
.. "

' · .. ·.

;
1

~ . .
.,

. :

EK-MS780-TD..001

MS780
MEMORY SYSTEM

TECHNICAL DESCRIPTION

digital equipment corporation • maynard, massachusetts

1st Edition, August 1978

Copyright c 1978 by Digital Equipment Corporation

The material in this manual is for informational purposes and is
subject to change without notice.

Digital Equipment Corporation assumes no responsibility for any
errors which may appear in this manual.

Printed in U.S.A.

nis document was set on DIGITAL's DECset-8000 computerized
typesettin1 system.

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

DIGITAL
DEC
PDP
DEC US
UNIBUS

DEC system- I 0
DECSYSTEM-20
DIBOL
EDUSYSTEM
VAX
VMS

MASSBUS
OMNIBUS
OS/8
RSTS
RSX
IAS

CHAPTER 1

I.I
1.2
1.3
1.4
1.5
1.5. l
1.5.1.l
1.5.1.2
1.5.2
1.5.3
1.5.3 .I
I .5.3.2
1.5.3.3
1.5.3.4
1.5.3.5
1.5.4
1.5.5
1.5.6
1.6
1.7
1.8
1.9

CHAPTER 2

2.1
2.2
2.2.1
2.2.2
2.2.2.1
2.2.3
2.2.4
2.2.4.1
2.2.4.2
2.2.4.3
2.3
2.3.1

CONTENTS

Page

INTRODUCTION

MANUAL SCOPE .. 1-1
RELATED DOCUMENTS ... 1-1
OVERVIEW .. 1-2
BASIC MEMORY OPERATIONS ... 1-4
SBI PROTOCOL ... 1-4

SBI Synchronization ... 1-4
r>erived Time States ... 1-4
Basic Transmit/Receive Timing .. 1-4

Arbitration Group .. 1-6
Information Transfer Group .. 1-6

Parity Field .. 1-7
Tag Field .. 1-7
Identifier Field ... 1-7
Mask Field ... 1-8
Information Field ... 1-8

Response Group ... 1-9
Control Group ... 1-9
SBI Summary ... 1-11

MEMORY CYCLES; GENERAL DESCRIPTION .. 1-12
ACCESS AND CYCLE TIMES .. 1-14
ERROR CHECKING AND CORRECTION (ECC) .. 1-14
REFRESH ... 1-15

FUNCTIONAL DESCRIPTION

INTRODUCTION .. 2-1
INFORMATION DECODING SEQUENCE; GENERAL. 2-1

Parity Check ... 2-2
Tag Decode .. 2-2

EXPECT WRITE DAT A ... 2-2
Function r>ecode .. 2-3
Address r>ecode ... 2-4

Array Address .. 2-4
Array Address Generation .. 2-6
1/0 Address ... 2-9

COMMAND FILE ... 2-9
File Control ... 2-9

111

2.3.2
2.4
2.4.l
2.4.2
2.5
2.6

CHAPTER 3

3.1
3.2
3.3
3.3.1
3.3. l.l
3.3.1.2
3.3.1.3
3.4
3.4. l
3.4.2
3.4.2. l
3.4.2.2
3.4.3
3.4.3. l
3.4.3.2
3.4.3.3
3.5
3.5.1
3.5.2
3.5.3
3.5.4
3.6
3.6.l
3.7
3.8
3.9
3.10
3.11
3 .12
3.13
3.13.1
3.13.2
3.13.3
3.13.4
3.13.5

CONTENTS (Cont)

Pa1e

File Operation .. 2-9
MEMORY CYCLE SEQUENCE; GENERAL. .. 2-11

Read Cycles .. 2-12
Write Cycles ... 2-12

INFORMATION DECODING SUMMARY ... 2-13
MEMORY CYCLE SUMMARY .. 2-13

DETAILED DESCRIPTION

INTRODUCTION .. 3-1
ADDRESS LOGIC ... 3-1
COMMAND FILE LOGIC ... 3-1

File Control Logic .. 3-6
Write and Read File Counters .. 3-6
Difference Decoder .. 3-6
Room-In-File Comparator ... 3-7

DATA PATH LOGIC ... 3-7
Data Transfer Logic ... 3-9
Error Check and Correction Logic (ECC) ... 3-9

ECC During Reads ... 3-9
ECC During Writes .. 3-12

Mask Logic ... _ 3-12
Mask Multiplexer ... 3-14
Mask Drivers .. 3- 14
Masks for Transmissions .. 3-14

I/O DAT A LOGIC ... 3-14
Configuration Register A .. 3-16
Configuration Register B .. 3-19
Configuration Register C .. 3-21
Bootstrap ROM ... 3-23

ST ART MEMORY CYCLE LOGIC ~ 3-23
Refresh During Single Step ... 3-23

ARBITRATION LOGIC ... 3-23
MEMORY CONTROL INITIALIZATION LOGIC .. 3-27
POWER UP/DOWN LOGIC .. 3-27
ALERT AND FAIL LOO IC ... 3-30
STARTING ADDRESS SELECTION LOGIC ... 3-30
MEMORY CYCLE TIMING SUMMARY .. 3-30
ARRAY BOARD DESCRIPTION ... 3-33

Array Board Organization .. 3-33
Memory Chip Internal Organization ... 3-33
Array Board I..ogic .. 3-33
Array Init1alization Cycle ... 3-36
Array Timing Summary .. 3-37

iv

Figure No.

1-1
1-2
1-3
1-4
1-5
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24

FIGURES

Title Page

Memory Subsystem Simplified Block Diagram ... 1-3
SBI Time and Phase Relationships ... 1-5
SBI Information Group Fields .. .1-6
Mask Field Interpretation .. 1-8
Command Sequences .. 1-13
Typical Information Decode Timing in the Memory Controller 2-2
Received Address Formats ... 2-4
Controller's Array Address Check .. 2-5
Array Size Correction ... 2-6
Array Address Generation ... 2-7
1/0 Register Addresses ... 2-10
Memory Cycle Sequence ... 2-11
Information Decoding Sequence ... 2-14
Command/Address Destination Decode .. 2-15
Array Function Decode .. 2-16
Configuration Registers and ROM Function Decode ... 2-17
Write Data Information Decode Sequence .. 2-18
Memory Cycle Sequence ... 2-19
1/0 Read and Write Cycle Sequences ... 2-20
Array Write Cycle Sequence ... 2-21
Array Read Cycle Sequence .. 2-22
Simplified Block Diagram of the MS780 ... 3-2
Address Logic .. 3-4
Command File Information Path ... 3-5
Basic Data Flow on the MOS Data Bus .. 3-8
Data Transfer Logic ... 3-10
Error Check and Correction Logic (ECC) ... 3-11
Mask Logic .. 3-13
1/0 Data Logic .. 3-15
Configuration Register A ... 3-18
Configuration Register B .. 3-20
Configuration Register C ... ~ 3-22
Start Memory Cycle Logic .. 3-24
Refresh During Single-Step .. 3-25
Arbitration for Read Data Logic .. 3-26
Initialization Logic ... 3-28
Power Up /Down Logic .. 3-29
Write Masked Timing ... 3-31
Extended Read Timing ... 3-32
Array Board Organization .. 3-34
Array Address and Data Logic ... 3-35
Array Signal Nomenclature .. 3-36
Start Initialization Cycle Logic ... 3-37
Array Timing During a Write Masked Cycle ... 3-38
Array Timing During an Extended Read .. 3-39

v

Table No.

1-1
1-2
1-3
1-4
1-S
2-1
3-1
3-2
3-3
3-4

TABLES

Tide Page

Related Hardware Manuals .. 1-1
Function Bits of a Command/ Address .. .1-9
Confirmation Codes ... 1-9
SBI Field Summary .. 1-11
Access and Cycle Times .. 1-14
Function Validity ... 2-3
Configuration Register A ... 3-16
Configuration Register 8 .. 3-19
Configuration Register C .. 3-21
Starting Addreu Jumper Configuration .. 3-30

vi

I.I MANUAL SCOPE

CHAPTER 1
INTRODUCTION

The MS780 Memory System Technical Description consists of three chapters:

I. Introduction
2. Functional Description
3. Detailed Description

The Introduction gives a brief physical description of the memory system and describes its basic oper­
ation. Also included is a brief description of error checking and correction (ECC), the metal oxide
semiconductor (MOS) storage chips, and synchronous backplane interconnect (SBI) protocol. The
Functional Description provides a description of the information decoding sequence and memory
cycle sequence, with special emphasis on address decoding. Simplified timing diagrams are also in­
cluded. The Detailed Description discusses individual logic sections. Detailed timing diagrams are
included to illustrate signal timing relationships.

1.2 RELATED DOCUMENTS
Table 1-1 is a list of related hardware manuals and their availability.

Table 1-1 Related Hardware Manuals

Tide

Translation Buffer, Cache, SBI
Control Technical Description

KA 780 Central Processor
Technical Description

DW780 Unibus Adaptor
Technical Description

REP05/REP06 Disk Subsystem
Technical Description

KC780 Console Interface
Board Technical Description

*This document can be ordered from:

Digital Equipment Corporation
444 Whitney Street
Northboro, MA 01532
Attn: Communication Services (N R2/M 15)
Attn: Customer Services Section

Document Number

EK-MM780-TD-001

EK-KA 780-TD-PRE

EK-DW780-TD-PRE

EK-REP06-TD-PRE

EK-KC780-TD-OOI

Notes

In Microfiche Library.**
Available on hard copy.*

In Microfiche Library.••

In Microfiche Library.**
Available on hard copy.*

In Microfiche Library.**

In Microfiche Library.**
Available on hard copy.*

**For information concerning microfiche libraries, contact:

Digital Equipment Corporation
Micropublishing Group, PK3-2/Tl2
129 Parker Street
Maynard. MA 01754

1-1

1.3 OVERVIEW
The MS780 main memory is a MOS random access memory (RAM) that is designed to interface with
the SBI of a VAX 11 /780 system. The memory subsystem consists of a controller and one to sixteen
:::ir!':11: ~'"'ards that utilize either 4K or I 6K N-channel MOS IC storage elements. Each array board can
thus. cor.tain 64K or 256K bytes of memory. giving the system a capacity of either I or 4 megabytes,
uepending on the size of storage chips used.

The memory is capable of random access read or write operations to a single 32-bit longword or
extended 64-bit quadword. Write operations can also be executed on byte boundaries within a long­
word or quadword. Memory features also include an error checking and correcting scheme that can
detect all double-bit errors and detect and correct all single-bit errors. The error detection and correc­
tion algorithm requires an entire quadword of data: thus. during any type of read or write operation,
an entire quadword of data is fetched from the array. Eight check bits are stored with each quadword
and accessed with the data to determine its integrity.

Figure 1-1 illustrates a simplified block diagram of the memory subsystem. As shown in this figure, the
controller consists of three extended hex boards interconnected by two internal buses, namely the file
information bus and the MOS data bus. The letters in the lower left corner of each board in the
diagram indicate the engineering print sheets. The logic of each board is briefly described in the follow­
ing paragraphs.

SBI Interface Module - The M8214 SBI interface module contains all SBI related logic. This includes
SBI transceivers. address decode logic, address correction logic for the interleaved and non-interleaved
cases, function decode logic. confirmation and fault logic, and arbitration logic. The MSB board also
includes a command file to buffer up to four information transfers from the SBI.

Control and Timing Module - The M82 I 3 control and timing module controls all internal memory
activity by generating control and timing signals for the data path module and array modules. De­
coded control and command signals from the SBI interface board are used for cycle decode, 1/0 data
multiplexer control, ECC control (error checking and correction). and array timing. The MCN logic
also includes a refresh counter, logic for array size correction due to chip size, the address register,
three configuration registers, and a bootstrap ROM.

Data Paths - The M82 l 2 data path module contains the central data path between the array boards
and the SBI interface board. and all associated logic. This includes data transmit and receive latches,
byte control, and all error detection and correction logic.

Array Modules - The memory controller is capable of interfacing two types of array cards as described
at the bottom of Figure 1-1: an 8K version (8K X 72) and a 32K version (32K X 72). The M82 I I array
module is the 8K version and the M8210 is the 32K version. Both versions contain N-channel MOS
ICs and their associated drive circuitry. All array modules receive address and control signals from the
control and timing module (MCN) and use the MOS data bus as a data path.

Internai Buses - The memory controller contains two tristate internal buses. Each module inter­
connecting the buses thus contains tristate drivers and receivers.

The file information bus is used to transfer data from the command file on the SBI interface module to
the control and timing module and the data path module. Likewise, it transfers array data from the
data path, or 1/0 data from the control and timing module, to the SBI transceivers on the SBI inter­
face module.

The MOS data bus provides a data path between the array modules and the data path module. All
transfers consist of one quadword of data (64 bits) and eight corresponding check bits to accommodate
the ECC logic on the data path module.

SBI

SBI
INTERFACE FILE INFORMATION BUS

MSB M8214

MEMORY
CONTROLLER

CONTROL &
COMMANDS

32 1/0 DATA

CONTROL
AND
TIMING CONTROL

MCN M8213 &
ADDRESS STROBES
&
TIMING

DATA
PATH

32ARRAY DATA

MDT M8212

72 DATA

MOS DATA BUS

---- ----- -----
MEMORY
ARRAY

72 DATA

ARRAY ARRAY ARRAY • • • • • • •

MAY (NOTE 2) MAY (NOTE 2) MAY (NOTE 2)

NOTES:

---·------------------ - ---
ARRAY CARDS
(16 CARDS MAX)

1. EACH MEMORY LOCATION CONTAINS 72 BITS: 8
BYTES OF DATA, AND 8 CHECK BITS FOR ERROR
CHECKING AND CORRECTION.

2. EACH ARRAY BOARD CONTAINS BK MEMORY LOCA­
TIONS IF 4K CHIPS ARE USED, OR 32K LOCATIONS IF
16K CHIPS ARE USED. THE ARRAY MODULE WITH 4K
CHIPS IS THE M8211; THE ARRAY MODULE WITH 16K
CHIPS IS THE M8210.

Figure 1-1 Memory Subsystem Simplified Block Diagram

1-3

TK-0184

1.4 BASIC MEMORY OPERATIONS
The MS780 is capable of six operations:

Read Masked
Extended Read
Interlock Read Masked

Write Masked
Extended Write Masked
Interlock Write Masked

Basically. a write masked is executed to transfer one to four bytes of data to memory. A read masked,
however. is only capable of transferring four bytes of data from memory.

An extended read is executed to transfer eight bytes of data (two longwords) from memory to a
requesting nexus. An extended write masked, on the other hand, provides a byte selectable transfer of
up to eight bytes to memory. Interlock read masked and interlock write masked perform the same
function as read masked and write masked but also provide process synchronization (Paragraph 1.5.1).

l.S SBI PROTOCOL
The MS780 memory system is connected directly to the SBI and thus conforms to SBI protocol. The
SBI provides a checked parallel information transfer path that is synchronous with a common system
clock. In each clock period or cycle. interconnect arbitration, information transfer, and transfer con­
firmation may occur in parallel.

The 84 lines of the SBI are divided into the following functional groups:
I. Arbitration
2. Information·
3. Confirmation
4. Interrupt
5. Control

Each of these groups is explained in the following paragraphs, along with an explanation of SBI
synchronization. A description of the interrupt lines, however, has been omitted because they are not
accessed by memory. Likewise, other non-memory related SBI information has been omitted.

l.S.I SBI Synchronization
Six control group lines are clock signals and are used as a universal time base for all nexus connected to
the SBI (including memory). All SBI clock signals are generated on the CPU clock module and provide
a 200 ns clock period.

The clock signals, in conjunction with the standard nexus clock logic, provide the derived clocks within
each attached nexus to synchronize SBI activity. Two clock signals (TPH and TPL) derive the basic
time states. The remaining four (P CLK H, P CLK L. PD CLK H. and PD CLK L) are phased clocks
and help compensate for the clock distribution skew due to cable, backplane, and driver /receiver
propagation delays.

l.S.1.1 Derived Time States - The derived clocks within each nexus define four, 50 ns (nominal) time
states in one clock period. The time states (TO, Tl. T2, and T3) determine the transmit and receive
times on the SBI, with TO representing the start of a particular clock period or SBI cycle. Figure 1-2
illustrates the phase and timing relationships required to generate the individual derived time states.

l.S.1.2 Basic Transmit/Receive Timing - Information is received or transmitted over the SBI at the
same instant during any SBI cycle. Immediately prior to TO a transmitting nexus enables its trans­
mitters. At TO the transmitters are clocked and the content is enabled to the information path of the
SBI. In the case of receive data, nexus receiver latches are opened at T2 and latched at T3. Note that
the information may be considered undefined at the outputs of the bus receivers between T2 and T3:
only after T3 is the information considered defined. All checking, decoding. and subsequent decision
making is then based on these latched signals.

