
VAX-11/750 LEVEL II

Student Workbook

For Internal Use Only

Copyright© 1980, Digital Equipment Corporation.
All Rights Reserved.

The reproduction of this material, in part or whole, is
strictly prohibited. For copy information, contact the
Educational Services Department, Digital Equipment
Corporation, Bedford, Massachusetts 01730.

Printed in U.S.A.

The information in this document is subject to change
without notice and should not be construed as a com­
mitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for
any wrors that may appear in this document.

The software described in this document is furnished
under a license and may not be used or copied e,.;cept
in accordance with the terms of such license.

Digital Equipment Corporation assumes no responsibili~f
for the use or reliabHity of its software on equipment
that is not supplied by Digital.

The following are trademarks of Digital Ecwipment Corporation,
Maynard, Massachusetts:

DIGITAL
DEC
POP
OECUS
JN I BUS

DECsystem-10
DECSYSTEM·20
DIBOL
EDUSYS"rEM
VAX
VMS

MASS BUS
OMNIBUS
05/8
RSTS
ASX
f AS

System Introduction

SYSTEM INTRODUCTION

INTRODUCTION

The 11/750 system is an extension of the VAX Family System
with many of the same characteristics of the VAX 11/780.

The 11/750 system allows users up to 4. 3 bill ion virtual
address while only using 2 MEG of physical memory. To do
this the 11/750 has mass storage devices on a Mass bus or
Unibus for quick and easy access by the CPU.

The 11/750 may run in two modes of operation:

1. NATIVE (VAX VMS)

2. COMPATABILITY (PDP-11)

There is also the capability of Remote diagnostics to help
both the user and the field service technician. With this
Introduction Module we will attempt to give you the basic
facts and concepts of the 11/750 System including:

1. Basic Architecture

2. Analysis of Block Diagram

3. Physical Characteristics

4. Diagnostic Overview

1-1

System Introduction

11/750 SUPPORT COURSE

MODULE I: SYSTEM INTRODUCTION

SYNOPSIS

The system introduction module consists of 11/750
system characteristics and block diagram analysis.

OBJECTIVES

Provided with a blank 11/750 system block diagram
and a list of 11/750 component names, correctly
label the 11/750 system block diagram.

Given a list of 11/750 characteristics, correctly
indicate as True/False the characteristics that make
11/750 a unique system.

SAMPLE TEST ITEM

Identify the following 11/750 unique characteristics
as True or False.

1. The 11/750 Processor Microword is 99 bits.

2. The 11/750 has a Virtual Memory System.

3. The 11/750 data path is 16 bits.

4. There is no Remote Diagnosis capability
with the 11/750 system.

11/750 Specification
New Product Data Sheet
11/750 Block Diagram
11/750

RESOURCES

11/750 Pocket Reference Guide

1-2

System Introduction

MODULE OUTLINE

I. SYSTEM INTRODUCTION

A. Course Overview

B. Basic Architecture

1. 11/750 Specifications

2. 11/750 Physical Characteristics

c. Block Diagram Analysis

1. CPU

a. Data Path Module

b. Memory Interconnect Module

c. 11/750 Control Store

d. Unibus Interface

e. Major Buses

2. Memory

a. Controller (1)

b. Array Boards (up to 8)

3. Options

a. CPU Options

1. Writable Control Store

2. Floating-Point Accelerator

b. Mass Bus Options

c. Unibus Options

d. Remote Diagnostic Module

1-3

System Introduction

D. 11/750 Physical Inspection

1. Front Panel

2. Card Locations

3. Backplanes

4. Power

E. Diagnostic Overview

1-4

System Introduction

---.. ...__._ -

Figure 1-1 Course Map

1-5

System Introduction

Basic Architecture

1. Comet Specifications

a. Micro-controlled machine

b. Similar 32-bit architecture except:

(1) Use of LSI curcuits (gate arrays)
(2) Increases reliability
(3) Decreases size

c. Virtual 32-bit addressing (hexidecimal)

(1) 4.3 billion virtual processes
(2) 2 meg max physical (moss - batt. backup 10

min.)

d. Two modes of operatiton

(1) Native (VAX VMS)
(2) Compatibility (PDP-11)

e. Remote Diagnostic Capability

(1) Company owner module

(a) Increase level of service
(b) Improves field service efficiency

f. Power

(1) 115 or 230 volts

2. Physical Characteristics

a. 40 inches high, 30 inches deep, 29 inches wide

b. Five basic sections

(1) CPU - 4 boards - 3 major buses
(2) Options - CPU and I/O
(3) Front Panel
(4) Backplanes - Comet and Unibus
(5) Power

1-6

System Introduction

What Is an 11/750 Gate Array?

400 identical two transistor cells which can:

1. Be connected to form 4 input NAND

2. Together with a neighboring cell be connected to
form 4 input NAND or AND.

44 identical transceiver cells which can:

1. By disconnecting the receiver, be a TTL, Tri-state
or open collector drives (Internal array to outside
world)

2. By disconnecting the driver, be a TTL receiver (high
impedance)

3. Both

Implementation Technique - Gate Arrays
Circuit Technology - Low Power Dipolar Schottky
Circuit Density - Large Scale Integration (LSI)

Die Size - .215 inches X .244 inches
Power Utilized per Die - 2 watts max

Package Size - 1.44 sq. in. (2.4 inches X 0.6 inches)
Number of Pins/Package - 48

I/O Circuits/die - 44 I/O transceiver gates
Logic Gates - 400 identical 4 input NAND gates

Voltage Used - +2.5 volts, +5 volts
Speed per Gate - 5-10 nanoseconds

Unique Gate Array Types

CPU and Memory Controller - 27
Floating-Point Accelerator - 7
Mass Bus Adaptor - 5

Total Number of Gate Arrays Used:

CPU and Memory Controller - 55
Floating-Point Accelerator - 28
Mass Bus Adaptor - 12

1-7

t"Jj
lQ
c:
l""t
CD

I-'
I

N

r
0

lQ
I-' 0
I

00 tlJ
..0
c:
<
ru
I-'
CD
::J
rt

()
...... ...,
0
c:
rt
Ul

1

c

0

OR •
IS EQUIVALENT TO

D _r

.1
c

LOGIC CIRCUIT EQUIVALENCES

D 1

c 0

TK·2098

en
"< en
rt
Cl>
!3

H
::J
rt
l""t
0
0.
c:
0
rt
0
::J

.......
I

\0

DZ-11

VT 100

UBI

TU58
INTERFACE

CONSOLE
INTERFACE

INTERRUPTS

UNIBUS
INTERFACE

FLOATING
POINT
ACCEL

UNIBUS

DATA
PATH

MICRO­
SEOUENCER
& TRAPS·

MBUS

RL02 LP 11
CONTROLLER CONTROLLER

...

DRIVE 0 DRIVE 1 LP04

W-BUS

WCSPRES

DATA
ROUTING
ANO
ALIGNMENT'

CMI

CPU
CONTROL
STORE

ADDRESS
LOGIC

TRANSL
BUFFER

CACHE

WRITABLE
CONTROL
STORE

r: --
. --
I RM03

_. _ _J

COMET SIMPLIFIED SYSTEM BLOCK DIAGRAM

MEMORY
CONTROL

MASSBUS
ADAPT.

--
RM03

Figure 1-3 11/750 Simplified Block

6

5

ARRAY 3

2

INTERNAL MEM BUS

sous
2 T.

3

-

8

7

-

TK 2079

(/)

"'<:
en
rt
CD
!3

H
::s
rt
l"1
0
a,
c:
0
rt
0
::s

System Introduction

Block Diagram Analysis

1. CPU - Four Boards

a. Data path module (slot 2) bPIY"a

(1) Functions

(a) Control Microsequencing
(b) Arithmetic actions
{c) Generate basic CLK from OSC on CCS

(2) Contents

(~) Super Rotator
(b) ALU
{c) 64 GPRs
(d) Interval timer and basic CLK
(e) Microsequencer

b. Memory Interconnect Module (Slot 3) /tlLC

(1) Functions

(a) Acts as memory management by making
physical address from virtual address

(b) Checks for that physical address to find
if it is located in memory

(c) Stores data in a lK cache for quick use
by the CPU

(d) Holds "PC" (program counter) to allow
CPU greater efficiency. (Updates the PC
without CPU microintervention.)

(e) Due to VAX data and instruction storage
it aligns data or instructions to
useable positions for DPM.

(f) Generates microtraps for
interrupts and exceptions

(2) Contents

(a) Address Logic

(b) Translation Buffer
associative cache

1-10

2-way

needed

set

System Introduction

(c) Cache - lK direct ·for data

(d) Data routing and alignment holds PC and
execution buffer.

c. CPU Control Store (Slot 5) C5S

(1) Functions

(a) Hold proms (microprogram)
(b) Mother board for WCS option
(c) Works in conjunction with microsequencer

(2) Contents

(a) Proms for ,80 bit, microword (lK)
(b) Snap on for WCS

d. CPU Unibus Interface Module (Slot 4) UC,'I

(1) Functions

(a) Interface the TU58 cartridge tape to
operating system. TU58 used possibly for
booting the system or loading of
diagnostics. One chip, serial data
between TU58 and interface. Parallel
between interface and CPU.

(b) Interface the console terminal so
operator may talk to system. May be
used as user input. Once chip serial
data between console and interface.
Parallel between interface and CPU.

(c) Interface for all data to be passed
between CPU and unibus.

(d) Generates
massbus
terminal.

all interrupts
devices, TU58

from
and

unibus,
console

(e) Acts as generator for time of year (TOY)
clock. To keep system informed as to
correct time. Battery run. (Batteries
included)

1-11

System Introduction

e. Buses: M, W, CMI

(1) Functions - to interconnect via etching on
backplane all sections of CPU to allow them
to communicate•'

(a) M Bus - used to transmit data to and
from scratch pad registers, memory data
registers, PC, virtual address
registers, PC, virtual address registers
and data path module. Also included is
data to and from FPA.

(b) W Bus - originates at ALU in DPM and
xmits data to data routing and
alignment, address logic, uni bus
interface and FPA.

(c) CMI Bus - (CPU Memory Interconnect) etch
on backplane that connects CPU to all
I/O buses and memory for data exchange.
Synchronous interlocked 160 nanosec
cycle.

(2) Contents

(a) M Bus - data lines <31:0>
(b) W Bus -.data lines <31:0>
(c) CM! Bus - 45 lines

i. 32 data/address
ii. 1 wait
iii. 1 hold
iv. 1 busy
v. 7 arbitration lines
vi. 2 status
vii. 1 8MHZ clock

1-12

NEXUS

System Introduction

\
DATA/ADDRESS (35)

ARBITRATION (7)

STATUS (2)

32 DATA/ADDA.
1 WAIT
1 HOLD
1 BUSY

3MBA
1 UBI
1 ROM
2 RESERVED

6.25 MHZ B CLOCK (1)

THE CMI STRUCTURE

Figure 1-4 CMI Structure

1-13

NEXUS

TK-2064

System Introduction

2. Memory - two to nine modules

a. Controller module (Slot 10)

(1) Functions

(a) Controls data moving to-and from CMI and
memory

(b) Controls refresh circuitry for moss
memory

(c) Performs error correction for 1 bit

(d) Has boot ROMS (up to 4)

(2) Contents

(a) Two clocks

i. fast used between CMI and
controller

ii. slow - used between controller and
memory

(b) Error correcting circuitry

(c) Up to 4 boot ROMS

(d) refresh circuitry

b. Array Boards - up to 8 (slots 1 -> 8 in hex)

(1) Function - hold data for storage - up to 2
meg

(2) Content

{a) 256K of mos¥ each board
(b) max 8 boards

c. Memory Internal Bus

(1) Function - carry data addresses and control
signals between controller and memory

(2) Contents

(a) 39 data lines

1-14

3. Options

Systen Introduction

(b) 7 multiplexed chip address lines
(c) Two address lines for 16K 39 grp select

(d) One ROM address strobe or column address
strobe

(e) One read/write control

a. CPU options - 2 boards

(1) Writeable control store (slot 5 in ex-hex)

(a) Function - allow programmer to write his
own microcode. Ex: subroutine

(b) Contents-RAMs, board is plugged to CCS

(2) Floating-point accelerator (slot 1 in
ex-hex)

(a) Function - used for working arithmetic
functions which have large numbers o-f
many decimal places

b. Massbus Options - maximum of 3 adaptors (slots 7
-> 9 in ex-hex)

(1) Function - to interface data between one of
8 devices possible on each adaptor to the
CMI bus. Devices could be used for storage
of operating system, space for user programs
or overall virtual memory space.

(2) Contents made up of LSI arrays and
standard logic

Note

Interrupts from massbus devices are given
a BR4 level and passed to CPU via unibus
interface board. To receive BG back it
must have the BG jumper removed if
adaptor is present in a slot.

1-15

System Introduction

c. Unibus Options (slots 1 -> 9 unibus backplane)

(1) Function - many and varied according to what
devices are purchased. DZll is normally
bought to interface up to 8 user terminals.

(2) Contents - relative to what is purchased,
but will always have M9313 for end of the
bus termination and diagnostics.

d. Remote Diagnostic Module (slot 6 ex~hex) Rb/Vl

(1) Functions

(a) Needed to run microdiagnostics

(b) Run macrodiagnostics from remote site

(c) If macros won't run, differentiate
between CPU and memory

(d) Utilize TU58 as backup source for
hardcore, cache/TB diagnostic supervisor
in case mass medium is down

(e) Down line load of micros is not a goal

(2) Contents

(a) RAMs - to hold microdiagnostic monitor

(b) DCS (Data Control Store) to hold
microsequencers loaded by monitor

1-16

CABLE
t'J:j TO
"° SEPARATE
c::

BOX t"1
CD

.......
I

U1

OJ
OJ
n
~

t'{j
.......
OJ
::s
CD

.......
I ()

..... QJ

.....J t"1
a.
t"'1
0
n
OJ
rt
0
::s
t'J:j
t"1
0
::s
rt

<
CD
~

9 8 7 8 & 4 3 2 ' 1 9 8 1 8 6 4 3 2 1 10 9 .8 :1 8 6 4 l3 i2· \1.
U· u
N N
I I .
B. 8 u;

I u
s: s

°' u1 I

T N

OR

9,
3,
1,
3

UNIBUS

u
N
I
B 2 2
u 6 - ..

6 -- ...
s 8 8

0 K K
u
T. M M

E E
M -- ·- M -- -0 .0
R R
y y

A A
R R
R - - R - .
A A
y y
s s

4

HEX

BACKPLANE CARD LOCATION
FRONT VIEW

1
i

···-· :o' c u iM
s B I~

p

4· s I !M
I

B w
0 c
0 s
T

R
0 I

M
8

--- I
; r·-c M M M R

I~ M B B B 0
!
i

c A A A M

EXTENDED HEX

I TK-3210

(I)

"< en
rt
CD a
H
::s
rt
t"1
0
0.
c::
n
rt
0
::s

System Introduction

EXTENDED HEX HEX UNIBUS
__ ., - -·- ··-- - ·- -· 11.-i
,, 2 3 4 5. 8 7 8 9 10 1 2 3 4 5 8 7 8 9 1 2 3 4 5 8 7 8 9

A

B

c

l

A A J

B B

c c

D D

E E

F l F

1• • 2 .. _.~ -_.-

•94 PINS TWO STRAIGHT ACROSS 3• •4

5• •8

SEPARATE DD-11DK
BACKPLANE

A1• •A2
-- -

=36 PINS lWO STRAIGHT ACROSS, DEC ALPHABET 81 • • B2
Ch •C2

A1• •A2

•36 PINS TWO OFFSET ACROSS, DEC ALPHABET 81• • 82

BACKPLANE
REAR VIEW

Ct• •C2

Figure 1-6 Backplane Rear V~ew

1-18

TK-3211

--'

System Introduction

1· • • 2 1 2 1 !2
3. • 4 e A• • Ae
5 • • 6 • B • • B •
7 • • 8 • c • • c •
9. • 10 • D • • D • • • • E • • E • • • • F • • F • • • •.H • • He

• • • J • • J • • • • K • • K •
• • • L e • L • • • • M • • M• • • • N • • N • • • • p • • p •
• • R .t • • R • • • s • • • s • • •

• • T • •T • • • • u • • u • • • • • v. •V ·•
• •
• • • •
• • • •
• •
• • • • • • HEX PIN BREAKOUT UNIBUS PIN BREAKOUT

• • • • • •
89. • 90
91. • 92
93. • 94

-- - --· ..

EXTENDED HEX
PIN BREAKOUT

COMET BACKPLANE PIN BREAKOUTS
TK-3213

Figure 1-7 11/750 Backplane Pin Breakouts

1-19

Ci
Q

Q z
1:1

1:
2

Q z
1:1

~

..

~~":'!
4

=~

llOWIR RIEF
-J1 J2 J3-

+11 -lli +58

GNO GND +58

+12 GND-58

~ ~

RDMA8SENT llDMPflESENT

A.

:Bl
~

~
:El

10

5
B
50

J1-

1 4 7
211
319

System Introduction

J2-

141
2 5.
3 I I

Ol'TIDN SLOT BUS GRANTS

TOS!:l.ECT REMOVE JUMPER

8G<t AOOX 17
BGS AOOX 61
BGI "'30X 73
BG 7 AllOX n
X-SLOT7.8.8

TUTl'OINTS

RDM 19 MATCH PULSE CDOUI
ROM 23 SA CLOCK aJOl73
ROii 23 SAST/SP al0615
Dl'M 17 llCLOCIC llOQ2Q5

Dl'M 17 IASECLOCIC All0273
Dl'M 17 I CLOCK 800209
MIC °" MEllSTAU. llOD210
Dl'll 17 l'MASEI A00580

HAllDWAllE RIV I.EVIL
ISYSIDI

!llT

0
1
2
3
4
5
I
7

RA.TE

300
600
1200
2400
3600,
9600
l9:IOD
33400

!'IN#

JUMPER
T'OGNO

1 4 1
251
311

J3-

l'IN•
80045I
llDOQi
llO(M54

illll4l3
DOOISO
800449
l!IOl)WI

llOOM8

CONSOLE BAUD RA TE

COHBR

A a c D

o·. 0 I 0
0 I 1 0

' 1 1 0
0 0 0 I
1 0 0 I
1 1 0 I

.1 0 1 1
0 I 1 I
1 . i I '

COOIMS COOMI CllO&W COllli50

COOIM3 COOIW4 COO&!il C00652

ACL mtl.ocL r'l'lrov
'L.!.!.!1 U1

J4- JS-

Figure 1-8 Jumper and Cable Connections

1-20

CPU
CLUSTER

ROM

MICRO
DIAGNOSTICS

1/0 INTERCONN.
(DR&MAI

110 MA.~ STORAGE

SU.:r::MS---~-~-~v_l=-~-BAS_STS_•c __ __

...

MEMORY
DIAGNOSTIC

DRIVE, DEVICE, PER·
FORMANCE ANAL Y ./
FUNCT. TIMERS

Figure 1-9

System Introduction

MICRO
VERIFY

CONSOLE FUNCTIONS
(ROM FIRMWARE)

CPU 'KERNEL
HARDCORE'
INSTRUCTION TEST

DIAGNOSTIC
SUPERVISOR

l/OCHANNEL
(MBA&UBAI
DIAGNOSTICS

COMM ADAPTER
INTERFACE
DIAGNOSTICS

CPU CLUSTER
EXERCISER

MASS STORAGE SUB
SYSTEM FUNCTION &
RELIA/ACCPT. TST

VAX/COMET DIAGNOSTIC
SYSTEM OVERVIEW

VMS

DIAGNOSTIC
SUPERVISOR

UNIT RECORD/COM
ADAPTER FUNCT.
DIAGNOSTICS

VAX Diagnostic Overview

1-21

SYSTEM EXERCISER
&

BUS INTERACTION

TK-3209

System Introduction

The next section describes the diagnostics available on the
11/750 their different levels of usage. The names and
locations of all diagnostics be found on micro fiche under
ZZ-EVNDX. There is an other tape [TU58] lable to the field

· that is n6t concerned with diagnostics; that being CONSOLE
tape which has the BOOT 58 program and BOOT command files
locates it. That tape is not listed here and will be
discussed later.

This is the beginning of diagnostic overview.

Diagnostics are broken down into five levels, four of which
are numbered 1-4; The remaining level is microdiagnostics.

LEVEL 1. These are diagnostics that run
operating system and not using
supervisor. EX. UETP (not a
excersiser) •

under the VMS
the diagnostic

diagnostic, an

LEVEL 2. These are diagnostics that run under the diagnostic
supervisor while the VMS system is still operating.
EX. Reliability and acceptance tests, line printer.

LEVEL 3. These are diagnostics that run under the diagnostic
supervisor while the VMS system is not running. The
diagnostic supervisor must be running stand alone.
EX. UBI DIAGNOSTIC.

LEVEL 4. These are diagnostics that are run stand alone
without the diagnostic supervisor or VMS operating.
EX. Hardcore instruction.

MI CR Os These are diagnostics that are loaded from the TU58
and run from the RDM RAM memory. There will be a
total of four;

1. DPM micro [data path]
2. MIC micro [memory interconnect]
3. CMC micro [memory controller]
4. FPA micro [floating point]

Of these four only the first two are available as
of August 1, 1980.

There is another diagnostic that is run every time
the machine is powered up or the Initialize button
is pushed. This is called micro verify. This is
resident in the machine inside the microcoded CSC

1-22

System Introduction

module and checks the basic sanity of the data path
and mic module before any other operations are
performed. This is discussed in its entirety in a
later section.

There are some diagnostics that may be run under
level 2 or 3 and should not be thought of as just
level 2 or 3. These will be discussed as we reach
them.

The following is a list of the diagnostics
that are available and which TU58 tape they
are distributed on.

The following four tapes are run at the micro level to check
the CPU. They are not to be run in their numerical order for
troubleshooting purposes. Order for troubleshooting will be
discussed later.

TU58 TAPE il: VAX 11/750 MICRO DATA PATH [DPM]
ECKAA~EXE MICRODIAGNOSTIC MONITOR [MM FROM NOW ON]
ECKAB.EXE MICRODIAGNOSTIC DPM

TU58 TAPE #2: VAX 11/750 MICRO MEMORY INTERCONNECT [MIC-]
ECKAA.EXE MM
ECKAC.EXE MICRODIAGNOSTIC MIC

TU58 TAPE i3: VAX 11/750 MICRO COMET MEMORY CONTROLLER [CMC]
ECKAA.EXE MM
ECKAD.EXE MICRODIAGNOSTIC CMC

TU58 TAPE #4: VAX 11/750 MICRO FLOATING POINT [FPA]
ECKAA.EXE MM
ECKAE.EXE MICRODIAGNOSTIC FPA

[TAPE 3 AND 4 NOT RELEASED AS OF AUG. lST 1980]

The following four tapes are used to test the CPU levels other
than MICRO.

TU58 TAPE #5: VAX 11/750 CACHE/TB;MEMORY;CLUSTER EXCERSISOR
ECKAL.EXE CACHE/TB [BOOTABLE;LEVEL 4]
ECKAM.EXE MEMORY DIAGNOSTIC [LEVEL 3]
ECKAX.EXE CLUSTER EXCERSISOR [LEVEL 3]

TU58 TAPE i6: VAX 11/750 DW 750 [UBI];DIAGNOSTIC SUPERVISOR
ESSAA.EXE DIAGNOSTIC SUPERVISOR [ONLY TAPE TO CONTAIN

THIS BOOTABLE]
ECCBA.EXE UBI DIAGNOSTIC [LEVEL 3]

1-23

System Introduction

TU58 TAPE #7: VAX 11/750 HARDCORE INSTRUCTION
EVKAA.EXE HARDCORE INSTRUCTION [BOOTABLE;LEVEL 4]

TU58 TAPE i8: VAX 11 INSTRUCTION TESTS
EVKAB.EXE VAX ARCHITECTURAL INST. [LEVEL 2 AND 3]
EVKAC.EXE VAX FLOATING POINT INST. [LEVEL 3]
EVKAD.EXE VAX COMPATIBILITY MODE INST. [LEVEL 3]
EVKAE.EXE VAX PRIVILEGED ARCHITECTURAL INST. [LEVEL 3]

Remaining tapes that follow are to be used to test options
available on the 11/750. These will be [as the previous
tapes #7 and 8] the same diagnostics that are run on the
11/780. To determine which level the diagnostics will be run
at you will need to read the associated manual.

TU58 TAPE 19:
EVQDR
EVQDM
EVQDL
EVABA
EVRAA
EVRACX

VAX CR/DISK USER MODE
VAX LOADABLE DRIVER FOR RMOX/RM 80
VAX LOADABLE DRIVER FOR RK611-RK06/07
VAX LOADABLE DRIVER FOR RL11-RL01/02
VAX CRll CR DIAGNOSTIC
VAX RP/RK/RM/RX/TU58 RELIABILITY
VAX DISK FORMATTER

TU58 TAPE #10: KMCll/DMCll/DZll
EVDMA VAX M8203 REPAIR LEVEL
EVDXA VAX COMM IOP REPAIR LEVEL
EVDAA VAX DZll 8 LINE ASYNC MUX

TU58 TAPE ill: RK6ll DIAGNOSTICS #1
EVREA VAX RK611 DIAGNOSTIC PART A
EVREB VAX RK611 DIAGNOSTIC PART B

TU58 TAPE #12: RK611 DIAGNOSTICS #2
EVREC VAX RK611 DIAGNOSTIC PART C
EVRED VAX RK611 DIAGNOSTIC PART D
EVREE VAX RK611 DIAGNOSTIC PART E

TU58 TAPE #13: RK611 DIAGNOSTICS i3
EVREF VAX RK06/07 DRIVE FUNCTION TEST PART 1
EVREG VAX RK06/QJ7 DRIVE FUNCTION TEST PART 2

TU58 TAPE #14: RM03/RM05
EVRDA VAX RM03/RM05/RM80 DISKLESS
EVRDB VAX RM03/RM05 FUNCTIONAL TEST

TU58 TAPE #15: TSll DIAGNOSTICS
EVQTS VAX LOADABLE DRIVER FOR TS11/TS04
EVMAA VAX TM03/TE16/TU45
EVMAD VAX TSll SUBSYSTEM REPAIR

1-24

System Introduction

TU58 TAPE #16: RL02 SUBSYSTEM FUNCTIONAL DIAGNOSTICS
EVRFA VAX RL02 SUBSYSTEM FUNCTIONAL DIAGNOSTICS
EVRGA VAX RM80 FORMATTER
EVRGB VAX RM80 FUNCTIONAL DIAGNOSTICS

As of August 1, 1980 the above were the only diagnostics
proven compatible with both the 11/780 and 11/750. The
following are the remaining diagnostics that are planned.

POSSIBLE ONE TAPE:
ESDRB VAX DRllW DIAGNOSTIC
ES DRE VAX DRllW REPAIR LEVEL

POSSIBLE 2ND TAPE:
ESDBA VAX M8201/2 REPAIR LEVEL DIAGNOSTIC
ESDBB VAX DMCll EXCERSISOR PROGRAM

POSSIBLE 3RD TAPE:
ESDUP VAX DUPll REPAIR LEVEL PART 1
ESDUQ VAX DUPll REPAIR LEVEL PART 2

Please note that all diagnostic (not including the micro
diag. or EVKAA and ECKAL) that relate to your system will be
sent with the system pack as part of the system on whatever
medium your VMS is incorporated in.

1-25

VAX 11-/750 LEVEL II

Console Command Language
and Bootstrap Process

Student Guide

Course produced by Educational Services Department
of

Digital Equipment Corporation

Console Command Language and Bootstrap Process

OUTLINE

II. A. Console Command Language

1. Control Characters
2. Console Command Symbols
3. Console Commands
4. Errors and Illegal Characters

B. Bootstrap Process

1. Definition
2. Different Boot Methods
3. How Boot is Accomplished
4. Boot 58
S. Automatic Boot
6. System Shutdown
7. Copy Console Device Files

2-1

Console Command Language and Bootstrap Process

INTRODUCTION

This lesson introduces the student to the VAX console
commands needed to communicate with the VAX-11/750. After
becoming familiar with the commands and their functions in
the classroom, a lab session will be provided to utilize
each command. The lab session will allow the student to
initialize the system and perform deposits and examinations
to various registers and memory locations.

This lesson also covers the VAX-11/750 bootstrap process. By
using flowcharts, the process will be covered from device
selection to error indications. Once the process has been
covered by lecture, a lab session will be utilized to
reinforce the concepts and to demonstrate error conditions.

2-2

Console Command Language and Bootstrap Process

OBJECTIVES

1. Using console commands, initialize the system.

2. Using console commands, deposit data to a register.

3. Using console commands, examine data in a register.

4. Boot the system.

5. Given the console printout indicating a boot failure,
clear the fault by locating the problem.

SAMPLE TEST ITEM

This console printout occurred while booting the system with
FPSl set to boot.

% %
xxxxxxxx 13
>>>

What is indicated to the operator?

a. A 64K bytes of good memory not found
b. A nonexistent boot ROM
c. A HALT was executed
d. Wrong Rev. level

RESOURCES

1. VAX 11/750 RDM Maintenance Card
2. VAX 11/750 Diagnostic System Overview Manual

2-3

N
I

A

THE BOOT COMMAND

>>>B(/X][/<n>] (<SPACE><ddcu>]<CR>

- __ tl' ' THE CONSOLE PROMPT~~~~~~~~---

THE BOOT COMMAND

INHIBIT MICRO VERIFY
(DEFAULT IS, PERFORM MICRO VERIFY)--------­
SELECT A BOOT CONTROL
FLAG (DEFAULT IS, FLAGO; (CONVENTIONAL BOOT))

INSERT A SPACE HERE
IF MANUAL BOOT SELECT IS TO BE USED~~~~~~~~-

REPRESENTS THE BOOT
DEVICE. IF NOT USED, DEFAULT TO THE BOOT DEVICE
SWITCH ON THE FRONT PANEL. THIS MUST BE
USED WHEN SELECTING A BOOT CONTROL FLAG OTHER-
WISE THE FLAG IS IGNORED.~~~~~~~~~~~~~~~~~-

dd IS A TWO LETTER DEVICE MNEMONIC (SEE CHART)
c IS A I/G CHANNEL ADAPTOR. A,B,C, OR D.
u IS THE DEVICE (dd) DRIVE NUMBER.

ENTRY COMPLETED BY
CARRIAGE RETURN~~~~~~~~~~~~~~~~~~~~~~~~~--

MNEMONIC

DL
OM
DB
DR
DD

dd
DEVICE

RL"2
RK0'i/7
RP04/5/f;
RMA3
TU58

Console Command Language and Bootstrap Process

BOOT CONTROL
FLAG FUNCTION

0 CONVERSATIONAL BOOT.

1 DEBUG

2 INITIAL BREAKPOINT

3 NOT USED WITH VAX 11/750

4 DIAGNOSTIC BOOT

5 BOOTSTRAP BREAKPOINT

6 IMAGE HEADER

7 MEMORY TEST INHIBIT

8 FILE NAME

9 HALT BEFORE TRANSFER

BOOT CONTROL FLAG FUNCTIONS

2-5

/<N>

1

2

4

8

10

20

40

80

100

200

THE DEPOSIT COMMAND

>>>D[<qualifier-list>] [<space><address>]<space><data><cr>

CONSOLE PROMPT

DEPOSIT COMMAND

SIZE & SPACE
/B /V
/W /P
/L /I

/G

TO SELECT A
DEPOSIT ADDRESS
OTHER THAN 0

<nnnnnnnn> -- HEX ADDRESS
<*> LAST LOCATION
<P> -- PSL
<+> -- NEXT LOCATION

YOU MUST SELECT A
HEX VALUE (1-8 DIGITS)

OPERATION COMPLETED

N
I,

THE BOOT/BOOTSTRAP AS DEFINED BY THE
DEC DICTIONARY - PG 28

boot (boots, booting, booted)* v. (See also bootstrap.) To bring a device
or system to a defined state where it can operate on its own.
EXAMPLE(S): The operator boots the system before starting operation.

boot (boots)* n. A protective housing, usually made from a ~esilient
material, used to protect connectors or other terminals from moisture.
EXAMPLE (S) Pull the boot up over the plug to make the connection
waterproof •

bootstrap (bootstraps, bootstrapping, bootstrapped)* v. (See also boot.)
To bring a device or system to a defined state where it can operate on
its own. EXAMPLE(S): You must bootstrap the system before logging on.

bootstra~ (bootstraps)* n. A technique or device designed to bring a system
or ev ice into a desired state by means of its own action, e.g., a
machine routine whose first few instructions are sufficient to bring
the rest of itself into the computer from an input device. EXAMPLE(S):
Using the bootstrap saves time.

CONSOLE MICROCODE EXAMINES THE BOOT DEVICE
AND POWER ON ACTION SWITCHES ON THE

FRONT PANEL;

o When you initially apply power by turning the front panel keyswitch

o When recovering from a power failure

o When the operator pushes the front panel initialize switch.

o After a software "CRASH"

2-8

Console Command Language and Bootstrap Process

FRONT PANEL
KEYSWITCU
POWER ON

COME UP
UAL TEO

BOOT SYSTEM
VIA DEVICE A

8001 SYSTEM
VIA DEVICE B

BOOT SYSTEM
VIA DEVtCE C

BOOT SYSTEM
VIA DEVICE D

BOOTING WITH FRONT PANEL SWITCHES

POWER
FAILURE
RECOVERY

Figure 2-1

2-9

INITIALIZE
PUSH BUTTON

CONTll'1lJE
EXECUTION

SOFTWARE
CRASU

Flag

1

2

3

4

Hex
Value

Console Command Language and Bootstrap Process

SOFTWARE BOOT CONTROL FLAGS

(1 of 2)

Function

1 Conversational boot. At various points
in the system boot procedure, parameters
and other inputs will be solicited from
the console.

2

4

8

10

Debug. This flag is passed through to
VMS and causes the code for the executive
debugger to be included in the running
system.

Initial breakpoint. If this flag is set,
and the executive debugger code is
included (flag bit 1), then a breakpoint
will occur immediately after the exec
enables mapping.

Not used on the VAX-11/750.

Diagnostic boot.
by file name
supervisor.

2-10

This flag causes a boot
for the diagnostic

Flag

5

6

7

8

9

Hex
Value

20

40

80

100

200

Console Command Language and Bootstrap Process

SOFTWARE BOOT CONTROL FLAGS

(2 of 2)

Function

Bootstrap break po int. This flag causes
the bootstrap to stop at a breakpoint
after performing necessary
initialization.

Image Header. If this flag is set, the
transfer address from the image header of
the boot file will be used. Otherwise
control will transfer to the first byte
of the boot file.

Memory test inhibit.
the testing of
bootstrapping.

This flag inhibits
memory during

File name. Causes the bootstrap tp
solicit the name of the boot file.

Halt before transfer. Causes a HALT
instruction to be executed prior to the
transfer to the secondary boot file.
This option is useful for debugging
purposes.

2-11

*

Console Command Language and Bootstrap Process

BOOT DEVICE CODES (ddcu)

DEVICE CODE (dd) * DEVICE TYPE

DL RL02
DM RK06/07
DB RP04/05/06
DR RM03/RP07
DD TU58

Identifies the device that is storing the boot
block.

CHANNELS ADAPTER (C)

i} To which port is the Device (dd) channeled to.

DRIVE NUMBER (u)

0} on which drive of our device (dd) is
1 our boot block located.

2-12

CONSOLE COMMAND ERROR CODES

If an illegal console command is attempted or command is aborted because of
a microtrap or some other condition a two digit error code is typed out and
the console waits for new input. For example •••

>>>E P<CR>
>>>E<CR>
?11
>>>

Error Codes

!Examine PSL
!Implies Examine Next Location, this is illegal.
!Question Mark and error code is typed by console
!At this point ready for new command

20= Deposit or Examine of Memory Failed (Access Violation,
Translation not valid, Bus Error, TB Parity Error, or Control
Store Parity E

11= Illegal access of an ipr
30= Apt Loading Checksum error
33= Attempt to Boot from unknown Device type (DM,DL,DO)
34= Boot Device Controller not "A","B","C", OR "D"

Console Command Language and Bootstrap Process

ROM STARTING ADDRESSES

DEVICE ROM

A

B

c

D

2-14

STARTING ADDRESS

FA02

FB02

FC02

FD02

I
Cll:Alt llNlll
COLO~lAHf HAG

1
PC tuUflM
MICHO v'EHlf Y

J
TYPl ~ ..
AT CONWl[

TYPl: ~[CONll
%
AT CONSOt £

lOAU P~L

TYPE CONSOLE
UAL T EHROH
coot= tJ. PC
ANO PHOMPT

STOP

l Yi't.
MICRO VERIFY
ERROft CODE;ff
PC & PROMPT.
-SJOf'

CONSot E SUBSYSTEM ACTION ON bOOT

FINO GOOO
ti4K Of
MC:MOHY

TYPE CONSOll.
HAU ERROR
COOE"' 16. PC

. -SHW

1Ntl1All2E
Ul.il

WHITE
UBI
MAP

lOAO ALL
OOOT ROMS
INTOMEMOHY

CttECK FOR
CHECK COlO
START HAG

NONEXISlAN1
ROM

()
0
!:l
en

TYPE CONSOLE 0
HALT ERROR
COOE,.. 14. PC Cl)

ANO PROMPT
-STOP-

()
0
!3
!3 -] SET COISABlE) IROI Of
Q.I
!:l

COlOSTART ROM HOUllNE 0..
FLAG LOAO 8001

Bl.OCK t""'
Q.I

-....,.-,..._,_._~ .,,.. _
!:l

"°
LOAOINPUT c

Q.I
ARGUMENTS "° FOR ROM COOE Cl)

ANOVMB
Q.I
!:l
0..

SHECT ROM OJ
COOE POINTED 0
10 BV BOOT 0

.DEVICE SWITCtt rt
en
rt

""' Q.I

t-0

"t1
l"1
0
0
Cl)

en
en

..... ,,,

Console Command Language and Bootstrap Process

INPUT ARGUMENTS

The general registers receive the input arguments from the
console subsystem.

Rl -

R2 -

R3 -

RS -

SP -

system bus address of a Massbus adapter (MBA0 unless
otherwise specified in the Boot command).

physical address of the Unibus I/O page associated
with a Unibus adapter (UBI0 unless otherwise
specified in the Boot command).

device unit number (0 unless otherwise specified in
the Boot command).

software boot control flags (0 unless otherwise
specified in the Boot command).

<base address + "X200> of the 64K bytes of good
memory.

C(SP)- transfer address of the boot block code.

2-16

FUNCTIONS AVAILABLE UNDER BOOT 58

o Load and start level 4 diagnostic programs.

o Bootstrap from the Massbus adapter

o Bootstrap from a disk whose boot block is bad.

o Bootstrap from a disk whose error rate prohibits ROM
and boot block loading of a primary bootstrap.

o Boot the diagnostic supervisor instead of VMS.

o Deposit and examine data in physical memory, general
registers, and internal processor registers.

o Load and start a program from a magtape drive on a
Massbus.

o Store and invoke indirect command files on the TU58
cartridge to per~orm any of the above functions
automatically as well as interactively.

2-17

xxxxxxxx 13
>>>

xxxxxxxx 14
>>>

xxxxxxxx 06

Console Command Language and Bootstrap Process

POWER UP AND BOOT ERROR REPORTS

This indicates that a good 64KB section of
memory was not found and return to console
mode

This indicates a failure or nonexistance of
the boot ROM

If a halt instruction is executed after
typing a console boot command, this
indicates a failure of the read of logical
block 0 from the selected boot device, the
PC should be equal to the base address of
the first good 64KB of memory plus FX16 for
TU58 or FX20 for RK06. This failure occurs
in the Boot ROM routine.

2-18

Console Command Language and Bootstrap Process

VMB PRIMARY BOOT FAILURES

BOOT is the program name for VMS.EXE
The "F" indicates a fatal error and the type of error is
reported.

%BOOT-F-Unknown processor This indicates that CPU is
not a Comet or 11/780,
check SID register for
proper jumpering in the
CPU type field on the
Backplane.

t %BOOT~F-Unexpected Exception This indicates that one of
the following exceptions
occurred.

1. Access Violation
2. Breakpoint Opcode
3. Reserved Operand
4. TBit Trap
5. Page Fault (TNV)

%BOOT-F-Unexpected Machine Check This indicates some sort
of machine Check occurred.
Check all adaptors using
console examine and
deposit commands.
Probably a timeout.

%BOOT-F-Nonexistant Drive Self explanatory, Check
DEFBOO.CMD on 11/780 and
insure system disk is
drive being booted.

%BOOT-F-Unable to locate BOOT VMS can't find
file [SYSEXE]SYSBOOT.EXE or if

bit 4 in RS is set, VMS
can't find
[SYSMAINT]DIAGBOOT.EXE

%BOOT-F-Bootfile not contiguous Indicates that
[SYSEXE]SYSBOOT.EXE or
[SYSMAINT]DIAGBOOT.EXE is
not contiguous on system
disk. Recopy or rebuild

%BOOT-F-I/O error reading boot Indicates problem reading
file boot file from disk by

$QIO service (VMS System
Service) •

2-19

VAX-11/750 LEVEL II

System Overview

Student Guide

Course produced by Educational Services Department
of

Digital Equipment Corporation

SYSTEM OVERVIEW

INTRODUCTION

This lesson is developed to give you a basic understanding
of location of Gate Arrays in 11/750 prints and overall
understanding of how each board (DPM, MIC, UBI, and CCS) is
laid out. All of the data given out in this section will be
reiterated when each board is gone over in detail. You
should start to form concepts of how the machine works
functionally and how the prints are set up. There will be
very little in the Student Guide so listen, take notes in 0

your prints or Functional Block.

4-3

SYSTEM OVERVIEW

OBJECTIVES

The student will be able to locate all gate arrays in the
prints relating to the four basic LPU boards, DFM, MIC, UBI
and CCS.

The student will be able to take a MOVL LONG instruction and
follow the path of the data from beginning to end.

SAMPLE TEST ITEM

The access control violation chip is located on which board?

1. DPM
2. MIC
3. UBI
4. ccs

RESOURCES

11/750 Print Set
11/750 Functional Block

4-4

SYSTEM OVERVIEW

A. The CPU Overview

1. Board common to all CPUs four (4) each

a. Unibus Interface (UBI Module - Slot 4 of extended
hex section)

1) TU58 Data in and out
2) Console Data in and out
3) Handles interrupts
4) Interfaces Unibus data and CPU data with each

other

b. Data Path Module (DPM - Slot 2 of extended hex
section)

1) Contains the arithmetic logic
2) Contains the rotator logic
3) Houses the Scratch Pad logic (Registers)
4) Also houses the Microsequencer logic

c. Memory Interconnect (MIC Module - Slot 3 of the
extended hex section)

1) Contains the address logic (PC)
2) Houses the Translation Buffer which translates

virtual addresses to physical addresses
3) Cache
4) Contains the Data Routing and alignment which

handles the routing of data in and out of or to
and from memory and the data path.

d. CPU Control Store (CCS Module - Slot 5 of extended
hex section)

1) Contains the Control . Store ROMs for the
Microcode

2) Houses the optional snap on WCS Module

B. Component Analysis

1. CPU Control Store (CCS)

a. 6K x 80 Bits, no gate arrays

2. Data Path (DDPM) - 22 gate arrays

a. Gate Array Chips

4-5

SYSTEM OVERVIEW

1) The microsequencer (MSQ) - Sequences the CPU
microcode that controls most operations (NOT
SHOWN AS ONE CHIP ON BLOCK SHOW IN PRINTS)

2) Practically Half the Buts (PHB) - Contains some
of the bits of the PSL, the status flags and
the step counter. It also contains the logic to
generate half of the but micro orders.

3) Service Arbitration and Clock (SAC) Deals
with the IRD counter, service arbitration, and
the system clock.

4) Condition Code Chip (CCC) Deals with
condition codes. It determines the condition
codes for both VAX and compatability mode
instructions, stores the PSL bi ts
<FU,IV,DV,N,Z,V,C>, reads the bits out at Ucode
request.

5) Instruction Register Decode (IRD) - Handles the
IR Decode. It receives an opcode and operand
specifier from the execution buffer (XB),
decodes it and creates the signals needed by
the microsequencer to process the appropriate
routine.

6) Super Rotator Control (SRK) - It controls the
functions of the Super Rotator (SR). The info
it needs to control the SR comes from the 6 bit
ROT field of the microcode. (NOT ON BLOCK IN
TOTAL, PRINTS.)

a. SPK chip contains the S and P latches and
their associated mux in and out. Controls
the super rotator via the ROT field of the
microword and certain Wbus inputs.

7) Super Rotator Multiplex (SRM) - 4 ea - Perform
64 different operations via control of the SRK
chip.

8) Scratch Pad Addressing (SPA) - Controls the
operating of the 64 scratch pad registers, and
it provides a mechanism to undo the auto
decrementing and auto incrementing of the
general purpose registers.

4-6

SYSTEM OVERVIEW

9) Timed Operation Control (TOK) - Implements the
architecturally defined programmable interval
time clock.

10) Carry Look Ahead (CLA) An array of
combinational logic used to propagate and
generate carries for up to 8 ALU slices. (NOT
ON BLOCK, SHOW IN PRINTS.)

11) Arithmetic and Logic Control (ALK) -. (NOT ON
BLOCK, SHOW IN PRINTS.)

a) Reencodes the ALP control field of the
microword for special functions.

b) Controls the carry input and shift inputs
for the ALP chips.

c) Decodes the scratch pad write enable.

d) Decodes miscellaneous signals.

12) Arithmetic Logic Processors (ALP) - 8 ea -
Each chip is 4 bits wide. They form the
circuit that performs the majority of the data
manipulating when executing macro
instructions.

3. Memory Interconnect Module (MIC) 18 Gate Arrays

a. 1) Memory Data Registers
portion of the data
circuit. They receive
to/from the Mbus.

(MDRs) - 8 ea - Major
routing and alignment
and hold data in/out

2) Prefetch Control (PRK) chip - Prefetch 8 bytes
of instruction data starting with the PC
address and replace used bytes as execution
progresses.

3) Address (ADD) chips - Contain the VA, PC, PC
backup and VA save circuits.

4) Address Control (ADK) chip - Is the control
for the address logic and also works in
conj unction with the pre fetch control and
memory data regs.

4-7

5)

SYSTEM OVERVIEW

Access Violation (ACV) chip Besides
detecting access violations it monitors and
detects.

a. Control store parity errors
b. FPA reserved operands
c. Unaligned data, including unibus data.
d. Crossing of page boundaries.

It then generates the. appropriate Utrap
signals to the Microtrap chip (UTR) •

6) Microtrap (UTR) chip Monit0rs machine
conditions that can cause a microtrap.

7) The Cache control (CAK) chip - Controls the
enabling and disabling of cache, controls the
transfer of data to/from the MOR chips. Works
in conjunction with the CMK chip to invalidate
cache on CMI writes.

8) CPU Memory Interconnect Control (CMK)
Monitors and transmits control signals to/from
the CMI bus. (Busy and HOLD.) Stalls the
microcode for certain conditions.

4. Unibus Interface Module (UBI) 8 Gate Arrays

a. 1. The TU58 Interface consists of a Gate Array
Chip (CON) and some associated logic that
allows communication between the CPU.

2. The console Interface consists of a Gate Array
chip (CON) and some associated logic that
enables communication between the CPU and its
console.

3. The interrupts circuit consists of a
Array chip (INT) and some associated
that enable the handling of interrupts.

Gate
logic

4. The Unibus interface consists of five (5) Gate
Array chips, a ROM and Unibus Map.

a. The Unibus Data Path (UDP) chips make up
the data path for the unibus interface,
four (4) ea.

1) Areas that represent UDP Chips.

4-8

SYSTEM OVERVIEW

a. 3 buffered data paths for data and
addresses

b. 1 direct data path for data and
addresses

c. Byte swapping and rotating circuits
to align data

b. The Unibus Data Path Control - Controls UDC
chips and Microcode (UCN) chip.

c. Unibus map for translating Unibus addresses
to CMI addresses.

d. ROM for controlling UBI functions
independent of CPU. (Note circles
controlling UDP Chips are fields from ROM.)

4-9

SAM

ALP

~~~ 

ALP 

ALP 

~ 
~ 

CCC 

PHB 

THE DATA PATH 
MODULE (DPM, 
GATE ARRAY CHIP 
LOCATIONS 

SYSTEM OVERVIEW 

SAM 

>OK: I 
~ 

TK~'11 

Figure 4-1 DPM Gate Array Locations 

4-10 



MOR 

MOR 

PRK 

CAK 

MOR 

SYSTEM OVERVIEW 

THE MEMORY 
INTERCONNECT 
(MIC) MODULE 
GATE ARRAY CHIP 
LOCATIONS 

TK-4112 

Figure 4-2 MIC Gate Array Locations 

4-11 



·. 

THE UBI MODULE ; 
GATE ARRAY CHIP. 
LOCATIONS . 

• 
. 1 ' 

Figure 4-3 

. . 
.......... + .............. . 

CON CO_~SO~~ 
...... 1: ................. . 

. . . 
~ ............... ,, . . . .. 
CON TU58 .. . , . __ .. __ _ 
......................... 

INT 
.. . .. .... .......................... 

L~ • ...,..., ................... . 

UDP . . . ·-----------
....... ..: ....... :.. ..... 
UDP, 

't .. .. ......................... 

UDP 

.......................... 
UDP 

... ... 
t •• 

• • .................... _ . 
. 

t ...................... . ... 
UCN ' 

--1-'-·~·\..+·· 

SYSTEM OVERVIEW 

TIC-'718 

UBI Gate Array Locations 

4-12 



SYSTEM OVERVIEW 

~ I I IOI I 
CCS/WCS . 

OI I I WI I 
~I I I IOI I 

~ 
m I I IOI I 
~I I I 101 I 
m I I l~I I 
~I I I 1ij1 I 
m I I l~I l 
rn I I m1 I 
01 I I WI I 
m I I m1 I 

l 
ij1 I I 1rn I 
01 ·I I 101 I 
m I I 1011 I 
m I I IOI I I 
ru I I WI I I 
~ I I WI I I 
m I I m1 I I 
m I I m1 I I 
OI I I .1ij1 I I 

0 C30C3 C3 C30c:::3 C3 

c::3 0 CJ c::::3 c::JO c:3 c:::3 

C3~c::::3 c::s 0 c::::3 c::::3 

c::::3~ c::::3 cr:=3 c::::3 
§ c:::> 

0 c::::30c::::3 c:::::3 o=J3 [l:=3 

TK~710 

Figure 4-4 CCS Module 

4-13 



THE CPU MEMORY 
CONTROLLER (CMC) 
GATE ARRAY CHIP 
LOCATIONS. 

B 8 8 B 

_I MDL ___ ·1 _I MDL __ ·1 

__ I MEC ____.· 1 I MDL • 11 MDL 

I MEC ·1 

Figure 4-5 Memory Controller 

4-14 

SYSTEM OVERVIEW 

RED 
LED 

arl 

~ 
GREEN 
LED 

TIC-4717 



VAX-11/750 LEVEL II 

Programming 

Student Guide 

Course produced by Educational Services Department 
of 

Digital Equipment Corporation 



Programming 

OUTLINE 

V. PROGRAMMING 

A. VAX 
1. 
2. 
3. 
4. 

Instruction Set 
Operand and Instruction Formats 
VAX Addressing Modes 
VAX Integer and Logical Instructions 
VAX Branching Instructions 

B. Laboratory Exercise 3 
Write a routine to convert packed hex data to 
.an ASCII string utilizing VAX 11 Programming 
Tools 

C. VAX Instruction Set 

D. 

1. VAX Floating-Point Instructions 
2. VAX Subroutine and Procedure 

Instructions 

Laboratori Exercise 4 
Modify routine written 
called as a procedure 
CALLG instruction 

in previous 
utilizing a 

Calling 

lab to be 
CALLS or 

E. VAX Instruction Set 
1. VAX Character String, Packed Decimal and Field 

Instructions 
2. VAX Privileged Instructions 
3. Programming Examples 

F. Laboratory Exercise 5 
Write a standalone program for the Comet CPU to 
communicate between the local console and a 
terminal on the Unibus 

G. Summary 

5-1 



Programming 

OBJECTIVES 

Utilizing the VAX-11/780 Programming card, Architecture 
handbook and any class notes, write two (2) programs that 
perform the following: 

a} Packed hex to ASCII conversion 
b) 2 way· communication between CPU Console and a 

terminal on the Unibus. 

Load and execute the previously writ ten programs and the 
instructor will verify operation. 

SAMPLE TEST ITEM 

Using the Cornet system, load and execute the two (2) 
programs previously written in class. The instructor will 
verify proper operation by witnessing program execution. 

LAB EXERCISE 

a) Utilizing the VAX program development tools, write a 
packed hex to ASCII conversion routine in VAX-11 
Macrocode. 

b} Again, utilizing the same VAX programming tools, 
write a standalone program to communicate between 
the console terminal and a Unibus terminal and copy 
it on to a TU58 tape cartridge for console loading. 

RESOURCES 

VAX-11/780 Architecture Handbook 
VAX-11/780 Software Handbook 
Terminals and Communications Handbook 
Program Development L1st1ng 

5-2 



Programming 

DATA TYPES 
• BYTE 
•WORD 
• LONGWORD 
• QUADWORD 

4 7654 3210 

BYTE I: 11 I 11111 
15 8 7 0 

!WORD 1:1 I I 
31 0 

LONG 1:1 I WORD 

31 0 

OOAD I 
WORD ::1 I I 

63 32 

SB EQUALS SIGN BIT 
TK-3240 

Figure 5-1 

5-3 



FLOATING 

31 

I FRACTION. 

DOUBLE FLOATING 

31 

FRACTION 

FRACTION 

63 

DATA TYPES 
e FLOATING 
• DOUBLE FLOATING 

Programming 

16 15 14 7 6 0 

I: I EXPONENT I FRACTION I 
16 15 14· 7 6 0 

:I EXPONENT I FRACTION 

FRACTION 

48 47 32 

TIC-32'1 

Figure 5-2 

5-4 



Programming 

ARRAY:: 31 0 0 1 1 2 2 3 3 0 

+4 63 4 4 5 5 6 6 7 7 32 

+8 95 8 8 9 9 A A B B 64 

+c 127 c c D D E E F F 96 

AFTER EXECUTION 

EXTZV#48,#8, ARRAY, RO I 0 I 0 I 0 I 0 I 0 I 0 I 5 I 5 I RO 

EXTV#64,#8, ARRAY, R1 I F I F I F I F I F I F I B I B I R1 

N z v c 
CMPV#48,#, ARRAY, RO 

I I I I I I I I PSW BEOL1$ 0 0 0 0 0 0 0 

FFC, #0, #8, ARRAY, R2 I 0 I 0 I 0 o I o o I o 2 I R2 

FIELD INSTRUCTION EXECUTION EXAMPLES 

TK-3238 

Figure 5-3 

5-5 



Programming 

REPRESENTATIONS OF+ AND -123 CHARACTER STRINGS 
TRAILING NUMERIC 

.ASCll/123/ZONED FORMAT 33 32 

+3 +2 +1 

.ASClll12;YZONED FORMAT I 73 32 

BINARY REPRESENTATION ~ 
SIGN BIT 

.ASCll/12C/OVERPUNCH FORMAT I 43 32 

.ASCll/12L/OVERPUNCH FORMAT I 4C 32 

LEADING SEPARATE NUMERIC STRING 
FORMATS 

.ASCll/+123/ I 33 32 31 

.ASCll/-123/ I 33 32 31 

Figure 5-4 

5-6 

31 

ADDRESS 

31 I 

31 

31 

28 

2D 

TK-3237 



Programming 

3210 

.PACKED - 12345 

+1 ADDRESS 

.PACKED 12345 

SIGN 

* .PACKED 01234567891 9 I c I 7 I 8 I 5 I 6 I 3 I 4 I 1 I 2 I 0 I 0 I 
PACKED DECIMAL STRING FORMATS 

TK-3239 

Figure 5-5 

5-7 



U1 
I 

00 

ASSEMBLER 

CLRL RO 

MOVL RO, R1 

ADDL3 #1, RO, R 1 

MOVB# X80,(R2) 

SINGLE OPERAND 

OPERAND SPECIFIER OP CODE 

lo11lol1lolololol1l1lol1lol1lolol 
\ A. , 

..... zws 

MODE 1 REG, 
+1 ADDRESS 1 

TWO OPERAND 

SPECIFIER 2; SPECIFIER 1 · OP CODE 

MOOE. REG MODE REG 
+2 +1 ADDRESS 

THREE OPERAND 

SPECIFIER 3 SPECIFIER 2 SPECIFIER 1 OP CODEi 

MODE REG MODE REG SHORT LITERAL 
+3 +2 +1 ADDRESS 

TWO OPERAND WITH IMMEDIATE MODE 

SPECIFIER 2 IMMEDIATE DATA SPECIFIER 1 OP CODE 

MODE REG MODE REG 
+3 +2 +1 ADDRESS 

INSTRUCTION FORMATS 
TK-3243 



U1 
I 

\.0 

BEFORE ADDL2 RO. R1 · • AFTER 

( 1 I 2 I 3 I 4 I s I a I 1 Is I Ro I 1 I> 13 I 4 ) s I a I 1 I a I 
I 0 I 0 I 0 I 0 I 4 I 2 I 1 I 8 ) RI I 1 I 2 I 3 I 4 I 9 I 8 I 9 I E I 

ADDL3 RO, R1. R2 

I 1 I 2 I 31 4 I 6 I a j 1 I s I Ro I 1 I 2l 3 14 j s I a I 1 I s I 
I o I o I o I o I 4 I 2 j 1 I a I RI f o I o I o I o ( 4 I 2 I 1 I a I 
I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I R2 , , I 2 I 3 I 4 I 9 I 8 I 9 I E I 

TWO AND THREE OPERAND INSTRUCTION 
EXECUTION IN REGISTER MODE 

TK-3242 



I"!] ...... 
Ul 

U1 c:: 
I l""C 

I-' ro 
~ 

U1 
I 

CX> 

ASSEMBLER SYNTAX 
.= /\ XlOO 

SELF: BAB SELF 

SIGN EXTENDED 
DISPLACEMENT 
(-2) 

PLUS 

I 1 

PROGRAM COUNTER I 0 
(102) 

EQUALS 

I 0 

NEW PROGRAM 
COUNTER 
(100) 

1 1 1 I 1 

0 0 + 
0 0 + 

NEXT INSTRUCTION DISPLACEMENT OP CODE 

0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 0 0 0 

102 101 100 

PROGRAM COUNTER POINTING 
MERE WHEN DISPLACEMENT IS EVALUATED 

1 1 1 11 1 1 1 I 1 1 1 1 I 1 1 1 1 11 1 1 1 I 1 1 1 1 I 1 1 1 
0 I 

0 0 + 0 0 + 0 0 + 0 0 + 0 0 1 I 0 0 0 + 0 1 ol 

+ + + + 1 I o + 0 I .,, 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 ""' 0 

Ul 
11-1 

BRANCH OFFSET CALCULATION DJ 
3 
3 

TK-3225 ...... 
;:J 

Ul 



Programming 

INPUT 1 2 3 4 A B c D 
A+3 A+2 A+ 1 A 

OUTPUT 
34 33 32 31 A 
44 43 42 41 

A+4 

TK-4•58 

Figure 5-9 

5-11 



Aoo·30--­
HEX 
TO NIBBLE 

START 
ROUTINE 

GET NIBBLE 

Programming 

NO~ NIBBLE • 0 - 9 YES, NIBBLE•A·f 

NO 

STORE ASCII 
BYTE IN 
CHARACTER 
BUFFER 

EXIT FROM 
ROUTINE 

FLOil DIAGRAM FOR PACKED HEX 
TO ASCII CHARACTER CONVERSION 
ROUTINE 

Figure 5-10 

5-12 

ADD37 
HEX 
to 
NIBBLE 

TK-3231 



l'1:J ...... 
F ~ c T I CUR PREV D F I 

U1 c M p 0 0 p 
s MOD MOD 0 IPL 0 u z v c 

I l"1 D v v 
....... CD 
w 

U1 
VAX FAMILY PSL I 

....... 

....... TK-3224 



U1 
I 
~ 

~ 

t%j ..... 
l.Q 
c 
""( 

CD 

U1 
I 
~ 
N 

IE.CONSOLE.INT IE.UNIBUS.INT 

+ 1 T 
0038 003A 

0039 
SOFTWARE TEMP 8+- 1PL 

TEMPB+-14 
INTERRUPT CONSOLEINTR 

REIGRA 
REQUEST UNIBUSINTR 

1 T 
IE.CONSOLE.INT2 IE.UNIBUS.INT2 

HARDWARE FLAGS UTILIZED IN 
MICRO ROUTINES 

FlAGO 

FLAG1 

· FLAG2 

FLAG3 

•O 
•1 

•O 
•1 

•0 
•1 

•O 

INDICATES INTEllRUPT BEING SERVICED 
INDICATES EXCEPTION BEING SERVICED 

HANDLE ON INTERRUPT STACK 
HANDLE ON KERNEL STACK 

MORE PARAMETERS TO PUSH ON STACK 
NO ADDITIONAL PARAMETERS 

PC - 2 ON STACK, FLAG3 • 0 ON INTERRUPTS 

BRANCH ON 

MICROTEST 
IRD+ONE 

I 
I 1 

0038 003C 
INTERVAL CRD 
TIMER INTERRUPT 
INTERRUPT REQUEST 

NUMBERS IN BOXES ARE HEX MICRO ADDRESSES 
FORCED BY THE HARDWARE AND ARE CONSTANT 

•1 PC ON STACK, FLAG3 • t DURING MICRO DETECTED TRAPS 
STACK 
FLAG -o 

•1 
INDICATES ADDRESS TRANSLATION ON KERNEL STACK VALID 
KERNEL STACK NOT VALID 

BRANCH ON MICROTEST 
TARGETS 

T I l 
003D 003E 
CACHE WRITE aus 003F 

PARITY ERROR POWEn FAIL 

ERROR · INTERRUPT INTR 

TK-3234 



IE.UNIBUS.INT2 

ISSUE 

=O 

BUS GRANT 
ANO 
SAVE IPL 

READ VECTOR 
WRITTEN 
REGISTER 

LOAD 
ERRCOD 

CLEAR 
VECTOR 
WRITTEN 
REGISTER 

NO ADDITIONAL 
PARAMETERS 
GET seas 

ADD SCBB 
TO VECTOR 
IN MOR PLUS 
200 HEX 

IE.UNIBUS.INTS 

JOIN 
INTER~UP!_ 
FLOW NEXT/IE. 
INTERRUPT 

TU58 OR PASSIVE RELEASE FLOW 

IE. TU58 

NO 

•... 

YES 

LOAD VA 
w1TH seas 
+FO 

LOAD TRAR 
WITH RXCS 
ADDRESS 

READ 
TU58 RXCS 

NO 

Programming 

LOAD TRAR 
WITH CCSR 
ADDRESS 

TU58 INTERRUPT 8R7 

CLEAR 
TXINTR 

VA GETS 
seas+ F4 

. . 

Figure 5-13 

5-15 

READ 
CCSR 

IE. NO. UNIBUS 

GL.NOP.I RD1 

BACKUP 
PC 

IRD1 

BR GONE 
PASSIVE 
RELEASE 

T K-4455 



IE.CONSOL.INT2 ....-------------..... 
LOADCRAR 
WITH RXCS 

-- . 

READ RXCS 

LOADCRAR 
WITH CCSR 
ADDRESS 

CLEAR 
XMIT 
INTR 

VA GETS 
SCBB +FC 

,:;, . 

YES 

IE.INTERRUPT ______ ...... ..._ ____ ....,. 

Figure 5-14 

5-16 

Programming 

VA GETS 
. SCBB +FB 

TK-4456 



t'ij 
...... 

lQ 
U1 c: 
I l'"1 
~ Cl> 
-....] 

U1 
I 
~ 

U1 

GO TO KER 
STACK NOT VALID 

IE.INTERRUPT 

READ 
MACAO 
VECTOR 

SAVE CONTENT 
OF MACRO 
VECTOR IN TEMP 5 

=01 USE 
=11 HALT SYSTEM = 00 USE KERNEL STACK UNLESS IS= L = 10 TRAP TO WCS • INTE,RRUPT STACK 
--~~~~~~~~-.-~~~~~~~~--~~~~~~~~~~~~~~~~~~-

ENTER 
CONSOLE 
MODE 

ENTER 
wcs 
AT 2001 

1E.25 

SAVE SP 
IN 
TEMP9 

SAVE SP 
IN 
TEMP9 

tO 
l'"1 
0 

lQ 
TK-4459 l'"1 

DJ 
!3 
!3 ...... 
::s 
lQ 



U1 
I 

....... 

.....J 
:ti' 

PSL IS= 0 

IE.KSTACK 

IE.70 

SAVE KSP 
IN 
TEMP10 

ESP GETS. 
SP 
(TEMP9) 

SET PREV 
MODE TO 
EXEC 

IE.75 

PSL IS= 1 PSL IS= 1 

SETIS SETIS 
BIT IN' BIT 
TEMPS IN TEMPS 

IE, ISTACK 

SET PREV TEMP10 
MODE GETS 
TO KERNEL SP 

=10 =00 =11 

IE.SAVE.SP 

SSP GETS 
SP 
(TEMP9) 

IE.80 

SET PREV 
MODE TO 
SUPV 

KSP GETS 
SP 
(TEMP9) 

SET PREV 
MODE TO 
KERNEL 

USP GETS 
SP 
(TEMP9) 

SP GETS 
KSP 

SETIS 
IN 
TEMPB 

SET PREV 
MODE TO 

. KERNEL 

TK-4460 

'"Cl 
l"1 
0 

\Q 
l"1 
w 
6 
6 
....... 
::s 

\Q 



PSL .... TMP 8 
<15:0> a 

WRITETMP4 
SIZE LONG 
CLEAR STACK 
FLAG. 

V..~ .... (SP-4) 
·seTSTACK 
FLAG 

WRITEM 
PC, LONG 
CLEAR STACK 
FLAG 

NO 0 

VA .... (SP-41 
SET STACK 
FLAG 
IE.PUSH.PC 

NO 0 

WRITE M 
PC-2, LONG 
Cl.EAR STACK 
FLAG 

VA+-(SP-4) 
SET STACK FLAG 

EMP 4+-PSL 
INTERRUPTS OFF 

PAGE 2 INTERRUPT/ 
E~t;::~PTION FLOWS 

Figure 5-16 

5-18 

Programming 

LOAD STEPR 
COUNTER 

LOADS 
LATCH= 16 
RTEMP +- ANUM 

CLA Rn 
BITS <31 : 16> 
IN GPR'S 

CLRPC 
<31:16> 

iK-323!5 



NO 0 
----

WRITE M WRITE M 
PC LONG PC-2 LONG 
CLEAR STACK CLEAR STACK 
FLAG FLAG 

\ RETURN+1 RETURN+ 1 I ¥ 

EXCEPTIONS WITH EXTRA 
PARAMETERS 

IE.LOAD.PC 

PC+-TEMP5 
ANO BITS 
<1:a> 

--

00 01 

TEMP8+-1PL 
•IF 

IE.BEGIN.MACRO 

IR01 

10 

PC+-TEMP5 
ANO BITS <1 :O> 
GETO 

Programming 

11 

PC+-TEMP5 
AND BITS<1:0> 
GETO 

PAGE 3 GENERALIZED INTERRUPT/EXCEPTION FLOWS 
TK-3230 

Figure 5-1 7 

5-19 



IRD1 

IE.REI 

READ VIRTUAL 
ADD (SP+41 

READ VIRTUAL 
TEMP+-MDR 

ADD(SP+41 

GENERATE 
LONG LITERAL 
3020FFOO 

WBUS ... MOR 
.LONG LIT 

RESERVED 
OPERAND 
FAULT 

IE.RE.20 

WBUS+-MDR 
DO REI CHECK 

TEMP9+-SP 
BRANCH PSL 
<IS.CUR> 

NO 

WBUS+-MOR 

M(SISR) +­
MBUS+ZLIT4 
AST PEND. 
SOFTINTR 

IE.SOFT.IPL 

REI INSTRUCTION GENERALIZED 
MICRO FLOWS 

Figure 5-18 

5-20 

YES 

01 

CHECK MORE 
MBZBITS 

REI CHECK 
FAILED 
PC-2 
CLR FLAG3 

RESERVED 
OPERAND 
FAULT _ 

10 
11 



IE.REl.60 
000 001 

KSP+-TEMP9 ES? +-TEMP9 

NO 

IE.REl.70 

PSL +-MOR 

IE.REl.80[+1] 000 

001 

TEMPS+- KSP TEMPS+- ESP 

SSP+-TEMP9 

PC +-TEMPS 

TEMP9+-SSP 

SP +:.TEMPS 
IR01 

' 

YES 

Figure 5-19 

5-21 

011 

USP+-TEMP9 

SET TRACE 
PENDING 
PSL +-MOR 

011 

Programming 

100 

ISP+-TEMP9 

100 

!RD 
INTERRUPTED 
ROUTINE 

1'1<-.3232 



START 

PASS ADDRESS 
OF NIBBLE 
STRING 
TO PROCEDURE 

PASSNUM· 
BER OF LONG· 
WORDS TO 
CONVERT 

RETURN HERE 
FROM PROC· 

EDU RE 

r--------
' I 

- _j 

0-9 NO 

--, AD030HEX 
TO NIBBLE 

-, 
I 
I 
I 
I 
I 

I 
I 

' I I 
I 
L-- ... --~--

L-----.-,-~ 

SET POSITION 
POINTER 
SET OUTPUT 

GET NIBBLE 
FROM LOCAT· 

IONTOCONV· 
ERT 

STORE ASCII 
CHARACTER 
IN LOCATION 

·SPECIFIED 

FLOW DIAGRAM FOR PACKED HEX TO ASCII 
CHARACTER CONVERSION PROCEDURE 

Figure 5-20 

5-22 

Programming 

YES A·F 

ADD37HEX 
TO NIBBLE 

ADD4 
TO 
12 (AP) 

TK-3229 



SET-UP 

STATE DEFINITIONS 
ALLOCATE MEMORY 

SETUP 
A STACK 

. JUMP TO BUILD see 

BUI LO see AND 
TRCS SUBROUTINE. 

LOAD CONSOLE 
RX VECTOR WITH 

ADDRESS OF 
SERVICE ROU· 
TINE 

TURN ON CONSOLE 
RX 1E 

LOAD UNIBUS . 
VECTOR 2xx 
WITH ADDRESS 
OF SERVICE 
ROUTINE 

DZ·11 SET-UP 

LOAD DZ LINE 
PARAMETER REG 
WITH DESIRED 
BAUD RATE, FOR 
DESIRED LINE. 

TURN RXON 

TURN RECEIVE 
INTERRUPT ENABLE 
ANO MASTER SCAN 
ON 

LOWER CPU IPL 
TO TAKE 
INTERRUPTS 

LABORATORY EXERCISE 5 
PROGRAM FLOW DIAGRAM 

Figure 5-21 

5-23 

Programming 

NO, UNIBUS BR 

TK-3227 



CONSOLE SERVICE 

TURN ON 
LINE 
IN DZTCR 

GET 
CHAR FROM 
CONSOLE 

ECHO 
CHAR BACK 
TO 
CONSOLE 

SEND .. 

CHAR TO 
DZ 

REI 

UNIBUS SERVICE 

READ DZ 
RECEIVE 
BUFFER 

GET CHAR 
FROM 
DZBUF 

------. 
ZERO EXTEND <31 :S> 
AND SEND CHARACTER 
TO CONSOLE 

RESELECT 
DZ LINE 

SEND 
CHARACTER BACK 
TO 
TERMINAL 

REI 

Figure 5-22 

5-24 

Programming 

REI 

TK-3228 



OOOQOQ 

03FFFF 

040000 
07FFFF 

080COO 

CSF=FF 

occooo 
FFFFF 

100000 

T3FFFF 
140000 

17FFFF 
180000 

19FFFF 
ICCOOO 
1FFFFF 

FOOOOO 

F!OCOQ 

F20000 

F3l004 

F:CCOS 

F20400 

F2SQCO 

F78400 

F2S800 

F2AOQO 

F2A400 

F2A800 

F2CQOO 

~ 
;::zcaoo 
F30000 

F30C!Q4.C 

F300t4-IC 

F30800 

;::32000 

F32014 

Cl28QO 

FSOOOO 

,,. 

:S&KB 

5t2KB 

768KB 

1024K8 

128CIKB 

1$3SK8 

18921(8 

21W81(8 
MAXIMUM FULLY ?OPULATCO ARRAYS 

!JIEMOAY CONFIGURATION REG. a 
MEMORY CCNFIGUAAT!ON R5G. C 

cOOTSi'RAP ROM ?ROGRAM 

!AASSBUS .ACA?TOA 0 INT. REGISTE?.S 

MASSaUS AOAPTOA 0 EXT. ?EGls:'ERS 

MASSSUS AOAPTOA 0 MAP REGISTERS 

MASSIUS AOAPTOl'I 1 INT. i'!EGISTERS 

'otASSBUS .A CAPTOR 1 =xT. REGISTERS 

MASSBUS ADAPTOR 1 MAP REGISTERS 

\IASSSUS ADAPTOR 2 INT. REGISTERS 

MASS8US ADAPTOR 2 EXT. REGISTERS 

~.4ASSaUSACAPTOR 2 MAP REGIS'l'aRS 

UNIBUS OATA ?ATH CONTROL Si STATUS 

'..iNIBUS DIAGNOSTIC REGISTERS 

UNIBUS MAP REGISTERS 

2NO UNIBUS MEMORY SPACE 
128KW 

UNIBUS MEMORY 
SPACE 12SKW 

COMET PHYSICAL MEMORY ORGANIZATION 

Figure 5-23 

5-25 

Programming 

1 ARRAY 30ARO 

ENO OF EXISTENT MEMORY 



"11 ....... 
U) 

lJ1 c:: 
I t-1 

N CD 

°' lJ1 
I 

N 
.t:=. 

BYTES 
MSB HIGH LOW LSB 
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 

ORO{ CONTROL RO t-R~_t-R_Q __ -~-- ~"°<S~ JlQ_rR_Q ___ ~-- '!Q_ -!!_w__._~W--~s--~6' r-ffj;f --
& STATUS TROY TIE SA SAE ~ $ TLINE TUNE TUNE RDONE ~"'-! CLR MAINT ~ i ~ 4J ~ ~ .,Y C B A ;-..,., .;:, ~ .;:,Cj 

(CSRI ~ .;:, 
'-~~~~-1-~~..i-----1-~~--1-------1'-~--+-~ ....... ~~-+-~--1---~~~~ 

,_ i:o __ ,_n~ _ '!_0 _ _ C '!_~ _ -[%'. _!'~ _ _!'~ _' '!!'_ _ '!_0_ ~ _!!.'! __ _!!'!_ _ _!!'!_ ___ '!_0 _ _ RO 

DR2 

OR4 

DR6 

llECEIVER 
BUFFER 

IRBUFI 

LINE 
PARAMETER 

ILPRI 

TRANSMIT• 
CONTROL 

(TCR) 

MODEM" 
STATUS 

(MSR) 

TRANSMIT 
DATA 

(TDRI 

RO RO 

DATA FRAM PAR S' O RX RX RX 
VALID OVRN ERR ERR ~ ~ LINE LINE LINE RBUF RBUF RBUF RBUF RBUF RBUF RBUF RBUF 

I-----

..;:, C B A 07 D6 D5 D4 DJ 02 01 DO 

~~~'··11~.~ » "' WO ~~- ~~- ~O :-.~@ 1-~-+!!~- !~-~ ' ~\~ ' ~ ~ ~R~~ ~:: :~:8 ~~: ~ ~ -~~ . LINE LINE LINE 

~ P.i ~ ~ ' -~ ~ A I~~ ~~ ~~ C B A

R!'_+"!'!-+f'!!V __ t-~w_--t-~w--..,~-+'ll'Y-- R\!.._ J1vt..-..'llL R.Y-+'LW __ 1-'3Y'---~-1-nw ~~

DTR DTR DTR DTH OTA DTR DTR OTA LINE LINE LINE LINE LINE LINE LINE ~-
7 6 5 4 3 2 1 0 ENAB ENAB ENAB ENAB ENAB ENAB ENAB ~~~~~~~

7 6 6 4 3 2 1~·

RO RO RO RO RO RO RO no RO RO RO RO RO RO RO RO
r- - - - - - + - - - -r- - - - -r- - - - - - + - - + - - -i - - t- - - ·t- - - '"" - - - I- - - - .,. - - - - - t- - - -

co
7

co
6

co
5

co
4

co
3

co
2

co
1

co
0

Rl7 RI& Rl5 Rl4 Rl3 Rl2 RI 1 RI 0

WO WO WO WO WO WO WO WO WO WO WO WO WO WO WO WO
I- - - -t- - - I- - - - t- - - - I- - - I- - - I- - - I- - - - - - + - - - - - ., - - - - - - -1- - - - - - t- - - -

BAK ORK BflK
7 6 5

BAK
4

BAK ORK BAK ORK TBlJF TBUF TBUF TBUF
3 2 1 0 7 6 5 4

TBUF
3

TBUF TBUF TBUF
2 1 0

*The hiyh byte of the TCR (Data Terminal Ready) and the MSR are not used with the 20 mA options.
TK-446A

Programming

Figure 5-25

5-27

CPU AND MASSBUS
VECTOR PAGE

Programming

SRBB+200i--~~~~~~~~~~~~~~~~~~~~~~~~~~~~--t?AGE2

INTEGRAL UNIBUS VECTOR
PAGE

2ND UNIBUS VECTOR
PAGE

COMET SYSTEM CONTROL BLOCK

Figure 5-26

5-28

"':"K-1740

Programming

RELATIVE
SCB:: .BLKL 256 ADDRESS TRCB:: .BLKL 256

00000400. 0 400 00000000

00000404 4 404 00000000

00000408 a. 408 00000000

0000040C1 C' 40C 00000000
I
I
• t
• I

' _t

000007f 8 3f 8 7F8 00000000

000007FC 3FC 7FC 00000000

TK~457

Figure 5-27

5-29

HEX NAME

00 KSP

01 ESP
02 SSP

03 USP

04 . ISP

08 POBR

OA P1BR

09 POLR

OB P1LR

OD SLP

KERNEL STACK POINTER
EXECUTIVE STACK POINTER
SUPERVISOR STACK POINTER
USER STACK POINTER
INTERRUPT STACK POINTER

31

VIRTUAL ADDRESS OF TOP OF STACK

PO BASE REGISTER .

