EK-FP730-TD-004

VAX-11/730

FP730 Hoating-Point
Accelerator
Technical Description

Prepared by Educational Services
f

o
Digital Equipment Corporation

First Edition, May 1982

Copyright © 1982 by Digital Equipment Corporation
All Rights Reserved

The material in this manual is for informational purposes and is
subject to change without notice.

Digital Equipment Corporation assumes no responsibility for any
errors which may appear in this manual.

Printed in U.S.A.

This document was set on DIGITAL’s DECset-8000 computerized
typesetting system.

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

DIGITAL DECsystem-10 MASSBUS
DEC . DECSYSTEM-20 OMNIBUS
PDP DIBOL 0S/8
DECUS EDUSYSTEM RSTS
UNIBUS VAX RSX

VMS IAS

5/82-14

CHAPTER 1

c oo in s i =

AN s W -

CHAPTER 2

2.1
2.2
2.2.1
222
23
24
24.1
24.2
243
244

CHAPTER 3

W N -

W0 L) o) W Lo Lo
N —

LhnbbrpLLLWL =

N —

CONTENTS

INTRODUCTION
GENERAL. ...ttt e e 1-1
RELATED DOCUMENTATION ..ottt e 1-1
PHYSICAL DESCRIPTION ...t 1-2
FUNCTIONAL DESCRIPTION ..ottt 1-2
DIAGNOSTIC FEATURESo 1-3
FLOATING-POINT NUMBERS AND ARITHMETIC............................ 1-3
IDEEEETS .. ettt et ettt e s te et e s st e s ean e nba e e eas 1-3
Floating-Point NUmMDbErsccccoiiiiiiiiiie e 1-3
INOTMALIZALION.cciiieieiiiee ittt e ete e e eare e seerae e ssbeea e ereeeeraeeessveaeses 1-4
Floating-Point NOtation..........cccoeeuiiiiiiii i 1-6
Floating-Point Addition and Subtractionccccceeevvieiiiiiciveiecienee, 1-6
Floating-Point Multiplication and DiviSionccccoccovviiieiiive e, 1-6
DATA FORMATS
GENERAL. ..ottt et asb e eeeas 2-1
FLOATING-POINT FORMATS ..o 2-1
FTACHION . eeeietiie et ra e e er e e cttae e te e e eeveeeeeenns 2-2
EXPONENL ...t 2-4
INTEGER FORMAT ...ttt ettt e e se e ers e vas s s e 2-7
FLOATING-POINT EXCEPTIONS ...t 2-7
OVEITIOW ..ttt et e e s ta e e eeree e satsaaeeanns 2-7
UNAEITIOW ...ttt ettt e e sevr e e aane s 2-7
DiIVIAE-DY-ZET0oiviieieeeee ettt e nees 2-7
Reserved Operand Fault...........coccoooiiii e, 2-7
INTERFACING
GENERAL ..ottt ettt et e e e asenbenneas 3-1
INTERFACE SIGNALS ...ttt e s 3-1
INTERFACE OPERATIONoooioiiiiiitie ettt 33
Op Code DECOAINGovviieiiviiiieieiieeciiieeeie e e eiie e e e et esare s e eseaes 3-3
Operand Loading..........cccooeeiivieniiiiii et e e 3-4
RESUIL STOMINE...cciueeieiitiiee et eeeertaaeeaes 3-5
CPU FORCE/READ MICROADDRESS CONTROLcccccceeoviiianne 3-6
Force Microaddress Control...........c.ccooviveviieiiieiiieniieeie e e eeiee e 3-6
Read Microaddress Controlocooiieiiiiiiieiiicieee e 3-7
ERROR REPORTING ..ottt eee e e e ee e 3-8
PATILY Lottt et e 3-8
Condition COAesccoeeeeieiiieieie et ettt e et 3-8

iii

CHAPTER 4

4.1

4.2
42.1
4.2.2
423
424
4241
4242
425
4251
4252
4.2.6

AT
W i o
W N -

CHAPTER 5§

B —

}AMMMMMMMMMMMMU\MMMMMM
— O OOV 0000 IO WA WD —
W -

CHAPTER 6

INSTRUCTIONS AND ALGORITHMS

GENERAL. ...t

ARITHMETIC INSTRUCTIONS ...t

Add/SUbLIaCtoooiiiiiii e

Compare (CMP) Instructions.............ccceeeveeieeiiirecce e
Polynomial (POLY) Instruction..........cccccceeiieminieneieene e

Divide (DIV) INStruCtiON.....ccccieeiieiiiicieeiee ettt e e
DIV e et

Multiply (MUL) INStruCtioncceeverieniiiieieiieecee e
MUL AIZOTTthIM oot et
MULL INStruCtionooeiiiieiiieciieiiee ettt

Extended Precision Multiply and Integerize

(EMOD) .t e

CONVERSION INSTRUCTIONS ...t

Floating-Type-to-Integer CONVErsion............cocvviuvveeiesiecieiieeeeeieieenns

Integer-to-Floating-Type Conversion.........c.cccuveveeenieienieieieecee e
Precision CONVErSIONc.cccoviiierienieeieieeee et e

THEORY OF OPERATION

GENERAL. ...t e
DATA FLOW oottt e
Operand FetChing......cccooiiiiiiiiiiiinieceeec e
RESUIt STOTINEGovieiieiieieieeee e
ADOTES .ttt ettt ettt et enns
Exceptions or FPA Errorsccccooiiiiiiiceee e
TIMING ..ottt st re s eete e ans

NEXT MICROADDRESS BRANCHINGcccccoooeniiiiiniiieicccee
CONTROL STORE ..ottt

Exponent Data Pathccooooiiiiiii e,
Fraction Data Path ...
SEN LOZIC. . ettt ettt et
MAINTAINABILITY FUNCTIONS ...
FOrce MICroaddressS......c.ooooiiimiiiiiieeeeeeeeeeeee et
Read MICTOAAAIEsS. .. ovvveeeeieeeeie et
PARITY LOGIC ..o e e

MICROCODE DESCRIPTIONS

GENERAL ..ot
FIELD DEFINITIONSot e
MACRODEFINITIONS ...t
MICROROUTINE ..ottt

APPENDIXA PROGRAMMED ARRAY LOGIC DEVICES (PALs)

Al
A2
A3

INTRODUCTION ..ottt A-1
PIN DESIGNATIONS L et A-1
PAL FUNCTIONS ...ttt ettt sttt e A-1

APPENDIX B GLOSSARY

Figure No.

1-1
2-1
2-2
2-3
2-4
2-5

R R I e R R
N AW —=—UnhWND—A

FIGURES

Title Page
FPA-TT/T30 ettt et et e 1-4
Single Precision Data FOrmat........cccoooiioiiiiiiiiiie e e, 2-1
Double Precision Data Formatcooooiiiiiiiii e 2-1
Grand Data FOrmatccoooiiiiiiiiieciei et 2-2
Huge Data FOrmat.......ccoooiiiiiiiiiieeee et 2-3
Excess 80 Notation for Single and Double Precision

Format EXPONeNnts........coooiiiiiiiiiiie ettt 2-6
Integer FOormat... ..o e 2-7
FPA-CPU INterface...c.ccooviiiiiii it 3-1
Op Code DECOdING.cooueeeuieiiiiiiieicie ettt 3-3
Operand Loadingco.oovriiiiiiiii et 3-4
RESULL STOTING ...ttt ettt 3-5
Force Microaddress COntrol...........coeveeiuiiieirciiere et eeeieeceieesarresenreeaans 3-6
Read Microaddress Control............cooveieiiciriieeie et 3-7
A FIOW .ottt ettt st e s e e sbe et e meeneesbnans 4-3
FPA-11/730 Block Diagram..........cccccoeiieniiiiiiiiiiieiieieeniene e 5-2
Single Format Loadingoooeiiiiiiiii e 5-4
Double Format L.oading..........ccoooeiiiiiioniieiieeeee et 5-5
TIMINE LOZIC cveiiieiieieiiie ettt erite e et e s eeasr e e saaae e st e e eanstesentaaenssaeeseanns 5-8
FPA Synchronization via Toggle Clock During CPU

PHO .ottt ettt ettt et e e e s e et te e ereeeteesenneenaens 5-9
PFA Synchronization via Toggle Clock During CPU

4 = 0 USSR 5-10
FPA Synchronization via Toggle Clock During CPU

PH 2 ettt et e ettt s enb e eanens 5-11
Fast/Slow Cycle Gatingcccoouioiruiiiiieniiiieesieceeec e 5-12
Fast Cycle TImMInNg.......coooiiiiiiiiii e e 5-13
FPA Synchronization via CPU Force Trap or Read

During FPA PHO ..ottt e 5-14
FPA Synchronization via CPU Force Trap or Read

During FPA PH oottt 5-15
INStruction DeCOAINGoooiiiumiiiiieeeieeeeee e e r e 5-16
Op Code Instruction DeCOdingcoeeeeeriiiriiiiiieeeeiienieceeie e 5-17
Instruction Decoding MUX Signal Inputscooieeiiiiiiiiiniii e, 5-18
MicroseqUENCET LOZIC ..couviiiiiiiiiie e 5-19

5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
6-1

6-2

6-3

6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14

6-17
6-18
6-19
6-20
6-21
6-22
A-l
A-2
A-3

A-5
A-6
A-7
A-8

A-10
A-11
A-12
A-13
A-14
A-15
A-16
A-17
A-18

2909 MiCroprogram SEQUENCETc..ceeueeerreerereeecrirereeeneeesreeesseessseesssessesenns

CoNtrol SOre LLOGIC ..cvvvieeieiiie vt eete et seesree et seee e eaeeste s esereens
Control Store MICTOWOTd..........coviiiiiiiieeeciie et
Data Path LOZIC......ccceoviimiiiiieiieeee ettt
2901 BlOCK DIAZIAIM ...eevieeieeeiee et ee e e eeenae e

Exponent Data Path LOZICccooveiiiiiiiiieeccect e

Sign Control PAL LOZIC.....cc.coiiiiiiiiiiiiaiiiie vttt et

Force/Read Microaddress Control..............ccoccoviiiiiiiiiniinniiiiiccccnee
Control Store Fields Checked by Parity Bit PO........c.ocoeooviiieiiiinieiiecce,
Control Store Fields Checked by Parity Bit Plcccoooeiiiiiiiiii,

Field Definitlonsccocvviiiiiiiieeeee ettt e e e s e erenaeeeean
LAteral FIEldoooiieeeiiieeeeee et et e e
Micropointer Fieldcooviiriiiiiiiiieceeee e
| 3701163 1 0 S U= (o AP O PSSO
Extended Branch Fieldccoooviiiiieeeeeee e

Clock Field (Used to Clock Fast Cycle)cccovvieveeiiieeieecieeinie e,
Shift Field (Used to Set V and C Bits)ccceeiviviiiciiiiiiieeceeiieeiee e,
Modify Field (Used to Enable Division)........c.ccoceeveiinvicnicnicininieniniiencnenne
Modify Field (Used to Enable Multiplication).......c..cccccoocniicinininincnnne.

RAM B Address Fi€ld ..ottt et eveneee
RAM A AdAress FIeld......ooommeeeeoeeeeeeeeeeeeeeeeeeeeeeeeeee e e

Fraction ALU Source Operand (DQ) Fieldcc.ccocovoiieiiiniiiiieeeiiee,
Fraction ALU Function (R XOR S) Fieldccccooviiniviviieiceecieeeree e,

Fraction ALU Destination (Q-Register) Control

FIEIA ..ottt ettt e vttt e e aas
Exponent Control (A-B) Fieldccooooieiiiiiieeee e
Exponent ALU Destination (Q-Register) Control

FIEIA ..ot eta e e
Parity Field PO ..ot
Parity FIeld Plcooiie et e
Accelerator Sync Field ...
MACRO DefiNitionsc.ceceeieeeieeiieeireeieeecrerte e eteesie e svveeseeeeeasaneeaeeeeeeas
MIiCTOCOAE OVETVIEW......ooveeiieiiieeitieereeeieeiieeer e vt esreess e e sae e e saeeaaeessneanseeans
Microcode ADD FIOWooiuniiiiiiiiiiiie ittt ettt ere e
FPA PAL TYPES .ottt ettt ettt e e
AND OR GATE ARRAY Details.......coeoeriiiiieieiiiceiee e
Fusable Link Programmingcccoveeceerieiirieciieesiiieeseeeseeeseeeeeiessieenneans

Integer Division Enabled for Data Shiftin PAL ...,

Pin DeSiZnationsccoeveeriieerieieiieeiceniee et ettt eiae et e s eie e eaees
Hidden Bit PAL......ocuooiiiiiieieeee ettt e
Input Enable PAL ...
Data Shift in PAL ..ottt e e s e e
Extended Branch PAL.........coooiiiiii et

Branch 3 PAL ..ottt e s e s e vt eee e s s en e nannas .

Branch 2 PAL ...t e nes
Branch 1 PAL ..ottt ee et
Branch O PAL ...ttt
Extended Function PAL ..o

Fraction Shift Control PAL ..o et

Exponent Control PALccooioiiiiiiiiii ettt
Store Control PAL ...ttt evese e
Condition COAE PAL ...t e e e e e e e e e e aeenaenaens

vi

A-19 Clock Control PAL ...cooooeeeeeeeeteeeee ettt e et e eeaaae e e e e e s e e eaaaens A-20

A-20 Instruction PALottt s s A-21
A-21 Parity PAL ... e A-22
A-22 Multiply/Divide PAL.......coccoiiiiiiiiiiiieceese ettt A-23
A-23 SIZN PAL .ottt A-24
TABLES

Table No. Title Page

1-1 Related Hardware Manuals..........ccccoeoviiiiiiiiiiiiiiete e 1-1
2-1 Fraction Sign and Magnitude NOtationccccocviiiiiiiiiiieieeeiee e 2-2
2-2 Excess Notation USAZEcooiieiiiiiiiiiiii ettt 2-7
3-1 Interface SigNalso 3-2
4-1 FPA INStIUCTIONSeiiiiiiiiieeie ettt et ee et e e teeeteeestasesnneeaen 4-1
4-2 Add/Subtract Sign Calculation..............ccccoiiiiiiiiiiiiiiii e 4-9
5-1 ErTOT COUES ...ttt ettt ettt ste e te e etr e st e e enaeenteesanneeen 5-6
5-2 SIZE 1:0 ENCOAING ...ttt ettt eaae e e 5-16
5-3 Branch 1:0 ENCOAING.......ccooooiiiiiiiiiieiii e e 5-21
5-4 Extended Branching..........ccoooioiiiiivieiiiiiiccc e 5-22
5-5 Control Store Field.........cccooiviiiiiiiiieieee et 5-24
5-6 Exponent Working Register (RAM) Constants............c.eeeveeeieiiiiceienireceee e 5-36
5-7 Exponent Function Selectionccccooiiiiiriiiiiniiiiiiincencieseetetee e 5-36
5-8 Fraction Data Path Working Register Constantsccccoooeveviiiieeiieeeinneeee e, 5-37
5-9 Sign PAL Function Control Encodingccccoviiiiiiiiniiiiieeceee e 5-39

vil

CHAPTER 1
INTRODUCTION

1.1 GENERAL

The FPA-11/730 floating-point accelerator (FPA) is a hardware option that performs all floating-point
arithmetic operations and converts data between integer and floating-point formats. Floating-point rep-
resentation permits a greater range of number values than is possible with a 32-bit integer. The FPA
option accelerates execution of most floating-point instructions and a few integer instructions. Without
the FPA the floating-point instructions are executed by central processor unit (CPU) microcode, with
little hardware help. The FPA operates on single, double, grand, and huge data formats or types.

Functionally, the FPA is an integral part of CPU. It operates using the same address modes and the
same memory management facilities as the CPU. Floating-point processor instructions can reference
the CPU’s general registers or any location in memory.

1.2 RELATED DOCUMENTATION
Table 1-1 lists all related documentation.

Table 1-1 Related Hardware Manuals

Title Comments

VAX-11/730 Central Processor In microfiche library
Technical Description

VAX-11 Architecture Handbook Available in hard copy*

*This document can be ordered from:

Digital Equipment Corporation

444 Whitney Street

Northboro, MA 01532

Attention: Communication Services (NR2/M15)
Customer Scrvices Section

For information concerning microfiche libraries, contact:

Digital Equipment Corporation
Micropublishing Group, PK3-2/T12
129 Parker Street

Maynard, MA 01754

1.3 PHYSICAL DESCRIPTION
The FPA-11/730 consists of a standard hex module, containing mostly Schottky TTL logic. There are
no calibration adjustments, switches or controls.

1.4 FUNCTIONAL DESCRIPTION
The FPA-11/730 FPA is a hardware option available on the VAX-11/730 computer system. It can
perform floating-point addition, subtraction, multiplication, and division instructions.

The FPA, functioning in conjunction with the CPU, speeds the execution of floating-point arithmetic
instructions. FPA operations overlap CPU operations, allowing the CPU to proceed with other tasks
relating to the floating-point instruction, such as destination address calculation, while the FPA com-
pletes the instruction. The CPU cannot overlap another instruction; it must wait for the FPA to com-
plete the floating-point instruction. This overlap helps to speed program execution.

The FPA also speeds the execution of some integer arithmetic instructions. Operation of the FPA is
transparent to macro level software and main machine microcode.

The FPA can operate on a wide range of numbers. A floating-point number between 1.5 X 10739 and
3.4 X 1038 can be represented. A single-precision number is accurate to 7-decimal digits, and a double-
precision number to 16-decimal digits. The range of a grand operand is 8.9 X 10+307 to 1.11 X 10308,
The range of a huge operand is 5.94 X 104931 to 8.40 X 1074933, The FPA can operate on 32-bit signed
integers from —2,147,483,648 to 2,147,483,647, inclusive.

As a functional extension of the CPU, the FPA does not access memory data. The CPU must calculate
a memory address, access the address, and then transmit the data to the FPA. The CPU is also respon-
sible for fetching and storing the FPA results. The FPA performs only the required floating-point or
integer operation on the properly formatted operands transmitted to it.

Basically, the FPA (Figure 1-1) consists of data path logic that processes operands, and a control store
that generates data processing control signals. The data path logic consists of 20 4-bit 2901 bit slices
(microprocessors).

M8389 FLOATING POINT ACCELERATOR
OPERANDS

CENTRAL < YBUSJ1>< >B“FFE“ < > DATA
PROCESSOR | CONTROL PATH

| siGNALS . LoGic

+ »| CONTROL

|

| (2901 MICRO—

| PROCESSORS)

INITIAL | NeXT INCRE- DATA

:opgggg;ow FP MICRO- MENTED CONTROL

NSTRUCTION BUS INSTRUCTION] INSTR ADDRESS INSTR CONTROL| SIGNALS

: DECODER SEQUENCER STORE

: (29095) ,

PORT MICROPOINTER FIELD

BUS

TK-4947

Figure 1-1 FPA-11/730

1-2

Initially, the CPU sends the FPA an operation code that is decoded into a starting microaddress. An
FPA sequencer converts the instruction into an address for a control store PROM where data path logic
control signals are generated. This sets up the data path logic to receive the first data input via the Y-
Bus.

The CPU then sends the FPA packed, normalized, floating-point data, including a sign bit, in the form
of 32-bit operands. These are buffered, and applied to the data path logic. The data path logic breaks
the number (operand) into parts (unpacks it) and performs operations required to carry out the instruc-
tion on each part. Once the arithmetic result is achieved, the data path logic normalizes and packs the
results in accordance with control signals in the control store. The result is then buffered and returned
to the CPU in 32-bit segments via the Y-Bus.

As the FPA performs calculations, a micropointer field in the FPA control store points to the next mi-
croaddress to be executed. This address is then latched in the 2909 microsequencer, which alters the
latched base microaddress by ORing selected status signals into it. The result is the next microaddress
for control store.

1.5 DIAGNOSTIC FEATURES

FPA diagnostics include a force/read function whereby the CPU can force an address into the FPA
control store or read the next address the microsequencer will apply to the control store. Diagnostics
check operation of the instruction decoding circuit, microsequencer, control store, and data path logic.
Two parity bits are used to perform error checks on the control store. If a parity error occurs, the FPA
traps to a parity error routine.

1.6 FLOATING-POINT NUMBERS AND ARITHMETIC

1.6.1 Integers

All data within a computer system can be represented in integer form. The numbers that can be repre-
sented in a 32-bit machine range in magnitude from 00000000,¢ to FFFFFFFF¢ (or from 0;q to
4,294,967,295). However, integer form imposes some limitations. Only whole numbers can be repre-
sented, i.e., no fraction or decimal parts. This imposes an accuracy limitation. Also, numbers greater
than 4,294,967,295 cannot be represented; this imposes a range limitation.

These limitations are imposed by the stationary position of the radix point (e.g., the decimal point in
base 10 notation, or the binary point in base 2 notation). An integer’s radix point is usually omitted in
integer representation because it always marks the integer’s least significant place. That is, there are
never any digits to the right of a radix point. For this reason, an integer is sometimes called a fixed-
point number.

Integer notation, however, can be modified to overcome the range and accuracy limitations imposed by
the fixed radix point. This is done through the use of floating-point notation.

1.6.2 Floating-Point Numbers

Floating-point numbers, unlike integers, have no position restrictions imposed on their radix points. A
popular type of floating-point representation is called scientific notation. With scientific notation, a
floating-point number is represented by some basic value multiplied by the radix raised to some power.

1-3

Example 1

basic
value
exponent
1,000,000 = 1.x 106
radix

There are many ways to represent the same number in scientific notation, as shown in Example 2.

Example 2
Right-Shifts Left-Shifts
512 = 512. % 100 512 = 512100
= 51.2 x10! = 5120x 1071
= 512 x102 = 51200 102
= 512X 103 = 512000 x 103

The convention chosen for representing floating-point numbers with scientific notation in the FPA re-
quires that the radix point always be positioned to the left of the most significant digit in the basic value
(e.g., .512 X 103 in the above example). This modified basic value is called a mantissa fraction.

Note that for each right-shift of the basic value, the exponent is incremented and for each left-shift the
exponent is decremented. The value of the number remains constant if the exponent is adjusted for each
shift of the basic value.

Additional examples of scientific notation are indicated in Example 3.

Example 3

Decimal Hex
Decimal Scientific Binary Hex Scientific
Notation Number Notation Notation Number
64 .64 X102 1000000. 4016 A4 X 1672
33 .33 X102 100001. 2116 21X 1672
1/2(.5) Sx 100 0.1 816 8x160
3/32(.09375) 9375x 1071 0.00011 1816 .18 x 169

1.6.3 Normalization

There are many ways to represent a particular floating-point number using scientific notation. The con-
vention chosen by VAX and the FPA requires the radix point to be to the left of the most significant bit
in the basic value, as in Example 4.

Example 4: Floating-Point Form

2910=11101,=1 1101. x 20 = I 1101.% 20
1110.1 X 21 = 11 1010. x 21

111.01 X 22 = 111 0100. x 272

.11101 11.101 X 23 = 1110 1000. x 23
Fraction 1.1101 X 24 = 1 1101 0000.x 2—4
Chosen _.11101 X 25 = 11 1010 0000.x 2—5

5 Form 7011101 X 26 = 111 0100 0000.x 26
Exponent 0011 101 x 27 = 1110 1000 0000. x 27

The process of ensuring that the first significant bit is directly to the right of the binary point is called
normalization. If the number is one or larger, it involves right-shifting the basic value and incrementing
the exponent until the most significant bit (MSB) (a one) is directly to the right of the binary point. If
the number is a fraction with leading zeros, the basic value is left-shifted and the exponent is decre-
mented. Examples 5 and 6 show conversion of numbers to normalized form.

Example 5: Convert 7519 to a normalized binary number.

1. Integer conversion
7510 = 100 1011,

2. Floating-point form
100 1011, = 100 1011, X 20

3. Normalized form
Right-shift fraction 7 times
Increment exponent by 7

100 10115 X 20 = .100 1011 X 27

Fraction = .100 1011
Exponent = 7

Example 6: Convert 3/16 (.01875) to a normalized binary number.

1. Integer conversions
0187519 = .0011,

2. Floating-point form
0011, = .0011, X 20

3. Normalized form
Left-shift fraction twice
Decrement exponent by 2

00115 X 20 = 11 x 272

Fraction = .11
Exponent = —2

1-5

1.6.4 Floating-Point Notation

Two FPA conventions are used to conserve memory space without losing accuracy, and to aid in hard-
ware manipulation. The first convention is called the hidden bit. All numbers transferred between the
CPU and FPA are normalized floating-point numbers. This means that the first significant bit (always
a 1) is always directly to the right of the binary point. To conserve memory space and data lines, the
first significant bit is not stored or transmitted to the FPA. For example, the fraction part of the nor-
malized binary number .11000... X 272 is stored and transmitted to the FPA as 100.... The normalized
fraction of 1/2 (.100.. X 20) is stored and transmitted as 000.... In both cases the first 1 (the hidden bit)
is added by hardware in the FPA. When the FPA transfers a normalized answer back to the CPU, the
hidden bit is not sent.

The second convention is exponent bias notation. The exponent portion of a floating-point number is
stored using excess 80;¢, 4004, or 4000;¢ notation. This notation simplifies the hardware that manipu-
lates the exponent during floating-point arithmetic operation. Excess 8014 exponent notation is obtained
by adding 100000007 (200g, 8016, or 128;¢) to 2s complement notation. This allows the exponent to be
stored as a positive value.

1.6.5 Floating-Point Addition and Subtraction

To perform floating-point addition or subtraction, the exponents of the two floating-point numbers in-
volved must be aligned or equal. If they are not aligned, the fraction with the smaller exponent is right-
shifted until they are. Each shift to the right is accompanied by an increment of the associated expo-
nent. When the exponents are equal, the fractions can then be added or subtracted. The exponent value
indicates the number of places the binary point is to be moved to obtain the integer representation of
the number.

In Example 7, the number 7;¢ is added to the number 40¢ using floating-point representation. Note
that the exponents are first aligned and then the fractions are added. The exponent value dictates the
final location of the binary points.
Example 7: Floating-Point Addition

0.1010 0000 0000 000 X 26 = 28;6 = 4019

40.1110 0000 0000 000 X 23 = 716 = 710

1. To align exponents, shift the fraction with the smaller exponent three places to the right and
increment the exponent by 3. Then add the two fractions.

0.1010 0000 0000 000 X 26 = 28, = 400

6 = =
+0.0001 1100 0000 000 X 26 = 714 = 710

0.1011 1100 0000 000 X 26 = 2F;¢ = 4719
2. To find the integer value of the answer, move the binary point six places to the right.
010 1111.0000 0000 O
~—Y
1.6.6 Floating-Point Multiplication and Division
In floating-point multiplication, the fractions are multiplied and the exponents are added. In floating-
point division, the fractions are divided and the exponents are subtracted. There is no requirement to

align the binary point in floating-point multiplication or division. Example 8 shows floating-point multi-
plication; Example 9 shows division.

1-6

Example 8: Multiply 7,9 by 40,.

1. 0.1110000 X 23 =7 = 7j
X 0.1010000 X 26 = 28;¢ = 40
1110000
0000
11100
1000110000 X 29 (Result already in normalized form)

2. Move the binary point nine places to the right.

100011000.00000 = 1184 = 280
_/ 16 10

Example 9: Divide 15/ by 5;¢.