1-4

TPH

TPL

PCLKL l I I
~200NSEC--t

PDCLKH -, --, II ---

PDCLKL I J

TPL
I

PCLKL I _____ ,_ I :

: TRANSMITTER NEXUS
ENABLES SBI . •

TO (DERIVED) DRIVERS

TPH

PDCLKL

T1 (DERIVED) ---
TPL

PCLKH j
: : All NEXUS OPEN

T2 (DERIVED) ~RECEIVER n _____ v- LLATCHES - ------

TPH

PDCLKH

T3 (DERIVED)
: : ALL NEXUS CLOCK
r:;:::::,- RECEIVER n
V I LATCHES -------- -----

TK-0165

Figure 1-2 SBI Time and Phase Relationships

1-5

1.5.2 Arbitration Group
The arbitration lines [Transfer Request TR (15:00)] allow up to 15 nexus to arbitrate for the informa­
tion lines (information transfer group). One arbitration line is assigned to each nexus to establish the
fixed priority access. Priority is set in an ascending order: TR 15 to TROO. The priority level (TR line)
assignment of each nexus is selectable at system build time.

The 15 highest priority nexus are assigned TRl5 through TROI. The lowest priority level is reserved
for the CPU (the 16th nexus) and requires no actual TR signal line. The highest priority level, TROO, is
reserved as a hold signal for those nexus that require more than one successive SBI cycle.

Arbitration on the SBI is considered decentralized: that is, each nexus contains its own arbitration
logic. A nexus requests control of the information path by asserting its assigned TR line at TO of an
SBI cycle. At T3 of the same SBI cycle, the nexus examines (arbitrates) the state of all higher priority
TR lines. If no higher TR lines are asserted, the requesting nexus assumes control of the information
path at TO of the following SBI cycle. At this TO time state, the nexus negates its TR line, and asserts
command/address or data information on 8(31 :00). In addition, if a write type exchange is specified,
the nexus asserts TOO to retain control of adjacent SBI cycles.

If higher priority TR lines are asserted, the requesting nexus cannot gain control of the information
path. The nexus keeps its TR line asserted and again examines the state of higher priority lines at T3 of
the next SBI cycle. As before, if no higher TR lines are asserted, the nexus assumes information path
control at TO.

1.5.3 Information Transfer Group
The three types of SBI information transfer formats utilized for memory operations are com­
mand/address, read data, and write data. (Interrupt summary read and interrupt summary response
are not used by memory.) All three formats are divided into five fields. The fields are: parity, tag,
identity, mask, and information (Figure 1-3). Each information group field is described in detail in the
following subsections.

,...--------------------- P(1:0) PARITY FIELD

,...------------------ TAG (2:0) TAG FIELD

]

.---------------- ID (4:0) SOURCE/DESTINATION ID FIELD

!
.------------- MASK (3:0) MASK FIELD

ir------ B (31:00) INFORMATION FIELD
~~ ,,---___ _,......, ___ _

TAG ID MASK I INFORMATION I
7~ >,

/ ' / '
/ ' / '

/ ' / '
/ ' / '

/ FOR X FOR '
/ COMMAND/ADDRESS / ' READ OR WRITE DATA '

IFUNCTION I ADDRESS I OR I DATA I
\. .I \. .I
~ ~ ~---~~-"-~-~~-J
F(3:0) A(27:00) 8(31 :00)

Figure J-3 SBI Information Group Fields

1-6

TK..0182

1.5.3.1 Parity Field - The parity field (Pl :0) provides even parity for detecting single bit errors in the
information group. A transmitting nexus generates PO as parity for T AG(2:0), ID(4:0), and M(3:0).
The Pl parity bit is generated for 8(31:00). PO and Pl are generated such that the sum of all logic one
bits in the checked field, including the parity bit, is even. With no S81 transmissions, the information
transfer path assumes an all zeros state; thus, P(l:O) should always carry even parity. Any transmission
with odd parity is considered an error.

1.5.3.2 Tag Field - The tag field [T AG(2:0)] is asserted by a transmitting nexus to indicate the infor­
mation format being transmitted on the information lines. The tag field determines the contents of the
B field. The following subsections describe each information type, tag code, and associated field con­
tent.

Command/ Address Tag - A tag field content of 011 specifies that the content of 8(31 :00) is a com­
mand/address word. ID(4:0) asserted at this time is a unique code identifying the logical source (com­
mander) of the command. As shown in Figure 1-3, 8(31 :00) is divided into a function field and an
address field to specify the command and its associated address.

The ID field code of a command/address represents the logical source and the address field specifies
the logical command destination. For a read type command, the receiving r;exus will reassert this ID
when transmitting the read data.

The 28 bits of the address field define a 268,435.456 longword address space (1,073, 741,824 bytes),
which is divided into two sections. Addresses 0-7FFFFFF16 (A27=0) are reserved for primary­
memory. Addresses 800000016-FFFFFFF16 (A27= I) are reserved for device control and 1/0 regis­
ters.

Read Data Tag - A tag field content of 000 specifies that 8(31 :00) contains data requested by a
previous read type command. In this case, ID(4:0) is a unique code that was received with the read
command and identifies the logical destination of the requested data. The retrieved data may be one of
three types: read data, corrected read data, or read data substitute. where the particular type is identi­
fied by M(3:0).

Read data is the normal expected error-free data having M(3:0) = 0000. Corrected read data is data in
which an error was detected and subsequently corrected by the ECC logic of the device transmitting
the read data. In this case. the mask field flags the corrected data with M(3:0) = 0001. Read data
substitute represents data in which an error was detected but the ECC logic was unable to correct it. In
this case, 8(31 :00) will contain the substitute data in the form of uncorrected data. The mask field flags
the uncorrected data with M(3:0) = 0010.

Write Data Tag - A tag field content of IOI specifies that 8(31 :00) contains the write data for the
location specified in the address field of the previous write command. The write data will be asserted
on 8(31 :00) in the S81 cycle immediately following the command/address cycle. The mask field speci­
fies bytes within 8(31 :00) for the operation.

1.5.3.3 Identifier Field - The ID field [ID(4:0)] contains a code that identifies the logical source or
logical destination of the information contained in 8(31 :00). In a command/address or write data
format it identifies the source. In a read data format it identifies the destination.

ID codes are assigned to nexus that are capable of issuing a command/address. Because of this,
memory is not assigned an ID code. Every nexus, other than memory, is assigned an ID code that
corresponds to the TR line which it operates. For example, a nexus assigned TR 05 would also be
assigned an ID code of 5.

1-7

1.5.J.4 Mask Field - The four-bit mask field has two interpretations (Figure 1-4). For the first inter­
pretation, the mask is encoded to specify particular data bytes of an addressed memory location for the
memory operation. As shown at the top of Figure 1-4, each bit in the mask field of a com­
mand/ address or write data corresponds to a particular data byte.

/SELECTS BYTE(S) FOR AN OPERATION

p TAG INFORMATION COMMAND/ADDRESS OR .___..._ __ .__..___..,_...,..."'T'6-~----------- WRITE DATA

p TAG

MASK AS BYTE SPECIFIER

.,/DESCRIBES DATA /DATA DESCRIBED

MASK DATA LONGWORD

ID I I I I I : I : I READ DATA

111 l
0 C' 0 0 READ DATA - DATA IS CORRECT
0 0 0 1 CORRECTED READ DATA - DATA HAD A ONE-BIT

ERROR WHICH HAS BEEN CORRECTED
0 0 1 0 READ DATA SUBSTITUTE - DATA CONTAINS AN UNCORRECTABLE ERROR

MASK AS DATA INTEGRITY SPECIFIER

TK 0183

Figure 1-4 Mask Field Interpretation

As mentioned in Paragraph 1.5.3.2, the second interpretation is used when T AG(2:0) = 000 (read
data). In this case the mask bits specify the integrity of the data of the information field. The integrity
of the data is specified in one of three categories as summarized in Figure 1-4: correct, corrected, or
uncorrectable.

1.5.J.5 Information Field - As shown in Figure 1-3, the information field consists of two format
types: data or command/address. The information field of a command/address format is divided into
two subfields: a 4-bit function and a 28-bit address. The 4-bit function specifies the operation to be
performed. Table 1-2 lists the function codes for memory operations. The 28-bit physical address
selects a memory location (longword address) for the selected operation. Byte selection for the oper­
ation is specified in the mask field.

The information field of a read data or write data format contains one longword of data for transfer to
or from a selected address. During a read data operation, the complete longword is transmitted even
though the mask field may have selected fewer bytes. The receiving nexus ignores the unrequested
bytes. Similarly, during a write data operation, an entire longword is received and bytes not specified
by the mask field are ignored.

1-8

Table 1-2 Function Bits of a Command/ Address

Function Bits Memory

3 2 I 0 Operations

0 0 0 I Read Masked
0 0 I 0 Write Masked
0 I 0 0 Interlock Read Masked
0 I I I Interlock Write Masked
I 0 0 0 Extended Read
I 0 I I Extended Write Masked

I .S.4 Response Group
The three response lines are divided into two fields: confirmation [CNF(I :0)), and fault (FAULT).
CNF(1 :0) informs the transmitter whether the information was correctly received. or if the receiver can
process the command. FAULT is a cumulative error indication of protocol or information path mal­
function and is asserted with the same timing as the confirmation field.

Either field is transmitted two cycles after each information transfer. Confirmation is delayed to allow
the information path signals to propagate, be checked, and decoded by all receivers, and to be gener­
ated by the responder. During each cycle, every nexus in the system receives, latches. and makes
decisions on the information transfer signals. Except for multiple bit transmission errors or nexus
malfunction, only one of the nexus receiving the information path signals will recognize an address or
ID code. This nexus then asserts the appropriate response in CNF.

Any (or all) nexus may assert FA ULT after detecting a protocol or information path failure. However,
a nexus asserting FAULT may not assert CNF(l:O).

Table 1-3 lists the confirmation codes and their interpretation.

Table 1-3 Confirmation Codes

CNF Code Mnemonic Indication
I 0

0 0 N/R No response to selection (the unasserted state)

0 I ACK Positive acknowledgement to the transfer

I 0 BSY Response to command/address transfer only: successful selec-
tion of a nexus which is presently unable to execute the com-
mand

1 1 ERR Response to command/address transfer only: successful selec-
tion of a nexus which cannot execute the command.

1.5.S Control Group
The control group functions synchronize system activites and provide specialized system commu­
nications. The clock functions provide SBI activity synchronization and are described in Paragraph
1.5.1. The Interlock line is one of the system communication functions and is described in Paragraph
1.6. The remaining control lines are described in the following paragraphs.

1-9

DEAD - The DEAD signal indicates a de power failure in the clock circuits or bus terminating net­
works. Nexus will not assert any SBI signal while DEAD is asserted. Thus, nexus prevent invalid data
from being received while the bus is in an unstable state.

The assertion of the power supply DC LO to the clock circuits or terminating networks causes the
assertion of DEAD. DEAD is asserted asynchronously to the SBI clock and occurs at least 2 µs before
DC LO is negated. The negation of DC LO negates DEAD.

FAIL- FAIL can be asserted by any nexus whose existence in the system is necessary for proper restart
after a power failure. The FAIL signal notifies the CPU that a system restart operation cannot be
initiated. A nexus asserts the Fail (FAIL) signal asynchronously to the SBI clock when the power
supply AC LO signal is asserted to that nexus. The assertion of FAIL inhibits the CPU from initiating
a power up service routine. FAIL is negated asynchronous to the SBI clock when all nexus that are
required for the power up operation have detected the negation of AC LO. The CPU samples the
FAIL line following the power down routine (assertion of FAIL) to determine if the power up routine
should be initiated.

UNJAM - The UNJAM signal restores (initializes) the system to a known, well-defined state. The
UNJAM signal is asserted only by the CPU through a console function. and is detected by all nexus
connected to the SBI. The duration of the UNJAM pulse is 16 SBI cycles; it is negated at TO.

For the assertion of UNJAM, the CPU asserts TROO for 16 SBI cycles. The CPU continues to assert
TROO for the duration of UNJAM and for a minimum of 15 SBI cycles after the negation of UNJAM.
This use of TROO ensures that the SBI is inactive preceding, during, and after the UNJAM operation.

If asserted, UNJAM is received by every nexus at T3 and a restore sequence is begun. Any current
operation of short duration is not aborted if that operation might leave the nexus in an undefined state.
Nexus do not perform operations using the SBI during the assertion of UNJAM. In addition, the
nexus is in an idle state, with respect to SBI activity, at the conclusion of the UNJAM pulse.

While UNJAM is asserted, nexus cannot assert FAULT. However, a CPU asserting FAULT prior to
UNJAM will continue to do so to preserve the content of the nexus FAULT status registers. The
restore sequence (UNJAM asserted) should not cause a nexus to pass through any states that will
assert any SBI lines. All read commands issued before the UNJAM are cancelled.

In the event of a power failure during UNJAM, some nexus will assert FAIL and/or DEAD. The
restore sequence should cause the nexus to clear any existing ALERT status bits and subsequently
negate ALERT.

ALERT (part of the Interrupt Group)-A nexus asserts ALERT when any of its ALERT status bits are
set. The bits are set during the following events:

I. during power failure at the nexus when the assertion of power supply AC LO is recognized;
2. during the restoration of power when the negation of AC LO is recognized;
3. when other environmental conditions, such as overtemperature, are detected.

Each nexus maintains bits in its status register to indicate conditions that cause assertion of ALERT.

The ALERT line is the logical OR of the ALERT status bits and is asserted synchronously to the SBI
clock. ALERT status bits are cleared when written as logic one; when written as logic zero, they are
not changed. These status bits are also cleared when the UNJAM signal is received.

I-IO

A nexus asserting ALERT continues to assert ALERT until:

I. all ALERT status bits are cleared (written with a logic one).
2. UNJAM signal is received.
3. nexus loses de power.

The negation of ALERT is synchronous to the SBI clock and occurs within two cycles of the write data
transmission used to clear the ALERT condition.

l.S.6 SRI Summary
Table 1-4 summarizes the signal fields associated with each functional group.

Table 1-4 SRI Field Summary

Field Description

Arbitration Group

Arbitration Field Establishes a fixed priority among nexus for access and control of the
[TR(15:00)] information transfer path.

Information Transfer Group

Information Field Bidirectional lines that transfer data. command/address, and interrupt
[8(31 :00)) information between nexus.

Mask Field Primary function: encoded to indicate a particular byte within the 32-
[M(3:0)) bit information field [8(31 :00)).

Secondary function: in conjunction with the tag field indicates a par-
ticular type of read data.

Identifier Field Identifies the logical source or destination of information contained in
[10(4:0)] 8(31 :00)

Tag Field Defines the transmit or receive information types and the interpretation
[TAG(4:0)] of the content of the ID and information fields.

Function Field Specifies the command code, in conjunction with the tag field.
[F(3:0)]

Parity Field
[P(l :0))

Provides even parity for all information transfer path fields.

Response Group

Confirmation Field Asserted by a receiving nexus to specify one of four response types and
[CNF(l:O)] indicate its capability to respond to the transmitter's request.

Fault Field A cumulative error line that indicates one of several errors on the SBI.
(FAULT)

1-11

Held

Interrupt Request Group

Request Field*
[REQ(7:4)]

Alert Field
(ALERT)

Control Group

Clock Field
(CLOCK)

Fail Field
(FAIL)

Dead Field
(DEAD)

Unjam Field
(UNJAM)

Interlock Field
(INTLK)

*Not used by memory.

Table 1-4 SRI Field Summary (Cont)

Description

Allows a nexus to request an interrupt to service a condition requiring
CPU intervention. Each request line represents a level of nexus request
priority.

A cumulative status line that allows those nexus not equipped with an
interrupt mechanism to indicate a change in its power or operating con­
ditions.

Six control lines that provide the clock signals necessary to synchronize
SBI activity.

A single line from nexus required to initiate a system bootstrap oper­
ation.

A single line to the CPU to indicate an impending clock circuit or bus
terminating network power failure.

A single line from the CPU to attached nexus that restores the nexus to
a known state.

A single line that provides coordination among nexus responding to
ensure exclusive access to shared data structures.

1.6 MEMORY CYCLES; GENERAi~ DESCRIPTION
To perform a memory cycle, a requesting nexus arbitrates for control of the SBl's information lines.
Having gained control of the bus. the nexus then transmits a command/address format onto the bus.
All subsystems monitor the bus by checking for parity and decoding the tag. A decoded com­
mand/address tag also initiates an address and function decode. If the decoded address corresponds to
the memory subsystem, and memory is not busy. a memory cycle is initiated (providing no faults are
detected). If, however, the memory is presently executing a cycle. the command information is stored
in the command file until the present cycle is complete. Either way. memory notifies the requesting
nexus that the message has been received by asserting a response on the confirmation lines.

Figure 1-5 illustrates the command sequence for each memory operation. Each sequence is calibrated
in SBI cycles. Note that more than one nexus may use the SBI lines in any given cycle, provided there is
only one nexus utilizing each group of lines. That is, during one SBI cycle. while one nexus is transfer­
ring a command/address or data. a second nexus may use the arbitration lines while a third nexus
transmits a confirmation on tht: response lines. The sequence of each operation. however, must be
preserved.

1-12

READ MASKED [DELAY FOR MEMORY FETCH

TO TO TO

SBI CYCLES ~l---+-1 ---+-1---+---fl l I I I
TA FROM

'
ARBITRATION NEXUS

ANO ARB I OK

C/A
INFORMATION FROM

NEXUS

RESPONSE I

I
Sal
INTERLOCK·--------------...
LINE

ACK
FROM
MEMORY

I
I

TR FROM
MEMORY
AND ARB
OK

I
I

RD
FROM
MEMORY

NEXUS RELEASES INTERLOCK LINE.

