status to
terminate the M-bus transaction. To minimize the length of time that the M-bus is stalled, the intemnal
timeout should be the minimum necessary for the specific module. Indicating ERROR status also limits the
failure status to only the module that initiated the M-bus transaction. The M-bus slave wait timer is
intended to catch failures of slave M-bus-interface logic, which affects the entire workstation. When any
module detects too many slave wait-status cycles, it should assert its MABORT signal.

When a read-interlocked transaction is initiated, all M-bus interfaces update their interlocked unit. The
address is interlocked against other interlocked reads to that same address until a write-unlock transaction
is initiated. While an address is interlocked, M-bus interfaces must stall internal requests for read-
interlocked transactions to that same address. If a M-bus interface observes a read-interlocked transaction
on the M-bus for an address it considers interlocked, this means that a hardware failure has caused the
interlock units to become inconsistent between the M-bus interfaces of the modules. As a resuit, the inter-
face should assert its MABORT signal. Similarly, if a M-bus interface observes a write-unlock transaction
for an address it does not consider interlocked, it should also assert its MABORT signal. Modules that
never act as M-bus masters need not implement the interlock unit and corresponding checking logic.

During memory-space transactions, all caches probe their tag store to determine whether or not the octa-
word is present in their cache. If a parity error is detected in the tag for the specified octaword, the cache
probe cannot be completed. When such a tag-parity error occurs, the module must assert its MABORT sig-
nal.

Once a module asserts its MABORT signal, it must remain asserted for eight cycles to ensure the current
M-bus transaction has been completed and that all M-bus interfaces have returned to the idle state. The
current M-bus master and/or M-bus slave should abort the transaction as scon as practical. At the end of
the current transaction, a workstation-wide machine check should be initiated. Inherent pipelining of the
M-bus may result in some errors not being detected until the cycle after the one in which the transaction
was completed on the M-bus.

Lack of slave response is immediately indicated during P7 of memory-space read transactions, during P4 of
I/O-space transactions, and during P4 of interrupt-acknowledge transactions, because none of the MBRQ
signals are asserted. This results in immediate termination of the M-bus transaction. Modules must not
assert MABORT in this situation; instead, the M-bus interface of the M-bus master should indicate an error
to its internal logic, and the M-bus should immediately return to the idle state.

M-bus interfaces must clear their interlocked-sequence-in-progress flags whenever MABORT is asserted
on the M-bus, as part of retumning to an idle state. The state of the interlocked-sequence-in-progress flags
is unchanged by cycles that terminate because of no slave response. Read interiocked transactions must
only be issued at addresses to which a slave is known to respond, as the interlock flag is set as soon as the
M-bus master acquires the M-bus.

4.4.4, Clock Distribution

The MCLKA and MCLKB signals are the master clocks for all of the M-bus interface logic. The MCLKI
signal functions as an interval-timer interrupt.

18 Firefox System Specification December 29, 1987 Firefox M-Bus Specification 4.44.1.

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.44.1. MCLKA

MCLKA is the master clock for the M-bus. All signal transitions and M-bus-interface state machines are
referenced to MCLKA. The M-bus cycles, Pn, are defined by the rising edge of MCLKA. M-bus signals
transition after the rising edge of MCLKA; that is, MCLKA should be used to clock registers and enable
latches driving the M-bus. MCLKA is radially distributed to each module to minimize skew between
modules.

4442 MCLKB

MCLKB is the slave clock for the M-bus. M-bus receiver registers and latches should be clocked by
MCLKB. MCLKB will be positioned with respect to MCLKA to meet receiver hold-time requirements in
the presence of clock skew. MCLKB is radially distributed to each module to minimize skew between
modules.

4.4.4.3. MCLKI

The MCLKI signal is a 100-Hz square wave for use as an interval-clock interrupt. Transitions of the
MCLKI signal are asynchronous with respect to the M-bus clocks. Multiple modules may have circuitry to
generate the MCLKI signal. Consequently, modules that do implement MCLKI circuitry must default to
not driving the signal until enabled by software. This implies that no modules drive the MCLKI signal after
workstation reset (MRESET asserted). Software must enable driving MCLKI on one of the modules
before processors receive interval clock interrupts

4.5. Transactions
There are five categories of M-bus transactions:

. Memory read
. Memory write
. I/O read
. I/O write

. Interrupt acknowledge

Memory-space operations transfer data between two or more modules and maintain data consistency
between all caches. Memory-space transactions always transfer four longwords (one cache line) between
modules. When a memory-space read or write-through transaction is initiated, all modules probe their
cache to determine whether or not the line is shared. For memory-space reads, a cache supplies the read
data for shared dirty lines, and a memory module supplies read data for unshared lines or shared clean
lines. For memory-space write-throughs, the memory module, as well as all caches that contain the line,
update the line. For memory-space victim writes, only the memory module updates the line.

[/O-space transactions transfer data between exactly two modules. I/O-space transactions transfer one
masked lopgword between modules. I/O-space data is never cached.
Interrupt-acknowledge transactions transfer one interrupt vector between exactly two modules.

Figure 4-3 shows the M-bus states for the various phases of transactions. The MR phase prefix stands for
memory read. The MW phase prefix stands for memory write. The IR phase prefix stands for I/O read. The
IW phase prefix stands for //O write. The 1A phase prefix stands for interrupt acknowledge. The AnyArb
and Wait terms represent derived signals within M-bus interface logic. For the I/O read and write states, no
slave response termination of the transaction is implicit in the /Wait term which contains AnyArb.

4.5. Firefox M-Bus Specification December 29, 1987 Firefox System Specification 19

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

Table 4-19: M-Bus State Diagram

MRESET OR MABORT

AnyArb = MBRM<0> OR ... OR MBRM<6> OR MBRQ
Wait = AnyArb AND (MSTAT = WAIT)

20 Firefox System Specification December 29, 1987 Firefox M-Bus Specification 4.5.1.

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.5.1. Transaction Notation

The following sections contain sample M-bus transactions in the format shown in Table 4-20 cycle column
lists the sequential transaction phase, for example, P3. The MBRQ column lists the module asserting its
MBRQ) signal, with arbitration assertions in parentheses. The MCMD column lists the cycle-type code
present on the MCMD signals. The MSTAT column lists the cycle-status code present on the MSTAT sig-
nals. The MDAL column indicates the interpretation of the value present on the MDAL signals. The func-
tion column describes the operation that occurs during the cycle.

Table 4-20: M-Bus Cycle Nomenclature

Cycle MBRQ MCMD MSTAT MDAL Function
Pn WHO OP/MASK STATUS VALUE WHAT

4.5.2. Memory-Space Reads

Table 4-21 shows the cycles that compose a memory-space read transaction. During cycle P1, the initiating
module arbitrates for the M-bus. During cycle P2, the M-bus master indicates the type of transaction and
the read address. The octaword address is specified on MDAL<30:4>; MDAL<31> and MDAL<3:0> must
be 0. During cycles P3 through P6, the master waits for a slave to respond. A memory module or cache
transmits read data during cycles P7 through P10.

Table 4-21: M-Bus Memory-Read Transaction

Cycle MBRQ MCMD MSTAT MDAL Function

P1 ™M) Bus arbitration
P2 M READ Address Read address

P3 M Wait

P4 M Wait

P5 M Wait

P6 (S) Wait

P7 S GOOD Data 0 First longword
P8 S GOOD Data 1 Second longword
P9 S GOOD Data 2 Third longword
P10 GOOD Data 3 Fourth longword

The M-bus cycles P3 through P6 provide dynamic RAM-access time for memory modules. Memory
modules must not provide read data before cycle P7. Memory modules requiring more RAM-access time
may insert additional WAIT cycles after cycle P6. Starting in cycle P7, memory modules must either
specify WAIT or read data.