1. .1111000 x 24
.1010000 x 23

1.10000
101000(y 1111000.000000
1010000
101000
101000
0

2. Exponent: 4-3 = 1

3. Result: 1.100000 X 2!
Normalized Result: .1100000 X 22
Normalized Fraction Normalized Exponent
Move binary point two places to the right.

11.000000 = 3,6 = 3;0

1-7

CHAPTER 2
DATA FORMATS

2.1 GENERAL

The FPA requires its input data (operands) to be formatted. Formatting allows the FPA to process
operands in a meaningful way and produce correct results. There are five different formats for oper-
ands inputted to the FPA: single (F), double (D), grand (G), huge (H) precision, plus integer. The FPA
output is in F, D, G, H, or integer format.

2.2 FLOATING-POINT FORMATS

Of the four floating-point formats (Figures 2-1 through 2-4), single (F) is 32 bits long. Double (D) and
grand (G) are 64 bits long and huge (H) is 128 bits long. The words contain fraction and exponent
fields, plus a sign bit. Figures 2-1 through 2-4 illustrate how the format is rearranged in the FPA.

DATAAS 3! 1615 14 07 06 00
STORED FRACTION 2 lsT EXPONENT 1 FRACTION 1]
IN MEMORY ¢ el J
~ - ~
~ ~
~
— = i
— ~ — - ~
= > - =~
e .54~ ~ - ~
DATA AS 07 00 55-54 ~48 47 32
ARRANGED { S EXPONENT J Hl FRACTION 1] FRACTION 2]
IN FPA
(HIDDEN BIT)
TK-5822
Figure 2-1 Single Precision Data Format
DATAAS 31 1615 00 31 16 15 14 07 06 00
STORED l FRACTION 4 l FRACTION 3 J h:nAcnon 2]SIEXPONENT]FRACTION_1]
IN MEMORY

00 55 54 48 47 32 31 16 15 00
l H |FRACTION 1IFRACTION 2|FRACTION 3|FRACTION 4

07
DATA AS
ARRANGED B [EXPONENT
IN FPA

TK-5823

Figure 2-2 Double Precision Data Format

2-1

DATA AS 3! 16 15 00 31 16 15 14 04 03 00
STORED I FRACTION 4 T FRACTION 3] FRACTION 2| S]EXPONENTIFRACTION 1]
IN MEMORY
EXPONENT FRACTION
DATA PATH DATA PATH
DATA AS — N — a)
INITIALLY
STORED E I IEXPONENT EXP| H [FRACTION 1[FRACTION 2|FRACTION 3IF£ACTION 4
IN FPA | /
o |
DATA AS V 55'
REARRANGED E EXPONENT I H [FRACTION 1 lFRACTION 2IFRACTION 3|FRACT|0N 4|
IN FPA

TK-6816

Figure 2-3 Grand Data Format

2.2.1 Fraction

The fraction is a normalized magnitude, binary representation. Table 2-1 explains sign and magnitude
notation of the fraction. Only a change of sign bit is required to change the sign of a number in sign and
magnitude notation. Note that a positive number is the same in both notations.

The fraction contains a binary number of the form:
0.1XXXXX....
The first bit of the fraction is always a one because the fraction is normalized at the end of every in-
struction. Normalization consists of aligning the MSB of the result with the MSB of the fraction and
adjusting the exponent accordingly. For example:
[.1 X 2*¥*1] X [.1 X 2**3] = .01 X 2**4
Normalize Result = .1 X 2**3

The fraction contains a hidden bit. Since the MSB of every fraction is always a one, this bit is not stored
in memory; this is the hidden bit. The FPA inserts this bit whenever it receives an operand.

Table 2-1 Fraction Sign and Magnitude Notation

2s Complement Sign and Magnitude
Notation Notation

+2 000010 000010

-2 111110 100010

2-2

£-C

DATA AS
INITIALLY
STORED
IN FPA

DATA AS
REARRANGED
IN FPA

S

][]

31 1615 00 31 16 15 00 31 16 15 00 31 16 15 14 00
DATA AS
sTO FRACTION 7 | FRACTION 6 FRACTION & | FRACTION 4 FRACTION 3 | FRACTION 2 FRACTION 1| s | EXPONENT
RED
IN MEMORY T yp——
N \\ \ T X
N \)\ — "T'-/ ‘\ \
I\ W\ s Wy N \
1\ _—— T —X \ \ \
- \ \ \\ \
/—-\’\ — \ \ \ \ \ \
T \ \ \ \ \ \
185 — N A\ N AN
[EXPONENT h FRACTION
EXPONENT \ FRACTION |
DATA \ DATA '
IPATH A PATH
| \
14 0| 55\54 39 38 2322 07 06 00 07 00 55 54 3938 2322 07
EXPONENT [H FRACTION 1 FRACTION 2 FRACTION 3 FRACTION 4 FRACTION 4 l Fa | F5 | F6] F7

STORED IN EVEN WORKING REGISTERS

Figure 2-4 Huge Data Format

| STORED IN ODD ’l

"I WORKING REGISTERS

TK-5832

2.2.2 Exponent

As Figure 2-1 illustrates, an 8-bit exponent is used for single-(F) and double-(D) precision formats; an
11-bit exponent is used for grand (G) format (Figure 2-3); and a 15-bit exponent is used for huge (H)
formats (Figure 2-4).

The exponent contains a power of 2 and can be expressed in excess 80, 400, 4000 (according to data
type) notation (bias). (Refer to Table 2-2.) The bias is added to a power of 2 to yield the exponent.

Table 2-2 Excess Notation Usage

Bias (HEX)
(Hexadecimal) Data Type
80 F,D
400 G
4000 H

Excess 80/400/4000 notation is used to store and handle the exponent portion of floating-point num-
bers. The notations are used similarly; excess 80 notation is the 2s complement of the exponent plus
1289 or 80¢.

It is convenient to handle the exponent portion of the floating-point number in 2s complement notation.
This-allows a wide range of both positive and negative exponents to be represented. However, in 2s
complement notation, an overflow must occur to go from the least negative number to zero. To avoid
this, the bias of 1289 is added to the 2s complement number.

When multiply and divide operations are performed using floating-point numbers with excess 80 expo-
nent notation (or 400 or 4000, as required), the resulting exponent must be adjusted by the bias to
return the result to excess 8014 notation. When a multiplication is performed, exponents are added, and
8016 must be subtracted from the result to return it to excess 80 notation. The following example ex-
plains why 80;¢ must be subtracted from the exponent calculation during multiplication.
Exponent A + 80;¢
Excess 80;¢ notation

Exponent B + 804

Exponent A + Exponent B + 100;¢4

Both exponent A and exponent B are biased by 80;¢4 yielding a bias of 100;¢. However, only a bias of
80,6 is desired in excess 80;¢ notation.

24

Multiplication Example
2X3=6

Fraction

2=0.100 X

3=0.110 X

Fraction Calculation

2=0.100
3=0.110
1000
100

6 =0.011000 X

Normalize the fraction by left-shifting one place and decreasing the exponent by 1.

Fraction

Y
0.11000

When a division is performed, exponents are subtracted and 80,¢ must be added (for excess 80 nota-
tion) to the result to return it to excess 80 notation. To understand why 80 must be added to the expo-
nent calculation during division, consider the following:

Exponent
8216
8216

Exponent Calculation
8216

+8216

104,

—801¢

8416

Exponent

83 =106

Exponent A + 80

— Exponent B + 80

Exponent A — Exponent B + 80 — 80 = Exponent A — Exponent B + 0

However, since the result is to be in excess 80 notation, 801¢ must be added to the exponent, yielding

Exponent A — Exponent B + 80.

2-5

Division Example

16/4 =4
Fraction Exponent
16 = .10000 X 85
4 = .10000 X 83
Fraction Calculation Exponent Calculation
1.000 85
0 10000./0 10000.000 —83
\J 2
+80
82

Normalize the fraction by right-shifting one place and incrementing the exponent.

F ra*ction }xponent

.10000 X 83 =4

Figure 2-5 shows the relationship between an 8-bit floating-point exponent in 2s complement notation,
and exponents in excess 80 notation.

Note that an exponent in excess 80 notation is obtained by simply adding 80 to the exponent in 2s
complement notation. Thus, 8-bit exponents in excess 80 notation range from 0 to FF (—80 to +7F). A
number with an exponent of —80 is treated by the FPA as 0.

2's COMPLEMENT EXCESS 80
7F MOST POSITIVE EXPO- (FF MOST POSITIVE
NENT EXPONENT
POSITIVE POS 1
EXPONENTS EXP
0 LEAST POSITIVE EXPO- L 80 LEASTPOSITIVE
NENT EXPONENT
FF LEAST NEGATIVE EXPO- [7F LEAST NEGATIVE
NENT EXPONENT
NEGATIVE NEG {
EXPONENTS EXP
80 MOST NEGATIVE EXPO- i) MOST NEGATIVE
NENT EXPONENT

TK-5819

Figure 2-5 Excess 80 Notation for Single and Double
Precision Format Exponents

2-6

2.3 INTEGER FORMAT
Integers processed by the FPA are 2s complement binary numbers (Figure 2-6). The MSB of the word
received from memory is the sign bit.

Words and bytes in integer format can be loaded into the FPA for conversion to F, D, G, or H format.

Also, the FPA can perform store operations whereby F, D, G, or H formatted data is loaded into memo-
ry as words or bytes.)

INTEGER (LONG WORD)

31 30 00

QSE;E%T(ED N |S | INTEGER]
WORD 1 WORD 2

47 06

FRACTION DATA PATH INTEGER I

TK-5818

Figure 2-6 Integer Format

2.4 FLOATING-POINT EXCEPTIONS

The FPA monitors all operands and results for exceptional conditions. When the FPA senses one or
more of these conditions, it informs the CPU via various bits and combinations of bits. Either one or
both units begin special operations designed to minimize the effect of the condition. In some cases it
stops the current FPA operation and returns the FPA to the instruction decoding (IRD) state where all
logic and registers are cleared in anticipation of a new floating-point instruction.

2.4.1 Overflow

This exception occurs when the exponent is larger than the largest representable exponent for the data
type, after normalizing and rounding. The destination in this case is unaffected and the condition codes,
unpredictable.

2.4.2 Underflow

This exception occurs when the exponent is smaller than the smallest representable exponent for the
data type after normalizing and rounding. If the floating underflow (FU) bit is set, the destination is
unaffected and the condition codes (CCs) are unpredictable; otherwise, the result is zero.

2.4.3 Divide-by-Zero
This exception occurs when the divisor is a zero. The destination is unaffected and the CCs are unpre-
dictable.

2.4.4 Reserved Operand Fault

This exception occurs when one of the operands is reserved. A reserved operand is a negative zero (sign
bit = 1, exponent = 0).

2-7

CHAPTER 3
INTERFACING

3.1 GENERAL

The CPU sends the FPA an instruction that indicates what operation and data type (F, D, G, or H) is to
be processed. The FPA then sets up its data path logic to perform the required operations. The CPU
next loads data (32-bit operands) into the FPA data path logic. After the data is processed, the result is
stored by the CPU.

3.2 INTERFACE SIGNALS

FPA-CPU interface signals are illustrated in Figure 3-1, and described in Table 3-1. Timing signals
CPU P2 H and PORT CLOCK L are continually applied to the FPA. The CPU controls FPA operation
via READ PORT L, SEL ACC IN H, READ ACC UPC L, TRAP ACC L, IRD STATE L, and CPU
DATA AVAIL L. ACC SYNC H is the only FPA output (other than the result it puts in the Y-Bus)
the FPA sends to the CPU.

M8389 FPA

[M8390
BN gy U —
I Ry CPUP2 H

I 1 M8394}
I | | wes |FPORTCLOCKL
| | L——J
| I READ PORT L CONTROL
| ! SEL ACC IN H

—
| ! READ ACC yPC -
| cru } TRAP ACC L paTs
l | LOGIC
| L ACC SYNC H

I
|

| CPU DATA AVAIL L SRANCH
I I togic ["]
o weno = S5t
I I - ADDR

. IRD STATE L §'§$UE“‘
I il INSTR
l ! BUS 18 DO7.00 H DECODING
L1 r

TK-4948
NOTE: CPU-FPA

INTERFACE (EXCEPT IB BUS)

IS VIA PORT BUS

Figure 3-1 FPA-CPU Interface

3-1

Table 3-1 Interface Signals

Signal Description

Y-BUS 32-bit wide bus used for all data transfers to/from the CPU and the FPA.

CPUP2H 90 ns pulse used to synchronize the FPA to the CPU. The total
microcycle for this clock is 270 ns.

PORT CLOCK L Basic 90 ns clock.

READ PORTL Control line used by CPU to enable FPA tri-state output buffers.

SEL ACCINH Signal used by the CPU to select the FPA. When asserted, enables the
FPA to drive the Y-Bus for transfer of result data.

READ ACCUPCL CPU-generated signal. At the end of the microcycle in which it is issued,
the FPA will stop its clocks so that its next microaddress (NUA) will not
change. The next time the FPA asserts CPU RCV DATA L, the FPA will
drive the Y-Bus with its next microaddress, and the FPA clocks will be
restarted.

TRAPACCL Signal that forces the FPA to the microaddress present on the Y-Bus
(9:0). Used to abort the FPA in cases of memory management aborts,
interrupts, etc., and also used to invoke microdiagnostic routines in the
FPA.

IB-BUS Eight-bit wide op code bus.

IRD STATE L Signal that indicates to the FPA that data on the IB-Bus is an op code.

CPU DATA AVAILL CPU signal used for transmitting operands to the FPA.

ACCSYNCH FPA-generated signal that indicates to the CPU that the FPA is ready.

Also used for synchronizing FPA to the CPU for transmitting (data store)
data, and for synchronizing transfer of operand data from the CPU
during execution of a POLY instruction.

3-2

3.3 INTERFACE OPERATION

3.3.1 Op Code Decoding

Figure 3-2 illustrates the timing and functional flow that occurs when the FPA decodes an op code on
the instruction bus (IB) during IRD STATE L. Within the FPA, the instruction decoding logic encodes
the op code into an initial starting address for the microsequencer. The microsequencer then generates
a microaddress for the control store. The control store generates output signals that control the data
path logic to handle the operands that will be loaded into it from the Y-Bus.

M8389 FPA
P——
) M8390-I
I Y BUS BUFFER
' : '-l;;?:;; CPUPZH MICROADDRESS
i
| : | PORT CLOCK L GENERATED
! wes b FOR CONTROL
I I L= STORE
CONTROL OPCODE
I — DECODED
| —
¥
-
cPu
[1 LOGIC
L BRANCH
I
CPU PUTS [controL
OPCODE
ON 18 BUS
IRD STATE L SEQUEN-
! . 1B BUS
I
cPU
NOTE: CPU- FPA INTERFACE ASSERTS
(EXCEPT 1B BUS) IS IRD STATE L
VIA PORT BUS
+CPU SENDS CONTROL STORE
*CcPU FPA SECOND OPCODE FPA giﬁiiﬂ?we,c
SENDS DEcone BYTE IF OPCODE SET-UP SIGNALS
~—-—OPCODE—[DEC°DE -2 - BYTE OPC DECODE ;
Po | 1 | P2 fro | , o] p2|Po] o Pi] P2
< O \
— L
1BBUS | OPCODE)) OPCODE___|
' - |
IRD STATE L ? ¢ | l-—
"MIGRO-

INSTRUCTION

Figure 3-2 Op Code Decoding

3.3.2 Operand Loading

Figure 3-3 illustrates the timing and functional flow that occurs when the CPU loads operands into the
FPA. Initially, the CPU asserts CPU DATA AVAIL L, a synchronizing signal that indicates to the
FPA that the CPU is putting an operand on the Y-Bus. Within the FPA, CPU DATA AVAIL L is

applied to the branch logic.

The CPU DATA AVAIL L signal changes the next microaddress by ORing a one into the least signifi-
cant bit (LSB). This causes the microsequencer to branch out of the loop it is in. While in this loop
(which continually loads the FPA data path and branches on CPU DATA AVAIL L), the ACC SYNC
signal is asserted. The CPU ignores the signal when passing data to the FPA except when passing a

polynomial coefficient.

DATA FETCHED
FROM MEMORY

BUFFERED
DATA LOADED
INTO EXPONENT,

F RACTIOI\RDATA PATHS

M8389 FPA
OPERANDS
|M8394 Y BUS BUFFER
:;83941 CPUP2H
| wes PORT CLOCK L
l | L__
L CONTROL
I DATA
—
cPU PATH
LOGIC
ACCSYNCH
A//CP'U DATA AVAIL L BRANCH
LOGIC
FPA
ASSERTS |] coNTROL
oo MICRO STORE
SYNC H > ADDR
INSTR SEQUEN-
I 1B BUS >‘DECOD|NG —{ CER
NOTE: CPU-FPA I:.
INTERFACE (EXCEPT IB BUS)
IS VIA PORT BUS
CPU ASSERTS
CPU DATA AVAIL L *CPU
SENDS
le—OPERAND—»]
*MISC
MICRO-
INSTRUCTION PO 1 P1 I p2
|
CPU DATA AVAIL L I ’_-
ACC SYNC H | |
TK-5831
Figure 3-3 Operand Loading

3.3.3 Result Storing

Figure 3-4 illustrates the timing and functional flow that occurs when the FPA sends a result to the
CPU. The CPU selects the FPA (since there may be other devices connected to the port bus) via SEL
ACC IN H. The CPU then asserts READ PORT L.

The FPA NANDs both SEL ACC IN and the inverse of READ PORT. When the result goes low, the
branch logic ORs a one into the LSB of the next microaddress. This causes the FPA to branch out of
the loop it was in (which continually passed the result back to the CPU and asserted ACC SYNCH H).
The FPA will never drive the CPU Y-Bus unless both SEL. ACC IN and READ PORT are asserted.

RESULT
SENT
TO MEMORY
\ M8389 FPA
rM8390—| RESULT |
| |< Y BUS > BUFFER K
| A riio
cPU | IM8394 CPUP2H
READS | | wes |PORTCLOCKL
FPA | J
| . READ PORT L | conNTROL
] . __—~SELACCINH
cPU /
SELECTS }
FPA | . DATA
cru PATH
CPU | LOGIC
DESELECTS _» ACCSYNCH
FPA
FPA | L BRANCH
ASSERTS LOGIC
SYNC I CONTROL
SIGNAL ! | MICRO STORE
i | L. ADDR
Y SEQUEN-
| 3 INSTR CER
| t DECODING
! 1B BUS
L J
NOTE: CPU- FPA INTERFACE I
(EXCEPT 1B BUS) IS
VIA PORT BUS
*CPU **CPU *CPU
,——SELECTS FPA«l le—GETS RESULT~# e-DESELECTS FPA-o
po | Pt | P2 L P pop2| o Jeo e e,
C 7 ¢
e 2 *
SEL ACC IN H
—
Y BUS § RESULT w
|] *MISC MICRO-

INSTRUCTION
READ PORT L I r **MOVE MICRO-
accswew [L

INSTRUCTION

TK-5829

Figure 3-4 Result Storing

3-5

3.4 CPU FORCE/READ MICROADDRESS CONTROL

The CPU can inhibit operation of the FPA microaddress sequencer and force (load) a microaddress
into the control store. This occurs when the CPU must abort a floating-point instruction due to a memo-
ry management error or an interrupt. The CPU can also read the current microaddress that is applied

to the control store.

3.4.1 Force Microaddress Control

Figure 3-5 illustrates the timing and functional flow that occurs when the CPU forces a microaddress
into the control store. When the CPU asserts TRAP ACC L, the FPA microaddress sequencer output is
inhibited and the FPA clocks are slowed (switch from 180 ns to 270 ns) and become synchronized with
the CPU. Next, the CPU applies an address on the Y-Bus. This input is gated onto the BUS NUA

(09:00) in the FPA and applied to the control store.

CPU

PUTS
MICROADDRESS
ON Y BUS

CPU

FORCES
CONTROL STORE
TO APDRESS 7

M8389 FPA

Y BUS

X

BUFFER

! l
— ==
I | | M8394 lr CPU P2 H
| | | wes (PORTCLOCKL
I | Le—d
| ! CONTROL
L)
' F
| i
—
| cru TRAP ACC L
I DATA
%' PATH
CPU | o LOGIC
ASSERTS *
TRAP |
ACC L L BRANCH
i LOGIC L.
v JCONTROL
] | micro | |STORE
| I ADDR
. SEQUEN-
| [INSTR CER
| b 1B BUS > DECODING
L - r
NOTE: CPU-FPA INTERFACE
(EXCEPT 1B BUS) IS \
VIA PORT BUS \
ouTPUT
CPU INHIBITED
ASSERTS
l@——TRAPACC —

po | p1 | P2

v BUS ZZ] MICROADDRESS
TRAPACCL | [

I

7

Figure 3-5 Force Microaddress Control

3-6

TK-5830

3.4.2 Read Microaddress Control

Figure 3-6 illustrates the timing and functional flow that occurs when the CPU reads the current FPA
microaddress being applied to the control store. The CPU initially asserts READ ACC UPC L and
then READ PORT L. These signals are gated in control logic in the FPA so the microaddress sequen-
cer output is applied to the Y-Bus (after being buffered).

FPA
MICROADDRESS
READ ONTO

Y BUS M8389 FPA

——
| M8390< \
Y BUS BUFFER pim

|
-
ey | 1M8394 CPUPzH
ASSERTS | |

READ PORT L
L4
l L READ PORT L CONTROL

CPU —<

ASSERTS | 1 SEL ACCIN L
4

READ ACC uPC Lr\“- READ ACC uPC

SEL ACCIN H

| cru DATA

CcPU L// PATH
DEASSERTS LOGIC

_»ACCSYNC H

— -

SEL ACC IN Hf Ie
|
/: Tl =
vl | I CONTROL
SIGNAL | MICRO STORE
| | L] ADDR
| . SEQUEN-
t INSTR CER
a ———
I ; —— > DECODING
| I |
NOTE: CPU- FPA INTERFACE r
(EXCEPT IB BUS) IS
VIA PORT BUS
*CPU NEEDS
TO READ **CPU GETS
FPA FPA *CPU DESELECTS
L+ MICROADDRESS e MICROADDRESS oe-FPA
po | p1 | p2 {po P | p2|Pro]rr] e
SEL ACCINH |

READ PORT L

ACCSYNCH

*MISC MICROINSTRUCTION
**MOVE MICROINSTRUCTION

TK-5828

Figure 3-6 Read Microaddress Control

3-7

3.5 ERROR REPORTING
The FPA contains microword parity error logic and condition code logic that report status/errors to the
CPU.

3.5.1 Parity

The FPA contains odd parity logic that monitors the control store for every microaddress the micro-
address sequencer applies to it. If an error is detected, a 3-bit field is used to indicate (via the Y-Bus)
what error(s) was detected.

3.5.2 Condition Codes
A condition code, programmable array logic (PAL in the FPA), is used to report errors (among other
things) when operands are processed in the data path logic. These errors are:

Reserved operand — negative zero
Divide-by-zero

Floating overflow

Floating underflow

Parity error

G

CHAPTER 4
INSTRUCTIONS AND ALGORITHMS

4.1 GENERAL

Table 4-1 lists the FPA instruction set. All of the arithmetic instructions require two operands which
are stored in the FPA in temporary storage register locations TEMP 0 and TEMP 2. TEMP 0 corre-
sponds to the sign of the first operand (OP1) and the content of exponent working register (EWR) ETO,
and fraction working register (FWR) FT0. TEMP 2 corresponds to the sign of OP2 and EWR ET2,
plus FWR FT2.

Table 4-1 FPA Instructions

Instruction Type Description

ADD Arithmetic Add

CMP Arithmetic Compare

SUB Arithmetic Subtract

POLY Arithmetic Polynomial

DIV Arithmetic Divide

MUL Arithmetic Multiply

EMOD Arithmetic Extend modify

MULL Arithmetic Multiply longword

DIVL Arithmetic Divide longword

CVTF,D,G,H—B Convert Convert from floating to byte

CVTF,D,G,H—W Convert Floating to word

CVTF,D,G,H— LW Convert Floating to longword

CVTF, D, G,H — ROUNDED Convert Floating to longword Rounded

CVT toF from D, G,or H Convert Convert D, G,D,orHto F
Precision

CVT to D from F or H Convert Convert For Hto D
Precision

CVTtoG from Hor F Convert Convert Hor Fto G
Precision

CVTtoH fromF,Dor G Convert Convert F, D, or G to H
Precision

CVTBYTE — F,D,G,H Convert Convert byte to floating

CVT WORD — F, D, G, H Convert Convert word to floating

CVTLWORD — F,D,G,H Convert Convert longword to floating

4-1

For arithmetic instruction using huge operands, the fraction part of the word requires two working reg-
isters. FWR FT0 and FWR FT1 are used for OP1, and FWR FT2 and FWR FT3 for OP2.

For the two FPA integer arithmetic instructions, operands are stored in FTO (D47:16) and FT2
(D47:16).

4.2 ARITHMETIC INSTRUCTIONS

4.2.1 Add/Subtract

Before two floating-point numbers can be added or subtracted, (Figure 4-1), the exponents must be
made equal (prealigned). If they are not equal, the fraction with the smaller exponent must be right-
shifted until the exponents are equal. For each right-shift made to the fraction, the exponent is in-
cremented.

1. Exponents not (.123 X 10+5) + (1456 X 10+2)
aligned

Smaller exponent

requiring
prealignment
2. Smaller exponent
prealigned .000456 X 103

3. Numbers added 123 % 103
000456 X 105

4. Result 123456 X 105

At the start of an addition or subtraction, the FPA determines which exponent of two operands is
larger, or if they are equal. It does this by subtracting the exponent of OP2 from the exponent of OP1.
If the exponents are unequal, the FPA then performs a range test. This test determines whether the
larger exponent is so much larger than the smaller that prealignment/addition is unnecessary. This is
true if the number of prealignment steps is greater than one, plus the number of bits in the fraction.
(For example, for F instructions there are 24 bits in the fraction. If the difference in exponents is great-
er than 25, prealignment is unnecessary.)

Prior to prealignment, the FPA determines if the operation required is a summation or a difference. A
summation occurs for ADD when the two operand signs are the same. Summation also occurs for SUB
when the two signs are not the same. Then, if the operation to be performed is a difference, the smaller
number is negated before prealignment.

42

2E1
| WAIT LOOP

JUMP
FORCED BY
IRD STATE L

ADDX:
201 YES (FPA INSTR)

CLEAR FWR (0]

CALL [FET.FLT]
FLOATING DATA
TYPE FETCH ROUTINE]

ONE
OPERAND
=0

YES

703

SUBTRACT OP2
EXPONENT FROM
OP1 EXPONENT
CALL [SUM DIF]

202:

L. AD

D OP.EQO j
!