RESERVED OPERAND FAULT IF VLA < 2**31

Pl BASE REGISTER
RESERVED OPERAND FAULT IF VLA < 2**31 - 2**21

31

VIRTUAL LONGWORD ADDRESS

PO LENGTH REGISTER
LENGTH OF POPT IN LONGWORDS

Pf LENGTH REGISTER
2**21 - LENGTH OF P1PT IN LONGWORDS

SYSTEM LENGTH REGISTER
LENGTH OF SPT IN LONGWORDS
RESERVED OPERAND FAULT IF MBZ =?O

31 22 21

Programming

00

02 01 00

00

MBZ LENGTH IN LONGWORDS

TK-1750

Figure 5-28

5-30

HEX NAME

10 PCBB

11 SCBB

12 IPLR

13 ASTR

OC SBA

PROCESS CONTROL BLOCK BASE
RESERVED OPERAND FAULT IF MBZ :¢: 0.
3130 29

MBZ PHYSICAL LONGWORD ADDRESS OF PCB

SYSTEM CONTROL BLOCK BASE
RESERVED OPERAND FAULT IF MBZ :¢: 0.
313029

IMszl PHYSICAL PAGE ADDRESS OF scs

INTE.RRUPT PRIORITY LEVEL REGISTER
31

MBZ

AST LEVEL REGISTER
RESERVED OPERAND FAULT IF NOT VALID I.E., MBZ ¢0.
31

I MBZ

SYSTEM SASE REGISTER

RESERVED OPERAND FAULT IF MBZ:;:: 0.
31 30 29

f Mszj PHYSICAL LONGWORD ADDRESS

Figure 5-29

5-31

Programming

02 01 ()()

MBZ

020100

05 04 00

03 02 00

02 01 00

TK-1753

NEXT INTERVAL COUNT REGISTER (WRITE ONLY)
31

2'S COMPLEMENT OF INTERVAL DESIRED X 1 µSEC

INTERVAL COUNT REGISTER (READ ONLY)
31

ACTUAL INTERVAL COUNT PERIOD

INTERVAL CLOCK CONTROL AND STATUS (COMET HARDWARE)

ERROR

TRANSFER OVER FLO PENDING
INT REQUEST
INT ENABLE---------

SINGLE CLOCK--------

TRANSFER -------------•
SERVICE REQUEST---------

TRANSFER REQUEST ---------­
OVERFLOW PENDING------------'

RUN--------------------'

INTERVAL CLOCK CONTROL STATUS (VAX SOFTWARE)

0

Programming

PR# NAME
0

19 NICR

0

1A ICR

0

18 ICCS

•

31 16 15 14 76543210

E 0

INTEN

SINGLE CLOCK

TRANSFER---'

0 R 18 ICCS

RUN------------

INTERVAL TIMER PROCESSOR REGISTERS

TK-1724

Figure 5-30

5-32

18 TOOR

14 SIAR

15 SISR

TIME OF DAY REGISTER
31

TIME OF DAY (10 MILLISECOND INCREMENTS)

SOFTWARE INTERRUPT REQUEST REGISTER
RESERVED OPERAND FAULT IF READ
31

I MBZ

WRITE ONLY

SOFTWARE INTERRUPT SUMMARY REGISTER
31 1615

Programming

00

0403 00

I SIRL I

0100

MBZ
SOFTWARE INTERRUPT REQUEST

F EDCBA98765 4321

MBZ

TK-1752-

Figure 5-31

5-33

CONSOLE STORAGE RECEIVER STATUS

31 7 6 0

l ________ , ____ 0 ___________ 1°_l•e~l ______ 1:# NAME

CSRS

CONSOLE STORAGE RECEIVER DATA

31 7 6 5 4 3 2 1 0

I 0 I RECEIVE

''°
CSRD

·DATA

RECEIVE FROM TU-58

tx]
.......

lO
U1 c
I

"""' w CD
~

U1
I

w
N CONSOLE STORAGE TRANSMIT STATUS

31 7 6 0

I 0 1+1 0 llE CSTS

CONSOLE STORAGE TRANSMIT DATA

31 7 6 5 4 3 2 1 0

_l _______________________ o __________________ l.__ ____ ~-~-~-~-SM_l_T _____ .llF CSTD

TRANSMIT TO TU-58
·1 K·173:1

Programming

8

MACHINE CHECK ERROR SUMMARY REGISTER (REPORTS TYPE OF MACHINE CHECK)
31

[0

1. WRITING A "ONE" TO BIT 3, CLEARS BUS ERROR REGISTER
2. WRITING A "ONE" TO BIT 2, CLEARS TB GROUP PARITY REGISTER

B PARITY ERROR 1=T

1 = u
1=X

O=O

NALIGNED UNIBUS REF.

B REF.

PERAND REF.

3 2 1 0

11TI1

BUS ERROR AND MACHINE CHECK ERROR AND SAVED MODE REGISTER

TRANSLATION BUFFER GROUP DISABLE REGISTER
(CONTROLES 2 WAY ASSOCIATIVE MEMORY OPERATION,
NORMAL LOADING IS RANDOM PLACEMENT OF DATA
IN PTE CACHE)

26 MCESR

TK-1742

MEMSCHAR# ~31:.....--........-..,......_.PR# NAME

TBGDR 3 0

O=RANDOM
1 =FORCE

0 = REPLACE GO
1 = REPLACE Gl

O=NORMAL----
1 = FORCE MISS G 1

O=NORMAL~------'

1 = FORCE MISS GO

TRANSLATION BUFFER CONTROL ANO STATUS REGISTERS

CACHE GROUP DISABLE REGISTER (CONTROLS REPLACEMENT OF DATA
INTO CACHE) 1 X 1 K LONGWORD

MEMSCAR # 31 3 2 1 o.

5 0 1° I 0 I 0 I I
O= NORMAL _J
1 = FORCE MISS

CACHE ERROR REGISTER
31 3 2 1 0

4 " l 0 l l l l J
J J TAG PARITY ERROR

DATA PARITY ERROR

2ND ERROR

CACHE HIT

UNIBUS. CACHE CONTROL AND STATUS REGISTERS

Figure 5-33

5-35

24

TK-1732

PR# NAME

25 CGDR

27 CAER

TK-1734

HEX NAME

20 RXCS

21 RXDB

22 TXCS

23 TXDB

CONSOLE RECEIVE CONTROL/STATUS
31

MBZ

CONSOLE RECEIVE DATA BUFFER

Jl

READ ONLY

CONSOLE TRANSMIT CONTROL/STATUS
31

MBZ

CONSOLE TRANSMIT DATA BUFFER

31

WRITE ONLY

Figure 5-34

5-36

Programming

08070605 00

I
DONE

0807 00

BYTE 0 I

08 070605 00

I lie!
I

MBZ I
READY

08 07 00

I BYTE 0 I
TK-1749

Programming

HEX NAME ID:;:

38 MME MEMORY MANAGEMENT ENABLE
WRITE 1 ALSO CAUSES MICROCODE TO INVALIDATE TB.

31 01 00

I 11
I

MME

39 TBIA TRANSLATION BUFFER INVALIDATE ALL
RESERVED OPERAND FAULT IF READ

31 00

I MBZ I
WRITE ONLY

3A TBIS TRANSLATION BUFFER INVALIDATE SINGLE
RESERVED OPERAND FAULT IF READ

31 00

I VIRTUAL ADDRESS I
WRITE ONLY

30 PMR PERFORMANCE MONITOR REGISTER
RESERVED OPERAND FAULT IF >1
31 01 00

I MBZ
11
I

PME

3E SID SYSTEM IDENTIFICATJON (READ ONLY)
RESERVED OPERAND FAULT IF WRITE

31 24 23 16 15 8 7 0
MICROCODE HARDWARE

SYSTEM TYPE 0 REVISION REVISION
LEVEL LEVEL

FROM MICRO FROM SWITCHES
WORD LITERAL LOCATED ON UBI
FIELD MODULE

TK-2099

Figure 5-35

5-37

t'1:J
lQ

lJ1 c
I l"1

w co
co

lJ1
I

w

°'

MEMORY CONTROL &
STATUS REGISTER

0 f 20000

1 f 20004

2 F20008

31 30 29 24 23

0 PAG~ ADDRESS OF ERROR

CORRECTABLE ERROR FLAG (1 BIT ERROR)

2ND UNCORRECTABLE ERROR

9 8 7 6 0

0 0 ERRORSYNDROME

---UNCORRECTABLE ERROR FLAG (MORE THAT 1 BIT ERROR)

31 29 28 27 26 25 24 23 9 8 7 6 0

0 0 0 l o[PAGE MODE ADDRESS 0 0 CHECK SYNDROME

DISABLE ERROR CORRECTION

'---DIAGNOSTIC CHECK MODE (FOR VERIFY SYNDROME BITS FUNCTION)

PAGE MODE

INHIBIT REPORTING CORRECTED ERRORS INHIBITS CAD INTERRUPT

31 24 23 17 16 15 0

00000000
STARTING
ADDRESS

MEMORY PRESENT

__.......
BACKPLANE JUMPER BITS <15:0> INDICATE MEMORY PRESENT

IN 128KB INCREMENTS (2 BITS PER
MODULE)

SELECTABLE

INIT
--~~~~---~--~~~~--, r
COLO/WARM RESTART FLAG
= 1 ON POWER UP OR BATTERY DEAD
= 0 AFTER FIRST 4 BYTE WRITE

·rK-1725

U1
I

w
l.O

'"z:J
'° c
'"" CD

U1
I

w
.....J

BOP #1 F30004
#2 F30008
#3 F3000C

31 30 29 28 1 0

BIT <o> PURGE. nus BIT ALWAYS READS A ZERO. WRITING A ZERO TO IT
HAS NO AFFECT. WRITING A ONE TO IT PRODUCES A RESULT BASED ON THE
CONTENTS OF THE BUFFER:

UNIBUS DATA:

CMI DATA:
EMPTY:

THE DATA IS WRITTEN TO THE CMI AND THE FLAGS
ARE SET TO MARK THE BUFFER EMPTY.
THE FLAGS ARE SET TO MARK THE BUFFER EMPTY. ·
NO ACTION OCCURS.

--~~~~~~--~~~~-----UCE

--~~--~~~~~~~~--_........__---~--~--~--~~----~--~-
(BIT <29> UNCORRECTABLE ERROR (UCE). THIS BIT IS SET WHEN ')

UNCORRECTABLE ERROR STATUS IS RECEIVED FROM CMI MEMORY. PB IS
ASSERTED WITH THE DATA THAT IS PASSED BACK TO THE UNIBUS DEVICE ON lHE
FIRST READ FROM THAT LOCATION. IT IS NOT ASSERTED ON SUBSEQUENT READS
FROM nus BOP. Tl-IE BIT IS WRITE ONE TO CLEAR.

BIT <JO> NON EXISTENT MEMORY (NXM). THIS BIT IS SET WHEN NXM,STATUS
IS RECEIVED FROM THE CMI MEMORY. SSYN IS WITHHELD FROM THE UNIBUS
DEVICE. ALL FUTURE UNIBUS TRANSACTIONS THROUGH THIS BOP ARE IGNORED
(NO SSYN ISSUED) UNTIL THIS BIT IS CLEARED. THE BIT IS WRITE ONE TO
CLEAR.

BIT <31> ERROR. THIS BIT ON READ IS THE "OR" OF BITS 30 AND 29.
WAITING TO THIS BIT HAS NO EFFECT.

BOP CONTROL AND STATUS REG.

TK-1721

"'t1

'"" 0

'° '"" CJ
a
a
::J

'°

F30800TO {
F30FFC

Programming

P F N

- PAGE FRAME NUMBER -
CONCATENATED WITH BITS <8:2>
OF THE UNIBUS ADDRESS TO FORM
THE 22 BIT CMI LONGWORD ADDRESS.

--------------DATAPATHNUMBER-
USED TO SELECT 1OF4 DATA PATHS.

0 0 DIRECT DATA PATH
0 1 BUFFERED DATA PATH 1
1 0 BUFFERED DATA PATH 2
1 1 BUFFERED DATA PATH 3

- BYTE OFFSET -
-----------------USED WHEN ADDRESSING ODO BYTE

BOUNDARIES.

--------------------------VALID BIT-
IF NOT SET, TREAT CYCLE AS A NOP.

UNIBUS TO CMI MAP DATA FIELDS ADDRESS

5-40

TK-1739

DSR #1 f 30014
OSR #2 F30018

00

DSR#3F3001C ...,...,......,..~--

NOTE 1:

NOTE 2:

BYTE 0 VALID }
BYTE 1 VALID . READ ONLY DATA PATH STATUS

----BYTE 2 VALID
-----BYTE 3 VALID

THERE ARE FIVE FLAGS THAT KEEP TRACK OF THE DATA IN THE DATA

BUFFER, NAMED CD AND BF3 THROUGH BFO. IF CD= 1, THEN THE BUFFER

HAS FOUR BYTES OF DATA FROM THE CMI AND BF3 THROUGH BFO ARE

ALWAYS 0. IF CD= 0, THEN BF3 THROUGH BFO INDICATE WHICH BYTES

IN THE DATA BUFFER HAVE VALID UNIBUS DATA. IF THEY ARE ALL 0,

THEN THE BUFFER IS CONSIDERED EMPTY.

THIS IS A READ ONLY REGISTER THAT ALLOWS ONE TO CHECK THE FLAG

BITS ASSOCIATED WITH EACH BOP. IT IS INTENDED ONLY FOR POSSIBLE

DIAGNOSTIC USE AND NO REFERENCE TO IT IS REQUIRED FOR NORMAL.

USE OF THE BOP'S.

CUI DIAGNOSTIC STATUS REGISTER
TK-1726

Programming

31 20 19 18 17 16 1~ 11 10 09 08 04 0302 01 00

1PR#17 l l I l 1 I I I
l

0 0 l 0 I
O= CMI ENABLED J
1= CMI DISABLED

READ=l, MODIFY=O

VIRTUAL=O, PHYSICAL=-1

CPU MODE, { K,E,S,U

READ LOCK TIMEOUT

TB G1 TAG ERROR

TB GO TAG ERROR
/

TB G1 DATA ERROR

TBGO DATA ERROR

TBHIT

MEMORY ERROR

READ DATA SUBSTITUTE

LOST ERROR

CORA E REA ECT D D DATA

CMI ERROR PROCESSOR REGISTER

TK-326~

31 00

I 0 I 11PR#37

----------------------~,
ISSUE UNIBUS INIT----·

10 RESET PROCESSOR REGISTER

TK-3267

5-42

HEX NAME ID~

38 MME

39 TSIA

3A TBIS

30 ?MR

3E SIO

MEMORY MANAGEMENT ENABLE
WRITE 1 ALSO CAUSES MICROCODE TO INVALIDATE TB.

31

TRANSLATION BUFFER INVALlOATE ALL
RESERVED OPERAND F.~ULT IF READ

31

I MBZ

WRITE ONLY

TRANSLATION BUFFER INVALIDATE SINGLE
RESERVED OPERAND FAULT IF READ

31

I VIRTUAL ADDRESS

WRITE ONLY

PERFORMANCE MONITOR REGISTER
RESERVED OPERAND FAULT :F >1
31

I MBZ

SYSTE!!l_!DENTIFl_<;ATION (_READ ONLY)
RESERVED OPERAND FAULT :F WRITE

31 24 23

SYSTEM TYPE

1615

0
MICROCODE
REVIS:ON
LEVEL

Programming

01 00

MME

Q()

I

00

I

01 00

II
' ?ME

HA.RDWARE
REVISIO~­

LEVEL

0

FROM MICRO FROM SWITCHES
WORD LITERAL LOCATED ON UBI

00 UNDEFINED
01 11/780
10 11/750
11 NEBULA

FIELD MODULE

FROM MICRO
WORD LITERAL
FIELD

Figure 5-41

5-43

BACKPLANE JUMPERS

71<-2099

VAX-11/750 LEVEL II

Microcode

Student Guide

Course produced by Educational Services Department
of

Digital Equipment Corporation

Microcode

OBJECTIVES

Utilizing the Comet microcode listing, correctly trace a
microroutine for a specific machine function, listing only
the microaddresses.

Provided with a Comet microcode macro expansion and a Comet
microcode listing, write each of the field values for that
microinstruction.

Provided with a schematic diagram, trace the origin and
destination of a specific signal within the microsequencer
logic.

Given a series of true/false questions, correctly indicate
as true or false statements regarding the comet
microsequencer operation.

Provided with a laboratory exercise procedure, the student
will

a) load Microdiagnostics
b) operate the remote diagnosis module
c) trace microroutines
d) set up and trace selected signals

SAMPLE TEST ITEM

Referring to the CUI module schematic, drawing number 1 of
14, locate the signal called "RCS 01 CS AD 13 L". Trace the
origin of this signal and all of the destinations in the
space below.

LAB EXERCISE

a) load microdiagnostics
b) operate the RDM Module
c) trace microroutines
d) set up and trace selected signals

6-1

RESOURCES

1. COMET CPU Microcode listing

2. DPM module schematic

3. LSI Chip Schematic

SAC
MSQ
PHB
!RB

4. Wall charts

5. COMDEC, Microword decoding program

6-2

Microcode

Microcode

OUTLINE

I.· INTRODUCTION TO MICROCODE

A. Why Microcode?
1. Concepts
2. Advantages

B. Comet CPU Microinstruction
1. 80 bits
2. Vertical functionality
3. Microcode/hardware relationship
4. Fields and functionality
5. How is microcode created?

C. Summary

II. MICROCODE LISTINGS

A. Microprogrammers Code
B. Microcode Listing/Macrocode Listing Similarities
c. File Structure
D. Reading the Listing

1. Assembler directives
2. Addressing constraints
3. Machine definitions
4. Macro expansions
5. Next address field
6. CREF

E. Summary

III. MICROSEQUENCER AND CONTROL STORE SUBSYSTEM

A. Purpose
B. Cycle Time
C. LSI Chips

1. SAC
2. MSQ
3. PHB
4. IRD

E. CCS Interface
F. Block Diagram Analysis
G. CCS Module Block Diagram Analysis
H. Schematic Analysis

1. Major addressing modes
2. LSI chip functionality
3. Timing

6-3

Microcode

IV. CLASSROOM EXERCISE
LOCATE AND TRACE !NIT MICROROUTINE

V. CPU CONSOLE MICROCODE

A. Console Emulator
B. Console Interface
c. Microroutines - Character by Character Parse
D. Console Functions
E. Console Functions Flow Diagram Analysis

VI. LABORATORY EXERCISE 6 - TBS

VII. LESSON SUMMARY

6-4

Microcode

I. INTRODUCTION TO MICROCODE

A. Why Microcode?

1. Basic computer designs

a. direct hardware decode of macro instruction
requires elaborate timing and hardware
design

b. microprogrammed machine architecture allows
general purpose design to be customized
with ROM microcode.

2. Microcoding has created a
individual that understands
software to write microroutines

demand for
hardware

an
and

3. Microcode can repair design problems without
changing hardware.

4. Microcode updates require changing only control
store ROMS.

B. The advantages or microprogramming are clearly
apparent to other hardware designs

c. COMET CPU Microinstruction

1. 80 bi ts wide
2. Vertical functionality
3. Microcode/hardware relationship

a. DPM module - green
b. UBI module - blue
c. MIC module - yellow
d. WCS module - red

6-5

0\
I

0\

0\
I

......

UBI

TU58
INTERFACE

CONSOLE
IN"fERFACE

TRAPS
&
INTERRUPTS

UNIOUS
INTERFACE

FLOATING
POINT
ACCEL

OPM

W-BUS

DATA
PATH

M-BUS

ADDRESS

REMOTE
DIAGNOSTIC 14
MODULE

ADDRESS
l.OGIC

DATA
ROUTING TRANSL
AND BUFFER ALIGNMENT

CACHE

CMI

WRITABLE
CONTROL
STORE

r:----.
I

_..J
RMOJ

COMET SIMPLIFIED SYSTEM BLOCK DIA~RAM

MEMORY
CONTROL

RMOJ

ARRAY

saus
2 T.

3

3:
0
I"'(

0
0
0
0.
C1)

Microcode

Figure 6-2

6-7

.TOC

.roe

Microcode

Pay<? 30

G LINE NUMBER

.NOB IN ~~
I.._

:969
;970
;971
•972

"DEFIN.r:.rc·
"REVISION 53.3"
P. !L GUI L6AUL T

DO NOT UST BINARY OUTPUT

;975
;976
;977
;978
;9i9
;960
;9d1
:982
;983
;984
;985
;986
;987
;~69

;989
;990
;991
;992
;993
;9!:14
;995
;996
;997
;998
:999
: 1000
; 1001
: 1002
: 1003
; 1004
; !COS
; 1006
; 1007
: 1008
; 1009
:1010
: 1011
:1012
;1013
;1014
;1015
;1016
;1017
; 1018
;1019
; 1020
:1021
: 1022
; 1023

.RTOL i..._

.HEXAOECI!.fAL i..._
NUMBERS ARE FROM RIGHT TO LEFT FOR BINARY
RADIX ISHEX

.SOURCE/33

.SET/NATIVE=! VAX NATIVE INSTRUCTION MICROCODE

.NOCREF

53

52

51
50
49

48

47

46

45

i--, ;SET UP FOR CREF ONLY WHEN FULL ASSEMBLY

CORRECT 't.l!DTH OF CCODEf.Co:npatibilityl ROM
ADD NE\'f ~-:OR_O COtlFLlCT WITH MSi7C PER EIHIOER OS-MAR-79
ADD NEW ~SRC;vA CONFLICT WITH BUS PE~ BINOE~ 15-FE0•79
CHANGE 11i01 R::M OEF'INIT IOU PER SMITH O::?-FE9•79
ADD MlCRO ORDERS FOR OPSPEC FIELDS IN IRO ROMS
CHA~GE t~OX P.Oi.t DEFINITION PER SMI iH 02-FE6-79
DELETE '6UT/M6US19T018' ?ER LI e-FEB-79
C~ANGE CUQDE ROM PER SMITH 02-FEB-79
UPO~TE VD23 & V02S .1NO DISABLE MSRC/TB PER BINDER ~5-JAN-79
ADO VALIDITY CHECKS FOR IRD RO~'S

00 NOT CROSS REFERENCE FOLLOWING CODE

INSERT TEXT IN TABLE OF CONTENTS

CHANGE 'USRC/~TE~Ptl' TO 'MSRC/ERRCOD' TO REFLECT ITS PROPER USE
CHANGE VALIDITY CHECKS TO ALLOW 'CLRTB.VA_WB' WITH 'PRB.RO.PTE' WHEN NOT 'BUT/UVCTR'
CHANGE NOTATION FOR MULTIPLE VALIDlTY CHECKS
DELETE 'WCTl~L/VA VAS·;~B' PER BINDER 15-l!OV-78
DELETE ·~xTRL;Roi· & ·~cTRL/ROM WB' PER KRAUS 16-NOV-78
ADO '~CTRL1FPA.ENA8LE ~BS' PER ~PAUS 12-CCT-78
CORRECT DESCRIPTION OF BRATST IN CC TABLE
ADO INFORfAATION AEOUT cceci. SRKSTA. AND SPASTA BUTS
AOO VALIDITY CHEC~S TO CEFIN ANO DELETE VALID.MIC

REVISION H[STOR'f FROM VAL!O :
01 GET RID OF OU'll!'.W CHECV.S AUD RE~:avE COMENT STATUS OF CASE CHECKS

GET RIO OF V003 BECAUSE IT IS IDENTICAL TO V001
00 INITIAL C!ELEASE

ADD 'WCT::<L,flDA_O' AS CJNFLICT lllITH •11.;sRC,"WDR' PER 5!NDER 21-oec-;s
.l.00 NEW CONFLICT FOR SOUR::E PC OR PCB.!.CK ANO RE:.:> OR WRITE
.1DD NOfE TO BUT'S ON IR THl'.T ARE DtFFEt;E:'IT rn cor,,?ATIBILITV MODE
CHAf.fGE 'BUS vs r.ISRC' VALID I TV PER BINOSR 29-DEC-78
CORRECT C')f.lrAENTS FOR 'POr,·1n.RM.P'. 'RGT,'RL.RM.PS'. 'ROT/ASL.R.P'. !t 'ROT/ASL.M.P'
CQR;ECT 'CCPSL;MDR_DSR.CCBR_BRATST' & '~CTRLi~DR_l~' MIC~O ORDER ASSIGNMENTS PER SMITH 12-JAN-79
AOO VAL IOI i'f CHECKS FOR MUL TLPL'f ~ND DIVIDE SPECIAL FUNCTIONS
CHANGE ·~cTRL/STEPC' TO ·~cTRL/CM.TP.FPD.FS.STEPC'
CHANGE '~CTRL/FLAGS' TO 'WCTRL/CM.TP.FPD.FLAGS'
RENAME IRD RO~" FIE LOS TO BE rt.ORE CONSISTANT Ill TH IRD ROM MACROS
INCOPORATE CHANGES PER LI 14-DEC-78

, .) CHANGE ·wx_s.Q_D' TO ·wx_s.Q_O'
2.1 CHANGE •wx_o_s.o_o· ro •wa_o_s.o_o•
3.) DELETE 'MUXDZ' FIELO
4.) DELETE '004' f'i.HD
S.l ADD NEW SPECIAL FUNCTIONS
CHA~GE ALL V003 TO V001
CORRECT VALIDITY CHECK ON 'CCPSL/MDR_OSR.CCSR_BRATST"
CORqECT CO~PATA9ILIT'f MOOE IRO RO~ OEFINITlON

MICR02 ASSEMBLER DIRECTIVES 1

Figure 6-3

6-8

Microcode

: CMT018.MCR (130,2112] Micro-2.1 1A(3J) 14:40:3 9-Mar-1979
: OEFIN .MIC [130,2112] Machine Definition : IR01 ROM

1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
19&1
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

.roe• Machine Definition : IRD1 ROM"

1: !ig~~/32 r SWITCH FROM OEFAULT ROM (UI ANO DEFINE IRO ROM AS 32 BITS WIDE.

+-+-+-+-------------+-+-------------+-+-------------+-+-------------+ :v:v:1: :1: :F; :r:
:1:FIF: IR01.FPA :o: iRD1 :Fl FPO.FPA IOl FPO
:R:P:o: ;P: :o: IP:
:o:o:P: : : ~P: : :
:1: : : ; : : : : : '
+-+-+-+-------------+-+-------------+-+-------------+-+-------------+
:J:3l3!3 2 2 2 2 2 2:2:2 2 2 1 1 1 1:1:1 1 1 1 1 0 o:o:o 0 0 0 0 0 o:
:a:2:1:0 9 a 1 6 s 4lll2 1 o 9 a 1 6l5l4 3 2 1 o 9 a:1:s 5 4 3 2 1 o:
+-+-+-+-------------+-+-------------+-+-------------+-+-------------+

FPO /:<6:0>
FPD.FPA /=<14:8>
IRD1 /=<22:16>
IRDt.FPA/=<30:24>

FOP /•<07:07>
NQP:O
L00=1

FFOP/s<15:15>
NQP:O
LOD=1

IOP /•<23:23>
NQPsO
LQ0s1

IFOP/,.<31:31>
NOPsO
L00:1

VFPO /s<J2:32>,
V1R01/=<JJ:33>,

• VALIDITY=<V060>
• VALIOITY•<V061>

MICR02 ASSEMBLER DIRECTIVES 2

Figure 6-4

6-9

Microcode

; CMT018.MCR [130,2112] Micro-2.1 1A(33) 14:40:3 9-Mar-1979 Page 54
: OEFIN .MIC [130,2112] Machine Definition : IROX ROM

1998
1999
2000
2001
2002
2003
2004
2005
2005
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
::<'.033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
20'17
2048
2049
2050

.roe • Machine Definition : IRDX ROM"
~r:cCoQEl£10~CgOJ;!D;_E~,.~;--------------------· SWITCH FROM DEFAULT ROM IUI TO OSR ROM AND DEFINE BITS AS 96 BIT WORD.
lffiTH/961

+---+--------------~----+---------------------+---+---------------------+---------------------+
: 0 : : : 0 :
: 0 : : : F !
l P : CNTO.REG l CNTO.MEM l 0 : CNTO.FPA.REG CNTO.FPA.MEM
: : : : p : '

+---+---------------------+---------------------+---+---------------------+---------------------+
:4 4l4 4 4 4 4 4 3 3 3 3 313 3 3 3 3 2 2 2 2 2 2:2 2:2 2 1 1 1 1 1 1, 1 1:1 0 0 0 0 0 0 0 0 0 o:
:1 s:s 4 3 2 1 o gs 1 6 s:4 J 2 1 o 9 a 1 s s 4;3 2:1 o 9 a 1 & s 4 3 2 1 :o 9 a 1 s 5 4 J 2 1 o:
+---+---------------------+---------------------+---+---------------------+---------------------+

+-+-+---+---------------------.---------------------+---+---------------------+---------------------+ :v:v: 1 1 :
:c:c: 0 , F :
:N:N: P : CNTt.REG CNT1.MEM 0 : CNT1.FPA.REG CNT1 .FPA.MEM
lT: T: l P l
; 1 :o: : I : e I

+-+-+---+---------------------+-----------------~-+---+---------------------+---------------------+
:9l9l9 919 g g 9 e a 0 e a s e:e a a 1 1 1 1 1 1 1 1:1 1:s & & & s s s 6 & 6 s:s s s s s s s s s 4 41
:1:s:s 413 2 1 o 9 8 1 s s 4 312 1 o 9 a 7 6 s 4 3 2:1 o:g s 7 s s 4 3 2 1 o 9:a 1 6 s 4 3 2 1 o 9 a:
+-+-+-~-+---------------------+---------------------+---+-----------~-------+---------------------+

CNTO.FPA.MEM/•<10:0>
CNTO.FPA.REG/=<21:11>, .VALIDITYa<V062>
OFOP/s<23:22>

NOPzO
LQ0:3

CNTO.MEM/=<34:24>
CNTO.AEG/2<45:35>, .VALIDITYa<V063>
OOP /:<47:46>

NOP•O
L00•3

CNTt.FPA.MEM/•<58:48>
CNT1.FPA.REG/•<69:59>, .VALIDITY•<V064>
1FOP/•<71:70>

NQP•O
L00=3

CNTt.MEM/:<82:72>
CNTt.REG/:<93:83>, .VALIDITYs<V065>
10P /•<95:94>

NOP=O
LQ0s3

VCNT0/=<96:96>, .VALICITY:<V066>
VCNT1/•<97:97>, .VAL1DITY•<V067>

MICR02 ASSEMBLER DIRECTIVES 3

Figure 6-5

6-10

°' I
......
......

l'1:j
I-'•

\.Q
c ...,
CD

°' I

°'

CMT01B.MCR {130,2112) Mlcro-2.1 1A(33) 14:40:3 9-M~r-1979
lNIT .MIC [130,2112) Initialize Mlcroc."lde for the Con$ole and Power up

U 0000, 7100,70F0,7Fff,0450,0B3E

U 0010, OOB0,56E4,0B08,4850,000t

U 0825, 4800,5BE4,0B00,4A50,0001

U 0839, 3500,70F0,7FFF,B450,083E

U OB3E, 0000,5BF4,0304,0050,0B20

U 0020, 5AOO,CJ'l0,0340,2450,4BtB

U 0021, B9EF,5BE6,0308,2C50,0BAO

3595
3596
3597
3599
3599
3600
3601
3€02
3603
3604
3605
3606
3607
3600
3609
3610
3611
3612
3613
3614
3615
3616
3517
3618
3619
3620
3521
3622
3623
3624
3625
3626
3527
3629
3629
3630
3631
3632
3633
3634
3635
3636
3637

