
Int:r:oduction

to the

COMET M!croarch1tecture

Tale 11. Patt

San Pranciaco State University
Ban Prancisco, CA 9413'2

and

Corporate Research Group
Digital Bquipment Corporation

Raynard, Ila. 01754

25 llarcb 1980

PRBPACE

This report is an introduction to the microarchitecture of a
particular host computer, COMET. It is not a general
introduction to microprogramming; other books will have to do
that. It is also not a hardware reference manual. No attempt
has been made to delineate an encyclopedic taxonomy of COMET's
features. Instead, topics are discussed in the order that I
think they fit. My goal ls that the reader should be able to
make sense of COMET and its parts.

This report was written from the perspective of the
microprogrammer; it describes the microarchitecture,i.e., the
architecture visible to the microprogrammer. It should be useful
to those who want to know how COMET implements VAX, and also to
those who need to get started so they can write user microcode
for COMET.

It is assumed that the reader has some understanding of
computer architecture in general, and the VAX architecture in
particular. Nevertheless, certain VAX features like memory
management and interrupt handling are discussed first, before
their COMET implementations.

The report was written because a lot of people outside of the
COMET group wanted to know how COMET works. I have been able to
complete it. because Paul Gilbault and Charlie McDowell were
willing to patiently answer a lot of questions, and because Bob
Glorioso and Don Gaubatz either agreed or were willing to accept
my judgment that it was something we ought to be doing.

I must also acknowledge, with thanks, the excellent critical
reading .of an earlier draft of this report by Fernando Col6n
Osorio, Charlie McDowell, and Martin Minow. Thanks are also due
to Serena Shields for typing the manuscript. She has patiently
endured my many changes to this report.

The report is organized in six chapters. Chapter 1 provides
an overview of COMET, both from the standpoint of it being a host
micropro9rammable computer, and from the standpoint of its VAX
emulation. The two major parts of a microprogrammable computer
are covered next: Chapter 2 treats the microsequencer and
Chapters 3 and 4 deal with the Data Path. Chapter 5 is specific
to the VAX emulation. ·It describes the COMET mechanisms for
implmnenting the VAX interrupt and exception handling and memory
management functions. The report concludes with two examples of
COMET microcode. One was taken directly from the VAX emulation.
It is the execution flow for the IHDEX instruction. The other is
a new (unsupported, unasked for, and perhaps unwelcomed·I) special
purpose instruction for matching bit patterns. The intent was to
show how to go about designing your own new instruction.

1

TABLE OP CORTl)ITS

i. PREPACE

1. DITRODUCTIOR

2.

l.l overview of COMET
1.2 The VAX Emulation
1.3 User Microprogramming

TBB MICROSEQUBRCBR

2.1 The Multi-way Branch

2.1.1 The Branching Mechanism
2.1.2 Sources of Signals to be ORed

2.2 The Microstack

2.2.1
2.2.2
2.2.3

The Push Mechanism
The Pop Mechanism
Subroutine Control

2.3 The VAX-specific ROMS

2.3.1
2.3.2
2.3.3

Organization of the ROMs
Processing of the BUT codes
An example

3. TBE DATA PATB 1 PART I: THE ALU

3.1 Basic Functioning
3.2 The Single Bit Shift Operation
3.3 Special Functions - The ALU Control (ALPCTL) field

4. TBE DATA PATH, PART II: TSE SUPER ROTATOR AND THE
SCRATCH PAD REGISTERS

4.1 The Super Rotator

4.i.l 32 bit data output
4.1.2 Super Rotator Control (SRKSTA) status bits

4.2 The Scratch Pad R99isters

4.2.1
4.2.2
4.2.3
4.2.4
4.2.S

Uses of the Registers
Address Control
Write Control

"1'be Registe~ Back Up Stack
Scratch Pad Address (SPASTA) status bits

11

5. COMET IMPLEMENTATION OP VAX'S SYSTEM ARCHITECTURE

5.1 Interrupts and Exceptions
5.1.1 VAX Exceptions and Interrupts
5.1.2 VAX Exception and Interrupt Handling

Mechanisms
5.1.3 COMET implementation

5.1.3.l Detection and Branching
5.1.3.2 The •initiate• Microcode
5.1.3.3 A Consistent Machine State
5.1.3.4 More Detail: Timer Service and Software

Interrupts
S.l.3.5 Return from Exception or Interrupt (REI)

5.1.4 An Example

5.2 Memory Management

5.2.1 VAX Memory Management
5.2.2 COMET Implementation

5.2.2.1 Memory Management Microtraps
5.2.2.2 Re~execution of a Faulting

Microinstruction
5.2.2.3 Unaligned memory access service routine
5.2.2.4 ·Translation Buffer (TB) miss service

routines

5.2.3 An Example

6. MICROPROGRAMMING EXAMPLES

6.1 Example 1: The INDEX Instruction

6.2 Example 2: A user-defined instruction

APPENDIX: A List of Acronyms and their Meanings

iii

'CHAPTER l. IHTRODUCTIOll

1.1 overview of COMET

COMET is a microprogran\mable computer which was designed
specifically to emulate the VAX-11 architecture. It consists of
up to 16K words of control store, one 80 bit microinstruction per
word, a microsequencer, a 32 bit Data Path, a number of registers
which are needed to access COMET's main memory, and a number of

. status and control registers which are needed to emulate VAX.
Figure 1.1 is an overall block diagram of the COMET
microarchi tecture. Figure 1. 2 shows the fields of a COMET
microinstruction. The number associated with each field is the
section in this report where the use of that field is discussed
in detail.

* There are three major internal buses in COMET: the WBUS ,
the MBUS and the RBUS. The main bus is the WBUS. The output of
the ALU, unless inhibited, goes on the WBUS. Data to be written

· into memory and data to be written into the Scratch Pad registers
are taken from the WBUS. Status and control information are
passed to and from their particular registers via the WBUS. The
MBUS and RBUS provide sources for the Super Rotator and the ALU.
Data on the MBUS is primarily taken from the VAX main memory
interface registers and from the M scratch pad registers.. Data
on the RBUS is from the R scratch pad registers and the· Long

1 Literal Register.

The CCJilET Data Path consists of two sets of Scratch Pad
registers, a LONLIT register, the Super Rotator, the ALU, and two
special registers (D and Q). All are 32 bits wide. The ALU can
perform 2's complement arithmetic, BCD arithmetic, and logical
operations. There are two input ports to the ALU (A and B); both
are multiplexed. The MUX field controls the sources of the ALU,
the ALU field specifies the arithmetic or logical function to be
performed, and the DQ field controls the destination of the
ouput. The source of the carry input to the ALU is specified by
the ALUCI field. Input to the ALU can come from the RBUS, the
MBUS, the Super Rotator, and the D and Q registers. The output
of the ALU can be shifted or rotated (by itself, or combined with
the Q register); the type of shift is determined by the DQ and
ALUSHF fields. The output of the ALU can go on the WBUS and it
can go to the D or Q register. In addition, the ALU can perform
certain special functions (for example, a PAST MULTIPLY) where
the input and output are specified as part of the function. This

*The Appendix contains a list of the acronyms used in this
report, often with addltional commentary.

- 1-1 -

is done by coding the MUX, ALU and DQ fields as a single unit.
We call this the ALPCTL field.

;.....;(?

There are 5-6 Scratch Pad registers • Eight have two ports
(to the MBUS and the RBUS), eight can be accessed by the MBUS
only, and 40 can be accessed by the RBUS only. The particular
registers accessed during any microcycle are specified by the
MSRC and RSRC fields. Writing to the Scratch Pad registers is
controlled by the SPW field.

- 1-2 -

\JAX. ~·--'.
... w «.,.~

=~·

Htc,. •1 ~•"Ck.

t:.~ I

-----...---.J""
10

..._----~----------------1:M%~

·-;;;·TM I .
f Scr&M f'...(I ,.t·"" •-' I r9'.J,.r . •

:S&. I .
~/II

.

' . I .
I .

L.

\
•

' •

·-·_J

Figure 1.1 COMET Microarchitecture (Overview)

- 1-3 -

I

C.o-r

''S ,.t.. '' ,. " SI

[ill AL~l;F II i I
[(.OTSC..k]

LO~L•T

4.l

3

' ,,,
I
I ,. .,, .

(u"Tl.L I
4..1.

n n .. ~ 13' 11 lo

fc~ I WCT&&. I ~~~ I ~~~ ID~
c.1

[ALPC.TL I I CCPSL , ..
I C.C MlSC.

Pigure 1.2 The COMET Microinstruction

- 1-4 -

0

t.t

1£

I
• • .
I
I

The Super Rotator is a powerful combinational logic circuit.
It can barrel shift a 64-bi t data element, it can extract a
desired field from a given piece of data, and it can construct a
32-bit data element according to a variety of specifications.
This provides COMET with a very efficient bit manipulation
capability. The Super Rotator is controlled by the ROT field.

Immediate data of 9 or 32 bits can be entered into the Data
Path from the instruction stream under the control of the LIT
field. The LIT/LONLIT* micro-order causes the LONLIT register to
be loaded with Bits<62:31> of the microinstruction. This data is
then available in the next microinstruction; access to it is
controlled by RSRC. The LIT/LITRL micro-order causes Bits<39:31>
of the microinstruction to be made available as input to the
Super Rotator during the same microcycle.

The basic microcycle of the COMET architecture is 320 /nsec.
This is sufficient to read from the Scratch Pad registe-r-s/, pass
through the Super Rotator, perform an ALU operation, and write
back to a Scratch Pad register. Certain activities can cause a
microinstruction to need more than 320 nsec. For example,
suppose the address of the next microinstruction is to be
computed partly from the resuts of the ALU operation. We will
see that the microrder BUT/WX.EQ. O produces such a situation.
When this happens, the CLK field can extend the microcycle to 480
nsec.

COMET has no microprogram counter. The address of the next
microinstruction (CSA) is usually determined by the
microsequencer in one of several ways. The microsequencer can
generate a microbranch (up to 64-way conditional branch) based on
the values of certain internal signals specified by the BUT
field. The branch addresses are based on the contents of the
NEXT field and the values of these specified signals. Or the CSA
can be obtained by popping the microstack. Or the address can be
obtained from the IRDl or IRDX ROMs. The above schemes are all
under the control of the BUT field. In addition, the COMET
hardware can override these addressing schemes by forcing the CSA
(by means of a microtrap) to a fixed address. This last
technique is used for memory management and to initiate some of
the VAX exceptions and interrupts.

Control store addressing supports up to 16K of control store.
Actually, current hardware implementation contain only 9K of
control store. The low order 6K is required to emulate VAX and
the next 2K is dedicated to the Remote Diagnostic module (ROM}.
This leaves a possible BK address space for WCS, of which lK is
actually implemented.

* The notation <fie~-4>/<code> is used extensively throughout
this report. LIT/LONLIT represents the micro-order in which the
LIT field contains the LONLIT code.

- 1-5 -

Finally, COMET contains a number of features which are
specifically included to aid in the emulation of VAX. The PC,
MOR, WDR, Translation Buffer, and Execution Buffer are a few of
the registers which are used to control access through the CMI, a
32 bit wide synchronous bus, to the cache and VAX main memory.
The BUS field controls this access. The PSL, Software IPR,
Status Flags, Console and TUSS registers, ASTLVL register, and
the internal next interval register are a few of status and
control registers which are used to control interrupt and
exception processing. The WCTRL field controls these functions.

1.2 The VAX Emulation.

The purpose of this section is to provide an overview of how
COMET emulates VAX. The details of each mechanism are covered
more thoroughly in later chapters of this report.

The VAX registers are, for the most part, implemented in the
M and R Scratch Pads. In particular, RO through Rl2, FP, and SP
are implemented by R[lO] through R[lE] in the R Scratch Pad. The
stack pointers· are R[20] through R[24], the memory management
registers are R[28] through R[2D], the high order 16 bits of ICR
and NICR is R[2E], the PCBB is R[25], and the SCBB and SISR are
M[OE] and M[OF]. The rest of the VAX registers, including PC,
PSL, and ASTLVL are implemented by COMET registers designed
specifically for that purpose.

Emulation starts with the BUT/IRDl micro-order. This is the
signal to begin the emulation of the next VAX machine
instruction. In the microcode which emulates each VAX
instruction, this micro-order is present in the last
microinstruction.

BUT/IRDl causes two things to occur. It invokes a hardware
routine DOSERVICE which checks for traps and interrupts. If any
are pending, the processor will microtrap to the appropriate
control store address to initiate the trap or interrupt. Also,
it causes two bytes to be fetched from the instruction stream
(i.e., from the XB) and loaded into the IR and CSR. (The opcode
of the next VAX instruction is loaded into the IR; the first
operand specifier is loaded into the OSR). The XB (execution
buffer) is an eight byte register. The instruction stream is
prefetched automatically four bytes at a time and stored in the
XB. Each time the XB is accessed, the PC is automatically
incremented.

The processor then begins the emulation of the VAX
instruction. Usually it branches to common code to evaluate the
address of the first -operand. The branch address is obtained
from a ROM (the IRDl ROM) which is indexed by the opcode of the
VAX instruction, by whether the current VAX instruction was

- 1-6 -

previously suspended (i.e., if the FPD bit is set), and by
whether Floating Point Accelerator hardware is present. The
common code terminates with a BUT/IRDX micro-order which causes
the next control store address to be obtained from the IRDX ROM.
The rest of the operand addresses are computed and the VAX
instruction is emulated, terminating in a BUT/IRDl micro-order,
which starts the cycle again.

If the VAX instruction requires a memory access, a BUS read
or write initiates the access. COMET maintains a TB (translation
buffer) of PTE's, which are needed to map virtual addresses into
physical addresses. If the PTE is not present in the TB or if
the memory access is unaligned (VAX allows the user to disregard
natural word and longword boundaries), COMET microtraps (forces
the control store address) to a specific location to correct the
problem. The executing microinstruction is not allowed to
complete until the problem is corrected. '. If the problem is
corrected, control returns to that microinstruction.

If the emulation of a VAX instruction requires a sufficiently
long time that pending interrupts cannot be ignored, the VAX
emulation tests for interrupts under microprogram control. If an
interrupt is to be initiated,, the processor is put into a
consistent state by either undoing whatever processing has
occurred, or if that is not possible, by setting FPD and
following a prescribed procedure for •packing up" the relevant
machine state so that the VAX instruction can be restarted at the
point where it was suspended.

The initiation of exceptions and interrupts are emulated in
microcode. The branch to the starting address is caused by
either a microtrap in case the condition was detected by the
hardware (for example, by DOSERVICE), or by a microbranch in case
the condition was detected under microprogram control. In either
case the microcode selects the appropriate stack to service the
exception or interrupt, pushes the current PC and PSL as well as
any necessary parameters on that stack, puts the processor into a
consistent machine state, constructs a PSL for the service
routine, performs any special tasks peculiar to that exception or
interrupt, and loads PC with the starting VAX address of the
service routine. The microcode terminates in BUT/IRDl, the signal
to fetch the next VAX instruction, which is usually the first
instruction in the VAX service routine.

1.3 User Microprogra .. ing

There are three qeneral uses for microprogramming: emulation
of a target machine, instruction set enhancement, and fine
tuning. By instruction set enhancement, we mean addding new
machine language instructions to the machine instruction set. By
fine tuning, we mean -_dding a routine in microcode in order to
carry out a set of tasks (for example, an operating system
subro·utine) more efficiently than can be done in machine

- 1-7 -

latiguage.

A number of COMET features do support writing your own
microcode to augment the VAX instruction set or to fine tune some
piece of software. These features are discussed below. It is
not intended that COMET be used to emulate other target machines.

To support general microprogramming, the Data Path includes
the following features: 18 general purpose 32 bit scratch pad
registers, 8 of which have ports to both the RBUS and the MBUS;
the Super Rotator, which allows very efficient (in hardware) bit
picking operations; and a flexible ALU. As is the case with many
microprogrammable computers, inputs to the ALU are multiplexed,
the output of the ALU can be shifted or rotated (alone or in
combination with the Q register), and the output can be applied
to several alternative destinations.

The microsequencer supports general microprogramming in three
important ways: conditional branching loop control and
subroutine control. COMET has six independent flag bits (FLAGO
through FLAGS) which can be set or cleared under microprogram
control (e.g., MISC/SET.FLAGO), then later used for conditional
branching (e.g. BUT/FLAGO). COMET also has a five-bit step
counter which can be initialized to any arbitrary value (0 ~ n ~
31) by the microrder WCTRL/STEPC WB. If this is followed by a
loop which terminates with BUT/DBZ.SC, the loop will be performed
n times. Each iteration will conclude with a •decrement the step
counter and branch on zero.• In the case of subroutine control,
a 16-deep microstack is available for nested subroutine calls.
The JSR/PUSH micro-order pushes the CSA (control store address)
onto the microstack; the BUT/RETURN micro-order pops it. Chapter
2 discusses the functionality of the microsequencer in greater
detail.

COMET provides two independent paths to memory, one for data
(read/write) and one for instructions (read only). In the case
of data, the VA is used as the storage address register, and the
MDR (read) and WDR (write) are used as storage data registers.
In the case of instruction, PC points to memory and the XB can be
used as a storage data register. Both are available to the user
microprogrammer, and in fact were used in the VAX firmware where
two distinct Data Paths to memory were needed (cf. Section 5.2).

Finally, the COMET microinstruction (80 bits) provides a fair
amount of parallelism. In a single microinstruction, one can
introduce an immediate operand, perform an ALU function, push a
control store address on the microstack, set or clear a flag bit,
initiate a read or write to memory, and perform a multi-way
conditional branch.

Access to WCS is via the opcode FC in the VAX instruction
stream. As is described in Section 2.3 (branch on opcode) and
5.1 (initiate exceptions and interrupts), this causes an •opcode
reserved to customers• fault. If WCS is present and if the

- 1-8 -

System Control Block vector specifies that the exception should
be handled in WCS (i.e., SCB (14] <l: O> • 10 (binary) , then a
branch to a location in writeable control store occurs • From
this point on, user microcode has control of the micromachine.
The instruction stream (via XB) can be used as appropriate; the
VAX firmware is also available.

Control can be returned to the VAX emulation by means of the
BUT/IRDl micro-order. We should note that when an exception or
interrupt is to be handled in WCS, the PC and PSL of the
suspended process are not pushed on the stack (c.f. Section 5.1).
Therefore, before BUT/IRDl is invoked, the PC must be set to the
memory location of the VAX machine language program where you
want the firmware to take over. The micro-order WCTRL/PC WB
(load the PC with the contents of the WBUS) can accomplish this.

- 1-9 -

CHAPTER 2. TBE MICROSEQUENCER

The COMET microarchitecture contains no microprogram counter.
Unless the hardware overrides the microprogram the address of the
next microinstruction (i.e., the control store address-CSA) is
obtained in one of three ways:

1. from the NEXT field of the current microinstruction, ORed
with particular signals specified by the BUT field. (this is
the multi-way conditional branch mechanism).

2. from the microstack.

3. from the VAX-specific ROMs.

All are under the control of the Branch-U-test (BUT) field.
Figure 2.1 is an overview of the microsequencer operation.*

2.1 ~ Multi-way branch

For all but eight of the BUT codes, the CSA is obtained by
performing the logical-OR of the NEXT field of the current
microinstruction with the particular set of bits specified by the
BUT field. Section 2.1.1 describes the branching mechanism.
Section 2.1.2 delineates the sources of the signals to be ORed.

~~-----------------------------------~--
* We should point out that in the figures of this chapter, CSA is
illustrated as a separate register. In the actual hardware, the
CSA is really obtained from the microstack; i.e., from
USTK[USTKP]. See Section 2.2.

- 2-1 -

2.1.1 The Branching Mechanism

The general mechanism for forming the multi-way branch is
illustrated in figure 2.2.

'
8

·~ : C.SA

Figure 2.2

Bits <13:6> of the CSA are loaded directly from bits <13:6>
of the NEXT field of the current microinstruction. The source of
bi ts <S: O> of the CSA ,is determined by the particular BUT
micro-order. For each of these 6 bi ts, if the BUT micro-order
specifies a signal, then that bit of the CSA is the logical-OR of
the signal specified and the corresponding bit of the NEXT field.
If the BUT micro-order does not specify a signal, then that bit
of the CSA is the logical-OR of •o• and the corresponding bit of
the NEXT field. Table 2.1 is a complete description of this
specification. As can be seen from figure 2.3, the signals to be
ORed with bits from the NEXT field can come from a variety of
sources. Some of the sources, such as the VA register, DSIZE
latches,PSL,IR, and OSR are specific to the VAX emulation. Other
sources, such as the WBUS, MBUS, and FIAG bi ts are more general
microarchitecture structures.

Example hl_ BUT/FLAG2TOO specifies that three bits are to be
ORed as follows:

NEXT<2> is ORed with FIAG2
NEXT<l> is ORed with FLAGl
NEXT<O> is ORed with FIAGO

- 2-3 -

f,a.L.
fi" lCtl.o STAC IC..

Figure 2.1

TL.. M....k-..,d 13,.....(

(F,...... ...1... Nn T A.u .I
Oltc.(..,;K 'Sf&c.i &.:..../

Sat'"'' I)

The Microsequencer (Overview)

- 2-2 -

s=,.." ~L..
VAX­
S,U.a°Ac.

tof-t,

Thus, if the current microinstruction had the following value:

1• ,, "

the CSA for the next microinstruction would be

where x is the value of FIAG2, y is the value of FLAGl, and z is
the value of FLAGO. In other words, an 8-way conditional branch
has been produced.

In the example above, an 8-way branch was produced. If,
however, NEXT <O> had been set to 1, then the effect of FLAG O
would have been lost. The CSA of the next microinstruction would
have been

resulting in a 4-way branch. In general, it is possible to
produce a o-,2-,4-,8-,16-,32-, or 64-way conditional branch,
depending on the particular BUT code and the state of the six
low-order bi tf of the NEXT field. The actual no. of possible
branches is 2 , where k is the number of •relevant• bits in the
NEXT field which are cleared. A bit is relevant if it is
designated for ORing by the BUT code. In the above example, if
the current microinstruction had the value

13 f!S

f .. } 1141~ 11 fltJ 11 fl 11 I l

- 2-4 -

the CSA of the next microinstruction would have been

Hence, a 0-way (unconditional) branch would have resulted.

Example 2.2 BUT/NOP specifies that 0 bits are to be ORed.
The CSA ~the next microinstruction is identical to the NEXT
field of the current microinstruction. An unconditional
branch is the result.

Figure 2. 3 shows the flow of control for setting the CSA by
the multi-way branch mechanism.