OPE

MOVE SECOND

TO Q REG

RAND

1

CALL ADD.OP.O.TST
SUBROUTINE TO
DETERMINE

WHICH OPERAND =0

OP1.EQO

oP

MOVE OP2
TO OUTPUT
REGISTER
CLOCK SIGN
OUT WITH
WITH[OP2]

WHICH

BOTH EQ.0
ERAND

=0

Op2 £0.0__ADD-BOTH.0

1

CLEAR RESULTS
CLEAR FWR [FTO]
CLEAR EWR [ETO]
CLOCK SIGN OUT

WITH [ZERO]
SUBROUTINE | caLLsersien |
MISC |
ROUTINE ¢
EXCEPTION CALL [RESEV.TST]
RETURN FROM NO RESERVE
[SUM DIF] OPERAND TEST
SUBROUTINE TO DETERMINE ‘
IF THE OPERAND |
007: THAT EQUALS 0 SR
| AappExceeTion | 'SPARRESERVED FLOATING
OPE RESULTS
ROUTINE
SET STATUS TO !
REFLECT THE SET STATUS
EXCEPTION CONDITION ENB STORE

GO TO EXCEPTION
HANDLER (PART
OF STORE ROUTINE)

)
SET CONDITION
CODE V,CAND V
BIT IF OVERFLOW
]

STORE ERROR
CONDITION CODES

|

ADD.NO.EXCEP |

y
| crockec |
I

JUMP TO
WAIT LOOP

TK-5877

Figure 4-1 Add Flow (Sheet 1 of 6)

MOVE OP2 FRACTION
(FWR[FT2])TO FQ
FOR PREALIGNMENT
SETUP

(OP1.GT.OUT.RN)

RETURN

r

DIFF
PATH

SUM
PATH

SUMMATION
OR DIFFERENCE
PATH

3
| cALLseTsien |

CLOCK SIGN OUT
WITH [OP2], JUMP
TO S.PREALIGN

NEGATE FQ
{SMALLER FRACTION)

SuMm
PREALIGN

SUM.DIF
SUBROUTINE,

SUB EQ FROM
EWR [ET4] TO
EWR [ET1]
CONSTITUTES
RANGE TEST ;
SUBTRACT THE
NUMBER OF
FRACTION BITS
PLUS 1 FROM
EXPONENT

DIFFERENCE

OP1>0P2

WHICH
EXPONENT
IS LARGER

OP2 EXP = OP1 EXP

OP2>0P1 YES

SUB EWR [ETO] FROM
EWR [ET2] TO EQ
SUBTRACT LARGER
EXPONENT FROM

SMALLER
SUBTRACT THE

EXPONENT DIFFER-

DIFPATH
D TIONS
ADD FRACTIO 1 (OPERANDS EQUAL)

ENCE FROM THE ‘
NUMBER OF BiTS
IN THE FRACTION

SHIFT RIGHT

RESULTS, SHIFT
IN [ONE], INCREMENT

MOVE OP1 FRACTION EXPONENT

—3

DIFFERENCE

SHIFT FQ RIGHT SHIFT FQ RIGHT

PREALIGN AND DECREMENT AND DECREMENT
EXPONENT EXPONENT
DIFFERENCE DIFFERENCE

EXPONENT
DIFFERENC
=0

EXPONENT
DIFFERENCE
=0

| siNGLE NORMALIZE |

[Abp Favo Fwrio] |

TorFa (E.G., NORMALIZE)
MOVE 0P2 TO ROUND
XWR (0] TEST

DIFPATH
NO

CLOCK SIGN OUT

WITH [OP2], RETURN

LONG
NORMALIZE ROUND TEST

Figure 4-1

4

NEGATE SMALLER
FRACTION (FQ)

DIFFERENCE
PREALIGN

Add Flow (Sheet 2 of 6)

YES

SUm
PREALIGN

TK-5880

DIFPATH
OPERANDS
EQUAL

SUBTRACT
OP1'S FRACTION
FROM

0OP2'S FRACTION

NEGATE RESULT
SIGN OUT GETS OP'S
SIGN

[

CALL SET SIGN

]

IS
RESULTANT
FRACTION =0

LONG NORM:

Figure 4-1

SIGN OQUT <0
RETURN

MOVE RESULTANT
EXPONENT TO EQ
MOV RESULTANT
FRACTION TO FQ

CLEAR EXPONENT,

[SHF LEFT FQ DEC E?I

MSB OF
FQ=1

MOVE EQ TO
EWR [0] AND

FQTO FWR (0]

RND.TST

Add Flow (Sheet 3 of 6)

TK-5921

SET.SIGN:

RETURN |

[siGN ouT < 1 RETURN| |siGn ouT -0 RETURN]

WHEN THE SET.SIGN SUBROUTINE IS CALLED
SIGN OUT CONTAINS OP1'S SIGN.

LONG NORM.

DECREMENT EQ
SHF LEFT FWRO

NO

r RETURN J

TK-5878

Figure 4-1 Add Flow (Sheet 4 of 6)

NEITHER
CONDITION
IS TRUE

RND.TST

WHAT SIZE
IS THE DATA TYPE

G
1

O
X

; THIS FLOW ONLY SHOWS THE SINGLE FLOW

ADD THE SINGLE
ROUND CONSTANT TO
THE FRACTION

NO

ROUNDING
CAUSE FRACTION
QVERFLOW

YES

INCREMENT EXPONENT
SHIFT FRACTION
RIGHT, IN [ONE]

CASE BRANCH: IS
EXPONENT NEGATIVE
OR ZERO

¥

EXCEPTION RETURN

EXCEPTION RETURN

EXPONENT IS
EXPONENT IS NEGATIVE,
ZERO, UNDERFLOW UNDERFLOW
PERFORM AN PERFORM AN

RETURN

PERFORM AN
EXCEPTION RETURN

Add Flow (Sheet 5 of 6)

NORMALIZE
FRACTION
OVERFLOW

TK-5881

; THIS ROUTINE FETCHES ALL
FLOATING POINT DATA TYPES
JONLY F IS SHOWN.

FET.FLT

|cLEAR 2ND OP'S WR |

I
l
l
-l

AND OP1'S SIGN

: LOAD EWR [0], FWRI[O]
I
|

e -

YES

CLOCK SIGN OUT
WITH OP1’S SIGN

LOAD FWR [4]
MIDDLE SECTION

9

INCREASE CLOCK
SPEED

| RETURN

]

[— ——

Figure 4-1

LOAD EWR[2], FWR[2]
AND OP2'S SIGN

INCREMENT

FRACTION BIT COUNT

ADD EXPONENTS

K]
INCREASE CLOCK
SPEED
RETURN +1 IF
NEITHER
OPERAND =0
ELSE RETURN

Add Flow (Sheet 6 of 6)

TK-5879

To prealign the fraction with the smaller exponent, the exponent difference is placed in the exponent Q-
register (EQ) and the smaller fraction is placed in the fraction Q-register (FQ). FQ is right-shifted and
EQ is decremented until it is zero, at which time the fraction is properly aligned for the addition.

After prealignment, the numbers are added and then normalized. Normalization consists of aligning the
MSB of the resultant fraction with the MSB of the fraction data path.

The sign of the result is set according to Table 4-2.
If the exponents are equal, the fractions are added when the operation is a summation, or subtracted
when the operation is a difference. If the operation was a difference, the result must be tested for zero,

in which case the answer is a zero.

The result is rounded and tested for underflow or overflow after the addition and normalization have
been performed.

Table 4-2 Add/Subtract Sign Calculation

Original Signs Resultant Sign
OP1 Sign OP2 Sign OP1 > OP2 OP2 > OPI1
Add + + + +
+ - + —
— + - +
Sub + + - +
(OP2-OP1) + — — —
- + +

4-9

4.2.2 Compare (CMP) Instructions
A compare (CMP) instruction compares two operands by subtracting the second operand from the first.
The compare instruction loads the results in the condition codes, where

N1 if OP1 is less than OP2
Z—1 if OP2 = OP1
V—0
Ce~0
CMP Algorithm:

1. If signs are not the same, then N — OP1 sign, and the condition codes (CC) are stored.
2. If signs are the same, subtract the exponents OP1 EXP — OP2 EXP

3. If OP1 EXP > OP2 EXP N — OPI’s sign, store CCs.
If OP1 EXP < OP2 EXP N — Not [OP1’s sign], store CCs.

4. If OP1 EXP = OP2 EXP, subtract fraction

5. If fraction = 0, the Z bit gets a one (Z — 1), store CCs.

If MSB of fraction = 0 but fraction # 0, the N bit gets the sign of OP1 (N — OPI’s sign),
store CCs.

If MSB of fraction = 1, N — Not [OP1’s sign], store CCs.

4.2.3 Polynomial (POLY) Instruction
The Polynominal (POLY) instruction evaluates a polynomial expression of the form

a9+ ajx +a;x2 +a3x3..
where the largest possible degree of x is 31. Three operand specifiers are required.
1. Arg — the argument, (e.g., X)
2. Degree — the highest power x is to be raised to

3. Tbladdr — the address of a table of coefficients. The first coefficient in the table is actually
the last coefficient in the polynomial.

The polynomial expression is calculated as follows:
fllc@*x+c@]*x+c(d2)] *x....+ c(1)] — x +c(0)

where ¢ (d) = the coefficient of the largest powers of x.

After the multiplication, more than the normal number of bits are kept for the addition:
F: 31 bits
D: 63 bits
G: 63 bits
H: 127 bits

The next coefficient is then added to the product, the number is rounded, and exceptions are checked
for. The next iteration is then initiated.

The FPA executes the POLY instruction by performing a multiply /addition iteration and then passing
the result back to the CPU. This automatically starts the next iteration. If the instruction is done, the
CPU must abort the FPA.

POLY Algorithm:
Initialization

1. Store argument in ET8, FT8 (FT9 for Huge).
2. Store first coefficient in ET2, FT2.
3. Sign out — OP1 sign XOR OP2’s sign.

NOTE
OP1 sign reflects the sign of the argument.

4. Go to POLY iteration.
POLY lteration

Move argument to ETO, FTO, (FT1).

Call (MUL.ROUTINE).

Fetch next coefficient and load into ET2, FT2 (FT3 for Huge).
Call ADD routine.

Round and test for exception.

Truncate to data type, and store in ET2, FT2 (FT3).

Store condition codes and results.

Sign out — Sign out XOR OP1’s sign.

Go to POLY iteration.

WX _NAN B WD =

NOTE
If an underflow occurs at the end of a MUL/ADD
iteration, the partial results are cleared, and an error
code is stored. If the FU bit is set, the CPU will
abort the FPA. The FPA automatically starts the
next iteration. For overflow, the FPA stores the er-
ror code and stops execution.

4.2.4 Divide (DIV) Instruction
4.2.4.1 DIV - For a divide operation the quotient — OP2/OP1.
DIV Algorithm:

1. Sign — OPI SIGN XOR OP2 sign.

2. Clear FQ.

3. Load EQ with the fraction bit count.

4. Subtract the OP1 fraction from the OP2 fraction and then go to a DIV loop.

DIV Loop:
If previous result was positive:

a. Shift FQ left, shift in one.
b. Subtract OP1 from OP2.
c. Decrement EQ; if NEQ.0 go to DIV loop.

If previous result was negative:

a. Shift FQ left, shift in zero.
b. Add OPI to OP2.
c. Decrement EQ; if NEQ.0 go to DIV loop.

DIV Loop Ends.

5. Normalize.
6. Round.
7. Set the condition code bits and store results.

4.2.4.2 DIVL Instruction — The DIVL instruction is for division of an integer by a longword only.
DIVL Algorithm:

1. Since the integers can be in 2s complement form, it is necessary to check for negative num-
bers. If an operand is negative, it is negated and ET1 is incremented (it was initialized to 0).
Thus, if ET1 = 1 after both operands have been checked, and negated if necessary, then the
result should be negative.

2. Is dividend = the divisor? If not, then results = 0.

3. Align the MSB of both dividend and divisor with FRAC47. Initialize EQ to 1 and increment
EQ for each alignment shift the divisor requires over that of the dividend. This yields the
loop count for the divide loop.

DIVIDE Loop:

I FQ

FTO: L DIVISOR 1
FT2: |~| DIVIDEND/REMAINDER l

TK-6445

+/—

Subtract (ADD) the divisor from the dividend (remainder). The inversion of the sign bit of
the result is the next quotient bit, and it also controls the ALU function. After the divide
loop, ET1 is examined. If ET1 equals 1, the result is negated. Overflow is then checked by
examining FRAC47 for positive numbers. If FRAC47 equals one for positive numbers, then
an overflow occurred.

4.2.5 Multiply (MUL) Instruction

4.2.5.1 MUL Algorithm — The MUL instruction executes MULF, D, G and H. The MUL algorithm
is as follows:

1.

2.

Sign — OP1’s sign XOR OP2’s sign.
Place OP1 (multiplier) in FQ.

Clear FT4 (product register).

Load EQ with the fraction bit count.
Shift FQ right.

NOTES
e If LSB = 1, add OP2 to FT4 and shift right.

o If LSB = 0, shift FT4 right.
Decrement EQ; If NEQ.O, go to 5.
Move FT4 (product) to FTO.
Normalize

When the fraction is normalized, the exponent is adjusted at the same time. For every left-
shift, the exponent is decremented; for every right-shift, the exponent is incremented.

4-13

9. Round
The FPA always rounds the result of a floating-arithmetic operation. This is accomplished by
adding a round constant to the result. The round constant depends on the data type, and will
have a one in the bit position which is one less than the LSB. (For example, for F the round-
ing constant will be all zeros, with a one in bit position 31).

10. Set CCs and store.

NOTE
The LSB of the multiplier depends on the data type.
The Multiply/Divide (MUL/DIV) PAL selects that
LSB according to the data type.

4.2.5.2 MULL Instruction - The FPA MULL instruction is an integer multiply for longwords only.
An integer multiply involves basically the same algorithm as MUL float, except it uses the integer data
path.

A7 16 CENTRAL
FQ I-——' SOURCE
FUNCTION
47 16
FT2 [|
FT4 l

TK-6446

The test for overflow is also different: FQ at the end of the multiply should be the sign extension of the
sign bit (FRAC47) of FT4. If it is not, an overflow has occurred.

4.2.6 Extended Precision Multiply and Integerize (EMOD)
The main function of the EMOD instruction routine is to multiply the multiplier (mier) extension by
the multiplicand (mand), set up to use the multiply loop subroutine for the remaining mier bits, and the

CVT.FLT subroutine. This flow also contains the zero operand handler, condition code setting, and an
exception handler.

The EMOD operation is as follows:
OP1 OP2 OP3
TEMP — (MIER#MIER.EXT)*(MAND)

(CONCATENATE)

The MIER.EXT is a byte for F and D, 11 bits for grand (left-justified), and 15 bits for huge
(left-justified).

There are two results to this instruction:

1. Fraction (same data type as instruction)
2. Integer (longword)

4-14

The hardware is set up so that the multiplier extended (MIER.EXT) is loaded into bits 32:16 of FT4. A
microcode function can force the MUL/DIV PAL to select Q16 as the default LSB of the multiplier.
Thus, the multiplier extension is multiplied and then OP1 is multiplied. This wllows the MUL routine to
be shared.
The EMOD flow is as follows:
1. Load FT4 into FQ — (MIER.EXT — FQ).
2. EQ — loopcount (8 = F, D, 11 = G, 15 = H).
3. Set Q16 default.
4. Perform MUL loop until EQ = 0; MUL loop is same as in MUL routine.
S. FQ — FTO; FQ gets multiplier.
6. EQ — integer bit count.
7. Call MUL routine.
8. Set up for integerize routine.
9. Call integer routine.
10. Normalize fraction.
11. Round.
12. Test for integer overflow.
13. Set CCs and store.
4.3 CONVERSION INSTRUCTIONS
4.3.1 Floating-Type-to-Integer Conversion
The two FPA instructions, CVT(F, D, G, H) to (B, W, L) CVTR(F, D, G, H, L) convert any floating
data type to any integer data type.

All of the conversion instructions are basically similar; the major difference for the various data types is
the loop counts.

If the floating-point number is too large to be represented in integer form, the V-bit will be set, and the
integer results will reflect the least significant bits of the fraction.

The CVT flow is as follows.
1. Subtract the bias from the exponent; this will indicate the number of integer bits.
EQ — ETO - ET4

where ETO = exponent
ET4 = exponent bias

4-15

If EQ is negative, there are no integer results. Store a 0.
If EQ is not negative, test for overflow.

EQ = ETO0-ET4 (number of bits in the integer)
E7 — ET6-EQ

where ET6 = integer bit count (e.g., 32 for longword).
If ET7 is not equal to or less than 0, go to convert loop.

NOTE
ET7 = fraction bit count (number of integer bits).

If the number of integer bits is greater than the integer bit count, the number is too large to
fit in resultant data type.

If ET7 > zero, then test for significance. (That is, will any integer bits show up in results?)
ET7 — ET7-ET4 ET7 = number of integer bits in data type of results.
ET4 = number of integer bits in results.
If ET7 < 0, then the result = 0 and the V-bit should be set.
If ET7 > 0, then the V-bit should be set; go to the convert loop.

Convert Loop: Move FTO to FQ

FQ = FRACTION ’—|T |
47 1615
FT4 ’ I I I

[
INTEGER
DATA
PATH

TK-6444

Right-shift FQ and FT4 the number of times specified by EQ, which contains the number of
integer bits.

At the end of the convert loop, the number must be aligned with the fraction data path by 12
double shifts.

4-16

4.3.2 Integer-to-Floating Type Conversion
The FPA CVT(B, W, L)(F, D, G, H) instruction converts integer to floating type data.

Any integer data type can be converted to any floating data type without overflow or underflow. Be-
cause the CVTLF convert instruction can lose significance, this particular convert instruction requires
rounding.

1. The integer is loaded into the integer data path

55 48 47 1615 08 07 00

INTEGER
F10 1 DATA PATH ‘ I

TK-6443

2. Integer MSB is aligned with FRACSS5.

For byte the MSB = 23
For word the MSB = 31
For longword the MSB = 47

This requires:

4 double left-shifts for longword.
12 double left-shifts for word.
16 double left-shifts for byte.

3. After the integer is aligned with FRACSS5, the MSB is checked; if it equals 1 the number is
negated and the sign bit is set.

4. EQ — Floating bias plus the number of integer bits in the integer data type.
5. The number is normalized (and rounded if CVTLF), CCs set, and result stored.

Example: CVTLF where LW = 4000000

55 48 47

1. Load FTO: [[owo000 [|

2. Align FRAC 47 with FRAC 55: 04| oooooo [oo]

TK-8511

4-17

3. Load EQ with bias plus number of integer bits: EQ — 80 + 20.
4. MSB of fraction = 0, therefore sign — O.

5. Normalize fraction.

[———]
]

AFTER 5 SHIFTS.

TK-8512

4.3.3 Precision Conversion
There are four FPA instructions that convert one floating-point data type to another. They are:

CVTF (D, G, H)
CVTD (F, H)
CVTG (F, H)
CVTH (F, D, G)

To convert from one floating-type to another:
1. Subtract the bias from the exponent, where the bias is the original bias.
2. Add the new bias.
3. Round, if necessary (e.g., CVTFD does not require rounding).
4. Check for overflow or underflow.

Example: CVTFG 4080

55 3231 00
LOAD ETO: FTQ: lﬁ) OIO OI
55 32 31 00

SUBTRACT BIAS: FTQ: I1C 0—[0 0'

55 32 31 00

ADD NEW BIAS: FTQ I10 OIO O]

TK-6442

No overflow or underflow (not possible for this convert)

Adjust grand number and store results: 4010

4-18

CHAPTER 5
THEORY OF OPERATION

5.1 GENERAL _

The major circuit in the FP-11/730 (Figure 5-1) is data path logic that processes variable length oper-
ands. The operands are passed to the FPA from the CPU in 32-bit sections via the CPU Y-Bus. The
FPA buffers the Y-Bus onto its BUS FPA. The data path consists of exponent and fraction sections
(fields), plus sign and condition code control sections. The data path logic functions in accordance with
control signals generated in a control store.

Floating-point instructions to be processed by the FPA are received from the CPU via an IB-Bus as
BUS IB D7:0 and are applied to an instruction decoding/encoding circuit. This circuit encodes a float-
ing-point op code into an address that is applied to a microsequencer circuit, as DECODE ROM 4:0 H.
The microsequencer then generates a target address (BUS NUA 9:0 H) that accesses a certain 48-bit
microword in the control store. The accessed microword gets clocked with control store registers which
produce signals that set up the data path logic for operand processing.

During instruction execution for each control store microword access made, a 10-bit (CS9:0) micro-
pointer field (UPF) in the 48-bit microword is applied to a register in the microsequencer. In most in-
stances, the UPF is used in the microsequencer as the base for the next microaddress that will be gener-
ated and applied to the control store.

The five LSB of the 10-bit micropointer field that is applied to the microsequencer can be branched on,
in accordance with status bits generated by the data path logic and instruction type signals. The two
LSB (1:0) of the micropointer field is normally branched on via a branch control circuit. An extended
branch function allows status signals to be ORed in with the next three LSB bits (4:2) in the micro-
pointer field. Thus, a maximum of five bits can be branched on.

Parity logic in the FPA monitors each word accessed from the control store. If a parity error is detected
the parity logic generates an output (FORCE ADDR LOW) that forces all ten of the microsequencer
output lines to logical 0. This all-zero output is the starting address of a parity handler routine and is
applied as the next microaddress to the control store.

Two buffers in the FPA function as a force/read circuit used during diagnostics to read the micro-
sequencer control store address (BUS MUA 9:0 H) output onto the Y-Bus (as BUS Y D9:0H) for sub-
sequent checking in the CPU. The circuit is also used to force a CPU-generated microaddress (from the
Y-Bus) into the control store as the next microaddress. These force/read operations are used to test the
microsequencer, control store, and data path logic. The force function is also used to abort the FPA and
to execute some instructions.

5-1

¢S

32

OAD/STORE]
TL

- -
FPAB CPU RCV DATA D<31:0>
FPAA FORCE #ADDR 0 foaTa PATH LOGIC __ |
D<9:0> L I EXPONENT 15:8 |
4 2901 BIT-SLICE
D<3:0> | DATA PATH 1 |
FPAM =
FPR ALLOW CPU Y BUS I
— o — = - - —
_‘ FPAA READ pADDR - EXPONENT 14:7 '
[NsTRUCTION. DECODING “ FPAD ExP 17 | EXPONER ,
— | _— = - = —— ——a— | BITSLICE |7
L4
< | [PariTy | H DATAPATH Tp<1a7>
5 I 1 |
-
w| 10<19:10> | opcope | INSTR ENC<4:0> | | FRAC/EXP L] H
2 ' CONTROL PARITY PARITY] SHIFT T DT>
2] o CONTROL
u REG. & SIZE<1:0> o I CHECKER CONTROL 1 l I FRACTION |
I EMOD | BUS NUA <9:0> | | 2001BITSLICE | 7 !
l DATA PATH 'D<6:0>
| | | PAR ERR FPAL
g | t—eacimok | L= FORCE ADDR LOW I 8 NP D <ssuae> |
‘ } J DATA-IN
l- —— CONTROL MUX
o I INSTRUCTION <04:00 8
b REGISTER -] 100> 000 CONTROL 48 | — D<7:0>
@| <7:0>7] DECODE] MICROSEQUENGER STORE 7~ cSR | MID FRACTION 2
| RoM | | 73 FQuE PROM { LCONTROL I 2001 BIT-SLICE | 16
' DATA PATH "D<31:16>
FORCE ADDR LOW [. o | I FPAK
L~ — e — — —l - -
CS<9:0> Qﬁ,
— e —— 167 D3T:16>
r- | FPAG 0P| CLK— | 1
BRANCH MID FRACTION
| LOGIC x8raNcH || | 2901 BIT-SLICE
CONTROL DATA PATH
| ' | (‘ﬁ
{
BRANCH | I — 167 D<15:0>
I CONTROL l LOW FRACTION
1 I 2901 BIT-SLICE ,16
e e — —— DATA PATH D<15:0>
I FPAH
i : 57 D<15:0>
LeFT | EXT00 QO EXTENSION
T 2901 BITSLICE |8
CONSTANTS SHIFT | EXTO00 RO DATA PATH 1L
MUX v EPAF D<15:8>
I 8 D<15:8>
SIGN
I CONTROL D<15>
FPAE SHF1 (1) H l =
FPAE SHFO (1) H ' CONTROL - D<3:0>
Y
| —

I
4

TK-4952

Figure 5-1 FPA-11/730 Block Diagram

5.2 DATA FLOW

The CPU fetches op codes, puts them on the IB-Bus, and after the FPA decodes them, it (FPA) jumps
to a microcode routine which executes the instruction. The CPU next sends the FPA operands via the
Y-Bus. The FPA then operates on the data input in accordance with the instruction decoded from the
operation code on the IB-Bus. The FPA result is then put on the Y-Bus and sent to the CPU.

As the FPA data path logic operates on the operands, it continually sends status signals to branch logic.
These signals effect branches that modify the microaddress, prior to gating the microaddress onto BUS
NUA (09:00).

During an FPA-CPU data transfer, the CPU aborts the FPA if certain conditions occur. Also, during
the data transfer the FPA reports exceptions or error conditions to the CPU via the Y-Bus until the data
transfer has completed.

5.2.1 Operand Fetching

When the operands are being fetched, the FPA data path logic is conditioned to operate on data that
will appear on the Y-Bus. Initially, an operation code decoded from the IB-Bus addresses a decode
ROM in the FPA instruction register. The result is a 5-bit field that is applied to a 2909 micro-
sequencer. The microsequencer then generates a BUS NUA 9:0 output that is applied to the control
store PROM. The microword selected from the PROM causes a 48-bit field (microword) to select cer-
tain CSR data path control signals. The signals effect the following conditions:

1. The 2901s in both the fraction and exponent data paths are set up to clear the exponent work-
ing register EWR (0) and fraction working register FWR (0) so that the first operand (OP1)
to appear on the Y-Bus can be loaded into them.

2. A load signal will be set to enable loading of the EWRs and FWRs. This signal is the result of

certain values of CLK and MOD fields in the microword accessed from the control store
PROM.

NOTE
The load signal is always cleared at the beginning of
every instruction.

3. Another BUS NUA 9:0 input applied to the control store PROM will access the appropriate
fetch routine. In the FPA microcode this would appear as:

CALL (FET.FLT)

or
CALL (INT.FLT)

Once in the fetch routine, a microword will executes that continually loads a data path logic working
register (WR) until the CPU asserts CPU DATA AVAIL L.

3-3

Figures 5-2 and 5-3 illustrate how an operand is loaded into the data path logic. For those instructions
whose operands are more than one longword (D, G, or H), the FPA will become synchronized with the
CPU on the first section, and then expect the remaining longwords to be passed in every other micro-
cycle that follows, without further synchronization.

31 16 15 1407 06 00
lFRACTION 2l s lEXPlFRACTIONﬂ
I BUS FPA D15 SIGN PAL
FPAC
r - oy o
EXPONENT
1 oaTA PATH |
| |
Bus FpA D14:07 | 11
| I
L D aEED ey J
P - D e
| FRACTION
| DATA PATH |
Bus FPa [par OTH | e p [He |
D6:0 | vippEN BiT) }255:48 ' FRACTION | o
FPAL I FPAL |
MID 2
BUS FPAD31:16 4 f FRACTION |
| |epax |
MID [}
| |FracTion 0
| |Fray
| Low '
" FracTioN | |
| |eean |
FRACTION 1
] jextension |
| [eear |
L -— oy o= J

Figure 5-2 Single Format Loading

After all data has been fetched the FPA clock speed will be increased from 270 ns to 180 ns. This
increase occurs at the beginning of an instruction execution routine.

