VAX-11/758 LEVEL II

Student Workbook

For Internal Use Only

Copyright © 1980, Digital Equipment Corporation.
All Rights Reserved.

The reproduction of this material, in part or whole, is
strictly prohibited. For copy information, contact the
Educational Services Department, Digital Equipment
Corporation, Bedford, Massachusetts 01730.

Printed in U.S.A.

.

The information in this document is subject to change
without notice and should not be construed as a com-
mitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished
undar a license and may not be used or copied except
in accordance with the terms of such license.

Digital Equipment Corporation assumes no rasponsibility
for the use or reliability of its software on equipment
that is not supplied by Digital.

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

DIGITAL DECsystem-10 MASSBUS
DEC DECSYSTEM-20 OMNIBUS
POP DisOL 0s/8
DECUS EDUSYSTEM RSTS
UNIBUS VAX RSX

VMS IAS

System Introduction

SYSTEM INTRODUCTION

INTRODUCTION

The 11/756 system is an extension of the VAX Family System
with many of the same characteristics of the VAX 11/780.

The 11/750 system allows users up to 4.3 billion wvirtual
address while only using 2 MEG of physical memory. To do
this the 11/750 has mass storage devices on a Mass bus or
Unibus for quick and easy access by the CPU.
The 11/750 may run in two modes of operation:

1. NATIVE (VAX VMS)

2. COMPATABILITY (PDP-11)
There is also the capability of Remote diagnostics to help
both the user and the field service technician. With this
Introduction Module we will attempt to give you the basic
facts and concepts of the 11/750 System including:

1. Basic Architecture

2. Analysis of Block Diagram

3. Physical Characteristics

4. Diagnostic Overview

System Introduction

11/7580 SUPPORT COURSE

MODULE I: SYSTEM INTRODUCTION

SYNOPSIS
The system introduction module consists of 11/750
system characteristics and block diagram analysis.

OBJECTIVES

Provided with a blank 11/750 system block diagram
and a list of 11/750 component names, correctly
label the 11/750 system block diagram.

Given a 1list of 11/750 characteristics, correctly

indicate as True/False the characteristics that make
11/750 a unique system.

SAMPLE TEST ITEM

Identify the following 11/750 unique characteristics
as True or False.

1. The 11/750 Processor Microword is 99 bits.

2. The 11/750 has a Virtual Memory System.

3. The 11/750 data path is 16 bits.

4. There is no Remote Diagnosis capability
with the 11/750 system.

RESOURCES

11/758 Specification

New Product Data Sheet

11/750 Block Diagram

11/7509

11/758 Pocket Reference Guide

System Introduction

MODULE OUTLINE

SYSTEM INTRODUCTION
A. Course Overview
B. Basic Architecture
l. 11/750 Specifications
2. 11/750 Physical Characteristics
C. Block Diagram Analysis
1. CPU
a. Data Path Module
b. Memory Interconnect Module
c. 11/758 Control Store
d. Unibus Interface
e. Major Buses |
2. Memory
a. Controller (1)
b. Array Boards (up to 8)
3. Options
a. CPU Options
1. Writable Control Store
2. Floating-Point Accelerator
b. Mass Bus Options
Cc. Unibus Options

d. Remote Diagnostic Module

11/750 Physical Inspection
1. Front Panel

2. Card Locations

3. Backplanes

4. Power

Diagnostic Overview

1-4

System Introduction

System Introduction

SvsTEM) .
INSTALLATION -
& OPERATION

. FLOATING WRITASLE REMOTE

ADAPTOR POINT CONTAQL DIAGNOSTIC

s ACCELERATOR SToRE MODULE

Figure 1-1 Course Map

System Introduction

Basic Architecture
l. Comet Specifications

a. Micro-controlled machine

b. similar 32-bit architecture except:
(1) Use of LSI curcuits (gate arrays)
(2) Increases reliability
(3) Decreases size

C. Virtual 32-bit addressing (hexidecimal)
(1) 4.3 billion virtual processes
(2) 2 meg max physical (moss - batt. backup 10

min.)

d. Two modes of operatiton

(1) Native (VAX VMS)
(2) Compatibility (PDP-11)

e. Remote Diagnostic Capability
(1) Company owner module

(a) Increase level of service
(b) Improves field service efficiency

f. Power
(1) 115 or 2308 volts
2. Physical Characteristics
a. 40 inches high, 30 inches deep, 29 inches wide
b. Five basic sections
(1) CPU - 4 boards - 3 major buses
(2) Options - CPU and I/0

{(3) Front Panel

(4) Backplanes - Comet and Unibus
(5) Power

System Introduction

What Is an 11/750 Gate Array?
409 identical two transistor cells which can:
1. Be connected to form 4 input NAND

2. Together with a neighboring cell be connected to
form 4 input NAND or AND.

44 identical transceiver cells which can:

1. By disconnecting the receiver, be a TTL, Tri-state
or open collector drives (Internal array to outside

world)

2. By disconnecting the driver, be a TTL receiver (high
impedance)

3. Both

Implementation Technique - Gate Arrays
Circuit Technology - Low Power Dipolar Schottky
Circuit Density - Large Scale Integration (LSI)

Die Size - .215 inches X .244 inches
Power Utilized per Die - 2 watts max

Package Size - 1.44 sqg. in. (2.4 inches X #.6 inches)
Number of Pins/Package - 48

I/0 Circuits/die - 44 1/0 transceiver gates
Logic Gates - 400 identical 4 input NAND gates

Voltage Used - +2.5 volts, +5 volts
Speed per Gate - 5-10 nanoseconds

Unique Gate Array Types

CPU and Memory Controller - 27
Floating-Point Accelerator - 7
Mass Bus Adaptor - 5

Total Number of Gate Arrays Used:
CPU and Memory Controller - 55

Floating-Point Accelerator - 28
Mass Bus Adaptor - 12

System Introduction

IS EQUIVALENT TO

OR

Figure 1-2

Logic Equivalent Circuits

1-8

LOGIC CIRCUIT EQUIVALENCES

TK-2088

6-T

UB! W-8Us 7 I!
[+ Tuss DPM MiC 7
TUS8] .| INTERFACE <—-_— [
ADDRESS
DATA LOGIC
"] CONSOLE] il | nouT ARRAY
LA 34 < :: ROUTING TRANSL MEMORY 3
INTERFACE — AND CONTROL
ALIGNMENT | BUFFER 2
MICRO- WCSPRES 1
SEQUENCER 1
: & TRAPS - |* —
INTERRUPTS K _ CACHE INTERNAL MEM BUS
M-BUS 4 '_ 4 F
f
UNIBUS
INTERFACE o™i
1
ADDRESS|_,
7 3 |]
|| [
: C
FLOATING > REMOTE s| CPU WRITABLE
POINT DIAGNOSTIC | 14 CONTROL | CONTROL
ACCEL MODULE +| STORE STORE
MASSBUS
ADAPT. SBUS
1" SBUS
UET " T.
UNIBUS 9313 2}
3
r ——— n—— E—— L] S———
DZ-M1 ALO2 LP 11
CONTROLLER CONTROLLER ' MASSBUS
: , RMO03 max. pevs. @ RM03
W " t S—— L] —— — —— A A CREND G J
VT 100 DRIVEO] [DRIVE1 LPO4

COMET SIMPLIFIED SYSTEM BLOCK DIAGRAM

TK 2079

Figure 1-3 11/750 Simplified Block .

uoT3onpoIjul wailsig

System Introduction

Block Diagram Analysis

l. CPU - Four Boards

a. Data path module (slot 2) DpPm

(1) Functions

(2)

(a)
(b)
(c)

Control Microsequencing
Arithmetic actions
Generate basic CLK from 0SC on CCS

Contents

(a)
(b)
(c)
(d)
(e)

Super Rotator

ALU

64 GPRs

Interval timer and basic CLK
Microsequencer

b. Memory Interconnect Module (Slot 3) MmiC

(1) Functions

(2)

(a)

(b)

(c)

(d)

(e)

(£)

Acts as memory management by making
physical address from virtual address

Checks for that physical address to find
if it is located in memory

Stores data in a 1K cache for quick use
by the CPU

Holds "PC" (program counter) to allow
CPU greater efficiency. (Updates the PC
without CPU microintervention.)

Due to VAX data and instruction storage
it aligns data or instructions to
useable positions for DPM.

Generates microtraps for needed
interrupts and exceptions

Contents

(a)

Address Logic

(b) Translation Buffer - 2-way set

associative cache

1-19

CPU

(1)

(2)

CPU

(1)

System Introduction

(c) Cache - 1K direct for data

(d) Data routing and alignment holds PC and
execution buffer.

Control Store (Slot 5) C59%
Functions

(a) Hold proms (microprogram)
(b) Mother board for WCS option
(c) Works in conjunction with microsequencer

Contents

(a) Proms for 8@ bit,microword (1K)
(b) Snap on for WCS

Unibus Interface Module (Slot 4) UBT
Functions

(a) Interface the TUS8 cartridge tape to
operating system. TU58 used possibly for
booting the system or loading of
diagnostics. One chip, serial data
between TUS8 and interface. Parallel
between interface and CPU.

(b) Interface the <console terminal so
operator may talk to system. May be
used as user input. Once chip serial
data between console and interface.
Parallel between interface and CPU.

(c) Interface for all data to be passed
between CPU and unibus.

(d) Generates all interrupts from unibus,
massbus devices, TU58 and console
terminal.

(e) Acts as generator for time of year (TOY)
clock. To keep system informed as to
correct time. Battery run. (Batteries
included)

1-11

e, Buses:

System Introduction

M, W, CMI

(1) Functions - to interconnect via etching on
backplane all sections of CPU to allow them

(2)

to

(a)

(b)

(c)

communicate..

M Bus - used to transmit data to and
from scratch pad registers, memory data
registers, PC, virtual address

registers, PC, virtual address registers
and data path module. Also included is
data to and from FPA.

W Bus - originates at ALU in DPM and
xmits data to data routing and
alignment, address logic, unibus
interface and FPA.

CMI Bus - (CPU Memory Interconnect) etch
on backplane that connects CPU to all
I/0 buses and memory for data exchange.
Synchronous interlocked 168 nanosec
cycle.

Contents

(a)
(b)
(c)

M Bus - data lines <31:0>
W Bus -.data lines <31:0>
CMI Bus - 45 lines

i. 32 data/address
ii. 1 wait

iii. 1 hold

iv. 1 busy

V. 7 arbitration 1lines
vi. 2 status

vii. 1 8MHZ clock

System Introduction

32 DATA/ADDR

¢ 1 WAIT
DATA/ADDRESS (35) 1 HOLD

1 BUSY

pd

3 MBA
1 UBI
ARBITR 7
BITRATION (7) 1 RDM
2 RESERVED
NEXUS

NEXUS

SN

STATUS (2)

A4

< 6.256 MHZ B CLOCK (1)

Y

THE CMI STRUCTURE

TK-2064

Figure 1-4 CMI Structure

System Introduction

Memory - two to nine modules
a. Controller module (Slot 10)
(1) Functions

(a) Controls data moving to-and from CMI and
memory

(b) Controls refresh circuitry for moss
memory

(c) Performs error correction for 1 bit
(d) Has boot ROMs (up to 4)

(2) Contents
(a) Two clocks

i, fast -~ used between CMI and
controller

ii. slow - used between controller and
memory

(b) Error correcting circuitry
(c) Up to 4 boot ROMs
(d) refresh circuitry
b. Array Boards - up to 8 (slots 1 -> 8 in hex)

(1) Function - hold data for storage - up to 2
meg

(2) Content

(a) 256K of mosY each board
(b) max 8 boards

C. Memory Internal Bus

(1) Function - carry data addresses and control
signals between controller and memory

(2) Contents

(a) 39 data lines

1-14

3.

Options

a.

b.

CPU

(1)

(2)

System Introduction

(b) 7 multiplexed chip address lines
(c) Two address lines for 16K 39 grp select

(d) One ROM address strobe or column address
strobe

(e) One read/write control

options - 2 boards
Writeable control store {(slot 5 in ex-hex)

(a) Function - allow programmer to write his
own microcode. Ex: subroutine

(b) Contents-RAMs, board is plugged to CCS

Floating-point accelerator (slot 1 in
ex-hex)

(a) Function - used for working arithmetic
functions which have large numbers of
many decimal places

Massbus Options -~ maximum of 3 adaptors (slots 7
-> 9 in ex-hex)

(1)

(2)

Function - to interface data between one of
8 devices possible on each adaptor to the
CMI bus. Devices could be used for storage
of operating system, space for user programs
or overall virtual memory space.

Contents - made up of LSI arrays and
standard logic

Note

Interrupts from massbus devices are given
a BR4 level and passed to CPU via unibus
interface board. To receive BG back it
must have the BG jumper removed if
adaptor is present in a slot.

System Introduction

c. Unibus Options (slots 1 -> 9 unibus backplane)

(1)

(2)

Function - many and varied according to what
devices are purchased. DZ1l is normally
bought to interface up to 8 user terminals.

Contents - relative to what is purchased,
but will always have M9313 for end of the
bus termination and diagnostics.

d. Remote Diagnostic Module (slot 6 ex-hex) RDM

(1)

(2)

Functions
(a) Needed to run microdiagnostics
(b) Run macrodiagnostics from remote site

(c) If macros won't run, differentiate
between CPU and memory

(d) Utilize TUS58 as backup source for
hardcore, cache/TB diagnostic supervisor
in case mass medium is down

(e) Down line load of micros is not a goal

Contents
{a) RAMs - to hold microdiagnostic monitor

(b) DCS (Data Control Store) to hold
microsequencers loaded by monitor

1-16

System Introduction

'EXTENDED HEX

- w o <
o~ Oa = B T
-0

<« Sao -

o VCnun~3o0ow

© a2
o~ 2o
© 20 <
-] 2m<
e « @mOOF EO=w Oso
- NwEe ¥ SwEox)> LxcxL>n

o~ s s [)

™

-

w

©

~ y y y

] N0 ® ¥ I wIox > Cczxxcg<>n
efoz_o02w O3

-2 @022 =2

UNIBUS

9 8 7 6 6 4 3 2

SzZ-o5w G5 § on-o

' SEPARATE
BOX

 CABLE
70

Figure 1-5 Backplane Card Location Front View

1-17

HEX
BACKPLANE CARD LOCATION

FRONT VIEW

[vkaz10

System Introduction

__ EXTENDED HEX HEX - 'UNIBUS ,
12345667 891012345¢6789|j{|t 234568678219
A A
A
B]
c c
B
v} D
E E
c
F F
o o 1. .2 J} n' g " J
=04 PINS TWO STRAIGHT ACROSS 3¢ o4 SEPARATE DD-11DK
Ge o8 BACKPLANE
o o Ale *A2
=36 PINS TWO STRAIGHT ACROSS, DEC ALPHABET Ble B2
Cle o C2
4 Ale *A2 5
=36 PINS TWO OFFSET ACROSS, DEC ALPHABET Btle B2
Cile «C2 -
BACKPLANE
REAR VIEW

TK-3211

Figure 1-6 Backplane Rear View

1-18

System Introduction

2,

-

-
2
o
4
® - o o L] ® ®] ® ﬂ
1 o o e e ¢ e o © o =
COVOUWUIT Y ISTZaoriD> Z
e o e o o o ¢ o o &
® o o o o o o o o g
o, »
z
'35
- Q
. ¥
0000000 0000000000 x
COVOWUTA¥aZZaCord> -3
© 000 000 000 0060 F9 0 o &
a %
- X W
. W T
X p
]
Q
'Z
E
1%
. w
com? 8383
©0 0000000000 0000060000000 0606000000 00
00 00000 0000000000 000000000000 000 00
mowe~o a8

te

PIN BREAKOUT

COMET BACKPLANE PIN BREAKOUTS

TK3213

11/750 Backplane Pin Breakouts

Figure 1-7

1-19

System Introduction

Il 32~
147 147
fasel g2se]
369 389
= OPTION SLOT BUS GRANTS
S 0
* - TOSELECT REMOVE JUMPER
— 20 8G4 ADOX 67
ConTnoL 865 A00X &0
ML ———————r 8G S AQOX 73
- - 8G7 A0OX_T7
— | X=SLOT 7.89
U A
=]|
. 4‘ - %)
I
T 70
BUS GRANT, a o o : TEST POINTS
MPE RS
2 ROM 10 | MATCHPULSE | cooS8l
. ROM 20 | SACLOCK 00873
%] ROM 23 | Sast/sp C00678
oM 17 | MCLOCK 800208
oPM 17 | BASE CLOCK 00273
4+ 5 8 71 8 8 w0 pew 17 | BcLOCK 800209
MIC 08 | MEMSTALL 800210
i DPM_T7 | PHASEY 400590
5]
20
o =]
== =]
E
MARDWARE REV LEVEL
=La] SYS 10
RoMassent M momenesent [] ey
S 5] 2 200455
1 B0043S
——3] 2 80044
3 00453
ﬂ 4 BOO450
SR 5 B0O449
IGNA] BOO44S
SIGNAL _::-3 4 00448
4 85 8 7 8 8 W
ADM ASSENT —| BAUO AA
5] CONSOLE TE
c ADM PRESENT . CoN 3R
E——=""0] AATE A [c 0
CONSOLE . 00 []) [
%] | &0 o ' ' 0
1200 T 1 1 o
= 200 [° ° '
: e gc 3500 1)] 1
4800 1 1] 1
‘I3 no o T 50' 9600 1] 1 Al
19200 [1 v 1
‘ﬂ 38400 1 -1 1 1
m MN# | CO0Bes | COOS4s | CoD643 | covssa
J JUMPER Co0844 | CO0ES' 00652
ADMMODEM | YO GNO Coosea '
F—e0]

s ey S 147
OPTION SLOTS d2sse AcL m e} 1] vov
360

naon2

Figure 1-8 Jumper and Cable Connections

cPu
CLUSTER

-

170
SUBSYSTEMS

System Introduction

MICRO
VERIFY
|
- CONSOLE FUNCTIONS
{ROM FIRMWARE)
MICRO CPU ’KERNEL
DIAGNOSTICS HARDCORE *
INSTRUCTION TEST
.?
DIAGNOSTIC
SUPERVISOR s
1/0 INTERCONN. MEMORY 1/0 CHANNEL CPU CLUSTER DIAGNOSTIC
{DR & MA) DIAGNOSTIC (MBA & UBA) EXERCISER SUPERVISOR
DIAGNOSTICS
MASS STORAGE DRIVE, DEVICE, PER- COMM ADAPTER MASS STORAGE SUB UNIT RECORD/COM SYSTEM EXERCISER
CTRLR/BASIC FORMANCE ANALY./ INTERFACE SYSTEM FUNCTION & ADAPTER FUNCT. &
DRIVE TESTS FUNCT. TIMERS DIAGNOSTICS RELIA/ACCPT. TST DIAGNOSTICS BUS INTERACTION
VAX/COMET DIAGNOSTIC
SYSTEM OVERVIEW

Figure 1-9 VAX Diagnostic Overview

1-21

TX-3209

System Introduction

The next section describes the diagnostics available on the
11/75@6 their different 1levels of usage. The names and
locations of all diagnostics be found on micro fiche under
ZZ-EVNDX. There is an other tape [TU58] lable to the field
"that is not concerned with diagnostics; that being CONSOLE
tape which has the BOOT 58 program and BOOT command files
locates it. That tape 1is not 1listed here and will be
discussed later.

This is the beginning of diagnostic overview.

Diagnostics are broken down into five levels, four of which
are numbered 1-4. The remaining level is microdiagnostics.

LEVEL 1. These are diagnostics that run under the VMS
operating system and not using the diagnostic
supervisor. EX. UETP (not a diagnostic, an
excersiser).

LEVEL 2. These are diagnostics that run under the diagnostic
supervisor while the VMS system is still operating.
EX. Reliability and acceptance tests, line printer.

LEVEL 3. These are diagnostics that run under the diagnostic
supervisor while the VMS system is not running. The
diagnostic supervisor must be running stand alone.
EX. UBI DIAGNOSTIC.

LEVEL 4. These are diagnostics that are run stand alone
without the diagnostic supervisor or VMS operating.
EX. Hardcore instruction.

MICROs These are diagnostics that are loaded from the TUSS8
and run from the RDM RAM memory. There will be a
total of four;

. DPM micro [data path]

MIC micro [memory interconnect]

CMC micro [memory controller]

. FPA micro [floating point]

W -

Of these four only the first two are available as
of August 1, 1984.

There is another diagnostic that is run every time
the machine is powered up or the Initialize button

is pushed. This is called micro verify. This is
resident in the machine inside the microcoded CSC

1-22

System Introduction

module and checks the basic sanity of the data path
and mic module before any other operations are
performed. This is discussed in its entirety in a
later section.

There are some diagnostics that may be run under
level 2 or 3 and should not be thought of as Jjust
level 2 or 3. These will be discussed as we reach
them.

The following is a 1list of the diagnostics
that are available and which TUS58 tape they
are distributed on.

The following four tapes are run at the micro level to check
the CPU. They are not to be run in their numerical order for

troubleshooting purposes. Order for troubleshooting will be
discussed later.

TUS8 TAPE #l: VAX 11/750 MICRO DATA PATH [DPM]
ECKAA.EXE MICRODIAGNOSTIC MONITOR [MM FROM NOW ON]
ECKAB.EXE MICRODIAGNOSTIC DPM

TUS8 TAPE #2: VAX 11/750 MICRO MEMORY INTERCONNECT [MIC]
ECKAA.EXE MM
ECKAC.EXE MICRODIAGNOSTIC MIC

TU58 TAPE #3: VAX 11/750 MICRO COMET MEMORY CONTROLLER [CMC]
ECKAA.EXE MM
ECKAD.EXE MICRODIAGNOSTIC CMC

TUS8 TAPE #4: VAX 11/750 MICRO FLOATING POINT [FPA]
ECKAA.EXE MM
ECKAE.EXE MICRODIAGNOSTIC FPA
[TAPE 3 AND 4 NOT RELEASED AS OF AUG. 1ST 1984]

The following four tapes are used to test the CPU levels other
than MICRO.

TU58 TAPE #5: VAX 11/750 CACHE/TB;MEMORY;CLUSTER EXCERSISOR
ECKAL.EXE CACHE/TB [BOOTABLE;LEVEL 4]
ECKAM.EXE MEMORY DIAGNOSTIC [LEVEL 3]
ECKAX.EXE CLUSTER EXCERSISOR [LEVEL 3]

TUS58 TAPE #6: VAX 11/750 DW 758 [UBI];DIAGNOSTIC SUPERVISOR
ESSAA.EXE DIAGNOSTIC SUPERVISOR [ONLY TAPE TO CONTAIN
THIS BOOTABLE]
ECCBA.EXE UBI DIAGNOSTIC [LEVEL 3]

TU58 TAPE #7: VAX 11/75¢0 HARDCORE INSTRUCTION

System Introduction

EVKAA.EXE HARDCORE INSTRUCTION [BOOTABLE;LEVEL 4]

TU58 TAPE #8: VAX 11 INSTRUCTION TESTS

EVKAB.EXE
EVKAC.EXE
EVKAD.EXE
EVKAE.EXE

VAX ARCHITECTURAL INST.
VAX FLOATING POINT INST.

[LEVEL 2 AND 3]
[LEVEL 3]

VAX COMPATIBILITY MODE INST.
VAX PRIVILEGED ARCHITECTURAL INST. [LEVEL 3]

[LEVEL 3]

Remaining tapes that follow are to be used to test options
available on the 11/750. These will be [as the previous
tapes #7 and 8] the same diagnostics that are run on the
11/788. To determine which level the diagnostics will be run
at you will need to read the associated manual.

TU58 TAPE #9:
EVQDR
EVQODM
EVQDL
EVABA
EVRAA
EVRACX

TUS58 TAPE #10:
EVDMA
EVDXA
EVDAA

TU58 TAPE #11:
EVREA
EVREB

TU58 TAPE #12:
EVREC

EVRED
EVREE

TUS58 TAPE #13:
EVREF
EVREG

TUS58 TAPE #14:
EVRDA
EVRDB

TU58 TAPE #15:

EVQTS
EVMAA
EVMAD

VAX CR/DISK USER MODE

VAX LOADABLE DRIVER FOR RMOX/RM 80
VAX LOADABLE DRIVER FOR RK611-RK#6/87
VAX LOADABLE DRIVER FOR RL11-RLO1/82
VAX CR11l CR DIAGNOSTIC
VAX RP/RK/RM/RX/TUS58 RELIABILITY

VAX DISK FORMATTER

KMC11/DMC11/DZ11

VAX M8203 REPAIR LEVEL
VAX COMM IOP REPAIR LEVEL
VAX DZ11l 8 LINE ASYNC MUX

RK611 DIAGNOSTICS #1
VAX RK611 DIAGNOSTIC
VAX RK611 DIAGNOSTIC

RK611 DIAGNOSTICS #2
VAX RK611 DIAGNOSTIC
VAX RK611 DIAGNOSTIC
VAX RK611 DIAGNOSTIC

RK611 DIAGNOSTICS #3

PART
PART

PART
PART
PART

VAX RKO6/97 DRIVE FUNCTION TEST PART 1
VAX RKO6/07 DRIVE FUNCTION TEST PART 2

RM@3 /RM@5

VAX RM@3/RM@5/RM80 DISKLESS
VAX RM@3/RM@S5 FUNCTIONAL TEST

TS11l DIAGNOSTICS

VAX LOADABLE DRIVER FOR TS11/TS@04

VAX TM@3/TE16/TU45

VAX TS11 SUBSYSTEM REPAIR

System Introduction

TUS58 TAPE #16: RL@2 SUBSYSTEM FUNCTIONAL DIAGNOSTICS

EVRFA VAX RLO2 SUBSYSTEM FUNCTIONAL DIAGNOSTICS
EVRGA VAX RM8@ FORMATTER
EVRGB VAX RM8J FUNCTIONAL DIAGNOSTICS

As of August 1, 1980 the above were the only diagnostics
proven compatible with both the 11/780 and 11/756. The
following are the remaining diagnostics that are planned.

POSSIBLE ONE TAPE:

ESDRB VAX DR11W DIAGNOSTIC

ESDRE VAX DR11W REPAIR LEVEL
POSSIBLE 2ND TAPE:

ESDBA VAX M8201/2 REPAIR LEVEL DIAGNOSTIC

ESDBB VAX DMCll EXCERSISOR PROGRAM
POSSIBLE 3RD TAPE:

ESDUP VAX DUP11 REPAIR LEVEL PART 1

ESDUQ VAX DUPl1l REPAIR LEVEL PART 2

Please note that all diagnostic (not including the micro
diag. or EVKAA and ECKAL) that relate to your system will be
sent with the system pack as part of the system on whatever
medium your VMS is incorporated in.

VAX 11-/750 LEVEL II

Console Command Language
and Bootstrap Process

Student Guide

Course produced by Educational Services Department
of
Digital Equipment Corporation

II.

Console Command Language and Bootstrap Process

OUTLINE

Console Command Language

l.

2'
3.
4.

Control Characters

Console Command Symbols
Console Commands

Errors and Illegal Characters

Bootstrap Process

1.
2.
3.
4.
5.
6.
7.

Definition

Different Boot Methods
How Boot is Accomplished
Boot 58

Automatic Boot

System Shutdown

Copy Console Device Files

Console Command Language and Bootstrap Process

INTRODUCTION

This 1lesson introduces the student to the VAX console
commands needed to communicate with the VAX-11/758. After
becoming familiar with the commands and their functions in
the classroom, a lab session will be provided to utilize
each command. The 1lab session will allow the student to
initialize the system and perform deposits and examinations
to various registers and memory locations.

This lesson also covers the VAX-11/750 bootstrap process. By
using flowcharts, the process will be covered from device
selection to error indications. Once the process has been
covered by lecture, a 1lab session will be wutilized to
reinforce the concepts and to demonstrate error conditions.

Console Command Language and Bootstrap Process

OBJECTIVES
Using console commands, initialize the system.
Using console commands, deposit data to a register.
Using console commands, examine data in a rggister.

Boot the system.

Given the console printout indicating a boot failure,
clear the fault by locating the problem.

SAMPLE TEST ITEM

This console printout occurred while booting the system with
FPS1 set to boot.

% 3

XXXXXXXX 13

>>>

What is indicated to the operator?

a. A 64K bytes of good memory not found
b. A nonexistent boot ROM

c. A HALT was executed

d. Wrong Rev. level

RESOURCES

1. VAX 11/750 RDM Maintenance Card

2.

VAX 11/756 Diagnostic System Overview Manual

-2

THE BOOT COMMAND

>>>BI/X) [/40>] (<SE"ACE><d‘dcu>] <CR>

THE CONSOLE PROMPT

THE BOOT COMMAND

INHIBIT MICRO VERIFY

(DEFAULT IS, PERFORM MICRO VERIFY)
SELECT A BOOT CONTROL

FLAG (DEFAULT IS, FLAGO; (CONVENTIONAL BOOT))—

INSERT A SPACE HERE

dd
MNEMONIC DEVICE
DL RLA2
DM RKB&/7
DB RPB4/5/6
DR RM@3
DD TUS8

IF MANUAL BOOT SELECT IS TO BE USED

REPRESENTS THE BOOT
DEVICE. IF NOT USED, DEFAULT TO THE BOOT DEVICE
SWITCH ON THE FRONT PANEL. THIS MUST BE

USED WHEN SELECTING A BOOT CONTROL FLAG OTHER-
WISE THE FLAG IS IGNORED.

dd IS A TWO LETTER DEVICE MNEMONIC (SEE CHART)
¢ IS5 A I/GC CHANNEL ADAPTOR. A,B,C, OR D.
u IS THE DEVICE (dd) DRIVE NUMBER.

ENTRY COMPLETED BY

CARRIAGE RETURN

Console Command Language and Bootstrap Process

BOOT CONTROL

FLAG FUNCTION /<N>
@ CONVERSATIONAL BOOT. 1
1 DEBUG 2
2 INITIAL BREAKPOINT 4
3 NOT USED WITH VAX 11/750 8
4 DIAGNOSTIC BOOT 19
5 BOOTSTRAP BREAKPOINT 20
6 IMAGE HEADER 49
7 MEMORY TEST INHIBIT 80
8 FILE NAME 100
9 HALT BEFORE TRANSFER 200

BOOT CONTROL FLAG FUNCTIONS

THE DEPOSIT COMMAND

>>>D[<qualifier-list>] [<space><address>]<{space><data><cr>
CONSOLE PROMPT

DEPOSIT COMMAND

SIZE & SPACE

/B /v
/W /P
/L /I

/G

TO SELECT A
DEPOSIT ADDRESS
OTHER THAN @

{nnnnnnnn> -- HEX ADDRESS
<*> -~ LAST LOCATION
<P> -- PSL
<+> -~ NEXT LOCATION

YOU MUST SELECT A
HEX VALUE (1-8 DIGITS)

OPERATION COMPLETED

THE BOOT/BOOTSTRAP AS DEFINED BY THE
DEC DICTIONARY - PG 28

boot (boots, booting, booted)* v. (See also bootstrap.) To bring a device
or system to a defined state where it can operate on its own.
EXAMPLE (S): The operator boots the system before starting operation.

boot (boots)* n. A protective housing, usually made from a resilient
material, used to protect connectors or other terminals from moisture.
EXAMPLE (S) : Pull the boot up over the plug to make the connection

waterproof.

bootstrap (bootstraps, bootstrapping, bootstrapped)* wv. (See also boot.)
To bring a device or system to a defined state where it can operate on

its own. EXAMPLE(S): You must bootstrap the system before logging on.

bootstrap (bootstraps)* n. A technique or device designed to bring a system
or device into a desired state by means of its own action, e.g., a
machine routine whose first few instructions are sufficient to bring
the rest of itself into the computer from an input device. EXAMPLE(S):

Using the bootstrap saves time.

CONSOLE MICROCODE EXAMINES THE BOOT DEVICE
AND POWER ON ACTION SWITCHES ON THE
FRONT PANEL;

When you initially apply power by turning the front panel keyswitch

When recovering from a power failure

When the operator pushes the front panel initialize switch.

After a software "CRASH"

Console Command Language and Bootstrap Process

BOOTING WITH FRONT PANEL SWITCHES

FRONT PANEL POWER INITIALIZE SOFTWARE
KEYSWITCH FAILURE PUSH BUTTON CRASH
POWER ON RECOVERY

|

: POWER POWER
COME UP YES ON ACTION
HALTED ON ACTION
SWITCH =
BOOT SYSTEM
VIA DEVICE A BATTERY
BACKUP 0K
NG
YES
BOOT SYSTEM BOOT DEVICE :Z;’IE':;I
VIA DEVICE B SWITCH = k
]
GOOD RESTART
BOOT SYSTEM BGOT DEVICE
VIA DEVICE C SWITCH =
CONTINUE
EXECUTION
BOCT SYSTEM
VIA DEVICE D Ik 4its

Figure 2-1

2-9

Flag

Hex
Value

19

Console Command Language and Bootstrap Process

SOFTWARE BOOT CONTROL FLAGS

(1 of 2)

Function

Conversational boot. At various points
in the system boot procedure, parameters
and other inputs will be solicited from
the console.

Debug. This flag is passed through to
VMS and causes the code for the executive
debugger to be included in the running
system.

Initial breakpoint. 1If this flag is set,
and the executive debugger code is
included (flag bit 1), then a breakpoint
will occur immediately after the exec
enables mapping.

Not used on the VAX-11/758.

Diagnostic boot. This flag causes a boot
by £file name for the diagnostic
supervisor.

2-10

Flag

Hex
Value

20

49

89

100

200

Console Command Language and Bootstrap Process

SOFTWARE BOOT.CONTROL FLAGS

(2 of 2)

Function

Bootstrap breakpoint. This flag causes
the bootstrap to stop at a breakpoint
after performing necessary
initialization.

Image Header. If this flag is set, the
transfer address from the image header of
the boot file will be used. Otherwise
control will transfer to the first byte
of the boot file.

Memory test inhibit. This flag inhibits
the testing of memory during
bootstrapping.

File name. Causes the bootstrap to
solicit the name of the boot file.

Halt before transfer. Causes a HALT
instruction to be executed prior to the
transfer to the secondary boot file.
This option 1is wuseful for debugging
purposes.

N
|

11

Console Command Language and Bootstrap Process

BOOT DEVICE CODES (ddcu)

DEVICE CODE (dd)* DEVICE TYPE
DL RLO2
DM RK@6/87
DB RPO4/05/06
DR RM@3/RP@7
DD TUS58

Identifies the device that 1is storing the boot
block.

CHANNELS ADAPTER (C)

A

B\ To which port is the Device (dd) channeled to.
C
D

DRIVE NUMBER (u)

] }on which drive of our device (dd) is
1 f our boot block located.

€1-¢

CONSOLE COMMAND ERROR CODES

If an illegal console command is attempted or command is aborted because of
a microtrap or some other condition a two digit error code is typed out and
the console waits for new input. For example...

>>>E P<CR>
>>>E<LCR>

2?11
>>>

Error Codes

{Examine PSL

!Implies Examine Next Location, this is illegal.
tQuestion Mark and error code is typed by console
!At this point ready for new command

20= Deposit or Examine of Memory Failed (Access Violation,
Translation not valid, Bus Error, TB Parity Error, or Control
Store Parity E

11= Illegal access of an ipr

3p= Apt Loading Checksum error

33= Attempt to Boot from unknown Device type (DM,DL,DO)

34= Boot Device Controller not "A","B","C", OR "D"

Console Command Language and Bootstrap Process

ROM STARTING ADDRESSES

DEVICE ROM STARTING ADDRESS
A FAQ2
B FB@2
c FCo2
D FD@2

S1-¢

‘ START ’
.

S |

CLEAN (INt L)

COLDSTARI FLAG

!

CONSOLE SUBSYSTEM ACTION ON BOOT

FIND GOOD
64K OF
MEMORY

PLREORM
MICRO VERIFY

TYPE CONSOLE
HALT ERROR

CODE = 13, PC
AND PROMPT
-STOP

|

TYPE +
AT CUNSOLE

TYPE CONSOLL
HALT ERROR
CODE = 16, PC

.~STOoP

INITIALIZE
[¥1:1]

TYPE SECOND
%
AT CONSOL E

i

-

LOAD PSL

TYie]
MICRO VERIFY WRITE
€RAOR CODE;FF :“‘;‘P
PC & PROMPT.
-STOP -
LOAD ALL
800T AOMS
INTO MEMORY

CHECK COLD
START FLAG

NO

YES

CHECK FOR
NONEXISTAN
ROM

TYPE CONSOLE
HALT ERROR
CODE = 14, ¢C
AND PROMPT
~-STOP-

SET (DISABLE)
COLD START
FLAG

)
) |

LOAD INPUT
ARGUMENTS
FOR ROM CODE
AND viB

i

SELECT HOM
CODE POINTED
10 8Y 80OT

DEVICE SWITCH

IRDY OF

ROM ROUTINE
LOAD 800OT
B81.O0CK

i» a2

ssed0i1d deijsjoog pue sbenbue] puewwo) a1osuo)

Console Command Language and Bootstrap Process

INPUT ARGUMENTS

The general registers receive the input arguments from the
console subsystem.

R1 -

R2 -

R3 -

R5 -

SP -

system bus address of a Massbus adapter (MBA@ unless
otherwise specified in the Boot command).

physical address of the Unibus I/0 page associated
with a Unibus adapter (UBI® unless otherwlse
specified in the Boot command).

device unit number (8 unless otherwise specified in
the Boot command).

software boot <control flags (@ unless otherwise
specified in the Boot command).

<base address + “X2080> of the 64K bytes of good
memory.

C(SP)~ transfer address of the boot block code.

FUNCTIONS AVAILABLE UNDER BOOT 58

Load and start level 4 diagnostic programs.
Bootstrap from the Massbus adapter
Bootstrap from a disk whose boot block is bad.

Bootstrap from a disk whose error rate prohibits ROM
and boot block loading of a primary bootstrap.

Boot the diagnostic supervisor instead of VMS.

Deposit and examine data in physical memory, general
registers, and internal processor registers.

Load and start a program from a magtape drive on a
Massbus.

Store and invoke indirect command files on the TUSS8
cartridge to perform any of the above functions
automatically as well as interactively.

Console Command Language and Bootstrap Process

POWER UP AND BOOT ERROR REPORTS

XXXXXXXX 13 This indicates that a good 64KB section of

>>> memory was not found and return to console
mode

XXXXxxXx 14 This indicates a failure or nonexistance of

>>> the boot ROM

XXXXXXXX 06 If a halt instruction 1is executed after

typing a <console boot command, this
indicates a failure of the read of logical
block @ from the selected boot device, the
PC should be equal to the base address of
the first good 64KB of memory plus FX16 for
TUS8 or FX20 for RK@A6. This failure occurs
in the Boot ROM routine.

Console Command Language and Bootstrap Process

VMB PRIMARY BOOT FAILURES

BOOT is the program name for VMB.EXE
The "F" indicates a fatal error and the type of error is
reported.

¥BOOT-F-Unknown processor This indicates that CPU is
not a Comet or 11/788,
check SID register for
proper Jjumpering in the
CPU type field on the
Backplane.

$BOOT-F-Unexpected Exception This indicates that one of
the following exceptions
occurred.
1. Access Violation
2. Breakpoint Opcode
3. Reserved Operand
4, TBit Trap
5. Page Fault (TNV)

$BOOT-F-Unexpected Machine Check This 1indicates some sort
of machine Check occurred.
Check all adaptors using
console examine and
deposit commands.
Probably a timeout.

$BOOT-F-Nonexistant Drive Self explanatory, Check
DEFBOO.CMD on 11/780 and
insure system disk 1is
drive being booted.

$BOOT-F-Unable to locate BOOT VMB can't find
file [SYSEXE]SYSBOOT.EXE or 1if
bit 4 in R5 is set, VMB
can't find

[SYSMAINT]DIAGBOOT.EXE

$BOOT-F-Bootfile not contiguous Indicates that
[SYSEXE]SYSBOOT.EXE or
[SYSMAINT]DIAGBOOT.EXE 1s
not contiguous on system
disk. Recopy or rebuild

$BOOT-F-I/0 error reading boot Indicates problem reading

file boot file from disk by
$QI0 service (VMS System
Service).

VAX-11/75¢ LEVEL II

System Overview

Student Guide

Course produced by Educational Services Department
of
Digital Equipment Corporation

SYSTEM OVERVIEW

INTRODUCTION

This lesson is developed to give you a basic understanding
of location of Gate Arrays in 11/750 prints and overall
understanding of how each board (DPM, MIC, UBI, and CCS) is
laid out. All of the data given out in this section will be
reiterated when each board is gone over in detail. You
should start to form concepts of how the machine works
functionally and how the prints are set up. There will be
very little in the Student Guide so listen, take notes in.
your prints or Functional Block.

SYSTEM OVERVIEW

OBJECTIVES

The student will be able to locate all gate arrays in the

prints relating to the four basic LPU boards, DFM, MIC, UBI
and CCS.

The student will be able to take a MOVL LONG instruction and
follow the path of the data from beginning to end.

SAMPLE TEST ITEM

The access control violation chip is located on which board?

1. DPM
2. MIC
3. UBI
4. CCS

RESOURCES

11/758 Print Set
11/758 Functional Block

SYSTEM OVERVIEW

A, The CPU Overview

1. Board common to all CPUs four (4) each

a.

C.

Unibus Interface (UBI Module - Slot 4 of extended
hex section)

1) TU58 Data in and out

2) Console Data in and out

3) Handles interrupts

4) Interfaces Unibus data and CPU data with each

other
Data Path Module (DPM - Slot 2 of extended hex
section)
1) Contains the arithmetic logic
2) Contains the rotator logic
3) Houses the Scratch Pad logic (Registers)
4) Also houses the Microsequencer logic
Memory Interconnect (MIC Module - Slot 3 of the

extended hex section)

1) Contains the address logic (PC) ’

2) Houses the Translation Buffer which translates
virtual addresses to physical addresses

3) Cache

4) Contains the Data Routing and alignment which
handles the routing of data in and out of or to
and from memory and the data path.

d. CPU Control Store (CCS Module - Slot 5 of extended

hex section)

1) Contains the Control .Store ROMs for the
Microcode

2) Houses the optional snap on WCS Module

B. Component Analysis

l.

CPU Control Store (CCS)

a.

6K x 80 Bits, no gate arrays

Data Path (DDPM) - 22 gate arrays

a. Gate Array Chips

1)

2)

3)

4)

5)

6)

7)

8)

SYSTEM OVERVIEW

The microsequencer (MSQ) - Sequences the CPU
microcode that controls most operations (NOT
SHOWN AS ONE CHIP ON BLOCK SHOW IN PRINTS)

Practically Half the Buts (PHB) - Contains some
of the bits of the PSL, the status flags and
the step counter. It also contains the logic to
generate half of the but micro orders.

Service Arbitration and Clock (SAC) - Deals
with the IRD counter, service arbitration, and
the system clock.

Condition Code Chip (CCC) - Deals with
condition codes. It determines the condition
codes for both VAX and compatability mode
instructions, stores the PSL bits
<FY,1v,DV,N,Z2,V,C>, reads the bits out at Ucode
request.

Instruction Register Decode (IRD) - Handles the
IR Decode. It receives an opcode and operand
specifier from the execution buffer (XB),
decodes it and creates the signals needed by
the microsequencer to process the appropriate
routine.

Super Rotator Control (SRK) - It controls the
functions of the Super Rotator (SR). The info
it needs to control the SR comes from the 6 bit
ROT field of the microcode. (NOT ON BLOCK IN
TOTAL, PRINTS.)

a. SPK chip contains the S and P latches and
their associated mux in and out. Controls
the super rotator via the ROT field of the
microword and certain Wbus inputs.

Super Rotator Multiplex (SRM) - 4 ea - Perform
64 different operations via control of the SRK
chip.

Scratch Pad Addressing (SPA) - Controls the
operating of the 64 scratch pad registers, and
it provides a mechanism to undo the auto
decrementing and auto incrementing of the
general purpose registers.

3.

Memory

a.

9)

19)

11)

12)

1)

2)

3)

4)

SYSTEM OVERVIEW

Timed Operation Control (TOK) - Implements the
architecturally defined programmable interval
time clock.

Carry Look Ahead (CLA) - An array of
combinational logic used to propagate and
generate carries for up to 8 ALU slices. (NOT
ON BLOCK, SHOW IN PRINTS.)

Arithmetic and Logic Control (ALK) -. (NOT ON
BLOCK, SHOW IN PRINTS.)

a) Reencodes the ALP control field of the
microword for special functions.

b) Controls the carry input and shift inputs
for the ALP chips.

¢) Decodes the scratch pad write enable.
d) Decodes miscellanecus signals.

Arithmetic Logic Processors (ALP) - 8 ea -
Each chip is 4 bits wide. They form the
circuit that performs the majority of the data
manipulating when executing macro
instructions.

Interconnect Module (MIC) 18 Gate Arrays

Memory Data Registers (MDRs) - 8 ea - Major
portion of the data routing and alignment
circuit. They receive and hold data 1in/out
to/from the Mbus.

Prefetch Control (PRK) chip - Prefetch 8 bytes
of instruction data starting with the PC
address and replace used bytes as execution
progresses.

Address (ADD) chips - Contain the VA, PC, PC
backup and VA save circuits.

Address Control (ADK) chip - Is the control
for the address logic and also works in
conjunction with the prefetch control and
memory data regs.

4.

Unibus

5)

6)

7)

8)

SYSTEM OVERVIEW

Access Violation (ACV) <chip - Besides
detecting access violations it monitors and
detects.

a. Control store parity errors

b. FPA reserved operands

c. Unaligned data, including unibus data.
d. Crossing of page boundaries.

It then generates the . appropriate Utrap
signals to the Microtrap chip (UTR).

Microtrap (UTR) chip - Moniters machine
conditions that can cause a microtrap.

The Cache control (CAK) chip - Controls the
enabling and disabling of cache, controls the
transfer of data to/from the MDR chips. Works
in conjunction with the CMK chip to invalidate
cache on CMI writes.

CPU Memory Interconnect Control (CMK) -
Monitors and transmits control signals to/from
the CMI bus. (Busy and HOLD.) Stalls the
microcode for certain conditions.

Interface Module (UBI) 8 Gate Arrays

The TUS58 Interface consists of a Gate Array
Chip (CON) and some associated 1logic that
allows communication between the CPU.

The console Interface consists of a Gate Array
chip (CON) and some associated 1logic that
enables communication between the CPU and its
console.

The interrupts circuit consists of a Gate
Array chip (INT) and some associated 1logic
that enable the handling of interrupts.

The Unibus interface consists of five (5) Gate
Array chips, a ROM and Unibus Map.

a. The Unibus Data Path (UDP) chips make up
the data path for the unibus interface,
four (4) ea.

1) Areas that represent UDP Chips.

b.

SYSTEM OVERVIEW

a. 3 buffered data paths for data and
addresses

b. 1 direct data path for data and
addresses

c. Byte swapping and rotating circuits
to align data

The Unibus Data Path Control - Controls UDC
chips and Microcode (UCN) chip. .

Unibus map for translating Unibus addresses
to CMI addresses.

ROM for controlling UBI functions
independent of CPU. (Note circles
controlling UDP Chips are fields from ROM.)

4-9

SYSTEM OVERVIEW

_ gn——— r—— re—— Jrc——
SAM SAM SRM SRM
L g e c—
ALP ALP
ALP ALP
ALP ALP
" —— I————J‘ -
ALP ALP
" Cmsm— T Cose—
ALK CLA TOK
— Y " ;
1RD SRK SPA
Rl L el " —n——
SAC ccc
e e
Jrmm——) e TN
mMsa PHB
THE DATA PATH
MODULE (DPM)
GATE ARRAY CHIP
LOCATIONS

TRK4711

Figure 4-1 DPM Gate Array Locations

SYSTEM OVERVIEW

{ MDR MDR ADD
MDR MDR ADD
MDR MDR ADD
MDR MDR ADD
Acv PRK .
THE MEMORY
utR ADK INTERCONNECT
{MIC) MODULE
GATE ARRAY CHIP
LOCATIONS
CMK CAK

TK-4712

Figure 4-2 MIC Gate Array Locations

SYSTEM OVERVIEW

THE UBI MODULE
GATE ARRAY CHIP,
LOCATIONS

.
tosse csrs s sessninsbel,
.

CON CONSOL|

eressedorrtecrercrsoecsr

- e
VPP TCD 0 S P bbb etbad
L] - L 2 -
L CON TUS8
.

P
bt L b b PSS PO Pr O

CEOPP 0050000000000 pbde

INT » o »®

cosaessolossorcaserseses
r
UDP » ¢
* * *
RIS IR St dd

POVC 0PI IEItt et tPeCeess
uop

PEPEPE S 00 4000 504 54 St bt d

sevestersrarisrsetovesss
e

uoP Vo

*
’
DO009 4080404053 0000000044

rnoumo»wooo:qyrn
‘
*
UCN .

mw,u‘omu:‘o»u

Figure 4-3

|
z

TK4718

UBI Gate Array Locations

SYSTEM OVERVIEW

il

- T T T 17
|
cesfwes - T T W T T 1|
T 0T T]
T T 0C T T 1§
LT _C_T T 7§
T 0C_T T 7§
| I | I N
|
T T 0 T T 1}
I— 1T T W T T 1§
LT _IC_T T 14
T T W T T 1|
I— T T C_ T T 7|
— T 0C T T 1§
1 C T T 7|
T T T T 1|
T T IC_ 1T T]
T I T T]|
- T T T T
B D | JU[5 1 5 L zﬂr s | 3
s = =ics =
| =3¢ eD{ r S —
]| Y s S o e S)
8 <=
Dy;[]l_sl } R T3
Figure 4-4 CCS Module
4-13

TK4710

SYSTEM OVERVIEW

THE CPU MEMORY
CONTROLLER (CMC)
GATE ARRAY CHIP
LOCATIONS

AU HH

TKA4717

3
MAP
MoL MDL
> 3
MEC MoL MDL
MEC
Figure 4-5 Memory Controller

VAX-11/750 LEVEL II

Programming

Student Guide

Course produced by Educational Services Department
of
Digital Equipment Corporation

Programming

OUTLINE

PROGRAMMING

A.

VAX Instruction Set

1.
2.
3.
4.

Operand and Instruction Formats

VAX Addressing Modes

VAX Integer and Logical Instructions
VAX Branching Instructions

Laboratory Exercise 3

VAX
1.
2.

Write a routine to convert packed hex data to

.an ASCII string wutilizing VAX 11 Programming

Tools

Instruction Set

VAX Floating-Point Instructions

VAX Subroutine and Procedure Calling
Instructions

Laboratory Exercise 4

VAX
l.

2.
3.

Modify routine written in previous lab to be
called as a procedure utilizing a CALLS or
CALLG instruction ’

Instruction Set

VAX Character String, Packed Decimal and Field
Instructions

VAX Privileged Instructions

Programming Examples

Laboratory Exercise 5

Write a standalone program for the Comet CPU to
communicate between the 1local console and a
terminal on the Unibus

Summary

Programming

OBJECTIVES

Utilizing the VAX-11/780 Programming card, Architecture

handbook and any class notes, write two (2) programs that
perform the following:

a) Packed hex to ASCII conversion
b) 2 way communication between CPU Console and a
terminal on the Unibus.

Load and execute the previously written programs and the
instructor will verify operation.

SAMPLE TEST ITEM

Using the Comet system, 1load and execute the two (2)
programs previously written in class. The instructor will
verify proper operation by witnessing program execution.

LAB EXERCISE

a) Utilizing the VAX program development tools, write a
packed hex to ASCII conversion routine in VAX-1l1
Macrocode.

b) Again, wutilizing the same VAX programming tools,
write a standalone program to communicate between
the c¢onsole terminal and a Unibus terminal and copy
it on to a TU58 tape cartridge for console loading.

RESOURCES

VAX-11/780 Architecture Handbook
VAX-11/780 Software Handbook
Terminals and Communications Handbook
Program Development Listing

BYTE

‘WORD

LONG
WORD

QUAD
WORD

Programming

DATA TYPES
e BYTE
o WORD
o LONGWORD
e QUADWORD
.] 76543210
. s
8
15 8 7 ' 0
'S
B
31 0
S
B
31 0
S
B
63 32
SB EQUALS SIGN BIT
TK-3240
Figure 5-1

Programming

DATA TYPES
e FLOATING
e DOUBLE FLOATING
FLOATING
31 16 15 14 7 6 0
FRACTION g EXPONENT | FRACTION
DOUBLE FLOATING
31 18 15 14. 7 6 0
FRACTION g EXPONENT FRACTION
FRACTION FRACTION
63 a8 47 2
TK-3241
Figure 5-2

ARRAY:: 31
4 83
+8 95
+c 127

EXTZV+#48,#8, ARRAY, RO

EXTV#64,#8, ARRAY, R1

CMPV#48,#, ARRAY, RO
BEQL 1%

FFC, #0, #8, ARRAY, R2

Programming

o | 1|1]2]2 0
4 |s|5|6]6 32
8lojo|AlaA
c|o|lpbo}|E|E
AFTER EXECUTION
olo]lo]lo}lo RO
FIF| FIF|F R1
N Z
ojolojol1 PSW
ojojolojo R2

FIELD INSTRUCTION EXECUTION EXAMPLES

Figure 5-3

TK-3238

Programming

REPRESENTATIONS OF + AND — 123 CHARACTER STRINGS
TRAILING NUMERIC

.ASCI1/123/ZONED FORMAT

.ASCI1/123/ZONED FORMAT

.ASCII/12C/OVERPUNCH FORMAT

33 32 31
+3 +2 +1 ADDRESS
73 32 31
BINARY REPRESENTATION 1]1}1]0 1
SIGN BIT —j
43 32 31
4C 32 31

.ASCII/12L/OVERPUNCH FORMAT

LEADING SEPARATE NUMERIC STRING

FORMATS
ASCI/+123/ 33 32 31 28
ASCI1/-123/ 33 32 31 2D
TK-3237
Figure 5-4

Programming

3210
PACKED - 12345 5 D 3 4 1 2
+2 +1 ADDRESS
SIGN NiBBLE —:

.PACKED 12345 5 | c| 3] a 1 2
SIGN '

'

.PACKED 0123456789 | 9 C 7 8 5 6 3 4 1 2 0 0

PACKED DECIMAL STRING FORMATS

TK-3239

Figure 5-5

5-7

9~-G @inb1g

SINGLE OPERAND

ASSEMBLER OPEhAND SPECIFIER OP CODE
CLRL RO D.1010000l11010100
\ ~ A, ~)
MODE, REG.
+1 ADDRESS !
TWO OPERAND .
SPECIFIER 2: SPECIFIER 1 OP CODE
MOVL RO, R1 01010001010100_00111010000
N - gl - -
] MODE. REG MODE REG
+2 +1 ADDRESS
THREE OPERAND

ADDL3 #1, RO, R1
SPECIFIER 3 SPECIFIER 2 SPECIFIER 1 OP CODE!I

01010_00101010000|00000001J11000001

\ ~ A ~ A ~ . ~ _AL ~

MODE REG MODE REG SHORT LITERAL
+3 +2 +1 ADDRESS

TWO OPERAND WITH IMMEDIATE MODE

MOVB# X80,(R2)
SPECIFIER 2 IMMEDIATE DATA SPECIFIER 1 OP CODE
011000101000000010001111)10010000

MODE REG MODE REG

+3 +2 +1 ADDRESS

INSTRUCTION FORMATS

TK-3243

Butuuweiboag

L-§ @anb1g

ADDL2 RO, R1

BEFORE . AFTER
- - .
4 |s]e]l 7] 8 RO 1 2)3]a}s 8
ola]l2]11]6s R1 1 2| 3]al]oe E
ADDL3 RO, R1, R2
4 |s|e]7]s RO 1 2] 3lals 8
o| a]2]1 6 R1 o]lolo]lol}] s 6
ololo]lol|o R2 1 12134 fio E

TWO AND THREE OPERAND INSTRUCTION
EXECUTION IN REGISTER MODE

TK-3242

butwwezboag

p1-S

g-c @2inb1g

ASSEMBLER SYNTAX
="\x100
SELF: BRB SELF

NEXT INSTRUCTION

DISPLACEMENT

OP CODE

600000O0OO0CO

t1111110

00010001

I 102 101 100
PROGRAM COUNTER POINTING
HERE WHEN DISPLACEMENT 1S EVALUATED
SIGN EXTENDED
DISPLACEMENT RERIEEERI IR R IR R I I I
(-2)
PLUS
:’]':](;fRAMCOUNTER oooojlooooloooolooooloooolooo1loooofloo1o
EQUALS
NEW PROGRAM
COUNTER 000O00O0O0COj0O0OO]OOOO|OOODOC|jOO0O01{00O0O0C]0DO0OTO
(100)

BRANCH OFFSET CALCULATION

TK-3225

butwweiboag

INPUT

OUTPUT

Programming

2

3]4}A|B

c

D

A+3 A+2 A+1

'

A

32

31

A

.34
44

3
43

42

41

Figure 5-9

5-11

A+4

TK-4458

Programming
START
ROUTINE
o GET NIBBLE
NO, NIBBLE=0-9 NIBBLE "\ YES, NIBBLE=A-F

> AHEX
V

?

R ADD 37
ADD 30 HEX
HEX TO

v * y
!

STORE ASCII
BYTE IN
CHARACTER
BUFFER

”ALL 8
NIBBLES

CONVERTED
?

EXIT FROM
ROUTINE

FLOW DIAGRAM FOR PACKED HEX
TO ASCIl CHARACTER CONVERSION
ROUTINE

TK-3231

Figure 5-10

5-12

€1-S

lwh -0l

CUR
MOD

PREV
MOD

IPL

T1-G @anb1yg

VAX FAMILY PSL

TK-3224

butuweaboig

PI-5

Z1-G @anbia

BRANCH ON

MICROTEST
IRD + ONE
{E.CONSOLE.INT 1E.UNIBUS.INT l
0038 0039 003A 0038 A 003C 0030 003E .
SOFTWARE TEMP 8+ 14 TEMP 8 « 1PL INTERVAL CRD CACHE WRITE BUS POWER FAIL
INTERRUPT T R REIGRA TIMER INTERRUPT PARITY ERROR i
REQUEST UNIBUS INTR INTERRUPT REQUEST ERROR - INTERRUPT
VE.CONSOLE.INT2 IE.UNIBUS.INT2

NUMBERS (N BOXES ARE HEX MICRO ADDRESSES
FORCED BY THE HARDWARE AND ARE CONSTANT

HARDWARE FLAGS UTILIZED IN
MICRO ROUTINES

FLAGO =0
=-1

FLAGY =0
=1

' FLAG2 =0

FLAG3 =0
=1

STACK

FLAG =0
=1

INDICATES INTERRUPT BEING SERVICED
INDICATES EXCEPTION BEING SERVICED

HANDLE ON INTERRUPT STACK
HANDLE ON KERNEL STACK

MORE PARAMETERS TO PUSH ON STACK
NO ADDITIONAL PARAMETERS

PC - 20N STACK, FLAG3 = 0 ON INTERRUPTS
PC ON STACK, FLAG3 = 1 DURING MICRO DETECTED TRAPS

INDICATES ADDRESS TRANSLATION ON KERNEL STACK VALID
KERNEL STACK NOT VALID

BRANCH ON MICROTEST
TARGETS

TK3234

d

putuweaboa

IE.UNIBUS.INT2
ISSUE
BUS GRANT
AND
SAVE IPL
T
Y
READ VECTOR
WRITTEN
REGISTER

WRITE
VECTOR ON
CcMI

TUB8 OR PASSIVE RELEASE FLOW
IE. TU58 }

LOAD TRAR
WITH RXCS
ADDRESS

v

READ
TUB8 RXCS

RXIE
AND DONE
SET

YES

Programming

NO

ACTUAL
INTERRUPT
FLOW !]
LOAD LOAD VA LOAD TRAR
ERRCOD WITH sCB8 WITH CCSR
+FO ADDRESS
SUEAR TUS8 INTERRUPT BR7
VECTOR 5 READ
WRITTEN COSR
REGISTER CLEAR
T TX INTR
NO ADDITIONAL)
PARAMETERS
GET SC38 VA GETS
'L SC88 + F4
ADD SCBB I - Yno
TO VECTOR |E. NO. UN{BUS BR GONE
IN MDR PLUS e PASSIVE
200 HEX BACKUP RELEASE
P
=0 c
|E.UNIBUS.INTS { .
JOIN GL.NOP.IRD1
INTERRUPT
SLOW NEXT/IE.
INTERRUPT IRD1

Figure 5-13

TK-4455

Programming

IE.CONSOL.INT2

LOAD CRAR
WITH RXCS

y

READ RXCS

VA GETS
. SCBB +F8

- RX
IE.AND.DONE
SET

YES

LOAD CRAR
WITH CCSR
ADDRESS

y

CLEAR
XMIT
INTR

'

VA GETS
SCBB +FC

=el;
IE.INTERRUPT

TK-4456

Figure 5-14

5-16

LT-9

G1-G @anb1g

GO TO KER
STACK NOT VALID

IE.INTERRUPT

READ
MACRO

VECTOR

KERNAL
STACK
VALID

SAVE CONTENT
OF MACRO
VECTOR IN TEMP 5

) =01 USE
=11 HALT SYSTEM =10 TRAP TO WCS =00 USE KERNEL STACK UNLESS IS = L * INTERRUPT STACK
! | £25 | !
ENTER ENTER SAVE SP SAVE SP
CONSOLE WCS IN IN
MODE AT 2001 TEMP9 TEMPO

TK-4469

putwweiboag

YLT-S

VG T-G 2anb1g

2 WAY

2 WAY

PSLIS=0 BRANCH PSLIS=1 PSL IS=1 BRANCH PSLIS=0
ON PSLIS
IE, 60
SET IS SET IS SET IS
BIT IN’ BIT IN
TEMPS IN TEMPB TEMPB
IE.KSTACK ! IE, ISTACK § I
SAVE KSP. SET PREV TEMP10 SET PREV
N MODE GETS MODE TO
TEMP 10 TO KERNEL sp " KERNEL
»
4 WAY
BRANCH ON
CUR MODE
=01 =10 =00 =11
Y { IE.SAVE.SP
ESP GETS, SSP GETS KSP GETS USP GETS
sP 1 SP sP sP
(TEMP) (TEMP9) (TEMPY) (TEMP9)
IE.70 IE.75 1 IE.80 | ' [:]
SET PREV SET PREV SET PREV IS ON . s
MODE TO MODE TO MODE TO KSTACK "l
EXEC SUPV KERNEL :
l L ‘ »| KSTACK
SP GETS
KSP

TK-4460

Pbutwweiboag

|E.PUSH.PSL.PC

YES

Programming

)

LOAD STEPR
'COUNTER

Yy

LOAD S
LATCH = 18
ATEMP « RNUM

CLR Rn

CLRPC
<31:16>

VA« (SP -4}
£ SET STACK FLAG
PSL < TMP 8
<15:0> 0 1
TEMP 4 « PSL
} INTERRUPTS OFF
WRITE TMP4
SIZE LONG
CLEAR STACK
FLAG.
NATIVE COMPAT-
— IBILITY MODE
?
YES 1 b NG 0
) VA « (SP—4)
VA« SET STACK
SET STACK FLAG
FLAG IE.PUSH.PC
YES 1 ¥y NO 0
WRITEM WRITEM
PC, LONG PC-2, LONG
CLEAR STACK CLEAR STACK
FLAG FLAG

v !

PAGE 2 INTERRUPT/
EXCEPTION FLOWS

Figure 5-16

5-18

TK-3235

IE.PUSH.PC

YES 1 NO 0
WRITEM WRITEM
PC LONG PC — 2 LONG
CLEAR STACK CLEAR STACK
FLAG FLAG
_RETURN +1 RETURN+1 ,

EXCEPTIONS WITH EXTRA

PARAMETERS

Programming

IE.LOAD.PC l 00

| .

PC « TEMPS
AND BITS
<1:>

TEMPS « 1PL
=IF

-

| .

PC « TEMPS5
AND BITS <1:0>

[PC + TEMPS
AND BITS <1:0>
GETO

GETO

PAGE 3 GENERALIZED INTERRUPT/EXCEPT!ON FLOWS

IE.BEGIN.MACRO ¢

IRD1

Figure 5-17

5-19

TK-3230

Programming

‘ 1RD1 ’ -

{E.RE! l l -

VA <SP WBUS « MDR
READ VIRTUAL
ADD (SP +4)
1 IE.RE.20 y
WBUS «~ MOR CHECK MORE
READ VIRTUAL DO RE! CHECK MBZ 8ITS
TEMP ~MDR
l YES, RESERVED
OPERAND
ADD(SP+4) | FAULT
GENERATE AWAY
LONG LITERAL egm
FFOO
S020FF CHECK

l 0
00 l 01 l :|

WBUS « MDR oo —
LONGLIT ISR] « REI CHECK
TEMP 8+ SP MBUS + ZLIT4 FAILED
BRANCH PSL AST PEND. PC-2
<IS.CUR> SOFT INTR CLR FLAG 3
IESOFT.IPL RESERVED
OPERAND
FAULT

RESERVED
OPERAND
FAULT
RE! INSTRUCTION GENERALIZE|
MICROFLOWS : .
- TR-3238
Figure 5-18

5-20

Programming

|E.REI.BO
y 000

l 001

3 010

L o1

100

et~

KSP « TEMP9

ESP « TEMPQ

SSP « TEMP9

USP « TEMPS

ISP « TEMPQ

—

IE.REL70

PSL «MDR

3

SET TRACE
PENDING
PSL <« MDR

y

la—]

PC « TEMPS
BRANCH -
1S. CUR
IE.RE1.80(+1]000 1
l (001 Y 010 L on 1 100
i IRD
TEMPS « KSP TEMPQ « ESP TEMPQ + SSP TEMP9 ~ USP INTERRUPTED
ROUTINE
1 } ‘ ? '
L
SP < TEMPY
IRO1
A\

Figure 5-19

TK-3232

Programming

r

SET POSITION
POINTER
SET OUTPUT

START GET NIBBLE

FROM LOCAT-
r ION TO CONV-

PASS ADDRESS " ERT

OF NIBBLE J

STRING e i

TO PROCEDURE NIBBLE

JA?

ADD 30 HEX . ADD 37 HEX
TO NIBBLE TO NIBBLE

|
% 1)
i 4

PASS NUM-
BER OF LONG- | _ - STORE ASCHt
WORDS TO L o — — — — — — —_] cHaRAcTER
CONVERT | IN LOCATION
| . SPECIFIED
|
|
|

RETURN HERE L=
FROM PROC-

EDURE

!

ALL
" NIBBLES °
CONVERT

?

NO

ADD 4
TO
12 (AP)

NO

ANOTHER
LONGWORD

FLOW DIAGRAM FOR PACKED HEX TO ASCII
CHARACTER CONVERSION PROCEDURE

Figure 5-20 Tka229

SET-UP

Programming

STATE DEFINITIONS
ALLOCATE MEMORY

3

SET UP i
A STACK
"JUMP TO BUILD 5CB

v

BUILD SCB AND
TRCS SUBROUTINE.

3

LOAD CONSOLE
RX VECTOR WITH

ADDRESS OF
SERVICE ROU-
TINE

TURN ON CONSOLE

'

LOAD UNIBUS
VECTOR 2xx
WITH ADDRESS
OF SERVICE
ROUTINE

y

DZ-11 SET-UP

?

LOAD DZ LINE
PARAMETER REG
WITH DESIRED
BAUD RATE, FOR
DESIRED LINE.

TURN RX ON

y

TURN RECEIVE

INTERRUPT ENABLE
AND MASTER SCAN

ON
LOWER CPU IPL

TO TAKE
INTERRUPTS

INT FROM
CONSOLE OR
usl

NO, UNIBUS BR

LABORATORY EXERCISE 5
PROGRAM FLOW DIAGRAM

TK-3227

Figure 5-21

5-23

CONSOLE SERVICE

TURN ON
LINE
INDZ TCR

UNIBUS SERVICE

READ DZ
RECEIVE
BUFFER

DZ READY
?

GET
CHAR FROM
CONSOLE

’

ECHO

CHAR BACK
TO
CONSOLE

’

SEND

CHAR TO
Dz

y

REI

~ s
THIS DESIRED
* LINE

Programming

GET CHAR
FROM
DZ BUF

'

ZERO EXTEND <31:>
AND SEND CHARACTER
TO CONSOLE

'

RESELECT
DZ LINE

!