.roe • Initial iza MicrocodQ for the Console and Power uµ"
o:
IN .. INIT:

~~~~;;:i;~;;~~~~:---------------:LONLIT GETS 41FOOOO 
CLEAR FLAG2, :PROCESS (NIT CLEAR FLAG2 
NEXT/IN.PSL.LONLIT ;GOTO REG FLOW 

1. REGION/< IN IT, RI L>, <IN IT. R1H>/< INIT. R2L>, <lNl 1. R211> /<INJ T. RJL>, <IN IT. R3~1> l--------0 LOCATE IN 
MACRO FILE 

IN.PC_O: 

·-------------------------------· 
PC_R(ZERO), ;PC GETS 0 
CLEA~ FLAGI, :FOR CHARLIE'S CLEAR TB SUBR 
RETURN [1J ;RETURN+1 

IN.VA_O: 

·-------------------------------· 
VA_R[ZERO). ;VA GETS 0 
RETUnN (1) ;RETURN+1 

IN.CN. JNtT: 

·-------------------------------· . . 
LONLIT_(41FOOOO), ;LO~LIT GETS 41FOOOO 
SET FLAG2 ;?~OCESS JNIT CLEAR FLAG2 

IN. PSL. LONLI T: 

·-------~-----------------------· . . 
PSL_R[LONLIT),CLEAR FLAGO ;PSL GETS LONLIT CLEAR FLAGO 

;0------------------------------; 
PUSH, ;JSR 
5TEPC 2. 
CRAR_Zt.JTO[OOJ. 
NEXT /Ttl\. po_o 

;CRAR GETS 2 
;NJW IF ~E CONWRITE 
;WE Will WRITE TO RXCS 

:•------------------------------; 
CO~REGS_D_M(Sl5R)_R[ZEROJ, ;RXCS GETS 0 
DEC SJEPC :SISR GETS 0 

REGION DIRECTIVE 
3: 
I-'• 

0 ..., 
0 
0 
0 
0., 
CD 



; CMT018.MCR (130,2112] Micro-2.1 1A(33) 14:40:3 9-Mar-1979 
: MACRO .MIC [130,2112] Control Store Region Expressions 

2311 
2312 
2313 
2314 
2315 
2316 
2317 
2318 
2319 
2320 
2321 
2322 
2323 
2324 
2325 
2326 
2327 
2328 
2329 
2330 
2331 
2332 
2333 
2334 
2335 
2336 
2337 
2338 
2339 
2340 
2341 
2342 
2343 
2344 
2345 
2346 
2347 
2348 
2349 
2350 
2351 
2352 
2353 
2354 
235! 
2356 
2357 
2358 
2359 

.roe Control Store Region Expressions• 

;Inltial~i=z=e__,..,..___,..~~~-~ 
.SET/INIT.R1L=0800 
.SET/INIT.R1H=OFCF 
.SET/INIT.R2L=0400 
.SET/INIT.R2H=07FF 
.SET/INIT.R3L=OOOO 
.SET/INIT.RJH=OJFF 

:Console 
.SET/CONSOL.RllsOSOO 
.SET/CONSOL.R1H=OFCF 
.SET/CONSOL.R2L=0400 
.SET/CONSOL.R2H=07FF 
.SET/CDNSOL.R3Ls0000 
.SET/CONSOL.R3H=03FF 

;Integer, Loqicai, and Address 
.5Ei/I~TLQG.R~L=0800 
.SET/INTLOG.R1H=OFCF 
.SET/INTLOG.R2L=0400 
.SET/INTLOG.R2H=07FF 
.SET/INTLOG.R3L=OOOO 
.SET/INTLOG.R3H=03FF 

;Floating Point and CRC 
.SET/FLOAT.R1L=0800 
.SET/FLCAT.RIH:OFCF 
.SET/FLOAT.R2L=0400 
.SET/FLOAT.R2H=07FF 
.SET/FLOAT.R3L=OOOO 
.SET/FLOAT.R3H=03FF 

:Variaole Length Bit Field 
.SET/VlELO.R1L=0800 
.SET/VIELD.R1HsOFCF 
.SET/VIELO.R2L=0400 
.SET/VIELO.R2H=07FF 
.SET/VIELO.R3Ls0000 
.SET/VIELO.RJH•OJFF 

:Control Instructions 
.SET /CONT~L. R1 L•OBOO 
.SET/CONTRL.R1Hs0FCF 
.SET/CONTRL.R2L•0400 
.SETiCONTRL.R2Hz07FF 
.SET/CONTRL.RJL•OOOO 
.SET/CONTRL.R3H•03FF 

Microcode 

• 

REGION DIRECTIVE MACROS 

Figure 6-7 

6-12 



Microcode 

CMT01B.MCR {130,2112] Micro-2.t tA(33) 14:40:3 9-Mar-1979 
INIT .MIC (130,21t2) Initialize Microcode for the Console and Power up 

NEXT 

ADDRESS 

U 000, 7100,7DF0,7FFF,B4~0,@8\Ef 

u 0818, ooeo.SBE4,0BOB,4850,0001 

U 0825, 4900,5BE4,0809,4A50,0001 

U 0839, 3S00,7DF0,7FFF,8450,083E 

U 083E, 0000,59F4,0304,0050,0820 

U 0920, 5AOO, C370, 0340 ,'2450, 481 S 

U 0921, 99EF,58E6,0308,2C50,09AO 

3595 .TOC • Initialize r.Hcrocode for the Console and Power up• 
3596---W:"l 
3597 jIN<i....N,..,._,. l...,.N"'I._.f....,:j-. SYMBOLIC ADDRESS 

3599 :---------------------------~--: 
3599 ~ :LONLIT GETS 41FOOOO 
3600 CLEAR ~lAG2. :PROCESS INtT CLEAR FLAG2 
3601 NEXT/IN.PSL.LONlIT LOCATE IN ;GOTO REG FLOW 
3602 MACRO FILE 
3603 .REGlON/<INlT.R1L>,<INIT.A1H>/<lNIT.R2L>,<INlT.R2H>/<INIT.R3l>,<1NlT.R3H> 
3604 
3605 IN. PC_O: 

~=g~ ~~=;(;;;~j:---------------------;PC GETS 0 

3608 CLEA~ FLAG1, :FOR CHARLIE'S CLEAR ts SUBR 
3609 RETURN (1) ;RETURN•I 
3610 
36f 1 IN. VA_O: 
3612 
3613 
3614 
3615 

:-------------------------------: VA_R{ZERO). :VA GETS 0 
RETUqN (1) ;RETURN•t 

3616 IN.CN.INIT: 
36f 7 
3618 
3619 
3620 

:-------------------------------: 
LONLIT_(41FOOCO), 
SET FLAG2 

: L01' LIT GtT S 41F0000 
;~ROCESS tNIT CLEAR FLAG2 

3621 IN.PSl.LONUT: 
3622 
36:!3 
3624 
3625 •O 
3626 
3627 
3628 
3629 
3630 
3631 
3632 
3633 
3634 
3635 
3636 
3637 

:-------------------------------: 
PSL_R(LO~llT),CtEAR FlAGO ;PSL GET~ LONllT CLEAR FLAGO 

;o------ ··-- --- --·•------,----------: 
PUSH, :JSR 
STEPt: 2. 
c?..i:;: _z·_ 17c r:." i. 
NEXT. i'··; C_'J 

;CRU GETS 2 
:Ncr~ IF WE CONWRITE 
:WE WILL WRITE TO R~CS 

:t------------------------------: 
co~~EGS_O_M(SIS~J_R(ZEROJ. ;RXCS GETS 0 
DEC STEPC ;SISR GETS 0 

LABELS AND MACRO EXPANSIONS 

Figure 6-8 

6-13 



Microcode 

CMTOtB.MCR (130.2112} Micro-2.1 1A(33) 14:40:3 9-Mar-1979 Page 105 
CONSOL.MIC [130,2112] Ccnsole : CONSOLE EXAMINE ANO DEPOSIT 

FINISHING OFF E OR D 
;4192 
;4193 
;4194 
;4195 ·······················································-~···········••••••+*• 

1
-------------: 41 96~ CONSTRAINT BLOCK= 4 WORDS 

;4197 CN.E.FLAGO: 
;4198 :00-----------------------------; 
;4199 FLAGO?, ;EXAMINE???? 
;4200 R[TEMP12)_RNUM, ;FOR POSSIBLE 

U 093 08S6,0364,4330,0450,08C4 ;4201 NEXf/CN.E.FLAGO.CLR 
BUMPING RNUM LATER 

U 0931, 1862,C370,0300,0450,4A9C 

U 0932, 4800,0364,4300,0450,08A4 

U0933 NOT USED 

;4202 
;4203 
;4204 
;4205 
;4206 
;4207 
;4208 
;4209 
;4210 
;4211 
•4212 

CN.E.15.JT.A.SP: 
;01-----------------------------; 
PUSH, ;GET ~EXT CHARACTER 
M[TEMP2J_ZLITO[O], ;TEMC2 GETS 0 
NEXT/CN.GET.NEXT.CHAR ;RET+I 

;10-----------------------------: 
FLAGO? ;EXAMINE???? 

: 421 3 = END PREVIOUS BLOCK 
--------------: 4214 sO .... ---------CONSTRAINT BLOCK= 2 WORDS 

U 08 5806,C100,A315,0450,0860 

U 08A5, 5B06,C100,A315,0450,09AB 

U 0860, 1806,C100,A728,0450,0800 

U 0861, 14ES.C370,0306,8450,4BOO 

;4215 ;0------------------------------: 
;4216 we_~[TEMP6)-ZLIT0(2A}, :IS IT AN • 
;4217 WX.EQ.0?, ;NO --•••*****•*•••••••DEPOSIT•••••••• 
;4218 NEXT;CN.NOT.ASTERICK 
;4219 
;4220 
;..::!:1 
:4222 
;4223 
;4224 
;4225 
:4226 
;4227 
;4228 
;4229 
;4230 
;4231 
;4232 
;4233 
;4234 

;1------------------------------; 
~S-~[TE~P6]-ZLIT0[2A), ;IS IT AN• 
WX.EQ.O?, ;NO --••·••••••••••••••EXA~INE•••·•••• 
NEXT/CN.E.NQT.ASTERICK 

~14•--------CONSTI'IAINT BLOCK., 8 WORDS 
CN.NOT.ASTERicK: 

:000----------------------------: 
~8_M[TEMP6)-ZLITO[SO), ;NOT •-IS IT A P???? 
WX.NE.O?. 
NEXT/CN.O.SL.P 

:001----------------------------; 
PUSH, :PROCESS NUMBERISI 
M(TEMPB]_ZLITO[OD], ;1 NUMBER TO PROtESS 
SET FLAG!, ;FOR PROCNO 
NEXT/CN.PROCNO ;RET+4 SO RETURN TO 101 :cN.D.ASTERICX) 

;4235 
;4236 
;4:!37 

..--------------; 4238--E:l[!},.•--------LQCATION 5 OF 8 WORD BLOCK 
;4239 ;101----------------------------: 
;4240 R(TEMP1)_M(VAJ, ;RESTORE TEMP1 
;4241 NEXT/CN.O.ASTERICK 

ADDRESSING CONSTRAINTS 

Figure 6-9 

6-14 



O'\ 
I 

I-' 
U1 

; CMTOIB.MCR [130,2112} Micro-2.1 1A(J3) 14:40:3 9-Mar-1979 Pa\Je 34 
; DEFIN .MIC (130,2112) Machine Definition : ALPCTL 

.TOC • Machin~ Oef inltion : ALPCTL" 

;ALP SPECIAL FUNCTIONS ;ALU OPf RA l ION FOR 

; 1166 
; I IG7 
; I 168 
;1169 
; I 170 
; I 171 
; I I 72 
; 1173 
; 1174 
; 1175 
: 1176 

ALPCTL/=<57:40>,.0EfAULT•364 
Nor=J6·1 ;ALUOO/OR,MUX/Z.S,001/NOP ;SETTING OF ALU FLAGS 

• 1I77 
1170 
1179 
1100 
110 I 
1182 
1183 
I 104 
1185 
1166 
1107 
1108 
1189 
1190 
I 191 

• I 192 
1193 
1194 
1195 
1196 
1197 
1198 
1199 
1200 
1201 
1202 
1203 
1204 
1205 
1206 
1207 
noa 
1209 
1210 
I 211 
1212 
1213 
1214 
1215 
1216 
1217 
1210 

, 1219 
; 1220 

wx_o_Q .o __ D=2D7 
wx_D_Q.Q_M=OD7 
WX D R .Q C<257 
WX=D=R. o=r.1=057 
wx_D_R.O_XM=157 
wx_o_s .0 .. 0=357 
wx_o_s.Q_r<=3D7 
l~X D 5.Q Kl.1=107 
l~X-Q~Q D~2C7 
wx-o.o-r.hoc1 
wx:R.Q=Q,.247 
WX R.Q ~~=047 
wx:R.Q=X~h147 
wx_s.0_0=347 
wx_s.Q_R=JC7 
wx_s. o_xr.•= 1 c7 

vlX_D_O_S=373 
wx_o_S=J·n 
wx_0_5=3'lt 
wx 5=370 
wx:D_O_.NOT.5=363 
wx_o_.NOT.5=362 
wx_o_.NOT.5=361 
l~X_.NOT.5=360 

wx_o_DSL.SQL=24E 
wx_o_DSL.SQR=24F 
wx_o_DSR.SQL=24A 
wx_O_DSR.SQR=24B 

W!J LOOPF=370 
WB-LOOPF.Q 0=379 
WB-LGOPF.0-0•37A 
we-LOOPF.Q-0 0=378 
WB-ALUF=37C -
WB=ALUF .Q_S=37D 
l~B AlllF.O S=37E 
we:ALUF.Q=O_S=37F 

MtJLFAST ~, :279, 
MULSL0\~+=278, 

MULFAST-=2C9, 
MU L SLO/J- = 215B, 
DIVFAST+=26C, 
OIVSLOW+=25E, 
DIVFAST-=27C, 
DIV5LOW-=27E, 
REM=26A, 
DI VOA=27F, 
OIV05=26F, 

.VALIDITY:<VS0-54.21> 

.VALIDITY=<0~0.051> 

.VALIOITY•<VS0-54.21> 

.VALIDITY=<050.051> 

.VALI01TY•<V50-54.21> 

.VALIDITY=<OS0.051> 

.VALIDITY=<V50-54.2t> 

.VALIDITY•<050.051> 

.VALIDITY•<V050> 

.VALIDITY=<VOSO> 

.VALIOITY=<VOSO> 

;A'MUX & D <- Q OLD Q <- 0 Ol.D 
;w.1ux & D <- Q OLD 0 <- MBU5 
;wr.1ux & 0 <- RBUS Q <- D OLD 
;Wr.HJX & 0 <- RBUS Q <- MBUS 
;Wl11UX & D <- RBUS Q <- S/Z MBUS 
;Wl11UX & 0 <- SUP ROT Q <- 0 
:wt.IUX & D <- SUP ROT Q <- RBUS 
;WMUX & D <- SUP ROT Q <- S/Z MBUS 
;wr.1ux <- Q OLD 0 <- D 
;~Jl,1UX <- Q OLD Q <- MBUS 
:wr.1ux <- RBUS Q <- 0 
; l.\~.1\JX <- RSUS Q <- MBUS 
;wr.1ux <- RBUS Q <- S/Z MBUS 
;wr.1ux <- SUP ROT Q <- 0 
;WMUX <- SUP ROT 0 <- RBUS 
;l~MUX <- SUP ROT Q <- S/Z MBUS 

;w:.1ux & 0 & Q <- SUP ROT 
; :·Jl,1lJX & D <- SUP =<OT 
:wr.:ux & Q <- St.JP nor 
:~r.1ux <- SUP ROT 
:wr.1ux & D & Q <- • NOT. (SUP ROT) 
;WMUX & 0 <- .NOT.(SlJP ROT) 
;Wl\1UX & Q <- • NOT. (SUP ROT) 
;~Jf.llUX <- .NOT.(SUP ROT) 

;Wi.lXU & D <- 0 SHF LEFT 0 <- SHF LEFT 
:wraxu e 0 <- 0 SHF LEFT Q <- SHF RIGHT 
:~mxu & 0 <- 0 SHF RIGIH Q <- SllF LEFT 
:wro.u .'1 D <- D SHF RIGHT Q <- SHF RIGHT 

;WB<Jt:30> <- O' LOOP Fl.AG 
:~:e<Jt :JO> <- O'LIJOP fLAG Q <- 0 
;wB<Jt :30> <- O'LOIJP FLAG D <- 0 
:wB<31:3C> <- O'LOOP FL.\G 0 & D <- 0 
;WB<J1:30> <- ALUSO'ALKC 
;wfl<Jt :30> <- ALUSO'ALKC Q <- 5 
;WB<Jt::>O> <- ALUSO'ALKC D <- s 
;WB<31 :JO> <- ALUSO' AU<C Q & D <- s 

;MULTIPLY +RBUS BY 
;MULTIPLY +RSUS BY 
;MULTIPLY -R9US OY 
:~ULTIPLY -RBU5 BY 
;DIVIDE 0 BY +RBUS 
;DIVIDE 0 BY +R6liS 
;DIVIDE Q BY -RBUS 
;DIVIDE Q BY -RSUS 
;Ut{51H FT REMAlt{OER 
;DIVIDE DOUBLE ADD 
;DIVIDE DOUBLE SUB 

Q (2 ITERATIONS PER CYCLE) 
Q t 1 ITERATION PER OCLE) 
Q (2 ITERATIONS PER CYCLE) 
Q (1 ITERATION ~ER C)CLE) 
(2 ITERATIONS PER CYCLE) 
(1 lTERATICN PER CYCLEI 
12 ITERATIONS PER CtCLE} 
(1 ITERATION PER CYCLE) 
(RBUS MUST BE 0) 

MACHINE FIELD DEFINITION 

OtQ-1Cl.BCO 
M-1QH: I. BCD 
O+iHC I. OCO 
M1·R-1Cl .UCO 

XMHHCI .eco 
0-151 O.BCD 
R 1-S-1 O.BCD 

XM+St o.aco 
O-Q-Cl.BCO 
M-Q-Cl.BCD 
0-R-Cl.BCD 
M-R-CI. BCD 

XM-R-C I. UCO 
o-s- 0. BCD 
R-S- O.BCO 

XM-S- O.BCD 

(D-R-Cl).SL 
(O-R-Cl).Sl 
(O-R-CIJ.SR 
(O-R-C1J.SR 

3 ...... 
0 
l'1 
0 
0 
0 
0.. 
CD 



; CMT018.MCR (lJ0,2112) Micro-2.1 1A(33) 14:40:3 9-Mar-1979 
; MACRO .MIC (130,2112) Basic Macros 

2446 
2447 
2448 
2449 
2450 
2451 
2452 
2453 
2454 
2455 
2456 
2457 
2458 
2459 
2460 
2461 
2462 
2463 
2464 
2465 
2466 
2467 
2468 
2469 
2470 
2471 
2472 
2473 
2474 
2475 
2476 
2477 
2478 
2479 
2480 
24Bt 
2492 
2483 
:Z4S4 
2485 
2486 
2487 
2488 
2489 
2490 
2491 
2492 
2493 
2494 
2495 
2496 
2497 
2498 

.roe • Basic Macros" 

CCOP1 
CCOP2 
CLEAR A001(FLAGO) 
CLEAR A002(FLAG1) 
CLEAR BOOT( FLAG MMNOINT) 
CLEAR fl.II.GO 
CLEAR FLAG1 
CLEAR FLAG2 
CLEAR FLAG3 
CLEAR FPO 
CLEAR MOPZERO(FLAG1) 
CLEAR MUL1{FLAG2) 
CLEAR MUL2(FlAG31 
CLEAR OPZERCtFLAGJ) 
CLEAR oveq(FLAG2) 
CLEAR REAQ(FLAG1) 
CLEAR REGINT(FLAG1) 
CLEAR SAMESIGN(FLAG4) 
CLEAR STACK FLAG 
CLEAR SUBIFLAG1) 
CLEAR TP 
CLHR UNOER(FLAG3) 
CLEAR WR(TEtFLAG1 I 
CLOBBER MTEMPO 
CLOBBER MTEMPO DEF 

DEC STEPC 
DISABLE INT 
DIVOA so~ IN R[] 
OIVOS SOR IN R[] 
DJVFAST+ SOR IN R(] 
OIVFAST- SOR IN R[J 

FLUSH XB 

IO RESET 
IR01 
IROX [) 
ISIZE[) 

MULFAST+ CANO IN R(] 
MULFAST- CANO IN R[] 

NOP 

PUSH 
PUSH RBS+ 
PUSH RBS-

PROCESS IN IT 

•cc;ccoP1.cceR SIGND" 
"CC/CCOP2.CC9R:SIGN0" 
"MISC/CLR.FLAGO" 
"r.':I SC/CLR. FLAG1" 
"MISC/CLR.MMNCINT" 
"MISC/CLR.FLAGO" 
"MISC/CLR.FLAG1" 
"!1'1 SC/CLR. FLAG2" 
"MISC/CLR.FLAGJ" 
"MISC/CLR.FPO" 
"MISC/CLR.FLAG1" 
"Ml SC/CLR. FLAG2" 
"llllSC/CLR.:=LAG3" 
"MISC/CLR.F-.AG3" 
"MISC/CLR.FLAG2" 
"MISC/CLR. FLAG1" 
"MlSC/CLR.FLAGf" 
"MISC/CLR.Ml'.INOINT­
"MISC/CLR. STACKFLG" 
"MISCiCLR.FLAG1" 
"MISC/CLR.TP" 
"MISC/CLR.FLAG3" 
"Ml SC/CLR. FLAGt" 
"MSRC/TEMPO,SPW/MLONG" 
"SPW/MLONG" 

"MISC/DEC.SC" 
"MISC/SET.M~NOINT" 
"ALPCTL/OIVOA,RSRC/~1.ROT/0" 
"ALPCTL/OIVOS,RSRC/~1.ROT/0" 
"ALPCTL/OtVFAST+,RSRC/~1.ROT/O" 
"ALPCTL/OIVFAST-,RSRC/~1,ROT/0" 

•wcTRL/PC_wa,wB_M[PC)" 

"BUS/I 01111 l r-
"8UT/ IR0f" 
"BUT/IRDX.NEXT/~1" 
"ISTRMiISIZE_OSIZE,DTYPE/~1· 

"ALPCTL/MULFAST+,RSRC/@1,ROT/0" 
"ALPCTL/MULFAST-,RSRC/~1.ROT/0" 

"ALPCTL/NOP" 

"JSR/PUSH" 
"MSRC/PSHD.00" 
"MSRC/PSHSUB" 

•BUS/PR IN IT• 

2499 RETURN (J "SUT/RETU~N,NEXT/~1· 
2500 RETURN AND INHIBIT DESTINATIONS "SUT/RET.OINH" 

BASIC MACROS 

Figure 6-11 

6-16 

Microcode 

Page 65 



Microcode 

: CMT018.MCR [130,2112] ~icro-2.t 1A{33) 14:40:3 9-Mar-1979 Page 67 
; MACRO .MIC [130,2112) Bus Function Macros 

;2527 
;2528 
;2529 
;2S30 
;2531 
;2532 
;2533 
;2534 
;2535 
;2536 
;2537 
;2538 
:2539 
;2540 
;2541 
;2542 
;2543 
;2544 
;2545 
;2546 
;2547 
;2548 
;2549 
;2550 
;2551 
;2552 
;2553 
;2554 
;2555 
;2556 
;2557 
;2550 
:2559 
:2560 
;2561 
;2562 
;2563 
;2564 
;2565 
;~556 
;2567 
;2568 
:2569 
:2570 
;2571 
;2572 
;2573 
;2574 
;2575 
;2576 
;2577 
;2578 
;2579 
;2580 
;2581 

.roe • Bus Function Macros" 

READ 
READ.LONG 
READ. LO.NG. MCD 
READ.MOO 
READ.MOD.LOCK 
READ.NOTRAP 
READ.PHY 
READ.SECOND 

'KRITE 
WRITE -M[) 
WRITE -O 
WRITE D+R( ]+AlKC 
WRITE M[ I 
WRITE M( ]+PSLC 
WRITE M[ }+Q . 
WRITE M(j+O+PSLC 
WRITE M[ J-PSLC 
WRITE M[ J-0 
WRITE M[ J-0-PSLC 
WRITE M().ANO.ZLITO(] 
WRITE M[).ANDNOT.Q 
WRITE M{].ANDNOT.R{] 
WRITE M[).ANONOT.ZLITB(} 
WRITE M{ J.OR.Q 
WRITE M[).OR.R[] 
WRITE M[ J.XCR.Q 
WRITE M[]. XZ 
WRITE NOTREG 
WRITE 0 
WRITE Q.NOT 
WRITE R[ J 
WRITE R[J+CONX(4) 
WRITE R[)-D-ALKC 
WRITE R[ J-M[ J 
WRITE R[ )-M( }-1 
WRITE XB PC_PC+t 

WRITE XB PC_PC+4 

WRITE ZU TO[] 
WRITE. LONG 
WRITE. LONC C 
WRITE.LONG M(].ANONOT.Q 
WRITE.LONG M[].OR.Q 
WRITE.LONG.NOTRAP 
WRITE. NOTRAP 
WRITE.PHY 
WRITE.PHY M[] 
WR I TE • PHY R { ] 
WRITE. SECOND 
WRITE. SECOND. UL 
WRITE.UL M{] 

"SUS/REA!::>" 
"SUS/READ.LNG" 
"SUS/REAO.LNG.~00" 

"SUS/REAQ.r,•oo· 
"BUS/REAO.UOD.LCK" 
"BUS/RE~O.NT" 

"SUS/READ.PHY" 
"SUS/READ.SEC" 

•eus1wRITE,WCTRL/WOR we· 
"SUS/WRITE.WCTRL;WDR:~B.MSRC/P1,RSRC/ZERO.ALU/B-A-CI,ALUCl/ZERO.MUX/M.R1" 
"SUS/~RITE,WCTRL/WDR_WB,MUX;R.Q.RSRC/ZERO,ALU/A-B-CI,ALUCI/ZERO" 
"BUS/WRITE,WCTRL/WDR_W9,RSRC/~t.MUX/0.R1,ALU/A+B+CI,ALUCI/ALKC" 

"BUS/WRITE,WCTRL;WDR_WB,MSRC/~1,ALU/OR,MUX/M.S,ROT/ZERO" 

"BUS/WRITE,WCTRL/WDR_we.MSRC/~l.RSRC/ZERO,MUX;M.Rl,ALU/A+B+CI.ALUCl/PSLC" 
"BUS/WRITE,WCTRL;WDR_WB,MSRC/~1,MUX/M.Q1.ALU/A+B+Cl" 

"SUS/WRITE,WCTRL;W~R_WB.MSRC/~1.MUX/M.01,ALU/A+B+CI,ALUCI/PSLC" 
• aus !WRITE, \liCTR l/ i•DR_\•IB, rt.St;C/1?1 • RSRC/ZERO. ~.'Qlx: ~,1. R1 • ALU/ A-B-C I. ALUC I /PSLC. 
·sus/~AITE,WCTRL/WOR_~B.MSRC/•1.MUX/M.Qt,ALU/A-8-CI" 
·eus;wRITE.WCTRL/WDR_WB.MSRC/~1.~UX/M.01,ALU/A-B-CI.ALUCI/PSLC" 
"SUS/WRITE,WCTRL/WDR_WB,MSRC/~1.LIT!LITRL.LITRL/~2.ROT/ZLITO,MUX/M.S,ALU/ANO" 
"SUS/WRlTE,WCTRL;WDR_~B.MSRC/•1.MUX/M.01,ALU/ANONOT" 
"BUS/WRITE,WCTRL/WOR_WB.~SRC/~1.RSRC102,ALU/A~D~OT,MUX/M.R1" 

"8US/WRITE,WCTRL/WDR_ws,MSRC;~1.LIT/LITRL,LITRL/~2.ROT/ZLIT8,MUX/M.S,ALU/ANDNOT" 
"9US/WRITE.WCTRL/WDR_W8,MSRC1•1,MUX:M.Q1 ,ILU:CR" 
"BUS/WRITE,WCTRL/~DR_WB.MSRC/@l,RSRC/P2,ALU/CR,MUX/M.R1" 
"SUS/WRITE,WCTRL,WDR_WB.MSRC/Pt.MUX/M.01,ALU/XOR" 
"SUS/WRITE,WCTRL;WOR WB,MSRC/~1.A(PCTL/WX S,ROT/XZ.MM" 
"BUS/WRITE.NOREG.WCTiL/WDR_wa• -
"BUS/WRITE. WCTRL/\•DR_wa. RSRC/ ZERO. MUX/R. o. ALU, OP." 
"SUS/WRITE,WCTRL;WOR_WB,RSRC/ZERO,MUX/R.O,ALU;A-B-Cl,ALUCI/ONE" 
·euS/WRITE,WCTRL/WDR WB.RSRC/~1.ALU/OR,MUX/R.S.ROT/ZERO" 
"BUS/WRITE,WCTRL/WCR:wB,RSP.C/•1.ALU/A+B+Cl,MUX/R.S.ROT/CONX.SIZ,OTYPE/LONG" 
"BUS/WRITE,WCTRL/W:R_WB.RSRC/Pl,MUX/D.Rt.ALU18-A-CI,ALUCI/ALKC" 
"BUS/WRITE,WCTRL/WCR_W6.~SRCl•2.RSRC;@l,ALU/B-A-CI.~UX/M.Rt" 
"SUS/WRITE,WCTRL/WDR_W6,~SRC~~2,RSRCl•1,ALU/B-A-CI.MUX/M.Rt,ALUCI/0NE" 
"BUS/WRlTE,WCrRL/WDR_ws,MSRC/XB.PC_?C+I,ROT/ZERO,ALU/OR,MUX/M.S, 

ISTRM/lSIZE_DSIZE,OTYPE/BYTE" 
"BUS/WRITE. WCfl~L/'«OR_wa. MSRC/ xe. PC_?C+I. ROT /ZERO ,.l.LU/OR ,rl.UX/M. s. 

ISTRM/ISIZE_DSIZE.OTYPE/LONG" 
"BUS/WRITE. '.VCTRL/W:JR_'llB, AL PCT L/wx_s. ROT /ZLITO. LIT; LI TRL. LI TRL/l'1" 
·eus;wRITE.LNG.lltCTRL/vlDR wS.lJR" 
"SUS/WRITE.LNG,WCTRL/WOR:wa.UR,RSRC/ZERQ,MUX/O.R1,ALU/0R" 
"SUS/WRITE.LNG.'llCTRL/WOR_WB.UR,MSRC/i?1,MUX/M.Q1,ALU/ANONOT" 
"BUS/WRITE.LMG,WCTRL/WCR_WB.UR,MSRC/@t,MUX/r.1.01,ALU/OR" 
·euS/WRlTE.NT.LNG" 
"SUS/WRITE.NT" 
"BUS/WRITE. PHY" 
"BUS/WRITE.PHY,WCTRL/WDR_WB,MSRC/@1,ALU/OR,MUX/M.S.ROT/ZERO• 
•suS/WRITE.PHY,~CTRL/WOR_wB.~SRC/~t.ALU/CR,MUX/R.S,ROT/ZERO" 

"BUS/'NRITE.SEC" 
"BUS/WRITE.UL.SEC" 
"BUS/WRITE.UL,lllCTRL/lllOR_WB.MSRC/@11,ALU/OR,MUX/M.S,ROT/ZERO• 

BUS FUNCTION MACROS 

Figure 6-12 

6-17 



Microcode 

: CMT018.MCR (130,2112} Micro-2.1 1A(33) 14:40:3 9-Mar-1979 Page 69 
; MACRO .MIC [130,2112] Register Transf@r Macros 

2586 
2587 
2588 
2589 
2590 
2591 
2592 
2593 
2594 
2595 
2596 
2597 
2598 
2599 
2600 
2601 
2602 
2603 
2604 
2E05 
2606 
2607 
2609 
2609 
2610 
2611 
2612 
2613 
2614 
2615 
2616 
2617 
2616 
2619 
2620 
2621 
2622 
2623 
2624 
2625 
2626 
2627 
2€28 
2629 
2630 
2631 
2632 
2633 
2634 
2635 
2636 
2637 
2638 
2539 
2640 

.TDC • Register Transfer Macros• 

ALUS_BCO SIGN.ZERO(M[)) 
ALUS_SIGNO 
AlUS U!llSGN 
ASTLVL_M[].RL.24 
ASTLVL_R[ ]_M[) 
ASTLVL_[ J 

BUS GRANT M(J_IPL 

CC_M[] 
CC_M().NOTANO.R(] 
CC_M[).OR.R[J 
CC_M()_MS.ANDNOT.CONX(1) 
CC_M[ )_MB. ANONOT. CONX( 4) 
CC_M[)_MB.OR.CONX(1) 
cc_M( LZLI TO( 1 
CC_ZLITO( I 
cc_[! 

CONREGS_O_M[]_R[) 
CONREGS_M[] 
CONREGS_M( ].OR.ZLIT16[] 
CONQEGS_~[].RR.16 
CONREGS_R( ) 
CONREGS_ZL1T16[] 

CRAR_ZLITO[ J 
CRAR_ZLIT 16[ 1 

OIOD)_ZLITO[} 
D_(P.t{ J. R!1. PI .ANO. R() 
O_(R[] ~[j).RL.P 
o_o+R[J 
o_o+ZUTO[] 
o_o-R[ J 
o_o-zu roe l 
0 O.ANO.ZLITO[] 
o:o.AN~.ZLIT28[) 
O D.XOR.ZLlT12() 
o:M[} 
O_PJ( J+R[] 
D_M( J+ZLITO[] 
D_M{]-R[ I 
D_M( ) . A!>.iil. R{ J 
O_M{ ] . RR. 1 6 
O_M[].RR.16 Q_R[] 
o_o o_o 
D_Q_M(] 
O_R[] 
D_R{]-0-ALKC 
D_R[]-M() 
O_SEXT(M(]) 
O_SEXT(M[]) PL<4-0>_31 PL<S>_t 

"CCMISC/ALUS_osoz.ccsR_ALUS,MSRC/@1,RSRC;ZERO.ALU/OR,MUX/M.Rl" 
•ctMISC/ALUS_SIGNO.CCBR_ALUS" 
"CCMISC/ALUS UNSGN.CCBR ALUS" 
•wcTRL/ASTLVL_;..;a,ALPCTL/wx_S,MSRC/tiill.ROT/P.R.MM.SIZ,OHPE/BYTE" 
"WCTRL/ASTLVL_WB,SPW,RLCNG,RSRC/~1 ,ALU/OR.~UX/M.S,ROT/ZERO,MSRC/~2" 

·wcTRL/ASTLVL_WB,LITRL/~1.LIT/L[TRL,ROT/ZLIT24,ALPCTL/WX_s· 

"BUS/GP.ANT,WCTRL/GRANT,S~~/MLONG,MSRC/91" 

·cCPSL/CC_we.cceR_ALUS,ALU/OR.~UX/M.S,~SRC/@11,ROT/ZERO" 
·ccPSL/CC_111e.ccpR_ALUS,MSRC/~1.~SRC/•2.~UX/M.R1,ALU,NOTAND" 
"CCPSL/CC_l•B.CCSR_ALUS ,MSRC/~1 ,RSRC/@2, MUX/M. Rt, ALU/OR" 
"CCPSL.'CC_lllB.CCBR_ALUS. ALU/ ANONOT ,MUX/~.'I. S, SPW1MLCNG.MSRC/~1, ROT /CONX. SI Z, OT YPE/SYTE • 
·ccPSL/CC_~e.cceR_ALUS,ALU/ANONOT,MUX/U.S,SPW.MLO~G.MSRC/•1 ,ROT/CO~X.SIZ.OTYPE/LONG" 

. ·ccPSL/CC_1;B.CCSR_ALUS. ALU10R ,f,'.UXjrA. s. SPl//MLONG.MSRC/@!. ROT /CONX. SIZ. OTYPE; BYTE" 
•ccPSL/CC_wa.ccsR_lLUS,SPW/MLONG,~SRC/•1.~LPCTL/WX_S,ROT/ZL!TO,LIT/LITRL.LlTRL/P2" 
•ccPSL/CC_lllB.CCBQ_ALUS,ALPCTL/WX_S,ROT/ZLITO.LIT/LITRL,LlTRL/~t· 
"CCPSL/CC_wB.CCBR_ALUS,ALPCTL/wr_S,ROT/ZLlTO,LIT/LITRL,LITRL/~1· 

"WCTRL/CONWR I TE ,MSRC/~1. SPW/r.'ILONG, ALU/OR ,MUX/R. s. ROT /ZERO. RSRC/·~2. 001 ;o_wx" 
"WCTRL/CONWRITE.we_r..i('?-1 J• 
"lllCTRL/CO~JWRITE,ALU/OR,l!UX/M.S,MSRC/~1 .ROT/Z~IT16,LIT/LITRL,LlTRL/~2· 
"WCTRL/CONlllR IiE. ROT /RR .MM. s r z. CTYPE/WOl?D. P.~SRC/~1. ALPCTL/lllx_s· 
"WCTRL/CO~WRITE,ALU/CR,MUX/R.S,ROT/ZERO.RSRC:~I" 
"WCTRL/CONWRCTE,ALPCTL;WX_S,ROT/ZLIT16,LIT/LITRL,LITRL/•t• 

"WCTRL/LOADCRAR.ALPCTL/WX_S,ROT/ZLITO,LIT/LITRL,LITRL/~1" 
•wcTRL/LOAOCRAR.LlTRL/'1'111,LlT/~ITRL,ROT/ZLIT16.ALPCTL/WX_S" 

•001 ;o_wx .ROT /ZL ITO. LIT /LI TRL, LI TRL/-?11. ALUOD/OR. co. MUX/Z. s· 
·001 ;o_wx ,l'l.Sl<C/~1 ,·RSRC/f:o2. l<OT /RR .M~.!. p. ALU/ llND. Mi.JX/R. s· 
"ALPCTL/W~_o_s.~SRC/Q2.?SRC/~1.RCT;RL.R~.?· 
•0Qt/O_WX,RSRC/•?1,MUX/D.R1 ,ALU/.l.+B+Cl" 
"001 /D_WX .MUX/0 .S, ALU; A+B+Cl, F.OT /ZLI TO, LIT/LI TRL, LITRL/&91 • 
"001/0_wx,RSRC/~1 .MUJl:/O.R1,AlU/A-6-CI" 
·001 /D_wx. LIT/LI TRL. LI TRL/"'' • oar/ zu TO .MUX/0. s. ALU/ A-8-CI. 
"001 /O_lrU, ALU/ ANO, MUX/0. S. ROT/ ZLI TO, LIT /LI TRL, LI TRL/@1 • 
·001 ;o_wx. ALU/ '4111!),MIJX/O. s. ROT/ ZL IT28. LIT: !.I TP.L, l I TRL/•t. 
"001/0_~X.MUX/0.S,ALU, XOR,P.0T/ZLIT12.LIT/LITRL,LITRL/~t· 
·0011o_wx,MS~C/•1.RSRC/ZE~C.ALU/OR.MUX;~.R1" 

"COl/D_~X.MSRC/~1,RSRC/~~.ALU/A•9+CI.MUX,'M.R1" 
"001 ,'D_lllX. ALU/ A+B+CI, M:.J)( ,..M. S ,MSi!C/'!!11. ROT /ZLITO, LIT/ LITRL, LITRL/{12" 
·001 /O_wx. MSRC/€01. RSR:,:e2 ,l.tUX/M. R1. ALU/ A-B-C I. 
•001 /O_wx. ALU/ ANO ,Mt.:X, M. RI ,loilSRC/'1'111 'RSRC/.@12" 
"ALPCTL/WX_O_S.MSRC/~t.ROT/RR.Ml.1.SIZ,OTYPE/WORO" 
"ALPCTL/~x_o_s.a_R.MSRC/~t.ROT/RR.M~.SIZ.OTYPE/WORO,RSRC/,2" 
"ALPCTL/wx_o_a.o_o· 
·0011a_o_~x.MSRC,,1,ROT/ZERO,MUX/M.S.ALU/0R" 
"001/0_WX,ALU/OR.MUX/R.S.RSRC/@I,ROT/ZEP.il" 
"OQ1/0_~X,RSRC/f1.MUX,O.R1.AlU/B-A-Cl,ALUCI/ALKC" 
"001/D_wx,RSRC/~1.MSRC/~2.MUK;M.R1,ALU/B-A-CI" 
•001;o_wx,MSRC/~1.RSRC/ZE~O.MUX/XM.R,ALUXM/SIGN,•LU/OR" 
"0Q1/D_wx,MSRC/@1,ROT/0LITO.PL_LIT,LIT/LIT~L.Llf~l/1FF,MUX/XM.S,ILU/ANO" 

REGISTER TRANSFER MACRO'S 

Figure 6-13 

6-18 



Microcode 

; CMT018.MCR [130,2112) Micro-2.1 1A(33) 14:40:3 9-Mar-1979 
: MACRO .MIC [130,2112] BranchinQ Macros 

3367 
3368 
3369 
3370 
3371 
3372 
3373 
3374 
3375 
3376 
3377 
3378 
3379 
3380 
3381 
3382 
3383 
3384 
3385 
3386 
3387 
3388 
3389 
3390 
3391 
3392 
3393 
3394 
3395 
3396 
33g7 
3398 
3399 
3400 
3401 
3402 
3403 
3404 
3405 
3406 
3407 
3408 
3409 
3410 
3411 
3412 
3413 
3414 
3415 
3416 
3417 
341~ 

3419 
3420 
3421 

.roe " Branching Macros• 

(M[TEMP3]-SL)SYTE RANGE CHECK? 
(PL+SLJ.GT.327 

ABSVAL M[]<7-0>? 
ADD1(FlAGO)? 
AD02{FLAG1) AOD1(FLAGO)? 
ALLOi'I INT? 
ALUS? 
APT LOAD? 

BCD SIGN r.1[]? 
BCD SIGi'LZERO'? 
BOOT(FLAG MMNOINT)'? 
BRA ON ADO? 

CCOPI SIGNO? 
CCOP2 SIGNO CMP .NOT.IRO'? 
CHECK INTERRUPTS? 
CMP SIGNS? 
COUNT OR INT TIMER'? 

OBZ STEPC? 
DSIZE? 

EXPONENT RANGE? 

FLAGO? 
FlAG1 FLAG2.XOR.FLAG3? 
FLAG!? 
FLAG2'? 
FLAG3? 
FLAG<1-0>'? 
FPO'? 
FPS3? 
FRO. FLTZ? 

HALT? 

INTPENO OR TIMER? 
IP.TS'? 
IR<2>? 
IR<S>? 
IA<2-0.>'? 

LOO INC SRA'? 

MOR GPA.A RNUM.E0.7'? 
MOR=ZEXT(OSR) BRATST? 

~HCRO VECTOR? 

MM IPENO OR TIMER? 
MM.ALLOw. !NT'? 

"BUT/SRKSTA,MSRC/@1.MUX/M.S,ALU/A-B-CI,ROT/SL" 
"BUT/SRKSTA,ROTSRK/VIEL0.000" 

"BUT/SPKSTA,ROT/MINUS1,MSqC/~1,MUX/M.S,ALU/ANO" 
"SUT/FLAGO" 
"BUT /FLAG! TOO" 
"BUT/CC8R1.INT-TS" 
"SUT/CCSR,CC/NOP.CCBR ALUS" 
"CC/NOP.CCBR_ALUS,Bur7ccBR" 

·suT/SRKSTA,ROT/BCOSWP,MSRC/~1· 

"BUT/CCBR,CC/NOP.CCBR_ALl.iS" 
"9UT/MM.NOINT" 
"BUT/BRA.ON.ADO" 

•suT/CCSR,CC/CCOP1 .CCBR_SIGNO" 
"SUT/CCBR1.CCBRO.IRO,CC/CCDP2.CCSR_SIGNO" 
"BUT/CCBR1.INT-TS,OTYPE/LONG" 
"BUT/CCSR,CCMISC/NOP.CCSR CSIGNS" 
·euT/CCBR1.INT-TS" -

"SUT/DBZ.sc· 
·euT/DSIZE" 

"BUT/SRKSTA" 

"BUT/FLAGO• 
"BUT/F1.XOR23" 
•sur /FLAGI. 
"SUT/FLAG2" 
"BUT/FLAGJ" 
"BUT /FLAG HOO• 
"BUT/FPO" 
·suT/FPSJ" 
"BUT/FRO.FLTZ" 

"BUT/FPS1" 

"BUT/INT-TI~SERV" 
"SUT/CCSRt.INT-TS,CCMISC/NOP.CCBR_BRATST" 
·sur /IR2" 
"BUT /IRS" 
"BUT/IR.2TOO" 

"BUT/LOO.INC.BRA" 

"SUT/SPASTA,WCTRL/MCP._wB,RSRC/GPR.R,ROT/ZERO,MUX/R.S,ALU/OR" 
"BUT/CCBR,CCPSL/MOR_OSR.CCBR_BAATST" 

"SUT/UVCTR,CLKX/XTND" 

"BUT/MM.ALLOW.INT" 
"9UT/MM.ALL0~.1NT" 

BRANCH IN G MACROS. 

Figure 6-14 

6-19 

Page 84 



Microcode 

CMf018.MCR ( 130, 2112) r.ncro-2.1 Ill J3t 14:40: J 9-Mar-1979 Pape 90 
INIT .MIC [IJ0,2112) Initialize Mlcroc~de for th• Console and Po.er up 

.l 
ABSOLUTE ADDRESS 

NEXT 

AOORESS 

7100.70FO, 7FFF,8450,~e\Et 

U 0918, OOB0.5EEd,OB09,4g50,0001 

U 0~25, 4900,5~E4,0BD8.4AS0.0001 

U 0939, JS00,70~0.7FFF,8~50,0BJE 

U OBJE, 0000.59F4,0J04,0050,0920 

U 0920, SAOO.C370,0J40,2450,4918 

U 0821, 89EF,58E6,0308,2CS0,08AO 

3595 .TOC • lnitialtz~ Uicrocode for the Console and Powe~ up• 
3596-W:l 
3597 ITIT."""'N ..... ,.l'""N ... I ... f.,...!Ja SYMBOLIC ADDRESS 

3599 :-------------------------------: 
3599 ~ :LONLIT GETS 41FOOOO 
3600 ~v..i -'-..:../ :PROCESS Hiil CLEAR FlAG2 
3601 ~EX.T/IN.PSl.LONLIT LOCATEIN :GOTO REG FLOW 
3602 MACRO FILE 
3603 .REGIONi < INIT. RI L>, <lNIT. AtH> /<INIT. R2L>, < INI T. A2H>/<INI r. RJL>, < lNIT. R3~1> 
3604 
36GS lN.PC_O: 
3606 

IN.VA_O: 

:-------------------------------: PC_R(ZERO), :PC GET5 0 
ClEA~ FLAGt. :FOR CHARLIE'S OLE•R Tl SU8R 
RETU"" {'} ;RETURN+t 

·-------------------------------· . . 
V~_P(ZEAOJ, :VA GETS 0 
RETUON lll ;PETUP~•1 

3607 
3609 
3609 
3610 
361' 
3612 
3613 
:?614 
3615 
3516 
3Sl7 
::s•e 
3519 
:?620 
3521 
J622 
36:73 
:!624 
3625 
3626 
3627 
3626 
362'? 
3630 
3631 
3632 
3633 
3634 
3635 
3636 
3637 

lN.CN.Hlff: 

·-------------------------------· . . 
LO~LIT_(41FOOtOJ, 
SE'i Fl-'Q2 

:LOHLIT GETS 41FOOOO 
:~~CCESS INIT CLEAR FLAG2 

lN.PSL.LO~LIT: 

•O 

·-------------------------------· . . 
PSL_R{LONllf),CLEAR FLAGO :PSl GETS lONllT CLEAR FlAGO 

:o------ -- -- --------~---------: 
PUSH, :JSR 
STEC::t. 2. 
C? ~ ~ z · I~·~~ - J 

NEA; I'·· ·;_-; 
:cqaq GETS 2 
;NJW IF WE CONWRITE 
:WE Will WRITE 70 RXCS 

:'------------------------------: 
co~~EGS_O_M(Sli~J_R[ZEAO), ;RXCS GETS 0 
DEC STEPC :SlSq GETS 0 

LABELS ANO MACRO EXPANSIONS 

Figure 6-15 

6-20 



1-.i.j 

~· 
l.Q 

"' c 
I ~ 

N CD ._. 
"' I ._. 
"' 

; CMT010.MCR (130,2112) Micro-2.1 1A(33) 14:40:3 9-Mar-1973 Paqe 70 
: MACRO .MIC [130,2112) Register Transfer Macros 

2641 O_SEXT(:<B) PC_PC-t 1 
2642 D_SEXT(XBI PC_PC+2 
2643 O_ZEXT(M[J) 
2li4·1 O_ZL I TO( I 
26·15 O_ZLI JO( J-0 
2646 O_ZLIT12(] 
2647 O_ZLIT24( I 
2640 
2fi4'J FLAGS_D_R[ ) 
2G50 FLAGS_M[ J. ANO. ZLI JO() 
2651 FLAGS_R( J 
2652 
2653 INIR_M[ LO 
2654 IPL_M[) .RL .16 
2655 

ILONLIT_[ il-0 2656 
2657 
2658 MDR_(M[) R[]) .RR.P 
2659 MOR -I 
2660 MOR=-M[) 
2661 MOR 0 
21o62 Mor(M[} 
2663 MOR_M[)+ALKC 
2664 MOR_M( )+R( l+ALKC 
2665 MOR_M[ I ~Zl. lT24[) 
2666 MDR _M( I. AtlD. OL ITB(] 
2E67 MDR_M( ).ANO.ZLITO() 
2660 MDR_M( ).ASR.P 
2669 MOR_M( I. FPLI T 
2670 MOR_r.1() .OR. (R() .RR.24) 
2671 MDfl_Ml I .OR. ZLI T24() 
2672 r.~oR_M[ J. RL. 24 
2673 MOR_M(J.RL.8 
2674 MOR_M[ ).RL.9 
2675 MOR_M( }.RR.16 
2676 MDR_M( ).XOR.R() 
2677 MOR M[l.XOR.ZLIT12(} 
2670 MDR=M(}_R[}.RP..16 
2679 MDR_M( }_ZLI TO[} 
2680 MOR_Q 
2681 MOR_Q_M[ I 
2682 MDR_R( I 
2683 MDR_R[ )-M( )-ALKC 
2684 MORR( J.RR.24 
2605 MOR=R( )_M(} 
2686 MOR_R[ )_ RB-CONX.SIZ 
2607 MOR SEX f(M() I 
2680 MOR=SEXTtXCl+R[) PC_PC+l 
268'9 MOR_XB PC_PC+2 
2690 MOR_XB PC_PC+4 
2691 MOR xe PC PC+I 
2692 MDR=ZEXT(M( J) 
2693 MOR ZEXT(OSR) 
2694 MOR=ZLlTO() 
2695 MOR_ZLIT16() 

"DQ1/0_WX,MSRC/X8.PC_PC+f,RSRC/ZE~O,MUX/XM.R,4LUXM/SIGN,ALU/OR,OTYPE/BYTE,ISTRM/ISIZE_OSIZE" 
"OQl/O_WX,MSRC/XB.PC_PC+l,RSRC;ZERO,MUX/XM.R,ALUX~/SIGN,ALU/OR,OTYPE/WORD, ISTRM/ISIZE_OSIZE" 
"001/D_WX,MSRC/~l,RSRC/ZERO,MUA/XM.R,ALUKM/ZERO,ALU/OR• 

"ALPCTL/WX_O_S.ROf/ZlllO,LIT/LITRL,LITRL/~1" 
•oo I ;o_wx ,MU.</D. s. ALU/B-A-C I. RO r I Zl. I TO, LIT /Ll TRL. Ll TRL/<ll1. 
"ALPCTL/WX_O_S,R0l/ZLIT12,LIT/LITRL,LllRL/~1" 
"ALPCTL/WX_O_S,ROT/ZL1124,LlT/LITRL,LlfRL/~1" 

"WCTRL/FLAGS_WB,RSRC/@1,ROT/ZERO,ALU/OR,MUX/R.S.001/D_WX" 
"WCTRL/FLAGS_WB,MSRC/~l,ALU/AND,MUX/M,S,ROT/ZllTO,LIT/LITRL,llTRL/~2" 
"WCJRL/fL4GS_W0,RSRC/~l,ROT/ZERO,ALU/OR.MUX/R.S" 

"WCTRL/INIR_wa.MSRC/Pl,SPW/MLONG,ALU/OR,MUX/R.Q,RSRC/ZERO" 
"WCTRL/IPL_WB,ALPCTL/WX_S,MSRC/@1,ROT/RR.MM.SIZ,OTYPE/WORD" 

tfi..:!!LONL~T ,LONLIT/<.NO_Tl<LONLIT /~1~~ LOCATE IN DEFINE FILE 

•wcrRL/MOR_WB,MSRC/9t,RSRC/02,ROT/RR.MR.P,ALPCTL/WX_S" 
"WCTRL/MOR_~a.ROT/Ml~USl.ALPCJL!WX_S• 
•we TRL./MOR_Wll, MSRC/©l1. ALU/B-A-C I. ALUC I/ ZERO, RSRC/Z£RO ,MUX/M. RI. 
"WClRL/r.•oR_O" 
"WCTRL/MOR_W9,MSRC/~l,RSRC/ZERO,MUX/M.R1,ALU/OR" 
"WClRL/MDR_W~.MSRC/~1,ALU/A+OtCJ,ALUCl/ALKC,RSRC/ZERO,MUX/M.RI" 
"WC1Rl/MOR_Wll,MSRC/?1,RSRC/•2,MUX/M.Rl,ALU/At84Cl,ALUCl/ALKC" 
"WCTRL/MOR_WB,MSRC;•1,ALU/AtB+Cl,MUX/~.S.ROT;ZLIT24,LIT/LITRL,LITRL/P2" 
"WCTRL/MOR_WB,MSRC/@1,LIT/llTRL,LITRL/~2,ROT/OllT8,MUX/M.S,ALU/AND" 
"WCTRL/MOR_WO,MSRC/•t,LIT/LITRL.LITRL/92,ROT/ZLITO,MUX/M.S,ALU/ANO" 
"WCTRL/MDR_WO,MSRC/•t ,ROT/4SR.M.P.ALPCTL/~x_s· 
"WCTRL/MOR_WB,MSRC/~1 ,ROT/FPLIT,ALPCTL/WX_S• 
•wcrRL/MDR_WO,MSRC/@1 ,RSRC/@2,ROT/RR.RR.SIZ,OTYPE1LONG,MUX/M.S,ALU/OR" 
"WCTRL/MD~_WB,ALU/OR,MUX/M.S.MSRC/~l,ROT/ZLIT24,LIT/LITRL,LITRL/@2" 
"WCTRL/MOR_WB,MSRC/@1,ROT/RR.M~.SIZ,DTYPE/BtTE,ALPCTL/WX_S" 
"WCTRL/MOR_W8,MSRC/~1 ,OlYPE/LONG,ROT/RR.M~.SIZ,ALPCTL/WX_S• 
•wCTRL/MOR_WB,ALPCTL/~X_S,ROT/RL.MM.PTE,MSRC1~1· 

•wcTRL/MOR_WB.MSRC/~l.ROT/RR.MM.SIZ.DTYPE,~OR~.ALPCTL/WX_S" 
"WC1Rl/MDR_WB,MSRC/@1.RSRC/P2,ALU/XOR,~ux;M.RI" 
MWCTRL/MOR_WB.WSRC/@1 ,ROT/ZLIT12,LIT/LITRL,LITRL/~2.MUX/M.S,ALU/XOR" 
"WCTRL/M~R_WB,MSRC/~I ,SPW/Ml.OHG,RSRC/@2,ROT/RR.RR.SIZ,OTYPE/WORD,ALPCTL/WX_S" 
"WCTRL/UOR_WB,MSRC/•I ,SPW!MLONG,LIT/LITRL,LITRL/P2,ROT/ZLIT0,ALPCTL/WX_S" 
"WCTRL/MDR_WB,RSRC/ZERO,U~K/R.Q,ALU/OR" 
"WCTRL/MDR_W0,001/Q_WX,MSRC/@1,ROT/ZERO.~UX/M.S.ALU/OR" 
"WCTRL/MDR_WS,RSRC/01,ROT/ZERO.MUX/R.S,ALU/OR" 
"WCTRL/MDR_WB,MSRC/92,RSRC;01,ALU/B-A-Cl,ALUCl:ALKC,MUX/M.R1" 
•we fRL/MOR _WA. RSRC;flil1. ROT /RR. RR. s IZ. DTY PE/LOllG. A I. PCTL/WX_S" 
"WCTRL/MOR_WB,RSRC/01,SPW/RLONG.MSRC/~2,ALU/GR,~UX/M.S,ROT/ZERO" 
"WCTRL/MOR_W9,RSRC/@1 ,ROT!Ci~x.SIZ.MUX;R.S,ALU/A-B-Cl,SPW/RLOHG.DTYPE/IOEP" 
"WCTRL1MDR_WB,MSRC/~1,RSRC/ZERO.~UX/XM.R,ALUXM/SIGN,ALU/OR" 
•wcrRL!MDR_WB,RSRC/~1.MSRC/XO.PC_PC+l,r.IUX/XM.R,ALUXM/SlGN.ALU/A+B+CI" 
"WCTRL/MDR_WB,MSRC/XO.PC_PC+I,RSRC/ZERO.~UX/M.R1 ,ALU/OR,ISTRM/JSIZE_OSIZE,DTYPE/WORD" 
"WCTRL/MDR_WB.MSRC/XB.PC_PC+l,RSRC/ZERO,MUX/M.RI ,ALU/OR,ISTRM/ISlZE_OSIZE,OTYPE/LONG" 
"WCTRL/MDR_WB,MSRC;XB.PC_PC+l,RSRC/ZERO.MUX/M.Rt ,ALU/OR,ISTRM/ISIZE_OSIZE,DTYPE/IOEP" 
"WClRL/MOR_WB,MSRC/~1.RSRC/ZERO,MUX/XM.R,ALUXM/ZEAO,ALU/OR" 
"CCPSL/MDR_OSR.CCBR_BRATST" 
~wCTRL/MOR_WB,LJT/LITRL,LITRL/~1 ,ROT/ZLITO,ALPCTL/WX_s• 
·wCTRL/MDR_WB,llT/LITRL,LJTRL/~1 ,ROT/ZLIT16,ALPCTL/WX_s• 

MACRO EXPANSIONS 2 

3 
~· 
0 
~ 
0 
0 
0 
a. 
CD 



Microcode 

; CMT010.MCR [130,2112) r.licro-2.1 1A(33) 14:40:3 9-Mar-1979 Page 42 
; DEFIN .MIC [130,2112] Machine Definition : ISTRM, JSR, LIT, LITRL, LONLIT, MISC 

: 1504 
: 1505 
; 1506 
: 1507 
:.1so0 

,ltfS09 
~1.11:s1 o 
11s11 
: 1512 
: 1513 
; 1514 
;1515 
:t516 
;1517 
;1518 
;t519 
: 1520 
;1521 
; 1522 
;15::'3 
: 1524 
: 1525 
: 1526 
: 1527 
; 1520 
: 1529 
; 1530 
: 1531 
: 1532 
: 1533 
: 1534 
: 1535 
: 1536 
: 1537 
: 1530 
; 1539 
; 1540 
;1541 
: 1542 
: 1:1:~ 
; 1544 
: 1545 
: 1546 
: 1547 
: 1548 
: 1549 
; 1550 
;1551 
; 1552 
; 1553 

.TOC • Machine Definition : ISTRFA, JSR, LIT, LITRL, LONLIT, MISC" 

lSTRM/:<33:33>,.0EFAULT=O 
NQP=O ; ISIZE IS DETERMINED e·f HARO\~ARE 
ISIZE_DSIZE=1 ;!SIZE IS DETERMINED av DSIZE 

r.·· 
J9Rj=<14:14~;.0EFAULT:O ;SUBROUTINE CONTROL 

NOP=Q ;NO OPERATION 
PUSH"1 ;PUSH CURP.ENT ADDRESS ON MICRO STACK 

:<77:76>,.0EFAULTzO ;DEFINE UWORD FIELD INTERPRETATIONS 
NORMAL:O ;FIELCS ARE NORMAL 
LITRL:1 ;SHORT LITERAL FIELD ENABLED 
FPA~AIT=2 ;WAIT FOR FDA TO COMDLETE PROCESSI~G 
LONLIT=3 ;LONG LITERAL FIELD ENABLED 

LITRL/s<J9:31> 

ONLIT/=<62:31> 

;SHORT LITERAL 

:LONG LITERAL 

MISC/•<75:i1>,.CEFAULTs10 
~lQP= 10 

CLR.FLAGO=O 
CLR.FLAGl=1 
CLR.FLAG2=2 
CLR.FLAG3=3 
CLR .Ml'ANOINT=4 
CLR. SUCi<FLG•5 

SET. !"lAG0:8 
SET.FLAG1=9 
SET. FLAG::.'=OA 
SET .FLAG3=08 
SET .MMNOJIH=OC 
SET.STACKFLGzOO 

RSSC:IB 
R:-.!UM_2REG=11 
CLR.TPz12 
CLR.FPOztC 
SET.FPOs10 
FORCE.TB= IE 
FORCE.CACHE,,1F 

DEC.SC213 
SC_2zt4 
sc_s•1S 
SC 14z16 
sc:3ost7 

:DEFINE MISC FUNCTIONS 

CLEAR FLAG 0 
CLEAR FLAG 1 
CLEAR H.:.G 2 
CLEAR FLAG 3 
CLEl.R FLAG 4 
CLEf.R FLAG 5 

SET FL.lG 0 
SET FLAQ 1 
SET FL.AQ 2 
SET FLAG 3 
SET FLAG 4 
SET FLAG 5 

R5TUP~ ANO SUPPRESS aus CYCLE 
R:~urn <- COMP MOOE SECOND REG 
PSL<TP> <- 0 
PSL<F?O> <- 0 
PSL<FPO> <- 1 
Foqce TB PARITY ERROR 
FORCE CACHE PARITY ERROR 

STEP CNT <- STEP CNT - 1 
STEP CNT <- 2 
STEP CNT <- 6 
STEP CNT <- 14 
STEP CNT <- 30 

MACRO EXPANSIONS 3 

Figure 6-17 

6-22 



Microcode 

CMT019.MCR (1J0,2tt2) t.Hcro-2.t 1A(33) 14:40:3 9-Mar-1979 Pape 90 
lNIT .MIC (130,2112} Inltfallze Microcode for the Con~ole and Power UP 

' U 0000, 7100,7DF0,7FFF,8450,083E 

U 0816, 0090,SBE4,0B08,4850,000t 

U 0825, 4800,SBE4,0808,4AS0,0001 

U 0939, 3S00,70F0,7FFF,84S0,093E 

U 093E, 0000,59F4,0304.00S0,0920 

U 0920, 5AOO,C370,0340,'24S0,4818 

U 0821, 99EF,5BE6,0308,2CS0,09AO 

3595 
3596 
3597 
3598 
3599 
3600 
3601 
3602 
3603 
3604 
3605 
3606 
3607 
3608 
3609 
3610 
361 t 
3612 
3613 
3614 
3615 
3616 
3617 
3619 
3619 
3620 
3621 
3622 
3623 
3624 
3625 
3626 
3627 
3628 
3629 
3630 
3631 
3632 
3633 
3634 
3635 
3636 
3637 

.TOC • lnitlallz~ r.licrocode for the Console and Power up• 
o: 
IN. INIT: 

:-------------------------------: 
LOCATEIN :LONLIT GETS 41FOOOO 

3 MACRO :PROCESS INIT CLEAR rLAG2 
FILE ;GOTO REG FlOlil 

.REGIONi<lNlT.R1L>,<lNJT.R1H>/<lNlT.R2L>,<INIT.R2H>/<lNIT.R3L>,<INIT.R3H> 

IN.PC_O: 

~~=;1;;;~j:--------------~----;PC GETS 0 
CLEA~ FLAG1, :FOR CHARLIE'S.QLEAR fa SUBR 
RETURN [1) :RETURN+1 

JN.VA_O: 

:-------------------------------: VA_R(ZERO}, ;VA GETS 0 
RETURN {1 I :RETURN+1 

IN.CN. !NIT: 

:-------------------------------: LONLIT_[41FOOOO), :LONLIT GETS 41FOOOO 
SET FlAG2 ;PROCESS INIT CLEAR FLAG2 

lN. PSL. LONLt T: 

•O 

:-------------~-~~--------------: 
PSl_R{LONllT),ClEAR FlAGO :PSl GETS LONLIT CLEAR FlAGO 

:o------ -----------------------
PUSH. 
STEPC 2. 
CRAR_ZL 170(.0QJ. 
NEXT IN •. PC_') 

;1------------------------------CONREGS_O_M[SISRJ_R[ZEROJ. 
DEC STEPC ' 

MACRO EXPANSIONS 4 

Figure 6-18 

6-23 

JSR 

CRAR GETS 2 
NOW IF WE CON~RITE 
WE WILL WRITE iO RXCS 

RXCS GETS 0 
SISR GETS 0 



; CMf0f8.MCR (t30,2tt2) Mlcro-2.1 1A(33) t4:40:J 9-Mar-1979 
; MACRO .~IC {tJQ,2112) Basic Macros 

;2446 
;24-17 
;2449 
;2449 
;2450 
;2<15f 
;2452 
:2453 
;2454 
;2455 
:2t156 
;2457 
;2459 
;2459 
;2460 
;2461 
:2462 
:2463 
:2464 
;24f;5 
;2466 
:2467 
;2<168 
;2469 
:2470 
;2471 
;2472 
;2473 
;2474 
;2475 
;21176 
;2477 
;2478 
;2479 
;21100 
;2401 
;21182 
;2483 
;24e4 
;2485 
;2406 
;2487 
;2481) 
;2'189 
;2490 
;2491 
;2492 
;2493 
;2494 
;2495 
;2496 
;2497 
;2498 
;2499 
;2500 

.roe • Basic Macros• 

CCOPI 
CCOP2 
CLEAR ADDt(FLAGO) 
CLEAR ADD2(FLAGf) 
CLEAR BOOf(FLAG MMNOINT) 
CLEAR FL.AGO 

~ CLEAR FlAG3 
CLEAR FPO 
CLEAR MOPZERO(FLAG1) 
CLEAR MIJLl(fLAG2) 
CLEAR MUL21FLAG3) 
CLEAR OPZEAOIFLAGJ) 
CLEAR 0Vf.q(FLAG2) 
CLEAR REAO!FLAGfl 
CLEAR REGINT(FLAGt) 
CLEAR SAMESIGN(FLAG4) 
CLEAR STACK FLAG 
CLEAR SUBI FLAGf) 
CLEAR TP 
CLEAR UNOER(FLAGJ) 
CLEAR ~RITE(FLAGf) 
CLOBBER MTEMPO 
CLOBBE~ MTEMPO DEF 

DEC STEPC 
DISABLE INT 
OlVOA SOil lN R() 
OIVOS SOR IN R() 
OIVFAST+ SOR IN R() 
DIVFAST- SOR IN A() 

FLUSH xe 

10 RESET 
IRD1 
IRDX [) 
ISIZE( I 

MULFAST+ CANO IN R() 
MUlFAST- CANO IN A(] 

NOP 

PUSH 
PUSH RBS+ 
PUSH RBS-

PROCESS IN IT 

"CC/CCOP1 .CCBR SIGND" 
•cc;ccoP2.ccBR-SIGND" 
"Ml SC/CU?. FLAGO" 
"MISC/CLR.FLAG1" 
·r.u SC /CL R. M~mo I NP 
"MISC/CLR.FLAGO" 
"Ml SC/ClR. FLAG!• 
~LOCATE IN DEFINE FILE 
"MISC/CLR.FLAG3" 
•MISC/ClR.FPD" 
"Ml SC/CLR. FLAG!• 
"MlSC/ClR.Fl~G2" 
"MISC/CLR.rLAGJ" 
•Ml SC/ClR. FLAGJ" 
"MISC/CLR.FLAG2• 
•u1sc/tLR.FLAGI" 
•uJSC/CLR.FLAG1" 
"MISC/CLR .MMNOINT" 
"MISC/CLR.STACKFLG" 
•uISC/CLA.FlAG1" 
"MISC/CLR.TP" 
"MISC/CLR.FLAG3" 
"MISC/ClR.FLAGI" 
"MSRC/TEIAPO, SPlll/MlONG" 
•srw/MLOHG" 

"MISC/DEC.Sc· 
•1,u SC/SET. MrAtlQ INT" 
"ALPCTL/OIVOA,RSRC/~1,ROT/0" 
•ALPCTL/OIVDS,RS"C/~l,AOT/O" 
"AlPCTl/DIVFAST+.RSRC/@1.AOT/0" 
•AtPCTl/OIVFAST-,RSRC/9t,ROT/0" 

"WCTRl/PC_we.we_M(PC)" 

"BUS/tofNIT" 
"9UT/1Rf'I• 
"BUT/IRDX,NEXT/~1· 

"ISTRM/ISJZE_OSllE,OTVPE/CD1" 

"ALPCTl/MUlFAST+, RSRC/«91 ,ROT /0" 
•ALPCTl/MUlFAST-,RSRC/~1,ROT/0" 

•.UPC Tl/NOP" 

"JSR/PUSH" 
"MSRC/PSHADD" 
"MSRC/PSHSUB" 

"BUS/PAIN IT" 

RETURN () "BUT/RETU~tt.NEXT/~t· 
RETURN ANO INHIBIT OESTINATIO,,S •sur /RET .DINH" 

MACAO EXPANSIONS 5 

Figure 6-19 

6-24 

Microcode 

Page 65 



Microcode 

; CMT01B.MCR (IJ0,2112) Micro-2.1 1A(33l 14:40:3 9-Mar-1979 
: OEFIN .MIC [130,2112} Machine Definition : ISTRM, JSR, LIT, LITRL, LONLIT, MISC 

: 1504 
: 1505 
: 1506 
;1507 
ttsoe 

.. •t1!i09 
';~.510 
J1Stl 
:1512 
: 1513 
;1514 
;1515 
: 1516 
;1517 
;1518 
;t519 
: 1520 
;1521 
: 1522 
: 15'3 
: 1524 
: 1525 
:t526 
; 1527 
: 1529 
: 1529 
; 1530 
;1531 
: 1532 
: 1533 
: 1534 
: 1535 
; 1536 
: 1537 
: 1538 
: 1539 
: 1540 
;1541 
: 1542 
;1543 
: 1544 
: 1545 
: 1sa6 
: 1547 
: 1548 
: 1549 
: 15~0 
;1551 
;1552 
: 1553 

.roe " Macnine Definition : ISTRrA, JSR, LIT, LlTP.l, LONLIT, MISC" 

ISTRM/:<J3:3J>,.OEFAULT:O 
NOPo:O :ISIZE IS DETERMINED BY.HARDWARE 
rslZE_OSIZE:t :ISIZE IS DETEl<MlNED BY OStZE 

J~R/,.<14:14>~.hEFAULT:O ;SUBROUTINE CONTROL 
NOP~Q ;NO OPERATION 
PUSH~ ;PUSH CURRENT ADDRESS Otl MICRO STACI< 

llT/=<77:76>,.DEFAULTeO :DEFINE UWORD FIELD INTERPRETATIONS 
NORMAL20 ;FIELDS ARE NORMAL 
LITRL:1 ;SHORT LITERAL FIELD ENABLED 
FPAWAIT=2 ;WAIT FOR FPA TO COMDLETE P~OCESSiNG 
LONllTs3 ;LONG LITERAL FIELD ENABLED 

LITRl./s<J9:3t> 

LONLIT/:<62:31> 

;SHORT lITERAl. 

: LONG Lt TERAL 

MlSC/•<7S:71>,.CEFAULTs10 
HQP:10 

CLR.FLAGO=O 
_ CLR. FLAGbt 

~ CLR.FlAG3:3 
CLR .MfANOINT:<I 
CLR. STACKFLG:S 

SET. FLAGO=B 
5ET. FLAG1:9 
SET. FLAG:;>::OA 
SE l. FLAGJ=OB 
SET .MPANOINhOC 
SET .SJACKFLG20D 

RSBC" 18 
RNUM 2REG2 1 1 
CtR.TP=t2 
CLR.FPD.,1C 
SET. FP0:10 
FORCE.TB=tE 
FORCE.CACHE=1F 

DEC.SCstJ 
SC_2:t4 
SC_6=15 
SC_14s16 
sc_Jo=t7 

;DEFINE MISC FUNCTIONS 

CLEAR FLAG 0 
CLEAR FLAG 1 
CLEAR !='1.,AG 2 
CLEAR FLAG J 
CLEAR FLAG 4 
CLEAR FLAG 5 

SET HAG 0 
SET FLAG 1 
SET FLAG 2 
SET FLAG 3 
SET FLAG 4 
SET FLAG 5 

RETURN ANO SUPPRESS BUS CYCLE 
Rr.itJM <- COMP MOOE SECOND REG 
PSl.<TP> <- 0 
PSL<Fl'D> <- 0 
PSL<FPO> <- 1 
fQqce re PARJTV ERROR 
FORCE CACttE PARlTY ERROR 

STEP CUT 
STEP CNT 
STEP CNT 
STEP CNT 
STEP CNT 

<-
<~ 

<-
<-
<-

STEP CNT - 1 
2 
6 
14 
30 

MACRO EXPANSIONS 6 

Figure 6-20 

6-25 

Page 42 



tZj 
...... 

'° °' c= 
I l"1 

N CD 

°' °' I 
N 
I-' 

CMIOte.MCR (IJ0,21121 Micro-2.1 U(J3f 14:40:3 q-M;ll'-Hl79 Pape 90 
INIT .MIC [ IJ0,2112) lnlt lal h:e MlcroC•">de for th~ ('>ll">Ole and Power up 

;3595 
;3596 
;3597 
;3599 
;3599 

I ;3600 
U 0000, 7100,7DF0.7FFF,0450,f0j3El ;3601 

:3602 
;3603 

LOCATE IN UPC CREF- ; :t604 

:3605 
;3606 
;3607 
;3608 

U 0818, 0000,5BE4,00D0,4050,000t ;3609 
:3610 
;3611 
;3612 
;3613 

U 0025. 4800,50E4.000B,4A50,0001 ;3614 
;3615 
;36t6 
;36t 7 
;3618 

U 0839, 3500,7DF0,7FFF,8450,00JE ;3619 
;3620 
;3621 
;3622 

U 083E, 0000,58F4,0304,0050,0020 ;36~3 
;3624 
;3625 
;3626 
;3627 
;3628 
;362!c' 

U 0820, 5AOO,C370,0340,~450,4Dt8 ;3630 
13631 
;3632 
;3633 
;3634 

U 0821, 89Ef,5BE6,0308,2C50,08AO ;3635 
13636 
:.3637 

.TOC • lnlllallzei.li;;1·11<:01je for the Console and Power up~ 
o: 
IN. INI 1: 

:-------------------------------: 
LONllf_(41fOOOOI, :LONLIT GETS 41FOOOO 
CLEAR FLAG~ ;PROCESS INIT CLEAR FLAG2 
NEXT l!iE PSL. IOiiiTfL ;GOTO REG FLOW 
~ LOCATE IN FIELDNAME & DEFINE VALUES cnEF 

.REGION/< INIT. RI l> I< 11~1'. R tH>/<INIT. R2l>. <INIT. R21f> /< INI'. RJL> ,< INIT. AJU> 

IN.PC_O: 

~~~;1~~;~1:---------------------;PC GETS 0 
CLEA~ FLAGI. ;FOR CHARLIE'S CLEAR TB SUBh
REIURN (I) ;RETURNtl

)N.VA_O:

~;=;·~~;~1~---------------------;VA GETS 0
REJURN f 11 ;RETUAN+I

IN.CN. INI J:

·-------------------------------· . .
LONlll_(41FOOOO),
SE r fLAG2

IN.PSL.lONllTI

;LONLIT GETS 4tFOOOO
;PROCESS INIT CLEAR fLAG2

~;~=;·~~~~~;J~~;;~;-;;;~~-------~PSL GETS LONLIT CLEAR FLAGO

;0------ -------------~---------
PUSH,
SIEPt;_~.

Cft.\ILZL 110(00).
NEXT /f'f9. Pr;_O

;1------------------------------
COJ>REGS_D_M(s I SR LR I ZERO J.
DEC STEPC

NEXT ADDRESS FIELD

JSR

CRAR GElS 2
NOW IF WE CONWRITE
WE Will WRITE TO RXCS

RXCS GETS 0
SISR GETS 0

3:
0
l"1
0
0
0
0.
CD

CMT018.MCR ('30, 2112) Micro-2.1 1A(33l 14:40:3 9-Mar-1979 Page 075
Cross Reference Listing - field Names and Defined Values

I L.ROTLMEM 6091 7818 7818
IL.ROTLREG 6104 7918 7818 7919 7818
IL. SB•~CMEM 6320 7825 7025 7025 7825 7825 7825
IL. SBWCREG 6315 /I 7824 7824 7624 7824
IL.SOR+.ENDt 6974 # 6903 6990
IL.SOR+.END- 6900 #

IL. SOR-. Er~Dt 6905 #
JL.SOR-.END- 6991 II

JL.SU02.0.W.L.MEM 6273 # 7032 7032 7832 7632 7032 7832 7846 7846 7846 70•16 7046
7846 7860 7860 7060 7060 7860 7860

JL.SUB2.B.W.L.REG 6268 # 7031 7831 7031 7831 7845 7045 7045 7845 7659 7059 7ll59
7859

IL.SUB3.B.W.L.MEM 6280 # 7939 7839 7853 7853 7866 7066
IL.SUB3.B.W.l.REG 6274 II 7839 7839 7839 7639 7053 7853 7853 7853 7866 7866 7056

7866
ll.TST.0.W.L 5877 # 7872 7872 7872 7072 7872 7872 7879 7879 7879 7879 7879

7879 7886 7686 7686 7086 7886 7886
JL.XOR2.B.W.l.MEM 6354 # 7894 7894 7894 7894 7894 7894 7908 7908 7908 7908 7908

79)8 7921 7921 7921 7921 7921 7921
~ JL.XOR2.0.W.L.REG 6349 # 7893 7893 7093 7893 7907 7907 7907 7907 7920 7920 7920
I-'• 7920

l.O IL.XORJ.B.W.L.MEM 6361 # 7901 7901 7915 7915 7920 7928

°' c IL.XOR3.B.W.L.REG 6355 # 7901 7901 7901 7901 79t5 7915 7915 7915 7928 7920 7928
I l"1 7928

N CD IN.CLR.CACllE 3664 II 3698
.......) IN.CN. INIT 3616 ,, 4834 4892 5035

°' IN.DEC.D 3667 3695 II

I IN. INIT 3597 " N JN.PC_O 3605 /I 3630 3672

N IN.PSL.LONllf 3601 lfilI.1}t-- INDICATES LOCATION OF LABEL
IN.VA_O 3611 II 3661
LS. LDPCTll. 25797 # 26103 26103 26103 26103

·LS.LOPCTX.GPRS.0 25821 # 25033
LS.LDPCTX.GPRS.1 25016 25824 25829 ,,
LS.LDPCTX.f'OBR 25828 25835 II
LS.lDPCTl\.PSL 25897 2sqo4 II 25928
LS.LOPCTX.PUSH 25901 25931 #

LS.LOPCTX.SUB1 25907 25934 25940 II
LS .MODE. CHECI< 25801 25<)68 26092 "
LS.SVPCTX 25964 /I 26133 26133 26133 26133
LS.SVPCTX.GPRS.2 25976 • 25998
LS.SVPCTX.GPRS.4 25979 25984 II
LS.SVPCTX. IPL 26019 26025 II
LS.SVPCTX.PC 25982 25989
LS.SVPCTX.SPS 26023 26044
MM.BUT.XB.TBMISS 28659 #

MM.DEC.VA 28373 28380 " 28401 20411
MM. FLUSH. XO 20611 28G·l2 28649 #

3: MM.GET.ACY 28725 II 20740 20807 28825 28846
MM.GET.BUT.FLUSH 29006 # 2<:!063
MM.GET. BUT. PTE 28662 28902 " 0
MM.GET.BUT.PTE05 28\)89 II 29028 l"1
MM.GET.BUT.PTE10 23993 29004 29C14 " 29021 0
MM.GET.BUT.PTE20 29039 29044 29046 " 0

0
MICROINSTRUCTION CROSS REFERENCE a.

CD

Microcode

CMT018.MCR [130,2112) Micro-2. 1 1A(33) 14:40:3 9-Mar-1979 Page 951
Location I Line Number Index

u 0708 20852= 20858= 20952: 20958= 21079: 21084:: 21095= 21099=
u 0710 21156= 21161= 21167: 21171= 21290= 21294= 21313= 21316=
u 0718 21347= 21350: 21411= 21416:s 21447: 21450= 21456= 2 I 461=
u 0720 215702 21574= 21616= 21620= 21684= 21588= .. 21730= 21733=
u 0728 21797• 21800= 21888= 21692= 22221= 22225= 222·M= 22247=
u 0730 22262= 22265= 22269= 22272= 22281= 22286= 22296= 22299=
u 0738 22337:11 22340= 22344= 22348= 22352= 22355= 22382= 22385=
u 0740 22390:s 22394= 22422= 22427= 22433= 22437= 22530= 22533=
u 0748 22548:1 22552= 22559= 22563= 22G07= 22613= 22520= 22624:
u 0750 22915= 22919= 23178= 23181.: 23259= 23262= 23267: 23270=
u 0758 23298= 23302= 23566= 23570= 23605= 23609= :03615= 23618=
u 0760 236J0s 23635= 23674= 23678= 23746= 23750=. 23968= 23971=
u 0768 24312:11 24315= 24320= 24323= 24352= 24356= 24614= 24618 ..
u 0170 24630:1 24633= 24662" 2.1666= 24675= 24679= 2.1687:1 24691=
u 0778 24700:11 24704: 24781: 247870: 24883= 24887= 24892= 24896=
u 0780 25237• 25243z 25462= 25.:165= 25482= 25.!85= 25602-= 25E.06=
u 0788 25645= 25649= 25692" 25666= 25759= 25763= 25816= 25819=
u 0790 25624= 25828= 2SS52s: 2:855= 25878" 2se03= 25897= 25901=
u 0798 25934= 25938= 25979= 25962z 26031= 26034= 26349a 26355=
u 07AO 26362= 26366: 26390= 26394= 26543z 26547= 26552= 26556=
u 07A8 26i04z 26708= 26757= 26761= 26915" 26919= 26986= 26990=
u 0760 ~70C8:z 270110: 27034= 27038= 27105: 27109= 27167= 27170=
u 0786 27180= 27183= 27436" 27440= 27515= 27518= 27603= 27607=
u 07CO 27717= 27722= 27833= 27836= 27842= 273·15= 2SC80= 28084"
u 07C8 26157• 28160: 28193: 261'?7= 2e-=49= 280::54= 23462= 26466=
u 0700 29248= 29252= 29:112= 2931Gs 2"J368= 29372= 29912= 29916=
u 0708 29920= 29923:11 JOOCSs 3C009s 30203s 30206= 3'225= 30229=
u 07EO 30264• 30268s 30274z 30277= 3oi;23 .. 30'527= 308~4z 30849=
u 07E9 30892:a 30895.: 30961= 30964z 30990a 30994= 31104= 31108=
u 07FO 31216• 31219:s 31225s 31229= 31237" 31240s 31350s 31353=
u 07F8 31360= 31363• 31371= 31374.a 3148Js 31486= 31493= Jl496:s
u 0800 16967• 16972• 16977: 1698h 16986s 16990= 16995= 16999=
u 0809 1i003• 11001 .. 17012s 17016= 17021= 11025 .. 17030= 17034=
u 0810 '7038• 17042• 17047"' 17051= 17056: 17060= 17065= 17069=
u 0618 17073• 17077s t7082:z 3609 17868= 17972= 17877: 17881=
u 0820 3630= 3o3Sz 17087= 12632:0 17092= 3614 17097= 12636=
u 0829 17102• 3687= 171C7= 2.1343= 17112" 3632= 17116= 24347=
u 0830 17121=• 6526= 17126= 6532= 17131= 15106: 17136= 15109:
u 0830 17141• 3619 17146:: 23056a 4016" 4019: ~23060=---INDICATES LOCATION OF MICROINSTRUCTION
u 0840 3683 3661= 3667= 3572= 3677: 3699 3 7098= AND THAT THE LOCATION IS NOT CONSTRAINED
u 0848 29111• 28115s 28119s 29123= 4070= 4075: 26605= 23108=
u 0850 4161 .. 4166• 41i1• 28212• 4177:1 4131= 4185= 26216=
u 0858 3981 28127= 5317:= 5322= 4141= 4145: 26609= 23112:
u 0860 4230• 4236s 9439= 9444= 3385 42.ll" 15814= 15818:
u 0868 ~6459• 26463:1 26467s 2647h: 4152= 4156= J;sa 23116=
u 0870 3994 4267• t0045s 10C51z 4275: 42792 15905• 15909:0
u 0878 23222• 23227= 23232= 23238• 23241:= 23245= 23249s 23253:
u 0980 5537• 5096= 5542= 5102= 51082 5113= 1se57,. 15863=
u 0880 5119s 6568= 4191 6571= 17974:11 17977= 17981= 1i986=
u 0890 5663• 5668s: 5673• Sc77s 5681= 5685:: 5691= 5696=
u 0898 5700 .. 6894= 4321 6898s 17992• 17997: 18CO:.:?s 18007:
u 08AO 364Ja 3550: 3653= 4341 4218:0 4223• 9361= 9365=
u 08A8 9373s: 9381s 12313:& 12317• 24294= 242980: 24302• 24306=
u 0880 7014• 7018s 5334= 233ata 7022s 4377 5339= ::?3384=

MICROINSTRUCTION CROSS REFERENCE 2

Figure 6-23

6-28

Microcode

CMT018.MCR ['J0,2112} Mlcro-2.1 1A(33) 14:40:3 9-M.1r-1979 Page 90
INIT .MIC (130.2112) InltlaHze Microcode for thP C·.,r;·.ole and Po•er UP

:3595
;3596
;3597
:3598
:JS99
;3600

U 0000, 7100,7DF0,7FFF,8450,083E ;3601
;3602
:3603
:3604
;3605
:3606
:3607
;3609

U 0818, OOBO,SBE4,0B09,48SO,OOOt ;3609
;3610
;3611
:3612
;3613

U 0825, 4BOO,SBE4,0809,4AS0,0001 ;3614
;3615
:3616
:3517
;3618

U 0839, 3S00,70F0,7FFF,84S0,083E ;3619
:3620

FROM FIELD NAME CREF ~
:3622

U OBJE, 0000,5BF4,0304.00S0.0820J:;s;~t

FROMUPCCREF__/ :3~25
:3626
;3627
;3628
:3629

U 0820, 5AOO,CJ70,0340;~4S0,4818 ;3630
;3631
;3632
;3633
;3634

U 0821, 89EF,5BE6,0308,2CS0,08AO ;3635
;3636
:3637

.TOC • lnltializ~ ~icrPcode for the Console and Power up•
0:
IN.JNIT:

;-------------------------------:
LONlIT_(4t,OOOOJ. :lONlIT GETS 41FOOOO.
CLEAR FLAG2, :PROCESS INJT CLEAR FLAG2
NEXJ/JN.PSL.LONLIT ;GOTO REG FLOW

,.REGION/<tNIT.R1L>,<INIT.RIH>/<lNIT.A2L>,<JNIT.R2H>/<INIT.R3L>,<INIT.RJH>

IN.PC_O:

:------------------,------------;
PC_R[ZERO), . :PC GETS 0
CLEA~ FLAG1, :FOR CHARLIE'S CLEAR tB SUBR
R~fURN [IJ ;RETURN+1

IN.VA_O:

:-------------------------------:
VA_R[ZEROJ, ;VA GETS 0
RETURN (1 I ;RETURN+I

lN.CN.JHIT:

:-------------------------------:
LONLIT_[41FOOOOJ,
SET fl.\G2

IN. PSL. LONUT:

;LONLIT GETS 41FOOOO
;~ROCESS INIT CLEAR FLAG2

: -------··----------------------:
PSL_R(LO~L£T).CIEAR FLAGO :PSL GETS LONLIT CLEAR FLAGO

; o------ ---- ---------------------:
PUSH, ;JSR
STEPC_2.
CRAR_z·.1 ~NOOJ.
k!XT/N •• f't_O

;CRAA GETS 2
:NOW IF WE CONWRITt
:WE WILL WRITE ro AXCS

:•--------~--------------------:
CON~;as_o_M[SI5RJ_R(ZERO). ;RXCS GETS 0
DEC STEPC :SISR GETS 0

MICROINSTRUCTION CROSS REFERENCE 3

Figure 6-24

6-29

Microcode

CMT0t9.MCR (tJ0,2112) Mlcro-2.1 1AC33) 14:40:3 9-M~r-1979 Pape 90
INIT .MIC (130,2112} Initialize Microcode for the Console and Power up

' U 0000, 7t00,7DF0,7FFF,9450 083E

U 0918, 0090.55E4,0BD8,48SO,OOOt

U 0825, 4900,5BE4,08D9,4AS0,000t

U 0939, 3500,70F0,7FFF,8450,083E

0000,58F4,0304.0050,0920

U 0920, SAOO,CJ70,0340,2450,481B

U 0821, 89EF,5BE6,0308,2C50,09AO

3595
3596
3597
3599
3599
3600
3601
3602
3603
3604
3605
3606
3607
3609
3609
36t0
3611
3612
3613
3614
3615
3616
3517
3618
3619
3620
3621
3622
36'3
3624
3E25
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637

.TOC • lnitializP- Microcode for the Console and Power up•
o:
JN. INIT:

;-------------------------------:
LONLJT_[41FOOOO), :lONLlT GETS 41FOOOO
CLEAR FLAG2. :P~CESS WIT CLEAR FLAG2
NEX1 IN.PSL.LorRlt :GOTO REG now

.REG10N/<INIT.R1L>,<lNIT.R1H>/<INtT.R2L>,<INIT.R2H>/<lNIT.RJL>,<lNIT.R3H>

lN.PC_O:

:-------------------------------: PC_A(ZE!fO), :PC GET~ 0
CLEA~ FlAG1, ;FOR CHARLIE'S OLEAR TB SUBA
RETURN [ti ;RETURN+1

lN.VA_O:

:-------------------------------: VA_R(ZERO). :VA GETS 0
RETURN (If ;RETURN+t

IN.CN.JNIT:

:-------------------------------: LONLIT_(41FOOOOJ.
SET FUlG2

IN. PSl. LONlf T:

;LO"llT GETS 41FOOOO
: ?ROCESS IH lT CLEAR FLAG2

. _______ _____ ------------------. . .
PSl_R(LOHllT).ClEAR Fl.AGO :PSL GETS LONLIT CLEAR FlAGO

:o----- - . -- -----------.----------:
PUSH, :JSR
STE PC 2.
CRAR_z:. r- .:'~OOJ.
NUT/N ... pc_o

;CRAR GETS 2
;NOW IF WE CONWRITE
:WE Will WRITE ~O RXCS

:•------------------------------:
CO~REGS_D_M{Sl5wl_R(ZERO), ;RKCS GETS 0
DEC STEPC :SISR GETS 0

MICROINSTRUCTION CROSS REFERENCE 4

Figure 6-25

6-30

JBO.POWER.UP:
f 0:

10 RESET

SETUP
250 MSEC
WAIT LOOP

CLEAlf
COLD

·START
·FLAG

DO MICRO
VERIFY
SEQUENCE

DO INIT
SEQUENCE

Microcode

c

-----~-~-------·-------
"%%"PRINTED AT CONSOLE

TK-4524

Figure 6-26

6-31

°' I
w
l\J

tzJ

'° c: ...,
CD

°' I
l\J
....J

BOOT

DO MICRO
VERIFY
AND INIT

Rl GET
F28000
(MBAI

GOTO
BOOT SUB

RETURN
FROM
BOOTSUB

PASS
DEFAULT
BOOT
ARGUMENTS

4 WAY BRANCH ON POWER ON ACTION SWITCU

RESTART/BOOT

BEGIN SEARCH
FOR APB

GO TO FIND RPB
ROUTINE

RETURN FROM· RPB ROUTINE

IRD1
OF RESTART
ROUTINE

!START/HALT HALT

BEGIN SEARCH
FOR RPB

ENTEH
CONSOLE
MODE

GOTO FIND
RPB ROUTINE

CONSOLE
PRINTOUT
%%
00000000016
>>>

CONSOLE PRINT OUT
%%
0000000011
>>>

1

CONSOLE PRINT OUT
%%
00000000012
>>>

TK·4529

3
0 ...,
0
0
0
0.
CD

IN.P

IN.INIT:

LONLIT-
[41FOOOO]

SL.LONLIT I
PSL-
A[LON LIT]

1
PUSH,
STEPC·Z
CRAR-ZL!T16
[80]

IN.PC.a

+1

PC-R(ZEAOJ
CLEAR FLAG1
RE"'l'URN [1]

CONREGS-0
-M[SlSR]-
R[ZERO]
DEC STEPC

I
PUSH
DEC STERC
CRAR-ZLIT16
[40]

MP.MTPR. j_ T81A20

--- -· -
CLEAR PX
128 ENTRIES
IN TBUFF

+1

PUSH
D-ZLIT24[80]
.~_L§A R _E L~_G_1_

MP.MTPR J .T81A20

+1

+1

CLEAR SYS
128 ENTRIES
IN TBUFF
R~1:_URN (1_]

--

PUSH
CONREGS-R
[ZE~_QL_ --

J
PUSH
O.ZL1T8[4]

1
VA.R[ZERO]
AETURN(11

vA...:.vA+4
CLEAR CACHE

RETURN [1]

Figure 6-28

6-33

+1

+1

-

M[SCBB]-1
RETURN[1]

SOFTIPR-0

l
TCSR-0

1
PUSH,
ASTLVL-4
NEXT/IN.PC-0

PME-0
FPDO F FSET -3
PROCESS
ANO 10 INIT --

J
- --

CRAR
ZLIT16(CO]

Microcode

M[TElVIP6J
ZLITO(O]
RETURN(1]

-;"l(-4525

t'Zj

"° O'\ c::
I l"1

w m
~

°' I
N
\.0

DEVICE A (SYSTEM DISK)

IRD1
OF BOOT ROM
MACRO
CODE

,,_.,_

NO

PC GETS ADDRESS
; OF DEVICE B CODE
READ

ENTER
CONSOLE
MODE

DEVICE C.

--·- ·-·- ·--- _ _.._...
_.PC GETS ADDRESS ~

OF DEVICE C CODE.
READ

CONSOLE PRINTOUT

"" OOOFXXX 14
>>>

·DEVICE D (TU-58)

PC GETS ADDRESS-
OF DEVICE D CODE

;.-

READ

, TK-4527

3
0
t"1
0
0
0
0.
m

BO.BOOT-SUB:

SET UP
LOOP TO
$GAN M_ErytQR_y

TURN CACHE
Qff ___ --

CONSOLE
PRINTOUT
% ~7aw·~~~--

TEST LAST
LOCATION
OF __ 64 KB

ENTER
CONSOLE
MODE_ ----,----.J 0000000013

>>>

INVALIDATE
UBIO MAP

_REGISTERS

INVA[JDATE
UBl1 MAP
REGISTERS

ENTER
CONSOLE
MODE

Figure 6-30

6-35

Microcode

TRANSFER
BOOT ROM
CODE TO
MEMORY

CONSOLE-PRINTOUT
%%
0000000015
>>>

TK-4523

BO.FIND.APB.SUB

SET UP
SCAN LOOP

READ
PHYSICAL
PAGE

INCREMENT
PAGE
ADDRESS

Microcode

_P_AG~~Q_Q_~~S~ APB PHYSICAL ADDRESS

+4 PHYSICAL ADDRESS OF RESTART

+8 CHECKSUM

+C WARM START FLAG 0

VALID RPB HEADER

YES

YES

Figure 6-31

6-36

COMPUTE
CHECKSUM
ON FIRST
128 BYTES

READ
MEMORY
F_LAG

RETURN

. TK-4526

u 0016

C01'4TROL
p
ENTRY POINT

CONSOLE
FLOW
ENTRY

CLEAR
COLD
START
FLAG

TYPE
<LF><CR>
AT CONSOLE
TERMINAL

TYPE_8 _____ _

DIGIT PC
SAVE MME

TYPE2
SPACES

TYPE 2
DIGIT HALT
CODE-

TYPE
<LF><CR>

Figure 6-32

6-37

Microcode

TYPE
CONSOLE
PROMPT

THIS FLOW IS USED T-0 TYPE
THE PC, HALT CODE AND
PROMPT.

· <LF><CR>
XXXXXXXX YY<LF><CR>
>>>

TK-41519

PASS
SYNTAX
Af!.GQl\!IJ;J~!L

PASS
SYNTAX
ARGUMENT

PASS
SYNTAX
A_RGUMENT

PASS
SYNTAX
ARGUMENT

PASS ___ ----- .

SYNTAX
ARGUMENT

PASS
SYNTAX
ARGUMENT

Figure 6-33

6-38

Microcode

PASS
SYNTAX
AB__G.Q~ s NT

PASS
SYNTAX

.ARGUMENT
·-· --

PASS
SYNTAX
ARGUMENT

PASS
SYNTAX
ARGUMENT

·-·· .. - --·-

PASS
SYNTAX
ARGUMENT

PASS
SYNTAX
ARGUMENT

T'<:-4'328

O'\
I

w
\0

!NO

I ANY CHARACTER OTHER THAN

i <SP>,<CR>,"/" I >>>~<CR> ,... ______ .._ ______ ~ <CR>

'RING
BELL

'j DISPATCH
COMMAND

AT CONSOLE

;WAIT FOR .
OPERATOR TO

I TYPE 2ND CHARACTER
I OF COMMAND STRING_

j GET ADDRESS
,QR
I DATA STRING

•

I PROCESS
lcoMMAND
!SWITCH

THESE COMMANDS
ARE NOT DISCUSSED
IN THIS SECTION.

3:
0
t;
0
0
0
Q,

1 TK-462°2 CD

t"lj
.......

Ul
>>>N<CR>· >>>C<Cn> CJ'\ c:

I
'"" .i:::. CD SET UP SETUP ~

START WITH'. CJ'\ SINGLE
I STEP MODE OUT INIT

w
U1

SET UP ·
START

>>>l<CR>

: DO NOT
; CLEAR

SCBB

DO INIT
SEQUENCE

>>>T<CR>

SETUP
'FOR
·MICRO VERIFY

:DO MICRO
. VERIFY
TEST

>>>H

HALT
NOP

3:
TK-1520 I-'•

0

'"" 0
0
0
0..
CD

IRD1
OF MACRO
PROGRAM

SAVE
PC
DO INIT
SEQUENCE

CLEAR
HALT
FLAG

RESTORE
PC
AND BEGIN
PRE FETCH

RESTORE
MME
BIT

•

Figure 6-36

6-41

Microcode

YES

-
TK-4521

Microcode

Figure 6-37

6-42

r;:;;e1~ -
lllllUS

I STEP

I COUNTEll

I STATUS
FLAGS

I <s:o>

I PSI.
Tl'.FPO.Cll

I
WW!

I INTERFACE

I BUT
FIELD

L-~

xa<i:0>
XB<lS:O> ---- -,

I
I
I
I __ , __ .J

I
_.J

CS ADO
<S:O>L

CSAOD

Figure 6-38

6-43

Microcode

llOMNEXT FIELD

CSAOD<ll:O>L

1.ATCHED NEXT flEL0<1:t:1>:

,.,.._,

Microcode

s ,......,. __

OR IS EQUIVALENT TO

LOGIC Cl RCUIT EQUIVALENCES

TK-2097

Figure 6-39

6-44

°' I
ii::=.
U1

OR

:.--....&.---o

IS EQUIVALENT TO __r

..._....._ ___ o

LOGIC Cl RCUIT EQUIVALENCES

D 1

c 0

TK-2098

3:
0
l""'I
0
0
0
Q,
CD

13 12 11 10 9 8

NEXT FIELD

<13:0>

7 6

Microcode

5 4 3 2 0

CHIP ADDRESS, LOCATION WITHIN CHIP

-------------CHIP ARRAY SELECT, 1K BANK OF CHIPS

CONTROL STORE SELECT WCS,DCS ccs
O=CCS 13 12 11 10 13 12 11 10
1 = WCS,DCS 0 0 0-1ST K WCS 0 0 0 0 1ST K

0 0 1} 0 0 0 1 2ND K

1 0 1 0 NOT USED 0 0 1 a 3RD K

0 1
~-64WORDDCS

0 a 1 1 4TH K

0 0 1 0 0 STH K

1 1 0 n 0 1 a 1 6TH K

1 1 NOT USED 0 1 1 ~} NOTUSED
1 1 0 1 1

COMET CONTROL STORE ADDRESSING
TK-1985

Figure 6-41

6-46

MICROWORD.

80 BITS ________________ ,A ______________ -...

AMOUNT ADDRESS r \
18K 3FFF

12K

23FF

SK 2000

6-47

Microcode

SELO H
SELO H

SEL 1 H
CS ADO 12 H

OCTAL 151
TO SEL 2 H

K CS ADD 11 H UNITARY SEL JH
CSADDlOH DECODE SEL 4 H

SEL 5 H
10

SEL 1 H
CS ADD 13 H

2ND
K

PAR
CHECK

SEL 2 H

CS PARITY·
3RD ERROR
K

CS NEXT PARITY L

CS NEXT
D a tTj <13:6 >L CS ADO

<13:6>H SEL 3 H '° NEXT
O'\ c:: FIELD DPM

DPM I t"1 LATCH 4TH CONTROL ~ CD .PARITY
10 K STORE CD MCLK L CHECK

O'\ c LATCHES
I
~

w

SEL4H

5TH

CSADD12H 10 K

0
CS ADO 11 H

DISABLE
cs
ADDRESS

10
c

CS ADDRESS 6TH 3 BUFFERS K
DISABLE HI NEXT H CS ADO < 5:0> H 0 ...,

SEL5H 0
0

ROM 0
BANKS 0..

COMET CONTROL STORE SIMPLIFIED DIAGRAM CD

TK·199!S

7
-----~NBSCK

2 osc 1N H------..osc

25
CU< CTL 1 A -----1~ CTL 1

26
CLK CTL 0 H ----~ ... CTLO

9 CS PAR ERA H ___ _..,. CSPE

5
MEM STALL H ----..MBTL

49
CLKX H------~ ... CLKX

44
FPA WAIT L FWA7

45
FPA ST ALL L .:. FSTL

29
GEN OEST INH L ----t1i.tDINH.

32
DOUBLE ENABLE--....,.OBLE

10
PSL C MOOE H ~ PSCM

MSEQ INIT L
23

MINI

1--
19

BUT CONTROL CODE H -- sec
17

BUT2H-----~BUT2
18

BUT 1 H------1-~ BUT1
16

BUTQ H-----....,.BUTO

1-- -

ARITH TRAP L---.... ~ ... ATRP
47

FP TRAP L------1.,. FPTP
43

TIMER SERV H---..,._..i TSER

CON HALT L _l CHLT
39

INT PENDL----__. IPNO
37

PSL TP L ------1~~ PSTP

SAC E68
SERVICE AND ARBITRATION CONTROL

MAIN TIMING CIRCUIT

THE OSCILLATOR INPUT IS -:-3y 3
TO PRODUCE SET C, SET C BECOMES
BSCK EXTERNALLY, ANO IS USED TO
GENERATE PHASE. PHASE IS OSC. -:-5

MAIN TIMING MODE CONTROL
CIRCUIT ALLOWS SINGLE TICK, SINGLE

SET Cr-
6
----'

PHAS 1-
4----11•

Microcode

MICROINSTRUCTION, OR NORMAL HALT r-1-1---1--"i.HALT L
CLOCK CONTROL MULTIPLE CS
PARITY ERRORS STOP B CLK

M CLOCK STALL AND D CLOCK
INHIBIT CONTROL

THIS CIRCUIT IS USED TO STALL
M CLOCK DURING MEMORY STALLS,
FPA STALLS, ETC. IT ALSO INHIBITS
THE D CLOCK WHEN NECESSARY
M CLK ENABLE ANO D CLK ENABLE
ARE GATED EXTERNALLY WITH B
CLK TO GENERATE MAIN SYSTEM
TIMING.

BUT FIELD DECODING LOGIC

THIS LOGIC IS USED TO DECODE
BUT FIELD AND GENERATE
VARIOUS INTERNAL CONTROL
SIGNALS

MKENt-
2
-
8
---M CLK ENABLE H

OKEN 27 D CLK ENABLE H

ENODt-
3
-
1
---1--•

- ---
IFET ... 2 ... 4 __ _.,INSTR FETCH H

- - ---- -- -- ---
BUT SERVICE ARBITRATION LOGIC SRVC,_3_4--•00 SRVC L

THIS LOGIC SELECTS HIGHEST AOC2
4

0 ~ CS ADO 2 L

PRIORITY SERVICE REQUEST ADC1 42 CS ADO 1 L
ANO ASSERTS IT'S MICRO
ADDRESS ON ADDRESS LINES ADCO

41
-- CS ADO 0 L

r--- -- - - --- _,
IRO COUNTER ICT2i-2-2----1•1RD CTR 2 H

THIS A 3 STAGE COUNTER USED TO E~TER ICT1 15 -- IRD CTR 1 H
OPERAND SPECIFIER AND EXECUTION FLOWS 21

ICTO~--~ !RD CTR 0 H
351-- - - - - - - - --1

LD OSR L-------tMLDOSR
14

UTRAP L ------tMMTRP
LO OSR LATCH, MICRO TRAP LATCH 30 LUTP ..._ __ _,.LATCH UTRAP L

MCLKL~-----------------20_.J
TK·1989

Figure 6-44

6-49

Microcode

B ClK L
47

MSQ E58_
MICROSEQUENCER

33 NEXT /MICROSTACK
NEXT05 H NXTS ADDER
NEXT04 H NXT4

NEXT03 H

NEXT02 H NXT2
THE MICROSTACK ADDER

ADC5 CS ADD 05 L

NEXT01 H NXT1 IS PRIMARILY USED TO ADC4 CS ADD 04 L

NEXTOO H NXTO ADO ON RETURNS FROM ADC3 CS ADO 03 L
MICRO SUBROUTINES BY 25
ADDING THE NEXT FIELD

ADC2 CS ADD 02 L

NSTACK 05 H TO THE ADDRESS AT THE ADC1
21

CS ADO 01 L

NSTACK 04 H TOP OF THE MICROSTACK ADCO CS ADOOO L
OTHERWISE THE NEXT FIELD

NSTACK03 H IS USED DIRECTLY.

NSTACK02 H STK2

NSTACK01 H STK1

NSTACKOO H

LIT 1 H LIT1 FPA WAIT 8
WAIT FPA WAIT L

LITOH UTO IF LIT .. 2, THE FPA WAIT• L

BUT FIELD DECODE ENZH
4

ZERO HI NEXT
BUT CONTROL
COOEH ace LOGIC AND MICRO- AOS3

9
USTACK ADO 3H

BUT2H BUT2 STACK POINTER
CONTROL

ADS2 UST ACK ADD 2H
BUT1 H BUT1 THIS LOGIC MOVES THE MICRO ADS1 UST.A.CK ADD 1 H

BUT OH STACK POINTER FOR PUSHES AOSO UST ACK ADO OH
ANO POPS OF THE MICRO

JSR H ST ACK. THIS AL.SO CONTROLS ENST NST ACK OUT EN L

CS ADDRESS BITS DURING DSHN
48

DISABLE HI NEXT H
PUSHES ANO POPS.

!RO ROM CONTROL
THIS t..OGIC EVALUATES IRD ENIR ENABLE IRO ROM
COUNTER & BUT FIELD AND

LO OSR LOAD OSR
ENABLES IRO ROMS, AND
LOADING OF CSR

MSEQ INIT L INIT
MICRO ADD MISCELLANEOUS CONTROL
INH L MAI

ENABLE
UVCT THIS IS GENERAL LOGIC THAT UVECT H

DO SRVC L SRVC AFFECTS THE OPERATION OF

ROMOS 42 MOST OF THE CHIP CIRCUITRY.
OSGN

!NH.PHASE L H

MCLK L 44

TK·1988

Figure 6-45

6-50

DCLK E NABLE H

WB 31 H

W830H

WB27 H

WBOSH

WB04H

WB03 H

WB02H

W801 H

WBOO H

L4 H MISC CT

MISC CT

MISC CT

MISC CT

MISC CT

GO SAM

GO SAM

GO SAM

L3H

L2H

L 1 H

LOH

2H

1 H

OH

IT L LONG L

LO IR L

OOSRV

LDOSR

INTERR

CL

L

UPTH

DORESS H

H

DIS.CSA

BUT OS

BUT04

8UT03

BUT02

BUT01

SUTOO

H

H

H

H

H

MCLK L

39
~

36

40 --
23

43

6
~

14

-11
3

26

28 -
~
~

27

45 --
42

44
41
~

18 ...
46
10

30

7

15
~

20
~

19

22 --
21
17 --16

,J_

PHB E59

"PRACTICALLY-HALF THE BUTS"

WBUS IN WBUSOUT
WB31 WB31

WBUS INTERFACE
W830 WB30

WB27 THIS LOGIC CONNECTS WBUS WB27
INPUT TO PSL BITS, STEPC,

WBOS AND CONTROL LOGIC, WBUS WBOS

WB04 OUTPUT IS MULTIPLEXED BET WB04

INB03
WEEN THE STEPC, STATUS
FLAGS, AND PSL BITS WB03

WB02 WB02

W801 W801

waoo WBOO

MISC4 STEP COUNTER <4:0> & STATUS

MISC3
FLAGS<S:O>

MISC2 THE MISCELLANEOUS CONTROL
FIELD OF THE MICRO INSTRUC-

MISC 1
TION SETS ANO CLEARS

MISCO STATUS FLAGS ANO LOADS
THE STEP COUNTER WITH

GSM2
SEVERAL VARIABLES. THE

GSM i GOOO SAMARITAN ROM PRO-

GSMO
GRAMS PART OF THIS LOGIC

PSL BIT LATCHES

COMPATASILITY MODE LA.TCH. FPO
PSCM

LATCH, T BIT LATCH, TRACE PEND· PSFP

ING LATCH ARE CONTAINED HERE. ?STP
FOR MICROBRANCH CONDITIONS

IBUT CTL 1

LDIR IRD CHIP CONTROL, RNUM CTL 0

LOAD CONTROL, AND SRVC ILRN
MISCELLANEOUS

LDOSR CONTROL
INTR

DCSA MICROBRANCH MUX ace
8UT 5 CONTROL ADC5

THE PHB CHIP CONTROLS A
BUT4 MAJOR PORTION OF THE ~.11c- ADC4

RO BRANCHING lr..OGIC, THE
8UT3 su=r Fl.ELD Is oecoDED AND

ADC3

BUT2 ENABLES A SPECIFIED BRANCH ADC2
CONDITION ON PSL BITS, STATUS

BUT 1 ADC1
FLAGS, OR THE STEP COUNTER

SUTO ADCO

47J

Figure 6-46

6-51

39

36

40

23

43

6

14

11

3

34

37

5

31

29

32

4

24

33

3

9

48

2

~
~

--""

--
.....