2.1.1 Sources of Signals to be ORed.

The microsequencer provides conditional branch capability
based on a wide variety of relevant conditions in the
microarchitecture. This is accomplished by the choices of
signals to be .ORed which are available to the BUT field. For
example, the BUT/FPSl, BUT/FPS2, and BUT/FPS3 cause conditional
branching based on settings of the front panel switches. The
BUT/SPASTA micro-order causes conditional branching based on
signals relating to the Scratch Pad registers '(RNUM and Register
Back Up Stack). Several micro-orders (e.g., BUT/WBUS 1 too,
BUT/WBUS3lto30, and BUT/SRKSTA) provide branching based on
signals on the WBUS. Most of them use the WBUS signals directly.
However, the BUT/SRKSTA micro-order uses the combinational logic
capacity of the Super Rotator to reduce WBUS <7:0> to one of four
conditions, and provides those four conditions as SRKSTA <l:O> to
the microsequencer. The BUT/UVCTR micro-order provides
microbranch capability needed by the exception and interrupt
handling and the memory management microcode.

In add i t ion , COMET cont a ins two so u r c es wh i ch can be
considered part of the microsequencer: the 5 bit step counter and
the six independent flag flip-flops. The step counter can be set
to any value from 0 to 31 (WCTRL/STEPC WB) and then used to
control the number of iterations throu9n a loop. BUT/DBZ. SC
decrements the step counter and then performs a conditonal branch
based on whether or not the step counter equals o. The six flag
flip-flops can be set and cleared independently by micro-orders
in the MISC field, then later used to perform conditional
branching based on their state. For example, BUT/FLAGO permits
conditional branching based on the state of FIAGO. BUT/FLAG2TOO
permits an 8-way branch based on the states of FLAG2, FLAG!, and
FIAGO.

- 2-5 -

ALU

L

CSA

Figure 2.3 Microsequencer (The Multi-way Branch)

- 2-6 -

2.2 The Microstack

The microstack can be used to obtain the CSA of the next
microinstruction. In particular, an address can be pushed onto
the microstack (by means of JSR/PUSH) and later popped (by means
of BUT/RETURN or BUT/RET.DINH). The push and pop mechanisms, and
their usefulness in subroutine control, will be explained
shortly.

The microstack is capable of storing 16 CSAs, each of length
14 bits. A microstack pointer USTKP always points to the first
available word in the microstack. It is updated automatically as
a consequence of the push and pop operations. Figure 2.4 shows
the microstack with addresses 271, 345, and 18 stored in words
0,1, and 2, respectively. Word 3 is available for storing a CSA.

-

2.? I ·1f
3~$"

•8

1'' C.3
• . •

' 2.
3
4

IS

Figure 2.4. The microstack with valid entries in words 0,1,& 2.

Figure 2. 5 shows the flow of control for pushing addresses
onto the microstack and for popping them for use in obtaining the
CSA of the next microinstruction.

2.2.1 The Push Mechanism

During the execution of every microinstruction, the following
events occur relative to the microstack:

(1) During the first part of
examined. If it is set
pointer is increm~nted.

the microcycle, the JSR bit is
(i.e., JSR/PUSH) , the microstack

(2) During the second part of the microcycle, the output of the
CSMUX (i.e., the address of the next microinstruction) is
stored on the m icrostack, in USTK [UST KP]. In COMET,
USTK[USTKP] is the control store address register.

- 2-7 -

14

CSA

c."'-1r. 1 s+., c..

Figure 2.5 The Microsequencer {from the Microstack)

- 2-8 -

Therefore, for purposes of clarity in this report, we refer
to USTK[USTKP] as the CSA register whenever we are discussing
its function as the register containing the address of the
next microinstruction. Thus, in figure 2.5, CSA is shown as
a separate entity, although in reality, it is USTK[USTKP].

Note that loading the CSA regist~r (i.e., storing the address
of the next microinstruction is USTK [USTKPl) does not alter
the microstack pointer. Thus, loading the CSA register does
not push this address onto the microstack. In other words,
although the address is •physically" stored in the
microstack, it is stored just above the top of the
microstack; i.e., the location in which it is stored is still
• 1og ically• part of available space. The following example
should make this clear.

ExamEle 2.3 Consider the sequencing of the following
microcode:- (1 41• ,,

·~\,s I tJoP I I ~I
(I NOr I I "6 (Jr) : /.t'

t I ,.,., I I I I ID 't 3$"

[' I ..tor I l !! I 14 \:io
The microstack behaves as follows:

Before 0 Before 15 Before 35 Before 10 After 10
is fetched is fetched is fetched is fetched is executed

14-

I 1 I ' n

Note that before 15 is fetched, the CSA 15 is physically
stored in word 0 on the microstack. However, since the
microstack pointer is 0, the microstack is still • 1og icall y"
empty. Note, further, that the JSR bit is set (i.e., JSR/PUSH)
in the microinstruction at CSA 35. This calls for pushing CSA 35
onto the microstack. --The CSA 35 is stored on the microstack
during the execution of the microinstruction at 15. However, the
microstack remains empty until the first part of the microcycle

- 2-9 -

in which the microinstruction at CSA 35 is executed. Since the
JSR bit is set, the microstack pointer is incremented, thereby
completing the operation of pushing CSA 35 onto the stack. In
the second half of that same microcycle, CSA 10 is stored in word
l of the microstack. But the microstack pointer is not altered.
Thus, at the end of execution of that microinstruction (i.e.,
before 10 is fetched), the microstack pointer contains the value
1, signifying that word l is the first available space and that
word O contains a stacked CSA.

One final remark should be made with respect to the push
mechanism. Since every CSA is stored on the stack, indeed that
store operation is, in fact, the loading of the CSA register, no
additional time is required for pushing an address on the
microstack. That is, the machine does not wait until the
JSR/PUSH code is detected before stacking the CSA of the current
microinstruction. Thus, the push operation .. does not slow down
the processing.

2.2.2 The Pop Mechanism

The top of the microstack is popped and used to obtain the
CSA of the next microinstructio·n by the following sequence of
operations:

(1) UST KP <-- STKP - l.

(2) CSA<l3:6> <-- USTK[USTKP]<l3:6>
CSA<S:O> <-- USTK[USTKP]<S:O> + NEXT<S:O>

This sequence is caused by BUT/RETURN or BUT/RET.DINH.

Example 2.4 Consider the following current microinstruction
and contents of the microstack (all numbers in this example
are decimal representations):

724- ti>
3S- I

12. 2.
[...

- 2-10 -

47 41 ll

}1tETU._M \ ... \

After execution, the CSA of the next microinstruction will be
39. The microstack will be as shown:

714
39 l.._ __ 1__.l ,.STKP
12. l

•

Only the address stored in word 0 is •1ogically" on the stack.

2.2.3 Subroutine Control.

We conclude this section with an example of several nested
subroutines, and a demonstration of how the flow of control is
handled using the microstack.

• • •

Example 2.5 Consider a main microprogram which at CSA 110
invokes subroutine A, which in turn at CSA 275 invokes
subroutine B. Assume each microprogram has its
microinstructions executing in sequential order. A pictorial
representation is shown below:

PGM
1100-

- :10, ~ -...-.-..--.1 .. f'~Olliilll:t (0 "'

' 11 ••, S-.l,.-..f.t..c._ _____ ...,,: 1ro , A

\

' ' ' ' \
'~- _,

• ' • ,
•

- 2-11 -

:2co

... ,
i.U-o \

' ' ' ' \

' ' " S-.,11M.f.~ s
lllO

• • •

I : 110
I

' ' ' ' , --

The contents of the microstack at critical places in the
execution of the microprogram are shown below:

Before 110
is executed

After 110,
Before 250
is executed

"" :0
1

llO : ' ..--~-r""!!!'o_,.. ___ _. :i.

Before 190
is executed

I --,
uo
-a.1r
110

a

I I I

After 190
Before 276

'' 0

110

2.3 The VAX-Specific ~

Before 275
is executed

I Io

[i '

Before 450
is executed

uo
4&.ro
140

I L)

After 275,
Before 180
is executed

Ito

[
"I. '

After 450
Before 111

I t I

4.ro
'10

I " I

In the emulation of a VAX machine instruction, two places in
the microprogram flow of control stand out:

(1) the initiation of the microsequence to emulate the next
machine instruction, and

(2) the initiation of the microsequence to evaluate the next
operand for the current ·machine instruction.

Recall that a VAX instruction has variable length (each opcode
can have from Oto 6 operands), and further that the access type
and data type of each operand can differ depending on whether it
is the first, second, third, etc. operand of that opcode. For
these two reasons, the flow of control to initiate the emulation
of each machine instruction and the flow of control to evaluate
each operand must be specified individually for each opcode and
for each operand. The COMET microarchitecture provides three
ROMs (IRDl, IRDX, and DSIZE) to assist in this specification.

- 2-12 -

Figure 2. 6 shows the use of the ROMs to obtain the CSA of the
next microinstruction.

Six BUT codes use the ROMs for obtaining the CSA of the next
micro instruct ion. The BUT/IRDl code, present in the last
microinstruction of the microprogram which is emulating the
current machine instruction, is the signal to begin the emulation
of the next machine instruction. It uses the IRDl ROM to obtain
the starting address of the microcode to do this job. The
BUT/IRDX code, . present in the last microinstruction of the
microprogram which is evaluating the current operand, is the
signal to begin the evaluation of the next operand. It uses the
IRDX ROM or the microstack to obtain the starting address of the
microcode to do that job. The purpose of the four other BUT
codes (BUT/IRDlTST, BUT/BRA.ON.ADD, BUT/LOO.INC.BRA., and
BUT/LOO.BRA) will be explained after we describe the ROMs.

2.3.l Organization of the ~

THE IRDl ROM.

The IRDl ROM is used to compute the starting address of the
microcode which is to emulate the next VAX instruction. It
consists of lK words, each containing 8 bits. Thus, 10 bits are
required to address this ROM; that is, to determine the starting
address of the particular emulation microcode to be executed
next. They are:

(1) The opcode of the VAX instruction (8 bits),

(2) Whether or not the FPO bit is set, and

(3) Whether or not the Floating Point Accelerator hardware is
present.

The eight opcode bits are obtained directly from the XB, rather
than from the IR. The BUT/IRDl code initiates the loading of the
IR from the XB. However, to wait for the IR to be loaded before
obtaining the IRDl ROM address would be to unnecessarily slow
down the processing.

We need to distinguish the case when FPO is set from the case
where it is eleared because the emulation proceeds differently
for the two cases. If FPO is set, this means that the VAX
instruction was suspended in order to service an exception or
higher priority process. When that happened, the state of the
machine was saved (we say, •packed•). Before the instruction can
resume execution, it must be •unpacked.• Ergo, two different
branch addresses out of the IRDl ROM. Section 5.1 discusses this
in greater detail. -

- 2-13 -

Acldrcss

J:fDX ROM

1 K >t 15' J,i~.r

I

PSl <. FPJ>>

I

Aclclr~ s s

I:f.t>i tOM

l K -. 8 l..i.f..r

0000

Pigure 2.6 fhe Microsequencer (from the ROMs)

- 2-14 -

EMCoDElt

Also, we need to distinguish between the case where the FPA
hardware is present and the case where 1 t is not, since the
difference in hardware will result in different microcode to
emulate the instruction.

As we said, eight bits of information are stored at each IRDl
ROM address. The seven low order bits form a 14 bit address as
follows:

IS t 0

The rema in1ng bit, the high order bit, is cal led the OPSPEC
bit. Its function is to prepare for the evaluation of the next
operand. In the case of the IRDl ROM, if OPSPEC is set, it
performs the following functions:

{l) It causes the OSR to be loaded {from the XB) with the first
operand specifier of the current VAX instruction.

{2) It loads the DSIZE latches from the DSIZE ROM. The data type
of the current operand being evaluated is contained in the
DSIZE latches. Since an opcode with several operands can
have several different data types, the DSIZE ROM specifies
the data type of each operand of eacft opcode. The DSIZE ROM
is indexed by opcode and by the IRDCNT register, which keeps
track of which operand is being evaluated.

{3) It specifies that the four low order bits of the 14 bit CSA
formed above are to be ORed with a four bit encoding of the
addressing mode of the first operand specifier. Since the
operand is to be evaluated, and since that evaluation is a
function of the addressing mode of the operand specifier, the
branch address must take the addressing mode into account.

THE IRDX ROM

The IRDX ROM consists of 2K words, each containing 15 bits. As
in the case of the IRDl ROM, the high order bit is the OPSPEC
bit. It provides all the functions that the OPSPEC bit does in
the IRDl ROM, and in addition it increments the IRDCNT register.
The remaining 14 bits constitute a 14 bit address which is used
to obtain the CSA of the next microinstruction. As with the IRDl
ROM, this address is first aodified by an encoding of the
addressing mode of the operand specifier if the OPSPEC bit is
set.

- 2-15 -

The IRDX ROM itself is addressed by 11 bits, as follows:

1. The opcode (this time taken from the IR where it has been
present since the last BUT/IRDl micro-order). 8 bits.

2. Whether or not register mode.

3. Whether or not the Floating Point Accelerator is present.

4. The low order bit of IRDCNT.

As will be seen, the IRDX ROM is used to obtain a CSA only if the
second operand is being evaluated or if a branch to
opcode-specific execution code is to be takerr. The low order bit
of the IRDCNT is used to distinguish between these two cases.

DSIZE ROM

The DSIZE ROM consists of 2K words, each containing two bits.
The two bits specify the data type (whether byte, word,
longword, or opcode dependent) of each operand of each opcode.
Eleven bits are needed to address the DSIZE ROM. The eight high
order bi ts come from the opcode; the three low order bi ts come
from the IRDCNT register. The figure below shows the contents of
the DSIZE ROM pertaining to a typical <opcode>.

D'1ta .f: pe. oe OS 2.

1>ata ~ re- ot OS 3

Da-ta -4: r~ ot o s 4

DatG t~~ ol oss

1)~~ ~ f' J OS '

: < •rc-oA > 'JI
: < 0 rc.ocle.'> i

: <.o pcool. (, 1

: <orcoclc. '> 3

: <erco.fc. > 4-

Not \Ase.cL : <opc.o.i-. ,s ,_ ________________ ,......

Not 11.s~cL : <orco.Lt.>"
1------------------...1 pt.. oi OS 1 : <orcoolr. ~ 7 __________________

- 2-16 -

2.3.2 Processing of the !!!:!.! codes.

BUT/IRDl

The detection of BUT/IRDl in the current microinstruction is the
signal that this is the last microinstruction in the emulation of
the current machine instruction, and that the microarchitecture
is to begin processing the next machine instruction. The
hardware routine DOSERVE is invoked to initiate the service of
any interrupts which may be pending. If there are no higher
priority interrupts pending (or after they are serviced), two
bytes are fetched from the XB; the first is loaded into the IR,
the second is loaded into the OSR. Simultaneously, the IRDl ROM
is addressed. If the OPSPEC bit is not set, the loading of the
OSR is inhibited. In either event, the CSA is specified as
described in Section 2.3.l above. Whether or not the OPSPEC bit
is set, IRDCNT is forced to 7 at the beginning of the microcycle,
which allows the DSIZE latches to ·be set from the DSIZE ROM (in
case the OPSPEC bit is set), and then cleared to 0 at end of the
microcycle.

BUT/IRDlTST

The BUT/IRDlTST code is used to test the hardware. It functions
exactly like the BUT/IRDl code except that the CSA is taken
directly from the NEXT field of the microinstruction. This can
be used, for example, to test if the IR and OSR have been loaded
properly, the IRDCNT cleared, etc. without losing control of the
microinstruction flow. The next microinstruction executed is the
one at the address specified by the NEXT field, rather than the
one addressed by the ROM. Note that since the address specified
by the NEXT field would have NEXT<3: O> ORed with an encoding of
the addressing mode if OPSPEC is set, it may be desirable to
specify NEXT <3:0>=1111 to avoid that multi-way branch.

BUT/IRDX

The detection of BUT/IRDX in the current microinstruction is the
signal that this is the last microinstruction in the evaluation
of the current operand, and that the microarchi tecture is to
begin its next step. IRDCNT is examined. If IRDCNT is 0 or 1,
the IRDX ROM is addressed and the CSA is formed as described in
Section 2. 3.1. This ls the mechanism used for branching to the
microcode to evaluate the second operand and to beg in execution
of opcode-specific microcode. If IRDCNT is greater than 1, the
CSA is obtained by popping the microstack. In this case, the
loading of the OSR, incrementing the IRDCNT and further
addressing mode branching for the purpose of evaluating the
remaining operands is controlled in the subsequent microcode by
means of BUT/BRA.ON.ADD, BUT/LCD.INC.BRA, and BUT/LOO.BRA codes.

- 2-17 -

BUT/LCD.INC.BRA.

This code loads the OSR, increments IRDCNT, and determines the
CSA of the next microinstruction in the same way that BUT/IRDl
does with OPSPEC set. This code is used to evaluate operands
when the CSR has not been previously loaded.

BUT/BRA.ON.ADD

This code does not load the OSR, and does not increment the
IRDCNT. This code is used when the OSR has been previously
loaded and IRDCNT has been properly set. - The CSA of the next
microinstruction is formed as in BUT/LOO.INC.BRA.

BUT /LOO • BRA •

This code loads the CSR- and then forms the CSA as in
BUT/LOD. INC.BRA. The IRDCNT is not updated. This code is used
in evaluating the Base Operand Address in index addressing mode.
Since the BOA is the second operand address to be evaluated for
the one operand, the IRDCNT must not be changed.

2.3.3 AN EXAMPLE

We conclude this section with an example, showing how the BUT
codes are used in emulating a VAX machine instruction.

Example 2.6 Consider a VAX machine instruction having five
operands, with the fourth operand specifier designating index
mode. Figure 2.7 illustrates the flow of control to emulate
the machine instruction.

Emulation starts at (1), the last microinstruction of the
microcode which emulates the previous machine instruction.
BUT/IRDl is a signal to beg in the emulation of this machine
instruction. The IRDl ROM is addressed. Since OPSPEC=l the
OSR is loaded with tile first_operand specifier. The DSIZE
latches are set~ IRDCNT~7i" · IRDCNT is set to O and a
branch is taken to B, ·the microcode to evaluate the first
operand. Note that B (as well as C,E,F,G, and H) is common
code. It is independent of the opcode. It depends only on
the addressing mode of the operand specifier, and that
addressing mode was used in computing the branch address.

The last microinstruction in the evaluation of the first
operand (2) contains BUT/IRDX. Since IRDCNT=O, the IRDX ROM
is addressed, using IRDCNT <O> as part of its index. Since
OPSPEC=l, the OSR is loaded with the second operand
specifier, the DSIZE latches are set according to IRDCNT=O,

- IRDCNT is incremented, and a branch is taken · to C, the
microcode to evaluate the second operand.

- 2-18 -

The last microinstruction in C contains BUT/IRDX. Since
IRDCNT is still less than 2 (IRDCNT=l), the IRDX ROM is again
addressed. Since OPSPEC=l, the CSR is loaded with the third
operand specifier, the DSIZE latches are set according to
IRDCNT=l, IRDCNT is incremented, and a branch is taken to D.
The four low-order bi ts of the branch address would be
obtained by ORin9 the four low-order bits in the IRDX ROM
with an encoding of the addressing mode contained in CSR.
Thus, to insure that the branch taken is to D, it is
necessary to insist that the four low-order bi ts of D be
1111, and that the four low-order bits in IRDX ROM also be
1111. (Alternatively, we could have set OPSPEC=O, in which
case there would be no branching on addressing mode, and
there would be no such restriction on the nature of the
control store address D. In that case, the BUT micro-order
at (4) would have to be LCD.INC.BRA in order to load CSR and
update IRDCNT.)

The microcode starting at D is specific to the VAX machine
instruction being emulated.* After executing some number of
microinstructions (perhaps none) , the microinstruction at 4
is executed. This is a branch to E, the common microcode to
evaluate the third operand. The BUT/BRA.ON.ADD code is used
since the OSR has already been loaded and the IRDCNT has
already been incremented. Both occurred at (3). The
JSR/PUSH code is included to store the CSA of (4), on the
microstack.

The last microinstruction in E contains BUT/IRDX. Since
IRDCNT=2, the net effect is to pop the microstack, causing a
branch to (6) due to NEXT/l. In order to evaluate the fourth
ope~and, BUT/LOO.INC.BRA is used. This causes the CSR to be
loaded with the fourth operand specifier, IRDCNT to be
incremented, and a branch to the common code at F.

We have assumed that the fourth operand specifier designated
index mode. Index mode requires a second operand specifier
(called the base operand specifier) for this one operand. At
some point, therefore, we must load that operand specifier
and branch to the common code to evaluate it. We do not
increment IRDCNT since we are still dealing with the fourth
operand. This is accomplished by BUT/LCD.BRA at (7).

----~--------------------------------

* If that were not the case, for example, if the microcode at D
were common code used to evaluate the third operand, there
would be no way to return control to the emulation of the
current ma9hine instruction.

- 2-19

Processing continues in this vein until (11), at which point
all five operands have been evaluated. BUT/IRDX pops the
stack (IRDCNT=4) and control goes to (12), the microcode to
complete the emulation of the current VAX machine
instruction.

