VAX/VMS Software
Language and Tools Handbook

VAX/VMS Software
Language and Tools Handbook

dlilgliltial

Digital believes the information in this publication'is accurate as of its publi-
cation date; such information is subject to change without notice. Digital is
not responsible for any inadvertent errors.

The following are trademarks of Digital Equipment Corporation:

DEC MicroPDP-11 RSX

DECmate MicroPower/Pascal RT
DECsystem-10 PDP ULTRIX
DECSYSTEM-20 P/OS UNIBUS
DECUS Professional VAX
DECwriter Q-BUS VMS

DIBOL Rainbow VT

MASSBUS RSTS Work Processor

IBM is a registered trademark of International Business Machines Corporation.
CROSSTALK XV is a registered trademark of Microstuf, Inc.
SONY and VDX-1000 are registered trademarks of Sony Corporation.

MARK 1V is a registered trademark of the Norpak Corporation —
Ontario, Canada.

Copyright © 1985 Digital Equipment Corporation. All Rights Reserved.

Contents

Chapter 1 = The VAX/VMS Software Development Environment

Introduction. 1-1
The VAX Common Language Environment 12
VMS Runtime Capabilities F 1-3

Services and Products B P PR P 1-3
The VMS Operating Systemottt i, 1-5
The VMS SEIVICES . « + . vt v et et e e et e e 1-6

The Digital Command Languageo...... 1-6
VMS Record Management Services (RMS)ooonunon. 1-6
The VMS Runtime Library (RTL)ol 1-7
VMS Program Development Utilities o e e 1-7
VAXTPU (Text Processing Utility) o.. 1-8
The EDT Text Editorcooiiiiiiiiiiii.n, 1-8
The DSR Text-Formatting Utdlity 00 oiia.. 19
The VAX Symbolic Debugger Utilityc.c...... 1-9
Optional VAX Program Development Products 1-10
VAX Languages.ooiiiiiii i 1-10
VAX Productivity Tools. cooovi i 1-14

Related VAX Program Development Products 118

Chapter2 = VAX Program Development Productivity Tools

OVEIVIEW .« o ot 2-1
VAX DEC/CMS (Code Management System)%.. 2-3
VAXDEC/CMSFeaturesoiiiieeiinniiiien e, 2-4
Using VAXDEC/CMS . . . oottt e et e e e 2-4
Concurrent Development. 25
Classes and GIoupsoouinniniiinii i 2-6
Project Information i 2-7

VAX DEC/MMS (Module Management System) 2-7
VAX DEC/MMS Features. O R 2-8
Using VAXDEC/MMS . . .« ottt ittt i 29
DependencyRuleso.oiiiiiiiiiin i 2-10
Compatibility In The VMS Environment: 2-11
VAXDEC/Shell 2-12
VAX DEC/Shell Features.............cooovnvii o, 2-12
Using The VAX DEC/Shellooieiaiai i 2-12

The VAX DEC/Shell As A Programming Language 2-13

The VAX DEC/Shell Runtime Library 2-13
VAXDEC/Test Managerccooueeiiiinl i, 2-16
Features of VAX DEC/Test Manager0.......... 2-16
Using VAX DEC/Test Managerc..oveiineeniinnnn... 2-16
Steps In Regression Testing.c... FOBATR 2-17
Steps In Regression Testing With DEC/Test Manager 2-18
Organizing Testso i 2-18
Running Testso 2-19
Evaluating Test Results it 2-20

The VAX Language-Sensitive Editor. 2-20
”Language-Sensitive” Features. SR T 221
Using The VAX Language-Sensitive Editor. 2-22
Online Help With The VAX Language-Sensitive Editor 2-23
Windows Provide Added Flexibility 2-23
Tailoring Your Environment 2-24

VAX Text Processing Utility (VAXTPU)vvvvnvennnn... 2-24
VAX Performance and Coverage Analyzer (VAXPCA) 2-25
Features of The VAX Performance and Coverage Analyzer 2-25
Using The Collectoroovvviniii i 2-26
Using The Analyzert 2-27
PLOT And TABULATE Functionalityccocvvvvoo... 227
VAX GKS o 2-27
Features of VAXGKS .. .o oviitt i 2-28
Using VAX GKS T TR ST S S 228

VAX GRS OUIPUL « ..ttt ettt et 2-29

VAXGKSInput. ... 2-31
VAXGKSMetafiles, 2-31

OVEIVIEW . . et 3-1
Introduction: General Features of VAX Programming Languages 3-3
VAXAa. .o 35
Featuresof VAXAdaooiiiiiiiii .. 35
WhoUsesVAXAda . ..o oot 3-5
VAX/VMS Implementationof Ada 3-6
AdaProgramUnitst 3.7
Major Features of The Ada Programming Language 3-8
VAX APL . oo e e e 3-12
Features Of VAXAPL\ttt i iaie e 3-13
CharacteriSticso vvvv et 3-13
VAX BASIC . . oottt i e e e e e 3-14
Features of VAXBASICo oot e i e e 3-15
Who Uses VAXBASIC?. ...t v it et eeeeiee e iee it 3-15
General Characteristicscooiurireiienennenann... 3-16
Structured Programming o i 3-16
VAX BLISS-32 .ottt e e 3-18
Features of VAXBLISS-32o vttt 3-18
What Is VAX BLISS-32 Used For?ccoooiou... 3-19
The VAX BLISS-32 Compiler S v 3-19
Library and Require Filesl oL 3-20
MACROS i e e e e 3-20
Debugging\t 321
Transportability Features S PP 321
VA C et e e e e e e e e e 3-24
Features of VAXCttt it 3-24
Who Uses VAX C? oottt ee e e e e e eeeieieiees 3-25
TheLanguageoiiteivnniniiiiii e 3-25
Compatibility Across Implementations 3-26
VAXCOBOL . .ottt ittt e e e e e e e e e e 3-27
Features of VAXCOBOL.0ovvveniinainnln el 3-28
Who Uses VAXCOBOL?ccovinennnn... S 3-28

" Structured Programmingii i e 3-28
Data Types . . o oo e e 3-30
VAXDIBOLoviiinii i ERSPRE N 3-30
Features Of VAXDIBOLvvvtttee i eeei e e 331
Who Uses VAX DIBOL? RN S 331
DIBOL Language Statements PR ce...332

Program Structure L. g e R e i 3-32

Operating Procedures e .. 333

Compilation and The DIBOL Compiler P, L.00334
Contents of The Listing File. R S 3-34
VAXDSM . ..o e 335
Features of VAXDSMo\t vtee et e 3-35
Who Uses VAXDSM? . . oo cvvvte et etieee e e eeee e e 3-35
‘DataManagementiiiiiiii i 3-36
The Precompiler, e ey s 3-37
Procedure Callso 3-38
VOOPLONS .« . oottt e e e 3-38
Shared Memory Areasccoviiiiiiiian, tre e v 3-38
The DSM Job Controller ot 3w e s 3-38
Journaling il 3539

- System and Library Utilities O A S TR 3-39
VAX FORTRAN . . .ottt e e e e et e e e e 3-39
Features of VAX FORTRANcouiiniiiiiinaanaiiian. 3-40
Who Uses VAX FORTRAN?ttty e e 3-40
Language Characteristics 3-40
VA X LIS .ottt e i 3-43
Features of VAXLISPoivitintiiiininnn, et 3-43
Who Uses VAXLISP? . . .o vv ittt eee e eieeeaain 3-44
Using VAXLISPoviiiiiii e e e s e 3-45
Invoking LISP.ottt e 3-45
Using Command Levels, 3-45
Controlling Inputt e e co.. 346
Creating Programs o i i 3-46
VAXPASCAL . .+t eeeeeeeeeeee 3-48
Features of VAXPASCALoviirniiiinnannnn. v 3-48
Who Uses VAXPASCALo\ttt iie e eiie e 3-48
VAX PL/T e e 3-52
Features Of VAXPL/T \ointi it 3-52
Who Uses VAXPL/L oottt e it e e e 3-52
VAX RPGIL. ..o i i e e i e . 375
Features Of VAXRPGILoviinniieiie i, 375
WhoUses VAXRPGII?o i 3-76
Language Characteristics and Functions e e e e i 377
The VAXRPGITEditor.o ove it T, 3-78

Chapter4 = VMS Services

Chapter Overviewot .. U I L 4-1
VMS Record Management Services (RMS) ey . 4-3
Files .. oo 4-3

Sequential AccessMode. 44

Random AccessMode ... 4-4
Record’s File Address (RFA) AccessMode 4-4
Dynamic ACCESS . .« .o ie e e 4-4
RMS File Attributeso i 45
StorageMedia 4-5

File Specificationo i iiiiiiiiii i 4-5
RMSRecord Formats lin, .. 46
Program Operations OnRMSFiles R SO 4-6
File Processingovoveniiie i 4-6

File Organizationand Sharing 4-6
Program Sharing, e 4-7
Record Lockingoouviiiiii i 4-7
Record VOProcessingcovvuiiuiniiiiiiinan.n.. 4-8
RMSUGHHES . - v v v et e et et eii e 4-8
USINERMS - -« oo e e e e 4.9
The Digital Command Language (DCL) Tl .o 4-11
CommandFormat i 4-11
Command Procedures0.: e e v e 4-12
Formatting Command Procedures. e 4-13

The VMS Runtime Library e e 4-13
Features of The Runtime Library Ceeee 4-14
Organization of The Runtime Library T '4-14
Functional Listing of VMS RTL Procedures LA 4-15
VMS System ServiCesveuineninieritiiiiinn.s. .. 4-19
Calling System Servicescouuiiiiiiiiiiiliniin.. vo421
VMS System Services and System Integrity~ 421
VMS Security System Services R I 4-22

- VMS Event-flag System Servicesoiiiiiiiii.. 4-22
FEvent-flag Numbers and Event-flag Clusters 4-23
AST (Asynchronous System Trap) Services PR 4-23
Logical Name Serviceso ovoeen i 4-24
Input/Output System SeIvicesovvereereeenneenan.. 4-24
Process-Control Servicesooitiiii i 4-24
VMS Timer and Time-Conversion System Services. i 425
VMS Condition-Handling System Services 4-25
VMS Memory-Management System Services 426
VMS Lock-Management System Services e 4-26

Chapter 5 = VMS Program Development Utilities

Chapter Overviewcoovvivneneeeanaan: G A 5-1
The VAX/VMS Symbolic Debugger Lo e it .53
The Debugger Is Interactive. R N 5-3

The Debugger Is Symbolic............... O .. 53

The Debugger Is Multilingual 5-4

The Debugger’s Features and Commands 5-5
User Interface Features of The VMS Debugger Utility 5-5
VAXSORT/MERGE i et 5-6
VAX LINKER . .o e e et e e e 5-8
The VAX Text Processing Utility (VAXTPU)oiviinnnnnn..n 5-12
VAXTPU Interfaces cvv oot a e 5-12
The EVEInterfaceoouiiiinei ... 5-13

The EDT Keypad-Emulator Interface. 5-14
Special Features i 5-14
‘Hardware and Terminals That VAXTPU Supports 5-15

- The VAXTPU Languageooverrenreaneonn.. S, 5-15
VAXTPUDataTypeso i it 5-15
VAXTPU Language Statementsooovtenenninnnnnaon. 5-16
VAXTPU Built-in Procedures e i 5-17
VAXTPU User-written Procedures B AN 5-17
Invoking VAXTPUutnrtite it iiie il 5-18
EDIT/VAXTPU Command Qualifiers0.. 5-19
Initialization Files o o i 5-19
Leaving A VAXTPU Editing Sessiono.oci oo 5-20
The EDTEIOr - . . oo vt ettt e e i 5-20
The VAX Document-formatting Utility (DSR). e 5-22
Other Program Development Utilities, T P A 5-27
The Command Definition Utility (CDU)ccoovu... 5-27
-Object Analyzer Utility. e e i S e 5-28
Message Utility cov vt 5-28
The VAX Exchange Utility (EXCHANGE)c0ouuann.. 5-28

Chapter 6 * VAX Program Migtation and Cross-Development Tools

OVEIVIEW . . et ee e et et et e e 6-1
VAXELN Toolkit Overviewoovuuuinunen... e 6-3
VAXELN Systemsottt ... 63
Toolkit Componentsive.eevueenneiiuenueennunnnnn. 65
VAXBIIRSK ..o RN, 68
Program Development Capabllmes R 69
General Access.ovoiii i P TN 6-11
Disk and Tape Volumes il 6-11
Intersystem Facilities PR 6-12
Compatibility 6-12
MCR Compatibility oot 6-12
Indirect Command File Compatibility 6-13

General Areas of Incompatibilitycc. .. o 6-14

Compatibility With Other Derivatives of RSX-11................. 6-14

Optional Softwarec..iiuiiiiiiiiiiiii 6-14
MicroPower/Pascal-VMS 6-15
Chapter 7 = Language and Tool Integration in the

VAX/VMS Environment

OVEIVIEW. . et et e e e e 7-1
Introductionot 7-3
The Program Development LifeCycle. 7-3
Phase 0: Business and Risk Analysis............. e 75
Phase 1: Designooiiiiiiiiii i 7-5
Phase 2: Implementationciiiiiiii.... 7-6
Phase 3: Qualificationot 7-6
Phase 4: Volume Production, Maintenance and Evolutlon 7-7
Here’s A SpecificExample. il 7-11

Your Departmentcooouni e e 7-11

Getting Started e e e e e e e, 7-14

Defining and Analyzing The Software System With VAX/VMS 7-15

. Designing The Software System With VAX/VMS 7-19
Implementing The Software System With VAX/VMS 7-22
VMS Setvices In The Implementation Phase 7-26
Using The VAX Language-Sensitive Editor During
Implementationot 7-27
Using VAX DEBUGGER In The Implementation Phase 7-28
Using DEC/CMS And DEC/MMS Togetheroovvnu.n.. 7-29
Using Related VAX Software Products In Implementation Phase . . . 7-29
Testing and Verifying The Software System With VAX/VMS 7-31
Using The VAX Performance and Coverage Analyzer (PCA) 7-36
Using The DEC/Test Manager In The Testing Phase 7-36

Maintaining The Software System With VAX/VMS. 7-37
Conclusionot e 7-42
List of Figures
Figure
Number - Description
1-1: VAX/VMS Services and Products used for Program

Developmentouoiviiiiiniine i, 1-4
1-2: The VMS Operating System RPN RN 1-5
1-3: VMS SEIVICES .. ittt 1-6
1-4: VMS Program Development Utilities 18
1-5: VAX High-Level Programming Languages 1-11
1-6: VAX Program Development Productivity Tools 1-15

1-7: Related Program Development Products 1-19

2-1:
2-2:
2-3:
2-4:
2-5:
2-6:

3-1:
3.2:
3-3;
3-4:
3-5:
3.6:

3-11:
3-12:
3-13:
3-14:

4-1:
4-2:

5-1:
5-2:
5-3:
6-1:
7-1:
7-2:

7-3:
7-4

7-5:

7-7:
7-8:

Overviewof Chapter2co..o. oo in.. 22
Element TESTFOR with Main Line and Variant Generation 2-6
Generation 2A1 Merged into the Main Line of Descent ... 26

How MMS Builds a Software System Ve e 29
Dependency Rule Format T 2-10
Sample DependencyRule00........ 2-11
Overviewof Chapter3..............coooieiiiiin. .. 32
Sample Ada Program Listing . .~ 3-10, 3-11,3-12
- Sample Structured VAX Basic Program 32,33
Statement Modifiers 0 3-18
Sample VAX BLISS-32 Program Listing 3-22,3-23,3-24
Sample VAXC Programoovu il ul, 327
Use of VAX COBOL Structured Programming Techniques ; 3-29
Sample VAX PASCAL Program Listing0.00. 351
Sample PL/I Program Listing0.... e 355

Typical RPG II Program Showing a CALL Statement 3-60
A Typical RPG I Program Used to Generate Mallmg

Labels........o o ooy i e e 3-60
Overview of Chapter 4 e 42
Sample RMS Program. P A e 42
General-Purpose and Language-Support RTL
Procedures.............ccooiiiiiiiii.. S . 415
Overviewof Chapter5...................... ... 52
VAXTPU As a Base for EVE and the EDT Keypad ,
Emulator0oooviiii ol L2513
VAXTPU As a Base for User-written Interfaces. 5-13
Overview of Chapter6........................ S 62
Overview of Chapter 7. IR Ll 7-2
The VMS Productivity Environment for Program :
Development ... i 7-8
A Model Program Development Department. 7-12
Defining and Analyzing the Software System N
with VAX/VMSoooiiiiieenn P 7-16
Designing the Software System with VAX/VMS 7-20
Implementing the Software System With VAX/VMS.. 7-24

Testing and Verifying the Software System with VAX/VMS. 7-34

‘Maintaining the Software System With VAX/VMS 7-40

List of Tables

Table
Number Description
2-1: VAX DEC/Shell Utilities and Commands 2-14
3-1: Cross Refererence Chart for VAX Languages, Tools, and
Related Program Development Products 3-4
4-1: Comparison of RAB and FAB Parameters for Record
OPErations . . .« oottt 49
4-2: VMS Runtime Library Facilities 4-14
4-3: Functional Grouping of VMS RTL Facilities 4-15
4-4: The Functional Grouping of VMS System Services 420
5-1: Qualifiers to the DCL command EDIT/TPU 5-19
5-2: Selected Examples of DSR Subject-Matter
Formatting Commands0......... 5-24
5-3: DSR Graphic, List,and Note Formatting Examples 525
5-4: Miscellaneous Formatting Commands 5-26
5-5: DSR Flag, Index, and Table of Contents Commands 5-26
5-6: DSRRun Commandso, 527
7-1: The Program Development Life Cycle. 7-4
VAX/VMS Products Used in The Product Development

7-2:

LifeCycle. ..o 7-10

Preface

The VAX/VMS Languages and Tools Software Handbook is a comprehensive ref-
erence guide to the latest software development products available from
Digital. It is part of a three-volume set titled, VAX/VMS Software. The other
handbooks in this set are, The VMS Systerm Software Handbook and The VAX
Information Management Handbook.

Digital has developed many products to meet the varied needs of today’s pro-
gram development shop. These include industry-standard, high-level language
compilers, program preparation and development tools, and even many tools
that allow programmers familiar with other operating systéms to take advantage
of the power and flexibility of the VMS software development environment.

Handbook Organization

= Chapter 1 — “The VAX/VMS Software Development Environment” gives you
an introduction to the family of VAX/VMS program development software
products and the single integrated environment they are part of.

If you are not familiar with these software products and their relationship to
each other and to the VMS operating system, this chapter will give you the
overview you need before proceeding to the specifics of VAX/VMS program
development software products.

s Chapter 2 — “VAX Program Development Productivity Tools.” This chapter
describes the many VAX productivity tools that can be used in conjunction
with VAX languages. These tools streamline the program development envi-
ronment by giving programmers control over the many tedious and time-con-
suming aspects of “building” software systems.

Each tool is covered in its own section of the chapter and includes a general
description of the tool’s features and benefits.

= Chapter 3 — “VAX Programming Languages”. This chapter describes the
most widely used VAX Languages. It is organized alphabetically by language
name and includes the features, benefits, and primary applications of each
language. Detailed information on commands and compilers, and a sample
program listing is also included. k

Chapter 4 — “VMS Program Development Services”. The foundation on
which VAX productivity tools and languages operate is the VMS operating sys-
tem. Chapter 4 describes four services provided by the operating system and
used in program development. These include, the Digital Command Lan-
guage (DCL), Digital Record Management Services (RMS), the VAX Runtime
Library (RTL), and VMS System Services.

Chapter 5 — “VMS Program Development Utilities.” This-chapter gives you
an introduction to VMS’s program development utilities. Included are
descriptions of VAXTPU and EDT text editors, the VAX Symbolic Debugger,
Linker, Librarian, and many other sophisticated utility programs that are an
integral part of the VAX/VMS program development environment. '

Chapter 6 — “VAX Program Migration and Cross-Development Tools.”
Three optional VAX/VMS software products — VAXELN, VAX-11 RSX, and
MicroPower/Pascal-VMS — make it possible for you to use your VAX system
as a host program development system to develop applications that can then
be run on other Digital systems. This chapter introduces you to both of these
products.

Chapter 7 — “Language and Tool Integration in the VAX/VMS Software
Development Environment.” This chapter gives you a brief overview of the
program development life cycle as we define it at Digital and shows you how
our software products interact to make each phase of the development cycle
as productive and cost effective as possible.

Scope of the VAX/VMS Handbook Set

It is not the intent of this handbook set to describe all VAX/VMS software prod-
ucts. Products covered in these three volumes pertain to the subject of the spe-
cific handbook they appear in. For example, the VAX Languages and Tools
Handbook describes VAX/VMS software products used for software develop-
ment. Many product not discussed in these three volumes are covered in other
handbooks or related documentation.

= Related Publications

The following publications can provide you with additional information on
VAX/VMS software products discussed in this Handbook Set and can be
obtained through your local Digital Sales Office or Sales Representative. Or, in
the United States, for more information, an online demonstration of many of
the products discussed in this handbook, or to purchase a product, call:

Digital’s Electronic Store (1-800-332-3366) with a VT100 compatible terminal
and a 1200 baud modem and follow the directions that appear on your screen.

* You can find specific hardware/software support guidelines for VAX/VMS
software products by referencing the Software Product Description (SPD) of
a particular product. Information in the Alphabetical Index (SPD 00.01.11),
The VMS Operating System SPD (25.01.22), and The VAX/VMS Optional
Software Cross-Reference Table SPD (25.99.37) is particularly useful in deter-
mining the type of VMS operating system support and the SPD number of a
product.

VAX Software Source Book Volume 1, Application Software; Volume 2, System
Software

The Digital Dictionary provides generic and Digital-specific definitions for the
technical terminology found in this handbook set.

= VAX/VMS Internals and Data Structures. This book describes indepth the VMS
operating system’s executive and a number of its related subsystems.

User and reference manuals can also be obtained for each of the products
described in this handbook set. You can find out how to order these manuals
for the software products running of your specific VAX processor in the Per-
ipherals and Supplies Group’s Documentation Products Directory.

Introduction to VAX/VMS Software

Computing resources, hardware and software, make it possible for an organiza-
tion to effectively deal with a multiplicity of both day-to-day and long-range
operating needs. Typically, these include data processing, program develop-
ment, and information management requirements.

A grouping of computer resources creates a computing environment. To be
effective, a computing environment must be made up of resources that are
compatible with each other and designed to work together toward a common
goal. Digital’s VAX/VMS software products are designed to create such a com-
puting environment — the VAX/VMS Productivity Environment.

The VAX/VMS Productivity Environment

THE VMS PRODUCTIVITY ENVIRONMENT’S FOUR SUBSETS
Digital’s VAX/VMS productivity environment is made up of many different
software products. Even though all these products have been designed to oper-
ate as a single integrated environment, they are can be organized, by function,
into four logical groups. Each group is a subset of the overall VAX/VMS produc-
tivity environment and provides VAX/VMS users with specific capabilities.

These four groups of software products are the

1. VMS operating system group (including services and utilities).
2. VAX program development group.

3. VAX information management group.

4. Related VAX software group.

Group 1—The VMS operating VAX LANGUAGES
system group (Services and VAX TOOLS
utilities included)

} Group 2—The program
development group

Group 4—

The related
VAX software
group

Group 3—
The information
management group

= THE VMS OPERATING SYSTEM GROUP (1)

When you buy a VAX/VMS system, in addition to the various hardware compo-
nents, you receive a standard set of software programs essential for the basic
operation of your system. This group of software is the VMS Operating System,
a number of services provided by the operating system, and many utility
programs used for system management and program development. This group
serves as the foundation on which all VAX optional software products (those
products in groups 2-4) and applications programs generated from those
products operate. ‘

VMS OPERATING SYSTEM

— VMS OPERATING
VMS SERVICES = CAPABILITY

VMS UTILITIES

The VMS Operating System, Services, and Utilities

The VMS Operating System gives you the flexibility and control you need to
successfully distribute computing resources throughout your organization’s
computing environment. A few of the many unique features built into the VMS
operating system give you the ability to cluster, network, and secure resources
within your computing environment.

VMS setvices include the Digital Command Language, VAX Record Manage-
ment Services, the VAX Runtime Library, and VMS System Services.

VMS Utilities are grouped into program development and system management
utilities.

The MicroVMS operating system supports Digital’s MicroVAX processors and is
a full function, special packaging of the VMS operating system.

For more information on the VMS operating system group see the VMS System

Software Handbook.

Digital also offers you many optional software products that can be purchased
in addition to basic system software. These optional products have been
designed to work in conjunction with VMS system software and perform a spe-
cific function. Software described in the next three groups are all optional
products.

« THE VAX PROGRAM DEVELOPMENT GROUP (2)

This group of optional software products is made up of a rich set of VAX pro-
gramming languages and VAX program development productivity tools. With
this group of products (and many of the services and program development
utilities provided with the VMS operating system), you can build software that
runs on the full spectrum of VAX processors — MicroVAX/VAX Station to VAX
8600 VAXcluster systems.

VAXIVMS
PROGRAM
DEVELOPMENT
CAPABILITIES

THE VMS OPERATING VAX LANGUAGES VAX TOOLS
SYSTEM AND PROGRAM o
DEVELOPMENT
UTILITIES

The VAX/VMS Program Development Products
Included in the VMS program development software group are

= Over a dozen high-level (sixteen in all), industry-standard programming lan-
guages that are callable from each other — including VAX™ Ada$, VAX APL,
VAX BASIC, VAX BLISS, VAX C, VAX.COBOL, VAX DIBOL, VAX FORTRAN,
VAX PASCAL, VAX PL/I, and VAX RPG II.

= Numerous program development productivity tools that simplify many of the
tedious and time-consuming chores involved in large-scale and labor-inten-
- sive, small-scale software development.

= Tools that aid in building software systems efficiently and reliably.

THE VAX INFORMATION MANAGEMENT SOFTWARE GROUP (3)
Digital’s VAX Information Management Software group offers you a variety of
integrated software products to meet the diverse information management
needs of your organization. Products in this group run on the VMS operating
system and can be used with products in groups 1,2, and 4. For example, the
Common Data Dictionary (CDD) is often used extensively with products from
the Program Development Group (2) — VAX languages and tools — when
programmers build application programs.

*Ada is a registered trademark of the U.S. Department of Defense.

VAX INFORMATION

+ — MANAGEMENT
CAPABILITIES
VMS OPERATING VAX INFORMATION
SYSTEM MANAGEMENT
PRODUCTS

The VAX Information Management Products
VAX Information Management products are used for

= Creating a variety of database management systems.

= Application development and control.

= Report generating.

= Easy-to-use querying.

A description of the VAX information management products and its associated
software products can be found in The VAX Information Management

Handbook.

THE RELATED VAX SOFTWARE GROUP (4)

Related VAX software products enhance the capabilities found in the three
groups of software products just discussed. These products are used to move
and develop software products between DEC systems and make it possible for
VAX systems to communicate with other DEC systems in a data communications
network.

VAX DATA
COMMUNICATION
+ @ @ + — _ AND PROGRAM
CROSS-DEVELOPMENT
~ CAPABILITIES
VMS OPERATING - » VAXELN DIGITAL NETWORK

SYSTEM o VAX-11 RSX ARCHITECTURE
’ * MICROPOWER/PASCAL-VMS

Chapter 1 = The VAX/VMS Software Development
Environment

Introduction

To help you better manage your software assets, Digital offers you the VAX/VMS
Software Development Environment. This highly integrated environment com-
prises software products designed to a common specification and embodying a
common set of characteristics. These products run on a single operating system
(VMS) and give you and other programmers a consistent environment for the
design, implementation, testing, and support of software programs. -

These products help you

= Organize and manage your software projects more economically.
= Build more reliable code.

= Code and debug programs easier.

* Understand your product and its performance.

= Manage changes to code and build your system efficiently.

. Contrpl the evolution of your programming environment.

The integration of the VMS Operating System, VAX Languages and Tools, and
Program Development Utilities is made possible by

= A common architecture to which all these products conform.

= Common runtime capabilities available to all applications that are created
and run on the VMS operating system.

1-2 » The VAX/VMS Software Development Environment

The VAX Common Language Environment

When we first designed the VAX/VMS Software Development Environment, it
was necessary to create standards to control the design and implementation of
products that would exist within that environment. These standards ensures all
products, their future releases, and any new VAX product offerings are compati-
ble with the existing products in the environment. This common design goal is
the VAX Common Language Environment.

The VAX Calling Standard, the Guide to Modular Procedures, and the VAX
Condition and Exception Handling Standard are the basis of the VAX Common
Language Environment. The calling standard defines the mechanisms for pass-
ing arguments between program modules. The Guide to Modular Procedures
provides a consistent set of software programming pragmatics, and the Condi-
tion and Exception Handling Standard defines the mechanisms that ensure
consistency in error and exception handling routines, regardless of the mix of
programming languages in use. For example, in no other program development
system on the market today, can you write a program module in Basic that calls
another module in written FORTRAN and then calls a math routine written in
Pascal — all in one Ada program.

As an extension of the VAX Common Language Environment, our VAX tools
have a number of common characteristics.

 They are all based on the VMS Operating System and the VAX Common Lan-
guage Environment.

* They can be used with many VAX languages — either they are language neu-
tral or they provide capabilities that allow you to tailor them to support the
various languages they are aimed at.

* They can be used with many different designs or methodologies.

* They have been designed to help you in portions of the software development
task that consume large amounts of your time.

» The tools are designed to be consistent in terms of user input and response to
that input. They use the same standard command language, prompts, and
error messages.

* The tools are based on a compatible set of data formats — the VAX data types,
descriptors, and calling standard.

* Many of these tools can be extended and tailored to your unique require-
ments. This helps you adapt our set of products to your local needs, whether
it is customs and standards or defaults that are particularly appropriate to
your shop.

1-3

VMS Runtime Capabilities
A few important runtime capabilities of the VMS operating system are

= A set of routines that manage record and file I/O for all languages the VAX
Record Management Services (RMS).

= A common mechanism for handling exceptions. The VAX Runtime Library
(RTL) provides a common set of procedures for exception handling and com-
mon-resource handling that enable languages to work together. VAX condi-
tion handling provides a low-level, powerful mechanism for dealing with
exceptions in various languages.

= VMS system services. The VMS operating system has many services that can
be used by an application program at runtime. Process control, memory man-
agement, and system security services, for example, are areas in which the
VMS operating system can provide special operating capabilities to applica-
tion programs at runtime.

The VMS Runtime library. A set of language-dependent procedures ensures
correct operation of complex language features, and helps enforce consistent
operations on data across the languages. A set of language-independent rou-
tines establishes a common runtime capability for user programs. The run-
time library has many math, screen-management, and general-purpose
procedures.

Services and Products

The software facilities found in the VAX/VMS software development environ-
ment are divided into six basic categories.

= The VMS Operating System.
= VMS Services.
= VMS Program Development Utilities.

= VAX Languages.
= VAX Software Tools.
= Related VAX Program Development Products.

Each category is further divided into specific services or products as illustrated
in Figure 1-1.