ACK
FROM
NEXUS

NEXUS ASSERTS
INTERLOCK MEMORY

NOTE LINE REMAINS ASSERTED BY MEMORY

ASSERTS INTERLOCK

EXTENDED READ DELAY FOR ASSERTED TO RESERVE INFORMATION
TO TO TO \MEMORY FETC~ LINES IN THE NEXT SBI CYCLE

SBI CYCLES --+-I ----ij.....-----+1----..-----1~ ,__-+----t----+-----+----+----+----+

TR FROM I
ARBITRATION

NEXUS
AND I ARB OK

C/A
INFORMATION FROM

NEXUS

RESPONSE I I
I I

ACK
FROM
MEMORY

TR FROM
MEMORY
ANO ARB
OK

HOLD
FROM
MEMORY

RD1
FROM
MEMORY

RD2
FROM
MEMORY

ACK
FROM
NEXUS

ACK
FROM
NEXUS

* THE SBI INTERLOCK LINE IS USED ONLY DURING
INTERLOCK READ MASKED AND INTERLOCK WRITE
MASKED OPERATIONS. THE COMMAND SEQUENCE OF
EACH OF THESE OPERATIONS IS INDENTICAL TO A READ
MASKED ANO EXTENDED READ OPERATION,
RESPECTIVELY.

ACKNOWLEDGEMENT
FOR FIRST READ DATA

ACKNOWLEDGEMENT
FOR SECOND
READ DATA

WAITE MASKED

TO
ASSERTED TO RESERVE INFORMATION LINES IN THE NEXT SBI CYCLE.
TO TO

SBI CYCLES-t~~~-+~-+~-+~~~-+~~~-+~~~-+------_., ________

TR FROM

ARBITRATION NEXUS
ANO

ARB OK

INFORMATION

RESPONSE

HOLD
FROM
NEXUS

C/A
FROM
NEXUS

WO
FROM
NEXUS

ACK
FROM
MEMORY

ACK
FROM
MEMORY

SBI I
INTERLOCK* --------------ACKNOWLEDGEMENT ACKNOWLEDGEMENT
LINE \ •I FOR COMMAND/ADDRESS FOR WRITE DATA

OEASSERTED BY MEMORY AFTER AN INTERLOCK WRITE
MASKED COMMAND IS RECEIVED BY MEMORY

EXTENDED WRITE MASK

TO TO

TR FROM HOLD
ARBITRATION

NEXUS FROM
ANO ARB NEXUS
OK

C/A

INFORMATION FROM
NEXUS

RESPONSE

HOLD
FROM
NEXUS

W01
FROM
NEXUS

ASSERTED TO RESERVE THE NEXT SBI CYCLE.

W02
FROM
NEXUS

ACK
FROM
MEMORY

ACK ACK
FROM FROM
MEMORY MEMORY

ACKNOWLEDGEMENT ACKNOWLEDGEMENT
FOR COMMAND ADDRESS FOR SECOND WRITE DATA

ACKNOWLEDGEMENT
FOR FIRST WRITE DATA

TK-0181

Figure 1-5 Command Sequences

1-13

The ECC scheme used in the memory subsystem is capable of detecting a single- or double-bit error. It
is also capable of correcting all single-bit errors. This is accomplished by storing eight parity bits,
called check bits. along with the 64 data bits in each memory location. Each check bit is generated by
parity checking selected groups of data bits in the given data quadword. When parity is again checked
during a read, an incorrect bit will be detected by the parity checking logic and will develop a unique 8-
bit syndrome that identifies the bit in error. Error correction logic may thus correct the bit in error.
There are 72 unique syndromes pointing to individual bits in the coded quadword.

1.9 REFRESH
The storage device used in the MS780 is a dynamic MOS cell in which a data bit is represented by a
charge. This charge can be discharged over a period of time resulting in loss of data. Because of this,
MOS storage cells must be recharged through a memory operation called refresh.

The discharge time of a MOS cell is approximately 2 ms. This means that for a 4K MOS device
organized internally as a 64 X 64 matrix, a row refresh is required approximately every 32 µs. Note
also that a 16K MOS device requires a refresh cycle approximately every 16 µs because it is organized
internally as a 128 X 128 matrix. The duration of a refresh cycle is approximately equal to I memory
cycle (500 ns). During the refresh cycle, the 64 cells in each row are read and rewritten internally to
restore the full charge. Refresh is performed on all chips of a given row on all array boards simulta­
neously.

Because of these requirements refresh is performed periodically in the MS780. For 4K array boards, a
refresh cycle is performed approximately every 28 µs to ensure reliability over temperature and voltage
margins. For 16K array boards, a refresh cycle is performed approximately every 14 µs.

1-15

2.1 INTRODUCTION

CHAPTER 2
FUNCTIONAL DESCRIPTION

The execution of a memory operation can be divided into two sequences because of the design archi­
tecture employed. The two sequences are the information decoding sequence and the memory cycle
sequence.

Basically, during an information decoding sequence. the memory interface latches information from
the SBI (as all nexus on the SBI) and decodes it. The validity of memory-destined information is
determined and the request information is stored in the command file for a memory cycle sequence.
Various flags and indicators are also stored with the request as a result of the decoding.

The memory cycle sequence is an internal memory operation in which a valid memory request is
executed. During this sequence the information stored during the information decoding sequence, is
accessed from the command file and the command is executed.

The following paragraphs provide a general description of both sequences using the command file as a
midpoint. Flow diagrams of the sequences are provided as a summary (Paragraphs 2.5 and 2.6).

2.2 INFORMATION DECODING SEQUENCE; GENERAL
To initiate a memory cycle, a requesting nexus arbitrates and gains control of the SBI information
lines. Having gained control, the nexus (commander) then transmits a command/address format onto
the SBI.

Information decoding in the memory controller, as in any nexus, begins at T3 of every SBI cycle. At
this instant any signals on the SBI information lines are latched through the memory's SBI trans­
ceivers. Between T3 and Tl of the next SBI cycle, the information is parity checked and the tag is
decoded. If the decoded tag indicates a command/address format, the address and function are also
decoded. At T2, following decoding, the proper confirmation (also fault and interlock bits, if appli­
cable) is set for transmission onto the SBI at the next TO (Figure 2-1).

The address decode selects the memory array, configuration registers, or bootstrap ROM for the
memory operation. The function decode selects the type of memory operation and determines if the
command file has enough space to accept the full command string (i.e., the command/address and any
subsequent write data formats). If the file has space, the information field of the command/address
format is stored along with the decoded address until the memory controller becomes available to
execute the memory cycle. If the file is full or does not have enough space to accept the full command
string, a busy confirmation is transmitted. In this case, subsequent entries into the file continue to be
inhibited until information is passed from the file to the file information bus for a memory cycle
execution. Note space for write data in the file is checked when the command/address is received and
the function is decoded.

2-1

TO

I

2.2.1 Parity Check

IF VALID, INFO
:TORED IN
FILE

XMi" INFO ! LATCHED CONFIRMATION

~ • TO TO

I I I I I
\

"""
I t INFO CONFIRMATION

DECODED SET

Figure 2-1 Typical I nfdrmation Decode Timing
in the Memory Controller

TO

I

TK-0186

A parity bit is generated by the SBI transceivers for every four bits of an information format received.
The parity check is performed on these bits and the two parity bits received.

A parity error in a received command/address format aborts the memory cycle immediately. In this
case, the bad information is not reserved in the command file. For the command/address of a write
cycle, the following write data format(s) are also ignored.

In the case of a parity error in a write data format, the bad data is reserved in the command file along
with an indicator to abort the write cycle. Thus, the write cycle will be aborted when the information is
accessed from the file during a memory cycle execution.

2.2.2 Tag Decode
The tag of received information is decoded to determine the format of the information. Memory
accepts only two types of tags: write data and command/address. All other tags result in a response of
FAULT or NO RESPONSE.

If the tag is determined to be command/address, the address and function of the information field are
decoded. In this case the destination is decoded from a portion of the address received to select either
the bootstrap ROM, configuration registers, or memory array for an operation. The selected destina­
tion is used along with the decoded function to determine function validity and also is input to the
command file for cycle decode during a memory cycle sequence.

If the tag is determined to be write data, the condition of the EXPECT WRITE DATA flag is exam­
ined. If set, this flag indicates the write data is for memory and the information is stored in the
command file. If the flag is not set, the information is ignored (Paragraph 2.2.2. l).

2.2.2.1 EXPECT WRITE DATA - Write data formats contain no addressing information. Thus,
when the function of a command/address is decoded to be write masked, interlock write masked, or
extended write masked, the EXPECT WRITE DA TA flag is set. This indicates the next latched SBI
information is expected to be write data for memory. If the EXPECT WRITE DA TA flag is set and
the tag of received data is not write data, memory aborts the write cycle by storing a WRITE ABORT
indicator with the data in the command file. The EXPECT WRITE DAT A flag is then cleared and
when the data is accessed from the file for .a memory cycle sequence, a write sequence fault occurs.

If the EXPECT WRITE DAT A flag is not set and the tag of a latched format is decoded to be write
data, a NO RESPONSE confirmation is asserted by the response logic and the information is ignored.

2-2

The EXPECT WRITE DA TA flag is set for one decrement by the function decode of a write masked
or interlock write masked operation because in each case one write data format is expected. Similarly,
an extended write masked operation sets the flag for two decrements because two write data formats
are expected. Each time a write data tag is decoded, the EXPECT WRITE DAT A flag is decremented.

2.2.3 Function Decode
The function is decoded during the information decoding sequence for three reasons:

I. to determine function validity,
2. to determine if the file has enough space to accept all of the operation's formats,
3. for input to the command file for cycle decode at the start of a memory cycle sequence.

Part of the address decode selects one of three destinations (array, configuration register9 or ROM) for
the address and command received. Function validity is dependent on the destination selected. Table
2-1 lists the selectable functions (operations) for each destination.

Table 2-1 Function Validity

Destination

Memory Bootstrap Configuration Memory
Operation ROM Registers Array

Read Masked Valid Valid Valid

Extended Read Invalid Invalid Valid

Write Masked Invalid Valid (if mask = 1111) Valid

Extended Write
Masked Invalid Invalid Valid

Interlock Read
Masked Valid Valid Valid

Interlock Write
Masked Invalid Valid(ifmask = 1111) Valid

As mentioned previously, function decode may also set the EXPECT WRITE DAT A flag (Paragraph
2.2.2.1). If the function is decoded to be write masked or interlock write masked, the EXPECT
WRITE DA TA flag is set for one decrement. If the function is decoded to be extended write masked,
the flag is set for two decrements (two write data formats are expected).

When an interlock write masked function is decoded a flag is set to clear the interlock flip-flop. This
flag is droppe~ and the interlock flip-flop is cleared when a write data tag is decoded (Paragraph 2.2.2).

If the function is decoded to be a read command, the ID of the received information is reserved for
transmission with requested data.

2-3

2.2.4 Address Decode
During address decode a portion of the address is decoded to determine the destination of the address
and command. Once selected, the validity of the address and command (function) may be checked.
The decoded destination is also stored in the command file to be used for cycle decoding during a
memory cycle sequence.

The destination decode may select the memory array for a data transfer. Likewise, it may select an 1/0
transfer with the memory's configuration registers or bootstrap ROM. If the address destination is
determined to be none of the three (i.e .• not for memory), a NO RESPONSE confirmation is asserted
and the decoding sequence is terminated. Bit 27 of the received address is set for a reference to 1/0
space, and not set for a reference to main memory space (Figure 2-2).

NOT SET FOR
MAIN MEMORY
SPACc SELECTS ONE OF TWO

ARRAY ADDRESS CONTROLLERS DURING SELECT LOW/HIGH l ___ c_H_E_C_K_... ______ INTERLEAVED OPERATIQr., l rNGWO~o
27 26 21 20 14 13 02 01 00

lo! I I I I I REC BIT

SET FOR
1/0 SPACE

+
27 26

ARRAY ADDRESS GENERATION

0

I _...1l..._ _____________ 1 REC BIT

1/0 ADDRESS
CHECK

Figure 2-2 Received Address Formats

TK-0187

2.2.4.1 Array Address - If the reference is to main memory, part of the address is used to determine if
the reference is to the controller's array, and part is corrected and transferred to the command file for
use during the memory cycle sequence (Figure 2-2). The address correction logic enables the controller
to accept 4K chip modules (M82 I I) or I 6K chip modules (M8210). Figure 2-3 illustrates the array
address check. Basically, if the address lies between the upper and lower boundaries of the controller's
array, the address is valid.

The lower boundary check is accomplished by comparing the controller's starting address (stored in
configuration register 8) to the received address. Likewise, the upper boundary check is accomplished
by comparing the received address to the controller's upper boundary. The upper address boundary is
the sum of the controller's starting address and the array size for that controller.If the received address
is equal to or greater than the controller's starting address and less than the controller's upper bound­
ary address, the reference is to that controller's array.

The array size for a controller, however, is dependent on the size of the chips being used and whether
or not interleaving is used. Figure 2-4 shows the array size correction for these conditions. The array
size before correction [MEM SZ (3:0)) is encoded from the number of array cards plugged into the
controller's backplane. The first correction is determined by chip size and the second is determined by
t~e interleave condition. Thus, the actual array size of the controller is given as COR ARY SZ(6:0).

2-4

26 14 26

ST ADA REC BITS

ARRAY LOWER ADDRESS BOUNDARY RECEIVED ADDRESS

-cQMPARE~
ARRAY LOWER BOUNDARY CHECK

26 20 14

I STADR

CONTROLLERS STARTING ADDRESS

26

6 0

I COR ARY sz I
CORRECTED ARRAY SIZE

~
14 26

REC SITS

ARRAY UPPER ADDRESS BOUNDARY RECEIVED ADDRESS

----COMPARE -­

ARRAY UPPER BOUNDARY CHECK

ARRAY ADDRESS IS VALID IF:

.p

14

14

STARTING ADDRESS ~ RECEIVED ADDRESS <ARRAY UPPER ADDRISS BOUNDARY

Figure 2-3 Controller's Array Address Check

2-5

3 2 0 3 2 0

~ MEMSZ I· ENCODED ·I MEMSZ cu FROM THE NUMBER

\\ 0 OF AR RAY BOARDS 0 II
5 4 3 2 0 5 4 3 2 0

ARYSZ ARYSZ

4K CHIPS 16K CHIPS

ARRAY SIZE CHIP CORRECTION

5 4 3 2 0 5 4 3 2 0

G ARYSZ ARYSZ CJ
\ D D I

6 5 4 3 2 0 6 5 4 3 2 1 0

COA ARY SZ COR ARY SZ

NON-INTERLEAVED INTERLEAVED

ARRAY SIZE INTERLEAVE CORRECTION

TK-0189

Figure 2-4 Array Size Correction

2.2.4.2 Array Address Generation - As shown in Figure 2-4, REC bit (20:00) of the latched address is
used to generate a main memory reference address. The hardware design provides for this address
translation so that memory can accommodate varied chip size and interleave conditions. These condi­
tions dictate which of the 21 REC bits are used for the array address generation.

Sections A and 8 of Figure 2-5 illustrate the array address generation for memory with I 6K chips in
the interleaved and non-interleaved modes. In both modes a 20-bit address is required. For the inter­
leaved mode, however, REC bit 01 is used as the deciding bit for controller selection (selection of odd
or even controller during interleave operation). Thus, in this case, REC bit 20 is also used.

Similarly, sections 8 and C of Figure 2-5 illustrate the array address generation for memory with 4K
chips in the interleaved and non-interleaved modes. Only 18 bits of the received address [REC bit
(17:00)) are used for the non-interleaved mode. For the interleaved mode, however. 19 bits [REC bit
(18:00)) are used. In this mode REC bit 01 is used for controller select. Note in either mode, for
memory with 4K chips, REC bits 14 and 15 are ignored.

2-6

RECEIVED - -, I 00

ADDRESS ---•r-------~~---_j'
19 16 15

19 16: •

STARTING I I
ADDRESS . ST ADR •

I

~!
19 16115

ARRAY I BOARD I
ADDRESS SELECT

ADDRESS ON BOARD

a. 16K CHIP, NON-INTERLEAVED

00

I I
CONTROLLER r SELECT REMOVED

20 17 16 RECEIVED--r------------~~---~0~2..J0~1_..!00~
ADDRESS

20 17;
STARTING I I
ADDRESS ST ADR _______ ...
~I

19 . 16115 01 00
ARRAY I BOARD I
ADDRESS SELECT

ADDRESS ON BOARO I I
b. 16K CHIP, INTERLEAVED TK·0190

17 14 13 00
RECEIVED
ADDRESS =~LI -----L-----------------------

17 14

STARTING I ST ADR
ADDRESS _

19 16 15 14 13 00

ARRAY I BOARD ~ ADDRESSONBOARO I I
ADORESSL __ _...::S~E~L~EC~T!,._ __ ~~~~~:::::1..---

l ...
NOT USED

c. 4K CHIP. NON-INTERLEAVED

CONTROLLER SELECT REMOVED

r
15 14 18 02 01 00

RECEIVED- -I I
ADDRESS L-----------------L---------------------------------------_.. __ _._ ___

18 15

ST ADR
STARTING I
ADDRESS

----------------~

01 00

ARRAY I BOARD ADDRESS ON BOARD

ADDRESSL __ __;S~E~L~E~C~T __J:::..::::;.::::.:::;-...c::::;L..--....,--~
l J ...
NOT USED

d. 4K CHIP. INTERLEAVED

TK-0191

Figure 2-5 Array Address Generation (Sheet 2 of 2)

2-8

2.2.4.3 1/0 Address - If the reference is to 1/0 space, an 1/0 address check is performed. The 1/0
address check is performed on a received address just as an array address check to determine address
validity. A memory 1/0 address will prove invalid as an array address, but valid as an 1/0 address.
For a valid 1/0 address. the address translation logic is inhibited and the address is transferred unaf­
fected over the REC lines to the file.