- 2-20 -

..--.,,-,-. -... -&.C-ii-.,f:-.. -aT.f.c.---, 'g (.1 ... • ·r --- => - r:

... ...,._,~'~u'!!"'"'"'!""W"o ... rc_t"i_._"_.1. __ ,.. I. ~;°' ~~ " ,~~ ~~ ,~,.
I ;

D

L--1!'="~··:::::.:·•~·~·~--"t:",..~r-"'-14 &.......... ,.,. '
P«• JO

A..--.&=;;;:.;.~--..... -----..... -:---1,~

.s.------i~--~ !-,
)At...£.. .i.
.,,,(.,..I.e. K....
r~ o,~

Figure 2.7 Microsequence Plow Using ROMs. (Example 2.6)

- 2-21 -

,,

BUTXB•20
CM.OOD.A00c21
1R.2T00=19
1R5=23
JR2='22
REGMOOE=24

fRO.FLTZ=2A
WBUS1T00=9
WDUS1TOO.NE.O•OE
WBUS5TOO=OS
WBUSO=OA
\\IAUS31 T030=1 B

WX.EQ.0:20
WX.NE.0=29
OCOCHK=26
SRkSTA=37
SPASTA=2E

lJ'able 2.1 BUT-0-nds.for Microsequencing

:--------+--------+----------+----------+--------------+----------------------------------+ ; CSA<S> : CSA<4> : CSA<3> I CSA<2> I CSA<1> CSA<O> l
;--------+--------+----------+----------+--------------+----------------------------------+

WB<5> WB<4>

I I I I
I I I I

I I I : BUT XB UTRAP :a 1. ELSE 0

WB<3>

I I I NOTE 2
l!R<2> : IR<1> I IR<O>

WB<2>

I
I
I
I

I
• I

I NOT.MBUS<15>
I WBUS<l>

' I I WB<1>

WD<31>

lR<5>
IR<.:2>
OSR<7:4>=5

WX<J1:0>.NE.O
WBUS<O.>
WBUS<1 :o>.NE.O
WB<O>
WB<O>
WB<30>

WMUX<31:0>.EQ.O
WMUX<31:0>.NE.O

(NOTE 8)
(NOTE 8)

CCBR=20 ;
CCSR1.CC0RO.IR0=35;
CCBRO.SRKSTA0•36
051ZE•31

CCBR<1>

SRKSTA<1>
SPASTA<1>
CCBR<1>
CCBR<O>
CCBR<O>
OSUE<1>

NOTE 1
SRKSTA<O>
SPASTA<O>
CCBR<O>
.NOT.IR<O>
SRKSTA<O>
OSIZE<O>
SC.EQ.O

(NOTE 6)
(NOTE 5)
(NOTE 7)
(NOTE B)

(LATCHES)
OBZ.SC=OC
WCSENA:s27

BR.SC-4.INT-TS=OO
MM. ALLOW. HJT=OB
1NT-TIMSERV=2B
CCBR1.JNT-TS=2C

FPD=OF
PSLC=25
PSLTP:s2F
UVCTR•1E
FPS1=34
FPS2=33
FPS3:s32
FLAG0•10
FLAG1•17
FLAG2•12
FLAG3=13
MM.N01NT=11
STACKflG:1A
FLAG2TOO= 16
fLAG1 TOO= g
F1 .XOR23=15

I
I

i
I
I
I
I
I
I
I
I
I
I

• I
I I

UVCTR<3>

NOTE 3

UVCTR<2>
NOT.HALT

FLAG2

FLAG2

NOTE 3
NOTE 4
.NOT.INT
CCBR<1>

UVCTR<1>
START<1>
BOOT<1>
ACLO

FLAG1

FLAG1
FLAG1
FLAG1

O=WCS PRESENT ANO ENABLED
1=WCS NOT PRESENT OR WCS DISABLED

NOTE 3

TIMSERV
I (1NT.OR.TIMSEAV).AND.NOT.CCBR<1>

PSL<27>
PSL<C>
PSL<TP>
UVCTR<O>
START<O>
BOOT<O>
FPLOCK
FL AGO

FLAG3
MM.NOINT
PSHSTACK
FL AGO
Fl AGO
FLAG2.XOR.FLAG3

(NOTE 9)
(NOTE 10)
(NOTE 11)

(FLAG4)
(FLAGS)

;--------+--------+----------+----------+--------------+----------------------------------+

CHAPTER 3. THE DATA PATH, PART I: THE ALU

The computational element of the COMET microarchitecture is
the Data Path. In this chapter, we discuss that part of it
consisting of the ALU, the D and Q registers, the ALKC, ALUSO,
and LOOP flags, and the necessary logic to support the relevant
fields of the microinstruction. We call this part of the Data
Path the ALU system. In Chapter 4, we will discuss the rest of
the Data Path, in particular, the Super Rotator and the Scratch
Pad registers.

Inputs to the ALU come from the RBUS, the MBUS, the Super
Rotator, and the D and Q registers. Output of the ALU goes to
the WBUS, the D register and/or the Q register. The ALKC flag is
set during add and subtract operations to reflect a carry out of
the ALU during addition oc a borrow for the most significant bit
during subtraction. The ALUSO and LOOP flags are used in the
multiply and divide operations. Figure 3.1 is an overall block
diagram of the ALU system.

The fields of the microinstruction that control the
functioning of the ALU are shown below:

'\ ''" '' '• C"'1 rr fl
n ,, ~• r_i n. rt n

I~ l T "T 1 ' 1 ' ' ' 1 T ' T ' I
I

M\J~ ALU i 1)Q..
'- l
~ ALUIM' A&.llC.t.

l l ALPC--r1..
lM l

.,, ., t

I
' ' C.o'T ~
' ... - - - - - --1.

We will study the ALU in several parts. In section 3 .1, we
identify the basic functionality of the ALU system: i.e., that
involving the ALUXM, ALUCI, MUX, ALU and DQ fields. In this
case, the inputs to the ALU are specified by the MUX, ALUCI, and
ALUXM fields. The function performed by the ALU is specified by
the ALU field, and the destination of the output of the ALU is
controlled by the MUX and DQ fields. In section 3.2, we show how
the ALUSHF field provides for shifting and rotating the output of
the ALU, the Q register, and both. In section 3.3 we discuss the
ALU special functions, wherein the 10 bit field ALPCTL specifies
as a unit the entire ALU operation (i.e., inputs, function, and
destination of output).

- 3-1 -

AL".IH,

r6 ' J. •

Pigure 3.1 ALU System - Overall Block Diagram

- 3-2 -.

Note that the above field specifications provide opportunity
for two sets of conflicts. The first set of conflicts involves
bits <57:48>. It is resolved in the following way. If the
ALPCTL field specifies one of the SO special functions (from a
set of 1024 possible codes), then that special funtion is
performed rather than the separately decoded MUX, ALU, and DQ
fields. For example, if bits <57:48> are specified as

[• ¢ft> I ' I ' OS as ' l

then the hardware performs the fast multiply operation
(ALPCTL/MULFAST), instead of setting the D register to the
logical-AND of the RBUS and the complement of the D register and
shifting the Q register one bit to the right {MUX/D.R2,
ALUOD/ANDNOT.OD, DQ/SQR.D •• WX).

The second set of conflicts involve bits <63:58>. This field
is also the ROT field which controls the Super Rotator (see
Section 4.1). This conflict is resolved as follows: If the MUX
field specifies that the output of the Super Rotator is to be an
input of the ALU or if the ROT field specifies the loading of
either of its two (P or S) latches (again, see Section 4.1), then
the ALUSHF field and the ALUCI field, are both disabled. Their
control functions operate as if the codes specified were o. The
ALUXM field, on the other hand, is not disabled. It continues to
function on the basis of the value in bit <63>.

3.1 Basic Functioning

The basic funtioning of the ALU is shown in Figure 3.2. The
ALU has three inputs: 32 bit ·A and B inputs and in the case of
arithmetic operations, a single bit carry input (CI). The A and
B inputs are both multiplexed under the control of the MUX field.
The CI input is multiplexed under the control of the ALUCI field.
The function performed by the ALU is specified by the ALU field.
The ALU generates a 32-bi t ouput and in the case df arithmetic
operations, a one bit carry out (ALKC). The destination of the
output of the ALU is controlled by the MUX field in conjunction
with the DQ field.

Table 3. 1 shows the multi pl ex ing of the A and B inputs
to the ALU. Sources for the AMUX are the MBUS, the RBUS, the
constant O, and the D register. In those cases where the MBUS
source as specified by the MSRC field is less than 32 bits, the
MBUS is sign or zero extended to 32 bits before it is· applied to
the AMUX. The ALUXM field specifies whether the extension should
be sign extend or zero-extended. Sources for the BMUX are the
RBUS, the output of the Super Rotator, the Q register and the
constant O.

- 3-3 -

s .. f"' i.JJ.,
f1. "---------~&Mr:~Tl:----------------1

JZ.

gMvX.

~~ ti>
~·._ Ah:l4'Ji' A'-"C

I
ti..-""'6- ,. s '- <. c: ~

1) ~IJTt".

Figure 3.2 Basic Functioning of the ALU

- 3-4 -

Table 3.2 shows the functions performed by the ALU as
specified by the ALU field. Note that certain functions specify
that the output of the ALU should be shifted one bit right or
left before being output to the WBUS, D register, or Q register.
The details of that shifting mechanism will be covered in the
next section.

The destination of the output of the ALU is controlled by the
MUX field in conjunction with the DQ field. The MUX field alone
controls whether or not the ouput of the ALU is to go on the
WBUS. Note the tr i-state device between the output of the ALU
and the WBUS (figure 3.2). If the MUX field specifies a binary
code of 1001 or 1101, the output is inhibited. For all other MUX
codes, the output of the ALU goes on the WBUS. In the case of
the D and Q registers, the MUX field acts in a bit steering
capacity for the DQ field. Table 3.3 shows the details of that
control. Note that in certain cases, the Q register is shifted
one bit to the left or right. Details of that shift mechanism
will be covered in the next section.

3.2 The Single Bit Shift Operation

As was stated in Section 3.1, the Q registe~ and the output
of the ALU can be shifted one bit left or right before being
applied to their respective destinations.. Four fields are
involved in the control of the shift operation. The ALU field
(cf. Table 3.2) specifies whether the output of the ALU is to be
shifted right, left, or not at all. The MUX and DQ fields (cf.
Table 3.3) specify whether the Q register is to be shifted right
or left or not at all. The ALUSHF field specifies the bits to be
shifted into the Q register and to the output of the ALU. Table
3.4 delineates the ALUSHF specification.

Two of the codes in T4bl e 3. 4 (ALUSHF /SHF and ALUS HF /ROT)
require some explanation. In these two cases the ALU output and
the Q register can be treated as if they were a 64 bit register.
Figure 3. 3 illustrates the shift operation for each of the 16
cases.

3.3 Special Functions - The ALPCTL field

The field <57:48> has 1024 possible codes. For all but 50 of
them, the MUX, the ALU, and DQ fields are decoded as described in
Section 3.1 to determine the functioning of the ALU system. In
the remaining 50 c~ses, the 10 bits are decoded as a

- 3-5 -

AL'1 /sHF

I

' - - -
I - -

I ¢

I ALU

Cl-. _~
- - -

- - --- - -
\ ALIJ I

- -
I AL" I WB\l.S<l•>~

-- -
- -

t 4\]
~&<l'~ ~] I -

I ((cal

~ • Ci.<71~~

Figure 3.3 Shift Operation for ALUSBF/SBF and ALUSBF/ROT
Micro-orders

- 3-o -

unit (i.e., the ALPCTL field) to specify the functions to be
performed. Figure 3.4 is a block diagram of the data flow for
the ALPCTL functions. Table 3.5 lists the SO functions.

Note in particular the multiply and divide operations which
are implemented respectively as sequences of shifts and adds and
subtracts. The ALUSO and LOOP flags are provided to aid in the
microprogramming of these operations. Consider, for example, the
multiply routine. LOOP is set during the first iteration of a
multiply routine and then used to control subsequent iterations.
ALUSO is the bit shifted out of the ALU. Since multiply is
implemented as a sequence of shifts and adds, ALUSO contains the
low order bit of the multiplier which is used to determine
whether or not the multiplicand should be added to the partial
product.

- 3-7 -

•

Figure 3.4 Data Plow for the ALPCTL functions

- 3-8 -

Table 3.1 Sources for the A and B inputs to the ALU

MUX A input B input

0000 MBUS RBUS

0001 MBUS RBUS

0010 MBUS 0 REGISTER

0011 MBUS 0 REGISTER

0100 MBUS Super Rotator

0101 Ext. MBUS RBUS

0110 Ext. MBUS Q Register

0111 Ext. MBUS Super Rotator

1000 D Register RBUS

1001(0)* D Register RBUS

1001(1)* D Register Constant 0

1010 D Register 0 Register

1011 D Register 0 Register

1100 D Register Super Rotator

1101 Constant 0 Super Rotator

1110 RBUS Q Register

1111 RBUS Super Rota tor

*
Bit <49> is steering bit for MUX/1001

- 3-9 -

Table 3.2 ALU Function Control of the ALU

ALU FUNCTION

0000 A - B - CI

0001 A - B - CI in BCD

0010 A - B - CI and shift the result right one bit

0011 A - B - CI and shift the result left one bit

0100 A + B + CI

0101 A + B + CI in BCD

0110 A + B + CI and shift the result right one bit

0111 A + B + CI and shift the result left one bit

1000 logical-AND (A,B)

1001 logical-OR (A,B)

1010 logical-AND (A,B) and shift the result right one bit

1011 logical-AND (A,B) and shift the result left one bit

1100 B - A - CI

1101 exclusive-OR (A,B)

1110 logical-AND (A, not B)

1111 logical-AND (not A, B)

- 3-10 -

Table 3.3 MUX, DQ Control of D and Q Registers

If MUX/1001 (Binary)

DQ field Q D

* ** 00 1 l
01 2 l
10 l 1
11 2 1

If MUX/(0001 or 0011 or 1011)

DQ field Q D

00 1 2
01 2 2
10 1 1
11 2 1

If MUX/anything else

DO field Q D

00 3 2
01 4 2
10 3 l
11 4 l

*Numbers in this column are taken from the QMUX.inputs in Figure 3.2

** Numbers in this column are taken from the DMUX inputs in Figure 3.2

- 3-11 -

Table 3.4 ALUSBF control for the Single bit Shift Operations

ALUSBF ALU

ZERO 0 0

ONE 1 1

SHF Shift ALU'Q together (see figure 3.3)

ROT Rotate ALU •~o together (see figure 3.3)

ALUO.Ql 0 1

ALU l.QO 1 0

WBUS30 WBUS<30> WBUS<3 O>

PSLC PSL<C> PSL<C>

- 3-12 -

Table 3.5 ALPCTL Special Functions

ALPCTL code RESULTS

WXDQ.QD
WX-D-Q.Q-M
wx--o~.o-o
WX D R.Q M
wx-D-R.Q-XM
wx-D-s.o-o
WX_D S. Q R
WX D S.Q XM
wx o:-o_D­
wx Q.Q·· M

.wx-R.Q-D
wx-R.Q-M
wx-R.Q-XM
wx-s.o-o
wx-s.Q-R
WX S.Q XM

WX D Q S wx_o_s_
wx-o s
wx s
WX-D Q .NOT.S
WX-D-.NOT.S
wx o:.NoT.S
WX .NOT.S

WX D DSL. SQL
WX-0-DSL. SQR
wx-D-DSR. SQL
WX D DSR.SQR

WB LOOPF
WB-LOOPF.Q 0
WB-LOOPF.D-0
WB-LOOPF.Q-D 0
WB-ALUF - -
WB-ALUF.Q S
WB-ALUF.D-S
WB ALUF.Q D_S

WMUX,D
WMUX,D
WMUX,D
WMUX,D
WMUX,D
WMUX,D
WMUX,D
WMUX,D
WMUX
WMUX
WMUX
WMUX
WMUX
WMUX
WMUX
WMUX

<-- Q OLD
<-- Q OLD
<-- RBUS
<-- RBUS
<-- RBUS
<-- SUP ROT
<-- SUP ROT
<-- SUP ROT
<-- Q OLD
<-- Q OLD
<-- RBUS
<-- RBUS
<-- RBUS
<-- SUP ROT
<-- SUP ROT
<-- SUP ROT

Q <-- D OLD
Q <-- MBUS
Q <-- D OLD
Q <-- MBUS
Q <-- S/Z MBUS
Q <-- 0
Q <-- RBUS
Q <-- S/Z MBUS
Q <-- 0
Q <-- MBUS
Q <-- 0
Q <-- MBUS
Q <-- S/Z MBUS
Q <-- 0
Q <-- RBUS
Q <-- S/Z MBUS

WMUX,D&Q
WMUX,D
WMUX,Q
WMUX
WMUX,D&Q
WMUX,D
WMUX,Q
WMUX

<-- SUPER ROTATOR
<-- SUPER ROTATOR
<-- SUPER ROTATOR
<-- SUPER ROTATOR
<-- .NOT.(SUPER ROTATOR)
<-- .NOT.(SUPER ROTATOR)
<-- .NOT.(SUPER ROTATOR)
<-- .NOT.(SUPER ROTATOR)

WMXU,D
WMXU,D
WMXU,D
WMXU,D

<-- D SHF LEFT Q <-- SHF LEFT
<-- D SHF LEFT Q <-- SHF RIGHT
<-- D SHF RIGHT Q <-- SHF LEFT
<-- D SHF RIGHT Q <-- SHF RIGHT

WB<31:30> <-- O'LOOP FLAG
WB<31:30> <-- O'LOOP FLAG Q<-- 0
WB<31:30> <-- O'LOOP FLAG D<-- 0
WB<31:30> <-- O'LOOP FLAG Q&D <-- 0
WB<31:30> <-- ALUS 0 'ALKC
WB<31:30> <-- ALUSO'ALKC Q <-- s
WB<31:30> <-- ALUSO'ALKC D <-- S
WB<31:30> <-- ALUSO'ALKC Q&D <-- s

- 3-13 -

MULFAST+
MULSLOW+
MULFAST­
MULS LOW­
DIVFAST+
DIVS LOW+
DIVFAST­
DIVS LOW­
REM
DIVDA
DIVDS

MULTIPLY +RBUS BY Q
MULTIPLY +RBUS BY Q
MULTIPLY -RBUS BY Q
MULTIPLY -RBUS BY Q
DIVIDE Q BY +RBUS
DIVIDE Q BY +RBUS
DIVIDE 0 BY -RBUS
DIVIDE Q BY -RBUS
UNSHIFT REMAINDER
DIVIDE DOUBLE ADD
DIVIDE DOUBLE SUB

- 3-14 -

(2 ITERATIONS
(l ITERATION
(2 ITERATIONS
(l ITERATION
(2 ITERATIONS
(l ITERATION
(2 ITERATIONS
(l ITERATION
(RBUS MUST BE

PER CYCLE)
PER CYCLE)
PER CYCLE)
PER CYCLE)
PER CYCLE)
PER CYCLE)
PER CYCLE)
PER CYCLE)
0)

CHAPTER 4. THE DATA PATH, PART II: THE SUPER ROTATOR AND THE
SCRATCH PAD REGISTERS

This chapter continues the description of COMET's Data Path
with discussions of the Super Rotator and the Scratch Pad
registers. The efficient bit manipulation capability of the
Super Rotator and the easy accessibility of the Scratch Pad
registers make these features very useful to the user
microprogrammer.

4.1 The Super Rotator

The Super Rotator consists of two powerful combinational
logic circuits and the six bit POSITION and SIZE latches. The
purpose of the Super Rotator is to generate two outputs: a 32
bit data element and a two bit status code (SRKSTA <l: 0>).
Figure 4.1 is an overall block diagram of the Super Rotator.

Inputs to the Super Rotator are obtained from the three
microarchitecture buses (MBUS, RBUS, and WBUS) and from the DSIZE
latches. In addition immediate input data is available from the
LITRL field of the current microinstruction. The 32 bit data
output is applied to the B input of the ALU (cf. Section 3.1).
The two bits of status information is applied to the
microsequencer for use as a four-way branch (cf. Section 2.1).
The Super Rotator is controlled by the ROT field (Bits <63: 58>)
of the current microinstruction.

As will be seen in the examples of tis section, the primary
usefulness of the Super Rotator comes from the fact that the
large combinational circuits provide a great deal of
bit-manipulation capability at a much faster speed than could be
done in microcode.

4.1.l 32 Bit Data Output

There are 64 ways in which the Super Rotator can produce its
32 bit data output, one for each of its 64 ROT m·icro-orders.
They are listed in Table 4.1. Several are explained below, along
with examples.*

* In each of the examples of this section, MBUS=31323334 (hex),
RBUS=35363738 (hex), POSITION latch• 22 (decimal), SIZE latch
• 17 (decimal), DSIZE latches= lO(Binary), and LITRL = 032
(hex).

- 4-1 -

lL

To IMUX.

t .. ,.4- J ALU

Post,.,.,.... i 11'1"
C.. A TCW C.ATCM

'

2..

SlK.STA < I : t/I>

T. .Jl...

figure 4.1 Super Rotator - Overall Block Diagram

- 4-2 -

(1) Extract and zero extend. The two 32 bit inputs specified by
the ROT code are concatenated, forming a 64 bit element.
From this, s bits (the SIZE), starting at bit p (the
POSITION) are extracted. The 32 bit output is formed by
adding 32-s high order O's. The general mechanism is shown
below:

Specific cases are shown in Examples 4.1 and 4.2.

Example 4.1. If ROT/XZ.MM is specified, the Super Rotator
concatenates M'M (recall from the footnote on page 4-1 that the
M~US contains the hex number 31323334)

extracts

and outputs

I l 1 n l'l 13 4 \ , '. 'l 1. 1 'l l 4 ~ 1 "u)
I '1~

\ o "o, 0000 "oo 01 oo I ci.; ..)

\ooooooc.41 ("'u.)

- 4-3 -

As is the case in many of the ROT codes, the SIZE latch
specifies the number of bits to be extracted, and the POSITION
latch specifies the position of the low order bit.

Example 4.2
outputs

If ROT/XZ.VPN is specified, the Super Rotator

Note that in example 4.1, the size and position of the fields
to be extracted are specified by the SIZE and POSITION latches
respectively. In example 4.2, the size and position are
constants specified by the ROT/XZ. VPN code; i.e., size is 21,
position is 09. The ROT code specifies the number of bits to be
extracted (or shifted or rotated) and the position of the
low-order bit. The ROT code can specify these numbers as
constants, as in ROT/XZ.VPN, or as quantities to be evaluated, as
in ROT/XZ.MM.

(2) Clear bytes. The MBUS is used as the input, the spec if ied
number of low order bytes are cleared, and the result is
output.

Example 4.3.
outputs

If ROT/CLRJBM is specified, the Super Rotator

(3) Rotate. The two 32 bit inputs specified by the ROT code are
concatenated, forming a 64 bit element. The result is
rotated (i.e., shifted end-around} the specified number of
bits, and the low order 32 bits are output.

Example 4.4. If ROT/RL.RM.PS is specified, the Super Rotator
concatenates R'M

\ 1n" l 7 n 1 'l' n J ~ 14 I ,

- 4-4 -

rotates left seven bits - since (22+17) mod 32 • 7, and outputs

(4) Convert Numeric to Packed. The VAX-11 architecture provides a
numeric data type where each decimal digit is stored in one
byte, an~ a packed data type where two· decimal digits are
stored in one byte. The Super Rotator prov ides the
capability for converting data from one type to the other.