1-4 w The VAX/VMS Software Development Environment

VMS CORE SERVICES
1. The VMS Operating System

2..VMS Services
— The Digital Command Language (DCL)
— The VMS Runtime Library (RTL)
— VMS system services -
— The VAX Record Management Services
(RMS)

5

3. The VMS Program Development Utilities
— The VAX/VMS Symbolic Debugger
- Sort/Merge
— The VAX Linker
— The VAX Librarian
— VAXTPU text processing utility -
— DSR text-formatting utility
= Mail

VAX OPTIONAL PROGRAM
DEVELOPMENT PRODUCTS

4. VAX Languages
— VAX Ada
— VAX Apl
— VAX BASIC
— VAX BLISS
— VAX C
— VAX COBOL
— VAX CORAL
— VAX DIBOL
— VAX DSM
6.1 — VAX FORTRAN
— VAX LISP
— VAX PASCAL
— VAX PL/I
6.7 — VAX RPG I
p — Other VAX Languages

DEBUGGER

66165| 64 |63]82

5. VAX Software Productivity Tools
— VAX DEC/Code Management System
(CMS)
— VAX DEC/Module Management System
(MMS) :
— VAX Language-Sensitive Editor (LSE)
— VAX Performance and Coverage
Analyzer (PCA)
- — VAX DEC/Shell
— VAX DEC/Test Manager :
— VAX Graphical Kernel System (GKS)

6. Related Program Development Products

6.1 VAX CDD 6.7 VAX FMS

6.2 VAX DBMS 6.8 DECnet Communications
6.3 VAX Datatrieve Products

6.4 VAX Rdb/VMS (ELN) 6.9 VAXELN

6.5 VAX ACMS 6.10 VAX-11 RSX

6.6 VAX TDMS 6.11 MicroPower/Pascal-VMS

Figure 1-1 = VMS Services and Products used for Program Development

1-5

The VMS Operating System

VMS is a general-purpose operating system widely used for the simultaneous
execution of timesharing, batch, or realtime application programs by many
users.

Applications can be developed and run across the entire line of VAX processors,
within limits of existing program size and available memory. User-mode appli-
cations developed with VMS will run on MicroVMS without modification.

The VMS Operating System gives you extensive online help. You can receive
help by using the HELP command. The HELP facility provides you with infor-
mation on the syntax used to invoke the languages, services, and utilities sup-
ported by the system. In many instances, HELP text also includes examples that
use those commands. Besides being able to access HELP at the operating system
level, many of the software products that run on VMS have their own HELP
facilities that can be accessed while using those software products. For
example, HELP can be requested from within VMS editors, the VMS Mail Util-
ity, and some language development environments.

THE VMS OPERATING SYSTEM

Memory Management Facilities

¢ Physical Memory Resource Allocation Process and

- Pager Time

- Swapper Memory
* Process Management I/O Subsystem
* Image

Data Structures
e Page Tables
® |/O Database
e Scheduler Data

Structures

1/0 Subsystem Page Tables
* Device Drivers ¢ |/O Database
* |/O Support Routines e Scheduler

Process and Time Management VMS
- Scheduler Help
. Process Control Facility

VMS Help Facility

Figure 1-2 » The VMS Operating System

For more information on the VMS operating system, see the VMS System Soft-
ware Handbook and VAX/VMS Internals and Data Structures™.

*Kenah and Bates, 1984, The Digital Press, Order no. EY-00014-DP

1-6 = The VAX/VMS Software Development Environment

The VMS Setvices :
Complementing the operating system are four layers of services essential for
basic system operation and program development. These are called the VMS
services and include

» The Digital Command Language (DCL).

= The VAX Runtime Library (RTL).

» The VAX Record Management Services (RMS).
= The VMS System Services. 4

VMS SERVICES
* The Digital Command Language (DCL) -
* VMS Runtime Library (RTL) .

* VMS Record Management
Services (RMS)
* System Services

Figure 1-3 » VMS Services

THE DIGITAL COMMAND LANGUAGE

The Digital Command Language (DCL) is the language through which you
communicate with the VMS operating system. DCL contains an extensive set of
commands that allows you to

= Develop and execute programs.
= Work with files and directories of files.
» Obtain information about your VAX/VMS system.

VMS RECORD MANAGEMENT SERVICES (RMS)

VAX Record Management Services (RMS) are used by programmers to handle I/
O within a program. RMS routines are system routines that provide an efficient
and flexible means of handling files and their data, and allow sharing of files

across languages.

1-7

RMS is the default I/O service for all VAX languages. VAX languages in the VAX
Common Language Environment use identical representations for many data
types. Therefore, files associated with a program written in one VAX language
can be read and used by another program, even if it is written in a different
language. VAX RMS can also be used with Digital’s DECnet-VAX software to
manipulate files across many VAX systems. (For more on using RMS with Digital
Network Architecture products, see the VMS System Software Handbook,
Chapter 6.)

The RMS Utilities and a File Definitions Language (FDL) complement RMS
procedures by providing additional capabilities for creating and maintaining
RMS files.

For more information on VAX RMS see Chapter 4 of this handbook.

THE VMS RUNTIME LIBRARY (RTL) ‘

The VMS Runtime Library’s set of language-independent procedures reduces
the time it takes you to design and implement an application program. These
procedures can be called from any language in the VAX Common Language
Environment.

Because application programs can call VMS general-purpose routines (data
management, for example), you can skip designing many of those elements and
concentrate on the central application.

The Runtime Library provides runtime support for VAX high-level languages.
All procedures in the Runtime Library follow all standard call and condition
handling conventions.

The common Runtime Library provides language-support procedures general
string manipulation, I/O and /O conversions, terminal-independent screen
handling, and many more procedures.

For more information on the VAX RTL, see Chapter 4 of this handbook.

VMS Program Development Utilities
A few of the many VMS program development utilities include

= VAXTPU (text editor)

= EDT (text editor)

= DSR (text formatter)

= VAX/VMS Symbolic Debugger
= VMS Linker

= VMS Sort/Merge

= Other program development utilities

1-8 = The VAX/VMS Software Development Environment

* VAXTPU (Text Processing Utility)
o EDT Text Editor

* DSR Text-Formatting Utility

* VAX Debugger -
e Linker

* Sort/Merge

e Librarian

® Other Utilities

ey, YMS PROGRAM

o
LOPMENT yTutE

Figure 1-4 » VMS Program Development Utilities

VAXTPU (TEXT PROCESSING UTILITY)

VAXTPU is a high-performance programmable text processing ut)hty VAXTPU
is a tool designed to aid application and system programmers in the develop-
ment of text processing interfaces. The utility includes a compiler, an inter-
preter, a high-level procedural language, and two editing interfaces written in
VAXTPU. One interface emulates the EDT text editor while the other was built
based on interactive human factors testing.

You can tailor one of the existing VAXTPU editing interface to suit your editing
style, or you can write your own editing interface with VAXTPU. You can use
VAXTPU to design an intelligent editor for a specific environment:

For more information on VAXTPU, see Chapter 5 of this handbook.

THE EDT TEXT EDITOR
EDT is Digital’s easy-to-learn editor ideally suited for the novice or general-pur-
pose user. In line mode, you can issue commands to EDT to change a single line
of text or many lines. In keypad mode, EDT is a character-oriented editor and
enables advanced users to edit any form of ASCII files — program source files,
- manusctipts, or correspondence. Because EDT is keypad oriented, it does not
require an entire line of text to be replaced each time a character is changed.
EDT also has an extensive HELP facility, which is available online during an
editing session.

For more information on the EDT Text Editor, see Chaptef 5 of this
handbook.

1-9

* THE DSR TEXT-FORMATTING UTILITY
Digital’s Standard Runoff (DSR) text-formatting utility extends the basic func-
tions of VMS'’s text editors into a sophisticated text processing system, ideal for
creating and maintaining the extensive documentation necessary to suppott any
program development effort. With DSR’s powerful command set, you can cre-
ate documentation ranging from a simple form letter to a multichaptered
manual.

For more information on the DSR Text-formatting utility, see Chapter 5 of this
handbook.

= THE VAX SYMBOLIC DEBUGGER UTILITY
The VAX/VMS Symbolic Debugger utility is a powerful and flexible tool that
aids you in locating errors in programs.

The DEBUGGER

= Is interactive. You can execute debugger commands from your terminal and
see their effects immediately.

= Is symbolic. You can refer to program locations by the symbols you used for
them in your program.

= Supports many languages. If your application is written in more than one lan-
guage, you can change from one language to another in the course of a debug-
ging session.

® Permits a variety of data forms and types for entry and display.

= Allows you to select and display your program’s language statements.

* Has a screen mode that provides multiple windows for screen-oriented
debugging.

= Has a debugger-defined keypad key definitions for many types of terminal’s
numeric keypad.

= Provides online help.

1-10 = The VAX/VMS Software Development Environment

See Chapter 5 of this handbook for more information on the VAX/VMS Sym-
bolic Debugger. :

Other VMS utilities used for program development include
= The Linker Utility (LINK).

= The SORT/MERGE Utilities.

» The LIBRARIAN Utility.

* The Command Definition Utility (CDU).

» The MESSAGE Utiliy.

= The DIFFERENCES Utility.

= Other VMS program development utilities.

See Chapter 5 of this handbook for more information on each of these and
other VMS utilities. For a discussion of the VMS system management utilities,
see the VMS System Software Handbook.

Optional VAX Program Development Products

VAX LANGUAGES

At the center of the VAX/VMS software development environment is the family
of VAX programming languages. Applications and system programmers have a
diversified range of higher-level programming languages at their disposal. In
addition to the assembly-level language, VAX MACRO, VAX programming lan-
guages range from Ada to RPG II. For an indepth coverage of each of the lan-
guages introduced below, turn to Chapter 3 of this handbook.

VAX vy,

AX
VAX VAX
vax pascAL FORTRAN piBOL (qpe,

OTHER VAX LANGUAGES

OPS 5 C-ELN
LISP CORAL
DSM

PASCAL-ELN

Figure 1-5 = VAX High-Level Programming Languages

VAX Ada - Ada is a modern, higher-order programming language designed
as a result of a competition sponsored by the United States Department of
Defense. Although Ada has now become the single programming language
for all mission-critical Department of Defense software, it is also well suited
to many civilian applications, such as CAD/CAM, or process control. Ada is
ideal for large applications that must be developed and maintained by many
programmers.

VAX APL - VAX APL (A Programming Language) is a compact and versatile
programming language that runs on the VAX series of computers. This language
is especially suited to handle numeric and character data organized as lists and
tables. It is used extensively in such areas as the manipulating of data, the
designing of systems, and the computing of mathematical and scientific
solutions.

1-12 = The VAX/VMS Software Development Environment

VAX BASIC - The VAX BASIC product gives you the benefits of a highly
interactive programming environment and a high-performance develop-
ment language that is fully integrated with the VAX/VMS Software Develop-
ment Environment.

The VAX BASIC language provides a structured language, powerful mathemati-
cal and string handling facilities, support for symbolic variable names/debug-
ging, and full RMS indexed, sequential, and relative I/O operations.

VAX BASIC can be used as if it were either an interpreter or a compiler. A fast
RUN command and support for direct execution of unnumbered statements
(immediate mode) gives you the feel of an interpreter.

VAX Bliss-32 - VAX Bliss-32 is a high-level systems implementation language.
The Bliss-32 language supports development of modular software according to
structured programming concepts by providing an advanced set of language
features. It provides access to most of the hardware features of the VAX systems
to facilitate programming of time-critical and hardware-dependent
applications.

VAX C - VAX C fully supports many of the language features of C, as described
in The C Programming Language*. VAX C provides program flow control con-
structs for logical and efficient program structuring, and a rich assortment of
operators and common run-time routines (only those UNIX-specific routines -
that cannot be reasonably emulated under VAX/VMS are omitted.) VAX C even
includes language extensions developed since the Kernighan and Ritchie book
was published, including the structure assignment feature.

VAX COBOL - VAX COBOL is a high-performance implementation of COBOL.
It is based on American National Standard Programming Language COBOL,
X3.231974, the industry-wide accepted standard for COBOL. Most features
planned for the next COBOL standard, based on the specifications in the Draft
Proposed Revised X3.23 American National Standard Programmmg Language
COBOL, are also included.

VAX COBOL also supports an embedded Data Manipulation Language (DML)
interface to VAX DBMS, Digital’s CODASYL compliant Database Management
System. Also, it allows access to common recotd definitions stored in the VAX
Common Data Dictionary. VAX COBOL’s support of features in the next ANSI
COBOL standard, of the VAX Information Architecture, and of other Digital-
defined extensions to COBOL makes poss1ble a wider range of COBOL applica-
tions on the VAX.

*by B. Kernighan and D. Ritchie

1-13

VAX DIBOL - VAX DIBOL (Digital Interactive Business Oriented Language)
is a high-level, procedural language designed specifically for interactive data
processing in the business environment. It takes full advantage of the VMS
system’s facilities.

VAX DIBOL is based on the DIBOL Standards Organization’s DIBOL-83 defini-
tion of the language. VAX DIBOL is highly compatible with DIBOL-83 imple-
mentation on other operating systems.

VAX DIBOL consists of a DIBOL compiler, a sharable runtime library, a program
debugging aid called the DIBOL Debugging Technique (DDT), and a set of util-
ity programs that facilitate data handling, data storing, and interprogram
communication.

VAX DSM - VAX DSM (Digital Standard MUMPS) is a user data management
and language processing system. The DSM language is a high-level, interpretive
language well suited for the processing of variable-length string data. It con-
forms to the American National Standard MUMPS specification X11.1-1977.

VAX FORTRAN - VAX FORTRAN is a high performance, industry-leading
implementation of the FORTRAN language. VAX FORTRAN is based on the
American National Standard FORTRAN X3.9-1978 (commonly called FOR-
TRAN-77). The VAX FORTRAN compiler supports this standard at the full-lan-
guage level. Also, it provides full support for many industry-standard
FORTRAN features based on FORTRAN-66, the previous ANSI standard. The
qualifier /NOF77 will select the FORTRAN-66 behavior where the two stand-
ards conflict.

VAX LISP - For the past 20 years, the LISP programming language has been
associated with artificial intelligence (AI) research. The LISP (“LIS™t
“P’rocessing) programming language is based on a paper, published in 1958 by
John McCarthy, dealing with non-numeric computation. It differs from the
majority of higher-level programming languages in that LISP programs do not
use numeric computation as a basis for program execution (although it does
support facilities for numeric computation).

LISP is particularly useful for the manipulation of symbolic data. Symbols can
be thought of as words; lists of symbols are then equivalent to sentences or
statements. Because LISP’s symbolic processing and knowledge representation
capabilities can be used to represent human thought patterns and associations,
the LISP programming language has become an essential tool for researchers as
they attempt to make computers simulate human behavior and thought.

1-14 = The VAX/VMS Software Development Environment

VAX Puscal - VAX Pascal is a multipass, optimizing compiler that is a power-
ful superset of the Pascal language as defined by Jensen and Wirth in Pascal
User Manual and Report (1974). VAX Pascal accepts programs that are com-
patible with either the ANSI/IEEE 770X3.97 standard or the ISO standard
(DIS 7185).

Pascal’s block structured nature, flexible data types and English-like statements
result in significant ease-of-use benefits. These benefits include ease of program
generation and ease of reading, modifying, and maintaining programs.

VAX PL/I - VAX PL/T is an extended implementation of the General Purpose
Subset (X3.74-1981, “Subset G”) of ANSI PL/I, X3.53 -1976. PL/I was designed
to be useful in scientific, commercial, and system programming, especially on
small and medium-sized computer systems. The goals of the design of Subset G
were to include features that are easy to learn, easily portable from one com-
puter system to another, to exclude seldom used features that increase runtime
complexity.

VAX RPG II - RPG (Report Program Generator) is a powerful, business-ori-
ented language specifically oriented to generating a wide variety of simple and
complex business reports. RPG is a partially nonprocedural language, and is
therefore not suited to all business applications. However, where it’s
appropriate, RPG can significantly increase your productivity and greatly
improve turn-around time for generation and file maintenance application
development cycles.

RPG II is an enhanced version of RPG, which was developed by International
Business Machines Corporation in the early 1960s. RPG II incorporates a wide
variety of additional features not present in the original RPG, and provides extra
advantages in simplicity, ease-of-use, and power. RPG II has become a popular
and widely used business application language. It is an important language for
many small business users.

VAX PRODUCTIVITY TOOLS

VAX productivity tools help you write, compile, link, and maintain systems and
applications designs by addressing multiple phases of the software develop-
ment life cycle. For more on VAX Program Development Productivity Tools,
turn to Chapter 2 of this handbook.

VAX PROGRAM DEVELOPMENT
PRODUCTIVITY TOOLS

VAX DEC/Shell

/ 1. Interface to VAX/VMS
Programming Tools Symbolic Debugger
(See Chapter 5)

Project Management
Tools

PROGRAMMING TOOLS

1. VAX/VMS Symbolic Debugger
2. Language-Sensitive Editor
3. Performance and Coverage Analyzer (PCA)

PROJECT MANAGEMENT TOOLS

4. DEC/Code Management System (CMS)
5. DEC/Module Management System (MMS)
6. DEC/Test Manager

GRAPHICS TOOLS (For device-independent
graphics application programs)

7. GKS
8. DECOR

Figure 1-6 = VAX Program Development Productivity Tools

1-16 = The VAX/VMS Software Development Environment

VAX DEC/CMS - VAX DEC/Code Management System (CMS) is a program
librarian for the development and evolution of application software in the
VAX/VMS Software Development Environment. It comprises a set of com-
mands that enables software developers to cooperatively manage the files of
ongoing projects. A few of the many operations CMS performs are

= Storing ASCII files in a project library.

» Maintaining a history of all library modifications.

= Managing concurrent modifications.

= Identifying and “freezing” software for release or milestones.

VAX DEC/MMS - Digital’s VAX Module Management System (MMS) is
designed to manage “system builds” for developers during day-to-day develop-
ment, implementation, and maintenance of a software system.

In the development of a large software system, many of the dependent modules,
of which the system is made, are typically in various states of completion. VAX
DEC/MMS determines which modules need to be recompiled, and ensures the
software system is recompiled and linked withall the latest changes. VAX DEC/
MMS can also interact with VAX DEC/CMS and extract files from CMS libraries
when building a software system.

VAX DEC/Shell - VAX DEC/Shell is an optional software product that allow
programmers, familiar with UNIX V7, to operate in the VAX/VMS Software
Development Environment with a command language and utilities based on

the Bourne Shell.

When using the DEC/Shell, you are not just limited to its commands and utili-
ties. All the power and features of the Digital command language (DCL) are also
available. For example, you can use DEC/Shell to write a command procedure
with “Shell” and DCL commands. One important feature of the DEC/Shell that
allows you to mix commands in pipelines.

The three major components of VAX DEC/Shell are the command line inter-
preter, utilities, and the Shell script language.

VAX DEC/Test Manager - Testing is a necessary and costly part of software
development. VAX DEC/Test Manager manages the testing process to help you
produce higher-quality products with less maintenance.

VAX DEC/Test Manager is an automated regression testing system. That is, it
automatically executes user-defined tests on existing software products and
compares the test output against the product’s benchmarks to determine if the
software is performing as expected. It gives you the flexibility to organize and
select tests for execution, run those tests, and in verifying and review the results.

1-17

VAX DEC/Test Manager makes software maintenance more manageable and
helps you during the implementation of an application program. You can insert
specific tests into a group and to then call those tests (or those of other program-
mers) independently.

VAX Language-Sensitive Editor - The VAX Language-Sensitive Editor is a
multilanguage, multiwindow, screen-oriented editor designed specifically
for program development. It is “language sensitive” in that it provides you
with information on all the VAX languages it supports. It gives you full access
to detailed templates of all of the major constructs in each of these
languages.

The VAX Language-Sensitive Editor works with many VAX languages and the
VAX Debugger and VAX Performance and Coverage Analyzer. Within a single
editing session you can write code, edit, compile, and review and correct com-
pilation etrors. You can customize and extend the editor to meet your unique
programming needs.

VAX Rerformance and Coverage Analyzer - The VAX Performance and Coverage
Analyzer is a program development tool for measuring and tuning the perform-
ance of user-mode applications programs. It also measures test coverage, show-
ing that routines, lines, or even individual code paths in a program are executed
by a given suite of test input.

The VAX Performance and Coverage Analyzer consists of two parts: A Collec-
tor that collects performance or coverage data from a running program, and the
Analyzer that later processes the data to produce various reports. The Collector
can collect program counter sampling data, page fault data, system service
counts, I/O usage data, exact execution counts at specified locations, and test
coverage data. The VAX Performance and Coverage Analyzer is fully symbolic
and can be used with all languages that have VAX Debugger Support.

VAX GKS - VAX GKS is a productivity tool for developing device-independent
graphics applications. VAX GKS is ideally suited for writing applications to be
used in automotive, CAD/CAM, chemical, educational, environmental, and sci-
entific areas.

With VAX GKS, you can create one application program for many different
graphics I/O devices. No longer do you have to recode applications every time a
new device is incorporated into your computing environment.

VAX GKS is based on the ANSI and ISO graphics standards. VAX GKS, Level Ob,
provides basic output and input capabilities.

1-18 = The VAX/VMS Software Development Environment

VAX DECOR - VAX DECOR is a graphics subroutine package that provides
an interface between an application program and graphics devices. The
interface is device-independent and supports user-developed device han-
dlers, as well as those supplied with VAX DECOR.

VAX DECOR is Digital’s implementation of the SIGGRAPH/ACM Graphics
Standards Planning Committee’s CORE proposal. It provides a device-indepen-
dent interface between an application program and supported graphic devices.

RELATED VAX PROGRAM DEVELOPMENT PRODUCTS
These products include VAX information management capabilities, which are
needed for the implementation of database applications, for example.

* VAX Common Data Dictionary (CDD)

* VAX Database Management System (DBMS)

= VAX Relational Database Management System (Rdb/VMS)

= VAX Datatrieve

* The VAX Terminal Data Management System (TDMS)

= The VAX Forms Management System (FMS)

= The VAX Application Control & Management System (ACMS)

Products used to develop applications for other target systems include
= VAXELN

= VAX-11RSX

= MicroPower/Pascal-VMS

1-19

VAX CDD

VAX DBMS

VAX Datatrieve

VAX Rdb/VMS (ELN)

VAX ACMS

VAX TDMS

VAX FMS

DECnet Communication Products

VAXELN 1
. VAX-11 RSX
. MicroPower/Pascal-VMS

23PN AN

el

Figure 1-7 = Related Program Development Products

VAX ACMS

VAX ACMS, the VAX Application Control and Management System, was
designed to reduce the lifecycle costs involved in designing, developing, main-
taining and controlling transaction processing and other complex VAX/VMS
applications

Unlike traditional application development tools, ACMS allows for the replace-
ment of large amounts of application code with high level definitions stored in
the VAX Common Data Dictionary. With the use of such definitions, users now
have available a fourth generation-like language facility that can significantly
reduce the development and maintenance lifecycle costs of large, complex soft-
ware projects.

For more on VAX ACMS, see the VAX Information Management Handbook.

1-20 = The VAX/VMS Software Development Environment

VAX COMMON DATA DICTIONARY (CDD) - The CDD is a central loca-
tion for the storage of data definitions used by many VMS software products.
The CDD is required when using VAX DATATRIEVE, VAX Rdb/VMS, VAX
TDMS, and the VAX ACMS product set. The CDD can be used in conjunction
with most VAX programming languages, which access record definitions in
the CDD at compile time.

Using the CDD you can

* Create sharable definitions with a data definition language (CDDL) that can
be understood by many VAX programming language compilers and several
other VAX Information Architecture Products.

* Modify data definitions in the dictionary without editing the programs and
procedures using the definitions, as long as you don’t delete fields or change
their names.

= Specify which users have access to individual definitions, using thirteen sepa-
rate access privileges and four possible user identification criteria.

= Copy definitions at compile time into a program written in one of the VAX
programming languages.

= Document the use of a particular definition by making entries into the defini-
tions” history list.

= Maintain an area of the dictionary for the storage of data definitions for privi-
leged use. B o

For more on the CDD, see the VAX Information Management Handbook.

VAX DATABASE MANAGEMENT SYSTEM (DBMS) - VAX DBMS is
Digital’s CODASYL-compliant database management system. VAX DBMS
provides sophisticated capabilities for creating, accessing, and maintaining
large databases. The major advantages of VAX DBMS are its efficiency and its
ability to control the sharing of the same data by a large number of users, all
using the system at the same time.

1-21

VAX DBMS is also compatible with other VMS software products. You can
access a VAX DBMS database from any application program written in a high-
level language that conforms to the VMS calling standard. This is accomplished
through an interface to VAX DBMS, called Database Quety (DBQ).

With VAX DBMS, you can

= Create and maintain multiple databases.

= Separate data definitions from the applications programs that use them.

= Centralize all data definitions from the applications programs that use them.

* Define useful relationships between records.

= Separate data definitions from data storage.

= Tailor user views of data.

= Centralize the administration of data.

= Maintain data integrity and security.

= Allow concurrent access to databases.

For more on the DBMS, see the VAX Information Management Handbook.

VAX RELATIONAL DATABASE MANAGEMENT SYSTEM (VAX Rdb/
VMS) - VAX Rdb/VMS provides facilities for creating, accessing, and main-
taining relational databases. In a relational database, data is stored in the
form of two-dimensional tables, instead of in the form of complex hierar-
chies or networks. VAX Rdb/VMS provides all the advantages of a full-feature
database management system, including data security and optimized data
access. At the same time, it provides easy -to-use features inherent in a rela-
tional-style database.

VAX Rdb/VMS is easy to use and understand. With it, you maintain and create a
database without the services of a professional database administrator.

1-22 = The VAX/VMS Software Development Environment

Two VAX Rdb products are currently available — VAX Rdb/VMS and VAX Rdb/
ELN. VAX Rdb/VMS runs on the VMS operating system; VAX Rdb/ELN, on the
VAXELN system.

With VAX Rdb/VMS you can

* Create and maintain relational databases.

= Store and retrieve data.

= Separate data definitions from the application programs that use them.

= Store all data definitions either in the database files or in the VAX Common
Data Dictionary (CDD), for common use and maintenance.

= Establish dynamic relationships between records.

= Tailor user views of data.

= Centralize the administration of data.

= Maintain data integrity and security.

= Use a database concurrently with other users.

= Ensure against data inconsistency during concutrent updating.

= Recover from errors and/or inadvertent terminations.

For more on the RAb/VMS, see the VAX Information Management Handbookv.

1-23

VAX DATATRIEVE - VAX DATATRIEVE is an easy-to-use tool for managing
and manipulating data either interactively at a terminal or from an applica-
tions program. If you know as few as ten simple, English-like commands and
statements, you can interactively retrieve, store, modify, and sort data, and
report on it in meaningful ways. With VAX DATATRIEVE, you can

= Create data definitions that can be used to store and retrieve data uniformly,
either interactively or from application programs

= Store or modify data in RMS files, VAX DBMS databases, or VAX Rdb/VMS
databases.

s Retrieve data from RMS files, VAX DBMS databases, or VAX Rdb/VMS
databases and display the data on a terminal, write it to a data file, or print it.

* Produce formatted reports using specified selections of data display or data
collection.

» Create pie charts, bar and line graphs, and plots based on specified selections
of data.

= Use forms to format the terminal screen for data display or data collecting.

= Use a text editor to cotrect syntax etrors and typing mistakes.

* Access data files located on remote systems.

= Call VAX DATATRIEVE functions (including data access) from a program
written in a high- level VAX programming language such as COBOL, FOR-
TRAN, or PL/I.

For more on VAX DATATRIEVE, see the VAX Information Management
Handbook.

VAX TDMS - Digital’s VAX Terminal Data Management System (TDMS) is a
productivity tool designed to reduce the high life cycle costs of developing
and maintaining forms-intensive terminal applications on VAX/VMS
systems.

TDMS offers you a wide range of features that make it easy to develop applica-
tions to display and collect information. TDMS also eliminates many of the bur-
dens associated with conventional forms-based application design and
implementation. ;

TDMS provides an interface for defining the data exchange between screen(s)
and program(s). It replaces the often cumbersome coding of program/screen
interaction with definitions, which are stored independently in the VAX Com-
mon Data Dictionary.

For more on VAX TDMS, see the VAX Information Management Handbook.

1-24 = The VAX/VMS Software Development Environment

VAX FMS - The VAX Forms Management System (FMS) is designed to aid in
the development of application programs that use video forms. FMS man-
ages these forms for application programs that use Digital’s family of VT100
and VT200 compatible terminals. Forms defined using VAX FMS provides
you with the following features of those terminals.

* Individual character attributes of reverse video, bold, blinking, and
underline. :

= Line attributes of double-width, double-height, and scrolling.

= Screenwide attributes such as 80- or 132-column lines and reverse video.

= Alternate character sets mcludmg the VT100 spec1al graphics character set for
line drawing.

For more on VAX FMS, see the VAX Information Management Handbook.

VAXELN - The VAXELN Toolkit offers you a unique alternative to the complex
productivity problem of realtime application development. The VAXELN Tool-

kit lets you program in an extended version of Pascal or C, with all the hlgh

level, easy programming features found in both the VAX languages.

The VAXELN toolkit is an optional product that supports the development of
standalone, statically defined software systems (VAXELN systems) that run on
the entire range of VAX processors, including the MicroVAX
supermicrocomputer. VAXELN systems are developed under VMS, then run on
the target system as a standalone system, without VMS present.

Typical applications include industrial automation, Ethernet server networks,
and networks in which individual processors have dedicated functions and are
not needed simultaneously for general computing, for which a general operat-
ing system, like VMS, is not necessary.

For more information on VAXELN, see Chepter 6 of this handbook

1.25

VAX-11 RSX - VAX-11 RSX is an emulator for RSX-11 operating system family
and executes on all VMS and MicroVMS systems. It runs in compatibility mode
on processors that support a PDP-11 instruction set subset in hardware or
microcode and it also runs on certain processors without this support by pro-
viding its own software emulation of the same PDP-11 instruction set subset. It
provides special capabilities that enable you to develop programs for execution
in any of the following environments:

= VAX/VMS compatibility mode

* MicroVAX II/MicroVMS (software-emulated compatibility mode)
'= VAXstation II/MicroVMS (software-emulated compatibility mode)

= RSX-11M-PLUS

= RSX-11M

= RSX-11S

= Micro/RSX

= P/OS

VAX-11 RSX also allows for the migration of many existing RSX-11 applications
to VAX/VMS and MicroVMS.

For more information on this product, see Chapter 6 of this handbook.

MicroPower/Puscal-VMS - MicroPower/Pascal-VMS is a VAX/VMS optional
program development product. MicroPower/Pascal is a modular executive
and software development package for PDP-11 (Q-bus) based microcom-
puter applications. It includes software components needed to create, build
and debug/test concurrent realtime application software that runs stand-
alone on a target runtime microcomputer system. '

For more information on this product, see Chapter 6 of this handbook.

Chapter 2 = VAX Program Development Productivity Tools

Overview

VMS’s program development productivity tools help extend your productivity
beyond the range of VMS services and program development utilities and VAX
languages. Because all of these tools are designed to function within the VMS
Software Development Environment, they greatly simplify the development of
application programs.

As Figure 2-1 illustrates, VAX productivity tools enhance the programmer’s
ability to write, compile, link, and maintain systems and applications designs.
Besides serving as the basis for all development work done by VMS program-
mers, a subset of these tools, the VNX product set, give ULTRIX and UNIX pro-
grammers the ability to access the VMS productivity environment with many
commands, utilities, and tools that are similar to those they use to write pro-
grams on the UNIX or ULTRIX operating systems.