SEND

CHARACTER BACK
T0

TERMINAL

'

Figure 5-22

TK-32286

000000
03FFFF
040000
Q7EFEE
080000

CBESFF
0Co000
FRRFF
100000
13FFFF
140000
17FEFF
180000
18FFEF
100000
1FFFEF

#10000
F20000
F20008
F20008
F20400
#28000
£28400
F28300
F2A000

72€500
£30000

F

£30014.1C
F30800

£32000

F32014

£32800

£30000

F30000

158 KB

512K8

788 K3

1024 KB

1280 KB

1538 K3

1892 X8

048 K8
MAXIMUM FULLY POPULATED ARRAYS

Programming

1 ARRAY 2CARC

10 K8 WRITZABLE CONTROL STORE
——— . Tp—

oot 2 Y

MEMORY CONFIGURATICN REG. A

MEMORY CONFIGURATION REG. 3

MEMORY CCNFIGURATION REG. C

2CQTSTAAP RCM PROGRAM

MASSBUS ACAPTCR J INT. ABGISTERS

MASS3US ADAPTCR 0 €XT. REGISTERS

MASSBUS AQAPTOR Q MAP REGISTERS

MASSBUS ADAPTOR 1t INT. EGISTERS

MASS3US AQAPTOR 1 EXT. REGISTERS

MASSBUS ADAPTOR 1 MAP REGISTZRS

MASS3US ADAPTOR 2 INT. REGISTERS

MASSBUS ADAPTOR 2 EXT. REGISTERS

MASS3US ADAPTOR 2 MAP REGISTZAS
—— -

=t

UNIBUS DATA PATH CONTROL & STATUS

UNIBUS D1AGNQSTIC REGISTERS

UNISUS MAP REGISTERS

I
IND UNIBUS DATA PATH CONT. STA

2ND UNIBUS DIAGNOSTIC REGISTERS

2ND UNIBUS MAP REGISTERS

2ND UNIBUS MEMORY SPACE
128w

UNIBUS MEMORY
SPACE 128KW

COMET PHYSICAL MEMORY ORGANIZATICON

Figure 5-23

5-25

END OF EXISTENT MEMORY

et | /O SPACE

TX-1738

9Z-S

pz-G 2anbtg

DRO

DR2 <

DR4 ﬁ

DRB <

N

BRA

BYTES

MSB HIGH LSB
15 14 13 12 1 10 09 08 01 00
ro _ |rRw_ | Ro RW AL 1&10 {ro 1 /]
controL | | I R 7/ O O RYAREIA
I
& STATUS TRDY | TIE SA sae | < 0,,59 TLINE } TLINE "-'I:"E L i ‘,;9 S 3"0
{CSR) ¢ 8 o
RO |RO |RO RO | RO _{Ro_fRo IRO |RO__|RO.
| RO__JRO 1RO] SR I SR (Lo TG i B L I 29
RECEIVER DATA FRAM | paRr S/o [Rx |Rx |RX
BUFFER VALID|OVRN| ERR ERR <+/& L une | uine | uine JmBur | RBuF | RBUF
{RBUF) ‘ S D6 | Ds
wo |wo
LINE PAR | STOP
PARAMETER ENAB | cone
(LPR) \
Aw_ rw_IRw__ | RwW _ | | AW __jAw | RW__IRW 1AW _|RW_ |RW |
TRANSMIT "
CONTROL DTR | DTR | DTR ODTR | ptR | oTR | oTR | DTR June | uine | une
(TCR) 7 6 5 L] 3 2 1 0 JENAB|ENAB |ENAB
7 6 5
Ro |ro |ro RO Ro (RO fro |no fRo |RO RO RO | RO | RO |RO_|RO
g L AN R diN I (i ot g A b SRR RPN [SRLASANPR SULARAY BRSO S
MODEM *
STATUS co |co jco co co |co |co |co RI7 | Ri6 | RIS | RI4 A3 RI2 | Ri1 | RIO
(MSR) 7 6 5 4 3 2 1 0
wo |wo |wo wo wo |wo |wo |wo Jwo |wo |wo |wo | wo wo fwo jwo |
wRansmit | |
DATA BRK [BRK |BRK BRK BRK |Buk |BRK |8RK JrBur | TBUF | TBUF | TBUF TBUF TBUF | TBUF | TBUF
(TOR) 7 6 5 a 3 2 1 0 7 [5 4 3 2 1 0
*The high byte of the TCR (Data Terminal Ready) and the MSR are not used with the 20 mA options. TK.4466

d

putwwezboa

Programming

Figure 5-25

5-27

SCBB+0

SRB8+200

SCBB8+4a0Q

Programming

CPU AND MASSBUS
VECTOR PAGE

PAGE 1

INTEGRAL UNIBUS VECTOR
PAGE

PAGE 2

PAGE 2

2ND UNIBUS VECTOR
PAGE

COMET SYSTEM CONTROL BLOCK

Figure 5-26

TK-1740

SCB:: .BLKL 256

-l

000007F8

000007FC

RELATIVE

ADDRESS TRCB:: .BLKL 256

400 | 00000000

404 | 00000000

8 408 00000000

c! sq0c| 00000000

3F8 7F8 [00000000

3FC 7JFC{ 00000000
| TK-4457

Figure 5-27

Programming

Programming

HEX NAME ‘

00 KSP KERNEL STACK POINTER

01 ESP EXECUTIVE STACK POINTER
02 ssp SUPERVISOR STACK POINTER

03 UsP USER STACK POINTER
04 ISP INTERRUPT STACK POINTER

31 00
VIRTUAL ADDRESS OF TOP OF STACK

08 POBR PO BASE REGISTER .
RESERVED OPERAND FAULT IF VLA < 2**31
0A P1BR P! BASE REGISTER
RESERVED OPERAND FAULT IF VLA <2**31-2**21

31 02 01 00
VIRTUAL LONGWORD ADDRESS MBZ

09 POLR PO LENGTH REGISTER
LENGTH OF POPT IN LONGWORDS

08 PILR Pl LENGTH REGISTER
2**21 - LENGTH OF P1PT IN LONGWORDS

0D SLP SYSTEM LENGTH REGISTER

LENGTH OF SPT IN LONGWORDS
RESERVED OPERAND FAULT IF MBZ #0

31 22 21 00
MBZ LENGTH IN LONGWORDS

TK-1750

Figure 5-28

5-30

Programming

HEX NAME
10 PCBB PROCESS CONTROL BLOCK BASE
RESERVED OPERAND FAULT IF MBZ # 0.
313029 020100
MBZ PHYSICAL LONGWORD ADDRESS OF PCB MBZ
11 SCBB SYSTEM CONTROL BLOCK BASE
- RESERVED OPERAND FAULT IF MBZ # 0.
© 313029 020100
MBZ PHYSICAL PAGE ADDRESS OF SCB MBZ
12 IPLR INTERRUPT PRIORITY LEVEL REGISTER
31 05 04 00
MBZ PSL<20:16>|-
13 ASTR AST LEVEL REGISTER
RESERVED OPERAND FAULT IF NOT VALID i.E., MBZ #0.
31 03 02 00
MBZ ASTLVL
0C SBR SYSTEM BASE REGISTER
RESERVED OPERAND FAULT IF MBZ = O.
31 3029 02 01 00
MBZ PHYSICAL LONGWORD ADDRESS MBZ
TK-1753

Figure 5-29

5-31

Programming

NEX;INTERVAL COUNT REGISTER (WRITE ONLY) . PRE NAME

2'S COMPLEMENT OF INTERVAL DESIRED X 1 uSEC 19 NICR

INTERVAL COUNT REGISTER (READ ONLY)
31 0

ACTUAL INTERVAL COUNT PERIOD 1A ICR

INTERVAL CLOCK CONTROL AND STATUS (COMET HARDWARE)
3130 29 28 27 26 25 24 23 22 21 20 19 18 17 16 0

=
E IR |+c T‘s TRIVP] R 0 18 ICCS

B
ERROR —I J

TRANSFER OVERFLOQ PENDING
INT REQUEST
INT ENABLE
SINGLE CLOCK
TRANSFER
SERVICE REQUEST
TRANSFER REQUEST
OVERFLOW PENDING
RUN

INTERVAL CLOCK CONTROL STATUS (VAX SOFTWARE)
31 16 15 14 7 65 43210

E 0 IR}IEISC| T 0 R 18 ICCs

INT REQ-J J

INT EN
SINGLE CLOCK
TRANSFER
RUN

INTERVAL TIMER PROCESSOR REGISTERS

TK-1724

Figure 5-30

1B TODR

14

15

SIRR

SISR

Programming

TIME OF DAY REGISTER
31 00

TIME OF DAY {10 MILLISECOND INCREMENTS}

SOF TWARE INTERRUPT REQUEST REGISTER
RESERVED OPERAND FAULT IF READ
31 0403 00

MBZ SIRL

WRITE ONLY

SOFTWARE INTERRUPT SUMMARY REGISTER
31 1615 0100

MBZ SOFTWARE INTERRUPT REQUEST
FEDCBAGS8765 4321

I

mBZ

TK-1752.

Figure 5-31

5-33

veE-¢

CONSOLE STORAGE RECEIVER STATUS

Ze-5 @anbig

31 7 6 0
0 DlE
CONSOLE STORAGE RECEIVER DATA
31 7 6 5 4321 0
0 RECEIVE
- DATA
RECEIVE FROM TU-58
CONSOLE STORAGE TRANSMIT STATUS
31 7 6 0
0 R|IE 0

CONSOLE STORAGE TRANSMIT DATA
31

76543 2

1

0

TRANSMIT
DATA

TRANSMIT TO TU-68

PR#

1D

fIF

NAME
CSRS

CSRD

CSTS

CSTD

TK-1733

butuuwexboig

Programming

MACHINE CHECK ERROR SUMMARY REGISTER (REPORTS TYPE OF MACHINE CHECK)
31 . 3210

0 26 MCESR

1. WRITING A “ONE” TO BIT 3, CLEARS BUS ERROR REGISTER
2. WRITING A “ONE" TO BIT 2, CLEARS TB GROUP PARITY REGISTER

1=TB PARITY ERROR
1= UNALIGNED UNIBUS REF.

1=XB REF.
0= OPERAND REF.

BUS ERROR AND MACHINE CHECK ERROR AND SAVED MODE REGISTER

TK-1742

TRANSLATION BUFFER GROUP DISABLE REGISTER
{CONTROLES 2 WAY ASSOCIATIVE MEMORY OPERATION,
NORMAL LOADING IS RANDOM PLACEMENT OF DATA

IN PTE CACHE)
MEMSCHAR # 31 43210 PRE NAME
3 0 24 TBGDR
0= RANDOM ———l
1= FORCE
0= REPLACE GO

1= REPLACE G1
0=NORMAL PSS |
1 = FORCE MISS G1

0= NORMAL
1= FORCE MISS GO

TRANSLATION BUFFER CONTROL AND STATUS REGISTERS

TK-1732

CACHE GROUP DISABLE REGISTER (CONTROLS REPLACEMENT OF DATA
INTO CACHE} 1 X 1K LONGWORD

MEMSCAR # 31 3 2 1 0. PR# NAME
5 0) ojojo 25 CGDR
0= NORMAL
1 = FORCE MISS

CACHE ERROR REGISTER
31 3210

0 27 CAER

TAG PARITY ERROR l
DATA PARITY ERROR
2ND ERROR
CACHE HIT

UNIBUS, CACHE CONTROL AND STATUS REGISTERS

TK-1734

Figure 5-33

5-35

Programming

HEX NAME
20 RXCS ~ CONSOLE RECEIVE CONTROL/STATUS
31 08 07 0605 00
MBZ IE mBZ
DOlNE

21 RXDSB CONSOLE RECEIVE DATA BUFFER

31 08 07 00
BYTEO

READ ONLY

22 TXCS CONSOLE TRANSMIT CONTROL /STATUS
31 08 0706 05 00

mMBZ IE mBZ

READY

23 TXDB CONSOLE TRANSMIT DATA BUFFER

31 ' 08 07 00
BYTE 0

WRITE ONLY

TK-1749

Figure 5-34

5-36

HEX NAME D=

38 MME

39 TBIA

3A T8IS

3D PMR

3E SiD

MEMORY MANAGEMENT ENABLE

WRITE 1 ALSO CAUSES MICROCODE TO INVALIDATE T8B.
31

Programming

0100
|
MME
TRANSLATION BUFFER INVALIDATE ALL
RESERVED OPERAND FAULT IF READ
31 00
MBZ
WRITE ONLY
TRANSLATION BUFFER INVALIDATE SINGLE
RESERVED OPERAND FAULT IF READ
31 00
VIRTUAL ADDRESS
WRITE ONLY
PERFORMANCE MONITOR REGISTER
RESERVED OPERAND FAULT IF >1
31 0100
MBZ
.
PME
SYSTEM IDENTIFICATION (READ ONLY)
RESERVED OPERAND FAULT IF WRITE
31 24 23 1615 87 0
MICROCODE HARDWARE
SYSTEM TYPE 0 REVISION REVISION
LEVEL LEVEL
[§ - A ~ J
FROM MICRO ~ FROM SWITCHES

WORD LITERAL LOCATED ON UB!
MODULE

FiELD

Figure 5-35

5-37

TK-2099

8¢€-G

MEMORY CONTROL &
STATUS REGISTER

0 F20000
1 F20004
&)
e
[le]
c
~
o
wnm
i
w
[e)}
2 F20008

3130 29 24 23 987 6 0

00000 PAGE ADDRESS OF ERROR 0 O |ERROR SYNDROME

|— CORRECTABLE ERROR FLAG (1 BIT ERROR)

2ND UNCORRECTABLE ERROR
UNCORRECTABLE ERROR FLAG (IMORE THAT 1 BIT ERROR)

31 2928272625 24 23 98 7 6 0
000 0 PAGE MODE ADDRESS 0 0 |CHECK SYNDROME
L——DSABLEERRORCORBECHON
o DIAGNOSTIC CHECK MODE (FOR VERIFY SYNDROME BITS FUNCTION)

PAGE MODE

INHIBIT REPORTING CORRECTED ERRORS (INHIBITS CRD INTERRUPT)
31 24 23 17 16 15 0

STARTING

000 0O0O0OO0O ADDRESS , MEMORY PRESENT

- J | J

~ ~—~—"
BACKPLANE JUMPER BITS <15:0> INDICATE MEMORY PRESENT
SELECTABLE IN 128KB INCREMENTS (2 BITS PER
MODULE)
INIT
e N

r D
COLD/WARM RESTART FLAG

= 1 ON POWER UP OR BATTERY DEAD
=0 AFTER FIRST 4 BYTE WRITE

TK-17256

butwweiboag

6€-G

BDP #1 F30004
#2 F30008
#3 F3000C

LE-S @anb1a

313029 28

N :

-

. | -

N

PUR
p e N —
BIT <0> PURGE. THIS BIT ALWAYS READS A ZERO. WRITING A ZERO TO IT
HAS NO AFFECT. WRITING A ONE TO IT PRODUCES A RESULT BASED ON THE
CONTENTS OF THE BUFFER: '

UNIBUS DATA: THE DATA IS WRITTEN TO THE CMI AND THE FLAGS
ARE SET TO MARK THE BUFFER EMPTY.
CMI DATA: THE FLAGS ARE SET TO MARK THE BUFFER EMPTY. -
EMPTY: NO ACTION OCCURS.
UCE
— . N
BIT <29> UNCORRECTABLE ERROR (UCE). THIS BIT IS SET WHEN
UNCORRECTABLE ERROR STATUS IS RECEIVED FROM CMI MEMORY., PB IS
ASSERTED WITH THE DATA THAT IS PASSED BACK TO THE UNIBUS DEVICE ON THE
FIRST READ FROM THAT LOCATION. IT IS NOT ASSERTED ON SUBSEQUENT READS
FROM THIS BDP. THE BIT 15 WRITE ONE TO CLEAR.
NXM
A
-

GIT <30> NON EXISTENT MEMORY (NXM). THIS BIT IS SET WHEN NXM STATUS
1S RECEIVED FROM THE CMI MEMORY. SSYN IS WITHHELD FROM THE UNIBUS
DEVICE. ALL FUTURE UNIBUS TRANSACTIONS THROUGH THIS BDP ARE IGNORED
(NO SSYN ISSUED) UNTIL THIS BIT IS CLEARED. THE BIT IS WRITE ONE TO -
CLEAR.

ERR

e
BIT <31> ERROR. THIS BIT ON READ IS THE “OR" OF BITS 30 AND 29.
WRITING TO THIS BIT HAS NO EFFECT.

r

BDP CONTROL AND STATUS REG.

TK-1727

purtuwezboag

F30800 TO
F30FFC

ot

31 30 26 2824 2322 2120 15 14

Programming

v
— PAGE FRAME NUMBER —
CONCATENATED WITH BITS <8:2>

'OF THE UNIBUS ADDRESS TO FORM
THE 22 BIT CMI LONGWORD ADDRESS.

— DATA PATH NUMBER —
USED TO SELECT 1 OF 4 DATA PATHS.

0 DIRECT DATA PATH

1 BUFFERED DATAPATH 1
0 BUFFERED DATA PATH 2
1 BUFFERED DATAPATH3

- BYTE OFFSET -
USED WHEN ADDRESSING ODD BYTE
BOUNDARIES.

— VALID BIT -
IF NOT SET, TREAT CYCLE AS A NOP.

UNIBUS TO CMI MAP DATA FIELDS ADDRESS

5-49

TK-1739

IP-S

DSR #1 F30014
DSR #2 F30018
DSR #3 F3001C

NOTE 1:

NOTE 2:

w
o
N
~
8

wno] ¥
N T1C0
I
lomwly
o0

BYTE 0 VALID

L BYTE 1 VALID
TA PATH STATUS
BYTE 2 VALID / READ ONLY DA

BYTE 3 VALID

THERE ARE FIVE FLAGS THAT KEEP TRACK OF THE DATA IN THE DATA
BUFFER, NAMED CD AND BF3 THROUGH BFO. {F CD = 1, THEN THE BUFFER
HAS FOUR BYTES OF DATA FROM THE CMI AND BF3 THROUGH BF0 ARE
ALWAYS 0. IF CD =0, THEN BF3 THROUGH BF0 INDICATE WHICH BYTES

IN THE DATA BUFFER HAVE VALID UNIBUS DATA. IF THEY ARE ALL 0,
THEN THE BUFFER IS CONSIDERED EMPTY.,

THIS IS A READ ONLY REGISTER THAT ALLOWS ONE TO CHECK THE FLAG
BITS ASSOCIATED WITH EACH BDP. IT IS INTENDED ONLY FOR POSSIBLE
DIAGNOSTIC USE AND NO REFERENCE TO IT IS REQUIRED FOR NORMAL
USE OF THE BDP’S.

CUI DIAGNOSTIC STATUS REGISTER

TK-1726

butwweiboad

1PR#17

31

31

Programming

20 19 18 17 16 12 1110 09 08 04 0302 0100

0= CMI ENABLED

_1

1= CMI DISABLED

READ=1, MODIFY=0
VIRTUAL=0, PHYSICAL=1

K,E,S, U

CPU MODE, {

READ LOCK TIMEOUT

TB G1 TAG ERROR
TB GO TAG ERROR

TB G1 DATA ERROR
TB GO DATA ERROR

TB HIT

MEMORY ERROR

READ DATA SUBSTITUTE

LOST ERROR

CORRECTED READ DATA

CMI ERROR PROCESSOR REGISTER

TK-326§

Q0

0 1PR#37

ISSUE UNIBUS INIT

10 RESET PROCESSOR REGISTER

TK-3267

Programming

HEX NAME D%

38 MME MEMORY MANAGEMENT ENABLE
WRITE 1 ALSO CAUSES MICROCODE TO INVALIDATE TB.
31 0100
|
MME
38 T3IA TRANSLATION BUFFER INVALIDATE ALL

RESERVED OPERAND FAULT IF READ
31

: 5

WRITE ONLY

3A Tais TRANSLATICN BUFFER INVALIDATE SINGLE
RESERVED CPERAND FAULT IF READ

3 00
{ VIRTUAL ADDRESS _J)
WRITE ONLY
30 PMR PERFCRMANCE MONITOR REGISTER
RESERVED OPERAND FAULT IF >1
3 0100
l M8Z ‘ '
PME
i s0 SYSTEM IDENTIFICATION (READ ONLY)
RESERVED OPERAND FAULT IF WRITE
n 2423 1615 37 9
MICROCODE HARDWARE
SYSTEM TYPE 0 REVISION REVISION-
LEVEL LEVEL
N A —

FROM MICRO FROM SWITCHES
WORD LITERAL LOCATED ON UBI

FIELD MCDULE
Q0 UNDEFINED FROM MICRO BACKPLANE JUMPERS
01 11/780 WORD LITERAL
i 11/750 FIELD
11 NEBULA

TK-2099

Figure 5-41

5-43

VAX-11/758 LEVEL II

Microcode

Student Guide

Course produced by Educational Services Department
of
Digital Equipment Corporation

Microcode

OBJECTIVES

Utilizing the Comet microcode 1listing, correctly trace a
microroutine for a specific machine function, listing only
the microaddresses.

Provided with a Comet microcode macro expansion and a Comet
microcode listing, write each of the field values for that
microinstruction.

Provided with a schematic diagram, trace the origin and
destination of a specific signal within the microsequencer
logic.

Given a series of true/false questions, correctly indicate
as true or false statements regarding the comet
microsequencer operation.

Provided with a laboratory exercise procedure, the student
will

a) 1load Microdiagnostics

b) operate the remote diagnosis module
¢) trace microroutines

d) set up and trace selected signals

SAMPLE TEST ITEM

Referring to the CUI module schematic, drawing number 1 of
14, locate the signal called "RCS @1 CS AD 13 L". Trace the
origin of this signal and all of the destinations in the
space below.

LAB EXERCISE

a) load microdiagnostics

b) operate the RDM Module

¢) trace microroutines

d) set up and trace selected signals

4.
5.

RESOURCES
COMET CPU Microcode listing
DPM module schematic
LSI Chip Schematic
SAC
MSQ
PHB
IRB
Wall charts

COMDEC, Microword decoding program

Microcode

II.

III.

Microcode

OUTLINE
INTRODUCTION TO MICROCODE

A. Why Microcode?
1. Concepts
2. Advantages

B. Comet CPU Microinstruction
1. 80 bits }
2. Vertical functionality
3. Microcode/hardware relationship
4. Fields and functionality
5. How is microcode created?

C. Summary
MICROCODE LISTINGS

A, Microprogrammers Code
B. Microcode Listing/Macrocode Listing Similarities
C. File Structure
D. Reading the Listing
1. Assembler directives
2. Addressing constraints
3. Machine definitions
4., Macro expansions
5. Next address field
6. CREF

E. Summary
MICROSEQUENCER AND CONTROL STORE SUBSYSTEM
A. Purpose

B. Cycle Time
C. LSI Chips

1. 8sAC
2. MSQ
3. PHB
4. 1IRD

E. CCS Interface
F. Block Diagram Analysis
G. CCS Module Block Diagram Analysis
H. Schematic Analysis
l. Major addressing modes
2. LSI chip functionality
3. Timing

Microcode

IV. CLASSROOM EXERCISE
LOCATE AND TRACE INIT MICROROUTINE

V. CPU CONSOLE MICROCODE
A. Console Emulator
B. Console Interface
C. Microroutines - Character by Character Parse
D. Console Functions
E. Console Functions Flow Diagram Analysis
VIi. LABORATORY EXERCISE 6 - TBS

VII. LESSON SUMMARY

I.

Microcode

INTRODUCTION TO MICROCODE

A.

Why Microcode?

1.

4.

Basic computer designs

a. direct hardware decode of macro instruction
requires elaborate timing and hardware
design

b. microprogrammed machine architecture allows
general purpose design to be customized
with ROM microcode.

Microcoding has created a demand for an
individual that wunderstands hardware and
software to write microroutines

Microcode can repair design problems without
changing hardware.

Microcode updates require changing only control
store ROMS.

The advantages or microprogramming are clearly

apparent to other hardware designs

COMET CPU Microinstruction

1.
2.
3.

80 bits wide
Vertical functionality
Microcode/hardware relationship

a. DPM module - green
b. UBI module - blue
Cc. MIC module - yellow
d. WCS module - red

6-5

9-9
1-9 @anb1a

M W-BUS
TU 58 DPM MIC
TUSBY | INTERFACE <-_-
ADDRESS
DATA LOGIC
| eath N DATA
LA CONSOLE — ROUTING TRANSL MEMORY -
|-~{ INFERFACE — AND BUFFER CONTROL
ALIGNMENT
MICRO- WCSPRES
TRAPS SEQUENCER = CACHE
& K
INTERRUPTS
I M-BUS '
S —
UNIBUS
INTERFACE < oM '
J\ /LADDRESS J\ /l
FLOATING REMOTE —| WRITABLE
POINT DIAGNOSTIC 14 CONTROL
ACCEL MODULE STORE MASSBUS
: ADAPT.
\ UET
UNIBUS \ 9313
\]7 r._.._.._. e ommm. omemn amenn csue e s
0z-11 RLOZ LP 11 ’
CONTROLLER CONTROLLER l MASSEUS
RMO03 [t:] RMO3
MAX. DEVS.
S 1143 R D
VT 100 DRIVEO| |Driver LPO4

COMET SIMPLIFIED SYSTEM BLOCK DIAGRAM

TR 2079

3pPODOCIDINW

Microcode

Figure 6-2

Microcode

[cmTo1e.mCR [130,2112] Micro=2.1 1A(33) 14:40:3 9-Mar-1972 le————gENTIRE LISTING NAME Paye 3¢
[i DEFIN _MIC [130,2112] DEFIN.HIC _j#—————SUBFILE NAME
1869 .T0C *DEFIN.MIC"
3970 .T0C "REVISION S53.3"
LINE NUMBER 971 : P. R. GUILBAULT
1972
NOBIN DO NOT LIST BINARY OUTPUT
Bl -RTOL : NUMBERS ARE FROM RIGHT TO LEFT FOR BINARY
1975 [LHEXADECIWAL | RADIX IS HEX
;975 . SOURCE/ 33
197 LSET/NATIVE=1
i el i PS— TSET UP FOR CREF GRLY WHEM FULL ASSEWBLY VAX NATIVE INSTRUCTION MICROCODE
1979 DO NOT CROSS REFERENCE FOLLOWING CODE
;980 Revision History”
1931 INSERT TEXT IN TABLE OF CONTENTS
1982 ; 53 CORRECT wIDTH OF CCOCE(Compatibility) RCM
;993 B ACD NEW LDR_0 COMFLICT WITH MSRC PER BIMDER 05-MAR-79
;984 : ACD NEW MSRC,'VA CONFLICT WITH BUS PER BINDER 15~FEG-79
;985 ; 82 CHANGE 1RD1 ROM OEFINITIOM PER SMITH 02-FES-79
;986 s ACD MICRD ORDERS FOR OPSPEC FIELDS IN IRD ROMS
;987 : CHANGE [RDX ROM DEFINITION PER SMITH 02-FEE~79
1963 H DELETE 'BUT/MBUS19TO18' PER LI €~FEB-79
;989 H CHANGE CRIJDE ROM PER SMITH 02-FEB-79
;990 7 81 UFD2TE V023 & V025 AND DISASLE MSRC,/TB PER BINDER 25-JAN=T9
1991 i 50 ACD VALIDITY CHECKS FCR IRD RCW'S
1992 i 49 CHANGE 'MSRC,/MTEMP11' TO 'MSRC/ERRCOD' TO REFLECT ITS PROPER USE
1993 H CHANGE VALIDITY CHECKS TO ALLOW 'CLRT8.VA_WB' WITH 'PRB.RD.PTE' WHEN NOT ‘BUT/UVCTR'
;994 H CHANGE NOTATION FOR MULTIPLE VALIDITY CHECKS
1995 ; a8 DELETE 'WCTRL/VA_VAS+wB' PER BINDER 15-MNOV-78
1996 : DELETE '®XTRL/ROM* & 'WCTRAL/RDM_yB' PER KRALUS 16-NOV~78
1997 : ADD 'WCTRL,FPA.ENABLE_WBS' PER KRAUS 12-CCT=78
;998 s CCORRECT DESCRIPTION OF BRATST IN CC TABLE
1999 : ADD INFORMATION ABOUT CCER, SRKSTA, AND SPASTA BUTS
;1000 ADD VALIDITY CHECKS TD CEFIN AND DELETE VALID.MIC
31001 H REVISION HISTORY FROM VALID :
;1002 o1 GET RID OF DUMMY CHECKS AND REMOVE COMENT STATUS OF CASE CHECKS
;1003 GET RID OF V003 BECAUSE IT 1S IDENTICAL TO VO0OQ1
11004 [+1+} INITIAL RELEASE
31005 ADD 'WCTRL,MDR_O' AS CONFLICT WITH 'MSRC,/MOR' PER SINDER 21-DEC-78
;1006 H ADD NEW CONFLICT FOR SOURCE PC OR PCBACK AND READ OR WRITE
;1607 ADD NOTE 1O BUT'S ON IR THAT ARE DIFFESENMT IN COMPATISBILITY MODE
. zlo08 CHANGE ‘BUS vs MSRC' VALIDITY PER BINDIR 29-DEC-73
;1009 CORRECT COMMENTS FOR 'PCT RL.RM.P', 'RCT,/RL.BM.PS', 'ROT/ASL.R.P', 2 'ROT/ASL.M,P'
;1010 CORRECT ‘CCPSL,/MDR_CSR.CCBR_BRATST' & 'WCTRL,MOR_IR' MICRO ORGER ASSIGNMENTS PER SMITH 12-JAN=79
s1ot H ADD VALIDITY CHECKS FOR MULTLPLY AND DIVIDE SPECIAL FUNCTIONS
11012 ;a7 CHANGE 'WCTRL/STEPC' TO 'wCTRL/CM.TP.FPD.FS.STEPC'
31013 CHANGE 'WCTRL/FLAGS' T2 'WCTRL/CM.TP.FPD.FLAGS'
11014 RENAME IRD ROW FIELOS TO BE MORE CONSISTANT AITH IRD ROM MACRGS
;1015 INCOPORATE CHANGES PER LI 14-DEC-78
;1016 1.) CHANGE 'WX_S.0Q_D' TO 'wX_S.Q_0'
21017 2.) CHANGE 'WX_D_S.0_D' TO 'wx_D_5.9_0"
;1018 3.) DELETE ‘MUXDZ' FIELD
;1019 : 4.) DELETE 'DQ4*' FIELD
;1020 s.) ATD NEW SPECIAL FUNCTIONS
31021 ; 48 CHANGE ALL V003 TQ voO1
11022 CORRECT VALIDITY CHECK ON 'CCPSL/MDR_OSR.CC3R_BRATST"
31023 ; as CORRECT COWPATASILITY MODE IRD ROM DEFINITION

MICRO2 ASSEMBLER DIRECTIVES 1

Figure 6-3

CMTO18,.MCR [130,2112] Micro-2.1 1A(33)

1 DEFIN .MICc [130,2112]

;1961
31962
31963
;1964
11965
31966
11967
;1968
;1969
31970
11971
;1972
31973
31974
31975
31976
31977
31978
:1979
;11980
;1981
$1982
;1983
31984
:1985
31986
;1987
;1988
;1989
;1990
31991
;1992
31993
;1994
11995
31996
11997

1CODE
.WIDTH/32

.10C "

Machine Definition :
SWITCH FROM DEFAULT ROM (U} AND DEFINE 1RD ROM AS 32 BITS WIDE.

14:40:3 9-Mar-1979
Machine Definition H

IRD1 ROM*

Microcode

IRDt ROM

s oiviviL 11) 1F) 3 H
s II'FIF} IRDI.FPA !0} 1ROt 'F! FPD.FPA !0} FPD '
L H Pl 104 Ha H
3 10IDIP} HEH HH HE H
S HE N HE '
§ Amted o+ + + +
s 13131393 222222!2'2221 11111 1131100!0/00000 00!
: 13121110 98765412,2109876!5/43210098!7,654321 0!
FPO /=<6:0>

FPD.FPA /=<14:8>

1ROt /=<22:16>

IRD1.FPA/=<30:24>

FOP /=<07:07>
NOP=0
LOD=1
FFOP/2<15: 15>
NOP=Q
LoD=1
10P /=<23:23>
NQP=Q
Lg0=1
IFOP/=<31:31>
NOP=0
LQ0=t

VFPD /=2<32:32>,
VIRD1/=<331:33>,

LVALIDITY=<VOE0>
JVALIDITY=<VOE1>

MICRO2 ASSEMBLER DIRECTIVES 2

Figure 6-4

6-9

H
.
H

CMTO18.MCR [130,2112] Micro=2.1 1A(33)

14:40:3 9-Mar~1§79

CEFIN .MIC [130,2112} Machine Definition : IROX ROM
;1998 .TOC " Machine Definition : IRDX ROM"
31999 .OCODE SWITCH FROM DEFAULT ROM (U) TO OSR ROM AND DEFINE BITS AS 96 BIT WORD.
12000
32001
;2002
32003 + + + .
52004 Vo) ' I 1)
32005 HE I ' VR t !
32008 H I CNTO.REG H CNTO.MEM 10} CNTO.FPA.REG H CNTO.FPA.MEM H
32007 ! i H [' |
;2008 H + + + + + -+
32009 H 14414 4444433333333 3322222222/22111111111,10000000200 0,
12010 : 176/54321098765/]43210987654;32/109876542321/09876543210!
32011 H + + + + + +
32012 H
32013 :
;2014 3T -+ - + + +
12015 $oavivy 1 ' v H)
12016 s icict 0) 1 VP ' H
72017 ; ININ! P ! CNT1.REG ! CNT1.MEM 10! CNT1.FPA.REG : CNT1.FPA.MEM H
12018 3 TITH 1 1 VP } '
i2019 5 edol ' e ! !
$2020 S + + St + + + +
12021 $19/9!199199998888888,88877777777,7766666666¢€665]S5555556554 4]
32022 H :7:5!5’4!3 2109876544 3}]21098765432/10/98765432109/87685432102¢9 8]
12023 HIE S LSl s + += + + + +
32024
;2025 CNTQ.FPA MEM/=<10:0>
32026 CNTO.FPA.REG/=<21:11>, .VALIDITY=<V062>
32027 OFQP/=2<23:22>
;2028 NOP=z0Q
$2029 LoD=3 -
32030
12031 CNTO.MEM/=<34:24>
32032 CNTQ.REG/2<45:35>, <VALIDITY=<V0E3>
32033 00P /=<47:46>
$2034 NOP=z0
$2035 LoD=3
32036
32037 CNT1.FPA . MEM/=<58:48>
12038 CNT1.FPA.REG/2<69:58>, .VALIDITY=<V064>
32039 1FOP/=s<71:70>
32040 NOP20
32041 LoD=3
32042
12043 CNT1.MEM/=<82:72>
12044 CNT1.REG/=<93:83>, LVALIDITY=<VOES>
$2045 10P /=<95:94>
12046 NOP=0
32047 Lo0=3
;2048
32049 VCNTO/=<96:96>, LVALICITY=<VO66>
32050 VCNT1/2<97:97>, SVALIDITY=<VOE?>

Microcode

MICRO2 ASSEMBLER DIRECTIVES 3

Figure 6-5

6-10

Page 54

TIT-9

9-9 @inbta

CMTO18,.MCR [130,2112) Micro-2.t 1A(33)

INIT .MIc [130,2112]

0000, 7100,70F0,7FFF,B8450,083E

0818, 0080,56E4,0808,4850,0001%
0825, 4800,58E4,0808,4A50,0001

0839, 3500,70F0,7FFF,B450,083E

083E, 0000,58F4,03D4,0050,0820

0820, 5A00,C370,0340,2450,4818

0821, B9EF,S5BEG,03D8,2C50,08A0

14:40:3 9-Mar-1979

Initialize Microcode for the Console and Power up

:3595
13596
$3597
33599
$3599
+ 3600
$3601
13602
33603
;3604
$3605
;3606
33607
13608
13609
:13610
136114
$3612
$3613
12614
$3615
13616
33617
;53618
;3619
3620
12621
13622
$3623
13624
13625
$2626
$3527
:3628
$13629
13630
13631

.TOC * Initialize Microcade for the Console and Power up"

0:
INGINIT:

LONLIT_[41F0000],
CLEAR FLAG2,
NEXT/IN.PSL.LONLIT

sLONLIT GETS 41F0000
:1PROCESS INIT CLEAR FLAG2
iGOTO REG FLOW

LREGION/(!NIT.R!L>.<lNl1.R1H>/<IN17.R2L>.<1Nl|.R2H>/<lNlT.R3L>.<1NIY.R3H>]————#(:) LOCATE IN

IN.PC_O:

CLEAR FLAGH,
RETURN (1]

IN.VA_O:

;PC GETS 0
$FOR CHARLIE'S CLEAR TB SUBR
sRETURN+T

--
VA_R[2EROD}.
RETURN (1]

IN.CN.INIT:

iVA GETS 0
SRETURN+1

SET FLAG2

IN.PSL.LONLIT:

;LDNLIT GETS 41FQ000
iPRGCESS INIT CLEAR FLAG2

=0

PUSH,

STEPC 2.
CRAR_2L110[00].
NEXT/TM PO_0

sPSL GETS LONLIT CLEAR FLAGO

sCRAR GETS 2
sNJWw IF WE CONWRITE
SWE WILL WRITE 7O RXCS

it
CONREGS _D_M[SISR])_R[ZERO],
DEC STEPC

REGION DIRECTIVE

IRXCS GETS 0
:SISR GETS 0

MACRO FILE

9PODOIDINW

s CMTO18.MCR [130,2112] Micro—-2.1 1A(33)
i MACRD .MIC [130,2112]

32311
32312
32313
;2314
12315
12316
12317
;2318
;2319
32320
;2321
32322
32323
52323
32325
12326
32327
12328
12329
32339
$233
52332
;2333
$2334
$2335
32336
$2337
$2338
$2339
$2340
;2341
12342
32343
32344
12345
32346
$2347
12348
32349
:2350
32351
$2352
;2353
$2354
32355
12356
52357
12358
12359

.T0C

sInitial

14:40:3 9-Mar-1979

Control Store Region Expressions

- Control Store Region Expressions”

ize

©)—»

LSET/INIT.R1L=0800
.SET/INIT.R1H=0FCF
.SET/INIT.R2L=0400
.SET/INIT.R2H=Q7FF
.SET/INIT.R3L=0000

.SET/INIT.R3H=0Q3FF

;Console

;integer

iFloatin

sVariabl

;Control

.SET/CONSOL.R1L=0500
.SET/CONSOL.R1H=0FCF
.SET/CONSOL.R2L=0400
.S5ET/CONSOL.R2H=07FF
-SET/CONSOL.R3L=0000
.SET/CONSOL.R3H=03FF

., Logical, and Address

.SET/INTLOG.RiL=0800
LSET/INTLOG.R1H=0FCF
.SET/INTLOG.R2L=0400
.SET/INTLOG.R2H=07FF
.SET/INTLOG.R3L=0000
.SET/INTLOG.R3H=03FF

g Point and CRC

LSET/FLOAT.R1L=0800
.SET/FLOAT.RIH=0FCF
.SET/FLOAT.R2L=0400
.SET/FLOAT.R2H=07FF
.SET/FLOAT.R3L=0000
.SET/FLOAT.R3H=03FF

e Length Sit Field
.SET/VIELD.R1L=0800
.SET/VIELD.R1H=0FCF
.SET/VIELD.R2L=0400
.SET/VIELD.R2H=QTFF
.SET/VIELD.R3L=0000
.SET/VIELD.R3H=03FF

Instructions
.SET/CONTRL.R1L=3800
.SET/CONTRL.R1H=0FCF
.SET/CONTRL.R2L=20400
.SET/CONTRL.R2H=zOTFF
.SET/CONTRL.R3L=0000
.SET/CONTRL.R3H=03FF

Figure 6-7

6-12

Microcode

REGION DIRECTIVE MACROS

o v

Microcode

CMTO18.MCR [130,2112] Micro-2.1 1A(33) 14:40:3 9-Mar-1979
INIT . mic [130,2112] Initialize Microcode for the Console angd Power up
ABSOLUTE ADDRESS :3592 OC " tnitialize Microcode for the Console and Power up®
:359
NEXT =323; [N, INTTZ] SYMBOLIC ADDRESS
1359 : d
ADDRESS ;3539 O $LONLIT GETS 41F0000
[$3600 CLEAR FLAGZ, $PROCESS INIT CLEAR FLAG2
poad], 7100.70;0.7“&5450. :3601 NEXT/IN.PSL.LONLIT LOCATEIN .anrg peq rrow
’ ;3602 MACRO FILE
$3603 .REGION/<INIT.RILD ,<INIT.RIH>/<INIT.R2L>, <INIT_ R2H>/<INIT.R3L>,<INIT.R3H>
33608
$3605 1IN.PC_0:
$3606 B H
$3607 PC_R{2ERO}, :PC GETS O
13608 CLEAR FLAGt, ;FOR CHARLIE'S CLEAR TB SUBR
0818, 0080,58E4,0808,4850,0001 ;3609 RETURN {11} sRETURN+ 1
33610
$3611 IN.VA_O: I
13612 : H
33613 vA_R[ZERO], VA GETS 0
0825, 4800,5BE4,0808,4A50,0001 ;3614 RETURN [1] TRETURNS 1
13615
:3616 IN.CM.INIT:
$3617 : H
13618 LONLIT_{41F00CO], ;LONLIT GETS 41F0000
0839, 3500,70F0,7FFF,8450,083E ;23619 SET FLAG2 ;PROCESS INIT CLEAR FLAG2
$3620
$3621 IN.PSL.LONLIT:
33622 H H
083€, 0000.58Ff4,0304.0050,0820 ;3623 PSL_R{LONLIT],CLEAR FLAGO :PSL GETS LONLIT CLEAR FLAGO
13628
:3625 =0
:3626 R e
13627 PUSH, 1JUSR
:3628 STEPC_2. 3
» 13629 CRAX_ZUITCI%0G. $CRAR GETS 2
0820, SA00,C370,0340,2450,4818 ;3630 NEAT (', C_2 ;NOW IF WE CONWRITE
13631 IWE WILL WRITE 7O RXCS
:3632
33633] H
:13634 CONREGS_D_M{SISR]_R{ZERD]. sRXCS GETS O
0821, 99EF,S5BEE, 0308,2C50,08A0 ;3635 DEC STEPT 1SISR GETS O
13636
$3637

LABELS AND MACRO EXPANSIONS

Figure 6-8

6-13

t CMTO1B.MCR [130,2112] Micro-2.
3 CONSOL.MIC [%30,2112]

1 1A(33)
Console

14192
;4193
34194
;4195

s we e

U 09 0656,0364,4330,0450,08C4

14:40:3 9-Mar-1973

Microcode

Page 105

: CONSQLE EXAMINE AND DEPOSIT

L s e e e T A

FINISHING OFF € OR D

;4196—[=00] CONSTRAINT BLOCK = 4 WORDS

34197 CN.E.FLAGO:

;4198
;4199
:4200
;4201
$4202

AR R R I AR AR AR E R T R P F A AR A I RS A PR A AT AR Rk E A AR R RN R T R SRR R AP B R Tk AR RN T b &

300
FLAGO?,
R{TEMP12]_RNUM,
NEXT/CN.E.FLAGO.CLR

EXAMINE????
;FOR POSSIBLE BUMPING RNUM LATER

$4203 CN.E.I1S.IT.A.S5P:

34204 Ha | H

34205 PUSH, sGET KEXT CHARACTER

;4206 M{TEMP2]_ZLITO[O], ;TEME2 GETS O
U 0931, 1862,C370,0300,0450,4A9C ;4207 NEXT/CN.GET.NEXT.CHAR sRET+1

;4208

4209 ;10 H
U 0932, 4800,0364,4300,0450,08A4 ;4210 FLAGO? TEXAMINE????

34211
U0933 NOT USED 24212

$4213 END PREVIOUS BLOCK .

$3214—{=0 CONSTRAINT BLOCK =2 WORDS

$4215 :0 H

$4216 we_M{TEMPE]-ZLITO[2A], IS IT AN =

14217 WX.€Q.0?, INO ~—srmsssrarusrsarrevaDEPOSIToanvsenn
v o8 5806,C100,A315,0450,0860 :4218 NEXT/CN.NQT.ASTERICK H

;4219

;4220 R H

$6221 WS_M[TEMPE]-ZLITO{2A], IS IT AN »

3149222 WX.£Q.07, INDO eewxwssrewumcanerns v EXANINER#m> ¢t v o %
U 0BAS, 5B06,.C100,A315,0450,09A8 ;4223 NEXT/CN.E.NOT.ASTERICK H

$4224

U 0860, 1806,C100,A728,0450,0800

U 0861, 14E8.(370,0306,8450,4800

34225 [z000]e—

:4226 CN.NOT.ASTERICK:

14227
;4228
$4229
14230
+423t
$14232
$4233
;4234
34235
:4236
34237

U ogds|, €s858,5924,0304,0450,00A8

CONSTRAINT BLOCK = 8 WORDS

;000
W3_M{TEMPE]-ZLITO[SO],
WX.NE.O?,
NEXT/CN.D.SL.P

sNOT =-1S IT A P2727?

;001
PUSH,
M{TEMPB]_ZLITO[0D],
SET FLAGT,
NEXT/CN.PROCNG

$4238— (=101
$4239
;4242
;4241

$PROCESS NUKBER(S)

;1 NUMBER TO PROCESS

s FOR PROCNO

JRET+4 SO RETURN TO 101 (CN.D.ASTERICK)

LQCATION § OF 8 WORD BLOCK

3101
R{TEMPT]_M[VA],
NEXT/CN.D.ASTERICK

ADDRESSING CONSTRAINTS

Figure 6-9

6-14

:RESTORE TEMPY

H

S1-9
p1-9 °anb1ig

CMTO1B.MCR [130,2112] Micro-2.1 1A(33) 14:40:3 9-Mar-1979 Page 34

s DEFIN .MIC [130,2112] Machine Definition : ALPCTL

11166 .TO0C * Machine Definition i ALPCTL®

s 1167

11168 ALPCTL/=<57:48>, .DEFAULT=364 sALP SPECIAL FUNCTIONS {ALU OPERATION FOR
31169 NOP=364 ;ALUOD/QR ,MUX/Z.5,DQ1/NOP sSETTING OF ALU FLAGS
11170 wx_D_Q.Q_0=207 iWMUX & D <~ Q OLD Q <~ D QLD D+Q+CH.BCD
HIRKA Wx_0_Q.Q_m=0D7 sWMUX & D <~ @ OLD Q <~ MBUS M+Q+C1.8CO
31172 WX_D_R.Q_ ;wliuX & D <= RBUS Q <= D OLD D+R+CI.BCO
4173 WX_D_R.Q_M=057 WMUX & D <- RBUS Q <~ MBUS M+R4CT.BCD
11174 WX_D_R.0Q_XM=157 TWIUX & D <~ RBUS Q <~ S/Z WBUS XM+R4C1.8CD
11175 wx_D_5.Q_0=357 sWIUX & D <= SuUP ROT Q <-0 0+5+ 0.8CD
31176 WX_D_5.Q_r=3D7 ;WMUX & D <- SUP ROT Q <- RBUS R+S+ 0.BCD
31477 WX_D_5.Q9_XM=1D7 JWMUX & D <~ SuP ROT Q <= S/Z MBUS XM+S+ 0.8BCD
;11780 W4_Q.Q_D=2C7 i sWIUX <- @ oLD Q <-D 0-Q-CI.BCD
1179 WX_Q.Q_mM=0C7 . <= Q OLD Q <= m3us M-Q~CI.BCD
;1180 WX_R.Q_D=247 <- RBUS Q <~ 0D O-R-C1.BCD
HARE:A] WX_R.Q_M=047 <~ RBUS Q <~ MBUS M-R-CI.8CD
;1482 WX _R.Q_xM=147 <= RBUS Q <= S/Z MBUS XM-R-CI.BCD
;1183 wx_5.Q_0=347 TWhUX <= SUP ROT Q<-0 0-5- 0.8BCD
31104 WX_S.Q_R=3C7 HAMYES <- SUP ROT Q <~ RBUS , R-5- 0.8CO
11185 WX_S.Q0_XmM=1C7 TMUX <= SuUP ROT Q <~ S§/Z mMBUS XM-S- 0.BCD
11186

11187 wWX_D_0_5=373 & D & Q <~ SuUP ROT

;11488 7?2 & D <= SUP ROT

;1189 & Q <- SuP ROT

11190 <= SUP ROT

1191 wX_D_Q_.NOT.5=363 & D & Q <~ .NOT,(SuUP ROT)

31192 wx_D_.NOT.5=352 &0 <= .HNOT.(SUP ROT)

31193 WX_Q_.NOT.5=361 & Q <= JHNOT.(SUP ROT)

31194 WX_.NOT.S=360 HZLT <= .MOT.(SUP ROT)

11195

11196 WX _0_DSL.SQL=24E WU 8 D <~ D SHF LEFT Q <~ SHF LEFT {D-R-CI).SL
31197 WX _D_DStL.SQR=24F : iWIAXU & D <- D SHF LEFT Q <~ SHF RIGHT (D-R-CI).SL
11198 WX _D_DSR.5QL=24A 1WMXU & D <- O SHF RIGHT Q <~ SHF LEFT (D-R~CI).SR
11199 wx_D_DSR.SQR=248 TWAXU & D <= D SHF RIGHT Q <~ SHF RIGHT (D~R~CT).SR
;1200

11201 . w3 _LOOPF=378 ;wWB<31:30> <- 0'LOOP FLAG

31202 WB_LCOPF.Q_0=379 swWB<31:30> <= 0'LO0P FLAG Q <= 0

§1203 w8 _LCGPF.D_0=237A ;WB<31:30> <~ 0'LOOP FLAG D <=0

31204 wR_LOOPF.Q_D_0=378 TW8<31:3C> <~ 0'LO0OP FLAG Q&D<~-0

31205 WB_ALUF=37C IWB<31:30> <~ ALUSO'ALKC

$1206 WB_ALUF.Q_5=37D : $WB<31:30> <~ ALUSD'ALKC Q <~ S

$1207 WB_ALUF,D_S=37¢ sWB<31:30> <~ ALUSO'ALKC D <= 5

11208 WB_ALUF,.Q_D_S=37F 1WB<31:30> <- ALUSO'ALKT Q&8 D<-5

31209

31210 MULFAST =279, LVALIDETY=<VS0-54.21> MULTEPLY $RBUS BY Q (2 ITERATIONS PER CYCLE)

1211 MULSLOW+=278B, LVALIDITY=<050.051> SMULTIPLY #RBUS BY Q (1 ITERATION PER CYCLE)

11212 MULFAST~=2(9, SVALIDEITY=<VE0-54.21> SMULTIPLY -RBUS BY Q@ (2 ITERATEIONS PER CYCLE)

1213 MULSLOY-=2068, JVALIDITY=2<050.051> SMULTIPLY -RBUS BY Q (1 ITERATION FER CiCLE)

11214 ' DIVFAST+=26C, LVALIDITY=<V50-54.21> ;DIVIDE Q BY +R3US (2 ITERATIONS PER CYCLE)

11215 DIVSLOW+=26E, WNVALIDITY=2<050.051> 1DIVIDE Q BY +REUS (1 ITERATICN PER CYCLE)

11216 DIVFAST=-=27C, VALIDITY=<VS0-54.21> sDIVICE Q BY -RBUS (2 ITERATIONS PER CvCLE)

17 DIVSLOW=-=27E, LVALIDITY=<050,051> sOIVIDE Q BY -RBUS (1 ITERATION PER CYCLE)

i1218 REM=26A, JVALIDITY=<VG50> SUNSHIFT REMAINDER (RBUS MUST BE 0)

11219 DIVDA=27F, VALIDETY =<VO50> sOIVIDE DOUBLE ADD

11220 DIVDS=26F, SVALIDITY=<VO50> iDIVIDE DOUBLE SuB

MACHINE FIELD DEFINITION

3pPODOIDIN

3 CMTO18.MCR {130,2112] Micro=2.1 14(33)

; MACRO .MmIC [130,2112]

$2446 .TOC " Basic Macros”

12437

;2448 ccort

12449 ccoe2

32450 CLEAR ADD!({FLAGO)
;2451 CLEAR ADD2(FLAGH)

12452 CLEAR BOOT(FLAG MMNOINT)

12453 CLEAR FLAGO
32454 CLEAR FLAGY
$2455 CLEAR FLAG2
+2456 CLEAR FLAG3
12457 CLEAR FPD

;2458 CLEAR MOPZERO(FLAGYT)

$2459 CLEAR MUL1{FLAG2)
32460 CLEAR MUL2(FLAGI)
$2461 CLEAR OPZERC{(FLAG3)
12462 CLEAR OVER(FLAG2)
$2463 CLEAR REAC{FLAGH)
;2464 CLEAR REGINT(FLAG1?)

32465 CLEAR SAMESIGN(FLAG4)

;2466 CLEAR STACK FLAG
32467 CLEAR SUB(IFLAG!)
12968 CLEAR TP

12469 CLEAR UNDER(FLAG3)
12470 CLEAR WRITE(FLAG1)
12471 CLOBEER MTEMPO
32472 CLOBBER MTEMPO DEF
;2473

:2474 DEC STEPC

32475 DISABLE INT

12476 DIVDA SOR IN R{]
$2477 pIvDS SOR IN R[]
32478 DIVFAST+ SOR IN R[]
12479 DIVFAST=~ SOR IN R[]
;12480

$2481 FLUSH XB

12482

32483 [0 RESET

$2484 IRD1

;2485 1ROX {]

12486 ISIZE[]

;2487

$2498 MULFAST+ CAND IN R[]
72489 MULFAST~ CAND IN R[]

32490

$2491 NOP
:2492

$2493 PUSH

$2494 PySH RBS+
12495 PUSH RBS-
;2496

$2497 PROCESS INIT
;12498

12499 RETURN []

14:40:3 9-Mar-1979
Basic Macros

CC/CCOP1.CCEBR_SIGND
*CC,/CCOP2.CCIR_SIGND"
*MISC/CLR.FLAGO"
"MISC/CLR.FLAGI"
"MISC/CLR.MMNGINT®
*MISC/CLR.FLAGC"
"MISC/CLR.FLAG1"
"MISC/CLR.FLAG2"
"MISC/CLR.FLAG3"
"MISC/CLR.FPD"
*MISC/CLR.FLAGT"
*MISC/CLR.FLAG2"
"MISC/CLR.FLAG3"
*MISC/CLR.FLAGI"
*MISC/CLR.FLAG2"
"MISC/CLR.FLAG1"
*MISC/CLR.FLAGT"
"MISC/CLR.MUNQINT"
*MISC/CLR.STACKFLG"
"MISC/CLR.FLAGT"
"MISC/CLR.TP"
*MISC/CLR.FLAGI"
"MISC/CLR.FLAGH"
"MSRC/TEMPO, SPW,/MLONG"
"SPW/MLONG"

“MISC/DEC.SC*

"MISC/SET .MUNOINT"
"ALPCTL/DIVDA,RSRC/@1,R0OT/0"
"ALPCTL/DIVDS,RSRC,/@1,R0OT/0"
"ALPCTL/DIVFAST+,RSRC/®1,ROT/0"
"ALPCTL/DIVFAST~-,RSRC/®1,ROT/0"

*WCTRL/PC_W8,wB_M{PC]"
*BUS/I0INIT"

*BUT/IRD1"
“gUT/IRDX,NEXT/@1"
*ISTRM,/IS1ZE_DSIZE,DTYPE/B1"

"ALPCTL/MULFAST+ ,RSRC/@1,ROT/0"
"ALPCTL/MULFAST-,RSRC/21,ROT/0"

"ALPCTL/NOP™
"JSR/PUSH*
"MSRC/PSHADD"
"MSRC/PSHSUB"
"BUS/PRINIT®

SUT/RETURN ,NEXT/@1

32500 RETURN AND INHIBIT DESTINATICONS "SUT/RET.DINH"

BASIC MACROS

Figure 6-11

6-156

Microcode

Page 65

CMTO018,MCR [130,2112] Micro=~2.1 1A(33)
Bus Function Macros

: MACRD .MIC [130,2112]

32527
32528
$2529
$2530
32531
32532
$2533
32534
32535
;2536
12937
;2538
$2539
32540
32541
12542
32543
32544
+2545
$2546
32547
$2548
12549
$2550
$2551
32552
32553
312554
$2555
12556
32557
;2558
32659
12560
$2561
12562
32563
32564
1256%
;2556
32567
32568
32569
32570
32571
32572
32573
$2574
32575
32576
32577
;2578
32579
12580
32581

.70C * 8us Function Macros”

READ
READ.LONG
READ.LONG.MCD
READ.MOD
READ.MOD.LOCK
READ.NOTRAP
READ. PHY
READ.SECOND

WRITE
WRITE ~-M[]
WRITE -Q

WRITE D+R[J+ALKC

WRITE W[

WRITE M{]+PStLC

WRITE M{]+Q ~

WRITE M[]+Q+PSLC

WRITE M[|-PSLC

WRITE M[]-0Q

WRITE M[]-Q-PSLC

WRITE M{].AND.ZLITO[]
WRITE M[].ANDNOT.Q

WRITE M{].ANDNOT.R{]
WRITE M{[].ANDNOT.ZLITB([]
WRITE M[].0R.Q

WwRITE ™[|.OR.R[]

WRITE M[].XCR.Q

WRITE M[].X2Z

WRITE NOTREG

WRITE Q
WRITE Q.NOT
WRITE R{
WRITE R[]+CONX(4)
WRITE R{]-D-ALKC
WRITE R{]-M[]
WRITE R[]-M[]-1
WRITE XB PC_PC+?

WRITE X8 PC_PC+4

WRITE ZLITO{]
WRITE.LCONG
WRITE.LONG D
WRITE.LONG W[].ANDNOT.Q
WRITE.LONG M{].0R.Q
WRITE.LONG.NGTRAP
WRITE.NOTRAP
WRITE.PHY

WRITE.PHY M[]
WRITE.PHY R[]
WRITE.SECOND
WRITE.SECOND.UL
WRITE.UL M{]

Microcode

14:40:3 9-Mar-1979 Page 87

"BUS/READ"
“BUS/RTAD.LNG"
“SUS/READ. LNG.NOD"
*8US/READ.VQD"
“BUS/READ.MJD.LCK"
“BUS/READ.NT"
“BUS/READ.PHY"
"BUS/READ.SEC"

"BUS/WRITE ,WCTRL,/WOR_wB"

"BUS,/®RITE . WCTRL, WOR_WB ,MSRC/@1,RSRC/ZERO.ALL/B-A-CI, ALUCI/ZERO MUX/M.R1"

*BUS,/WRITE,WCTRL/WOR_w8,MUX/R.Q.RSRC/ZERD.ALU/A~3~C1,ALUCI/ZERDQ"

“BUS/WRITE,WCTRL/WOR_w8,RSRC/€1,MUX/D.R1,ALU A+B+CI ,ALUCI/ALKC™

*BUS/WRITE,WCTRL,/WDR_wB,MSRC/@1,ALU/OR, MUX/M.S,ROT/ZERD"

"BUS/WRITE,WCTRL/WCR_WB.MSRC,/®1,RSRC/ZERD,MUX M. Rt ,ALU/A+B+CI, ALUCI/PSLC"

"BUS,/WRITE ,WCTRL,/WOR_WB,MSRC, 21, MUX/M. Q1 ALU/A+8+C1"

"BUS/WRITE,WCTRL,WOR_WB.MSRC/G! ,MUX/M.Q1,ALU/A+B+CI ,ALLUCI/PSLC"

"BUS/WRITE,WCTRL,WOR_wB,MSRC/@1,RSRC/ZERD, MUX M. R1,ALU/A-B~CI,ALUCE/PSLC"

"EUS/WRITE,WCTRL/WOR_wB.MSRC/@1.MUX/M.C1, ALY, A-B-CI"

"BUS/WRITE ,WCTRL/WOR_WB,MSRLC/@1,MUX/M.Q1 ,ALU/A-B-CI ,ALUCI/PSLC"

“BUS/WRITE WCTRL,/WOR_WB,MSRC/&1, LIT/LITRL,LITRL/®2,ROT/ZLITO ,MUX/M.S,ALU/AND"

*BUS/WRITE,WCTRL,/WCR_WB,MSRC/31 ,MUX/M.Q1,ALU/ANDNOT"

"BUS,/WRITE ,WCTRL/WDR_wB,MS2C,/®1,RSRC,@2,ALU/ANDNOT ,MUX/M . R1*

"BUS,/WRITE,WCTRL/WDR_wB,MSRC,/@1,LIT/LITRL,LITRL/32,ROT/ZLITB,MUX/M.5,ALU/ANDNOT"

"SUS,/WRITE ,WCTRL/WOR_wW8,MSRC, 31 ,MUX,M.Q1 ,ALU,/CR"

“BUS/WRITE ,WCTRL/WDR_%B ,M3RC/81 ,RSRC/82,ALU/CR , MUX/M.R1"

"BUS/WRITE,WCTAL, WOR_wB,MSRC/S1 . MUX/M.Q1, ALY,/ XOR"

BUS/WRITE ,WCTRL,/WOR_W3,M5RC, @1 . ALPCTL/WX_S,ROT/XZ.MM

“BUS/WRITE.NOREG.WCTRL/WDR_WB"

"BUS/WRITE ,WCTRL/WDR_wB.RSRC/ZERO,MUX/R.Q,ALU,OR"

"BUS/WRITE ,wCTRL,/WOR_WB,RSRC/ZERD.MUX/R.Q,ALU, A-C~CI ALUCI/ONE"

"BUS/WRITE,WCTRL/WOR_WE,RSRC/@1,ALU/OR ,MUX/R.S,ROT/ZERO"

"BUS/WRITE,WCTRL,/WOR_WB,RSRC,/21,ALU/A+8+CI . MUX,'R.5,ROT/CONX.SIZ ,DTYPE/LONG"

*BUS/ARITE ,WCTRL/WCA_WB,.RSRC,/©1,MUX/D.RY,ALU/B~A~CI ,ALUCT/ALKC"

*8US/WRITE,WCTRL/WCR_w8,15RC,@2,RSRC/@1 ,ALU/B=-A-CI MUX/M.R1"

"BUS/WRITE,WCTRL/WOR_wB,M3RC,/@2,RSRC/E1,ALU/B-A=CI.MUX/M.R1,ALUCI/ONE" -

"BUS/WRITE,WCTRL/WOR_wWB,MSRC/XB.PC_PC+I,ROT/ZERO,ALU/OR,MUX/M.5,
ISTRM/ISIZE_DSIZE,.DTYPE,/BYTE"

*"BUS/WRITE ,WCTRL/WDR_wWB.MSRC,/XB.PC_PC+I ,ROT/ZERD,ALU/OR, MUX/M.S,
ISTRM/ISIZE_DSIZE.DTYPE/LONG"

*"BUS/WRITE,WCTRL, WOR_W8, ALPCTL/WX_S,ROT/ZLITO,LIT/LITRL,LITRL/®1"

“BUS/WRITE ., LNG.WCTRL/WOR_WB.UR"

*SUS/WRITE.LNG,WCTRL/WOR_WB.UR,RSRC/ZERC,MUX,/D.R1,ALU/OR"

"SUS/WRITE.LNG,WCTRL/WDR_WEB.UR,MSRC/@1 ,MUX/M.Q1, ALU/ANDNCT"

"BUS/WRITE.LNG.WCTRL/WDR_WB.UR,MSRC/@1,MUX/M.Qt ,ALU/OR"

"BUS/WRITE .NT.LNG"

"BUS/WRITE.NT*

"BUS/WRITE,PHY"

"BUS,/WRITE.PHY ,WCTRL/WCR_WB,MSRC/@1,ALU/QR,MUX/N.S,ROT/ZERDC"

"BUS/WRITE,PHY ,4CTRL/WOR_WB.RSRC/®1,ALU/OR,MUX/R.S,ROT/ZERD"

“BUS/WRITE.SEC"

"BUS/WRITE.UL.SEC"

"BUS/WRITE.UL,¥CTRL/WDR_WB,MSRC/@1,ALU/OR,MUX/M.5,RCT/ZERG"

BUS FUNCTION MACROS

Figure 6-12

6-17

Microcode

: CMTO1B8.MCR [130,2112] Micro=2.1 1A(33) 14:40:3 9-fMar-1979 Page 69
: MACRO .MIC [130,2112] Register Transfer Macros

;2586 .T0C * Register Transfer Macros"

32587

12588 ALUS_BCD SIGN.ZERO(M[]) "CCMISC/ALUS _DSDZ.CCEBR_ALUS,MSRC/@1,RSRC, ZERG,ALU/OR MUX/M.R1"

12589 ALUS_SIGND *CCMISC/ALUS_SIGHND. LCBR_ALUS"

$2590 ALUS _UNSGN "CCMISC/ALUS _UNSGN.CCBR_ALUS"

32591 ASTLVL_M[].RL.24 “WCTRL/ASTLVL_®B,ALPCTL,/WX_S,MSRC,/®1.ROT/RR.MM.SIZ,DTYPE/BYTE"

12592 ASTLVL_R{]._M[] *WCTRL/ASTLVL_¥B,SPW, RLCNG,RSRC/@1 ,ALU/CR,MUX /M. S ,ROT/ZERO,MSRC/@2"

32593 ASTLVL_[} "WCTRL/ASTLVL_WB,LITRL/81,LIT/LITRL,ROT/ZLIT24,ALPCTL/WX_S"

32594

32595 BUS GRANT M[]_IPL *8US,/GRANT ,WCTRL/GRANT ,SF¥/MLONG ,MSRC /21"

32596

12597 cC_M[] "CCPSL/CC_WB.CCBR_ALUS,ALU/OR,MUX/M.S,MSRC/@1 ROT/ZERO"

;2598 CC_M[] .NOTAND.R{] "CCPSL/CC_WB.CCBR_ALUS .MSRC/®1,RSRC/B2,MUX/M. R, ALU, NOTAND"

$2599 CC_M(].DR.R[] "CCPSL/CC_WB.CC3R_ALUS . MSRC/®1,RSRC,/@2 , MUX/RM.R1,ALU/OR"

;2600 cC_r{] _MB8. ANDNOT . CONX(1) "CCPSL/CC_WB.CCBR_ALUS,ALU/ANDNOT ,MUX/M.S, SPW/MLCNG .MSRC/@1,ROT/CONX.SIZ,DTYPE/BYTE"
312601 CC_M(]_tB. ANDNOT.CONX(4) *CCPSL/CC_WB.CCBR_ALUS,ALU/ANDNOT ,MUX,/M.S,SPW, MLONMG,MSRC/@1 ,ROT/CONX,SIZ,DTYPE/LONG"
32602 cc_m{]_M3.0R.CONX(1) " ®*CCPSL/CC_%8.CCBR_ALUS,ALU/OR, NUX,/M.S,SP4/MLONG,MSRC/@1 ,ROT/CONX.SIZ,DTYPE,/BYTE"
32603 cc_m[]_zLiTo[]) *CCPSL/CC_Wa.CCSR_ALUS, SPW/MLONG,MSRC/&@1, ALPCTL/WX_S,ROT/ZLITO,LIT/LITRL,LITRL/@2"
32604 CcC_ZLITO(] “CCPSL/CC_WB.CCBR_ALUS,ALPCTL/WX_S,ROT/ZLITO.LIT/LITRL,LITRL/@1"

$ 2605 cc_[1 "CCPSL/CC_WS.CCBR_ALUS,ALPCTL/WX_S,ROT/ZLITO,LIT/LITRL,LITRL/O1"

12606

32607 CONREGS_D_M[1_R{] "WCTRL/CONWRITE .MSRC,/&t,SPW/MLOMG,ALU/OR,MUX/R.S,ROT/ZERC.RSRC,/32,001/D_wWX"
$12608 CONREGS_W[] "WCTRL/CONWRITE,wB_M{31}"

32609 COMREGS _M[].OR.ZL1IT16[] *WCTRL/CONWRITE,ALU/OR,MUX/™M.S,MSRC/@1 ,ROT/ZLIT16,LIT/LITRL,LITRL/B2"

32610 CONREGS u[] RR.16 *WCTRL/CONWRITVE ,ROT/RR.MM.SIZ ,CTYPE/WORD , MSRC,/ @1 ,ALPCTL/WX_S"

12611 CONRESS_R{] "WCTRL/CONWRITE , ALU/CR,MUX/R.S,ROT/ZERD,RSRC 21"

$2612 CONREGS_ZLIT'E[] "WCTRL/CONWRITE ALPCTL/WX_S,ROT,/ZLIT16,LIT/LITRL,LITRL/@1"

32613

312614 crar_zLiTo{] "WCTRL/LOADCRAR ALPCTL/WX_S,ROT/ZLITO,LIT/LITRL, LITRL/B1"

12615 CRAR_ZLIT16(] *WCTRL/LOADCRAR,LETRL/21,LIT/LITRL,ROT/ZLIT16,ALPCTL/WX_S"

;2616

52617 D(BD) _ZLITO[] “BO1/D_WX.ROT/ZLITO,LIT/LITRL,LITRL/D1,ALUJID/OR.CD,MUX/2.5"

:2618 D_(M[}.R®.P).AND.R{] *CO1/D_WX,NSRC,/21,RSRC,/#2.ROT/RR .M. PLALU/AND, MUX,/R.S"

32619 D_{(R[] ™[]).RL.P "ALPCTL/WX_D_S.WSRC,22,RSRC,/&1,ROT/RL.AM.P"

32620 D_D+R[] “DQ1/D_WX,RSRC/31,0MUX/D.R1,ALU/A+B+CI"

;2621 D+ZLXTO[] "DQ1/D_WX,MUX/D.S,ALU/A+B+CI ,ROT/ZLITO, LIT/LITRL,LITRL/®1"

12622 D _0-R[] "DQ1/D_WX ,RSRC/@1.MUX/D.R1, ALY A-B-CI"

12623 D_D-ILKIO[] "DO1,/D_WX,LIT/LITRL,LITRL/GY,0OT/ZLITO,MUX/D.S.ALU/A-B-CI"

;12624 D_D.AND‘ZLITD[] "0O1/D_WX ,ALU/AND,MUX/D.S.ROT/ZLITO,LIT/LITRL,LITRL/@1"

32625 0_D. AND.ZLIT!B[] "DR1/D_¥X,ALU/AND,MUX,/0.5,ROT/ZLIT28,LIT/LITRL,LITRL/@1"

$2626 D_D.x2R.2ZLIT12[] "DQ1/D_#X ,MUX/D.S,ALY, XCR,POT/ZLITI2,LIT/LITRL,LITRL,/@"

$2627 D M["DQ1/D_WX,MSIC/21,RSRC,/ZERCQ. ALU/OR . MUX, WM, R1"

32628 D_mM[]+R[] "CQ1/D_WX,MSPC,/@1,RSRC/2,ALU/A+3+CI . MUX,/M.RT"

32629 D_M ‘zr.lm[] "CO1,/D_WX,ALU/A+B+CL , MUX M. S, MSRC /81 . ROT,/ZLITO, LIT/LITRL, LITRL/@2"

$2630 o_M[{]-R[] 'DO\/D_UX,MSRC/@!,FSRC{‘Z,MUX/M.R!,ALU/A-B'CI"

$12631 D_M[].aND.R{} “DO1,/D_WX,ALU/AND,MUX, M. Rt ,4SRC,'21 ,RSRC,/ 32"

32632 D_M{].RR.16 “ALPCTL/WX_D_5.MSRC/91,ROT/RR.MM.S51Z,0TYPE,/WORD"

$2633 D_M[].RR.16 Q_R[] "ALPCTL/WX_D_S.Q_R.MSRC/%1 ,ROT/RR . MM.SI1Z,DTYFPE,/WORD,RSRC/82"

12634 0.0 Q.0 “ALPCTL/WX_D_9.Q_D"

:2635 >} D_M[] *DQ+/Q_D_wx,MSRC, 31 ,ROT/ZERO,MUX/M.S.ALU, 03"

12636 o_R “£O1/D_WX,ALU/OR.MUX/R.S,’SRC/®1 ,RAOT/ZERD"

$2637 D_R[]-D=ALKC “DQ1/D_%X,RSRC/@1.MUX,/D.R1,ALU/B=-A~CI ALUCI/ALKC"

$2638 O_R[]-M[] "DQ1/D_WX,RSRC/31 ,MSRC/@2,MUX, M.R1,ALU/B-4-C1"

32839 D_SEXT(M{]) "CQ1/D_WX,MSRC/21,RSRC/ZERD,MUX/XM.R,ALUXM/SIGN, ALU/OR"

32640 D_S EXT(M[]) PL<4-0>_31 PLLE>_t “"DQ1/D_WX,MSRC/@1,ROT/OLITO.PL_LIT,LIT/LITRL,LITRL/1FF ,MUX/XM.S,ALU/AND"

REGISTER TRANSFER MACRO'S

Figure 6-13

6-18

; CMTO18.MCR [130,2112] Micro-2.1 1A{33)
s MACRQ .MIC {130,2112]

$3367
3368
$3362
:3370
33371
$3372
$3373
$3374
33375
+3376
33377
33378
33379
33380
$3381
$3382
33383
$3384
13385
3386
53387
$3388
+33389
$3390
33391
33392
13393
33334
$3395
;3396
53327
33398
$3399
$3400
$3401
13402
13403
: 3404
33405
$348

13407
33408
$3409
:3410
134811
$3412
13413
;3414
33415
:3416
13417
33418
:3419
$3420
$3421

.70C " Branching Macros"”

(M{TEMP3]-SL}BYTE RANGE CHECK?

(PL+SL).GT.32?

ABSVAL M[1<7-0>?
ADD1{FLAGG)?

ADD2{ FLAG!) ADD1(FLAGO)?
ALLOW INT?

ALUS?

APT LOAD?

B8CD SIGN M[]?

BCD SIGN.ZERQ?
BOOT(FLAG MMNOINT)?
BRA ON ADD?

CCOPt SIGND?

CCOP2 SIGND CMP .NOT.IRO?
CHECK INTERRUPTS?

CMP SIGNS?

COUNT QR INT TIMER?

D8Z STEPC?
DSIZE?

EXPONENT RANGE?

FLAGO?

FLAG! FLAG2.XOR.FLAG3?
FLAGY?

FLAG2?

FLAG3?

FLAGK1-0>?

FPD?

FPS3?

FRO.FLTZ?

HALT?

INTPEND OrR TIMER?
1P.TS?

IR<2>?

1R<S>?.

1R<2-0>?

LOD INC BRA?

MDR_GPR.R RNUM.EQ.7?
MOR_ZEXT(OSR) BRATST?

MICRO VECTOR?

MM IPEND QR TIMER?
M. ALLOW. INT?

1

8ranching Macros

*BUT/SRKSTA ,MSRC/@1,MUX/M.S,ALU/A-B-CI,ROT/SL"

4:40:3 9-Mar~1979

*BUT/SRKSTA,ROTSRK/VIELD.0QO"

“BUT/SPKSTA,ROT,/MINUS? ,MSRC/@1,MUX/M.S, ALU/AND"

“BUT/FLAGO"

"BUT/FLAG1TOO"
“BUT/CCBR1.INT=TS"
“BUT/CCBR,CC/NGP.CCBR_ALUS"
"CC/NOP.CCBR_ALUS,BUT/CCER"

*BUT/SRKSTA,ROT/BCDSWP ,MSRC/@1"
“BUT/CCBR,CC/NOP.CCBR_ALUS"”
“8UT /MM NCINT"

“BUT/BRA.

ON.ADD"

*8UT/CCBR,CC/CCOP1.CCBR_SICND™

“BUT/CCBR1.CCBRO.IRO,CC/CCOP2.CCBR_SIGND™

*"BUT/CCBRY.INT~TS,DTYPE/LONG"
*BUT/CCSR,CCMISC/NOQP.CCBR_CSIGNS ™
"BUT/CCBR1Y . INT~TS"

“SUT/DBZ.