The I /0 addresses for memory are shown in Figure 2,6. The hex representation is the byte address as
seen from the console. Only 28 of the 30 bits, however, are transmitted over the SBI (longword ad­
dresses). Bit 27 is asserted in each case to designate device control space. Note the addresses are
assignable in so far as the TR level is assignable (i.e., address bits 14-11 define the TR level of the
memory controller.)

2.3 COMMAND FILE
The memory controller contains a file to store incoming command/address or write data information.
The file is capable of storing up to four successive information formats until the memory subsystem is
available to utilize the information. The file's performance is similar to a first in, first out (FIFO) silo.
Associated logic provides buffering and queuing.

2.3.1 File Control
The file control logic monitors the a·mount of space available in the command file and determines if
there is sufficient space to store a memory request. This is implemented with a write-file pointer and a
read-file pointer in conjunction with a difference decoder that determines the amount of space in the
file. A comparator in the logic is used to compare this amount to the encoded amount of space
required to store the entire command string (from function decode). If enough space exists, all formats
for the function are stored as they are received, providing they arc valid.

Although they are input to the file, invalid command/address formats (bad parity, invalid function, or
invalid address) are not stored in the file. This is accomplished by not advancing the write pointer.
Thus the next format input to the file is written over the invalid command/address, thereby elimi­
nating it.

2.3.2 File Operation
At Tl of every SBI cycle, if the latched data is memory destined and valid, the write pointer of the
command file is advanced leaving it in the file for a memory cycle sequence. If the information is not
memory destined, or is in error, the write pointer remains unaltered and the file location is rewritten
with new data at the next Tl.

A memory cycle sequence is also initiated at TI if there is data in the file and the memory is not busy
executing another memory cycle. The first transfer from the file is always command/address informa­
tion that advances the read pointer. If the decoded function (also taken from the file) indicates a write
operation, write data formats are removed from the file at subsequent Tis advancing the read pointer
appropriately. When all formats for the operation have been removed from the file, a memory busy
signal is asserted and a memory cycle sequence is executed. The memory busy signal prevents the
initiation of another memory cycle sequence (removal of more information from the file) until the
current one has been completed. ·

2-9

.,,
OQ.
c
""' n

"" I

°' -t;-' "' - 0
0

'° ~ r;;· -n
""' >
0.
Q.

""' " Cl1
(II
n
Cl1

CONFIGURATION REGISTER A II FOR BYTE

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00 L Po'" t_ ADDRESS

I 1 1 o I o I o I o I o I o I o I o I o I o I o I o 1-1-1-1-1 o I o I o I o I o I o I o I o I o I o I o I ~[oJ
2 0 0 - - 0 0 0

CONFIGURATION REGISTER 8
27 0

I 1 1 o I o I o 1 o I o I o I o lo I o I o I o lo 1-1-1-1-1 o I o I o ! o I o I o I o ! o I o Io I 1 ! ~T_oj
CONFIGURATION REGISTER C

27 0

l ~1~'-o~J-o~l_o~Jo~'-o~J-o~l_o~lo~l_o~J-o~l_o~lo~l--~1--~l-_.._l-~l_o~J-o~l_o0~lo~l_o~J-o~l_o~fo-'-o~J-1~ol~~J 2 0 0 0 8

BOOTSTRAP ROM
27 10 0

I 1 lo lololol ol o I oj olol olol ol-l-l-l-l 1 I xix! xi xlxl xj xlxlxlxl~ oJ
2 0 0 - - x x x

NOTES:
1. BIT 27 IS SET TO DESIGNATE DEVICE CONTROL AD·

DRESS SPACE.

2. THE ASSIGNED TR LEVEL or "!0 HE CONTROLLER DE·
FINES 1/0 ADDRESS BITS 14-11.

3. X = ALLOWABLE ADDRESS :.PACE FOR ROM BOOT·
STRAP.

Tk-0178

2.4 MEMORY CYCLE SEQUENCE; GENERAL
The memory cycle sequence is the execution of an internal memory operation in which a valid memory
request is honored. As previously mentioned and in Figure 2-7, if the controller is not busy at Tl and
the command file contains information, a memory cycle sequence is initiated. The signal MEMGO is
generated when the last information format of the command string has been removed from the file. A
memory busy signal is also generated at this time to eliminate the initiation of another memory cycle
sequence before the current one is complete (Paragraph 2.3.2). The asssertion of MEMGO occurs
between T 1 and T2 of the same SBI cycle for read masked, interlock read masked, and extended read
commands (no write data formats must be taken from the file). Write masked and interlock write
masked commands delay MEMGO for one SDI cycle in order to fetch the write data format from the
file. Likewise, an extended write masked command delays MEMGO for two SBI cycles.

READ
(WITHOUT ERROR)

READ
(WITH ERROR)

WRITE

FULL
EXTENDED
WRITE

CYCLE DECODE
& MEMGO

TO l TO

I I I I I I
t

REMOVE
INFO

CYCLE DECODE
& MEMGO

RECEIVE ARB OK

ASSERT XMT XMT
TR DATA DATA (IF EXT)

~ l l
TO TO TO TO TO TO

I I I I I I I I I I I I I I I I I
RECEIVE ARB OK

ASSERT XMT XMT
TR DATA DATA (IF EXT)

i + i i
roJ ro ro ro ro ro ro ro
I 11 I
t '------'' - J

REMOVE
INFO

CYCLE

ERROR
CORRECTION

REWRITE

DECODE MEMGO (DELAYED ONE 581 CYCLE IF EXT)

TO l TO l I I I I I I I I
t 1

REMOVE REMOVE
INFO INFO

CYCLE
DECODE

TO

I
TO TO TO

I I I I I I I I I I I I
MEM FETCH, ECC CHECK, DATA ALIGN
AND REWRITE

MEMGO

TO TO TO

TO TO

I I I I

TO TO TO l TO TO 1
I I I I I ~ I I I I I I I I I I I I I I I

1 f t
I I I I I

REMOVE REMOVE REMOVE WRITE TO ARRAY
INFO INFO INFO TK-0185

Figure 2-7 Memory Cycle Sequence

2-11

The type of cycle is determined when the decoded function and decoded destination are input to the
cycle decode logic from the file. The function and destination are taken from the file whenever a
command/ address is removed. The cycle decode logic generates control signals to properly channel
address and data during the memory cycle sequence. The address is transferred to the address register
via the file information bus as soon as the command/address is removed from the file.

2.4. l Read Cycles
As all memory cycles, a memory read cycle begins with MEMGO. For all read commands, memory
data must be transferred onto the SBI. Therefore at TO of the second SBI cycle after cycle decode,
memory asserts its TR line to arbitrate for the bus in anticipation that the read data will be ready at TO
of the third SBI cycle. If, however, during error checking a correctable error is detected, the data is
delayed one cycle for correction and memory must re-arbitrate for the bus. For all extended read
cycles, HOLD is also asserted at TO of the third SBI cycle to reserve the information lines for tw J

longword transfers.

If the read is to a memory 1/0 register, the addressed register enables the requested data to the 1/0
multiplexer and onto the file bus. At the proper time the data can then be transmitted onto the SBI in a
read data format through the SBI transceivers.

If the read is to a memory location in the array, the address from the address register is transferred to
the array. The entire quadword containing the requested data is then placed on the MOS data bus
(along with its check code) and latched for error checking and correction. A tag is generated as a result
of the error check and transferred onto the file bus to be transmitted with the requested data. The tag
indicates the integrity of the read data to be transmitted (read data, corrected read data, or read data
substitute).

If a correctable error is not detected, the data on the MOS data bus is then transferred to the file bus as
selected by the mask decode. For extended read operations the lower longword is transferred first.
Once on the file bus, the data is available for transmission onto the SBI. Transmission occurs when
memory gains control of the SBI information lines. At this time the memory busy signal is dropped
and an ID check for multiple transmitters on the SBI is executed for each read data transmitted.

In the case of a correctable error, the error is corrected in the ECC logic. The corrected data is then
placed onto the MOS data bus for transfer to the file bus for transmission. Information transmission is
executed just as any read data transmission. The corrected data and new check code, however, are also
transferred to the array via the MOS data bus for a rewrite. The memory busy signal is cleared only
after all requested data has been transmitted and the corrected data has been rewritten into the array.

2.4.2 Write Cycles
As with all memory read cycles, a memory write cycle begins with MEMGO. The write cycle, however,
may be aborted during the memory cycle sequence if a WRITE ABORT indicator had been set and
stored in the file with the write data during the information decoding sequence. The WRITE ABORT
indicator is set during the information decoding sequence if the EXPECT WRITE DATA flag is set
and the information latched is not write data, or a parity error occurs in the received write data. In this
case an ERROR confirmation would have been transmitted at the appropriate time (Paragraph 2.2).

The only 1/0 write cycle is a write to the configuration registers. The addressed register latches the
data from the file bus as it is removed from the file. An ACKNOWLEDGE confirmation is trans­
mitted and the memory busy signal is dropped at the appropriate time.

2-12

In the case of a write to the array, data is not required to be fetched from the array for error correction
if and only if the entire quadword is to be written (i.e., the operation is an extended write masked and
all masks = 1111). In this case MEMGO is set and each data longword is transferred from the file bus
onto the MOS data bus as they are removed from the file. The entire quadword is then latched by the
ECC logic for check code generation. When the check code is generated, it is placed onto the MOS
data bus and transferred with its corresponding data to the array. Otherwise, for both extended and
non-extended writes to the array, MEMGO is set and a read cycle is started. The read cycle is executed
to perform error correction on the portion of the selected quadword that will not be replaced (Para­
graph 1.6).

For an uncorrectable error, the bad data and check code are merely rewritten into the array, as is.
Although the new information is not written, the error will be detected when the data is read from the
array during a read cycle. In this case the memory busy flip-flop is cleared as soon as the rewrite is
complete.

For a correctable error, the data is corrected and rewritten as if no error had occurred. That is, the new
data is aligned with the data read from the array and then is rewritten into the array. The memory busy
nip-flop is cleared when the write is complete.

2.S INFORMATION DECODING SUMMARY
Figures 2-8 through 2-12 summarize the information decoding sequence discussed in Paragraph 2.2.
Point A of Figure 2-8 indicates the entry point into the sequence. Point B indicates the sequence
termination. Note the sequences for the decoding of command/address and write data formats are
provided in the figures listed in Figure 2-8.

As shown in Figure 2-8, at point B the response and interlock bits are enabled for transmission and the
information decoding sequence is re-initiated. In addition, if the command file contains information
and memory is not busy, a memory cycle sequence is also started (Paragraph 2.6).

As mentioned previously, part of the command/ address decode selects one of three destinations (ar­
ray, CNFG register, or ROM) for the address and command received. This destination decode is
shown in Figure 2-9. Each destination selects a unique branch for function decode in the information
decoding sequence. Note that if the address destination is determined to be none of the three (i.e., not
for memory), a no-response confirmation is asserted for transmission and the decoding sequence is
terminated.

2.6 MEMORY CYCLE SUMMARY
As shown previously in Figure 2-8, an internal memory cycle may begin at Tl only if the command file
contains information and memory is not busy. Figures 2-13 through 2-16 summarize the memory cycle
sequence described in Paragraph 2.4.

When a command/address format is removed from the file at Tl to begin a memory cycle sequence.
the read file counter is advanced. The removal of a command/address also triggers cycle decoding. The
cycle decode generates control signals that determine the correct memory cycle branch. Each branch is
outlined in the figures listed in Figure 2-13. Note all branches converge at point E.

2-13

Figure 2-8 Information Decoding Sequence

2-14

LATCH INFO
ATT3

NO

ENABLE FLT. CNF.
AND INTLK BITS
TO TRANSMITTER

~
RESTART INFORMATION
DECODING SEQUENCE

TK·06<13

NO

Figure 2-9 Command/ Address Destination Decode

2-15

SETN/R
CONFIRMATION

TK-GM4

SET ERR
CONFIRMATION

SET BUSY
CONFIRMATION

Figure 2-10 Array Function Decode

2-16

DECREMENTS

SET INTLK FF

ADV WR FL CNTR

SET ACK CONFIRM

NON-EXT

NO

SET EXP WR DAT
FOR 1
DECREMENT

SET FLG TO
CLR INTLK FF

ADV WR FL CNTR
SET ACK
CONFIRMATION

NO

SET INTLK
SEQ FLT

SET XMT FLT

NO

ADV WR FL CNTR
SET ACK
CONFIRMATION

SET EXP WR OAT
FOR 1
DECREMENT

SET FLG TO
CLR ALERT BITS

SET ERR
CONFIRMATION

ADV WR FL CNTR
SET ACK
CONFIRMATION

NO

SET ERR
CONFIRMATION

Figure 2-11 Configuration Registers and ROM Function Decode

2-17

TIC-Ol27

ADV WR FLCNTR
DECREMENT EXP
WR DAT FLG

SET ACK
CONFIRMATION

YES

YES

CLR INTLKFF

CLR PROPER
ALERT BITS

TK-m28

Figure 2-12 Write Data Information Decode Sequence

2-18

CYCLE
DECODE

FIGURE
2-14

I

110 .

.
FIGURE
2-14

I

YES

START REF CYCLE

ARY

FIGURE
2-16

I

SET BSY FF

CLR BSY FF

FIGURE
2-15

I

TK-0624

Figure 2-13 Memory Cycle Sequence

2-19

SET MEMGO

STARTRDCYC

SET BSY FF

ASSERT BUS REQ

XMT PTY. TAG.
ID& DATA

CLR BUS REO

CLR BSY FF

NO

SET MULTIPLE
XMTFLT

ADV RD Fl CNTR

SET MEMGO

START CNFG
REG WR eve
SET BSY FF

CLR BSY FF

Figure 2-14 1/0 Read and Write Cycle Sequences

2-20

YES

TK·0825

:!1
OQ
c
3
N • -u.

>
:i
~
~

~ ::!.
N ~ - (')

'< n
ft

K1 .a
5
:s
8

-4

" * N
0

UNCOR

REWRITE
UNCORRECTED
DATA

CLR BSV FF

ADV RO Fl CNTR

ADV RD Fl CNTR

NON-EXT YES

NO

SET MEMGO

START RD CYCLE

SET BSY FF SET MEMGO ALIGN NEW DATA

START 84-BIT WR WITH DATA READ

SET BSY FF START WR CYCLE

CORRECT ERROR

CLR asv FF

SET MULTIPLE
XMT FLT

NO

ASSERT HOLD

XMT PTY. TAG.
ID& DATA
(LOWER LONGWORD)

CLR HOLD

XMT PTY. TAG.
ID.& DATA
(UPPER LONGWORD)

CLR BSY FF

EXT

___ X_
SET MEMGO

START RD CYCLE

SET BSY FF
ASSERT BUS REQ

XMT PTY. TAG.
10& DATA

CLR BUS REO

CLR BSY FF

FIGURE 2-16
(SHEET 2)

NO

SET MULTIPLE
XMT FLT

TK-0649

Figure 2-16 Array Read Cycle Sequence (Sheet I of 2)

2-22

CORRECT ERROR
ST ART REWRITE

YES CYCLE

REREQ BUS NO

SET HIGH ERR ..,,
SAVERR AORS RATE FLG

cjQ"
& SYNDROME c

CLR BSY FF
..,

SET ERR LOG FLG n
N
I

°'
> YES .., ...
~
'<

" INHIBITCRO
ASSERT HOLD g

TAG GENERATION
NON·EXT

Q.

XMT PTY. TAG. (')
ID. It DATA '< n

n (LOWER LONGWORD)

~ en
XMT PTV. TAG. n

N .c
COR 10. It DATA

w 5
NO :s CLR BUS REQ R -

SET MULTIPLE
ti)

g-
XMT FLT n

START REWRITE
,..

~ GENERATE RDS N ~
WITH BAD DATA 0 t TAG,

CLR HOLD N .._,,,
XMT PTV. TAG.
ID.a DATA
(UPPER LONGWORD)

NO

3.1 l~TRODl:CTION

CHAPTER3
DETAILED DESCRIPTION

The following paragraphs describe the logic of the MS780 in detail. A simplified block diagram of the
logic is provided in Figure 3-1. The major sections of discussion are address logic. command file logic,
data path logic. I /0 data logic. and the array board logic. In addition to these sections, various other
logic circuits are discussed. Summary paragraphs explaining the signal-to-signal timing relationships
are also provided.

