EY-2217E-SG-0001

Guide to VAX-11/780
System Troubleshooting

™
FOR INTERNAL USE ONLY Hngﬂau

First Printing, November 1985

Copyright © 1985 by Digital Equipment Corporation.
All Rights Reserved

The material in this document is for informational purposes only
and is subject to change without notice; it should not be
construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any
errors that may appear in this document.

Some portions of this manual are copied from other manuals,
microfiche, etc. The reason for this is to provide as much
information as possible in a single, easily carried manual.

UNIX is a trademark of AT&T.

The following are trademarks of Digital Equipment Corporation:

d]ilglitlal MASSBUS RT

DEC PDP UNIBUS
DECmate P/0OS VAX

DECUS Professional VAXstation
DECwriter Rainbow VMS

DIBOL RSTS vT

LSI RSX Work Processor

Contents

PrefaCe tuiveeeeeosseceosssosancasssssosscscs

Section Description ...eceeeecceess

Troubleshooting Approachee..

e e e 0 e

Research and Define the Problem

Venture a Testable Guess ..
Set-up a Test Casece..
Predict the Results
Conduct the Test Case
Evaluate the Definition ...

Research and Refine the Definition

* s 000

e e 0 0 0

o o o 0 0

o e o o 0

Return Non-Failing Units
Replace Failing Units ..eeeeevens
Repeat Until Problem is Solved .

System LOg BOOKS ..evvecccscscnnass
Sources of Information ..ceeeeeecss

Maintaining Controleeeeeeces

Section I. VAX-11/78@ Troubleshooting Outline

s e 0 0o

s o 0 00

e o0 0

VAX-11/780 Troubleshooting Basics

VAX-11/780 System Troubleshooting Tools

VMS Operating System Crashes or Bugchecks

Machine ChecCKS «.eeeeeecersoccrsscnsoscasosscsssasse

VAX-11/78@¢ Machine Check Error Logout
VMS Fatal Bugcheck/Machine Check Example

ESSAA Machine Check Example ceeeceeeccess

Breakdown of VMS Machine Check Printout
Getting Started on Machine Checks
Machine Check Logout Information

o s 00000

e 0 00 000 0

Summary Parameter Description

Bit Breakdown of Stack entries
Machine Check Logout Breakdown Flowchart

Cache Parity Errors

Problem Areas if Cache
Problem Areas if Cache
Disabling CACHE by Backplane Jumpers

ID Register #1FE

iii

o 06660 e 0008008006000 000

"DATA Par Err"
"TAG Par Err"

.

@ e ¢ 0 ¢ 00 0060200000000

Page
xi
xiii

XV
xvi
xvi
xvii
xviii
xviii
xix
Xix
XX

XX

XX

xxi
xxiii

XXV

Translation Buffer Parity BrrOYS .eeeecececeeon
Problem Areas if TB "TAG Par Err"

Problem Areas if TB "DATA Par Err"

ID Register #12 teeccsessseeesscansenen
ID Register #13 ...ceeeeces cecetsasseenane

Control Store Parity ErrorsS ..ceecececcsccoscccas
ID Register #0C ... iieeeceneereavsossacsasnnn
ID Register #200cieeecrceccsnsccsnsocns
Voltages to Micro-code Boards PN
M8235 LED Description ...cieceeeececsccanonns

CS Bus Groups and CS Bit Breakdown

e e e 000000

Chart Showing "Bus CS" Bits to Boards
Chart Showing "Bus CS" Groups to Boards
Using the Microcode Sync Pointccv.ee
Control Store Bit Backplane Pin Layout

CPU Read Timeouts/Error Confirmation...........
ID Register #19ieeeeeens cetceccscnanans
ID Register #L1A .iieeveceescssscscnscoannnnas
Breaking Down Physical Byte Addresses

Memory Array Physical Byte Addresses

e e o 0 s 0 e

NEXUS Physical Byte Addressesceeeceoeess

UNIBUS Physical Byte Addresses

e e o0 00 0

RH78¢ External Reg. Phy. Byte Addresses
RH788 Internal Reg. Phy. Byte Addresses
Physical Byte Address Breakdown Procedure ..
1/0 Address Ranges Ceessesesacencenns
Physical Memory Array Address RAaNge

DW780 Register Offsets ceeenn

RH7880 Internal Register Offsets cesecen
RH780 MASSBUS (EXTERNAL) Register Offsets ..

Memory Array Address Bit Breakdown

"Timeout Address"™ ID Reg. Bit Breakdown ...

Physical "BYTE" Address Space Charts

Physical "LONGWORD" Address Space Charts ...
MS780-C/A Longword Address Chartseeecss
MA780-A Longword Address Chartscccees
MS780-E Longword Address Chartscceeece.

Internally Interleavedcveeceeceass

No Internal Interleaving

Externally Interleavedcccteseeen
Converting UNIBUS to Longword Addresses
Converting Longword to UNIBUS Addresses
Converting Physical Byte to UNIBUS Addr. ...
Converting UNIBUS to Physical Byte Addr. ...

DW78@ UNIBUS Longword Address Chart

¢ e 00 0000

DW78@ UNIBUS Physical Byte Address Chart ...

Read Data Substitute Faults and Aborts

® e o000 000

MS789A/C Memory RDS Error Indications

MS780E Memory RDS Error Indications
MA780 Memory RDS Error Indications

1-38
1-38
1-39
1-41
1-43

1-45
1-47
1-48
1-49
1-49
1-59
1-51
1-52
1-53
1-54

1-55
1-57
1-60
1-60
1-60
1-60
1-61
1-61
1-61
1-62
1-64
1-64
1-65
1-66
1-67
1-68
1-68
1-69
1-77
1-81
1-82
1-83
1-83
1-84
1-85
1-86
1-87
1-88
1-89
1-90
1-91

1-92
1-93
1-93
1-93

Micro-code Not Supposed to Get Here Faults 1-94
ID Register #20civeeeseoccocansaosscess 1=95
Micro-PC Wirelist and Slot Chartee... 1-95

CPU Double Error HaltS .ceescscces teeesececsececscecsscessssssases 1-97
Double Error Halt Error Information ceseee eeesees 1-99
CPU Detected FError VALIDITY CHECKS ..cceeescsccocscnsase 1-199
CPU DBLE-ERR HALT Flowchart ...ceceeee cscesse s s s csessecnee 1-191

VAX-11/788 "ID" Register ERROR Information 1-105
Example of DOUBLE ERROR HALT and Hardware Dump 1-1087

Interrupt Stack Not Valid Halts ...eeiieiieecenneeenconccenns ... 1-109
Kernel Stack Not Valid ADOLES .eeevececosesrsscossossssssscsasess 1-113
Other Types of Crashes tetesssscccccscnsssasrsssasssssss 1=115

VMS Operating System Hangs ..eeeeeecsecscesscsosasscssossnasseses 1-119

Operating System Functional Problemsceeceeeceecns ceeessees 1-123
Operating System Backup or Rebuild Problems ceeseseses 1-127
Booting ProblemMsS ...veeeoeocssscecssasossanosaonns cecessssasssses 1-131

Power-Up Booting OUtline ...ceeeeccescscccssosesscsnsnas 1=132
Troubleshooting Booting ProblemsS ...cceeeesocsscesessss 1=134
Overview of LSI-11 Subsystem Bootstrapping ...c.eccee.. 1-136
Overview of VAX CPU BootsStrapping ...seeeeecseceseoosss 1=-137

Front-End Subsystem ProblemsS ...ceeeeeeeeoeeas ceescesssesssnases 1-139
LSI SubsSyStem TraDS ceeecesecessscsoscsscscsscscccsanss 1-140
TRAP Vector ASsSignmentsSeeecsecscsscosscscassesaeasss 1=141
LSI/PDP-11 Trap Catcher Setup ProcedUreeceeseeees 1-142
Power Fail TrapsS ..eceeesccscoccccosscaans ceeseecsesenes 1-142
Gathering an LSI Software DUMPeceeeeeescccsssossss 1=-143
Analyzing LSI Software DUMPS s.eeeecscsococsossasnssess 1-144

LSI-Traps Software Dump Analysis FloWw ...ccccccccess ce. 1-145
VAX Front-end Subsystem Q-Bus Address A551gnments ceee. 1-146
CIB Q-Bus registers Bit Breakdown ceeeeseees 1-147
PDP-11 Instruction Setiieieeeeeseesaocssocanansssrs 1=-148
PDP-11 Processor Status Word Breakdownc.cceceeees . 1-149

PDP-11 Addressing Mode Descriptioneeveeseeecesss 1-149

Unexplained Reboots and Power Restarts seessessssesss 1-151
Symptoms of Spurious Reboots and Power Restarts 1-152
Isolating Problem AXe3 ...ieeescessessessocsceansssssssss 1=154
BPOK/BDCOK Connections on KA78% Backplamne eessesseseess 1-155
AC/DCLO H710¢ Supply Connections to KA78¢ Backplane ... 1-155
Voltage pins on the KA780 Backplaneeeeeseeessseaes 1-158
Q-Bus Connectors on KA788 Backplane and Wirelist 1-159

Problems on Certain DeviCe(S) .eeeeeecececeosceosssasscsssssceses L1—161

Won't POWEI—=UD teevveceoncscncoannnss Gt hteccsecessesesasesssasess 1-165

Something's BUrning c..e.eeeeeeeeeeeesoceeenes

Problems Building VMSceeeececsceooncnoas

@ e 0 060000000000 00

e e e 6000000000000

Non-Duplicatable, Intermittent and What To Do Now Pioblems ceen

Vibration Testing;....................

Operating Temperature Change Testing

Heat Testing .eeeeeecenecsecceccsansass
Testing By Coo0ling .ieuieeeeveacaceacons

Margin Testing ...eeieeeeroceesseasoceseneonnns
Clock Marginsce... ceesecanans oo
Voltage Marginseeeeeeccncns cesas

DW780 Errors ceceesseaasessnanean ceecsenas
SBI Parity Faultveeceiscencssncons
SBI Write Sequence Fault ..c.eeeecesses
SBI Unexpected Read Data Fault
SBI Interlock Sequence Fault
SBI Multiple Transmitter Fault
Adapter Power DOWN ..eeessssoccecssose
Adapter POWEr UD .eesieessocccoscassos
UNIBUS POWEY DOWN .+cuieeeoecencccconascas
UNIBUS POWET UD vevvveevonncncenas

¢ e e e e 0000000000
* o0 00000 e s 0 0 s Ty
e e 0 0 e 0 Y . o 0 L)
e e 9 e 000 8000 e o 0 0
“ o0 s s e LR Y * e 0 0.
......... LY * e s s
e o0 o0 . L R A L)
o s 0 00 s e ¢ 0 00009000
® e e 0 e 00 s 60000
o s e e e 0000000000
------------ e e o o0
e 9o s 06000 000000000
e e 0 e 00 e e s e 00 e
LI S S B I D I R A]

Read Data Timeout ce st esaneen et e e ecsezesas
Read Data Substitute ceeeen cececeaneas ceeees ceee
Corrected Read Data@ ..eeeeeeeeeeses c e e se s e esassesene e
Command Transmit ErrOY ...eeeseeseces ce s cer s e
Command Transmit Timeout ...eeeeeoeees cesease crsesssens

Data Path Parity Error cecseecens
Invalid Map Register ...eeeeeececenens
Map Register Parity Fail crerson
Lost EXrror Bit ..ceeeeeeseseconeonsons
UNIBUS Select Timeout ...cecevececcees
UNIBUS SSYN Timeout ..ceeeevccsccsscos
Buffer Transfer Errorcce. cees
S.B.I. FAaUltsS .uivieeescscesosscacscconsoscnsss
Parity Fault Descriptionceeeeees
Write Sequence Fault Description
Unexpected Read Data Fault Description
Interlock Sequence Fault Description .
Multiple Transmitter Fault
Troubleshooting S.B.I. FAULTS ¢..e.c.c..
S.B.I. SILO Interpretation

® 00 0000000 e o 00 00
* e 00000 e 0 0000000
. e e o 05000 . . .

@ e 00 00000000000

® e 0 0 e 000000000000

® e o 00 0000000t

CONFIGURATION/STATUS Register Interpretation

Troubleshooting Using the SYSTEM CONTROL BLOCK (SCB)cece.

HALTED AT XXXXXXXX eesveoccecocccscans coee
Building and Using a VAX Trap Catcher
VMB V4.@2 Trap Catcher Generation
2ILL I/E VEC EXIOLS .t vesscnccssoccces

e o e 0 00 e ¢ e e 0 000

® 20 00 s 00 e 0000 e

System Control Block Vector Assignments Chart ...eeeee.

vi

1-167
1-169
1-171
1-175

1-177
1-178
1-179

1-181
1-182
1-182

1-183
1-184
1-184
1-184
1-184
1-184
1-185
1-185
1-185
1-185
1-185
1-185
1-185
1-186
1-186
1-186
1-186
1-186
1-187
1-187
1-187
1-187
1-189
1-19¢
1-199
1-190
1-190
1-191
1-191
1-193
1-195

1-197
1-198
1-199
1-199
1-209
1-201

Section II. VMS Informationceeec..

VMS SYSGEN Error Control Parameters ..
BUGCHECKFATAL cveeeeecessaoaccs

BUGREBOOT +ceeceecsrecoacccccss
DUMPBUG tieeeveescsovoocsoccens

VMS CRASH HANDLING .vcecescoossoocscsce
Non-Fatal BugchecksS seeeeesoes
Fatal Bugchecks in Supervisor

Assigning Addresses and Vectors to UNIBUS Devices

.

e 00 000000

@ @ e 0 0000000000000 0000

and User Modes
Fatal Bugchecks in Kernel and Executive Modes

UNIBUS Device Floating Address Tableceeecss

UNIBUS Device Floating Vector Table ..

SYSGEN COmMMANAS ceeesecsesoccoscocccesos
LOAD command ..eeevcosccososas
CONNECT command ..eeeeeooccesas
RELOAD command ..cececeecaceas
SHOW/ADAPTER v eveeesanooannns
SHOW/CONFIGURATIONeeeevos
SHOW/DEVICE vt eeeeeeeoooannns
AUTOCONFIGURE ALL .¢eeevecccoese
CONFIGURE commMand e.eeeeoeceeass
CONNECT CONSOLE tteceecccceces
CREATE cOomMMaANd «eoeeooeoeosons
DISABLE CHECKS .t eeeeecensocecse
ENABLE CHECKS (it eeececscccens
EXIT 4eeeeacocosscssssssscocssaes
INSTALL command «.eeeeeeeoeeses
SET/OUTPUT command ...ceceoeees
SET/STARTUP commande.eo..
SHARE MPMn commandeeee..
SHOW parameter command
SET parameter command
SHOW/UNIBUS i eenoessaanons
USE command «.veeeeesoccoccosse
WRITE commandeeeveceooncess

Using SYSGEN to determine UNIBUS device

LOCAL CONSOLE Boot Command Files
DBOABOO.CMD 4 iveveeocoacassscas
RESTART.CMD 4 eeeeeoevoooccconen

DSC or BACKUP Boot Command File

.

RESTAR.ILV it eeeceecnccoosooscoccssssonans

RMEM, .t tttnteetotsononcscsconnconsonocas

vii

.

N
i
=

i 1
NN N

N N NN N NN
|

]
[e)] [e)] ur W w W

N
I

3%
1

DN ONNODNNODDNDNNNNNDNNDNDN
|
F =i O0WOOWwoowowao ~Jd-~d

Section III. Special Command FileS/PrOgraMS ..eeveeeeenesoceosonss
Hardware Dump File Maintenance/Generationceseesseesancans
Version 3.x VMS Dump File Generationeeeeseessecccscssenses
Version 4.x VMS Dump File Generation ...ceececeeecccccccoccoacas
DUMP. Command File ...iiceeeveaacenes ceeseeenn ceneenn cesessecees
HANG. Command File .t.ueeeesseceosceccscsonsscsoseoscassasansans
SAVEDUMP.COM Command File ..ieeenieecneecceannaas ceeecseeaananns

SPEAR BATCH Command Fileceeeeerveennssossanansns ceesesssenne
Spear Batch Control cesessesvessssecsesss s

SDA.COM ittt teeoossoescseossoscssovsescsnosssssssssssossscssssnssas

FP780 Control Programs C e e s esecesesseesseesesseaas e as
FPAOFF.MAR ..cceeeosee c e e eccc et ecs ettt et et e et sas
FPAON.MAR + vt eeevsessasosossssessansosasasosssssssssncocss

Section IV. VAX-11/780 BasicS ..cieevan ceeeneans ettt et s st nas
VAX Virtual and Physical Address SpPace Ceeeeis e
VAX-11/78@ General Registers Assignments creers e
Subroutine Usage and OpPeration ...eeeeeeeeeeeceneenes ceeenee .o
Procedure Usage and Operation S eeeeecenssennesens cieenens

Entry Mask ceecescseete s ettt e nans st e an s sasn s

Argument List Cesei st ceeeenean ceeaan .o
"CALLG" Procedure Call Operation ceeenas ceeeseneana
"CALLS" Procedure Call Operationveeeeeceecsessosocccsosscons
"RET" Procedure Return Operationceeeeeeens ceeeensnens
Procedure Call (CALLS/CALLG) NotesS ceeeeee teeetienaana
Return from Procedure (RET) Notes cacace cese s sesses e
Procedure Call Stack LAYoUL .eeiieeeeesoesssocanososoanassacsaas
VAX-11/780 Native Addressing MOdeS .ue.iveeeeeneoonns cesenseeans

Indexing Mode ..iveevenseeecersoenasnonas cee s s eessens
PC Mode AdAressing .eicieeieeeceaces Ce it e et e

viil

Section V.

Synchronous Backplane
S.B.I. Pin La
SBI/CPU Time
SBI T@ Clock
SBI T1 Clock
SBI T2 Clock
SBI T3 Clock

Buses Used on VAX-11/780 Systems

Interconnect

yout ... eceee
State Equivalents
TiME wuveveeeosos
Time +t.veeveecens
TiME wvvssoeaooass

..

.

TiMe .+ eeeeeeroeaanaas

S.B.I. Write Transfer Example to Show S.B.I.

VAX-11/788 Internal D

Chart Showing Modules Fed by the ID Bus Bits
ID Bus Parity Bits Chart Showing Who Uses Them

Timing

Ata BUS s eeeveeesovsssasosssssnoca

ID Bus KA788 Backplane Pin List

Section VI.

UNIX Error Reporting

® o 09 00 000000000

® 8 0 069 6000080 00000se0 0000 o0

.

This section will be added to a future release of this manual.

Section VII. Miscellaneou

Using EVSBA.EXE, the Diagnostic AUtOSiZeTr ..ivvveoveenss
EVSBA Autosizer Default Mode Operation

S INformation ...eeeecesoccnsacons

o e 60 000 00

Autosizer Manual or Self-test Mode Operation ...

Autosizer Commands for Manual or Self-test Mode

Read
Size
List
Help
Write
Chang
Exit
Attac

T R A R S
ceceess e st sc s
e s essesessccaconse
teceeeccessssece s

cs s et eses s cecs s
€ teecesecccscser e
I I A A

L2

¢ e 000000

e e e 00000

Standard Performance Error Analysis Reporting
te@ SPEAR it eeovoeccsosasonnnsns

How to Initia

Summary of Questions asked by SPEAR

Examining UNIBUS Regi
LP11l Diagnostic Check
To Restore LP1l1l Queue
Defining and Starting

Defining and Starting

"Unexpected UNIBUS Ad

StersS .t.iieeeiiceccnnn

Under VMSc....

6000000000000 000000

Print Queues (LP1l1l)

Terminal Queues

apter Interrupt"

X

.

L I S R)

u
|
[

oot Lo
I
[SC NV, O, B, B UV

gy n Ul
|
OO o)}

(o)}
|
[

~
I
=

| I I |

NN NN NN NN NN
|
b R R R DWW N

~ ~N N
[| [
| O 0w

Interle

Booting
H7100 P
M8232,
LSI-11
VAX-11/
MS789/M

EVKAA.E

SECTION VII

DW784 R

RH780 R

MS780-E

aving Memories ...iieieecicicccccnsanacans
with CACHE Disabled ceeeees ceeen
ower Regulator LEDS .tieeiasecoscecncscccs
Clock Board, JUMPELS .+eesevevocssscnsoces
Controls and Indicatorseveeeeeeennns

780 Controls and INdicators ..eeeeceeceees

A780 Error Correction Logic ceecenoane e

BE ttteeeeessocsoscscsscssssascscssossascssaes

I. NEXUS Register Bit Definitions
EgiSterS .ciiiectstscorseccssonns ceeeeses

Configuration RegisSter ...eeeeecescsccss
Control Registerc.ceeeeeeeeceenanns
Status Registeriieeeersennnnsccnnns
Diagnostic Control Register oo
Failed MAP Entry Registereeeceaces

e e 0 00

s e o

® e 0 0 0

c 0o 00 o

Failed UNIBUS Address Registerceeeeceass cesesenaens
Buffer Selection Verification Registers 0-3 ..

BR Receive Vector Registers 4-7
Data Path Register 00-15 ...ciceenecenns
MAP Registers @07-495 ...cieiveeeccnnoons

EJIStErS tiieeettteecetastetacenancecnnns

Configuration/Status Register
Control Register ...ceceeecss cesececcans
Status Registeriecivesecesccccessnns
Virtual Address Register ...eeeeeesences
Byte Count Registercieeeecoccosasens
Diagnostic ReEgisSter ...eeeeerececenscnas
Selected MAP Registeree00000 ceeene
Command/Address Registericiececeesns

REGIiStEYS teeeeeeeeooseaooososascscnnasns

Configuration Register "A"™ceeeeeee
Configuration Register "B" ...ieeceeaees
Configuration Registers "C and D"
Configuration Registers "E and F"

LRy

s e o o

s e 0o

PREFACE

This Trouble-shooting Manual was written as an aid to D.E.C. Field
Service Engineers for VAX-11/780 System problems.

This outline is not intended to tell you what module to replace,
but instead, is meant to lead you in the right direction. It is
assumed that you are familiar with at least the following:

1. VaAX-11/780 Processor

a. Understand CONSOL.SYS command language.

b. Know Physical and Electrical Configurations.

c. Know HEX.

d. Can examine/deposit Memory,I/O Regs.,and ID Regs.
2. VMS Booting

a. Know how to boot.

b. Have a basic understanding how boot is done.
3. Basic use of VMS such as:

a. Able to login.

b. Able to run "SYE"™ or "SPEAR".

c. Able to use an editor.
4. Know bhow to run all VAX-11/780 Diagnostics.

Often times reference is made to "DUMP., HANG., & SDA.COM"™ command
files within this outline. These files are files that I have written
to do specific functions. You can use the files I have written or you
can create similiar files yourself. I have also written several VMS
DCL command files that are meant to aid D.E.C. Field Service in doing
certain time-consuming functions.

The "DUMP. and HANG." command files are CONSOL.SYS command files that
should be generated by D.E.C. Field Service and placed on the "LOCAL
CONSOLE Floppy”. The purpose of these two command files are as
follows:

Is a command file that dumps all the Hardware Register contents to
the Console Terminal. This command file is executed as an indirect
command file from CONSOL.SYS. The purpose of this command file is to
provide D.E.C. Field Service with additional trouble-shooting
information concerning crashes that bring the software down and
control is passed back to the CONSOL.SYS program.

Is a command file that dumps all the Hardware Register contents, a few
PC's during single step mode (to determine Hung loop), and then

X1

II.

initiates the "CRASH." Local Console Floppy command file so that a
Software Dump will be taken. The purpose of this command file is to
provide D.E.C. Field Service with additional trouble-shooting
information concerning system software hangs.

SDA.COM

The "SDA.COM" file is a VMS DCL command file that creates an output
file that contains basic information taken from a specified Software
Dump file. This file should be used, by you, when you are gathering
information about a Software Dump to take back to your Support
Group.

SAVEDUMP . COM

It is very inportant for the Customer to save the Software Dump file,
"SYS$SSYSTEM:SYSDUMP.DMP", every time the system is rebooted due to an
Operating System crash. The easiest way to assure that this happens

on every crash is to put the appropriate commands, to do the save, in
the "SYSSSYSROOT:[SYSMGR]SYSTARTUP.COM" command file. I have generated
a command file that the Customer can execute from the SYSTARTUP command
file that will save the SYSDUMP.DMP file in the area that the Customer
specifies. This command file, SAVEDUMP.COM, will name the saved file
with a name that specifies the date and time of the reboot, after the
crash. By using SAVEDUMP.COM, it is much easier to match Software
Dumps to the appropriate crash.

This GUIDE references two handbooks extensively. These handbooks
should always accompany you when you are working on a VAX-11/780
System. These handbooks are:

VAX Maintenance Handbook, VAX Systems #EK-VAXV1-HB-???
VAX Maintenance Handbook, VAX-11/780 #EK-VAXV2~-HB-?7??

Any suggestions as to how to improve this manual will be appreciated.

Roy D. Fulton
D.E.C. Field Service

Xii

SECTION Description
khkkkhkhkkkkhkkkkkkhkxk

SECTION I of this manual is the actual "VAX-11/780 Trouble-Shooting"
Outline. This section should be used as a guideline as to how to
attack VAX-11/780 System problems.

SECTION II of this manual contains information about the VMS Operating
System, the Command files used to boot VMS, SYSGEN commands, Unibus
autoconfiquration requirements, etc.

SECTION III of this manual contains information concerning special
command files and special programs.

SECTION IV of this manual contains information on VAX Architecture
that may be needed as a reference while trouble-shooting.

SECTION V of this manual contains information about the different
buses used on the VAX-11/780 systems.

SECTION VI of this manual contains information about the UNIX
Operating System errors.

SECTION VII of this manual contains miscellaneous tidbits of
information.

SECTION VIII of this manual contains the defintions of the bits
in the NEXUS registers. The definitions for the CPU's registers
are contained in the VAX Maintenance Handbook for the VAX-11/780.
This section was copied from various VAX-11/780 Nexus Hardware
manuals and microfiche.

xiii

TROUBLE-SHOOTING APPROACH

khkhkhkkkkhkkhkhkkkhkhkkhkhkhhkhkkhkhkhkkhkhkhkhhhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkk

XV

Trouble-Shooting Approach
khkkkkkkkkhkkkkhkhkkhkhkkhkhkkhk

The following pages are an Outline as to some of the things that you
should do for certain types of VAX-11/780 problems. It is assumed
that you will use a sound trouble-shooting approach to fixing the

problem.

The following Trouble-Shooting Method is a proven

approach that can be tailored to every situation.

The correct steps to take in trouble-shooting are:

1.

RESEARCH and DEFINE the PROBLEM.

The problem should be diagnosed to a certain type of
problem that happens under certain types of conditions.
This must be done so that you will be able to recognize the
problem on the next failure even though it may not exhibit
exactly the same symptoms on the next failure.

The Definition of the Problem does not necessarily identify
the failing unit or subsystem, but simply describes the problem
symptoms.

Do not proceed to the next step until this is accomplished.

Enter all error symptoms in the Log book.

VENTURE a Testable EDUCATED GUESS as to the PROBLEM AREA.

From the information examined in step #1, make an educated
guess as to where within the VAX-11/780 SYSTEM the problem
lies. In other words, what subsystem or unit do you believe
the failure to be in based on past experience, training, and
the failure data information examined.

If you are not able to make an educated guess at this time,

it may be necessary to either wait for another failure in order
to obtain more information, and/or you may need to ask your
sources for aid in diagnesis.

XVi

If unable to do this step, be sure that error information
catching facilities are in place, wait for another failure,
and then go back to step #1. The error catching facilities
you may want to implement for the VAX-11/780 SYSTEM may be
as follows:

a. Set the SYSGEN parameter "BUGREBOOT" to a
"0", so that a Hardware Register Dump may be
taken at failure time.

b. Set the SYSGEN parameter "DUMPBUG" to a "1", so
that the Software Dump will be taken.

c. Set the SYSGEN parameter "BUGCHECKFATAL" to a
"1l", so that NON-FATAL Bugchecks will be
treated as Fatal Bugchecks. You probably don't
want to do this without also setting "BUGREBCOT"
to a "0".

d. Education of customer as to how to dump the
Hardware Registers.

e. Making sure that the Customer's SYSTARTUP.COM file
saves the Software Dumps or at least make sure that
the Customer has Software Dump Saving procedures in
place.

f. An Error Log report should be taken, and available
on Hardcopy, of the time prior to and at time of
the failure(s).

Be sure you enter into the Log Book what your evaluation is and
anything else you may have done.

SET-UP an TEST CASE in order to isolate the PROBLEM.

Using your knowledge of the system, past experience, and your
Support resources (if you need them), make a decision as to
what area of Hardware or Software should be replaced or
swapped first. This replacement or swapping should be done
in a educated manner.

DO NOT swap or replace parts within the believed problem

area in a haphazard manner. You should be able to pick out
the most suspectable area.

Xvil

Once you have decided what parts to replace or swap, MARK in
a CLEAR easily defined METHOD each part that will be used

in the test case in such a way that you and your counterparts
will readily be able to determine the following:

a. The ORIGINAL SOURCE of EACH UNIT involved in the
test case swap or replacement.

b. The DATE and TIME of the SWAP or REPLACEMENT of
EACH UNIT involved in the test case.

This may be accomplished by either tagging the appropriate
units or by marking each unit with a different marking and
then entering the appropriate information in the SYSTEM's
LOG Book by referencing these markings. This is VERY
IMPORTANT.

PREDICT the RESULTS of the TEST CASE.

Make an educated prediction as to what the results of the
test case will be. In other words, if you swapped a couple
of units within the SYSTEM or DEVICE, what type of failure
do you suspect will happen if the expected failing unit does
indeed fail again.

It is very important that this information be recorded in the
SYSTEM's LOG Book, so that you and your counterparts will know
what to suspect upon the next failure.

CONDUCT the TEST CASE.

Perform the appropriate changes in order to conduct the
test case as planned. Be sure to log everything in the
SYSTEM's LOG Book.

Xviil

EVALUATE the DEFINITION of the PROBLEM upon the NEXT FAILURE,

Now that you have more information to work with, does this
failure still fit under the first definition of the problem?

If it doesn't, then proceed according to the following:

a. Is there more than one problem? If there is more
than one problem, each should be researched,
defined, tested, etc., separately.

Be sure to label all failure information so that
you will know what information goes with what
failure.

b. Has another problem been introduced as a result of
units used in the test case? One of the units
that you inserted into the SYSTEM may have gone
bad. If so, then you will have to evaluate
whether to insert another new unit and wait for
another failure or should you just replace the
original and conduct another test case.

If it does fit under the same definition, continue to step #7.

RESEARCH and REFINE the DEFINITION of the PROBLEM.

o A o o o = ——— = ———

After each failure, it may be necessary to redefine the problem
or to refine.the definition of the problem due to the contents
of the problem's dumps. Refine the problems definition at this
point based on past experience, knowledge of the failing unit,
input from your Support resources, and the added problem
failure information taken at the last failure.

In other words, you may be able to give a better definition to
the problem, at this point in time, that will make it easier to
determine where the problem lies and easier to determine when
it is fixed. Be sure to enter this information in the SYSTEM's
LOG Book.

Be sure to enter into the Log Book exactly how each failure
occurs and exhibits itself.

Xix

10.

RETURN NON-FAILING UNITs to their ORIGINAL POSITIONS.

It is very important to return the non-failing units, moved
as a result of the test case, to their original positions
as soon as the test case is completed.

This should be recorded in the SYSTEM's LOG Book in order to
prevent confusion in the future.

This step is probably the most often ignored step even though
it is one of the most important steps.

REPLACE FAILING UNITs with SPARESs.

Replace the failing units with spares. Since step #8 was done,
the new unit (a spare) should be going into the ORIGINAL
position of the failing unit.

This information should be recorded in the SYSTEM LOG Book, and
an entry should be made on the appropriate DEVICE's LOG Sheet.

REPEAT UNTIL the PROBLEM is SOLVED.

Repeat steps 2 thru 9 until the problem is solved.

When the Problem is declared solved should be a predetermined
period of time after the last failure. This time must be
mutually agreeable between D.E.C. Field Service and the
Customer. The determination of how long the system must run,
without the defined problem happening, should be primarily
based upon two things. They are:

a. The T.B.F. (time-between-failures).

b. The minimum run time that the customer would
feel comfortable with.

The elapsed time period before the problem is declared solved
should be no less than twice the longest time between failures,
and should be equal to or greater that the customer required
time,

XX

SYSTEM LOG BOOKS

kkkkhkkkkhkhkkkkkkkkkhkkkkhkkhkkhkkkkkkk

XXl

Log Book maintenance is a very important part of SYSTEM trouble-
shooting. The keeping of a Log book is not just the Site
Representative's duty but is the duty of every person that goes
onsite to fix any problem. Every time you are onsite, anywhere,

you should not consider the call complete until the System's LOG
book has been filled out giving a detailed description of everything
that has expired during your visit.

When properly used, a System Log Book will:
1. Stop UNNEEDED CONFUSION about the status of
the SYSTEM, what was replaced when, what is
expected to happen, what to do next if a certain
event happens, if a certain event doesn't reoccur, etc.
2. Provide SYSTEM History information.
3. Provide DEVICE History information.
4. Provide updated SYSTEM Configuration information.
5. Provide an Intermittent Problem Action Plan.
6. Provide SYSTEM and DEVICE PM Status.

7. Provide SYSTEM and DEVICE diagnostic Run sheets.

8. Provide a means of passing information from one
D.E.C. Field Service Engineer to another.

9. Provide a means of obtaining SYSTEM uptime information.

10. Provide specific SITE Dependent information such as
where the Diagnostics are kept, where the Prints are kept,
what test to run, special security considerations, specific
site dependent information, etc.

Every little tidbit of information about a problem should be entered
into the Log Book. These tidbits may seem unimportant to you now, but
may become valuable bits of information later on.

It is your duty to help maintain an accurate log book for each
system that you work on, every time you are on site.

XXil

SOURCES of INFORMATION
Ahkkkkkkhkhkhkkkhkkhkkhkhkkkhkkkkhkhkkhkhkkkkhkkkkk

xxiii

At times you may need some help in Problem Diagnosis, Repair, ECO
information, Diagnostic information, and etc. A list of resources that
you can use is listed below:

1.

Your fellow workers in your Branch.

This is an important resource. If you know someone

in your group that probably knows the answer to your
question(s), don't be afraid to ask for their help.
Working together in this way also helps to build morale
within a group.

Your Remote Support and local Support Groups.
The Remote Diagnosis Center, (RDC),in Colorado.

RDC can : Run Diagnostics.
Examine VMS Dumps.
Answer ECO problems.
Look up information in the Library.
Answer functional questions.
Run/Monitor extended testing.

Be aware that the RDC now has a library of all
kinds of information. When you call RDC, they
will ask you your SYSTEM TYPE, at this point
ask for the LIBRARY.

If you know ANYONE in D.E.C. that probably knows the answer
to your question, feel free to call and ask. We, all D.E.C.
employees, owe our jobs to our Customers. Therefore, there
is no reason why anyone in D.E.C. should refuse to answer a
question for you if they know the answer.

XXiv

MAINTAINING CONTROL
R R R T R L

XXv

This is probably the most misunderstood and abused concept of
trouble-shooting basics, but it is of the utmost importance that
the Field Service Engineer MAINTAINS CONTROL of the SITUATION at
ALL times. This manual will not do you any good if you do not
have the control needed to perform the steps specified. 1In order
to fix Customer Problems quickly and efficiently, you must:

Be able to MAINTAIN CONTROL at all times.

Have good CUSTOMER RELATION SKILLS.

Have a sound TROUBLE-SHOOTING APPROACH.

Have the ABILITY TO BE SYMPATHATIC towards the
CUSTOMER'S BUSINESS NEEDS.

5. Have KNOWLEDGE of the hardware and software.

W N
* e o o

What is meant by Maintaining Control as related to trouble-shooting?

Maintaining Control simply means that you, a D.E.C. Field Service
Engineer that is attempting to fix a Customer's problem, must at all
times approach the problem with you in command of the situation. This
simply means that you make the decisions as to what to do, when to do
it, and how to do it, while carefully considering the Customer’'s
business needs (all your decisions must remain within the Problem
Manager's guidelines). You must maintain control while also making
sure that your decisions will impact the Customer's business as little
as possible.

Loosing control, more often than not, causes longer overall downtime
for the Customer and also causes you to start to loose confidence in
your ability to do your job properly. Your job is to fix the
Customer's problem(s) as soon as possible while affecting his/her
business as little as possible. If you do not Maintain Control of the
situation, you obviously cannot perform your job properly.

If at any time you feel that you are starting to loose control,
immediately contact your management and get them involved. DO NOT
allow yourself to loose complete control before contacting your
management. Everyone needs help occassionally. Don't let your

pride prevent you from doing what is best for the Customer and D.E.C..

The amount your decisions impact the Customer's business needs must
always be considered carefully. Sometimes it makes more sense to take
the System for an extended period of time, in order to reduce the
total overall time spent repairing the Customer's problem.

XXVi

Maintaining Control does not mean that you make your decisions without
the Customer's input. One of the first steps you should always do when
trouble-shooting a problem, is to gather as much information about the
problem as possible. The first source of information about the problem
comes from the Customer. The Customer may even have an idea about

what 1is causing the problem. You should listen to everything that the
Customer has to say. This does not mean that you base your
trouble-shooting totally on the information received from the Customer.
Research the problem thoroughly before jumping in and replacing things.
You must also use input from the Customer when you are weighing what
you want to do-with how it will affect the Customer's business.

It is of the utmost importance not to abuse your control. Abuse of
control can only result in a poor D.E.C./Customer relationship. You
must maintain good D.E.C./Customer relations and supply the Customer
with the best service possible within the guidelines of the Custdmer's
Contract.

Your goal is to fix the Customer's problem, in the shortest length of
time, while maintaining complete control of the situation, and while
constantly evaluating your decisions with respect to the Customer's
needs, concerns, and Contract Coverage.

Keep in mind the following:

1. Maintain Control of the situation.

2. Always weigh your decisions with respect to the

following:
a. Customer's Business needs and concerns.
b. D.E.C.'s Contract Obligations to the Customer.

c. Is this the quickest approach to fixing the
problem?

3. Maintain good D.E.C./Customer relations.

4., Always be CONSIDERATE, TRUTHFUL, and FAIR.

XXvil

SECTION 1

VAX-11/780 Trouble-Shooting QOutline

VAX-11/780 Trouble-Shooting Basics

This outline is designed to aid you in isclating problems to either the
Memory, the VAX-11/780 CPU, the VAX-11/780 Front-end Subsystem, a VAX-11/780
Nexus, a Peripheral Device or to Software. Peripheral Devices will only be
covered in general while the VAX CPU, the MEMORY, and the NEXUSes will be
covered more thoroughly.

An UNDEFINED PROBLEM exists. The problem is undefined until "YOU" make
an educated guess as to where the problem probably lies.

GATHER all INFORMATION, from the Customer, that is available about the
problem and its symptoms. At this point in time, you are not
evaluating the problem but are merely gathering information that you
can evaluate later. Keep an open mind, don't let any tidbit of
information pass you by. Many problems could have been solved sooner
if the Field Engineer had remembered seemingly insignificant tidbits
of information that may appear unrelated to the problem. Be sure to
record as much Symptom information as possible in the "LOG Book".

a. How is the problem exhibited?

1. This is found by talking to the Customer. Be
sure to record this information in the "LOG Book”.
2. Is the problem intermittent or a solid problem?
3. Can the problem be recreated at will?
4. What is the MTBF (mean time between failures)?
5. Does the problem seem to be related to only one or

only a group of functions or programs?

6. If it is a program that causes the problem, is this
a customer program or a D.E.C. supported program?

7. Is there anything common about the problem in either
software or hardware?

8. Did any System Environmental changes take place
previous to or at time of the problem?

9. Does the problem appear to be, or could the problem
be, media related?

1-2

b. What is the customer's evaluation of the problem?

1. Does the customer believe the problem to be in
a certain area of the hardware or software? Be
sure to record this information in the "LOG Book",

c. Is there a hard copy printout showing the problem symptom?
If the Operating System crashed or hung, what you want is
the Console Terminal output at the time of the failure.

1. If a "Hard Copy Printout”™ is available, ask the
customer for it.

d. Was a "Hardware Register Dump" taken at failure time?

1. If the software crashed or hung, the customer should
have taken a "Hardware Register Dump" (by using the
"DUMP. or HANG." command file on the "LOCAL CONSOLE"
floppy) immediately at time of failure. Ask for this
dump.

e. Was a "Software Dump" taken and saved?

1. If the software crashed a software dump should have
occurred automatically as a result of the Operating
System executing its crash routine (if SYSGEN parameter
DUMPBUG=1). The dump should have been saved by the
Customer when the system was rebooted. Ask the Customer
for the "DDCU:{DIRECTORY]FILENAME.EXT" of the "SAVED
SOFTWARE DUMP".

Get an ERROR LOG REPORT if possible at time of and prior to failure.
If the problem is of the type that allows the Operating System to

run, or is a problem that intermittently crashes the Operating System,
attempt to get an "ERROR LOG" report by running either "SPEAR" or
"SYE". Have the output go to a file, and then print that file.

If you are running SPEAR, use the "SPEAR Analyze" function to analyze
the errors prior to the crash. It may be necessary to do a full
retrieve of all information. In some cases it may not be possible to
do Error Log reporting at this time. In those cases, it is wise to run
Error Log reporting as soon as the system is functional enough to do
so. Operating System Error Logging is a great aid to trouble-shooting,
use it whenever possible. The VAX Error logging utility is very good.

IDENTIFY the TYPE of PROBLEM if possible. Now that you have gathered
as much information as you can about the problem, find a desk or table
somewhere where you can sit down and attempt to "Isolate the Problem".
The first step in problem isolation, is to determine the "Type of
Problem".

VAX-11/780 Problems can be broken down into several basic types:

1. Operating System Crashes or Bugchecks.
(This includes "Machine Checks"™ & "CPU DBLE-ERR HLT's")

2. Operating System Hangs.

3. Operating System Functional Problems.

4. Operating System Backup Problems.

5. Booting Problems.

6. Front-end Subsystem goes back to ODT, Hangs, Halts.
7. Unexplained Reboots or Power Restarts.

8. Problems on a Certain Device or Devices.

9. System or Peripheral Device won't Power-Up.

10. Something's Burning.

11. Problems Building the VMS Operating System.

12. Error Bits set in a NEXUS (DW780, RH780, etc.)
13. S.B.I. FAULTS

Determine which of the above types the problem fits under and then
go to the outline for that problem type. Every problem should
fit under one of these problem types.

VAX-11/780 System Trouble-Shooting tools:

Visual and Sensual Indications
a. LSI-11 Front panel indicators - DCON, RUN
b. VAX-11/780 Control panel indicators - ATTN, RUN, POWER
c¢. H7100 status indicators
Power Normal, Regulator Failure, Overtemp,
Overcurrent, & Power Inverter Failure
d. Smoke, fire, heat, burning smell

Registers
a. The CPU ID <00:3E> registers
E/ID/L/N:3E 0O
b. The Control/Status registers in each nexus

E/L/P/N:x 200xx000 - for each nexus

c. The Control/Status registers in each UNIBUS device
E/L/P/N:x 201lxxxxx - for each UNIBUS device

d. The Control/Status registers in each MASSBUS device
E/L/P/N:x 200xx400 - for each MASSBUS drive

Console Terminal Messages
a. LSI-11 ODT error messages
XXXXXX <- PC at time of LSI macro program halt
@ <- LSI ODT prompt :
b. Error messages from CONSOL.SYS
? XXXXXXXXXXXXXXXX
>>>
c. Error messages from the OPERATING SYSTEM (VMS/UNIX)
FATAL BUGCHECK <- From VMS. Is followed by
a General register dump, Stack
dump and a description of error.
d. Error messages from other programs

User Terminal Messages ,
a. Error messages from the OPERATING SYSTEM (VMS/UNIX)
b. Error messages from other programs

Error Log Information
a. "ERRLOG.SYS" for the VMS operating system
in SYSS$ERRORLOG:ERRLOG.SYS
b. "/messages" file for the UNIX operating system

System Manager/User Input
a. System Manager/User definition of the problem
b. System Manager/User feelings of problem area
C. Any customer known or initiated changes to system

System History
a. Past failure/repair history of the system
b. ECO status of the system
c. System configuration changes
d. Software changes
e. PM history
f. Enviromental Changes

1-5

VMS Operating System Crashes or Bugchecks

Due to the nature of these types of problems and the Software decisions

that are made, the System may not be down when you arrive onsite. For this
reason, these flows will not specify when to run diagnostics., If the
Operating System is operative when you arrive onsite, it is probably best

to gather the listed information about the crash and attempt to at least
make a preliminary diagnosis before taking the system to run diagnostics.
This preliminary diagnosis should point you to an area or subsystem on

which to start running diagnostics.

In order to trouble-shoot these types of problems, it is necessary to gather
as much information about the crash as possible. The amount of information
that you will be able to gather will depend upon how the system is set up.
Procedures to gather the following types of information should have been
setup previous to the crash:

1. Doing a HARDWARE REGISTER DUMP.

2. SYSGEN parameter DUMPBUG set to a 1 so as to get a SOFTWARE dump.

3. Saving of SOFTWARE dumps on reboots.

4. Saving of Errlog (EVENT file) information.

5. Saving of the Console Terminal output (on hardcopy).

6. Accurate LOG BOOK information concerning all activity on the system.
"It is IMPOSSIBLE to gather TOO MUCH information about a problem.”

In order to gather the Hardware Register Dumps, certain modifications to the
LOCAL/REMOTE CONSOLE FLOPPY should be made. A "DUMP." and "HANG." command
file should be created that is tailored to the associated system (see the
procedures in Chapter 3 of this manual). It is possible to get all the
Hardware Register information needed by using these two command files, but
the customer must run the system with SYSGEN parameter BUGREBOOT = 0 and

the AUTO-RESTART switch OFF. Then when the system crashes, you or the
customer must take the dump by initiating either the "DUMP." or "HANG."
CONSOL.SYS command file prior to rebooting of the system. This method

is usually not desirable from the customer's standpoint of trying to have
the system up as much as possible. A better method is to add the commands
in the "DUMP." command file to the front of the "DEFBOO.CMD" & "RESTAR.CMD"
command files on the LOCAL/REMOTE CONSOLE Floppy. This will allow the
customer to run with AUTO-RESTART set ON and the SYSGEN parameter BUGREBOOT
set to a 1, and the Hardware Register dump will automatically be taken prior
to the system rebooting.

On these crashes, the Hardware Register Dump may not reflect the

same ID register contents as were present at the actual time of the error
due to VMS not halting immediately (several things are done prior to VMS
halting, one of which is the writing of the Software Dump). The Hardware
Register Dump may show some Device or Nexus errors though. It is always
better to have extra information rather than not enough, so take the
HARDWARE REGISTER DUMP whenever possible.

The ERRLCG.SYS file should be examined, whenever possible, to see if the
Operating System was able to log any error information that may be causing
the crashes. The VAX VMS "System Event File (ERRLOG.SYS)" is a very useful
trouble-shooting tool that is very often overlooked. Many times the

Fatal Bugchecks are caused by something that is logged in ERRLOG.SYS just
prior to the crash.

There are many different types of "FATAL and/or NON-FATAL BUGCHECKS".
BUGCHECKS can either be caused by Hardware errors or Software detected
error conditions. The SOFTWARE detected errors "may not" be caused by
any hardware failures.

Whether a BUGCHECK is declared "FATAL or NON-FATAL" depends upon what
"MODE" the processors is in when the error occured. Basically, a
"Non-Fatal Bugcheck” is a Bugcheck that has occured while the processor
is in either the "USER" or "SUPERVISOR" mode. A "Fatal Bugcheck" is one
that has occured while the processor is in either the "EXEC" or "KERNEL"
mode. Chapter 2, of this manual, describes Fatal and Non-Fatal Bugcheck
action.

The easiest of the Bugchecks to trouble-shoot is the MACHINE CHECKS. This
is due to a specific logout procedure that the VAX-11/780 CPU microcode
goes through to insure that you have the needed error information stored
on the stack. Fatal Machine Check Bugchecks will print out the stack
information on the console terminal. This is usually all the information
that you need to trouble-shoot this type of bugcheck. Non-Fatal Machine
Check Bugchecks will cause VMS to store the stack information in the
system event file (ERRLOG.SYS). All of the other types of BUGCHECKS require
a software knowledge to affectively trouble-shoot them since these errors
usually are not the result of some hardware detected error but due to
softwares detection of a problem. Therefore, you would probably have to
know what the system software was attempting to do in order to effectively
trouble-shoot them.

* FATAL BUGCHECK, VERSION-V3.1 MACHINECHK, Machine check while in kernel mode *

MACHINE CHECKSs:s
MACHINE CHECK:s
MACHINE CHECKSs:s
MACHINE CHECKs
MACHINE CHECKS s
MACHINE CHECK:s
MACHINE CHECKS S
MACHINE CHECK:

MACHINE CHECKs

?? MACHINE CHECK EXCEPTION THROUGH VECTOR: 04 (X)

1-9

VAX-11/780 MACHINE CHECK Error Logout

A Machine Check Exception indicates that the processor detected an

INTERNAL ERROR in itself, an SBI TIMEOUT, or an SBI ERROR CONFIRMATION is
received when the processor was attempted an SBI transfer. Software
decides, on the basis of the logout information presented, whether to abort
the current process or simply to continue.

The following steps show the basics of what happens when the VAX-11/780
CPU detects an error.

1. The VAX-11/780 CPU detects an error.
The types of errors that can cause a Machine Check are:

a. Control Store Parity Error

b. Cache Parity Error

¢. Translation Buffer Parity Error

d. Read Data Substitute Error

e. SBI Read Timeout

f. SBI Error Confirmation received

g. VAX CPU Micro-code goes to unused Micro-codeg location

2. The VAX-11/780 Micro-code branches to a "Error Snapshot" micro-code
routine that performs the saving of the "Machine Check Logout"
information onto a specified Stack.

MicroPC Error entry points for PCS (version 1.0) microcode

uPC O010F - Control Store Parity Error

uPC 0107 - Translation Buffer Parity Error

uPC 0108 - Cache Parity Error

uPC 01l10C - Read Data Substitute

uPC 010D - S.B.I. Read Timeout or Error Confirmation
uPC O0EEQ - Microsegencer Error

3. The VAX-11/780 Micro-code saves certain CPU registers in TO thru
T9 (ID #30 thru 39) for temporary storage. These registers, along
with the PSL, PC and a byte count, make up the "Machine Check
Logout" information. The Registers that are saved are:

The CPU Error Status Register (CES = ID #0C)

The Trapped UPC Register (USTACK = ID #20)

The VA/VIBA (from the VA/VAMX multiplexers)

The D-Register (DQ = ID #08)

The TB Error Register #0 (TB ERR #0 = ID #12)

The TB Error Register #1 (TB ERR #1 = ID #13)

The Timeout Address Register (TIME.ADR = ID #1A)
The Cache Parity Error Register (PARITY = ID #1E)
The SBI Error Register (SBI.ERR = ID #19)

The D.SV Register (D.SV = ID #2E)

L3 - QO D'

1-10

This data is first stored in TO thru T9, in the following order,
on execution of the micro-words at the specified PCS (version 1.0)
micro-addresses:

uPC Register Name ID No. Saved in

QEF1 CPU Error Status 0C T1 - ID#31
0EF2 Trapped Micro-PC 20 T2 - ID#32
0EF4 VA/VIBA T3 - ID#33
0EFS D Register T4 - ID#34
Q0EF8 TB Error Register 0 12 TS - ID#35
OEFB TB Error Register 1 13 T6 - ID#36
QEFC Timeout Address 1a T7 - ID#37
OF01 Cache Parity Register 1E T8 - ID#38
0F03 S.B.I. Error Register 19 T9 - ID#39
OF06 Summary Parameter TO - ID#30

Then this MACHINE CHECK logout information is stored onto the
stack, along with the PC and PSL.

This two step procedure is used in order to preserve lst error
information in the case of another error occuring while the
micro-code is attempting to logout the lst error's information
onto the stack.

PCS (Version 1.0) micro-code entry points
uPC 0EE9 - T"Error Snapshot micro-routine” that stores certain
registers in the T0-T9 temporary registers.

uPC 0F10 - T"Error Snapshot micro-routine" that stores the
Temporary registers (T0:9) onto the stack along with
the PC, PSL, and a Byte Count longword equal to a
hex 00000028.

The VAX-11/780 Micro-code gets the SCBB data to be used to find
the physical address of the "MACHINE CHECK VECTOR". The SCBB

is a register (ID #3B) that contains the starting address of the
System Control Block (SCB).

The System Control Block is the physical page in memory that
contains the Exception and Interrupt Vectors.

5. Bits <1:0> of the data in "SCBB+4" are checked, by the Micro-code,
to determine what Stack to use for the Machine Check Logout
information storage, or to see if the CPU should halt.

The Kernel Stack or the Interrupt Stack can be used as the storage
place for the Machine Check Logout information.

6. The VAX-11/780 Micro-code saves the Machine Check Logout
information onto the Stack specified by "SCBB+4" bits <1:0>, or
will halt if these bits are both 1's (<1:0>=3). If the VAX CPU
halts, control will pass back to the CONSOL.SYS program.

The Machine Check Logout information consists of the Saved Register
contents that were saved in Temporary Storage registers ID #30-39,
the PC and PSL at the time of the error, and a byte count that
specifies the total number of bytes dumped on the stack (which

is "always" a hexadecimal 28 or decimal 40).

7. The VAX-11/780 Micro-code causes the Instruction_Set Processor to
jump to the routine whose Longword address is in "SCBB+4" if
"SCBB+4 Bits <1:0>" is not equal to 3. If "SCBB+4 Bits <1:0>=3"
then the VAX Instruction_Set Processor is halted.

8. If "SCBB+4 Bits <1:0>" are not equal to 3,
Instruction_Set Prccesscr runs VAX Macrc in
the specified trap routine.

the VAX-11/780
st

uctions to perform

What is done in this routine depends totally on the running
Macro-code program. When a Machine Check occurs while running the
VMS Operating System, the Macro Routine that is run now will
determine whether the Machine Check is FATAL or NON-FATAL and
will act accordingly. When a Machine Check occurs while running
the Diagnostic Supervisor, the Macro Routine that is run now will
normally print out the STACK contents and then go back to the
"DS>" prompt and await operator input. Other software may simply
halt when the Machine Check occurs. Still other software may not
properly set up a "SYSTEM CONTROL BLOCK" and all sorts of strange
things may happen.

NOTE: If another Machine Check condition occurs while the microcode
is performing the functions in steps 2 thru 6, the VAX
microcode flags a "Double Error Halt" and turns control over
to the LSI Subsystem's CONSOL.SYS program.

VMS Fatal Bugcheck printout example caused by a Machine Check

**%* FATAL BUGCHECK, VERSION-V3.l1 MACHINECHK, Machine check while in kernel mocde

CURRENT PROCESS = STARTUP
REGISTER DUMP

RO = 00000206
R1 = 00000028
R2 = 0000792E
R3 = 00000000
R4 = 0000792E
R5 = 0000021E
R6 = 80027600
R7 = 00002768
R8 = 80137300
RS = 0000C768
R10= 000015F8
R11= 80137300
AP = T7FFB4888
FP = 7FFEADAS8
SP = 80154FC4
PC = 800CF41ll
PSL= 041F0008
KERNEL/INTERRUPT STACK
80154FCC 00000028
80154FD0 00000000
80154FD4 00010084
80154FD8 00000224
80154FDC 80027A18
80154FEQ 03FBSE6C
80154FE4 00007E81
80154FES 00000040
80154FEC 28005106
80154FF0 00004000
80154FF4 00009402
80154FF8 00002C4D
80154FFC 00DF0000

HALT INST EXECUTED
HALTED AT 80003SED

(BOOTING)

CPU HALTED

INIT SEQ DONE

HALT INST EXECUTED
HALTED AT 200034F9

G O0000000E 00000200
LOAD DONE, 00004200 BYTES LOADED

VAX/VMS Version V3.1 11-AUG-1982 16:21

1-13

Example of a Machine Check while running ESSAA

DS> RUN EVRAA

.. Program: VAX DISK AND TU58 RELIABILITY TESTS *EVRAA*, revision 12.0,
6 tests, at 07:19:26.94.

Testing: _DRB1

?? MACHINE CHECK EXCEPTION THROUGH VECTOR: 04(X)
CP READ TIMEOUT/SBI ERROR CONFIRMATION FAULT

MACHINE CHECK LOGOUT:
COUNT: 00000028(X)

SUMMARY PARAMETER: 00000000(X)

CPU ERROR STATUS: 00010084(X) ;s NESTED ERROR, ALU C31

TRAPPED MICRO PC: 00000248(X)

VA/VIBA: 60014008(X)

D REGISTER: 0504A056(X)

TBERO: 00007E00(X) H
; LAST REFERENCE = ADS,MCTE,MCT2
MCT1,MCTO, IBWCHK
:FORCE TB PARITY ERROR=NO ERROR
FORCED

TBERI]: 00000040(X) :LAST TB WRP

TIME.ADDR: 28005002(X) :MODE=KERNEL, PROT CHECK, SBI AD
DR=20014008(X)

PARITY: 00004000(X) :CP ERROR

SBI.ERR: 00009402(X) ;RDS INT EN,CP TO, CP TO STO,
NOT BUSY

PC at error: 00051649(X)

PSL at error: 001F0000(X) ; CUR=KERNEL, PRV=KERNEL, I[PL=1F

User return PC: 0001240D(X)

DS>

'S

Breakdown of a VMS Machine Check printout example.
x FATAL BUGCHECK, VERSION-V3.l1 MACHINECHK, Machine check while in kernel mode

CURRENT PROCESS = STARTUP I
REGISTER DUMP Specifies type of BUGCHECK. This
breakdown defines the meaning of this

RO = 00000206 <-| printout when the BUGHECK type is a
R1 = 00000028 I "Machine Check".

R2 = 0000792E I

R3 = 00000000 I

R4 = 0000792E I

R5 = 0000021E I

R6 = 80027600 I

R7 = 00002768 |--- This register dump isn't of much use to us if
R8 = 80137300 I the BUGCHECK is a "Machine Check". 1Is useful
R9 = 0000C768 | for other types of BUGCHECKs.

R10= Q00CO01l5F8 |

R11l= 80137300 |

AP = 7FFB4888 |

FP = 7FFEADAS8 |

SP = 80154FC4 I

PC = 800CF411 }

PSL= 041F0008 <-
The following definitions apply only

KERNEL/INTERRUPT STACK when BUGCHECK is a MACHINE CHECK.
80154FCC 00000028 <----- Byte Count
80154FDO 00000000 <=----- Summary Parameter
80154FD4 00010084 <--—--- CPU Error Status (ID#0C)
80154FD8 00000224 <----- Trapped micro-PC (ID#20)
80154FDC 80027A18 <----—- VA/VIBA
80154FEQ 03FB5SE6C <-—=—— D Register (ID#08)
80154FE4 00007E81 <----- TB Err. Reg. #0 (ID#12)
80154FE8 00000040 <----- TB Err. Reg. #1 (ID#13)
80154FEC 28005106 <-~--- Timeout Address (ID#1A)
80154FF0 00004000 <----- Cache Parity (ID#1E)
80154FF4 00009402 <=-==--- SBI Err. Reg. (ID#19)
80154FF8 00002C4D <-=---- PC (General Reg. #F)
80154FFC 00DF0000 <----- PSL (ID#0F)

HALT INST EXECUTED
HALTED AT 800039ED

(BOOTING) <-—==—==—==————- SYSGEN "BUGREBOOT = 1", .so rebooting
CPU HALTED via "DEFBOO.CMD" command file.
INIT SEQ DONE
HALT INST EXECUTED
HALTED AT 200034FS <------ ISP Rom Macro program finished. "SP"
now contains SA+200 of good 64K chunk.
G 0000000E 00000200
LOAD DONE, 00004200 BYTES LOADED <----- VMB.EXE loaded into VAX mem.

VAX/VMS Version V3.1 11-AUG-1982 16:21 <----- VMS is loaded and started.

1-15

Getting Started on MACHINE CHECKs

The contents of the "STACK" are used to trouble-shoot "Machine Checks".
The Stack Contents are printed out on the "Console Terminal”, by the
VMS Operating System, immediately after a "FATAL" Machine Check.

"Fatal Machine Checks" are basically those Machine Checks that happened
when the VMS Operating System was in "Kernel" or "Exec" mode. Machine
Checks that happened during "User" or "Supervisor"” mode are normally
considered "Non-Fatal" and will result in the Machine Check Logout
information (the contents of the STACK and the General Registers) being
saved in the System Event file ("SYS$SERRORLOG:ERRLOG.SYS") versus being
printed out on the "Console Terminal".

If the Machine Check occurred while running a program that does not
output the "Logout" information to the "Console Terminal" or

"SYSTEM EVENT File", then you will have to dump the Stack yourself.
To do this, first examine (using CONSOL.SYS) ID #12 and check to see
if Bit 00 is set. Then use the appropriate command to examine the
STACK.

ID #12 - Bit <00> = 0 ; Memory Management not enabled.
>>> E/L/H SP
>>> E/L/H/P/N:30 @

>>> E/L/H SP
>>> E/L/H/V/N:30 @

Now, use the following steps to determine what caused the "Machine
Check":

1. Find the "LONGWORD" on the Stack that contains a "00000028".

If you cannot find this longword, then the Stack doesn't
contain the "Machine Check Logout" information. You will,
therefore, have to make sure the appropriate error catching
facilities are in place, and then must wait for the next
"Machine Check™ to occur.

2. The "LONGWORD" following the "00000028", is the "Summary
Parameter" word. Using "byte 0" of this longword, check
the SUMMARY PARAMETER DESCRIPTION, on the next page, to
determine what type of error occurred.

3. Now that you know what type of error occurred, go to the
appropriate section of this Trouble-Shooting Guide to
find out how to use the Stack "Machine Check Logout”
information to further isolate the problem.