“BUT/DSIZ

sc*
E*

"BUT/SRKSTA"

"8UT/FLAGO"

"BUT/F1.X

OR23"

*"BUT/FLAGI™"
"SUT/FLAG2"
"BUT/FLAG3"
“BUT/FLAGITOO"

“BUT/FPD"

"BUT/FPS3"

“BUT/FRO.

“BUT/FPS1

*SUT/INT~
“BUT/CCEBRT.INT-TS,CCMISC/NOP.CCBR_BRATST™

*BUT/IR2"
"8UT/IRS"

FLTZ*

TIMSERY"

“BUT/IR.2T00"

"8UT/L0OD.

INC.BRA"

Microcode

"3UT/SPASTA,WCTRL/NCR_wB,RSRC/GPR.R,ROT/ZERD,MUX/R.S5,ALU/OR"
*BUT/CCEBR,CCPSL/MDR_CSR.CCBR_BRATST™

"BUT/UVCTR,CLKX/XTND"

"BUT/MM,ALLOW. INT"
"SUT/MM.ALLOW. INT"

BRANCHIN G MACROS'

Figure 6-14

6-19

Page 84

Microcode

: CMT018.MCR [130,2112] Micro-2.1 1A(33) 14:40:3 9-Mar-1979 Page 90
s INIT Mic {130,2112] Initialize Microcode for the Console and Power up
ABSOLUTE ADDRESS :ggz: OC * Initialize Microcode for the Console and Power up”
- 1359 0
NEXT :3597 [ININTYT] SYMBOLIC ADDRESS
;3599 i H ’
ADDRESS ; 3599 froncty iuro:o:oo].}——-(:) $LONLIT GETS 41F0000
. 13600 CLEAR FLAGZ, :PROCESS INIT CLEAR FLAG2
v fpood], 7100.7oro.7rrr.9aso. 13601 NEXT/IN.PSL.LONLET LOCATEIN .co1g REG FLOW
;3602 MACRO FILE
33603 .REGION/<INIT.RIL> <INIT. RIH>/<INIT, R2L>,<INIT . R2H>/<INIT_R3IL>,<INIT R
;3604 -
3665 IN.PC_O:
:3606 : H
13607 PC_R{2ERO], :PC GETS O
$3608 CLEAR FLAGTY, :FOR CHARLIE'S OLEAR T8 SUBR
U 0818, 0080.%EE4,08B08,4850,000% ;3603 RETUPN {1} sRETURN+?
:3610
13611 IN.VA_O: .
$3612 D e D Sl D it
13613 va_r[2ERO]. VA GETS O
U 0825, 4800,52€£4,0808,4a50,0001 ;3614 rReTUeN | 1] TRETURN 1
13615
:3516 IN.CN.IN(T:
:3517 . == - ———
el 2F] LaNLIT_[41F00CO], :LONLIT GETS 41F0000
U 0839, 3500,7DF0,7FFF,BA50,083E :2619Q SET FLAG2 ;PRCCESS INIT CLEAR FLAG2
:3620
:3521 IN.PSL.LONLIT:
13622 H - -
U 083E, 0000.59F4,0304,0050,0820 :3623 PSL_R{LONLIT] CLEAR FLAGO :PSL GETS LONLIT CLEAR FLAGO
13624
33625 =0
$3626 j0m==se- - - ececmeemeceecenee;
;3627 PUSH, 1JSR
12626 STEEL 2. :
. :3620 CRYT 2173070 . ;CRAR GETS 2
VU 0820, 5A00.C370,0340,2450,4918 ;2630 NEAT (.. 70 ;NOW IF WE CONWRITE
:3631 :WE WilL WRITE TO RXCS
$3632
13632 H --- :
$3632 CORREGS _D_M[SISR]_R[ZERO], $RXCS GETS 0
U 0821, B9EF,SBEG,03D8,2C50,08A0 ;2635 DEC STEPC 1S1SR GETS ©
13636
:3637

LABELS AND MACRO EXPANSIONS

Figure 6-15

6-210

;s CMTO18.MCR {130,2112] Micro-2.1 1A(33) 14:40:3 9-Mar-1973 ' Page 70
i MACRO .mIc [130,2112] Register Transfer Macros

1¢-9

91-9 @2anb1g

12641 D_SEXT(XB) PC_PCi1 “DQ1/D_WX,MSRC/XB. PC_PC+1,RSAC/ZERD,MUX/XM. R, ALUXM/SIGN,ALU/OR, DTYPE/BYTE, 1STRIA/1S1ZE_DSIZE"
12642 D SEXT(XB) PC_PC+2 “DQ1/D_WX,MSRC,XB. PC_PC+1,RSRC,ZERD, MUX/KM. R, ALUXIA/STGN, ALU/OR, OTYPE/WORD, 15TRi/1S1ZE_DS1ZE"
$2643 D_ZEXT(M[]) *DOI/D_WX ,MSRC/®1 ,RSRC/2ERD,MUA/XM.R,ALUXM,ZERD, ALU/OR®

12649 p_zLITO[] “ALPCTL/WX_D_S.ROT/ZLITO,L1T,/LITRL, LITRL 01"

12645 p_zLIT0[]-D “DQ1,/D_WX,MUX/0.S,ALU/B-A-CI,ROT/ZLITO, LIT/LITRL, LITRL/@1"

12646 D_zLIT12(] WALPCTL/MX_D_G,ROT/ZLITI2, LIT/LITRL, LITRL/©1"

12647 p_ZL1T24{] “ALPCTL/WX_D_S,ROT/ZL1T24, LIT/LLTRL, L1 TRL/®Y"

12648

12649 FLAGS_D_R[) “WCTRL/FLAGS _WB,RSRC,®1,ROT/ZERQ, ALU/OR ,MUX,/R. 5,01 /0_WX"

12650 FLAGS_M[}.AND.ZLITO[] “WCTRL/FLAGS _WB.MSRC/®1 . ALU/AND, MUX/M.S.ROT/ZLITO,LIT/LITRL, L1TRL/@2"
12651 FLAGS_R[| “WCTRL/FLAGS_WB, RSRC/@1 ,ROT/ZERD, ALU/OR . MUX/R. S

+12652

12653 INIR_M[]_O “WCTRL/INIR_W3.MSRC/@1,5PW/MLONG , ALU/OR ,MUX/R.Q . RSRC/ZERO"

12654 1PL_M(].AL.16 “WCTRL/1PL_WB, ALPCTL/WX_S,MSRC,/®1,ROT/RR.MM.S1Z,DTYPE/WORD"

12655

12656 —>® [-ur/mmn.Lcmur/<.Not[<|.0~ur/m>]>"}-«——@ LOCATE IN DEFINE FILE
:2657

12658 MOR_(M[] R[1).RR.P “WCTRL/MDR_WB, MSRC/®1,RSRC/ 52, ROT/RR.MR. P, ALPCTL/WX_S*

12659 MDR_ -t »WCTRL/MDR w3, ROT/MINUST , ALPCTL/WX_§*

12660 MDR_-M[| “WCTRL/MDR WB.MSRC/@1,ALU/B~A-CI , ALUCI/ZERO, RSRC/ZERD,MUX /M, R1*

12661 MDR_O “WCTRL/MDR_O*

$12€£62 MDR_MW 'WCTRL/MDR_WB,MSRC/@I +RSRC/ZERO,MUX/M_ R1,ALU/OR"

12663 MDR_M[J+ALKC “WCTRL/MDR W3, MSRC/@1,ALU/A+B+CE , ALUCT/ALKC, RSRC/ZERD ,MUX /M. R1 "

12664 MDR_IA[J+R[] *ALKC *WCTRL/MDR_WB,MSRC /21, RSRC/ 32, WUK/M. R1 , ALU/A+B+C1,ALUCT/ALKC®

12665 MDR_M *ZI_['?‘I[] "WC'“[/M[)R_WB,MSRC/Q|,ALU/AOBOC!.MUK/'-‘.S.RO",ZLI‘Q".L,’/L]TRL.Ll‘RL/@z"
12666 MDR_M[}.AND.OLITB[] “WCTRL/MDR_ W8, MSRC/®1.LIT/LITRL, LITRL,/@2,ROT,/OLLTE,MUX/M.S,ALU/AND®
12667 moR_M[].AND.ZLETO[] “WCTRL/MDR_WB . MSRC,®1,LIT/LITRL, LITRL/82,ROT/ZLITO,MUX/M. 5, ALU/AND"

12668 MDR_M[].ASR.P *WCTRL/MDR_WB,MSRC /81 ,ROT/ASR.M.P,ALPCTL, WX_5"

12669 MDR_M[].FPLLT “WCTRL/MDR_WB,HMSRC/®1,ROT/FPLIT, ALPCTL/WX_S"

12670 MDR_M .Oﬂ-‘Rl].RR.24) "HC’R[/MDR_WG,MSRC/@!.RSRC/@Z.ROT,’RR-R".SlZ.DTYPE/LONG,MUX/‘M.S.ALU/QR"
12671 mor _m[].0R.20L1724[} “WCTRL/MCR W8, ALU/OR,MUX /1. S, MSRC /@1 ,ROT/ZLET24, L1T/LETRL, L1TRL /02"

12672 1OR_M{].RL.24 “WCTRL/MDR_W8 ,MSRC/@1 ,ROT/RR.M4. 512, DTVPE/BYTE, ALPCTL /WX _S"

12673 MDR_M{[].RL.8 “WCTRL/MOR_WB MSRC/®1 ,DTYPELONG ,ROT/RR.MM.S12,ALPCTL/WX_ S

12674 MDR_M .RL.9 “WCTRL/MOR_WB,ALPCTL/WX_S,ROT/RL,MM.PTE IASRC, &1 *

12675 MDR_M{].RR.16 “WCTRL/MOR WB.MSRC/®1,ROT/RR.NM. S1Z,DTYPE, wORD, ALPCTL/WX_S"

12676 MDR_t[).XOR.R{] *WCTRL/MDR_WB,MSRC/G1 ,RSRC /B2, ALU/XOR, MUX/M, R1"

12677 wpR_M[].xGR-ZLIT12{] *WCTRL/MDR W0 . LISRC/@1,ROT/ZLIT12, LIT/LITRL, L1TRL/®2 ,MUX/M. S, ALU/XOR"
12678 MDR_M[]_R[1.R®.16 *WCTRL/MOR_WB, MSRC /@1, SPW/IALONG , RSRC/E2, ROT/RR.RR.S12,DTYPE/WORD,ALPCTL/WX_S"
12679 MDR_M _Zl.i‘o(] *WCTRL/IDR_WB,MSRC/®1,5PW. MLONG, LIT/LITRL,LITRL/@2,ROT/ZLIVO ALPCTL/WX_S"

MDR_Q
MDR_Q_M[]
MDR_R
MDR_R[]~M[]1~ALKC
MDR_R[|.RR.24
MOR_R[]_M[]

MDR_R[] _RB~CONX.S12Z
MDR_SEXT(M{ 1)
MDR_SEXT(XB)+R[] PC_PC+1
MDR_XB PC_PC+2

MDR_XB PC_PC+4

MDR_XB PC_PC+I

MDR_ZEXT (M[])
MDR_ZEXT(GSR)
MDR_ZLITO[]

MDR_ZLETI6()

“WCTRL,/MUR_WE, RSRC/ZERD,MUX/R.Q, ALU/OR"
“WCTRL/MOR_W8,DQ1/Q_WX,M5RC/@1,ROT,/ZERQ,MUX /M, S, ALU/OR"
“WCTRL/MOR_WS,RSRC/31,ROT/ZERND MUK,/ R.S,ALU/OR"
"WCTRL/MCR_WB,MSRC/®2,RSEC, @1 ,ALU/B-A-CI,ALUCT ALKC ,MUX/M.R1*
*WCTRL/MOR_WB,RSRC,®1,ROT/RR.RR.S1Z,DIYPE/LONG.ALPCTL/WX_5"
“WCTRL/MDR_W2,RSRC/®1,S5PW/RLONG,MSRC/@2,ALU/GR,IUX/M,$,ROT/ZERD"
“WCTRL/MDR_W3,RSRC/@1 ,ROT/CRMNX.S1Z,MUX,R.5,ALU/A-B~Cl,SPW/RLONG,DTYPE/IDEP”
"WCTRL/MDR_WB,MSRC/@1 ,RSRC/ZERD,MUX/XM. R, ALUXM/SIGN,ALU/OR"
“WCTRL/MDR_WE,RSRC,/@1 ,MSRC/XB. PC_PC+1 ,MUX/XM. R, ALUXM/S1GN, ALU/A+B+CI®
“WCTRL/MDR_WB,MSRC/XB.PC_pPC+1,RSRC/ZERD,MUX/M.R1 ,ALU,/OR, ISTRi/1S12E_DSIZE,DTYPE/WORD
“WCTRL/MDR_WB,MSRC/XB,PC_PC+1,RSRC/ZERD,MUX/M.R1,ALU/OR, ISTRM/IS1ZE_DSIZE,DTYPE/LONG"
“WCTRL/MDR_wW8,MSRC/XB.PC_PC+1 ,RSRC/ZERD,MUX/M.RY ,ALU/OR, I1STRM/LS12E_DS12E,DVYPE/FDEP"
“WCTRL/MDR_WB,MSRC/®1 ,RSRC/ZERD, MUX/XM.R,ALUXM/2ERO, ALU/OR*
“CCPSL/MDR_OSR.CCBR_BRATST"

. “WCTRL/MOR_WB,LIT/LITRL,LITRL/®1,ROT/ZLITO,ALPCTL/WX_S"

“WCTRL/MDR_WB,LIT/LITRL,LITRL/®1 ,ROT/ZLITI6,ALPCTL/WX_S*

MACRO EXPANSIONS 2

®pODOIDIN

Microcode

; CMTO18.MCR [130,2112] Micro=2.1 1A(33) 13:40:3 9-Mar-1979
; DEFIN .MIC [130,2112] Machine Definition : ISTRM, JSR, LIT, LITRL, LONLIT,
;1508 ,TOC * Machine Definition ¢ ISTRM, JSR, LIT, LITRL, LONLIT, MISC®
11505
;1506 [STRM/=<33:33>,.DEFAULT=0 .
11507 NOQP=0 ;1SIZE IS DETERMINED SY HARDWARE
1508 . ISIZE_DS1ZE=1 ;ISIZE IS DETERMINED BY DSIZE
apisse e o .
*AA510 JSR/=<14:14> .DEFAULT=0 ;SUSROUTINE CONTROL
1511 NOP=0 ;NO CPERATION
11512 PUSH ;PUSH CURRENT ADDRESS OM MICRO STACK
31513
;1514 <77:76>, .DEFAULT=0 ;DEFINE UWORD FIELD INTERPRETATIONS
31515 NORMAL=0 sFIELDS ARE NORMAL
11516 LITRL=1 $SHORT LITERAL FIELD ENABLED :
31517 FRPAWAIT=2 JWAIT FCR FPA 7O COMPLETE PROCESSING
;1518 JLONG LITERAL FIELD ENABLED
1519
$1520(LITRL/=2<39:31> ;SHORT LITERAL
+1521
;1522 ;LONG LITERAL
1152
11524 MISC/=<75:71>,.CEFAULT=10 :DEFINE MISC FUNCTIONS ’
:1525 NOP=10
31526
11527 CLR.FLAGO=0 ;CLEAR FLAG O
;1528 CLR.FLAGI=1 ;CLEAR FLAG 1
;1520 CLR.FLAG2:2 ;CLEAR FL3G 2
;1530 CLR.FLAG3:3 ;CLEAR FLAG 3
;1531 CLR.MINQINT=4 :CLEAR FLAG 4
11532 CLR.STACKFLGa5 :CLEAR FLAG 5 :
$1533
;1534 © SET.FLAGO=8 $SET FLAG ©
11535 SET.FLAG!=9 ;SET FLAG 1
$1536 SET.FLAGD=0A JSET FLAG 2
$1537 SET.FLAG3=08 ISET FLAG 3
31538 SET.MMNOINT=0C :SET FLAG 4
31539 SET.STACKFLG=0D ;SET FLAG 5
;1540
;1541 ASSC=18 $RETUBN AND SUPPRESS BYS CYCLE
31542 RNUM_2REG=11 3RiUM <= COMP MODE SECOND REG
11242 CLR.TP=12 IPSLLTP> <= 0
;1544 CLR.FPD=ztC 1PSL<FPD> <~ 0
;1545 SET.FPD=1D 1PSLZFPD> <- 1
;1835 FORCE.TB=1E ;FOICE TB PARITY ERROR
$1547 FORCE.CACHE=1F ;FORCE CACHE PARITY ERROR
;1548
11549 © DEC.SC=13 ;STEP CNT <~ STEP CNT = 1
31550 sC_2=14 ;STEP CNT <=~ 2
;1551 SC_621§ 1STEP CNT <~ 6
31552 SC_14316 ;STEP CNT <~ 14
;1553 SC_30=17 {STEP CNT <- 30

MACRO EXPANSIONS 3

Figure 6-17

MISC

Page 42

CMTO18.MCR [130,2112] Micro~-2.1 1a(33)

INIT

0000,

0818,

0825,

0839,

083¢,

0820,

0821,

.MIC [130,2112]

t
7100,70F0, 7FFF,B8450,083€

0080,58E4,0B08,4850,0001

4800, 58E4, 0B08,4A50,0001

3500,70F0, 7FFF,8450,0B3E

0000,58F4,0304.0050,0820

o
5A00,C370,0340,2450,4818

89EF ,SBEG, 03D8,2C50,0840

14:40:3 9-Mar-1979

Microcode

inittalize Microcode for the Console and Power up

13595
:3596
33597
+3598
:13599
$3600
33601
:3602
+3603
13604
+3605
13606
13607
13608
13609
33610
:3611
33612
13643
;13614
$12615
33616
:13617
13618
:3619
:3620
$13621
13622
$13623
13624
13625
$13626
$3627
:3628
:3629
33630
33631
$3632
$3633
:3634
$3635
33636
$3637

.10C *
0:
IN.INIT:

Initialize Microcode for the Console and Power yp"

LONLIT_[41F0000], LOCATE IN
[CLEAR FLAG2,] (3) Macro
NEXT/IN.PSL. LONLIT FILE

SLONLIT GETS 41F0000
:PROCESS [INIT CLEAR FLAG2
iGOTO REG FLOW

Page -1

REGION/ <INIT.RIL> ,<INIT.RIH>/<INIT.R2L>,<INIT.R2H>/<INIT.R3L>,<INIT.R3H>

IN.PC_O:

IN.VA_O:

PC_R[2€RO],
CLEAR FLAGI,
RETURN {1}

QA-R[ZERUI.
RETURN [1]

IN.CN.INET:

LONLIT_{41F0000],
SET FLAG2

IN.PSL.LONLIT:

=0

PSL_R[LONLIT].CLEAR FLAGO

10=mm e e mee
PUSH,

STEeC_2.

CRAR_ZLITO(50].

NEXT/ Na. PC_0

B
CONREGS _D_M{SISR]_R{ZERO].
DEC STEPC)

MACRO EXPANSIONS 4

Figure 6-18

FOR CHARLIE'S .GLEAR TB SUBR

1PC GETS O
SRETURN+1

;VA GETS 0
TRETURN+ 1

sLONLIT GETS 41F0000
$PROCESS INIT CLEAR FLAG2

PSL GETS LONLIT CLEAR FLAGO
SR
RAR GETS 2

OW IF WE CONWRITE
E WILL WRITE TO RXCS

22O G

XCS GETS 0
ISR GETS 0

wa

: CMTO18.MCR [130,2112) Micro-2.1 1A{33) 14:40:3 9-Mar-1979
1 MACRD ,.miC [13n,2112]

12446
12447
12448
12449
12450
32451
+2452
$2453
:12454
32455
32456
12457
32458
312459
12460
32461
$2462
12163
:2364
$2465
;2466
+2467
;2468
:2469
312470
12471
32472
52473
12474
$2475
32176
32477
12478
$2479
12480
;2481
:2482
$12493
32484
;2485
:2486
32487
;2488
2489
$2490
32491
32492
$24193
32494
12495
$2496
32497
32498
$2499
32500

.TOC * Basic Macros”

ccoelt
ccor2
CLEAR ADD1(FLAGO)
CLEAR ADD2(FLAG1)

CLEAR BNOT(FLAG MMNOINT)

CLEAR FLAGO
CLEAR FLAGH G)
l!!!!ili!!ﬁ!l‘——"’
CLEAR FLAG3

CLEAR FPD

CLEAR MOPZERO(FLAGH)
CLEAR MUL1{FLAG2)
CLEAR MUL2{FLAG3)
CLEAR OPZERDI(FLAGI)
CLEAR OVER(FLAG2)
CLEAR READ(FLAG!)
CLEAR REGINT(FLAGT)

CLEAR SAMESIGN(FLAGA)

CLEAR STACK FLAG
CLEAR 5UB{ FLAGY)
CLEAR tP

CLEAR UNDER(FLAG3)
CLEAR WRITE(FLAG!)
CLOBBER MTEMPO
CLOBBER MTEMPO DEF

DEC STEPC

DISABLE INT

DIVDA SOR IN R[]
pDivDs SOR IN R{]
DIVFAST+ SOR IN R{]
DIVFAST- SOR IN R{])

FLUSH xB8
10 RESET
IRD1
IRDX [}
1512€(}

MULFAST+ CAND IN R[]
MULFAST- CAND IN R[]

NOP

PUSH

PUSH RBS+
PUSH RBS-
PROCESS INIT

RETURN (]

Basic Macros

*€C/CCOP1.CCBR_SIGND"
*CC/CCOP2.CCBR_SIGND" .
“MISC/CLR. FLAGO"
"MISC/CLR.FLAG!"
"MISC/CLR . NNNOINT®
“MISC/CLR.FLAGO*®
*MISC/CLR.FLAG!"

(4) LOCATE IN DEFINE FILE
"MISC/CLR.FLAG3"
*MISC/CLR.FPD"
*MISC/CLR.FLAGT"
"91SC/CLR.FLAG2®
*MISC/CLR.FLAG3"
*MISC/CLR.FLAG3"
*RISC/CLR.FLAG2"
*RISC/CLR.FLAGH"
*MISC/CLR.FLAG?®
*MISC/CLR.MMNOINT®
"MISC/CLR.STACKFLG"
*MISC/CLR.FLAG"
*MISC/CLR.TP"
*MISC/CLR.FLAG3"
*MISC/CLR.FLAG!"
*MSRC/TEMPO, SPW/MLONG™
*SPW/MLONG"

M1SC/DEC.SC”
*MISC/SET.MANOINT®
*ALPCTL/DIVDA,RSAC/®1 ,ROT/0"
*ALPCTL/DIVDS,RSRC/@1,ROT/0"
*ALPCTL/DIVFAST+ RSRC/@1,AOT/0"
*ALPCTL/DIVFAST— ASRC/®1,ROT/0"

*WCTRL/PC_wB,WB_M{PC]"
*BUS/ICINIT®

*BUT/IRE =
*BUT/IRDX,NEXT/®1"
*1STRM/1S1ZE_DSIZE,DVYPE /61"

"ALPCTL/MULFAST+,RSRC/®1,ROT/0"
"ALPCTL/MULFAST~, RSRC/61,ROT/0"

"ALPCTL/NOP"
"JSR/PUSH"
"MSRC/PSHADD"
"MSRC/PSHSUB™
*BUS/PRINIT"

"BUT/RETURN NEXT/@1"

RETURN AND INHIBIT DESTINATIONS "BUT/RET.DINH"

MACRO EXPANSIONS 5

Figure 6-19

6-24

Microcode

Page 65

Microcode

; CMTO18.MCR [120,2112] Micro-2.1 1A(33) 14:40:3 9-Mar-1979
: DEFIN .MIC [130,2112] Machine Definition : ISTRM, JSR, LIT, LITRL, LONLIT, MISC
$1504 ,10C " Machine Definition * : ISTRM, JSR, LIT, LITPL, LOMLIT, MISC*
:1505
31506 15TRM/=<33:33>,.DEFAULT=0
31507 NOP=0 s1SIZE 1S DETERMIMNED BY.HARDWARE
{1508 1SI2E_DSIZE=1 ;1SIZE 1S DETERMINED BY DS1ZE
Aprso9 . . .
"TY510 JSR/=<14:14>' DEFAULT=0 ;SUBROUTINE CONTROL
§is1t NOP=Q ;NO OPERATION
71512 PUSHA $PUSH CURRENT ADORESS OM MICRO STACK
31513
31514 L1T/=<77:76>,.DEFAULT=0 :DEFINE UWORD FIELD INTERPRETATIONS
11515 NORMAL =0 sFIELDS ARE NORMAL
11516 LITRL=1 ;SHORT LITERAL FIELD ENABLED g
21517 FPAWAET=2 sWAET FOR FPA TO COMPLETE PROCESSING
11518 LONLIT=3 . sLONG LITERAL FIELD ENABLED
$11519
$1520 LITAL/=<339:31> :SHORT LITERAL ’
31521
$1522 LONLIT/=<62:31> $LONG LITERAL
11523
31524 MISC/=<75:71>, .CEFAULT=10 :DEFINE MISC FUNCTIONS
11525 MOP=10
31526
11527 CLR.FLAGO=0 :CLEAR FLAG O
;1528 $CLEAR FLAG
11529 :CLEAR FLAG 2
11530 ;CLEAR FLAG 3
31531 CLR.MUNOINT=4 :CLEAR FLAG 4
31532 CLR.STACKFLG=5 :CLEAR FLAG 5
31533
$1534 SET.FLAGO:=8 $SET FLAG O
:1535 SET.FLAGY=9 $SET FLAG 1
$1536 SET.FLAG2:=0A $SET FLAG 2
$1537 SET.FLAG3=0B $SET FLAG 3
31539 SET.MMNOINT=0C ;SET FLAG 4
11539 SET.STACKFLG=00 ;SET FLAG 5
11540
;1541 RSBC=18 sRETURN AND SUPPRESS BUS CYCLE
11542 ANUM_2REG=11 :RNUM <- COMP MODE SECOND REG
11843 CLR.TP=12 :PSLLTP> <= 0
11544 CLR.FPD=1C sPSL<FPD> <- 0
:1545 SET.FPD=1D $PSLCFPD> <= 1
$11546 FORCE. TB-1E sFOQCE TB PARITY ERROR
11547 FORCE.CACHE=1F ;FORCE CACHE PARITY ERROR
11548
11549 DEC.SC=13 :STEP CMT <- STEP CNT - t
11550 sC_2=14 $STEP CNT <= 2
11551 SC_6=15 1STEP CNT <~ 6
11552 SC_14=16 3STEP CNT <- 14
31553 $¢.30=17 :STEP CNT <- 30
MACRO EXPANSIONS 6

Figure 6-29

6-25

Page 42

. e

CMIO1@.MCR {130,2112) Micro-2.1 1A(33) 14:40:3 9-Mar-1979 Pape 90

INIT MIC [030.2‘12) Initltalize Microcode for the Console and Power up

9¢-9

1z-9 @2anb1g

:3595 .70C " initialize Wicrocode for the Console and Power up*
13596 H .
+3597 INLINIT:
;13598 R tndaintadetie ot e ——— -3
$3599 LONLET [41F0000], SLONLIT GETS 41F0000
! 13600 CLEAR _FLAG2, $PROCESS INIT CLEAR FLAG2
0000, 7100,70F0,7FFF,8450,[083E) ;3601 NEXT/[IN.PSL. LONLIT | $1GOTO REG FLOW
13602 LOCATE IN FIELDNAME & DEFINE VALUES CRREF
. / L4
LOCATE IN UPC CREF — sggg: SREGION/ CINIT.RIL> ,<INIT . RIH>/<INLT.R2L> ,<INIT.RA>/<INLIT R3IL>,<INIT, R3IH>
$3605 IN.PC_O:
$3606 Lt - - ==
$3607 PC _R{ZERO], iPC GETS O
13608 CLEAR FLAGH, sFOR CHARLIE®'S GLEAR T8 SuBR
0818, 0080,58E4,0008,4850,0001 ;3609 RETURN (1] SRETURN®HI
13610
1361t IN.VA_O:
13612 - m-———e :
13613 VA_R[ZEROD). tVA GETS O
0825, 4B00,58E4,0808,4A50,0001 ;2614 RETURN | 1] {RETURN+1
13615
i3616 IN.CH.INIT:
$3617 ettt Smmmm————— H
13618 LONLIT_[41F0000], {LONLIT GETS 41F0000
0839, 3500,70F0,7FFF,8450,083€ ;3619 SEF FLAG2 $PROCESS INIT CLEAR FLAG2
13620
3621 IN.PSL.LONLITE
13622 i - :
083, 0000,58F4,0304,0050,0820 ;3623 PSL_R{LONLET).CLEAR FLAGO sPSL GETS LONLIT CLEAR FLAGO
13624
13625 =0
13626 L R]
$3627 PUSH, 1JSR
13628 SIEPC 2, :
M 136209 CRAR_ZL1T0(00]. iCRAR GETS 2
0820, 5A00,C370,0340,2450,4818 ;3630 NEXT/WNy. PC_O iNOW IF WE CONWRITE
33631 IWE WILL WRITE TO RXCS
$13632
13633 Rt e —eemee—-)
13634 COKREGS _D_M{SISr|_R[ZERO], $RXCS GETS ©
0821, 99EF,S5SBEG,0308,2C50,08A0 ;3635 DEC STEPC $1S1SR GETS ©
13636
13637
NEXT ADDRESS FIELD

9pPODOIDIN

LZ-9
ZZ-9 =anb1g

CMTO18.MCR {130,2112] Micro—-2.1 1A(33) 14:40:3 9-Mar-1979 Page B75

.
:
.
H

Cross Reference Listing - field Names and Defined Values

IL.ROTLMEM 6091 # 7818 7818

IL.ROTLREG 6104 # 7818 7818 7818 7818

IL.SBWCMEM 6320 ¥ 7825 7825 7825 7825 7825 7825

1L.SBWCREG 6316 # 7824 7824 7624 7824

IL.SOR+.END+ 6974 # 6983 6998

1L..SOR+.END~ 6980 #

IL.SOR-.END+ 6985 #

1L.SOR-.END- 6991 # *

1L.5UB2.8.W. L.MEM 6273 # 7832 7832 7832 7832 7832 7832 7846 7846 7846 7816 7846
7846 7860 7860 7860 7860 7860 7860

IL.5U82.B.W.L.REG 6268 # 7831 7831 7831 7831 7845 7845 7845 7845 7859 7859 7859
7859

1L.SUB3.8.W.L.MEM 6220 # 7839 7839 7853 7853 7866 7866

IL.5UB3.8.W.L.REG 6274 # 7839 7839 7839 7839 7853 7853 7853 7853 7866 7866 7666
7866

IL.TST.B.W.L 5877 ¥ 1872 76872 7872 7872 7872 7872 7879 7879 7879 7879 7879
7879 7886 7886 7686 7886 7886 7886

IL.XOR2.8,W.L.MEM 6354 4 7894 7894 7894 7894 7894 7894 7908 7908 7908 7908 7908
7908 7921 7921 7921 7921 7921 7921

IL.XOR2.B.W.L.REG 6349 # 7893 7693 7693 7893 7907 7907 7907 7907 7920 7920 7920
7920

IL.XOR3.8,W.L.MEM 6361 4 7901 7901 7915 7915 7928 7928

1L.XOR3.8.W.L.REG 6355 # 7901 7901 7901 7901 7915 7915 7915 7915 7928 7928 7928
7928

IN.CLR.CACHE 3664 # 3698

IN.CN.INIT 3616 # 4834 4892 5035

IN.DEC.D 3667 3695 #

INCINIT 3597 #

IN.PC_0O 3605 # 3630 3672

IN.PSL.LONLIT 3601 [3EIT Hle INDICATES LOCATION OF LABEL

IN.VA_O 3614 4 3661

LS. LDPCTX 25797 # 26103 26103 26103 26103

.LS.LDPCTX.GPRS.0 25821 # 25833

LS.LDPCTX,GPRS .1 : 25616 25824 25829 #

LS.LDPCTX. POBR 25828 25835 #

LS.LDPCTX,PSL 25897 25904 ¥ 25928

L5.LDPCTX. PUSH 25901 25931 #

LS.LDPCTX. SUBY 26907 25934 259040 #

LS.MODE . CHECK 25801 25968 26082 #

LS.SVPCTX 25964 # 26133 26133 26133 26133

LS.SVPCIX, GPRS.2 25976 # 25988

LS.SVPCTX.GPRS.4 25979 25984 #

LS.SVPCTX. 1PL 26019 26025 #

LS.SVPCTX. PC 25082 25989 #

LS.SVPCTA.SPS 26023 25044 #

MM.BUT.XB. TBMISS 28659 4 -

MM.DEC.VA 28373 28380 # 28401 284114

MM, FLUSH. X8 28611 28632 28649 #

Mi4.GET . ACY 28725 4 28748 28807 20825 28846

MM.GET.BUT .FLUSH 20006 # 22063

MM.GET.BUT.PTE 208662 28982 #

MM.GET.BUT.PTEQS 28989 # 25028

MM.GET.BUT.PTE10 28993 29004 29G14 » 29021

MM.GET.BUT .PTE20 29039 29044 29046 4

MICROINSTRUCTION CROSS REFERENCE

®PODOIDTINW

[<3 o il i o ol o = ¥ ol Al ol = < A o ol cndf ol o il o ol ool el ol e g o~ oo i ool Yl i o i o

CMT018.MCR [130,2112] Micro=-2.1 1A(33)
Location / Line

0708
0710
0718
0720
0728
0730
0738
a740
0748
0750
0758
0760
0768
0770
0778
0780
0788
0730
0758
0740
0748
0780
0788
07C0
07C3
0700
0708
07€0
07E8
07F0
07F8
0800
0808
0810
og18
0820
0828
0830
0838
0840
0848
0850
0858
0860
0868
0870
0878
0880
0888
08290
0898
0840
0848
0880

20852=
21156=
21347=
21570=
21797=
222862=
22337=
22390=
22548=
22915=
23298=<
23630=
24312=
24630=
24700=
25237=
25645=
25824=
259834=
26362=
26704=
27008=
%7180=
27717=
28157=
29248=
29920=
30264=
30892=
31216=
31360=
169267=
17003s
17038=
17073=
3630=
17102=
17121=
17141 =
3683
Z8111=
41612
3281
4230=
26459=
3994
23222=
5537=
5119=
5663
$700=
3643
9373=
7014=

20858=
21161=
21350=
21574=
21800=
22265=
22340=
22394=
22552=
22919=
23302=
23635=
24315=
24633z
24704=
25243=
25649=
25828=
25938+
26366=
25708=
27011=
27183=
27722=
28160+
29252=
29923=
302682
30895=
31219=
31363=
16972=
17007=
170422
17077=
3635=
3687=
6528=
3619
3861=
28115=
41662
28127=
4236=
26463
42677
23227=
5096=
6568=
5668=
6894=
3550=
9381s
7018z

20982=
21167=
21411=
21616=
21888=
22269=
22344=
22422=
22559=
23178=
23566=
23674=
24320=
24662=
24781=
25462=
25682=
25852«
25979=
26390=
26757=
27034=
27436=
27833=
28193=
2031 2=
300CS=
30274=
30961=
31225
31371=
16977=
17012=
17047=
17082=
17087=
171C7=
17126=
71463
3667=
28119=
4171=
$317=
9429=
26467=
10045=
23232=
5532=
4191
5673=
4321
3653=
12313=
§334=

20958=
21171=
21416=
21620=
21892=
22272=
22348=
22227=
22563=
23181=
23570=
23678=
24323=
23666=
24787=
25455=
25686=
25555=
25962=
26394=
26761=
27038=
274490=
27836=
28197=
20316=
3C002=
30277=
30984z
31229=
31374a
169e1=
17016=
17051=
3609
12632=
2434a3=
6532=
22056=
3572=
28123=
28212
5322=
9344=
26471«
13051=
23238+
S1¢2=
657i=
SE77=
£898=
4341
12317=
233381=

14:40:3 9-Mar-1979
Number Index

21C79=
21290=
21447=
21684=
22221=
22281=
22352=
22433=
22607=
23252=
2360S=
23746=
24352=
24675=
24883=
253482=
25759=
25878=
26031=
265432
26918=
27105=
27515z
27832=
2834G=
29368=
30203=
30623=
309902
31237=
314832
16986=
17021=
17056=
176682
17032=
17112=
17131=
4018=
3577=
407C=
4177s=
4141=
3285
4152=
4275=
23241=
$108=
179742
S681=
17292s
4218=
24294=
7022=

21084=
21294=
21450=
21638=
22225=
22286=
22355=
22437=
22613=
23262=
23509=

23750=,

24356=
24679=
24e87=
25285=
25763=
25E83=
26034=
26547=
26919=
27109=
27518=
27345=
28434=
29372=
30206=
30627=
30994=
31240=
31486=
16290=
17025+
17060=
17872=
3614
3632=
15106=
3019=
3698
4Q75=
4131=
4145=
3231=
4156=
a4279=
23245=
5113=
17977=
5685=
17997=
4223=
24298=
4377

21095=
21313=
21456=
21730=
22244=
222962
22382=
22530=
22620=
23267=
23615=
23968=
24614=
23687
24e32=
25802=
25816=
253897=
26349s=
26552=
26986=
27167=
27603=
28C820=
234i532=
22912=
30225=
308434=
31104=
31350=
31423=
16235=
17020+
17065=
17877=
17097=
17116=
17136=
2623
1093=
26505=
4185=
26509=
12814=
3=88
15305=
232439=
16€57=
17981=
Se91=
18C02=
2361=
24302
$339=

21098=
21315=
21461=
21733=
22247=
22299=
22385=
22533=
22623=
23270=
23618=
23971=
24618=
24691=
24836=
25€06=
25819=
25%01=
26355=
26556=
26390=
27170=
27607 =
28084=
28466=
29916=
30229=
30849=
31108=
31353=
31496=
16€299=
17034=
17069=
17881=
12636=
24247=
15109=
23060=
7098=
23108=
26216=
23112=
15818=
23116=
15809=
23253=
16863=
17986=
S5656=
18007=
9365=
243086=
23384=

Microcode

Page 95t

INDICATES LOCATION OF MICROINSTRUCTION
AND THAT THE LOCATION IS NOT CONSTRAINED

MICROINSTRUCTION CROSS REFERENCE 2

Figure 6-23

6-28

s wo

Microcode

CMTO18.MCR [130,2112] Micro-2.1 1A(33) 14:40:3 9-Mar-1979 Page 90
INIT .MIC [130.2112) Initialize Microcode for the Cunsole and Power up
33595 .70C * Initialize licrocode for the Console and Power up*
33596 O: .
13597 IN.INIT:
:3598 jemmmmme e H
$3599 LONLIT_[41Fp000]. SLONLIT GETS 41F0000.
! 33600 CLEAR FLAG2, sPROCESS INIT CLEAR FLAG2
0000, 7100,7DFC,7FFF,B8450,083€ ;3601 NEXT/IN.DPSL.LONLIT 1GOTO REG FLOW
33602
33603 REGION/QINIT. RILD ,<INIT . RIH>/<INIT R2L> ,<INIT.R2H>/<INIT.R3L>,<INIT.R3H>
;3604
33605 IN.PC_O:
:3606 H - B
:3607 PC_R{ZERO], :PC GETS O
33608 CLEAR FLAGH, :FOR CHARLIE'S QLEAR TB SUBR
0818, 0080,58E4,0308,4850,000% ;3609 RETURN (1] sRETURN+1
:3610
$3611 IN.VA_O:
13612 H H
33613 VA_R[ZERO]. iVA GETS ©
0825, 4800,5B8E4,0808,4A50,0001 :3614 RETURN {1} SRETURN+1
$13615
:13616 IN.CN.IMIT:
13517 H - :
;3618 LONLIT_{4tFo0cO], ;LONLIT GETS 41F0000
0839, 3500,70F0,7FFF,8450,083€ ;3619 SET FLAG2 $PROCESS INIT CLEAR FLAG2
:13620
FROM FIELD NAME CREF IN.PSL.LONLIT:
$3622 H H
083€, p000,58F4,0304,0050,0820 [;3623] PSL_R{LONLIT]}.CILEAR FLAGO $PSL GETS LONLIT CLEAR FLAGO
136
FROM UPC CREF—/ ;3625 =0
33626 H R il
53527 PUSH, TUSR
13628 STEPC_ 2. H
n 13629 CRAR_Z.170100]. $CRAR GETS 2
0820, 5A00,(370,0340,2450,4818 ;3630 REXT/ No.PC_O INOW IF WE CONWRITE
33631 IWE WILL WRITE 7O RXCS
$3632
$3633 st H
13634 CONREGS _D_M(SISR]_R[ZERG], $RXCS GETS 0
082t, B9EF,SBEG, 03D8,2C50,08A0 ;3635 DEC STEPC 1SISR GETS ©
$13636
:3637

MICROINSTRUCTION CROSS REFERENCE 3

Figure 6-24

6-29

oo we

INIT

U 0000,

t
7100.70:0.71’".5450

u osta,

U 0825,

u 0839,

v joa3g]

v 0820,

v o821,

0080,5EE4, 0808,4850, 0001

4800,58€4, 0808,4A50, 0001

3500,70F0,7FFF,8450,083E

0000,58F4,0304,0050,0820

5A00,C370, 0340,2450, 4818

89EF,5BE6, 0308,2C50,08A0

CMT038.MCR [130,2112] Micro-2.1 1A(33)

Microcode

Page 30

14:40:3 9-Mar-19379
.MIC [130,2112] Initialize Microcode for the Console and Power up
33595 .TOC " Initialize Microcode for the Console and Power up®
13596 0
33597 IN.INIT:
13598 H :
;3599 LONLIT_[41F0000], sLONLIT GETS 41F0000
13600 CLEAR FLAG2, sPROCESS INIT CLEAR FLAG2
:3601 NEXJAIN.FSL.LONL[T| :GOTO REG FLOW
:3602 -
23603 .REGION/<INIT RIL> ,<INIT.RT1H>/CINIT.R2L> ,<INIT.R2H> /<INIT.R3L>,<INIT, R3H>
33604
13605{ IN.PC_0O:
$3606] H
33607 PC_R[ZERO], :PC GETS 0
:3608 CLEAR FLAGH, :FOR CHARLIE'S GLEAR 18 SuBR
13609 RETURN {1} sRETURN+ 1
:3610
33611 IN.VA_O: o
13612 H H
13613 va_r[ZzErO}, tVA GETS 0
13614 RETURN {1t} SRETURN+ 1
$1361
$3616{ IN.CN.INIT:
33617 : :
13618 LONLIT_[4tF000C0]. sLONLIT GETS 41F0000
:2619 SET FLAG2 ;PRGCESS INIT CLEAR FLAG2
$ 3520
13621te{In. PSL. LONLIT:]
13622 B :
$3623 PSL_R{LONLEIT],CLEAR FLAGO 1PSL GETS LONLIT CLEAR FLAGO
33624 .
$13€25 =0
:3626 §0m e e e —————
:3527 PUSH, 1JSR
;3628 STEPC_2. H
13629 CRAR_Z.172700]. ;CRAR GETS 2
33630 NEXT/NepC_0 sNOW IF WE CONWRITE
$363t sWE WILL WRITE TO RXCS
:3632
35633 H H
$3634 CONREGS _D_mM{Sisr|_R{ZERO], iRXCS GETS 0
$3635 DEC STEPC :1SISR GETS O
13636
13637

MICROINSTRUCTION CROSS REFERENCE 4

Figure 6-25

6-30

,BO.POWER.UP:
i 0 7

10 RESET

l

SETUP
250 MSEC

WAIT LOOP

CLEAR
coLD
. START
' FLAG

DO MICRO
VERIFY
SEQUENCE

Y

Microcode

3

DO INIT
SEQUENCE

Figure 6-26

6-31

“%%" PRINTED AT CONSOLE

TK-4524

ceE-9

LZ-9 @2anbig

4 WAY BRANCH ON POWER ON ACTION SWITCH

-

¢ __BoOT

DO MICRO
VERIFY
AND INIT

¥

R1 GET
F28000
(MBA)

GO TO
BOOT suB

RETURN
FROM
BOOTSUB

PASS
DEFAULT
B0OOT
ARGUMENTS

RESTART/BOOT _ ISTART/HALT HALT
BEGIN SEARCH BEGIN SEARCH gg;ggw
FOR RPB P
FOR RPB CONS(
GO TO FIND RPB *
-ROUTINE ,] GO TO FIND
RPB ROUTINE CONSOLE
PRINTOUT
%%
RETURN FROM 00000000016
RPB ROUTINE >>>
RETUAN FROM: RPB ROUTINE

CONSOLE PRINT OUT
%%

0000000011
>>>

IRD1
OF RESTART
ROUTINE

' CONSOLE PRINT OUT
%%

00000000012
>>>

TK 4529

9pODOIDTIN

ININIT: +1
PUSH
LONLIT- '
[41F0000] D-ZLiT24{301}

CLEAR FLAGT

INPSL.LONLIT §

MP.MTPR .TB1A20

s CLEAR SYS
- 128 ENTRIES
RLONLIT] IN TBUFF
RETURN (1] _
] +1
PUSH, PUSH
STEPC-Z CONREGS-R
CRAR-ZLIT16 {ZERO]
(801 oo
IN.PC.0 v
PC~R[ZERO] PUSH
CLEAR FLAGT D.ZLiT8[4]
REBURN [1] |
+1 {
CONREGS-D VA.R{ZERO]
—M[S1SR]- RETURN[1]
R[ZERO] -
DEC STEPC
|L +1
PUSH e
DEC STERC VA<VA+4
CRAR-ZLIT15 CLEAR CACHE
{40]

FLAG2
CLEAR

MP.MTPR. 4 TB1A20

CLEARPX
128 ENTRIES
IN TBUFF

+1

Microcode

SOFTIPR-0

TCSR-0

v

PUSH,
ASTLVL-4
NEXT/IN.PCO

+1

PME-O
FPDOFFSET-3
PRCCESS

_AND IO INIT _

v

CRAR
ZLIT16(CO]

CONREGS
~ZLIT16(40]
FLAG2

FLAG2
CLEAR

M{SCBB]-1
RETURN{1]

M{TEMPS]
ZLITO[D]
RETURN(1]

RETURN (1]

Figure 6-28

6-33

TK-4525

7e-9

62-9 @inbia

7 AWAY.
BRANCH ON
DEVICE
SWITCH.

'DEVICE D (TU-58)

DEVICE A (SYSTEM DISK) DEVICE B DEVICE C.
PC GETS ADDRESS PC GETS ADDRESS | PCGETS ADDRESS _
| OF DEVICE D CODE

'OF DEVICE B CODE.

!
!
|

OF DEVICE C CODE
READ :

READ

READ
BOOT| —
ROM PRES-" NO
END’
IRD1 - ENTER CONSOLE PRINTOUT
OF BOOT ROM CONSOLE % %
léngggo ! MODE O000FXXX 14
: >>>

., TK-4527

3p0D0ID TN

Microcode

BO.BOOT—SUB:
SET UP .
LOOP TO !
SCAN MEMORY
TURN CACHE
> OFF .
) 4
84 KB YES A
OF GOOD
MEMORY TEST LAST
LOCATION
OF 64 KB _

"MEMORY
~ DATA”

“oK-

END OF
MEMORY

ENTER _ gg%ﬁ%ﬁr INVALIDATE
CONSOLE FPRINTORT. | UBIO MAP
MODE % % REGISTERS
0000000013 - -
>>> v)
INVALIDATE TRANSFER
iy 8OOT ROM
REGISTERS CODE TO
: : MEMORY
1
~_COLO 5
START FLAG

TSET

ENTER SENSOLEPRINTOUT
CONSOLE o
MODE 0000000015

>>>

TK-4523

Figure 6-30

6-35

BO.FIND.RPB.SUB

PAGE ADDRESS
+4

SET UP
SCAN LOOP

\ 4

VALID RPB HEADER

READ
PHYSICAL
PAGE __ _

RESTART
ADD=0

VA=MDR

Microcode

RPB PHYSICAL ADDRESS

PHYSICAL ADDRESS OF RESTART

+8 { CHECKSUM

+C | WARM START FLAG

lo

COMPUTE
CHECKSUM
ON FIRST
128 BYTES

CHECKSUM
MATCH RPB

INCREMENT
PAGE
ADDRESS

YES

READ
MEMORY
FLAG

Figure 6-31

6-36

Y

RETURN

. Ti-4526

Microcode

U 0016
TYPE
CONTROL g::gé; . CONSOLE
P - PROMPT
ENTRY POINT
R I
Y e
— TYPE 2
CONSOLE ggggHAFT-
FLOW CODE
ENTRY -
1 YES
TYPE T L BEGIN PARSE OF CONSOLE
CLEAR <LF><CR> COMMAND
coLD e
START THIS FLOW IS USED TO TYPE
FLAG THE PC, HALT CODE AND
PROMPT.
v ' <LF><CR>
A HALT XXXXXXXX YY<SLE><CR>
TYPE INSTRUCTION >S5S .
<LF><CR> EXECUTED
AT CONSOLE
TERMINAL YES
RESTART
oy SYSTEM
TYPES
DIGIT PC
SAVE MME

Figure 6-32

6-37

‘TRas19

Microcode

CN.CHECK.FIRST.CHAR

PASS PASS
SYNTAX SYNTAX -
ARGUMENT ARGUMENT
PASS PASS
SYNTAX SYNTAX)
ARGUMENT ARGUMENT
PASS PASS
SYNTAX SYNTAX =
ARGUMENT ARGUMENT
PASS PASS
SYNTAX SYNTAX .
ARGUMENT ARGUMENT
PAsS PASS
SYNTAX SYNTAX -
ARGUMENT ARGUMENT
paSS PASS
SYNTAX SYNTAX .
ARGUMENT ARGUMENT

y I

TX-4528

Figure 6-33

6-38

6€-9

y€-9 2anbig

| ANY CHARACTER OTHER THAN

|WAIT FOR

OPERATOR TO

TYPE 2ND CHARACTER
OF COMMAND STRING

‘RX DONE

4 WAY
‘BRANCH
~_ ON CHAR

‘ - , LA LI - UU——— (>>>—/
‘_@<sp>,<cn>,~/~ i [S>>-<CR> j>>>—<sp> <SP>] i/
- r ‘726ﬁ5f’ 10 I

RING {DISPATCH |GET ADDRESS PROCESS
BELL | COMMAND |OR { COMMAND
AT CONSOLE |DATA STRING | SWITCH
A\ g
v

IN THIS SECTION.

THESE COMMANDS
ARE NOT DISCUSSED

TK-4622

8pODOIDIW

11 WAY
BRANCH ON
' COMMAND’

2v-9
Gg-9 @inb1g

§ >>>N<CR>: § >>>c<cn> § >>>6<CR> § >>>I<CR> § >>>T<CR> y >>>H
SETUP | SET UP 4 SET UP - : DO NOT SET UP "
SINGLE ! START WITH: START . CLEAR 'FOR 5 ES#T
STEP MODE OuUT INIT SCBB 'MICRO VERIFY !
DO INIT DO MICRO
SEQUENCE VERIFY B ’
" TEST

TK 4520

8pPODOIDINW

.CN.DO.START

SAVE

PC

DO INIT
SEQUENCE

!

CLEAR
HALT
FLAG

"CN.DO.CONTINUE

RESTORE
PC

AND BEGIN
PREFETCH

¥

RESTORE
MME
BIT

RDT
OF MACRO
PROGRAM

Figure 6-36

Microcode

Microcode

Figure 6-37

6-42

[ree. — . = = 7} —

Microcode

ROM NEXT FIELD
X8 <7:0>
“ﬁi’ﬂ>
-— ey mun o — gmm wuw — cemm

Fom "‘i :le:';’ rM;um

En)
W _——— |1 e

£
I OSR 1] ‘ I
<r0> <G0>

|> o CS ADO <8:0>L

l »
e e T2 R NP
]

RDx 1ROx

3
@t

oM aom

COMPATABILITY NATIVE

% | I .| P
[csavo<medn |

<s:0>

STACK POINTER

L—"—-———c-— — a— —

ra=
I
|

CSADD.
<50t

€S ADD
<138> #

r |-

weus _.I l " ‘ *:V.Do—_ usTX ABnN <5400 <134>L
INTERFACE. SPASTA<1O> @19 4J| >0 _
SAKSTA <) 0>
FAONT PANEL
aur WCS PRESENT- /
FreLo l ccam <1 9> I»
DECOOE!
e i
LATCHED NEXT FIELD<13:6
LEI CHIP FUNCTIONAL 1C COMET

Figure 6-38

6-43

) S
OR ' IS EQUIVALENT TO
o :
o

LOGIC CIRCUIT EQUIVALENCES

Figure 6-39

6-44

Microcode

TK-2097

Sv-9

gy-9 °inbrg

IS EQUIVALENT TO

_f

u

|

LOGIC CIRCUIT EQUIVALENCES

TK-2008

9pPODOIDIW

Microcode

NEXT FIELD
<13:0>

13 12 11 10) 8 7 6 5 4 3 2 1 0

A - A J/
: [CH|P ADDRESS, LOCATION WITHIN CHIP
CHIP ARRAY SELECT, 1K BANK OF CHIPS

CONTROL STORE SELECT WCs,DCS ccs

0=CCS 13121110 13121110

1= WCS,DCS 100 0——1STKWCS 0000 1STK
100 000 1 2NDK
1010 NOT USED 0010 3RDK
1011 001 1 4THK
110 0——64WORDDCS 010 0 STHK
110 1 010 1 6TH K
1110 NOT USED 011 0} NOT USED
111 0111

COMET CONTROL STORE ADDRESSING

TK-1985

Figure 6-41

6-46

Microcode

MICROWORD -

AMOUNT ADDRESS

16K 3FFF
12K

23FF

IK WRITEABLE
CONTROL STORE 1K RAM

8K 2000

183F

1800
6K 17FF

SERVICE AND INSTRUCTION
EXECUTION MICROCODE
D19E
OPERAND SPECIFIER
ROUTINE ENTRY POINTS ? 6K RAM
0100
003F '
MICROBRANCH AND MICROVECTOR
ENTRY POINTS
0011
0000 POWER UP ENTRY POINT J

COMET CCS CONTROL STORE MEMORY ALLOCATION
TK-1983
Figure 6-42

87-9

€y-9 2anbia

CS PARITY:

ERROR
oPM

oPMm
CONTROL PARITY
STORE CHECK
LATCHES

SEL O H —
SELOH
SEL 1 H
CSADD 12H ?87'“' SEL2H . 151
CSADD 11 H UNITARY SEL3H K
€S ADD 10 H———) DECOOE SEL4H
SELSH
10
i SEL 1 H——
CSADDI13H
2ND
K
I >° 710
o] PAR
CHECK
SEL 2 He—r|
3R0
10 K
- CS NEXT PARITY L.
CS NEXT L
—_—
<13:6>L 0 a csabp 7/
NEXT <1316 >H SEL 3 H——
FIELD
LATCH 4TH
X 10 K
MCLK L c
: SEL 4 H-—l‘
5TH
CSADD 12H D 10 K
o |]
CSADD 11 H
DISABLE
cs
ADDRESS
I ‘l >° 710
c
CS ADDRESS 6TH
BUFFERS K
DISABLE HI NEXT H €S ADD <5:0> H
SELS H—]
ROM
BANKS

COMET CONTROL STORE SIMPLIFIED DIAGRAM

TK-1995

9pODOIDINW

Microcode

SAC E58
SERV!ICE AND ARBITRATION CONTROL
MAIN TIMING CIRCUIT g
BSCK : : SETC
2 .
OSC IN Homme— 1 0SC THE OSCILLATOR INPUT IS +3Y 3 PHAS [
TO PRODUCE SET C, SET C BECOMES
8SCK EXTERNALLY, AND IS USED TO
GENERATE PHASE. PHASE IS 0SC.56
25 MAIN TIMING MODE CONTROL
X —
CLXCTL1A pos e CIRCUIT ALLOWS SINGLE TICK, SINGLE
CLK CTLOH ———— Sl eTi0 MICROINSTRUCTION, OR NORMAL HALT Pl HALT L
_ 9 CLOCK CONTROL. MULTIPLE CS
CSPAR ERR H ——————# CSPE PARITY ERRORS STOP B CLK
MEM STALLH ————5— MBTL M CLOCK STALL AND D CLOCK
49 INHIBIT CONTROL
CLKX H =gl CLKX
FPA WAIT L —ememeee——atd FWA7 THIS CIRCUIT IS USED TO STALL MKEN 2B M CLK ENABLE H
. 45 M CLOCK DURING MEMORY STALLS, 1oy
FPA STALL L ~—————eee—d FSTL FPA STALLS, ETC. IT ALSO INHIBITS DKEN e O CLK ENABLE H
GEN DEST INH L ———a{DINH. THE D CLOCK WHEN NECESSARY oD
22 M CLK ENABLE AND D CLX ENABLE
DOuUBLE ENABLE——'TO' DBLE ARE GATED EXTERNALLY WITH B
PSL C MODE H Uoson CLK TO GENERATE MAIN SYSTEM
2 TIMING.
MSEQ INIT L e 4 MIN|
19
SUT CONTROL CODE H —mi BCC
17
BUT 2 H 8UT?2 BUT FIELD DECODING LOGIC
18
BUT 1 H————————— =l g T THIS LOGIC IS USED TO DECODE 1FET 28— INSTR FETCH H
18 8UT FIELD AND GENERATE
BUT 0 H =3 BUTO VARIOUS INTERNAL CONTROL
SIGNALS
26
ARITH TRAP L—————a ATRP
47
EPTRAPL - BUT SERVICE ARBITRATION LOGIC o, |34 =00 SAVC L
43
TIMER SERV H—————8= TSER THIS LOGIC SELECTS HIGHEST ADc2P20 — acsaADD2L
1 PRICRITY SERVICE REQUEST 42
CON HALT L ———————af CHLT ADC! - CS A
a9 CHL AND ASSERTS IT'S MICRO a csAapb 1L
INT PEND L IPND ADDRESS ON ADDRESS LINES ADCO p———=CS ADD O L
PSL TP L =i pSTP
’ IRD COUNTER eTa122 - 1RD CTR 2 H
THIS A 3 STAGE COUNTER USED TO ENTER 15
OPERAND SPECIFIER AND EXECUTION FLOWS iem 21 IRDCTR 1 H
ICTO f——me—e= |RD CTR O H
BpF—_ — — — — — — — —
LD OSR L —=————————a4 COSR
14 -
UTRAPL wrap |0 OSR LATCH, MICRO TRAP LATCH Lure B2 LATCH UTRAP L

2}

MCLK L

Figure 6-44

6-49

TK-1989

BCLKL

47}

Microcode

MsQ E58___
MICROSEQUENCER

NEXT 05 H —ji NXTS
NEXT 04 H -—3£vNXT4v
NEXT O3 H ——2£ NXT3
NEXTO2H ——21 NXT2
NEXT 01 H -—73 NXT1

4
NEXT 00 H —-2. NXTO

43
NSTACK 05 H——am{ STK §

29
NSTACK 04 H——w=i STK4

NEXT/MICROSTACK
ADDER

THE MICROSTACK ADDER ADCS |
IS PRIMARILY USED TO ADCA
ADD ON RETURNS FROM ADC3
MICRO SUBROUTINES 8Y

ADC2

ADDING THE NEXT FIELD
TO THE ADDRESS AT THE ADC1
TOP OF THE MICROSTACK

34 e CSADDOSL

31

- CSADD Q4 L

2] = CSADDO3L

125__ o csADDO2L

12 e csapDOTL
20

aDco 20w
20 OTHERWISE THE NEXT FIELD CSADDCOL
NSTACK 03 "'—2'2- STK3 IS USED DIRECTLY.
NSTACK 02 H——w STK2 '
18
NSTACK 01 H—4 STK1
17
NSTACK 00 H~—= STKO
1
LIT 1 Hom—e LIT1 FPA WAIT 3
o 7 WAIT b FPA WAIT L
LT 0 Hemooe——gmy LITO IF LiT=2, THE FPAWAIT = L
4
- =
BUT CONTROL 3 BUT FIELD DECODE ENZH -;---Z-HO HINEXT
CODE€ He~—eem——s{ 8CC LOGIC AND MICRO- ADS3 p=——=s= USTACK ADD 3H
4 e
BUT 2 H———adBUT2 STACK POINTER ADS2 P USTAGK ADO 3H
s CONTROL "
BUT 1 H " 1B8UTH THIS LOGIC MOVES THE MICRO ADS?1 ———= USTACK ADD 1H
BUT 0 H=————=d38UTO STACK POINTER FOR PUSHES ADSO F e USTACK ADD GH
% AND POPS OF THE MICRO a7 _
SR H el JSR STACK. THIS ALSO CONTROLS ENST [——*= NSTACK OUT &M L
CS ADORESS BITS DURING DSHN 28— DISABLE HI NEXT H

PUSHES AND POPS,

IRDCTR 2 H-—1.6- 1ICT2
15
IRDCTR 1 H ICT1

{RD ROM CONTROL

THIS LOGIC EVALUATES IRD ENIR
COUNTER & BUT FIELD AND

ENABLES IRD ROMS, AND LD OSR
LOADING OF OSR

3% e ENABLE IRD ROM

2 LOAD OSR

. 45
MSEQ INIT L——a INIT

MICROADD 46
R —— g wver

DO SRVC L———=1 SRVC

rROM OS2 (e

INH.PHASE L H

| MAI

MISCELLANEOUS CONTROL

THIS IS GENERAL LOGIC THAT
AFFECTS THE OPERATION OF
MQST OF THE CHIP CIRCUITRY.

MCLKL

at

Figure 6-45

TX-1988

Microcode

D CLK ENABLEH

X

PHB E59
“PRACTICALLY HALF THE BUTS”
19 WBUS IN WBUS QUT 29
WB 31 H—————————a WB31 : WB31 e W2 31H
36 waus INTERFACE %
WB 30 H———————— 34 WB30 WB30 = WB 30 H
W8 27 S, J N THIS LOGIC CONNECTS WBUS we27 30 o we27H
23 INPUT TO PSL BITS, STEPC, 23 :
W8 05 H————————»1WB05 AND CONTROL LOGIC, WBUS WBOG (==———e- WB 05 H
WB 04 H el w08 OUTPUT IS MULTIPLEXED BET wsoa b3 e wBOaH
8 WEEN THE STEPC, STATUS 6
W8 03 H ey WB03 FLAGS, AND PSL 8ITS WB03 —————=WB 03 H
14 : 14
WB 02 H ~o——ee————tef WB02 WB02 fme e WB 2 H
11
W8 01 H ———————=-{ WBO" W01 - e WBOTH
W8 00 H ———————— WB00 wBo0 2 e wB QO H
26
MISC CTL 4 H =i} MISC 4 STEP COUNTER <4:0> & STATUS
28 :
MISC CTL 3 H et MISC 3 FLAGS<5:0>
25
MISCCTL 2 Hmmmm——id MISC2 THE MISCELLANEOUS CONTROL
27 FIELD OF THE MICRO INSTRUC-
B e = ki
MISCCTL 1H 2o SCT 710N SETS AND CLEARS
MISCCTLO H——-—? MISCO STATUS FLAGS AND LOADS
4 THE STEP COUNTER WITH
———————— i
GDsAM2H = 1®M2 sevERAL vARIABLES. THE
GO SAM 1 H ———————={ GSM 1 GOCD SAMARITAN ROM PRO-
a1 GRAMS PART OF THIS LOGIC
GO SAM 0 H—————=d GSM 0
PSL BIT LATCHE$ pscM 34 PSL CM H
COMPATABILITY MODE LATCH, FPD 37
LATCH, T BIT LATCH, TRACE PEND- PSFP p=———————®PSL FPO H
ING LATCH ARE CONTAINED HERE. PSTP o =551 TRACE
FOR MICROBRANCH CONDITIONS
18 31
LONG LIT L=l gy T CTL 1} —————=IRDADDCTL 1 H
48 29
LD IR L ~~———emeee———a»{ | DIR IRD CH!IP CONTROL, RNUM CTL Op————= IRD ADD CTL O H
10 LOAD CONTROL, AND 32
DG SRVC L = SRVC . ILANESS o [RD LORNUMH
30 MISCELLANEOQUS
LD OSR L-———-—ybv LDOSR CONTROL
INTERRUPT M <mmmeommmeted INTR :
15 -
DIS.CS.ADDRESS H————i{ DCSA MICROBRANCH MUX 3CC [BUT CONTROL CODE
20 : 2
BUT 05 He——— “d3uT s CONTROL ADCS Y e csADDOSL
19 THE PHB CHIP CONTROLS A a3
BUT 04 H-——-—-—;; BUT 4 MAJOR PORTION OF THE MIC- ADC4 —————= (S ADDO4 L
SUT 03 H 5UT 3 RO BRANCHING LOGIC, THE apcals CS ADD 03 L
21) BUT FIELD 1S DECODED AND . -
BUT 02 Hm————— - BUT 2 ENABLES A SPECIFIED BRANCH ADC 2 f————a=CS ADD 02 L
7y CONDITION ON PSL BITS, STATUS 48
8UT 01 H-—-—m- BUT1 FLAGS, OR THE STEP COUNTER ADC1 ‘-2—>CSAOD ot L
3UT 00 He——— i 5UT 0 ADC Q === CS ADD 00 L
MCLK L a7l
TK-1991
Figure 6-46

6-51

Microcode

IRD E82

INSTRUCTICN REGISTER, OP. SPEC. REG.

19
XBUF 15 Hemmemem i)
33

XBUF 14 H e it

22
XBUF 13 H =]

XBUF 12 H ———reee—in

4
XBUF 11 H—————-l

4
XBUF 10 H =

1
XBUF 9 H ————————i]

XBUF 8 H e
24
XBUF 7 H e ginf

42
XBUF 6 H

| XB15
XB14
X813
X312
X811
X810
| x809
xB0g"
X807

17
XBUF § H ~—ermeememeiin

~

]

X806
X808
X804

XB IN

XB INTERFACE

THE OUTPUT OF THE XB
ROTATOR, BITS <15:0>
INTERFACE TO THIS CHIP.
THE IR IS LOADED FROM
XB<7:0>, THE OSR iS
LOADED FROM XB< 15:8>
AT IRDX, THE WCTRL
MICRO ORDER 28 ALLOWS
THE XB BUS TO SOURCE
THE IR AND CSR, COM-

XBOUT

PATABILITY MODE IS SLIGHT-

LY DIFFERENT.

XB15
XB14

XB13
XB12
XB11
XB10
XB0g
XB08
X807
X806
XB0S
XB04

19

et XBUF 15 H

33

pomenemn—ti XBUF 14 H
—2-2———0-X8qF 13H

120 e xBUF12H

4 > XBUF 11 H

4 = XBUF 10H

L = XBUFOH

is——*XBUF 8H

1“‘—-—--b)(BUF 7H

‘i?—-——- XBUF 6 H

17

o XSBUF 5 H

2

et XBUF 4 H

43

XBUF 3 H——————> 803 XB03 |3 —ae XBUF 3 H
XBUF 2 H —ee——————ae{ XB02 X802 |-o———a= XBUF 2 H
XBUF 1 H e X801 X801 B— = XBUF 1H
1
T P—— V0 XBOO |- XBUF 0 H
tRO7 iR 7H
1
IR0 ADD CTL 1 ——HeTy INSTRUCTION REGISTER<7:0> Bt P
IRD ADO CTL 0~ CTLO ' IRD5 P IR S H
LOADED FROM XB <7:0> IROalE o e iRaH
2 NATIVE MODE OR <15:8> 19
LD IR L—————21 LDIR COMPATABILITY MOOE. IRD3=——" IR 3H
IRD CONTROL L————i] SEL1 OP CODE REMAINS HERE 1RO2 e 1R 2 H
4 THROUGHOUT MACRO 5
WCTRL 2 L-——-"-———.I:‘ SELO INSTRUCTION EXECUTION IRD1 et R 1 H
PSL CM H i PSLM IRDO 2B RO H
_ ADC3|2 S ADDO3L
OPERAND SPECIFIER REGISTER ”
<7:0> ADC2 =2 CS ADD 02 L
THE OPERAND SPECIFIER REGISTER ADC S ADD 01 L
IS USED TO ENTER OPERAND_ 28
SPECIFIER ROUTINES AT ADCO s ADD 00 L
IRDX. THE ADC LINES ARE 36
18 ASSERTED AS A FUNCTION A3 IRD RNUM 3R
LD OSR L =} | DOSR THE ADDRESS MODE, RNUM RNM2 pemee——a= | 3D RNUM 2 H
IS LOADED WITH <3 :0 > anm 120 \RD ANUM 1 H
OF THE OSR, ISIZE IS A 7
FUNCTION OF DISPLACEMENT ANMO P2 ———— = (RD RNUM 0 H
SIZE WHICH OBTAINED FROM a4 -
onEeanomT 181 ;———-—ms? ISIZE 1 H
152 PE——w-pisP 1SIZE O H
DRM = 0ST R MODE H
27
RGMD {—————#=REG MODE H

MCLK L

2}

Figure 6-47

6-52

TK-1990

£5-9
gy-9 2anb1ig

DPM17
BASE CLK L

DPM17
M CLK ENABLE H

DPM17
QP CLK EN H

DPM17
BCLK L

DPM17
MCLK L
DPM17
QDCLKL

DPM17
PHASE 1 H

He———————320 NS

ONE MICROINSTRUCTION

CM!I CYCLE

4

160 NS ———mm

L

L1

|-
L

L
L1
j—
—

TK-4313

2pODOIDTIN

75-9

67-9 2anbrg

DPM17
BASE CLK L

DPM17
M CLK ENABLE H

DPM17
QDCLKENH

DPM17
BCLKL

DPM17
MCLK L

DPM17
DCLKL

DPM17
PHASE 1 H

MICROINSTRUCTION WITH CLKX SET

480 NS

| I S

L

—

| N S|

L

LOAD NEW MICROINSTRUCTION

L
]
|

—
L
L]

N

3pPODOIDTNW

§G6-9

ps-9 @ianbig

BCLK-L
'MCLK-L

BUS ACLO L

|UBI 14 RCVD
ACLO H

|UBI 14 SYNCHR
'ACLO H

|uBI 13 E131-14

|uBI 13 ES48
SPFIL

|UBI 14 UBUS
DCLO

2—-3 MSEC

TK-43186

9pPODOIDTIN

96-9

16-9 @2anb1g

PBINITL

UBIT4PB INITH

UBI13 E133-12

UBI14 UBUS
BBSY L

UBI13 E133—4

UBI13 ASSERT
DCLOH

BUI14 UBUS
DCLOL

UBI14 RCVD
DCLOH

UB114 MSEQ
INITL

UBIT4 UBINITH

‘UBI14 INIT UB

REQH

UBI14 E133-12

INIT BUTTON RELEASED

—6.6 MSEC—»

6.4 NSEC

L

" Z< 70 MSEC

.139 MSEC

TK-4315

9pOsOIDTW

Microcode

320 NS e—160 NS —»{

DPM17 ~ ,
BASE CLK L e
DPM17
CLK ENABLE H—_]
DPM17 e
PCLKENH cmmed
DPM17 CLK L |_
DPM17 CLK L
DPM17 DCLK L
DPM17
PHASE 1 H

LOAD NEW

MICROINSTRUCTION
DPM17 E25 NEXT <5:0> LATCH
CCSO1 E6 NEXT <13:6> LATCH
DPM17 E58 CS ADD <5:0> L
CCso1 E7 CS ADD <13:6>H
DPM17 E39 CS ADD <13:6>H

ADDRESS CONTROL ROM

X ROMDATAOUTPUT X

fLOADNEW
MICROINSTRUCTION

Figure 6-52

TK-4321

8G-9

£6-9 @2inb1a

DPM17 BCLK L

DPM17 MCLK L

DPM17 PHASE 1 H

DPM20 CS
PARITY ERROR H

MIC UTRAP L

MIC GEN DEST
INH L

DPM17
ENABLE/UVECTH

- CONTROL PARITY THIS
MICROINSTRUCTION

GENERATE CONTROL
STORE
ADDRESS 0020

9

L"

f LOAD 0020

INTO LATCHES

TK-4322

9pODOIDIN

VAX-11/750 Level II

Data Path

Student Guide

Course produced by Educational Services Department
of
Digital Equipment Corporation

Data Path

INTRODUCTION

The COMET data path 1is 32 bits wide. The main
components are five different types of LSI gate array
chips and two arrays of scratch pad registers. Some
special features include a rotator capable of multiple
bit shifting and variable length bit field extraction;
an arithmetic and logic processor (ALP) capable of BCD
calculation and hardware controlled multiply and divide;
and two sets of scratch pad registers for microcode
temporaries.