Because the exponent of grand and huge data is not totally aligned with the exponent data path, part of
it must be loaded into the fraction data path. This part must later be shifted into the exponent data
path. A grand adjust microroutine will adjust both operands simultaneously. This is accomplished by
placing OP2 into the exponent Q-register (EQ) and into the fraction Q-register (FQ), and then shifting
both EQ and FQ while shifting working registers EWR (0) and FWR (0), which contain OP1. A frac-
tion shift control circuit will then direct the MSB of FQ and FWR (0) to the shift-left inputs of EQ and
EWR (0).

31 16 15 00 3 16 15 1407 06 00
FRACTION 4 FRACTION 3] |FRACTION 2] S IEXPIFRACTIONq

SIGN PAL
BUS FPA D15 FPAC

¢ emp aemp oo

| EXPONENT
| DATA PATH |
|

gus FPAD14:7 |
|

|
|
!
L---J

F G GEED =
| FRACTION
DATA PATH

HIGH
FRACTION

DATA INCTL
PAL
(HIDDEN BIT)

BUS FPA
D6-0

INP
D55:48

FPAL
MID 2
FRACTION

FPAL

BUS FPA D31:16

FPAK
MID
FRACTION

FPAJ

BUS FPA D15:00

/ BUS FPA D31:16
NOTE:

LOADED DURING
SECOND LOAD

LowW
FRACTION

FPAH

FRACTION
EXTENSION

D CINP GED GEN GUD CED GED GED GiD GEP GNP jEuD e

FPAF

r

-——J

TK-5820

Figure 5-3 Double Format Loading

Only one huge word can be adjusted at a time because both the fraction working register (FWR) and
the fraction Q-register (FQ) are needed to shift one huge fraction. The lower half of a huge fraction is
initially loaded into FQ and the high half is placed in a temporary FWR. A left-shift is then performed
and the MSB of the FQ is directed into the left-shift input for the temporary FWR. The MSB of the
FWR is then directed into the EWR. Because of this, seven shifts are required for adjustment of a huge
word.

After grand or huge operands are adjusted, OP1 EQ 0 and OP2 EQ 0 flags are set in the branch 3
PAL. For F and D operands this is done automatically as the sign bits are clocked. However, this can-
not be done with G and H operands because part of the exponents for these data types is loaded into the
fraction data path.

5.2.2 Result Storing

When the CPU finishes passing operands and probing the destination address, it gets ready to accept
the condition code (by asserting READ PORT L) and then loops until the FPA asserts ACC SYNC H
or an interrupt occurs. If an interrupt occurs the CPU usually aborts the FPA and services the inter-
rupt.

3-5

The FPA performs a similar function when storing data. It stores the condition codes and performs a
branch that will loop until the CPU asserts READ PORT L. The FPA also asserts ACC SYNC in this
word.

The FPA must adjust the results during a store operation. This means shifting out of the hidden bit and
performing the required number of shifts for the exponent into the fraction data path. The FPA will
also ensure that a data path logic load signal is not asserted.

5.2.3 Aborts
The CPU aborts the FPA for:

1. Interrupts

2. Memory management errors
3. Illegal address mode

4. End of a POLY instruction

The CPU aborts the FPA by forcing microaddress 7 into the FPA control store. This starts a routine
that initializes some FPA registers and puts the FPA in a wait loop.

5.2.4 Exceptions or FPA Errors
For the FPA-CPU data flow interface there are error conditions the FPA must indicate to the CPU.

Overflow (exception)
Underflow (exception)
Reserved operand
Divide-by-zero

Parity error

ol e

If any of the error conditions occur, the FPA sets the C-bit in the condition codes, which is the LSB of
the FPA output on the Y-Bus. Because the CPU examines this bit first during a result store operation
the bit will immediately go to an error handler routine whenever it is set by the FPA. In the CPU the
error handler receives a longword error code from the FPA. This error code, in conjunction with the
condition codes, is used by the CPU to determine what exception occurred in the FPA. The error codes
are constructed by FPA microcode and sent to the CPU. The values of the error codes are listed in
Table 5-1.

Table 5-1 Error Codes

Code Error

0 Overflow if V-bit = 1
0 Underflow if V-bit = 0
7F80 Reserved operand
FF80 Divide-by-zero

X—X1 (LSB=1) Parity error

5-6

After the FPA passes the error code to the CPU via the Y-Bus, it sets up for the next instruction and
then goes to a wait loop. However, if a parity error occurs the FPA stays in microword 1, and the CPU
must then force the FPA to start again.

5.3 TIMING

The FPA operates with 180 ns and 270 ns cycle times. The fast 180 ns cycle time is the normal FPA
cycle time and is used during instruction execution. The slower 270 ns cycle time is used when the FPA
is waiting for operands or instructions from the CPU, or when it is storing results to the CPU. Timing
logic (Figure 5-4) consists of a clock generator PAL and NAND gates. Figures 5-6 through 5-11 illus-
trate FPA timing.

The timing logic generates DPO CLK L, DP1 CLK L, and REG CLK L which are applied to control
store, data path logic, branch logic, and control logic. Although these clocks are produced by three
separate NAND gates (for loading purposes), they are generated identically. The timing logic also gen-
erates IR CLK L and IR CLK H which are applied to instruction decoding logic. A 45 ns TRISTATE
DISA H output, which occurs at the start of every timing cycle, disables FPA transceivers to prevent
them from being simultaneously enabled.

In the timing logic (Figure 5-4) the clock generator PAL generates either SLOW PATH ENAB H or
FAST PATH ENAB H, plus FP PH1 and CPU PHO H (Figures 5-5 and 5-6). These are applied to
gates used for selection of a 270/180 ns cycle time. Clock PAL inputs ENB CLK (1) H and BASIC
CLOCK H (memory controller PORT CLOCK L) inputs are used to generate DP1 CLK L, DPO CLK
L, and REG CLK L. BASIC CLOCK H is also used for generation of IR CLK H and IR CLK L.

When FAST CYCLE L is not asserted the slow path is enabled. During slow path operation the clock
generator PAL generates SLOW PATH ENB, and the CPU P2 H clock (Figure 5-7) controls when the
FPA clocks are asserted (Figure 5-8).

Figure 5-8 illustrates fast/slow cycle gating. During normal fast path gating (Figure 5-9) in the timing
logic, when TRAP ACC or READ ACC UPC are not asserted by the CPU, FP PH1 and FAST PATH
ENAB H are used to generate CLK ENB H.

If the CPU asserts TRAP ACC L or READ ACC UPC L, and the CPU is operating in PH1, FP PH1
H and FAST PATH ENB H from the clock PAL are used to generate CLK ENB H (Figure 5-8).

When the CPU asserts READ ACC UPC L, the clock generator PAL generates CLOCK OFF that
disables the fast and slow path gates. This prevents the FPA registers from being clocked.

Also, a fast signal (internal to the clock generator PAL) is cleared when the CPU asserts TRAP ACC
L. This ensures that the FPA clocks will be restarted in synchronization with the CPU.

The READ ACC UPC L input to the timing logic also causes BUS NUA from the microsequencer to
be sent to the CPU when CPU RCV DATA L is asserted.

When the CPU asserts FORCE UADDR L, the FAST CYCLE signal (internal to the clock generator
PAL) is reset, and the FPA fast cycle is stretchcd (as required) so that, at the end of the current cycle,
the FPA will be in synchronization with the CPU.

Figures 5-10 and 5-11 illustrate slow path timing with the FPA synchronized with the CPU. This can
occur when the FPA slows its clocks (via microcode function) or when the CPU asserts TRAP ACC L
or READ ACC UPC L. Either signal will slow the FPA clocks until they are synchronized with the
CPU.

5-7

8-C

FROM
CPU

r

| 270 NS/IBO NS GATING

I FPAC

CPU P2 H
L] cLocK |SLOWPATHENB HI |—-1
TRAP
READ 2g2 LPc L gEE FRPHILY | ‘
L FAST PATH ENB H

CPU RCV DATA L
EXTEND CLK (1) H

EXTEND CLK (1) H]
ENBCLK(IH |

FPAC

L PORT CLOCKL&ASIC CLOCK H CLK

CLK ENB H]

CPU PHOH

TO
CLK OFF (1) Lj FORCE/READ

CLRSTATE L To

LOGIC

DPO, DP1, CLK L REGCLKL

_‘| TRISTATE

EXT FUNCTION
CONTROL PAL

DISA L

IR CLOCK

I FPAC

I IRD + FORCE H

:—l IRCLKH _

I IRCLK L

L]

Figure 5-4 Timing Logic

TK-4986

6-S

FPA

|. ONE CPU CYCLE———.|

T0 T90 T180 T270

CcPU PO—-J | | [I]
1

CcPUP1

FUrET ‘ 1 I I I
MEMORY CTLR

PORT CLOCK | [1 | I | | f l [L 1 [~

FPA
Iy FPPHO
FAST PATH
ENB

:
|
|

SLOW PATH
ENB

CLK ENB

|
|

DP1,0CLK L
REGCLK L | l | l

FAST
CYCLE L

9

TOGGLE CLOCK
OCCURS HERE

' TK-4959

Figure 5-5 FPA Synchronization via Toggle Clock
During CPU PHO

FPA

01-§

FPA

}¢———— ONE CPU CYCLE_______..l
T270

To %0 T180

l
cPU PO——-I | '

CPU P1

CPU P2 _I r————l

MEMORY CTLR
PORT CLK | | | | [] | [

FPPHO
FAST PATH
ENB \
SLOW PATH ¥

ENB

CLK ENB [——_———\ / \

DP10CLK L
REGCLK L l | I l

FAST ,
CYCLE L K_TOGGLE cLOCK
OCCURS HERE

Figure 5-6 FPA Synchronization via Toggle Clock
During CPU PH1

TK-4960

[1-6

MEMORY
CTLR PORT CLK l
FPA FPPHO
Y
FAST PATH
ENB
SLOW PATH
ENB
CLK ENB
DP1,0 CLK L
REG CLK L
y FAST
FPA CYCLE L

cPU PO——I |

I.___ONE CPU CYCLE ,f

T90 T180 T270

CPU P1

CPU P2 ——L r———j

| L | L7 L J | |

I S

[

J\ TOGGLE CLOCK

OCCURS HERE

Figure 5-7 FPA Synchronization via Toggle Clock
During CPU PH2

TK-4963

I 270 NS/I80 NS GATING -
CPUP2H FPAC

FPAC
SLOW PATH ENB H E 32 I

(TRAP ACC + READ ACC UPC)

FPPH 1H
FAST PATHENB H FPAC
CPUPHOH E 99

== _ _
BASIC CLOCK H
A. NORMAL FAST PATH GATING

I 270 NS/IBO NS GATING
P2 H

CcPy
' EPAC FPAC
SLOW PATH ENB H E 32
(TRAP ACC + READ ACC UPC)
| FP PH1H
FAST PATH ENB H FPAC
CPU PHO H E99

. —

BASIC CLOCK H

B. FAST PATH GATING DURING ASSERTION OF
TRAP ACC L OR READ ACC UPC L

';0 NS/I80 NS GATING

CcPuP2 ;
FPAC FPAC
SLOW PATH ENB H E32

(TRAP ACC + READ ACC UPC) I
FPAC FPAC CLKENBH

Sy

FPPH1H

FAST PATH ENB H FPAC

YUY

CPU PHO H E99 I

C. SLOW PATH GATING BASIC CLOCK H

Figure 5-8 Fast/Slow Cycle Gating

DP1CLK L
DPOCLK L
REG CLK L

DP1CLK L
DPOCLK L
REGCLK L

DP1CLK L
DPOCLK L
REG CLK L

TK-5817

e1-S

CPU PO

CPUP1

TO

]
J 1

T10

ONE CPU CYCLE

X

T270
T180

i

CPU P2
T

1

1
|

MEMORY CTLR
PORT CLOCK l l I l L — _, I.____I l__[l__l___l___’_—
FP PH QW
oY — 1 - - 1

FAST PATH ENB /

SLOW PATHENB \

DP1,0 CLK
REG CLK

le—————

180 NS
FAST CYCLE

—I'_' 180 NS l_—_

o —
FAST CYCLE

Figure 5-9 Fast Cycle Timing

-————————

180 NS
FAST CYCLE

Jj S

B ——— |

—

TK-4958

vi-§

FPA

TRAP ACCH +
READ ACC UPCH

CPU PO h ‘ I I

CPUP1

ONE CPU CYCLE
T90 T180 T270

[L | l

CPU P2 —-l

MEMORY CTLR
PORT CLOCK

FPPH 0__[__——1 I
—_ . \

CLK ENB

N N I SN D SR I I f l

) S .

FAST PATH
ENB H

SLOW PATH
ENBH

ANNN\N

ull/

DPO,1 CLK L
REGCLK L

Jjj

Figure 5-10 FPA Synchronization via CPU Force Trap or Read
During FPA PHO

TK-4964

SI-S

|‘—ONE CPU CYCLE ——FI

TO

cPU Po——-I L
I L

T90

T180 T270

CPU P1

CPU P2-—I

MEMORY CTLR

PORT CLOCK l l l |
FP PH o-—r_——_l—

CLK ENBM

FPA

FPA

TRAP ACCH +
READ ACC UPCH

l I R 1 [

FAST PATH
ENB H

SLOW PATH

L

L A

ENBH

DPO,1 CLK L
REGCLK L

Figure 5-11

FPA Synchronization via CPU Force Trap or Read
During FPA PH1

TK-4965

5.4 INSTRUCTION DECODING

The FPA instruction decoding logic (Figure 5-12) decodes a floating-point instruction (received on the
IB-Bus) into: 1) a 5-bit starting offset address for the microsequencer logic and 2) a 2-bit data size code
(SIZE 1:0 H). The data size code indicates to the control logic the data type size (F, D, G or H) that
will be received from the CPU via the IB-Bus, and also causes the FPA to be set up to process data type
operands. Instruction decoding is performed via a ROM, an extended function control, and a multi-
plexer.

At the start of a floating-point routine, an operation code (BUS IB D7:0 H) is applied, as the address to
a 512 X 8 ROM (Figure 5-12). The ROM output is DECODE ROM 7:0 H and causes the micro-
sequencer to generate a microaddress (BUS NUA 9:0 H) for control store. This is the starting address
of the FPA routine in the control store (see Table 5-1 and Figure 5-13). At the ROM output, DECODE
ROM 6:0 is applied to a multiplex latch that is controlled by IRD STATE L and IR CLK H. The latch
outputs are INSTR ENC 4:0 H and SIZE 1:0 H.

At the latch output the SIZE 1:0 H lines are decoded with the data type (F, D, G, or H) that will be
received from the CPU via the Y-Bus. Table 5-2 explains SIZE field decoding.

OPERAND
DECODE DECODE DECODE
2 ROM ROM ROM T0
2| Bus 1B D<07:00> (0P CODE) 7:0 H 4:.0H NEXT
E MICROADDRESS
(2 ::5;:;(8) GENERATION
f(RBOM EXTEND
oS BUSFPADISHIEXTENDED |FUNC(1)H
™ FUNCTION L
CONTROL
FROM FORCE UADDR INSTRENC __TO
FORCE/READ (1) H DECODE ROM 07 H 4:0 H = INSTRUCTION
CONTROL :> DECODE
| PAL’S
FPAA IRD + FORCE H
R {RD STATE L
erou{ rap acc OnTRoL
238¥R0L IRkt FRAA | SIZE1:0H
IRCLK L .J
FROM BUS FPA D17:10 H N
Y-BUS
XCVR S /
TK-4962
Figure 5-12 Instruction Decoding
Table 5-2 SIZE 1:0 Encoding
SIZE 1:0 H Data Type
Value Indicated
0 F (Single-precision)
1 D (Double-precision)
2 G (Grand)
3 H (Huge)

5-16

L1-§

MICRO - »
SEQUENCER
FPAA
INSTRUCTION 2909
OPCODE DECODING BUS NUA
LOGIC L . 9:8 H
T PULLUPAH
BUS IB D7:0 H
FPAA L —_——
F";“SM —m DECODE ROM 4 H = FeoNTROL |
¢ 12909 BUS NUA|BUS NUA | |
IRD STATE L DECODE ROM 3 H e -~ B AL A STORE
DECODE ROM 2 H] e ' —| |
DECODE ROM 1 H _ | I
DECODE ROM 0 H / - Lo——
12509 BUS NUA
3:0H
001 L E3
DECODE ROM / = PULLUP AH
4 0
E1}0!9|8 716|5|4]3 2l1 10 ADD SECTION OF MICROCODE
L 2 0o0o0oo0o0j 1 J y3881 108 OR SUB Iastruction vero,o”
— 3982
DECODE ADDRESS / g :]853 ,
ROM APPLIED TO] ENCODED - ADD/8UB, FLT
43210 MICROSEQUENCER INSTR tFunctional Deseriptiony
—] 5 UCTIoN 1886 The Add or Subtract iastruction flows
@/\ 1857 [} instruction flows in that both manage
PRI 21 158 '
FIEUIE IR 219 crp ~a '
EEC R 221 SuR
Aag 2 229 PoLt P
Ao oAy 231 oty ETT
PR 239 MiL 13914 ADD,FLT4
ERFEEEEE' 241 £100 13918 TOGGLE LOAD,
PR 249 CVT F,0,G,Head8 13916 CLR FR{FTOJ,
Alwoan 251 CVT F,0,G,Haern 13917 CALL{FET,FLT)
IR 259 CVT F 0,5, Hee>ln 13918
a1 A 261 CVT F,0,7,H=23L4 BOUNDED 13919 jReturn from the FET,FLT suoroutinet one ot t
" T 13920
drv LA 269 C‘IT To F trom I:.G or H 13021 AT 0P EQ,01
KR T | CYT To O tram or !
. 271 CYT To G from 4 or F 13922 MoV EWR(ET2] TO £Q,
LEEEE T 279 CUT To M fram Foh or G 13923 MOV FWR(FT2) 10 rQ,
At 281 S Wnoer 13924 BRANCH(UP1 ,EQ,0 * 3P2,£0,0],
1A e a e 289 CYT YTE=e>F,0,G,4 392%
LS I B A | 201 CYT 40RD==>F,D,G,H 1926 NUA/ZADD LOP,0,TST
(S I W] CYT | WORDe«>F,0,G,4 127
{1 a2 2 Ll ng sPeturn ¢rom the FET,FLT sudroutir
TR 201 DIVL .
PRI W I 2€1 £CTENDED 0P CICE (FD) ADD, 0P NE,O1
[T I 2F1 HOT AN FPA INSTRUCTIONY TOGGLE LOAD,

SUB EWR(ET"’

Figure 5-13 Op Code Instruction Decoding

TK-5834

Figure 5-14 illustrates the latch signal inputs during normal and diagnostic checks operation. During
microdiagnostic operation the CPU causes BUS FPA D17:10 to clock through the instruction decoding
circuit multiplexer to check its operation. Clocking is enabled by BUS FPA D18 H and TRAP ACC L,
which causes IRD + FORCE H to be ANDed in the FPA clock generator with CPU P2 H to produce
IR CLK H. If IRD STATE L is not asserted, it then selects BUS FPA D17:10 to be loaded into the
instruction register. BUS FPA D17:10 then causes INSTR ENC 4:0 H and size (1:0) to be output
from the instruction register.

The EXTENDED FUNC (1) H output of the extended function control is asserted when the operation
code on the IB-Bus indicates an extended op code is on the IB-Bus. This is applied to the decode ROM
and alters the ROM address during the next instruction decode state.

BUS FPA D17:10 H

——
= —
T L=
L——vy "F";’X(A INSTR ENC g
DECODE 40 H | FPAA LITJSTR ENC
ROM ROM 6:0 H | | N 0H
FPAA 1 _ ﬁ
IRD STATE L | | .
SEL L] IRDSTATEH Joo
IRCLK L oLk - IRCLKH cLk

A. MUX NORMAL SIGNAL INPUT B. MUX DIAGNOSTIC SIGNAL INPUT

TK-5826

Figure 5-14 Instruction Decoding MUX Signal Inputs

5.5 NEXT MICROADDRESS GENERATION

The FPA microsequencer logic (Figure 5-15) generates a sequence of 10-bit microaddress outputs (as
BUS NUA 9:0 H) that are applied to the control store. They cause the control store to generate data
path logic setup control signals for operand processing.

The microsequencer logic (Figure 5-15) consists of three 2909 4-bit microprogram sequencers, plus con-
trol circuitry. Although the three 2909 chips could generate 12 output bits, they are configured in the
FPA to generate only a 10-bit output. This is all that is required to access the control words contained in
the control store.

The microsequencer has two data inputs. One is a direct input driven at the start of an FPA operation
by DECODE ROM 4:0 H from the instruction decoding logic. The other input is a register input that is
driven by a 10-bit micropointer field (CS9:0 H) from the control store. This input can be branched
upon.

The three 2909 microprogram sequencers (Figure 5-16) contain a four-input multiplexer that is used to
select:

an address register

the direct inputs

a microprogram counter
a stack file

halb ol a e

as the source for the next microinstruction base address. The selection is done via encoding on two
output lines of address select logic (Figure 5-15). The encoding is controlled via a UBCTL 4:2 (1) H
input from the FPA in the FPA branch logic.

5-18

FROM CS9:0H
conTRoL|
STORE
DECODE ROM 4:0H
FORCE

UADDR (0} H

TRIST ATE
DISABLE L

BRAN 1:0H

OUTPUT
ENABLE

EXT BRAN 3:1 H

FORCE LOW UADDR L
UBCTRL 4:2 (1) H ADDRESS
SELECT
LOGIC
IRD STATE L
LITCLK2L FPAA
EXTEND CLK (1) H

2909
MICROPROGRAM

SEQUENCER

FPAA
To =
ADDR/- |
HOLDING | (F|G.5-16) |
REG I
TO
MUX L1
To ==
ouTPUT | |
CONTROL

I (FIG. 5-16) :
“OR"” | _]
INPUTS ———

TO
OUTPUT
CONTROL

TO
MUX

BUSNUA9:0H N 1o
CONTROL
STORE

TK-5825

Figure 5-15 Microsequencer Logic

FORCE ADDR
LOW

| > NUA <9:0>

TK-4945

BRANCH
ADDR REG
€S <9:07IReGISTER AR
INPUT
DECODE ROM 4:0H D
F
STACK uPC
POINTER
&
FILE
MICRO INCRE-
PC MENTER
Figure 5-16 2909 Microprogram Sequencer

5-19

The 2909 address register consists of four D-type, edge-triggered flip-flops enabled by DPO CLK L
from the FPA timing logic. Because the register (REG EN) lines are hard-wired to logic ground (Fig-
ure 5-13), new data is entered into the register on the low-to-high transition of DPO CLK. The address
register output is available at the multiplexer in the 2909 as a source for the next microinstruction
address (microaddress NUA 9-0 H).

The direct input to the multiplexer is driven by DECODE ROM 4-0 H from the instruction decoding
logic. This input is used for the next microaddress in the IRD state.

The CN input to the 2909s causes the microprogram register in the 2909s to sequentially increment on
the next DPO CLK cycle with the current NUA 9-0 H output, plus 1.

The stack (file) content can also be used as the source for the next microaddress. The stack is used to
provide return address linkage when executing microsubroutines. The stack contains a built-in pointer
(SP) that always points to the last file word written. This allows stack reference operations (looping) to
be performed without a push or pop.

The SP operates as an up/down counter with separate PUSH and FILE ENB inputs. When the FILE
ENB input is low and the PUSH input to the 2909s is high, a push operation is enabled. This causes the
stack pointer to increment and the file to be written with the micro-PC, which contains the address of
the current microinstruction, plus 1.

If the FILE ENB input to the 2909s is low and PUSH control is low, a stack pop operation occurs. This
implies the usage of the return linkage during this cycle and thus a return from the subroutine. The
return address is the calling address, plus 1. The next low-to-high DPO CLK transition will cause the SP
to be decremented. If FILE ENB is high, no action is taken by the SP regardless of any other input.

The stack pointer linkage is such that any combination of pushes, pops or stack references can be
achieved. Only microinstruction subroutines can be performed. Since the stack is 4 words deep, up to
four microsubroutines can be nested.

The FORCE ZERO input applied to the 2909 microproogram sequencers is used to force the 10 BUS
NUA 9:0 H outputs of the sequencer to zero. When FORCE LOW UADDR L is asserted in the
force/read logic, all 10 outputs are low regardless of any other inputs (except OUTPUT ENABLE).
Each BUS NUA output bus also has [at the 2909 tristate output (Y3-)] separate OR logic that permits
a logical 1 to be forced at each BUS NUA 9:0 output. This allows branching to different micro-
instructions on programmed conditions.

5.6 NEXT MICROADDRESS BRANCHING

Branching is performed on status signals from the data path logic and instruction signals. The signals
cause either BUS NUA 1:0 H or BUS NUA 4:0 H at the microsequencer output to be affected. The
branch logic consists of a status register and five PALs. Four of the PALs are used for normal branch-
ing on the two low NUA bits, and all of the PALs are used during extended branching.

Status signals from the data path logic are applied to the status register. They are clocked by DP0 CLK
L, and then appear as inputs for the branching PALs. The PALs are controlled via UBCTL 4:0 (1) H
from the control store. This field selects which status bit or combination of bits, will be directed onto
the BRANCH 1:0 H output lines of the PALs. Table 5-3 lists signals selected by the branch control
field.

Extended branching affects NUA 4:2 of the microsequencer output. This branching is sometimes used
for wide branches, and is selected by the CLK CTL and MOD fields in the control store. Of UBCTL
branch control bits 4:2, the upper two bits (4:3) determine what type of extended branch is to be taken.
Table 5-4 lists the extended branches.

5-20

Table 5-3 Branch 1:0 Encoding

UBCTL

4:0 (1)H Branch PALSs Output

Value (Hex) Lines

BRANI1 BRANO Special Conditions

0 EXP COUT GRAND

1 SIGN OUT HUGE

2 CPU DATA AVAIL SINGLE ASSERT OPTION SYNC

3 CPU DATA AVAIL ADD + SUB ASSERT OPTION SYNC

4 FRAC COUT EXT FUNC

5 OP1 SIGN EMOD

6 FRACS5S F3 SINGLE

7 OP2 SIGN ADD + SUB

8 EXP COUT EXP15 F3

9 SIGN OUT OP2=0

A CPU DATA AVAIL ZERO

B CPU DATA AVAIL ZERO

C OP2 SIGN (OP1 + OP2)/=0

D OP1 SIGN (OP1 + OP2)/=0

E FRACSS5 F3 0

F FRAC COUT EXP15 F3

10 MUL 11 FRACS5 Q3

11 F47.F3 - EXTO00 QO

12 FRAC(55:00)=0 DIV 13

13 FRAC(47:16) =0 ZERO

14 FRAC(55:00)=0 CPU RCV DATA

15 ZERO ZERO NULL BRANCH

16 ZERO CPU RCV DATA OPTION SYNC

17 FRAC(55:7)=0 ZERO

18 EXPONENT=0 EXP15 F3

19 OP1=0 OP2=0

1A ZERO ZERO CALL SUBROUTINE

1B SUMPATH ZERO

1C ZERO (OP1 4+ OP2)/=0 RETURN FROM
SUBROUTINE

1D ZERO (OP1 + OP2)/=0 RETURN FROM
SUBROUTINE

1E ZERO ZERO RETURN FROM
SUBROUTINE

1F ZERO EXP15 F3 RETURN FROM
SUBROUTINE

5-21

Table 5-4 Extended Branching

UBCTL 4:3(1) H Extend Branch Bits
Value
BRAN4 BRAN3 BRAN2
0 DOUB OPER ADD + SUB FRAC31-EXT00==0
1 SIZE1 SIZEO FRAC(31:0)=0
2 DOUB OPER ADD + SUB ZERO
3 INSTR ENC2 INSTR ENC1 INSTR ENCO

5.7 CONTROL STORE

During floating-point calculations a sequence of microinstructions (data control signals) is accessed
from control store (Figure 5-17) and applied to the data path logic. After operands from the Y-Bus are
loaded into the data path logic, the latter then operates on the data input in accordance with the com-
mands it receives from the control store. The FPA control store consists of a PROM and several regis-
ters.