.... --

....

Microcode

wa 31 H

WB30H

WB 27 H

WBOSH

WB04H

WB03H

WB02H

WB 01 H

WBOOH

PSL CM H

PSL FPO H

PSL TRACE

~I RO ADD CTL t H

RD ADO CTLO H

!RD LDRNUM H

-- I

--

.....

....
~

--""
~

--

BUT CONTROL CODE

CS ADD 05 L

CS ADD 04 L

CS ADD 03 L

CS ADD 02 L

CS ADD 01 L

CS ADO 00 L

Tl<-1991

SH XBUF 1

XBUF 1

XBUF 1

XBUF 1

XBUF 1

XBUF 1

XBUF 9

XBUF 8

XSUF 7

XBUFS

XBUF 5

XSUF4

XBUF 3

XBUF 2

XBUF 1

XBUFO

4H

3H

2H

1 H

OH

H

H

H

H

H

H

H

H

H

H

CTL t \ROAOO

!ROAD OCTLO

TROLL

LO IR L

IRD CON

WCTRL

PSLCM

2L

H

LDOSR L

MCLK L

19 -- X815
33

XS14
22

X813
20

X812
47

XS11
4 X810 ~

11
X809

46 -- xsoi
24 XB07
42

XB06
17 XS05 ~

l X804
43 X803 --
1 XB02

1 XS01
1 XBOO

?2 CTL1 --
34

CTLO

23
LOIR

30
~ SEL1
45

SELO
16

PSLM

18
LDOSR

IRD E82

INSTRUCTION REGISTER, OP. SPE~. REG.

XSIN XS OUT

XBINTERFACE

THE OUTPUT OF THE XB
ROTATOR, BITS <15:0>
INTERFACE TO THIS CHIP.
THE IA IS LOADED FROM

XB<7:0>, THEOSR IS
LOADED FROM xs< 15:8>
AT IRDX, THE WCTRL
MICRO ORDER 28 ALLOWS
THI; XS BUS TO SOURCE
THE IR ANO OSA, COM·
PATASILITY MOOE IS SLIGHT-
LY DIFFERENT.

INSTRUCTION REGISTER<7:0>

LOADED FROM XS <7 :0 >
NATIVE MOOE OR <t 5:B>
COMPATABILITY MOOE.
OP CODE REMAINS HERE
THROUGHOUT MACRO
INSTRUCTION EXECUTION

OPERAND SPECIFIER REGISTER
<7:0>

THE OPERAND SPECIFIER REGISTER
IS USED TO ENTER OPERAND
SPECIFIER ROUTINE!fAT ---

IRDX. THE ADC LINES ARE
ASSERTED AS A FUNCTION
THE ADDRESS MODE, RNUM
IS LOADED WITH <J :0 >
OF THE OSR, iSIZE IS A
FUNCTION OF DISPLACEMENT
SIZE WHICH OBTAINED FROM
ADDRESS MOOE.

Jij

Figure 6-47

6-52

XB15
19

XB14
33

XB13
22

XS12
20

XB11
47

XB10
4

X809
,,

X808 46

X807
24

XS06
42

XB05
17

X804
2

XS03
43

X802
8

XS01
3

xeoo t

-
IRD7

7

!R06 6

IRD5 g

IRD4 14

IR03
39

IRD2
10

IRDt
5

IROO 48

AOC3 29

ADC2
25

ADC1
26

ACCO
28

RNM3
36

RNM2
41

RNM1
40

RNMO
37

151
44

152
21

ORM
15

RGMD
27

--
--

....
~

.....

--~
~

~

--
--
....

....
~

--
--
....

.....

__..

.....

....
~

.....
~

Microcode

XBUF 15 H

XBUF 14 H

XSUF 13 H

XSUF 12 H

XBUF11H

XBUF 10 H

XSUF 9 H

XSUF 8 H

XBUF 7 H

XBUF 6 H

XSUF 5 H

XBUF 4 H

XBUF 3 H

XBUF 2 H

XBUF 1 H

XBUF 0 H

IR 7 H

IR 6 H

IA 5 H

IA 4H

IA 3 H

IR 2 H

IA 1 H

IA 0 H

CS ADD 03 L

CSAOO 02 L

CS ADD 01 L

CS ADO 00 L

IRD RNUM 3 H

IRD RNUM 2 H

IRO ANUM 1 H

I RD RNUM 0 H

DIS? ISIZE 1 H

DISP ISIZE 0 H

DST R :'.10DE H

REG MOOE H

TK-1990

l"1j
Ul

O'\ c
I t1

U1 ct>
w

O'\
I
~
())

DPM17
BASE CLK L

DPM17
M CLK ENABLE H

DPM17
OP CLK EN H

DPM17
BCLK L

DPM17
MCLK L

DPM17
0,D CLK L

DPM17
PHASE 1 H

ONE MICROINSTRUCTION
i.....~~~~~J20NS~~~~~.......,,._~

TK-4313

3:
0
re
0
0
0
0..
m

t'%J
lQ

"' c
I ...,

U1 CD
.p..

°' I
.p..
\0

DPM17
BASE CLK L

DPM17
M CLK ENABLE H

DPM17
Q,D CLK EN H

DPM17
BCLKL

DPM17
MCLK L

DPM17
D CLK L

DPM17
PHASE 1 H

LJ

MICROINSTRUCTION WITH CLKX SET
480NS~~~~~~~~~~

LOAD NEW MICROINSTRUCTION

LJ

TK-4314

3:
0 ...,
0
0
0

°' CD

l"Jj
'° °' s::

I l"1
U1 '1>
U1

°' I
U1
tSI

BCLK-L

!MCLK-L

BUS ACLO L

I UBI 14 RCVD
ACLOH

I UBI 14 SYNCH A
ACLOH

I UBI 13 E131-14

I UBI 13 ES48
SPFIL

I UBI 14 UBUS
DCLO

;lJ

2-3 MSEC

TK-4316 ::s:
0
l"1
0
0
0
0..
'1>

PB INIT L F INIT BUTTON RELEASED

UBI 14 PB INIT H

UBl13 E133-12 ~ 6.6 MSEC .f
UBl14 UBUS
BBSY L

UBl13 E133-4 6.4 NSEC

UBl13 ASSERT
t'Jj DCLOH
"° ~

O'\ c BUl14 UBUS I l"1
U1 (\) DCLO L
O'\

O'\
I UBl14 RCVD U1
~ DCLOH

UBl14 MSEO 1.9 NS INITL

UBl14 UB INIT H

c
L 'UBl14 INIT UB

.,J 70 MSEC REOH
3

.139 MSEC 0 UBI 14 E133-12 l"1
0
0
0

TK~15 a.
(\)

DPMl7 _____ --

BASE CLK L

DPM17
CLK ENABLE H

DPM17
PCLK EN H

DPM17 CLK L

DPM17 CLK L

DPM17 D CLK L

DPM17
PHASE 1 H

DPM17 E25
CCS01 E6

DPM17 E58

CCS01 E7

DPM17 E39

f

320NS

LOAD NEW
MICROINSTRUCTION

------~' NExr <5:0> LATCH
NEXT <13:6> LATCH

---------,CS ADD <5:0> L

------~'CS ADD <13:6> H

________ __.lcs ADD <13:6> H

I
l

I

I ADDRESS CONTROL ROM I

Microcode

I

________________ _,X...__R_o_M_D_A_T_A_o_u_r_Pu_T_ >e:_
;

f -LOAO NEW
-----------------' MICROINSTRUCTION

TK~1

Figure 6-52

6-57

°' I
U1
00

DPM17 BCLK L

DPM17 MCLK L

DPM17 PHASE 1 H

, CONTROL PARITY THIS
MICROINSTRUCTION

GENERATE CONTROL
STORE
ADDRESS 0020

l'%j '°. DPM20 CS ~ PARITY ERROR H ___ _... __ _,r --......--..... -.-t----...... ------L-
m

~ MIC UTRAP L
U1
w

MIC GEN DEST
INH L

DPM17
ENABLE/UVECTH~~~~~~~~~~~~~~~~~~

___ __.f LOAD 0020
INTO LATCHES

3
TK 322 ._..

0
i"1
0
0
0
a.
(I)

VAX-11/750 Level II

Data Path

Student Guide

Course produced by Educational Services Department
of

Digital Equipment Corporation

Data Path

INTRODUCTION

The COMET data path is 32 bits wide. The main
components are five different types of LSI gate array
chips and two arrays of scratch pad registers. Some
special features include a rotator capable of multiple
bit shifting and variable length bit field extraction;
an arithmetic and logic processor (ALP) capable of BCD
calculation and hardware controlled multiply and divide;
and two sets of scratch pad registers for microcode
temporaries.

Figure 2 depicts the block diagram of the data path~

Two tri-state buses are used to interface with other
non-data path logic. The two buses are the MBUS and the
WBUS.

The MBUS is used to receive data from the scratch pad
and the memory interface logic. Data coming from these
sources are latched during the first half of the cycle
and must be turned off during the last half of the
cycle.

The WBUS is used mainly to send the data path results to­
the various destinations of the CPU. Examples of these
destinations are the WDR (Write Data Register), PC, VA,
and the scratch pads, etc.

In addition, two other internal data buses are present.
These are the RBUS and the SBUS. The RBUS interfaces
the ALP with the scratch pad array containing most of
the VAX architectural registers. The SBUS sends the
rotator output to the ALP.

In general, data from the two arrays of scratch pad can
be operated on directly by the rotator and the ALU, with
the results written back to the same location in the
same cycle.

7-1

Data Path

OBJECTIVES

Identify the various data path entities by answering
multiple choice questions. The entities will
include:

a) system clock and timing
b) control store
c) register
d) buses
e) super rotator
f) arithmetic and logical section

Utilizing the DPM pr int set, trace the signal path
for a preselected signal in the Comet data path.

Given a faulty processor, isolate the defective data
path gate arrays by running the applicable
diagnostics.

SAMPLE TEST ITEM

The process of extracting and zero extending an
operand is the function of the

a) arithmetic and logical section
b) super rotator
c) control store
d) general registers

RESOURCES

Data Path Specifications
Microcode Listing

7-2

OUTLINE

VII. A. 3 Sections of Data Path

1. Scratch pad
2. Rotator
3. Arithmetic & logical

B. Data Path Registers

c. Data Path Buses

D. Scratch Pad Logic

1. RAM R.
2. RAM M.
3. RSRC
4. MSRC
5. RNUM
6. RBS
7. SPA Status
8. Scratch Pad Address Control

E. Long Literal Register

F. Super Rotator Logic

1. The inputs
2. The outputs
3. The SRM chips
4. The SRK chip
S. The ALP chips

G. Multiple Bit Shifting

H. Variable Bit Field Extraction

I. Generate Constants

J. various Bit Shuffling

K. Rotation of Data

L. ALP Logic Section

1. Inputs & outputs
2. Misc signals & associated circuits

7-3

Data Path

OUTLINE (Continued)

M. ALP Function

l. Arithmetic
2. Others

N. ALP Control Function Chart
o. Microcode Example
P. Print Familiarization
Q. Summary

7-4

Data Path

Data Path

r'
I

•INS

SIUS

WINS DATA PATH 81.0CJC DIAGRAll _,
Figure 7-1

7-5

Data Path

REGISTER WIDTH CLOCK

SCRATCH PAD* 32 BITS D
Q REGISTER 32 BITS aD
D REGISTER 32 BITS OD
LONLIT 32 BITS D

RNUM 4BITS D/M
Resp•• 3BITS M
PLATCH . 6BITS D

SLATCH \ SBITS D

*SCRATCH PAD REGS. ARE DIVIDED INTO lWO SECTIONS. 16M & 48R.

** RBSP POINTS TO A 6 WORD BY 7 BIT STACK CALLED RBS

DATA PATH REGISTERS
TK-3054

Figure 7-2

7-6

Data Path

Scratch Pad Section

The scratch pad section of the data path consists of the
Scratch pad register and the scratch pad address logic (SPA
chip). Figure 3 illustrates the associated logic.

7-7

t'!j LONLIT

"° -.] c::
I

32 00 m
-.] LONG
I LITERAL w

32

~----1 ~AM

32

32

WBUS

REG.NO.

I SPA

I CHIP

---1
I

32 I
RSPA

r
I
I

R
GPR'S IPR'S

TEMPS

SCRATCH

PAO

ADDRESS

CONTROL

BUT LOGIC

MSPA

L---------
I

J__ ----
RBS

MOUS

SCRATCH PAD LOGIC

~·

I
I

I
r;-'- -AM

IM
M

-,
I TEMPS I

I
J -- _...J

32

rK 307:1

Data Path

REG NO RSRC .ASSIGNMENT/PURPOSE

0 00 DUAL PORT TEMP 0

1 01 DUAL PORT TEMP 1

2 02 DUAL ?ORT TEMP 2

3 03

I
DUAL PORT TEMP 3

4 04 DUAL PORT TEMP 4

5 05 I DUAL PORT TEMP 5

6 06 DUAL PORT TEMP 6

7 07 DUAL PORT TEMP 7

8 08 R S-PAO TEMP 8

9 09 R 5-PAD TEMP 9

10 OA R 5-PAO TEMP 10

11 . OB R S-PAO TEMP 11

12 oc R 5-PAO TEMP 12·

13 00 R 5-PAO TEMP 13

14 OE MEMORY MANAGEMENT TEMP 5

15 OF MEMORY MANAGEMENT TEMP 1

RTEMP

Figure 7-4

~EGNO RSRC ASSIGNMENT/PURPOSE

0 10 GPRO
1 fl GPA 1
2 12 GPR2
3 13 GPR3
4 14 GPR4

5 15 GPRS

6 16 GPR 6

7 17 GPR 7

a 18 GPRS

9 19 GPR9

10 1A GPR 10

11 18 GPR 11

12 1C GPR 12

13 10 GPR 13
14 lE STACK POINTER

15 tF MICRO CODE TEMPORARY

GPR

Figure 7-5

7-9

Data Path

REG NO RSRC ASSIGNMENT/PURPOSE

0 20 KERNEL STACK POINTER

1 21 EXECUTIVE STACK POINTER

2 22 SUPERVISOR STACK POINTER

3 23 USER STACK POINTER

4 24 INTERRUPT STACK POINTER

5 25 PROCESS CONTROL BLOCK BASE

6 26 MEMORY MANAGEMENT TEMP 2

7 27
I

MEMORY MANAGEMENT TEMP 3

a 28 PO BASE REGISTER

9 29 PO LENGTH REGISTER

10 2A P1 BASE REGISTER

11 28 P1 LENGTH REGISTER

12 2C SYSTEM BASE REGISTER

13 20 SYSTEM LENGTH REGISTER

14 2E NEXT INTERVAL REGISTER

15 2F MEMORY MANAGEMENT TEMP 4

IPR

Figure 7-6

REG NO MSRC ASSIGNMENT/PURPOSE

0 00 DUAL PORT TEMP 0
1 01 DUAL PORT TEMP 1

2 02 DUAL PORT TEMP 2

3 03 DUAL PORT TEMP 3
4 04 DUAL PORT TEMP 4

5 05 DUAL PORT TEMP 5
6 06 DUAL PORT TEMPS
1 07 DUAL PORT TEMP 7
8 08 MS-PAD TEMP 8
9 09 M S.PAO TEMP 9
10 OA M S-PAO TEMP 10
11 08 ERROR CODE, MEM FAUL TS & ARITH TRAP
12 oc FPO PACK ROUTINE OFFSET

13 00 MEMORY MANAGEMENT TEMP 0
14 OE SYSTEM CONTROL BLOCK BASE
15 OF SOFTWARE INT SUMMARY REGISTER

--- .

MTEMP
TK-3069

Figure 7-7

7-10

Data Path
RSRC ASSIGNMENTS

RSRC<S:O > RAM·R OPERATION
HEX REGISTER

00-00 TEMPO-TEMP13 0

OE MM.TEMPS -

OF MM.TEMP1 .

10-10 RQ..R13 .

lE SP

1F RTMPGPR .

20 l<SP

21 ESP .

22 SSP .

23 USP c

24 ISP .

25 PCSB_ .

26 MM.TMP2 .

27 MM.TEMP3 .

28 POBR .

29 POLR .

2A P1BR -

28 P1LR .

2C SBR .

20 SLR .

2E SPNICR.SPtCR .

2F MM.TEMP4 -

TK-3060
Figure 7-8

7-11

Data Path

RSRC ASSIGNMENTS (CONT)

RSRC <s:o> RAM-R OPERATION
HEX REGISTER

30 TEMP.A .

31 OST.R

32 IPR.A .

33 CRP.R .

34 (TEMPO)

35 (TEMP7) LON LIT

36 (TEMPOt ZERO

37 (TEMPO) ZERO.CLRRBSP

38 TEMP.ROR1 .

39 OST.POR1 .

JA IPR.RORl

38 GPR.ROR1 .

3C TEMP.R+l .

30 DST.R+l

3E IPR.R+1 .

3F GPR.R+1

TK-3061

Figure 7-8 (Continued)

7-12

Data Path

MSRC ASSIGNMENTS

MSRC<4:0> RAM-M OPERATION DESCRIPTION

HEX REGISTER

OO-OA TEM PO-TEMP10 MICROCODE TEMPORARIES

08 ERRCOO ERROR CODE

QC F PDOFFSET FPO PACK ROUTINE OFFSET

00 MM.TEMPO MEMORY MANAGEMENT TEMP

OE SC88 SYSTEM CONTROL BLOCK

BASE

OF SISR SOFTWARE INT SUMMARY

10 TEMP.A MTEMP INDEXED BY RNUM

11 TeMP.R+t MTEMP INDEXED BY RNUM+1 .
12 (TEMPOJ• MOR MBUS<··MDR

13 (TEMPO)• WOR MBUS<··WOR

14 (TCMPO) PSHSUB WRITE ··TO RBS

15 (TEMPO) PSHAOO WRITE +TO RBS

16 (TEMPOl WBUS RNUM WBUS<··PNUM

17 (TEMPO)• XS.PC PC+1 M8US < • • XS, PC<·· PC+I

18 (TEMPO)• MA MBUS<··MA

19 (TEMPOl. PC BACK MBUS < • • PC BACK

1A CTEMPC»• PC MBUS<·· PC

18 (TEMPOt• VA MBUS<··VA

1C (TEMPO) READ RBS READ RBS

10 (TEMPOa RHUM WBUS RNUM<··WBUS

1E (TEMPO) WB RBSP WBUS<·· RBSP

1F (TEMPO)• TB MBUS <··TB DATA

TK-3079

Figure 7-9

7-13

Data Path

LOAD SIGNAL
MSRC OPERATION RNUM

ASSERTED SPECIFIED CONTENTS

YES xxxxx MICROSEQUENCER REG. FIELD SPECIFIED
BY ~ICROCODE

NO 11101 RNUM ._WBUS WBUS<3:0>

NO 11100 POP RBS REG FIELD OF RBS

RNUM LOADING CHART

Tl<-3050

Figure 7-HJ

7-14

Data Path

6 54 3 2 1 0

I I

I
RBS

, 10!110111110

t I

6 5 4 3 2 1 0

I ~~~OR o s;ze f EG1STER'.NuMBER: I RBS ENTRY

•AUTO-INCREMENT, WORD, REGISTER 6

RBS ENTRY FORMAT
TK-3062

'

Figure 7-11

7-15

Data Path

D DATA TYPE ENCODED
VALUE

SIZE ON SBUS

00 BYTE 0001

01 WORD 0010

10 LONG 0100

1 1 QUAD 1000

. ,
ADO OR SUB OPERATION

0 SUBTRACT (DEC)

1 ADD (INC)

I REGISTER NO. OTHRU F

RBS ENTRY Fl ELDS

TK-3063

Figure 7-12

7-16

Data Path

IF RSRC OR RNUM SPECIFIES GPR

SPASTA RNUM REG
GPA USE

1:0 CONTENT

01 1 1 1 0 VAX MODE SP

1 0 0 1 1 1 COMP. MODE PC

1 1 0 1 1 0 COMP. MODE SP

00 ALL OTHER VAL. x

IF MSRC SPECIFIES RNUM +- WBUS & RSRC IS NOT GPR

SPASTA WBUS
IPR USE

1:0 3:0

1 1 0-4 PROCESSOR
CONTROL SP#S

1 0 5-7, E, F RESERVED

• ~
00 8-D ALL OTHERS

0 1 x x

IF MSRC SPECIFIES A POP RBS & RSRC IS NOT GPR

SPASTA RBS BIT6 INDICATED MODE
. 1:0

00 0 AUTO-INC

1 0 1 AUTO-DEC
-v

SPA STATUS

TK-3051

Figure 7-13

7-17

IF MSRC SPECI Fl ES WBUS +- RBSP & RSRC IS NOT GPR

SPASTA

1:0 RBSP RBS CONDITION

01 0 EMPTY

00 ALL OTHER VAL. NOT EMPTY

IF RSRC OR RNUM IS NOT GPR, STATUS IS DEFINED

FOR THE FOLLOWING ONLY.

MSRC

68:64

..
111 00

1 1 1 0 1

1 1 1 1 0

OPERATION

SPECIFIED

POP RBS

RNUM +-WBUS

WBUS+-RBSP

SPA STATUS

Figure 7-14

7-18

TK-3064

Data Path

t'Zj
lO

-...J c
I

'"" ~ CD
\0

....,J
I
~

U1

<63:56>

BMUX

ROT

6 ,-
\ ,.

32

p-~~,

I ca1 I SECOND
LEVEL

ROUS

MBUS

<39:31>

LITRL

32 32 9

FIRST LEVEL SHIFT

L --.L - -- --- !.5..L
MUX&MASK ~

36

SAK

FIND FIRST

4 8

WMUXZ

6

SRK
STATUS

36 Pu£

SHF

6

BUT LOGIC..,_

sous

ROTATOR LOGIC

WBUS

a 2 __ o_s_1z_E _____

f;2 0 CLK ------PRI -----~--~~

SEC

6

MUX

6

Data Path

ROTATOR LOGIC

The rotator is conceptually a 64-bit in, 32-bit out barrel
shifter combined with a data shuffling multiplexer.

There are three sources of data into the rotator.

(1) MBUS, denoted by M, is normally used as the input
data <63:32> to the rotator.

(2) RBUS, denoted by R, is normally used as the input
data <31:00> to the rotator.

(3) LITRL, these are 9-bit input data directly from the
following micro-fields: RSRC, ISTRM and CC. The 9
bit LITRL can be zero or one extended to 32 bit and
rotated by 0, 1, 2 ••• , 7 nibbles.

The barrel shifting operation is implemented in two levels.
The first level shifts the 64-bi t inputs right by 0, 4, 8
• • • • • 28 bf ts and outputs a 35-bi t intermediate result.
This level shifts the SBUS data right by 0, 1, 2, or 3 bits.
Outputs from the second level shifter will be denoted by
S<31:00>. By a proper combination of the two level shifts,
the 64-bit input data can be shifted right 0 through 31 bits
and left 1 through 31 bits.

The SBUS data can also be masked off starting from an
arbitrary bit position. This, combined with the barrel
shifting operation, effectively executes a variable length
bit field extract, and zero extended operation.

The data shuffling multiplexer implements some VAX peculiar
functionality such as BCD swapping, convert from BCD format
to ASC I I , etc •

7-20

...J
I

N
I-'

SHIFT IN BITS TO

3231

MBUS R BUS

-------~---------------·---------~3 Y o'

THE 32 BITS OF NEEDED DATA
<44:13>

RESIDE IN NIBBLES <11 :3>

: I ; + : I : f : I : ~ : I : i : I : ~ : I : ~ : I : ~ : · I : 3; ; I

SECOND

LEVEL

OUTPUT

SHF

31

4

I I I I

- FIRST OPERATION - ... •

SHI FT RT 3 NIBBLES

- SECOND OPERATION -

SHIFT RT 1 BIT

I I I I I I I I I I I

-----1ST SHIFT, HOW MANY NIBBLES.

0

2ND SHIFT, HOW MANY BITS.

ROTATE RIGHT OPERATION
RR.MR.P

I I I I I h3
0

TK-3065

.....J
I

N
N

63

34

FIRST

0

EXTRACT DATA STARTING

WITH BIT 20 AND ENDING WITH

... BIT 27. PUT DATA IN LOW ORDER

POS OF SBUS & ZERO EXT.

LEVEL ..-.r--9----.....---·----------.._..-.---...-------------------------..-...... ~---.
s BUS 0 I 0 I 0 0 I 0 I 0 I 0

STEP2.

PASS FIRST 32 DATA BITS WITH NO SHIFT.

0

LEVEL o~~~~~~~~~~~~~~~~~~-o xlxlx(x xfxlxlx
OUTPUT

5 0 1 0 4 0

SEC l+H +H=27 PAI EE1 -· SHF I+ i+ ! ij=20

ROTATOR EXTRACT AND ZERO OPERATION

XZ.MR

2 0

Posfil]=5

TK-3066

~ 0

16 NIBBLES/64 BITS
SRMDATA f++++++ ls I +l+l+l 1 H

STEP 1 . SBUS BITS

<2:o>+-O

<3> +-1

<34:4>+-0

FIRST 34 O

LEVE+ E ! I ! ! ! I ! ! ! I i ! ! I ! ! ! I i ! ! 1 ! ! ! I ! i 3 + H + I
SBU~ .hEP2 SHIFTCONSTANTRT

0=8

I ""14 •

3=1

SECOND 31. 0

LEVEL I+ ! I i i ! I ! i i I ! ! i I ! ! ! I ! ! ! I ! ! ! I ! i 3 + H +I
OUTPUT .

CONX.SIZ
SHF.V!M+I

TK-3071

l'"Zj
l.Q

-.J c
I ,.,

N CD
.s::i.

-.J
I

......
\.0

THIS FUNCTION IS USED TO CONVERT A 4 DIGIT BCD STRING ON THE MBUS TO A

4 DIGIT NUMERIC (ASCII) STRING. TO USE THIS FUNCTION PROPERLY, A

CONST ANT XXX3 XX33 (HEX) MUST BE SET UP ON THE ROUS.

ALTERNATE 4 BIT CHUNKS FROM THE MBUS AND THE RBUS ARE SHUFFLED ONTO

THE SBUS AS FOLLOWS:
SBUS<03:00> <- MBUS<07:04>

SBUS<07:04> <-- RBUS<03:00>

SBUS<11 :08> <- MBUS<03:00>

SBUS<15:12> <-- RBUS<07:04>

SBUS<19:16> <-- MBUS<15:12>

SBUS<23:20> <-- RBUS<03:00>

SBUS<27:24> <- MBUS<11:08>

SBUS<31 :28:> <- RBUS<19: 16>
RBUS SBUS<34 :32> <-- 0

28 24 20 16 12 8 4 0 28

x x x 3

32 24 20 16 12 8 4

SBUS

24 20'

0

CVTPN CONVERSION OF BCD TO ASCII (SHUFFLE)

BCD.SWP

MBUS

16 12 8 4 0

TK-3063

16 NIBBLES / 64 BITS

l'Xj FIRST
34 0

...... •
~ :LEVEL o:o:o) c::

I ..,
N CD .SBUS
lJ1

......)

I
N
~

. SECOND

LEVEL
I ! I • I I • • 0 • 2 3 1 3 4 I 3 I I 3
I ' . 8 • I

OUTPUT 31 0
BYTES

D SIZE<l:O> ROTATED

00
0

01 2 w
C1"

10 3 w
RR.MM SIZ ROTATE RT M BUS & M BUS '"tJ

11 0 DJ
BY 2 BYTES· FOLLOWED BY CVTPN C1"

!:3'"
TK-3057

OREG.

ALP(8t

ALK

Ff'S

ALKC

Al USO

TOG

LOOP

~ --+ LLIT L
l.Q ._..,. ASl031 l

....J c ++ AS1000l I l"1
N CD 051031
O'\

....J ._.... OSIO 16
I

N 05107
........

......, OSIOO

--+ PSL C

--+ ALUCJ1 L

4-- SPWBENL

+- SPWWENL

. .._ SPWLEN l

--+ ODCLKL

+--DBL EN

._ BCDL

,..__ CAR OUT l

+-BYTE l

SECOND u:vEi..

32

32

32

WMUX

RBUS

32

ALU

32

OREG .

32

~BMUX
~~o--

we us

I

SIGN/ZERO

EXTEND

MBUS

C<7:0>

G<7:0>A&B ~
P<7:0> ~

0 REG.

32

CLA
--.. Cl t

--+ BCDL

--+SB

,.__... BINC8 L

.,.___ 8COC8 l

+--- c
,..____ FS

.,.___ FOV

---+ MUXSEL

--+ MUXIUA

---+ MUXIUB

..,..__ MUXOUT

------10--11 ALPCTL <57:48 > ~~
ALP LOGIC

TK 10111

t:J
DJ
rt
DJ

Data Path

ALP LOGIC

The ALP is made up of eight identical slices of gate array
chips connected to perform 32-bi t binary and 8 digit BCD
arithmetic with carry look ahead logic. Two internal
registers are provided for intermediate storages.

There are seven major sections associated with the ALP
logic:

l. ALU input mux, AMUX and BMUX
2. ALU
3. Output mux, WMUX
4. Q Register
5. D Register
6. WBUS control
7. Status logic

7-27

Data Path

A BCD STRING I 1 2, 3 4 5, 6 7 8 lwouLo BE STOR:o IN MEMORY AS FOLLOWS:

12-ADDAESS X

34-ADOAESS X + 1

56-AOORESS X + 2

78-ADDRESS X+3

WHEN READ OUT AS A LONGWORD

11 8 5 6 3 4 1 21

APPEARS AT THE DATA PATH

NIBBLE 7 6 5 4 3 2 1 0

DATA

L M
s s
D 0

IN ORDER TO PERFORM AN ARITHMETIC FUNCTION ON TWO
SUCH STRINGS (ADO), THE CARRY FROM NIBBLE 6 WOULD
HAVE TO BE PROPAGATED TO NIBBLE 7, ANO NIBBLE 7
PROPAGATED TO NIBBLE 4, ANO SO ON .•..•

- -

START STOP

CLA

Figure 7-22

7-28

TIC-3052

SECOND LEVEL

RBUS

OREG.---.•32--

32

0

32

WMUX

32

32

BMUX

WBUS

ALP LOGIC

Figure 7-23

7-29

32

Data Path

SIGN;ZERO

EXTEND

MBUS

DREG.

32

TK-3074

Data Path

ALU Q REGISTER ALUSHF • 011 ALUSHF •010
--

SHIFT SHIFT (ROTATE) (SHIFT)

d ALU H LEFT LEFT a b ALU a

0

ALU ALU

LEFT RIGHT

0 0 0

-

RIGHT LEFT ® cffi: 0

RIGHT RIGHT r ALU H 0 h ALU 0

0

NONE LEFT ~ d 0 h G!] 4 !;,3,r I
NONE RIGHT ~ d 0 h 13~

WBUS(31)

LEFT NONE r1 ALU ~ CT] ~CD
0(31)

RIGHT NONE I .. , ALU b CT] @-CTI
0(31)

*0(31) IS UNDEFINED FOR ANY LOAD 0 FUNCTION.

ALU/Q SHI FT & ROTATE

TK-3059

Figure 7-24

7-30

Data Path

THE ALU PERFORMS THREE BINARY ARITHMETIC OPERATIONS, iWO QUASI-BCD

ARITHMETIC OPERATIONS, AND FIVE LOGICAL OPERATIONS.

THE THREE BINARY ARITHMETIC OPERATIONS ARE:

A PLUS B PLUS CIN (A + B + CIN)

A PLUS .NOT.B PLUS CIN (A - B - CIN)

B PLUS .NOT.A PLUS CIN (B - A - CIN)

IN THlS MOOE, TWO CAR RY LOOK AHEAD SIGNALS (PANO G) ARE

CALCULATED BASED ON 16.

THE TWO QUASI-BCD ARITHMETIC OPERATIONS ARE:

A PLUS B PLUS CIN (A + B + CIN, BCD)

A PLUS .NOT.B PLUS CIN (A ~ B - CIN, BCD)

IN THIS MODE, THE OUTPUT OF THE ALU IS THE SAME AS

WERE DOING BINARY ARITHMETIC, BUT THE P AND G 51GNALS ARE

CALCULATED BASED ON 10. EXTRA LOGIC ARE USED TO ADJUST THE

4 BIT ALU OUTPUT TO A TRUE BCD RESULT.

THE-FIVE LOGICAL OPERATIONS ARE:

A.ANO.B

A.OR.a

A.ANONOT.S

B.ANDNOT.A

A.XOR.B

ALU ARITHMETIC FUNCTIONS

Figure 7-25

7-31

TK-3055

Data Path

ALU FUNCTIONS

THE ALU CAN PERFORM 16 LOGICAL ANO ARITHMETIC OPERATIONS

WHICH IS SPECIFIED BY ALPCTL <S:X>.

IN GENERAL, THE 16 ALU OPERATIONS ARE CLASSIFIED INTO THREE

GROUPS: BINARY ARITHMETI~. BCD ARITHMETIC AND LOGICAL.

ALPCTL <5:2> ALU OPERATION GROUP

0000 A-8-CI BINARY ARITH

0001 A-B-CI, BCD BCD ARITH

0010 (A-8-CI).SR BINARY ARITH

0011 (A-B-Cl).SL BINARY ARITH

0100 A+B+cl BINARY ARITH

0101 A+B+CI, BCD BCD ARITH

0110 (A+B+cl) .SR BINARY ARITH

0111 (A+B+CJ).Sl BINARY ARITH

1000 A.ANO.a LOGICAL

1001 A.OR.8 LOGICAL

1010 (A.ANO.B).SR LOGICAL

1011 (A.AN0.8).SL LOGICAL

1100 B-A-CI BINARY ARITH

1101 A.XOR.8 LOGICAL

1110 A.ANO.(.NOT.8) LOGICAL

1111 (.NOT.A) .ANO B LOGICAL

NOTATIONS

A•AMUX

B= B MUX

Cl =CARRY INPUT

SR :i: SHIFT RIGHT

SL= SHIFT LEFT

TK-30!58

Figure 7-26

7-32

Data Path

MICROWORD

ALPCTL=<57:48>
57 48

9 8 4 0

I I
I· I

WHICH COLUMN I
I

WHlCH ROW I

WHICH O&D OPERATION I
I I I I

I 1
I I

1
; } EXAMPLE•

ALPCTL= 373 0 111 0 0 I 1
I I I

CHART FUNCTION I I I
I 0 I c I 3

COLUMN "o" - AMUX GETS ZERO

BMUX GETS SUPER ROTATOR

- ROW"C" BMUX MINUS AMUX MINUS CARRY IN

(SR-0-0)

OPERATION
113" WMUX GETS SUPER ROTATOR

OREG & OREG GETS WMUX

•PASS THE SBUS THROUGH THE ALU

READING THE ALPCTl FUNCTION CHART

Figure 7-27

7-33

. TK-3056

Data Path

__[[;MICRO ORDER____., A B c D E F

LU AMUX,BMUX 0,01 0,02 o.s o.s A,Q R,S

0 A-8-CI

1 A-8-Cl,BCO

2 (A-8-Cll.SR

I
3 (A-B-Cll.SL

4 A+B+CI

5 A+B+Cl,BCO

6 (A+B+Cl).SR

7 (A+B+Cl).SL

..
s· A.ANO.B

9 A.OR.B

A (A.AND.Bl.SR

B (A.ANO.Bl.SL

I

c I
8-A-CI

i-_::._T'.

0 A.XOR.a

..
E A.ANO.(.NOT.B)

;

F {.NOT .A).AND.B

wx~

Qt-Oo-WX

ALPCTL FUNCTION CHART COLUMNS A·F

TK-3087

Figure 7-28

7-34

Data Path

AL PC TL

This is a 10-bit field used by the data path to control the
ALP logic. The 10-bit field specifies 1024 functions. Most
of them can be grouped together based on (1) the ALU
operation, (2) the inputs to the ALU, and (3) the Q and D
registers control. Such grouping of the ALP functions is
depicted in Figure 28, the ALPCTL FUNCTION CHART.

In the ALP FUNCTION CHART, there are 16 major columns. Each
column is identified by ALPCTL<9:6>, which in general
specified the inputs to the ALU. There are also 16 major
rows. Each row is identified by ALPCTL<S:2>, which in

- general specifies the ALU operation. At the intersection of
a major column and a major row, there are four blocks which
are further identified by ALPCTL<l:0>. Each block specifies
an operation on the Q and D registers with the given ALU
operation and the ALU inputs.

Functions that cannot be readily specified by the above
scheme are called ALP special functions. All these
functions are marked off with a shaded corner in the ALPCTL
FUNCTION CHART.

7-35

QMG.

_.,....:..:.i)ltm
F•~iiJIMGPllt

Tr1 .- WA.

SIU$

~
IUTLOOIC

.. aus

MICRO ADDRESS IOS.RED+11

DATA '"TH ILCICIC DIAGRAM

llOVL IRDI+. R1

Figure 7-29

7-36

DREG.

Data Path

°tOllOITIONS

llTrt -· DUlllllG

'"°'

0

0

@
ESl'AIUSH
a:JNSTANT•

Qlllll.

WIUS

WBUS

SIUS

RSl'A

OSIZE

© SAVE

AOOlliSS.DSIZ

••-Of' INCD

Gl'll.

WIUS

© SHIFT CDNSTANT

AIGHTI llT

lllUS

MICRO ADDRESS 105..RED-AUTO.INCI

DATA PATH BL.CCX OIAGRAM

MOVL (ROI+, R1

Figure 7-30

7-37

DllEG

0
IUSIR&AO

LOAOlllOll

WITMGATA

f-111111

l.Ol:ATIOH

SPECIFIED

IYVA.

Data Path

~ -· 0 WlllTI DATA , __
lllTOGPll2

©
llCUTIDATA ,...,..
10-.

w•us

Wllllli

~
~

1111'1.0GIC

OllliG.

llllCllO ADDRESS llUIOV.8.W.L.REGI

DATA MTH ILOCX DIAGRAM

. llllOY\.111111+,lll

Figure 7-31

7-38

Data Path

CONlllTIOlll
SETIY
HA-"I
OUlllNG
lllDX

0
PUT­

OATAOll -

Data Path

CHAPTER 7 INTERVAL TIMER AND TIME OF YEAR CLOCK

7.1 INTRODUCTION TO INTERVAL TIMER

The Interval Timer is an integral part of the Comet CPU
hardware and it is used primarily to schedule events and
control the· amount of time a particular task can operate.
The operation of the Comet Interval Timer. from the software
level is consistent with other VAX family processors. Most
of the Timer is implemented within a gate array called TOK.
The Timer is implemented using a 10 MHz TTL oscillator, a
divide by HJ, and the TOK gate array. The Timer is
incremented at 1 microsecond intervals which makes the
operation consistent with other VAX family Timers. The
maximum interval then could be expressed as
(((2**32)-l)*.000001)/60 which works out to be around 71
hours or approximately 3 days. It does require external
dedicated scratchpads to maintain the interval count, so the
TOK gate array was placed on the OPM module. The Interval
Timer is accessible to the VAX-11 macro code through
Internal Processor Registers (IPRs) • These IPRs can be
accessed with MTPR and MFPR macro instructions, and also
from the console terminal. An explantion of the Internal
Processor Registers will follow in subsequent ·paragraphs .•
The Interval Timer operation is basically straightforward.
The operating system loads the Timer with 2's complement of
the desired interval a particular task must run. The Timer
is started with an MTPR instruction and when the Timer
overflows at the end of the desired interval, a macro level
interrupt request is booked with the CPU. If the IPL level
of the Timer Interrupt Request (IPL 18) is greater than the
current PSL IPL, the timer service macro routine is entered
via SCBB+C0. This would terminate the current task, if
something else of higher priority had not done so.

7.2 DETAILED DESCRIPTION OF THE TIMER CIRCUITRY

For the following discussion you will need the module
schematic diagram of the DPM and CCS ~odule. Refer to the
CCS module schematic page CCS14 and locate ES. ES is the 10
MHz TTL oscillator that provides the time base for the
interval timer gate array (TOK) on the DPM -module. The
output from ES goes to the 7490 IC which is a decade
divider. The output of E4 is a symmetrical 1 MHz signal that
provides the increment interval of 1 microsecond. The signal
TOK OSC OUT H is wired from slot S (CCS module) to slot 2
(DPM module). Refer to the DPM module schematic page DPM13.
The TOK gate array is shown in the lower left corner. The
signal TOK OSC OUT H enters the DPM module and goes to pin
4S of the TOK gate array. The other inputs to the TOK gate

7-39

Data Path

array are PROC !NIT L which will clear any interrupt
requests left in the gate array and set the logic to a known
state. BCLK L and D CLK ENABLE H are used internally to form
a D CLK to load the Timer control and data registers. Access
to the gate array is entirely controlled by the WCTRL field
of the microword which is used in the MTPR and MFPR macro
instructions and the interval timer service microroutines.
There is a full 32 bit bi-directional interface to the CPU
WBUS for reading and writing the timer control and data
registers. The signal TIMER SERVICE H that exits the TOK
gate array is used to signal the microcode that a
micro-routine to update the high half of the interval count
or a transfer of data to the IC.R register from the NICR
register is necessary. The signal TIMER INT L is the timer
interrupt request that is generated when the interval timer
overflows. This goes to the INT gate array on UBI so that
the interrupt request can be arbitrated among the other
requests. This concludes the detailed circuit description of
the Timer circuitry. Timer functionality is verified with
the Hardcore instruction test EVKAA. a failure of the timer
can be isolated to one of three components, the oscillator,
the decade divider, or the TOK gate array.

7.3 INTERVAL TIMER FIRMWARE REQUIREMENTS

The implementati'on of the Interval Timer in the Comet
CPU is not at first obvious. Figure 7-32 shows the VAX 11
Interval Timer IPRs as they appear to the software. There
are 3 registers associated with the Interval Timer. IPR 19
is the Next Interval Count Register (NICR) and this register
is loaded with the 2's complement of the desired interval.
The number loaded into this register is the two's complement
of the desired interval in seconds divided by 1 microsecond.
The IPR lA is the Interval Count Register (ICR) and it
contains the current count of the timer at all times. The
ICR is loaded from the NICR and the value in the NICR does
not change unless an MTPR instruction writes new data into
it. IPR 18 is the Interval Counter Control and Status
Register. This register controls the operation of the
Interval Timer. The function of the bi ts in the ICCS is
explained below.

7-40

Data Path

50$:
MAIN PARTITION IS BUSY
LOCATE FIRST SUBPARTITION

--,,
60$: IS THIS SUBPARTITION BUSY? _J

DETERMINE IF TASK WHICH OWNS
BUSY SUBPARTITION CAN BE
CHECKPOINTED ($TSTCP)

CAN OWNER TASK BE CHECKPOINTED } NO-. 100$

---,,
70$: I DOES THE NEXT SUBPARTITION EXIST

YES

J

---,.
I IS THIS SUBPARTITION BUSY? l NO

J 80$:

~~

INITIATE CHECKPOINT OF TASK
WHICH OWNS SUE:PARTITION ($1CHKP)

--,,
I ANY MORE SIJBPARTITIONS?

YES

J 90$:

100$: I DONE, RETURN TO CALLER

TK-1724

7-41

ICCS BIT FUNCTION

<15> ERROR

<7> IR

<6> IE

<5> SC

<4> TR

<0> RUN

Data Path

This bit is set if an improper
operation is attempted, for
example start the timer
without clearing the Interrupt
Request (IR) from the previous
Timer overflow.

Interrupt Request is set when
the Timer overflows.

Interrupt Enable, This bit
must be set by the VAX 11
macro code to enable Timer
interrupt requests at IPL 18.

This is a write only bit that
the macro programmer can use
to step the interval clock 1
count at a time. Each write to
the ICCS with bit <5>=1 wi 11
step the interval timer 1
count.

Transfer moves the
contents to the ICR.

NICR

This bit starts the interval
counter incrementing until it
overflows. This bit would be
set after the transferring the
NICR to the ICR.

Figure 7-33 shows how the hardware is implemented. The TOK
gate array does not contain all the circuitry, as stated
earlier, to make the timer function. The first register in
Figure 7-33 shows the TOK control bi ts in the high half of
the WBUS bits. The lower 15 bits of the TOK gate array can
be read as either bits <15:0> of the NICR or as <15:0> of
the ICR depending on which is desired. The high half of both
the NICR and ICR are maintained in an RTEMP scratchpad that
is dedicated to the timer. This means that when the lower 16
bits of the !CR are going to overflow, a carry from bit 15
must be added to the contents of the scratchpad that
contains the high half of the ICR. This is accomplished by
forcing a timer service trap at BUT SERVICE to micro-vector
to control store address 0014. At location 0014 is the
micro-service routine that will update the scratchpad
portion of the !CR. The RTEMP scratchpad that contains the

7-42

Data Path

high half of the reR is a single 32 bit location that is
called R[SPNieR.SPieR]. The scratch pad location contains
the high 16 bits of the NieR in bit positions <31:16> and
the high half of the ICR is stored in bits <15:0> of
R[SPNieR.SPICR]. Figure 7-33 shows how this is laid out. The
timer service microcode has to access the scratchpad by·
rotating the contents properly. As you can see the NICR IPR
is scratchpad memory in bi ts <31: 16> and <15: 0> actually
live in the TOK gate array. The same is true about the ICR.
The ICCS shown in the bottom register interfaces to the TOK
gate array bits <31:16>. The MTPR and MFPR instructions have
to rotate the write and read data to the recs 16 bits to the
left. The bits described previously in the recs register are
visible to the WBUS rotated left 16 bit positions. The
following TOK control bits are explained below.

TOK BIT FUNCTION

VP (WBUS <17>) This bit is set by the
microcode in the interval timer
service microroutine to
indicate that the contents of
the SPICR is all ones. This
informs the TOK gate array that
the next reR overflow should
set TIMER INT L.

TR (WBUS <18>) TR is set in the TOK gate array
after an MTPR initiates a
transfer to the NICR. TR is not
the same as TRANSFER (WBUS
<20>) which is set by the macro
program to initiate the
transfer of the NICR data to
the ICR.

7-43

Data Path

ICCS BIT FUNCTION

SR (WBUS <19>) SR means service request, SR is
set by the TOK gate array to
request service from the timer
service micro routine to update
the SPi:CR after the ICR
overflows.

TVP (WBUS <24>) This bit is set by the
microcode to tell the TOK gate
array that the SPNICR is equal
to -1. This enables the VP to.
set when a transfer to the ICR
is done and it prevents the ICR
from being auto loaded after
interrupt.

7.4 TIMER SERVICE AND INTERRUPTS

The signal TIMER SERVICE H from the TOK gate array is
asserted for two conditions. The first is if SR is set
indicating an overflow from ICR <15:0> and the second
is if TR is set indicating that the previous macro
instruction was an MTPR that set the TRANSFER bit
(WBUS <20>). At the next BUT SERVICE the TIMER SERVICE
request, if honored, will invoke the TIMER SERVICE
microroutine that begins at control store address
0014. This routine has to determine if there is a
SERVICE REQUEST (SR) or TRANSFER REQUEST (TR) and do
the appropriate service. A SERVICE REQUEST (SR) means
the microcode has to increment the SPICR. A TRANSFER
REQUEST (TR) causes the SPNICR to be moved to SPICR.
Once the service request is completed the microroutine
backs up the PC and does IRDl on the VAX-11 macro
instruction preempted by the TIMER SERVICE request.

Timer Inte~rupt requests operate in a similiar
fashion, at BUT SERVICE if any interrupts are pending,
the INT gate array has already completed arbitration
and it will drive the MICRO VECTOR address lines <2:0>
with the highest priority request encoded into a micro
address. The complete microaddress of the Timer
Interrupt service routine is formulated by the SAC,
MSQ, and INT gate arrays. The control store address of

7-44

Data Path

the first microinstruction of the Timer interrupt
service routine is 0038. The microcode would transfer
control of the macro program to the Timer Service
Routine that is pointed to by contents of SCBB+C0.
This routine must clear the IR bit of the ICCS before
using the timer again or an Interval Timer ERROR will
occur.

7.5 TIMER MACRO CODING EXAMPLE

Figure 7-34 is an example macro program that activates
the interval timer. This is a stand alone program and
could not operate under VMS as is. All this routine
does is set up the interval timer with a 10 second
interval. The timer is started and the CPU just waits
for the interrupt that occurs 10 seconds later when
the counter overflows. When the counter overflows, the
interrupt service routine is entered via SCB+C0 where
it just halts the CPU. If C is typed at the console
the program will reload the timer and wait for another
10 seconds until the counter overflows. That all this
program is capable of, but it does show how to load
the timer, start it, and handle the interrupt at
Vector SCBB+C0. Let's analyze it.

Lines 4,5, and 6 are assembler directives that build
the SCB in the low two pages of memory (0 to 3FC). The
value associated with label INTERVAL is the test
interval in microseconds. 10000000 microseconds is the
same as ten seconds. The label ST TIM has the value 51
hex associated with it and this-will be used to set
bit <6> Interrupt Enable, bit <4> Transfer NICR to
ICR, and bit <0> the GO bit that starts the timer
running. Lines 13 to 16 are local symbol definitions
for internal processor registers. At 1 ine 19 is a
directive to allocate 20 longwords\for the stack
space. Line 23 is the beginning of the main program to
get things going. The first instruction sets up the
stack pointer. The next instruction points the SCBB to
address 0 in memory. At line 25 the interval value
defined at line 8 is negated (2's complement) and put
in R0. The address of the service routine (TIM SERV)
is moved into the SCB so that timer interrupt will
vector to relative address 478. At line 27, the NICR

7-45

Data Path

is loaded with the 2's complement of the interval (10
seconds). The instruction at line 28 transfers the
data pattern defined in line 9 to set IE, transfer the
NICR to the !CR, and start the timer. The IPL of the
machine is lowered to 17 to take the timer interrupt
when the timer overflows. The next instruction just
waits for the interrupt.

When the interval timer overflows, the interrupt
request at IPL 18 is generated and if honored, the
macro code resumes at the label called TIM SERV. The
interrupt service routine must clear bit <7> in the
ICCS or when the REI is executed, the IPL 18 interrupt
request is immediately generated again. The HALT
instruction is there to print out the PC at the end of
10 seconds. If the program is continued by typing C at
the console, the timer is restarted with the same
interval. This means that the timer can be reloaded
from the NICR continuously. The primary intent of the
program is to show ~he mechanism by which the timer
establishes intervals of execution time for programs
in a time shared environment. This concludes the
discussion of the interval timer operation.

7-46

ERROR

WBUS
31

ICR

24 23 22 21 20 19 18 17 16 15

INTEN

SINGLE CLOCK

TRANSFER

SERVICE REQ

TRANSFER REQ

OVERFLOW PENDING

RUN

31 1615

IPR 1A SCRATCHPAO ICR R [SPNICR.~ICR] <15:0>

NICR
31 1615

IPR 19 SCRATCHP~O NICR R [SPNICR,SPICR] <31:16>

IPR18

ICCS
31

0

TOK GATE ARRAY <31>

7-47

15

Data Path

NICR <15:0>
ICR <15:0>

TOK GATE ARRAY
INTERFACE .
TO CPU WBUS __ '

TOK GATE ARRAY ICR <15:0>

TOK GATE ARRAY NICR <15:0>

07 06 05 04

TOK<21>

TOK<20>

00

00

ocr

00

TIC-'311

Data Path

TEST TIPIER 27-AUG-tsso 1s:39:20 VAX-11 "aero V02.4S Pase 1
19-AUG-1980 12:44:02 _DLAO: C PEACOCK lTIPIER .MR; 1 (1)

0000 1 .TITLE TEST TiftER
00000000 2 .PSECT ALIGN LONG

0000 3
0000 4 scs: .REPT 256 ; Build the SCB
0000 5 .LOIG 3

00000003 0000 6 .ENDR
0400 7

00989680 0400 8 INTERVAL: .LONG 10000000 : 10000000 •icrasecands is 10
00000051 0404 s sr_n": .LONG 4 XS1 ; Data to set IE, TRr and GD in ICCS

0408 10
0408 11 ; Local delintions Fer Prosraa.
0408 12

00000011 0408 13 SCBB=4X11
00000012 0408 14 IPl..=4 X12
00000018 0408 15 ICCS=4 X18
00000019 0408 16 IICR=AX19

0408 17
0408 18 ; Stack sPace

00000458 0408 19 .BLKL 20
0458 zo
0458 21 ; Plain Routine
0458 22

5E FD AF DE 0458 23 START: flDVAL START, SP : Initialize a Stack Pointer
11 00 DA 045C 24 tlTPR 10, ISCBB : Point SC8B ta address 0

so 9E AF CE 045F 25 lfE6I.. INTERVAL, RO : Nesate the interval ti1e
FC54 CF 00000478 'EF DE 0463 26 tlJIJAl. TI"-SERU, SC8+4 XCO: Put address aF service in CO

19 so DA 046C 27 flTPR RO, INICR ; Load cauat into NICR
18 92 AF DA 046F ZS flTPR ST_TI"' IICCS ; Stt IE, TR, and start ti1er

12 17 DA 0473 29 "TPR fAX17r #IPL ; Lawer IPL ta take interruPt
FE 11 0476 30 HERE: BR8 HERE

0478 31
0478 32 ; Ti1er Service Routine
0478 33
0478 34 .ALIGN LONG

18 00000080 BF DA 0478 35 Till.SERV: "TPR 1•xao, IICCS ; Clear Ti1er IR •eFore REI
00 047F 36 HALT ; TYPe •c• at console to go

18 81 AF DA 0480 37 "TPR ST_Tift, fICCS ; Restart ti1er with sa1e count
02 0484 38 REI ; REI back to BRB HERE

0485 39 .END START

7-48

VAX-11/750 LEVEL II

Remote Diagnostics

Student Guide

Course produced by Educational Services Department
of

Digital Equipment Corporation

Remote Diagnostics

INTRODUCTION
The RDM was placed at this section of the course to allow
the student to understand its use in the overall system.
That use is: the RDM is a TOOL to be used by the technician
to maintain the equipment. The ROM is NOT needed by the
customer to operate the system. Due to this fact the
maintenance philosophy is: THE ROM IS A FIELD REPLACABLE
UNIT AND WILL NOT BE REPAIRED. This makes sense if you say
to yourself; "Self I can't take up the customer's system
time fixing my repair equipment."

What you should obtain, from this lesson and following
lessons, is the confidence in the use of the ROM and the
many functions available to you when using the RDM. These
functions will be mentioned in this lesson but not all will
be reinforced with labs directly after the lesson. The
different uses will be spread out to allow you the chance to
apply these uses in actual troubleshooting situations as
they arise in the course.

There are two levels of maintenance involved with the use of
the RDM.

1. By the branch or support person on site to fix -a
problem by running Micro Diagnostics (TO RUN MICROS
YOU HAVE TO HAVE AN ROM) or by taking an instruction
through a complete cycle one micro instruction at a
time. (AGAIN YOU NEED THE RDM TO SINGLE STEP
MICROINSTRUCTIONS.)

2. The same functions may be used remotely by the DOC
in Colorado to help the branch or support person
perform fault isolation or preventive maintenance.

THESE ARE NOT ALL THE FUNCTIONS OF THE ROM. They do show
that it is needed to perform onsite maintenance as well as
remote diagnosis.

6-3

Remote Diagnostics

OBJECTIVES

At the completion of this lesson the student will be able to
distinguish between the two basic modes of operation
available using the RDM.

The student will be able to match the blocks in a bl~nk RDM
block diagrams to its function.

The student will be able to match the RDM commands to their
related function in running micro-diagnostics while
troubleshooting the machine.

SAMPLE TEST ITEM

Match the function in the right column to the command in the
left column by placing the proper letters in the space
beside the command.

EXAMINE
DEPOSIT
RET
"p

A. Enter RDM mode
B. Place data into a location
C. Read data from a location
D. Return to previous mode

RESOURCES

11/750 RDM Maintenance Card
11/750 Option Technical Manual and Mic rod iagnostic User's
Guide

6-4

Remote Diagnostics

OUTLINE

VI. Remote Diagnostic Module

A. Reasons for RDM

B. Physical Characteristics

1. Location
2. Power
3. Front Panel Indicators

C. Operational Overview

D. Block Diagram

E. Addressing

F. Pseudo Instructions

6-5

t'J,J

'° c
""' CD

°' I
.......

:x:t
0
:3:

°' I t'J,J
:TU-58 °' c

::s \TAPE 0
rt !DRIVE
0
::s
OJ
.......

L1
0
0
OJ
rt
0
::s

KA760 ,_
UNDER
TEST
CON

KC750
T SUBSYSTEM

'C N MOD

CONSOLE
TERMINAL
'LAXX
VTXX

·

1

-vA:l5ic
OR
GTE
'.MODEM

CUSTOMER SITE

' •

PHONE LINE

·MODEM

'DOC

DOC
ENGINEER.
TERMINAL

!HOST
1

SYSTEM

ERIAL
LINE
INTERFACE

TK ... 662

'

:x:t
CD
9
0
rt
CD

t1
OJ

'° ::s
0
en
rt
0
en

Remote Diagnostics

Physical Characteristics

l. Located in slot 6 of extended hex backplane as noted in
introduction.

2. Power

a. MAX
TYP

+5V @ 12.0A
+SV @ 9.3A

+12V @ 120MA
+12V @ 60MA

-lSV @ 85MA
-15V @ 30MA

3. Control Panel Interconnections

.Connections to the control panel will be incorporated in
the basic cabinet and its wire harness. The processor
will have full use of all processor specific controls
and indicators whether the RDM is installed or not. When
the RDM is installed in its slot the RD specific
functions will also be operational. The RD functions
implemented on the control panel are as follows:

a. INDICATORS

1. REMOTE This green
software whenever it
panel key switch is
positions.

light is lit by the RDM
detects that the ~ontrol

in one of the two remote

2. CARRIER This amber light is lit by the RD
software whenever it detects that the remote port
carrier is present. It is an indicator to the
customer that the DDC has established connection.

3. TEST - This green light is lit by the DDC software
to indicate that tests are in progress.

4. FAULT - This red light is lit by the RDM software
if it detects a fault in its own logic. No tests
should be attempted when the fault indicator is
lit.

b. SWITCH SETTINGS

The processer' s keyswi tch has 5 positions, two of
which allow remote connection. The REMOTE and REMOTE
SECURE positions allow the DDC to connect to the
processor. The REMOTE position allows the control
console to enter console mode at any time while the
REMOTE SECURE prevents the console from being used in
other than program mode.

6-7

Remote Diagnostics

1. There are also switch settings that relate to the
remote BAUD rate but those will be covered in the
installation section in the final week.

6-8

Remote Diagnostics

""" CMI

,.

~ COMET CPU WBUS

1 SWMET r- t-- A H D

CPU UART REG REG 14-- REG

CONCHIPi.--
32BIT 32BIT 3281T

TU58 I----. 1-- ...__
TAPE UART 8085 INTERNAL BUS
DRIVE ~

SIMPLIFIED RD BLOCK DIAGRAM

LOCAL 1---' I-'
r--

.,___...
!TERMINAL UART 4K I--- ~ RAM ,..... lo---

8085
NCPU

f..,--. ~ i---. I-' ~ i.-
6K 1---REMOTE PHONE MODEM

LINE
UART D A

PROM i.-- !--- i.--- ~
...._ ,.....

SERIAL INTERFACES

l 1 I i.- ADDA t: ENABLES DECODE
TRACE

L.--.
LOGIC

~
CONTROL 64 X 80 BIT <SADD i-. REGS DCS RAM MATCH MMATCH

A
CONTROL STORE DATA

..._. y

CON STORE ADDRESS -
TK-4561

Figure 6-2 Simplified ROM Block Diagram

6-9

0000

17FE/

8000

f 800

f 830

FFFF

Remote Diagnostics

6KB
ERASABLE
PROM
MACROCODE;
~QftAG_E __ J

UNUSED

13KB
MICRODIAGNOSTIC
MONITOR
STORAGE

UNUS_ED

INTERFACE
REGISTERS

UNUSED

Figure 6-3 8085 I/O Addressing

6-10

\. -

l
I

~-Ncoo·eo· KEv--
sw1TcH POSITION -- --- =--------OFF ·-----
_SECURE ;;T1
LOCAL =10-
REMOTE/SECURE;= Qt
REMOTE !=00

Remote Diagnostics

"-._-~---' '"~-~-_,J 'Y T'

iENCOlDPOWER LjENci:>l>EOOEViCE
(ON ACTION :SWITCH POSITION
:SWITCH POSITION

/oo = RES/8-b6T
01 = RES/HALT
,10= BOOT
11 =HALT

:A=1f
B= 10
C=01
0=00

i TK-'558

Figure 6-4 Front Panel Status Register F820

6-11

Remote D Red

RD Test Green

Carrier Amber

RD Fault Red

Remote Diagnostics

This indicates that the
keyswi tch is in either of the
remote positions.

This indicator is illuminated
if a remote diagnostic session
in protocol mode is in pro­
gress. The transparent mode
turns the lamp off.

Carrier indicator is on if the
modem is receiving the carrier
from the telephone line.

Indicates a hardware fault on
RDM module if constantly on.
Normal sequence is to illum­
inate for 10 seconds at power
up and then go out. If lamp is
always one, replace RDM.

Figure 6-5 RDM Operator Control Panel Indicators

6-12

VAX-11/750 LEVEL II

CMI

Student Guide

Course produced by Educational Services Department
of

Digital Equipment Corporation

CM!

INTRODUCTION

The CMI is a tristate synchronized inforamtion path for
data exchanges between the central processing cluster
(CP Cluster), memory, and adapters of the Comet system.

8-1

SYNOPSIS

The CPU Memory Interconnect module includes lecture
on the architecture and types of data transfers
used.

OBJECTIVES

Provided with a multiple choice test, correctly
answer questions regarding CMI architecture and
types of transfers.

SAMPLE TEST ITEM

Which of the following best describe the CMI?

a) 55 lines of equal length forming a 2 layer
belt

b) 80 lines of various lengths formed by etch
c) 55 lines etched into the backplane, all

equal length
d) 45 etched lines of various length

RESOURCES

Comet Specification

8-2

CMI

CMI

MODULE OUTLINE

VIII. CPU MEMORY INTERCONNECT (CMI)

A. CMI Structure

1. CMI protocol
2. CMI status bits
3. CMI control signals
4. Data/Address
s. Clock

B. Address/Data Transfers

1. Address format

a e function code
b. mask field

c. Summary

8-3

NEXUS

DATA/kooRESS (35)

ARBITRATION (7)

STATUS (2)

32 DATA/ADDR.
1 WAIT
1 HOLD
1 BUSY

3MBA
1 UBI
1 ROM
2 RESERVED

6.25 MHZ B CLOCK (1)

THE CMI STRUCTURE

Figure 8-1 CM! Structure

8-4

CMI

NEXUS

TK-2064

CMI

---·-·--··- PRIORITY ITEM

.ROM ----·--- 7
RESERVED 6
RESERVED 5
CUI ; 4
OPTION 1 3.
OPTION~ 2
OPTION L., ·---~-CPU NONE

CMI PROTOCOL

Figure 8-2 CMI Protocol

ST1 STO .INTERPRETATION

0 0 NON EXISTENT MEMORY
-----------~---

0 1 NON CORRECTABLE ERROR
--------------~

1 0 CORRECTED DATA - - ._ - - - - .- -- -- - --~
1 1 NO ERRORS

THE CMI STATUS BITS

TK-2062

Figure 8-3 CMI Status Bits

8-5

CM!

DATA/ADDRESS BUS BUSY

THE DATA/ADDRESS BUS BUSY (DBBZ) SIGNAL INDICATES THE
AVAILABILITY OF THE DATA/ADDRESS BUS. THE ABSENCE OF DBBZ
INDICATES TO ALL NEXUS THAT THE DATA/ADDRESS BUS WILL BE
FREE AT THE BEGINNING OF THE NEXT CMI CYCLE.

DBBZ

DBBZ IS ASSERTED BY THE BUS MASTER FOR ONE CMI CYCLE WHEN AN
ADDRESS FORMAT IS PLAC&D ON THE DATA/ADDRESS BUS. DURING A
READ, THE SLAVE ALSO ASSERTS DBBZ IN THE FOLLOWING CYCLE AND
CONTINUES TO ASSERT IT UNTIL THE READ DATA IS READY FOR
TRANSMISSION. DURING A WRITE, DBBZ IS ASSERTED BY THE SLAVE
WHILE IT PREPARES TO ACCEPT THE WRITE DATA. FOR THIS CASE,
DBBZ IS NOT ASSERTED IF THE NEXUS IS IMMEDIATELY READY.

BOLD

THE HOLD SIGNAL ·CAN BE ASSERTED BY ANY NEXUS TO PREVENT
OTHER NEXUS FROM GAINING CONTROL OF THE DATA/ADDRESS BUS.
THE HOLD SIGNAL IS PRIMARILY PROVIDED TO ALLOW BUS WATCHING
CACHES TO CONTROL THE RATE AT WHICH WRITE TRANSACTIONS OCCUR
ON THE CMI. WHILE HOLD IS ASSERTED, ALL BUS REQUESTS ARE
IGNORED.

WAIT

THE WAIT SIGNAL IS ASSERTED BY A NEXUS WHEN IT INITIATES AN
INTERRUPT TRANSACTION. THE ASSERTION OF WAIT IS AN
INDICATION TO THE CPU THAT AN INTERRUPT TRANSACTION IS IN
PROGRESS ON THE UNIBUS AND THAT A WRITE VECTOR OPERATION MAY
BE PENDING. WAIT IS REMOVED AT THE BEGINNING OF THE CM!
CYCLE FOLLOWING THE COMPLETION OF THE INTERRUPT TRANSACTION.
THE REMOVAL OF WAIT ALLOWS THE CPU TO CONTINUE NORMAL
OPERATION.

8-6

CM!

31

MASK FUNC. PHYSICAL LONG WORD ADDRESS

31

DATA

THE ADDRESS TRANSFER FORMAT IS USED TO TRANSFER ADDRESS AND
CONTROL INFORMATION DURING THE BUS CYCLE IMMEDIATELY FOLLOWING
A successFUL ARBITRATION CYCLE.

THE DATA TRANSFER FORMAT IS USED TO TRANSFER 32-BITS OF DATA (1
LONGWORD). IF THE TRANSACTION IS A WRITE, THE BUS MASTER USES THIS
FORMAT TO TRANSMIT WAITE DATA IN THE BUS CYCLE IMMEDIATELY
FOLLOWING THE TRANSMISSION OF THE ADDRESS FORMAT. IF THE
TRANSACTION IS A READ, THE SLAVE USES THIS FORMAT TO RETURN READ
DATA TO THE BUS MASTER.

CMI DATA/ADDRESS FORMATS
TK-2069

Figure 8-4 CMI Data/Address Formats

8-7

CMI

31 2827 252423 2 1 0

MASK PHYSICAL LONG WORD ADDRESS

FUNCTION CODES

DATA/ADDRESS BIT CMI

27 26 25 OPERATION

0 0 0 READ

0 0 1 READ LOCK

0 1 0 READ WITH MODIFY INTENT

0 1 1 (UNDEFINED)

1 a 0 WRITE

1 0 1 WRITE UNLOCK

.. 0 WRITE VECTOR I

1 1 (UNDEFINED)

CMI FUNCTION CODES
TK-2073

Figure 8-5 CMI Function Codes

8-8

CMI

MASK FIEJ..D
31· 2827 252423 2 1 0

I MASK. I FUNC D<l PHYSICAL LONG WORD ADDRESS

3 2 1 0

31 2423 1615 8 7

I 2 1 0

EACH BIT IN THE MASK FIELD CORRESPONDS TO A "PARTICULAR BYTE IN
SUBSEQUENTLY TRANSFERRED DATA FORMAT. THESE BITS SPECIFY
WHfCH OF THE CORRESPONDING DATA BYTES ARE TO BE READ OR

_ WRITTEN. THE BYTE IS SELECTED WHEN THE MASK BIT IS SET.

0

I

NEXUS WHICH ARE CAPABLE OF TRANSFERRING LONGWORDS IGNORE THE MASK
ON READS ANO ALWAYS RETURN ALL FOUR BYTES (E.G., MEMORY).

TIC.·20.1

Figure 8-6 Mask Field

8-9

t'1j
......
'° c::
""" <D

(X)

I
.....i

2
(X) H
I

1-J ::0
~ <D

DJ
a,

........
~

"""
rt
<D

t-3
3
~

'°

160nSEC

r-"'-l

CMICYCLE

CMICLK
(BCLK L)

I

~ PRIORITY
(ARBNI

I
DBDZ I (ASSERTED LO)

I
I

STATUS I (ASSERTED BY
SLAVE AT END I
OF TRANSA TION) I

I
.~DD RESS I (ASSERTED FOR
1 CYCLE)

DATA
(ASSERTED FOR
1 CYCLE)

CMIREAD

2 3 4 I 8 2

CMIWRITE

3 4

BOOnSEC

5 8

'

()

3
H

VAX-11/750 LEVEL II

Address Translation

Student Guide

Course Produced by Educational Services Department
of

Digital Equipment Corporation

Address Translation

OBJECTIVES

1. To u t i 1 i z e prov id e d w o r ks he e ts i n o rd e r to
perform address translations from a system
virtual address to a physical address and from a
processor virtual address to a physical address.

2. To utilize the console terminal and be able to
determine what type of error occurred during an
address translation by using the stack.

3o To correctly indicate on a series of true/false
questions, statements regarding the 11/750
address translation procedures.

4. To run and interpret MIC Module Microdiagnostics
that relate to address translation.

SAMPLE TEST ITEM

True or False

l. Bit 31 in the system virtual address denotes -
which page table is accessed.

LAB EXERCISE

a. Load and run microdiagnostics

b. Run RDM to step through Translation Buffer
Double T.B. miss.

RESOURCES

1. 11/750 Micro Listings

2. 11/750 Microdiagnostics and Listin~~_!£~~~C
Module

3. MIC Module Schematics

4. Student Guide

9-1

Address Translation

INTRODUCTION

When we talk about address translation we actually mean to
take a virtual address (system or processor) and translate
it to a physical address.

To understand the concept you will have to understand
virtual address space in relation to physical address space
and how the system uses the translation to control access to
certain areas in the machine.

You will learn the actual machine translation from a virtual
address to a physical address and the controlling factors in
performing this translation.

9-2

00.000.000

3FFFFFFF

40.000.000

7F,FFF,FF!=

so.coo.coo

BF,FFF,FFF
60.000.000

FF,FFF,FFF

VIRTUAL ADDRESS
ALLOcATION

PROGRAM REGION
{POI

CONTROL REGION
1?1)

SYSTEM REGION
(SQ}·

·RESERVED REGION
(Sl)

Address Translation

VIRTUAL MEMO AV

l
I

~
I

··~
I
I

?!-lOCESS
SPACE

? SYSTEM I SPACE

J

31 30 29 9 8 0

I I I VIRTUAL PAGE NUMBER lsYTE OFFSET I
When bit 31 is clear. the virtuai address is a pr~

virtua "ddress .found in process soace or "per-process"
space. Each process has its own process space and it is
practically impossible fot one process to ref!r to a process
virtual address of anorher process.

Both process space and system space are further divided
into two pjeces determined by the setting of bit 30 in the
virtual address.

1. VA<:31:JO>:r 0 Program Region

This portion of virtuai address space is cailed PO space

or the program region. PO space typically contains the
cede and data of an image being executed by the process.

2. VA<:l 1:30>,. 1 Controt Region.

This portion of virtual address ~pace is called P1 space
or the central region. It contains sucn information as
the four per-process stacks, a Command Language
lnterpP-ter, DEBUG symboi table, process 1/0 data and so
on.

3. VA<3t:30> • 2 System Region

This portion of virtual address space is called me
system 1"e1;ion. It contains the executive, device
drivers anci th9ir auociateci data structUres, RMS code
and Pore data, both the system and process page tables
and o~er code and dau that does not belong to any Ont'!

process in the system.

4. VA<31:30>• 3 Reserved

This portion of virtual address space is currently
reserved • ..A-rfierence to a virtual address inthis
~ will c:aUse a length violation.

TK-3413

Figure 9-1 Virtual Memory

9-3

l'%j
.......

l.Q
c
'""I
ro

"° I
r-..>

"° I '"O
..i:::.. ::r

'<
Ul
.......
()

OJ
I-'

3
ro
3
0
'""I

'<

PHYSICAL MEMORY

23 22 2] 20 19 18 17 16 16 14 13 12 11 19 2 8 1 8 § 4 3, 2 l)<r><l
PHYSICAL ADDRESS I I I I I I I I I I I I I I I I I I) I I I -

~ 000000

F 03FFF
040000

Fi 07FFF
080000

F OBFFF
ocoooo

F OFF FF
100000

F 13FFF
140000

F 17FFF
180000

F 1BFFF
1COOOO

1FFFF F

~ 4
PFN

MAXIMUM PHYSICAL MEMORY

256K
......