The development tools discussed in this chapter are:
= VAX DEC/CMS (Code Management System)

= VAX DEC/MMS (Module Management System)

= VAX DEC/Shell

= VAX DEC/Test Manager

= The VAX Language-Sensitive Editor

* The VAX Performance and Coverage Analyzer

= VAX GKS

2-2 w VAX Program Development Productivity Tools

This Chapter Covers the
VAX Program Development
Productivity Tools

VMS provides programmers with a
growing environment of

productivity tools that enhance
programming and project management

productivity.
VMS also provides programmers
familiar with UNIX the power
and versatility of VMS through
our VAX DEC/Shell and other VAX
9. VAX DEC Shell
/ 1. Interface to VAX/VMS
Programming Tools Symbolic Debugger
(See Chapter 5)
Project Management
Tools
PROGRAMMING TOOLS GRAPHICS TOOLS (For device-independent

raphics application programs)
1. VAX/VMS Symbolic Debugger grapnics app programs)

2. Language-Sensitive Editor 7. GKS
3. Performance and Coverage Analyzer (PCA) 8. DECOR (Not covered
in this chapter)

PROJECT MANAGEMENT TOOLS

4. DEC/Code Management System (CMS)
5. DEC/Module Management System (MMS)
6. DEC/Test Manager

Figure 2-1 = Querview Of Chapter 2

2-3

VAX DEC/CMS (Code Management System)

VAX DEC/CMS is a program library system that members of a software project
use as an aid in program organization, development, and maintenance. CMS is a
tool that allows project members to do the following with minimal change in
work habits:

= Gain a more comprehensive view of project development

= Continue to maintain early versions of programs while working on current
project development

= Communicate project information more easily

= Control multiple versions of the same software

= Have a complete history of project software

Designed to run under the VMS operating system, CMS provides a method of
storing ASCII files. CMS maintains these files in project libraries. A library is a
subdirectory. Once a library has been built, project members can retrieve cop-
ies of files from the library, work on them using any standard editor, and then
replace them in the library. CMS keeps the original versions of the library files
and integrates any subsequent changes. CMS also allows more than one project
member to work on the same file at the same time without losing the modifica-
tions made by any project member. ‘

As project development continues, CMS tracks changes to a project library by
storing the changes made with each retrieval and replacement file in the library.
As a result, CMS can reconstruct any previous version of a project file.

In addition to storing successive changes to library files, CMS monitors library
access. CMS enhances communication among project members by maintaining
both a record of who is currently working on a library file and a historical
record of library access. By entering CMS commands, project members can eas-
ily retrieve information about library transactions and contents.

2-4 = VAX Program Development Productivity Tools

VAX DEC/CMS Features
You can perform the following operations w1th CMS commands: .

* Put afile in a library

= Retrieve a file or files from a library for modification

= Retrieve a file or files from a library for read-only purposes

= Group any selection of files to access them together

= Reconstruct any milestone of a project by getting the versions of.those files
used in the construction of that milestone

Determine whether any other user is working on a file before you retrieve it

= Place library files into “classes” at any phase of development to represent
milestones

= Merge concurrent modifications to a file

= Obtain historical information about all transactions that update the library
together with transactions that involve retrieving read-only copies of library
files, and the transactions associated with a particular file

= Obtain information that describes the organization of library files

= Obtain listings of any file stored in the library that shows:
— any stage of development of the file itself
— the file history '
— when each line of changes were mcorporated into the file and by whom

= Compare two ASCII files in your working directory or library

CMS also has a callable interface available. CMS provides an on-line help facility
for information on library structure, commands, syntax, and other relevant
topics.

Using VAX DEC/CMS

To create a CMS library, you need to create a subdirectory, and the CMS
CREATE/LIBRARY command. Once your library has been created, use the
INSERT command to put copies of your programs (files), documents, and/or
tests into the library. These files are termed “elements: and can be managed by
the use of various CMS commands. For an example of how CMS is used in the
implementation of a software program, see Chapter 7 of this handbook.

2-5

When you want to modify an element, you use the CMS RESERVE command to
retrieve a copy of the element file from the library. When you reserve an element
from the library, CMS places a copy of the element in your default directory and
marks the library copy as reserved by you. As long as you have the element
reserved, CMS notifies any user who tries to reserve, retrieve, or replace that
same element that you are working on it. (If you do not intend to modify an
element, CMS can retrieve an element without reserving it.)

You can use any standard editor to wotk on files that you have reserved. When
you have finished working on an element, you replace it in the library with the
CMS REPLACE command.

Each time you create an element by loading a file into a CMS library, CMS cre-
ates the first generation of the element. Figure 2-3 is a symbolic representation
of a newly created element, TESTFOR.

Every time you reserve and then replace the element, CMS creates a new ele-
ment generation and gives it a unique generation number. CMS can store up to
600 generations of an element. CMS is an efficient file storage system because it
keeps only the differences between successive file versions. Lines that are dupli-
cated from generation to generation are not stored. Figure 2-2 illustrates
element TESTFOR after one resetvation/replacement cycle.

CMS allows access to any generation of an element. Because CMS keeps track of
file modifications according to the succession of generations, you can reserve
any generation of an element.

CONCURRENT DEVELOPMENT

CMS handles concurrent development of the same element by allowing you to
establish alternate development paths, called lines of descent, for an element.
CMS maintains the separate lines of descent and allows you to merge them
when necessary during development. Generation 1 and 2 of element TESTFOR
~ (Figure 2-2) are on the main line of descent.

Because a concurrent reservation might result in conflicting changes, CMS does
not allow more than one user to replace a concurrently reserved element on the
same line of descent. In this case, one user can replace the element and create a
new generation on the same line of descent. Each other user who has this gener-
ation reserved must create a variant generation. Figure 2-2 shows element
TESTFOR after two users have concurrently reserved and replaced it.

2-6 = VAX Program Development Productivity Tools

Test For g Test For : L - Test For -,

0

@ ‘ () : ©

Figure 2-2 = Element TEST.FOR with Main Line and Variant Generation

You can merge any two generations that are not on the same line of descent.
When you use the CMS RESERVE command with the /MERGE qualifier, CMS
merges the two named generations and from them creates a file in your default
directory. CMS flags any conflicts between the two lines of descent. Once you
have resolved the conflicts, if any, you can replace the element in the library.
Figure 2-3 shows two lines of descent that have been merged. After testing, the
merged copy was then replaced.

Test For

Figure 2-3 = Generation 2A1 Merged into the Main Line of Descent

= CLASSES AND GROUPS
CMS allows you to associate an element generation with others in sets called
classes. For example, you can establish a class named RELEASE1 that includes
generation 3 from one element, generation 5 from the second element, and so
on. An element generation can belong to more than one class. Thus you can

2-7

establish classes that reflect milestones in project development. You can
redefine classes for maintenance purposes, even after development has pro-
ceeded beyond the milestone. As an alternative, you can freeze a class so that
it cannot be redefined.

CMS allows you to associate simple elements with others in sets called groups.
For example, you can establish a group named DRIVERS that includes all of the
device driver code for your project. A group named utilities might contain all
the project utility routines. A group named SAMS could just be all of Sam’s
code.

PROJECT INFORMATION

CMS provides commands that give information on project histoty, status, or
library contents. You can direct the output of these commands to a terminal, a
file, or a lineprinter.

CMS maintains a project history that is a record of all transactions that have
updated the library and transactions that have retrieved elements for reading
purposes only. Many transactions allow you to enter a remark to describe the
reason for using the library. CMS records the remark along with the data, time,
user, and command issued. '

The CMS library history provides a record of:

= Transactions that created specific element generations

* Transactions related to the evolution of a specific element

= The entire transaction history for the library

You can use CMS commands to create a report that integrates historical infor-
mation into an element.

VAX DEC/MMS (Module Management System)

VAX DEC/MMS is a tool that automates and simplifies the building of software
systems. MMS is useful for building both simple programs, which may have only
one or two source files, and complex programs, which may consist of several
source files, message files, and documentation. It can rebuild all the compo-
nents in a system, or only those that have changed since the system was last
built. MMS is also easy to use — with one command, you can build either a
small or a large system.

2-8 w VAX Program Development Productivity Tools

MMS handles all the steps that are necessary to build a software system accu-
rately and economically.

MMS runs on the VMS operating system and can be used

= With any VMS-supported compiler.
= To access modules in VMS object-module libraties.
*» To access elements in DEC/CMS libraries.

= To access declarations of Forms stored in the VAX CDD (Common Data
Dictionary).

= To access forms in VAX FMS (Forms Management System).

= To build documents.

= To build individual programs or entire systems.

VAX DEC/MMS Features

MMS controls the efficient building of a software system by determining which
components in the system have changed and then creating new versions of only
those files that depend on the changed components.

Figure 2-4 depicts a small software system and describes the basic steps MMS
follows when it builds the system. In this system, Component A is the target —
file that you want to update. Component B is a source for Component A, and
Components C and D are sources for Component B. (For example, A might be
an .EXE file, B might be an .OBJ file, and C and D might be source or definition
files). The commands that update B (by using C and D) and A (by using the
updated B) are called actions.

2-9

\ C D /

O et

(@ MMS checks the revision time of the target (Component A).

e

@ MMS checks the revision time of the first source (Component B).
@ MMS checks the revision times of Components C and D against that of B.

; @ If the times of Components C and/or D are more recent than that of Component B, MMS
updates B according to action lines that you specify in the description file (action lines tell
MMS what commands to execute to update the components of a software system). If B is
more recent than C and D, MMS does not do anything to B because it is already
up-to-date.

@ Once Component B is updated, it is more recent than the target. Therefore, MMS updates
Component A.

Figure 2-4 » How MMS Builds a Software System
If the target has been modified since the sources were last changed, MMS does
not take any action to update the target. Instead, it issues a message to inform
you that the target is already up-to-date. :

Using VAX DEC/MMS

When you use MMS to build your software system, you usually perform two
steps: ‘

1. Create a description file -

2. Invoke MMS

The description file contains rules that describe how the components of your
system are related, and the commands that MMS is to use in building them.
Once you have created your description file, you can use it every time you
invoke MMS to build your system. In most cases, you will need a description
file; however, if your system is very simple, MMS can build it even if you have no
description file.

2-10 = VAX Program Development Productivity Tools

The description file is an ASCII text file that you can create and modify with
any text editor. It contains all the information MMS needs to update your
software system. You can think of the description file as a collection of rules
and instructions that describe how parts of your system are built, and which
parts depend on other parts.

The order in which MMS processes the rules in a description file does not
depend on the position of the rules in the description file. The order is implied
because the output of one step may the input of another step. For example if a
link step uses three object modules, then MMS cannot process the link step until
all three object modules are up-to-date.

You can leave out some steps of an MMS description file because MMS built-in
rules define certain commonly used actions.

When you invoke MMS, it looks in your current directory for a description file
called DESCRIPMMS, unless you have specified the /NODESCRIPTION quali-
fier to indicate that no description file is to be used. Once it locates the descrip-
tion file, MMS processes it.

MMS allows the “top-down” breakdown of a task. Thus, you can use mnemonic
names at the beginning of a description file to specify the order in which tasks
must be accomplished, and then specify the actions to accomplish those tasks
further on in the description file. With MMS, the structural information is all in
one place, the description file, giving a clear representation of the system.

DEPENDENCY RULES

A description file contains dependency rules. Dependency rules tell MMS the
relationships among the files in the software system and specify the actions
MMS is to perform to update those files.

The general dependency rule format is shown in Figure 2-5.

TARGET(S) : SOURCE(S)
ACTION LINE(S)

Figure 2-5 » Dependency Rule Format ,
The target in a dependency rule is the file that is to be updated by MMS. The
source is the file that MMS uses to update the target. (A source in one depen-
dency rule can also be a target in another rule, if it needs to be updated itself

before building its target.) The action lines contain commands that tell MMS
how to update the target using the source.

2-11

Figure 2-6 shows how the relationship between an object file and a BASIC
source file is expressed as a dependency rule.

TEST.0BJ : TEST.BAS
BASIC TEST

Figure 2-6 » Sample Dependency Rule

The dependency rule in Figure 2-6 tells MMS that it should execute the BASIC
command to cteate TESTOB]J from TESTBAS.

You usually have more than one dependency rule in a description file. The num-
ber of rules depends on the size of your system. When MMS processes a depen-
dency rule, it uses the last-revision dates of the target and source files to
determine whether the target should be updated. (The revision date indicates
the date and time the file was most recently changed.) If you have not changed
any of the source files since the last time the target was built, MMS does not
execute the dependency rule action line(s). If, however, you have changed any
of the source files, MMS executes the action line(s) to make the target up to date.
MMS includes several default dependency rules, called built-in rules, that allow
MMS to automatically build targets that depend upon sources written in
VAX/VMS-supported languages. In addition, you can write your own
user-defined default rules.

Compatibility in the VMS Environment

You can use MMS to access files that are contained in VMS object-module librar-
ies. You can also use MMS to create library files, using certain built-in rules that
apply only to VMS libraries.

If VAX DEC/CMS (Code Management System) is installed on your system, you
can use MMS to access elements in CMS libraries. MMS provides built-in rules
that apply only to CMS library access. From the MMS command line, you can
control whether MMS automatically looks for elements in a CMS library when it
processes a description file. You will probably want to keep your description file
in a CMS library so you can keep track of the changes in dependencies of your
system. MMS can access the correct generation of the description file in a CMS
library.

If the VAX CDD (Common Data Dictionary) is installed on your system, you can
use MMS to access records stored in the CDD. MMS provides built-in rules that
apply only to CDD record access. If VAX EMS (Forms Management System) is
installed in your system, you can use MMS to access forms stored in FMS librar-
ies. To specify an FMS form in a dependency rule, use the file type .FLB after the
library name. The default file type for FMS forms is .FRM.

For an example of using VAX DEC/MMS in the implementation of a software
program, see Chapter 7 of this- handbook

2-12 = VAX Program Development Productivity Tools

VAX DEC/Shell

If familiar with a UNIX program development environment, VAX DEC/Shell
gives you the capabilities of the Bourne shell and many utilities from the UNIX
V7 system. VAX DEC/Shell provides an alternative command line interface to
the VMS operating system.

VAX DEC/Shell:

= Gives you more than 50 of the most commonly used UNIX utilities

* Is not a UNIX emulator on VMS. It is integrated with VMS. DEC/Shell and
VMS commands may be freely intermixed, even on the same command line.

There are three major components of the DEC/Shell: the command-line inter-
face, the Shell script language, and common utilities. When combined, these
components provide a program development environment familiar to users
experienced with UNIX V7 system.

VAX DEC/Shell Features
DEC/Shell includes:

= The UNIX V7 Bourne Shell
= A large number of UNIX utilities
= Pipes

= Input/output redirection to and from files
= A UNIX file syntax emulator
= A Shell runtime library

DEC/Shell also provides access to DCL commands and VMS programs. This
capability allows users familiar with the UNIX V7 system to take advantage of
the VMS operating system while working in a familiar programming
environment.

Using the VAX DEC/Shell

You can invoke the Shell from the DCL level or you can make the Shell your
default command interpreter when you log in.

To invoke the Shell from DCL, you use the SPAWN command with the /CLI
qualifier:

3 SPANN/CLI--SHELL

This command creates a subprocess with the DEC/Shell instead of DCL as the
command interpreter. In this subprocess, you can perform many of the tasks
you would do on a UNIX V7 system.

2-13

To make the Shell your command interpreter when you log in, you can
type /CLI_=SHELL/NOCOMMAND after your name at the username
prompt when logging into the system (Username:
SMITH/CLI_=SHELL/NOCOMMAND, for example), or ask the system
manager to make DEC/Shell the default command interpreter for your
account.

The VAX DEC/Shell as a Programming Language

While the DEC/Shell can be used primarily as a command interpreter, itis also a
powerful programming language. Many of the control structures used in the
Shell are similar to those used in the C Language (See Chapter 3 of this hand-
book). Given the Shell script language, control-flow constructs, and utilities,
you may find that the DEC/Shell is an adequate language for many of your pro-
gramming needs.

The VAX DEC/Shell Runtime Library

The DEC/Shell includes a runtime library that has routines for UNIX and VMS
file name conversion, along with other general purpose routines. These routines
are intended to minimize difficulties in transporting existing UNIX applications
to VMS.

The Shell runtime library is provided as a convenience for those interested in
transporting UNIX C programs to VMS. It does not provide UNIX call-level
emulation, which is done by the VAX C language.

This section lists in alphabetic order the commands and utilities provided by
the DEC/Shell and briefly describes the function of each.

Table 2-1 = Utilities and Commands

Command Function

awk Performs actions when lines of files match specified
patterns

basename Removes file name affixes

cal Displays a calendar

cat Concatenates and displays files

od Changes your working directory

chmod Changes protection modes of files

chown Changes owners of files

cmp Compares two files

cp Copies files

date Displays or sets the system date and time

(continued on next page)

2-14 = VAX Program Development Productivity Tools

Table 2-1 = Utilities and Commands (Cont.)

Command - Function

dc ‘ Performs arithmetic calculations

dd Invokes the DCL command parser; also provides a
one-line escape to DCL

diff Compares two files

diff3 Compares three versions of a file

echo Echoes arguments on the standard output

ed Invokes the UNIX line editor

eval Expands all command-line arguments and executes the
result as a command

exec Executes a command and exits

export Passes environment variable to programs and sub-
processes

expr Evaluates arguments as an expression

false Returns a failure status value

find Searches directory hierarchies for files

grep Searches files for a pattern

join Joins files according to specified relations

kill Terminates processes

lex Generates lexical analysis programs

login Connects your terminal to another node on the network

logout Terminates an interactive terminal session

Is Lists the contents of a directory

m4 Processes macros

mer Invokes the monitor console routine (MCR) command
parser

mkdir Creates a directory

mv Moves files and directories

od Dumps files in octal format or other formats

pr Formats and displays files

ps Shows process and system status

(continued on next page)

2-15

Table 2-1 = Utilities and Commands (Cont.)

Command Function

pwd Displays the name of your current directory

read Assigns values from the next line read to the specified
variables

readonly Prevents variables from being reassigned

rm Deletes files from directories

rmdir Deletes directories

sed Edits input streams

set Modifies and/or displays Shell environment characteristics

sh Invokes another Shell

sleep Suspends execution for a specified interval

sort Sorts and/or merges files

tail Displays the last part of a file

tar Saves and restores files on magnetic tape

tee Writes standard input to standard output, making copies
in files

test Evaluates expressions

times Reports the CPU time used by processes

touch Updates the last modification dates of files

tr Translates characters _

trap Specifies commands to execute upon receipt of signals

true Returns success status values

tty Displays the name of your terminal

umask Sets and/or displays default file protection

uniq Displays nonrepeated lines in a file

units Converts quantities expressed in standard scales to their
equivalents in other scales

wait Waits for completion of processes

wc Counts words, lines, and/or characters in files

who Displays a list of logged-in users on the system

yacc Generates LR(1) parsing tables

2-16 w VAX Program Development Productivity Tools

VAX DEC/Test Manager

The VAX DEC/Test Manager is a tool that organizes software tests and auto-
mates the way you run tests and evaluate their results. It provides an efficient
way to organize, run, and store the results of existing tests.

DEC/Test Manager is based on the concept of regression testing. Regression
‘testing is a method of ensuring that a program being developed runs correctly
and that new features added to a program do not affect the correct execution of
previously tested features.

In regression testing, you run established software tests and compare the actual
test results with the results you expected to get. If these actual results do not
agree with what is expected, the software being tested may contain errors. If
errors do exist, the software being tested is said to have “regressed”

Features of VAX DEC/Test Manager
You can use DEC/Test Manager to create a library area for test result storage.
.. 'Test Manager allows you to:

= Create descriptions of software tests

= Group these tests descriptions into meaningful combinations for later runs

= Modify or display the test descriptions or groups

= Execute specific tests, groups of tests, or combinations of groups of tests

= Compare the results of each executed tests with its benchmark test results to
determine differences

= View test results interactively

= Update benchmarks as needed

Using VAX DEC/Test Manager

The following two lists detail the steps you might follow in a typical regression
testing procedure. The first describes the regression testing procedure without
using DEC/Test Manager; the second describes the same procedure with
DEC/Test Manager.

2-17

= STEPS IN REGRESSION TESTING
1. Create tests by writing command files to test your software.
2. Organize your tests.
= Create a mechanism to allow ready access to tests as needed.
3. Run the test:
* Ifyou wish to run a single test, submit its command file to the batch queue.
= If you wish to run a number of tests, create a command file that invokes
each test, and submit it to the batch queue.
= Examine the test results: ,
— Compare the results to those you would expect. Note any differences
between the expected and actual results.

— For incorrect test outputs, revise the program code to correct the
bugs. Repeat steps 3 and 4 until the test output is correct. Then save
the validated results.

4. Repeat Step 3 whenever you modify the program, or add new code. Then,
compare the current test outputs with the validated test outputs.

= If the current and validated test outputs match, the program being tested
is working correctly.

= If you find unexpected changes in test results, the new program probably
contains errors, o has “regressed.” .

® Correct the program and rerun the tests whose outputs have not matched
Repeat this cycle until all results are valid. For future test runs, use these
validated test outputs as references against which to compare the current
test outputs. ' ‘ ‘

DEC/Test Manager automates steps 2 through 4 described previously. When
you use DEC/Test Manager, you must still write your own tests and test data,
and create a command file that runs the test. However, DEC/Test Manager
automates the rest of the testing procedure.

2:18 = VAX Program Development Productivity Tools

STEPS IN REGRESSION TESTING WITH DEC/TEST MANAGER

1. Create tests by writing command files to test your software.
2. Organize a DEC/Test Manager system by
= Creating a DEC/Test Manager library
= Identifying each test and its related files to DEC/Test Manager
= Placing tests into groups if you wish to categorize them
3. Run the test.
= Use DEC/Test Manager to select the test or set of tests you want to run.
4. Compare current test results with the benchmark results for a test.

= DEC/Test Manager automatically compares test results with the expected
results (called benchmark files) for a test. It records any differences in a
DEC/Test Manager-created differences file.

5. Examine test results.

= DEC/Test Manager provides an interactive subsystem that lets you imme-
diately access test results. It also gives you the ability to group all tests that
gave incorrect results for easy retesting.

= If the current and validated test outputs match, the program being tested
is working correctly.

* If you find unexpected changes in test results, the new program probably
contains errors, ot has “regressed.”

6. Repeat steps 3 through 5 whenever you modify the program or add new
code. Using DEC/Test Manager, the selection and running of tests and the
evaluation of results will progress more quickly.

ORGANIZING TESTS

DEC/Test Manager provides a number of structures for organizing a test system.

The first of these is the test description. A test description identifies a test to
DEC/Test Manager. It consist of fields whose contents point to files needed to
run the test.

The core of each test description is the template file. A template file is.a DCL
command procedure that runs a specified test or that is the test itself. Each test
must have a template file.

You can optionally specify a test prologue and a test epilogue. These are com-
mand procedures that extend the test environment. A prologue is a setup file
run immediately before the template. An epilogue can function as a cleanup file
or as a filter for test results and is run immediately after the template.

2-19

A variable in DEC/Test Manager is either a DCL symbol or a logical name.
You can use variables in templates, prologues, and epilogues. For example,
by using a variable in place of a particular test name in a template file, you
can use that same template file to run many tests. You must define variables
to DEC/Test Manager in a separate step, and also include them in each test
description that uses them.

You can categorize test descriptions by placing them in groups. For example, if
you have several tests that share a similar characteristic or function, such as test-
ing a parser, you can create a group called PARSER and place those tests in this
group. A test can belong to more than one group.

RUNNING TESTS

DEC/Test Manager runs tests in batch mode. To run tests with DEC/Test Man-
ager, you select the tests you want to run by group or by test description name
and create a collection name for them to identify the tests as a set.

You can supply a prologue or epilogue file for a collection at the time you create
the collection. The prologue file is a command file that runs before the collec-
tion tests are run. The epilogue file is a command file that runs after the collec-
tion tests are run. You can also supply a default prologue or epilogue file that
will be run with each collection.

Once you create a collection, you submit it through DEC/Test Manager to a
batch queue. DEC/Test Manager places the results of each test into an output
file called the result file. The result file contains the output of the test execution
at the time the collection was run.

With DEC/Test Manager, it is possible to place a test in more than one collec-
tion, thus allowing concurrent use of tests.

DEC/Test Manager automatically compares the result file for a test against its
benchmark file. A benchmark file contains expected test output — that is, test
output you have determined to be correct for purposes of the test. DEC/Test
Manager stores the status of the comparison (successful or unsuccessful) along
with any differences in the DEC/Test Manager library. If there are any differ-
ences between the result file and benchmark file, DEC/Test Manager creates a
file called a differences file that stores the differences.

2:20 = VAX Program Development Productivity Tools

EVALUATING TEST RESULTS

You can evaluate test output files interactively thh the DEC/Test Manager
Review subsystem. .

DEC/Test Manager generates a result description for each test in a collection. A
result description identifies the output files for each test and indicates the status
of each test. It has the same name as its corresponding test description.

Review allows you to

» Display the status of each test.

= Display or print test results of all related files.

= Create a2 new benchmark or replace the old benchmark file by updating it
with a result file.

» Place tests in groups while viewing their results. This provides a convenient
method of later rerunning tests.

The VAX Laﬁguage-Sensitive Editor

The VAX Language-Sensitive Editor is a powerful multilanguage, multiwindow,
screen-oriented editor specifically designed for program development and
maintenance. The Editor is “language-sensitive” in that it provides a description
of the syntax for each VAX language that it supports. The Editor helps both
novice and experienced programmers build syntactically correct programs
faster and with fewer errors, through VAX language-specific construct comple-
tion, and error detection and correction facilities.

The VAX Language-Sensitive Editor is highly integrated into the VMS develop-
ment environment. It is invoked via the English-like Digital Command Lan--
guage (DCL) or the DEC/Shell command language, and works in concert with
supported VAX languages and the VAX Symbolic Debugger to provide a highly
interactive environment that facilitates the EDIT-COMPILE-DEBUG portion of
the program development cycle. This enables users to create and edit code, and
to compile and review, and correct compile-time etrors in one streamlined edit-
ing session. The Editor can be invoked directly from the VAX Symbolic Debug-
ger to correct source code etrors found during a debugging session. '

In addition, the VAX Language-Sensitive Editor offers you features to custom-
ize and extend your editing environment to meet any unique programming

needs.

221

“Language-Sensitive” Features
The VAX Language-Sensitive Editor
* Tailors the editing sessions for each of the eight VMS languages it supports —

VAX Ada®, VAX BASIC, VAX BLISS-32, VAX C, VAX COBOL, VAX FORTRAN,
VAX PASCAL, and VAX PL/L

= Uses formatted language-specific source code templates for quick, efficient
source code entry.

= Allows compilation and review and correction of compile-time errors within
a single editing session.

= Provides for interactive editing capabilities during a debugging session.

= Allows users to tailor the defined language environments or to define their
own environment.

The VAX Language-Sensitive Editor interfaces with supported VAX languages
to provide a powerful tool for program development. For each supported VAX
language, the Language-Sensitive Editor provides a set of source code tem-
plates. These templates are formatted language constructs that provide
keywords, punctuation, and placeholders. Templates are inserted into the edit-
ing buffer by successive expansions of tokens and placeholders. Placeholders
represent positions in the source code where you must either provide additional
program text or choose from indicated syntactic options. Tokens are keywords
or function names that you can type into the editing buffer and expand into
templates for corresponding language constructs.

While in an editing session, you can complete the editing of his code, compile it,
and review the compile-time errors. You may specify DCL qualifiers such as
/DEBUG and /LIBRARY when invoking the compiler from the VAX Lan-
guage-Sensitive Editor. The compilation may be performed interactively or in a
batch job.

The REVIEW command allows review of compilation errors upon compile
completion. The VAX Language-Sensitive Editor displays the compilation
errors in one window, with the corresponding source code displayed in a sec-
ond window. For easy error correction, there is a GOTO SOURCE command to
position the cursor at the point in the source code where the compiler detected
the error.

2-22 = VAX Program Development Productivity Tools

The VAX Language-Sensitive Editor can be invoked from the VAX Symbolic
Debugger providing the ability to make source code corrections as they are
found during a debugging session. Features include:

= User notification if the file invoked by the editor is a different version than
that displayed in the VAX Symbolic Debugger.

= Ability to specify the file and line number from which to start the editing
session with the default being the current source displayed in the VAX Sym-
bolic Debugger.

= User choice of terminating debugging session with the editing session or
returning to the debugging session.

The VAX Language-Sensitive Editor enables users not only to customize previ-
ously defined language environments but also to define their own environ-
ments. Once they have defined their own environment, the Editor lets them
save it in a file, restore it for later editing sessions, and update it with new
definitions.

Using the VAX Language-Sensitive Editor
The Editor is invoked by the LSEDIT command: The language is determined
from the file type of the file specification given in the command.

For the new user,

* The keypad layout is the same as for EDT.

= PF2 gives help on keys

* CTRL/Z allows you to enter line mode.

= CONTINUE or CTRL/Z allows return to keypad editing.
* There is a line mode HELP command. '

When using templates, there are bracketed constructs that will be inserted into
the source file. These are called placeholders. There are four commands of pri-
mary interest in inserting language constructs:

= CTRL/E — EXPAND

= CTRL/K — ERASE PLACEHOLDER /FORWARD
* CTRL/N — GOTO PLACEHOLDER /FORWARD
= CTRL/P — GOTO PLACEHOLDER /REVERSE

2-23

Depending on the type of placeholder at the cursor position, EXPAND will
replace the placeholder with a sequence of keywords and/or placeholders, or it
will present a menu of choices, or it will tell you what you have to enter as
program text at that placeholder. A menu item is selected by using the arrow
keys and then EXPAND. Text may be typed when the cursor is within
placeholder brackets; the placeholder is automatically erased.

In addition to expanding placeholders, which are generally inserted for you,
you may type in a template name and EXPAND it. Templates are provided for
most keywords that introduce syntactic elements such as declarations and state-
ments. For example, if you type in IF and then CTRL/E (EXPAND), an IF state-
ment will be inserted at that point. It will contain placeholders for things that
you must fill in. Templates are also provided for built-in functions and for the
statement placeholder.

To compile the contents of the current buffer and review the errors, use the
command COMPILE/REVIEW. This will display the errors in one window and
your code in the other.

To select an error, position the cursor on that error and press CTRL/G (GOTO
SOURCE). The cursor may be jumped forward from error to error using
CTRL/F (NEXT ERROR) and backward using CTRL/B (PREVIOUS ERROR).

ONLINE HELP WITH THE VAX LANGUAGE-SENSITIVE EDITOR
When you want help, you want it immediately. And you don’t want to sift
through pages to find the information you need. In addition to the help you get
by using the language-specific templates, the VAX Language-Sensitive Editor
provides you with extensive online help facilities for each supported language.
You can quickly access help on all placeholders, or call on language-specific
online help topics directly from the Editor. If you are learning a new language,
or are new at program development, you will gain efficiency as the Editor
guides you with information on language structures and text insertion. If you
are experienced in a language, this feature lets you access help on less farmhar
language constructs.

Online help makes it easier for you to code it right, the first time.

WINDOWS PROVIDE ADDED FLEXIBILITY

The screen format for the VAX Language-Sensitive Editor is responsive to many
different programming approaches. It consists of a prompt atea, a message
area, and one or two windows. Editor commands are used to manipulate the
screen and its format.

2-24 = VAX Program Development Productivity Tools

You can create buffers to hold multiple files and can display any two buffers
simultaneously. This feature lest you save development time by cutting and
pasting sections of code or text from one buffer to another. Or you can
designate READ ONLY buffers for version control protection. Since the Editor
determines the language you are using by the filename extension, you can move
between different languages in different buffers with the Editor providing the
interfaces to the appropriate compiler.

To help you with particularly large programs where you mlght need to refer- ,
ence another section of the code, the Editor provides a split-screen capabil-
ity. This feature enables you to view and work on two dlfferent sections of
the same program simultaneously.

TAILORING YOUR ENVIRONMENT

The Editor’s design allows you to use all of its powerful capabilities and still be
able to incorporate any unique editing preferences you may have. You can cre-
ate versions of the environment that you will work best in.

For easy editing, you can bind any command or string of commands to a spe-
cific key. If you’re presently a VMS user, you will quickly recognize the default
keypad since it is similar to that used with EDT. Another important Editor fea-
ture lets you choose overstrike or insert editing mode.

To match personal or specified coding conventions, you can modify the lan-
guage-specific templates provided with the Editor. New templates may be
added to those provided for the VAX languages, or you can designate a new
language name to represent a set of templates you have created. For example,
you can create a language called SPEC which contains templates, tokens and
placeholders for structured, formatted specification documents. .

Once you have set up an editing environment to your specifications, you can
save it and use it for future editing sessions — for the same project or for new
applications.