3.2 ADDRESS LOGIC
Once placed on the file information bus, the address is available for a memory cycle sequence. MCNB
ADR 0 BUSH is generated when a command/address format is removed from the command file and
placed on the file bus. This signal causes the address register to latch the address from the bus (Figure
3-2). Bit 27. which is set to indicate 1/0. is also latched from the bus and sent to cycle decode logic as
MCND CMD IO H.

A portion of the latched address (MCNE MEM ADR (15:00) is selected through the address multi­
plexer and sent to the array as MCNEARY ADR (13:01) as long as a refresh or initialization sequence
is not required.

For a refresh cycle or during initialization the address multiplexer is selected to provide MCNF REF
ADR (14:01) as a board address. These signals are generated by a refresh address counter that is
incremented by a dedicated refresh clock.

A portion of the output of the address register [MCNE MEM ADR (9:0)) is also sent lo the ROM
bootstrap. These bits select a ROM location when the ROM is enabled (MCNA ROM EN L is
generated).

The array board organization and logic is described in Paragraph 3.14.1.

3.3 C0:\1!\1A~D FILE LOGIC
As mentioned previously. the command file is a storage buffer for incoming SBI commands and data.
Figure 3-3 is a simplified diagram of the logic associated with the command file. The following para­
graphs describe this logic, in addition to the file control logic.

As seen in Figure 3-3. the command file logic links the SBI with the file information bus. At T2 of
every SBI cycle, SBI transceivers latch information from the SBI and present it to the command file.
This SBI information is likewise presented to decode logic to determine its validity. The result of the
decode enables the write-file control logic appropriately. The file control logic is explained in· Para­
graph 3.3.1.

3-1

BUS SBI SBI TRANCEIVERS

~ ~
~ a:

u: I- < -, lMSBU RfC PAR (1:0) -----
zs ..J z 0 .. LL :::> u::::.

RESPONSE
LOGIC

MSBU REC

TAG (2:0) TAG
DECODE

MSBA PAR (10:00) --
MSBU REC ID (4:0)

MSBU REC ID (4:0)

MSBU REC BIT (31:28) FUNCTION .__ ___ M_S_B_U_L_W_R_._EX_T _ _..

DECODE

MSBA REC BIT (31:00). REC MSK (3:0)

FROM
CNFG

MSBA BIT REC (27: 10) DST

DECODE

REI B.
MSBA REC BIT (27:00)-----

ADDRESS

DRIVERS
MCNP ST AOR (20: 14) DECODE

BUS AC/DC U.T

BUS SBI PCLK, TP

BUS SBI TA (15:00)

POWER/FAIL
CONTROL

CLOCK
LOGIC

BUS TR ARBITRATION

TR SEL 8.4,2.1 LOGIC
~ ------

Figure 3- I Simplified Block Diagram
of the MS780
(Sheet I of 2)

3-2

-

?
a: ~
0
u N

(/)

0 >-m
C./) a:
~ <

INTLV
ADR
CCR

--

MSBD DST ROM,
CNFG REG, ARY

MSB REC BIT (31: 16)
MSBD MUX REC BIT (15:00)

MCN ARY SZ (5:0)
CHIP
sz
COR

PARITY
CHECK

COMMAND
FILE

MSBU L REC ID (4:0) -

ID
CHECK

ID
LATCH

MSBU L REC MSK (3:0)
MSBU L REC BIT (31 :00)

MSBU l DST ROM, CNFG·REG, ARY

•
FILE
CONTROL
LOGIC

MEM
~ sz

ENCODE

MSBU L WR, EXT

MAY IN (15:00) FROM
...... --~~- MEMORY

ARRAY

- 6 ~ :e a:
x <(

:::>o
Q.

c:a a: ~

Cl> < :e
:e Q. x

Cl>
::>

PARITY al

GEN FROM
MCNT

~

BUS FL
MSBU XMT ID (4:0) MSK (1 :0)

DRIVERS

z
BUS FL INF (31 :00), MSK (3:0) 0

-e ~

CYCLE

~ DECODE
&
CONTROL

:1:

~ TO STROBES &
CONTROL ~ MEMORY 1--------1: i-. TIMiNG &

..J CONTROL
U: LOGIC

TK·0179

STROBES & TIMING &
FROM CYCLE CONTROL TIMING CONTROL
DECODE AND &CONTROL --
CONTROL LOGIC

_ BUS FL MSK (1 :0) TAG
XMT

MDTD XMT TAG (1:0)
TAG .,.-1o-----.....
GEN

MCNF REF ADR
REFRESH (15:01)(7:1)
LOGIC

MCNEARY ADR (15:01)

---- MCNE MEM ADA (15:00)
BUS FL INF (19:00) ADDRESS

REG

Cl)

::>
m BUS FL INF z.,_ ______ ,..

0
t:=
<(
~

~ BUS FL INF
~1-----~-----~
z
w
_J

~

BUS FL INF

CNFG
REG
A

CNFG
REG
B

CNFG
REG
c

~v

BOOTSTRAP MCNL ROM DAT (31 :00)"'
i-.,

(9:0) ROM

CNFG REG A
-

1/0
DATA.,..._

MCNEARY ADR (19:15)

CNFG REG B MUX MDTB
1----------------.. ~ BUS MOS DAT (C7:CO) CHK BITS MOS DAT (C7:CO)

LATCH

CNFG REG C v
BUS MOS OAT ----BUSMOSDAT
U31:UOO, L31:LOO~ DATA (U31:UOO, L3:LOOl __

LATCH

ECC
LOGIC

t-- CHK BITS BUS MOS DAT (C7:CO)

DRIVERS

----BUS MOS DAT
(U31 :UOO,L31 :LOO) DATA

~ XMT
LATCH

BUS FL MSK (3:0) MOS DATA BUS - - t ~
--------------~----.----,v

MSK MOTE BYT MSK (U3:UO, L3:LO) MASK

LATCH DECODE

DATA MDT MOS DAT (U31:UOO)
...---. RECEIVE

LATCH

BUS FL INF (31:00) DATA MOTMOSDAT(L31:LOO)
'"--~~--...;._---------------~-------------....- RECEIVE

LATCH ~ BUS MOS OAT (U31 :UOO)

BUS FL l~F (31:00>

BUS MOS DAT (L31:LOO)

MEMORY
ARRAY

TK-0180

Figure 3-1 Simplified Block Diagram
of the MS780
(Sheet 2 of 2)

3-3

(/)

:::>
al

z
0
j::
<{

~
a:
0
u..
z

REFRESH

CLOCK

MCNF REF CLK L

w BUS FL INF (19:00)
~1---~~~-~--~---.... u::

BUS FL INF 27

REFRESH

ADDRESS
COUNTER

ADDRESS

REGISTER

CONT

MCNC INIT H

MCNC REF EN H

MCNF REF ADR (14:00)

(15:01)

MCNEARY ADA EXT
MCNEARY ADA (13:01}

MCN E MEM ,..._.(9_: 0_) ___ ---1~ TO ROM

ADA (15:00l BOOTSTRAP

MCNEARY ADR (19:16)

MCND CMD 10 H

MCNB ADR 0 BUS H TO CYCLE

DECODE

LOGIC

Figure 3-2 Address Logic

MEMORY

ARRAY

TK-0621

MSBR SBI T2 CLK H

LATCH

m _B_u_s_s_B_1 _....,. sa1
cn TRANSCEIVERS

MSBL WR 0 L ----­

MSBL WR 1 L ----.

MSBK WR EN 1 L
MSBK WR EN 2 L

MSBA REC BIT (31 :20)

MSBCD MUX
REC BIT (19:00)

(COMMAND)

...... -..---..MSBJ L REC MSK (3:0)
MSBJ L REC BIT (31 :00)

COMMAND
FILE

(COMMAND)

MSBL RD 0 L

MSBL RD 1 L

DRIVERS

BUS FL MSK (3:0)
BUS FL INF (31 :00)

MSBK LATCH FL DAT H

t---- MSBK RD FL TO CNTRL L

CONT ENB

DRIVERS

en
::>
m
z
0

~ TO CYCLE ~

DECODE ~
LOGIC u.

~
w
..J

}

TO/FROM MSBK RO CMD TO CNTRL H
~

X ENI XCLK

MSBT £N XMT DAT i l
MS'BT £N XMT OAT 2 t.

MSBA SBI TO CLK H

-------- DECODE
.,._ __ M_s_a_A_R_E_c_e_1T~(3;...1...;:00;..;;.;..)- LOGIC

BUS FL MSK (1 :0)
.BUS FL INF (31 :00)

TK·Olt37

Figure 3·3 Command File Information Path

Information is removed from the file when MSBK RD FL TO CNTRL Lis generated. This signal is
asserted at SBI TI providing memory is not busy and the file contains information. MSBK RD CMD
TO CNTL H is generated if the information removed from the file includes a command (not write
data). This signal enables the command to the cycle decode logic. MSBK RD FL TO CNTRL Lis also
generated if the file is empty and a valid memory command or data is received. For a valid command
in this case, MSBK RD CMD TO CNTRL H is delayed 15 ns to allow the command to propagate
through the file before enabling cycle decode.

Information removed from the file is input to drivers on the file information bus. Once on the bus, the
information is available for a memory cycle sequence. With MSBK RD FL TO CNTRL L asserted,
these drivers are enatled when MSBK LATCH FL DAT H is generated. MSBK LATCH FL DAT H
is generated 30 ns after each TO. This allows the file output to become stable before being placed on the
file bus.

When read data is placed on the file information bus at the end of a memory read cycle sequence,
MSBT EN XMT DAT I Land MSBT EN XMT DAT 2 Lare generated to enable the SBI trans­
mitters. These signals are asserted when MSBT ARB OK Lis generated indicating the SBI is available
(i.e., memory's transfer request has been honored) for the transmission of the read data.

3.3.1 File Control Logic
The file control logic consists of a 2-bit write counter, a 2-bit read counter, a file overflow flag, a
difference decoder, and a room-in-file comparator. All of this logic is found on MSBL of the engineer­
ing print set.

3.3.1.1 Write and Read File Counters - The output of the write-file counter (MSBL WR I :0 L) and
read-file counter (MSBL RD I :0 L) select one of four command file locations in binary form. The
operation of each counter is described in the following paragraphs.

The write-file counter is advanced by the generation of MSBK ADV WR CNT H. This signal is
generated at SBI TO if MSBH VAL DAT His asserted and there is room in the file. MSBH VAL DAT
H is asserted as a result of the decoding of a valid memory destined information format.

The read-file counter is advanced by the generation of MSBK CLK FL TO CNTRL H. This signal is
generated at Tl if the file contains information (MSBL RD-WR 0 H asserted) and memory is not busy
(MCND MEM T BSY H deasserted). This signal is also generated if the file is empty and a valid
memory command or data is received. For this case the generation of this signal is delayed for 15 ns.
The delay allows the command or data to propagate through file before the read-file counter is ad­
vanced. (The write-file counter is advanced at TO if MSBH VAL DAT H is asserted.)

The read-file counter logic also includes an overflow flag. This flag (MSBL OV H) is set at SBI T3 if
the file is full. The file is considered full if the write-file counter is one location behind the read-file
counter (MSBL RD WR I H generated) when the write-file counter is advanced (MSBK ADV WR
CNT H). The overflow flag prohibits further advancement of the write-file counter. This flag is
dropped when the read-file counter is advanced (an information format is read from the file creating a
vacancy).

During initialization the read-file counter and write-file counter are set to 00 by MSBF INIT I L.

3.3.1.2 Difference Decoder - The logic of the difference decoder performs a 2's complement arith­
metic operation on the contents of the read- and write- file counters. During the operation the content
of the read-file counter is subtracted from the content of the write-file counter. The result specifies the
number of empty locations in the command file. This encoded number is input to the room-in-file
comparator (Paragraph 3.3.1.3).

3-6

Since a result of 00 can indicate that the file is completely empty or completely full. an overnow nag is
included in the file control logic. (Paragraph 3.3.1.1.)

3.3.1.3 Room-In-File Comparator - The room-in-file comparator determines if there is enough space
in the command file for an incoming command string. This logic performs a comparison between the
amount of empty file locations and the encoded number of locations required to store the command
string. If the file contains enough locations. MSBL RM IN FL H is generated. This signal must be
asserted to advance the write-file counter. The failure to generate MSBL RM IN FL H results in a
busy or error confirmation.

3.4 DATA PATH LOGIC
The data transfer logic provides a data path between the file information bus and the MOS data bus.
Before studying the logic implementation, the reader should understand the basic data flow on the
MOS tristate data bus. The three general cases of data flow are illustrated in Figure 3-4 and explained
in the following text. This figure is also an introduction into the ECC strategy.

As seen in this figure. during a read masked, interlock read masked. or extended read operation:

I. The data quadword and check bits of the addressed location are placed on the MOS data
bus by the array board output data buffers.

2. This data and check bits are then latched by the ECC logic for error checking. Correctable
errors wi 11 be corrected.

3. Once ECC is complete. the data is placed back onto the MOS data bus.

4. The requested data is then available for transfer to the file information bus. (If a correctablt"
error was detected during ECC, a rewrite is initiated and the corrected data is also trans­
ferred back to the array.)

For a write masked. interlock write masked. or extended write masked that is not a full write. a read
operation is executed before the write operation:

I. The data quadword and check bits of the addressed location are placed on the MOS Data
bus by the array board output data buffers.

2. This data and check bits are then latched by the ECC for error checking. Correctable errors
will be corrected.

3. Once ECC is complete, the bytes that will not be replaced are returned to the MOS data bus.
Likewise, the new data bytes (write data) are placed on the MOS data bus for alignment. (If
an uncorrectable error was detected during ECC, the new data is not placed on the MOS
data bus and only the bad data and check bits are written back into the array.)

4. The newly aligned quadword is then latched by the ECC logic for the generation of new
check bits.

5. The new check bits are placed on the MOS data bus for transfer to the array with the new
data.

6. The new data and check bits are transferred to the array.

3-7

w
...J

(/)

:::>
CD

z
0
t:=
<{

::E
a:
0
u.
z
w
...J

en
:::>
m
z
0
i=
<
::E
a:
0
&L.
z

MOS DATA BUS

ECC

LOGIC

READ ARRAY

ECC

LOGIC

MOS DATA BUS

WRITE ARRAY

ECC

LOGIC

MOS DATA BUS

FULL EXTENDED WRITE

ARRAY

ARRAY

Figure 3-4 Basic Data Flow on the MOS Data Bus

3-8

ARRAY

TK-o&38

For the case of a full extended \\rite masked (the entire quadword rewritten), a read for error checking
is not performed before the write operation:

I. The new data quadword is placed on the MOS data bus.

2. This data is then latched by the ECC logic for the generation of check bits.

3. The check bits are placed on the MOS data bus for transfer to the array with the new data.

4. The new data and check bits are transferred to the array.

3.4.1 Data Transfer Logic
Figure 3-5 illustrates the logic associated with the transfer of data between the file information bus and
the MOS data bus.

During a write operation, the appropriate write data latch is enabled by signals generated in the mask
logic (Paragraph 3.4.3) to latch data from the file bus. Only the selected bytes of the proper longword
are placed on the MOS data bus to be aligned with data previously fetched from the array and error
checked by the ECC logic. Once aligned with the new data, the modified quadword is latched by the
ECC logic. This time the ECC logic generates check bits for the modified data (Paragraph 3.4.2). Once
the check bits have been generated, they are placed on the MOS data bus for transfer to the array with
the new quadword.

For a read operation, the entire quadword containing the requested data is initially placed on the MOS
data bus along with its check bits by the array logic. The ECC logic then latches and error checks the
data. Any correctable errors are corrected at this time. The data is then once again placed on the MOS
data bus. In this way the requested longword is available for selection by the data transmit multiplexer.

The data transmit multiplexer provides selection of the upper or lower longword from the MOS data
bus for transfer onto the file information bus. RD DAT EN L is generated as a result of cycle decode
to enable the multiplexer. The condition of RD LO SEL L selects the upper or lower longword.

3.4.2 Error Check and Correction Logic (ECC)
Figure 3-6 illustrates the logic associated with ECC. The following paragraphs describe the ECC logic
operation for read and write operations.

3.4.2.1 ECC During Reads - During a read operation to main memory, the memory quadword ad­
dressed is fetched from the array and placed on the MOS data bus along with its check bits. The data
and check bits are then latched by the array receive data latch and the array receive check bit latch for
error checking. This is accomplished by the assertion of MCND CHK BIT DAT CK H and MCND
ARY DAT CK H.

The data portion is presented directly to the error check and syndrome logic. Also input to this logic
are the latched check bits via the check bits multiplexer. (The check bits multiplexer provides the
capability of selecting check bits from configuration register B for diagnostic purposes.) The resultant
error syndrome (SYN 7:0) is presented to the error detect logic, the syndrome decode logic, and the tag
generator logic.

The tag generator logic generates a tag to indicate whether or not the data is correct, and if not correct,
whether it is correctable. The resultant tag is transferred to the mask logic for transmission with the
requested data. In this way, it defines the data as read data, corrected read data, or read data sub­
stitute.