I-16

Normally the Exception Vector bits <1:0> define the following:

0 - Service the EXCEPTION on the KERNEL STACK unless running on
the INTERRUPT STACK.

1 - Service the EXCEPTION on the INTERRUPT STACK.

2 - Service the EXCEPTION in WCS, Pass Bits <15:02> to Micro PC.

3 - Halt

The Machine Check Exception Vector is found at "SCBB+4". The "System

Control Block Base" is a Physical address and can be found by examining
"ID Register #3B" or "Internal Register #11".

MACHINE CHECK LOGOUT Information Description:

Description Memory Loc. ID Loc. Notes
1. Byte Count (sp) None Must be a 28 (hex).
2. Summary Parameter (SP+4) TO (30) See below.
3. CPU Error Status (SP+8) Ti (31) See ID #0C.
4. Trapped UPC (sp+12) T2 (32) See ID #20.
5. VA/VIBA (SpP+16) T3 (33) Virtual address.
6. D Register (sp+20) T4 (34) See 1D #08.
7. TB ERROR 0 (SP+24) TS (35) See ID #12.
8. TB ERROR 1 (sp+28) T6 (36) See ID #13.
9. Timeout Address (SP+32) T7 (37) See ID #1A.
10. Parity {SP+36) T8 (38) See ID #1E.
11. SBI Error (SP+40) TS (39) See ID #19.
12. PC (Sp+44) None General Reg. #F.
13. PSL (sp+48) None See ID #0F.

SUMMARY PARAMETER Description (use Byte #0, only!)

Page Code Description

1-55 00 CP Read Timeout or Error Confirmation Fault
1~38 02 CP Translation Buffer Parity Error Fault.
1-34 03 CP Cache Parity Error Fault.

1-92 05 CP Read Data Substitute Fault.

1-38 0a IB Translation Buffer Parity Error Fault.
1-92 0cC IB Read Data Substitute Fault.

1-55 0D IB Read Timeout or Error Confirmation Fault.
1-34 oF IB Cache Parity Error Fault.

1-55 FO CP Read Timeout or Error Confirmation Abort.
1-45 Fl Control Store Parity Error Abort.

1-38 F2 CP Translation Buffer Parity Error Abort.
1-34 F3 CP Cache Parity Error Abort.

1-92 F5 CP Read Data Substitute Abort.

1-94 F6 Microcode "not suppose to get here" Abort.

BIT BREAKDOWN OF STACK ENTRIES - Showing error information

ID #0C - CES
3322 2222 2222 1111 1111 1100 00O0OO0COO0OO0QOU
1098 7654 3210 9876 5432 1098 7654 3210
Control Store Parity Error Summary -| | | |
CS Parity Error in Group #2 ---------- (N
CS Parity Error in Group #l1 ------=----- |
CS Parity Error in Group #0 -------------- I
ID #20 - MICRO STACK
3322 2222 2222 1111 1111 1100 00O0COC OO0OO0QTO
1098 7654 3210 9876 5432 1098 7654¢ 3210
|<=- Micro PC bits <12:0> -->|
VA/VIBA - output of VAMX
3322 2222 2222 1111 1111 1100 00O0O0 OOCOO
1098 7654 3210 9876 5432 1098 7654 3210

[<==mmmmmmmm e Virtual Address bits <31:00> --------------——--——- > |
- From VA register if "CP" reference.
From VIBA register if "IB" reference.

ID #08 - D Register

2 1 1100 00
5 2 1098 76754

=N

2 2222 1111 111
, 6 3210 9876 543
! Data [Data I Data [Data {
|<-- Byte #3 --->||<-- Byte #2 --->||<-- Byte #1 --->||<-- Byte #0 --->|

ID #12 - TBERO

3 2
1 7

U1
S
W
N
—
O
wo
® o

322 222 222
0 98 6 54 321
Force Replace Both Grps-|
Force Replace Group #1 ----
Force Replace Group #0 ------ |
Force TB miss Group #1 -------- I
Force TB miss Group #0 ---------- |

TB Hit Group #l -------=---==—-—mm—————————m———— oo
TB Hit Group #0 --------=-----—--————o—mm———— oo I
Force TB Parity Error (code determines specific group/byte) --->

MEMORY MANAGEMENT ENABLE - ====== === oo o mm e oo oo |

—_———e Y wm o

00
32
I
[
.
I
Il
|
||

—_——————— > O

ID #13 - TBER1
3322 2222 2222 1111 1111 1100 0000 0OOQOOU
1098 765¢4 3210 9876 5432 1098 7654 32160
PE Group 1 Data Byte 2 - | I I | | 0L I I | I | |-- CP TB Parity Error
PE Group 1 Data Byte 1 ----| | | | | | I | | | |- PE Group 0 Addr Byte
PE Group 1 Data Byte 0 =----- I I 1 I 111 | |--— PE Group 0 Addr Byte
PE Group 0 Data Byte 2 -------- [PE Group 0 Addr Byte
PE Group 0 Data Byte 1 -----—---- [I it PE Group 1 Addr Byte
PE Group 0 Data Byte 0 ------—==---- | | === PE Group 1 Addr Byte
| meme e PE Group 1 Addr Byte
ID #1A - TIMEOUT ADDRESS
3322 2222 2222 1111 1111 1100 0000 OCOQOQOQ
1098 7654 3210 9876 5432 1098 765¢ 3210
[€mmm e PA <29:02> --=------------momm o >|
ID #1E - CACHE PARITY
3322 2222 2222 1111 1111 1100 00O0OO0O OQOOQCOQO
1098 7654 3210 9876 5432 1098 7654 3210
Cache Parity error was detected ----| | [| [[| | L 1 L1 | 1 11
0 = IB reference, 1 = CP reference ---| | | : { i } I : : : } } l l
[
Parity OK in Data Group 1 Byte 0 ------- [Y (A T T I I T e
Parity OK in Data Group 1 Byte 1 --------- R I I B B I
Parity OK in Data Group 1 Byte 2 --=—-===----- I O O O N R
Parity OK in Data Group 1l Byte 3 —---==———vrm———- I T Y A I B B
Parity OK in Data Group 0 Byte 0 ----=—=--—------- U I R Y A I
Parity OK in Data Group 0 Byte 1 —--———-——--co——- [S I A O I I I
Parity OK in Data Group 0 Byte 2 -——=-——--—---—-oce—- [I N N
Parity OK in Data Group 0 Byte 3 -——----———=--m-m-———— l i { = 1 } }
Parity OK in Address Group 0 Byte 0 --—-————-==--mcoo———— | I I O
Parity OK in Address Group 0 Byte 1 -----—-==-----cmooooo—o [B I
Parity OK in Address Group 0 Byte 2 --—=-——=---o—omm—mmoomomoo o [
Parity OK in Address Group 1l Byte 0 ------=—=—-=m——mmecmmm— e~ Py
Parity OK in Address Group 1l Byte 1 -=—=—-—=-=----mmmmmmmmmm e P
Parity OK in Address Group 1l Byte 2 ====——==-—mm——mommmm e |

MHEONMHO

--- Previous MODE
e Current MODE
| === Interrupt Stack selected
----- First Part Done
|--- Trace Pending
--- Compatibility Mode

[| |--- Interrupt Priority Level
I I

ID #19 - SBLLERR
3322 2222 2222 1111 1111 1100 0000 O0O0O0QO
1098 765¢ 3210 9876 5432 1098 7654 3210
RDS received for a CP requested cycle --| | | | [T T I
SBI Timeout on a CP requested cycle —------ I I O I T
11 10 | | I | I | | SBI Err CNF
——————————— <-- see chart ---] I I I I | received
0 0 - No device response | I I I | for an IB
0 1 - Device Busy Timeout |l 1 | | | request
1 0 - Waiting for READ DATA timeout [I
1 1 - Impossible code I : : .
I ||
SBI Error Confirmation on CP requested cycle ------ I
RDS received for an IB requested cycle ------—==-—=---- I I
SBI Timeout on an IB requested cycle =-=-=--===--——=c-—-- (I
5 4 ||
----------- <-- see chart ---------C=]
0 0 - No device response
0 1 - Device Busy Timeout
1 0 - Waiting for READ DATA timeout
1 1 - Impossible code
PC - General Register #F - Program Counter
3322 2222 2222 1111 1111 1100 0O0O0OO0C COQCOOQO
1098 7654 3210 9876 5432 1098 7654 3210
[<=~mmm e Program execution address pointer ------—————=------- > |
ID #0F - PSL - Processor Status Longword
322 2222 2222 1111 1111 1100 0O0O0O0OO0O OQOQOO
098 7654 3210 9876 5432 1098 7654 3210
I [T O R I I I O A
| T A T B o Decimal Ovrflo --| | | T N ZV C
| N l Float Underflow ---| |
| L l | Integer Overflow ----|
| bl
| [
| [
| |
| |

1-20

SBI Control

ID BUS

DATA PATHS

[¢-1

PG

0/4 Register

| Instruction Buffer

WCS/0CS PCS

CS 8BS

CIB

ID BIS

PG WCS/0CS RAM PCS ROM PC

PC = Parity Checked
P6 = Parity Generated

Machine Check Logout breakdown flowchart

"START HERE"

| M
[~em—m——————— e e e e I
I Find 00000028 on Kernel/Interrupt Stack
=~ o |
| I
I ___
| Extract "Byte 0" from the LONGWORD following the 00000028. |
| This byte is the SUMMARY PARAMETER ccde. !
=== e |
I
|
| === e |
|Go to the appropriate flow for thelassociated parameter codes|
[===—=- | =====- | =====- [=== === | ====-- === |
| 00 | op | 02 | 03 | 05 | Fl1 | Fé6 | all others |
| FO | | F2 | OF | oCc | | I
| | | oa | F3 | F5 | I | I
[-==——- [====== =====- |=====- | ====== ====- | =====- == I
| I I | I | ! |
goto I goto I goto I goto |
"CP_READ ERR" | "TB_ERR" | "RDS_ERR" | "MICRO_SEQ ERR" |
- I B I I - |
I I I I
goto goto goto |
"IB_READ_ERR" "CACHE_ERR" "CS_PAR _ERR" I
I
I
| <===mmmmm e |
|
___ I
If none of the above codes are what is contained in BYTE 0 of
the LONGWORD following the BYTE COUNT (00000028), then the summary
parameter byte is invalid. The problem could be in any of the

following areas of the VAX

DATA PATHs,
CONTROL LOGIC.

Error Type
khkkhkkkhkhkhkhkhkhkhkkhkkkkkkkkkx
"CP_READ_ERR"
"IB_READ ERR"
"TB_ERR"
"CACHE_ERR"
"RDS_ERR"
"CS_PAR_ERR"
"MICRO_SEQ_ERR"

CONTROL STORE, MICRO SEQUENCER,

CPU logic:

or INTERRUPT

Flowchart Additional Info.
Ahkhkkhkkkkkkhkhkkhkkhkhkhbhbdkhkhbhkhkhkhkhkhkkhkkhkkkhkikhkkhrhhkhkir

1.023 ~=—=mmmmmmm e 1.056

1,025 ===-===mmmmm e 1.056

1.028 === mmmmmmm - 1.038

1.030 ====-=mmmmmmm e 1.034

1,031 -=====—m—mmm - 1.092

1,032 =m=-=—mmmmmmmmmmem e 1.046

1.033 —==-==-—mmmmm o - 1.094

1-22

"CP_READ ERR"

| Extract the "SBI ERROR" register from the STACK DUMP. |
| It is the 11lth logout entry (counting the 00000028 as |

LOGIC, CS or CS BUS, or the

| entry #1). :
| = e
I
yes |-==-mmmmmemmmmmmeo | no

| <-====- | Bit <12> or <08> =1 |------- > |

I R tainlet bty I |

I I
| | ~—=mmmmm e el I
yes |--------=----- I | Summary Parameter code and l
goto <------ | Bit <08>=1 | | Error Bits do not agree. I
"E" fmmmmm oo I I |
no | Problem in INTERRUPT CONTROL |
I |
| |

MICROSEQUENCER or MicroPC bus.

No Device Response received when attempting to access |
the address contained in the "TIMEOUT ADDRESS" register.|
Problem is probably in the address logic of the device |
being accessed. I

Goto TIMEOUT ADDRESS flows to determine what device was |

being accessed. : I

Device Busy Timeout occurred. Device being accessed is |
contained in the "TIMEOUT ADDRESS" register. The devicel
recognized that it was being accessed, but was "busy" |
doing a previous command. The CPU timed out since 512 |
~cycles went by and the device was still "busy". I
Problem could be almost anywhere in the accessed device |
or on the buses it is interfacing to. |

Goto TIMEQUT_ADDRESS flows to determine what device was |
being accessed. I

1-23

|

|

I

l_

I

l

| ==~ e | <======- | !
| Waiting for Read Data Timeout occured. The device beingl !
accessed (whose address is contained in the TIMEOUT	
ADDRESS register) acknowledged the CPU's C/A cycle, but	
didn't send back the expected READ DATA within 512 SBI	
} cycles. i	

|Problem could be almost anywhere in the controlling NEXUS| |
|to the device/unit acutally being addressed. | !
R it it e ittt I
| |

| === e I I
| Goto TIMEOUT_ADDRESS flows to determine what device was | |
= being accessed. { |
___ |
l

l

I

| === - | €==mmmmmm |

IMPOSSIBLE CODE. This code should never occur.

or in the DATA PATHS (may have picked a bit when moving

!
|
Problem is most likely in the CPU's SBI control logic, |
I
register first to T9 and then to the STACK). l

1-24

"IB_READ_ERR"

| Extract the "SBI ERROR" register from the STACK DUMP. |
| It is the 1llth logout entry {(counting the 00000028 as |
I

LOGIC, CS or CS BUS, or the

entry #1). }
|
yes |-----------mooomooooo | no

| <====-- | Bit <06> or <03> =1 |---=---- > |

I [==mmmmm - I I

I I
l | m—mm e I
yes |----—------—= | | Summary Parameter code and [
goto <------ | Bit <03>=1 | | Error Bits do not agree. |
"E" |==mmmmmm e | I ' |
no | Problem in INTERRUPT CONTROL |
| I
I |

MICROSEQUENCER or MicroPC bus.

No Device Response received when attempting to access |
the address contained in the "TIMEOUT ADDRESS" register.|
Problem is probably in the address logic of the device |
which contains the address being accessed. I

Goto TIMEOUT_ADDRESS flows to determine what device was |
being accessed. |

Device Busy Timeout occurred. Device being accessed is |
contained in the "TIMEOUT ADDRESS" register. The devicel
recognized that it was being accessed, but was "busy" I
doing a previous command. The CPU timed out since 512 |
cycles went by and the device was still "busy". |
Problem could be almost anywhere in the accessed device |
or on the arrays or array buses it is interfacing to. I

Goto TIMEOUT_ADDRESS flows to determine what device and |
the location within the device that was being accessed. |

1-25

I

I

|

I

I

[

[== [<====—=-- I I
| Waiting for Read Data Timeout occured. The device being]| I
| accessed (whose address is contained in the TIMEOUT | I
| ADDRESS register) acknowledged the CPU's C/A cycle, but | I
| didn't send back the expected READ DATA within 512 SBI | |
= cycles. I |
I I

[Problem could be almost anywhere in the controlling NEXUS| |
[to the unit actually being addressed. |
[===—=mmmmmm e I I
I [

| === I I
| Goto TIMEOUT_ADDRESS flows to determine what device and | I
| the location within the device that was being accessed. | I
e e ittt --=] I
|

|

|

e R I

IMPOSSIBLE CODE. This code should never occur.

or in the DATA PATHS (may have picked a bit when moving

I I
| |
| Problem is most likely in the CPU's SBI control logic, |
I I
| register first to T9 and then to the STACK). I

"TIMEOUT_ADDRESS"

Extract Bits <27:00> from this register. Bits <27:00> of |
the TIMEOUT ADDRESS register correspond to bits <29:02> of]
the PHYSICAL BYTE ADDRESS of the device/location being [
accessed.

adding to binary zeros to the least significant end, and

then converting back to HEX. The resultant is the 30-bit
VAX Physical Byte Address of the device/location that the
VAX CPU was attempting to access at the time of the error.

e l

I

|

I

| |
| Convert the TIMEOUT ADDRESS Bits <27:00> to a 30-bit VAX |
| PHYSICAL BYTE address by first converting to binary, then |
| I
I !
| I
I |

e |
Now you know what type of error occured and who the CPU
was attempting to access at the time of the error.

With this information, you should be able to zero in on
the failing area of the system.

If you got here from an IB_READ ERROR, the address must be
either a Physical MEMORY Address, or the address of one of
the locations in the ISP ROM (should only occur during a
boot). If it is an I/0 address, the problem has to do
with CPU addressing or address translation.

I
I
I
I
I
I
I
|
I
I

An ERROR Confirmation was returned by the addressed device.
This means that the function specified by the CPU in the
C/A cycle was either illegal or not implemented by this
NEXUS device.

The problem could be a CPU problem, a Software problem, or
a NEXUS problem.

The TIMEOUT ADDRESS register should indicate which NEXUS
was being accessed.

"TB_ERR"

| Extract "TB ERROR Register #0" from the STACK DUMP. I
| It is the 7th logout entry (counting the 00000028 as |

| entry #1). |
e I
I
| === | no
| Is Bits <04:01> equal to 07? [=== > goto
it I FORCED_TB_PAR_ERR
|
yes |-----------—-mmmm oo | no |-----—=-——-----mm I
Cmmm | Is Bit <00> ? |=-=-=-->|Memory Management is OFF ? |

| Should never have gotten a Parity Error since |

| the Translation Buffer wasn't used.

| Extract "TB ERROR Register #1" from the STACK DUMP. |
| It is the 8th logout entry (counting the 00000028 as]|

I entrv #1).

| "TAG Parity Error" flagged. |
| Problem is most likely on the |
| M8220 board. Could also be on]
| M8222, M8226, M8219, M8223, |
| M8224, M8226, M8230, M8233/8's]
| M8234, M8286, M8236, or Ka780 |
| backplane or power. |

1-28

|
|
|
|
|
| | memory management wasn't turned on, therefore |
I
I
|
I
I
|
|

| "PTE Parity Error" flagged. |
| Problem is most likely on the |
| M8222 board. Could also be on|
|the M8237, M8218, M8219, M8223, |
| M8224, M8226, M8227, M8228, |
IM8230, M8231, M8233/8's, M8234,|
IM8235, M8286, M8287, M8236, or |
| the KA780 backplane or power. |

then exit

"FORCED_TB_PAR_ERR"

None of these bits should ever be set in normal operation. I
These may be set by diagnostics, but should have been cleared |
prior to booting of the operating system or the Diagnostic |
Supervisor. [

Either the software that you are running is setting these bits
SO as to cause a "Translation Buffer Parity Error"™ or the M8222
board is probably bad.

1-29

"CACHE_ERR"

| Extract the "CACHE PARITY Register" from the STACK DUMP. |
| This is the 10th logout entry (counting the 00000028 as #1). |

| Is any of Bits <13:00> = 0 ??? These bits are a "0" to |
| indicate a parity error in the associated group and byte. |

I
|
|
| | False detection of a cache parity error. |
| | Problem is probably in the error detection]
| | logic or microsequence logic. |
I
l
!

|- | yes
| Is any of Bits <13:06> = 0 ??? { —————————————— >;
l o - — - —— —————
| no I
| |
| |- === m e |
I | "Cache DATA Parity Error" flagged. |
l | The M8221 is most likely bad. Could alsc be !
| | the M8218, M8219, M8222, M8225, KA780 backplane |
l | or KA780 power. |
I |-==—-———— e e l
l |
l !
l |<====ome=- I
| | a |
| l | |
fmmmmmm e e I | |
| "Cache TAG Parity Error" flagged. l | e e f
| The M8220 is most likely bad. Could | l | Check to see if any |
| also be the M8218, KA780 backplane, | | | other Cache errors. |
| or KA780 power. ! : l—-——-—-—-T ----------- !
i [==mmmmm e (
| | Any of Bits <05:00> |
| | equal to a "0" 22?7 |
| e i il L L
| | yes | no
[<mmmm e !
then exit

"RDS_ERR"

Multiple bits were detected bad by the accessed SBI NEXUS when it
attempted to get the data that the CPU requested.

This NEXUS will be an SBI MEMORY CONTROLLER.

This type of error easiest to trouble-shoot by using the contents
of the memory control registers in order to find the failing array.

I
I
I
Indicates that a problem exists in the referenced SBI NEXUS. |
I
I
I
|

Find the contents of all the SBI Memory Nexus registers either by [
examining error log files, or by using CONSOL.SYS commands to examine|
these registers. The CONSOL.SYS method can only be used if the CPU |
was halted before the software was able to clear the memory control |
registers. |

The memory controller who detected the error should have error bits |
set that indicate that a multiple bit error was detected and the |
array in error should be latched. |
Look in: |
"Memory Register C" for MS780A's and MS780C's I

"Memory Register C & D" for MS780E's and MS780F's I

"Array Error Register" for MA780's I

Problem is typically an array problem, but could also be the SBI I
Memory control board(s), memory power, memory backplane, M8218, or |
M8219. I

1-31

"CS_PAR_ERR"

| Extract the "CPU ERROR STATUS Register" from the STACK DUMP |
| It is the 3rd logout entry (counting the 00000028 as #1). |

I
|
| | CS Summary bit probably bad. |
I |Check M8231. Still a possible |
: |Control Store Parity Error. |
|

| Bits <14:12> indicates the specific group (2,1, or 0) that |
| that the Parity error was detected in. Log this information|
| for future use in case problem is not fixed immediately. |

| Extract the "TRAPPED Micro-PC Register" from the STACK DUMP|
| It is the 4th logout entry (counting the 00000028 as #1). |

ITrapped UPC > FFF ? |----- >|Problem occured while accessing a |
| mm e i |PCS microword. The M8234 should bel
| yes | replaced as a lst try. |

:
| Problem occured while accessing a micro-word in WCS. | I
| Bits <11:10> of the UPC indicate the WCS slot in error.]| l
| The appropriate M8233/M8238 should be replaced lst try.| I
|
l

| If 1lst try fails; try those module that receive or transmit onl
| the Control Store Bus for the micro-bits associated with the |
| failing group. Charts indicating which boards are in question]
| for each group can be found in chapter 1 under the section for|
| Control Store Parity Errors. |

| False detection of a Control Store Parity Error. Problem is in the |
| error detection circuitry and is probably one of the following: |
l M8230, M8231, M8222, M8235, KA780 Backplane, or power. |

1-32

"MICRO_SEQ_ ERR"

Extract the "TRAPPED Micro-PC Register" from the STACK DUMP. |
It is the 4th logout entry (counting the 00000028 as #1). I

This address can be verified in the micro-fiche to verify thatl
it is indeed an unused micro-word. However, this problem is |
a micro-sequencer/micro-PC problem no matter how you look at |
it. |

This problem is most likely the M8235 board. Could also be |
the M8224, the M8234, an M8233 or M8238, or the KA780 backplane}
or KA780 power. l

1-33

* k ok Xk X

1.) ***** Cache Parity errors

The "Parity" register is normally all that is needed to trouble
shoot this type of Machine Check.

Cache Parity is checked when the data is read from cache.
The SBI control checks parity of SBI data as it is sent to
the Cache from Memory. Cache Tag Parity is generated on the
"CAM" board on a cache write and checked on the "CAM" board
on a read from cache. Cache Data Parity is checked on the
"CDM" board.

Bit #15 of ID Register #1lE, equal to a 1, indicates
that a Cache Parity error occurred.

If Bit #14 of ID #1E is set, the read reference was from
the CP (micro-code). This bit is not really an error
flag but simply states who made the reference that caused
the Cache Parity Error. If Bit #15 is not set, this bit
is of no real importance. ‘

If Bit #14 of ID #1E is cleared, the read reference was
from the IB (Instruction Buffer). Not an error flag bit.

Bits <13:06>, of ID #1E, define the Group and Byte of Bad
DATA that the parity error was detected upon. Beware, the
bad Group and Byte are indicated by a 0 in the appropriate
bit location. These bits = 1 indicate parity was good.

Bits <05:00>, of ID #1E, define what Group and Byte has a
bad address tag. Beware, the bad Group and Byte are
indicated by a 0 in the appropriate bit location. These
bits = 1 indicate parity was good.

ID Register #1E is stored in "(SP)+36" by the machine check
logout. It is stored in ID Register #38 on a Double Error
Halt's first error.

The Cache Data Matrix is on the "CDM" (M8221) board. The
Cache Address Martix is on the "CAM" (M8220) board.

If ID Register #1E contains a parity error indication for

the instruction buffer, the register is automatically
cleared when the instruction buffer is flushed.

1-34

Problem areas if Cache "DATA Parity Error” :

1.

Cache Data Matrix - M8221 - "CDM" - Slot 5

Parity is checked as it is being read from the matrix.
Parity that is written into the matrix comes directly
from the MD bus (not checked or generated by the cache
control logic on the way into the matrix).

SBI Control/Interface boards:
a. If problem is in "BYTE #1 or #Q0"
SBI Interface Low bits - M8218 - "SBL" - Slot 2
b. If problem is in "BYTE #3 or #2"
SBI Interface High bits - M8219 - "SBH" - Slot 3
The SBI Control boards do not check the parity on the received
MD Bus data but do generate parity for the data that is
written from the SBI to the MD bus. The M8218 uses the output
from the parity checkers to generate "SBLP GO or Gl Par Err".
Instruction Buffer - M8223 - "IDP" - Slot 7

Receives "Bus MD <31:00>" but NOT "Bus MD Byte <3:0> Par®.
Therefore, the Instruction Buffer does not check parity on
the data used from the MD Bus.

Data Aligner - M8225 - "DBP" - Slot 9

Transmits "Bus MD <31:00> + Bus MD Byte <3:0> Par",.
Receives "Bus MD <31:00>" but NOT "Bus MD Byte <3:0> Par",
therefore, parity is not checked on "Bus MD <31:00> prior
to use by the data path boards.

KA780 backplane

KA780 backplane power

1-35

Problem areas if Cache "TAG Parity Error” :

1. Cache Data Matrix - M8220 - "CAaM" - Slot 4
Parity is generated on the "Bus PA <29:12> bits" prior to
being written into the Tag Matrix. Parity is checked as
it is being read from the Tag Matrix, prior to use.

2. SBI Interface Low - M8218 - "SBl" - Slot 2

This board uses the output from the parity checkers to
create a "SBLP GO Par Err" or "SBLP Gl Par Err" signal.

3. KA780 backplane

4. KA780 backplane power

Disabling CACHE by KA780 backplane jumpers.

If you cannot obtain the correct cache boards in order to fix a cache
parity error problem, you may still be able to get the system up by
installing the following jumpers:

DO4P1l to a ground pin
D04P2 to a ground pin

This will cause a cache miss on all references. Therefore, the system
will run much slower than normal.

This should only be done in case of an emergency. You must let the

customer know that cache is disable, since it may cause problems due
to program timing problems.

1-36

3
1

3
0

22 222
98 765

Bits <31:16>

kkkkkkkkkkkk

Not used,

Bits <15:14>

kkkkIkkE KKK
15 14
0 1
1 0
1 1

Bits <13:06>

2
4

2 2
32

ID Register #1E

22 11
10 98

11
76

should be all zeros.

% % Kk % d Kk dk ke ok kk
13 - Parity OK
12 - Parity OK
11 - Parity OK
10 - Parity OK
03 - Parity OK
08 - Parity OK
07 - Parity OK
06 - Parity OK

Bits <05:00>
%k %k Kk k Kk kkkkkk

05 - Parity OK
04 - Parity OK
03 - Parity OK
02 - Parity OK
01 - Parity OK
00 -~ Parity OK

No Error

1
5

111 1100
4 32 1098

~ O
o O
[§) e
> O
w o
N O

IB read reference caused the error
CP read reference caused the error

Data Parity OK
the associated

for
for
for
for
for
for
for
for

CDM Group
CDM Group
CDM Group
CDM Group
CDM Group
CDM Group
CDM Group

CDM

Group

Address Parity
associated bit is

the

for
for
for
for
for
for

CcaM
CAM
CAM
CAM
CAM
CAM

Group
Group
Group
Group
Group
Group

R HHHOOO

= O

for specified Group and Byte if

bit is

Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte

OCOOOKHKHHH

OK for

Byte
Byte
Byte
Byte
Byte
Byte

1-37

NHONEFHO

set.

WNHHOWND O

each Group and Byte if
set.

O o

) * % k %k ¥ * k ok % X

2. Translation Buffer Parity errors
The TB ERR Registers, #0 and #1, are all that are needed to
trouble-shoot Translation Buffer Parity error Machine Checks.

TB Data Parity is written as it was on the ID bus. TB Data
Parity is checked on the "TBM" (M8222) board as it is read.

TB Tag Parity is generated on the "CAM" board and is checked
on the "CAM" board on a read from the translation buffer.
The TB Tag = "VAMX<30:15>" or "ID bus <31:26>".

The TB Data = "ID bus <20:00>".
Bits <20:09> of ID Register #13 define what
the GROUP and whether it was a DATA Byte or ADDRESS

Byte that caused the Translation Buffer Parity error.

The Translation Buffer ADDRESS matrix is on the "CaM"
(M8220) board.

The Translation Buffer DATA matrix is on the "TBM"
(M8222) board.

Problem areas if Translation Buffer "TAG Parity Error”:

1. Cache Address/TB Address Matrix - M8220 - "CAM" - Slot ¢

Parity is generated on "VAMX bits <30:15>", and is written
into TAG Matrix, on this board. Parity is checked, on this
board, as the TAG is being read.

The "Modify, Protect <3:0>, and Valid" bits are written from
the ID bus. The associated parity bit for these bits also
comes from the ID bus (it is NOT generated or checked on
this board).

2. Translation Buffer Matrix - M8222 - "TBM" - Slot 6

The output of the parity checkers goes to this board (used
to set appropriate bits in "TB Register 0"),

The "VAMX bits" feed this mcdule along with the "CAM" board
(M8220) .

3. Data Path bits <31:16> - M8226 - "DEP" - Slot 10

The "VAMX bits" are created on this board and the "Bus ID
bits <31:26>, that are used to write the "Modify, Protect <3:0>,
and vValid™ bits, are used on this board.

4. Any board that sends or receives the "Bus ID bits <31:26>". The
following boards have receivers/drivers for these bits:

SBI Interface/Control High - M8219 - "SBH" - Slot 3
Cache Address Matrix ------ M8220 - "CAM" - Slot 4
Instruction Data Path ----- M8223 - "IDP" - Slot 7
Instruction Decode -----—--- M8224 - "IRC" - Slot 8
Data Path bits <31:16> ---- M8226 - "DEP" - Slot 10
Condition Codes/Exceptions - M8230 - "CEH" - Slot 14
Optional WCS -—-—--—=—=—-=-—==-- M8233/8 - "OCS"™ - Slot 18
Writable Control Store ---- M8233/8 - "WCS" - Slot 20
Prom Control Store =—--—-—----- M8234 - "PCS™ - Slot 22
Fraction Multiplier High --- M8286 - "FMH" - Slot 25
Console Interface Board --- M8236 - "CIB" - Slot 29

4, [KA780 backplane

5. KA780 backplane power

Problem areas if Translation Buffer "DATA Parity Error”:

1. Translation Buffer Matrix - M8222 - "TBM" - Slot 6

Parity is not generated, on this board, for the data to
be written into the DATA Matrix from the ID Bus. The
parity bits that are written are the ID Bus Parity bits
as received from the bus.

Parity is checked as the data is read from the DATA matrix.

2. Any board on the ID bus that transmits or receives "Bus ID
bits <20:00>". The following boards do this:

Terminator and Silo - M8237 - "TRS" - Slot 1
SBI Interface Low Bits - M8218 - "SBL" - Slot 2
SBI Interface High Bits - M8219 - "SBH" - Slot 3
Translation Buffer - M8222 - "TBM" - Slot 6
Instruction Data Path - M8223 -- "IDP" - Slot 7
Instruction Decode - M8224 - "IRC" - Slot 8

1-39

3.

4.

Data Path bits <31:16>
Data Path bits <15:08>
Data Path bits <07:00>
Cond. Codes/Exceptions
Interrupt Control
Optional WCS

Writable Control Store
PROM Control Store
Microsequence Control
Fraction Multiplier Hi
Fraction Multiplier Low
Console Interface Board

KA780 backplane

KA780 backplane power

1-40

- M8226
- M8227
- M8228
- M8230
- M8231
- M8233/8
- MB233/8
- MB8234
M8235
- M8286
M8287
M8236

"DEP"
"DDP"
w Dcp "
" CEH"
" ICL n
"0CS"
"WCS"
" Pcs L
L Usc"

L FML "
"CIiB"

Slot
Slot
Slot
Slot
Slot
Slot
Slot
Slot
Slot
Slot
Slot
Slot

W

ID #12 - Translation Buffer Register #0

322 2222 2222 1111 1111 1100 0000 0000
098 7654 3210 9876 5432 1098 7654 3210
Bits <20:18> Force Replace
% de ok ke ok kkkkk Rk
Directs TB writes to defined groups.
20 - Write Both
19 - Force Replace Group 1
18 - Force Replace Group 0
Bits <17:16>) Force Miss
* ok k% ok k& kkkkk
Force TB miss on the defined group.
17 - Group 1
16 - Group 0
Bits <15:08> Last Reference
kkkkkkhkkkkk
Data on last non-nop memory reference.
15 ---- Status of micro-FS bit
14 ---- Status of micro-ADS bit
13:10 - Status of micro-MCT field
09 ---- 1 means IB WCHK existed on an IB reference
08 ---- 1 means reference delayed one cycle by IB auto-reload
Bits <07:06> TB Hit
khkkkkkkkkkkk

Indicates which group was a TB hit.

07 - Group 1
06 - Group 0

1-41

Bits <04:01> Force TB Parity Error
kkdkkdkkkkkkkk

Allows bad parity to be generated in the encoded Group and Byte.

Code of 0 - No errors
Code of 1 - No errors
Code of 2 - Group 0 Data Byte 0
Code of 3 - Group 0 Data Byte 1
Code of 4 - Group 0 Data Byte 2
Code of 5 - Group 1 Data Byte 0
Code of 6 - Group 1 Data Byte 1
Code of 7 - Group 1 Data Byte 2
Code of 8 - Group 0 Address Byte 0
Code of S - Group 0 Address Byte 1
Code of A - Group 0 Address Byte 2
Code of B - Group 1 Address Byte 0
Code of C - Group 1 Address Byte 1
Code of D - Group 1 Address Byte 2
Code of E - No errors
Code of F - No errors

Bit <00> MME

kkkdkkkkk

If a 1, enables Memory Management.

1-42

= w

ID #13 -

ow
V. IN
@ r
~N N
YN
[LEN

Bits <20:09>
ke dede KK Kk Kk Kk

>N

W N
NN
=N

oN

Translation Buffer Register #1

1111 1
9876 5
TB Parity

Translation Buffer Error Status.
in the associated Group and Byte.

20

Bit <08>
* %k kkkkkk

Group

Group
Group
Group
Group

Group
Group
Group
Group

Group

Group
Group

CP

1

(& N o R H =0 OO+~

Data Byte 2

Data_Byte
Data_Byte
Data_Byte
Data_Byte

—HNO

Data_Byte 0

Address_Byte
Address_Byte
Address_Byte

Address_Byte
Address_Byte
Address_Byte

Ny

TB Parity Error

w =

N =
S

o~

0 O
o O
~ O
o O
[$) Ne
= O
w O
N O
- O
OO

Error Status

when set indicates a parity error

Parity

Parity
Parity
Parity
Parity

Parity

2
1
0

2
1
0

Parity
Parity
Parity

Parity
Parity
Parity

error

error
error
error
error

error

error
error
error

error
error
error

Indicates a TB micro-trap has been requested.

Bit <06>
*okokkk ok Kk

Last TB Write Pulse

Indicates which TB group was last written.
written into.

0
1

Group 0
Group 1

1-43

Unpredictable if both were

Bit <04>
* %k Kk k kkkk

Bad IPA

Contents of IPA are not meaningful if this bit is set.

Bits <03:00>
%k & kK k kK %k kkkk

Status of

O N W

IPA information

the last load from the IPA.

1 for TB miss on load.

1 for TB parity error.

1l for Protection violation or miss.

1 for automatic hardware initiated load.

1-44

3.) **** Control Store Parity errors (PCS, WCS, or OCS) ****

Two registers are used to trouble-shoot this type of Machine
Check. They are as follows:

CPU Error Status (CES) - for Group the error occurred in.

Trapped UPC - for the micro-address of the error.

Bit <15> of the CES register must be a 1 if a Control Store
parity error occurred. If CES Bit <15>=0, then the problem
could be either the microcode board (M8234, M8238, or M8233)
whose address appears in the "Trapped UPC", or one of the
following boards:

M8231 - Contains the register ("CES") that holds the
"CS Par Err Summary"” bit and the "CS Par Err
Group <2:0>" bits.

M8222 - Receives the "CS Parity Error" signals to use
to stop TB operations.

M8230 - Creates the signals needed to trap the microcode
for a CS Parity Error.

M8235 - Controls the micro-addressing.

Bit <12> of the "TRAPPED UPC" identifies where the Control
Store Parity Error was generated from (WCS or PCS).

If Bit <12> is a 0, then the problem occurred as a
result of a PCS (M8234) access.

If Bit <12> is a 1, then the problem occurred as a result
of a WCS (M8233 or M8238) access. If an Optional WCS
board is installed, further breakdown of the "TRAPPED UPC"
address will reveal which WCS board is at fault.

The following statements will define the board at fault providing
the lowest addressed WCS/OCS board is in slot 20 (addressing is
controlled by VAX-11/780 backplane jumpers):

If there is an M8233 (1K board) in Slot 20 and:
Bit <12>=1, Bit <10>=0 then WCS in Slot 20 had the error.
Bit <12>=1, Bit <10>=1 then Optional WCS (slot 18) had
the error.

If there is an M8238 (2K board) in Slot 20 and:
Bit <12>=1, Bit <11>=0 then WCS in Slot 20 had the error.
Bit <12>=1, Bit <1ll>=1 then Optional WCS (slot 18) had
the error.

1-45

The "Parity Error" checking logic is located on the

PCS (M8234) logic board. The 96 bit micro-word is broken
into three 32 bit sections, each with an associated parity
bit, and parity is checked on each section individually.
Parity should be EVEN (an even number of ones in each 32
bit section counting the associated parity bit).

Use the bit configuration layout for ID register #20
for the "TRAPPED UPC" bit definitions.

The "TRAPPED UPC" is stored in "(SP)+12" on a MACHINE
CHECK logout. The "TRAPPED UPC" remains in ID #32 for
the first error of a DOUBLE ERROR HALT.

The "CPU Error Status Register" bits <14:12> define the
failing 32 bit section of the 96 bit Micro-code word.

Bits <31:00> = Group 0 (CES Bit 12=1) - Pin A22Al
Bits <63:32> = Group 1 (CES Bit 13=1) - Pin A22Sl
Bits <95:64> = Group 2 (CES Bit 14=1) - Pin A2202

If an OPTIONAL WCS board is installed in the System, Jumpers
"W23 & W24" must be installed on the M8232, "CLK", board. If
the jumpers are out, attempted access of the Optional WCS
board will result in Control Store Parity Errors in all
groups (the micro-word sent to "CS" bus is all ones). The
same symptom will occur, when accessing any Micro-code
board, if the clecck lines are bad.

Be aware that the WCS data can only be written by the LSI
Subsystem. WCS data cannot be read by the LSI Subsystem.

Problem areas:

PCS, WCS, or OPTIONAL WCS.

Incorrect setup of KA780 backplane jumpers for WCS and PCS.
No jumpers, for OPTIONAL WCS, on M8232.

Any Board on the "CS" bus.

M8232 Clock Board.

CPU Backplane.

CPU Power or Backplane Power Pin to Module connections.

1-46

ID #0C - CPU Error Status Register

3322 2222 2222 1111 1111 1100 0000 000
1098 7654 3210 9876 5432 1098 7654 321
Bit <16> Nested Error
% Kk % % k% k% .
Used by Memory Management.
Bit <15> Control Store Parity Error Summary
* Jk k% kkdkk
Set if any of Bits <14:12> are set.
Bits <14:12> Control Store Parity Error bits

% J Je e de k% ke ok ke kR

When set, indicates a parity error was detected in the associated

group.
14 - Group 2 Parity Error
13 - Group 1 Parity Error
12 - Group 0 Parity Error

Bit <11> E ALU N

% %k % % %k k k %

Bit <10> E ALU 2

%k ke ke k ok kk

Bit <09> ALU N

*kkkkkkxk

Bit <08> ALU Z

dkkkkkk*k

1-47

QO

Bit <Q07> ALU C31

Jk Kk ko kdkk Kk

Bits <06:04> Arithmetic Trap Code
% % % % % %k % Kk Kk k Kk Kk

The octal code in these bits defines the type of arithmetic trap.

Decimal divide by 0.
Decimal overflow.
Float underflow.
Float divide by 0.
Float overflow.
Integer divide by 0.
Integer overflow.

No trap pending.

OHNWIEBOO
o omonnn o

Bit <03> Performance Monitor Enable
%k kkkkk*k

Loaded or read by the microcode.

Bits <02:01> AST Level
% % %k % % %k %k ok ok Xk

Used to deliver AST SIR during RET.

ID #20 - Micro Stack Register

2 222 1 100 0000 0O0CO0OO
7 210 7 098 7654 3210

o

3322 222 2 11 1 1111
10938 6 54 3 9 8 6 54 32
Reading this register pops the top address from the micro stack.
Writing this register pushes an address onto the micro stack.

Bits <15:00> Control Store Address <15:00>

* Kk koK ok ok ok kkkk

<15:00> = micro_Address <15:00>

1-48

Voitages to the Micro-code Boards

The Microcode boards use +5 volts and -5 volts. These voltages
may be checked at the following places:

+5 volts should be on pins "A2" and "V1" of rows
"A"™ thru "F" of each slot that contains a Microcode board.

-5 volts should be on pins "BL2" and "EK1" of each
slot that contains a Microcode board.

Ground is on pins "C2" and "H1" of rows "A" thru "F"
of each slot that contains a Microcode board.

M8235 LED description

The M8235, Micro Sequencer board, contains 14 LED's that reflect the
following:

1.) "Dl - D13" = "Micro PC 00 - 12" respectively.
2.) "D14" = "STALL"

LED "D1" is the bottom most LED while LED "D14" is the uppermost.

1-49

CS Bus Groups and CS Bit Breakdown

Besides going to all the Microcode boards the "Bus CS" bits
also go to the following boards:

Group 0 <12:00> M8235 - USC - Slot 23
<19:13> M8227 - DDP - Slot 11

<22:20> M8230 - CEH - Slot 14

<24:23> M8227 - DDP - Slot 11

<25> M8228 - DCP - Slot 12

<26> M8230 - CEH Slot 14

<31> M8230 - CEH - Slot 14

Group 1 <34:32> M8228 - DCP - Slot 12
<41:35> M8229 - DAP - Slot 13

<45:42> M8231 - ICL - Slot 15

M8222 - TBM - Slot 6

<47:46> M8222 - TBM - Slot 6

<54:48> M8229 - DAP - Slot 13

<57:55> M8229 ~ DAP - Slot 13

M8289 - FCT - Slot 28

<58> M8231 - ICL - Slot 15

M8228 - DCP - Slot 12

<63> M8231 - ICL - Slot 15

Group 2 <65:64> M8235 - USC - Slot 23
<69:66> M8229 - DAP - Slot 13

<71:70> M8289 - FCT - Slot 28

<74:72> M8235 - USC - Slot 23
M8231 - ICL - Slot 15

<76:75> M8235 - USC - Slot 23

<77> M8229 - DAP - Slot 13

<79:78> M8229 - DAP - Slot 13
M8230 - CEH - Slot 14

<87:80> M8229 - DAP - Slot 13

<91:88> M8225 - DBP - Slot 9

<395:92> M8223 - IDP - Slot 7

Note: Remember that "Bus CS <85:00>" also go to slots 18,20 and 22.

Chart showing "Bus CS” bits to each Board by Board

<45:42> -
<47:46> -

<91:88> -

<25> -
<34:32> -
<58> -

<95:00> -

M8233/M8238 -

<95:00> -

Slot 6

Group 1
Group 1

Group 2

Group 0
Group 1
Group 1

1-51

<41:35>
<54:48>
<57:55>
<69:66>
<77>

<79:78>
<87:80>

<57:55>
<71:70>

Group 1
Group 1
Group 1
Group 2

Slot 28

Chart showing "Bus CS” Groups to each Board

Board ! Group O ! Group 1 ! Group 2 !
Twe222 11 x
Twe223 o+ T x
Cwe22s o+ x 1
w227 1 x Ty
Cmg228 1 x 1 x o+
Twe229 ¢ x x !
Tme230 1 x x
Cwe231 o+ x 1 x
TMe233 1 x ot x 1 x 1
w823 1 x x o x
w235 1 x x
Twe238 ot x x x 1
w289 1 x ot x 1

1-52

Using the Microcode Sync Point for scoping of the CS Bus

The VAX-11/780 CPU has a "Micrococde Sync Point" that can be
set up to provide a scope trigger whenever the Microcode
reaches a specified address. To use this feature, proceed
as follows:

1. Determine what Micro PC you want the Sync to trigger at.

2. Deposit, using the CONSOL.SYS program, the address
into ID register #21.

3. Place your scopes SYNC on pin "A23v2" of the CPU
backplane.

4., Start the failing Macro program.

5. You can now scope the "CS" bus to determine what
bit(s) are bad.

= - - ————— - = = > r = = = —— - — = = G = = T = = = = = —— - — - ———————— > ———

The VAX-11/780 CPU also has logic that can stop the CPU when
the microcode reaches a specified Micro PC. This feature
may be used as follows:

1. Determine what Micro PC you want the CPU to halt at.

2. Deposit, using the CONSOL.SYS program, the desired
address into ID register #21,.

3. Set, using the CONSOL.SYS program, the Stop op
Micro Match bit with the "SET SOMM" command.

4., Start the appropriate failing macro program. The
VAX-11/780 CPU will halt when it reaches the
Micro PC specified in ID register #21. You can
then scope the logic in the static state.

5. Be sure to execute the "CLEAR SOMM" command before
returning the system to the customer.

1-53

The Control Store Bit Backplane pin layout follows for the
contain WCS and PCS boards (18, 20, and 22).

Group 0

Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus

Group 1

Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus

Group 2

Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus

Cs
Cs
Cs

ABl
AB2
ACl
AD1
AD2
AEl
AE2
AF1l
AJ2
AK1

BE1l
BE2
BF1l
BS2
BT?2
BUl
BU2
BV2
CCl
CD1
Cp2

EH2
EJ1
EP2
ES2
ET2
EUl
DC1
DD1
EJ2
EK2
EM1

(VAX CPU Slot 18.20, or 22.)

Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus

(VAX CPU Slot

Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus

(VAX CPU Slot

Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus

CS
Cs

Cs
Cs
Cs
Ccs
Cs
Cs
Cs
Cs
Cs
Cs
Cs

Cs
Cs
Cs
Cs

11

43
44
45
46
47

75

1-54

- ALl
- AL2
- AM2
- AR1
- AR2
- BAl
- BBl
- BB2
- BCl
- BL1
- BM1

18.20.

- CS1
- CS2
~ CT2
- Cul
- Cu2
- CD2
- CN1
- CP1
- DP2
- DT2
- DUl

18.20.

- EN1
- EP1
- EB1
- FAl
- FBl
- FC1L
- FL1
- FS1
- FS2
- FT2
- FUl

Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus

Bus CS UPAR 0

or 22.)

Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus

Cs

Bus CS UPAR 1

or 22.)

Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus
Bus

Bus CS UPAR 2

slots that

- BM2
- AV2
- BD1
- BD2
- BN1
- BP1
- BP2
- BR1
- BR2
- BS1
- FL2

- DuU2
- DD2
- DF2
- DH2
- DJl
- DJ2
- DM1
- DN1
- DP1
- DS2
- FM1

- FU2
- FV2
- FP1
- FP2
- FR1
- FR2
- FJ1
- FJ2
- FK1
- FR2
- FM2

4.) ***** CPU READ Timeouts or Error Confirmation Aborts *****
during Instruction Buffer ("IB") or Micro-code ("CP") accesses.

Two registers are needed to correctly trouble-shoot this type
of Machine Check. They are as follows:

TIMEOUT Address - to determine what device or location was
being referenced when error occurred.

SBI Error Regq. - to determine what type of error occurred.

The VAX-11/780 Processor initiates accesses to SBI NEXUS

from two separate sources. The VAX microcode can initiate
"read or write" accesses to any address and does so to

obtain operands (these operands may be used to calculate
source/destination addresses or may be the operand that

will be operated on.). The Instruction Buffer is the other
source from which the CPU can initiate an SBI data transfer.
The IB, however, can only do read accesses and these accesses
are used to fetch instruction stream data.

This type of error occurs whenever one of the following types of
conditions has occurred:

1. An attempt was made to access a non-existent NEXUS
address or a NEXUS did not respond when accessed. This
will result in the VAX CPU receiving a "NO DEVICE RESPONSE"
confirmation on the second cycle following the "Command
Address" or "Write Data"™ cycle. A "NO DEVICE RESPONSE"
confirmation is when the SBI CNF<1l:0> lines are deasserted.
The CPU will wait a cycle and then retry the cycle that
got the NO DEVICE RESPONSE confirmation. If 512 cycles
elapse, from the initial C/A cycle, before an ACKNOWLEDGE
confirmation is received the CPU will timeout and a
Machine Check Exception will occur.

2. The CPU detected a "Device Busy" response from a NEXUS
and 512 SBI cycles later, still receives a "Device Busy”
response on attempted accesses. Whenever the VAX CPU
detects a "Device Busy" response, it will wait a cycle,
and then will arbitrate for the bus in an attempt to
retry the same transfer. This continues until the CPU
receives an "Acknowledge" confirmation response or until
512 SBI cycles have occurred from the first transfer
attempt (in this case, the CPU will timeout and a Machine
Check exception will occur).

3. The CPU receives an "Error" confirmation to a "Command

Address" transfer. This usually means that the CPU has
requested a function that the NEXUS cannot perform.

1-55

The "TIMEOUT ADDRESS", ID Register #1A, latches the SBI

PHYSICAL Longword Address whenever an SBI CP Timeout occurs.

When using this ID register, be aware that ID #lA bits <27:00>

are bits <29:02> of the PHYSICAL BYTE ADDRESS. The SBI

address is a LONGWORD address. To convert to a BYTE Physical
address, simply insert two BINARY ZERO's to the right of the

least significant digit (first convert the LONGWORD S.B.I. address
from HEX format to BINARY format, then add two zeros to the right,
least significant digits, and then convert the result back to

HEX format).

The "TIMEOUT ADDRESS", ID #1A, does not latch the physical
SBI address for IB data timeouts, but ID #1A "may" still be valid.

The "TIMEOUT ADDRESS", ID Register #1A, is stored in
"(SP)+32" on a MACHINE CHECK logout. It is stored in
ID register #37 on the first error of a Double Error Halt.

Bits <27:00> of ID Register #1A, are Bits <29:02> of the
SBI Physical Byte Address. The SBI uses Longword Addresses.
Bits <31:30> contain the "MODE" of the reference and Bit 29
flags whether or not a hardware protection check was done.

Instruction Buffer accesses should always be "reads" in order
to obtain instruction stream data. Therefore, they should always
be to a memory location or ISP ROM location.

ID register #19 identifies the type of error that occurred. If

Bit 12=1 a CP timeout occurred and Bits <11:10> identify the type
of timeout. If Bit 06=1 an IB timeout occurred and Bits <5:4>
identify the type of timeout that occurred. 1If Bit 08=1 the error
was due to an Error Confirmation as a result of a CP reference.

If Bit 03=1 the error was due to an Error Confirmation as a result
of an IB reference.

ID register #19 also contains some other bits that may be of
interest., Bit 13 flags the fact that a multiple bit error occurred
in memory and that the data received by the VAX CPU is bad.

Bit 7 flags the fact that a multiple bit error occurred in memory
while fetching data for the Instruction Buffer (IB).

Bit 2 flags a Multiple CP error, (another error occurred before the
first error was cleared).

Problem areas:
CPU SBI interface.
CPU Memory/CACHE control.
Memory.
Any Nexus.
Power.
SBI cables.

1-56

ID #19 - SBI Error Register

3322 2222 2222 1111 1111 1100 0000 0000
1098 7654 3210 9876 5432 1098 7654 3210
Bit <15> RDS Interrupt Enable
kkkkkkkk
Enable interrupts for Read Data Substitute (Bad Data) errors.
Bit <14> CRD
e Je Je ke Kk ok kk
Received corrected read data (CRD) from memory.
Bit <13> RDS
kxkkkkkk
Received read data substitute (RDS) from memory.
Bits <12:10> CP Timeout Status
kkkkkkkkhkkkk
If 12 = 1, indicates a timeout occurred as a result of a CP requested
cycle.
12 11 10
1 0 0 "No Device Response” timeout.
1 0 1 "Device Busy" timeout.
1 1 0 "waiting for Read Data" timeout.
1 1 1 Impossible code.
Bit <08> CP SBI Error Confirmation
% % % % % %k %k
Set when the CP requested cycle received an error confirmation to
a command address transfer.
Bit <07> IB RDS

* %k Kk Kk %k % Kk

Read data substitute (RDS) data was received from memory on an
IB data request.

1-57

Bits <06:04> IB Timeout Status
kdkkkkkkkkkkk

I1f bit <06>=1, a timeout occurred on an IB requested cycle.

06 05 04
1 0 0 "No Device Response" timeout.
1 0 1 "Device Busy" timeout.
1 1 0 "Waiting for Read Data" timeout.
1 1 1 Impossible code.
Bit <03> IB SBI Error Confirmation
d %k %k Kk kkk

Set when an IB requested cycle receives an error confirmation.

Bit <02> Multiple CP Error
% %k Kk ok kk Xk

Set with pending CP timeout or CP SBI error confirmation not
serviced.

Bit <01> SBI Not Busy

% % % % % % %k %k

ID #1A - Timeout Address Register

W
o w
W N
@ N
~ N
oN
SN
NN
w N
YN
(SN
o
W -
@ -
~
o 1
U1
W =
W
N
o
O =
w0 o
® o
~o
oo
g o
e
wo
oo
e
oo

Latches the SBI PHYSICAL LONGWORD Address on an SBI Timeout. Will not
latch for IB data timeouts.

Bits <31:30> Mode
khkkkkkkkkkkk
31 30
0 0 Kernel mode
0 1 Executive mode
1 0 Supervisor mode
1 1 User mode

Bit <29> Protection Check
% %k Kk Kk ok kkk

Equal to a zero for references not subject to a hardware protection
check.

Bits <27:00> SBI Physical Longword Address
kkkkhkhkkkkkkk

Contains the latched Physical Address bits <29:02> of the SBI Physical
address.

<27:00> = PA<29:02>

1-59

Note: A written step by step procedure on how to break down Physical
VAX BYTE addresses follows these bit breakdown charts.

Breaking down PHYSICAL BYTE ADDRESSES

If <29>=1 & <20>=1 -->|
MBZ if <29>=1 & <20>=0]

I
:
Adapter #
|<- MBZ if <29>=1 ->|] I |

NEXUS Register Offset if |
<29>=1 & <20>=0. I
|
I

>
2 2 2222 2222 1111 1111 1100 0000 0000
9 8 7654 3210 3876 54 32 10098 7654 3210
A A r\|< _______ >|
| I | |
I I | TR Level
I I I ~
0 = MEMORY Array Addr.| | [=== If <29>=1 & <20>=0
1 = I/0 Address | I
I [€mmmeem- MBZ if <29>=1 & <20>=0
|
If <29>=1 & <20>=1 this is a UNIBUS ADAPTER Address.
If <29>=1 & <20>=0 this is a NEXUS Register Address.
MEMORY ARRAY Physical Byte Addresses
00000000 : 1IFFFFFFF
| <===mmmm————- 64KB Array # --->|
f<==mm- 256KB Array # ---->| |
|<-- 1 MB Array # --->| I |
2 2 2222 2222 1111 1111 1100 0000 0000
9 8 76654 3210 9876 54 3 2 100938 7654 3210
O e Memory Array address --—--=-=meeem————————— > |
|
0
NEXUS Physical Byte Addresses
20002000:2001FFFF
22 2222 2222 1111 1111 1100 0000 0000
9 8 7654 3210 3876 54 32 10898 7654 3210
A A AA A A A A A A AA A[I ,
P Ll (N | I |l<===]===>|<---- Register Offset ------- > |
10 0000 0000 000 |
I

1-60

-- Hex representation of NEXUS TR Level
\

UNIBUS Physical Byte Addresses

20100000:201FFFFF
22 2222 2222 1111 1111 1100 0000 O0O0O0O
98 7654 3210 9876 5432 1098 7654 3210
A A A A s A s s | |<-- 18 Bit UNIBUS Address in HEX format -->|
[o Ll I<=>]

10 0000 0001 | UNIBUS ADAPTER number

A maximum of 4 DW780 controllers, and therefore a maximum of 4 UNIBUSes,
are supported on the VAX-11/780 system. Jumpers on the DW780 backplanes
select the "UNIBUS Adapter #" for the associated UNIBUS.

RH780 External Register Physical Byte Addresses

200xx400:200xx7FC RHE780 Drive number
XX = RH780 TR Level |<-TR # ->| I

l I l I
2 2 2222 2222 1111 1111 1100 0000 0000
9 8 7654 3210 987 6 54 32 10938 7654 3210
A A A A A A A A A A AA A - ~ A A |<___|___>I
. I ([[|] | I l
10 0000 0000 00O 0 01 Register number

Offsets (in bits <12:0>) from 400 thru 7FC are External Drive registers.

RH780 Internal Register Physical Byte Addresses

200xx000:200xx3FC . xx = RH780 TR Level
and RH780

200xx800:200xxFCO |<-TR # ->|

I I
2 2 2222 2222 1111 1111 1100 0000 0000
9 8 7 654 3210 38 76 54 3 2 10938 7 6 54 3210
A A A A A A A A A A A A A |< _____________________________ >l
[[I I I []] | Register Byte offset. Bits |
10 0000 0000 000 | <12:10> must not = 001. |

Offsets of 000 thru 3FC are internal registers, except MAP registers.
Offsets of 800 thru FCO are internal MAP registers,

1-61

Physical Byte Address breakdown procedure:

The 30 bit VAX Physical address spaces is broken into two equal parts.
The upper 512 Megabytes of address space is called I/0 space and is
used to address NEXUS, UNIBUS, and MASSBUS registers. The lower 512
Megabytes is used to address Physical Memory Arrays. The address space
is broken down as follows:

Physical Memory array addresses

00000000 : 1FFFFFFF
: Physical I/0 register & I/0 memory space.

20000000 3FFFFFFF

The first step in breaking down a PHYSICAL BYTE ADDRESS is to determine
if the address-is an I/0 or MEMORY ARRAY address. This is done by
checking the state of PA bit <29>,

1 indicates that the address is an I/0 address.
0 indicates that the address is a MEMORY ARRAY address.

PA<29>
PA<29>

PA bit <29> = (0 - Physical Memory Array address

The address is a Memory ARRAY address if PA<29>=0. The system
configuration must be known in order to determine what array is being
addressed. Further on in this section are several pages of charts and
procedure that can be used to determine what addresses correspond to what
physical array.

PA bit <29> = 1 - Physical 1/0 address

Use the following procedure to breakdown a Physical I/0 address.
1. "PA Bit <29>" must be a 1 to indicate that the address is a
VAX I/0 address. If "PA Bit <29> = Q" the address is a Physical
MEMORY address, and the remainder of this procedure cannot ke
used.

2. If PA Bit <29>=1 then PA Bits <28:21> must be zeros. If not, the
address is illegal.

3. Check "PA Bit <20>" and proceed as indicated:

PA bit 20> =1

If "PA Bit <20> = 1", the I/0 address is in a "UNIBUS ADAPTER's"
address region, and the following procedure can be used to find out
what UNIBUS ADAPTER and UNIBUS DEVICE is being addressed:

a. "PA bits <19:18>" indicate the "UNIBUS ADAPTER number"”,

b. "PA bits <17:00>" contain the 18-bit UNIBUS DEVICE address.

NOTE: "UNIBUS ADAPTER" does not refer to which DW780 but indicates which
"UNIBUS" is being referenced. 1In other words, the UNIBUS ADAPTER
number is not an indication of how the "TR Level" jumpers are set
for a DW780, but indicate how DW780 backplane jumpers "Wl & wW2"
are configured for the controlling DW780

o - ——— — ———— "~ — —— —_———— —— ——— — — —— o ——— = = ——— = = = = = = = = —— = = ——

PA bit <20> = 0

If "PA bit <20> = 0", the I/0 address is a NEXUS Registers or MASSBUS
Drive register address. In both cases, "PA<16:13>" will contain

the "TR Level" of the NEXUS being addressed. The system
configuration must be known in order to determine if the address

is a NEXUS Register or MASSBUS Drive register address.

If PA Bit <29>=1 & PA Bit <20>=0, then PA Bit <17> and PA Bits <19:18>
must be zero. If they do not, the address is illegal.

If "PA bits <16:13>" indicate an RH780 address, use the following
procedure to determine if the address is for an RH780 NEXUS
register or for an associated MASSBUS. Drive register:

a. If "PA bits <12:10> do not = 1", then "PA<12:00>" contain
the offset address for an RH780 (Internal) register.

b. If "PA bit <12:10> = 1", then "PA bits <9:7>" indicate the

MASSBUS Drive addressed, and "PA bits <6:2>" indicate the
register (EXTERNAL MASSBUS register) addressed.