During 4 femory-space read transaction, all caches in Firefox workstations have M-bus cycles P3 through
P5 to complete a probe of their tag store. If a cache hit to a dirty line results, the modules’ M-bus interface
asserts its MBRQ signal during cycle P6 and drives the MBRQ, MSTAT, and MDAL signals during cycles
P7 through P10. This applies only to shared dirty cache lines; memory modules supply data for shared
clean lines.

There are two types of memory-read transactions, READ and READU. Both transactions have the same
format, require cache modules to probe their tag store, assert the MSHARED signal if a hit results, and
supply data if a hit to a dirty line results. If no cache arbitrates to supply read data, then the selected
memory module supplies read data. After a READ transaction, tag stores with hits set their SHARED bit.
After a READU transaction, tag stores do not modify their SHARED bit.

The READ transaction must be used by processor modules and I/O modules that require a coherent
memory-space. [/O module that do not need require write-through updates of previously read data should

4.5.2. Firefox M-Bus Specification December 29, 1987 Firefox System Specification 21

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

use READU. This allows such I/O modules to read communication blocks cached in processor modules
without the processor modules incurring the overhead of unnecessary write-throughs.

If a memory module detects any MBRQ signal asserted during cycle P6, it aborts its read cycle.

When modules present read data on the MDAL signals, the MSTAT signals specify either GOOD, indicat-
ing that no data errors occurred, or CORRECTED, indicating that a single-bit error was detected and
corrected. If the module detects a parity error or double-bit ECC error it asserts MDATINV while driving
that longword onto MDAL. If memory modules implement ECC on words wider than 32 bits, they may
specify CORRECTED for each longword transfer of memory words whether or not that longword is the
one that actually contains the corrected single-bit error. Table 4-22 shows an example of a memory read of
corrected data.

Table 4-22: Memory-Read Transaction with Corrected Data

Cycle MBRQ MCMD MSTAT MDAL Function
P1 M) Bus arbitration
P2 M READ Address Read address
P3 M Wait
P4 M Wait
P5- M Wait
P6 Wait
P7 S GOOD Data 0 First longword
P8 S GOOD Data 1 Second longword
P9 S CORRECTED Data?2 Third longword
P10 CORRECTED Data3 Fourth longword

Once the first longword of data is supplied, no additional slave wait cycles are allowed. The four long-
words of data must be transferred in four consecutive M-bus cycles. M-bus-interface logic must interpret
additional WAIT status as ERROR status.

Whenever a M-bus interface detects CORRECTED status in response to a memory-space read, it should
generate an interrupt to its local processor.

4.5.3. Memory-Space Writes

Table 4-23 shows the cycles that compose a memory-space write transaction. During cycle P1, the initiat-
ing module arbitrates for the M-bus. During cycle P2, the M-bus master indicates the type of transaction
and the write address. The octaword address is specified on MDAL<30:4>; MDAL<31> and MDAL<3:0>
must be 0. During cycles P3 through P6, the M-bus master transfers write data.

Table 4-23: M-bus Memory-Write Transaction

Cycde MBRQ MCMD MSTAT MDAL Function

PI "M Bus arbitration
P2 M WRITE Address Write address

P3 M MASK Data 0 First longword
P4 M MASK Data 1 Second longword
P5 M MASK Data 2 Third longword
P6 S MASK Data3 Fourth longword

During each M-bus cycle in which a master transfers write data on MDAL, MCMD functions as a byte
mask. If MCMD<n> is asserted, then the correspouding byte of MDAL must be written into a shared
cache line. If MCMD<n> is deasserted, then the corresponding byte of MDAL should not be written into a
shared cache line.

22 Firefox System Specification December 29, 1987 Firefox M-Bus Specification 4.5.3.

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

Memory modules always write the entire octaword, regardless of the byte mask. This implies that memory
modules have invalid contents for shared dirty lines until the victim write occurs. However, since caches
supply read data for M-bus reads of shared dirty lines, the memory module value is irrelevant.

If any byte of a longword has an internal module-parity error, the module must assert MDATINV while it
drives the longword containing that byte onto MDAL. Modules that write the invalid data into their inter-
nal storage must store an indication that the data is invalid along with the data. For example, memory
modules force a bad check-bit-field for the affected memory address; caches force bad parity for the
affected byte.

During a memory-space write transaction, all caches in Firefox workstations have M-bus cycles P3 through
PS5 to complete a probe of their tag store. If a cache detects a hit, it must assert MSHARED during cycle
P6.

Memory modules or caches that are referenced by the memory address assert their MBRQ signal during
P6. The M-bus master should treat the lack of any MBRQ as a no-slave response. Memory modules or
caches that require more cycles to complete the write transaction may assert MBUSY to stall subsequent
transactions.

4.5.4. I/0-Space Reads

1/O-space read transactions adhere to the same M-bus protocol as memory-space read transactions except
that I/O-space references are uncached and transfer at most one longword of data. Consequently, caches
need not meniter I'0O-space transactons. Since caches are not involved, the mandatory wait cycles have
been eliminated. Table 4-24 shows an I/O-read transaction.

Table 4-24: M-Bus |/O-Read Transaction

Cycle MBRQ MCMD MSTAT MDAL Function

P1 ™M) Bus arbitration
P2 M READ Address Read address
P3 M MASK Byte mask

P4 S GOOD Data Read data

During cycle P1, the initiating module arbitrates for the M-bus. During cycle P2, the M-bus master indi-
cates the type of transaction and the read address. The longword address is specified on MDAL<30:2>;
MDAL<31> must be 1; MDAL<1:0> is undefined. During cycle P3, the M-bus master specifies the byte
mask for the longword address.

The M-bus slave may stall the return of read data, starting in cycle P4, by specifying WAIT on MSTAT.
Most I/O devices will require several WAIT cycles.

If the M-bus slave specifies GOOD status, the M-bus transaction terminates and the M-bus master returns
the read data to its internal logic.

If the M-bus slave specifiess RETRY status, the M-bus transaction terminates and the M-bus master
instructs its internal logic to retry the transaction at a later time.

If the M-bus slave specifies ERROR status, the M-bus transaction terminates and the M-bus master informs
its intemal logic that the read failed. The M-bus interface of the master should implement a status register
that allows intemnal logic to determine whether no slave responded or a slave responded with an error.

4.5.5. Firefox M-Bus Specification December 29, 1987 Firefox System Specification 23

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.5.5. |/0-Space Writes

I/0-space write transactions adhere to the same M-bus protocol as memory-space write transactions except
that I/O-space references are uncached and transfer at most one longword of data. Consequently, caches
need not monitor I/O-space transactions. Since caches are not involved, the mandatory wait cycles have
been eliminated. Table 4-25 shows an I/O-write transaction.

Table 4-25: M-bus I/O-Write Transaction

Cycle MBRQ MCMD MSTAT MDAL Function

P1 M) Bus arbitration
P2 M WRITE Address Write address
P3 M MASK Data Write data

P4 S GOOD Write completed

During cycle P1, the initiating module arbitrates for the M-bus. During cycle P2, the M-bus master indi-
cates the type of transaction and the write address. The longword address is specified on MDAL<30:2>;
MDAL<31> must be 1; MDAL<1:0> is undefined. During cycle P3, the M-bus master specifies the byte
mask for the longword address and the write data.

The M-bus slave may stall the completion of the write transaction starting in cycle P4 by specifying WAIT
on MSTAT. Most I/O devices will require several WAIT cycles.

If the M-bus slave specifies GOOD status, the M-bus transaction terminates and the M-bus master indicates
successful completion of the write to its internal logic.

If the M-bus slave specifies RETRY status, the M-bus transaction terminates and the M-bus master
instructs its intermnal logic to retry the transaction at a later time.

If the M-bus slave specifies ERROR status, the M-bus transaction terminates and the M-bus master informs
its internal logic that the write failed. The M-bus interface of the master should implement a status register
that allows internal logic to determine whether no slave responded or a slave responded with an error.

