

VAX/VMS Software
Information Management Handbook

Digital believes the information in this publication is accurate as of its publi­
cation date; such information is subject to change without notice. Digital is
not responsible for any inadvertent errors.

The following are trademarks of Digital Equipment Corporation:

DEC MicroPDP-ll RSX
DECmate MicrolbwerlPascal RT
DECsystem-lO PDP ULTRIX
DECSYSTEM-20 PIOS UNIBUS
DECUS Professional VAX
DECwriter Q-BUS VMS
DIBOL Rainbow 'vT
MASSBUS RSTS W>rk Processor

IBM is a registered trademark of International Business Machines Corporation.

CROSSTALK XVI is a registered trademark of Microstuf, Inc.

SONY and VDX-lOOO are registered trademarks of Sony Corporation.

MARK IV is a registered trademark of the Norpak Corporation­
Ontario, Canada.

Copyright © 1985 Digital Equipment Corpomtion. All Rights Reserved.

Contents

Chapter 1 • Executive Summary - What Is Infonnation Management?

WhatIs Information Management? 1-1
File Management. 1-1
Data Management ... 1-2
Database Management 1-2

Another R:rspective - Data Processing vs. Information Management '" 1-3
Data Processing .. 1-4
Information Management 1-4

Managing Information: The Problems Facing The DP Manager. 1-6
Information Management Tools 1-7

Information Resource Management. .. 1-7
Data Access .. 1-8
Distributed Processing. .. 1-8
Report and Graphics Generation 1-8
Terminal Management " 1-9
Database Management Systems. .. 1-10
Application Management 1-13

Planning an Information Management System 1-13
Digital's Solution For Information Management 1-14
The VAX Information Architecture .. 1-14
How The VAX Information Architecture Products Wlrk Together. 1-14

The VAX Common Data Dictionary (CDD) .. 1-15
VAXDATATRIEVE .. 1-15
VAX DBMS (Database Management System) 1-16
VAX Rdb/VMS (Relational Database Management System) 1-16
VAX TDMS and VAX FMS .. 1-17
VAX ACMS .. 1-17
VAX DECgraph .. 1-17
VAXDECslide ... 1-18
VAXVTX ... 1-18

Chapter 2 • Case Studies in Success With The VAX Information
Architecture

A Relational Solution For Building an OEM'S Publishing System 2-1
A System That Grows ... From Office Automation to Information
Management 2-4
Inventory TIacking in a Manufacturing Facility - Designing a TIansaction
Processing Application where Time is Critical. 2-7
Database Support For Cost-Effective Pharmaceutical Research 2-10

Chapter 3 • The VAX Common Data Dictionary (COD)

Who Uses The VAX Common Data Dictionary. 3-1
Benefits of The VAX Common Data Dictionary , ; 3-2
A Closer Look at The VAX Common Data Dictionary 3-2

Creating a Dictionary Hierarchy 3-3
Creating And Storing Data Definitions 3-5

The DEFINE Statement 3-5
The DESCRIPTION Statement 3-5
Field Description Statements 3-5
Field Attribute Clauses 3-6

Controlling Access to Data Definitions .. 3-6
The Access Control List. 3-6
Assigning Privileges by Inheritance 3-8
Using Sub dictionary Directories to Provide Security 3-8

Assessing the Impact Of Change: The History List 3-9
ModifYing Data Definitions 3-9
Locating The Correct Data Definition. 3-11
Copying Definitions Into Application Programs 3-11
Maintaining Dictionary Files 3-11

Using The VAX Common Data Dictionary With Other Software
Products .. ; .. 3-12

VAXDATATRIEVE " 3-12
VAX DBMS .. 3-12
VAXRdblVMS ... 3-12
VAXTDMS .. 3-12
VAX ACMS .. 3-12
Languages .. 3-13

Summary ... 3-13

Chapter 4 • VAX DATATRIEVE

Who Uses VAX DATATRIEVE 4-1
Benefits of VAX DATATRIEVE 4-2
A Closer Look at VAX DATATRIEVE .. 4-3

Using Guide Mode to Learn VAX DATATRIEVE 4-3
Creating and Storing Domains " 4-3
Retrieving and Displaying Data .. 4-5
Storing and Modifying Data 4-7
Using The VAX DATATRIEVE Editor .. 4-8
Using CROSS to Access Multiple Files. .. 4-8
Writing and Using Procedures 4-9
Using The Report Writer Facility to Create Formatted Reports 4-9
Using The Graphics Facility 4-10
Calling VAX DATATRIEVE Facilities From Programs 4-11
Using Forms .. 4-12

Using VAX DATATRIEVE With Other Software Products 4-12
The VAX Common Data Dictionary (CDD) .. 4-12
VAX DBMS And VAX RdblVMS .. 4-12
VAX TDMS .. 4-13
VAX DECgraph .. 4-13

Chapter 5 • VAX DBMS Database Management System

Who Uses VAX DBMS .. 5-1
Benefits of VAX DBMS. .. 5-2
A Closer Look at VAX DBMS. .. 5-3

Designing Databases 5-3
Data Definition and Storage 5-4
Creating a D.atabase .. 5-4
Retrieving and Storing Data With Database Query (DBQ) 5-5
Ensuring Consistency and Accuracy .. 5-6
Fine-Tuning a Database. .. 5-7
Accessing a Database From an Application Program 5-7
Using Database Operator (DBa) Utilities 5-8
Protecting Database Security and Integrity . 5-8

Using VAX DBMS With Other Products 5-9
The VAX Common Data Dictionary (CDD) 5-9
VAXDATATRIEVE ... 5-9

Chapter 6 • VAX RdbIVMS

Who Uses VAX RdbNMS 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ; 0 0 0 ; 0 0 0 0 0 0 0 0 0 0 0 0 6-1

Benefits of VAX RdbNMS 000000000000000000000000000000'0000000 M
A Closer Look ~t VAX RDBIVMS 0 0 0 0 00 0 0 00 0 0 0 : 0 0 0 : 0 ; 0 0 0 ; .: 0 0 0 0 0 0 0 6-4

Designing a Database 000 0 0 :;'00 0 :0 000 0 0 0 0 , 0 0 0 0 0:: 0 0 0 0 0 0 0 000 0 6-5

Creating a Database and Defining Its Elements 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6-6

Restructuring a Database 0 : 0 6-9

Deleting Database Elements 0 ~ 0 0 0 0 0 0 0 0 0 0 6-10

RetrievingData 00000000'0000000000000'0000'" 0 0:0 Co 0 0 0 0'0 0 0 0 6~11
Modifying Data 0 6-15

Ensuring Consistency and Accuracy 0 o· 0 0 0 0 0 00 0 0 0 0 ; 0 0 0 0 : 0 0 0 0 0 0 0 6-16

Maintaining a Database 0 0 0 0 0 0 ; 0 0 0 0 0 00 0 0 0 0 0 0 0 , 0 • 0 0 0 0 0 0 0 0 0 0 0 0 6-17

Accessing a VAX RdbNMS Database From Application Programs 0 0 0 6-17

Using VAX RdbNMS With Other SoftwateProducts 0 0 0 0 0 0 0 0 0 • 0 0 00 0 6-18

VAX RdbNMS and The Common Data Dictionary 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6: 18

VAX RdbNMS and DATA1RIEVE 0 : 0 0 0 0 0 0 0 0 6-18

VAX RdbNMS and Other VAX Information ArchitectUre Products 0 0 6-19

Chapter 7 • VAX TDMS and VAX FMS

VAXTDMS 00000000000000000000000000000000000·000000000' 0 0 0 0 07-1

Who UsesVAXTDMS 00000' 0 0 00 0 0 0 0 00 0 0 0 0 0 0'; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o'o~ 7-2

Benefits of VAX TDMS 0 7-3

A Closer Look at VAX TDMS 0 7-3

The Application Program 0 , 0 0 0 0 0 0 0 0 0 0 7-4

Record Definitions 0 • 0 0 0 0 0 0 0 0 0 0 7-5

Form Definitions 0 o· 0 0 0 0 0 0 0 00 0 0 0 7-6

Requests 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 o· 0 o· 0 7-6

Request Library Definitions 0 0 0 0 0 0 0 00 7-7

Request Library Files 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 7-K

TDMS Utilities 0 7-8

The TDMS Form Definition Utility 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0.' 0 0 0 7-8

TheTDMS Request Definition Utility 000000000000000 o. 0 0 0 0 0 0 0 7-9

Summary - VAX TDMS Application Elem~ts and Utilities O. 0 ~ 0 0 0.0 7,10

Using VAX TriMS With Other Products 0 7-10

The VAX Common Data Dictionary (CDD) 0 7-10

Language Support 0 7-11

VAXFMS ... 7-11
Who Uses VAXFMS ... 7-12
The Benefits of VAX FMS .. 7 -12
A Closer Look at VAX FMS .. 7 -12

The Interactive Forms Editor 7-12
The Form Librarian. .. 7-13
User Action Routines (VARs) .. 7-13
Field-Completion VARs .. 7-13
HELP Key VARs 7-14

Function Key VARs .. 7-14
The Forms Driver .. 7-15

NamedData .. 7-15
The Forms Language. .. 7-15
Supported Languages 7-15
TDMS and FMS - Relative Strengths .. 7-16
When TDMS Is The Best Solution. .. 7-16
When FMS Is The Best Solution 7-17

Chapter 8 • VAX ACMS

Who Uses VAX ACMS .. 8-2
Benefits of VAX ACMS .. 8-3
A Closer Look at VAX ACMS , 8-4

Application Development ... , .. 8-4
Runtime Control and Management .. 8-6

Using Menus For Easy Access. .. 8-7
Controlling Application Availability. .. 8-7
Controlling Access to Applications 8-7
Monitoring Application Use and Ibformance , 8-8
ACMSRuntime System ,.......... 8-8

Chapter 9 • VAX DECgraph

Who Uses VAX DECgraph :; ,' ... ~ 9-1
Benefits Cof VAX DECgraph ;: ' " .. 9-2
VAX DECgraph - A Closer Look : : '9-2

Icons' " ' c ••• ,': ••• " .' 9-3
Help Levels ::' .. "' "j', 9-3
"Files ... : :':,~' 9-3
Data Input and Access : : '" : :9-3

Keyboard Data Entry ~ 9-3
UsingVAXDATATRIEVE : 9-3
The Load File Option ,,9-4

Designing Graphs ; :'.' 9-4
The Six Basic Types of Graphs ... ,' ,. 9-4
Special Designing Options ': •.. : : 9-5

Output '':' " ",' .. .' .. " 9-7
Printing : .. '.': ... '.' 9-7
Photographing : '~ , ... : :. . .. 9-8
Exporting a Graph :. , : •.. ,.9-8

How Does it Interact With Other Products? ';; .' 9~8
VAXDATATRIEVE : .. ';' .' .. ::. 9~8
VAXCDD ... , O' ••••••••••••• / •••• ' •• (., .' •••• ' •••••• 9.9
VAX Data Management Systems ;;. ' .. '"'' ... '. . .. 9-9
VAXlVMS Languages ; ,: 0:. ' .. ; ' •..•. " • .9-9
ALL-IN-l•...... ,.,' ..•... :; ... · ;:; 9-9

Chapter 10 • VAX DECslide

WhoUsesVAXDECslide. '" 10-1
Benefits of VAX DECslide : 10-2
VAX DEC slide - a Closer Look .. 10-2

Using The Icons and W>rd List Selection Menus 10-3
Creating Objects and Text .. 10-4
Modifying Objects and Text 10-6

Painting Slides ... 10-6
Creating DECslide Output. .. 10-7

Printing .. 10-7
Photographing ... 10-7
Exporting a Slide. 10-7
Managing The Library of Saved Slides 10"7

Chapter 11 • VAX VTX

Who Uses VAXVTX .. 11-1
Benefits of VAX VTX 11-2
VAX VTX - A Closer Look .. 11-4

Designing an Information Base .. 11-4
Building Pages In a VAX VTX Information Base. 11-6
Ibpulating and Maintaining a VTX Information Base 11-6
Maintaining VTX User Accounts 11-6
Bringing Up The VTX Information Base .. 11-7

Glossary .. G-1

Preface

The book you are now reading is one in a set of three describing offerings from
Digital Equipment Corporation in the area ofVAX!VMS software. More specifi­
cally, this three-book set covers VMS System Software, the associated Lan­
guages and Tools, and Information Management solutions.

• The VAXJVMS Software Handbook Set
The three volumes of the VAX!VMS software handbook set are meant to give
you, the reader, a substantial overview of the covered products' capabilities,
features, and benefits. They attempt to go into enough depth so that readers at
various levels of technical proficiency can all find the book useful when investi­
gating VAX software solutions. Every reader is different. Each of you will want
to read different portions of one or more of the books. Some of you may want to
browse or skim for as little as 10 or 15 minutes - others among you may want to
spend several days, and to continually refer back to certain chapters:

Note however that the books are not intended to serve as user documentation.
They are not meant to have the same depth of technical information as "lire user
documentation sets for the various products. Note also that it is not the intent of
this 3-book setlo discuss every software product that can run on VAX systems.
Products covered in the set simply fall into one of three closely related catego­
ries - system software, languages and tools, and information management. Not
only are there many more Digital software products available for VAX systems,
but several hundred third-party products as well. For information on such
products, refer to publications listed at the end of this Preface .

• The Information Management Handbook
This handbook is written for the person with anywhere from moderate to no
expertise in using sophisticated information management software. It attempts
to explam to the reader a number of the key issues surrounding information
management solutions - what to look for in the capabilities of your software,
what.to avoid, what might be a good approach given certain existing conditions
in your organization.

The book begins with an "Executive Summary" that lays a foundation for the
remaining chapters by discussing information management in general, overall
terms. It presents a few key concepts, touches on problems and challenges that
may be facing your organization today, and suggests that Digital's VAX Informa­
tion Architecture may be the best total solution for you.

Chapter Two offers four possible customer scenarios which have as their pur­
pose to illustrate some ways to get the most out of VAX Information Architec­
ture products. You will come to see, from reading this chapter and the
remainder of the book, that the possibilities are. nearly unlimited for putting
successful combinations of thes~ software products to work in your
environment.

The nine remaining chapters present the individual products that make up the
VAX Information Architectur~, one at a time. Attention is given throughout,
however, to the ways in which each product can interact with otherS in the set.
In each of these chapters, the product is defined, its typical uses and users are
described, key features and the resulting benefits are explained, and a closer
look is taken at certain major aspects of the product.

Finally, a glossary of terms often used in conjunction with Digital's VAX Infor­
mation Architecture is included for your reference and convenience.

• For Related Information

Recall that a great deal of related information will be found in the two other
handbooks that make up this set, the Languages and Tools Handbook and the
VMS System Software Handbook.

But to learn more about various aspects of other VAX software, hardware,or
systems, refer to any of the folloWing publications. They can be obtained
through your local Digital Sales Office or Sales Representative.

• The VAX Software Source Book - \blumes 1 (Application Software) and 2
(System Software). These books describe over 1,600 software products for
VAX systems, both Digital and non7Digital, "third-party" products.

• TheALL-IN-l Handbook

• The Digital Dictionary

• VAX!VMS Internals and Data Structures

• Documentation Products Directory

• Digital Software Product Descriptions (SPDs)

• The vAXlVMS \krsion 4 Technical Summary

• The VAXcluster Software Technical Summary

Chapter 1 • Executive Summary - What is Information
Management?

Organizations today have to cope with ever-increasing quantities of informa­
tion. Controlling inventory, tracking customer credit, filing reports with gov­
ernment regulatory agencies, and analyzing trends are all examples of managing
information. But what exactly does "information management" mean? The
next few pages provide an answer.

• What is Information Management?

Information management refers to the software capabilities that a computer
system uses to handle and manage data.1taditionally, these software capabili­
ties have fallen into three general categories: file management, data manage~
ment, or database management. A particular system may provide anYOne or .,:
of these three capabilities.'{

Fae Management

y: .
.. ~

The most basic and most common information management software capabil;.
ity is file management (sometimes referred to as record management). At th~
level of capability, programmers write application PJ:ograms that use the sen¥
ices of a file managemen~ system to access data in single, unrelated files. Th~ti
files are usually stored on disk and organized in a sequential, relative (numbereq:
cells), or indexed sequential (ISAM) format. The applications are written ~'
traditional high-level programming languages such as COBOL and FORTRAN. "

DiWtal's VAX RMS (Record Management Services)"is an example of a file man­
agement system.

In most cases, a program using a file management system must precisely
describe within its logic the data to be managed by the program, and where this
data is stored. For the program to access data, the data must be storedin exactly
the form and location described within the program. If the form of the data or
how the data is stored changes, the data descriptions in the application program
must exactly reflect these changes. fu other words, the application program and
the data it manages are strongly dependept on one another.

Typically, ill order to access data with a data management application, the end
user must have some knowledge of how the application is written a)1d how the
data is stored.

In file management systems, data security is provided by the operating system
or by the application program.

1-2 • Executive Summary - What is In/ormation Management?

File management systems are used extensively in the.,structured (or D:ita
Processing) environment, as well as in the departmental and ad hoc
environments.

Data Management
The term «data management system" is usually applied to a system, or combina­
tion of systems, that provides such user-oriented, tools as: query languages;
report writers; and data diction;mes for managing logical records. .

The combination of the W!.X RMS~record management services and VAX DATA­
TRIEVE (with the VAX Common Data Dictionary) provides data management
on VAX systems.

Database Management
Database management is the most sophisticated level of information manage­
ment. One of the most important features provided by a database management
system is complete data independence, which allows data definitions to be
removed from the application programs that use them and stored separately in
a common area. The advantage of data independence is that if a change is made
to a data definition used by one or more programs, no change need be made to
the logic of any of the affected programs; it need be made only to the external
data definition (and therefore only once).

Database management systems typiCally provide comprehensive security fea­
tures that can he used to limit access to data, and data integrity features that can

. be used to ensure the accuracy and consistency of data and to recover from
hardware failures. They also provide sophisticated techniques for modeling
data structures and data relationships.

Database management systems were developed originally for the structured
data processing environment, but they are being used more and more fre­
quently by departmental and ad hoc users.

Aparticular DP shop may have information management systems that fall into
one or more of these major categories. It is most likely to have a file manage­
ment system, and a harried staff desperately trying to develop new- applications
while updacingand maintaining the current array of applications.

, It is far less likely to have a sophisticated database management system. And
even less likely to have arrintegrated information ma,nagement system that has
the capability to meet all current information management needs and to be
extended to meet all. future needs. More about this level of capability - the
fourth level- in a moment.

• Another Perspective - Data Processing vs. Information
Management

1·3

The terms data and in/ormation are often used interchangeably, but the two
words have different meanings. Data refers simply to facts that are not yet
related to one another. Examples include a list of part numbers, the names and
addresses of your customers, or the number of hours a particular employee
worked during a particular week. Information, on the other hand, is data organ·
ized in such a way as to answer a question or facilitate some organizational need.
Price lists, for example, contain useful information because they relate individ·
ual products to prices. Turning data into information is generally referred to as
data processing.

Whether your organization is computerized or not, you process large quantities
of data every day. Multiplying the price of an item by the quantity ordered is
data processing, yielding important information - the total invoice price.
Checking the name of a potential customer against a list of customers who have
exceeded their credit limits is another process that produces useful information.
Figure 1-1 illustrates this difference between data and information.

~ales _
tax

DATA

, ORDER
PROCESSING

L-____________ ~

INFORMATION

Figure 1-1 • Processing Data To Yield In/ormation

The ways in which you gather and store data and then transform that data into
useful information can affect the success of your organization. Your data must
be accurate, up-to-date, and readily available. Your data processing must be
both efficient and reliable if it is to provide the information you need when you
need it.

1-4 • Executive Summary - What is In/ormation Management?

Data Processing
The goal of data processing, whether manual or automated, is to make useful
informatioi) available. Typical processes include:

• Recording

• Searching

• Sorting

~ Calculating

• Comparing

.·Upda~g

.Processing requests can come from any of s~eral departments or locations, but
data processing. generally takes place in central departinents where the <l;ccuracy
of data. can be controlled. Centl"lllization relieves individual departments of the
necessityofkeeping t~ck of changes made by other departments. So, for exam­
ple, insurance agent's f~lward changes in their clients' policies to a central office,
where the changes are rec~rd~d and the new premiums calculated. When there
is a claim against a policy, the adjuster gets the necessary policy information
from the central office.

In organizations with automated processing systems, users bring their informa­
tion requirements to a central data processipg department staffed by profes­
sional programmers and analysts. Thi~ group designs and implements the
application systems that meet user requirements·. However,. the process of
translating needs into computer specifications and then maintaining applica­
tions once they are in place is expensive. As a result, central data processing is
best suited· to highly structured, high-volume applications, such as complete
order entry or inventory systems; . Speci~ or ad hoc requests for information
often remain unanswered for long periods of time because. maintaining stmc:
tured applications has ahighe~ priority. ..

Infonnation Management
Requests fot information have been increasing steadily in recent years. The
trend has led managers to seek solutions outside the data processing depart­
ment. Instead of submitting all requests to a central group, department heads
have begun to hire their own programmers to develop departmental
applicarions.

1-5

Decentralizing data processing in this way increases overall efficiency, but at
the expense of control. Traditional data processing requires that each appli­
cation program describe the data and how it is used within the logic of the
program. Programs and data, therefore, can be very dependent on one
another, and if one changes slightly, the other must also. Redundancy and
inconsistency result when different departments process data indepen­
dently. Instead of accessing the central files, departmental programmers
often duplicate data stored in the central files for their own applications.
Subsequent updates to the central files are not included in the local copies,
so that files become less and less reliable over time.

To enable organizations to maintain control over data processed locally by dif­
ferent departments, vendors have recently begun developing software products
that keep the definition and management of data separate from application pro­
grams. With these information management products, individual departments
no longer need to maintain their own data files, nor must data access originate
in a central data processing department. Instead, processing can take place
locally, while the software protects data against unauthorized access, redun­
dancy, and inconsistency.

Information management makes it possible for users outside the data process­
ing department to get needed information without concern for the details of its
physical storage. Office workers and managers can examine data and format it
as useful information. Different departmental data processing groups can
simultaneously update the central files without interfering with one another.
Programmers can update programs without having to redefine the files· in
which data is stored.

Correctly implemented, information management software can improve the
overall efficiency of an organization's data processing. Relieved of the nec~ssity
of answering numerous ad hoc requests from users, the central data processing
department can devote full attention to designing and maintaining structured
applications. In other departments, information management tools let users
develop their own applications to answer their own information needs.

1-6 • Executive Summary - What is In/ormation Management?

• Managing Information: The Problems Facing the DP
Manager

The typical DP shop today is having an increasingly difficult time meeting the
requests of the organization for data processing_ At best, it may be managing to
cope; at worst, falling farther and.farther behind.

There are several reasons:

• Manpower c~~ts are rapidly mcreasing.

• Additional program devdopment talent is growing more scarce.

• There is a push for more and more computerized processing.

• Known program devdopment backlogs are typically three years. When the
hidden.backlog iSMSO cbnsidered, (Many desired applications are never for­
mally requested because of the already-huge known backlog.) total backlog
tends to be approxim~tdy six to seven years. . '.

• Data processing shops spend 60% to 70% of their budget on software
maintenance.

• End users cannot get the information they need when they need it.

• Demand for system control (security, centralization) is increasing.

Some DPshops are attempting to rdieve the pressure on their departments by
disttibuting some of the data processing responsibilities out to the departments
and end users making the requests. With the data processing responsibility, of
course, goes the data. However, there is a built -in pitfall in doing this: reducing
central control over data allows data redundancy. Data redundancy is multiple
occurrences of the same data item,spread over one or more systems.

Data redundancy reduces. efficiency by making it necessary to update ~everal
occurrences of a data item instead of just a single occurrence; and it 'can
threaten the reliability of the organization's data, because there can be no guar­
antee that every occurrence of a particular data item spread across an organiza­
tion will be kept up to date.

So what's the solution? How does the DP shop meet all the demands being
placed on it while holding down program devdopment costs and maintaining
control over the rdiability and consistency of the organization's data? With a set
of coordinated, compatible information management tools that can solve a
wide variety of problems for you.

1-7

• Information Management Tools

Many software tools are available for setting up efficient information manage­
ment systems. These tools perform the following functions:

• Information resource management, providing central storage of data descrip­
tions and record definitions

• Data access, allowing you to retrieve information easily

• Distributed processing, allowing you to process data stored on other
computers remotely from your local system

• Reports and graphics generation, providing informative and attractive
reports, graphs, and charts

• Terminal management, displaying familiar business forms on the tertninal
screen to make it easy to manipulate the data in your files

• Data and database management, controlling data shared by many users

• Application management, controlling large, complicated applications

Information Resource Management
Data in files is described by record definitions. lIaditionally, these definitions
have been included in the programs that process the data. The COBOL data
division, for example, contains definitions for all of the data used in a COBOL
program. Information resource management helps avoid a proliferation of files
containing the same data defined differently. This approach makes data
descriptions independent of program logic. The principal tool of infortnation
resource management is the data dictionary.

Data dictionaries define and describe all of the data items used by an organiza­
tion. Instead of creating new files andrecord definitions as they perceive a need,
programmers can use the data dictionary and the infortnation resources that
already exist.

Data dictionaries can be active or passive. Passive dictionaries simply store
descriptions of data and generate listings of data definitions and available infor­
mation resources. Acrive data dictionaries allow programs to extract data defi­
nitions as program source code. With an active data dictionary, you can create
new applications, or ~odify old ones, without redefining data. Instead, you can
include the dictionary definition automatically in your application regardless of
language. Use of an active data dictionary increases efficiency and maintainabil­
iry by reducing the number of program:speci/ic definitions.

1-8 • Executive Summary - What is In/ormation Management?

Data Access
To make it easy to retrieve data for processing, special query languages let you
use everyday English words to perform tasks that used to require application
programs. Important query language capabilities include:

• Searching files for information based on criteria you specify

• Sorting data

• Adding data

• Modifying data

• Deleting data

• Protecting data

For example, a query language lets you use a simple command to find the
names of all your employees who earn between $25,000 and $30,000 a year:

PRINT EMPLOYEES WITH SALARY BETWEEN 25000 AND 30000

The query language finds all employees matching this criterion and displays
information about them on your terminal screen.

Distributed Processing
Distributed processing gives you the ability to access data on. remote computers
as easily as you access data stored on your local computer. With distributed
processing you can decentralize your data files without introducing redundancy
or relinquishing controL

In a distributed processing environment, the data your department uses most
frequently is stored locally. When a user on another computer needs to access
your data, distributed processing software handles the physical data retrieval.
From the user's point of view, there is no difference between local and remote
processing. Distributed processing helps prevent data redundancy, because no
new copies of the original data files are made.

Report and Graphics Generation
Report writers make it easy to retrieve data from central files or databases, to
arrange and manipulate that data, and to produce informative and attractive
reports.

1·9

For example, a simple summary report might involve printing the name and
monthly revenues of each branch of a department store chain followed by
the total monthly revenue. Producing this report with a traditional program­
ming language requires the following steps:

• Create a variable 'IDTAL.REVENUE and set its value to zero.

• For each branch, add the monthly revenue to 'IDTAL.REVENUE, and then
print the values of NAME and REVENUE in the report.

• After the last branch has been processed, print the value of
10TALREVENUE in the report.

With a report writer, you do not need to calculate the total explicitly. Instead,
simple commands specifying what you want, not how to produce what you
want, are all that is required: .

PRINT NAME. REVENUE

AT BOTTOM PRINT TOTAL __ REVENUE

Most report writers let you store report fortnats for future use, so that once you
have defined a fortnat, you can use it later to produce reports automatically.
Whether you need a report that is used only once or one that the government
requires you to file each month, a report writer allows you to produCe the report
quickly and easily.

Graphics generators are similar to report writers, but instead of producmg
reports, they present the datI!. stored in your files as line and scatter graphs, bar
charts, and pie charts. To allow you to create graphs without having to write
programs, graphics generators usually offer a simple command syntax or a
menu interface· for: graphic design.

Graphics are a dramatic way to change data into infortnation; large quantities of
infortnation can be grasped at once, and trends quickly become apparent. Con­
sider, for example, the differen<;e between reading columns of figures and see·
ing a graph of those6gures over time. Graphics programs can quickly produce
sophisticated color displays of your data.

Tenninal Management .
In business, t:nost data is gath~red and stored on f~rtns, Displaying such fortns
on a terminal screen provides a familiar and easy method for entering and
retrieving data.

Many fortns processors check values as the data is entered and a<;cept a value
only if it is of a specified type or within a specified range. For example, you cari
direct the fortn to a.ccept a value for an employee code only if that value corre­
sponds to one of the values listed with the fortndefinition. Control of this kind
leads immediatdy to fewer data entry errors.

1-10 • Executive Summary - What is In/ormation Management?

Database Manljgement$ystems .
During the 197(}s,sophistltateddatabasemana'gement"systems (DBMS)
emerged to provide greatercontrolovetdata than that {available withconveri".
tional @e structures. '

In gene~al terms. a dat~ba~ iSi si~ply, stored data, b~ttht;termh~'~ more
specialized qle@:mg' ilith,e context of dataoase mapageni~nt Systems. Like
traditional@es, DBM'S @escontain data ~d record definitions;but DBMS @es
also contain representati6ns of the relationships among the data ii:~ms and
reCords. Instead of relyi1~~f6n'traditional @eaccess'iriethods, DBMS softWare
controls access to data and data definitions. . . ,:

There are three basic database structures:

• HIerarchical:;

• Nertvork, also ~-aned the CODASYL modelbecaus~ the,CQnfer~nce on DAta
SYstems Languages has been active in deveioping netwo~k databas'e
specifications

• Relational

The hierarchical database otgaJ;lizes·the relationships between record types as a
tree structure. Related records are stored on the same branch of the hierarchy to
facilitate efficient data retrieval. A disadvantage of the hierarchical structure is
the lack of flexibility in navigating through the database: once you choose.one
of the branches, there is no way to get to the records on the other sid~ of the
branch without moving back ~pthe tree to the iUl]ction 0fth~ required br!1Ilch~
At that point ym" canb~gin working clown the.oth.er side of the tree.

In Figure 1-2, the hierarchical relationships are clear:

,: Figpre 1-2 • The J{ierarchical Dat(lbase, MOdel

1-11

Records C and D are clearly related to Record B, which is, in turn, related to
Record A. If you want to relate Record C to Record E, however, the hierar­
chical organization of the database requires you explicitly to link C to B, B to
A, and A to E when you access these records in a program.

With the network or CODASYL model, any record can be related to any other
record without the restrictions inherent in the hierarchical structure. Because
records can participate in relationships, called sets; that are not limited to
records hierarchically above and below, the network model provides flexibility
in matching database structures to your data proce~ing needs. '

In Figure 1-3, the EMPLOYEE record participates in three set relationships:

MANAGES

, CONSISTS OF ,

RESPONSiaLE_FOR

Figu;e 1 '3 ~ 'The Network (CODAsYi) Datab~se Model

Departments both consist ot' employeesand are managed by them: In addition,
employ~s are responsible for maintaining 'parts; By adding record types and
sets in this way, y6bcan use a rtetworkdaiaba~ to reflect the ,data telati~nships
in yoiIt'organization. Th€; aavantage of predefining relationSFiilis in nertVork
databases, especililly dataWises contiib,ingJarge Q.Jlmbers of reCords, i~proc~s-
ing efficiency. .

The relational database;model provides more flexibility than eitherthehietar­
mical or the network niodelbecause relations:hips do not exist as predefined
structures. Instead, data is stored in tables, and relationshipsbetw~ two or
more records are established by matching the values of key fields common ~to
those records.

1-12 • Executive Summary - What is In/ormation Management?

STUD~HT record

l:STUDENu~qJ'~AME; '~DDflESS '"CITY 'STATE' Zlpl
COURSE recl,rd

t C;l!RSE_NO t SEaION~NO lSTUDENT~N6' GRADEJ i

Figu~e 1-4 • The RelatwniilDalabase Model
'. ' ' <' .", ;', ~"') \ >" ," .. . "i '.' . .' ' ;

In Figure 1-4; no relatlbiiships between students and classes are defined.
Because the student number is'"ommon to both records, however, it is eaSy to
associate a class number and grade with the name and address' of the student
who took that course and earned that grade.

In summary, implementation of a database management system can provide
several benefits:

• Reduction in redundancy.

Instead of storing several copies of the same data in each of several files, a
DBMS stores data arid data definitions in central files and controls the physical
storage.

• Views.
Individual users see only those portions of the database they need to do their
work, and they update data as if it were stored in local files. These subsets of
the database are called logical views.

• Security.
DBMS software enforces security. If some of yout: data is sensitive, you can
ensure that only authorized perSonnel can read or change it.

• Shared access.

Because the DBMS. :controls access to the data, it ~s possible to control shared
access to files,,:pus means that many of your employees can update the
database sim~ltaneously without'lntrQducing errorS. DBMS software is
programmed to resolve anyconflictstltat.might ~se. '

• Recovery from failure.

As employees process database data, their transactions, are recorded in a
journal file. Therefore, the database can be reStored to accutacy if hardware
failures (lorrupt or'destrOy a day's database activity.

1-13

Database management systems pro.vide these benefits because they perfo.rm
many o.f the data handling and file co.ntrol functio.ns that must be perfo.rmed
by individual pro.grams in a co.nventio.nal file management system. Co.nver­
sio.n to. a DBMS fro.m a co.nventio.nal file system, however, can be expensive
at first, in part because trained technical personnel are o.ften needed to.
design and implement DBMS applications.

Application Management
As yo.ur information' management system grows and becomes accessible to.
more and more employees, you need more control and mo.re efficient process­
ing o.f common data. Application management systems answer this need. Typi­
cally, application management systems let employees with little o.r no. computer
experience perfo.rm standardized data processing tasks by making selectio.ns
from a menu displayed on a terminal screen.

Application management systems give you broad cOlltrol o.ver which menus
each o.f yo.ur emplo.yees can see and use and o.ver the tasks e~ch emplo.yee can
perfo.rm. These systems also. provide facilities fo.r lo.gging the wo.rk users have
do.ne. Such data is necessary bo.thfo.r applicatio.n security and fo.r tuning appli­
catio.n programs. With applicatio.n management systems yo.U gain the benefits
o.f efficient data processing while minimizing the risk o.f granting broad access
to.yo.ur company data.

• Planning an Information Management System

Each o.f the to.o.ls previo.usly described provides benefits, but no. information
pro.blem has o.nly o.ne so.lution. Different tools, and groups of to.ols, so.lve differ­
ent problems. Fo.r example, a query language and repo.rt writer might provide
all o.f the info.rmatio.n management needed by a co.mpany o.f 50 emplo.yees. On
the o.ther hand, a co.mpany that manufactures and distributes.mo.re than 1000
pro.ducts sho.uld certainly investigate the benefits o.f a database management
system. To. make an intelligent cho.ice, yo.U must evaluate the informatio.n man­
agement products available in light o.f yo.ur particular needs.

The fo.llo.wing chapters introduce Digital's family o.f info.rmation management
products, the VAX Info.rmatio.n Architecture. In additio.n to. learning abo.ut the
products, yo.U will see ho.w they wo.rk together in different co.mbinatio.ns to.
answer different needs.

1-14 • Executive Summary - What is In/ormation Management?

• Digital's Solution for Information Management

What the DP shop needs in today's data processing environment is a fourth
level of information management capability - an information management
"solution" that:

• Makes more efficient use of the current program development staff

• Improves productivity at all levels of the organization

• Provides a set of individual information management products that can be
integrated or extended, as needed, to meet current and changing needs

Digital supplies such a solution with a family of information management prod­
ucts called the VAX Information Architecture.

• The VAX Information Architecture

The VAX Information Architecture consists of a family of information manage­
ment products that can function alone or in concert with one another to meet
almost any individual information management need. These products establish
a modular framework that allows customers to choose a tailored information
management solution (particular set of products) that satisfies their current
needs, and to employ additional capabilities later on as the needs change -
without impacting past, current, or future development investments.

The VAX Information Architecture addresses seven general functional catego­
ries of information management:

• Common Storage

• Data Access

• Data Management

• Distributed Processing

• Reports and Graphs

• Application Management

• Terminal Management

• How the VAX Information Architecture Products
Work Together

The VAX Information Architecture is a modular resource whose component
products can be used to customize a "solution" for almost any information man­
agement need or set of needs.

1-15

There are currently nine separate but interrelated products in the VAX Infor­
mation Architecture family:

• VAX Common Data Dictionary (CDD)

• VAX DATATRIEVE (fourth-generation language and data management
facility)

• VAX DBMS (CODASYL database management system)

• VAX RdblVMS (relational database management system)

• VAX FMS (Forms Management System)

• VAX TDMS (Terminal Data Management System)

• VAX ACMS (Application Control and Management System)

• VAX DECgraph (graphing facility)

• VAX DECslide (text and graphics presentation facility)

• VAX VTX (videotex presentation service)

The VAX Common Data Dictionary (CDD)
The VAX CDD is the hub of the VAX Information Architecture. It is the central
repository for data definitions used by other VAX Information Architecture
products and also, optionally, for data definitions used by application
programs.

The,CDD is required for using VAX DATATRIEVE, VAX DBMS, VAX TDMS, and
the VAX ACMS. It is optional for use with VAX RdbIVMS:

Storing data definitions in the CDD that would otherwise have to be defined
within the logic of the apllication programs that use those definitions frees
application developers from the need to define the data their applications use.
In other words, the CDD makes it possible to remove data definition from the
program development process. This not only saves development costs; it also
fosters consistency, by requiring that only one copy of each data definition need
exiSt, and it facilitates maintenance by requiring that onlyone copy of each data
definition need be changed.

VAX DATATRIEVE
VAX DATKfRIEVE is a data retrieval and reporting tool, that you can use to
access any data stored on a VAXNMS system, including data stored in VAX RMS
files and in VAX DBMS or VAX RdblVMS databases. Data can be accessed inter­
actively or through application programs.

1-16 • Executive Summary - What is In/ormation Management?

VAX DATATRIEVE also includes a graphics facility you can use to produce plots
that are excellent for discovering trends and supporting decisions. If more
sophisticated graphic displays are required, the DATATRIEVE/DECgraph inter­
face allows you to take advantage of DECgraph's powerful graphics facilities
without sacrificing DATATRIEVE'S powerful data retrieval facilities. For exam­
ple, you might use DATATRIEVE to form a subset of data from an annual report
and then pass this data on to DECgraph for forming into a multicolored display.

Using VAX DATATRIEVE with DECnet provides distributed access to data.

VAX DBMS (Database Management System)
VAX DBMS provides sophisticated capabilities for creating, accessing, and
maintaining large engineering, scientific, and commercial CODASYL-style
databases. The major advantages of VAX DBMS are its efficiency and its ability
to control the sharing of the same data by a large number of concurrent users.

The definitions that form the logical structure of a VAX DBMS database are
stored in the CDD.

You can use VAX DATATRIEVE to manipulate the data stored in a VAX DBMS
database. You can use VAX DATATRIEVE to:

• Format into a report or graph data retrieved from a VAX DBMS database

• Link data stored in a VAX DBMS database with data stored in conventional
files

• Automatically search the relationships stored in a VAX DBMS database and
retrieve data without requiring the user to enter detailed information about
the database structure

VAX RdbNMS (Relational Database Management System)
VAX RdblVMS provides facilities for creating, accessing, and maintaining rela­
tional databases. In a relational database, data is stored in the form of
two-dimensional tables instead of in complex hierarchies or networks. VAX
RdblVMS provides all the advantages of a full-feature database management
system, including data security and optimized data access. At the same time, it
provides the ease-of-use features inherent with the relational-style database:

• A relational database is easy to understand.

• A relational database can be created, modified, and maintained without the
services ofa professional database administrator.

1-17

VAX RdblVMS data definitions can be stored in the CDD on an optional
basis. As with a VAX DBMS database, you can use VAX DATATRlEVE to
retrieve data from a VAX RdblVMS database. You can format this data into
graphs or reports with VAX DATATRlEVE, or you can send it to the more
sophisticated facilities of VAX DECgraph.

VAX TDMS and VAX FMS
VAX TDMS, Digital's Terminal Data Management System, is a programmer pro­
ductivity tool designed to reduce the high lifecycle costs of developing and
maintaining forms-intensive terminal applications on VAX/VMS systems.

roMS offers a wide range of features making it easy to develop applications that
display and collect information, relieving the programmer of many of the "bur­
dens" associated with conventional forms-based applications. TDMS is a part of
the VAX Information Architecture, as it uses the VAX Common Data Dictionary
and can interact with VAX DATATRlEVE, VAX DBMS, VAX RdbIVMS, and VAX
ACMS. It provides a record-level interface, while VAX FMS offers a field-level
interface.

The VAX Forms Management System, FMS, is an alternative to roMS. It, too, is
designed to aid in the development of application programs that use video
forms, but takes a different approach from that of roMS. These two alternative
solutions are compared and contrasted at some length in Chapter 7.

VAX ACMS
VAX ACMS, the VAX Application Control and Management System, was
designed to reduce the lifecycle costs involved in designing, developing, main­
taining and controlling transaction processing and other complex vAXlVMS
applications.