LITERAL
ENB LITERAL L CONTROL T0
Y-BUS
XCVR
FROM UPF 7:0H
CONTROL |
LOGIC
REG CLK L MICRO- —_
DPI CLK L E%ESER UPF 9.0 (1) H >
CS9:0H l ,\ FPAD
| Frac
BRANCH | UBCTL 4:0 (1) H
CONTROL >
FPAD
CS 14:10 H TO
NEXT To
~—————— MICROADDRESS PARITY
GENERATION LOGIC
CONTROL CLOCK LITCLK2 L
STORE CONTROL -
: €S 0047 H .
FROM BUSNUAS:OH | PROM 17150 FPAD CLK CTL2:0 () H R
NEXT FPAN TO
MICROADDRESS CONTROL
SEQUENCER
SHIFT roaic
CONTROL SHFO (1) H
CS 19:18 H : FPAE =,
MICROWORD .
. 5-1 CS 47:20H
FIG.5-18 0
SH2
TO
CS9:0H NEXT
MICROADDRESS
GENERATION TK4951

Figure 5-17 Control Store Logic (Sheet 1 of 2)
5-22

r REGCLK L

FROM
CONTROL <

TO

| DPI CLK L

CS 47:20

FROM
SH1 S

CS 47 :

ACC SYNCH

» 10

MODIFY EXTEND CLK (1) H NEXT
onc MICROADDRESS
) SEQUENCER
% £37 MOD 1:0 (1) H 1 1
CS 29:22 EXP A, B ADDR 3:0 H
A,B S ——
‘ ADDRESS
GEN FPAD A,BADDR3:0H
-
E19, 66
TO
FRACTION FRAC | 8:0 b oAt
CS 38:30 CONTROL TO tggic
FPAD PARITY
E13,18,19 FRACCTL13L LOGIC
FPAE — *
— E37
CS 44:39
EXP CODE 3:0 (1) H
EXPONENT | FXPCODES0(IH
CONTROL
EPAD EXP178(1) H
—1 E18,20 J
PARITY
CS 46:45
EPAD PARITY 2:0 (1) H J
E20

CPU

Figure 5-17 Control Store Logic (Sheet 2 of 2)

TK-4950

The control store PROM contains 1K 48-bit microwords. Each of the microwords contains a 2-bit par-
ity field. When the control store PROM is addressed with BUS NUA 9:0 H from the microsequencer,
the total 48-bit microword PROM output is applied to control store registers. These registers then gen-
erate data path logic control signals, plus a micropointer field that is applied to the microsequencer.
Figure 5-18 illustrates the microword accessed from the PROM. Table 5-5 explains the fields in the

microword.

ACC SYNC
> PARITY

Figure 5-18 Control Store Microword

5-23

>
L fe—m — o
EXPONENT FRACTION RAM A RAM B 51 = BRANCH ICROPOINTER
P1lPO CONTROL CONTROL ADDRESS ADDRESS s @ CLOCK CONTROL [e——— LITERAL ——j
47|46|as|aa 39|38 30{29 26|25 22121 20f19 18Ji7 15|14 10|09 0|07 00
L J
CONTROL STORE MICROWORD
CONTROL STORE l
CONTROL
PROM CS47:00 H STORE
N REGISTERS
FPAN '—'l/

TK-5838

ye-S

Table 5-5 Control Store Field

CS Function Description
47 ACC SYNC Option synchronization signal
46 Parity bit P1 Parity bit for checking CS<14:13>, CS<36:30>, CS<39>, CS<44:43> and CS<12:10>.
45 Parity bit 0 Parity for checking CS<8:0>, CS<17:15>, CS<21:18> and CS<39:37>.
44:43 Exponent destination
control field (EXP
DST) Controls the destination of the ALU output. Normally, the ALU’s output can be clocked into ei-
ther the working register (WR) or Q-register.
EXP DST<1:0> Destination
00 Q-register
01 Working register (WR)
10 Right-shift and write the WR
11 Left-shift and write the WR
42:39 Exponent data path

control (EXP CTL)

This field encodes the 2901 ALU functions for both the source and destination. Most of the func-
tions can be clocked into the working register (WR) or Q-register, depending on the exponent
destination code. The functions marked with an asterisk (*) can be clocked into the working regis-
ter (WR) only.

EXP CTL<3:0> Function EXP CTL<3:0> Function
0000 Dor0 1000 Q-1

0001 B-A 1001 Q+1
0010 A-B 1010 A

0011 B+ A 1011 Q

0100 AORB 1100 0

0101 A ANDB 1101 SHIFT
0110 A-Q 1110 A+8+1
0111 A + B + FRAC COUT 1111 NOOP

§C-¢

Table 5-5 Control Store Field (Cont)

CS Function Description
38:30 Fraction data path
control (FBAC CTL) This field directly corresponds with the 2901 signals 111:8.
29:26 A address field
(A ADDR) This field addresses the A port of the 2901’s working register (WR) from both the exponent and
fraction data path. If the clock field equals clock sign out, then the lower 3 bits of the A address
control which function the sign out flip-flop is clocked with.
A ADDR<2:0> SIGN OUT Gets:
000 OP1 SIGN
001 OP2 SIGN
010 OP1 SIGN XOR OP2 SIGN
011 OP1 SIGN XOR SIGN OUT
100 ZERO
101 ONE
110 ZERO
111 ONE
25:22 B address field
(B ADDR) This field addresses the B port of the 2901’s WR for both the exponent and fraction data path.
This is the write back address.
21:20 Modification field

(MOD)

This field extends the use of other fields, as well as enabling special functions.

1. MOD<1:0>=00 Noop

2. MOD<1:0>=01 Extend clock field
3. MOD<1:0>=10 Enable MUL/DIV
4, MOD<1:0>=11 Enable load or store

The clock extend function doubles the functions that can be performed by the clock field.

The enable MUL/DIV mod field enables some conditional logic for multiple and divide. The op
code control determines what is actually enabled.

9¢-¢

Table 5-5 Control Store Field (Cont)

CS Function Description
The enable load or store field makes it possible to load or store sections of the fraction and expo-
nent data path. Whether a store or load is performed is determined by the load signal which is set
by a clock code. The actual section to be loaded or stored is determined by the shift field.

19:18 Shift field (SHF) This field has many different functions, depending on the operation being executed.

LOAD

1.

STORE
1.
2.
3.
4.

The SHF field determines what section is loaded.

SHF =00 First floating
Load: SIGN EXP<7:0> FRAC<55:32>

SHF =01 Mod load: EXT<7:0>

SHF =10 Second floating load or integer load or integer load

FRAC<31:16> or FRAC<55:00> depending on whether or not an integer is being
loaded. If an integer is being loaded the lower 16 bits must be masked out by the mi-

crocode.

SHF =11 Third huge load: EXT<7:0> FRAC<55:32>

SHF =00 First word store: SIGN#EXP <7:0> =FRAC<55:32>
SHF =01 Condition code store
SHF =10 Second word store: FRAC<31:00>

SHF =11 Huge store: EXT<7:0>#FRAC<55:32>

SHIFTS - The shift field also determines what is shifted into the exponent Q0 and RO, FRACS55
Q3 and R3 and EXTO00 QO and RO.

LTS

Table 5-5 Control Store Field (Cont)

Function

‘Description

Right-Shift - The shift field controls what is shifted into the MSB of the fraction data path.

SHF<1:0> FRACS55Q3 FRACS5 R3

00 EXPONENT Q0 EXPONENT RO
01 EXTENSION RO FRAC COUT

10 ZERO EXTO00 RO SAVE
11 EXTENSION RO ZERO

When the clock field equals alter fraction shift, the shift field is extended to include:

00 EXTENSION RO EXPONENT RO
01 ONE ONE

10 ZERO EXTO00 RO SAVE
11 ZERO ZERO

Left-Shift - when performing a left-shift, the shift field determines what is shifted into both the
fraction and exponent.

SHF<1:0> EXPONENT FRACTION
Qo RO Qo0 RO
00 FRACS55 Q3 FRACS55Q3 ZERO ZERO
01 ZERO ZERO ZERO FRACS55 R3SV
10 ONE ONE ONE ONE
11 FRACS5 Q3 FRACS5R3 QIN FRACSS Q3

The last selection is for huge alignment shift; with the high part of the huge word in a QR and the
low part in FQ it is possible to shift the entire huge word at once. Upon completion the huge word
will be in FWR 55 - Ext 0 and FQ 55:7. Note that Qin drives the lower extension bit in the Q-
register; this is always a zero for nondivide shifts.

8¢-¢

Table 5-5 Control Store Field (Cont)

CS

Function

Description

17:15

Clock control field

This field can perform up to 11 functions when used in conjunction with the clock extend mod
function.

MOD not equal to clock extend.

1.

CLK CTL=000 Enable clock for OP1=0 & OP2=0

This enables the clocks of two flip-flops (internal to a PAL) that indicate which, if any, of
the operands are zero. The OP2=0 flip-flop is loaded with the EXP=0 signal, while the
OP1 =0 flip-flop is loaded with OP2=0.

CLK CTL=001 Clock Huge R3 Save

This clock code saves FRACS5 R3 until the next time it is clocked by this code. This is
needed to save R3 for huge divide.

CLK CTL=010 Null

CLK CTL=011 Alter fraction shift

With this code, in conjunction with the shift field, it is possible to shift a one and zero into
the MSB of the fraction SP and Q-register.

CLK CTL=100 Clock sign out

This code enables the resultant sign flip-flop to be clocked. What function gets clocked into
it is determined by the low three bits of the A address field.

CLK CTL=101 Clock OP2 sign

This signal enables the clocking of the second operand’s sign bit.

6C-S

Table 5-5 Control Store Field (Cont)

CS

Function

Description

7.

CLT CTL=110 Clock CC

This clocks the condition codes. The shift bits will set the V and C bits; this is for an error
condition. Normally both shift bits should be cleared.

CLK CTL=111 Clock OP1 sign

This signal enables the clocking of the first operand’s sign bit.

MOD =Extended clock function

1.

CLK CTL=000 Toggle Alter Store

This inverts the normal store from a floating store to an integer store, and vice versa. This is
to be used for EMOD.

CLK CTL=001 Clock fast cycle

This toggles the fast clock flip-flop. When this flip-flop is set, the cycle time is 180 ns; when
clear it is 270 ns, in synchronization with the CPU.

CLK CTL=010 Enable Literal

This enables an eight-bit literal onto the FPA BUS D14 - D07. This can be loaded into the
exponent data path and the fraction datapath. When loading a constant into the fraction
data path, the constant is loaded into EXT <<6:0> and FRAC<30:23> simultaneously. In
most cases it is desired to load the extension with a constant; the other sections should be
masked out.

CLK CTL=011 Toggle load flip-flop

This clock code sets the load flip-flop, so when the MOD field equals a load or store, the
hardware interrupts it as a load. This signal clears the next time this code is asserted. The
load signal is initialized to a zero by the FORCE UADDR signal.

0€-S

Table 5-5 Control Store Field (Cont)

CS Function Description
5. CLK CTL=100 Clock sign out
This code enables the resultant sign flip-flop to be clocked.
6. CLK CTL=101 Alter CIN
This clock enable forces the next state’s fraction carry in to equal the current state’s fraction
carry out. This is used for huge addition.
7. CLK CTL=110 Default Q16
The code sets a bit which forces the multiplication logic to select FRAC16 QO as the LSB of
the multiplier. This is used to multiply the mier extension. This signal is initialized to zero
by the FORCE UADDR signal.
8. CLK CTL=111 Extended Branch
This code extends the branch from 2 to 5 bits wide. (See the sequencer section for the actual
branches.)
14:10 Branch control field This field selects what status bits are to be ORed in with the UPF to generate
(BCTL) the next microaddress (NUA). See the sequencer section for specific branches.
9:0 Micropointer field

(UPF)

This field specifies the next microaddress. The UPF can be altered by the branch field.

The lower 8 bits of this field serve as a literal field. When this function is used, the UPC must be
used to address the control store.

5.8 DATA MANIPULATION

Floating-point operands that the CPU passes into the FPA are processed in data path logic (Figure 5-
19) that manipulates the data (per control store output signals) until a result is sent to the CPU. As
Figure 5-19 illustrates, the data path logic consists of exponent and fraction sections. All of the sections
consist of 2901 4-bit slices.

FROM = QUTPUT ENABLE

CONTROL
FRACTION DATA PATH |
rrom |22 ! HIGH FRACTION |
FPA L
ggggkov_ E93, 94 D31:16 H
E | ABADDR 3:0H vV (SAME AS SH1, E86)
FROM — MID 2 FRACTION EPAK
¥-8US F'us FPA D 31:00 H)| £90,101,91,102 15:00 |oicron
XCVR (SAME AS SH1,E86) e
- MID FRACTION EPA \T(oB s
E92, 100, 89, 99 31:16 xévn
{SAME AS SH1, £86)
FROM [
BRANCH ‘ |
y
roste LOW FRACTION
DATA INCTL N FPAH
FROM LDSELOH _|PALFPAL JNPD48-55 £88, 98, 87, 97 7:0
CONTROL{ — "]en (SAME AS SH1, E86) I
LOGIC CLK

L

FRACTION EXTENSION DATA PATH

T0 | I’T’ FPA F

Y-8US | BUS FPA D 15:08 H E96 DI5:12H) o 1o con

XCVR (SAME AS SH1, E86) DI5.8H
FROM EXT OUTPUT ENB L l
CONTROL -
LOGIC | DPOCLK L I

N FPAF 1

FROM [18:0H 1>r £95 D11:8 H | XCVR
CONTROL | 11 (SAME AS SH1, E86)
STORE LOW A/B ADDR 3:0H 1

L ——_1

Figure 5-19 Data Path Logic (Sheet 1 of 3)

TK-4954

5-31

(4%

FROM
cpPU

| 270 NS/I80 NS GATING

| IRD + FORCE H

.
CPU P2 H
I FPAC I
I j{\ CLKENBH DPO, DP1, CLK L REG CLK L
[_’ CLOCK |stoweatHENB H 4] A
TRAP ACC L I
g;:t‘ FP PH1 H]
READ ACC #PC L
FAST PATH ENB H I
CPU RCV DAT. CPUPHOH
CPURCVDATAL 1 ppac I I
s T0
ENB CLK (1) H CLKOFF (L [00ce cean
LOGIC I
PORT CLOCK L BASIC CLOCK H | CLRSTATEL . TRISTATE
l_ CLK EXT FUNCTION DISAL
CONTROL PAL >
IR CLOCK I
IRCLKH
I FPAC "‘__j l
IRCLK L

Figure 5-19 Data Path Logic (Sheet 2 of 3)

TK-4955

£e-S

o e e e e e o — . ———— ——— ——— —

DP1 CLK L | EXPONENT DATA PATH
FROM I 4-BIT MICROPROCESSOR FPAM E86 - |
e | 1200 '
EXP7:0 ENB L I L..\
]

I 1 a REG/REG I
l STACK \

ISDEAJQ:"rNPUT MUX gEG!STER .;> — CARRY GENERATEG }
1186 BT CARRY PROPAGATE P
: | |
l SHIFTER ["] I l
I ALU r1 [_.. / i l
r178(1HH 1|?|EOS':‘|"INA- | MUX) ALU MSB F3 |
l I DECODER L\ :> LATCH ﬂ) l
1 F(0+14243) =0
RAM | l
MUX j»d (REG-
FROM l_ L1 L \ 1
CONTROL =1 BIT STACK] |~ ALU _">
STORE |‘ SHIFTER / I |
EXP AB ADDR 3:0 H APORT SELECT \ !
BPORTSELEGT. LATCH [I '
12:0 CENTRAL PROCESSOR CLOCK CP [
S il MUX 1
FROM MUX
vBus | BUSFPAD 147 14:11 I
BUS FPA
XCVR - exp cope——1 | ALU INPUT D814
30 (1) B SELECT | 2:0 ALU INPUT 0!
: EXPONENT i OPERAND / Y 3:0
FROM DECODE SELECT DRIVER D14:11
ook PAL ALU FUNCTION SELECT | 6:3 ALU OUTPUT
STORE FRAC - ' : g:g‘g«ggglc& I I TO
J3,4H 1 Y-BUS
- l > /) I XCVR
FPAM |
QUTPUT ENABLE OF
EXTEND I I
FROM CLK () H |L——-—-—-—-—-—-.—-—.__..—________
CONTROL{ —*1
LOGIC | ENB
ctksL | FpAM
£83 D10:8
CIN EXT (SAME AS E86) 1
00 H
T0 J‘
SH2

TK-4956

Figure 5-19 Data Path Logic (Sheet 3 of 3)

5.8.1 2901 Four-Bit Slice
The 2901 consists of a working register (RAM) (Figure 5-20), Q register, arithmetic logic unit (ALU),
and control circuitry.

Y

{ OUTPUT MUX \

/ SOURCE MUX \
4

DIRECT 0
DATA N
INPUT RAM
WORK Q REGISTER
REGISTERS

SHIFT LOGICI HE

Figure 5-20 2901 Block Diagram

TK-4942

Working Register — The working register (WR) is the scratchpad area where results of arithmetic and
logical operations can be stored.

Arithmetic Logic Unit (ALU) - The ALU is the data path component used to perform FPA arithmet-
ic/logical operations, per commands in the control store output. The R inputs are applied to the ALU
via a 3-input multiplexer, the inputs of which are direct data inputs, the output of the RAM A-port, and
a zero. The ALU S input includes the RAM A- and B-ports, Q-register outputs, and a zero.

ALU output data (F) can be routed to the Q-register or WR, or multiplexed with the A-port output
data from WR to drive the FPA bus. The ALU function decode determines the arithmetic or logical
function to be performed, while the ALU destination decode determines which of the indicated regis-
ters the data is routed to, or whether it will be a data output of the device itself.

Q-Register — The Q-register is loaded from the ALU and is used to accumulate the quotient during
division routines. It also functions as a temporary storage register. The Q-register output can be loaded
back into itself, anad shifted right or left as during fraction, multiplication, and division operations.

5.8.2 Exponent Data Path

The exponent data path (Figure 5-21) is used for exponent operations, loop counting, and overflow and
underflow testing. The exponent data path consists of four 4-bit microprocessors, each containing 16
working registers (WR). All 16 WRs are addressed via EXP A/B ADDR 3:0 from the control store.
Some of the WRs contain constants which are listed in Table 5-6.

5-34

SE-¢

.

90! BIT-SLICE
| DATA PATH EpAM |
FPAD EXP | 7 (1) H I \ |
RAM
| F’SHIFTER — RAM N '
| L) ALU | 8
0— MUX MUX |'B <14:8>
I) | EXPO Y
-
| Q
™shirTer ™ Rec " '
l F/ / I <
.8 &
' l D<147>| g
[*3]
ALU SOURCE DESTINATION PORT A,B RAM
l CARRY-IN FUNCTIONCTL| | OPERAND CTL cTL ADDRESS cLock I
CS5<19:18> L-—— — — e e e | o e oy | e — —— e —— o—] —— — —— —— —-'
CS<43> fx"
X
Fe ATENDFLK—- L eac
RAC <I8:17> —» SHIFT
EXT00Q0 — oL
EXTO0O RO SAVE —o
CS<42:39, 34, 32> —»
cs<zt> EXPONENT
Cs<20> DECODE
, £§<29:22>
CLOCK
€S<17:15>—»{ ENABLE DPI CLK
DECODER
N

Figure 5-21

Exponent Data Path Logic

TK-4963

Table 5-6 Exponent Working Register (RAM) Constants

WR Address Constant Use

F 7FFF Huge maximum exponent

E 0400 Grand bias

D 07FF Grand maximum exponent

C O00FF Float and double maximum exponent
B 4000 H-bias

A 0000 Zero constant

9 0001 One constant

3 18 Fraction bit count

The exponent data path source, ALU, and bit Ig of the exponent destination field (Is.g) are controlled
by a decoding of EXP CODE 3:0 (1) H from the control store. Because of this, all of the 2901 functions
(Table 5-7) are not available.

Table 5-7 Exponent Function Selection

EXP CODE 3:0 (1) H Function Selected
0000 DORO

0001 B-A

0010 A-B

0011 B+ A

0100 AORB

0101 A ANDB

0110 A-Q

0111 A + B + FRAC COUT
1000 Q-1

1001 Q+1

1010 A

1011 Q

1100 0

1110 SHIFT

1110 A+B=1

1111 NOOP

5-36

5.8.3 Fraction Data Path

The fraction data path consists of 16 2901s and, therefore, is 64 bits wide. This width accommodates
loading of huge operands. The fraction data path (Figure 5-19) consists of high fraction (55:32), middle
fraction (31:00), and integer fraction (47:16) sections, plus an extension data path EXT (7:0).

The fraction data path is controlled by Ig.g and A, B ADDR 3:0 H from the control store. Bits Ig.q
select the fraction function and A, B ADDR 3:0 H control scratchpads. The low and middle fraction
sections are loaded directly from the FPA data bus. Part of the high fraction section (55:48) is loaded
with data that passes through the hidden bit PAL.

Of the 16 64-bit working registers (RAM) in the fraction data path, seven contain constants as listed in
Table 5-8.

Table 5-8 Fraction Data Path Working Register Constants

BR Address Constant Use

E 0000000000004000 Huge round

F 0000000000000080 Double round

G 0000000000000400 Grand round

C 0000008000000000 Floating round

B 00000000000000FF Ext mask

A 00000001 FFFFFFFF Mid frac and ext mask
09 0000000000FFFFFF Integer mask

The FPA internal 32-bit bus (BUS FPA D31:00) is not wide enough to load the entire 64-bit wide frac-
tion data path. Working registers in the fraction data path are, therefore, loaded in sections. Whenever
the working registers are loaded, the control fields are set up to perform

WR(X) — Dor0.

Also, sections of the fraction data path can be forced to NOOP (no operation) by forcing I7 to the
fraction 2901’s low. This changes a write WR function to a NOOP. The control store microword deter-
mines which sections are written via the modify and shift (MOD and SHF) fields.

5.8.4 Sign Logic

The FPA indicates to the CPU, via BUS FPA D15 H, what the resultant sign of the operation is. Sign
logic consists of a PAL that is clocked with data from the FPA control logic.

5-37

The sign PAL (Figure 5-22) latches the sign of the first and second operands, the resultant sign (SIGN
OUT), and a SUMPATH signal that indicates whether a sum or a difference operation is to be per-
formed from an ADD or SUBtract instruction. The sign PAL contains a SIGN OUT register (resultant
sign) that can be loaded with:

1. First operand’s sign (OP1)

2. Second operand’s sign (OP2)

3. First operand’s sign XOR second operand’s sign
4. First operand’s sign XOR SIGN OUT

5. One

6. Zero

ENB EXP

BUS FPA D15
BUS FPA D15 D Q OP1 SIGN

REG CLK
ENB CLK 7

CTL
—1 LoGic D Q SIGN OUT

REG m.K:l}_T
ENBCLK9

EXP A ADDR <02:00>

REG\CLK:D)__ c
ENBCLK 5 FPAC

Figure 5-22 Sign Control PAL Logic

(2]

L Ip a OP2 SIGN

TK-4944

For most instructions performed by the FPA, the sign bits of the first and second operands are loaded
into the PAL OP1 and OP2 flip-flops, during operand load routines. The SIGN OUT flip-flop in the
PAL is then clocked with the resultant sign.

When the FPA processes a POLY instruction, the OP1 flip-flop in the PAL is loaded with the argument
sign. Once loaded, it remains the same throughout the instruction. The OP2 flip-flop in the PAL is
loaded each time with the coefficient sign. The PAL SIGN OUT flip-flop then contains the current
resultant’s sign. The sign PAL receives POLY H and EXP A ADDR 2:0 H inputs. It generates BUS
FPA D15 H, SUMPATH (1) H, OP 1, 2 SIGN (1) H, and SIGN OUT (1) H outputs. The POLY H
signal is from the FPA branch logic, and EXP A ADDR 2:0 H is generated in the control store. BUS
FPA D15 H is sent to the CPU and the other outputs [SUMPATH (1) H, OP1, 2, SIGN (1) H, SIGN
OUT (1) H] are applied to the FPA branch logic. The sign PAL SIGN OUT function is controlled via
the control store EXP A ADDR 2:0 H output. The functions selected, via encoding of this field, are
listed in Table 5-9.

5-38

Table 5-9 Sign PAL Function Control Encoding

EXP A ADDR 2:0H

Octal Value SIGN OUT PAL Signal

0 OP1 SIGN

1 OP2 SIGN

2 OP1 SIGN XOR OPS SIGN
3 OP1 SIGN XOR SIGN OUT
4 ZERO

5 ONE

6 ZERO

7 ONE

5.9 MAINTAINABILITY FUNCTIONS

The FPA contains logic that enables the CPU to force the FPA to any microaddress. This is done via a
TRAP ACC L or READ ACC UPC L signal, and microaddress force/read logic that consists of a
force/read control, transceiver enable, and bus transceiver.

5.9.1 Force Microaddress

When the CPU generates TRAP ACC L the microaddress force/read logic (Figure 5-23) generates
FORCE UADDR (1) H. This is used to inhibit the microsequencer output. The CPU applies an ad-
dress to the Y-Bus transceiver as BUS Y D09:00 H. The BUS NUA 9:0 H output of the FPA micro-
address force/read logic is then applied to the control store in lieu of the inhibited microsequencer BUS
NUA 9:0 H output.

5.9.2 Read Microaddress

During microdiagnostics the microaddress read logic is used to read the microsequencer BUS NUA 9:0
H output onto the Y-Bus for subsequent transmission to the CPU. During a force read operation (Fig-
ure 5-23) the CPU asserts READ ACC UPC L. This inhibits operation of the FPA clocks. It also places
the microsequencer BUS NUA 9:0 H output onto the FPA data bus via the microaddress force/read
logic bus transceiver. The next time the CPU generates RCV DATA L, the BUS NUA 9:0 H output
will be applied to the Y-Bus as BUS Y D9:0 H. The RCV DATA L signal will also restart the FPA
clocks.

5.10 PARITY LOGIC

Parity is checked on each 48-bit microword that the microsequencer accesses from the control store.
There are only two parity bits and each corresponds to certain sections of the microword. Figures 5-24
and 5-25 illustrate which fields are checked by the parity bits. The parity logic consists of three parity
checkers, a PROM and a parity control PAL. The sum of the parity bit and the bits in the field that it
covers should be even.