4.5.6. Interiocked Transactions

Interlocked transactions are initiated by an interlocked-read transaction. Interlocked-read transactions are
identical to normal read transactions except that they also record the interlocked address and set the
interlocked-sequence-in-progress flag in one of the two interlock-unit slots. Write-unlock transactions are
identical to normal write transactions except that they also deassert the interlocked-sequence-in-progress
flag for the locked address.

When a processor generates an interlocked read, its cache must force a miss. This guarantees that the inter-
locked read generates a M-bus transaction. If a processor requests an interlocked-read transaction of its
M-bus interface, and that address is locked or the interlock unit is full, the processor must be stalled until
the address is unlocked.

Regardless of the state of the interlocked-sequence-in-progress flags, noninterlocked M-bus transactions
proceed. In other words, the interlock unit only blocks interlocked-read transactions from arbitrating for
the M-bus until the write-unlock transaction for the interlocked address is completed.

Assertion of MABORT unconditionally clears the interlocked-sequence-in-progress flags.
Refer to the sections discussing memory-space transactions for detailed descriptions of the M-bus protocol.

24 Firefox System Specification December 29, 1987 Firefox M-Bus Specification 4.5.7.

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.5.7. Interrupt-Acknowledge Transactions

An interrupt-acknowledge transaction follows the same protocol as a memory space read transaction. In
place of a read address, the M-bus master provides an interrupt level. All modules with a pending interrupt
at that level assert their M-bus-arbitration request (MBRQ) signal during cycle P4. The module with the
highest M-bus priority supplies an interrupt vector during cycle PS. The highest-priority module may
insert additional WAIT cycles before providing the vector. Most I/O devices will require multiple WAIT
cycles to produce a vector. Lower-priority modules abort the transaction after cycle P4. Table 4-26 shows
an example of an interrupt-acknowledge transaction.

Table 4-26: M-Bus Interrupt-Acknowledge Transaction

Cycde MBRQ MCMD MSTAT MDAL Function

P1 ™M) Bus arbitration
P2 M INTACK Level Interrupt level
P3 M Wait

P4 S) Slave arbitration
P5 S GOOD Vector Interrupt vector

During cycle P1, the initiating module arbitrates for the M-bus. During cycle P2, the M-bus master indi-
cates the tvpe of transaction and the interrupt level. The interrupt level is specified on MDAL<6:2>:
MDAL<31> must be 1; MDAL<30:7> and MDAL<1:0> are undefined.

If no MBRQ signals are asserted during cycle P4, indicating that no M-bus interfaces are arbitrating to pro-
vide an interrupt vector, the M-bus interface of the M-bus master should initiate passive-release processing
(passive release means that software is uninterrupted). If multiple processors simultaneously initiate an
interrupt-acknowledge transaction, the highest-priority processor receives the interrupt vector, and ali other
processors receive passive releases. This allows an interrupt level to be serviced by multiple processors.

If the M-bus slave specifies GOOD status, the M-bus transaction terminates and the M-bus master returms
the interrupt vector to its intemnal logic. The interrupt vector is encoded on MDAL<15:0>; MDAL<31:16>
is undefined.

If the M-bus slave specifies RETRY status, the M-bus transaction terminates and the M-bus master
instructs its internal logic to retry the transaction at a later time.

If the M-bus slave specifies ERROR status, the M-bus transaction terminates and the M-bus master informs
its internal logic that the interrupt acknowledge failed. This is equivalent to a no-slave-response passive
release.

4.6. Example Transactions
The following sections show sample memory, 1/0, and interrupt-acknowledge transactions.

All sigqaLs in pictorial diagrams are shown with active-high assertion state for clarity. This may not
correspond to the assertion state on the backplane.

4.6. Firefox M-Bus Specification December 29, 1987 Firefox System Specification 25

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.6.1. Memory Read to Unshared Line

Figure 4-3 shows a no-wait-state memory read for an unshared cache line with two modules arbitrating for
the M-bus.

{ PC | P1L { P2 | P3 | P4 | PS | P6 | P7 | P8 | P9 | P10} P11}

MBRQ1

MBRQ3

MBRQ6 |

MCMD mmemmee-e- <Read>~===-=---mmecmccmcecmceccccscm e cmme e

MSTAT ==-=--m-ececccccccccecccce e mm—— e <GoodXGoodXGoodXGood> ===~

MSHARED

MDATINV

MBUSY

Figure 4-3: Memory Read Transaction to Unshared Line

PO

P1

P2

P3

P4

P5

P6

P8

P9

The M-bus is idle.
The modules in slots 1 and 6 arbitrate for the M-bus.

Slot 1 has higher priority, wins the M-bus arbitration, and continues to assert its MBRQ signal to
confirm this, at the same time that it drives MCMD with READ and MDAL with the memory
address. Slot 6 deasserts its MBRQ, since it lost the M-bus arbitration.

Modules monitoring the M-bus transaction start decoding the address.
Modules monitoring the M-bus transaction continue servicing the request.
Modules monitoring the M-bus transaction continue servicing the request.

No caches contain the referenced line, so MSHARED remains deasserted.

The memory module in slot 3 contains the referenced line. It asserts its MBRQ, indicates good data,
and supplies the first longword.

Slot 3 supplies the second longword.

Slot 3 supplies the third longword.

P10 Slot 3 supplies the fourth longword, ending the transaction.

26 Firefox System Specification December 29, 1987 Firefox M-Bus Specification 4.6.1.

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

P11 Slot 6 rearbitrates for its pending transaction. This is the earliest cycle that a new transaction may
start.

4.6.1. Firefox M-Bus Specification December 29, 1987 Firefox System Specification 27

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.6.2. Memory Read to Shared Clean Line
Figure 4-4 shows a memory read for a shared, clean cache line.

| PO | P1L | P2 | P3 | P4 | PS | P6 | PT | P8 | P9 | P10| P11|

MBRQ2 i '

MBRQ4

MBRQ7

MCMD = -----se--- <Read>-=----=-e--mtccm e e e mccm e mc e e

MSTAT ~==--------m-cmmmmcccccee—mm e == <GoodXGoodXGoodXGood> ==~~~

MSHARED

MDATINV

MBUSY

Figure 4-4: Memory Read Transaction to Shared Clean Line

PO

P1

P2

P3

P4

PS

P6

P7

P8

The M-bus is idle.
The module in slot 2 arbitrates for the M-bus.

Slot 2 asserts its MBRQ signal to confirm that it won the M-bus. It also drives MCMD with READ
and MDAL with the memory address.

Modules monitoring the M-bus transaction start decoding the address.
Modules monitoring the M-bus transaction continue servicing the request.
Modules monitoring the M-bus transaction continue servicing the request.

The cache of the module in slot 7 contains the referenced line, which is unmodified, so it asserts
MSHARED, but leaves its MBRQ signal deasserted.

The memory module in slot 4 supplies the first longword.

Slot 4 supplies the second longword.

P19 Slot 4 supplies the third longword.

P10 Slot 4 supplies the fourth longword, ending the transaction.

28 Firefox System Specification December 29, 1987 Fircfox M-Bus Specification 4.6.2.

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

P11 There are no pending transactions, so the M-bus remains idle.

4.6.2. Firefox M-Bus Specification December 29, 1987 Firefox System Specification 29

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.6.3. Memory Read to Shared Dirty Line

Figure 4-5 shows a memory read for a shared, dirty cache line.

| PO | P1L | P2 | P3 | P4 | P5 | P6 | P7T | P8 | P9 | P10| P1ll| P12|

MBRQ2 |

MBRQ4

MBRQ7

MCMD ~ mmemmm—mme- KR@AA> == == = = === m = = e e

MSTAT = —-m=~---ercccccccccccccenceccccccca <WaitXGoodXGoodXGoodXGood>====~

MSHARED | |

. MDATINV

MBUSY

Figure 4-5: Memory Read Transaction to Shared Dirty Line

PO

P1

P2

P3

P4

PS5

P6

P8

P9

The M-bus is idle.
The module in slot 2 arbitrates for the M-bus.