'
256K

256K

256K

268K

258K

266K

256K

v

~

I

I
I

I

\

\
\
\
\
\
\
\
\

I
I

\
\
\
\

256K

()(X);

001

002

003

>t: :.
'.

1FC

1FD

1FE

1FF

. .

I
~

~

I

I
I

I

~

\
\ ..
\
\
\
\
\
\
\
\
\
\
\
\
'

BYfE
-I

PAGE

3 2 1 0

.. '¢ ..

BYTE
•ADD

0

4

8

c

1FO

1F4

1FB

·1FC

•NOTE FOR ADDRESS BYTE BITS 0 + 1 NOT USED.

TK-3411

~
0..
0..
'""I
ro
Ul
Ul

~
'""I
DJ
:::l
Ul
I-'
OJ
rt
.......
0
:::l

Address Translation

PAGE CONCEPT
-------··- ·------- --- ••• •··--·M·--- -• --

WHICH ROOM DO I GO TO TO RECEIVE TRAINING? WHERE DO I GO TO GET MY DATA? ----· - .

YOU NEED DIRECTIONS YOU NEED AN ADDRESS.

-GO TO SCHOOL #3, ROOM 5. ADDRESS

iffi 6 : ~ if1-SCH00L

#11{) : {)#i

PAGE NUMBER BYTE OFFSET

3 3

-
MEMORY PAGE

PAGE 1 BYTE OFFSET #:. 1

#;o~
s
c
H #3
0

2 -- 2

#96
o: {)#4 L:

s

4

5

8

#S(J T.1

~trs I
I

7

8

#7() I

~#6 I
I

9

10

11

12

---•· ·-·--- --·•w-••·•·---

SCHOOL ROOM

BREAKDOWN

WHICH SCHOOL •WHICH PAGE

WHICH ROOM IN THAT SCHOOL• WHICH BYTE IN THAT PAGE

TK-3412

Figure 9-3· Page Concept

9-5

BYTE 1 BYTE T BYTE T BYTE
3 2 1 0

LONGWORDO

LONGWORD4

a

c

13 I 12 I , , I 10 10

14

18

1C

23 l 22 T 21 l 20 20

1cF l 1ce } 1co l 1cc TCC

100

104

108

tOF I JOE T 100 l iOC iOC

iFO

~F4

1F8

1FF l 1FE T 1FO T 1FC 1FC

Figure 9-4

Address Translation

PAGE BREAKDOWN

8 7 4 3 0

PAGE#

F F

EACH PAGE OF MEMORY CONSISTS OF 1 FF (HEX) BYTES.
IN ntE t tnso MEMORY is LONGWORD ALIGNEO, MEANING
YOU READ FROM MEMORY ONE LONGWORD AT A TIME.
EACH LONGWORD CONTAINS 4 BYTES.

IF WE START AT ADDRESS 000000 ANO
INCREMENT UPWARDS AT LONGWORD BOUNDARIES
we COULD ACCESS 1FF BYTES WITHIN PAGE 0
OF THE ADDRESS BEFORE CH.A.NGING TO PAG; 1 BYTE 0.
IN THE NEXT INCREMENTED STEP.

il(-3410

Page Breakdown

9-6

Address Translation

PTE FORMAT

3130 27 26 25 1514 0

H PROT IM MBZ PFN

\ ., ' ~ ~ ~

PROTECTION MUST BE ZERO'S PAGE FRAME NUMBER
CODE . .

PAGE MODIFIED

PAGE VALID
TK-1880

Page Tables and Mapping Registers

Figure 9-5 Page Table Entries

The system page table is built at initialization time and is
located in contiguous pages of physical memory •. Process
page tables are set up at process creation and altered at
image activation, image exit and in response to various
system services. Process page tables are located in
virtually contiguous pages of system space. That is,
process page tables need not be physically contiguous. This
design feature prevents a potentially serious fragmentation
problem in physical memory.

9-7

System Page Table
(SPT)

System Base
Register (SBR)

System Length
Reg is t er (S LR)

0 Page Table
(P0PT)

P0 Base Register
(P 0BR)

P0 Length Register
(P0LR)

1 Page Table
(P lPT)

Pl Base Register
(P lBR)

Pl Length Register
(P lLR)

Address Translation

Describes the physical
location and status of
all pages in the system
region of virtual
address space.

Points to the starting IPR # 0C
physical location of the
System Page Table.

Specifies the number of IPR # 0D
entries in the System Page
Table

Describes the physical
location and status of all
pages in the program region
of virtual address space.

Contains the system
virtual address of the
P0 page table.

Specifies the number of
entries in the P0 page
table.

Describes the physical
location and status of
all pages in the control
region of virtual address
space.

Contains the system
virtual address of the
Pl page table.

Specifies the number of
entries in the non­
existent portion of the
Pl page table.

9-8

IPR # 08

IPR # 09

IPR # 0A

IPR # 0B

Address Translation

PHYSICAL MEMORY

P1PTE'S,

PO OPERANDS

--- -

POPTE'S

P1 OPERANDS

SYSTEM-OPERANos

·

HtT

sYSTEM -PTE'S
MISS TB

. - PA
.,.-----SBR + sVA ..__ !-i-SVA

PA SBR+SVA

--------- POPTE CPOSR+PVA~ ~ PVA ~

(SVA) ..
~

PA SBR+SVA ..
-- P1PTE c P18R+PVA .,_.., ~ PVA

(SVA)

T K-328!5

Figure 9-6 Address Translation Block Concept

9-9

EXAMINE VIRTUAL

ADDRESS

YES ("HIT")

ADDRESS TRANSLATION

YES

FORM PA OF SPTE

FETCH SPTE

Address Translation

FORM SYSTEM

VIRTUAL ADDRESS

OF PxPTE

FORM PA OF SPTE

FETCH SPTE

FORM PA OF PxPTE

FETCH PxPTE

FORM PA OF
OPERAND

TK-3426

Figure 9-7 Address Translation

9-10

. ~ .
~

Address Translation

3130 27 26 25

H ... J
PROTECTION
CODE

MBZ

~

MUST BE ZERO'S

----PAGE MODIFIED

---------PAGE VALID

PTE FORMAT

1514

PFN

,... '
PAGE FRAME NUMBER

Page Tables and Mapp{ng Registers

Figure 9-8 Page Table Entries

0

TK-1880

The system page table is built at initialization time and is
located in contiguous pages of physical memory. Process
page tables are set up at process creation and altered at
image activation, image exit and in response to various
system services. Process page tables are lcoated in
virtually contiguous pages of system space. That is,
process page tables need not be physically contiguous. This
design feature prevents a potentially serious fragmentation
problem in physical memory.

9-11

Address Translation

SYSTEM CONTROL BLOCK

EXESACVIOLAT
(ACCESS VIOLATION-FAULT)

-··- -··---·--- - -
MMGSPAGEFAULT

(TRANSLATION NOT VALID FAULT)

Memory Management Exceptions

Figure 9-9

SCBB
(PHYSICAL)

OFFSET2018

OFFSET2418

TK-4M&O

During address translation, two di fferrent kinds
exception can occur: access violation

of
and

translation-not-valid exception. Both forms of exception
are faults. That is, the processor backs up the faulting
instruction so that it can be restarted when {or if) the
exception is resolved. Two adjacent longwords in the system
control block are set up at initialization time to point to
the routines which will service these exceptions. Both
exceptions are handled on the Kernel stack.

9-12

Address Translation

Management Management Exceptions

Access Violation

An access violation can occur in two different forms. A
protection code violation occurs when the intended access
request (read, modify, write) is not allowed for the current
access mode. Recall that the protection code is found in
bits <30:27> of the appropriate page table entry.

A length violation. occurs when the virtual page number of
the address to be translated is greater than or equal to the
contents of the appropriate length register. (Because Pl
space grows toward smaller addresses, th length violation
fault occurs when VA<29:9> is strictly less than the
contents of PlLR.

When an access violation occurs, the faulting PSL and PC are
pushed onto the kernel stack, followed by the virtual
address which caused the access violation. Finally, a
longword fully describing the access violation is pushed
onto the stack. Note that bit <0> of the reason mask
distinguishes length violations from protection code
violations.

9-13

Address Translation

PROTECTION CURRENT ACCESS MODE
CODE IN
PTE KERNEL EXECUTIVE SUPERVISOR USER

0000 -- -- -- --
0001 UNPREDICTABLE UNPREDICTABLE
0010 RW -- -- --
0011 R -- -- --

0100 RW RW RW RW
0101 RW RW -- --
0110 RW R -- --
0111 R R -- --
1000 RW RW RW --
1001 RW RW R --
1010 RW R R --
1011 R R R --
1100 RW RW RW R
1101 RW AW R R
1110 RW. R R R
1111 R R R R

. (NO ACCESS)
R (READ-ONLY ACCESS)
RW (READ AND WRITE ACCESS)

TK-3567

Figure 9-10 Use of Protection Codes for Access Control

9-14

Address Translation

Memory Management Exceptions

1i' ~'
REASON MASK f'

INVALID VIRTUAL ADDRESS
f',

PC OF FAUL TING INSTRUCTION

PSL AT TIME OF FAULT

, .. ,~

ST ATE OF THE KERNEL ST ACK FOLLOWING
...

A TRANSLATION -NOT - VALID FAULT

Access Violations

..

REASON rMSK FOR TRANSLATION

-NOT-VALID FAULT -

THIS BIT tS ALWA VS 0 FOR TRANSLATION
- NOT - VALID FAUL TS

..__...~PTE REFERENCE
0 -..y1RTUAL ADDRESS NOT VALID .
-·
t-.ASSOCIATED PTE NOT VALID

-----INTENDED ACCESS TYPE
0 -+READ ACCESS

1 -+MODIFY OR WRITE ACCESS

TK~8

Figure 9-11 State of Kernel Stack Following Access
Violation Fault

9-15

Address Translation

Memory Management Exception

Translation-Not-Valid Fault

A Translation-Not-Valid fault occurs when the Valid Bit
(VA<31>) is clear. The faulting PSL and PC, followed by the
invalid virtual address and reason mask, are pushed onto the
kernel stack. Control is passed to an executive routine
called the pager, which will use the information in the
invalid PTE to locate the page and add it to the working set
of the requesting process. (The information contained in an
invalid PTE and the actions taken by the pager will be
discussed in the next module.)

Since process page tables are mapped (by SPT entries),
address translation for process virtual addresses can incur
page faults both in translating the system virtual address
of the process page table entry and in translating the
process virtual address itself. These two different cases
are distinguished by bit <l> of the reason mask.

9-16

Address Translation

Memory Management Exceptions

Translation Not Valid Fault

PC OF FAUL TING INSTRUCTION,

PSL AT TIME OF ~ULT

STATE OF THE KERNEL STACK FOLLOWING AN -
ACCESS VIOLATION FAULT

TYPE __ OF ACCESS VIOLATION·
. -

0 ~ PTE PROTECTION CODE VIOLATIO~_l
..__~ PTE REFERENCE

o VIRTUAL ADDRESS NOT ACCESSIB~E I
1-.~ATED PTE NOT ACCESSJBLE-!

INTENDED ACCESS TYPE,
o-. READ ACCESS

1 _. MODIFY OR WRITE ACCESS

Figure 9-12 State of Kernel Stack Following
a Translation Not Valid Fault

9-17

Address Translation

NOTE

The address translation mechanism checks
the protection code before it checks the
valid bit. Thus, if a given address
translation could cause both an access
violation and a page fault, the access
violation will be taken. This design
avoids the· overhead of faulting into a
process working set a page which it is
not allowed to access. A further
discussion is found on page HJ8 of the
VAX-11/780 Hardware Handbook.

9-18

EXAMINE VIRT~Ai...

AD~RESS IVAl

i
I

I
I
i
!
l

FETCHSPTE
FROM MEMORY

ACCESS
VIOLATION

Figure 9-13

LENGTH
VIOLATION

FORMSYSTfM

VIRTUAL ADDRESS
OF FxPTE

FORM PHl'SICAi.

ADDRESS OF

OPERAND

I ..
(!RANSLA TION '\
'DONE)

Address Translation

ACCESS
VIOLATION

ACCESS
VIOLATION

TRANSLATION
NOTVAL:D

YES

Tl(-3425

Address Translation Faults

9-19

Address Translation

MEMORY MANAGEMENT WORKSHEET FOR SO

3130 29 28 2726 25 24 23 22 212019 18 171615 14 13 12 It 10 0908 07'06 05 0403 02 01 00

SYSTEM VA (SVA) I I I I I -, I I I 1 I
~ ~~ ~

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

4 x SVP~ I 0 I 0 I
31 30 29 28 27 2G 2524 23 22 21 20 19 18 17 16 15 14 1312 1110 09 08 07 06 0504 03 020100

SBA ·I ' I I I I I I I I I I I
23 22 21 20 19 18 17 1615,14 13 12 11 10 0908 07 06 05 04 03 02 01 00

PHYSICAL ADDRESS OF SPTE I I I I I I I l (I I I I I I I ' I I I I I I I I SBR + 4 (SVPNI

31 30 29 28 27 2G 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 OG 05 04 ·03 02 01 00

I t I I I I I 1°1°1 *
31 30 29 28 27 2G 25 24 23 22 21 20 19 18 17 lG 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

I I I I I I I I I I I I I I I i I I I I I I I I I I I I I I I 11 *
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

11 I I I I 111 I I I I I I I I I I I I I 11 I· I I I I I 111*

31 30 29 28 'l.7 2G 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 '03 02 0100

SYSTEM PTE I l I I I I I I I I I I I CONTENTS OF PA FOR SPTE

~ ~N ~
23 22 2120 1918 17 16 1~ 14 13 12 1110 09 OS 07 06 05 04 03 0201 00

PA OF SPTE OPERAND 1 1 1 1 1 1 1 1 1 · 1 r T r 1 1 1 1 1 1 1 1 1 1 1 1
L CONCATENATED ___)
rr- FROM SVA,

31 30 29 28 27 26 2524 23 22 21 20 19 18 17 1615 14 13 12 11 10 0908 07 06 05 04 03 02 01 00

I I I I I I I 11 I I I I I I I I I I I I I 11 I I I I I I 111~

*NOT REQUIRED IN

SO CALCULATION

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 OS 07 06 05 04 03 02 01 00

I I*
TK·4G13

Figure 9-14 Memory Management Worksheet for 80

9-20

Address Translation

MEMORY MANAGEMENT WORKSHEET FOR SO

3130 29 28 2726 25 24 23 22 212019 18 171615 14 13 12 11 10 0908 07'06 05 04 03 02 01 00

SYSTEM VA (SVA) I I I I I I I ! I I I I I I I I I I I I I I f I I I I I I I I I I
1· SVPN ·I

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

4 x SVPN I I I I I I I I l I I I I I I I I I I I I I I ' I ' I I I I I 0 l 0 I
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 OS 07 06 05 04 03 02 Ot 00

SBR·I
.. 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

PHYSICAL ADDRESS OF sPTel I I I I l I I I I I I I I I I l I I I I I I I I ssR + 4 1svPNI

31 30 29 28 27 2G 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 OG 05 04 ·03 02 01 00

I I I I I I I I I I I I I l I I I I I I I I I I I I I I I I 1°1°1 *
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 lG 15 14 13 12 11 10 09 08 07 OG 05 04 03 02 01 00

I \ I I I I I I I I I 11*
31 30 29 28 27 26 2524 23 22 21 20 19 18 17 1615 14 13 12 11 10 0908 07 06 05 04 03 02 01 00

I 11 *

31 30 29 28 27 2G 2524 23 22 21 2019 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04°03 02 0100

SYSTEM PTE I I t I I I I I I I I I I I I) I I I I I I I I I I I I I ') I I CONTENTS OF PA FOR SPTE

14 PFN ~
23 22 21 20 19 18 17 16 tS 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

PA OF SPTE OPERAND f I
L CONCATENATED__)
r-FROMSVA I

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

I I I I I I i 11 I I I I I I I I I I I I I I I \ I I I I I 111$

* NOT REQUIRED IN
SO CALCULATION

3130292827262524232221201918171615 14 1312 1110 09080706050403020100

I I~-
TK-4513

Figure 9-15 Memory Management Worksheet for 80

9-21

Address Translation

MEMORY MANAGEMENT WORKSHEET FOR SO

3130 29 28 2726 2524 23 22212019 18 171615 14 13 12 1110 0908 07 06 05 0403 02 01 00

SYSTEM vA csvAd I I I I I I ! l I I I I I I l I I I I I I I I I I I I I I I I I r SVPN • 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

4 x SVPN I 0 I 0 I
31 30 29 28 27 26 2524 23 22 21 20 19 18 17 16 1514 13 12 11 10 09 OS 07 06 0504 03 020100

SBR'.I I I I I I I I .1 I
. 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

PHYSICAL ADDRESS OF SPTE I SBA + 4 (SVPN)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 M 13 12 11 10 09 08 07 06 05 04 ·03 02 0100

I 0 1°1 *
31 30 29 28 27 26 2524 23 22 21 20 19 18 17 1G 1514 13 12 11100908 07 06 0~04 03 020100

I \ I I I I I I I I I 11 *
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

I I*

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 '03 02 01 00

SYSTEM PTE I l I I I I I I I I I I I CONTENTS OF PA FOR SPTE

~ ~N ~
23 22 2120 1918 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 0201 00

PA OF SPTE OPERAND I I I I I I I ' I I I I I I I I I I I I I I I I I
L CONCATENATED__)

~FROMSVA I
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 0908 07 06 05 04 03 02 01 00

I I I I I I I 11 I 111*

* NOT REQUIRED IN

SO CALCULATION

313029 28 27 26 25 24 23 22 212019 18 17 16 15 14 13 12 11 10 09 08 07 00 05 04 03 02 01 00

I I*
TK-4513

Figure 9-16 Memory Management Worksheet for 80

9-22

Address Translation

MEMORY MANAGEMENT WORKSHEET FOR PO, P1

3130 29 28 2726 25 24 23 22 212019 18 1716h5 14 13 12 11 10 0908 07!06 05 04 03 02 01 00

PO, P1 VIRTUAL ADDRESS I
,. SVPN •I

31302Q2s 2126 2s 24 23 22 2120 191s 111s ts 14 13 12 11 10 09 os 0106 os 04 oJ 0201 oo

4 x svPN l J I I l I I I I I I f I I I I I I I I I I I I I I I I I l fo H
31 30 29 28 27 26 252423 22 21 201913 17 161514 1312 1110 09 0807 06 0504 03 020100

POBR OR Pl BR I
31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

POBR OR Pl BR+ <4 x VPNI I I I I I l I I I f l l I I l I I I I I I J I l I I I I I I I I JsvA

I· SVPN ·I
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 00 05 04 ·03 02 01 00

4 x svPN I I I I I l I I I I I I I I I I f I I I I I I I I I I I I I Io !of

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

SBR I l I I I I I I I I I I (
23 22 21 2() 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

SBR + (4 x SVPN) I l I I PA OF SPTE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 '03 02 01 00

SYSTEM PTE I CONTENTS OF PA FOR SPTE

I· . PFN ·I
23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

PHYSICAL ADDA. OF !POPTE OR P1 PTE>f l I j I I I I I I I I I I I I I l I I l I I I I
L CONCATENATED~
i-- FROM SVA I

31 30 29 28 27 26 2524 23 22 21 20 19 18 17 1615 14 13 12 11 10 0908 07 06 0504 0302 01 00

~p~~E~~~~:T~A FOR I

23 22 212019 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

PA OF OPERAND FOR PO OR Pl I
L_ CONCATENATED __J
I FROM PO, Pl VA I

TK 4514

Figure 9-17 Memory Management Worksheet for P0, Pl

9-23

Address Translation

MEMORY MANAGEMENT WORKSHEET FOR PO, P1

3130 29 28 27 26 25 24 23 22 21 20 19 18 1716'15 14 13 12 11 10 0908 01100 05 04.03 02 01 00

PO, P1 VIRTUAL ADDRESS I I I I I ·1 I ! I
,4 SVPN ·I

31302928 27 26 25 24 23 22 212019 18 171615 14 13 12 11 10 09 08 07 06 05 04 03 0201 00

4 x svPN I l l I I l I I I I lo l:ol
31 30 29 28 27 26 2524 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 OS 07 06 05 04 03 02 01 00

POBR OR P1 BR I
31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 0908 07 06 05 04 03 02 01 00

POBR OR P1BR + 14 x VPN) I f SVA

I· SVPN ·I
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 0100

4 x svPN I I l I I I I I I I I l I I I I I I I I I I I I I I I l I I Io lof
31 30 29 28 27 2G 25 24 23 22 21 20 19 18 17 10 15 14 13 12 1 t 10 09 08 07 06 05 04 03 02 01 00

SBA I I I I I I I I I I I I I I I i I I I I I ' I I I I I I I I I I I
23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

SBR + (4 x SVPN) I PA OF SPTE

31 30 29 28 27 2G 2524 23 22 21 201918 17 16 15 14 13 12 1110 090807 06 05 04'03 020100

SYSTEM PTE I l I I I I I I I I I I I CONTENTS OF PA FOR SPTE

,.. PFN ·I
23 22 2120 1918 17 16 15 14 13 12 1110 Q9 08 07 06 05 04 03 0201 00

PHYSICAL AooR:oF IPOPTE OR PtPTEI I I l I I I I l I I I I I I I I I I I I I I I I l
. L CONCATENATED _.j

r--FROMSVA ~,
31 30 29 28 27 26 2524 23 22 21 20 19 18 111615 14 13 12 11 10 0908 07 06 0504 03 02 01 00

~P~~e~;;~:T~A FOR I I l I I I I l I I I I I I I I I I I l I I I I I I I I I I l I I

23 n 21 20 19 rn 11 1s 15 14 13 12 1 t 10 09 00 01 06 os 04 03 02 01 oo

PA OF OPERAND FOR PO OR P1 I
L_ CONCATENATED~
I FROM PO, Pl VA I

T K -4514

Figure 9-18 Memory Management Worksheet for P0, Pl

9-24

Address Translation

MEMORY MANAGEMENT WORKSHEET FOR PO, P1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 1716'15 14 13 12 11 10 0908 07106 05 04 03 02 01 00

PO, Pl VIRTUAL ADDRESS II
I· . SVPN ·I

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

4 x SVPN I l 0 H
31 30 29 28 27 26 2524 23 22 21 20 19 18 17 1615 14 1312 1110 09 OS 07 06 0504 03 020100

POBA OR Pt BA I
3130 2928 2726 25 24 23 22 21 20 1918 17 1615 1413 12 11 10 0908 07 06 0504 0302 01 00

POBA OR Pt BR+ <4 x VPNJ I I I I I I l I l l I I I l I I I I I I I I I I I I I I I I I I lsvA

I· SVPN ·I
31 30 29 28 27 2G 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 00 OS 07 05 05 04 03 02 01 00

4 x svPN I I I l I l l I I I j I I l I l l l l l I l I 1-1 I l I I I I olol
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 tG 15 14 13 12 11 tO 09 08 07 06 05 04 03 02 Ot 00

SBA I
23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

SBR + 14 x SVPN) I I I I (i I I I I I I I I I I I I I I I I I t I PA OF SPTE

I

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 '03 02 0100

SYSTEM PTE I I I I I I I I l I I I I I I I I I I I I I I I I I l ' I \ I I I CONTENTS OF PA FOR SPTE

J.. PFN •I
23 22 212019 18 17 16 15 14 13 12 1110 09 08 07 06 05 04 03 0201 00

PHYSICAL ADDA.OF IPOPTE OR PlPTE) I I I I I I I: I I I I I I I I I I I I I I I I I I
. L CONCA TENA TED__)

r-FROMSVA I
31 30 29 28 27 26 252·t 23 22 21 20 19 18 17 1615 14 13 12 11 10 0908 07 06 0504 0302 01 00

~p~~E~;~~:T:A FOR I l I I I I I

23 '22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

PA OF OPERAND FOR PO OR Pl I I I I I -1 I I I I I I I I I I I I I I I I I I I
L_ CONCATENATED __J
tFROMPO.Pl VA I

TK-4514

Figure 9-19 Memory Management Worksheet for P0, Pl

9-25

Address Translation

ADDRESS TRANSLATION PROGRAM

0
SCBB 1400 SBR

200 200
TEST PROGRAM SCBB

400 400 I SLR TEST OPERAND SCBB 3
600

TRCS
800

TRCB 80,000,000 POBR
1200 AOO

PROCESSOR SETUP TRCB coo I TEST OPERAND A Pl LR
EOO

INTERRUPT STACK
1000

TEST PROGRAM
1200

PROCESSOR SET UP
1400

80,000,000 SYSTEM PAGE TABLES VA 200 = PA 1000
SVA OF POPTE 1600 VA 400 =PA COO

PO PAGE TABLES
VA 1200 =PA 1200
VA 80,000,000 =PA 1600
VA 80,000,400 =PA EOO

80,000,400
INTERRUPT STACK

80,000,600

TK-4451

Figure 9-20 Address Translation Program

9-26

VAX-11/750 LEVEL II

System Introduction

Student Guide

Course produced by Educational Services Department
of

Digital Equipment Corporation

VAX 11/750 LEVEL II

Memory Address Logic

Student Guide

Course produced by Educational Services Department
of

Digital Equipment Corporation

Memory Address Logic

Memory Address Logic

INTRODUCTION

The memory address logic is located on the MIC module
and consists of four individual address chips that are
identical.

The purpose of this logic is to provide virtual address
information to the translating buffer and physical
address information to the data routing and alignment
section.

The function of the logic is to manipulate memory
address for:

a. Normal PC
b. Branch offsets
c. Pre fetching
d. Microcoded memory references
e. Snapshooting the CMI

10-1

Memory Address Logic

MODULE X: MEMORY ADDRESS LOGIC

SYNOPSIS

This module presents technical information concerning
the memory address logic of the 11/750 CPU at both
the block diagram and chip level to include the
following:

a. virtual add r,ess registers
b. program counter
c. program counter backup

- d. program counter increment

and a fault isolation laboratory exercise.

OBJECTIVES

Identify the major memory address logic components by
correctly labeling them on a blank block diagram.

Utilizing the MIC module schematics, trace the signal
path for a preselected signal in the memory address
logic.

Given a diagnostic printout of a failing 11/750 CPU,
isolate the defective memory address logic gate
array.

SAMPLE TEST ITEM

In the memory address logic, the signal LATCH MAL is
used to:

a. load PC
b. load MA
c. select W Bus as input to address logic
d. none of the above

10-2

Memory Address Logic

LAB EXERCISE

a. load microdiagnostics
b. run microdiagnostics
c. interpret error printout
d. isolate malfunction to module
e. isolate malfunction to chip
f. perform appropriate repairs

RESOURCES

11/750 Specifications
11/750 Microcode Listing
11/750 Schematic Drawings

10-3

Memory Address Logic

OUTLINE

A. Characteristics

1. Location
2. Implementation

B. Purpose

C. Functions

1. Prefetching
2. Normal PC
3. Branch offsets
4. Snapshooting CML
5. Microcoded memory references

D. Detailed Description

1. Eight bit slice
2. Major sections

E. Add Chip Inputs/Outputs

F. Signal Flow

10-4

Memory Address Logic

Address Logic Purpose/Functions

Purpose: provide address information to:

A. Translation Buffer
B. Memory Data Register

Function: manipulate memory address for:

A. Normal PC
B. Branch Offset
C. Prefetching
D. Microcoded Memory References
E. Snapshooting CMI

r~ss----- ------ --
I
I
I
I
I
I
I
I
I

Ct!W

L __ _

TOX9
D£COOE

ADDRESS CHIP BLOCK DIAGftAM

OAT.I\ ROUTING
ANO ALIGNMENT

Figure 10-1 Simplified Chip Block Diagram

10-5

weus ·

Memory Address Logic

ADDRESS CHIP (ADD)

4 X 8 BIT SLICE

(AOK) MIC08 E-VA VAL

VA

(PRK) MIC 08 ENA PC L __ .._.._ __ __.w

PC+SIZE

LATCH

MIC04 ENA PC BACKUP L --+-+-------to---.... PC BACKUP

MIC04 ASRC SEL SxH

0 +1 +2 +4

1XX 0 1 2 3

MUX

\ADK) MIC08 BSRC SEL SxH

ADDER

0

0 3 2 1

MUX

LATCH

(PRK) MIC06 MA SELECT SxH ------<~------

+4

INCREMENT

3 2 0

MUX

MA MtCOll LATCH MA L
(PR Kl

Figure 10-2 Address Chip 4 X 8 Size and Signals

10-6

TK·3350

Memory Address Logic

Table 13-1 ASRC, B SRL and MA Select Lines

ASRC <S 2: S0> H TRUE

Controls A MUX Input to ADDER, From MIC 4

S2 Sl S0 A Input

L L L 0

L L H +l

L H L +2

L H H +4

H x x WBUS

B SRC <Sl:S0> H TRUE

Control B MUX Input, From ADK Chip

Sl

L

L

H

H

Controls

Sl

L

L

H

H

S0

L

H

L

H

MA SELECT <Sl:S0> H

MUX Input to MA LATCH,

S0

L

H

L

H

10-7

B Input

0

PC

VA SAVE (PC+SIZE)

VA

TRUE

From PRK Chip

MA Input

INC REMENTER

PC BACKUP

PC

VA

LATCH MA

COMP ~.!ODE

EN PC SAC:< UP

ENPC

ENVA

EN VA SAVE

CLK

CONT~CL

8 CL:<--t---'

INC. CARRY IN--+-------.-..P.--.;..-------

ASRCSEL S2

ASRCSELSl

ASRCSELSO

BSRCSELSl

BSRCSEL SO
CHIPIO

MA SELECT SI

MA SELECT SO

CARRY IN

weoo
WBOl

WB02

WBOJ

'NB 04

wees
WSC6

WB07

MUX
CONTROL PG SNORY

AMUX/
ADDER

PC

BACKUP

Memory Address Logic

VA

MAMUX

MA

PCINC.

PC

CARRY

LOOK

AHEAD

MSEO VA 00

MAOOO

MAOOl

MA002

MA0-03

MA004

MAO OS

MA006

MAO OT

XBPCOO

XBPCOl

XS PC02

CARRY GEN 1'

CARRY GEN 2·

CARRY PROP
INC. CARRY OUT

ADO CHIP SIGNALS (1 OF 4)
TK~D71!

Figure 10-3 Address Chip Signals In/Out

10-8

l':rj
Ul
c
l"1
Cl>

.....
&
I
~

~
a..
l"1
CD
en
en
()

..... ::r
&
I "O

"° ()
0
:J
rt
l"1
0
ll1
0
0
~

0
OJ

Ul
l"1
OJ
8

PC

VA SAVE

VA

0

BSRC SEL 51

BSAC SEL SO

W BUS<7:0>

0

2

ASRC SEI. Sl

ASRC SEL SO

ID

B MUX LATCli

VA
SAVE

ADDER 1------1

A CARRY IN --

EN VA

CARRY ~AOP

CARRY GEN
. r-~ - .. "'

I CAfiRV I
I LOOK 1

I AHEAD I
~----J

745182

VA

INC

XO PC <02:00> CARRY
IN

PC

PC
BACK

UP

t
EN PC
BACKUP

PAGE BNOAV

ENPC

CONTROL BLOCK DIAGRAM
'ADD CHIP'
<10F4>

PC
INC _..,.INC CARRY OUT

MA SEL Si

MA SEL SO

COMP MODE ----'

MA
LATCll

MAD<7:0>

LATCli MA

TK·ll3B

3
CD
!3
0
l'1

"<

~
a..
'""" CD
en
en

s
Ul
0

Memory Address Logic

As you look at the Memory Interconnect Module [MIC] you
must first look at all of its basic funtions as written in
2.6 of the manual and attempt to put them in perspective. To
do this one of the ideas you must maintain is that the MIC
module only functions in two basic fashions.

I. performs micro coded orders
2. monitors non micro coded functions

a. prefetch needed I-STREAM data
b. monitor micro trap conditions

Let's look at these two functions in an overview separately.

1. Performs Micro Coded Functions

Micro coded functions are functions that the MIC
performs under direct control of the different micro fields
W control, bus function and M source that are sourced from
the control store module for a specific micro address. Some
examples of these are:

a. read or write to memory [or an I/O device]
b. source data from the MDR to the M bus
c. probe translation buffer for access violations
d. write to status and control registers on MIC

Since these functions are coming from the micro word and use
some of the same circuitry you must realize that not all
functions can be performed at once. The MIC decodes one
micro instruction at a time for its needed fields. [W
control, M source, and bus function]. You cannot tell the
MIC to read from memory in the same micro instruction that
tells it to load the virtual address with data from the
WBUS. For example: it takes at least four micro words to
perform the following macro instruction. MOVL (Rl) ,(R2).

2. Non Micro Coded Functions.

Some of the non micro coded functions relate directly to
the micro coded functions, such as; while the MIC is reading
from memory data in address 1000 it is possible that memory
management is enabled. This would have been enabled by
writing to the MME status and control register (a micro
coded function). Once it is enabled the MIC will monitor
for translation buffer hi ts, misses and access violations.
This will be performed independently of the microed function
of read. This monitoring function is due to the access
control violation chip [ACV] and the micro trap chip [UTR].
These chips are constantly monitoring for hits, misses and

10-10

Memory Address Logic

access violations when MM is enabled. If any improper
conditions are found during a micro coded function a micro
trap is performed to place the proper micro address on the
micro address lines that places the machine in the proper
routine to handle the improper condition.

That is only one example of monitoring error conditions.
The ACV chip is also constantly monitoring the control store
parity condition in the machine for parity errors.

Another non micro coded function is to fetch I-STREAM
data for use by the processor independent of the micro code.
To do this the MIC must first load the execution buffers
with. the needed data to start with. This is done by loading
the 0 PC 0 with an address thus causing the condition of
0 flushing the execution buffer 0

• Flushing causes the MIC to
take the address in the 0 PC" and reading from memory two
longwords and storing them into the execution buffers
[XB0,XB1]. The I-STREAM data is then constantly monitored by
the pre fetch control chip [PRK], UTR using the updated "PC"
to see if one of the XBs are· empty and need to be refilled
with another instruction from memory. If this occurs the
MIC will perform a non micro coded function called prefetch.
This causes the MIC to generate a non micro coded read to
memory (or cache) to keep the XBs full for use by the
processor. This prefetch·function cannot be performed at the
same time as a microcoded read as they use the same data
pa th on the MIC.

This brings up another non micro coded function of the
MIC. That being, what happens if the instruction being
executed asks for data from memory (via the virtual address
register VA)? This data is not I-STREAM data but data
needed by the operand to complete the instruction. This data
is not stored in the XBs and may not be cached so it might
have to be fetched from memory. Now this takes more time
than the micro word takes to execute, so it is possible that
the next micro word from the control store says get the data
I just asked for and it may not be available yet. If this
happens at this time the MIC would generate a stall
condition to the DPM module stopping the micro word from
performing the function until the data that was asked for
was fetched and stored for its use.

NOTE: The MIC didn't automatically
generate the stall condition when it
went to memory to fetch the needed data.

Only when the micro word needed the data and it
available did the MIC generate the stall condition.

10-11

wasn't
This

Memory Address Logic

stall condition, access violation checks,~ cache and
translation buffer hi ts and misses are monitored for both
prefetches and micro coded memory reference~.

10-12

VAX-11/750 LEVEL II

Translation Buffer

Student Guide

Course produced by Educational Services Department
of

Digital Equipment Corporation

Translation Buffer

INTRODUCTION

The location of the translation buffer is on the MIC
module. The purpose of the translation buffer is to
store PTEs for address translation and access rights.

Its function is to provide the 15 most significant
address bits which correspond to the 23 most significant
virtual address bits.

11-1

Translation Buffer

MODULE XI: TRANSLATION BUFFER

SYNOPSIS

This module is designed as a block diagram and
schemetic level analysis of the following:

a. characteristics
b. inputs/outputs
c. microroutines
d •· PTE formats
e. tag and index formats
f. parity checking

Also included is a fault isolation laboratory
exercise.

OBJECTIVES

Identify the major translation buffer
components by correctly labeling each on a
b 1 oc k d i ag ram •

logic
blank

With a malfunction inserted on the MIC module of the
Comet CPU, utilize all available documentation,
diagnostics and test equipment to isolate the
malfunction to the chip level.

Given statements concerning the translation buffer,
correctly select the major components described from
a list of components, writing the answer in the space
provided.

SAMPLE TEST ITEM

The translation buffer is a/an

a. instruction decoder
b. two way set associative memory
c. physical address generator
d. none of the above

11-2

LAB EXERCISE

a. load microdiagnostics
b. run microdiagnostics
c. interpret error printout

· d. isolate malfunction to module
e. isolate malfunction to chip
f. perform appropriate repairs

RESOURCES

Comet Specifications
Comet Print Set
Comet Microcode Listing

11-3

Translation Buffer

OUTLINE

A. Purpose

B. Characteristics

1. Type
2. Location
3. Interfaces with

C. Function

1.
2.

D. Translation Buffer Organization

1. Tag
2. Data Stores
3. Physical Dimensions

E. Simplified Block Diagram

1. 2-way set associative cache
2. VA bit grouping
3. Operation
4. Parity
5. Control

11-4

Translation Buffer

Translation Buffer

OUTLINE (continued)

F. Address Translation

G. Detailed Block Diagram Description

1. Read cycle
2. Write cycle

H. Microroutines

1. Invalidate
2. TB Miss (Read Cycle)

I. Registers

11-5

Translation Buffer

Translation Buffer

Purpose: To store Page Table Entries (PTEs) for address
translation and access rights.

Function: 1. Provide 15 most significant physical address
bits corresponding to the 23 most significant
address bits of a virtual address to the
Physical Address Bus (PA) •

2. Provide 4 access conrol bits and modify bit to
Access Control Violation (ACV) chip and utrap
(UTR) chip for control functions.

Characteristics: 2-way set associative cache mode up 2K
discrete RAMs on Mic module. Cache
similar to 11/70 in that divided into
Tag and Data store with each containing
518 locations.

The translation buffer (TB) is transparent to the microcode.
That is, when a regular read or write function is being
performed the microcode does not determine whether TB is
enabled or disabled. This is done by the Memory Management
Enable bit. Bit 0 in S/C Register i 0 in ADK chip {IPR
Register i 38 bit 0) by enabling this bit you do two things:

1. Change output of AMUX select from ADK chip to say Sl
Low/S0 Low instead of Sl High/S0 Low. This allows
only lower byte of MAD 1 ines to Physical Address
Lines (PAD) to be concatenated with output of TB
data store for 24-bit physical address when DBUS
select is cache to DBUS.

2. Al lows outputs from ADK for enabling errors to be
checked from TB and allows passing of data from TB
data to PAD.

11-6

Translation- Buffer

To look at the TB and see how it works, we must realize some
basic facts.

1. There will always be an address inputted to the TAG
store with or without MME. Whatever is input will
cause an output that will be checked for bits and
Parity without enabled control signals. Whatever
signal (hit or error) will not be used unless MME is
set and TB Parity Enable generated from ADK chip.

2. The TB data store is always receiving the MAD lines
also and will always output whatever it has that
rel ates to the address bit not allowed out to the
PAD unless "TB output En" generated by ADK chip
when MME. Data Parity is detected but not used by
utrap chip unless "TB Parity Enable" generated by
ADK.

11-7

Translation Buffer

TRANSLATION BUFFER ORGANIZATION

@=ADDRESS TAG FIE
GROUPO

LO t== 34 BITS
GROUP1

INDEX
FIELD

·· 17 BITS ' 17 BITS~

VAL

T
I BIT~ !--15 BITS- ~1 BIT

10 BIT I PARITY-rr VALID BIT rr--•ARITY
ADDRESS FiELD !. ADDRESS FIELD

0

ADDRESS I
BITS 256
<31;15:9> !NO EX

POS ITIONS

I
FF

ADDRESS BITS
<30:16>
ADDRESS FIEL D

INDEX
FIELD

I
ADDRESS 256
BIT IND

0

l
I

EX

CI9> PO]
ITIONS

F .

I _r.:"\ I
~ --

I I
1 I

I
I I
I I
I I

I I

I I
I I
I I

I I
I

I
~ J

v A l p vi A Ip
1j I ;I] 1 1

J I
' ..! Li I A = B A = 8

COMPARATOR
PARITY
CHECK I COMPARATOR

Az B A=B

+ • 1=
HITO TB TAG 0 HIT l

PERR

--lo-

J i~ lMUX

l l I--
PFN ACV ~.q p PFN jACV M p

I

I I I

J::Lj 15 1:1TS~1 BITS
ACU BITS PFN ACY !

MSIT

I PARITY 23 BITS--1-, ----- 23 BITS

~GROUPO GROUP1

I

TB TAGS

1 ' 1

PARITY
CHECK

T
TB TAG 1 PE

PAO OUT

TB
DATA
STORES

3
SITS
PARITY

RR

TIC-1171

Figure 11-1 Translation Buffer Organization

11-8

MAD<31:9>

<31,15:9>

<31,15:9> <30:16>

<S>

PAD[23:3] <23:9;7:3>

<30:16>

TAGO

PTE
GROUPO

HITO

'
MUX

PAD<23:3>

Translation Buffer

<31,15:9> <30:16>

...

TAG 1

A=B

PTE
GROUP1

HIT 1

'SIMPLIFIED BLOCK'

TRANSLATION BUFFER

TK-1112

Figure 11-2 Translation Buffer Simplified Block

11-9

MA0<31:9>

1"%.]
1-J•

<31,16:0> <30:16>
Ul
c PAR.

""'
GEN.

Cl> <31,15:9> <30:16> A

I-' v T1 WRITE ENAL
I-'
I

w
TB TAG 1 PERR

t-3

""' QJ
::J
Ul HITl
I-'
QJ
rt
1-J•

I-' 0
....... ::J
I PAD(23:3) <23:9;7:3> PTE PTE I-' °' tSl c 0 GROUPO GROUP1 TO WRITE

Ml
ENAL

T1 WRITE ENA L
Ml
Cl>

""'
1"%.]
c
::J
n
rt t-3
1-J•

""' 0 PTE CHECK QJ
::J CK ::J
QJ Ul
I-'

PA0<.'.23:3>
w

°' rt
....... TB DATA PERA 1-J•

0 0
n "fµNt;TIONAL BLOCK"". ::J
7'" TRANSLATION BUFFER

°' TK:,•1•-1 c
Ml
Hl
Cl> ..,

........

........
I

........

........

h:.J
l.Q
c:
t"'(

CD

........

........

31 30

v PROT

PTE liORMAT

27 26 25 15 14 0

M MBZ PFN

1.. •ti l) f,. \ ""
v --------~--~~~----------------------------------.~.,---~~----~~----

h:.J
0
t"'(

s
OJ
rt

P ROTECTl ON MUST BE ZERO'S 'PAGE FRAME NUMBER
CODE_·

"'"-----PAGE MODIFIED

------------PAGE VALi D
. TK-1880 t-3

t"'(

OJ
::s
en
1--'
OJ
rt
I-'•
0
::s
0::1
c:
Hl
Hl
CD
t"'(

t'%j
lQ

c
rt
CD

I-'
I-'
I PTE ROTATION FOR TRANSLATION BUFFER STORAGE

U1

31 30 27 26 25 15 14 0

'"O
8
tXJ vl PROT lMI MBZ I PFN I··
::t1
0
rt
DJ

\. J \ J

1
rt
0
::J

I-' H\
I-' 0

·\.

ROT FIELD= 11"" RL.MM.PTE; ROT LEFT MlM. NO. BITS• 9
I rt

I-'
N 8

rt
DJ
::J
(fJ
........
DJ
rt
0

31 24 23 9 8 1 4 3 2 0

I MBZ I PFN lvE~G-
\.

J " J 1 j ~
::J

o:J
c
H\
H\
CD
rt TK·1877

(J)

rt
0
rt
DJ

lQ
CD

t%j
~·

"° c
I""(

ro PTE AFTER ROTATION
~
~

I

°' 31 24 23 9 8 7 4 3 2 0

~ '"O
~ i-3
I ti:J
~

w :J:il
Hl
rt
ro

I MBZ J PFN v PROT M MBZ
I

\ .A _J ~RorE'cr10~ tPAGE MVSJB{ZERO'S
~

PAGE FRAME NUMBER

'. CODE MODIFIED
I""(

:;o
0 PAGE
rt VALID
OJ
rt Tt<.·1876 i-3
~· I""(

0 OJ
::J ::J

Ul
~

OJ
rt
~·
0
::J

tI1
c
Hl
Hl
ro
~

6:
0..
I"'(

ro
Ul
Ul

i-3
I"'(

OJ
::s
Ul
........

°' rt
......
0
::s

31 30

ADDRESS TRANSLATION

16 15

VIRTUAL PAGE NUMBER

c
.~

TRANSLATION BUFFER

:1
PFN v

"" ,....

l

g 8

)

r

PROT. M i
__J

_JJ =J-l
I-.

I td PROT I MI
1 FFL PFN

I 23 ' g 8

2 1 0

BYT1= , .. ·j VA

'

~ 2·

~--------------P-FN ______________ _....__ _____ s_v_T_E ______ ~IPA
TK-1881

l'1:j
..a
c::

"""' CD

I-'
I-'
I

00

t-3
t;

OJ
::J
en
I-'
OJ
rt
0
::J

OJ
I-' c::
I-' HI
I HI

I-' CD
U1

"""'
()
0
::J
rt
t;
0
I-'

l'1:j
c::
::J
()

rt
0
::J
OJ
I-'

OJ
I-'
0
()

~

MIC MODULE

r;D;;ll;s- - - - - -
l
l
I
I
I
I
J

VA

UP ' .

CONS. --•f-:--1 LJ-+ ADD

1
I
I
I
Im
GAP .J

10& 1
WA

IMAD
I <31:0>

I
I _______ J

WBUS

PAO
<23:3>

HITO& 1 --...,

BUS 3:0 I AOK CHIP I
t--.----IWCTRL 5:~1 I

i I
I L.. TB OUTPUT ENA ITO MUX)

I t-..ra GAPO & 1 WR no TAG/DATA sroREI
L---

r---1
'UTR CHIP

HIT
0

&
1 I l u VECTOR 3:0

DATA rrnn I I
TAG PEAR ,.J

l

TOMSQ

UTAAP

r----,
AC 3:0--...1 ACV CHIP I ACV

TB VALID~ l:NC U TRAP

PG BNDRY-l I PTE CHECK/PAO
u TRAP I

DSIZE 1:0-l I
I I

BUS 3:0-+-l I
'----'

TB CONTROL
FUNCTIONAL BLOCK

TK·I~

t-3
t;

OJ
::J
en
I-'
OJ
rt
0
::J

OJ
c::
HI
HI
Cl)

t;

Translation Buffer

CLOCK ENABLES MICA OT RAP GEN DEST INH
S:.:FFER DECODES

4 15
UT RAP

~
CHECKS MtCflO'{ECTOR MICROVEC10R

RECEIVERS 13 3:0

P":"~ CH~CK On ?ROSE
16/17

xso
PREFEiCH STATUS
xa SELEC"i REGISTERS

XB1 SC
STATUS REGISTERS INHlSITCMI

ADO REG ENA REGTSTER 6 12
STATUS VALID

DOSRVC
SC
REGISTER

MBIT EN.:..SLES
8 _,

ERROR BUS
".":CTRL HHLXXX- SUMMARY ERRORS WRITE aus

LATCHED WCTRt. 2:0 REGISTER
Ei<RORINT

ENC UTRAP 2:0 9 14

RTUTOINH BUS ERROR
TB P.:.RITY ENA REGISTER

iB TAG l:OPEAR 10
TB CATA PERR

TB HIT 1:0
PARITY wsus

ACV ERROR XCVRS wsus 27:24

213
REGISTER

11 7

VTR CHIP ll".PUTS..'OUiPUTS
TK.::1021

*Note: Some signals are sent to UTR chip even if memory
management is not enabled, but are not checked unless
•Ts Parity Enable e• is sent from ADK.

Figure 11-9 UTR Chip Inputs/Outputs

11-16

Translation Buffer

ADK CHIP SIGNALS
,_

BCLK
PHASE 1 BUFFERED TB AMUX

MCLK EJA CLOCKS CONTROL STEERING
AMUX SEL Sl

DCLK ENA
REGISTER

PTE CHECK
AMUX SEL SO

DST RMODE RECEIVERS
TB OUTPUT ENABLE

WRITE VECTOR OCC
ATUT DINH

SAVED MODE

SNAPSHOT CMl
REGISTERS 0 BUS

LATCHED WCTRL 5
CONTROL 0 BUS SEL Sl

D BUSSEL SO
LATCHED WCTRL 4 CLK SEL S1
LATCHED WTCRL 3 CLK SEL SO
LATCHED WCTRL 2 SC
LATCHED WCTRL 1 REGISTERS
LATCHED WCTRL 0 TB

CS BUS 4 CONTROL TB GRP 1 WR

LATCHED BUS 3
LATCHED BUS 2

TS GRPOWR

LATCHED BUS 1 SC REG.

LATCHED BUS 0 ENABLES
TB PARITY ENA

STATUS VALID
PSL CM. WBUS

TB HIT1 XCVRS/CONT. WBUS 27
wsus 26

TS HITO BUS
PRE FETCH· DECODERS

'NBUS 25
WBUS 24

BUS
CYCLE
STATUS ADO

MMUX SELS1 ADDRESS CHIP COMP.MODE

REG. CONTROL BSRC SEL Sl

ENABLES
SSAC SEL SO
ENA VAL

TIC-1873

Figure 11-10 ADK Chip Signals Input/Output

11-17

Translation Buffer

'ACV CHIP SIGNALS•
(•

BCLK CLK DECODES
PHASE 1 BUFFER

FORCE MA 09 MCLK ENA
D CLK ENA

PROC INIT

PREF ETCH RECEIVERS MME
wsus 27 REGISTER
WBUS26 -
·:.eus 25 ---.
'.•/BUS 24 ACV
DSIZE 1 ACCESS

D SIZED CHECK

MAOO MICROVECTOR 1

MA01
MA02 MICROVECTOR 0

PG SNORY
BUS4 PTE CHECK/PROBE

UTRAP CURRENT
FP RES OP MOOE

! CS PARITY ERA REG
LATCHED BUS 3
LATCHED BUS 2
LATCHED BUS 1

_,
MICRO

LA TCHE:D BUS 0 TRAPS
ENC UTRAP2

TB VALID
AC3--+ ENC UTRAP 1
AC2
AC 1
ACO ENC UTRAPO

TK-1889

Figure 11-11 ACV Chip Signals Input/Output

11-18

........

........
I

........
\0

LONLIT 41FOOOO' LONG LITERAL• 41FOOOO I

.__c_L_E_A_R ... F_LA_G_2_1 __ ~~oc~ss ·-~·T ~LE~R~ ~~-~ 21

PSL R(LONLIT]
CLEAR FLAGO

PUSH I JSR
STEPC 2 STEP COUNTER GETS 2,r .

~/ CRAR ZLIT16[80] CRAR GETSWBUS23 I .__... _______ _. . - .

........
I\.)

H
:J

t'(J
c
rt

6'
c
rt
.......
:J
ct>

PCR[ZERO] I PC·O
CLEAR FLAG 1

1
. CLEAR FLAG 1 i

RETURN (1] RETURN +1 TO AD01PUSH i ________ ______ l

CONREGS 0 M[SISEl
R [ZERO]

DECSTEPC

PUSH
DECSTEPC I
CRAR ZUT16 [40)'.

RXCS•O
SISR • 0

•

STEP COUNTER • 1

JSR t

STEP COUNTER • 0 I
CRAR GET WBUS ZZ\

i
MP MTPR. TBIA20·

•
MP. MTPR. TBIA20

TB D+ZLIT8(4]j

RETURN+1.

'PUSH '
0 ZLIT (80) I,

MP. MTPR. TBIA20

INIT ROUTINE <CLEAR Tit>\

TB GET 400 (BIT 10 SET]
VA UNKNOWN

INCREMENT VA IN BIT 10
SUB. 1 AND BR. IF • 0
LOOP 32 TIMES UNTIL SC • 0
INVALIDATE PROCESS SPACE

2ND LOOP
TB GETS 400 (BIT 10 SET)
LOOP TILL FLAG 1 SET

RETURN TO INIT AT
PUSH+1

JSR
SET BIT 31
START CLEAR SYS SPACE

TK-3021\

~
"'1
QJ

:J
(/)
.....
QJ

rt
.......
0
::J

ttl
c
Hl
Hl
ct>
"'1

Rll\O GET flRE OET flAOCE5S
rn MISS IMM.OET.PTEI flTE

IMM. Ot:T. 'TE. PXI

SYSTEM flROCESS
SflACE SPACE

'7:J SET ERROR
...... CODE

"° c
~ RETURN
Cl)

1--'
1--'
I SET ERROR

1--' CODE

w

1--'
OFT flROCE$S RETURN
rTE

1--' ::0 IMM. Gt:T PTE. r>O
I Cl)

N OJ
~ a. SET ERROR nrrunN

CODE
t-3
tII

3:
RETURN

...... • lo

Ul
Ul

t-3
'7:J

FETCl4 PROCESS PTE
~

1--' OJ
0 !VIRTUAL REAOI

fMM. GET. l'fE. P>C!IOI :J
~ Ul

1--'

RETURN OJ
rt

RETURN •O
READ TB MISS FLOW 0

, .. ,.,., :J

tII
c
Hl
Hl
ro
~

Translation Buffer

TRAl'JSLATION BUFFER REGISTERS ·

PROCESSOR REGISTER <3:0> NAME
TBGPR

PR#
ii:-

3 2 1 0

0 =NORMAL

l'A ll T- -
aF

17

1 =GO DATA ERROR
0 =NORMAL
1=G1 DATA ERROR

O= NORMAL
1 =GO TAG ERROR

0 =NORMAL
1 = G1 TAG ERROR

PROCESSOR REGISTER <3:0> NAME
MCESR

PR#
26 ~·

3 2 1 o.

O=OPERAND
1 = XB

O= NORMAL
1 =UNIBUS UNALIGNED REFERENCE

O= NORMAL
1 =TB ERROR (WRITING A ONE CLEARS TBGPR)

O= NORMAL
1 =BUS ERROR (WRITING A ONE CLEARS BER)

PROCESSOR REGISTER <3:0>· NAME
~ TBHR;

PR#

[-~=121 1

........... __

'--=0

'""--=0

~=O

0

Lo=Mtss
1 =HIT ;

7

Translation Buffer S/C Registers

11-21

MEMSCAR#
D

'UTR CHIP'

MEMSCAR#
8 .

'UTR CHIP'

MEMSCAR#
c

'UTR CHIP'

TK-1878

Translation Buffer

TRANSLATION BUFFER REGISTERS CON'T

PROCESSOR REGISTER <3:0> NAME PR#
24

8=~I~~~~~cJ TBGDA

L ~: ~g~~:~ISS IN GO
0 =NORMAL
1 =FORCE A MISS IN G1

0 =FORCE REPLACE GO
1 =FORCE REPLACE G1

0 = Rfo.NDOM REPLACEMENT ;
1 =FORCE REPLACE (USED WITH BIT 2) ·

PROCESSOR R~GiSTER <3:0> NAME r--·2T" 1 ~-:-i MME

PR#
38

MEMSCAR#
3

'ADK CHIP'

MEMSCAR#
0

'ADI< CHIP' L, _______ -- ---~L=J · L a= MEMORY MANAGEMENT OFF 1

1 =MEMORY MANAGEMENT ON .

=O

TK-1879

Note: S/C Registers are loaded by microcode when a Processor
Register is loaded.

Translation S/C Registers

11-22

VAX 11/750 LEVEL II

Cache

Student Guide

Course produced by Educational Services Department
of

Digital Equipment Corporation

Cache

INTRODUCTION

The cache is located on the MIC module. Its purpose is
to increase system operation speed by decreasing memory
cycle time. The function used is storing data in a lK
direct mapped data cache with lK X 14 TAG store and lK X
36 data store.

12-1

Cache

MODULE XII: CACHE

SYNOPSIS

The cache module is designed as a block diagram and
schematic level analysis of the following:

a. characteristics
b. inputs/outputs
c. tag/index formats
d. control registers
e. parity checking

Also included is a fault isolation laboratory
exercise.

OBJECTIVES

Given a faulty Cornet CPU, isolate the defective cache
chip, utilizing all available documentation,
diagnostics and test equipment.

Given statements concerning cache and several
possible definitions for each, select the one correct
definition.

Given a blank block diagram of cache, correctly
identify each block by labeling it.

Utilizing the MIC print set, trace the signal path
for a preseiected signal from origin to destination.

SAMPLE TEST ITEM

The signal EN CACHE L on page 11 of 17 in the MIC
print set, is utilized to:

a. control output data
b. control input data
c. turn cache on
d. enable parity checker

12-2

LAB EXERCISE

a. load rnicrodiagnostics
b. run rnicrodiagnostics
c. interpret error printout
d. isolate malfunction to module
e. isolate malfunction to chip
f. perform appropriate repairs

RESOURCES

Cornet Specifications
Cornet Print Set
Cornet Microcode Listing

12-3

Cache

Cache

OUTLINE

A. Function

B. Purpose

c. Characteristics

D. Simplified Block Diagram Physical Description

1. Tag Store
2. Data Store
3. Pad <23: 02>
4. Parity Generators
5. Parity Checkers
6. Comparator

E. Cache Organization

1. Tag
2. Comparator
3. Tag Parity Checker
4. Data Store
5. Data Parity Checker
6. Pad

12-4

Cache

OUTLINE (continued)

F. Simplified Block Diagram (Cycle Description)

1. Read Hit
2. Read Miss
3. Write (Four Byte)
4. Write Hit (1-2 Bytes)
5. Write Miss

G. Detailed Block Diagram

1. Chip Overv~ew
2. CAK Chip
3. CMK Chip
4. UTR Chip

H. Clear Cache !nit Routine

I. Registers

12-5

PAD < 23:2> ---,.---
12
+--<_i_J"T: 1-2-=>--------...

<t1:2>

IN p

A

IN

p

OUT

OUT

TAG

lKX 14

DATA

STORE
11(x 3S

D BUS DATA

CACHE <31:0>

BYTE< 3:0>

CACHE SIMPLIFIED BLOCK DIAGRAM

Figure 12-1

12-6

IN

TK-3041,

Cache

F
1 14BITS~

BITS~-4-~~IT

T
0

ft6 ADDRESS FIELD BITS : v

R A

L
ADDRESS
BITS
<tt:02>

PAO <t 1:02>

tK
INDEX

ADDRESS BITS

<23:12 >
ADDRESS FIELD -------. ,_..-"'_._,

CACHE

TAG

STORE

CAHIT CA TAG PAR ERR ENCACHE

ADDRESS
BITS
<11:02>

1
T i----0 --+----1

IK
INDEX

DATA PARITY

CACHE ORGANIZATION

Figure 12-2

12-7

CA DATA

PAR ERR

CACHE

DATA

STORE

osus
CACHE

DATA

Cache

<Jt:O>

TK-3037

PAD 11:02

CACHE VALID

CACHE WR ENA

PAD 23:12

PAD 11:02

ENA BYTE 3:0

CACHE WR ENA

EN CACHE

CACHE TAG

STORE

11< X 14 BITS·

CATAG PAR ERR

CACHE DATA
STORE

lK X 36 BITS

0 BUS DATA

CAHIT

CACHE INT

CAHIT

CA TAG PAR ERR

WCTRL 5:0
BUS4:0

MA 1:0

D SIZE 1:0
CA DATA ?AR ERR

STATUS VALID

CMK

CHIP

CAK
CHIP

STATUS 1

STATUS 0 UTA
CHIP

STATUS VALID

ENA CMI
(TO MOR)

CACHE INT

ENA BYTE 3:0 (TO OATAI

CACHE VALID (TO TAG) B CLK H

CACHE GRP 0 WR H

CACHE DETAI LEO BLOCK DIAGRAM

Figure 12-3

12-8

Cache

MICROVECTOR 3:0

(TOMSOl

U TRAP (TO ACV)

CACHE WC ENA

(TO TAG STORE•

TK-30::9

Cache

CLOCK
ADDRESS ·o·sus

BUFFER
REGISTER ROTATOR D BUS ROT <s1:so>

PHASE 1
ENABLE CONTROL

5 8

PRE FETCH SUS

DST RMODE DECODES BYTE

D SIZE <o 1 :OO> MASK
ENA BYTE <J :O>

4
CA TAG PAR ERR 9

CA DATA PAR ERR
MAD <01:oo>

BUS

LATCHED WCTRL <s:o> RECEIVERS
CYCLE

STATUS VALID
STATUS

CACHE

LATCHED BUS <4:0>
6 WRITE CACHEGRPOWR

SNAPSHOTCMI CONTROL

1/0 ADDRESS CACHE 10

CAHIT CONTROL
REGISTER

213 17
CACHE

PARITY
VALID CACHE VALID 0

INVALIDATE ERROR
BIT

M MIJ~SELSl CONTROL REGISTER
11

16

ERROR
WBUS. wsus<2 7:24 >

REGISTER
XCVRS

12
14/15

SC
REGISTER SC CACHE INT.
ENABLE REGISTER

13 18

CAK CHIP INPUTS/OUTPUTS
TK-3040

r

Figure 12-4

12-9

Cache

BCLK CLOCK
PHASE 1 BUFFER

D SIZE 1:0
BYTE MASK CMI 31:28

MAl:O 10/11

OST RMOOE
BUS

PREFETCH CYCLE CMI
DECODE BUS CMI 27:25

MSEQINIT 2 FUNCTION 9

M CLK ENABLE ADDRESS REGISTER ENABLE
3

ADD REG ENA

CMI CPU PRIORITY CMI DRIVER ENABLE 8 ENACMI

DCLK ENABLE
CYCLE

HIT CONTROL
INHIBITCMI 4

OBBZ
INnCK
TIMEOUT MISCELLANEOUS ST 1:0

13 12 WRITE VECT. ace
HOLD INVALIDATE

CONTROL 7

,,.
M MUXSELSl STATUS 1:0:

STATUS
CACHE INT 6 CORR. DATA INT.

BUS4

LATCHED BUS 3:0 STALL GRANT STALL
WAIT LOGIC

INT GRANT 5

CMK CHIP INPUTS/OUTPUTS .
TIC-3079'

Figure 12-5

12-10

Cache

BClK CLOCK ENABLES MICROTRAP
GEN DESTINH

0 CLK ENABLE SUFFER DECODES
PHASE 1 4

15
UT RAP

MACHINE
CHECKS MICRO'{ ECTOR MICROVECTOR

RECEIVERS 13 3:0

PTE CHECK OR PROBE 16/17
xao

PREF ETCH STATUS
XS SELECT REGISTERS

.XB 1 :O IN USE
STATUS 1:0 XBl SC
PROC. INIT. STATUS REGISTERS INHIBITCMI

ADD REGENA REGISTER 6 12
STATUS VALID

SC
OOSRVC

REGISTER
MBIT

ENABLES
MSRCXB 8

LATCHED BUS3 ERROR BUS
WCTRL HHLXXX SUMMARY ERRORS WRITE BUS

LATCHED WCTRL 2:0 REGISTER~ ERROR INT

ENC UTRAP 2:0 14
RTUTO!NH BUS ERROR

TB PARITY ENA_ REGISTER
TB TAG l:OPERR

10
TB DATA PERR

PARITY TBHIT 1:0 WBUS
ACV ERROR XCVRS WBUS27:24

2/3
REGISTER

7 11

UTR CHIP 11\PVTS/OUTPUTS
TK~027,

Figure 12-6

12-11

t'%j
I-'•

l.Q
c

........ l"1
N CD
I

........
N N

I
-....]

I

aDCMl.f,MUW&AltDt

••lt11Utel ------------ I !:'.~,:::'°"'"' ...
1

, .. _..,,1oe1u1•1
I:~:: -. ... 1 •1t1Ct e

I ~I
I I
I I
I I
I I VAL•

I I~ .. ~~

: l-@-
1 I
I I PAl<tUI>

L---1----.--' I I

rAO <H.11>
lf'AD<nM>

L....:.------~-
I i-----··......... I I II ••D CUii> ~'\.,:.=;:....:..;:,.:;,;_,. ___ __,

----L----------v------~--------- ------r-
1 :.:.".:~:.
I ::':~lh.CI

tlQIAMUJ.llLlatl
IANI

I
I
I
I
1----(V>P-~~~-1-~~~--~~~~~~~

:::J "~----a
I
I
I
I
I
I
I
I

1UH I

....... !(.DI , ..

• ~lAf"'IOWIM.I ..

IH(&lf\4-, I

V I L----------------·---------------acao.aovaw.

&AHi
.. .c.IOllAIU.ta'\.

..!11.'!!\n~':'!-• • lAUtC . '
I I •Ila
I I Ol'I

"""' li'l"'CU.Nlla ..

!.!.\'!!\!'!!?".!. t I ... 1141
t I .., •
I I Q

I t .oa

1

I
I
I
I
I
I

.. 1oa.

------------------~ ()
OJ
0
::r
CD

IN. INIT:

LON LITE 41 FOOOO,
NEXT/IN. PSL. LONLIT

000
IN. PSL. LONLIT:

PSL+-LONLIT

JSR
CRAR +-2

PC..-o
RETURN+1

RXCS+-0
SISR+-0

JSR
CRAR+-1

TB
INVALIDATE
ROUTINE

JSR

PSL R [LON LIT].

PUSH,
STEPC2.
CRAR ZLITO [80]
NEXT/IN. PC 0

IN. PC-0:

PC R [ZERO].
CLEAR FLAG 1,
RETURN [1]

83E

820

818

CONREGS D M(SISR]
R [ZERO].

DEC STEP C

PUSH,
DECSTEPC

821

CRAR ZLITO [40],
NEXT/MP. MTAR. TBIA 20

PUSH,
D ZLIT 24 [80],
CLEAR FLAG 1

SAO

NEXT/MP. MPTR. TBIA 20

8A1

TXCS+-0 CONREGS M [FPDOFFSET]
R [ZERO],

8A2

PUSH,
D 2 LIT 0 [400],
NEXT/IN. VA 0

IN. VA-0:

VAR [ZERO],
RETURN {1]

841

._ ______________ __.

IN. CLR CACHE:

VAVA+4
CLEAR CACHE,
NEXT/IN. DEC. 0

PUSH,
ASTLVL [4]
NEXT/IN. PCO

825

843

M [SCBB} -i,
NEXT/CN.CPRS. OR. 8,
OR.I

M [SCBB] -1,
IRD1

820

829

CLEAR CACHE INIT ROUTINE

Figure 12-8

12-13

TB ATTEND
CLEAR CACHE
D +-1024

VA-O
RETURN +1

CLEAR CACHE
VA+- VA+4

0-0-1

Cache

CLEAR CACHE LOOP

DONE WITH CACHE
ASTLVL+-4
FLUSH XS

PME-0
FLAG 2 SAY RET OR IRD·1

SCBB+--1
CALLED FROM CONSOLE
END OF INIT

SCBB _ -1

END INIT
POWER UP

TK-3038

3 2 1

NAME PR #
27

0 CACHE ERROR
REGISTER

0 = MISS
--1 =HIT

0 = NORMAL
'------~l = DATA ERROR

0 = NORMAL ----------1 = .TAG ERROR

3 2 1

NAME PR i
25

CACHE GROUP
DISABLE REGISTER

___ 0 = CACHE ON
1 = CACHE OFF

-------UNDEFINED

----------UNDEFINED

---------UNDEFINED

3 2 1

NAME PR i
PART OF
17

CACHE WRITE
ONLY REGISTER

--0 =CM! ON
1 = CMI OFF

----= 0

------= 0

----------= 0

CACHE REGISTERS

Cache S/C Registers

12-14

MEMSCAR #
4

UTR Chip

MEMSCAR #
6

UTR Chip

MEMSCAR #
E

UTR Chip

Cache

VAX-11/750 LEVEL II

Data Routing and Alignment

Student Guide

Course produced by Educational Services Department
of

Digital Equipment Corporation

Data Routing and Alignment

INTRODUCTION

The data routing and alignment (DR+A) is located on the
MIC module and made up primarily of MDR chips.

Its purpose is to take or give data to/from the data path
portion of the CPU.

The function of the DR+A is to interface with the
following:

I. A. Input buses
1. W bus
2. MA bus

B. Output bus - M bus

C. Bidirectional buses
1. PA bus
2. Cache bus
3. CMI bus
4. XB decode bus

D. Internal buses
1. C bus
2. D bus

II. Perform data transfers on read and write cycles.

III. Data alignment for use by the data path module.

13-1

Data Routing and Alignment

MODULE XIII: DATA ROUTING AND ALIGNMENT

SYNOPSIS

The data routing and alignment module is designed as
a block and schematic diagram analysis of the
following:

a. data routing
b. cache/CM! interface
c. WDR
d. MOR
e. W bus interface
f. XB interface
g. CMI address register
h. I/O address latch
i. microroutines

OBJECTIVES

Identify the data routing and alignment elements by
answering multiple choice questions. The elements
include:

a. data routing
b. cache/CM! interface
c. CPU bus interfaces

Utilizing the MIC module schematic diagram, trace the
origin and destination of a specified signal.

With a malfunction inserted in the 11/750 CPU on the
MIC module, utilize all avail'able documentation and
test equipment to isolate malfunction to chip level.

SAMPLE TEST ITEM

Select the statement that is NOT true about the data
routing and alignment logic.

a. Memory data received from the CM! is stored in
the MOR.

b. The CMI address latch holds the virtual address
of the operand or instruction referenced.

c. The XB is an 8 byte instruction cache.
d. Immediate operands go to the data paths via the M

bus.

13-2

Data Routing and Alignment

LAB EXERCISE

a. load 11/750 microdiagnostics
b. run microdiagnostics
c. interpret error print out
d. isolate malfunction to a module
e. isolate malfunction to a chip
f. perform appropriate repairs

Comet Specification
Comet Pr int Set
Comet Microcode Listing

RESOURCES

13-3

XIII.

Data Routing and Alignment

OUTLINE

Data Routing and Alignment

A. General Characteristics

B. Purpose

C. Functions

D. Simplified Block Diagram

E. Memory Cycles

1. Basic

2. With Cache

F. Virtual Memory Addressing

G. Control Block Diagram Signals

H. Data Rotation

I. Chip Descriptions

1. MDR

2. PRK

13-4

I-'
w
I

Ul

I-'
w
I

I-'

3:
H
()

tp
1--1
0
0
~

AO(ltili!HCl•IAelll

, ... ''""'

I ---L_:.. ___ _

I :~·.:::. .
I ~::~IUICI
I
I
I
I
I

"'.!!' I
I
I
I
I
I •
I
I

·~·· J
p1U"'41 I

L ____ _

0
w
rt
w

::0
0
c •IOCMI rt

I
::J

I l.Q

I w
I ::J

0..
I

)>I I I-'
...... I l.Q

..J ::J ,,_
!3
CD
::J
rt

l"%j
.......

\.Q
c ..,
Cl)

......
w
I

N

Ul
......
w a
I "'d

O"I
.......
Hl
Cl)

0...

0
:;o

+
~

01
t-t
0
0
7"'

waus---.----1

MBUS-.-.----<

TO XB
DECODE

'----

ADDRESS TB

- .

XBO

XB1

CACHE

SIMPLIFIED BLOCK DIAG

DATA ROUTING
AND ALIGNMENT
(MORI
8 X 4 Bl'f SLICE

c
BUS

I
I
I

_J

TO
CMI

TK-3030

0
!lJ
rt
DJ

:;o
0
c
rt
:;::J

\.Q

!lJ
:;::J
0...

~
......

\.Q
:;::J
a
CD
:;::J
rt

WBUS

MBUS

MMUX
SELX2

TO

B
DECODE

FROM
ADDRESS

TOTS

AMUX SELX

Data Routing and Alignment

ADD REGENA
TO CACHE

DBUS ROTSX

XBPCXX

Figure 13-3

CLKSELSX

DBUS
t/0
WRITE

CBUS

~""'---~~~~~~~~~...._~ ADD i--..._~~

(AOK)

0 BUSSELSK

S1 so I DBUS
0 0 CACHE

0 1 CMI
0 WBUS
1 OSR

MOR CONTROL

REG

SNAPSHOT
CMI

ADK
CLKSEL SX

S1 sol CLOCK

0 0 ' NONE

0 1 MOR
1 0 XB

WOR

TO
CMI

TIC-3031

DR + A Control Block

13-7

Data Routing and Alignment

A MUX SEL <Sl:S0> H TRUE

Controls MOX Input to A MOX, From ADK Chip, To PA BUS

Sl se Input to PA BUS

L L CMI ADD REG

L H CMI DATA

H L MA BUS

H H D BUS

* Note: During VA transfer with MME, A MOX SEL = CMI
address and D BUS SEL = Cache only lower byte of
address allowed to pass through AMUX.

M MOX SEL <Sl:S0> H TRUE
M MOX SEL control what inputs are selected to the M
BUS. Sl is actually named M MUX SEL 1 from PRK.
50 is actually latched MSRC 2 from MIC 5.