5-39

A. FORCE MICROADDRESS BUS
XCVR
TO
BUS FPA D00-09H FPAA BUS NUA 00-09 H CONTROL
STORE
TRISTATE DISA L XCVR
FROM ENABLE
CONTROL
LOGIC CPU PHO H FORCE/ ENABLE
cLocK OFF (1) | READ FPAA
—*1 CONTROL
FPAA >
FORCE/READ
UADDR (1) H
FROM TRAPACCL o
CPU
TO
-+ MICROADDRESS
SEQUENCER
B. READ MICROADDRESS BUS
XCVR
FROM
BUS FPA D00-09H FPAA BUS NUA 00-09 H gﬂégsgﬁgg: ESS
TRISTATE DISA L XCVR
FROM ENABLE
CONTROL
LOGIC CPU PHO H FORCE / ENABLE
cLock ofF (1) L_| READ FPAA
— " CONTROL
FPAA >
FROM READACCPCL | FORCE/READ
CPU UADDR (1) H

TO
= MICROADDRESS
SEQUENCER

TK-4949

Figure 5-23 Force/Read Microaddress Control

When a parity error is detected the parity logic generates a FORCE LOW UADDR L output that
drives the microsequencer NUA 9:0 H output to logical 0. This starts a parity handler routine that
simply loops in microaddress 0, continuously storing the parity error. The CPU initially interprets this
as an exception and asks for an error code. The FPA then passes the error code. The FPA passes the
parity error again which the CPU interprets as a parity error. The FPA must be forced out of the error
routine by the CPU.

The parity control PAL output is BUS FPA D3:0 H and FORCE LOW UADDR L. Of the 4-bit field
output, BUS FPA D00 will be set to logical 1 whenever parity error 1 or 0 is detected. This bit informs
the CPU that a parity error has occurred.

The error bits that become set in the parity control PAL will remain set on the BUS FPA D3:0 H
output lines until cleared by FORCE UADDR (1) H. They are placed on the BUS FPA bus by the
READ UADDR (1) H signal.

5-40

> PARITY

1¥-¢

Figure 5-24 Control Store Fields Checked by Parity Bit PO

Q
g >
s 5, & INTER
g EXPONENT FRACTION RAM A RAM B 8 = BRANCH [& MICROPOINTER———
Z|p1lro CONTROL CONTROL ADDRESS | ADDRESS s » | CLOCK CONTROL j&——— LITERAL ———
47]46]45]44 39)38 37|38 30{29 26{25 22[31 20{19 18017 _15h4 00
— -— - S
| 1 |
FIELDS CHECKED
BY PO
ACC SYNC H
UPF <8:0> H
PARITY |55 pAR (P0)| PARITY
GEN CONTROL
FROM CLKCTL 2:0{1) H UPF H
FRAC PAL
CONTROL 4
STORE SHF 1:0(1} H obD
MOD 1:0(1) H PARITY FPAD
- PROM ROM H (PO)
FRAC 1 8:7 (1) H EPAE BUS FPA
D3:0H
PARITY 1)
GEN
FPAD FORCE LOW
UADDR L
——
PARITY N
GEN
FPAD
PARITY 1,0, (1) H
FORCE/READ UADDR (1} H T
REG CLIC L
PARITY
TRISTATE DISA L | OUTPUT
ENABLE
r PAR ERR H

TK-5836

> PARITY

S

Q
z >
& FE MICROPOINTER
Q EXPONENT FRACTION RAM A RAM B 8| & BRANCH opo
< |pt1|PO CONTROL CONTROL ADDRESS ADDRESS s) CLOCK CONTROL j¢———— LITERAL ——
47|46 |4a5laa 39]38 37[36 30|20 2625 22021 2019 18|17 15|14 13'12 10 o_gjos 07 00
“ ~ J — ~— — - —
l | J
FIELDS CHECKED
BY P1
PARITY PARITY
GEN CONTROL
FPAC PAL
oDD
PARITY €PAD
PROM ROMH _ (PO)
r . FPAE BUS FPA
UBCTL 4:3 (1) H D 3:0H
FRAC | 6:0 L
EXPCODE4 ()H | PARITY #1)
— 11— GENn
FROM EXP178 (1 H GEN FORCE LOW
CONTROL ¢ UADDR L
STORE UPF 09 H
EXP A, B ADDR3:0 H z‘;’:"” {P1)
EXPCODE 1, 2,301 HL] conp
“~
PARITY 1,0, (1) H
FORCE/READ UADDR (1) H b
REG CLK L
TRISTATE DISA L DR
ENABLE

[— PAR ERR H

Figure 5-25 Control Store Fields Checked by Parity Bit P1

CHAPTER 6
MICROCODE DESCRIPTIONS

6.1 GENERAL

The FPA microlisting consists of a definitions file followed by microcode routines. The definitions file
defines the microfield and macros. The macros equate a mnemonic statement such as ADD, with a
particular set of microfields that will perform the operation specified.

6.2 FIELD DEFINITIONS

Figure 6-1 explains the first four lines of FPA microcode and illustrates field locations in the 48-bit
control store microword.

Figures 6-2 through 6-19 explain the fields.

6.3 MACRODEFINITIONS

The FPA macrodefinitions consist of symbols, the value of which is one or more field value (Figure 6-2
through 6-19) and/or macros. The macrodefinitions shown consist of a line containing a macro name
followed by a string in quotations which specifies the values of one or more of the microcode fields.

MNEG FWR]J] to FQ “FSRC/O.A, FALU/R.MINUS, FSHF/LOADQ,FA.ADRS/@/”

Macros may include square brackets ([]) which open a microcode field but do not give it a particular
value. The desired field value is inserted inside the brackets whenever this macro is used.

Headers generally located at the beginning of each macro describe what the macro does.

Figure 6-20 shows a section of the macrodefinitions file.

LINE - LRTOL ASSEMBLY DIRECTIVE

NUMBER 12 r.Hexadecimal INDICATIVE TO LIST
RIGHT-TO-LEFT 13 .#1dtn/4s
READING WLIST

'S tMicro Pointer Fileld (UPF) = This specifies the pase address of tne
ALL FIELD VALUES
INDICATED IN
HEXADECIMAL
CONTROL STORE
MICROWORD IS
48 BITS WIDE
>
[
o [+ =4
s 2 z
5~ L K ——— INTER ———
o EXPONENT FRACTION RAM A RAM B 5 L:TIE BRANCH MICROPOINTE
<(p1lro CONTROL CONTROL ADDRESS | ADDRESS | = » | CLOCK CONTROL l¢———— LITERAL ———
47|46 |45|44 39|38 30]29 26|25 22|21 20{19 18|17 15[14 10|09 08|07 00

9

—
CONTROL STORE MICROWORD

CONTROL STORE l
PROM

CONTROL
CS 47:00 H STORE

— N\ REGISTERS

FPAN ____1/

TK-5399

Figure 6-1 Field Definitions

MICROPOINTER FIELD (UPF) 9:0 (7:0 LITERAL)

EXPONENT DATA PATH

16 87 o)

£..

CONTROL STORE
CONTROL STORE
REGISTERS BUS
BUS NUA FPA
MICRO 9:0H PROM UPF,LIT (LITERAL) BUFFER | D14:7 H | EXPONENT
) SEQUENCER REG UPF 7:0H DATA
CS9:0 H
FoAN PATH
FPAA 770 T590 Fras FPAL LOGIC
CONTROL STORE MICROWORD
30 25 2 13 18 14 10 7 0
| [[moo | | cux | [T |
MICRO
POINTER
FIELD ENB
LITERAL
| CLK cLOCK
REG FIELD
S17:1 LK CTL 2:0(1) H
NOTE: FOR LITERAL CS17:15 roap |EERCTL 206 DECODER
1,MOD FIELD = 01
(EXTEND CLOCK FIELD) L FPAC
2.CLK FIELD = 010
3. UPC IN MICROSEQUENCE R
IS USED TO ADDRESS THE MOD
CONTROL STORE €521:20 REG (E:)L(IIEHND ENB
4. LITERAL (BUS FPA D14:7H) PAC FPAD TN AL

CAN BE LOADED INTO
EXPONENT OR FRACTION
DATA PATH (FRAC 30:23,
EXT 6:0)

EXTENDED CLK H

ooy e e e amyma

Figure 6-2 Literal Field

FORCE (1) L

TK-5398

MICROPOQINTER FIELD (UPF) 9:0

CS 9:0H

MICRO
SEQUENCER

FPAA

BUS
NUA

CONTROL STORE

| REGISTERS

FPAN

9:0 H>IPROM
/CS'47:0

A
CONTROL STORE MICROWORD

/

Cs59:0

Figure 6-3 Micropointer Field

|
CS 47, 44:10 l r‘—'—'—"|

UPF

REG
FPAC,
FPAD

| paTa |

| PATH
CONTROL

| REGISTERS

L___1

TK-5404

S-9

113 $Rranch Control fField (BCTL) = This f£ield is used to OR in status
314 joits into the lower 2 bits of the UPF,
11 tWith Partycular vajlUes of the MOD and TLK CTL fields tnis
116 toranch tield can be extended to the lower 5 bits of the UPF,
17
118 BCTL/=<14110>,,Detaults]s
9
320 EXP,COUT#GRAND30)
721 ‘GRAND=20
122 EXP,COUT=0
123 SIGN ,QUTHHUECT
124 SIGN,OUTs
CONTROL
:25 HUGE=" BRANCH FIELD (CS14:10) STORE
BRANCH
UBCTL 40 (1) H Loeic
~ EPAB MICRO
BRANCH 1.0 H SEQUENCER
)‘ N BUS NUA 9-0 H
r N
:20 EXP.COUT #GRAND =0 FPAA \
€S9:0 H (UPF)
INSTRUCTION ~~
DECODING SIZE1,0H 47 09 00
LOGIC 4 14 10
FPAA BRANCH UPF
A I
CONTROL STORE MICROWORD
DATA PATH EXP COUTH STATUS
LoGIC (STATUS SIGNALS) | REGISTER |exp cOUT SAVE H MASKED
(FRACTION, BITS
EXPONENT) FPAC It
09 08 07 06 05 04 03 02 01 00

Figure 6-4 Branch Field

MICROSEQUENCER
BUS NUA 9:0 H
OUTPUT

TK-5412

9-9

;THE EXTENDED BRANCH FIELD ORs IN STATUS BITS INTO NUA BITS <4:2>,

189 ;SINCE THIS FIELD OVERLAPS THE NORMAL BRANCH CONTROL FIELD THERE
190 :IS SOME LIMITATION ON WHAT EXTENDED BRANCHES CAN BE PERFORMED
91 ;AT THE SAME TIME AS A NORMAL BRANCH,
92 [EXT.BCTL/=<14:13>,.DEFAULT=2,.VALIDITY=<EQL[<CLK/>(KCLK/EXT.BRAN>] >
193 INSTR.DECODE.0=0 ‘
94 SIZE1#SIZEO#FRAC31-0.EQ.0=1
195 SIZE=1
196 DOUB.OPER#INS_ENC1#0=2
97 DOUB.OPER2=2
98 DOUB.OPER#ADD+SUB=2
199 TNSTR.DECODE=3
100 ExTENDCLK () H f oo JEXTEND BRAN 23,4 H
BRANCH
PAL .
INSTR ENC - o UBCTL 42 (1) H
40H
BRANCH FIELD (CS14:10) coNTROL
13 ;BRANCH CONTROL FIELD (BCTL) — THIS FIELD IS USED TO OR IN STATUS - STORE
4 :BITS INTO THE LOWER 2 BITS OF THE UPF,
;15 WITH PARTICULAR VALUES OF THE MOD AND CLK CTL FIELDS THIS BRANCH
16 :BRANCH FIELD CAN BE EXTENDED TO THE LOWER 5 BITS OF THE UPF. LOGIC
7 UBCTL2Q (1) H
18 BCTL/=<14:10>, DEFAULT=15 FPAB BRANCH MICRO
19 / 10 H SEQUENCER
20 EXP.COUT#GRAND=0)) BUS NUA 9-0 H
21 GRAND=0 1/
22 EXP.COUT=0 p N . oAn
23 SIGN.OUT#HUGE :20 EXP.COUT #GRAND =0
24 SIGN.OUT=
25 HUGE=1 C€S9:0 H {UPF)
INSTRUCTION A~
Egg?CD'NG SIZE 1,0H 47 14 10 09 00
| INSTRENC4-0H
EPAA BRANCH | UPF
. J
CONTROL STORE MICROWORD
EXTENDED NORMAL
DATA PATH | EXP COUT H STATUS BRANCH BRANCH
Loaic (STATUSSIGNALS) | REGISTER |exp COUT SAVE H MASKED MASKED
(FRACTION, FPAC BITS BITS
EXPONENT) B
09 08 07 06 05 04 03 02 01 00

Figure 6-5 Extended Branch Field

T RER
//t A///, A
- J

MICROSEQUENCE

BUS NUAQ:0H

QUTPUT

TK-5413

L9

CONTROL STORE MICROWORD

1112
1112
1114
3115
1116
3117
1118
1119
1129
1121
1122
1123
3124
1128
1126

3The clock field enables a number of clOck and special functions, The

sfield has different meanings dependipg on the MOD field,

+SET/EXT,VALS

CLK/=<17115>,

<,EQL{<MOD/>,<MOD/EXT, CLK>}>
JDEFAULT=2

CLK NP.EQ,0%%, , VALIDITY®< ,NOT[EXT,VAL)>
CLX,HUGE,R3%1, ,VALIDITYS< NOT[EXT,VAL)>
EXT.FRAC,SHF®3,,VALIDITY=C NOT(EXT,VAL]>

CLK,S

IGN,OUT®4, . VALIDITY®< ,NOT[EXT,VAL]>

CLK,0P2,81GN®S, VALIDITY®< NOT[EXT,VAL)>
CLK.CCm6,,VALIDITYa2<, NOT[EXT,VAL]>
CLX,0Pt,SIGN®7,,VALIDITY=C NOT [EXT.VAL)>
106, STORE=Q, ,VALIDITYSCEXT, VALY

CLK,FAST=1,), VALIDIT
.73

Y-

f —~ \
47 22 21201918(17__ 15114 0
NOTE: MOD FIELD (CS21:20) = 01
IM°°| JCLOCKI I TO EXTEND CLK FIELD
\ / FUNCTION (<EXT.VAL>)
CONTROL STORE
PROM CLOCK CLOCK
CS17:15H | FIELD CLKCTL2:0 (1) H CLOCK leNB CLK 1 L|GENERATOR
oK REGISTER FIELD
FIELD) FPAD DECODER FPAC
FPAN
EXTEND |EXTEND | EXTEND
) CLOCK fcLkH |cLock
C521:20 H} | oGic REGISTER EXTEND CLK (1) H
(MOD
FIELD) | FPAC FPAD

NOTE: CLK FIELD(CS 17:15) = 001

TO SELECT 180 NS (FAST)
CYCLE TIME VIA CLOCK
GENERATOR PAL FAST
CLOCK FLIP FLOP

Figure 6-6 Clock Field (Used to Clock Fast Cycle)

1Clock the OP1 and OP2 equel @ FF,

1This stores FRACSS R3 untill huge div 1is re
1Extend the fraction shift funetions

1Clock resultant sign FF,

1Clock the 2nd operand’s sign FF

1Clock the condition codes

1Clock the ist operand’s sign FF,

jChange a floating store to an integer store

GE‘: fast lg.ld (cycle at iﬂgnl)
sEnable a literal on to the bus
1Toggle the load FF

1Fraction.Cin s Frac Cout Save
1Toggle the FF which forces LSB of mier to =

1Extend the branch field to §

TK-5409

31135 1The shift tleld has many diftferenr yses) it controls a numoer

11136 ;0f shifting fynctiongt what is shifted {nto the LSB of the

1137 1exponent and the extension data path and what is shifted intg the MSB
1138 tof the fraction data path, It also controls what section of

3139 tthe data path i{s loaded,

3140

1141 LOAD/=<1931R>, (VALIDITYS< EQL [<MOD/>,<MOD/LOADST>) >, (DEFAULT=0

1194 (GThe snitt field {s also used to set the V and C blts,

SETCC/3K19818>, JVALINDITYS<EGL{<CLK/>,<TLK/CHK,CC>)>

CONTROL STORE MICROWORD.

8-9

,
47 20191817 0
| sHF |
CONDITION CODE
CONTROL PAL
CONTROL STORE
FPAH
PROM SHIFT BUS FPA
CS19H FIELD SHF1 (D H y DOTH
REG BIT
FPAN FPAE FF
BUS FPA
CS18 H SHFO (1) H DOH
c
BIT
FF
ENB CC L
{STORE CC)

Figure 6-7 Shift Field (Used to Set V and C Bits)

679

CONTROL STORE
CONTROL STORE MICROWORD CONTROL
r N ' STORE
47 22212019 0 REGISTERS FRAC
L ,Mo&ﬂ] ROM €S 31, 30H crLae [won,
*1 biv
€520 ‘ MUX
FPAN
cs21
3104
11985 wOp/=g24t reDefault=0
1106 w&) | l FPAE DIV
1107 EXT,CLK=1 Tnig extends the clock fielid {DIV)
1198 (Enaple the)“ut er ENB FRAC 10
£109 LOAD,ST=3 tEnable tne load or store logle, INSTRUCTION FPAE ENB | DIViN)L 13H DATA
DIV H DIV SEL >
PAL PATH
L LOGIC
FPAB
BUS IB D7-0H
— :,NES‘;"A‘,;’:T'ON MUL/DIV PAL
LOGIC INSTR ENC 4-0 H FPAE
INTEGER H SELECT
FPAA >
CONTROL
SIZE1,0H
FRAC47 F3H
FROM | FRACS5 R3 SAVE H R v
DATA | FRACIZH }D o
PATH FRACCOUTH - piviaL 13 (m.;
LOGIC | yygerasvH \
FRAC COUT H TD—
T
FRAC I3 H

TK-5416

Figure 6-8 Modify Field (Used to Enable Division)

01-9

ey ;The modify field (0D) alters the tunction of some of the
3182 jother fields, It also enables special fuynctions such as
1193 JMUL and 0TV,

CONTROL STORE
CONTROL STORE MICROWORD Ty
s n STORE
47 22 212019 0 REGISTERS
I 531, 30H
L 4‘ PROM {MUL)
‘r‘ €520 MUL/— FR: ¢ 10
FRAC DIV i1 DATA
mOoD FPAN l > ot cTLAL MUX > paTH
ot | cs21 LOGIC
1175 MOD/=g211203, Defaulted r
| 1
1197 EXT,CLK=t jThis extends the clock field en -FPAE
1108 QEnasle the WID)or 01V Gealo) Eng o
p LOAD,5T=3 g£nable the load or store logic
e ORD.s ! * | nsTRUCTION MUL H epae Jauk b me
PAL >
FPAB
BUS I8 D7-0H
—* g‘gggf TION MUL/DIV PAL FPAE
pEcor INSTR ENC 4.0 H
INTEGER H SELECT
FPAA
N
SIZE1,0H | CONTROL
Q16 1€ DEFAULT H |
MUL
EROM [n () H .
DATA
1
DATA { _FRACTE Q0H \
LoGic | _FRAC32 QOH MIERLSBH |
FRAC00 QOH
EXT00 QOH

|~

TK-5417

Figure 6-9 Modify Field (Used to Enable Multiplication)

11-9

47 26 25

22 21

L [RAM B ADDR |

LJo

CONTROL. STORE

PROM

FPAN CS25:22 H

REG

FPAD

+ (£S$256:22 = 0000

:The 8 address tield addresses both the exponent and fraction
1data patn’s scratcn pad, T#o detinjtions will be given tor this
1tield 50 that the assemnler can f1aq any contlicts,

EXP B ADDR3:0H

EXPB

ADDR3:0H B ADDR 3:0H

FPAD

EXPONENT TEMPORARY STORAGE
REGISTER (SCRATCH PAD/RAM)
ETO ADDRESSED

yZero constant
tHuge fraction oit count
1Grand traction oit count
jDoupble traction nit count
jFloatinj tractjon £it count
3Max nuge exponent

sMax grand exponent
svax F,D exponent
pHuge oilas
1Grand oieas
1FsD plas

FRACTION TEMPORARY STORAGE
REGISTER (SCRATCH PAD/RAM)
FTO ADDRESSED

1lnteger mask Fraci5 tpru Exty eq one,

sFloating mask Frac3! tnru kxt0d ey one,

textension Mmask Ext<7:0»=1°s,
1Huge round constant,

g0ouble round constant,
1irand round constant,

£233
1254%
1255
12586
1257
1258 FB,2OR5/3€25322>, (DEFAULT=0
12%9
6 —E10=0)
1261 “ETTET
1262 ET282
1263 ET3=3
1264 ET4=4
$26h5 FT5=%
1266 ETb=b
1287 ET7s7
1268 ET8=8
3269 NE=9
1270 LERDZOA
127 H,BI1AS=0R
1272 FO,#AX=0C
1273 G,MAX=0D
1274 G,RIAS=0H
1275 He4AXE0F
1276
EXPONENT| | 1277 Pu, n0b$/2¢25122>, ,DEFAULT=D
DATA 1278
PATH (FTo=1)
29 ()
1280 FT1=1
7291 FT2s2
1282 FT3=3
1283 FTa=4
12834 FI5=5
1285 FTozb
1230 INT ,MASK=7
3287 FTe=8
$28R FT9=9
FRACTION ;239 FLT ,MASK=0A
DATA 1279 EXT,¥ASK=0R
PATH 1291 ¥.RND20C
1272 G,RMD=0D
1291} D.RNDZOE
1294 A,RNDEOF

Figure 6-10 RAM B Address Field

1Floating round constant,

TK-5408

-9

47 30 29 26 25 00
RAM A ADDR 1200 «page
| | | | LSS
1202 1The A address field addresses ooth the exponent and fraction data path’s
1203 1scratch pads. The lower 3 bits also determines what gets clocked into
1204 sthe resultant sign register,
1205 £4 ,ADR5/3€29126>, ,DEFAULT20
39 28 26 1206
T20Y ——@_—_.EXPONENT TEMPORARY STORAGE
| | SIGN FUNCTION] 1208 T=1 REGISTER (SCRATCH PAD/RAM)
—) ;200 ET2s2 ETO ADDRESSED
_EXPONENT . FRACTION 1210 ET323
RAM A ADDRESS 1211 Eg«t:;
1212 ETS = tZero constant
CONTROL STORE ;213 ET626 JHuge fraction bit count
1214 ET7=7 1Grand traction pit count
1215 ETA=8 sDoudle fraction oit count
PROM REG 216 ONE=9 jFloating fraction pit count
CS29:26 H 12117 2ZERO=0A yMax nuge exponent
FPAN FPAD 3216 HBIAS=0B yMax grand exponent
3219 FD.,AX=0C pv%ax ¥,D exponent
1220 G MAX=0D yJHuJe bias
3221 G,BIASE0E sGrand plas
3222 HoMAXROK 1¥,D dtas
CS 29:26 = 000g 1223
1224 FALADRS/=2<29226>, ,DEFAULT=0
EXP A ADDR 3:0 H x;;:
) _
T FTO0=0 FRACTION TEMPORARY STORAGE
1228 N IT T REGISTER (SCRATCH PAD/RAM)
EXP A ADDR 2:0 H SIGN 1229 FT2=2 FTO0 ADDRESSED
CONTROL 1230 FTiz3
;ﬁkc 1231 FTam4q
[Sin 1 | BS FPA 015 H 153 Fross
OP1SIGN :
BUS FPA D15 H(OP1 SIGN) | ouT H {) 1214 INT, ASK=?
LEF_ 1235 FTgs8
- 1236 FT9=9 1Integer mask Fraci5 tnru Ext0 e9 one,
1237 FLT,MASK20A 1Floating mask Frac3l tnru uxt0 e3 one,
3238 EXT,MASK30B JExtension mask Ext<7id>=1’s,
1239 F,RND=0C jHuge round constant,
1240 G,RND20OD jbouple round constant,
. EXPONENT 1241 DWRNDZOE JGrand round constant,
EXP A ADDR3:0H DATA 1242 HeRyN=0F 1Floating round constant,
PATH 1243
1244 SIGHsFUNC/3€28126>¢ VALIOITYS< HOL [CCLK/>) €CLK/CLKGSIGN,0UT> 1>
1245
TG *(EPIIO) (0Sign out)gets 1st operand’s sian,
1247 ZERO=] 1S1gh out gets 2nd operand’s sian,
1248 OF1,X0R,NP282
1249 SO XOR,0Pt =) sResliltant sign XOR 1st operand’s sign = for poly,
EXP A 1250 ap2z4
ADDR 3:0 H A ADDR 3:0 H | FRACTION 1251 DAE=S
PATH
FPAD

Figure 6-11

RAM A Address Field

TK-5406

€1-9

1297
1298

1299
1301

1302
31304
1308

1The fraction micro bits could be all one field, but to make it
1more workable {t will be broken up into 3 seperate fields, which
jcorrespond with the 29015 tields,
jThese microbits are asserted low,
FSRC/%€32130>, ,DEFAULT=]

A,Q=7

0,Az13

1309 N,A=2
1310 (0,.0=1)
€532:30 = 001

OUTPUT ENABLE OE

47 39 38 30 29 0 EXPONENT DATA PATH
I [raac (4 2901 4-BIT MICROPROCESSORS)
2901
(r—
T SELECTED FOR
SOURCE
N OPERANDS
30 36 35 33 32 30 V) AJMUX
MUX QREGISTER Na ALU
FSHF | FALU FSRC —V
Q REG/REG STACK O, B
DATA INPUT HIFTER
SELECT
168 ALU
DESTINATION H
DECODER —
L LATCH———') 8
—y/ 9 s
A
RAM MUX
BIT el e INHIBITED
HIFTER STACK) OUTPUT
A PORT SELECT ey
B PORT SELECT
CONTROL STORE LATCH[D MUX
€532:30L CENTRAL PROCESSOR CLOCK CP
CS32 L | REG FRAC 12 H
FPAE l DIRECT DATA INPUT D3:0 D w [
] MUX MUX $
PROM RACI1H INHIBITED
CS31 L[reG MUX ALU INPUT SELECT 10-2 | ALU INPUT OUTPUT
EPAD EPAE »| OPERAND 0
SELECT DRIVER
ALU FUNCTION SELECT I35 ALY
C530 L[REG ERAC 10 H FUNCTION
FPAD DECODER)
v

<
@
&

| |

Figure 6-12 Fraction ALU Source Operand (DQ) Field

TK-B415

v1-9

31297 $The fraction micro bits could me all ohe field, but tO make it

47 39 38 30 29 9 1298 imore vorkable it will pe broken up int® 3 seperate fielas, which
[I FRAC [I 1299 jcorrespond with the 290ls filelds,
MICROBITS 35:33 ARE ASSERTED LOW
1314 FALU/E<35333>, ,UFFAULT Y
1310 ADD=4
1317 $,MINUS,RES
1318 R MINUS,S%6
38 36 35 33 32 30 C535:33=001 ;319 oR=7
320 AnD=0
IEE FALU | FsRc | . NpoANo. 521
1322 XORED)—
FRACTION DATA PATH
{16 290! 4-BIT MICROPROCESSORS)
290l
L (REXORS
A
MUX
Y1 mux }—»| aReGISTER Mo ALU
Q REG/REG STACK BIT | |
DATA INPUT SHIFTER
SELECT
88 I AESTINATIO r
ESTINATION [H
DECODER :)
LATCH ﬁ B .ls /
N
MUX RAM MUX
BIT X1 (ReG INHIBITED
—DISHIFTER :D STACK) _’:D 90UTPUT
a
A PORT SELECT)D -:)
8 PORT SELECT g
LATCH :J), s
CENTRAL PROCESSOR CLOCK CP /‘
CONTROL | STORE DIRECT DATA INPUT D3:0 b ﬂ R
MUX Mux B
€s35:33 L INHIBITED
REG FRAC I5 H > | ALuinPUT OUTPUT
e 0 ALU INPUT SELECT 10-2 | £LU AFL A vos
Frac SELECT DRIVER
PROM| ¢ [CS34 LI REG 14H ALU FUNCTION SELECT 135 ALU OUTPUT | Bl
FPAN T FPAE DESTINATION,
DECODER R
FRAC),
cs33 Lfpeg |CTL3 b mux OUTPUT ENABLE OE
FPAE FPAE[TFRPC I3 H