Slot 2 asserts its MBRQ signal to confirm that it won the M-bus. It also drives MCMD with READ
and MDAL with the memory address.

Modules monitoring the M-bus transaction start decoding the address.
Modules monitoring the M-bus transaction continue servicing the request.
Modules monitoring the M-bus transaction continue servicing the request.

The cache of the module in slot 7 contains the referenced line, which has been modified, so it asserts
both MSHARED and its MBRQ signal.

Slot 7 continues to assert its MBRQ and indicates wait status. The selected memory module in slot 4
aborts its read operation.

Slot 7 supplies the first longword.

Slot 7 supplies the second longword.

P10 Slot 7 supplies the third longword.

30 Firefox System Specification December 29, 1987 Firefox M-Bus Specification 4.6.3.

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

P11 Slot 7 supplies the fourth longword, ending the transaction.

P12 There are no pending transactions, so the M-bus remains idle.

4.6.3. Firefox M-Bus Specification December 29, 1987 Firefox System Specification 31

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.6.4. Memory Read with Uncorrectable ECC Error

Figure 4-6 shows a no-wait-state memory read for an unshared cache line with an uncorrectable ECC error
in the second quadword.

| PO | PL | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10| P11

MBRQ1 |

MBRQ3 |

MCMD —emmmemme-- <CREAA>~ === === mme e mmm e

MSTAT =eweccccccccccmcncccaccccccncncanan <GoodXGoodXGoodXGood>--~-~

MSHARED

MBUSY

MDATINV |

Figure 4-6: Memory Read Transaction with Uncorrectable ECC Error

PO The M-bus is idle.
P1 The module in siot 1 arbitrates for the M-bus.

P2 Slot 1 wins the M-bus arbitration and continues to assert its MBRQ signal to confirm this, at the same
time that it drives MCMD with READ and MDAL with the memory address.

P3 Modules monitoring the M-bus transaction start decoding the address.

P4 Modules monitoring the M-bus transaction continue servicing the request.
PS Modules monitoring the M-bus transaction continue servicing the request.
P6 No caci:es contain the referenced line, so MSHARED remains deasserted.

P7 The 'memory module in slot 3 contains the referenced line. It asserts its MBRQ, indicates good data,
and supplies the first longword.

P8 Slot 3 supplies the second longword.

P9 Slot 3 supplies the third longword, and it asserts MDATINV to indicate that the data is known to
have an error.

P10 Slot 3 supplies the fourth longword, and it asserts MDATINYV to indicate that the data is known to
have an error.

32 Firefox System Specification December 29, 1987 Firefox M-Bus Specification 4.6.4.

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

P11 This is the earliest cycle that a new transaction may start.

4.6.4. Firefox M-Bus Specification December 29, 1987 Firefox System Specification 33

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.6.5. Memory Read to Non-Existent Memory

Figure 4-7 shows a memory read to a non-existent memory-space address.

| PO | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 |

MBRQ1 | |

MBRQ3

MBRQ6 | |

MCMD —-rmemeeee- <Read>-------r=cceccemccc e me

MSTAT = —==mmmmmmm o e e oo e

MSHARED

MDATINV

MBUSY

Figure 4-7: Memory-Read Transaction with No Slave Response

PO

P1

P3

P4

P5

P6

P8

The M-bus is idle.
The modules in slots 1 and 6 arbitrate for the M-bus.

Slot 1 has higher priority, wins the M-bus arbitration, and continues to assert its MBRQ signal to
confirn this, at the same time that it drives MCMD with READ and MDAL with the memory
address. Slot 6 deasserts its MBRQ, since it lost the M-bus arbitration.

Modules monitoring the M-bus transaction start decoding the address.
Modules monitoring the M-bus transaction continue servicing the request.

Modules monitoring the M-bus transaction continue servicing the request.

No caches contain the referenced line, so MSHARED remains deasserted.

No memory module contains the referenced line, so all the MBRQ signals remain deasserted. This is
the last cycle of the transaction.

Slot 6 rearbitrates for its pending transaction. This is the first possible cycle for a new transaction.

34 Firefox System Specification December 29, 1987 Firefox M-Bus Specification 4.6.5.

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.6.6. Victim Write
Figure 4-8 shows a victim write to flush out a dirty cache line.

Figure 4-8: Victim Write Transaction

PO

P1

P2

P3

P4

P5

P6

P8

| PO | P1 | P2 | P3 | P4 | PS | P6 | P7 | P8 |

MBRQ2

|

MBRQ4 |

MBRQ#6 |

MCMD ~==mmmm-——e <WritXundfXundfXUndfXUndf>-==-m===--

MSTAT -e-mmmemmemec—————-

MSHARED

MDATINV

MBUSY

The M-bus is idle.

The modules in slots 4 and 6 arbitrate for the M-bus.

Slot 4 wins the arbitration and asserts its MBRQ signal to confimm that it won the M-bus. It also

drives MCMD with WRITE and MDAL with the memory address.

Slot 4 drives MDAL with the first longword.

Slot 4 drives MDAL with the second longword.

Slot 4 drives MDAL with the third longword.

Slot-4 drives MDAL with the fourth longword. The memory module in slot 2 asserts MBRQ to indi-

cate that it is the slave.

The memory module in slot 2 asserts MBUSY while it complete the write. The module in slot 6

rearbitrates for the M-bus.

The memory module has completed the memory write, so it deasserts MBUSY. Since MBUSY was

asserted in P7, the module in slot 6 continues to rearbitrate for the M-bus.

4.6.6. Firefox M-Bus Specification

December 29, 1987

Firefox System Specification 35

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.6.7. Victim Write with Internal Parity Error

Figure 4-9 shows a memory victim write to flush out a dirty cache line that has a parity error in the second
longword.

| PO | P1L | P2 | P3 | P4 | PS5 | P6 | P7T | P8 |

MBRQ2 | |

MBRQ4 |

MBRQ6 | I !

MCMD meeece-—--- <WritXUndfXUndfXUndfXUndf>=-w=eew----

MSTAT === =m—mmmmmmm e oo

'MSHARED

MBUSY | |

MDATINV

Figure 4-9: Victim Write Transaction with Iinternal Parity Error

PO The M-bus is idle.
Pl The modules in slots 4 and 6 arbitrate for the M-bus.

P2 Slot 4 wins the arbitration and asserts its MBRQ signal to confirm that it won the M-bus. It also
drives MCMD with WRITE and MDAL with the memory address.

P3 Slot 4 drives MDAL with the first longword.

P4 Siot 4 drives MDAL with the second longword and asserts MDATINYV to indicate that an internal
parity error was detected on the data.

PS Slot 4 drives MDAL with the third longword.

P6 Slot 4 drives MDAL with the fourth longword. The memory module in slot 2 asserts MBRQ to indi-
cate that it is the slave.

P7 The memory module in slot 2 asserts MBUSY while it complete the write. The module in slot 6
rearbitrates for the M-bus.

P8 The memory module has completed the memory write, so it deasserts MBUSY. Since MBUSY was
asserted in P7, the module in slot 6 continues to rearbitrate for the M-bus.

36 Firefox System Specification December 29, 1987 Firefox M-Bus Specification 4.6.7.

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.6.8. Write-Through to Unshared Line

Figure 4-10 shows a memory write-through for a cache line that was shared but has become unshared. The
memory address references a memory module in slot 2.

| PO | P1 | P2 | P3 | P4 | PS | P6 | P7 |

MBRQ2 | |

MBRQ4 ! !

MBRQ6 i |

MCMD = seemeeeo-- <WritXMaskXMaskXMaskXMask>-=---

MSTAT ==m-=m--—-em—mcecee— e mm -

MSHARED

MDATINYV

MBUSY

Figure 4-10: Write-Through Transaction to Unshared Line

PO The M-bus is idle.
P1 The modules in slots 4 and 6 arbitrate for the M-bus.