Sl se Data to M BUS

L L MDR

L H XB DATA

H L MA BUS

H H PA BUS

13-8

Data Routing and Alignment

DBUS ROT S<l:0> H

DBUS ROT S<l:0> H cause data from the DBUS to appear on the
inputs to the MDR and WDR byte rotator as shown in the
following chart:

DBUS ROT Sl H DBUS ROT S0 H ROT OUT (BYTES)

LOW LOW 3 2 1 0

LOW HIGH 0 3 2 1

HIGH LOW 1 0 3 2

HIGH HIGH 2 1 0 3

CLK SEL S<l :0 > H

CLK SEL S<l:0> H determine which DBUS destinations will be
clocked on the low to high transition of B CLK L according
to the following chart:

CLK SEL Sl H CL.K SEL S0 H ENABLE

LOW LOW NOTHING

LOW HIGH MDR

HIGH LOW XB

HIGH HIGH WDR

13-9

Data Routing and Alignment

In addition to the conditions listed in the chart, portions
of the MOR must be enabled for data returning from a READ,
SECOND REFERENCE. A READ< SECOND REFERENCE is decoded in
the MOR chip when:

DBUS ROT S<l:0> Hnot equal to zero and
CLK SEL S<l:0> H equal zero and
WDR not being sourced onto the MBUS

Then, clocks are enabled for bytes of the MOR as
the following chart:

shown

DBUS ROT Sl H DBUS ROT S0 H BYTES ENABLED

LOW HIGH 3 x x x

HIGH LOW 3 2 x x

HIGH HIGH 3 2 1 x

in

Any time the MDR or any portion of the MOR is enabled or XB
is enabled, and CM! DATA is selected on the DBUS, the WDR is
also enabled. In this case, the WDR MUX is steered to DBUS
data enabled. In this case, the WDR MU X is steered to DBUS
data instead of the DBUS ROTATOR output.

13-10

Data Routing and Alignment

Execution Buffer

XB DATA SELECTION

PC <01: 00 > H
PC <01:00> H and XB SELECT H determine which bytes of each
XB will appear on the XB DECODE BUS, and on the MBUS if the
MBUS MULTIPLEXER is steered to XB DATA, according to the
following chart:

XB DEC XB DEC
BYTE 1 BYTE 0

XB MBUS MBUS MBUS MBUS
SEL H PC 01 H PC 00 H BYTE 3 BYTE 2 BYTE 1 BYTE 0

XBl XBl XBl XBl
LOW LOW LOW BYTE 3 BYTE 2 BYTE 1 BYTE 0

XB0 XBl XBl XBl
LOW LOW HIGH BYTE 0 BYTE 3 BYTE 2 BYTE 1

XB0 XB0 XBl XBl
LOW HIGH LOW BYTE 1 BYTE 0 BYTE 3 BYTE 2

XB0 XB0 XB0 XBl
LOW HIGH HIGH BYTE 2 BYTE 1 BYTE 0 BYTE 3

XB0 XB0 XB0 XB0
HIGH LOW LOW BYTE 3 BYTE 2 BYTE 1 BYTE 0

XBl· XB0 XB0 XB0
HIGH LOW HIGH BYTE 0 BYTE 3 BYTE 2 BYTE 1

XBl XBl XB0 XB0
HIGH HIGH LOW BYTE 1 BYTE 0 BYTE 3 BYTE 2

XBl XBl XBl XB0
HIGH HIGH HIGH BYTE 2 BYTE 1 BYTE 0 BYTE 3

13-11

ADD REG. ENA

SNAPSHOT CMI

CLK SEL S1 :SO

D BUS SEL S1 :SO

AMUX SEL Sl :SO

ENABLE CMI

D BUS ROT S1 :SO

XB SELECT

MMUX SEL S1 :SO

MADOO

MAD08

MAD16

MAD 24

MBUS ENA

WB 00

WB 08

WB16

WB 24

Data Routing and Alignment

CLK
CONTROL I

A BUS MUX

MISC.
CONTROL;

· D BUS ROTATOR

MGM·
DATA:
REG

EXECUTION
BUFFER

XB ROT 83:80

CMI
ADDRESS
REGISTER

MBUS
MUX

WRITE
DATA
REGISTER

·--r.> PAOOO

~ PAOOS

> PA016

I CACHE 00·

I CACHE OS

,-- CACHE 16

'-- CACHE24

,-;. XBUF 00

l-:> XBUF 08

I-> M~OO
!-> r1:rn oa

kMB16

!-~~ MB24

i
' t-----------------' i

CMI
TRANSCEIVERS

MOR CHIP INPUTS/OUTPUTS (10F8)

Figure 13-4 MDR Chip Signals Input/Output

13-12

;~-~--·CM 00
I
!.-:-....CMOS

L:!'> CM 16

'-->CM 24

TK-3028

l"%j
ill
c
t;
<D

I-'
w
I

U1

3
H
()

3
0

I-' OJ
w c
I I-'

I-' <D
w

()
::r

'"d

:u
<D
I-'
OJ
rt
0
::s
fJl
::r

'"d
fJl

WBUS

(7oo~ssToG~
I

I ADD = I
~---~~- M--~---.

- CHIP I
I
~---J

r
I

-.~R:SL~;B;E;-.-, r - -CA~E- -

ADK
CHIP

~ACV
CHIP

UTR
CHIP

I I
I I
I I

CAK
CHIP

.... - CMK
CHIP

-- - ...I L ·-·-1- - --
TOMDR

MAD
r-1-.- l - -- ~ --.---,·

I • -
I -

MBUS 44---

1

MDR
CHIP ~

PRK
CHIP

'---,••CMI

DAT A ROUTING I
ANO ALIGNMENT I

__________ _..,,

MIC MODULE CHIP RELATIONSHIPS

..,
~TOMORIPRK

I
_J

TK·30:14

0
OJ
rt
OJ

6'
c
rt
::s
ill

OJ
::s
OJ

~
I-'
ill
::s
a
<D
::s
rt

BCLK

PHASE 1

MCLK ENABLE

D CLK ENABLE

XB PC 01:00

ISIZE 01:00

IRD1

DST RMODE

LO OSR.

LATCHED MSRC 04:00

STATUS VALID

LATCHED BUS 03:00

MSEQ INIT

. SNAPSHOT CMI

LATCHED WCTRL 05:00

CLOCK.
BUFFER

RECEIVERS

Data Routing and Alignment

DECODES

ADD

REG
ENABLE

BUS
CYCLE
STATUS

INVALIDATE
CONTROL

MISC
PRE FETCH

PRI< CHIP INPUTS/OUTPUTS

REG LOADED -> XB SELECT
FLOPS

XB USAGE

MAMUX
STEERING

LATCH MA

ADDRESS
ENABLES

XB01 :00
IN USE

::>-MA SELECT

Sl:SO

LATCH MA

~ENA PC

>ENA VA SAVE

MMUX SELECT > MMUX SEL S1

- ENA ACV STALL
STALL

~STALL

PRE FETCH ~>PREFETCH

TK-3023 i

Figure 13-6 PRK Chip Signals Input/Output

13-14

VAX 11/750 LEVEL II

Execution Buffer

Student Guide

Course produced by Educational Services Department
of

Digital Equipment Corporation

Execution Buffer

INTRODUCTION

The Execution Buffer is located on the MIC module just as
the DR+A is located in the MDR chips. Its purpose is to
effectively eliminate the time spent by the CPU waiting
for the next instruction or waiting for two memory cycles
when bytes that are needed cross longword boundaries.

Its function is to act as a two longword FIFO buffer that
provides two bytes addressed by. PC and PC+l to the XB
decode bus.

14-1

Execution Buffer

MODULE 14: EXECUTION BUFFER

SYNOPSIS

The execution buffer module is designed as a block
diagram and schematic level analysis of the
following:

a. instruction register
b. operand specifier register
c. instruction decoder

Execution flows and operand specifier routines will
also be· covered in detail. A fault isolation
laboratory exercise will be utilized to check student
comprehension.

OBJECTIVES

Given a list of register bits and a list of
functions, correctly match the register bits to its
function.

Identify the major execution buffer logic components
by correctly labeling each on a blank block diagram.

With a malfunction inserted on the MIC module of the
Comet CPU, utilize all available documentation,
diagnostics and test equipment, to isolate the
malfunction to the chip level.

Identify as true or false statements regarding the
execution buffer segment of the 11/750 CPU, writing
the correct answer in the space provided.

SAMPLE TEST ITEM

Indicate in the space provided whether the statement
is true or false.

a. the instruction register is 32 bits.
b. the instruction decode is performed by roms.

c. the operand specifier is always byte zero
(0) •

14-2

Execution Buffer

LAB EXERCISE

a. load 11/750 microdiagnostics
b. run microdiagnostics
c. interpret error printout
d. isolate malfunction to a module
e. further isolate malfunction to chip
f. perform appropriate repairs.

RESOURCES

11/750 Specification
11/750 Print Set
11/750 Microcode Listing

14-3

Execution Buffer

OUTLINE

XIV. Execution Buffer

A. Purpose
B. Function
c. General Description
D. Simplified Block Diagram
E. Prefetch Cycle General Description
F. Prefetch Detailed Description
G. XB Selection And Control

14-4

I-'
.a:::.
I

U1

I-'
.a:::.
I

I-'

3
H
()

to
I-'
0
()
;i'\"

t:1
I-'•
DJ

l.Q
~

DJ
9

'""'

AbCllHMCIHl'IAQW
411111U.tCI

lfRllUM!Clll UllMll'H
MtQoil.AICttlDlitlt.M.JM

.--------------..1 ::.A:1~..:IO .. IUlll~
l'llllAVAHO<il"tl'il

DIU.t\t-,--- EP- : .
l ___ __: ______________________ ~----

•111: ULQ.~ Dollt•Wl

'" 111111

+.-

(AOl(I

I ~:~2:: 1 OtMICIMA,.IQ

11 f,t.0 <UU">

__ r;;;-i_
~

.. ICWPllUillLIKH

..!.!..1·-~'c\""~-0 O l"Lllf
t 1 f.MI

I 0 "'el.IS
•• ()$ft

t.lOIU
MICOIUM.lhlJIU

.!.!_\'~' ,. ~H>.~ 8 8 U1•11dl

I t t.tllO

1 o n
1 I WUR

01
I
I
I
I
I
I

------------------~

tlJ
x
CD
()

c
rt
I-'•
0
::J

,,_,to
c
t-ti
t-ti
CD
~

TO
IRO
ROMS

WBUS

MBUS

OSA
IA

XB PC 1:0

.,.._E_N_A_PC _ ___,. . PAK CHIP

IR01

LDOSR

MSRC XB

XB SELECT

XB1:0 IN USE

PRE FETCH

Execution Buffer

UTR CHIP

STALL

CMK CHIP

INHIBIT CMI (TO CMA)

UT RAP

SAL
CHIP

ENACMI

GRANT STALL

CLOCKS

-------------~- -,
MOR
CHIP

I MBUSMUX

xe
DECODE
BUS

PC01:00

..._, ____ _

xe SELEC.T

xeo
0 BUS

XB1

EXECUTION BUFFER BLOCK DIAGRAM
'SIMPLIFIED'

1/0
WAT.

I
I
I

ADO t--...._-+-..,.CMI
LATCH

_ _J

Tl(3032

Figure 14-2 Execution Buffer Simplified Block

14-6

LATCH MA

COMP MODE
EN PC BACK UP

ENPC
ENVA

EN VA SAVE

BCLK
INC. CAR RY IN

ASRCSELS2

ASRCSELS1
ASRCSELSO

BSRCSELS1

BSRCSELSO
CHIP tD

MASELECTS1

MA SELECT SO

CARRY IN

WBOO
WB01

WB02

W803

WB04
WB05
WB06
WB07

---... -------..

-------.. -
---.._.

.. -
-... ------.. ---

CLK
CONTROL

J

- -·--
MUX ---·
CONTROL

~

. ' ~·

AMUX/
ADDER

.. -

.. -
-

- PC
i---

BACKUP
·-

PGBNORY - 4 ~ -- -I

~ 0

a VA
INPUT SAVE
MUX·

0 j ~

~

.. -

Execution Buffer

VA ----

..

--MAMUX --

MA ---PC INC •.

PC --------
I ---CARRY' --LOOK ----AHEAD ----

MSEQVAOO

MAli-00

MAD01

MAD02

MAD03

MAD04

MAD05

MAD06

MAffo7

XBPCOO

XB PC01
-
XBPC02

CARRY GEN 1

CARRY GEN 2

CARRY PROP
INC. CARRY OUT

ADD CHIP SIGNALS (1 OF 4)
TIC-3028

Figure 14-3 Add Chip Signals Input/Output

14-7

BCLK

PHASE 1

MCLK ENABLE

DCLK ~NABLE

XB PC01:00

ISIZE 01:00

CLOCI(_
BUFFER

RECEIVERS
. -

•

DECODES

ADD

REG
ENABLE

BUS
CYCLE
$.TA1'US

INVALIDATE
CONTROL

MISC
PRE FETCH

PRK CHIP INPUTS/OUTPUTS

Execution Buffer

REG LOAD~Q
_fl~

XBUSAGE

MAMUX
STEERING

LATCH MA
--- .. ··--

ADDRESS
ENABLES

MMUX SE!-~_ci:

STALL

PREFETCf:i

XBSELECT

XB01:00
INUSE

MA~~LECT
S1:SO

LATCH MA

ENA PC
ENA VA SAVE

MMUX SELS1

ENA ACV ST ALL

STALL

PRE FETCH

TK-3023

Figure 14-4 PRK Chip Signals Inputs/Outputs

14 8

Execution Buffer

-·-- ··-· --··· -

BCLK MICROTRAP CLOCK ENABLES
GEN OEST INH DCLK ENABLE BUFFER DECODES

PHASE 1 1 4
15 UT RAP

MACHINE
CHECKS MICROVECTOR MICROVECTOR

RECEIVERS 13 3:0
PTE CHECK- OR PROBE 18/17

XBO
PRE FETCH STATUS
XBSELECT REGISTER

5 .xe 1:0 IN USE
STATUS 1:0 XB1 SC
PROC. INIT. STATUS REGISTERS INHIBITCMI

ADO REG ENA REGISTERS
12 STATUS VALID

SC OOSRVC
REGISTER MBIT
ENABLES B MSRCXB

LATCHED BUS 3 ERROR BUS
WCTRL HHLXXX SUMMARY ERRORS WRITE BUS

LATCHED WCTRL 2:0 REGISTER
9

ERROR INT
ENC UTRAP 2:0 14

RTUTOINH BUS ERROR
TB PARITY ENA REGISTER

Tl TAG f :0 PERR
10

TB DATA PERR
TB HIT 1:0 PARITY WBUS

ACV ERROR XCVRS WBUS27:24
2/3

REGISTER-
7 11

tJT'RCHIPI~
TK-3027

Figure 14-5 UTR Chip Inputs/Outputs

14--9

··--

BCLK

PHASE 1
CLOCK
BUFFER 1

Execution Buffer

D SIZE 1:0

MA1:0-__.

- - -
BYTE MASK CMI 31:28

10/11

DST RMODE

PRE FETCH
. -----

MSEQ INIT

MCLK ENABLE

CMI CPU PRIORITY'

DCLK ENABLE

HIT

INHIBIT CMI

-
HOLD

M MUXSEL S1

CACHE INT

BUS4

LATCHED BUS 3:0

WAIT

INT GRANT

-----------....-----------------------....
BUS
CYCLE
DECODE-

2

- - . ---···-··

ADDRESS REGISTER ENABLE

CMI DRfVER ENABLE

CYCLE
CONTROL

4

INVALIDATE
CONTROL 7

STATUS

INTLCK
TIMEOUT

13

CMI
BUS
FUNCTION 9

3

8

CMI 27:25

ADD REG ENA

ENACMI

DBBZ

MISCELLANEOUS ST 1:0

.._ ________ 1_2 ___.~ WRITE VECT. ace

..__..STATUS 1:0

...._...,STATUS VALID
8 CORR. DATA INT.

.._ ________________________________ ...

STALL
LOGIC

•

CMK CHIP INPUTS/OUTPUTS

5

Figure 14-6 CMK Chip Inputs/Outputs

14-10

GRANT STALL

•
TK-3029

ADD REG. ENA_

CLK SEL S1 :SO

D_ BUS SEL S1 :sg

MMUX SEL S1 :SO

CLK
CONTROL

MISC.
CONTROL

0 BUS ROTATOR

MGM
OAT~
REQ

EXECUTION.
BUFFER

XB ROTB3:BO

CMI
ADDRESS
REGISTER.

MBUS
MUX

CMI
TRANSCEIVERS

MDR CHIP INPUTS/OUTPUTS C10F8) . -

Execution Buffer

WRITE
'DATA
REGISTER

....,__,. PAOOO

...__. PAOOS

......,_. ~A016

..... _ CACHEOQt

----CACHE OS

.._-CACHE16

CACHE 24

XBUF 00

XBUF 08

MBOO

·MB08

MB16

~82~

.,__.,. CMOO

........ CMOS

CM 16

---~CM24.

TK-3028
Figure 14-7 MDR Chip Signals Input/Output

14-11

M BUS MBUS --- MUX

t--

XBUF BITS - XB - ROT XB DECODE
BUS

XB SELECT

! 0 PC 01 0

r-- 7 6

t-- 15 14
,__

t---; 23 22

~ 31 30

--
14--

,..._ 7 6

1-- 15 14 ..___
4~

t-- 23 22

~ 31 30

XBO

5 4 3

13 12 11

21 20 19

29 28 27

2

10

18

26

Execution Buffer

1

9

17

25

0

8

16

24

BYTE 0

BYTE 1

BYTE.2

BYTE 3

)XBSELE
XB1j

CT D BUS

5 4 3 2

13 12 11 10

21 10 19 18

29 28 27 26

XB SELECTION

1

9

17

25

0

8

16

24

BYTE 0

BYTE 1

BYTE 2

BYTE 3

Tl<.·3034

Figure 14-8 XB Selection

14-12

Execution Buffer

XB DATA SELECTION

PC <CH: 00 > H
PC <01: 00> H and XB SELECT H determine which bytes of each
XB will appear on the XB DECODE BUS, and on the MBUS if the
MBUS multiplexer is steered to XB DATA, according to the
following chart:

XB DEC XB DEC
BYTE 1 BYTE 0

XB MBUS MBUS MBUS MBUS
SEL H PC 01 H PC 00 H BYTE 3 BYTE 2 BYTE 1 BYTE 0

XBl XBl XBl XBl
LOW LOW LOW BYTE 3 BYTE 2 BYTE 1 BYTE 0

XB0 XBl XBl XBl
LOW LOW HIGH BYTE 0 BYTE 3 BYTE 2 BYTE 1

XB0 XB0 XBl XBl
LOW HIGH LOW BYTE 1 BYTE 0 BYTE 3 BYTE 2

XB0 XB0 XB0 XBl
LOW HIGH HIGH BYTE 2 BYTE 1 BYTE 0 BYTE 3

XB0 XB0 XB0 XB0
HIGH LOW LOW BYTE 3 BYTE 2 BYTE 1 BYTE 0

XBl XB0 XB0 XB0·
HIGH LOW HIGH BYTE 0 BYTE 3 BYTE 2 BYTE 1

XBl XBl XB0 XB0
HIGH HIGH LOW BYTE 1 BYTE 0 BYTE 3 BYTE 2

XBl XBl XBl XB0
HIGH HIGH HIGH BYTE 2 BYTE 1 BYTE 0 BYTE 3

14-13

Execution Buffer

IR01 LDOSR #BYTES

FALSE FALSE 0

FALSE TRUE

TRUE FLASE

TRUE TRUE 2

NUMBER OF BYTES OF I STREAM
MSRC#XB

TK·3033

Figure 14-9 Number of Bytes of I-Stream MSRC # XB

14-14

'IWO LONGWORD BUFFERS IN MDR CHIPS

x x x x x x x x

PC=l

LONGWORD ADD=0

x x x x 3 2 1

PC-=3

LONGWORD ADD=4 LONGWORD ADD=0

7 6 5 4 3 2 1

PC=S

LONGWORD ADD=4

x x x x 7 6 5 4

PC=S

LONGWORD ADD=8 LONGWORD ADD=4

8 A 9 8 7 6 5 4

PC=9

LONGWORD ADD=8

x x x x B A 9 8

PC=9

14-15

Execution Buffer

PC JUST LOADED WITH 1. BOTH
BUFFERS EMPTY. 'IWO BYTES OF
I-STREAM REQUIRED.

LONGWORD AT ADDRESS 0 FETCHED.
TWO BYTES OF I-STREAM USED. PC
INCREMENTS TO 3. IJWO BYTES OF
I-STREAM REQUIRED.

LONGWORD AT ADDRESS 4 FETCHED.
TWO BYTES OF I-STREAM USED. PC
INCREMENTS TO 5. FOUR BYTES OF
I-STREAM REQUIRED.

FIRST BUFFER NOW EMPTY.
LONGWORD AT ADDRESS 8 MUST BE
FETCHED TO SATISFY REQUIREMENT.

LONGWORD AT ADDRESS 8 FETCHED.
FOUR BYTES OF I-STREAM USED.
PC INCREMENTS TO 9.

ONE BUFFER BECOMES EMPTY.
THREE BYTES REMAIN IN OTHER
BUFFER. PREFETCHER WILL FILL
EMPTY BUFFER FROM ADDRESS C
(HEX) .

3

L 3

3

2

--

1

NAME

BUS ERROR MEMSCAR i
Summary Register 9

__ 0 = Normal
1 = Corrected Data

__ 0 = Normal
1 = Lost Error

0 = Normal
1 = Uncorrectable Data Error

0 = Normal
1 = Non-Existant Memory

I 2 I

2

1 I 0]

0 =
1 =

0 = Read
-

NAME

Saved Mode
Register

MODE 00 = Kernel
01 = Executive
10 = Supervisor
11 = User ·

Virtual
Physical

- = -
l = Modify

NAME

1 0 Write Vector
Occurred Re-
gister

1 = Vector in MOR

Execution Buffer

PR #

PR #

Part of
17

PR #

Part of
17

MEMSCAR i

MEMSCAR i

1
ADK Chip

MEMS CAR i

2

Bit <0> is READ/WRITE and is initially 0. In addition, it
is cleared by an INTERRUPT GRANT bus function and set by a
WRITE VECTOR transaction on the CM! or by a READ LOCK
TIMEOUT.

Miscellaneous Registers

14-16

Execution Buffer

Memory Interface Connect Control Logic General Description

Six 48 pin gate array chips and associated logic chips
working in conjunction with each other monitor WCNTRL, bus
function and MSRC fields from the microword to control
address and data gating, aligning and mutliplexing to and
from the data path module and CMI bus. During this gating,
aligning and multiplexing, the chips will also monitor the
condition of the operation being performed during the
execution of this microinstruction that may cause a
microtrap condition to occur. If this happens the control
logic will generate the proper microaddress to respond to
the microtrap condition generated.

The basic functions the control logic must perform are
related to the six control chips that are located - on this
module. They are:

1. Address control chip {ADK) - Drives multiplexing and
gating of address from ADD chip and helps control
transfer through MDR chip. Also used for
controlling translation buffer group disables or
group displacement.

2. Pref etch control chip {PRK) - Controls pref etching
of I-Stream data from memory to be brought to
execution buffers XB0 or XBl independently of
microcode~ PRK also used in conjunction with ADK to
generate or load proper address from/to ADD chips.

3. Cache control chip (CAK) - In conjunction with ADK
chip controls disabling and enabling of cache.
Controls driving and receiving of data to and from
MOR and cache. Monitors CMK chips snapshot CMI
output for invalidation of cache on CMI writes.

4. Access control violation {ACV) Monitors and
generates ACV signal for access violations and
translation not valid during TB usage or PTE checks
and probes on WBUS. Monitors and generates codes to
microtrap chip in privileged sequence for the
following microtrap conditions.

1. Control store parity error
2. FPA received operand
3. Unaligned unibus data
4. Write crossing page boundary
5. Write unlock crossing page boundary
6. Unaligned data, write unlock
7. Unaligned data

14-17

Execution Buffer

5. Microtrap chip (UTR) - Monitors microtrap conditions
during microinstruction and generates encoded
microvector bits <3:0>. These bits are used in
conjunction with bits <5:4> from microsequencer chip
on DPM to generate 6-bit microaddress. This address
points to the proper microroutine to handle the
microtrap condition decoded by microtrap chip. Also
monitors status from CMK chip to generate write bus
error interrupt to interrupt chip on UBJ module.

6. CPU memory interconnect control chip (CMK)
Monitors and transmits control signals to and from
CM! bus. These signals are DBBZ and Hold.
Transmits and monitors byte mask and function bits
<31:25> onto/from CM! bus. Monitors status lines of
CM!. Generates corrected data interrupt to UBI
module. Generates grant stall in response to INT
Grant from UBI module to stall microcode during an
interrupt from UBI module.

As we continue on to the discussion of the MIC you must bear
in mind that it monitors actions being performed by the same
microword. That is, it will be monitoring the same WCNTL
lines, bus function lines and MSRL lines so they may work
together to perform the function specified by the microword.
All WCNTL lines and bus function lines from CSS module are
latched on low to high transition of M CLK and feed to
needed locations on MIC module. M CLK Enable H, B CLK L, D
CLK Enable H and Phase l H will also be used internal to all
control chips for transmitting and receiving purposes along
with loading or reading internal registers (Ex: MEMSCAR).

Following are the selected bus functions and their
definitions:

BUS FUNCTIONS

A 5-bit microfield is required to specify which of the
following bus functions is to. be performed during each
microstep: (BUS CONTROL CODES IN PARENTHESES ARE IN HEX)

(07) NO FUNCTION
(10) READ

Replace the contents of the MOR with the contents of the
memory location specified by the virtual address presently
in the VA and DSIZE.

(14) READ WITH MODIFY INTENT

14-18

Execution Buffer

Checked for WRITE access. Otherwise, same as READ unless
the resulting physical address is in UNIBUS space, in which
case the UNIBUS must perform an interlocked operation
(DAT IP).

(11) READ LONGWORD

Same as READ, except the two least significant bits of the
address are ignored. (For FIELD instructions.)

(15) READ LONGWORD WITH MODIFY INTENT

See READ LONGWORD and READ WITH MODIFY INTENT.

(02) READ, NO MICROTRAP

Same as READ, but suppress ACV and unaligned data
microtraps.

(13) READ LOCK

Same as READ; Checked for WRITE access. In addition,
signifies to other masters on the CM! that they must not
perform READ LOCK operations until a WRITE UNLOCK operation
has taken place. If the CPU is unable to perform a READ
LOCK within approximately 64 microseconds of the time it was
initiated, a READ LOCK TIMEOUT will occur. The READ LOCK
operation will be aborted, a NONEXISTENT MEMORY machine
check will occur, and the WRITE VECTOR OCCURRED bit will be
set in the appropriate status/control register.

(00) READ PHYSICAL ADDRESS

Sarne as READ except that the address in the VA is to be used
as a physical address instead of a virtual address and the
two least significant bits are ignored.

(06) READ, SECOND REFERENCE

Indicates to the memory interface control logic that a
previous READ crossed a longword boundary. Therefore, only
the portion of data fetched from memory which was not
previously fetched should be clocked into the MDR.

(0B) WRITE UNLOCK, SECOND REFERENCE

See WRITE UNLOCK and WRITE, SECOND REFERENCE

14-19

Execution Buffer

Note

There exists in the memory interface
control logic a "CM! Write Size Latch"
which is used in performing certain write
bus functions.

There are actually three categories of write bus functions:

1. Those which load the "Write Size Latch"
2. Those which use the latched size
3. Those which always write all four bytes regardless

of DSIZE

Category 1 includes:

WRITE
WRITE IF NOT RMODE
WRITE UNLOCK
(WRITE LONGWORD)

Note

WRITE LONGWORD causes the •write Size
Latch" to be loaded with DSIZE, but
always writes all four bytes.

Category 2 includes:

WRITE, SECOND REFERENCE
WRITE UNLOCK, SECOND REFERENCE
WRITE, NO MICROTRAP

Category 3 includes:

WRITE PHYSICAL ADDRESS
WRITE LONGWORD, NO MICROTRAP
WRITE LONGWORD

The "Write Size Latch" is loaded with DSIZE during any
microstep which specifies a Category 1 write bus function,
regardless of any destination inhibits or microtraps which
might occur during that microstep.

(04) READ LOCK TIMEOUT TEST

(Special function for testing timeout counter in MOR chips.)

(18) WRITE

14-20

Execution Buffer

Replace the contents of the memory location specified by the
virtual address presently in the VA and DSIZE with the
contents of the WDR.

(lA) WRITE IF NOT REGISTER MODE

Sarne as WRITE unless RMODE (REGISTER MODE) from the
rnicrosequencer is asserted, in which case do nothing.

(19) WRITE LONGWORD

Sarne as WRITE, except the two least significant bits of the
address are ignored. (For FIELD instructions.)

(0C) WRITE, NO MICROTRAP

Same as WRITE, but suppress ACV, unaligned data, and page
boundary crossing rnicrotraps.

(0E) WRITE, NO MICROTRAP, LONG

Sarne as WRITE, NO MICROTRAP, except that a longword is
written ignoring the latched write size. Used for wr i t.ing
the Mbit during mapping subroutines.

(lB) WRITE UNLOCK

Sarne as WRITE. In addition, releases the interlock set by a
READ LOCK operation.

(08) WRITE PHYSICAL ADDRESS

Sarne as WRITE except that the address in the VA is to be
used as a physical address instead of a virtual address and
the two least significant address bits are ignored.

(0A) WRITE, SECOND REFERENCE

Indicates to the memory interface control logic that a
previous WRITE crossed a longword boundary. Therefore only
the portion of the data in the WDR which was not previously
stored should be written into the specified memory location.

(lD) PROBE ACCESS, WRITE

Check the translation buffer entry corresponding to the
address presently in the VA against the current mode for
validity and write access. Indicate the results of the
check on the microvector lines.

14-21

Execution Buffer

(lC) PROBE ACCESS, WRITE, MODE SPECIFIED

Same as PROBE ACCESS, WRITE except that access ·is checked
against WBUS <25:24> instead of the current mode.

(12) PTE ACCESS CHECK, WRITE

Same as PROBE ACCESS, WRITE except that a PTE image on ~he

WBUS is checked instead of a translation buffer entry. Note
that the valid bit and the protection code bits must occupy
the same positions on the WBUS as they would if the PTE were
to be loaded into the translation buffer.

(09) REI CHECK

Check for:

Saved PSL <current mode> GEQU ASTLVL and Saved PSL <IS> = 0

and check the saved PSL (on the WBUS) against the PSL for
any of the following conditions. Indicate the results of
the checks on the microvector lines:

l. Saved PSL <current mode> LSSU PSL <current mode>
2. Saved PSL <IS> EQLU 1 and PSL <IS> EQLU 0
3. Saved PSL <IS> EQLU l and saved PSL <current mode>

NEQU 0
4. Saved PSL <IS> EQLU l and saved PSL <IPL> EQLU 0
5. Saved PSL <IPL> GRTU 0 and saved PSL <current mode>

NEQU 0
6. Saved PSL <previous mode> LSSU saved PSL <current

mode>
7. Saved PSL <IPL> GTRU PSL <IPL>

(03) I/O INITIALIZE

Generate UNIBUS !NIT.

(01) PROCESSOR INITIALIZE

Generate a reset signal which initializes status/control
registers.

(0F) INTERRUPT GRANT

Causes a BUS GRANT to be issued on the UNIBUS in response to
the highest level BUS REQUEST. After the grant is issued,
memory interface logic will stall the processor clock until
the grantee releases the UNIBUS. During the time the

14-22

Execution Buffer

processor is stalled, a WRITE VECTOR transaction may take
place on the CMI which will cause an interrupt vector to be
written into the MOR. If so, a status register bit will be
set.

(lF) PROBE ACCESS, READ

Check the translation buffer entry corresponding to the
address presently in the VA against the current mode for
validity and read access. Indicate the results of the check
on the microvector lines as follows:

On

M
v
AC
PBOK
PA

PROBE

Note

The following signal name abbreviations
are used to define the state of the
microvector lines during PROBE and
PTE-CHECK microorders:

= PTE MODIFY BIT
= 1 IF VALID PTE
= 1 IF ACCESS ALLOWED
= l IF NOT CROSSING A PAGE BOUNDARY
= 1 IF MEMORY MAPPING IS NOT ENABLED (PHYS. ADD_.)

the microvector lines are:

MICROVECTOR <3> = (PBOK .AND. V .AND. AC) .OR. PA
MICROVECTOR <2> = M .AND. ((V .AND. AC) .OR. PA)
MICROVECTOR <l> = V .OR. PA
MICROVECTOR <0> = (AC .AND. V) .OR. PA

On PTE CHECK the microvector lines are:

0 MICROVECTOR <3> =
MICROVECTOR <2> =
MICROVECTOR <l> =
MICROVECTOR <0> =

M .AND. V .AND. AC
-~

V .AND. AC
AC

(lE) PROBE ACCESS, READ, MODE SPECIFIED

Same as PROBE ACCESS, READ except that access is checked
against WBUS <25:24> instead of the current mode.

(16) PTE ACCESS CHECK, READ

14-23

Execution Buffer

Same as PROBE ACCESS, READ except that a PTE image on the
WBUS is checked instead of a translation buffer entry. Note
that the valid bit and the protection code bits must occupy
the same positions on the WBUS as they would if the PTE were
to be loaded into the translation buffer.

(17) PTE ACCESS CHECK, READ, KERNEL MODE

Same as PTE ACCESS CHECK, READ except that access is checked
against kernel mode instead of current mode.

The last group of microorders from the microcode that the
MIC m9d ule needs for performing its functions are the MSRC
group bits <68:64> from the microcode. The following are
the MSRC codes required for the MIC module. The MSRC
assignments in parenthesis are in Hex.

(12) MBUS <- MDR
(13) MBUS <- WDR
(17) MBUS <- XB
(18) MBUS <- MA
(19) MBUS <- PC SAVE
(lA) MBUS <- PC
(18) MBUS <- VA
(lF) MBUS <- TB Data (Address in VA)

Mote

Bits <31:24> will always read as ones.

There are 10 registers internal to 3 control chips that are
designated as status and control registers (S/C) • The
microcode reads from and write to these registers by loading
a 4-bi t S/C register (not included in the 10 S/Cs) called
S/C address register using WCNTL lines and WBUS. These
registers will be referred to in the microcode as MEM S/C
REG numbers, yet may be included in a different numbered
Internal processor register (IPR) discussed previously. The
following registers, location, S/C register numbers and IPR6
numbers were discussed previously.

Another important group of controls to be used by the MIC
module are the WCNTRL lines from your microword (bits
<30:25>). these lines control the source and destination of
data and address.

14-24

Execution Buffer

the following wbus control codes are required for the memory
interface: (wctrl assignments in parentheses are hex)

(20) VA <- PC + ISIZE + (WBUS)
PC <- PC + ISIZE

(21) RESERVED
(22) VA <- VA + 4
(23) MDR <- (WBUS)
(24) PC <- (WBUS)
(25) VA <- (WBUS)
(26) MBUS <- WDR
(27) MDR <- 0
(28) TB DATA <- (WBUS)
(29) TB VALID BIT <- 0

VA <- (WBUS)
(Invalidate both groups at the index position
addressed by VA) •

(2A) WDR <- (WBUS) UNROTATED (2B) MDR <- OSR, ZERO
EXTENDED

(2C) PC <- PC + (WBUS)
(2D) CACHE VALID BIT <- 0

VA <- (WBUS)
(Invalidate both groups at the index position
addressed by VA. The address in the VA regis_ter
will be interpreted as a physical address.)

(2E) WDR <- (WBUS)
(2F) MDR <- IR, ZERO EXTENDED
(30) STATUS/CONTROL REGISTER <- WBUS<27:24>
(31) PREVIOUS MODE REGISTER <- WBUS<23:22>
(32) w~US<27:24> <- STATUS/CONTROL REGISTER
(33) BUS GRANT

WBUS<20:16> <- IPL OF CURRENT UNIBUS GRANTEE
(34) STATUS/CONTROL ADDRESS REGISTER <- WBUS<27:24>
(35) PREVIOUS MODE REGISTER <- CURRENT MODE REGISTER,

THEN IS/CURRENT MODE REGISTER <- WBUS<26:24>
(37) REI CHECK (38) ASTLVL REGISTER <- WBUS<26:24>
{ 39) {RESERVED)
(3A) WBUS<26:24> <- ASTLVL REGISTER
(3B) (RESERVED)
{3C) HIGHEST SOFTWARE IPR REGISTER<- WBUS<20:16>
(3D) IPL REGISTER <- WBUS<20:16>
(3E) RESERVED
{3F) WBUS<20:16> <- IPL OF LAST UNIBUS GRANTEE

14-25

Execution Buffer

There are two ways to read from memory

l. Read bus function (microword dependent)
2. Prefetch (microcode independent)

You may write to memory only under a write bus function
(microdependent).

The following functions read, write may create what is
called a "bus cycle" decode from the microword. A
definition for "bus cycle" would be the starting of and
ending of retrieving data from a location or depositing data
to a location. On a read from memory at address 1000 a bus
cycle may include going out on the CM! to memory or
retrieving the data needed from cache which would not need a
CM! function to memory. This fact in itself shows that a
definite period of time cannot be assigned to the term "bus
cycle"·. You can, by use of signal names, give the term "bus
cycle" a relative time period.

A bus cycle starts at "Address Register Enable" and ends
with "Status Valid". This means a bus cycle starts when the
address needed for read or write is enabled into CM! ADDRESS
REG on MOR. It ends upon the CMK chip receiving status from
CM! or data from CA received with no errors.

The term "bus cycle" will be used only when referring to
microdependent bus functions that are decoded to need a
"bus cycle". The same function of reading from memory of
cache may be accomplished by prefetch. That is, Add REG ENA
and status valid signals are used to perform the read start
and end bracketing. Since prefetch is microcode independent
and it uses the same path as a bus function read or write,
they cannot be done at the same time. Therefore, "bus
cycle" and prefetch use the same basic path for address and
data, but at different times.

Using the instruction MOVL
control logic in the MIC
functionality for the module.

(Rl) (R2) as an example
module includes a lot

for
of

1. You must read f rorn memory at address in GPR#l and
store it.

2. You must take the data you read and write it to
address stored in GPR#2.

Independent of this instruction are the functions of cache
enabled or disabled translation buffer enabled or disabled
and the fact that you might prefetch I-Stream data from
memory to the execution buffer.

14-26

Execution Buffer

Along with these actions, a write to memory may occur on the
CM! causing the MIC module to snapshot the CM!. This being,
taking address that was written on CM! by someone other than
CPU and checking data cache for a hit and invalidating if a
hit.

You may also generate a microtrap condition during the
reading or writing to memory that may cause you to leave the
microsubroutine that handles the MOVL (Rl) (R2) instruction,
to make sure the instruction is completed properly (Ex: TB)
miss may perform address translation and return to finish
instruction. It is also possible the instruction may not be
able to be completed even with microtrap intervention and
you would have to notify the operating program. Ex: Access
control violation needs macrointervention.

These are the functions and different conditions we wi 11
cover here. To perform this we will take the
microinstruction through each microword needed to perform
the macro MOVL (Rl) (R2) using the needed fields in the MIC
module.

Bus function
WCNTL
MSRC

Following the four microwords needed to perform the MOVL
instruction we'll take it through all four and explain what
needs to be done in the MIC module for each one.

MOVL (Rl) (R2) Take data longword from address in Rl and
move it to address in R2.

First Microword

OS.RED 108 address
FPA_Q_M[MDR] VA_R[GPR.R]
CLOBBER MTEMP0 REF
NEXT/OS.READ.EXIT

(RN) register deferred mode
operand address is GPR
(RNUM) put garbage in
MTEMP0.

What the MIC module must do in the first microinstruction
during the first half or phase 1 H is

l. Source the contents of MDR to the MBUS to be stored
in Q register. The contents of MDR for this
particular instruction are meaningless but the
microinstruction is used by more macroinstructions
than MOVL long and considerations must be taken.

14-27

Execution Buffer

2.· During last half or phase 2 it loads the address
from GPR#l via the WBUS to the VA Register in ADD
chip.

Second Microword

OS.READ.EXIT 10E
READ.SIZE [IDEP]
IRDx[l]

Read memory at VA size

During this micro the MIC module must

1. Take address from VA r~gister and retrieve the data
from either main memory or cache and store into the
MOR (Reg). (We now have data from address Rl.)

2. Make available next byte from execution buffer being
used to DPM to decode operand specifier (R2) and DPM
generates next microaddress to go to and update PC.

Third Microword

OS.WRT2 158
Q_M[MDR] VA_R[GPR.R],
CLOBBER MTEMP0 DEF.
IRDx[l]

MIC Function

(RN) Register deferred mode
GPR (RNUM) is operand
address. Put garbage in
MTEMP0.

1. Source MOR to MBUS to be stored in Q by DPM.

2. Load address from GPR#2 via WBUS to VA Reg. in ADD
chip.

Fourth Microword

IL.MOV.B.W.L.MEM (OR MOVA)
R[DST.R] .SIZ - Q Q - D, WRITE NOT REG
SIZE[IDEP], CCOP2, IRDl

MIC Module

1. Takes address from VA register and data from WBUS
and writes to memory (and cache if a hit) depending
upon instruction size using write not Reg.

2. Make available next two bytes from execution buffer
for decoding of next instruction and update PC.

14-28

Execution Buffer

Now that we have the overall picture of all four microwords
let us take a look at each one and see how the MIC module
performs them.

First Microword - OS.RED

FPA Q M[MDR] VA R[GPR.R]
CLOBBER M TEMP 0 DEF.
NEXT/OS.READ.EXIT

Decoded MSRC Field = 12 or MBUS <- MDR

Decoded WCNTL = 25 or VA <- WBUS

Decoded Bus Function = 7 or No Op.

As we said previously, the two functions performed by the
MIC module for this microword are:

1. Source contents of MDR to QMBUS
2. Load address from GPR#l to VA Register in ADD chip

These are done at different halves of the microword, since
it is possible to take data fromMDR and have DPM work on it
and send it back to MIC. This does not happen in t_his
instance but it is possible.

Phase 1

1. MDR (Reg) sourced to MBUS on Phase 1 H due to MUX
Sel 1 H being L (L=0) and MSRC 2 from CSS being L
(L=0). n MUX Sel 1 H" = 1 comes from PRK chip due to
the fact that no other function needing the MBUS MUX
was decoded and MSRC line 2 was latch as Low
(false).

2. VA Reg is loaded on Phase 1 L from WBUS in ADD chip
due to:

A. ASRC Sel line 2 is H coming from miscellaneous
control saying WCNTL 1 ine 1 latched to 0 (Low)
and Phase 1 L causing WBUS through AMUX input to
adder (ASRC lines 0,1 can be anything).

14-29

Execution Buffer

B. ADK chip decoded WCNTL as WBUS -> VA and
selecting B SRC Sel lines S0, Sl to Sl/0 S0/0 (0
= Low) selecting 0 input to BMUX of adder. WBUS
+ 0 = WBUS.

C. ADK also sending "ENA VA L" to latch output of
adder to VA because of decoded WCNTL.

Second Microword

As we see, the second microword must read from the address
specified in VA. The read may be >performed from cache (if
enabled and data is available) or from main memory. To show
this we have what happens during a cache hit and a- cache
miss (both with TB off).

The second function of updating the PC due to DPM taking
next operand specifier will be covered under the prefetch
area.

Basic Read Cache Hit, TB Off

Microword at address 10E:

OS.RED - READ EXIT:
READ SIZE [IDEP]
IRDx[l]

Read memory from address
in VA • SIZE = DS I Z E
Ex: VA = 100 0 Size =
Longword

Bus Fune = Read, Meaning - Memory read from VA and DSIZE
from define file and placed into MDR

WCNTL = From Define File - No Op

MSRC = From Define File - Default M Temp

As you can see there is no mention of cache or translation
buffer within the microword. You will not see any with the
exceptions of invalidating TB or cache, making checks of TB
for access or validity but never in conjunction with normal
operations on a read or write.

Following this microword through the MIC block diagram we
will find how the address is sent and data is received.

Five of the six control chips (not microtrap chips) monitor
the bus function and checked to see if any other functions
that may be using the needed paths are being done i.e.,
prefetch, snapshot CMI for invalidating cache, for example.
If the paths that are needed are free a Bus Cycle is started
within the MIC module.

14-30

Execution Buffer

We must take the address from the VA register (1000) through
the memory address latch on the ADD chip to the memory
address lines. (PRK chip decodes read using address in VA)
PRK sets MA 5el lines to 51/l 50/1 with a l = a high true
allowing VA through MA latch.

The addres~ is now on the memory address lines and must get
onto the physical address bus to be sent to cache. The ADK
chip also decoded read and ORed the fact that memory
management had been disabled to get the AMUX 5el line 50, 51
to 51/l 50/0 (1 H line). This allowed bits <02:23> of the
VA to be fed onto the physical address lines (PADs).

Note

Bi ts <91: ee> not used as we read only
longwords.

The address (bi ts <02: 23>) are now sent to cache and are
checked for a hit, validity and errors. At the same time
this is being done the same address from PAD is being
latched into the CM! address register when "ADD REG ENA L"
comes from CMK chip. (This says start bus cycle.) The
latching into the CM! address register is done in case of a
cache miss and we need to go to main memory. In this case
it will not be used.

If the cache has a hit the signal cache hit is sent to the
CAK chip and the CMK chip.

When sent to CAK it is ORed with the fact there are no
errors (the signals Tag or Data Parity errors are false) and
the fact that cache is enabled (from 5/0 Reg #6). This will

Hit
No Errors
Cache Enable

Enable needed byte outputs

allow the CAK chip to use the monitored D5IZE and VA lines
to generate the proper byte enables. These byte enables go
to the cache data store and allow the data selected by PAD
to be outputted from the RAMs. In case of longword at 1000
Enable byte 0 and 1, 2, and 3 would be used.

The cache hit signal also goes to CMK chip along with cache
INT from CAK. (Cache INT meaning Tag or Data Parity errors
are not valid if not a hit). These signals will be used to
stop a CMI cycle to memory by the CMK chip not sending ENA
CM! to MDR chip and generate status valid for stopping bus
cycle in MIC.

14-31

Execution Buff er

The data outputted from the cache must be sourced onto the D
Bus in the MOR chip and stored into the Memory Data Register
(MOR Reg) • To do this the ADK chip, when it decodes read
function and no forced CM!, will steer the cache data to the
DBUS by using DBUS S0, SI (SI ANDed with fact no write
vector occurred) to give us Sl/0 S0/l (1 = High) selecting
the MOR (Reg) to CLK in data from DBUS output of rotator.
The D Bus rotator used inputs from CAK chip which said no
rotation or DBUS Sel S0, SI = Sl/0 S0/0 (1 = High).

The microword has now performed the function of read memory
at address 1000 and stores data in MOR. What you just read
was the functionality and signals needed to accomplish this
bus cycle. The timing is shown on attached sheet.

Basic Read Cache Miss, TB Off

Microword at Address 10E:

OS.READ - READ EXIT:
READ SIZE [IDEP]
IRDx[l]

Read Memory from Address
In VA. SIZE = DSIZE
EX:VA = 1000 Size=Longword

Bus Fune = Read, Meaning Memory read from VA and
DSIZE from define file and placed into MOR.

WCNTL = From define file - No Op

MSRC = From define file - Default microtrap

What must be done in this example is to read data from
address in VA and store it in MOR. This is the same as a
cache hit in overall functionality but the data comes from
main memory and not cache. Also, we must write data from
1000 back to cache when received from memory.

Following the microword through the MIC block diagram, we
will find how the address is sent to main memory and data
received and stored into MOR and cache.

Five of the control chips (not microtrap) monitored the bus
function and checked to see if any other functions, that may
be using the needed paths are being performed, that is,
pre fetch, cache invalidate due to snapshot. If all paths
that are needed are available we will continue and start a
bus cycle within the MIC module.

14-32

Execution Buffer

We must take the address from the VA Register (1000) through
the memory address latch on the ADD chip to the memory
address lines (MAD). To do this the PRK chip has decoded
the read function using VA and sets MA SEL 50, Sl to Sl/l
50/l (1 = High) allowing VA through MA Latch to MAD.

With the address now on MAD we must get the address to the
PAD via the PA MUX. The ADK chip also decoded the read
function and memory management disabled to set the AMUX SEL
lines 50, Sl to Sl/l 50/0 (1 = High). This allows bits
<2·3: 02> to pass to the PRO 1 ines.

Bote

Bi ts <01: 00> not used as we used only
longwords.

Address bits <23:02> are being fed to cache and written to
the CMI address register. The cache is checked and no hit
is recorded. The address is also being latched into CMI
address register when "Add Reg Ena. L" comes from CMK chip.
This says start MIC module bus cycle.

THe fact that no hit signal was received from cache causes
the CAK chip to not send ENA bytes to cache which would
enable cache to output data.

The fact that no hit signal goes to the CMK chip allows the
CMK to arbitrate for CMI bus and send "ENA CMI L" to the MOR
chip when bus won. This signal will be used to pass the
address in CMI Address Reg (1000) to be sent onto the CMI
bus <23:02>. At the same time the CMK chip is going to send
out the remaining functions needed to read from the address
(1000) in main memory, i.e., function of read on lines
<27:25> 000 and byte mask on lines <31:28> 1111. Also sets
DBBZ on CMI. The CMK diagnostic DBBZ and memory asserts
DBBZ and sends needed data from 1000. When memory has data
and status on lines (CMI lines) the memory diagnostics DBBZ.
This tells CMK chip to monitor "status line <01:00>" for
possible error. Assume no error. The data on the CMI lines
are received by MOR chip.

At this point the ADK chip has passed the time to where
cache -> DBUS was needed and asserts the DBUS Sel lines 50,
Sl to Sl/0 50/l (1 = High) which selects data from CMI onto
the DBUS. The ADK also knows that the data that is on the
DBUS must be latched into MDR (Reg). So it

14-33

Execution Buffer

generates CLK Sel S0, Sl to Sl/l S0/l (l = High) to perform
this. Also -because the MDR was selected and CMI data was
selected to the DBUS the WMUX steers the data from the DBUS
into the WDR {used to store data to be written to cache).

The basic function of retrieving data from 1000 is complete,
but we must store that data into cache. We still have the
address in· the CM! register and the data is in the WDR.
Let's do it!

The CMK chip monitored the status lines <l: 0> and found
status valid and outputs that signal to the control chips.
When the CAK chip sees the data is correct by receiving
status valid, it says cache GR 0 WR EN to allow cache to be
written. To have the cache written to we need to get the
address through the PA MUX and data from WNR. Data is easy
because as long as D Bus Sel does not have cache selected to
D Bus the drivers are driving the data from WDR to cache.
Because "Add Reg L" is now High from CMK and no other
function is needed in the ADK chip, the ADK outputs AMUX Sel
to select CM! address register and the drivers pass the CM!
address (1000) to cache to be used with cache GR0 and data
to write into cache the data retrieved from memory. Now all
the functions of a read with cache miss are complete and
another microword may be worked on. The basic timing is on
attached sheet.

Thi rd Microword

One way or the other we now have the data, from the address
that was stored in Rl, latched into the MDR (Reg). The
third microword now must do two things:

1. Store data that is to be written into a Q Reg.

2. Load address from GPRt2 to VA Reg. in ADD chip.

OS.WRT2 158

Q_M[MDR] VA_R[CDR.R]
CLOBBER MTEMP0 DEF
IRDX [1]

(RN) Reg i s t e r
differed. GPR (RNUM)
operand address.
garbage in M Temp 0.

Decoded MSRC Field = 12 or MBUS <- MDR

Decoded WCNTL = 25 or VA <- WBUS

Decoded Bus Function = 7 or No Op

14-34

mode
is

Put

Execution Buffer

As you can see, this function is very similar to the first
microword. It uses the same signals and paths to perform
the function. All we are doing is setting up to perform a
write from address in VA instead of a read.

With Microword OEE

IL.MOV.B.W.L.MEM (also used
for MOVA)
R[DST.R].Size Q Q D, Write not
Reg, Size [IDep] ,~COOP2, IRDl

Bus function decode = lA or -

WCNTL = 2E or

MSRC = 0 or

Write data stored in
Q to address in VA.
(Ex: VA = 2000)

Write to memory (and
cache) if register mode
not decoded. If register
mode is decoded MIC will
not do anything, the DPM
mode takes data from Q
register to R2. In case
Reg mode not decoded start
"bus cycle" for write
using address in VA
register.

Data from WBUS -> WDR
rotated for longword
alignment.

M Temp 0 -> MBUS (no
function for this macro) •

We will say code is enabled and a hit is recorded. That
means the data to be written will be written to cache and
main memory.

Following the microword through the MIC block diagram we
find we have to worry about transferring data and an address
at the same time.

Five of the six control chips (not microtrap) monitor the
bus function which will be used to open paths for the
address and help start the CM! write function. All chips
monitor the WCNTL lines and then in effect will open paths
for the data to be transferred.

For ease of understanding we will take the address from VA
to CM! address latch and then bring the data from WBUS to
WDR even though it is happening at the same time.

14-35

Execution Buffer

We take the address from VA (address originally in R2)
through MA MUX of ADD chip by PRK chip decoding a write and
setting the MA Sel lines Sl, S0 to Sl/l S0/l (1 = High)
allowing the contents of VA to pass through to MAD bits.

We must now get address from MAD to the physical address
(PAD) lines to be sent to cache and CMI address register.,
Only bits <23:02> go to the PAD. To do this the ADK chip
also decoded the write and ORed the fact memory management
was disabled to set the AMUX Sel lines Sl, S0 to Sl/l 50/0
(1 = High). This allows bits <23:02> to be passed to the
PAD to be sent to cache and check for hit and be received at
the CMI address register. When the CMK chip decoded bus
function and determined that no other function was needed,
the same path bit (CMK) asserted "ADD REG ENA L" to start
"bus cycle" and latch address into the CMI address register.

To get the data to the WDR register we must take it from
WBU5 through the DBU5 rotator through WDR MUX.

The ADK chip which selected MAD -> PAD also selected the
WBUS to DBU5 by outputting DBUS Sel 51, 50 to 51/l 50/0 (1 =
High). While this is being performed the CAK chip selected
the DBUS rotator to pass the bytes through as they were 3,
2, 1, 0 by writing DBUS ROT 51, 50 to Sl/0 80/0 (1 = High).

Internally to the MOR chip because CMI data to DBU5 was not
selected, DBUS ROT was steered through the WDR MUX. When
the ADK selected MAD -> PAD and WBUS -> DBUS it also was
setting CLK Sel Line Sl, S0 to Sl/l 50/1 (1 = High) to latch
data from WDR MUX into WDR on first L -> H transition of B
CLK.

The point at which we are now, data in WDR and address in
CM! takes one microcycle (two B CLKs). We must now write to
memory and to cache. What would happen when the next
microword wanted to use some portion of the MIC that we
still must use? Well, since we set "Add Reg Ena L" and have
not received "status valid" we are still in a MIC module
"bus cycle" and if the control chips noted the next
microword wanted the paths needed it would stall the
processor. Stalling the microcode will be covered later.
We will assume the MIC is not needed so a stall will not
occur.

With data and address where we want it we will send the
address and function/byte mask onto the CM! at the same time
we write data to cache because of the bit we received.

14-36

Execution Buffer

We will discuss the CM! function first. When the CMK chip
first decoded a write to memory it knew it would have to
generate a "CM! Bus Cycle" (the CM! bus cycle may be a part
of MIC module bus cycle) so it would monitor the signal
input "CM! CPU PR! L". When this occurs and data address is
set the CMI would assert DBBZ to the CM! along with write
function bits <27:25> and byte mask bits <31:28> to the
proper values at the L -> H transition of B CLK. At the
same L -> H transition of B CLK and ENI CM! from CMK the MDR
drives the output of CMI address register to CMI. All those
signals stay asserted until the next L -> H transition of B
CLK. At this time CMK deasserts DBBZ and the WDR (data to
be written) is asserted on CM!. The memory controller will
assert DBBZ if not able to write at this time and deassert
DBBZ and send status when it is able. It is also possible
that the controller was able to write the data immediately
upon receiving it and not assert DBBZ but assert status.
Whichever happens the chopping of DBBZ causes the CMK chip
to stop sending "ENA CM! L" to MDR chips and monitor the
status line on CM!. With status valid received we end the
MIC module "bus cycle" and allow the microcode to continue
if it was stalled.

While the above was happening we were also writing the data
to cache at the address specified from CM! address register.
We did this by using the same signals that we need on a
cache read miss, but they were generated by the decode of a
write bus function and a cache bit.

We have read about reads and writes with cache off and on,
yet we have not mentioned the translation buffer (TB) • What
is it and what does it do? It is used to store translated
addresses for the use of the system. Page frame numbers of
virtual addresses are used to search for page table entries
stored in TB tag on 1. These PTEs if found may use the
virtual address to source a physical address onto the
physical address (PAD) lines to be used in the same way a
physical address was used to reads or writes previously
mentioned.

The main difference between virtual address and the use of
microcoded read physical, write physical or using VA and PC
with memory management off is where the address goes when
leaving the MA Latch.

The major difference comes from the ADK chip and MDR chip.
Normally with memory management off the address flows (bits
<31: 00>) through the MA Latch and all bi ts except <01: 00>
are passed through the AMUX on MDR to physical address MUX.

14-37

Execution Buffer

READ or WRITE with Memory Management Enabled

Translation buffer (TB) is enabled when memory management
bit set in physical/virtual address register = S/C Reg 0 in
ADK chip. Microcode sets bit in S/C Reg 0 due to VAX
instruction MTPR #38 the tl.

With this bit set and bus function not read or write
physical the TB is enabled to output:

1. Address onto PAD bits <23:09>

2. Da t a and tag po i n ts e r r or s a n d access cont r o 1
violations

3. Hit or miss

If mm was not enabled or read or write physical was decoded
and mm was enabled you would still address the TB and check
for hit or miss but:

1. Address would not be allowed to be outputted to PAD

2. Tag Parity errors and access violations would be
sent to ACV or microtrap chip but not used. Data
parity not sent

3. Hit or miss would still be sent to microtrap chip
but not used because TB parity error not available.
(TB Parity ENA generated by mm enabled and no read
or write physical from ADK)

By looking at Figure ? let us take an example of one of the
microwords we have used previously. Read with cache hit,
this time TB enabled

OS .RED .EXIT 10E
Read.Size [IDEP]
IRDx[l]

Bus Function = Read

WCNTL = No Op

MSRC = Default M Temp 0

Read memory at VA size IOep

Memory read from VA and OSIZE
and placed into MOR

What must be done is to take address from VA register. Use
this address to retrieve data and place data in MOR.

14-38

Execution Buffer

Five of the six control chips (not microtrap) monitor the
bus function and check to see if any other functions that
may be using the needed paths are being performed, i.e.,
pre fetch, snapshot CM!. If no other functions are being
performed the control chips are free to start a MIC "bus
cycle". ·

We must first take the address from VA register in ADD chip
through MA MUX to MAD. This is done by PRK having decoded
read bus function and setting MA Sel lines Sl, S0 Sl/l 50/l
(1 = High) allowing VA through MA Latch to MAD lines.

Now we have to go into parallel actions.

1. Pass only bits <08:02> through AMux to PAD and

2. Check for TB to perform its function and put bi ts
<23:09> to PAD.

We will take the AMUX function first. With ADK chip
decoding a Read function MM enabled the selection of AMUX
Sel Sl and S0 = Sl/0 S0/0 (0 = Low). This would normally be
seen as selecting the CMII address register to PAD bus.

But when used in conjunction with DBUS Sel lines only the MA
lines <8:00> are enabled and driven to PAD.

To do this the ADK chip has also selected DBUS Sel S0 Sl to
Sl/0 S0/0 say cache to DBUS. When this happens along with
AMUX Sel Sl, S0 being Sl/0 S0/0, the AMUX passes whatever is
on MAD lines <08:02> to PAD.

14-39

Execution Buffer

This is a special function used in MDR for this case. At this
time of the microword DBUS Sel would be selecting cache to
DBUS normally. CMI ADD Reg would only be used through the AMUX
on a cache replacement if a miss or write to TB, which would
both involve no cache -> DBUS selection.

Now for the TB function that was happening at the same time.
As stated previously the address lines <31 and 15:09> always
feed the TB and generate a hit or no hit signal. When MM is
enabled (S/C Reg i0 in ADK) and a hit is recorded in the TB
tag store the signals TB "OUTPUT ENA L" and "TB PARITY ENA H"
are generated.

1. "TB OUTPUT ENA L" is used to send to TB data store to
output the physical PFN onto the PAD lines. Also used
in TB on (MIC 16) to enable TB parity out.

2. TB parity enable is sent to microtrap chip to be ANDed
with hit (or lack of) so the microtrap chip will at
this time monitor to TB miss, data and tag, M bit,
parity errors and ACV from ACV chip.

If any of these conditions exist we leave the microinstruction
via a microtrap and proceed to the proper routine specified by
microvector lines <5:0>. Lines <3:0> coming from microtrap
from microtrap chip and lines <5:4> from microsequencer chip.

If none of these conditions exist you continue the instruction
the exact same way as the read, cache hit TB off was
discussed.

14-40

VAX-11/750 LEVEL II

Unibus/Unibus Interface

Student Guide

Course produced by Educational Services Department
of

Digital Equipment Corporation

Unibus/Unibus Interface

Unibus/Unibus Interface

INTRODUCTION

The COMET Unibus Interface (CUI) serves three purposes.
It allows the processor to access registers on the Unibus,
it allows devices on the Unibus to perform DMA transfers
to COMET memory, and it allows Unibus devices to interrupt
the processor.

There are several characteristics of the VAX architecture
and the COMET memory system that require more than a
"straight-through" connection from the Unibus to the CMI.
Addresses that are contiguous in the virtual address space
may be discontiguous in the physical address space on 512
byte boundaries. Since all Unibus NPR devices broadcast
sequential addresses, a means must be provided to break
these up into disjoint 512 byte blocks.

The VAX a r ch i t e c tu re i m po s e s no res tr i c t i on s o n the
alignment of data in memory. Unibus word transfer NPR
devices, however, only transfer word date on even
addresses. The CUI provides a mechanism that allows the
t ran f s e r to be e ff e c t iv e 1 y s h i ft e d by one byte - to
accommodate requests for I/O buffers on odd byte
addresses. ·

The CMI has 24 address bits, the Unibus has 18. A method
is provided that allows a Unibus device access to all of
the CMI address space.

Finally, the CMI is four bytes wide, the Unibus is two
bytes wide. Utilization of both CMI and Unibus can be
improved if each two sequential Unibus transfers are
compressed into a single CMI transfer.

15-1

Unibus/Unibus Interface

SYNOPSIS

This module contains technical information
concerning the characteristics and functions of the
Unbius and the Unibus interface.

OBJECTIVES

Given a True/False test, correctly determine if the
Unibus/UBI characteristics listed are true or false.

Given statements concerning the Unbius and Unibus
interface functions, and several possible
definitions for each, select the one correct
definition.

SAMPLE TEST ITEM

Identify the following statements as true or false.

a) The Unibus contains 56 lines.
b) The Unibus interfaces to the W
c) The Unibus buffered data paths
d) The Unibus interface performs

address mapping.

RESOURCES

Comet Specification
Peripherals Handbook

15-2

Bus.
hold 8 bytes.
Unibus to CM!

Unibus/Unibus Interface

MODULE OUTLINE

XV. Unibus/Unibus Interface

A. Unibus structure

1. 41 data transfer lines
2. 12 priority arbitration lines
3. Initialization lines

B. Unibus interface characteristics

C. Unibus memory & I/O space allocation

1. CMI address space assigned to the UBI
2. Control and status registers
3. Diagnostic status registers

D. Unibus to CMI address registers

1. Minimum & Maximum addresses
2. Mapping example, unibus to CMI conversion
3. CMI address transfer

E. Unibus interface data paths

1. CPU write
2. CPU read
3. NPR DATI, DDP
4. NPR DATO, BDP to buffer
s. NPR DATO, DDP
6. NPR DATO, BDP write from buffer
7. Purge
8. Read the map
9. Write the map

F. Data posit ion ing

1. Reads from memory, data buffering
2. Writes to memory, data buffering
3. Write to memory, byte offset

15-3

Unibus/Unibus Interface

G. Unibus microcode

1. 28 bit word format
2. Field definitions
3. Micro code breakdown
4. Read code at address OFF
5. Read code at address OOF
6. Read code at address 000

H. Micro code flow charts

l. First fork
2. DDP DATI
3. BDP DATO

I. Print familiarization

1. Increment logic
2. Unibus address mux
3. Unibus data path chips
4. CUI map
5. UCN Chip
6. CUI control ROMS
7. CUI map decode

J. Summary

15-4

Unibus/Unibus Interface

UNIBUS SUMMARY

In the Comet system, the Unibus connects PDP-11 devices to
the Comet Unibus Interface (CUI) of the CP Cluster. The 56
1 ines of the asynchronous Unibus can be divided into three
functional groups: priority arbitration, data transfer, and
initialization signals. The 12 lines of the priority
arbitration group comprise those signals required for
selection of the next bus master while the current bus
master is still in control of the bus.

The 41 bidirectional 1 ines of the data transfer group are
used during data transfers to or from a slave device. The
initialization group consists of the initialization and
power fail signals. table 10-1 describes the bus signals
within each group.

15-5

~--~~
~ l:.=J ~

r:: ___
I
I __ ...

Figure 15- J..

15-6

Unibus/Unibus Interface

MHIOllY
CONTllOt.

AllllAY

I

(1) INTR
(1) MSYN
(1) SSYN

5 . (2) PARITY *PA,PB 41 DATA TRANSFER
6: · (2) CONTROL CO,C1

(16) DATA
L (18) ADDRESS
I
N
E

t:lj
UNIBUS s

~·!
cJ

INTERFACE I (1) BBSY t"'I
(1) SACK U1 CD i 3 I

! G (2) NON PROCESSOR (NPR~G) 12 PRIORITY ARBITRATION ~
(4) BUS-REO.(BR7-BR4) U1 R I (4) BUS GRANT (BG7-BG4) . I\.) 0 . u

p c::
::s s
O"
c

(1) INITIALIZE en
.........

(1) ACLO 3 INITIALIZATION c::
::s

(1) DCLO
O"
c
en
H
::s
rt
CD
t"'I

*PA IS NOT USED t-h
OJ

UNIBUS STRUCTURE ()

CD
TK-2066

tTj C1
l.Q
c 0

.......
'"" Ul CD

I
CX> 0

Ul
I

w 1 .
1

DATA FLOW CONTROL SIGNALS Cl 8c CO

co TRANSFER OPERATION

0 DATA IN (DATO: A DATA WORD OR BYTE TRANSFER INTO THE MASTER FROM THE SLAVE.

1 DATA IN PAUSE: (DATIP): SIMILAR TO DATI EXCEPT IT IS ALWAYS FOLLOWED BY A DATOB.

0 DATA OUT (DATO): A DATA WORD IS TRANFERRED FROM MASTER TO SLAVE.

1 DATA OUT BYTE (DATOB): SAME AS DATO EXCEPT A BYTE IS TRAN FEARED. .
TK-2047

c:::
::J
O"
c
(/)

' c:::
::J
O"
c
(/)

Unibus/Unibus Interface

TRANSFER REQUESTS

There are two types of requests for control of the Unibus:
Non-Processor Request (NPR) and Bus Requests (BR). The NPR
is used when a device requests a direct memory or device
access transfer (i.e., a transfer not requiring processor
intervention). Normally, NPR transfers are used between a
mass storage device (e.g., disk) and memory. A device
issues an NPR by asserting the NPR line; the processor (CUI
in the comet system) honors the request by asserting the
Non-Processor Grant (NPG) line.

The BR is used when a device interrupts the processor to
request service. This type of request is used to notify the
processor of an error condition or required transfer. A
device issues a BR by asserting its assigned Br line
(BR7-BR4); the processor (CUI in Comet) honors the request
be asserting the corresponding Bus Grant (BG) line
(BG7-BG4).

Request Priority

The device structure priority structure is organized_ as
follows:

TYPE REQUEST PRIORITY

NPR HIGHEST

BR7
_A~

BR6

BRS ,,
BR4 LOWEST

* IF TWO DEVICES ISSUE SIMULTANE0US
REQUESTS, BUS GRANT WILL GO TO THE
HIGHEST PRIORITY REQUEST.

BUS REQUEST PRIORITY

TK-2058
Figure 15-4

15-9

Unibus/Unibus Interface

The priority arbitration logic is structured such that if
two devices on different BR levels issue simultaneous
requests, the bus is granted to the device with the highest
priority. The lowest priority device must keep its
requested asserted in order to gain control of the bus when
the highest priority device is finished (providing no other
higher priority device issues a BR).

Since there are only five priority levels, more than one
device may be assigned to a specific request level. If more
than one device makes a request at the same · level, the
device closest (electrically) to the processor has the
highest priority.

Priority Arbitration Sequence

Priority arbitration involves the signal sequence which
selects the next bus master. The operation does not
actually transfer bus control but only selects the next bus
master.

The device requ1r1ng service asserts its BR (or NPR) line.
In practice, the Comet Unibus Interface May be receiving
several simultaneous BR signals.. These signals enter the
Unibus arbitration logic of the CUI. If enabled by
software, the CUI then conducts a dialogue with the CPU and
asserts the corresponding BG (or NPR) line. The grant is
propagated through each device on the asserted BG line. The
first device on the line having BR asserted acknowledges the
grant by asserting SACK, blocks the grant from following
devices, and clears its BR. The Unibus Adaptor responds to
SACK by clearing BG. If SACK is not asserted by the
requesting device, BG is Ored with the other grant lines and
returned as a SACK signal to clear BG.

The device will keep SACK asserted until the current bus
master relinquishes the bus control by clearing its BBSY.
SACK asserted prevents other devices from gaining bus
control. Once the current bus master has relinquished the
bus and negated BBSY, the requesting device asserts BBSY and
negates SACK, becoming the new bus master. Priority
arbitration can be performed at the same time as the data
transaction of the servicing of an interrupt. While one
device is using the bus, the arbitration logic is free to
monitor other requests and issue an appropriate grant.

15-10

Unibus/Unibus Interface

THE UNIBUS INTERFACE

• ~LLOWS THE PROCESSOR TO ACCESS REGISTERS ON THE UNIBUS

THE CMI HAS 24 ADDRESS BITS WHILE THE UNIBUS ONLY HAS 18. A METHOD IS USED THAT ALLOWS ANY
UNIBUS DEVICE ACCESS TO All OF THE CMI ADDRESS SPACE.

e ALLOWS DEVICES ON THE UNIBUS TO PERFORM OMA TRJ'.:.;SFERS TO MAIN MEMORY.

THE CMI IS 4 BYTES WIDE WHflE THE UNIBUS IS ONLY 2 BYTES. TO MORE EFFICIENTl Y UTILIZE THE CMI,
THE DATA IS MOVED ONTO THE CMI AFTER EACH PAIR OF UNIBUS TRANFERS.

THE UNIBUS MOVES DATA ON EVEN ADDRESS BOUNDRfES. TO BE ABLE TO ACCESSl/OBUFFERS ON ODD BYTE
ADDRESSES, A MECHANISM IS IN use THAT SHIFTS THE ADDRESS BY ONE BYTE.

• ALLOWS UNIBUS DEVfCES TO INTERRUPT THE PROCESSOR.
TK-21Jso

Figure 15-5

15-11

Unibus/Unibus Interface

Table 15-1. Unibus Signal Description

Signal Description

Data Transfer Group

Address Lines
(A <17:00>)

Data Lines (D<l5:00>)

Control (Cl, C0)

is-12

These lines are used by
the master device to
select the slave (actually
a unique memory or device
register address).
A<l7:01> specifies a
unique 16-bit word; A00
specifies a byte within
the word.

These -1 ine s transfer
information between master
and slave.

These siganls are coded by
the master device to
control the slave in ·one
of the four possble data
transfer operations
specified below. Note
that the transfer
direction is always
designated with respect to
the master device.
* C:::o o 14'.; ,.. 11 ~ o 1 OI - "l """''-'- • ... '='_""' ..i.u .J

Unibus/Unibus Interface

Table 15-1. Unibus Signal De.script ion (Cont.)

Signal Description

Control (Cl, C0) Cl

1

1

15-13

C0 TRANSER OPERATION

Data In (DAT!): a
data word or byte
transferred into
the master from
the slave.

1 Data In Pause

1

(DATIP): similar
to DAT I except
that it is always
followed by a
DATO/B to the same
location.

Data Out (DATO):
a data word is
transferred out of
the master to -the
slave.

Data Out Byte
(DATOB)
identical to DATO
except a byte is
t r a n s f e r r e d
instead of a full
word.

Unibus/Unibus Interface

Table 15-1 Unibus Signal Description (cont.)

Signal Description

Parity A-B (PA, PB)

Master Synchronization

(MSYN)

Slave Synchronization

(SSYN)

Interrupt (INTR)

15-14

These signals transfer
Unibus parity information.
PA is currently unused and
high. PB, when true,
ind i ca te s a d ev ice parity
error.

MSYN is asserted by the
master to indicate to the
slave that val id address
and control information
(and data on a DATOB) is
present on the bus.

SSYN is asserted by the
slave. On a DATO it in­
dicates that the slave has
1 atched the write data.
On a DATI /P it indicates
that the slave has
asserted read data on the
Unibus.

This signal is asserted by
an interrupting device,
after it becomes bus
master, ... ,....

... v inform
processor that an
interrupt is to be
performed, and that the
interrupt vector is
present on the D 1 ines.
INT R i s negated u po n
receipt of the assertion
of SSYN by the processor
at the end of the
transaction. INTR may be
asserted only by a device
which became MASTER by
receiving a BG signal.