Figure 2 depicts the block diagram of the data path.

Two tri-state buses are used to interface with other
non-data path logic. The two buses are the MBUS and the
WBUS.

The MBUS is used to receive data from the scratch pad
and the memory interface logic. Data coming from these
sources are latched during the first half of the cycle
and must be turned off during the 1last half of the
cycle.

The WBUS is used mainly to send the data path results to-
the various destinations of the CPU. Examples of these
destinations are the WDR (Write Data Register), PC, VA,
and the scratch pads, etc.

In addition, two other internal data buses are present.
These are the RBUS and the SBUS. The RBUS interfaces
the ALP with the scratch pad array containing most of
the VAX architectural registers. The SBUS sends the
rotator output to the ALP.

In general, data from the two arrays of scratch pad can
be operated on directly by the rotator and the ALU, with
the results written back to the same 1location 1in the
same cycle. '

Data Path

OBJECTIVES
Identify the various data path entities by answering
multiple choice questions. The entities will
include:

a) system clock and timing

b) control store

Cc) register
. d) Dbuses

e) super rotator

f) arithmetic and logical section

Utilizing the DPM print set, trace the signal path
for a preselected signal in the Comet data path.

Given a faulty processor, isolate the defective data

path gate arrays by running the applicable
diagnostics.

SAMPLE TEST ITEM

The process of extracting and =zero extending an
operand is the function of the .

a) arithmetic and logical section
b) super rotator

¢) control store

d) general registers

RESOURCES

Data Path Specifications
Microcode Listing

VII.

A.

E.

F.

G.

H.

OUTLINE
3 Sections of Data Path
l. Scratch pad
2. Rotator
3. Arithmetic & logical
Data Path Registers
Data Path Buses

Scratch Pad Logic

1. RAM R.
2. RAM M.
3. RSRC
4, MSRC
5. RNUM
6. RBS

7. SPA Status
8. Scratch Pad Address Control

Long Literal Register
Super Rotator Logic
1. The inputs

2. The outputs

3. The SRM chips

4, The SRK chip

5. The ALP chips
Multiple Bit Shifting
Variable Bit Field Extraction
Generate Constants
Various Bit Shuffling
Rotation of Data

ALP Logic Section

l. Inputs & outputs
2. Misc signals & associated circuits

Data Path

N.
0'
P.

Qo

OUTLINE (Continued)
ALP Function

l. Arithmetic
2. Others

ALP Control Function Chart
Microcode Example

Print Familiarization
Summary

Data Path

Data Path

-3 1
L Rt I r"'| | D
C ™ BUS
~ 5 (—=
= :> { sus [N D B
5 == 2]
4 T
= |
s :) < : um—%
i
Gm‘—l ' L
N - W
S | auriomc
\ “::_, / Qnux
\ wamux / I QR;ﬁ—] l oneG J :!m
waus v ey s DATA PATH BLOCK DIAGRAM r
Figdre 7-1

7-5

Data Path

REGISTER WIDTH CLOCK
SCRATCH PAD" 32BITS D

Q REGISTER 32BITS ap

D REGISTER 32BITS Qb
LONLIT 32BITS D
RNUM 4 BITS D/M
RBSP** 3BITS M
PLATCH . 6 BITS D
SLATCH A 6 BITS D

* SCRATCH PAD REGS. ARE DIVIDED INTO TWO SECTIONS. 16M & 48R.

** RBSP POINTS TO A 6 WORD BY 7 BIT STACK CALLED RBS

DATA PATH REGISTERS

TK-3054

Figure 7-2

Data Path

Scratch Pad Section

The scratch pad section of the data path consists of the
Scratch pad register and the scratch pad address logic (SPA
chip). Figure 3 illustrates the associated logic.

8-L

€-, 2ianb1g

W BUS]
MGNQ——T 1 IRD JRSPA D SIZE
e] eon jows | cenn | e - | sy
l ! '1
. 4
l ANUM RBS '
'SPA I*' l l
'cnm size |
[— DECODE
r—-—--——-——q v l
RAM
LONLIT ' A ' SPA STATUS
[f 4 - L Jx]
32 132 32 l rR.AM -1
32 l SCRATCH | BUT LOGIC |
y R RSPA | PAD MSPA M '
Gra's fe—{ pas . .
LOTNG ' TEMPS M P! l ADDRESS l TEMPS
LITERAL CONTROL l
RBS
32 [32 132 {32
R BUS >
{32
M BUS
SCRATCH PAD LOGIC

¥K 3073

yied ejeq

Data Path

REG NO RSAC ASSIGNMENT/PURPOSE
0 00 DUAL PORT TEMP 0
1 01 DUAL PORT TEMP 1
2 02 DUAL PORT TEMP 2
3 03 DUAL PORT TEMP 3
4 %4 DUAL PORT TEMP 4
5 05 DUAL PORT TEMP 5
6 08 OUAL PORT TEMP 3
7 07 DUAL PORT TEMP 7
8 08 RS-PAD TEMPS
9 09 R S-PAD TEMP 9
10 0A R S-PAD TEMP 10
" 08 R S-PAD TEMP 11
12 oc R S-PAD TEMP 12
13 00 R S-PAD TEMP 13
14 0E MEMORY MANAGEMENT TEMP 5
15 oF MEMORY MANAGEMENT TEMP 1
R TEMP
Figure 7-4
REG NO ASRC ASSIGNMENT/PURPOSE
0 10 GPR O
1 11 GPR 1
2 12 GPR 2
3 13 GPR 3
4 14 GPR 4
5 15 GPR S
6 16 GPR 6
7 17 GPR 7
8 18 GPR 8
9 19 GPR 9
10 1A GPR 10
1 18 GPR 11
12 1c GPR 12
13 10 GPR 13
14 1€ STACK POINTER
15 1F MICRO CODE TEMPORARY
GPR
TK-3068
Figure 7-5

Data Path

REG NO RSRC ASSIGNMENT/PURPQOSE

0 20 KERNEL STACK POINTER

1 21 EXECUTIVE STACK POINTER

2 2 SUPERVISOR STACK POINTER

3 23 USER STACK POINTER

4 24 INTERRUPT STACK POINTER

5 25 PROCESS CONTROL S8LOCK BASE
6 26 MEMORY MANAGEMENT TEMP 2
7 27 MEMORY MANAGEMENT TEMP 3
3 28 PG BASE REGISTER

9 29 PO LENGTH REGISTER

10 2A P1 BASE REGISTER

11 2B P1 LENGTH REGISTER

12 2C SYSTEM BASE REGISTER

13 20 SYSTEM LENGTH REGISTER

14 2€ NEXT INTERVAL REGISTER

15 2F MEMORY MANAGEMENT TEMP 4

IPR
Figure 7-6
REG NO MSRC ASSIGNMENT/PURPOSE

0 00 OUAL PORT TEMP 0

1 o1 OUAL PORT TEMP 1

2 173 DUAL PORT TEMP 2

3 03 DUAL PORT TEMP 3

4 04 OUAL PORT TEMP 4

E] 05 DUAL PORT TEMP §

(-] 08 DUAL PORT TEMP G

7 07 DUAL PORT TEMP 7

8 08 M S-PAD TEMP 8

9 09 M S-PAD TEMP 9

10 0A M S-PAD TEMP 10

1 08 ERROR CODE, MEM FAULTS & ARITH TRAP
12 oc FPD PACK ROUTINE OFFSET

13 00 MEMORY MANAGEMENT TEMP 0
14 0E SYSTEM CONTROL BLOCK BASE

15 oF SOFTWARE INT SUMMARY REGISTER

M TEMP
T_KQOBQ

Figure 7-7

7-10

Data Path

RSRC ASSIGNMENTS
RSRC <5:0 > RAM-R OPERATION
HEX REGISTER
00-00 TEMPO-TEMP13 .
0E MM.TEMPS -
OF MM.TEMP1 .
10-1D0 RO-R13
1€ SP
1F RTMPGPR oo
20 KSP
21 ESP ;
2 SSP .
23 usP .
24 ISP .
25 A PCBB.)
26 MM.TMP2
27 MM.TEMP3 .
28 POBR .
29 POLR
2A P1BR
28 PILR
2c SBR .
20 SLR .
2€ SPNICR.SPICR .
2F MM.TEMPS

Figure 7-8 Traose

7-11

RSRC ASSIGNMENTS (CONT)
RSRC <5:0> RAM-R OPERATION
HEX REGISTER
30 TEMP.R
3 DST.R
32 IPR.R
33 CRP.R
34 (TEMPO)
35 (TEMP7) LONLIT
36 (TEMPO) ZERO
k 1} (TEMPO) ZERO.CLRRBSP
38 TEMP.ROR1
39 DST.POR1
3A IPR.ROR1
3B GPR.ROR1
3C TEMP.R+1
30 DST.R+1
3€ IPR.R+1
3F GPR.R+1

TK-3061

Figure 7-8 (Continued)

7-12

Data Path

Data Path

MSRC ASSIGNMENTS
nasﬁc<4:n> RAM-M OPERATION DESCRIPTION
HEX REGISTER
00-0A TEM PO-TEMP10 | - MICROCODE TEMPORARIES
] ERRCOD . ERAOR CODE
oc F PDOFFSET - FPD PACK ROUTINE OFFSET
00 MM.TEMPO . MEMORY MANAGEMENT TEMP
o€ scas . SYSTEM chwrno&. 8LOCK
BASE
oF SISR . SOFTWARE INT SUMMARY
10 TEMP.R - MTEMP INDEXED BY ARNUM
n TEMP.R +1 . MTEMP INDEXED BY RNUM+1
12 {TEMPO}* WOR MBUS <-- MDR
13 (TEMPOY® WOR MBUS < - - WDR
14 (TEMPO) PSHSUB WRITE - - TO RBS
15 (TEMPO) PSHADD WRITE + TO RES
16 (TEMPO) WBUS RNUM WBUS < - - PNUM
17 (TEMPO)® XB.PC PC+1 MBUS <-- XB, PC<-- PCH
18 (TEMPO)® MA MBUS <--MA
19 (TEMPO)* AC BACK MBUS <. - PC BACK
1A (TEMPO)* PC MBUS <--PC
18 {TEMPOY* VA MBUS <-- VA
1c {TEMPO) READRBS READ RBS
10 {TEMPO) RNUM WBUS ANUM < . - WBUS
1€ (TEMPO) WB RBSP WBUS < - - RBSP
1F (TEMPO)* T8 MBUS < .- T8 DATA
T®K-307%
Figure 7-9

7-13

Data Path

LOAD SIGNAL MSRC OPERATION RNL{M
ASSERTED SPECIFIED CONTENTS
YES XXXXX 'MICROSEQUENCER REG. FIELD SPECIFIED
8Y MICROCODE
NO 11101 RNUM <« WBUS WBUS<3:0>
NO 11100 POP RBS REG FIELD OF RBS

RNUM LOADING CHART

S ' TX-3080

Figure 7-10

7-14

Data Path

6§ 5 4 3 2 1 0
Lt
2l bl
JIEEERERR
RBSP g T RBS
2 1 o INEEEEN
———*5 {1 10f110111110
\ J
Y
1
r \
6 5 4 3 2 1 0
0D OR ! ' ! !
ADDO D SiZE REGISTER NUMBER RBS ENTRY
Su8 1 { 1 1
* AUTO-INCREMENT, WORD, REGISTER 6
RBS ENTRY FORMAT
' - - TK-3062;

Figure 7-11

7-15

D DATA TYPE ENCODED
VALUE
SIZE ON SBUS
00 BYTE 0001
01 WORD 0010
10 LONG 0100
11 QUAD 1000
N e 2

ADD OR SUB OPERATION

0 SUBTRACT (DEC)

1 ADD (INC)

REGISTER NO. OTHRUF

RBS ENTRY FIELDS

TK-3063

Figure 7-12

=
[te]

Data Path

IF RSRC OR RNUM SPECIFIES GPR

Data Path

SPASTA RNUM REG
1:0 CONTENT GPR USE
01 1110 VAX MODE SP
10 0111 COMP. MODE PC
11 0110 COMP. MODE SP
00 ALL OTHER VAL. X
IF MSRC SPECIFIES RNUM « WBUS & RSRC IS NOT GPR
SPASTA WBUS
o 30 IPR USE
11 0-4 PROCESSOR
CONTROL SP'S
10 57.E F RESERVED
00 8-D ' ALL OTHERS
01 X X
IF MSRC SPECIFIES A POP RBS & RSRC IS NOT GPR
SPASTA RBS BIT 6 INDICATED MODE
-1:0
00 0 AUTO-INC
10 1 AUTO-DEC
SPA STATUS
TK-3051
Figure 7-13

IF MSRC SPECIFIES WBUS + RBSP & RSRC IS NOT GPR

SPASTA
1:0 | RBSP RBS CONDITION
01 0 EMPTY

b 00 ALL OTHER VAL. NOT EMPTY

IF RSRC OR RNUM IS NOT GPR, STATUS IS DEFINED
FOR THE FOLLOWING ONLY.

MSRC OPERATION
68:64 SPECIFIED
11100 POP RBS
11101 RNUM « WBUS
11110 WBUS « RBSP
SPA STATUS
TK-3064
Figure 7-14

Data Path

61-L

GT-L @anb1g

A BUS >
MBUS
<39:31>
<63:68> LITRL
ROT 32 {32 l 9 32 32
Gv —— L BE N _JF ___J_]
\ v :
8 mMux . \ MUX / \ MUX / '
: 5 '
'm L] -—A SRM ‘..i._._..._.
@) \ \ s “ -~ < W BUS
| SECOND FIRST LEVEL SHIFT ' s 12 0 SIZE
LEVEL | MUX & MASK 1
L.) 3{s l 2 __DCLK
e |0y eEmg GERESS AN G LB W) - W] b nesed | G § aad | cehen
15 36 POS PRI
SHF SEC
6
SRK 7)
6 6
¥)
\ MUX 7 \ MUX ;
6
POSITION SIZE
FIND FIRST LATCH LATCH
‘ |
+ £
4 18 SRK [} 6
STATUS
MUX
{2
WMuxz BUT LOGIC
> 8
S 8US

RN

ROTATOR LOGIC

yzed ezeqg

Data Path

ROTATOR LOGIC

The rotator is conceptually a 64-bit in, 32-bit out barrel
shifter combined with a data shuffling multiplexer.

There are three sources of data into the rotator.

(1) MBUS, denoted by M, is normally used as the input
data <63:32> to the rotator.

(2) RBUS, denoted by R, is normally used as the input
data <31:00> to the rotator.

(3) LITRL, these are 9-bit input data directly from the
following micro-fields: RSRC, ISTRM and CC. The 9
bit LITRL can be zero or one extended to 32 bit and
rotated by 4, 1, 2 . . ., 7 nibbles.

The barrel shifting operation is implemented in two levels.
The first level shifts the 64-bit inputs right by @, 4, 8
eeeees 28 bits and outputs a 35-bit intermediate result.
This level shifts the SBUS data right by 8, 1, 2, or 3 bits.
Outputs from the second level shifter will be denoted by
S<31:00>. By a proper combination of the two level shifts,
the 64-bit input data can be shifted right @ through 31 bits
and left 1 through 31 bits.

The SBUS data can also be masked off starting from an
arbitrary bit position. This, combined with the barrel
shifting operation, effectively executes a variable length
bit field extract, and zero extended operation.

The data shuffling multiplexer implements some VAX peculiar

functionality such as BCD swapping, convert from BCD format
to ASCII, etc.

7-290

1C-L

91-L @inb1g

r
63 0"
16 NIBBLES/64 BITS—SRM DATA- 15[14 J13|12]{11]10] 9 6 3121140
THE 32 BITS OF NEEDED DATA
SHIFT INBITSTO <44:13>
SECOND SHIFTER RESIDE IN NIBBLES <11:3>
0
K 3231 .

| B T vy y 1T 1 T Ty LA N | v LA

SBUS] 11 10 9 8 7 5 4 3

: [| L1 1 {1 1.1 | T I) 1 1.1 1 3 1 [I | L1 4 1 1
a8 \ ~ 12

— FIRST OPERATION - O
SHIFT RT 3 NIBBLES
— SECOND OPERATION —
SHIFT RT 18BIT

SECOND A}

LR LA ¥ 1 T ¥ R LR v | R
LEVEL bal b0 bbb bbb rrrfbrebrd P11] hs

OUTPUT [SN I A T | N W | | T | | W | i [t T I |
31 0

SHF

h

Y

18T SHIFT, HOW MANY NIBBLES.
2ND SHIFT, HOW MANY BITS.

ROTATE RIGHT OPERATION
RR.MR.P

TK-3065

yaed ezeq

63

0

SRM DATA pish14{13j1211110] 98716 |5]4]3]2|1

16 NIBBLES/64 BITS

STEP 1

EXTRACT DATA STARTING
WITH BIT 20 AND ENDING WITH

~BIT 27. PUT DATA IN LOW ORDER

POS OF SBUS & ZERO EXT.

o amses

b comce oy

b Snmes and

‘l]' s
ho oo =

po w——

o oume oy
o o oy

p o and

e e o

- e]

o awen oy

p a— o
o

o e wy

b uae o

pe cney o

STEP 2.

PASS FIRST 32 DATA BITS WITH NO SHIFT.

PZE A

oy

31

0
0

34
0
0

FIRST
LEVEL
S BUS

Figure 7-17

SECOND

OuUTPUT

Data Path

1

]
i

2
poslol1lo] =5

=20

o nus o

o cne o

ROTATOR EXTRACT AND ZERO OPERATION

XZ.MR

TK-3066

63

16 NIBBLES/64 BITS

SRM DATA 15(14[13]12|11{10]9 |8 | 7|6 |6]4|3.]2] 1|0

SBUS BITS

STEP1

<2:0> <0
<3> 1

<34:4>+«0

ol ok of x
o TN. x
> a— =g "l
o _m x
e = v X r
- 2 >
s |8 o
(3l o e n - [F]
x 4 LI}
b aeed N ©O - N ™M e b o
TIITI_ - b
l'hl ~ ho ol ey
> g = E e o
o i ‘ hoo e @
™ = e s onf
be oo o lel
4 | 4 -
r|'l P g ot
e o e cg o
%
=t =4 - b endp o
pe avie o e once o
> s 'u'l
> ange of b e o
ho annfpe wed e e
> wadn «d e
o g = : pe onchn i
rlll b smmipo e
'lT- o el
= o wnpe =
[¥ Xy
ale b=y)
-~ -
Hog S5
c 2 2 o W o
T4Ya Q&5
w
t 4 O

Data Path

]

1 /V/1x]x

SHF,

L
1

lol1lo] = consTanT 8

Figure 7-18

Sy

CONX.SIZ

TK-3071

ve-L

61-L @anb1a

THIS FUNCTION 1S USED TO CONVERT A 4 DIGIT BCD STRING ON THE MBUS TO A
4 DIGIT NUMERIC (ASCH) STRING. TO USE THIS FUNCTION PROPERLY, A

CONSTANT XXX3 XX33 (HEX) MUST BE SET UP ON THE RBUS.

ALTERNATE 4 BIT CHUNKS FROM THE MBUS AND THE RBUS ARE SHUFFLED ONTO
THE SBUS AS FOLLOWS:

28

24

R BUS

16

12

SBUS<03:00>
SBUS<07:04>

SBUS<11:08>
SBUS<156:12>

SBUS<19:16>
SBUS<23:20>
SBUS<27:24>
SBUS<31:28>
SBUS<34:32>

MBUS<07:04>
RBUS<03:00>

MBUS<03:00>
RBUS<07:04>

MBUS<15:12>
RBUS<03:00>
MBUS<11:08>
RBUS<19:16>
0

28

1

CVTPN CONVERSION OF BCD TO ASCII (SHUFFLE)

BCD.SwWP

S BUS

TK-3053

yaed eieq

M BUS

R BUS

I R

b <
= =
hd o~
s -
hl)
gl ~
o~
©
- o
——
™ P
™ P
x x
x x
™) ™
x x
x x
x| o X
©
<
2
Q
-
[« 4
@

16 NIBBLES / 64 BITS

FIRST

- qe -

o e @

poe = >t

ho o <o an

o g = o

> @ @w =

o = 0= -

(V) e

o o o> an =

b (o

pocomey

b (VYo d

[]
]
()
]
A

'LEVEL [0,0
S BUS

Figure 7-20

o @ - o

b =) = o

o o «» «f

po = = =

leaery s o

o @ - @ -

o o om @ g

P - <« =

o< (V3 ¢ =

o o qun o

ho = = o o

- (o o

———t

o = (N =

b = on =l

1---.
e ()

o = == «

3

. SECOND
LEVEL

ouUTPUT

BYTES

D SIZE<1:0>

ROTATED

Data Path

RR.MM SIZ ROTATE RT M BUS & M BUS
BY 2BVYTES FOLLOWED BY CVTPN

- N M O

10

1"

TK-3057

9¢-L

1Z-L @anb1a

SIGN/ZERO

SECOND LEVEL 571 exreno
R BUS M BUS
Q REG i 132132 (32 32 -
. '32 l ‘ '32 CLA
ALP (8) \ smux / \ A MUX / 4 c<r:0> — cit
ALK 32 8 : —» BCDL
FF'S — SB
ALKC G<7:0>A88 |+ < BINCBL
ALUSO ~-«—— BCOCB L
TOG - C
LooP P<7:0> - F§
— LUTL +— Fov
< ASIO31L 32 92 32 2 —— MUXSEL
< AS1000 L ~/ —& MUXIUA
< Qsl0 31 \ ALU / \ QMUx / —» MUXIUB
< QSI0 16 (12 2 | <+—— MUXOUT
- Q5107
< Q5100 \ W MUX / QREG. D REG.
—& PSLC 32 - ?
—» ALUC3IL)
<— SPWBENL 15 1
<— SPWWENL £ OPCODE< 8:0> |—A=—t B MUX SPW -
-#— SPWLENL 22
— QDCLK L
WBUS J
«—— DBL EN
~— BCOL
«— CAROUTL
<«— BYTEL
#5—JALPCTL<67:48>| @—L— ROT<63:68> -<f5] D SIZE
ALP LOGIC

TK 2070

yied ejeqQ

Data Path

ALP LOGIC

The ALP is made up of eight identical slices of gate array
chips connected to perform 32-bit binary and 8 digit BCD
arithmetic with carry 1look ahead 1logic. Two internal
‘registers are provided for intermediate storages.

There are seven major sections associated with the ALP
logic:

1. ALU input mux, AMUX and BMUX
2. ALU

3. Output mux, WMUX

4. Q Register

5. D Register

6. WBUS control

7. Status logic

7-27

Data Path

A BCD STRING | 12,345,678 [WOULD BE STORED IN MEMORY AS FOLLOWS:
12——ADDRESS X
34——ADDRESS X +1
56 ———ADDRESS X +2
78——ADDRESS X +3

WHEN READ OUT AS A LONGWORD

78563412

APPEARS AT THE DATA PATH

NIBBLE 765432129

DATA |7]8(5|6]3]4[1]2

O WV amp]

f
L
S
)

IN ORDER TO PERFORM AN ARITHMETIC FUNCTION ON TWO
SUCH STRINGS (ADD), THE CARRY FROM NIBBLE 6 WOULD
HAVE TO BE PROPAGATED TO NIBBLE 7, AND NIBBLE 7
PROPAGATED TO NIBBLE 4, AND SO ON.....

W W
E-
— |-

START STOP
CLA

TK-3082

Figure 7-22

7-28

Data Path

SIGN;ZERO
SECOND LEVEL EXTEND
RBUS M BUS
2 ‘!
Q REG.—+3-2—1 {32 {32
y y
\ B MUX / 32 \ A MUX
0
1'32 1'32 1’32 4'32
])
N QmMux
ALU
) {x Jfaz
1 b
\ WMUX / QREG. D REG.
.]
{32
2
! B
32
s 1
8 MUX
32
<: W BUS]
ALP LOGIC

TK-3074

Figure 7-23

7-29

Data Path

ALU |QREGISTER ALUSHF =011 ALUSHF = 010
SHIFT |SHIFT (ROTATE) (SHIFT)

LEFT LEFT ALU te—{ Qq 4-] < ALU j&— Q :]

0
ALU <—{ ALU
LEFT | RIGHT
—ad Q o—af Q |
ALU ALU |—»

RIGHT | LEFT !

aighT | miGHT l—— ALU —» a E AW }—»{ a |-—»

, 0
NONE LEFT AW]| —~ a |ee ALU | < a j
WBUS(31)
NONE | RIGHT ALU Q ALU E Q f»
WBUS(31)
LEFT NONE ALU | a < ALU :] Q
a3
RIGHT | NONE [: ALU] Q E Al = | a
a@En”
*Q(31) IS UNDEFINED FOR ANY LOAD Q FUNCTION.
ALU/Q SHIFT & ROTATE
TK-3059

Figure 7-24

Data Path

THE ALU PERFORMS THREE BINARY ARITHMETIC OPERATIONS, TWO QUAS!-BCD
ARITHMETIC OPERATIONS, AND FIVE LOGICAL OPERATIONS.

THE THREE BINARY ARITHMETIC OPERATIONS ARE:
APLUSBPLUSCIN (A +B +CIN)
A PLUS .NQT.B PLUS CIN (A -8 - CIN)
8 PLUS .NOT.APLUSCIN (8 — A - CIN)

IN THIS MODE, TWO CARRY LOOK AHEAD SIGNALS (P AND G) ARE
CALCULATED BASED ON 16.

THE TWO QUASI-BCD ARITHMETIC OPERATIONS ARE:
APLUS B PLUS CIN (A + 8 +CIN, BCD)
A PLUS .NOT.B PLUS CIN (A = B — CIN, BCD)

IN THIS MODE, THE OUTPUT OF THE ALU IS THE SAME AS

WERE DOING BINARY ARITHMETIC, BUT THE P AND G GIGNALS ARE
CALCULATED BASED ON 10. EXTRA LOGIC ARE USED TO ADJUST THE
4 BIT ALUOUTPUT TO A TRUE BCD RESULT.

THE-FIVE LOGICAL OPERATIONS ARE:
A.AND.B
A.OR.B S
A.ANDNQT.B
B8.ANDNOT.A
A.XOR.B

ALU ARITHMETIC FUNCTIONS

TK-3055

Figure 7-25

7-31

ALU FUNCTIONS

Data Path

THE ALU CAN PERFORM 16 LOGICAL AND ARITHMETIC OPERATIONS
WHICH IS SPECIFIED BY ALPCTL <5:2>.

IN GENERAL, THE 16 ALU OPERATIONS ARE CLASSIFIED INTO THREE

GROUPS: BINARY ARITHMETIC, BCD ARITHMETIC AND LOGICAL.

ALPCTL <5:2> ALU OPERATION GROUP
0000 A-B—Cl BINARY ARITH
0001 A-B—Cl, BCD BCD ARITH
0010 (A-B—CI).SR BINARY ARITH
0011 (A-B-CI).SL BINARY ARITH
0100 A+B+CI BINARY ARITH
0101 A+8+Cl, BCD BCD ARITH
0110 (A+B+CI).SR BINARY ARITH
01 (A+B+C1).5L BINARY ARITH
1000 A.AND.B LOGICAL
1001 A.ORB LOGICAL
1010 (A.AND.B).SR LOGICAL
1011 (A.AND.B).SL LOGICAL
1100 8—A—Cl BINARY ARITH
1101 A.XOR.B LOGICAL
1110 AAND.(.NOT.B) LOGICAL
1111 (.NOT.A) .AND B LOGICAL

NOTATIONS

A= A MUX

B = B MUX

Cl = CARRY INPUT

SR = SHIFT RIGHT

SL = SHIFT LEFT

TK3058

Figure 7-26

7-32

Data Path

MICROWORD

57 48
ALPCTL=<57:48>

9 8 7

1
'.
WHICH COLUMN —-J—-T

WHICH ROW @
WHICH Q&D OPERATION ®

(2]
o
&
w
~N
=)
o

[_____ \.

—
-
(o]
—
—
—
(=]
o

ALPCTL =373
CHART FUNCTION

EXAMPLE®

s e e s e e o

COLUMN "D” — AMUX GETS ZERO
BMUX GETS SUPER ROTATOR

- - ROW°C” BMUX MINUS AMUX MINUS CARRY IN

. (SR—-0-0) -

OPERATICN "3" WMUX GETS SUPER ROTATOR
QREG & DREG GETS WMUX

"PASS THE SBUS THROUGH THE ALU

READING THE ALPCTL FUNCTION CHART
TK-3086

Figure 7-27

7-33

Data Path

ALPCTL FUNCTION CHART COLUMNS A-F

Figure 7-28

7-34

——MICRO ORDER—»{ A 8 c D E F
ALU AMUXBMUX| p a1 D.Q2 DS 0s R.Q R.3
o A-B-Cl
1 A~B-C1,BCD
2 (A-B8—CI).SR
3 {A=B—CI).SL
4 A+8+Cl
5 A+8+C1,8CD
8 {A+B+CI).SR
7 (A+8+Cl).SL
8 AAND.B
9 AQR.B
A {A_AND.B).SR
] (A.AND.B).SL
c B—-A—Cl B
0 AXOR.B
E AAND.(.NOT.B)
F LNOTALANDE
WX+5
Q-D+WX

TK-3087

Data Path

ALPCTL

This is a 10-bit field used by the data path to control the
ALP logic. The 10-bit field specifies 10924 functions. Most
of them can be grouped together based on (1) the ALU
operation, (2) the inputs to the ALU, and (3) the Q and D
registers control. Such grouping of the ALP functions is
depicted in Figure 28, the ALPCTL FUNCTION CHART.

In the ALP FUNCTION CHART, there are 16 major columns. Each
column is identified by ALPCTL<K9:6>, which in general
specified the inputs to the ALU. There are also 16 major
rOWS. Each row is identified by ALPCTL<5:2>, which in
general specifies the ALU operation. At the intersection of
a major column and a major row, there are four blocks which
are further identified by ALPCTL<1:80>. Each block specifies
an operatlon on the Q and D reglsters with the given ALU
operation and the ALU inputs.

Functions that cannot be readily specified by the above
scheme are called ALP special functions. All these
functions are marked off with a shaded corner in the ALPCTL
FUNCTION CHART.

Data Path

DURING

T

[erm] o]

& WX / ‘ A R /
G 0]

e} save
AncORESS 7{3 amux GoNTENTS
FemomGPRY [OF MoA 1
04 vA anEG.

I anea] I oneG. l

M

4 rova MICRO ADDRESS (OS.RED+1)
DATA PATH BLOCK DIAGRAM

i MOVL (RO}, A1 -
Figure 7-29

7-36

NCREMENTED

DATA SACX

INTOGPRI.
Losut

SPA STATUS

SCR.ATCH

ENIE=

'
- RS |afis?A | PADADOR |yopy BuT LOGIC "
GRS TEnes
conrmo [~ e
n83

ADORESS, 0812

a+-0F NCO
e,
==
@
ESTABLISH wux aux
CONSTANT < pr -
Lamaa™ |
€
S0us > SUS/READ
sws_ LOADMOR
WITMOATA
wux FROM MEM
" xz—— LocaTion
1 SPECIFIED
[mormer] [rorer | - ot
$8us
e —)
SHIFT SAK.
| LEVEL l RIGHT 1 81T. 4
A L
s —> <‘ ™ aUS
o (&= |
anta
—
© Cm/ =7 '
ADD CONST
TO vaLUE
OF DATA N \/ .
- i \ asx / _
—_—

DATA PATH BLOCK DIAGRAM

MOVL (R0}, R1

Figure 7-30

7-37

> MICRO ADORESS (OS.RED-AUTO.INC}

Data Path

Data Path

waus
—
i @ WRITE DATA REG. Nuxs e
FROM MEM RSPA
[T - 0 zE

)

=7 [..J =1Ly

; MICRO ADDAESS (ILMOV.B.W.L.AEG)

hdd > DATA PATH BLOCK DIAGRAM
" MOVL (ROP, A1 Teaem

Figure 7-31

Data Path

CHAPTER 7 INTERVAL TIMER AND TIME OF YEAR CLOCK
7.1 INTRODUCTION TO INTERVAL TIMER

The Interval Timer is an integral part of the Comet CPU
hardware and it is used primarily to schedule events and
control the amount of time a particular task can operate.
The operation of the Comet Interval Timer from the software
level is consistent with other VAX family processors. Most
of the Timer is implemented within a gate array called TOK.
The Timer is implemented using a 10 MHz TTL oscillator, a
divide by 16, and the TOK gate array. The Timer is
incremented at 1 microsecond intervals which makes the
operation consistent with other VAX family Timers. The
maximum interval then could be expressed as
(({(2*%*32)-1)*,000001)/68 which works out to be around 71
hours or approximately 3 days. It does require external
dedicated scratchpads to maintain the interval count, so the
TOK gate array was placed on the DPM module. The Interval
Timer is accessible to the VAX-11 macro code through
Internal Processor Registers (IPRs). These IPRs can be
accessed with MTPR and MFPR macro instructions, and also
from the console terminal. An explantion of the Internal
Processor Registers will follow in subsequent paragraphs.
The Interval Timer operation is basically straightforward.
The operating system loads the Timer with 2's complement of
the desired interval a particular task must run. The Timer
is started with an MTPR instruction and when the Timer
overflows at the end of the desired interval, a macro level
interrupt request is booked with the CPU. If the IPL level
of the Timer Interrupt Request (IPL 18) is greater than the
current PSL IPL, the timer service macro routine is entered
via SCBB+C@. This would terminate the current task, if
something else of higher priority had not done so.

7.2 DETAILED DESCRIPTION OF THE TIMER CIRCUITRY

For the following discussion you will need the module
schematic diagram of the DPM and CCS module. Refer to the
CCS module schematic page CCS14 and locate E5. E5 is the 10
MHz TTL oscillator that provides the time base for the
interval timer gate array (TOK) on the DPM -module. The
output from E5 goes to the 7496 IC which is a decade
divider. The output of E4 is a symmetrical 1 MHz signal that
provides the increment interval of 1 microsecond. The signal
TOK OSC OUT H is wired from slot 5 (CCS module) to slot 2
(DPM module). Refer to the DPM module schematic page DPM13.
The TOK gate array is shown in the lower left corner. The
signal TOK 0SC OUT H enters the DPM module and goes to pin
45 of the TOK gate array. The other inputs to the TOK gate

7-39

Data Path

array are PROC INIT L which will clear any interrupt
requests left in the gate array and set the logic to a known
state. BCLK L and D CLK ENABLE H are used internally to form
a D CLK to load the Timer control and data registers. Access
to the gate array is entirely controlled by the WCTRL field
of the microword which is used in the MTPR and MFPR macro
instructions and the interval timer service microroutines.
There is a full 32 bit bi-directional interface to the CPU
WBUS for reading and writing the timer control and data
registers. The signal TIMER SERVICE H that exits the TOK
gate array 1is used to signal the microcode that a
micro-routine to update the high half of the interval count
or a transfer of data to the ICR register from the NICR
register is necessary. The signal TIMER INT L is the timer
interrupt request that is generated when the interval timer
overflows. This goes to the INT gate array on UBI so that
the interrupt request can be arbitrated among the other
requests. This concludes the detailed circuit description of
the Timer circuitry. Timer functionality is verified with
the Hardcore instruction test EVKAA. a failure of the timer
can be isolated to one of three components, the oscillator,
the decade divider, or the TOK gate array.

7.3 INTERVAL TIMER FIRMWARE REQUIREMENTS

The implementation of the Interval Timer in the Comet
CPU is not at first obvious. Figure 7-32 shows the VAX 11
Interval Timer IPRs as they appear to the software. There
are 3 registers associated with the Interval Timer. IPR 19
is the Next Interval Count Register (NICR) and this register
is loaded with the 2's complement of the desired interval.
The number loaded into this register is the two's complement
of the desired interval in seconds divided by 1 microsecond.
The IPR 1A is the Interval Count Register (ICR) and it
contains the current count of the timer at all times. The
ICR is loaded from the NICR and the value in the NICR does
not change unless an MTPR instruction writes new data into
it. IPR 18 1is the 1Interval Counter Control and Status
Register. This register controls the operation of the
Interval Timer. The function of the bits in the ICCS is
explained below.

7-40

60$:

708:

90$:

100%:

MAIN PARTITION IS BUSY
LOCATE FIRST SUBPARTITION

Data Path

)

IS THIS SUBPARTITION BUSY?

;

DETERMINE IF TASK WHICH OWNS
BUSY SUBPARTITION CAN BE
CHECKPOINTED ($TSTCP)

l

CAN OWNER TASK BE CHECKPOINTED

NO
——

1008 .

—

DOES THE NEXT SUBPARTITION EXIST

YES

;

IS THIS SUBPARTITION BUSY?

NO

l

INITIATE CHECKPOINT OF TASK
WHICH OWNS SUEPARTITION ($ICHKP)

)

ANY MORE SUBPARTITIONS?

YES

l

DONE, RETURN TO CALLER

7-41

TK-1724

Data Path

ICCS BIT FUNCTION

<15> ERROR This bit is set if an improper
operation is attempted, for
example start the timer
without clearing the Interrupt
Request (IR) from the previous
Timer overflow.

<7> IR Interrupt Request is set when
the Timer overflows.

<6> IE Interrupt Enable, This bit
must be set by the VAX 11
macro code to enable Timer
interrupt requests at IPL 18.

<5> sC This is a write only bit that
the macro programmer can use
to step the interval clock 1
count at a time. Each write to
the ICCS with bit <5>=1 will
step the interval timer 1
count.

<4> TR Transfer moves the NICR
contents to the ICR.

<8> RUN This bit starts the interval
counter incrementing until it
overflows. This bit would be
set after the transferring the
NICR to the ICR.

Figure 7-33 shows how the hardware is implemented. The TOK
gate array does not contain all the circuitry, as stated
earlier, to make the timer function. The first register in
Figure 7-33 shows the TOK control bits in the high half of
the WBUS bits. The lower 15 bits of the TOK gate array can
be read as either bits <15:8> of the NICR or as <15:08> of
the ICR depending on which is desired. The high half of both
the NICR and ICR are maintained in an RTEMP scratchpad that
is dedicated to the timer. This means that when the lower 16
bits of the ICR are going to overflow, a carry from bit 15
must be added to the contents of the scratchpad that
contains the high half of the ICR. This is accomplished by
forcing a timer service trap at BUT SERVICE to micro-vector
to control store address 0014. At location @014 1is the
micro-service routine that will update the scratchpad
portion of the ICR. The RTEMP scratchpad that contains the

7-42

Data Path

high half of the ICR is a single 32 bit location that is
called R[SPNICR.SPICR]. The scratch pad location contains
the high 16 bits of the NICR in bit positions <31:16> and
the high half of the ICR 1is stored in bits <15:6> of
R[SPNICR.SPICR]. Figure 7-33 shows how this is laid out. The
timer service microcode has to access the scratchpad by
rotating the contents properly. As you can see the NICR IPR
is scratchpad memory in bits <31:16> and <15:8> actually
live in the TOK gate array. The same is true about the ICR.
The ICCS shown in the bottom register interfaces to the TOK
gate array bits <31:16>. The MTPR and MFPR instructions have
to rotate the write and read data to the ICCS 16 bits to the
left. The bits described previously in the ICCS register are
visible to the WBUS rotated 1left 16 bit positions. The
following TOK control bits are explained below.

TOK BIT FUNCTION

VP (WBUS <17>) This bit is set by the
microcode in the interval timer
service microroutine to
indicate that the contents of
the SPICR 1is all ones. This
informs the TOK gate array that
the next ICR overflow should
set TIMER INT L.

TR (WBUS <18>) TR is set in the TOK gate array
after an MTPR initiates a
transfer to the NICR. TR is not
the same as TRANSFER (WBUS
<2¢>) which is set by the macro

program to initiate the
transfer of the NICR data to
the ICR.

7-43

7.4

Data Path

ICCS BIT FUNCTION

SR (WBUS <19>) SR means service request, SR is
set by the TOK gate array to
request service from the timer
service micro routine to update
the SPICR after the ICR
overflows.

TVP (WBUS <24>) This bit is set by the
microcode to tell the TOK gate
array that the SPNICR is equal
to -1. This enables the VP to
set when a transfer to the ICR
is done and it prevents the ICR
from being auto 1loaded after
interrupt.

TIMER SERVICE AND INTERRUPTS

- The signal TIMER SERVICE H from the TOK gate array is

asserted for two conditions. The first is if SR is set
indicating an overflow from ICR <15:8> and the second
is if TR is set indicating that the previous macro
instruction was an MTPR that set the TRANSFER bit
(WBUS <2@>). At the next BUT SERVICE the TIMER SERVICE
request, 1f honored, will invoke the TIMER SERVICE
microroutine that begins at control store address
#914. This routine has to determine if there 1is a
SERVICE REQUEST (SR) or TRANSFER REQUEST (TR) and do
the appropriate service. A SERVICE REQUEST (SR) means
the microcode has to increment the SPICR. A TRANSFER
REQUEST (TR) causes the SPNICR to be moved to SPICR.
Once the service request is completed the microroutine
backs up the PC and does IRDl1 on the VAX-1ll macro
instruction preempted by the TIMER SERVICE request.

Timer Interrupt requests operate in a similiar

fashion, at BUT SERVICE if any interrupts are pending,

the INT gate array has already completed arbitration
and it will drive the MICRO VECTOR address lines <2:0>
with the highest priority request encoded into a micro
address. The complete microaddress of the Timer
Interrupt service routine is formulated by the SAC,
MSQ, and INT gate arrays. The control store address of

7-44

Data Path

the first microinstruction of the Timer interrupt
service routine is 0@3B. The microcode would transfer
control of the macro program to the Timer Service
Routine that is pointed to by contents of SCBB+CH.
This routine must clear the IR bit of the ICCS before
using the timer again or an Interval Timer ERROR will
occur.

TIMER MACRO CODING EXAMPLE

Figure 7-34 is an example macro program that activates
the interval timer. This is a stand alone program and
could not operate under VMS as is. All this routine
does 1is set up the interval timer with a 16 second
interval. The timer is started and the CPU just waits
for the interrupt that occurs 10 seconds later when
the counter overflows. When the counter overflows, the
interrupt service routine is entered via SCB+C# where
it just halts the CPU. If C is typed at the console
the program will relocad the timer and wait for another
18 seconds until the counter overflows. That all this
program is capable of, but it does show how to load
the timer, start it, and handle the interrupt at
Vector SCBB+C@. Let's analyze it.

Lines 4,5, and 6 are assembler directives that build
the SCB in the low two pages of memory (@ to 3FC). The
value associated with 1label INTERVAL 1is the test
interval in microseconds. 10000000 microseconds is the
same as ten seconds. The label ST_TIM has the value 51
hex associated with it and this will be used to set
bit <6> Interrupt Enable, bit <4> Transfer NICR to
ICR, and bit <@> the GO bit that starts the timer
running. Lines 13 to 16 are local symbol definitions
for internal processor registers. At 1line 19 is a
directive to allocate 20 longwords\for the stack
space. Line 23 is the beginning of the main program to
get things going. The first instruction sets up the
stack pointer. The next instruction points the SCBB to
address # in memory. At line 25 the interval value
defined at line 8 is negated (2's complement) and put
in R@. The address of the service routine (TIM SERV)
is moved into the SCB so that timer interrupt will
vector to relative address 478. At line 27, the NICR

Data Path

is loaded with the 2's complement of the interval (10
seconds). The instruction at 1line 28 transfers the
data pattern defined in line 9 to set IE, transfer the
NICR to the ICR, and start the timer. The IPL of the
machine is lowered to 17 to take the timer interrupt
when the timer overflows. The next instruction just
waits for the interrupt.

When the interval timer overflows, the interrupt
request at IPL 18 is generated and if honored, the
macro code resumes at the label called TIM SERV. The
interrupt service routine must clear bit <7> in the
ICCS or when the REI is executed, the IPL 18 interrupt
request is immediately generated again. The HALT
instruction is there to print out the PC at the end of
19 seconds. If the program is continued by typing C at
the console, the timer 1is restarted with the same
interval. This means that the timer can be reloaded
from the NICR continuously. The primary intent of the
program is to show the mechanism by which the timer
establishes intervals of execution time for programs
in a time shared environment. This concludes the
discussion of the interval timer operation.

IPR 1A

IPR 19

IPR-18

Data

Path

WBUS

31 24 23 22 21 20 19 18 17 16 15 00
NICR <15:0>
ICR <15:0>

ERROR -JTRANSFER ovea'm.o—l J
PENDIN INT REQ TOK GATE ARRAY
INT EN TocRuWBUS
SINGLE CLOCK :
TRANSFER
SERVICE REQ
TRANSFER REQ
OVERFLOW PENDING—
RUN-
ICR
3 16 15 00
SCRATCHPAD ICR R [SPNICR,SPICR] <15:0> TOK GATE ARRAY ICR <15:0>
NICR
31 1615 00
SCRATCHPAD NICR R [SPNICR,SPICR] <31:16> TOK GATE ARRAY NICR <15:0>
ICCS .
31 15 07 06 05 04 00
0) ERR|- 1r|1E|SC|TR
TOK GATE ARRAY <31>-’ TOK Q3>J TOK <1s>J
TOK 2>
TOK 21>
TOK <20>

TK-4311

TEST TIMER

00000051

00000011
00000012
00000018
00000019

S FDAF

11 00

50 SEWN

FC34 CF 00000478°EF
19 50

18 892 AF

iz 17

PEEBERMAER

M

18 00000080 8F DA
00

18 81 AF DA

02

0478

0478
047F
0480
0484

Data Path

27-AUG-1980 16:39:20 VAX-11 Macro Y0Z.45 Pase
19-AUG-1980 12:44:02 _DLAQI[PEACOCKITIMER.MAR;!

JTITLE TEST TIMER
PSECT ALIGN LONG

REPT 256
LONG 3
.ENDR

7 Build the SCB

.LONG 10000000 ¢ 10000000 microsecends is 10
.LONG *%51 v Data to set IE, TR, and GO in ICCS

+ Initialize a Stack Pointer
» Point SCBB to address 0
+ Neaate the interval time

MOVAL TIM_SERV, SCB+*XCO: Put address of service in CO

8 INTERVAL.

9 ST.TIM:

10

11 ; Local defintions for prosras.

12

13 =%11

14 IPL="X12

15 1CCS="X18

16 NICR="X18

17

18 7 Stack seace

19 .BLKL 20

20

21 7 Main Routine

22

23 START. MOVAL START, SP
24 NTPR #0, #5CBB
Fs] MNEGL INTERVAL, RO
28

27 MTPR RO, #NICR
28 NTPR ST_TINM, #ICCS
28 KTPR #°X17, #IPL
30 HERE: BRE HERE

3

32 ;7 Timer Service Routine

kK|

kL LALIGN LONG

35 TIM_SERV: NTPR #°%80, #ICCS
35 HALT

37 KTPR ST_TIM, #ICCS
38 REI

38 LEND START

; Load count into NICR
v Set IE, TR, and start timer
v Lower IPLL to take interruet

+ Clear Timer IR before REI

+ Trre "C" at console to so

7 Restart timer with same count
+ REI hack to BRB HERE

1
$3]

VAX-11/756 LEVEL II

Remote Diagnostics

Student Guide

Course produced by Educational Services Department
of
Digital Equipment Corporation

Remote Diagnostics

INTRODUCTION

The RDM was placed at this section of the course to allow
the student to understand its use in the overall system.
That use is: the RDM is a TOOL to be used by the technician
to maintain the equipment. The RDM is NOT needed by the
customer to operate the system. Due to this fact the
maintenance philosophy is: THE RDM IS A FIELD REPLACABLE
UNIT AND WILL NOT BE REPAIRED. This makes sense if you say
to yourself; "Self I can't take up the customer's system
time fixing my repair equipment."

What you should obtain, from this 1lesson and following
lessons, is the confidence in the use of the RDM and the
many functions available to you when using the RDM. These
functions will be mentioned in this lesson but not all will
be reinforced with labs directly after the lesson. The
different uses will be spread out to allow you the chance to
apply these uses in actual troubleshooting situations as
they arise in the course.

There are two levels of maintenance involved with the use of
the RDM.

1. By the branch or support person on site to fix a
problem by running Micro Diagnostics (TO RUN MICROs
YOU HAVE TO HAVE AN RDM) or by taking an instruction
through a complete cycle one micro instruction at a
time. (AGAIN YOU NEED THE RDM TO SINGLE STEP
MICROINSTRUCTIONS.)

2. The same functions may be used remotely by the DDC
in Colorado to help the branch or support person
perform fault isolation or preventive maintenance.

THESE ARE NOT ALL THE FUNCTIONS OF THE RDM. They do show
that it is needed to perform onsite maintenance as well as
remote diagnosis.

Remote Diagnostics

OBJECTIVES

At the completion of this lesson the student will be able.to
distinguish between the two basic modes of operation
available using the RDM.

The student will be able to match the blocks in a blank RDM
block diagrams to its function.

The student willvbe able to match the RDM commands to their

related function 1in running micro-diagnostics while
troubleshooting the machine.

SAMPLE TEST ITEM

Match the function in the right column to the command in the

left column by placing the proper 1letters in the space
beside the command.

EXAMINE A. Enter RDM mode

DEPOSIT B. Place data into a location

RET C. Read data from a location

P D. Return to previous mode
RESOURCES

11/750 RDM Maintenance Card

11/758 Option Technical Manual and Microdiagnostic User's
Guide

VI.

OUTLINE

Remote Diagnostic Module
A. Reasons for RDM
B. Physical Characteristics

1. Location

2. Power

3. Front Panel Indicators
C. Operational Overview
D. Block Diagram
E. Addressing

F. Pseudo Instructions

Remote Diagnostics

T-9 8inb1g

uoI3Ed07T TRUOTIOUNI WAY

DDC
ENGINEER

TU-58
KC750
e [T 17 sussysTem
‘CON MOD

CONSOLE VADIC PHONE LINE
TERMINAL OR F
LAXX GTE 7./
VTXX ‘MODEM

CUSTOMER SITE

‘MODEM

ERIAL

LINE

INTERFACE

DDC

. TK-4662

TERMINAL

sor3souberqg ajoway

Remote Diagnostics

Physical Characteristics

l.

2.

Located in slot 6 of extended hex backplane as noted in
introduction.

Power

a. MAX +5V @ 12.6A +12V @ 12¢gMA -15V @ 85MA
TYP +5V @ 9.3A +12V @ 60MA -15V @ 3PMA

Control Panel Interconnections

_Connections to the control panel will be incorporated in

the basic cabinet and its wire harness. The processor
will have full use of all processor specific controls
and indicators whether the RDM is installed or not. When
the RDM is installed in its slot the RD specific
functions will also be operational. The RD functions
implemented on the control panel are as follows:

a. INDICATORS

1. REMOTE - This green 1light is 1it by the RDM
software whenever it detects that the control
panel key switch is in one of the two remote
positions.

2. CARRIER - This amber 1light 1is 1lit by the RD
software whenever it detects that the remote port
carrier 1is present. It is an indicator to the
customer that the DDC has established connection.

3. TEST - This green light is lit by the DDC software
to indicate that tests are in progress.

4. FAULT - This red light is lit by the RDM software
if it detects a fault in its own logic. No tests
should be attempted when the fault indicator Iis
lit.

b. SWITCH SETTINGS

The processer's keyswitch has 5 positions, two of
which allow remote connection. The REMOTE and REMOTE
SECURE positions allow the DDC to connect to the
processor. The REMOTE position allows the control
console to enter console mode at any time while the
REMOTE SECURE prevents the console from being used in
other than program mode.

Remote Diagnostics

1. There are also switch settings that relate to the
remote BAUD rate but those will be covered in the
installation section in the final week.

Remote Diagnostics

cMi

COMET CPU WBUS
A H D
MET
gﬁue UART REG REG REG
CON CHIP u 32BIT 28T 32817
TU58 -
TAPE UART 8085 INTERNAL BUS
DRIVE .
SIMPLIFIED RD BLOCK DIAGRAM
LOCAL —t
TERMINAL UART 4K
] —} RAM
8085
NCPU
= K
REMOTE I]
PHONE MODEM TNE UART | D A I
SERIAL INTERFACES ?
[1 |] L1 ADDR
DECODE ENABLES
TRACE LOGIC
| CONTROL 64 X 80 BIT <SADD |-
REGS DCS RAM MATCH MMATCH
<:}0NTROLSTOREDAT{:>
<3 CON STORE ADDRESS N
TK-4561
Figure 6-2 Simplified RDM Block Diagram

-—
~
-n
m

F800
F830

FFFF

Figure 6-3

Remote Diagnostics

6KB
ERASABLE
PROM
MACROCODE;
STORAGE -

UNUSED

13KB
MICRODIAGNOSTIC
MONITOR
STORAGE

UNUSED

INTERFACE
REGISTERS

UNUSED

TK48563

80985 1/0 Addressing

6-10

Remote Diagnostics

CS |JCON

7 6 | PAR JHALT} 3 | 2 1 0

‘ERR |H ,

W A P |

[ENCODED KEY [ENCODED POWER & 1”E‘NcibDEn‘DE‘\‘/iCE
'SWITCH POSITION {ON ACTION SWITCH POSITION
OFF——— 'SWITCH Po_szrloN A=V
SECURE =11 100 = RES/BOOT B=10
LOCAL =10 0t = RES/HALT €=01
'REMOTE/SECURE =01 10=800T D=00
REMOTE ‘=00 11 =HALT

| TK-4566

Figure 6-4 Front Panel Status Register F820

oy
|

11

Remote D Red
RD Test Green
Carrier Amber
RD Fault Red

Remote Diagnostics

This indicates that the

keyswitch is in either of the
remote positions.

This indicator is illuminated
if a remote diagnostic session
in protocol mode 1is in pro-
gress. . The transparent mode
turns the lamp off.

Carrier indicator is on if the
modem is receiving the carrier
from the telephone line.

Indicates a hardware fault on
RDM module if constantly on.
Normal sequence is to illum-
inate for 1@ seconds at power
up and then go out. If lamp is
always one, replace RDM.

Figure 6-5 RDM Operator Control Panel Indicators

6-12

VAX-11/756 LEVEL II

CMI

Student Guide

Course produced by Educational Services Department
of
Digital Equipment Corporation

CMI

INTRODUCTION

The CMI is a tristate synchronized inforamtion path for
data exchanges between the central processing cluster
(CP Cluster), memory, and adapters of the Comet system.

SYNOPSIS
The CPU Memory Interconnect module includes lecture

on the architecture and types of data transfers
used.

OBJECTIVES
Provided with a multiple choice test, correctly

answer questions regarding CMI architecture and
types of transfers.

SAMPLE TEST ITEM
Which of the following best describe the CMI?
a) 55 lines of equal length forming a 2 layer

belt
b) 80 lines of various lengths formed by etch

CMI

c¢) 55 1lines etched into the backplane, all.

equal length
d) 45 etched lines of various length

RESOURCES

Comet Specification

VIII.

MODULE OUTLINE

CPU MEMORY INTERCONNECT (CMI)

A.

CMI Structure

1.
2.
3.
4.
5.

CMI protocol

CMI status bits

CMI control signals
Data/Address

Clock

Address/Data Transfers

1. Address format
a. function code
b. mask field
Summary

CMI

CMI

32 DATA/ADDR.

¢ 1WAIT
DATA/ADDRESS (35) 1 HOLD

1 BUSY

3 MBA

1 UBI
ARBITRATION »(7) 1 RDM
2 RESERVED
NEXUS

NEXUS

STATUS (2)

- 6.25 MHZ B CLOCK (1)

THE CMI STRUCTURE

TK-2064

Figure 8-1 CMI Structure

Figure 8-2 CMI Protocol

ITEM PRIORITY
—— -
RESERVED 6
RESERVED 5
cut ! 4
OPTION! 3
OPTION: 2
OPTION__ } _ 1___
CPU “NONE

‘CMI PROTOCOL ,
| ¥K-2083

sT1[sTO INTERPRETATION
0| 0| NONEXISTENT MEMORY
0 | + | NONCORRECTABLE ERROR
11 0| CORRECTED DATA |
11 1] ~ NOERRORS |

THE CMI STATUS BITS

TK-2062

Figure 8-3 CMI Status Bits

CMI

CMI

DATA/ADDRESS BUS BUSY

THE DATA/ADDRESS BUS BUSY (DBBZ) SIGNAL INDICATES THE
AVAILABILITY OF THE DATA/ADDRESS BUS. THE ABSENCE OF DBBZ
INDICATES TO ALL NEXUS THAT THE DATA/ADDRESS BUS WILL BE
FREE AT THE BEGINNING OF THE NEXT CMI CYCLE.

'DBBZ

DBBZ IS ASSERTED BY THE BUS MASTER FOR ONE CMI CYCLE WHEN AN
ADDRESS FORMAT IS PLACED ON THE DATA/ADDRESS BUS. DURING A
READ, THE SLAVE ALSO ASSERTS DBBZ IN THE FOLLOWING CYCLE AND
CONTINUES TO ASSERT IT UNTIL THE READ DATA IS READY FOR
TRANSMISSION. DURING A WRITE, DBBZ IS ASSERTED BY THE SLAVE
WHILE IT PREPARES TO ACCEPT THE WRITE DATA. FOR THIS CASE,
DBBZ IS NOT ASSERTED IF THE NEXUS IS IMMEDIATELY READY.

HOLD

THE HOLD SIGNAL -CAN BE ASSERTED BY ANY NEXUS TO PREVENT
OTHER NEXUS FROM GAINING CONTROL OF THE DATA/ADDRESS BUS.
THE HOLD SIGNAL IS PRIMARILY PROVIDED TO ALLOW BUS WATCHING
CACHES TO CONTROL THE RATE AT WHICH WRITE TRANSACTIONS OCCUR
ON THE CMI. WHILE HOLD IS ASSERTED, ALL BUS REQUESTS ARE
IGNORED.

WAIT

THE WAIT SIGNAL IS ASSERTED BY A NEXUS WHEN IT INITIATES AN
INTERRUPT TRANSACTION. THE ASSERTION OF WAIT IS AN
INDICATION TO THE CPU THAT AN INTERRUPT TRANSACTION IS IN
PROGRESS ON THE UNIBUS AND THAT A WRITE VECTOR OPERATION MAY
BE PENDING. WAIT IS REMOVED AT THE BEGINNING OF THE CMI
CYCLE FOLLOWING THE COMPLETION OF THE INTERRUPT TRANSACTION.
THE REMOVAL OF WAIT ALLOWS THE CPU TO CONTINUE NORMAL
OPERATION.

8-6

31 2827 252423

CMI

—®1 MASK |[FUNC.|

PHYSICAL LONG WORD ADDRESS : m

31

DATA

* THE ADDRESS TRANSFER FORMAT IS USED TO TRANSFER ADDRESS AND
CONTROL INFORMATION DURING THE BUS CYCLE IMMEDIATELY FOLLOWING
A SUCCESSFUL ARBITRATION CYCLE.

—»= THE DATA TRANSFER FORMAT IS USED TO TRANSFER 32-BITS OF DATA (1

LONGWORD). IF THE TRANSACTION IS A WRITE, THE BUS MASTER USES THIS
FORMAT TO TRANSMIT WRITE DATA IN THE BUS CYCLE IMMEDIATELY
FOLLOWING THE TRANSMISSION OF THE ADDRESS FORMAT. IF THE
TRANSACTION IS A READ, THE SLAVE USES THIS FORMAT TO RETURN READ

DATA TO THE BUS MASTER.
CM| DATA/ADDRESS FORMATS

TK-2069

Figure 8-4 CMI Data/Address Formats

CMI

31 2827 252423 210
MASK | FUNC PHYSICAL LONG WORD ADDRESS
FUNCTION CODES
DATA/ADDRESS BIT | CMI
27 26 25 OPERATION
0o 0 o READ
0 0 1 READ LOCK
0o 1 o READ WITH MODIFY INTENT
o 1 1 (UNDEFINED)
1 0 0 WRITE
1 0 1 WRITE UNLO CK
1 1 0 WRITE VECTOR
111 (UNDEFINED)

CMI FUNCTION CODES

Figure 8-5 CMI Function Codes

8-8

TK-2073

CMI

MASK FIELD i
31 2827 252423 210

MASK | FUNC PHYSICAL LONG WORD ADDRESS
3210

EACH BIT IN THE MASK FIELD CORRESPONDS TO APARTICULAR BYTE IN
SUBSEQUENTLY TRANSFERRED DATA FORMAT. THESE 8ITS SPECIFY
WHICH OF THE CORRESPONDING DATA BYTES ARE TO BE READ OR

. WRITTEN. THE BYTE IS SELECTED WHEN THE MASK BIT IS SET.

NEXUS WHICH ARE CAPABLE OF TRANSFERRING LONGWORDS IGNORE THE MASK
ON READS AND ALWAYS RETURN ALL FOUR BYTES (E.G., MEMORY).

TK-204%

Figure 8-6 Mask Field

8-9

CMiI WRITE

—_——t e e~

800n SEC

CMi READ

160n SEC

IIIUI.I —_———t—— -1 17T

PRIORITY

CMi CYCLE
CMI CLK
{BCLK L)

(ARBN)

Figure 8-7

- Iﬂﬂ\lﬂ“\llllll V

—_——t e e e e e b e e Y
L
- -3 < «
g >08 2 2
= azZE -
8 SEg »8 g_
w BEg kg =@
= Bewl 253 <@
N fusc 58§% T%W
S8 <B<C a%o <o
oy «MM&O - Qe

cMI

Read/Write

8-19

960n SEC

ADDRESSED LATCHED

y

DATA LATCHED

TK-3418

CMI

VAX-11/7506 LEVEL II

Address Translation _

Student Guide

Course Produced by Educational Services Department
of _
Digital Equipment Corporation

Address Translation

OBJECTIVES

1. To wutilize provided worksheets in order to
perform address translations from a system
virtual address to a physical address and from a
processor virtual address to a physical address.

2. To utilize the console terminal and be able to
determine what type of error occurred during an
address translation by using the stack.

3. To correctly indicate on a series of true/false
questions, statements regarding the 11/758
address translation procedures.

4. To run and interpret MIC Module Microdiagnostics
that relate to address translation.

SAMPLE TEST ITEM
True or False

1. Bit 31 in the system virtual address denotes
which page table is accessed.

LAB EXERCISE
a. Load and run microdiagnostics

b. Run RDM to step through Translation Buffer
Double T.B. miss.

RESOURCES

1. 11/750 Micro Listings

2. 11/750 Microdiagnostics and Listings for MIC
Module

3. MIC Module Schematics

4. Student Guide

Address Translation

INTRODUCTION

When we talk about address translation we actually mean to
take a virtual address (system or processor) and translate
it to a physical address.

To understand the concept you will have to understand
virtual address space in relation to physical address space
and how the system uses the translation to control access to
certain areas in the machine.

You will learn the actual machine translation from a virtual
address to a physical address and the controlling factors in
performing this translation.

00,206,000

SFFFFFFF
40,000,000

7F FFF FFF
£0,600,000

BF,FFF,FFF
50,000,500

FFFFF,FFF

VIRTUAL ADDRESS
ALLOCATION

Address Translation

VIRTUAL MEMCRY

PROQGRAM REGION
(PQ)

CONTROL REGION
1)

SYSTEM REGION
(sgy

-RESERVED REGION

{(s1)

)
|
)

7

21 30 29 28 0

VIRTUAL PAGE NUMBER [BYTE OFFSET

PROCESS When bit 31 is clear, the virtual address is a process

SPACE virtual address found in process space or “‘per-pracess’”
space. £ach process has its own process space and it is
practicaily impossible for one grocess to refer to a process
virtual address of another process.

Both process space and system space are further divided
into two pieces determined by the setting of bit 30 in the
virtual address,

1. VA<31:30>>=0 Program Region

SYSTEM This portion of virtual address space is cailed P space
SPACE or the program ragion. PQ space typicatly contains the
code and data of an image being executed by the process,
2. VA<3 1:20> = 1 Controi Region

This portion of virtual address space is cailed P1 space
or the control region. It conaains such information as

the four per-p stacks, a Gt d Language
interpreter, DEBUG symboi table, precess 1/0 data and so
on.

3. VAL 31:30> = 2 System Region

This portion of virtual address space is called the

system region. It contains the executive, device

drivers and their associated data structures, RMS code
and pure data, both the system and grocess page tables
and other code and data that does not balong to any one
process in the system

4. VA<31:20>= 3 Reserved

This portion of virtual address space is currently
reserved. A-reierence 1o a virtual address inthis
range will cause a length violation.

TK-3313

Figure 9-1 Virtual Memory

-6

Z-6 21nbrg

KRaowsyy Teo1sAyd

PHYSICAL MEMORY

23 22 21 20 19 18 17 16 16 14 13 12 11 10 9 8 7 6 4 3 L 0
PHYSICAL ADDRESS
- ~ A _)
PFN BYTE
MAXIMUM PHYSICAL MEMORY 256K PAGE ‘
o 000000f / p _ BYTE:
256K Y} 000 / 3 2 . 1. 0 = GDD
03FFFF / //
040000 4 001 / 4
256K
07FFFF|
i 080000 8
256K
0BFFFF c
0C0000 A
256K \
OFFFFF \
100000 \
266K \
13FFFF \
140000 1FC \ 1Fo
256K \ \
17FFFF \
180000 \ 1FD \ 1F4
266K \ \ _
1BFFFF \ 1FE \ 1F8.
1C0000 \ \
256K \ 1FF \ 1FC
\FFFFF L L

*NOTE FOR ADDRESS BYTE ths' 0 + 1NOT USED.
TK-3411

UotT3jeIsuril] Sssi1ppVv

Address Translation

| 'PAGE CONCEPT
WHICH ROOM DO | GO TO TO RECEIVE TRAINING? | WHERE DO | GO TO GET MY DATA?
'YOU NEED DIRECTIONS YOU NEED AN ADDRESS.
GO TO SCHOOL #3, ROOM 5. ADDRESS
. I PAGE NUMBER |BYTE OFFSET]
#12 é | & # 1scHOOL 3 3
' N
‘T & | #7 MEMORY PAGE A
1 PAGE 1 BYTE OFFSET # 1
é c & . 2
e T |" ; N\ a\ I A
o ' 4
_ L - 5
#9 é s é ¥4 8
T.: 7
Allae |E
] e
; | _ 10
#71jif] | [ffEI#e 1
12
.
ROOM{ = | |
#1 | #2 |# 3] SCHOOL ROOM
#8 #*a BREAKDOWN
#7 | #6R#5

~ WHICH SCHOOL = WHICH PAGE
WHICH ROOM IN THAT SCHOOL = WHICH BYTE IN THAT PAGE

TK-3412

Figure 9-3- Page Concept

BYTE

BYTE

8YTE

BYTE

3 2 1 0
13 12 n 10
23 22 21 20
1CF 1CE | 1CD 1cC
10F iDE iDo | 10C
1FF 1FE 1FD 1FC

Address Translation

PAGE BREAKDOWN

LONGWORD 0
LONGWORD 4

3

c

8 7 4 3
10 { PAGE # KK KR
1 t

1 F F
18
1c
EACH PAGE OF MEMORY CONSISTS OF 1FF (HEX} BYTES.
L IN THE 11/750 MEMORY IS LONGWORD ALIGNED, MEANING
YOU READ FROM MEMORY ONE LONGWCRD AT A TIME.
EACH LONGWORD CONTAINS 4 BYTES.
|F WE START AT ADDRESS 000000 AND
INCREMENT UPWARDS AT LONGWORD BOUNDARIES
WE COULD ACCESS 1FF BYTES WITHIN PAGE 0)
OF THE ADDRESS BEFORE CHANGING TC PAGE 1 BYTEQ.
IN THE NEXT INCREMENTED STEP.
1cc)
100
104 .
108
ioC
1F0
IF4
1F8
1FC

TK-3410

Figure 9-4 Page Breakdown

Address Translation

PTE FORMAT
3130 27 26 25 ‘ 15 14 0
\' PROT I M I MBZ PFN
L - I ¢ -~) -~)
PROTECTION MUST BE ZERQ'S PAGE FRAME NUMBER

CODE -

PAGE MODIFIED

PAGE VALID .
TK-1880

Page Tables and Mapping Registers
Figure 9-5 Page Table Entries

The system page table is built at initialization time and is
located in contiguous pages of physical memory. . Process
page tables are set up at process creation and altered at
image activation, image exit and in response to various
system services. Process page tables are located in
virtually contiguous pages of system space. That 1is,
process page tables need not be physically contiguous. This
design feature prevents a potentially serious fragmentation
problem in physical memory.

System Page Table
(SPT)

System Base
Register (SBR)

System Length
Register (SLR)

@ Page Table
(POPT)

P@ Base Register
(PO@BR)

P@ Length Register
(PGLR)

1 Page Table
(P1PT)
Pl Base Register

(P1BR)

Pl Length Register
(P1LR)

Address

Describes the physical
location and status of
all pages in the system
region of virtual
address space.

Points to the starting
physical location of the
System Page Table.

Specifies the number of
entries in the System Page
Table

Describes the physical
location and status of all
pages in the program region
of virtual address space.

Contains the system
virtual address of the
P@ page table.

Specifies the number of
entries in the P@ page
table.

Describes the physical
location and status of
all pages in the control
region of virtual address
space.

Contains the system
virtual address of the
Pl page table.

Specifies the number of
entries in the non-
existent portion of the
Pl page table.

Translation

IPR # @C

IPR # 6D

IPR # 08

IPR # @9‘

IPR # 0A

IPR # OB

PHYSICAL MEMORY

P1PTE'S .

PO OPERANDS

Address Translation

Figure 9-6 Address Translation Block Concept

9-9

— o
POPTE’S
P1 OPERANDS
- i
SYSTEM OPERANDS
— fe-
f
HIT
L MISS T8
SYSTEM PTE'S ‘
. PA ‘
SPTE -4——-———-SBR+SVA-<—d = SVA
PA SBR + SVA
-
] Pore — POBR+PVA <—i e PVA
(SVA)
PA SBR + SVA
e am
- PIPTE — PIBR+PVA i e— PVA
(SVA)
TK-3265

Address Translation

ADDRESS TRANSLATION

EXAMINE VIRTUAL
ADDRESS

FORM SYSTEM
VIRTUAL ADDRESS
OF PxPTE

VA
BIT31=1

YES [(“HIT") YES
YES
‘IIH'T")
y
FORM PA OF SPTE FORM PA OF SPTE
FETCH SPTE FETCH SPTE
FORM PA OF PxPTE fe—
FETCH PxPTE
v .| FORMPAOF
OPERAND

TRANSLATION
DONE

TK-3426

Figure 9-7 Address Translation

9-10

Address Translation

CODE

PTE FORMAT
31 30 27 26 26 15 14 0
\) PROT M MBZ PFN
_____JJC y I\ o —
PROTECTION MUST BE ZERO'S PAGE FRAME NUMBER

PAGE MODIFIED

PAGE VALID

TK-1880

Page Tables and Mapping Registers

Figure 9-8 Page Table Entries

The system page table is built at initialization time and is
located in contiguous pages of physical memory. Process
page tables are set up at process creation and altered at
image activation, image exit and in response to various
system services. Process page tables are lcoated in
virtually contiguous pages of system space. That 1is,
process page tables need not be physically contiguous. This
design feature prevents a potentially serious fragmentation
problem in physical memory.