P2 Slot 4 wins the arbitration and asserts its MBRQ signal to confirm that it won the M-bus. It also
drives MCMD with WRITE and MDAL with the memory address.

P3 Slot 4 drives MCMD and MDAL with a byte mask and the first longword.
P4 Slot 4 drives MCMD and MDAL with a byte mask and the second longword.
P5 Slot 4 drives MCMD and MDAL with a byte mask and the third longword.

P6 Slot 4 drives MCMD and MDAL with a byte mask and the fourth longword. The referenced line was
not in any other cache, so MSHARED remains deasserted. The memory module in slot 2 asserts
MBRQ to indicate that it is the slave.

P7 The memory module in slot 2 has completed the write transaction, so it does not assert MBUSY.
The module 1n slot 6 rearbitrates for the M-bus.

4.6.8. Firefox M-Bus Specification December 29, 1987 Firefox System Specification 37

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.6.9. Write-Through to Shared Line
Figure 4-11 shows a memory write-through for a shared cache line.

| PO | P1 | P2 | P3 | P4 | P5 | P6 | PT | P8 | P9 |

MBRQ?2 | |

MBRQ3 | |

MBRQ4 | !

MBRQ6 | I |

MCMD —-=-----e- <WritxXMaskXMaskXMaskXMask>-=======-ccce-~-

MDAL —==mmme---- <AddrXDataXDataXDataXData>==-=-=-======u=

MSTAT = ===mmmmm == mmmmm e e oo

MSHARED | |

MDATINV

MBUSY]]

Figure 4-11: Write-Through Transaction to Shared Line

PO

P1

P2

P3

P4

PS5

P6

P8

The M-bus is idle.
The modules in slots 4 and 6 arbitrate for the M-bus.

Slot 4 wins the arbitration and asserts its MBRQ signal to confirm that it won the M-bus. It also
drives MCMD with WRITE and MDAL with the memory address.

Slot 4 drives MCMD and MDAL with a byte mask and the first longword.
Slot 4 drives MCMD and MDAL with a byte mask and the second longword.
Slot.4 drives MCMD and MDAL with a byte mask and the third longword.

Slot 4 drives MCMD and MDAL with a byte mask and the fourth longword. The referenced line is in
another cache in slot 3, which asserts both MSHARED and MBRQ. The memory module in slot 2
asserts MBRQ to indicate that it is the slave.

The memory module in slot 2 has completed the write transaction so it does not assert MBUSY. The
cache is not finished with the write-through, so it asserts MBUSY. The module in slot 6 rearbitrates
for the M-bus.

The cache is not finished with the write-through, so it continues to assert MBUSY. The module in
slot 6 continues to rearbitrate for the M-bus, since MBUSY was asserted in P7.

38 Firefox System Specification December 29, 1987 Firefox M-Bus Specification 4.6.9.

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

PO The cache has cbmpleted the write through so it deasserts MBUSY. The module in slot 6 continues
rearbitrates for the M-bus since MBUSY was asserted in P8.

4.6.9. Firefox M-Bus Specification December 29, 1987 Firefox System Specification 39

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.6.10. Victim Write with Address Parity Error
Figure 4-12 shows a memory victim write with a MDAL parity error during P2.

| PO { P1 | P2 | P3 | P4 | .. | P11| P12|

MBRQ4

MCMD ~ mmmmmmmeee <WritXUndf£XUndfXM. . ---=-c-=n==-n

MSTAT = ~==--—---—m=mmomm———meemoo mmmm—————een

MABORT

MSHARED

MDATINV

MBUSY

Figure 4-12: Victim Write Transaction with Address Parity Error

PO

P1

P2

P3

P4

The M-bus is idle.
The module in slot 4 arbitrates for the M-bus.

Slot 4 asserts its MBRQ signal to confirm that it won the M-bus. It also drives MCMD with WRITE
and MDAL with the memory address.

A slot detected a parity error on the value of MDAL/MDPAR on the M-bus during cycle P2.

Slot 4 drives MDAL with the second longword. The slot that detected the parity error asserts
MABORT.

PS-P10 M-bus interfaces retumn to idle state.

P11

P12

The module that detected the error continues to assert MABORT. All M-bus interfaces should ini-
“.tfate a machine check of their internal logic.

MABORT is deasserted after eight cycles.

40 Firefox System Specification December 29, 1987 Firefox M-Bus Specification 4.6.10.

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.6.11. /O Read
Figure 4-13 shows an I/O read.

| PO | P1L | P2 | P3 | P4 | PS | P6 | P7 |

MBRQO |

MBRQ1 | |

MBRQ4 |

MCMD ~mmmeee-e- <ReadXMask>=--===m=-cc-ecoccaaaa-

MSTAT = ——-==mmemmm—emacceen= <WaitXWaitXGood>=-=-==~

MSHARED

MDATINV

MBUSY

Figure 4-13: 1/O-Read Transaction

PO

P1

P2

P3

P4

PS5

P6

The M-bus is idle.
The modules in slots 1 and 4 arbitrate for the M-bus.

Slot 1 wins the arbitration and asserts its MBRQ signal to confirm that it won the M-bus. It also
drives MCMD with READ and MDAL with the I/O address.

Modules decode the I/O address. Slot 1 specifies the byte mask on MCMD.

Slot 0 asserts its MBRQ to indicate that it is processing the I/O read, but it specifies WAIT on
MSTAT, since data is not yet available.

Slot 0 asserts its MBRQ to indicate that it is processing the I/O read, but it specifies WAIT on
MSTAT, since data is not yet available.

Slot 0 drives read data onto MDAL and specifies GOOD on MSTAT to complete the transaction.

Slot 4 rearbitrates for its pending transaction. This is the first possible cycle for a new transaction.

4.6.11. Firefox M-Bus Specification December 29, 1987 Firefox System Specification 41

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.6.12. /O Read with No Slave Response
Figure 4-14 shows an I/O read.

| PO | P1 | P2 | P3 | P4 | PS5 |
MBRQ1 | |

MBRQ4 | 1 !

MCMD m-mm—mme--- <ReadXMask>=====-===-=

MSTAT = —=-=m===mececmeccmccc—me———a——-

MSHARED

MDATINV

MBUSY

Figure 4-14: 1/0O-Read Transaction with No Slave Response

PO

P1

P4

PS

The M-bus is idle.
The modules in slots 1 and 4 arbitrate for the M-bus.

Slot 1 wins the arbitration and asserts its MBRQ signal to confirm it won the M-bus. It also drives
MCMD with READ and MDAL with the /O address.

Modules decode the 1/O address. Slot 1 specifies the byte mask on MCMD.

The address referenced non-existent I/O, so no slaves responded. The M-bus master’s M-bus inter-
face should indicate an error to its internal logic. This is the last cycle of the transaction.

Slot 4 rearbitrates for its pending transaction. This is the first possible cycle for a new transaction.

42 Firefox System Specification December 29, 1987 Firefox M-Bus Specification 4.6.12.

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.6.13. /O Write
Figure 4-15 shows an I/O write.

| PO | P1 | P2 | P3 | P4 | P5 | P6 |

MBRQO | |

MBRQ2 | |

MBRQS |

MCMD ~ —eemmmmeee <WritXMask>-----==--ce--n-

MSTAT = ~=mecccemccccccan———- <WaitXGood>--~~~

MSHARED

MDATINV

MBUSY

Figure 4-15: |/O-Write Transaction

PO

P1

P2

P3

P4

P5

P6

The M-bus is idle.
The module in slot 2 arbitrates for the M-bus.

Slot 2 asserts its MBRQ signal to confirm it won the M-bus. It also drives MCMD with WRITE and
MDAL with the I/O address.

Modules decode the I/O address. Slot 2 specifies the byte mask on MCMD and supplies data on
MDAL.

Slot 0 asserts its MBRQ to indicate it is processing the I/O write, but it specifies WAIT on MSTAT,
since the write has not been completed.