Unlike traditional application development tools, ACMS allows for the replace­
ment of large amounts of application code with high level definitions stored in
the VAX Common Data Dictionary. With the use of such definitions, users now
have available a fourth generation-like language facility that can significantly
reduce the development and maintenance lifecycle costs oflarge, complex soft­
ware projects.

VAX DECgraph
VAX DECgraph is the VAX Information Architecture's hiteractive, menu-driven
tool for generating graphs from data. It is designed to be used by experienced
computer users and novices alike, offering a wide spectrum of capabilities for
producing professional quality graphs.

DECgraph is for anyone with a need to see or show data pictorially. With
DECgraph, the capability now exists for such people to generate graphs on their
own, quickly and easily. Even the most novice of computer users can now
become an accomplished designer of graphs in as little as one hour.

1-18 • Executive Summary - What is Information Management?

DECgraph, then, should bethought of as a productivity tool for anyone who
either makes decisions based on data or is responsible for presenting that data
to those decision makers. It allows the professional who "owns' a certain set of
data, and is thetefore "closest" to it in understanding, to create a graph of that
data for maximum effect.

VAX DECslide
VAX DECslide is a menu-driven graphic presentation design tool that runs on
the VAX!VMS operating system. It is intended for use by anyone who needs to
prepare professional-quality presentations and reports.

Anyone with responsibility for creating text and graphic materials for presenta­
tions or reports can benefit from using VAX DECslide.

As a layered software product on the vAX!VMS operating system, DEC slide
runs on any valid VAX!VMS configuration. It can be an effective solution not
only in the busiriess world, but also in scientific, educational, manufacturing,
and governmental environments as well.

VAXVTX
VAX VTX is a videotex system designed for internal use by businesses and other
private organizations. It is a VAX!VMS software product which conforms to
international standards for videotex systems; it requires no specialized hard­
ware. VAX VTX delivers information quickly and simply to a variety of com­
puter terminals and personal computers. It can be integrated into Digital's
ALL-IN-l office automation system without any additional hardware. It can
also be added as an extremely easy-to-use front end to an organization's tranSaC­
tion processing applications without requiring major rewriting of existing
systems.

Organizations that want to present some or all of their internal publications and
transaction processing applications simply, uniformly, and efficiently will bene­
fit from VAX VTX. Whether the organization's information is on a single com­
puter or distributed worldwide oyer a computer network, VAX VTX offers fast,
up-to-date information to users;

Using VAX VTX, a department head can make frequently requested and fre­
quently modified departmental publications available from a single source,
make them easy to keep current, and keep them readily available for wide­
spread use. Employees whdwants qUIck, simple, reliable access to a variety of
information (applications ranging from weather reports, airline reservations,
and motel information to personnel policies and procedures; sales information,
directories, employee activities, credit union transactions) have a convenient
source that saves time and effort ..

, "

Chapter 2 • Case Studies in Success with the
VAX Infonnation Architecture

In this chapter, you'll find exampl~ of how the VAX Information Architecture
products can be used to design a~number of business, commercial, and scien­
tific applications. While the individuals and companies are fictitious, they
represent the kinds of ways that Digital's information management strategy is
being put to work today.

• A Relational Solution for Building an OEM's Publishing
System

Scribe Industries is an original equipment manufacturer (OEM) that provides a
complete system to create, edit, and maintain sophisticated technical documen­
tation sets for the telecommunications industry. Scribe's customers produce a
variety of satellite and telecommunications equipment that require highly
detailed information to be used by engineering and manufacturing depart­
ments in many facilities. It is both essential and expensive for Scribe's customers
to keep thousands of pages of documentation up to date.

Because many sections in the documentation sets are related or identical,
Scribe's goal was to create a system that could exunderstand and work with the
diagrams, specifications, FCC and,government regulations, supplier informa­
tion, and thousands of pages of text, with a minimum of redundancy. For exam­
ple, before the Scribe system, changing a part description when an identical
part is used in five different products involved five separate operations. The
new system puts documentation sets into a reliable, easy-to-maintain, and read­
ily available system.

The design of this system required careful planning and analysis of an array of
products from many software and hardware manufacturers. The hardware and
software used by Scribe had to meet a variety of criteria - factors like price,
performance, reliability, software compatibility, and availability of program­
ming languages. The vendor selected had to be reliable and reputable, because
once a commitment was made" hundreds of thousands of dollars and years of
development would be on the line.

2-2 • Case Studies in Success with the VAX In/ormation Architecture

VAX Information Architecture Relational Products Bring Unique Features
to Application Development Problems.
James Richards, senior development manager for Scribe, chose Digital's VAX
Information Architecture products and VAX systems to design and implement
the new system. It was clear to Richards that the most efficient design for the
system would be achieved by using a relational database system. Because much
of the equipment described in the documentation sets share the same or similar
components, and because suppliers of the components must conform to the
same regulations, a system that could use relations to make the correlations
among and within various documentation sets was essential.

His plan was to develop a distributed workstation approach to handle the edit­
ing functions with a local area network of graphics and editing workstations
accessing a central database. By using specialized workstations, computer over­
head could be greatly reduced, and the user interface could be optimized for a
specific task. Several devices had to be supported by the system to accommo­
date these specialized publication-quality graphics and word processing termi­
nals. Richards also had to plan for the possibility of connecting the system to
sophisticated layout and printing systems.

He looked at a number of relational database products and decided Digital's
VAX Rdb relational database management systems offered unique features to
simplify the design and implementation of the system. That the databases and
database applications could run on a complete line of processors of varying
sizes was extremely important. As an OEM, having one product that doesn't
need to be modified for customers with different system requirements means
substantial development savings.

A Choice of Operating Environments to Meet Special Needs
When he looked closer, Richards found that Digital offered something no other
vendor did - a choice of operating environments that can share common appli­
cations. And VAX Rdb relational systems that can handle the unstructured data
types - the graphics, documents, tables, and charts - that make up the lion's
share of documentation and manuals.

This choice meant Richards could use the VAX Rdb/ELN database system run­
ning under the VAXELN operating environment for the workstations. VAXELN
is Digital's realtime operating environment for time critical and dedicated, fixed
function applications. The less expensive VAX Rdb/ELN was well-suited to this
purpose because the workstations would only be needed to access the central
database, update the information using the specialized editors that reside on
each one, and then return the updated information to the main system. The
database, running VAX RdblVMS under the VMS operating system would pro­
vide security for the sensitive information in the database.

2-3

One reason Richards chose the VAXELN environment for the workstations
was that it includes special services that simplify the design of device drivers.
So the coding needed to control the unique editing and graphics terminals
was easier to write. Richards realized that because the work is primarily cler­
ical, the workstation operators would not need to use the Digital command
language, mail facilities, programming services, and other features of VMS.

With Digital Products Price, Performance, and Versatility Make You
More Productive.
Richards selected VAX -11/730 computers to serve as workstations connected
by a DEenet-VAX local area network to the database residing on a VAX-ll/750.
The central database is a VAX RdbNMS database designed to be under the
control of a system manager who can restructure the database dynamically and
maintain the security procedures.

Another big benefit of the VAX Rdb approach has been the low cost for Scribe.
Richards was surprised at the reasonable price of VAX RdbNMS and VAX
Rdb/ELN software. Because of the precompilers in the VAX Rdb systems,
development of specialized software took less time than was expected. A more
economical system developed in less time than originally thought necessary
meant good business for Scribe.

With a VAX RdblVMS Database, other VMS Layered Products can Use
Database Information.
Because the main database resides on a system running VMS, Richards is
designing an option for the system that gives users who already have VAXes a
way to add the documentation system to a broader VAX network and query the
database from an ALL-IN-l office menu. This allows the administrative parts of
the customer's organization to access portions of the database that may be use­
ful, using VAX DATA1RIEVE as an interactive query language.

VAX DATA1RIEVE is fully integrated into the ALL-IN-l menu system, so infor­
mation extracted from the database as VAX DATATRIEVE reports can be incor­
porated easily into word processing documents. For example, information
about suppliers and part ordering may be as important to the accounting
department as it is to design and manufacturing. Scribe already has many orders
for this option.

2-4 • Case Studies in Success with the VAX In/ormation Architecture

• A System That Grows ... from Office Automation to
Information Management ..

For a number of years, the W:>rldwide Insurance company had been using
Digital's ALL-IN-l office menu system in their corporate offices. Corporate MIS
director, Anita JohnSon, chose ALL-IN" 1 as a way to provide W:>rldwide with
convenient word processing,.calendar management, and powerful electronic
mail facilities. The system was primarily considered to be a secretarial and man­
agement support tool.

Although W:>rldwide had an extensive corporate data processing department,
Johnson found many other departments were using the ALL-IN -1 Form Devel­
opment tools, VAX FMS, along with VAX DATATRIEVE from the information
management subsystem, to respond quickly to many departmental applications
needs. For example, when the claims department heeded a convenient way to
keep track of and report on approved automobile repair shops, Toni Reardon,
the department manager, developed the application in just a few weeks. And in
only a few days she trained the claims supervisors to maintain the system. The
rest of the claims department learned to use simple VAX DATATRIEVE queries
in a few hours.

Even in her own department, some developers used VAX programming lan­
guages, like VAX COBOL, to write sophisticated programs to help the account­
ing d~partment meet urgent needs. These programs were incorporated into the
ALL-IN-l profession specific subsystem.

The more W:>rldwide's office staff used ALL-IN-l, the more they demanded of
ALL-IN -1. After the first six months, Johnson sent out a survey to find out how
various departments were using the system. She learned that W:>rldwide's train­
ing department designed training materials and overheads with the word
processing editor, so she. added VAX DECgraph and VAX DECslide business
graphics presentation products to provide a convenient, economical way to cre­
ate slides and overheads for training literature and seminars.

But the major finding was that every department wanted more applications.
Many of the programs design~ by one department could be used by others. It
also became clear that over half of the reports and documents created using the
ALL-IN-l system ultimately ended up in W:>rldwide's 250 branch offices.

Create a Distributed Network to Manage and Share Infonnation ...
without Forfeiting Your Hardware and Software Investment.

2-5

Johnson faced a dilemma. It was clear more resources were needed to fulfill the
requirements of Worldwide's users. It was also clear that the move to a more
comprehensive information management system would involve a capital invest­
ment in hardware and software. What would happen to the VAX -111750 and all
the applications that were now running under ALL-IN-I? Developing new sys­
tems at the expense of old ones would be costly and hard to justify.

Clearly one approach was to tie all the departments into \Xbrldwide's main­
frame system. But the corporate mainframe was already overloaded handling
calculations of actuarial data and maintaining corporate accounting and billing.
The communications costs to connect individual terminals to a centralized
mainframe were staggering. And the expected response times were inadequate.

\Xbrldwide needed a system with exceptional networking to get the information
to its branches quickly. It needed a system that allowed people to be close to the
information they provide and maintain. And it needed to preserve its invest­
ment in hardware, software, and training.

The answer was to combine the VAX FMS, VAX DATATRIEVEand VAX language
applications from the ALL-IN -1 system with VAX VTX business videotex. The
key to the system would be to share applications and information throughout
the company. With integrated information management products, Worldwide
could implement a complete solution. And, because application compatibility
through common architectures is the VAX product strategy, Johnson knew that
\Xbrldwide would be able to add new products as they were needed.

The VAX Infonnation Architecture Lets You Put the Right Applications in
the Right Places.
The real beauty of this VAX Information Architecture approach is the way it
takes advantage of the existing programs and systems. For example, with the
VAX VTX system Worldwide was able to continue using the same VAX
DATATRIEVE program to create and maintain the repair shop report. Johnson
wrote a simple VAX DATATRIEVE procedure that puts this report into a format
that can be easily incorporated into the VAX VTXinformation base using the
ALL-IN-l editor and the VAX VTX tool for information providers.

The reports on approved repair and appraisal locations, boilerplate for policy
forms, premium information, rate structures - even individual policy-holder
profiles - could be stored easily in VAX VTX business videotex systems. With
powerful distributed capabilities, VAX VTX allows users to access videotex
information located on any computer in a network as if the information were on
the same system. And because VAX VTX is extremely easy to use, office staff
members and agents throughout the country can learn to use it in just a few
minutes.

2-6 • Case Studies in Success with the VAX Information Architecture

Wlrldwide'sVAXVTX system brings up-to"date information to over 300 people
in offices throughout the United States. A network ofVAXes and MicroVAXes
distributed in 12 regional offices runs VAX VTX. If the international division
decides to join the VAX VTX network, the system can handle thousands of addi­
tional users by adding more VAXes. And Worldwide insurance agents can get
videotex information using Digital personal computers or anyone of hundreds
of other personal computer models that have the ability to act as Digital VT -100
terminals.

For example, the Chicago office has a VAX-U/nO computer running the por­
tions of VAX VTX used to access, create and maintain information. People in the
Chicago office use the system to get current repair shop information from the
VAX-U/750 computer in the Indianapolis home office by selecting simple
menu items. VAX VTX locates and displays the report in seconds. And the the
location of the system with the information makes no difference to the agent in
Chicago. When a new shop is added, or if some infortnation about the shop
changes, a secretary in the Chicago office modifies the report using the
ALL-IN -1 editor and the VAX VTX information provider assistance tooL

When an insurance agent in Springfield, lllinois needs the same information,
the agent can telephone the Chicago computer and see the information on a
personal computer. In fact, if a vacationing policy-holder from California needs
to check policy information, the agent can phone the same system in Chicago
and verify the customer's coverage using the same menus. Any authorized ter­
minal connected to any of the VAXes in a network running VAX VTX can get
instantaneous information.

Protecting Your Software Investment with nansportable Applications
The big plus for Johnson and Wlrldwide has been the way the many branches
share applications, whether they're developed by the MIS department or by one
of the branches. For example, the Cleveland office uses the information in the
policy-holder profile to produce a monthly report of upcoming birth dates that
affect rates and premiums. Using this report, the branch sends notices of rate
reductions to drivers who reach age 25 and homeowners who are 65 and older.
Ideas like this make Wlrldwide more efficient and improve customer service.

Johnson has also instituted an online newsletter in the VAX VTX information
system. Departments and branches k~p each other up to date about company
and industry developments. A listing of the code for applications being used
across the country, like the one written by the Cleveland office, are put in the
VAX VTX newsletter so other branches can copy the application into their
ALL-IN-1 systems.

2-7

As W,rldwide Grows, so can their Infonnation Management System.
The best part of the VAX Information Architecture strategy is the part that lets a
company plan for future growth. That's because in the same way that W:>rld­
wide went from an ALL-IN -1 system to a broader information distribution and
retrieval system, they can continue to add applications without upsetting cur­
rent operations. For example, if in the years to come W:>rldwide needs to add
database management, the architecture offers CODASYL and relational sys­
tems, VAX DBMS and VAX RdbIVMS.

The solution for W>rldwide was the VAX Information Architecture strategy: a
strategy that progresses over time the way people and businesses do so they can
respond to new challenges and demands without being penalized for success
and the growth that goes with it.

• Inventory Tracking in a Manufacturing Facility - Designing a
Transaction Processing Application where Time is Critical

Electronic Automotive Suppliers (EAS) is a subcontractor for a major automo­
bile manufacturer. Since 1968 they have been producing electronic ignition sys­
tems and pollution control devices for new cars produced in the United States.
Today they are facing fierce competition from overseas manufacturers. Plants in
Asia and Latin America are attempting to move into the market and are plan­
ning to bid aggressively against EAS for a number of major orders.

EAS has sufficient commitments for orders for the next three years. However, it ..
is clear to Howard Conners, the company president, that they will have to sub­
stantially lower their bids to win contracts that will keep business running and
growing over the next decade. This critical situation caused EAS to carry out a
comprehensive study to discover ways to increase productivity and reduce
costs .

. One key way was to find a reliable, cost -effective solution to inventory control
and tracking requirements. Conners estimated that millions of dollars per year
coUld be saved in warehousing; interest expenses,accounting, clerical costs,
and manufacturing overtime with a system that would maintain accurate, easily­
accessible inventory records and through a material requirements planning
system.

2-8 • Case Studies in Success with the VAX In/ormation Architecture

Database Management means Thousands of Blrts can he Uacked Minute­
by-minute;
An inventory tracking system has dozens of people and programs simultane­
ouslyentering, updating, and retrieving information about new shipment arriv­
als, new orders, manufacturing requirements, and accounting procedures_ A
business can lose time and money if their system cannot share data and so these
operations can take place simultaneously_ Also, the data used to keep track of
the thousands of parts needed to manufacture sophisticated equipment data
must be consistent and secure.

Conners called in a consulting firm to evaluate £AS's operation, and recom­
mend solutions. Pete Hall, senior systems analyst with Information Consultants,
studied £AS. He concluded that to track parts, produce the simulations needed
to do sophisticated planning, and maintain detailed inventories, a database
management system was essential.

In fact, without the data independence provided by such a system,.it would be
impossible to do what £AS required. With a database management system pro­
grams can share data definitions so application design is more efficient. The
infomiation in the system would be vital if EAS were to make proper parts
orders, cash projections, assembly line assignments, and delivery plans. And,
only a database management system could offer the safeguards needed to pre­
vent accidental or malicious damage to the data.

An Overall Plan for Efficient Program Design, Easy-to-use Applications,
Exceptional Security, and Reduced Maintenance Costs
Hall called for a transaction processing environment to monitor the manufac­
turing, delivery, and shipment procedures. This runtime environment would
include specialized equipment that monitors the number and type of com­
pleted products as they come off the assembly line and immediatdy updates the
database with inventory information. Clerical employees, completdy unfamiliar
with computers, would enter the orders, shipments, and arrivals of parts.

For this reason, Hall planned for the workers to use menus and forms to enter
and retrieve information. Analysts would also ase menus and forms to enter
variables and call programs that modd materials demands for £AS produ~. In
all, Hall expected that between 20 and 30 people would use the system, but
Conners fdt confident that if they could compete successfully, £AS could
double in size within five years.

2-9

When Hall began his development planning, he came to a roadblock. With
the number of senior developers he had available it appeared impossible to
complete a job this size in less than five years. By then it would be too late for
EAS. He was also convinced that no more than a year could be saved even if
he were to take a more expensive approach by setting aside the less impor­
tant parts of the plan for later.

VAX ACMS Simplifies and Speeds the Development of Large-scale
transaction Processing applications.
Hall discussed EAS's situation with other analysts at Information Consultants.
One of his colleagues knew about a recently-developed set of products specifi­
cally created for transaction processing applications. It included start-up and
recovery instructions for the database management system, integrated menus,
and special application development tools to reduce overall development time.
These same application development tools also allowed less experienced pro­
grammers write more of the code.

If this product was compatible with the proper hardware and came from a relia­
ble vendor, Hall thought it might be a solution for EAS_ When he found out the
product was VAX ACMS from Digital, he felt even more secure since he was
already familiar with VAX Information Architecture information management
products. He had planned to use VAX DBMS to design the database manage­
ment system and his experience with VAX computers convinced him of their
versatility and flexibility. The VMS operating system was the premier environ­
ment for applications development, having the a wide choice of programming
languages and the most complete range of services for programmers and
database designers.

Hall scheduled a series of meetings with specialists from Digital's Software
Services department. The group believed the project could be done within the
three years. Because VAX ACMS provides a development structure that enforces
a consistent method of programming, it would make it easier to divide the work
among more programmers. Some could work on processing routines to be
written in VAX FORTRAN while other programmers wrote VAX ACMS routines.
Because VAX ACMS is a "fourth-generation" tool it replaces many hours of pro­
gramming time with high-level definitions that can be used by less-experienced
programmers. With VAX ACMS comprising the body of the transaction and
VAX IDMS managing the terminal 1/0 including the forms and menus, a major
portion of the VAX FORTRAN development is eliminated.

2-10 • Case Studies in Success with the VAX In/ormation Architecture

The runtime environment is controlled by VAX. ACMS. Security procedures, I/O
requests, system commands, and system resource allocation are all handled by
VAX. ACMS. This means much more efficient use WOuld be made of the proces­
sor selected. Even with the accelerated schedule, costs would not be over
budget. And because the VAX. ACMS runtime environment shares resources
among users, as more users are added less resources have to be added. So the
system will easily handle Conners plans to double usage in future years - with­
out carrying the expense of an unde~sed system in the interim.

A System that's Completed on Tune with the Ability to Grow
Using VAX. ACMS,VAX. TDMS, VAX. DBMS, VAX. FOR1RAN and a VAX.-llnSO,
Information Consultants completed the system in budget and on time. The
modeling routines let managers use forms to enter information. The system uses
the latest production and inventory data to project how EAS can make the best
use of its resources. Product status is closely monitored so contract obligations
are being met in record time. Back-ordered goods and over-stocked items have
virtually disappeared from EAS's books.

Conners has been able to lower his bids and has secured contracts that will take
EAS into the next decade. He is now looking into bids for small parts used in the
appliance industry, confident that the VAX. ACMS-developed system will be able
to grow as the business demands.

• Database Support for Cost-Effective Pharmaceutical Research

In the consumer pharmaceutical marketplace, the development of a safe, new
over-the-counter pain reliever can add millions of dollars to a company's reve­
nues. Household Laboratories is a large producer of health care products with
research facilities located in various Cities across the United States. Household
has discovered a safe, effective, moderately priced analgesic compound which it
hopes to market as an alternative to aspirin and acetaminophen.

The problem Household faces is that the compound is only available in liquid
fprm and the syrup has an extremely unappetizing taste and odor. The market­
ing department has made it clear that there is no possibility for any commercial
success until a tablet or capsule formula can be found. A research team of six
scientists headed by Dr. John Colburn has been assigned to find a solution.

2-11

The System Speeds the Solution.
Colburn's team must deal with a number of issues. Detailed records must be
kept to meet FDA requirements and because all the results will be correlated in
ways that may not be obvious when the experiments are actually taking place. It
is not unusual, while research is ongoing, for information on other drugs to be
released that can influence future test techniques. Because the analgesic being
tested by Household has properties similar to other drugs, studies revealing, for
example, allergic reactions to other drugs can affect the kinds of analyses to
which data will be subjected. Therefore, every aspect of the experiments carried
out must be observed and logged.

Household provides research teams with small computer systems to keep track
of experiment results. Colburn's team will use a VAX-1l/725, a small multiuser
system that is ideally suited to workplaces that do not have special electrical or
environmental equipment. They will store the results using a VAX RdbNMS
database, the same relational database management system used by dozens of
other research teams working on projects for Household. Colburn can use the
system in his research lab to access and update any of these databases with the
results of his findings. And other researchers at Household can make use of
Colburn's results.

There is also a corporate research library with tables of chemical property char­
acteristics, an encyclopedia of past chemical research, and other pertinent infor­
mation on a VAX-1l1785 at the corporate headquarters. This, too, is accessible
to any of the other VAX RdbNMS systems.

Using VAX Infonnation Architecture Products to Make the Job Easier.
Colburn's group will use the VAX RdbNMS database along with two other VAX
Information Architecture products to make the collection and analysis of the
data simpler and more efficient. They have designed a series of terminal forms
that laboratory technicians will use to record results. Using VAX TDMS-devel­
oped screens, technicians will enter data concerning the compound's reactions
to being combined with a variety of inert stabilizers and its effectiveness when
combined with other compounds. Results will be entered on a regular basis
over a number of months.

With VAX DATATRIEVE, Colburn's team will be able to query the database
interactively, make correlations among various experiments, and produce
reports, charts, and graphs that may be required by the FDA. Most of the
researchers have been familiar with VAX DATATRIEVE for years. They've used
its English-like commands for data management arid applications development
before with VAX RMS and VAX DBMS files. They will be able to check results of
experiments in progress, so promising experiments can be continued, modi­
fied, and complemented, while unsuccessful ones can be discontinued.

2-12 • Case Studies in Success with the VAX In/ormation Architecture

Better Results for Faster, Safer, more Profitable Solutio/ls
Colburn's team has used VAX Rdb/VMS to narrow the field of possibilities
down to six compounds in under nine months. Using the data stored in the
relational database, they will now begin the comprehensive tests needed to
assure Household and the FDA of the safety and effectiveness of the new anal­
gesic compound in tablet form. Results of the next two or th~ee years of tests
will continu~ to be stored and analyzed using the VAX RdblVMS database.

If the test results are successful, Household expects to have an extremely valua­
ble, safety-tested product available for the general public within a reasonable
time. By making the information management resources of VAX Information
Architecture products available to lab9ratory research teams~ Household has
been able to save money and time while increasing the quality and accuracy of
their research procedures. .

The stories in Chapter Two. of this handbook are fictitious. Any similarity
between these stories and actual persons, places, or companies, existing now or
in the past, is purely coincidental.

Chapter 3· The VAX Common Data Dictionary (CDD)

The VAX Common Data Dictionary (CDD) is the central repository for data
descriptions and definitions used by other VAX Information Architecture prod­
ucts, and by programs and applications written in any of several of the VAX
high-level languages. It is essentially a means of storing, maintaining,.and con­
trolling data about data.

Using the CDD, you can

• Create shareable definitions with a common data definition language (CDDL)
that can be understood by many VAX programming language compilers and
VAX Information Architecture products.

• Modify data definitions in the dictionary without having to edit the programs
and procedures using the definitions.

• Specify which users have accessto individual definitions, using thirteen sepa­
rate access privileges and four possible user identification criteria.

• Copy definitions at compile time into a program written in one of many VAX
programming languages,including VAX COBOL, VAX BASIC, VAX PLil and
VAXDIBOL.

• Document the use of a particular definition by making entries into the defini­
tion's history list.

• Maintain an area of the dictionary for the storage of data definitions for indi­
vidual use .

• Who Uses the VAX Common Data Dictionary

The VAX CDD is required for all users of VAX DATATRIEVE, VAX DBMS,
VAX TDMS, and VAX ACMS. It is optional for users of VAX RdbNMS (see
Chapter 6).

The CDD is also intended for users who need consistency of data definition, the
sharing of definitions across several languages, and centralized storage of com­
mon data definitions outside the application programs that use them.

3-2 • The VAX Common Data Dictionary (CDD)

• Benefits of the VAX Common·Data Dictionary

• Storing data definitions within the CDD eliminates the need to define data
within application programs. This applies to application programs written in
VAX BASIC, VAX DIBOL, VAX COBOL, and VAX pLir.

• Storing data definitions in a central area reduces redundancy (multiple copies
of tll.e same data definitions) and inconsistency. To changea data definition
that affects several application programs, you need to make the change only
once, in the CDD, and then recompile the affected programs.

• Multiple programs, although written in different languages, can nonetheless
share one or more definitions stored in the CDD.

• The VAX CDD hierarchical model allows different users to organize separately
owned portions of the CDD according to their own needs.

• The CDD Data Definition Language utility (CDDL) allows you to define and
store shareable record descriptions.

• You have the capability to store portions of the CDD on different devices, or
offline.

• Using the VAX CDD history list feature, you can keep a record of each access
to a directory or a dictionary object.

• The Dictionary Management Utility (DMU) allows you to create, back up,
copy, and protect the CDD hierarchy.

• The VAX/VMS Lock Manager facility allows users to access the VAX CDD
concurrently without interfering with one another.

• The Verify/Fix utility allows you to check the integrity of a dictionary file and
to fix files that might have become corrupted.

• A Closer Look at the VAX Common Data Dictionary

Using the VAX CDD involves the following

• Creating a dictionary hierarchy

• Creating and storing data definitions

• Controlling access to definitions

• Assessing the impact of changing data definitions

• Modifying existing data definitions

• Locating the correct definition to use in an application program

• Copying definitions into application programs

• Maintaining dictionary files

3-3

Creating a Dictionary Hierarchy
The VAX Common Data Dictionary is organized as a hierarchy (reversed tree
structure) of dictionary directories and dictionary objects. Dictionary directories
are used to organize information within the hierarchy. Dictionary objects are
located at the ends of the branches on the hierarchy, and contain the data defini­
tions stored in the dictionary.

These definitions include record descriptions that can be copied into applica­
tion programs, as well as VAX DATATRIEVE domains, record definitions, proce­
dures, tables, and plots. VAX DBMS schemas, subschemas, storage schemas, and
security schemas are also stored in the CDD, as are VAX IDMS and VAX ACMS
definitions and, optionally, VAX RdblVMS definitions.

When you first install the CDD, one dictionary file named CDD.DIC is automati­
cally created in which the directory hierarchy is physically stored. However, the
CDD allows you to store portions of this single logical hierarchy in separate
physical files called subdictionary files. The directories that point to separate
subdictionary files are called subdictionaries.

You create dictionary and subdictionary directories with the Dictionary
Management Utility (DMU).

Figure 3-1 illustrates a sample dictionary hierarchy created using DMU
commands.

At the top of the sample directory in Figure 3 -1 is CDD$1OP, which is called the
root dictionary directory. The next level consists of four directories - PRODUC­
TION, CORPORATE, PERSONNEL, and SALES. Three of these directories have
children.

The directory CORPORATE is the parent of PRODUCT_INVENIDRY,
ADDRESSJffiCORD, and EMPLOYEE-LIST, which are dictionary objects con­
taining record definitions.

The directory SALES also is the parent of three children; but one of these chil­
dren,JONES, is not a dictionary object. It is a directory, which itself is the parent
of a single dictionary object, LEADSJffiCORD. SALES is an ancestor of the dic­
tionary object LEADSJffiCORD.

Figure 3-1 • Sample Dictionary Hierarchy
I

"" .J:,..

•
;;!
"
~
~

I
~ ..
t:J
0;-

is-
~
~

~

3-5

Creating and Storing Data Definitions
You may use the Common Data Dictionary Data Definition Language Utility
(CDDL) to create data definitions and store them in the CDD. CDDL provides a
generic language that enables you to define records that are understandable to
several of the VAXprogramming languages, as well as to the other information
management products in the VAX Information Architecture family.

Data definitions are stored as dictionary objects in the dictionary hierarchy.

To create a record definition and insert it into the dictionary, you first create a
CDDL source file using VAX EDT or some other text editor. Then you submit
this source file to the CDDL compiler, which inserts the record definition into
the dictionary.

CDDL source files contain DEFINE and END statements, DESCRIPTION state­
ments, field description statements, and field attribute clauses.

• THE DEFINE STATEMENT
You use a DEFINE Statement to name a record definition. The name you enter
is the path name of the definition. (You need not specify the whole path name at
this point - the given name or the relative path name is sufficient.) The last
nam~ of the path name (in the example, EMPLOYELLIST) is the given name of
the definition; the rest of the path name is the path of directories to the object
with the given name (that is, the route the system must navigate through the
hierarchy to reach the definition). In other words, in just one step you name an
object and specify its place in the dictionary .

• THE DESCRIPTION STATEMENT
You can use the DESCRIPTION statement to document a record definition or
any individual field within a record definition.

• FIELD DESCRIPTION STATEMENTS
You use the field description statement to describe the field characteristics of a
record. A field description statement includes the names of the fields and their
data types, as well as other infortnation. CDDL supports four different kinds of
field statements:

• Elementary field description statements are used to describe fields that are not
subdivided into other fields. The ID field in EMPLOYEE.DDL is an example
of an elementary field description statement.

• STRUCTURE field description statements are used to describe fields that are
divided into one or more~ubordinate fields.

• COpy field description statements copy the contents of a record definition into
a field of another record definition. This feature ensures that certain com­
monly used fields are defined in the same way in every record definition that
uses them.

3-6 • The VAX Common Data Dictionary (CDD)

• VARIANTS field description statements provide alternative descriptions for the
same portion of a record.

• FIELD ATTRIBUTE CLAUSES
You use field attribute clauses to describe characteristics of the fields in a record.
There are two kinds of field attribute clauses - general and facility-specific.

General field attribute clauses describe the storage of data definitions in the
CDD. All language processors that use the CDD recognize these attributes.

Facility-specific attribute clauses describe characteristics of a data definition
that affect the interpretation of a record definition by particular language
processors. Processors not supporting a particular facility-specific attribute
clause ignore it. This feature allows you to tailor a characteristic of a record
definition for a particular processor without making it unacceptable to another
language processor.

Controlling Access To Data Definitions
The CDD provides several security mechanisms you can use to protect a dic­
tionary against unauthorized access or use .

• THE ACCESS CONTROL LIST
The CDD restricts access to any particular dictionary directory or object by
means of an access control list (ACL). When a user attempts to access a particu­
lar directory or object, the CDD checks the access control list to determine if this
user has the necessary privilege. If the user does not have the necessary privi­
lege, access is denied.

You use the DMU SET PROTECTION command to set privileges in either of two
ways. You can enter a command line such as the following:

DMU> SET PROTECTION/POSITION=2/USERNAME=JONES/GRANT=<HS>
CDDHOP.SALES

This statement grants privileges HISIDRYand SEE (see below) to directory
CDD$IDP.SALES for user Jones at the second position in the ACL.

Or, if you have a VT100- or VT200-family terminal or a VT52, you can enter a
SET PROTECTION/EDIT command and then use a screen form and keypad
commands.

There are 13 privileges governing access to a directory or object. Nine of these
are CDD privileges, and four are VAX DATATRIEVE access rights. Table 3 -1 gives
a brief description of each of these privileges.

3-7

Thble 3·1 • Access Privileges

Privilege

CON1ROL(C)

DTlLEXTEND/EXECUTE (E)

DTILMODIFY (M)

D1RllliAD(R)

DTIL WRITE (W)

EXTEND (X)

FORWARD (F)

GLOBAL~ELETE(G)

HlSlORY(H)

LOCAL~ELETE (D)

SEE (S)

UPDATE(U)

Description

Allows you to read, modify, and delete
access control list entries.

Allows you to ready a VAX DATATRIEVE
domain for EXTEND access, to access a
VAX DATATRIEVE table, and to execute a
VAX DATATRIEVE procedure.

Allows you to ready a VAX DATATRIEVE
domain for READ and MODIFY access.

Allows you to ready a VAX DATATRIEVE
domain for READ access.

Allows you to ready a VAX DATATRIEVE
domain for READ, WRITE, MODIFY,
and EXTEND access.

Allows you to create children of diction­
ary directories and sub dictionaries.

Allows you to create subdictionary files.

Allows you to delete dictionary directo­
ries and subdictionaries, including any
children they may have, with a single
command.

Allows you to add entries to history lists.

Allows you to delete dictionary objects,
as well as directories and subdictionaries
with no children; to edit VAX DATA­
TRIEVE procedures; and to replace or
recompile data definitions stored in the
CDD.

Allows you to use a dictionary directory,
subdictionary, or object in a path name.
You cannot deny yourself PASS_ THRU
privilege.

Allows you to see the definition of a dic­
tionary object.

Allows you to update the definition of a
dictionary object.

3-8 • The VAX Common Data Dictionary (CDD)

You tailor access to a directory or an object for a particular user by specifYing
none, some, or all of the privileges above.

• ASSIGNING PRIVILEGES BY INHERITANCE
Because the CDD is a hierarchical structure, you can reach a directory or object
only by following a particular path from the top of the hierarchy (CDD$IDP).

Access control lists take advantage of this fact by allowing you to assign privi­
leges by inheritance.

Inheritance works as follows: By default, the CDD assigns all users nearly all
privileges at creation. However, if you specifY" INOACL" either with the DMU
CREATE function or using the CDDL, no ACL is created. In that case, users
inherit the privileges they had at the parent leveL

If you want some but not all of the privileges to be different at the "child" direc­
tory or object, you need include in the access control list for this directory or
object only those privileges that differ from those granted at the "parent"
directory.

For example, suppose that you want the three record definitions
PRODUCLINVENIDRY, ADDRESS-RECORD, and EMPLOYELLIST to have
the same access control lists. It is not necessary to create three identical access
control lists. Because these three definitions share the same parent,
CDD$IDP.CORPORATE, you can create a single access control list at the parent
leveL This access control list will then apply to all three child record definitions,
by inheritance, as well as to the parent, if you have specified" INOACL."

If at some future time you decide to change the protection on one of these three
record definitions, you would create an access control list for the particular defi­
nition that contains only the privileges that differ from those in the access con­
trollist for CDD$IDP.CORPORATE.

• USING SUBDICTIONARY DIREClORIES 10 PROVIDE SECURI1Y
Using the DMU command CREATE/SUBDICTIONARY, you can create separate
dictionaty files to hold portions of your CDD. The directory that points to a
separate dictionary file is called a stibdictionary directory or subdictionary.

Subdictionary files can be stored anywhere: therefore, subdictionaries can be
very helpful in the following ways.

• You can store sensitive material offline when this material is not being used.

• You can use VMS file protection, in. addition to CDD access control lists, to
control access to different dictionary files.

• You can use one dictionary to serve several distinct organizations, as in a
timesharing system, but each organization can have its own subdictionary on
its own disk. This allows you to charge each organization for the amount of
dictionary space its data descriptions use.

3-9

Assessing the Impact of Change: The History List
The history list feature of the VAX CDD allows you to document and to monitor
the use of each dictionary directory, subdictionary, and object.

Documenting the use of dictionary objects is a very important function of the
dictionary. For example, before modifying a record definition, the data admin­
istrator needs to know what other definitions are affected and what programs
and procedures need to be changed as a result. Also, programmers using the
dictionary need to know at a glance the purpose and the contents of a definition
they are considering using in an application.

A history list entry contains information about user access, including the action
taken, the person responsible, the facility used, and the date and time. You can
create an entry in a history list of a directory, subdictionary, or object when you

• Create a directory, subdictionary, or object

• Modify a directory, subdictionary, or object

• Modify an access control list

• Copy a directory, subdictionary, or object to another part of the dictionary

• Access an object from a program written in a VAX programming language or
from one of the other VAX Information Architecture products

For CDDL, DMU, and most of the languages using CDD, you use the / AUDIT
qualifier to create a history list entry. You can add your own text to the informa­
tion automatically stored in a history list entry by iridudmg your comment in
quotation marks.

Modifying Data Definitions
Because the information needs of organizations change, it is often necessary to
change data definitions as well. To change a data definition, you create a new
CDDL sOurce file containing the path name of the record definition you want to
replace, and then compile the new, source file with: the command
CDDLIREPLACE.

For example, a corporation decides to change the number of job classifications
from 150 to 200, and the number of incremental salary levels from 5 to 4. This
business decision necessitates a change ,in the record definition
CDD$1DP.PERSONNEL.SALARY -RANGE in the CDD. The current definition
in that location is as follows.

3-10 • The VAX Common Data Dictionary (CDD)

DEFINE RECORD CDD$TOP.PERSONNEL.STANDARDS.SALARY_RANGE
DESCRI PTION. IS
(This record stores MiniMuM salaries
for the five increMental salary levels within
each of 150 job classifications.)

SALARY_RANGE ARRAY 150.5
DATATYPE IS UNSIGNED NUMERIC
SIZE IS 8 DIGITS 2 FRACTIONS.

END SALARY_RANGE RECORD.

To implement this policy change, the data administrator creates the source file
RANGE2.DDL, and places in it the following record definition.

DEFINE RECORD CDD$TOP.PERSONNEL.STANDARDS.SALARY_RANGE
DESCRIPTION IS

(This record stores MiniMUM salaries
for the four increMental salary levels within
each of 200 job classifications. It reflects
Personnel Policy #4022.)

SALARY_RANGE ARRAY 200.4
DATATYPE IS UNSIGNED NUMERIC
SIZE IS 8 DIGITS 2 FRACTIONS.

END SALARY_RANGE RECORD.

Note that this record definition is identical to the former definition except for
the size of the array and the added comment in the DESCRIPTION clause. The
Data Administrator then enters the following command:

$ CODL/REPLACE/AUDIT="CHANGED TO
CONFORM TO POLICY #4022" RANGE2.DDL

CDDL responds by removing the original
CDD$1OP.PERSoNNEL.SALARY-RANGE and replacing it with the new defi­
nition, keeping the original access control list and history list, and creating a
new history list entry documenting the change.

If you modify a template record definition, you should modify all the record
definitions that use that template. You do this by determining with· the history
list all the record definitions that need t6 be changed, then specifying these defi~
nitions to a CDDLIRECOMPlLE command. .

For example:

S .CDDL/RECOMPILE/AUDIT CDDSTOP.CORPORATE.EMPLOYEE_LIST.
S_CDDSTOP.SALES.CUSTOMERRECORD.

CDDSTOP.SALES.JONES.LEADS_RECORD

3-11

Locating the Correct Data Definition
Programmers who want to copy record definitions need some way to find the
definition they want. Using meaningful names for definitions is helpful, but
even so, several definitions often have similar names.

The CDD provides two alternative methods for programmers to easily check the
purpose and contents of a record definition. You can either display embedded
explanatory text, which has been previously entered to describe particular
record definitions, or you can just as easily display the entire source file, which
of course contains this explanatory text.

Copying Definitions into Application Programs
A programmer who finds the definition that provides the desired data descrip­
tion can easily include that definition in a program at compile time. For exam­
ple, a programmer could include the record definition

CDD$TOP.CORPORATE.ADDRESS_RECORD

in the VAX COBOL program EMPADR.COB by inserting the following com­
mand in the WORKING-SIDRAGE section of the program source file:

COpy ·COOSTOP.CORPORATE.AOORESS_RECORO· FROM DICTIONARY

To compile the program, the programmer uses the following DCL command:

$ COBOL/AUDIT EMPADR

The COBOL compiler retrieves the definition from the CDD and compiles it as
COBOL object code. Because the / AUDIT qualifier is used, the COBOL com­
piler also makes an entry in the history list of ADDRESS-RECORD documenting
the operation.