1-63

1/0 ADDRESS Ranges

NEXUS
TR level "LONGWORD" range "BYTE" range
0 (see note) 8000000 80007FF 20000000 - 20001FFF
1 8000800 8000FFF 20002000 - 20003FFF
2 8001000 -~ 80017FF 20004000 - 20005FFF
3 8001800 - B8001FFF 20006000 - 20007FFF
4 8002000 - 80027FF 20008000 - 20009FFF
5 8002800 - B8002FFF 2000A000 - 2000BFFF
6 8003000 - B80037FF 2000C000 - 2000DFFF
7 8003800 - B8O0O03FFF 2000E000 - 2000FFFF
8 8004000 - 80047FF 20010000 - 20011FFF
9 8004800 - B80O04FFF 20012000 - 20013FFF
10 8005000 - 8O00S7FF 20014000 - 20015FFF
11 8005800 - 8O0OSFFF 20016000 - 20017FFF
12 8006000 -~ B8O0067FF 20018000 - 20019FFF
13 8006800 - B80O06FFF 20012000 - 2001BFFF
14 8007000 - 800Q77FF 2001C000 - 2001DFFF
15 8007800 - 8007FFF 2001E000 - 2001FFFF
Note: "TR#0 address space" is not assigned to any NEXUS. This is
unused address space.
DW780 NEXUS "Longword" Address ranges "BYTE" Address ranges
Adapter CODE for UNIBUS devices for UNIBUS devices
0 28 8040000 - B8O04FFFF 20100000 - 2013FFFF
1 29 8050000 - B8O0SFFFF 20140000 - 2017FFFF
2 2A 8060000 806FFFF 20180000 - 201BFFFF
3 2B 8070000 - 807FFFF 201C0000 - 201FFFFF
NOTE: Adapter numbers are assigned by DW780 backplane jumpers and do
not have to correspond to any TR level scheme. The ADAPTER #
simply indicates a particular UNIBUS.
Unused "LONGWORD" Address Unused "BYTE" Address Ranges

8000000 - 80007FF 200000006 - 20001FFF
8008000 - B8O3FFFF 20020000 -~ 200FFFFF
8080000 - FFFFFFF 20200000 - 3FFFFFFF

Physical Memory Array Address range

"Longword" Address range "Byte" Address range

0000000 - 7FFFFFF 00000000 - 1FFFFFFF

1-64

DW780 Register offsets

Reg. Byte Longword Reg. Byte Longword
Name offset offset Name offset offset
CNFGR 000 000 MR13 830 20C
UBACR 004 001 MR14 834 20D
UBASR 008 002 MR15 838 20E
DCR 00C 003 MR16 83C 20F
FMER 010 004 MR17 840 210
FUBAR 014 005 MR18 844 211
FMER 018 006 MR19 848 212
FUBAR 01C 007 MR20 84C 213
BRSVRO 020 008 MR22 850 214
BRSVR1 024 009 MR23 854 215
BRSVR2 028 0oa MR24 858 216
BRSVR3 02C 00B MR25 85C 217
BRRVR4 030 00C MR26 860 218
BRRVRS 034 00D MR27 864 219
BRRVR6 038 00E MR28 868 21A
BRRVR7 03C 00F MR29 86C 21B
DPRO 040 010 MR30 870 21C
DPR1 044 011 MR31 874 21D
DPR2 048 012 MR32 878 21E
DPR3 04cC 013 MR33 87C 21F
DPR4 050 014 MR34 880 220
DPRS 054 015 MR35 884 221
DPR6 058 0le MR36 888 222
DPR7 05C 017 MR37 88C 223
DPR8 060 018 . . .
DPRSY 064 019 . . .
DPR10 068 01A . . .
DPR11 06C 01lB . . .
DPR12 070 01cC MR480 F80 3EQ
DPR13 074 01D MR481 F84 3El
DPR14 078 01E MR482 F88 3E2
DPR15 07C OlF MR483 F8C 3E3
resvd 080 020 MR484 F90 3E4
. . . MR485 F94 3ES5
. . . MR486 F98 3E6
resvd 7EC 1FF MR487 F9C 3E7
MRO 800 200 MR488 FAQ 3E8
MR1 804 201 MR489 FA4 3E9
MR3 808 202 MR490 FAS8 3EA
MR4 80C 203 MR491 FAC 3EB
MRS 810 204 MR492 FBO 3EC
MR6 814 205 MR493 FB4 3ED
MR7 818 206 MR494 FB8 3EE
MR8 81C 207 MR495 FBC 3EF
MRS 8§20 208 resvd FCO 3F0
MR10 824 209 . . .
MR11 828 20A . . .
MR12 82C 20B resvd FFC 3FF

1-65

RH780 Internal Register offsets

Reg. Byte Longword Reg. Byte Longword
Name offset offset Name offset offset
CNFGR 000 000 MR65 8FC 23F
MBACR 004 001 MR66 900 240
MBASR 008 002 MR67 904 241
MBAVAR 00C 003 MR6E8 908 242
MBABCR 010 004 MR6S 90C 243
MBADR 014 005 MR70 910 244
MBASMR 018 006 MR71 914 245
MBACAR 01C 007 MR72 918 246
resvd . R MR73 91C 247
(and MASSBUS Registers) MR74 920 248
resvd . . MR75 924 249
MRO 800 200 MR76 928 24A
MR1 804 201 MR77 92C 248B
MR1 808 202 MR78 930 24C
MR2 80C 203 MR79 934 24D
MR3 810 204 MR80 938 24E
. . MR81 93C 24F
. . MR82 940 250
. . MR83 944 251
MR37 88C 223 MR84 948 252
MR38 890 224 MR85 94C 253
MR39 894 225 . .
MR40 898 226 .
MR41 89C 227
MR42 8AQ 228 . .
MR4 3 8A4 229 MR467 FacC 3D3
MR44 8AS8 22A MR468 F50 3D4
MR45 8AC 22B MR469S F54 3D5
MR46 8B0 22C MR470 F58 3D6
MR47 8B4 22D MR471 F5C 3D7
MR48 8B8 22E MR472 Fe60 3Dp8
MR49 8BC 22F MR473 F64 3D9%
MR50 8C0 230 MR474 F68 3DA
MR51 8C4 231 MR475 F6C 3DB
MR52 8C8 232 MR476 F70 3DC
MR53 8CC 233 MR477 F74 3DD
MR54 8D0 234 MR478 F78 3DE
MRS55 8D4 235 MR479 F7C 3DF
MR56 8D8 236 MR480 F80 3EQ
MR57 8DC 237 . .
MRS58 8EQ 238
MR59 8E4 239 . .
MR60 8ES8 23A MR4S1 FBO 3EC
MR61 8EC 23B MR492 FB4 3ED
MR62 8F0 23C MR493 FBS 3EE
MR63 8r4 23D MR494 FBC 3EF
MR64 8F8 23E MR4S5 FCO 3F0

I1f PA<10>=1 then the register is a "MASSBUS" (external) register.
The "MASSBUS Register Offsets"” are on the next page.

1-66

RH780 MASSBUS (EXTERNAL) Register offsets

Reg. | "Offsets for MASSBUS register of Drives 0 thru 7"

No. I #0 | #1 | #2 | #3 | #4 | #5 | #6 | #7
0 0 80 100 180 200 280 300 380
1 4 84 104 184 204 284 304 384
2 8 88 108 188 208 288 308 388
3 C 8C 100 18C 20C 28C 30C 38C
4 10 30 100 190 210 290 310 390
5 14 94 100 194 214 294 314 394
6 18 98 100 198 218 298 318 398
7 1C SC 100 19C 21C 29C 31C 38C
8 20 AQ 100 1A0 220 2A0 320 3A0
9 24 A4 100 1A4 224 2A4 324 3A4
A 28 A8 100 1a8 228 2A8 328 3A8
B 2C AC 100 1AC 22C 2AC 32C 3AC
C 30 BO 100 1B0O 230 2B0 330 3B0
D 34 B4 100 1B4 234 2B4 334 3B4
E 38 B8 100 1B8 238 2B8 338 3B8
F 3C BC 100 1BC 23C 2BC 33C 3BC

10 40 co 100 1CO 240 2C0 340 3C0

11 44 C4 100 1C4 244 2C4 344 3C4

12 48 (of:] 100 1C8 248 2C8 348 3C8

13 4AC CcC 100 1CC 24C 2CC 34C 3CC

14 50 DO 100 1D0 250 2D0 350 3D0

15 54 D4 100 1D4 254 2D4 354 3D4

16 58 D8 100 1D8 258 2D8 358 3D8

17 5C DC 100 1D0C 25C 2DC 35C 3DC

18 60 EQ 100 1EQ 260 2EQ 360 3EQ

19 64 E4 100 1E4 264 2E4 364 3E4

1A €8 E8 100 1E8 268 2E8 368 3ES8

1B 6C EC 100 1EC 26C 2EC 36C 3EC
1C 70 FO 100 1F0 270 2F0 370 3F0
1D 74 F4 100 1F4 274 2F4 374 3F4
1E 78 F8 100 1r8 278 2F8 378 3F8
1F 7C FC 100 1FC 27C 2FC 37C 3FC

Reg.# RPOx RMOx TEl6

0 cs1 RMCS1 Csl
1 DS RMDS DS
2 ER1 RMER1 ER
3 MR RMMR1 MR
4 AS RMAS AS
5 DA RMDA FC
6 DT RMDT DT
7 LA RMLA CX
8 SN RMSN SN
9 OFF RMOF TC
A DCA RMOC

B cca RONR

C ER2 RMMR?2

D ER3 RMER?2

E ECCPOS RMECL

F ECCPAT RMEC2

1-67

Memory Array Address Bit breakdown

Operand
Array Length
Boundaries Boundarie
PABit -=»>22 2222 2222 1111 1111 1100 0000 0O00O
98 7654 3210 9876 5432 1098 7654 321
l 1 Mb _| l l Longword _| |
1 = I/0 space 256 Kb _| I Word _|
0 = Phy. Mem. space 64 Kb _| Byte
<28:16> = 64KB array number
<28:18> = 256KB array number
<28:20> = 1MegaByte array number

Physical Address bits 0 & 1 are not used on the SBI. All addresses t
Nexus devices are Longword addresses, (only Physical Address bits

<29:02> are used on the SBI).

The "SBI MASK" field is used to specify which byte(s) are to be

referenced within a Longword.

There is a total of 1 GigaByte of Physical address
is broken up into two equal sections.

space. This space

512 Megabyte of Physical MEMORY Address Space,

512 Megabyte of Physical I/0 Address Space

"Timeout Address” 1D register bit breakdown

Bit ->3 322 2222 2222 1111 1111 110
i 9 2 8 7654 3210 9876 5432 1089
[:< —————————— Physical Address Bits <29:02>
::{ ‘_ Protection Check specifier value
| _ Mode

1-68

(ID #1A)

[o s ew)

S

o

060.

000.

000.

000.

001.

001.

001.

001.

002.

002.

002

Physical "BYTE” Address Space - 64KB boundries
005.50 Megabyte

00 Megabyte
00000000 -
00010000 -
00020000 -
00030000 -

25 Megabyte
00040000 -
00050000 -
00060000 -
00070000 -

50 Megabyte
00080000 -
00030000 -
000A0000 -
000B000O -

75 Megabyte
000C0000 -
000D0000 -
000ECO00 -
000F0000 -

00 Megabyte
00100000 -
00110000 -
00120000 -
00130000 -

25 Megabyte
00140000 -
00150000 -
00160000 -
00170000 -

50 Megabyte
00180000 -
001380000 -
001A0000 -
001BO00O -

75 Megabyte
001C0000 -
001D0000 -
001E0000 -
001F0000 -

00 Megabyte
00200000 -
00210000 -
00220000 -
00230000 -

25 Megabyte
00240000 -
00250000 -
00260000 -
00270000 -

.50 Megabyte

00280000
00290000
002A0000
002B0000

0000QFFFF
000Q1FFFF
0002FFFF
0003FFFF

0004FFFF
000SFFFF
OQ006FFFF
0007FFFF

0008FFFF
000SFFFF
000AFFFF
000BFFFF

O000CFFFF
000DFFFF
O00EFFFF
O00FFFFF

0010FFFF
O00l1FFFF
CO01l2FFFF
0013FFFF

0014FFFF
0015FFFF
0016FFFF
0017FFFF

COl8FFFF
0019FFFF
0OQlAFFFF
00l1BFFFF

CO1CFFFF
0C1DFFFF
00lEFFFF
001FFFFF

0020FFFF
0021FFFF
0022FFFF
0023FFFF

0024FFFF
0025FFFF
0026FFFF
0027FFFF

0028FFFF
0029FFFF
002AFFFF
002BFFFF

002.

003.

003.

003.

003.

004.

004.

004.

004.

005.

005.

75 Megabyte

002C0000 - QOO02CFFFF
002D0000 - OO02DFFFF
002EQ0C0Q0 - QO02EFFFF
002F0000 - O0O02FFFFF
00 Megabyte

00300000 - OO30FFFF
00310000 - 0031FFFF
00320000 - 0032FFFF
00330000 - O0O033FFFF
25 Megabyte

00340000 - OO034FFFF
00350000 - 0O035FFFF
00360000 - Q0036FFFF
00370000 - 0O037FFFF
50 Megabyte

00380000 - 0O038FFFF
00330000 - QO039FFFF
003A0000 - O0Q3AFFFF
003B0000 - 003BFFFF
75 Megabyte

003C0000 - QQ3CFFFF
003D00C00 - QO03DFFFF
003E0000 - 003EFFFF
003F0000 - Q03FFFFF
00 Megabyte

00400000 - QO040FFFF
00410000 - OQ41FFFF
00420000 - 0042FFFF
00430000 - 0043FFFF
25 Megabyte

00440000 - 0044FFFF
00450000 - 0045FFFF
00460000 - O0046FFFF
00470000 - Q047FFFF
50 Megabyte

00480000 - 0048FFFF
00490000 - 004SFFFF
004A0000 - O0O4AFFFF
004B0000 - O004BFFFF
75 Megabyte

004C0000 - 0Q04CFFFF
004D0000 - QO4DFFFF
004E0000 - OOQO4EFFFF
004F0000 - QO04FFFFF
00 Megabyte

00500000 - O00SOFFFF
00510000 - O0QS1FFFF
00520000 - 0052FFFF
00530000 - O0OS3FFFF
25 Megabyte

00540000 - 00S54FFFF
00550000 - OOS5SFFFF
00560000 - Q00S56FEFF
00570000 - O0O057FFFF

1-69

005.

006

006

006.

006

007.

007.

007.

007.

co08.

00580000 - OO058FFFF
00590000 - Q005SFFFF
005A0000 - QOS5AFFFF
005B0000 - 00SBFFFF
75 Megabyte

005C0000 ~ OOSCFFFF
005D0000 - OOSDFFFF
005E0000 - OOSEFFFF
005F0000 - OOSFFFFF
00 Megabyte

00600000 - OOQ60FFFF
00610000 - OO61FFFF
00620000 - 0062FFFF
00630000 - 0063FFFF
25 Megabyte

00640000 - CO064FFFF
00650000 - 0065FFFF
00660000 - OQ66FFFF
00670000 - 0067FFFF
50 Megabyte

00680000 - O0068FFFF
00650000 - Q06SFFFF
006A0000 - QOGAFFFF
006B0000 - 006BFFFF
75 Megabyte

006C0000 - OO06CFFFF
006D0000 - OO6DFFFF
006E0000 - OO6EFFFF
006F0000 - OO6FFFFF
00 Megabyte

00700000 - OO70FFFF
00710000 - 0071FFFF
00720000 - 0072FFFF
00730000 - 0073FFFF
25 Megabyte

00740000 - 0Q74FFFF
00750000 - OQ7SFFFF
00760000 - O076FFFF
00770000 - OQ77FFFF
50 Megabyte

00780000 - O0Q078FFFF
00790000 - 0O079FFFF
007A0000 - OO7AFFFF
007B0000 - OQ7BFFFF
75 Megabyte

007C0000 - OO7CFFFF
007D0000 - OO7DFFFF
007E0000 - OO7EFFFF
007F0000 - OQ7FFFFF
00 Megabyte

00800000 - OQOBOFFFF
00810000 - OO8LFFFF
00820000 - 0082FFFF
00830000 - OOQ83FFFF

008.

008.

008.

00s.

009.

009.

2909.

010.

010.

010.

010.

Physical "BYTE” Address Space - 64KB boundries
011.00 Megabyte

25 Megabyte
00840000 -
00850000 -
00860000 -
00870000 -

50Megabyte
00880000 -
008390000 -
008AQ000 -
008B000O0 -

75 Megabyte
008C0000 -
008D0000 -
008E0Q000 -
008F0000 -

00 Megabyte
00900000 -
00910000 -
00920000 -
00930000 -

25 Megabyte
00940000 -
00850000 -
00960000 -
00970000 -

50 Megabyte
003880000 -
00990000 -
009a0000 -
009B0O000 -

75 Megabyte
009C0000 -
009D0000 -
009E0000 -
009F0000 -

00 Megabyte
00A00000 -
00A10000 -
00A20000 -
00A30000 -

25 Megabyte
00A40000 -
00a50000 -
00a60000 -
00A70000 -

50 Megabyte
00A80000 -
00AS0000 -
00AAQ000 -
00AB0QOQO -

75 Megabyte
00AC0000 -
00ADO0O0O0 -
00AEQ000 -
0CAF0000 -

0084FFFF
0085FFFF
0086FFFF
0087FFFF

0088FFFF
008SFFFF
O0BAFFFF
008BFFFF

O008CFFFF
008DFFFF
008EFFFF
O008FFFFF

0090FFFF
00S1FFFF
0092FFFF
00S3FFFF

00S4AFFFF
0095FFFF
0096FFFF
0097FFFF

0098FFFF
0099FFFF
00SAFFFF
009BFFFF

00SCFFFF
0OSDFFFF
009EFFFF
009FFFFF

OQAQFFFF
O0ALFFFF
QO0A2FFFF
O00A3FFFF

OQA4FFFF
OO0ASFFFF
O0A6FFFF
00A7FFFF

O0CA8FFFF
00ASFFFF
O0AAFFFF
00ABFFFF

00ACFFFF
00ADFFFF
0CAEFFFF
OOAFFFFF

011.

011

011.

012.

0l2.

012,

912,

013.

013.

013.

00B00000 - OOBOFFFF
00B10000 - OOBlFFFF
00B20000 - 0O0B2FFFF
00B30000 - OOB3FFFF
25 Megabyte

00B40000 - QOB4FFFF
00B50000 - OOBSFFFF
00B6000C - OOB6FFFF
00B70000 - OOB7FFFF
50 Megabyte

00B80000 - OOB8FFFF
00BS0000 - QOOBSFFFF
00BAOQOO - OOBAFFFF
00BBO00O - OOBBFFFF
75 Megabyte

00BCO000 - OQOBCFFFF
00BDOO0O - OOBDFFFF
00BEQ0QGO - OOBEFFFF
00BF0000 - OOBFFFFF
00 Megabyte

00C00000 - OOCOFFFF
00C10000 - OOCLFFFF
00C20000 - OOC2FFFF
00C30000 - OOC3FFFF
25 Megabyte

00C40000 - OOC4FFFF
00C50000 - OQOCSFFFF
00C60000 - OQOCGHFFFF
00C70000 - OOC7FFFF

50 Megabyte

00C80000 - OOCS8FFFF
00C90000 - OOCOFFFF
00CAQ000 - QOCAFFFF
00CB0000 - OOCBFFFF
75 Megabyte

00CC0000 - OOCCFFFF
00CD0000 - OOCDFFFF
00CEQ000 - OOCEFFFF
00CF0000 - OOCFFFFF
00 Megabyte

00D00000 - OODOFFFF
00D10000 - OODI1FFFF
00D20000 - 0OD2FFFF
00D30000 - OOD3FFFF
25 Megabyte

00D40000 - OODAFFFF
00D50000 - QODSFFFF
00D60000 - OODGFFFF
00D70000 - QOD7FFFF
50 Megabyte

00D80000 - OODSFFF¥
00DS0000 - OODSFFFF
00DAOOQOO - OODAFFFF
00DBO00O0 - OODBFFFF

1-70

013.75 Megabyte

014.

014.

014

014

.

01s.

01s.

015.

015.

0ls.

0ls.

00DCO000 - OODCFFFF
00DD0000 - QODDFFFF
O00DEOQCOO - OODEFFFF
00DF0000 - OODFFFFF
00 Megabyte

00E00000 - OOQOEOFFFF
00E10000 - OQELlFFFF
00E20000 - OOEZ2FFFF
00E30000 - OQE3FFFF
25 Megabyte

00E40000 - OOE4FFFF
00E50000 - OOESFFFF
00E60C000 - OOEGFFFF
00E70000 - OOE7FFFF
50 Megabyte

OOE80000 - QOEBFFFF
OO0ESQ000 - QOESFFFF
00EAQ000 - OOEAFFFF
00EBQOOOO - OOEBFFFF
75 Megabyte

00EC0000 - OOECFFFF
00EDQOOC - OOEDFFFF
00EE0000 - OQOEEFFFF
00EF0000 - OQEFFFFF
00 Megabyte

00F00000 - OOFOFFFF
00F10000 - OOFlFFFF
00F20000 - QQF2FFFF
00F30000 - QQF3FFFF
25 Megabyte

00F40000 - OOQF4FFFF
00F50000 - OOFSFFFF
00F60000 ~ OOF6FFFF
00F70000 - J0F7FFFF
50 Megabyte

00F80000 - OOF8FFFF
00FS0000 - OOF9FFFF
00FAQ000 - QOFAFFFF
00FB000O - OOFBFFFF
75 Megabyte

00FC0000 - OOFCFFFF
00FD0O000 - OOFDFFFF
00FE0000 - OOQFEFFFF
00FF000Q0 - OOFFFFFF
00 Megabyte

01000000 - 0lQOFFFF
01010000 - QlOlFFFF
01020000 - 0102FFFF
01030000 - Ol0Q3FFFF
25 Megabyte

01040000 - Ol04FFFF
01050000 - QlOSFFFF
01060000 - QlO06FFFF
01070000 - QlQ7FFFF

Physical "BYTE” Address Space - 256KB boundries

016.0 Megabyte

01000000 -
01040000 -
01080000 -
010C0000 -

017.0 Megabyte

01100000 -
01140000 -
01180000 -
011C0000 -

018.0 Megabyte

01200000 -
01240000 -
01280000 -
012C0000 -

019.0 Megabyte

01300000 -
01340000 -
01380000 -
013C0000 -

020.0 Megabyte

01400000 -
01440000 -
01480000 -
014C0000 -

021.0 Megabyte

01500000 -
01540000 -
01580000 -
015C0000 -

022.0 Megabyte

01600000 -
01640000 -
01680000 -
016C0000 -

023.0 Megabyte

01700000 -
01740000 -
01780000 -
017C0000 -

024.0 Megabyte

01800000 -
01840000 -
01880000 -
018C0000 -

025.0 Megabyte

01300000 -
01940000 -
01980000 -
019C0000 -

0103FFFF
0l07FFFF
010BFFFF
010FFFFF

0l13FFFF
0l117FFFF
0l1BFFFF
Ol1lFFFFF

0123FFFF
0127FFFF
012BFFFF
Ol2FFFFF

0133FFFF
0137FFFF
013BFFFF
013FFFFF

0143FFFF
0147FFFF
014BFFFF
0l4FFFFF

0153FFFF
0157FFFF
015BFFFF
015FFFFF

0l63FFFF
0167FFFF
016BFFFF
0l6FFFFF

0173FFFF
0177FFFF
017BFFFF
017FFFFF

0183FFFF
0187FFFF
018BFFFF
018FFFFF

01393FFFF
0197FFFF
019BFFFF
01SFFFFF

026.0 Megabyte

027.

028.

029.

030.

031.

032

033.

034.

035.

01A00000 -
01A40000 -
01A80000 -
01AC0000 -
0 Megabyte
01B0000O -
01B40000 -
01B80000 -
01BCCOO0O0 -
0 Megabyte
01C00000 -
01C40000 -
01C80000 -
01Ccco000 -
0 Megabyte
01D00000 -
01D40000 -
01D80000 -
01DCO000 -
0 Megabyte
01E00000 -
01E40000 -
01E80000 -
01EC0000 -
0 Megabyte
01F00000 -
01F40000 -
01F80000 -
01FC0000 -
0 Megabyte
02000000 -
02040000 -
02080000 -
020C0000 -
0 Megabyte
02100000 -
02140000 -
02180000 -
021C0000 -
0 Megabyte
02200000 -
02240000 -
02280000 -
022C0000 -
0 Megabyte
02300000
02340000
02380000
023C0000

1-71

036.0 Megabyte

01A3FFFF 02400000 -
0lA7FFFF 02440000 -
0l1ABFFFF 02480000 -
01lAFFFFF 024C0000 -
037.0 Megabyte
01B3FFFF 02500000 -
01B7FFFF 02540000 -
01BBFFFF 02580000 -
01BFFFFF 025C0000 -
038.0 Megabyte
01C3FFFF 02600000 -
01C7FFFF 02640000 -
01CBFFFF 02680000 -
01CFFFFF 026C0000 -
039.0 Megabyte
01D3FFFF 02700000 -
01D7FFFF 02740000 -
01DBFFFF 02780000 -
01DFFFFF 027C0000 -
040.0 Megatyte
01E3FFFF 02800000 -
0lE7FFFF 02840000 -
01lEBFFFF 02880000 -
0lEFFFFF 028C0000 -
041.0 Megabyte
01F3FFFF 02900000 -
01F3FFFF 02940000 -
01FBFFFF 02980000 -
O1FFFFFF: 023C0000 -
042.0 Megabyte
0203FFFF 02A00000 -
0207FFFF 02240000 -
020BFFFF 02a80000 -
020FFFFF 02AC0000 -
) 043.0 Megabyte
0213FFFF 02B00000 -
0217FFFF 02B40000 -
021BFFFF 02B80000 -
021FFFFF 02BC0O000 -
044.0 Megabyte
0223FFFF 02C00000 -
0227FFFF 02C40000 -
022BFFFF 02C80000 -
022FFFFF 02CCo0000 -
045.0 Megabyte
0233FFFF 02D00000 -
0237FFFF 02D40000 -
023BFFFF 02D80000 -
023FFFFF 02DC0000 -

0243FFFF
0247FFFF
024BFFFF
024FFFFF

0253FFFF
0257FFFF
025BFFFF
025FFFFF

0263FFFF
0267FFFF
026BFFFF
026FFFFF

0273FFFF
0277FFFF
027BFFFF
027F0000

0283FFFF
0287FFFF
028BFFFF
028FFFFF

0293FFFF
0297FFFF
029BFFFF
0239FFFFF

02A3FFFF
02A7FFFF
02ABFFFF
02AFFFFF

02B3FFFF
02B7FFFF
02BBFFFF
02BFFFFF

02C3FFFF
02C7FFFF
02CBFFFF
02CFFFFF

02D3FFFF
02D7FFFF
02DBFFFF
02DFFFFF

Physical "BYTE” Address Space - 256KB boundries

046.0 Megabyte

02E00000 -
02E40000 -
02E80000 -
02EC0000 -

047.0 Megabyte

02F00000 -
02F40000 -
02F80000 -
02FC0000 -

048.0 Megabyte

03000000 -
03040000 -
03080000 -
030C0000 -

045.0 Megabyte

03100000 -
03140000 -
03180000 -
031Co0000 -

050.0 Megabyte

03200000 -
03240000 -
03280000 -
032C0000 -

051.0 Megabyte

03300000 -
03340000 -
03380000 -
033C0000 -

052.0 Megabyte

03400000 -
03440000 -
03480000 -
034C0000 -

02E3FFFF
02E7FFFF
02EBFFFF
02EFFFFF

02F3FFFF
02F7FFFF
02FBFFFF
02FFFFFF

0303FFFF
0307FFFF
030BFFFF
030FFFFF

0313FFFF
0317FFFF
031BFFFF
031FFFFF

0323FFFF
0327FFFF
032BFFFF
032FFFFF

0333FFFF
0337FFFF
033BFFFF
033FFFFF

0343FFFF
0347FFFF
034BFFFF
034FFFFF

053.0 Megabyte
03500000 - 03S3FFFF
03540000 - 03S7FFFF
03580000 - 035BFFFF
035C0000 -~ Q35FFFFF

054.0 Megabyte
03600000 -~ 0363FFFF
03640000 - 0367FFFF
03680000 - 036BFFFF
036C0000 - Q36FFFFF

055.0 Megabyte
03700000 - 0373FFFF
03740000 - 0377FFFF
03780000 - 037BFFFF
037C0000 - Q37FFFFF

056.0 Megabyte
03800000 - O0383FFFF
03840000 - 0387FFFF
03880000 - 038BFFFF
038C0000 - 038FFFFF

057.0 Megabyte
03900000 - 0393FFFF
03940000 - 0397FFFF
033980000 - 039BFFFF
039C0000 - Q39FFFFF

058.0 Megabyte
03A00000 - O03A3FFFF
03A40000 - 03A7FFFF
03a80000 - Q03ABFFFF
03AC0000 - O3AFFFFF

1-72

059.0 Megabyte

03B00000 -
03B40000 -
03880000 -
03BCOQC0O -

060.0 Megabyte

03co0000 -
03C40000 -
03Cc80000 -
03cco000 -

061.0 Megabyte

03D00000 -
03D40000 -
03D80000 -
03pcoooo -

062.0 Megabyte

03e00000 -
03E40000 -
03E8B0000 -
03EC0000 -

063.0 Megabyte

03F00000 -
03F40000 -
03F80000 -
03FC0000 -

064.0 Megabyte

04000000
04040000
04080000
040C000Q0

03B3FFFF
03B7FFFF
03BBFFFF
03BFFFFF

03C3FFFF
03C7FFFF
03CBFFFF
03CFFFFF

03D3FFFF
03D7FFFF
03DBFFFF
03DFFFFF

03E3FFFF
03E7FFFF
03EBFFFF
03EFFFFF

03F3FFFF
03F7FFFF
03FBFFFF
03FFFFFF

C403FFFF
0407FFFF
040BFFFF
040FFFFF

000

005

010

015

020

025

030

035

040

Physical "BYTE” Address Space - IMB boundries

Megabyte
00000000

00100000 -

00200000
00300000
00400000
Megabyte
00500000
00600000
00700000
00800000
003800000
Megabyte

00A00000 -

00B0000O

00C00000 -

00D00000
00E00000
Megabyte
00F00000
01000000
01100000
01200000
01300000
Megabyte
01400000
01500000
01600000
01700000
01800000
Megabyte
01900000
01A00000
01B0000O
01C00000
01D0000O
Megabyte
01E00000
01F00000
02000000
02100000
02200000
Megabyte

02300000 -
02400000 -

02500000
02600000
02700000
Megabyte
02800000
023900000
02A00000
02B00000
02C00000

0COFFFFF
001FFFFF
002FFFFF
003FFFFF
004FFFFF

OOSFFFFF
006FFFFF
007FFFFF
008FFFFF
00SFFFFF

OOAFFFFF
OOBFFFFF
OOCFFFFF
OODFFFFF
OOEFFFFF

OOFFFFFF
010FFFFF
Ol1FFFFF
012FFFFF
013FFFFF

0l4FFFFF
O015FFFFF
016FFFFF
017FFFFF
018FFFFF

01SFFFFF
0l1AFFFFF
01BFFFFF
01CFFFFF
01DFFFFF

0lEFFFFF
O1FFFFFF
020FFFFF
021FFFFF
022FFFFF

023FFFFF
024FFFFF
025FFFFF
026FFFFF
027FFFFF

028FFFFF
029FFFFF
02AFFFFF
02BFFFFF
02CFFFFF

045 Megabyte

02D00000
02E00000

02F00000 -
03000000 -

03100000

050 Megabyte

03200000
03300000
03400000
03500000
03600000

055 Megabyte

03700000
03800000
033900000
03A00000
03B00000

060 Megabyte

03C00000
03D00000
03E00000
03F00000
04000000

065 Megabyte

04100000
04200000
04300000
04400000
04500000

070 Megabyte

04600000
04700000

04800000 -
04900000 -

04A00000

075 Megabyte

04B0000O
04C00000
04D00000
04E00000
04F00000

080 Megabyte

05000000
05100000
05200000
05300000
05400000

085 Megabyte

05500000
05600000
05700000
05800000
05900000

1-73

02DFFFFF
O02EFFFFF
02FFFFFF
030FFFFF
031FFFFF

032FFFFF
033FFFFF
034FFFFF
035FFFFF
036FFFFF

037FFFFF
038FFFFF
03SFFFFF
03AFFFFF
03BFFFFF

090

095

100

105

03CFFFFF

03DFFFFF
03EFFFFF
O3FFFFFF
040FFFFF

041FFFFF
042FFFFF
043FFFFF
044FFFFF
045FFFFF

046FFFFF
047FFFFF
048FFFFF
049FFFFF
04AFFFFF

04BFFFFF
04CFFFFF
04DFFFFF
O4EFFFFF
04FFFFFF

0S0FFFFF
OS1FFFFF
0S52FFFFF
053FFFFF
054FFFFF

O055FFFFF
056FFFFF
057FFFFF
058FFFFF
0539FFFFF

110

115

120

125

130

Megabyte
05A00000
05B0000O0
05C00000
05D0Q000
05E00000
Megabyte
05F00000
06000000
06100000
06200000
06300000
Megabyte
06400000
06500000
06600000
06700000
06800000
Megabyte
06300000
06A00000
06B00000
06C00000
06D00000
Megabyte
06E00000
06F00000
07000000
07100000
07200000
Megabyte
07300000
07400000
07500000
07600000
07700000
Megabyte
07800000
07300000
07A00000
07800000
07C00000
Megabyte
07D00000

OSAFFFFF
05BFFFFF
05CFFFFF
05DFFFFF
0S5EFFFFF

OSFFFFFF
060FFFFF

- 061FFFFF

[T Y I |

07E00000 -
07F00000 -

08000000
08100000
Megabyte
08200000
08300000
08400000

08500000 -
08600000 -

062FFFFF
063FFFFF

064FFFFF
065FFFFF
066FFFFF
067FFFFF
068FFFFF

069FFFFF
06AFFFFF
06BFFFFF
06CFFFFF
Q6DFFFFF

O6EFFFFF
06FFFFFF
070FFFFF
071FFFFF
072FFFFF

07 3FFFFF
074FFFFF
Q7SFFFFF
076FFFFF
077FFFFF

079FFFFF
Q7AFFFFF
07BFFFFF
Q7CFFFFF

07DFFFFF
Q7EFFFFF
O07FFFFFF
080FFFFF
Q081FFFFF

082FFFFF
083FFFFF
084FFFFF
085FFFFF
086FFFFF

135

140

145

150

155

160

165

170

175

Physical "BYTE” Address Space -

Megabyte
08700000
08800000
08900000
08a00000
08B00000O
Megabyte
08C00000
08D00000
08E00000
08F00000
09000000
Megabyte
09100000
09200000
09300000
09400000
09500000
Megabyte
09600000
08700000
09800000
09500000
09A00000
Megabyte
09B00000
09C00000
09D00000
09E00000
09F00000
Megabyte
0A000000
0A100000
0A200000
0A300000
04400000
Megabyte
0A500000
0A600000
0A700000
0A800000
0A900000
Megabyte
0AA00000

0ABQO000OO -

0AC00000
0AD0000O
0AE00000
Megabyte
0AF00000
0B00000O
0B100000
0B200000
0B300000

| R T T |

087FFFFF
088FFFFF
08SFFFFF
08AFFFFF
08BFFFFF

O08CFFFFF
08DFFFFF
O8EFFFFF
08FFFFFF
0SOFFFFF

091FFFFF
092FFFFF
093FFFFF
094FFFFF
0S9SFFFFF

096FFFFF
097FFFFF
0S8FFFFF
0SSFFFFF
O0SAFFFFF

09BFFFFF
09CFFFFF
09DFFFFF
0SEFFFFF
09FFFFFF

OAQFFFFF
OAlFFFFF
QA2FFFFF
OA3FFFFF
OA4FFFFF

OASFFFFF
QA6FFFFF
OA7FFFFF
OABFFFFF
OASFFFFF

OAAFFFFF
0ABFFFFF
OACFFFFF
0ADFFFFF
QAEFFFFF

OAFFFFFF
0BOFFFFF
O0BlFFFFF
0B2FFFFF
0B3FFFFF

180 Megabyte

0B400000
0B500000
0B6000CO
0B700000
0B800000

185 Megabyte

0BS00000
0BA0COQOO
0BB0G0OO
0BC00000
0BD0GQ0O

190 Megabyte

0BE00OQO
0BF00000
0C000000
0C100000
0C200000

195 Megabyte

0Cc300000
0C400000
0C500000
0C600000
0C700000

200 Megabyte

0C800000
0C900000
0CA00000
0CB00Q0D
0Cco0000

205 Megabyte

0CD00000
0CE00000
0CF00000
0D000000
0D100060

210 Megabyte

00200000
0D300000
0D400000
0D500000
0D600000

215 Megabyte

0D700000
0D800000
0D900000
0DAQ0OQGO
0DB00QOO

220 Megabyte

0DC00000
0DD000O00
ODE00QO00
O0DF00000
0E000000

1-74

OB4FFFFF
OBSFFFFF
OB6FFFFF
0B7FFFFF
O0B8FFFFF

OBYFFFFF
OBAFFFFF
0BBFFFFF
OBCFFFFF
0BDFFFFF

OBEFFFFF
OBFFFFFF
0COFFFFF
O0C1FFFFF
0C2FFFFF

0C3FFFFF
QC4FFFFF
0CSFFFFF
0C6FFFFF
OC7FFFFF

0C8FFFFF
0COFFFFF
0CAFFFFF
OCBFFFFF
OCCFFFFF

OCDFFFFF
OCEFFFFF
OCFFFFFF
ODOFFFFF
OD1FFFFF

OD2FFFFF
OD3FFFFF
OD4FFFFF
ODSFFFFF
OD6FFFFF

OD7FFFFF
OD8FFFFF
ODSFFFFF
ODAFFFFF
ODBFFFFF

ODCFFFFF
ODDFFFFF
ODEFFFFF
ODFFFFFF
OEQFFFFF

IMB boundries

225 Megabyte

230

235

240

245

250

255

260

265

0E100000
0E200000
0E300000
0E400000
0E500000
Megabyte
0E600000
0E700000
0E800000
0ES0Q0000
OEAQ0000
Megabyte
0EB000O0O
0EC00000
OED0000O

OEEQ0000 -
0EF00000 -

Megabyte
0F000000
0F100000

0F200000 -

0F300000
0F400000
Megabyte
0F500000
0F600000
0F700000
0F800000
0F900000
Megabyte

OFAQ0000 -

0FB0O0OO
0FC00000
OFDC0000
OFECQ000
Megabyte

OFF00000 -
10000000 -

10100000
10200000
10300000
Megabyte

10400000 -
10500000 -

10600000
10700000
10800000
Megabyte
10900000
10A00000
10B0000O

10C00000 -
10D00000 -

OE1FFFFF
OE2FFFFF
OE3FFFFF
OE4FFFFF
OESFFFFF

OE6FFFFF
OE7FFFFF
OEBFFFFF
OESFFFFF
QEAFFFFF

OEBFFFFF
OECFFFFF
OEDFFFFF
OEEFFFFF
OEFFFFFF

OFOFFFFF
OF1FFFFF
OF2FFFFF
OF3FFFFF
OF4FFFFF

QFSFFFFF
OF6FFFFF
OF7FFFFF
OF8FFFFF
OFSFFFFF

OFAFFFFF
OFBFFFFF
OFCFFFFF
OFDFFFFF
OFEFFFFF

OFFFFFFF
100FFFFF
101FFFFF
102FFFFF
103FFFFF

104FFFFF
105FFFFF
106FFFFF
107FFFFF
108FFFFF

109FFFFF
10AFFFFF
10BFFFFF
10CFFFFF
10DFFFFF

270

275

280

285

290

295

300

305

310

Physical "BYTE” Address Space -

Megabyte
10E00000
10F00000
11000000
11100000
11200000
Megabyte
11300000
11400000
11500000
11600000
11700000
Megabyte
11800000
11900000
11A00000
11800000
11C00000
Megabyte
11D00000
11E00000
11F00000
12000000
12100000
Megabyte
12200000
12300000
12400000
12500000

[N e A |

12600000 -

Megabyte

12700000 -
12800000 -

12900000
12400000
12B00000
Megabyte
12C00000
12D00000
12E00000
12F00000
13000000
Megabyte

13100000 -
13200000 -

13300000
13400000
13500000
Megabyte
13600000
13700000
13800000
13900000
13A00000

10EFFFFF
10FFFFFF
110FFFFF
111FFFFF
112FFFFF

113FFFFF
114FFFFF
115FFFFF
116FFFFF
117FFFFF

118FFFFF
119FFFFF
11AFFFFF
11BFFFFF
11CFFFFF

11DFFFFF
l11EFFFFF
11FFFFFF
120FFFFF
121FFFFF

122FFFFF
123FFFFF
124FFFFF
125FFFFF
126FFFFF

127FFFFF
128FFFFF
129FFFFF
12AFFFFF
12BFFFFF

12CFFFFF
12DFFFFF
12EFFFFF
12FFFFFF
130FFFFF

131FFFFF
132FFFFF
133FFFFF
134FFFFF
135FFFFF

136FFFFF
137FFFFF
138FFFFF
139FFFFF
13AFFFFF

315 Megabyte
13B0Q000 -
13C00000
13D00000
13E00000
13F00000

320 Megabyte
14000000
14100000
14200000
14300000
14400000

325 Megabyte
14500000 -
14600000
14700000
14800000
14900000

330 Megabyte
14A00000 -
14B00000 -
14C00000 -
14D00000 -
14EQ00000 -

335 Megabyte

14¥00000 -

15000000 -
15100000 -
15200000 -
15300000 -
340 Megabyte
15400000 -
15500000 -
15600000 -
15700000 -
15800000 -
345 Megabyte
15900000 -
15400000 -
15800000 -
15C000600 -
15D00000 -
350 Megabyte
15E00000 -
15FC0000
16000000
16100000
16200000
355 Megabyte
16300000 -
16400000
16500000
16600000
16700000

1-75

13BFFFFF
13CFFFFF
13DFFFFF
13EFFFFF
13FFFFFF

140FFFFF
141FFFFF
142FFFFF
143FFFFF
144FFFFF

145FFFFF
146FFFFF
147FFFFF
148FFFFF
14SFFFFF

14AFFFFF
14BFFFFF
l14CFFFFF
14DFFFFF
14EFFFFF

360

365

370

375

380

14FFFFFF

150FFFFF
151FFFFF
152FFFFF
153FFFFF

154FFFFF
155FFFFF
156FFFFF
157FFFFF
158FFFFF

159FFFFF
15AFFFFF
15BFFFFF
15DFFFFF
15DFFFFF

15EFFFFF
1S5FFFFFF
160FFFFF
161FFFFF
162FFFFF

163FFFFF
164FFFRF
165FFFFF
166FFFFF
167FFFFF

385

395

400

IMB boundries

Megabyte
16800000
16900000
16A00000

16B00000 -
16C00000 -

Megabyte
16D00000
16E00000
16F00000

17000000 -
17100000 -

Megabyte

17200000 -

17300000
17400000
17500000

17600000 -

Megabyte
17700000
17800000
17300000
17A00000
17800000
Megabyte

"17C00000 -

17D00000
17E00000
17F00000
18000000
Megabyte
18100000
18200000
18300000
18400000

18500000 -
390 Megabyte

18600000
18700000
18800000
18900000
18A00000
Megabyte
18B00000
18C00000
18D00000
18E00000
18F00000
Megabyte
19000000
19100000
19200000

19300000 -
19400000 -

168FFFFF
169FFFFF
16AFFFFF
16BFFFFF
16CFFFFF

16DFFFFF
16EFFFFF
16FFFFFF
170FFFFF
171FFFFF

172FFFFF
173FFFFF
174FFFFF
175FFFFF
176FFFFF

177FFFFF
178FFFFF
179FFFFF
17AFFFFF
17BFFFFF

17CFFFFF

17DFFFFF
17EFFFFF
17FFFFFF
180FFFFF

181FFFFF
182FFFFF
183FFFFF
184FFFFF
185FFFFF

186FFFFF
187FFFFF
188FFFFF
189FFFFF
18AFFFFF

18BFFFFF
18CFFFFF
18DFFFFF
18EFFFFF
18FFFFFF

130FFFFF
191FFFFF
132FFFFF
1S3FFFFF
194FFFFF

405

410

415

420

425

430

435

440

445

Physical "BYTE” Address Space -

Megabyte
19500000
19600000
19700000
19800000
19900000
Megabyte
19A00000
19800000
19C00000
19D00000
19E00000
Megabyte
19F00000
1A000000
14100000
14200000
1A300000
Megabyte
14400000
14500000
14600000
14700000
1A800000
Megabyte
1A300000
1AA00000
1AB00000
1AC00000
1ADC00O00
Megabyte
1AE00000
1AF00000
1B00000O
1B100000
1B200000
Megabyte
1B300000
18400000
1B500000
1B600000

~ 1B700000

Megabyte
1B800000
18900000
1BAQQO0QO
1BB0000O
1BC00000
Megabyte
1BD000QO
1BEQ00QO
1BF00000
1C000000
1€100000

195FFFFF
1S6FFFFF
1S7FFFFF
198FFFFF
199FFFFF

19AFFFFF
19BFFFFF
1SCFFFFF
19DFFFFF
1SEFFFFF

19FFFFFF
l1AQFFFFF
l1A1FFFFF
1A2FFFFF
1A3FFFFF

IA4FFFFF
1ASFFFFF
1A6FFFFF
1A7FFFFF

1A8FFFFF

1ASFFFFF
1AAFFFFF
1ABFFFFF
1ACFFFFF
1ADFFFFF

l1AEFFFFF
1AFFFFFF
1BOFFFFF
1B1FFFFF
1B2FFFFF

1B3FFFFF
1B4FFFFF
1BS5FFFFF
1B6FFFFF
1B7FFFFF

1B8FFFFF
1BI9FFFFF
1BAFFFFF
1BBFFFFF
1BCFFFFF

1BDFFFFF
1BEFFFFF
1BFFFFFF
1COFFFFF
1C1FFFFF

450 Megabyte
1C200000 -
1C300000
1C400000
1C500000
1C600000

455 Megabyte
1C700000 -
1¢800000
1C900000
1cao0000
1CBO0COO

460 Megabyte
1CCc00000 -
1CD00000
1CEC00QO
1CF00000
1D000000

465 Megabyte
1D100000
1D2000C00
1D300000
1D400000
10500000

470 Megabyte
1D600000
1D700000
1D800000
1D900000
1DAC0GQO0

475 Megabyte
1DBO00QGO
1DCcoooao
1DD00000
1DEQ0QOQ
1DF000Q0

480 Megabyte
1E0000Q0CO
1E100000
1E200000
1E300000
1E400000

485 Megabyte
1E500000
1E600000
1E700000
1E80000Q0
1E900000

430 Megabyte
1EAQ0000 -
1EBO0COO -
1EC00000 -
1EDOQOCOO -
1EEQ0000 -

|

1-76

1C2FFFFF
1C3FFFFF
1C4FFFFF
1CS5FFFFF
1C6FFFFF

1C7FFFFF
1C8FFFFF
1CO9FFFFF
1CAFFFFF
1CBFFFFF

1CCFFFFF
1CDFFFFF
1CEFFFFF
1CFFFFFF
1DOFFFFF

1D1FFFFF
1D2FFFFF
1D3FFFFF
1D4FFFFF
1DSFFFFF

1D6FFFFF
1D7FFFFF
1D8FFFFF
1DSFFFFF
1DAFFFFF

1DBFFFFF
1DCFFFFF
1DDFFFFF
1DEFFFFF
1DFFFFFF

1EQFFFFF
1E1FFFFF
1E2FFFFF
1E3FFFFF
1E4FFFFF

1ESFFFFF
1E6FFFFF
1E7FFFFF
1E8FFFFF
1ESFFFFF

1EAFFFFF
1EBFFFFF
1ECFFFFF
1EDFFFFF
l1EEFFFFF

IMB boundries

495 Megabyte

1EF00000
1F000000
1F100000
1F200000
1F300000

500 Megabyte

1F400000
1F500000
1F600000

1F700000 -
1F800000 -
505 Megabyte

1F900000
1FA00000
1FB000OO
1FC00000
1FD00000

510 Megabyte
1FE00000 -

1FF00000

1EFFFFFF
1IFQFFFFF
1F1FFFFF
1F2FFFFF
1F3FFFFF

1F4FFFFF

- 1FSFFFFF

1F6FFFFF
1F7FFFFF
1F8FFFFF

1F9FFFFF
1FAFFFFF
1FBFFFFF
1FPCFFFFF
1FDFFFFF

lFEFFFFF
1FFFFFFF

000

004

008

012

016

G20

024

028

032

036

040

Physical “Longword” Address

Megabyte

0000000 -
0040000 -
0080000 -
00coo00 -
Megabyte

0100000 -
0140000 -
0180000 -
01C0000 -
Megabyte

0200000 -
0240000 -
0280000 -
02co000 -
Megabyte

0300000 -
0340000 -
0380000 -
03coo000 -
Megabyte

0400000 -
0440000 -
0480000 -
04coo000 -
Megabyte

0500000 -
0540000 -
0580000 -
05C0000 -
Megabyte

0600000 -
0640000 -
0680000 -
06C0000 -
Megabyte

0700000 -
0740000 -
0780000 -
07C0000 -
Megabyte

0800000 -
0840000 -
0880000 -
08C0000 -
Megabyte

03900000 -
0940000 -
0880000 -
09C0000 -
Megabyte

0AQ0000 -
0AC0000 -
0A80000 -
0AC0000 -

003FFFF
007FFFF
OOBFFFF
00FFFFF

013FFFF
017FFFF
01BFFFF

‘01FFFFF

023FFFF
027FFFF
02BFFFF
02FFFFF

033FFFF
037FFFF
03BFFFF
O03FFFFF

043FFFF
047FFFF
04BFFFF
04FFFFF

O053FFFF
057FFFF
0SBFFFF
OSFFFFF

063FFFF
067FFFF
06BFFFF
O06FFFFF

073FFFF
077FFFF
07BFFFF
07FFFFF

083FFFF
087FFFF
08BFFFF
08FFFFF

093FFFF
097FFFF
09BFFFF
09FFFFF

OA3FFFF
OA7FFFF
OABFFFF
OAFFFFF

044

048

052

056

060

064

068

072

076

080

084

Megabyte
0B0000O -
0B40000 -
0B80000 -
0BCO000 -
Megabyte
0C00000 -
0C40000 -
0C80000 -
0CC0000 -
Megabyte
0D00000 -
0D40000 -
0D80000 -
0DC0000 -
Megabyte
0E0000Q0 -
0E40000 -
O0E80000 -
0EC0000 -
Megabyte
0F00000 -
0F40000 -
0F80000 -
QFC0000 -
Megabyte
1000000 -
1040000 -
1080000 -
10C0000 -
Megabyte
1100000 -
1140000 -
1180000 -
11C0000 -
Megabyte
1200000 -
1240000 -
1280000 -
12C0000 -
Megabyte
1300000 -
1340000 -
1380000 -
13c0000 -
Megabyte
1400000 -
1440000 -
1480000 -
14C0000 -
Megabyte
1500000 -
1540000 -
1580000 -
15C0000 -

1-77

Space 1 MB boundries

OB3FFFF
CB7FFFF
0BBFFFF
OBFFFFF

0C3FFFF
0C7FFFF
0CBFFFF
0CFFFFF

OD3FFFF
0D7FFFF
ODBFFFF
ODFFFFF

OE3FFFF
0E7FFFF
OEBFFFF
OEFFFFF

OF3FFFF
OF7FFFF
OFBFFFF
OFFFFFF

103FFFF
107FFFF
10BFFFF
10FFFFF

113FFFF
117FFFF
11BFFFF
l11FFFFF

123FFFF
127FFFF
12BFFFF
12FFFFF

133FFFF
137FFFF
13BFFFF
13FFFFF

143FFFF
147FFFF
14BFFFF
14FFFFF

153FFFF
157FFFF
15BFFFF
15FFFFF

088 Megabyte
1600000 - 163FFFF
1640000 - 167FFFF
1680000 - 16BFFFF
16C0000 - 16FFFFF
092 Megabyte
1700000 - 173FFFF
1740000 - 177FFFF
1780000 - 17BFFFF
17C0000 - 17FFFFF
096 Megabyte
1800000 - 183FFFF
1840000 - 187FFFF
1880000 - 18BFFFF
18C0000 - 18FFFFF
100 Megabyte
1900000 - 193FFFF
1940000 - 197FFFF
1980000 - 19BFFFF
19C0000 - 19FFFFF
104 Megabyte
1A00000 - 1A3FFFF
1240000 - 1lA7FFFF
1A80000 - lABFFFF
1AC0000 - 1AFFFFF
108 Megabyte
1B00000 - 1B3FFFF
1B40000 - 1B7FFFF
1B80000 - 1BBFFFF
1BCO000 - 1BFFFFF
112 Megabyte
1C00000 - 1C3FFFF
1C40000 - 1C7FFFF
1C80000 - 1CBFFFF
1CCO0000 - 1CFFFFF
116 Megabyte
1D00000 - 1D3FFFF
1D40000 - 1D7FFFF
1D80000 - 1DBFFFF
1DCO000 - 1DFFFFF
120 Megabyte
1E00000 - 1E3FFFF
1E40000 - 1E7FFFF
1E80000 - 1lEBFFFF
1EC0000 - 1EFFFFF
124 Megabyte
1F00000 - 1F3FFFF
1F40000 - 1F7FFFF
1F80000 - 1FBFFFF
1FC0000 - 1FFFFFF

*%% BEWARE ***
These are LONGWORD address
ranges, (not byte ranges).
(PA<29:02>) / (ID#1A<27:00>)

128

132

136

140

144

148

152

156

160

164

168

Physical "Longword” Address Space I MB boundries

Megabyte

2000000 -
2040000 -
2080000 -
20C0000 -
Megabyte

2100000 -
2140000 -
2180000 -
21C0000 -
Megabyte

2200000 -
2240000 -
2280000 -
22C0000 -
Megabyte

2300000 -
2340000 -
2380000 -
23C0000 -
Megabyte

2400000 -
2440000 -
2480000 -
24C0000 -
Megabyte

2500000 -
2540000 -
2580000 -
25C0000 -
Megabyte

2600000 -
2640000 -
2680000 -
26C0000 -
Megabyte

2700000 -
2740000 -
2780000 -
27C0000 -
Megabyte

2800000 -
2840000 -
2880000 -
28C0000 -
Megabyte

2900000 -
2940000 -
2980000 -
29C0000 -
Megabyte

2A00000 -
2AC0000 -
2A80000 -
2AC0000 -

203FFFF
207FFFF
20BFFFF
20FFFFF

213FFFF
217FFFF
21BFFFF
21FFFFF

223FFFF
227FFFF
22BFFFF
22FFFFF

233FFFF
237FFFF
23BFFFF
23FFFFF

243FFFF
247FFFF
24BFFFF
24FFFFF

253FFFF
257FFFF
25BFFFF
25FFFFF

263FFFF
267FFFF
26BFFFF
26FFFFF

273FFFF
277FFFF
27BFFFF
27FFFFF

283FFFF
287FFFF
28BFFFF
28FFFFF

293FFFF
297FFFF
29BFFFF
29FFFFF

2A3FFFF
2A7FFFF
2ABFFFF
2AFFFFF

172

176

180

184

188

192

196

200

204

208

212

Megabyte
2B00000 -
2B40000 -
2B80000 -
2BC0O000 -
Megabyte
2C00000 -
2C40000 -
2C80000 -
2CCo000 -
Megabyte
2D00000 -
2D40000 -
2D80000 -
2DC0000 -
Megabyte
2E00000 -
2E40000 -
2E80000 -
2EC0000 -
Megabyte
2F00000 -
2F40000 -
2F80000 -
2FC0000 -
Megabyte
3000000 -
3040000 -
3080000 -
30C0000 -
Megabyte
3100000 -
3140000 -
3180000 -
31C0000 -
Megabyte
3200000 -
3240000 -
3280000 -
32C0000 -
Megabyte
3300000 -
3340000 -
3380000 -
33C0000 -
Megabyte
3400000 -
3440000 -
3480000 -
34C0000 -
Megabyte
3500000 -
3540000 -
3580000 -
35C0000 -

1-78

2B3FFFF
2B7FFFF
2BBFFFF
2BFFFFF

2C3FFFF
2CT7FFFF
2CBFFFF
2CFFFFF

2D3FFFF
2D7FFFF
2DBFFFF
2DFFFFF

2E3FFFF
2E7FFFF
2EBFFFF
2EFFFFF

2F3FFFF
2F7FFFF
2FBFFFF
2FFFFFF

303FFFF
307FFFF
30BFFFF
30FFFFF

313FFFF
317FFFF
31BFFFF
31FFFFF

323FFFF
327FFFF
32BFFFF
32FFFFF

333FFFF
337FFFF
33BFFFF
33FFFFF

343FFFF
347FFFF
34BFFFF
34FFFFF

353FFFF
357FFFF
35BFFFF
35FFFFF

216 Megabyte
3600000 - 363FFFF
3640000 -~ 367FFFF
3680000 - 36BFFFF
36C0000 - 36FFFFF
220 Megabyte
3700000 - 373FFFF
3740000 - 377FFFF
3780000 - 37BFFFF
37C0000 - 37FFFFF
224 Megabyte
3800000 - 383FFFF
3840000 - 387FFFF
3880000 - 38BFFFF
38C0000 - 38FFFFF
228 Megabyte
3900000 - 393FFFF
3940000 - 397FFFF
3980000 - 39BFFFF
39C0000 - 39FFFFF
232 Megabyte
3A00000 - 3A3FFFF
3A40000 - 3A7FFFF
3A80000 - 3ABFFFF
3AC0000 - 3AFFFFF
236 Megabyte
3B0000O0 - 3B3FFFF
3B40000 - 3B7FFFF
3B80000 - 3BBFFFF
3BCO000 - 3BFFFFF
240 Megabyte
3C00000 - 3C3FFFF
3C40000 - 3C7FFFF
3C80000 - 3CBFFFF
3CC0000 - 3CFFFFF
244 Megabyte
3D00000 - 3D3FFFF
3D40000 - 3D7FFFF
3D80000 - 3DBFFFF
3DC0000 - 3DFFFFF
248 Megabyte
3E00000 - 3E3FFFF
3E40000 - 3E7FFFF
3E80000 - 3EBFFFF
3EC0000 -~ 3EFFFFF
252 Megabyte

3F00000 - 3F3FFFF
3F40000 - 3F7FFFF
3F80000 - 3FBFFFF
3FC0000 - 3FFFFFF

%* BEWARE *
These are LONGWORD address
ranges, (not byte ranges).
(PA<29:02>) / (ID#1A<27:00>)

Physical "Longword” Address Space I MB boundries

256 Megabyte 300 Megabyte 344 Megabyte
4000000 - 403FFFF 4B00000 - 4B3FFFF 5600000 - 563FFFF
4040000 - 407FFFF 4B40000 - 4B7FFFF 5640000 - S67FFFF
4080000 - 40BFFFF 4880000 - 4BBFFFF 5680000 - S6BFFFF
40C0000 - 40FFFFF 4BC0000 - 4BFFFFF 56C0000 - S56FFFFF
260 Megabyte 304 Megabyte 348 Megabyte
4100000 - 413FFFF 4C00000 - 4C3FFFF 5700000 - S573FFFF
4140000 - 417FFFF 4C40000 - 4C7FFFF 5740000 - STFFFFF
4180000 - 41BFFFF 4C80000 ~ 4CBFFFF 5780000 - S57BFFFF
41C0000 - 41FFFFF 4CCO000 - 4CFFFFF 57C0000 - S57FFFFF
264 Megabyte 308 Megabyte 352 Megabyte
4200000 - 423FFFF 4D00000 - 4D3FFFF 5800000 - 583FFFF
4240000 - 427FFFF 4D40000 - 4D7FFFF 5840000 - S87FFFF
4280000 - 42BFFFF 4D80000 - 4DBFFFF 5880000 - S58BFFFF
42C0000 - 42FFFFF 4DCO000 - 4DFFFFF 58C0000 - 58FFFFF
268 Megabyte 312 Megabyte 356 Megabyte
4300000 - 433FFFF 4E00000 - 4E3FFFF 5900000 - 593FFFF
4340000 - 437FFFF 4E40000 - 4E7FFFF 5340000 - 597FFFF
4380000 - 43BFFFF 4E80000 - 4EBFFFF 5980000 - S59BFFFF
43C0000 - 43FFFFF 4EC0000 - 4EFFFFF 59C0000 - S5SFFFFF
272 Megabyte 316 Megabyte 360 Megabyte
4400000 - 443FFFF 4F00000 - 4F3FFFF 5A00000 - SA3FFFF
4440000 - 447FFFF 4F40000 - AF7FFFF 5440000 - SA7FFFF
4480000 - 44BFFFF 4F80000 - 4FBFFFF 5A80000 - SABFFFF
44C0000 - 44FFFFF 4FC0000 - 4FFFFFF 5AC0000 - SAFFFFF
276 Megabyte 320 Megabyte 364 Megabyte
4500000 - 453FFFF 5000000 - 53FFFFF 5B00000 - SB3FFFF
4540000 - 457FFFF 5040000 - S7FFFFF 5B40000 - 5B7FFFF
4580000 - 45BFFFF 5080000 - S5BFFFFF 5B80000 - 5BBFFFF
45C0000 - 45FFFFF 50C0000 - SFFFFFF : 5BC000Q0 - SBFFFFF
280 Megabyte 324 Megabyte 368 Megabyte
4600000 - 463FFFF 5100000 - 513FFFF 5C00000 ~ SC3FFFF
4640000 - 467FFFF 5140000 - S17FFFF 5C40000 - SC7FFFF
4680000 - 46BFFFF 5180000 - S1BFFFF 5C80000 - SCBFFFF
46C0000 - 46FFFFF 51C0000 - S1FFFFF 5CC0000 - S5CFFFFF
284 Megabyte 328 Megabyte 372 Megabyte
4700000 - 473FFFF 5200000 - 523FFFF 5D00000 - SD3FFFF
4740000 - 477FFFF 5240000 - 527FFFF 5D40000 - SD7FFFF
4780000 - 47BFFFF 5280000 - 52BFFFF 5D80000 - SDBFFFF
47C0000 - 47FFFFF 52C0000 - 52FFFFF 5DC0000 - SDFFFFF
288 Megabyte 332 Megabyte 376 Megabyte
4800000 - 483FFFF 5300000 - S533FFFF SEQ0000 - SE3FFFF
4840000 - 487FFFF 5340000 - S537FFFF 5E40000 - SE7FFFF
4880000 - 48BFFFF 5380000 - 53BFFFF 5E80000 - SEBFFFF
48C0000 - 48FFFFF 53C0000 - S53FFFFF 5EC0000 - SEFFFFF
292 Megabyte 336 Megabyte 380 Megabyte
4900000 - 493FFFF 5400000 - S543FFFF 5F00000 - S5F3FFFF
4940000 - 497FFFF 5440000 - S47FFFF 5F40000 - SF7FFFF
4980000 - 4SBFFFF 5480000 - S54BFFFF 5F80000 - SFBFFFF
49C0000 - 4SFFFFF 54C0000 - S54FFFFF 5FC0000 - SFFFFFF
296 Megabyte 340 Megabyte
4A00000 - 4A3FFFF 5500000 - 553FFFF *%%* BEWARE ***
4AC0000 - 4AT7FFFF 5540000 - 557FFFF These are LONGWORD address
4A80000 - 4ABFFFF 5580000 - S5BFFFF ranges,{(not byte ranges).
4AC0000 - 4AFFFFF 55C0000 - SS5FFFFF (PA<29:02>) / (ID#1A<27:00>)

1-79

Physical "Longword” Address Space I MB boundries

384 Megabyte- 428 Megabyte 472 Megabyte
6000000 - 603FFFF 6B00000 - 6B3FFFF 7600000 - 763FFFF
6040000 - 607FFFF 6B40000 - 6B7FFFF 7640000 - 767FFFF
6080000 - 60BFFFF 6B80000 - 6BBFFFF 7680000 ~ 76BFFFF
60C0000 - 60FFFFF 6BC0000 - 6BFFFFF 76C0000 - 76FFFFF
388 Megabyte 432 Megabyte 476 Megabyte
6100000 - 613FFFF 6C00000 - 6C3FFFF 7700000 - 773FFFF
6140000 - 617FFFF 6C40000 - 6C7FFFF 7740000 - 777FFFF
6180000 - 61BFFFF 6C80000 - 6CBFFFF 7780000 - 77BFFFF
61C0000 - 61FFFFF 6CC0000 - 6CFFFFF 77C0000 - 77FFFFF
392 Megabyte 436 Megabyte 480 Megabyt
6200000 - 623FFFF 6D00000 - 6D3FFFF 7800000 - 783FFFF
6240000 - 627FFFF 6D40000 - 6D7FFFF 7840000 - 787FFFF
6280000 - 62BFFFF 6D80000 - 6DBFFFF 7880000 - 78BFFFF
62C0000 - 62FFFFF 6DCO000 - 6DFFFFF 78C0000 - 78FFFFF
396 Megabyte 440 Megabyte 484 Megabyte
6300000 - 633FFFF 6E00000 - 6E3FFFF 7900000 - 7893FFFF
6340000 - 637FFFF 6E40000 - 6E7FFFF 7940000 - 797FFFF
6380000 - 63BFFFF 6E80000 - 6EBFFFF 7980000 - 79BFFFF
63C0000 - 63FFFFF 6EC0000 - - 6EFFFFF 79C0000 - 79FFFFF
400 Megabyte 444 Megabyte 488 Megabyte
6400000 -~ 643FFFF 6F00000 - 6F3FFFF 7A00000 - 7A3FFFF
6440000 - 647FFFF 6F40000 - 6F7FFFF 7240000 - 7A7FFFF
6480000 - 64BFFFF 6F80000 - 6FBFFFF 7A80000 - 7ABFFFF
64C0000 - 64FFFFF 6FC0000 - G6FFFFFF 7AC0000 - 7AFFFFF
404 Megabyte 448 Megabyte 492 Megabyte
6500000 - 653FFFF 7000000 - 703FFFF 7B00000 - 7B3FFFF
6540000 - 657FFFF 7040000 - 707FFFF 7B40000 - 7B7FFFF
6580000 - 65BFFFF 7080000 - 70BFFFF 7880000 - 7BBFFFF
65C0000 - 65FFFFF 70C0000 - 70FFFFF 7BC0000 - 7BFFFFF
408 Megabyte 452 Megabyte 436 Megabyte
6600000 - 663FFFF 7100000 - 713FFFF 7C00000 - 7C3FFFF
6640000 - 667FFFF 7140000 - 717FFFF 7C40000 - 7C7FFFF
6680000 - 66BFFFF 7180000 - 71BFFFF 7C80000 - 7CBFFFF
66C0000 - 66FFFFF 71C0000 - 71FFFFF 7CC0000 - 7CFFFFF
412 Megabyte 456 Megabyte 500 Megabyte
6700000 - 673FFFF 7200000 - 723FFFF 7D00000 - 7D3FFFF
6740000 - 677FFFF 7240000 - 727FFFF 7D40000 - 7D7FFFF
6780000 - 67BFFFF 7280000 - 72BFFFF 7D80000 - 7DBFFFF
67C0000 - 67FFFFF 72C0000 - 72FFFFF 7DCO0000 - 7DFFFFF
416 Megabyte 460 Megabyte 504 Megabyte
6800000 - 683FFFF 7300000 - 733FFFF 7E00000 -~ 7E3FFFF
6840000 - 687FFFF 7340000 - 737FFFF 7E40000 - 7E7FFFF
6880000 - 68BFFFF 7380000 - 73BFFFF 7E80000 - 7EBFFFF
68C0000 - 68FFFFF 73C0000 - 73FFFFF 7EC0000 - 7EFFFFF
420 Megabyte 464 Megabyte 508 Megabyte
6900000 - 6S93FFFF 7400000 - 743FFFF 7F00000 - 7F3FFFF
6940000 - 697FFFF 7440000 - 747FFFF 7F40000 - 7F7FFFF
6980000 - 69BFFFF 7480000 - 74BFFFF 7F80000 - 7FBFFFF
69C0000 - 6SFFFFF 74C0000 - 74FFFFF 7FC0000 - 7FFFFFF
424 Megabyte 468 Megabyte
6A00000 - 6A3FFFF 7500000 - 753FFFF *%%* BEWARE ***
6AC0000 - GATFFFF 7540000 - 757FFFF These are LONGWORD address
6A80000 - 6ABFFFF 7580000 - 7SBFFFF ranges, (not byte ranges).
6AC0000 - 6AFFFFF 75C0000 - 75FFFFF (PA<29:02>) / (ID#1A<27:00>)

1-80

The following charts show the TIMEOUT ADDRESS (ID #1A) range for the

VAX NEXUS devices. The address ranges actually show the Longword Address
ranges for each device. The address shown in "ID #1lA" bits <27:00> are
equal to the Physical address bits PA<29:02>, which is actually a Longword
address. The charts showing memory array address ranges assume that the
memories are not interleaved.