3-9

-0

BUS MOS DATA U (31 :00)

DATA
,... ________ _. TRANSMIT

en
:::>
m
z
0

~ BUS FL INF (31 :00)
~ ... ______________
a:
0
u.
~

MCNA RD DAT EN L

MCNA RD LO SELL

MUX

BUS MOS DAT L (31 :00)

WRITE
DATA
LATCH

BUS MOS DATA l (31:00)

CONT ENB

MOTE WR LO CK (3:0) H

~ MOTE WR BYT l (3:0) L
u:

WRITE
DATA BUS MOS DATU (31 :00)

LATCH

CONT ENB

MOTE WR UP CK (3:0) H

----MOTE WR BYT U (3:0) L

MOS DATA BUS

Figure 3-5 Data Transfer Logic

ECC
LOGIC

MEMORY
ARRAY

TK·0639

.,,
o;·
c
3
w
I

°'
rn r- ...

0 ...
ce.2

w
n (')
~tr" •
R~ - .._,.

:s
a.
n
0
=I a.
0 :s

FROM
CNFG REG

CNFG REG B (7 0)

B

BUS MOS DATA C 17:0)

MCNO CHK BIT DAT CK H
MCNC INIT H

BUS MOS DATU (31:00). L (31:00)

TO/FROM
FILE INFORMATION
BUS

MCNO ARV OAT CK H

MCNC INIT H

{>-
ARRAY
RECEIVE
CHECK BIT
LATCH

ENB

ARRAY
RECEIVE
DATA
LATCH

MCNC TAG CLK L

MCNB ARV RD EN H MCNA ECC EN H

TO MASK MOTD ><MT TAG (1 0) TAG
LOGIC ._:~.:.:;..~~.;..;.;;;;~...;.;...--t GENERATOR

BIT
CORRECTION
FLAG
LOGIC

MCNR FRC CHK (7 01

MDTD BIT 17 01

MDTD COR BIT U

13 01. L 13 01

SYNDROME 16.-----1

DECODE

MDTD COREN H

ERROR
DETECT
LOGIC

MOTB CHK BIT (7 01 ERROR MOT SYN 17 01 BUS MOS OAT C

17 0)

MDTB MOS DAT C (7 01

MDT MOS DATU 131 00). L 131 001

MDTF COR BIT U 131 001. L 131 001

MOTT WR BAD ECC EN H

MOS DATA BUS

CHECK
AND

-----.. SYNDROME

----... MOTC UP PTV
BYTE
PAR ITV
CHECK

DATA

MDTC LO PTV TO SBI
'-------_,. TRANSCEIVERS

TRANSMIT BUS MOS DATU 131 001. L 131 001
LATCH

ENB CONT

MOTE RD EN U 13 01 L
MOTE RD EN L 13 01 L

"--- MCND XMT DATA CK H

TO/FROM
MEMORY ARRAY

The error detect logic i~ capable of determining if a single or double bit error exists in the quadword. If
a singlt.~ hit error exists (i.e .. correctable error). i\1 DTD COR EN His generated. This signal enables
the syndrome decode logic. which identifies the bit and byte in error. The bit correction flag logic
employs eight bit lines and eight byte lines. which produce an error flag for the appropriate bit in error.
The appropriate bit flag is then input to exclusive-OR gate!'I uhmg with the original latched quadword.
The exclusive OR function changes only the bit indicated by the bit correction flag logic. The corrected
quad\\ ord is then placed back onto the MOS data bus via the data transmit latch, for transfer to the
file information bus. Note that the original check bits remain on the bus.

If an uncorrectable error is detected by the error detect logic, the syndrome decode logic and data
transmit latch are not enabled. For this case. the data and check bits on the MOS data bus remain
unaffected for transfer to the file information bus. This also occurs if no error is detected.

To conform to SBI protocol. a parity bit is generated for transmission with the requested longword.
This is accomplished by parity generators in the ECC logic. The quadword containing the requested
data is presented to these parity generators when it is latched from the MOS data bus by the array
receive data latch for ECC. Two parity bits are generated: one for the upper longword and one for the
lower longword. The appropriate parity bit (upper or lower) is then selected for transmission with the
corresponding longword by the signal MCNA RD LO SEL L.

3.4.2.2 ECC During Writes - During a write operation to main memory. the memory quadword
involved is fetched from the array and placed on the MOS data bus along with its check bits. The data
and check bits are then latched by the ECC logic for error checking just as during a read operation
(Paragraph 3.4.2.1). When ECC is complete. only the bytes that will not be replaced are returned to the
MOS data bus via the data transmit latch for alignment with the new data.

If an uncorrectable error is detected during ECC, the data and check bits on the MOS data bus remain
unaffected for a rewrite to the array. That is. the new data bytes are not placed on the MOS data bus.

If an uncorrectable error is not detected, the new data byte or bytes are transmitted onto the MOS data
bus for alignment when the error check is complete. This is accomplished by the data receive latch of
the data transfer logic (Paragraph 3.4. J). Once aligned, the new quadword is latched hy the array
receive data latch for the generation of new check bits. The new check bits are generated by the error
check and syndrome logic. This logic presents the new check bits to MOS hus drivers. MOTT WR EN
is generated to transmit these check bits onto the MOS data bus. With the new data quadword and
corresponding check bits on the MOS data b•Js, a write to the array is executed.

Note as mentioned previously. the ECC logic does not perform error checking in the case of a full
extended write (no read cycle is performed). For this case. the data bus latch and check bit latch are not
enabled.

3.4.3 Mask Logic
When a command is removed from the file and placed on the file information hus. the mask is de­
coded. This decode generates signals to select the appropriate data bytes of the addressed longword for
the ECC and data transfer logic. For extended write masked operations. the mask of the first write
data format is also decoded to select the bytes of the second write data format.

The mask decode logic is illustrated in Figure 3-7. As seen in this figure. the mask is latched from the
file information bus as M DTE BYT MSK U(3:0) H and M DTE BYT MSK L(3:0) H. These signals
are input to various drives for the data transfer logic and a multiplexer for the ECC lngic.

3-12

~
I -~

Cl)

:::>
m
z
0

~
~

~ BUS FL MSK (3 :Ot
u.
z
w
...J

u::