VAX TEXT PROCESSING UTILITY (VAXTPU)

For more unique editing requirements, the VAX Language-Sensitive Editor
provides commands to access the VAX Text Processing Utility (VAXTPU), a util-
ity that is part of VMS. VAXTPU has an easy to use high-level procedural lan-
guage which allows users to write functions not provided by the VAX
Language-Sensitive Editor to further customize the editing environment. The
VAXTPU language provides for looping and conditionals to allow users to pet-
form more powerful editing tasks.

For more on VAXTPU, see Chapter 5 of this handbook.

2-25

= VAX Performance and Coverage Analyzer (VAX PCA)

The VAX Performance and Coverage Analyzer is a VMS software development
tool that helps you analyze the runtime behavior of your application programs.

The VAX Performance and Coverage Analyzer serves two functions:

= It pinpoints execution bottlenecks and other performance problems. Using
this information, you can modify your programs to run faster.

= It provides you with test coverage analysis by measuring what parts of a.user
program are or are not executed by a given set of test data. Using this infor-
mation, you can create tests that thoroughly exercise your programs.

By using the VAX Performance and Coverage Analyzer, you can focus your
efforts on making improvements that will bring the biggest gains in a program’s
efficiency.

Features of the VAX Performance and Coverage Analyzer

The VAX Performance and Coverage Analyzer consists of two parts — the Col-
lector and the Analyzer. The Collector gathers performance or test coverage
data on a running user program and writes that data to a performance data file.
The Analyzer — a separate, interactive program — then reads the performance
data file and processes the data to produce performance histograms and tables.

VAX PCA can collect and analyze the following kinds of data:

= Program counter sampling data

The program counter (PC) is sampled at a regularly specified interval (by
default, every 10 milliseconds). This information provides a good overview of
where your program is consuming the most time.

= Page fault data

This information lets you determine what sections of the program are causing
the most page faults. !

= System services data

This information tells you which system services the program calls, how often
it calls them, and which sections of the program do the calling.

= Input/Output data

This information about all Record Management Services (RMS) calls in your
program can help you to understand your program’s input/output behavior.
This is essential when trying to speed up an I/O-bound application program.

2-26 w VAX Program Development Productivity Tools

= Exact execution counts

This information about the exact number of times speclﬁed program loca-
tions are executed helps you to understand your program’s dynamic

behavior.

= Test coverage data

This information shows you which code paths are or are not executed when
you test your program. Using thls data, you can make your test more
complete. ,

Both the Collector and the Analyzer are fully symbolic, getting the required
symbol information from the Debug Symbol Table (DST) generated by the
compilers. Consequently, the VAX Performance and Coverage Analyzer works
with any of the VMS languages that produce DST information. These include
VAX Ada®, VAX BASIC, VAX Bliss, VAX C, VAX FORTRAN, VAX MACRO, VAX
Pascal, VAX PL/T, and VAX RPG II.

Using the Collector
When using the Collector to collect performance or coverage data from a pro-
gram, you must

1. Compile your program with the /DEBUG qualifier.

2. Link your prograrh using the LINK/DEBUG._ = SYS$LIBRARY:PCA$OBJ.OB]
command.

‘3. Run the program.

These steps ensure the necessary symbol table information is included in your
image and that your program is linked with the Collector. When the program
starts running, the Collector takes control and prompts you for commands.

Once you have invoked the Collector and gotten the Collector prompt
(PCAC>>), you are ready to enter Collector commands. First, you usually enter a
SET DATAFILE command to specify the name of the performance data file,
which will contain the collected petformance data and all symbol information
needed by the Analyzer. Then, you enter commands that specify what perform-
ance or coverage data you want to gather. Commands for gathering data
include SET PC_SAMPLING, SET PAGE_FAULTS, SET SERVICES, SET
TO_SERVICES, SET COUNTERS, and SET COVERAGE. Last, you enter the GO
command to start the data collection.

When the GO command is entered the Collector starts your program, gathers
the specified performance or test coverage data as the program runs to comple-
tion, and writes this data to the performance data file.

2-27

The following example shows the Collector commands to gather program
counter sampling data for PRIMES:

PCAC> SET DATAFILE PRIMES.PCA

PCAC> SET PC_SAMPLING

PCAC> GO

When the program finishes running, the Collector closes the data file. You are
then ready to run the Analyzer on the information in that file.

Additional collection runs can be made on your program by simply repeating
the RUN command to initiate another run. It is also possible to collect data from
many executions of the same program into a single data file.

Using the Analyzer

The Analyzer processes the data in a performance data file to produce histo-
grams, tables, and other reports. The Analyzer lets you interactively examine
the gathered data in various ways until you can pinpoint performance bottle-
necks or identify code not covered by testing.

To run the Analyzer, you must use the PCA command at DCL level. This com-
mand accepts the name of a performance data file created by the Collector as a
parameter. When you enter this command, the Analyzer product heading and
prompt will appear on your terminal.

ANALYZER PLOT AND TABULATE FEATURES - .

The two commands most frequently used in the Analyzer are PLOT and TABU-
LATE. These commands let you present the information in the performance
data file either as histograms (the PLOT command) or as tables of raw data
counts and percentages (the TABULATE command). Both commands organize
data in the same ways; the only difference between the two commands is in how
they format the output.

The summary page at the end of every histogram or table gives various statistics
and lists all qualifiers, node specifications, and ﬁlters used to generate the histo-
gram or table.

VAX GKS

The Graphical Kernel System (GKS) Standard specifies a set of graphics primi-
tives or functions. The functions provide applications with a graphic system to
produce two-dimensional pictures on vector or raster graphics output devices.
The standard defines twelve upward compatible levels of functionality to meet
the varying requirements of different graphic systems.

2-28 = VAX Program Development Productivity Tools

As an international standard," GKS provides a-.common definition for a
graphics interface that implements functions common to all applications.
Thus, GKS permits the applications programmer to concentrate on the job
at hand, rather than on system level programming details. This increases
programmer productivity and decreases the development time for a graph-
ics application. GKS also makes an application portable among machines
that implement the standard.

Features of VAX GKS
VAX GKS supports several types of output functions that draw the followmg
components of a graphic image:

= Lines and Polylines
= Markers and polymarkers

= Text strings

= Polygons

= Rectangular arrays of pixels

Input functions provide the following general facilities:

= Initialization of logical input devices

* Acquisition of input from logical input devices

= Control of echoing and other characteristics of logical input devices

VAX GKS provides a method to file graphical information. A file of graphical
information is useful for external storage, exchange, and reproduction of a
graphic image.

Using VAX GKS

VAX GKS provides an interface between an application program and a collec-
tion of physical input and output devices. Each type of physical device is unique
in capabilities and characteristics. Since VAX GKS is a device independent
graphics system, the interface masks the low-level features of hardware device
and communicates with all devices through a common interface that allows
device-specific graphic handlers to perform the hardware instructions.

To provide a convenient and device independent coordinate system, you
describe and construct graphic images using World Coordinate (WC) systems.
World Coordinate systems permit the application programmer to define a range
of values for the x-axis and y-axis that apply to a particular application rather
than a specific device. For example, an application can use World Coordinates
that range from -2 to 10 on the x-axis and from -6 to 6 on the y-axis.

2-29

In a WC system, the x-axis increases positively toward the right and nega-
tively toward the left while the y-axis increases positively upwards and nega-
tively downwards. The axes are always perpendicular and intersect at the
(0,0) point, known as the origin. The position of any given point is simply
the distance from the origin along the x-axis and the y-axis.

To compose a graphic image, you define the portion of the World Coordinate
system that contains the points you wish to display. This portion of the World
Coordinate system is known as the world window. After defining the world
window, you specify the placement of the window onto a display surface.

Since the coordinates of a display surface are device dependent, VAX GKS
defines an imaginary display surface on which to project the image. The imagi-
nary display surface represents a single, square device independent display sur-
face for all devices. This display surface is known as the Normalized Device
Coordinate (NDC) space.

You can project the world window onto any portion of the NDC space. The
portion of the NDC space that contains the world window is known as the
world viewport. :

A set of normalization transformations permits you to specify the world win-
dow and the world viewport limits.

The wotld viewport also defines a clipping rectangle. You can enable or disable
clipping to the world viewport boundary (the clipping rectangle). With clipping
enabled, points of an output function that fall outside the limits of the world
viewport are not displayed. With the clipping disabled; VAX GKS draws the
portion of the output whose locations extend beyond the limits of the world

viewport.

VAX GKS OUTPUT

VAX GKS builds the display of a graphic image from two basic elements: output
functions and output function attributes. The output functions are abstractions
of basic operations a device can perform (for example, drawing lines and print-
ing character strings). The output function attributes tailor the appearance of
the object drawn by an output function.

2-30 = VAX Program Development Productivity Tools

Each output function is defined in a World Coordinate system. The output
functions permit you to perform the following graphics operations:

» Draw lines

= Place markers

= Display text
= Fill a defined area

= Display an array of cells with individual colors

= Draw special, device-specific geometric shapes

For each output function, a set of output attributes describes the representation
of the respective graphic image. For example, when you call the VAX GKS out-
put function to draw a line (Draw Polyline), polyline attributes specify the form,
thickness, and color of the line to draw. Initial values, supplied as default set-
tings, display a general representation of the object drawn by each output func-
tion. You -can change attribute values to tailor the display to application
requirements.

VAX GKS provides three methods to specify output function attributes. The
methods are:

= Individual
= Bundled

= Combination

With the individual method, you specify a value for each attribute of an output
function. For example, to draw an application specific line, you specify values
for the polyline attributes line type, width, and color. All subsequent calls to the

output function use the attribute values you specify until you explicitly change
the values.

With the bundled method, you select a set of predefined attribute values to
specify the representation of an output function. VAX GKS stores predefined
attribute values for each output function in a construct known as a bundle
table. The bundle table consists of several sets of predefined attribute values.
You specify an index into the bundle table to select a given set of attribute values
for an output function. You cannot change the attribute values in the bundle
tables, but you can select from several sets of predefined values to obtain the
desired image representation.

2-31

With the combination method, you specify values for some attributes indi-
vidually, and specify an index into a bundle table for other attributes. Thus,
the combination method provides flexibility; it permits you to use
predefined attribute values that meet application demands and specify only
the unique attribute values.

VAX GKS INPUT

VAX GKS supports input functions to provide for interaction between you and
the application program. The input functions enable a user at a physical input
device, such as a keyboard, to supply data to an application program.

~ VAX GKS accepts input from logical input devices so that the interaction is inde-

pendeént of the available physical input devices.

Logical input devices are abstractions of the commonly available physical
devices; they deliver logical input values to the application program. The type
of data that each logical input device delivers distinguishes five basic classes of
logical input devices as follows:

* Locator — returns a World Coordinate point

= Stroke — returns a sequence of World Coordinate points

= Valuator — returns a real number

= Choice — returns a selection from a number of choices (for example, 2 menu)

= String — returns an individual character or an entire text string

To accept data from a logical input device, an application program either -
describes the characteristics of an input device or uses initial values that provide
default characteristics, and then requests input from a logical input device. Fol-
lowing a request for input, VAX GKS attempts to read a logical input value from

 the device. You control a physical input device to specify the data.

VAX GKS METAFILES :
VAX GKS provides an interface to a system-for filing graphlcal information. A
file of graphical information is useful for external storage, exchange, and repro-
duction of a graphic image. The VAX GKS interface for ﬁhng graphlcal mforma-
tion is through Metafile Output and the Metafile Input ,

Chapter 3 = VAX Programming Languages

Overview

The large collection of VAX high-level programming languages is described in
this chapter. Each VAX language, presented in alphabetical order, is covered in
its own section that supplies information on language extensions, special fea-
tures of each language, and a sample program listing,

Topics include

s The VAX Common Language Language environment.
= The VAX high-level languages.

3-2 = VAX Programming Languages

THE FAMILY OF VAX PROGRAMMING LANGUAGES

VAX pommman X uax
FORTRAN
VAX PASCAL DIBOL 5801

OTHER VAX LANGUAGES

LISP
DSM
CORAL

This chapter describes the family of VAX
languages that give application and systems
programmers a Common Language Environ-
ment in which programs

e Can be written in more than one language
that conform to a common calling standard.
Use a common debugging utility (VMS
DEBUGGER).

* Use a common runtime library (VMS RTL).
* Use a common file I/O system (VMS RMS).
Can call operating system services and use
a common handling of exceptions.

Figure 3-1 = Overview of Chapter 3

3-3

* Introduction: General Features of VAX Programming
Languages

As we saw in Chapter 1, the VAX/VMS Software Development Environment
provides you with a continually evolving environment for the design of systems
and applications programs that use the VMS operating system. These designs
are used in a wide range of applications, including engineering, scientific, com- -
mercial, instructional, and system program implementation activities.

At the center of the productivity environment is the family of VAX program-
ming languages. Applications and system programmers have a diversified range
of higher-level and assembly-level programming languages at their disposal. In
addition to the assembly-level language, MACRO, VAX programming languages
cover the gamut from VAX™ Ada® to VAX RPG 1.

The following table, Table 3-1, can be used to show the different components of
the VAX/VMS Software Development Environment as they might be used when
designing an application program that involves the use of one or more of the
VAX languages. The table indicates major data types supported by the lan-
guages, support for EXTERNAL data, data in the Common Data Dictionary,
and the ability to pass data and results between program modules (VAX Calling
Standard support). The table indicates language support in the VAX Symbolic
Debugger, access to the SORT/MERGE facilities of VMS, and whether forms
management utilities can be used.

In addition, the table shows file access methods available through the VAX RMS
file management system, and which access methods are supported by each of
the languages. Access to database facilities is shown, including the callable
interfaces to Datatrieve, DBMS (network database), and Rdb/VMS (relational
data base access).

The rightmost columns of this table show integration of the Common Lan-
guage Environment with the VMS Programmer Productivity Tools. These Soft-
ware Tools are language-neutral in many cases, but where appropriate they do
support language-specific operations, (For example, the Language Sensitive
Editor (LSE.) Following the table, you will see sections describing each of the
languages and the software tools in more detail.

3-4 w VAX Programming Languages

Table 3-1: * Cross-reference chart for VMS Services, VAX Languages, Software Tools, and Related Program Development Products.

O << > BB B B B B B B
..m, [Eag7,R4a] > T N NN NN
TeﬂTEST/MGR N N NN NN
MM.MMS NN NN
&«W.CMS S N
m ~MOAOmMm E IR = Vi P PR P PO
..mmD.BMS, XK K Bk ok ok Py ok k%
mM A<= % % % % % % % % % %
m —Z A| MmO R N N % NN
um <<= >/) KB Bk Bk B Bk B B
- MO UM * P I N N
“ DD ZE <A |5 55 > By by By By By B
m nEHEME<S * ® OBk K Bk ok Dk

HASw % ¥ % % % % ok % k%
o | S w» % T
mm ley-A2l % %K Bk % % K % B
Dm..Ru A OOMmMM S N NS

O »EHEAQ > BB B B By By B > B

oA RSN NN
.MEXTERNAL NN NS > >
MCOMMON >N > > B>
ARz E—~0 > > > >
WVARYING > > >
m.s o= X} A > NN NN
w...m AMO-S<<A > > > > NS
MmFLOAT) N
S —~ZEmOm N
[a)v4

=

4 B M&

= — P

o 9 QZgE5 =

= a8 BERERASQ

8 222,0080%~¢%

[~

% S5555555558

P means preprocessor support

y means actual Language support

* means access via CALL or other language feature

35

User applications can be made up of individual program modules written in
many different VAX languages. These languages all conform to a single call-
ing standard, therefore, application systems can include modules written in
several languages. Modules can CALL, pass parameters, and/or read files in
cooperation with modules written in other VAX languages.

VAX™ Ada®

Ada is a modern, higher-order programming language designed as a result of a
competition sponsored by the United States Department of Defense. Although
Ada has now become the single programming language for all mission-critical
Department of Defense software, it is also well suited to many civilian applica-
tions, such as CAD/CAM, or process control. Ada is ideal for large applications
that must be developed and maintained by many programmers.

Features of VAX Ada

* Ada is used in a variety of applications, including systems, computational,
general, and realtime programming.

* Besides providing powerful language features, Ada reduces software life cycle
costs by providing for modularization and separate compilation using pack-
ages, scope rules, and a compilation database.

= Ada allows both bottom-up and top-down program development. Ada
enhances software reliability through strong typing. -

» In addition to being a suitable language for embedded realtime applications,
Ada gives you features for multitasking, such as tasks, rendezvous, priorities,
and entry calls.

Who Uses VAX Ada ?
Users of VAX Ada Include:

= Government prime contractors for which use of Ada has been specified as a
mandatory requirement.

* Major industrial corporations whose work as prime contractors has led to a
significant in-house Ada training effort. These internal resources are increas-
ingly being used for non-government related, general-purpose programming.

= Educational institutions seeking, for teaching purposes, a standard program-
ming language that demonstrates modern programming techniques.

*Ada is a registered trademark of the U.S. Government (Ada Joint Program Office)

3-6 = VAX Programming Languages

VAX/VMS Implementation of Ada

The Ada Compilation System for the VMS operating system is a complete
implementation of the Ada language, and conforms fully to the ANSI standard
and validated by the Ada Validation Office. .

The VMS Ada compilation system consists of:
= The Ada compiler

s The Ada Compilation Library Manager that provides support for program-
ming teams through:

— Shared use of a compilation library by many programmers.
— The ability to share compiled Ada code either by reference or copy.
— Use of individual libraries as sublibraries of team libraries.
— Automatic recompilation of obsolete units.
= High-level, fully symbolic debugging capability through the VMS debugger,
including support for:
— Mixed Ada and non-Ada code
— Packages
— Multiprogramming

= Integration with the VMS operating system includes:

— Conformance to the VAX Calling Standard, which provides the ability to
call and be called by code written in other languages and to call VMS
system services and the VMS Run-Time library.

— The ability to handle VMS asynchronous system traps (ASTs).

— Comprehensive diagnostic messages, including automatic syntax error
correction, geared to help the new Ada user.

3-7

Ada Program Units
An Ada program, also called an Ada system, is composed of one or more units,
each of which may be separately compiled. There are four types of units:

= Subprograms
= Tasks
= Packages

= Generic Units

All Ada program units have a similar two-part structure consisting of:

= A specification that identifies the calling user interface to the program unit.

» A body, which contains implementation details that can be hidden from the
user.

The specification and body can be separately compiled. This aids in large devel-
opment efforts by allowing all specifications to be written first and by creating a
design structure. Unit bodies can be written and refined independently.

SUBPROGRAMS - Subprograms are the basic units of execution in an Ada
system. A subroutine is a procedure that expresses a action.

TASKS - Tasks are independent, concurrent operations that communicate with
each other by exchanging messages. Tasks are used to implement Ada’s concur-
rent processing feature.

PACKAGES - Packages are collections of resources, such as data type declara-
tions, data objects, subprograms, tasks, or other packages. Because portions of
a package can be hidden from the user, packages are used to provide various
levels of data abstraction.

3-8 » VAX Programming Languages

The definition of the Ada programming language includes several predefined
library units. Among these are:

* CALENDAR

* DIRECT_IO

» JO_EXCEPTIONS

» LOWLEVEL_IO

» SEQUENTIAL._IO

* SYSTEM

» TEXTIO

* UNCHECKED_CONVERSION

* UNCHECKED_DEALLOCATION

GENERIC UNITS - A generic unit is a template of an algorithm that can be
tailored to particular needs at compile time, A generic program unit can be
created by adding a prefix to an existing program unit. This prefix is called the
generic part, and it defines any generic parameters. A generic routine is called
like a subroutine, and becomes nongeneric when it is called because it is passed
parameters that are defined to have a certain data type..

Major Features of the Ada Programming Language
VAX Ada supports these features:

= Strong typing

= Data abstraction

= Machine-dependent facilities

= Exception handling

= Generic definitions

= Relative and absolute precision specification

STRONG TYPING - Ada is a strongly typed language. This means that an
object (variable) of a given type may take on those values that are appropriate
only to that type, and certain predefined operations may be performed only to
data of that type. For example, an integer value cannot be assigned to a real
variable without an explicit conversion.

3-9

A data type characterizes a set of values and a set of operations applicable to
those values. For example, integer is a data type with values represented by any
positive or negative whole number or zero. The predefined operations that can
be performed on the integer data type are addition, subtraction, multiplication,
division, modula, absolute value, and exponentiation.

Because type checking is done at compile time, strong typing ensures that any
etrors associated with incorrect data types are detected at compile time.

DATA ABSTRACTION - Data abstraction, or information hiding, obscures
the details of implementation, while providing users with mechanisms for
using the implementation. Abstraction allows us to focus on important char-
acteristics while ignoring underlying details. For example, when we think of
integer data, we think of whole numbers and the operations that can be per-
formed on them, rather than the fact that integer data is actually imple-
mented as binary 1s and Os by the computer.

SYSTEM-DEPENDENT FACILITIES - Different systems built by various man-
ufacturers will vary in such characteristics as the size of their storage unit, mem-
ory size, and the smallest and largest integer values supported. Ada provides a
package called, System, which contains a collection of system defined constants
to represent system-dependent information. The values of these constants are
defined by the actual implementation.

There is also a feature called a pragma that allows the setting of parameters that
describe implementation features and attributes. There are predefined
pragmas, and the application is free to add others.

CONCURRENT PROCESSING - For many applications it is important that a
program be conceived as a number of parallel activities rather than a serial
sequence of actions.

Most high-order languages provide little or no support for handling such con-
current activities; they rely on facilities of the host operating system. Ada uses
tasks to support parallel activities directly within the language.

EXCEPTION HANDLING - In many operations, especially in embedded
computer systems, it is critical that a system be able to recover quickly and effi-
ciently from error conditions.

Ada includes predefined exception conditions, and also permits the user to
define exceptions. It provides the ability to raise exception conditions, and to
actually handle conditions. When an exception occurs, normal processing is
suspended and control passes to the exception handler.

3-10 = VAX Programming Languages

GENERIC DEFINITIONS - In many cases, the logic of a program is inde-
pendent of types of the values being manipulated. For example, in a simple
exchange routine that exchanges two elements of the same data type, the
algorithm to do the exchange would be the same for any data type. How-
ever, in a strongly typed language such as Ada, all types must be defined at
compilation time. To use the exchange routine forvarious data types, a sepa-
rate routine would have to be coded for each data type.

The following is an example of a typical VAX Ada program.

-- This prodram has a "bacKkdround task" that sorts an integder arrav

-- while another task interacts with the terminal user. The interactive
-- tasKky upon user command, will diseplav the arrav at anv time

-- during the sort. (The QUICK_SORT procedure is not shownj it is

-- Presumed that QUICK_SORT has delavy statements to Keep it from

-~ running too fast.)

-- Packade to provide I/0 operations for obdects of tvpre
-- INTEGER and FLOAT
with TEXT_I03 use TEXT_IO}
packade IOPACKAGE is
pacKade INTIO is new INTEGER-IO(INTEGER) S
packade FLOATIO is new FLOAT-IO(FLOAT);
end IODPACKAGES

-- Main Prodram to sort an array and examine it as it is sorted.
-- All tasks in this Prodram have one masters Procedure TASKSORT,
-- which is also their immediate master.

with TEXT_IO,» IOPACKAGE
procedure TASKSORT is
use TEXT_IO, IOPACKAGE.INTIO;

pragma TIME_SLICE(0.3)3 -- enable interleaved exeéution

-- Define arrav to be sorted.

tvre QUICKARRAY is array (INTEGER rande <{») of INTEGER}
A : QUICKARRAY(1..120)3
ASIZE : INTEGER}

-- Specify auicK sort procedures» to be provided by the users and
-~ to be used by the sorting task

procedure QUICK_SORT(A : QUICKARRAY3F ASIZE : INTEGER) is serarate}

-- Specify a sindle task to perform the sort

task QUICK is
entry START (ARG: INTEGER)3
end QUICKS

-- Srecify another sindle task to do terminal I/0

task USER is
pradgma PRIORITY(B)3 -- Give "interactive task"
-~ higher priority than sortingd task
end USERS

-- Procedure to be used by the interactive task to print
-- out the array

procedure PRINT_ARRAY is
bedin
for I in 1,,ASIZE loor
PUT(A(I) sWIDTH=>3)§
end loori
NEW_LINES
ends§

-- Corresponding task body for specification QUICKS
-- contains a synchronization point for starting the sort,
-- and a call to the sorting routine

task body QUICK is
ARRAY_SIZE : INTEGER}
begin
select
accert START (ARG: INTEGER) do
ARRAY_SIZE := ARGj)
end STARTS
or
terminates’
end selects
PUT_LINE("The sorting task has started")i
QUICK_-SORT(AsARRAY_SIZE) 3
PUT_LINE("The sortind task has completed")j
end QUICKS

-- Corresponding task bodv for specification USER}

-- uses two nested loors: the outer loor allows vou to
-- inPut the inteder arrav for sortingdi the inner looe
-- allows vou to looK at the arravy (or exit) while it is
-- beind sorted

task body USER is
1 : INTEGERS
LAST : NATURAL S
SENTINEL : STRING(1..120) := (1.,.120 => * ")}
begdin
loor
begin
PUT_LINE("TvpPe in the number of inteders vou want sorted,")}
PUT_LINE("and then tvre a @D.")3
GET(ASIZE) §

PUT_LINE("Nows tyPe in a strindg of inteders,» separated by spaces:")}

PUT_LINE("that vou want sorted. End the strind with a @D.")§
for I in 1.4ASIZE loor

GET(A(IN)§
end loori

PUT("The initial arravy is ")3j
PRINT_ARRAY i

QUICK.START(ASIZE)3 -- Start the sorting task by rendezvous
-- with task QUICKS svnchronize USER and
-- QUICK

3-12 = VAX Programming Languages

-- Allow the terminal user to see the array or exit any time
-- he/she wants,

loopr
PUT_LINE("TvrPe: @D to see partially sorted array or e to exit")j
GET-LINE(SENTINEL s LAST)]

if LAST »= 1 and then (SENTINEL(1) = ‘E’ or SENTINEL(1) = ‘e’)
then

exits
end ifj

PRINT_ARRAY j
end loori
exiti

excertion
when END_ERROR =3
PUT_LINE("That‘s all folKks!")§
exitsi
when others =3
PUT_LINE("You’ve made a mistakei try again")}

SKIP_LINES}
ends
end loori

end USERS

bedin -- tasks USER and QUICK are activatedi
-~ environment task for TASKSORT is created.

nulls

end TASKSORT3 -- procedure finishes when USER and QUICK

-- are donej control returns to VAX/UMS

-- Should vou run this Program:; vou must maKe sure that the inpPut

-- file is not a Process-permanent file (SYS$INPUT)§ otherwise, the

-- lower priority sorting task will not runs To avoid using SYS$INPUT,
-- first execute the following DCL command: !

-- & DEFINE ADASINPUT TT
Figure 3-2 = Sample Ada Program Listing

VAX APL

VAX APL (A Programming Language) is a compact and versatile programming
language that runs on the VAX series of computers. This language is especially
suited to handle numeric and character data organized as lists and tables and is
used extensively in such areas as the manipulating of data, the designing of sys-
tems, and the computing of mathematical and scientific solutions.

The language was originally designed as a notation language to explain con-
cepts, not as a computer language. As such, APL is a language for communicat-
ing ideas, not just telling computers what to do.

3-13

Features of VAX APL

= VAX APL uses an interactive interpreter, so you don’t have to compile or link
programs

» VAX APL has a number of special operations that lets you handle lists and
numbers as they now handle numbers.

VAX APL uses virtual memory to create a workspace that can expand as needed.
Because the symbol table and execution stack (SI) are part of the workspace,
they too can grow dynamically as long as memory is available.

There is also a complete set of APL system commands that can change the sys-
tem environment, including listing and deleting files from disk and loading, sav-
ing, and copying VAX APL workspaces. Unlike other languages, which are
compiler-oriented, VAX APL is a sharable and reentrant interpreter that allows
you to edit functions or debug programs without ever leaving APL. VAX APL
also provides detailed error messages to assist you in detecting and debugging
errofs.

Characteristics
Although it is also a high-level language like FORTRAN, COBOL, and PASCAL,
APL differs from these languages in several respects.

= SIMPLE SYNTAX — Most functions in APL are designed to manipulate data.
As long as the data is in an acceptable format, the manipulation will take
place, allowing several functions to be placed one after another to create the
APL program. The few syntax rules that do exist in APL consistently apply to
both primitive (built-in) functions and the user-defined functions.

MODULAR DESIGN — One APL program can easily call another APL pro-
gram and have data returned as a result. This allows you to build a library of
special purpose routines and to easily create top-down organization.

= TABLE HANDLING — APL uses very powerful primitive functions that can
act just as easily on an entire table as they can on a single number. VAX APL
can handle a table of up to 65535 dimensions.

= IMMEDIATE EXECUTION — VAX APL is an interactive language, therefore
you can see the results of their efforts immediately after they are entered. It is
often faster to use an APL function on a large table than it is to compile a loop
in other languages to process the table.

To be highly productive, VAX APL users don’t need to know much about the
VMS operating system. The APL interpreter supplies everything that will be
needed during a terminal session. In addition to providing a built-in editor, VAX
APL provides debugging aids, systems communication facilities, and a file sys-
tem. This means you can edit and debug a program without ever leaving APL.

3-14 = VAX Programming Languages

Whiting a program usually takes less time in APL than in many other languages.
Because of this time saving characteristic, APL is also cost efficient.

In APL, you don’t need to resetve space for variables (DIMENSION) or specify
data types (INTEGER, REAL, etc.). Input and output format statements are
unnecessary. Rows and columns of data can be manipulated without loops.
Compiling and linking are unnecessary because APL can execute code
immediately.

These steps are unnecessary because APL does them automatically. This saves
time and allows you to concentrate on problem solving. For example a
programmer can write a program to compute an average faster in APL than in
FORTRAN. A FORTRAN program to average a set of unknown numbers may
look like:

INTEGER N
REAL Ty D

T
N

0
0
10 WRITE (%,1000)
1000 FORMAT (‘$‘, ‘Enter next number of “Z to stop: ‘)
READ (#*,%4END=100) D
N =N+ 1
T=T.+.D
GO TO 10

100 IF (N JEQ. 0) THEN
WRITE (%,2000)

2000 FORMAT. (’ No numbers to average’)
STOP
ENDIF

WRITE (#,3000) N» T/N
3000 FORMAT (' The averade ‘'of the ‘,sId4y ' numbers is ‘. F10,2)

". _END

APL can use the following code to do the same thing:

'ENTER NUMBERS SEPARATED BY SPACES”
(+/X)+p,X<0 ;

VAX BASIC

The VAX BASIC product gives you the benefits of a highly interactive program-
ming environment and a high-performance development language. It combines
thé features of a compiled, structured BASIC and the RSTS/E BASIC-PLUS lan-
guage with the performance benefits provided by a VAX language that is fully
integrated with the VMS environment.

The VAX BASIC language is a highly extended implementation language. It pro-
vides powerful mathematical and string handling facilities, support for sym-
bolic variable names/debugging, and full RMS indexed, sequentlal and relative
I/O operations.

3-15

VAX BASIC can be used as if it were either an interpreter or a compiler. A fast
RUN command and support for direct execution of unnumbered statements
(immediate mode) gives you the feel of an interpreter. However, this product
can also be used in compilation mode, where it generates object modules like
the other VAX compilers. In either case, the VAX BASIC system generates
optimized VAX native-mode instructions that have extremely fast execution
times.

Features of VAX BASIC

= BASIC programming support environment

= Structured programming constructs in the language
= Labels

= Conditional compilation and compile-time directives

= Alphanumeric labels on statements

= Full support for the VAX Language-Sensitive Editor and the VAX Symbolic
Debugger

= Program segmentation

= User-defined data types

Who Uses VAX BASIC?