The other VAX programming languages that use CDD record definitions work
in a similar manner.

Maintaining Dictionary Files
A dictionary file can experience errors or inconsistencies caused by hardware
failures or other uncontrollable events. Because of this, the VAX CDD provides a
utility, CDDV, that you can use to check the condition of your dictionary and
subdictionary files, and repair them if errors are detected.

You can also use CDDV, when disk space is low, to compress dictionary and
subdictionary files, and to return any free space to the operating system for use
by other files.

In the following example, the system manager checks the condition of a subdic­
tionary file using the VERIFY command:

CDDV> VERIFY MISCSDISK:[MACWIRE.CDDJPRIVATE.DIC

3-12 • The VAX Common Data Dictionary (CDD)

CDDV returns a message indicating that the dictionary contains errors.

The system manager therefore attempts to repair the subdictionary by issuing
the following command:

CDDV> FIXMISC$DISK:[MACWIRE.CDDJPRIVATE.DIC

Wherever possible, CDDV recreates directories. When it cannot recreate a
directory, it places the descendants of unrecreated dictionaries in a directory
called CDD$LOSLNODES.

• Using the VAX Common Data Dictionary with Other
Software Products

The VAX Common Data Dictionary is the "hub" of the VAX Information Archi­
tecture, serving as the central repository of the data definitions used by many of
the other VAX Information Architecture products.

VAX DATATRIEVE
All VAX DATATRIEVE domain definitions, record definitions, tables, proce­
dures, plot definitions, and view domains are stored in the CDD.

VAX DBMS
All VAX DBMS schema, subschema, storage schema, record definitions, and
security schema definitions are stored in the CDD.

VAX RdblVMS
All VAX RdblVMS data definitions must be stored in the CDD in order to be
used by VAX DAThTRIEVE, VAX TDMS and/or VAX ACMS. Otherwise, storage
of VAX RdbNMS data definitions in the CDD is optional.

VAXTDMS
All VAX TDMS form and request definitions are stored in the CDD.

VAXACMS
All VAX ACMS task, menu, application, and task group definitions are stored in
theCDD.

3-13

Languages
In addition, several of the VAX programming languages can access CDD record
definitions at compile time. The VAX languages that can use the CDD are

• VAXCOBOL

• VAXBASIC

• VAXPU!

• VAXDIBOL

Using the CDDL, it is possible to specify special conditions required by a partic­
ular language compiler without affecting other use of the same definition by
other compilers.

• Summary

The VAX Common Data Dictionary, then, helps the system manager coordinate
an effective data management system; it reduces programming and mainte­
nancecosts; and it ties together VAX programming languages and VAX
liIf<>hnatiQh Architectute products.

Chapter 4 • VAX DATATRIEVE

VAX DATATRIEVE is an easy-to-use tool for managing and manipulating data
either interactively at a terminal or from an applications program. If you know a
handful of simple, English-like commands and statements, you can interactively
retrieve, store, modify, and sort data, and report on it in meaningful ways.

With VAX DATA1RIEVE, you can:

• Create data definitions that can be used to store and retrieve data uniformly,
either interactively or from application programs

• Store or modify data in RMS files, VAX DBMS databases, or VAX Rdb
databases

• Retrieve data from RMS files, VAX DBMS databases, or VAX RdblVMS
databases and display the data on a terminal, write it to a data file, or print it
on paper

• Produce formatted reports using specified selections of data

• Create pie charts, bar graphs, line graphs, and scatter plots based on specified
selections of data

• Use forms to format the terminal screen for data display or data collection

• Use a text editor to correct syntax errors and typing mistakes

• Access RMS, DBMS and Rdb data files located on remote systems

• Call VAX DATATRIEVE functions (including data access) from a program
written in a high-level VAX programming language such as COBOL,
FORTRAN, or PLil

• Who Uses VAX DATATRIEVE
VAX DATA1RIEVE is intended for a broad spectrum of users, including:

• Managers who need ready access to different views of data for decision­
making and/or monitoring purposes

• Organizations that need a data storage system that can be run by clerical
personnel

4-2 • VAXDATATRIEVE

• Organizations that need to access data on a distributed network without
being concerned with where the data is actually located

• Applications programmers who want to save coding/debugging time and
source space by having VAX. DATATRIEVE handle such functions as: finding
and opening data files, performing input and output 'operations, formatting
data, converting data types,himdliiig error and end-of"file conditions

With its set of simple, English-like statements, VAX. DATATRIEVE is designed to
be used by people with only modest computer experience as well as by com­
puter professionals. It includes a special tutorial facility called Guide Mode to
hdp any user get started quickly.

• Benefits of VAX DATATRIEVE
VAX. DAD\TRlEVE provides the folloWing benefits:

• Extensive use of the VAX CDD, making it unnecessary for you, in
. DATATRIEVE, to specify locations,and definitions as you would with a tradi­
tional programming language

• An English-like query language that allows easy access to data stored in RMS
files, VAX. DBMS databases; and VAX. Rdb databases

• An Applications Devdopment Tool (ADT) thai: provides a simple, interactive
means of defining record formats, RMS files, and VAX. DATATRIEVE
procedures

• A Report Writer that' allows you to' create formatted reports on any desired
selection of data

• A text editor (callable EDT) for easily changing record definitions or cor­
recting syntax errors

• Support for the forms management facilities of VAX. FMS and VAX. TDMS,
which allow you to-format the screen for data display or collection purposes

• Graphics support that allo~ you to create a variety of color or black-and­
white charts and plots based on specified sdections of data

• A tutorial called Guide Mode that introduces you to VAX. DAIATRIEVE

• A distributed access facility that allows you to access data stored on remOte
systems

• Security and protection facilities that allow you to limit access to data defini­
tions and to protect those definitions from corruption

4-3

• A Closer Look at VAX DATATRIEVE

Using VAX DATATRIEVE involves:

• Using Guide Mode to learn VAX DATATRIEVE

• Creating special data definitions called domains, as well as record definitions,
and storing them in the Common Data Dictionary (eDD)

• Retrieving and displaying data

• Storing and modifying data

• Using the VAX DATATRIEVE editor to correct errors in command lines

• Using relational facilities such as CROSS, which dynamically joins separate
files

• Writing and using procedures

• Using the Report Writer facility to create formatted reports

• Using the graphics facility to create charts and graphs

• Calling VAX DATATRIEVE facilities from application programs

• Using forms to format the terminal for data entry and data display

Using Guide Mode to Learn VAX DATATRIEVE
VAX DATATRIEVE provides a tutorial facility called Guide Mode. It is particu­
larly useful to the inexperienced user who wants assistance during a VAX
DATATRIEVE session.

You use the SET GUIDE command to invoke Guide Mode. Guide Mode then
helps you through a VAX DATATRIEVE session with a series of prompts. At any
time in this mode of operation, you can request a list of commands, statements,
names, or value expressions that you can enter.

Creating and Storing Domains
When you use VAX DATATRIEVE to manage or manipulatedata, the data you
work with is made available to you through special data structures called
domains. A domain relates a data file to a CDD record definition that describes
the data fields in that file.

The domain allows you to access data without having to describe the data or
specify where it is located. In other words, when you access data with VAX
DATATRIEVE, you can often specify the data you want with a single name. In
contrast, if you were to use a VAX COBOL program to access the same data, you
would need to describe the data to be accessed and specify where it was physi­
cally located (device and file name).

4-4 • VAX DATATRlEVE

Domains are stored as domain definitions. In its simplestform, a domain defini­
tion consists of the name of the domain, the name of a record definition, and the
name of a data file. In effect, then, a domain associates a record definition with a
data file that consists of records stored in the same format.

The following is an example of a domain definition:

DEFINE DOMAIN PERSONNEL DSING
PERSONNEL_RECORD ON PERSDNNEL.DATi

In this example, PERSONNELJlliCORD is a record definition that describes a
particular record format, and PERSONNEL.DAT is a VAXNMS file that contains
data stored iDthe format described in PERSONNELJlliCORD. PERSONNEL is
the domain that logically connects the format in PERSONNELJlliCORD with
the actual data in PERSONNEL.DAT.

VAX DAThTRIEVE allows you to define a domain that points to other domains.
Such a domain is calleP a view domain, because it provides a logical view of data
stored in more than one data file.

A remote domain can also be created. In a remote domain, you can use a record
definition and a data file that are both stored on a remote system, linked to the
first by DECnet.

VAX DATATRIEVE also allows you to define DBMS domains. Using DBMS
domains, you can use VAX DATATRIEVE to store, modify, and display data man­
aged by VAX DBMS.

You can create domains and record definitions with the Application Design Tool
(ADT). ADT is an interactive tool that prompts you for the information needed
to create the definitions for a domain or a record. Using the example of a
domain definition, you are prompted for:

• The domain name

• The file specification of the data file

• The name of each field in the file record

• The type of data in each field

• The format for fields containing dates, numbers, or money

• The length of fields containing character strings

• The organization of the data file

• The name and attributes of each iridex key for indexed files

• The name of a command file to contain the definitions

4-5

Should you be unable to answer a given prompt, ADT can suggest answers to
you, in non-programming language. You can instruct ADT to create the data
file you defined, and to add to your default directory in the CDD the domain
and record definitions you created. If you do not do this, ADT creates a com­
mand file containing your definitions. You can then create the data file and
store your definitions in the CDD any time you wish, by invoking the com­
mand file in response to the DTR> prompt of VAX. DATATRlEVE.

Retrieving and Displaying Data
VAX. DATATRlEVE allows you to retrieve and display data in ways that would
otherwise require input and output functions performed by a program written
in a high-level programming language.

For example, a typical programming language might retrieve and display the
records of all employees named Foster using a loop similar to the following:

LOOP:
READ EMPLOYEE-FILE
AT END EX IT
IF LAST_NAME NOT = "FOSTER"
GD TO LOOP
PRINT FIRST_NAME. LAST_NAME. ADDRESS •••
GO TO LOOP

Before writing these lines of code, the programmer would have had to define
the record data structures comprising the fields FIRST-NAME, LAST-NAME,
ADDRESS and so forth_ And the programmer would have had to specify where
the record could be found.

In VAX. DATATRlEVE, all the work accomplished by the preceding six lines of
code can be accomplished by the single line:

PRINT EMPLOYEES WITH LAST_NAME = "FOSTER"

Of course, the domain EMPLOYEES and the last name FOSTER must have pre­
viously been defined.

Using VAX. DATATRIEVE, you retrieve and display data interactively as follows:

• Use the READY command to access a particular domain

• Use the FIND command with a record seleCtion expression (RSE) to form
collections of records, and/or

• Use the PRINT command with an RSE to display (and sort) record streams

4-6 • VAX DATATRIEVE

A typical session to retrieve and display data might proceed as follows:

DTR) READY PERSONNEL®]

This command accesses the domain named PERSONNEL.

DTR) PRINT FIRST 2 PERSONNEL®]

In response to this statement, VAX DA11\TRIEVE uses the record definition. con­
tained in the domain PERSONNEL to access and format the data contained in
the data file pointed to in domain PERSONNEL; it then displays the following
lines on your terminal:

10 STATUS
FIRST
NAME

LAST
NAME

START
DEPT. DATE

SUP
SALARY 10

00012 EXPERIENCED CHARLOTTE SPIVA
00891 EXPERIENCED EDWARD HOWELL

TOP 12-Sop-1972 $75,892 00012
Fll 9-Apr-197B $59.594 00012

The headings in this display ate the names of the individual fidds described in
the record definition used to access the data displayed. Note that two records
are displayed, as specified in the PRINT statement. If you want to put this infor­
mation in a file, you can specify an output file in the command line, as follows:

DTR) PRINT FIRST 2 PERSONNEL ON FILE.DAT®]

You can also send the information to a line printer, as follows:

DTR) PRINT FIRST 2 PERSONNEL ON LP:®]

The following statement establishes a collection of records:

OTR> FINO PERSONNEL WITH STARTOATE AFTER "Ol-Jan71SB2"@)

And might yidd a response such as:

[50 records found]

This collection is caIled the current collection. By specifying record sdection
expressions in additional FIND statements, you can narrow this collection
down in any way you wish. For example, the following statement locates four
records in the current collection:

DTR) FIND CURRENT WITH DEPARTMENT EQUAL
"SALES" OR "MARKETING" AND ZIP_CODE EQUAL 02138

[4 records found]

This collection is now the current collection. If you wish at this point, you can
use the PRINT statement to display these records on the terminal screen, or
wtite them to a file, or print them on paper. For example, you could display the
data on your terminal screen with the statement:

DTR) PRINT ALL NAME. ADDRESS. PHONE®m

4-7

Storing and Modifying Data
You store data interactively as follows:

• Use the READY command with WRITE access to reach a particular domain

• Use the SlOR,E command to store a new record

• Use the SlORE command with the REPEAT command to store a specified
number of new records

A typical session at the terminal to store new records in a domain might appear
as follows:

DTR) READY YACHTS WRITE®]
DTR) REPEAT 2 STDRE YACHTS®]
Enter MANUFACTURER: SARTINI®]
Enter MDDEL: 6800®]
Enter RIG: YAWL®]
Enter LENGTH-oVER-ALL: 40®]
Enter DISPLACEMENT: 20000®]
Enter BEAM: 12®]
Enter PRICE: 82000®]
Enter MANUFACTURER: CARDINAL®]
Enter MODEL: SAVANT®]
Enter RIG: SLOOP®]
Enter LENGTH-oVER-ALL: 27®]
Enter DISPLACEMENT: 7200®]
Enter BEAM: 8®]
Enter PRICE: 23000®]
oTR>

You modify data in existing records as follows:

• Use the READY command with MODIFY to access a particular domain

• Use FIND to fortn a collection of records to be modified

• Use the SELECT command to access a particclat record in the collection

• Use the MODIFY command to update or correct any desired field or fields in
the selected record

A typical session at the terminal to modify a record might appear as follows:

OTR) READY YACHTS MOOIFy®m
OrR) FINO YACHTS WITH MANUFACTURER = "CAROINAL"®m
[30 records 'ound]
OTR) SELEC.T FIRST®m

OTR) PRINT®m

4-8 • VAX DATATRIEVE

LENGTH
OI.IER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

CARDINAL ADONIS SLOOP 18 575 08 $1 .800

DTR> MODIFY PRICEOO1
Enter PRICE: 2100001
DTR> PRINTOO1

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

CARDINAL ADONIS SLOOP 18 575 08 $2,100

If an entire collection of records is to be modified in the same general way, you
can use a MODIFY statement with the keywords ALL OF and an appropriate
record selection expression, instead of forming a collection in one step and then
using a series of SELECT and MODIFY statements to modify individual records
in the collection.

To delete a record, you follow the procedure outlined above, but use an ERASE
statement instead of a MODIFY statement.

Using the VAX DATATRIEVE Editor
You can use the VAX DATATRIEVE Editor to edit the last command statement
you entered, to save you from reentering the entire command line should you
make a mistake or change your mind.

You can also use the Editor to modify domain and record definitions, proce­
dures, and other objects stored in the Common Data Dictionary.

To use the editor, you simply type EDIT followed by a carriage return. VAX
DATATRIEVE then places the last command or statement you entered in the
Editor's main buffer and on your terminal screen. You can now edit the text or
your statement in any way you wish.

To edit an object in the CDD with the VAX DATATRIEVE editor, you type EDIT
followed by the name of the dictionary object. You then edit the dictionary
object in any way you wish.

Using CROSS to Access Multiple Files
Although not a relational database system, VAX DATATRIEVE has a relational
facility for linking a number of domains dynamically. This relational facility is
the CROSS clause. Using the DATATRIEVE CROSS clause, you can use a single
statement to dynamically join.. data from a number of separate RMS, DBMS
and! or Rdb files.

4·9

This is an especially powerful facility that makes it possible to join records
from different files related to one another by a common field. For example, a
college might maintain a Currrent Academic Status file containing student
ID numbers and grades and a separate Registration file containing student
ID numbers and home addresses. At the time grades are to be mailed home,
the with the Registration file to dynamically link grades with home
addresses. The VAX DATATRIEVE statement to accomplish this relational
operation might appear as follows:

PRINT ACAOEMICSTATUS CROSS REGISTRATION OVER STUoENT_IO

The STUDENT-.lD field is the common field that makes linking these two @es
possible.

Writing and Using Procedures
Using the DEFINE PROCEDURE command, you can define sequences of VAX
DATATRIEVE commands and statements and store them in the Common Data
Dictionary for later use. These stored sequences of commands and statements
are called procedures. Procedures can be embedded in other procedures.

They are especially useful in cases where the same set of VAX DATATRIEVE
commands is used repeatedly. For example, you could include all the com·
mands necessary to create a weekly inventory report on the same group of prod.
ucts in a procedure that you could then invoke with a single command.

Procedures can be invoked by users at the terminal, or by application
programs.

Using the Report Writer Facility to Create Formatted Reports
The VAX DATATRIEVE Report Writer provides a set of formatting options for
producing printed reports with page and column headings, page numbers,
totals, subtotals, and other summary information.

You can control the format of a report or allow the Report Writer to do some or
all of the formatting for you.

The following example illustrates use of the VAX DATATRIEVE Report Writer:

OTR> YACHTS WITH LOA = 38~
[5 records found]
OTR) REPORT YACHTS WITH LOA = 38 SORTED BY BEAM, PRICE~
RW> SET REPoRTNAME = "REPORT WITH"/"A SPLIT TITLE"~
RW> SET COLUMN PAGE = 50~
RW> PRINT BEAM, BUILDER, OISP, PRICE~
RW> ENOREPORT~

4-10 • VAXDATATRlEVE

B,t;:AM

11
11
12
12
12

DTR)

REPORT WITH
'A SPLIT TITLE

MANUFACTURER

pEARSON
ISLANDER
CABOT
ERICSON
I. TRADER

Using the Graphics Facility

WEIGHT

17.700
13.450
15.000
16.000
18.600

25-JUL-1984
Pa~e 1

PRICE

$31.730

$39.500

Using the VAX DATATRIEVE graphics facility, you can create charts and graphs
from any desired selection of data. The graphs you can create include bar
charts, pie charts, hiStograms, scatter graphs, time series graphs, and linear
regression plots. Figure 4-1' shoWs agtaph created by the VAX DATATRIEVE
graphics facility. '

To create a graph; you simply use a PLOT statement that includes the name of
the graphyou want to create and a record selection exptessibn that specifies the
data you want to use. For example, you can display a multi-bar chart ona
graphics terminal screen with a statement such as:' '

PLOT MULTI_SHADE ALL DATE. SERVICES. EQUIPMENT_SALES.
REVENUE OF ANNUAL_REPORT

The resulting chart shows annual report, data in the form of lines with
cross-hatching und~meath, for trend comparison.

Using aDECwritet IV, an LA50 or an LAlOOprinter, you canprintthis chart with
the statement:

PLOT CROSS-HATCH

25"r-------------------------------------~--_,

Legend,
20ee Ea Revenue

_ E'IuipMent Sales

1500 .Servlclils

1008 r--------------.-------~

5ee r-----------::

0"-1971 1972 1973 197~ 1975 1976 1977 1978 1979 1988

Figure 4-1 • Example 0/ a VAX DADlTRIEVE Graph

4-11

Calling VAX DATATRIEVE facilities &om programs
The VAX DATATRIEVE Call Interface allows you to use the VAX programming
languages to call all the VAX DATATRIEVE data management facilities except
ADT, Guide Mode, and the VAX DATATRIEVE Editor. Using the Call Interface,
programs can pass command lines to VAX DATATRIEVE and receive back
records, print lines, and messages.

Using VAX DATATRIEVE to handle standard I/O tasks can greatly increase
programmer productivity, because it removes from programmers the burden of
having to specify data definitions and data storage locations in their programs.
Programs can be shorter, less complicated, and easier to debug and to maintain.

To access data using the Call Interface, you need only pass DATATRIEVE com­
mands and record selection expressions to the Call Interface; you do not need
to write code into the program to describe the file structure and record struc­
ture of the data to be accessed, or code to optimize the search for the data. At
run time, VAX DATATRIEVE automatically locates the correct records.

The Call Interface also allows a program to use VAX DATATRIEVE tables and
procedures. Tables used by more than one program can be stored in the Com­
mon Data Dictionary and accessed through the Call Interface, instead of being
included in the programs using them.

You use tables to associate short fields, to act as "code words," with longer fields.
For example, a table of zip codes might associate a list of zip codes with the state
and town represented by each zip code.

If you use VAX DATATRIEVE to store records, you can take advantage of the
automatic validation and default values offered by VAX DATATRIEVE.

VAX DATATRIEVE also handles other functions without the need for language
statements. For instance, programmers can use VAX DATATRIEVE to:

• Format data for output

• Convert data types

• Handle errors and conditions such as end-of-file

Programs can also be used to set up a customized interface to VAX
DATATRIEVE for the end user and to create new keywords.

4-12 • VAX DATATRIEVE

Using Fonns
The VAX DATATRIEVE Forms Interface provides a convenient method for
fonnatting the terminal for data entry or data display. You can design a form
using either VAX FMS or VAX TDMS, insert the form in a form library, and then
specify the form and form library names in a VAX DATATRIEVE domain
definition.

The following domain definition includes the name and library of a form:

DEFINE DOMAIN PERSONNEL_FORM USING PERSONNEL_REC
ON PERSDNNEL.DAT FORM IS PERSON IN FORMSLI6i

In this example, VAX DATATRIEVE uses the form PERSON, in form library
FORMSLIB, to format the screen for data entry and display. To display the fonn,
you use a statement such as:

PRINT PERSONNEL_FORM WITH DEPT = "FII"

VAX DATATRIEVE then displays the personnel records of people in Department
Fll on a full-screen form .

• Using VAX DATATRIEVE with Other Software Products
VAX DATATRIEVE interacts with the following products in the VAX Infonnation
Architecture family of data management tools. It also interacts with VAX FMS
(Forms Management System).

The VAX Common Data Dictionary (CDD)
VAX DATATRIEVE uses the CDD as a central storage facility for definitions,
including domains, records, views, tables, plots and procedures. The CDD is,
therefore, a prerequisite for VAX DATATRIEVE.

VAX DBMS and VAX RdbNMS
You can use VAX DATATRIEVE as a convenient way to access data managed by
either VAX DBMS or VAX RdbNMS.

You establish VAX DATATRIEVE access to VAX DBMS or VAX RdbNMS data by
using DEFINE statements. The DEFINE statements specify the database to be
queried, and associate VAX DBMS or VAX RdbNMS records with VAX
DATATRIEVE domains.

4-13

VAXTDMS
Although you can use VAX DATATRIEVE by itself for terminal VO, using VAX
DATATRIEVE in conjunction with forms created by VAX TDMS has several
advantages:

• For many people, forms are less threatening and more manageable than
prompts_

• Forms created by VAX TDMS allow you to legibly display complex records on
the screen_

• Forms created by VAX TDMS allow you to place help text with the fields or
forms being displayed.

• The special highlighting features available with VAX TDMS, such as reverse
video and bolding, can make data entry easier and more accurate.

VAX DECgrapb
VAX DECgraph allows you to create much more sophisticated graphic displays
than are possible with the VAX DA11\TRIEVE graphics facilitY, but without sacri­
ficing any of the power and ease of using VAX DATATRIEVE for data access.

Using the VAX DiITATRIEVEIDECgraph interface, you can form a data collec­
tion with the FIND command, and then pass the data on to DECgraph. You can
then use VAX DECgraph to plot the data and allow you to control such charac­
teristics as scaling, labels, and colors.

Chapter 5 • VAX DBMS Database Management System

VAX DBMS is a general purpose, network-model database management system
that complies with the specifications of the Conference on Data Systems Lan­
guages (CODASYL).

With VAX DBMS, you can:

• Create and maintain multiple databases

• Store and retrieve data efficiently

• Separate data definitions from the applications programs that use them

• Centralize all data definitions in the VAX Common Data Dictionary for com­
mon use and maintenance

• Define useful relationships between records

• Separate data definition from data storage

• Tailor user views of data

• Centralize the administration of data

• Maintain data integrity and security

• Allow concurrent access to databases

• Who Uses VAX DBMS
VAX DBMS is intended to serve as a data management system for organizations
in which:

• There is a large amount of data retrieval

• There are many concurrent users

• Data relationships are complex

• Database implementations are long-term

• A professional database designer/administrator is available

5-2 • VAX DBMS Database Management System

• Benefits of VAX DBMS

As a CODASYL-style database management system, VAX DBMS allows you to:

• Separate data definitions from the application programs that use those
definitions.

Separating data definition from program development can lower the cost of
program development and maintenance.

• Centralize data definitions.

Centralizing data definitions avoids multiple definitions and makes it easier
for many users to share the same data.

• Formally define useful relationships between data items.

If you were designing an inventory application, for example, you would want
the relationship between the parts you keep on hand and the supplier who
provides those parts to be represented in the database.

• Separate the physical definition of data from the logical definition of that
data.

Doing this means that the development programmers in your organization
need not be concerned with how the data to be manipulated by their pro­
grams is actually stored. This in turn saves development costs.

• 'Thilor different user views of data.

Each program views a database through a special logical structure written
and maintained outside the program. Called a subschema, it can be thought of
as a window into the database.

Subschemas (that is, tailored views of a database) facilitate data independence
by allowing you to change data formats without involving programs that are
not affected by the changes. You simply create a different view of the database
for the affected programs.

• Centralize administration of the database.

By separating programs from the data definitions used by those programs,
you can separate the responsibility for the creation and maintenance of pro­
grams from the defining of data and the maintaining of a database. This
requires that a database administrator (DBA) be available in your organization.

• Maintain database integrity.

VAX DBMS allows you to use several safeguards to ensure that data is accu­
rate, complete, and timely. These include making backup copies of the
database and using be/ore-image journaling to roll back a transaction in the
event of an abnormal program termination, or a/ter-image journaling in the
event of a hardware or software failure that corrupts or destroys the database.

5-3

• I\::rmit concurrent access.

Allowing more than one. user to access the same database concurrently
involves ensuring against conflicts, so that two or more users do not simulta­
neously attempt to execute similar operations on the same record or records.
To protect the database during concurrent use, VAX DBMS uses a system of
locks that controls access to the database at various levels .

• A Closer Look at VAX DBMS

Using VAX DBMS involves the following:

• Designing databases in accordance with your specific informational needs

• Writing the logical structure of the database (schema) and storing it in the
VAX Common Data Dicrionary (COD)

• Creating the physical database

• Storing, retrieving, updating, and deleting data with Database Query (DBQ)

• Ensuring consistency and accuracy

• Using the Database Operator (DBa) to fine-tune the database for best
performance

• Accessing database files from application programs

• Working with the other Database Operator (000) utilities

• Protecting database security and integrity

Designing Databases
The tasks of analyzing data and designing a VAX DBMS database are usually
performed by a Database Administrator (DBA).

The following steps are usually involved:

• Isolating the existing data entities (for example, employees, products manu­
factured, vendors)

• Plotting the relationships between these data entities, then determining how
queries to the database are to be handled

A data entity is further broken down into its component parts, or attributes. For
example, the data entity EMPLOYEE might have the attributes: name, badge
number, social security number, and location.

5-4 • VAX DBMS Database Management System

Data Definition and Storage
Once the data entities that are to compose a database are isolated and their
relationships determined, they must be carefully defined. Data entities are
defined as records. A record consists of individual data items that correspond to
the attributes of the data entity. For example, a record named EMPLOYEE
might consist of the individual data items: EMPLOYEE_NAME,
BADGE~UMBER, SOC_SEC~UMBER, and LOCATION. The generic form
of any particular record is a record type. The relationship between different
record types is defined by a set.

VAX DBMS uses data definition languages (DDLs) to define data and other
database constructs. VAX DBMS has four DDLs: the schema DDL, the sub­
schema DDL, the storage schema DDL, and the security schema DDL.

A schema is the logical description of the records and relationships between
records (sets) making up a database. In effect, a schema is the overall logical
definition of a database.

A subschema describes a subset (user view) of a database.

A storage schema describes the physical storage of records and sets of records in
a database.

A security schema describes the access constraints on particular data structures.

Once you have defined a schema, you must compile it and load it into the VAX
Common Data Dictionary (CDD). The VAX CDD is the central VAX/VMS storage
facility for information about data elements, data structures, and relationships
between data structures for VAX DBMS and for VAX DATATRIEVE. The CDD
does not contain the data itself. Storing a schema in this central facility allows
the data definitions specified by the schema to be independent of the physical
implementation of these definitions. Therefore, they do not need to appear in
the application programs that use them.

You use the DDL compiler to load a schema into the CDD. When you load a
schema into the CDD, the compiler automatically creates a default storage
schema, a default security schema, and a default subschema. These are also
stored in the CDD.

Creating a Database
Once a schema and its default storage and security schemas are stored in the
CDD, you can create a database for that schema. You do this with the VAX
DBMS operator (DBO) facility. Using the DBO/CREATE command, you gener­
ate a root file, which contains information about the structure of the database,
and a set of data storage files. These files are stored as VAX/VMS files either in
your default directory or in a directory of your choice. The root file and the data
files constitute the database.

Using VAX DBMS, you can create any number of separate databases.

5·5

Retrieving and Storing Data with Database Query (DBQ)
You retrieve data in a VAX DBMS database by using DBQ, an interactive data
manipulation language (DML) utility. (It also provides a callable interface to pro·
vide access from high·levellanguages.) If you run interactive DBQ on a VT100·
or VT200·family terminal, DBQ uses a split screen to show the results of each
DML statement you execute.

You use DBQ to retrieve data interactively as follows:

• Use the BIND command to access a particular database and specify the user
view of that database you desire.

• Use the READY command to prepare the database (or selected parts of it) for
your use.

• Use the FIND command to locate a particular record.

• Use the GET command to display the data of the currently located record on
your screen.

• Use the FETCH command to perform the functions of FIND and GET on a
particular record.

• Use a COMMIT command to make permanent the changes you have made;
and a ROLLBACK command to erase any changes you have made.

The following illustrates data retrieval using DBQ:

db9) BIND PARTSm
db9) READym
db9> FIND FIRST PARTm
db9) FIND DWNER WITHIN VENDOR_SUPPLym
db9) GETm
VEND_IO ~ 78812312
VEND_NAME = SANDEMAN TERMINALS SUBSYSTEMS
VEND_CONTACT = LABELLE M.K.
VEND_ADDRESS (1) 57 GARRISON LANE
VEND_ADDRESS (2) = MADBURY. NH
VEND_ADDRESS (3) = 03280
VEND_PHONE = 6032478700

You useDBQto store datainteractively as follows:

• Use the BIND command to access a particular database and specify the user
view of that database you desire.

• Use the READY command with the UPDAI'Equalifier to prepare the target
user view records for updating.

• Use the S10RE command to add a new record to the database.

• Use the COMMIT command to make-the changes permanent; and a
ROLLBACK command to erase any changes you have made.

5-6 • VAX DBMS Database Management System

The following illustrates storing new records in a datab<lse:

db"!> BIND PARTSm
db"!> READY UPDATEm
db"!> FIND FIRST CLASS USING CLASS_CODEm
CLASS_CODE [X(Z)] = ERm
db"!> STORE PARTm
PARLID [X(S)] = ERZZ345Gm
PART _DESC [}((50)] = A DEMDNSTRAT I ON PARTm
PARLSTATUS [}((1)] = Gm
PARLPRICE [S8(8.-3)] = 1.33m
PART_COST [S8(8.-3)] = .8Sm
PARLSUPPORT [}((Z)]= EGm
db"!> COMMITm
db"! >

Ensuring Consistency and Accuracy
To ensure data consistency and accuracy during use of a database by two or
more users or programs, VAX DBMS suppports the principles of transactions
and record locking.

A transaction is a series of operations that must execute as a complete unit or
not at all. A transaction begins when a READY statement is executed and ends
when a COMMIT or a ROLLBACK statement is executed. COMMIT causes all
changes to the database (additions, deletions, modifications) to be entered in
the physical database.

If any operation during a transaction is not completed successfully (for exam­
ple, a payout is greater than a prescribed upper limit), you can cause a
ROLLBACK statement to be issued. The ROLLBACK statement nullifies all
operations made during the current transaction and terminates the transaction.

The principle of a transaction requires that a series of operations on a database
are treated as a unit that must never be only partially completed. For example,
you can use it to ensure that a new address cannot be entered in a database
without a valid Zip Code.

A ROLLBACK is automatically issued if a transaction is interrupted for any rea­
son, deliberate or otherwise.

VAX DBMS allows many users to read or write to a database concurrently. How­
ever, this feature introduces the possibility of inconsistency. For example, if one
user is accessing a record to modify it while another user is accessing the same
record to read it, the one reading it may read obsolete values.

VAX DBMS guards against inconsistency in a database by means of automatic
record locking. When a particular record is accessed by a user or a program
during a transaction, that record cannot be modified by another user or pro­
gram until it is released by the first user or program.

5-7

Fine-Tuning a Database
Once you have tested the logical design of a database by using DBQ to retrieve
data, you can edit the default storage schema to optimize certain storage or
retrieval paths. You can also edit the default subschema, or create any number
of new subschemas, to allow access to any desired selection of record types in
the database instead of the entire database.

To edit an existing storage schema or subschema you use the DBO/EXTRACT
command with the OUTPUT option. This command retrieves the schema
source code from the CDD, and the OUTPUT option assigns the source code to
a file. You can then edit the source code with your text editor.

When you are finished editing the source code, you use the DDLiCOMPILE
command to compile the altered storage schema or subschema and place it
under the existing database schema in the CDD.

To create additional storage schemas or subschemas, you simply edit default
schemas extracted from the CDD or create new source files from scratch. Then
use the DDLiCOMPILE command to compile the files.

By using the /SUBSCHEMAS, /S1ORAGLSCHEMAS, and /ROOT options with
the DBO/CREATE command discussed earlier, you can derive multiple
databases from the same basic schema.

Accessing a Database From an Application Program
You can access a VAX DBMS database from any application program written in a
high-level language that conforms to the VAX/VMS calling standard. These lan­
guages include:

VAX COBOL VAXC

VAXDIBOL VAX MACRO

VAX FORTRAN VAX PASCAL

VAX BASIC VAXPLII

VAX BLISS-32

For all languages that conform to the VAXiVMS calling standard, the interface
to VAX DBMS is through callable DBQ. Callable DBQ is an interpreter to which
you pass DBQ statements. If you use either COBOL or FORTRAN, you can
embed data manipulation language statements directly in a program instead of
calling DBQ.

To use the call interface, you must set upa user work area (UWA): All data trans­
fers between a program and a database take place within a UWA. COBOL and
FORTRAN create the UWA for you;for other languages, you create a UWA with
the DBO/WORICAREA command.

5-8 • VAX DBMS Database Management System

When an application program is compiled, the included DML statements or the
calls to DBQ automatically access the data definitions the program requires.

Using Database Operator (DBO) Utilities
The Database Operator provides you with utilities that allow you to;

• Determine what schemas, storage schemas, and subschemas are in a particu­
lar CDD directory (DBO/REPORT).

• Coordinate the deletion of databases, schemas, subschemas, and storage
schemas from the CDD (DBO/DELETE).

• Get information on schemas, subschemas, and storage schemas from
database root files (DBO/DUMP).

• Change the parameters chosen when a database was created or previously
modified (DBO/MODIFY).

• Monitor the current use and status of a database (DBO/SHOW).

To invoke these utilities, you simply enter the command with the desired
options. For example, to delete a database with the same name as its root file,
ABSTRACT, you would enter;

$ DBD/DELETE/SCHEMA ABSTRACT

Protecting Database Security and Integrity
VAX. DBMS provides several means of protecting the integrity and security of
databases. Integrity, in this context, refers to the accuracy, completeness, and
timeliness of a database; security refers to the ability to limit access to a database.

VAX. DBMS provides database integrity by allowing you to;

• Use the schema CHECK clause to verify data at the time of storage or modifi­
cation. The CHECK clause verifies the reasonableness of data values.

• Use DBO/VERIFY to ensure the syntactic correctness of records and the
record sets in which they participate.

• Maintain backup copies of all databases.

• Enable long-term after-image journaling when you create the database or
modify a schema.

• Monitor a database for usage, response, and potential reorganization.

• Correct data errors immediately and take action to correct the cause. Data
errors can be application-dependent (a user enters inconsistent data) or sys­
tem-dependent (an internal hardware or software error occurs).

• Run application programs against test databases to ensure that the programs
work properly and do not alter the database.

5·9

VAX DBMS provides database security by allowing you to:

• Define security schemas to limit data access

• Segment a database into areas and then assign any desired VMS file protection
to the files containing those areas

• Assign particular areas to separate storage devices that can then be taken off
line whenever desirable

• Limit record access through the use of tailored subschemas

• Use CDD facilities to restrict access to data definitions stored in the CDD

• Using VAX DBMS with Other Products

VAX DBMS interacts directly with two other products in the VAX Information
Architecture family.

The VAX Common Data Dictionary (CDD)
VAX DBMS uses the CDD as a central storage facility for the logical definition of
a database (schema), the specification of how the database is physically stored
on mass storage devices (the storage schema), individual user views of the
database (subschema), and the access constraints assigned to various database
entities (security schema). The CDDdoesnot contain any data. The data that
VAX DBMS accesses is physically stored in VAX!VMS files; these files are pointed
to by information contained in the CDD.

The CDD must be available to VAX DBMS. It has its own dictionary manage·
ment utility, called DMU, which provides extensive facilitieS for exammmg and
maintaining CDD contents.

VAX DATATRIEVE
The VAX DATATRIEVE interface to VAX DBMS lets you retrieve, store, report,
and manipulate data in database files created and managed by V~ DBMS.
Using optional clauses in VAX DATKrRIEVE record selection expressiims, you
can readily work with the complex data relationships that cha4tcterize
CODASYL·type.databases. . .

The following VAX Di'U'ATRIEVE verbs are reserved for use. with VAX DBMS
databases: CONNNECT, DiSCONNECT, RECONNECT, COMMIT; and
ROLLBACK.

Combined with DECnet, VAX DATATRIEVE provides an efficient means of
accessing VAX DBMS databases at remote locations.

VAX DBMS does not require that VAX Diill\TRlEVB be available to it,.

Chapter 6 • VAX RdbIVMS

VAX RdblVMS is a general purpose relational database management system. It
provides the benefits of a full-function database management system - includ­
ing data independence, data integrity and security, centralized administration,
and the capability of handling concurrent access by multiple users - plus addi­
tional advantages to be discussed shortly bdow.

There are currently two VAXiRdb products: VAX RdbNMS and VAX Rdb/
ELN. VAX RdbNMS runs on the VAXiVMS and MicroVMS operating systems;
VAX RdblELN runs under the VAXELN operating environment. Beyond this
basic difference, the two products are very similar.

With VAX RdbNMS you can:

• Create and maintain rdational databases

• Store, retrieve, update, and ddete data

• Separate data definitions from the application programs that use them

• Store all data definitions in the database files, and optionally in the VAX
Common Data Dictionary (CDD), for common use and maintenance

• Establish relationships between records dynamically .. /

• Thilor user views of data

• Centralize the administration of data

• Maintain data integrity and security

• Use databases concurrently with other users

• Ensure against data iiiconsistency during concurrent updating

• Recover from hardware and system failures

• Who Uses VAX RdbIVMS
The choiCe of a data management product depends on many factors, including
the size and complexity of the database (data items and rdationships); the stor­
age and user capacity of the system; the number of concurrent users; and the
types of operations they perform. The most important considerations when
choosing a database management system are the suitability of the data modd
for the particular application and the environment ill which the application is
devdoped.

6-2 • VAX RdblVMS

In general, VAX RdblVMS is intended for use in applicatioJ:1s that meet the fol­
lowing criteria:

• The database must be easy to understand and use.

Because a relational database organizes data into tables, even people without
knowledg~ . of database management can understand the structure of a
database~

• The structure of the database is likely to need frequent changing.

VAX Rdb/VMS facilitates easy, interactive restructuring of a database. As the
needs of your organization change you can add or change indexe~, fields,
views,relations, and protection parameters. Similarly, you can delete out­
dated information. You can also build prototype systems to test the structure
of a VAX RdbNMS database without committing extensive resources.

• Data relationships can be defined at any time.

Because VAX RdblVMS forms relationships between data on the basis of val­
ues stored in the database, not on predefined data structures, you can define
relationships between data dynamically during a database session.

• A professional database administrator need not be avail~ble to create and
maintain the database,

A programmer can set up a VAX RdbNMS database using a simple set of
statements, typed interactively at the terminal or entered ina command file,
to translate a logical database design into a working database. Database main­
tenance is just as easy - a programmer or system manager c~.maintru.n the
database.

• The data and information to be included in the database is unformatted.

VAX RdbNMS supports unformatted data types, also called "segmented
strings," that allow the databas,e to be used to collect and access voice trans­
missions, graphics, word processing documents; laboratory data, satellite
transmissions, and other uncommon data.

• The application requires remote database acc~ss and update capabilities.

In situations where the data is distributed among various different 'h\X sys­
tems, VAX RdblVMS supports remote database aCcess. This enhances the
user's ability to collect data at remote. sites, yet interact with other d!J.tabases
on other systems.