MS780C ”0-4 Megabyte” /MS780A "0-1 Megabyte” ("LONGWORD” ranges)

MS780C MS780A
Array Slot M8210 Arrays M8211 Arrays
0 17 0000000 - OOQFFFF 0000000 - OOO3FFF
1 16 0010000 - OQ1FFFF 0004000 - Q0O0OQ7FFF
2 15 0020000 - OOQ2FFFF 0008000 - OOOBFFF
3 14 0030000 -- OQ3FFFF 000C000 - OQOOFFFF
4 13 0040000 - O0O4FFFF 0010000 - QO013FFF
5 12 0050000 - OQOSFFFF 0014000 - 0O017FFF
6 11 0060000 - OQ6FFFF 0018000 - 0O01BFFF
7 10 0070000 - QO7FFFF 001C000 - OOlFFFF
8 9 0080000 - QOBFFFF 0020000 - 0023FFF
9 8 0090000 - OOSFFFF 0024000 - QQ27FFF
A 7 00A0000 - OOAFFFF 0028000 - GO02BFFF
B 6 00BO0O0OO - OOBFFFF 002C000 - O0O02FFFF
C 5 00C0000 - OOCFFFF 0030000 - O0033FFF
D 4 00D0000 - OODFFFF 0034000 - OO037FFF
E 3 00EO000 - OOEFFFF 0038000 - OO03BFFF
F 2 00F0000 - OOFFFFF 003C000 - OO3FFFF

MS780C "4-8 Megabyte” /MS780A "1-2 Megabyte” ("LONGWORD” ranges)

MS780C MS780A
Array Slot M8210 Arrays M8211 Arrays
0 17 0100000 - Ql1Q0FFFF 0040000 - 0O43FFF
1 16 0110000 - Ol1FFFF 0044000 - 0047FFF
2 15 0120000 - Q12FFFF 0048000 - Q04BFFF
3 14 0130000 - Ol3FFFF 004C000 - OOQ4FFFF
4 13 0140000 - Ql4FFFF 0050000 - OOS3FFF
5 12 0150000 - Ol5FFFF 0054000 - Q0057FFF
6 11 0160000 - Ol6FFFF 0058000 - OOSBFFF
7 10 0170000 - Ol7FFFF 005C000 - OQSFFFF
8 9 0180000 - Ol8FFFF 0060000 - QO063FFF
9 0190000 - Q19FFFF 0064000 - O0Q67FFF
A 7 01A0000 - OlAFFFF 0068000 - QO06BFFF
B 6 01B0000 - O1BFFFF 006C000 - OQ6FFFF
C 5 01C0000 - OlCFFFF 0070000 - QO73FFF
D 4 01D00C0 - O1DFFFF 0074000 - QQ77FFF
E 3 01EQ0CO - OlEFFFF 0078000 - O0OQ7BFFF
F 2 01F0000 - OlFFFFF 007C000 - OQ7FFFF

1-81

MA780A Array “"Longword” Address Ranges

MA780A MA780A
M8210 Arrays M8210 Arrays
Array Slot 0 to 2 Megabyte 2 to 4 Megabyte
0 8 0000000 - OOOFFFF 0080000 - OQBFFFF
1 7 - 0010000 - OO1FFFF 0090000 - OOSFFFF
2 6 0020000 - OO2FFFF 00AQ000 - OOQAFFFF
3 5 0030000 - QOO3FFFF 00B0O000 - QOOBFFFF
4 4 0040000 - QQ04FFFF 00C0000 - OOCFFFF
5 3 0050000 - OOQSFFFF 00D0000 - OODFFFF
6 2 0060000 - OO6FFFF 00E00Q0 - OOEFFFF
7 1 0070000 - OQ7FFFF 00F0000 ~ OOFFFFF
MA780A MA780A
M8210 Arrays M8210 Arrays
Array Slot 4 to 6 Megabyte 6 to 8 Megabyte
0 8 0100000 - O01QOFFFF 0180000 - Cl8FFFF
1 7 0110000 - OllFFFF 0190000 - 019FFFF
2 6 0120000 - Ol2FFFF 01A0000 - OlAFFFF
3 5 0130000 - O13FFFF 01B0000 - O1BFFFF
4 4 0140000 - Cl4FFFF 01C0000 - O1CFFFF
5 3 0150000 - 'O15FFFF 01D0000 - O1DFFFF
6 2 0160000 - 016FFFF 01E000Q0 - OlEFFFF
7 1 0170000 - Ql17FFFF 01F000C - OlFFFFF

1-82

MS780-E Array "Longword” Address Ranges

Internally Interleaved

A total of 16 Megabytes per MS780-E are possible when ‘internally .
interleaving. In order to internal interleave the MS780-E, the following
configuration guidelines must be followed:

. Memory Controllers (M8375's) must be installed in slots 10 & 12.

. Each controller must have the same amount of memory arrays, of the
same type and capacity, in their respective array slots.

. There cannot be any gaps between the arrays on each controller. In
other words, the Lower Controller expands from slot 9 towards slot 2
while the Upper Controller expands from slot 13 towards slot 20.

When the MS780-E is confiqured with two controllers, the memory is
internally interleaved as follows:

The "Lower Controller's Arrays" contain the "EVEN Physical QUADWORD"
addresses, (Physical Address bit 3=0)}.

The "Upper Controller's Arrays" contain the "ODD Physical QUADWORD"
addresses, (Physical Address bit 3=1).

MS780-E MS780-E
M8373 Arrays M8373 Arrays

Array Slot 0 to 16 Megabyte 16 to 32 Megabyte

LO 9 0000000 - GO7FFFF (PA3=0) 0400000 - Q47FFFF

uo 13 (PA3=1)

L1 8 0080000 - QOFFFFF {PA3=0) 0480000 - O4FFFFF

Ul 14 (PA3=1)

L2 7 0100000 - O17FFFF (PA3=0) 0500000 - QOS57FFFF

U2 15 (PA3=1)

L3 6 0180000 - Q1FFFFF {(PA3=0) 0580000 - OSFFFFF

U3 16 (PA3=1)

L4 5 0200000 - 027FFFF (PA3=0) 0600000 - OBT7FFFF

U4 17 (PA3=1)

L5 4 0280000 - Q2FFFFF (PA3=0) 0680000 - O6FFFFF

uUs 18 (PA3=1)

L6 3 0300000 - 037FFFF (PA3=0) 0700000 - 077FFFF

U6 19 {(PA3=1)

L7 2 0380000 - O3FFFFF {(PA3=0) 0780000 - Q7FFFFF

U7 20 (PA3=1)

= Lower Controller's Array
= Upper Controller's Array
A3 = Physical Address bit 3

1-83

MS780-E Array "Longword” Address Ranges (cont’d)

No Internal Interleaving

The MS780-E may be operated in NO_INTERNAL_INTERLEAVING mode but the total
amount of memory per MS780-E is reduced to a total of 8 Megabytes. This
mode of operation is accomplished whenever the following configuration
guidelines are followed:

. There is only one Memory Controller (M8375) installed in the
MS780-E backplane. This controller can be installed in either
slot 10 or 12 (slot 10 is preferred).

If the memory controller is installed in slot 10, the memory array
modules must be installed in slots 9 through 2 only. No memory
arrays are to be installed in slots 13 through 20.

If the memory controller is installed in slot 12, the memory array
modules must be installed in slots 13 through 20 only. No memory
arrays are to be installed in slots 9 through 2.

The memory arrays must be installed with no gaps between arrays and
no gap between the memory controller and the first array.

MS780-E MS780-E
M8373 Arrays M8373 Arrays
Array Slot 0 to 8 Megabyte 8 to 16 Megabyte
0 9 or 13 0000000 - OO3FFFF 0200000 - 023FFFF
1 8 or 14 0040000 - OQ7FFFF 0240000 - 027FFFF
2 7 or 15 0080000 - OOBFFFF 0280000 - 02BFFFF
3 6 or 16 00C0000 - OOFFFFF 02C0000 - O2FFFFF
4 5 or 17 0100000 - Ol3FFFF 0300000 - O33FFFF
5 4 or 18 0140000 - Ol7FFFF 0340000 - 037FFFF
6 3 or 19 0180000 - O1BFFFF 0380000 - O03BFFFF
7 2 or 20 01C0000 - OlFFFFF 03C0000 - Q3FFFFF

In the above chart, the slot of the array depends upon which memory
controller is installed. Slots 2 through 9 are used if the Memory
Controller is in slot 10, and slots 13 through 20 are used if the
Memory Controller is in slot 12.

1-84

MS780-E Array "Longword” Address Ranges (cont’d)

Externally Interleaved

A total of 16 Megabytes are possible when externally interleaving two
MS780-E controllers. In order to externally interleave 2 MS780-E memory
backplanes, the following configuration guidelines must be followed:

Both memory backplanes must be configured to operate in the
non_internal interleaved mode.

. Both memory subsystems must have the same amount of memory arrays, of
the same type and capacity, and in corresponding slot locations.

. Both memory subsystems must have the same assigned starting address.

. The memory subsystems must have adjacent "TR Levels" assigned to
them.

. "Bit <0>" of both memory subsystems' "CNFG A register" must be
set prior to memory usage.

When two MS780-E's are configured for EXTERNAL interleaving, the following
rules are used to determine what address are located in what memory.

. The Memory Subsystem assigned the "Lower TR Level" contains the "EVEN
Quadword" addresses.

The Memory Subsystem assigned the "Higher TR Level" contains the "ODD
Quadword" addresses.

MS780-E
M8373 Arrays
Array Slot 0 to 16 Megabyte
LO 9/13 0000000 - QOQ7FFFF (PA3=0)
uo 9/13 (PA3=1)
Ll 8/14 0080000 - OQOFFFFF (PA3=0)
Ul 8/14 (PA3=1)
L2 7/15 0100000 - Ql7FFFF (PA3=0)
U2 7/15 (PA3=1)
L3 6/16 0180000 - OlFFFFF (PA3=0)
U3 6/16 {(PA3=1)
L4 5/17 0200000 - 027FFFF (PA3=0)
U4 5/17 (PA3=1)
L5 1/18 0280000 - O2FFFFF (PA3=0)
us 1/18 (PA3=1)
L6 3/19 0300000 - 037FFFF (PA3=0)
ué 3/19 (PA3=1)
L7 2/290 0385000 - O3FFFFF (PA3=0)
U7 2/29 (PA3=1)
L = Memory Subsystem with the Lower assighed "TR Level".
H = Memory Subsystem with the Higher assigned "TR Level”.
PA3 = Physical Address bit 3

1-85

Converting a “UNIBUS Byte (Octal Format) Address” to a

"VAX (Hex Format) Longword” address

Take the UNIBUS address and drop off the 2 least significant
"binary" bits (Unibus address bits <1:0> are not used).

17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
I use these binary bits for conversion | not |
used

Change the Unibus address bits <17:02> to a Hexadecimal number
by breaking the "binary" representation of these address bits
into 4-bit sections. Do not use address bits <1:0>,

| 17 16 15 14 | 13 12 11 10 | 09 08 07 06 | 05 04 03 02 |
Using the hexadecimal number converted in steps 1 and 2, add it

to one of the following DW780 Adapter Base addresses (which one
you use depends on which DW780 the UNIBUS device resides).

DW780 DW780 Unibus Space
Adapter Longword Base Address
0 8040000
1 8050000
2 8060000
3 8070000

The resulting hexadecimal number (should be 7 hexadecimal digits
in length) is the SBI Longword address that is used to access

the UNIBUS address just converted for that particular Adapter's
UNIBUS. This is the address that will be stored in the

"TIMEOUT ADDRESS" (ID #lA) register on a CP Timeout. If you

want to find out what the Physical Byte address is, simply convert
the Longword address by adding two binary zeros as the least
significant bits and then reconvert back to hexadecimal.

1-86

Converting a "VAX LONGWORD (Hex Format)” address to a
"UNIBUS BYTE (Octal Format)” address

First of all, you must make sure that you have an SBI address
that is assigned to a DW780 Adapters' Unibus space. Check to see
that the address falls in one of the following ranges:
Adapter #0 SBI UNIBUS_Address_Space - 8040000 thru 804FFFF
Adapter #1 SBI UNIBUS_Address_Space - 8050000 thru 80SFFFF
Adapter #2 SBI UNIBUS_Address_Space - 8060000 thru 806FFFF
Adapter #3 SBI UNIBUS_Address_Space - 8070000 thru 807FFFF
If the address to be converted falls in one of these ranges, then
you do have a VAX Physical Longword Unibus address.
Drop off the 3 most significant digits (804, 805, 806, or 807),
and use the remaining four digits to find the equivalent UNIBUS
18-bit octal address.
| === SBI "Longword Hex" Address ----------------——=~ >|
I
2222 2222 1111 1111 1100 0000 0000
76054 3210 3876 5432 1098 7 65 4 3210
| |
|<====- Adapter Base ------- >|<- UNIBUS 18-bit HEX LONGWORD Addr. ->|

Change these four HEX digits (the digits labeled "UNIBUS 18-bit
HEX_LONGWORD Address" in the diagram above) to their BINARY
representation. You should now have 16 binary digits written down.

Add two binary zeros to the least significant end (far right end)

of this BINARY number. This will change the "UNIBUS LONGWORD address"
to a "UNIBUS BYTE address"”. You should now have 18 binary bits
written down with the last two digits on the right being zeros.

Convert the result back to octal by breaking up into three digit
sections. You should end up with six octal digits. This is the
"UNIBUS BYTE address" in octal representation.

1-87

3.

Converting "VAX PHYSICAL BYTE (Hex Format)” address to
"UNIBUS (Octal Format)” address

First of all, you must make sure that you have a Physical Byte address
that is assigned to one of the DW780 Adapters' UNIBUS space. Check to

see that the address falls in one of the following ranges:

Adapter #0 UNIBUS_Byte Address space - 20100000 thru 2013FFFF
Adapter #1 UNIBUS Byte Address space - 20140000 thru 2017FFFF
Adapter #2 UNIBUS_Byte ~Address space - 20180000 thru 201BFFFF
Adapter #3 UNIBUS_Byte_ Address space - 201C0000 thru 201FFFFF

If the address to be converted falls in one of these ranges, then you

do have a VAX (hex) Physical Byte UNIBUS address.

Extract the 18 least significant digits from this address. These 18

bits represent the HEX representation of the UNIBUS address.

[<=mmmmmm e VAX Physical Byte UNIBUS Address --—--—-——=——-=---- > |
I I
3322 2222 2222 1111 1111 1100 0000 0000
1098 7654 3210 9876 5432 1098 7654 3210
| I [
[<===m=- Adapter Base --------- >|<-- UNIBUS 18-Bit HEX BYTE Address --->|

Change these 5 HEX digits (the digits labeled "UNIBUT 18-Bit HEN BYTE

Address" in the diagram above) to their BINARY representation,

1l11111110000000000
7654321098765 43210
Now, break this BINARY representation up into 3 bit sections so as
to convert to OCTAL representation.

111* 111* 110* QO0O0* 0O0O0O* O0O0O0O0O0

765* 432%* 109* 876%* 543* 210

Read this broken up Binary representation in OCTAL. The result is
the UNIBUS BYTE address in OCTAL representation.

1-88

Converting a "UNIBUS Octal BYTE” Address to a
"VAX Hex PHYSICAL BYTE” Address

Take the OCTAL_UNIBUS_BYTE_Address and change it to its BINARY

representation.
111111110000000000
765432109876543210

Now change this BINARY representation, of the UNIBUS_BYTE Address, to
its HEX representation by breaking up the Binary representation into

4 digit sections (you must start with the least significant digit <00>
and work towards the most significant digit <17>).

11 *» 1111 * 1
76 * 5432 * 1

10
098 =*

Add the appropriate DW780 UNIBUS Adapter_Base_Address onto the resultant
HEX number converted in the preceeding step. The following chart shows
the Adapter Base_Addresses for the 4 possible DW780 adapters.

20140000
201C0000

20100000 Adapter #1

Adapter #0 :
20180000 Adapter #3

Adapter #2

The resultant HEX number is the HEX representation of the VAX PHYSICAL
BYTE UNIBUS Address.

201x0000 <--- UNIBUS_Space_Base of desired DW780 Adapter
+ yYYYy <--- Hex representation of UNIBUS address

201zzzzz <--- HEX representation of the UNIBUS_Address
converted to a VAX PHYSICAL BYTE_UNIBUS_Address.

1-89

UNIBUS device Equivalent DW780 Adapter "Longword" address

Address #0 #1 #2 #3
760010 -~ 804F802 805F802 806F802 807F802
760020 -- 804F804 805F804 806F804 807F804
760030 -- 804F806 805F806 806F806 807F806
760040 -- 804F808 805F808 806F808 807F808
760050 - 804F80A 805F80A 806F80A 807F80A
760060 - 804F80C 805F80C 806F80C 807F80C
760070 -- 804F80E 805F80E 806F80E 807F80E
760100 - 804F810 805F810 806F810 807Fr810
760110 - 804F812 805F812 806F812 807F812
760120 - 804F814 805F814 806F814 807F814
760130 - 804F816 805F816 806F816 807F816
760140 -- 804F818 805F818 806F818 807F818
760150 -- 804F81A 805F81A 806F81A 807F81A
760160 -- B804F81C 805F81C 806F81C 807F81C
760170 -- 804F81E 805F81E 806F81E 807F81E
760200 -- 804F820 805F820 806F820 807F820
760210 -- 804F822 805F822 806F822 807F822
760220 -- 804F824 805F824 806F824 807F824
760230 -- 804F826 805F826 806F826 807F826
760240 -- 804F828 805F828 806F828 807F828
760250 -- 804F82A 805F82A 806F82A 807F82A
760260 -- 804F82C 805F82C 806F82C 807F82C
760270 - 804F82E 805F82E 806F82E 807F82E
760300 -- 804F830 805F830 806F830 807F830
760310 - 804F832 805F832 806F832 807F832
760320 -- 804F834 805F834 806F834 807F834
760330 -- 804F836 805F836 806F836 807F836
760340 -— 804F838 805F838 806F838 807F838
760350 -- 804F83A 805F83A 806F83A 807F83A
760360 -- 804F83C 805F83C 806F83C 807F83C
760370 - 804F83E 805F83E 806F83E 807F83E
760400 -— 804F840 805F840 806F840 807F840
760410 - 804F842 805F842 806F842 807F842
760420 -- 804F844 805F844 806F844 807F844
760430 - 804F846 805F846 806F846 807F846
760440 -- 804F848 805F848 806F848 807F848
760450 -- 804F84A 805F84A 806F84A 807F84A
764004 -- 804FAQ1l 805FAQL 806FAQ1 807FAQ1
764014 -- 804FAQ3 805FAQ3 806FAQ3 807FAQ3
764024 -- 804FAQ5 805FAQ05 806FAQ05 807FAQS
770460 -- 804FC4C 805FC4C 806FC4C 807FC4C
772410 -- 804FD42 805FD42 806FD42 807FD42
774400 - 804FE40 805FE40 806FE40 807FE40
777160 -- 804FF9C 805FF9C 806FF9C 807FF9C
777440 -- 804FFC8 80SFFC8 806FFC8 807FFC8
777514 -- 804FFD3 805FFD3 806FFD3 807FFD3

1-90

UNIBUS device

Address

760010
760020
760030
760040
760050
760060
760070
760100
760110
760120
760130
760140
760150
760160
760170
760200
760210
760220
760230
760240
760250
760260
760270
760300
760310
760320
760330
760340
760350
760360
760370
760400
760410
760420
760430
760440

760450
764004
764014
764024
770460
772410
77440C
777160
777440

777514

Equivalent DW780 Adapter "BYTE" address

2013E008
2013E010
2013E018
2013E020
2013E028
2013E030
2013E038
2013E040
2013E048
2013E050
2013E058
2013E060
2013E068
2013E070
2013E078
2013E080
2013E088
2013E090
2013E098
2013E0AQ
2013E0A8
2013E0B0
2013E0B8
2013E0CO
2013E0C8
2013E0D0
2013E0D8
2013EQEQ
2013E0ES
2013E0F0
2013E0F8
2013E100
2013E108
2013E110
2013E118
2013E120
2013E128

2013E804
2013E80C
2013E814
2013F130
2013F508
2013F900
2013FE70
2013FF20

2013FF4C

#1

2017E008
2017E010
2017E018
2017E020
2017E028
2017E030
2017E038
2017E040
2017E0438
2017E050
2017E058
2017E060
2017E068
2017E070
2017E078
2017E080
2017E088
2017E080
2017E098
2017E0A0
2017E0A8
2017E0BO
2017E0BS8
2017E0CO
2017E0C8
2017E0DO
2017E0D8
2017E0EQ
2017EOQES8
2017E0FQ
2017EQF8
2017E100
2017E108
2017E110
2017E118
2017E120
2017E128

2017E804
2017E80C
2017E814
2017F130
2017F508
2017FS00
2017FE70
2017FF20

2017FF4C

1-91

#2

201BE0OS8
201BEQJ1C
201BEQO18
201BE020
201BE028
201BE030
201BE038
201BE040
201BE048
201BEQS0
201BE0S8
201BE060
201BE068
201BEQ70
201BEQ78
201BE080
201BE088
201BEOSO
201BE(0SS8
201BEOAO
201BEOAS8
201BEOBO
201BEOBS
201BEOCO
201BEOCS
201BEODO
201BEODS
201BEOEQ
201BEOES
201BEQOFO
201BEOF8
201BE100
201BE108
201BE110
201BE118
201BE120
201BE128

201BE804
201BE8OQC
201BE814
201BF130
201BF508
201BFS00
201BFE70
201BFF20

201BFF4C

201FE008
201FEOQ1Q
201FEO18
201FE020
201FE028
201FE030
201FE038
201FE040
201FE048
201FE050
201FEOSS8
201FEQ60
201FEO68
201FE070
201FE0Q78
201FEQ80
201FE088
201FEOQS0
201FE0S8
201FEOAQ
201FEQAS8
201FEOBO
201FEOBS
201FEOCO
201FEQCS8
201FEODO
201FEODS
201FEQEO
201FEOES8
201FEOQOFO
201FEQF8
201FE100
201FE108
201FE110
201FE118
201FE120
201FE128

201FE804
201FE80C
201FE814
201FF130
201FF508
201FFS00
201FFE70
201FFF20

201FFF4C

)

+* Read Data Substitute (RDS) Faults and Aborts **

The Machine Check Logout information is not very good for this
type of Machine Check. The associated Memory's status registers
are more helpful for this type of problem.

MS780A and MS780C memories have error correction logic that can
supposedly correct one bad bit per 72 bit array word. For read
accesses that result in one bad bit being detected, the memories' error
correction logic will correct the bad bit and will flag the data that
is returned as "Corrected Read Data". If there are a multiple even
number of bad bits detected during the 72 bit array read access, the
data returned will be flagged as "Read Data Substitute". This
indicates that the data has not been corrected and the quadword
returned "may" be bad (the bits bad may have been in the ECC code so,
therefore, the actual data returned may be good). BEWARE that

MS780A & C memories cannot correctly detect and signal a multiple odd
number of bad bits read from the 72 bit array. If this condition
happens, the memory will send back the data and report it as
"Corrected Read Data". It is, therefore, a good idea to swap out any
arrays that are giving single bit errors for those types of problems
that are intermittent and cannot seem to be fixed by other means.

This type of Machine Check means that a Double Bit Error has been
detected, by memory, when the CPU was accessing a memory location.

Bit #13 of ID Register #19 should be set for this type of error to
have occured.

"(SP)+16" contains a Virtual Address within the quadword location
at fault. If the system has not been rebooted or disturbed, you
may be able to use this "Virtual Address" in the following console
command to find the Physical BYTE Address causing the error.

>>> E/L/V XXXXXXXX ; where xxxxxxxx = contents of "(SP)+16".

The CONSOL.SYS program should respond with the following type
of output:

P yyyyyyyy 2zzzzzzzz

Where "yyyyyyyy" 1s the Physical Address at fault. If you get
a "Mic-err", the necessary PTE to make the Virtual to Physica
translation isn't available from memory or the TB.

If this command was successful, you can use this Physical
Address to determine what array is at fault. This address is
a "Physical BYTE Address".
If you were not able to find the failing array by the procedure
above, your only other choice is to use the "SYSTEM EVENT File" to
see if any memory errors have been recorded.

Remember that the first array is array #0 not array #1.

1-92

MS780A & MS780C memories:
If bit <28> = 1, in "Memory Register C", then Bits <27:24> should
reflect the array that had the error.

Memory Register "C"
Bit <28> = Error Log Request
Bits <27:24> = Array Select

MS780E memories:
If bit <28> = 1, in "Memory Register C" or "Memory Register D", then
bit <27> will indicate the controller and bits <26:24> will indicate
the array within that controller that had the error.

Memory Registers "C & D" ("C" - Lower Controller)
———————————————————————— ("D" - Upper Controller)

Bit <28> - Error Log Request

Bit <27> - Controller Select

Bits <26:24> - Array Select

Bits <23:22> - Array Bank Select

Bits <21:11> - RAM page address for 256K RAMs

Bits <19:11> - RAM page address for 64K RAMs

Bit <10> - Multiple bit error

Bit <09> - Single bit error detected and corrected

MA780 memories:
If bit <28> = 1, in the "Array Error Register”, then bits <27:24>, of
the same register, will indicate the Array in error.

Array Error Register

Bit <28> - Error Log Request

Bit <08> - 1 = Upper Word, 0 = Lower Word

Bits <22:09> - Chip address presented to the memory chip
Bit <23> - 1 = Upper Bank, 0 = Lower Bank

Bits <27:24> - Array card with the error

Problem areas:
A Memory Array or the MEMORY Control.
Memory or CPU Backplane.
Memory or CPU Power.
SBI/CPU interface.
SBI cables.

1-93

6.) ***** VAX Micro-Code NOT SUPPOSE TO GET HERE *****

The "Trapped UPC" is about the only data saved, in the Machine Check
Logout information, that may help you trouble-shoot this type of
problem.

This type of Machine Check exception occurs whenever the microcode
finds itself accessing a microcode location that it should never
make it to. The unused microwords contain jumps that will direct
the Micro-PC to the micro_routine that flags this error.

The Micro-stack register, ID #20, should contain the Control Store
Address that the microcode wasn't suppose to get to. The microcode
stores this register in ID #32 for a Double Error Halt and on the
stack at "(SP)+12" on a Machine Check exception. Verify that the
address is unused via the micro-fiche MICROCODE listing.

Problem areas:

Micro-code address logic (M8235).

Any board on the "micro_PC" bus.
PCS (M8234).
WCS (M8233 or M8238 in slot 20).
OPTIONAL WCS (M8233 or MB238 in slot 18),
IR Decode Logic.

WCSxxx.PAT on the LOCAL CONSOLE Floppy (or whatever
floppy the WCS was loaded from).

WCS load path
(Floppy -> LSI -> CIB -> ID Bus -> WCS).

Clock Board (M8232).

CPU Power.

=W
o w
O N

[e\

~ N0

o N

U O

PN

ID #20 -

w N
NN

2
1

2 1111 11
0 9876 54

11
32

1
1

100
0938

Micro Stack Register

0000 0000
7654 3210

Reading this register pops the top address from the micro stack.
Writing this register pushes an address onto the micro stack.

Bits <15:00>
* % d k J g dk ok gk ok Kk

<15:00> = micro_Address <15:00>

Control Store Address <15:00>

Micro PC Wirelist and Slot chart

Slot 18 Slot 20 Slot 22 Slot 23 Slot 08

Signal ! Pin !Opt. WCS ! WCS ! PCS ! M8235 ! M8224 !
*************!*****!*********!********!*********!*********!*********!
e e SO S S O S S S
Bus uPC 01 %ERZ% X : X : X : X ! X 1
BuswPC 02 1ESL: X I X & x i x 1 x|
é&é’LEE’BS"“g’é&E’% """ Q"’é"'é"“é"'g """ L x 1 x
éi§’£§é‘6£"’§'é§£_g """ Q"‘g"'é""g"'i """" L x 1 x
55;“555'65"'5'555’5 “““ Q"'g"'é""g"'i """ L x 1 x
Bus wPC 06 ! FDL I i"'g'"'i""g"'é ’’’’ L x L x
55;';55‘69"'5';55‘5 ””” i"’§"'§"“'g"'§ """" L x 1 x
é;;'QEE'Bé"'g';éi'g """ i""g'"“i'""g”'é """ - x 1 me
;;;’556_65_"§'§££'§ """ i"'g"_'i""é"'é """" L x 1 no i
Bus wPC 10 ! FFL I i""g"'i“"g'“'é “““ L x U he
55;'5;6’11"'5’;;5'5 """ é""i"'i"'“g_"i """" DR ae
;SQ'SEE'IE"'E”;QE'g """ i”‘i”’i""g"'i """ TR T e

! ! ! ! ! !

"WCS" and Opt.

WCS" boards are either M8238's (2K) or M8233's (1K).

1-95

DOUBLE

DOUBLE ERROR

DOUBLE

DOUBLE ERROR

DOUBLE

DOUBLE ERROR

DOUBLE

$

?CPU DBLE-ERR HLT
HALTED AT 8007E2AS8

>>>

1-97

ERROR

ERROR

ERROR

ERROR

HALTS
HALTS

HALTS
HALTS

HALTS
HALTS

HALTS

If the Problem is a "CPU Double Error Halt", "?CPU DBLE-ERR HLT" was
printed on the console terminal, diagnosis is similiar to the
"Machine Check" trouble-shooting. The difference is in where the
information is stored by the VAX-11/780 CPU microccde. A "Double
Error Halt" is simply a trap upon a trap.

On a "Double Error Halt" the logout information is stored in 2 places.
The information for the first trap, "Machine Check", is stored in

ID Bus registers 30 thru 39, and the information for the second

trap, "Machine Check”, is stored in the associated ERROR/STATUS
Registers and the Memory NEXUS registers.

It is, therefore, very important to take a dump of all the Processor
ID Bus Registers and all the Memory NEXUS registers at the time of the
crash, before any other commands are given. This can be done with the
following CONSOL.SYS commands:

>>> E/L/H/ID/N:17 0O
>>> R E/L/H/ID 18

;allow CONSOL.SYS to do at least 15 examines, then type "~C".

~C
>>> E/L/H/ID/N:25 19
>>> E/L/H/P/N:x 200yy000 ;X
s YY

depends on memory type
depends on Mem TR level

; Repeat the last command, changing "x" and "yy" as needed
; in order to gather all the Memory NEXUS registers.

>>> E/L/H/P 200yy000 ; Yy = depends on TR level

Repeat the last command, changing "yy" as needed, in order
to obtain the contents of all NEXUS Configuration Registers.

~e

~e

An easier method to dump the needed information would be to use a
"DUMP." CONSOL.SYS command file, built as outlined in Chapter 3 of
this manual.

Unlike "MACHINE CHECKS", "Double Error Halts" bring the VAX completely
down to a HALT. Control passes back to the VAX-11/780 CONSOL.SYS
program. Therefore, the System Event file, ERRLOG.SYS, will not
contain information at the time of the c¢rash. ERRLOG.SYS may,
however, contain some pertinent information about something that
happened just prior to the crash, (such as a Double Bit Error in
Memory). If you have not isolated the problem by examining the
Hardware Registers, it may be worth your time to try to bring the VMS
Operating System back up and examine the Error log file.

The information for the first error of a DOUBLE ERROR HALT will be
found in the Temporary Registers, ID Registers #30 thru #39 (see note).
The information for the second error of a DOUBLE ERROR HALT will be
found in the associated error/status registers. Therefore, it is

very important to examine all the Hardware Registers in order to
trouble-shoot Double Error Halts. The Hardware Register Dump must be

1-98

taken immediately before anything else is done, in order to assure
that the Register Contents are valid for the time of the error.

Note: If the second error was a "Control Store Parity Error" or a "Micro-
*kxxk sequencing Error”, the information in "TO0-T9" MAY NOT BE VALID for the
first error. The safest thing to due is to check ID #0C, see if
bit <15>=1, and IF IT IS DO NOT USE "T0-T9" (which are ID #30-39).
If the second error was a "Micro-sequencing Error", there will not be
any other error bits set. In either case, if the SECOND error is
found to be either a "Control Store Parity Error"” or "Micro-sequencing
Error", the information in TO thru T9 may not be valid.

Use the MACHINE CHECK outline to trouble-shoot the first error. The
only difference is that the LOGOUT information is found in "ID 30"
thru "ID 39" instead of on the stack. These ID registers must be
dumped by you, or the customer, prior to anything else being done.

Examine the rest of the ID registers and all the Memory NEXUS hardware
registers in order to determine what the second error was. It is best
to determine what the second error was prior to checking the first
error since the information for the first error may not be valid, due
to the second error occuring before the "T0-T9" logout was completed.
i.e. "Control Store Parity Error" or "Micro-Sequencing Error".

If Bits <19>, <17>, & <16> of ID #1B are equal to a 1, then an S.B.I.

FAULT has occured. Use ID #1B, the S.B.I. Silo dump, and the Configuration
registers in the NEXUS devices, to determine the cause of the FAULT.

DOUBLE ERROR HALT Information

lst Error 2nd Error

Description Register ID Location ID Location
Summary Parameter TO 30 none
CPU Error Status Tl 31 oC
Trapped UPC T2 32 20
VA/VIBA T3 33 none

D Register T4 34 08

TB Error 0 TS 35 12

TB Error 1 T6 36 13
Timeout Address T7 37 1A
Parity T8 38 1E
SBI Error TS 39 19
Fault Status none none 1B

If the secqhd error 1s caused by a RDS error, then the associated
memory registers will reflect the array in error,

BEWARE: The Ist error information MAY NOT BE VALID if ID =0C
Bit< 15> =1, or if a micro-sequencer problem has occured.

1-99

Due to the possibility of the processor detecting a non-existent error
condition, it is a good idea to constantly make certain validity checks
of the error information that you have gathered.

In the case of "Double Error Halts", some of the error information may
not be correctly stored away due to a second error occuring while the
first error is being stored. Therefore, you should always make a
validity check of the information stored in ID #30:39 (the lst error),
It is a good idea to always make validity checks on the errors.

CPU Detected Error VALIDITY CHECKS:

Control Store Parity Error -- "CPU Error Status Register™, ID #0C,
must have Bit <15>=1,

CP/IB Read Timeouts -------- "SBI Error Register", ID #19, must have
either Bit <12>=1 or Bit <06>=1.

CP/IB Error Confirmations --- "SBI Error Register", ID #19, must have
either Bit <08>=1 or Bit <03>=1

CP/IB RDS Faults --==-=--==—--- "SBI Error Register", ID #19, must have
Bit<1l3>=1 or Bit <07>=1.

TB Parity Errors ------------ "Translation Buffer Register #1",
ID #13, must have at least one of
Bits <20:09>=1.

Cache Parity Errors ----—----- "Cache Parity Register", ID #1E, must
have Bit <15>=1,.

S.B.I. Fault ---=--=-=---omu- "SBI Fault Status Register", ID #1B,
must have Bit <19>=1, and Bit <17>=1,.
Also, at least one of the NEXUS should
have at least one of Bits <31:27>
set(=1) in their associated
Configuration Status Registers. The
VAX-11/780 is also a NEXUS and its
equivalent register is ID #1B.

1-100

CPU Double Error Halt Flowchart

| ?CPU DBLE-ERR HLT |
| >>> |

| The above printout occured on the console. |

| Examine all the ID registers, the SBI SILO, alll
| the registers within the MEMORIES, and the |
| CONFIGURATION/STATUS register in each NEXUS. |
| This can be done by using a previously built I
| "DUMP." CONSOL.SYS command file (as outlined in]
| Chapter 3) or by using the commands outlined in|
| the beginning of the DOUBLE ERROR HALT section.|

| Using the contents of ID 0C, 13, 19, 1B, and 1lE |
| determine what the 2nd error was, by checking |
| the following bits:

|
E1l| | |
[== -- [==1 |-~ -=1
I I I
ID #0C | ID #13 | ID #19 | ID #19 | 1ID #1B | 1ID #1E | none
I | I I | | of
I | <12> or | I | | these
| any of | <06> or | <13> or | <19> and | | ==>|
<15> =1 | <20:09> | <08> or | <07> =1 | <17> = | <15> =1 | I
I = | <03> = I I I I I
---------- el e el B it Rl bbb I
; yes : yes ; yes i yes I yes : yes {
goto goto goto goto goto goto I
"CSPE" "TBPE" "SBIERR" "RDS" "SBIFLT" "CAPE" |
I
|<-——=—m— - I

No errors bits are set. This usually indicates a "MICRO-SEQUENCER"
problem in the KA780.

Use the appropriate section in the Machine Check error portion of
this manual to trouble-shoot this type error. Then return to this
flow at "FIRST_ERROR_ANALYSIS".

1-101

ID #0C bit <15>=1 indicates that a "CONTROL STORE PARITY ERROR" was
detected in the KA780.

Use the appropriate section in the Machine Check error portion of
this manual to trouble-shoot this type error (page 1.046). Then
return to this flow at "E1l" to see what other errors occured.
However CSPE's should be fixed first.

ID #13 bits <20:09> are used to indicate "TRANSLATION BUFFER PARITY
ERRORS" detected in the KA780.

Use the appropriate section in the Machine Check error portion of
this manual to trouble-shoot this type error (page 1.038). Then
return to this flow at "E2".

. = ———— ————— —_ —— =+ = = - s ——— > — ——— - —— — _ —_ ——— o ——

ID #19 bits <12> and <06> are used to indicate SBI timeouts as a
result of a KA780 microcode or IB requests, respectively.

ID #19 bits <08> and <03> are used to indicate SBI Error CNF's as a
result of a KA780 microcode or IB requests, respectively.

Use the appropriate section in the Machine Check error portion of
this manual to trouble-shoot this type error (page 1.056). Then
return to this flow at "E3".

1-102

ID #19 bits <13> and <07> are used to indicate that "RDS" data has
been received as a result of a KA780 microcode or IB request,
respectively. A "READ DATA SUBSTITUTE" error has occured.

Use the appropriate section in the Machine Check error portion of
this manual to trouble-shoot this type error (page 1.092). Then
return to this flow at "E4".

ID #1B bits <19> and <17>=1 indicate that an "SBI FAULT" condition
was detected by the KA780 or one of the SBI NEXUS.

Use the "SBI FAULT" trouble-shooting section of this manual to
isolate this problem (page 1.212). Then return to this flowchart
at "E5".

ID #1E bit <15>=1 indicates that a "CACHE PARITY ERROR" was
detected in the KA780.

Use the appropriate section in the Machine Check error portion of
this manual to trouble-shoot this type error (page 1.034). Then
return to this flow at "FIRST_ERROR_ANALYSIS".

1-103

Information about the first error is stored in the "TEMPORARY" |
registers (ID #30:39). |
|

HOWEVER, this information may not be valid if the 2nd error was|
due to a CONTROL STORE PARITY ERROR or a MICROSEQUENCER ERROR. |
If either of these errors occured, the information MAY still bel
good. Use the "VALIDITY CHECKS" to make sure. |

The information stored in ID #30:39 is basically a MACHINE CHECK
LOGOUT. You can use the MACHINE CHECK trouble-shooting section
of this manual to determine what caused this error. The only
difference is where the information is stored. The LOGOUT info
is found in the TEMPORARIES instead of on the stack. They are
assigned as follows:

ID #30 - Summary Parameter Code

ID #31 - CPU Error Status (saved ID #0C)

ID #32 - Trapped UPC (saved ID #20)

ID #33 - VA/VIBA (saved output of the VAMX)

ID #34 - D Register (saved ID #08)

ID #35 - TB Error 0 (saved ID #12)

ID #36 - TB Error 1 ({(saved ID #13)

ID #37 - Timeout Address (saved ID #1A)

ID #38 - Cache Parity (saved ID #1E)

ID #39 - SBI Error (saved ID #19)

Using the temporaries instead of the contents of the STACK FRAME,
go to the appropriate section of the MACHINE CHECK section,

based on the SUMMARY PARAMETER CODE found in ID #30's byte 0, to
determine the cause of this error.

By determining what caused both errors, you now have two pieces
of information to work with in order to fix the system.

The two errors may help you zero in on one unit being at fault.
However, often times Double Error Halts are two separate errors,
so you have to fix each one individually.

1-104

VAX-11/780 "ID” Register ERROR information

ID #0C - CES
3322 2222 2222 111
1098 7654 3210 987

Control Store Parity Error Summary -|
CS Parity Error in Group #2
CS Parity Error in Group #1
CS Parity Error in Group #0

ID #13 - TBERI

3322 2222 2222 111
1098 7654 3210 9817
PE Group 1 Data Byte 2 -| | | |
PE Group 1 Data Byte 1 ----| | |
PE Group 1 Data Byte 0 ------ P
PE Group 0 Data Byte 2 -------- I
PE Group 0 Data Byte 1 -----——---
PE Group 0 Data Byte 0 --—--=---------
ID #19 - SBILERR

3322 2222 2222 111
1098 7654 3210 987

RDS received for a CP requested cycle --
SBI Timeout on a CP requested cycle
<-- see chart --|

<-- see chart ----

11 10

0 0 -
0 1 -
1 o -
1 1 -

SBI Error Confirmation on CP requested cycle
RDS received for an IB requested cycle
SBI Timeout on an IB requested cycle

0 c -
0 1 -
1 0 -
1 1

No device response
Device Busy Timeout

1
6

1
6

1111 11
5432 10
1
1
|
1111 11
5432 10
NN
EEREE
EEREE
LD 1=
I EEE.
R EE—
| __________
1111
54 32
|

1
0
I
I
|
I

Waiting for READ DATA timeout

Impossible code

No device response
Device Busy Timeout

<-- see chart
<-- see chart

Waiting for READ DATA timeout

Impossible code

1-105

w0 o
o O
~NOo
(o) Wen]
oo

O

—_—_————————ee— e e o

w O
N O
= O
oo

Parity Error

Addr Byte
Addr Byte
Addr Byte
Addr Byte
Addr Byte
Addr Byte

NDHHONMHO

—_—— WO -
N O
= O
[N o]

SBI Err CNF
received
for an IB
request

ID #1B - FAULT

11
8 7

1 1111 1100 0000 0O0O0OO
6 5432 1098 7654 3210

|---- Indicates SBI SILO is locked

-—-- indicates that CPU was transmitting at FAULT
--- A Multiple Transmitter fault was detected by the CPU

ID #1E - CACHE PARITY

32
09

=W

Cache Parity error was detected ----|
reference ---

2
8

2
7

22 2
54 3

0 = IB reference, 1

Parity
Parity
Parity
Parity
Parity
Parity
Parity

Parity

Parity
Parity
Parity
Parity
Parity
Parity

OK
CK
OK
CK
OK
CK
CK

OK

OK
OK
CK
OK
CK
OK

in
in
in
in
in
in
in

in

in
in
in
in
in
in

Data Group
Data Group
Data Group
Data Group
Data Group
Data Group
Data Group
Data Group

Address
Address
Address
Address
Address
Address

2 2
21

= CP

OOOOHKHKFKH

Group
Group
Group
Group
Group
Group

2 11
0 98

ID #1A - TIMEOUT ADDRESS

332
108

2
8

ID #20 - MICRO STACK

332
109

2
8

2
7

2 2
6 5

2 2
4 3

22
21

2 11
c 98

1
7

An Unexpected Read Data fault was detected by the CPU
An SBI Parity Error was detected by the CPU

————— ey O
———————— e YOO

1
6

1-106

?CPU DBLE-ERR HLT
HALTED AT 8007E2A8

>>>E/L/H/ID/N:3F 0

ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID
ID

00000000
00000001
00000002
00000003
00000004

00000005

00000006
00000007
00000008
00000009
0000000A
00000008
0000000C
0000000D
0000000E
041F0000
00000010
00000011
00000012
00000013
00000014
00000015
00000016
00000017
00000018
00000019
0000001A
00000018
0000001C
0000001D
0000001E
0000001F
00000020
00000021
00000022
00000023
00000024
00000025
00000026
00000027
00000028
00000029
00000024
00000028
0000002C
0000002D
0000002E
0000002F

8F590908
5CFABS525
00000000
013a0260
00000040
00000000
00000040
00000000
00000000
000006000
000080C1
FFFFEA96
00000184
03630054
001A0000

00007C41
00000000
00007C41
000060000
00000000
00000000
00000000
00000000
000060000
0000A082
0001F8AA
02040000
00000000
0021C000
00004000
FFFF0000
000COFCF
00000000
00000000
00000030
800D7000
7F0DF000
0007E000
33333333
7FFEAD1C
7FFEBDO4
7FFED4FC
0000C6COo
800cC3cC00
00000B80
00000000
00000B80

(1st Error)
CP RDS Fault -> ID
Summary Code 1D
ID
ID
ID
ID
ID
ID
ID
CP RDS bit set -> ID
ID
ID
ID
ID
ID
ID

>>> E/L/P/N:

P
P
P

>>>

<-- CP RDS bit set (2nd Error)

Example of a Double Error Halt and a hardware dump

00000030
00000031
00000032
00000033
00000034
00000035
00000036
00000037
00000038
00000039
0000003a
0000003B

0000003C

0000003D
0000003E
0000003F

2 20002000

20002000
20002004
20002008

00000005
00000002
00001116
00000040
7FFD7130
00007C81
000000c00
C0001FA3
00004000
0000A002
00021074
0007CEO00Q
00000000
003FFDES
00000800
000806000

00002E10
F0001400
3B080200

I

Array #11.
had an error

1st and 2nd error indicate that

"Read Data Substitute”

data was

received, by the CPU, on a CP

request.

The registers within

the memory at TR#1 indicate
that Array #11. was the array
at fault.

INTERRUPT STACK NOT VALID Halts
INTERRUPT STACK NOT VALID Halts
INTERRUPT STACK NOT VALID Halts
INTERRUPT STACK NOT VALID Halts
INTERRUPT STACK NOT VALID Halts
INTERRUPT STACK NOT VALID Halts
INTERRUPT STACK NOT VALID 'Halts
INTERRUPT STACK NOT VALID Halts
INTERRUPT STACK NOT VALID Halts

INTERRUPT STACK NOT VALID Halts

$

?INT-STK INVLD
HALTED AT 8007E2AS8

>>>

1-109

"INTERRUPT STACK NOT VALID halts" are exceptions that indicate that
the interrupt stack was not valid or that a memory error occurred
while the processor was pushing information onto the stack during

the initiation of an exception or interrupt. In other words, an
"Interrupt Stack Not Valid" means that, while pushing information

onto the STACK a reference was made to a Virtual Address not currently
mapped to Physical Memory or that a Fatal Error occurred while
referencing the STACK. No further interrupt requests are acknowledged
on this processor.

This problem is detected by VAX CPU microcode, which tells the "LSI
Front-end Subsystem", which will halt the VAX CPU and print out the
"?INT-STK INV" message. For this reason, the VAX software will not
have been able to take a Software Dump as the system crashes. In
order to get a Software dump, the "AUTO RESTART" switch must be "on",
or, the "RESTAR.CMD”"” indirect command file can be used to restart the
operating system. The RESTAR.CMD file will attempt to reboot the
system but will fail, therefore allowing a software dump to be taken.
In either case, the "RESTAR.CMD" command file should have been
previously modified to cause a dump (such as done by the "DUMP."
indirect command file) to be taken prior to rebooting.

This type of problem can be caused by any number of things but listed
below are the most common reasons:

a. Memory Errors

1. Double Bit Errors (Uncorrectable errors)

2. Hardware problems causing NXM (Non-existent Memory)
errors.

3. SBI interface in VAX-11/780 CPU or Memory has
problems.

b. Some device interrupting excessively.
c. Memory Management or System Disk problems.

d. The contents of "SP" and "Internal Register #4" should
be equal. If they are not, the problem is probably the
M8229 or M8225.

The following information should be used to trouble-shoot the
"Interrupt Stack Not Valid" problem:

a. A "Hardware Register Dump" should be used to see if
any hardware errors have occured.

b. The contents of the Stack should be dumped for further
examination. This should be available from the "Hardware
Register Dump”", if it is set up as the "DUMP." example
in this manual. Look for repeated Machine Check Logouts
or Exceptions on the Stack. This could indicate the hidden
reason for the "INT STK INV",

1-110

c. If the VMS Operation System is operative, an Error Log
report should be taken at least of the time immediately
prior to and at the time of the failure. Does it show
any errors logged?

d. A Software Dump should have been taken. This dump can
be analyzed by either RDC, Remote Support, D.E.C. Software
Support, your District Support Group, or yourself. It may be
necessary to examine several dumps in order to see what
is commonly happening or what device is commonly being
accessed.

This type of problem can be caused by Non-D.E.C. Supported Device
drivers. Find out from the Customer if any new drivers have been
installed recently or if some new foreign equipment has recently
been added to the system. If one or more of these have recently
been added to the system, see if the problem occurs when these
devices are no longer used.

If the Problem is of intermittent nature, it is may be faster to
trouble-shoot this type of problem from a software approach. The
Software Dumps may not point a finger directly at a unit or subsystem,
but will at least let you know what was happening at the time of the
crash. This information along with any Hardware register dumps that
are available, may point you to a unit or subsystem.

The following should be done in order to enable gathering of the
information that is needed to trouble-shoot intermittent type
INTERRUPT STACK not VALID's:

1. Make sure that the SYSGEN Parameter "DUMPBUG" is
set (=1), This will cause a Software Dump to be taken,
(on the way back up for "?INT-STK INV's").

2. Have the Customer take a Hardware Register Dump when the
System Crashes. After the Hardware Dump is taken, the
Customer can then reboot the Operating System. This step
will be autcmatically taken care of if the "RESTAR.CMD"
file has been modified to include the "DUMP." commands.

3. Have the Customer save the Software Dump when the System
is rebooted after a crash. This can either be saved on
MAGTAPE or the "SYSSSYSTEM:SYSDUMP.DMP" can be "Copied"
to another file.

4. An ERROR LOG report should be taken for the time just
prior to and at the time of the crash.

5. Have the Customer save the Hardware Dump Output, the
Software Dump, the Console Terminal Output at the
time of the crash, and the ERROR LOG report for you
to examine.

1-111

KERNEL STACK NOT VALID Aborts
KERNEL STACK NOT VALID Aborts
KERNEL STACK NOT VALID Aborts
KERNEL STACK NOT VALID Aborts
KERNEL STACK NOT VALID Aborts
KERNEL STACK NOT VALID Aborts
KERNEL STACK NOT VALID Aborts
KERNEL STACK NOT VALID Aborts
KERNEL STACK NOT VALID Aborts

KERNEL STACK NOT VALID Aborts

1-113

"KERNEL STACK NOT VALID ABORTs" are exceptions that indicate that

the Kernel Stack was not valid while the processor was pushing
information onto the stack during the initiation of an exception

or interrupt. Usually this is a indication of stack overflow or
another executive software error. The attempted exception is
transformed into an abort that uses the interrupt stack. No
information other than the PSL and PC is pushed onto the Interrupt
Stack. Software may abort the process without aborting the

Operating System; however, because of the lost information, the
process cannot be continued. If the Kernel Stack is not valid

during the execution of an instruction, the processor initiates

a normal Memory Management fault, and if the exception vector <1:0>
for Kernel Stack not Valid is 0 or 3, the behavior of the processor
is undefined. 1If the problem is of an intermittent nature, certain
things should be done in order to enable gathering of the information
needed to aid problem diagnosis. If the problem is solid, you should
be able to gather most of the following information without the aid of
the customer. 1In either case, the following steps should be taken:

1. Make sure that the SYSGEN Parameter "BUGREBOOT"
is cleared (=0). This will cause the Operating System
to halt after a FATAL Bugcheck.

2. Make sure that the SYSGEN Parameter "DUMPBUG" is
set (=1). This will cause a Software Dump to be taken
as the Operating System is coming down.

3, Have the Customer take a Hardware Register Dump when the
System Crashes. After the Hardware Dump is taken, the
Customer can then reboot the Operating System.

4. Have the Customer save the Software Dump when the System
is rebooted after a crash. This can either be saved on
MAGTAPE or "SYSSSYSTEM:SYSDUMP.DMP" can be "Copied" to
another file.

5. An ERROR LOG report should be taken for the time just
prior to and at the time of the crash.

6. Have the Customer save the Hardware Dump Output, the
Software Dump, the Console Terminal Output at the
time of the crash, and the ERROR LOG report for you
to examine.

NOTE: Steps #1 and #3 may be eliminated if the "DEFBOO.CMD" command
file has been modified so that it will dump all the Hardware
Registers. The "REMOTE LOCAL CONSCLE" floppy should be used in
case you should deceide to use the "Remote Diagnostic Center"
as a tool for problem diagnosis. The "DEFBOO.CMD" and
"RESTAR.CMD" command files should be modified, on this floppy,
so as to take a hardware register dump upon reboot. The "DUMP."
and "HANG." files should alsoc be installed on this floppy.

1-114

OTHER
OTHER
OTHER
OTHER
OTHER
OTHER
OTHER
OTHER
OTHER

OTHER

TYPES

TYPES

TYPES

TYPES

TYPES

TYPES

TYPES

TYPES

TYPES

TYPES

of CRASHES
of CRASHES
of CRASHES
of CRASHES
of CRASHES
of CRASHES
of CRASHES
of CRASHES
of CRASHES

of CRASHES

1-115

There are many other types of Crashes that can occur. The basic
trouble-shooting method for them should be as follows:

Obtain an Error log report of the Systems Events that happened
prior to and at the time of the crash. This report will many
times show the error.

Examine the Console Terminal printout at the time of the crash.

Examine the Hardware Register Dump, if taken. 1If it wasn't taken,
try to recreate the problem and make sure the Hardware Register
Dump is taken.

If a Software Dump was taken, examine it to determine what was
happening at the time of the failure. If you do not know how to
analyze a Software Dump, get either D.E.C. Software or Remote
Support to analyze it for you.

After making a preliminary analysis of the problem from the above
informaticn, run all diagnostics on the device, and associated
controllers, that you feel may be at fault. If none of these fail,
run diagnostics on everything that may be remotely related to the
problem. It doesn't hurt to spend the time to run all diagnostics
for that particular system configuration.

Using both a SCOPE and a DVM, check the VOLTAGEs and the POWER
MONITORING signals (ACLO & DCLO, etc.) for both the correct level
and for the amount of NOISE riding on the voltage levels.

Correct any that are out of specification.

Power and Power Monitoring Signal problems cause many strange
problems that can lead you around in circles for quite awhile.
Never overlook these. Always check them no matter what type of
problem you have.

Margining, heating, cooling, and vibrating may be used to recreate
and isolate some problems,

1-116

Many times problems are intermittent and diagnosis is not

possible on the first crash. If this is the case, try to obtain
as many of the following things as are possible and take them to
your District Support Group so that they may aid you in diagnosing
the problem:

1. Console Terminal output just prior to and at the time
of the crash.

2. Hardware Register Dump printout.

3. Error Log report. If you are using "SYE", get a "STANDARD"
printout. If you are using "SPEAR", get the "FULL"
"RETREIVE" printout and also the "ANALYZE" output.