MOTT UP MSK CLK L
MOTT LO MSK CLK L

BUS FL MSK (1 :Ot

MOTT DAT ON BUSH

MASK
DRIVERS

MOTT WR CLK EN LO H ---4---+----­
MDTT WR CLK EN UP H

MOTE WR LO CK (J:Ot H

MOTE WR UP CK (3:0t H

MOTE WR BYT U (3:0t L
MASK MOTE WR BYT L (3:0t L
DRIVERS

MASK
LATCH

MCNB WR EN LO H ----1--_.,.--.,--
MCNB WR EN UP H ASSERTED TO SELECT LATCHED MASK

~
MOTE BYT MSK U (3 :Ot H

MOTE BYT MSK L (3:0t H

TO DATA
TRANSFER
LOGIC

CLK
CM::D:::,.T:,:E:_:R~D:...::EN:..:....:L.;.(3.:..:....;0t;_L ____ • TO ECC

~~~K i,:M::;D:.;T:..:E:..:R.:.:D:_.:;EN~U....;(_3:_0_) _L ----. LOGIC 

MASK 
TRANSMITTER 

OE 

MCNC RD EN H 

MDTO XMT TAG (1 :Ot FROM ECC LOGIC 

MCNA RD DAT EN L 

BUS FL MSK (1 :0) 

MCNB MUX EN 1 L 
Tk·Ol31 

Fisure 3-7 Muk Losic 



3.4.3.1 Mask Multiplexer - The mask multiplexer can be selected to supply the ECC logic with the 
latched mask or a mask of all ones. During a write masked operation. MCNB WR EN LO H or 
MCNB WR EN UP H is generated to select a latched mask for the generation of M DTE RD EN 
L(3:0) L or M DTE RD EN U(3:0) L. These signals are generated to select bytes of the appropriate 
longword (high or low) for transmission onto the MOS data bus from the ECC logic. The data is 
placed on the MOS bus at this time for alignment with the new data. In the case of an extended write 
masked, both MOTE BYT MSK U(3:0) Hand M DTE BYT MSK L(3:0) Hare selected to transmit 
bytes from the entire quadword onto the MOS data bus. 

During a read masked, interlock read masked, or extended read cycle. all bytes of the selected long­
word are required for transmission onto the MOS data bus after ECC. For this reason. MCNC RD 
EN H (equivalent to a mask of all ones) is selected by the mask multiplexer when neither type of write 
is being executed. 

3.4.3.2 Mask Drivers - MCNB WR EN LOH and MCNB WR EN UP Hnot only select a mask for 
the ECC logic, as previously described. but also control the generation of MOTE WR BYT U(3:0) L 
and MOTE WR BYT L(3:0) L in the data transfer logic. These signals, along with M DTE WR LO 
CK(3:0) H and MOTE WR UP CK(3:0) H are used to enable the data receive latches in the data 
transfer logic (Paragraph 3.4. J ). The latches are enabled to transfer the appropriate data bytes from 
the file information bus to the MOS data bus during writes. 

The generation of MOTE WR LO CK(3:0) H and MOTE WR UP CK(3:0) Lis similar to that of 
MOTE RD EN L(3:0) Land MOTE RD EN U(3:0) L described previously. During a write masked, 
either MOTT WR CLK EN UP Hor MOTT WR CLK EN LOH is asserted to generate MOTE WR 
LO CK(3:0) H or MOTE WR UP CK(3:0) L. For extended writes. both signals are asserted. 

If the mask latched from the file information bus is equal to all ones. M DTE FU LL WR EN H is 
generated. This signal is used to generate MCND FU LL WR H during extended write masked oper­
ations. For these operations, MCND FULL WR H generates MCN B WR EN LOH and MCNB WR 
EN UP H to transfer the new quadword from the ECC logic onto the MOS bus. (The new quadword 
was latched by the ECC logic, in this case. to generate check bits.) 

3.4.3.J Masks for Transmissions - During a read operation. a mask is generated by the ECC logic to 
specify the integrity of the requested data. This mask is input to transmitters on the file information 
bus for transfer to SBI transceivers. 

The mask transmitters are shown in Figure 3-7. Note the ECC logic generates only the two low-order 
mask bits, MDTD XMT TAG (I :0). (These bits should not be confused with the tag of an SBI format.) 
These mask bits are transmitted onto the file bus when MCNA RD DAT EN L is generated. This 
signal also enables the data transmit multiplexer to transfer read data from the MOS data bus to the 
file information bus (Paragraph 3.4. l). The two high-order mask bits are supplied by the SBI trans­
ceivers during transmission. These two high-order bits are low for any type of read data and so are not 
deependent on ECC results. 

A mask of all zeros is transmitted with any read data requested from the configuration registers or 
bootstrap ROM. For this case, MCNB MUX EN J L is generated to enable file information bus 
drivers (Figure 3-7). This signal also enables the 1/0 data multiplexer (Paragraph 3.5). 

3.S 1/0 DAT A LOGIC 
The 1/0 data logic, illustrated in Figure 3-8, is located on the MCN board. As seen in the figure, this 
logic includes the three configuration registers, the bootstrap ROM, and the 1/0 data multiplexer. 

3-14 



The contents of the ROM and registers are visible over the file information bus by the proper selection 
of the 1/0 data multiplexer. (The function table for the multiplexer is also shown in Figure 3-8.) The 
configuration registers contain status information for the operating system and diagnostic software. 
The ROM contains informationn for booting the system. 

Each of the configuration registers is described in the following paragraphs. An illustration of each 
register is included to summarize its contents. A description of the logic associated with the ROM is 
also included. 

(/) 

::::> 
m 
z 
0 
t:= 
4: 
~ BUS FL INF CI:-----------0 
u. 
z 

STATUS 
SIGNALS 

~------......_ ........ 

BUS FL INF (31 00) 

CNFG 
REG 
A 

CNFG 
REG 
B 

CNFG 
REG 
c 

MCNB MUX EN 1 L 
MCNB MUX EN 2 l 
MCNB MUX EN 3 L 

CNFG REG A 

CNFG REG B 

CNFG REG C 

FROM MCNE MEM ADR (9:0) BOOTSTRAP MCNL ROM OAT (31 :00) 
ADDRESS--------- ROM 
REGISTER 

ENB 

MCNA ROM EN L 

Figure 3-8 1/0 Data Logic 

3-15 

STB 
L 
L 
L 
L 
H 

1/0 DATAMUX 

S1 so OUTPUT 
l L REGA 
L H REG B 
H L REGC 
H H ROM BOOT 
x x 

TK·0&36 



3.5.1 Configuration Regwter A 
Figure 3-9 illustrates the contents of configuration register A. Each bit is described below in Table 3- I. 

Bit 

31:26 

23,22 

14:9 

Table 3-1 Configuration Register A 

Fuactioa 

SBI Fault Flags 

Power UP/OOWN 

Memory Array Size 

Description 

Bit 31, bus parity fault - When set indicates an SBI in­
formation path parity error has occurred. May be as­
serted in one or more other nexus simultaneously. This 
bit is read-only. 

Bit 30, write sequence error - This bit is set when a write 
masked, extended write masked, or interlock write mas­
ked command is not immediately followed by a write 
data format. This bit is read-only. 

Bit 29, not used ( = 0) 

Bit 28, interlock sequence fault - Set when an interlock 
write masked command is received, but interlock has 
not been set by an interlock read masked command. 
This bit is read-only. 

Bit 27; multiple transmitters - This bit is set when mul­
tiple transmitters are detected on the SBI. (Detection is 
accomplished by comparing the received ID with the 
transmitted ID one cycle after transmission.) This bit is 
read-only. 

Bit 26, transmit fault - Set if memory was transmitter 
when a fault occurred. This bit is read/write I to clear. 

Bit 23, power up - If set, indicates a power-up sequence 
is being executed. This bit is read/write I to clear. 

Bit 22, power down - If set, indicates a power-down se­
quence is being executed. This bit is read/write 1 to 
clear. 

These bits indicate the array size as shown below. Note 
bits 13 and 14 are not used for 4K chip applications. 

Bits Array Size (bytes) 
12 11 10 09 

0 0 0 0 64K 
0 0 0 1 128K 
0 0 I 0 192K 
0 0 I I 256K 
0 1 0 0 320K 
0 I 0 I 384K 
0 1 I 0 448K 

3-16 



Table 3-1 Configuration Register A (Cont) 

Bit Function Description 

Bits Array Size (bytes) 

12 II 10 09 

0 I I I 512K 
1 0 0 0 576K 
1 0 0 I 640K 
I 0 I 0 704K 
1 0 I I 768K 
1 I 0 0 832K 
I I 0 I 896K 
I I I 0 960K 
I 1 I I 1024K 

These bits are encoded from the number of array boards 
plugged into the backplane and are read-only. (Refer to 
configuration register in the engineering print set for 
16K array size.) 

08 Interleave Enable This bit must be set in order to write into bits (02:00) of 
this register. This bit is write-only. 

04,03 Memory Type These bits indicate the type of memory chips used in the 
array as shown below: 

Bits Memory Type 

04 03 

0 0 Error Condition. no array boards are plugged 
into the backplane. 

0 I 4K MOS 

I 0 16K MOS 

I I Error Condition. both 4K and I 6K chip array 
boards are plugged into the back plane. 

02:00 Interleave Status These bits indicate the interleave status as shown below: 

Bits Interleave Status 
02 01 00 

0 0 0 Non-Interleaved 
0 0 I 2-way Interleaved 

These bits are read/write. (Read-only if bit 08 is set.) 

3-17 



't' -00 

31 30 29 28 27 28 25 24 23 22 21 15 14 

0 0 0 0 0 0 0 0 0 0 

POWER 
DOWN 

POWER 
UP 

TRANSMIT FAULT 

--- MULTIPLE TRANSMITTERS 

----- INTERLOCK SEQUENCE ERROR FAULT CONDITIONS 

--------- WRITE SEQUENCE ERROR 

--------- Sii PARITY ERROR 

MEMORY ARRAY 
SIZE 

Figure 3-9 Configuration Register A 

08 08 07 06 05 04 03 02 00 

0 0 0 

INTERLEAVE 
ENABLE 

'"--v--" Y 
MEMORY INTERLEAVE 
TYPE STATUS 



3.5.2 Con figuration Register B 
Figure 3-10 illustrates the contents of configuration register B. Table 3-2 describes each bit. 

Bit 

31.30 

29.28 

27:15 

14 

13.12 

09 

08 

07:00 

Table 3-2 Configuration Register B 

Function 

File Output Pointer 

File Input Pointer 

Controller's 
Starting Address 

Starting Address 
Write Enable 

Initial iza ti on 

Force Error 

ECC Bypass 

ECC Substitute 

Description 

These bits indicate the next file location to be read. 
These hits are read-only. 

These bits indicate the next available file location into 
which command/address or data information can be 
written. These bits are read-only. 

These hits indicate the controller's starting address in 
64K byte increments. These bits are read/write but can 
only be written when bit 14 is set. 

This bit must be set to write bits (27: 15). This bit is 
write-only. 

These bits contain recovery mode information necessary 
to determine whether or not memory recovered from 
battery backup. The status is interpreted as follows: 

Bits Status 
13 12 

0 0 

I 0 

0 I 

I I 

Initialization cycle in progress. (That is. a 
known data pattern and check code is being 
written through all memory locations. A com­
mand issued to the array at this time will re­
ceive BSY.) 

(Not valid) 

Memory contains valid data in this state. 

Initialization is complete. No data was pre­
served. 

These bits are read-only. 

When set. this bit enables the ECC substitute bits (07:00 
of this register) as replacements for the actual check bits 
during ECC computation. This bit is read/write and is 
for diagnostic use only. 

When set, this bit eliminates the ECC function. Under 
this condition, the data read from memory is placed on 
the SBI exactly as is. In addition, CRD and RDS tags 
are not used. The error log, however, continues to oper­
ate normally as described in Table 3-3. This bit is 
read/write. 

When bit 09 of this register is set, these bits are used as a 
substitute for the check bits read from memory. 

Substitute ECC bits can only be used on the data of SBI 
addresses with bits 03 and 12 set. The ECC substitute 
bits are read/write and are for diagnostic use only. 

3-19 



31 30 29 28 27 15 14 13 12 11 10 09 OB 07 00 

0 0 

\ T I\ "' '·~----~------------vi-------------------- "' CONTROLLER'S STARTING ADDRESS INITIALIZE ECC SUBSTITUTE 
STATUS FORCE 

Fl LE FILE INPUT 
OUTPUT POINTER 
POINTER ERROR 

STARTING ADDRESS ECC BYPASS 
WRITE ENABLE 

TIC·OU3 

Figure 3-10 Configuration Register B 



3.5.3 Configuration Register C 
Figure 3-11 illustrates the contents of configuration register C, which contains all ECC error informa-
tion. Table 3-3 describes each bit. 

Table 3-3 Configuration Register C 

Bit Function 

30 Inhibit CRD 

29 High Error Rate 

28 Error Log Request 

27:08 Error Address 

07:00 Error Syndrome 

Description 

When set, any CRD tags are prevented from being 
transmitted to the commander. This bit is read/write. 

When set, this bit indicates a second error has occurred 
before the first error was able to be serviced by the oper­
a ting system. This bit is read/write I to clear. 

When set, this bit indicates an error has occurred. This 
bit is set during the controller's response to an SBI read 
cycle when an error occurs. Its primary purpose is to 
indicate which memory controller transmitted an error 
message in systems with multiple memory controllers. 
When set, any subsequent CRD transmissions to the 
SBI commander are inhibited. This bit is read/write I to 
clear. 

These bits indicate the SBI longword address at which 
the first read error has occurred. Any subsequent error 
addresses are not saved until the first error is serviced. 
The bit assignment of the error address is as follows: 

Array Board 
Array Bank 
Chip Address 
Up/Low Longword 

These bits are read-only. 

4K Chips 16K Chips 

27:24 
21 
20:09 
8 

27:24 
23 
22:09 
8 

These bits are loaded with an error syndrome when an 
error is detected during the response to an SBI read 
command providing a syndrome has not already been 
loaded. [The error syndrome points to the bit(s) in er­
ror.] The syndrome is retained until the error service 
routine has serviced the error. 

With a syndrome occupying these bits, subsequent syn­
dromes are not retained. The error(s), however, are in­
dicated by bit 29 of this register. 

These bits are read-only. 

3-21 



31 30 29 28 27 00 

0 

INHIBIT ERROR LOG ERROR ADDRESS ERROR SYNDROME 
CRD REQUEST 

HIGH ERROR RATE 

Fi1ure 3-11 Confi1uration Resister C 



3.5.4 Bootstrap ROM 
The bootstrap ROM is a 4 kilobyte programmable read only memory in the memory controller. The 
ROM is organized as a I K X 32 matrix and is assigned a 4K byte 1/0 address space. 

The bootstrap ROM is enabled during initialization when MCNA ROM EN L is generated. This 
signal is generated as a result of cycle decode. A 10-bit address (MCNE MEM ADR 09:00) from the 
address register selects each ROM location. 

3.6 START MEMORY CYCLE LOGIC 
All memory cycles are initiated with the generation of MSBK MEM GO L. This signal is generated 
when the last information format of a valid memory command string is removed from the file. The 
logic associated with the generation of this signal is shown in Figure 3-12. 

Each time an information format is removed from the file MSBK CLK FL TO CNTRL H is gener­
ated. As seen in Figure 3-12. MSBK MEM GO L is asserted to start a memory cycle if the format 
removed is a read command (MSBJ L CMD H and MSBU L RD H are asserted). 

When a write data format is removed from the file during a write masked o:- interlock write masked 
operation. MSBK EN DAT L is asserted. This signal generates MSBK MEM GO L providing the 
write abort bit is not set (MSBJ L WR ABT H is not asserted). 

When an extended write masked command is removed from the file. MSBK ADR ON BUSH. MSBU 
L WR H. and MSBU L EXT H are asserted. These signals set and preset flip-flops I and 2 of Figure 3-
12. respectively. At the following TO a write data format is removed from the file and MSBK EN DAT 
L is generated. For this case. however. flip-flop 2's output is preset to low. so MSBK MEM GO Lis 
not generated. At T2 MSBK EN DAT L is negated clocking flip-flop I. This provides a high input to 
flip-flop 2. When the second data format is removed from the file at the following TO. flip-flop 2 is 
clocked. MSBK EN DAT Lis also generated. These conditions generate MSBK MEM GO L provid­
ing the write abort bit is not set. 

3.6.1 Refresh During Single Step 
As mentioned previously. a refresh cycle must be performed periodically to preserve the integrity of the 
data stored in the MOS array. In accordance with this. a refresh cycle is performed approximately 
every 28 µs (for 4K chips). The refresh request is asserted by MCNE REF CLK H. which is generated 
by a dedicated clock at the appropriate time. Under normal operation. MCNC REF GO Lis then 
asserted between TO and Tl of the following SBI cycle providing memory is not busy. 

Refresh cycles must also be executed during single-step operation. During single-step. the SBI clock is 
temporarily stopped. With this, the time between any two time states (TO.;. TI. l-T2. T2-T3. T3-TO) can 
vary from 50 ns to an indefinitely long period oftime. While the SBI clock is stopped. however, refresh 
cycles must continue to be executed periodically. This is accomplished by the logic shown in Figure 3-
13. 

As seen in Figure 3-13, with MSBF DC LO DEAD H asserted at T3, a one-shot is fired to generate 
MCNC SBI CLKS STOP H,L. MCNC SBI CLKS STOP H permits the initiation of a refresh cycle by 
MCNE REF CLK H without the generation of the TO time state. (TO is required for a refresh during 
normal operation, as previously described.) 

3.7 ARBITRATION LOGIC 
For any valid memory operation the requested data must be transmitted onto the SBI. To gain control 
of the information lines for the transmission(s) of the data, memory asserts a transfer request (TR). 
The logic associated with the assertion of a transfer request is shown in Figure 3-14. 

3-23 



MSBK ADA ON BUSH 
MSBU L WR H 
MSBU L EXT H 

MSBJ L WR ABT H 

0 

MSBJ L CMO H ----11 

MSBK CLK FL TO CNTRL H ----1 

MSBU L RD H - ....... .._ _ _,,,,,. 

MSBK EN DAT L-----------tC 01---....... --t---1D 

2 

MSBF INIT 2 L _....._ ___ ...__, c 0 

MSBR IC SBI TO CLK H --------

Figure 3-12 Start Memory Cycle Logic 

CS1 
~---4~ MSBK MEM GO L (MCND) 



GENERATED 
FOR 
REFRESH 
REQUEST t 

+5 V BAT 

R3 
1K 

MCNE REF CLK H 

J --.......--1J 

K K K 

MCNCREFCLRL~~--'----4--+---~-'-~--t---­
EE1 

MSBRARYSBl.......,~-~~~~~~-+---'-~~~~--
EE2 

T2 CLK H 
+5 V BAT 

R6 

MSBA ARY SB! TO CLK H 

FV2 
MSBF DC LO 
DEAD H 

+5 V BAT 

R503 
1K 

18K 

Cl 

9602 

.__~__._ MCNC SBI CLKS STOP L (MCND) 

~-._ MCNC SBI CLKS STOP H (MCNO) 

MCNC DL EOC L 

+5 V BAT 

RS 
1K 

CONDITIONS FOR REFRESH UNDER NORMAL OPERATION 

CONDITIONS FOR REFRESH DURING SINGLE-STEP 

J 

MCNC PULLUP A H 

K 0 MCNC REF EN L 
-._- (MCNA,0) 

MCNC REF EN H (MCNE) 

25 NS 

MCNC REF 
CLR L (MCNK) 

MCNC DLY REF 
ST L (MCNO) 

75 NS MCNC REF ------r-----t----- GO l. (MCNO) 

250 NS 
>-'--____ MCNC REF 

GOH (MCNOI 
16-11243 

R13 
120 

TK·0650 

Figure 3-13 Refresh During Single-Step 

3-25 



MSBU L RD H 

MSBJ L CMD H 

MSBU L EXT H----t 

MSBK CLK FL TO CNTRL H 

MSBT CLR HLD REO L 

MSBF INIT 2 L-L-----------t-1-4 

EL2 
MCNA RD OAT GD L --..---t. 

MSBT ARB OK L 
MSBT HLD ASRT L 

MSBT EN XMT DAT H 

MSBT EN XMT DAT 2 l 
(MSBA.N) 

+sv 
R57 
1 K1l 

---+---MSBN SEND TR H 

J '---------.o 
MSBT EN XMT DAT H 

MSBT ARB ASRT L 
K 0 ------.c 0 

MSBF 
INIT 2 L 

L.--------t--------------- MSBF INIT 2 L 

MSBT SEND HLD H 

c MSBT CLR 
HLD REO L 

MSBR 1A SBI T2 CLK H 

MSBF INIT 2 l 

c MSBT HLD ASRT l 

MSBT EN XMT DAT 1 L (MSBA.U) 

EU 
L>-- MSBT XMT COMPLETE L (MCNA} 

MSBR SBI TO CLK L 

Figure 3-14 Arbitration for Read Data Logic 

3-26 

MSBT ARB ASRT L 

TK-0631 



When a read masked or interlock read masked command is removed from the file, MSBU L RD H 
and MSBU L CMD H are generated. Likewise, MSBK CLK FL TO CNTRL H is asserted. This 
results in the generation of MSBN SEND TR Hat the following TO (MSBT EN XMT DAT H is also 
low). One cycle later, MSBT ARB ASRT L is generated. 

The generation of MSBN SEND TR H also enables the assertion of the appropriate TR (MSBT BUS 
TR L) at the following TO. If no other higher priority TR lines are asserted, MSBT ARB OK L is 
generated at the next T3 to indicate the bus is available. This signal enables MSBT EN XMT DAT H 
for the transfer of the requested data (MCNA RD DAT GO L indicates the data is ready). MSBT 
XMT COMPLETE is asserted at the next TO. 

If the operation is an extended read, MSBT SEND HLD H is asserted when MSBT EN XMT DAT H 
is generated. MSBT SEND HLD H enables the assertion of the highest priority arbitration level. At 
the following TO, HOLD is transmitted and MSBT CLR HLD REQ L is asserted to negate MSBT 
SEND HLD H. MSBT HLD ASRT Lis generated at T2 to continue to assert MSBT EN XMT DAT 
H for the transfer of the second longword. MSBT XMT COMPLETE L is also generated for the 