Figure 6-13 Fraction ALU Function (R XOR S) Field

TK-5411

¢1-9

1297 1The fraction micro o{ts could oe all one fleld, but to make it

129R 1more sorkaole it w#1ll oe broxen up into 3 seperate fields, ~hich
47 39 38 30 29 00 1299 1correspond with the 2901s tields,
[I FRAC I] 3325 s11cronit 36 is asserted lo«,
1376 FSKF/2<3d136>, JDEFAULTZ0
; 33; «—— QREGISTER LOADED
1129 NOnP=0 WITH ALU OUTPUT
3635 33 32 3310 ¥.,0UT,A=3
3331 WRT R=2
FSHF FALU l FSRC 1332 SHFR,H.Qz5
\ 1333 SHFR,Hz4
£334 SHFL,B,0=27
1335 SHFL ,bzé
CS 38:36 = 001
FRACTION DATA PATH
(16 2901 4-BIT MICROPROCESSORS)
2901
A MUX
CS38H REG FRAC18H MUX QREGISTER a ALU
Q REG/REG STACK BIT
DATA INPUT SHIFTER
FROM FPAE SELECT [— ™
CS 38:36 168
FPAN CS37H FRACI7H DESTINATION
DECODER — N
LATCH 8
s
MUX
reg |FRAC 16 INHIBITED
cS36L oL FRAC6H OUTRUT
FPAD =0
A PORT SELECT
B PORT SELECT
LATCH X
CENTRAL PROCESSOR CLOCK CP
DIRECT DATA INPUT D3:0 o 3 R UX
MUX :>
INHIBITED
o | ALuneuT OUTPUT
ALU INPUT SELECT 10-2 { (\oe o itn 0 Y0-3
SELECT DRIVER
ALU —
ALU FUNCTION SELECT 135
FUNCTION
DECODER N
OUTPUT ENABLE OE T

TK-5403

Figure 6-14 Fraction ALU Destination (Q-Register) Control Field

91-9

1338

47 45 44 39 38 00 1The exponent data path is partially controlled by an encoded field
1319 t1Four bits are encodedy thege hits control the gource
L | EXP] 1340 1Selects, ALU function and tne lowest Dit Of tne destination
1349 yeleld
1342 EXP,CTL/3€42139>, ,DEFANLT2OF
1343
41 LOAD=Y JFUNCTION 1S D OR 0
“ 542 » It SuB=1
S
A 3
[expost | execii | €S 42:39 = 0010 Ao
EXPONENT DATA PATH
(4 290! 4-BIT MICROPROCESSORS)
290l
(A-B)
FROM FIG. N
6-16 18
[PART OF Y| mux —»{ arecisTER A PUX ALU
CONTROL EXP ALY 7 v]
DST FIELD) Q REG/REG STACK BT | |
STORE DATA INPUT SHIFTER|
SELECT |
copE 3: . 16 88 oesminamion|d r
PROM|CS42:39 H | reg (1) H DECODER :3
FPAN FPAD PECODE LATCH :> B s 1
: s |
RAM MUX
BIT MUX = THEG INHIBITED
SHIFTER $ STACK) OUTPUT
” = |
A PORT SELECT ¥
EPAM B PORT SELECT /
-
LatcHs oy MUX
CENTRAL PROCESSOR CLOCK CP
DIRECT DATA INPUT D3:0 D 3 R
MUX MUX :>
INHIBITED
. _, | ALuineuT OUTPUT
2:0) [aLuineuT sELECT I0-2] SLLINED c Vo3
SELECT DRIVER
: NCTION SEL ALU
15:3] | ALU FUNCTIO| ECT I35 RONCTION
DECODER N
OUTPUT ENABLE OE "

TK-5400

Figure 6-15 Exponent Control (A-B) Field

L1-9

tThe upper tw«o bits of the exponent control (I8, 17)
scone directly from the microword, Thege bits control the degtinariong

tit ghoyld re remempered that tne lowey bit ot the destination
ttlela 15 ngenerated by the encoded tield so there ig a limitation

Q REGISTER LOADED
WITH ALU OUTPlX

however.

\

l | N
MUX Q REGISTER _____*) Q

LATCH

|

47 45 44 39 38 00 3362
1363
EXP B 1164
1365
1366 ton wndt the Aestination is,
1367
3368 FEXP.NST/3€44143>, ,pEFAULTSN
1369
44 43 42 ‘10
| ExeDST | EXPCTL el
, €$43:44°= 00 SHFR=2
EXPONENT DATA PATH
(4 2901 4-BIT MICROPROCESSORS)
2901
FPAM
CONTROL\ STORE
Q REG/REG STACK BIT -
PROM cs44 H_| REG EXP I8 H DATA INPUT SHIFTER
coAN I *1 epaD SELECT — r
: 168
CS43:44 H Ics43 EXPI7H DESTINATION
DECODER L j
EXP 16 H »
FROM RAM
FIG. 6-15 BIT MUXT Ree
(PART OF IFT! STACK)
EXP CTL V|SHIFTER ;D
FIELD)

A PORT SELECT

B PORT SELECT

CENTRAL PROCESSOR CLOCK CP

.

LATCH

MUX

MUX
INHIBITED
ouTPUT
=0

ALU

T

DIRECT DATA INPUT D3:0

ALU INPUT SELECT 10-2

ALU INPUT
OPERAND
SELECT

MUX
A

D
MUX

INHIBITED
OUTPUT
0

ALU FUNCTION SELECT 135

ALU

OUTPUT ENABLE OE

FUNCTION
DECODER

MUX

DRIVER

=<
I
L)

]

Figure 6-16 Exponent ALU Destination (Q-Register) Control Field

TK-5402

81-9

ACC

SYNC N
PARITY = —— —_
l ‘ | EXPONENT FRACTION RAM A RAM B 8 lsmrrl cLock | BRANCH | MICROPOINTER
p1lpo] CONTROL CONTROL ADDRESS | ADDRESS | = CONTROL je—— L ITERAL———»
a7]46{45 (a4 3938 37| 30{29 26|25 22f2120f19 18}17 15}14 oofos|o7 00
_Tp_J [\ I J (. T yi
NOTE SET WHEN
BUS FPA D03 PO ERROR
NOT USED FOR IS DETECTED
PARITY
CONTROL STORE SET WHEN
o PARITY ERROR
CS7:0 H REG UPE 7:0 H PARITY IS DETECTED
CS8 H UPF 8 (1) H LoGiC 0 OI‘I'
cs17:1 CLK CTL2:0 (1} H FPAC, D, E
PROM 24 AH BUS FPA D3:0 H /
rpan | - Lcsie:sH SHF1:0 (1) H
— : MOD1:0 (1) H
CS21:20H P vs-(7)“ " FORCE LOW UADDR L_ 1o
£538.37 H 240 FORCES NEXT MICROSEQUENCER
CS47 H ACC SYNC H MICROADDRESS
€845 H PARITY 0 (1) H SEQUENCER QUTPUT
FORCE/READ UADDR (1) H lg QELI‘_-E%;FRPOAERSITY
REG CLK L HANDLER ROUTINE

13R7
;388
1389
£390
1391
3392
1393
1394
3395
3396
5397
1398
1399
$400
1401
5402
1403
1404
1405
1406
1407

1The following two bits are the parity oitss

TRISTATE DISA L

IN CONTROL STORE

they are defined

ys0 that their defaylt valuye 1s even parity tor their given fields,

PARNDO/=€291322>
PAR)1/5<42140>
PAR(2/=<9>

«SET/PAR,CK2=¢,PARITY (¢<PARQO/>,<PARN1/>,<PARD2/>]>

PARIN/Z<14313>
PARI1/3<36130>
PAR12/3<39>

PAR13/3<44:43>
PAR14/3<12110>

SET/PAR,CK1=C ,PARITY [<PAR10/>,<PAR1}/>,<PAR12/>,<PAR13/>,<PARL4/>]>
p1/z<40>, DEFAULT=<¢ , XOR[PAR,CK2,PAR,CKI]>

PAR2N/3CRE0D>
PAR21/3€17315>
PAR22/=<21118>
PAR23/2¢38537>
PAR24/=¢47>

JSEI/PARITY0=< ,PARITY (<PAR20/>,<PAR21/>,<PAR22/>,<PAR23/>,<PAR24/5]>
.DEF’AULT=<,Nm‘(PARITYOD

Figure 6-17 Parity Field PO

TK-540%

61-9

ACC

SYNC
PARITY,
EXPONENT FRACTION BAM A RAMB [MODI- BRANCH MICROPOINTER >
I l CONTROL CONTROL ADDRESS | ADDRESS |y [SHIFT| CLOCK CONTROL 1 LITERAL
p1lpo I

|47]46]45Jaa 39] 38 37 J36 30{29 26125 22]21 2019 1817 15]14 1312 10]08]0s]07 00]

\ l / AN 1 / \ /

I NOTE: BUS FPA D03 SET WHEN P1 ERROR
NOT USED FOR |S DETECTED
PARITY
CONTROL STORECQ REG UPF9H PARITY SET WHEN PARITY
ERROR IS DETECTED
CS12:10 H UBCTL 2:0 LOGIC 03 00/ ¢
CS14:13H UBCTL 4:3
CS25:22 H EXP B ADDR 3:0H .-n
C529:26 H EXP A ADDR 3:0 H FPAC, D, E
CS30 L FRAC 10 L
CsS3L FRAC CTLI L
cs32 L FRAC 12 (1) L BUS FPA D3:0 H
PROM CS33 FRACCTL 3L
FPAN cs34 FRAC 14 (1) L
Cs35 FRAC 15 (1) L
e
CS36 FRACI6 (1) L
CS40 EXP CODE 1 (1) H
cs41 EXP CODE 2 (1) H FORCE LOW UADDR L T0
m——————
cs42 EXP CODE 3 (1) H MICROSEQUENCER
cs43 EXP17 (1) H
FORCES NEXT MICROADDRESS
cs44 EXPI8 (1} H SEQUENCER OUTPUT TO ALL ZEROS TO
CS 46 PARITY 1 (1) H SELECT PARITY HANDLER
FORCE/READ UADDR (| - ROUTINE IN CONTROL STORE
REG CLK L $37% 3The following two bits are the parity bits) they are defined
1376 1350 that their default value is even pnality for their given fields,
TRISTATE DISA L 1377
1378 PARPD/=<29122>
3379 PARG1/3<42140>
1389 PARP2/2<9>
1381 +SET/PAR,CK23¢,PARITY [KPARGY/>,<PARD1 />, <PARA2/>]>

1382 PAR10/2<14813>

1383 PAR11/m¢36130>

1384 PAR12/3¢39>

1385 PAR13/2<d4143>

$386 PAR14/2<12119>

1387 SET/PAR,CKi=¢,PARITY [<PAR1D/>,<PAR11/>/<PAR12/>,<PAR13/>,<PARL14/>]>
1388 ,o:‘;uu?-<.xoktPAR.CKz,PAR.CK:J>

1389 PAR23/8<810>

1390 PAR21/3<17115>

1391 PAR22/2¢211185"

1392 PAR23/3<38137>

1393 P@/mc45>, , DEFAULTEC ,NOT [, PARITY(<PAR20/>,<PAR21/>,<PAR22/>,<PAR23/>]1>

TK-5405

Figure 6-18 Parity Field P1

0¢-9

3
3

1375
31376
1317
137R
3379
$380
1391
1382

13493
IELL]
134§

L8

BE

ACC SYNCH
BIT

1386

1The accelerator sync signal will pe setup 50 that it will pe

tasserted whenever the oranch control field eaquals: 2,
R1/2<|1 419 3>
B3/2<12110>
+SET/BRANO=<,CASE(<B1/>]0F(0,0,1,0)>
JSET/BRAN1 =< ,CASE(CBI/>)OFL0,0,0,0,0,0,1,0)>
«SET/BRAN22< ,CASE()0F(1,0,0,01>
SET/BRAN3I=¢ ,CASE(<BI/>]INFL0,0,191,040,0,0])>
JSET/AVAIL®EC,AND[BRAN2,BRAN]]>
SET/RCVsC,AND[BRANN,BRAN]]>

SYNC/8<475)y ,NEFAULT=< ,OR[AVATL,RCV]>

BUS NUA 9:0 H

PROM

REG
CS47 H ACCSYNCH _ TO
* cpu

FPAN FPAD

Figure 6-19 Accelerator Sync Field

3 or 16,

TK-6397

129

Micro=2,1 1A(34) 9:1:39 16eNove1979
MACRO DEFINITIONS

1396

1397
DESCRIPTIVE 1398
MACRO :399

HEADER :401

1402
1403
1404
1405
1406
1407

.PAGE "MACRO DEFINITIONS®

.T0C "fraction Data Path Control Macros"

sThe following group of macros controls the fraction data path, There

tare one, two and three operand macros.,

In the two operand macros the 2nd operand

1is also the destination, In the three operand instruction the 3rd operand
t1is the destination, Fraction scratch pad locations and the Q register

sare preceeded by an F,
NULL

JMNEG 15 a 2°’s comp, macro,

MACRQ =1 408—®MNEG FWRI[] TO F@

3409
1410
t411
1412

1413
1414

s 40R

NEG]
MNEG FWR[] TO FWRI)
MNEG FQG TO FWR[)

NEG HUGE FWR()

ADD SHFL FWR({) TO FWRI[)

ADD SHFL FWR[) Tp FWR[]) + FCoUT
MNEG FWRL] TD FO

MOVE AND NEGATE CONTENT
OF FRACTION

WORKING REGISTER

TO FRACTION

Q REGISTER

ENQUOTED

MACRO VALUE
"FSHF/NOOP,EXP.CTL/NOOP" »
r A)

A

"\ r 2'g A N A ~
"FSRC/0.,A,FALU/R MINUS,S,FSHF/LOAD,Q,FA ,ApRS/R1"
"FSRC/0,0,FALU/R,MINUS,S,FSHF/LOAD Q"
"FSRC/0,A,FALU/R MINUS,S,FSHF /WRT ,B,FA ,ADRS/81,FB ,ADRS/82"
"FSRC/0,.Q,FALU/R MINUS,S,FSHF/WRT ,B,FB,ADRS/01"
"FSRC/0,B,FALU/R MINUS,S,FSHF/WRT,B,FB,ADRS/@81,CLK/ALTER, CIN

"FSRC/A.B,FALU/ADD,FSHF /SHFL,B,FA,ADRS/#1,FB,ADRS/82,*

"FSRC/A ,B,FALU/ADD,FSHF/SHFL,B,FA,ADRS/@1,FB AD"

CONTROL STORE
WORD
FIELD VALUES

A

hY

~

"FSRC/0,A,FALU/R,MINUS,S,FSHF/LDAD.Q,FA ApRS/RLI™

—
FIG.6-12 FIG.6-13 FIG. 6-14 FIG. 6-11

~

FIELD NAMES IN
CONTROL STORE
WORD

TK-5833

Figure 6-20 MACRO Definitions

6.4 MICROROUTINE

Figure 6-21 illustrates an overview of the FPA microcode. The NULL task for the FPA is the wait loop.
This microword does nothing except jump to itself. When an IRD signal is issued by the CPU, the FPA
will jump to an IRD target as determined by the op code on the IB-Bus and the IRD ROM. The IRD
target for instructions not executed by the FPA is the wait loop.

Each instruction class calls either an integer or floating fetch routine, depending on the data type of the
operand(s).

After the operand(s) is fetched the instruction will execute. For the floating-point instruction, each in-
struction class has more than one instruction; the data type and instruction class determine the specific
instruction being executed. For each instruction class there is usually one common flow with separate
branches for individual data types. For example, ADD F, D, and G have a common flow; ADD H
branches away from this common flow because it requires two cycles to add a huge (H) word.

At the end of the execution a store routine is jumped to; the store routine jumped to depends on what
data type is being stored.

There are two routines that the CPU forces via the TRAP ACC signal: the initialization and abort
routines.

The initialization routine generates a number of constants which are stored permanently in some of the
FPA’s WRs. This routine is forced upon power up.

The abort routine is forced by the CPU when the CPU must stop execution of the current instruction.
The abort sequence sets up some constants for the next instruction and goes to the wait loop.

Figure 6-22 illustrates an ADDition instruction; the ADD flow illustrates the basic flow for all floating
arithmetic instructions. The IRD target for ADDX is 201, as shown in the figure. The FET.FLT rou-
tine is called from this IRD target. The FET.FLT routine determines the data type, and fetch and
appropriate operands. It also sets up some data type depended constants.

Whenever the exponent is loaded in the FET.FLT routine, a flag is set if the exponent is zero; there are
two exponent = O flags (one for each operand). When the FET.FLT routine is through, it branches on
the signal (OP1.AND.OP2) .NE.O.. This branch will OR a one into the LSB of the return address if
neither operand is zero. In the case of the ADD instructions, the calling address is 201, the normal
return address is 202, and the return address for the case where neither operand is zero, is 203.

If one or both of the operands are zero, a reserved operand check is performed. If neither are reserved
operands, then the nonzero operand (or a zero, if both are zero) is moved to the output WR, and the
store routine is jumped to.

If neither operand is zero, an execution routine is called; this routine performs all the necessary pre-
alignment shifts, additions and normalization shifts. Then the RND.TST routine is called, (in the case
of ADD it is actually jumped to, to save a state) and will round the result and check for overflow or
underflow. The RND.TST routine has two return addresses: one address indicates that no exception
occurred; the other indicates that an exception did occur.

The two return addresses are generated by ORing a particular status condition into the two LSBs of the
return address. In the case of ADDX, the two return addresses are 207 and 204.

The exception return jumps to an exception handler. This routine determines what exception occurred,
generates the proper error code, and passes the code to the CPU.

The no exception return sets the condition codes and jumps to the store routine.

6-22

€9

CPU FORCES
ADDRESS 10 NIT
2E1:
AN INSTRUCTION THAT
WAIT IS NOT EXECUTED BY
LOGP [#———— THE FPA BRANCHES
3 SEPARATE 4 SEPARATE 3 SEPARATE DIRECTLY BACK TO THE
IRD IRD IRD WAIT LOOP
TARGETS TARGETS TARGETS L |
261:
241; 269: 281
249: 271: 289:
229: 231: 251: 259: 279: 201 201: 211 219: 221: 2D1: 2C1: 239:
CUTXB: CUTFX: CVTXB:
DIVL MULL CUTXW: CUTRXLW: gg$g§ CVTXW: ADD: cme SuB POLY DIVL MULL EMOD
SETUP SETUP CUTXLW: SETUP CUTHX: CVTXLW: SETUP SETUP SETUP SETUP SETUP SETUP SETUP
SFTUP SETUP SETUP
CALL CALL CALL CALL CALL CALL CALL CALL CALL CALL CALL CALL CALL
INT FLT INT FET INT FET FET FLT FET FLT INT FET FET FLT FETFLT FETFLT FET FLT FET FLT FET FLT
282 1 203:

T T ;33 T T - T ~— . —r T T T
228: | 233: ! 2 1253: 258: | B 3 203: | 213: | 218: | 223: | 203; | 2c3: | 238: |
(RETURN) (0 RETURN) (RETURN) (reTuRN) RETURN RETURN) CRETURN) CRETURN) (RETURN) (RETUHN) (HETURN) QETURN) (ReTuRN)

L I

CUTXX TUTXX
DIVL MuLL FLOAT TO CUTRLWX fP‘-”i?c)'(SION] INTEGER
EXECUTION EXECUTION INTEGER EXECUTION EXECUTION TO FLOAT
EXECUTION EXECUTION
L I I I : T
* THE CONVERT PRECISION INSTRUCTIONS (STORE) (STORE) ADD cmP suB POLY Div mMuL
STORE INT HAVE THEIR OWN STORE ROUTINES. EXECUTION EXECUTION EXECUTION EXECUTION EXECUTION EXECUTION
** THESE CONVERTS HAVE SEPARATE FLOWS,
ASWELL AS IRD TARGETS. THESE SEPARATE STORE CC
FLOWS EVENTUALLY CONVERGE TO ONE RCES
FLOW FOR EACH CONVERT CLASS. (fgoFr?sss 7

I ABORT ll

THE HARDWARE FORCES THIS
ROUTINE WHEN A PARITY ERROR

OCCURS. INSTR SETUP
0: PARITY

ERROR

E HANDLER
WAIT LOOP

Figure 6-21 Microcode Overview

WAIT LOOP

Tr5835

RESERVED OPERAND
JEST ROUTINE

IS
0 OPERAND A
RESERVED
OPERAND

201

ADD:
SETUP

3

CALL
FET FLT

CALL RESERVED

CREATE RESERVED
OPERAND ERROR
CODE

GO TO EXCEPTION
HANDLER

2351’,‘;}‘5 TEST CALL EXECUTION
ROUTINE
RETURN B!
: CALL
RND.TST
T, - .
i ___J
MOV NON ZERO 207 + 204
OPERAND EXCEPTION NON EXCEPTION
TO OUTPUT WR C RETURN) (RETURN)
GO TO STORE) (GO TO EXCEPTION (GO TO STORE
ROUTINE HANDLE ROUTINE

TK-5824

Figure 6-22 Microcode ADD Flow

6-24

APPENDIX A
PROGRAMMED ARRAY LOGIC

A.1 INTRODUCTION

Programmed array logic (PAL) devices used in the FPA are logic arrays that contain a programmable
AND OR GATE ARRAY comprised of fusable links. Before a PAL is used in the FPA, it is elec-
trically configured and inserted in a PAL programmer that modifies it for particular circuit functions.
The programming burns certain links in the array.

Figure A-1 shows the three FPA PAL types and explains the PAL type designator. All three PAL types
contain an output circuit (register or inventer) connected to an AND OR GATE ARRAY. The arrays
are identical before programming.

NOTE
Additional information on all PALs described in this
section can be obtained on microfiche.

Figure A-2 shows AND OR GATE ARRAY details. Figure A-3 shows how fusable links (F1 through
F4) in an array can be programmed for a particular function. Figure A-4 illustrates how a particular
function (integer division) is enabled for the data shift in control PAL.

A.2 PIN DESIGNATIONS
Figure A-S illustrates PAL designated (D), input/output (I/O pins are dashed), and register pin (R)
designations.

NOTES
1. A slash (/) indicates signal is asserted low.

2. A dash (-) indicates pin has 1/0 function.

A.3 PAL FUNCTIONS
Figures A-5 through A-23 illustrate the FPA PALs. The Boolean equations for the PALs can be found
on microfiche.

NUMBER OF ARRAY INPUTS OUTPUT TYPE L =ACTIVE LOW

=

=]

&

o

=

v

(2]

=]

=]

=l

PROGRAMMABLE ARRAY LOGIC FAMILY——] [———NUMBER OF R =REGISTERED
PAL 16 L 8 OUTPUTS
PAL16L8 PAL16R6 PAL1GRS
NS \/ _/
— H D T
7’
‘ @ 2 E 2
D Q
o | 6] (] DR
——CLK @ ——I
—{cLk @ L-l —cLk 6—]
R
AND gtﬁ _.LE] E AND oo a 1'$° E E AND D Q @0—
OR l OR OR
GA GATE - 3 GATE =
ARRAY ARRAY Clk a arrav| etk @
i >0— r 15 E D @ ‘&—JE E D a
— cLK 6~] ek @ 2
$ 14 E D Q EO__E E Y @OR—
—{CLK 6—] LcLk Eb
e - N T O S
——J L cLK c'zj
:BF 2] (] jc izl]
A Ll i —<p—1 10 —<p—

Figure A-1 FPA PAL Types

PAL16L8

N\

FPAE

Do

AND
OR
GATE

ARRAY

[} |

(€]

o
d

I

L T

TK-6258

Figure A-2 AND OR GATE ARRAY Details

A-3

UNPROGRAMMED
FUSES (LINKS)

—]

F4

F§
-0\
0N\ _o—
O\ _o—1
—-o0\ _o—
F8

ouTPUT

NG
INPUT 2—2

A. UNPROGRAMMED PAL

LINKS BLOWN FOR

XOR FUNCTION
AB vV AB
F1
.J\p__;

-0

?\1/

O—d
o o
—en o
Fa4

F1 f
© o—
O\ _o——
oM\ _o—]
l——o 40_.
E

B. PROGRAMMED PAL

EQUIVALENT CIRCUIT

LOGIC WITH
A BLOWN LINKS
b 3

X
ABV AB
XX

C. EQUIVALENT LOGIC

12

Figure A-3 Fusable Link Programming

TK-6255

E — s — — —— — ——
NBLDOUBDIVLr —_— —— — —— —

QIN H |

=

FRACA47 F3 SAVE H|

3

FOR

INTEGER

DIVISION |

EXP15 Q3 H
—19
4
EXP15 R3 H
— 18
=t
FRAC00 QO H
— 17
'l
FRACOO ROH

WERESEE S

ENB INT DIV H
4*—'
5

NOT I ~

g

USED is

EXPI7 (1) H

FRAC16 QQ H
I 15

p3

6

I

ENBDIVFLI -
-z

"

8 —t—f;

FRAC16 ROH
14
FRAC32 QOH
I Por—13
1
FRAC32 RO H

NOT I

USED

12

Tl—l———— 11 (NOT USED)

oo

—_—— e

TK-6272

Figure A-4 Integer Division Enabled for Data Shift in PAL

(Sheet 1 of 2)

A-5

T: PAL16L8
P: 23-035.-01
N: DAVID STONER
D: 30-MAY-80
S: /DOUB_DIV_L QIN_H F3_SV_H INT_DIV_H NC EXP_17_H /ENB_DIVF_L NC NC GND
NC 32_RO_H 32_Q0_H 16R0_H 16Q0_H 00RO_H 00Q0_H EXP_R3_H EXP_Q3_H VCC
SV_H INT_DIV_H 32_0Q0_H 16Q0_H
B: IF [INT_DIV_H] /16RO_H:=VCC FRAC16 QOH
G [INT_DIV_H] /1600_H:=F3_SV_H>
IF [DOUB_DIV_L] /00RO_H:=VCC
ENB INT DIV H
IF [DOUB_DIV_L] /00Q0_H:=/QIN_H FRACA47 F3 SAVE H
IF [ENB_DIVF_L] /32_RO_H:=VCC
IF [ENB_DIVF_L /32_Q0_H:=/QIN_H
IF [/EXP_17_} /EXP_R3_H:=VCC
IF [EXP_,7
IF [EXP_17_H] /EXP_Q3_H:=VCC
E: END OF EQUATIONS
NOTES%
NOTES:

DATA SHIFT IN CONTROL PAL

TK-6271

Figure A-4 Integer Division Enabled for Data Shift in PAL
(Sheet 2 of 2)

N 16R4
'—-—1 DO RD_lL
3 | Rpj1E_[ouTPuT
4 15 ¢ (R=REGISTER)
—o2 RDI2-| pins
DESIGNATED | 23 RO
INPUT {81,
PINS N
— o5
8
—5] s
{ D7 1
(—~—--—— 1o Dy——
18
‘/OD——13 1/0 PINS
1o { ——g————=—- 1o D—
PINS e 1o D2
\ -111— cLock
ENABLE

NOTES: 1.SLASH(1)
INDICATES SIGNAL
IS ASSERTED LOW

2. DASH (—) INDICATES
PIN HAS I/0 FUNCTION

TK-6254

Figure A-5 Pin Designations

FPAL
PAL16L8

BUS FPA DOO H

20| vccC

BUS FPA DO1 H

f <

F~5]INP D55 H
19§

BUS FPA DO2 H 1/0 =1 INP D54 H

s}

BUS FPA DO3 H

1/0 -Fl INP D53 H
L

BUS FPA D04 H

1/0 —S-LINP D52 H
16

vivly

AND
OR
GATE
BUS FPA D05 H ARRAY 1/0 5]VP D61 H
=]
BUS FPA D07 H 1/0 == INP D50 H
4]

BUS FPA D08 H

[l 01 B FBFF R FL

1/0 '—|13 INP D49 H
—J

7

O I57]INP D48 H
ad|

ve [8
GND E | ELDSELOH

THIS PAL SERVES AS A MUX TO DIRECT THE HIDDEN BIT TO THE
CORRECT BIT POSITION AS DETERMINED BY THE DATA SIZE.