Because the relational model is eaSy to understand, VAX.RdbIVMS is useful for
quick implementation of simple applications. VAX RdbIVMS is also sophisti­
. cated·enough tohandle~me-relatively c0mfJk~database app~tioIlS.-

6-3

• Benefits of VAX RdbNMS

• As a layered VMS product, VAX RdbNMS runs on the full line of VAX proces­
sors, allowing you to transport RdbNMS applications from one system to the
next as your needs dictate_

• A single utility, the relational database operator facility (ROO), handles all
database operations, including data definition and data manipulation_ This
allows you to create or change relations, user views, and integrity and security
constraints_ The ROO also lets you interactively retrieve and store data_

• Through the use of data structures called relations, relationships between
data are established dynamically_

• Callable ROO and embedded data manipulation (DML) statements allow you
to access VAX RdbNMS databases from application programs_ Precompilers
are provided for embedded DML statements in programs written in the fol­
lowing VAX high-level programming languages - VAX BASIC, VAX COBOL,
VAX FORTRAN, and VAX PASCAL A high-level call interface allows you to
call VAX RdbNMS from any language that supports the VAX calling standard_

• A READ ONLY (also called "snapshot") mode allows read-only transactions to
run independendy of other users' jobs_

• A single process can access more than one VAX Rdb/VMS database
simultaneously_

• Security provisions for data, data definitions, data manipulation statements,
and database operator commands protect you from undesired access to VAX
RdbNMS databases_

• Several users can access the same VAX RdbNMS database concurrendy for
storage, retrieval, update, and deletion_

• Support for transactions and record-locking to ensure data consistency and
integrity during concurrent access_

• Before-and after-image journaling to ensure the integrity of the database in
the event of hardware or software failures_

• VAX DATATRIEVE provides interactive access to a VAX Rdb/VMS database
for ad-hos query and,update_

• VAX RdbNMS interacts with several other VAX Information Architecture
products_

6-4 • VAX RdblVMS

• Using DECnet, VAX RdbNMS can access and update VAX Rdb databaS($ on
remote VAXNMS and VAXELN nodes. .

• VAX RdbNMS includes facilities for datab~se backup and restoration.

• The structure of a VAX RdblVMs database is easy to understand and easy to
explain to users.

• Using VAX RdbIVMS, programmers can develop applications more quickly
than with conventional third gem;rationprogramming techniques.

• A VAX Rdb/VMS database allows you to combine and compare data in a vari­
etyofways.

• A highly trained database administrator is usually not required; A program­
mer or an analyst can create, modify, and maintain a VAX RdbNMS database.

• A Qoser Look at VAX RdbIVMS
Using VAX RdblVMS involves:

• Designing the database in accordance with your information needs

• Creating the database, defining its elements

• Restructuring the database

• Deleting database elements

• Accessing and retrieving data

• Modifying data

• Ensuring consistency and accuracy

• Maintaining the database

• Accessing VAX RdblVMS from application programs

6-5

Designing a Database
Designing a relational database involves analyzing the data flow within your
organization and then grouping related data items into table-like structures
called relations. A logical relation can be visualized as a physical table of related
data. For example, a relation named EMPLOY might be visualized as follows in
Figure 6-1:

EMPLDYEE_ID SEX DEPARTMENT_CODE

+--+
Geor~e Toliver BlI2 M ENG
Paul Blanchett 217 M MKTG
Christine DecKer 919 F RECR
Paul Dallas lI26 M MNFG
James Cool 119 M ADMN
Russ Stuart SSLI M ENG
Leslie Neil 721 M ADMN
Nancy Brown BlI2 F PERS
Geor~e Boutin 7110 M ENG
Ann Patte rson 32B F SALE

+--+

Figure 6-1 • Sample RdblVMS Relation

A row in a relation is called a record. The individual components of a row are
referred to as fields - a field can contain only a single item of data. In the exam­
ple, a record consists of the fields FIRST_NAME, LAST_NAME,
EMPLOYEElD, SEX, and DEBlliTMENLCODE. A field that uniquely identi­
fies a record in a relation can be used as a key field for accessllg that record. In
the above example, the field EMPLOYEEJD might serve as a key field because
no two records can contain the same employee ID number.

By placing a common field in separate relations you can link one relation with
another. For example, by placing the field EMPLOYEEJD in a relation contain­
ing employee information (name, address, home phone, emergency contact,
etc.) and the same field in a separate relation containing job history information,
you can then pull any desired data from these two relations and combine the
data to form a new, temporary relation that fuIfiIls a specific informational need.
Linking together two or more relations is called ajoin operation.

6-6 • VAX RdblVMS

The process of defining a complete set of relations that models the data needs of
an organization involves:

• Determining the·data needed

• Grouping data into categories on the basis of relatedness

• Eliminating redundancy by finding items occurring in more than one place
and putting them in a single location

• Moving repeating items in a field to separate relations (a field can contain only
a single item)

• Determining which field or fields in a relation are to serve as an index for
accessing records in the relation

• Including a common field in relations so that dynamic relationships may later
be established

• Dividing the database into views, for efficiency and clarity of structure

• Defining constraints for each relation, for data integrity

• Defining access privileges for the database and for individual relations

Creating a Database and Defining its Elements
'fuu use the relational database operator utility (RDO) to create a database. RDO
allows you to define a database either by entering DEFINE statements after the
RDO prompt (RDO», or by using your text editor to enter DEFINE statements
as an indirect command file.

The DEFINE statements you use to define the logical structure of a VAX
RdbNMS database are:

• DEFINE DATABASE
Gives the database a name and associates this name with a path name in the VAX
Common Data Dictionary (if available). The path name specifies the dictionary
directory in which the database definitions are to be stored. If the CDD is not
installed on your system, VAX RdbNMS stores the database definitions only in
the database file.

In addition to naming the database, the DEFINE DKI'ABASE statement allows
you to name the database file and the snapshot file. A snapshot allows you to
retrieve data without interfering with other users or risking record locks. If you
do not nrune these files explicitly, VAX RdbNMS assigns them the same name as
the database and assigns them default device, directory, and file types. Optional
clauses let you determine how the database uses space in memory.

6·7

The following defines a database named OVERNITE:

DEFINE DATABASE DVERNITE IN CDD$TDP.ACCDUNTING.
DVERNITE FILE IS DISK2:[ACCDUNTINGJOVERNITE.RDS.

• DEFINE FIELD
Adds a field definition to the database file and to the CDD. Once you have
defined a field with a DEFINE FIELD statement, you can include it in any rela·
tion definition simply by naming it. You can also define a field without using a
DEFINE FIELD statement. You do this within a relation definition by giving the
field a name and specifying its characteristics.

The following defines a field named TOTALCHARGE having a data type of
LFLOATING:

DEFINE FIELD TOTAL_CHARGE DATATYPE IS F_FLOATING.

The data type of a field constrains the value of that field to the range of values
defined by the data type. The F _FLOATING data type, for example, includes
only single·precision floating·point numbers (to approximately seven decimal
places) .

• DEFINE RELATION
Creates a relation definition. A relation definition consists of a list of field defini·
tions. The simplest way to define a relation is to list the names of fields that have
been previously defined in DEFINE FIELD statements. You can also define a
relation by defining within the relation itself the fields that are to compose the
relation, that is, by giving each field a name and specifying its characteristics.

The following defines a relation named RESERVATION:

DEFINE RELATION RESERVATION.
ROOM_NUMBER.
TX_DATE.
GUEST_NAME.
ARRIVAL_DATE.
DEPARTURE_DATE.

END RESERVATION RELATION.

6-8 • VAX RdblVMS

• DEFINE VIEW
Creates a view definition. A view is a "virtual relation" that includes field defini­
tions from one or more separate relations. The fields and records of a view are
not stored physically, but are simply pointed to by the descriptions in the view
definition.

Using views saves you from using the same query over and over. The following
example defines a view named ROOMS:

DEFINE VIEW RDOMS OF H IN HOTEL
CROSS T IN TYPE OVER ROOM_TYPE
CROSS R IN RATES OVER RATE_CODE.

NUMBER FROM H.ROOM_NUMBER.
TYPE FROM H.ROOM_TYPE.
TEL FROM T.BEDS.
TUBE FROM T.TELEPHONE.
AIR FROM T.AC.
RATE FROM R.RATE_CODE.
GOV FROM R.GOV_RATE.
GROUP FROM R.GROUP_RATE.
STD FROM R.STO_RATE.

This view defines a virtual relation named ROOMS and gives new, more conve­
nient names to existing fields in the component relations, 1YPE and RATES.

• DEFINE CONSTRAINT
Creates a constraint definition. A constraint definition defines the set of condi­
tions that restrict the values in a field. You can also define constraints by placing
VALID IF clauses in DEFINE FIELD statements.

The following example defines a constraint named RATE_CODE~ISTS:

DEFINE CONSTRAINT RATE_CODE_EXISTS
FOR H IN HOTEL

REQUIRE ANY R IN RATES
WITH R.RATE_CODE = H.RATE_CODE.

In this example, if you attempt to store a record in HOTEL that contains a
RATE_CODE value that does not match an existing code in the RATES relation,
VAX Rdb/VMS returns an error; it does not store the record.

• DEFINE INDEX
Creates a single or multisegment index-key definition for a relation. An index
key allows you to locate a record on the basis of the value in a particular field.

The following defines an index named HOTEL-ROOM_NUMBER:

DEFINE INDEX HOTEL_ROOM_NUMBER FOR HOTEL
DUPLICATES ARE NOT ALLOWED.

ROOM_NUMBER.
END HOTEL_ROOM_NUMBER INDEX.

6-9

This example makes the field ROOM-NUMBER, contained in the OVERNlTE
relation mentioned earlier, an index; the name is useful only when deleting the
index.

• DEFINE PROTECTION
Creates an entry within an access control list (ACL) for a database or relation. An
ACL entry contains a user identifier and a list of access rights granted to that
user. VAX RdblVMS stores the ACL for a database - and for each of its relations
- in the database file.

The following example specifies the position of the access control list entry in
the access control list, the identifier of the user(s) to whom the entry applies,
and the list of access rights to be granted or denied to the user(s):

DEFINE PROTECTION FOR DATABASE DVERNITE
POSITION G
IDENTIFIER [00240.*].
ACCESS NOOWNER+NODPERATOR+NDADMINISTRATDR.

Restructuring a Database
You use CHANGE statements to restructure a database by making changes to
existing definitions. The CHANGE statements can change definitions in the
CDD as well as in the database file.

The CHANGE statements change definitions, not data. When a user accesses
data that was created with a definition before that definition was changed, VAX
RdblVMS converts the data to conform to the new definition automatically.

• CHANGE DATABASE
Changes the definition for an existing database. You can change the name of the
database file or journal file, the CDD path name, the size of the database file, and
buffer parameters.

• CHANGE FIELD
Changes a field definition.

6-10 • VAX RdbIVM5

• CHANGE RELATION
Changes a relation definition. Within this statement you can add, delete, or
change the definition of any of the relation's fields.

• CHANGE PROTECTION
Changes the access rights for an entry in an access control list.

Deleting Database Elements
You use the DELETE statement to remove the definition of a database compo­
nent from the database file and from the CDD.

The DELETE statements are as follows:

• DELETE DATABASE
Deletes entire database

• DELETE FIELD
Deletes a field definition

• DELETE CONSTRAINT
Deletes one or more constraint definitions

• DELETE INDEX
Deletes one or more relation index definitions

• DELETE PROTECTION
Deletes an entry from the access control list for a database, relation, or view

• DELETE RELATION
Deletes one or more relation definitions

• DELETE VIEW
Deletes one or more view definitions

6-11

Retrieving Data
You can retrieve data from an RdbNMS database in one of several ways:

• Through application programs - most often, you will retrieve data by using
VAX RdbNMS statements included directly in high-level language programs.

• Through VAX DATATRlEVE - interactive queries, simple reports and graphics
can be handled most easily by DATATRIEVE.

• Through ROO, the interactive utility. - ROO provides a tool for prototyping,
testing and learning. A statement that works in ROO will work the same way
when included in a program.

Retrieving data from an RdbNMS database involves:

• Using a FOR or START-.STREAM command, modified with a record-selection
expression, to form a temporary grouping of records called a record stream.

The record stream .can comprise any desired selection of records, whether
from a single relation or from several relations joined together .

• Using a PRINT or GET command to select the fields from the records. The
PRINT statement displays values on the terminal. The GET statement assigns
database values to variables ina program.

In most cases, you would use a FOR loop (containing a FOR statement and a
PRINT statement) to form a record stream and display selected fields. The fol­
lowing is an example of a FOR loop:

record selection expression

+------------------+---------~-------------+
FOR : E IN EMPLOYEES WIT~ E.DEPARTMENT = ~ENG" :

+-------------~-----~~~~-------------------+
PRINT E.LAST_NAME. E.FIRST_NAME

END_FOR

The record selection expression in this example begins with the letter E, which
is called the context variable. The context variable is the name you use to associ­
ate a variable with a particular relation and, therefore, the individual fields (for
example, E.LAST~AME) in the relation records.

The result of the FOR statement in this example, illustrated by Figure 6-2, is a
record stream consisting of all the EMPLOYEES records with the string "ENG"
in the DEPARTMENT_CODE field.

6-12 • VAXRdblVMS

RELATI,ON:

EM-PLDYEE-IO SEX DEPARTMENT_CODE
+---*------------------~--------~--------------------- ---+.

Geor~e .TDJiv~r 842 M ENG -------+
Paul Blanchett 217 M MKTG
Christine Decker SIS F RECR :
Paul Dallas 112S M :MNFG L .~
Ja'Mes C'ool 11S M ADMN :
Russ StUH't 55£1 M ENG - :-._ - i-._.+ :
Le,s 1 i e Neil 721 M ADMN , - ' , , ,
Nancy Brown 8£12 F PERS : , ,
Geor~e Boutin 7£10 ,M ENG -----+: :

" Ann Patterson 328 F SALE ,

+--+

REC,ORO STREAM:

' ,

, ,
,.,
, ,
, ,

, ,
, ,

FIRST_NAME LAST_NAME EMPLDYEE-ID SEX DEPARTMENT_CODE
+--+ , t,

GeorH Tol.iver 8£12 M -!,NG <---,---+
Russ Stuart 5511 M ENG {-----+
Geor~e Boutin 7£10 M EN'G <----+

:.

+- -- - -- - - - - - -- - - - - - - - - -- - - - - - - - - -- - - - - - - - - - -- -- - - - - - - - - - -.+

Figure 6-2 • Result o/Example FOR Loop

The PRINT statement in this example selects only the fields E.LAST _NAME and
E.FIRSLNAME for display on your terminal.

Using a combination ofRSE clauses and value and conditional expressions you
can limit the.record stream formed by a FOR statement in many different ways.

The RSE clauses you can use are as follows:

• FIRSTn
Retrieves only the number ofreeords specified.

• WIlli
Names a set of criteria for selection, using conditional expressions.

Example:

FOR E IN EMPLOYEES WITH E.LAST_NAME
PRINT
E.FIRST_NAME.
E.LAST_NAME.
E.SOCIAL_SECURITY

END_FOR

• CROSS
Names a second relation for a join operation.

Example:

FOR E IN EMPLOYEES
CROSS 0 IN DUMPS
OVER CODE

END_FOR

• SORTEDBY
Names a key with which to sort the record stream.

Example:

FOR E IN EMPLOYEES SORTED BY E.STATE
PRINT
E.STATE.
E.TOWN.
E.EMPLOYEE_ID

END_FOR

• REDUCEDlO

6-13

"Toliver"

Names a fidd to selVe as the reduced to key. The record stream consists of the
unique values for that fidd. This is sometimes called a project operation.

Example:

FORE IN EMPLOYEES REDUCED TO E.TOWN
PRINT E.TOWN

END_FOR

VAX RdbNMS permits the full range of sdection criteria and operators· to
retrieve exactly the desired records and perform standard operations on them.

• Conditional (or Boolean) expressions - These expressions perform range
retrieval and pattern matching, and check for existence and. uniqueness.
Examples:

6-14 • VAX RdblVMS

The most common type of value expression is the simple field name (for exam­
ple, E.LASLNAME); others include:

Value Expression Example

Literals "ENG"

Arithmetic E.SALARY -.AMOUNT" 1.3

Statistical AVERAGE E.DEPARTMENLCODE OF E IN

EMPLOYEES WITH EDEPARTMENLCODE = "ENG"

A conditional expression compares two value expressions and evaluates to either
TRUE or FALSE. The conditional expression operators are:

EQ

NE <>
GT >
GE >=
LT <
LE <=
You can use the logical operators AND, OR, and NOT to combine conditional
expressions.

The following illustrates a multiconditional FOR loop:

FOR E IN EMPLOYEES WITH E.STATE = "Massachusetts"
CROSS D IN DEPARTMENTS OVER DEPARTMENT_CODE
AND (0. DEPARTMENT_NAME = "Engineering"
OR D.oEPARTMENT_NAME "Manufacturing")

PRINT E.LAST_NAME.
E.FIRST_NAME.

END_PRINT
END_FOR

You can also use value and conditional expressions in PRINT statements. For
example:

FOR E IN EMPLOYEES
+-----------------------+

PRINT: E.SALARY_AMoUNT * 1.3 : END_FOR
+-----------+-----------+

arithMetic expression

6-15

A FOR statement works well when you want to process the records from a
single record stream one at a time. There may also be times when you want
to establish more than one record stream, and you want the processing of
the streams to interact. In such cases, use a START_STREAM statement to
start each stream.

Think of the START,STREAM statement as analogous to the OPEN statement in
a high-Ievd programming language like BASIC. After you use OPEN to open a
@e in BASIC you use GET statements to put records into a buffer for processing,
one record at a time. Similarly, in VAX RdbNMS, after you set up a record
stream with the START,STREAM statement, you use FETCH statements to
make each successive record in the stream available for processing.

This START ,STREAMlFETCH combination differs from the use of a FOR loop
containing a GET or PRINT statement. When you use a FOR loop, VAX
RdbNMS automatically performs a GET or PRINT once for each record in the
record stream set up by the RSE. With START_STREAM, the RSE sets up a
record stream, but VAX RdbNMS does not set up a loop and automatically pro­
cess each record in the record stream. Instead, you must isSue a FETCH state­
ment to advance a record pointer to each succeeding record in the stream. After
you have advanced the pointer, you can then use data manipulation statements
to operate on the specific record.

The FOR loop is easier to use than START,STREAM; however, START,STREAM
gives your program more flexibility. For example, you can start more than one
record stream, and the values returned from one stream can affect the process­
ing of the other.

Modifying Data
RdbNMS allows you to store, modify, and erase data using the same kind of
record sdection expression you use to retrieve_ With it you can precisdy specify
the records you want to change.

• SlORE
Stores values in the database. For example, the following statement stores a new
DEmRTMENTS record:

STORE D IN DEPARTMENTS USING
D.CODE = "RECR";
D.NAME = "Recreation";
D.EMPLOYEE_ID = 567;

END_STORE

6-16 • VAX RdblVMS

• MODIFY
Modifies values in the database. For example, the following statement changes

" the manager of the Recreation Department:

FOR D IN DEPARTMENTS WITH D.CODE
MODIFY USING

D.EMPLDYEE_ID = 433
END_MODIFY

END_FOR

• ERASE

"RECR"

Deletes records from relations. A budget cut has spelled the end of the Recrea­
tion Department:

FOR D IN DEPARTMENTS WITH D.CDDE
ERASE D

END-FDR

Ensuring Consistency and Accuracy

"RECR"

To ensure data consistency and accuracy during use of a database by two or
more users or programs, VAX Rdb/VMS supports transactions and record
locking.

A transaction is a series of operations that must execute as a unit or not at all. A
transaction begins when a START_TRANSACTION statement is issued, and
ends when a COMMIT or ROLLBACK statement is issued. COMMIT causes all
changes made during a transaction to be entered in the physical database.

If any operation during a transaction is not completed successfully (for exam­
ple, a ZIP Code validation operation fails), the user may issue a ROLLBACK
statement. The ROLLBACK statement nullifies all operations in the current
transaction.

VAX RdblVMS lets many users read, write, and modify data in a database con­
currently. This feature also introduces the possibility of inconsistency. For
example, if two users read and then modify a single field, one of them may be
reading an obsolete value. In general, a program updating a value must be sure
that the update will be completed before any other program can update the
same value.

VAX Rdb/VMS ensures this kind of consistency by means of automatic record
locking, and by allowing your program to explicitly protect relations and
records from actions by other programs during a transaction.

Through automatic record locking, when a record is being accessed by one pro­
gram or user during a transaction, that record cannot be modified by another
user until the current transaction is completed and either the record is modified
or simply released.

6-/7

When you issue the START_TRANSACTION statement, you can include a
list of relations and the kind of access to be allowed to other programs dur­
ing your transaction. For example, if your program is updating the
EMPLOYEES relation, it might start a transaction with PROTECTED WRITE
access as follows:

STARLTRANSACTION RESERVING EMPLOYEES FOR PROTECTED WRITE

This statement allows other programs to access the EMPLOYEES relation for
reading data in the relation, but not for writing data. Other programs cannot
write data until your program completes the transaction with a COMMIT or
ROLLBACK statement.

Maintaining a Database
The Rdb RDO facility provides a set of statements that allows you to perform
common database maintenance functions, such as backing up, restoring, ana­
lyzing space usage, checking database integrity, and maintaining journal files to
restore a database if there is a failure. These statements are as follows:

• ANALYZE

The ANALYZE statement displays the space usage per page for the database
file. Optional qualifiers display the number of records and the index structure
for each relation within the database. Regular analysis of database usage lets
you restructure your database to improve processing efficiency.

• BACKUP and RESIDRE

The BACKUP statement writes a compressed copy of the database to a file. If
the database becomes corrupted through a hardware failure, or in some other
way, you can use the RESIDRE statement to install the saved ve rsion of the
database.

• RECOVER

In case of a system failure, you can use the RECOVER statement to apply a
journal file to a backup copy of the database.

Accessing a VAX RdblVMS Database from Application Programs
VAX RdbNMS is optimized for use by application programs.

You can access a VAX Rdb/VMS database from an application program written
in any high-level language that supports the VAX standard call interface. These
languages include:

VAX COBOL
VAXDIBOL
VAX FORTRAN
VAX BASIC
VAX BUSS-32

VAXC
VAX MACRO
VAX PASCAL
VAXPLII
VAX RPG II

6-18 • VAXRdbNMS

You access a VAX RdblVMS database from an applications program: .

• By using callable RDO(applies to all the languages, listed above), or

• By using precompiled data manipulation statements (applies to COBOL,
BASIC, FORTRAN, and PASCAL only) "

• Using VAX RdhNMS wim Other Software Products .
In some cases, VAX RdblVMS uses other VAX Information Architecture prod­
ucts automatically: In other cases, you can use products together explicitly.
Either way, the VAX Information Architecture ensures that the products you
choose work together smoothly.

VAX RdblVMS and the Common Data Dictionaty
You may store definitions of VAX RdblVMS database entities in the VAX Com­
mon Data Dictionary (CDD). For example, if you are working in the default
dictionary directo'ry called CDD$1OP.RDB and you create a database called
PERSONNEL, VAX Rdb/VMS installs a directory in the CDD called
CDD$1OP.RDB.PERSONNEL. Then, when you define fields, relations, and
other elements of the database, VAX RdblVMs places these definitions in this
directory.

When you store VAX RdblVMS definitions in the CDD, other VAX Information
Architecture products imd high-level language compilers and precompilers can
access them. For example, if you wish to use VAX DATATRIEVE to make ad hoc
queries to a VAX RdbNMs database, the VAX Rdbdata definitions must be
located in the CDD.

VAX RdblVMS and DATATRIEVE
You can use VAX DAIATRIEVE and VAX RdblVMS together:

• To make ad hoc queries.

An ad hoc query is a data retrieval operation you perform once to get a specific
piece of information from the database. By using VAX DAIATRIEVE as its
interactive query facility, VAX RdblVMS takes advantage of many capabilities
for information retrieval and manipulation not available with many relational
database query languages. You can use VAX DATATRIEVE to query a VAX
RdblVMS database without being concerned about how VAX DATATRIEVE
accesses the data. VAX DAIATRIEVE can also be used to acce~s data stored in
RMS files or in a VAX RdblVMS or VAX DBMS database.

6-19

• For prototyping applications.

VAX DAThTRIEVE also provides a simple tool for designing and testing an
application. For example, programmers already familiar with VAX DATA­
TRIEVE might prefer to use it to model the queries and reports that will be
included in an application, rather than using RDO. Then these queries can be
translated into VAX RdblVMS statements. The VAX Rdb statements that
retrieve, modify, and erase data closely resemble VAX DAThTRIEVE, so the
translation process is easy.

• For developing simple applications.

You can write VAX DATATRIEVE applications that access VAX Rdb/VMS
databases. VAX DATATRIEVE is especially useful for applications in which:

- Your application performs elaborate calculations or transformations of
dat'll.

- Your application produces a complex report whose form is important. .

- Your application calls for graphs and tables included in its output.

For such applications,it is easi~r to write VAX DATh1mEVE procedures than
high-l~eltanguage programs.

VAX Rdb/YMS and Other VAX Information Architecture Products
VAX Rdb;vMs can be integrated with the other VAX Information Architecture
products as well: ..

• VAXAGMS
To develop and IDanage tran~a<:tion processing and other complex applications
that access datllusmg VAX RdbIVMS.

• VAXTDMS
To define forms and managet¢rminal I/O in applications that store data in and
retrieve data from VAXltdh!VMs databases .

• PROGRAMMING LANGUAGES
To write application programs that access a VAX RdblVMS database using any
VAX languages which support the VAX calling standard.

• VAXDECgrap9 .. .
To generate graphs and plots of data accessed through VAX DAD\TRIEVE.

Chapter 7 • VAX TDMS and VAX FMS

Digital offers two alternative solutions - VAX ruMS and VAX FMS - in the area
generally referred to as terminal management for VAX systems. TDMS and FMS
are alike in many ways, but also have some significant differences which will be
discussed at the end of this chapter. VAX users have a choice, then, and it is
highly likely that either ruMS or FMS can provide an excellent terminal man­
agement solution for their particular needs.

This chapter will first discuss the VAX Terminal Data Management System
(ruMS), then the VAX Forms Management System (FMS), each being viewed as
an independent product. The two will then be compared and contrasted, with
advice offered as to which product is most appropriate in which situation(s).

VAXTDMS
VAX ruMS, Digital's Terminal Data Management System, is a programmer pro­
ductivity tool designed to reduce the high lifecycle costs of developing and
maintaining forms-intensive terminal applications on VMS systems.

ruMS offers a wide range of features making it easy to develop applications that
display and collect information, relieving the programmer of many of the "bur­
dens" associated with conventional forms-based applications. ruMS is an inte­
grated member of the VAX Information Architecture, as it uses the VAX
Common Data Dictionary and can also interact with VAX DATATRIEVE,VAX
DBMS, VAX RdbNMS, and VAX ACMS. It provides a record-level interface,
while VAX FMS offers a field-level interface.

ruMS provides a fourth-generation ·interface for defining the data exchange
between screen(s) and program(s). It is used in conjunction with standard
third-generation languages such as VAX COBOL, VAX :BASIC or VAX FORTRAN
for defining programming logic. It replaces .the often cumbersome coding of
program/screen interaction with definitions, which are stored independently in
theVAXCDD. .

Use of a record-level interface provides both terminal and data independence at
the app~cation program level, as the application need only exchange record
buffers with the interface; as simple as programming to a disk file. ruMS man­
ages the moving, mapping, and data type conversion between the fill record
data types and screen data types, freeing the application of all such logic.

7-2 • VAX TDMS and VAX FMS

With VAX IDMS you can:

• Define the exchange of data between an application program and its associ­
ated terminal(s) using a nonprocedural language. These predefined
exchanges of data, called REQUESTS, are external to the application pro­
grams they serve.

• Use a screen editor for defining forms, allowing you to easily format data on
your terminal. Forms are defined external to the application program and can
often be modified without resulting in a corresponding modification to the
application program that uses it.

• Use standard utilities enabling the creation, modification, and storage of
FORM definitions and REQUEST definitions.

• Use a "record level" programming interface which the application program
uses to invoke and execute the predefined REQUESTs. The application pro­
gram calls the program interface, passing it the REQUEST name and the pro­
gram record buffers used in the exchange of data with the terminal.

• Store form definitions and request definitions in the Common Data Diction­
ary along with the file record definitions that the requests reference. The CDD
acts as a central repository for these definitions, allowing them to be shared
among multiple applications. Changes are made once, and frequently can be
made without affecting the application program that uses them .

• Who Uses VAX TDMS

Virtually anyone needing to reduce the high costs of developing and managing
forms-intensive terminal applications on VAX systems can benefit from using
VAXIDMS.

It is intended for use primarily in complex programming efforts, those requir­
ing at least one man-year to complete. TDMS can provide benefits to application
managers, application designers, application programmers, and terminal oper­
ators. It is also a prerequisite for all users of VAX ACMS.

The program in a IDMS application can be viewed as a generic algorithm that
executes a series of requests (or routines) and reads and/or writes information
to a database. The requests and form definitions are independent of the pro­
gram and can thus be modified without incurring significant programming
costs.

7-3

• Benefits of VAX TDMS

• TDMS uses nonprocedural definitions for forms, records, and requests. With
nonprocedural definitions, users can define their terminal data management
logic external to the application program. Development and maintenance are
simplified, and a better division of skills in your development team can be
attained.

• The screen editor used with TDMS defines field validation and completion
attributes including character validation, display field characteristics, range
checks, check digits, list checks, and screen-wide characteristics. Again, pro­
ductivity is improved by virtue of the fact that field valIdation is performed
external to the application program.

• TDMS features a record level interface, allowing the application program and
appropriate form to exchange data a record at a time. The field/mapping con­
version is automatic, further reducing required programming effort.

• TDMS offers device independence. That is, application programmers do not
need to concern themselves at all with the specific type of device a terminaloper­
ator will be using. Terminal manipulation (such as cursor control, scrolling,
and video highlighting) is defined by the form and the request, wholly inde­
pendent of the application programming.

• In summary, TDMS reduces the development and maintenance costs associated
with complex, terminal-based applications .

• A Closer Look at VAX TDMS

The primary goal of VAX TDMS is to significantly reduce programming costs
during the life cycle of an application. TDMS lets you realize these savings by
replacing major portions of the application program with definitions that are
created and stored outsIde of the application program, including:

• Form Definitions, which define the image that appears on the terminal, as
well as data input requirements

• Record Definitions, which define the datatype, structure, order, and length of
the records that the application uses

• Requests, which define the exchange of information between the program
(record definition) and the terminal (form definition), including data il1put
and output

7-4 • VAX IDMSand VAXFMS

These definitions are all stored in one central repository - the VAX Common
Data Dictionary_ The CDD is used indirectly by all users of TDMS, and should
changes to ,definitions be needed, those changes are only made in the CDD.
Because these definitions are the output of utilities and not written as part of the
program code, it is often· possible to revise your application Without changing
the application program.

For example, suppose that you develop an application that uses forms for your
personnel department. Six months after the application is .installed and run­
ning, the personnel department tells you that employee identification numbers
will change from five-digit to nine-digit numbers. If the application has been
developed without TDMS, you incur a major cost of revising, debugging, and
recompiling program code. With TDMS, however, the process is greatly simpli­
fied: the elements of the application that must be changed are kept outside the
program. As a result, you may only need to revise the offline definitions; in
many cases, you will not have to change one line of program code.

Every TDMS application indudes the following parts, or elements:

• An application program

• One or more record definitions

• One or more form definitions

• One or more requests

• One or more request library definitions

• One or more request library files

The Application Program
The program in a TDMS application:

• Reads data from and writes data to the database

• Uses the TDMS programming calls to:

- Execute requests

- Open and dose request library files

- Open and dose I/O paths to the terminal

- Read or write text from the reserved message line on the terminal

- Cancel a call in progress

- Signal the return status for TDMS call errors

- Activate a facility (TRACE) that traces the action of a request

• Executes the program logic

• Provides for error processing

7-5

TDMS also performs data type conversion during the execution of a request,
converting form text to the datatypes of receiving record fields on input and
converting the datatypes of record fields to form text on output.

In short, the program identifies the requests that are to be executed. The
request controls the flow of data between the record and the terminal, and the
program controls the flow of data between the record and the disk.

For a TDMS application program, you can use any VAX native mode language
that adheres to the VAX Procedure Calling and Condition Handling standard.
Application programs written in VAX COBOL or VAX BASIC can additionally
benefit from the CDD record extraction capabilities by eliminating the need to
redefine records.

Record Definitions
VAX TDMS uses record definitions to identify the datatype, structure, and length
of records used in an application. For application programs that are written in
languages supporting the VAX Common Data Dictionary (CDD), you need only
reference the record definition that already exists in the CDD rather than rede­
fine the record in your program. VAX COBOL V2.0 (the COpy statement) and
VAX BASIC V2.0 (the %INCLUDE statement) currently support the extraction
of records from the Common Data Dictionary. (If your application program is
written in a language that does not support the CDD, you must redefine the
record in the program.)

All data used in requests must be defined in the CDD, including data entered by
the terminal operator (which TDMS moves from the form to the record) as well
as information that is displayed on the terminal screen (which TDMS moves
from the record to the form).

The record definer creates record definitions using either the VAX CDD Data
Definition Language (CDDL), VAX DATATRIEVE, or VAX DBMS. Aswith form
definitions, record definitions are stored in the Common Data Dictionary.

7-6. VAXTDMSandVAXFMS

Form Definitions
The form definition describes the image that is displayed on the terminal at
runtime. A TDMS application uses forms to collect information from, and dis­
play information to, the terminal operator. The form definition contains the
information that identifies:

• The screen image of the form. The screen image includes the location of
background text and fields as well as video highlighting. (Background text is
text that is always displayed when the form is displayed; fields are locations
on the form where data can be collected or displayed.)

• A set of attributes for each field on the form (including means for validating
data).

• The location, length, and picture-type of each field.

• The location of scrolled regions on the form.

• The name of a Help Form, which the terminal operator can display at
runtime.

-------- Terminal Operator -------­

The name terminal operator identifies the individual who uses the
TDMS application at runtime. The terminal operator maybe enter­
ing information (into the application database), reading information
generated and displayed by the application, or both.

Requests
Requests are English-like, self-documenting statements. While very ea/>y to
follow, they can be quite powerful in terms of the work they accomplish, the
coding they replace. Requests can replace virtually all of the terminal input and
output coding, that would otherwise be required of the application program,
with high-level, nonprocedural definitions. A typical simple request identifies a
form to be displayed and the data to be collected andlor displayed on the form.
Using requests, TDMS permits data that is to be collected (or displayed) on a
single form to be sent from (or to) any number of records. Requests provide for
the moving and mapping of data type conversions, plus the automatic handling
of scrolled fields. More complex requests provide additional capabilities, such
as the inclusion of conditional instructions. The conditional logic in a request
allows:

• forms selection from a list of possible forms

• the handling of error conditions

•. the dynamic modification offorms presentation characteristics, such as blink­
ing and bolding

7-7

The application program is therefore independent of the form data input!
output process. Its primary functions are to:

• Call and execute requests

• Provide access to the database that the application uses

• Provide error-processing functions that avoid data corruption and runtime
errors

The application programmer does not need to be concerned with mapping data
between forms andrecords, since this is done entirdy by the request. In many
applications, IDMS can reduce the number of programming statements and
error messages from the application program, using requests to undertake these
functions.

The key dement in a IDMS application, the IDMS request controls the infor­
mation that is displayed on the terminal and collected from the terminal opera­
tor. By defining the terminal input and output, the request replaces major
portions of code that otherwise would have to be included in the application
program.

As the result of instructions specified by a request, IDMS can:

• Display a form

• Allow data to be entered on the form and transferred to the record

• Allow data to be transferred from the record and displayed on the form

• C~nditiona1ly tJerform the above operations based on a value previously
.e~tered by the terminal operator or returned by the program

• Allow the operator to use program request keys that can return predefined
data to the record

IDMS requests are created by the VAX IDMS Request Definition Utzlity (RDU),
which also stores the requests in the CDD. .

Request Library Definitions
A request library definition .is a list of one or more requests .. To be used in a
IDMS application, a request must be named in at least one request library
defIDition.

The request library definition is created by the Request Definition Utility, and it
is stored in the CDD. You can use more than one request library definition in an
application.

7-8 • VAX TDMSand VAXFMS

Request Library Files '
A request library file (RLB) is a VMS file based on a. request library definitidn;
The RLB includes:

• Any requests nam~ in therequestlibtary definition

• Any form definitions identifiec\in each request

• Any record definitions identified in each request

You use the Request Definition Utility (RDU) to build an RLB. If a definer modi­
fies a request, form definition, or record definition after an RLB has been built,
you must rebuild the RLB lri order to incorporate the changes into the applica­
tion at runtime:

At runtime, the program can execute a request only if the request is in an RLB
file and the RLB file has 'been opened by the program. When the program exe­
cutes' a request, the request, record information, and form definition are
retrieved from the RLB file, not from the CDD.

TDMS Utilities
VAXTDMS provides two utilities to create, store, and :modify definitions: the
IDMS Form Definition Utility (FDU) and the TDMSRequest Definition Utility
(RDU).

The TDMS Form Definition Utility
The IDMS Form Definition Utility (FDU) provides all of the capabilities that
the form definer needs to Create or modify form definitions and store them in
the CDD .. Using the FDU foim editor that is u;,duded in theFDU, the.form
definer can:

• Create a screen image of the form, including:

- Background text (text that is always displayed on the form)

- Fields (locations on the form where data can be colleCted or displayed)

- Video highlights that can be activated whenever the form is displayed and!
or when a field is available for operator input

- The screenbackground (dark odight) and number of columns (80 or 132)

• Assign specific attributes, validation procedures, arid input cii-der to fields

7·9

The TDMS Request Definition Utility
The TDMS Request Definition Utility (RDU) provides all of the capabilities that
the request definer needs to:

• Define and modify requests and store them in the CDD

• Define and modify request library definitions and store them in the CDD

• Build request library files

RDU includes a validation procedure to ens~e that:

• The syntax used in each request is valid

• Each form definition named in the request exists as a CDD location contain·
ing that form definition

• Each record definition named in the request exists as a CDD location contain·
ing that record definition

• The data mappings between form and record definitions are consistent with
TDMS data mapping rules

RDU also creates, validates, and stores request library definitions and verifies
that each request named in a request library definition exists in the CDD.

RDU is also used to build request library files (RLBs). To build the RLB file, RDU
retrieves the requests named in the request library definition and the form and
record information identified in each request. As output, the RDU generates the
RLB in a VMS directory. When building the RLB, RDU validates each request to
make sure that form and record definitions exist, that the request syntax
adheres to RDU syntax rules, and that all input and output mappings are legal.

(The definer can choose to deactivate the RDU validation procedure when cre­
ating or modifying requests and request library definitions. RDU always vali·
dates request library files and does not build an RLB if it detects serious errors.)

In summary, the request definer uses RDU to create and modify requests and
request library definitions, and to build a request library file. TDMS can execute
a request only when the request (and the form and record information identi­
fied in the request) is included in an RLB file. RDU provides a validation proce­
dure that may be used when creating or modifying requests and request library
definitions and is always used when building an RLB.

7-10 • VAX TDMSand VAXFMS

Summary - VAX TDMS Application Elements and Utilities
Form definitions describe the appearance of the screen at runtime and regulate
the type of data that the terminal operator is permitted to enter at runtime.
Record definitions describe the structure of the data that is used in the applica­
tion. Requests usually identify form definitions, record definitions, and the
input and output mappings that take place between them. Form definitions,
record definitions, and requests are stored in the Common Data Dictionary,
using utilities provided by VAX TDMS and VAX CDD.

Request library definitions list the requests used in an application. A request
library file (RLB) is based on the requests named in a request library definition;
the RLB includes each request and the form and record definitions named in
each request. A request must be in a request library file that has been opened by
the program in order to be used in a TDMS application.

At runtime, TDMS programming calls execute requests stored in RLB files. The
application is controlled by the requests that the program executes and the
instructions specified by such requests. Request instructions can direct TDMS
to display forms, collect and! or display information, or perform conditional
operations .

• Using VAX TDMS with Other Products

Other than the VMS operating system, TDMS's only prerequisite software is the
VAX Common Data Dictionary. TDMS can optionally be used in conjunction
with VAX DATATRIEVE, VAX DBMS, VAX RdbIVMS, and VAX ACMS, it being a
prerequisite for ACMS.

The VAX Common Data Dictionary (CDD)
The CDD is the facility in which all form definitions, record definitions,
requests, and request library definitions must be stored in order to be used in a
TDMS application. The CDD is not used to store data.

Before generating the CDD definitions for TDMS applications (record defini­
tions, form definitions, requests, and request library definitions), you should
understand the structure of the CDD and know where in the CDD you should
store your definitions.

In general, the CDD is organized into a hierarchy of directories, similar to VMS
directories and subdirectories. Definitions used by TDMS are stored in diction­
ary objects; the name of the definition indicates the path used by the CDD to
locate the dictionary object. For example, a form definition named
EMPLOYEE.DISPLAY.FORM is found in the CDD by following the path of (dic­
tionary directory) EMPLOYEE to (dictionary directory) DISPLAY to (dictionary
object) FORM.