= Students, teachers, and administrators

* Third-party application development houses

= Financial institutions

= General-purpose data processing departments

3-16 = VAX Programming Languages

General Characteristics

The VAX BASIC system generates inline VAX instructions in both its RUN and its
compilation modes. The code produced takes advantage of VAX/VMS capabili-
ties, including:

= Direct calls to operating system service routines, even in immediate mode

= Transparent use of DECnet communications software

= Direct calls to the Common Run-Time Library and standard system utilities,
including VAX SORT/MERGE

= Direct calls to separately compiled native mode procedures written in any
language that conforms to the VAX procedure-calling standard

= Program sizes up to 1 billion bytes are allowed

= All modules are position-independent (PIC) and can be run as fully reentrant
code

The code generated by the VAX BASIC system uses the standard VMS traceback
facility for determining the source of run-time errors. If a fatal program error
should occur, an English message is printed identifying the module and line
number where the error occurred. The English text, the traceback, and the
integrated BASIC HELP utility provide a powerful program debugging
environment.

Object modules produced by the VAX BASIC system can be linked with object
modules produced by other language processors including the BLISS, COBOL,
FORTRAN, PASCAL, and MACRO processors.

Structured Programming

Structured programming constructs add most of the features of a block struc-
tured language (such as PASCAL) to the BASIC language to allow complex pro-
grams to be written without recourse to GOSUBS or obscure programming
techniques. This makes programs easier to write and maintain,

Figure 3-3 illustrates a data structure defined by the RECORD statement, suc-
cessive retrievals by the use of a GET statement, and iteration controlled by a
WHILE...NEXT statement block. Also, note the use of named constants and
labels.

100 ATITLE ‘VAX BASIC demo program’
4SBTTL ‘Declarations’

OPTION TYPE = EXPLICIT ! Require declaration of all
! variables
ON ERROR GOTO Error_handler

3-17

RECORD Emplovee_rec ! What an emplovee’s file entry
! looks like

VARIANT

CASE
STRING Whole_name = 36 ! The emplovees whole name

CASE
STRING Last_name = 20 !
STRING First.name = 12 ! Another view of his name

STRING Middle_initials = 4 !
END VARIANT
DECIMAL(7,2) Rate ! Pav rate
END RECORD Emplovee_rec

MAP (REC) Emplovee_rec Emplovee

DECLARE STRING File_name: &
DECIMAL(10,2) Total_rate: &
BYTE End_flag

DECLARE BYTE CONSTANT True = -1, 8

False = 0
DECLARE LONG CONSTANT End_of_file = 11

%PAGE
%SBTTL ‘Main code’

File_name = ‘EMPLOYEE’
Total_rate = 0
End_flad = False
OPEN File_name AS FILE #1, SEQUENTIAL ACCESS READ: MAP REC, DEFAULTNAM ",DAT"
WHILE NOT End-flag
GET #1
Total_rate = Total_rate + EmpPlovee::Rate
NEXT
GOTO Program_end

%*PAGE
4#SBTTL ‘Error-handler’
Error_handler:
SELECT ERR
CASE End_of_file
End_flag = True
RESUME
CASE ELSE
ON ERROR GO BACK
END SELECT

4PAGE
%SBTTL ‘Print result and clean up’

Program_end:
PRINT ‘Total rate: $’i Total_rate
CLOSE #1
END

Figure 3-3 = Sample Structured VAX BASIC Program

3-18 = VAX Programming Languages

The SUB and FUNCTION constructs in the VAX BASIC language have’
structured END and EXIT statements. In addition, this language allows the use
of statement modifiers that allow conditional or repetitive execution of the
statement without requiring you to construct unnecessary loops or blocks. Any
nondeclarative statement in the VAX BASIC language can have one or more
statement modifiers. The BASIC statement modifiers include FOR, IF, UNLESS,
UNTIL, and WHILE constructs. Each of the statements in Figure 3-4 illustrates
the use of a statement modifier:

100 A(I)=A(I)+1 FOR I=1 TO 100

200 PRINT SUMMARY DATA IF OPTION.1 AND (REPDRT="NONTHLY“)
300 PRINT HOUSE.PAYMENT UNTIL RATEY 123,45

400 GET =1 WHILE EMPLOYEE.NUMBER<76000

500 GOSUB 12300 UNLESS ERROR.FLAG

600 PRINT"NORMAL EXIT" IF TOTAL>1000 UNLESS ERRORS:O

Figure 3-4 = Statement Modifiers

VAX Bliss-32

VAX Bliss-32 is a high-level systems implementation language. The Bliss-32 lan-
guage supports development of modular software according to structured pro-
gramming concepts by providing an advanced set of language features. It
provides access to most of the hardware features of the VAX systems to facilitate
programming of time-critical and hardware dependent applications.

Features of VAX Bliss-32
Bliss-32 is specifically designed for the development of:

= Many parts of operating systems

= Compilers

= Runtime system components

» Database file systems

= Communications software
= VAX utilities

3-19

What is VAX Bliss-32 Used For?

= Base operating system design and engineering

= Compiler development

= Database management systems engineering

s Cross-compiler development

= Hardware-dependent applications

The Bliss-32 compiler operating translates source programs into relocatable
object modules that can be linked for execution. Bliss-32 compiled code is opti-
mized for execution efficiency.

The following features of Bliss-32 are machine independent. Collectively, this
set of features is known as “Common Bliss” and can be used to.develop trans-
portable programs that will run on VAX, DECsystem-10, DECSYSTEM-20, and
PDP-11 systems.

» Modules are compiled separately for modularity and. convenient develop-
ment. Object modules are relocatable and can be linked with other object
modules.

The Bliss-32 language provides expressions for describing the actions to be
performed and declarations for allocating, describing, and initializing data,
and for defining macros and literals.

= The operators provide a set of operations for integer arithmetic, for compari-
son, maximization, and minimization of signed integer, unsigned integer, and
address values, and for Boolean operations.

Field references allow values to be retrieved from or assigned to any contigu-
ous field from 1 to 32 bits located anywhere in the VAXvirtual address space.

Character sequence functions provide for efficient runtime manipulation of
character data. Operations include moving, concatenating, comparing and
translating character sequences, as well as searching for particular characters
or substrings of characters.

The VAX Bliss-32 Compiler

The VAX Bliss-32 compiler petforms a number of optimizations. These include
common subexpression elimination, removal of loop invariants, constant fold-
ing, block register allocation, peephole replacement, test instruction elimina-
tion, jump vs. branch instruction resolution, branch chaining, and
cross-jumping.

3-20 = VAX Programming Languages

The VAX Bliss-32 compiler optionally produces source text and generated code
in a format closely resembling a VAX assembly listing. Other options allow you
to control the degree of optimization, suppress production of object code,
determine types and formats of output listings, generate traceback information,
and specify the types of information to be listed at the terminal.

Library and Require Files

The Bliss-32 language provides two methods for including commonly used text
into Bliss programs at compile time. These involve use of either Library files or
Require files:

s Library Files — These are special files created by the compiler in a previous
library compilation and are invoked by the LIBRARY declaration in the Bliss
source program.

* Require Files — These are source (text) files invoked via the REQUIRE decla-
ration in the Bliss source program.

Because Library files are precompiled, lexical processing and declaration
parsing and checking need not be repeated each time these files are included in
a compilation; their use results in a considerable reduction in total compilation
time. :

The contents of Require files must be fully processed each time the file is used in
a compilation. Hence using Require files will, in general, be less efficient than
using Library files. However, since these files operate under a less stringent set
of syntactical rules, their use may be warranted in situations in which a higher
level of flexibility is desired.

Macros ,

The VAX Bliss-32 language provides an extensive macro-building facility,
allowing frequently used groups of declarations or expressions to be expressed
in an abbreviated way. Macros are defined via MACRO. declarations and are
accessed by simple call statements. They are fully expanded at compile time.
The Bliss-32 language allows parameters to be specified in the macro definition,
thus allowing each block of text to be specialized by the actual parameters
passed to it. Various types of MACRO definitions give the programmer very flex-
ible and powerful capabilities. :

3-21

Debugging

The VAX Bliss-32 compiler produces a list of error messages showing the source
program line on which the error occurred followed by a description of the
error. If the error is recoverable, then the compiler will generate a warning diag-
nostic and continue with the compilation process. If the error is serious enough
to invalidate the compiler’s internal representation of the module, then an error
diagnostic is generated, and processing ceases following the syntax checking —
no object module is produced.

Transportability Features

The VAX Bliss-32 language is designed to facilitate transportability; that is, the
writing of programs that can be executed on architecturally different machines
with little or no modification. The VAX Bliss-16 language, discussed later in this
chapter, is a high-level implementation language for the development of sys-
tems software for use on PDP-11 systems. Several language features enhance
transportability:

= The high-level language constructs may be transferred from one machine to
another with little or no alteration.

= Machine-specific functions can be separated from the common, mainline
code via modularization, macros, and Library and Require files.

= Machine-specific characteristics can to be passed to Bliss data structures with
the use of parameters.

3-22 = VAX Programming Languages

The following program shows how the VAX Bliss-32 language can call
VAX/VMS system services and the VAX Common Run Time Procedure Library
to print the current time on SYSSOUTPUT.

TIME_OF_DAY

15:58:34
15:57:08

0001
0002
0003
0004
0005
00086
0007
‘0008
0008
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
ate and
0024

0025
0026
0027
0028
0029
0030
0031

n mn s e s e T oae DL we w es W e Ga e s e e WE e e e eE e s e e s e s

1

IB$PUT_QUTPUT

Ll B I L

B b b b b b b e e b b ek bk b bk b b b b b b b

26-0ct-1984
VAX-11 Bliss-32 V4,1-746 Pade 1

26-0ct-1984
BLISS$: [FAIMANIEXAMPLE.BLIiA (1)

MODULE time_of_day (main=Print_time) =
BEGIN

FORWARD ROUTINE
print_time : NOVALUES

LIBRARY ‘SYS$LIBRARY:STARLET'S

OWN .

timestr : BLOCKCZ3, BYTEl:,

atimenow : VECTORLZ, LONG] INITIAL (23, timestr).

timedesc : BLOCKLB, BYTE]l PRESET (.
[dsc$w_length 1 = 23,
[dscsb_dtyre .1 dsc$K_dtvre.
[dsc$b_class 1 dsc$K_class.
[dsc$a_rointer 1 = timestr)i

EXTERNAL ROUTINE
lib$pPut_output : ADDRESSING_MODE (GENERAL)]}

ROUTINE print_time : NOVALUE =

14+
! This routine calls the $ASCTIM svstem service to det the
! time as an ASCII strindg, and then calls the RTL routine
! to write that strind to SYS$OUTPUT.
[

BEGIN

$asctim (timbuf=atimenow)i
lib$Put_output (timedesc)
END3

00000017

00000000

0017

01 0OE

00000000

0000

000000006 00

0000

7e 7C
CF 9F
7E D4
04 FB

"IME_OF_DAY 26-0ct-1984 15:58:34
26-0ct-1984 15:57:08

00007
00000000G 00

Routine Size: 29 brtes:

0032 1 END
0033 0 ELUDOM

Name Brtes

$0WN$ 40 NOVEC» WRT, RD
$CODE$ 29 NOVECNOWRT: RD

File

CF 9F
01 FB
o4

Routine

00000
00017
00018

0001C
00020

00022
00024

00000

00002
00004
00008
0000A

+TITLE TIME_OF_DAY

+PSECT $0WNS$ NOEXE 2

3-23

SYS$ASCTIM

TIMESTR: .BLKB 23

+BLKB 1
ATIMENOW:

+LONG 23

+ADDRESS TIMESTR
TIMEDESC:

+WORD 23

+BYTE 14, 1

+ADDRESS TIMESTR

+JEXTRN LIB$PUT_OUTPUT,

+PSECT $CODE$% »NOWRT »2

PRINT_TIME:

+WORD Save nothing

CLRQ -(SP)

PUSHAB ATIMENOW

CLRL -(SP)

CALLS #4, SYS$ASCTIM

VAX-11 Bliss-32 V4.,1-746 Page 2
BLISS$: [FAIMANIEXAMPLE.BLI4 (1)

00011
00015
0001C

Base:

PUSHAB TIMEDESC

CALLS #1, LIB$PUT_OUTPUT

RET

$CODE$ + 0000

! End

of module

PSECT SUMMARY

Attributes

+NOEXE yNOSHR »
EXE sNOSHR »

’

Library

Total

SYS$COMMON: [SYSLIBISTARLET.L3237 9776

LCL»
LCL»

Statistics

Symbols
Loaded

9

REL» CON:NOPIC,ALIGN(2)
REL» CONNOPIC,ALIGN(2)

_______ Pages Processing

Percent Marped Time

0 581 00:01.0

0021
0029

0030

0031

3-24 w VAX Programming Languages

H : COMMAND QUALIFIERS

i BLISS/LIST EXAMPLE

Size: 29 code + 40 data bvtes
Run Time: 00:02.4

Elarsed Time: 00:03.0

Lines/CPU Min: 831

Lexemes/CPU-Min: 11394
Memory Used: 35 pades
Compilation Comprlete

wn an s e an e e

Figure 3-5 = Sample VAX Bliss-32 Program Listing

VAX C

VAX C fully supports all of the language features of C, as described in The C
Programming Language™ by B. Kernighan and D. Ritchie. VAX C provides pro-
gram flow control constructs for logical and efficient program structuring, and
a rich assortment of operators. and common run-time routines (only those
UNIX routines that cannot be reasonably emulated under VAX/VMS are
omitted.) VAX C even includes language extensions developed since the
Kernighan and Ritchie book was published, including the structure assignment
feature.

Features of VAX C
VAX C provides:

= Awell-developed set of “structured” control flow operators

= Large set of mathematical and logical operators

= Data typing and conversions

= Consistent data declarations and data references

= Compiler produces very efficient optimized VAX code
= Clanguage extensions

= Extended compiler features; listing and cross-referenced storage map, for
example, which provide capabilities beyond the UNIX level

= Full VAX Language-Sensitive Editor and VAX C support

* “The C Programming Language’, B. Kernighan and D. Ritchie, Prentice-Hall, Engle-
wood Cliffs, N.J.,1978.

325

Who Uses VAX C?
= Those implementing systems and applications—C is a medium level language

= Those familiar with a Unix environment

« Those wishing to transport applications to and from compatible C
environments

VAX C is more than just a faithful implementation of the C programming lan-
guage. It is a very powerful implementation with an impressive collection of
features and, as important, VAX C is an integrated VAX/VMS language product,
which means that you have available all the services and program development
aids that the VAX/VMS system provides.

The Language

VAX C is a versatile programming language that combines many of the features
of a high-level language with the generality of MACRO, the VAX assembly lan-
guage. Features include:

Program Control Flow — C uses simple, appropriate Enghsh for performing
conditional loops (WHILE, FOR, DO), simple decisions (IF — ELSE), and mul-
ticase decisions (SWITCH); and for escaping loops or multicase decisions
(BREAK, GOTO).

Data Types — Because C was designed to be a powerful, lean generalist among
languages, it uses directly only the fundamental data types commonly repre-
sented by computers: integers of various, fixed sizes, and single and
double-precision floating point numbers. VAX C also provides for user-defined,
or enumerated, scalars (ENUM values) and aggregates (STRUCT or UNION).
ENUM data-types are defined by writing the type name followed by an ordered
list of identifiers that are the constants of that type.

Runtime Support — In order to retain its flexibility of application, the C lan-
guage does not directly support many functions usually attributed to high-level
languages; for example, /O or common math routines. But most implementa-
tions of C include a common set of run-time suppott routines for accomplishing
those tasks. VAX C includes most of the non UNIX specific runtime suppott
offered in the Bell Laboratories version (even many of the UNIX specific rou-
tines have been emulated).

3-26 » VAX Programming Languages

Unique To VAX C — New keywords for sharing data among program modules
are offered by VAX C to augment the capability of the standard keyword for
passing arguments, EXTERN. The new keywords — GLOBALDEF,
GLOBALREF, and global value, which allow VAX C programs to define and ref-
erence global symbols offer an alternative method for dealing with external
variables and values. They provide, in addition to enhanced data-sharing
among C program modules, a convenient and efficient way for a C function to
communicate with MACRO programs, with VAX/VMS system services and data
structures, and with other high-level languages that support global symbol defi-
nition, such as VAX PL/I.

VAX C also provides an additional keyword, NOSHARE, that allows you to spec-
ify the shareability of data with VMS shared images built with C code.

C has an extremely powerful compiler that generates sharable,
position-independent, VAX object code directly from C source programs (that
is, no separate assembly step) a techniques such as excess of 3000 source state-
ments per minute, In the process, the compiler can perform global and local
optimization, for example,by doing global flow analysis, assigning automatic
variables to register temporaries, and removing invariant computations from
loops. The compiler also does peephole optimizations on the generated
machine code. The result: VAX C produces faster and smaller programs.

The VAX C compiler will produce an annotated listing with line numbers and,
optionally, an inline listing of generated machine code, expanded macros, stor-
age allocation map, cross-reference listing of variable usage, expanded CDD
records, translated “DEC/Shell” include file specifications, and compilation
statistics.

Compatibility Across Implementations

Although creation of an ANSI standard for the C language is now underway,
national or international standards for the C language exist. The C Programming
Language, however, is generally regarded as the definitive document, along with
technical notices subsequently published by the American Telephone and Tele:
graph Company.

Certain incompatibilities among implementations do exist however, especially
in machine-specific library routines. To aid creating portable programs, VAX C
provides predefined constants (VAX, VMS, and VAX C).These can be used, for
example, in conditional compilation to decide whether to compile source code
that may not be portable. The VAX C compiler command, CC, also has an
optional feature that detects several nonportable program constructions and
issues warning messages.

3-27

UNIX — VAX/VMS Coexistence — The C programming language was originally
developed at Bell Laboratories for creating the UNIX operating system, and it
has become the language of choice for many applications developed on that
system. As an aid to migrating programs from UNIX systems to VAX/VMS, the
VAX C run-time library includes many of the UNIX-specific UNIX/C routlnes,
emulated to run under VMS.

int value = -21

main()

{

printf(:The absolute value of %d is Zd\n",valuesabsolute(value));
¥

absolute(X)

int Xi

{

if (X » 0) return Xj
else return -(X)3§

¥

Figure 3-6 » Sample VAX C Program

VAX COBOL

VAX COBOL is a high-performance implementation of COBOL. It is based on
American National Standard Programming Language COBOL, X3.231974, the
industry wide accepted standard for COBOL. Most features planned for the
next COBOL standard, based on the specifications in the Draft Proposed
Revised X3.23 American National Standard Programming Language COBOL,
are also included.

VAX COBOL also supports an embedded Data Manipulation Language (DML)
interface to VAX DBMS, Digital’s CODASYL compliant Database Management
System. Also, it allows access to common record definitions stored in the VAX
Common Data Dictionary. VAX COBOL's support of features in the next ANSI
COBOL standard, of the VAXInformation Architecture, and of other
Digital-defined extensions to COBOL makes possible a wider range of COBOL
applications on the VAX,

3-28 » VAX Programming Languages

Features of VAX COBOL
VAX COBOL.:

= Supports ANSICOBOL and VAX single and double floating point and address
data types .

= Supports contained and CALL statement facilities

= Supports an interface to VAX DBMS, Data Manipulation Language (DML)

= Provides for the creation of form and reports on selected terminals with the
screen handling extension to the ACCEPT and DISPLAY statement

= Provides full report writing capabilities

= Provides complete sequential, relative, and indexed I/O

= Contains many features from the next proposed COBOL standard

» Full Language-Sensitive Editor Support

Who Uses VAX COBOL?
= Most widely used language for general data processing
= Banks and other financial institutions
= Many commercial applications, including:
— Payroll »
— Accounts Receivable

— Inventory Control

Object modules produced by the compiler can be linked with object modules
produced by other VAX language processors.

Structured Programming ‘

VAX COBOL adds some of the features of traditional structured programming
languages (such as PASCAL and PL/1) to the VAX COBOL compiler. This facility
makes programs easier to develop, understand, and maintain. It reduces pro-
gram development and maintenance costs. The structured programming facili-
ties supported by VAX COBOL include the EVALUATE statement, scope
delimited statements, and the inline PERFORM statement.

The EVALUATE statement in a CASE -like statement is found in modern pro-
gramming languages and allows the selection of statements to be executed,
which are dependent on the state of program variables. Scope delimited state-
ments simplify COBOL coding that previously required additional GO TO state-
ments and procedure names. The inline PERFORM statement reduces program
complexity by putting logic of the PERFORM inline.

3-29

The following program example illustrates the use of the structured program-
ming facilities in VAX COBOL .

INITIALIZE-STATE.

PERFORM VARYING I FROM 1 BY 1 UNTIL 1>12
MOVE O TO MONTHLY-RETRIEVE-TRANSACTIONS(I)
MOVE 0 TO MONTHLY-UPDATE-TRANSACTIONS(I)
END-PERFORM

TRANSACTION-LOOP.

B

MOVE MONTH-INDEX TO I.
EVALUATE TRANSACTION-TYPE
WHEN "RETRIEVE"

WHEN “"retrieve"
READ TRANS-FILE AT END
MOVE "EOF" TO TRANS-EOF-SWITCH
END-READ
IF TRANS-EOF-SWITCH NOT = "EOF"
THEN
ADD 1 TO MONTHLY-RETRIEVE-TRANSACTION (I)
END-IF
WHEN "UPDATE"
WHEN "update"
ADD 1 TO MONTHLY-RETRIEVE-TRANSACTIONS(I)
WHEN OTHER
DISPLAY TRANSACTION-TYPE "is an invalid transaction"
ADD 1 TO TRANS-ERROR-CNT
END-EVALUATE.
GO TO TRANSACTION-LOOP.

Figure 3-7 = Use of VAX COBOL Structured Programming Techniques

The example illustrates the use of the inline PERFORM statement whose scope
is delimited by END-PERFORM . The inline PERFORM loop initializes monthly
transaction counts in preparation for the subsequent transaction analysis. The
EVALUATE statement performs the transaction analysis and illustrates the typi-
cal use of this statement: a set of actions to be executed, dependent on the state
of a program variable (for example, TRANSACTION-TYPE). For the cases not
specifically mentioned, the WHEN OTHER imperative statement sequence is exe-
cuted which, in this example, does exception reporting and a count of the trans-
action errors. The scope delimiters are END-PERFORM , END-READ, END-IF,
and END-EVALUATE . These delimiters help to organize the program and to
make the program more understandable and maintainable.

3-30 = VAX Programming Languages

Data Types

VAX COBOL supports the data types specxﬁecl in the ANSI COBOL Standard
VAX COBOL also supports, as extensions, the packed decimal (COMP 3), float-
ing point (COMP 1), double floating point (COMP 2), and address (POINTER)
data types.

The following is 2 summary of the data types supported by VAX COBOL :
* Numeric DISPLAY data

— 'Trailing overpunch sign

— Leading overpunch sign

— Trailing separate sign

— Leading separate sign

— Unsigned
— Numeric edited
= Numeric COMPUTATIONAL data
— Word fixed binary
— Longword fixed binary
— Quadword fixed binary
= Packed decimal data (COMPUTATIONAL -3)
— Unsigned packed decimal v
— Signed packed decimal
* Floating-point data
— F_floating (COMPUTATIONAL -1)
— D_floating (COMPUTATIONAL -2)
= Alphanumeric DISPLAY data
— Alphanumeric -
— Alphabetic
— Alphanumefic edited
= Address data
— Pointer

VAX DIBOL

VAX DIBOL (Digital Interactive Business Oriented Language) is a high-level,
procedural language designed specifically for interactive data processing in the
business environment. It takes full advantage of the VMS system’s facilities.

3-31

VAX DIBOL is based on the DIBOL Standards Organization’s DIBOL -83 defini-
tion of the language. VAX DIBOL is highly compatible with DIBOL -83 imple-
mentation on other operating systems.

VAX DIBOL consists of a DIBOL compiler, a sharable runtime library, a program
debugging aid called the DIBOL Debugging Technique (DDT), and a set of

utility programs that facilitate data handling, data storing, and interprogram
communication.

Features of VAX DIBOL

= VAX DIBOL s ease of use, extensive functionality, and concise syntax make it
an easy to learn language, which can be used to develop commercial applica-
tion programs quickly and efficiently

= VAX DIBOL ’s debugging facility, DDT , makes debugging applications under
development easy and straight forward

= VAX DIBOL is highly compatible across the following PDP -11 operating
systems:

— CTS300

— RSTS/E

— RSX-11M -PLUS
— MicroRSX

= Migrating DIBOL -83 programs to VAX/VMS from any PDP -11 version of
DIBOL -83 requires minimal effort and expense.

Who Uses VAX DIBOL?
Users of VAX DIBOL include:

* OEM s and end users to create business applications quickly and efficiently in
the following areas:

— Manufacturing
— Aviation
" — General business and operations for cable TV companies
— Medical, dental, and legal billing systems
— General business and control for retail operations

— Accounting

VAX DIBOL provides efficient terminal handling and efficient access to the VAX
Record Management Services (RMS), VMS System Services and Run-Time
Library (RTL). VAX DIBOL conforms to the VAX calling standard, allowing
DIBOL programs to call or be called by routines written in other languages.

3-32 w VAX Programming Languages

DIBOL Language Statements

A DIBOL statement has one or more elements The first element is-an
English-language verb that commands an action to be performed. The remain-
ing elements are either keywords or arguments.

= Keywords modify or supplement the action of the verb.

= Arguments specify the objects of the action. They can consist of symbolic
data names, references to statement labels, arithmetic expressions, or rela-
tional expressions.

DIBOL statements fall into the following functional groups:
= Compiler directive

= Compiler declaration

= Data declaration

= Data manipulation

= Control

= Interprogram communication

= Input/Output

Program Structure

A VAX DIBOL program consists of two major divisions — a data division and a
procedure division. The data division contains the data declaration statements.
These define data characteristics and identify of the data used by the program.
The procedure division contains all of the program statements that implement
the actions or tasks to be performed. The .TITLE compiler directive, for exam-
ple, places headings on a DIBOL program listing to provide clearer program
documentation. The PROC statement separates the data division statements
from the procedure division statements. The BEGIN and END statements pro-
vide a means of “blocking” statements so that a group or block of statements
can be used whenever a single statement is legal (IF-THEN-ELSE or
DO-UNTIL). END can also be used at the physical end of the program, in effect
forming a block of statements whose beginning is the PROC statement.

DATA TYPES - VAX DIBOL allows program data to be stored in numeric (deci-
mal) form, such as numbers used for calculation, or in alphanumerlc (alpha)
form, such as names and addresses.

3-33

SUBROUTINE LIBRARIES — VAX DIBOL ’s external subroutine capability
allows you to develop subroutines to perform special-purpose functions with-
out having to code the routine into each program. The subroutines can be
user-developed or taken from a VAX DIBOL external subroutine library.

VAX DIBOL includes three external subroutine libraries.

* The Universal External Subroutine Library (USEL) includes subroutines that
are available and that perform the same functions on all operating systems on
which DIBOL -83 exists.

= The Operating System Specific Library (OSSL) includes subroutines that are
available and perform similar functions on one or more of the DIBOL -83
systems.

* The Run-Time Subroutine Library (RTSL) includes subroutines that are
available only in VAX DIBOL and provide functions unique to VAX .

UTILITIES - VAX DIBOL utilities include the DIBOL Debugging Technique
(DDT), a Message Manage utility (DBLMSGMGR),-and. a status utility
(DBLSTATUS).

= DDT (DIBOL Debugging Technique) — is a program debugging aid that
allows you to examine and/or change program data at run-time, to set
breakpoints at various places in the program, and to examine the flow of exe-
cution throughout the program.

DBLMSGMGR (DIBOL Message Manager) — stores and retrieves messages
for DIBOL programs that use the SEND and RECV statements. Messages can
be sent to programs that are running concurtently with the sending program
or to programs that run subsequently. The sending program designates the
name of the program that is to receive the message and optionally, the termi-
nal number on which the receiver will be running. The receiver retrieves the
message by executing a RECV statement.

» DBLSTATUS (DIBOL Message Status) — allows you to examine and option-
ally delete any messages currently being held by the Message Manager.

Operating Procedures

After a DIBOL source program is created and edited, it is compiled by the
DIBOL compiler. The DIBOL compiler generates binary operation codes that
are linked into-an image. They are then interpreted and executed at run time by
the DIBOL RTL interpreter. , .

When executable programs are run, the operation codes are executed by the
DIBOL run-time library interpreter, and the program output is produced.

3-34 w VAX Programming Languages

Compilation and the DIBOL Compiler
The DIBOL compiler reads DIBOL source files and produces linkable object
files. , :

In addition to producing object files, the compiler detects and reports syntax
errors, and can produce a listing file that contains:

= A listing of the source program

= A table of variable names used in the program (symbol table)
= A table of label names used in the program (label table)

= A report of the number and type .of errors that were encountered during
compilation

= The error listing

* A cross-reference listing

Contents of the Listing File
The listing file consists of:

= The program listing
* The symbol table
= The label table

* The cross-reference listing

THE PROGRAM LISTING - The program listing consists of the original
source code with line numbers prefixed to each DIBOL statement, with the
exception of certain compiler directives, continuation lines, blank lines or com-
ment lines.

Line numbers are used in the symbol table, the label table, and the
cross-reference listing to identify the location of variable names and label
names. Line numbers are also useful in debugging (DDT) and error trapping at
run-time.

For each error detected during compilation, an error message appears in the
line-numbered listing. Each message appears immediately after the line in
which the error is detected.

THE SYMBOL TABLE - The symbol table contains descriptive information on
each variable in the source code. The table consists of information on the name
(NAME) of data fields used by the program, the data type (TYPE) of the field,
the number of data elements in the field (DIMENSION), and the number of
characters (SIZE) required to store the field.

3-35

THE LABEL TABLE - The label table contains descriptive information on
each label name and external subroutine name in the source code. The table
consists of the name (NAME) of each label that is used by the program and
the line number (LINE) of each label definition. v

THE ERROR LISTING - This report contains a list of the type and number bf
errors that were detected during compilation.

THE CROSS-REFERENCE LISTING - If the CROSS_REFERENCE option is
selected, five additional tables are generated.

= The symbol cross-reference table
= The COMMON cross-reference table
* The label cross-reference table

= The external subroutine reference table

® The external symbol table

VAX DSM

VAX DSM (Digital Standard MUMPS) is a multiuser data management and lan-
guage processing system. The DSM language is a high-level, interpretive lan-
guage well suited for the processing of variable-length string data. It conforms
to the American National Standard MUMPS specification X11.1-1977. In addi-
tion, it provides a number of extensions.

Features of VAX DSM
= Highly interpretive, procedural language

= Requires no compilation

= DSM precompiler optimizes execution of routines

= Part of the Digital common language environment

= Provides system and library utilities, written'in the DSM language

Who Uses VAX DSM?
Users of VAX DSM include:

= Medical Institutions
* Banks and Brokerage firms
* Manufacturing facilities

* Any organization that has a need for a high-performance, data management
system.

3-36 » VAX Programming Languages

Interpretive processing of the language meanis that each line of a DSM routine is
executed as it is entered. Routines written in the DSM language do not have to
be compiled or linked, making it easier to write, debug, edit, and run a job in
one interactive session.

As DSM program lines are entered, the DSM interpreter examines and analyzes
each DSM statement and executes the specified operation. It performs error
checking during the routine execution and reports all errors at the terminal.
This reduces problem-solving time, the computer time required to check the
routine, and more importantly, the time required to check the routine, and most
importantly, the time required to obtain a final running application.

The DSM language has many capabilities, but its basic orientation is procedural.
The language is directed primarily toward the processing of variable-length
string data, making interactive database systems easier to implement and
maintain. '

Data Management
The DSM language allows you to reference data symbolically through variables.
A variable can contain either a numeric value or an alphanumeric string.

The VAX DSM system utilizes local and global variables. Local variables are
defined solely for the current user (or process). Local variables are not intended
for permanent storage, but only for temporary use during the life of a process.