9-11

Address Translation

SYSTEM CONTROL BLOCK
SCBB
{PHYSICAL)
EXESACVIOLAT , OFFSET 204¢
(ACCESS VIOLATION FAULT)
MMGSPAGEFAULT . bFFSET 2 "16
({TRANSLATION NOT VALID FAULT)
TK-4450

Memory Management Exceptions

Figure 9-9
During address translation, two differrent kinds of
exception can occur: access violation and
translation-not-valid exception. Both forms of exception

are faults. That is, the processor backs up the faulting
instruction so that it can be restarted when (or if) the
exception is resolved. Two adjacent longwords in the system
control block are set up at initialization time to point to
the routines which will service these exceptions. Bo th
exceptions are handled on the Kernel stack.

Address Translation

Management Management Exceptions
Access Violation

An access violation can occur in two different forms. A
protection code violation occurs when the intended access
request (read, modify, write) is not allowed for the current
access mode. Recall that the protection code is found in
bits <30:27> of the appropriate page table entry.

A length violation.occurs when the virtual page number of
the address to be translated is greater than or equal to the
contents of the appropriate length register. (Because Pl
space grows toward smaller addresses, th length violation
fault occurs when VAK29:9> 1is strictly less than the
contents of P1lLR.

When an access violation occurs, the faulting PSL and PC are
pushed onto the kernel stack, followed by the wvirtual
address which caused the access violation. Finally, a
longword fully describing the access violation 1is pushed
onto the stack. Note that bit <8> of the reason mask
distinguishes 1length violations from protection code
violations.

9-13

Address Translation

PROTECTION CURRENT ACCESS MODE
CODE IN
PTE KERNEL | EXECUTIVE| SUPERVISOR |USER
— e

0000 - | . . ~
0001 UNPREDICTABLE | UNPREDICTABLE
0010 RW - o
oon R
0100 RW RW RW RW
0101 RW RW - -
0110 RW R
0111 R R
1000 RW RW RW .
1001 RW RW R
1010 RW R R
1011 R R R

1100 RW RwW RW R
1101 RW RW R R
1110 RW R R R
1111 R R R R

- '(NO ACCESS)

R (READ-ONLY ACCESS)

RW (READ AND WRITE ACCESS)

TK-3567

Figure 9-10 Use of Protection Codes for Access Control

9-14

Address Translation

Memory Management Exceptions

Access Violations

' « . s

REASON MASK “Ne—sP
| INVALID VIRTUAL ADDRESS | N >
SO\, 02 01 00 ,
PC OF FAULTING INSTRUCTION S REASON MASK FOR TRANSLATION
PSL AT TIME OF FAULT e — NOT — VALID FAULT \
» . B S | L, THIS BIT IS ALWAYS 0 FOR TRANSLATION

STATE OF THE KERNEL STACK FOLLOWING = NOT —VALID FAULTS

A TRANSLATION — NOT — VALID FAULT

—=PTE REFERENCE :
0 —*VIRTUAL ADDRESS NOT VALID .

.t —=ASSOCIATED PTE NOT VALID

e INTENDED ACCESS TYPE
0 —eREAD ACCESS
1 —=MODIFY OR WRITE ACCESS

TK 4448

Figure 9-11 State of Kernel Stack Following Access
Violation Fault

9-15

Address Translation

Memory Management Exception
Translation-Not-Valid Fault

A Translation-Not-Valid fault occurs when the Valid Bit
(VA<31>) is clear. The faulting PSL and PC, followed by the
invalid virtual address and reason mask, are pushed onto the
kernel stack. Control 1is passed to an executive routine
called the pager, which will use the information in the
invalid PTE to locate the page and add it to the working set
of the requesting process. (The information contained in an
invalid PTE and the actions taken by the pager will be
discussed in the next module.)

Since process page tables are mapped (by SPT entries),
address translation for process virtual addresses can incur
page faults both in translating the system virtual address
of the process page table entry and in translating the
process virtual address itself. These two different cases
are distinguished by bit <1> of the reason mask.

Address Translation

Memory Management Exceptions

Translation Not Valid Fault

REASON MASK “e—SP
“VIRTUAL ADDRESS CAUSING | \\\
| _ACCESSVIQLATION _________

PC OF FAULTING INSTRUCTION, .
~
PSL AT TIME OF PAULT \x
A . P 7 L-. TYPE OF ACCESS VIOLATION:
STATE OF THE KERNEL STACK FOLLOWING AN _ - 0~=PTE PROTECTION CODE VIOLATION‘
ACCESS VIOLATION FAULT —) ,

L——s PTE REFERENCE
0—e VIRTUAL ADDRESS NOT ACCESSIBLE|
- 1.« ASSOCIATED PTE NOT ACCESSIBLE"

s — {NTENDED ACCESS TYPE;
0—& READ ACCESS
1 =& MODIFY OR WRITE ACCESS
' TK-4449

Figure 9-12 State of Kernel Stack Following
a Translation Not Valid Fault

9-17

Address Translation

NOTE

The address translation mechanism checks
the protection code before it checks the
valid bit. Thus, if a given address
translation could cause both an access
violation and a page fault, the access
violation will be taken. This design
avoids the overhead of faulting into a
process working set a page which it is
not allowed to access. A further
discussion is found on page 108 of the
VAX-11/780 Hardware Handbook.

9-18

EXAMINE VIRTUAL
ADDRESS (VA)

ACCESS
ALLOWED

ADDRESS

\m RANGE

FORM PHYSICAL
ADDRESS OF SPTE

1
h 4

FETCH SPTE
FROM MEMORY

NOT VALIC

TRANSLATION _

Address Translation

FORM SYSTEM
VIRTUAL ADDRESS
OF ExPTE

ADDRESS
IN RANGE

YES

X

FORM PHYSICAL
ADDRESS OF SPTE

y

FETCH SPTE
FROM MEMORY

ACCESS
ALLOWED

ACCESS
VIOLATION

FORM PHYSICAL
ADDRESS OF PxPTE

}
Y

FETCH PxPTE
FROM MEMORY

ACCESS
VIOLATION

FORM PHYSICAL
ADDRESS OF

OPERAND

{ TRANSLATICON }
'\ DONE /

ACCESS
VIOLATION
TRANSLATION

NOT VALID

TK-3425

Figure 9-13 Address Translation Faults

9-19

Address Translation

MEMORY MANAGEMENT WORKSHEET FOR S0

3130 29 28 2726 2524 23 22 2120 19 18 171615 14 13 12 11 10 0908 07:06 05 0403 02 01 00
sveremvaval[T LI TTITIT] POV ITPPI AT TdTT]TT]
>l

}1 SVPN >

31302928 27262524 232221201918 17 16 15 14 13 12 11 10 03 08 07 06 05 04 03 02 01 0O

axseen| [TV PUDTQRITT Y THTLPTTTTT] oo

31 30 29 28 272625242322 21 2019 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

G IR AN EERENNRNRNERENEE)

2322 2% 20 19 18 17 16 15,14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

puvsicataooressorsere | | | | | | L VL P TTPHTTTTT1] |_| | s8R +4 (sven)

3130 29 28 27 262524 23 22 21 2019 18 17 16 15 14 13 12 11 10 09 08 07 05 05 04 03 02 0100

CLETL PP L POV TP PP PPy Eyydy ool

31 30 29 28 27 2625242322 21 2019 18 17 1G 15 14 13 12 11 10 09 08 07 06 05 04 03 0201 00

INEREREEEEEEREERENEEENENERREEEEE L

31 30 2928 27 26 2524 2322 21 2019 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

INEEEENENENERE RN ENREEEENERENEL

3130 20 28 27 26 2524 2322 21 201918 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 020100

svstewere [[[[[T TTTTT TTTTTTTTTITTTITIT L1111} conrentsorearonsere
|.-——PFN———-—-——-

232221201918171615 14 13 12 11 10 09 08 07 06 05 04 03 0201 GO

paorsereoperano | | | [| [[[[] [1J1TTI1 1]I]]

CONCATENATED

FROM SVA
31 30 29 28 27 26 25242322 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

EREEENENEENNEEENEEEEEEREEREREEEEE

¥ NOT REQUIRED IN 31302928 27262524 232221201918 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 0201 GO
S0 CALCULATION IR EEEEREEEEENE RN REERENREERE
) TK-4513

Figure 9-14 Memory Management Worksheet for S@

9-20

Address Translation

MEMORY MANAGEMENT WORKSHEET FOR S0

3130 29 28 27262524 23 22 212019 18 1716 15 14 13 12 11 10 0908 07'06 05 0403 02 01 00

ssremvasva | | [LUV PP TTT T QTT I T I0]
N

le
I+ SVPN >

31302928 27262524 232221201918 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 0201 00

axsven{ [[TQ T [RP VIR T AP iTTTR TTTofo]

31 30 29 28 272625242322 21 20 19 18 17 16 15 14 13 12 11 10 08 08 07 06 05 04 03 02 G1 00

sal | [{JPTOIT T PTRTIITTTIIITITTIqTT0T]

" 72322 21 201918 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

puvsicacaooressorsere | | | [L LRI | |]ser+asven

3130 29 28 27 2625242322 21 201918 17 16 15 14 13 12 11 10 09 08 07 05 05 04 03 02 0100

LA U TP e TP P PP PPl TTyy folo*

31302928272625242322 21 2019 18 17 161514 13 12 11 10 09 08 07 06 05 04 03 02 01 00

ANEREREREEEEEENNRERERNEERENNENNEL

3130 2928 272625242322 21 201918 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

ENENENEINENENNENEENENENENEEEENEE L

3130 29 28 27 262524 23 22 21 2019 18 17 16 15 14 13 12 11 10 09 08 07 06 05 0403 020100

svsrewere[T 11 [111111 TTTTTTTITILTITTTT LT Joomentsorearonsere
: l-n———PFN >

2322212019 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 0201 GO
paorsereorerano | | | | J I [[[[[T {1 {11111]1]

CONCATENATED

FROM SVA
31 30 2928 27 2625242322 21 2019 18 17 16 15 14 13 12 11 10 0908 07 06 05 04 03 02 01 00

LLITPP VTP PP T AP TP IO IIT I T]

¥ NOT REQUIRED IN

31302928 27262524 232221201918 1716 15 14 13 12 11 10 09 68 07 06 05 04 03 0201 GO
S0 CALCULATION

IR NN RN

TK-4513

Figure 9-15 Memory Management Worksheet for S@

Address Translation

MEMORY MANAGEMENT WORKSHEET FOR S0

3130 29 28 27262524 23 22 212019 1B 171615 14 13 12 11 10 0908 0706 05 0403 02 01 00

sstemvasva{ | | [[l V]I TPV TPl TTTTT0T]
N

SVPN >

le
I
31302928 27262524 232221201918 1716 15 14 13 12 11 10 09 08 07 06 05 04 03 0201 00

axsven{ | [V PP TTTTTTTOTR T PR TLTT] [Tefo]

31 30 29 28 27 262524 2322 21 201918 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

sl | | JLL I ITITITTT IO ITTT0Td

o 2322 21 2019 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

puvsicacappressorsere | | | | L L LD L LT T T T [T]serearsvem

31302928 272625242322 21 201918 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 0100

CLLOTT TV e Ty PIT PP T AT TR T o]y fojof*

3130 2928 272625242322 21 2019 18 17 1G 15 14 13 12 11 10 09 08 07 06 05 04 03 02 0100

ANENENEREEEREENEEEERENENEEEREEEN L

31 30 29 28 272625242322 21 201918 17 16 15 14 13 12 11 10 0908 07 06 05 04 03 02 01 00

INEEENIREEN NN EEENEEEEEEN

3130 29 28 27 262524 2322 21 201918 17 16 15 14 13 12 11 10 09 08 07 06 05 0403 020100

svstewere[[TTTTTTTTT TTTTTTTTTTITITT 0] []]]conrentsorearorsere
|1——PFN |

232221201918 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 0201 60
paorsereorerano | | [[[TP L I I T LTI T11]
CONCATENATED
FROM SVA
3130 20 28 27 26 2524 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

ANEERNEEEENEENERENENEENEENEAENENL

31302928 27262524 232221201918 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 GO

" SocALcuLATION NN NN R R RN ENRRENREEREEERP

TK 4513

Figure 9-16 Memory Management Worksheet for S8

9-22

Address Translation

MEMORY MANAGEMENT WORKSHEET FOR PO, P1

3130 29 28 2726 2524 23 22 2120 19 18 1716115 14 13 12 11 10 0908 07/06 05 0403 02 01 00
PO, P1 VIRTUAL ADDRESS | | HHHHTHHHHJ|HJHH[LLU

le
) SVPN >

31302928 27262524 232221201918 1716 15 14 13 12 11 10 09 08 07 06 05 04 03 0201 00

axsvew| [JJJJ LU TTT IO I QdP T]TY ofo]

31302928 272625242322 21 201918 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
POBR OR P1BR |

wemonpiom s wxvew [T 11111 1T IIT L1 LT LI LTI L T LT LI Jowa
I l -

I SVPN :I

3130 29 28 27 26 2524 2322 21 201918 17 16 15 14 13 12 11 10 09 08 07 05 05 04'03 02 0100

exsven |V L LV LT TI] LIV E T VTP Tf] folol

31 30 2928 272625242322 21 2019 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 60

IR RNEERRERRERREERERER

2322 21 2019 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

sereaxsven | | L L] QLT TERTTE I]]]]raorsre

3130 2028 27 262524 23 22 21 2019 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

svsremere [T] [11 1LI 1] TITTTTTITTTTTTTTT [T L Jcommenmsorearonsrre
l-.———rm«—-——-—-———»-

232221201918 1716 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 GO

prvsicat appr.oFpopEorPrPTEN | L | DL D [P

CONCATENATED -

: FROM SVA
31 30 29 28 27 262524 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

s e O (L L LTI m

232221201918 1716 15 14 13 12 11 10 09 08 07 06 05 04 03 0201 00

paororeranororroorer| | | | [[][J{{T L {ITI11]]

I‘_ CONCATENATED
FROM PO, P1 VA

TK.a514

Figure 9-17 Memory Management Worksheet for P#, Pl

9-23

Address Translation

MEMORY MANAGEMENT WORKSHEET FOR PG, P1

3130 29 28 2726 2524 23 22 21 20 19 18 1716/15 14 13 12 11 10 0908 07,06 05 0403 02 01 00
poprviRruacaoress| | | [| [[1] 1] TOTTT PP PIT TIT il lll]
[SVPN :'I
313029 28 27 26 25 24 23 222120 19 18 1716 15_14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

axsven| | J VPP TP TTIUTT PITTTTTTTT] folo

31 30 29 28 27 26 2524 23 22 21 2019 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

POBR OR P1BR
313029282726 25 24 2322 21 201918 17 1615 14 13 12 11 10 0908 07 06 05 04 03 02 01 00
POBR OR P18R + (4 X VPN) SVA
llf SVPN N

1
3130 2928 272625242322 21 201918 17 16 15 14 13 12 11 10 02 08 07 05 05 04 03 02 0100

sxsvew | | LIV PP T TV T LT LTI T]] oo

31 30 2028 27 2625242322 21 201918 17 16 1514 13 12 11 10 09 08 07 0G 05 04 03 02 01 00

S IR NN ERERRREEREEEY

2322 21 2019 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 0302 01 00

sonaxsvw [T TTTTTTTTITTITTTITT I]reorsere

3130 29 28 27 262524 23 22 21 2019 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 '03 02 0100

svsremere[[TITT{TIT 1 JOQ T T LI TP P T P[] []]conrentsorrarorsere
I‘—————PFN-———————.-v

232221201918 1716 15 14 13 12 11 10 09 08 07 06 05 04 03 0201 CO

PHYSICALADDR.:OF{POPTEORPIPTE)[] EEEREEREEERRRERREREEE

CONCATENATED

FROM SVA
31 30 29 28 27 2625232322 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
CONTENTS OF PA FOR

POPTE OR PIPTE HEREEREEEEEEEENEEEEENERRNRNRERR

232221201918 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 GO

paororerano roreooretf J [| | [[] [[TT{TIT{T1T]}]]

' «— CONCATENATED
FROM PO, P1 VA

TK-4514

Figure 9-18 Memory Management Worksheet for P@, Pl

9-24

Address Translation

MEMORY MANAGEMENT WORKSHEET FOR PO, P1

3130 29 28 2726 2524 23 22 2120 19 18 1716/15 14 13 12 11 10 0908 07/06 05 0403 02 01 00
poprvinruataooress{ | [{ | | J1i 11 (1P I TP T iPIEd i {lfil
=< SVPN e{
313029 28 27 26 25 24 23 222120 19 18 17 16 15_14 13 12 11 10 09 08 07 06 05 04 03 0201 00

axsven| [JJUTDV TP PTTPT T T TP PETTTT] bolo]

31 30 29 28 27 262524 23 22 21 2019 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

POBR OR P1BR

31302928 2726 25 24 23 22 21 2019 18 17 16 15 14 13 12 11 10 0908 07 06 05 04 03 02 01 00

POBR OR P1BR + (4 X VPN) SVA

le |
I SVPN »|

31302928272625242322 21 201918 17 16 15 14 13 12 11 10 09 08 07 05 05 04 03 02 0100

axsven {1 UV P IT VT PP PP VTt 0] ool

31302928 272625242322 21 2019 18 17 16 15 14 1312 11 10 09 08 07 06 0504 03 0201 00

e f [JPPTORTT U PPP QPRI edfqiyldytl]

2322 21 201918 17 16 15 14 13 12 11 10 0908 07 06 G5 04 03 02 01 00

sonvwxsvw [T] TTTTTTTTITTTTTTTTTT [T]eaorsore

t
31 30 20 28 27 26 2524 23 22 21 2019 18 17 16 15 14 13 12 11 10 09 08 07 06 05 0403 02 0100

svsewpre [T [T TTTTTT T TIT A JIT PV {RTI T 11]]]conmentsorearonsere
lﬂ-——PFNv—-—-—-——-—-’.‘

232221201918 1716 15 14 13 12 11 10 09 08 07 06 05 04 03 0201 60

PHYSICAL ADDR. OF (PopTE ORPIPTEN [[[| | | | ENEERRREEERREEAN

CONCATENATED

FROM SVA
31 30 29 28 27 26 25242322 21 20 1918 17 1615 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

e T I T T T TOTTTLTITTaTT

232221201918 1716 15 14 13 12 11 10 09 08 07 06 05 04 03 0201 00

PAOFOPERANDFOﬁPOORPi[[, HEEREEEERERREREEREENE

CONCATENATED
FROM PO, P1 VA

TK-4514

Figure 9-19 Memory Management Worksheet for P@, Pl

9-25

1200

80,000,000

80,000,400
80,000,600

ADDRESS TRANSLATION PROGRAM

TEST PROGRAM

TEST OPERAND

PROCESSOR SETUP

Address Translation

sces

scBB

scee

TRCB

TRCB

TRCB

TEST OPERAND

INTERRUPT STACK

TEST PROGRAM

PROCESSOR SET UP

SVA OF POPTE

e P

SYSTEM PAGE TABLES

PO PAGE TABLES

INTERRUPT STACK

Figure 9-20

9-26

1200

1400

1600

Address Translation Program

1400 SBR

3 SLR

80,000,000 POBR

A P1LR

VA 200 = PA 1000

VA 400 = PA C00

VA 1200 = PA 1200

VA 80,000,000 = PA 1600
VA 80,000,400 = PA EQO

TK-4451

VAX-11/750 LEVEL II

System Introduction

Student Guide

Course produced by Educational Services Department
of
Digital Equipment Corporation

VAX 11/7506 LEVEL II

Memory Address Logic

Student Guide

Course produced by Educational Services Department
of
Digital Equipment Corporation

Memory Address Logic

Memory Address Logic
INTRODUCTION

The memory address logic is located on the MIC module
and consists of four individual address chips that are
identical.)

The purpose of this logic is to provide virtual address
information to the translating buffer and physical
address information to the data routing and alignment
section.

The function of the 1logic 1is to manipulate memory
address for:

a. Normal PC

b. Branch offsets

c. Prefetching

d. Microcoded memory references
e. Snapshooting the CMI

19-1

Memory Address Logic

MODULE X: MEMORY ADDRESS LOGIC
SYNOPSIS

This module presents technical information concerning
the memory address logic of the 11/758 CPU at both
the block diagram and chip level to include the
following:

a. virtual address registers

b. program counter

c. program counter backup
.d. program counter increment

and a fault isolation laboratory exercise.

OBJECTIVES

Identify the major memory address logic components by
correctly labeling them on a blank block diagram.

Utilizing the MIC module schematics, trace the signal

path for a preselected signal in the memory address
logic.

Given a diagnostic printout of a failing 11/758 CPU,
isolate the defective memory address logic gate
array.

SAMPLE TEST ITEM

In the memory address logic, the signal LATCH MAL is
used to:

a. 1load PC

b. load MA

c. select W Bus as input to address logic
d. none of the above

1p-2

Memory Address Logic

LAB EXERCISE

. load microdiagnostics

. run microdiagnostics

c. interpret error printout

d. 1isolate malfunction to module
e. 1isolate malfunction to chip
f. perform appropriate repairs

RESQOURCES

11/750 Specifications
11/750 Microcode Listing
11/750 Schematic Drawings

18-3

OUTLINE
Characteristics

1. Location
2. Implementation

Purpose

Functions

1. Prefetching

2. Normal PC

3. Branch offsets

4. Snapshooting CML

5. Microcoded memory references
Detailed Description

1. Eight bit slice
2. Major sections

Add Chip Inputs/Outputs

Signal Flow

19-4

Memory Address Logic

Memory Address'Logic

Address Logic Purpose/Functions
Purpose: provide address information to:

A. Translation Buffer
B. Memory Data Register

Function: manipulate memory address for:

A. Normal PC

B. Branch Offset

C. Prefetching

D. Microcoded Memory References
E. Snapshooting CMI

| ~ - o |

| | |

| 3|]

!

W-BUS l s Lo '
| " m™c. BACKUP

31'” i 1440 |

RV A wewy A

: taTcH MA :

I l ° . ™ CACH!
| /] °D T=TT
L —

v il
<08
ADDRESS CHIP BLOCK DIAGRAM

Figure 1¢-1 Simplified Chip Block Diagram‘

19-5

Memory Address Logic

ADORESS CHIP (ADD)
4 X 8 BIT SLICE J l
VA PC + SIZE
LATCH
(ADK) MICOB E-VA VA L —f
¥
(PRIK) MIC 06 ENA PC L pC ‘
MICO4 ENA PC BACKUP L PCBACKUP
- 4
+4
INCREMENT
weus [T)3 0 +1+2+4 o
‘ l ‘l l l) 9 1 9 ¥ o
‘ 1XX0 1 2 3 0 3 2 1 32 0 1
MUX MUX > MUX
MICO4 ASRC SEL st-J ‘
{ADK) MICD8 BSRC SEL SyH LATCH MA he— MICOS LATCH MA L
(PRK)
A .
A V B
D
ADDER
{PRK) MICOB MA SELECT SxH

A3

MAD <31:00 > !3]
l 1 l l 2 l

TK-3360

Figure 10-2 Address Chip 4 X 8 Size and Signals

10-6

Memory Address Logic

Table 13-1 ASRC, B SRL and MA Select Lines

ASRC <S2:50> H TRUE

Controls A MUX Input to ADDER, From MIC 4

S2 S1 -1 A Input
L L L 2

L L H +1

L H L +2

L H H +4

H X X WBUS

B SRC <S1:50> H TRUE

Control B MUX Input, From ADK Chip

S1 So B Input

L L 7]

L H PC

H L VA SAVE (PC+SIZE)
H ﬁ VA

MA SELECT <S1:S8> H TRUE

Controls MUX Input to MA LATCH, From PRK Chip

S1 SO MA Input

L L INCREMENTER
L H PC BACKUP

H L PC

H H VA

18-7

Memory Address Logic

LATCH MA ——
CCMP 4100E ——- VA > MSEQ VA 00
EN PC BJACK UP——>1 CLK . N
EN PC == CONTRCL
EN VA ——
EN VA SAVE ——>-
3 y
8CLX —t .
INC. CARRY IN — MAD 00
—a= MAD 01
ASRC SEL S2 ——2
ASRC SEL ST == —=u MAD 02
ASAC SEL S0 —>1 Pc .
BSRC SEL S1 ——»f MUX BACK UP MA MUX ——» MADQ3
L s0 CONTROL |PG BNORY MA .
3SAC SEL SO ——>1 i Y > MAD 04
CHIP 10— PC INC. .
MA SELECT Sl o=ty p———3 MAD0S
L S0 ——2»)
MA SELECT —1 MAD 06
i
'BNPUT VA ~—> MAD 0T
I_ MUX SAVE
¥ 9 t f
N ..
CARRY 1) B PC 00
wa 00 1
wa o1 pC f—» XBPCO1
we 02 AMUX/ = X8 PC 02
w8 03 ADOER £
W8 04
WS C5 CARRY — CARRY GEN 1!
|——= CAARY GEN 2
we o8 ’ LooK - :::ARRY ::OPZ
W8 07 Pl AHEAD
— iNC. CARRY QUT

ADO CHIP SIGNALS (1 OF 4)

TK3028

Figure 19-3 Address Chip Signals In/Out

6-0T1

weibetqg yoorg Toijzuo) dIiyd SSsippy p-@1 2anbrg

W BUS <7:0>
- S el el

Pc
VA SAVE

YA 8 MUX

0

BSRC SEL §1
BSAC SEL SO

ASRC SEL §1

ASRC SEL SO
]

LATCH

EN VA SAVE '—1

A CARRY IN

.

?ADDEH

745182

INC
X8 PC <02:00> CARNRY
t
t rsu]
PC
fC NG [INC CARRY OUT
VA N
SAVE r .
} s MA |[MAD<7:0>
BACK MA MUX |t LATCH S
up -
r I 1
EN PC ,
BACKUF LATCH MA
VA :
|——w PAGE BNORY MA SEL §1
MA SEL SO
COmP MODE
CONTROL BLOCK DIAGRAM
‘ADD CHIP’
<10OF 4>
TK-4736

O] SSs8ippy Aiouwsy

o1b

Memory Address Logic

As you look at the Memory Interconnect Module [MIC] you
must first look at all of its basic funtions as written in
2.6 of the manual and attempt to put them in perspective. To
do this one of the ideas you must maintain is that the MIC
module only functions in two basic fashions.

1. performs micro coded orders

2. monitors non micro coded functions
a. prefetch needed I-STREAM data
b. monitor micro trap conditions

Let's look at these two functions in an overview separately.
1. Performs Micro Coded Functions

Micro coded functions are functions that the MIC
performs under direct control of the different micro fields
W control, bus function and M source that are sourced from
the control store module for a specific micro address. Some
examples of these are:

a. read or write to memory [or an I/0 device]

b. source data from the MDR to the M bus

C. probe translation buffer for access violations
d. write to status and control registers on MIC

Since these functions are coming from the micro word and use
some of the same circuitry you must realize that not all
functions can be performed at once. The MIC decodes one
micro instruction at a time for its needed fields. [W
control, M source, and bus function]. You cannot tell the
MIC to read from memory in the same micro instruction that
tells it to load the virtual address with data from the
WBUS. For example: it takes at 1least four micro words to
perform the following macro instruction. MOVL (R1l),(R2).

2. Non Micro Coded Functions.

Some of the non micro coded functions relate directly to
the micro coded functions, such as; while the MIC is reading
from memory data in address 1008 it is possible that memory
management is enabled. This would have been enabled by
writing to the MME status and control register (a micro
coded function). Once it is enabled the MIC will monitor
for translation buffer hits, misses and access violations.
This will be performed independently of the microed function
of read. This monitoring function 1is due to the access
control violation chip [ACV] and the micro trap chip [UTR].
These chips are constantly monitoring for hits, misses and

19-19

Memory Address Logic

access violations when MM is enabled. If any improper
conditions are found during a micro coded function a micro
trap is performed to place the proper micro address on the
micro address lines that places the machine in the proper
routine to handle the improper condition.

That is only one example of monitoring error conditions.
The ACV chip is also constantly monitoring the control store
parity condition in the machine for parity errors.

Another non micro coded function is to fetch I-STREAM
data for use by the processor independent of the micro code.
To do this the MIC must first load the execution buffers
with the needed data to start with. This is done by loading
the "PC" with an address thus causing the condition of
"flushing the execution buffer". Flushing causes the MIC to
take the address in the "PC" and reading from memory two
longwords and storing them into the execution buffers
[XBG,XBl]. The I-STREAM data is then constantly monitored by
the prefetch control chip [PRK],UTR using the updated "PC"
to see if one of the XBs are empty and need to be refilled
with another instruction from memory. If this occurs the
MIC will perform a non micro coded function called prefetch.
This causes the MIC to generate a non micro coded read to
memory (or cache) to keep the XBs full for use by the
processor. This prefetch function cannot be performed at the
same time as a microcoded read as they use the same data
path on the MIC.

This brings up another non micro coded function of the
MIC. That being, what happens if the instruction being
executed asks for data from memory (via the virtual address
register VA)? This data is not I-STREAM data but data
needed by the operand to complete the instruction. This data
is not stored in the XBs and may not be cached so it might
have to be fetched from memory. Now this takes more time
than the micro word takes to execute, so it is possible that
the next micro word from the control store says get the data
I just asked for and it may not be available yet. If this
happens at this time the MIC would generate a stall
condition to the DPM module stopping the micro word from
performing the function until the data that was asked for
was fetched and stored for its use.

NOTE: The MIC didn't automatically
generate the stall condition when it
went to memory to fetch the needed data.

Only when the micro word needed the data and it wasn't
available did the MIC generate the stall condition. This

19-11

Memory Address Logic

stall condition, access violation checks,- cache and
translation buffer hits and misses are monitored for both
prefetches and micro coded memory references.

19-12

VAX-11/7560 LEVEL II

Translation Buffer

Student Guide

Course produced by Educational Services Department
of
Digital Equipment Corporation

Translation Buffer

INTRODUCTION

The 1location of the translation buffer is on the MIC
module. The purpose of the translation buffer is to
store PTEs for address translation and access rights.

Its function 1is to provide the 15 most significant
address bits which correspond to the 23 most significant
virtual address bits.

11-1

Translation Buffer

MODULE XI: TRANSLATION BUFFER
SYNOPSIS

This module 1is designed as a block diagram and
schemetic level analysis of the following:

a. characteristics

b. inputs/outputs

C. microroutines

a. PTE formats

e. tag and index formats
f. parity checking

Also included is a fault 1isolation 1laboratory
exercise.

OBJECTIVES

Identify the major translation buffer logic
components by correctly labeling each on a blank
block diagram.

With a malfunction inserted on the MIC module of the
Comet CPU, utilize all available documentation,
diagnostics and test equipment to 1isolate the
mal function to the chip level.

Given statements concerning the translation buffer,
correctly select the major components described from

a list of components, writing the answer in the space
provided.

SAMPLE TEST ITEM

The translation buffer is a/an .

a. instruction decoder

b. two way set associative memory
c. physical address generator

d. none of the above

11-2

a.
b.
c.

+ d.
e.
f.

LAB EXERCISE

load microdiagnostics

run microdiagnostics
interpret error printout
isolate malfunction to module
isolate malfunction to chip
perform appropriate repairs

RESOURCES

Comet Specifications
Comet Print Set
Comet Microcode Listing

11-3

Translation Buffer

Translation

OUTLINE
Purpose
Characteristics
1. Type
2. Location
3. Interfaces with
Function
l.
2.

Translation Buffer Organization

1. Tag
2. Data Stores
3. Physical Dimensions

Simplified Block Diagram

1. 2-way set associative cache
2. VA bit grouping

3. Operation

4. Parity

5. Control

11-4

Buffer

OUTLINE (continued)
Address Translation
Detailed Block Diagram Description

1. Read cycle
2, Write cycle

Microroutines

1. Invalidate
2. TB Miss (Read Cycle)

Registers

11-5

Translation Buffer

Translation Buffer

Translation Buffer

Purpose: To store Page Table Entries (PTEs) for address
translation and access rights.

Function: 1. Provide 15 most significant physical address
bits corresponding to the 23 most significant
address bits of a wvirtual address to the
Physical Address Bus (PA).

2. Provide 4 access conrol bits and modify bit to
Access Control Violation (ACV) chip and utrap
(UTR) chip for control functions.

Characteristics: 2-way set associative cache mode up 2K
discrete RAMs on Mic module. Cache
similar to 11/78 in that divided into
Tag and Data store with each containing
518 locations.

The translation buffer (TB) 1s transparent to the microcode.
That 1is, when a regular read or write function is being
performed the microcode does not determine whether TB is
enabled or disabled. This is done by the Memory Management
Enable bit. Bit @ in S/C Register # @6 in ADK chip (IPR
Register # 38 bit @) by enabling this bit you do tweo things:

1. Change output of AMUX select from ADK chip to say S1
Low/S@ Low instead of S1 High/S@ Low. This allows
only lower byte of MAD lines to Physical Address
Lines (PAD) to be concatenated with output of TB
data store for 24-bit physical address when DBUS
select is cache to DBUS.

2. Allows outputs from ADK for enabling errors to be

checked from TB and allows passing of data from TB
data to PAD.

11-6

Translation. Buffer

To look at the TB and see how it works, we must realize some
basic facts.

l.

There will always be an address inputted to the TAG
store with or without MME. Whatever is input will
cause an output that will be checked for bits and
Parity without enabled control signals. Whatever
signal (hit or error) will not be used unless MME is
set and TB Parity Enable generated from ADK chip.:

The TB data store is always receiving the MAD lines
also and will always output whatever it has that
relates to the address bit not allowed out to the
PAD unless "TB output En" generated by ADK chip
when MME. Data Parity is detected but not used by
utrap chip unless "TB Parity Enable" generated by
ADK.

11-7

Translation Buffer

TRA&!SLATION BUFFER ORGANIZATION

GROUP 0 § P1
(® = ADDRESS TAG FIELD 34 81TS GROY
17 BITS e 17 BITS
1BIT—= le—15BITS—»! le—18IT
VALID 8IT—— PARITY — VALID BIT ——PARITY
_1 ADDRESSF:ELD-17 ADDRESS FIELD
y 0 Y
. \&/
ADDRESS I |
INDEX BITS 256 - 1 T8 TAGS
FIELD <31;15:8> !NDEX ! 1
POSITIONS i :
1
1 1
1
' i
1
! 1
I 1
! N
! FF v A Plv A P
» L .
ADDRESS BITS—
<30:16> : I y LK 1 [4 y v 9
ADDRESS FIELD A = B A = B
PARITY PARITY
COMPARATOR CHECK COMPARATOR CHECK
A=8 [A=8
HITO TB TAGO HIT1 TB TAG 1 PERR
PERR
' PAD QUT
-
0 PFN | ACV S P PFN ACVIM P
INDEX
FIELD
ADDRESS 256 T8
BIT INDEX DATA
<31;15:9> POSITIONS STORES
1
y FF
* 3 4 15 4 3"
PTE BITS BITS{:‘BITRC: 3ITS
ACU BITS PFN [ACVIM PARITY
M 8IT.
PARITY
238ITS 23 8ITS ——>
GROUP 0 GROUP 1

TK-1871

Figure 11-1 Translation Buffer Organization

11-8

MAD<31:9>

Translation Buffer

Figure 11-2

<31,15:9> <30:16> <31,15:9> | <30:16>
A
<31,15:9>|<30:16> ™l TAGO L~> TAG 1
Van l
N
' y Y
A8 |— HITO A8 HIT 1
! |
<8> y 1
PAD{23:3] Q387:3> | oy oTE
GROUP 0 GROUP 1
/TN 0

Translation Buffer

MUX

l

PAD<23:3>

11-9

'SIMPLIFIED BLOCK'
TRANSLATION BUFFER

TX-1872

Simplified Block

I-1T

€-11 @anbr1g

3¥00Tg TePUOCTI3IOUNZ I3IIng UOI3RISURIL

MAD<31:9>

<31,16:0> <30:16> <30:16> | <31,16:8> '<aona>
PAR. |/l
A -
GEN. A
<31,15:0> | <30:16> *1A TAGO TOWRITE oA TAG1
a \ ENA L olv le—T1 WRITE ENAL
27T\
PAR
> cHECK 7B TAG 1 PERR
PAR 1 7B TAGOPERR
| CHECK eI
A B -
A8 |—>HITO A-B HIT1
N\
- 4
]
A A
PAD[23:3) <23:9;7:3> D PTE PTE
. GROUPO GROUP 1
YO WRITE Jo—T—TIWRITEENA L
ENA L
7T\
4
D D Bt HIT
MUx C}*
e—PTE CHECK
_f PAR cK :
"1 cK/GEN |
PAD<23:3>
T8 DATA PERR

“FUNCTIONAL BLOCK"
TRANSLATION BUFFER

T*18%0 |

183Jng uor3leIsueill

TI-1T

7-1T1 @anb1a

lewaod Fid

PTE FORMAT

31 30 27 26 25 15 14 0
vl PROT [M MBZ PEN
T JtC _ X Ny J
PROTECTION MUST BE ZERO'S PAGE FRAME NUMBER
CODE . .

PAGE MODIFIED

PAGE VALID

. TK-1880

i933Ing uorjeTSURIL

¢I-T1

obeio3s i93Ing uoTIEISURI] J0J UOT3IRIOY HlLd

G-1T @anbig

. PTE ROTATION FOR TRANSLATION BUFFER STORAGE

31 30 27 26 25 16 14

vl PROT |M™ MBZ PFN

L L

’ .
ROT FIELD = 11 = RL.MM.PTE; ROT LEFT MM, NO. BITS =9
3 24 23 7 432 0
mBz PFN PROT |M| MBZ |e-
\ \ J &
)

TK-1877

is3Jng uoT3leRTSURI]

€1-T1

uorieloy 1933V ILd 9-TT =inbia

PTE AFTER ROTATION

31 24 23 8 7 432 0
mMBZ . PFN v| PROT |[M| MmBzZ
. ~ A ~ L ~ J
MUST BE ZERO'S PAGE FRAME NUMBER PROTECTION | page
: ok Cope MODIFIED
PAGE
VALID

TK-1876

ia73ng uorleISURI]

PI-T1

uorleIsuel] SS°IpPpY L-TT 2anb1g

ADDRESS TRANSLATION

31 30 16 15 98 1 0
, N
VIRTUAL PAGE NUMBER BYTE VA
\ — T J
TRANSLATION BUFFER
0 PFN V | PROT | M |
|
FF PFN V | PROT | M
23 ¥ 9 8 v
PFN BYTE PA

~ Tk-1e81

i23jng uorjeTSURIL

MIC MODULE

ST-TT

8-1T @2inb1g

3¥00Tg TeRUOTIDUNg [OI3UOD I833Fng UOTIIETSURI]

D W0 SUSNN G Gt (———— t—
ADD CHIPS -‘
l BACK I
l up N l
a l ADDRESS FIELD HITO& ‘...' ———
VA PC INC BUS3:0 | ADK CHIP |
1 size [| o WCTRL 5:0) |
l ore _rhoy] TAG | TAG CTRL S|
Ef 081 0 1 | |
WR : .
I l moexL_ j | b 18 ouTPUT ENA (TO MUX)
I ! VA i aux | MA MAD FIELD l l—-—vTB GAPO & 1 WR (TO TAG/OATA STORE)
- : <31:0> N
0~ ' | L-.._}——W
I 1 TBPARITY ENA H
et]TBGRP DATA |DATA
081 wn | STORE | STORE |~ ——
CONS. —*| 0 ! futRore |
Mux |——| ADD I N ITO& 1| " [uvecron 3.0
l DATA PERR !————-~—~;»Tomso
l | TAGPERR | |
t . J HIT '_‘“““"’j . |
nan aeremr | A—— S— tcm—" S— Sot—— -+

WBUS

T8 OUTPUT EN
e

B
ol

[UTRAP .

AC 3:0-———»1 ACV CHIP | ACV.

T8 VALID—|
PG BNDRY —|

UTRAP
D SIZE 1:0—}
BuUS 3:0 -—+I

[PO |

LENC U TRAP

| PTE CHECK/PRO

r——-—-—-—-—-—-—.—.—
|

l ~
|

T8 CONTROL
FUNCTIONAL BLOCK

TRy

is3jjng uorjeISuURIY

Translation Buffer

8CLK— CLOCK ENABLES MICROTRAP
D CLK ENABLE—24 BUFFER DECODES L GEN DEST INH
PMASE 1——>1 1 . s > UTRAP
MACHINE
CHECKS MICROVECTOR MICROVECTOR
RECEIVERS 12 > 10
pTE CHECK CR PROBE —o X80 18117
PREFETCH— STATUS
X8 SELECT —» REGISTER
- X8 1:0IN USE —m1 5
STATUS 1:0—— XB1 sc
PROC. INIT. —— STATUS
ADG REG ENA —] REGISTER nsexsreasn [~ INKISIT CMI
STATUS VALID ——o-
DO SAVT —— s
BT o] REGISTER
ENABLES
MSRC X8 —»] 8
LATCHED 8US 3 — o TRAOR BUS
WCTRL HHLXXX 2 SUMMARY ERRORS WRITE BUS
LATCHED wwCTRL 2:0 —04 REGISTER > ERROR INT
ENC UTRAP 2:0 —» 9 . 14
RTUT DIN® cmid BUS ERROR
T8 PARITY ENA 9 REGISTER
T8 TAG 1:0 PERR —» -
T8 DATA PERR 19
T8 HIT 1:0 it PARITY WBUS
ACY —» EAROR XCVRS | WBUS 27:24
n HEGISTER” ,

UTR CHIP INPUTS/OUTPUTS

TRIG2Y

*Note: Some signals are sent to UTR chip even if memory
management is not enabled, but are not checked unless
"TB Parity Enable H" is sent from ADK.

Figure 11-9 UTR Chip Inputs/Outputs

11-16

ADK CHIP SIGNALS

Translation

BCLK ——
PHASE] —— BUFFERED T8 AMUX L >
MCLK EJA ——>{ CLOCKS CONTROL STEERING [
OCLK ENA ——» REGISTER :
DST RMODE ——>] RECEIVERS —
wmrsv§¥oaocc-——. SAVED MODE
UT DINH ——> REGISTERS
SNAPSHOT CM1 ——» 0 8US | .
LATCHED WCTRL 5 —— conTROL [T
LATCHED WCTRL & —> e
LATCHED WTCRL 3 —» S
LATCHED WCTRL 2 — sC
LATCHED WCTRL 1 ——»d REGISTERS
LATCHED WCTRLO ——» T8
€S BUS 4 ——> CONTROL [—>
LATCHED BUS 3 —»
LATCHED BUS 2 ——» —>
LATCHED BUS 1 ——» SC REG. .
LATCHED BUS 0 —> ENABLES
STATUS VALID ~——
PSL CM ~ —— wBUS
TBHIT1 —> XCVRS/CONT.F—>
TS HITO ——— 8US
PREFETCH - ——o DECODERS |
8US
CYCLE
STATUS — ADD .
MMUX SEL §1 ———o ADDRESS CHIP
REG. CONTROL e
ENABLES ‘ ;

Buffer

AMUX SEL S1

PTE CHECK

AMUX SEL SO

TB QUTPUT ENABLE

D BUS SEL St

D BUSSEL SO .
CLK SEL S1
CLK SEL SO

T8 GRP 1 WR
T8 GRPOWR
TB PARITY ENA

WBUS 27 .
WS8US 26
WBUS 25
WBUS 24

COMP. MODE
8SRC SEL S1
8SAC SEL SO
ENAVAL

TR873

Figure 11-19 ADK Chip Signals Input/Output

11-17

*ACV CHIP SIGNALS®

Translation Buffer

B8CLK —>§
PHASE 1 —»]
MCLK ENA —>»1
D CLK ENA —

CLK
BUFFER

4

PREFETCH —~
WBUS 27—

WBUS 26 —>

WBUS 25—

WBUS 24 —>

D SIZE 1 ——
DSIZED —

MA 00

MA 01 —

MA 02 —>

PG SNDRY ——p-
BUS 4 ——>

U TRAP —>4

FP RESOP —»4
CSPARITY ERR ~—>1
LATCHED BUS 3 —>
LATCHED BUS 2 —
LATCHED BUS 1 ——b
LATCHED BUS Q0 ~——>
T8 VALID ——p~

AC3 —»

AC2 —»}

AC 1 —

ACQ —

RECEIVERS

MME
REGISTER

DECODES

— FORCE MA 09

—» PROC INIT

¥

L

| CURRENT
MODE
REG

ACCESS
CHECK

|—» ACV

[—> MICROVECTOR 1

—> MICROVECTOR 0

— PTE CHECK/PROBE

MICRO
TRAPS

L—3 ENC UTRAP 2

}—> ENCUTRAP 1

— ENCUTRAPO

Figure

11-11

TK-1869

ACV Chip Signals Input/Output

11-18

6T-11

ZT-11 @anb1g

<9l ¥v3ITD> aurinoy 3ndug

LONLIT 41F0000
CLEAR FLAG 2 |

?

PSL R{LONLIT] i
CLEAR FLAGO | -

¥

STEPC 2

PUSH ‘
CRAR ZLIT16(80]}

'

PCR [ZERO] |
CLEAR FLAG 1 |
RETURN (1] |

v

CONREGS D M[SISE]
R [ZERO) ‘
DECSTEPC '

y

DECSTEPC

PUSH ‘ ‘
CRAR ZUT16 (40)

MP MTPR. TBIA20

e .
LONG LITERAL = 41F0000 |
PROCESS INIT CLEARS FLAG 2 ‘

PSL GET 41F0000 FROM LONL| r T8 D+ZLITB(4)]]
CLEAR FLAGO | | S—— ,

JSR |
STEP COUNTER GETS 2 :
CRAR GETS WBUS 23 , VA D D+ZLITSI4 SC = °F

. o INVALIDATE T8

) DBZ STEPCI
PC-0 : |
CLEAR FLAG 1
RETURN +1 TO ADD PUSH |
'Y . *
TB D+ZLITP4]

RXCS = 0 SET FLAG1
SISR =0 /

STEP COUNTER = 1

! .
J5R ; r RETURN +1.]
STEP COUNTER =0 | | _
CRAR GET WBUS 2Z| v
CCPUSH }
D ZLIT (80} .

MP. MTPR. TBIA20

T8 GET 400 [BIT 10 SET]
VA UNKNOWN

INCREMENT VA IN BIT 10
SUB.1 ANDBR.IF=0

LOOP 32 TIMES UNTILSC=0
INVALIDATE PROCESS SPACE

2ND LOOP
T8 GETS 400 (BIT 10 SET)
LOOP TILL FLAG 1 SET

RETURN TO INIT AT
PUSH +1

JSR
SET BIT 31
START CLEAR SYS SPACE

MP. MTPR. TBIA20

INIT ROUTINE <CLEAR TB>|

iajjng uoljeIsuel]

pT-11

€T-T1 @2anbta

MmOTg SSIW 91 Pesy

SAVE VA & MOR
MM, READ, TOMISS)

s

GET PYE
(MM, GET. PTE}

¢

LOAD PTE
INTO TO
(MM, GET. WINTE. PYE40)

s

NESTONE
VA « MDR

RETUAN ¢+ 0

0A

LENGTH
CHECK

SYSTEM
SPACE

GET PAE
MM, GET. PTE)

PHOCESS
oR
SYSTEM
SPACE

LOAD PHYSICAL
ADURESS &
FETCH PTE

READ TB MISS FLOW

OET PROCESS
PTE
(MM, GET. PTE, PX)

PROCESS
SPACE ACcEss Acv
oK PROBE SET EAROR
VAFTE CODE N
'LENGTH NOT VALID
CHECK (MM, GET. [omiss m
PTE. PX30
LENGTH AcY
CHECK
LOAD VIRTUAL
ADDRESS SET ERAOR
OF PTE CODE
] LOAD PHYSICAL
ADDRESS &
f&' PROCESS FETCH SPTE NETURN
IMM. GET PTE. PKY
AGV, TNV
COoDE
e LOAD SPTE m
INTO TR

FETCH PROCESS PTE
{VINTUAL READ)
MM, GET. PTE. PX00)

TR.2047

193Ing uOI3IRTSURIL

Translation Buffer

TRANSLATION BUFFER REGISTERS -

PROCESSOR REGISTER <3:0> ; NAME PR# MEMSCAR#
TBGPR _#=
3 2 1 0 © PART ‘
. OF ‘UTR CHIP’
17
0= NORMAL
1=GO DATA ERROR
| 0=NORMAL
~ 1=G1 DATA ERROR
| 0=NORMAL
1=GO TAG ERROR.
| 0=NORMAL
1=G1TAG ERROR
PROCESSCR REGISTER <3:0> - NAME PR MEMSCAR#
_ MCESR 26 7 8
3 2 1 0. "UTR CHIP’
| __0=0PCRAND
1=XB
| 0=NORMAL
1= UNIBUS UNALIGNED REFERENCE
{ 0=NORMAL
1=TB ERROR (WRITING A ONE CLEARS TBGPR)
[___0=NORMAL , .
1= BUS ERROR (WRITING A ONE CLEARS BER)
PROCESSOR REGISTER <3:0> NAME pR MEMSCAR:
- TBHR': 7 C
3 2 1 0
"UTR CHIP’
| 0=MISS
1=HIT
——=0
=0

TK-1878

Translation Buffer S/C Registers

11-21

Translation Buffer

TRANSLATION BUFFER REGISTERS CON'T .

PROCESSOR REGISTER <3:0> NAME PR# MEMSCAR#
v it et | e =] TBGDR 24 3
3 2 1 0 ' ‘ADK CHIP’

L_o= NORMAL
1= FORCE MISS IN GO
0= NORMAL
~ 1=FORCE A MISS IN G1
| ___0=FORCE REPLACE GO
1= FORCE REPLACE G1

0= RANDOM REPLACEMENT ;
T 1=FORCE REPLACE (USED WITH BIT 2)"
PROCESSOR REGISTER <3:0> NAME PR MEMSCARE
' L = MME 38 0
3 ’ 2 ’ 1 0 ‘ADK CHIP’
p | | 0=MEMORY MANAGEMENT OFF
1= MEMORY MANAGEMENT ON -
=0
L _ 0
— = O

TK-1879

Note: S/C Registers are loaded by microcode when a Processor
Register is loaded.

Translation S/C Registers

11-22

VAX 11/750 LEVEL II

Cache

Student Guide

Course produced by Educational Services Department
of
Digital Equipment Corporation

Cache

INTRODUCTION

The cache is located on the MIC module. Its purpose is
to increase system operation speed by decreasing memory
cycle time. The function used 1is storing data in a 1K
direct mapped data cache with 1K X 14 TAG store and 1K X

36 data store.

12-1

Cache

MODULE XII: CACHE
SYNOPSIS

The cache module is designed as a block diagram and
schematic level analysis of the following:

a. characteristics
b. 1inputs/outputs
c. tag/index formats
d. control registers
e. parity checking

Also included is a fault isolation 1laboratory
exercise.

OBJECTIVES

Given a faulty Comet CPU, isolate the defective cache
chip, wutilizing all available documentation,
diagnostics and test equipment.

Given statements concerning cache and several
possible definitions for each, select the one correct
definition.

Given a blank block diagram of cache, correctly
identify each block by labeling it.

Utilizing the MIC print set, trace the signal path
for a preselected signal from origin to destination.

SAMPLE TEST ITEM

The signal EN CACHE L on page 11 of 17 in the MIC
print set, is utilized to:

a. control output data
b. control input data

c. turn cache on

d. enable parity checker

12-2

Cache

LAB EXERCISE

a. load microdiagnostics

b. run microdiagnostics

c. 1interpret error printout

d. 1isolate malfunction to module
e. 1isolate malfunction to chip
f. perform appropriate repairs

RESOURCES
Comet Specifications

Comet Print Set
Comet Microcode Listing

12-3

OUTLINE

Function

Purpose

Characteristics

Simplified Block Diagrém Physical Description

1.
2.
3.
4.
5.
6.

Tag Store

Data Store
Pad <23:02>

Parity Generators

Parity Checkers
Comparator

Cache Organization

1.
2.
3.
4.
5.
6.

Tag
Comparator

Tag Parity Checker

Data Store

Data Parity Checker

Pad

12-4

Cache

OUTLINE (continued)
Simplified Block Diagram (Cycle Description)

Read Hit

Read Miss

Write (Four Byte)
Write Hit (1-2 Bytes)
. Write Miss

L] [} L] .

v oW N

Detailed Block Diagram
1. Chip Overview

2. CAK Chip

3. CMK Chip

4. UTR Chip

Clear Cache Init Routine

Registers

12-5

Cache

12 <23:12>
PAD <23:2> +# Z
PAR
GEN
I VALID
IN P IN
<11:2> A TAG
1K X 14
”
‘10 our
PAR |
CHECK <23:12>
CATAG
PAR ERR A=8.
.
CAHIT
<11:2>
A
ATA
DATA IN v >IN b
STORE
} 32
1K X 36
PAR 7 p
GEN ‘4 ouT
PAR | EN CACHE
CHK. A
' ‘ l BYTE
CA DATA PAR ORIVERS
ERR 748241
D BUS DATA
CACHE <31:0>
BYTE < 3:0>

CACHE SIMPLIFIED 8LOCK DIAGRAM

TK3041,

Figure 12-1

12-6

Cache

Cache

- 14 BITS ——
128ITS
BIT-’ 2 aad 1
. - ‘—Bn.
-{‘ °1f ADDRESS FIELD BITS | P
afv
RIA
CACHE
t L
ADORESS 1K r TAG
BITS INDEX ! T STORE
<11:02 > LQOCATIONS } Y{po
|
PAD <11:02> 1 Bi8
{ Lt
! 1 TiT
y 3FF g A PlVv
ADDRESS 8ITS
<23:12> -
ADDRESS FIELD 1 ¥ Yy v v
A 8 PARITY
A=8 CHECKER
‘ DBUS
CAHIT CATAGPAR ERR ENCACHE— CACHE
> DATA
<31:0>
¥
‘ 015 o PARITY CA DATA
4 CHECKER PAR ERR
ADDRESS 1K T T
BITS INDEX ! : CACHE
<11:02> LOCATIONS : " DATA
| 1 STORE
1 |
i I
] § L
3FFqg DATA PARITY
3
r——— 32 SITS—+§!_T§’
f——————36 8| TS —————P
CACHE ORGANIZATION
TK-3037

Figure 12-2

12-7

PAD 11:02—1

CACHE VALID =

CACHE WR ENA —»

CACHE TAG
STORE

1K X 14 BITS -

PAD 23:12——1

DATA

A=

B

Cache

CATAG PAR ERR

PAD 11:02

ENA BYTE 3:0 =

CACHE WR ENA—

CACHE DATA
STORE

1K X 36 BITS

EN CACHE—j

DATA

i

PARITY

D BUS DATA

PAR
CK

STATUS 1 MICROVECTOR 3:C
CAHIT (TO MsQ)
CMK STATUS 0 UTR
CHIP CHIP
CACHE INT STATUS VALID U TRAP (TO ACV)
JENACML_ o (T mDR)
CAHIT
CA TAG PAR ERR _ CACHE INT
WCTRLSP ENA BYTE 3:0 {TO DATA)
ek
D SIZE 1.0 CACHE VALID (TO TAG) L_q_
CA DATA PAR ERR _ ' CACHE WC ENA
STATUS VALID ‘Domm

CACHE GRPOWRH

Figure 12-3

CACHE DETAILED BLOCK DIAGRAM

12-8

TK3038

Cache

8 CLK——»]
MCLK ENABLE ——a{ CLOCK it ‘D' BUS
DCLK ENABLE ——{ BUFFER GISTER ROTATOR [——» D BUS ROT <51:50>
PHASE 1 ——] ENABLE CONTROL
. 5
PREFETCH ——»] 8US
" DST RMODE —— DECODES 8YTE
D $IZE <01:00> = . wask [ENABYTE <3:0>
CA TAG PAR ERR ——»4
CA DATA PAR ERR =i} : 9
MAD <01:00> ——] 8us .,
LATCHED WCTRL <5:0> ~——#{ RECEIVERS CYCLE
STATUS VALID ——» STATUS CACHE
LATCHED BUS <4:0> = . 6 WRITE > CACHE GRPOWR
SNAPSHOT CMI — CONTROL :
1/Q ADDRESS ——31 CACHE 10
CA HIT ——» CONTROL
REGISTER
23 17
CACHE
PARITY VALID [—3 CACHE VALIDO
INVALIDATE ERROR ar
M MUX SEL S1—— CONTROL REGISTER "
7 16
ERROR ‘;’g"}’: s | > wBUS<27:24>
REGISTER
1
3 . 14/15 2
¢ sc
REGISTER .
ReclsTs REGISTER CACHE INT.
13 18

CAK CHIP INPUTS/QUTPUTS
TK-3040

Figure 12-4

12-9

Cache

-— CMI 31:28

8CLK—™ crocx
PHASE 1 ——p! BUFFER ,
O SIZE 1:0 —]
BYTE MASK
MA 1:0 ——— 10/11
MODE
OST RMODE —»f o
PREFETCH —{ CYCLE]
DECODE 8uUS
MSEQ INIT —» 2 FUNCTION

[———= CMI 27:25

M CLK ENABLE ~——»1

ADORESS REGISTER ENABLE

(2]

}— ADD REG ENA

CMI CPU PRICRITY ——]

D CLK ENABLE ——23
HIT ——
INHIBIT CMI ——

HOLD ~——»

M MUX SEL S1 =9~

CACHE INT =

BUS 4 —»

LATCHED BUS 3:0 —3
WAIT ——p

INT GRANT ——3

CMI DRIVER ENABLE 8 —> ENACMI
CYCLE
R
CONTROL . o beez
INTLCK
TIME QUT MISCELLANEOUS L 3 ST 1:0
12
INVALIDATE B — WRITE VECT. 0CC
CONTROL
— STATUS 1:0:
STATUS
6 | CORR.DATA INT..
STALL L% GRANT STALL
LOGIC

CMK CHIP INPUTS/QUTPUTS .

Figure 12-5

12-10

TK3029"'

Cache

8CLK—>1 CLOCK ENABLES MICROTRAP .
D CLK ENABLE—®{ S3UFFER DECODES > GEN DEST INH
PHASE 1~ 1 s 15— utaap
MACHINE
CHECKS MICROVECTOR MICROVECTOR
RECEIVERS i > 1.0
PTE CHECK OR PROBE — X80 18117
PREFETCH—3- STATUS
X8 SELECT — REGISTER
XB 1:0 IN USE — S
STATUS 1:0 XB1 sc
PROC. INIT. — STATUS REGISTERS |—# INHIBIT CMI'
ADD REG ENA —f REGISTER ¢ 2
STATUS VALID — i <
0Q SRVC ——t! REGISTER
MBIT—» ENABLES
MSRC X8 —— 8
LATCHED BUS 3 —» ERROR ‘BUS
WCTRL HHLXXX ~—3 SUMMARY ERRORS WRITE BUS
LATCHED WCTRL 2:0 ——»p REGISTER © ERROR INT
ENC UTRAP 2:0 —3 9 14
RTUT DINH —p 8US ERACR
TB PARITY ENA —f REGISTER
T8 TAG 1:0 PERR = o
TB DATA PERR ——pn
TBHIT 1:0 —f PARITY WBUS
ACY —» ERROR XCVRS b—» waus27:24
13| |REGISTER 5

UTR CHIP INPUTS/QUTPUTS

TK3027 :

Figure 12-6

12-11

Z21-2¢1

L-2T ®anb1a

00K 18 Cup LARDY .
IR

ABK| sucra € va vAL

Y uices na i sacairt

"
LTt

iy

VA <30 1A B0 -

IvaLR
(P17
AAwe]
)
e

l wAD w20 1 2

VR LATE WA |

Pab (VAL
wagt

ARHY
“n

Ay in

[AT
a0 Lie'>

®»
wAD <M U

J:TI mre

»,

oy
oatr.21 4
Y]
narcay
"~ Famiv |
e
]

WAIr 3

senoricy
1 41
fu|ran<arme

T
1
~r

T
AAM (N

g raniy

i
[—
-

L vy e
e m———

v —e]

(137
e

wa
Ave

| ‘-’ b

me<0>

W, a0 NN

JM FILTATY

¥, na
[

[‘ aramry

",
Jd

WAD <MY

Y 3 cAD <31 00>

L — ——
l a4 souning
b aLicw) N .
! .
a
LI . oo
I . [
o
l m b
.) ‘ e
I o AMUER ML g0 Mg W
l : thoy 3 _1 .
] L)
I - [
l L Y won
| :(Iy ; N By pisy
. o o
w one
| ’ o (1)) W CAE 48 ghh
£ PO
| ca
D
L I —
l M 1
l wailed PR TS LT 6k WA MICHT INAPIMOT G
PR MeCos N B4 § wonp
; 1 MICOEL R L M .
AW L 11
. wsente ADDI 48D 4D PG J kb =gl e PRI
- 3| Joacnd o o foevad
i sty fim oo o
- o [orn Ve g
I 3 i RER L. 1 1y Bwon
'
!
1
— o S — — — —— i — S S —— — f—— — ———" S— —— — f—— — — fitn s et — —— ot T — —— o— — — — —_ — Vit i — e S SSSS
E RO L AN

[l
1

ayoe)

Cache

IN. INIT:
LONLITE 41F0000, PUSH, TB ATTEND
NEXT/IN. PSL. LONLIT D 2 LIT 0 {4001, CLEAR CACHE
NEXT/IN. VA O D+ 1024
000 841
IN. PSL. LONLIT: § IN. VA = 0:
PSL R {LONLIT]. VAR [ZERO], VA«0
PSLLONLIT t RETURN (1] RETURN +1
83E 825
; -
. CLR CACHE:
. PUSH,
STEPC 2, VA VA +4
CRAR <2 CRAR ZLITO [80] CLEAR CACHE, CL%TRCACHE
NEXT/IN. PCO NEXT/IN. DEC. D VA<« VA+4
820 842
IN.PC—0: IN. DEC. D)
- PC R [ZERO].
RETURN +1 CLEAR FLAG 1, | D-D -1
RETURN [1] CLEAR CACHE LOOP
818
¥
RXCS«0 | CONREGS D MISISR] PUSH, DONE WITH CACHE
SISR«0 R [ZERO], ASTLVL [4] ASTLVL <4
DECSTEPC NEXT/IN. PC O FLUSH XB
821] 843
L
~
PUSH,
JSR DEC STEPC
CRAR«1 CRAR ZLITG [40],
NEXT/MP. MTAR. TBIA 20 PME O, FLAG 2
8 PROCESS INIT, PME < 0
8A0 N
INVALIDATE) FLAG 27 FLAG 2 SAY RET OR IRD1
ROUTINE
PUSH, 844
D ZLIT 24 [80],
ISRI | CLEAR FLAG 1
L NEXT/MP. MPTR. TBIA 20 M [SCBB] —i. SCBE « —1
8A1 NEXT/CN.CPRS. OR. B, CALLED FROM CONSOLE
[OR.! END OF INIT
TxCso | CONREGS M [FPDOFFSET] 820 |
R [ZERO], i
8A2 M [SCBB] ~1, SCBB _-1
IRD1 END INIT
POWER UP

CLEAR CACHE INIT ROUTINE

Figure 12-8

12-13

TK.30328

e]

L3]2]11]¢

NAME PR #

27

CACHE ERROR
REGISTER

@ MISS

HIT

LOST ERROR

@
1

NORMAL
DATA ERROR

]
1

NORMAL
TAG ERROR

NAME PR #

25

CACHE GROUP
DISABLE REGISTER

CACHE ON

@
1 CACHE OFF

UNDEFINED

UNDEFINED

UNDEFINED

NAME PR #
‘PART OF

17

CACHE WRITE
ONLY REGISTER

CMI ON
CMI OFF

W
=

=g
=0

CACHE REGISTERS

Cache S/C Registers

12-14

Cache

MEMSCAR #
4

UTR Chip

MEMSCAR #
6

UTR Chip

MEMSCAR #
E

UTR Chip

VAX-11/750 LEVEL II

Data Routing and Alignment

Student Guide

Course produced by Educational Services Department
of
Digital Equipment Corporation

Data Routing and Alignment

INTRODUCTION

The data routing and alignment (DR+A) is located on the
MIC module and made up primarily of MDR chips.

Its purpose is to take or give data to/from the data path
portion of the CPU.

The function of the DR+A 1is to interface with the
following:

I. A. Input buses
1. W bus
2. MA bus
B. Output bus - M bus

C. Bidirectional buseé

1. PA bus
2. Cache bus
3. CMI bus

4. XB decode bus
D. Internal buses
1. C bus
2. D bus
II. Perform data transfers on read and write cycles.

III. Data alignment for use by the data path module.

13-1

Data Routing and Al ignment

)

MODULE XIII: DATA ROUTING AND ALIGNMENT
SYNOPSIS

The data routing and alignment module is designed as
a block and schematic diagram analysis of the
following:

a. data routing

b. cache/CMI interface
c. WDR

d. MDR

e. W bus interface

f. XB interface

g. CMI address register

h. I/0 address latch
i. microroutines

OBJECTIVES

Identify the data routing and alignment elements by
answering multiple choice questions. The elements
include:

a. data routing
b. cache/CMI interface
c. CPU bus interfaces

Utilizing the MIC module schematic diagram, trace the
origin and destination of a specified signal.

With a malfunction inserted in the 11/750 CPU on the
MIC module, utilize all available documentation and
test equipment to isolate malfunction to chip level.

SAMPLE TEST ITEM

Select the statement that is NOT true about the data
routing and alignment logic.

a. Memory data received from the CMI is stored in
the MDR.

b. The CMI address latch holds the virtual address
of the operand or instruction referenced.

c. The XB is an 8 byte instruction cache.

d. Immediate operands go to the data paths via the M
bus.

13-2

Data Routing and Alignment

LAB EXERCISE

load 11/750 microdiagnostics
run microdiagnostics

interpret error print out
isolate malfunction to a module
isolate malfunction to a chip
perform appropriate repairs

Hho QOO
o o o

RESOURCES

Comet Specification
Comet Print Set
Comet Microcode Listing

13-3

Data Routing and Al ignment

OUTLINE
XIII. Data Routing and Alignment
A. General Characteristics
B. Purpose
C. Functions
D. Simplified Block Diagram
E. Memory Cycles
1. Basic
2. With Cache
F. Virtual Memory Addressing
G. Control Block Diagram Signals
H. Data Rotation
I. Chip Descriptions
l. MDR

2. PRK

13-4

G-€1
1-€1 °anb1g

weibe1g 30019 JIW

Aopat 18 Canp (a8 . " et
i e e oy
! - AWAY AROCIATIVE WX
! Ed ! 3, |
va >
. LS
I raul
P
l ADwI M1CN - VA VAL J won |
I L UL LTIV T] | |
'
Ll HA R .
I 1084 1A € 0AGKI | - | l : " I
. #ADe tyash
et] WAT 30,18 0
l ’ " l wap 0> | 8 L l ot WICH ENA CA W
. TR - Faniwiny . . 7% s rhoncy
o . £ . oy » [
—n L |- /s?a0<a1.00 > vam—ol yae |1 <>
. —— e v ~—e] 10ATA
' anrt wass (4 1 W, D €302
l PO e R =" (ke M wai
biadedd oaRiTy Lo . e Ansap
e rARd - - v
wo<ne] 8, l e IR N m B
'* - |~ “PAnTY
. I wAQ 0 w, - MADCIY, 18 o0 l m seanity)
el VICH BIRG1L Bu] . AAnn ua WEo LATCHUA Y wiag v "’""‘ ol BT s
wnxi Ao wh 4 .
X 0 101 MICDE 1O OUVFUY KN an (1%
l I rane et “pxl wie)
) . AAVS 1) 9 H0<H A > 780 <NAT>
l s " - u o> v <>
Lol v |] L oauny Y . o en
| l N rons |
Ur .
gl , -
I v l WAD 131 10D > . 3, I "
wio <)y 4 », ean<nad 2 CACHE €)1 !
. M oan v M — —— — —— —— oy oy
e e oo e et v e o et et e e e bt e e i e e e e e e R e — - — T
A2 18 pouting
AnD ALIGH N " » ‘
WOl ' . . ®» "
: ° °
e : . . IChI BTN ADO RIG INA L
. R o]
o
LY
LN b e
#1008 AMUX ML § 400 N B

r—' -z l 2 : J s wom

L g

|
|
Ft sl ,
|
|

win

[[
. - . L -10 o
" pon [LAUR) MO CLE ML B¢
o | M
Pad

oo K . I
*
U Bt fyheph 1 |
AL H) KAL) MY BIATRIOT CUIL l
) s it ML B I . Jaoxt wos
: L)) MG LR 0L B .
. VL0 WVIAG 20] e Vicw B8 4EL 0 n
4 wksualnte IAGO! R8I AB 1 Raty—plom . g
o Ve A vie
el 'Y N R I
" 1o {rewm 1 e
> . ‘ a “ | Vi Jom vy l
L
L] | !
)
! S
e e - b= o v— T — i o oy T Py $y et (e, Moo Sh, st o e Somnn — . — —— —e e e G e ot ot — o

MO AR AW
il

i

quswubt Ty pue burinoy eleq

€T

9

Z-€1 °anb1g

yoo1g ¥V + ¥a parytiduis

o]

waus ADDRESS T8 CACHE
— -— — — ——
cMi
+] ADDRESS
I—-l REG
AMUX
R c
> BUS
Mux[—*} WDR
l 1o
MBUS-—-—~———4<:::})—‘ MDR |« ROT e paus o ot
Mhlnjx e
XB0 |e
;——@ ROT DATA ROUTING
TO X8 X1 |- AND ALIGNMENT
{MDR)
DECODE 8 X 4 BIT SLICE

—

By

SIMPLIFIED BLOCK DIAG

—— G — —— aa——

)_T0
cMi

—]

TK-3030

Juswubl Ty pue burinoy eied

Data Routing and Alignment

ADD REG ENA
weus FROM TOTB » TO CACHE
ADDRESS
oM
ADD
REG
2
AMUX |e—A=AMUX SEL X
Pt
MUX ‘WDR
D BUS ROT SX)
, caus
] 2 CLK SEL X - T0
DBUS WRITE o
" MDR ROT ADD
— REG
MBUS MUX
t CLK SEL SX ¥
. XBSEL v SNAPSHOT
MMUX XBPXX _1’2 r— 1 cmi
SEL X 27(-j ¥
X80 e {ADK} ADK
< D BUS SEL SK CLK SEL SX
ROT S1| S0 §| DBUS 51 50 || CLOCK
10 > 0| 0 ||CACHE [}
B — " XB1 ol 1 llcm 0
DECODE 1] 0 |lwsus 1
1] 1 losr 1
MDR CONTROL

TK3031

Figure 13-3 DR + A Control Block

13-7

Data Routing and Al ignment

A MUX SEL <S1:S6> H TRUE

Controls MUX Input to A MUX, From ADK Chip, To PA BUS

S1 S@ Input to PA BUS
L L CMI ADD REG

L H CMI DATA

H L MA BUS

H H D BUS

* Note: During VA transfer with MME, A MUX SEL = CMI
address and D BUS SEL = Cache only lower byte of
address allowed to pass through AMUX.

M MUX SEL <S1:S8> H TRUE
M MUX SEL control what inputs are selected to the M
BUS. S1 is actually named M MUX SEL 1 from PRK.
50 is actually latched MSRC 2 from MIC 5.

Sl S@ Data to M BUS
L L MDR

L H XB DATA

H L MA BUS

H H PA BUS

13-8

Data Routing and Alignment

DBUS ROT S<1:8> H

DBUS ROT S<1:9> H cause data from the DBUS to appear on the
inputs to the MDR and WDR byte rotator as shown in the
following chart: ,

DBUS ROT S1 H DBUS ROT S@ H ROT OUT (BYTES)
LOW | LOW 3 2 1 o
LOW HIGH) 3 2 1
HIGH LOW 1) 3 2

HIGH HIGH 2 1 g 3

CLK SEL S<1:9> H

CLK SEL S<1:9> H determine which DBUS destinations will be

clocked on the low to high transition of B CLK L according
to the following chart:

CLK SEL S1 H CLK SEL S@ H ENABLE
LOW LOW NOTHING
LOW HIGH MDR
HIGH LOW XB
HIGH . HIGH WDR

13-9

Data Routing and Alignment

In addition to the conditions listed in the chart, portions
of the MDR must be enabled for data returning from a READ,
SECOND REFERENCE. A READ<K SECOND REFERENCE is decoded in
the MDR chip when:

DBUS ROT S<1:8> H not equal to zero and
CLK SEL S<1:0> H equal zero and
WDR not being sourced onto the MBUS

Then, clocks are enabled for bytes of the MDR as shown in
the following chart: ‘
DBUS ROT S1 H

DBUS ROT SO H BYTES ENABLED

LOW HIGH 3 X X X
HIGH LOW 3 2 X X
HIGH HIGH 3 2 1 X

Any time the MDR or any portion of the MDR is enabled or XB
is enabled, and CMI DATA is selected on the DBUS, the WDR is
also enabled. 1In this case, the WDR MUX is steered to DBUS
data enabled. In this case, the WDR MUX is steered to DBUS
data instead of the DBUS ROTATOR output.