Slot.0 continues to assert its MBRQ and specifies GOOD on MSTAT to complete the transaction.

Slot 5 rearbitrates for a pending transaction. This is the first possible cycle for a new transaction.

4.6.13. Firefox M-Bus Specification December 29, 1987 Firefox System Specification 43

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.6.14. /O Write with No Slave Response
Figure 4-16 shows an I/O write with no slave response.

| PO | P1L | P2 | P3 | P4 | P5 |

MBRQO

MBRQ2 | !

MBRQ5 |

MCMD ~ ---------- <WritXMask>----------

MSTAT ~-======-ce-cccccmcececcc—ae——-

MSHARED

MDATINV

MBUSY

Figure 4-16: 1/0 Write Transaction with No Slave Response

PO

P1

P2

P3

P4

PS5

The M-bus is idle.
The module in slot 2 arbitrates for the M-bus.

Slot 2 asserts its MBRQ signal to confirm it won the M-bus. It also drives MCMD with WRITE and
MDAL with the 1/O address.

Modules decode the I/O address. Slot 2 specifies the byte mask on MCMD and supplies data on
MDAL.

No module was referenced by the I/O address, so all the MBRQ signals remain deasserted. This is
the last cycle of the transaction.

Slat 5 rearbitrates for a pending transaction. This is the first possible cycle for a new transaction.

44 Firefox System Specification December 29, 1987 Firefox M-Bus Specification 4.6.14.

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.6.15. Interrupt Acknowledge
Figure 4-17 shows an interrupt acknowledge.

| PO | P1L | P2 | P3 | P4 | PS5 | P6 | P7 | P8 |

MBRQO |

MBRQ1 | |

MBRQ3

MBRQ7

MCMD ~ mmmmmme—e- <IaCkD>==m=mmmmmmmmm e eceaneen

MSTAT = ~-=--e=--cecccc-eac-ooo-- <WaitXwaitXGood>=-----

MSHARED

MDATINV

MBUSY

Figure 4-17: Interrupt Acknowledge Transaction

PO The M-bus is idle.
P1 The modules in slots 1 and 3 arbitrate for the M-bus.

P2 Slot 1 wins the arbitration and asserts its MBRQ signal to confirm it won the M-bus. It also drives
MCMD with INTACK and MDAL with the interrupt level.

P3 Modules check to see if they are asserting MIRQ<Level>.
P4 Slots 0 and 7 assert their MBRQ to indicate they have a pending interrupt at this level.

P5 Slot.0 asserts its MBRQ to indicate it was the highest-priority interrupter and specifies WAIT on
MSTAT, while it generates an internal interrupt-acknowledge cycle.

P6 Slot 0 continues to assert MBRQ and specify WAIT on MSTAT, while its internal interrupt-
acknowledge cycle proceeds.

P7 Slot 0 drives the vector onto MDAL and specifies GOOD on MSTAT to complete the transaction.

P8 Slot 3 rearbitrates for its pending transactions. This is the first possible cycle for a new transaction.

4.6.15. Firefox M-Bus Specification December 29, 1987 Firefox System Specification 45

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.6.16. Interrupt Acknowledge with No Stave Response

Figure 4-18 shows an interrupt acknowledge with no slave response.

{ PO | P1 | P2 | P3 | P4 | P5 |

MBRQ1 |

MBRQ7

MCMD == mmmm———- <Ilack>===------mmme--

MDAL = -—---=-=-e-- <Levld>--==-w-—ccm—a——

MSTAT ===m==m=-=——-;e-eceme—c—ce—e——e—e

MSHARED

MDATINV

MBUSY

Figure 4-18: Interrupt Acknowledge Transaction with No Siave Response

PO

P1

P2

P3

P4

PS

The M-bus is idle.
The module in slot 1 arbitrates for the M-bus.

Slot 1 wins the arbitration and asserts its MBRQ signal to confirm it won the M-bus. It also drives
MCMD with INTACK and MDAL with the interrupt level.

Modules check to see if they are asserting MIRQ<Level>.

No modules believe they are asserting MIRQ<Level>. The M-bus master’s M-bus interface should
indicate a passive release to its internal logic. This is the last cycle of the transaction.

Slot 7 rearbitrates for its pending transaction. This is the first possible cycle for a new transaction.

46 Firefox System Specification December 29, 1987 Firefox M-Bus Specification 4.6.16.

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.7. M-Bus Interface Registers

Every M-bus module must implement one register within its slot-assigned, 32-Mbyte region of I/O space.
Table 4-27 lists the register name; the address offset from the base of the 32-Mbyte, slot-specific region,
and the function of the register.

Table 4-27: Required Interface Registers for the M-Bus

Register Offset Function
MODTYPE OIFFFFFC Module type

4.7.1. M-Bus MODTYPE Interface Register

Figure 4-19 shows the format of the read-only MODTYPE register, which indicates the class of the
module, class-specific information, the interface-chip type, and the interface-chip revision. The class-
specific information is specific to the interface chip. For example, a memory module might indicate the
DRAM size and number of banks.

Name: MODTYPE Address: 01FFFFFC#16 Access: R
3 22 11
1 43 65 8 7 0
| REVISION | INTERFACE | SUBCLASS CLASS]
MODTYPE: |
] !
|
REVISION '
INTERFACE
SUBCLASS
CLASS

Figure 4-19: MODTYPE Register Format

To read the MODTYPE register for slot 0, issue a longword I/O read to address 91FFFFFC (VAX address
31FFFFFC); to read the MODTYPE register for slot 5, issue a longword I/O read to address 9BFFFFFC
(VAX address 3BFFFFFC).

Table 4-28 lists the module classes currently defined.

Table 4-28: Defined Module Classes for the M-Bus

CLASS Module class
01#16 . - Bus-adapter class
02#16 Graphics class
044#16 I/O class
08#16 CPU class
10#16 Memory class
20#16 Reserved
40#16 Reserved
80#16 Reserved

4.7.1. Firefox M-Bus Specification December 29, 1987 Firefox System Specification 47

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

Table 4-29 lists the inierface-chip types currently defined.

Table 4-29: Defined Interface Chip Types for the M-Bus

INTERFACE Interface chip
0 Reserved
Firefox Bus Interface Chip (FBIC)
Firefox Memory Data Path and Control (FMDC)
PixelStamp
Rigel processor
uPrism processor
Reserved

W AW N -

o
[}
93
v

4.8. Initialization

M-bus initialization is coordinated by the MRESET, MPOK, and MDCOK signals. When the MRESET
signal is asserted, the state of the entire Firefox workstation is (re)initialized. When the MPOK signal is
asserted, the AC input to the power supplies is within specification. Processor modules may use the MPOK
signal as a power-fail interrupt to initiate power-fail processing. When the MDCOK signal is asserted, the
DC output of the power supplies is within specification. Modules with nonvolatile storage may use the
MDCOK signal to freeze the state of their storage device.

In the following figures, MRESET is shown with its backplane active-low assertion state.

4.8.1. Powerup

When a workstation powers-up, the power supplies assert MDCOK when their DC output is within
specification. Then the power supplies assert MPOK when their AC input is within specification. The
MRESET signal, which the Firefox Workstation I/O Module generates in most configurations, is held
asserted for approximately 70 milliseconds after DC power is available to allow the M-bus clock generator
and module internal logic to stabilize. Figure 4-20 illustrates this sequence.

/7
MDCOK | /7
/7
MPOK /7 |
/7
MRESET /7 I
/
| > 70 ms | > 8 cycles |

Figure 4-20: Powerup Sequence

48 Firefox System Specification December 29, 1987 Firefox M-Bus Specification 4.8.2.

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.8.2. Powerdown

When AC input to the power supplies falls out of specification, they deassert MPOK. If the power supplies
can no longer maintain their DC outputs within specification, they deassert MDCOK. The power supplies
continue to supply DC power within specification for at least 4 milliseconds after AC power is lost. In
response to the loss of MDCOK, MRESET is asserted. Figure 4-21 illustrates this sequence.