Global variables, or simply globals, are stored on disk. Globals are referenced
symbolically using names similar to those of local variables, the only difference
being the circumflex preceding the first character in the variable name. Sub-
scripted globals form a system of arrays stored on disk, the data of which forms
a common database that can be made available to one or more users in the
system. '

Global arrays are sparse arrays; that is, the system dynamically adds nodes to
the array as a user stores data in them, and deletes nodes as a user deletes them.
Thus you never have to preallocate space for globals through dimensioning, nor
do they have to explicitly recover disk space when they delete data.

VAX DSM provides a high performance multiway tree structure for the imple-
mentation of global variables handled by a component referred to as the Global
Module. This Global Module is implemented as an integral part of the VAX
"DSM product. Alternatively, you can specify individual globals for storage in
VAX RMS ISAM files. Specifying the default and individual globals list is done at
the time the structure is created or any time the structure is not active. Subse-
quent data storage happens transparently at the program level. If you choose,
VAX RMS ISAM can be selected as the default and individual globals specified
will be directed to the Global Module.

3-37

Globals residing in VAX RMS ISAM files can be accessed by DECnet and other
VAX/VMS languages. Globals maintained by the Global Module are accessible
by VAX DSM only. VAX DSM provides the necessary utilities and IO language
elements needed to transfer data stored in a global structure.

The Global Module provides high throughput due to caching of disk blocks.

In general, global arrays are treated syntactically in the DSM language just as
local arrays. To create a global array, the SET command is issued. To access and
manipulate its contents, any number of commands and functions in the DSM
language set are used. To delete a global node, the KILL command is issued. To
delete the entire global array, its root node is killed.

This arrangement eliminates the need to be concerned with the physical struc-
ture of files when designing a database application (as is the case with some
database systems). Using globals, you need be concerned only with the logical
relationship between elements of a database.

The PRECOMPILER

The VAX DSM system provides a language PRECOMPILER to optimize the exe-
cution of DSM routines in an application environment. The PRECOMPILER is a
component of the DSM interpreter that processes all DSM program lines into a
more efficient, intermediate format, called a precompiled format, in order to
expedite subsequent interpretation.

When you store a routine, the system places both the source and precompiled
versions in the DSM routine directory. For a given routine version, the precom-
pilation procedure occurs only once. When you execute a routine from the
directory, the VAX DSM system automatically loads the precompiled version.

Because the system saves both routine versions, you can always load, edit, and
test DSM routines interactively. The precompilation procedure is repeated if a
routine is edited or updated.

The VAX DSM PRECOMPILER transforms DSM program lines into precom-
piled format with the following optimizations:

» It strips comments.

= It checks syntax.

= It sets up an internal table for line labels used to optimize GOTO statements
and DO statements that transfer control to other routine lines.

» It evaluates constants and transforms numbers into an internal representation
(that is, packed decimal or longword).

= It converts arithmetic statements into “Reverse Polish Notation.”

= It restricts the evaluation of a series of postconditionals to the occurrence of
the first false condition. To do this, the PRECOMPILER generates codes that
specify the appropriate offset to a given instruction.

3-38 w VAX Programming Languages

Procedure Calls

The VAX DSM system allows you to access services that are not part of the DSM
language through a Digital-implemented extension to Standard MUMPS, called
the $ZCALL function. Through $ZCALL, you can call VMS system services, rou-
tines in the VAX Common Run-Time library, or routines written in other lan-
guages directly from DSM application routines. For example, the DSM language
does not include a square root function: The function is in the Digital Run-Time
Library, and can be called through the procedure calling mechanism.

I/0 Options

The VAX DSM system provides a subset of the Input/ Output (I/0) options of
the VMS operating system. Each of these options can be accessed through com-
mands in the DSM language set. You can access any VAX/VMS supported device
through commands in the DSMlanguage set.

The VAX DSM system provides an mterface to VMS I/O handlers according to
device type. Terminal I/O and communication through mailboxes is handled by
the VMS Queue I/O service, whereas /O to all other devices is performed
through VAX RMS. This allows you to access RMS sequential, relative, and
indexed files, besides, global variable files they access DECnet software.

Shared Memory Areas

The VAX DSM system supports a high degree of code and data sharing through
the use of VMS memory sections. Mapping-a set of precompiled DSM routines
in a virtual memory section improves the performance of a DSM- application
because the system does not have to access DSM routines stored on disk.
Instead, it can execute the routines directly from virtual memory. - -

VMS memory sections can be either private or shared. If shared; they-are called
global sections. Global sections can be created dynamically by.a process or they
can be permanently present in the system. Permanent global sections are gener-
ally created from routines to which a number of users require access. When a
group of routines or an application is installed in a global section, all users share
the same copy of precompiled DSM routines. At run time, a copy of this set of
routines is mapped into the virtual address space of requesting process.

~ The DSM Job Controller .
The DSM Job Controller is a separate process that manages interlock requests
by multiple DSM user processes. It also allows system wide control over the
running of DSM applications, prov1d1ng functions such as enabhng and disa-

bling journaling.

Communication between a VAX DSM process and the DSMJob Controller takes
place through mailboxes.

3-39

The VAX DSM system provides you with the option to use or to bypass the DSM
Job Controller at DSM image activation. Work that does not affect a common
database — typically program development — can bypass the job controller.
Whenever you and another user are running a DSM application, interlocking
requires the use of the DSM Job Controller.

Journaling

Journaling is a means of keeping a record on secondary storage (disk or mag-
netic tape) of transactions that alter the database (for example, global variable
SETs and KILLs). VAX DSM journaling is handled by a separate process commu-
nicating with DSM users through mailboxes.

VAX DSM provides a number of journaling options to meet the needs of a sys-
tem running multiple applications. Depending on the options selected, there
can be one or more journal processes. One journal process can be run for each
group in the system, for a number of groups in the system, or for the entire
system.

System and Library Utilities ‘

VAX DSM includes a number of utility routines written in the DSM language.
These routines help you develop and maintain applications, and help the sys-
tem manager control the running of DSM applications.

The utilities are divided into two categories — library and system utilities.
Library utilities perform general services in three categories: procedures affect-
ing routines, globals, and miscellaneous operations, such as numeric conver-
sion. System utilities perform services in the areas of journaling and job control
and other maintenance operations and system information.

Generally, the system and library utilities are accessed through a menu-driven
utility package. Most utilities in the package are interactive. Most utilities also
provide extensive online documentation that explainshow to use them.

VAX FORTRAN

VAX FORTRAN language specifications are based on American National
Standard FORTRAN X3.9-1978 (commonly called FORTRAN-77). The VAX
FORTRAN compiler supports this standard at the full-language level. Also, it
provides full support for many industry-standard FORTRAN features based on
FORTRAN-66, the previous ANSI standard: The qualifier /NOF77 will select the
FORTRAN-66 behavior where the two standards conflict.

3-40 = VAX Programming Languages

The VAX FORTRAN compiler:
= Produces highly optimized VAX object code
= Makes use of the VAX floating point and character string instructions

= Produces shareable code and the compiler is shareable

Features of VAX FORTRAN

. Sﬁpport.for all VAX RMS file formats -
= Many I/O extensions

= Efficient character data handling

= INCLUDE statement)

= External function and procedure calls

= Shareable programs

= Thorough optimization

= Record structure and Common Data Dictionary support

Who Uses VAX FORTRAN?
» Scientific users
= Technical users

= Educational users

* Realtime application writers..

Language Characteristics

CALLING EXTERNAL FUNCTIONS AND PROCEDURES - FORTRAN pro-
grams can call subroutines and functions written in other VAX native-mode lan-
guages and system services. Special operators exist for passing argument values
directly, by reference, or by descriptor. A special operator also exists for
obtaining the argument values used by the system services procedures.

SHARED PROGRAMS - The FORTRAN language can be used to create share-
able images, which can be used by any program written in a native program-

ming language.

3-41

DIAGNOSTIC MESSAGES - Diagnostic messages are generated when an error
or potential error is detected. Errors detected during compilation are reported
by the compiler, and include source program errors, such as misspelled variable
names, and missing punctuation marks.

Source program diagnostic messages are classified according to severity: F
(Fatal), E (Error), or W (Warning). F-class messages indicate errors that must be
corrected before compilation can be completed. Object code is not produced.
E-class messages indicate that.an error was detected. that is likely to produce
incorrect results; however, an object file is generated. W-class messages are pro-
duced when the compiler detects acceptable but nonstandard syntax; or when
it corrects a syntactically incorrect statement. The message indicates the exis-
tence of possible trouble in executing the program.

The VAX FORTRAN compiler optionally produces diagnostic messages for VAX
FORTRAN extensions to ANSI FORTRAN-77. This flagger can check both syn-
tax and source form extensions.

DEBUGGING FORTRAN PROGRAMS - The VAX FORTRAN language pro-
vides facilities to aid the debugging of programs written in native mode. It
accomplishes this via a program known as the interactive symbolic debugger.
The debugger can be linked with a native program image to control image exe-
cution during development. It can be used interactively or can be controlled
from a command procedure file. The debugging language is similar to the VMS
command language. Expressions and data references are similar to those of the
source language used to create the image being debugged.

Debugging commands include the ability to start and interrupt program execu-
tion; to step through instruction sequences; to display source statements; to call
routines, to set break or trace points; to set default modes; to define symbols;
and to deposit; examine, ot evaluate virtual memory locations.

COMPILER OPERATIONS AND OPTIMIZATIONS - The VAX FORTRAN
compiler accepts sources written in the FORTRAN language and produces an
object file which must be linked prior to execution. The compiler generates
VAX native machine language code. It will also generate an optional
cross-reference listing.

During compilation, the compiler performs many code optimizations. The
optimizations are designed to produce an object program that executes faster
than an equivalent nonoptimized program. Also, the optimizations are
designed to reduce the size of the object program.

3-42 w VAX Programming Languages

The VAX FORTRAN compiler performs the following optimizations:

= Constant folding — constant expressions are evaluated at compile-time.
p p.

= Compile-time constant conversion.

* Compile-time evaluation of constant subscript expressions in array

calculations.

Constant pooling — only a single copy of a constant is allocated storage in the
-compiled program. Constants that can be used as immediate mode operands
are not allocated storage. For example, logical, integer, and small float-
ing-point constants are generated as immediate mode or short literal oper-
ands wherever possible.

= In-line expansion of statement functions.

Argument list merging — If two function or subroutine references have the
same arguments, a single copy of the argument list is generated.

Branch instruction optimizations for arithmetic logical IF statements.

Elimination of unreachable code — An optional warning message is issued to
mark unreachable statements in the source program listing.

Recognition and replacement of common subexpressions.

» Removal of invariant computations from loops.

Local register assignment — Frequently referenced variables are retained
(when possible) in reglsters to reduce the number of load and store
instructions.

Assignment of frequently used variables and expressxons to registers across
loops.

= Reordering’ expresslon evaluation to minimize the amount of temporary reg-
isters required. :

= Delaying negation/not to ehmmate unary complement operatlons

Flow-Boolean optimizations. -

Strength Reduction — Multiply operatioﬁs used in array indexing are
reduced to adds. Efficient Auto Increment and Auto Decrement address
modes are used wherever possible.

» Jump/Branch instruction resolution' — The Branch instruction is used wher-
ever possible to eliminate unnecessary Jump instructions, This reduces code
size.

Peephole optimizations — The code is examined on an opera-
tion-by-operation basis to replace sequences of operations with shorter and
faster equivalent operations.

3-43

When debugging FORTRAN programs, you can disable optimizations that
would remove not-referenced statement labels, FORMAT statement labels,
and immediately referenced labels. This ensures that all statement labels are
available to the debugger.

VAX LISP

For over 20 years, LISP has been one of the fundamental tools used in Artificial
Intelligence (AI) research. The LISP (“LIS’t “P’rocessing) programming lan-
guage is based on a paper, published in 1958 by John McCarthy, dealing with
non-numeric computation. It differs from the majority of higher-level program-
ming languages in that LISP programs do not use numeric computation as a
basis for program execution, (although it does support facilities for numeric
computation).

LISP is particularly useful for the manipulation of symbolic data. Symbols can
be thought of as words; lists of symbols are then equivalent to sentences or
statements. Because LISP’s symbolic processing and knowledge representation
capabilities can be easily used to represent human thought patterns and associa-
tions, the LISP programming language has become an essential tool for Artifi-
cial Intelligence researchers as they atternpt to make computers simulate human
behavior and thought.

LISP is also a great general-purpose language used for in a wide variety of appli-
cations. Any imaginable type of program be written in LISP; entire operating
systems have been written in LISP.

Features of VAX LISP
VAX LISP, an implementation of Common LISP, is an extremely important dia-
lect of LISP. VAX LISP provides you with:

= Common LISP compliance

= Rich set of data types and functions

= VMS integration

= Fully interactive interpreter

= Compiler
* Dynamic linking

* Lexically scoped variables

= LISP-sensitive editor

= Program debugging facilities

= LISP program-formatting utility

3-44 = VAX Programming Languages

COMMON LISP COMPLIANCE

Common LISP is rapidly becoming the de facto standard for the LISP program-
ming language. Major cotporations and government agencies are moving
quickly to standardize on this dialect.

VMS INTEGRATION

VAX LISP can be integrated with VMS. There is no need for you to abandon or
convert software written in other VAX languages. Programs written in VAX LISP
can call non-LISP routines that conform to the VMS calling standard. LISP pro-
grams can access RMS, DATATRIEVE, VAX DBMS and VAX Rdb/VMS, VMS utili-
ties and VMS system services. It can also access your software that conforms to
the calling standard.

LEXICALLY SCOPED VARIABLES

The VAX LISP compiler and the interpreter both generate code which executes
identically. Earlier implementations of LISP frequently included compilers
whose semantics differed from those of the interpreter.

LISP EDITOR

VAX LISP provides its own language-sensitive editor with multiple window
capabilities. Since the editor is written in LISP, it is readily extensible. You can
define new editor functions in Lisp and bind them to keyboard keys.

DEBUGGING FACILITIES

A full set of LISP debugging utilities are included. These utilities are integrated
by a common command interface. The LISP debugger allows, for example,
examination of the state of a running program, including the stack, variables
and functions. A stepper allows you to step through the execution of a pro-
gram, one line at a time. The trace utility allows the automatic display of func-
tion calls and returns during program execution.

Who Uses VAX LISP?
VAX LISP is used in the artificial-intelligence market place by:

= The research community — Investigators of human intelligence

* OEM’s and software houses — Creating artificial intelligence applications for
sale to end users

= Industry and government — Using the technology for internal applications

3-45

Using VAX LISP
This section provides a general introduction to the use of VAX LISP. The follow-
ing topics are covered:

= Invoking LISP

* Using command levels

= Controlling input

= Creating programs

INVOKING LISP

You invoke an interactive VAX LISP session by typing the DCL command LISP.
When it is executed, a message identifying the VAX LISP system appears and the
LISP prompt is displayed. To exit, enter (EXIT) and you will be returned to the
DCL command level.

USING COMMAND LEVELS

VAX LISP gives you various time saving and ease-of-use facilities. One of the
most important of these, the top level read-eval-print loop, provides the basic
means to write and execute programs. In addition, VAX LISP also offers a break
loop, and debugger and stepper facilities. When any of these facilities is
invoked by means of a function call, an error, or some other event, it establishes
a “command level” A command level represents a point of interaction between
you and the program and is assigned a number. The highest numbered levels
represent the current level of interaction between you and the program, while
the lower-numbered levels represent interactions that have been temporarily
suspended. Nothing prevents the same facility from being invoked more than
once. There can be multiple command levels representing the same facility. For
example:

Lisp» (break)

break 1> (+ *counter* 1)

Fatal error in function SYSTEM::%ZEVAL (Signaled with ERROR).

Svmbol has no value: *COUNTER#*

Control Stack Debugger
Frame #7: (EVAL (describe *counter¥))
DEBUG 2> (BREAK)

BREAK 3> (describe *COUNTER%)

3-46 = VAX Programming Languages

Fatal error in function SYSTEM::ZEVAL (sidnaled with ERROR).

Symbol has no value: *COUNTER#*
Control Stack Debusgder

Frame #19: (EVAL (describe %*counterx))

Debud 4> +.ous

In this example, you invoke a break loop and make an attempt to use the special
variable *counter®, which has no value, causing the debugger to be invoked.
Then you can invoke another break loop and accidentally make the same mis-
take again; causing another debugger level to be invoked.

CONTROLLING INPUT

When using VAX LISP, expressions are entered one line at a time. Once you
move to a new line, you cannot go back to the previous line. However, you can
recover an input expression or an output value by using one of ten unique vari-
ables (see Common LISP- THE LANGUAGE for a detailed description of each).

The following example illustrates the use of the plus sign (+) variable that is
bound to the expression most recently evaluated:

Lisp> (cdr ‘(a b c)

(6 ©

Lisp> +

(CDR_(QUOTE (ABC)))

Lisp¥

You can use the <DELETE>> key and several control characters on your termi-
nal keyboard to control input. The <DELETE> key allows you to delete chat-
acters that are to the left of the cursor on the current line of input.

CREATING PROGRAMS

The most common way of creating a LISP program is as a source file with a text
editor. The program is loaded into the LISP environment by means of the LISP
LOAD function.

3-47

Although you can compose source programs with any text editor, the VAX
LISP Editor provides facilities that help you enter and edit LISP source code.
For example, the editor helps you balance parentheses and maintain proper
indentation. Furthermore, this editor, being integrated into the LISP envi-
ronment, can be extended to fit your personal editing style, and can also be
used to evaluate code without leaving the editor. You can go back and forth
between the editor and:the read-eval-print loop at will.

Another way to create LISP programs is to define them using the interpreter in
an interactive LISP session. If you define functions with DEFUN and macros
with DEFMACRO, the definitions immediately become part of the interpreted
LISP environment. You can then invoke your defined functions and macros.
However, since these definitions are not in a permanent text file, your work is
stored only temporarily and disappears when you exit VAX LISP, unless you use
the editor to write the function definition out to a file. Entering programs by
means of the interpreter is most useful for experimenting with small functions
and macros.

The following definition of the FACTORIAL function is an example of a LISP
program. It can be written in the following format in a file or in an interactive
LISP session:

(defun factorial (n)

(if (<= n 1) 1

(# n (factorial (- n 1)))))

(defun) indicates this example is a function definition. (factorial) is the name of
the function. (n) is the argument list; that is, (factorial) takes one argument, n.
When (factorial) is called, the code following the argument list is evaluated and
the last result computed is returned as the value of the function.

3-48 w VAX Programming Languages

VAX PASCAL

VAX PASCAL is a multipass, optimizing compiler that is a powerful superset of
the PASCAL language as defined by Jensen and Wirth in PASCAL User Manual
and Report (1974). VAX PASCAL accepts programs that are compatible with
either the ANSIIEEE 770X3.97 standard or the ISO standard.(DIS 7185).

PASCAL'’s block structured nature, flexible data types and English-like state-
ments result in significant ease-of-use benefits. These benefits include ease of
program generation and ease of reading, modifying, and maintaining programs.
VAX PASCAL offers the incremental capability of creating a productivity envi-
ronment in which many programmets can work simultaneously, and relatively
independently, on the same project.

Features of VAX PASCAL
Standard PASCAL provides a modular, systematic approach to computerized
problem solving. Major features of the language are:

« INTEGER, REAL, CHAR, BOOLEAN, enumerated, and subrange data types
» User-defined data types

= ARRAY, RECORD, SET, and FILE structured data types

* Constant identifier definition

= FOR, REPEAT, and WHILE loop control statements

= CASE and IF-THEN-ELSE conditional statements

* BEGIN...END compound statement :

= GOTO statement
= GET, PUT, READ, WRITE, READLN, and WRITELN I/O procedures

Who Uses VAX PASCAL
Users of VAX PASCAL include:

= Educational institutions for training

s Industry

= System’s engineers

= Writers of business applications

3-49

The VAX PASCAL language takes advantage of the VAX hardware floating
point, character instruction sets, and virtual memory capabilities of the VMS
operating system. Features common to other languages of the VMS operat-
ing system are available through the VAX PASCAL language including:

= VAX symbolic debugger support

= Separate compilation of modules

= Standard call interface to routines written in other languages

= Access to VMS system services

= Access to all RMS file organizations
= Access to CDD data declarations

= VAX Language-Sensitive Editor Support

At compile time, options available to the process include:

= Run-time checks for illegal assignment to set and subrange variables, illegal
array and string subscripts, illegal case selectors, integer overflow, and illegal
pointers

= Cross-reference listing of identifiers

= Source program listing
= Machine code listing

In addition to the features mentioned above, the VAX PASCAL 1anguage'incor-
porates the following extensions to standard PASCAL, some of which are com-
mon in PASCAL implementations:
= Lexical
— Uppercase and lowercase letters are treated identically except in charac-
ter and string constants
— New reserved words: MODULE, OTHERWISE, VALUE, REM, a%REF,
%DESCR, %IMMED, %INCLUDE, and %STDESCR

— The exponentiation operator, **

— Concatenation operator +

— Hexadecimal and octal constants

— DOUBLE constants

— $ and (underscore) characters in identifiers

3-50 = VAX Programming Languages

= Predefined data types
— DOUBLE
— SINGLE
— QUADRUPLE
— VARYING character strings
«— ~UNSIGNED
» Predeclared routines
— /O (OPEN, CLOSE; RESET, REWRITE, EOF, EOW, STATUS, ...
— Arithmetic (ABS, SQR, SIN, COS,...) ' o
" — Ordinal (PRED, SUCC)
— Boolean (ODD,UNDEFINED)
— Transfer (CHR,DBLE,INT,ORD,...)
— Dynamic allocation (ADDRESS, NEW, DISPOSE)’
— Character string manipulatiqn (INDEX, LENGTH, SUBSTR, PAD,...)
— Unsigned (UAND, UNOT, UOR, UXOR) '
— Allocation size (SIZE,NEXT,BITSIZE, BITNEXT)
— Miscellaneous (CARD, CLOCK, DATE, EXPO, HAIT,...)
* Other extensions
— READ (or READLN) of user-defined ordinal type
— READ (or READLN) of string »
—. WRITE (6r \X/'RITELN) of user-defined scalar type

— WRITE (or WRITELN) of any data using binary hexadecimal or octal
format

— %INCLUDE directive

— VALUE initialization

— OTHERWISE clause in CASE statement

— External procedure and function declarations

— Conformant array parameters

— Optional attribute specification on types, variables, routines, and compi-
lation units ; ;

351

= Separate compilation

— A MODULE capability for combining procedures, functions, and other
declarations for compilation apart from the main program

— ENVIRONMENT and INHERIT attributes to control separate and inde-
pendent compilation

— External variable, procedure and function declarations

The OPEN, CLOSE and FIND procedures extend the I/O capabilities of the PAS-
CAL language. The OPEN procedure can contain file attributes that define the
creation or subsequent processing of the file. A FIND procedure is another
extension to the language for direct access to sequential files of fixed length
records. The standard I/O procedures of GET, PUT, READ; WRITE, READLN
and WRITELN are also available in the VAX PASCAL language.

The extended parameter specifications %DESCR, %IMMED, and %STDESCR
are added to the Pascal language to denote the method of argument passing
when calling a system service, procedure, or function in other VAX Languages.

CIDENT (’1-01‘)] PROGRAM Setddir (OUTPUT);

(# This pProdgram calls the RMS procedure $SETDDIR to *)
(# chande the default directory for the Process. *)

TYPE
Word-_Inteder = [WORD] 0..,655353

VAR
Dir__Status .: INTEGERS

FUNCTION SYS$SETDDIR (

New_Dir : [CLASS_S1 PACKED ARRAY [1,.u:INTEGER] OF CHAR3
Old_Dir_Len : Word_Inteder := %ZIMMED 03}
0ld_Dir : VARYING [1im2] OF CHAR := ZIMMED 0)

: INTEGER§ EXTERNS
BEGIN (* main Program *)
Dir_Status := SYS$SETDDIR (’[COURSE.PROG.PAS1‘)j
IF NOT ODD (Dir_Status)
THEN
WRITELN (’Error in SYS$SETDDIR call.’)}

END., (% main Prodram %)

Figure 3-11 = Sample VAX PASCAL Program Listing

3-52 w VAX Programming Languages

VAX PL/I

VAX PL/I is an extended implementation of the General Purpose Subset
(X3.74-1981, “Subset G”) of ANSI PL/1, X3.53-1976. PL/I was designed to be
useful in scientific, commercial, and system programming, especially on small
and medium-sized computer systems. The goals of the design of Subset G were
to include features that are easy to learn, easily portable from one computer
system to another, and to exclude seldom used features that increase runtime
complexity.

Features of VAX PL/I
VAX PL/I provides:

= The VAX PL/I compiletime preprocessor allows language extension and con-
ditional compilation.

= Control constructs, including DO loops, IF-THEN ELSE, BEGIN-END,
LEAVE, SELECT-WHEN-OTHERWISE, and CALL statements add power to
program control.

» Full PL/I features include AUTOMATIC initializations, AREA (user allocation),
OFFSET, scalar assignment to arrays, the REFER structure, the ENTRY state-
ment, and the LIKE attribute.

= A full complement of VAX data types.

= Block structuring of code reduces the cost of program development and
support.

= Access to the Common Data Dictionary.

= Full Support for the VAX Symbolic Debugger and Language-Sensitive Editor.

Who Uses VAX PL/1

= The general-purpose market — has a wide range of features that appeal to a
general audience.

= Commercial applications writers — because of its data manipulation and
structuring capabilities; an alternative to COBOL.

= Educational market — frequently taught at the university level.

* Implementation language — for commercial and scientific applications.

= System programming — current standards enforce portability.

VAX extensions to Subset G provide additional language features that allows
you to take advantage of the facilities of the VAX/VMS operating system and its
components.

3-53

Extensions provided in the VAX PL/I language include selected features of the
full PL/1language that were excluded from subset because of their implementa-
tion cost on computers with restricted memory and/or address space.

You can either restrict their programs to Subset G — compatibility with other
implementations of the Subset G — or they can take advantage of the full PL/I
features and VAX extensions in programming applications.

Applications

DATA PROCESSING - Data processing applications can take advantage of the
extensive character handling functions and data structuring capabilities of the
PL/1language. By declaring variables within a structure, the program can easily
refer to entire records or to fields within records by referencing the name of the
structure or the name of a variable within it.

In addition, the VAX PL/I language provides extended access to the features of
VAX Record Management Services (RMS). By specification of ENVIRONMENT
options or special options supplied for input/output statements, PL/I programs
can dynamically specify RMS optimization parameters and values, spool a file to
a printer or batch job queue, and set or change the protection on a file.

The VAX PL/I language supports all RMS (Record Management Services) file
organizations, including sequential, relative, and indexed sequential. It also pet-
mits block-mode input/output operations. Using PL/I statements; a program
can read, write, delete, and update records. Using built-in file handling func-
tions provided by the VAX PL/I language, a program can call RMS file handling
services to forward space or backward space a file or volume, to increase the
allocation of a disk file, or to obtain information about the properties of a file.

VAX PL/I also supports the VAX Common Data Dictionary, allowing record
descriptions to be stored in and retrieved from the CDD.

SCIENTIFIC - Scientific applications can use the PL/Iarray-handling capabili-
ties to define arrays of up to eight dimensions. Common arithmetic and trigono-
metric functions are defined within the language. The VAX PL/I language
supports all of the VAX hardware’s floating-point data types.

SYSTEM PROGRAMMING - System programming applications can use PL/I
language features to allocate storage dynamically, process linked lists and
queues, and perform a wide range of bit string functions and operations.

In addition, VAX extensions to the language provide a simple means to refer to
VMS system global symbols and data structures. VAX PL/I programs can take
advantage of the VAX linker’s allocation of storage by defining variables eitheras -
read-only or as global symbols.

3-54 w VAX Programming Languages

Full access to all of the VAX/VMS operating system’s services and procedures is
possible through VAX PL/I extensions to support the VAX Calling Standard.
Procedures written in the PL/Ilanguage can call and be called by procedures
written in-any other native mode language.

Error and Condition Handlmg

VAX PL/I compiler generates information in the object module of a PL/1 proce-
dure, so that when an error occurs at run time, the VAX condition handling
facility can report the error and provide a module traceback.

Within the PL/I language, extensive condition handling capabilities are availa-
ble via the ON statement, which allows a program to define the action to take in
the event of hardware arithmetic exceptions and errors that occur during file
processing.

VAX extensions to the ON statement permit the specification of condition han-
dlers for any specific hardware or software condition that can occur.

Debugging Facilities

The PL/I compiler generates useful diagnostics that signal syntactical errors and
language violations. Most compiler messages are two or three lines long and
explain on how to correct the indicated error.

The VAX Symbolic Debugger supports symbolic, source line debugging of PL/I
programs. You can set breakpoints in PL/I programs, examine and change vari-
ables, examine program source code, and monitor the calls and function refer-
ences that occur.

Libraries .
The VAX PL/1 language is fully compatible with the VAXRuntime Library and
provides additional runtime procedures for language support.

Source file library support is provided by the %INCLUDE statement, which
allows a program, specified at compile time, an external file from which source
statements are to be read. Included files can also be collected in VMS text file
libraries. The VAX PL/I compiler searches specified libraries for the names of
the modules included.

Performance

The VAX PL/I compiler is a sharable, VMS image that can be run on any
supported VAX/VMS. configuration: It produces optimized, sharable, VMS
object code that is runtime compatible with other VAX languages.

You control the degree of optimization performed by the compiler at compile
time, by qualifiers on the PL/I command. -

The VAX PL/I Runtime Library is a sharable image, allowing for efficient linking
of PL/1 programs and better utilization of system resources.

3-55

Programming Example

The following program example obtains data about state flowers from a data
ile, STATEDATA.DAT and makes use of an INCLUDE file, STATE.TXT. The
10tes keyed to the sample program appear in the figure below.

/% METRIC CONVERSION PROGRAM %/
CONVERT: PROCEDURES
DECLARE (INVALUE ,OUTVALUE) FIXED DECIMAL (10,2)
(INUNIT,OUTUNIT) CHARACTER(2) 3§
DECLARE UNITS (B:2) CHARACTER (2) STATIC INTERNAL <<13>>
INITIAL ¢ ‘in’s’cm’ cm sfin /Pty 'm
P mi’ T Km’ y Km Y ami
DECLARE FACTORS (6) FIXED DECIMAL (10,2) STATIC <<{2>>
INITIAL (2,54+0,39+0,30+3,28+1+61+0,62)3
DECLARE INDEX FIXED BINARYS

ON ENDPAGE (SYSPRINT);

INDEX = 13
DO WHILE (INDEX “=0)} -
PUT SKIP LIST (‘Enter conversion mode:’)3
PUT SKIPS :
PUT SKIP LIST
PUT SKIP LIST
PUT SKIP LIST
PUT SKIP LIST
PUT SKIP LIST
PUT SKIP LIST
PUT SKIP LIST
PUT SKIPj
PUT SKIP LIST (‘mode 3 /)3
GET LIST (INDEX)§ <<3»%
IF INDEX = O THEN DO}
IF- (INDEX > 0) & INDEX < 7) THEN DO3 <<4>>

PUT SKIP LIST (‘Enter value to convert:)i

GET LIST (INVALUE)S3

OUTVALUE = -INVALUE * FACTORS(INDEX)3§ <<5>>

INUNIT = UNITSCINDEX1)35

OUTUNIT = UNITSCINDEX2)3

PUT SKIP LIST (INVALUE: INUNIT,

‘= ‘ DUTVALUE» OUTUNIT) <>

- inches to centimeters’)}
- centimeters to inches’)3
- feet to meters’);i

meters to feet’)s

- miles to Kilometers’)s$

- Kilometers to miles’)3

- exit’)i

S OmU B WM
i

END3
ELSE PUT SKIP LIST(‘Invalid code - retrv’)i
END3
RETURN 3
END3
<<1»> Unit stores the abbreviation for the measurement unit,

{{2»» Factors stores the conversion factor that will be used to convert
from each specified unit to the desired unit.

{{3»» Read in the conversion code.
<<43> Check to see that a value code was specified.
{<{5»> Perform the conversion.