4, Get an "SDA" output from the examination of the Software
Dump that contains at least the following:

a. SHOW CRASH

b. SHOW PROCESS/ALL
c. SHOW STACK/ALL

d. SHOW DEVICE

e. SHOW PFN_DATA/ALL
f. SHOW SUMMARY

g. EXAMINE/PO

5. Get a copy of the Software Dump on Magtape at 1600 B.P.I.
if possible.

6. If a copying machine is available, copy your LOG Book entry
that tells the problem symptoms that you gathered.

If the problem is not a solid problem and if the SYSGEN parameters
are set up so that the Operating System reboots, ask the customer
to change them so that the system does not reboot automatically and
educate the customer on the procedure for taking a hardware registe

dump.

The "REMOTE LOCAL CONSOLE" floppy should be used in case you should
deceide to use the "Remote Diagnostic Center" as a tool for problem
diagnosis. The "DEFBOQO.CMD" and "RESTAR.CMD" command files should
be modified, on this floppy, to take a hardware register dump upon
reboot. The "DUMP." and "HANG." command files should also be
installed on this floppy.

1-117

VMS
VMS
VMS
VMS
VMS
VMS
VMS
VMS
VMS

VMS

OPERATING SYSTEM Hangs
OPERATING SYSTEM Hangs
OPERATING SYSTEM Hangs
OPERATING SYSTEM Hangs
OPERATING SYSTEM Hangs
OPERATING SYSTEM Hangs
OPERATING SYSTEM Hangs
OPERATING SYSTEM Hangs
OPERATING SYSTEM Hangs

OPERATING SYSTEM Hangs

1-119

Hangs are perhaps the hardest problems to diagnose. A HANG can occur
due to:

1. Software is stuck in a loop waiting for a certain event
event, or interrupt, to happen.

2. Hardware has failed in such a way that an asynchrounous
event didn't occur so that normal execution can proceed.

Diagnostic Hangs can also be trouble-shot in much the same way as

for an Operating System Hangs, except that Software Dumps cannot be
taken when running diagnostics in stand-alone mode.

Proceed to trouble-shoot a Hang as follows:

1. If you are trouble-shooting an Operating System Hang, determine
if the whole system is hung. Record your findings in the Log.

a. Does the Console Terminal respond?
b. Does any other terminal respond?

c. Are any of the Peripherals doing anything?

1. Are the disks seeking occassionally?
2., Are the tapes moving?
3. Is the printer printing?
4. Etc.
2. Take a Hardware Register Dump by typing a "~P" on the Console

terminal and then examining the registers by using the "HANG."
command file. Console Terminal commands to do this would be:

~P
>>> @HANG

If typing a ""P" does not put you back into "CONSOL" mode,
check the following:

a. Is the KEY Switch on the VAX-11/780 Front panel
in one of the "DISABLE" positions? 1If so, turn
the KEY to "LOCAL". and retry the ""P".

b. Check the "DC ON" LED and the "RUN" LED on the
Console Subsystem LSI-11 Front Panel. If they
are not lit, your problem is in the Console
Subsystem or is a Power/ACLO/DCLO problem., 1If
both LED's are lit, proceed to next check.

1-120

c. If neither of the above are the problem, then
the problem is either the Console Terminal or
the LSI-11/DLV11 subsystem. Be sure that the
console terminal is not in "LOCAL" or out of

paper.

I1f you are unable to get a response when typing "~P",
trouble~shoot this problem.

After the Hardware Register Dump has been taken, the "HANG."
command file will single step the VAX several times (so that

it may be determined where the software is hung), and then

it will crash the software as done by the "CRASH." command file.
This will insure that a Software Dump is taken.

If the SYSGEN parameter "BUGREBOOT" is set (=1), the system
will reboot automatically. You will then have to bring the
system back down in order to run diagnostics.

The single stepping portion of the "HANG." output may indicate
a reason for the hang. Check for one of the following:

a. A PC = 80002EBO (Version 3.x of VMS) indicates that the DW780
is getting a UNIBUS vector of "000000".

b. A PC = 80007806 (a NULL job address in Version 3.x of VMS)
indicates that a Software resource is exhausted.

c. A PC = 80016400 (Version 3.x of VMS), with an IPL of 14-17 or
8-B, usually means the software is executing a driver,

d. An IPL\of "1F" indicates a SYSTEM DISK ERROR or MEMORY
Power problem.

e. A PC without bit 31 or 30 set usually indicates a process
that is compute bound and running at a high priority.

f. A Loop that goes through about 10 addresses close together,
then jumps to a new range of address for about 10
instructions, then back to the first range. This
condition usually indicates a terminal, DzZll, DMF32, etc.,
type of problem.

Using a DVM, check all System Voltage levels and the levels
of all ACLO and DCLO signals. Are any out of spec.?

Using a Scope, check all voltages, ACLO signals, and DCLO
signals for excessive noise. Be sure to use a good Ground on
your scope lead.

1-121

Run at least the following diagnostics:

a. VAX-11/780 micro diagnostics (#1, #2, and
#3 if applicable)
b. EVKAA (if the "DS>" prompt appears when this

program is started, deposit zero into
physical location "FEOO" and restart)

c. EVKAB,C,D,E
d. ESCAA
e. ESCBA
f. Disk, Tape, and Unibus peripheral Reliability

dignostics.
If you get a diagnosic failure, trouble-shcot that problem.

After the diagnostics all run 0.K., continue on to the next
step. It is important not to assume the HANG problem to be
fixed at this time. You may have fixed another problem other
than the one you were initially trouble-shooting.

If you are trouble-shooting an Operating System Hang, attempt
to reboot the system at this point and, if you are successful,
take an Error Log report of the time prior to and at the time
of the Hang.

Attempt to diagnose the problem. Use whatever D.E.C. resources
you need to analyze the information that you have gathered.

If you have found a problem before you got to this step, you
may have fixed the Hang problem. Do not assume this yet. Keep
all the information that you have gathered so far with the
SYSTEM LOG Book, just in case the HANG problem reoccurs.

The Software Dump can be analyzed by RDC, Remote Support,
Software Support, or District/Regional Support.

On the Hardware Dump examination, look for such things as:

1. Attentions on Massbus Devices.

2. Adapter Power "UP" or "DOWN" status.

3. Interrupt enables having been cleared, which
may indicate power glitches or problems with the
power monitoring logic.

4., Who was interrupting at the time the Hardware
Register Dump was taken?

5. Any error bits set?

If the problem is not a solid problem and if the SYSGEN parameters

are set up so that the Operating System does reboot, ask the customer
to change them so that the system does not reboot automatically and
educate the customer on the procedure for taking a hardware register

dump.

1-122

OPERATING SYSTEM Functional Problems
OPERATING SYSTEM Functional Problems
OPERATING SYSTEM Functional Problems
OPERATING SYSTEM Functional Problems
OPERATING SYSTEM Functional Problems
OPERATING SYSTEM Functional Problems
OPERATING SYSTEM Functional Problems
OPERATING SYSTEM Functional Problems
OPERATING SYSTEM Functional Problems

OPERATING SYSTEM Functional Problems

1-123

"Operating System Functional problems" are those problems that do
not crash the Operating System but either do not complete properly
or do the wrong thing even though they appear to be working properly.

In order to diagnose the problem, you will first need to know a few
things about the problem. Such as:

1. Is the problem a result of running D.E.C. supported
software or Customer software? This will indicate
to you how far you need to persue the problem.

We are not responsible for fixing Customer Software
or even defining where in the Customer's software
the problem lies. We, D.E.C., are only responsible
in verifying that the D.E.C. hardware and D.E.C.
Supported Software are not at fault.

2. Can the problem be recreated at will., It will probably
be necessary to recreate the problem in order to
trouble-shoot it.

3. If the problem cannot be recreated at will, what is
the Time Between Failures.

4, You will need to know at what time the last failure
occured. If the customer doesn't know, then the
problem will have tc be recreated sc that you will
know at what time to look for errors in the error log
file.

These problems may or may not be caused by Hardware. In order to
determine if the problem is Hardware related, check the following:

1. Take an Error log report that covers the time
immediately prior to, at time of, and immediately
after the "Failing Function" was attempted. Does
the report show any errors or strange events?

2. If the "Failing Function" uses a particular device,
run the appropriate diagnostics on that device.

3. If the "Failing Function” uses a particular device,

check the Voltages and AC/DCLO signals (if appropriate)
on that device.

1-124

4. Check with Remote/District/Regional Support to see if this
is a known or common problem. There might be a Hardware
or Software fix for this problem. D.E.C. RDC is also
a good place to check to see if the problem is similiar
to any known or common problems.

If the problem is not found to be a hardware problem, (after doing the above
checks), it may be necessary to get the help of D.E.C. Software in order
to find out how to diagnose the problem.

Note: If all else fails to fix your problem, the VAX-11/780 Data Paths may
be at fault.

The VAX-11/780 Data Paths, as with most processors, do not check
parity within themselves as the data moves around within the data path
elements. This is not done since "parity checkers" are extremely

slow when compared to the speed needed within the data paths.

Parity is checked on the "MD Bus" data coming into the Data Paths
by the Cache logic. The Data Paths generates parity for the data
that it is sending out of the "D Register". Data going into and

out of the other Data Path buses, the ID Bus and the VA Bus, does
not have parity checking or generation done by the Data Paths.

1-125

OPERATING SYSTEM BACKUP
OPERATING SYSTEM BACKUP or
OPERATING SYSTEM BACKUP
OPERATING SYSTEM BACKUP or
OPERATING SYSTEM BACKUP
OPERATING SYSTEM BACKUP or
OPERATING SYSTEM BACKUP
OPERATING SYSTEM BACKUP or
OPERATING SYSTEM BACKUP

OPERATING SYSTEM BACKUP or

1-127

or REBUILD Problems
REBUILD Problems
or REBUILD Problems
REBUILD Problems
or REBUILD Problems
REBUILD Problems
or REBUILD Problems
REBUILD Problems
or REBUILD Problems

REBUILD Problems

Backup or System Rebuild problems are often considered to be
a seperate type of problem. There are really only a few areas that
may be at fault. Check the following:

Check to see if the problem can fit into one of the
other "Types of Problems” listed at the beginning of
this Trouble-shooting Qutline. If it does fit under
another type, use that types' outline to trouble-shoot
the problem.

An example would be, while attempting to do a
stand-alone backup or restore, the system crashed
with "?INT-STK INVLD". If this was the case, you
should go to the "Interrupt Stack Not VAlid" flow
which is under the "Operating System Crashes or
Bugchecks" section.

For "Stand-Alone" Backup or Restore, the following devices

are used :

LSI-11 Subsystem

VAX-11/780 CPU and MEMORY

Disk Drive that contains media being used.

Magtape that contains media being written

to or read from.

S. Associated SBI Nexus for Disk Drive and
Tape Drive.

6. SBI Terminator

B> W N
e o e

These devices should be checked for correct operation by
testing with the appropriate diagnostics.

Don't forget to check the voltages and Power Monitoring
signals (AC/DCLO) for these devices.

Other System units may affect the operation of these
devices even though they are not being used. It may become
necessary to remove them, temporarily, from the System in
order to verify that they are not at fault.

The MEDIA may be at fault. Try other media on both the

disk and magtape if at all possible to verify that the
media is not at fault.

1-128

If the VMS Operating System was running immediately prior to the
attempted BACKUP or REBUILD, it would be a good idea to verify that
it still runs O.K.. This step will tell you that most of the hardware

is in good shape.

If a VMS/DIAGNOSTIC Field Service Pack is available attempt to back it

up, as a test to help isolate whether there is a media or hardware problem.
A Restore could also be done, to a SCRATCH pack, with the tape just
generated in order to get a better idea of how much hardware is in
reasonably good working order.

If BACKUP or REBUILD is being done in stand-alone mode, it is
somewhat harder to trouble-shoot since you have lost two valuable
sources of information. There isn't any "ERROR LOG" facility under
stand-alone operation and there aren't any facilities that will
provide Software Dumps. Therefore, the only sources of information
available to you are the Console Terminal output and any Hardware
register dumps that may have been taken.

If a NON-D,E.C. Disk or Tape drive is being used for the BACKUP or

REBUILD operation, it may be the source of the problem. We, D.E.C.,
do not support our Device Drivers being used con foreign equipment.

1-129

BOOTING
BOOTING
BOOTING

BOOTING

BOOTING

BOOTING
BOOTING
BOOTING
BOOTING

BOOTING

Problems
Problems
Problems
Problems
Problems
Problems
Problems
Problems
Problems

Problems

1-131

Power-up booting outline

On a system POWER-UP, "CONSOL.SYS" is booted as follows:

A,

B.

E.

F.

BPOK & BDCOK, on LSI subsystem H780 Power Supply, goes high.
KD11-F jumpers, W5 & W6, specify what to do on power up.

1. Trap to 24

2. Halt - go into ODT and print "@" prompt

3. Jump to 173000
The VAX-11/780's KD1l1l-F i$ setup to "jump to 173000".
Execute PDP-11 MACROCODE routine that starts at Q-Bus
address 173000.

173000 / 000137
173002 / 140200

The CIB ROM starts at 140000, is 4Kwords long, and goes to 157776.
This ROM's main purpose is to load in the bootblock off the RXV1l
media, and transfer control to it. The entry point at 140200
causes the following to be done:

1. Run some Q-Bus Memory tests.

2. Assign Q-Bus Terminal addresses.

3. Run LSI CPU tests.

4. Read Boot block from RXV11l.
The remaining steps happen if the LOCAL or REMOTE CONSOLE FLOPPY

is in the RXV11l disk drive:

5. Read Directory on RXV1l media.

6. Load CONSOL.SYS into Q-Bus memory.

7. Start CONSOL.SYS program,
Upon initialization, CONSOL.SYS does the following:

1. Does a "SHOW" command.

2. Inits VAX CPU.

3. Load WCS microcode.

4. Does a "SHOW VERSIONS" command.
CONSOL.SYS checks "AUTO RESTART SWITCH" to see what to do next.

1

if "AUTO-RESTART SWITCH" = "off"
a. use "DEFBOO.CMD", on RX0l floppy, to boot the
system. This command file contains CONSOL.SYS
commands that will perform the following functions:

l.) setup VAX R<0:5> to indicate following:

a.) Boot NEXUS

b.) Primary Bootstrap

c.) Operator intervention (stop in
SYSBOOT)

d.) Media device type where Secondary

bootstrap is stored.
e.) Boot device unit number

1-132

2.) start the VAX macrocode program that is
resident in the ISP ROM. This programs
main job is to find a good 64KB of VAX
memory where the primary VAX bootstrap
can be loaded. The ISP ROM program will
exit, upon successful completion, with the
starting address of the good 64KB chunk of
memory +200 in the STACK POINTER (R14).

3.) load VMB.EXE (primary bootstrap), from
RX01 floppy, into VAX memory starting at
the address specified in the SP.

4.) start VMB.EXE (a VAX macro-code program).

b. VMB.EXE loads secondary bootstrap, per flags that
are setup in VAX R<0:5>, which loads program;

1.) [SYSMAINT]DIAGBOOT.EXE if R5<4>=1
a.) loads [SYSMAINT]ESSAA.EXE

2.) [SYSEXE]SYSBOOT.EXE if RS5<4>=0
a.) loads [SYSEXE]SYS.EXE

"AUTO-RESTART SWITCH" = "on"

a. use "RESTAR.CMD", on RX01l floppy, to reboot the
system.

1.) setup VAX R<0:5> to indicate what mapping
registers to use.

2.) start ISP ROM at WARM RESTART location
"20003004".

3.) WARM RESTART code attempts to find
RPB (restart parameter block).

4.) 1if RPB found, restart power interrupted
routine via contents of the RPB.

b. If unable to reboot via Warm restart, VAX ISP ROM
program {VAX Macrocode) sends code to CONSOL.SYS
indicating a WARM RESTART FAILURE.

1.) CONSOL.SYS then attempts a reboot by
using the DEFBOO.CMD file.

1-133

Booting Problems occur in many different types of ways but the
method of trouble-shooting is fairly simple.

Proceed as follows:

1.

Determine WHERE in the VMS Boot outline that the System
is experiencing problems. How far the Boot Procedure got
will tell you how much hardware you have to diagnose.

If it is failing before the VMB.EXE program is started,
the following hardware may be at fault:

. Any part of the LSI-11 Subsystem.

The LOCAL CONSOLE Floppy.

VAX Memory.

VAX-11/780 CPU.

Power Supplies and Power Monitoring circuits.

o0 oDw

From this point on, any hardware on the System could cause
failures. However, the most likely problem areas will be
listed here. Just beware that any hardware could be at
fault from this point on.

If it is failing after the VMB.EXE program is started,

but before the VMS identification message 15 typed on the
Cconscle Terminal, the following hardware is most likely
to be at fault:

VAX-11/780 CPU.

VAX Memory.

VAX Power Supplies and Power Monitoring circuits.
System Disk and SBI controller.

[oT o N o 2 1]

If it is failing after the VMS identification message, then
the most likely hardware to be at fault is:

a. VAX-11/780 CPU.

b. VAX Memory.

c. Power Supplies and Power Monitoring circuits.
d. System Disk and SBI controller.

e. DW780 Unibus Devices

1-134

Check to see if the problem can fit into cone of the
other "Types of Problems" listed at the beginning of
this Trouble-shooting OQutline. If it does fit under
another type, use that types' outline to trouble-shoot
the problem.

An example would be, while attempting to

boot the Operating System, it crashes with
"?INT-STK INVLD". 1If this was the case, you
should go to the "Interrupt Stack Not VAlid"™ flow
which is under the "Operating System Crashes or
Bugchecks” section.

Hardware Register Dumps can be taken to see if there are
any hardware errors set at failure time.

The problem could alsoc be a software problem. Try another

SYSTEM Pack if available. Here is where a Field Service
VMS/DIAGNOSTIC Pack would be very useful.

1-135

Overview of LSI-11 Subsystem Bootstrapping

1.

With the power-on sequence, the Console ROM bootstrap program

is started (this requires the operator action of applying power).
The Console ROM is located on the CIB (M8236) board and

is initiated by the LSI CPU executing macro instructions starting
at ROM location 173000. The LSI CPU board contains jumpers that
enable it to jump to 173000 on power up.

A series of LSI-11 tests are executed by the CIB ROM macro
instructions. These are PDP-11 macro instructions that are
executed by the LSI-11 processor.

The Console program, CONSOL.SYS, is then loaded from the Floppy
disk drive (the LOCAL CONSOLE or REMOTE CONSOLE floppy must be
installed in the Floppy Disk Drive) into LSI-1l memory. This is
accomplished by execution of macro instrucions in the CIB ROM,

The Console program, CONSOL.SYS, is then started. The initiation
of the CONSOL.SYS program prints the same information that you
would get with a Console "SHOW" command followed by a line
indicating that an INIT VAX-11/780 CPU has finished, and that is
followed by a statement specifing where the VAX CPU is halted

The following is an example of the type of printout that should
occur on the LSI-11 Console Terminal:

CPU HALTED,SOMM CLEAR,STEP=NONE, CLOCK=NORM
RAD=HEX, ADD=PHYS, DAT=LONG,FILL=00,REL=00000000
INIT SEQ DONE

HALTED AT 00000600

The Console program, CONSOL.SYS, then loads the WCSxxx.PAT file
from the Console Floppy into the WCS portion of the VAX-11/780 CPU,
(xxx = current version of WCS code on Floppy). The following is
an example of the type of printout that should now be printed on
the LSI Console Terminal:

(RELOADING WCS)
LOAD DONE, 0800 MICROWORDS LOADED
VER: PCS=01 WCS=0E-10 FPLA=0E CON=V(07-00-L

If the AUTO RESTART switch is ON, the CPU bootstrap is now
initiated.

If the AUTO RESTART switch is OFF, the console is held in the
Console I/0 mode of operation awaiting operator input. The
LSI Console Terminal will print the CONSOL.SYS prompt and remain
in input mode. Prompt is as follows:

>>>

1-136

Overview of VAX CPU bootstrapping

1. With the power-on sequence, the VAX CPU goes to the
initialization routines of the VAX CPU microcode.

2. The CPU then waits for the start of a console boot
sequence. The console boot can be initiated by one .
of the following ways:

a. Console BOOT command entered to the CONSOL.SYS
program by the operator. The CONSOL.SYS program
executes the appropriate command file from the
CONSOLE Floppy.

b. VAX BOOT switch is pressed by the operator. The
CONSOL.SYS program executes the DEFBOO.CMD command
file from the CONSOLE Floppy.

c. An Auto-restart sequence is initiated, by the AUTO
RESTART switch being ON, and a Warm Restart is
attempted. The CONSOL.SYS program executes the
RESTAR.CMD command file from the CONSOLE Floppy.

If a warm restart fails,go to step 3.

If a warm restart succeeds, go to step 5.

3. When any one of the preceding conditions occur, the console
(CONSOL.SYS) loads a bootstrap into the VAX CPU's memory from
the CONSOLE FLOPPY. The bootstrap is VMB.EXE.

4, The Console program, CONSOL.SYS, starts the VAX CPU in the
VMB.EXE (that was just loaded). VMB.EXE loads and starts the
secondary bootstrap (SYSBOOT.EXE or DIAGBOOT.EXE).

5. The Console Program, CONSOL.SYS, enters its PROGRAM I/0 mode
of operation.

6. Any output to the Console Terminal now comes from the running
VAX-11/780 macro program via the CONSOL,.SYS program. The
CONSOL.SYS program passes data to the terminal from the VAX
CpU.

7. Any input is passed from the Console terminal to the running
VAX macro program via the CONSOL.SYS program. EXCEPT, if a
"CTRL""P" (~P) is typed on the Console terminal, the CONSOL.SYS
program will then go back to "CONSOLE I/O" mode and you will
then be talking to CONSOL.SYS directly again.

1-137

FRONT-END
FRONT-END
FRONT-END
FRONT-END
FRONT-END
FRONT-END
FRONT-END
FRONT-END
FRONT-END

FRONT-END

SUBSYSTEM Problems
SUBSYSTEM Problems
SUBSYSTEM Problems
SUBSYSTEM Problems
SUBSYSTEM Problems
SUBSYSTEM Problems
SUBSYSTEM Problems
SUBSYSTEM Problems
SUBSYSTEM Problems

SUBSYSTEM Problems

1-139

The Front-end Subsystem (LSI-11 and Associated Peripherals) can
have many types of problems, also. The subsystem is a very simple
and easy to fix system. There are a few things that should be kept
in mind while trouble-shooting subsystem problems.
1. Be sure to check that the jumpers of the modules that
you are placing into the system matches those on the
module that you have taken out.

2. Be sure to mark all original modules so that you will
not get then mixed up later on.

3. Remember that the CIB (M8236) module is part of the
CONSOLE SUBSYSTEM.

4, Remember that AC/DCLO signals from the VAX-11/780 are
turned into FAIL/DEAD on the Q-Bus.

5. Don't forget about checking Voltages and Power Monitoring
Signals.

6. Have you run all the LSI-1l Subsystem Diagnostics?

LSI Subsystem TRAPS

Whenever the LSI processor hardware detects errors, it will execute a
trap sequence. This trap sequence does the following steps:

1. Pushes the "PSW" onto the STACK.

2. Pushes the "PC", at the time of the error, onto the STACK.
3. Places the contents of the "TRAP_VECTOR" into the "PC".

4, Places the contents of the "TRAP_VECTOR+2" into the "PSW".

5. Resumes executing macro instructions from the "NEW" PC.

1-140

Trap Vector Assignments

000000

000004

000010

000014

000020

000024

000030

000034

Reserved. (an Error Trap)
Alsc indicates a Trap within a Trap.
Got here due to an error occuring while
servicing another error, or by some instruction
modifying the PC to 000000.

If the TRAP-CATCHER is installed, the LSI will halt
with the PC pointing to 000004 if this error occurs.

CPU Errors. (an Error Trap)

Non-existent Memory Errors
Sack Timeouts
0dd Addressing Errors

If the TRAP-CATCHER is installed, the LSI will halt
with the PC pointing to 000010 if this error occurs:

lllegal and Reserved Instruction. (an Error Trap)
An attempt was made to execute an illegal or
reserved instruction opcode.

If the TRAP-CATCHER is installed, the LSI will halt
with the PC pointing to 000014 if this error occurs.

BPT (Breakpoint Trap) executed.
Got here due to the BPT instruction executed.

[OT (Input/Output Trap) executed.
Got here due to the IOT instruction executed.

Power-Fail detected. (an Error Trap)
Got here due to detection of a Power Failure.

If the TRAP-CATCHER is installed, the LSI will halt

with the PC pointing to 000030 if this error occurs.

EMT (Emulator Trap) executed.
Got here due to the EMT instruction being executed.

TRAP instruction executed.
Got here due to the TRAP instruction being
executed.

Traps are usually easy to trouble-shoot as long as the proper
information is gathered at the time of the failure. A software dump
of certain locations is very helpful in isolating the source of the
error in all of Error traps listed above except for a Power Fail
trap. In order to gather this software information, you must first
install an LSI/PDP-11 TRAP CATCHER in memory and then wait for the
next error to occur.

1-141

LSI/PDP-11 TRAP CATCHER
The later versions of CONSOL.SYS have software routines for the
different LSI traps that can occur, i.e. "Trap-4". These routines,
unfortunately, do not dump any of the information that you need to
trouble~shoot them. In order to get a Software Dump of these traps,
you must deposit a TRAP CATCHER into LSI memory prior to getting the
error. To do this, use LSI ODT commands to deposit the TRAP CATCHER.

$ ~p <--- Type "CTRL/P" to VMS prompt.
>>> <--- Place LSI "HALT/ENABLE" switch to "HALT".
YYYYYY <--- LSI PC at time halted. Remember for later.

@0/ xxxxxx 2<line feed>

000002/ xxxxxx O<line feed>

000004/ xxxxxx 6<line feed>

000006/ xxxxxx O<line feed>

000010/ xxxxxx l2<line feed>

000012/ xxxxxx O<return> <-- Place "HALT/ENABLE" to "ENABLE"

CyyyyyyP <--- restarts CONSOL.SYS where left off.
>>> SET TERMINAL PROGRAM<return><return>
S <--- Now back to VMS. Wait for error.

POWER FAIL Traps

The trap is caused by one of the following:

1. A true drop in power below the specifications of the
power supplies that have their Power Monitoring signals
connected to the LSI's "BPOK" and "BDCOK" circuits,

2. A false detection of a Drop in power by one of the
"BPOK" and/or "BDCOK" circuits, or interconnected Power
monitoring signals.

3. Noisy Power supply and/or Power Monitoring signals.

a. AC/DCLO on H7420 type supplies should be at
least a +3.5 volt level to insure proper noise
immunity.

b. H7100 AC/DCLO signals should be at least a -9.5
volt level to insure proper noise immunity.

4, LSI Subsystem failure causing the LSI Processor to enter
the trap vector.

Possible Problem areas are:

1. The H780 LSI Power Supply.

2. The H780 LSI Power Supply Power Monitoring Circuits.

3. The VAX-11/780 CPU/Nexus H7100 Power Supplies.

4, The VAX-11/780 CPU/Nexus H7100 Power Monitoring Circuits.

The Power Monitoring signals in the following supplies are or-ed
together and then feed the LSI CPU's Power Fail Circuits:

1. H780 LSI Power Supply
2. VAX-11/780 H7100 Power Supply #1, #2, and #3

1-142

Gathering LSl Software DUMP (should be halted in a TRAP CATCHER)

If the LSI-11 is trapping, the following ODT commands can be used to
gather information to determine what instruction or address is failing,
(assuming that you have installed the TRAP CATCHER and the LSI halts).
Type those things within double quotation marks. Things within a

single quotation mark signifies what keyboard key to type.
Take the following dump first thing after LSI-11 goes to ODT mode (@).

Upper Case characters must be used when talking to ODT.

1. Type "™" ; Get LSI Maintenance Register.

2. Type 'RETURN'

3. Type "RS/" ; Get the Processor Status Word.

4, Type 'RETURN' .

5. Type "RO/" ; Get Contents of RO.

6. Type 'LINEFEED' 6 times ; Get Contents of R1 thru R6.

7. Type "@" ; Get Failure PC off Stack.

8. Type "@" ; Get contents of Failure location.
9. Type "~" 15 times ; Get Instruction Stream.

10. Type 'RETURN'
11. Type "R6/"
12. Type "@"

Prepare to get information in
case the mode used in the failing

13. Type "@" ; instruction was either PC mode 6
14, Type """ ; or PC mode 7 addressing.

15. Type "_" ; Get PC mode 6 or 7 informaticn.
16. Type "@" ; Get PC mode 7 operand.

17. Type 'RETURN'

A dump of the LSI is now complete. Proceed to next step
if you want to RESTART the LSI subsystem or REBOOT the
Operating System.

18. If you want to attempt to reboot the Operating System do one
of the following:

a. If you want to do a complete Operating System reboot,
type the following if at the ODT prompt (@):

"173000G"

b. If you only want to reboot the LSI subsystem without
rebooting the Operating System, type the following:

To "@" (ODT) prompt type - 141330P
To ">>>" (CONSOL.SYS) prompt type - SET TERMINAL PROGRAM

The Dump just taken can be analyzed in order to determine what
address or instruction caused the trap.

1-143

ANALYZING LSI Software Dumps taken after Halting in a Trap Catcher.

LSI-11 Software Dumps for crashes that have been halted in a Trap Catcher

are fairly easy to analyze if you have at least a general understanding of
the PDP-11 Instruction set, the PDP-11 Addressing modes, and how a PDP-11

trap occurs. The following steps assume that you have at least this level
of knowledge.

1. The LSI CPU will do the following steps whenever it detects a TRAP
condition:

a. Pushes the PSW onto the stack. The stack is AUTO-DECREMENTED
prior to pushing this data onto it.

b. Pushes the PC onto the stack. Again, the stack is AUTO-DECREMENTED
prior to pushing this data onto it.

¢. A new PC is fetched from the TRAP VECTOR location in physical
memory. The actual location will be one of the following:

LSI Memory Location 000000 if DOUBLE BUS ERROR Trap.

LSI Memory Location 000004 if BUS ERROR Trap.

LSI Memory Location 000010 if ILLEGAL/RESERVED INSTRUCTION Trap.
LSI Memory Location 000024 if POWER FAIL/RECOVER Trap.

d. A new PSW is fetched from the TRAP VECTOR+2 location in physical
memory. The actual location will be one of the following:

LSI Memory Location 000002 if DOUBLE BUS ERROR Trap.

LSI Memory Location 000006 if BUS ERROR Trap.

LSI Memory Location 000012 if ILLEGAL/RESERVED INSTRUCTION Trap.
LSI Memory Location 000026 if POWER FAIL/RECOVER Trap.

e. The LSI will then continue MACRO~CODE execution starting at the
new PC. If a TRAP-CATCHER has been deposited, like the one
specified in this section, the LSI CPU will execute a HALT
(code = 000000) instruction.

2. At this point in time, the LSI DUMP procedure should be executed.
This will gather the needed information to allow you to analyze
what was happening, or who was being accessed, at the time of the
TRAP. In most cases, this analysis will point directly to the
failing unit.

3. To analyze the dump, proceed as follows:

a. Find out the contents of LSI "General Register #6" (R6, %6, or SP).
This data is the address of the current bottom of the STACK.
The STACK builds from high address towards lower address, therefore
the contents of R6 will be pointing to the last entry pushed onto
the STACK. This entry will be the saved PC of where the LSI
instruction set processor was running at the time of the trap.

b. Using the "contents of R6" as an "address", examine this memory

location. The data from this last examine is the PC at the time
of the TRAP.

1-144

c. Subtract 2 from this PC to find the address of the last memory
reference prior to the TRAP, or at the time of the TRAP.
The "PC-2" contains INSTRUCTION, or OPERAND-SPECIFIER-DATA,
that was being used at the time of the Trap.

d. Now is when you need the general knowledge about the PDP-11
instruction set, how it works, and how the addressing modes
work. With this knowledge you should be able to look back
through the location prior to the "PC-2" location and determine
what was happening prior to the trap. You must use your knowledge
of the PDP-11 instruction set to find out where the instructions
actually start.

If you cannot make sense of the dump, either Remote Support or your
local Support groups should be able to analyze the dump.

LSI-Traps Software Dump Analysis Flow

R6 / XxXXXXX --> Points to bottom of Stack --|
|
|
|-> xxxxxx / SavedPC ->
XXXXXX+2/ SavedPSW

!
|
|
SavedPC-12/ instruction stream data I
SavedPC-10/ instruction stream data |
SavedPC-6 / instruction stream data |
SavedPC-4 / instruction stream data |
SavedPC-2 / instruction stream data <-- Last reference |
SavedPC / instruction stream data <-----———-————— - —mmm———————— <--|

1-145

Q-Bus Register

Device Address Name Vector
RXV1l 177170 RXCS 264
177172 RXDB
DLV11 177560 RCSR 60 - Reciever
177562 RBUF
177564 XCSR 64 - Transmitter
177566 XBUF
DLV1l1l-E 175610 RCSR 310 - Receiver
175612 RBUF
175614 XCSR 314 - Transmitter
175616 XBUF
CIB 173000 ROM 0 300 - RX Done
173002 ROM 1 304 - TX Ready
173004 spare
173006 ID Data LO
173010 ID Data HI
173012 spare
173014 RX DONE
173016 TX READY
173020 TO ID Lo
173022 TO ID Hi
173024 FM ID Lo
173026 FM ID Hi
173030 ID C/S
173032 MCR
173034 MCS
173036 V-BUS

Note: The above addresses are dependent on the CIB

Wl jumper being INSTALLED. If Wl is OUT

: the addresses would be 1630xx instead.

140000
to CIB Bootstrap ROM

157777

MCR - Q-Bus address = 173032

15 14 13 12 11 10

09
| I I
I
l
I
I

(e}
(8]

4

w

2 01 00
I
Halt CPU I

I

| -- Proceed
Req Reset |

I

I

0
I
I
|
|--- Single Step BUS
Maint Ret Enab ---
UPC <12> =-==---------- I
STAR Interrupt Disable --
ROM NOP ----=—-=-—-=-=-—-—--- |
Stop On MICRO MATCH -----------
Clock Stopped --------=-=-----=----

0
I
I
I
I
I
I

--- Single Step STATE

—_——————— 0

—_——————— o0

Freqg <0>

—————————5o0

\

—_—————————5 o0

0
I
|
I
I
I
I
}
I
|

--- Freqg <1>

1-146

MCS - Q-Bus address 173034

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 0O
Floppy on -| I | [| | | |---- LOCK (Key)
BOOT (Switch) -| I [I [|=-—=—- REMOTE (Key)
Console Command ----- I [I | = AUTO RESTART (Switch)
RUN -=-=-=---- ————mmmm— - [| ---- DONE Interrupt Enable
HALT STATE -----——===-—==——-—- o= READY Interrupt Enable

V-BUS Q-Bus address 173036

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
|<- Serial Channel <7:0> ->| ~ ~ ~on AonA
[[{ | |--- v-Bus CLOCK
CPT 0 --—--- [| | 0 | |---- V-Bus LOAD
CPT 1 -—-—-—-=——- | [| ---- V-Bus SELFTEST
CPT 2 ————————————- | |-- CcPT 3

ID C/S Q-Bus address 173030

7 06 05 04 03 02 01 00

~ A ~ ~ A A ~ A~ A A A A

14 13 12 11 10 09 08
R I N R B B

I
I
I
I
I

U R I N
I

ID Address <5:0>

[
Rcvd ID ADDR <5:0>
Inverted, Read Only

1
|
|
|
I
| --- ID Write
|

-- RCV Write

=== ID Cycle |====—- ID Maint

RX DONE - Q-Bus address 173014
Contains one bit. Bit <07> = RX DONE

TX READY - Q-Bus address 173016
Contains one bit. Bit <07> = TX READY

ID Data Lo, TO ID Lo, FM ID Lo all contain the
low order bits, bits <15:00> of a 32 bit data word.

ID Data Hi, TO ID Hi, FM ID Hi all contain the
high order bits, bits <31:16> of a 32 bit data word.

1-147

PDP-11 Instruction Set

000000 HALT 0060DD ROR 104000
000001 WAIT 0061DD ROL to EMT
000002 RTI 0062DD ASR 104377
000003 BPT 0063DD ASL 104400
000004 1IOT 0064NN MARK to TRAP
000005 RESET 00658S MFPI 104777
000006 RTT 0066DD MTPI 1050DD CLRB
000007 0067DD SXT 1051DD COMB

to reserved 007000 1052DD INCB
000077 to reserved 1053DD DEGB
0001DD JMP 007777 1054DD NEGB
00020R RTS 01SSDD MOV 1055DD ADCB
000210 02SSDD CMP 1056DD SBCB

to reserved 03sSDD BIT 1057DD TSTB
000227 04SSDD BIC 1060DD RORB
000240 NOP 05SSDD BIS 1061DD ROLB
000241 CLC 06SSDD ADD 106400
000242 CLV 070RSS MUL to reserved
000244 CLZ 071RSS DIV 106477
000250 CLN 072RSS ASH 1065S8SS MFPD
000257 CLNZVC 073RSS ASHC 1066DD MTPD
000260 NOP 074RDD XOR 106700
000261 SEC 07500R FADD to reserved
000262 SEV 07501R FSUB 107777
000264 SEZ 07502R FMUL 11SSDD MOVB
000270 SEN 07503R FDIV 12SSDD CMPB
000277 SECVZN 075040 13SSDD BITB
0004xXX BR to reserved 14SSDD BICB
0010xXX BNE 076777 15SSDD BISB
0014xXX BEQ 077RNN SOB 16SSDD SUB
0020xXX BGE 1000xXX BPL 170000
0024xXX BLT 1004xXX BMI to Floating
0030xXX BGT 1010xXX BHI 177777 Point inst.
0034xXX BLE 1014xXX BLOS
004RDD JSR 1020xXX BVC
0050DD CLR 1024xXX BVS
0051DD COM 1030xXX BCC,BHIS
0052DD INC 1034xXX BCS,BLO
0053DD DEC
0054DD NEG
0055DD ADC XXX = 8-bit offset that when sign extended and
0056DD SBC added to the PC results in the new PC.
0057DD TST

1-148

PDP-11 Processor Status Word

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
| | [[
T N Z VvV C
Priority ----|
R0-R6 mode addressing
Mode Name Symbolic Description

0 register R —====-- (R) is operand

1 register deferred (R) —=-=—-- (R) is address of operand

2 auto-increment (R)+ =------- (R) is address of operand,

a lor 2 is added to (R) after
use,

3. auto-increment @(R)+ =—===-—- (R) is address of the address

deferred of operand. A 1 or 2 is added
to (R) after use.

4 auto-decrement -(R) —=m-—-- (R) is decremented by 1 or 2
and the resulting (R) is the

' address of the operand.
5 auto-decrement @-(R) —=-=--- (R) is decremented by 1 or 2
deferred and the resulting {(R) is the
address of the address of the
operand.

6 index x(R) ———m——- (R) is added to "x" and the
result is the address of the
operand.

7 index deferred @x(R) —-==---- (R) is added to "x" and the
result is the address of the
address of the operand.

PC Mode addressing
Mode Name Symbolic Description
2 immediate #tn 0 ——-———- operand, "n", follows the
" instruction or source operand.

3 absolute G#A W ---—-—- address of the operand, "A",
follows the instruction or
source operand.

6 relative A == Instruction Address + 4 + X
is the address of the operand.
"A" is the address of the
operand.

7 relative deferred @A ——-—-—- Instr. address + 4 + X is the

1-149

address of the address of the
operand. The contents of "A"
is the address of the operand.

UNEXPLAINED
UNEXPLAINED
UNEXPLAINED
UNEXPLAINED
UNEXPLAINED
UNEXPLAINED
UNEXPLAINED
UNEXPLAINED
UNEXPLAINED

UNEXPLAINED

REBOOTS & POWER RESTARTS
REBOOTS & POWER RESTARTS
REBOOTS & POWER RESTARTS
REBOOTS & POWER RESTARTS
REBOOTS & POWER RESTARTS
REBOOTS & POWER RESTARTS
REBOOTS & POWER RESTARTS
REBOOTS & POWER RESTARTS
REBOOTS & POWER RESTARTS

REBOOTS & POWER RESTARTS

1-151

Symptoms of spurious Reboots and Power Restarts

This type of problem can be identified by finding the following
type of output on the console terminal.

1. The system is running along printing out normal operating
system type information.

2. Then, without any prior error printouts, a message appears that
is like or resembles (depending on the actual version of
the Console Floppy) the following:

$ <-- This line may contain any type of VMS output

CPU HALTED,SOMM CLEAR,STEP=NONE, CLOCK=NORM
RAD=HEX,ADD=PHYS,DAT=LONG, FILL=00,REL=00000000
INIT SEQ DONE

HALTED AT 00000000

(RELOADING WCS)
LOAD DONE, 0800 MICROWORDS LOADED
VER: PCS=01 WCS=0E-10 FPLA=0E CON=V07-00-L

(AUTO-RESTART) <-- From here on depends on the position of
CPU HALTED the "Auto-Restart Switch".

INIT SEQ DONE

$

3. The Operating System may or may not reboot depending on the
position of the "Auto-Restart Switch" on the VAX control panel.

1-152

This type of problem is usually power related.

Check the following things:

l‘

Are the VAX-11/780 CPU, MEMORY, and SBI NEXUS power supply
voltages 0.K.? Check them with a Scope (for Noise) and
with a DVM (for correct level).

Are the LSI-11 Subsystem Voltages 0.K.? Check the H780
power supply with a Scope and a DVM for correct levels
and the absence of noise.

Check all Power Monitoring signals (AC/DCLO) on both the
VAX supplies and the LSI-11 supply for both the correct
level and absence of noise. Use a Scope and a DVM. The
actual H7100 AC/DCLO signals that can cause this problem
are H7100 Supplies #1,#2,#3, and #4.

Verify that the 869 Power Controller is not dropping power
to the system.

Check the input AC power to the 869 Power Controller. Is
it low? It may be necessary install a DRANETZ to monitor
input power to the system.

The above mentioned Supplies and Power Controller may need to be
replaced one at a time in order to isolate the problem. Always put
back the original whenever it is determined that it was not at fault.

There are four modules that may be causing the Power Restarts. If
everything else checks O.K., try replacing them. They are:

l'

‘M8232 - Clock board. Monitors "Supplies #1,#2,#3, & #4"

and generates its own ACLO/DCLO signals.

M8236 - CIB board. Sends the VAX system ACLO/DCLO signal
onto the Q-Bus BPOK/BDCOK lines so that the LSI knows that
the VAX detected a power problem.

M8224 - IRC board. Monitors the T.0.D. Battery DCLO signal
and passes it on to the Clock board.

KD11-F LSI CPU Board. This board receives the power fail
indication and causes the reboot.

1-153

Isolating the problem via disconnecting AC/DCLO signals

Sometimes it is necessary to be able to eliminate some of the hardware

by disconnecting sources of the Power Monitoring signals.

this can be done:

Here 1is how

1. The H780 Power Supply can be isolated by disconnecting the
BPOK and BDCOK signals that it generates so that they never
reach the LSI CPU. In order to do this, you can bend the
two pins that receive BDCOK and BPOK so that they are not
connected when you reinstall the H780 to LSI Backplane
Gray ribbon cable. Use the following diagram to locate the

BPOK and BDCOK signal pins on the LSI backplane.

BE VERY CAREFUL not to bend these two backplane pins any

more than is absolutely necessary.
broken if you bend them too far.

"ONLY"

These pins are easily
bend them far

enough to allow the cable to be put back on "ONLY" far
enough to allow the other signal pins to be connected.

LSI Backplane

dkkkkdkkkkhkkkk

Csparél

\
+ + + o+ o+
+ + + o+ +
! Pt !
SRUN(A) Pyt BEVNT
! ! CL3
! Csparel
|
BDCOK

Ground
\
Cs3 \
\ \ SRUN
BHALT \ \ \
A N U BPOK
AN

| e |
. .

v() <=

()t o<--

POy 1 <=
t--—-1
V() o<--
.
V() 1 o<=-

[|

S S

L-—m !

-12 volts
Ground
Ground
+5B volts
+5 volts

+12 volts

2. The H7100 Power Supplies can be eliminated by diconnecting
the "BPOK & BDCOK" signals that are generated on the "CIB"
board and are transimitted on the Q-Bus lines. To do this,
you can bend "Pins K & M" on "P7" sightly so that you can
reinsert the "J7" connector with the two pins disconnected.
This will prevent any spurious ACLO/DCLO signals, from the
H7100A Power Supplies (Supplies #1,#2,#3, or #4), from the
CIB (M8236) board, or from the CLOCK (M8232) board, causing
the system to be rebooted or restarted. The actual H7100's
that are connected to the "Supply #1 thru #4" connectors
are Power Supplies #1,#2, and #3. All the other H7100 Power
Supplies feed logic in there associated NEXUS' that uses the
SBI FAIL/DEAD lines to signal the VAX CPU of power problems.

KA780 Backplane AC/DCLO Supply connector assignments:
Supply #1 = J17 Supply #2
Supply #3 = J15 Supply #4

T.0.D. Clock's Battery DCLO:

J20 - AO08F1

No FP780 installed:
J1l4 - J16 - SFT - PS #2
J15 - PS #3
(J14 - DW780 #1 - J17) - SFT - PS #2
DW780 #1 - Jl4 - J16 - SFT - PS #2
J14 and J16 are connected via the KA780 backplane.

ag
[y
S o
1

With FP780 installed:

J14 - Jl6 - SFT - PS #2

J15 - PS #3

J16 - (J14 - DW780 #1) - SFT - PS #2
J17 - PS #1

J14 and J16 are connected via the KA780 backplane.

BE VERY CAREFUL not to bend the two pins any more than
absolutely necessary or they may break when you attempt

to restraighten them after the problem has been isclated.
It is better if you don't actually bend the pins at all
but simply hold them out of the way while reinstalling the
"P7" cable no more that a third of the way onto the other
"J7" pins.

1-155

"Q-Bus BPOK/BDCOK" are generated on the CIB board as a result of
any H7100 Supply generating an ACLO/DCLO signal or by the T.0.D.
clock Battery backup generating a "BAT DCLO".

Top right of KA780 Backplane (view from pin-side)

<-- P7
BPOK Pin K ---> Connector

BDCOK Pin M --->

KA780 backplane wiring

BDCOK - B29Al1 to J0007M
BPOK - B29B1 to J0007K

CO0O0O000000O0O0D0OD0O0O0D0OD0ODO0ODOOO
<O00000000O0D00DO0O0ODODOOOOO

c
<

After disconnecting "BPOK" and "BDCCK" from "J0007", as described
above, the type of failure symptom that occurs next will indicate
in which half the problem lies.

1. If the LSI still reloads CONSOL.SYS and the VAX WCS, then
the problem is in the LSI Subsystem.

2. If an error occurs that indicates that the VAX is hung or

halted, then the problem is in the VAX CPU or VAX Power
Supplies.

[-156

The backplane connectors, J14 thru J20, are located on the pin side of

the VAX-11/780 CPU backplane, at the bottom, and are as follows:

Wl w2 w3 W4 W5

1 1 1 1 1

2 2 2 2 2
J14 J15 J16 J17 J18
T1T 1] 1] T1] T1iT
12| 121 |21 [2] 121
131 [31 131 131 131
la]

Feeds slots 4-16

Feeds slots 1-3,20,
Feeds slots 18,24-28

J14 connections
% %k %k &k ok kkkkkkkkx

22,23,29

1 - Supply 4 ACLO
2 - Supply 4 DCLO

3 - Ground

J16 connections
kkkkkhkhkkhkkhkkkkxk

Ww3-1 1 - Supply 2 ACLO
Ww3-2 2 - Supply 2 DCLO
3 - Ground

Bottom_pin_side of KA780 Backplane

1-157

Wé W7 W8
1 1 1
2 2 2
1T 1T 17 [17T J19 J20
| | +5 volt | |
I & I TIT T1 41
I Ground | | 121 12 5]
| | connections | 131 13 6l
I here. | | [4|
o [-
v S T I B
(I [(R I
[Y R
| Bl Bl Bl B| B| B
| al al al al al al
I |l rl rf rl vl rl
I I R I B
I 11 21 3} 41 5| 6]
| l |
| |
J15 connections
%k ke ode ok Kk ok ok kkkkk kK%
W2-1 1 - Supply 3 ACLO
W2-2 2 - Supply 3 DCLO
3 - Ground
J17 connections
* %k dk Kk kK kK KKK Kk Kk Kk
We-1 1 - supply 1 ACLO
Wa-2 2 - Supply 1 DCLO
3 - Ground

J18 connections
ddk ek kkkhkkkkkkkk

W N

-5v (to BL2 pins)
-5v (to EK1l pins)
Ground
Ground

J20 connections
% % %k %k Kk dk d ok Kk k Kk k %k k Kk

wW7-1

w8-1

Bar
Bar

Bar
Bar

(o2 NS I SR OV S I o

- Time of Day Clock's "+5v"
- unused
- Ground

J19 connections
Kkkkkkkkkkkhkkikk

We-1 1l - +5v to Front Panel
W6-2 2 - CIBP FLOPPY ON H

3 - Ground

4 - Ground

- Time of Day Clock's "Battery DCLO"

- unused
- Ground

+5v from Power Supply #3
Return from Power Supply #3

+5v from Power Supply #2

Return from Power Supply #2

If FP780 is not installed:

+5v from Power Supply #2
Return from Power Supply #2

If FP780 is installed:

+5v from Power Supply #1

Return from Power Supply #1

Voltage Pins on the KA780 Backplane

+5 volts is present on all slots and rows at pins A2 and V1.
-5 volts is present on all slots at pins BL2 and EKI.

1-158

(also supplies the first DW780)

Top_right_hand portion of KA780 backplane (Pin_side view)

! J10 ! ! J11 ! ! J12 !
Q-Bus Signal Runlist
JO07C - B29R1 - BEVENT L
JO7E - B29N1l - BSACK L
JO7K - B29B1 - BPCK L
JO7M - B2SAl1 - BDCOK L
J07S - A2SR1 - BREF L
JO7W - A29S1 - BHALT L
JO7Y - B29S1 - BINIT L
JO7CC - B29B2 - BDMR L
JO7EE - A29M2 - BIAKI L
JO7HH - A29L2 - BIRQ L
JO7KK - A29J2 - BYSNC L
JO7MM - A29D2 - BDIN L
JO7PP - B29D2 - BRPLY L
JO07SS - A29E2 - BDOUT L
J08C - B29P1 - BBS7 L
JO8E - A29K2 - BWTBT L
JO8H - B2Sv2 - BDAL 15 L
JO8K - B29U2 -~ BDAL 14 L
JO8M - B29T2 - BDAL 13 L
JO08P - B29S2 - BDAL 12 L
J08S - B29R2 - BDAL 11 L
J08U - B29P2 - BDAL 10 L
J08W - B29M1 - BDAL 0S L
JO8Y - B29M2 -~ BDAL 08 L
J08AaA - B29L1 - BDAL 07 L
JO8CC - B29F1 - BDAL 06 L
JO8EE -~ B29El - BDAL 05 L
JO8HH - B29Dl1 -~ BDAL 04 L
JO8KK - B29Cl - BDAL 03 L
JO8MM - B29EZ2 - BDAL 02 L
JO8PP - A29V2 - BDAL 01 L
J08SS - A29U2 - BDAL 00 L
VAX Control Panel Runlist
JOSB - A29A1 - SCPA BOOT SW H
JOSD - A29B2 - SCPA AUTO RESTART H
JO9F - A29F1 - SCPA LOCK H
JO9K - A29D1 - CIBN RUN H
JOSL - A29El - CIBN ATTN H
J09J - A29K1 - SCPA REMOTE H

1-159

Jo7

Jo8

JOS

e b tmm sem bem b e e b

D T

Pm smm tm e e tm e b= s

e e em b= am e

e e e e e e e e e e e e e e e e e

Problems on CERTAIN DEVICE(s)
Problems on CERTAIN DEVICE(s)
Problems on CERTAIN DEVICE(s)
Problems on CERTAIN DEVICE(s)
Problems on CERTAIN DEVICE(s)
Problems on CERTAIN DEVICE(s)
Problems on CERTAIN DEVICE(s)
Problems on CERTAIN DEVICE(s)
Problems on CERTAIN DEVICE(s)

Problems on CERTAIN DEVICE(s)

1-161

This area is extremely variable in the types of problem symptoms
that can occur. Therefore, this discussion will only point out

a few of the questions that you should ask yourself while trouble-
shooting peripheral device problems.

On such peripheral devices as Magtapes and Disks try to eliminate
the media as being a possible problem as soon as possible. Media
problems are most often seen on Magtapes versus Disks. It is best
to use D.E.C. Certified Magtapes to isolate Magtape Problems. Not
only is the media suspect on Read/Write problems but also should be
suspected on AUTO-LOAD problems.

The Error Log (System Event File) report is a valuable source of
information for problem diagnosis.

If the problem is of the type that points to one particular device,
the following questions should be answered if appropriate:

1. For a failing device that is on a common controller bus with
other devices, answer the following questions for yourself.

a. Do all the other devices run 0.K.?

If they don't, then goto the next step that covers
multiple failing devices on the same common controller
interface bus.

If this is the only device that fails on its associated
interface bus, then the problem could either be in that
device or could still be a controller or bus problem. In
order to make sure it is not a controller or bus problem,
check to see if there is anything about the failing device,
as related to how it interfaces to the controller, that is
different than the running devices.

b. If all other devices on the controller run 0.K., and
you have exhausted all other ideas, the problem still
could be with one of the other devices on the same bus
somehow interferring with the failing device. Make sure
this is not the case by removing all other devices from
the bus.

1-162

2. For failing devices that are on a common controller bus with
other devices, answer the following question for yourself.

Does any other Device on the same common controller bus
run 0.K.?

If there isn't, then the problem may be one of the
following:

. A Bus problem.

. A Controller problem.

. Another Device may be causing failures on
other devices on the bus.

4, A Bus Loading problem.

5. A Bus Termination Problem.

1
2
3

I1f there is, then you know that the Bus is in "Fairly"
good shape. Do not, however, totally eliminate the bus
as being a source of the problem at this time.

If there is, then you also know that the Controller is in
"Fairly" good shape also. Again, do not totally eliminate
the Controller as being a source of the problem yet.

If any other Device on the same common controller bus runs
0.K., then answer this question. Are all the failing
devices of the same "DEVICE TYPE" ?

If they aren't, what are the differences as related to how
the Controller treats them? For example, are the failing
devices Interrupt Driven and the non-failing devices

of Direct Memory Access type, or vice-versa? Look for
differences that may give you a clue as to what may be
causing the problem.

1-163

3. For a Failing Device or Devices that are not on a common bus but
are on a Controller that is of the multi-port varity, then answer

the following question.
a. Do all the devices fail on the controller?

If all do then the problem is probably in the controller
or a Software problem.

If some run O0.K., then try a running device on the port
that fails. If that port runs O.K. now, do not immediately
blame the other device, but first evaluate the answer to
the following question:

Are both Devices of the same "DEVICE TYPE" and if they
aren't, are there any differences in the way that the
controller uses the failing and the running devices?

Never totally eliminate the possibility that the problem may be caused
by Software. However before you start looking into software problems,
it is most often best to eliminate the "hardware" possibilities first.

1-164

Won'’t
Won't
Won't
Won't
Won’t
Won't
Won’t
Won't
Won’t

Won't

POWER-UP
POWER-UP
POWER-UP
POWER-UP
POWER-UP
POWER-UP
POWER-UP
POWER-UP
POWER-UP

POWER-UP

1-165

This type of problem does not warrant much of a discussion, but a
few things to look for will be mentioned,

Check the following:

1.

Is the Input Power 0O.K.?

Are

Are

Are

Are

Are

Are

a. All voltages present?
b. All voltages within specification?

any Circuit Breakers tripped?

a. If the problem is in the LSI, don't forget to
check the position of the LSI Power Supply's
ON/OFF switch. This switch is in the back
panel of the H780 Power Supply.

b. Are all the H7100 Breakers set?

c. Are all the 869 Power Controller breakers set?

d. Are the breakers for all BAll Boxes set?

e. Are all breakers set in any expander cabinets.

any Fuses blown? !
a. Check with a meter and tap to make sure that
the connection is solid within the fuse.

all Interlocks 0.K.?
a. These can be checked by scoping the circuit or
by simply defeating the interlocks.

the AC Power Controllers' outputs 0.K.?

a. All voltages present?

b. All voltages within specification?

c. Does it work O.K. in the "LOCAL" position?
(D.E.C. Remote Power Bus may be at fault)

there any THERMAL Switches that may be tripped?
a. These can be checked by scoping the circuit or
by simply defeating the switches.

there any AIR FLOW Sense switches that may be failing?

a. These can be checked by scoping the circuit or
by simply defeating the switches.

1-166

SOMETHING’S BURNING
SOMETHING'S BURNING
SOMETHING’S BURNING
SOMETHING'S BURNING
SOMETHING’S BURNING
SOMETHING'S BURNING
SOMETHING’S BURNING
SOMETHING'S BURNING
SOMETHING’S BURNING

SOMETHING'S BURNING

1-167

This one is completely up to you. There isn't much that can
be said about how to isolate these problems except to use your
body's senses and possibly diagnostics.

Here are a couple of things to keep in mind:

1.

The part that burnt may have been caused to burn due
to failure of another part or possibly due to a short.
Look for shorts between:

a. a VOLTAGE and GROUND.

b. two or more VOLTAGE runs.
C. a SIGNAL and GROUND.

d. a SIGNAL and a VOLTAGE.
e. two or more SIGNAL runs.

Heat and excessive currents weaken components. Their
failure may not occur immediately but may show up
several weeks or months later. Be sure to mention

the fact that this particular part burnt in the System
log book. If later on this device starts failing
intermittently, you may want to change some parts which
were in the same circuit as the burnt part.

If a Burning Smell occurs and disappears with you unable
to locate the problem, run diagnostics on the device to
see if you can locate the problem that way.

When looking for shorts, remember that signal runs should never
be at ground (0.00 volts). There is a voltage drop, no matter
how minute, across all solid state junctions.

1-168

Problems
Problems
Problems
Problems
Problems
Problems
Problems
Problems
Problems

Problems

BUILDING VMS
BUILDING VMS
BUILDING VMS
BUILDING VMS
BUILDING VMS
BUILDING VMS
BUILDING VMS
BUILDING VMS
BUILDING VMS

BUILDING VMS

1-169

If the problem cannot be classified under any of the other problem
types, then there isn't very much that can be at fault. The problem
should be one of the following types.

a. If the problem is in the booting of the VMS Backup utility, do
the following:

1. Check out the hardware via diagnostics.
2. Try another set of floppies for Stand-alone Backup.
3. Check Power.

b. If the problem is one such that the VMS pack cannot be built
from the Distrubition tape, then the problem is probably one
of the following:

The Distrubition Tape

The Magtape Drive

The Disk Media

The Disk Drive

Memory

Processor .

Foreign Disk drives or Magtape drives may be at fault.

~NOoO e WN -

e o e & o o

The hardware can be checked out by diagnostics.

c. If the problem exhibits itself in the booting of VMS from a
newly built Disk Pack, check the following:

1. Are the Startup files correct?

2. Are the Unibus devices configured correctly?

3 Foreign devices will probably have to be Connected
via the SYSGEN utility.

4. Foreign equipment will probably need special Device
drivers installed.

1-170

't HELP Pt
't HELP Pt
!t HELP Lot

v HELP tt

NON-DUPLICATABLE,
INTERMITTENT
&
WHAT to do NOW

Problems

1-171

Ocassionally the Customer will come up with a problem that we cannot
duplicate, is of a very intermittent nature, and you have simply just
done everything you could think of to try. Here is a list of things

that can be done to verify the functionality of the D.E.C. equipment for
non-duplicatable problems and that may pull out the cause of intermittent
problems or at least show up a means of more rapidly duplicating the
problem. This list can also be used as a What's Left checklist.

1.

Check voltages on the system (Complete system) with a
DVM. Make appropriate adjustments and/or supply
replacement.

a. Verify that the Power connections are good.
Tap wires to verify good contact at connectors.
b. Vibrate Power supply if possible.

Check AC/DCLO's on the system (complete system) with
a DVM. Repair any that are out of spec..

a. Verify that the AC/DCLO connections are good.
Tap wires to verify good contact at connectors.

b. Vibrate Power monitoring section of Supply if
possible.

c. H7420 type AC/DCLO signals should be at least at
a +3.5 volt level.

d. H7100 type AC/DCLO signals should be at least at
a ~-9.5 volt level.

Check voltages on the system (Complete system) with a
scope for excessive noise. Locate the source of the
noise, (Power Supply, Wiring, etc.) and repair.

Check AC/DCLO's on the system (complete system) with
a scope. Repair any that have excessive noise on
them.

Run all diagnostics.

. Run LSI Front-end Subsystem diagnostics.

Run VAX-11/780 Micro-diagnostics #1 and #2.

Run VAX-11/780 Functional diagnostics.

(Don't forget to run EVKAA)

Run appropriate VAX-11/780 Nexus diagnostics.
Run appropriate Unibus Peripheral diagnosics.
Run appropriate Massbus Peripheral diagnostics.
Run all other appropriate peripheral
diagnostics.

i. Run UETP if VMS Operating System Pack is
available. Don't use the Customer's only Pack.

Qoo

Q o

1-172

10.

11.

12,

While running the appropriate diagnostics, vibrate each
device's modules, backplane, and Power Supplies.

Margin all devices that have any of the following types of
margining facilities:

a. Voltage margins. This is possible with any device
that has an adjustable power supply.

b. Clock margins. For example, the VAX-11/780 CPU
can run at a SLOW and FAST system clock rate.
The CONSOL.SYS program has a command that specifies
the desired VAX-11/780 CPU clock rate.