MDCOK |

MRESET |

> 4 ms |
Figure 4-21: Power-down Sequence

4.8.3. Workstation Reset

When the MRESET signal is asserted. all modules initialize their internal logic. In addition to powerup
and powerdown events, modules may implement logic to assert MRESET either from a switch or by writ-
ing to a control register. Figure 4-22 illustrates this sequence.

MPOK

MDCOK

MRESET ! |

| > 8 cycles |
Figure 4-22: Workstation-Reset Sequence

4.9. Electrical
All M-bus modules must use the same type, number, and physical placement of M-bus transceivers/drivers.

4.9.1. Firefox M-Bus Specification December 29, 1987 Firefox System Specification 49

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.9.1. M-Bus Transceivers/Drivers and input Loads

Table 4-30 lists the mandatory M-bus transceiver/driver components for M-bus modules. All
transceiver/driver components must be in SOIC packages. When termination is specified, a series resistor
is required immediately after the M-bus transceiver/driver output. Series resistors must be discrete,
surface-mounted resistors of at least 0.125-watt rating. When pull-up is specified, a pull-up resistor to +5.0
volts is present on the backplane. Backplane resistors must be discrete and of 0.250-watt rating, at least.

Table 4-30: M-Bus Module Transcelver/Driver Components

Component Termination Pull-up Signal(s)

74F244 20 ohm 4.7K ohm MBRQ

74F245 20 ohm 4,7K ohm MDAL<31:24>

74F245 20 ohm 47K ohm MDAL<23:16>

74F245 20 ohm 4.7K ohm MDAL<15:08>

74F245 20 ohm 4.7K ohm MDAL<07:00>

T4F245 20 ohm 4.7K ohm MDPAR

74F245 20 ohm 4.7K ohm MCMD<3:0>,MCPAR
74F245 20 ohm 4.7K ohm MSTAT<1:0>, MSPAR
74AS760 143/768 ohm MSHARED, MDATINV, MBUSY, MABORT
74AS760 1.5K ohm MIRQ<3:0>

Table 4-31 lists the mandatory M-bus-driver components for the M-bus backplane. When termination is
specified, a series resistor is required immediately after the M-bus transceiver/driver output. Series resis-
tors must be discrete of 0.125-watt rating, at least. The MRESET and MCLKI signals may be driven by an
M-bus module in some configurations, in which case the indicated driver must be used on that module.

Table 4-31: M-Bus Backplane Driver Components

Component Termination Pull-up Signal(s)
T4F244 10 ohm MCLKA, MCLKB
74AS760 143/768 ohm MRESET, MCLKI

7T4XXXX 180/390 ohm MPOK, MDCOK, MHALT, MRUN

50 Firefox System Specification December 29, 1987 Firefox M-Bus Specification 4.9.1.

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

Tabie 4-32 lists the allowed per-module loading for each M-bus signal. Loading is in addition to the output
driver, if appropriate. For example, the MABORT signal has one 74F244 output driver and two CMOS
input loads for each M-bus module.

Table 4-32: Allowed input Loading Per Module for the M-Bus

Loading Signali(s)
1(2) CMOS INPUTS MBRQ, MBUSY

1 74F245 TRANSCEIVER MDAL, MDPAR
1 74F245 TRANSCEIVER MCMD, MCPAR
1 74F245 TRANSCEIVER MSTAT, MSPAR

1(2) CMOS INPUTS MSHARED, MDATINV, MABORT
1(2) CMOS INPUTS MRESET

1(2) CMOS INPUTS MPOK

1(2) CMOS INPUTS MDCOK

NONE MRUN

1(2) CMOS INPUTS MIRQ

1(2) CMOS INPUTS MHALT

2 CMOS INPUTS MCLKA, MCLKB

1(2) CMOS INPUTS MCLKI

Signals with a loading of 1(2) indicate that dual processor modules are allowed two loads on those signals,
whereas all other modules may only have one load on those signals. The M-bus clocks must have two
loads on all modules to minimize clock skew between backplane slots with dual processor modules and
backplane slots with other module types.

4.9.2. M-Bus Driver/Receiver DC Characteristics

Table 4-33 lists the DC characteristics for the various driver/receiver classes. All input and output voltages
are in volts. All input, output, and leakage currents are in milliamperes. The F245 transceiver class is
associated with the MDAL, MDPAR, MCMD, MCPAR, MSTAT, and MSPAR signals. The F244 driver
class is associated with the MBRQ, MCLKA, and MCLKB signals. The AS760 driver class is associated
with the MSHARED, MDATINV, MBUSY, MABORT, MIRQ, MRESET, MCLKI, MPOK, MDCOK,
MHALT, and MRUN signals. The CMOS receiver class is associated with the MBRM, MCLKA,
MCLKB, MSHARED, MDATINV, MBUSY, MABORT, MIRQ, MRESET, MCLKI, MPOK, MDCOK,
and MHALT signals.

Table 4-;33: M-Bus Driver/Receiver DC Characteristics

Class Voh Ioh Vol Iol Vih Iih Vil Iil Iz
F245 20 -150 055 640 20 007 08 -10 0.05

F244 2.0 -150 055 640 - - - - 0.05
AS760 - 0.1 055 64.0 - - - - -
CMOsS - - - - 20 o001 08 -0.01 -

4.93. Firefox M-Bus Specification December 29, 1987 Firefox System Specification 51

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.9.3. M-Bus Signal Capacitance

Table 4-34 lists the allowed module capacitance for the various signal classes. All capacitance values are
in picofarads. Capacitance values in parentheses are for dual processor modules.

Table 4-34: M-Bus Module Signal Capacitance

Signals Cin Cout Cio
MCLKA,MCLKB 40 - -
MBRQ - 13 -
MBRM 17(35) - -
MDAL MCMD MSTAT,MXPAR - - 13
MSHARED MDATINV MBUSY,MABORT ,MRESET MCLKIMHALT MIRQ - - 27(45)
MPOK ,MDCOK 20(40)

4.9.4. M-Bus Timing
The M-bus AC timing is determined by four components:

o Bus interface output propagation delay

. M-bus driver/receiver propagation delay

. Bus interface input setup/hold time requirements
. M-bus clock distribution skew

Figure 4-23 shows the wave forms generated by the M-bus clock generator. The clock generator is based
on a divide-by-six circuit of the master oscillator. The clock generator must be free-running and self-
initializing from an arbitrary power-up state within a few oscillator cycles.

| t0 | tl | t2 | t3 | t4 I t£5 |

oscC I I | I ! J I I | { I I |

MCLKA | I I

MCLKB I

Figure 4-23: M-Bus MCLKA/MCLKB Waveforms

52 Firefox System Specification December 29, 1987 Firefox M-Bus Specification 4.9.4.

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

All M-bus output signals and bus driver control signals must be outputs of flip-flops ciocked on the rising
edge of MCLKA. All M-bus input signals must be latched on the falling edge of MCLKB. Table 4-35
shows the tming budget for each component of the module-to-module communication path. All times are
in nanoseconds. Refer to the Firefox M-bus Data Line Signal Integrity Study and the M-bus Interface
Logic Clock Distribution System Signal Integrity Study for a detailed discussion of the SPICE simulations
conducted to derive the F245-driver timing and the clock-distribution-skew timing.

Table 4-35: M-Bus Moduie-To-Module Timing Budget

SComponent Symbol Minimum Time Maximum Time
Bus interface output delay To 0.0 TBD
F245 M-bus driver delay Td 2.5 18.0
F245 M-bus receiver delay Tr 25 7.0
Bus interface input setup ime ~ Ts - TBD
Bus interface input hold time Th - TBD
M-bus clock distribution skew Tc - 9.2

The minimum M-bus cycle time is determined by: Tcycle = (To.max + Td.max + Tr.max + Ts + Tc) * 6/5
The available input hold time is determined by: Th = (Tcycle/6) - Tc - To.min

Note that the available-input-hold-time equation does not include a term for the backplane driver/receiver
propagation delay. This is necessary for dual processor modules which do not have a backplane
driver/receiver in the path between the two bus interfaces.