13-19

Data Routing and Al ignment

Execution Buffer
XB DATA SELECTION

PC <01:06> H

PC <81:96> H and XB SELECT H determine which bytes of each
. XB will appear on the XB DECODE BUS, and on the MBUS if the
MBUS MULTIPLEXER is steered to XB DATA, according to the
following chart:

XB DEC XB DEC
BYTE 1 BYTE 0

XB MBUS MBUS MBUS MBUS
SEL H PC 91 H PC 00 H BYTE 3 BYTE 2 BYTE 1 BYTE @
XBl XBl1 XBl1 XBl
LOW Low LOW BYTE 3 BYTE 2 BYTE 1 BYTE @
XBO XB1l XB1 XB1
LOW LOW HIGH BYTE 0 BYTE 3 BYTE 2 BYTE 1
XB@ XBg XBl XB1
LOW HIGH LOW BYTE 1 BYTE @ BYTE 3 BYTE 2
XB@ XB9 XB@ XB1l
LOW HIGH HIGH BYTE 2 BYTE 1 BYTE 0 BYTE 3
XB9 XB@ XB9J XBO
HIGH LOwW LOW BYTE 3 BYTE 2 BYTE 1 BYTE @
XB1l: XB@ XBO XB9
HIGH LOwW HIGH BYTE @ BYTE 3 BYTE 2 BYTE 1
XBl XB1l XB9@ XB@
HIGH HIGH LOw BYTE 1 BYTE ¢ BYTE 3 BYTE 2
XB1l XB1 XB1l XB@
HIGH HIGH HIGH BYTE 2 BYTE 1 BYTE @ BYTE 3

13-11

Data

Routing and Al ignment

. ADD REG. ENA—>
SNAPSHOT CM! ——b>

CLK SEL S1:50 —> CONTROL' i:;’Av
D BUS SEL S1:50 ——>]
B CLK —>]
: > PAOOO
AMUX SEL S1:50——+ A BUS MUX = PAQOS
> PAO16
CHIP ID—b> MISC.
ENABLE CMI e CONTROL:
CACHE 00:
EXECUTION WRITE CACHE 08
BUFFER DATA o CACHE 16
D BUS ROT $1:S0 —&»{ D BUS ROTATOR REGISTER
——— CACHE 24
XB SELECT ——2> ——=- XBUF 00
] XB ROT B3:80
PC 01:00——2> . «BUF 08
cmi
MMUX SEL S1:50 — ~ ADDRESS
REGISTER
MAD 00 =] '— MB 0O
MAD 08— — > MB 08
MAD 16 ——> _
— MB 16
MAD 24 — MBUS
MBUS ENA ——p> MUX > MB 24
WB 00 —2=] ——.- CM 00
WB 08 —b»f CM! - o> CM 08
WB 16 ——2» TRANSCEIVERS - CM 18
WB 24 ——»

E——-:» CM 24

Figure 13-4 MDR Chip Signals Input/Output

MDR CHIP INPUTS/OUTPUTS (10F8)

13-12

TK-3028

€1-¢T1

sdiysuoraetay diyd 9INPOW DJIW G-€I 2anbrg

waeuS

—— e
ADDRESS LOGl.E_'

TRANSLATION BUFFER

I 3

|= ADD |
CHIP

—

ADK

CHIP

JACV UTR
CHIP CHIP

I

-
i

MAD

MBUS ———mee

MDR
CHip

PRK

41 cHip

~ e | 7

CHIp CHIP l

..‘...l.... ———

TO MOR .

r
I cak |, 1 oMK .._.'....Tomommx
L

—————
!

e - -~

MIC MODULE CHIP RELATIONSHIPS

e CMI

DATA AQUTING l
AND ALIGNMENT

TK-2024

juawubr TV pue burianoy eizeq

Data Routing and Alignment

BCLK — ‘:EgP‘éOADED —=> XB SELECT
PHASE1—>] cLOCK: DECODES
MCLK ENABLE —| BUFFER
D CLK ENABLE—
XB USAGE |— XB01:00
IN USE
ADD
, REG MA MU :
XB PC 01:00—> ENABLE Mrron o f—eMASELECT
ISIZE 01:00 —> §1:50
IRD1—2>
PSL CM—2 — __ _
~. LATCH MA |—&LATCH MA
DST RMODE —-
BUS
i STATUS
ADDRESS [ENA PC

UTRAP—®> ENABLES L~ ENA VA SAVE
STATUS VALID ——

BUS 4 —5~
LATCHED BUS 03:00 —> -
INVALIDATE MMUX SELECT t—> MMUX SEL $1
MSEQ INIT— CONTROL
"SNAPSHOT Ch—
LATCHED WCTRL 05:00—
—>>ENA ACV STALL
STALL
—> STALL
MISsC
PREFETCH
PREFETCH j—>> PREFETCH

PRK CHIP INPUTS/OUTPUTS

TK-3023;

Figure 13-6 PRK Chip Signals Input/Output

13-14

VAX 11/756 LEVEL II

Execution Buffer

Student Guide

Course produced by Educational Services Department
of
Digital Equipment Corporation

Execution Buffer

INTRODUCTION

The Execution Buffer is located on the MIC module just as
the DR+A is located in the MDR chips. 1Its purpose is to
effectively eliminate the time spent by the CPU waiting
for the next instruction or waiting for two memory cycles
when bytes that are needed cross longword boundaries.

Its function is to act as a two longword FIFO buffer that
provides two bytes addressed by PC and PC+l to the XB
decode bus.

14-1

Execution Buffer

MODULE 14: EXECUTION BUFFER
SYNOPSIS

The execution buffer module is designed as a block

diagram and schematic level analysis of the
following:

a. instruction register
b. operand specifier register
c. instruction decoder

Execution flows and operand specifier routines will
also be covered in detail. A fault isolation
laboratory exercise will be utilized to check student
comprehension.

OBJECTIVES

Given a 1list of register bits and a 1list of
functions, correctly match the register bits to its
function.

Identify the major execution buffer logic components
by correctly labeling each on a blank block diagram.

With a malfunction inserted on the MIC module of the
Comet CPU, utilize all available documentation,
diagnostics and test equipment, to isolate the
malfunction to the chip level.

Identify as true or false statements regarding the

execution buffer segment of the 11/750 CPU, writing
the correct answer in the space provided.

SAMPLE TEST ITEM

Indicate in the space provided whether the statement
is true or false.

a. the instruction register is 32 bits.
b. the instruction decode is performed by roms.

c. the operand specifier is always byte zero
(9). ,

14-2

Execution Buffer

LAB EXERCISE

a. load 11/750 microdiagnostics

b. run microdiagnostics

C. interpret error printout

d. 1isolate malfunction to a module

e. further isolate malfunction to chip
f. perform appropriate repairs.

RESOURCES
11/750 Specification

11/750 Print Set
11/750 Microcode Listing

14-3

Execution Buffer

OUTLINE

XIv. Execution Buffer

A. Purpose

B. Function

C. General Description

D. Simplified Block Diagram

E. Prefetch Cycle General Description
F. Prefetch Detailed Description

G. XB Selection And Control

14-4

ik A

weiberg o079 OIW T-%1 @anbig

Wwas

v

AVORESE Conp 1ABUY
. el

ADKI T VA VAL

VAANSLATION BUPFEA

ng

MICOS IHA PC BACKI® L

o)

R
wa

i

24
WAV ABDCIATIVE

“
W

HiEas ASHE BEL I.!l—'

TS T TIY Mo

|
|
|
|
|
|
|
I
i
|
|

A TS A WRICE B g e

- W08 LALEHMA L

[0

eaDss VALY
MAD <30 18>
[m

MOS0y 8

NAD 3 a8 0 S

PA0CEIVAL

rAY
N

|
|
I
I
I
I
I
I
I
I
I
I
1

I

AN ALIGHAUNY
won

' PaTA MOUTL
l Yy

e]

»
MAD <30 09 s

v ’,
l | RIS

R R .

eacue

aavns

W ANDEK

De l INECTMATPED
' v,
' ar
|
.
e LR
[LI
x Joemr
HA e | vaun—v] 1 vag
ran s
L™ | 1, oag <nus | VM
R 3
. "X
248r4 I HAVS
Ilr) ran
Mao: 31,08 000 l [
MICOG TR QUTFUN TN oo w0, "
e
PABS 1N 02> PAD <2242 2
MAR <36 48>
— | —
(e
| 27, tau <3207
2E eAn 1100% ~l~ et
— —— — e —— —— — —— — o

MK MICO) ADO ARG ENA L

RTINS S

wxy
nAng

Ry B

oD <4V 027

—

|
|
|
|
|
@
I
|
|
[
|
!

AR MICOR MU B8 641
T MG LATCHED MING T H

ot l

e =

T
o
3, [A
MICOB ARUK BAL § 4 g MU L
1anx}) .
TH
), §
1caxi [won won
o
ony s
bae 2 -
. Mon At VAR W06 CLK B L B pH = —
m
o oeus
?
IADK) MIC0§ CLK L0 Syt ghmr = —
VRN MIEDD B BLLEC) M X xus MES MILOS SNAPAIT CHIL
) oxi a0k
1ADR) MICQD KB PG KXN "o WiCo3 DRUS 814 BxH WICORCUR B4 B0
. , LIN R RN
an 3 lo Buwwny
rco o v frun
1o e
LU L., [xes s by Qv
an [.
i
—— . — — —— —— T i Sy n S ottt S ey Sth tesn e S Saremr o - e o s — o S e S
MG BLOLK DINGIW - -

183Jng uoI3INOaXYF

Execution Buffer

MSRC XB
X8 SELECT ——— INHIBIT CM! (TO CMR)
. UTR CHIP
XB1:0 N USE | UTRAP
X8 PC 1:0
ADD CHIP " MASEL 51150 STALL SAL CLOCKS
PC -~ ' CHiP
WBUS ENA PC PRK CHIP
' IRD1
PREFETCH
MA LD OSR
' CMK CHIP [—® ENA CMI
f—— GRANT STALL
F---—-———‘——__———————1
' MDR
cHIP XB SELECT l
cMi
' ADD
I PC 01:00 REG |
o |
I MBUS MUX A i X80 ‘ WART.
" D BUS 0(ADD {ﬁﬂzm
‘ xB LATCH
MBUS‘T - *1 poT '
I x81
10
OSR X8 '
IRD *— i
né;s IR | DECODE
) BUS '
| i
b—_“_—————————__——J
EXECUTION BUFFER BLOCK DIAGRAM
SIMPLIFIED" TK 3032
Figure 14-2 Execution Buffer Simplified Block

14-6

Execution Buffer

LATCH MA ———pp
COMP MODE = VA MSEQ VA 00
EN PC BACK UP——= CLK >
EN PC =4 CONTROL
EN VA s—emeip
EN VA SAVE e
_ BCLK N,
INC. CARRY IN > —s MAD00
> MAD 01
ASRC SEL 52 ——> > 0
'ASRC SEL S1 —— —] — & MAD 02
ASRC SELSO —8{ PC - A
BSRC SEL S1 e=——ppl MUX BACK UP ‘MA MUX —8 MADO03
BSRC SEL S0 ——a»{ CONTROL [PG BNORY MA -
‘ m— = MAD 04
CHIP ID — | Peinc. _ |
MA SELECT S1 —— _ —— MAD 05
SELECT SO =i s ..
MA SELECT X _1 ¢ 3 MAD 06
8 VA —» MADO7
INPUT
1— MUX- SAVE
: [Y i - 1
WB 00 ———p» — > ’
WB 01 =i PC }—p XBPCO1
WB 02 =8¢ AMUX/ > XB PC 02
WB 03 ——»{ ADDER {
w8 ot ' - ~—— |—& CARRY GEN 1
W8 08 CARRY CARRY GEN 2
WE 06 —— ook [

——8 INC. CARRY OUT

Figure 14-3

"ADD CHIP SIGNALS (1 OF 4)

14-7

TK-3026

Add Chip Signals Input/Output

Execution Buffer

REG LOADED
BCLK — FLOPS > XB SELECT
PHASE 11— CLOCK DECODES
MCLK ENABLE—s{ BUFFER
D CLK ENABLE~—
o XB USAGE |~ XB01:00
IN USE
ADD
REG
XB PC 01:00 =" * ENABLE o NanG [maseLecT
ISIZE 01:00 ~—» - §1:50
IRD1 b
PSL CM=—t
LATCHMA |—8LATCHMA
DST RMODE — o= .
BUS
LATCHED MSRC 04:00 = STATUS
- . RECEIVERS ADDRESS [~® ENAPC
UTRAP=—®, ENABLES |- ENA VA SAVE
STATUS VALID —
BUS 4 —
LATCHED BUS 03:00 —
S INVALIDATE MMUX SELECT = MMUX SEL S1
MSEQ INIT— CONTROL LECT
SNAPSHOT CMI—51
LATCHED WCTRL 05:00—— -
—» ENA ACV STALL
STALL o
" l=eSTALL
MISC
PREFETCH
PREFETCH |—% PREFETCH
PRK CHIP INPUTS/OUTPUTS
_ b oo
Figure 14-4 PRK Chip Signals Inputs/Outputs

14 8

Execution Buffer

. . BCLK——»1 crLOCK ENABLES MICROTRAP
D CLK ENABLE=——8d BUFFER DECODES —— GEN DEST INH
PHASE 1= 1 4 b utrar
MACHINE
RECEIVERS . o 3:0
PTE CHECK OR PROBE =8 1 IXeo 18/17
PREFETCH = STATUS
X8 SELECT —p» REGISTER
,XB 1:0 IN USE ——p») 5
~ STATUS 1:0 ——p XB1 sc _
PROC. INIT. st STATUS -
ADD REG ENA —s REGISTER 4 Rssasrsnsm ——3 INHIBIT CMI
STATUS VALID —p < ‘
0O SRVC — REGISTER
M BIT— ENABLES
MSRC XB =y 8
LATCHED BUS 3 el ERROR _ BUS
WCTRL HHLXXX =t SUMMARY ERRORS WRITE BUS
LATCHED WCTRL 2:0—]. REGISTER " ERROR INT
ENC UTRAP 2:0 g 9 14
RTUT DINH ——pp BUS ERROR
TB PARITY ENA REGISTER
T8 TAG 1:0 PERR 10
TB DATA PERR
TBHIT 1:0 PARITY WBUS |
ACV ERROR XCVRS |— WBUS 27:24
- | |REGISTER.
23 1 7
UTR CHIP INPUTS/QUTPUTS
TK-3027
Figure 14-5 UTR Chip Inputs/Outputs

14--9

Execution Buffer

BCLK— i ock
PHASE 1 g BUFFER ,
D SIZE 1:0] o .
BYTE MASK —» cmi31:28
MA 1:0 =i 10/11
RMODE
DST RMODE —» .
PREFETCH ——#{ CYCLE CcMmi
L DECODE.. BUS > CMI 27:25
MSEQ INIT e 2 FUNCTION o ‘
M CLK ENABLE —{ ADDRESS REGISTER ENABLE 3 | ADD REG ENA
CMiI CPU PRIORITY =84 CMI DRIVER ENABLE 8 |—» ENACMI
D CLK ENABLE = .
CYCLE
HIT —>1 conTROL 0882
INHIBIT CM| e 4 INTLCK .
_ 13 12
voLB INVALIDATE ——& WRITE VECT. OCC
CONTROL
M MUX SEL S1 —— b STATUS 1:0
STATUS & STATUS VALID
CACHE INT =—— 6 }—» CORR. DATA INT.
BUS &~ .
WAIT =——p»
INT GRANT — 5

!

i

i

Figure 14-6

CMK CHIP INPUTS/OUTPUTS

14-19

i TK-3029

CMK Chip Inputs/Outputs

Execution Buffer

_ADD REG. ENA=——
: 1:50——"1 conTROL :‘;;4
D BUS SEL S1:50 > ;
B CLK meeeip
> PAOOO
AMUX SEL S1:S0=—9{ A BUS MUX > PAOOS
CHIP | Dot Mlsc.)) 016
ENABLE CM! aaips CONTROL
i N - , , CACHE 00
EXECUTION WRITE - | CACHE 08
o BUFFER DATA CACHE 18
D BUS ROT S1:50 =4 D BUS ROTATOR REGISTER .
- - Jmme: CACHE 24
XB SELECT ==t - }—> x8ur 00
X8 ROT B3:80
cMi
MMUX SEL S1:50 = , ADDRESS
REGISTER.
MAD 00 = b— MB 00
MAD 08 s] ™8 08
MAD 16 =
T e MB 16
MAD 24 == MBUS : e
MBUS ENA el MUX | MB 24
WB 16 =] TRANSCEIVERS > CM 16
WB 24 == o cm2s
MDR CHIP INPUTS/OUTPUTS (10F8)
TK-3028

Figure 14-7 MDR Chip Signals Input/Output

14-11

Execution Buffer

716 |5(a{3|2]|1]|0]8BYTED
MBUS| mBUS 15|14 |13[12|11{10{ 9 | 8 | BYTE1
D 23|22 }21|20{19|18 |17 |16 | BYTE 2
31|30 (2928|2726 25|24 | BYTE3

XBUF BITS X8 B SELECT
X8 DECODE ROT XB1 D BUS
BUS <

716 {6|4(3}|2(1]0]8YTEO
15114 113 {12|11{10| 9 | 8 } BYTE 1

' } \ 23|22 |21{10|19 |18 |17 |16 | BYTE 2
XB SELECT ., l 31|30 | 2028 27| 26|25 |24 | BYTE 3

PCOt!00

XB SELECTION
. , TK-3034

Figure 14-8 XB Selection

14-12

Execution Buffer

XB DATA SELECTION

PC <@1:00> H

PC <@l:06> H and XB SELECT H determine which bytes of each
XB will appear on the XB DECODE BUS, and on the MBUS if the
MBUS multiplexer is steered to XB DATA, according to the
following chart: :

XB DEC XB DEC
BYTE 1 BYTE 0

XB MBUS MBUS MBUS MBUS
SELH PC AL H PCOFH BYTE3 BYTE 2 BYTE 1l BYTE @
XB1 XB1 XB1 XB1
LOW LOW LOW BYTE 3 BYTE 2 BYTE 1 BYTE 0
XB@ XB1 XB1 XB1
LOW LOW HIGH BYTE § BYTE 3 BYTE 2 BYTE 1
XBO XB@ XB1 XB1
LOW HIGH LOW BYTE 1 BYTE § BYTE 3 BYTE 2
XB@ XB@ XBO XB1
LOW HIGH HIGH BYTE 2 BYTE 1 BYTE @ BYTE 3
XBO XB@ XBO XBO
HIGH LOW LOW BYTE 3 BYTE 2 BYTE 1 BYTE 0
XB1 XBO XBO XBg
HIGH LOW HIGH BYTE §¢ BYTE 3 BYTE 2 BYTE 1
XB1 XB1 XBO XBg
HIGH HIGH LOW BYTE 1 BYTE § BYTE 3 BYTE 2
XB1 XB1 XB1 XB@
HIGH HIGH HIGH BYTE 2 BYTE 1 BYTE ¢ BYTE 3

14-13

Execution Buffer

IRD1 LDOSR #B YTES

FALSE FALSE 0
FALSE TRUE 1
TRUE FLASE 1
TRUE TRUE 2

NUMBER OF BYTES OF | STREAM

MSRC# XB
TK-3033

Figure 14-9 Number of Bytes of I-Stream MSRC # XB

14-14

TWO LONGWORD BUFFERS IN MDR CHIPS

X

PC

PC

X

LONGWORD ADD=4

6

LONGWORD ADD=8

A

X

5

9

X

4

8

X

PC

X X X

LONGWORD ADD=0

2 1]

LONGWORD ADD=0

2 1 /]

LONGWORD ADD=4

6 5 4

LONGWORD ADD=4

6 5 4

LONGWORD ADD=8

A 9 8

14-15

Execution Buffer

PC JUST LOADED WITH 1.
BUFFERS EMPTY.
I-STREAM REQUIRED.

BOTH
TWO BYTES OF

LONGWORD AT ADDRESS @ FETCHED.
TWO BYTES OF I-STREAM USED. PC
INCREMENTS TO 3. TWO BYTES OF
I-STREAM REQUIRED.

LONGWORD AT ADDRESS 4 FETCHED.
TWO BYTES OF I-STREAM USED. PC
INCREMENTS TO 5. FOUR BYTES OF
I-STREAM REQUIRED.

FIRST BUFFER NOW EMPTY.
LONGWORD AT ADDRESS 8 MUST BE
FETCHED TO SATISFY REQUIREMENT.

LONGWORD AT ADDRESS 8 FETCHED.
FOUR BYTES OF I-STREAM USED.
PC INCREMENTS TO 9.

ONE BUFFER BECOMES EMPTY.
THREE BYTES REMAIN IN OTHER
BUFFER. PREFETCHER WILL FILL
EMPTY BUFFER FROM ADDRESS C
(HEX) .

Execution Buffer

NAME PR # MEMSCAR #

3 2 1] BUS ERROR MEMSCAR #
Summary Register 9

| @ = Normal

1l = Corrected Data
|8 = Normal
1l = Lost Error
@ = Normal
1l = Uncorrectable Data Error
= Normal
1l = Non—Existant Memory
NAME PR # MEMSCAR #
[3] 2] 1] 8 | saved Mode Part of 1
Register 17 ADK Chip
MODE @8 = Kernel
@1 = Executive
19 = Supervisor
11 = User '
@ = Virtual
1 = Physical
@ = Read
1 = Modify
NAME PR # MEMSCAR #
13]2] 1 | o] write Vector Part of 2
Occurred Re- 17
gister

1 = Vector in MDR
Bit <@> is READ/WRITE and is initially @. In addition, it

is cleared by an INTERRUPT GRANT bus function and set by a

WRITE VECTOR transaction on the CMI or by a READ LOCK
TIMEOUT.

Miscellaneous Registers

14-16

Execution Buffer

Memory Interface Connect Control Logic General Description

Six 48 pin gate array chips and associated 1logic chips
working in conjunction with each other monitor WCNTRL, bus
function and MSRC fields from the microword to control
address and data gating, aligning and mutliplexing to and
from the data path module and CMI bus. During this gating,
aligning and multiplexing, the chips will also monitor the
condition of the operation being performed during the
execution of this microinstruction that may cause a
microtrap condition to occur. If this happens the control
logic will generate the proper microaddress to respond to
the microtrap condition generated.

The basic functions the control 1logic must perform are
related to the six control chips that are located on this
module. They are:

1. Address control chip (ADK) - Drives multiplexing and
gating of address from ADD chip and helps control
transfer through MDR <chip. Also used for
controlling translation buffer group disables or
group displacement.

2. Prefetch control chip (PRK) - Controls prefetching
of I-Stream data from memory to be brought to
execution buffers XB# or XBl independently of
microcode. PRK also used in conjunction with ADK to
generate or load proper address from/to ADD chips.

3. Cache control chip (CAK) - In conjunction with ADK
chip controls disabling and enabling of cache.
Controls driving and receiving of data to and from
MDR and cache. Monitors CMK chips snapshot CMI
output for invalidation of cache on CMI writes.

4., Access control wviolation (ACV) - Monitors and
generates ACV signal for access violations and
translation not valid during TB usage or PTE checks
and probes on WBUS. Monitors and generates codes to
microtrap chip in privileged sequence for the
following microtrap conditions.

1. Control store parity error

2. FPA received operand

3. Unaligned unibus data

4, Write crossing page boundary

5. Write unlock crossing page boundary
6. Unaligned data, write unlock

7. Unaligned data

14-17

Execution Buffer

5. Microtrap chip (UTR) - Monitors microtrap conditions
during microinstruction and generates encoded
microvector bits <3:0>. These bits are used in

conjunction with bits <5:4> from microsequencer chip
on DPM to generate 6-bit microaddress. This address
points to the proper microroutine to handle the
microtrap condition decoded by microtrap chip. Also
monitors status from CMK chip to generate write bus
error interrupt to interrupt chip on UBJ module.

6. CPU memory 1interconnect control chip (CMK) -
Monitors and transmits control signals to and from
CMI bus. These signals are DBBZ and Hold.
Transmits and monitors byte mask and function bits
<31:25> onto/from CMI bus. Monitors status lines of
CMI. Generates corrected data interrupt to UBI
module. Generates grant stall in response to INT
Grant from UBI module to stall microcode during an
interrupt from UBI module.

As we continue on to the discussion of the MIC you must bear
in mind that it monitors actions being performed by the same
microword. That is, it will be monitoring the same WCNTL
lines, bus function lines and MSRL lines so they may work
together to perform the function specified by the microword.
All WCNTL lines and bus function lines from CSS module are
latched on 1low to high transition of M CLK and feed to
needed locations on MIC module. M CLK Enable H, B CLK L, D
CLK Enable H and Phase 1 H will also be used internal to all
control chips for transmitting and receiving purposes along
with loading or reading internal registers (Ex: MEMSCAR).

Following are the selected bus functions and their
definitions:

BUS FUNCTIONS
A 5-bit microfield 1is required to specify which of the
following bus functions 1is to. be performed during each
microstep: (BUS CONTROL CODES IN PARENTHESES ARE IN HEX)

(67) NO FUNCTION
(19) READ

Replace the contents of the MDR with the contents of the
memory location specified by the virtual address presently
in the VA and DSIZE.

{14) READ WITH MODIFY INTENT

14-18

Execution Buffer

Checked for WRITE access. Otherwise, same as READ unless
the resulting physical address is in UNIBUS space, in which
case the UNIBUS must perform an interlocked operation
(DATIP).

(11) READ LONGWORD

Same as READ, except the two least significant bits of the
address are ignored. (For FIELD instructions.)

(15) READ LONGWORD WITH MODIFY INTENT
See READ LONGWORD and READ WITH MODIFY INTENT.
(62) READ, NO MICROTRAP

Same as READ,; but suppresé ACV and wunaligned data
microtraps. -

(13) READ LOCK

Same as READ; Checked for WRITE access. In addition,
signifies to other masters on the CMI that they must not
perform READ LOCK operations until a WRITE UNLOCK operation
has taken place. If the CPU is unable to perform a READ
LOCK within approximately 64 microseconds of the time it was
initiated, a READ LOCK TIMEOUT will occur. The READ LOCK
operation will be aborted, a NONEXISTENT MEMORY machine
check will occur, and the WRITE VECTOR OCCURRED bit will be
set in the appropriate status/control register.

(00) READ PHYSICAL ADDRESS
Same as READ except that the address in the VA is to be used
as a physical address instead of a virtual address and the
two least significant bits are ignored.

(66) READ, SECOND REFERENCE
Indicates to the memory interface control 1logic that a
previous READ crossed a longword boundary. Therefore, only
the portion of data fetched from memory which was not
previously fetched should be clocked into the MDR.

(8B) WRITE UNLOCK, SECOND REFERENCE

See WRITE UNLOCK and WRITE, SECOND REFERENCE

14-19

Execution Buffer

Note

There exists in the memory interface
control 1logic a "CMI Write Size Latch"
which is used in performing certain write
bus functions.

There are actually three categories of write bus functions:

1. Those which load the "Write Size Latch”

2. Those which use the latched size

3. Those which always write all four bytes regardless
of DSIZE

Category 1 includes:

WRITE

WRITE IF NOT RMODE
WRITE UNLOCK
(WRITE LONGWORD)

Note
WRITE LONGWORD causes the "Write Size
Latch" to be 1loaded with DSIZE, but
always writes all four bytes.
Category 2 includes:
WRITE, SECOND REFERENCE
WRITE UNLOCK, SECOND REFERENCE
WRITE, NO MICROTRAP
Category 3 includes:
WRITE PHYSICAL ADDRESS
WRITE LONGWORD, NO MICROTRAP
WRITE LONGWORD
The "Write Size Latch" 1is loaded with DSIZE during any
microstep which specifies a Category 1 write bus function,
regardless of any destination inhibits or microtraps which
might occur during that microstep.
(904) READ LOCK TIMEOUT TEST
(Special function for testing timeout counter in MDR chips.)

(18) WRITE

14-29

Execution Buffer

-~

Replace the contents of the memory location specified by the
virtual address presently in the VA and DSIZE with the
contents of the WDR.

(1A) WRITE IF NOT REGISTER MODE

Same as WRITE unless RMODE (REGISTER MODE) from the
microsequencer is asserted, in which case do nothing.

(19) WRITE LONGWORD

Same as WRITE, except the two least significant bits of the
address are ignored. (For FIELD instructions.)

(6C) WRITE, NO MICROTRAP

Same as WRITE, but suppress ACV, unaligned data, and page
boundary crossing microtraps.

(JE) WRITE, NO MICROTRAP, LONG

Same as WRITE, NO MICROTRAP, except that a longword 1is
written ignoring the latched write size. Used for writing
the Mbit during mapping subroutines.

(1B) WRITE UNLOCK

Same as WRITE. 1In addition, releases the interlock set by a
READ LOCK operation.

(08) WRITE PHYSICAL ADDRESS

Same as WRITE except that the address in the VA is to be
used as a physical address instead of a virtual address and
the two least significant address bits are ignored.

(0A) WRITE, SECOND REFERENCE

Indicates to the memory interface control 1logic that a
previous WRITE crossed a longword boundary. Therefore only
the portion of the data in the WDR which was not previously
stored should be written into the specified memory location.

(1D) PROBE ACCESS, WRITE
Check the translation buffer entry corresponding to the
address presently in the VA against the current mode for

validity and write access. Indicate the results of the
check on the microvector lines.

14-21

Execution Buffer

(1C) PROBE ACCESS, WRITE, MODE SPECIFIED

Same as PROBE ACCESS, WRITE except that access is checked
against WBUS <25:24> instead of the current mode.

(12) PTE ACCESS CHECK, WRITE

Same as PROBE ACCESS, WRITE except that a PTE image on the
WBUS is checked instead of a translation buffer entry. Note
that the valid bit and the protection code bits must occupy
the same positions on the WBUS as they would if the PTE were
to be loaded into the translation buffer.

(69) REI CHECK
Check for:

Saved PSL <current mode> GEQU ASTLVL and Saved PSL <IS> = 0

and check the saved PSL (on the WBUS) against the PSL for

any of the following conditions. Indicate the results of
the checks on the microvector lines:

1. Saved PSL <current mode> LSSU PSL <current mode>

2. Saved PSL <IS> EQLU 1 and PSL <IS> EQLU @

3. Saved PSL <IS> EQLU 1 and saved PSL <current mode)»
NEQU 0

4, Saved PSL <IS> EQLU 1 and saved PSL <IPL> EQLU 4

5. Saved PSL <IPL> GRTU @ and saved PSL <current mode>
NEQU @ ‘

6. Saved PSL <previous mode> LSSU saved PSL <current
mode> .

7. Saved PSL <IPL> GTRU PSL <IPL>

(#3) I/0 INITIALIZE
Generate UNIBUS INIT.
(01) PROCESSOR INITIALIZE

Generate a reset signal which initializes status/control
registers.

(0F) INTERRUPT GRANT
Causes a BUS GRANT to be issued on the UNIBUS in response to
the highest level BUS REQUEST. After the grant is issued,

memory interface logic will stall the processor clock until
the grantee releases the UNIBUS. During the time the

14-22

Execution Buffer

processor is stalled, a WRITE VECTOR transaction may take
place on the CMI which will cause an interrupt vector to be
written into the MDR. 1If so, a status register bit will be
set.

(1F) PROBE ACCESS, READ

Check the translation buffer entry corresponding to the
address presently in the VA against the current mode for
validity and read access. 1Indicate the results of the check
on the microvector lines as follows: '

Note

The following signal name abbreviations
are used to define the state of the
microvector 1lines during PROBE and
PTE-CHECK microorders:

M = PTE MODIFY BIT

\' = 1 IF VALID PTE

AC = 1 IF ACCESS ALLOWED

PBOK = 1 IF NOT CROSSING A PAGE BOUNDARY

PA = 1 IF MEMORY MAPPING IS NOT ENABLED (PHYS. ADD.)

On PROBE the microvector lines are:

MICROVECTOR <3>
MICROVECTOR <2>
MICROVECTOR <1>
MICROVECTOR <@>

(PBOK .AND. V .AND. AC) .OR. PA
M .AND. ((V .AND. AC) .OR. PA)
Vv .OR. PA

(AC .AND. V) .OR. PA

On PTE CHECK the microvector lines are:

MICROVECTOR <3> = @

MICROVECTOR <2> = M .AND. V .AND. AC
MICROVECTOR <1> = V .AND. AC
MICROVECTOR <g> = AC

(1E) PROBE ACCESS, READ, MODE SPECIFIED

Same as PROBE ACCESS, READ except that access is checked
against WBUS <25:24> instead of the current mode.

(16) PTE ACCESS CHECK, READ

14-23

Execution Buffer

Same as PROBE ACCESS, READ except that a PTE image on the
WBUS is checked instead of a translation buffer entry. Note
that the valid bit and the protection code bits must occupy
the same positions on the WBUS as they would if the PTE were
to be loaded into the translation buffer.

(17) PTE ACCESS CHECK, READ, KERNEL MODE

Same as PTE ACCESS CHECK, READ except that access is checked
against kernel mode instead of current mode.

The last group of microorders from the microcode that the
MIC module needs for performing its functions are the MSRC
group bits <68:64> from the microcode. The following are
the MSRC codes required for the MIC module. The MSRC
assignments in parenthesis are in Hex.

(12) MBUS <- MDR

(13) MBUS <- WDR

(17) MBUS <- XB

(18) MBUS <~ MA

 (19) MBUS <- PC SAVE

(1A) MBUS <- PC

(1B) MBUS <- VA

(1F) MBUS <- TB Data (Address in VA)

Note
Bits <31:24> will always read as ones.

There are 10 registers internal to 3 control chips that are
designated as status and control registers (S/C). The
microcode reads from and write to these registers by loading
a 4-bit S/C register (not included in the 18 S/Cs) called
S/C address register using WCNTL lines and WBUS. These
registers will be referred to in the microcode as MEM S/C
REG numbers, yet may be included in a different numbered
Internal processor register (IPR) discussed previously. The
following registers, location, S/C register numbers and IPR6
numbers were discussed previously.

Another important group of controls to be used by the MIC
module are the WCNTRL 1lines from your microword (bits
<30:25>). these lines control the source and destination of
data and address.

14-24

Execution Buffer

the following wbus control codes are required for the memory
interface: (wctrl assignments in parentheses are hex)

(29)

(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)

(2R)

(2C)
(2D)

(2E)
(2F)
(30)
(31)
(32)
(33)

(34)
(35)

(37)
(39)
(33)
(3B)
(3C)
(3D)
(3E)
(3F)

VA <- PC + ISIZE + (WBUS)

PC <- PC + ISIZE

RESERVED

VA <~ VA + 4

MDR <- (WBUS)

PC <~ (WBUS)

VA <- (WBUS)

MBUS <- WDR

MDR <- @

TB DATA <- (WBUS)

TB VALID BIT <- 0

VA <~ (WBUS)

(Invalidate both groups at the index position
addressed by VA).

WDR <- (WBUS) UNROTATED (2B) MDR <~ OSR, ZERO
EXTENDED

PC <- PC + (WBUS)

CACHE VALID BIT <- @

VA <~ (WBUS)

(Invalidate both groups at the index position
addressed by VA. The address in the VA register
will be interpreted as a physical address.)

WDR <~ (WBUS)

MDR <- IR, ZERO EXTENDED

STATUS/CONTROL REGISTER <- WBUS<27:24>

PREVIOUS MODE REGISTER <- WBUS<23:22>

WBUS<27:24> <~ STATUS/CONTROL REGISTER

BUS GRANT

WBUS<20:16> <- IPL OF CURRENT UNIBUS GRANTEE
STATUS/CONTROL ADDRESS REGISTER <~ WBUS<K27:24>
PREVIOUS MODE REGISTER <~ CURRENT MODE REGISTER,
THEN IS/CURRENT MODE REGISTER <- WBUS<26:24>

REI CHECK (38) ASTLVL REGISTER <- WBUS<26:24>
(RESERVED)

WBUS<26: 24> <- ASTLVL REGISTER

(RESERVED)

HIGHEST SOFTWARE IPR REGISTER <- WBUS<28:16>

IPL REGISTER <- WBUS<2#:16>
RESERVED
WBUS<20:16> <- IPL OF LAST UNIBUS GRANTEE

14-25

Execution Buffer

There are two ways to read from memory

1. Read bus function (microword dependent)
2. Prefetch (microcode independent)

You may write to memory only under a write bus function
(microdependent).

The following functions read, write may create what |is
called a "bus cycle"™ decode from the microword. A
definition for "bus cycle" would be the starting of and
ending of retrieving data from a location or depositing data
to a location. On a read from memory at address 1000 a bus
cycle may include going out on the CMI to memory or
retrieving the data needed from cache which would not need a
CMI function to memory. This fact in itself shows that a
definite period of time cannot be assigned to the term "bus
cycle". You can, by use of signal names, give the term "bus
cycle” a relative time period.

A bus cycle starts at "Address Register Enable"™ and ends
with "Status Valid". This means a bus cycle starts when the
address needed for read or write is enabled into CMI ADDRESS
REG on MDR. It ends upon the CMK chip receiving status from
CMI or data from CA received with no errors.

The term "bus cycle" will be used only when referring to
microdependent bus functions that are decoded to need a
"bus cycle". The same function of reading from memory of
cache may be accomplished by prefetch. That is, Add REG ENA
and status valid signals are used to perform the read start
and end bracketing. Since prefetch is microcode independent
and it uses the same path as a bus function read or write,
they cannot be done at the same time. Therefore, "bus
cycle" and prefetch use the same basic path for address and
data, but at different times.

Using the instruction MOVL (R1) (R2) as an example for
control logic in the MIC module includes a 1lot of
functionality for the module.

l. You must read from memory at address in GPR#1 and
store it.

2. You must take the data you read and write it to
address stored in GPR#2.

Independent of this instruction are the functions of cache
enabled or disabled translation buffer enabled or disabled
and the fact that you might prefetch I-Stream data from
memory to the execution buffer.

14-26

Execution Buffer

Along with these actions, a write to memory may occur on the
CMI causing the MIC module to snapshot the CMI. This being,
taking address that was written on CMI by someone other than
CPU and checking data cache for a hit and invalidating if a
hit.

You may also generate a microtrap condition during the
reading or writing to memory that may cause you to leave the
microsubroutine that handles the MOVL (R1l) (R2) instruction,
to make sure the instruction is completed properly (Ex: TB)
miss may perform address translation and return to finish
instruction. It is also possible the instruction may not be
able to be completed even with microtrap intervention and
you would have to notify the operating program. Ex: Access
control violation needs macrointervention.

These are the functions and different conditions we will
cover here. To perform this we will take the
microinstruction through each microword needed to perform
thg ?acro MOVL (R1l) (R2) using the needed fields in the MIC
module.

Bus function

WCNTL
MSRC

Following the four microwords needed to perform the MOVL
instruction we'll take it through all four and explain what
needs to be done in the MIC module for each one.

MOVL (R1l) (R2) Take data longword from address in R1 and
move it to address in R2.

First Microword

OS.RED 108 address

FPA_Q M[MDR] VA R[GPR.R] (RN) register deferred mode

CLOBBER MTEMP@ REF operand address is GPR

NEXT/0S .READ.EXIT (RNUM) put garbage in
MTEMPO.

What the MIC module must do in the first microinstruction
during the first half or phase 1 H is

1. Source the contents of MDR to the MBUS to be stored
in Q register. The contents of MDR for this
particular instruction are meaningless but the
microinstruction is used by more macroinstructions
than MOVL long and considerations must be taken.

14-27

Execution Buffer

2. During last half or phase 2 it loads the address
from GPR#1 via the WBUS to the VA Register in ADD
chip.

Second Microword

OS.READ.EXIT 1l0E
READ.SIZE [IDEP] Read memory at VA size
IRDx[1]

During this micro the MIC module must

1. Take address from VA register and retrieve the data
from either main memory or cache and store into the
MDR (Reg). (We now have data from address R1l.)

2. Make available next byte from execution buffer being
used to DPM to decode operand specifier (R2) and DPM
generates next microaddress to go to and update PC.

Third Microword

MIC

OS.WRT2 158

Q_M[MDR] VA _R[GPR.R], (RN) Register deferred mode

CLOBBER MTEMP@ DEF. GPR (RNUM) is operand

IRDx[1] address. Put garbage in
MTEMPO.

Function

l. Source MDR to MBUS to be stored in Q by DPM.

2. Load address from GPR#2 via WBUS to VA Reg. in ADD
chip.

Fourth Microword

MIC

IL.MOV.B.W.L.MEM (OR MOVA)
R[DST.R].SIZ - Q 0 - D, WRITE NOT REG
SIZE[IDEP], CCOP2, IRD1

Module
l. Takes address from VA register and data from WBUS
and writes to memory (and cache if a hit) depending

upon instruction size using write not Reg.

2. Make available next two bytes from execution buffer
for decoding of next instruction and update PC.

14-28

Execution Buffer

Now that we have the overall picture of all four microwords
let us take a look at each one and see how the MIC module
performs them. _

First Microword - 0OS.RED

FPA_Q M[MDR] VA R[GPR.R]
CLOBBER M TEMP § DEF.
NEXT/0S.READ.EXIT

Decoded MSRC Field = 12 or MBUS <- MDR
Decoded WCNTL = 25 or VA <- WBUS
Decoded Bus Function = 7 or No Op.

As we said previously, the two functions performed by the
MIC module for this microword are:

l. Source contents of MDR to QMBUS
2. Load address from GPR#1l to VA Register in ADD chip

These are done at different halves of the microword, since
it is possible to take data fromMDR and have DPM work on it
and send it back to MIC. This does not happen in this
instance but it is possible.

Phase 1

1. MDR (Reg) sourced to MBUS on Phase 1 H due to MUX
Sel 1 H being L (L=g) and MSRC 2 from CSS being L
(L=@8). "MUX Sel 1 H" = 1 comes from PRK chip due to
the fact that no other function needing the MBUS MUX
was decoded and MSRC 1line 2 was latch as Low
(false).

2. VA Reg is loaded on Phase 1 L from WBUS in ADD chip
due to:

A. ASRC Sel line 2 is H coming from miscellaneous
control saying WCNTL line 1 latched to @ (Low)
and Phase 1 L causing WBUS through AMUX input to
adder (ASRC lines 0,1 can be anything).

14-29

Execution Buffer

B. ADK chip decoded WCNTL as WBUS -> VA and
selecting B SRC Sel lines S0, S1 to Sl1/0 S@/0 (@
= Low) selecting @ input to BMUX of adder. WBUS
+ @ = WBUS.

C. ADK also sending "ENA VA L" to latch output of
adder to VA because of decoded WCNTL.

Second Microword

As we see, the second microword must read from the address
specified in VA. The read may be performed from cache (if
enabled and data is available) or from main memory. To show
this we have what happens during a cache hit and a- cache
miss (both with TB off).

The second function of updating the PC due to DPM taking
next operand specifier will be covered under the prefetch
area.

Basic Read Cache Hit, TB Off

Microword at address 10E:

OS.RED - READ EXIT: Read memory from address
READ SIZE [IDEP] in VA. SIZE = DSIZE
IRDx[1] Ex:vA = 1009 Size =
Longword
Bus Func = Read, Meaning - Memory read from VA and DSIZE

from define file and placed into MDR

WCNTL From Define File - No Op

MSRC = From Define File - Default M Temp

As you can see there is no mention of cache or translation
buffer within the microword. You will not see any with the
exceptions of invalidating TB or cache, making checks of TB
for access or validity but never in conjunction with normal
operations on a read or write.

Following this microword through the MIC block diagram we
will find how the address is sent and data is received.

Five of the six control chips (not microtrap chips) monitor
the bus function and checked to see if any other functions
that may be using the needed paths are being done i.e.,
prefetch, snapshot CMI for invalidating cache, for example.
If the paths that are needed are free a Bus Cycle is started
within the MIC module.

14-30

Execution Buffer

We must take the address from the VA register (100@) through
the memory address latch on the ADD chip to the memory
address lines. (PRK chip decodes read using address in VA)
PRK sets MA Sel lines to S1/1 S0/1 with a 1 = a high true
allowing VA through MA latch.

The address is now on the memory address lines and must get
onto the physical address bus to be sent to cache. The ADK
chip also decoded read and ORed the fact that memory
management had been disabled to get the AMUX Sel line S@, Sl
to S1/1 S6/89 (1 H line). This allowed bits <02:23> of the
VA to be fed onto the physical address lines (PADs).

Note

Bits <91:08> not used as we read only
longwords.

The address (bits <@2:23>) are now sent to cache and are
checked for a hit, validity and errors. At the same time .
this is being done the same address from PAD 1is being
latched into the CMI address register when "ADD REG ENA L"
comes from CMK chip. (This says start bus cycle.) The
latching into the CMI address register is done in case of a
cache miss and we need to go to main memory. 1In this case
it will not be used.

If the cache has a hit the signal cache hit is sent to the
CAK chip and the CMK chip.

When sent to CAK it is ORed with the fact there are no
errors (the signals Tag or Data Parity errors are false) and
the fact that cache is enabled (from S/@ Reg #6). This will

Hit
No Errors Enable needed byte outputs
Cache Enable

allow the CAK chip to use the monitored DSIZE and VA lines
to generate the proper byte enables. These byte enables go
to the cache data store and allow the data selected by PAD
to be outputted from the RAMs. 1In case of longword at 1000
Enable byte # and 1, 2, and 3 would be used.

The cache hit signal also goes to CMK chip along with cache
INT from CAK. (Cache INT meaning Tag or Data Parity errors
are not valid if not a hit). These signals will be used to
stop a CMI cycle to memory by the CMK chip not sending ENA
CMI to MDR chip and generate status valid for stopping bus
cycle in MIC.

14-31

Execution Buffer

The data outputted from the cache must be sourced onto the D
Bus in the MDR chip and stored into the Memory Data Register
{MDR Req) . To do this the ADK chip, when it decodes read
function and no forced CMI, will steer the cache data to the
DBUS by using DBUS S0, S1 (S1 ANDed with fact no write
vector occurred) to give us S1/8 S@/1 (1 = High) selecting
the MDR (Reg) to CLK in data from DBUS output of rotator.
The D Bus rotator used inputs from CAK chip which said no
rotation or DBUS Sel S@, S1 = S1/0 S0/0 (1 = High).

The microword has now performed the function of read memory
at address 1000 and stores data in MDR. What you just read
was the functionality and signals needed to accomplish this
bus cycle. The timing is shown on attached sheet.

Basic Read Cache Miss, TB Off

Microword at Address 10E:

OS.READ - READ EXIT: Read Memory from Address
READ SIZE [IDEP] In VA. SIZE = DSIZE
IRDx[1] EX:VA = 1000 Size=Longword
Bus Func = Read, Meaning - Memory read from VA and

DSIZE from define file and placed into MDR.

WCNTL From define file - No Op

MSRC

From define file - Default microtrap

What must be done in this example is to read data from
address in VA and store it in MDR. This is the same as a
cache hit in overall functionality but the data comes from
main memory and not cache. Also, we must write data from
1800 back to cache when received from memory.

Following the microword through the MIC block diagram, we
will find how the address is sent to main memory and data
received and stored into MDR and cache.

Five of the control chips (not microtrap) monitored the bus
function and checked to see if any other functions, that may
be using the needed paths are being performed, that is,
prefetch, cache invalidate due to snapshot. If all paths
that are needed are available we will continue and start a
bus cycle within the MIC module.

14-32

Execution Buffer

We must take the address from the VA Register (1060¢) through
the memory address latch on the ADD chip to the memory
address lines (MAD). To do this the PRK chip has decoded
the read function using VA and sets MA SEL S@, S1 to S1l/1
S8/1 (1 = High) allowing VA through MA Latch to MAD.

With the address now on MAD we must get the address to the
PAD via the PA MUX. The ADK chip also decoded the read
function and memory management disabled to set the AMUX SEL
lines S0, S1 to S1/1 S8/96 (1 = High). This allows bits
<23:92> to pass to the PRD lines.

Note

Bits <@1:80> not used as we used only
longwords.

Address bits <23:02> are being fed to cache and written to
the CMI address register. The cache is checked and no hit
is recorded. The address is also being latched into CMI
address register when "Add Reg Ena.L" comes from CMK chip.
This says start MIC module bus cycle.

THe fact that no hit signal was received from cache causes
the CAK chip to not send ENA bytes to cache which would
enable cache to output data.

The fact that no hit signal goes to the CMK chip allows the
CMK to arbitrate for CMI bus and send "ENA CMI L" to the MDR
chip when bus won. This signal will be used to pass the
address in CMI Address Reg (1600) to be sent onto the CMI
bus <23:02>. At the same time the CMK chip is going to send
out the remaining functions needed to read from the address
(1969) in main memory, i.e., function of read on 1lines
<27:25> @09 and byte mask on lines <31:28> 1111. Also sets
DBBZ on CMI. The CMK diagnostic DBBZ and memory asserts
DBBZ and sends needed data from 106¢. When memory has data
and status on lines (CMI lines) the memory diagnostics DBBZ.
This tells CMK chip to monitor "status line <@l:0¢>" for
possible error. Assume no error. The data on the CMI lines
are received by MDR chip.

At this point the ADK chip has passed the time to where
cache -> DBUS was needed and asserts the DBUS Sel lines S4g,
S1 to S1/0 S8/1 (1 = High) which selects data from CMI onto
the DBUS. The ADK also knows that the data that is on the
DBUS must be latched into MDR (Reg). So it

14-33

Execution Buffer

generates CLK Sel S@, S1 to S1/1 S@/1 (1 = High) to perform
this. Also -because the MDR was selected and CMI data was
selected to the DBUS the WMUX steers the data from the DBUS
into the WDR (used to store data to be written to cache).

The basic function of retrieving data from 1000 is complete,
but we must store that data into cache. We still have the
address in the CMI register and the data is in the WDR.
Let's do it}

The CMK chip monitored the status 1lines <1:8> and found
status valid and outputs that signal to the control chips.
When the CAK chip sees the data is correct by receiving
status valid, it says cache GR @ WR EN to allow cache to be
written. To have the cache written to we need to get the
address through the PA MUX and data from WNR. Data is easy
because as long as D Bus Sel does not have cache selected to
D Bus the drivers are driving the data from WDR to cache.
Because "Add Reg L" is now High from CMK and no other
function is needed in the ADK chip, the ADK outputs AMUX Sel
to select CMI address register and the drivers pass the CMI
address (1008) to cache to be used with cache GRg and data
to write into cache the data retrieved from memory. Now all
the functions of a read with cache miss are complete and
another microword may be worked on. The basic timing is on
attached sheet.

Third Microword
One way or the other we now have the data, from the address
that was stored in R1l, latched into the MDR (Reg). The
third microword now must do two things:

1. Store data that is to be written into a Q Reg.

2. Load address from GPR#2 to VA Reg. in ADD chip.

OS.WRT2 158

Q_M[MDR] VA R[CDR.R] (RN) Register mode
CLOBBER MTEMP@ DEF differed. GPR (RNUM) is
IRDX [1] operand address. Put

garbage in M Temp #@.
Decoded MSRC Field = 12 or MBUS <~ MDR
Decoded WCNTL = 25 or VA <- WBUS

Decoded Bus Function = 7 or No 0Op

14-34

Execution Buffer

As you can see, this function is very similar to the first
microword. It uses the same signals and paths to perform
the function. All we are doing is setting up to perform a
write from address in VA instead of a read.

With Microword OEE

IL.MOV.B.W.L.MEM (also used Write data stored in
for MOVA) Q to address in VA.
R[DST.R].Size Q Q D, Write not (Ex: VA = 2000)

Reg, Size [IDep], COOP2, IRD1

Bus function decode = 1A or . Write to memory {and
cache) if register mode
not decoded. If register
mode is decoded MIC will
not do anything, the DPM
mode takes data from Q
register to R2. In case
Reg mode not decoded start
"bus cycle™ for write
using address in VA

register.
WCNTL = 2E or Data from WBUS -> WDR
rotated for longword

alignment.

MSRC = § or M Temp @ -> MBUS (no
function for this macro).

We will say code is enabled and a hit is recorded. That
means the data to be written will be written to cache and
main memory.

Following the microword through the MIC block diagram we
find we have to worry about transferring data and an address
at the same time.

Five of the six control chips (not microtrap) monitor the
bus function which will be used to open paths for the
address and help start the CMI write function. All chips
monitor the WCNTL lines and then in effect will open paths
for the data to be transferred.

For ease of understanding we will take the address from VA

to CMI address latch and then bring the data from WBUS to
WDR even though it is happening at the same time.

14-35

Execution Buffer

We take the address from VA (address originally in R2)
through MA MUX of ADD chip by PRK chip decoding a write and
setting the MA Sel lines S1, SO0 to S1/1 s@/1 (1 = High)
allowing the contents of VA to pass through to MAD bits.

We must now get address from MAD to the physical address
(PAD) lines to be sent to cache and CMI address register.
Only bits <23:02> go to the PAD. To do this the ADK chip
also decoded the write and ORed the fact memory management
was disabled to set the AMUX Sel lines S1, S@ to S1/1 S@/0
(1 = High). This allows bits <23:82> to be passed to the
PAD to be sent to cache and check for hit and be received at
the CMI address register. When the CMK chip decoded bus
function and determined that no other function was needed,
the same path bit (CMK) asserted "ADD REG ENA L" to start
"bus cycle" and latch address into the CMI address register.

To get the data to the WDR register we must take it from
WBUS through the DBUS rotator through WDR MUX.

The ADK chip which selected MAD -> PAD also selected the
WBUS to DBUS by outputting DBUS Sel S1, S@ to S1/1 S@/8 (1 =
High). While this is being performed the CAK chip selected
the DBUS rotator to pass the bytes through as they were 3,
2, 1, 0 by writing DBUS ROT S1, SO to S1/0 S@/0 (1 = High).

Internally to the MDR chip because CMI data to DBUS was not
selected, DBUS ROT was steered through the WDR MUX. When
the ADK selected MAD -> PAD and WBUS -> DBUS it also was
setting CLK Sel Line S1, S@ to S1/1 S@/1 (1 = High) to latch
data from WDR MUX into WDR on first L -> H transition of B
CLK. '

The point at which we are now, data in WDR and address in
CMI takes one microcycle (two B CLKs). We must now write to
memory and to cache. What would happen when the next
microword wanted to use some portion of the MIC that we
still must use? Well, since we set "Add Reg Ena L" and have
not received "status valid" we are still in a MIC module
"bus cycle"™ and if the control chips noted the next
microword wanted the paths needed it would stall the
processor. Stalling the microcode will be covered later.
We will assume the MIC is not needed so a stall will not
occur.

With data and address where we want it we will send the

address and function/byte mask onto the CMI at the same time
we write data to cache because of the bit we received.

14-36

Execution Buffer

We will discuss the CMI function first. When the CMK chip
first decoded a write to memory it knew it would have to
generate a "CMI Bus Cycle" (the CMI bus cycle may be a part
of MIC module bus cycle) so it would monitor the signal
input "CMI CPU PRI L". When this occurs and data address is
set the CMI would assert DBBZ to the CMI along with write
function bits <27:25> and byte mask bits <31:28> to the
proper values at the L -> H transition of B CLK. At the
same L -> H transition of B CLK and ENI CMI from CMK the MDR
drives the output of CMI address register to CMI. All those
signals stay asserted until the next L -> H transition of B
CLK. At this time CMK deasserts DBBZ and the WDR (data to
be written) is asserted on CMI. The memory controller will
assert DBBZ if not able to write at this time and deassert
DBBZ and send status when it is able. It is also possible
that the controller was able to write the data immediately
upon receiving it and not assert DBBZ but assert status.
Whichever happens the chopping of DBBZ causes the CMK chip
to stop sending "ENA CMI L" to MDR chips and monitor the
status line on CMI. With status valid received we end the
MIC module "bus cycle" and allow the microcode to continue
if it was stalled.

While the above was happening we were also writing the data
to cache at the address specified from CMI address register.
We did this by using the same signals that we need on a
cache read miss, but they were generated by the decode of a
write bus function and a cache bit.

We have read about reads and writes with cache off and on,
yet we have not mentioned the translation buffer (TB). What
is it and what does it do? It is used to store translated
addresses for the use of the system. Page frame numbers of
virtual addresses are used to search for page table entries
stored in TB tag on 1. These PTEs if found may use the
virtual address to source a physical address onto the
physical address (PAD) lines to be used in the same way a
physical address was used to reads or writes previously
mentioned.

The main difference between virtual address and the use of
microcoded read physical, write physical or using VA and PC
with memory management off is where the address goes when
leaving the MA Latch.

The major difference comes from the ADK chip and MDR chip.
Normally with memory management off the address flows (bits
<31:00>) through the MA Latch and all bits except <@l:806>
are passed through the AMUX on MDR to physical address MUX.

14-37

Execution Buffer

READ or WRITE with Memory Management Enabled

Translation buffer (TB) is enabled when memory management
bit set in physical/virtual address register = S/C Reg 0 in
ADK chip. Microcode sets bit in S/C Reg @ due to VAX
instruction MTPR #38 the #1.

With this bit set and bus function not read or write
physical the TB is enabled to output:

1. Address onto PAD bits <23:989>

2. Data and tag points errors and access control
violations

3. Hit or miss

If mm was not enabled or read or write physical was decoded
and mm was enabled you would still address the TB and check
for hit or miss but:

1. Address would not be allowed to be outputted to PAD

2. Tag Parity errors and access violations would be
sent to ACV or microtrap chip but not used. Data
parity not sent

3. Hit or miss would still be sent to microtrap chip
but not used because TB parity error not available.
(TB Parity ENA generated by mm enabled and no read
or write physical from ADK)

By looking at Figure ? let us take an example of one of the
microwords we have used previously. Read with cache hit,
this time TB enabled

OS.RED.EXIT 10E Read memory at VA size IDep
Read.Size [IDEP]

IRDx[1]

Bus Function = Read Memory read from VA and DSIZE

and placed into MDR
WCNTL = No Op
MSRC = Default M Temp @

What must be done is to take address from VA register. Use
this address to retrieve data and place data in MDR.

14-38

Execution Buffer

Five of the six control chips (not microtrap) monitor the
bus function and check to see if any other functions that
may be using the needed paths are being performed, i.e.,
prefetch, snapshot CMI. If no other functions are being
performed the control chips are free to start a MIC "bus
cycle™.

We must first take the address from VA register in ADD chip
through MA MUX to MAD. This is done by PRK having decoded
read bus function and setting MA Sel lines S1, S0 Sl1/1 S@/1
(1 = High) allowing VA through MA Latch to MAD lines.

Now we have to go into parallel actions.
1. Pass only bits <g8:02> through AMux to PAD and

2. Check for TB to perform its function and put bits
<23:09> to PAD.

We will take the AMUX function first. With ADK chip
decoding a Read function MM enabled the selection of AMUX
Sel S1 and SO0 = S1/0 S8/9 (§ = Low). This would normally be
seen as selecting the CMII address register to PAD bus.

But when used in conjunction with DBUS Sel lines only the MA
lines <8:08> are enabled and driven to PAD.

To do this the ADK chip has also selected DBUS Sel S# S1 to
S1/80 S@/6 say cache to DBUS. When this happens along with
AMUX Sel S1, S0 being S1/8 S@/8, the AMUX passes whatever is
on MAD lines <@8:82> to PAD.

14-39

Execution Buffer

This is a special function used in MDR for this case. At this
time of the microword DBUS Sel would be selecting cache to
DBUS normally. CMI ADD Reg would only be used through the AMUX
on a cache replacement if a miss or write to TB, which would
both involve no cache -> DBUS selection.

Now for the TB function that was happening at the same time.
As stated previously the address lines <31 and 15:89> always
feed the TB and generate a hit or no hit signal. When MM is
enabled (S/C Reg #0 in ADK) and a hit is recorded in the TB
tag store the signals TB "OUTPUT ENA L" and "TB PARITY ENA H"
are generated.

l. "TB OUTPUT ENA L" is used to send to TB data store to
output the physical PFN onto the PAD lines. Also used
in TB on (MIC 16) to enable TB parity out.

2. TB parity enable is sent to microtrap chip to be ANDed
with hit (or lack of) so the microtrap chip will at
this time monitor to TB miss, data and tag, M bit,
parity errors and ACV from ACV chip.

If any of these conditions exist we leave the microinstruction
via a microtrap and proceed to the proper routine specified by
microvector 1lines <5:8>. Lines <3:0> coming from microtrap
from microtrap chip and lines <5:4> from microsequencer chip.

If none of these conditions exist you continue the instruction

the exact same way as the read, cache hit TB off was
discussed.

1l4-49

VAX-11/756 LEVEL II

Unibus/Unibus Interface

Student Guide

Course produced by Educational Services Department
of
Digital Equipment Corporation

Unibus/Unibus Interface

Unibus/Unibus Interface

INTRODUCTION

The COMET Unibus Interface (CUI) serves three purposes.
It allows the processor to access registers on the Unibus,
it allows devices on the Unibus to perform DMA transfers
to COMET memory, and it allows Unibus devices to interrupt
the processor.

There are several characteristics of the VAX architecture
and the COMET memory system that require more than a
"straight-through™ connection from the Unibus to the CMI.
Addresses that are contiguous in the virtual address space
may be discontiguous in the physical address space on 512
byte boundaries. Since all Unibus NPR devices broadcast
sequential addresses, a means must be provided to break
these up into disjoint 512 byte blocks.

The VAX architecture imposes no restrictions on the
alignment of data in memory. Unibus word transfer NPR
devices, however, only transfer word date on even
addresses. The CUI provides a mechanism that allows the
tranfser to be effectively shifted by one byte to
accommodate requests for I/0 buffers on odd byte
addresses. '

The CMI has 24 address bits, the Unibus has 18. A method
is provided that allows a Unibus device access to all of
the CMI address space.

Finally, the CMI is four bytes wide, the Unibus is two
bytes wide. Utilization of both CMI and Unibus can be
improved if each two sequential Unibus transfers are
compressed into a single CMI transfer.

15-1

Unibus/Unibus Interface

SYNOPSIS

This module contains technical information
concerning the characteristics and functions of the
Unbius and the Unibus interface.

OBJECTIVES

Given a True/False test, correctly determine if the
Unibus/UBI characteristics listed are true or false.

Given statements concerning the Unbius and Unibus
interface functions, and several possible
definitions for each, select the one correct
definition.

SAMPLE TEST ITEM
Identify the following statements as true or false.

a) The Unibus contains 56 lines.

b) The Unibus interfaces to the W Bus.

c) The Unibus buffered data paths hold 8 bytes.

d) The Unibus interface performs Unibus to CMI
address mapping.

RESQIURCES

St AN S i

Comet Specification
Peripherals Handbook

15-2

xv.

Unibus/Unibus Interface

MODULE OUTLINE

Unibus/Unibus Interface

A.

Unibus structure

1. 41 data transfer lines
2. 12 priority arbitration lines
3. 1Initialization lines

Unibus interface characteristics
Unibus memory & I/O space allocation

1. CMI address space assigned to the UBI
2. Control and status registers
3. Diagnostic status registers

Unibus to CMI address registers

1. Minimum & Maximum addresses
2. Mapping example, unibus to CMI conversion
3. CMI address transfer

Unibus interface data paths

1. CPU write

2. CPU read

3. NPR DATI, DDP

4. NPR DATO, BDP to buffer

5. NPR DATO, DDP

6. NPR DATO, BDP write from buffer
7. Purge

8. Read the map

9. Write the map

Data positioning
1. Reads from memory, data buffering

2. Writes to memory, data buffering
3. Write to memory, byte offset

15-3

Unibus/Unibus Interface

Unibus microcode

1.
2.
3.
4.
5.
6.

28 bit word format

Field definitions

Micro code breakdown
Read code at address OFF
Read code at address OOF
Read code at address 000

Micro code flow charts

l.
2.
3.

First fork
DDP DATI
BDP DATO

Print familiarization

1. Increment logic

2. Unibus address mux

3. Unibus data path chips
4. CUI map

5. UCN Chip

6. CUI control ROMS

7. CUI map decode

Summary

Unibus/Unibus Interface

UNIBUS SUMMARY

In the Comet system, the Unibus connects PDP-11 devices to
the Comet Unibus Interface (CUI) of the CP Cluster. The 56
lines of the asynchronous Unibus can be divided into three
functional groups: priority arbitration, data transfer, and
initialization signals. The 12 1lines of the priority
arbitration group comprise those signals required for
selection of the next bus master while the current bus
master is still in control of the bus.

The 41 bidirectional lines of the data transfer group are
used during data transfers to or from a slave device. The
initialization group consists of the 1initialization and
power fail signals. table 18-1 describes the bus signals
within each group.

15-5

Unibus/Unibus Interface

e

fosf] mtce

INTERFACE

UNIsUs

INTERFACE
buned

FLOATING

POINT

ACCEL

Atoz
CONTROLLER

ZANES IR ANEA:

ifijiid

vT 100 OAIVED DRIVE | Lros

COMET SIMPLIFIED SYSTEM BLOCK DIAGRAM

o e

Figﬁre 15-1.
15-6

L-ST

z-ST 21nb1g

UNIBUS
INTERFACE

*PA IS NOT USED

(1) INTR

(1) MSYN

(1) SSYN

(2) PARITY *PA,PB
'(2) CONTROL CO,C1
(16) DATA

(18) ADDRESS

AN

41 DATA TRANSFER

e

(1) BBSY
(1) SACK

(4) BUS-REQ.(BR7-BR4)

(2) NON PROCESSOR (NPR-G)

N

12 PRIORITY ARBITRATION

(4) BUS GRANT (BG7-BG4) /

NI COoOTOLHWLWS oLmZ=r OO

(1) INITIALIZE
(1) ACLO
(1) DCLO

\

"3 INITIALIZATION

__—

UNIBUS STRUCTUI"!E

TK-2066

@o®BJI93UI sSngrun/snqrun

8-ST

DATA FLOW CONTROL SIGNALS Cl&cCO

*€-6T @2anb1g

Cil} co TRANSFER OPERATION
0 0 DATA IN (DATI}: A DATA WORD OR BYTE TRANSFER INTO THE MASTER FROM THE SLAVE.
0 1 DATA IN PAUSE (DATIP): SIMILAR TO DATI EXCEPT IT IS ALWAYS FOLLOWED BY A DATOB.
1 0 DATA OUT (DATO): A DATA WORD IS TRANFERRED FROM MASTER TO SLAVE.

DATA OUT BYTE (DATOB): SAME AS DATO EXCEPT A BYTE IS TRANFERRED.

TK-2047

®oBI183UI snqrupn/snqrun

Unibus/Unibus Interface

TRANSFER REQUESTS

There are two types of requests for control of the Unibus:
Non-Processor Request (NPR) and Bus Requests (BR). The NPR
is used when a device requests a direct memory or device
access transfer (i.e., a transfer not requiring processor
intervention). Normally, NPR transfers are used between a
mass storage device (e.g., disk) and memory. A device
issues an NPR by asserting the NPR line; the processor (CUI
in the comet system) honors the request by asserting the
Non-Processor Grant (NPG) line.

The BR is used when a device interrupts the processor to
request service. This type of request is used to notify the
processor of an error condition or required transfer. A
device 1issues a BR by asserting its assigned Br 1line
(BR7-BR4); the processor (CUI in Comet) honors the request
be asserting the corresponding Bus Grant (BG) 1line
(BG7-BG4) .

Request Priority

The device structure priority structure is organized as
follows: ‘

TYPE REQUEST PRIORITY
NPR HIGHEST
i
BR7
BR6
BRS
A 4
BR4 LOWEST

* |F TWO DEVICES ISSUE SIMULTANENDUS
REQUESTS, BUS GRANT WILL GO TO THE
HIGHEST PRIORITY REQUEST.

BUS REQUEST PRIORITY

TK-2058
Figure 15-4

15-9

Unibus/Unibus Interface

The priority arbitration logic is structured such that if
two devices on different BR levels issue simultaneous
requests, the bus is granted to the device with the highest
priority. The lowest priority device must keep its
requested asserted in order to gain control of the bus when
the highest priority device is finished (providing no other
higher priority device issues a BR).

Since there are only five priority levels, more than one
device may be assigned to a specific request level. 1If more
than one device makes a request at the same level, the
device closest (electrically) to the processor has the
highest priority.

Priority Arbitration Sequence

Priority arbitration 1involves the signal sequence which
selects the next bus master. The operation does not
actually transfer bus control but only selects the next bus
master.

The device requiring service asserts its BR (or NPR) line.
In practice, the Comet Unibus Interface May be receiving
several simultaneous BR signals. These signals enter the
Unibus arbitration logic of the CUI. If enabled by
software, the CUI then conducts a dialogue with the CPU and
asserts the corresponding BG (or NPR) line. The grant is
propagated through each device on the asserted BG line. The
first device on the line having BR asserted acknowledges the
grant by asserting SACK, blocks the grant from following
devices, and clears its BR. The Unibus Adaptor responds to
SACK by clearing BG. If SACK is not asserted by the
requesting device, BG is Ored with the other grant lines and
returned as a SACK signal to clear BG.

The device will keep SACK asserted until the current bus
master relinquishes the bus control by clearing its BBSY.
SACK asserted prevents other devices from gaining bus
control. Once the current bus master has relinquished the
bus and negated BBSY, the requesting device asserts BBSY and
negates SACK, becoming the new bus master. Priority
arbitration can be performed at the same time as the data
transaction of the servicing of an interrupt. While one
device is using the bus, the arbitration logic is free to
monitor other requests and issue an appropriate grant.

15-190

Unibus/Unibus Interface

THE UNIBUS INTERFACE
s ALLOWS THE PROCESSOR TO ACCESS REGISTERS ON THE UNIBUS

THE CMI HAS 24 ADDRESS BITS WHILE THE UNIBUS ONLY HAS 18. A METHOD IS USED THAT ALLOWS ANY
UNIBUS DEVICE ACCESS TO ALL OF THE CM! ADDRESS SPACE.

@ ALLOWS DEVICES ON THE UNIBUS TO PERFORM DMA TRANSFERS TO MAIN MEMORY.

THE CM! iS4 BYTES WIDE WHILE THE UNIBUS ISONLY 2 BYTES. TO MORE EFFICIENTLY UTILIZE THE CM,
THE DATA IS MOVED ONTO THE CM! AFTER EACH PAIR OF UNIBUS TRANFERS.

THE UNIBUS MOVES DATA ON EVEN ADDRESS BOUNDRIES, TO BE ABLE TO ACCESSI/OBUFFERS ON ODD BYTE
ADDRESSES, A MECHANISM (S IN USE THAT SHIFTS THE ADDRESS BY ONE BYTE.

¢ ALLOWS UNIBUS DEVICES TO INTERRUPT THE PROCESSOR.
TK-2050

Figure 15-5

15-11

Table 15-1.

Signal

Data Transfer Group

Address Lines
(A <17:008>)

Unibus/Unibus Interface

Unibus Signal Description

Data Lines (D<15:00>)

Control (C1,

ca)

15-12

Description

These 1lines are used by
the master device to
select the slave (actually
a unique memory or device
register address).
A<17:81> specifies a
unique 16-bit word; A00
specifies a byte within
the word.

These -lines transfer
information between master
and slave.

These siganls are coded by
the master device to
control the slave in one
of the four possble data

transfer operations
specified below. No te
that the transfer
direction is always

designated with respect to
the master device.

*See Figure 12-3

Unibus/Unibus Interface

Table 15-1. Unibus Signal Description (Cont.)