TK-6264

Figure A-6 Hidden Bit PAL

A-7

FPAL
PAL16L8
NS
MOD1 <1>H
a — 20] vee
MODO <1>H Ny & 0 0 -ELENBWTMULH
| -l —J
SHF1 <1>H rs1 E /0 =] ENBDIVF L
= l —J
SHFO <1>H — 110 | ENB DOUBDIV L
(=] 7
SIZE 1 H I ‘ 1/0 |— LOADH
5 16
15 AND $0 16|
T ad
GATE
SIZEOH re ARRAY 1/0 &1—5-[BUS FPA DO7 H
= =y
INTEGER H H 110
a 14
DIVH o1 /O =) | FORCE UADDR <1>L
= =11
FRACS5 Y H J-;J E O [—]ENBINT DIV H
=] =1
| EXPO Y H
GND |10 1

THIS PAL ENABLES VARIOUS DRIVERS WHICH DRIVE SOME OF THE
RAM3-RAMO AND Q3—-Q0 BUSES FOR MULT!IPLY AND DIVIDE.

Figure A-7

Input Enable PAL

A-8

TK-6263

FPAE
PAL16LS

) :23 vee

EXP15 Q3 H
1]

ENBDOUBDIVL.
I

o

QIN H

L[

=]

FRAC47 F3SAVE H 1/0 =] EXP15 R3 H

L]

]

ENB INT DIV H 1/0 ';7LFRACOO QO H

vivlylelvivly'y

1/0 FRACO00 RO H
N/C E AND E
OR
GATE
EXPI7<I>H =1 ARRAY 1/0 |—1 FRAC16 Q0 H
19 15
ENBDIVFL | 1/0 |— FRAC16 RO H
1 B |
1/0 = FRAC32 Q0 H
nve [&] 13
0 | FRAC32 RO H
w3 o
ano fio I 1] nre

THIS PAL SIMPLY ENABLES QiN ONTO THE CORRECT RAMO, Q0 INPUTS.

TK-6269

Figure A-8 Data Shift in PAL

."
h
>
>

10

PAL16LS
—\
DIVI3 (1)L B ow
! ,_1_‘———| 20| vee
SIZEOH . O_|— EXTEND BRAN3H
12 "_‘l% 19]
ENB DIV (1) L L5 E 10 =1 QINH
| l A
INSTR ENC 02 H r 1/0) SiZE TH
r____]"_“|$(> 17
INSTR ENC 01 H I 110 —] EXTEND BRAN 2 H
=1 AND 16
OR B ad
GATE
INSTR ENC 00 H 1/0 INSTR ENC 03H
J—LG_ ARRAY ‘_5JL
EXTENDCLK(NH 5] :&c VO [— UBCTL3 (1) H
EXT <7:0>EQOH r— /O = UBCTL 4 (1) H
18] 13§
EXTENDBRANL | O |- EXTEND BRAN 1 H
g 2]
[— INSTR ENC 04 H
1]

GND

[]

THIS PAL GENERATES THREE OUTPUT SIGNALS.

Figure A-9 Extended Branch PAL

TK-6270

FPAB
PAL16R4

REG CLK L |
1

[

—/

UBCTL4 <1>H r—z-
=

UBCTL 3<1>H 3
UBCTL2<1>H r4—
1=
UBCTL 1<1>H 4
=
UBCTLO<1>H l?
Jj
EXPEQOH [T
.

EXP15 F3 H 3
=

SUMPATH<I>H =

18]

GND E

AND
OR
GATE
ARRAY

) vec

-1? BRANCH O H

|1

) BRANCH 1 H

—

18]

R -1-:,-|OP1 EQO<I>H
g: T

D Q
_:LK :j {&C R 'E[OP2EQO<1>H
L—:LK : & R L]?Expsoosv<1>H
——ELK :] {$O R EEXNSFSSVH
\—‘CLK Q

= N/C

rﬁl—

{ ENBOP=0CLK L

N

1

THIS PAL GENERATES BOTH LOWER BRANCH BITS; IT ALSO LATCHES
A NUMBER OF STATUS SIGNALS.

Figure A-10 Branch 3 PAL

A-11

TK-6275

FPAB
PAL16LS
, N
UBCTL4 <1>H —
UBCTL3 <1>H 21 $c ol BRANCH1H
L2 19
UBCTL2 <1>H ,% 10 =) | ACCSYNCH
=]
UBCTL1 <1>H /0
r T rushe
UBCTLO<1>H 1/0 FILE ENB L
B [Tor @
OR
GATE
FRAC <55:48>=0SV H reﬁ ARRAY 1/0 E—
—
FRAC <47:32> =0SVH [VO [— | FRACA7 F3SAVEH
= Aad]
Vo b= | muLni<i> 1
3]

FRAC <31:16> =-0SVH vy
18

FRAC<15:0>=0SV H

e

1

|

Py
N

EXT <7:0>=0SVH

oo [L

m,

THIS PAL GENERATES THE BRANCH 1 SIGNAL.

Figure A-11 Branch 2 PAL

TK-6268

UBCTL4<1>H

vee E vee

]
|

UBCTL3<1>H

0 5] SRANCH O H
—

o

UBCTL2<1>H 110 '1—81 EXP COUT SAVE H

[]
77 ¢
:

UBCTLT <1>H s 1/O | EXT 00 Q0 SAVE H
14— 17|'

UBCTLO <1>H I/0 = FRACS5 Q3 SAVE H
—aw e}

OR |
CPURCVDATAL | — Ay 1/0 = | DIVI3<I>L
12 T 15[

OP2 SIGN <1> H = ‘ 1/0 | FRAC COUT SAVE H
U T

OP1 SIGN <1>H 3 1/0 [==) FRACSS F3 SAVE H
18 131

CPU DATA AVAIL L BRANCH 1 H

8
E

I SIGN OUT <1> H
ano [10]GnD I E

=

THIS PAL GENERATES BOTH OF THE LOWER TWO BRANCH BITS FOR
CERTAIN UBCTL VALUES.

TK-6262

Figure A-12 Branch 1 PAL

A-13

UBCTL4 <1> H —
58]
UBCTL3<1>H r-z—
L]
UBCTL2 <1>H —
13
UBCTL1 <1>H rT
|
UBCTLO<I>H
E AND
OR
GATE
SIZE1H '? ARRAY
|
SIZEOH o
17
INSTR ENC 04 H ra—
=
INSTR ENCO3 H 1
12

ano [i]

Lz_E] vee

BRAN O H
1]

/0

1/0

1/0

Lan

18

m! INSTR ENCO1 H

'El INSTR ENCOO H

:_&c] 1/0

(9}

—LDSEL1H

L

12

JE

[~=] INSTR ENC 02 H
W,

THIS PAL WILL GENERATE THE LOWEST BRANCH BIT FOR THOSE UBCTL
FIELD WHOSE UPPER TWO BITS ARE 0.

TK-6265

Figure A-13 Branch 0 PAL

PAL 16R4

REG CLK L 1 N/
> o
CLKCTL2<I>H | | ENBOP=0CLKL
12 I g
CLKCTL1 <1>H - &0 jN/C
g 18
CLKCTLO<I>H 7 = R__ [} ALTER INTSTOREH
[hd a -
—{cLk 67
EXTEND CLK<1>H R | HUGE R3SV H
Lof—ano > a J&O—ﬁr
OR
GATE -
ARRAY| [IELK Q@ M
FRAC55 R3SAVEH 1= R | Loapw
—Jck @
SIZE1H - R |— Q16 DEFAULTH
- o WIS ;
LcLk Hb:l
SIZEO H =
= i ele
SHF1 <1>H s —— LDSELOH
—19] 12]

THIS PAL CONTAINS 3 TOGGLE TYPE FLIP FLOPS; THEY ARE
TOGGLED BY CERTAIN CLOCK CODES. IT ALSO CONTROLS THE DATA
IN PAL AND THE CLOCK OF THE OP1=0 AND OP2=0 FLAGS.

TK-6274

Figure A-14 Extended Function PAL

PAL16L8
, p——a
SHF1 <i>H
I1] 1 E vee
SHFO <1>H [r/l 0
s 19
EXP I7 <1>H (3 /0 =1 | FRACS5 R3H
L J J)
EXTEND CLK<1>H = 1/0 [SHIFTQR
o S W
ENBCLK 3L 1/0 SHIFT FR
a AND q >0 I 16}
OR
GATE
FRACT8 <1>H ry ARRAY 1/0 o] _FRACS5 Q3 H
gl 15T
FRAC I7 <1>H - VO [EXPIB<I>H
x4 iy
EXT00 Q0 H Y 1/0 FE-L EXTO0 RO H
= I L
EXT00 RO SAVE H 5 O [>] ENBMULSHF H
= Sl |
|
oo [ig L e

THIS PAL CONTROLS WHAT IS SHIFTED INTO THE MSBs OF THE FRACTION DATA PATH (RAM 3,
Q3), AND WHAT 1S SHIFTED INTO THE LSBs OF THE EXPONENT DATA PATH (FAMO. QO).

TK-6266

Figure A-15 Fraction Shift Control PAL

FPAM

PAL16L8
N
FRACI4 H —
11 1 20| vee
FRACI3 H 5] @c 0 EXP 16 <1>H
L= [exps<1>n
FRAC COUT SAVE H =y N 1/0 =y EXP4 <1>H
13] 107 18]
EXP CODE 3<1>H (o 1/0 [EXPI3<1>H
14 l 17}
EXPCODE2<1>H 1/0 EXPI2<1>H
15 AND E
OR
GATE
EXP CODE 1 <1>H 3 ARRAY I/0 = EXPI1 <1>H
1 ‘ &
EXP CODE O <1>H . 1/0 A EXPIO<1>H
ENB CLK5 L 175 1/0 T3} CINEXT 00 H
I = I -t
EXTEND CLK <1>H [O [CINEXPOH
g [P
ano fio] [[11]nie

THE EXPONENT CONTROL PAL DECODES A MICROFIELD 4 BITS WIDE TO
CONTROL EXP 16—0. THE PAL MAPS THE 4 BIT FIELD INTO A7 BIT FIELD.

Figure A-16 Exponent Control PAL

A-17

TK-6267

‘n
©
>
=

PAL16L8
N
MOD1 <1>H —
! 20| vee
L 1
MODO <1>H ey O f— j EXTOUTENBL
L2 1917
SHF1 <1>H B VO == | ENB FRAC<15:0> L
- I —J1
SHFO<1>H Iy $¢ o 7] ENB FRAC <31:16> L
s l ap
LOADH = o | ENB FRAC <47:32>L
5 16
15 AND @t‘r !
' OR __J
GATE
TRISTATEDISAL | r— ARRAY 1/O | | EXP<7:0>ENB L
g 5 [1517
ALTER INT H r VO [| ENB FRAC <55:48> L
1 l 41T
READ UADDR <1>H iry 1/0 m ENBCCL
L | r_Jl
PAR ERR H o 0 5] ALLOWCPUY BUSH
12 2]
| 1 |— FORCE UADDR <1>H
oo [ro 11}

THIS PAL ENABLES THE SELECTED BIT SLICE GROUP ONTO THE BUS
FPA DURING A STORE OPERATION.

TK-6257

Figure A-17 Store Control PAL

A-18

FPAH
PAL 16R4

-/
REG CLK L Jl] D E vee

ALTER INT H — 1/0}— | ENBLITERAL L
2 197
FRAC <47:32> =0 SV H[1/0 =} SHFO <1>H
L] 18]
FRAC <31:16> = 0 SV H[— = R__[5}BUS FPADO3H
|l e]
Lk E—|
EXPEQOSV H R BUS FPA D02 H
E AND D a %TQ
OR
GATE -
ARRAY| [[CLK Q@ B
FRAC47 F3SAVEH R | BUS FPA DOTH
o 5 a {ﬁo——ﬁl
CLK @ _I
SIGN OUT <1>H 'y 5 o R | BUS FPA D00 H
L [14]
L ek @ j
ENB CLK6 L Wy /0 I SHF1 <1>H
L8] 137
EXTEND CLK<I>H — /ol— |EnBCLK2L
18] 127

ENBCCL

THIS PAL STORES THE CONDITION CODES, WHICH WILL BE PASSED TO
THE CPU. CCBITS N AND Z ARE SET ACCORDING TO VARIOUS
STATUS CONDITIONS; CC BITS C AND V ARE EXPLICITLY SET BY

THE MICROCODE AS ERROR FLAGS TO THE CPU. THE PAL ALSO
GENERATES THE LITERAL ENABLE.

TK-6276

Figure A-18 Condition Code PAL

A-19

FPAC
PAL16R6

—

CLOCK
_ _E _|>_‘ [20] vee

SLOW PATH ENB H
ne [2}— {$c o LE'

EXTEND CLK<1>H R =1 | FASTCYCLE L
moarsenfl | L ETS H

—CLK

ol
L]

ENB CLK1 L FP PHO L
ST 7, s So
L dcLk @ —]
AND R CLK OFF <1>L
TRAP ACC L g I o T o —& E }
GATE
ArRAvE | Lo o

ol
.|

READ ACC NPCL R FPPH1H
AORCENEL L 5 o H

R m! | CPUPHOH
Ed

CPUP2H
L 7o

R |— |CLRSTATEL

CPU RCV DATA L
LovOATAL | fol "o

131
L{cLK a]
/0 FAST PATH ENBH
N/C |9 b— —-I >0 12
/ 12t

OUT EN
GND fi0 Ebj

THE CLOCK PAL CONTROLS THE CLOCKS FOR THE FPA; IT WILL ENABLE THE CPU TO CLOCK THE FPA
IF FAST IS NOT SET, OTHERWISE THE FPA WILL GENERATE ITS OWN CLOCKS.

TK-6253

Figure A-19 Clock Control PAL)

A-20

FPAB

PAL16L8
\-/
UBCTL2 <i>H —
11 1 20| vee
UBCTL1 <1>H] $c I/0 }=— | ENBCPLOAD L
L= 1917
UBCTLO<1>H 3] /0 7=} READ UADDR <1>H
1] 181
INSTR ENC 04 H — ' /0 = DIVH
4
= $° l i,
INSTR ENCO3 H (=] AND B 1/0 TLMULH
=
or |1
GATE
INSTR ENC 02 H Ty ARRAY 1/0] ADD + SUB H
= |] m
INSTRENCOTHO 1= /O [~ ADDH
1 [Ky
INSTR ENC 00 H I5] 1/0 =1 INTEGER H
L= l |t
LOAD H Py O [75]ODD PAR UBCTL <2:0> H
1 —
PAR ERR H
owfo | m;

THIS INSTRUCTION PAL GENERATES A NUMBER OF INSTRUCTION
SPECIFIC SIGNALS NEEDED FOR CONTROL AND BRANCHES.

TK-6256

Figure A-20 Instruction PAL

A-21

FPAD
PAD 16R4

REG CLK L B s ./
H_‘T 20] vee
ODD PARITY — 110 L—, | FORCE LOW UADDR L
12] 19177

1’&0 1/0 "1-8'[PAR ERRH
D

ODD PAR UPF H -
3 18]
ODDPARITY ROMH a R__ =1 BUS FPA D03 H
| I L]
—ck @ —-I
READ UADDR<I1>H — &c R | BUSFPADOZH
13 AND o 16§
OR
GATE
ARRAY| [ICLK

ODD PAR UBCTL <2:0>H = [BUS FPA DO1 H
6 115
| 1

J&c R [7]18US FPADOOH
i)
CLK :l
PARITY 2 <I1>H 1 I/0 }— PARITY O <1>H
& 13

FORCE UADDR <i>H |7

IOLIOIOLEIDD

[e]

PARITY 1 <1>H
EN/C

OUT EN
ano o E_b———

THE PARITY PAL CHECKS THE 2 GROUPS OF MICROBITS FOR A PARITY

ERROR. IF ONE IS FOUND, A FLAG IS SET TO INDICATE WHAT PARITY

ERROR OCCURED. ONCE THIS IS DONE MICROADDRESS ZERO IS FORCED.

THIS MICROWORD WILL LOOP ON ITSELF, CONSTANTLY PLACING THE

PARITY ERROR ON THE BUS FPA; BUS FPA D0D IS THE OR OF THE

THREE PARITY BITS. Tre261

19

Figure A-21 Parity PAL

A-22

FPAE

PAL16LS
——
EMOD H
{'] 1 20] vee
SIZE 1H > E 0
12 L
SIZEOH = o b= | mERLSBH
3 18]
INTEGER H — /0 = EXTO0QOH
1 :@0 T 7]
FRACS5 R3 SAVE H 110
—{e]—]aw 16}
OR
GATE
Q16 DEFAULT H s ARRAY 1/0 = | FRAC47 F3SAVE H
L] | 15]
FRACT3 H — VO = | HUGE R3SV H
FRAC16 Q0 H I VO [= | FRACCOUTH
= I d)
FRAC32 Q0 H s ‘ 0=y lovist
= el |
GND E [m FRAC00 00 H

THIS PAL PERFORMS THE CONDITIONAL CONTROL FOR BOTH MULTIPLY
AND DIVIDE.

Figure A-22 Multiply/Divide PAL

TK-6259

FPAC

—) SUMPATH <I>H

EXP<7:0>ENBL |
14

r;lll

PAL 16R4
REG CLK L M N/ p
T {>— vee
ENBCLKS5 L 1 = POLY H
2] =
ENB CLK4 L 1]? — EXP A ADDR2 H
g = 18]
o o}

OR
GATE
ARRAY

l

[}
=
ol

EXP A ADDROH rz'

—1 OP2 SIGN <1>H
—] b e]

ADD +SUBH = -1—4-. SIGN OUT <1>H

EO_R_
——CLK Q j
EXP A ADDR1 H r~ R =~ OP1SIGN <1>H
{s|—fano b Ec)*‘.‘f’]
{ﬁoﬂ_
Mot

1

ENB CLK7 L B e f— EXTEND CLK <1>H

12]

ADDH o — FPADI5H
& 13

OUT EN
anp [io -—<})—— 1

THIS PAL STORES THE SIGN OF BOTH OPERANDS, THE RESULTANT

SIGN AND A SIGNAL CALLED SUMPATH, WHICH INDICATES WHETHER A
SUM OR DIFFERENCE 1S TO BE EXECUTED FOR THE ADD AND SUBTRACT
INSTRUCTIONS.

TK-6260

Figure A-23 Sign PAL

A-24

Algorithm

ACC

ACC SYNC

ALU

Bias

Branch Control
Field

BUS FPA
BUS NUA
Clock

Clock Field

CMP
CSR
CVT

APPENDIX B
GLOSSARY

Set of processes (procedure) FPA performs to solve a floating-point prob-
lem in a finite number of steps.

Accelerator.

Accelerator synchronization bit (CS47, Figure 6-19) asserted whenever
branch control field (CS14:10, Figure 6-4) equals 2, 3, or 16. ACC
SYNC H indicates to CPU that FPA is ready.

Arithmetic logic unit contained in data path logic and in microaddress
sequencer.

Excess notation.

Five-bit field (CS14:10, Figure 6-4) used to OR in status bits into the
lower 2 bits of the micropointer field (UPF). With particular values of the
MOD and CLK CTL fields, the branch control field can be extended to
the lower 5 bits of the UPF.

Internal 32-bit wide FPA bus.

Next microaddress bus. Located at output of microaddress sequencer.

Normally 180 ns when FPA is processing operands; 270 ns when FPA is
synchronized with CPU.

Three-bit field (CS17:15, Figure 6-6) used to enable a number of clock
and special functions.

Compare instruction (Figure 6-21).
Control store register.

Conversion instruction (Figure 6-21) used to convert one data type to an-
other.

B-1

D

Divide-by-Zero

DIVL
EMOD

Exception

Excess Notation

Exponent

EXP CTL Field
EXP DST Field
Exponent Data Path

Extended Op Code

FALU Field

Force

F

FPA

FPAA through FPAN
Fraction Data Path
FRAC Field

Fraction

FRSC Field

FSHF Field

64-bit double format.

Exception (error) condition that occurs when the divisor is a zero. For this
condition the destination is unaffected and the condition codes are unpre-
dictable.

Longword division instruction (Figure 6-23).

Extended precision multiply and integerize (Figure 6-21).

Error condition that occurs during operand processing; reported to the
CPU via the Y-Bus. :

Bias (80,400,4000) used to store and handle the exponent portion of float-
ing-point numbers.

Contains power of 2 in a bias format. Is an 8-bit value for single (F) and
double (D), 11-bit value for grand (G), and a 15-bit value for huge (H)
data formats.

CS 44:39 (Figure 6-15).

Exponent destination control field (Figure 6-16).

16-bit wide data path.

Op code equal to FD; used to extend the VAX instruction code beyond
the normal 8-bits of the IB-Bus.

Fraction ALU function field (Figure 6-13).

CPU inhibits operation of FPA microaddress sequencer and then writes
(forces) a microaddress into control store via the Y-Bus.

32-bit long single format.
Floating-point accelerator.

FPA schematic logic diagrams.
64-bit wide data path.

Fraction control field (Figure 6-1).

Normalized, magnitude binary representation with sign and magnitude
notation.

Fraction ALU source operand field (Figure 6-12).

Fraction ALU destination control field (Figure 6-14).

B-2

G
Grand Format

Guard Bits

Hidden Bit

H

Huge Format

IB-Bus

Integer Data Path

IRD
Literal (LIT)
Field
Load
LSB

Microaddress

Micropointer
Field (UPF)
Microword
MIER

MOD Field

MSB
MUL

Normalization

Op Code

Grand format.
64-bit longword format.

Bits used to save the LSBs of an operand that have been shifted out of the
fraction and are required for precision reasons.

Because MSB of fractions stored in memory is always a logical one, CPU
does not send this bit. Therefore, FPA inserts a one into this bit into MSB
of every fraction whenever it receives an operand from the CPU.

Huge.

128-bit longword.

Instruction bus used for transfer of op codes to FPA.

Fraction data path 47:16.

Instruction decoding state.

8-bit field (CS7:0, Figure 6-2) control store applies to microaddress se-
quencer.

CPU sends FPA operands.

Least significant bit.

10-bit field normally generated by FPA microaddress sequencer (or

forced by CPU) to select required data path setup signals during operand
processing.

10-bit field (CS9:0, Figure 6-3) that specifies the base of the next micro-
address of the microaddress sequencer.

10-bit microaddress word applied to control store.

Multiplier.

Two-bit modify field (CS21:20, Figure 6-8) used to extend use of other
fields and also enable special functions.

Most significant bit.
Shortword multiplication instruction (Figure 6-21).
Alignment of fraction resultant with fraction data path MSB.

Eight-bit operation code field that indicates what operation (instruction)
must be performed on operands received on the Y-Bus.

B-3

Operand

Overflow

PAL

Parity Field

POLY

Prealignment

Probing
PROM
RAM A Field

RAM B Field

Range Test

ROM
Rounding
RTOL

Save

SHF (Shift) Field

Size Field

Status Register
Store
SUB

Summation

Data received on the Y-Bus that is to be operated on.

Exception (error) that occurs when exponent of floating-point number is
larger than the largest representable exponent for the data type after nor-
malization and rounding have been performed.

Programmable array logic.

Two-bit field (CS46:45, Figures 6-17, 6-18) used to check for control
store errors. -

Polynomial instruction (Figure 6-23).

Exponents are made equal (prealigned) prior to addition or subtraction of
two floating-point numbers.

Process of determining if address is accessible.
Programmable read-only memory.

Four-bit field (CS29:26, Figure 6-11) used to address the scratch pad of
both the exponent and fraction data paths.

Four-bit field (CS25:22, Figure 6-10) used to address scratch pad of both
the exponent and fraction data paths.

Test performed on exponents prior to addition or subtraction of two float-
ing-point numbers to determine if prealignment/addition is required.

Read-only memory.
Adding a one to the most significant guard bit.
Right-to-left-reading (Figure 6-1).

Signal name suffix that indicates signal name in question (e.g., EXT RO
SAVE H) was generated in the previous cycle.

Two-bit field (CS19:18, Figure 6-7) that controls a number of shifting
functions.

Two-bit field output of instruction decoding logic. Field value indicates
size (F, D, G, or H) of operand to be received from CPU on Y-Bus.

Branch logic register that receives status signals from data path logic.
FPA result sent to CPU.
Subtract instruction (Figure 6-21).

Addition of two numbers when sign of both operands are the same.

Trap

Underflow

UPF

Y-Bus

CPU traps (halts) FPA at current microaddress so that it can be read out
to the Y-Bus.

Exception (error) condition that occurs when the exponent of a floating-
point number is smaller than the smallest representable exponent for the
data type, after normalization and rounding have been performed.

Micropointer field.

32-bit wide FPA-CPU operand interface bus.

B-5

Reader's Comments
VAX-11/730 FP730 FPA

Technical Description
EK—FP730—-TD-001

Your comments and suggestions will help us in our continuous effort to improve the quality and
usefulness of our publications.

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well
written, etc? Is it easy to use?

What features are most useful?

What faults or errors have you found in the manual?

Does this manual satisfy the need you think it was intended to satisfy?

Does it satisfy your needs? Why?

Please send me the current copy of the Documentation Products Directory, which contains information
on the remainder of DIGITAL’s technical documentation.

Name Street

Title City

Company State/Country
Department Zip

Additional copies of this document are available from:

Digital Equipment Corporation
Accessories and Supplies Group
P.O. Box CS2008

Nashua, New Hampshire 03061

Attention: Documentation Products
Telephone: 1-800-258-1710

Order No.__ EK—FP730—TD—-001

el gl I

No Postage
Necessary
if Mailed in the
United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD, MA.

POSTAGE WILL BE PAID BY ADDRESSEE

Digital Equipment Corporation
Educational Services/Quality Assurance
12 Crosby Drive, BU/E08

Bedford, MA 01730

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	B-01
	B-02
	B-03
	B-04
	B-05
	replyA
	replyB