7-11

Form definitions and requests are stored in the CDD using the Form Defini­
tion Utility and the Request Definition Utility. To store record definitions in
the CDD, use the CDD Data Definition Language (CDDL), which is included
as part of the VAX Common Data Dictionary software. Examples of record
definitions are shown in the VAX TDMS Sample Application Manual. For
complete information concerning the use of CDDL, see the VAX Common
Data Dictionary Data Definition Language Reference Manual.

Language Support
If an application program is written in VAX COBOL or VAX BASIC it can, at
compile time, use the "copying" features of those languages to include record
definitions directly from the CDD. Applications written in other languages must
define records in the application program itself and in the CDD.

Applications can be written in any VAX native mode language that adheres
to the VAX Procedure Calling and Condition Handling standard. Specific
languages supported are:

VAX BASIC
VAX FORTRAN
VAXC
VAXBLISS-32

VAX COBOL
VAXPU1
VAXDIBOL
VAXB\SCAL

VAXFMS
The VAX FMS Forms Management System is designed to aid in the develop­
ment of application programs that use video forms. FMS manages these forms
for application programs that use Digital's VT1OO- and VT2oo-compatible termi­
nals. Forms defined using VAXFMS provide a programmer with the ability to
use the follOwing features of those terminals:

• Individual character attributes of reverse video,bold, blinking, and underline

• Line attributes of double-width, double-height, and scrolling

• Screen-wide attributes such as 80- or 132-column lines and reverse video

• Alternate character sets including the VT100 "special graphics character set"
for line drawing

7-12 • VAXTDMSandVAXFMS

• Who Uses VAX FMS
, , "

As you might expect,' users who sdect Fl'y1S as their terminal/forms manage­
ment solution do so forvery different reasons th,m those cited by TDMS users.

VAX FMS should typically be sdected when:

• There are requirements for extFnsive validations of data at the fidd levd.

• There are requirements for upward system compatibility across operating
systems.

• There is no heed for the VAX CDD.

• There is a need for fidd by fidd interaction between the application program
and the form.

• Screen-based applications are to be devdoped for use in the ALL-IN-!
environment.

• The Benefits of VAX FMS

• FMS is easy for your data entry personnd to use. Many of its features and
capabilities make it possible for your form screens to be varied, attention­
getting, and conducive to minimal fatigue andlor error tendencies.

• FMS is easy for your application programmers. It takes some of the workload
off your programmers by taking forms design responsibility out of the appli­
cation program. With FMS, you store video forms in their own forms libraries.
You can modify old forms and create new ones without disturbing application
programs. Once the form driver programs are written into your programs,
there is no need to recompile or relink whenever a form needs to be changed
or created.

• FMS is easy for your forms designers. VIrtually all of your computer users can
be trained to desigIl their own forms with VAXFMS. The interactive Forms
Editor lets you see your forms as you design them on a VTl'OO- or VT200-
compatible terminal, making changes as you go, .

• A Closer Look at VAX FMS
The Interactive Forms Editor
The VAX FMS interactive Forms Editor is the actual tool you use to design your
forms on the terminal screen. It provides a simple means of entering, storing
and modifying FMS form descriptions. Being interactive, the editor lets you see
each form as you create it, exactly as it would appear in finished form. You can
make adjustments, or wholesale rearrangements, at any time during the design
process.

7-13

The Forms Editor is also menu driven, with an extensive online HELP facil­
ity, making it simple enough for end users to successfully create and modify
their own forms.

The Forms Test Facility lets you test as many possible matrices as you wish
before selecting the most preferred final form design. And using your terminal's
keypad, a variety of editing functions can be invoked. All form attributes, indi­
vidual field attributes, and named data constants are assigned in this form edit­
ing process. The result of a session using the Forms Editor is an intermediate
form file, ready for processing by the Form Librarian.

The Form Librarian
Essentially what its name suggests, the Form Librarian allows individual forms
to be inserted (into storage), deleted, extracted and replaced. Forms will typi­
cally reside in form libraries on disk, and are retrieved as needed by application
programs during their execution. This arrangement makes possible a high
degree of independence between form data structures and application pro­
grams. Forms can be modified without the often-encountered requirement for
recompilation or relinking of those application programs.

User Action Routines (UARs)
A key feature of VAX FMS is the virtually boundless capabilities it offers through
its User Action Routines, or UARs. Functioning as extensions to the FMS Forms
Driver, UARs are routines that you can write in your favorite VMS programming
language and then associate with a field, a HELP request, or a function key.
UARs can be as long and sophisticated, or as short and simple, as your needs
dictate.

The Forms Driver calls a UAR "into action" when a specified event takes place, a
field is completed, or a function or HELP key is pressed. Different forms in
different applications can share one or more UARs. Regardless of the VMS lan­
guage(s) in which they are written, all UARs can be stored in UAR libraries, avail­
able to application developers.

The three different types of UARs available are Field-Completion, HELP
Key-Associated, and Function Key UARs.

Field-Completion UARs
You can associate a UAR with the completion of a particular field. As soon as
data entry to that field is completed, The Forms Driver calls the associated
UAR(s) before advancing to the next field, giving you considerable flexibility in
data validation.

7-14 • VAX TDMSand VAXFMS

As an example, suppose you had a form with DATE'OF-BIRlli and AGE fields.
You could write a UAR that would compare the DAJ'E-OF-BIRlli with the cur­
rent date to validate each person's age, and would then associate this UAR with
the completion of the AGE field. Every time a user filled in the form, the UAR
would automatically validate .the AGE field.·

You can also use UARs associated with field completion to branch from one
form to another. If you had a number of forms that needed to be filled out
sequentially, you could associate a UAR with the completion of the last field in
the first form to call the next form in the sequence;

HELP Key UARs
You can associate a UAR with a HELP request to provide even more detail than
is provided by standard FMS HELP processing. You can also use this feature to
track HELP requests. .

You carl write a UAR that presents a unique HELP message for each field in
addition to the standard FMS help. For example, you could display a list of
allowable entries for a particular field. Or you could, of course, defer to the
form-level help for those fields that do not requite more detailed help messages.

You can also use the HELP key-associated UARs to keep track of HELP requests.
You could track requests by user, by form, by field, or by any combination of the
three. In this. way you could quickly discover if users were having particul,ar
difficulty with a certain form, or even a specific field.

A UAR that is activated before the standard field- or formclevel HELP facility is
called a PRE-HELP UARYou can also write a UAR that will be activated only
after the form-level HELP messages have been exhausted - this is called a
POST-HELP UAR. This POST-HELP UAR could provide a more detailed HELP
message or could even.notify a supervisor that the user has a problem.

Function Key UARs. .
You can associate UARs with function keys to define function keys tor your
application, which can make that application exceptionally easy to u~e.

For example, if you were designing a hotel management application you might
have separate forms for reservations, check-ins and check-outs: You could
establish UARs to call these forms with different function keys. You could then
label certain keys accordingly, speeding the access of the correct form to the
desk clerk's screen.

7-15

The Forms Driver
The Forms Driver is the runtime component of VAX FMS. Called from applica­
tion programs as the means to control screen processing, the Forms Driver is a
shareable, native mode subroutine. It manages all screen I/O, displays forms,
manipulates the screen, performs some basic input validation, and responds to
an operator's request(s) for HELP. It allows you to specify input and output one
field at a time or on a whole-form basis.

FMS's Forms Driver has several features that enable fine tuning of the interac­
tion between application and user. Field Highlighting, for example, causes the
video attributes of each field to be changed as the cursor enters the field, and to
be restored to their original state when the operator exits that field.

Named Data
VAX FMS permits up to 65,000 items of Named Data perform. Named Data
allows information needed by an application program - such as forms linkage,
operator messages and other human language information, and data validation
criteria - to be defined,· stored and modified independently of the application
program.

The Forms Language
The Forms Language 1i-anslator, optional with FMS, allows you to creatdorms
from any type of terminal, even a hardcopy terminal. Use the text editor of your
choice to create a text file that contains the form lal1gUage description of the
form. You can then translate the text file into a binary fOIm file using .the Forms
Language 1i-anslator.

FMS's Forms Language itself is logical and easy to learn. It has only ten state­
ments, yet gives you all of the design flexibility that you have with the FMS
Forms Editor.

Application programs Can generate form description in the form language.
Suppose, for example, you had a large number of forms with your company
name at the top of each form. lOu then wanted to change just the company
name in each form. You could write an application program to read in, and then
modify, the form language description of eachf0rm.

Supported Languages
FMS can be used in conjunction with applications written in VAX COBOL, VAX
BASIC, VAX FORTRAN, VAX PASCAL, VAX C, VAX PLil, VAX BLISS-32, and
VAX DATATRIEVE.

7-16 • VAX TDMS and VAX FMS

TDMS AND FMS-RELKnVE STRENGTHS
As was noted at the beginnfug of this chapter, VAX IDMS and VAX FMS are
distinct yet sin!ilar products~ They are each a sigill£icant part of Digital's com­
mitment to pr~vide VAX video forms products that meet the needs of all cus­
tomers. Each Will.continue to evolve further,' adding "enhancemenis, while
retaining its~~ particular advantages as a terminalformssolutiori.

A number of generalizations. can now be stated here, summarizing each pr~­
uct's comparative advantage< and they will then be expanded into greater
detail in th~ remainder of the chapter.

TDMS will typically be the product of choice for users of other VAX Information
Architecture tools. It will most often be associated with the forms management
aspect of applications that are fairly complex to develop, as it can help to reduce
that complexity. It provides a fourth-generation, nonprocedural definition lan­
guage for defining the exchange of data between application program and
screen.IDMS is a record level interface. It r~uires the VAX Common Data
Dictionary, and is required if VAX ACMS is to be used.

FMS is recommended where there is a need for extensive validation of data at
the field level, as opposed to IDMS's record level orientation. FMS applications,
then, often require large numbers of fields per form, and require interaction
with those applications on a field by field basis. FMS alSo tends to be the solu­
tion where there are r~uirements for upward system compatibility across oper­
ating systems, where there is no need for the VAX CDD, and where a wide
variety of terminal types might be used. Finally, FMS is the forms management
tool for ALL-IN-! users developing screen-based applications.

In the event that a substantial mix of both types of applications is involved fora
given customer; both products can be used andcan successfully coexist. Note
that VAX DATATRIEVE supports forms created with either product, so the
IDMS/FMS decision should be made solely on the basis of applications that are
to be developed and the environment in which they will be run. Now, recom­
mendations based on those criteria in further detail.

When TDMS is the Best Solution . .
VAX IDMS is a fourth generation programmer productivity tool that typically
uses third generation languages for application processing and.database
management.

7-17

It should be selected when:

• There is a need for programmer productivity to reduce the lifecycle costs of
developing and maintaining complex VMS applications_

• There will be other VAX Information Architecture products used, such as
VAX CDD, VAX DATAUUEVE, VAX RdblVMS or VAX DBMS_

• There will be a need to migrate to VAX ACMS and transaction processing for
the implementation and control of applications that are more sophisticated
and complex than those normally implemented with IDMS.

With its record level interface, TDMS provides terminal and data independence,
freeing applications of the need to write procedural code to perform individual
field validation, data mapping and conversion, and the manipulation of scrolled
regions. Applications using IDMS may be developed with any third generation
programming language that adheres to the VMS calling standard. l'heapplica­
tions need only be concerned with the logic to perform application-specific
processing andto control the flow between the screen and the databas~. IDMS
is a prerequisite product for ACMS, providing the terminal handling subsystem
for ACMS-developed applications. Being an integrated member of the VAX
Information Architecture, IDMS makes use of DBMS, RMS and DATA1RIEVE
record definitions, transparently mapping screen data to database record defi­
nitions stored in the CDD. The use of the CDD as a central repository of IDMS
definitions significantly reduces the maintenance of applications as these defini­
tions can frequently be modified without affecting the application program.
IDMS is best suited for those applications that process screen data a record at a
time, as contrasted to the field by field orientation of FMS.

When FMS is the Best Solution
FMS should be selected when:

• There are requirements.for extensive validations of data at the field level.

• There are requirements for upward system compatibility across operating
systems.

• There is no need for the VAX CDD.

• There is a need for field by field interaction between the application program
and the form.

• Screen-based applications are to be developed for use in the ALL-IN-!
environment.

7-18 • VAX TDMS and VAX FMS

FMS is preferable for those applications that require aJarge number of fields per
form, and require interaction with the. application on a field by field basis. This
is contrasted with the record level processing of roMS, where interaction with
the application is typically performed after completion of all data entry opera­
tions for all input fields on the form. A simple example might be a user form
requesting part number, description, quantity, price, back order amount, and
total. The field level programming interface ofFMS more easily allows the appli­
cation ptogram to read the Pat1 number and verify (from an FMS User Action
Routine) that the part number is active and represents a part that is both valid
and in stock before prompting the operator for the remaining variables
(description, quantity, price, etc.). FMS would also be preferable if the applica­
tion required the inputting of multiple line items of similar part nUmbers and
variable data and required that the operator have the ability to transparently
travetse the screen, (up/down arrow keys, backspace, etc.) modifying and vali­
dating fields that had been incorrectly entered. Although this kind of applica­
tion is possible to handle using TDMS, it is not as efficient as with FMS. FMS may
be used· with most VAX programming languages as well as with VAX
DATATRIEVE.

Chapter 8 • VAX ACMS

VAX ACMS, the VAX Application Control and Management System, was
designed to reduce the lifecycle costs involved in designing, developing, main­
taining and controlling transaction processing and other complex VAX/VMS
applications.

Unlike traditional application development tools, ACMS allows for the replace­
ment of large amounts of application code with high level definitions stored in
the VAX Common Data Dictionary. With the use of such definitions, users now
have available a fourth generation-like language facility that can significantly
reduce the development and maintenance lifecycle costs oflarge, complex soft­
ware projects.

VAX ACMS is comprised of two major functional parts. The first is used to
design, develop and maintain transaction processing and other complex appli­
cations using a fourth generation-like language. The second part is used to
monitor and control both applications developed under the first part and those
developed with other VMS tools.

Examples of applications appropriate for the use of VAX ACMS include:

• Operations support, such as order administration, personnel administration,
inventory control, and scheduling

• Inquiry and information retrieval, such as accessing customer or employee
records for quick reference or for providing decision support

• Accounting, including accounts payable and receivable, funds transfer, for­
eign exchange, and payroll

ACMS is ideally suited for, but by no means limited to, use in "transaction
processing" applications. Processing environments such as payroll, inventory,
order processing, airline reservations and on-line banking are generally consid­
ered the most "typical" transaction processing applications. ACMS, however,
can prove to be an excellent solution in any application where business proce­
dures can be broken down into some form of individual events, or units of
work.

ACMS is aimed primarily at those applications which will take three or more
"programmer-years" to develop, and which are regarded in the industry as
being in the transaction processing class of applications. Furthermore, applica­
tions for which ACMS is suitable will typically be highly structured, support
large numbers of users, be used in a production environment critical to an
organization's daily operations, and will be used with large, complex databases.
They will also tend to be highly subject to change, and often need to run on
non-dedicated systetns.

8-2 • VAX ACMS

Many studies estimate that 60% to 80% of the cost of application program'
ming is incurred in mamtairiirig applications after they have been developed.
One of the ,goals of ACMS is to reduce those costs.

A key principle begind ACMS is the separation of application development
ftom applicatiqn us~ and, col;J.trol. Mor~ specifically, applicati(;m characteristics
that are likely to change often, such as which users can run which tasks, should
not be the concern ofdeveloPfllent personnel. VAX ACMS therefor~ both pro­
vides the tools to design; develop and maintamon-line applications, and also
separately helps you to create the operational environment in which they run.

With VAX ACMS you can:

• Describe, using a high-level definition language, the wbrk or task(s) a user
needs to do.

• Definecaccess and control characteristics for users and devices

• Set up or change menus that let terminal users easily select the task they want
to run

• Employ termirial user commands to run tasks, get help information, and exit
ACMS

• Control what resources are available to process the tasks in an application

• .~onitor and record system activity, application use and performance

• Change system parameters at runtime, "tuning" your usage of system
resources

• Control the startup and shutdown of applications

• Who Uses VAX ACMS
VAX ACMS addresses several different types of users, all of whom are in some
way involved with complex, online applications:

• Application designers; responsible for the overall specification and definition
of an application and its tasks.

• Application programmers, responsible for creating andmairitamirig the pro­
grams for that application.

• Applicatiol1managers, who set up ~enus,9efineapplications; control user
· access to applications and tasks,aqd monitor and mamtain applic!!tions .

•. System managers, who authorize users and termirials for access to ACMS, and
ACMS applicationsJor access to VMS.

• Terminal users, who select and run tas~s from ACMS menus.

• ACMS operators, ~ho control and monitor the day-t~-day operations of ACMS
applications.

8-3

Note that these terms represent roles, not job titles. In many organizations, a
single person performs more than one of these roles.

• Benefits of VAX ACMS

• ACMS forces application design work at the outset of a project. The better the
original design, the less rework tends to be needed.

• ACMS's task-oriented, modular solutions allow the sharing of individual
pieces (tasks) among multiple applications. The "ripple effect" 0/ necessary
changes is minimized by this modularity.

• Debugging need not wait until an entire application is coded. With ACMS,
programmers can debug task by task, as the tasks become complete. Errors
can be detected and corrected in early development.

• ACMS provides a high level definition language, requiring much less coding
than with traditional application development tools.

• ACMS is an integrated member bf the VAX Information Architecture. It uses
TDMS to handle terminal va and VAX DBMS to provide automatic database

. journaling and recovery.

• These advantages, indipidually and taken in total; can yield a significant
increase in programmer productivity.

• The system manager can exercise some. control over users' terminals.

• Designated terminals can bypass VAX!VMS login procedures.

• Each image is started only once, then shared by all its users.

• Users of an ACMS application share a number of central ACMS processes,
rather than each needing their own. Although the overhead of these processes
is higher than that of VMS processes, this Cost is outweighed by savings in
system resources.as the number of users increases.

• These features enable an improvement in the efficient usage 0/ VAX system
resources.

• Both development and system management can control access to applica­
tions at different levels.

• The system manager can optimize performance of an ACMS application by:

- Monitoring use by user or task

- Increasing or decreasing the number of processes

- Setting priorities, changing quotas, limiting functions.

• So, both the developer(s) and the system manager can control the application(s)
via standard utilities.

8-4 • VAXACMS

• A Closer Look at VAXACMS
Application Development
VAX ACMS provides tools for developing complex on-line applications. Appli~
cations developed using ACMS then also run under its control.

One critical goal of ACMS is to reduce application maintenance costs and
increase programmer productivity without sacrificing. efficient. use of system
resourCes. It accomplishes this by providing a way of implementing th~ tasks in
an application that is different from thbSe provided by VMS or by the other
VMS-layered products.

In contrast to traditional applicationdevelopm~nt tools, which require substan­
tial programming knowledge, ACMS lets you replacelarge portions of program
code with high level definitions. These definitions, called multiple-step tasks,are
simple, direct statements. ACMS provides Application DefinitionUtility (ADU)
clauses for creating task definitions which, like other ADUdefinitions, are stored
in theCDD.

There are two types of steps ina multiple-step task. An exchange step handles
terminal I/O, usually by means of a VAX TDMS request. The request uses forms
for input and output. A processing step does the computation or database work
needed by the task. It uses a subroutine or procedure written in a programming
language such as VAX COBOL or VAX BASIC, a VAX DATATRIEVE comrriand or
procedure, a DCL command or procedure, or a VAXiVMS image:· At the end of
each step you can define one or more actions that determine what the task will
do next. Interaction between the exchange step and the processing step is han­
dled via workspaces that are passed between steps ..•.

Figure 8-1 shows the definition for a simple task that writes a new employee
recotd to a file. The task first calls a TDMS request that asks the user for infor­
mation about the employee. When the information has been entered, the task
calls a program to write that information toa file. If lin erior occurs in writing
the information, the task returns to the exchange step to display lin error
message.

CREATE TASK ADD_EMPLDYEE
WORKSPACE IS ADD_EMPLOYEE_WORKSPACE;
BLOCK WORK

EXCHANGE
REQUEST IS GET_EMPLOYEE_INFORMATION

USING ADD_EMPLOYEE_WORKSPACE;
PROCESSING

CALL PERSADD IN PERSONNEL_SERVER
USING ADD_EMPLOYEE_WORKSPACE;

ACTION
CONTROL FIELD IS PERSADD_RETURN_STATUS

8-5

"ERROR" GO TO PREVIOUS EXCHANGE;
"SUCCESS" EXIT TASK;

END CONTROL FIELD;
END BLOCK WORK;

END DEFINITIDN;

Figure 8-1 • Multiple-Step Task Definition

Multiple-step tasks use workspaces to pass information between steps. In
the definition shown in Figure 8-1, the workspace named
ADD-EMPLOYEE-WORKSR\CE passes information from the exchange step to
the processing step.

Thsks devdoped using ACMS can use either VAX databases, (VAX DBMS or VAX
RdbNMS), or RMS files. If a task uses VAX DBMS recovery actions can be con­
trolled by the task definition, further simplifying the devdopment and mainte­
nance of the application. ACMS uses VAX DBMS facilities to provide automatic
journaling and recovery.

Structuring the task into terminal I/O steps and processing steps makes the task
definition easier to understand and maintain. In addition, the separation of ter­
minal I/O from processing lets ACMS dedicate different, specialized VAXNMS
processes to each kind of work. ACMS system processes can be used to handle
the terminal I/O for many users. Another kind of process, called a server, is
defined to handle the processing steps. A server can be dedicated to computa­
tion, database interaction, or other processing work.

Server proces~es can be used by many processing steps without having to be
started and stopped for each task. A server process can handle the processing
step for one task while other tasks do terminal I/O; the same server process can
handle processing for a second task while the first task does terminal I/O.

8-6 • VAX ACMS

There are two kinds of servers:

• DCL servers handle images, DCL commands~ TlATATRIEVE commands,
DAThTRIEVE procedures, and other processing that can be run froni DCL
command mode. ..

• Procedure servers handle only subroutines written in VAX COBOL, VAX
BASIC or other VAX languages.

Procedure servers are more efficient than DCL servers. For example, procedure
servers let the application perform work common to many tasks, such as open­
ing @es, just once when the server process is started.

Because servers can be used by many tasks, they are defined in a task group
definition. The task group defines resources that can be shared by many tasks.
These resources include TDMS request libraries, VMS message files, ACMS
workspaces, and servers.

In addition to the ADU clauses for defining tasks and task groups, ACMS pro­
vides two facilities to help the application programmer develop ACMS applica­
tions. The Task Debugger (ACMSDBG) lets the programmer debug tasks without
setting up applications and menus. With the 'Thsk Debugger, an application
programmer can start servers and tasks. While a task is running, the program­
mer can set breakpoints, examine and change workspace contents, and use the
VAX SymbolicDebugger to control processing steps. The commands and quali­
fiersare similar to those of the VAX Symbolic Debugger.

Runtime Control and Management
ACMS also provides tools for defining, monitoring, and controlling on-line
applications. Although designed to supply the operational environment for
tasks defined in ACMS's application development phase, the runtime control
and management portion of the product can also be used to monitor and con­
trol existing applications running under VAXNMS. So while use of the "full
ACMS" product is recommended in the majority of situations, the runtime con­
trol and management portion alone is· frequently used to create a runtime sys:
tern on a target node to execute applications developed on a central node.

Using VAX.ACMS involves the following:

• Using menus for. easy access

• Controlling application availability

• Controlling access to applications

• Monitoring application use and performance

8-7

• USING MENUS FOR EASY ACCESS
The central ACMS control and management facility is the Application Defini­
tion Utility (ADU). This utility provides a set of English-like clauses for defining
menus and for defining the operational characteristics of ACMS applications.
For example, one of the characteristics definable with ADU is which users can
select which tasks in an application. These access control lists can be the same for
all tasks in an application or can differ from task to task.

Application definitions are stored in the VAX Common Data Dictionary (CDD)
so they can be easily maintained and controlled.

• CONTROLLING APPLICATION AVAILABILl1Y
ACMS includes an Operator Facility, a set of commands for controlling applica­
tions. For example, with these commands an ACMS operator can start an appli­
cation, making its tasks available to users. Or the operator can stop the
application so that the tasks are not available and the application does not tie up
any system resources. Other ACMS Operator commands display information
about applications, tasks, users, and ACMS components. The commands are
similar to the VAX/VMS Digital Command Language (DCL) commands an
operator would already know.

• CONTROLLING ACCESS 10 APPLICATIONS
The User Definition Utility defines which authorized VAX/VMS users can log in
to ACMS. It also defines which menu the user sees upon logging in to ACMS or,
alternatively, defines the user as an experienced one who sees a selection
prompt rather than a menu after logging in.

The Device Definition Utility specifies which terminals can access ACMS and
whether or not those terminals log directly in to ACMS. With these utilities,
users and terminals can be restricted to ACMS, restricted to VAXlVMS, or given
access to both ACMS and VAXlVMS. The utilities are similar to the AUTHOR­
IZE Utility, the system management tool provided by VAXlVMS for authorizing
VMS users.

Although ACMS provides a standard menu format, the format can be modified
to suit the needs of different terminal users. In addition, terminal users can
select tasks by typing entry names after the "Selection:" prompt, without dis­
playing menus. Certain terminal user commands provided as part of the termi­
nal user interface let users display or bypass menus. Other terminal user
commands let users get help on using ACMS menus, cancel active tasks, and exit
fromACMS.·-

~~8 • VAX ACM5

• MONITORING APPLICATION USE AND PERFORMANCE
This ACMS component helps ACMS operators and application managers moni­
tor the use of ACMS. An Audit 1laillogging facility gathers information about
task selections, user logins, and other events. It records this information in a log
file. You can then use the Audit 1lail Report Utility to take information from the
log file and format it into a report. The report can include all information from
the file; it can also be selective, including information about only one user, for
example. Similarly, the information gathered by the Audit Trail logging facility
can include all applications or can be restricted to one or more applications ..

Another component integral to ACMS, ACMSGEN lets system managers change
ACMS system parameters, such as how many users can log in, the user names
under which ACMS processes run, and the priorities of those processes .

• ACMS RUNTIME SYSTEM
The final major component of VAX ACMS is the runtime system itself, which
uses specialized VAX/VMS processes to handle the menus and tasks in ACMS
applications.

Chapter 9 0 VAX DECgraph

VAX DECgraph is the VAX Information Architecture's interactive, menu-driven
tool for generating graphs from data. It is designed to be used by experienced
computer users and novices alike, offering a wide spectrum of capabilities for
producing professional quality graphs.

With VAX DECgraph, you can:

o Begin creating your own graphs successfully in approximately one hour.

o See the results of your graph designing immediately - make changes interac­
tively at any point in the design process.

o Obtain data for your graphs in anyone of three ways: from a database, from a
formatted ASCII file, or through keyboard data entry.

o Produce six different basic types of graphs.

• Enhance your graphs with additi~nal "fine-tuning" features.

o Print, photograph, or send your output to other graphics terminal users.

o Use your graphs for reports, presentations, or "on the spot" decision support.

o Who Uses VAX DECgraph

VAX DECgraph is for anyone with a need to see or show data pictorially. With
DECgraph, the capability now exists for such people to generate graphs on their
own, quickly and easily. Even the most novice of computer ,users can now
become an accomplished designer of graphs in as little as one hour.

DECgraph, then, should be thought'of as a'productivity, t~ol for anyone who
either makes decisions based on data or is rel!ponsible for presenting that data
to those decision makers. It allows the professional who "owns" a certain set of
data, and is therefore" closest" to it in underst~ding, t~ create a graph of that
data for maximum effect. "

As a software product layered on the VAX/VMS operating system, DECgraph
runs on any valid VMS configuration. It can be an effective solution not only in
the business world, but in scientific, educational, manufacturing, and govern­
mental environments as well.

9-2 • VAX DECgraph

• Benefits of VAX DECgraph

• DECgraph includes, as part of its user documentation, a self-paced introduc­
tory tutorial for new users. It also offers several levels of HELP messages to
assist users of various DECgraph functions. And small symbols called ~icons"
guide users through available options.-'- liJu become a produdive user o/DEC­
graph very quickly.

• Icons are used extensively as the means of yout selecting DECgraph func­
tional options. - Icons are easy to use, require very few keystrokes, and make it
unnecessary for you to learn any type 0/ computer con:zmarzploffff,uage.

• Six dilierent basic types of graphs"are available to you~.DECgraph offers
graphs in the form of a line, scatter, 'dliSter bar, stacked bar, histogram, and
pie. - liJu select the graph type that is the most effective /ormaking your point,
the clearest/or explaining a particular situation.

• DECgraph automatic:illy designs graphs with the options most appropriate
for the graph type you select. DECgraph also lets you modify the design of
your graph. For example, you can select different color combinations or
change the colors to black and white patterns. - 'lilu spend very little time
designing a graph, particularly whenever DECgraph's default assignments are
accepted.

• There are three different ways to input or access the data for your graphs. -
liJu have the choice 0/ either budding data or usini data already stored On your
system.

• VAX DECgraph - a Closer Look
Using VAX DECgraph involves the following:

• Using icons and other general purpose features

• Accessing or entering data

io Designing and modifying graphs

• Generating DECgraph output

9-3

DECgraph's General Purpose Features
• IGONS

DECgraph is primarily a menu-driven tool. The menu choices are re~esented
as pictures, or icons_ Whenever icons are displayed on the left portion of the
terminal screen, you can select any function they symbolize by simply highlight­
ing the correct icon and pressing the return key. The four arrow keys (up, down,
left, right) are used to move the highlighting to the appropriate icon. Icons elim­
inate the need for users to learn any type of command language - they let non­
technical people enjoy the benefits of using a computer.

• HELP LEVELS
You can always get help while working with DECgraph. You can select the Help
icon on the main menu for an overview of DECgraph's concepts and proce­
dures. You can use the Help key (PF2) first to display the icons' labels and then
to get a help message for any menu option or prompt. You can then use this key
a third time for a more detailed explanation .

• FILES
Three different types of files are used in DECgraph to specify your graph. The
data set consists of two files that contain the identification information and data
for your graph, while a Graph Description file stores its design specifications.

Data Input and Access
• KEYBOARD DATA EN1RY

Selecting the Keyboard Datl;\ Entry method of input allows you to build and
store tables of data that did not previously exist in any.such arranged format. A
logically designed; form-oriented data entry screen shows you exactly what
information will be needed in order for you to successfully create graphs. And
once data is entered, you can change, delete, or save it for later use. . .

Keyboard Data Entrywill normally be the chosen input method when you wish
to graph data that is not stored oh your system in any way. It is typically for
special situatio~s, tequiringone or more fields of data that are not found in your
system's database(st.

• USING VAX DATA1RIEvE
DECgraph can use the capabilities of DATATRIEVE as a means of collecting the
data to be plotted. That datacari be extracted from RMS files, from VMS
databases, or from VAX RdbIVMS databases, in what is essentially a two-step
process.

9-4 • VAX DECgraph

The first step involves entering DATATRIEVE, from DECgraph's data entry
menu, and specifying the current collection of data from which you want to
create graphs. As an example, you might want to access a certain subset of data
on your system that describes various parameters of a collection of yachts. You
enter DAIATRIEVE from DECgraph's "DTR" icon, then use a "Find" statement
to specify the subset of the Yachts data you wish to work with. (Such as, "find"
all yachts having an overall length of more than 40 feet, and call them the Cur­
rent Collection.)

The second step involves simply entering valid DATATRIEVE field or query
names on the Keyboard Data Entry screen, when and where needed. These
entries will automatically cause the appropriate DATKrRIEVE data to load into
the Values fields of the DECgraph data entry screen. Then, as has already been
explained, the actual generation of graphs from this point forward is extremely
simple .

• THE LOAD FILE OPTION
In this third method of bringing data to the graphing phase, an application pro­
gram can be written to generate a new, formatted ASCII @e. Called a "Load
File," this @e can then be used by DECgraph to create any of six basic types of
graphs as with the previously described methods.

Designing Graphs
• THE SIX BASIC 1YPES OF GRAPHS

UNE GRAPH - best suited for depicting comparisons of variables over time,
line graphs are a popular way to illustrate trends. Nine different line types are
available - up to six lines, each representing one "Y variable," can appear on a
single line graph.

CLUSTER BAR GRAPH - cluster bar graphs are normally ideal when two or
more variables are to be compared by person, by place, or by item. DECgraph
permits the use of up to six such "Y variables," As an example, a cluster bar
graph could compare the U.S., European, and Asian sales figures for five differ­
ent salespeople in a company. Three different bars would appear above each
salesperson's name - one each for their U.S., European, and Asian selling
records. Those three geographic regions represent three Y variables to
DECgraph, and as many as three more could be shown for each salesperson.

9-5

STA CKED BAR GRAPH -as its name suggests, a stacked bar graph displays up
to six variables in a single vertical bar, with horizontal lines (and changes in
pattern or color) distinguishing the various sections of the bar from each other.
Where a cluster tends to be more visually effective in showing differences by
one or more Y vanables, the stacked bar graph is typically best for comparing
the total numeric values of bars, i.e. the total height of columns. In the previous
example, a sales manager interested only in salespeople's total selling success
might prefer a stacked bar graph. The height of each person's bar will be the key
concern. The manager who wanted to spot salespeople having problems in
their non-U.S. sales efforts would choose a cluster bar graph instead, paying
close attention to each person's European and Asian bars.

PIE GRAPH -when your most important graphing need is to show the rela­
tive sizes of parts of a whole, the pie graph is an excellent choice. If an organ­
ization has six revenue categories, for example, which together comprise all
of that organization's revenue, a pie graph can clearly illustrate which
sources are bringing in more funds than which others.

SCATTER GRAPH - scatter graphs are often an appropriate way to show a
comparison of two or three variables, for example, by different people, geo­
graphic regions, or corporate divisions. DECgraph can plot up to six different
types of markers, from a selection of ten, on one scatter graph.

HISWGRAM -histograms are usedto illustrate a frequency distribution - one
might, for example, show the number of a company's employees that fall within
each of ten annual earnings ranges. A histogram resembles a bar graph with no
blank space between the bars. The bars are at various heights, with the continu­
ous top line resembling a side view of a staircase. All space beneath this top line
is filled in with pattern or color .

• SPECIAL DESIGNING OPTIONS

ASSIGNMENT -the assignment option in DECgraph provides a wide variety of
fine-tuning alternatives that can improve the appearance and readability of your
graphs. It is important to note that a user does not necessarily ever need to use
the Assignment option, or any of its sub-options. DEcgraph handles the auto"
matic assignment of colors, markers, and line types that are likely to.be pleasing
to the eye. It is only for matters of personal preference that users might elect to
use the Assignment options.

Selection of the Assignment icon leads you to the following five suboptions.

9-6 • VAX DECgrapb

• Rzlette Option~ - The user can sdect from twelve palettes, each of which
holds a combination of ten different colors ..

• Color Optioni-, DECgraph offers you twdve palettes, of ten individual colors
each, which have been preselected for optimal design effect. You can not only
sdect the best palette for youcneeds, but can also change the individual color
selections that automatically appear within the chosen palette.

• Line Type Options - Nine different line types can be used in DECgraph -
solid lines, dots, dashes, and combinations of dots and dashes. Not only does
this allow for sufficient variety in the event that there are several lines on one
graph, it also gives you the ability to do such things as show actual trends as
solid lines, or projections for the future as "broken" lines.

• Marker Options - Ten different markers are available for use both in scatter
graphs and as points along the lines in a line graph.

• Rzttern Options - There is a set of ten black and white patterns (cross-hatch­
ing, dots, diagonal lines, etc.) that you can assign to your graph instead of
colors. The graph could be in any color palette, then changed to show black
and white patterns. The pattern is the same for color 1 in palettes 1-10, for
color 2 in palettes 1-10, etc.)

BORDER -By default, a graph is designed with a four-sided rectangular border.
Using the border option icon, however, you can modify a graph to have only a
corner border (left and bottom), or no border at all.

FIll - in line graphs, it can be visually effective to fill in the area beneath the
graph's line(s). With the fill option, color can be added beneath any lines in the
graph. .

GRID - the grid option allows users to insert, as background, dashed horizontal
grid lines, vertical, or both. (The DECgraph default is no grid lines.)

ISOLATE -it is often helpful in a pie graph, when one "piece of the pie" is to be
noticed as having special importance, to separate it slightly from the rest of the
pie. In a pie graph showing sources of a firm's total revenue, for eXample; the
section representing net income might be isolated to hdp viewets notice it and
its size rdative to the rest of the pie. DECgraph gives you the option of isolating
one or more sections of any pie graph. .

9-7

LEGEND - some graphs require a legend explaining the meaning of different
bars, different patterns and colors, or different line and marker types_ But other
graphs either do not need a legend or perhaps even are more effective without
one. Any graph built with DECgraph can include or omit the legend, at your
option.

SCALES -users can either accept the numeric scales and ranges that DECgraph
automatically assigns to the horizontal and vertical axes, or can "override" those
scales with their own specifications. Not only can you choose between linear
and logarithmic scaling, but you have the chance to use different minimum and
maximum values from those automatically assigned.

SHADOW - to achieve a three-dimensional effect, you can add shadowing to
bar graphs (cluster or stacked). The shadowing can then be assigned different
colors.

TREND - in scatter graphs, on occasion you might wish to see a trend line
reflecting a regression analysis of a set of points. DECgraph can automatically
insert such a line, handling all necessary calculations and "drawing" the line for
you. This feature can be particularly useful in projecting where fut.ure points
might appear on a graph over time.

Output
Finished graphs created using DECgraph can be printed on a graphics printer,
photographed, ."exported" via the VAXivMSniiril utility, and/or st6re,i'on yo~r
system's mass storage media by their Graph Description and Data Set @e
names.

• PRINTING
Graphs can be printed, in either of two sizes, on anypHour Digital black and
white printers. Sjpgle-size graphs measure approximately 3%/1 by 5%/1, double­
size appr~ximately 6~/1 by 11 W. Model numbers. of the supported Digital
printers are as f9lfows:

• Single-size graphs - LAi2; LA50; LA34-VA; tAlOO

• Double-size graphs - LA34-VA; LAlOO

9-8 • VAX DECgrapb

Color printers are available through third-party vendors - they must be com­
patible with the RGB (RedlGreenIBlue) color connector on Digital's graphks
video terminals.

• PH010GRAPHING
Finished graphs can be made into overhead transparencies, 35mm slides, or
prints, in color or black and white. Third-party vendors offer a variety of cam­
eras that can photograph the image shown on the terminal screen. Some pro­
duce instant prints - with the others the processing choice is yours as to
whether it becomes an overhead transparency, a 35mm slide, or a "conven­
tional" print.

• EXPORTING A GRAPH
Using the GOLD key with the PF3 key, you can create a graphics output file. this
file contains the graphics commands for your graph, letting you display it on
your terminal without actually entering DECgraph. You can mail this file elec­
tronically. The user(s) receiving the graphs can file it and then display it on his/
her graphics terminal or graphics printer.

You can also use graphics output files with VAX DECslide's slide organizer func­
tion. The slide organizer can store your graphs in one or more "slide trays," ena­
bling them to be printed sequentially in a batch job or arranged for
presentations to be given.

• How Does it Interact With Other Products?

VAX DATATRIEVE
DECgraph can use the capabilities of DATA1RIEVE as a means of collecting the
data to be plotted. That data can be extracted from VAX RMS files, VAX DBMS
databases, or VAX RdbNMS databases, in what is essentially a two-step process.

The first step involves entering DATATRIEVE, from DECgraph's data entry
menu, and specifying the current collection of data from which you want to

create graphs. As an example, you might want to access a certain subset of data
on your system that describes various parameters of a collection of yachts. You
enter DATATRIEVE from DECgraph's DTR icon, make your "yachts" domain
available, then use a "Find" statement to specify that subset of the Yachts data
you .wish to work with. (Such as, "find" all yachts having an overall length of
more that 40 feet, and call them the Current Collection.)

The second step involves simply entering valid DATATRIEVE field or query
names on the keyboard Data Entry screen, when and where needed. These
entries will automatically cause the appropriate DATA1RIEVE data to load into
the Values fields of the DECgraph data entry screen.

9-9

VAXCDD
If you choose to use DATATRIEVE with DECgraph, it requires the services of the
VAX Common Data Pictionary, or CDD. The CDD stores DATATRIEVE
domains and procedures;

VAX Data Management Systems
VAX RMS files, or VAX DBMS or RdblVMS databases, are all capable of being
accessed to provide data for DECgraph. Access is C!ither via DATATRIEVE,
explained above, or from an application program written to generate a new
formatted Ascn data file called a Load File.that DECgraph can use.

VAXlVMS Languages
Any language comforming to the VAX!VMS LanguageC~Standard can be
used in an application program to provide DECgraph with ASCn data files that
it can use.

ALL-IN·1
VAX DECgraphcan be run, with ~ll of its capabilities, when called as a menu
selection by the ALL-IN -1 Office Menu.

Chapter 10· VAX DECsiide

VAX DECslide is a menu-driven graphic presentation design tool that runs on
the VAX!VMS operating system. It is intended for use by anyone who needs to
prepare professional-quality presentations and reports.

With VAX DECslide, experienced and inexperienced computer users alike ean:

• Create slides of objects, text, or a combination of both.

• Create the following objects: circle, ellipse, line, square, rectangle, triangle,
polygon, and arc.