Unibus/Unibus Interface

Table 15-1 Unibus Signal Description (cont.)

Signal Description

Priority Arbitration Group

Bus Request (BR7-BR4)

Bus Grant (BG7-BG4)

Nonprocessor Request

(NPR)

Nonprocessor Grant

(NPG)

Select Acknowledge

(SACK)

Bus Busy (BBSY)

15-15

These signals are used by
peripheral devices on the
Unibus and nexus on the
CMI to request control of
the bus for an interrupt
operation.

These signals form
processor's response to a
bus request. Only one of
the four will be asserted
at any t ime •

This is a bus request from
a device for a transfer
not requiring CPU
intervention (i.e., direct
memory access).

This is the bus grant in
response to an NPR.

SACK is asserted by a bus­
requesting device after
having received a grant.
Bus control passes to this
device when the current
bus master completes its
operation.

BBSY indicates that the
data lines of the bus are
in use.

Unibus/Unibus Interface

Table 15-1 Unibus Signal Description (cont.)

Initialization Group

Initialize (!NIT)

AC Line Low (AC LO)

DC Line Low (DC LO)

15-16

This signal is asserted by
the terminator board (UET)
when DC LO is asserted on
the Unibus. !NIT stays
asserted for 10 ms
following the negation qf
DC LO.

This signal initiates the
power fai 1 trap sequence,
and may also be issued in
peripheral devices to
terminate operations in
preparation for power
loss.

This signal is available
from each system power
supply and remains clear
as long as all de voltages
are within the specified
limits. If an out-of­
voltage condition occurs,
DC LO is asserted.

Unibus/Unibus Interface

ADDRESS SPACE

Any processor access with a physical address in the range of
FC0000 through FFFFFF will map directly on to the Unibus in
the range 0 through 777777 (octal). Any device on the CMI
other than the processor that does a CM! transaction in that
address range will be ignored by the CUI. See Figure 10-7.

CUI ADDRESSES

The CUI is assigned a block of 8KB of CM! address space for
the map, CSR's and DSR's. See Figure 10-8.

CONTROL AND STATUS REGISTERS

Proper operation of transfers through the BDP' s requires
some intervention on the part of system software. The use
of BDP's is not totally transparent. When a device has
finished a series of transfers to CM! memory (DATO(B) 's), it
is possible that some data will remain in the buffer if the
transfer did not end on an even longword boundary. It is
necessary for the software to initiate action that causes
this data to be written to memory. When a device has
finished a transaction ·that involves DATl(P) 's, data is left
in the buffer with a corresponding Unibus address in the
address register. Should the cont~nts of the map be changed
at the location corresponding to the address in the address
register, there will no longer be the correct association
between address and data in the buffer. It is therefore
necessary to clear the buffer following this class of
transactions. See Figure 10-9.

BDP SDR (Diagnostic Status Register)

This is a read only register that allows one to check the
flag bits associated with each BDP. It is intended only for
possible diagnostic use and no reference to it is required
for normal use of the BDP's.

BITS <31:28> BF3:BF0

BIT <27> CD

See Figure 15-1 0 •

15-18

Unibus/Unibus Interface

MAIN

MEMORY

15360K

NONE-UN I BUS

ADDRESS SPACE

728K

UNIBUS 1/0 ADDRESSES

256K

16384K

ADDRESS SPACE ALLOCATION

Figure 15-7

15-19

000000

EFFFFF
FOOOOO

FBFFFF
FCOOOO

FFFFFF

TK-2071

F30000

4

8

c

Unibus/Unibus Interface

CSR 1 BOP 1

CSR 2 BDP2

CSR 3 BDP3

~

MAP

SK BYTE OF CMI ADDRESS SPACE
ASSIGNED TO THE UNIBUS INTERFACE

Figure 15-8

15-20

.F31FFC

. TK-2068

.......
U1
I

N
.......

t':lj
lQ
c::,
CD

.......
U1
I

""

BOP #1 F30004
#'2 F30008
#3 F3000C

BIT <O> PURGE. THIS BIT ALWAYS READS A ZERO. WRITING A ZERO TO IT
HAS NO AFFECT. WRITING A ONE TO IT PRODUCES A RESULT BASED ON THE

·coNTENTS OF THE BUFFER:

UNIBUS DATA: THE DATA IS WRITTEN TO THE CMI AND THE FLAGS
ARE SET TO MARK THE BUFFER EMPTY.

CMI DATA: THE FLAGS ARE SET TO MARK THE BUFFER EMPTY.
EMPTY: NO ACTION OCCURS.

.._----·------------------------ucE r-- _,.........__ 'l
BIT <29> UNCORRECTABLE ERROR (UCE). THIS BIT IS SET WHEN
UNCORRECTABLE &RROR STATUS IS RECEIVED FROM CMI MEMORY. PB IS
ASSERTED WITH THE DATA THAT IS PASSED BACK TO THE UNIBUS DEVICE ON THE
FIRST READ FROM THAT LOCATION. IT IS NOT ASSERTED ON SUBSEQUENT READS
FROM THIS BOP. THE BIT IS WRITE ONE TO CLEAR.

'"-----------------------------NXM

r--------------------------,,,,,,,,,,,....-------------------------------B IT <30> NON EXISTENT MEMORY (NXM). THIS BIT IS SET WHEN NXM STATUS "
IS RECEIVED FROM THE CMI MEMORY. SSYN IS WITHHELD FROM THE UNIBUS
DEVICE. ALL FUTURE UNIBUS TRANSACTIONS THROUGH THIS BOP ARE IGNORED
(NO SSYN ISSUED) UNTILTHIS BIT IS CLEARED. THE BIT IS WRITE ONE TO
CLEAR.

""---------·----------------------ERR

I
BIT <31> ERROR. THIS BIT ON READ IS THE "ORu OF BITS 30 AND 29.
WRITING TO THIS BIT HAS NO EFFECT.

BOP CONTROL AND STATUS REG.

TK-1727

c
::J
O"
c::
en

.........
c
::J
O"
c::
en
H
::J
rt
CD,
Hl
DI
0
CD

tXj
l.Q
c=

...... t"'(

U1 CD
I

N
N U1

I
......
~

DSR #1 F30014
DSR #2 f 30018

00

DSR#3F3001C_~---

NOTE 1:

NOTE 2:

BYTE 0 VALID }
----BYTE 1 VALID READ ONLY DATA PATH STATUS

----BYTE2VALID
-----BYTE 3 VALID

THERE ARE FIVE FLAGS THAT KEEP TRACK OF THE DATA IN THE DATA

BUFFER, NAMED CD AND BF3 THROUGH BFO. IF CD= 1, THEN THE BUFFER

HAS FOUR BYTES OF DATA FROM THE CMI AND BF3 THROUGH BFO ARE

ALWAYS 0. IF CD= 0, THEN BF3 THROUGH BFO INDICATE WHICH BYTES

IN THE DATA BUFFER HAVE VALID UNIBUS DATA. IF THEY ARE ALL o.
THEN THE BUFFER IS CONSIDERED EMPTY.

THIS IS A READ ONLY REGISTER THAT ALLOWS ONE TO CHECK THE FLAG

BITS ASSOCIATED WITH EACH BOP. IT IS INTENDED ONLY FOR POSSIBLE

DIAGNOSTIC USE AND NO REFERENCE TO IT IS REQUIRED FOR NORMAL

USE OF THE BDP'S.

CUI DIAGNOSTIC STATUS REGISTER
TK-1726

Uni~us/Unibus Interface

UNIBUS MAP

Unibus address bits <17: 9> are used to enter into a 512
location by 19 bit wide memory. The data coming out of that
memory is used to determine the details of how the
transaction is to be handled. The map data field is divided
into four sections. See Figure 10-llG

MAP SECTIONS

PFN

The PFN is a 15 bit field. On· Unibus initiated transactions
that cause a CMI read or write cycle to occur, the map PFN
is concatenated with Unibus address <8: 2> to form a 22 bit
longword address on the CMI.

DATA P~TH NUMBER

This two bit field is used to select one of the four data
paths. Data paths 1, 2, 3 are called buffered data paths.
Data path 0 is called the direct data path.

OFFSET

When the offset bit is a 1, it causes the transaction to
behave as if the Unibus address supplied by the DMA device
was incremented by 1. This allows devices that only produce
even byte addresses to access buffers on odd byte
boundaries. A transaction that causes a word to cross page
boundaries because the offset bit is set must have data path
number, offset, and val id identical in both map entries.
Any differences will yield unpredictable results.

VALID BIT

When the valid bit is a 1, the CUI processes the
transaction.· When it is 0, the CUI ignores the receipt of
MSYN. The valid bit must be set to 0 for map entries that
correspond to sections of Unibus address space in which
there are slaves that are expected to respond to
transactions that originate on the Unibus. Transactions
that start on the CMI and cause a Unibus transaction to
occur are always ignored by the CUI and can never wrap back
through the CUI onto the CMI.

15-23

Unibus/Unibus Interface

MAP ACCESS FROM THE CMI

The map is accessible for both reading and writing from the
CMI. Each entry uses up a longword address or the CMI. The
format of the map data fields as they appear on the CMI is
shown on Figure 10-11.

The logic that causes the map to be written ignores the byte
mask bits on the CMI. It assumes that any write to the map
addresses is a longword write. Any write other than a
longword will cause the contents of the map at the written
location to become unpredictable.

A Unibus initiated transaction that causes a CMI transaction
in the map address space on the CMI will properly address
the map and cause appropriate action. Note, however, that
writing the map requires a longword write and the only way
that a Unibus device can cause a longword write is to do two
sequential transfers within a longword to a buffered data
path. It is also a requirement that the buffered data path
not receive any other transfer in between the two that made
up the longword.

The CMI byte mask controls the setting of the Al, A0, ·and
{for writes) the C0 lines of the Unibus. For reads the
setting is: See Figure 10-18.

Byte Mask Al A0

1111 0 0
1110 0 0
1100 1 0
1000 1 0

The processor will never produce any other values with reads
to the Unibus.

For writes:

Byte Mask Al A0 C0

0001 0 0 1
0010 0 1 1
0100 1 0 1
1000 1 1 1
0011 0 0 0
1100 1 0 0

15-24

Unibus/Unibus Interface

The different types of CMI operations are mapped into Unibus
operations as follows:

CMI UNIBUS NOTE

Read DATI
Read with modify intent DAT IP (1)
Read lock DATIP (1)
Write DATO (B) (2)
Write unlock DATO (B) (2)
Write vector No Response (3)

1) When a CMI operation that causes a DATIP occurs, BBSY is
asserted and held until the end of the next operation
that does not cause a DATIP to occur.

2) The choice of DATO or DATOB is made based on the byte
mask.

3) The processor will never actually issue a write vector.

15-25

i~
lQ
c:

........,
U1 CD
I .

N,

"' U1 I
.......
.......

F30800TO {
F30FFC

·P F N

- PAGE FRAME NUMBER -
. CONCATENATED WITH BITS <8:2>
·OF THE UNIBUS ADDRESS TO FORM
THE 22 BIT CMI LONGWORD ADDRESS.

- DATA PATH NUMBER -
------------------~---- USED TO SELECT 1OF4 DATA PATHS.

0 0 DIRECT DATA PATH
0 1 BUFFERED DATA PATH 1
1 0 BUFFERED DATA PATH 2
1 1 BUFFERED DATA PATH 3

. -BYTE OFFSET­
------------------ USED WHEN ADDRESSING ODD BYTE

BOUNDARIES.

----------------------------VALID BIT -
IF NOT SET, TREAT CYCLE AS A NOP.

CMI MAP DATA FIELDS

0

TK-1739

c
::1
O'
c:
CJ)

' c
::1
O'
c:
CJ)

Unibus/Unibus Interface

17 9 8 2 1 0

UNIB~S ADDRESS! ... ---(9_) ___ ... l ___ (7_) __ ... 1_(2_) ... 1

MAP INDEX BYTE
NUMBER

BYTE MASK BITS

PFN
ADDRESS MAP
RAM;512 X 1-9

23 9 8 2 1 0

cM1AooReSSl ... ______ (1_s_) __________ l _____ (1_) ____ ~l-(_2,~I

UNIBUS TO CMI ADDRESS TRANSLATION

Figure 15-12

15-27

TK-2068

.......
lT1
I

N
00

.......
lT1
I

.......
w

17 9 8 2 1 0

loo olo o ojo 1 olo o 1lo o 1l1l1 ol

MAP (BOO·f FC)

0 0 0 0:1 1 1:0 0 111 1 0 1 0 0
I

1 o o 1:1 o op o 0:1 1 o o o 1

I t I

2 0 1 o:o 0 1:0 0 0~1 1 0 1 1 0 (21066)

3 1 0 1:1 0 0:1 1 o:o 0 1 1 1 1

I I
4 1 0 011 0 110 1

5 1

6

23 9 8 ,,
CMI ADDRESS 0 1 0 0 t 0 1 0 0 I 0 1 1 0 : 1 1
(446C4C)

UNIBUS ADDRESS (002116)

2

o o I 1 1

TK-20G2

c::
::J
O"
c:
Ul

.........
c::
::l
O"
c:
Ul

H
:::J·
rt'
ro

'""' ti\
Ill
0
ro

Unibus/Unibus Interface

THE UNIBUS ADDRESS EQUALS <17:0> OF THE CMI ADDRESS

23 1817

ALWAYS All ONES 5
(UNIBUS SPACE)

6 3 1

Figure 15-14

15-29

2

4 HEX CMI ADDRESS

4 OCTAL UNIBUS
ADDRESS

TK-2048

Unibus/Unibus Interface

MINIMUM ADDRESS REQUIREMENTS FOR DIRECT TRANSLATION FROM
CMI ADDRESSES TO UNIBUS ADDRESSES. -- . - -· - ·-··. ··- . -------·--··· -

I 1 1 1 1 I 1 1 Io o I + o Q I o o o H o o !a o I o! o o o I
HEX---F C I 0 I O I · 0 I 0
OCTAL I 0 I 0 I 0 I 0 I 0 I 0

23 1 a 111 1 I I I I O

MAXIMUM UNIBUS ADDRESS AT UBI

23 .1al11. I I

Ix x x + + 1 I + 1 , I 1

I I I o

HEX X 3 I F I
OCTAL 7, I 7 I

F I F I F
7 I 7 I 7 I 7,

MAXIMUM UNIBUS ADDRESS ON CMI

-~ 23 1al17 I I I I I 0

711 1 1 1 I 1 .+ 1 I 1! 1 1 1 I 1 1 +11+11+ 1 1 I
F I F ; Fl

I

I F HEX F F
1. I 1 I i 1·

I
7 I 7 OCTAL 7 I

T~·2090

Figure 15-15

15-30

Unibus/Unibus Interface

HARDWARE COMPONENTS

DATA BUFFERS

Each BDP consists of a data storage buffer of 4 bytes. This
storage buffer can be loaded from the Unibus or the CMI, and
its contents can be output to either the Unibus or the CMI.
Data can be loaded into the buffer one or two bytes at a
time from the Unibus, but is always loaded 4 bytes at a time
from the CMI.

ADDRESS REGISTER

Each BDP has a sixteen bit address register that can be
loaded from either Unibus addresses <17:2> or <17:2> + 1 (if
offset is on). There is circuitry that compares the stored
address with the address on the Unibus to see if there is a
match. The address held in the register is the Unibus
longword (Unibus Al 7:A2) corresponding to the data in the
data buffer.

FLAGS

There are five flags that keep track of the data in the data
buffer, named CD and BF3 through BF0. If CD=l, then the
buffer has four bytes of data from the CMI and BF3 though
BF0 are always 0. If DC=0, then, then BF3 through BF0
indicate which bytes in the data buffer have val id Unibus
data. If they are all 0, then the buffer is considered
empty.

15-31

~
'

Unibus/Unibus Interface

XCVR XCVR

----- -,
I
I

BYTE SNAP

BD,MUX

BF
3 :2 i1 :0 T
BOPBUFS 2

: 3

CMIMUX

' '

UNBUF
DATA LATCH

BYTE ROT.
ALIGN

SACE.SI~
MUX

ACAR

.•

L---

BUF
CMI
MUX

<A17:A2>

AOORESS
BUFFER

AOORESS
COMPARE

-- ------
UNIBUS INTERFACE BLK DIAGRAM

Figure 15-16

15-32

-,
2
3

I
I
I
I
I
I
I
I
I
I
I
I _ _.

A1.AO
c1.co

XCVR

UCN
FLAGSICMI
CUN/MASK

AOOAESS
MAP
512 x 19.

T1'·20H

Unibus/Unibus Interface

UCN SIGNALS

BUTO - UCR AO --
BUT 1

BUT LOGIC -
- UCR A1 --- -BUT2 UCR A2 - _ .. -- -TIMEOUT UCR A3 - ---- --MSYN -]UF CMI 28

CMI BYI_E ---- - --
SSYN -- MASK]UF CMI 29 __..- -
INT - j3UF CMI 30 ----... -- --

CLOCKS
· jiUF CMI 31 ---- --

BCLK - CMI
jlUF CMI 25 .. -- -

FUNCTION BUF CMI 26 --INIT - - --... j3UF CMI 27 --~
~UF CMI 0 ---- --ADDU - _co ---- UNIBUS CONTROL - -!=1 --

ADDC SLAVE -- ..
- CONTROL

__ AO --.. - --
CSRA2

~ f4.1 ---- -- ...
CSRA3 - PB ---- -. --
CSRA4 OFFSET - --- - --CSRA 11 sea --... -SC 1 ---
HIGH - CMICONTROL

_§TATUS 0 ----_sTATUS 1 --- -
BYTE FLAG DBBZ --- -BLK ARB ----- ---- -

DPSELECTO --ERR0_8 ___ PURGE -
BITS DP SELECT 1 ----MAP CNTR EN ---

TK-2039

Figure 15-17

15-33

l

I l"!j
l.Q
c

...... l"1
U1 Cl>
I

w
~ U1

I
00

28 27 26 24 23
PYTE ·FUNCTION
MASK CODE PHYSICAL LONGWORD ADDRESS

2
A.

A1 AO t--~------T-rt:-- A1AOCO

o o o 1 - o !o :,-
l

(\
1 1 1 1 -0

1 1 1 O;- 0

1 1 0 0 - 1

1 0 0 0 - 1
\ ..,,

READ

0

0 '.

O·

0
I

0o1 o - o 11

0100-101

1 0 0 0 - 1 1 ,,.

0011-000

1100-100
\ J

WAITE

0 0 0 - READ

0 0 1 - READ ~OCK

0 1 0 - READ W/MOD,FY INT

0 1 1 - NU

1 0 0 - WRITE

1 0 1 - WAITE UNLOCK

1 1 0 - WAITE VECTOR

1 1 1 - NU

CMIADDRESSTRANSFER

2 1 0

TK-2067

c::
::s
O'
c
en

.........
c:::
::s
O'
c en

().
J lua DATA

v
XCVR

•

6
1UI ADDRESS

<17:2> v
XCVA

Unibus/Unibus Interface

roo,-- -,., ... r-- 1
- - - - - , [INC ---------.

1 I ADDER •
A1,AO I ~

I
I
I

IYTE MAP

BDPMUX

BF
3 :2 :, :0 1
80P8UFS : 2

3

] ~ 1

----· - I C1.CO

~
UNIUF I ~ MUX I
DATA LATCH L \.

I - - - -- - - - - , XCVR

BYTE ROT.
ALIGN

I
SRCE.SE~
MUX

...,__,...) ~
J

r- <A17:A2>I I .
L ADO. "\. ADDRESS 1 1

~MUX _\. BUFFER ! I UCN
Fl..AGS/CMI
CUN/MASK 1981TS I

1
ADDRESS
COMPARE

I t <1;:9>1 j_,____
I ADO RESS

MAP .
I s12 x 19

I~

I
I
I
I
I
I
I

I <8:2> f<:23:9~ <14:0> <31 :25>
CMIMUX RCAA

~, -.zt_, l
iiUF

' ' ~
CMI
MUX

---.~~----------------v·~

CMt ' ---- '-----------
UNIBUS INTERFACE ILK DIAGRAM

Figure 15-19

15-35

-

I

I
I
I

_ _J

'

TS.·2011

Unibus/Unibus Interface

TYPES OF TRANSACTIONS

The table below indicates what type of CMI function is
initiated as a result of a Unibus cycle.

UN I BUS C 1, C 0

DAT!
DATIP
DATO (B)

CM! FUNCTION

Read
Read Lock
Write or write unlock

If a DATO(B) follows a DATIP, then a write lock will go out
on the CM!, otherwise an ordinary write will occur.

STATUS

CM! STATUS CUI RESPONSE TO UNIBUS

No error, or corrected data SSYN issued

NXM SSYN withheld

Uncorrectable Error PB asserted with SSYN

OFFSET

If the offset bit in the map is set, then the transaction
will be treated as if the Unibus address were incremented by
1. Note that if this is a DATI (P) or a DATO and if Al=l,
two CMI cycles will occur since the two bytes of Unibs data
fall across a longword boundary.

BUFFERED DATA PATHS

When the data path section of the map has a value of 1, 2,
or 3, then a buffered data path has been selected. Each of
the three BDPs consists of four bytes of data storage, 16
bits of address storage, five flag bits, and logic to make
the BOP operate. The general intent of the BOP is that when
the Unibus transactions are occurring with sequential
addresses (either ascending or descending), only one CMI
transfer is needed for every two Unibus transfers.

15-36

Unibus/Unibus Interface

DIRECT DATA PATH

When the data path bits in the map specify 0, the
transaction is said to use the direct data path (DDP). This
means that SSYN is not issued by the CUI until the CMI
transaction corresponding to the UNIBUS has been completed.

DATI(P) WITH BYTE OFFSET

When byte offset is asserted out of the map, the behavior
depends on whether or not it causes this transaction to wrap
around across a longword boundary. If it doesn't (Unibus
Al=0) then the data is shifted one byte to the left. If it
wraps (Al=l) the CUI effectively acts as if two sequential
transfers occur, the first at the given Unibus address, the
second at the address incremented. The two CM! reads are
pieced together to form the Unibus data word and SSYN is
issued. The data buffer and address register hold the
information from the second read at the end of the
transaction.

DATO(B) BEHAVIOR

The CUI behavior on Unibus DATO(B) 's is primarily dependent
on the contents of the buffer.

Buffer has Unibus data, no address match.

The data in the buffer is written out on the CMI, and the
flags are set to mark the buffer empty.

Buffer is empty or has CMI data.

The Unibus data is put in the data buffer, the Unibus
address is put in the address register, the flags are set to
indicate the appropriate Unibus data and SSYN is issued.

Buffer has Unibus data, address match.

If the data on the Unibus combined with the data in the
buffer forms a full four byte longword, then a CM! write is
performed, the buffer is marked as empty, and SSYN is
issued. If a ful 1 longword is not formed, then the Unibus
data is put in the buffer and the flags are set. SSYN is
asserted.

15-37

Unibus/Unibus Interface

DATO WITH BYTE OFFSET

If this wraps across a longword boundary, it is treated as
two one byte writes. If it does not cross a boundary, it is
handled the same as DATO.

DATOB WITH BYTE OFFSET

If Al A0=11, this is handled the same as with the address
effectively incremented by 1. If Al A0 = 11, then it is
treated as if it were a DATOB in the ne·xt longword with Al
A0 = 00, except that address match is forced to no match.

15-38

Unibus/Unibus Interface

WRITE;

A B C D TO ADDRESS FCOOOO
AND

1 2 3 4 TO ADDRESS FC0002

3 2 1 0

CMI I 1 l 2 3 i 4 A ! B I c ! D

Ur.l_l_EtVS O
ADDRESS

1 r A1 B C I D
I j
I I

1 I 2 3 I 4
J

I
J

2

READ;
ADDRESS FCOOOO

UN.IBUS 0
ADDRESS

I : Al B C I D
I _l

I
2

I
1 I 3 I 4 2

__[_ __l

3 2 1 0

CMI I A ! B c i D I A B I c ! D

\, I

LcPu uses THIS WORD

ADDRESS FC0002

CM1l __ 1_. __ 2_l.__3_..!_4__.l __ 1_._j_2--'"l __ 3_,__4_.

\ J

LcPu uses THIS WORD

DATA POSITIONING

Figure 15-20

15-39

TK-2053

BUFFER 1ST DATO

B A

BUFFER 3 RD DATO

I I F !. E I

'"7 THATS ALL FOLKS,
PURGE
DO A CMI WRITE

"7 . -.-
• I

D I c B I A
I ' ' • - -

F' : E
- I

E F I
t I
I 1 I

l I
-1.

Unibus/Unibus Interface

-

UNIBUS
DATA

BA
DC
FE

-WRITE TO MEMORY
WITH DATA BUFFERING-

Figure 15-21

15-40

BUFFER 2ND DATO

I D l c I B 1 A I

BUFFER FULL
DO A CMI WRITE

1
D • c

~
I
I
I

•
1
I
I

1
8 I A I

•
1
• I
I . • • I

l

CMI
ADDRESS

0
2
4

0

4

8

TK-2056

i T

J I I H G I
I

-;-
N I M L K I

I
I

·x I x x x I
I

l

-DO A CMI READ­
BUFFER 3RD DATI

IN!MI L! Kl

•• UNIBUS DATA L K

• BUFFERf4TH DATI

IN!MI L K

UNIBUS DATA
NM

·- ---- ----- . -

Unibus/Unibus Interface

-DO A CMI READ­
BUFFER 1ST DATI

IJ! 1 IH!GI

UNIBUS DATA HG

~
BUFFER 2ND DATI

IJlllH>I

~

DEVICE REQUESTS 4 WORDS FROM CMI MEM LOCATIONS 0,2,4,6.
·-

-READS FROM MEMORY
WITH DATA BUFFERING-

TK-2054

Figure 15-22

15-41

Unibus/Unibus Interface

UNIBUS DATA UNIBUS ADDRESS
BA 0
DC 2
FE

+
4

OFFSET ON

+
CMIMEMORY

t

c r B A x '.Q

x F E D ;4

8

-BYTE OFFSET -

TK-2055

Figure 15-23

15-42

CUI MICROWORD

23 22 16 15 13 12 10 9 8 7 6 5 4 3 2 0

...l. ~..J
(BUF CMI) I BUFFERED CMJ

l'1j

~· (NEXT) NE)~T ADDRESS

'° c
(BDPC) BUFFERED DATA PATH CONTROL .._.... ...,

U1 (1)

I (PRTC) PORT CONTROL
.i:::i. .._....

w U1 (VA.CTRL) UNIBUS ADDRESS CONTROL I
l\.)

.i:::i. (MSYN) MJ\STER SYNC
c
::s (SSYN) SLAVE SYNC
~·

(UiJDATA) UNIBUS DAiA CONTROL O"
c
{/)

'
(CMl..A.RB) CMI AAIBITRATION

c::
(BUTj BRANCH UNDER TEST ::s

~·

TK-3417 O"
c
Ul

H
::s
rt
(1)

l"'1
Hi
OJ
0
(1)

l'Jj
lQ
c

....... 1-1
U1 CD
I

.i::..

.i::.. U1
I

N
U1

MICROCODE BREAKDOWN

----~~~~~-----ROM

--------WORD RESIDENT ADDRESS
-----HEX CODED MICROWORD

--CODE LINE NUMBER I
~131
;132
;133
;134
;135
;136
;137.

=000
MAIN

CONDITIONS

;THIS IS THE TOP OF FIRST FORK
;0000---------;

BUT/CLK. FLAGS, \;BOP DATOB; CMI WRITE . ~
BDPC/DATOB, 1------'
~EXT/BDP.DATq

T LINE COMMENTS
-------------FUNCTION

------------------ROUTINE NAME
--CONSTRAINT

TK-2084

c::
::l
O"
c
en

' c::
::l
O"
c
en

t'%j
l.Q
c.::

...... l"1
l11 Ci>
I
~
l11 l11

I
r-,.)

°'

CUI MICROWORD

23 22

"POWER UP" CODE OF02,20

(BUF CMI) BUFFERED CMJ

(NEXT) NEXT ADDRESS

(BDPC) BUFFERED DATA PATI~ CONTROL

(PRTC) PORl" CONTROL

(VA.CTRL) UNIBUS ADDRESS CONTROL

(MSYN) MASTER SYNC

(SSYN) SLAVE SYNC

(UBDATA) UNIBUS DATA CONTROL

(CMl.ARB) CMI ARBITRATION

(BUT) BRANCH UNDER TEST

UNIBUS DATA X:CVRS = RCV
UNIBUS ADDRESS XCVRS = RCV
NEXT=OOF

' 16 15 13 12 10 9 8 7 6 5 4 3 2 0

TK-2082

c:::
::s
O"
c.::
en

' c:::
::s
O"
c.::
en

H
::J
rt
Ci>
l"'1
HI
llJ
0
C1)

tr.I
\.Q
c:
t'1
CD

.........
U1
I

N
....J

CUI MICROWORD

16 16 13 12 8765 432

ADDRESS OF , IDLE 0002,27 00000000 00 0

(BUF CMI) BUFFERED CMJ

(NEXT) NEXT ADDRESS

(BDPC) BUFFERED DATA PATH CONTROL

(PRTC) PORT CONTROL

(VA.CTRL) UNIBUS ADDRESS CONTROL

(MSYN) MASTER SYNC

(SSYN) SLAVE SYNC

(UBDATA)

(CM I.ARB)

UNIBUSDATACONTROL--~~--~----~~----~------------------

(BUT)

CMl ARBITRATION------------------~~------~------~-----­

BRANCH UNDER TEST--------------------~~~~--------------------

UNIBUS DATA XCVRS= RCV
UNIBUS ADDRESS XCVRS = RCV
NEXT=OOO
BUT= FIRST FORK

0

Tl<-2085

c::
::s
O"
c:
Ul

..........
c::
::s
O"
c:
Ul

Unibus/Unibus Interface

OFF OOF

PWR UP ~ IDLE

OOF ooo+

I • I J J
OOE 000 ooc OOB

DDP DATOB
PURGE PURGE

DDP
OFFSET DATl(P)

J]_ 1 I
OOA 009 008 007

DDP
CPU READ CPU WRITE

BOP DATI
DATO(B) NO DATA

AVAIL

J 1 1 l
006 005 004 003

BOP DATOB BOP DATI BOP DATI BOP DATO
OFFSET 0-AVAIL WRAP NO WRITE

1ST

T I T
002 001 000

BOP DATOB BOP DATO BOP DATOB
NO WRITE CMI WRITE CMI WRITE

NEED NEED

FIRST FORK FLOW,

Tl<-2076

Figure 15-28

15-47

POWER UP

IDLE:

FIRST FORK
(CPU READ)

CPU.RO

CPtJ.R0.10

CPU.RD.20

CPU.WRT.25

Unibus/Unibus Interface

CPU READ

- - - - - - -ENABLE XCVRS TO RECEIVE &·Go TO IDLE.

- - - - - -WAIT HERE FOR SOMETHING TO HAPPEN

- - - - -we HAVE IDENTIFIED A CPU READ OPERATION

-----,
I IF SSYN IS GONE FROM LAST TRANSACTION,
'1-- ASSERT THE ADDRESS ONTO THE UNIBUS ANO

START DESKEW. OTHERWISE WAIT.
~ UNIBUS DATA CONT IS SET TO RECEIVE.

_____ _J

- - - - - --WASTE TIME FOR DESKEW (125n SEC)

-- --,
l ASSERT MSYN, {DATA ASSERTED) & WAIT
~ FOR SSYN. ONCE SSYN IS PRESENT
I KEEP MSYN ASSERTED TO HOLD DATA ON
I BUS.

-- - - - ~-KEEP ADDRESS ON UNIBUS & DROP MSYN

ASSERT HI Z ON ADDRESS LINES TO
- - - - - - -PRESENT TRISTATE OVERLAP & GO BACK

TO IDLE & WAIT FOR NEXT TRANSACTION.

Figure 15-29
15-48

TK-2060

POWER UP

IDLE

FIRST FORK
BDPDATO

BOP.DATO

BOP.DATO.OS

BOP.OAT0.10

Unibus/Unibus Interface

BOP DATO SECOND PASS

- - - - - - - --ENABLE XCVRS TO RECEIVE & GO TO IDLE

- - - - - - - -WAIT HERE FOR SOMETHING TO HAPPEN

- - - - -we HAVE IDENTIFIED A DATO USING THE
BUFFERED DATA PATH. PUT THE UNIBUS
DATA INTO THE BUFFER & CLOCK THE BYTE FLAGS.

- - - - - - --ARBITRATE FOR THE CMI, PUT THE MAP PFN
& THE LOW ORDER ADDRESS BITS ON THE BUFFERED
CMI PATH. ENABLE ADDRESS TO CMI.

- - - - - - -WON THE BUS, ASSERT DATA & CHECK
CMISTATUS

- - - - - - - WE HAVE NO WRAP, BUSY IS UP, GOOD ADDRESS.
KEEP THE DATA ON THE BUS UNTIL OBBZ
GOES AWAY,

BOP.OAT0.20 - - - - - - - DBBZ IS GONE' SO ASSERT SSYN

OOP.45 - - - - - - - WAITING FOR MSYN OR INTERRUPT TO GO
·AWAY BY CHECKING FOR SSYN. SSYN = 1

OOP.40 - - - - - - -SSYN • 0, ALL DONE. GO BACK TO
IOLE&WAIT.

Figure 15-30

15-49

'T"l(-2061

. UNIBUS DEVICE

tZj
l.Q

c
.....
(1)

I-'
U1
I

w
I-'

I-' ()

U1 ta
I c::

U1
...... ~ ...,

......
rt
(1)

rt
0

c::
:J
O"
c
en

. CPU WRITE TO UNIBUS

UBI

UNIBUS r -- ... ------, BACKPLANE
I I
I I

! ASSERTT UBSY@ (i) I INT I
UNREQ ·© ' I ! - 1 -- i - .(i) .

_.. i STATUS VALID I • I &. -
-

CMI

- CONTROL. LINES <S> _@ ·FUNCTION _ •i>BBZ _ ;Ci) © -- -- =ADDRESS -(3) DATA ® - ADDRESS LINES _@ADDRESS
-

<D>
-- -DATA _@DATA -- @ -- /HOLD :<i) (j) - MSYN svr~c .. -

,Ci) - STATUS ;(I)
-

SLAVE SYNC -.. --

"

TK-3889

c::
::s
O"
c
en

' c
::s
O"
c
en

Unibus/Unibus Interface

_Signal Explanation for CPU Write to UNIBUS

1. The MIC Module decodes the address to be sent to
CMI. If address is a Unibus address, the MIC sends
"un REQ" via the backplane to the UBI module. (This
says arbitrate for the Unibus you have an address on
theh way) •

2. At this point, I'm saying the UBI arbitrated for the
bus and won, and is asserting bus busy.

3. The CPU via the MIC module asserts DBBZ on the CMI
along with the address and bus function of WRITE.
When UBI receives it, enables go out to drivers to
place address on Unibus. C0 and Cl generated from
Function. NOT USED UNTIL SYNC IS SENT.

4. CPU drops DBBZ and UBI puts DBBZ on the 1 ine. CPU
also sends data to be written on CMI. DATA is
passed to Unibuss drivers that are enabled. NOT
USED UNTIL MASTER SYNC SENT.

5. UBI sends Master SYNC and device should receive
Address, data and control signals. UBI sets hold on
CMI.

6. When slave sync is returned from the device, the UBI
drops Hold and returns status to CPU via CMI.

7. UBI drops BBSY on Unibus when it receives "Status
Valid" from MIC module.

15-52

UNIBUS DEVICE

Unibus/Unibus Interface

DISK NPR XFER TO MEMORY, BOP EMPTY.

UBI

UNIBUS BACKPLANE

NPR <D ®- INT

__ NPG
.... -- ··--

SACK' (3) @ -
- .

BBSY

CO,CI © @.--
1e 8-ii-S-oATA @ @ :

··-- - - ~---
CMI

ADDRESS @) @ _ I @ @ WAIT ~ (I}

MASTER s'f'NC @ @ ~ l n-11- DBBZ @ @ ~
- I [I I L ADDRESS @ -:

I (-~ ... ~ l DATA (32 BITS) (j) -
-· I w8lfb •st~ I

- SLAVE SYNC @ @- I IDWOAD+ STATUS @
- a..+ A -.Jr-

p

Figure 15-32 Disk NPR XFER to Memory BDP Empty

15-53

'MEMORY

TK-3870

Unibus/Unibus Interface

Signal Explanation for Normal NPR Disk Transfer to Memory

Ground rules for this explanation.

A. 16 Data lines on Unibus, 32 on CMI
B. BUffer in CMI is empty
C. Starting at even address

1. Disk sends NPR on Unibus.

2. UBI arbitrates and sends back NPG.

3. Disk receives NPG and sends SACK. UBI asserts wait
when SACK received (not used here).

4 • When bus av a i 1 ab 1 e d is k a s s e r ts BBS Y , C 0 , C 1 ,
ADDRESS, data and master sync. When UBI receives
this it stores the 16 bits of data in a buffered
data path because it is empty. (It holds 32 bits or
4 bytes). SACK is dropped to UBI so wait is dropped
on CM!.

5. Slave sync is sent to device from UBI.

6. Since Unibus cycle complete another NPR is sent.

7. NPG again sent in response by UBI.

8. SACK sent from disk and UBI again asserts wait.

9. When Unibus available disk again asserts BBSY, C0,
Cl, ADDRESS, Data and Master Sync. 16 bits of data
now stored in remaining section of buffer, and
address sent to map to get proper location in memory
to send data to.

10. UBI (when finished arbitrating for CMI) asserts DBBZ
and Address on CMI.

11. UBI drops DBBZ and Memory Controller puts it on CMI.
UBI asserts data (32 bits from BDP).

12. Status sent by controller to UBI, UBI clocks status
when DBBZ deasserted.

13. SLAVE SYNC sent to Device.

15-54

UNIBUS DEVICE

tz:i
"° c
'"1
CD ---.......
lTI
I

w
w

c:: ::s
.......
lTI O"
I c

lTI {/)

lTI --H --::s
rt
CD
l"1
l"1
c
l'tj
rt

rt
0

0
"O
c::

UNIBUS

BUS REQUEST

BUS GRANT

SACK

ASSERT BUS BUSY

INTR

UNIBUS INTERRUPT TO CPU
UBI

BACKPLANE

i!2 .-.;rr.-
INTERRUPT PENDING - -~

_..

ill - -
l;e--..., f4-- -.ENABLE BUS GRANT

@ -... @ INTGRANT ---- 1
I
I____ CMI

® I _... @} WAIT •@_ SJ2 . L--1-SJ)_ - -

®_.
;~

-
_ .. -

l VECTOR ADDRESS :
-----'

VECTOR -
UNIBUS DEVICE VECTOR+ 200i@ _.. +200

@ WITH WRITE VECTOR FUNCTION SLAVE SYNC

CPU

.,
~:[)Al~
I

.J

VECTOR +200 ... +SCBB

VECTOR ADD OF
SUBROUTINE

OUT TO MEMORY_..
VIACMI -

I

Tt<-3428

c
::J
O"
c
{/)

.........
c::
::s
O"
c
{/)

Unibus/Unibus Interface

Signal Explanation for Unibus Interrupt to CPU

1. BR generated by unibus device. UBI Synchronizes BR
to M elk to get SBR signal. SBR sent to Interrupt
chip.

The Interrupt chip checks SBR level (4, 5, 6, or 7)
which will give you the corresponding IPL level of
IPL 14, 15, 16, or 17. This level is compared to
present IPL level and if SBR has a higher IPL then
two things take place.

A. INT pending signal sent to DPM module and MIC
module

B. The Interrupt chip on UBI also generates u
vector lines 0, 1 and 2 to the state needed to
identify the type of interrupt pending.

2. Interrupt Pending sent by UBI to CPU modules DPM and
MIC is used to generate remaining vector lines 3, 4,
5 to give you the proper micro vector address that
starts the microroutine to handle the incoming
interrupt. Caution; INT pending is sent to SAC chip
on DPM while macro code i s running but w il 1 not be
interpreted until IRDI of next instruction (macro).
when this time arrives THE SAC chip generates DO
service signal and Enable u vector to go to the MSQ
chip and generate bits 3, 4, and 5 to pull down the
porper bits for the address of the microvector.
When these signals are ored with bits 0, 1, 2 from
UBI module you have microaddress of the routine to
handle the interrupt that is pending from Unibus.

3. The microroutine starts at microaddress and the
first function is to send, via the WCNTL F.LA, A
"33" which says Enable sending Bus Grant to the Int.
chip on UBI.

4. The Int. chip (and associated logic) then sends the
appropriate bus grant on the Unibus AND also hands
INT grant back to the MIC module at the CMK chip.
The CMK gene rates "GRANT STALL" to st al 1 the
microcode before the next microaddress. The CPU
MICROCODE REMAINS STALLED UNTIL THE VECTOR HAS BEEN
WRITTEN TO THE MIC Module.

15-56

Unibus/Unibus Interface

5. SACK is returned by the unibus device who issued the
BR in response to the BG. SACK will at this time in
the UBI module assert the "WAIT" line on the CMI.
This will go to the MIC Module and replace int grant
to hold the CPU stalled. It will also drop BG in
the UBI.

6,7 When Unibus device that sent BR SEES Bus Busy on the
Unibus dropped by previous device, he will assert
bus busy, INTR and vector address {on DATA lines)
all to be sent to the UBI module. At this time,
INTR will replace SACK to keep the wait line pulled.

8. The UBI module sends Unibus Device Vector plus 200
{by pulling address 1 ine 9 low) on the CMI with a
write vector function. This causes #9.

9. Slave sync is asserted on unibus because INTR and
write vector sent. When device receives Slave Sync,
INTR is dropped to UBI.

10. UBI no longer has INTR so the wait line is dropped
causing stall to be dropped and the microcode goes
to previously defined microaddress to handle
interrupt. The loss of wait line to CMK chip on Mic
is not the only way to install the machine. If the
CMK monitors a write vector function on the CMI and
sets the bit in write vector written register that
will also install machine by dropping Grant Stall.

15-57

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

FFF4601 I I I I I I I I I I I I I I I
UNIBUS ADDRESS REG!STER

FFF4621~ __ ..___. __ _._ __ .._ __ l...._--. __ _._ __ .__. ___ __ ..__. __ _.. __ .._--.j...__.

15 14

FFF464 INIT

ISSUE
UNIBUS
INIT

13 12

UNIBUS DATA REGISTER

•

UET CONTROL STATUS REGISTER

11 10 09 08 07 06 05 04 03 02 01 00

BR7 BR6 BAS BR4 PE TO PB A17 A16 C1 co NPR

l J UET

T SSYN GO
TIME

ADDRESS ISSUE
BUS REQUEST OUT

EXTENSION
NPR

LEVEL SELECT -
FORCE

UNIBUS PB
PARITY
ERROR

UNIBUS
TRANSFER
SELECT

FFF4661 ____________ z_E_R_o _______________________ R_o_M_o_A_T_A ________ __,

TK~609

15-58

VAX 11/750 LEVEL II

Interrupts and Exceptions

Student Workbook

Course produced by Educational Services Department
of

Digital Equipment Corporation

Interrupts and Exceptions

INTRODUCTION

The interrupt circuit is a composite of both TTL and gate
array logic, with the center of attention focused on the INT
chip housed on the UBI module.

The INT chip uses signals from other chips on the UBI board
and signals originating on both the MIC module and the DPM
module with control coming from the control store module via
WCTRL.

The various signals are used to produce UNIBUS grants, U
Vectors to the control store, and by way of the W Bus, route
IPL data to and from the INT circuits.

16-1

Interrupts and Exceptions

MODULE XVI: INTERRUPTS AND EXCEPTIONS

SYNOPSIS

This module consists of theory on interrupts and exception
handling utilizing block diagrams and microroutines.

OBJECTIVES

Utilizing the block diagram and the micro listing, trace the
operation of the stack and associated circuitry while
servicing each of the following:

a. traps
b. interrupts
c. exceptions

SAMPLE TEST ITEM

Which of the following is a typical example of an Exception?

a. A power failure.
b. The attempt to execute a privileged instruction.
c. A parity error.
d. An error detected on the Unibus.

RESOURCES

Processor Specifications

16-2

Interrupts and Exceptions

OUTLINE

XVI. Interrupts and Exceptions

A. Interrupt

B. Exception

l. Execution of
Instructions

2. Trace Traps

Privilged

3. Compatability Mode Faults

or

4. Breakpoint Instruction Execution

S. Arithmetic Traps

C. 3 Types of Exceptions

l. Traps

2. Fault

3. Abort

D. Interrupt Priority Level

E. Vector

F. System Control Block Base Register

G. Interrupt Block Diagram

1. INT Chip

2. INT Chip Inputs

3. INT Chip Outputs

H. Interrupt Registers

1. SPFIR

2. WEIR

16-3

Reserved

I.

Interrupts and Exceptions

3. CPIR

4. CDIR

s. HSI PR

6. IPL

7. IS

8. CURMODE

9. ASTLVL

Operations Performed

1. Save and return values of parts of the PSL
and AST level via the W Bus.

2. Receiving and storing the value of the HSIPR
which is used in interrupt arbitration.

3. Placing various data onto the Micro Vector
lines.

4. Perform REI check calculations.

s. Arbitration of all interrupt requests,
encoding the highest priority pending
interrupt and generation of the interrupt
pending signal=

6. Unibus arbitration within the group of BR
devices and issuing of BGs.

7. Unibus ACLO/DCLO, initiate functions are
handed by the INT Chips associated TTL
circuits.

8. The generation of Micro sequencer INIT is
also handled by the associated TTL
circuitry.

9. Unibus arbitration among the CMI, NPR
devices and the BR devices.

16-4

Interrupts and Exceptions

HJ. Informing the CMI that it may talk to the
Unibus •.

11. Request Unibus number 2 via NPR.

J. Interrupt and Exception Microcode for a Unibus
INT

1. I and E Mic, IE.UNIBUS.INT:

2. Address OFlA

3. Address OFlB

4. Address OFlC

s. Address OFlD

6. Address OFlE

7. Address OFlF

8. Address OF00

K. Summary

16-5

• INTERRUPT

• EXCEPTION

e TRAP

• FAULT

• ABORT

Interrupts and Exceptions

INTERRUPT AND EXCEPTIONS

An event other than an exception, branch,
j ump , ca s e , o r ca 11 i n s tr u c t ion th a t
changes the normal flow of instruction
execution. Interrupts are generally
external to the process executing when
the interrupt occurs.

An even-t detected by hardware other than
an interrupt, jump, branch, case or cal 1
instruction that changes the normal flow
of instruction execution. An exception
is always caused by the execution of an
instruction or set of instructions.
There are 3 types of exceptions.

An exception conditions that occurs at
the end of the instruction that caused
the exception. The PC saved on the stack
is the address of the next instruction
that would normally have been executed.

A condition that occurs in the middle of
an instruction that leaves the registers
and memory in a consistant state which
allows the instruction to restart and for
correct results once the fault has been
cleared or eliminated.

An exception that occurs in the middle of
an instruction and leaves the registers
and memory in an indeterminate state
which may prohibit an instruction
restart.

Figure 16-1

16-6

Interrupts and Exceptions

-- ·- ----- ---- ·-~-~-. ··- ----- -- - .. _. ·-- - --

VECTORS AND SYSTEM CONTROL BLOCK FORMAT·

VECTOR DESCRlPTION IPL IIE
SCBB+O NOT USED - -SC88+4 MACHINE CHECK 1F E

CS PARITY
BAD IRD
MEMORY ERROR
CACHE PARITY

SCBB+8 KERNEL STACK INVALID lF E
SCBB+C POWER FAIL 1E I
SCBB+10 RESERVED OPCODE 1F E
SCBB+14 CUSTOMER OPCODE XFC lF E
SCBB+18 RESEVED OPERAND 1F e:
SCBB+1C RESERVED ADDRESS MODE 1F E
SCBB+20 ACCESS VIOLATION 1F E
SCS8+24 TRANSLATION INVALID 1 f' E
SCBB+28 TRACE TRAP lF E
SCBB+2C BREAKPOINT OPCODE lF E
SCBB+lO COMPATABILITY MODE 1F E
SCBB+34 ARITHMETIC TRAP lF E

SCBB+40 CH'4K 1F E
SCBB+44 CHME 1F E
SCBB+48 CHMS 1 F' ~ !
SCBB+4C CHMU 1F !

SCSB+54 CORRECTED READ DATA 1A l
SCBB+oo WRITE BUS ERROR 10 I

SCBB+84 SOFT INTERRUPT 1 I
SCBB+88 SOFT INTERRUPT 2 l
SC88+8C SOFT INTERRUPT 3 I
SCBB+90 SOFT INTERRUPT 4 I
SCBB+94 SOFT INTERRUPT 5 1
SCBB+98 SOFT INTERRUPT 6 I
SCB8+9C SOFT INTERRUPT 7 I
SCBB+AO SOFT INTERRUPT 8 I
SCBB+A4 SOFT INTERRUPT 9 I
SCBB+A8 SOFT INTERRUPT A I
SC BB+ AC SOFT INTERRUPT B I
SCBB+BO SOFT INTERRUPT c 1·
SCBB+B4 SOFT INTERRUPT D I
SCB8+88 SOFT INTERRUPT E I
SCBB+BC SOFT INTERRUPT F I

SCBB+CO INTERVAL TIMER 18 I

SCBB+FO TU•58 RECEIVE 17 I
SCBB+F4 TU•58 TRANSMIT 17 I
SCBB+F8 CONSOLE RECEIVE 14 I
SCBB+FC CONSOLE TRANSMIT 14 I

SCBB+160 MASSBUS ADAPTOR 0 15 I
SCBB+164 MASSBUS ADAPTOR 1 15 I
SCBB+lb8 MASSBUS ADAPTOR 2 15 I

SCBB+200 UNIBUS 14•17 I
CSCBB+200+UNIBUS VECTOR)

TK-3273

Figure 16-2 Vector and System Control Block Format

16-7

Interrupts and Exceptions

INTERRUPT BLOCK DIAGRAM r----T---- UB1------~;1
l I I

I­
I
I
I
I
I
I
L

CONTROL STORE I

• WCTRL<5:0> - -- MIC I
~ 1

ACV
I --=> I
I

PTE CHK OR PROBE --~
WR BUS ERR INT ----UTR UT RAP

I --
I CORR DATA INT

CMK --
J----i

,,-~M I UVCTR BRAN ~ - --(DO SERVICE __..

IM CLK EN -

I SAC --
D CLK EN _..

PHASE 1
I --

B CLK __..

I TIMER INT

-
I TIM --I I PROC INIT

I SPFI

L----1 SERIAL LINE INT .
I SYNCHR RESET BG

L---

SBR5

SBR6 I
SBR7 I _I

I
I
I

WBUS<26:22 & 20:16>

UB INT GRANT

HPBG 6

INT HPBG 5

HPBG4

INT PEND

MICRO VECTOR 2

MICRO VECTOR 1

MICRO VECTOR 0

~ .

I

I

;
I

I
I
I
I

_J

....

_ .. --
_. -
-• -

__..

_..

TIC:-3270

Figure 16-3 Interrupt Block Diagram

16-8

IPL

00

01-0F

14

14-17

18

1A

18

10

1E

Interrupts and Exceptions

MICRO VECTOR VALUE CHART

NAME

NO INTERRUPT REQUEST PRESENT

(HSIPR) HIGHEST SOFTWARE
INTERRUPT PENDING REQ.

- .

(SLINE INT) SERIAL
LINE INTERRUPT

(SB Rn) SYNCHRONOUS
BUS REQUEST (~7)

(TIMER INT) INTERVAL
TIMER INTERRUPT

(COIA) CORRECTED DATA
INTERRU?i: REQUEST

(CPIR) CACHE PARITY
ERROR INTERRUPT REQ.

(WEIR) WRITE BUS ERROR
INTERRUPT REQUEST

(SPFI R) SYNCHRONOUS
POWER FAIL INTERRUPT REQUEST

BRANCH ON MICROTEST MICRO TARGETS

38=SOFT INTERRUPT REQUEST
39=CONSOLE INTERRUPT REQUEST ·
3A=UNIBUS INTERRUPT REQUEST
3B=INTERVAL TIMER INTERRUPT
3C=CORR~CTED MEMORY DATA
3D=CACHE PARITY ERROR
3E=WRITE BUS ERROR
3F=POWER FAIL INTERRUPT

U VECTOR

000

000

. 001

010

011

100

101

110

111

TK-3272

Figure 16-4 Microvector Value Chart

16-9

Interrupts and Exceptions

INT REGISTERS

NAME
NUMBER

IPL COMMENTS OF BITS

SPFIR 1 1E LATCH FOR SPFI

WEIR 1 10 LATCH FOR WEI

CPIR 1 1B LATCH FOR CPI

CDIR 1 1A LATCH FOR COi

HSIPR 4 01-0F SOFTWARE INTERRUPTS

IPL 5 00-1 F INTERRUPT PRIORITY
LEVEL

IS 1 - INTERRUPT STACK
FLAG

CURMODE 2 - CURRENT MODE

ASTLVL 3 SOFT ASYNCHRONOUS
SYSTEM TRAP
LEVEL

LUBIPR 2 14-17 LAST GRANTED UNIBUS IPR

PRVMODE 2 PREVIOUS MODE 1
TK-3271

Figure 16-5 Interrupt Registers

16-10

Interrupts and Exceptions

Interrupts and exceptions in some ways are alike in what
they accomplish within the machine. They also have their
differences. To understand the differences and how they both
function you must be able to answer two questions.

1. Why do interrupts and exceptions occur?

2. How does the machine get to the proper MICRO address
to handle interrupts and exceptions when they occur?

We' 11 attempt to answer these questions one at a time to
give you an idea how the machine handles interrupts and
exceptions.

1. Why do interrupts and exceptions occur?

When the machine is running normally it is executing one
MACRO instruction at a time. After completion of the MACRO
the machine goes to the execution buffer on the MIC to fetch
and execute another MACRO instruction. This is the normal
flow of operation. There are some MACRO instructions that
during their execution go to different areas of the program
and not the next MACRO instruction in the execution buffer;
such as jump, branch etc. These examples are still a normal
type flow to the machine. When a normal flow needs to be
changed either an interrupt of an exception occurs. IN ALL
CASES A MICRO ADDRESS IS GENERATED THAT POINTS TO A ROUTINE
TO HANDLE THE INTERRUPT OR EXCEPTION.

INTERRUPT - An event other than an exception, branch, jump,
case or call instruction that changes the normal flow of
instruction execution. Interrupts are generally external to
the process executing when the interrupt occurs. EXAMPLE:
Interrupt from the console terminal.

EXCEPTION - An event detected by hardware other than an
interrupt, jump, branch, case or call instruction that
changes the normal flow of instruction execution. An
exception is ALWAYS caused by the execution of an
instruction or set of instructions. There are three types of
exceptions.

A. An exception condition that occurs at the end of the
instruction that caused the exception. The PC saved on the
stack is the address of the next instruction that would
normally be executed. EXAMPLE: Arithmetic Trap

B. Fault - A condition
instruction that leaves

that
the

occurs in
registers

16-11

the middle of an
and memory in a

Interrupts and Exceptions

constant state which allows the instruction to restart and
for correct results once the fault has been cleared or
eliminated. EXAMPLE: Translation Buffer Miss

C. Abort - An exception that occurs in the middle of an
instruction and leaves the registers and memory in an
indeterminate state which may prohibit an- instruction
restart. EXAMPLE: Kernel stack invalid.

These are the reasons that interrupts and exceptions occur.
The second and maybe the most important question is:

2. How does the machine get to the proper MICRO address to
handle the interrupts and exceptions when they occur?

To figure this out let us redefine some terms previously
explained. Look in the micro-code listings in the chart file
for the FIXED CONTROL STORE ADDRESS CHART. You should note
that these addresses are broken down into three sections;
lX, 2X and 3X. These sections relate to the MICRO addresses
that all interrupts and exceptions go to when handling the
events other than the normal flows within the machine. If
there are three types of exceptions along with interrupts
why aren't there four sections? The answer lies in
terminology.

An interrupt is an interrupt and all of them start at MICRO
addresses beginning with 3(X).

Exceptions are where the ambiguous statements begin.

A TRAP is an
generated will
1 (X) •

exception,
always go

explained previously, that when
to MICRO addresses beg inning at

This leaves two types of exceptions that relate to one group
FIXED CONTROL STORE ADDRESSES. The exceptions fault and
abort, explained previously, are both classified as MICRO
TRAPS in the FIXED CONTROL STORE ADDRESS CHART. Using these
redefined terms for faults and aborts they will now both be
discussed as MICRO TRAPS from now on.

Looking at the redefined terms what follows is a brief
overview of what happens at the time an interrupt, trap or
micro trap occurs. Knowledge of the Micro Sequencer Chip
(MSQ) from the manual or class is assumed.

16-12

Interrupts and Exceptions

After the execution of each macro-instruction, a test must
be made to see if there are any traps or pending interrupts
to be serviced. This test is called BUT SERVICE. It is done
by the hardware one cycle after the completion of the
macro-instruction to allow the Condition Codes to become
stable for checking overflow. This is one cycle after the
first IR Decode branch of the next micro-instruction. There
is no micro-order which invokes this test.

If a trap condition or interrupt is pending, then the
micro-vector associated with the highest priority event is
asserted on the Control Store address lines overriding the
address mode specified by the current micro-instruction. The
address of the instruction during which the test was made is
pushed on the micro-stack. When the BUT SERVICE test is
true, all action in the micro-cycle is inhibited by the
hardware. This includes starting bus cycles, updating the
PC, IR, or OSR and writing destinations.

If there is a micro-trap condition in the same micro-cycle
in which the BUT SERVICE test is true, then BUT SERVICE has
higher priority than the micro-trap condition. The reason
for this is that the micro-trap was caused while attempting
to execute the next macro-instruct. The exception to that is
a Control Store Parity Error which overrides the BUT SERVICE
test.

During the execution of long macro-instructions interrupts
can be detected by micro-orders in the BUT field. If an
interrupt has occurred then a micro-branch to the
appropriate service routine is specified.

A micro-trap is a mechanism for handling conditions which
prevent a micro-instruction from completions successfully.
The micro-sequencer does a utrap operation at the end of the
micro-cycle by forcing a JSR to a routine which corrects the
problem. After the condition has been corrected, the routine
returns to the micro-instruction and re-executes it. This
transaction is transparent to the micro-programmer.

With this in mind let us find out how the machine actually
gets to the physical MICRO-ADDRESS to handle the proper
Interrupt, Trap or Micro-Trap.

All Interrupts are generated from the Interrupt chip located
on the UBI module and, depending on which Interrupt is
generated goes to MICRO-ADDRESS locations 38 through 3F. How
are these addresses generated? The address comes from three
location in the CPU, broken down by bits 5-0.

16-13

Interrupts and Exceptions

Bi ts 0, 1 and 2 come from the INTERRUPT CHIP on the UBI
Module.

Bit 3 comes from the UTRAP CHIP on the M/C Module.

Bi ts 4 and 5 are gener.ated from the MSQ CHIP on the DATA
PATH Module.

As the machine is running macro code a request for an
interrupt is sent to the INTERRUPT CHIP. As an example we
will use a Console Interrupt, al though ALL interrupts are
handled the same way. The Interrupt Chips will check the IPL
of the request to the IPL now in its IPL Register. (In the
Int. Chip.) If the requested IPL is higher then the signal
INT PENDING is sent to the SAC CHIP on the Data Path Module.
Nothing will happen until IRDl of the MACRO Instruction that
is now running in the machine. What happens when IRDl is
decoded by the SAC from the BUT FIELD is going to cause

·action by the INT. Chip, MSQ Chip, and U Trap Chip
simultaneously, but on paper can only be explained one chip
at a time.

When IRDl is decoded and INT Pending is asserted the SAC
chip generates DO Service L and ENABLE UVECTOR H. These
signals will cause the three previously mentioned chips to
output the needed MICRO ADDRESS 39 for CONSOLE INTERRUPT.

INT. CHIP - When request for console interrupt n DO service
L was generated by SAC the Interrupt Chip, on the trailing
edge of MCLK, allow the bits to be driven onto the uvector
lines. These bits would equal 001 for Console Interrupt.

MSQ CHIP When DO Service L and ENABLE UVECT H are
generated, along with the fact MICRO ADDS INH L is H, and
MSEQ INIT L is H, the MSQ chip outputs a 30 onto uvector
lines. This always occurs on Interrupt. (See Chart.) Use for
Traps and micro traps also.

.Micro Enable Do Serv Internal cs Lines
ADDR uvector L MSQ 5-0
Inhibl H Initial

H H H H 20 HEX
H L L H 10 HEX
H H L H 30 HEX

UT RAP CHIP - The signal DO Service L also goes to the
TRI-STATE driver to uvector Line 3 to be shut off and float

16-14

Interrupts and Exceptions

to a High which is a 1. This line is sent to the DPM (just
below the MSQ chip in prints) and is allowed to be ored with
the 30 from MSQ chip due to the fact uvector is enabled.

What we end up with is the Micro address 39 to be sent to
the control store module. That answers the question of how
the micro-address was generated for an Interrup~.

How is the Micro address generated for a Trap Condition?

TRAP - As you can see by the "FIXED CONTROL ADDRESS" chart
all traps are lX. This will be a simpler action because
there are only Two Chips involved. SAC for bits 0, 1 and 2.
MSQ for bits 3, 4, and 5.

If you look at the 5 possible traps and look at the SAC chip
you will see that all 5 traps feed directly to the CHIP.

11 = Arith Trap
12 = FPA Trap
14 = Timer Services
15 = T-Bit Trap (PSL TB)
16 = Console "'p Trap (Console Halt)

SAC During IRDl But Service is performed and a Trap
Condition exists for an Example we will use ARIH Trap L. The
SAC chip at this time only outputs DO Service L. NOT ENABLE
uvector. The SAC chip also outputs to the uvector lines 001
for bits 2, 1, 0. These lines will determine which type of
Trap exists.

MSQ - Do Serv L is received from SAC and· referring to
previous chart you find the 110 being outputted to uvector
lines. il0 or with 1 gives you the ill to the control store
for the proper address to handle th~ Arith Trap.

That should answer how the proper Trap address gets to the
Control Store.

How does a Micro-Trap address get
We know that a micro trap is
conditions which prevent a
completions successfully. To do
needs to be sent to the control to
condition.

sent to the Control Store?
a mechanism for handling
micro-instruction from
this the proper address
the routine to handle the

MICRO-TRAP - To find how the address is generated you must
go to the UTrap Chip on the MIC mode and the list of Micro
Traps in the "Fixed Control Address" Chart. We will not be
concerned at this point which micro-trap has priority over

16-15

Interrupts and Exceptions

the others as that is covered in the MIC section. We are
concerned with how the address is generated. For an Example
we will take a TB miss UTrap~ 2A. You notice all micro-Traps
are 2X. These chips are involved Utrap chip, SAL and MSQ.

UTRAP CHIP - The utrap chip is constantly monitoring the
events during each micro instruction and if a Translation
Buffer Miss occurs during read MICRO-instruction it cannot
be completed. You trap chip see the TB Parity Era H signal
and NO TB Hit from 0 or 1 the signal Utrap is generated and
the uvector lines 3-0 are set to 1010 {but not driven until
trailing edge of MCLK) •

SAC - The Sac chip receives Utrap L signal and generates
ENABLE UVECTOR H, but NOT do service.

MSQ - The MSQ receives the Enable uvector H signal and
referring to previous chart you find the MSQ chip outputs 20
to be ored with the uvector lines that are just below the
MSQ in prints that come from the UTrap Chip which are
allowed to pass with the Enable uvector H signal from SAC
chip. The address 2A is sent to the control store for the
routine to handle a TB miss.

This should explain how the address of a micro-trap is sent
to the control store module.

16-16

VAX-11/750 LEVEL II

Console Interface

Student Guide

Course produced by Educational Services Department
of

Digital Equipment Corporation

Console Interface

INTRODUCTION

The console interface chip is an asynchronous serial
1 ine interface between the COMET console terminal and
the CPU. It contains logic to do limited character
recognition of the received characters for entering in
Console Mode. It asserts signals to request both micro
and macro level. interrupts. Addressing of internal
registers is indirect through Console Register Address
Register (CRAR) •

17-1

Console Interface

SYN POSIS

This module is designed to be a block diagram and
chip level presentation on the following:

a) Transmit parallel to serial converter
b) Receive serial to parallel converter
c) Microroutine

OBJECTIVES

Given a block diagram of the Console Interface,
correctly identify each block by labeling it.

Provided with a list of Console Interface functions
and signals, correctly match the signal to its
function.

SAMPLE TEST ITEM

Utilizing the CUI Print Set, match the below listed
Console Interface signals to their functions:

a) INSTR FETCH
b) SERIAL LINE

c) CON SO

d) M CLK L

Comet Specifications
Comet Print Set

H Disables console interface
INT. Asserted when data is

available for output
When asserted, equals data
out
Latch data in

RESOURCES

17-2

Console Interface

MODULE OUTLINE

XVII. CONSOLE INTERFACE

A. CON Chip

1. WCTRL
2. W-BUS
3. SERIAL IN/OUT

B. Transmitter Half of CON Chip

c. Receiver Half of CON Chip

D. Print Famliarization

E. Summary

17-3

Console Interface

'
CONSOLE XCV

CONSOLE XMIT IE --CONTROL& --WBUS

rV
DATA BUFFER- STATUS REG .. READY
REG. (CROB) --(CTCSR)

~· CONSOLE REG. CONSOLE HALT ---ADDRESS REG. STATUS REG. HALT PEND.
.- - (CRAR). (CSR) --
~ CONSOLE XCV IE

<30:25> vi- CONSOLE XMIT ~

CONTROL& ~

WCTRL BUFFER REG. STATUS REG. DONE -
OCLK (CTBR) (CRCSR)

~

-

SERIAL IN -- XCV REG. XMIT REG. SERIAL OUT -- (RR) (TR)
~

~ XCV TIMING XCV CONTROL
BAUD CLI< COUNTER COUNTER

(RTCTR) (RCCTR)
.

'---- XMITTIMING XMIT CONTROL
INIT COUNTER COUNTER - ITTl"TD\ ITr _TR\ , .. .__ .. ,, I .. -C

CON CHIP
Tl(-2077

Figure 17-1 CON Chip Input/Output Signals

17-4

D CLK

WCTRL <30:25>

LO CLK --
l'1.]
'° c:
re

WBUS ~
<D

......

.....J
I

"'->

()

...... 0
::JJ en I 0 U1
<D

.-3
re
OJ
::J
en
!3
rt
rt
<D
re

INIT
BAUD CLK -

1
CTBR

CONSOLE XMIT
BUFFER REG.

l------------..-------------1
CRAR

CONSOLE
REG.
ADDRESS
REG.

CTCSR IE
~=------------------------4~ CONSOLE -

XMIT
CONTROL& a-=..:.RE~A~D~Y..;_ ____________________ __

STATUS REG.

TR
XMIT REG.

1 0
TCCTR

XMIT CONTROL COUNTER

TT CTR
XMIT TIMING COUNTER

CONSOLE TRANSMITTER

SERIAL OUT --

'

=7]
=16

TK-2070

(")
0
::s
en
0
......
<D

t'Jj
'° c:
l"1
m
........
......
I

w

........ ~

...... l"1
I DJ

°' ::J
{/)

8
rt
rt
m TCC
l"1

~
8
::J

'°

TRANSMITTER TIMING
I
I

BR CLK JUUUUUU
I I I

~----r ~ n tL--
1 h h__

LDCLK

TCLK

I I I
I I i

--------r------,-------,-------~--
1 I I I
I I

1111111111111111111111 I 1111111111 TCLK

I I t

0 __n__rui_

I
2

--, __ _
L

I I

3 ___ ,_J L
I I I

: lsr[S\J\f!J\l\:C'8J\l\I sP
---------------,----~------ I I

I I t
I I I

60

TK-3418

()
0
::J
{/)
0
........
m
H
::J
rt
m
l"1
1-tl
DJ
0
m

Console Interface

CRAR
CONSOLE REG .. ADDRESS REGe

ADDRESS FORMAT

REGISTER ADDRESS

CTDB 00
CRDB 00
CT CSR 01
CR CSR 1 0

CSR 1 1

TK·2CM2

Figure 17-4 Console Register Address Format

17-7

0 CLK

WCTRL<"30:25>

weus

SERIAL IN

BAUD CLK

CROB

CONSOLE XCV DATA
BUFFER REG.

RR

XCV REG.

CRCSR
CONSOLE
XCV
CONTROL&
STATUS REG

RCTCR
XCV CONTROL COUNTER

RTCTR

XCVTIMING
COUNTER

CONSOLE RECEIVER

Console Interface

CONSOLE STATUS

HALT

HALT PENO.

DONE

IE

TIC·20'14

Figure 17-5 Console Receiver

17-8

tTJ
lQ

c
I""(

CD

I-'
.....]

I
0\

I-'
.....] ::0
I CD

\0 ()

CD
<
CD
I""(

t-3
a
I-'•
::s

lQ

RECEIVER TIMING

BRCLK

1 11

2
RT

3

4

2---- r
RC

3-------
4~------------~----------

TK-3416

(')
0
::s
(J)
0
I-'
CD

H
::s
rt
CD
I""(

Hl
DJ
()

CD

RDINTINH H

9

2 C4

GND_J:
GND

17

OPM17 INSTR FETCH,H

UBl1°1 HALT DET SYNC H
33

•·
UBl11 CON DONE SYNC H 48

UBl11 CON T READY SYNC H 11

A35

R10I
3K

GHD

Console Interface

THE CONSOLE INTERFACE CHIP

CON
117

WCT5
WCT4
WCT3
WCT2
WCT1
WCTO

CHSL

MCLK

MCl.K

DCKE

BRCK

MOIT

SELi

FTPL

ITCR

IRFH

HOSY

DESY

TRSY
ADIH
CLDI

CLCI

W809
W808
W807
W806
W805
W804
W803
W802
W801
W800

CNIT

CMCR

HTLT

CNHT

SLDT

HDBR

DEBR

TR8R

LCLK
DCLK
CKDD

CLCO

WBUS25H
WBUS24 H
W8US2JH
W8US22 H
WBUS21 H
WBUS20H
WBUS 19H
WBUS 18H
WBUS 17 H
WBUS16H

41 UBl11 SERIAL LINE INTL

UBl11 CON HALT l

C3

100V _J
330PF

Figure 17-7 Console Interface Chip

17-10

TK20M

VAX-11/750 LEVEL II

TU58 Interface

Student Guide

Course produced by Educational Services Department
of

Digital Equipment Corporation

TU58 Interface

INTRODUCTION

The TU58 interface chip is an asynchronous serial line
interface between the TU58 tape unit and the CPU. With
very few exceptions, it is identical to the Console
Interface.

The TU58 mag tape unit is a low cost mass memory device
with random access, block formatted, pocket size
cartridge media.

18-1

TU58 Interface

SYNPOSIS

This module is designed to be a block diagram and
chip level presentation on the following:

a) Transmit parallel to serial converter
b) Receive serial to parallel converter
c) Microroutines

OBJECTIVES

Given a block diagram of the TU58 Interface,
correctly identify each block by labeling it.

Provided with a list of TU58 Interface functions and
signals, correctly match the signal to its function.

SAMPLE TEST ITEM

Utilizing the UBI print set, match the TU58
Interface signals listed below to their function.

a) • TU SO L
b) • M CLK L
c) • TU SI L
d) • MSEQ !NIT L

Comet Specifications
Comet Print Set

Data out
Latch data in
Data in
Initialize chip
registers

RESOURCES

18-2

and clear

TU58 Interface

MODULE OUTLINE

XVIII. TU58/INTERFACE

A. CON Chip

B. TU58

l. Specifications

2. Component Identification, Mechanical

3. Component Identification, Electrical

4. Block Diagram

s. Registers

6. Register Addresses

7. Data Format

c. Summary

18-3

TU58 Interface

SELECTED TU58 SPECIFICATIONS

262.144 BYTES CARTRIDGE CAPACITY
512 BLOCKS OF 512 BYTES EA.

TRACK FORMAT 140.FEET PER CART .
. 150 IN WIDE

2 TRACKS, EACH CONTAINING
- 1024 NUMBERED RECORDS

4 RECORDS=1·512 BYTE BLOCK

BIT DENSITY 800 BPI

READ/WRITE TAPE SPEED 30 IPS

SEARCH TAPE SPEED 60 f PS

AVE RAGE ACCESS TIME 9.3 SEC.

MAXIMUM ACCESS TIME 28 SEC.

DATA TRANSFER RATE · 41.7 US/DATA BIT
24KBPS

INTERFACE BUFFERING 150 TO 38.4K BAUD.
JUMPER SELECTED

DRIVES PER CONTROLLER 1 OR 2
ONLY ONE CAN OPERATE
AT ATIME.

TK-2049

Figure 18-1 Selected TU58 Specifications

18-5

WRITE
PROTECT
TAB

TU58 DRIVE UNIT

DRIVE PUCK

,· ~,.