second time at the following TO. 

3.8 MEMORY CONTROL INITIALIZATION LOGIC 
The logic associated with memory control initialization is shown in Figure 3-15. As seen throughout 
the engineering print set, the memory system is initialized by the generation of MSBF INIT (3: I) L. 
These signals are generated when MSBP REC UNJAM H or MSBF PWR NOT GD L is asserted. 

MSBP REC UNJAM H is generated at TO following the latching of UNJAM from the SBI. UNJAM 
(BUS SBI UNJAM L) can be latched from the SBI at T2 of any SBI cycle. UNJAM is asserted on the 
SBI only by the CPU through a console function (Paragraph 1.3.5.). 

MSBF PWR NOT GD Lis asserted at T3 of an SBI cycle if DEAD is asserted on the SBI (BUS SBI 
DEAD L) or during power-up (BUS DC LO H). This signal clears the fault flags of Configuration 
register A. 

MSBF DC LO DEAD H is asserted coincidentally with MSBF PWR NOT GD L. MSBF DC LO 
DEAD H generates MCNH BACK UP MODE H and MCNH BACK UP MODEL. These signals 
are generated to stabilize the logic during the transition of power-on to battery backup. 

3.9 POWER UP/DOWN LOGIC 
The logic associated with the power-up and power-down indicators of configuration register A (bits 22 
and 23) is illustrated in Figure 3-16. This logic is capable of detecting whether a power-up or power­
down sequence is occurring. 

The logic of Figure 3-16 was designed on the basis that BUS AC LO H and BUS DC LO H are 
generated during a power-up and power-down sequence. The order in which these signals are gener­
ated determines which sequence is being executed. BUS AC LO H is generated before BUS DC LO H 
during a power-down sequence. BUS DC LO H is generated before BUS AC LOH during a power-up 
sequence. 

As seen in this figure, the two J-K flip-flops are preset during initialization. Without the generation of 
BUS AC LO H or BUS DC LO H, the D flip-flops remain set. During a power-down sequence, MSBP 
REC AC LO L is generated to preset the first D flip-flop. This presents a high to the J input of the 
power-down flip-flop at TO. At the following T3, MSBP PWR OWN His generated. Likewise, during 
a power-up sequence, MSBF DC LO Lis generated to preset both D flip-flops. With MSBP REC AC 
LO L not yet generated, the first D flip-flop presents a high to the J input of the power-up flip-flop at 
TO. At the following T3. MSBP PWR UP H is generated. 

3-27 



+IV 
R31 
1 KU 

figure 3-1 s Initialization Logic 

MSBF PWR NOT GD L (MS8N) 

MSBF INIT 2 L (MSBK.S.T) 

MSBF INIT 1 L fMSBH.L.F) 

MSIF INIT 3 L (MSIN.P .J) 

Tll ... I 



"T1 
dQ" 
c: 
3 
w 
I -°' 
f ... 

w c: I 

~ 'O 
"'--
0 
0 
E :s 
r-
0 

Cl!. 
n 

MSBP REC AC LO L 

BUS INH ROM DECODE L 

MSBF DC LO L 

MSBR SBI TO CLK L 

NOTE: 
THE IRD JUMPER CINH ROM DECODE U MUST 
BE INSERTED ON THE MSI BOARD FOR THE 
GENERATION OF MSBP PWR OWN H OR MSIP 
PWR UP H. 

0 

c 

+IV 

0 

Ml 
1 KO 

D 

c 0 

MSIR Sii T2 CLK L 

MSIP INIT 3 L 

MSIP CLR PWR UP L 

MSIP CLR PWR DWN L 

MSIF INIT 3 L 

----1 J MSBP PWR OWN H (MSBN) 

K 0 

.._ ....... .--+-----tJ MSBF PWR UP H tMSIN) 

'--+------1 K 0 

'" ... ' 



3.10 ALERT AND FAIL LOGIC 
Memory controllers that contain a boots1rap ROM are system ~ritical and must assert FAIL when an 
AC LO occurs. A dedicated jumper on the MSB board must be inserted for this to occur. This jumper 
connects MSBP EN FAIL L to BUS SBI FAIL L. 

Memory controllers that do not contain a bootstrap ROM assert ALERT when an AC LO or DC LO 
occurs. The proper power-up or power-down status bit in configuration register A is also set (Para­
graph 3.5.1). Note that the IRD (Inhibit ROM Decode) jumper must be inserted. Controllers without 
a bootstrap ROM do not assert FAIL. 

3.11 STARTING ADDRESS SELECTION LOGIC 
The starting address of the MS780 controller is selected via two jumpers on the MCN board. The 
conditions of these jumpers are encoded to generate MCNP ST ADR (21: 18) H. These signals are used 
for address decoding (Paragraph 2.2.4. I). The jumper interpretation is given in Table 3-4. 

As described in Paragraph 3.5.1, the power-up and power-down signals can be cleared by writing a one 
into the respective bit positions of configuration register A. This generates MSBP CLR PWR UP Lor 
MSBP CLR PWR OWN L to dear the signal. 

Table 3-4 Starting Address Jumper Configuration 

Controller Starting 0 4 8 12 
Address Meaabytes Megabytes Megabytes 

BUS STA DR JMPR 00 L Open Gnd Open Gnd 
(Pin AU2) 

BUSSTADRJMPROI L Open Open Gnd Gnd 
(Pin AT2) 

3.12 MEMORY CYCLE TIMING SUMMARY 
This paragraph summarizes the typical timing relationships of various signals. The write masked and 
extended read cycles are discussed as examples of typical timing. The array timing is discussed in 
Paragraph 3.13.4. 

Figure 3-17 illustrates the typical timing of a write masked cycle. To begin, assume the file is empty. 
Once the valid memory command and address are decoded, MSBK ADV WR CNT H is generated to 
advance the write-file counter. Assuming memory is not busy (MCND MEM T BSY L high), MSBK 
CLK FL TO CNTRL H is generated and the command and address are removed from the file. MSBL 
RD-WR 0 L is generated to indicate the file is again empty. With MSBK LATCH FL DAT H going 
low, the address and command are placed on the file bus and MSBK ADR ON BUS Lis asserted. This 
indicates a command is included in the information and MSBK RD CMD TO CNTRL Lis generated 
to enable it to cycle decode logic. 

The write data is loaded and removed from the file in a similar manner as seen in the diagram. This 
time, however, MSBK DAT ON BUSL is generated instead of ADR ON BUS. With the cycle decode 
indicating the operation is a write masked, MSBK MEM GO L is asserted at this time to start the 
memory cycle. 

As illustrated in Figure 3-18, the command and address of a valid extended read request are removed 
from the file in a similar manner. With the generation of MSBK ADR ON BUS L. MSBK RD CM D 
TO CNTRL is asserted to enable cycle decoding. Likewise, being a read command. no additional 
information must be removed from the file and MSBK MEM GO L is generated. 

3-30 



SBI TO TIO TO TO TO 

DATA ON SBI .BUS MASKED WRITE COMMA~O WAITE DATA 32 BITS ACK FOR COMMAND ACK FOR DATA 

MSBA REC BIT XX H MASKED WRITE CMD WRITE DATA 

WRITE DATA FILE INPUT DATA (MSBJI ~ DEC CMD & ADD _..,._ ______ -
-n MSBK WR EN 1 L J --- I ~ J II I l j 

DATA OUTPUT 
VALID FILE OUTPUT DATA lMSBJ) 

MSBK ADV WR CNT H _..._ ________ .....,. __ __,~ 1-----+----
11 
M MSBL RD WR OH -~~~~~~~~~~~~·~l-~~~~~ MSBK CLK FL TO CNTRL H 

MSBK~~HFLD~H~~1~-1~~~~~~J~-h~~~~~J h 1 1 r i 
MSBKROFLTOCNTRLL --+---------------~~1"-.___...-----1 ~ ~ -~~------....,.r:~--------------,.._ __________ _ 

z L ~----__._-7~~ _z ___ ____.. ____ __.__ __ 
MSBK RD CMD TD CNTRL l ( I""'\ 

MSBK ADA ON BUS l ~7 I {_ 

MSBK DAT ON BUS L 7 ' 
MSBK MEM GO L 7 r 
BUS FL INF XX H WRITE ADD & MASK WRITE DATA 

MSBM CMD ARY H/FL WR H 

.l 

MCNO MEM T BSY L ~--+--------+---~ 
MSBS XMT CONFIRM H J 1 

TK-0626 

Figure 3-17 Write Masked Timing 

3-31 



TO 
I I I I ...__ 

TO 
SBI 

DATA ON SBI BUS XEXTENDED READ CMD 
~ 

x 
MSBA REC BIT XX H 

FILE INPUT DATA (MSBJ) 

MSBK WR EN 1 L 

FILE OUTPUT DATA (MSBJ) 

MSBK ADV WR CNT H 

MSBL RD WR 0 H 

MSBK CLK FL TO CNTRL H 

MSBK LATCH FL DAT H 

MSBK RD FL TO CNTRL l 

MSBK RD CMO TO CNTRL L 

MSBK ADR ON BUS L 

MSBK MEM GO L 

BUS FL INF XX H 

MSBM CMD ARY H/FL EXT H 

MCND MEM T BSY L 

MSBS XMT CONFIRM H 

MSBT SEND TR H 

MCNA RD DAT GO L 

MSBT BUS TR L 

MSBT ARB OK l 

MSBT SEND HOLD H 

MSBT XMT COMPLETE L 

MSBT EN XMT DAT H 

II r 

u l 

X EXTENDED READ CMD 

~ DECODED INFO X 

l J 

XOUTPUT VALIDX 

~ l 

~ 
J l ~ 

.\.. 7 l z 
L~ 
-q 1 J 

7 
7! J 
IX READ ADDRESS 

·~ 
l 

J 

TO TO TO TO TO 
_l i I I 

ACK READ COMMAND y _XLWR 32 BITS OF RD DAT)( UP 32 BITS OF RD DAT X 

l I l 1 l J l 1 rt I 

r l r l I l J l r 
I 

J 

Y LWR 32 BITS OF RD DAT UP 32 BITS OF RD OATX 

1 
r 

1 
1 l 

l J 

l J 

1 J 
r l 

l J 

J l 
TK-0630 

Figure 3-18 Extended Read Timing 

3-32 



At TO of the following cycle, MSBT SEND TR H is asserted to arbitrate for the transmission of the 
requested data. Assuming no other nexus with higher priority has asserted its TR, MSBT ARB OK L 
is received at T2. Coincidentally, MSBT SEND HOLD His also generated to assert HOLD on the SDI 
at the next TO. (HOLD is asserted because two data transmissions will be necessary.) At TO MSBT 
XMT COMPLETE Lis generated to indicate the transmission of the first longword. With MSBT EN 
XMT DAT H still asserted at the following TO, XMT COMPLETE is asserted again for the transfer of 
the second longword. (Refer to Paragraph 3. 7 for a description of the logic.) 

3.13 ARRAY BOARD DESCRIPTION 

3.13.1 Array Board Organization 
The 8 K memory locations on each array board are divided into two groups called banks. Figure 3-19 
illustrates the array board organization. As seen in this figure, array address bits (15:01) are routed to 
both banks on the selected array board. One bit, the bank select bit, is used to enable the appropriate 
bank for reading or writing. The remaining bits are used to select one of 4K locations in the bank. The 
particular bits used for these functions are shown at the bottom of Figure 3-19. Note that selection of 
the high or low longword is provided by the controller and determined by REC BIT 00. 

3.13.2 Memory Chip Internal Organization 
Each 4K memory chip is organized internally as a 64 X 64 matrix with 64 rows and 64 columns. Six 
address bits select I of 64 rows and six select I of 64 columns. In this way a single cell or bit location is 
selected. To optimize the number of pins required for address selection, the row and column addresses 
are multiplexed. When the Row Address Strobe (RAS) input is enabled, the 6-bit address selects a row. 
Likewise, when the Column Address Strobe (CAS) input is enabled. the 6-bit address selects a column. 

3.13.3 Array Board Logic 
Figure 3-20 is a simplified diagram of the 4K chip array board logic. For a read or write to the array, 
the address in the controller is presented to array board drivers. The output of these address drivers is 
connected to the row /column multiplexer. The row /column multiplexer provides selection of the row 
or column bits for input to the MOS chips. The row and column addresses are multiplexed to reduce 
the number of address inputs on the chips. This makes it possible to address one of 4K locations of the 
chip using only six pin inputs. With select signal MA YB MUX SEL high, a<Jdress bits (12:07) are 
selected to generate MA YB MUX A(5:0). In like manner, MAYB MUX SEL is low to select address 
bits (06:01 ). MUX SEL is set by the controller at the appropriate times. (Refer to Paragraph 3.13.4 for 
timing details.) 

As mentioned previously, a dedicated address bit (bit 13 for 4K chips) selects bank I or O for the 
operation. MAY A ENRT H and MA YA ENLT Hare generated to enable the address bits to bank 1 
of the selected array board. Likewise, MAY A ENRB Hand MAYA ENLB Hare generated to enable 
the address bits to bank 0. Both pairs of signals are generated during refresh and initialization cycles. 

It may be difficult to understand the address signal designation. As an aid to reading the engineering 
print set, Figure 3-21 explains the signal nomenclature. Note some signal designations are assigned 
according to the physical location of the associated chips on the board. 

3-33 



HIGH 
LONGWORD 

4 

LOW 
LONGWORD 

ERROR 
CHECK 
BITS 

ARRAY ADDRESS 
BITS (16:01) 

I ,, 

BANKO 

BANK 1 

DATA 
32 BITS 

84 BITS 

TO/FROM f 
MEMORY CONTROLLER .. •~-------­
CMOS DATA BUS) 

NOTE: 

CHIP SIZE 

4K 
18K 

BANK SELECT 

REC BIT 13 
REC BIT 16 

IF 4K CHIPS ARE USED. REC BITS 15 AND 14 
ARE IGNORED. 

A 

DATA 
32 BITS 

\I 
& 

8 BITS 

BANK ADDRESS 

REC BIT 12:01 
REC BIT 14:01 

Figure 3-19 Array Board Organization 

3-34 

} 

BANKSELECT 
BIT== 0 

} 
BANK SELECT 
BIT• 1 

TIC-GM1 



.,, 
o;· 
c .., 
n 
'-' • 
~ 

> .., .., 
D> 
'< 

> 
0. 

't' 0. 
w a v. 

"" D> 
:I 
0. 

c 
~ -D> 

r-
0 

OQ 
;:;· 

FROM 
CONTROLLER 

MCND ARY ADR EXT H 
MCNEARY CS 
MCND ARY A(12:01) H* 

MCNB READ H 
MCND RAS L 
MCND CAS L 

MAYA WR H 
MAYS RASH 
MAYS CASH 

MAYA ENLT H 
MAYA ENRT H 

MAYA ENLB H 
MAYA ENRB H _..._____. 

DIN 

MAYB CS 
MA YB AC 12:07) 

MAYA ADR EXT L 
MAYB A (06:01) 

MAYC 

cs 
BANK I A 
CHIPS 

DOUT 

MAYO 

RAS CAS WR CS 

BANK 0 
CHIPS 

1-----..,..DIN 

MAY 18 U (13:00), L(31:00), CC7:0) 

MOS BUS TRANSCEIVERS 

MAYC CS 

MAYS MUX CS 
MA YB MUX A(5:0) 

MAYC RTL ACS:O) 
MAYC RTU A(5:0) 
MAYC LTL A(S:O) 
M~YC LTU A(6:0) 

MAYC CS 

MAYO RBL A(6:0) 
MAYO ABU A(5:0) 
MA YD LIL A(6:0) 
MAYO LBU A(5:0) 

MAYA ENLT H 
MAYA ENRT H 

...__ __ MAYA ENLB H 
MAYA ENAB H 

MAY BUS U(31 :00), L(31 :00), C(7:0) 

MAYA EN RD PATH L 

MAYA EN WR PATH L 

BUS MOS DAT U(31 :00), L(31 :00), C(7:0) 

TO/FROM 
CONTROLLER 

*A(15:13) ARE USED FOR 18K CHIP APPLICATION ONLY 

MOS DATA BUS TO ADDITIONAL 
ARRAY BOARDS 



U (UPPER) 

L (LOWER) 

U (UPPER) 

L (LOWER) 

MNEMONIC 

LTL 
LTU 
RTL 
RTU 
LBL 
LBU 
RBL 
RBU 

NOTE: 

L (LEFT) R (RIGHT) 

M8211 ARRAY BOARD 

MEANING 

LEFT. TOP. LOWER 
LEFT. TOP. UPPER 
RIGHT. TOP. LOWER 
RIGHT. TOP. UPPER 
LEFT. BOTTOM. LOWER 
LEFT. BOTTOM. UPPER 
RIGHT. BOTTOM. LOWER 
RIGHT. BOTTOM. UPPER 

TOP AND BOTTOM ALSO REFERS TO TOP AND 
BOTTOM BANK. RIGHT AND LEFT ALSO 
REFERS TO RIGHT AND LEFT LONGWORD. 

Figure 3-21 Array Signal Nomenclature 

T (TOP) 

B (BOTTOM) 

TK·0822 

The results of cycle decode are input to drivers on the array boards. These signals (MCNB READ H 
and MCND ARY ADR EXT H) generate MAY A EN WR PATH Lor MAY A EN RD PATH L to 
enable the MOS bus transceivers appropriately (Figure 3-20). For reads, data from the MOS bus is 
presented to the data inputs of the array chips &s MAY 18 U(31:00), L(31:00). Similarly for writes. the 
data outputs of the MOS chips [BUS U(31:00), L(31:00)] are enabled to the MOS data bus. 

Each MOS chip contains control inputs. The chip select input (CS) is used to enable the appropriate 
chips of the selected bank during a read or write cycle. The CS input is disabled during a refresh cycle 
to inhibit the input and output circuitry of each chip. The row address selec-t (RAS), column address 
select (CAS), and write enable signals are likewise only enabled to the MOS chips of the selected bank. 
These signals are generated by the controller at the appropriate times. (Refer to Paragraph 3.13.4 for 
timing.) 

3.13.4 Array Initialization Cycle 
Each array location must be addressed and loaded with an in;tial value immediately following power­
up to ensure valid ECC codes. This is referred to as an initialization cycle and is automatically accom­
plished by logic on the MCN board. 

3-36 



As seen in Figure 3-22, MCNK INZ CLR L is generated to start an initialization cycle when memory 
is powered up. Note this does not include recovery from battery backup. During a power-up, the pulse 
MCNK INZ CLR Lis generated as soon as the +5 V battery backup source is produced. The duration 
of INZ CLR is dictated by the time it takes to charge the capacitors shown in Figure 3-22. The 
generation of MCNK INNZ CLR L causes the assertion of MCNK INZ CYC EN L. As a result, 
MCNC INIT H is sent to the arrays to enable all boards. This is done because all array boards must be 
written simultaneously. Likewise, MCNC WR H is generated to begin the write. During the write, 
each memory location is loaded with all Is. 

+5 V BAT 

R57 
1K 

R157 C4 
1.SK 100µF 

C100 
100µF 

C101 
100 µF 

>-----------------
C1 

Figure 3-22 Start Initialization Cycle Logic 

MCNK INZCLR H 
(MC N 0) 

MCNK INZ CLR L 
(MCNB, C, 0, F, P) 

TK-0645 

Each array location is addressed during initialization by the refresh address counter. The counter is 
initially cleared by MCNK INZ CLR L and then incremented each time MCNF REF CLK Lis 
asserted to generate each array address. (MCNF REF CLK L is the oscillating output of the refresh 
clock.) When the counter has addressed every location, MCNF INZ GO L goes high. This disables the 
counter and generates MCNF INZ EOC L at the following Tl to end the cycle. 

NOTE 
The memory controller is capable of executing 1/0 
read requests during an initialization cycle. 

3.13.S Array Timing Summary 
This paragraph summarizes the typical timing relationships of various array signals. The write masked 
and extended read cycles are discussed as examples of typical timing. 

Figure 3-23 illustrates the typical array timing that occurs during a write masked cycle. As mentioned 
previously, the memory cycle begins with the assertion of MSBJ MEM GO L. MEM GO sets off a 
timing chain in the array that is asynchronous to the SBI clock. With the row address at the input of 
the array chips, MCND RAS Lis generated about 100 ns after MEM GO to latch the row address bits. 

3-37 



TO 581 T2 
.J. _J_ .J. ..... . 

' ' ' 

MSBJ MEM GO L w 
MCND RA SL J 1 ~ 

MCND CA SL l J J 

MCND MUX CNTRL H J l 1 1 

MCNC READ H l 
~ 
~ MCND ARY DAT CK H l 

MCND XMT DAT C KH J 1 
MCNA ECC EN H J 

MCNC REWR GO H I l 
TIC.-. 

Fi1ure 3-23 Array Timin1 During a Write Muked 



(See Paragraph 3.13.1 for a description of the array organization.) M.CND MUX CNTRL His then 
asserted to select the column address bits for input to the chips. With MUX CNTRL high, MCND 
CAS L is asserted to latch the column address bits. This enables the data and check bits of the ad­
dressed location onto the MOS bus because MCNC READ H is asserted. 

With MCND ARY DAT CK H asserted, the data and check bits on the MOS bus are immediately 
latched by the ECC logic for an error check. The data is then returned to the MOS bus about 100 ns 
later by the generation of MCND XMT DAT CK H. MCND ARY DAT CK His negated after 270 
ns. MCNA ECC EN H is then generated to enable the error status to the configuration register. 

After a short delay of 25 ns, MCND ARY DAT CK H is asserted again to latch the new data for the 
generation of check bits. The new check bits are then placed on the MOS bus alongside the new data. 
With the new data and check bits ready for a write to the array, the addressing sequence is repeated. 
This time, however, MCNC READ H is low to enable a write when MCND CAS L is asserted. 

The typical array timing that occurs during an extended read cycle is illustrated in Figure 3-24. As seen 
in this figure, the addressing sequence is similar to that of the write masked previously described. 

SBIT2 

TO 
..1. .J. ..1. ..1. ,- ,- T T 

MSBJ MEM GO L u 
MCND RAS L I 

MCND CAS L 1 j 

MCND MUX CNTRL H I l 

MCNC READ H I 

MCND ARY DAT CK H l 

MCND XMT DAT C KH J l 
MCNA ECC EN H J 

MCNA RD DAT GO L L 

MSBT XMT CM PL u LI 
TK-GM7 

Figure 3-24 Array Timing During an Extended Read 

3-39 



MCND RAS Lis generated about 100 ns following the assertion of MSBJ MEM GO L to latch the 
row address bits. MCND MUX CNTRL His then asserted to enable the column address bits to the 
MOS chips. These bits are then latched by the generation of MCND CAS L. With MCNC READ H 
high, the contents of the addressed location are enabled onto the MOS bus. 

Once on the MOS bus, with MCND ARY DAT CK H high, the data and check bits are immediately 
latched by the ECC logic. An error check (and possible correction) is performed on the data that is 
then returned to the MOS bus. MCNA ECC EN H is asserted to enable the generation of an appropri­
ate mask for transmission with the requested data. This mask indicates the results of the error check 
(Paragraph 3.4). 

Just before the assertion of MCNA ECC EN H, MCNA RD DATA GO Lis asserted. This signal 
indicates the data has been error checked and is ready for transmission. At the fallowing TO the low 
longword is transmitted and MSBT XMT CMP Lis asserted. MSBT XMT CMP Lis again asserted 
one cycle later for the transmission of the upper longword. 

3-40 


	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-15
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40