• Copy, rotate, and move objects.

• Redimension objects or text in height, width, or both.

• Join single objects (shapes) together to form more complex, compound
objects.

• Fill objects with patterns.

• Italicize text.

• Add color using one of ten different palettes.

• Print slides on paper, send them to other terminal users, photograph them for
use as 35mm slides, or create overhead transparencies.

• Use finished slides for reports, presentations, or "on the spot" decision
support.

• Assemble slides into trays for slide shows or printed presentations.

• Who Uses VAX DECsiide
Anyone with responsibility for creating text and graphic materials for presenta­
tions or reports can benefit from using VAX DECslide.

As a layered software product on the VAX/VMS operating system, DECslide
runs on any valid VAX!VMS configuration. It can be an effective solution not
only in the business world, but also in scientific, educational, manufacturing,
and governmental environments as well.

10-2 • VAX DECslide

• Benefits of VAX DECslide

• DECslide includes, as part of its user documentation, a self-paced introduc­
tory tutorial for new users. It also offers multiple levels of HELP messages to
assist users in the middle of various DECslid~ functions. Small symbols called
icons guide users through available options. You become a productive user of
DEC slide very quickly. And the use of icons to select your options means very
few keystrokes to get the job done.,

• Because DEC:slide was designed for lise by professionals who might have little
or no computer experience, a great deal of art and design work can'be han­
dled by th6s~ closest to its significance. There is no longer the need to contract
work out to people who might be too far removed from a project to understa,nd
fine points of distinction which will make slides successful.

• Whether DECslide's output is in the form of printed reports, overhead trans"
p!lfCOcies, or 35mm slides, it has a professional appearance to it. The quality is
obvio~s - it can "do justice" to important material, can convey concepts or
information more effectively than can a less professional form of output. To
equal this quality without the benefit of VAX DECslide is often very costly in
terms of dollars, time, or both. DECslide, then, can quickly pay for itself in
saved design fees which formerly had to be paid out of a department or
organization,

• VAX DECslide - a Closer Look
Using VAX DECslide involves the following:

• Using the icons and word list menus

• Creating objects and text

• Modifying the objects and text

• Coloring objects and text

• Outputting slides in one of four ways

• Managing a "library" of saved slides

10-3

Using the Icons and Word List Selection Menus
When beginning a DECslide session, a main menu of seven icons appears,
making available the following functions:

• S10P - Lets you end a DECslide session.

• HELP - Shows you an overview of DECslide's basic concepts and
procedures.

• MESSAGE - Lets you view a list of broadcast messages that have been sent to

you during your DECslide session.

• FILE - Accesses a submenu where seven file management options are made
available:

- Exit - Lets you leave the FILE submenu after you have finished selecting
your filing options

- Save - Saves your current slide

- Delete - Deletes a saved slide

- Restore- Returns a saved slide to your work area. If a slide was displayed in
the work area before you entered the FILE submenu, you can overlay the
restored slide onto this slide.

- Copy - Copies a saved slide into your default directory

- Export - Creates an export file - a file containing graphic commands
which define a slide - for storing via the slide organizer function or for
sending to other users.

- Directory - Displays a slide directory that you specify.

• DESIGN - Clears the screen, displaying your work area- and the current
slide, if there is one -letting you use DECslide's keypad keys to create and
modify slides.

• PRINT - Accesses a print submenu where you are given three printing
options.

- Exit - Lets you leave the PRINT submenu.

- Single - Prints your current slide, or any saved slide, in the single-size
format.

- Double - Doubles the printed size of any single-sized slide.

• ORGANIZE - Lets you create, modify, show, and print slide trays.

You select the function that an icon represents simply by using the arrow keys
(up, down, left and right) until the desired icon is highlighted. Pressing the
Return key then takes you into the chosen function.

10-4 • VAX DECslide

Creating Objects and Text
When you are working in DECslide's DESIGN mode, your menus are in the
form of word lists across the bottom of your terminal screen. With the arrow
keys, you simply move the selection rectangle until it surrounds thewordrepre­
senting the function youw:ant, then depress the Return key. DESIGN mode also
features the use of the spedalizedkeypl1d found at the right of Digital's video
terminal keyboards. E!lch of the ~ighteen keys on that pad initiates a special
function within DECslide. Briefly, those keys enable the following functions:

• The four arrow keys - All alIo'.\' you to move the cursor, the highlighting rec­
tangle in icons and word list menus, or an object in the edit plane. These keys
can also select an object, change its size, rotate it, or draw a line.

You can use the Gold key in combination with the arrow keys for quick cursor
movement in text mode.

• Gold - Pressed in combination with any other key on this keypad, the Gold
key enables that key's "second function," -that is, its function shown in the
lower half of tht(keypad legend.

• Help - Shows operating advice for the keypad keys, the iconic mt;Ilus, the
word list menus, and the prompts. "Gold Help" shows a brief description of
each of the keypad keys .

• , Display -,- Displays the current slide for viewing or photographing.

• Export - Creates an export file using the current slide.

• Print - Prints the current slide in standard size.

• 2X Print -.Prints the current slide in double size.

Ii Grid On - Displays a background grid in the work area, facilitating the accu­
rate placement of text or objects.

• Grid Off - Removes this grid from the screen.

• Object - Gives you the Object creation word list menu.

• Pixel Toggle - Lets you specify the amount of pixel movement for the cursor,
frOl;n 50 to 10 to 1 (Coarse" Medium, and Fine respectively). The Pixel Toggle
key can abo vary the amount of rotation or size change.

• Delete Line/Obje<ll: :- Deletes the line of text the cursor is on, or the object
. that is in the edit plane. .

• Undelete Line/Object ~ Restores the line or object just deleted.

• InsertlReplace - Lets you switch your text entry from Insert mode to Replace
'mode. You may use this as a toggle key, switching back mdl~rth between the
two modes.

• Paint - Gives you the Paint word list menu.

• Join - Lets you join objects together to form a compound object.

10-5

• Separate - Lets you separate subobjects from a compound object.

• Delete C - Deletes the character where the cursor is.

• Undelete C - Restores the character just deleted.

• Change - Gives you the Figure Change word list menu when you are design­
ing a graphic object or the Text Change word list menu when you are working
with text.

• Copy - Lets you copy an object (graphic or text) that is in the edit plane.

• Erase - Lets you erase your design work, clearing the screen.

• Accept - Signals to DECslide that you have completed a procedure, such as
selecting a menu option, naming a slide, accepting a design operation, or
placing new slides in a slide tray.

• Cancel- Cancels the most recent operation you performed.

• Main Menu - Gives you DECslide's main menu.

• Select - Lets you pick up an object from the finished plane to do more design
work on it in the edit plane. You may also use this key to indicate the begin­
ning point of a line you are drawing, to join objects into a compound object,
or to select objects to be painted. With the slide organizer, you use this key to

select slides for trays.

In Text mode, you use this key to indicate the start of the desired text range
for the Zoom, Italic, and Dimension options.

Choosing the "Object" function from DECslide's keypad lets you create any (or
all) of the following objects:

• Text - Beginning at the point where the cursor is positioned

• Box - Places a square around the current position of the cursor. (Can be
"dimensioned" into a rectangle - see below).

• Circle - Places a circle around the current position of the cursor. (Can be
dimensioned into an ellipse).

• Line - Lets you draw a vertical or horizontal line, which you can "stretch" to
make diagonal. You can also use this option to draw multisided shapes.

• Fblygon - For drawing multisided shapes, this option draws the last side of
the shape for you.

• mangle - Places a triangle around the current position of the cursor.

• Arc - Places a one-quarter-circle arc to the upper left of the current position
of the cursor.

10-6 • VAX DECslide

Modifying Objects and Text
While in Design mode you use the Change keY to modify objects or text.
Objects and text have differentset:s of change options.

There are five basic ways to modify text:

• Bdit - Lets yol,l change text after it has undergone any other type of change
" •• 1 • • • • • •

except rotation.

• Zoom -; ~ets you increase p~, ~ecrease the overall size of a selected range of
text.

• Dimension -Lets you increase or de~rease the height or width of ~ selected
range of text.

• Rotate - Lets you rotate a text objei:t, in either direction, in 45 or 9ddegree
increments.

• Italic - Lets you italicize a ~dected range of text (or return italicized text to
normal).

Objects caU be changed in the following five ways:

•. ,Zoom - Lets you increase or decrease the overall size of a graphic object.

• Dimension - Lets you increase the height or width of an object.

• Rotate - Lets you totate an object in 15, 45, and 90 degree increments, in
either direction.

• Outline - Lets you select one of five line types for use in outlining an object.

• Fill- Lets you select one of ten pattemswith whichto fill an object. This Fill
option is the black and white equivalent of the Paint option, described imme­
diately below and used when a color terminal (VT241) or color monitor
(third-party) is available.

Painting Slides .
DECslide's keypad Paint key gives you a word list menu with the following
options:

• Palette - Lets you view and choose from a selection of ten different color
palettes, each of which has ten individual colors.

• Color - Lets you change the default colors in your slide by selecting other ,
colors in your chosen palette .

• Background -Lets you change the default backg~undcolorofyour slide.

• Object(s) - Lets you sele~ the object(s) to be painted in the default color, or
the color you select from your chosen palette.

10-7

• Status - Gives you a color status report of yo~ slide and any objects in the
. slide that you specify. This option is hdpfulifyou are n6t using a.YT241 or

color monitor while you paint your slide. .

Creating DECslide Output .
Slides created using VAX DECslidecan be printed on paper, photographed,
~exPorted" to other users" terminals VIA theVAXivMS mail utility, or exported
to your own mass storage for cataloguing with the DECslide Slide Organizer
utility. .

• PRINTING
DECslides can be printed on any of foill' Digital black aridwhite printers.
Single-size slides measure approximately 3 'i4" by 5%", double-size approxi­
matdy 6Yz" by 11 Yz". Modd numbers of th~ supported Digital printers are a~
follows:" '.

• Single~size slides'''c- LA12; ~O; tA34-YA; Li\,lOO

• Double-size slides -;- LA34~VA; LAloo'
, .. " . ,

Color printers are available through third~party venqors -' they mustbe com­
patible with.the~B (RediGreen/Blue) cOlor connector on Pigital~sgraphics :
video'terminiils. . , ..

~ .. p:l{6WGI~APHING >. "<,,r " "'" '. '.. "
ltib'ished slidescanbe~made' intooverlieadtt~~parencib., 35mm~lides, ~r

....• prints, iri color m' black and white. 'third-party vendorsoffet a varieiy6f cam-.
'. eras ti:UltCrut pnotograph the image shown on the terminal s(,';reen. Some pro"

. duceinlSbmt prints - with the others the processing' choic¢;il; fours as'!,~o
,whether it becomes an. overhead transparency, a 35mm slide, or,a ·conven-
tional" print. . . .

• EXPORTING ASLIDE . ,'. >"<. .' '. '., '.
Your slid~can be "exported" to a~othe(~hmin~:fvia·the VAXlVMSmruI~tility; ..
to any other tiser having a DECs!ide-supp'ortepterr#lal. Re,s:e,lvinguse~ ~an,see
the slide just as it appeared on your'owntertnip:a1; then~afi 'store)prm~,"9r
qel~~. '.'.

',; , :

-MANAGINGJ1IE LmRAAY OFSA\ffiD SLmES.. .' '. ,', ,'"
; You ,cana!so'"eXport" any finished slitle.t{) 'a libr~-like -utilitY'talleqtheSllde .
Organizer. AS(il feature that also worksforDEc:gtaPllouFPut"the ~lideorga~:
nizer Can store ¥,9ur slides !none or more "slidel'!:ay'~,';~nabJ#,lg thep1 tQbe
printed sequentially in a batch.job or arrang~d for-presentatipns to be given,· ..
· ': '~;:~):;:!" ',', <r:?:i:,: .. :. <>i"> " . "':~>:;:~:.~ ,:.". "

'" - ",,'<>}

Chapter 11 • VAX VTX

VAX VTX is a videotex system designed for internal use by businesses and other
private organizations. It is a VAX/VMS software product which conforms to
international standards for videotex systems; it requires no specialized hard­
ware. VAX VTX delivers information quickly and simply to a variety of com­
puter terminals and personal computers. It can be integrated into Digital's ALL­
IN-I office automation system without any additional hardware. It can also be
added as an extremely easy-to-use front end to an organization's transaction
processing applications without requiring major rewriting of existing systems .

• Who Uses VAX VTX

Organizations that want to present some or all of their internal publications and
transaction processing applications simply, uniformly, and efficiently will bene­
fit from VAX VTX. Whether the organization's information is on a single com­
puter or distributed worldwide over a computer network, VAX VTX offers fast,
up-to-date information to users.

Using VAX VTX, a department head can make frequently requested and fre­
quently modified departmental publications available from a single source,
make them easy to keep current? and keep them readily available for wide­
spread use. Employees who wants quick, simple, reliable access to a variety of
information (applications ranging from weather reports, airline reservations,
and motel information to personnel policies and procedures, sales information,
directories, employee activities, credit union transactions) have a.convenient
source that saves time and effort.

VAX VTX runs under the VMS and MicroVMS operating systems and requires
DEenet-VAX software as a prerequisite. It can be used on the MicroVAX I and
all other VAX systems.

11-2 • VAXVTX

• Benefits of VAX VTX

• The VAX VTX end user documentation consists of one small card. The 18
functions available to you to use VAX VTX are truly simple to learn. The actual
subscriber~s card is illustrated bdow.

VAX VTX
DEC terminals card

Function Key Sequence

HELP PF2
PAGE HELP PFl - PF2
MAIN PFl - PF3
BACKUP PF3
NEXT PAGE PF4
PREV PAGE PFl - PF4
EXIT PF1- •

SET MARK PFl -8
GOTO MARK PF1-"9
FIND PFl -7
REVEAL PFl - 4
LOCAL PFl - 5
ENTER ENTER
FORM ENTER PFl - ENTER
REFRESH CTR~W

CLEAR CHAR DELETE
CLEAR ENTRY CTRUU
GET AGAIN Pfl - 0

..

HELP

PAGE HELP

MAIN

BACKUP

NEXT PAGE

PREY PAGE

EXIT

Displays general information about
using VA~ VTX.

Displays help information about the
curre'nt page.

Displays the first page you saw when
you started VTX.

Displays the previous menu page.

Displays the next page in a
series of continuation pages.

Displays the 'previous page in a
series of continuation pages.

Gets you out of the VTX service.

SET MARK Marks a page for future reference.
Use numbers 0·4 for bookmarks.

GOTO MARK Displays a previously marked page
whose bookmark you specify.

FIND Displays the page whose keyword or
page number you specify.

REVEAL Displays control informa~ion (page
number, keywords, etc.) for the
current page.

LOCAL Lets you issue the local'VTX com­
mands PRINT. SAVE, and EXIT. For
a complete explanation of local
commands use the HELP function.

ENTER Sends information, such as a menu
selection, from your terminal to VTX.

FORM ENTER Sends all information on a form page
to VTK

REFRESH Displays the current page again,
eliminating any line interference that
might have occurred the first time
you displayed the page .

GET AGAIN Retrieves and displays the current
page again with any changes that
have been made to the page since
you last retrieved it. If you use the
GET AGAIN function while wo~king
on a form page, you will get a clean
version of the form page.

Figure 11-1 • VAX VTX Subscriber's Card

VAX VTX does not require the use of any special editor. This means that
infonnation may be prepared using any standard Digital word processing,
text editing, fonns management, or graphics products. Users can use such
products as WPS, EDT, PECO, DECgraph, DECslide, VAX TDMS, or VAX
FMS to create text and graphics for the infonnation base. VAX VTX can also
be integrated into Digital's ALL-IN-l office menu system to offer true office
automation along with videotex information distribution and retrieval:-

11-3

• VTX is easy to use on a variety of terminals. The subscriber can access all of
the VAX VTX functions from the terminal keypad of a variety of industry
standard terminals. VAX VTX works with VT2oo-and VT100-compatible ter­
minals, personal computers, and workstations including the DECmate, Rain­
bow and Professional workstations. It also supports the IBM* PC running the
CROSSTALK XVI* VT100 emulation software. Retrieving pages from a VTX
information base is a simple matter of selecting items from menus.

• VAX VTX is designed to allow easy distribution of information and efficient
transmission of remote information to any node in a distributed VTX system.
For example, a VAX VTX user in the United States might look at a VTX menu
page that offers selections including: 1. European Sales Information and 2.
North American Sales Information. If the subscriber selects choice 1, VTX
might actually establish a DECnet link to a system in England and start
retrieving information from the information base there. A user in England
might see the same menu and select choice 2, thus establishing a remote link
to the computer in the United States. When the pages in the information base
are designed according to the same standards, users won't even suspect that
they originated in different locations. The advantage of this distributed capa­
bility is that the information is equally accessible to all users on the VAX VTX
system, yet can be located on the computer closest to the people who supply
the information.

• VAX VTX supports the transmission of ASCII, ReGIS, Prestel, and NAPLPS
pages provided the subscribers have the appropriate hardware to display the
protocol of requested pages. Standarq VAX VTX currently supports all stand:
ard Prestel terminals as well as the NAPLPS display· protocol on Digital's Pro­
fessional workstation running PRO/NAPLPSsoftware, the SonyVDX-lQOO*
videotex unit, and the NorpakCorporation MARK IV* videotex. decOder.
This protocol independence means existing VMS files, or aIlY files that cltll be
converted to. a VMS format, can be adapted into VAX VTX pages. In addition,
because VAX VTX is a delivery system that isnot restricted to or limited by
particular display protocols, it is possible to design a single system that sup­
ports more than one display protocol simultaneously .

• The VTX Information Provider's Assistance Tool (ID\T) enables ihfonnation
providers to work Oflnumerous pages in an information base without iritel-­
fering with the performance of the VTX service. With IPAT, individuals with
only a few days training can specify control information such as page number,
security code, keywords, and expiration date for pages they want to enter in a
VTX information base. Other formatting capabilities, like linking the display
portion of a VTX page with the page;s control information and preparing
batches of page action requests.for use by the VTX Update Utility to include
them in a VTX information base, are also performed using the 100'.,

11-4 • VAX vrx

• A VTX information base is modified when a VTX operator or information
provider submits an update command file to the VTX Update Utility. The
update command file can contain one or more page'action requests to add,
change, or remove a information base page. Because of this method of i9for­
mation base updating, it is easy for a VTX site to make most of its information
base updates during times when system usage is low.

• The VTXAccount Control Utility (VTXACU) allows the VTX operator to
establish accounts for VTX users, specify a language and password for each
user, and assign users to closed user groups, thus determining who can
retrieve what. This meanS different levds of security protect sensitive infor­
mation without denying access to casual users.

• VAX VTX - A Doser Look
Managing a VAXVTX system involves:

• Designing an information base

• Using the VTX Information Provider's Assistance Tool to build pages for
inclusion in the information base

• Using the VTX Update Utility to populate and maintain the information base

• Using the VTX Account Control Utility (VTXACU) to establish and maintain
user accounts

• Using the VTX Control utilities to bring up the information base daily

Designing an Infonnation Base
A VTX information base consists of pages of information logically organized as
a hierarchy. To design an effective VTX information base, you should under­
stand how subscribers navigate through a hierarchy of pages. A VTX informa­
tion base branches from a single source, the main menu page, to various more
specific menu pages, each of which leads eventually to pages of information.
Subscribers navigate from general menu pages to more specific menu pages, to
informational pages, and back to more general menus by sdecting menu
choices and by using VTX keypad functions like BACKUP and MAIN MENU.

11-5

t.Animal
2. Vegetable
3. Mineral
Select II Subject Number

+ j +
Animal Vegetable Mineral
\'Reptiles \. Flower 1. Base Metals
2. Birds 2. Leaf 2. Gems
3. Fishes 3. Roof 3. Precious Metals
4. Mammals 4. Stem 4. Rocks
Select II Subject Number Select II Subjtct Number Select II Subject Number

j
Fishes
1. Crustaceans
2. Fresh Water
3. SaltWater
4. Tropical
Select II Subject Number

j
Fresh Water
1. Bass
2. Trout
3. Perch
4. Pike
Select II Subject Number

Figure 11-2 • Sample Tree Structure 0/ a Videotex Database

Menu pages are the signposts in a VTX information base which. point the way to
pages that subscribers might want to retrieve. Not only are menli pages useful
to subscribers navigating through an' llformation base, they are useful to' the
information base designer who wantsib create a IogiCaloutline for a VTX infor·
mation base. If you design your VTX iriformation base by thinking of categories
and subcategories of information, you can easily represent the logical structure'
with menu pages alone: You can ass~n certain page raftges to certain categories
of pages in your information b~e. You can subdivide your jnformation base on
the basis of:

• subject --: probably the most common basis for categom:ing jnformati~n

• security - some categories can be made available to all subscribers while
access to other categories can be restricted.

• language - VAX VTX alloWs you to offer multiple infotnla~ion bases through
the same service. For example, an organization\vith locations in twocoun­
tries might want to create twohtforfuation bases with identical information in
two different l~uages. .

• protocol- VAX VTx supports multiple protocols, so you may w~t to create
two, one for NAPLPS pages and one for ASCII pages. The page ranges tan be

. assigned accordingly.

11-6 • VAX VTX

Building Pages in a VAX VTX Information Base
Once you have determined the general structure of your VTX infonnation base,
the various information providers can start building pages. Using IPAT, the
infonnation providers can easily create both menu pages and display pages in
whatever order they prefer. The display portion of a page is created with any
software editor the infonnationprovider chooses.

To supply control infonnation for a menu page, an infonnation provider would
also use IPAT.

Menu page editing is equally straightforward. When an infonnation provider
finishes using the page editing screen, the IPAT Menu Editing Screen appears at
the tenninal. On this screen, the iDformation provider matches each menu
choice from the initial menu with the page number oCthe database page to
which it points. Choice number 2, for example, could point to page 01232.

Once theinfonnation provider indicates that the infonnation on the menu edit­
ing screen is complete, the display and control portions of the page can be
merged in an, update command file and submitted to the VTX Update Utility
for inclusion in the infonnation base., The infonnation provider can end the
IPAT session now or continue to create new pages and submit them all at once.
The information provider might, for example, prefer to create all the pages that
branch from the initial menu page before ending the IPAT session.

Populating and Maintaining a VTX InfonnationBase
, Ibpulating a VTX infonnation base is simply the process of adding pages to it.
Maintaining the information base involves both adding and ddeting pages.
Generally a VTX operator populates and mllintains an infonnation base by
submitting infonnation providers'update command files to-the VTX Update
Utility. The update command files contain one or more page action requests
specifying infonnation ~bout pages to be ,added or ddeted.

Maintaining VTX User Accounts
With the VTXAccount Cotrtrol Utility (ACU), it VTX system operatQr can easily
create, modify, and ddete user accounts. A system operator can also display

. account infonnation and reset the usage statistics in one or all user accounts.
, TheAc:U is useful for establishing security for the infonnation base on the basis
of dosed user groups. In other words, a VTX operator can group subscribers by
security clearance then pass the infonnationon to infonnation providers so that
they can assign the proper group codes to the pages they cre~~e.

As an example of how to use the ACU utility, suppose you displayed the account
information for a user named Peters and saw'that he had .been assigned to
closed user group 3. H, for some reason, Peters needs access to more of the VTX
information base, say those pages available only to members' of closed user
group 4, the operator can easily modify his security clearance with just a few
commands.

11-7

Bringing Up the VTX Information Base
VTX comes with a set of control utilities that enable the VTX operator to bring
up a VTX service every day and make it available to subscribers. Bringing up
VTX involves:

• Starting the VTX information base server process.
The server is like a waiter in a restaurant and is largely responsible for the
efficient transmission of information that characterizes a VAX VTX service. A
server receives subscribers' requests for pages in the information base,
retrieves the pages, and sends the pages back to the requesting terminals
where they are formatted and displayed according to the characteristics of the
pages and the capabilities of the terminals. Because a server is a single process
and does not concern itself with formatting pages at subscribers' terminals,
the server makes very efficient use of system resources while handling a large
number of simultaneous requests from subscribers. The alternative to a single
server handling multiple requests is for each subscriber to run a VMS process,
thus quickly crowding the operating system in the same way restaurant
patrons would crowd the kitchen if there was no waiter to serve them.

• Enabling the server to receive and transmit information from subscribers and
the information base.

• Opening the information base files to make their pages available to
subscribers.

• Declaring any remote servers or applications so that the local server knows
where to find them when a subscriber selects a menu choice that points to a
remote process. Declaring a remote process is like posting a phone number to
which the server can refer. Think again of the restaurant analogy. If a seafood
restaurant wants to offer pizza on its menu and have the pizza cooked by the
pizza shop across the street, a patron does not have to know where the pizza
comes from. As long as the pizza shop's phone number is posted in the
kitchen, the waiter can call across the street when a patron orders pizza. In
this analogy, the pizza shop is the remote server. Ibsting the pizza shop's
phone number in the kitchen is analogous to declaring the pizza shop as a
remote server.

Glossary

%ALL:
The parameter to a TDMS INPUT, OUTPUT, or RETURN request instruction
that permits you to map data between all identically named form and record
fidds without specifying the individual fidds. If the Request Definition Utility
finds an error in an INPUT %ALL, OUTPUT %ALL, or RETURN %ALL map­
ping, it does not include that mapping when it stores the request in the CDD. At
run time, TDMS executes only the correct mappings.

See also implicit mapping.

Access Control List (ACL):
A table that lists which users are allowed access to an object, and what kind of
access. The CDD maintains ACLs for DA'DITRIEVE, DBMS, and TDMS, ACMS
and RdblVMS maintain their own ACLs.

• In CDD, ACLs allow or deny users access to protected CDD directories or
objects. Each dictionary directory, subdictionary, and object has an access
control list associated with it. You can attach ACLs to such dictionary objects
as:
- DATh.TRIEVE domain and procedure definitions

- TDMS requests and request library definitions

- DBMS schema, subschema, and storage schema definitions

- CDD record definitions

Each product provides syntax for defining the ACL to be attached to its
dements. The easiest way to define ACLs is through the CDD Dictionary
Management Utility. DMU provides an ACL editor, which lets you change an
ACL by editing a screen display.

• In ACMS application definitions, the ACL is the task control characteristic
that determines who can sdect a task. You use the ACMS Application Defini­
tion Utility to define the ACL for a taSk.

• In RdbIVMS, ACLs allow or deny users access to databases, relations, and
views. You can explicitly define the access rights or copy them from an
existing database, rdation, or view, either from 'within the same database or
from another database. The ACL for a database and each 6f its dements is
stored in the database file.

See also privilege.

G-2 • Glossary

Access Mode:
A characteristic of a transaction that describes what kind of operation you
intend to perform on data in a database.

• In the DBMS Data Manipulation Language, you use the READY statement's
USAGE clause to specify RETRIEVAL ("read only") or UPDATE ("read and
write").

• In the Rdb/VMS START~TRANSACTION statement, yo~ specify
READ_ONLY or READ_WRITE.

See also usage mode and allow mode.

ACL:
See access control list'.
ACMS:
See Application Control and Management System.

ACMS Central Conttvller:
The ACMS process that serves as the central control point for the ACMS run­
time system. The ACMS/S11\RT SYSTEM command starts the ACMS central
controller, which starts up and controls the other ACMS run-time components.

ACMSGEN:
The utility used to set ACMS system parameters. Similar to the VAX!VMS
SYSGEN Utility.

ACMS Operator:
An ACMS user authorized to control the daily operations of ACMS and/or its
parts with the ACMS Operator commands.

ACMS Operator Command:
One of several DCL commands provided by ACMS to control the operations
of the ACMS system software and ACMS applications. Many ACMS Operator
commands require the VMS OPER privilege.

ACMSUser:
A VMS user authorized to access or control ACMS or its parts.

Active Form:
The TDMS form, referenced m: a request, that is used during a single program­
ming request call. A conditional request can reference more than one form, but
only one form can be active at anyone time.

G-)

ADB:
See application database.

ADT:
See Application Design Tool.

ADU:
See Application Definition Utility.

~LmageJournru:
A file that contains images of records after they have been updated. You can use
the After-Image Journal to reconstruct a restored database up to the last suc­
cessfully completed transaction. After-image journaling is also called long-term
journaling.

Agent:
A VMS process through which one or more terminal users access the ACMS run­
time system. All terminal users submit tasks through an agent. ACMS provides
one agent, called the command process, that acts for all terminal users.

See also command process.

Aggregate Expression:
See statistical expression.

Allow Mode:
A characteristic of a transaction that describes the level of protection that you
will provide for the data you want to work with.

• In DBMS, the allow mode is part of the READY statement's USAGE clause in
the DBMS Data Manipulation Language. The allow mode can be BATCH,
CONCURRENT, PROTECTED, or EXCLUSIVE.

• In the RdblVMS START_TRANSACTION statement, you specify
EXCLUSIVE, PROTECTED, or SHARED.

See also usage mode and access mode.

Ancestor:
WIth respect to a CDD directory or object, a preceding dictionary or subdic­
tionary directory in the CDD hierarchy. Ancestors have as descendants all
related dictionary directories and objects that follow them in the hierarchy.

G-4 • Glossary

Application:

• A logically related set of data processing operations that support a paiticular
business activity.

• In ACMS, a set of tasks that are related in tertns of the business activity they
support and that are controlled as a single unit. An ACMS application is
defined with the ACMS Application Definition Utility (ADU) and runs under
the control of the ACMS run-time system. An application qefinition specifies
operational characteristics.for the tasks and seNers of the task groups that
make up the application.

Application Control and Management System (ACMS):
A software product, layered on VAX/VMS, used to reduce the lifecycle costs
involved in designing, deVeloping, maintaining and controlling transaction
processing and other complex VAX!VMS applications.

Application Database (ADB):
A run-time database that contains infortnation derived from application and
task group definitions. An application database is generated by building an
application definition with the Application Definition Utility (ADU). Th~ ACMS
run-time system uses application databases to detertnine what processes to
start, when to start them, and which users have access to which t~ks.

Application Definition Utility (ADU):
The primary tool for creating ACMS applications. The Application Definition
Utility provides the commands and clauses for defining tasks, task groups,
applications, and menus.

Application Design Tool (ADT):
A DATATRIEVE utility that aids you in creating domains, record definitions, and
files by prompting you with questions at each step in the process.

Application Designer:
A system user, often referred to as a system analyst, responsible for the overall
specification and defipjtion of an application and its parts.

Application Execution Controller:
The ACMS component that controls task execution for all the tasks in an appli­
cation. Each application has its own application execution controller. Applica­
tion execution controllers start up and control the SeNer processes needed to
handle processing work for tasks. They also handle exchange steps, step
actions, and the sequencing of steps for tasks defined with ACMS. Application
execution controllers reference application databases, task databases, request
libraries, and message files.

G-5

Application Manager:
A system user responsible for the overall operation and maintenance of an
application.

Application Program:
A sequence of instructions and routines, not part of the basic operating system,
designed to serve the specific needs of a user. An application program can use a
database system to access data.

See also run unit.

Application Progranuner:
A system user responsible for creating and maintaining part or all of the pro­
grams for an application. The application programmer generally works ina
high-Ievd language (such as COBOL or BASIC) to implement the design estab­
lished by the application designer. In some organizations, a ogingle individual
does the work of an application designer and application programmer.

Application Programming Services:
A set of subroutines, provided as part of VAX ACMS, that can be called from an
application program. .

Area:
In DBMS, a subdivision of the database, named in the schema, that corresponds
to an RMSfile. Any number of record types can be stored within an area. One or
more areas make up a subschema realm.

See also realm.
Array:
A data structure consisting of more than one dement, in which all dements
have-the same characteristics and are referenced by the same variable name.

In a TDMS form or record, an array is a fidd that· contains several dements
referenced in a request by the same name and having the same characteristics
(length, data. type, and so on).

Ascending Order:
An order of sorting that starts with the lowest value ofa key and proceeds to the
highest value, in accordance with the rules for comparing data items.

See also sort key, descertdingorder

Asynchronous Call:
A call to a TDMS subroutine that begins, butd<Jel! not necessarily complete, the
requested operation· before allowing your program to continue execution. At
some later time, the requested operation Will complete and notify the program.
In the meantime; your program and the requested operation can both proceed
at the same time.

See also synchronous call.

G-6 • Glossary

Attribute:
See field.