Example 4.5. The ROT/CVTNP code takes the 8 bytes specified
by M'R and produces the 32 bit output shown

(5) Pack and Unpack Floating Point Fraction. The VAX-11
architecture stores a floating point numoer in four bytes, as
follows:

,, ,, " 14 ., ' .
l \s\ ar I ttrcwF I

where S • the sign bit, EXP == the exponent in excess-120
code, BIGHF • the high order bits of the fractional part,
LOWF • the low bits of the fractional part. The fractional
part consists of 24 bits. The redundant most significant bit
is not stored. The next 7 bits, in decreasing order of
significance, are stored in bits 6 through O. The next 16
bits, in decreasing order of significance, are stored in bits
31 through 16.

- 4-5 -

The Super Rotator provides the capability for recombing the
fractional part in a more useable form.

Example 4.6 If ROT/GETFPF is specified, the Super Rotator
takes· the data on the MBUS and RBUS and ·produces the 32 bit
output shown below:

[
ftlUS

Note that the redundant most significant bit is now present
(Bit <30> of the output), and that the 24 bit fraction is
combined in its useable form (Bits <3u:7>). Note also that
the low order bits (<6:0>) contain the exponent, no longer in
excess-code.

Example 4.7. To recombine the floating point number into its
VAX-11 floating data type, ROT/FPACK is used. The Super
Rotator takes the data on the MBUS and RBUS and produces the
32 bit output shown below

3' It' 1.¥ ' 7 0

(0011000\•ooU Oo\OOO"•ot\ \: ... CU.$ '
,, " tt' ., •

{•\••II 00\0001• ••• 13•nto••}oon-•\

Note that before ROT/FPACK can be used, the fractional part (on
- 4-6 -

the MBUS) first must be shifted left until the most significant
bit is shifted out, and that the exponent (on the RBUS) first
must be expressed in excess-128 code.

(6)

(7)

Constants. The ROT field can specify that the 32 bit output
be one of the following constants: O, -1, 1, 2, 4, or 8.
Specification of the constant 1, 2, 4, or 8 is by means of
ROT/CONX.SIZE. Which one is output is determined by the
state of the DSIZE latches, i.e., by O, l, 2, or 3
respectively.

Literal. The ROT field, together with the LITRL field can
specify a 32 bit field which is particularly useful for
masking operations. The nine bit LITRL field is extended to
32 bits by 23 O's or 23 l's and then rotated a specified
number of nibbles. The result is a 32 bit mask such that the
nine-bit LITRL field is properly aligned.to make the desired
test, and the other 23 bi ts are all 0 's or all 1 's as is
necessary for the test.

Example 4.~
produces

If ROT/OLIT8 is specified, the Super Rotator

(FF F E 11.. ~ F

4.1.2 SRKSTA Status Bits.

The Super Rotator also produces a two bit code containing
status information relating to the state of certain signals in
the microarchitecture. Recall that these two bits SRKSTA <l> and
SRKSTA <O> are applied to the microsequencer for use as a
four-way branch.

- 4-7 -

Table 4.2 shows the specification of the two status lines. Note
that the ROT field has been relabeled ROTSRK, and the 64
micro-orders have been relabeled with more relevant mnemonics, as
well.* The specification of SRKSTA <l: O> for absolute value
check, ASCII sign check, and for WBUS range check will be
described below. The other micro-orders are more
straightforward, as shown by examples 4.9 and 4.10.

Example 4.9. ROTSRK/DSIZE.020 specifies that the SRKSTA
<l:O> will be formed as follows:

SRKSTA<l> • l iff DSIZE <l> = l
SRKSTA<O> • l iff DSIZE <O> • l

with the result that the SRKSTA <1:0> code conveys the status
of the DSIZE latches.

Example 4.10. ROTSRK/PL.EQ.O.SIGN.120 specifies that the
SRKSTA <l:O> code conveys the state of the POSITION latch, as
follows:

SRKSTA<l:O>

OU
01
10
11

POSITION LATCH

POSITION LATCH • 0
POSITION LATCH • 16
l< POSITION LATCH < 15
POSITION LATCH > 16

------------~-----------------------
* Recall from the introduction to Chapter 3 that a possible
conflict can exist between the ROT field (Bits <63:58>) and the
ALUSHF {Bits <62:60>) and ALUCI (Bits <59:5d>) fields. In
particular, if the ROT field specifies loading either POSITION or
SIZE latch, or if MUX specifies the output of the Super Rotator
as the B input to the ALU, the ALUSHF and ALUC I default to 0.
However, if the ROT field is only concerned with SRKSTA<l:O>,
then the ALUSHF and ALUCI are available. The relabeling of Bits
<63:S8> in Table 4.2 is intended as a convenience to the
microprogrammer, allowing the selection of the appropriate ROTSRK
micro-order to control both SRKSTA<l:O> and ALUSHF-ALUCI, as
well.

- 4-8 -

(l) Absolute Value Check. The condition tested is the absolute
value of the low order byte on the WBUS.

Example 4.11. ROTSRK/ABSVAL.163.D specifies that SRKSTA
<l:O> will be formed as follows:

SRKSTA<l> = l iff WBUS<7> = 0
SRKSTA<O> = l iff the absolute value of WBUS<7:0>

is greater than or equal to 32.

The SRKSTA<l:O> code conveys the following information:

SRKSTA<l:O> WBUS<7:0>

00 -31 < WBUS<7:0> < -1
01 WBUS<7:0> < -32
10 0 < WBUS<7:0> < 31
11 WBUS<7:0> > 32

(2) ASCII Sign Check. The condition tested is whether or not the
low order byte on the WBUS is an ASCII sign.

Example 4.12. ROTSRK/ASCIISIGN.050 specifies that SRKSTA
<l:O> will be formed as follows:

SRKSTA<l> = l iff WBUS<7:0> .NE. (32,43,45)
SRKSTA<O> = l iff WBUS<7:0> .NE. 45

The SRKSTA<l:O> code conveys the following information:

SRKSTA<l:O>

00
01
10
11

WBUS<7:0>

ASCII "-"
ASCII •+• or •space"
not possible - machine error
not an ASCII sign

(3) WBUS Range Check. The condition tested is the unsigned value
of the low order byte on the WBUS.

- 4-9 -

Example 4.13. ROTSRK/WBRANGE.1310 specifies that SRKSTA
<l:O> will be formed as follows:

SRKSTA<l> = 1 iff WBUS<7:0>, as an unsigned
integer, is greater than 31.

SRKSTA<O> = 1 iff WBUS<7:0> .NE. (1,32)

The SRKSTA<l:O> code conveys the following information:

SRKSTA<l:O>

00
01
10
11

WBUS<7:0>

1 < WBUS<7:0> < 31
WBUS<7:0> = 0
WBUS<7: O> = 32
WBUS<7:0> > 32

4.2 The Scratch Pad Registers

A register file is a set of very fast access storage
registers. Almost every microprogrammable computer has one.
Efficient emulation requires that the host machine have one
available both for the purpose of storing frequently used
constants and intermediate results and for the purpose of
identifying the target machine's processor registers. COMET is
no exception. Its register file consists of 48 R Scratch Pad
registers, 16 M Scratch Pad registers, and a Long Literal
register.* All are 32 bits wide.

Two other structures are associated with the Scratch Pad
registers, a four-bit RNUM register and a six-deep Register
Back-Up Stack. RNUM is used for addressing both R and M Scratch
Pad registers. The Register Back-Up Stack is used to restore the
contents of the VAX general purpose registers (implemented with
Scratch Pad registers) if it is necessary to undo the partial
emulation of a VAX machine instruction in order to service an
interrupt or exception. The state of RNUM or the state of the
Register Back Up Stack is available as a two-bit status code
(SPASTA<l:O>) for use by the microsequencer in performing a
four-way branch • . --

Actually this is not quite correct; there are really eight
fewer registers. This is because eight (i.e., RSP[OO] through
RSP[07] and eight of the 16 M Scratch Pad registers (i.e., MSP[O]
through MSP[7]) are actually the same eight registers, accessible
to both MBUS and RBUS.

- 4-10 -

Addressing the Scratch· Pad registers is controlled by the
RSRC and MSRC fields of the current microinstruction. Writing is
controlled by the SPW field. Figure 4. 2 is an overal 1 block
di~gram of the Scratch Pad registers.

4.2.1 Uses of the Registers

The 16 M Scratch Pad registers (MSP [O] through MSP [F]) are
used as follows:

(1) MSP[O] - MSP[A] are general temporaries; i.e., they are
available for storing intermediate results. The first eight
of them are dual port registers. They can be referenced as M
registers or as R registers; that is, MSP[O]=RSP[O],
MSP[l]=RSP[l], ••• MSP[7]=RSP[7].

(2) MSP[B] and MSP[C] have been designated for storing special
values. MSP[B] stores the error code which is needed in the
subsequent processing of VAX memory faults and arithmetic
traps {see chapter 5). MSP[C] stores the FPD pack routine
offset which is used in the initiation of an interrupt or
exception if it is necessary to suspend the emulation of a
VAX instruction and if it is not possible to undo the
processing which has already occurred. {See Section 5.1.3.3).

(3) MSP [D] is one of six temporary registers allocated to the
memory management microcode.

(4) MSP[E] and MSP[F] have been designated as VAX internal
processor registers. MSP[E] is the System Control Block Base
register. MSP[F] is the Software Interrupt Summary
register. Both are used in the servicing of interrupts {see
Section 5.1).

The 48 R Scratch Pad registers {RSP[O] through RSP[2F]) are
used as follows:

(1) RSP[O] through RSP[D] and RSP[lF] are general temporaries.
Recall that the first eight of them are dual port registers
and correspond to MSP[O] through MSP[7].

(2) RSP[E], RSP[F], RSP[26], RSP[27], and RSP[2F] are five of the
six temporary registers specifically allocated to the memory
management microcode. The remaining one is MSP[D].

(3) RSP[lO] through RSP [lE] have been designated as VAX general
purpose registers RO through Rl4. VAX uses Rl3 as its frame
pointer (FP) and Rl4 as its active stack pointer {SP).

- 4-11 -

LOWl.IT

Jl.

wsus

io: VA~ ICSI'
it: VAX. rsP
ia ~ VAl ssf'
v: vt.). usf

~ VA'l 11f

ir: ~A1' rca
\ "" 1'(1ft1.

17' MM TD"J S
u , ,,.,. ,,,i. r

:~AJ Pot.I... A
:'/Al Pl I(

S:VAI ttLl
c : -/AY.. flt
20:'/~X SLl
af :t/Af tc«..
2 f l "" '""'' D\IT

OUT
LO(IC..

Scr.-k...t ~J~M~s~Al:.....-----------~-+----i
....... AJ.Jrtrr

c,_ft.I

DATA '"'
10: 'IA--. l-
11: '/AX A I
l'L : VA 'I. IU ..
12: VAX ,,
14: \/~'I.
It i -/~Y. l.f
,, : VAX I-'
11 : '/~X 1.7 S
II : 'IA~ 2 r f
rt: ~Al R, A
t. : '/Al It''
I·. ~~x i11

IC: t//.l ~t1.
11> ~ 'IA• f'
If = "/f J. sr
IF :J«elc -rin•

a OU1

s

l~PA

"1A 1.a

1: lTr..t s
i· trott~
A: "-rw '•

0 ~ 1-/11 Tell 0

I: P./ f't -,.., '

t f ' '" .,..., 1.._

1: ~" -retl 1
+:f./P\ _....,._ S,A

(: ""' 'ftl'll (' ': ~" .,,,., '
7, g./'1 1rft'7

.,__

D#tt'A tftl

f: '"'"' f
't:tt1lltr 1

•= l:fatf" s
C: f.19111~ ~
1): l Tflt/ ''

f:"114fatf

~·lfftrl IO J

i:"f:t, ~
C•r:fF1.-r
i) : "" tCMI
c:~-1. sc&O

f: ,..., 18" ' f~AX SlSl

OM~ O«

Figure 4.2 Scratch Pad Registers - Overall Block ~iagram

- 4-12 -

(4) RSP[20] through RSP[25] and RSP[28] through RSP[2E] have been
designated as VAX internal processor registers.

The Long Literal Register is used to store 32 bits of
immediate data obtained from the LONLIT field of the current
microinstruction. If LIT/LONLIT is specified, the Long Literal
register is loaded with the contents of <62:31> of the current
microinstruction.

Table 4.3 delineates the uses of the 48 R Scratch Pad and 16
M Scratch Pad registers.

4.2.2 Address Control

The Scratch Pad registers are addressed by the MSRC or RSRC
field of the current microinstruction either directly, or in
conjunction with the RNUM register.

Example 4.14 If MSRC/TEMP6 is specified, MSP[6], the dual
port M Scratch Pad register TEMP6 is addressed. If MSRC/SCBB
is specified, the System Control Block Base register is
addressed. If MSRC/TEMP. R+l is specified and if RNUM
contains the value E (hex), then MSP [F], the Software
Interrrupt Summary Register is addressed.

Example 4.15 If RSRC/DST.RORl is specified, the R Scratch
Pad register addressed is determined as follows: If RNUM is
odd, say it contains the value 2k+l, then RSP[2k+l] is
addressed. If RNUM is even, say it contains the value 2k,
then RSP[2k+l] is addressed. If RSRC/IP2.R is specified, the
R Scratch Pad register addressed is determined as follows:
For purposes of indexing on RNUM, RSP[20] through RSP[2F] are
d es i g n ate d I PR [0] th r o ug h I PR [F] • Th e re f o re , i f RN UM
contains the value A, for example, then RSP[2A], the Pl Base
Register, is the register being addressed. If RSRC/LONLIT is
specified, the Long Literal Register is addressed.

4.2.3 Write Control

The S PW fie 1 d of the cur rent m i c r o instr u c t ion cont r o 1 s
writing into the R and M Scratch Pad registers. The address of
the register to be written is determined as discussed in Section
4. 2. 2. The LIT field controls writing into the Long Literal
Register, as described in Section 4.2.1.

- 4-13 -

Example 4.16. If SPW/NOP is specified, no writing into R or
M Scratch Pad occurs. If SPW/RSIZE is specified, the low
order l or 2 bytes or the entire 4 bytes of information on
the WBUS is written into the corresponding field of the R
Scratch Pad register specified by RSRC. The number of bytes
written is determined by the DSIZE latches.

Certain MSRC and RSRC codes do not specify R or M Scratch Pad
registers. For example, MSRC/TB specifies that the input to the
MBUS is from the Translation Buffer. In those cases, the
register written is TEMPO.

Finally, three RSRC micro-orders (RSRC/DST.R, RSRC/DST.R+l,
and RSRC/DST.RORl) provide for conditional writing, useful to the
VAX emulation. For those micro-orders, if the operand specifier
in the VAX machine instruction is register mode, the write
occurs. If not, the write is inhibited. This construct is used
in conjunction with BUS/WRITE.NOREG (i.e., write into memory
unless register mode) to provide the capability to write a value
into a destination operand in a single microinstruction,
independent of whether the operand address is a memory location
or a register. If the destination is a register (i.e., register
mode), the value is written into the Scratch Pad register and the
memory write is inhibited. If the destination is a memory
location (i.e., not register mode) , .the value is written into
memory and the Scratch Pad write is inhibited.

4.2.4 The Register Back Up Stack

In this section, the functionality of the Register Back Up
Stack will be described. Its use in the processing of VAX
interrupts and exceptions will be treated in Section 5.1.

The Register Back Up Stack stores certain information about
the VAX general purpose registers which can be used to restore
them to their original values if an interrupt or exception is to
be taken and the VAX machine instruction is to be restarted from
the beginning at a later time. In particular, during the
evaluation of a VAX operand specifier, if the addressing mode is
auto increment or autodecrement, the register is updated. In
order to return the register to its original value, we must save
the register number (RNUM), the amount of the update (4*SIZE),
and whether it was autoincremented or autodecremented (1 or 0).

- 4-14 -

The Register Back Up Stack consists of six registers, each 7
bits wide, as shown below:

' -\'N%~ j s1~c l : ~~u~ j

Access is through a three-bit stack pointer RBSP. Reading and
writing is controlled by the MSRC field. In addition, the
Register Back Up Stack is always cleared by the BUT/IRDl code
since it is unnecessary to save its contents after the emulation
of the current VAX machine instruction has been completed.

Four MSRC codes deal with the Register Back Up Stack.
MSRC/PSHADD pushes RNUM, SIZE, and +l onto the stack: i.e.,

RBS[RBSP] <--- RNUM'SIZE'+l

RBSP <~-- RBSP + l •

MSRC/PUSHSUB pushes RNUM, SIZE, and 0 onto the stack. These two
operations are performed during operand specifier evaluation.
MSRC/READRBS pops the stack. This is done during the initiation
of an interrupt or exception in order to restore the register to
its original value. Finally, MSRC/WB RBSP outputs the RBSP onto
the WBUS. -

4.2.5 SPASTA Status Bits

COMET provides a two-bit code containing status information
about RNUM or the Register Back Up Stack, see Table 4. 4. The
code is available to the microsequencer for use (BUT/SPASTA) in
performing a four-way branch. For example, if RSRC does not
specify a VAX general purpose register, and if MSRC specifies
that RNUM is to get the low order four bi ts of WBUS, then a
three-way branch can be produced by BUT/SPASTA, based on the
value on WBUS<3:0>. On the other hand, if RSRC does in fact
specify a VAX general purpose register, and MSRC does not specify
RNUM WBUS or READRBS or WB RBSP, then a four-way branch can be
effected by BUT/SPASTA based on the value in RNUM.

- 4-15 -

TABLE 4.1 THE ROT MICRO-ORDERS

ROT FUNCTION

XZ~MR EXTRACT & ZERO EXTEND M'R, POS = PL, SIZE
XZ.MM EXTRACT & ZERO EXTEND M' M, POS = PL, SIZE
XZ .RR EXTRACT & ZERO EXTEND R'R, POS = PL, SIZE
XZ.VPN EXTRACT & ZERO EXTEND M'M, PCS = 09, SIZE
XZ. PTX EXTRACT & ZERO EXTEND M'M, PCS = 07, SIZE

CLRlBM CLR M<07:0>
CLR2BM CLR M<lS:O>
CLR3BM CLR M<23:0>

RL.RM.P ROT LEFT R'M, NO. BITS = PLATCH<4:0> (NOTE
RL.RM.P ROT LEFT R'M, NO. BITS = (PL+SL)<4:fr>(NOTE
RL.RM.4 ROT LEFT R'M, NO. BITS = 4
RL.MM.P ROT LEFT M'M, NO. BITS = PLATCH
RL.MM.PTE ROT LEFT M'M, NO. BITS = 9
RL.RR.P ROT LEFT R'R, NO. BITS = PLATCH

RR.MR.P ROT RIGHT M'R, NO. BITS = PLATCH<4: O>
RR.MR.PS ROT RIGHT M'R, NO. BITS = (PL+SL) <4: 0 >
RR.MR.4 ROT RIGHT M'R, NO. BITS = 4
RR.MR.S ROT RIGHT M'R, NO. BITS = SLATCH<4:0>
RR.MR.9 ROT RIGHT M'R, "NO. BITS = 9
RR.MM.P ROT RIGHT M'M, NO. BITS = PLATCH
RR.MM. PS ROT RIGHT M'M, NO. BITS = PLATCH + SLATCH
RR.MM.SIZ ROT RIGHT M'M, NO. BITS = 8,16,24,0
RR.RR.P ROT RIGHT R'R, NO. BITS = PLATCH
RR.RR.PS ROT RIGHT R'R, NO. BITS = PLATCH + SLATCH
RR.RR.SIZ

ASL.R.P
ASL.R.SIZ
ASL.R.7
ASL.M.P

ASR.M.P
ASR.M.-P
ASR.M.3

ROT RIGHT R'R, NO. BITS = 8, 16, 24, 0

ARITH SHF LEFT R, NO. BITS = PLATCH (NOTE
ARITH SHF LEFT R, NO. BITS= 0,1,2,3

ARITH SHF LEFT R, NO. BITS = 7
ARITH SHF LEFT M, NO. BITS = PLATCH (NOTE

AR ITH SHF RIGHT M, NO. BITS = PLATCH
AR ITH SHF RIGHT M, NO. BITS = -PLACTCH
AR ITH SHF RIGHT M, NO. BITS = 3

GET LEAST SIGNIFICANT NIBBLE FROM MBUS
BCD SWAP, MBUS

= SL
= SL
= SL
= 21
= 23

1)
1)

2)

2)

GETNIB
BCDSWP
CVTPN

RBUS
CVTNP

CONVERT PACKED TO NUMERIC, 4NIB TO 4BYTE, MBUS
MUST = 3XX33 (HEX)
CONVERT NUMERIC TO PACKED, SBYTE TO SNIB, M'R

- 4-16 -

PL MSS FIND MOST SIGNIFICANT BIT SET MBUS, WBUS
GETEXP EXTRACT & ZERO EXTEND M'M PCS = 7, SIZE = 8
GETFPF UNPACK FLOATING POINT FRACTION, M'R
FPLIT EXPAND FLOATING POINT LITERAL, MBUS
FPACK S ROT<31:16,l5,14:7,6:0> <-

MB<24:9>,0,RB<7:0>,MB<31:25>

PL SUP ROT <- PLATCH
SL SUP ROT <- SLATCH
SL,PL WB S ROT <- SLATCH • PLATCH <- WB<S:O>
OLITO~PL43 WB S ROT <- OLITO • PL<4:3> <-WB<l:O>
OLITO.PL LIT S ROT <-OLITO • PLATCH <- SHORT LITERAL
PL.SL WB-S ROT <- PLATCH • SLATCH <- WB<S:O>
OLITO~SL LIT S ROT <-OLITO • SLATCH <- SHORT LITERAL

ZERO CONSTANT 0
MINUS 1 CONSTANT -1
CONX, SIZ CONSTANT 1,2,4,8 DEPENDNG ON SIZE (- (R) +)
ZLITO 0 EXTEND LITERAL & ROT LEFT 00 BITS
ZLIT4 0 EXTEND LITERAL & ROT LEFT 04 BITS
ZLIT8 0 EXTEND LITERAL & ROT LEFT 08 BITS
ZLIT12 0 EXTEND LITERAL & ROT LEFT 12 BITS
ZLIT16 0 EXTEND LITERAL & ROT LEFT 16 BITS
ZLIT20 0 EXTEND LITERAL. & ROT LEFT 20 BITS
ZLIT24 0 EXTEND LITERAL & ROT LEFT 24 BITS
ZLIT28 0 EXTEND LITERAL & ROT LEFT 28 BITS
ZLITPL 0 EXTEND LITERAL & ROT LEFT PL BITS
OLITO 1 EXTEND LITERAL & ROT LEFT 00 BITS
OLIT8 1 EXTEND LITERAL & ROT LEFT 08 BITS
OLIT16 1 EXTEND LITERAL & ROT LEFT 16 BITS
OLIT24 l EXTEND LITERAL & ROT LEFT 24 BITS