Signal Description
Control (Cl, C08) Cl C@ TRANSER OPERATION
2 ("] Data In (DATI): a

data word or byte
transferred 1into
the master from
the slave.

] 1 " Data In Pause
(DATIP): similar
to DATI except
that it is always
followed by a
DATO/B to the same
location.

1 9 Data Out (DATO):
a data word is
transferred out of
the master to the
slave,

1 1 Data Out Byte
(DATODB) :
identical to DATO
except a byte is
transferred

instead of a full
word.

15-13

Unibus/Unibus Interface

Table 15-1 Unibus Signal Description (cont.)

Signal

Parity A-B (PA, PB)

Master Synchronization

(MSYN)

Slave Synchronization

(SSYN)

Interrupt (INTR)

15-14

Description

These signals transfer
Unibus parity information.
PA is currently unused and
high. PB, when true,
indicates a device parity
error.

MSYN 1is asserted by the
master to indicate to the
slave that wvalid address
and control information
(and data on a DATOB) 1is
present on the bus.

SSYN is asserted by the
slave. On a DATO it in-
dicates that the slave has
latched the write data.
On a DATI/P it indicates
that the slave has
asserted read data on the
Unibus.

This signal is asserted by
an interrupting device,
after it becomes Dbus

masteyr, to inform ¢th

processor that an
interrupt is to be
performed, and that the
interrupt vector is

present on the D 1lines.
INTR 1is negated upon
receipt of the assertion
of SSYN by the processor
at the end of the
transaction. INTR may be
asserted only by a device
which became MASTER by
receiving a BG signal.

Table 15-1

Signal
Priority Arbitration Group

Bus Request (BR7-BR4)

Bus Grant (BG7-BG4)

Nonprocessor Request

(NPR)

Nonprocessor Grant
(NPG)
Select Acknowledge

(SACK)

Bus Busy (BBSY)

15-15

Unibus/Unibus Interface

Unibus Signal Description (cont.)

Description

These signals are used by
peripheral devices on the
Unibus and nexus on the
CMI to request control of

the bus for an interrupt
operation.
These signals. form

processor's response to a
bus request. Only one of
the four will be asserted
at any time.

This is a bus request from
a device for a transfer
not requiring CPU
intervention (i.e., direct
memory access).

This is the bus grant in
response to an NPR.

SACK is asserted by a bus-
requesting device after
having received a grant.
Bus control passes to this
device when the current
bus master completes 1its
operation.

BBSY indicates that the
data lines of the bus are
in use.

Unibus/Unibus Interface

Table 15-1 Unibus Signal Description (cont.)

Initialization Group

Initialize (INIT)

AC Line Low (AC LO)

DC Line Low (DC LO)

15-16

This signal is asserted by
the terminator board (UET)
when DC LO is asserted on
the Unibus. INIT stays
asserted for 19 ms
following the negation of
DC LO.

This signal initiates the
power fail trap sequence,
and may also be issued in
peripheral devices to
terminate operations in
preparation for power
loss.

This signal is available
from each system power
supply and remains clear
as long as all dc voltages
are within the specified
limits. If an out-of-
voltage condition occurs,
DC LO is asserted.

Unibus/Unibus Interface

ADDRESS SPACE

Any processor access with a physical address in the range of
FCO000 through FFFFFF will map directly on to the Unibus in
the range @ through 777777 (octal). Any device on the CMI
other than the processor that does a CMI transaction in that
address range will be ignored by the CUI. See Figure 10-7.

CUI ADDRESSES

The CUI is assigned a block of 8KB of CMI address space for
the map, CSR's and DSR's. See Figure 18-8.

CONTROL AND STATUS REGISTERS

Proper operation of transfers through the BDP's requires
some intervention on the part of system software. The use
of BDP's is not totally transparent. When a device has
finished a series of transfers to CMI memory (DATO(B)'s), it
is possible that some data will remain in the buffer if the
transfer did not end on an even longword boundary. It is
necessary for the software to initiate action that causes
this data to be written to memory. When a device has
finished a transaction that involves DAT1(P)'s, data is left
in the buffer with a corresponding Unibus address in the
address register. Should the contents of the map be changed
at the location corresponding to the address in the address
register, there will no longer be the correct association
between address and data in the buffer. It is therefore
necessary to clear the buffer following this class of
transactions. See Figure 18-9.

BDP SDR (Diagnostic Status Register)

This is a read only register that allows one to check the
flag bits associated with each BDP. It is intended only for
possible diagnostic use and no reference to it is required
for normal use of the BDP's.

BITS <31:28> BF3:BF@

BIT 27> CD

See Figure 15-14.

15-18

Unibus/Unibus Interface

000000
MAIN
MEMORY
15360K
EFFFFF
NONE-UNIBUS F00000
ADDRESS SPACE
T8/ ._JFBFFFF
UNIBUS I/O ADDRESSES ~ [FCO000
258K FFFFFF
16384K

ADDRESS SPACE ALLOCATION

TK-2071

Figure 15-7

15-19

F3°°°° ‘

llllllll

11111

E’W % / '

TZ-G1

6-GT @anbtg

BOP #1 F30004
#2 F30008
#3 F3000C

3130129 28

S

1

0
PUR
e e .
BIT <0> PURGE. THIS BIT ALWAYS READS A ZERO. WRITING A ZERO TO IT
HAS NO AFFECT. WRITING A ONE TO IT PRODUCES A RESULT BASED ON THE
'CONTENTS OF THE BUFFER:

UNIBUS DATA: THE DATA IS WRITTEN TO THE CMI AND THE FLAGS
ARE SET TO MARK THE BUFFER EMPTY,
CMI DATA: THE FLAGS ARE SET TO MARK THE BUFFER EMPTY.
EMPTY: NO ACTION OCCURS.
UCE

N

(BIT <29> UNCORRECTABLE ERROR (UCE). THIS BIT IS SET WHEN
UNCORRECTABLE BRROR STATUS IS RECEIVED FROM CMi MEMORY. PB IS
ASSERTED WITH THE DATA THAT IS PASSED BACK TO THE UNIBUS DEVICE ON THE
FIRST READ FROM THAT LOCATION. iT IS NOT ASSERTED ON SUBSEQUENT READS
FROM THIS BOP. THE BIT IS WRITE ONE TO CLEAR.

NXM

- e
BIT <30> NON EXISTENT MEMORY (NXM). THIS BIT IS SET WHEN NXM STATUS
1S RECEIVED FROM THE CMI MEMORY. SSYN IS WITHHELD FROM THE UNIBUS
DEVICE. ALL FUTURE UNIBUS TRANSACTIONS THROUGH THIS BDP ARE IGNORED
{NO SSYN ISSUED) UNTIL THIS BIT IS CLEARED. THE BIT IS WRITE ONE TO
CLEAR.

N

ERR
- ~
"BIT <31> ERROR. THIS BIT ON READ IS THE “OR" OF BITS 30 AND 29..
WRITING TO THIS 8IT HAS NO EFFECT.

4

BDP CONTROL AND STATUS REG.

TK-1727

2o®RJI83UI sSnqrun/snqrun

(A AR DY

gT-GT 2anb1g

DSR #1 F30014
DSR #2 F30018
DSR #3 F3001C

NOTE 1:

NOTE 2:

31 30 29 28 27 00

B|B|B C
FIF|F|F
3]2{1]o]0®

——-BYTE 0 VALID
BYTE 1 VALID
BYTE 2 VALID
BYTE 3 VALID

READ ONLY DATA PATH STATUS

THERE ARE FIVE FLAGS THAT KEEP TRACK OF THE DATA IN THE DATA
BUFFER, NAMED CD AND BF3 THROUGH BFO, {F CD = 1, THEN THE BUFFER
HAS FOUR BYTES OF DATA FROM THE CMI AND BF3 THROUGH BF0 ARE
ALWAYS 0. IF CD = 0, THEN BF3 THROUGH BFO0 INDICATE WHICH BYTES

IN THE DATA BUFFER HAVE VALID UNIBUS DATA. IF THEY ARE ALL 0,
THEN THE BUFFER IS CONSIDERED EMPTY.

THIS IS A READ ONLY REGISTER THAT ALLOWS ONE TO CHECK THE FLAG
BITS ASSOCIATED WITH EACH BDP. IT IS INTENDED ONLY FOR POSSIBLE
DIAGNOSTIC USE AND NO REFERENCE TO IT IS REQUIRED FOR NORMAL
USE OF THE BDP'S.

CUI DIAGNOSTIC STATUS REGISTER

TK-1726

8oBJaI93UI snqrun/snqriun

Unibus/Unibus Interface

UNIBUS MAP

Unibus address bits <17:9> are used to enter into a 512
location by 19 bit wide memory. The data coming out of that
memory is used to determine the details of how the
transaction is to be handled. The map data field is divided
into four sections. See Figure 10-11.

MAP SECTIONS

PFN

The PFN is a 15 bit field. On Unibus initiated transactions
that cause a CMI read or write cycle to occur, the map PFN
is concatenated with Unibus address <8:2> to form a 22 bit
longword address on the CMI.

DATA PATH NUMBER

This two bit field is used to select one of the four data

paths. Data paths 1, 2, 3 are called buffered data paths.
Data path 0 is called the direct data path. '

OFFSET

When the offset bit is a 1, it causes the transaction to
behave as if the Unibus address supplied by the DMA device
was incremented by 1. This allows devices that only produce
even byte addresses to access buffers on odd byte
boundaries. A transaction that causes a word to cross page
boundaries because the offset bit is set must have data path
number, offset, and valid identical in both map entries.
Any differences will yield unpredictable results.

VALID BIT

When the wvalid bit 1is a 1, the CUI processes the
transaction. When it is @, the CUI ignores the receipt of
MSYN. The valid bit must be set to 8 for map entries that
correspond to sections of Unibus address space in which
there are slaves that are expected to respond to
transactions that originate on the Unibus. Transactions
that start on the CMI and cause a Unibus transaction to
occur are always ignored by the CUI and can never wrap back
through the CUI onto the CMI.

15-23

Unibus/Unibus Interface

MAP ACCESS FROM THE CMI

The map is accessible for both reading and writing from the
CMI. Each entry uses up a longword address or the CMI. The

format of the map data fields as they appear on the CMI is
shown on Figure 18-11.

The logic that causes the map to be written ignores the byte
mask bits on the CMI. It assumes that any write to the map
addresses is a 1longword write. Any write other than a
longword will cause the contents of the map at the written
location to become unpredictable.

A Unibus initiated transaction that causes a CMI transaction
in the map address space on the CMI will properly address
the map and cause appropriate action. Note, however, that
writing the map requires a longword write and the only way
that a Unibus device can cause a longword write is to do two
sequential transfers within a longword to a buffered data
path. It is also a requirement that the buffered data path
not receive any other transfer in between the two that made
up the longword.

The CMI byte mask controls the setting of the Al; A@, and
(for writes) the CO 1lines of the Unibus. For reads the
setting is: See Figure 19-18.

Byte Mask Al AQ
1111)]
11190 8 2
1190 1 @
1000 1 2

The processor will never produce any other values with reads
to the Unibus.

For writes:

Byte Mask Al AQ Cca
90081 g 2 1
9619) 1 1
21009 1 2 1
1000 1 1 1
gg11 2 2 2
1100 1 /]]

15-24

Unibus/Unibus Interface

The different types of CMI operations are mapped into Unibus
operations as follows:

CMI UNIBUS NOTE'
Read DATI

Read with modify intent DATIP (1)
Read lock DATIP (1)
Write DATO (B) (2)
Write unlock DATO (B) (2)
Write vector No Response (3)

1) When a CMI operation that causes a DATIP occurs, BBSY is
asserted and held until the end of the next operation
that does not cause a DATIP to occur.

2) The choice of DATO or DATOB is made based on the byte
mask .

3) The processor will never actually issue a write vector.

15-25

9Z-61
T1-GT ®anbig

F30800 TO
F30FFC

31 30 26 26 24 2322 2120 15 14

v

{

0]

P F N

CMI MAP DATA FIELDS

Vv
— PAGE FRAME NUMBER —

.CONCATENATED WITH BITS <8:2>
‘OF THE UNIBUS ADDRESS TO FORM
THE 22 BIT CMI LONGWORD ADDRESS.

— DATA PATH NUMBER —
USED TO SELECT 1 OF 4 DATA PATHS.

0 0 DIRECT DATA PATH

0 1 BUFFERED DATAPATH 1
1 0 BUFFERED DATA PATH 2
1 1 BUFFERED DATA PATH 3

.~ BYTE OFFSET —

USED WHEN ADDRESSING ODD BYTE
BOUNDARIES.

— VALID BIT —
IF NOT SET, TREAT CYCLE AS A NOP.

@0rJI83UI sSnqrun/snqrun

UNIBUS ADDRESS

CMI ADDRESS

Unibus/Unibus Interface

98 21 0
(9) (7) (2)
MAP INDEX BYTE
NUMBER
PFN
ADDRESS MAP
RAM:512 X 19
g - X Y‘-L'\
23 98 21 0
(15) (7) (2)

UNIBUS TO CMI ADDRESS TRANSLATION

Figure 15-12

15-27

——BYTE MASK BITS

TK-2066

8¢-GT

€1-6T @anbtg

17 98 210
T]
ooopooo1ooo1oo1n1o
[]
L\ A J
[L
MAP (800-FFC)
|]] 4 |
ofoooj111i00 Ip 10{100
" ! :
1loo 1001 00! 1 0100 1
] i
' 1 I
]]
—> 2010100 110 0 0}1 1 041 1 Of e
T | J—] 1
310110011000 111 11
I 1. Il L
L) . v
4l 0(ﬁ1 01501 0i1 1 00
] ’
5101010
6 -
23 y 9 8 [2
— s v M0
CMI ADDRESS N i ' . 7
(44604C) 0100:0100(0110i110/0{0100 |
s \——,,-——J
NU
00

UNIBUS ADDRESS (002116)

TK-20562

@oe3J 193Ul snqrun/snqrun

Unibus/Unibus Interface

THE UNIBUS ADDRESS EQUALS <17:0> OF THE CMI ADDRESS

23 1817 0
T 1 T T 1
11111 1:1 0-1}1 1 0101 1:0 0 1}0 1 0{1 00
_\v,_J_~;,_J . r~‘~/fd"‘¢/‘J‘4:v’—J'
F E I E i 6 ? l 4 HEX CMI ADDRESS
ALWAYS ALL ONES b5 6 3 1 2 4 OCTAL UNIBUS

(UNIBUS SPACE) ADDRESS

TK-2048

Figure 15-14

15-29

Unibus/Unibus Interface

MINIMUM ADDRESS REQUIREMENTS FOR DIRECT TRANSLATION FROM
CMI ADDRESSES TO UNIBUS ADDRESSES.

23 187 ! ' | | oo
] 1 [1 T
1111)1 1!09 olooojooolojooloojolooo
1 [g I
M H L 1] T
HEX F c { o | o : -0 io
OCTAL Lo o' o o'o 0
MAXIMUM UNIBUS ADDRESS AT UBI
23 caghz ! | } ! I o
xxxxixxviftlrva ool
) }) t —
HEX X 3 lF | F| F | F
OCTAL T R B T 2 T 2 B 2 B 7
MAXIMUM UNIBUS ADDRESS ON CMI
%23 1gh7 | ! | ! ' o
- 4 1 L] i]
:1111{1!111]111111!111!111[111
; t + - }
HEX F F Fe 1 Fl F }_F
OCTAL L2 721 71 72141 7 1 7
TK-2090

Figure 15-15

15-39

Unibus/Unibus Interface

HARDWARE COMPONENTS
DATA BUFFERS

Each BDP consists of a data storage buffer of 4 bytes. This
storage buffer can be loaded from the Unibus or the CMI, and
its contents can be output to either the Unibus or the CMI.
Data can be loaded into the buffer one or two bytes at a
time from the Unibus, but is always loaded 4 bytes at a time
from the CMI.

ADDRESS REGISTER

Each BDP has a sixteen bit address register that can be
loaded from either Unibus addresses <17:2> or <17:2> + 1 (if
offset is on). There is circuitry that compares the stored
address with the address on the Unibus to see if there is a
match. The address held in the register is the Unibus
longword (Unibus Al7:A2) corresponding to the data in, the
data buffer.

FLAGS

There are five flags that keep track of the data in the data
buffer, named CD and BF3 through BF4g. If CD=1, then the
buffer has four bytes of data from the CMI and BF3 though
BF@ are always 0. If DC=¢, then, then BF3 through BF®
indicate which bytes in the data buffer have valid Unibus
data. If they are all @, then the buffer is considered
empty.

15-31

P-““””-_”-_ﬁ

Unibus/Unibus Interface

UB DATA U8 ADORESS
XCVR XCVR
—
ADDER
4 ..] : ALAO
c1.c0
UNBUE
BYTE Swap DATA LATCH MUX
L D QN | GENS GED GRS TGP GNr G D 1
1 XCVR
8YTE ROT. '
! ! ADO.
o ALIGN ox ucuff
H 1 | FLAGS/CMI
. CUN/M
MUX 1
8F ADDRESS | NER)]
32 i1 07 COMPARE : ADDRESS
BOP BUFS © : MAP
T 3| ' 512 X 19
' <B:2> (<23:9>1<14:0> [<31:28>
CMI MUX RCAR i -
BuF |]]
CMI
:> MUX |
,\ Y - l
; - eaEn ——_— —_— -—— L] A — — L] — J

UNIBUS INTERFACE BLK DIAGRAM

Figure 15-16

15-32

™-2078

Unibus/Unibus Interface

UCN SIGNALS
BUTO ,) UCR A0
BUT 1 BUT LOGIC UCR A1
‘. >
BUT 2 UCR A2
. »
TIMEQUT UCR A3
P »
MSYN BUF CMI 28
SSYN i CMI BYTE BUF CMI 29
. MASK B :
INT . BUF CMI 30
J: - - -
) 1
- [eross T
B CLK - o BUFCMI2S
FUNCTION |BUF CMI 26
INIT > BUF CMI 27
BUF CMI 0
ADDU — CO
1 UNIBUS CONTROL "————’m
i ee——
ADDC . SLAVE AO
——— e
CSRA 2 CONTROL v
et Pl ———
CSRA 3 . PB .
CSRA 4 - OFFSET
CSRA 11 SCo
.
SC1
HIGH STATUSO
— »j CMI CONTROL
: STATUS 1
BYTE FLAG | DBBZ
BLK ARB
ERROR PURGE DP SELECTOD
BITS DPSELECT1 _
MAP CNTR EN
—

TK-2039

Figure 15-17

15-33

pe-ST]
8T~-GT 2anb1a

31 28 27 26 24 23 . 1 0
BYTE -FUNCTION ‘ ’
[MASK CODE PHYSICAL LONGWORD ADDRESS
-
.]’ ‘[
a1lao — atlaolco |
1111 -0[0 . 0001 - ofof1 0 0 0 — READ
1110 - olo 0010 — 0|11 0 0 1 — READ LOCK
1100 — 10 0100 — 1|0]1 0 1 0 — READ W/MODIFY INT
100010 1000 — 1|1}1 011 - NU
READ 0011 - o|lolo 100 — WRITE
1100 - 1]|ofo 10 1 — WRITE UNLOCK:
\ J
WRITE 1 1 0 — WRITE VECTOR

111

!

- NU

CMI ADDRESS TRANSFER

TK-2067

?oeJI83UI sSnqrun/snqruf

Unibus/Unibus Interface
UB DATA S ARORESS
XGVR XCVA
1
@ ..] | LADOER
® : | s 211 ég
UNBUF '
| 8YTE Swap DATA LATCH MuX
' , ! XCVR
<AIT:AD> .
I A ADD. ADORE | ¥
o MUX BUFFER l UeN
| 1 FLAGS/ CMI
) CUN/MASK
I 80P MUX z:’cxs. SEL. i an’s‘ |
8k - <Q17:9>¢
ADDRESS
' 3 2 i1 01 COMPARE ' ADORESS
l BOP BUFS | 2 MAP
— ' 512 X 19
'3@:0 9<14:0> |<31:25>
l CMI MUX RCAR I
k /\ [|
[— BUF [] 1

|\

cmt
> MuUX

“

UNIBUS INTERFACE BLK DIAGRAM

Figure 15-19

15-35

e e e e e e e e =

™=-2078

Unibus/Unibus Interface

TYPES OF TRANSACTIONS

The table below indicates what type of CMI function Iis
initiated as a result of a Unibus cycle.

UNIBUS Cl, C@ CMI FUNCTION

DATI Read

DATIP Read Lock

DATO (B) Write or write unlock

If a DATO(B) follows a DATIP, then a write lock will go out
on the CMI, otherwise an ordinary write will occur.

STATUS

CMI STATUS ’ CUI RESPONSE T0~UNIBUS
No error, or corrected data SSYN issued

NXM SSYN withheld
Uncorrectable Error PB asserted with SSY¥YN
OFFSET

If the offset bit in the map is set, then the transaction
will be treated as if the Unibus address were incremented by
1. Note that if this is a DATI(P) or a DATO and if Al=l,
two CMI cycles will occur since the two bytes of Unibs data
fall across a longword boundary.

BUFFERED DATA PATHS

When the data path section of the map has a value of 1, 2,
or 3, then a buffered data path has been selected. Each of
the three BDPs consists of four bytes of data storage, 16
bits of address storage, five flag bits, and logic to make
the BDP operate. The general intent of the BDP is that when
the Unibus transactions are occurring with sequential
addresses (either ascending or descending), only one CMI
transfer is needed for every two Unibus transfers.

15-36

Unibus/Unibus Interface

DIRECT DATA PATH

When the data path bits in the map specify @, the
transaction is said to use the direct data path (DDP). This
means that SSYN is not issued by the CUI until the CMI
transaction corresponding to the UNIBUS has been completed.

DATI (P) WITH BYTE OFFSET

When byte offset is asserted out of the map, the behavior
depends on whether or not it causes this transaction to wrap
around across a longword boundary. If it doesn't (Unibus
Al=@) then the data is shifted one byte to the left. If it
wraps (Al=1) the CUI effectively acts as if two sequential
transfers occur, the first at the given Unibus address, the
second at the address incremented. The two CMI reads are
pleced together to form the Unibus data word and SSYN is
issued. The data buffer and address register hold the
information £from the second read at the end of the
transaction.

DATO(B) BEHAVIOR

The CUI behavior on Unibus DATO(B)'s is primarily dependent
on the contents of the buffer.

Buffer has Unibus data, no address match.

The data in the buffer is written out on the CMI, and the

flags are set tc mark the buffer empty.

Buffer is empty or has CMI data.

The Unibus data is put in the data buffer, the Unibus
address is put in the address register, the flags are set to
indicate the appropriate Unibus data and SSYN is issued.

Buffer has Unibus data, address match.

If the data on the Unibus combined with the data in the
buffer forms a full four byte longword, then a CMI write is
performed, the buffer is marked as empty, and SSYN is
issued. If a full longword is not formed, then the Unibus
data is put in the buffer and the flags are set. SSYN is
asserted.

15-37

Unibus/Unibus Interface

DATO WITH BYTE OFFSET

If this wraps across a longword boundary, it is treated as
_two one byte writes. If it does not cross a boundary, it is
handled the same as DATO. :

DATOB WITH BYTE OFFSET

If Al A@=11, this is handled the same as with the address
effectively incremented by 1. If Al A¢ = 11, then it is
treated as if it were a DATOB in the next longword with Al
Af = 00, except that address match is forced to no match.

15-38

Unibus/Unibus Interface

WRITE;
A B C D TO ADDRESS FCO000
AND
12 3 4 TO ADDRESS FC0002
2 1 0
T M H T
emi| 11 2|3ia|AarB|Cc!oD
H 1
UNIBUS ol A B|C | D
ADDRESS ; |
21112} 3, 4
1 1
READ;)
ADDRESS FC0000
] BB
UNIBUS OfA 1B |CiD
ADDRESS] ;
2] 11 2 314
i]
3 2 1 0
1 ¥ LD 1
CMI '!'B|CcCiD|A}B|C,D
1 | 1 1

CMI

ADDRESS FC0002

J

LCPU USES THIS WORD

he o =

3

4

1

=T

2

3

4

/

Tv—CPU USES THIS WORD
DATA POSITIONING

TK-2053

Figure 15-20

15-39

BUFFER 1ST DATO
.

B I A

BUFFER 3 RD DATO

F E.E

THATS ALL FOLKS:

PURGE
DO A CMI WRITE

O
o
M w
m | >

aats e CEEE

Unibus/Unibus Interface

BUFFER FULL
DO A CMiI WRITE
H T

pirc|BiaAalo

BZF{E: 2N: DgA:o

s

H !

UNIBUS oM

DATA ADDRESS
BA 0

DC 2

FE .4

—-WRITE TO MEMORY
WITH DATA BUFFERING—

Figure 15-21

15-49

Unibus/Unibué Interface

—-DO A CMI READ-
BUFFER 1ST DATI

N,l\lllLlK4 sii|wie
@\\\

—DO A CMI READ-
BUFFER 3RD DATI

NiM|LiK

-

UNIBUS DATA LK

N

BUFFERI4TH DATI

Nim|[Lix

'UNIBUS DATA
NM

DEVICE REQUESTS 4 WORDS FROM CMI MEM LOCATIONS 0,2,4.6.

—READS FROM MEMORY
WITH DATA BUFFERING—

Figure 15-22

Unibus/Unibus Interface

~UNIBUS DATA UNIBUS ADDRESS
BA 0
DC 2
FE .. 4

(=

OFFSET ON

CMI MEMORY

®
»
X
o

m
m
O
N

wmanflewwmodee o

|
\

—BYTE OFFSET—

TK-2055

Figure 15-23

15-42

€V-S1

¥Z-G1 °anbrg

CUIl MICROWORD

18 15

1312

109 8 7 6 56 4 32 0

o~

\T

—

B

23 22
-
{BUF CMI) BUFFERED CMJ
(NEXT) NEXT ADDRESS
(BDPC) BUFFERED DATA PATH CONTROL
(PRTC) PORT CONTROL
(VA.CTRL) UNIBUS ADDRESS CONTROL
(MSYN) MASTER SYNC
(SSYN) SLAVE SYNC
{UBDATA) UNIBUS DATA CONTROL
{CMI_ARB) CMI ARBITRATION
(BUT; BRANCH UNDER TEST

TK-3417

8oe3Ji83UI sSnqrup/snqrupn

MICROCODE BREAKDOWN

ROM
WORD RESIDENT ADDRESS

Py-S1
GZ-ST 2anb1g

HEX CODED MICROWORD
l-————-CODE LINE NUMBER
131 CONDITIONS

33| MAIN.LOOP:

q3a | S—~—"H# THIS IS THE TOP OF FIRST FORK

135 QS?‘/’C"LE FLAGS. . :BDP DATOB; CMI WRITE

~— f'gﬁ BDPC/DATOB, \
. 4FC2,26 37| NEXT/BDP.DATQ |
*]’f LINE COMMENTS
! FUNCTION

ROUTINE NAME
CONSTRAINT

TK-2084

soe3yi93jul snqruf/snqiupn

Sy-61
9Z-GT @anb1a

CUI MICROWORD

2322 . 1815 1312 109 8 7 6 54 32 0
“POWER UP’* CODE 0F02,20 0j0001 11 11000]000)1 0JOjO}1 0]lO0]O OO
(BUF CMI) BUFFERED CMJ b]' i stbne
(NEXT) NEXT ADDRESS
(BDPC) BUFFERED DATA PATH CONTROL
(PRTC) PORT CONTROL
(VACTRL) UNIBUS ADDRESS CONTROL
(MSYN) MASTER SYNC
(SSYN) SLAVE SYNC
(UBDATA) UNIBUS DATA CONTROL
(CMI.ARB) CMI ARBITRATION
(BUT) BRANCH UNDER TEST

UNIBUS DATA XCVRS = RCV
UNIBUS ADDRESS XCVRS = RCV
NEXT = O0F

TK-2082

aoe3iL83UI snqruf/snqrun

9%-GT
LZ-ST ®anb1g

CUI MICROWORD

23 22 1616 1312 109 B 7 65 4 32 0
ADDRESS OF , IDLE 0002,27 : 0j0 00 0O O 0 0jOOCO0j0C OO} OjOjO}1 OO}t 1 1
(BUF CMI) BUFFERED CMJ - I ol YT
{NEXT) NEXT ADDRESS .
(BDPC) BUFFERED DATA PATH CONTROL
(PRTC) PORT CONTROL
(VA.CTRL) UNIBUS ADDRESS CONTROL
(MSYN) MASTER SYNC
(SSYN) SLAVE SYNC
(UBDATA) UNIBUS DATA CONTROL
(CMI.ARB) CMI ARBITRATION
(BUT) BRANCH UNDER TEST

UNIBUS DATA XCVRS= RCV
UNIBUS ADDRESS XCVRS = RCV
NEXT =000

BUT = FIRST FORK

TK-2085

@oeJI93UI sngrun/snqriuf

OFF

PWR UP

OOF

Unibus/Unibus Interface

0OF
> IDLE
000+
Y ‘ ‘ ‘
00E 00D 0oc 008
DDP DATOB DDP
OFFSET PURGE PURGE DATI(P)
00A 009 008 007
DDP BDP DATI
DATO(B) CPU READ CPU WRITE NO DATA
AVAIL.
006 005 004 003
BDP DATOB BOP DAT! BOP DAT! BOP DATO
OFFSET D-AVAIL WRAP NO WRITE
1ST
002 001 000
BDP DATOB BDP DATO BDP DATOB
NO WRITE CMI WRITE CMI WRITE
NEED NEED
FIRST FORK FLOW.

Figure 15-28

15-47

TK-2076

Unibus/Unibus Interface

CPU READ

POWER UP

- = = — — — — —ENABLE XCVRS TO RECEIVE & GO TO IDLE.

—

IDLE:

= = = = — = —=WAIT HERE FOR SOMETHING TO HAPPEN

FIRST FORK
{CPU READ}

3
e o o = = —WE HAVE IDENTIFIED A CPU READ OPERATION

I |

: IF SSYN IS GONE FROM LAST TRANSACTION,

ASSERT THE ADDRESS ONTO THE UNIBUS AND

- START DESKEW. OTHERWISE WAIT.
{ UNIBUS DATA CONT IS SET TO RECEIVE.

A —|

o o= = == o == = ~WASTE TIME FOR DESKEW (125n SEC)

ASSERT MSYN, (DATA ASSERTED) & WAIT
_FOR SSYN. ONCE SSYN IS PRESENT

CPU.RD.20

| KEEP MSYN ASSERTED TO HOLD DATA ON
| BuSs.

- —— — — — -1 —KEEP ADDRESS ON UNIBUS & DROP MSYN

CPUWRT.25

ASSERT HI Z ON ADDRESS LINES TO
[== o= == = — == =-PRESENT TRISTATE OVERLAP & GO BACK
TO IDLE & WAIT FOR NEXT TRANSACTION.

L

TK-2060

| Figure 15-29

15-48

Unibus/Unibus Interface

BDP DATO SECOND PASS

POWER UP

o = = == = = —— =~ENABLE XCVRS TO RECEIVE & GO TO IDLE

IDLE

[= o e o o o == = WAIT HERE FOR SOMETHING TO HAPPEN

FIRST FORK
BOP DATO

- F} — — — — — WE HAVE IDENT!FIED A DATO USING TI:iE
3 BUFFERED DATA PATH. PUT THE UNIBUS
DATA INTO THE BUFFER & CLOCK THE BYTE FLAGS.

BOP.DATO

e = == = <= = = - - ARBITRATE FOR THE CMI, PUT THE MAP PFN
& THE LOW ORDER ADDRESS BITS ON THE BUFFERED
CMI PATH. ENABLE ADDRESS TO CMI.

’

BOP.DATO.05

o == o= == e= == == —=WON THE BUS, ASSERT DATA & CHECK
CMI STATUS

y

BDP.DATO.10

o = e = e - — — WE HAVE NO WRAP, BUSY IS UP, GOOD ADDRESS,
KEEP THE DATA ON THE BUS UNTIL DB8Z

’

GOES AWAY,

BDP.DATO.20

= = == w» = - = - DBBZ IS GONE' SO ASSERT SSYN

v

DDP.4S

[~ == == = = = — — WAITING FOR MSYN OR INTERRUPT TO GO
"‘AWAY BY CHECKING FOR SSYN. SSYN =1

DDP.40

po == == == == ==« = SSYN =(, ALL DONE. GO BACK TO
IDLE & WAIT.

TK-2061

'Figure 15-30
15-49

T6-61

snqruf 03 983TJIM NdD TE-GT 2inbig

'UNIBUS DEVICE

CPU WRITE TO UNIBUS

uUBl
UNIBUS [o=---===- BACKPLANE
_ (]
1 »
‘% asserTTeesYy @ @ | | INT || uUNREQ @ .
<4 [-
1 ‘1 statusvauo @
' vle
cMI
| _CONTROL LINES ®| ®rfuncrion | BBz @ @
_ADDRESS LINES ® | ® aooress ADDRESS ®oaTA @
DATA ®| ®oara
* ® “ 'Hoo @ ©
¢ MSYN SYNC [‘ >
SLAVESYNC ® . sTATUS . ® o

TK-3869

sdeJaslul snqruf/snqrun

Unibus/Unibus Interface

Signal Explanation for CPU Write to UNIBUS

The MIC Module decodes the address to be sent to
CMI. If address is a Unibus address, the MIC sends
"un REQ" via the backplane to the UBI module. (This
says arbitrate for the Unibus you have an address on
theh way).

At this point, I'm saying the UBI arbitrated for the
bus and won, and is asserting bus busy.

The CPU via the MIC module asserts DBBZ on the CMI
along with the address and bus function of WRITE.
When UBI receives it, enables go out to drivers to
place address on Unibus. C@ and Cl generated from
Function. NOT USED UNTIL SYNC IS SENT.

CPU drops DBBZ and UBI puts DBBZ on the line. CPU
also sends data to be written on CMI. DATA is
passed to Unibuss drivers that are enabled. NOT

USED UNTIL MASTER SYNC SENT.

UBI sends Master SYNC and device should receive
Address, data and control signals. UBI sets hold on
CMI.

When slave sync is returned from the device, the UBI
drops Hold and returns status to CPU via CMI.

UBI drops BBSY on Unibus when it receives "Status
Valid" from MIC module.

15-52

UNIBUS DEVICE

Unibus/Unibus

DISK NPR XFER TO MEMORY, BDP EMPTY.

Interface

'"MEMORY

Figure 15-32

usl
UNIBUS BACKPLANE
NPR @ ® - INT
LS @0
SACK' ® 6
BBSY ® @-:
co.c ® @
16 BITSDATA @ @ ol L o™i
ADDRESS @ ©. i ® @ war @ ® -
MASTERSYNC @ @ ._7 Tl Il oz @ @ .
ADDRESS (10
n (32 BITS) (19
SLAVESYNC ® @ Wk iomol o 361;'
-) | sTATUS
> A]

15-53

Disk NPR XFER to Memory BDP Empty

TK-3870

Unibus/Unibus Interface

Signal Explanation for Normal NPR Disk Transfer to Memory

Ground rules for this explanation.

A.
B.
C.

16 Data lines on Unibus, 32 on CMI
BUffer in CMI is empty
Starting at even address

1.

2.

3.

4.

DIsk sends NPR on Unibus.
UBI arbitrates and sends back NPG.

DIsk receives NPG and sends SACK. UBI asserts wait
when SACK received (not used here).

When bus available disk asserts BBSY, C@g, C1,
ADDRESS, data and master sync. When UBI receives
this it stores the 16 bits of data in a buffered
data path because it is empty. (It holds 32 bits or
4 bytes). SACK is dropped to UBI so wait is dropped

on CMI.

80
9.

19.

11.

12.

13.

Slave sync is sent to device from UBI.

Since Unibus cycle complete another NPR is sent. -
NPG again sent in response by UBI.

SACK sent from disk and UBI again asserts wait.

When Unibus available disk again asserts BBSY, C@,
Cl, ADDRESS, Data and Master Sync. 16 bits of data
now stored in remaining section of buffer, and
address sent to map to get proper location in memory
to send data to.

UBI (when finished arbitrating for CMI) asserts DBBZ
and Address on CMI.

UBI drops DBBZ and Memory Controller puts it on CMI.
UBI asserts data (32 bits from BDP).

Status sent by controller to UBI, UBI clocks status
when DBBZ deasserted.

SLAVE SYNC sent to Device.

15-54

G6-GT

£€~-GT ®anbig

ndo> o3 3dniisjul snqrun

UNIBUS DEVICE

UNIBUS INTERRUPT TO CPU

uBl cPU
UNIBUS BACKPLANE _
BUS REQUEST O 1 o ML) inTeRRupT PENDING @
BUS GRANT [0) . | ENABLE BUS GRANT @
SACK ® (0 INTGRANT
| M STALL
l [N
_ : oM r
ASSERT BUS BUSY Lo |60 warr hi
INTR @ 1
| vector apprEss VECTOR
+200 1JNIBUS DEVICE VECTOR + 200 |, eTon 200
SLAVE SYNGC WITH WRITE VECTOR FUNCTION vm
SUBROUTINE

OUT TC MEMORY
VIACMI

TK-3428

soeJISIUI snqrun/snqrun

Unibus/Unibus Interface

Signal Explanation for Unibus Interrupt to CPU

BR generated by unibus device. UBI Synchronizes BR
to M clk to get SBR signal. SBR sent to Interrupt
chip.

The Interrupt chip checks SBR level (4, 5, 6, or 7)
which will give you the corresponding IPL level of
IPL 14, 15, 16, or 17. This level is compared to
present IPL level and if SBR has a higher IPL then
two things take place.

A. INT pending signal sent to DPM module and MIC
module

B. The Interrupt chip on UBI also generates u
vector lines @, 1 and 2 to the state needed to
identify the type of interrupt pending.

Interrupt Pending sent by UBI to CPU modules DPM and
MIC is used to generate remaining vector lines 3, 4,
5 to give you the proper micro vector address that
starts the microroutine to handle the incoming
interrupt. Caution; INT pending is sent to SAC chip
on DPM while macro code is running but will not be
interpreted until IRDI of next instruction (macro).
when this time arrives THE SAC chip generates DO
service signal and Enable u vector to go to the MSQ
chip and generate bits 3, 4, and 5 to pull down the
porper bits £for the address of the microvector.
When these signals are ored with bits 8, 1, 2 from
UBI module you have microaddress of the routine to
handle the interrupt that is pending from Unibus.

The microroutine starts at microaddress and the
first function is to send, wvia the WCNTL F.LA, A
"33" which says Enable sending Bus Grant to the Int.
chip on UBI.

The Int. chip (and associated logic) then sends the
appropriate bus grant on the Unibus AND also hands
INT grant back to the MIC module at the CMK chip.
The CMK generates "GRANT STALL" to stall the
microcode before the next microaddress. The CPU
MICROCODE REMAINS STALLED UNTIL THE VECTOR HAS BEEN
WRITTEN TO THE MIC Module.

15-56

Unibus/Unibus Interface

SACK is returned by the unibus device who issued the
BR in response to the BG. SACK will at this time in
the UBI module assert the "WAIT" line on the CMI.
This will go to the MIC Module and replace int grant

to hold the CPU stalled. It will also drop BG in
the UBI.

6,7 When Unibus device that sent BR SEES Bus Busy on the

10.

Unibus dropped by previous device, he will assert
bus busy, INTR and vector address (on DATA lines)
all to be sent to the UBI module. At this time,
INTR will replace SACK to keep the wait line pulled.

The UBI module sends Unibus Device Vector plus 200

(by pulling address line 9 1low) on the CMI with a
write vector function. This causes #9.

Slave sync is asserted on unibus because INTR and
write vector sent. When device receives Slave Sync,
INTR is dropped to UBI.

UBI no longer has INTR so the wait line is dropped
causing stall to be dropped and the microcode goes
to previously defined microaddress to handle
interrupt. The loss of wait line to CMK chip on Mic
is not the only way to install the machine. If the
CMK monitors a write vector function on the CMI and
sets the bit in write vector written register that
will also install machine by dropping Grant Stall.

15-57

13 12 11 10 09 08 07 06 05 04 03 02 01 00

15 14
FFF460
UNIBUS ADDRESS REGISTER
FFF462
UNIBUS DATA REGISTER
UET CONTROL STATUS REGISTER
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
FFF464 INIT BR7|BR6|BR5|BR4| PE | TO | PB |A17] A16] C1] co |NPR
1]
| e | A rJ [
SSYN GO
TIME ISSUE
BUS REQUEST ouT égggnfssﬁm NPR
LEVEL SELECT" CORCE
ISSUE PR UNIBUS
UNIBUS UNIBUS TRANSFER
INIT PARITY SELECT
ERROR
FFF466 ZERO ROM DATA

TK-5609

15-58

VAX 11/758 LEVEL II

Interrupts and Exceptions

Student Workbook

Course produced by Educational Services Department
of
Digital Equipment Corporation

Interrupts and Exceptions

INTRODUCTION

The interrupt circuit is a composite of both TTL and gate
array logic, with the center of attention focused on the INT
chip housed on the UBI module,

The INT chip uses signals from other chips on the UBI board
and signals originating on both the MIC module and the DPM
module with control coming from the control store module via
WCTRL.

The various signals are used to produce UNIBUS grants, U
Vectors to the control store, and by way of the W Bus, route
IPL data to and from the INT circuits.

Interrupts and Exceptions

MODULE XVI: INTERRUPTS AND EXCEPTIONS
SYNOPSIS

This module consists of theory on interrupts and exception
handling utilizing block diagrams and microroutines.

OBJECTIVES

Utilizing the block diagram and the micro listing, trace the
operation of the stack and associated circuitry while
servicing each of the following:

a. traps

b. interrupts
c. exceptions

SAMPLE TEST ITEM
Which of the following is a typical example of an Exception?

a. A power failure.

b. The attempt to execute a privileged instruction.
c. A parity error.
d. An error detected on the Unibus.

RESOURCES

Processor Specifications

16-2

Interrupts and Exceptions

OUTLINE

XVI. Interrupts and Exceptions
A, Interrupt
B. Exception

1. Execution of Privilged or Reserved
Instructions

2. Trace Traps

3. Compatability Mode Faults

4. Breakpoint Instruction Execution
S. Arithmetic Traps

C. 3 Types of Exceptions

1. Traps
2. Fault
3. Abort

D. 1Interrupt Priority Level
E. Vector
F. System Control Block Base Register
G. Interrupt Block Diagram
1. INT Chip
2. INT Chip Inputs
3. INT Chip Outputs
H. Interrupt Registers
1. SPFIR

2. WEIR

6.
7.
8.

9.

Interrupts and Exceptions

CPIR
CDIR
HSIPR
IPL

IS
CURMODE

ASTLVL

Operations Performed

l.

2.

Save and return values of parts of the PSL
and AST level via the W Bus.

Receiving and storing the value of the HSIPR
which is used in interrupt arbitration.

Placing various data onto the Micro Vector
lines,

Perform REI check calculations.

Arbitration of all interrupt requests,
encoding the highest ©priority pending
interrupt and generation of the interrupt
pending signal.

Unibus arbitration within the group of BR
devices and issuing of BGs.

Unibus ACLO/DCLO, initiate functions are
handed by the INT Chips associated TTL
circuits. :

The generation of Micro sequencer INIT is
also handled by the associated TTL
circuitry.

Unibus arbitration among the CMI, NPR
devices and the BR devices.

16-4

19.

Interrupts and Exceptions

Informing the CMI that it may talk to the
Unibus.

11. Request Unibus number 2 via NPR.

Interrupt and Exception Microcode for a Unibus

INT

1. I and E Mic, IE.UNIBUS.INT:
2. Address OFlA

3. Address OF1B

4. Address OF1C

5. Address OF1D

6. Address OF1lE

7. Address OF1F

8. Address OFgg

Summary

Interrupts and Exceptions

INTERRUPT AND EXCEPTIONS

e INTERRUPT - An event other than an exception, branch,
jump, case, or call instruction that
changes the normal flow of instruction
execution. Interrupts are generally
external to the process executing when
the interrupt occurs.

e EXCEPTION - An event detected by hardware other than
an interrupt, jump, branch, case or call
instruction that changes the normal flow
of instruction execution. An exception
is always caused by the execution of an
instruction or set of instructions.
There are 3 types of exceptions.

e TRAP - An exception conditions that occurs at
the end of the instruction that caused
the exception. The PC saved on the stack
is the address of the next instruction
that would normally have been executed.

e FAULT - A condition that occurs in the middle of
an instruction that leaves the registers
and memory in a consistant state which
allows the instruction to restart and for
correct results once the fault has been
cleared or eliminated.

e ABORT - An exception that occurs in the middle of
an instruction and leaves the registers
and memory in an indeterminate state
which may prohibit an instruction
restart.

Figure 16-1

16-6

Interrupts and Exceptions

VECTORS AND SYSTEM CONTROL BLOCK FORMAT .

BUS
(SCBB+200+UNIBUS VECTOR)

VECTOR DESCRIPTION IPL I/E
SCBB+0 NOT USED - -
SCBB+4 MACHINE CHECK iF E

CS PARITY

BAD IRD

MEMORY ERROR

CACHE PARITY
SCBB+8 KERNEL STACK INVALID iF E
SCBB+C POWER FAIL 1E I
SCBB+10 - RESERVED OPCODE iF E
SCBB+14 CUSTOMER OPCODE XFC 1F E
SCBB+18 RESEVED OPERAND iF E
SCBB+1C RESERVED ADDRESS MODE iF E
SCBB+20 ACCESS VIOLATION 1F E
SCBB+24 TRANSLATION INVALID 1F E
SCBB+28 TRACE TRAP 1F E
SCBB+2C BREAKPOINT OPCODE 1F E
SCBB+30 COMPATABILITY MODE iF E
SCBB+34 ARITHMETIC TRAP iF E
SCBB+40 CHMK iF E
SCBB+44 CHME iF E
SCBB+48 CHMS iF - E
SCBB+4C CHMU 1F E
SCBB+54 CORRECTED READ DATA 1A I
SCBB+60 WRITE BUS ERROR 1D I
SCBB+84 SOFT INTERRUPT 1 I
SCBB+88 SOFT INTERRUPT 2 - I
- SCBB+8C SQFT INTERRUPT 3 I
SCBB+90 SOFT INTERRUPT 4 I
SCBB+94 SOFT INTERRUPT 5 1
SCBB+98 SOFT INTERRUPT 6 I
SCBB+SC SOFT INTERRUPT 7 I
SCBB+A0 SOFT INTERRUPT 8 I
SCBB+A4 SOFT INTERRUPT 9 I
SCBB+AS SOFT INTERRUPT A 1
SCBB+AC SOFT INTERRUPT B I.
SCBB+B0 SOFT INTERRUPT C I
SCBB+B4 SOFT INTERRUPT D I
SCBB+B8 SOFT INTERRUPT E 1
SCBB+BC SOFT INTERRUPT F I
SCBB+CO INTERVAL TIMER 18 I
SCBB+FO TU=58 RECEIVE 17 1
SCBB+F4 TU=58 TRANSMIT 17 I
SCBB+F8 CONSQLE RECEIVE 14 I
SCBB+FC CONSOLE TRANSMIT 14 1
SCBB+160 MASSBUS ADAPTOR 0 1% I
SCBB+164 MASSBUS ADAPTOR 1 15 I
SCBB+168 MASSBUS ADAPTOR 2 15 I
SCBB+200 UNIBU 14-17 1

Figure 16-2 Vector and System Control Block Format

16-7

TK-3273

r—-=T-— ==

Interrupts and Exceptions

" INTERRUPT BLOCK DIAGRAM

usl SBR4 '
l CONTROL STORE ¢ ———— SBRS
| MiC I SBR7 l
| ¥
' ACV '
' PTE CHK OR PROBE '
| wraus ERR INT . : |
utR | | utrar WBUS<26:22 & 20:16>
| . |
' |_corr patamt U8 INT GRANT >
CMK - HPBG 6 -
J"‘ — — INT HPBG 5 _
P 4 s UVCTR BRAN HPBG 4 _
L_ DPM >
— —r DO SERVICE |
M CLK EN INT PEND i -
l SAC D CLK EN |
PHASE 1 micro VEcTor2 | .
I 8 CLK MICRO VECTOR 1 .
- MICRO VECTOR 0 -
I | — . MICRO VECTO -
I ¥ |
| PROC INIT 1
| | s |
o e e e=] SERIAL LINE INT 1
| SYNCHR RESET BG |
L —_— R A E— '
TK-3270
Figure 16-3 Interrupt Block Diagram

16-8

Interrupts and Exceptions

MICRO VECTOR VALUE CHART

IPL NAME U VECTOR
00 NO INTERRUPT REQUEST PRESENT 000
(HSIPR) HIGHEST SOFTWARE
01-0F INTERRUPT PENDING REQ. {000
” (SLINE INT) SERIAL ‘
LINE INTERRUPT 001
(SBRn) SYNCHRONOUS
1417 BUS REQUEST (4-7) 010
8 (TIMER INT) INTERVAL o11
TIMER INTERRUPT .
1A (CDIR) CORRECTED DATA 100
INTERRUPT REQUEST :
(CPIR) CACHE PARITY 1
18 ERROR INTERRUPT REQ. 10
" (WEIR) WRITE BUS ERROR
1D INTERRUPT REQUEST 110
(SPFIR) SYNCHRONOUS
1€ POWER FAIL INTERRUPT REQUEST 11

BRANCH ON MICROTEST MICRO TARGETS

38=SOFT INTERRUPT REQUEST
38=CONSOLE INTERRUPT REQUEST
3A=UNIBUS INTERRUPT REQUEST
3B=INTERVAL TIMER INTERRUPT
3C=CORRECTED MEMORY DATA
3D=CACHE PARITY ERROR
3E=WRITE BUS ERROR

3F=POWER FAIL INTERRUPT

TK-3272
Figure 16-4 Microvector Value Chart

16-9

Interrupts and Exceptions

INT REGISTERS
NAME iy IPL COMMENTS
SPFIR 1 1E LATCH FOR SPFI
WEIR 1 1D LATCH FOR WEI
CPIR 1 1B LATCH FOR CPI
CDIR 1 1A LATCH FOR CDI
HSIPR 4 010F | SOFTWARE INTERRUPTS
IPL 5 00-1F INTERRUPT PRIORITY
LEVEL :
IS 1 _ INTERRUPT STACK
FLAG
CURMODE 2 - CURRENT MODE
ASTLVL 3 SOFT ASYNCHRONOUS
| SYSTEM TRAP
LEVEL
LUBIPR 2 1417 | LAST GRANTED UNIBUS IPR
PRVMODE 2 - PREVIOUS MODE

Figure 16-5

TK-3271

Interrupt Registers

16-19

Interrupts and Exceptions

Interrupts and exceptions in some ways are alike in what
they accomplish within the machine. They also have their
differences. To understand the differences and how they both
function you must be able to answer two questions.

l. Why do interrupts and exceptions occur?

2. How does the machine get to the proper MICRO address
to handle interrupts and exceptions when they occur?

We'll attempt to answer these questions one at a time to
give you an idea how the machine handles interrupts and
exceptions.

l. Why do interrupts and exceptions occur?

When the machine is running normally it is executing one
MACRO instruction at a time. After completion of the MACRO
the machine goes to the execution buffer on the MIC to fetch
and execute another MACRO instruction. This is the normal
flow of operation. There are some MACRO instructions that
during their execution go to different areas of the program
and not the next MACRO instruction in the execution buffer;
such as jump, branch etc. These examples are still a normal
type flow to the machine. When a normal flow needs to be
changed either an interrupt of an exception occurs. IN ALL
CASES A MICRO ADDRESS IS GENERATED THAT POINTS TO A ROUTINE
TO HANDLE THE INTERRUPT OR EXCEPTION.

INTERRUPT - An event other than an exception, branch, jump,
case or call instruction that changes the normal flow of
instruction execution. Interrupts are generally external to
the process executing when the interrupt occurs. EXAMPLE:
Interrupt from the console terminal.

EXCEPTION - An event detected by hardware other than an
interrupt, Jjump, branch, case or call instruction that
changes the normal flow of instruction execution. An
exception is ALWAYS caused by the execution of an
instruction or set of instructions. There are three types of
exceptions.

A. An exception condition that occurs at the end of the
instruction that caused the exception. The PC saved on the
stack 1is the address of the next instruction that would
normally be executed. EXAMPLE: Arithmetic Trap

B. Fault - A condition that occurs in the middle of an
instruction that 1leaves the registers and memory 1in a

16-11

Interrupts and Exceptions

constant state which allows the instruction to restart and
for correct results once the fault has been cleared or
eliminated. EXAMPLE: Translation Buffer Miss

C. Abort - An exception that occurs in the middle of an
instruction and leaves the registers and memory in an
indeterminate state which may prohibit an- instruction
restart. EXAMPLE: Kernel stack invalid.

These are the reasons that interrupts and exceptions occur.
The second and maybe the most important question is:

2. How does the machine get to the proper MICRO address to
handle the interrupts and exceptions when they occur?

To figure this out let us redefine some terms previously
explained. Look in the micro-code listings in the chart file
for the FIXED CONTROL STORE ADDRESS CHART. You should note
that these addresses are broken down into three sections;
1X, 2X and 3X. These sections relate to the MICRO addresses
that all interrupts and exceptions go to when handling the
events other than the normal flows within the machine. If
there are three types of exceptions along with interrupts
why aren't there four sections? The answer 1lies in
terminology.

An interrupt is an interrupt and all of them start at MICRO
addresses beginning with 3(X).

Exceptions are where the ambiguous statements begin.

A TRAP 1is an exception, explained previously, that when
generated will always go to MICRO addresses beginning at
1(X). '

This leaves two types of exceptions that relate to one group
FIXED CONTROL STORE ADDRESSES. The exceptions fault and
abort, explained previously, are both classified as MICRO
TRAPS in the FIXED CONTROL STORE ADDRESS CHART. Using these
redefined terms for faults and aborts they will now both be
discussed as MICRO TRAPS from now on.

Looking at the redefined terms what follows 1is a brief
overview of what happens at the time an interrupt, trap or
micro trap occurs. Knowledge of the Micro Sequencer Chip
(MSQ) from the manual or class is assumed.

16-12

Interrupts and Exceptions

After the execution of each macro-instruction, a test must
be made to see if there are any traps or pending interrupts
to be serviced. This test is called BUT SERVICE. It is done
by the hardware one cycle after the completion of the
macro-instruction to allow the Condition Codes to become
stable for checking overflow. This is one cycle after the
first IR Decode branch of the next micro-instruction. There
is no micro-order which invokes this test.

If a trap condition or interrupt is pending, then the
micro-vector associated with the highest priority event is
asserted on the Control Store address lines overriding the
address mode specified by the current micro-instruction. The
address of the instruction during which the test was made is
pushed on the micro-stack. When the BUT SERVICE test is
true, all action in the micro-cycle is inhibited by the
hardware. This includes starting bus cycles, updating the
PC, IR, or OSR and writing destinations.

If there is a micro-trap condition in the same micro-cycle
in which the BUT SERVICE test is true, then BUT SERVICE has
higher priority than the micro-trap condition. The reason
for this is that the micro-trap was caused while attempting
to execute the next macro-instruct. The exception to that is
a Control Store Parity Error which overrides the BUT SERVICE
test.

bDuring the execution of long macro-instructions interrupts
can be detected by micro-orders in the BUT field. If an
interrupt has occurred then a micro-branch to the
appropriate service routine is specified.

A micro-trap is a mechanism for handling conditions which
prevent a micro-instruction from completions successfully.
The micro-sequencer does a utrap operation at the end of the
micro-cycle by forcing a JSR to a routine which corrects the
problem. After the condition has been corrected, the routine
returns to the micro-instruction and re-executes it. This
transaction is transparent to the micro-programmer.

With this in mind let us find out how the machine actually
gets to the physical MICRO-ADDRESS to handle the proper
Interrupt, Trap or Micro-Trap.

All Interrupts are generated from the Interrupt chip located
on the UBI module and, depending on which Interrupt Iis
generated goes to MICRO-ADDRESS locations 38 through 3F. How
are these addresses generated? The address comes from three
location in the CPU, broken down by bits 5-8.

16-13

Interrupts and Exceptions

Bits 8, 1 and 2 come from the INTERRUPT CHIP on the UBI
Module.

Bit 3 comes from the UTRAP CHIP on the M/C Module.

Bits 4 and 5 are generated from the MSQ CHIP on the DATA
PATH Module.

As the machine 1is running macro code a request for an
interrupt is sent to the INTERRUPT CHIP. As an example we
will use a Console Interrupt, although ALL interrupts are
handled the same way. The Interrupt Chips will check the IPL
of the request to the IPL now in its IPL Register. (In the
Int. Chip.) If the requested IPL is higher then the signal
INT PENDING is sent to the SAC CHIP on the Data Path Module.
Nothing will happen until IRD1 of the MACRO Instruction that
is now running in the machine. What happens when IRD1l is
decoded by the SAC from the BUT FIELD is going to cause
"action by the INT. Chip, MSQ Chip, and U Trap Chip

simultaneously, but on paper can only be explained one chip
at a time.

When IRD1 is decoded and INT Pending is asserted the SAC
chip generates DO Service L and ENABLE UVECTOR H. These
signals will cause the three previously mentioned chips to
output the needed MICRO ADDRESS 39 for CONSOLE INTERRUPT.

INT. CHIP - When request for console interrupt n DO service
L was generated by SAC the Interrupt Chip, on the trailing
edge of MCLK, allow the bits to be driven onto the uvector
lines. These bits would equal 401 for Console Interrupt.

MSQ CHIP - When DO Service L and ENABLE UVECT H are
generated, along with the fact MICRO ADDS INH L 1is H, and
MSEQ INIT L 1is H, the MSQ chip outputs a 30 onto uvector
lines. This always occurs on Interrupt. (See Chart.) Use for
Traps and micro traps also.

-Micro Enable Do Serv Internal CS Lines
ADDR uvector L MSQ 5-@
Inhibl H Initial
H H H H 20 HEX
H L L H 14 HEX
H H L H 30 HEX
UTRAP CHIP - The signal DO Service L also goes to the

TRI-STATE driver to uvector Line 3 to be shut off and float

16-14

Interrupts and Exceptions

to a High which is a 1. This line is sent to the DPM (just
below the MSQ chip in prints) and is allowed to be ored with
the 30 from MSQ chip due to the fact uvector is enabled.

What we end up with is the Micro address 39 to be sent to
the control store module. That answers the question of how
the micro-address was generated for an Interrupt.

How is the Micro address generated for a Trap Condition?

TRAP - As you can see by the "FIXED CONTROL ADDRESS" chart
all traps are 1lX. This will be a simpler action because
there are only Two Chips involved. SAC for bits 8, 1 and 2.
MSQ for bits 3, 4, and S.

If you look at the 5 possible traps and look at the SAC chip
you will see that all 5 traps feed directly to the CHIP.

11 = Arith Trap

12 = FPA Trap

14 = Timer Services

15 = T-Bit Trap (PSL TB)

16 = Console "P Trap (Console Halt)

SAC - During IRDl1 But Service is performed and a Trap

Condition exists for an Example we will use ARIH Trap L. The
SAC chip at this time only outputs DO Service L. NOT ENABLE
uvector. The SAC chip also outputs to the uvector lines @01
for bits 2, 1, #. These lines will determine which type of
Trap exists.

MSQ - Do Serv L is received from SAC and referring to
previous chart you find the #1§ being outputted to uvector
lines. #10 or with 1 gives you the #11 to the control store
for the proper address to handle the Arith Trap.

That should answer how the proper Trap address gets to the
Control Store.

How does a Micro-Trap address get sent to the Control Store?
We know that a micro trap is a mechanism for handling
conditions which prevent a micro-instruction from
completions successfully. To do this the proper address
needs to be sent to the control to the routine to handle the
condition.

MICRO-TRAP - To find how the address is generated you must
go to the UTrap Chip on the MIC mode and the list of Micro
Traps in the "Fixed Control Address" Chart. We will not be
concerned at this point which micro-trap has priority over

16-15

Interrupts and Exceptions

the others as that is covered in the MIC section. We are
concerned with how the address is generated. For an Example
we will take a TB miss UTrap, 2A. You notice all micro-Traps
are 2X. These chips are involved Utrap chip, SAL and MSQ.

UTRAP CHIP - The utrap chip is constantly monitoring the
events during each micro instruction and if a Translation
Buffer Miss occurs during read MICRO-instruction it cannot
be completed. You trap chip see the TB Parity Era H signal
and NO TB Hit from @ or 1 the signal Utrap is generated and
the uvector lines 3-9 are set to 1018 (but not driven until
trailing edge of MCLK).

SAC - The Sac chip receives Utrap L signal and generates
ENABLE UVECTOR H, but NOT do service.

MSQ - The MSQ receives the Enable uvector H signal and
referring to previous chart you find the MSQ chip outputs 20
to be ored with the uvector lines that are just below the
MSQ in prints that come from the UTrap Chip which are
allowed to pass with the Enable uvector H signal from SAC
chip. The address 2A is sent to the control store for the
routine to handle a TB miss.

This should explain how the address of a micro-trap is sent
to the control store module.

16-16

VAX-11/750 LEVEL II

Console Interface

Student Guide

Course produced by Educational Services Department
of
Digital Equipment Corporation

Console Interface

INTRODUCTION

The console interface chip is an asynchronous serial
line interface between the COMET console terminal and
the CPU. It contains logic to do 1limited character
recognition of the received characters for entering in
Console Mode. It asserts signals to request both micro
and macro level interrupts. Addressing of internal
registers is indirect through Console Register Address
Register (CRAR).

17-1

Console Interface

SYNPOSIS

This module is designed to be a block diagram and
chip level presentation on the following:

a) Transmit parallel to serial converter
b) Receive serial to parallel converter
c) Microroutine

OBJECTIVES

Given a block diagram of the Console Interface,
correctly identify each block by labeling it.

Provided with a list of Console Interface functions
and signals, correctly match the signal to its
function.

SAMPLE TEST ITEM

Utilizing the CUI Print Set, match the below listed
Console Interface signals to their functions:

a) INSTR FETCH H Disables console interface
b) SERIAL LINE INT. Asserted when data is
available for output

c) CON SO When asserted, equals data
out
d) MCLK L Latch data in
RESOURCES

Comet Specifications
Comet Print Set

XVII.

MODULE OUTLINE

CONSOLE INTERFACE

A.

CON Chip
1. WCTRL
2. W-BUS

3. SERIAL IN/OUT
Transmitter Half of CON Chip
Receiver Half of CON Chip
Print Famliarization

Summary

17-3

Console Interface

Console Interface

CONSOLE XCV CONSOLE XMIT |e -
| _ CONTROL &
W BUS DATA BUFFER STATUS REG READY
7 | REG. (CRDB)) . =
(CTCSR)
' . CONSOLE REG. CONSOLE ﬂﬂ-f———-—_.
| ADDRESS REG. STATUS REG. | HALT PEND.
— o] (CRAR). (CSR) -
_ 602_-:> CONSOLE XMIT ggm#'&i’fv e __ _ -
~ WCTRL 252 ‘BCUT*;FRE’R REG. STATUSREG. |[DONE
D CLK - {CRCSR) :
SERIAL IN XCV REG. XMIT REG. SERIAL OUT
*I (RRA) (TR) o
XCV TIMING
- XCV CONTROL
BAUD CLK COUNTER COUNTER
—™1 (RTCTR) (RCCTR)
e XMIT TIMING XMIT CONTROL
INIT COUNTER COUNTER
* (TTCTR) {TCCTR)
CON CHIiP

Figure 17-1 CON Chip Input/Output Signals

17-4

S-LT

isl3jrTwsuel] a[osuoc) zg-LI 2anbig

D CLK

WCTRL <30:25>

LD CLK

CTBR

CONSOLE XMIT

W BUS >| BUFFER REG.
CRAR CTCSR IE
| CONSOLE | CONSOLE -
REG. XMIT
ADDRESS CONTROL & | READY -
«| REG. STATUS REG.
SERIAL OUT -
me REG
chra '
XMIT CONTROL COUNTER [*
INIT - TTCTR =7
BAUD CLK —»] XMIT TIMING COUNTER =15

CONSOLE TRANSMITTER

¥K-2070

soeJI93UI BTOSUO)

9-LT

€-LT ®anb1g

pbutwrl 1833TUWSURIL

TCC <

TRANSMITTEF} TIMING

""'”i"""'i""""!"u""'i"
’°MLWUWJ_LJ_!J—U_|M

TK-3418

eoBJI83UI STOSUO)

Console Interface

CRAR
CONSOLE REG. ADDRESS REG.

ADDRESS FORMAT

REGISTER ADDRESS
CTDSB 00
CRDSB 00
CTCSR 01
CRCSR i0
‘CSR 11

TK-2042

Figure 17-4 Console Register Address Format

D _CLK

WCTRL<30:25>

W BUS

SERIAL IN

CRDB

CONSOLE XCV DATA
BUFFER REG.

[1 ¢4

Console Interface

CSR

CONSOLE STATUS

RA

- XCV REG.

BAUD CLK

CRCSR
CONSOLE
XCv
CONTROL &
STATUS REG

l

HALT

HALT PEND.

DONE

1E

XCV CONT

RCTCR
ROL COUNTER

)

RTCTR

XCV TIMING
COUNTER

CONSOLE RECEIVER

Figure 17-5

Console Receiver

17-8

TK-2074

6-LT

9-,.1 ®anb1g

putwi] I3AI1903Y

RECEIVER TIMING

RT ¢

RC{

~

w

a
4

| I

I NN N N AN KN RN RN S

TK-3416

90eJI8®3UI STOSUOD

AD INT INH H<€ A35

Console Interface

THE CONSOLE INTERFACE CHIP

1 3
* EIACONSIL ‘ :E‘ng- 9

con
"7
uenawctaLsu —3Jwers waoe |—o—CCs0> WBUS 25 H
UBI4WCTRLAH —2— wcisa WBO0S .___.__@ WBUS 24 H
UBI14 WCTRL3H ~38_ wers weo7 WBUS 23 H
usidwciRL 21t —4 | werz weos WBUS 22 H
UBNAWCTRLTH —32 1 wer1 waos WBUS 21 H
130V WCTO weod ?g —cz1) waus 201
5 weod = —d c9 WBUS 19 H
UBAWCTRLOH——Of st weo2 |21 =L 5™ waus 181
31 weot ——(C3) WBUS 17K
DPM17 M CLK L—Eco) MCLK wa00 WBUS 16 H
MCEK e
7 cNIT UBI11 SERIAL LINE INT L
DPM17 D CLK ENABLE H DCKE L
CMCR JO—2—+30v
uBi11 con 8R cLk H—2_] srck 2 .
. | HTLT jo-28—
UBI13 MSEQ INIT L—=0f maIT
anut P-21—(@60) uBI1 CON HALT L
|
ERNT PNL 8 t siot |2 .
.—-@ FTPL .
2 ¢ LOCKH o HDBR |—3—UBI11 HALT DET SYNC H
330PF GND: ITCR 7
ND 100v zs DEBR O—-—uBi11 CON DONE SYNC H
R FETCH H.—————‘ IREH
o7 insTR FETCH H CB55) - TRBA JO-24—ya111 cON T READY SYNC H
UBITI HALT DET SYNC H—=—] HOSY 29
LoLK =
uBI11 cON DONE SYNCH—8 | besy DLk o_:',é,_
cKDD
UBI11 CON T READY SYNCH 11 1 ooy
14 | aoiw creo o8
10 | cLol
R0 "
x

cLCt

GND

Figure 17-7

Console Interface Chip

17-19

(A27) EIACON SO L

TK 2064

VAX-11/75¢ LEVEL II

TU58 Interface

Student Guide

Course produced by Educational Services Department
of
Digital Equipment Corporation

TU58 Interface

INTRODUCTION

The TU58 interface chip is an asynchronous serial line
interface between the TUS58 tape unit and the CPU. With
very few exceptions, it is identical to the Console
Interface.

The TU58 mag tape unit is a low cost mass memory device
with random access, block formatted, pocket size
cartridge media.

18-1

TUS58 Interface

SYNPOSIS

This module is designed to be a block diagram and
chip level presentation on the following:

a) Transmit parallel to serial converter

b) Receive serial to parallel converter
c) Microroutines

OBJECTIVES

Given a block diagram of the TUS8 1Interface,
correctly identify each block by labeling it.

Provided with a list of TUS58 Interface functions and
signals, correctly match the signal to its function.

SAMPLE TEST ITEM

Utilizing the UBI print set, match the TUS58
Interface signals listed below to their function.

a). TU SO L Data out
b). M CLK L Latch data in
c). TU SI L Data in
d). MSEQ INIT L Initialize chip and clear
registers
RESOURCES

Comet Specifications
Comet Print Set

18-2

TU58 Interface

MODULE OUTLINE

XVIII. TU58/INTERFACE

A. CON Chip
B. TUSS8
1. Specifications
2. Component Identification, Mechanical
3. Component Identification, Electrical
4. Block Diagram
5. Registers
6. Register Addresses
7. Data Format

C. Summary

18-3

TUS58 Interface

SELECTED TUS58 SPECIFICATIONS

CARTRIDGE CAPACITY 262,144 BYTES

512 BLOCKS OF 512 BYTES EA.
TRACK FORMAT 140, FEET PER CART.

.150 IN WIDE

2 TRACKS, EACH CONTAINING
- 1024 NUMBERED RECORDS

4 RECORDS=1-512 BYTE BLOCK
BIT DENSITY 800 BPI
READ/WRITE TAPE SPEED 30 IPS

SEARCH TAPE SPEED 60 IPS

AVERAGE ACCESS TIME 9.3 SEC.

MAXIMUM ACCESS TIME 28 SEC.

DATA TRANSFER RATE - 41.7 US/DATA BIT
24KBPS

INTERFACE BUFFERING 150 TO 38.4K BAUD,
JUMPER SELECTED

DRIVES PER CONTROLLER 10R2
ONLY ONE CAN OPERATE
AT A TIME.

-- TK-2049

Figure 18-1 Selected TUS58 Specifications

18-5

TU58 Interface
TUS8 DRIVE UNIT

DRIVE PUCK

HEAD

\

SWING-OUT
- DRIVE'ROLLER HEAD GATE
\
WRITE » | e/
Pnonscr/u . "[
TAB ‘ ~ MAG.
TAPE
TAKE
SUPPLY HUB up
HUB

TAPE CARTRIDGE

ELASTOMER
BELT
Figure 18-2 Tape Cartridge and Drive Unit TF2%°

L-8T1

DIAGNOSTIC
D
= D28 WwW
(:) oot +16 [—LJ
GND + 16
] TP + 14
<
g 8
150 + 1
300+ 2
A B 600+ 3
¢co 1200 + 4
J2 F =1L 2400+6 [-LI
H 4800 + 6
9600 + 7
L
K 19.2K + 8 “
] 384K +9 &
w RCV + 10
XMIT + 11
AUX A +12
AUXB +13
ww ww
25 23 21 19 17]
++ +4+4+ + ++ + +
26 24 22 20 18 S
- oo
~ <
—— In: 8
elxfofefs]] &
[l il N Wl W |
- w
8
—LJ
| ol olw
o 8|3]8

R71

Figure 18-3 Interface Selection Jumper il

c23

L]
~ | [8]8
o o
L . |
o
u

wwi 150 BAUD
ww2 300 BAUD
wwa 600 BAUD
ww4 1200 BAUD
wws 2400 BAUD
WWwe 4800 BAUD
Ww7 9600 BAUD
wws 19200 BAUD
wwo 38400 BAUD
wwio UART RECEIVE CLOCK
wWwti UART TRANSMIT CLOCK
wwi2 AUXILIARY A
wwi13 AUXILIARY B
wwi4 FACTORY TEST POINT
Www15 GROUND
wwié BOOT
wwi17 RS-423 DRIVER
wwis RS-423 COMMON (GROUND)
wwi19 TRANSMIT LINE +
Ww20 TRANSMIT LINE —
ww21 RS-422 DRIVER +
ww22 RS-422 DRIVER —
ww23 RECEIVER SERIES RESISTOR
ww24 {(JUMP FOR RS-422)
[n]
A B O
cD (u)
F (m]
LS 0 LT
H J o
K L
0 %]
& &
(W]
a

Duunéggb ‘ﬁ

TK-2038

ocations

soeJI93UI 8SNL

TUS8 Interface

18-8

~eTO HOST

AGC
READ i
HEAD DETECTOR
DRIVED ~o SELECT D . AMP AND DECODER
' t .
1 -
N — |
————- ! WRITE AND
r A ' L_
ERASE LOGIC
' i 1 TACH AND -
' DRIVE! te--d VELOCITY AND DRIVERS
' ' CONTROL
R 1
——d - CONTROLLER
r -: INTERFACE ggg_’cesson
MOTOR | _ 10 PORTS
{ DRIVER [T
L 3 “~*{SERVOAMP
- ———— AND
DRIVE
SELECT
| ™moTOR
DRIVER ,{g},
PAM ROM
256 2K UART
BYTES BYTES
DRIVERS
RECEIVERS
TUS8 BLOCK DIAGRAM
Figure 18-4 TUS58 Block Diagram

TX-2078

TU58 Interface

(BOT #256 | #384 | #257 | #385 | #258 | #386 #259((#382 | #510 | #383 | #511 EOT(

BOT| #0 |#128 | #1 |#129| #2 | #130 #3\ X#126 #254 | #127 |#255 EOT)

BLOCK LOCATIONS ON TAPE.