Audit nail:
In ACMS, a monitoring tool that has a recording facility and a utility for generat­
ing reports. The recording facility gathers information about a running ACMS
system and writes the information in the Audit 'llail Log file. The information in
the Audit 'llail Log includes system and application starts and stops, user logins
and logouts, processing errors, user task selections, task completions, and task
cancels. The report utility can generate summary reports of the information in
~~~ . 

• - I • 

In CDD, a collection of the history list entries for a dictionary directory, subdic-
clonary, or object, created with the / AUDIT qualifier. 

See also history list. 

AUTOMATIC Member: 
In DBMS, a record that is automatically inserted into a specified set when the 
record is stored in the database. AUIDMATIC set membership is specified in the 
schema. 

Bachman Diagram: 
In DBMS, a graphic representation of the set relationships between owner and 
member records used to analyze and document a database design. 

Background Text: 
The text on a run-time TDMS form that is displayed whenever the form is 
displayed. For example, EMPLOYEE NAME: ____ _ 

BarChart: 
A chart that uses vertical .. rectangles (bars) to show·the relationship between 
values on the X and Y axes. The height of the bar signals the Y value. Except for 
the histogram, the b~ are of equal width. (In a histogram, the bars may be 
equal or unequal in width, depending on the data.) . 

See also clustered bar chart, histogram, stacked bar chart. 

Batch Processing: 
A mode of computer operation in which the commands and data that control 
the actions of the computer are entered by a programmed scriptrather than a 
person at a terminal. . . 

Before-image Journal: .. 
A file that contains images of records hefore they ha~e been updated. DBMS 
and RdblVMSuse before-irruige journaling to automatically undo updates to a 
database when a transaction is rolled back. Before-image journaling is also 
called recovery-unit journaling or short-term journaling. 



G-7 

Block Step: 
One of three kinds of steps used to define the work of a multiple-step ACMS 
task. A block step has three parts: attributes, work, and action. The work part 
of a step block contains a sequence of exchange and processing steps. 

Boolean Expression: 
A string of symbols that specifies a condition that is either true or false. For 
example: 

PRINT PERSONNEL WITH STATUS = 'TRAINEE' AND AGE LT 30 

Here, the Boolean expression is STATUS = 'TRAINEE' AND AGE LT 30. The 
PRINT statement displays only those records for which the value of this expres­
sion is "true". 

See also Boolean operators, conditional expression. 

Boolean Operators: 
Symbols or words that enable you to join two or more Boolean expressions. 
Boolean operators are AND, OR, and NOT. For example, the expression 
STATUS = 'TRAINEE' AND SALARY> 10000 contains the Boolean operator 
AND. 

Border: 
In DECgraph, lines that enclose a chart. You can choose a full border, which 
gives a four-sided box; a corner border, which gives lines on the left and bottom 
sides of the chart; or no border. 

Broadcast Message: 
A text line that lets you know of an event outside the DECslide environment, 
such as notice of mail or of a system shutdown. 

See also message flag. 

Build Operation: 
The execution of the BUILD LIBRARY command in the TDMS Request Defini- . 
tion Utility (RDU). This operation places in a VAXNMS request library file the 
requests named in the request library definition and their associated form and 
record information. The program accesses this file at run time to execute a 
request. 

The build operation is successful ifRDU finds that all of the requests, forms, and 
records exist and that the mappings in the requests are correct. As a result, RDU 
creates a file in your default directory with an .RLB file type. 

CALC Mode; 
In DBMS, a way to calculate a record's storage address in the database by using 
the value of one or more data items in the record. CALC mode is declared in the 
storage schema and can be used only with SYSTEM-owned sets. 



G8 • Glossary 

CaD Interface: 
A mechanism for a program to access components of a software product. For 
example, the VAX DKli\TRIEVE Call Interface is the part of DATATRIEVE that 
provides access to DATATRIEVE's data management services. There are three 
modes of access to DATATRIEVE's call interface: 

•. Through the Terminal Server 

• Through the Remote Server 

• From a calling prollfam 

The call interface for DEC slide consists of a single entry point, 
SLIDE$COMMAND, to which you pass a OCL SLIDE command string. To call 
DECgraph, you pass a DCL GRAPH command string to the 
GRAPH$COMMAND entry point. 

See also program interface. 

CaDabIe DBQ: 
In DBMS,·a data· manipulation interface to the Database Control System that 
allows programs written in any VAX language that conforms to the VAX Calling 
Standard to access a database. 

See also database query and Interactive DBQ. 

CaDable Interface: 
See call interface. 

CaDabIe ROO: 
A single external routine that accepts an RdblVMS statement as a parameter. 
You can call this routine from any language that adheres to the VAX Procedure 
Calling Standard. Callable ROO allows a program to u se RdblVMS even if no 
precompiler exists for the language. 

Calling prqgram: 
A program that issues calls to other programs or subprograms to execute cer­
tain operations. 

In VAX DATKI'RIEVE, for example, a high-Ievd language program that contains 
. calls to callable DATATRIEVE routines is referred to as the calling program. 

Cancel Action: 
A procedure or image called by an ACMS task when the task is cancded. The 
cancd action does cleanup work for the task, such as recovering from incom­
plete operations; it does not release locks or perform other work specific to a 
server. 



G-9 

Cancel Procedure: 
A procedure called by an ACMS task when the task is canceled if, at the time of 
the cancel, the task is processing in or keeping server context in a procedure 
server process. The cancel procedure does cleanup work for the server process, 
such as releasing record locks, so that the process can be reused without being 
restarted. When a cancel procedure is called, it runs in the server process allo­
cated to the task, whether or not the task is using the server process at the time 
of the cancel. 

Candidate Key: 
A field or set of fields that uniquely identifies the individual records of a 
relation. For example, in a relation of employee information the employee 
identification number is a candidate key. 

Cardinality (of a relation): 
The number of records in the relation. 

Cartesian Product: 
See cross product. 

Case Value: . 
A literal string in a TDMS request that determines whether a conditional request 
instruction executes at run time. TDMS checks that the case value matches the 
value in a control field. If there is a match, TDMS executes the request instruc­
tions associated with the case value. 

CDD: 
See Common Data Dictionary. 

CDDL: 
See Data Definition Language Utility. 

CDDL Source File: 
A file in which you define CDD records. The CDDL compiler inserts these 
definitions into the CDD directory hierarchy. . 

CDDV: 
See Dictionary VerifylFix Utility. 

CHMNMode: 
In DBMS, a way to link records sequentially using NEXT, PRIOR and OWNER 
pointers. CHAIN mode is declared in the storage schema and cannot be used 
with sorted sets or CALC sets. 

Change Menus: 
Two word list menus - one for text and the other for graphics objects - with 
options for size changes, rotation, patterns, italic text, alld text editing. 



G-lO • Glossary 

Character String: 
A string of characters (bytes) that is identified by an address and a length and 
that is used in the callable interface· to pass. the SLIDE command string to 
DECslide. 

Chart: 
A graphic presentation of data. DECgraph provides bar, line, pie, and scatter 
charts. 

Child: 
A way of describing a dictionary directory, subdictionary, or object in the CDD 
that immediately succeeds another directory or sub dictionary in the CDD 
hierarchy. The preceding directory or subdictionary is called the parent. Each 
dictionary child lias precisely one parent. For example, given CDD$1OP 
and CDD$TOP.MANUFACTURING, CDD$TOP is the parent and 
CDD$1OP.MANUFACTURING is the child. 

See also descendant, parent, and ancestor. 

Oustered Bar Chart: 
A chart that consists of groups of vertical bars placed side by side with space 
between each group of bars. 

CLUSTERED VIA Set Option: 
In DBMS, a record placement option in which the Database Control System 
(DOCS) stores records on or near the page that contains the owner of the set. 
The CLUSTERED VIA option is declared in the storage schema. 

CODASYL: 
An acronym for the Conference on Data Systems Languages, the committee 
that designed the COBOL language and provided the guidelines used in the 
development of VAX. DBMS. 

CODASYL-compliant: 
Any database system that conforms to the guidelines set by the Conference on 
Data Systetns Languages. 

Collating Sequence: 
The sequence in which characters are ordered for sorting, merging, and 
comparing. 

Collection: 

• In VAX. DATATRIEVE, a type of record stream formed with the FIND state­
ment. You can name a collection in order to have several collections available 
at once. 

• In DBMS, all occurrences of records that belong to a specific record type. / . 
. _Record.~~!i.m_dJ:fuLedID.!icll~m.all!1.ds!lQs~~t~. __________ _ 

See also CURRENT. 



G-II 

Column: 
A set of numbers or words arranged vertically. For example, the DECgraph 
Keyboard Data Entry Screen has a column of Y legend values ranging from Y 1 
(bottom) to Y6 (top). 

See also field. 

Column Headers: 
The heading that labels the columns of data in a DATATRIEVE report or in the 
output of a DATATRIEVE PRINT statement. 

Command: 
An instruction, generally an English word, typed by the user at a terminal or 
included in a command procedure that requests the software monitoring a ter­
minal or reading a command procedure to perform some predefined operation. 

In DATATRIEVE, a command is distinct from a statement. DATATRIEVE com­
mands usually deal with the Common Data Dictionary and perform data 
description functions. DATATRIEVE commands cannot be combined with each 
other and cannot be used in statements. 

See also statement. 

Command Line: 
See command string. 

Command Process: 
The process in the ACMS terminal control subsystem that handles user login 
and interaction between terminals and ACMS. 

Command String: 
A line (or set of continued lines) consisting of a command and, optionally, infor­
mation modifYing the command, including its qualifiers and parameters. For 
example, in DECslide, the SLIDE command string uses the following format: 

SLIDE[!qualifiers] [slidcname] [new_slidcname] 

In DECslide and DECgraph, you can use the command string for either an inter­
active or noninteractive session. 

See also interactive mode, non interactive mode. 

Comment Character: 
In DECgraph, either a C, an asterisk, or exclamation point used to indicate a 
comment in the load file. Comments let you document the contents of your 
load file; they do not appear as data. For example: 

C The data type for X values is TEXT. 

lLDAT.L1YPE TEXT 



G·12 • Glossary 

COMMIT: 

• In DBMS, a function that terminates a recovery unit and makes permanent all 
database updates initiated by the recovery unit. 

• In ACMS, also an Application Definition Utility keyword used when defining 
tasks with recovery. 

• In Rdb/VMS, a statement that completes a transaction by entering the 
changes in the physical database @e. 

See also RETAINING and rollback. 

Common Data Dictionary (CDD): 
A central storage facility consisting of a hierarchy of directories that contain 
definitions used by VAX Information Architecture products. The CDD contains 
descriptions of data, not the data itself. CDD objects are stored hierarchically 
and are accessed by reference to dictionary path names. 

CDD directories and subdictionaries contain objects such as: 

• ACMS application, menu, and task group definitions 

• DATATRIEVE domain, record, and procedure definitions 

• DBMS schema, subschema, and storage schema definitions 

• TDMS record and form definitions, requests, and request library definitions 

• Rdb/VMS database, relation, field, index, and constraint definitions 

Compound Object: 
An object formed by using the JOIN key to combine more than one graphics 
object, text object, or both. 

COMPUTED BY Fidds: 
Virtual fields that appear in a DATATRIEVE record definition or an RdblVMS 
relation or view definition, but not in the physical record. Because the value of a 
COMPUTED BY field is computed as part of a statement, it occupies no space in 
the record. 

Concurrency: 
The simultaneous use of a database by more than one user. 

Conditional Expression: 
A string of symbols that can be evaluated as true or false. For example, in the 
statement FOR E IN EMPLOYEES WITH E.STATE = "MA", the conditional 
expression is E.STATE = "MA". Also called Boolean expression. 

__ See.also Boolean expressiouc_ 



G·]3 

Conditional Instruction: 
A TDMS request instruction that executes only if certain conditions are true. 
TDMS executes a conditional instruction if the value in a control field matches 
the case value specified within the conditional instruction. 

Conditional Request: 
A request containing one or more conditional instructions. 

See also conditional instruction. 

Constraint: 
A set of criteria that restricts the values in a field. In Rdb/VMS, you set up con­
straints using the DEFINE CONSTRAINT statement. 

Context Variable: 
A temporary name that identifies a record stream to RdbIVMS. 

Once you have associated a context variable with a relation, you use only that 
context variable to refer to records from that relation in the record stream or 
loop you created. In this example, E is a context variable: 

FOR E IN EMPLOYEES PRINT E. END_FOR 

You can also use context variables in DATATRIEVE to resolve context ambiguity. 

Control Field: 
A program record field, also specified in a TDMS request, whose value deter. 
mines whether or not TDMS executes a conditional instruction. 

See also conditional instruction. 

COPY Field Description Statement: 
A CDDL statement that inserts the field descriptions of existing records into the 
descriptions of new records. 

Cross Operation: 
See join operation. 

Cross Product: 
A relation that is the result of performing a join operation to combine every row 
in one relation with every row in another. 

Currency Indicators: 
DBMS pointers that serve as place markers in the database for the Database 
Control System (DBCS) and your run unit. 

CURRENT: 

• In DBMS, identifies which database records or positions are being used as 
currency indicators. 

• In DATATRIEVE, identifies the most recently formed collection. 



G-14 • Glossary 

Current Slide: 
The slide currendy in the work area during design mode. 

Cursor: 
_ A highlighted area that indicates your place on the screen. In DECslide, the 
cursor for graphics objects is diamond shaped. The text cursor is rectangular. 

Data Definition Language Utility (CDDL): 
The VAX CDD utility that lets you insert record definitions into the CDD. You 
create the datil descriptions in a CDDL source file, and you compile the source 
filewith the CDDL compiler. 

Data Definition Languages (DDL): 
In VAX DBMS, the languages used to describe schemas, subschemas, and 
storage schemas. 

In VAX RdbIVMS, a set of statements that allow you to define the structure and 
characteristics of stored data. You use data definition language to describe 
fields, relations, views, indexes, and constraints. The RdblVMS data definition 
language is part of ROO, the interactive RdblVMS utility. 

See also schema data definition entry, storage schema data definition entry, and 
subschema data definition entry. 

Data Entry Phase: 
The stage in which you provide data to DECgraph through the Keyboard Data 
Entry Screen, a load file, or VAX DATATRIEVE. The DATA icon leads to a sub­
menu of icons representing the three methods for entering data. 

Data File: 
A DECgraph file that contains the actual data for a chart, including the X and y 
values. Data files have the file type _.GRD. 

Data Item: 

<i'. In DBMS, the smallest unit of named data in a record type. A data item can be 
a single value or an array of one or more values. 

• In RdbIVMS, the smallest unit of data. A data item occupies a single field in a 
record. 

Data Item Occurrence: 
In DBMS, one occurrence of a data item type. 

See also data item type and record occurrence. 

Data Item Type: 
In DBMS, the smallest unit of defined data. A data item type can represent a 
single value or an array of one or more values. 

---- Seealsooata Item occurrence and record type. 



G-15 

Data Manipulation Facility: 
The part of DATATRIEVE that parses, optimizes, and executes all commands 
and statements passed to DATATRIEVE. 

Data Manipulation Language (DML): 
In DBMS, the statements that pertnit programs written in VAX languages to 
access the database. 

In RdbIVMS, A set of statements that allow you to store, retrieve, modify, and 
erase data from a database. RdblVMS provides two methods of manipulating 
data: 

• Embed the data manipulation statements in a high-level language such as 
COBOL. 

• Issue the data manipulation statements directly, using the ROO utility. 

DataSet: 
One file that includes both the identification and data files, all the basic infor­
mation needed to produce a chart. 

See also data file, identification file. 

Data Type: 
A characteristic assigned to a field that determines the kind of data the field can 
contain. 

In TDMS, you determine the data type of a form field in the field identifiers and 
field validators of the form definition. You determine the data type of a record 
field in the data type statement of a record definition. 

Data Value: 
A user-assigned value of a data item occurrence. 

See also data item occurrence and data item type. 

Database: 
A collection of interrelated data on one or more mass storage devices. The col­
lection is organized to facilitate efficient and accurate inquiry and update. 

In a database, more than one user can access the data at the same time. Data 
integrity and security are provided by the database. 

See also relational database. 

Database Adminisrrator (DBA): 
The person or group of people responsible for planning, designing, implement­
ing, and maintaining a database. 



G-16 • Glossary 

Database Control System (DBCS): . .. 
The DBMS or RdbNMS component that, together with theVAXlVMS operating 
system, provides run-time control of database processing .. 

Database Key (dbkey): " .. 
In DBMS and RdbNMS, a unique value that identifies. a record in a database. 
The Database Control System assigns the value when a record is stored in the 
database. 

In DBMS,your run unit cannot directly access database keys, but they are used 
by the Database Control System whenever you store, retrieve, or manipulate a 
record. 

In RdbNMS, your program can retrieve the database key and use it to access a 
record. 

Database Management System: 
A system for creating, maintaining, and accessing a collection of interrelated 
data records that may be processed by one or more applications without regard 
to physical storage. Data is described iridependendy of application programs; 
providing ease in application development, data security; and data visibility. 

The VAX Information Architecture includes tWo database management 
systems: 

• VAX DBMS, a DIGITAL software product that complies with the standards for 
database management systems established by CODASYL 

•. RdbNMS, a database management system based on the relational data model 

See also database, RdbNMS, and relational database. 

Database Pages: 
The structures used to store and locate data in a DBMS or RdbNMS database. 
Database pages consist of one or more disk blocks of 512 bytes each. 

DBMS uses page-clustered I/O, a technique that retrieves groups of physically­
related database pages, rather than an individual page, in response to a run 
unit's request for data. 

Database Query (DBQ): 
In DBMS, a data manipulation utility that interprets data manipulation state- . 
ments. DBQ provides access to data through both interactive and callable 
modes. Interactive DBQ is a DBMS query language. Callable DBQ provides 
access to the database for programs written in high-level languages. 

See also Callable DBQ and Interactive DBQ. 



G-17 

DATATRIEVE: 
A VAX data management language for manipulating, storing, and modifying 
records from RMS data files, DBMS databases, and RdblVMS databases. DATA­
TRIEVE is callable from a variety of high-level languages. 

DATATRIEVE Procedure: 
See procedure. 

DBA: 
See database administrator. 

DBCS: 
See Database Control System. 

Dbkey: 
See database key. 

DBMS: 
Used commonly, DBMS can refer to any database management system. In VAX 
Information Architecture documentation, DBMS usually refers to VAX DBMS, a 
DIGITAL software product that complies with the standards for database man­
agement systems established by CODASYL. 

See also database management system. 

DBQ: 
See database query and Callable DBQ. 

DBR: 
In DBMS, the name of the process that performs database recovety. It is called 
by the Monitor at restart. 

OCL: 
DIGITAL Command Language. 

OCL Command Procedure: 
A sequence of DIGITAL Command Language (DCL) commands stored in a file; 
sometimes referred to as a DCL procedure. 

DCLServer: 
One of two types of servers used to handle processing work for ACMS tasks. A 
DCL server handles images, DATATRIEVE commands, and DCL commands and 
command procedures. 

See also server, DCL server image, and procedure server. 

DCL Server Image: 
The image, provided by ACMS, that is loaded into a DCL server process when 
the process is started by the application execution controller. The DCL server 
images allows you to use images, DATATRIEVE commands, and DCL com­
mands and procedures to implement processing for tasks. 

See also procedure server image. 



G-18 • Glossary 

DCL Server Process: 
See server process. 

DDL: 
See data definition languages. 

Deadlock: 
A situation in which two or more processes request the same set of resources 
and there is no method for resolving the conflict. For example, if process A has 
record 1 locked and requests record 2 while process B has record 2 locked and 
is requesting record 1, a deadlock occurs between processes A and B. 

VAX DBMS resolves all deadlock situations. 

Deadly Embrace: 
See deadlock. 

DECnet: 
The DIGITAL software facility that enables a user to access information on a 
remote computer via telecommunications lines. DECnet/VAX enables a 
VAX/VMS operating system to function as a network node. 

Default: 
A value that is assumed unless - or until - you specifically indicate another 
choice. For example, Palette 1 is the default palette for DEC slide and 
DECgraph. 

Default Dictionary Directory: 
The CDD directory assigned to you when you invoke an image that uses the 
CDD. This directory becomes the starting directory for path names. You can 
define a directory as the default by assigning a path name to the VAX!VMS logi­
cal name CDD$DEFAULT. If you do not, the default directory is CDD$TOP. The 
CDD Dictionary Management Utility and some command qualifiers allow you 
to set temporary default directories. You can also set the default directory with 
the DATATRIEVE SET DICTIONARY command. 

Default Directory: 
In DECslide, the storage area used to locate the files where you are creating your 
slide designs. You always save your slides in your default directory. 

See also slide directory. 

Default Slide: 
A slide DECslide identifies with the name CURRENT that you can use instead of 
specifying a slide name in answer to a file option prompt. You can change this 
name for a DECslide session when you specify the input and output parameters 
in the command string. 



G-J9 

Degree (of a relation): 
The number of fields in a relation definition_ 

Delete Access: 
File protection that you set to let a user delete a file from your VMS directory_ 
This protection must be set, for example, when you use DECslide's delete 
option and specify another user's slide_ 

Descendant: 
A way of describing a dictionary directory, subdictionary, or object in the CDD 
that follows another directory or subdictionary in the CDD hierarchy. A diction­
ary directory or subdictionary owns all its descendants_ CDD$1OP owns all the 
dictionary directories, subdictionaries, and objects, and they are all descendants 
ofCDD$1OP. 

See also child and parent. 

Descending Order: 
An order of sorting that starts with the highest value of a key and proceeds to 
the lowest value, in accordance with the rules for comparing data items. 

Descriptor: 
A data structure that specifies the address, length, and data type of a string. 

Design Mode: 
The mode of operation that lets you use DECslide's keypad keys and design 
your slides. You enter design mode when you select the DESIGN icon. 

Design Phase: 
The DECgraph stage in which you identify the type of chart you want and its 
particular design features, such as colors, borders, grids, palette, range, scale, 
and so forth. You begin the Design phase by selecting the DESIGN icon. 

Detail Lines: 
The formatted data lines in a DATh.TRlEVE report or PRINT statement. 

Device De6nition Utility: 
The ACMS tool for defining which terminals have access to ACMS. 

Device Utility: 
See Device Definition Utility. 

DictioDll1'Y: 
The VAX Common Data Dictionary. In the most general sense: an overall hier­
archical storage facility that includes dictionary directories, subdictionaries, and 
objects. 



G-20 • Glossary 

Dictionary Directory: 
The structure for organizing data descriptions stored in the CDD. Dictionary 
directories are similar in function to VAX/VMS directories. They "own" other 
dictionary directories or dictionary objects. 

Dictionary Management Utility (DMU): 
The Common Data Dictionary (CDD) management utility that lets you create 
and maintain the CDD directory hierarchy and its associated access control and 
history lists. 

Dictionary Object: 
Data definitions stored in the Common Data Dictionary. Examples of objects 
include: 

• VAX DATATRIEVE domains, plots, procedures, and tables 

• VAX DBMS schema, subschema, and storage schema definitions 

• VAX CDD record definitions 

• VAX TDMS requests and forms 

• VAX RdbNMS relation, view, and field definitions 

See also Common Data Dictionary. 

Dictionary Verify/Fix Utility (CDDV): 
A Common Data Dictionary utility that detects damaged dictionary files and 
repairs them. CDDV also compresses the data in dictionary files for more effi­
cient use of storage. 

Directory: 
A list of files for a particular user. 

See also default directory and slide directory. 

Directory Hierarchy: 
The structure of CDD directories. The hierarchy of dictionary directories, sub­
dictionaries, and objects is similar to the hierarchy of relationships in a family 
tree. Each dictionary directory in the CDD tree may become a parent by owning 
other dictionary directories or dictionary objects. Dictionary objects are the ter­
minal points of the hierarchy; they cannot be parents. 

See also child, descendant, and parent. 

Display Phase: 
In DECgraph, the point at which you view a chart on the full screen. You use the 
DISPLAY icon or the PF3 key to start the Display phase. 



G-21 

Display Area: 
The area of the screen, to the right of the menu areas, which DECslide uses to 
display its logo, longer help text, slide directories, and broadcast messages. 

DML: 
See data manipulation language. 

DMU: 
See Dictionary Management Utility. 

Domain: 
A DATATRIEVE data structure that associates a name with the relationship 
between a file and a record definition. Using the domain name gives access to 
information in the data file as interpreted by the record definition. For example, 
the domain PERSONNEL associates the file PERSON .DAT and the record defi­
nition PERSONNELREC. 

Drop Shadow: 
In bar charts, a contrasting portion of a bar that creates a three-dimensional 
effect_ You use drop shadows to emphasize bars. 

DYNAMIC ADocation: 
In DBMS, an option that tells the Database Control System (DBCS) not to allo­
cate space for an occurrence of a data item type until a run unit attempts to 
perform a DML operation on that item occurrence. DYNAMIC allocation also 
tells the DBCS to perform data compression on the item occurrence in the 
database. DYNAMIC allocation is declared in the storage schema: . 

Edit Plane: 
In DEC slide, the surface on which you wotk with objects to do your design 
work. An object in the edit plane appears in white; 

See also finished plane. 

Edit String: 
A character or group of characters that directs DATATRIEVE to format a field in 
a specified way. 

Elementary Field DescriptiQn Statement: 
Astatl!m~t in ~ CDDL or DATATRIEVE record definition. An elementary field 
description defines a field that is not subdivided into. subordinate fields. 

:mementary Field: 
A record segment containing one item of information. It might contain a 
department number, a last name, or any other information you want to define as 
a single item. . . 

See also field. 



G-22 • Glossary 

Entry Point: 
The point in a program where control is passed to a subroutine. The entry point 
used to pass control toDECslide is SLIDE$COMMAND. 

See also callable interface. 

Exchange Step: 
One of three kinds of steps that define the work of a VAX ACMS multiple-step 
task. An exchange step handles input and output between the task and the 
terminal user. 

See also processing step and block step. 

Execution Controller: 
See application execution controller. 

Explicit Mapping: 
The TDMS request instructions (INPUT ill, OUTPUT ill, and RETURN ill) 
that you specify to map data between form and record fields. 

Export File: 
A DECslide file that contains the graphics commands for displaying a slide with­
out entering DECslide. You can type this file or mail it to another graphics termi­
nal user. 

External File: 
A file opened in a main procedure that is accessed from an external subroutine. 

External Subroutine: 
A procedure that can be compiled separately from a main procedure. 

Field: 

• A segment of a data record. 

• In TDMS, a single item on a form. 

• In RdbNMS, a single division within a record where a data item is stored. You 
define afield's name and datatype, along with other characteristics, using the 
RdbNMS data definition language. 

• In DECgraph, a single item or space on the Keyboard Data Entry Screen. You 
provide the inforrnation for the fields on this screen, such as a Y value, or 
accept a default value, such as the ONES value in the X units field. 

See also elementary field and group field. 

Field Attribute: 
A condition or characteristic that defines the characteristics of the fields in a 
record. General field attributes provide unambiguous field descriptionsrecog-

---nired by every facility HSffig-tIw-G~cility-specific field-attt-il:}1lt~s-ar~p­
ported by some languages or language processors, but not by others. 

See also form field attribute. 



C-2) 

Field Constant: 
See form field constant. 

Field Description Statement: 
The statement that defines field characteristics in CDDL source files. The four 
types of field description statements are ELEMENTARY, STRUCTURE, COPY, 
and VARIANT. -

Field Identifiers: 
The characters specified in a TDMS form definition that determine the location, 
length; and picture-type of a field. For example, a C in the form definition of a 
field indicates that only an alphanumeric character (A-Z,a-z, space) can be 
entered in that field. The group of field identifiers that make up a field are the 
field picture. 

See also field picture. 

Field Name:--
On DECgraph's Keyboard Data Entry Screen, a name that identifies afield, 
such as X data type, X units, Y units, Main Title, DTR, and so on. -

In VAX bATATRIEVE use, the Iiame given to aparticular field in a record. 

Field Picture: 
A 'group of one or more field identifiers in a TDMS form definition that deter­
mines the location, length, and picture-type of a field. For example, 99999 is a 
field picture that indicates that up to five numeric characters Can be entered in 
that field. ' 

See also picture-type. 

Field Validator: 
In TDMS, a special field attribute that requires the terminal operator's input to 
be within a specified range, match an item from a specified list, or meet one or 
more, other conditions. The form definer assigns field validators during the 
Assign phase. -

Field 1ree: 
A hierarchical model of the fields iri a DATiITRIEVE record, ba'sed on the record 
definition stored in the Common Data Dictionary. 

File: 
A collection of related records. 

FileName: 
The name you choose to identify a file. The file name can have up to nine char, 
acters selected from the letters A through Z and the numbers 0 though 9. When 
you name files, you can give them any names that are meaningfUl to you. 



G-24 .• Glossary 

File Specification: 
A unique name used to identify a file. A full file specification identifies the nooe, 
device, directory name, file name, type, and version number under which a file 
is stored. 

In DECslide; when you name a slide, you should not specify a file type or version 
number in answer to a file option prompt or in the SLIDE command string. 

File Submenu: 
In DECslide, an iconic menu with options for saving, ddeting, restoring, and 
copying slides, for creating export files, and for viewing slide directories. The 
. FILE icon in the main menu takes you to this submenu. 

File Type: 
The part of a file specification that describes the nature or class of file. The file 
type follows a period after the file name and consists of from one to,three char­
acters. For example; all DECgraph file types begin with .GR, such as .GRD for 
the data file and .GRL for the load file. 

Filled Line Chart: 
A line chart with the areas beneath the lines filled in with different colors or 
patterns. Filled line charts show volumes;" such as sales volumes or a percentage 
of the whole market. Use the FILL icon to change a line chart to a filled line 
chart. 

FinishecI Plane: 
In DECslide, the surface on which you place the finished objects of a slide. 
Objects in the finished plane appear in black. 

See also edit plane. 

FIXED Member: 
In DBMS, a record occurrence that, upon becoming a member of a set occur­
rence of a set type, must .remain a member of that set until the record occur­
rence is erased from the database. Fixed set membership is specified in a 
schema DDL entry. 

See also MANDA10RY member and OPTIONAL member. 

Foreign Key: 
In RdbIVMS, a key that does not uniqudy identify records in its own rdation, 
but is used as a link to matching fidds in other rdations. For example, DEmRT­
MENT_CODE is included in the JOBJIIS1ORY rdation in order to link it to the 
DEmRTMENTS relation. 

Fonn: 
A presdected terminal screen image used to display and collect information. 



G-25 

Fonn Definition: 
A description of a screen form, created in the TDMS Form Definition Utility 
(FDU) and stored in the CDD. A form definition can contain information that 
identifies: 

• The screen image of the form, including the location of background text, 
fields, and video highlighting 

• The length or size and data type of each field 

• A set of attributes of each field on the form 

Fonn Definition Utility (FDU): 
The TDMS utility used to process (create, modify, replace, or copy) form defini­
tions and to store them in the CDD. You also use this utility to provide a listing 
of form definitions used in an application. 

Fonn Field Attribute: 
A condition or characteristic, specified in a TDMS form definition, that applies 
to a field in a form. For example, a field attribute can require that an operator 
enter data into a field. Certain field attributes (for example, video characteris­
tics) assigned in the form definition can be overridden by a request. The form 
definer assigns field attributes or accepts default attributes during the Assign 
phase. 

Fonn Field Constant: 
A character or embedded space that is displayed in a field on a TDMS form at 
run time. For example, you can use a hyphen as a field constant in a field that 
represents a telephone number. The form definer assigns field constants during 
the Layout phase. 

Fonn Field Validator: 
A special TDMS field attribute that requires the terminal operator's input to be 
within a specified range, match an item from a specified list, or meet one or 
more other conditions. The form definer assigns field validators during the 
Assign phase. 

Fonns Management System (FMS): 
A DIGITAL software facility that lets you create forms and use them to display 
and collect information. You can associate a DATATRIEVE domain with an FMS 
form. 

Free Space: 
InDBMS, the sections of the database page that are not used. 

See also database pages. 



G-26 • Glossary 

Frequency Distribution: 
The relationship showing the number of times something occurs for a range of 
possibilities. Frequency is a limited number of distinct values, (such as the num­
ber of employees) and distribution is a range of continuous variables (such as 
the ranges of salary levels at a particular site). A histogram is the only type of 
chart that illustrates frequency distribution. 

See also histogram. 

Fun Path Name: 
A unique designation that identifies a dictionary directory, subdictionary, or 
object in the CDD hierarchy. The full path name is a concatenation of the given 
names of directories and objects, beginning with CDD$IDP, ending with the 
given name of the object or directory you want to specify, and including the 
given names of the intermediate subdictionaries and directories. The names of 
the directories and objects are separated by periods. 

See also path name, relative path name, and given name. 

Given Name: 
The designation assigned to a dictionary directory, subdictionary, or object in 
the CDD. A given name contains up to 31 characters from the set A-Z, 0-9, _, 
and $. The first character must be a letter from A-Z, and the last character can­
not be _ or $. The root directory, having only descendants but no ancestor, has 
been assigned the given name CDD$IDP. The given names of all other directo­
ries and objects are assigned by the user creating them. The given name of a 
dictionary directory, subdictionary or object is separated from the name of its 
parent by a period. 

Global Aggregate: 
In RdbIVMS, an expression that uses field values from one relation to group 
records from another. A statistical expression is then used to calculate a value 
for the group. For example, you can group salary records in a SAL­
ARY JIlSIDRY relation according to the DEPARTMENT_CODE field in the 
DEPARTMENT relation. Then you can use the AVERAGE function to find the 
avera ge salary for each department. 

GOLD Key: 
The PFI key on the numeric keypad that you use with DECslide in combination 
with some of the other keypad and arrow keys. 

Graph Description File: 
A DECgraph file that identifies the design choices you make for your chart, such 
as palette, type of chart, range, patterns, and so on. Graph description files have 
the file type .GRG. 



G·27 

Graphics Output File: 
A DECgraph file that contains all the information necessary to reproduce a 
chart after you have finished a DECgraph session. You can use a graphics output 
file to mail a chart to another user or to display it on your own tertninal without 
entering DECgraph. Graphics output files have the file type .GRO. 

Graphics Slide: 
Any DECsiide slide composed of figures or of figures and text combined. 

See also word slide. 

Grid: 
A set of fixed, regularly spaced vertical and horizontal lines. 

In DECgraph, the grid lines can be vertical, horizontal, or both vertical and 
horizontal. Using a grid in DECgraph can hdp improve the understanding of 
data. You use the GRID options icon to choose a grid type. 

Using a grid in DEC slide can hdp with the alignment of your design work. You 
request the grid with the GRID ON key. 

Group Data Item: 
In DBMS, a named entity that contains one or more data item types. 

Group Fidd: 
A record segment containing one or more dementaryfidds. A group fidd 
may also contain other group fidds. In the DATATRIEVE record definition 
PERSONNELJlliC, the group fidd NAME contains two dementary fidds, 
LAST_NAME and FIRST_NAME. In TDMS request instructions, you can 
include the group fidd name to make a record fidd reference unique within the 
request. 

A group field in DATATRIEVE is equivalent to a group data item in DBMS and a 
STRUCTURE fidd description in CDDL. 

See also fidd, group data item, and STRUCTURE fidd description. 

Group Record Array: 
In TDMS, a record array whose dements contain other fidds. Each of these 
fidds has the same characteristics (length, data type, and so on), and each fidd 
is referenced in a request by the same name, but with a unique subscript. In 
request instructions, you can include the group array fidd name to make each 
fidd name unique. 

Group Workspace: 
A workspace that is primarily for holping infortnation needed by many tasks in 
an ACMS task group. A group workspace is made available when the firsttask in 
a group that uses that workspace is sdected by a terminal user .. Once allocated, 
a group workspace remains available to all tasks in the group until the applica­
tion stops. 

See also workspace. 



G-28 • Glossary 

Hashing: 
In DBMS, the conversion of a data item value (for example, a key value) into a 
fixed-length numeric value using a special algorithm. Hashed key values are 
used as physical pointers to database record occurrences. 

HELP Key: 
The PF2 key on the numeric keypad that gives you three levels of help. for 
DECslide's icons, one level of help for the word list menus and prompts, and 
two separate keypad diagrams. 

Hierarchical: 
A type of database that organizes the relationships between record types as a 
tree structure. Related records are stored on the same branch of the tree to 
make data retrieval efficient. 

Highlight: 
An area of contrasting color that indicates your current position in a menu or 
screen. 

Histogram: 
A bar chart showing frequency distribution. Each bar is proportional in width 
to the range of values in a particular category (such as the salary levels at Plant 
X) and is proportional in height to the number of occurrences within each cate­
gory (such as the number of employees). There are no spaces between bars, and 
the bars mayor may not have equal widths, depending on the data. 

History List: 
An optional audit trail maintained by the CDD to monitor the processing and 
use of dictionary directories, subdictionaries, or objects. 

See also audit trail. 

Horizontal Label: 
The name that identifies or describes the X values along the bottom of a 
DECgraph chart. 

Icon: 
A pictorial symbol that DECslide and DECgraph use to represent choices in 
menus. 

Iconic Menu: 
A menu that uses icons to present its choices. DECslide's main menu and file 
and print submenus are iconic menus. 

Identification File: 
A DECgraph file containing the text that identifies the data you enter to create a 
chart, such as title, subtitle, horizontal label, and so on. An identification file 
and data file make up a data set. Identification files have the file type _.GRI. 



G·29 

Image: 
A file consisting of procedures and data that have been bound together by the 
linker. There are three types of VMS images: executable, shareable, and system. 
When not otherwise stated,image refers to an executable image. 

Implicit Mapping: 
An instruction (OUTPUT %ALL, INPUT %ALL, or RETURN %ALL) in a 
IDMS request that lets you map data between all identically named form and 
record fidds without specifying the individual fidds. If the Request Definition 
Utility finds an error in an implicit mapping, it does not include that mapping 
when it stores the request in the CDD. At run time, IDMS performs only the 
correct mappings. 

See also explicit mapping. 

Index: 
A structure within a file or database that allows you to locate particular records 
based on fidd values. 

Index Key: 
A fidd of a record in an indexed file or database that determines the order of 
search and retrieval. 

• An RMS indexed file has one primary key and optionally one or more alterna· 
tivekeys .. 

• In DATATRIEVE, you declare an index key in the DEFINE FILE command, by 
naming a fidd from a record definition. 

• In RdbIVMS, you can use any fidd or combinationoffidds from a re~ord as 
an'index key.· You can also define more than, one key for a given rdation. 

INDEX Mode Set: 
In DBMS, a sorted set in which a hierachical index data structure is used to 
speed access to a specified record occurrence. INDEX mode is specified in a 
storage schema DDL entry. 

See also index node. 

Index Node: 
A DBMS data structme within a hier\lchical index that . provides additional 
speed of access. 

See also index mode set. 

Indexed File: 
A file that contains records and a primary key index (and optionally one or 
more alternate key indices) used to process the records sequentially by index or 
randomly by index. 



G-30 • Glossary 

Indexed Fonn Array: 
A list of elements on a TDMS form, all of which. have the same name and the 
same characteristics (length, data type, and so on)~ The form definer specifies 
how many elements the array contains. . 

Initialization Procedure: 
In ACMS, a procedure that runs when a procedure server process starts and that 
usually opens files or readies a database for the server process. 

Input Parameter: 
In DECslide, the part of the SLIDE command string used to specifY the input 
slide name for the print, display, restore, delete, and copy options. 

Insert Mode: 
The default text entry mode in DEC slide that lets you insert new text. 

See also replace mode. 

INSERTION Class: 
In DBMS, an attribute of member record types that describes how and when 
member record occurrences are added to set occurrencess. 

See also AU10MATIC member and MANUAL member. 

Integrity: 
Measures taken to ensure the correctness of information in an Rdb/VMS 
database. The three general functions of integrity are integrity constraints, con­
currency control, and recovery. 

• Integrity constraints ensure that database information remains correct when 
users artempt to modify it incorrectly. 

• Con<;urrenqr control allows only one user at a time to update a file while 
allowing many users simultaneous access to the database. 

• Recovery restores a database to a known state prior to a system failure. 

Interactive Mode: 
The default mode for running DECslide and DECgraph .. 

In DECslide, interactive mode lets you use the menus and design options to 
create and modify slides. For an interactive session, you can use the coinmand 
string to specify a new default palette and input and output parameters. 

In DECgraph, interactive mode lets you use the menus to enter or change 
information for your graphs. You can specifY a particular data set or graph 
description file as defaults for that session as well as supply other information. 

See also noninteractive mode. 



G-31 

Interactive Processing: 
A mode of computer operation in which the commands and data that control 
the actions of the computer are entered by a person at a terminal rather than by 
a programmed script. 

Interactive DBQ: 
In DBMS, a data manipulation interface to the Database Control System that 
allows low-volume, interactive access to a database. You can use interactive 
DBQ as a tool to test and debug program logic. When used on a VT100 terminal, 
interactive DBQ uses a split screen to show your current position in a sub­
schema after each DML statement is executed. 

See also database query and Callable DBQ. 

Interpretive Call Interface: 
See Callable RDO. 

Isolate: 
To pull out a segment of a DECgraph pie chart for emphasis. Use the ISOLATE 
options icon to choose whether or not to isolate segments. 

Join Operation: 
A procedure that selects a record from one relation, associates it with a record 
from another relation, and presents them as though they were part of a single 
record. 

Journal File: 
In DBMS and RdbNMS, a file that contains all records modified by a run unit or 
transaction. The journal file allows reconstruction of the database in the event 
of corruption due to system or program failures. 

Joumaling: 
The process of recording information about operations on a recoverable 
resource, such as a database. The type of information recorded depends on the 
type of journal being created. 

See also after-image journal and before-image Journal. 

Junction Record: 
In DBMS, a record that relates two records to each other. You can use a junction 
record to define a recursive or many-to-many relationship between two records. 

Keeplist: 
In DBMS, a list of record identifiers used to recall their associated records. Iden­
tifiers are placed on and removed from keeplists at the direction of a DML 
operation. 



G-32 • Glossary 

Key: 
In RdblVMS,afield in a record thilt you use to define an index. Using index 
keys, RdbNMS can locate records in the relation directly, without searching 
sequentially. Defining index keys increases the speed of some database 
operations. 

See also index key, candidate key, and foreign key. 

Key Value: 
In DBMS, the values supplied in a DML operation to identify a specific record 
for access. 

Keyboard Data Entry Screen: 
One method of data entry in DECgraph. A form on your terminal screen with 
fields for the values, titles, and labels that make up the information for your 
chart. You can enter or change information using the Keyboard Data Entry 
Screen. Use the KEYBOARD icon to use the Keyboard Data Entry Screen. 

Keyword: 
A word reserved for use in certain specified syntax formats, usually in a com­
mand or a statement. 

In DECgraph load files, keywords tell DECgraph what type of information (text 
or data) follows. For example, the keyword TITLE tells DECgraph to expect 
text. 

Legend: 
A small box .outlined in a DECgraph chart that contains. the legends you entered 
for the YI through Y6legend fields in the Keyboard Data Entry Screen. The 
legend fields identify the Y values; in the Annual Reports data, for example, the 
Yllegend Net identifies one particular value that will be plotted for several 
years. 

See also YI-Y6Iegends. 

Line Chart: 
A chart in which the conjunction of the X and Y values is signified by points 
plotted in relation to the X and Y axes. The points are connected to each other 
to form a cOlltinuous line. 

See also filled line chart. 

Line Index: 
In DBMS,a dynamic section of a database page that acts as a directory to data 
on the database page. 

See also database pages. 



G-33 

Line Type: 
A line pattern, such as a dotted, dashed, unbroken, or double-thick line, used 
with DECgraph in line charts, trend lines, and so on. DECgraph provides nine 
line types for designing charts. You use the LINE 1YPE icon to choose a line 
type. 

Linear Scaling: 
A method of arranging the intetvals between values on an axis. In DECgraph, 
linear scaling shows the minimum and maximum values on an axis with 6 to 11 
equal intetvals in between. DECgraph automatically numbers these intetvals 
with appropriate numbers. 

Literal: 
A value expression representing a constant. A literal is either a character string, 
enclosed in quotation marks, or a number. 

Load File: 
A DECgraph file that you can use as one method for data entry and that con­
tains keywords identifying the type of data (TITLE, LUNITS, and so on) and 
the data values. The load file option lets you write programs in a sllnple format 
to ge~erate large files of data.· . 

Locking: 
In DBMS and RdbNMS, the facility that allows concurrent access to a database 
as a whole, without allowing concurrent access. to the same record. VAX DBMS 
allows locks on individual records, entire realms, or both. 

Logarithmic Scaling: 
A method of arranging the intetvalsbetween values on an axis. In DECgraph, 
shows equally spaced intetvals on an axis for each magnitude. For example, the 
space between 1 and 10 is equal to the space between l(j and 100. 

MANDAIDRY Member: 
In DBMS, a record occurrence that, upon becoming a member of a set occur­
rence of a particular set type, must remain a member of that set type until the 
record is erased from the database. MANDAIDRY sermembership is specified 
in a schema entry. It can be moved from one set occurrence to another. 

See also FIXED member and OPTIONAL member. 

MANUAL Member: 
In DBMS, a record occurrence that becomes a member ofa specific set occur­
rence by direction of an application program. MANUAL set membership is 
specified in a schema entry. 

See also AU10MATIC member. 



G-34 • Glossary 

Main Menu: 
In DECgraph and DECslide, the group of icons indicating your major choices. 
DECgraph's main menu gives you choices for creating and designing charts and 
contains the SIDP, HELP, DATA, DESIGN, and DISPLAY icons. DECslide's 
main menu contains the SIDP, HELP, MESSAGE, FILE, DESIGN, PRINT, and 
ORGANIZE icons. 

Mapping: 
The description of the exchange of data between a TDMS form and a program 
record and/or a request. 

Marker Path: 
The set of DECgraph markers for a given Y value. A marker appears at the 