- 4-17 -

Table 4.2 THE ROTSRK MICRO-ORDERS

ROTSRK SRKSTA<l> SRKSTA<O> ALUSHF ALUCI

ABSVAL.163.D ABS VAL CHECK ZERO ZERO
ABSVAL.171.D ABS VAL CHECK ZERO ZERO
ABSVAL.17 3. D ABS VAL CHECK ZERO ZERO
ABSVAL.140 ABS VAL CHECK ALUO.Ql ZERO
ABSVAL.141 ABS VAL CHECK ALUO. Q 1 ALKC
ABSVAL.142 ABS VAL CHECK ALUO.Ql ONE
ABSVAL.143 ABS VAL CHECK ALUO.Ql PSLC
ABSVAL.150 ABS VAL CHECK ALUl.QO ZERO
ABSVAL.151 ABS VAL CHECK ALU l.Q 0 ALKC
ABSVAL.152 ABS VAL CHECK ALUl.QO ONE
ABSVAL.153 ABS VAL CHECK ALUl.QO PSLC
ABSVAL.160 ABS VAL CHECK WBUS30 ZERO
ABSVAL.161 ABS VAL CHECK WBUS 30 ALKC
ABSVAL.162 ABS VAL CHECK WBUS 30 ONE
ABSVAL.170 ABS VAL CHECK PSLC ZERO
ABSVAL.172 ABS VAL CHECK PSLC ONE

ASCIISIGN.050 ASCII SIGN CHECK ALU l.QO ZERO
ASCIISIGN.051 ASCII SIGN CHECK ALUl.QO ALKC
ASCIISIGN.052 ASCII· SIGN CHECK ALU l.QO 'ONE
rASCIISIGN.053 ASCII SIGN CHEC~ ALUl. QO PSLC
ASCIISIGN. 070 ASCII SIGN CHECK PSLC ZERO
ASCIISIGN.071 ASCII SIGN CHECK PSLC ALKC
ASCIISIGN.072 ASCII SIGN CHECK PSLC ONE
ASCIISIGN. 073 ASCII SIGN CHECK PSLC PSLC

DSIZE.020 DSIZE<l> DSIZE<O> SHF ZERO
DSIZE. 021 DSIZE<l> DSIZE<O> SHF ALKC
DSIZE.022 DSIZE<l > DSIZE<O> SHF ONE
DSIZE.023 DSIZE<l> DSIZE<O> SHF PSLC
DSIZE.030 DSIZE<l > DSIZE<O>" ROT ZERO
DSIZE. 031 DSIZE<l> DSIZE<O> ROT ALKC
DSIZE.032 DSIZE<l > DSIZE<O> ROT ONE
DSIZE.033 DSIZE<l> DSIZE<O> SHF ONE

PL.EQ.O.SIGN.120 PL<4:0>.EQ.O PL<5> SHF ZERO
PL.EQ.O.SIGN.121 PL<4:0>.EQ.O PL<5> SHF ALKC
PL.EQ. O.SIGN.122 PL< 4 : 0 >. E Q. 0 PL<5> SHF ONE
PL.EQ.0.123=28 PL<4: O>. EQ. 0. 0 SHF PSLC

- 4-18 -

BCDSIGN.040 S<3:0>.NE.O S<3:0>.NE.(ll,13) ALUO.Ql ZERO
BCDSIGN.041 S<3: O>.NE. 0 S<3:0>.NE.(ll,13) ALUO.Ql ALKC
BCDSIGN.042 S<3:0>.NE.O S<3:0>.NE.(ll,13) ALUO.Ql ONE
BCDSIGN.043 S < 3: 0 >.NE. 0 S<3:0>.NE.(ll,13) ALUO.Ql PSLC
BCOSIGN.060 S<3:0>.NE.O S<3:0>.NE.(ll,13) WBUS30 ZERO
BCDSIGN.061 S<3:0>.NE.O S<3:0>.NE.(ll,13) WBUS30 ALKC
BCDSIGN.062 S<3:0>.NE.O S<3:0>.NE.(ll,13) WBUS30 ONE
BCDSIGN.063 S < 3: 0 >.NE. 0 S<3:0>.NE.(ll,13) WBUS30 PSLC

VIELD.000 SL.EQ.O (PL<4:0>+SL).GT.32 ZERO ZERO
VIELD.001 SL. EQ. 0 (PL<4:0>+SL).GT.32 ZERO ALKC
VIELD.002 SL.EQ.O (PL<4:0>+SL).GT.32 ZERO ONE
VIELD.010 SL. EQ. 0 {PL<4:0>+SL).GT.32 ONE ZERO
VIELD.011 SL.EQ.O (PL<4:0>+SL).GT.32 ONE ALKC
VIELD.012 SL.~Q.O (PL<4:0>+SL).GT.32 ONE ONE
VIELD.110 ,SL.EQ.O (PL<4:0>+SL).GT.32 ONE ZERO
VIELD.111 SL. EQ. 0 (PL<4:0>+SL).GT.32 ONE ALKC
VIELD.112 SL.EQ.O (PL<4: O>+SL) .GT. 32 ONE ONE

SL.EQ.O.SIGN.101 SL.EQ.O PL<S> ZERO ALKC
SL.EQ.O.SIGN.102 SL.EQ.0 PL<S> ZERO ONE
SL.EQ. 0.100 SL. EQ. 0 UNDEFINED ZERO ZERO

WBRANGE.131.D WBUS RANGE CHECK ZERO ZERO
WBRANGE .13 3. D WBUS RANGE CHECK ZERO ZERO
WBRANGE.130 WBUS RANGE CHECK ROT ZERO
WBRANGE.132 WBUS RANGE CHECK ROT ONE

WX.NE.0113.D WX<31:16>.NE.O WX<lS:O>.NE.O ZERO ZERO
WX.NE. 0.103 WX<31:16>.NE.O WX <15: 0 >.NE. 0 ZERO PSLC

PLS.003 0 PL<S> ZERO PSLC
PL 5. 013 0 PL<S> ONE PSLC

- 4-19 -

Table 4.3 USES OF THE SCRATCH PAD REGISTERS

RS P [0] - RS P [7]

RS P [8] - RS P [D]

RSP[lO] - RSP [lE]

RSP [lF]

RSP [20]

RSP[21]

RSP [22]

RSP [23]

RSP [24]

RSP [25]

RSP [26]

RSP [27]

RSP [28]

RSP [29]

RSP[2A]

RSP[2B]

RSP[2C]

RSP[2D]

General temporary registers (RTEMPO-RTEMP7)
Dual Port; i.e., also MSP[O] - MSP[7].

General temporary registers (RTEMP8-RTEMP13)

VAX.general purpose registers (RO-Rl2,FP,SP)

Microcode temporary

VAX internal processor register
(KERNEL STACK POINTER)

VAX internal processor register
(EXECUTIVE STACK POINTER}

VAX internal processor register
(SUPERVISOR STACK POINTER)

VAX internal processor register
(USER STACK POINTER)

VAX internal processor register
(INTERRUPT STACK POINTER)

VAX Internal processor register
(PROCESS CONTROL BLOCK BASE}

Memory Management temporary register
(MMTEMP 2)

Memory Management temporary register
(MMTEMP 3)

VAX internal processor register
(PO BASE REGISTER)

VAX internal processor register
(PO LENGTH REGISTER)

VAX internal processor register
(Pl BASE REGISTER)

VAX internal processor register
(Pl LENGTH REGISTER)

VAX internal processor register
(SYSTEM BASE REGISTER)

VAX internal processor register
JSYSTEM LENGTH REGISTER)

- 4-20 -

RSP[2E]

RSP[2F]

MSP[O]-MSP[7]

MSP[S]-MSP[A]

MSP [B]

MSP [C]

MSP [D]

MSP[E]

MSP[F]

VAX internal processor register
(NEXT INTERVAL REGISTER)

Memory Management temporary register (MMTEMP 4)

General temporary register (MTEMPO-MTEMP7).
Dual port; i.e., also RSP[O]-RSP[7].

General temporary registers (MTEMP8-MTEMP10)

Error code for Memory faults and Arithmetic
traps

FPD Pack Routine Offset

Memory Management temporary register {MMTEMPO)

VAX internal processor register
(SYSTEM CONTROL BLOCK BASE)

VAX internal processor register
{SOFTWARE INTERRUPT SUMMARY REGISTER).

- 4-21 -

Table 4.4 SPECIFICATION OF SPASTA STATUS BITS

CONDITION SPASTA <l:O>

RSC MSRC WBUS<3:0> RNUM RBUS

* ** not GPR RNUM-WBUS (8,13] 00

* not GPR RNUM-WBUS (5, 7]' 10
14 or 15

* not GPR RNUM-WBUS (0' 4] 11

* not GPR READRBS Bit<6>=1 01

* not GPR READRBS Bit<6>=0 00

* not GPR WB RBSP RBSP=O 01

* not GPR WB RBSP RBSP>O 00

* *** not GPR other 00

* GPR RNUM WBUS Un def

* GPR ·aEADRBS Undef

* GPR WB RBSP Undef -
* *** GPR other [0,5], 00

[8,13],
or 15

* *** GPR other 14 01

* *** GPR other 7 10

* *** GPR other 6 11

* not GPR: RSRC does not specify a VAX general purpose register.

** (8,13]: 8,9,10,11,12, or 13

*** other: MSRC does not specify RNUM_WBUS,READRBS, or WB RBSP

- 4-22 -

CHAPTER 5. COMET IMPLEMENTATION OP VAX'S SYSTEM ARCHITECTURE

This chapter describes the COMET implementation of the two
major components of VAX's system architecture the interrupt and
ex-ception handling mechanism and the hardware memory management
facility. Other parts of the system architecture (for example,
the notion of process structure, the internal processor
registers, and the five privileged machine instructions) are not
treated explicitly here since their implemenation is
straightforward and requires no additional understanding of
COMET.

One element of the VAX process structure must be mentioned,
however, because it is used extensively to implement the system
architecture features. That is the PSL (processor status
longword). Each process has one; it contains important status
and control information about the process. It is shown below
without explanation; its fields will be identified as they are
needed in the various sections of this chapter.

11 0

00000000 t)I

The.exception and interrupt handling mechanism and the memory
management facility are controlled mainly by the BUS and WCTRL
fields. The BUS field is used to intitiate bus cycles, i.e.,
reads and writes to memory. The virtual address is placed in the
VA register. On a read, the value read ends up in the MOR
register: on a write, the value to be written is loaded into the
WDR register. VA, MDR, and WDR are all COMET accessible
registers. The WCTRL field is used to pass control information
between the WBUS and several COMET registers which are important
to the handling of interrupts and exceptions. Figure 5.1 shows
the WBUS and the relevant COMET registers.

5.1 Interrupts and Exceptions

5.1.1 VAX Interrupts and Exceptions

During the execution of a process, it is often the case that
an event occurs which requires the normal flow of execution to be
suspended in order to execute another piece of software.
Sometimes the cause of this event is external to and independent
of the executing process. One example is the detection of a
memory parity error. Such an event we call an interrupt. Other
times the event is caused by the executing process itself. An
example of this is the reserved addressing mode fault, which is
caused by a VAX instruction attempting to use an addressing mode
in a way that is not allowed (e.g., use of immediate mode to
specify a destinatio~ operand) • Such an event we call an
exception.

- 5-1 -

f,,.U .,..__

Wbi.

Figure 5.1 WBUS and COMET registers

- 5-2 -

In both cases, the currently executing process must suspend
execution and transfer control to a routine which services the
interrupt or exception. In the case of an exception, this
transfer of control usually occurs at the time the exception is
detected. For example, the reserved addressing mode fault
described above would occur at the time the processor attempted
to compute the operand address. In the case of an interrupt,
however, this transfer of control can occur only at pre-specified
points in the execution of the VAX program; either between the
execution of VAX machine instructions, or in the case of certain
time-consuming instruction executions, at specific well-defined
points within the execution of an instruction. Furthermore, this
transfer of control can occur only if the urgency (i.e.,
priority) of the interrupting event is greater than the urgency
(i.e., priority) of the executing process.

Associated with each process is its IPL (interrutt priori t~
level) which is a measure of its degree of urgency. T ere are 3'
priority levels, ranging from IPL 00 to IPL lF (hex). For
example, user programs usually execute at IPL 00; power failure
interrupts at IPL lE. The IPL of a process is stored in the IPL
field of its PSL (processor status longword). Interrupts execute
at an IPL which has been specifically designated for that
interrupt. Exceptions (generally, although not always, as will
be described momentarily} execute at the same IPL as the process
which caused the exception.

The VAX System Reference Manual identifies eight types of
interrupts (page 6-8) and six classes of exceptions (page 6-13).
Table 5.1 lists the interrupts, their IPL's, the corresponding
COMET equivalent, and the CSA for each.* One of the
interrupts, AST delivery, requires special mention. AST's
(asynchronous system traps) represent a way for notifying a
process than an event which is relevant to the process, but not
synchronized with it, has occured. This notification takes the
form of a formal procedure. It is called an AST service routine.
It is specified by the process at the time the AST is requested.
If the event has occurred, the notification is said to be a
pending AST. It will cause an interrupt at IPL2 if the process
to be ·notified is currently executing and if the event is
associated with an access mode which is at least as privileged as
the current access mode of the process. This determination is
made during execution of an REI instruction. The IPL2 interrupt
initiates the AST Delivery routine which subsequently passes
control to the AST service routine.

* The use of the CSA ls described in Section 5.1.3.

- 5-3 -

Table 5.2 lists the classes of exceptions, along with the
COMET mechanism for detecting each. Section 5.1.3 describes the
COMET mechanisms. Section 5. 2 dis-cusses the memory management
exceptions. We should also po int out that al though most of the
exceptions execute at the same IPL as the process causing the
exception, two do not: Kernel Stack Not Valid (KSNV) and Machine
Check. (Many conditions can cause a machine check, among them a
bus error, TB error, and Control Store parity error). Due to the
serious nature of KSNV and Machine Check, these exceptions are
serviced at IPL lF in order to lock out all other processing
until they are handled.

S.1.2 VAX I/E Handling Mechanism

VAX interrupts and exceptions are serviced in the following
way. Once it has been determined that an interrupt or exception
should be initiated, the PC and PSL of the executing process are
pushed onto the appropriate stack (either kernel or interrupt
stack - we will discuss which, momentarily), a new PSL is
constructed for the service routine, any parameters needed by the
service routine are pushed onto the stack, and control is
transferred to the starting address of the service routine for
that particular interrupt or exception. The last VAX machine
instruction in a service routine is REI, Return from Exception or
Interrupt. Execution of REI causes several things to happen.
The old PC and PSL are popped from the stack. If there are no
ASTs pending and no higher priority interrupts pending, then the
interrupted process can resume execution at the address specified
by PC. A test for pending ASTs is made by the REI instruction by
comparing the Current Mode field of the popped PSL with the
contents of the ASTLVL register.

The starting address of the service routine and information
needed for the decision as to whether to process the interrupt or
exception from the kernel stack or from the interrupt stack are
contained in the System Control Block. The System Control Block
consists of one page (128 contiguous longwords) of physical
memory. Its physical base address is contained in the SCBB
(System Control Block Base), an internal processor register.
Each longword in the System Control Block corresponds to exactly
one interrupt or exception. Bits <31:2>'00 form the virtual
starting address of the service routine for that interrupt or
exception. Bits <l:O> specify that the event should be serviced
on the interrupt stack (if 01), or on the kernel stack unless the
process is already running on the interrupt stack (if 00), or in
writable control store if such exists (if 10). If the event is
to be serviced in writable control store, control is passed to
the microcode starting at CSA 2001 (hex).

- 5-4 -

5.1.3 COMET Implementation

One can consider the COMET implementation of the interrupts
and exception handling mechanism as two microcoded routines, one
for initiating an exception or interrupt and one for returning
f r om an except i o n o r i n t e r r up t • Th e re t u r n rout i n e i s
straightforward. It is simply the emulation of the VAX REI
instruction. The initiation routine, however, is more
complicated. The VAX System Reference Manual does describe the
routine •initiate interrupt or exception•. But there is no
corresponding VAX opcode which will transfer control as the
result of an IRDl ROM decode. On the contrary, the need to
execute the "initiate" routine can be detected in one of several
ways. The entry point to the microcode and the specific tasks
which must be performed depend on the particular interrupt or
exception which is detected. The various entry points and tasks
will be discussed below. In all cases, however, like the
emulation of any other VAX instruction, the "initiate" microcode
terminates with BUT/IRDl in the last microinstruction (Fetch the
next instruction!). In this case, the next instruction is the
first machine instruction of the VAX service routine.

5.1.3.1 Detection and Branching·

The detection of an interrupt or exception and the resulting
.branch to the appropriate microcode can occur as a result of a
microtrap, a microbranch, DOSERVICE, or a ROM decode.

Microtraps. A microtrap is effectively a fault to the
microcode. It is caused by the hardware upon detection of a
condition which would not allow the current microinstruction to
complete execution successfully. The hardware forces the control
store address to a fixed location depending on the particular
condition, overriding the address specified by the BUT field of
the current microinstruction. This location is the starting
address for the microcode to initiate that particular interrupt
or exception. In general, the current microinstruction is
prevented from writing to any destination. The CSA of the
current microinstruction is pushed on the microstack for
re-execution if the condition causing the microtrap is corrected.
Microtraps are used extensively by the memory management system,
as is described in Section 5.2. They are also caused by serious
system faults (machine checks) such as control store parity
error and bus errors, for example. The DOSERVICE routine
described below is a special case of the microtrap mechanism.

DOSERVICE. DOSERVICE is a hardware routine invoked by the
presence of the BUT/IRDl micro-order. It is used to test for
traps and interrupts after completing the emulation of each VAX
machine instruction. If a trap or interrupt is present, the
hardware (DOSERVICE) forces a microtrap to a specific CSA
depending on the trap~r interrupt for the purpose of initiating
the exception or interrupt. Tables 5.1 and 5.2 list the CSA's

- s-s -

for each DOSERVICE microtrap. Two other microtraps not listed in
the table which can occur during DOSERVICE are Timer Service (CSA
is set to 0014) and Console AP Trap (CSA is set to 0016).

The microtrap occurs during the exeuction of the
microinstruction following the one containing the BUT/IRDl
micro-order. Two comments are worth making with respect to this
fact. First, like other microtraps, if DOSERVICE detects a trap
o r con d i t i on wh i ch res u l ts in a m i c r o t rap , the c u r re n t 1 y
executing microinstruction is prevented from completing, no
destinations are written, and no bus cycles are performed.
Instead, the microtrap is taken. Second, if the currently
executing microinstruction also contains a microtrap condition,
that microtrap is lost; the DOSERVICE microtrap takes precedence.
All three statements make sense when we consider that the current
microinstruction is the first microinstruction of the microcode
which emulates the next VAX machine instruction. Its execution
should be deferred until after all interrupts and traps relating
to the previous VAX instruction have been taken.

It is possible that more than one trap or interrupt could be
pending when DOSERVICE is called. In such a case, they are
handled one at a time, each DOSERVICE test resulting in a single
microtrap. Each initiation routine eventually ends in BUT/IRDl
which again calls DOSERVICE. The order in which DOSERVICE traps
and interrupts are initiated is as follows:

Arithmetic Trap
Timer Service
Console Control P
Interrupt at IPL lE

Interrupt at IPL 01
T Bit Trap

Microbranch. A microbranch is a microprogrammed conditional
branch which transfers control to an •initiate interrupt or
exception• routine if the interrupt or exception is present. It
uses the BUT field for multi-way branch control. In the case of
exceptions, it is programmed into the microcode which handles the
situation which could result in an exception. For example, a
reserved operand microbranch is programmed into the microcode
which evaluates the operand address. In the case of interrupts,
it is programmed into the microcode at strategic locations in the
emulation of very time-consuming VAX instruction in order to keep
interrupt latency within the specified limits. This is done by
means of the BUT/UVCTR micro-order, as follows:

The COMET microarchi tecture includes four microvector 1 in es
which are set according to certain conditions and available to
the interrupt and memory management systems for conditional
branching. Table 5.3-delineates the meaning of the microvector

- 5-6 -

lines as a function of the micro-order which uses them. Note
(from Table 5.3) that if none of the specific BUS or WCTRL
microrders are present in the current microinstruction, then the
microvector lines UVCTR<2: O> contain the code for the highest
pri_ority interrupt pending. The following microinstruction

I · .. I UVCTi. I ...
BUT

will cause a microbranch to the starting address of the •initiate
interrupt or exception• microcode for that interrupt.

ROM Decode. Recall (from Section 2. 3) that the CSA of the
first microinstruction in the emulation of a VAX machine
instruction is obtained from the IRDl ROM. Part of the index
into the ROM is the opcode of the VAX instruction. Consequently,
if a reserved opcode or the breakpoint (BKPT) fault is present in
the instruction stream, it is detected because these eight bits
are used to address the IRDl ROM. The contents of that ROM
address provide bits <9:3> of the CSA of the next
microinstruction, i.e., the entry point of the corresponding
•initiate" microcode.

5.1.3.2 The •Initiate• aicrocode.

The microcode to initiate an exception or interrupt must do
several things, some of which are specified in the VAX System
Reference Manual under •initiate exception or interrupt• {page
6-37), most of which are not. First (not specified), it must put
the machine in a consistent state. If the emulation of a VAX
machine instruction is suspended in the •middle,• either because
an interrupt must be serviced, or because some fault must be
bandied, then the contents of the general purpose registers and
memory are unpredictable; they depend on just how far along in
the emulation COMET was when the process was suspended. Thus, if
the emulation of a machine instruction is to be suspended in the
middle, then before control is transferred to the appropriate VAX
service routine, it must be possible to do one of two things.
Either undo the processing which has already been done for the
VAX instruction being emulated, or for those VAX instructions
which can be suspended and later restarted at the point of
suspension, save the machine state. How this is accomplished is
the subject of section 5.1.3.3.

Second, the microcode must do the several tasks common to the
initiation of all exceptions and interrupts. This includes
selecting the appropriate stack for processing the exception or
interrupt (the kernel or interrupt stack), pushing the PC and PSL
of the suspended process on that stack, getting the new PC from
the System Control Block, and constructing the PSL for the
incipient VAX service routine.

- 5-7

Finally, the microcode must do those tasks specific to the
particular exception or interrupt being initiated. For example,
the trap code obtained from the Arithmetic Trap Code Register
must be pushed on the stack before control is transferred to the
Arithmetic Trap Service Routine. (This is done by the
micro-order CCMISC/WB ATCR.CCBR SIGND.) Each exception and
interrupt has associated with it its own set of specific tasks.
In section 5 .1. 3. 4 we describe the spec if ic tasks for two of
them: the Timer Service trap and the Software interrupt.