<> Print out the results.

Figure 3-12 = A sample PL/1 Program Listing

3-56 = VAX Programming Languages

VAX RPGII

RPG (Report Program Generator) is a powerful, business-oriented language
specifically oriented toward generating a wide variety of simple and complex
business reports. RPG is.a partially nonprocedural language, and is therefore
not suited to all business applications. However, where it’s appropriate, RPG
can significantly increase your productivity and greatly improve turn-around
time for generation and file maintenance application development cycles.

RPG II is an enhanced version of RPG, which was developed by International
Business Machines Corporation in the eatly 1960s.- RPG Ilincorporates a wide
variety of additional features not present in the original RPG, and provides extra
advantages in simplicity, ease-of-use, and power. RPG IT has become a popular
and widely used business application language. It is the primary language for
many small business users.

The VAX implementation of RPG IT has been extended and enhanced to operate
within the context of the VAX architecture, and to take advantage of the special
features and capabilities of that architecture.

Features of VAX RPG IT
VAX RPG II provides:

= Support of industry standard RPG II specifications

= CALL extensions on the calculation specification

= VAX RPG I editor is tailored to the language structure

= Integration into the VAX Common Language Environment Including:

— Use of RMS for file processing (includingvséquential, relative,indexed
(single and multikey) files)

— Full integration with the VAX DEBUGGER
= Automatic record matching and merging operations for multifile processing
= Multilevel control break handling

= Record identification codes

= Table and array processing

* Field editing features

= Compile and runtime performance comparable to VAX COBOL
= Can call other languages that conform to the VAX calling standard

3-57

Who Uses VAX RPG II?
Users of VAX RPG II include:

= Software houses for commercial application development

= Newspaper/publishing for generation of mailing labels

= Data processing departments in large organizations for report generation

. = Small businesses for multipurpose computing

- = Health care industry for administrative purposes

VAX RPG II runs under the VMS and MicroVMS operating systems. A compiler
and editor are integral parts of the RPG II package. VAX RPG II runtime support
is provided with the base operating system. Therefore, VAX RPG II programs
can run on any VMS or MicroVMS operating system.

The VAX RPG II compiler, using an RPG II source program as input, produces
an object module. That module is input to the VAX Linker, which produces an
executable image. The VAX RPG II compiler optionally produces these develop-
ment and debugging aids:

= Source listing with embedded diagnostics indicating the line and column of
any source code error

= Machine language code listings

= Cross-reference listing

Language Characteristics and Functions

RPG 11 is a language processor that accepts and interprets seven different types
of fixed-format specifications. RPG Il is a partially nonprocedural language; all
specification types, except calculation specifications, describe data to be
processed rather than processing steps. For this reason, RPG IL is best suited to
handle applications that require relatively simple field processing. RPG I also
provides a comprehensive set of sophisticated functions best utilized for these
straight-forward applications.

The general rule for determining whether RPG II should be considered as the
development language for an application is quite simple: the less complicated
the field handling required in the application, the more suitable RPG 11 is for
that application. RPG II greatly enhances your productivity in such cases.

RPG 1l is easy to learn and use because little program logic is required. A single
source statement completely defines a file’s structure; similarly, input and out-
put statements require only a few lines of code. Output records are always made
up of previously defined or edited fields or constants; you need only specify the
desired field name in the output specification, and RPG II performs all necessary
field transfer automatically.

3-58 w VAX Programming Languages

A VAX RPG I program is composed of a set of user-defined specifications: of
input data, output formats, and necessary calculation steps. You can define
seven types of specifications; each is listed and briefly described below.

= Control specification — Defines control information such as collating
sequence, forms positioning mformanon ‘decimal separator character and
currency character.

» File specification — Identifies data file parameters including file name, record
size, file organization, and access mode. VAX RPG II supports sequential,
direct, and indexed file organization through the VAX Record Management
Services (RMS). VAX RPG II enhances the flexibility of standard RPG IT by not
requiring a primary file in every program. Using RMS, VAX RPG 1I provides
file sharing with automatic record locking for relative and indexed files.

= Extension specification — Provides descriptions of tables, arrays, and record

address files.

= Line counter specification — Specifies the number of available print lines for
printer output files, thus defining page size.

= Input specification — Identifies record types and other control information
relevant to input data files; specifies field location, field names, data formats,
and control-level information for individual data fields in an input file. VAX
RPG II supports data files with these formats:

— Alphanumeric

— Overpunched numeric

— Packed decimal numeric
— Word-binary numeric

— Longword-binary numeric

Calculation specification — Describes the specific calculation operations to
be performed on the data, and specifies the order in which they are to be
performed. Calculation specifications provide RPG II with its only truly pro-
cedural component. VAX RPG II supports almost all standard RPG II opera-
tion codes, and also provides several other operation codes for calling
routines written in other languages, for obtaining the services provided by a
the Run-Time Library, and for invoking VMS system setvices.

Output specification — Describes the formats of output files and printed
reports, including fields, output field editing operation, forms spacing, and
constant information (such as report titles and headings). VAX RPG IT extends
services normally provided by RPG IIwith the delete option, which allowsa
program to delete records from direct and indexed files.

3-59

The VAX RPG 1I Editor

The VAX RPG 11 Editor is a full-screen, keypad editor specifically tailored to the
development and maintenance of RPG II code. The following features of the
editor make it a particulatly valuable tool.

= Qverstrike mode keeps entties in their proper columns; this is important fea-
ture because RPG II is position oriented

= A ruler displayed along the top of the editing area helps you locate and keep
track of column positions and field locations

* The editor automatically sets tabs according to the type of specification being
edited

= Extensive on-line help is provided

The VAX RPG I Editor’s help facility is a particulatly valuable productivity tool.
The editor supports a dual-window layout in which the edited code appears on
the lower half of the screen, and various types of help information appear on the
top half. Help information may consist of:

= A keypad diagram, showing the location of editing functions keys

= Help information for a particular editing key or editing function

* Column headings for the particular RPG II specification being edited — these
will be changed automatically when you begin to create or edit a different
type of specification. You invoke any of the help functions by simply pressing
the HELP key.

Other productivity features provided by the VAX RPG 1I Editor include
string-searching capabilities.

* The VAX RPG II editor also provides the COMPILE command that allows you
to compile programs being edited and to review and correct compilation
errors without ever leaving the editing environment.

3-60 = VAX Programming Languages

FIN IP F 1280 TAPE TAPE N
FOUT 0 F 80 DISK
E DATA 16 80
1IN
1 11280 DATAZ
c TRANS EXTRN‘LIB$TRA_EBC_ASC "
c CALL TRANS
c PARMD DATAZ
c PARMD DATAZ
C MOVEADATAZ DATA
c Z-ADD1 1 20
c LooP TAG
c EXCPT
c 1 ADD I 1
c 1 COMP 16 9999
c 99 GOTO LOOP
oouT E
0 DATA,I 0080
Figure 3-13 = Typical RPG II Program Showing a CALL Statement
FRPGUEN IP F 275
FMAILER O F 50 LPRINTER
FMAILER 1BFL 180L
IRPGVEN 01
1 4 53 NAME
1 104 143 STREET
1 144 165 CITY
1 174 175 STATE
1 176 1800ZIP
OMAILER D 1 3 o1
0 NAME 50
0 D1 01
0 STREET . 40
0 D1 01
0 CITY 22
0 STATE 24
0 zIp 31

Figure 3-14 = A Typical RPG II Program Used to Generate Mailing Labels

H
.

Chapter 4 = VMS Services

Chapter Overview

The VMS operating system provides you with a number of important services,
each of which has a unique role in streamlining the program development
effort. VMS services are: the Digital Command Language (DCL), VAX Record
Management System (RMS), the VAX Runtime lerary (RTL), and VMS System
- Services.

The command language (DCL) provides a consistent interface with which you
can access the VMS operating system. Many options exist to provide detailed
levels of control where needed. VAX RMS, the RTL, and VMS System Service
facilities help reduce application design time by taking many of the specific data
management, peripheral interfacing, and networking elements out of the appli-
cation program. These four VMS Setvices are covered in this chapter

Topics include:

= The Digital Command Language (DCL)
= VAX Record Management Services (RMS)
= The VMS Runtime Library (RTL)

= The VMS System Setvices

4-2 & VMS Services

VMS Record Management Services (RMS)

VMS Runtime Library (RTL)

The Digital Command Language (DCL)

System Services

This ‘chapter introduces you to VMS Services.
Complementing the operating system are four layers
of services essential for basic system operation and
program development. These are called the VMS
services and include

Figure 4-1 » Overview of Chapter 4

43

= VMS Record Management Services (RMS)

The VAX RMS facility is the standard Digital software for data management ser-
vices and provides an interface at the application-program level to record/file
management functions.

RMS is a powerful collection of routines that provide application programmers
with a device-independent method for the extensive storage, retrieval, and
modification of data. Complex file manipulation is easily achieved through RMS
facilities. You may select from several file organizations and file access tech-
niques — each of which is suited to a particular application. These can range
from the simplest sequential search of a sequentially organized file to a sophisti-
cated keyed access of an indexed file based on several alternate key fields. RMS
supports sequential, relative, and multikey indexed-sequential file
organizations.

For information about the use of RMS services in a VAXcluster system, see
Chapter 5, VAXcluster Software, of the VMS System Software Handbook.

Files

A file is a collection of related information whose requirements are established
by the nature of application programs needing the information. A company
might maintain information regarding an employee in one file, and product
information in another. '

Each record in a file is subdivided into discrete pieces of information known as
data fields. You define the numbet, location within the record, and logical inter-
pretation of each. It is necessary, therefore, to embed the relationship of records
and fields into an application program. When a program is written using RMS,
you don not have to be aware of such logical relationships. Programs either
build records and pass them to RMS for storage in a file or issue requests for
records while RMS performs the necessary operations to retrieve the records
from a file.

The purpose of RMS, then, is to ensure that every record written into a file can
subsequently be retrieved and passed to a requesting program as a single logical
unit of data. The structure, or organization, of a file establishes the manner in
which RMS stores and retrieves records. The way a program requests the stor-
age or retrieval of records is known as the access mode. Legal access modes
depend on the file organization.

RMS Provides Three Record-Access Modes

The various methods of retrieving and storing records in a file are called access
modes. A different access mode can be used to process records within the file
each time it is opened. A program can also change access mode during the
processing of a file, by a procedure known as a dynamic access.

4-4 » VMS Services

RMS provides three record-access modes:

= Sequential
= Random
. Rfecord’s file address (RFA) ‘

SEQUEN TIAL ACCESS MODE :
Sequential access mode can be used with any RMS file. Sequentlal access means
- that records are retrieved or written in a particular sequence. The organization
of the file establishes this sequence. .

RANDOM ACCESS MODE

In random access mode, the program, rather than the orgamzatlon of the file,
establishes the order in which records are processed. Each program request for
access to a record operates independently of the previous record accessed.
Associated with each request in random mode is an identification of the partic-
ular record of interest. Successive requests in random mode can identify and
access records anywhere in the file,

RECORD’S FILE ADDRESS (RFA) ACCESS MODE

Record’s file address (RFA) access mode can be used with any file organization
as long as the file resides on a disk device. This access mode is further limited to
retrieval operations only. Like frandom access mode, however RFA access allows
a specific record to be identified for retrieval.

As the name suggests, every ‘record within a file has a unique ‘address. The
actual format of this address depends on the organization of the file. In all
instances, however, only RMS can interpret this format.

The most. important feature of RFA access is that the address (RFA) of any
record remains constant while the record exists in the file. After every suc-
cessful read or write operation, RMS returns the RFA of the subject record to
the program. The program can then save this RFA to use again to retrieve the
same recqrd. _RFAs can be saved and used at any later time.

'DYNAMIC ACCESS

Dynamic access is not strictly an access mode. Rather, it is the capablhty to
switch from one access mode to another while processing a file. The only limita-
tion is that the file organization must support the access mode selected.

45

As an example, dynamic access can be used effectively immediately follow-
ing a random or RFA access mode operation. When a program accesses a
record in one of these modes, RMS establishes a new current position in the
file. Programs can then switch to sequential access mode. By using the ran-
domly accessed record (rather than the beginning of the file) as the starting
point, programs can retrieve succeeding records in the sequence established
by the file’s organization.

RMS File Attributes

The most important attribute of any RMS file is its organization. A file for use in
a particular application can be tailored by making the proper selection of this
and other attributes. RMS file organization is sequential, relative, or indexed. In
addition to file organization, you can choose from among the following
attributes:

= Storage medium where the file resides

» File name and protection specification of the file

= Format of records

» Size of a particular storage structure, known as the bucket, within relative and
indexed files

= Definition of keys for indexed files

STORAGE MEDIA

Selection of a storage medium on which RMS builds a file is related to the organ-
ization for the file. Permanent sequential files can be created on disk devices or
ANSI magnetic tape volumes. Transient files can be written on devices such as
lineprinters and terminals. Unlike sequential files, relative and indexed files can
reside only on disk devices.

FILE SPECIFICATION

The name assigned to a new file enables RMS to find the file on the storage
medium. RMS allows a protection specification to be assigned to a file at the
time it is created.

When a file is created, you must provide the format and maximum size specifi-
cation for the records the file will contain. The specified format establishes how
each record appears physically in the file on a storage medium. The size specifi-

cation allows RMS to verify that records written into the file do not exceed the
length specified when the file was created.

4-6 = VMS Services

RMS RECORD FORMATS
RMS formats include:

= Fixed
= Variable-with-fixed-control (VFC)

= Stream

Program Operations on RMS Files
After a file has been created, a program can access the file and store and retrieve
data.

When a program accesses the file as a logical structure (for example, a sequen-
tial, relative, or indexed file), it uses record I/O operations such as add, update,
read and delete record. The organization of the file determines the types of
record operations permitted.

If the record accessing capabilities of RMS are not used, programs can access
the file as an array of virtual blocks. To process a file at this level, programs use a
type of access known as block I/0.

FILE PROCESSING
At the file level, before beginning record processing, a program can:

s Create a file

* Open an existing file
= Modify file attributes
= Extend a file

* Close a file

= Delete a file

Once a program has opened a file for the first time, it has access to the unique
internal ID for the file. If the program intends to open the file subsequently, it
can use that internal ID to open the file and avoid any directory search.

FILE ORGANIZATION AND SHARING

With the exception of magnetic tape files, which cannot be shared, every RMS
file can be shared by any number of programs that are reading, but not writing,
the file. Sequential files on disk can be accessed by a single writer or shared by
multiple readers. Relative and indexed files, however, can be shared by multiple
readers and multiple writers. A program can read or write records in a relative
or indexed file while other programs are similarly reading or writing records in
the file. Thus, the information in such files can be changing while programs are
accessing them.

47

= PROGRAM SHARING

A file’s organization establishes whether it can be shared for reading with a sin-
gle writer or for multiple readers and writers. A program specifies whether such
sharing actually occurs at runtime. You control the sharing of a file through
information the program provides RMS when it opens the file. First, a program
must declare what operations (that is, read, write, delete, update) it intends to
perform on the file. Second, a program must specify whether other programs
can read the file or both read and write the file concurrently with the first
program.

The combination of these two types of information allows RMS to determine if
more than one program can access a file at the same time. Whenever a pro-
gram’s sharing information is compatible with the corresponding information
another program provides, both programs can access the file concurrently.

= RECORD LOCKING
RMS can lock records to control operations to a relative or indexed file that
more than one record stream within a process, or more than one process, can
access simultaneously. The purpose of this facility is to ensure that a program
can add, delete, or modify a record in a file without another program simultane-
ously accessing the same record.

When a program opens an indexed or relative file with the declared intention of
writing or updating records, RMS locks any record accessed by the program.
This locking prevents another program from accessing that record until the
program releases it. The lock remains in effect until the program accesses
another record. RMS then unlocks the first record and locks the second. The
first record is then available for access by another concurrently executing
program.

A program can also select a manual unlocking mode, in which all records
accessed by the program remain locked until they are explicitly unlocked by
calls to RMS. Additionally, a program may request that no record locking be
done.

4-8 » VMS Services

« RECORD I/O PROCESSING

The organization of a file, defined when the file is created, determines the types
of operations that the program can perform on records. Depending on file
organization; Record Management Services permits a program tor perform the
following record operations: : :

» Get arecord — RMS returns an existing record within the file to the program

= Put a record — RMS adds a new record that the program constructs to the
file. The new record cannot replace an already existing record

= Find a record — RMS locates an existing record in the file. It does not return
the record to the program, but establishes a new current position in the file

» Delete a record — RMS removes an existing record from the file. The delete
record operation is not valid for sequential file organizations

» Update a record — The program modifies the contents of a record read from
the file. RMS writes the modified record into the file, replacing the old record.
The update record operation is generally not valid for sequential file organiza-
 tions, except for precise replacemerit of records in those with fixed-length
records.

RMS Utilities

The RMS procedures are complimented by a File Definition Language (FDL)
and a number of utilities designed especially for RMS file creation and mainte-
nance. They are called directly through DCL, and include:

* CONVERT
* CONVERT/RECLAIM
= EDIT/FDL

» CREATE/FDL

= ANALYZE/RMS__FILE

The File Definition Language is a special purpose language used to describe file
organizations for data files. These specifications are then used by the RMS utili-
ties and library routines to create data files and other data structures.

4-9

Using RMS

RMS is a powerful tool for handling input/output tasks. Whether you simply
need to have a program read input lines from a terminal, or need full write-
sharing capability with record locking — allowing multiple processes to access
and update records in the same files simultaneously — RMS can simplify and
handle the task. Of course, more complex operations may require a number of
parameters and allow specification of many more; nevertheless, all of the basic
RMS services use one of two control structures as input for their operation. The
File Access Block (FAB) contains only fields relevant to file operations, such as
the creation of a new file or opening an existing one. The Record Access Block
(RAB) contains parameters necessary to petform record operations, such as
record retrieval and update, on records within a file. The following table illus-
trates this division.

Table 4-1 * Compatison of RAB and FAB Parameters For Record

~ Operations
Category Macro Name Service
File Processing $CREATE Creates and opens a new file
(FAB = address) :
$OPEN Opens an existing file and initiates
file processing
$CLOSE Terminates file processing and

; closes the file
Record Processing $CONNECT Associates and connects a RAB to

(RAB = address) the file
$GET Retrieves a record from a file
$PUT Whites a new record to a file
$UPDATE =~ Rewrites an existing record in

afile

4-10 = VMS Services

The brief-program listing that follows, with comments, demonstrates the
ease and simplicity of using RMS to achieve an I/O operation. Several different
runs of the program follow. It reads a sequential file containing ASCII text
and uses a Runtime Library routine to print the text on your terminal.

1 Buffer .blKb
2 Buff_desc:

soOoONOUBEW

28
29
30
31
32
33

My_fab:

My_rab:

Start:

+longd
Jlong

$FAB

$RAB

sword

$0PEN
BLBC

$CONNECT
BLBC

Get-record:

EXIT:

$GET
BLBC

MOVW

PUSHAB

CALLS

BRB

$CLOSE

RET

end

100

0
Buffer

FMN=<{INFILE>
FAB=My_fab -
UBF=Buffer,-
UszZ=100

0

FAB=My_fab
RO:Close file

RAB=My_rab
ROJExit

RAB=Mv_rab
ROJExit

jallocate a 100 bvte buffer
jdescrirtor for buffer

jlendth will be set . at runtime
jaddress of buffer

ijFile access block

iRecord access block

joren the file
jexit on error

jconnect for record operations

jexit on error

idet the first record
jexit on error

My_rab + rab$w_rszBuff_desc

Buff_desc

istore lendth of record in
desc

iPush deéscrirtor address for
outPut

#1,G"LIB$PUT_OUTPUT jprint the record

Get.record

FAB=My_fab

Start

ido back and det the next
record

jand close the file

Figure 4-2 » A Sample Program Using RMS

= The Digital Command Language (DCL)

A single command language, the Digital Command Language (DCL), provides
you, as a user of a VAX/VMS system, with an extensive set of commands for:

= Interactive program development.

» Device and data file manipulation.

= Interactive and batch program execution and control.

= Operational control.

Commands exist for program development and execution, for resource alloca-
tion, environmental control, job control, file maintenance, utilities, and opera-
tional control,

* Program development and execution commands include commands to
invoke each compiler, the assembler, the editor, and the linker, as well as to
run any prelinked program.

= Resource allocation commands include the ability to allocate and deallocate
devices and mount and dismount volumes.

= Environmental commands include assign and deassign logical names and set
and show parameters such as job status, terminal type, and default directory.

= Job control commands include the ability to continue and stop execution, a
GOTO command to transfer control, and IF and ON commands to specify
error handling.

DCL also includes commands to login and logout, to submit batch jobs, to send
messages to the operator, and to prompt you for input. File maintenance com-
‘mands include append to files, copy, create, and delete files, list directories, ini-
tialize volumes, print and type files, and rename files.

Topics covered in this section include:

= Command procedures

= Commands

* Terminal function keys

Command Format

DCL commands are composed of English words. Any file name can be given'a
logical name for mnemonic reference. Command parameters can be supplied
on the same line as the command verb. Missing parameters will be prompted
forby the VMS command interpreter. To make it easier to learn the VMS system,
an extensive HELP facility gives guidance on the use of commands and the
meaning of system messages. :

4-12 = VMS Services

Typical VMS commands are brief because of the extensive use of defaults. You
also can define additional commands and use them just as the system-defined
commands are used. All command verbs and quallﬁers can be abbreviated to
the shortest unique form.

File specifications can be as simple as the user-given name of the file only, or as
complex as a full specification of network node, device (including type, control-
ler, and unit), directory; file name, file type, and version number. Logical names
can be defined for complex file specifications so that repetitive typing can be
avoided.

Command Procedures

A command procedure is a file that contains a list of DCL commands. When
you execute a command procedure, the DCL command interpreter reads the
file and executes the commands in it.

Command procedures can be used to automate a sequence of commands that
you use frequently. For example, if you always issue a DIRECTORY command
after you move to a subdirectory, you can write a simple command procedure to
issue the SET DEFAULT and DIRECTORY commands for you as lllustrated in
the following example.

$ SET DEFAULT [SMITHACCOUNTS]

$ DIRECTORY

Instead of issuing each "command, you could greatly simplify the operation and
reduce the number of keystrokes by using a command procedure (named
GO__DIR.COM) that would be executed when you type:

$ BGO.DIR

This command tells the DCL command interpreter to read the file
GO_DIR.COM and to execute the commands in the file. Therefore, the com-
mand interpreter sets your default difectory to [SMITH. ACCOUNTS] and issues
the directory command.

You can write complex command procedures that resemble programs written
in high-level programming languages. In this sense, a command procedure pro-
vides a method of writing programs in the Digital Command Language,

You can, for example, revise GO__DIR.COM to allow you to move to any direc-
tory and obtain a list of the files in the directory and obtain a list of the files in
the directory:

$ INQUIRE DIR_-NAME "Directorvy name:

$ SET DEFAULT ‘DIR_NAME’

$ DIRECTURY ‘DIR-NAME’

When you execute GO__DIR.COM, the INQUIRE command prompts for a
directory name, the SET DEFAULT command moves you to the directory, and
the DIRECTORY command lists the file names.

4-13

= FORMATTING COMMAND PROCEDURES
Use a text editor (or the DCL command CREATE) to create and format a com-
mand procedure. When you name the command procedure, use the default file
type COM. If you use this default file type, you do not have to include a file type
when you execute the procedure with the “@” command.

Command procedures contain DCL commands that you want the DCL com-
mand interpreter to execute and data lines that are used by these commands.
Commands must begin with a dollar sign ($). You can start the command string
immediately after the dollar sign, or you can place one or more spaces or tabs
before the command sting to make it easier to read.

Data lines, unlike commands, do not begin with a dollar sign. Data lines are
used as input data for commands (or images.) Data lines are used by the most
recently issued command; these lines are not processed by the DCL intetpreter.

The following example illustrates command lines in a command procedure.

$ MAIL

SEND

THOMAS

MY MEMO

Do vou have a few minutes to talK about the ideas

I presented in my memo?

$

% SHOW USERS THOMAS

In the preceding example, the first line is a command and must start with a
dollar sign. The next lines are data lines that are used by the MAIL utility; these
lines must not start with a dollar sign. Note that data lines must correspond to
the way the image (invoked by the command) expects the data. Therefore, the
data lines provide a MAIL command (SEND), a recipient (THOMAS), a subject
(MY MEMO) and the text of of the mail message. When the command inter-
preter finds a new line that begins with a dollar sign, the MAIL utility is
terminated.

For more information on the Digital Command Language, see Chapter 2 of the
VMS System Software Handbook.

= The VMS Runtime Library

The VMS Runtime Libraty is a set of language-independent procedures. that
establish a common runtime environment for application programs written in
any VAX language in the Common Language Environment. Because the RTL
adheres to the VAX calling standard, procedures can be called from programs
‘written in VAX languages that also follow the calling standard. Therefore, appli-
cation programs can be composed of modules written in many different lan-
guages, including the VAX assembly language.

4-14 = VMS Services

Features of the Runtime Library
The VMS RTL provides the following features and capabilities.

= RTL procedures perform a wide range of general-utility operations; you can
call an RTL procedure instead of writing code to perform the same operation.

* The results of a particular procedure are the same, no matter what language

calls it.
* RTL procedures use VMS Record Management Services for file I/O.

* Library procedures can be updated without revising programs that call its
shared modules.

Organization of the Runtime Library

The VMS Runtime Library contains several facilities. These facilities are groups
of procedures that perform related operations. The VMS library facilities are
listed in Table 4-2.

Table 4-2 = VMS Runtime Library Facilities
Facility Description

LIB$ General purpose procedures

MTH$ Mathematics procedures

SMG$ Screen management procedures

STR$ String manipulation procedures

OTS$ Language-independent support procedures
BAS$ BASIC-specific support procedures
COB$ COBOL-specific support procedures
FOR$ FORTRAN-specific support procedures
PAS$ Pascal-specific support procedures
PLI$ PL/I-specific support procedures
RPG$ RPG-specific support procedures

These facilities are divided into general-purpose and language-support facili-
ties. General-purpose procedures are intended to be called explicitly to per-
form common procedures, while language-support procedures are intended to
be called implicitly by language compilers and compiled code. Lan-
guage-support procedures are further divided into language-specific and lan-
guage-independent support procedures.

General Purpose

Language-independent
Support Procedures

(Common to more than one
native-mode language)

OTS$

Language-Specific Support
Procedures

Compiled code support

File processing

Format processing

Error processing

I/0 processing

BAS$
coBs
FOR$
PLIS

Language Support

Figure 4-3 = General-Purpose and Language-Support RTL Procedures

Functional Listing of VMS RTL Procedures
These facilities can be categorized by function as listed in Table 4-3.

4-15

Table 4-3 * Functional Grouping of VMS RTL Facilities

Function RTL Facility
General Utility Procedures LIB$
STR$
OTS$
Mathematical Procedures MTHS$
OTS$
Process-wide Resource LIB$
Allocation Procedures STR$
OTS$
Signaling and Condition LIB$
Handling Procedures
Special Application Procedures LIB$

4-16 = VMS Services

GENERAL PURPOSE PROCEDURES - In most cases, application programs
call these procedures using explicit CALL statements or function references.

GENERAL UTILITY (LIBS$) - General utility procedures provide a wide range

of functions for your convenience.

= Common I/O procedures: — These procedures petform such functions as
getting records from the current input device (LIBSGET_INPUT) and sending
them to the output device (LIBSPUT_OUTPUT), executing DCL commands
from a running program (LIB$SPAWN), getting the command line from a for-
eign command (LIBSGET_FOREIGN), and copying strings to and from the
process’s common storage area (LIB$PUT_COMMON,
LIB$GET_COMMON). I/O control procedures are also available to customize
printer output and translate logical names.

Terminal independent screen procedures — These procedures provide a
high-level language interface to the video terminal. They send text to the
screen, move the cursor to the desired position, erase text from the screen,
and manipulate the screen buffer.

= Data type conversion procedures — These procedures perform conversions
between one VAX data type and another (for example, text to D-floating and
decimal to binary). :

= Variable bit field instruction procedures — LIBSINSV inserts and extend vari-
able bit fields. LIB$FFS searches a bit field for the first set bit.

= Performance measurement procedures — These procedures provide a facility
for timing, counting 1/O operations, and counting page faults.

= Date/time utility procedures — These procedures return the system date or
time in several forms.

* CRC procedures — LIB$CRC and LIB$CRC__TABLE permit you to calculate
the cyclic or redundancy check for a data stream

= Multiple precision arithmetic procedures — LIBSADDX and LIB$SUBX add
and subtract signed two’s-complement integers of arbitrary length.

Runtime Library procedures also permit the high-level language programs to
use the following VAX hardware instructions:

= Extended multiply and modulus arithmetic — EMUL, EDIV, EMOD
= Evaluate polynomials — POLYF, POLYD, POLYG, POLYH
= Insert and remove queue entry — INSQHI, INSQTI, REMQHI, REMQTI

417

MATHEMATICAL FUNCTIONS (MTHS) - The mathematical library con-
sists of over 200 standard procedures to perform common mathematical
functions. These functions include:

= Floating-point mathematical functions: trigonometric, logarithmic, and
square root

= Complex functions: absolute values, conjugation, trigonometric, arithmetic,
exponentiation, return imaginary part of complex number, return real part of
complex number, make complex from floating-point, logarithmic, and
square root. '

= Exponentiation on floating-point, word, longword, and complex data

= Random number generator

= Processor-defined mathematical procedures: includes both the intrinsic and
basic external functions defined in ANSI FORTRAN.
They include routines that perform conversions between floating-point and
integer data and a large number of miscellaneous data types

RESOURCE ALLOCATION PROCEDURES (LIBS, STRS, OTSS) - The‘
Resource Allocation Section includes all procedures that allow allocation of
process-wide resources. Such resources include the following:

= Virtual memory — one procedure to allocate and one to deallocate arbitrarily
sized blocks of process virtual memory

* Logical unit numbers — allow logical numbers to be allocated in a modular
manner

= Event flags — same as logical unit numbers

In most cases, the resource allocation procedures should used to allocate pro-
cess-wide resources in order for all library, DIGITAL, and customer-written pro-
cedures to work together properly within a process.

SIGNALING AND CONDITION HANDLING - The VMS condition handling
facility is a collection of library procedures and system setvices that provides a
unified and standardized mechanism for handling errors internally in the oper-
ating system, the Runtime Library, and application programs. In some cases,
the mechanism is also used to communicate errors across these interfaces. In
particular, all error messages are printed using this mechanism. When an error
condition is signaled, the process stack is scanned in reverse order. Establishing
a handler provides you with control over fix-up, reporting, and flow of control
on errors. It provides the system and library messages in order to give a more
suitable application-oriented user interface.

4-18 = VMS Services

LANGUAGE-INDEPENDENT SUPPORT (OTS$) - The language support
libraries support the code generated inline by compilers. As such, most of
the procedures are called implicitly as a consequence of a language con-
struct you specified, rather than being called explicitly with a CALL state-
ment. Those language support procedures that are independent of
higher-level languages use the facility prefix OTS$. They include:

* Language-independent initialization and termination

= Error and exception-condition processing procedures

= Data type conversion

LANGUAGE-SPECIFIC SUPPORT - Each of the language-specific support
libraries is generally composed of:

= /O processing procedures

= File processing procedures

* Compiled-code support procedures

= Compatibility procedures

= System procedures

STRING PROCESSING (STR$) - The string processing procedures allocate
and deallocate dynamic strings. They also perform a wide variety of string
manipulation functions, such as comparing, locating a character, concatenating,
extracting a substring, performing arithmetic operations on decimal strings,
and translating ASCII to EBCDIC code.

SCREEN MANAGEMENT PROCEDURES (SMGS$) - The Screen Manage-
ment facility allows application programs to be coded without regard to physi-
cal devices petforming I/O. Instead of writing directly to a physical screen, your
program writes to a virtual display. Similarly, user programs perform input from
a virtual keyboard instead of a physical keyboard.