These margins should be performed while running the appro-
priate device diagnostics. '

Heat testing can be done, by blocking or disconnecting the
appropriate fans, if the problem is suspected to be heat
related. This should not be overdone since heat will
damage components. This damage may not be seen immediately
but may show up as an intermittent problem later on. I
would suggest using Heat testing ONLY as a last resort.

You can COOL specific components/boards with Freon if you
suspect the problem to be of this nature. Again, do not
overdo.

Beware that any Foreign Equipment, that may be on the
system, could be at fault. If all of the above checks
0.K., request that the Customer remove the Foreign
Equipment in order to eliminate it as a possible cause
of failure.

Be sure to show the Customer any diagnostic failures
that are due to the Foreign Equipment. If the problem is
found to be the Foreign Equipment, the Customer may
be billed "Per Call" rates (a Local Management decision).

If the system has MS/MA780 memory on it, replace or
remove all arrays that are getting Single Bit Errors.
The reason for this is due to the possibility of the
following occuring:

The ECC logic of the MS/MA780 memory controllers
cannot correctly report the conditions in which

an array has a MULTIPLE ODD NUMBER of BAD BITS

(ex. 3,5,7, or etc. bad bits per 72 bit array word).
The memory controller will correct a bit (not
necessarily one of the bad bits) and will send out
the data as "Corrected Read Data"..

1-173

13. If the system has an FP780 Floating Point Accelerator on it, remove

14.

it and see if the problem still occurs. The VAX-11/780 microcode
will execute all of the Floating Point instructions if the FP780
isn't present.

Parity is checked as it is received by the VAX-11/780 CPU
Data Paths and is generated for the data going out of the
Data Paths as just prior to it being transmitted.

Therefore, data manipulations and transfers within the Data
Paths don't have any type of parity checking done on them as
they move between Data Path Registers, ALU's, SHIFTERs, etc..

If all else fails to fix your problem, the VAX-11/780 Data
Paths may be at fault.

1-174

< € < © < Q9 < <© < <

IBRATION
IBERATION
IBRATION
IBRATION
IBRATION
IBRATION
IBRATION
IBRATION
IBRATION

IBRATION

1-175

T

T e

T e

T e

T e

T e

esting
sting
esting
sting
esting
sting
esting
sting
esting

sting

Vibration testing is a valid way of verifying connections and
internal component damage if done properly. It is not a valid
test if you vibrate so hard that you either bend or damage the
components under test, In fact, vibration testing that is done
to hard may cause more problems.

Here are a few common sense rules that you should keep in mind when
trouble-shooting via vibration testing.

1.

Always run an appropriate diagnostic that will test the
device that you are vibrating. You must know how to
determine quickly that a failure has occured so that you
will be able to determine what you vibrated at the time
of the failure.

Always vibrate in sections. Do not make a big sweep of
all the modules/components/backplane pins and expect-
to know what components caused the failure when vibrated.

Vibrate with enough force to jar the components under test,
but do not use so much force that you damage components or
backplanes.

Do not OVERDO vibration testing. To much vibrating will
eventually loosen components, loosen connections, or
fracture etches and wires. Vibrate enough to verify, to
yourself, that the device is not vibrational and then
don't vibrate any more.

Be very careful when vibration testing cables. Such cables
as the SBI cables are easily damaged.

When vibrating backplane pins, use a non-conducting flat
piece of material and drag it along the pins. Use common
sense in applying pressure. Do not vibrate with so much
pressure that you bend the pins together or with so much
pressure that you cut the insulation on the wires that
are against the pins. The object of backplane vibration
testing is to determine if the following exists:

a. Broken insulation on wires surrounding the pins
that intermittently short against the pin.

. Poor pin to etch run connections.

Poor pin to module connections.

. Free floating pieces of conducting material may
be lodged within the backplane causing
intermittent shorts.

o

1-176

OPERATING
OPERATING
OPERATING
OPERATING
OPERATING
OPERATING
OPERATING
OPERATING
OPERATING

OPERATING

TEMPERATURE CHANGE Testing
TEMPERATURE ~ CHANGE Testing
TEMPERATURE CHANGE Testing
TEMPERATURE ~ CHANGE Testing
TEMPERATURE CHANGE Testing
TEMPERATURE ~ CHANGE Testing
TEMPERATURE CHANGE Testing
TEMPERATURE ~ CHANGE Testing
TEMPERATURE CHANGE Testing

TEMPERATURE CHANGE Testing

1-177

Some problems occur more rapidly or only when the circuit
components are warmed up or only when they are cool. 1In order
to increase the failure rate or aid in isolating problems, the
circuits can either be either heated above normal operating
temperature or cooled below normal operating temperature. This
can be accomplished in several ways.

It is important to realize the this type of testing may show up
additional problems other than the one you are trouble-shcoting.

Use this type of testing on only one device at a time.

Heat Testing

Heat is an enemy to electronic and most mechanical components.
Therefore, moderation is the key to successful, non-damaging heat
testing. Whenever you heat test a device or component, be sure
that you don't overheat. It is best to only heat up a circuit

a few degrees warmer than it is normally operating at. This can
usually be accomplished by simply disconnecting or blocking fans
temporarily. Constantly monitor the rise in temperature and
reconnect or unblock the fans when the temperature rises extremely.

Make sure that you run the appropriate diagnostic that will exercise
the device/compcnent, under test, while heat testing.

If you are able to isolate a heat problem down to a few components,
a Heat Gun, or a Hair Dryer, may make it easier for you to isolate the
bad component.

1-178

Testing by Cooling

Extreme cold can also be an enemy to Electronic components and most
Mechanical components. Moderation in cooling is also the key to
successful testing by cooling. Excessive cooling can cause component
damage, fractured etches and wires, etc. Cooling a circuit is not as
easy to do as heating a circuit. A couple of ways that cooling can
be accomplished are as follows:

1. Sometimes, simply opening a cabinet or removing of the device's
skins can cool the system enough to cause failures.

2. The skins can be removed and an additional, free-standing,
fan can be directed into the circuit. Beware, sometimes
this actually increases the device's operating temperature
since air flow is blocked or funneled in such a way that
the proper air flow is not obtained.

3. If you are able to isolate the problem down to several
boards/components/etc. you can then use canned Freon in
order to isolate the problem further.

4., A "Carbon Dioxide Fire Extinguisher” can also be used if the
unit under test is large.

Make sure that you run the appropriate diagnostic that will exercise
the device/component, under test, while cooling.

1-179

MARGIN
MARGIN
MARGIN
MARGIN
MARGIN
MARGIN
MARGIN
MARGIN
MARGIN

MARGIN

T es

Te st

t

i

t

i

t

i

t

I

t

i

i

Margin testing is another means of sometimes increasing failure

rate or isolating the problem area. There are two basic types of
margins you can use on the VAX-11/780 system and its' devices.

These are, Clock Margins and Voltage Margins. When you are doing
any type of margining, be sure to run diagnostics that will exercise
the device that you are margining.

It is important to realize that whenever any type of margining is done,
you may find other problems other than the one you initially started
trouble-shooting.

CLOCK Margins

On the VAX-11/780 system, the System Clock rate can be varied above
and below the normal clock rate. This is set by a command to the
CONSOL.SYS program. Simply set the desired Margin Clock Rate and
then run functional diagnostics on the VAX-11/780 CPU, Memory, and
SBI Nexus Controllers.

Other devices may contain clock margining facilities also.

Clock Margin only one device at a time.

VOLTAGE Margins

Any device that has Power Supplies that can be adjusted is capable

of being Voltage Margined. When voltage margining, do not take the
voltage above or below the specified component operating levels

that that voltage supplies. Again, moderation is the key. Excessive
voltage margining effects the life of electronic components. The
reason for this is that a change in voltage causes a change in
circuit current, which causes a change in heat dissapated by the
circuit.

Be sure to run the appropriate diagnostics that will exercise the
device being margined.

When voltage margining, be sure to adjust the voltages with a DVM
and then return the voltage to the appropriate level upon completion
of testing.

Voltage Margin only one voltage at a time.

1-182

O U © O O © T ©O T ©

W7890
W780
W780
W780
W780
W780
W78090
w780
W7890

W780

ERRORS
ERRORS
ERRORS
ERRORS
ERRORS
ERRORS
ERRORS
ERRORS
ERRORS

ERRORS

1-183

Parity Fault - UBA CONFIG<31> "PAR FLT"

If "Parity Fault - CONFIG<31>" only in this DW780.

M8270
Flakey Power for any NEXUS

If "Parity Fault - CONFIG<31>" in multiple NEXUS.

M8270, SBI Cables, Other NEXUS SBI Interface
SBI Terminator, Flakey Power for any NEXUS.

Write Sequence Fault - UBA CONFIG<30> "WSQ FLT”
M8270, Other NEXUS
SBI Cables
Flakey Power for this NEXUS

Unexpected Read Data Fault - UBA CONFIG<29> "URD FLT"
Other NEXUS, M8270 ~
SBI Cables

Flakey Power for this NEXUS

Interlock Sequence Fault - UBA CONFIG< 28> "ISQ FLT"
Software B
M8270, Other NEXUS
SBI Cables

Flakey Power for this NEXUS or CPU

Multiple Transmitter Fault - UBA CONFIG< 27> "MXT FLT”

If "Transmitter During Fault - UBA_CONFIG<26>"

1
o

Another NEXUS
M8270, M8271, SBI cables
Flakey Power for any NEXUS

If "Transmitter During Fault - UBA_CONFIG<26>" =

1l
[l

M8270, M8271, Another NEXUS
SBI Cables
Flakey Power for any NEXUS

1-184

Adapter Power Down - UBA CONFIG<23> "AD PDN"
H7100 Power Supply for this NEXUS
M8273
Input AC power.

Adapter Power Up - UBA CONFIG< 22> "AD PUP”

Normally asserted.

UNIBUS Power Down - UBA CONFIG< 17> "UB PDN"
Could be a legal entry if the UNIBUS box was powered off.
UNIBUS Power supply ACLO logic.
Any UNIBUS device that can assert ACLO.
Input AC power.
M9044

UNIBUS Power Up - UBA CONFIG<16> "UBIC”

Normally asserted.

Read Data Timeout - UBA STATUS< 10> "RDTO"
SBI Memory, M8270, M8272, M8273
M8271, M9044, UNIBUS device that is requesting SBI Memory data.
Flakey Power for this NEXUS or for the UNIBUS device.

The FMER register is locked on the occurrence of this error. The FMER
contains the Map Register number associated with the failure. The
FMER contents determine the number of the data path that failed.

Read Data Substitute - UBA STATUS<9> “RDS”
SBI Memory Array.)
SBI Memory NEXUS control.
M8270, SBI Cables, Flakey SBI Memory NEXUS power.

The UNIBUS device that was requesting the SBI Memory data will not
receive the requested data, therefore, its' non-existent memory bit
should be set.

The FMER register is locked on the occurrence of this error. The FMER
contains the Map Register number associated with the failure. The
FMER contents determine the number of the data path that failed.

Corrected Read Data - UBA STATUS< 8> "CRD"

SBI Memory Array.
SBI Memory NEXUS control.
M8270, SBI Cables, Flakey SBI Memory NEXUS power.

1-185

Command Transmit Error - UBA STATUS< 7> "CXTER"
M8270
M8271, M8272, M8273, M9044
NEXUS to which this UBA initiates a data transfer.
SBI Cables, Flakey Power for NEXUS or assoc. UNIBUS.
UNIBUS device issuing data transfer command.

The FMER register is locked on the occurrence of this error. The FMER
contains the Map Register number associated with the failure. The
FMER contents determine the number of the data path that failed.

Command Transmit Timeout - UBA STATUS<6> "CXTMO"
NEXUS to which this UBA initiates a data transfer.
M8270

M8271, M8272, M8273, MS044
UNIBUS device issuing data transfer command.
SBI Cables, Flakey Power

The FMER register is locked on the occurrence of this error. The FMER
contains the Map Register number associated with the failure. The
FMER contents determine the number of the data path that failed.

Data Path Parity Error - UBA STATUS<5> "DPPE"
M8272 B
M8270, M8271, M8273
Flakey power for this NEXUS

The FMER register is locked on the occurrence of this error. The FMER
contains the Map Register number associated with the failure. The
FMER contents determine the number of the data path that failed.

Invalid Map Register - UBA STATUS<4> "IVMR"
M8272
M8273, M9044, M8270, UNIBUS device requesting data transfer.
Software

Flakey power for this NEXUS.

The FMER register is locked on the occurrence of this error. The FMER
contains the Map Register number associated with the failure. The
FMER contents determine the number of the data path that failed.

Map Register Parity Fail - UBA STATUS<3> "MRPF"
M8272)
M8270
Flakey power for this NEXUS.

The FMER register is locked on the occurrence of this error. The FMER

contains the Map Register number associated with the failure. The
FMER contents determine the number of the data path that failed.

[-186

Lost Error Bit - UBA STATUS<Z2> "LEB"
This bit indicates that another error has occurred after the locking
field has already been locked. The RDTO, RDS, CXTER, CXTMO, DPPE,
IVMR, and MRPF bits form the locking field that locks the FMER.

UNIBUS Select Timeout - UBASTATUS<I> "UBSTO"
Some UNIBUS device.
M9044, M8273, M8271
Flakey power for this NEXUS or the associated UNIBUS devices.
M8272

The FUBAR register is latched when this error occurs. It contains the
upper 16 bits of the UNIBUS address translated from an SBI address.

UNIBUS SSYN Timeout - UBA STATUS< 0> "UBSSYNTO”
The UNIBUS device to which data transfer is taking place.
M8273, MS044, M8271
M8272
— Flakey power for this NEXUS or the associated UNIBUS devices.

The FUBAR register is latched when this error occurs. It contains the
upper 16 bits of the UNIBUS address translated from an SBI address.

Buffer Transfer Error - UBADPR 0-15 Bit <30> "BTE"
M8272, M8271)
M8273

Flakey power for this NEXUS

1-187

n » n o n @ n o »w o

N wm W Om W w N mwm N w

FAULTS
FAULTS
FAULTS
FAULTS
FAULTS
FAULTS
FAULTS
FAULTS
FAULTS

FAULTS

1-189

An S.B.I. FAULT condition can be caused by any one of the following
conditions having been detected on the S.B.I. Bus:

Parity Fault -
An S.B.I. parity error can be detected on ANY cycle by ANY NEXUS.

The S.B.I. P<1l:0> lines provide even parity for their associated
groups of S.B.I. lines. "S.B.I. P<0>" provides EVEN Parity for the
group of S.B.I. lines consisting of the TAG<2:0>, ID<4:0>, and the
M<3:0> lines. "S.B.I. P<1>" provides EVEN Parity for the group of
S.B.I. lines consisting of the B<31:00> lines.

Whenever a NEXUS detects a parity error, on any given S.B.I. cycle,
ALL OTHER NEXUS should also detect the same parity error.

Write Sequence Fault -

Is the result when a NEXUS which has received a COMMAND/ADDRESS Cycle
specifying any type of WRITE COMMAND, does not receive the anticipated
WRITE DATA in the next sequential S.B.I. cycle(s).

This type of FAULT is only detected by the NEXUS to which the write
command was sent.

Unexpected Read Data Fault -
Is the result when a NEXUS whose is not waiting for READ DATA receives
READ DATA.

The destination of the READ DATA is specified by the S.B.I. ID<4:0>
lines. Each device checks the ID field on all Read Data cycles to see
if the B<31:00> lines contain data that is being sent to them.

Only the NEXUS receiving the Unexpected Read Data detects the FAULT.

Interlock Sequence Fault -
Is the result when a NEXUS receives an INTERLOCK WRITE COMMAND
and the INTERLOCK has not been set by an INTERLOCK READ Command.

Only the NEXUS recieving the INTERLOCK WRITE Command will detect
this fault.

1-190

Multiple Transmitter Fault -

Is the result when a TRANSMITTING NEXUS detects multiple transmitters
in the same cycle that it is transmitting. This is detected by
comparing the ID<4:0> field sent, at S.B.I. TO time, with the ID<4:0>
field recieved, at S.B.I. T3 time. If they do not match, this fault
is detected.

Detected by only the NEXUS that are transmitting in the faulting cycle.

FAULT TIMING
Detecting NEXUS

asserts FAULT

Cycle that
causes Fault

I I I
I I |
| | |
" | T0 T1 T2 T3 | |

TO T1 T2 T3 T0O T1 T2 T3

TO T1 T2 T3

A NEXUS detects a CPU All NEXUS
FAULT on the S.B.I. Latches latch FAULT
FAULT STATUS Bits

Trouble-Shooting S.B.I. FAULTS:

Whenever an S.B.I. FAULT occurs, each NEXUS will latch its FAULT STATUS
bits which are contained in its CONFIGURATION/STATUS REGISTER (the lst I/0
register for each NEXUS) Bits <31:26>. These bits indicate the type of
FAULT that the respective NEXUS has detected. It is very important to
gather the contents of these registers immediately after the FAULT occurs.
If the FAULT occured while running VMS, the needed register information may
be saved in ERRLOG.SYS. It is still a good idea to modify the DEFBOO.CMD
and the RESTAR.CMD command files, located on the LOCAL/REMOTE CONSCLE

Floppy, so that a complete register dump will be done prior to rebooting.

If the FAULT occured while running diagnostics, you must do the register
The register dump can be taken by using the following

are appropriate for the system.

dump yourself.
commands that

>>> E/L/H/P 20002000 ! Examine TR#1 Configuration Register
>>> E/L/H/P 20004000 ! Examine TR#2 Configuration Register
>>> E/L/H/P 20006000 ! Examine TR#3 Configuration Register
>>> E/L/H/P 20008000 ! Examine TR#4 Configuration Register
>>> E/L/H/P 2000A000 ! Examine TR#5 Configuration Register
>>> E/L/H/P 2000C000 ! Examine TR#6 Configuration Register
>>> E/L/H/P 2000E000 ! Examine TR#7 Configuration Register
>>> E/L/H/P 20010000 ! Examine TR#8 Configuration Register
>>> E/L/H/P 20012000 ! Examine TR#9 Configuration Register
>>> E/L/H/P 20014000 ! Examine TR#10 Configuration Register
>>> E/L/H/P 20018000 ! Examine TR#12 Configuration Register
>>> E/L/H/P 2001A000 ! Examine TR#13 Configuration Register
>>> E/L/H/P 2001C000 ! Examine TR#14 Configuration Register
>>> E/L/H/P 2001E000 ! Examine TR#15 Configuration Register
>>> E/L/H/ID 1B ! Examine CPU's Configuration Register

Of course you do not need to attempt to examine the registers of the TR's
in which there are no devices for your specific system configuration.

1-191

In addition each NEXUS latching up its FAULT STATUS bits in its
CONFIGURATION/STATUS register, the KA780 CPU will latch the "S.B.I.
SILO". The "S.B.I. SILO" is a 16 location RAM that contains the
states of certain S.B.I. signals for the last 16 S.B.I. cycles. The
"SILO" is located in the KA780's S.B.I. control logic. This SILO can
be examined by reading "ID register #18" 16 times. The first word
stored in the SILO will be the first word read out, the second word
stored will be the second word read out, etc.. You can use the
following CONSOL.SYS commands to gather the contents of the "S.B.I.
SILO":

Method #1
>>> R E/L/ID 18 ! Repeat examine ID#18.
>>> ~C ! Type "CTRL C" after 16 examines.
Method #2
>>> E/L/ID 18 ! Repeat this command 16 times.

Now that you have all the needed information, all that remains is to
breakdown the registers to determine the type of S.B.I. FAULT.

Start off by breaking down the CONFIGURATION/STATUS Registers, (only
need bits <31:26>), to determine the type of FAULT and to find out
which NEXUS(es) detected it. Once you have found the type of FAULT
and who all detected it, you should be able to determine which one or
two NEXUS are most likely at fault. Now you can break down the SILO
information to see if it will help determine who is the most likely
device at fault.

When looking at the S.B.I. SILO dump, break down each entry completely,
and then check to see what went wrong. You must know how the S.B.I.
works in order to do this.

Beware: Any NEXUS can intermittently polute the S.B.I. and can cause
the problem to appear to be someone else's fault.

1-192

3322 2222 2222 1111 1111 1100 0000 0000
1/0/98 766514 32|10 98|76l 5432 1098 7654 3210}

1] ! I | | |
After|T| ID | TAG | MASK |CNF| TR |
Fault|L]| | I or | | l
K| | | FUNCTION| | |

kkkkkkkhkkhkkhkkkhkkhkkhkhkhkhhhkhkhkhkhhhkhkhkhhkkkhkhkhkkkhkhhkhhkhkhkhkhkhkhhkkhrkhhkhkhkhkrhkkhkkhkhkkorkkhkk

Bit <31> is the "After Fault" bit which will be set only on the first

SILO entry after the S.B.I. FAULT condition has been cleared.
khkkkkhkkkhkhkhkhkhkhkkkhkhkdkkhkhhhkhkkkkhkhkkhkhkhkhkhkhhkkhkkhkhkkkkhkhkhkkkkhkkhkhkkhkhkbkkhkhkrhkkhkhkhkkhkkkkkkikxk

Bit <30> is the "S.B.I. Interlock" bit., The S.B.I. Interlock line is

asserted by the commanding nexus when issuing an interlock read and then

by the recieving nexus upon assertion of the ACK confirmation.
khkkkhkkhkkhkkhkhkkhkkhkhkhhkkhkhkhkdkhkhkhhkdkhkkhkhkkhkkkhkhkhkkhkhkhkkhkhhkhbhhkkhhhkhkhkhkkrhkhkhkhkhkkhkhkhhkhkkkkhkhkhkk

Bits <29:25> reflect the "S.B.I. ID<4:0> lines" which indicate the

logical source or intended destination of the information on the B<31:0>

lines. These lines reflect the hex representation of the TR level,.

TAG not = 0 then, ID<4:0> reflect the source.
TAG = 0 then, ID<4:0> reflect the destination.
kkkdkhkhkhkdkkhkhkhkkkkkhkkkkhkhkhkhkhkhkkkhkhhkkkhkkkhkhkhkhkkhkkhkhkhkhkhbhkhkhhhkhkhhkhkkhhhkkhkhrkhkhkkdhkkkhkhhkhik
Bits <24:22> reflect the state of the "S.B.I. TAG<2:0>" lines. The TAG
lines indicate the type of cycle being transmitted on the S.B.I. bus...

TAG = 0 Read Data Cycle

TAG = 3 Command/Address Cycle

TAG = 5 Write Data Cycle

TAG = 6 Interrupt Summary Read Cycle

KEKKEEEEKE KA KKK KEKREK KKK KKK LRI KA ARER R AR AR ARk Rk kA hkkkkkkhkhkkkkkkdhkkkdxi*k
Bits <21:18> reflect the state of the MASK <3:0> lines if the TAG isn't
equal to 3 (indicating a Command/Address Cycle), in which case it will
reflect the state of the B<31:28> lines (which indicate the FUNCTION).

TAG = 3 then, Bits <21:18> reflect the type of FUNCTION,

FUNCTION = 1 - Read Masked Function

FUNCTION = 2 - Write Masked Function

FUNCTION = 4 - Interlock Read Masked Function

FUNCTION = 7 - Interlock Write Masked Function

FUNCTION = 8 - Extended Read Function

FUNCTION = B - Extended Write Masked Function

TAG = 0,6 then, Bits <21:18> reflect the M<3:0> lines.

MASK = 0 - Read Data in B<31:00> is good data.

MASK = 1 - A single bit error was detected and corrected
by the transmitting NEXUS, therefore, the data
in B<31:00> is now good.

MASK = 2 - Multiple bits were detected as being bad and the

transmitting NEXUS could not repair them.
Therefore the data in B<31:00> is BAD.

1-193

TAG = 5 then, Bits <21:18> reflect the M<3:0> lines.
The MASK <3:0> lines reflect the respective BYTE(s) that
are being written.

Ahkhkhkhkhkhkhkkhkhkkhkrhkhkhkhkrkkhkhhhbhhhhhkhhkhkhkkhhkhhhkhhkhkhhhhhhbhkhhkhhhhdhhkdkhhhkhkhkkhkdkkhkkhkkkiit

Bits <17:16> reflect the state of the "S.B.I. CNF<1l:0> lines”. These lines
are the confirmation lines. Each and every transmitted cycle must have a
corresponding confirmation code returned two cycles later.

CNF = 0 - NO RESPONSE from destination NEXUS

CNF =1 - 1Indicates an ACKNOWLEDGE from the destination NEXUS. 1If
this confirmation is received two cycles after a C/A cycle,
it indicates that the device knows the command is to him
and also indicates that he can perform the specified
command encoded in the B<31:28> lines.

CNF = 2 - Indicates that the destination NEXUS knows you want him to
do something, but he is currently BUSY. The transmitting
NEXUS should try the command again later.

CNF = 3 - Indicates that the destination NEXUS recognizes that the
transmitting NEXUS is talking to him but the command
encoded in the B<31:00> lines specifies a function that
the destination NEXUS cannot perform.

khkhkkhkhkkkhkbkkhkkhkkhkkhkkhkkkhkkhkkhkkhkhkhkhkhkkhhkhkhkhkhkkhkhkhkhdhhkhkhkhhhkhkhhkdkhkhbhkhkhkhkhhhkhhkhkhkhhokkhkkk

Bits <15:00> reflect the state of the "S.B.I. TR<15:00> lines".

If a bit is set, it indicates that the respective TR arbitration line
is asserted on the S.B.I., for that cycle.

khkkhkkkkkhkkkhkhkkhkkhkhkhkkkhkkhkhkkkkhkhkkkhkhkhkhkdkkhhkkhhkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhhkthhhkhhhkhhhhkhikkkkd

BEWARE:

In some cases, the S.B.I. SILO may not contain valid information because of
improper setup prior to the FAULT occuring. In order to verify that the
SILO contains valid information, check ID #1B and make sure that Bit 16=1.
If it isn't, don't bother checking the SILO information since it will not
indicate what happened just prior to the fault.

1-194

CONFIGURATION/STATUS Register Interpretation

3
I
I
I
I
I
I
I
I
I
I
|

1

3
I
I
I
I
I
I
I
I
I

0

9 8 27 26 25 24 23 22 21 20 19 18 17 16
I
I
I

2
I | __TRANSMITTER DURING FAULT (indicates status)
I __MULTIPLE TRANSMITTER FAULT detected by this NEXUS
|

2
|
I
I
l
| INTERLOCK SEQUENCE FAULT detected by this NEXUS
i —

I

__UNEXPECTED READ DATA FAULT detected by this NEXUS

__WRITE SEQUENCE FAULT detected by this NEXUS

__PARITY FAULT detected by this NEXUS

The CONFIGURATION/STATUS Register is the first I/0 Address assigned to each

NEXUS.

The CPU's equivalent register is ID #1B.

All NEXUS, and the CPU,

have the above assignments for these bits within their CONFIGURATION/STATUS

registers.

If a device cannot detect any particular type of FAULT, it will

not have anything assigned to that particular bit and that bit will always
be read as ZERO.

Device at - Configuration/Status Register

TR #1 - 20002000
TR #2 - 20004000
TR #3 - 20006000
TR #4 - 20008000
TR #5 - 2000A000
TR #6 - 2000C000
TR #7 - 2000E000
TR #8 - 20010000
TR #9 - 20012000
TR #10 - 20014000
TR #11 - 20016000
TR #12 - 20018000
TR #13 - 2001A000
TR #14 - 2001c000
TR #15 - 2001E000
CPU - ID #1B

1-195

EVKAA - V5.1 done
EVKAA - V5.1 done

HALTED AT 1805

>>>

Trouble-shooting
using the

SYSTEM CONTROL BLOCK

?ILL I/E VEC
HALTED AT 100

>>>

1-197

Unexpected EXCEPTIONs or INTERRUPTs can result in a variety of
symptoms. Typically, programmers will setup a trap-catcher, in
the SYSTEM CONTROL BLOCK, in order to prevent these unexpected
events from destroying their program or data. The trap-catcher
will either flag the error and continue on, or will cause the

CPU to halt. Depending upon how the software is setup the symptom
may be a "HALTED AT xxxxxxxx" message printed on the console
terminal, a "FATAL BUGCHECK" or "NON-FATAL" bugcheck message on
the console or users terminal, an "?ILL I/E VEC" message is printed
on the console terminal followed by the CONSOL.SYS prompt, or the
system software may do unexpected things due to re-vectoring.

Even though the symptoms are many, determing if you have a problem
in this area is easily done by examination of the SYSTEM CONTROL
BLOCK, examination of a listing of the failing software, using

the data typed out with the "?ILL I/E VEC" messager, or by
installing a trap-catcher and then reproducing the problem.

HALTED AT xxxXxxxxx

If the symptom results in a "HALTED AT xxxxxxxx" being printed on

the console terminal, followed by the CONSOL.SYS prompt (>>>), either
a listing of the software or examination of the SYSTEM CONTROL BLOCK

is necessary. A listing of the software being run is probably the
easiest method of determing what went wrong. Simply look up the
"xxxxxxxx" PC that was printed out in the "HALTED AT xxxxxxxx" message.

If you don't have a listing of the failing software, examination of

the SCB is necessary. To dc this, you must first examine the SCCB
register in order to find the start of the SCB. The SCCB (ID #3B)
contains a longword aligned PHYSICAL ADDRESS that points to the
beginning of the SYSTEM CONTROL BLOCK (SCB). In order to dump the SCB,
use the following CONSOL.SYS commands:

>>> E/L/ID 3B
>>> E/L/P/N:7F @

Now check to see if the "xxxxxxxx" PC, in the "HALTED AT xXxxxxxxx"
message, is somewhere in the address range of the SCB. If it is,
the offset from the SCBB can be used to determine what type of
EXCEPTION or INTERRUPT caused the problem by using the SCB vector
assignment chart on the following pages.

If the "xxxxxxxx"™ PC isn't in the address range of the SCB table,
check to see if any of the longword vectors can re-vector the
software to a location near this address. If there is, examine
memory starting at the vector address up to the "xxxxxxxx" address.
Does the macrocode indicate that re-vectoring could cause a halt

at the specified PC? If so, use the SCB vector assignment chart to
determine what type of EXCEPTION or INTERRUPT caused the problem.

1-198

Building and using a VAX Trap Catcher

In some cases, it may be necessary to modify the SCB so as to form a
TRAP CATCHER. The idea is to deposit vectors into the SCB that will
cause a halt whenever an EXCEPTION or ITERRUPT occurs. Furthermore,
this must result in causing the system to halt at an address unique
to EXCEPTION or INTERRUPT. The easiest way to do this is create a
SCB with each vector pointing to its respective SCB location, with
both bits <1> and <0> set to a 1 (if bits <1:0>=3, the VAX-11/780
will halt with a PC one byte past the specified vector address).

After such a Trap Catcher is installed, the symptom must be reproduced.
Any EXCEPTIONs or INTERRUPTs that occur should then cause the CPU to
halt followed by a "HALTED AT xxxxXxxXxxX" message printed on the console
terminal. The "xxxxxxxx" PC will indicate what type of EXCEPTION or
INTERRUPT occured by determining what vector was used. This can be
determined by subtracting the address of the vector used from the
contents of the SCBB, and then using the SCB vector assignment charts
to determine the type of EXCEPTION or INTERRUPT.

Note about installing Trap Catchers

The only problem with this method of trouble-shooting is that care must
be taken not to modify the vectors for EXCEPTIONs and INTERRUPTs that
the software program uses. Only those that software doesn't expect

to happen should be modified.

VMB V4.02 Trap Catcher generation

Unexpected EXCEPTIONs or INTERRUPTs can cause system software booting
failures. If the booting failures are in VMB, a unique way of modifing
the SCB is required due to VMB's use of the SCB.

In order to use this procedure, you will have to manually perform the
CONSOL.SYS commands of the command file used to boot the system, with
the following modifications:

Use the same commands as the appropriate boot file used to boot
the system, but don’'t use the "WAIT DONE" command, and DON'T

START VMB YET.

After VMB has been loaded, patch VMB by first finding the contents
of the SP (this was examined just prior to loading of VMB if you
followed the normal boot process).

>>> SET RELOCATION:@
>>> E/L/P 2400

>>> D/L/P 2400 2038F3C
>>> E/W/P 240A

>>> D/W/P 240A 76DE
>>> SET RELOCATION:O0
>>> E/L SP

>>> START @

Should contain an xxxxCF9E.
Replace with a MOVZWL #203,R6.
Should contain a 56D0.

Replace with a MOVAL -(R6),-(R7).

1-199

If an unexpected EXCEPTION or INTERRRUPT occurs while VMB is running,
with the above patch, a "HALTED AT xxxxxxxx" message will be typed

on the console terminal. Now save the "xxxxxxxx" in this message and
do the following procedure:

Examine the SCBB with the following command:
>>> E/L/ID 3B
Subtract the saved "xxxxxxxx" from the contents of ID #3B.

The result is the offset into the SCB for the EXCEPTION or INTERRUPT
that occured. Use the SCB vector assignment chart to determine
the type of unexpected EXCEPTION or INTERRUPT.

Note about VMS

None of these procedures should need to be used with VMS. VMS
will report unexpected EXCEPTIONs and INTERRUPTs by way of its
BUGCHECK routine.

?ILL I/E VEC

This is the easiest to trouble-shoot. The data printed out with
this error message is the offset into the SCB. Use the SCB
vector assignment chart to determine what type of EXCEPTION or
INTERRUPT caused the failure.

Now what?

If one of these procedures have isolated the problem to a certain
type, then go to the section of this chapter that deals with that
type of problem.

i.e. If the vector was at SCBB+04, the failure was due to a MACHINE
CHECK, therefore use the MACHINE CHECK portion of this guide to
find out how to trouble-shoot this problem.

If the vector was at SCBB+5C, the failure was due to an SBI
FAULT, therefore use the SBI FAULT portion of this guide to
find out how to trouble-shoot this problem.

If the vector was at one of the SBI REQUEST level locations,
the device at fault can be isolated by determining what REQUEST
LEVEL, and what TR Level the interrupt occyred on. Knowledge
of the system configuration, plus these two levels, should
narrow down the suspects.

1-200

VAX-11/780 System Control Block vector assignments

000 Unused, reserved 0D0 Unused, reserved
004 Machine Check 0D4 Unused, reserved
008 Kernel Stack Not valid 0D8 Unused, reserved
00C Power Fail 0DC Unused, reserved
010 Reserved/Privileged Instr. 0EQ0 Unused, reserved
014 Customer Reserved Instr. 0E4 Unused, reserved
018 Reserved Operand 0E8 Unused, reserved
01C Reserved Addressing Mode 0EC Unused, reserved
020 Access Control Violation 0F0 Unused, reserved
024 Translation Not Valid 0F4 Unused, reserved
028 Trace 0F8 CNSL Receive Interrupt
02C Breakpoint OFC CNSL Transmit Interrupt
030 Compatibility 100 SBI REQ 4 - TR #0
034 Arithmetic 104 SBI REQ 4 - TR #1
038 Unused, reserved 108 SBI REQ 4 - TR #2
03C Unused, reserved 10C SBI REQ ¢ - TR #3
040 CHMK 110 SBI REQ 4 - TR #4
044 CHMB 114 SBI REQ 4 - TR #5
048 CHMS 118 SBI REQ 4 - TR #6
04C CHMU 11C SBI REQ 4 - TR #7
050 SBI Silo Compare 120 SBI REQ 4 - TR #8
054 CRD/RDS 124 SBI REQ 4 - TR #9
058 SBI ALERT 128 SBI REQ 4 - TR #10
05C SBI FAULT 12C SBI REQ 4 - TR #11
060 Asynchronous Write 130 SBI REQ 4 - TR #12
064 Unused, reserved 134 SBI REQ 4 - TR #13
068 Unused, reserved 138 SBI REQ 4 - TR #14
06C Unused, reserved 13C SBI REQ 4 - TR #15
070 Unused, reserved 140 SBI REQ 5 - TR #0
074 Unused, reserved 144 SBI REQ 5 - TR #1
078 Unused, reserved 148 SBI REQ 5 - TR #2
07C Unused, reserved 14C SBI REQ 5 - TR #3
080 Unused, reserved 150 SBI REQ 5 - TR #4
084 Software Level 1 154 SBI REQ 5 - TR #5
088 Software Level 2 158 SBI REQ 5 - TR #6
08C Software Level 3 15C SBI REQ 5 - TR #7
090 Software Level 4 160 SBI REQ 5 - TR #8
094 Software Level 5 164 SBI REQ 5 - TR #9
098 Software Level 6 168 SBI REQ 5 - TR #10
09C Software Level 7 16C SBI REQ 5 - TR #11
0A0 Software Level 8 170 SBI REQ 5 - TR #12
0A4 Software Level S 174 SBI REQ 5 - TR #13
0A8 Software Level A 148 SBI REQ 5 - TR #14
OAC Software Level B 17C SBI REQ 5 - TR #15
0BO0 Software Level C 180 SBI REQ 6 - TR #0
0B4 Software Level D 184 SBI REQ 6 - TR #1
0B8 Software Level E 188 SBI REQ 6 - TR #2
0BC Software Level F 18C SBI REQ 6 - TR #3
0CO0 Unused, reserved 180 SB; REQ 6 - TR #4
0C4 Unused, reserved 1954 SBI REQ 6 - TR #5
0C8 Unused, reserved 198 SBI REQ 6 - TR #6
0CC Unused, reserved 18C SBI REQ 6 - TR #7

1-201

1A0 SBI REQ 6 - TR #8
14 SBI REQ 6 - TR #9
1A8 SBI REQ 6 - TR #10
1AC SBI REQ 6 - TR #11
1B0 SBI REQ 6 - TR #12
1B4 SBI REQ 6 - TR #13
1B8 SBI REQ 6 - TR #14
1BC SBI REQ 6 - TR #15
1C0 SBI REQ 7 - TR #0
1C4 SBI REQ 7 - TR #1
1C8 SBI REQ 7 - TR #2
1CcC SBI REQ 7 - TR #3
1D0 SBI REQ 7 - TR #4
1D4 SBI REQ 7 - TR #5
1D8 SBI REQ 7 - TR #6
1DC SBI REQ 7 - TR #7
1E0 SBI REQ 7 - TR #8
1E4 SBI REQ 7 - TR #9
1E8 SBI REQ 7 - TR #10
1EC SBI REQ 7 - TR #11
1F0 SBI REQ 7 - TR #12
1F4 SBI REQ 7 - TR #13
1F8 SBI REQ 7 - TR #14
1FC SBI REQ 7 - TR #15

The SCBB register contains a longword aligned address that points to
the first vector in the System Control Blcc

If bits <1:0> are both set to a one in the vector, and the CPU traps

to that vector, the VAX-11/780 will HALT. This is an easy way of
developing a VAX-11/780 Trap Catcher.

1-202

SECTION 1

VMS Information

VMS SYSGEN Error Control Parameters

On certain types of errors, the VMS Operating System will attempt to
reboot itself. There are a couple of "SYSGEN" parameters that can
disable this function. It is very important to have these parameters
set correctly when trouble-shooting a problem so that the appropriate
Hardware and Software information can be gathered.

BUGCHECKFATAL is a parameter that enables, when set to a 1,
the conversion of NONFATAL Bugchecks to
FATAL Bugchecks. This causes the Operating
system to crash and reboot. Setting this
parameter to a 1 is useful whenever ERRLOG.SYS
does not give you enough information in order
to diagnose the problem. When set to a 1, and
BUGREBOOT is set to a 0, the Operating System
will not reboot. Therefore, you will then be
able to take a Hardware Register Dump or do
some scoping. It has no effect on bugchecks
from USER or SUPERVISOR mode.

BUGREBOOT is a parameter that enables, when set to a 1,
the automatic rebooting of the Operating System
if a FATAL BUGCHECK occurs. It may become
necessary to clear, set to a 0, this parameter
after the first FATAL Bugcheck occurs so that
Hardware Register Dumps can be taken, and so
that scoping may be done whenever the FATAL
Bugcheck occurs. BUGREBOOT=1 causes the LSI to
reboot the VAX via DEFBOO.CMD or RESTAR.CMD.

DUMPBUG is a parameter that enables, when set to a 1,
the writing of error log buffers and memory
contents to SYS$SYSTEM:SYSDUMP.DMP when a
FATAL Bugcheck occurs. The Software Dump is
written to the "SYSSSYSTEM:SYSDUMP.DMP" file
immediately after the Operating System detects
the Error and before the "BUGREBOOT" bit is
checked to see if a reboot is to be attempted.
In other words, the Software Dump is taken on
the way down.

The state of these "SYSGEN" parameters should be checked if you are
not getting all the dump information that you require. The customer
should have the system set up so that the Software Dump, a function
of the "DUMPBUG" parameter, is always taken. The State of the other
two parameters depends on the Customer's operating enviroment.
However, once a problem occurs, it will probably be necessary to
change the setting of these parameters until the problem is fixed.

No matter how the SYSGEN parameters are set up, certain types of

failures will crash the system in such a way that the Software
DUMP will not be taken.

2-2

VMS CRASH HANDLING

The following is an overview of what happens when VMS detects a
NON-FATAL BUGCHECK.

1. A message describing the error is passed to the Error Logger.

2. System operation continues.,

The following is an overview of what happens when VMS detects a
FATAL BUGCHECK from USER or SUPERVISOR .

1. A message describing the error is passed to the Error Logger.

2. Execution continues as follows:

a. If the process is executing a single image, the process
is deleted. '

b. If the process is executing in interactive or batch mode,
the current image exits and control is passed to the CLI
to receive the next command.,

2-3

The following is an overview of what happens when VMS detects a
FATAL BUGCHECK from KERNEL or EXECUTIVE modes.

1. A small amount of information describing the Bugcheck is
typed on the Console Terminal. This information may include
the following:

a. The contents of the VAX General Registers.
b. The Kernel and Executive stack contents.
c. The contents of certain VAX Internal registers.

d. A summary of the reason for the Bugcheck.

2. If the "DUMPBUG" SYSGEN parameter is set to a 1, a software dump
file will be written to SYSSSYSTEM:SYSDUMP.DMP. This file contains
the following information:

a. The Dump Header. This header contains such information as
the contents of certain VAX registers, the Time of the
crash,bugcheck crash code, and other information.

b. The contents of the two errlog buffers.

c. The contents of physical memory.

3. If the "BUGREBOOT" SYSGEN parameter is set to a 1, a VMS system
reboot will be attempted as follows:

a. VMS sends a special code to CONSOL.SYS (~XF02) via the
console transmit buffer register (TXDB).

b. VMS executes a HALT instruction so as to transfer control
back to the CONSOL.SYS program.

c. CONSOL.SYS attempts to reboot the VAX via the "DEFBOO.CMD"
command file if "AUTO RESTART switch = 0" or via the
"RESTAR.CMD" command file if "AUTO RESTART switch = 1".

If the appropriate command file is not found, CONSOL.SYS
prints its' prompt (>>>) and awaits operator input.

If the "BUGREBOOT" SYSGEN parameter is set to a 0, the VMS operating
system will simply loop (with IPL=31) and await input on the

console terminal. The "CONSOL.SYS" program prints its' prompt ({(>>>)
on the console terminal and awaits operator input.

Assigning Addresses and Vectors to Unibus Devices

In order to make the proper assignments to those Unibus devices
that have Floating Addresses and/or Floating Vectors, you must
first understand the SYSGEN rules for configuration. SYSGEN uses
the following rules for configuration:

o Devices with fixed CSR addresses and fixed vector addresses must
be attached according to the SYSGEN device table settings.

o Devices with floating CSR or vector addresses must be attached
in the order in which they are listed in the SYSGEN device table.

o An 8-byte gap must be reserved between each different type of
device that is located in floating CSR address space.

o An 8-byte gap must be reserved in floating CSR address space for
each device type that has no controller in its configuration.

o An extra 8-byte gap must be reserved between the KW11lC and the
RX11l in floating CSR address space.

The SYSGEN Device table is found in the "VAX/VMS Guide to Writing
a Device Driver" manual (Order no. AA-H499C-TE), in the chapter
about "Loading a Device Driver",

Unless the Unibus Devices, that have floating address and/or vectors,
are properly assigned, the SYSGEN "AUTOCONFIGURE ALL" command will
not be able to properly assign the devices. In these cases, the
devices must be connected individually.

By using the above rules and the tables on the following page, you
should be able to properly configure Floating Unibus Devices on the
VAX-11/780 system.

The tables, on the following page,list the devices in the order that
SYSGEN looks for them if they have floating address and/or vector
assignments.

NOTE:
An alternate method of determining where to configure UNIBUS devices
is to use the "CONFIG" command under "SYSGEN", (providing that you have
a system, running VMS, that you can do this on). See the "SYSGEN" help
file, in this chapter, for help on using this command.

2-5

Unibus Device
Floating Address Table

760010

DJ11

DH11

DQl1l

DUl1l

DUP11

LK1l

DMC11/DMR11 (DMCs before DMRs)
Dz11/Dz32 (DZlls before DZ32s)
KMC1ll

LPP11l

VMV21

VMV31l

DWR70

RL11

LPAll (2nd)

KW11C

RSV

RX211

DR11W

DR11B (3rd)

DMP11

DPV11

ISB11l

DMV11

UNA

UDA

DMF32 (see TECH. Manual)
KMS11

2-6

DC11
TUS8
DN11
DM11B
DR11C
PR611
PP611
DT11
DX11
DL11C
DJ11
DH11l
GT40
LPS11
DQ1l1
KW1lw
DU1l
DUP11
DV11
LK1l

Unibus Device
Floating Vector Table

DMC11/DMR11

DZ11
DZ32
KMC11l
LPP11
VMV21
VMV31l
DWR70
RL11
TS11
LPAll
KWl1l1lC
RSV
RX211
DR11W
DR11B
DMP11
DPV11
ISBl1
DMV11l
UNA
UDA
DMF32
KMS11
PLC11

{2nd & 3rd)

SYSGEN Commands

The following commands are those SYSGEN commands that manipulate

drivers.
o LOAD (requires CMKRNL privilege)
o CONNECT (requires CMKRNL privilege)
o RELOAD (requires CMKRNL privilege)
o SHOW/ADAPTER (requires CMEXEC privilege)
O SHOW/CONFIGURATION (requires CMEXEC privilege)
o SHOW/DEVICE (requires CMEXEC privilege)
0 AUTOCONFIGURE ALL (requires CMKRNL privilege)

LOAD command

This command is used to load a DEVICE DRIVER. If the CONTROLLER has
only a single unit attached to it, issue the CONNECT command.

Format:
LOAD driver_file_spec

CONNECT Command

This command creates I/0 base control blocks for devices. It can
also load the driver if it has not been previously loaded into
System memory.

Format:
CONNECT device_name required_quals optional_quals

Required Qualifiers:
/[NOJADAPTER=nexus
/CSR=csr_address
/VECTOR=vector_address

Optional Qualifiers:
/NUMVEC=number interrupt_vectors
/DRIVERNAME=driver name
/ADPUNIT=unit number
/MAXUNITS=maximum_number of units

2-7

RELOAD Command

This command loads a driver and removes a previously loaded version
of that driver. Performs the same function as the LOAD command except
it will load the driver regardless of whether it is already loaded.

Format:
RELOAD driver_file_spec

SHOW/ADAPTER Command

This command displays nexus numbers and generic names of the Unibus
and Massbus adapters, memory controllers, and device interconnects
such as the DR32.

Format:
SHOW/ADAPTER

SHOW/CONFIGURATION

This command displays information about the system configuration.

Format:
SHOW/CONFIGURATION { /ADAPTER=nexus]
[/COMMAND FILE]
(/ouTPUT=file_spec]
SHOW/DEVICE

This command displays the location of a driver and the I/C data base
describing its devices in system virtual memory.

Format:
SHOW/DEVICE [=driver_name]

AUTOCONFIGURE ALL

Configures D.E.C. supported devices to the system automatically.

Format:
AUTOCONFIGURE ALL

2-8

CONFIGURE [/INPUT=file—spec] [/OUTPUT=file-spec][/(NO)RESET]

This command request the UNIBUS device names and then outputs
the set of CSR and VECTOR addresses that are required for

AUTOCONFIGURE to use.

When executing this command, SYSGEN prompts you with "DEVICE>",

Enter the device names in

device,n,p

we “e we wo wo

the following format:

where "device" = device's name

and "n" = how many of this device, and

"p" = the optional number of devices on all
previous UNIBUSes in a multiple UNIBUS
system.

This command can be used as follows to determine where UNIBUS devices

should be addressed:

SYSGEN> CONFIGURE <return>

DEVICE> <device,n

,P> <return>
DEVICE> <device,n,

p> <return>

continue for all Unibus devices, and then:

DEVICE> ~Z

SYSGEN will then print the desired configuration.

CONNECT CONSOLE

Connects the Console Floppy Drive and loads its driver.

CREATE file-spec /SIZE=block-count [/(NO)CONTIGUOUS]

Creates or extends a paging, swapplng, or dump file.

DISABLE CHECKS

Disables range checks.

2-9

ENABLE CHECKS

Enables range checks.

EXIT

Terminates SYSGEN. Go back to the VMS DCL prompt.

INSTALL file-spec ./PAGEFILE /SWAPFILE

Activates a secondary paging or swapping file.

SET /OUTPUT [=] file-spec

e - o —— - ——— —— - —————

Defines an output file for the SYSGEN session.

SET /STARTUP file-spec

Names the current site-independent startup command procedure,

SHARE MPMn mpm-name

This command connects multipeort memory units and initializes them
to the Operating System.

/INITIALIZE /GLBSECTIONS=glb
/MAILBOXES=mail /MAXGLBSECTIONS=max-glb
/MAXMAILBOXES=max-mail /POOLBCOUNT=block-cnt
/POOLBSIZE=block-size /PRQCOUNT=prg-cnt
/CEFCLUSTERS=cef /MAXCEFCLUSTERS=max-cef

SHOW parameter /xxx

Where xxx can be any of the following:

/ACP /ALL /DYNAMIC
/GEN /JOB /MAJOR
/NAMES /PQL /RMS
/SCS /SPECIAL /SYS
/TTY [/HEX]

Displays the values of the system parameters in the SYSGEN work area,
plus the default, minimum, and maximum values of the parameter and
their units of measure.

SET parameter-name value

Modifies the value of a system generation parameter in
work area.

SHOW /UNIBUS

Displays the addresses in UNIBUS I/0 space that can be

USE file-spec CURRENT ACTIVE DEFAULT

Initializes the SYSGEN work area with system parameter
a parameter file, the current system image, the active
the default list.

WRITE file-spec CURRENT ACTIVE

the SYSGEN

addressed.

values from
system, or

Writes the system parameter values from the SYSGEN work area to a
parameter file, the current system image, or the active system.

Using SYSGEN to determine UNIBUS device Address/Vector Assignments

The SYSGEN "CONFIG" command can be used to determine the proper
address and vector assignments for the VAX UNIBUS devices. The
following steps can be used to do this.

1. Log into the VMS operating system.
2., Execute the following commands:

$ MCR SYSGEN
SYSGEN> CONFIG

DEV> device_name,number of devices <-- Enter all device names,
DEV> next device_name,number_ of devices one device type per
DEV> next device_name,number_of devices "DEV>" prompt.

DEV> "2 <-- "~2" to end input mode.

3. When you type the "~Z", SYSGEN will determine the correct addresses
and vectors for the devices and will print them out on your terminal.
The devices must be assigned these addresses in order for the SYSGEN
utility to be able to auto-configure them.

2-12

LOCAL CONSOLE Boot Command Files

The Local Console Floppy contains the command files necessary to
boot either VMS or the Diagnostic Supervisor. These command files

do four important things:

1. Initialize the VAX-11/780 CPU and the S.B.I. Nexus.

2. Setup the VAX-11/780 CPU's General Registers in such
a way as to tell VMB.EXE who to boot from, what to
boot, and how to start what was booted.

3. Initiate the ISP rom program to find a good 64K chunk
of Memory.

4, Load and Start the VMB.EXE program.

Following is an example of one of the Local Console Boot command files.
This command file boots VMS from Massbus drive #0 on RH780 #0 (TR=8).

f
! DBO Boot command file - DBOBOO.CMD
1

HALT ! Halt the Processor.

UNJAM ! Unjam the SBI.

INIT ! Init the Processor.

DEPOSIT/I 11 20003800 ! Set-up the SCBB.

DEPOSIT RO O ! Disk Pack Device Type.

DEPOSIT R1 8 ! MBA TR=8.

DEPOSIT R2 0 ! Adapter Unit = 0.

DEPOSIT R3 0 ! Controller Unit = 0.

DEPOSIT R4 0 ! Boot Block LBN (unused)
DEPOSIT R5 0 ! Software Boot Flags

DEPOSIT FP 0 ! Set no Machine Check expected.
START 20003000 ! Start ROM Program.

WAIT DONE ! Wait for Completion.

EXAMINE SP ! Show address of working Memory+~X200.
LOAD VMB.EXE/START:@ ! Load the Primary Bootstrap
START @ ! and start it.

The parameters for VMB.EXE are described on pages 67 thru 70 of the
VAX Systems Maintenance Handbook (EK-VAXV1-HB-001),

2-13

RESTAR.CMD

This command file is invoked in the event of Power Recovery and
other console detected restart conditions if the "AUTO RESTART"
switch is set. It can also be invoked manually with the following
command to CONSOL.SYS:

>>> @RESTAR.CMD

The following RESTAR.CMD command file is an example of the type of
restart file used for systems without interleaved memory:

HALT HALT the Processor.
UNJAM UNJAM the SBI.
INIT INITialize the Processor,

!
!
!
DEPOSIT/I 11 20003800 ! Set address of SCBB.
DEPOSIT RO O ! Clear unused Register.
DEPOSIT Rl xxx ! xxx=TR of Boot Disk NEXUS.

f

!

1

1

!

1

DEPOSIT R2 0 Clear unused Register.
DEPOSIT R3 0 Clear unused Register.
DEPOSIT R4 0 Clear unused Register.
DEPOSIT R5 0 Clear unused Register.
DEPOSIT FP O No Machine Check expected.

START 20003004 Start RESTART REFEREE.

DSC or BACKUP Boot Command File

This command file boots either STAND-ALONE DSC or STAND-ALONE BACKUP
from Floppies.

HALT HALT the Processor.
UNJAM UNJAM the SBI.
INIT INITialize the Processor.

Set address of SCBB.
Console Floppy Device.

DEPOSIT/I 11 20003800
DEPOSIT RO 40

- e b= eem

DEPOSIT R1 O

DEPOSIT R2 0

DEPOSIT R3 1 Unit Number.

DEPOSIT R4 O Boot Block LBN (unused).
DEPOSIT R5 O Software Boot Flags.
DEPOSIT FP 0 No Machine Check expected.

DEPOSIT SP 200
LOAD VMB.EXE/START:200
START 200

Addr. of working Mem +7°X200.
Load Primary Bootstrap
and Start it.

2-14

RESTAR.ILV

This command file should replace the RESTAR.CMD command file
for those systems that have two interleaved memory controllers.
This command file assumes that the memory controllers are at
TR levels 1 and 2.

This command file is invoked in the event of Power Recovery and
other Console detected restart conditions if the Auto Restart
switch is set. It can also be invoked with the following command
entered to the CONSOL.SYS pompt (">>>"):

@RESTAR.CMD

The RESTAR.ILV command file consists of the following CONSOL.SYS

commands
HALT Halt VAX Processor.
INIT Initialize the VAX CPU.

DEPOSIT/I 11 20003800
DEPOSIT RO O
DEPOSIT R1 xxx

Set Address of SCBB in ISP rom.
Clear unused Register.
xxx = TR of Boot Disk NEXUS.

DEPOSIT R2 0 Clear unused Register.
DEPOSIT R3 0 Clear unused Register.
DEPOSIT R4 O Clear unused Register.
DEPOSIT RS 0 Clear unused Register.
DEPOSIT FP 0 No MACHINE CHECK expected.

DEPOSIT 20002000 101
DEPOSIT 20002004 4000
DEPOSIT 20004000 101
DEPOSIT 20004004 4000
START 20003004

Enable TR#1 Memory's interleaving.
Force starting address to 00000000.
Enable TR#2 Memory's interleaving.
Force starting address to 00000000.
Start Restart Referee in ISP rom.

bem = G tem 4w b= s b= srm sem G smm e ecm e

2-15

This command file is used to reset the starting addresses of the
memories, in a MS780 and MA780 system configuration, so that the
This is necessary in order to run

diagnostics on a VAX-11/782 system.

MS780 will again be low memory.

This command file is located on the LOCAL CONSOLE FLCPPY and is
executed by typing "@RMEM" to the CONSCL.SYS prompt (">>>"),

! Command file to RESET Memory Controller Restart Addresses.

DEPOSIT 20002004
DEPOSIT 2000400C
DEPOSIT 2000600C
DEPOSIT 2000800C
DEPOSIT 2000A00C

00004000
00200001
00A00001
01200001
01a00001

2-16

SET
SET
SET
SET
SET

TR=1
TR=2
TR=3
TR=4
TR=5

MEMORY TO START AT 0.0MB.
MEMORY OUT OF THE WAY.
MEMORY OUT OF THE WAY.
MEMORY OUT OF THE WAY.
MEMORY OUT OF THE WAY.

SECTION 1l

Special COMMAND files / Programs

Hardware Dump File Maintenance/Generation

Two files should be added and two files modified on the LOCAL CONSOLE
floppy in order to take Hardware Register Dumps. "DUMP." and "HANG."
should be generated and installed on the Local Console Floppy by you.
You should also modify the existing DEFBOO.CMD & RESTAR.CMD command
files so that a Hardware Dump is taken before the system is rebooted
{(whenever BUGREBOOT=1)}. DEFBOO.CMD is used when BUGREBOOT=1 and AUTO
RESTART switch is "OFF". RESTAR.CMD is used when BUGREBOOT=1 and AUTO
RESTART switch is "ON".

The "REMOTE LOCAL CONSOLE" floppy should also be modified to contain
the files mentioned above.

This command file dumps all the Hardware Registers wvia the CONSOL.SYS
program commands. It should be tailored to the system on which it will
be used so that all the Hardware Registers will be dumped.

This command file is generated and then placed on the Local Console
Floppy. The customer should be educated, by you, as to WHEN and HOW
this command file should be used.

This command file should do three things. They are as follows:

1. Dumps all Hardware Registers as defined by DUMP.
2. Single Steps the VAX CPU so as to find out where
the software is hung.
3. Initiates an @CRASH. so as to obtain a Software Dump.

This command file is to be used for dumping system software hangs. It
is your responsibility to educate the customer as to HOW and WHEN to
use this command file.

DEFBOO.CMD and RESTAR.CMD
These command files are supplied on the distributed Local Console
Floppy. Their purpose is to attempt a restart of the Operating System
on certain failure conditions. UNFORTUNATELY, the DEFBOO.CMD command
file is also used whenever a "B" or "BOOT" is entered to CONSOL.SYS in
order to reboot the system. The information gathered by appending a
set of hardware register dump commands to the beginning of these files
is very useful when trouble shooting system crashes on a system that is
set up to reboot automatically. It is best to get an 0.K. from the
customer before modifying these command files. If need be, a seperate
LOCAL CONSOLE floppy (preferably a "REMOTE LOCAL CONSOLE" floppy) can
be made to use when the system has problems.

3-2

Version 3.x VMS dump file generation

The following commands can be used to create the HANG., DUMP., and
modify the DEFBOO.CMD & RESTAR.CMD command files on the LOCAL CONSOLE
floppy of a VERSION 3.x VMS Operating System.

First of all, you must log into an account that has the "SETPRV"
privilege or into an account that has enough privileges to access
"CSAl:". Do the following steps on "VERSION 3.x VMS" systems:

$ SET PROCESS/PRIV=ALL

$ MCR SYSGEN

CONNECT CONSOLE

EXIT

MOUNT/FOR CSAl:

MCR FLX /RS=CS1:DEFBOO.CMD/RT/FA
MCR FLX /RS=CS1:RESTAR.CMD/RT/FA
RENAME RESTAR.CMD RESTAR.OLD
RENAME DEFBOO.CMD DEFBOO.OLD
EDIT DUMP.

wn-nnnn

Create the DUMP. command file that you wish

to place on the LOCAL CONSOLE floppy. Be sure

to have examines for all registers on the system,
An example of a DUMP. command file is given in this
manual.

~e we wo we we

$ COPY DUMP. HANG.
$ EDIT HANG.
; Now create the HANG. command file by modifying the
; just made DUMP. command file to include the commands
; shown below. These commands should be appended to
: the end of the file.

!
! Set single step mode and gather some PC's
! in order to determine where software is hung.
!
SET DEFAULT HEX,LONG,PHYSICAL
D/ID 0A 00008080 ! Turn off/Clear Interval Timer.
SET STEP INSTRUCTICN ! Set single step mode.
NEXT 30 ! Find program loop.
CLEAR STEP ! Disable single step mode.
NEXT 1 ! Continue clock.
D/ID OA 00000040 ! Re-enable Interval Timer.
!

! Now execute the equivalent of @CRASH in order
! to cause a Software Dump to be taken.
1

HALT Halt the system.
E PC Get current PC.
E PSL Get contents of PSL.

t
!
E/I/N:4 0 ! Get Stack pointers.
!
!
!

D PC -1 Invalidate PC.
D PSL 1F0000 Set Kernel mode, IPL 31.
CONTINUE Continue macro program.

3-3

COPY DUMP. DEFBOO.CMD

COPY DUMP. RESTAR.CMD

APPEND DEFBOO.OLD DEFBCO.CMD
APPEND RESTAR.OLD RESTAR.CMD
COPY/CONTIG RESTAR.CMD RESTAR.CMD
COPY/CONTIG DEFBOO.CMD DEFBOO.CMD
COPY/CONTIG DUMP. DUMP.
COPY/CONTIG HANG. HANG.

PURGE DEFBOO.CMD

PURGE RESTAR.CMD

PURGE DUMP.

PURGE HANG.