5.1.3.3 A Consistent Machine State

As discussed above, if the emulation of a VAX machine
instruction is to be suspended in the middle, it is important to
put the machine in a consistent state before 'transferring control
to an interrupt or exception service routine. Several mechanisms
exist in COMET for doing so.

First, before the PC is pushed on the stack,
backed up to point to the opcode of the VAX machine
being emulated. COMET has a register PCBACK. One of
of BUT/IRDl is that PCBACK is loaded with PC+2.
following microinstruction is one way to back up the

C.l1'lL

it must be
instruction
the effects

Thus, the
PC:

M.SlC. ALU LIT&&. WC. T&'-.

Second, if no general purpose registers or memory locations
have been written into, the PC can be backed up, the interrupt or
exceptions taken, and the suspended VAX instruction restarted
from the beginning at some future time. If some of the general
purpose registers have been altered during operand address
calculation due to autoincrement and autodecrement addressing
modes, the PC can still be backed up and the suspended VAX

· instruction restarted from the beg inning at a later time. In
this case, it is necessary to restore the general purpose
registers to their values at the start of the VAX instruction
before transfering control to the interrupt or excepti-0n service
routine. To do this, COMET uses the Register Back Up Stack
(RBS), described in Section 4.2.4. Recall that each entry in the
RBS consists of a register number, a data size, and a l or 0
depending on whethe-r the register was autoincremented or

- 5-8 -

autodecremented. Before transfering control to a service
routine, the RBS po inter is examined. If it is non-zero, each
entry in the RBS is popped, and the proper register is
incremented or decremented the appropriate amount.

Finally, we consider the situation where some action has been
taken which cannot be undone; for example, a write to memory.
VAX. provides a feature for certain instructions, notably the
character string instructions, which allows them to be suspended,
and later restarted from the point of suspension. The mechanism
is the FPD bit (First part done) in the PSL. If the microcode
emulating a VAX instruction performs an action which cannot be
undone, PSL<FPD> is set. Subsequently, if it is necessary to
suspend the emulation of that VAX instruction, PSL<FPD> is tested
(BUT/FPD). If PSL<FPD> is set, it is necessary to pack the
information into a consistent state before transfering control to
the VAX service routine. A pointer to the appropriate packing
routine is contained in one of the M Scratch Pad Registers
(M [OC], FPDOFFSET). It was . loaded there by the execution

microcode of the VAX instruction being emulated. At a later
time, when the emulation of the VAX machine instruction is to be
resumed, BUT/IRDl causes a branch not to the microcode to begin
emulating the instruction, but instead to the microcode which
first unpacks and then resumes the emulation at the point where
it left off. This is accomplished by including the FPD bit as
part of the index into the IRDl ROM.

5.1.3.4 More detail: Timer Service and Software Interrupts.

In this section, we describe the specific tasks which COMET
must perform in initiating a timer service trap and a software
interrupt • The spec i f i c tasks assoc i ate d with the other
exceptions and interrupts will not be covered. These two have
been chosen because they are a little more interesting (to the
author) than the others, and they illustrate the most important
procedures COMET goes through in initiating an exception or
interrupt.

Timer Service.

VAX keeps track of the amount of time allocated to a process
by means of two 32 bit registers, the Interval Count Register
(ICR) and the Next Interval Register (NIR}. The ICR contains the
negative (2's complement) of the number of microseconds remaining
in the current interval. The NIR contains the negative of the
number of microseconds to be allocated to the next interval. At
the start of an interval, ICR is loaded with the contents of NIR
and starts incrementing at the rate of one count per microsecond.
When ICR reaches O, t~e interval has passed. The next interval
is loaded into !CR, and the INT bit of the Interval Clock Control

- 5-9 -

and Status Register (ICCS) in set. If interrupts are enabled
(i.e., if the IE bit of ICCS is set), an interrupt request at IPL
18 (hex) is generated. IPL 18 is the interval timer interrupt.

COMET implements this timing mechanism by means of a
combination of microcode and hardware. The microcode is invoked
by the Timer Service trap. Its function will be described
momentarily. The hardware consists of five bits* in the Timer
Control and Status Register (TCSR), which are labeled IR, SR, TR,
VP, and TVP, four 16 bit registers (to implement ICR and NIR),
and the associated logic and circuitry. IR is the COMET
implementation of the INT bit of the VAX ICCS. SR, TR, VP, and
TVP are internal bits required by the COMET microarchitecture.

The four 16 bit registers are shown below:

,, " 1r- 0

(~-----------~l,[~-----------~l:xct.

,.
'' 1r • l.__ _____ ll _______ ___,l 1 NI It.

The high order 16 bits of the ICR and NIR together comprise
R [2E] of the R Scratch Pad register file (cf. section 4. 2).
SPICR (which stands for Scratch Pad !CR) is implemented as
R [2E] <31:16>, and SPNICR (which stands for Scratch Pad NIR) is
R [2E] <15: O>. The low order 16 bits of the ICR and NIR are
internal COMET registers. We refer to them in this discussion as
IICR and INIR, respectively.

At the start of an interval, ICR contains the negative (2's
complement) of the interval in microseconds. The low-order 16
bi ts of the ICR (i.e., IICR) is . really a hardware up-counter
which continues to increment, one count per microsecond, one
cycle per 65 msec. Each time IICR cycles (except the "last"
time, when ICR=O), the high order 16 bits of ICR (i.e., the
SPICR) must be incremented.

------------------~----~-------------------
* Actually, there are more than five bits, but the other bits are
not relevant to this discussion.

- 5-10 -

The •1ast• time IICR cycles (i.e., ICR=O), signifying the end
of the current interval, ICR must be loaded with the contents of
NIR and the IR bit of the TCSR must be set. Loading ICR from NIR
involves loading SPICR with the contents of SPNICR and loading
IICR with the contents of INIR. The hardware controls the
loading of IICR from INIR and the setting of IR. The Timer
Service trap service routine controls the loading and
incrementing of SPICR.

The Timer Service trap is invoked whenever a carry out of the
IICR (i.e., the IICR has cycled) requires that the SPICR must be
updated. The Timer Service trap works in conjunction with bits
SR, TR, VP, and TVP of the TCSR register. The Timer Service trap
is invoked by DOSERVICE if either SR or TR is set. If SR is set,
this signifies that IICR has overflowed, and that it is not the
last time this is to happen in the current interval. If TR is
set, this signifies that IICR has overflowed and it is the last
time this is to happen in the current interval, i.e., the
interval is over. Whether or not it is the last time is
specified by the state of VP. In other words, the end of an
interval is specified by VP=l and IICR overflowing.

The specific tasks perfor~ed by the Timer Service trap
service routine can now be stated. Note that unlike the other
exceptions and interrupts which are only initiated by the
microcode the specific Timer Service trap microcode services the
exception. The Timer Service trap microcode does the following:

(1) If SR=l, then SPICR <-- SPICR +l, SR <-- 0.

(2) If TR=l, then SPICR <-- SNICR, TR <-- O.

(3) If incrementing SPICR causes it to contain all l's,
then VP <-- 1, signifying that the interval has one
more cycle of IICR (65 msec) remaining.

To complete the picture, we need to describe the functioning
of the TVP bit and the gating. First the TVP bit. Usually, the
length of an interval is less than 65 msec. Consequently, the
next interval to be loaded into ICR usually contains all l's in
SPNICR. When this is the case, since at the end of the current
interval SPICR already contains all l's, it is not necessary to
load SPICR.

The TVP reflects this situation. It is set and cleared by
the microcode to reflect whether or not SPNICR contains all l's.
As a result, if TVP is set and IICR has overflowed for the last
time in the current interval VP=l, the Timer Service trap is not
invoked. SPICR already contain the contents of SPNICR. The
gating which controls all this is summarized below. Not that at
the end of an interval, IR is set and IICR is loaded from INIR,
whether or not the Timer Service trap is invoked.

- 5-11 -

TVP
se-1- T({

VP

Software Interrupts.

A software interrupt microtraps or microbranches to 0038,
depending on whether it was detected during DOSERVICE or during a
microprogrammed branch (BUT/UVCTR). The microcode initiated at
CSA 0038 performs the following actions:

(l) The base address of the Software Interrupt Vector in the
System Control block is saved.

(2) The IPL of the highest pending software interrupt is
obtained from the SISR (software interrupt summary register).

(3) The address of the SCB vector is computed from the base
address (obtained in 1) and the IPL (obtained in 2).

(4) SISR<IPL> is cleared. Note: this means that it is the
operating system's responsibility to not perform an REI until all
software interrupts at that IPL have been serviced.

(5) The next highest IPL present in the SISR is loaded into
the COMET internal Software IPR.

(6) A microbranch is taken to the common microcode for all
exceptions and interrupts (recall Section 5.1.3.2)

- 5-12 -

5.1.3.5 Return from Exception or Interrupt (REI)

The final instruction in a VAX exception or interrupt sevice
routine is the instruction REI. COMET emulates this instruction
by popping the PC and PSL of the suspended process, switching to
the proper stack, and then testing (by means of the hardware)
whether the return is "legal," and also, whether there is an AST
pending which can be delivered. *

The microinstruction to test for legal returns and for AS Ts
pending is

, ... I UV c.:Tc. I l llE1C.MK I ' 1u-r
"'' ,.& ..

The microvector lines are as specified in Table 5.3 for the
WCTRL/REICHK microrder; that is a three way microbranch occurs
depending on whether the REI is legal, the REI is legal and ther
is an AST pending which can be delivered, or the REI is not
leg al.

5.1.4 An Example

We conclude this section on interrupt and exception handling
with an example. Suppose a user process is executing. Suppose
COMET has just completed the emulation of one VAX machine
instruction and is about to start the next. Suppose the next VAX
instruction is BKPT. Suppose the following traps and interrupts
are pending: integer overflow trap, a Timer Service trap, a
UNIBUS device request at UNIBUS BR6, and a T-bit trap. Finally,
suppose a kernel mode AST becomes available during the execution
of the last microinstruction. What happens?

Figure S. 2 shows the flow of control of the microcode to
handle the above situation. Figure 5.3 shows the contents of PC,
PSL and the relevant VAX stacks at each point in the execution
flow. We begin the discussion with the last microinstruction of
the VAX machine instruction just completed. This
microinstruction contains the BUT/IRDl micro-order, which does
two things. It causes the microsequencer to obtain the CSA of
the next microinstruction from th~ IRDl ROM. It also signals
DOSERVICE to check for traps and interrupts during the next
microcycle. ----

* There are several reasons why a return could be "illegal."
For example, the access mode of the service routine might be of a
lower privilege than that of the suspended process. Or the
suspended process might have an IPL greater than O and not have
kernel mode privileges~

- 5-13 -

The IRDl ROM, indexed by the BKPT opcode, branches to
microcode (l) to initiate the BKPT fault. During the first
microinstruction of that routine, DOSERVICE detects the
arithmetic trap, prevents the current microinstruction from
executing, pushes its address onto the microstack, and microtraps
to- CSA 0011 to initiate the arithmetic trap.

The processor switches to the kernel stack*, pushes the PC
and PSL of the suspended user process on the kernel stack, gets
the trap code (in this case the value l for integer overflow)
from the ATCR and pushes it onto the kernel stack, specifies a
PSL for the Arithmetic Trap service routine and loads PC with the
starting· address of that routine. The microcode terminates with
BUT /I RD l, causing the I RD 1 ROM to branch (2) to the microcode
which emulates the first VAX instruction of the Arithmetic Trap
service routine. Again DOSERVICE is signaled to check for traps
and interrupts during the next microcycle •

.Again DOSERVICE detects a trap (Timer Service), inhibiting
the current microinstruction, this time causing a microtrap to
CSA 0014. Because Timer Service requires very little processing,
it is serviced .immediately,transparent to the PC, PSL, and the
rest of the VAX architecture. Timer Service terminates with a
BUT/IRDl micro-order, causing the Arithmetic Trap service routine
to again begin execution (3).

Again DOSERVICE inhibits the first microinstruction from
completing, this time detecting the interrupt from the UNIBUS
device (IPL 16). COMET microtraps to CSA 003A to initiate the
interrupt. The processor switches to the interrupt stack, pushes
the PC and PSL of the suspended process (in this case the VAX
Arithmetic Trap service routine) onto the stack, specifies a new
PSL for the device interrupt service routine, and loads PC with
the starting address of that service routine.

The interrupt service routine executes (4), terminating with
the REI instruction. The REI pops the stack, loading the PC and
PSL registers with the PC and PSL of the Arithmetic Trap service
routine, and since the Arithmetic Trap service routine executes
on the kernel stack, switches to the Kernel Stack. The emulation
of REI contains the WCTRL/REICHK micro-order which provides

* This example assumes that traps and AST Delivery are handled on
the kernel stack, and higher priority interrupts are handled on
the interrupt stack. Whether to use the kernel. stack or
interrupt stack to handle a particular interrupt or exception is
a system software parameter and is specified by bits <l:O> of its
SCB vector.

- 5-14 -

microbranching on the microvector lines depending on whether or
not there is an AST pending which can be delivered. · In this
case there is an AST which can be delivered (indicated by UVCTR
<l: O> = 01), so a microbranch is taken in order to post the
delivery of the AST. Bit 2 of the Software Interrupt Summary
Register (SISR) is set, since AST Delivery is initiated by an
interrupt at IPL 2. If it were necessary (in this case it
isn't), the Software IPR would be updated at this time (cf.,
Section 5.1.3.4). The microcode for the REI instruction is then
allowed to complete, terminatng with a BUT/IRDl micro-order.

Again, ~he Arithmetic Trap service routine attempts to execute,
and again DOSERVICE inhibits the first microinstruction, this
time because of the IPL 2 interrupt. COMET microtraps to CSA0038
to initiate the interrupt. The address of the AST Delivery
service routine is computed and Bit 2 of the SISR is cleared.
since the AST Delivery service routine executes on the kernel
stack, the processor does not need to switch stacks. It pushes
the PC and PSL of the Arithmetic Trap service routine onto the
stack, specifies the new PSL and loads the PC with the starting
address of the AST Delivery service routine.

The AST Delivery service routine executes (5), causing the
pending AST to be delivered. That is, control passes (by means
of the formal CALLG VAX instruction) to the address of the
service routine specified by the AST. The AST service routine
executes, terminating in a RET instruction. Control returns to
the AST Delivery routine. After completing certain bookkeeping
functions (not relevant to this discussion) , the AST Deli very
routine terminates; the final VAX instruction is REI. The REI
instruction pops the kernel stack, loading PC with the starting
address of the Arithmetic Trap service routine, and loading PSL
with the PSL of the Arithmetic Trap service routine. This time
there is no AST pending, so the microcode is allowed to terminate
with a BUT/IRDl, which signals the emulation of the next VAX
instruction, the first instruction of the Arithmetic Trap service
routine (6). Since the Arithmetic trap service routine also
executes on the kernel stack, the emulation of the REI
instruction does not cause any switching of stacks.

The Arithmetic Trap service routine is now able to execute.
It also terminates with an REI instruction. Again the PC and PSL
are popped, this time containing the address of the BKPT opcode
and the PSL of the user process. Since the user process executes
on the user stack, the processor switches stacks. Once again
(7), an attempt is made to emulate the BKPT instruction.
However, since the PSL is that of the user process, the T-bi t
trap is detected, causing a microtrap to CSA 0015 to initiate the
T-bit trap.

- 5-15 -

The processor switches to the kernel stack, pushes the PC and
PSL of the suspended user process onto the kernel stack,
specifies a new PSL for the T-bit trap service routine, and loads
PC with its starting address, terminating with the micro-order
BUT/IRDl.

Control passes (8) to the T-bit trap service routine, which
executes, terminating in the VAX instruction REI. The PC and PSL
of the user process are again popped and loaded into the PC and
PSL registers. The processor switches to the user stack. The
microcode terminates with BUT/IRDl.

Once again control passes (9) to
attempts to initiate the BKPT fault.
traps or interrupts for DOSERVICE to
microcode is allowed to execute.

- 5-16 -

the user
This time

detect,

process which
there are no

and the BKPT

...

M,£, ... ~ '­
\-.:~1., .ff...

.\n K....d\ c. .J., 41'

~h(,~ J.
~ ,,.,, •, .IL..
T ~ tk"i... ,,_,

...

:oou

...-Mt-,-~-,.-~----.,.~--...,..~:001A

.:.,~ .I(...

t>.1.1ic. 1-Jc,r-r-

(I)

1-tic.,-o~ .i.
S.f t'll&w. X...

A,, I(.,.$.:... .,_,_,

P-\ lt.roer.e... .Jo
~ ... ,,, ... c... .,.,,__

A; I(....,.s..:._ .r,-r

Figure 5.2 Microprogram Flow of Control (Example of Section
5.1.4)

- 5-17 -

tfcc,..C'o-'c. .i. f'••l­
-l~ AST D.eU~·~
(iA. 1c4- f;'- i. .t as«i

M.U. cJc.. .i. : oo JS
1~i.lttk. .It.,. %PL 2..
(AST be l1i,e,,)
1~.k,n.,f

M.iva~ .J. M,.,,&,..

~ ~.'I(,__., kc. .f.,.,

"''" 0 c,.(c. f'tlrllU­
.f.k lwe"c... l"Jc.rre.14-.
VAl.. c..c.... -le,.11\,,...L
,;. f{n:..

~C. T... ... ll CNK • • •

Hier• c.. 4. -t.o
~"iCA- ... ~
An~~""'c.4-t·" .f-r•t

Micr.c..t&. -1. J., ,,-.,..,,,..,_
4-1..... AST .s.

VA~ c:..tc... c.,./s .• w ~

CAU.C '•"'·~~

..... . ..

Mi v.t. ""-'.. .a...
,;_,~6..lc. f(..,,. &lef '"T

'-• (L

••• U,,C.T& •• .. ·-

Figure 5.2 (continuedt. Microprogram Flow of Control (Example of
Section 5.1.4)

- 5-18 -

(VA el ltlT l:Pc.

I u, ,,..c.us]: rte.

(a.) A+ (1)

f7/zj
tA~ $~

•. l A.f. (+ > Fti-"" r. i...

Pigure 5.3 State of tile VAX Stacks (lxaaple of Section 5.1.4)

- 5-19 -

sr

IVA 1 Ar:IC"far ~:re.

ffSt 14" l(y, a.&}' rs'-

l \JA 'f &IC.PT \ \ f'C.

\rs t. 1 a;:: fhCIU l ~rs t. Wd~"
~ S~ 1'u~ SJ..(

'> A+ (:/) .._ ,:;r '- i..

(iA 1 S&IT \: l'C

J!sL 1 ~ ,~,)=PtL

SP

Pigure 5.3 (continued}. State of VAX Stacks (Example of Section
5.1.4)

- 5-20 -

5.2 Memory Management

5.2.1 VAX Memory Management

t Vax provides each user with 4 Billion bytes of virtual
storage, - 2 Bill ion bytes of process space (PO Space and Pl
Space) and 2 Billion bytes of system space. Virtual storage is
partitioned into 512 byte units called pages. Corresponding to
each page of virtual memory is a 32 bit Page Table Entry (PTE),
shown below:

,. ,. "'
\v \ Pl-TciT \

The PAGE FRAME NUMBER is the physical address of the page in
main memory. The V (Valid) bit is set if the page frame number
is valid, i.e., if the page actually does reside in physical
memory and has not been swapped out. The PROTECTION code
specifies the access rights to the information on the page for
processes with different levels of privilege. VAX maintains four
levels of privilege: Kernel, Executive, Supervisor, and User.

Page Table Entries for system space are stored in contiguous
longwords of physical memory called the System Page Table. The
base address of the System Page Table is stored in the System
Base Register, one of VAX's interval processor registers (c.f .,
Section 4.2). Page Table Entries for PO Space and Pl Space are
stored in the PO Page Table and the Pl Page Table which are
located in virtual system space. Each page table consists of
contiguous longwords. The base address (virtual) of the PO Page
Table and the Pl Page Table are stored in the PO Base Register
and Pl Base Register. Both are VAX internal processor registers.
Figure 5.4 is a snapshot of VAX virtual memory, physical memory,
and the corresponding page table.

A read or write to virtual memory involves several steps.
First, VAX permits unaligned memory references. For example, a
longword need not start on a longword boundary. However, since
COMET'S physical memory is always accessed on longword
boundaries, a process which requests an unaligned memory access
could require an extra physical memory access. Second, the
hardware determines the physical address from the virtual address
and the appropriate PTE, which may or may not be available in the
Translation Buffer. (The Translation Buffer is effectively a
cache of PTE's). If the required PTE is not in the Translation
Buffer, then additional memory accesses must be made to bring the
PTE into the Translation Buffer before the physical address of
the desired memory location can be obtained. Finally, the
presence of the PTE in the Translation Buffer does not guarantee
that the memory access can be made. If the protection code
associated with the -page of memory specifies for the access
desired a higher level of privilege than that of the process

- 5-21 -

Pi
s~

-

"'' h (~ ,,
r~

f'(J c;,--.

r.R '""r -- ~~~~
,_~,4C... .__ __ ... __ _,

3!1 "·r­p- ~&'
\

• • •

• • •

• • •

\
\
\
\ I

'' __ r1_1.. ____ -r._·'~'' '}' ' // '/

' :'' 1' , .

PL,Jic,J ,, ... ,,
Lui f.,r
.~
ri s,Acc.. _,.
Ptls;,..~

Figure 5.4 VAX Memory Management - An Overview

- s-22 -

requesting the access, then an Access Control Violation (ACV)
fault results. If the V bit is not set, designating that the
page of virtual memory is not in physical memory, then a
T{anslation Not Valid (TNV) fault results.

5.2.2 COMET Implementation

5.2.2.1 Memory Management Microtraps.

To implement the VAX memory management functions, the COMET
microarchitecture must handle the conditions described above; in
particular, unaligned memory references, TB misses (i.e., the
required PTE is not in the Translation Buffer), and ACV and TNV
faults. The conditions occur as a result of memory reads and
writes, instruction fetches, and data reads from the instruction
stream. To handle unaligned accesses, TB misses, and ACV faults,
COMET uses the microtrap mechanism. To handle TNV faults (and
ACV faults if the PTE is not in the TB), COMET uses the
microbranch mechanism discussed in Section 5 .1. 3.1. In this
discussion, we are most concerned with microtraps.