4.9.5. Module AC Characteristics

Table 4-36 lists the AC characteristics that M-bus modules must meet for input and output responses. All
timing is measured with respect to the threshold voltage of M-bus signals, Vt equal to 1.4 volts, at the
backplane connector.

Table 4-36: Module AC Characteristics

Class To Ts Th
Outputs to MCLKA nising TBD - -
Inputs to MCLKB falling - TBD TBD

4.9.6. DC Power

Each M-bus slot has sixteen +5 volt pins, three +12 volt pins, and thirty-six ground pins. Each connector
pin is rated for a minimum of 1.0 amperes, resulting in a maximum of 16.0 amperes at +5 voits and 3.0
amperes at +12 volts.

4.9.7. AC Power

The M-bus has a +5 volt or ground pin for each three signal pins. The power pins for the two rows of the
backplane connectors are staggered. This provides an AC ground within 100 mils of each signal pin.

M-bus modules must implement sufficient power supply decoupling to limit ripple imposed back on the
backplane +5 volt plane to 25 millivolts.

4.9.7.1. Firefox M-Bus Specification December 29, 1987 Firefox System Specification 53

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

4.9.7.1. Operation of M-Bus with Extended Modules

The M-bus worst-case timing margins do not allow operation of the M-bus with modules connected to the
backplane via an extender module at the nominal M-bus clock period.

With typical timing margins, it should be possible to operate the M-bus at nominal M-bus clock period with
one module on an extender.

SPICE simulations indicate that the M-bus backplane switching time increases by 5.0 ns with a 12.0-inch
extender. Calculations indicate that clock skew is increased by 2.5 ns. This implies that the M-bus cycle
time must be increased by 15.0 ns to run a worst-case system with one module on an extender.

The extender module must be a four-layer PCB with +5-volt and ground planes. Signal traces must be
routed on alternate sides to minimize crosstalk. The etch length must not exceed 12.0 inches. There must
only be one additional connector in the signal path.

If the M-bus cycle time is increased, memory modules may not receive adequate DRAM refresh.

Under no circumstances is extension of more than one M-bus module supported.

4.9.8. Backplane Signal Assignments

Table 4-37 shows the backplane connector-pin assignment for each of the M-bus signals. Each of the two
connector blocks has a standard power and ground pattern that gives one AC ground for each three signals.

54 Firefox System Specification December 29, 1987 Firefox M-Bus Specification 4.9.8.

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

Table 4-37: M-Bus Backplane Signal Assignments

"Pin Signal " Pin Signal Pin Signal ' Pin Signal
"A0l GND A02 B0l GND B02 +SVBAT
A03 A04 B03 MCLKA | B04 GND
| A0S A06 +5V B05 GND B06 +5V
- A07 | A08 B07 MCLKB | B08 GND
| A9 GND | AL0 B09 GND B10 +12V
| All Al2 Bll +I2V B12 +12V
L Al3 Al4 GND Bi13 MBRQ Bl4 GND
| ALS Al6 B15 MBRMO | B16 MBRMI
| Al7T 45V AlS B17 +5V B18 MBRM2
L A19 A20 B19 MBRM3 | B20 MBRM4
; A21 ' A22 GND B21 MBRMS | B22 GND
| A23 l A24 B23 MBRMS6 | B24 MSPAR
| A25 GND A26 B25 GND B26 MSTATO
i A27 A28 B27 MSTATI1 | B28 MIRQO
| A29 A30 +5V B29 MIRQ! B30 +5V
iA31 ' A32 B3l MIRQ2 | B32 MIRQ3
' A33 GND A34 B33 GND B34 MCPAR
| A35 . A36 B35 MCMDO | B36 MCMDI
| A37 ' A38 GND B37 MCMD2 | B38 GND
| A39 | A40 B39 MCMD3 | B40 MRSVBA40 '
A4l 45V - A42 B4l +5V B42 MSLOT |
A43 Add B43 MDPAR | B44 MIDO
A4S A46 GND B45 MID1 B46 GND
A47 A48 B47 MID2 B48 MCLKI
A49 GND AS0 B49 GND B50 GND
' AS1 AS2 B5S1 MDALO | B52 MDALI
AS3 AS4 45V B53 MDAL2 | B54 +5V
ASS AS6 B55 MDAL3 | B56 MDAL4
AS7 GND A58 B57 GND B58 MDALS
A59 A60 B59 MDAL6 | B60 MDAL7
A6l A62 GND B61 MRESET | B62 GND
A63 A64 B63 MDALS8 | B64 MDAL9
A65 45V A66 B65 +5V B66 MDALI10
A67 A68 B67 MDALI1l | B68 MDALI2
A69 A70 GND B69 MDALI13 | B70 GND
A71 AT72 B71 MDALI14 | B72 MDALIS
A73 GND A74 B73 GND B74 MDALLI6
- |-A75 A76 B75 MDALI17 | B76 MDALIS
A77 A78 +5V B77 MDALI19 | B78 +5V
A79 -12V A80 -12V B79 MDAL20 | B80 MDAL2I
- A81 GND A82 MRUN B81 GND B82 MDAL22
A83 MRSVA83 | A84 MRSVAS4 | B83 MDAL23 | B84 MDAL24
' A85 MDATINV | A86 GND B85 MDAL25 | B8 GND
| A87 MBUSY | A88 MSHARED | B87 MDAL26 | B88 MDAL27
- A89 +5V A90 MABORT | B89 +5V B90 MDAL2S
A9l MHALT A92 MDCOK B9l MDAL29 | B92 MDAL30
. A93 MPOK A94 GND B93 MDAL31 | B94 GND

4.9.8. Firefox M-Bus Specification

December 29, 1987

Firefox System Specification 55

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

The signals on the B block labeled MBRM<0:6> are the M-bus-request signals from the other slots. Table
4-38 lists the connections for the MBRQ signal from each of the slots to the other 6 slots.

Table 4-38: M-Bus MBRQ Connections per Slot

Slot0 Slotl Slot2 Slot3 Slotd SlotS Slot6 Slot7

MBRQO | BI3 BI15 B15 B1S B15 B1S B1S B1S
MBRQ1 | BI5 B13 B16 B16 B16 B16 B16 B16
MBRQ2 | Bl6 B16 B13 B18 B18 B18 B18 BIg8
MBRQ3 | BIS8 B18 B18 B13 B19 B19 B19 B19
MBRQ4 | B19 B19 B19 B19 B13 B20 B20 B20
MBRQS | B20 B20 B20 B20 B20 B13 B21 B21
MBRQ6 | B2l B21 B21 B21 B21 B21 B13 B23
MBRQ7 | B23 B23 B23 B23 B23 B23 B23 B13

The MRSRVD signals are bussed across all slots.

MCLKA and MCLKB are radially distributed to each slot from the M-bus clock subsystem. The M-bus
clock-generator components are located on the M-bus backplane.

The unspecified signals on the A connector block are reserved and must not be connected to any internal
logic of M-bus modules. However, M-bus modules must still connect the assigned power pins, as they are
part of the DC power-distribution network.

The maximum stub length for the MCMD, MSTAT, MDAL, and MXPAR signals is 1.5 inches, where stub
length is the amount of etch between the top of the edge finger and the IC pin. Stub length of all other M-
bus signals must not exceed 3.0 inches.

4.10. Mechanical

M-bus modules use the new L-series-quad module format with two L-series one-piece connectors resulting
in two paddles of 94 edge-fingers on 100-mil centers.

56 Firefox System Specification December 29, 1987 Firefox M-Bus Specification 4.10.

	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56