TAPE CARTRIDGE

TU58 Interface

...., __ SWING-OUT

ELASTOMER
BELT

HEAD GATE

MAG.
TAPE

Figure 18-2 Tape Cartridge and Drive Unit TK-2040

18-6

~
CX>
I

....J

DIAGNOSTIC
LED

WW
QD2e BOOT+ 16

J2

ll)
.....
a:

GND + 15

~~
TP+ 14

150 + 1

A B 300+2
600+3 c D 1200 + 4

F 2400 + 6
H J 4800 + 6
K L 9600 + 7

19.2K + 8
~ 38.4K +9
w RCV + 10

XMIT + 11
AUX A+ 12
AUX B+ 13

WW
25 23 21 19

++ ++++++++
26 24 22 20 18

0 t-

o:t" ('I) co N
a: a: a: a:

t--

CTJ[I]

-

~ w
..... ...
w

~
M
N
w

co w

WWl
WW2
WW3
WW4
WW6
WW6
WW7
wwe
WW9
WW10
WW11
WW12
WW13
WW14
WW15
WW16

WW17
WW18
WW19
WW20
WW21
WW22
WW23
WW24

A B

c D

F
H J
K l

150 BAUD
300 BAUD
600 BAUD
1200 BAUD
2400 BAUD
4800 BAUD
9600 BAUD
19200 BAUD
38400 BAUD
UART RECEIVE CLOCK
UART TRANSMIT CLOCK
AUXILIARY A
AUXILIARY B
FACTORY TEST POINT
GROUND
BOOT

RS-423 DRIVER
RS-423 COMMON (GROUND)
TRANSMIT LINE +
TRANSMIT LINE -
RS-422 DRIVER+
RS-422 DRIVER -
RECEIVER SERIES RESISTOR
(JUMP FOR RS-422)

0
0
0
0
0
0

~
0
0

('I)
N
w

DODD~
TK 20'.18

Figure 18-3 Interface· Selection Jumper i Locations

t-3
c:
l11
CX>

DRtVE 0 ,.
I

' ' I r-----, I
I

I ' I
I DRIVE 1 ~---'

' I L--,----1"----
,---•--,
I I
I MOTOR ... _,
'

DRIVER I I • ... _____ .J '--

MOTOR
DRIVER

AGC

HEAD f> READ

SELECT AMP

WRITE ANO·

TACHAND ERASE LOGIC

VELOCITY ANO ORIVERS

CONTROL

SERVO AMP
ANO <J DRIVE
SELECT

PAM
256
BYTES

TU58 BLOCK DIAGRAM

TU58 Interface

PEAK
DETECTOR
AND DECODER

ROM
2K
BYTES

PROCESSOR
8085

UART

DRIVERS
RECEIVERS

Figure 18-4 TU58 Block Diagram

18-8

TO HOST

Tllt·201!5

TU58 Interface

'aoT #257
f

#256 #384 #385 #258 #386 #259J

,
EQT\ #382 #510 #383 #511

BOT #0 #128 #1 #129 #2 #130 #3 \ ~#126 #254 #127 #255 EOT)
BLOCK LOCATIONS ON TAPE.

TK-2080

Figure 18-5 Block Locations on Tape

18-9

VAX-11/750 LEVEL II

Condition Codes

Student Guide

Course produced by Educational Services Department
of

Digital Equipment Corporation

Condition Codes

CONDITION CODE LOGIC DESCRIPTION

The Condition Code logic in the Cornet CPU is designed to set
or clear the PSL N, z, V, and C bi ts according to the
architectural def ini ti on of each VAX 11 macro instruction
and the result of the data path operation. The condition
code logic also determines whether or not conditional VAX 11
branch instructions are satisfied so that the microcode can
rnicrobranch properly. A third function of CCC is to initiate
all arithmetic traps. Most of the logic circuitry to perform
these three functions is implemented within a gate array
called CCC. CCC is located on the DPM module in slot 2. This
gate array is controlled by a secondary encoding of the CC

·field and the WCTRL field of the microword called CC CTRL
<3:0>. The PSW lives in the CCC gate array, while the copies
of the CM bit <31> exist in PHB and CCC. PSL FPO bit <27> is
contained in the PHB gate _array which is part of the
microsequencer logic. The PSL IS bit <26>, CUR MOD <25:24>,
PREV MOD <23: 22>, and the IPL <20: 16> all are part of the
INT gate array located on UBI. When a CCPSL WB PSL
micro-order is issued, the entire PSL is sourced to the WBUS
on a read from all three gate arrays. Writing the PSL is
also accomplished from the WBUS so all three gate arrays are
enabled when the CCPSL function is PSL WB. We will limit
this discussion to the PSW which is in the CCC gate arra·y.

The CCC gate array is controlled by the CC and WCTRL fields
of the microword, after they are reencoded by what is called
the CC CONTROL (El4) ROM on the DPM module. This rorn is not
defined in the microcode listing so figure 18-1 is included
in this discussion of what the rom content is for the
various CC and WCTRL field functions. We should look at the
CC and WCTRL fields and understand what fields are relevant
to the CCC gate array. The vertical functionality of the
microword is explained in a previous lesson. The CCMISC
field of the microword is true if any of the following
combinations of the CC and WCTRL fields is desired by the
rnicroprogrammer.

CCMISC

NOP.CCBR BRATST
NOP.CCBR-CSIGN
WB ATCR.CCBR SIGND
ALUS DSDC.CCBR ALUS
ALUS-SIGND.CCBR ALUS
ALUS-UNSGN.CCBR-ALUS
SETv:ccBR SIGND-

CC BINARY

11
01
00
00
11
10
01

WCTRL BINARY

000111
000110
000111
000110
000110
000110
000111

Notice that the WCTRL field of the microword during the

19-1

Condition Codes
CCMISC is either 6 or 7. There is no WCTRL field definition
for 6 or 7, which means that CCMISC micro-orders are unique
operations. The CCPSL field of the microword is true if the
microprogrammer specifies one of the below operations in the
microinstruction.

CCPSL

WB PSL.CCBR SIGND
cc-WB.CCBR ALUS
PSL WB.CCBR ALUS=0
PSL-WB.CCBR-ALUS=l
MDR-OSR.CCBR BRATST

WCTRL BINARY

000100
000101
000000
000001
101111

The above field definitions are really variations on the
WCTRL microorders that are not defined as WCTRL functions.
You' 11 notice that in both the CCMISC and CCPSL functions,
the name of the def ini ti on has the CCBR microbranch bi ts
defined also. The CCBR bits are two microbranch status bits
that are defined in the microinstruction that specifies a
BUT micro-order BUT/CCBR, BUT/CCBR.CCBR0.IR0, or
BUT/CCBR0.SRKSTA0. The definition of CCBR <1:0> is defined
in the CCPSL or CCMISC micro-order of the microword. For
example, the CCPSL micro-order WB PSL.CCBR SIGND indicates
that the WBUS gets the PSL from the INT, PHB, and CCC gate
arrays. Additionally, the CCBR bits <1:0> assume the~r
default values, which are •••

CCBR <l>

0= WBUS greater than
or equal to 0

l= WBUS less than 0

<0>

0= WBUS not equal to 0

l= WBUS equal to 0

These bits are particulary useful for microbranching on the
result of ALU operations or WBUS data. The CCBR bits can
assume different functions depending on the CCMISC, CCPSL,
or CC micro-order. An example of this is the CCMISC
micro-order NOP.CCBR BRATST. The CCBR bits take on a new
function.

CCBR <l> <0>

0= Conditional branch not satisfied.
l= Conditional branch condition is

true.

This micro-order is specified in the microcode that executes
the VAXll macro conditional branch instructions. Basically
it decodes the opcode of the branch instruction and compares
the PSL N,Z,V, and C bits to the branch condition. For
example, a BNEQ macro instruction would assert CCBR <0> if
the PSL Z bit was clear during the execution. There is a

19-2

Condition Codes
most useful chart in the microcode listing called BUT/CCBR.
Locate this chart in the CHARTS .MIC file of the microcode
listing. This chart defines the CCBR bits <1:0> for each of
the CCMISC, CCPSL and CC micro-orders. The CCBR bi ts <l: 0>
are generated in the CCC gate array under control the
redefined CC and WCTRL fields.

The CC field of the microword also can effect the CCBR bits
<1:0> as shown· in the chart. The CC field also has the 2
fields that set the PSL condition codes according to the
architectural requirements and data path operation results.
The CC field is defined as follows •••

CC/=<32:31>,.DEFAULT=0
·NOP.CCBR SIGND=0,
NOP.CCBR-ALUS=3
CCOPl.CCBR_SIGND=l,
CCOP2.CCBR SIGND=2,

The first two micro-orders are NOPs as far as the PSL
condition codes are concerned, but they do effect the CCBR
bits. Th~ microprogrammer can use either of the NOP
micro-orders with a BUT/CCBR micro-order to microbranch on
the default signs explained above or the ALU STATE bi ts
<1:0> that are part of the ALU. The CCOPl and CCOP2
micro-orders are used to set the PSL condition codes. The
CCOPl micro-order is used for about half of the macro
instruction set to set the condition codes. The CCOP2
micro-order is used to set the condition codes for the
remainder of the macro instruction set. Locate the VAX
NATIVE MODE CONDITION CODE CHART in . the charts microcode
file CHARTS .MIC. This chart indicates which CC micro-order
must be specified for a particular macro instruction in the
far right column. The 4 columns across the page describe how
each PSL condition code bit is affected when the CCOPl or
the CCOP2 micro-order is specified.

To understand how this works we will trace the microcode
executed for a VAX 11 macro instruction and see how the
condition codes are set. Before we can do this we should
review the operation of the D Size ROM and how to read the
microcode macro expansion. The D Size rom is blasted by the
microprogrammer that wrote the microcode for the VAX 11
macroinstruction being executed. The VAX 11 macro
instruction that we will trace is.

ADDL2 R0, Rl

Remember how to read the
momentarily. First of all,
Well this happens to be an
microcode for this VAX
INTLOG.MIC file of the

; Where R0 is 7FFFFFFF and Rl
; is equal to 00000001

IRD ROMS? We will get
what type of instruction
INTEGER add so we should
11 macro instruction

microcode listing. What

19-3

to that
is this?
find the
in the
we are

Condition Codes
looking for is the D Size rom macros which are typically the
last section of one of these files. Locate the D Size rom
macro for the ADDL2 instruction. The hex opcode for an ADDL2
is C0. The D Size ROM macro should appear as below •••

000: SIZE [LONG] [LONG] [0] [0] [0] [0] ;ADDL2

The way one reads this macro is starting from the left
column, the number 0D0 is address input to the D Size Rom.
The !RD counter output also addresses the D size rom, so
that for one opcode, there are six locations in the rom. The
reason there is six locations is because the VAX 11 macro
instructions can have up to six operand specifiers that must
program the size of the data path during each execution
phase.. In the ADDL2 macro instruction, there are only 2
operands, so the D size ROM must be blasted with data size
for 1st and 2nd operand specifier evaluations. The SIZE of
the data path for each operand specifier evalution is
contained within the []. As you can see the first operand
specifier evaluation is in the next column. The data size
for each of the six operand specifier evaluations from 1 to
6 is read from left to right. Instructions that have less
than 6 operands, contain 0 in unused locations. The ADDL2
instruction contains the size [LONG] in the first and second
operand specifier evaluations. Refer to the DEFIN.MIC file
for the D size rom definition and you'll find that the data
size definitions are as follows... ·

IF DSIZE = [BYTE] THEN DSIZE <1:0> = 0
IF DSIZE = [WORD] THEN DSIZE <1:0> = 1
IF DSIZE = [LONG] THEN DSIZE <1:0> = 2
IF DSIZE = [QUAD] THEN DSIZE <1:0> = 3

So the D Size rom would be blasted with a 2 bit binary size
code for every execution phase of the macro instruction. It
is important to remember that the D Size rom output is used
only if the DTYPE field of the microword specifies IDEP
{data size is instruction dependent). The D Size bits <1:0>
go to the CCC gate array so that the PSL condition codes are
properly set according to the data size of the VAX 11
macroinstruction. Now that we know how to read the O. size
ROM, let's trace the ADDL2 macro instruction through the
microcode. We have to refer to the IRDl and IRDx rom macros
located at the end of the INTLOG.MIC file. The IRDl and IRDx
rom macros appear as below •••

• !CODE
0C0: FPD

IRDl

OPS
[NOP] [IE. OPCOD. DEC]
[LOD] [OS. RED]

OPS
[NOP] [IE.OPCOD.DEC]
[LOD] [OS.RED]

This is the IRDl rom macro definition for ADDL2. The IRDl
ROM is addressed by the opcode of the instruction to be
executed and the FPD and the signal FPA PRESENT.This means
the macro instruction opcode provides the base target

19-4

Condition Codes
address in the rem of which there are 4 locations. That is
what this macro is used for. It allows the microprogrammer
to blast all four locations with the address in control
store of the microroutine to evaluate the first operand
specifier. The FPD bit should not be set at IRDl of an ADDL2
instruction because it is not interruptable. If it is set,
then the machine will vector to location SCBB+l0 and execute
the RESERVED to DEC opcode_ instruction fault service
routine. FPA PRESENT is a signal that is used to change the
flow if an FPA is present or not. You'll note the IRDl rem
macro has 2 targets across the page. 1 with FPA and 1
without FPA. The OPS bit is used to load the OSR at IRDl and
IRDx. The IRDl rem macro could be changed to show how the
rom is addressed as follows.

000: FPD
NOT FPD

NOT FPA
NOT FPA

FPA
FPA

What this shows us is at base IRDl rem address 0D0, the 4
locations that are blasted are all the possible combinations
of FPO and FPA PRESENT. The contents of the [] is the label
of a microroutine that is entered for each of the 4 possible
combinations. In the case that we are using, an ADDL2 does
not use the FPA, FPD should be clear, and both the source
and destination operands are in registers. For this
discussion we will assume that the FPA is not present, even
if the FPA was installed in the CPU, the operand specifier
routine address is the same, [OS.RED]. PSL FPD is false and
REG MODE is true for both the source and destination
operands. This means the microcode will microbranch on the
addressing mode and enter the OS.RED flows at the
microinstruction that fetches the source operand from a
register. We will see this in a little bit. Lets look at the
IRDx rem macro, This is similiar to the IRDl macro except
that the IRD COUNTER output addresses these ROMS •

• OCODE OPS REG MEM
0C0: CNT0 [LOD] [IL.ADD2.B.W.L.REG] [OS.MOD]

CNT 1 [N 0 P] [IL • ADD 2 • B • W. L. MEM] [IL • ADD 2 • B • W. L. MEM

The combinations of REG MODE and FPA PRESENT are used as
address input to the IRDx rem along with the IRD counter
output. This means there are eight possible targets at IRDx
(CNT0 has 4 combinations and so does CNT 1). CNT0 address is
used at the first IRDx and the CNTl address is used at the
second IRDx. Since this is register mode for both the source
and destination, the control store address at CNT0 is
[IL.ADD2.B.W. L.REG] and the CNTl control store address is
[IL.ADD2.B.W. L.MEM]. In register mode the CNTl address is
really meaningless. If the destination was not a register,
the MEM flows would have been followed. and the microcode
would have gone to the following control store addresses.

[OS.MOD] VA GPR

19-5

[IL.ADD2.B.W.L.MEM]
Condition Codes

WRITE MEMORY AT VA

To summarize the flow of the ADDL2 R0, Rl, the microcode
goes to the following two rom addresses.

IRDl
IRDX

[OS.RED]
[IL.ADD2.B.W.L.REG]

With this knowledge we can trace the microinstructions. They
are reproduced below from the OSR.MIC and INTLOG.MIC files
respectively •••

100:
OS.RED:

;0000-------------------
FPA_Q_M[MDR] MDR_R[GPR.R] I

;Rn REGISTER MODE
; PLACE OP (GPR (RNUM))

IN MOR
CLOBBER MTEMP0 DEF, IRDX [l] ; SAVE MOR IN Q

This moves the source operand
gets the old MOR data.
[IL.ADD2.B.W.L.REG] and at this
address is [IL.ADD2.B.W.L.REG].
stored at IL.ADD2.B.W.L.REG •••

IL.ADD2.B.W.L.REG:

from R0 into the MOR and Q
The IRDX address is

IRDx, the next control store
This is the microinstruction

; 80 A0 C0

;-----------------------------------;
R[GPR.R].SIZ M[MDR]+RB,CCOPl, ;
SIZE [IDEP],-IRDl ;

This microinstruction specifies that the GPR pointed to by
the RNUM latch <Rl> is the destination. The MOR <R0> is
added to the destination GPR <Rl>, which is selected by
RNUM, and that GPR <Rl> is modified. The PSL condition codes
are set with the CCOPl micro-order. The condition codes are
set according to the D Size which is specified with the SIZE
[j macro. The SIZE being equai to IDEP means the D Size ROM
specifies the data size and the D Size Rom macro explained
above indicates the data size of the source operand is
[LONG] and the data size of the destination is also [LONG].
The result of adding 7FFFFFFF and 00000001 is 80000000. This
is an integer overflow and as a result the PSL N, Z, v, and
C bits should be set as follows for an ADDL2.

PSL N z v c

ALU<31> WX<31:0>=0 ALU<3l>V ALU<3l>CO

1 1 0

2.9.2 VAX 11 BRANCH INSTRUCTION IMPLEMENTATION

The CCC gate array also is used to decide if a VAX 11 macro

19-6

Condition Codes
branch instruction is satisfied, so that one of two things
can happen. If the branch condition is NOT satisfied, the
hardware must bump the PC to the next sequential instruction
and do the IRDl. If the branch condition IS satisfied, the
sign extended displacement is added to the PC. Writing the
PC flushes the XB and initiates prefetch for the new
Instruction Stream Data. We are going to trace a VAX 11
macro branch instruction called BNEQ. This macro instruction
branches if the PSLZ bit is clear. We will show both paths
that are followed. The BNEQ instruction is located in the
CONTRL.MIC file. First lets look at the IRDl rom macro for a
BNEQ in the back of the CONTRL .MIC file. The Macro appears
below •

• !CODE OPS REG

012: FPD [NOP] [IE.OPCOD.DEC]
IRDl[LOD] [CO.BRCND]

.OCODE
012: CNT0[NOP] [IE.BAD.IRD]

CNTl[NOP] [IE.BAD.IRD]

OPS FPA REG

[NOP] [IE. OPCOD. DEC]
[LOO] [CO.BRCND]

(NOP] [IE.BAD.IRD]
[NOP] [IE.BAD. !RD]

The IRDl macro specifies that the address of the BNEQ
microcode is CO.BRCND which is the target address for all
the conditional branch instructions. Notice that this
instruction will NOT do an IRDx and that the address for a
fault is [IE.BAD.IRD] which initiates a Machine Check
Exception. The microcode sequence for the BNEQ is shown
below.

=1000
CO.BRCND:

;1111--------------------;
MDR_ZEXT(OSR) BRATST?, ; GET DISPLACEMENT FROM OSR

; TEST FOR BRANCH
NEXT/CO.BRCND-DECIDE ; GO TO DECISION BLOCK

This microinstruction moves the branch displacement from the
OSR to the MDR zero extending from bit <8> to bit <31> in
the MDR. In the same macro,the BRATST? implies that the BUT
micro-order is BUT/CCBR and the CCPSL micro-order is
CCPSL/MDR OSR.CCBR BRATST. Locate the this macro in the
MACRO.MIC- file and verify that this is true. This micro
instruction has two possible destinations. If the PSL Z bit
is set, the microcode will read the microinstruction at
CO.BRCND-DECIDE. If the PSL Z bit is clear, the microcode
will execute the microinstruction at CO.BRCND-DECIDE+l.

If the PSL Z bit is set, the branch condition is not
satisfied and the next microinstruction is

=0
CO.NOP:

19-7

Condition Codes
CO.BRCND-DECIDE:
;-----------------------------; NO BRANCH IF CONTROL COMES
IRDl ; HERE,GO DO NEXT INSTRUCTION

Simply do IRDl and execute the next sequential instruction.
If the PSL z bit is clear, the CCBR bits <1:0> are equal 01,
according to the to the CCPSL micro-order at location
CO.BRCNDc The following microinstructions are executed

CO.BRCND-BRANCH:
;1---------------------------; BRANCH IF CONTROL COMES

HERE, CALCULATE NEW PC
WASTE CYCLE TO LET PC CATCH
UP

PC PC+SEXT(M[MDR]}, ;
SIZE [IDEP], NEXT/CO.NOP

The PC gets the sign extended MOR if the branch condition is
s~tisfied and the data size of the value written into the PC
is determined by the D Size ROM. Writing a new value in the
PC causes the XB to be invalidated and prefetch for the new
I Stream begins, If the XB is not full at IRDl, the
micromachine is stalled until the XB is filled. The next
microinstruction is at CO.NOP which IRDl and it is shown
above.

We have seen two of the major functions of the CCC gate
array and how the microcode implements setting the condition
codes and branching macro instructions. The CCC gate array
also generates the signals that cause an arithmetic trap at
the BUT SERVICE following an arithmetic operation, The PSW
bits <7:5> are the TRAP enable bits that must be set up by a
VAX 11 macro routine. The functions of these bits briefly is
described below.

PSW <7>
PSW <6>
PSW <S>

Decimal Overflow TRAP enable.
Floating Underflow TRAP enable.
Integer Overflow TRAP enable.

If an arithmetic operation is performed that causes one of
the TRAP conditions, the CCC gate array will assert the
signal ARITH TRAP L. At the next BUT SERVICE, the Arithmetic
Trap is arbitrated with console halt, Interrupt Pending,
etc. and the trap flows should be entered. The type of
arithmetic trap is logged the Arithmetic Trap Code Register
(ATCR} which is also contained in the CCC gate array. The
Arithmetic trap results in aborting the next macro
instruction and performing the trap service from SCBB+30.
The trap microcode pushes the PSL, PC of the NEXT
instruction, and the ATCR on the stack.

This completes
implementation.

the discussion of the microcode

2.9.3 HARDWARE IMPLEMENTATION OF CONDITION CODE LOGIC

19-8

Condition Codes
The actual hardware that implements the condition code logic
is a small percentage of the total. The condition code logic
is on the DPM module and we'll refer to the print set. Refer
to DPM20. At the beginning of this discussion we stated that
the CCC gate array is controlled by 4 bit field called CC
CTRL <3:0>. This field comes from the output of the rom El4
on DPM20. The address input to this ROM is the CC and WCTRL
fields of the microword that is latched on DPM20 and DPM12.
The output is called CC CTRL <3:0> H and these 4 signals go
to the CCC gate array shown on DPM10. Figure 18-1 shows how
the CC CTRL lines and the GOOD SAMARITAN ROM are programmed
for various combinations of the WCTRL and CC fields. The
reason the signal LIT 0 H is present is because if the LIT
field is 1 or 3, the CC field is not interpreted and becomes
part of the short or long literal. On DPM10 again let's look
at the CCC gate array inputs. The 1 ines CC CTRL <3: 0> are
the control input to the gate array. The VAX 11 or
compatibilty macro instruction opcode is latched in El2 and
is the input to combinational logic that sets the PSL
condition codes according to the architectural defintions
and data path results. The D Size bits <1:0> enter the CCC
gate array and are used to select the correct data path
sign, C bit, and V bit. The sign can be either WBUS<31>,
WBUS<lS>, or WBUS<7> depending on the D-size bits <1:0>, the
same is true about the source of the C bit and V bit. The C
and V bits would be selected as a function of data size
also. FPA z a-nd V are interfaced to CCC so that FPA divide
by zeros and overflow can force the appropriate ari thm_etic
trap condition. CCC generates the TRAP for FPA instruction
traps also. The interface to the WBUS is a bi-directional
interface that essentially connects the PSW (-TP) to the
rest of PSL when the CCPSL micro-order specifies WB PSL.
Writing the PSW from the WBUS is accomplished with- the
PSL WB micro-order. The PSL C bit goes to the BUT mux on
DPMl6 for microbranching on the state of the C bit. ARITH
TRAP L goes to the SAC gate array on DPM 17 for initiating
the arithmetic trap at BUT SERVICE. The CCBR bits <1:0> go
to the BUT mux on DPMlS and 16 for microbranching on their
state.

The functionality of the CCC gate array is tested with the
microdiagnostics and indirectly with the macro diagnostics.
Figure 18-1 is included here to show the programming of the
CC CTRL rom and the GOOD SAMARITAN rom which are not blasted
by the microprogrammers.

This concludes the discussion of the Condition Code Logic.

19-9

Condition Codes

GOOD SAMARITAN ENCODING
GOOD SAMARITAN INPUTS GOOD SAMARITAN OUTPUTS

WCTRL CC CTRL <3:8>
Function WCTRL cc LIT e H G.S .. <7:4>

WRITE PSL 00 x x 9
WRITE PSW 01 x x B
READ PSL 04 x x 3
WRITE CC 05 x x A
CC MISC 1 06 0 0 5
CC MISC 1 06 1 0 8
CC MISC 1 06 2 0 7
CC MISC 1 06 3 0 6
cc MISC 2 07 0 0 2
cc MISC 2 07 1 0 F
cc MISC 2 07 2 0 0
cc MISC 2 07 3 0 l
cc MISC 2 07 x l 0

Any other
WCRTL Function 0 0 0

Any other
WCTRL Function 1 c

Any other
WCTRL Function 2 E

Any other
WCTRL Function x l 0

Figure 18-1

This concludes the discussion of the Condition Code logic.

19-10

VAX-11/750 LEVEL II

Memory Subsystem

Student Workbook

Course produced by Educational Services Department
of

Digital Equipment Corporation

ROM
DATA

4

·+6V

-f
BATTERY

INTERNAL DATA BUS 39 BITS

TIMING &
CONTROL

CONTROLLER
MIC ROSE QUENCER

ROM UWORD

TOTI

REFRESM, !NIT/_....,. ...
1
ROW, COLUMN MUX ----

REF.
ROW
ADD&
INIT

'INT DB <31 :O>

11-+
7
--.INT BUS ADD

;<6:0>&

256 x 4
ROMO

256 x 4
ROM 1

256 x 4
ROM2

ADD
LATCH

256 x 4
ROM3

'A <23:17>

:CONFIGURATION
ERROR

,_ ,_

'INT BUS CS TIM

INT BUS
ADD
MEM SEL

........ -.--- FNGPJ

1> ... _,_- MEM PRES

START ADDRESS
JUMPERS

ARRAYS--....

T K ·4667

1

1

BANK I
MA<15:145 SELECT,

DECODE)
LOGIC

1N"rB·us·A"ob1M.EMSEL.

BATTERY
1 ··-...

+~
1

INT.BUSA[fb-.
<6:0>& 7·

INT BUS CS TIM

BANK3
16K X 32

.-.111!!!----1111A

BANK2
16K X 32

A
7 Do

BANK 1
16K X 32

A
Oo

BANKO
16K X 32

A
7 Do

20-2

Memory Subsystem

eAr;HC3
16K X 7
CHECK
BITS

BANK2.
16K X 7
CHECK
BITS

BANK 1
16K X 7
CHECK
BITS

BANKO
16K X 7
CHECK
BITS

TK-45158

JfFFFft

F21>Q90!

E~QQQ4l

F20008! -·---

~~i

F20500i
f.20600!

F~~~OO;

Memory Subsystem

p_HVSICAL r,1EM_Q~Y MAI'.'

Z56KB

256_K_8·

~~-~~

~~-~'
~K~

~_KB:

~1(8, '

251.KI·

•
CSRQ:

CSRl

CSR2

DE\(ICE"A" aOQT ROM

o_t;y1ce ."8~.'- BOOT ROM

DEVICE "C" BOOT ROM

QEVICE '~P"_J~OQT ROIVJ

•.• I-

TK~560

20-3

Memory Subsystem

Vee

16

2
OUT D

14
DIN •
AO

A1

A2
12 A3

(4116/64
A4 ·.16K x 1

10
A5 MOS

·13
A6

RAM

9 A7

RAS

CAS

WR

1 --
TK..t559

20-4

Memory Subsystem

Comet Memory Microprogram Functionality

Function

1. IDLE

2. CSR 1 WR

3. CSR 0 WR

4. CSR RD

5. ROM RD

6. UNUSED

7. !NIT

8. UNUSED

9. MEM 4 BYTE WR

10. MEM 4 BYTE WR

11. REFRESH

12. BYTE WRITE

13. MEM READ DIAG PG

14. MEM READ DIAG PG

15. MEMORY READ

16. MEMORY READ (ECC)

Purpose Entry Address

NOP

WRITE TO CSR 1 (F20004)

WRITE TO CSR 0 (F20000)

READ CSR 0, 1, 2

ASSEMBLE BOOT ROM LONGWORD

WRITE ALL ZEROS

LONGWORD WRITE, MASK=llll
(ECC)

LONGWORD WRITE, MASK=llll
{ECC OFF)

REFRESH DYNAMIC RAMS

ANY WRITE OTHER THAN LONG

DIAGNOSTIC PAGE MODE

DIAGNOSTIC PAGE MODE

READS A LOCATION

READS A LOCATION (ECC OFF)

Figure 20-6

20 6

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

23 01 00

____ _... ____ ..._ ___ __.. ____ _._ ____ ...__ ... 1_1......,· 1 PHYSICAL ADDRESS

23 02

.. l------------------------.....111 PHYSICAL ADDRESS <1 :O>

15 14 09 08 07 02

COLUMN ADDRESS ROW ADDRESS 1E;>K RAM CHIP ADDRESS

17 16

rn
20 19 18 17

II I I I

ARRAY
SELECT

~
16K CHIP
SELECT

INT BUS CS TIM

INT BUS CS TIM •

16 K CHIP SELECT (0-3)

ARRAY BOARD SELECT & FINGER
PRINT LOGIC SELECT ARRAY
BOARD

ROW ADDRESS X X COMPLETE ADDRESS

TK-~555

3
Cl>
a
0 ...,
'<
(/)
~
O­
en
'<
[/)

rt
Cl>
a

Memory Subsystem

Check Bit Code Generation Algorithm
(Refer to Check Bit Generation Chart)

Desired Parity

EVEN Cl = 1, IF THERE IS AN ODD NUMBER OF ONES IN ROW 1
EVEN C2 = 1, IF THERE IS AN ODD NUMBER OF ONES IN ROW 2
ODD C4 = 1, IF THERE IS AN EVEN NUMBER OF ONES IN ROW 3
ODD ca = 1, IF THERE IS AN EVEN NUMBER OF ONES IN ROW 4
ODD Cl6 = 1, IF THERE IS AN EVEN NUMBER OF ONES IN ROW 5
ODD C32 = 1, IF THERE IS AN EVEN NUMBER OF ONES IN ROW 6
EVEN CT = 1, IF THERE IS AN ODD NUMBER OF ONES IN ROW 7

Figure 20-8

20-8

N
tSl
I

\.0

Gl
(1)

:::J
(1)

'""" OJ
rt
0
:::J

()
::r
OJ

'""" rt

Row

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Byte 3 Byte 2 Byte 1 Byte 0 Check Bits

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 18 9 8 7 6 5 4 3 2 " CT C32 Cl6 ce C4 C2 Cl

x x x x

x x x x

x x x x

x

x

x

x

x

x

x

x x
x x

x

x

x

x

x

x

x

x

x

x
x

x x x x x

x x x x x
x x x x

x
x x x x x x x x x x x x x x x x
x

x x x x x x x x x x x x x x x x x

WRITE DATA EXAMPLE

e 0 0 e e 0 e e 0 o 0 e o e 0 e e 0 0 e e 0 0 0 0 0 0 e e 1 e i 1

NORMAL READ EXAMPLE

x

x

x

x

x

x

CHECK CODE

0

SYNDROME

0 e e e 0 e e e e e e e 0 0 e 0 e e e o e e 0 e e 0 0 0 0 1 0 I e e 0 0 " " 0

DROP BIT <0>

0 0 0 " 0 0 0 0 0 0 0 0 " 0 0 " 0 0 0 0 " " " " " 0 0 " l " " 1 " l " fi)

PICK BIT <I>

0 " 0 0 0 0 0 0 9 0 0 0 " 0 0 0 0 0 0 0 " " " 0 " " " 1 1 l 0 "
PICK BIT <16>

0 0 0 0
" 0 "

9 0 0 " 0 0 0 0 0 0 0 " " " " " " " 0 " l 0 1 1 "
DROP CB <2>

0 0 0 0 0 0 " 0 0 0
" " 0 " " " 0 0 " " 0 " " " 0 " 1 " 1 0 " 0 "

3
CD
a
0
D-1
~

{/)

c:
o­
m
~ en
rt
CD
a

Memory Subsystem

Memory System Single Bit Error Syndrome Chart

Bit Position CSR 0 <6:0> Hex
In Error Syndrome Syndrome

0 1011000 58
1 0011001 19
2 0011010 lA
3 1011011 SB
4 0011100 lC
5 1011101 SD
6 1011110 SE
7 0011111 lF

8 ll0HH'.J0 68
9 0101001 29
10 0101010 2A
11 1101011 68
12 0101100 2C
13 1101101 6D
14 11011HJ 6E
15 0101111 2F

16 1110000 70
17 01100fH 31
18 0110010 32
19 1110011 73
20 01HH00 34
21 1110101 75
22 1110110 . 76
23 0110111 77

24 0111000 38
25 1111001 79
26 1111010 7A
27 0111011 38
28 1111100 7C
29 0111101 3D
30 0111110 3E
31 1111111 7F

Figure 20-10

20 10

Memory Subsystem

MEMORY SYSTEM SINGLE BIT ERROR SYNDROME CHART

24
25
26
27
28
29
30
31

0111000
1111001
1111010
0111011
1111100
0111101
0111110
1111111

Figure 20-11

20--11

38
79
7A
38
7C
3D
3E
7F

VAX-11/750 LEVEL II

Writable Control Store

Student Workbook

Course produced by Educational Services Department
of

Digital Equipment Corporation

Writable Control Store

INTRODUCTION

The Writable Control Store (WCS) is an optional
extension of the control store that permits the customer
to design his own microroutines or macro instructions
that use WCS microcode. The WCS interfaces to the CMI
for data input and output •.

The WCS RAM data is connected to the control store bus
lines and is enabled when control store address bit 13
is asserted. The WCS module is a daughter board
connected to the motherboard module via 4 signal
connectors, the mother board is the 6K x80 main control
store module located within the CPU.

21-1

Writable Control Store

OBJECTIVES

From a list of statements concerning the WCS,
identify each statement as true or false.

Provided with the laboratory procedure, write a
program to transfer 10 Comet CPU microinstructions
from main memory to wcs.

SAMPLE TEST ITEM

Identify the following statements as true or false.

a) In order to store one microinstruction in
WCS, 8 CM! bus cycles are required.

b) The WCS address register has the processor
register address of 2C hex.

c) Microinstruction execution speed is slower
when executed from WCS because of
interfacing with CM!.

d) The base address of the WCS module in the
CMI memory space is FE0000.

RESOURCES

WRITEABLE CONTROL STORE
SCHEMATIC DIAGRAM

21-2

Writable Control Store

OUTLINE

XXI. WRITEABLE CONTROL STORE (WCS)

A. WCS Specifications and Characteristics
B. CMI Interface
c. Memory Address Allocation
D. Control Store Interface
E. Programming Examples
F. Laboratory Exercise 16

1. Write a routine to transfer 10 Comet CPU
microinstructions from memory to WCS

2. WCS Fault Isolation
G. Summary

21-3

Writable Control Store

WCS Module Functionality

The WCS module is a daughter board that attaches to the main
control store module in the CPU. Loading the WCS is
accomplished by writing the desired WCS data on the CMI with
the destination of the wcs. Data contained within the WCS
may be read onto the CMI and transferred to memory for
comparison with input data if so desired.

Loading one 80 bit microinstruction into WCS requires 4 CMI
write cycles because the WCS rams are loaded sequentially 20
bits at a time. This means that bits 21 to 31 of the data
are ignored. Bit 20 has a special function that will be
discussed later.

Refer to Figure 22-1, the WCS block diagram. At the left of
the drawing are CMI interface drivers to receive and
transmit to and from the CMI. The received address and DBBZ
are used to activate the WCS Control logic when a transfer
of data to or from the WCS occurs. Basically the chip
enables and write enables are generated on CMI writes to WCS
so that CMI data is sequentially loaded into the rams from
left to right.

The WCS rams can be addressed from two sources; either from
the microsequencer (CSA<9:0>) or the CMI address latch.
Naturally when loading or reading WCS, the address latch is
gated through the two to one mux and becomes the ram
address. The WCS ram data output has two destinations, the
DPM module control store latches and an interface to the
transmit side of the CMI. Some of the technical spec i­
f ications that one should be familiar with are:

1. WCS ram read access time is to 70 - 90ns.

2. Module timing is derived from CPU B clock.

3. No parity bit generation or checking

To understand the functionality of the WCS CMI interface
let's design an example program to load one 80 bit micro­
instruction into WCS address 2000, refer to figure 22-2
which is the comet physical memory organization and locate
hex address F00000 on the left of the drawing, this is the
I/O address for WCS. It extends from F00000 to F03FFC
because 4 longwords are required to load one WCS location.
Our example program will require 4 longwords of data to

21-4

Writable Control Store

build one microinstruction. The next question is, where is
WCS address 2000 and how do we load WCS address 2000 from
the CM!? Simple, refer to Figure 22-3, the control store
memory allocation. Note that WCS address 2000 is the first
location of WCS from the control store side. From the CM!
side, locations F00000, F00004, F00008, and F0000C
correspond to WCS address 2000. Remember 4 longword writes
are required to load one WCS location. Examine the
following macro code l ist1ng, Figure 22-3. Note that the
microinstruction itself is irrelevant, but the code that
loads it is what we want to study. This subroutine is
rather useless but could be doctored up so that parameters
can be passed to it. Each time the instruction on line 1700
is executed, a CMI write to WCS occurs. The address bi ts
<l :0> are irrelevant on the CMI because of longword
alignment. Bits <3:2> of the CMI address lines are used to
sequentially load the WCS rams. Refer to the following
table.

LOAD WCS RAM CMI ADDRESS BITS

BITS IF 3 2

<19:0> = 0 0

<39:20> = 0 1

<58:40> = 1 0

<79:60> = 1 1

Since the program is using autoincrement addressing mode
this will automatically sequence through and load 20 bits at
a time into the WCS Rams, it is important to insure that the
macro program set the pointer to WCS to double quad word
boundaries, that is, initially the pointer must be as
follows •••

CMI ADDRESS
BITS

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2
1 1 1 1 0 0 0 0 0 0 x x x x x x x x x x 0 0

This insures that the correct longword is loaded into the
proper location in WCS. The 2nd part of the program reads
the data written into WCS and compares it with the data in
the table to verify that the WCS was properly loaded.

21-5

Writable Control Store

Reading and writing WCS both drive the chip enable decoder
shown in the block diagram Fig. 22-1. Writes to the WCS
enable the upper WCS data drivers, while reads enable the
lower data drivers RAMS to the CMI. Reading the RAMS is
possible provided the CPU microcode is not running out of
wcs. This will be the rule rather than the exception. The
microwor~ parity bits <79:78> must be contained in the data
transferred to WCS because there is no parity generator
within the WCS module.

Execution of the microinstructions from WCS is similar to
that of any microinstruction in the main control store. The
WCS is enabled any time the next address is 2000 to 23FF
Hex, refer to Fig. 22-5, Comet Control Store addressing.
Bit 13, if set, indicates a WCS address. Since the WCS is
only lK, bits <12:10> are irrelevant. Bits <9:0> directly
address the RAMS.

At the beg inning of the discussion we mentioned bit 20 of
the WCS data transmitted to WCS had special meaning. This
bit sets a flip-flop called WCS PRESENT whose output goes to
the microsequencer. The flop is used for a microbranch
condition called WCS PRESENT. It will be used in the
situation where if the macro vector bits <1:0> = 2 and there
is no WCS present a ·console halt occurs.

To summarize, the basic function of the WCS is to provide
the customer with capability of creating his own micorcode
programs to enhance performance.

21-6

wcs
PRES

CSA<9:0>

TOBYTLOGIC

CMI
<3:2> CHIP .

ENABLE.::
DECOD_ER

WRITE
ENABLE
DECODER

TIMING
&

CONTROL!

STATUS
<1:0>

CS<t3>
H

1K X 80

Writable Control Store

4

1K
X·

20

OOUT

wcs
DATA
DRl'{ERS

20

tK
:X
20

DOUT

wcs
DATA
DRIVERS

. - . - - ·- ··- -
CONTROL STORE OUTPUT TO DPM

WRITEABLE CONTROL STORE BLOCK DIAGRAM

Figure 21-1. lK X 80 Writable Control Store Block Diagram

21-7

1K
:x
20

20

OOUT

20

TK-2096

toJIJDO

Q:JF!IFfl
oaoDDO
07flflflF
OlllOOO

QlllllllFF

ocoooo
FFllflfl

IOOGOO

13'11P:F
14IOCCIO
17flFFir
tlOOOO ,,,,,,
ICOOllO

1f1Firfll'

irooaao

FIOODO

F2QOQO

FDlQ4

F20DDI

F2DIGO

P:DllllO

fllta

1112811111

lllAOOO

F'2MOD

~

F2CDDD

F2CQi

lllaOO

F3QODO

2511<8

5121(11

7881(8

102•KB

12801<8

15311<1

1m1C1

21>'!11<1
MAXIMUM flUL.L. Y POPUl.A TED ARRAYS

IC Kl WfllTUIU CONTROL. STORE

'4EUOflY CONFIGURATIO~ REG. A

MIMOflY CONFIGURATION 'iEG. 3

MIMO"V CONFIGURATION REG. C

800TST"Att ROM PROGRAM

MASS1US .l.DAPTOR C INT. REGISTERS

MASS1US ADAl'T'Ofl 0 EJCT. Fl!GlSTeRS

MASSllUS .ADAPTOR 0 MAP REGISTERS

MASSIUSAOA"1"0FI 1 EJCT. REGISTEFl!i

MASSIUSAOAl'TOI' 2 INT. i'IEGISTERS

""'558USADAl'1'0fl 2 EXT. "IEGISTERS

MASSIUS ADAPTOR 2 MAP REGISTERS

F3DQGl.C UNIBUS DATA l'ATM CONTROL 9i ST.iTt:S

11300t'"IC UNllUS DIAGNOSTIC REGISTERS

F30lllll UNllUS MM" REGISTERS

~~r iit;~l~~,,~W:!~·'
F3ZOQO :;?NO UNllW OATJ. PATH CONT. ST.lo

F3201• 2ND UNllUS DIAGNOSTIC REGISTERS

F32D

F80000
2NO UNtlUS MEMORY SPAC~

1211<W

UNllUS MEMORY
SPACE 1281CW

COMET PHYSICAL MEMORY ORGANIZA ~!ON

Writable Control Store

1 ..i.RRAY :!OARO

Figure 21-2. Comet Physical Memory Organization

21-8

Lll/l l> ANO VER I f"t \ffS

0000 !OO 00000000 00
000'8 JOO

Ol)Ot 2l45 000 ' ' 400
0002 3456 0004 '--600
OOOJ4:i~7 oo·oe 608

"i::I 000456 9 oooc 10
0010 800 OOJO 900 lQ 0010 roo c ~o 04 0010 too

N
'"" H oorooooo Of uo 0012 ~00 E4 Af DE 0019 00 CD 05 goto

!'°°
I OU 500

\.0 N EF' Af 16 oou: 600
....... 81 82 DO 88H 188 I Ol 0.1 f'l

Hrl 50 0021 w 002 1900
f.l At' 16 oop l?g8 82 81 ~~ 00 0

OA 0010 h 8 01 Ol Fl OOl~ 230
HF5 50 OOl

USS 50 01 DO 0018
05 0036

50 04 381~ nu 05
OOH'

TABLE Ii

INlTt

STAR'U I
ts II

2UI

Un

~g:~u~=til~ 8ltll111
.TITLE LOAD AND V!Rtrr
.PSECT ALIGN LOHQ
.t.ONG "'XOOOUl4!S
• LONO "'XOOOl l45?
,LONG "XOOOl456
tLONO "X0004567

CLRk RO HOV l"XF000001 Rt
HOV L TABLE, R2 ·
RSB

~80t. 1~nu, CfU)+
ACBL h, I • RO, U:

VAX•ll MACRO vo2.10
DMA0t(8[NJCOMWCS.MARJil

wcs

ITHIS TABLE REPRESENTS 1 80 8JT
I MICROINSTRUCTION

ITHIS LONGWORD MUST INCLUDE THE
tPROPER PARITY IN BITS <l9tl8>
IACCORUING TO MICROCODE RP~C

'

THIS SETS UP LOOP COUNT ETC.
rooooo ls 1u1 PASE CMI ADDREss

1ur NCS oc TION o.

IWRITE DAJA FROM TABLE lo WCS
)LOOP i T M!S TO WRITE LONGWORDS

IREAD we& AN COMPARE TO TABLE DATA
llF tRROR, CLf.AR RO AND RETURN

#NO ERROR, DO A NORMAL RETURN

PAGE I
(1)

(J)

rt
0

'"" CD

Writable Control Store

MICROWORD

80 B1TS ,_ ___________ _A ____________ _

AMOUNT ADDRESS I \
16K 3FFF ~~~~~~~~~~~~~~

12K

23FF

SK 2000

21-10

13 12 11 10 9 8

NEXT FIELD

~1-~:q>

7 6

Writable Control Store

5 4 3 2 0

- -- --- - -- --- -·-·- -- --
9~_,_~ __ ADOR_~ss. l,.09ATION WffHIN CHI~

·--- - - --
------------CtflP_ARRAY_SELECT,_ 1!(BANK OF CHIPS

CONTROL STORE SELECT -ccs-
__ o,___==--~cs ____________________ _ 1312·1110.

-1_~-~~~qcs, o a o a 1ST K
0 0 0 1 2NO K
0 0 1 0 3RD K
-0 • 0 1 1_ 4TH K
a i er o Siif-i<
Q; 1 0 1 6TH K

0 f 1 d}
1

-NOT-USED
0 ,. 1

COMET CONTROL STORE ADDRESSING

Figure 21-5. Comet Control Store Addressing

21-11

N
I

.....
N

BCLKL

DBBZ·L

ADDRESS

SELECT
WCSL

LOAD ADDRESS
LATCH(BCLKN)

TIME 1L

TIME 12H

TIME 2H

WRITEH

WRTCLK L

j CHIP ENxL

WRT ENxl

l

l

ADDRESS --. DATA
FUNCTION

l 1

J

1 J

:t

l

r

I

DATA .-
STATUS VALID

l

J

. ..

,.

l

r l

l ~LOAD RAMS

l ENABLE CHIP IN J

ll ENABLE WRITE ~

l l

;-"

..

\

I

"ll

~

"""
rt
OJ
er
CD

n
0
::s
rt

""" 0
I-'

Cll
rt
0

""" CD

ADDRESS STATUS
& RETURN READ • FUNCTION DATA READ DATA

BCLK L

DBBZ-L I n I
I I

,_
" ADDRESS

i SELECT WCS L I I
LOAD ADDRESS

f
~,....,.

N LATCH H I-'
I

I-'
w

I I TIME 1L

I 1. TIME 12H ~
'ac '""'

I' I
rt
DJ

TIME 2H O"
I-'
CD

(')
WRITE H 0

::s
rt

'""' DRIVE CMi L I I 0
......

C/l
rt

CHIP ENxl I READ RAM I 0

'""' CD

VAX-11/750 Level II

Power Systems

Student Guide

Course Produced By Educational Services Department
of

Digital Equipment Corporation

Power Systems

Power System

INTRODUCTION

The VAX-11/750 power sys.tern lesson consists of a block
diagram of power distribution including memory battery
backup and the power cells for the time of year clock.
After a classroom lecture, a lab will be utilized to
troubleshoot power system failures.

OBJECTIVES

Given a system that won't power up, isolate the malfunction
and replace the faulty field replaceable unit.

SAMPLE TEST ITEM

The time of year receives its power from

a. +5 V supply
b. +12 V supply
c. 1.5 V dry cells
d. Battery backup

RESOURCES

1. VAX-11/750 System Maintenance Guide

2. VAX-11/750 Power System Technical Description

24-1

N
.i::.
I

N

C\
~

A.C. POWER
CONTROLLER

BLOWER
·MOTOR

!AIR FLOW
'SENSOR

VAX 11/750 POWER SYSTEM
-COMPONENTS-

BATTERY
BACKUP
UNIT
(OPTIONAL)

+2.5V POWER SUPPLY
ASSEMBLY

Figure 24-1 Power Components

TOY
'CLOCK
;BATTERY
!CHARGER

+5V POWER SUPPLY
ASSEMBLY

TOY
BATTS'
6V

"'O
0

TK-4723 ~
(I)
t'1

en
'< en
rt
<D
El
en

N
~
I

w

115VAC/23.0VAC IN

A.C. POWER
CONTROLLER

SW AC

VAX 11/750 POWER SYSTEM·
Ac;_ powr;~ P~~Iftl~UTIQ~L/

OPTIONAL/
REMOTE I

SWITCH i

CONTROL
1

+2.5V POWER SUPPL YI
ASSEMBLY ·

+5V POWER SUPPLY/
ASSEMBLY _ t

SW
AC

AC .__--~~---------------_._.._. ________________________ ---'

BLOWER
MOTOR

AIR FLOW
SENSOR

BATTERY
BACKUP
UNIT
(OPTIONAL)

Figure 24-2 AC Distribution

TOY
CLOCK
BATTERY
CHARGER

TOY
BATTS':
6V

"O
0

TK-4724 ~

Cl>
!""(

(/)

"<
Ul
rt
Cl>
a
Ul

r::::\
~

A.C. POWER'
CONTROLLER

BLOWER
MOTOR !

AIR FLOW'
SENSOR

BATTERY ;
BACKUP

VAX 111750 POWER SYSTEM
DC POW~~ plSTRIBUTION

BIASI
...------ VOLTAGES!

+2.5V POWER\ +12VA, +5VA\ +5V POWER I
SUPPLYr·· .. ~· - SUPPLY[""
A~SEr~13~ YI AS~EM_(3_~ YI

TOY TOY

·~
UNIT . 30V

~ CLOCK . - - BATTS'
BATTERY'~
CHARGER

5
V .__ (OPTIONAL)

~~ .li
+2.5V +5V~
85A 10A

,~ ,~ ,~

-5VB +12VB TO
1.2A 10A TOY

CLOCK

Figure 24-3 DC Distribution

+5V, 135Ai _ --+15V, 2A! __ --15V, 3.5A\ __

TK""4714
(/)

'<
C/l
rt
CD
a
C/l

Power Systems

CONTROLLER INDICATORS

Overvoltage (red)

Overcurrent (red)

DC OK (green)

+5 Fail (red)

+2.5 Fail (red)

Plug in reg fail (red)

Overtemp indicator (clear)

AC Power Indicator (amber)

Indicates that there is an
overvoltage condition in either
th~ +2.5V or +5V power supply.
The correct voltage of the
failing box will not be present.
Also, the appropriate fail
indicator will be. on.

Indicates that there is an
overcurrent condition in. either
the +2.SV or +5V power supply.
The failing box will nott have
an output. Also, the
appropriate indicator will be
on.

- Indicates the power system is
in correct functioning order.
If any other status indicator is
on, this indicator is off.

- Indicates the +SV power supply
is malfunctioning. The SV box
will not have a correct output.

Indicates the +2.5V ppower
supply is malfunctioning. The
2.5V box will not have a corret
output.

- Indicates that either the .±.5
volt, +12 volt, or +14 volt
regulator is malfunctioning.

Indicates an overtemperature
condition in either the +2.5
volt or +5 volt power supply.

- Indicates that AC is applied
to the controller. It is on and
remains on as long as the AC
power ~ord is plugged in and AC
is present.

24-5

Power Systems

VAX 11/750 POWER SYSTEM
SENSING

OPTIONAL
---..,, REMOTE

SENSE

AC LOW

DC LOW

OVER TEMPERATURE SENSE

STATUS STATUS
CONTROL +2.SV POWER SENSE

A.C. POWER ..._ ___ -t SUPPLY"
,__ CONTROLLER ASSEMBLY

+5V POWER
SUPPLY
ASSEMBLY

AIR
·FLOW
SENSE

BATTERY
. BACKUP ENABLE

BLOWER
MOTOR

AIR FLOW
·SENSOR

BATTERY
BACKUP
UNIT
(OPTIONAL)

Figure 24-4 Power Sensing

24-6

TOY
CLOCK
BATTERY
CHARGER

TOY
BATTS'
6V

TK-4713

Power Systems

~OVERT~MPERATURESENSE

--
VOLT AGE/CURR ENT STATUS .-. .. .

REGULATOR STATUS

AC IN FROM CONTROLLER

+2.5 VOLT POWER SUPPLY .
.., ____ ----.----- ····-··-----·--·--------·-.,-,·

AC LOW DC LOW

2.5 V CONTROL
BOARD

. -

2.SV MOTHER
BOARD

6PfiONS

_ +12VA BIAS VOLTAGE

__ -12VA BIAS VOLTAGE

__ +SVA BIAS VOLTAGE

.+12 v +5 VOLT L
,...;3_0_V_F_R_O_M _____ .---... llllll. REGULATOR REGULATOR I

STATUS SENSE
FROM +5V SUPPLY

.'BATTERY BACKUP :aoARD BOARD
'BOX "'---r---.A...__,.1-~-..L-~-....J

l _ .. _ _Jt__ __
+12VB
10A

+5VB ;-5VB
·1.2A l 10A

+2.5V
85A

. -·-

TK-4716

Figure 24-5 +2.5 Volt Supply

24-7

Power Systems

; +5 VOLT POWER SUPPLY

+5VA BIAS VOLTAGE -
-12VA BIAS VOLTAGE

+12VA BIAS VOLTAGE
-

l
VOLTAGE/CURRENT STATUS

_REGULATOR STA_TUS +SV CONTROL BOARD ...

- OVERTEMPERATlTFfE SENSE

AC IN FROM CONTROLLER __

+SV MOTHE.R BOARD

OPTION

±15 VOLT
REGULATOR
BOARD

l
I

.J. ..t +
+15V -15V +5V
2A 3.5V 135A

TK-4715

Figure 24-6 +5 Volt Supply

24-8

115VAC/230V A.G

VAX 11/?~~ P9WER SYSTEM

'OPTIONAL
------u-iREMOTE.SENSE

-----::• AC LOW
___,DC LOW

OVERTEMPERATURESENSE

BIAS
o--- ~!~.'-N __ _..~__.~ g_. OPTIONAL

REMOTE
r-+ SWITCH

VOLTAGES --~----1 +5V, 135A
_.,Ji..-___ ,±.12VA, +5VA ..,

A.C. POWER
CONTROLLER

CONTROL

__ STATUS

+2.5V POWER
SUPPLY
ASSEMBLY

""'

STATUS
SENSE

·~"---..--...--~-CONTROL J
SW SW AC A~ 1
AC ACL-------------tf--L-t-t-;-;------------

4•'··-----t

-
BLOWER
MOTOR

AIR FLOW

BATTERY BACKUP

ENABLE

30V

AIR SENSOR

BATTERY
BACKUP
UNIT
(OPTIONAL)

TOY
CLOCK
BATTERY
CHARGER

FLOW
'SENSE

,r ,, ~r ,,
+2.5V -=5vs :+5VB +12VB TO
85A 1.2A hoA :10A TOY

CLOCK

Figure 24-7 Total System

+15V,2A --
+5V POWER
SUPPLY
ASSEMBLY -15V, 3.5A

..... -

.TOY
:::· ~· BATTS'

6V

TK-4721

Ul
to<:
en
rt
CD
a
en

VAX-11/750 LEVEL II

Appendices

Course produced by Educational Services Department
of

Digital Equipment Corporation

Vector

SCBB+0
SCBB+4

SCBB+8
SCBB+c
SCBB+l0
SCBB+l4
SCBB+l 8
SCBB+lC
SCBB+20
SCBB+24
SCBB+28
SCBB+2C
SCBB+30
SCBB+34

SCBB+40
SCBB+44
SCBB+4 8
SCBB+4C

SCBB+54
SCBB+60

SCBB+84
SCBB+88
SCBB+8C
SCBB+90
SCBB+94
SCBB+98
SCBB+9C
SCBB+A0
SCBB+A4
SCBB+A8
SCBB+AC
SCBB+B0
SCBB+B4
SCBB+B8
SCBB+BC

Appendix A
Vectors and System Control Block

System Control Block Format

Description

Not used
Machine Check

CS Parity
Bad Ird
Memory Error
Cache Parity

Kernel Stack Invalid
Power Fail
Reserved Opcode
Customer Opcode XFC
Reserved Operand
Reserved Address Mode
Access Violation
Translation Invalid
Trace Trap
Breakpoint Opcode
Compatability Mode
Arithmetic Trap

CHMK
CHME
CHMS
CHMU

Corrected Read Data
Write Bus Error

Soft Interrupt
Soft Interrupt
Soft Interrupt
Soft Interrupt
Soft Interrupt
Soft Interrupt
Soft Interrupt
Soft Interrupt
Soft Interrupt
Soft Interrupt
Soft Interrupt
Soft Interrupt
Soft Interrupt
So ft Interrupt
Soft Interrupt

1

IPL

lF

lF
lE
lF
lF
lF
lF
lF
lF
lF
lF
lF
lF

lF
lF
lF
lF

lA
lD

1
2
3
4
5
6
7
8
9
A
B
c
D
E
F

I/E

E

E
I
E
E
E
E
E
E
E
E
E
E

E
E
E
E

I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

SCBB+C0 Interval Timer 18 I

SCBB+F0 TU-58 Receive 17 I
SCBB+F4 TU-58 Transmit 17 I
SCBB+F8 Console Receive 14 I
SCBB+FC Console Transmit 14 I

SCBB+l60 Massbus Adaptor 0 15 I
SCBB+l64 Massbus Adaptor 1 15 I
SCBB+l68 Massbus Adaptor 2 15 I

SCBB+200 Unibus 14-1 7 I
(SCBB+200+Unibus Vector)

2

Appendix 8
Vector Operation

If Vector bits <1:0> are as follows •••

Vector bits <1:0>=0
Vector bits <1:0>=1
Vector bits <1:0>=2

Vector bits <1:0>=3

Use Kernel Stack unless IS bit = 1
Use Interrupt Stack
Trap to WCS location 2001,
not present or disabled,
location 0001 in CS.
backplane jumper from slot
848 if WCS is installed.

if WCS is
trap to

Remove
5 844 to

Halt at Vector (PC po in ts to
interrupted instructio~ or faulted
instruction

3

Appendix C
Machine Check and Write Bus Error

Logout Area and Error Codes.G.

(SP)
(SP)+4
(SP) +8
(SP) +C
(SP)+l0
(SP)+l4
(SP)+l8
(SP) +lC
(SP)+20
(SP)+24
(SP) +28
(SP) +2C
(SP) +30

Machine Check Exception Stack Logout Table

LENGTH PARAMETER
SUMMARY PARAMETER
VA
PC
MOR
SAVED MODE REG
RLTO
TBGPR
CAER
BER
MCESR
PC
PSL

00000028
0000000X
xxxxxxxx
xxxxxxxx
xxxxxxxx
0000000X
0000000X
0000000X
0000000X
0000000X
0000000X
xxxxxxxx
xxxxxxxx

SUMMARY PARAMETER

1 = cs Parity Error
2 = Memory Error
3 = Cache Parity
4 =Write Bus Error
5 = Corrected Data
7 = Bad IRD

ACV OR TNV
Translation Not Valid or Access Violation exception stack
logout (Exception Service from Vectors t4 and 20
Respectively)

(SP)
(SP) +4
(SP)+8
(SP)+l2

Error Code (See Below)
Virtual Address Referenced
Program Counter
Processor Status Longword

Error Codes: 0= Read Access Violation or XB Access
Vioiation or PTE Fetched not valid for read

l= Accessing System 1 Space (Sl) or length
Violation

2= No Access to Process Page Table (from SPTE)
3= Process PTE VA not in System Virtual Space

4-7= Same as 0 to 3 but for write access rather
than read access

COMPATABILTY MODE TRAP
Compatabilty Mode Stack Logout (Exception Service from
Vector 30)

(SP)
(SP) +4
{SP) +8

Error Codes (See Table Below)
Program Counter
Processor Status Longword

4

Error Codes: 0= PDP 11 Reserved Operand
l= Breakpoint Opcode Executed
2= I/0 Trap
3= Emulator Trap
4= Trap
5= Reserved Instruction (HALT)
6= Odd Address Referenced

ARITHMETIC TRAP
Arithmetic Trap Stack Logout (Exception Service from Vector
34)

(SP)
(SP) +4
(SP) +8

Error Code
Program Counter
Processor Status Longword

Error Codes: 0= Undefined
l= Integer Overflow
2= Integer divide by zero
1= Floating Overflow
4= Floating/Decimal divide by zero
5= Floating Underflow
6= Decimal Overflow
7= Subscript Out of Range

5

Appendix D
Console Commands

The Comet system has console functionality simil iar to the
VAX 11/780. These commands are illustrated below with
examples.

Commands

The console prompt is the same as the VAX 11/780
">>>" and appears at the beginning of every line.

"AP" Enter Comet Console mode

"AD" Enter RDM console mode
ROM>

>>>E Examine Command

>>>D Deposit Command

>>>I<CR>

>>>T<CR>

> >>S 1000 <CR>
>>>S<CR>

> >>C <CR>

> >>N <CR>

>>>B<CR>

!nit Command, Invalidates TB, Cache,
and does Processor Ini t and Unibus
!nit

Te st Command, Runs Micro Verify
Microroutine explained below

Start command, The command may have
a n add res s a r g um en t f o 11 ow i n g o r
carriage return. If a carriage
return is typed, the address in the
PC is used. The start command does
an init sequence before going to
IRDl of the macroinstruction pointed
to by the PC.

The Continue command is the
the start command and
macrocode execution at the
in the PC.

same as
starts

address

This command is used to single step
the macroinstructions after the PC
is loaded.

The Boot command in this example
will boot the device selected by the
front panel DEVICE switch

6

>>>X Apt Load and Dump Command

Command Switches for Examine and Deposit Console Commands

Size switches

Function

/B
/W
/L

/G
/I
/P
/V
<SP>P

sets the data size to byte
word
long

GPR
IPR
Physical Memory
Virtual Memory
PSL

Command Switches for Boot Console Command

>>>B/X DDCU<CR> Boot Device selected by DDCU typed
at console and inhibit Micro Verify
Test.

>>>B/n DDCU<CR> Boot Device selected by DDCU typed
at console and pass a four digit
number as software control flags to
VMB.EXE in RS

> >>B DDCU<CR> Boot device specified by operator

Examples
>>>D/G/L F 1000<CR>
>>>D/P 1000 005251D0<CR>
> >>E/I 25<CR>
>>>I<CR>
>>>B/10/X DMA0<CR>

CONSOLE COMMAND ERROR CODES

;Put 1000H in PC
;Put code in address 1000H
;Examine cache disable Reg
;Do !nit sequence
;Boot Diagnostic Supervisor
;without Micro Verify from
;DMA0

If an illegal console command is attempted or command is
aborted because of a microtrap or some other condition a
two digit error code is typed out and the console waits
for new input. For example •••

>>>E P<CR> !Examine PSL
>>>E<CR> !Implies Examine Next Location, this is illegal.
?11 !Question Mark and error code is typed by console
>>> !At this point ready for new command

7

Error Codes 20= Deposit or Examine of Memory Failed
(Access Vi o 1 at ion , Trans 1 at ion no t v a 1 id ,
Bus Error, TB Parity Error, or Control
Store Parity Error)

11= Illegal ?CCess of an IPR
30= Apt Loading Checksum error
33= Attempt to Boot from unknown Device type

(DM,DL,DT,DR)
3 4 = B 0 0 t Dev ice Cont r 011 er n 0 t " A II , " B n , " c" , 0 r

"D"

MICRO VERIFY The following table indicates the microtest
sequence during micro verify. If a test
failure occurs, the PC is replaced with an
error code and the failure letter is typed.
Micro Verify then merges to console front end
flows.

Normal Test sequence as appears at console after power up
with FPSl set to HALT

%%
00000000 16
>>>

Test
in Progress

1.
2.
3.
4.
5.
6.
7.
8.
9.
HJ.
11.
12.
13.
14.
15.
16.

Test Name Fail Character

R-Bus, W-Bus, D Reg Tests @
M-Bus, Q-Reg Test c
Scratchpad Test E
Scratchpad Explicit Address Test Mtemps F
Scratchpad Explicit Address Test Rtemps I
Scratchpad Explicit Address test IPRs J
Scratchpad Explicit Address test GPRs L
Dual Port Address Test L
XB,IR, and OSR tests 0
XB,PC, and PC+Isize test Q
D-Size Tests R
D-S i ze Te st s T
Cache Parity Checker Test X
TB Parity Checker Test [
Control Store Parity Checker Test]
Cache Test

Test Failure sequence would appear at console as follows

8

%F This indicates a failure of the Mtemp Scratchpad
address test.

00000XXX FF PC contains loop count or point at which test
>>> failed and "FF" indicates micro verify

failure.

CONSOLE HALT Error Codes that are typed upon execution of
the following conditions:

Control P while in console mode
Execute TEST console command
Control P Halt or single macroinstruction mode>>>N<CR>
Interrupt Stack Not Valid
Halt Instruction Executed
Vector Bits <1:0>=3, Halt at Vector
Vector Bits <1:0>=2, WCS disabled or not present
Change Mode Instruction executed on Interrupt Stack
Change mode instruction executed and vector <1:0>not=0
Double Bus Write error halt
Power up and can't find RPS, FPSl at RESTART/HALT
Power up and warm start flag false FPSl at RESTART/HALT
Power up and can't find good 64K of memory
Power up and booting, but bad or no Boot ROM
Power up and cold start flag· set during boot subroutine
Power up halt FPSl at HALT position
Micro verify test failure

Code=00
Code=01
Code=02
Code=04
Code=06
Code=07
Code=08
Code=0A
Code=0B
Code=QJF
Code=ll
Code=l2
Code=l3
Code=l4
Code=lS
Code=l6
Code=FF

The format for entering console mode is that the PC is typed
and a two digit error code is immediately following. For
Example •••

00010004 06
>>>

The preceding example indicates that a halt instruction was
executed at location 10003.

9

Appendix E
ROM Console Command Summary

Control Key Functions

Control D
Control P
Control U
Control 0
Control R
Control C

Control S
Control Q

Enter ROM console mode.
Enter Comet Console Mode
Abort current Command Line
Inhibit Printing of text
Retype current command line
Cancel current function (Repeat console
command)
Disable CPU output to active T~rminal
Continue Output to Terminal after Control
s

ROM Console Commands

RDM>TE
RDM>TE/C

MIC>

Load and Run Microdiagnostics
Load Micromoni tor and go to Micromoni tor
parser

RDM>TE FILENAME.EXT
Load different monitor
transfer control to it.
etc.)

program and
{WCS Debugger

RDM>LOA FILENAME.EXT <PHYS ADDRESS>

RDM>TA

RDM>E

RDM>D

Load RTll file from TU-58
at <PHYS ADDRESS>. If
specified, default is 0

into CM! memory
no address is

Enable Talk mode between local and Remote
Terminal (Used during RD session)

Examine Command, the following are valid
Examine command switches

E/B <ADDRESS> Data size is byte
E/W <ADDRESS> Data size is word
E/L <ADDRESS> Data size is long

Deposit Command, the following are valid
Deposit command switches

D/B <ADDRESS> <DATA> Data size is byte
D/W <ADDRESS> <DATA> Data size is word
D/L <ADDRESS> <DATA> Data size is long

10

RDM>SE 2001

RDM>TR

RDM>CL

RDM>STE

RDM>STE/T

RDM>STO

RDM>CON

Set micromatch address at 2001 and
generate scope sync

Trace until micromatch, dumps DCS RAM for
64 Rom States prior to micromatch, most
recent microaddress is printed first.

Clear stop on Micromatch

Single Microinstruction cycle

Single Tick Clock

Stop CPU Clock

Restart the CPU clock

RDM>PAR <CS ADDRESS>
Perform a Parity Scan of the control
store beginning at the location
specified. There is bad parity written
into location 1 ?FD so that is where the
parity scan stop.

RDM>UA <CS ADDRESS>
Reads the control store microinstruction
at the <CS ADDRESS and latches the
microinstruction. Clock is stopped.

RDM>UA/C <CS ADDRESS>

RDM>INI

RDM>SH

RDM>SH/V

RDM>REP

RDM>R E/B 0

Similiar to above except microinstruction
is not latched.

Do a processor !nit (same as Front Panel
Ini t)

Displays CPU control store address of
current microinstruction, and next field
of the next microinstruction. (Clock must
be stopped.)

Displays the version and date of the RDM
8085 rom macrocode.

Repeat the last console command
continuously

Repeat the current console command
continuosly

11

RDM>RET

RDM>RET/D

Return to program I/O mode

Return to program I/O mode but leave
microbreak set.

RDM CONSOLE ERROR CODES

Tape function errors

TAP: 01
TAP:02
TAP: 03
TAP:04
TAP: 0 5
TAP:06
TAP:07
TAP:08
TAP:09
TAP: 12
TAP:l3
TAP:l4

TAP:C9
TAP:D0
TAP: DF
TAP:E0
TAP: EF
TAP:FS
TAP:F7
TAP:F8
TAP: EE
TAP:FF

UART - Device timeout
UART - Error from UART
UART - Data Set Ready dropped
UART - Receive Overflow
Tape checksum error received
Tape count byte exceeded maximum
Tape no end packet, invalid operation
Tape invalid packet received
Tape file not found
Tape Directory Error
Tape flag received, not command or data
Tape Read Length Error, not all records

fit
Tape Bad Record number
T~pe Bad Operation Code
Tape Motor stopped
Tape Block not found
Tape Data check error
Tape write protocol error
Tape cartridge not present
Tape Bad Unit number
Tape End of medium
Tape diagnostic failure

Terminal Error Codes

TRM: 0A
TRM: 08
TRM: 0C
TRM: 0D
TRM: 0E

CM! Error Codes

CMI:00
CM!: 01
CMI:02

Terminal Control C received
Terminal Command input buffer overloaded
Terminal Control D received
Terminal Command Input larger than buffer
Terminal Remote Line CRC error occured

Nonexistent memory
Corrected Read Data
Read Data Substitute

12

General Errors

SYNTAX ERROR
INVALID
COMMAND RDM
RDM: HJ
RDM: 11

Error in entering console commands

does not know the command just entered
Operation already in progress
Invalid operation code contained in Macro

13

%%%%
xxxxxxxx 13

>>>

%%%%
xxxxxxxx 14
>>>

xxxxxxxx 06

>>>

Appendix F
Power Up and Boot Error Reports

FPS! set to either RESTART/BOOT or BOOT

This indicates that a good 64KB section
of memory was not found and return to
console mode

This indicates a failure or nonexistence
of the boot ROM

If a halt instruction is executed after
typing a console

Boot command, this indicates a failure of
the read of logical block 0 from the
selected boot device. The PC should be
equal to the base address of the first
good 64KB of memory plus FX16 for TU58 or
FX20 for RK06. This failure occurs in the
Boot ROM routine.

VMS PRIMARY BOOT FAILURES

BOOT is the program name for VMS.EXE
The "F" indicates a fatal error and the type of error is
reported.

%BOOT-F-Unknown processor

%BOOT-F-Unexpected Exception

14

Th is indicates that CPU
i s not a Comet or
11/780, check SID
register for proper
jumpering in the CPU
type field on the
Backplane.

This indicates that one
of the following
exceptions occurred.

1. Access Violation
2. Breakpoint Opcode
3. Reserved Operand
4. TBit Trap
5. Page Fault (TNV)

%BOOT-F-Unexpected Machine Check This indicates some sort
of machine Check
occurred. Check all
adaptors using console
examine and deposit
commands. Probababl y a
timeout.

%BOOT-F-Nonexistent Drive Self explanatory, Check
DEFBOO.CMD on 11/780 and
insure system disk is
drive being booted.

%BOOT-F-Unable to locate BOOT file VMB can't find
[SYSEXE]SYSBOOT.EXE or
if bit 4 in RS is set,
VMB can't find
[SYSMAINT]DIAGBOOT.EXE

%BOOT-F-Bootfile not contiguous Indicates that
[SYSEXE]SYSBOOT.EXE or
[SYSMAINT]DIAGBOOT.EXE
is not contiguous on
system disk. Recopy . or
rebuild

%BOOT-F-I/O error reading boot file Indicates problem

15

reading boot file from
disk by $QIO service.

	001
	002
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	02-001
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	04-001
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	05-001
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-17a
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	06-001
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	06-47
	06-48
	06-49
	06-50
	06-51
	06-52
	06-53
	06-54
	06-55
	06-56
	06-57
	06-58
	07-001
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	07-37
	07-38
	07-39
	07-40
	07-41
	07-42
	07-43
	07-44
	07-45
	07-46
	07-47
	07-48
	07a-001
	07a-03
	07a-04
	07a-05
	07a-06
	07a-07
	07a-08
	07a-09
	07a-10
	07a-11
	07a-12
	08-001
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	09-001
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	1-001
	10-001
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	11-001
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	12-001
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	13-001
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	14-001
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29
	14-30
	14-31
	14-32
	14-33
	14-34
	14-35
	14-36
	14-37
	14-38
	14-39
	14-40
	15-001
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	15-26
	15-27
	15-28
	15-29
	15-30
	15-31
	15-32
	15-33
	15-34
	15-35
	15-36
	15-37
	15-38
	15-39
	15-40
	15-41
	15-42
	15-43
	15-44
	15-45
	15-46
	15-47
	15-48
	15-49
	15-50
	15-51
	15-52
	15-53
	15-54
	15-55
	15-56
	15-57
	15-58
	16-001
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	17-001
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-18
	18-001
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	19-001
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	20-001
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	21-001
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	21-07
	21-08
	21-09
	21-10
	21-11
	21-12
	21-13
	24-001
	24-01
	24-02
	24-03
	24-04
	24-05
	24-06
	24-07
	24-08
	24-09
	A-001
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15