COMET identifies 13 microtraps associated with the memory
management system. They are listed in Table 5.4. Recall that a
microtrap is the result of a condition detected by the hardware
and that the condition is such that the current microinstruction
would not be able to complete its execution successfully. The
microtrap pushes the address of the current microinstruction on
the microstack and forces a branch to a fixed address in Control
Store, usually for the purpose of correcting the condition which
caused the microtrap, so that the microinstruction can be
re-executed. The fixed CSA for each microtrap is also shown in
Table 5.4. A single microinstruction could have more than one of
the conditions listed in Table 5. 4. In such a case microtraps
occur sequentially, according to the priority scheme shown. Each
microtrap corrects its condition, an attempt is made to
re-execute the faulting microinstruction, and· the next micro trap
occurs. The process is illustrated in the example in Section
5.2.3.

- 5-23 -

We should, at the outset, differentiate the ACV microtraps from
the others. The ACV microtraps are caused by faults in the VAX
machine language program. They are exceptions which must be
serviced by VAX exception handling routines, not unlike the way
ot~er interrupts and exceptions are serviced (see Section 5.1).
Co.nsequently, the microprogram flow never returns to the
microinstruction causing the microtrap. On the other hand, the
remaining microtraps are caused by conditions in the hardware
implementation of the ~AX architecture. Consequently, in these
cases, the effect of the microtrap is to branch to a routine
which corrects the condition (if possible), then pops the
microstack, re-executing the faulting microinstruction.

There are fundamentally two microtrap service routines for
memory management, with variations on each, depending on the
particular microtrap. One routine handles unaligned memory
accesses; the other handles TB misses. Th'ey are _described in
sections 5.2.2.3 and 5.2.2.4 below.

5.2.2.2 Re-execution of a Faulting Microinstruction

The re-execution of the faulting microinstruction takes one
of three forms, depending on the microtrap.

If the microtrap prevents• the faulting microinstruction from
writing values to any destination, and if the microtrap service
routine did not complete the memory access, then the faulting
microinstruction is simply re-executed. This is accomplished by
BUT/RETURN and NEXT/O in the last microinstruction of the routine
which corrects the condition.

If the routine which corrects the condition also completes
the memory access, then the faulting microinstruction is
re-executed, but bus cycles are suppressed so as not to repeat
the memory ess. This is accomplished by BUT/RETURN, NEXT/O,

7 --.a11g(MISC/RSBC n the last microinstruction of the routine which
"eO'fr ondition.

'7

Finally, there is the case where the microtrap does not
prevent the faulting microinstruction from writing values to its
destinations. In such cases, clearly, the re-execution of the
faulting microinstruction must not allow any destinations to be
written. Only one microtrap produces this situation--when
BUT/IRDl results in a XBTB miss. Recall that BUT/IRDl is
contained in the last microinstruction of the microcode which
emulates a VAX machine instruction. It causes the IR and OSR to
be loaded from XB with the opcode and first operand specifier of
the next VAX machine instruction to be emulated. If attempting
to load IR and OSR results in a TB miss, the rest of the
microinstruction is ~llowed to complete execution before the
microtrap takes place. This is done since the microtrap really

- 5-24 -

involves fetching the next VAX machine instruction and has
nothing to do with the successful completion of the emulation of

• the current VAX machine instruction. After the microtrap is
taken and the TB miss is corrected, the faulting microinstruction i' re-executed. This time only the BUT/IRDl activity occurs.
Al-1 destinations are inhibited, any bus cycles are suppressed.
This is accomplished by BUT/RET.DINH and NEXT/0 in the last
microinstruction of the routine which corrects the XBTB miss
condition.

5.2.2.3 Unaligned memory access service routines.

An unaligned memory access is detected by the hardware when
an attempt is made to read or write information which crosses a
longword boundary. The hardware detects five different
unaligned memory access conditions and produces a microtrap for
each. Figure 5.5 shows the activity of the corresponding service
routines.

The memory access is performed in two steps, one for each
longword to be accessed: BUS/READ.NT and BUS/READ. SEC in the
case of a read, BUS/WRITE.NT and BUS/WRITE.SEC in the case of a
write, and BUS/WRITE.UL and BUS/WRITE.UL.SEC in the case of a
write which also releases a lock set by a read lock microcode.
The VA register is adjusted (VA <-- VA+4) which is necessary for
the second access and readjusted (VA <-- VA - 4) after the second
access so that when the faulting microinstruction is re-executed,
VA contains the virtual address of the element read or written.
ACV traps are not necessary in the first memory access. If the
first memory access had resulted in a ACV fault, it would have
been detected by the read or write ACV microtrap, which has a
higher priority than the unaligned data microtrap.

The second memory access does not suppress the ACV microtrap.
In the case of a .read, this is no problem; if an ACV fault occurs
on the second access, ACV READ microtrap is taken and eventually
the ACV exception service routine is invoked. In the case of a
write, it is important to detect the ACV fault before the first
write occurs. This is accomplished via the WRITE CROSSING PAGE
BOUNDARY and WRITE UNLOCK CROSSING PAGE BOUNDARY microtraps. In
both cases BUS/PRB.WR and BUT/UVCTR are used to check the access
rights of the -second page before the first BUS/WRITE.NT is
performed. BUS/PRB. WR produces the signals on the microvector
lines, depending on the state of the page of memory being probed,
as shown in Table 5.3. ·

Since the microtrap routine completes the desired memory
access, it is important not to attempt the memory ac~ess again,
when the faulting microinstruction is re-executed. Bus cycles
are suppressed by coding BUT/RETURN and MISC/RSBC in the last
microinstruction of this service routine.

- 5-25 -

UMAUC'~EJ JA'TA l(At

U~ AC..l 'Al(I) DA -r' A Wl1 TC"

UNAC.lC AIR OA TA w«1Tr UMLOC.K

fUW
N• fr•r'

VA•VA++·

W£1T(Ctoss ··~ f'A(I tlOJltJDM.Y

w-.ITf UNLOCJC.. ClQSStN(PAflC fSOUAICAltY

Save. WbR.

Ac.cess O. k.
ACV

Figure S. 5. Flow of Control - Unaligned Memory Access Service
Routines

- 5-26 -

I

' c... I r:· F 1 .. ~-..
I . :··· AU1c11•

: CSA _ _.,,
• • • • • • • • • • • • • •

I • '.:
I I• • • •••••• ••••••• ••••••••••••••• : I . -·-·-·-·-·-·-·-·

,... R.a'.C. ~
\I A~ H1>i. E·~

Pigure 5.6. Plow of Control - TB Miss Service Routine

- S-27 -

5.2.2.4 Translation Buffer (TB) miss service routines

The hardware detects four distinct cases where the required
PTE is not in the Translator Buffer (TB) • They are called TB
miss conditions; each causes a microtrap. Figure 5.6 shows the
a~tivity of the corresponding service routines. READ T~ MISS and
WRITE TB MISS are caused by memory accesses where the memory
location is addressed by VA. VA is the usual location of the
memory address when a memory read or memory write is required.
XBTB MISS is caused by a read access when the source of the data
is addressed by PC(i.e., contained in the XB.) This is the case
when the source of the data is the instruction stream (as in the
case of immediate operands, for example). It is also the case in
the COMET implementation of certain character string instructions
where it was decided to use the PC as a pointer to the source
string, rather than use the VA as a pointer to both source and
destination strings (which would require changing the contents of
VA twice for each character operated on) • Finally, BUT XB TB
MISS is caused by a TB MISS resulting from a BUT/IRDl
micro-order. Like XB TB MISS, the memory location addressed is
specified by PC. This microtrap is the only one where
destination writes are not inhibited, and the microinstruction is
allowed to complete execution before the microtrap is taken.

Two things need to be said about the TB miss service
routines. First, each routine includes two tests for the
presence of pending interrupts. Since •Get PTE• could involve
two physical memory accesses, this is the memory management
system's contribution to protecting against an interrupt latency
error caused by a TB miss. Second, there is no hardware
detection of a TNV fault. A TNV fault is detected by examining
the V bit in the PTE after the PTE has been obtained from memory.
On a TB •iss ACV and TNV faults are indicated on the microvector
lines in response to the appropriate BUS/PRB micro-order.

5.2.3 An example

We conclude this section on memory management with an
example. Suppose CSA •A• contains the last microinstruction in a
routine to emulate a particular VAX machine instruction. Suppose
this last microinstruction initiates a write to memory which
crosses a page boundary; i.e., the write is to two separate
pages. This microinstruction, then, includes the BUT/IRDl and
the BUS/WRITE micro-orders. Suppose, finally, that none of the
three relevant PTE's (the one relating to the next opcode and the
two relating to the destination to be written) are in the TB.
What happens?

- 5-28 -

Figure 5.7 shows the flow of control for the execution of the
microinstruction at A. The microinstruction attempts to execute
(1), but potentially three microtraps could occur. The BUS/WRITE
could cause TB miss and Write Crossing Page Boundary microtraps.
Tae BUT/IRDl could cause a BUT/XB/TB miss. Only one •icrotrap
can occur at a time; the TB miss takes precedence. Destinations
are inhibited, the address A is pushed on the microstack, and a
forced branch (2) to CSA 0028 occurs. COMET microcode then gets
the PTE and loads it into the TB, and terminates with a
microinstruction containing BUT/RETURN and NEXT/O. This pops the
microstack, and the microinstruction at A is attempted again (3).

This time the Write Crossing Page Boundary microtrap takes
precedence. Again destinations are inhibited, again A is pushed
onto the microstack. This time a forced branch (4) to CSA 0027
occurs. Since the memory access is write, the access privilege
of the second page is checked (BUS/PRB.WR) before the first page
is written. The attempt to check the access of the second page
results in a TB miss, and a microbranch (5) to the microcode to
get the needed PTE results. After the PTE is loaded into the TB,
the microstack is popped, returning to the Write Crossing Page
Boundary routine (6).

Since the write access is ailowed, the microcode proceeds to
perform the two writes, terminating with a microinstruction which
includes BUT/RETURN, MISC/RSBC, and NEXT/0 micro-orders. This
pops the microstack, which causes COMET to again .attempt to
execute the microinstruction at A (7); this time, however,
with the bus cycle suppressed since the write was performed by
the microtrap routine.

This time, the BUT XB TB miss microtrap is detected. Unlike
the other microtraps, BUT XB TB does not inhibit destinations.
The microinstruction is allowed to complete before the microtrap
is taken. After execution of the microinstruction, the hardware
forces a microtrap (8) to CSA 0029 to get the PTE specified by
the PC. The PTE is loaded into the TB and the microtrap routine
terminates with BUT/RET.DINH. This pops the microstack, which
again (9) causes the microinstruction at A to be executed. This
time, howevet, all destinations are inhibited. Effectively, the
only actions that occur are those caused by BUT/IRDl. The next
VAX instruction is fetched.

- 5-29 -

(1) ...

(l

"'c•-n•, ,.,.. "''')

Mteao

(.-~tt CM#•~-c.
'M.rS.~~

·JC\~
(ltT &ITI ,.,u)

••• : A

.. ~---H-. .;;:. __ ... -.. ""---.-. ,..-~I 001.S

4-k rT~ .-.(/...t : /.
1.J. N. T~

...

Figure 5.7 Plow of Control (Memory Management Example of Section
5.2.3)

- 5-30 -

TABLE 5.1 INTERRUPTS

!.
VAX IPL(hex) COMET IPL CSA

1. Device 10-17 UNIBUS 14-17 003A
interrupts interrupts

2. Console 14 Console 14 0039

3. Interval 18 Interval Timer 18 0038
Timer

4. Recovered errors 18-lD Corrected lA 003C
(Implemenation Memory

specific) Data

s. Unrecovered errors 18-lD Write Bus Error lD 003E
(Implementation

specific)

6. Power fail lE Power fail lE 003F

7. Software 01-0F Software 01-0F 0038

8. · AST Delivery 02 (see sec. 5.1.3) 02 0038

- 5-31 -

YAX

TABLE 5.2 EXCEPTIONS

DETECTION IN COMET -
l~ Arithmetic Traps/Faults

Integer Overflow
Integer Divide by Zero
Floating overflow
Floating Divide by Zero

·Floating Underflow
Decimal Overflow
Decimal Divide by Zero
Subscript Range

2. Memory Management

Access Control Violation
Translation not Valid

3. During Operand Reference

Reserved Addressing Mode
Reserved Operand

DOSERVICE (0011)
MICROBRANCH
MICROBRANCH
MICROBRANCH
MICROBRANCH
DOSERVICE (0011)
MICROBRANCH
MICROBRANCH

MICROTRAP or MICROBRANCH
MICROBRANCH

MICROBRANCH
MICROBRANCH

4. As a consequence of an Instruction

Opcode Reserved to Digital
Opcode Reserved to Customer
Com·patibil i ty Mode
Breakpoint

S. Tracing

T-Bit Trap

6. Serious System Failures

Kernel Stack Not Valid
Interrupt Stack Not Valid
Machine Check

IRDl ROM
IRDl ROM
Comp. Mode ROM
IRDl ROM

DOSERVICE (0015)

MICROBRANCH
MICROBRANCH
MICROTRAP (0028)

- 5-32 -

!

BUS/PRB.RD
BUS/PRB.RD.MODE
BUS/PRB.WR
BUS/PRB.WR.MODE

BUS/PRB.RD.PTE
BUS/PRB.RD.PTE.K
BUS/PRB.WR.PTE

WCTRL/UVCTR_CM,IS

WCTRL/REICHK AND
WBUS • SAVED PSL

WCTRL IS NOT
UVCTR COM. IS OR
REICHr(SEE ABOVE)

BUS IS NOT ONE
THE PROBE MICRO
ORDERS(SEE ABOVE)

LEGEND . M • .
v -AC •
PBOK •
PA -• -•• •
••• •

Table 5.3 Microvector Chart

UVCTR<3> UVCTR<2> UVCTR<l> UVCTR<O>

*** * V.OR.PA (AC.AND.V).OR.PA

0 ** V.AND.AC AC

UN DEF PSL<IS> PSL<CUR>

0 •REI CHECK OK
UN DEF 0 1 •REI CHECK OK & AST . 2 •REI CHECK IS NOT OK

3 •REI CHECK IS NOT OK

0 • SOFT INTERRUPT
1 • CONSOLE INTERRUPT
2 • UNIBUS INTERRUPT

UN DEF 3 • INTERVAL TIMER INTERRUPT
4 • CORRECTED MEMORY INTERRUPT
6 • WRITE BUS ERROR INTERRUPT
7 • POWER FAIL INTERRUPT

PTE MODIFY BIT
1 IF VALID PTE
1 IF ACC.ESS ALLOWED
1 IF NOT CROSSING A PAGE BOUNDRY
1 IF MEMORY MAPPING IS NOT ENABLED
M.AND.((V.AND.AC).OR.PA)
M.AND.V.AND.AC
(PBOK.AND.V.AND.AC).OR.PA

- 5-33 -

CSA -
0022

0023

002A

0028

002E

002F

0027

0026

0021

0025

0024

0029

002D

Table 5.4 Memory Management Microtraps

CONDITION

MSRC XB TB MISS

MSRC XB ACV

TB MISS, READ

TB MISS, WRITE

ACV, READ

ACV, WRITE

WRITE, Crossing PAGE BOUNDARY

WRITE UNLOCK, Crossing PAGE BOUNDARY

UNALIGNED DATA READ

UNALIGNED DATA WRITE

UNALIGNED DATA WRITE UNLOCK

BUT XB TB MISS

BUT XB ACV

- 5-34 -

PRIORITY

highest

lowest

CHAPTER 6. MICROPROGRAMMING IXAMPLES

In this chapter, we show two examples of COMET microcode. The
first was taken directly from the VAX emulation; it is the
e~ecution flow for the INDEX instruction. The second is an
example of what a user might come up with to handle· a special
task.

6.1 Example 1. The INDEX Instruction.

The VAX INDEX instruction has the following format:

INDEX subscript.rl, low.rl, high.rl, size.rl, indexin.rl,
indexout.wl

Figure 6 .1 shows the execution flow for the INDEX instruction
after the first two operands have been fetched. The IRDl ROM
causes a branch (cf., Section 2. 3) to the OS. RED microcode to
evaluate the first operand. The IRDX ROM, with IRDCNT = O,
causes a branch again to the OS. RED microcode to evaluate the
second operand. Finally, the IRDX ROM, with IRDCNT = 1, cuases a
branch to MS.INDEX to begin the. execution flows. At this point,
(0 on Figure 6.1), MOR contains the second operand (the lower
limit) and Q contains the first operand (the subscript).

Microinstructions (1) (4) control the evaluation of the
remaining four operands. Note that in each case, the branch to
OS.RED or OS.WRTl is specified by the NEXT field as augmented by
the addressing mode (BUT/LCD.INC.BRA). The address of the
current microinstruction is pushed on the stack (JSR/PUSH),
providing for the return mechanism at the end of each operand
specifier routine {i.e., BUT/IRDX causes the microstack to be
popped when IRDCNT is greater than one). The OS.RED subroutine
stores in MOR the operand which is fetched and stores in Q the
previous contents of MDR. Ergo, in (1) - (3) the contents of Q
are saved before the branch to OS.RED is taken. The 05.WRTl
subroutine does not affect the Q register. It stores in VA the
operand address of the destination operand.

- 6-1 -

°' I
N

U 0318, 0867,03A4,1808,0470,4100

U 0319, 484~,02C7,1824,0470,4100

U 031A, 4840,02C7,1B28,0470,4100

U 0318, C812,0012,181C,0470,4140

U 031C, C840,SB24,0219,8C70,0CAO

FIGURE 6.1

;20 .. ;i67
: 20,'.\lld
; ~(){,f,'.)

; 20ti'/tl
: 2Qt:_,·,· I
; 201.17 2
;20G73
;:?Ot,7;~

;20<;75
; 20G 7(i
; 20li'/7
;20076
;20G79
; 20(;~0
;20GB1
; 20lH~2
; 20·.:iAJ
; 20l>04
;20G85
;20G9G
:20Gu7
; 20•5138
;20.~.H

; 201"i90
; 201)91
;20'..i92
; 20·.>93
201,94
20G95
20tJ96
20(1~17

20 . .:.:~•e
20,>•-'9
20700

,2C701
;20','02
;20i0J
;20'i04
; 20'7C5
;2070G
;20107
;20708
i 20i ::·'J
; 20·110
; 2J711
;?.O'il'.1
;20713
; 20'l 14
;20715
• 2071£
; 20717
;20713

.roe h Misc. and ~ueu~ : INDEX INSTl<UCTIOU''

;

•••*••········••**·~·········•*•'•*•*••······································ INDEX su~Jsc.rir.;t.r1, 10~11.rl, ni~1·1.r1, size.rl/"'inth:rxin.rl, indexout.w1

Input

Resources

Subroutines

0
MOR

TEMP4
TEMP6
TEMP7
RTEMP9
RTEMP10
0
Q
FLAG3

OS.RED
OS.WRT1
MULSUB.MDR_O
IE.INOEX.R~NGE

5t.,;bscr ipt
Le\~ 1 imi t

P.:sHS
P:.t:..iS
Save
Save
S.we
Save

mu1 t ipl ie1• to MULS .. tB.MOR 0
multiplicand to MULSUB.M5R_O
subscript
1ow I imit
high 1 imi t
subscript+ indexli

Sat if ranoe trap occurs.

;••··~············~···································~·······················
.~EGION/IRDX.R1L,JROX.RtH/IRDX.R2L,IROX.R2H
=000
MS.INDEX: (Q) .

;000----------------------------;

=

M[TE~P7]_Q, SAVE SUBSCRIPT.
LOO INC ORA'? I (!)
PUSH, l~EXT /OS. RED FETCH HIGH l l MIT.

;001----------------------------;
R[TEMP9J_Q o_o, SAVE LGW LIMIT.
LOD me BP.A?' (2)
PUSH,NEXT/OS.RED FETCH SIZE.

;010----------------------------;
R[TEl'1P10L.Q o_o, SAVE HIGH LU.UT. (3)
LOO INC EH<i\?.
PUSH,NEXT/OS.REO FETCH lNDEXIN.

;011----------------------------;
O_~[MOij)+R[fEMP7),
LOD INC BR/\'? I

P IJ ~~I 1 II I= Y. 1 / tl 5 • ~·: P. T 1

SAVE SUBSCiUPT + INDEXIN. (LI)
FETCH lNDEXOUT.

;100----------------------------;
R{TEMrG]_D, SETUP MULIPLlCANO FOR MULTIPLv.(5)
SIZE[LONG],ALUS_SIGND

.REGION/MISQUE.R1L,MISO~E.R1H/MISOUE.R2L,~ISQUE.R2H/MISQUE.R3L,MISQUt.R3H

Execution Flow, INDEX Instruction

0\

' w

i 20·1 • ._.
;20'/20
; 20·/:t t
; 20·12 ~

=COO :coo----------------------------;
M[T£MP•I) _Q, SETUP MULTIPLIER f.'OR 'AULTIPLY. (6)
SIGND CMP?,SIZE(LONG),
PUSH,NLXT/lL.MULSUB.MDR_O COMPUT~ (INOEXIN + SlBSCRIPT) •SIZE

;20i'24 ::011
;20.i:!S

;011----------------------------;
R[OST.R]_M[MOR].OR.Q, RESULT IS POSITIVE, USE Q. (7)

U OCA3, 4852,00A4,02C5,5DAO,OCA1
; 2onr;
;20i~·1

: 20'128
: 20·; 2'-J
;:ZJ730

U OCA4, 4852,00B0,02C5,SD~O,OCA1 ;20iJ1
;20.'3:2
; 207:3~
;20734
;20135

U OCA1, 8R07,C000,8624,0470,8C99 374• ;20736
;20737
;20·,·39
; 20·139
;20740

U OC99, 8807,0030,B628,0470,8CA5 374• ;20141
; 20·;42
;20743
;201-14

U OC98, CSB0,0364,0300,0470,0FBA ;207~5

u OCA5, oeo0,0364,1300,0470,03F9

U OCA7, C590,0364,0300,0470,0FBA

; :~ ;· ..;,-.,
;20/'H
;207·18
: 20·149
, 20·,.~,o
;20i':ll
;20752
;201:,3
;20'154

WRITE NOTREG,SIZE(LONG],CCOP2,
NEXT/MS.INDEX.SO

;100----------------------------;
R[OST.R]_Ml~OR)-Q, RESULT IS NEGATIVE, USE -Q.
WRITE NOTREG,5l~E(LONG],CCOP2 (8)

=
MS.INDEX.SO:

·-------------------------------· I I

WB_M(TEMP7]-RfTEMP9),
SIZE[LOrm] 'SIG~ID CMP? JS SUBSCRIPT LESS TH~~ LOW LIMIT? (9)

=01 ;01-----------------------------; SUBSCRIPT IS GREATER OR EQUAL THAN LOW
wa _R(1H!P10)-Ml TEMP7 J' (10)
SlCNO CMP?,SIZE[LONG),
NEXT/MS.tNU~X.60 IS SUBSCRIPT GREATER THAN HIGH LIMIT?