MCR FLX CS1:/RT=DEFBOO.CMD/RS/FA
MCR FLX CS1l:/RT=RESTAR.CMD/RS/FA
MCR FLX CS1l:/RT=DUMP./RS/FA

MCR FLX CS1l:/RT=HANG./RS/FA

MCR FLX CS1:/RT/LI

DISMOUNT CSAl:

“vnnununnnnnnannnnnnnnn

Now you should bring down the system and test the files you have
just created. To test the command files, proceed as follows from
the CONSOL.SYS prompt:

>>>@DUMP
; All registers should be examined. Several errors may
; occur on the Memory Stack examines. Ignore them.
>>>@HANG
; All registers should be examined. Several errors may
; occur on the Memory Stack examines. Ignore them.
>>>B

A hardware register dump should occur as with the DUMP.
command file and then the system should reboot.

~e ~u

Now place the AUTO-RESTART switch to "ON" and turn the power "OFF"
and back "ON". The Operating system should reboot via the modified
RESTAR.CMD command file.

Version 4.x VMS dump file generation

The following commands can be used to create the HANG., DUMP., and
modify the DEFBOO.CMD & RESTAR.CMD command files on the LOCAL CONSOLE
floppy of a VERSION 4.x VMS Operating System.

First of all, you must log into an account that h@s the "SETPRV"
privilege or into an account that has enough privileges to access
"CSAl:". Do the following steps on "VERSION 4.x VMS" systems:

$§ SET PROCESS/PRIV=ALL

$ MCR SYSGEN

CONNECT CONSOLE

EXIT

$ EXCHANGE

COPY CSAl:RESTAR.CMD RESTAR.OLD
COPY CSAl:DEFBCO.CMD DEFBOO.OLD
EXIT

$ EDIT DUMP.

Create the DUMP. command file that you wish

to place on the LOCAL CONSOLE floppy. Be sure

to have examines for all registers on the system.
An example of a DUMP. command file is given in this
manual.

~e weo we we wo

$ COPY DUMP. HANG.
$ EDIT HANG.
; Now create the HANG. command file by modifying the
; just made DUMP. command file to include the commands
; shown below. These commands should be appended to
; the end of the file,

!
! Set single step mode and gather some PC's
! in order to determine where software is hung.
!
SET DEFAULT HEX,LONG,PHYSICAL
D/ID 0A 00008080 ! Turn off/Clear Interval Timer.
SET STEP INSTRUCTION ! Set single step mode.
NEXT 30 ! Find program loop.
CLEAR STEP ! Disable single step mode.
NEXT 1 ! Continue clock.
D/ID 0A 00000040 ! Re-enable Interval Timer.
!

! Now execute the equivalent of @CRASH in order
! to cause a Software Dump to be taken.
!

HALT Halt the system.
E PC Get current PC.
E PSL Get contents of PSL.

!
!
!
E/I/N:4 O ! Get Stack pointers.
!
!
!

D PC -1 Invalidate PC.
D PSL 1r0000 Set Kernel mode, IPL 31.
CONTINUE Continue macro program.

3-5

COPY DUMP. DEFBOO.CMD

COPY DUMP. RESTAR.CMD

APPEND DEFBOO.OLD DEFBQO.CMD
APPEND RESTAR.OLD RESTAR.CMD
COPY/CONTIG RESTAR.CMD RESTAR.CMD
COPY/CONTIG DEFBOO.CMD DEFBOO.CMD
COPY/CONTIG DUMP. DUMP.
COPY/CONTIG HANG. HANG.

PURGE DEFBOO.CMD

PURGE RESTAR.CMD

PURGE DUMP.

PURGE HANG.

EXCHANGE

COPY DEFBOO.CMD CSAl:DEFBOO.CMD
COPY RESTAR.CMD CSAl:RESTAR.CMD
COPY DUMP. CSAl:DUMP.

COPY HANG. CSAl:HANG.

EXIT

$ DISMOUNT CSAl:

“nnnnnntnnnnnnn

Now you should bring down the system and test the files you have
just created. To test the command files, proceed as follows from
the CONSOL.SYS prompt:

>>>@DUMP
; All registers should be examined. Several errors may
; occur on the Memory Stack examines. Ignore them.
>>>dHANG
; All registers should be examined. Several errors may
; occur on the Memory Stack examines. Ignore them.
>>>B

A hardware register dump should occur as with the DUMP.
; command file and then the system should reboot.

~e

Now place the AUTO-RESTART switch to "ON" and turn the power "OFF"
and back "ON". The Operating system should reboot via the modified
RESTAR.CMD command file.

DUMP. Command File

This is an example of how a Hardware Register Dump command file should look.
This command file should be tailored for the system it is to be used on.
~-~--> Lines marked with an "*" are system configuration dependent. <----

! HARDWARE REGISTER DUMP

! Date & Time :

! Customer Name:

! VAX Serial No.:

! Don't "~C", even if there is "?MIC" and/or "?MEM-MAN" errors.

SHOW ! Check to see if VAX is running.

HALT ! Make sure that the VAX is halted.

SET RELOCATION:0

SET DEFAULT HEX, LONG,PHYSICAL

E/ID/N:17 0 ! VAX CPU ID Registers.

E/ID 18 ! "15" cycles prior to "SBI FAULT".
E/ID * ! "14" cycles prior to "SBI FAULT".
E/ID * ! "13" cycles prior to "SBI FAULT".
E/ID * ! "12" cycles prior to "SBI FAULT".
E/ID * ! "11" cycles prior to "SBI FAULT".
E/ID * ! "10" cycles prior to "SBI FAULT".
E/ID * ! "09" cycles prior to "SBI FAULT".
E/ID * ! "08" cycles prior to "SBI FAULT".
E/ID * ! "07" cycles prior to "SBI FAULT".
E/ID * ! "06" cycles prior to "SBI FAULT".
E/ID * ! "05" cycles prior to "SBI FAULT".
E/ID * ! "04" cycles prior to "SBI FAULT".
E/ID * ! "03" cycles prior to "SBI FAULT".
E/ID * ! "02" cycles prior to "SBI FAULT".
E/ID * ! "01l" cycle prior to "SBI FAULT".
E/ID * ! Last cycle stored prior to latching SILO.
E/ID/N:25 19 ! Remaining CPU ID Registers.

E IR ! Examine the contents of the IR.

E PC ! Get current PC.

E/L/V - ! Get some instruction stream data.
E/L/V -

E/L/V -

E/I 0/N:4 ! Examine STACK "Internal Regs."

* E/N:2 20002000 ! MEMORY Registers (TR=1).

* E/N:7 20006000 ! DW780 Registers (TR=3).

* E/N:6 20010000 ! RH780 (TR=8) Registers.

* E/N:6 20012000 ! RH780 (TR=9) Registers.

* E/N:F 20010400 ! DBAO: - RPO6 #0 on RH780 at TR#8.

* E/N:F 20010480 ! DRAl: - RMOS #1 on RH780 at TR#8.

* E/N:9 20012400 ! MTAO: - TEl6 #0 on RH780 at TR#9.

* E/W/N:3 2013E038 ! XMA - (760070) - on Adapter #0.

* E/W/N:3 2013E040 ! XMB - (760100) - on Adapter #0.

* E/W/N:3 2013E050 ! TTA - (760120) - on Adapter #0.

* E/W/N:3 2013E058 ! TTB - (760130) - on Adapter #0.
E/ID 3B ! Get System Control Block Base address.
E/L/P/N:7F @ ! Dump System Control Block contents.
E/G/N:F 0 ! General Registers.

E SP ! Get Stack Pointer.
i

E/V/N:60 @ Contents of STACK. IGNORE examine errors.

SHOW VERSION

3-7

HANG. Command File

This command file should be tailored to the System it will be used on.
The first part of this command file should almost identical to the DUMP.
file. Some commands are added to the end of the DUMP. file so that some
information can be gathered concerning the hang.
----> Lines marked with an "*" are system configuration dependent.

! SYSTEM HANG - Hardware & Software Dump file

! Date & Time :

! Customer Name:

! VAX Serial No.:

! Don't "~C", even if there is "?MIC" and/or "?MEM-MAN" errors.

SHOW ! Check to see if VAX is running.

HALT ! Make sure that the VAX is halted.

SET RELOCATION:0

SET DEFAULT HEX, LONG, PHYSICAL

E/ID 0/N:3E VAX CPU ID Registers.
E IR ! Get the contents of the IR.
E/I 0/N:4 ! Stacks via Internal Registers.
* E/N:2 20002000 ! MEMORY Registers (TR=1)
* E/N:7 20006000 ! DW780 Registers (TR=3)
* E/N:6 20010000 ! RH780 (TR=8) Registers
* E/N:6 20012000 ! RH780 (TR=9) Registers
* E/N:F 20010400 ! DBAO: - RPO6 #0 on RH780 at TR#8.
* E/N:F 20010480 ! DRAl: - RM05 #1 on RH780 at TR#8.
* E/N:9 20012400 ! MTAO: - TEl6 #0 on RH780 at TR#9.
* E/W/N:3 2013E038 ! XMA - (760070) - on Adapter #0.
* E/W/N:3 2013E040 ! XMB - (760100) - on Adapter #0.
* E/W/N:3 2013E050 ! TTA - (760120) - on Adapter #0.
* E/W/N:3 2013E058 ! TTB - (760130) - on Adapter #0.
E/G/N:F 0 ! General Registers
E SP ! Get Stack Pointer.
E/V/N:60 @ ! Contents of STACK. IGNORE examine errors.
E PC ! Get some instruction stream data in case
E/L/V - ! hung in a very tight, one or two instruction
E/L/V - ! loop.
E/L/V -

SHOW VERSION

! Single Step the system to gather some program loop PC's
SET DEFAULT HEX, LONG, PHYSICAL

D/ID 0A 00008080
SET STEP INSTRUCTION

Turn off/Clear Interval Timer.
Set single step mode.

l
NEXT 60 ! Show program loop.
CLEAR STEP ! Disable single step mode.
NEXT 1 ! Continue clock,

D/ID 0A 00000041

Re-enable Interval Timer.

! ... Simulate an "@CRASH" so as to get Software Dump

HALT

E PC

E PSL

D PC -1

D PSL 1F0000
CONTINUE

Invalidate PC
KERNEL mode / IPL=31

3-8

SAVEDUMP . COM

A command file that saves SYSSSYSTEM:SYSDUMP.DMP in a
specified area. This command file should be executed
from the SYSSSYSROOT:[SYSMGR]SYSTARTUP.COM command
file so that the Software Dump is saved.

3-9

SAVE VERIFY = 'F$VERIFY("NO")'
Written by Roy D. Fulton, D.E.C. Field Service

This command file copies the Software System Dump File,
SYS$SYSTEM:SYSDUMP.DMP, to a file located in 'AREA NAME'
with a name that reflects the reboot DAY, MONTH, HOUR and MINUTE.

This command file should be entered by specifing the "AREA NAME"
as parameter "Pl", as follows:

@yyySAVEDUMP xxx ;where xxx = DDCU:DIRECTORY of area
in which to save the dump file and,

;where yyy = DDCU:DIRECTORY of where
the "SAVEDUMP.COM" file is located.

If the "AREA NAME" is not specified as parameter "P1", the dump
file will be copied to the area "SYSSLOGIN" (the default directory
of the area that you logged into).

This command file should be executed as part of the VMS System
"SYSSSYSROOT: [SYSMGR]SYSTARTUP.COM" command file by placing the
above command in that command file.

Gm Bem em b Sem G em s Smm fem G S Sem Sem P Som S b b S G = Sem e e

IF P1 .NES. "" THEN AREA NAME := 'Pl’

IF P1 .EQS. "" THEN AREA NAME := 'FSLOGICAL("SYSSLOGIN")'
DTIM := 'FSTIME()'

LT = 'FSLOCATE{("-",DTIM)'

DAY := 'FSEXTRACT(O,LT,DTIM)’'

IF LT .EQ. 1 THEN DAY := 0'DAY'
LT = 'LT'+1

MONTH := 'FSEXTRACT(LT,3,DTIM)"'
LT = 'FSLOCATE(":",DTIM)'+1
MIN := 'FSEXTRACT(LT,2,DTIM)"'
LT = 'LT'-3

$
S
$
$
$
$
$
$
$
$
$
$
$
S
$
$
$
$
S
$
$
$
$
$
$
S
$
$
$
$
$
$
$
$
$
g
S HOUR := 'FSEXTRACT(LT,2,DTIM)’'
$

$

$

$

$

$

$

NEW NAME := 'DAY''MONTH''HOUR''MIN'.DMP
NEW LIST := 'DAY''MONTH''HOUR''MIN'.LIS
SEXE := 'FSLOGICAL("SYSSSYSTEM")'
WRITE SYSSOUTPUT " "
WRITE SYSSOUTPUT ".... Copying"
WRITE SYSSOUTPUT " from : ' 'SEXE'SYSDUMP.,DMP"
WRITE SYSSOUTPUT " to : "'AREA NAME'''NEW NAME' "

»

ANALYZE/CRASH DUMP SYSSSYSTEM:
COPY 'AREA NAME''NEW_NAME'

SET OUTPUT 'AREA NAME''NEW LIST'

SHOW CRASH

SHOW STACK

SHOW SUMMARY

SHOW PROCESS/PCB/PHD/REG

SHOW SYMBOL/ALL

EXIT
$ IF SAVE VERIFY THEN SET VERIFY
$ EXIT

SPEAR Batch Command File

3-11

SPEAR BATCH CONTROL

This is an example of a VMS Indirect Command file that can be used

to run SPEAR as a BATCH job. When this command file is executed,

a BATCH job will be submitted that will run the "ANALYZE" portion

of SPEAR and will queue the output to the printer. The command file
is executed by typing "@DDCU:SPEAR" at the VMS prompt, where "DDCU" is
equal to the directory designation of where the SPEAR.CCM file resides.
The actual command file would appear as follows for VMS:

$! VMS COMMAND FILE TO RUN SPEAR
$!
$! FIRST RE-QUEUE THE JOB TO RUN TOMORROW
$ SUBMIT SPEAR.COM/AFTER:TOMORROW/WSDEFAULT=400/WSQUOTA=0
S !
S RUN SYSSSYSTEM:SPEAR
SUMMARIZE
'FILE NAME
! FROM
'TO
SUMMAR.RPT
!GO
ANALYZE
'FILE NAME
! FROM
' TO
SPEAR.RPT
NL:
1GO
EXIT
S !
S ! PRINT THE RESULT
$ PRINT SUMMAR.RPT
S PURGE SUMMAR.RPT/KEEP=1
S PRINT SPEAR.RPT
$ PURGE SPEAR.RPT/KEEP=1

SDA.COM

This command file is used to make a printable file containing some
information from a specified system software dump file.

3-13

SAVE_VERIFY = 'FSVERIFY("NO")'
! Written by Roy D. Fulton, D.E.C. Field Service

VERSION := 2.0

SET NOON

ON ERROR THEN CONTINUE
ON CONTROL_Y THEN EXIT
TYPE SYSSINPUT

wnunnnunnnnn

This command file examines the desired SOFTWARE Dump file, and
creates a file of basic information (about the crash) that can
be used for most crash analysis.

Answer all questions with a "Y" for YES or an "N" for NO, unless
otherwise stated. A "<return>" is equal to a YES.

If you require help, simply type a "?" or "H".

$ START:
$ INQUIRE DMP "What System Dump (DDCU:[DIRECTORY]FILENAME.EXT)? "
S IF DMP .NES. "/H" .AND. DMP .NES. "H" .AND. DMP .NES. "/HELP" -

.AND. DMP .NES. "HELP" .AND. DMP .NES. "?" THEN GOTO CONTINO
S TYPE SYSSINPUT

Enter the name of the file that you wish to examine and also
state the device and directory of where the file is located, in
the following format:

DDCU: [DIRECTORY]FILENAME . EXT

where,
DDCU = device on which file is stored.
DIRECTORY = directory in which dump is located.
FILENAME = filename of the dump file.
EXT = three digit extension of dump file.
s !
$ GOTO START

3-14

$ CONTINO:

S IF DMP .EQS. "™ THEN DMP :== SYS$SSYSTEM:SYSDUMP.DMP

$ INQUIRE TO "... You wish to examine ''DMP' ? "

S IF T0 .NES. "Y" .AND. TO .NES. "" .AND. TO .NES. "YES" THEN -
GOTO START

$ PRTOUT:

S INQUIRE PRT "... Output to be printed on the SYSSPRINT device?"
S IF PRT .EQS. "Y" .OR. PRT .EQS. "" .OR. PRT .EQS. "YES" THEN PRT := Y
S IF PRT .EQS. "N" .OR. PRT .EQS. "NO" THEN PRT := N

S IF PRT .EQS. "N" .OR. PRT .EQS. "Y" THEN GOTO CONTIN1

$ TYPE SYSSINPUT

The output will go to a file in your disk area that is equal to the
Dump's filename with an extension equal to "LST". This file can be
queued to the SYSSPRINT queue, which is usually a Line Printer queue,
if you so desire. Answer this question with one of the following
responses:

Y = Queue listing to SYSSPRINT device. File is deleted
after printing.

<return> = same as "Y".

N = Do not print the file., File remains in disk area.

? = Displays this help file.

H = same as "?" o

$ WRITE SYSSOUTPUT " The SYSSPRINT device is ''FSLOGICAL("SYSSPRINT")' .

S WRITE SYSSOUTPUT " "

$ GOTO PRTOUT

$ CONTINL:

S TMP := 'DMP'

$ LT = 'FSLENGTH(DMP)'

S AA = 'FSLOCATE(":",DMP)'

S BB = 'LT'-'AA'

$ IF AA .NE. LT THEN TMP := 'FS$SEXTRACT(AA+1,BB-1,DMP)’

S LT = 'FSLENGTH(TMP)'

S AA = 'FSLOCATE("]",TMP}'

S BB = 'LT'-'AA'

S IF AA _NE. LT THEN TMP := 'FSEXTRACT(AA+1,BB-1,TMP)}'

$ LT = 'FSLENGTH(TMP)'

3-15

S AA = 'FSLOCATE(".",TMP)'

S IF AA _NE. LT THEN TMP := 'FSEXTRACT(0,AA,TMP)'
S TMP := 'FSLOGICAL("SYSSLOGIN")''TMP'.LST

S WRITE SYSS$SOUTPUT " "

S WRITE SYSSOUTPUT " "

$§ WRITE SYSSOUTPUT ".... Creating ' 'T™MP' ... Please wait ... "
S ANALYZ:

S ON ERROR THEN EXIT

$ RUN SYS$SYSTEM:SDA

'DMP'’

SET OUTPUT 'TMP'

SHOW CRASH

SHOW PROCESS/ALL
SHOW STACK/ALL
SHOW DEVICE
SHOW SUMMARY
SHOW PFN_DATA/ALL
EXAMINE/PO
EXIT
!
ON ERROR THEN CONTINUE
WRITE SYSSOUTPUT " "
WRITE SYSSOUTPUT " "
IF PRT .EQS. "Y" THEN WRITE -
YSSOUTPUT "''TMP' is being queued to ''FSLOGICAL("SYSSPRINT")'"
IF PRT .EQS. "Y" THEN PRINT/DELETE 'TMP'
IF PRT .EQS. "Y" THEN GOTO EXITH
WRITE SYSSCUTPUT "..... Information about - ‘''DMP'"
WRITE syssouTpyT " "
WRITE SYSSOUTPUT "..... is stored in - '"'TMP'"
EXITH:
WRITE SYSSOUTPUT " "
WRITE SyssouTpuT " "
IF SAVE_VERIFY THEN SET VERIFY

Nn-nnnnunnnnnnnnnn

FP780 Control Programs

These programs are used to turn the Floating Point Accelerator
"ON" or "OFF"., These two programs may be created with an editor
and then assembled and linked.

3-17

FPAOFF.MAR

.TITLE FPAOFF.MAR

START:

FPAOFF:

SID:

VAX780:

;Written by Roy D. Fulton, D.E.C. Field Service

;This routine "Turns OFF" the Floating Point Accelerator

r
:This routine needs the "CMKRNL" privilege.

.
r

.WORD

$CMKRNL_S FPAQOFF

RET

.WORD

MFPR #"~X3E,SID ;get SID Register contents
CMPZV #7~D24,#"D4,SID,#"X1 ;1s System a VAX-11/780
BEQL VAX780 ;Branch if yes

CMPZV #~D24,#~D4,SID, #°X2 ;is System a VAX-11/750
BEQL VAX780 ;Branch if yes

CMPZV #~D24,#"~D4,SID,#~X3 ;1s System a VAX-11/730
BEQL VAX780 ;Branch if yes

MOVL #~X901,R0C ;Unsupported Processor Type

RET ;exit routine due to no such processor
.WORD ;holds contents of SID register
.WORD

MTPR #O,#“X28 ;Turn off FPA enable on 11/780
MOVL #~X1,R0 :11/780 successful completion
RET ;exit routine

.END START

3-18

FPAON.MAR

.TITLE FPAON.MAR

START:

FPAQFF:

SID:

VAX780:

;Written by Roy D. Fulton, D.E.C. Field Service

:This routine "Turns ON" the Floating Point Accelerator

;This routine needs the "CMKRNL" privilege.

.WORD
SCMKRNL_S FPAOFF
RET

.WORD

MFPR #~X3E,SID

;get System Identification Register contents

CMPZV #7D24,#~D4,SID,#"X1 ;is System a VAX-11/780

BEQL VAX780

;Branch if yes

CMPZV #7~D24,#"D4,SID,#"X2 ;is System a VAX-11/750

BEQL VAX780

;Branch if yes

CMPZV #~DZ4,#7D4,SID,#"°X3 ;is System a VAX-11/730

BEQL VAX780

MOVL #~X901,R0
RET

.WORD
.WORD

MTPR #8000, #°D40
MOVL #~X1,RO0
RET

.END START

;Branch if yes

;Unsupported Processor Type
;exit routine due to no such processor

;holds contents of SID register

;Turn ON FPA enable on 11/780
;setup RO for successful completion flag
;exit routine with FPA off

3-19

SECTION IV

VAX-11/780 BASICS

VAX Family

Virtual

Addressing

!{Program
! Region

1
!
! PO
! Space
!
!

Control!
Region !

!

!

Pl !
Space !
1

!

System
Region

SO
Space

not
used

Sl
Space

Virtual & Physical Address Space

00000000

3FFFFFFF

40000000

7FFFFFFF

80000000

BFFFFFFF

€0000000

FFFFFFFF

4-2

VAX-11/780

Physical

Addressing

i Avail. !
!Physical!
! Memory !
t

Memory !
Addrs. !

!Not Used!
! 1/0 !
! Space !
! Addrs. !
i 1

00000000

007FFFFF

00800000

1FFFFFFF
20000000

3FFFFFFF

VAX-11/780 General Registers Assignments

Register No.

Hex Dec. 32 00
F 15 ! Program Counter ! PC
E 14 ! Stack Pointer ! SP
D 13 ! Frame Pointer ! FP
C 12 ! Argument Pointer ! AP
B 11 ! !
A 10 ! !
S 09 ! !
-—= ... Not assigned ... -—
8 08 ! » !
7 07 ! !
6 06 ! !
5 05 ! !
- Used in Character -—-
4 04 ! !
—-— and Decimal String -—=
3 03 ! !
——— instructions. RO0OO0 and —-——
2 02 ! !
-—- ROl are also used in -—-
1 01 ! !
--- POLY & CRC intructions -—
0 00 ! !
R3,R5 - Address Counter in Character and Decimal instructions.
R2,R4 - Length Counter in Character and Decimal instructions.
R1 - Result of POLYD. Address Counter in Character and
Decimal instructions.
RO - Result of POLY,CRC. Length counter in Character and

Decimal instructions.

43

SUBROUTINE Usage & Operation

Subroutines are portions of code that may be used many times within
a program at different times. In order to save memory space, this
common code can be written as a subroutine and can be called and
exited with the instructions listed below. The processor saves the
current PC on the STACK whenever a subroutine is called so that the
return instruction will know where to return to. The Processor
Status Longword is not saved on the STACK when calling a subroutine,
nor is it modified by the Subroutine call and return instructions.

Three instructions are used for calling a subroutine. They are
as follows:

BSBB ~~- Branch to subroutine with Byte Displacement.
Displaces PC a maximum of +127 or -128 bytes.
BSBW --- Branch to Subroutine with Word Displacement.

Displaces PC a maximum of +32767 or -32768 bytes.
The PC is pushed onto the STACK as a longword.
The sign-extended (to 32 bits) branch
displacement is added to the PC and the PC is
replaced with the result.

-(SP) <--- PC
PC <--- PC + SEXT Displacement

JSB --- Jump to subroutine.
The destination address is calculated from the
Operand Specifier byte. The PC is then pushed
onto the STACK. Finally, the PC is replaced by
the calculated destination address.

-(sp) <--- PC
PC <--- Destination

One instruction is used to return from a subroutine. It is:
RSB --- Return from subroutine
Is used to return from subroutines called by the
BSBB, BSBW and JSB instructions. The PC is replaced
by a longword popped from the STACK.
PC <--- (SP)+

Note: RSB is equivalent to JMP @(SP)+, but is one
byte shorter.

4-4

PROCEDURE Usage & Operation

PROCEDUREs are general purpose routines that use argument lists
passed automatically by the processor and use only local variables
for data storage. A PROCEDURE CALL INSTRUCTION provides several
services to the programmer that occur automatically by the processor.

A Procedure Call Instruction:

. Saves all the registers (R00 - R1l1l), that the procedure
uses, before entering the called procedure. This is
accomplished by the programmer specifying which registers
are to be saved in an ENTRY MASK when the Procedure is
written. The ENTRY MASK is the first WORD of a Procedure.

. Passes an argument list to a Procedure. This is done in two
ways. The argument list can be stored anywhere in memory,
in which case the CALLG instruction is used, or the list can
be stored on the STACK, in which case the CALLS instruction
is used.

. Maintains the STACK, FRAME and ARGUMENT Pointer registers.

. Initializes the Arithmetic Trap ENABLES to a given state.
This is accomplished by the ENTRY MASK.

When a PROCEDURE completes execution, it issues the RET (Return from
Procedure) instruction. RET uses the Frame Pointer register to find
the registers that were saved by the Procedure Call Instruction. It
restores the original contents to these registers, cleans up data left
on the Stack (including nested routine linkages), and can return values
using the argument list or other registers.

45

PROCEDURE Usage & Operation (continued)

. Is one Word in length

. Bits 2 thru 11 select Registers to be Saved upon
Procedure Call. A one in the respective bit position
SAVES that register before Procedure is executed.

. Bits 0 & 1 are not normally used by software to save
Registers 0 & 1, respectively, due to Procedure Calling
standard. They will be saved if you set the respective bit.

. Bit 15 is used to enable/disable Decimal Overflow (DV).
. Bit 14 is used to enable/disable Integer Overflow (IV).
. Bits 12 & 13 must be zero.

. Is located in First WORD of Procedure.

15 14 13 121110 9 8 7 6 5 4 3 2 1 O

ENTRY MASK ---> !DV!IV! MBZ ! Registers to Save !

ARGUMENT LIST

. An Argument List is simply Data that is needed for the
Procedure to use. This list of data may be something like
a group of numbers that must be added together by the
Procedure.

. The Argument List may be stored anywhere in memory or it
may be stored on the Stack. If the Argument List is stored
on the Stack, the "CALLS" Procedure call instruction is
used to enter the Procedure. If the Argument List is stored
somewhere other than on the Stack, the "CALLG" Procedure
call instruction is used to enter the Procedure.

"CALLG" Procedure Call Operation

Format:
opcode arglist.ab, dst.ab

opcode = "FA"

arglist.ab = Specifies starting address of
Argument List in memory.

dst.ab = Specifies starting address of

the Procedure to be entered.

Description:

1. SP is saved in a temporary register and then bits 1:0 are
replaced by 0 so that the stack is longword aligned.

2. The PROCEDURE ENTRY MASK is scanned from Bit 11 to 00 and the
contents of those registers whose number corresponds to the
set bits in the ENTRY MASK are pushed on the Stack as
LONGWORDs.

3. The "PC","FP", and "AP" are then pushed on the Stack, also
as LONGWORDs.

4. The CONDITION CODES are cleared in the Processor Status
Longword (PSL). o

5. A LONGWORD is pushed on the Stack containing:
. the two low bits of the saved SP in Bits 31:30
. a0 in Bits 29 & 28
the low 12 bits of the ENTRY MASK in Bits 27:16
the low word of the PSL in Bits 15:00 with the
"T" bit cleared

6. A LONGWORD = 000000 is pushed on the Stack.
7. The "FP" is replaced by the "SP".
8. The "AP" is replaced by the "arglist operand”.
9. The Trap enables are set to a known state in the PSL.

. IV and DV are setup according to bits 14 & 15

of the ENTRY MASK, respectively

. Floating underflow bit is cleared

. T-bit is unaffected
10. The "PC" is replaced by the sum of the destination operand

plus 2, which transfers control to the called procedure at
the byte beyond the ENTRY MASK.

4-7

Format:

Description:

1.

10.

11.

"CALLS" Procedure Call Operation

opcode numarg.rl, dst.ab

The

The

" FB "

number of arguments on stack
specifies starting address of the
procedure in memory

opcode
numarg.rl
dst.ab

"numarg" operand is pushed on the Stack as a Longword.
. Byte 0 contains the number of arguments
. The High order 24 bits are used by DEC software

"SP" is saved in a temporary register and bits <1:0>

of the "SP" are replaced by 0 so that the stack is Longword
aligned.

The
the
set
The

The

Procedure ENTRY MASK is scanned from bit 11 to bit 00 and
contents of the registers whose number corresponds to the
bits of the Entry Mask are pushed on the Stack.

"PC","FP", and "AP" are pushed on the Stack as Longwords.

Condition Codes are cleared in the Processor Status

Longword (PSL).

A LONGWORD 1is pushed on the Stack containing:

. the two low bits of the saved SP in Bits 31:30

. al in Bit 29

. a0 in Bit 28

. the low 12 bits of the ENTRY MASK in Bits 27:16

. the low word of the PSL in Bits 15:00 with the
"T" bit cleared

A LONGWORD = 000000 is pushed on the Stack.

The

The
the

The

The

"FP" is replaced by the "SP".

"AP" is set to the value of the Stack Pcinter after
"numarg operand" was pushed on the Stack.

Trap enables are set to a known state in the PSL.
IV and DV are setup according to bits 14 & 15
of the ENTRY MASK, respectively

. Floating underflow bit is cleared
T-bit is unaffected

"PC" is replaced by the sum of the destination operand

plus 2, which transfers control to the called procedure at
the byte beyond the ENTRY MASK.

4-8

"RET" Procedure Return Operation

- - . ——

Format:
opcode opccde = "04"
Description:

1. The "SP" is replaced by the "FP" plus 4.

2. A Longword is popped from the Stack, and stored in a temporary
register, containing:

. Stack Alignment bits in bits 31:30
. CALLS/CALLG flag in bit 29 (1 = CALLS, 0 = CALLG)
. Low 12 bits of the Procedure ENTRY MASK in
bits 27:16
. A saved PSW (low order word of PSL) in bits 15:00

3. The "PC", "FP", and "AP" are replaced by Longwords popped
from the Stack.

4, A register restore mask is formed from bits 27:16 of the
temporary register.

5. Scanning from bit 00 to bit 11 of the restore mask, the
contents of the registers whose number is indicated by set
bits in the restore mask, are replaced by Longwords popped
from the Stack.

6. The "SP" is incremented by 31:30 of the temporary register.

7. The PSW (low order word of PSL) is replaced by bits 15:00
of the temporary register.

8. If bit 29 in the temporary register is a 1 (indicating that
the procedure was called by a CALLS instruction), a Longword
containing the number of arguments is popped from the Stack.
Four times the unsigned value of the low byte of this Longword
is added to the "SP" and the "SP" is replaced by the result.

9. At this point, the Return has been executed. Program control

continues with at the current PC.

4-9

Procedure Call (CALLS/CALLG) notes:

If bits 13:12 of the ENTRY MASK are not 0, a reserved
operand fault occurs.

On a reserved operand fault, Condition Codes are
UNPREDICTABLE...

The procedure calling standard and the condition handling
facility require the following register saving conventions:

. RO & Rl are always available for function return
values and are therefore never saved in the Entry
Mask.

. All registers, R2 thru R1l1l, which are modified in
the called Procedure, must be preserved by setting
the respective bits in the Entry Mask.

When using "CALLS" Procedure Call, normal use is to push
the arglist onto the stack in reverse order prior to the
CALLS instruction. On RETurn, the arglist is removed from
the Stack automatically by the processor.

Return from Procedure(RET) notes:

1.

A reserved operand fault occurs if the Temporary Register
bits 15:08 is not equal to 0.

On a reserved operand fault, the condition codes are
UNPREDICTABLE. The value of the Temporary Register bit 28
is ignored.

The procedure calling standard and the condition handling

facility assume that procedures which return a function
value or a status code, do so in RO or RO & RI.

4-10

PROCEDURE CALL Stack Layout

khkkhkkhkhkhkhkhkkhhkkkhkrkkkkhkkkikk

Before execution of a "CALLS", the Procedure Arguments are
stored on the Stack as follows.

o
.o

]

. 0-3 bytes specified by the "SPA" .
- {Stack-Pointer Alignment}

. Saved General registers. Which registers are
. saved depends on the set bits in the Entry Mask. .

! saved "PC" !
! saved "AP" !

(SP) before
arguments
pushed.

(AP) & (sP)

(SP) before
CALLS/CALLG

(FP) & new
(sp)

VAX-11/780 NATIVE ADDRESSING MODES

. Many of the modes are very similiar to PDP-11
addressing modes

. Indexing can be combined with many of the
addressing modes

. Operand Specifier consists of 1 Byte that contains
the MODE and the General Register to be used

. The VAX addressing modes are as follows:

7 4 3 0
Operand
Specifier Byte --> ! mode ! Rn ! n=00 - 15
Layout = —ommmmmme—o—————e—————————o
! |
! t--> Low Nibble
!--> High Nibble
Notation Mode Name Description
S~#num Literal - Mode and Operand are
contained in the same BYTE.
Operand is contained in low
6 bits of addressing mode.
Rn Register - Rn contains operand.
(Rn) Register Deferred - Rn contains Address of the
operand.
-(Rn) Autodecrement - Rn is first decremented.
The resulting Rn contains
Address of the operand.
(Rn)+ Autoincrement - Rn contains the Address of
the operand.
Rn is incremented after. use.
#num Immediate - same as autoincrement mode
(pPC) with R15 (PC) used as the
general register.
Autoincrement
@(Rn)+ Deferred - Rn contains an Address that
contains the Address of the
operand.
Rn is incremented after use.
@#ADDR Absolute - same as autoincrement
(PC) deferred mode with R15 (PC)

used as the General Reg.

4-12

Mode Notation Mode Name Description

A - Byte B~d(Rn) Displacement - Displacement (R15 contains
C - Word Ww~d(Rn) address of Displacement) is
E - Longword L~d(Rn) first sign extended if Byte

or Word displacement is
used. Then the displacement
value is added to Rn. The
resulting value is the
Address of the operand.

A - Byte B~ADDR Relative - same as displacement mode

C - Word W~ADDR (PC) with R15 (PC) used as the

E - Longword L~ADDR general register.

B - Byte @B~ (Rn) Displacement

D - Word @W~(Rn) Deferred - Displacement (R15 contains
F - Longword @QL~(Rn) _ address of displacement) is

first sign extended if Byte
or Word displacement is
used. Then the displacement
value is added to Rn. The
resulting value is the
Address of the Address of
the operand.

B - Byte @B~ADDR Relative Deferred - same as Displacement

D - Word @W~ADDR (PC) Deferred mode with R15 (PC)

F - Longword @L"~ADDR used as the general
register.

4-13

Indexing (Mode = 4) can be used with the following modes as
long R15 is not used as the index register:

Register Deferred
Autodecrement
Autoincrement
Immediate
Autoincrement Deferred
Absolute

Displacement

Relative

Displacement Deferred
10. Relative Deferred

QDA WN -
e o o o o e o

(Ve

7 4 3 0
Index Operand Specifier ---> ! 4 ! Rx ! x = 00 - 14
Base Operand Specifier ---> ! MODE ! Rn ! n = 00 - 15
Mode Notation

Register Deferred Indexed (Rn) [Rx]

Autodecrement Indexed -{Rn) {Rx]

Autoincrement Indexed (Rn)+[Rx]

Immediate Indexed #num[Rx]

Autoincrement Deferred Indexed @(Rn)+[Rx]

Absolute Indexed @#ADDR[Rx]

Displacement Indexed disp(Rn)[Rx]

Relative Indexed ADDR[Rx]

Displacement Deferred Indexed @disp(Rn) [Rx]

Relative Deferred Indexed Q@ADDR[RX]

. Index Specifiers are physically positioned, in memory,
before the Operand Specifier (that is being indexed).

. Indexing is accomplished as follows:

The contents of the index register is modified

by multiplying the contents of the index register

by the value that reflects the context of the data

type specified.
Multiply by for byte

for word

for longword & F_floating

"for quadword, D & G_floating

for octaword & H_floating

O Q>N+

Calculate the Address of the Operand specified
by the "Base" Operand Specifier.

Add the results of steps 1 & 2 together in order
to obtain the "address of the Desired Operand”...

. The following restrictions are placed on the Index
register Rx:

1.

The PC (R15) cannot be used as an index register.
If it is, a reserved addressing mode fault occurs.

If the Base Operand Specifier is for an addressing
mode which results in register modification (auto-
increment,autoincrement deferred, or autodecrement)
the same register cannot be the index register. If
it is, the primary operand address is
"UNPREDICTABLE"...

4-15

PC (R15) Mode Operand Specifiers
Akdkkkkkkkkhkhkkkkhdhkdkdhkhkhkdhkhkhkihkkkkk

! MODE 1l 1 1 1 ! Operand Specifier Byte
Mode Notation Mode Name Description
8 #num Immediate The contents of the address

following the Operand Specifier
"contains the Operand”...

This address contains ---—------——--- > ! Desired Operand !
the desired operand... 0 semmemm—mmmmmmmemm——ee oo

9 @#address Absolute The contents of the address
following the Operand Specifier
"contains the Address of the
Operand”...

START: ! instruction code !

The contents of this --------< > | "Address of OPERAND" !
address is the address = = = -—----mmmmmmmmmmmmemmmm o

of the desired operand...

Address of OPERAND : ! Desired Operand !

PC (R15) Mode Operand Specifiers (continued)
khkkhkkkkkhkkkhkhkkhkkkhkkhkkhkkhkkkkkkikkk

Mode Notation Mode Name Description

A B~address Byte displacement The contents of the address

C W~address word displacement following the operand specifier
E L~address Longword displacement "contains a displacement that,

is first sign extended to 32
bits and is then added to the
contents of R15 to form the
address of the Operand”...

START: ! instruction code !

This value is added --=-=~---- > ! Displacement !
to the contents of the Bttt bt
PC, (which now points to X ! !

location "X"), to = mm-m—mmmmmm———e———oo o
form the address of the
desired Operand...

("Displacement™ + "X") ! Desired Operand !

4-17

PC (R15) Mode Operand Specifiers (continued),
khkkhkhkhkhkkhkhkkkkhkhkhkhkkkhkhkkhkhkkhkhxkkkkkx

Mode Notation Mode Name Description

B @B~address Byte Relative The contents of the location
Deferred following the Operand Specifier

D @W~address Word Relative when sign extended to 32 bits,
Deferred is added to the PC to form the

F @L~address Longword Relative "Address of the Address of the
Deferred Operand"...

START: ! instruction code !

This value is added to the PC, ------- > ! Displacement !
(which now points to location X), = = —==——c——mmcmmmmmmmm——
and the resultant value is an X: ! !
"Address that contains the = = —e——mmmmmmmmmmmee
Address of the desired Operand"...

("Displacement™ + "X") ! New_Address !

New_Address : ! Desired Operand !

SECTION \Y

... BUSes used on VAX-11/780 Systems ...

SYNCHRONOUS
BACKPLANE

INTERCONNECT

. The VAX-11/780 Bus ...

5-3

CD2
CM1
CN1
CPl

Cp2

Cs2

CT2
Cul

Cu2

DF2
DH2

S.B.L

Signal Pin Layout

Signal
Name

MO
M1
M2
M3

TAGO
TAGl
TAG2

IDO
iD1
ID2
ID3

PCLK H
PCLK L
PDCLK H
PDCLK L

MP1
MP2

INTLK

EUl

ES2
ET2

FB1l
FCl
FD1
FE1l
FF2
FH2
FJl
FJ2
FM1
FN1
FP1
FP2
FS2
FT2
FUl

Fu2

*A2
*V1

*C2
*H1

*N2
*T1

+5V
+5V

GND
GND
GND
GND

. All Signals are Low when True unless otherwise specified ...

... Signals are found on slot #l1 of any NEXUS

5-4

SBI/CPU Time State Equivalents

The VAX-11/780 CPU and SBI time states have different names.

M8232 LED CPU Time State SBI Time State

D1 (top) CPTO SBI Tl
D2 CPT1 SBI T2
D3 CPT2 SBI T3
D4 (bottom) CPT3 SBI TO
- CPTP SBI TP

CPPCLK SBI PCLK

CPPDCLK SBI PDCLK

SBI TO clock time

1. Nexus that has control of the SBI enables the SBI
Drivers at this time.

2. TR Lines are asserted by the NEXUS wishing use of the
SBI Bus.

SBI T1 clock time

1. NEXUS dependent.

SBI T2 clock time

1. "ALL" NEXUS open their Receiver Latches at this time.

SBI T3 clock time

1. "ALL" NEXUS clock their Receiver Latches at this time.

2. All NEXUS who have their TR Line asserted, determine
if they are next in line tc get control of the SBI Bus
at the next "SBI TO0" time.

5-5

ZOHHPpPII-mo»

ZOHrHAPpPIBHHTMZON ZOHIZIPZIVOMZH

S.B.I. WRITE Transfer example to show timing

-

1st Cycle | 2nd Cycle
___________ | mm oo
lT0 T1 T2 T3 |TO T1 T2 T3
___________ | mmm e e mm
|
Requester | If Highest
asserts | Priority,
assigned lassigned TR
TR line lis dropped,

land TR#0 is
|asserted to

hold next
cycle for
the WRITE
DATA.
TAG<2:0>=? |TAG = C/A
ID<4:0> =? |ID = source
B<31:00>=? |B =Func/addr
M<3:0> = ? |M =Bytes to

be written

CNF<1l:0> = ?

3rd Cycle

TR#0 1is

deasserted,
UNLESS func.
was an
EXTENDED
WRITE -
which case
TR#0 will

remain
asserted

in

Write
Data

code of

I
|
|
|
|
l
|
|
|
|
i
[
|
|
|
|
|
l
I
I
| commander
|
|
[
|
|
|
|
|
[
|
|
|
|
|
|
I
I
|

Data

Bytes to
be written

4th Cycle

|
|
|TO T1 T2 T3
|
I

|If function
|was an EXT.
|WRITE, TR#0
would be
deasserted
here.

If function]
was an EXT. |
| WRITE, the |
|2nd longword|
| would be |
| sent here. |
| Format would|
| be same as |
|the previous|
| Write Data |
l cycle. :

|

5th Cycle

I

for

CNF=response|CNF=response|second
|Write
destination|Data

|

J

|

|

| from the |

| destination]|

| to verify |

| acceptance |

| of C/A l

: information]
I

! |

| I

from the

to verify
acceptance
of the

Write Data

longwd
if
func

|was an
| EXT.

|Write
____________]______

VAX-11/780 INTERNAL DATA BUS

ID BUS

5-7

ID Bus chart showing what Modules are fed by what bits

ID Bus Bits

8-15 16-20 21-25 26-31
B e B B e e B .

0-7

Slot

MODULE
Number

Name

M8237
e e B B B

TRS

M8218
e B B B B B R B

SBL

X X

X

X

M8219
e L B e B Bl e T EEY

SBH

X

M8220
e e B e] Iy

CAM

X

X

X

M8222
e e B B e e R

TBM

!

X X

X

X

X

M8223
e S B e R R L B SR E

IDP

X X

X

X

X

M8224
el e B B L

IRC

X X

X

10
e D B B e B

M8226

DEP

11
el B B B L el I e

M8227

DDP

12
e R B B B e e

M8228

DCP

!
.

X

!

X

X

X

14

M8230
e e R B R e

CEH

15
e et B Bt et B e IR

M8231

ICL

X X

X

X

18
e e B B R e I e

M8233/8

ocs

!

X

X

X

!
.

X

!

X

!

20
e e B B e R SR TR

M8233/8

WCS

X X

X

22
e e B B B B I Ty

M8234

PCS

23
R B S e B B B e

M8235

UscC

!

X X

X

25
e e B B e B

M8286

FMH

26
R e B B B B e

M8287

FML

29
e R B e e e

M8236

CIB

5-8

ID Bus Parity bits chart showing who uses these bits

The ID Bus has 4 parity bits ("Bus ID PTY <3:0>"), however, only one
board generates parity and only two others use these bits to check
the parity. The following chart show who these modules are that
generate (G) and use (U) these parity bits.

Module ! "Bus ID PTY" bits
Name Number Slot ! <0> ! <1> ! <2> ! <3> !
—————— R et B il Bt Bt et T T |
TBM ! M8222 ! 6 tu ! u !t U ! !
—————— e B ettt Tt B A e Dt B N ikt
CAM ! M8220 ! 4 ! ! ! ! U !
—————— L ket e e B B R bl
DBP ! M8225 ! 9 ! G ¢ G Y G ! G !
—————— ettt e e Bt Bl B el I TR
Signal Pin and Row number ! CBl1 ! CM1 ! AS1 ! AU2 !
I ! ! !

ID Bus bits <31:00> Backplane Pin list

The ID Bus bits go to the same pin row and pin number on each of
the modules that they feed. The following chart shows the row and
pin number of each ID bus bit:

Bus ID bit <00> - CaAl Bus ID Bit <16> - AF2
Bus ID bit <01> - (B2 Bus ID Bit <17> - AH2
Bus ID bit <02> - CE1 Bus ID Bit <18> - AJl
Bus ID bit <03> - C(CE2 Bus ID Bit <19> - aMml
Bus ID bit <04> - CF1 Bus ID Bit <20> - ANl
Bus ID bit <05> - CF2 Bus ID Bit <21> - APl
Bus ID bit <06> - CH2 Bus ID Bit <22> - AP2
Bus ID bit <07> - C(CJ1 Bus ID Bit <23> - AS2
Bus ID bit <08> - C(CJ2 Bus ID Rit <24> - AT2
Bus ID bit <09> - CKl1 Bus ID Bit <25> - AUl
Bus ID bit <10> - CK2 Bus ID Bit <26> - BF2
Bus ID bit <11> - (M2 Bus ID Bit <27> - BH2
Bus ID bit <12> - DRl Bus ID Bit <28> - BJl
Bus ID bit <13> - DR2 Bus ID Bit <29> - BJ2
Bus ID bit <14> - DS1 Bus ID Bit <30> - BKl1
Bus ID bit <15> - DV2 Bus ID Bit <31> - BK2

5-9

SECTION VI

UNIX ERROR REPORTING

To be added in a later release.

SECTION VI

Miscellaneous Information

Using EVSBA.EXE , the Diagnostic Autosizer.
kkkhkhkkhkhkkhkhkhkhkhkhkkkkhkhkhkhhhkhkhrbkhkhkkkkhkhkhkhkhkhkkkikk

EVSBA is an autosizing program that runs under the Diagnostic
Supervisor (ESSAA.EXE) in stand-alone mode. This program will
determine the current configuration of the VAX System. It sizes

the VAX system and builds a data base of Diagnostic Supervisor

ATTACH commands based on the hardware it found during the sizing
process. This ATTACH information can then be passed to the
Diagnostic Supervisor. The operator can cause the system to be

sized completely automatically or can perform the sizing operation

in MANUAL or SELFTEST mode. In MANUAL or SELFTEST mode, the operator
has the capability to change device names or other device parameters
before the information is passed to the Diagnostic Supervisor. If the
QUICK flag is set in the Diagnostic Supervisor, no check is made for
terminals on the DZ1ll's, so the program runs very quickly.

The Autosizer program will probe the system buses to determine what
devices are connected to the system. Each bus requires a different
technique to determine which devices are present. On the SBI each
adapter has a type code in the configuration register which clearly
identifies the adapter type. Similiarly, each MASSBUS device contains
a register which uniquely identifies the device type. The UNIBUS is
the most complicated because of floating CSR and VECTOR assignments
in addition to fixed CSR's and VECTOR's. Each device optionally
requires extra information in order for a diagnostic to verify its
operation. The Autosizer will attempt, on a device by device basis,
to glean the required information from the device itself. This, of
course, assumes that the hardware involved is operating properly.
The information gathered by the sizing process can be edited by the
operator to fix any errors in sizing. It can then be fed to the
Diagnostic Supervisor. The information generated by the Autosizer
can be written to an ASCII script file on the Console Floppy.

The Autosizer will size the system bus first to determine what adapters
are present., Next, each adapter is considered. Every device on the
adapter is probed and the information saved as to characteristics and
addresses. If a device has units connected to it, each unit is sized
and appropriate information is saved. If fields are required for the
ATTACH command and the information cannot be determined from the

device the Autosizer will use a predefined value for the field. When
this occurs, the operator will be notified that the field may be
incorrect for that device.

EVSBA Autosizer Default Mode Operation:

DS> SET FLAG QUICK
DS> RUN EVSBA

This will cause the Autosizer to size the hardware, pass the
information to the Diagnostic Supervisor, and exit back to the
Diagnostic Supervisor. No modification of the ATTACH commands
as generated by the Autosizer can be done.

EVSBA Autosizer MANUAL or SELFTEST Mode Operation:

In MANUAL or SELFTEST mode, the operator is immediately prompted with
"COMMAND?". The operator is given the option of reading the current
configuration file from the console floppy or of automatically sizing
the system. In either case, the operator is then given an opportunity
to change or list any device or parameter. When sizing in the selftest
mode, each line is printed as it is produced. Once satisfied with the
configuration, the operator may have it passed directly to the
Diagnostic Supervisor. The file may also be written to the Console

Floppy.

An example of using the Autosizer whenever you are making configuration
changes, while isolating a problem, could be as follows:

>>> LOAD ESSAA.EXE/ST:FE0Q ;Load the Diagnostic Supervisor,.

>>> START 10000 ;Start the Diagnostic Supervisor.

DS> SET QUICK ;Elimate "Terminal" autosizing.

DS> RUN EVSBA/SEC:SELFTEST ;Run Autosizer in "SELFTEST" mode.
COMMAND>SIZE ;Autosize the system and list.
COMMAND>ATTACH ;Transfer configuration to Diag.Super..
COMMAND>EXIT ;Return to Diag. Super..

DS>SELECT ALL ;Select attached devices,

7-3

EVSBA Autosizer Commands for MANUAL or SELFTEST Mode:

READ filespec

SIZE

LIST device

HELP

WRITE filesp

This command reads the specified file from the
load device and stores the information. If the
filename is not specified, "CONFIG.COM" is
used. Any information previously known to the
Autosizer is lost.

Performs the process that sizes the buses and
records the configuration information. Any
information previously known to the Autosizer
is lost.

Type out all information about the devices,
based on generic names.

Type out the help test.
Write the current file in memory to the Console

floppy. If no filespec is given, "CONFIG.COM"
will be used.

CHANGE device-field-value

EXIT

ATTACH

The specified field(s) for the specified device
are given the values specified.

Control is returned to the Diagnostic Super..

For each device in the device database, pass
the information to the Diagnostic Supervisor.

S tandard P erformance E rror A nalysis R eporting
khkkkkhkkkkkhkhkkhkhkkkhkRkhkkkhkkhkhkkkhkhkkhhkhkhkhkhhkhkhkhkhkdhkhkhhhkhkkkhhhkkkik

SPEAR is a library of five on-line Field Service maintenance functions.
Four of the functions (Analyze, Summarize, Retrieve, and Compute) are
designed to help you evaluate system performance and analyze the content
of system event files. The fifth function, Instruct, is designed to help
you learn to use the the Spear Library to calculate system availability
and isolate intermittent system failures.

RETRIEVE - extracts and translates (or saves) system event file
entries.
SUMMARIZE - summarizes the contents of system event files.

ANALYZE - attempts to localize the cause of intermittent system
failures.

COMPUTE - calculates system availability and crash and uptime
statistics.

INSTRUCT - explains how to use the extended Spear Library functions.

SPEAR was designed with ease of usage in mind. This is accomplished by
making help information available to each question.

At the SPEAR prompt, you can type:
1. "?" to list the supported Spear Library functions.
2. the "name" of the Spear Library function that you want to execute.
3. "/HELP" for an explanation of the universal Spear Library switches.
4. "@HELP" for information about response streams and indirect files.

5. "EXIT" to exit Spear and return to the operating system.

7-5

At any function prompt you can type:
/BREAK to return to the Spear prompt.
/REVERSE (or press the BACKSPACE key) to repeat the last prompt.
/SHOW to display the current prompt/responses list.
/GO to execute the current prompt/response list.

/CLEAR to clear listed items, at or subordinate to, the current prompt
Listed items are: sequence numbers, entry codes, device types, etc.

/? to display this list without the explanations.

Type @HELP for information about Response Streams and Indirect Files.
Press the RETURN key to specify the default or terminate a response.
Press the ESCAPE (or Altmode) key to: display the default, or complete
a partially typed response. There is no default at the SPEAR> prompt.

You can enter a response stream at the main Spear prompt. A response
stream is a single line of consecutive responses, separated by spaces,
and terminated with a carriage return (use the Escape or Altmode key to
insert defaults). Note: The response stream capability is included only
as a convenience for those Spear users who do not wish tco be prompted,

7-6

Possible
Input files

SYSTEM
EVENT
FILE

- e b bm b e e

! ERRLOG. SYS!
! or !
tERROR.SYS !
! or !
! renamed !
tevent file!

HISTORY
file

!

t

!

!

f

! Contains

! sorted !
! Events. !
! !
! Is a

! Binary

! File. !
! !

{AVAIL.SYS
! (TOPS-10)
! &
INOTIFY.SYS
!

! Used to
lcalculate !
! System !
! Uptime !
! via !
i COMPUTE !
! command. !
| '

SPEAR program

7-1

Possible
Output files

!

May be
sent to

tyour TTY:

REPORT
FILE

Always
ASCII
format

HISTORY
file

Contains
sorted
Events.

Is a
Binary
File

! !

t !

! The !
! SPEAR ! !
! Program ! !
1 t !
_________ >! !———-——————)I
{Main purpose !All SPEAR !
! is to ! command !
! translate a ! modes !
! non-ASCII !output some!
! Event file ! type of !
! to a ! report. !

! readable, !

{ASCII format,!

IREPORT File. !

1 I

! Can also be !
Can be ! used to ! Possible !
Sorted t{ perform an ! output !
and/or ! analysis of ! from !
Merged. !an EVENT file! RETRIEVE. !
! based upon ! !
! its known ! !
————————— >! theories. !-=-—===---->1
1 1 !
May be ! Can compute ! !
tused as an! OPERATING ! !
!Event file! SYSTEM ! !
input to !Availability.! !
SPEAR. ! ! !

! !

! !

! !

Contains ! Possible !
CONTRACT ! Commands ! !
Coverage ! are: ! One of the!
& ! ! OUTPUTS !
Reload ! SUMMARIZE ! from !
info. ! RETRIEVE ! ANALYZE. !
! INSTRUCT ! !
————————— >! ANALYZE fmmmmmm——m >
Info. is ! COMPUTE ! !
updated ! KLSTAT ! !
by the ! EXIT ! !
Customer i @HELP i '
and/or ! /HELP ! !
Field ! ? ! !

Service ---—=--——m---—--

PACKET
file

Contains
sequence
#'s of
Events.

ASCII
file

AKhkkkkkkhkhkkhkkhkhkkkkkhkhkhkhkkkkhkdhkkkhkkhkkhkhkhkhkhhkhkhkhkdkkkhkkx

! Example of How to initiate the SPEAR program !

! on a VAX/VMS System. !
khkkAkkkkhkhkhkhkrhkhkhkhkrrhkkhkhhkkhbkhkkkhkkhkhkhkhhhkhkkhkkkkkkkk

Username; FIELD
Password:
Welcome to VAX/VMS version V3.0 on node NEDVAX

$ RUN SYS$SYSTEM:SPEAR
or
$ MCR SPEAR

Welcome to SPEAR for VMS, Version 1(35)
Type "?" for help.

SPEAR>

At this Point you may enter the appropiate SPEAR command. If you
don't know the commands, simply type "?" and a brief help file will be
typed out showing the available commands to this prompt.

SPEAR> ?

Enter one of the following modes

Instruct -- in the usage of SPEAR

Retrieve -- individual event file entries

Analyze -= a system event file

Compute -- system availability ststistic¢s
Summarize -- various event counts

EXIT -~ to exit from SPEAR (if at SPEAR> prompt)

For more info type /HELP
For further information type: HELP

SPEAR>

The commands to the SPEAR prompt can be abbreviated to one character as
follows:

Analyze
Retrieve
Compute
Summarize
Instruct
Exit

e o - = = - - - ——— . — o T - = = = - = S —_————— = ———— = ——— —————

7-8

Summary of QUESTIONs asked by SPEAR
AhkkhkkhkXkhkkkhkhkhkhkhkkkhkkhkkhkhkkkhkkkkxkkkk

SUMMARIZE question.

Event File (SYSS$SSYSDISK:[SYSERR]JERRLOG.SYS)
Time from (EARLIEST):

Time to (LATEST):

Report to (SUMMAR.RPT)

Type [cr] to confirm (/GO):

RETRIEVE questions.

Event File (SYSS$SYSDISK:[SYSERR]ERRLOG.SYS)
Selection to be (INCLUDED):
Selection type (ALL):
Error class (ALL):

Sequence numbers:

Event codes:

Next error class (FINISHED):
Time from (EARLIEST):
Time to (LATEST):
Output mode (ASCII):
Report format (SHORT):
Qutput to (RETRIE.RPT):
Type [cr] to confirm (/GO):

ANALYZE questions.

Event File (SYS$SSYSDISK:[SYSERR]ERRLOG.SYS)
Time from (-1):

Time to (LATEST):

Report to (Ammdd.RPT):

Packets to {(Ammdd.PAK):

Type [cr] to confirm (/GO):

COMPUTE questions.

Event File (SYS$SYSDISK:[SYSERR]ERRLOG.SYS)
Report period (LAST-WEEK):

Availability report to (COMPUT.RPT):

Reload report to {RELOAD.RPT):

Type [cr] to confirm (/GO):

7-9

Examining Unibus Registers
k% %k %k % Kk Kk k Kk ok ok ok ok Kk Kk k ok ok ok ok ok ok ok ok

It is sometimes a pain in the neck to recalculate the SBI physical
address of Unibus Devices while trouble-shooting. Here is a method
of examining/depositing Unibus Device Registers that eliminates the
need to calculate the SBI physical address. Set up CONSOL.SYS as
follows:

>>> SET DEFAULT HEX ! Just in case not already set.
>>> SET REL:20100000 . ! Set offset for UBA at TR #3.
>>> SET DEFAULT OCTAL,WORD,PHYSICAL ! Change defaults for exam/dep

Now you can examine/deposit Unibus Device registers by specifing the
Unibus Device Address. For example, to examine the LPll status reg.,
simply type the following to the CONSOL.SYS prompt:

>>> E 777514 (LP11)

LP11l Diagnostic check under VMS
% Je % J % % J Jd J d ek v d vk e de ke ke ke ke e Kok ok ke ok ke ke

The Line Printer diagnostic must be run under VMS. 1In order to do
this, the Line Printer Queue must first be stopped,(if there is a

Line Printer queue on your particular system). The following commands
are used to stop the gqueue for LPAQ:, If you are testing anocther
printer, use the appropriate designation.

§ STOP/QUEUE/NEXT LPAQ:
§ DELETE/QUEUE LPAQ:

$ RUN ESSAA

DS> @CONFIG

DS> RUN EVAAA

To Restore LPll queue
khkkhkhkhkhkkkhkhkkhkhkkkkhkkikk

After the Line Printer diagnostic is run, you must now restart the
Line Printer Queue. Use the following commands:

$ INIT/QUEUE/FLAG LPAO:
§ START/QUEUE LPAO:

7-10

Defining and Starting Print queues (LP1ll)
XX FEFEEEEES LTRSS LSRR SRR SRR S SRR LS SR SRS

The following commands can be used to initialize Print queues.
If you want to initialize a queue for a device other than "LPAQ:",
simply replace "LPAO:" with the appropriate designation.

$ SET PRINTER/PAGE=64/LPl1l LPAO:
SET DEVICE/SPOCOL LPAO:
INIT/QUEUE/FLAG/GENERIC SYS$PRINT
INIT/QUEUE/FLAG LPAO:

START/QUEUE SYSSPRINT

START/QUEUE LPAO:

W N N -n

Defining and Starting Terminal queues (LA36)
khkkhkkkhkkhkhkhkhkhkhkhkhkhkhkkhkhkkkkhkihkhkkkkkkkkkkkkkkkk*k

The following commands can be used to initialize queues for
terminals:

$ INIT/QUEUE/TERM TTXY: (XY = Terminal name)
$ SET TERM/PERM/LA36/PAGE=66/NOBROADCAST TTXY:

$ SET DEVICE/SPOOLED=TTXY: TTXY:

$ START/QUEUE TTXY:

Bugcheck or Crash Restart

with message: "UNEXPECTED UNIBUS ADAPT. INTERRUPT"
R R R S i e s 2 s R R T T T T)

RO thru R5 contain the following information:

RO = UBA CONFIGURATION REGISTER

R1 = UBA CONTROL REGISTER

R2 = UBA STATUS REGISTER

R3 = UBA DIAGNOSTIC CONTROL REGISTER

R4 = UBA FAILED MAP REGISTER

R5 = UBA FAILED UNIBUS ADDRESS REGISTER

Interleaving Memories
sk Kk ke deok ok ok ok kokkok ok ok k ok k ok ok ok

The following commands can be entered to CONSOL.SYS in order
to interleave two MS780 memcories (memories must be at TR#l and
TR#2).