appropriate Y value point for each X value point. 

See also scatter chart. 

MDB: 
See menu database. 

Member Record: 
In DBMS, a record type, other than an owner record type, included in a set type. 
There may be one or more member record types in a set type, and zero or more 
record occurrences in each member record type. A record occurrence in a 
member record type is not directly accessible by the DBCS, unless it is also the 
owner of another set. It must be accessed through its owner record occurrence 
or the SYSTEM record. 

See also owner record type and nonsingular set type. 

Menu: 
A list of tasks, from which a user selects one for processing. A menu can also 
direct users to other menus. 

In ACMS, you define the list of items on a menu and other menu characteristics 
using the Application Definition Utility. 

In all of its menus, DECgraph uses icons instead of words to list menu choices. 
DECslide uses both iconic and word list menus to present its options. 

See also icon, main menu, submenu. 

Menu Area: 
The area at the top left of your screen that DECslide uses to present its main 
menu icons. 

Menu Database: 
A run-time database containing information derived from menu definitions. 
ACMS uses the information in the menu database for displaying menus. A menu 

__ dat~base is created by building menu definitions with the Application Defini-
tion Utility (ADU). - ~ - - ~- ~~ -



G-35 

Message File: 
A file that contains a table of message symbols and their associated text. 

Message Flag: 
A blinking signal (" M *) that DECslide displays at the right of the message line to 
indicate when a message has arrived_ 

See also broadcast message_ 

Message Line: 
The space below the work area that DECslide uses to display its word list 
menus, instructions, prompts, and status and help messages_ 

Multiple-step Task: 
An ACMS task defined in terms of a block step that contains one or more 
exchange and processing steps_ 

See also block step, exchange step, processing step, and step action_ 

Nested Conditional Instruction: 
A conditional instruction contained within an outer conditional instruction_ 
roMS executes the inner conditional instruction only if it executes the associ­
ated outer conditional instruction_ 

Node: 
In the CDD message files, the word node is sometimes used as a generic name 
for dictionary directories, subdictionaries, and objects_ 

Noninteractive Mode: 
One way in which you can run DEC slide or DECgraph_ You use the./NOINTER­
ACTIVE qualifier in the command line to specify this mode_ 

Using noninteractive mode with DECslide lets you display and print slides in 
different palettes and create export files without entering DECslide_ 

Using noninteractive mode with DECgraph lets you display and print graphs 
and create.graphicsoutput files without entering DECgraph. 

See also interactive mode. 

Nonsingular Set Type: 
In DBMS, a set type owned by a user~defined record type, not by the SYSTEM 
record. 

See also SYSTEM-owned set, member record type, and owner' record type_ 

Nonnalization (of a database): 
The process that physically separates related concepts in the database into sepa­
rate relations. Normalization ensures that separate concepts are kept physically 
separate in the database. In this way, a data item is stored only once. You only 
need to perform one update operation to change it. When you need to bring 
data together from different relations or when you want an employee's job 
history, the database allows you to create temporary relationships by joining 
relations together. 



G36 • Glossary 

Novalidate Mode: 
The mode in the TDMS Request Definition Utility that lets you create and store 
a request without checking for correct mappings and references. You create a 
request in Novalidate mode by using the SET NOVAUDATE command. Validate 
mode is the default. 

See also validation. 

NUMERIC Data Type: 
In DECgraph, a field value indicating that the X values. are to be considered as 
numbers rather than text. 

See also TEXT data type, X data type. 

Object: 
See dictionary object. 

Object Menu: 
A DECslide word list menu with options that give you. ready-made shapes or 
that let you create your own shapes or enter text. 

Operator Command: 
See ACMS Operator Command. 

OPTIONAL Member: 
In DBMS; a record occurrence that can be removed from all set occurrences. 
You can change its set occurrence membership without deleting it from the 
database. OPTIONAL set membership is specified in a schema entry. 

See also FIXED member and MANDA10RY member. 

Output Parameter: 
In DECslide, the part of the SUDE command string used to specify the name of 
the new file for a copied slide, a saved slide, or an export file. 

Overlay: 
To restore a saved DECslide slide and place it on the slide currently in the work 
area, combining the two slides into one. 

Owner Record Type: . 
In DBMS, the record types that access entry points to the set occurrences. There 
can be only one record type as the owner for each set type and one owner 
record occurrence for each set occurrence. 

See also member record type, nonsingular set type, and SYSTEM-owned set. 

&geHeader: 
InPBMS, a fil(ed-Iength section at the beginning ofthe database page that con­
tains page and storage area information. 

See also database pages. 



G-37 

Paint Menu: 
A DECslide word list menu with options for palette, color, and object selection 
that you use to add color to a slide. This menu also includes an option for 
changing the default background color and another option for checking the 
color st atus of objects in the slide. 

Palette: 
One of 12 sets of 10 color combinations used with DECslide slides and 
DECgraph charts. The default palette is Palette 1. 

In DEC slide, each palette has four solid colors and six screened colors, which 
are percentages of the solid colors and which you use only to paint solid filled 
objects. 

Parameter: 
The object of a command. A parameter can be a file specification,a keyword 
option, or a symbol value. 

Parent: 
A way of describing a dictionary directory or subdictionary in the CDD that 
immediately precedes a directory, subdictionary, or object in the CDD hierar­
chy. The preceding directory or subdictionary is called the parent. The parent is 
said t~ own its children. A parent may have many children, but each dictionary 
directory, sub dictionary, and object in the CDD may have only one parent. For 
example, CDD$1DP is the parent of CDD$1DP.MANUFACTURING. CDD$1DP 
owns CDD$1DP.MANUFACTURING. 

See also child and descendant. 

Pal'tial.Path Name: 
See Relative Path Name. 

Path Name: 
A unique .designation that identifies a dictionary directory,. subdictionary, or 
object in the .COD hierarchy. The full path name joins the given names of direc­
tories and objects, beginning with CDD$1DP, ending with the givtm name of 
the object or directory you want to specify, and including the given names of the 
intermediate subdictionaries and directories. The names of the directories and 
objects are separated by periods. 



G-38 • Glossary 

A path name may be: 

• Full, beginning with CDD$1DP. For example, the full dictionary path 
narti~ for a DATATRIE.VE domain might look like this: 
CDD$1DP.DEPT32.EMPWYEE. 

• Relative, beginning with the name of a child of your default dictionary direc­
tory. For example, if your default directory is CDD$1DP.DEPT32, 
EMPLOYEE would be a relative path name referring to 
CDD$1DP.DEPT32.EMPLOYEE. 

• Logical, using a name you have defined for a full or rej.ative path name. For 
example, you might use the following DCL command: 

$ DEFINE EMP CDD$1DP.DEPT32.EMPLOYEE 

Then; within the current process, EMPwould be equivalent to 
CDD$1DP.DEPT32.EMPLOYEE. 

See also given name and relative path name. 

Pie Chart: 
A circular chart with wedge-shaped segments indicating the X values. The size 
of the wedges in relation to the whole indicates the Y values as percentages. In 
DECgraph, segments can be pulled out or isolated to emphasize a particular 
portion of the data. ' 

Pixd: 
The smallest displayable unit, or picture element,on a video display screen. 

In DECslide, the work area measures 767 by 454 pixels. The PIXEL JOGGLE 
key sets the status for cursor movement from COARSE (50 pixels) to MEDIUM 
(10 pixels) to FINE (1 pixel). 

DECgraph gives you the icons FINE, MEDIUM, and COARSE for controlling 
cursor movement during the assigI1ment phase. 

PLACEMENT MOde: 
I~ 'DBMS, a storage method by which the DOCS determines th~ database key 
values associat~ with record occurrences based o~ user-specified set options. 
PLACEMENT mode is declared in the storage schema. ' 

See also SCATfERED set option and CLUSTERED VIA set option. 

Pointer: 
In DBMS, a place marker that identifies a record's address in a storage area. 

See also database key. 



G-39 

Polygon: 
In DECslide, a multisided, closed shape that you can draw using the POLYGON 
option from the object menu. 

Precompiler: 
A utility that reads RdblVMS statements in a high-level language program and 
translates those statements into calls to low-level Rdb/VMS routines. 

Primary Key: 
In an indexed @e, the index key whose value determines the order of records. 
You cannot modify or erase the value in a primary key field of a DATATRIEVE 
record. 

Print List: 
One or more value expressions (including the names of elementary and group 
fields) whose values you want DATATRIEVE or RdblVMS to display. A DATA­
TRIEVE print list can also include optional formatting specifications. 

Print Submenu: 
A DECslide iconic menu with two options for printing slides: single or double 
size. The PRINT icon in the main menu takes you to this submenu. 

Privilege: 
A characteristic of a user that controls that user's ability to access a file or other 
resource for a certain purpose. Thirteen privileges have been defined to control 
access to the CDD. Four of these privileges are specific to VAX DATATRIEVE; 
the remaining nine are VAX CDD access privileges. 

See also access control list. 

Procedure: 

• A general purpose routine, entered by means of a call instruction, that uses an 
argument list passed by a calling program and uses only local variables for 
data storage. A procedure is entered from and returns control to the calling 
program . 

• A fixed sequence of DATATRIEVE commands, statements, clauses, or argu­
ments that you create, name, and store in the Common Data Dictionary. 

• A series of RdblVMS RDO statements stored in a VMS file. These can be 
executed with the execute (@) directive. 

See also step procedure, initialization procedure, and termination procedure. 

Procedure Object Library: 
A collection of object modules for procedures. An object module is the binary 
output of a language processor such as the assembler or compiler. The linker 
accepts object modules as input. 



G-40 • Glossary 

Procedure Server: 
One of two types of servers that handle processing work for ACMS tasks. 

See also server, DCL server, and procedure server image. 

Procedure Server Image: 
The image that is loaded into a procedure server process when the process is 
started by the ACMS execution controller. The procedure server image is cre­
ated when all the procedures handled by the server are linked together with the 
procedure server transfer module for that server. 

See also DCL server image and procedure server transfer module. 

Procedure Server Process: 
See server process. 

Procedure Server 'Ii-ansfer Module: 
The object module created for a procedure server as a result of building an 
ACMS task group definition. When a task group is built, the Application Defini­
tion Utility produces a procedure server transfer module for each server 
defined in the task group. The procedure server transfer module is linked 
together with all the procedures handled by the server to produce the proce­
dure server image. 

Process: 
The entity scheduled by the VMS system software that provides the context in 
which an image runs. A process consists of an address space and both hardware 
and software context. 

Process Context: 
See server context. 

Processing Step: 
One of three kinds of steps that define the work of a task defined with ACMS. 
The work of a processing step is handled by a server and can consist of compu­
tations, data modification, file and database access. 

See also block step and exchange step. 

Program Interface: 
A set of callable CDD routines. You can use the CDD program interface to build 
software products that use CDD functions. 

Program Request Key (PRK): 
In TDMS, a key or combination of keys from the VT100 keyboard or keypad that 
you can define in a request to allow the terminal operator to communicate with 
the application program at run time. 



G-41 

A PRK can be one of the following: 

• The keyword KEYmD followed by one key (0-9, hyphen, period, or comma) 
from the VT100 keypad 

• The keyword GOLD followed by one printable key from the main keyboard 
(including the space bar, but not the tab key) 

Project: 
See reduction operation_ 

Prompt: 
A question that DECslide asks when you are to name a slide or verify a file 
option or some other operation used with DECslide, such as when you use the 
ERASE key to erase the work area_ 

Prompting Expression: 
An expression that directs DAThTRIEVE to ask the user to supply a value when 
a statement is executed_ 

Qualifier: 
A portion of a command string· that modifies a command verb or command 
parameter. A qualifier follows the command verb or parameter to which it 
applies and has the following format: / qualifier[ = option]. 

Query Header: 
A substitute column header that replaces the field name when DATKI'RIEVE 
displays values from a field. For example, ·SWUS· appears at the top of the 
column listing values from the field EMPLOYELSThTUS. 

Query Name: 
A synonym you give to a DATKI'RIEVE field name in order to make input easier 
to type and remember. For example, you can type L-.'NAME instead of 
LASLNAME when using the PERSONNEL d~main. . 

Quiet Point: 
In DBMS, a time when a run unit is not accessing any database areas. Quiet 
points occur between transactions. 

See also transaction. 

RDO: 
See Relational Database Operator. 

RDU: 
See Request Definition Utility. 



G·42 • Glossary 

RDU Commands: 
The commands you issue to operate the TDMS Request Definition Utility, 
including commands to process (create, modify, copy, delete, and so on) a 
request or a request library definition. 

Range: 
In DECgraph, the extent of the values on the X and/or Y axis from the mini· 
mum to the maximum value. 

Read Access: 
File protection that you set to let a user read a file from your VMS directory. This 
protection must be set, for example, when you use DECslide's file and print 
options to specify another user's slide. 

Realm: 
In DBMS, one or more areas grouped to allow subschema access. Realms are 
specified in a subschema entry. 

See also area. 

Record: 

• A body of related information that is the basic unit for storing data. 

• In RdbIVMS, a collection of related fields stored as a unit in a relation. For 
example, one employee record may include an employee's name, address, 
department, salary, and starting date. 

• In DECgraph, a set consisting of an X value and all the Y values for that X (Yl 
through Y6). 

See also field, record occurrence, and record type. 

Record Definition: 
The description of a record's structure that includes the name, data type, and 
length of each field. CDDL, DATATRIEVE, and DBMS all store record definitions 
in the CDD. ACMS, TDMS, COBOL, BASIC, DIBOL, and PL/I access record def­
initions stored in the CDD. 

Record Management System (RMS): 
A set of VMS operating system procedures that programs can call to process 
files and records within files. VAX RMS lets programs issue GET and PUT 
requests at the record level (record I/O) as well as read and write blocks (block 
I/O). RMS is an integral part of the VMS system software and is used by high­
level languages, such as VAX COBOL and BASIC, to implement their input and 
output statements. 

DATATRIEVE uses VAX RMS to create, define, store, and maintain files and 
-----=rccec=o=rds\vithirifiles. 



G-43 

Record Number: 
On the DECgraph Keyboard Data Entry Screen, the number that appears 
below each X value indicating the specific record (01, 02, 03 and so on through 
9999)_ You can have any number of records, but those after 9999 will have **** 
instead of a number_ 

Record Occurrence: 
A group of related data item occurrences that is the basic unit for accessing data 
in a database_ In DBMS, the definition of a record occurrence is the record type_ 

See also data item occurrence and record type_ 

Record Selection Expression (RSE): 
A phrase that defines specific conditions that individual records must meet 
before RdbNMS or DATATRIEVE includes them in a record stream_ The RSE 
allows you to determine the subset of records to be retrieved from a set of 
domains or a database_ 

Record Stream: 
A group of records defined by a record selection expression, This group lasts 
only during the execution of the statement that forms it 

In Rdb/VMS, a record stream is formed by either a FOR or a START_STREAM 
statement-Streams are used in an application program or ROO to retrieve one 
record at a time for manipulation_ 

See also record selection expression (RSE)_ 

Record Type: 
A group of related data item types that defines a record occurrence_ In DBMS, 
record types are specified by a schema entry and modified in the subschema_ 

See also data item type and record occurrence_ 

Recovery: ' 
In DBMS and RdbNMS, the process of restoring a database to a known condi­
tion after a system or program failure. 

In ACMS, you can define recovery as a characteristic for a multiple-step task that 
uses VAX DBMS. 

See also after-image journal, before-image journal, journal file, journaling, and 
transaction. 

Recovery Unit: 
A recovery unit groups operations on recoverable resources such as databases. 
All operations on recoverable resources ,in a recovery up-it ,are done indivisibly; 
either all the 0I?eratio~s~ccur or n9ne of the operations occur. , 

See also transaction. ' 



G44 • Glossary 

Recovery.unitJournal: 
See before-image journal 

Reduction Operation: 
In RdbIVMS and DATATRIEVE; an operation that finds the unique values for a 
fidd or group of fidds and diminates repeated records. Reduction is sometimes 
called the project operation. Use the REDUCED 10 clause to perform the 
operation. 

Reflexive Join: 
An operation that joins a rdation to itsdf. 

Relation: 
A method of presenting rdated data that consists of a set of rows ana columns. 
The columns have names and divide each row into a set offidds. Fora single 
fidd in a row; there is only one data item. In VAX RdbIVMS, columns are 
referred to asfidds, and rows are called records. A relation is sometimeS called 
a table. 

Relational Database: 
A relational database represents data as a set of independent rdations, or rela­
tions. Within a rdation, data is organized in columns and ro~, with atmost one 
data item occupying each .intersection. Rdationships between relations depend 
On values within the relations. . 

Relational Database Operator (ROO): 
A single interactive utility for maintaining the database, creating and modifYing 
definitions of database dements, and storing and manipulating data. 

See also Callabl<; ROO. 

Relational Operators: 
Symbols, keywords, or phrases you can use to compare values. For example, 
the DATATRIEVE statement, FIND PERSONNEL WTIH SALARY> 10000, con­
tains the rdational operator> (greater than). 

Relative Path Name: 
the shortened fortn of a dictionary path name. It includes only the parts of the 
path name that follow the default CDD directory name. You coo use either the 
full path name or the relative path name to refer to directories, subdictionaries, 
and objects in the CDD. 

See also given name and path name. 

Remote Server: 
The part of DATATRIEVE that lets you access data oti other computers. If you 
are using the computer VACKS 1 and you type READY PERsONNEL AT VACKS2, 
DATATRIEVE logs on to an account on VACKS2. The Remote' Server processes 
yoW statements at dIe remote computer '~S2. 



G-45 

Replace Mode: 
The text entry mode in DECslide that lets you replace existing text with new 
text. You use the INSERT/REPLACE key, a toggle key, to change from the 
default insert mode to replace mode. 

See also insert mode. 

Report Header: 
The heading of a DATATRIEVE Report Writer report, consisting of these 
optional elements: a centered report-name and, at the top-right corner of the 
report, a date and a page number. 

Report Specification: 
A series ofDATATRIEVE Report Writer statements that create a report and spec­
ify its format. 

Report Writer: 
A subsystem of DATATRIEVE that lets you create reports displaying data in an 
easy-to-read format. 

Request: 
A set of TDMS instructions, created in the Request Definition Utility and stored 
in the CDD, that describes an exchange of data between a program record and a 
form. A request includes references to one or more form and record definitions 
and instructions for mapping data between a form and a program record. A 
request is passed as a parameter in the TSS$REQUEST tall. 

ACMS tasks use requests to display forms on a terminal and gather information 
. from a terminal user. 

Request Call: 
The call in a TDMS application program that executes a request. 

Request Definition Utility (RDU): 
The TDMS utility used to process (create, modify, replace, and so on) requests 
and request library definitions and to store them in the CDD. You also use this 
utility to build request library files, which are accessed by an application pro­
gram at run time. 

Request lnstructions: 
The statements in a TDMS request that describe the exchange of data between a 
program record and a form. 

These statements can: 

• Identify the form and record definitions between which data is to be 
transferred 

• Provide instructions for transferring the data 

The request instructions are executed when the TDMS application program 
issues a TSS$REQUEST call. 



G-46 • Glossary 

Request Library Definition: 
A definition, stored in the CDD, that lists the names of related requests to use in 
a particular TDMS application. A request must be named in a request library 
definition before you can build a request library file. The program uses the 
request library file to access requests. 

Request Library File (RLB): 
A VAXlYMS file that contains TDMS requests and the form and record informa­
tion necessary to execute these requests. When you use the Request Definition 
Utility to build a request library file, RDU reads the definitions in the CDD and 
puts information in the request library file so that the program can execute the 
requests. A request library file that contains a request named in a TDMS call 
must be opened before a program can use the request. 

Request Library Instructions: 
The statements in a TDMS request library definition that identify the requests 
used ina TDMS application. These instructions also give the name of the 
request library file where these requests and their associated form and record 
definitions are to be stored. 

Restore: 
In Rdb, an operation that rebuilds a database from a saved copy after a hard­
ware or software failure. 

In DECslide, to return a saved slide to the work area so you can view it, modify 
it, or reuse it by overlaying it on the current slide. 

Restrict: 
See select. 

Restriction Oause: 
A phrase in the DATATRIEVE record selection expression that allows you to 
specify the maximum number of records making up a record stream. 

RETAINING: 
In DBMS, an option on the DML COMMIT statement. The COMMIT RETAIN­
ING statement: 

• Does not empty keeplists. 

• Retains all currency indicators. 

• Does not release realm locks. 

• Releases all record locks. 



G-47 

RETENTION Class: 
In DBMS, an attribute of member record types that describes when and how a 
member record occurrence can be removed from a set. 

See also FIXED member, MANDAlORY member, and OPTIONAL member. 

RLB: 
See Request Library File. 

RMS: 
See Record Management Services. 

Rollback: 

• In DBMS or RdbNMS, the process of using a before-image journal to restore 
a database to an earlier known state. This process negates updates to the 
database made by the transaction or recovery unit being rolled back. 

• In ACMS, an Application Definition Utility keyword used when defining mul­
tiple-step tasks with recovery. 

Rollforward: 
In DBMS and RdbNMS, the process of using an after-image journal to restore a 
database to a known state. This process replaces updates to the database that 
were lost because a system or program failure required the installation of 
backup media. 

See also' recovery . 

. Root Dictionary Directory: 
'The directory at the top of the VAX CDD hierarchy. The root directory is named 
CDD$1OP. Every dictionary directory, subdictionary, and object in the CDD is a 
descendant of CDD$lOP. 

Row: 
In DECgraph, a set of numbers or words arranged horizontally rather than ver­
tically. For example, on the Keyboard Data Entry Screen, the Y values for the 
Yllegend appear in a row across the screen. 

Row (o(a table): 
See record, relation. 

Run Unit: 
In DBMS, an execution of a single prognnn that ~ccesses a database. 

Scaling: 
A method of arranging the intervals between values on an axis. DECgraph 
provides three scaling choices: linear, logarithmic, and no scale. 



G-48 • Glossary 

Scatter Chart: 
A chart that displays markers to indicate the data progression for Y values. A 
marker appears at the appropriate Y value poit for each X v!\lue point. 

SCATTERED Set Option: 
In DBMS, A record placement option in which records are evenly distributed 
throughout database pages, based upon data values in the record. SCATTERED 
mode is specified in a storage schema entry. 

Schema: 
In DBMS, the logical description of a database, including data definitions and 
data relationships. The schema is written using the schema data definition lan­
guage (schema DDL). 

Schema Data Definition' Entry: 
In DBMS; the entry of the Data Definition Language (DDL) used to define the 
logical structure of a database. 

Scientific Notation: 
A way of expressing very large or very small numbers as a constant multiplied 
by the appropriate power of 10. For example: 

.000000009 
9000000. 

Screened Color: 

.9E-8 (1 times 10 to the power of -8) 

.9E 7 (1 times 10 to the power of7) 

One of six colors in a DEC slide palette that is a percentage of two of, the four 
solid colors in this palette. You use a screened color to paint solid filled objects 
only. . 

Scrolled Form Array: 
A list of elements in a scrolled region on a TDMS form, all of which have 
the same name and the same length and data type. The f()rm definer does not 
specify the number of elements in the scrolled region, and the request definer 
can map up to 32,767 elements of data. 

Scrolled Region: 
An area, specified on the TDMS form definition, that permits the terminal oper­
ator to move through many lines on a field and view or enter data, although ()lUy 
a few lines appear at one time on the screen. . 

Security: 
Measures taken to protect the inf~rrilation stored in a database against unau­
thorized ~eading, writing, or deletion. 



G·49 

Select: 
In RdbNMS and DATATRIEVE, an operation that discards records that do not 
satisfy a conditional expression. For example, if you want to display employees 
with salaries greater than $20,000, a selection operation prevents employees 
records with salaries less than or equal to $20,000 from appearing in the output. 
You perform this operation using the WITH clause of the record selection 
expression. 

Selected Record: 
In a DATATRIEVE collection, the one record marked by the SELECT statement 
and available for display or modification without specifying a record selection 
expression. 

Selector Box: 
In DECslide, a highlighted box used to frame a selection in the word list menus 
and in a slide directory listing in the display area. 

Sequential File: 
A @e whose records appear in the order in which they were originally written. 
A sequential @e does not have an index. In DATATRIEVE, you cannot delete 
records from a sequential @e. 

Server: 
The ACMS component that handles processing work for a task There are two 
types of servers: DCL servers and procedure servers. The implementation char· 
acteristics for a server are defined in a task group definition. The operational 
characteristics for a server are defined in an application definition. 

See also DCL server and procedure server. 

Server Command: 
The string passed by an ACMS application execution controller to a server pro· 
cess at the start of a processing step. The string identifies what work the server is 
to perform. 

Server Context: 
In ACMS, information local to a server process, such as record locks and file 
pointers. Process context can be retained from one step to another in a block 
step but cannot be passed between servers or tasks. 

Server Image: 
A VMS image that the ACMS run·time system loads into a server process. There 
are two types of server images: DCL server image and procedure server image. 

Server Process: 
A VMS process created according to the characteristics defined for a server in an 
ACMS application and task group definition. Server processes are started and 
stopped as needed by application execution controllers. 



G-50 • Glossary 

Set: 
A defined relationship among records in a DBMS database. A set contains an 
owner record, one or more member record types, and zero or more member 
record occurrences. 

See also set occurrence and set type. 

Set Occurrence: 
In DBMS, an occurrence of a set type. A set occurrence consists of one record 
occurrence from an owner record type and one record occurrence from zero, 
one, or more different member record types. 

Set Type: 
In DBMS, a definition of a relationship that exists among record types in a 
database. A set type contains an owner record type, and one or more member 
record types. 

See also set occurrence. 

Simple Record Array: 
See array. 

Single-step 'Thsk: 
An ACMS task that has only a single processing step. Single-step tasks can be 
defined in a task group or a separate task definition. 

See also multiple-step task. 

Singular Set: 
See SYSTEM-owned Set. 

Size Validators: 
A field validator on a TDMS form definition that determines the field data type 
and sets a predefined range for numeric fields. At run time, size validators pre­
vent the operator from entering data that is not within that range. The form 
definer assigns size validators in the Assign Phase. 

Slide File: 
The file that DECslide creates when you save a slide design. 

Slide Directory: 
In DECslide, an alphabetized list of saved slides. Each item in the list includes 
the slide name, the comment entered by the user, and the date and time when 
the slide was saved. 

Software Event Logger (SWL): 
The TDMS process that records ACMS and TDMS sofrware events that occur 
during the running of an application program. In order to see the events logged 
by the SWL, you must use the Sofrware Event Logger Utility Program. 

----5diee-akl9~oftw{lreEveRt Logger Utility Pregm1fr.- --- ------- ------------



G·51 

Software Event Logger Utility Program (SWLUP): 
The TDMS utility you use to list selected events that were logged by the Soft· 
ware Event Logger. 

Solid Color: 
One of four colors in a DECsiide palette that you use to paint the objects, text, 
and background in a slide. By default, DECslide uses the first solid color for the 
background, the second for the objects, and the fourth for the text The third is 
the color you can use by default to change any other colors in a slide. 

Sort Key: 
A field that forms the basis for sorting. For example, you can rearrange the 
records in DATATRIEVE's sample domain PERSONNEL according to seniority 
by typing PRINT PERSONNEL SORTED BY START-DATE. 

Sorted Set: 
See INDEX mode set. 

Stacked Bar Chart: 
A chart that portrays data on more than one item in each single bar. Each data 
item is distinguished by a different pattern or color. 

Statement: 
A string of characters that a user or program transmits to a software product to 
execute a function. 

In DA'D\TRIEVE, a statement is distinct from a command. A statement performs 
query, report, or data manipulation functions. Two or more statements can be 
joined; while a command must stand alone. 

See also command. 

STATIC Allocation: 
In DBMS, the default allocation option of the RECORD statement of the Storage 
Schema entry. Use it to specify the amount of physical storage you want to dedi­
cate to a particular data item type. You make the specification during the defini­
tion of the database, but the actual allocation does not occur until the creation 
of the database. 

See also DYNAMIC allocation and storage schema. 

Statistical Expression: 
In DATATRIEVE and RdbIVMS, an expression that takes values from multiple 
rows of a. relation and combines them into a single result. Statistital expressions 
include AVERAGE, MAX, MIN , COUNT, and lOTAL. 



G-52 • Glossary 

Status Message: 
A one-word message that DECslide displays in a box to the right of the message 
line to indicate the operation you have sdected most recently_ For example, the 
word OBJECT appears in the box when you press the OBJECT key to enter the 
object menu. 

Step: 
A part of an ACMS task definition that identifies one or more operations to be 
performed. Task definitions can have three kinds of steps: block steps, process­
ing steps, and exchange steps. Each step contains clauses that describe the work 
to be done in that step and the action that follows the work. 

See also block step, exchange step, processing step, step action, step work, sin­
gle-step task, and multiple-step task. 

Step Action: 
The part of a step definition that tells ACMS what to do after completing the 
work for that step. These instructions can consist of a single unconditional 
action or a series of conditional actions based on the value of a fidd in a 
workspace. 

Step Label: 
A name assigned to a step in a multiple-step ACMS task. 

Step Procedure: 
A type of procedure called in a processing step of an ACMS task. Step proce­
dures handle computations, data modification, and file and database access for 
processing steps that use procedure servers. Normally, step procedures do not 
handle input from or output to a terminal. 

Step Work: 
The part of an ACMS step definition that describes terminal interactions, 
processing, or both. 

Storage Schema: 
In DBMS, a description of the physical storage of data in a database. The storage 
schema is written using the storage schema data definition entry. 

See also storage schema data definition entry. 

Storage Schema Data Definition Entry: 
In DBMS, the entry of the Data Definition Language (DDL) used to define the 
physical organization of a database. 

String Descriptor: 
A data structure that specifies the address, length, and data type of a string. 
String descriptors are passed as arguments to subroutines. 

------------------- ------



G-53 

STRUCTURE Field Description Statement: 
In CDDL, STRUCTIJRE field description statements define fields that are sub­
divided into one or more subordinate fields. The top-level field description 
statement for a record is ordinarily a STRUCWRE field description statement. 

Subdictionaty: 
In the, CDD hierarchy, sub dictionaries function almost exactly as if they were 
dictionary directories, but they exist as physically separate dictionary files. 

Subdirectory: 
A list of files that is grouped one or more levels below the top-level or main VMS 
directory. 

If you are using DECslide, you should run it from a separate subdirectory, espe­
cially when you are creating several slides for a presentation. 

Submenu: 
A group of menu options generated when you select a main menu option. 

In DECslide, for example, you enter a submenu when you select the FILE or 
PRINT icons in the main menu. 

InOECgtaph, you can choose the DATA icon in the main menu to enter the 
Data Entry submenu, where you can choose the LOAD icon. 

Subobject: 
In DECslide, an object that is joined with other objects to form a compound 
object. lOu use the]OIN key to form acompound object and the GOLD-SEB\­
RATE key to separate subobjects from a compound object. 

Subschema: 
In DBMS, a tailored, user-oriented view bf iidatabase. Aview maybe tailored to 
meet the needs of a particular programming language or to fo~us the kind 'of 
data a program can access to that specifically required to perform an end user 
task. The subschema can include everything in the corresponding schema or 
any part of the schema. The subschema is written using the subschema data 
definition entry. 

See also subschema data definition entry. 

Subschema Data Definition Entry: 
In DBMS, the entry of the Data Definition Language (DDL) used to define user­
oriented views of a database. 

Subscript: 
A positive integer that indicates the position of an element in' a form or record 
array. For example, in a roMS request instruction,.to refer to the third element 
of an array LAST-NAME, you use the array field name and the number 3 (indi­
cating the third element): LAST-NAME[3]. 



G-54 • Glossary 

Substitution Directive: 
An expression in a command or statement passed to DATATRlEVE from a call­
ing program .. The substitution directive is replaced by parameters given in the 
program. 

Subtide: 
In DECgraph, a secondary line that appears beneath the main title of your chart; 
Use the subtitle to further clarify the main title information. 

Summary Lines: 
Information you can display in a DATATRIEVE report with the AT IDP and AT 
BOTIDM statements. 

SWL: 
See Software Event Logger. 

SWLUP: 
See Software Event Logger Utility Program. 

Synchronous Call: 
A call to a TDMS subroutine that performs the entire requested action before 
your program can continue running. Thus, your program continues only after 
the completion of the called subroutine. Most calls are synchronous calls. 

See also asynchronous calls. 

System Manager: 
A VMS user responsible for the overall operation of a VMS system. Responsibili­
ties of the system manager include authorizing all users of the system, setting 
access requirements for all system resources, and running all procedures neces­
sary to ensure the correct and timely operation of the system. 

System Workspace: 
A task workspace whose record definition is provided by ACMS, which pro­
vides three system workspaces. At run-time, ACMS fills in the contents of the 
system workspaces for each task selected by a terminal user. These workspaces, 
like other task workspaces, last only for the duration of a task instance. 

See also workspace and task workspace; 

SYSTEM-owned Set Type: 
In DBMS, a set type owned by the SYSTEM record rather than by a record type 
you have selected. A SYSTEM-owned record has only one occurrence in the 
database, but can be the owner of many member record types. It allows unasso­
ciated record types to be used as entry points into the database. 

See also member record type and owner record type. 

------- . __ . __ ._---



G-55 

Thble: 
See relation. 

Thg Variable: 
An optional variable in CDDL VARIANTS field description statements. The run­
time value of the tag variable determines the current VARIANT. 

See also VARIANTS field description statement. 

Thsk: 
A unit of work that performs a specific function and that a terminal user can 
select for processing. Every task belongs to a task group. Some tasks are defined 
in the task group they belong to; other tasks have separate task definitions. In 
either case, they are defined with the ACMS Application Definition Utility. The 
work of a task can be defined as a single processing step or a block step, which 
consists of a series of exchange and processing steps. 

See also single-step task and multiple-step task. 

Thsk Debugger: 
A debugging tool, provided by ACMS, that is primarily for debugging multiple­
step tasks that use procedure servers. The Task Debugger uses task group 
databases and procedure server images; it does not require application defini­
tions, menu definitions, or a running ACMS system. 

ThskGroup: 
One or more ACMS tasks that have similar processing requirements and that are 
gathered together so they can share resources. A task group definition, created 
with the Application Definition Utility, defines the servers used by the tasks that 
belong to the group. It also defines other characteristics and requirements for 
the tasks in the group, such as workspaces, request libraries, and message files. 

Thsk Group Database (TDB): 
A run-time database containing information derived from task and task group 
definitions. The Task Debugger uses the TDB when debugging tasks; the Appli­
cation Definition Utility uses the TDB when building an application database. 
ACMS also uses the TDB when a terminal user selects a task. The TDB is created 
as a result of building a task group definition with the Application Definition 
Utility. 

Thsk Instance: 
The occurrence of the processing of a task. Each selection of a task is a task 
instance. Every task instance is given a unique ID by the ACMS run-time system. 
ACMS processes a task instance in the manner prescribed by the definition of 
the task selected. 



G-56 • Glossary 

Task 110: 
The communication between a teoninal user and a task instance. This commu­
nication can consist of VMS teoninal I/O or IDMS requests. 

Task Selection String: 
In ACMS, the string of characters a tenninal user types, in addition to the selec­
tion keyword or number, when making a selection from a menu .. 

Task Submitter: 
Any authorized ACMS user who selects tasks for processing, provides input for 
that processing, and receives the results of that processing. Thsk submitters 
m~st also be authorized VMSusers. Synonymous with terminal user. 

Task \lbrkspace: 
A workspace used mainly to pass information between steps in a multiple-step 
ACMS task. A task workspace is allocated when a tenninal user starts a task and 
keeps its contents only for the duration of the task instance. 

TDB: 
See task group database. 

TDMS: 
See Teoninal Data Management System. 

Tenant Record: 
Any DBMS record that participates in a set, whether a member or owner. 

Teoninal Control Subsystem: 
A set of ACMS"conttolled processes that control terminal·user access to ACMS. 
The terminal conttol subsystem includes two types of processes: the command 
process or processes and the teoninal subsystem conttoller. 

TenninaI Data Management System (TDMS): 
A VAX product that uses forms to collect and display information on the termi­
. nal. IDMS provides facilities for interactively creating customized forms that 
have different kinds of field and text characteristics, as well as several video 
features (such as boldingand reverse video).IDMS provides· data indepen­
dence by allowing data used in an application to be separated from the applica­
tion program. ACMS multiple-step tasks use IDMS services to manage teoninal 
input and output. 

Teoninal Server: 
The part of DiID\TRIEVE that gives you access to DA'OO'RIEVE's interactive 
data management services. 

Tenninal Subsystem Controller: 
The process in the teoninal conttol subsystem that conttols which terminals 
have access to ACMS. 



G-57 

'ThnninaI User: 
An ACMS user authorized to select tasks for processing. 

'Thnnination Proceclure: 
A procedure that runs when a procedure server process stops and that usually 
closes files or releases databases. 

TEXT Data Type: 
In DECgraph, a field value indicating that X values are to be considered as text 
rather than as numbers. Text may include numbers that are really names, such 
as years (1980,1981), equipment names (VAX 730,750), or fiscal quarters (1,2, 
3,4). 

See also NUMERIC data type. 

'Il-ace Facility: 
The facility that helps you to debug a TDMS application by letting you monitor 
the action of a ruMS application program at run time. You can use 'ltace to: 

• 'ltace the execution of a request at run time, including: 

- 'ltansfer of data from a fonn to a program record 

- 'ltansfer of data from a program record to a form 

- Values of control fields 

• 'ltace TDMS calls, including: 

- Parameter values 

- Entry and exit time of each call 

'lhuisaction: 
A set of operations on a recoverable resource such as a database. The opera­
tions in a transaction are treated as a group; either all of them are completed at 
once, or none of them is completed. 

In DBMS and Rdb!VMS, a transaction groups a series of statements that per­
forma task. 

• In DBMS, a transaction normally begins with a READY statement and ends 
with a COMMIT or ROLLBACK statement. However, a transaction may begin 
with any DML statement, other than READY, if the previous transaction in the 
run unit ended with a COMMIT statement that cont~ined a RETAINING 
clause. DBMS transactions include only data manipulation ,operations. 

• In Rdb!VMS, atransaction normallybeginswith STARLTRANSACTION and 
ends with COMMIT or ROLLBACK. RdbNMStransactions can include data 
manipulation or data definition statements. 

See also commit, quiet point, recovery, and rollback. 



G-58 • Glossary 

1i-end Line: 
In a seatter chart, a line that identifies the progression of the data for only the 
first set of Y values. In DECgraph, the TREND options icon leads to the icon 
choices: TREND and NO TREND. 

Tuple: 
See record. 

Type: 
A characteristic of each element in the CDD. Directories and subdictionaries are 
directory types, and there are several typ.es of dictionary objects (for example, 
CDD$RECORD, DTR$DOMAIN, and DBM$SCHEMA). 

Unique Name: 
A designation assigned to a component, such as a task, that is used to identify 
that component within and across definitions. 

Usage Mode: 
In DBMS, the combination of the DML READY statement's allow mode and the 
access mode. It describes how a realm you have readied can be used. Theeight 
usage mode combinations are: 

BATCH UPDATE 
PROTECTED UPDATE 
CONCURRENT UPDATE 
EXCLUSIVE UPDATE 

BATCH RE1RIEVAL 
PROTECTED RE1RIEVAL (default) 
CONCURRENT RE1RIEVAL 
EXCLUSIVE RE1RIEVAL 

See also access mode and allow mode. 

User Definition File: 
A @e, created and maintained with the User Definition Utility, that contains a 
list of users authorized to aCcess ACMS. 

User Definition Utility: 
The ACMS tool for authorizing ACMS users and defining charateristics of those 
users. 

User Name: 
A designation assigned toa VMS user to identify that user. Also, the name a 
terminal user types to log into VMS and ACMS. . 

User Utility: 
See User Definition Utility. 

User Work Area (UWA): 
In DBMS, a portion of memory assigned t6 your run unit that holds 'data to be 
transferred between your run unit and the DBCS. It holds data that is either 
going from your run unit to the database, or is coming from the data base to 
yournm unit. 



G-59 

User Workspace: 
A workspace, defined as an attribute of a task group, that holds information 
about a terminal user. A user workspace is created the first time a terminal user 
starts a task that references it. ACMS keeps a separate copy of a user workspace 
for each user and saves the contents of the workspace until the user exits from 
ACMS. 

UWA: 
See user work area. 

V81id Request: 
A TDMS request in the CDD with the following characteristics: 

• The form and record definitions named in the request are stored in the CDD 

• The record field and form field names used in mapping instructions are the 
same as those contained in the form and record definitions 

• According to TDMS mapping rules, the following are compatible: 

- The data types of fields mapped to each other 

...;, The lengths of fields mapped to each other 

- The types (for example, simple, group, array) of fields mapped to each 
other 

Validate Mode: 
See validation. 

Validation: 
The process of checking data on entry to. ensure that it meets preestablished 
requirements. 

In DATATIuEVE and RdbIVMS, for example, the VALID IF clause in the record 
definition sets criteria for validation of values entered for storage. 

In TDMS and ACMS, the definition utilities, when in Validate mode, check that 
references to external definitions are correct before.storing a definition in the 
CDD_ 

See also valid request and valid request library definition. 

Value: 
In DECgraph, a single piece of data. Yvalues must be numeric. X values can be 
either numeric or text. 

Value Expression: 
A symbol or string of symbols that you use to calculate it string or numeric 
value. When you use a value expression in a statement, RdblVMS or DATA­
TRIEVE calculates the value. associated with the expression and uses that value 
when executing the statement. 



G-60 • Glossary 

\9riable: 
A name associated with an expression whose value can change. 

In DATATRIEVE, a variable is a value expression created in a DECLARE state­
ment. For example, the folloWing statement creates a variable, x, that can be 
assigned any tWo-digit numeric value:DECLARE X PIC 99. 

VARIANTS Field Description Statement: 
A CDDL statement defining a set of two or more fields that provide alternative 
descriptions for the same portion of a record. The function of the VARIANTS 
field description is similar to that of the REDEFINES clause in VAX COBOL and 
VAX DATATRIEVE. 

~rtical Label: 
In DECgJ:aph, the name that identifies or describes the Y values. It appears 
along the left side of the screen from the bottom to the top. For example, in the 
Annual Reports data, the vertical label "Dollars" describes what type of data the 
Y values represent. 

Video Attribute: 
A characteristic of a IDMS form that provides one or more of the following 
special visual effects to an area of a form: 

• Reverse video (light background, dark text) 

• Bolding 

• Blinking 
• Underlining 

• Double-height characters 

• Double-width characters 

View: 
A subset of an RdblVMS database that includes any combination of fields and 
records from a single relation or from different relations. You form a view using 
the select or join operation. To the user, the results look like a single relation; 

Views are most useful for two purposes: 

• Restricting access to parts of the database 

• Making the results of selections and joins permanent'· 

See also view domain. 



G-61 

View Domain: 
A special type of DATATRIEVE domain that allows you to select some (or all) 
fidds in some (or all) records from one or more domains. 

VMS: 
The operating system on a VAX computer. 

VMS Image: 
See image. 

VMS Process: 
See process. 

VMS User: 
A person or account authorized by a VMS system manager to access a VMS 
system. A VMS user is assigned a user name, a password, a user identification 
code (UIC), a default directory, a default command language, quotas, limits, and 
privileges. 

Wddcard Character: 
A symbol, such as the asterisk, question mark, or percent sign, that you use in 
place of all or part of a @e specification. 

Word List Menu: 
A DEC slide menu that uses a list of words to present its choices. The object and 
change menus are examples of word list menus. J 

Word Slide: 
Any DECslide slide composed of one or more words used to present informa­
tion. A word slide can also include a graphics object or two. 

See also graphics slide. ,. 

Work Area: 
In DEC slide, the space on your screen above the message line where you design 
your work. This area also displays the keypad diagrams and help text when you 
request them. 

Workspace: 
In ACMS, a buffer used to save variable context between steps and tasks, whose 
description is stored in the CDD. A workspace can also hold application param­
eters and status information. ~rkspaces are passed to step procedures as 
parameters. There are three types of workspaces: task workspaces, group work­
spaces, and user workspaces. ACMS provides record descriptions for three task 
workspaces, which are referred to as the system workspaces. 

$eealso group workspace, task workspace, system workspace, and user 
workspace. 



G-62 • Glossary 

W,rkspace Symbol Module: 
An object module, produced as a result of building a task group definition, that 
contains a main routine and debug symbol table used by the ACMS Task 
Debugger to examine workspaces. The object module must be converted into 
an executable image by the LINK command before the Thsk Debugger can 
use it. 

X Axis: 
The bottom horizontal edge of a chart. 

X Data Type: 
In DECgraph, the type of data used for the X values. If you use numbers, the X 
data type field must read NUMERIC. If you use text for the X values, the X data 
type must read TEXT. 

X Unit: 
In DECgraph, a field that indicates the multiplying factor for the X numeric 
values, ranging from E" 30 to E + 30. For example, if you choose the value 
"Thousands' for the X unit field, you can enter the number 1 in the X values to 

mean 1,000 or the number 15 to mean 15,000. 

Y Axis: 
The vetticalleft edge of a chart. 

Yl·Y6 Legends: 
InDECgraph, text that describes the data in the YI-Y6rows of values. The text 
you enter in the YI-Y6legends appears in the finished chart in the legend box. 

YUnit: 
In DECgraph, a field that indicates the multiplying factor for the Y numeric 
values,. ranging from E-30 to E + 30. For example, if you choose the value 
"Thousands' for the Y unit field, you can enter the number 1 in the Y values to 
mean 1,000 or the number 15 to mean 15,000. 