;11-----------------------------:
SET FLAG3,
NEXT/lE.IN~EX.RANGE

=01
MS.INDEX.60:

SUBSCRIPT IS LESS THAN LOW LIMIT
PUSH PC ON TRAPS. Cl!)

;01-----------------------------; SUBSCRIPT IS LESS OR EQUAL THAN HIGH
IRDt (12)
;11-----------------------------; SUBSCRIPT IS GREATER THAN HIGH LIMIT
SET FL~G3, PUSH PC ON TRAPS.
NEXT/IE.INDEX.RANGE

(13)

Figure 6.1 (continued) Execution Flow, INDEX Instruction

A word about the assembler notation in Figure 6.1 is in order.
In (4), the statement D M[MDR]+R(TEMP7] means the following: The
ALU ls to perform an aadition; its sources are the MBUS and the
RBUS. 'ftle contents of MDR are gated on the MBUS; the contents of
~ratch Pad register TEMP7 are gated on the RBUS. The output of
tfie ALU is loaded into the D register.

In (5) and (6) the arguments are set up for the multiply
subroutine. The multiplicand is loaded into TEMP6, the
multiplier is loaded into TEMP4, and a branch is taken to
IL.MULSUB.MDR 0 where the multiplication is performed. Return is
to CSA 11F3 rf the result of the multiplication is positive, or
to CSA 11F4 if the result is negative. The absolute value of the
product is stored in Q. Note that in both CSA 11F3 and CSA llF4,
(7) and (8) in Figure 6.1, the product is written to its
destination. Since MDR • O, either O.OR.Q or 0 - Q is computed
in the ALU •. The output of the ALU is stored either in DST.R if
register mode, or in memory otherwise {cf. Section 4.2.3).

Finally, in (9) - (13), the subscript is checked against the
lower and upper bounds. In (9), for example, the subscript
(stored in TEMP9} is subtracted from the lower limit (stored in

TEMP7}, the result is placed on the WBUS, and a branch (BUT-OR,
cf. Section 2.1.1) is taken to CSA 1399 or CSA 1398, depending on
whether the output of the ALU is positive or negative. Note that
the BUT code uses WBUS. <31> and .WBUS. <30> for performing the
multiway branch; however, since NEXT<O>=l, the state of WBUS<30>
has no affect on the branching.

If both bounds checks pass, (12) is executed. BUT/IRDl causes
the machine to start emulating the next VAX instruction. If
either bounds check fails, FLAG3 is set and a branch to
IE.INDEX.RANGE is taken to initiate the trap.

6.2 Example 2. A User-Defined Instruction.

We conclude this Introduction to the COMET Microarchitecture with
the development of a new instruction

MATCBP pattern.rw, streamaddr.ab, streamlen.rw, count.wl*

------------------------------~-------------------------~----• The operand notation is that used in the VAX Syste~ Reference
Manual, i.e. •naae.ad•, where name is a descriptive identifier
for the operand, a represents the access type (r•read, w=write,
a•address) and d represents the data type (b=byte, w=word,
l•longword).

- 6-4 -

The instruction i s to search the bi t stream spec i fie d by
streamaddr (its starting address) and streamlen (its length in
bytes), counting occurrences of a 16 bit pattern. To simplify
t~e bookkeeping, we will assume that the length of the bit stream
is an exact multiple of 32 bits (i.e., it is contained in an
integer number of longwords). The pattern is the first operand.
At completion of execution, the number of occurrences is to be
stored in count. The bit stream is literally a bit stream; i.e.,
occurrences of patterns are to be counted if the pattern occurs
across a byte boundary.

We will assume that common VAX microcode has been used to obtain
the four operands, and that our job starts with M [TEMPl]
containing pattern (with 16 leading 0 's), M[TEMP2] containing
streamaddr, Q containing streamlen, and D containing the address
of count.

First we study the problem to see if there is some way to exploit
the parallelism of COMET microcode in developing our algorithm.
Resumably, speed is important, or we would have elected to use
VAX's bit string instructions. We note that the crux of the
solution involves the following (in this discussion we will refer
to stream address as A):

(1.) Load four bytes into Q. Then iterate 16 times the compound
operation consisting of comparing the right-mode 16 bits of
Q with the pattern, incrementing a counter if they match,
and shifting Q right one bit. For example, initially Q
contains

' (A+3) I (A+2)

'
(A+l) \ (A)* '

:·r Q

Sixteen iterations later, Q contains

.
' don't ~are I (A+3) I (A+2) l . Q .

(2.) If we next load Q with the longword starting at A+2, the
microarchitecture will be ready for another sequence of 16
iterations, this time starting with

I (A+S) I (A+4)

'
(A+3) \ (A+2) \ . Q .

------------------------~

* (A) • contents of A.

=
- 6-5 -

(3.) Sixteen iterations later, we are ready to load Q with the
longword starting at A+4.

T~us, the Q register can be continually loaded correctly by the
following scheme (assume we have already performed the ·first READ
and that MDR contains the result) • Note that the scheme we are
going to describe allows READs to be scheduled such that, after
initialization, we never have to wait for memory accesses; that
ls, memory access time in O, independent of the length of the bit
stream. The scheme is as follows:

(1) M[TEMPS]<---MDR

(2) O<---M[TEMPS],READ

This results in the first 32 bits of the bitstream being loaded
into the Q register and the second read initiated. Sometime
later, MDR will contain the contents of the longword starting at
address A+4.

(3) Sixteen shifts and compares later, we have

(cA+7 > \ CA+6 >I CA+s > \ CA+4 > I: MDF \ CA+J> \ CA+2> \cA+1>j CA>I: M[TEMPsJ

\don't : care \ (A+3 l I (A+2 l l: Q •

Q is ready to be updated with the longword starting at A+2. This
done by

Q <--- MDR'M[TEMPS], rotated right 16 bits.

There is a ROT micro-order which will do this (cf. Section 4.1),
but we don't attend to that level of detail yet. The contents of
Q at this time is

\ (A+S) l (A+4) I (A+3) 1 (A+2) \ : Q

(4) Sixteen shifts and compares later, Q is again ready to be
updated, this time with the longword starting at A+4. Since
that longword is contained in MOR, we return to step l above,
and the crux of th_e algorithm has been developed.

- 6-6 -

Second, we incorporate the above four steps into a flowchart,
keeping track of the bookkeeping, in particular the
initialization and graceful exit. Figure 6.2 shows the
flowchart.

Third, we refine the flowchart, identifying end microinstruction,
assigning specific registers to symbolic names, and keeping in
mind the BUT OR-ing nature of conditional branches.

- 6-7 -

Cowi-r•" Cl, PATIT&J

~,.l.,k TCt»JT

Cou.rr ·Tcoc>~ T

."._.,.
lNO ... ~aJ.lr +

,..frtC9' It"' - 4
-IA .,_ s4-re.J,,.
ltf'AJ)

COO~TADN D
TCOCINT .,_ f6
IOT/JA" 4- i
LAST_looP .. \JA.rA.(NO

Q .. ~1j,(HDl-1 TEWt)

lO'T/JAtlt.,. \

LAST. LOOP .. I

Q._MDl

c_..(•" ~" ,,A'TT£ftl'J
"f"'•J.. ICO\)NT

~k,f.1- Q. O•& ~-~
SC. SC - \

Figure 6.2 Initial Flowchart for the MATCBP Example

- 6-8 -

, .. f4Dl
VA.--JA tr 4
RE'AD
4 ... TEMrt

Finally, we write the microprogram. The method is to write
macros without coding them at the same time, then to go back and
define each macro in terms of the microinstruction which
implements it. The initial microprogram is shown in Figure 6.3,
the macro definitions in Figure 6.4.

We conclude this example with a statement about its performance.
After the initialization procedure, memory accesses were done in
parallel with the •comparison and testing• microcode. Assuming a
320 nsec microcycle, execution can be accomplished (using Figure
6. 5) in

2 5/32 n - 23 + (no. of matches} microcycles

An equivalent VAX . machine language program to solve the same
problem is described below.

ASHL 13, SIZE, R4

SUBL2 116, R4

CLRL Rl

CLRL R3

NEXT: CMPZV Rl, 116, STRING, R2

BNEQ A

INCL R3

A: CMPL Rl, R4

BEQL DONE

INCL Rl

BRB NEXT

DONE:

In the above program, Rl contains the location of the current 16
bits being compared, as an offset from STRING, R2 contains the
zero-extended pattern, R3 contains the COUNT, and R4 contains the
number of comparisons which must be made (n 15}. A
conservative estimate for the execution of this VAX program for
large n is at least 23n microcycles, an order of magnitude slower
than the microcoded version.

- 6-9 -

°' '
0

u ••• ·····••Jt,16201147111•••

U flt lt4t1587111J2C114l11ll8D

a 1J, ••••~••1~,eJ2c,,t,1,1111

a ••· ct12,1171,11tt,1t11,1eec

•·"" UH
UH
UH
un
UH
1129
UH
uu
IJU
uu
UH
UJ5
UJ6
un
UH
UH
UH
uu
1142
uu
uu
uu
U46
un
ll41
Uf9
tne
uu
US2 uu
UH
USS
US6
IH7
UH
US9
UH
uu
tJ62
uu
U64
UH
U66
un
UH

JU69
11ne
tUU
sU'72
tll'7J
sU'4
sU75
sU76
1un

,•......•••
Rl•!MPIJ.RB•CONX(t) 9IMD • ltllAM ADDI + lfRIAM Lii • 4

••••••••••••••••••••••••••••••••• ~r
YA~MITEMP2J 9LOAD l!RIAM ADDI

,•.......................... ,
A!AD1SJZF.(LONGl1 •FITCH FIRlt J2 11!1 or lfRllN
PL~l16.J 1UIED LATER FOR ROTATllG

,•...... ,
RlTEMPIMJ..D 1IAY! AODRlll or atlULT

,••..••• ,
NB~R(T!MPIJ•MlVAJ,SET FLlGl1 1CHICI FOR END, Ill IOTl~AI PLAG
llCHD CMPl1lllEILO~GJ t ••......... ~ ~•... ~ ..
R(TEMPllJ-~, 111'0 COUNT
CttAR FLACt,N!XT/OUT!R.LOOP tNOT LAIT LOOP

·············-~---··············· RlTEMPllJ.e, tllAO COU~T
IET FLAGl,NEXT/DO.OWLY~ONI •ONLY HEED TO DO 011 COMPARI

oo.:ONLY.ONEI , ,
O.NE~DR),NrXT/LAIT:coMPARE 1MOVI IOURCI INTO 0

••
INNER~LOOPt . .

•D••••••••••••••••••••••••••••••J
wa_MtTEMPIJ•Q SQR, 1CO•PARI ITRIAM IND PITTIRI II 1111
llGNO ~HP?1SIZllWORDJ, t
NEXT/CONT-INNER-LP I

OUTER.:LOOP i . .
•l••••••••••••••••••••••••••••••t
ITEPC.ZLJT8l16.J, '
rtlG<l•I>? •II IT TIMI TO FITCH A Ill LONGWORDT

•II 18~•••••••••••••••••••••••••••••1
O.<MtMDRJ RITEMP!IJ>.RR.P, tlHlrt II NEXT II IHI or HltlWG
SET FLAGl 1 NEXT/INNER~L00P •IE! RIT/JAM FLAG

LAIT~COHPAREi
t~l•••••••••••••••••••••••••••••tDO ONI LAST COMPARE
-8~M(TEMP1J•Q SQ~, sCO"PARE STAIAN AND PITTIRW II llfl
SIGND CMP!1SIZF.(WORDJ, s
NEXT/EXIT 9

•ll•••••••••••••••••••••••••••••I
W&.MCVAJ•RCTEHPIJ,CLEAR FLAGS, tCMECK FOR !ND, CLEAR ROT/~AM FLAG

Figure 6.3 Microprogram for the MATCHP example

°' I

,,

u 11, 11t1,e•et,e62e,147,,1eet

u ''' ••12,st2s,1111,1471,11~c

U Iii 41tt,IJ64,JJll,t411,lltC

U 121 lltl,fl2t,IJDl,4A71111lt

U tJ, 11491E,Cl18l2C,147118812

sun
sUH
11JHI
slJU
st JU
ti JU
JIJH
sUll
sUH
sun
111'8
UH
tJ9'9
U91
U92
uu
UH
1)95
U96
U97
UH
UH
UH
14111
14112
ltcU ,.,..

sl4H
sl40t6
'14"7 ,
Jl44'9

SIGND CMP11llZr.[LO~GJ
• '

,.
11

•II t•t•••••••••••••••••••••••••••••t
o.M[MO~J.aET FLAG81 JIET LAST LOOP FLAG
NEXT/IH"ER-LOOP t
,.,•..••.•
R(,FMPSJ-Q~~("DRJ,VA-VA+t, t
READ,SJZE[LONGJ, t
•EXT/INNER.LOOP t

•ti
CONT.:,INNEA.:.LP I

sli•••••••••••~•••••••••••••••••tlO MltCH

., .
EXITi

D8Z ITEPCJ,NEXT/INNER-LOOP t R!PEA! 11111 LOOP ll !IMlle

tlt•••••••••••••••••••••••••••••tMATCH
RITEMPllJ.RB+t, tlNCREMElt COUNT
NEXT/CONT.INNER.LP I

tll······························ VA~MlTEHPllJ,MEX!IWRtTE-REIULT tLOAD DIS!INlTIOI ADD~Ell

,,,.~ ~.~---···············
~ITEMPllJ.RB+I, tlNCREMllt COUNT
NEXT/EXIT I

WRITE.:.RESULTI ,•.•.....•.•.....•.•. ,
WRITE RlTEMPttJ,SIZ!lLONGJ

Figure 6.3 Microprogram for the MATCHP example (continued)

CLEAP FLlGCll
Ct.El1' rLlGt

I P~t1.:.RB+O
' 0-(~[J R[Jl.llR.P
1 o.:.11CtJ
I PL-tl
t Ptl-•!EXT(M[])

1t c J_e
Ptl-0 .. Cl-"' tJ +Q
R[J_Q_M []
ft r1-R8+1
P tl-•8•CONXC4>

ST!PC-ZLIT" Cl
VA-~[J
VA.:_VA+4
Vll-!'4tJ•Q IQll
ll8.;_MtJ •IHJ
lfB-R Cl •"' tJ
D8Z STEPC?
f'LlG<t•0>'1
SIGlfO CMP?
SET f'UGI
l!T ruca
ltlE[J
PEAD
"ltITE an

Pigure 6.4

•MISC:/CLR.FLAG0•
•MtsC:/CLR.ri.aca •
·~OT/SL.Pt..:.WB,PSRCl•t,SPW/PLONG,ALU/A+B+C1 1 MUXIR.Q•
•1LPCT~1wx.:.a_s,MSRCl•l1RSRC/t2,ROT/Rlt,MR~P·
•00110..w~,MSRC/fl1ROT/!ERO,MUXl~.s,1tu10R•
•ROTIOLl?lePL..L%T1LITIL!TRL1LITRLltl•
•RSIC/111IPW/RLOIG1MUX/XMeS1ROT/ZEP01lLU/l•l•CI1lLUXM/ZER01M

•RSRC/tl1SPW/RLO~G,POT/ZER01lLPCTLIWX..S•
•RSRC/tl1SPW/RLONG1ROT/ZER01 MUX/OeS 1 lLU/OR•
•RSPC/1111PN/RLONG,MS~C/121MUX/~.Ol1ALU/l+B+CI•
•RSRCl•111PW/RLOIG,~SRC/121~0T/ZEll01MUX/M1S1ALU/OR,DQl/Q~WX•
•RSllC/lt,SPW/RLONG,POT/MIBUS1 1 MUX/P 1 S1 ALU/A•B•CI•
•RSRC/lt,aPV/RLONC,lLU/l•l•CI 1 MUX/Rel 1 ROT/C4NX.SIZ,VS?ZE/1 1 D

•WCT,L/&TEPC-W81ALPCTL/WX..S,POT/ZLITl1LIT/LITRL1LITRL/l1•
•WCTRL/VA-Wl,Nl,C/l.l 1 RIRC/ZERO,MUX/M 1 R1 1 ALU/OR•
•wCTRLIVl-Vh4"
•"ux1~.02,MSRC/lt1ALU/l•l•CI,DQ2/SQR•
•"ux1~.Rt,MSRC/tt,RSRC/f2,ILU/l•B•C!•
•RSRCl•t,MSRC/t2,HUX/M.R11lLU/B•A•CI1lLVCI/ZERO•
•1ut1oez.se• .
8 1UT/rLAGlTOI•
•1UT/C:CBR1CC/WOP.CCIR.,IIGMD•
•MISC/SET .FLAG ..
•M!IC/Sl'f.rLaGt•
•YllZE/l1D!YPE/tt•
•1u111110• . .
•1Ul/WR%TE1WCTRL/tlOR:w1,Raac1t11ALU/OR1MUX/R.l1ROT/IERO•

Macrodefinitions for the MATCBP example

- 6-12 -

4 .. ·tCl'•Cr''

+ 1 ·.c
• ""''J.

1 •• ·4-.~1. ff
7 ,_;.,..,,.,,, 1

i

..
ii -I

~ ~ciclLs

.... 1 if & ... ~.Id

"' - _, ,,

Pigure 6.5 Analysis of the Execution Time of MATCBP

- 6-13 -

" - - I ,,

ACV

ALPCTL

ALU

ALUCI

ALUSHF

AMUX

AST

ASTLVL

ATCR

BMUX

BUT

CMI

CSA

D REG

DOSERVICE

DSIZE ROM

APPENDIX

ACROllYMS AND THEIR MEANINGS

Access Control Violation; specified by the VAX
Memory management system.

A 10 bit field of the microinstruction which
specifies one of 50 special functions to be
performed by the ALU.

4 bit microinstruction field, controls the function
of the ALU.

2 bit microinstruction field, spec if ies the carry
input to the ALU.

3 bit microinstruction field, controls (with the DQ
field) the shifting of the ALU output.

Multiplexer which controls the A port of the ALU.

Asynchronous Systems Trap (VAX architecture).

A two bit internal register; specified by the VAX
architecture, designates the most privileged access
mode for which an AST is pending.·

Arithmetic Trap Control Register; specified by the
VAX architecture, contains a code indentifying the
nature of the condition which caused the Arithmetic
Trap.

Multiplexer which controls the B port of the ALU.

6 bit microinstruction field, specifies the method
for obtaining the next microinstruction.

The 32 bit COMET memory bus.

Control Store Address,
microinstruction.

the address of a

32 bit regist~r, destination for ALU output.

hardware routine which checks for traps and
interrupts.

A 2k by 2 bit ROM containing the data type of each
operand of each VAX instruction.

- A-1 -

FC

FPD

ICR

IICR

INIR

IPL

IR

IRDl ROM

IRDCNT

IRDX ROM

JSR

LIT

LONLIT

MBUS

MOR

MSP [i]

MSRC

MUX

NIR

VAX opcode reserved for customer use.

First part done. A bit in the PSL; set when a
unrecoverable destination has been written into.

Internal Count Register (VAX architecture).

Internal ICR; the low order 16 bits of ICR.

Internal NIR; the low order 16 bits of NIR.

Interrupt Priority Level (VAX architecture).

8 bit COMET register, used to store the opcode of
the VAX instruction being emulated.

lk by 8 bit ROM used for obtaining the CSA of the
first microinstruction in the emulation of a VAX
instruction.

A 3 bit COMET register; contains the number of the
operand being evaluated in the emulation of a VAX
instruction. Part of the index into the DSIZE ROM.

2k by 14 bit ROM used for obtaining the CSA of the
first microinstruction in an operand specifier
routine.

One bit microinstruction field; when set it pushes
the current CSA on the microstack.

2 bit microinstruction field, used for bit steering
the immediate LITRL (9bi ts) and LONLIT (32 bi ts)
fields.

3 2 bit l it er a 1 fie 1 d in the micro instruction ;
enabled (bit steering) by LIT field.

32 bit COMET bus; memory data and M Scratch Pad
registers are major sources.

COMET register, destination of a memory read.

M Scratch Pad Register i.

4 bit field of the microinstruction, used to
specify the source gated onto the MBUS.

4 bit microinstruction field, controls the sources
to the ALU.

Next Interval Register (VAX architecture).

- A-2 -

OSR

PSL

PTE

Q REG

RBS

RBSP

RBUS

RNUM

ROT

RSP [i]

RSRC

SCB

SPASTA

SPW

SR KS TA

TB

TCSR

8 bit CCJIET r99 ister, used to store the operand
specifier being evaluated in the emulation of the
current VAX instruction.

32 bit processor status longword; defined by VAX
architecture.

Page Table Entry; defined by VAX memory management
system.

32 bit register, associated with ALU.

Register Back-up Stack.

Register Back-up Stack Pointer.

32 bit COMET bus; R Scratch Pad registers are major
sources.

4 bit COMET register, used to store the VAX general
purpose register which is being addressed.

Six bit field of the microinstruction, used to
control the function of the Super Rotator.

R Scratch Pad register i.

6 bit field of the microinstruction, used to
specify the source gated onto the RBUS.

System Control Block. A set of longwords, one for
each exception and interrupt; each contains the
starting address of the corresponding service
routine and whether to service it on the kernel
stack, interrupt stack or in wcs.

Scratch Pad Address Status; 2 bi ts, used in
microsequencer control.

Scratch Pad Write; Two bit fiel·d of the
microinstruction, used to control writing to the
Scratch Pad registers.

,Super Rotator_ Control Status; 2 bits, output of the
Super Rotator, used in microsequencer control.

Translation Buffer; a cache for PTE's; part of VAX
architecture.

Timer Control
architecture).

and

- A-3 -

Status Regisi;er {VAX

TNV

USTK

US'l'KP

VA

WBUS

WDR

XB

Translation Not Valid; specified by the VAX memory
management system.

The 16 deep COMET microstack, part of the
microsequencer.

Microstack pointer, used to address the COMET
microstack.

32 bit virtual address; specified by the VAX
architecture.

Main COMET Internal bus, 32 bits.

COMET register, source of a memory write.

Execution Buffer. Provides storage for prefetching
eight bytes of the Instruction Stream.

- A-4 -