— o TK-2080

Figure 18-5 Block Locations on Tape

18-9

VAX-11/756 LEVEL 1II

Condition Codes

Student Guide

Course produced by Educational Services Department
of
Digital Equipment Corporation

Condition Codes

CONDITION CODE LOGIC DESCRIPTION

The Condition Code logic in the Comet CPU is designed to set
or clear the PSL N, Z, V, and C bits according to the
architectural definition of each VAX 11 macro instruction
and the result of the data path operation. The condition
code logic also determines whether or not conditional VAX 11
branch instructions are satisfied so that the microcode can
microbranch properly. A third function of CCC is to initiate
all arithmetic traps. Most of the logic circuitry to perform
these three functions 1is implemented within a gate array
called CCC. CCC is located on the DPM module in slot 2. This
gate array is controlled by a secondary encoding of the CC
field and the WCTRL field of the microword called CC CTRL
<3:9>. The PSW lives in the CCC gate array, while the copies
of the CM bit <31> exist in PHB and CCC. PSL FPD bit <27> is
contained in the PHB gate array which is part of the
microsequencer logic. The PSL IS bit <26>, CUR MOD <25:24>,
PREV MOD <23:22>, and the IPL <2#:16> all are part of the
INT gate array 1located on UBI. When a CCPSL WB PSL
micro-order is issued, the entire PSL is sourced to the WBUS
on a read from all three gate arrays. Writing the PSL is
also accomplished from the WBUS so all three gate arrays are
enabled when the CCPSL function is PSL WB. We will 1limit
this discussion to the PSW which is in the CCC gate array.

The CCC gate array is controlled by the CC and WCTRL fields
of the microword, after they are reencoded by what is called
the CC CONTROL (El14) ROM on the DPM module. This rom is not
defined in the microcode listing so figure 18-1 is included
in this discussion of what the rom content 1is for the
various CC and WCTRL field functions. We should look at the
CC and WCTRL fields and understand what fields are relevant
to the CCC gate array. The vertical functionality of the
microword is explained in a previous 1lesson. The CCMISC
field of the microword is true if any of the following
combinations of the CC and WCTRL fields is desired by the
microprogrammer.

CCMISC CC BINARY WCTRL BINARY
NOP.CCBR_BRATST 11 800111
NOP.CCBR_CSIGN o1 p00110
WB_ATCR.CCBR_SIGND 00 geg111
ALUS_DSDC.CCBR_ALUS 00 g00110
ALUS_SIGND.CCBR_ALUS 11 260110
ALUS_UNSGN.CCBR_ALUS 10 600110
SETV.CCBR_SIGND g1 pe0111

Notice that the WCTRL field of the microword during the

19-1

Condition Codes
CCMISC is either 6 or 7. There is no WCTRL field definition
for 6 or 7, which means that CCMISC micro-orders are unique
operations. The CCPSL field of the microword is true if the
microprogrammer specifies one of the below operations in the
microinstruction.

CCPSL WCTRL BINARY
WB_PSL.CCBR_SIGND 000100
CC_WB.CCBR_ALUS 000101
PSL_WB.CCBR_ALUS=0 000000
PSL_WB.CCBR_ALUS=1 P00001
MDR_OSR.CCBR_BRATST 191111

The above field definitions are really variations on the
WCTRL microorders that are not defined as WCTRL functions.
You'll notice that in both the CCMISC and CCPSL functions,
the name of the definition has the CCBR microbranch bits
defined also. The CCBR bits are two microbranch status bits
that are defined in the microinstruction that specifies a
BUT micro-order BUT/CCBR, BUT/CCBR.CCBR@.IRH, or
BUT/CCBR@.SRKSTA@. The definition of CCBR <1:0> is defined
in the CCPSL or CCMISC micro-order of the microword. For
example, the CCPSL micro-order WB PSL.CCBR SIGND indicates
that the WBUS gets the PSL from the INT, PHB, and CCC gate
arrays. Additionally, the CCBR bits <1:0> assume their
default values, which are...

CCBR <1> <8>

@= WBUS greater than @= WBUS not equal to ¢

or equal to 0

1= WBUS less than @ 1

WBUS equal to 8

These bits are particulary useful for microbranching on the
result of ALU operations or WBUS data. The CCBR bits can
assume different functions depending on the CCMISC, CCPSL,
or CC micro-order. An example of this is the CCMISC
micro-order NOP.CCBR BRATST. The CCBR bits take on a new
function. -

CCBR <1>
"] @#= Conditional branch not satisfied.
1= Conditional branch condition is
true.

This micro-order is specified in the microcode that executes
the VAX1l macro conditional branch instructions. Basically
it decodes the opcode of the branch instruction and compares
the PSL N,Z,V, and C bits to the branch condition. For
example, a BNEQ macro instruction would assert CCBR <@> if
the PSL Z bit was clear during the execution. There is a

19-2

Condition Codes
most useful chart in the microcode listing called BUT/CCBR.
Locate this chart in the CHARTS.MIC file of the microcode
listing. This chart defines the CCBR bits <1:0> for each of
the CCMISC, CCPSL and CC micro-orders. The CCBR bits <1:08>
are generated 1in the CCC gate array under control the
redefined CC and WCTRL fields.

The CC field of the microword also can effect the CCBR bits
<1:8> as shown- in the chart. The CC field also has the 2
fields that set the PSL condition codes according to the
architectural requirements and data path operation results.
The CC field is defined as follows...

CC/=<32:31>, .DEFAULT=0
~ ‘NOP.CCBR_SIGND=g,
NOP.CCBR_ALUS=3
CCOP1.CCBR. SIGND=1,
CCOP2.CCBR_SIGND=2,

The first two micro-orders are NOPs as far as the PSL
condition codes are concerned, but they do effect the CCBR
bits. The microprogrammer can use either of the NOP
micro-orders with a BUT/CCBR micro-order to microbranch on
the default signs explained above or the ALU STATE bits
<1:8> that are part of the ALU. The CCOPl and CCOP2
micro-orders are used to set the PSL condition codes. The
CCOP1l micro-order 1is used for about half of the macro
instruction set to set the condition codes. The CCOP2
micro-order is used to set the condition codes for the
remainder of the macro instruction set. Locate the VAX
NATIVE MODE CONDITION CODE CHART in the charts microcode
file CHARTS.MIC. This chart indicates which CC micro-order
must be specified for a particular macro instruction in the
far right column. The 4 columns across the page describe how
each PSL condition code bit is affected when the CCOPl or
the CCOP2 micro-order is specified.

To understand how this works we will trace the microcode
executed for a VAX 11 macro instruction and see how the
condition codes are set. Before we can do this we should
review the operation of the D Size ROM and how to read the
microcode macro expansion. The D Size rom is blasted by the
microprogrammer that wrote the microcode for the VAX 11
macroinstruction being executed. The VAX 11 macro
instruction that we will trace is.

Where R# is 7FFFFFFF and Rl

ADDL2 RO, Rl
: is equal to 00000001

~e o

Remember how to read the IRD ROMS? We will get to that
momentarily. First of all, what type of instruction is this?
Well this happens to be an INTEGER add so we should find the
microcode for this VAX 11 macro instruction in the
INTLOG.MIC file of the microcode 1listing. What we are

19-3

Condition Codes
looking for is the D Size rom macros which are typically the
last section of one of these files. Locate the D Size rom
macro for the ADDL2 instruction. The hex opcode for an ADDL2
is CA. The D Size ROM macro should appear as below...

@D@: SIZE [LONG] [LONG] [@] [@] [@] [@] ;ADDL2

The way one reads this macro is starting from the 1left
column, the number @D@ is address input to the D Size Rom.
The IRD counter output also addresses the D size rom, so
that for one opcode, there are six locations in the rom. The
reason there is six locations is because the VAX 11 macro
instructions can have up to six operand specifiers that must
program the size of the data path during each execution
phase. In the ADDL2 macro instruction, there are only 2
operands, so the D size ROM must be blasted with data size
for 1st and 2nd operand specifier evaluations. The SIZE of
the data path for each operand specifier evalution Iis
contained within the []. As you can see the first operand
specifier evaluation is in the next column. The data size
for each of the six operand specifier evaluations from 1 to
6 is read from left to right. Instructions that have less
than 6 operands, contain @ in unused locations. The ADDL2
instruction contains the size [LONG] in the first and second
operand specifier evaluations. Refer to the DEFIN.MIC file
for the D size rom definition and you'll find that the data
size definitions are as follows...

IF DSIZE = [BYTE] THEN DSIZE <1:90> = 0§
IF DSIZE = [WORD] THEN DSIZE <1:8> =1
IF DSIZE = [LONG] THEN DSIZE <1:8> = 2
IF DSIZE = [QUAD] THEN DSIZE <1:0> = 3

So the D Size rom would be blasted with a 2 bit binary size
code for every execution phase of the macro instruction. It
is important to remember that the D Size rom output is used
only if the DTYPE field of the microword specifies IDEP
(data size is instruction dependent). The D Size bits <1:4>
go to the CCC gate array so that the PSL condition codes are
properly set according to the data size of the VAX 11
macroinstruction. Now that we know how to read the D size
ROM, 1let's trace the ADDL2 macro instruction through the
‘microcode. We have to refer to the IRDl1 and IRDx rom macros
located at the end of the INTLOG.MIC file. The IRD1 and IRDx
rom macros appear as below...

.ICODE : OoPS OPS
gCo: FPD [NOP] [IE.OPCOD.DEC] [NOP] [IE.OPCOD.DEC]
IRD1 ([LOD] [OS.RED] [LOD] [0S.RED]

This is the IRDl1 rom macro definition for ADDL2. The IRD1
ROM is addressed by the opcode of the instruction to be
executed and the FPD and the signal FPA PRESENT.This means
the macro instruction opcode provides the base target

19-4

Condition Codes
address in the rom of which there are 4 locations. That is
what this macro is used for. It allows the microprogrammer
to blast all four 1locations with the address 1in control
store of the microroutine to evaluate the first operand
specifier. The FPD bit should not be set at IRD1 of an ADDL2
instruction because it is not interruptable. If it is set,
then the machine will vector to location SCBB+1d and execute
the RESERVED to DEC opcode instruction fault service
routine. FPA PRESENT is a signal that is used to change the
flow if an FPA is present or not. You'll note the IRDl rom
macro has 2 targets across the page. 1 with FPA and 1
without FPA. The OPS bit is used to load the OSR at IRD1l and
IRDx. The IRD1 rom macro could be changed to show how the
rom is addressed as follows.

gDa: FPD NOT FPA FPA
NOT FPD NOT FPA FPA

What this shows us 1is at base IRD1 rom address #D@, the 4
locations that are blasted are all the possible combinations
of FPD and FPA PRESENT. The contents of the [] is the label
of a microroutine that is entered for each of the 4 possible
combinations. In the case that we are using, an ADDL2 does
not use the FPA, FPD should be clear, and both the source
and destination operands are in registers. For this
discussion we will assume that the FPA is not present, even
if the FPA was installed in the CPU, the operand specifier
routine address is the same, [0OS.RED]. PSL FPD is false and
REG MODE 1is true for both the source and destination
operands. This means the microcode will microbranch on the
addressing mode and enter the O0S.RED flows at the
microinstruction that fetches the source operand from a
register. We will see this in a little bit. Lets look at the
IRDX rom macro, This is similiar to the IRDl macro except
that the IRD COUNTER output addresses these ROMS.

.OCODE OPS REG MEM
gCg: CNT@ ([LOD] [IL.ADD2.B.W.L.REG][0S.MOD]
CNT1 ([NOP]([IL.ADD2.B.W.L.MEM][IL.ADD2.B.W.L.MEM]

The combinations of REG MODE and FPA PRESENT are used as
address input to the IRDx rom along with the IRD counter
output. This means there are eight possible targets at IRDx
(CNT9 has 4 combinations and so does CNT 1). CNT@ address is
used at the first IRDx and the CNT1 address is used at the
second IRDx. Since this is register mode for both the source
and destination, the control store address at CNT@ is
[IL.ADD2.B.W.L.REG] and the CNT1 control store address is
[IL.ADD2.B.W.L.MEM]. In register mode the CNT1l address is
really meaningless. If the destination was not a register,
the MEM flows would have been followed. and the microcode
would have gone to the following control store addresses.

[0S.MOD] VA GPR

19-5

Condition Codes
{IL.ADD2.B.W.L.MEM] WRITE MEMORY AT VA

To summarize the flow of the ADDL2 R#, R1l, the microcode
goes to the following two rom addresses.

IRD1 [0S.RED]
IRDX [IL.ADD2.B.W.L.REG]

With this knowledge we can trace the microinstructions. They
are reproduced below from the OSR.MIC and INTLOG.MIC files
respectively...

100:
0S.RED:
10000 ———-=—————m———————— iRn REGISTER MODE
FPA_Q_M[MDR] MDR_R[GPR.R], ; PLACE OP (GPR(RNUM))
IN MDR

CLOBBER MTEMPY9 DEF, IRDX [l1] ; SAVE MDR IN Q

This moves the source operand from R@# into the MDR and Q
gets the old MDR data. The IRDX address is
[IL.ADD2.B.W.L.REG] and at this IRDx, the next control store
address is [IL.ADD2.B.W.L.REG]. This is the microinstruction
stored at IL.ADD2.B.W.L.REG...

IL.ADD2.B.W.L.REG: | ; 80 Ag CO
e I H
R[GPR.R].SIZ_M[MDR]+RB,CCOP1, ;

SIZE [IDEP], IRD1 ;

This microinstruction specifies that the GPR pointed to by
the RNUM latch <R1> is the destination. The MDR <R#> is
added to the destination GPR <R1l>, which is selected by
RNUM, and that GPR <R1l> is modified. The PSL condition codes
are set with the CCOPl micro-order. The condition codes are
set according to the D Size which is specified with the SIZE

specifies the data size and the D Size Rom macro explained
above indicates the data size of the source operand is
[LONG] and the data size of the destination is also [LONG].
The result of adding 7FFFFFFF and 00000001 is 8000@00800. This
is an integer overflow and as a result the PSL N, Z, V, and
C bits should be set as follows for an ADDL2.

PSL N Z v C

ALU<31> WX<31:0>=0 ALU<K31>V ALU<L31>CO

1 g 1]

2.9.2 VAX 11 BRANCH INSTRUCTION IMPLEMENTATION

The CCC gate array also is used to decide if a VAX 11 macro

19-6

Condition Codes
branch instruction is satisfied, so that one of two things
can happen. If the branch condition is NOT satisfied, the
hardware must bump the PC to the next sequential instruction
and do the IRDl. If the branch condition IS satisfied, the
sign extended displacement is added to the PC. Writing the
PC flushes the XB and initiates prefetch for the new
Instruction Stream Data. We are going to trace a VAX 11
macro branch instruction called BNEQ. This macro instruction
branches if the PSLZ bit is clear. We will show both paths
that are followed. The BNEQ instruction is located in the
CONTRL.MIC file. First lets look at the IRD1 rom macro for a
BNEQ in the back of the CONTRL.MIC file. The Macro appears
below.

.ICODE OPS REG OPS FPA REG
¢12: FPD [NOP] [IE.OPCOD.DEC] [NOP] [IE.OPCOD.DEC]
IRD1[LOD] [CO.BRCND] {LOD] [CO.BRCND]
.0OCODE :
#12: CNT@[NOP][IE.BAD.IRD] [NOP] [IE.BAD.IRD]
CNT1 [NOP] [IE.BAD. IRD] [(NOP] (IE.BAD.IRD]

The IRD1 macro specifies that the address of the BNEQ
microcode is CO.BRCND which is the target address for all
the conditional branch instructions. Notice that this
instruction will NOT do an IRDx and that the address for a
fault is [IE.BAD.IRD] which initiates a Machine Check
Exception. The microcode sequence for the BNEQ is shown
below.

=1009
CO.BRCND:

~s
—
[
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i
|
|
1]

’

; GET DISPLACEMENT FROM OSR
; TEST FOR BRANCH

; GO TO DECISION BLOCK

MDR_ZEXT (OSR) BRATST?,
NEXT/CO.BRCND-DECIDE

This microinstruction moves the branch displacement from the
OSR to the MDR zero extending from bit <8> to bit <31> in
the MDR. In the same macro,the BRATST? implies that the BUT
micro-order is BUT/CCBR and the CCPSL micro-order 1is
CCPSL/MDR_OSR.CCBR_BRATST. Locate the this macro in the
MACRO.MIC file and verify that this is true. This micro
instruction has two possible destinations. If the PSL Z bit
is set, the microcode will read the microinstruction at
CO.BRCND-DECIDE. If the PSL Z bit is clear, the microcode
will execute the microinstruction at CO.BRCND-DECIDE+1.

If the PSL Z bit is set, the branch condition is not
satisfied and the next microinstruction is

=0
CO.NOP:

19-7

Condition Codes
CO.BRCND~-DECIDE:
i ; NO BRANCH IF CONTROL COMES
IRD1 ; HERE,GO DO NEXT INSTRUCTION

Simply do IRD1 and execute the next sequential instruction.
If the PSL Z bit is clear, the CCBR bits <1:0> are equal 41,
according to the to the CCPSL micro-order at 1location
CO.BRCND. The following microinstructions are executed

CO.BRCND-BRANCH:

BRANCH IF CONTROL COMES
HERE, CALCULATE NEW PC
WASTE CYCLE TO LET PC CATCH
UpP

PC_PC+SEXT(M([MDR]) ,
SIZE [IDEP], NEXT/CO.NOP

w8 We We we

The PC gets the sign extended MDR if the branch condition is
satisfied and the data size of the value written into the PC
is determined by the D Size ROM. Writing a new value in the
PC causes the XB to be invalidated and prefetch for the new
I Stream begins, If the XB 1is not full at 1IRDl1l, the
micromachine is stalled until the XB is filled. The next
microinstruction is at CO.NOP which IRD1 and it is shown
above.

We have seen two of the major functions of the CCC gate
array and how the microcode implements setting the condition
codes and branching macro instructions. The CCC gate array
also generates the signals that cause an arithmetic trap at
the BUT SERVICE following an arithmetic operation, The PSW
bits <7:5> are the TRAP enable bits that must be set up by a
VAX 11 macro routine. The functions of these bits briefly is
described below.

PSW <7> Decimal Overflow TRAP enable.
PSW <6> Floating Underflow TRAP enable.
PSW <5> Integer Overflow TRAP enable,

If an arithmetic operation is performed that causes one of
the TRAP conditions, the CCC gate array will assert the
signal ARITH TRAP L. At the next BUT SERVICE, the Arithmetic
Trap is arbitrated with console halt, Interrupt Pending,
etc. and the trap flows should be entered. The type of
arithmetic trap is logged the Arithmetic Trap Code Register
(ATCR) which is also contained in the CCC gate array. The
Arithmetic trap results 1in aborting the next macro
instruction and performing the trap service from SCBB+34.
The trap microcode pushes the PSL, PC of the NEXT
instruction, and the ATCR on the stack.

This completes the discussion of the microcode
implementation.

2.9.3 HARDWARE IMPLEMENTATION OF CONDITION CODE LOGIC

19-8

Condition Codes
The actual hardware that implements the condition code logic
is a small percentage of the total. The condition code logic
is on the DPM module and we'll refer to the print set. Refer
to DPM2@g. At the beginning of this discussion we stated that
the CCC gate array is controlled by 4 bit field called CC
CTRL <3:0>. This field comes from the output of the rom El4
on DPM2@. The address input to this ROM is the CC and WCTRL
fields of the microword that is latched on DPM2¢ and DPM12.
The output is called CC CTRL <3:0> H and these 4 signals go
to the CCC gate array shown on DPM1f. Figure 18-1 shows how
the CC CTRL lines and the GOOD SAMARITAN ROM are programmed
for various combinations of the WCTRL and CC fields. The
reason the signal LIT # H is present is because if the LIT
field is 1 or 3, the CC field is not interpreted and becomes
part of the short or long literal. On DPM1# again let's look
at the CCC gate array inputs. The lines CC CTRL <3:8> are
the control 1input to the gate array. The VAX 11 or
compatibilty macro instruction opcode is latched in El12 and
is the 1input to combinational 1logic that sets the PSL
condition codes according to the architectural defintions
and data path results. The D Size bits <1:80> enter the CCC
gate array and are used to select the correct data path
sign, C bit, and V bit. The sign can be either WBUS<31l>,
WBUS<15>, or WBUSK7> depending on the D-size bits <1:8>, the
same is true about the source of the C bit and V bit. The C
and V bits would be selected as a function of data size
also. FPA Z and V are interfaced to CCC so that FPA divide
by zeros and overflow can force the appropriate arithmetic
trap condition. CCC generates the TRAP for FPA instruction
traps also. The interface to the WBUS is a bi-directional
interface that essentially connects the PSW (-TP) to the
rest of PSL when the CCPSL micro-order specifies WB_PSL.
Writing the PSW from the WBUS is accomplished with the
PSL_WB micro-order. The PSL C bit goes to the BUT mux on
DPM16 for microbranching on the state of the C bit. ARITH
TRAP L goes to the SAC gate array on DPM 17 for initiating
the arithmetic trap at BUT SERVICE. The CCBR bits <1:0> go
to the BUT mux on DPM15 and 16 for microbranching on their
state.

The functionality of the CCC gate array is tested with the
microdiagnostics and indirectly with the macro diagnostics.
Figure 18-1 is included here to show the programming of the
CC CTRL rom and the GOOD SAMARITAN rom which are not blasted
by the microprogrammers.

This concludes the discussion of the Condition Code Logic.

19-9

Condition Codes

GOOD SAMARITAN ENCODING :
GOOD SAMARITAN INPUTS GOOD SAMARITAN OUTPUTS

WCTRL CC CTRL <3:0>
Function WCTRL CC LIT 6 H G.S. <7:4>
WRITE PSL 00 X X 9
WRITE PSW a1 X X B
READ PSL g4 X X 3
WRITE CC a5 X X A
CC MISC 1 26 a) 5
CC MIsC 1 g6 1 "] 8
CC MISC 1 g6 2] 7
CC MISC 1 a6 3 %] 6
CC MISC 2 a7 g a 2
CC MISC 2 a7 1 g F
CC MISC 2 a7 2 2 2
CC MIsSC 2 a7 3 a 1
CC MISC 2 a7 X 1 g
Any other

WCRTL Function g 2 2
Any other

WCTRL Function 1] Cc
Any other

WCTRL Function 2 7] E
Any other

WCTRL Function X 1 2

F-“.. - 19 1
igure l1o-u1

This concludes the discussion of the Condition Code logic.

19-10

VAX-11/75¢ LEVEL II

Memory Subsystem

Student Workbook

Course produced by Educational Services Department
of
Digital Equipment Corporation

1-08¢

M

45V
S8 7
N
B 7<31 :/163]
4&Z%ZZ3<—~f~—j BATTERY i
., 'KADL g 8 f A
8 7<31:24> INTERNAL DATA BUS 39 BITS
< 7
/ ANT DB <31:0>
T Y
BCLKL | TIMING & 0TI ,;,*/MEC ¢
e , CONTROL —*)<15:0> 44
%//’,(// 2 7 0
. LT T | ! REFRESH, INIT/ I
78 529163 A BUS 'ROW, COLUMN MUX
A, 75 CONTROLLER - v
MICROSEQUENCER REF. - {ROW/COLUMN
ROW ‘MUX
— Rom |uwonrb ADD &| |
0, 75 —*{mux N7
M 7 e ———»]LATCH INT BUS ADD
TETsset| <6:0> &
L 5™ ADD - INT BUS CS TIM
; . LATCH
INT BUS
iy T IR > ADD
TS A<2317> 2%@427 MEM SEL
78 /;'2;)'6>? 6" Ly _%MAP/ +—— FNGP3
ﬁ%ﬁ%ﬁ?.~ 345?/ e—A— MEM PRES
256 X 4 256 X 4 256 X 4 266 X 4 ‘CONFIGURATION -
ROM
DATA START ADDRESS
] ! ! y JUMPERS

ARRAYS —m

TK-4557

walsAsqng Aiouiay

Memory Subsystem

S M ——
INTERNAL DATA BUS 39 BITS

!

=
>

<15:14>

INT BUS ADD"MEM SEL

BATTEFIY

.l*[.""

INT BUSADD

<6:0> & ;
INTBUSCSTIM

17..

¢
) BANK 3
4 16K X 32
7 A Do
%
v
BANK 2
&l 16Kk X 32 k
7 A Do i
+
BANK 1
A 16K X 32 16K X 7
A CHECK
Do BITS
%
S
T 7]
R BANK 0
A 16K X 7
” CHECK
7 BITS
3
75

20-2

V

TK-4558

PHYSICAL MEMORY MAP

256 KB
256 KB
266 KB
256 KB
266 KB
256 KB |
258 KB I
H._ .
_. . z8K8
1EEEEF
F20000 s
F20004 ST
F20008 =2

EVICE “A” BOOT ROM

DEVICE “B* BOOT ROM

DEVICE “C” BOOT ROM

[De_v,l.ce “D" BOOT ROM

- &

20-3

TK-4580

Memory Subsystem

Vee
K 16
2 14
D IN OUT D .
‘4116/64
16K X 1
MOS
RAM
i
" TK4859

20-4

Memory Subsystem

READ TIMING

0 50 100 150 200

INT ADD
BUS <6:0>

MA 14, 15

MEM SEL

RAS TIM

CAS TIM

DR EN

DATA OUT

RAS TIM

CAS TIM

DATA IN

WR TIM

l | l

250

350|

X rowaoo X X___corumnaoo X

|

DATA

P

WRITE TIMING ns

X DATA VALID - X

TK-4554

wa3sAsqng Aiouway

lg.

11.
12.
13.
14.
15.
l6.

Memory Subsystem

Comet Memory Microprogram Functionality

Function
IDLE

CSR 1 WR
CSR @ WR
CSR RD
ROM RD
UNUSED
INIT
UNUSED

MEM 4 BYTE WR
MEM 4 BYTE WR

REFRESH

BYTE WRITE

MEM READ DIAG PG
MEM READ DIAG PG
MEMORY READ

MEMORY READ (ECC)

Purpose

NOP

WRITE TO CSR 1 (F20004)

WRITE TO CSR 8 (F20000)

READ CSR 9, 1,

ASSEMBLE BOOT ROM LONGWORD

WRITE ALL ZEROS

LONGWORD WRITE,
(ECC)

LONGWORD WRITE,
(ECC OFF)

REFRESH DYNAMIC
ANY WRITE OTHER
DIAGNOSTIC PAGE

DIAGNOSTIC PAGE

READS A LOCATION

READS A LOCATION (ECC OFF)

Figure 20-6

20 6

MASK=1111

MASK=1111

THAN LONG

Entry Address
0000
gogl
0010
go11
0100
9101
119
g111
1000

1001

1010
1911
1100
1191
1110

1111

L o2

PHYSICAL ADDRESS

PHYSICAL ADDRESS <1:0>

16K RAM CHIP ADDRESS

16 K CHIP SELECT (0-3)

ARRAY BOARD SELECT & FINGER
PRINT LOGIC SELECT ARRAY

23 01 00
23 02
15 14 09 08 07 02
COLUMN ADDRESS ROW ADDRESS
I—-lNT BUSCSTIM -
17 16
BOARD
20 19 18 17
o{ojo COLUMN ADDRESS ROW ADDRESS |X X
; L_.INT BUS CS TIM.—J
ARRAY
SELECT
16K CHIP

SELECT

COMPLETE ADDRESS

TK-4555

wailsAsqng Aiouwap

Check
(Refer

Desired Parity

EVEN
EVEN
oDDb
0oDD
oDD
oDD
EVEN

cl =1,
cz2 =1,
c4 =1,
c8 =1,
clée =1,
c32 =1,
cT =1,

Memory Subsystem

Generation Algorithm

Bit Code

to Check Bit Generation Chart)

IF THERE IS AN ODD NUMBER OF ONES IN ROW 1

IF THERE IS AN ODD NUMBER OF ONES IN ROW 2

IF THERE IS AN EVEN NUMBER OF ONES IN ROW 3

IF THERE IS AN EVEN NUMBER OF ONES IN ROW 4

IF THERE IS AN EVEN NUMBER OF ONES IN ROW 5

IF THERE IS AN EVEN NUMBER OF ONES IN ROW 6

IF THERE IS AN ODD NUMBER OF ONES IN ROW 7
Figure 20-8

20-8

6-0¢

1Jey) UOT3IRIDUSD SWOIPUAS pue 31g ¥oayD KAiowsy g-gz =2Inbig

Byte 3 Byte 2 Byte 1 Byte @ Check Bits

31 36 29 28 27 26 25 24 23 22 21 2019 18 17 16 1514 13 121119098 76 543 21 0CTC32Cl6C8C4C2Cl

Row 1 X X X X X X X X X X X X X X X X X
Row 2 X X X X X X X X X X X X X X X X X
Row 3 X X X X X X X X X X X X XX XX X
Row 4 X X X X X X X X X X X X X X XX XXXXXXXX X
Row 5 X X X X X X X X X X X X X X X X X
Row 6 X xX X
Row 7 X X X X X X X X X X X X X X X X X
WRITE DATA EXAMPLE ‘ CHECK CODE

P 6 0 0 0 6 0 © o 0 P © © 0 0 0 0 6 0 0 O 06 00 0660601011 1 1 11 1 o
NORMAL READ EXAMPLE SYNDROME

P 6 6 »p 0 0 0 90 © 0 0 O 0 6 0 © 0 6 0 0 6 0 00 S 06006610106 0 "] g 6 0 0
DROP BIT <0>

P » 0 o 0 0 0 ¢ 0 0 0 O /& 0 @ 6 0 0 O 0 0 B 00 0060 @G01OO6Y O 1 1 2 0 0
PICK BIT <1>

" 0 0 o 9 P 6 9 0 O 0 0 6 O 0 0 6 @ O 06 0 6 00 P06 O001110 0 1 1 8 ¢ 1
PICK BIT <16>

o 0 0 6 0 06 0 0 0 0 0 0 0 0 0 1 0 6 0 ©6 0 06 V00 0O0O0G61011 1 1 n 0o 0 B
DROP CB <2>

¢ 9 # ¢ 0 0 06 06 o 0 90 0 0 0 0 6 06 0 O 0 0 0 00 O0G606610160 0 "] g o 1 0

wajlsAsqng AIouway

Memory Subsystem

Memory System Single Bit Error Syndrome Chart

Bit Position

In Error

NoOoUTde WS

CSR 0 <6:0>

Syndrome

1011000
0011001
0011010
1911011
0011100
1011101
1811119
#011111

1101000
0101001
0101010
11901011

0101100

1101101
1101110

#1901111

1110000
9110001
0110010
1110011
0110100
1110101
1110119
9110111

2111000
1111001
1111019
9111011
1111100
9111101
pl11110
1111111

Figure 20-190

20 190

Hex
Syndrome

58
19
1A
5B
1C
5D
5E
1F

68
29
2A
6B
2C
6D
6E
2F

70
31
32
73
34
75
- 76
717

38
79
7A
3B
7C
3D
3E
F

Memory Subsystem

MEMORY SYSTEM SINGLE BIT ERROR SYNDROME CHART

24 2111000 38
25 1111001 79
26 1111010 7A
27 9111011 3B
28 1111100 7C
29 #111101 3D
39 9111119 3E
31 1111111 7F

Figure 2¢-11

20--11

VAX-11/75@ LEVEL II

Writable Control Store

Student Workbook

Course produced by Educational Services Department
of
Digital Equipment Corporation

Writable Control Store

INTRODUCTION

The Writable Control Store (WCS) 1is an optional
extension of the control store that permits the customer
to design his own microroutines or macro instructions
that use WCS microcode. The WCS interfaces to the CMI
for data input and output. .

The WCS RAM data is connected to the control store bus -
lines and is enabled when control store address bit 13
is asserted. The WCS module 1is a daughter board
connected to the motherboard module via 4 signal
connectors, the mother board is the 6K x8¢ main control
store module located within the CPU.

21-1

Writable Control Store

OBJECTIVES

From a list of statements concerning the WCS,
identify each statement as true or false.

Provided with the 1laboratory procedure, write a

program to transfer 10 Comet CPU microinstructions
from main memory to WCS.

SAMPLE TEST ITEM
Identify the following statements as true or false.

a) In order to store one microinstruction in
WCS, 8 CMI bus cycles are required. .

b) The WCS address register has the processor
register address of 2C hex. .

c) Microinstruction execution speed is slower
when executed from WCS because of
interfacing with CMI. .

d) The base address of the WCS module in the
- CMI memory space is FEQ@00. .

RESOURCES

WRITEABLE CONTROL STORE
SCHEMATIC DIAGRAM

Writable Control Store

OUTLINE

XXI. WRITEABLE CONTROL STORE (WCS)

A, WCS sSpecifications and Characteristics
B. CMI Interface

C. Memory Address Allocation
D. Control Store Interface
E. Programming Examples
F. Laboratory Exercise 16
l. Write a routine to transfer 10 Comet CPU
microinstructions from memory to WCS
2. WCS Fault Isolation
G. Summary

21-3

Writable Control Store

WCS Module Functionality

The WCS module is a daughter board that attaches to the main
control store module in the CPU. Loading the WCS 1is
accomplished by writing the desired WCS data on the CMI with
the destination of the WCS. Data contained within the WCS
may be read onto the CMI and transferred to memory for
comparison with input data if so desired.

Loading one 80 bit microinstruction into WCS requires 4 CMI
write cycles because the WCS rams are loaded sequentially 20
bits at a time. This means that bits 21 to 31 of the data
are 1ignored. Bit 20 has a special function that will be
discussed later.

Refer to Figure 22-1, the WCS block diagram. At the left of
the drawing are CMI interface drivers to receive and
transmit to and from the CMI. The received address and DBBZ
are used to activate the WCS Control logic when a transfer
of data to or from the WCS occurs. Basically the chip
enables and write enables are generated on CMI writes to WCS
so that CMI data is sequentially loaded into the rams from
left to right.

The WCS rams can be addressed from two sources; either from
the microsequencer (CSA<9:8>) or the CMI address 1latch.
Naturally when loading or reading WCS, the address latch is
gated through the two to one mux and becomes the ram
address. The WCS ram data output has two destinations, the
DPM module control store latches and an interface to the
transmit side of the CMI. Some of the technical speci-
fications that one should be familiar with are:

l. WCS ram read access time is to 70 - 90ns.
2. Module timing is derived from CPU B clock.
3. No parity bit generation or checking

To understand the functionality of the WCS CMI interface
let's design an example program to load one 8¢ bit micro-
instruction into WCS address 2000, refer to figure 22-2
which is the comet physical memory organization and locate
hex address F00008 on the left of the drawing, this is the
I/0 address for WCS. It extends from F@@8000 to F@3FFC
because 4 longwords are required to load one WCS location.
Qur example program will require 4 longwords of data to

Writable Control Store

build one microinstruction. The next question is, where is
WCS address 2000 and how do we load WCS address 2000 from
the CMI? Simple, refer to Figure 22-3, the control store
memory allocation. Note that WCS address 2000 is the first
location of WCS from the control store side. From the CMI
side, 1locations F@06000, F00004, FOP008, and Fgagac
correspond to WCS address 2000. Remember 4 longword writes
are required to load one WCS 1location. Examine the
following macro code 1listing, Figure 22-3. Note that the
microinstruction itself is irrelevant, but the code that
loads it is what we want to study. This subroutine is
rather useless but could be doctored up so that parameters
can be passed to it. Each time the instruction on line 1700
is executed, a CMI write to WCS occurs. The address bits
<1:0> are 1irrelevant on the CMI because of 1longword
alignment. Bits <3:2> of the CMI address lines are used to
sequentially load the WCS rams. Refer to the following
table.

LOAD WCS RAM CMI ADDRESS BITS
BITS IF 3 2
<19:9> = g)
<39:20> =) 1
<58:40> = 1 g
<79:60> = 1 1

Since the program 1is using autoincrement addressing mode
this will automatically sequence through and load 20 bits at
a time into the WCS Rams, it is important to insure that the
macro program set the pointer to WCS to double guad word
boundaries, that 1is, 1initially the pointer must be as
follows...

CMI ADDRESS
BITS

23 .22 21 29 19 18 17 16 15 14 13 12 11 18 98 7 65 4 3 2

1 1 1 1 0 8 8 9 6 8 X X X XXXXXXX0090
This insures that the correct longword is loaded into the
proper location in WCS. The 2nd part of the program reads
the data written into WCS and compares it with the data in

the table to verify that the WCS was properly loaded.

21-5

Writable Control Store

Reading and writing WCS both drive the chip enable decoder
shown in the block diagram Fig. 22-1. Writes to the WCS
enable the upper WCS data drivers, while reads enable the
lower data drivers RAMS to the CMI. Reading the RAMS is
possible provided the CPU microcode is not running out of
WCS. This will be the rule rather than the exception. The
microword parity bits <79:78> must be contained in the data
transferred to WCS because there 1s no parity generator
within the WCS module. :

Execution of the microinstructions from WCS is similar to
that of any microinstruction in the main control store. The
WCS is enabled any time the next address is 2000 to 23FF
Hex, refer to Pig. 22-5, Comet Control Store addressing.
Bit 13, if set, indicates a WCS address. Since the WCS is
only 1K, bits <12:18> are irrelevant. Bits <9:8> directly
address the RAMS.

At the beginning of the discussion we mentioned bit 28 of
the WCS data transmitted to WCS had special meaning. This
bit sets a flip-flop called WCS PRESENT whose output goes to
the microsequencer. The flop is used for a microbranch
condition called WCS PRESENT. It will be used 1in the
situation where if the macro vector bits <1:0> 2 and there
is no WCS present a console halt occurs.

To summarize, the basic function of the WCS is to provide
the customer with capability of creating his own micorcode
programs to enhance performance.

21-6

cmi

Writable Control Store

TO BUT LOGIC 4E
L
(o l]]
<> | CHP o Iy WweS
wes ENABLE © 5 » DATA
714‘ PRES DECODER DRIVERS
‘WRITE L
o ENABLE ; n f
DECODER A2 o,) & A2 420
' 4
o L L
/ o] ADDRESS (oR Y L
730 |iaton WE DIN WE DIN WE DIN WE DIN
_ K K K 1K
" MUX i X X X ‘X
: 20 20 20 20
CSA<G:0> ———i -bout DOUT .DoUT DouT
, 10
. 7 20 .
—_— TIMING E —F = 17
DBBZ N PO 20 i . 20
ADDRESS CONTROL R
DECODE : -
‘ l 4y |
Ly v \ v DATA
, beez zmrgs ; DRIVERS
222 1:0 : p
WCSL ol
sap—N L N7

CONTROL STORE OUTPUT TO DPM

) 1K X 80
WRITEABLE CONTROL STORE BLOCK DIAGRAM

TK-2096

Figure 21-1. 1K X 80 Writable Control Store Block Diagram

21-7

000000
CIFFFE
040000

arEEEE
080000

0BFFEF

0C0000
FREEE

100000

13FEEF
140000
17EEFF
180000

18FFES
10000

1FFFFF

F0014-iC
F20800

F32000

FI2014

F32300

F80000

F80000

Figure 21-

258 K8

Writable Control Store

1 ARRAY Z0ARD

5128

768 K8

1024 KB

1260 K8

1938 X3

1892 K8

2048 X8

MAXIMUM BULLY PQPULATED ARRAYS

END OF EXISTENT MEMORY

10 KB WRITEABLE CONTROL STORE
T AT e TN —

3

MEMORY CONFIGURATION H‘EG. A

MEMORY CONFIGURATION R€G. 3

MEMORY CONFIGURATION REG. C

BOOTSTRAP ROM PROGRAM

MASSBUS ADAPTOR O INT, REGISTERS
MASSBUS AOAPTOR O EXT. REGISTERS
MASSBUS ADAPTOR O MAP REGISTERS
MASSBUS ADAPTON 1 INT. REGISTERS
MASSBUS ADAPTOR 1 EXT. REGISTERS
MASSBUS ADAPTOR 1 MAP REGISTERS
MASSSUS AQAPTOR 2 INT. REGISTERS
MASSBUS ADAPTOR 2 EXT. REGISTERS
MASSBUS ADAPTOR 2 MAP REGISTERS

UNIBUS DATA PATH CONTROL & STATUS
UNIBUS DIAGNOSTIC REGISTERS

2IND UNIBUS DATA PATH CONT. STA
2IND UNIBUS DIAGNOSTIC REGISTERS

2ND UNISUS MEMORY SPACE
128K

UNIBUS MEMORY
SPACE 128KW

COMET PHYSICAL MEMORY ORGANIZATION

2.

21-8

1,Q SPACE

TR.1733

Comet Physical Memory Organization

1
1

o Writable Control Store

[
<
3
-3
0 -
=] L
= -
= o) 0 [=] (=1
- A @« = z
[(1 oial " @ e =
-y Uz Uz ! ©=
o B =O =0 0= =2
-] QoA &Eo - - i} L 4
Doy < =] LS =3
- -V [e =
- © B T [=1=}
o= @ zTND DX 1510 {4 -3
o - e OO 3l - -
-3 = - U [w x
=23 15 =Q0 @« - - xzo a
~mX L2} « o Ano 3z - o
oo ®Z DZU O« c =
(a2 ZT Emime OQZ =0 X
o G bt X 2 O (=1 O -
>x Gl Q> Exdv & (35
x U O QS E =l -3 o
oo S Omifs Dt L) =20 o -
= wNE =o Q@ - x -
o= - Oz mal | - -
<z QY X2 e Liad o «
Xial <Z O = a wo o
= s QXD WOW - k-4 -
——— o (513 ou 1) -4 -4
- N 1.0 Wox a (-1 =2
o = OD =S -0 -
g T TEU IO ==} fallso L=
<X o X =L« D p *C4 -1 =
> *men Snanen emenen - LY -
k3
»o
|
O o .
ne « - - -
-) - o e
T~ >0 4
Lasaasl Z Horo +> a “+ =
e OO0 TNO -y ~ - o
~ 2l MenNo o -y ~N
o0 <« TN < -4 =
= e O~ - -~ -
IR QU COOO W hend - - O
T~~~ g OO0 D - - = & L o4
S Oud OOOO po -1 L Rand & .
- J MEICICHC g N o et - o -
12 €€t ¢ S zm TN -t O =
T - E-4] T T & © W
== =S oDV - =]
NN e =222 et S w0 & a2 O
11 wmod SQOC E>>0 DD MWALEID >CEDE
SO G mwde3ad =200V NOow WEZO Onane
NN . «a s ose QCEXXZ TE< VUM TXZOUX
- -0 -
- -
l - 0l
=) - -2 - -
= - o€ v - -
3 =2 e - -
- -t Pom ™. e]

SO0 OVDOTOOOOOOOO0T OO OO0
oOC SO o000 © E
7

0084wc000079 R LOONMND D b
[=3=4 Y 1

NN &

SO0OOOODDO <
OO0 OCODOCOOOODIOTOCOOIOOSODO
=3

> .
S o POCEYY OO CeotNen ONTN
< enor S2aC —Qa “Delh, 2OQO

wCS
]
[}
0
0

09T Slais LMD L CMO
N < CTON «CODOONT

50

AND VERIFY

ot & ~
S 15 1
<
(-4
<
e
o
=]
~ w
[9 'S
-y —-——ria N D
nin =19 @ Owin
(=%
<
=
-

Figure 21-3.

Writable Control Store
MICROWORD

AMOUNT ADDRESS 7

16K 3FFF
12K

23FF

IK WRITEABLE -
CONTROL STORE 'K RAM

8K 2000 ;/ ;

183F 777 /// ///

1800
6K 17FF DIAGNOSTIC CONTROL STORE <

SERVICE AND INSTRUCTION
EXECUTION MICROCODE
D19€E -
OPERAND SPECIFIER f
ROUTINE ENTRY POINTS > 6K RAM
0100
003F
MICROBRANCH AND MICROVECTOR
ENTRY POINTS
0011
0000 POWER UP ENTRY POINT J
COMET CCS CONTROL STORE MEMORY ALLOCATION
TK-1983

Figure 21-4. Comet CCS Control Store Memory Allocation

21-10

Writable Control Store

COMET CONTROL STORE ADDRESSING

Figure 21-5. Comet Control Store Addressing

21-11

NEXT FIELD
- <13:0>
i3 12 11 10 9 8 7 6 5 4 3 2 1 0
g‘r_)\ A J ,
Lewpaponess, Loeation wirkin cvie
CHIP ARRAY SELECT, 1K BANK OF CHIPS
CONTROL STORE SELECT _WCS,0CS “eesT
0=CCS R 13121110 e ®i1zitie.
"1 = WCS,DCS. - 1 0 0 o——1STKWCS 0000 ISTK
- 1001 - 000 1 2NDK
} 10,1 0 » NOTUSED 0010 3RDK
' 1011 001 1 4THK
11 0 g——64WORDDCS Q0 1 0 0 S5THK
1701 010 1 6THK
111 1 0111

T TK-1985

¢T-T1¢

ADDRESS
&

FUNCTION

DATA

BCLK L

DBBZ-L

DATA
&
STATUS VALID

ADDRESS

SELECT
WCS L

LOAD ADDRESS
LATCH (BCLKN)

TIME 1L

TIME 12H

i TIME2H

——

: WRITEH

WRTCLK L

T LoAD RAMS

; CHIP ENxL

ENABLE CHIP IN

; WRT ENxL

ENABLE WRITE

231035 T10a3uU0D 2TQRITIM

€1-1¢

S——
BCLK L

ADDRESS
&
FUNCTION

DBBZ-L

: STATUS
RETURN READ &

DATA READ DATA

|

ADDRESS

| SELECT WCS L

LOAD ADDRESS
LATCHH

) g

TIME 1L

TIME 12H

TIME 2H

WRITE H

—

DRIVE CMI L

CHIP ENxL

READ RAM

21035 T0I3U0) BTQRITIM

VAX-11/750 Level II

Power Systems

Student Guide

Course Produced By Educational Services Department
of
Digital Equipment Corporation

Power Systems

Power System

INTRODUCTION

The VAX-11/750 power system lesson consists of a block
diagram of power distribution including memory battery
backup and the power cells for the time of vyear clock.
After a classroom lecture, a lab will be utilized to
troubleshoot power system failures.

OBJECTIVES

Given a system that won't power up, isolate the malfunction
and replace the faulty field replaceable unit.

SAMPLE TEST ITEM
The time of year receives its power from
a. +5 V supply
b. +12 V supply
c. 1.5 V dry cells
d. Battery backup
RESOURCES

1. VAX-11/750 System Maintenance Guide

2. VAX-11/750 Power System Technical Description

24-1

Z-ve

A.C. POWER
CONTROLLER

BLOWER
‘MOTOR

{AIR FLOW
'SENSOR

VAX 11/750 POWER SYSTEM
—COMPONENTS—

+2.5V POWER SUPPLY
ASSEMBLY

BATTERY
BACKUP
UNIT
(OPTIONAL)

Figure 24-1

+5V POWER SUPPLY
ASSEMBLY

TOY

CLOCK
BATTERY
.CHARGER

Power Components

TO0Y
BATTS’
6V

TK-4723

swsilsAs asmod

£-v2¢

115VAC/230VAC IN

F

VAX 11/750 POWER SYSTEM:
AC POWER DISTRIBUTION |

OPTIONAL|
REMOTE |
SWITCH |
CONTROL

+2.5V POWER SUPPLY

ASSEMBLY

|

f

+5V POWER SUPPLY}‘
ASSEMBLY

i

A.C. POWER
CONTROLLER
SW SW {AC
AC AC
BLOWER
MOTOR
AIR FLOW
SENSOR

1

BATTERY
BACKUP
UNIT

(OPTIONAL)

Figure 24-2

AC Distribution

TOY
CLOCK

BATTERY
CHARGER

TOY .
BATTS"
6V ‘

TK-4724

swa3lsAs Ismog

v-¥c

VAX 11/750 POWER SYSTEM:
DC POWER DISTRIBUTION |

BIAS| _
VOLTAGES! +5V, 135A|
L ‘W
A.C. POWER' +2.5V POWER|) +12VA, +5VA|l +5V POWER| | 115y 2
CONTROLLER SUPPLY[| SUPPLY[fmmis
BACKUP : - CLOCK 1 BATTS'
: UNIT 30V BATTERY [°
AIR FLOW o v
SENSOR (OPTIONAL) CHARGER
v v
2.5V H5VB
85A |10A

—5VB +12vB TO
1.2A 10A TOY

CLOCK

Figure 24-3 DC Distribution

TK-4714

swa3lsAs asmog

Power Systems

CONTROLLER INDICATORS

Overvoltage (red)

Overcurrent (red)

DC OK (green)

+5 Fail (red)

+2.5 Fail (red)

Plug in reg fail (red)
Overtemp indicator (clear)

AC Power Indicator (amber)

- 1Indicates that there 1is an
overvoltage condition in either
the +2.5V or +5V power supply.
The <correct voltage of the
failing box will not be present.
Also, the appropriate fail
indicator will be. on.

- 1Indicates that there is an
overcurrent condition in. either
the +2.5V or +5V power supply.
The failing box will nott have
an output. Also, the
appropriate indicator will be
on.

- Indicates the power system is
in correct functioning order.
If any other status indicator is
on, this indicator is off.

- Indicates the +5V power supply
is malfunctioning. The 5V box
will not have a correct output.

- Indicates the +2.5V ppower
supply is malfunctioning. The
2.5V box will not have a corret
output.

- Indicates that either the #*5
volt, +12 wvolt, or +14 volt
regulator is malfunctioning.

- Indicates an overtemperature
condition in either the +2.5
volt or +5 volt power supply.

- Indicates that AC is applied
to the controller. It is on and
remains on as long as the AC
power cord is plugged in and AC
is present.

Power Systems

VAX 11/750 POWER SYSTEM

SENSING
AC LOW
OPTIONAL o LOW
REMOTE
SENSE OVER TEMPERATURE SENSE
‘ STATUS t’ STATUS
A.C. POWER CONTROL | t2.5V POWER | sgnsg | +5V POWER
CONTROLLER[T—— SUPPLY ¢ SUPPLY
ASSEMBLY ASSEMBLY
BATTERY
BACKUP ENABLE
1
BLOWER BATTERY TOY TOY
MOTOR BACKUP CcLOCK BATTS'
UNIT BATTERY
AIR FLOW 6V
OPTIONAL
Ain1seEnsoR () CHARGER
FLOW
SENSE
TK4713
Figure 24-4 Power Sensing

24-6

Power Systems

+2.5 VOLT POWER SUPPLY

ACLOW DCLOW

MPERATURE SENS 1
JOVERTEMPE ENSE 25V CONTROL | *+12VA BIAS VOLTAGE
VAOLTAGE/CURRENT STATUS o MBOARD” A m—?Z‘VA BIAS VOLTAGE
- - S VOLTAGE
REGULATOR STATUS 2.5V MOTHER . 1OVA BIAS VOLTAGE
o BOARD
AC IN FROM CONTROLLER OPTIONS
: STATUS SENSE |
- §;1EEZG\(JLATOR ;?séggma | TROM ¥ov SUPPLY
S0V FROM) 'BOARD BOARD
‘BATTERY BACKUP :
‘BOX
FI2VB ~ 4BVB-BVB 2.5V
10A 1.2A | 10A 85A
TK-47‘;:-G~

Figure 24-5 +2.5 Volt Supply

24-7

Power Systems

+5 VOLT FOWER SUFFL Y

+5V A BIAS YOLTAGE
—12VA BIAS VOLTAGE
+12VA BIAS VOLTAGE

VOLTAGE/CURRENT STATUS
<NEGULATOR STATUS +5V CONTROL BOARD

-

‘7OVERTEMPERATURESENSE +5V MOTHER BOARD

OPTION

AC IN FROM CONTROLLER +15 VOLT
* REGULATOR

BOARD

|
K R T |
+15V =15V +5V
2A 3.5V 135A

TK4715

Figure 24-6 +5 Volt Supply

24-8

VAX 11/750 POWER SYSTEM
* — Y ol W'

6-¥¢C

. A vy Y
+25Vi—5VBg+5VB;H2VB TO

85A

Figure 24-7

1.2A 110A ‘10A

Total Systém

TOY
CLOCK

OPTIONAL
'REMOTE SENSE > DCLOW
OVE
115VAC/230VAC _ RTEMPERATURE SENSE
° IN 1 T BIAS
REMOTE £12VA, +5VA ’ :
1 A c power | SWITCH +2.5V POWER +5V POWER | o o0
conTROLLER | CONTROL F syppLy STATUS supPLY =2l
S TATUS ASSEMBLY SENSE ASSEMBLY |-15V, 3.5A
e ————— | ?
" CONTROL ; e
sw |sw |ac 3 t I
AC |AC | |
BATTERY BACKUP ~'
ENABLE 1
A 1
BLOWER BATTERY TOY
MOTOR BACKUP 30v cLOCK TOY
ar FLow | JUNIT "1 BATTERY SATTS
AIR | SENSOR (OPTIONAL) CHARGER
FLOW
SENSE

TK-4721

Swo3sAS Iamog

VAX-11/758 LEVEL II

Appendices

Course produced by Educational Services Department
of
Digital Equipment Corporation

Vector

SCBB+d
SCBB+4

SCBB+8

SCBB+C

SCBB+190
SCBB+14
SCBB+18
SCBB+1C
SCBB+20
SCBB+24
SCBB+28
SCBB+2C
SCBB+30
SCBB+34

SCBB+49
SCBB+44
SCBB+48
SCBB+4C

SCBB+54
SCBB+60

SCBB+84
SCBB+88
SCBB+8C
SCBB+98
SCBB+94
SCBB+98
SCBB+9C
SCBB+AJ
SCBB+A4
SCBB+AS8
SCBB+AC
SCBB+B#@
SCBB+B4
SCBB+BS8
SCBB+BC

Appendix A

Vectors and System Control Block

System Control Block Format

Description

Not used
Machine Check

CS Parity

Bad Ird

Memory Error

Cache Parity
Kernel Stack Invalid
Power Fail
Reserved Opcode
Customer Opcode XFC
Reserved Operand
Reserved Address Mode
Access Violation
Translation Invalid
Trace Trap
Breakpoint Opcode
Compatability Mode
Arithmetic Trap

CHMK
CHME
CHMS
CHMU

Corrected Read Data
Write Bus Error

Soft Interrupt
Soft Interrupt
Soft Interrupt
Soft Interrupt
Soft Interrupt
Soft Interrupt
Soft Interrupt
Soft Interrupt
Soft Interrupt
Soft Interrupt
Soft Interrupt
Soft Interrupt
Soft Interrupt
Soft Interrupt
Soft Interrupt

IPL

1F

1F
1E
1F
1F
1F
1F
1F
1F
1F
1F
1F
1F

1F
1F
iF
1F

o
o »

HEpoOW P Owo g, W -

I/E

(o W o B e I o o I e R o R R B R

B Emm

H

HHEHAHEHHHHHHBH B3P

SCBB+C0O

SCBB+F0
SCBB+F4
SCBB+F8
SCBB+FC

SCBB+169
SCBB+164
SCBB+168

SCBB+200

Interval Timer

TU-58 Receive
TU-58 Transmit
Console Receive
Console Transmit

Massbus Adaptor 9
Massbus Adaptor 1
Massbus Adaptor 2

Unibus
(SCBB+280+Unibus Vector)

A

—

Appendix B

Vector Operation

If Vector bits <1:8> are as follows...

Vector bits
Vector bits
Vector bits

Vector bits

<1:80>=0
<1l:0>=1
<1:0>=2

<1:8>=3

Use Kernel Stack unless IS bit = 1
Use Interrupt Stack

Trap to WCS location 2001, if WCS is
not present or disabled, trap to
location 0@61 1in CS. Remove
backplane jumper from slot 5 B44 to
B48 if WCS is installed.

Halt at Vector (PC points to
interrupted instruction or faulted
instruction

Appendix C
Machine Check and Write Bus Error

Logout Area and Error Codes...

Machine Check Exception Stack Logout Table

(SP) LENGTH PARAMETER 20000028 SUMMARY PARAMETER
(SP)+4 SUMMARY PARAMETER 0000000X i
(SP)+8 VA XXXXXXXX 1 = CS Parity Error
(SP)+C PC XXXXXXXX 2 = Memory Error
(SP)+10 MDR XXXXXXXX 3 = Cache Parity
(SP)+14 SAVED MODE REG 00000008X 4 = Write Bus Error
(SP)+18 RLTO 0000000X 5 = Corrected Data
(SP)+1C TBGPR 0000008X 7 = Bad IRD
(SP)+20 CAER po0000808X
(SP)+24 BER 0000000X
(SP)+28 MCESR 000000BX
(SP)+2C PC XXXXXXXX
(SP)+30 PSL XXXXXXXX
ACV OR TNV

Translation Not Valid or Access Violation exception stack

logout (Exception Service from Vectors 24 and 20
Respectively)

(SP) Error Code (See Below)

(SP)+4 Virtual Address Referenced

(SP)+8 Program Counter

(8P)+12 Processor Status Longword

Error Codes: @= Read Access Violation or XB Access

Vioiation or PTE Fetched not valid for read
1= Accessing System 1 Space (S1) or 1length
Violation
2= No Access to Process Page Table (from SPTE)
= Process PTE VA not in System Virtual Space
4-7= Same as 0 to 3 but for write access rather
than read access

COMPATABILTY MODE TRAP

Compatabilty Mode Stack Logout (Exception Service from
Vector 382)

(SP) Error Codes (See Table Below)
(SP)+4 Program Counter
(SP)+8 Processor Status Longword

Error Codes: @= PDP 11 Reserved Operand
1= Breakpoint Opcode Executed
2= 1/0 Trap
= Emulator Trap
= Trap
= Reserved Instruction (HALT)
= 0dd Address Referenced

ARITHMETIC TRAP
Arithmetic Trap Stack Logout (Exception Service from Vector
34) , .

(SP) Error Code
(SP)+4 Program Counter
(SP)+8 Processor Status Longword

Error Codes: @= Undefined
l= Integer Overflow
2= Integer divide by zero
3= Floating Overflow
4= Floating/Decimal divide by zero
5= Floating Underflow
6= Decimal Overflow
7= Subscript Out of Range

Appendix D

Console Commands

The Comet system has console functionality similiar to the
VAX 11/788. These commands are illustrated below with

examples.

Commands

The console prompt is the same as the VAX 11/780
">>>" and appears at the beginning of every line.

b Enter Comet Console mode

"°p" Enter RDM console mode

RDM>

>>>E Examine Command

>>>D Deposit Command

>>>ILKCR> Init Command, Invalidates TB, Cache,

>>>T<CR>

>>>S 1800<CR>
>>>5<CR>

>>>C<LKCR>

>>>N<KCR>

>>>B<KCR>

and does Processor Init and Unibus
Init

Test Command, Runs Micro Verify
Microroutine explained below

Start command, The command may have
an address argument following or
carriage return. If a «carriage
return is typed, the address in the
PC 1s used. The start command does
an 1init sequence before going to
IRD1 of the macroinstruction pointed
to by the PC.

The Continue command is the same as
the start command and starts
macrocode execution at the address
in the PC.

This command is used to single step
the macroinstructions after the PC
is loaded.

The Boot command in this example
will boot the device selected by the
front panel DEVICE switch

Command

>>>X Apt Load and Dump Command

Switches for Examine and Deposit Console Commands

Size switches /B sets the data size to byte
/W - word
/L long
Function /G GPR
/I IPR
/P Physical Memory
/v Virtual Memory
<SP>P PSL

Command Switches for Boot Console Command

>>>B/X DDCUKCR> Boot Device selected by DDCU typed
at console and inhibit Micro Verify
Test.

>>>B/n DDCUKCR> Boot Device selected by DDCU typed
at console and pass a four digit
number as software control flags to
VMB.EXE in RS

>>>B DDCUKCR> Boot device specified by operator

Examples

>>>D/G/L F 1008<CR> ;Put 1000H in PC

>>>D/P 1000 005251DBAKCR> ;Put code in address 106¢H

>>E/I 25<CR> ;Examine cache disable Reg

>>>I<KCR> :Do Init sequence ‘

>>>B/18/X DMABLCR> ;Boot Diagnostic Supervisor
;without Micro Verify from
;DMAQ

CONSOLE COMMAND ERROR CODES

If a
abor
two
for

>>>E PLC
>>>ELCR>
211
>>>

n illegal console command is attempted or command is
ted because of a microtrap or some other condition a
digit error code is typed out and the console waits
new input. For example... :

R> !Examine PSL
!Implies Examine Next Location, this is illegal.
IQuestion Mark and error code is typed by console
At this point ready for new command

Error Codes 20= Deposit or Examine of Memory Failed

(Access Violation, Translation not wvalid,
Bus Error, TB Parity Error, or Control
Store Parity Error)

ll= Illegal access of an IPR

30= Apt Loading Checksum error

33= Attempt to Boot from unknown Device type
(DM, DL, DT, DR)

34= Boot Device Controller not "A","B","C", or
nDlI

MICRO VERIFY The following table indicates the microtest
sequence during micro verify. If a test
failure occurs, the PC is replaced with an
error code and the failure letter is typed.
Micro Verify then merges to console front end
flows.

Normal Test sequence as appears at console after power up
with FPS1 set to HALT

%%

90000000 16

>>>

Test

in Progress Test Name Fail Character
1. R-Bus, W-Bus, D Reg Tests ¢]
2. M-Bus, Q-Reg Test c
3. Scratchpad Test E
4. Scratchpad Explicit Address Test Mtemps F
5. Scratchpad Explicit Address Test Rtemps I
6. Scratchpad Explicit Address test IPRs J
7. Scratchpad Explicit Address test GPRs L
8. Dual Port Address Test L
9. XB, IR, and OSR tests 0]
19. XB,PC, and PC+Isize test Q
11. D-Size Tests R
12. D-Size Tests T
13. Cache Parity Checker Test X
14. TB Parity Checker Test [
15. Control Store Parity Checker Test]
16. Cache Test -

Test Failure sequence would appear at console as follows

3F This indicates a failure of the Mtemp Scratchpad

address test.

PP00BXXX FF PC contains loop count or point at which test
>>> failed and "FF" indicates micro verify

failure.

CONSOLE HALT Error Codes that are typed upon execution of

the following conditions:

Control P while in console mode

Execute TEST console command

Control P Halt or single macroinstruction mode>>>N<KCR>
Interrupt Stack Not Valid

Halt Instruction Executed

Vector Bits <1:0>=3, Halt at Vector

Vector Bits <1:0>=2, WCS disabled or not present

Change Mode Instruction executed on Interrupt Stack
Change mode instruction executed and vector <l:0>not=0
Double Bus Write error halt

Power up and can't find RPB, FPS1 at RESTART/HALT

Power up and warm start flag false FPS1 at RESTART/HALT
Power up and can't £ind good 64K of memory

Power up and booting, but bad or no Boot ROM

Power up and cold start flag set during boot subroutine
Power up halt FPS1 at HALT position

Micro verify test failure

Code=08
Code=01
Code=02
Code=04
Code=06
Code=07
Code=08
Code=0A
Code=0B
Code=0F
Code=11
Code=12
Code=13
Code=14
Code=15

Code=16
Code=FF

The format for entering console mode is that the PC is typed

and a two digit error code is immediately following.
Example...

P0010004 06
>>>

For

The preceding example indicates that a halt instruction was

executed at location 18063.

Appendix E
RDM Console Command Summary

Control Key Functions

Enter RDM console mode.

Control D

Control P Enter Comet Console Mode

Control U Abort current Command Line

Control O Inhibit Printing of text

Control R Retype current command line

Control C Cancel current function (Repeat console
command)

Control S Disable CPU output to active Terminal

Control Q Continue Output to Terminal after Control

S

RDM Console Commands

RDM>TE Load and Run Microdiagnostics

RDM>TE/C Load Micromonitor and go to Micromonitor
parser

MIC>

RDM>TE FILENAME.EXT
Load different monitor program and
transfer control to it. (WCS Debugger
etc.)

RDM>LOA FILENAME.EXT <PHYS ADDRESS>
Load RT1l file from TU-58 into CMI memory
at <PHYS ADDRESS>. If no address 1is
specified, default is 0

RDM>TA Enable Talk mode between local and Remote
Terminal (Used during RD session)

RDM>E Examine Command, the following are valid
Examine command switches

E/B <ADDRESS> Data size is byte
E/W <ADDRESS> Data size is word
E/L <ADDRESS> Data size is long

RDM>D Deposit Command, the following are valid
Deposit command switches

D/B <ADDRESS> <DATA> Data size is byte

D/W <ADDRESS> <DATA> Data size is word
D/L <ADDRESS> <DATA> Data size is long

19

RDM>SE 20601

RDM>TR

RDM>CL
RDM>STE
RDM>STE/T
RDM>STO

RDM>CON

Set micromatch address at 28861 and
generate scope sync

Trace until micromatch, dumps DCS RAM for
64 Rom States prior to micromatch, most
recent microaddress is printed first.
Clear stop on Micromatch

Single Microinstruction cycle

Single Tick Clock

Stop CPU Clock

Restart the CPU clock

RDM>PAR <CS ADDRESS>

Perform a Parity Scan of the control
store beginning at the location
specified. There is bad parity written
into location 17FD so that is where the
parity scan stop.

RDM>UA <CS ADDRESS>

Reads the control store microinstruction
at the <CS ADDRESS and latches the
microinstruction. Clock is stopped.

RDM>UA/C <CS ADDRESS>

RDM>INI

RDM>SH

RDM>SH/V

RDM>REP

RDM>R E/B @

Similiar to above except microinstruction
is not latched.

Do a processor Init (same as Front Panel
Init)

Displays CPU control store address of
current microinstruction, and next field
of the next microinstruction. (Clock must
be stopped.)

Displays the version and date of the RDM
8085 rom macrocode.

Repeat the last console command
continuously

Repeat the «current console command
continuosly

11

RDM

RDM>RET Return to program I/O mode

RDM>RET/D Return to program I/0O mode but 1leave
microbreak set.

CONSOLE ERROR CODES

Tape function errors

TAP:01 UART - Device timeout

TAP:02 UART - Error from UART

TAP:03 UART - Data Set Ready dropped

TAP:04 UART - Receive Overflow

TAP:05 Tape checksum error received

TAP: 06 Tape count byte exceeded maximum

TAP:07 Tape no end packet, invalid operation

TAP:08 Tape invalid packet received

TAP:89 Tape file not found

TAP:12 Tape Directory Error

TAP:13 Tape flag received, not command or data

TAP:14 Tape Read Length Error, not all records
fit

TAP:C9 Tape Bad Record number

TAP:D@ Tape Bad Operation Code

TAP:DF Tape Motor stopped

TAP:EQ Tape Block not found

TAP:EF Tape Data check error

TAP:F5 Tape write protocol error

TAP:F7 Tape cartridge not present

TAP:F8 Tape Bad Unit number

TAP:EE Tape End of medium

TAP:FF Tape diagnostic failure

Terminal Error Codes

CMI

TRM: QA Terminal Control C received

TRM: @B Terminal Command input buffer overloaded
TRM:@C Terminal Control D received

TRM: @D Terminal Command Input larger than buffer
TRM : 0E Terminal Remote Line CRC error occured
Error Codes

CMI: g0 Nonexistent memory

CMI:f1 Corrected Read Data

CMI: @2 Read Data Substitute

12

General Errors

SYNTAX ERROR Error in entering console commands

INVALID

COMMAND RDM does not know the command just entered
RDM:10 Operation already in progress

RDM:11 Invalid operation code contained in Macro

13

Appendix F
Power Up and Boot Error Reports

FPS1 set to either RESTART/BOOT or BOOT

$3%% This indicates that a good 64KB section
XXXXXXXX 13 of memory was not found and return to
. console mode

>

$%%% : This indicates a failure or nonexistence

XXXXXXXx 14 of the boot ROM

>>>

XXXXXXXX 06 If a halt instruction is executed after
typing a console

>>> Boot command, this indicates a failure of

the read of 1logical block @ £from the
selected boot device. The PC should be
equal to the base address of the first
good 64KB of memory plus FX16 for TUS8 or
FX20 for RKP6. This failure occurs in the
Boot ROM routine.

VMB PRIMARY BOOT FAILURES

BOOT is the program name for VMB.EXE
The "F" indicates a fatal error and the type of error is
reported.

3$BOOT-F-Unknown processor This indicates that CPU
is not a Comet 9or
11/784a, check SID
register for proper
jumpering in the CPU
type field on the

Backplane.
$BOOT-F-Unexpected Exception This indicates that one
of the following

exceptions occurred.

1. Access Violation

2. Breakpoint Opcode
3. Reserved Operand

4. TBit Trap

5. Page Fault (TNV)

14

$BOOT-F-Unexpected Machine Check

$BOOT-F-Nonexistent Drive

¥BOOT-F-Unable to locate BOOT file

$BOOT-F-Bootfile not contiguous

$BOOT-F-1/0 error reading boot file

15

This indicates some sort
of machine Check
occurred. Check all
adaptors using console
examine and deposit
commands. Probabably a
timeout.

Self explanatory, Check
DEFBOO.CMD on 11/788 and
insure system disk is
drive being booted.

VMB can't find
[SYSEXE]SYSBOOT.EXE or
if bit 4 in R5 is set,
VMB can't find
[SYSMAINTIDIAGBOOT.EXE

Indicates that
[SYSEXE]SYSBOOT.EXE or
[SYSMAINTIDIAGBOOT.EXE
is not contiguous on
system disk. Recopy or
rebuild

Indicates problem
reading boot file from
disk by $QIO service.

	001
	002
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	02-001
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	04-001
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	05-001
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-17a
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	06-001
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	06-47
	06-48
	06-49
	06-50
	06-51
	06-52
	06-53
	06-54
	06-55
	06-56
	06-57
	06-58
	07-001
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	07-37
	07-38
	07-39
	07-40
	07-41
	07-42
	07-43
	07-44
	07-45
	07-46
	07-47
	07-48
	07a-001
	07a-03
	07a-04
	07a-05
	07a-06
	07a-07
	07a-08
	07a-09
	07a-10
	07a-11
	07a-12
	08-001
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	09-001
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	1-001
	10-001
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	11-001
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	12-001
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	13-001
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	14-001
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29
	14-30
	14-31
	14-32
	14-33
	14-34
	14-35
	14-36
	14-37
	14-38
	14-39
	14-40
	15-001
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	15-26
	15-27
	15-28
	15-29
	15-30
	15-31
	15-32
	15-33
	15-34
	15-35
	15-36
	15-37
	15-38
	15-39
	15-40
	15-41
	15-42
	15-43
	15-44
	15-45
	15-46
	15-47
	15-48
	15-49
	15-50
	15-51
	15-52
	15-53
	15-54
	15-55
	15-56
	15-57
	15-58
	16-001
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	17-001
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-18
	18-001
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	19-001
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	20-001
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	21-001
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	21-07
	21-08
	21-09
	21-10
	21-11
	21-12
	21-13
	24-001
	24-01
	24-02
	24-03
	24-04
	24-05
	24-06
	24-07
	24-08
	24-09
	A-001
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15