>>> D 20002000 101
>>> D 20002004 4000
>>> D 20004000 101
>>> D 20004004 4000

Booting with CACHE Disabled
khkkkhkhkhkhkkkkhkhkhkkhkkkkkkkkkkkk

The following commands can be entered to CONSOL.SYS in order to
boot the SYSTEM with CACHE Disabled:

>>> D/ID 1D 18000
>>> D RO 0/N:5

>>> D R1 8

>>> D FP 0

>>> D/I 11 20003800
>>> D SP 200

>>> [VMB.EXE/ST:200
>>> D PC 200

>>> CONT

H7100 Power Regulator LED's
kkkkkkkkhkkkhkkkkkhkkkhhhkhthkx

The following chart shows what the LED's on the front of the H7100
Power Regulators mean:

LED indicator Description
POWER NORMAL Power is O.K..
PLUG IN REGULATOR FAILURE Problem with one or more of the
following regulators:
+5
+5B or -5B
+12
OVER CURRENT +5v at 120 amps or more. (120% over).
OVER VOLTAGE +5v is +6.2v or greater.
POWER INVERTER FAILURE Main +5v failure.
OVER TEMP Internal Temperature at 150 degrees F
or more.

7-13

M8232, Clock Board, Jumpers

d de Jo ke de K d ke Kk ke de gk odeok ke ek ok ok k ok ok ok ok ok k

Wl thru wWl4

W23, W24

W15, W16

W17 thru W22

W15 thru W22

Installed when FP780 is installed.

Installed when Optional WCS is installed.
Optional WCS is in slot 18.

Installed to ENABLE FAIL/DEAD onto SBI if there
is a Power Failure,

Installed to ENABLE SBI Clock signals
onto SBI Bus.

REMOVED only when the associated CPU receives
its clock signals from another device on the
SBI, such as a second CPU.

LSI-11 Controls and Indicators
khkhkkhkkkhkkkhkkkkhkkhkhkkhxkkkhkkkdkkxikk

DC ON

RUN

DC ON/OFF

ENABLE/HALT

LTC ON/OCFF

Illuninates when the DC ON/OFF toggle switch is
set to ON and proper DC output voltages are
being produced by the LSI power supply.

If either the +5v or +12v outputs from the LSI
are faulty, the DC ON indicator does not go on.

Illuminates when the LSI-11 processor is in the
run state (refer to ENABLE/HALT)

When set to ON, enables the DC outputs. The
DC ON indicator illuminates if the DC output
voltages are of proper values. When set to
OFF, the DC outputs are disabled and the DC ON
indicator is extinguished.

When set to ENABLE, the B HALT L line is not
asserted and the processor is in the run mode
(RUN indicator illuminated).

When set to HALT, the B HALT L line is asserted
allowing the processor to execute the console
ODT microcode (RUN indicator is extinguished).

When set to ON, enables the generation of the
Line Time Clock "BEVNT L" signal.

7-15

VAX-11/780 Controls and Indicators
khkhkhkkkkkhkkkhkhkhkkkhkkhkkhkhkkkkhkhkhkhkhkkkkk

AUTO RESTART

BOOT

ATTN

RUN

POWER

REMOTE

Key Switch

OFF

LOCAL DISABLE

LOCAL

REMOTE DISABLE

REMCTE

When in the ON (down) position, the VAX-11/780
CPU is restarted-automatically following a
Power' Recovery or Error Halt.

When pressed, the operation system is boot-
strapped. When the bootstrap operation is
completed, the console is set to the "Program
I/0" mode of operation.

When lit, indicates that the VAX-11/780 CPU
is halted.

When lit, indicates that the VAX-11/780 CPU
is strobing interrupts (microcode running
properly).

When 1it, indicates that the +5v power supply
is on.

When lit, indicates that remote access is
enabled.

In this position, the power is turned OFF.

In this position, Remote access is disabled
and Console I/0 mode is inhibited.

In this position, Remote access is disabled,
but Console I/0 mode is not inhibited.

In this position, Remote access is enabled and
Console I/0 mode of operation is inhibited.

In this position, Remote access is enabled and
the Console I/0 mode is not inhibited.

7-16

MS780/MA780 Error Correction Logic
kkkkhkkkkhkhkhkkkkhkkkhokkkkkkkkkkkxkkkkk

The ECC (Error Correction Logic) within the MS780 and the MA780
can give you false indications in a couple of special cases.

1. If the MOS Array outputs an "ODD MULTIPLE number of BAD Bits",
to the MOS DATA bus on a memory read, the Memory's Error
Correction logic-will send the DATA to the SBI as "Corrected
Read Data" (after making an attempt to correct a bit, which
may be a bit that wasn't even bad in the first place).

For example: If the MOS Array outputs a quadword with 3, 5, 7,
9, or etc. bad bits, the Error Correction Logic
will think that a Single Bit Error has occured,
will correct a bit (possibly not even one that
was really bad), and will then send the data to
the SBI as "Corrected Read Data".

2. If a "Single Bit Error"™ has occured and has not been serviced
before a "Double Bit Error" occurs in the same memory controller's
arrays, the registers will contain information about the "Single
Bit Error" and the information about the "Double Bit Error"™ will
be lost.

EVKAA,EXE
% 3 % % % % % Kk

This diagnostic is a valuable diagnostic that should be run after

the running of the micro-diagnostics and before attempting to run

the "Diagnostic Supervisor". This diagnostic is a VAX macro functional
diagnostic and does not use the "Diagnostic Supervisor". Run this
program as follows:

>>> LOAD EVKAA.EXE/ST:0
>>> START 200

Sometimes, when restarting EVKAA, the "DS>" prompt will appear on the
Console Terminal. This is caused by the APT control flag, bit 31 of
physical location FEQO, being set. Clear this control flag and restart
EVKAA as follows:

DS> ~P

>>> HALT

>>> D/L/P/H FEQ00 0
>>> START 200

7-17

SECTION VI

NEXUS Register Bit Definitions

This chapter contains the definitions of the NEXUS registers as
defined by the individual NEXUS manuals. The purpose of this
chapter is to provide all the bit definitions in one place since
the VAX Maintenance guides do not include the definitions of the
NEXUS register bits. This information was copied from the various
VAX-11/780 NEXUS Hardware manuals and microfiche.

DW780 Configuration Register

CNFGR Offset = 000(16)

8-3

Is set shen the UBA detects an SBI parity error.

Bit 30, Write Sequence Fault (WsQ FLT)

Is set when the UBA receives a write masked or interlock write masked
command and does not receive the expected write data in the following
cycle.

Bit 29, Unexpected Read Data Fault (URD FLT)

Is set when the UBA receives data for which a read masked, extended
read, or interlock read masked command has not been issued.

Bit 28, Interlock Sequence Fault (1ISQ FLT)

Is set when an interlock write masked command to UNIBUS address space
is received by the UBA without a previous interlock read masked command.

Bit 27, Multiple Transmitter Fault (MXT FLT)

Is set when the UBA is transmitting on the SBI and the ID bits
transmitted by the UBA do not match those latched from the SBI. The
lack of correspondence indicates a multiple transmitter condition,

Bit 26, Transmit Fault (XMT FLT)

Is set if the UBA was the transmitter during a detected fault
condition. When the software subsequently reads the configuration
and status registers of each of the nexus on the SBI in order to
identify the source of the fault, the UBA will be identified as that
source if bit 26 is set.

Bit 25,24 Reserved

Should be cleared (zero).

Bit 23 Adaptor Power Down (AD PDN)

Is set when the UBA power supply asserts ACLO. It is cleared by
writing a one to the bit location or when the Adaptor Power Up
bit is set.

8-4

Bit 22 Adaptor Power Up (AD PUP)
Is set by the negation of power supply ACLO. It is cleared by writing
a one to the bit location or by the setting of the Adaptor Power Down

bit.

Bits <21:19> Reserved

Should be cleared (zero).

Bit 18 Unibus Init Asserted (UB INIT)
The assertion of UNIBUS INIT will set this bit. It is cleared by the
setting of the Unibus Initialization Complete bit or by the writing
of a one to this bit location.

Is set when UNIBUS ACLO is asserted. It indicates that the Unibus has
initiated a power down sequence. The setting of the UBIC bit or
writing a one to this location will clear UB PDN,

Bit 16 Unibus Initialization Complete (UBIC)
Is set by a successful completion of a power up sequence on the UNIBUS.
It is the last of the status bits to be set during a UBA initialization
sequence, and it can be interpreted to mean that the UBA and the UNIBUS
are ready. The assertion of Unibus INIT, or the writing of a one to
this bit location will clear UBIC.

Bits <7:0> Adaptor Code
Bits 5 & 3 =1
Bits 7,6,4 &8 2 =0
Bits <1:0> are determined by backplane jumpers and reflect the UBA
number. The adaptor codes indicate the starting address
of the Unibus address space associated with the UBA.

DW780 Control Register

UACR Offset = 004(16)

8-7

This field of five read/write bits disables map registers in groups
of sixteen, according to the binary value contained in the field.

The MRD bits prevent the UBA from responding to a UNIBUS address that
points to a disabled map register. The software will load this field
with a binary value equal to the number of 4k word units of memory
attached to the UNIBUS. DMA transfers to addresses pointing to disabled
map registers are not recognized by the UBA. No error bits are set
and no SBI transfers are initiated. However, SBI access to disabled
map registers is permitted. The MRD field is initialized as zero,
with all map registers enabled. Note, however, that in the
initialized state the map registers are all invalid. False UNIBUS
transfers are prevented in this way.

Bits <25:07> Reserved

Bit 5 Bus Request Interrupt Enable (BRIE)
When this bit is set it allows the UBA to pass interrupts from the
UNIBUS to the VAX CPU, providing that the IFS is set. The power up
state of the BRIE bit is 0. The bit is also cleared by the Adaptor
INIT, SBI UNJAM, and SBI DEAD signals.

Bit 4 UNIBUS to SBI Error Field Interrupt Enable (USEFIE)

This bit enables an interrupt request to the VAX CPU whenever any of
the following status register bits are set on a DMA transfer:

RDTO - Read Data Timeout

RDS - Read Data Substitute

CXTER - Command Transmit Error
CXTMO - Command Transmit Timeout
DPPE - Data Path Parity Error

IVMR - Invalid Map Register

MRPF - Map Register Parity Failure

The power up state of this bit (USEFIE) is 0. SBI UNJAM and Adaptor
INIT will clear USEFIE.

8-8

Bit 3 SBI to UNIBUS Error Field Interrupt Enable (SUEFIE)
If this bit is set, the UBA will generate interrupt requests to the
VAX CPU when one of the two bits in the SBI to UNIBUS data transfer
error field of the status register is set:

UBSTO - Unibus Select Timeout
UBSSYNTO - Unibus Slave Sync Timeout

The power up state of the SUEFIE bit is 0. SBI UNJAM, SBI DEAD, and
Adaptor INIT will also clear this bit.

Bit 2 Confiquration Interrupt Enable (CNFIE)
If this bit is set, the UBA will initiate an interrupt request to the
VAX CPU whenever any of the environmental status bits of the Config.
register is set. These bits are:

AD PDN - Adaptor Power Down

AD PUP - Adaptor Power Up

UB INIT - Unibus Init Asserted

UB PDN - Unibus Power Down

UBIC - Unibus Initialization Complete

The power up state of the CNFIE bit is a 1. CNFIE is cleared by
Adaptor INIT, SBI UNJAM, and SBI DEAD.

Bit 1 UNIBUS Power Fail (UPF)
When set, it initiates a power fail sequence on the UNIBUS, asserting
ACLO, DCLO, and INIT in their proper sequence. The software uses this
bit to initialize the UNIBUS. The UNIBUS will remain powered down as
long as UPF is set. The clearing of the UPF bit will initiate a UNIBUS
power up sequence if or when the UNIBUS power down sequence has
finished and UNIBUS power is OK. Thus, the software can initialize
the UNIBUS by setting and the clearing the UPF bit.

Bit 0 Adaptor INIT (ADINIT)
When this bit is set it will completely initialize the UBA and the
UNIBUS. The map registers, the data path registers, the status req.,
and the control register will be cleared. The UBA will start the
initialization routine in the microsequencer, and it will generate a
power fail sequence on the UNIBUS. The UBA initialization sequence
takes only 500 microseconds to complete, while the UNIBUS power fail
sequence requires approximately 25 milleseconds.

8-9

Only the confiquration register and the diagnostic control register
can be read during the adaptor initialization sequence. Only the
configuration register, the diagnostic control register, the control
register, and the status register can be written during the adapter
initialization sequence.

Once the sequence has been completed, all UBA registers can be
accessed. However, the UNIBUS cannot be accessed until the UNIBUS
initialization has been completed as well. The software can test
for this condition by reading the UBIC bit of the configuration
register, or by setting the CNFIE bit of the control register and
looking for the interrupt generated by the setting of the UBIC
bit. Note, however, that the assertion of either UNIBUS INIT or
UNIBUS power down will also initiate an interrupt (UBINIT). The
Adaptor INIT bit can be set by writing a one to the bit location;
it is self clearing.

8-10

DW780 STATUS Register

USAR Offset = 008(16)

Bits <31:28>

Reserved and zero.

Bits <27:24> BR Receve Vector Register Full
Bit 27 = BRRVR 7 Full
Bit 26 = BRRVR 6 Full
Bit 25 = BRRVR 5 Full
Bit 24 = BRRVR ¢ Full

These bits indicate the state of the SBI addressable BRRVR's. FEach bit

is loaded into the corresponding BRRVR during a UNIBUS interrupt

transaction, providing that the SBI processor is fielding UNIBUS device

interrupts.

Each bit is cleared by the successful completion of a read data
transmission following a read BRRVR command. The software will see

these bits set only after a read data failure has occurred during the
execution of a read BRRVR command and the UNIBUS interrupt vector has

been saved by the UBA. These bits are cleared only by a subsequent
read to the corresponding BRRVR or by an adaptor initialization
sequence.

Bits <23:11>

Reserved and zero.

Bit 10 Read Data Time Out (RDTO)

The UBA sets the RDTO bit when the following contitions are true:
. A UNIBUS device has initiated a DMA transfer.
The UBA has successfully transmitted a read command on the SBI.

. The SBI memory has not returned the requested data within 100
microseconds, and the UNIBUS device has not timed out.

Note that the normal UNIBUS timeout is 10 microseconds and after

the 10 microseconds, the UNIBUS device will set its non-existent
memory bit.

8-12

Thus, the RDTO bit will be set in the UBA status register only if the
UNIBUS device timeout function is inoperative, or takes more than

100 microseconds to timeout. This bit is not set for a BDP to SBI
prefetch.

Bit 9 Read Data Substitute (RDS)

This bit is set if a read data substitute is received in response to
a UNIBUS to SBI read command (DMA read transfer). No data will be
sent to the UNIBUS device, and when the device timeout occurs it will
set the non-existent memory bit in the device's register.

Bit 8 Corrected Read Data (CRD)

The UBA sets this bit when it receives corrected read data in response
to an SBI read command during a DMA read transfer.

Bit 7 Command Transmit Error (CXTER)

The UBA sets this bit when it receives an error confirmation in
response to an SBI command transmission during a UNIBUS to SBI access,
a BDP to SBI read, a BDP to SBI write, or a PURGE operation. This

bit is not set for a BDP to SBI prefetch.

Bit 6 Command Transmit Timeout (CXTMO)

The UBA sets this bit when it fails to complete an SBI command transfer
within 100 microseconds for any of the following operation:

a BDP to SBI write

a BDP purge operation

a BDP to SBI read operation for which the UNIBUS device has not
timed out

This bit is not set for a timeout for a BDP to SBI prefetch.

Bit 5 Data Path Parity Error (DPPE)

This bit is set when a parity error in a buffered data path occurs
during either a UNIBUS to BDP read, BDP to SBI write, or a BDP purge
operation.

The UBA sets this bit during a UNIBUS DMA transfer or purge operation
when the UNIBUS address points to a map register that has not been
validated by the software and has not been disabled by the MRD bits.

Bit 3 Map Register Parity Failure (MRPF)

This bit is set with the occurrence of a map register parity error
during one of the following operations:

. A UNIBUS access in which the UNIBUS address points to a map
register that has a parity error in the upper 16 bits, providing
that the map register has not been disabled by the MRD bits.

. Mapping a UNIBUS address to an SBI addres

nath +oc SRT r\er:+1'nn Aar 2 RNDD +n SRT
y = R R Y ot & - et ot - ot bt b

a direct data

n {(bhut not
« 100

is VA

[oN/)]

o
Lii LU SOoL Up

during a prefetch).

. Mapping an address from a buffered data path to an SBI address
during a purge operation or a BDP to SBI write.

Seven of the previously defined bits (RDTO, RDS, CXTER, CXTMO, DPPE,
IVMR, and MRPF) form an error locking field. 1If any of these bits is
set, the field is locked, thereby preventing the setting of other bits
within this field, until the bit indicating the error is cleared. The
failed map entry register (FMER) is also locked and unlocked with this
field. The setting of any of these bits will cause the UBA to initiate
an interrupt request if the interrupt enable bit for the UNIBUS to SBI
data transfer error field (USEFIE) in the control register is set.

The UBA sets this bit if the locking error field is locked and another
error within the field occurs. The lost error bit does not initiate
an interrupt request.

Bit

1 Unibus Select Time Out (UBSTO)

The UBA sets this bit if it cannot gain access to the UNIBUS within

50 microseconds in the execution of a software initiated transfer

(SBI to UNIBUS transfer). When UBSTO is set it indicates that the

UBA has issued NPR on the UNIBUS but has not become bus master. This
condition indicates the presence of a hardware problem on the UNIBUS.
The UNIBUS may be inoperative, or one device may be holding it for
extended periods of time. Note that if the UNIBUS does become
inoperative, it may be possible to clear the problem with the assertion
of UNJAM on the SBI, the setting and clearing of the UNIBUS POWER FAIL
bit (Control register bit 1) or the setting of ADAPTOR INIT (Control
register bit 0).

P

0 UNIBUS Slave Sync Time Out (UBSSYNTO)

This bit is set when an SBI to UNIBUS transfer (software initiated
transfer) times out during the data transfer cycle on the UNIBUS. The
timeout occurs after 12.8 microseconds. "UBSSYNTO" indicates a
transfer failure resulting when a non-existent memory or device on the
UNIBUS is addressed.

NOTE:

"UBSTO" and "UBSSYNTO" form an SBI to UNIBUS transfer error locking
field. They are set by the occurrence of the conditions mentioned

and cleared by writing a one to the bit location. The setting of
either bit will cause the UBA to make an interrupt request on the SBI
if the SBI to UNIBUS error interrupt enable bit (SUEFIE) is set. The
setting of either UBSTO or UBSSYNTO will lock the failed UNIBUS address
register (FUBAR), thus storing the high 16 bits of the UNIBUS address
identified with the failure. The FUBAR will remain locked until the
UBSTO and UBSSYNTO bits are cleared.

8-15

DW780 Diagnostic Control Register

DCR Offset = 00C(16)

8-17

Bit 31 SPARE

This read/write bit has no effect on any UBA operation. It can be set
by writing a zero to the bit location. SBI DEAD, Adaptor INIT, and a
power up sequence on the UBA will clear this bit.

Bit 30 Disable Interrupt (DINTR)

When it is set, this bit will prevent the UBA from recognizing
interrupts on the UNIBUS. It is useful in testing the response of
the UBA to the passive release condition during a UNIBUS interrupt
transaction. This bit is set by writing a one and cleared by writing
a zero to the bit location. SBI DEAD, Adaptor INIT, and the power
up sequence on the UBA will also clear DINTR.

Bit 29 Defeat Map Parity (DMP)

When it is set, this read/write bit will inhibit the parity bits of the
map registers from entering the map register parity checkers. The map
register parity generator/checkers generate and check parity on eight
bit quantities. Each parity field (eight data bits and one parity bit)
is implemented so that the total number of ones in the field is odd.

For example, if bits <7:0> of the map register equals zero or contain
an even number of ones then the parity bit equals one. However, if the
DMP bit is set, then the parity bit is disabled and the parity checkers
will see all zeros. This results in a map register parity failure.
Then if the DMP bit is cleared, the parity checkers will see correct
parity. Note, however, that if bits <7:0> of the map register contains
an odd number of ones, the generated parity bit will be zero. The
state of the DMP bit, therefore, will have no effect on the parity
result in this case.

When the integrity of the parity generator/checkers is to be tested,
the map register must contain data such that at least one of the bytes
contains and even number of ones. The DMP bit, when set, will disable
the parity bit, and the map register parity failure can be detected
during a DMA transfer. SBI DEAD, Adaptor INIT, and the power up
sequence on the adaptor will clear the DMP bit.

8-18

Bit

28 Defeat Data Path Parity (DDPP)

The DDPP bit functions in the same manner as the DMP bit. When it is
set, the DDPP bit will inhibit the parity bits of the data path RAM
from entering the parity checkers. The data path parity generator/
checkers generate and check parity on eight bit data units. Each
parity field (8 data bits and 1 parity bit) is implemented so that the
total number of ones in the field is odd. When the integrity of the
parity generator/checkers is to be tested through use of the DDPP hit,
a data path parity failure will result during a UNIBUS to BDP read,

a BDP to SBI write, or a purge operation. SBI DEAD, Adaptor INIT, and
the power up sequence on the UBA will clear the DDPP bit.

27 Microsequencer OK (MIC OK)

The MIC OK bit is a read only bit which indicates that the UBA micro-
sequencer is in the idle state. The microsequencer will enter the idle
state after it has completed the initialization sequence or once it has
completed a UBA function.

The MIC OK bit can be used by the diagnostic to determine whether or
not the microsequencer has completed a successful power up seguence
and whether or not it is caught up in any loops. Note that SBI DEAD,
UBA power supply DCLO, and Adaptor INIT force the microsequencer into
the intitialization routine. Once the routine has been completed and
the microsequencer has entered the idle state, MIC OK will be true (1).

Bits <26:24>

Reserved and zero.

Bits <23:00>

These bits are the same as bits <23:00> of the Configuration Register.

DW780 Failed Map Entry Register

FMER Offset = 010.018(16)

8-21

The FMER contains the map register number used for either DMA transfer
or a purge operation that has resulted in the setting of one of the
following error bits of the status register: IVMR, MRPF, DPPE, CXTMO,
CXTER, RDS, RDTO. This register is locked and unlocked with the UNIBUS
to SBI data transfer error field of the status register, The FMER 1is

a read only register. Attempts to write to the FMER will result in an
SBI error confirmation. When the FMER is not locked, its contents are
invalid. The software can read the FMER to obtain the map register
number associated with the failure. It can then read the contents of

the failing map register to determine the number of the data path that
failed.

Bits <31:09>

These bits contain the binary value of the number of the map register
that was in use at the time of a failure. Bits <08:00> correspond to
bits <17:09> of the UNIBUS address.

DW780 Failed Unibus Address Register

FUBAR Offset = 014.01C (16)

8-23

The FUBAR contains the upper 16 bits of the UNIBUS address translated from
an SBI address during a previous software intiated data transfer. The
occurrence of either "Unibus Select Time Out (UBSTO)" or "UNIBUS Slave
Sync Time Out (UBSSYNTO)" will lock the FUBAR. When the error bit is
cleared, the register will be unlocked.

The FUBAR is a read only register. Attempting to write to the register

will result in an error confirmation. No signals or conditions will clear
the register.

Bits <31:16>

Reserved and zero.

Bits <15:00> Failed Unibus Address Bits <17:00>

Bits <15:00> are the UNIBUS address bits <17:00>, respectively, of the
of the failing UNIBUS memory or device address.

8-24

DW780 Buffer Selection Verification Registers 0-3

BRVSR 0-3 Offsets 020-02C(16)

8-25

These four read/write do-nothing registers are provided to give the
diagnostic software a means of accessing and testing the integrity of
the data path RAM. Four locations in the data path RAM have been
assigned to these registers. Writing and reading the BRSVR's has no

effect on the behavior of the UBA. The BRVSR bit configuration is as
follows:

Bits <31:16>

Bits <15:00>

Not used. Test Data bits.

8-26

DW780 BR Receive Vector Registers 4-7

BRRVR4-7 Offsets 030-03C(16)

8-27

The UBA contains four BRRVRs: BRRVR7, BRRVR6, BRRVR5, and BRRVR4. Each
BRRVR corresponds to a UNIBUS interrupt bus request level: 7, 6, 5,& 4.
Each BRRVR is a read only register and will contain the interrupt
vector of the UNIBUS device interrupting at the corresponding BR level.
Each BRRVR is read by the software as part of the UBA interrupt service
routine. Note that the UBA interrupt service routine is the routine

to which the VAX CPU will transfer control once it has determined that
the UBA or the UNIBUS has issued an interrupt request to the SBI.

If the IFS and BRIE bits on the control register are set so that UNIBUS
interrupt requests are passed to the SBI, then the CPU responds with an
interrupt summary read command. The UBA sends its request sublevel as
an interrupt summary response. The software then invokes the UBA
interrupt service routine, initiating a read transfer to the
appropriate BRRVR. The UBA will assert the contents of the BRRVR on
the SBI as read data if the corresponding BRRVR full bit in the status
register is set. If the BRRVR full bit is not set, the read BRRVR
command causes the UBA to fetch the interrupt vector from the
interrupting UNIBUS device. The interrupt vector is loaded into the
BRRVR only at the successful completion of the UNIBUS transaction.

The UBA will then send the contents of the BRRVR to the SBI as read
data. Following this exchange, the UBA interrupt service routine will
use the contents of the BRRVR to branch to the appropriate UNIBUS
device service routine.

There are 5 types of adnormal completion conditions that may occur during
a UNIBUS to SBI interrupt segquence.

1.

If the software attempts to read a BRRVR for which
is not asserted, and the BRRVR is not full, the zer
data) will be sent as read data.

a BR

A3 F-Yak 4
youw e

If the BR line causes an interrupt sequence to begin on the SBI but is
released before the interrupt summary read transfer (passive release),
then the interrupt summary response from the UBA will be zero.

If the BR line asserted by the interrupting UNIBUS device is released
after the interrupt summary read transfer but before the read BRRVR
(passive release), then zero will be sent as read data for the read
BRRVR command.

If the vector has been received from the interrupting device, but an
ACT confirmation is not received following the interrupt summary
response (read data transmission), then the BRRVR will not be cleared,
and the BRRVR full bit will remain set. Subsequent read commands

to the full BRRVR will cause the UBA to send the stored vector, but
the BRRVR will remain full until the UBA receives an ACK confirmation
for the read data. Note that the BRRVR full bits always reflect the
state of the BRRVRs.

If the IFS bit in the control register is cleared and the software

reads a BRRVR, then the zero vector will be sent as read data to the
SBI.

8-28

The contents of the BRRVRs are also used by the software to determine
whether or not the UBA itself has an interrupt pending. Bit 31 of the
BRRVR is the adaptor interrupt request indicator. Although the bit is
present in all four BRRVRs, it will be active only in the BRRVR
corresponding to the interrupt request level that has been assigned to
the UBA, 1If bit 31 is set when the software reads the BRRVR, then an
adaptor interrupt request is pending.

Bit 31 Adaptor Interrupt Request Indicator

= No UBA interrupt pending.
= UBA interrupt pending.

Bits <30:16>

Reserved and zero.

Bits <15:00> Device Interrupt Vector Field

These bits contain the device interrupt vector loaded by the UBA
from the UNIBUS during the UNIBUS interrupt transaction.

8-29

DW780 Data Path Register 0-15

DPRO-15 Offsets = 40-7C(16)

8-3]

The UBA contains 16 data path registers (DPRO thru.DPR15), each of which
corresponds to one of the 16 data paths. The DPRs contain status info
relative to the buffered data paths and provide the means for purging and
initializing the BDPs at the completion of a UNIBUS block transfer for
DP1:DP15. DPRO corresponds to the DDP and is, therefore, always zero.

Bit 31 Buffer Not Empty (BNE)

Each DRP contains a data path status bit called Buffer Not Empty.

1
0

Buffer Not Empty
Buffer Empty

The BNE bit reflects the state of the associated BDP. If this bit is
set (1), the BDP contains valid data. If clear (0), then the BDP does
not contain valid data. The UBA uses the bit to determine the proper
action for DMA transfers via the BDP. 1If bit 31 is set as a DATI
transfer begins, the data in the BDP will be asserted to the UNIBUS.
If bit 31=0 on a DATI, the UBA will initiate a read transfer to the
SBI memory, gate the addressed data to the UNIBUS, and then load the
read data into the BDP, thereby setting bit 31.

For DMA write transfer via the associated BDP, the BNE bit is set each
time UNIBUS data 1s loaded into the BDP. The bit is then cleared when
the contents of the BDP are transferred to SBI memory.

The software will write a one to the BNE bit to initiate a purge
operation at the completion of a DMA transfer using the corresponding

puffered data path {BDP). The UBA executes purge operatlons as
follows:
1. Write Transfers To Memory - If any bytes of data remain in the

corresponding BDP (BNE is set), the UBA will transfer this data
to the SBI location addressed. The UBA will then initialize the
BDP and clear the BNE bit. If no data remains to be transferred
(BNE=0), the purge operation will be treated as a no-op.

2. Read Transfers To Memory - If any bytes of data remain in the BDP,
the UBA will initialize the BDP by clearing the BNE bit.

In addition, the following considerations apply to the purge operation:

For purge operations in which data is transferred to memory, the
SBI transfer takes about 2 microseconds. The UBA will not respond
to data path register read transfers during this period (a BUSY
confirmation is returned on attempted accesses) thereby preventing
a race condition when testing for the BNE bit.

A purge operation to data path register 0 (Direct Data Path) is
treated by the UBA as a no-op.

Bit

30 Buffer Transfer Error (BTE)

This is a read-write-one~to-clear bit. The UBA sets the BTE bit if a
failure occurs during a BDP to SBI write or purge, or for a buffer
parity failure during a UNIBUS to BDP read access. If bit 30=1, any
additional DMA transfers via the BDP will be aborted until the bit 1is
cleared by the software. Note that if a parity error on the UNIBUS
occurs during a DMA read, the UNIBUS PB signal will be asserted,

giving the UNIBUS device the opportunity to abort its own DMA transfer.
If the device does not abort its own transfer, the UBA will abort the
transfer on the next access. The purge operation does not clear the
BTE bit. The software clears this bit by writing a one to the bit.

29 Data Path Function (DPF)

The DPF is a read only bit. This bit indicates the function of the DMA
transfer using this data path.

0 = DMA Read
1 = DMA Write
Bits <28:24>
Not used.

Bits <23:16> Buffer State (BS)

These eight read only bits indicate the state of each of the eight byte
buffers of the associated BDP during a DMA write transfer. They are
included in the data path register for diagnostic purposes only. The
UBA generates the SBI mask bits from the BS bits during a BDP to SBI
write transfer or purge operation. The bits are set as each byte is
written from the UNIBUS. The bits are cleared during the SBI write
operation.

Empty

0
1 Full

8-33

Bits <15:00> Buffered Unibus Address (BUBA)

This portion of each DPR contains the upper 16 bits of the UNIBUS
address, UA<17:02>, asserted during a UNIBUS to BDP write transfer
using the associated BDP. If the transfer through the associated
BDPs is in the byte offset mode, and the last UNIBUS transfer has
spilled over into the next quadword, then these bits contain
UA<17:02>,

BUBA<15:00> = Upper 16 bits of Unibus Address<17:00> + Byte Offset

This is the UNIBUS address frcm which the SBI address will be mapped
during the purge operation.

DW780 Map Registers 0-495

MR0-495(10) Offsets = 800-FBC(16)

8-35

The UBA contains 496(10) map registers, one for each UNIBUS memory page
address (a page of UNIBUS addresses = 512(10) bytes).

When a DMA transfer begins, the upper nine address bits asserted by the
UNIBUS device selects a MAP register. The UBA tests whether the MAP regqg.
has been validated by the software, steers the transfer throught one of
the 16 data paths, determines whether or not the transfer will take place
in byte offset mode if a BDP has been selected, and maps the UNIBUS page
address to an SBI page address.

The map registers are numbered sequentially from 0 thru 495(10). There
is a 1-1 correspondence between each map register and the UNIBUS memory
page address. Each map register contains the information required to
effect the data transfer of the UNIBUS device addressing that page:

1. The fact that the software has loaded or not loaded the MAP
register (MAP registe Valid).

2. The number of the data path to be used by the transfer and, if a
BDP is used, whether it is in byte offset mocde or not.

3. The SBI page to which the transfer will be mapped.

NOTE: For the rest of this description, "this UNIBUS page" refers to
"the UNIBUS memory page corresponding to this MAP register".

Not Valid - initialized state
Valid

o
non

The MRV is set by the software to indicate that the contents of this
map register are valid. The MRV is tested each time that "this UNIBUS
page" is accessed. If the bit = 1, the transfer continues. If the
bit = 0, the UNIBUS transfer is aborted (non-existent memory error in
the UNIBUS device) and the invalid map register bit is set in the UBA
status register, providing that the map register has not been disabled
by the MRD bits of the control register.

The MRV bit can be set and cleared by software.

Bits <30:26> Unused

Reserved read/write bits.

8-36

Bit 25 Byte Offset Bit (BO)

This is a read/write bit. 1If set, and "this UNIBUS page" is using one
of the BDPs, and the transfer is to an SBI memory address, then the
UBA will perform a byte offset operation on the current UNIBUS data
transfer. The software can interpret this operation as increasing the
physical SBI memory address, mapped from the UNIBUS address, by 1 byte.
This allows word-aligned UNIBUS devices to transfer to odd byte memory
addresses.

UNIBUS transfers via the DDP or to SBI I/0 addresses will ignore
the byte offset bit.

This bit is cleared on initialization.

Bits <24:21> Data Path Designator Bits (DPDB)

Direct Data Path (DDP)
Buffered Data Path 1 thru F respectively.

=
|

o]
won

The DPDBs are read/write bits that are set and cleared by the software
to designate the data path that "this UNIBUS page" will be using.

The software can assign more than one UNIBUS transfer to the DDP. The
software must ensure that no more than one active UNIBUS transfer is
assigned to any BDP.

The DPDBs are cleared on initialization.

Bits <20:00> SBI Page Address [SPA<27:07>] (Page Frame Number)

The SPA bits contain the SBI page address to which "this UNIBUS page"
will be mapped. These bits perform the UNIBUS to SBI page address
translation. When an SBI transfer is initiated, the contents of
SPA<27:07> are concatenated with UNIBUS address bits UA<08:02> to
form the 28 bit SBI address.

8-37

RH780 Configuration/Status Register

CSR Offset = 000(16)

8-39

The configuration/status register is a read/write MBA register that
contains fault status, interrupt status, adapter dependent status,
and adaptor code bits.

Bit 31 SBI Parity Error (PE)
Set when an SBI parity error is detected. Cleared by power up or
by the deassertion of the SBI FAULT signal. The setting of this bit
will cause SBI FAULT to be asserted for one cycle.

Set when no write data is received (TAG lines not equal to "Write Data"
and ID lines do not contain ID of device that transmitted the command)
following a write command. Cleared by power up or the deassertion of
the SBI FAULT signal. The setting of this bit will cause SBI FAULT to
be asserted for one cycle.

Bit 29 Unexpected Read Data (URD)
Set when read data is received and was not expected (no read command
was transmitted by the MBA). Cleared by power up sequence or the
deassertion of SBI FAULT. The setting of this bit will cause SBI
FAULT to be asserted for one cycle.

Bit 28 Unused

Reserved for future use.

Bit 27 Multiple Transmitter Error (MT)
Set when the ID on the SBI does not agree with the ID transmitted
by the MBA while the MBA is transmitting data on the SBI. Cleared
by power up sequence or by the deassertion of SBI FAULT. The setting
of this bit will cause the SBI FAULT signal to be asserted for one
cycle starting at the normal confirmation time.

Bit 26 Transmit Fault (XMTFLT)

Set when the SBI FAULT is detected at the 2nd cycle after the MBA
transmits information onto the SBI. Cleared by the power up sequence
or by the deassertion of the SBI FAULT signal.

Bits <25:24> UNUSED

Read as all zeros. Reserved for future use.

8-40

Bit 23 Adapter Power Down (PD)

Set when the MBA power goes down.

Cleared when power comes back up.
The setting of this bit will cause an interrupt to the VAX CPU if the
IE bit is set.

Set when the MBA power comes up. Is cleared when the power goes down,
assertion of INIT, SBI UNJAM, DCLO or by writing a one to this bit.

The setting of this bit will cause an interrupt if the IE bit is set.

Bit 21 Over Temperature (oT)

Always zero.

Bits <20:08> Unused

Read as all zeros. Reserved for future use.

Bits <7:0> Adapter Code

Equal a hex 20 to signify an RH780 adapter.

8-41

RH780 Control Register

CR Offset = 004(16)

8-43

The MBA Control register is a read/write register that contains the control
bits: Interrupt Enable, Abort, and Initialize. This register is used to
put the RH780 into Maintenance Mode.

Bits <31:04> Unused
Read as all zeros. Reserved for future use.
Bit 3 Maintenance Mode (MM)

The setting of this bit will put the MBA in the maintenance mode, which
will allow the diagnostic software to exercise and examine the MASSBUS
operations without a MASSBUS device. When this bit is set, the MBA
will block MASSBUS RUN, MASSBUS DEMAND, and assert FAIL on the MASSBUS
so that all the devices on the MASSBUS will be logically detached.

This bit can only be set if a data transfer is not in progress.

Bit 2 Interrupt Enable (IE)
Allows the MBA to interrupt the VAX CPU when certain conditions occur.
Set by writing a one to the bit and by the power up sequence.
Cleared by writing a zero to the bit or by INIT set to a one.

The setting of this bit will initiate the data transfer abort sequences
that will stop sending of commands and addresses, and stop the byte
counter., It will also negate MASSBUS RUN, assert MASSBUS EXC, wait for
MASSBUS EBL, and set ABORT to a 1 at the trailing edge of MASSBUS EBL.

Set by writing a one. Cleared by writing a zero, INIT set to one, or
by assertion of SBI UNJAM.

This bit is self-clearing. Always reads as zero. The setting of this
bit will:

1. Clear status bits in the MBA Configuration/Status register.

2. Clear ABORT and IE in the MBA Control register.

3. Clear the MBA Status register.

4. Clear the MBA Byte Count register.

5 Clear control and status bits of the diagnostic registers.

6 Cancel all pending commands except read data pending abort

data transfers.
7. Asserts MASSBUS INIT.

8-44

RH780 Status Register

SR Offset = 008(16)

8-45

The MBA Status register 1is a read/write register that contains MBA status
information such as error indications, timeouts, and busy indicators.

All interrupts will occur immediatedly if there isn't a data transfer in
progress. If a data transfer is in progress, the interrupt will be
postponed until the data transfer has terminated.

Bit 31 Data Transfer Busy (DTBUSY)
Read only. Set when a data transfer command is received. Cleared
when a data transfer is aborted.

Bit 30 No Response Confirmation (NRCONF)
Set when the MBA receives a no-response confirmation for the read
read command, or no-response confirmation for the write command
and the write data sent to the SBI. The setting of this bit will
cause retry of the command.

Cleared by writing a one to this bit or by INIT.

Bit 29 Corrected Read Data (CRD)

Set when corrected read data is received from memory. Cleared by
writing a one to this bit or INIT.

Bits <28:20> Unused
Read as all zeros. Reserved for future use.
Bit 19 Programming Error (PGE)

The setting of this bit will cause an interrupt to the VAX CPU if
the IE bit in the control register is set. Cleared by writing a one
to this bit. Set when one or more of the following conditions exists:

1. The program tries to initiate a data transfer when the MBA is
currently performing one.

2. The program tries to load MAP, VAR, or the BYTE COUNTer while
the MBA is performing a data transfer operation.

3., The program tries to set MBA maintenance mode during a data
transfer operation.

4, The program tries to initiate a nonacceptable data transfer
command.

8-46

Bit 18 Non-existent Drive (NED)
Set when a drive fails to assert MASSBUS TRA within 1.5 microseconds
after the MBA asserts MASSBUS DEM. The setting of this bit will send
zero read data back to the SBI, and interrupt the VAX CPU if the IE bit
is set in the MBA Control register. Cleared by writing a one to this
bit location.

Bit 17 Massbus Control Parity Error (MCPE)
Set when a MASSBUS Control Bus Parity error occurs. The setting of
this bit will cause an interrupt to the VAX CPU is the IE bit, in the
Control Register, is set. This bit is cleared by writing a 1 to it.

Bit 16 Attention from the Massbus (ATTN)
Set when the ATTeNtion line on the MASSBUS is asserted. The setting
of this bit will cause an interrupt to the VAX CPU if the IE bit, in
the Control Register, is set.

The ATTN line can be asserted due to any of the following conditions:

1. An error occurs while no data transfer is taking place {asserted
immediately).

2. Upon completion of a data transfer command if an error occured
during the data transfer (asserted at the end of the data
transfer).

3. Upon completion of a mechanical motion command (seek, recalibrate,
etc.) or a search command.

4., As a result of the Medium On_Line (MOL) bit changing states (except
in the unload operation). In the dual MBA configuration, a change
in state of MOL will cause the assertion of ATTN to both MBAs.

The ATTN bit in a drive can be cleared by the following actions:

1. Asserting MASSBUS INIT.
2. Writing a 1 into the Attention Summary Register (in the bit

position for the appropriate drive). This clears the ATA bit;
however, it does not clear the error.

3. Writing a valid command (with the GO bit asserted) into the control
and status register if no error occurs. Note that clearing the
ATA bit of one drive does not always cause the ATTN line to be
negated, because other drives may be asserting the line.

There are 3 cases in which ATA is not reset when a command is written
into the Control/Status register (with the GO bit set). These are as
follows:

1. If there is a CONTROL BUS PARITY ERROR in the write.

2. If an error was previously set.

3. If an ILLEGAL Function (ILF) code is written.

8-47

Bits <15:14> Reserved

Reserved for future use. Read as zeros.

Set when the data transfer is completed. Cleared by writing a one
to this bit. The setting of this bit will cause an interrupt to the
VAX CPU if the IE bit, in the Control register, is set.

Bit 12 Data Transfer Aborted (DTABT)

Set with the trailing edge of Massbus EBL when the data transfer has
been aborted. Cleared by writing a one to this bit or by INIT.

The setting of this bit will cause an interrupt to the VAX CPU if the
IE bit, in the Control register, is set,

Bit 11 Data Late (DLT)

i r a write check data transfer providing the data
buffer is empty when WCLK is sent to the MASSBUS.
2. for a read data transfer providing the data buffer is full

when SCLK is received from the MASSBUS.

1. for ei

The setting of this bit will cause the data transfer to be aborted.

Bit 10 Write Check Upper Error (WCK UP ERR)

This bit is set when a compare error is detected in the Upper byte
while the MBA is performing a write check operation. Cleared by
writing a 1 to this bit or by INIT. The setting of this bit will
cause the data transfer to be aborted.

Set when a compare error is detected in the lower byte while the MBA
is performing a write check operation. Cleared by writing a 1 to
this bit or by INIT. The setting of this bit will cause the data
transfer to be aborted.

8-48

Bit 08 Missed Transfer Error (MXF)
Set when no OCC or SCLK is received within 50 microseconds after
Data Transfer Busy is set. Cleared by writing a 1 to this bit or
by INIT. The setting of this bit will cause.an interrupt to the VAX
CPU is the IE bit, in the Control register, is set.

Bit 07 Massbus Exception (MBEXE)
Set when EXC is received from the MASSBUS. Cleared by writing a 1 to
this bit or by INIT. The setting of this bit will cause the data
transfer to be aborted.

Set -when a MASSBUS DATA PARITY Error is detected during a read data
transfer operation. Cleared by writing a 1 to this bit or by INIT.
The setting of this bit will cause the data transfer to be aborted.

Bit 05 Page Frame Map Parity Error (MAPPE)
Set when a parity error is detected on the data read from the map
during a data transfer. Cleared by writing a 1 to this bit or by
INIT. The setting of this bit will cause the data transfer to be
aborted.

Bit 04 Invalid Map (INVMAP)
Set when the valid bit of the next page frame number is zero and the
byte counter is not zero. Cleared by writing a one to this bit or by
INIT. The setting of this bit will cause the data transfer to be
aborted.

Bit 03 Error Confirmation (ERR CONF)

Set when the MBA receives error confirmation for a read or write

command. Cleared by writing a one to this bit or by INIT. The
setting of this bit will cause the data transfer to be aborted.

8-49

Bit 02 Read Data Substitute (RDS)

Set when the SBI TAG of the of the read data received from memory is
Read Data Substitute (bad data). Cleared by writing a one to this bit
or by INIT. the setting of this bit will cause the data transfer to
be aborted.

Bit 01 Interface Sequence Timeout (IS TIMEOUT)
Set when an interface timeout occurs. An interface sequence timeout
is defined as the time from when arbitration for the SBI is begun
until:
1. ACK is received for a command/address transfer that specifies
read.
2. ACK is received for a command/address transfer that specifies
a write and the corresponding write data transfer.
3. ERR confirmation is received for any command/address transfer.

The maximum timeout is 102.4 microseconds. Cleared by writing a one to
this bit or by INIT. The setting of this bit will cause the data
transfer to be aborted.

Set when a read data timeout occurs. A read data timeout is defined as
the time from when an interface sequence that specifies a read command
is completed to the time that the specified read data is returned to
the commander. The maximum timeout is 102.4 microseconds. Cleared by
writing a one to this bit or by INIT. The setting of this bit will
cause the data transfer toc be aborted.

RH780 VIRTUAL ADDRESS Register

VAR Offset = 0C(16)

8-51

Before a data transfer is initiated, the program must load an initial
virtual address (pointing to the first byte to be transfered) into
this register.

Bits <31:17> Reserved

Not used. Reserved for future use. Read as zeros.

Bits <16:09> Map Pointer

Selects one of the 256 MAP registers.

Bits <08:00> Physical Page Byte Address

Byte offset into the current page.

The contents of the selected MAP register and the value of Bits <08:00>
are used to assemble a physical SBI address to be sent to memory. Bits
<08:00> indicate the byte offset into the page of the current data byte.
The virtual address register may not be written into during a data
transfer. An attempt to do so will set PGE, but the virtual address
register will not be modified and the data transfer will continue.

The MBA virtual address register is incremented by eitht after every
memory read or write and will not point to the next byte to be transferred
if the transfer does not end on a quadword boundary (it will point eight
bytes ahead). When a write check error occurs, the virtual address
register will not point to the failing data in memory due to the
preloading of the silo data buffer. The virtual address of the bad data
may be found by determining the number of bytes actually transferred on
the MASSBUS (the difference between bits <31:16> of the Byte Count
Register and their initial value) and adding that difference to the
initial virtual address.

8-52

RH780 BYTE COUNT Register

BCR Offset = 10(16)

8-53

The program loads the 2's complement of the number of bytes for the data
transfer to bits <15:00> of this register. The RH780 hardware will load
these 16 bits into bits <31:16> and bits <15:00> of the Byte Count
register. Bits <31:16> serve as the byte counter for the number of bytes
transferred through the MASSBUS and bits <15:00> serve as the byte counter
for the number of bytes transferred through the SBI -interface. The
starting byte count with 16 bits of zeros is the maximum number of bytes
of a data transfer. The byte count register may not be modified during a
data transfer. An attempt to do so will be ignored and the PGE bit will
be set.

Bits <31:16> Massbus Byte Counter

Data written to bits <15:00> is duplicated in these bits. This counter
is used to count the number of bytes transferred across the MASSBUS.

These bits are read only.

Bits <15:00> SBI Byte Counter
These bits form the SBI Byte counter. The purpose of this counter is
to count the number of bytes transferred across the SBI and to overflow
to zero to signal the completion of the transfer.

This counter is locaded, by the program, with the 2's complement of the
number of bytes to be transferred. The RH780 hardware duplicates what
is written to these bits, by the program, into bits <31:16>.

This counter is read/write.

RH780 DIAGNOSTIC Register

DR Offset = 14(16)

8-55

The diagnostic register is a read/write register that contains MBA
diagnostic information. This register allows diagnostics to be run
without any drives on the MASSBUS. The diagnostic register may not

be written unless the MBA is in the maintenance mode. An attempt to
write the diagnostic register when not in the maintenance mode will be
ignored. Caution should be exercised when reading this register in
the maintenance mode. The data path used to read bits <07:00> may
inject invalid data into the silo if the MBA has just read data

from memory. It is advisable tc wait 20 microseconds from the initiation
of a transfer or the deassertion of SCLK before reading or modifying
this register.

Bit 31 IMDPG

Invert MASSBUS Data Parity generator.

Bit 30 IMCPG

Invert MASSBUS Control Parity generator.

Bit 29 IMAPP

oL Z0 —aaS v

Block sending command to the SBI. During a data transfer, the setting
of this bit will eventually cause a DLT bit set and a DT ABORT.

Bit 27 SIMSCLK
Simulate MASSBUS SCLK. When the MM bit is set, writing a 1 to this bit
will simulate the assertion of MASSBUS SCLK; writing a 0 to this bit
will simulate the deassertion of MASSBUS SCLK.

Bit 26 SIMEBL
Simulate MASSBUS EBL. When the MM bit is set, writing a 1 to this bit
will simulate the assertion of MASSBUS EBL; writing a 0 to this bit
will simulate the deassertion of MASSBUS EBL.

Bit 25 SIMOCC

Simulate MASSBUS OCC. When the MM bit is set, writing a 1 to this bit
will simulate the assertion of MASSBUS OCC; writing a 0 to this bit
will simulate the deassertion of MASSBUS OCC.

8-56

Bit 24 SIMATTN

Simulate MASSBUS ATTN. When the MM bit is set, writing a 1 to this bit
will simulate the assertion of MASSBUS ATTN; writing a 0 to this bit
will simulate the deassertion of MASSBUS ATTN.

Bit 23 MPIB SEL

Maintenance MASSBUS Data Input Buffer Select. When this bit is set to
a 1, the upper eight bits (B<15:08>) of the MDIB will be sent out from
bits <07:00> of the Diagnostic register if the diagnostic register is
read. When the bit is 0, the lower eight bits (B<15:08>) of the MDIB
will be sent out from bits <07:00> of the Diagnostic register if it is
read.

Bits <22:21> Maint only

Read/write with no effect. Used to test the writability of these bits.

Bit 20 MFAIL

MASSBUS FAIL (read only). MASSBUS FAIL is asserted when the MM bit is
set.

Bit 19 MRUN

MASSBUS RUN (read only).

Bit 18 MWCLK

MASSBUS WCLK (read only).

Bit 17 MEXC

MASSBUS CTOD (read only).

MASSBUS Device Select (read only).
MASSBUS Register Select (read only).
Bits <07:00> U/L MDIB

Maintenance Upper/Lower MDIB,

8-57

RH780 SELECTED MAP Register

SMR Offset 18

8-59

This register is read only and is valid only when DT BUSY is set. Reading
this registers gives you the contents of the MAP register pointed to by
bits <16:09> of the Virtual Address register.

The bit assignments for the MAP registers are as follows:

When set, indicates that the contents of bits <20:00> are valid.

Bits <30:21> Not used

Not used. Reserved for future use. Read as zeros.

Bits <20:00> Page Frame Number
Contains the Physical page frame number. These bits are used to
calculate the physical memory address to/from which the transfer
is to take place. These bits actually select only the PHYSICAL
SBI MEMORY PAGE that the transfer will be referencing.

Bit 9 = 1 and Bit 8 = 0.

The RH780 contains 256 MAP registers, each of which may be selected by
Virtual Address bits <07:00>. MAP registers can only be written when
there is no data transfer operation in progress. A write to a MAP regq.
while a data transfer is in progress will be ignored and cause the setting
of PGE and will cause an interrupt to the VAX CPU at the end of the
transfer if the IE bit is set.

8-60

RH780 COMMAND/ADDRESS Register

CAR Offset = 1A(16)

8-61

This register is read only.

valid only when DT BUSY is set.

It contains the value of bits <31:00> of the SBI during the
COMMAND/ADDRESS part of the RH780's next data transfer.

8-62

MS780-E Configuration Register "A”

CNFG-A Offset = 000 (16)

8-63

Bit <31>, SBI Parity Fault

A parity error was detected on the SBI.

Bit <30>, SBI Write Sequence Fault

Failure of a WRITE command to be followed immediately (in the next
sequential SBI cycle) by a Write Data Format.

Bit <29>, NOT USED

This bit not assigned.

Bit <28>, SBI Interlock Sequence Fault

An INTERLOCK WRITE command was not proceeded by an INTERLOCK
READ command.

Bit <27>, SBI Multiple Transmitter Fault

The "received ID" (received at SBI T3 time) is not the same as the
"transmitted ID" (transmitted at SBI TO time). The transmitted

ID is checked by comparing it with the ID that is read back at

SBI T3 time of the same cycle.

Bit <26>, Transmit Fault

This memory was the transmitter when the SBI error occured.

Bits <25:24>, NOT USED

‘These bits are not assigned.

Bit <23>, Power Down

A power-down sequence is underway.

Bit <22>, Power Up

A power-up sequence is underway.

Bit <21>, NOT USED

This bit is not assigned.

8-64

Bit <20>, Error Summary
Set if any of the following bits are set:
1. Internal Parity Errors
a. Register-A Bit <19>
b. Register-A Bit <18>
c. Register-C Bit <07>
2. Misconfigure Warning
a. Register-A Bit <17>
b. Register-A Bit <16>
c. Register-A Bit <15>
3. Error Log Request
a. Register-C Bit <28>

Bit <19>, CNTR 1 Par Err

Read data from the UPPER controller to interface had a parity
error. Bad data is sent on the SBI, with corrected parity, and
the RDS mask (multiple bit error).

Bit <18>, CNTR 0 Par Err

Read data from the LOWER controller to interface had a parity
error. Bad data is sent on the SBI, with corrected parity, and
the RDS mask (multiple bit error).

Bit <17>, Misconfigured
In INTERNAL Interleave mode, set by an unequal number of arrays
with each controller.

Bit <16>, CNTR 1 MISCNFG
Misconfiguration in the UPPER Controller's memory. Caused by one
of the following:
1. 1Illegal array arrangement
2. No Arrays
3. No Controller

Bit <15>, CNTR 0 MISCNFG
Misconfiguration in the LOWER Controller's memory. Caused by one
of the following:
1. Illegal array arrangement
2. No Arrays
3. No Controller

Bits <14:09>, Memory Size

Memory system capacity from 1 MegaByte (000000) to 64 MegaByte
(111111). Count is in Binary.

8-65

Bit <08>, INTLV Mode Write Enable

Permits a WRITE to bits <02:00> which establishes the INTERLEAVE MODE.

Bits <07:05>, Adapter Code
Fixed set of bits identifying the subsystem (NEXUS) as an MS780-E
memory subsystem. Bits read as "011" (from bit <07> to bit <05>).

Bits <04:03>, RAM type

Identifies the size of the RAMs on the arrays as follows:

Bits
4 3 Description
0 Misconfigured, No array Boards in backplane
1 64K RAMs (1 MegaByte Arrays)
0 256K RAMs (4 MegaByte Arrays)
1 Misconfiqured, both array types in backplane

Bits <02:00>, Interleave Mode

0 0 0 Non-interleaved LOWER controller

0 1 0 Non-interleaved UPPER controller

0 0 1 Externally interleaved LOWER controller
0 1 1 Externally interleaved UPPER contrcller
1 0 a Internally interleaved

Bits <02:01> are set, on Power-Up, to interleave mode according to
the hardware configuration, i.e., appropriate to the number and
position of memory controllers present. Bit <00> must be written by
the Software.

8-66

MS780-E Configuration Register "B”

CNFG-B Offset = 004 (16)

8-67

Bits <31:28>, Not HUsed

These bits are not assigned.

Bits <27:19>, START ADDR

Specifies the starting address of the memory subsystem in
1 MegaByte increments.

Bits <18:15>, Not Used

These bits are not assigned.

Bit <14>, START ADR WR EN

Enables writing to bits <27:19>

Bits <13:12>, INIT and BATTERY Status

Indicates if memory is coming up from a COLD Start and is
initializing the memory, or if valid data is preserved in the
memory arrays as follows:

Bit

13 12 Description

0 0 Initialization in progress (memory written with 0's
and BUSY is being sent to any SBI commands that may ke
referencing this memory).

0 1 Memory contains Valid Data.

1 0 Invalid Combination

1 1 Initialization completed, NO VALID DATA in memory.

Bit <11>, Force DBUS Par Error

READ DATA from controllers to the SBI interface will have an error
and a read data substitute will be forced.

Bits <10:09>, Diagnostic Mode Select

There are three diagnostic modes that exercise various controller
functions and four data paths and their latches as follows:

Bit
10 09 Description
0 0 Normal Operation
0 1 Verifies check bit generation logic and controcller
data path.
1 0 Verifies the ECC logic.
1 1 Verifies the check bit MOS RAMs,

8-68

Bit <08>, Refresh Lock

Prevents the memory controller from executing READ/WRITE cycles.

Bit <07>, Not Used

This bit is not assigned.

Bits <06:00>, Diagnostic ECC bits

Loaded with the substitute ECC bits in conjunction with the diagnostic
modes.

8-69

MS780-E Configuration Registers "C & D”

CNFG-C and CNFG-D Offset = 008(16) and 00C(16)

8-71

Bit <31>, Force Microsequencer Parity Error

Causes the wrong parity across the 56 PROM bits of the
microsequencer data field. Sets bit <07>.

Bit <30>, Inhibit CRD

Prevents single-bit errors from sending CRD with the read data
on the SBI. Error log requests (bit<28>) and CRD error bit <09>
will be set by a single-bit error.

Bit <29>, High Error Rate

Indicates a second error has been detected before the 1lst was cleared.

Bit <28>, Error Log Request

Notification of an error on a memory read.

Bits <27:11>, Error Address

Specifies the memory address to the page level of the error. The
address format specified is as follows (VALID ONLY IF Bit <28>=1):

<27> - Controller Select

<26:24> - Array Select

<23:22> - Array Bank Select

<19:11> - RAM page address (64K RAMs)
<21:11> - RAM page address (256K RAMs)

Bit <10>, RDS Flag

Multiple-bit error detected.

Bit <09>, CRD Flag

Single-Bit error detected and corrected.

Bit <08>, Not Used

This bit is not assigned.

Bit <07>, Microsequencer Parity Error

A parity error was detected across the 56-bit PROM data word.

Bit <06:00>, Error Syndrome/ CHECK BITS

Stores 7-bit error syndrome or 7 check bits, depending on the
diagnostic mode set in Configuration Register-B,

MS780-E Configuration Registers "E & F”

REG-E & REG-F Offset = 010(16) and 014(16)

8-73

Registers E and F are the two data latches on the SBI interface module
(designated as data latches 1 and 2, respectively). After writing to
either or both of these registers, they may be read, causing the data
written to be sent back on the SBI through the SBI transceivers. Thus,
these registers allow a data wrap-around within the SBI interface module
only. No memory controllers have to be installed to execute this data

wrap-around process.

8-74

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	1-001
	1-002
	1-003
	1-004
	1-005
	1-006
	1-007
	1-008
	1-009
	1-010
	1-011
	1-012
	1-013
	1-014
	1-015
	1-016
	1-017
	1-018
	1-019
	1-020
	1-021
	1-022
	1-023
	1-024
	1-025
	1-026
	1-027
	1-028
	1-029
	1-030
	1-031
	1-032
	1-033
	1-034
	1-035
	1-036
	1-037
	1-038
	1-039
	1-040
	1-041
	1-042
	1-043
	1-044
	1-045
	1-046
	1-047
	1-048
	1-049
	1-050
	1-051
	1-052
	1-053
	1-054
	1-055
	1-056
	1-057
	1-058
	1-059
	1-060
	1-061
	1-062
	1-063
	1-064
	1-065
	1-066
	1-067
	1-068
	1-069
	1-070
	1-071
	1-072
	1-073
	1-074
	1-075
	1-076
	1-077
	1-078
	1-079
	1-080
	1-081
	1-082
	1-083
	1-084
	1-085
	1-086
	1-087
	1-088
	1-089
	1-090
	1-091
	1-092
	1-093
	1-094
	1-095
	1-096
	1-097
	1-098
	1-099
	1-100
	1-101
	1-102
	1-103
	1-104
	1-105
	1-106
	1-107
	1-108
	1-109
	1-110
	1-111
	1-112
	1-113
	1-114
	1-115
	1-116
	1-117
	1-118
	1-119
	1-120
	1-121
	1-122
	1-123
	1-124
	1-125
	1-126
	1-127
	1-128
	1-129
	1-130
	1-131
	1-132
	1-133
	1-134
	1-135
	1-136
	1-137
	1-138
	1-139
	1-140
	1-141
	1-142
	1-143
	1-144
	1-145
	1-146
	1-147
	1-148
	1-149
	1-150
	1-151
	1-152
	1-153
	1-154
	1-155
	1-156
	1-157
	1-158
	1-159
	1-160
	1-161
	1-162
	1-163
	1-164
	1-165
	1-166
	1-167
	1-168
	1-169
	1-170
	1-171
	1-172
	1-173
	1-174
	1-175
	1-176
	1-177
	1-178
	1-179
	1-180
	1-181
	1-182
	1-183
	1-184
	1-185
	1-186
	1-187
	1-188
	1-189
	1-190
	1-191
	1-192
	1-193
	1-194
	1-195
	1-196
	1-197
	1-198
	1-199
	1-200
	1-201
	1-202
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	6-01
	6-02
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	8-37
	8-38
	8-39
	8-40
	8-41
	8-42
	8-43
	8-44
	8-45
	8-46
	8-47
	8-48
	8-49
	8-50
	8-51
	8-52
	8-53
	8-54
	8-55
	8-56
	8-57
	8-58
	8-59
	8-60
	8-61
	8-62
	8-63
	8-64
	8-65
	8-66
	8-67
	8-68
	8-69
	8-70
	8-71
	8-72
	8-73
	8-74