The screen management facility provides two important services:terminal inde-
pendence and composition aids.

419

TERMINAL INDEPENDENCE - The screen management procedures provide
terminal independence by allowing commonly needed screen functions to be
performed without concern for the type of terminal being used. All operations
are performed by calling a procedure that converts the caller’s termi-
nal-independent request (for example, scroll a part of the screen) into the
appropriate sequence of code needed to perform that action. If the terminal
being used does not support the requested operation in the hardware, the
screen management procedures emulate the action in software.

COMPOSITION AIDS - The screen management procedures simplify the com-
position of complex images on a terminal screen. For example, if an application
program was directed to solicit your input from one part of the screen, display
results to another, and maintain a status display in another, procedures from the
Screen Management Facility enable code for each of these operations to be
written independently of the other.

SYSTEM PROCEDURES - VAX programs written in the higher-level languages
can call the operating system directly. However, since some languages cannot
easily pass arguments in the form that system setvices require, and some lan-
guages use data types that system services cannot properly handle (that is,
dynamic strings), some LIB$ routines have been provided to handle the input
and output arguments correctly.

VMS System Services

VMS System Services are procedures provided by the VMS operating system.
These procedures

= Control resources available to processes.

= Provide for communication among processes.

= Perform basic operating system functions (/O coordination, for example.)

VMS system services are available for general use by logged-in users or can be
called by an application program. For example, the operating system creates
your process with the Create Process system service (SCREPRC) when you log
in. $CREPRC can also be called from an application program to create a sub-
process to perform certain functions for that program.

4-20 = VMS Services

System services are divided into 11 functional groups. Table 4-4 lists each
group of services and the general function of that group.

~ Table44 = + The Functional Grouping of VMS System Servnces
Setrvice Group . Function

Security Security system'services provide various mechamsms to
" enhance and control system security.

Event-Flag Event-flag services clear, set, and read event flags and can
place a process in a wait state pending the setting of those
flags.

AST Process execution can be interrupted by events for the

execution of designated subroutines. These software

- interrupts are called Asynchronous System Traps (ASTs).
AST system services are provided so that a process can
control the handling of these interrupts.

Logical Names Logical name services provide a generalized technique for
maintaining and accessing character string loglcal name
"and equivalence name pairs.

Input/Output /O system services bypass VAX Record Management Ser-
vices (RMS) and perform input and output operations
directly at the device driver level.

/O system services include:

* Perform logical, physical, and virtual input/output
operations.

* Format output lines converting binary-numeric values
to ASCII strings and substitute variable data in ASCII
strings.

* Perform network operations.

*:Queue messages to system processes.

Process-Control ~ Process-control system services allow you to create,
delete, and control the execution of processes.

Timer and- Timer services schedule program events for a particular

Time-Conversion time of the day, or after a specified interval of time has
elapsed. The time-conversion services allow you obtain
and format binary time values for use with the timer
services.

(continued on next page)

4-21

Table 4-4 = The Functional Grouping of VMS System Services (Cont.)
Service Group Function

Condition- Condition handlers are procedures that can be desig-

Handling nated to receive control when a hardware or software
exception/condition occur. Condition-handling services
designate condition handlers for special purposes.

Memory- Memory-management setvices give you control over an
Management application program’s virtual address space.
These services:
* Allow an image to increase or decrease the amount of
virtual memory available.

* Control the paging and swapping of virtual memory.

* Create and access files that contain sharable code and
data.

Change-Mode

Change-mode services changes the access mode of a pro-

cess. These services are used primarily by the operating

system.
Lock- Lock-management services make it possible for
Management co-operating processes to synchronize their access to

shared resources.

Calling System Services

At runtime, an application program calls a system service and passes control of
the process to it. Upon execution of the system service, the services returns con-
trol to the program and also returns a condition value. The program then ana-
lyzes the condition value, and determines the success of failure of the system
service call, and alters program execution flow as required.

VMS SYSTEM SERVICES AND SYSTEM INTEGRITY

Many system services are available and suitable for application programs, but
the use of some services must be restricted to protect the performance of the
system and the integrity of your process.

The creation of permanent mailboxes, for example, requires the use of sys-
tem-dynamic memory. Therefore, the unrestricted use of permanent mailboxes
could decrease the amount of memory available to other system users. Thus, the
use of this system service is controlled by the assignment of a specific user
privilege.

4-22. w VMS Services

The system manager grants the use of privileges to use these protected sys-
tem setvices and controls that privilege through the use of User Authoriza-
tion File (UAF). This file contains a specific list of user privileges and
resource quotas.

When you log in, the privileges and quotas you have been assigned are associ-
ated with the process created on your behalf. These privileges and quotas are
applied to every image that the process executes.

A privilege list is checked when an image in your process issues a call to a pro-
tected system service. If you have been granted the specific privilege required,
the image is allowed to execute the system service. If not, a condition value
indicating the privilege violation is returned.

VMS Security System Services

The VMS Security System Services provide the system manager or the applica-
tion programmer with many security-based resources of the VMS operating sys-
tem. These resources allow you to protect and and fine tune the security of your
computing environment.

These services include facilities to

= Create and maintain a rights database..

= Create and translate access-control entries.
» Modify a process-rights list.

= Check access protection.

= Provide a security-erase pattern for disks.

= Control access to-magnetic tapes.

VMS Event-flag System Services

Event flags are maintained by the VMS operating system for general program-
ming use. Programs can use event flags to perform a variety of signaling func-
tions. The VMS event-flag system services clear, set and read event flags. They
can also place a process in a wait state pending the setting of an event flag or
flags. ’

Event flags can also be used by more than one process as long as the cooperat-
ing processes are in the same group. Thus, if you have developed an application
that requires the concurrent execution of several processes, you can use event
flags to establish communication among them and to synchronize their activity.

4-23

= EVENT-FLAG NUMBERS AND EVENT-FLAG CLUSTERS
Each event flag has a unique decimal number; event-flag arguments in
system-service calls refer to these numbers. For example, if you specify event
flag 1 in a call to the $QIO system service, then event flag number 1 is set when
the I/O completes.

Groups of event flags are manipulated by organizing them into event-flag “clus-
ters.” Each “cluster” is made up of 32 flags.

There are two types of “clusters,” local event-flag clusters and common
event-flag “clusters”

= Local event-flag “clusters” can only be used internally by a single process.
Local “clusters” are automatically available to each process.

= A common event-flag cluster can be shared cooperating processes in the same
group. Before a process can refer to a common event-flag cluster, it must
explicitly associate with the cluster.

Some system services set event flags to indicate the completion or the occur-
rence of an event; the calling program can test the flag.

AST (Asynchronous System Trap) Services

Some system services allow a process to request that it be interrupted when a
particular event occurs. Sine the interrupt occurs asynchronously (out of
sequence) with respect to the process’s execution, the interrupt mechanism is
called an asynchronous system trap (AST). The trap provides a transfer of con-
trol to a user-specified procedure that handles the event.

The system services that use the AST mechanism accept the address of an AST
service routine as an argument. That is, the routine to be given control when the
trap occurs.

The following list of services use ASTs.

= Declare AST ($DCLAST)

= Enqueue Lock Request ($ENQ)

= Get Device/Volume Information ($GETDVI)
= Get Job/Process Information ($GETJPI)

= Get System-Wide Information ($GETSYI)

= Queue I/O Request ($QIO)

= Set Timer ($SETIMR)

= Set Power Recovery AST ($SETPRA)

= Update Section File on Disk (SUPDSEC)

4-24 = VMS Services

For example, if you call the Set Timer ($SETIMR) service, you can specify the
address of a routine to be executed when a time interval expires or at a par-
ticular time of day. The service schedules the execution of the routine and
returns; the program image continues executing. When the requested time
event occurs, the system “delivers” an AST by interrupting the process and
calling the specified routine.

Logical Name Services

The VMS logical name services provide a technique for manipulating and sub-
stituting character string names. Logical names are commonly used to specify
devices or files for input or output operations. You can use logical names to
communicate information between processes by creating a logical name in a
logical name table that is accessable by another process. o

The VMS operating system setvices establish logical names for general applica-
tion purposes. The system also performs special logical name translation proce-
dures for names associated with I/O services and with services that can deal with
facilities located in shared (multiport) memory.

Input/Output System Services

When writing application programs, there are two basic input/output services
available to the application developer, VAX Record Management Services (RMS)
and VMS I/O system services. VAX RMS provides a set of routines for general
purpose, device-independent functions such as data storage, retrieval, and
modification.

The I/O system services permit you to use the /O resources of the operating
system directly, in a device-dependent manner. 1/O services also provide some
specialized functions not available in VAX RMS. Using 1/0 services requires
more knowledge on your part than if you used VAX RMS. However, using these
services result in more efficient input/output operations.

Process-Control Services

When you log into the system, the system creates a process for the execution of
program images. You can create another process to execute an image by issuing
the RUN or SPAWN command using any of the qualifiers that pertain to process
creation. You can also write a program that creates another process to execute a
particular image.

425

Process control services allow you to create processes and to control a pro-
cess or group of processes. They allow you to

« Create subprocesses and detached processes.

= Control the execution of a process.

= Facilitate control and communication between processes.

= Control the hibernation or suspension of a process.

= Control image-exit and exit handlers.

_ = Control process deletion.

VMS Timer and Time-Conversion System Services

Many applications require the scheduling of program activities based on clock
time. Under VAX/VMS, an image can schedule events for a specific time of day
or after a specified time interval.

You can use VMS timer services to schedule, convert, or cancel events. For
example, you may use the time services to

= Schedule the setting of an event flag or the queuing of an AST for the current
process, or cancel a pending request that has not yet been honored.

» Schedule a wake-up request for a hibernating process, or cancel a pending
wake-up request that has not yet been honored.

The timer services require you to specify the time in a 64-bit format. To work
with the time in different formats, you can use time conversion services to

= Obtain the current date and time in an ASCII string or in system format.

» Convert an ASCII string into the system-time format.

= Convert a system-time value into an ASCII string.

= Convert the time from system format into integer values.

VMS Condition-Handling System Services

A condition handler is a procedure given control by the operating system when
an exception occurs. An exception is an event, detected by the hardware or
software, and that interrupts the execution of an image. Examples of excep-
tions include arithmetic overflow and reserved opcode or operand faults.

If you determine that a program needs to be informed of particular exceptions,
you can write and specify a condition handler. This condition handler, which
receives control when any exception occurs, can test for specific exceptions.

4-26 = VMS Services

VMS Memory-Management System Seivices

The VAX/VMS memory-management routines map and control the relationship

between physical memory and a process’s virtual address space. These activities
“ are, for the most part, transparent to you as a user and to your programs. How-

ever, a program can be run more efficiently by allowing it to explicitly control its

use of virtual memory.

VMS Lock-Management System Services

The VMS lock-management system services allow cooperating processes to
synchronize their access to shared resources. This is accomplished by providing
a common data area in which processes can lock a specified resource by name.
All processes that access the resources must use the VMS lock-management set-
vices to be effective.

The lock-management services provide a queuing mechanism that allows
processes to with in a queue until a particular resource is available.

Chapter 5 = VMS Program Development Ultilities

Chapter Overview

Besides the services discussed in Chapter 4, VMS also provides you with many
powerful program development utilities, such as text editors, debugging facili-
ties, program module linkers and many other sophisticated tools that can be
used in every facet of the program development life cycle. This chapter gives
you a overview of many of our more important program development utilities.

VMS text editors gives you the ability to create high-level source code programs
quickly and efficiently. The DSR text-formatting utility extends basic editor
capabilities into a highly sophisticated text processing system.

Program debugging, high-speed sorting and merging of data, and the linking of
object modules into executable images are a few of the major functions these
utilities perform.

Products covered in this chapter include

= The VAX/VMS Symbolic Debugger Utility.
= The VMS SORT/MERGE Utility.

= The VMS LINKER Utility.

» The VMS LIBRARIAN Utility.

= Other VMS program development utilities.
= VAXTPU (Text processing utility)

= The EDT text editor

= The DSR Text Formatting Utility

5-2 w VMS Program Development Utilities

This chapter introduces you to the VMS program devel-
opment utilities. These utilities include text-editing and
formatting tools, a powerful symbelic debugger, and
many more utility programs designed specifically for the
application and systems programmer.

VMS Program
@ Development Utilities
o, VAXS
YMbolic Debud®®

Other Utilities

Figure 5-1 = Overview Of Chapter 5

5-3

= The VAX/VMS Symbolic Debugger
The VAX/VMS Symbolic Debugger is a powerful and flexible tool used to find
errors in source code programs.
The VAX/VMS Symbolic Debugger

= s interactive. You can execute Debugger commands from your terminal and
see their effects immediately.

= Is symbolic. You can refer to program locations by the symbols you used for
them in your program.

= Supports many languages. You use the Debugger in the language of your
source program. If your application is written in more than one language, you
can change from one language to another within the course of a debugging
session.

® Permits a variety of data forms and types for entry and display.

= Allows you to select and display your program’s language statements.

= Has a screen mode that provides multiple windows for screen-oriented
debugging.

= Has a debugger-defined keypad key definitions for your terminal’s numeric
keypad.

= Gives online help.
= Supports the VAX Language-Sensitive Editor

The VAX/VMS Symbolic Debugger Is Interactive

When using the VAX/VMS Symbolic Debugger, you run the program to be
debugged interactively, at your terminal under Debugger control. When the
program starts to execute, VAX/VMS Symbolic Debugger gains control before
the program and prompts for VAX/VMS Symbolic Debugger commands. These
commands are entered to control the execution of your program by interrupt-
ing that execution at specific intervals. This momentary pause allows you to
enter more VAX/VMS-Symbolic-Debugger commands and to gather additional
information about the current state of your program.

The VAX/VMS Symbolic Debugger Utility Is Symbolic

With the VAX/VMS Symbolic Debugger, you can reference program locations
to by symbolic names. For example, if you wish to interrupt the execution of
your program at routine BILL, the SET BREAK BILL command will look up the
address for the symbol BILL and stop when the PC hits that address.

Likewise, EXAMINE X will look up the address of the symbol X and display the
contents of that address. You don’t need to know where X or BILL are in mem-
ory, the Debugger knows for you.

5-4 w VMS Program Development Utilities

The VAX/VMS Symbolic Debugger Is Multilingual - ‘
The Debugger is a multilingual debugger, supporting many VAX languages
These include:

VAX Ada VAX BLISS
VAX BASIC VAX C

VAX COBOL VAX FORTRAN
VAX MACRO VAX PASCAL
VAX PL/I VAXRPGII

The VAX/VMS Symbolic Debugger is strictly an object program debugger,
debugging programs at run time, after they have been compiled and linked. It is
used to debug only compiled languages — not interpreted ones.

Being multilingual means that the Debugger understands the following charac-
teristics of each supported language.

» How symbol names are composed in the language. It knows how identifiers
are formed and how compound names are constructed. For example, it
accepts A(2)—»B as valid PL/I syntax and A[2].B as valid PASCAL syntax. .

= How language expressions are interpreted. It knows what operators are
allowed and what their syntax and semantics are.

= How and when type conversions ‘are done in the language. This is part of
understanding how to interpret expressions and is needed to do asmgnments
properly.

= How values are displayed in the language. For example, how enumeration
type values are displayed in PASCAL and how numeric values are displayed in
COBOL.

= How the language scope rules Work It knows how to look up a symbol name
in a specified scope according to language rules.

5-5

= VMS DEBUGGER FEATURES AND COMMANDS
The VAX/VMS Symbolic Debugger command language defines the capabilities
of this debugger and constitutes the user interface. The following is a brief
synopsis outlining the main features and commands of VAX/VMS Symbolic
Debugger.

= The EXAMINE command retrieves and displays the contents of a specified
program location. The location is typically a variable and the display is
formatted according to the variable’s type.

* The DEPOSIT command stores a new value into a specified location, again
usually a variable.

* The EVALUATE command permits expressions in the language to be evalu-
ated and the results displayed.

» The SET WATCH command causes the program to stop when a spec1ﬁed data
location is altered. ‘

= The STEP command stops the program when the next instruction or the next
source line is reached.

= USER-INTERFACE FEATURES OF THE VMS DEBUGGER UTILITY
These features are

= Screen Mode — The debugger uses the full terminal screen for.output. The
screen can be divided into multiple windows which can be scrolled up and
down as well as right and left. These windows may contain program source
code, debugger output, or machine register values.

Keypad Input — With the debugger, you can use thc numeric keypad to enter
commands. The VAX/VMS Symbolic Debugger provides a default keypad
layout, but you can define your own keypad bmdmgs or alter the default
bindings.

Improved Support For Existing Languages — The debugger now under-
stands all data types and language specific operators for each language. -

Aggregate Output ~ The debugger allows whole arrays and records to be
examined with a single command. :

User-defined Commands — The debugger’s DEFINE/COMMANDfeature,
together with improvements to debugger command files.and the VAX/VMS
Symbolic Debugger command language, enable you to define your own
debugger commands.

Symbol Table Query — The debugger’s SHOW SYMBOLcommand allows you
to query the debugger about the symbols in his program.

5-6 = VMS Program Development Utilities

* Improved Symbolization — The debugger’s SYMBOLIZEcommand takes:an- -
address and tells you what object is at that address.

= Improved Breakpoint Facility — The debugger’s capabilities for breaking,
tracing, and stepping have been greatly expanded.

= SPAWN and ATTACH Commands — The debugger supports the ability to
SPAWN a new subprocess much the same as is done in DCL. Then using the
ATTACH command, you can move to any Debugger. subprocess he has ‘
spawned or jump around between debugging sessions. :

= Expandable Memory Pool — The debugger’s ALLOCATEcommand allows
you to allocate more space for the debugger’s symbol table so you can set
more (or all) modules in your program.

= Is fully supported by the VAX Language-Sensitive Editor.

VAX SORT/MERGE

The VAX SORT/MERGE utility may be run interactively, as a batch job, or called
from a VAX language program.

The SORT utility allows you to reorder data from one to ten input files into a
single output file in a sequence based upon user-specified key fields within the
input data records. If you does not wish to physically reorder the input, SORT
can be used to extract key information and store the sorted information as a
permanent file. That file can then be used to access the original input file in the
order of the key information in the sorted file. :

SORT provides four sorting techniques:

*» Record sort produces a reordered data file by moving the entire contents of
each record during the sort. A record sort can be used with any acceptable
VMS input device and can process any valid RMS (Record Management Ser-
vices) formatted file.

= Tag sort produces a reordered data file by moving only the record keys and
Record File Addresses (RFAs) during the sort. SORT then randomly reac-
cesses the input file to create a resequenced output file according to those
record keys. The tag sort method may consetve temporary storage, but can -
accept only input files residing on disk.

5-7

= Address sort produces an address file without reordering the input file. The
address file contains RFAs (Record’s File Addresses), a pointer to each
record’s location in a file that can later be used as an index to read the
database in the desired sequence. Any number of address files can be created
for the same database. A customer master file, for example, can be referenced
by customer-number index or sales territory index for different reports.
Address sort is the fastest of the four sorting methods.

» Index sort produces an address file containing the key field of each data
record and a pointer to its location in the input file. The index file can be used
to randomly access data from the original file in the desired sequence.

The MERGE utility permits you to merge data from two to ten similarly sorted
input files. It merges the data according to key field(s), defined by you, and
generates a single output file. All input files to be merged must be a proper
subset of the equivalent SORT key fields. .
The following example illustrates the sorting of a sales record file by customer
last name. The name of the initial file is SALES.DAT. Each record contains six
fields: date of sale, department code, salesperson, account numbet, customer
name, and amount of sale. The numerical ranges listed below the set of records
indicate the position and size of each information field within the record.

You can now rearrange the sales record in file SALES.DAT according to any of
the file’s information fields. For instance, to sort the file in alphabetic order of
customer’s last name, you would type the following command sequence:

$ SORT/KEY.=(POSITION:29,5I1ZE:30) SALES.DAT BILLING.LISE@
In this command sequence, you are defining the SORT key to be the customer’s
last name and the output file to be BILLING.LIS. :
You may now obtain a listing of the sorted data file by using either the TYPE or
PRINT commands.

$TYPE BILLING.LISED

To perform the MERGE function, the MERGE utility expects presorted data
files upon which to operate. In the following example, MERGE is operating
upon two presorted (by alphabetic order) sales data files, STORE1.FIL and
STORE2.FIL.

To merge the two data files, you must type the following command sequence:
$ MERGE/KEY=(POSITION=29,51ZE=30)STORE1.FIL ,STOREZ.FIL CENTR.FIL@®

You have indicated in the above command sequence that the files are to be
merged via the alphabetic order of the customer’s last name. You can examine
the output file via the PRINT or TYPE commands.

% TYPE CENTR.FIL@®D

5.8 » VMS Program Development Utilities

SORT/MERGE AS A SET OF CALLABLE SUBROUTINES - SORT and
MERGE canbe used as a set of callable subroutines from any VAX language.

This subroutine package provides two functional interfaces to choose from:

a ﬁle 14¢) interface and a record I/O'interface.

VAX Linker

Before a source-language program can be run on VAX/VMS, it must be assem-
bled or compiled by a language processor and then linked. The language
processors translate user-written source programs into object modules. The
VAX Linker binds these object modules into an image that can be executed by
the VAX system.

Not all computer systems use a linker; in some, the work of the linker is
assumed by the language processors and what is called a loader. But the linker
offers you greater flexibility in choosing and mixing languages, and simplifies
and extends the modern approach of modular programming.

INPUT TO THE LINKER - There are two basic forms of input processed by
the linker: object modules and sharable images. They are introduced to the
linker as part of the input files specified in the LINK command. The linker will
accept one or more of the following kinds of input files:

= Object file

= sharable image file
= Symbol table file
* Library file

= Options file

The object file can contain one or more object modules. This file has file-type
OBJ. It is the fundamental input to the linker and at least one object file must be
specified with any LINK command.

The sharable image file is the product of a previous linking operation, but one
which is by itself not executable. It can serve only as input to another linking
operation. The sharable image file can only be specified in the options file and is
indicated there by the /sharable qualifier. .

5-9

The symbol table file is also a product of a previous linking operation. It may
be specified when linking so that the linker can use the symbol values to
resolve undefined symbols in other object modules. A symbol table file has
the file type STB.

There are two kinds of library files: object and sharable image. Of these there
are both system libraries (maintained by VMS) and user Libraries (created by
the DCL command, LIBRARY). Library files are used by the linker either to
resolve undefined symbols, or as a source for particular object modules.

The options file is not really input to the linker, in the same sense the other files
mentioned are input; rather, it is a tool for managing the linking operation and
for simplifying the use of complex and often-repeated linker operations. (This
is, in a way, analogous to the use of DCL command procedures for complex or
commonly used command sequences.) A linker options file can contain one or
more input file specifications, including qualifiers or special linker options that
cannot be specified in the DCL LINK command line.

OUTPUT OF THE LINKER - The linker will generate one of three types of
images: executable, sharable, or system, and an optional image map and/or
symbol table.

* The most common output of the linker is the executable image. It is the end
product of program development. It has the file type EXE and can be run by the
DCL command, RUN.

A sharable image, on the other hand, is not intended to be executed directly. It
must be linked with one or more object modules to produce an executable
image. It contains an image header, one or more image sections, and a symbol
table that defines universal symbols in the sharable image.

A system image is one that does not run under the control of the operating
system, but is intended to run standalone on a VAX. VAX/VMS is a system image.

If the /SYMBOL_TABLE qualifier is specified, the linker will generate a symbol
table file that can serve as input to a subsequent linking operation.

ACTION OF THE LINKER - In the process of creating an image the linker
performs three major tasks:

= Resolution of symbolic references

= Allocation of virtual memory

= Image initialization

5-10 » VMS Program Development Utilities

The following sections describe these processes in some detail.

RESOLUTION OF SYMBOLIC REFERENCES - A symbol is a name associ-
ated with a program location or a value. Any reference to a symbol, other than
the definitive reference, must be resolved. For example:

JMP SYMBOL -1 (Jump to where?)

or

ADD SYMBOL_A,SYMBOL_B (Add what to what?)

Somewhere, SYMBOL 1 must be defined as a location of an instruction or the
beginning of a subroutine. Similarly, SYMBOL A and SYMBOL B must have had
values assigned to them.

References to local symbols (that is, symbols defined and used entirely within
the module) are resolved by the language processor, but references to global
symbols (those that can be referred to by modules other than the defining mod-
ule) and universal symbols (those referenced outside of a sharable image) must
be resolved by the linker. '

Since universal symbols are in fact global symbols that are available to modules
outside of a sharable image, the process whereby the linker resolves global and
universal symbols is the same. During its first pass through the linking opera-
tion, the linker records each symbol reference and definition in a global symbol
table. When the linker seeks to resolve a symbol reference, it first searches mod-
ules named in the command line (sometimes with /INCLUDE), then user librar-
ies, and finally system default libraries.

MEMORY ALLOCATION - By the end of its first pass, the linker has
processed all the input modules and library modules needed to resolve unde-
fined symbols, and knows how large the final image will be, but it still needs to
organize the image and allocate virtual memory.

The linker organizes the image on three levels: cluster, image section, and pro-
gram section.

Clusters are determined in three ways:
* The default cluster (generated by the linker)
= User-defined clusters (generated by the CLUSTERS’ option)

= sharable image clusters (one for each sharable image)

5-11

Image sections are created by gathering program sections (psects) with simi-
lar attributes. Those attributes include the ability to write, execute and
share, in addition to position-independence, and protected vector.

Program sections and their attributes are determined by the language and,
optionally, by yourself, either through directives to the language processor (for
example, .PSECT in MACRO) or by the PSECT_ATTR option in the linker
options file.

The linker processes each cluster, one at a time — with the exception of
non-based, or position-independent, sharable images, which are allocated vir-
tual memory by the image activator at runtime. In processing all other clusters,
the linker organizes the psects within each cluster into image sections. Then the
clusters are assigned virtual address space and the image section descriptor
(ISD) of each image section is updated to include the starting virtual address of
the image section.

IMAGE INITIALIZATION - After resolving references and allocating memory,
the linker fills in the actual contents of the image. Primarily, initialization con-
sists of copying all data and code into a single image; but the linker performs
two other functions at this stage: it computes values that depend on externally
defined fields, and it inserts these values into the referencing location.

FIX-UP IMAGE SECTION - After it has initialized the image, the linker will
generate a special image section, called the fix-up image section. This image
section contains the code that makes otherwise position-dependent sharable
images position independent.

The general addressing mode is used to reference routines and data contained
ina sharable image. The linker converts general addressing mode directives into
longword-deferred addressing mode, with indirection going through the fix-up
image section. Failure to use general addressing mode when referencing a
sharable image will elicit a warning message.

All DIGITAL VAX high-level languages generate position-independent code.

SHARABLE IMAGES - An important benefit of the linker is that it allows the
use of sharable images. An effective application of sharable images can help to
conserve valuable resources in the your operating environment. For example,
physical memory requirements would be reduced if global sections (one for
each image section of a sharable image) used commonly among processes could
be resident in memory and mapped into their address space. Thus the same
physical pages satisfy a number of processes, reducing duplication. So, too, you
can conserve disk storage and reduce paging I/O, when sharing replaces
duplication.

5-12 = VMS Program Development Utilities

One of the reasons modular programming is so attractive is that a commonly
used routine or function can be developed or modified once, then incorpo-
rated into any number of programs. The use of sharable images carries this
efficient practice a step further. The modules that make up a sharable image
are linked only once, so the overhead of resolving undefined symbols
(within the image) and generating image sections — the bulk of the linker’s
work — is incurred only once, facilitating another level of modular hierar-
chy. Furthermore, since a position-independent sharable image is allocated
to virtual memory by the image activator at runtime, the code it includes can
be modified and updated without having to relink every program that uses
that image.

THE LINK COMMAND - The linker is run by the DCL command:

$ LINK [/Command-aualifier..:] file-spec [/file-qualifiersveJuss

At least one input file must be specified. There can be multiple command quali-
fiers, multiple file specifications, and multiple qualifiers for each file specified.

The VAX Text Processing Utility (VAXTPU)

VAXTPU is a high-performance programmable text processing utility available
in VMS. VAXTPU is a tool designed to aid application and system programmers
in the development of text processing interfaces. The utility includes a com-
piler, an interpreter, a high-level procedural language, and two editing inter-
faces written in VAXTPU.

VAXTPU Intetfaces

You can tailor one of the existing VAXTPU editing interfaces to suit your editing
style or you can write your own editing interface with VAXTPU. You can use
VAXTPU to design an intelligent editor for a specific environment. The editor or
other application that you layer on top of VAXTPU becomes the interface
between you and VAXTPU. You must use one of the existing VAXTPU interfaces
or create your own interface in order to access VAXTPU.

5-13

You can think of VAXTPU as a base on which text processing interfaces can
be layered. The two editing interfaces included in.the VAXTPU kit, the
Extensible VAX Editor (EVE) and the VAXTPU EDT Keypad Emulator, are
good examples of interfaces that are written in VAXTPU and layered on
VAXTPU. See Figure 5-2.

EDT
EVE Kevyrpad Emulator
Interface Interface

1 i
i i

il '
i i
fl il
i i

: VAXTPU

Figure 5-2 VAXTPU As a Base for EVE and the EDT Keypad Emulator

You can write extensions for the two interfaces that are shipped with VAXTPU
or you can write a completely separate interface for VAXTPU. See Figure 5-3.

User-written User-written
Extension Extension
' '
H H
H EDT
EVE Kerrpad Emulator User-written
Interface Interface Interface
H H !
H H H
o - +
H H
H VAXTPU
g LAt g U +

Figure 5-3 » VAXTPU As a Base for User-written Interfaces

Extensions to an existing interface can be implemented with a VAXTPU com-
mand file (VAXTPU source code) or with a VAXTPU section file (compiled
VAXTPU code in binary form). Because a VAXTPU section file is already com-
piled, start-up time for your interface will be shorter when using a section file as
opposed to a command file.

The only way to implement an interface that is entirely user-written is with a
section file.

The EVE Interface

The Extensible VAX Editor (EVE) is a new éditing interface that is easy to learn
and fast to use. Users with little or no experience with text editors can quickly
learn to perform basic editing tasks with the EVE interface. The most common
editing functions are accessed by pressing a single key on the EVE keypad.

5-14 = VMS Program Development Utilities

EVE is also a powerful and efficient editor for experienced users of text editors.
The more advanced editing functions are accessible by entering commands on
the EVE command line. Many of the special features of VAXTPU (such as multi-
ple windows) are available with EVE commands. Read the User’s Guide to EVE
to learn more about the EVE interface.

The EDT Keypad-Emulator Interface

For those EDT users who do not want to learn a new interface for basic editing
tasks, the VAXTPU EDT Keypad Emulator provides all of the functions of the
EDT keypad and binds these functions to the same keys that EDT uses. The
EDT Keypad Emulator also provides EDT users with a limited set of the EDT
line mode commands that can be entered after the asterisk that appears when
you press CTRL/Z.

The EDT Keypad Emulator provides access to advanced VAXTPU functions on
the VAXTPU command line. To access the VAXTPU command line, press PF1/7.
When you see the prompt, “VAXTPU command: ”, you can enter VAXTPU com-
mands or statements and VAXTPU will execute them. Read the VAXTPU EDT
Keypad Emulator Quick Reference Guide for more information on this
interface.

Special Features
VAXTPU provides the following special features beside the features normally
associated with a screen-oriented editor:

= Multiple buffers
* Multiple windowing
* Multiple subprocesses within VAXTPU and at DCL level

= Text processing in batch mode

= Insert or overstrike text entry

= Free or bound cursor motion

= Learn sequences

= Pattern matching
= Key definition
= Procedural language

= Callable interface

If you use the EVE interface to VAXTPU, many of the special features of
VAXTPU are easily accessible with a single EVE command. If you use the EDT
Keypad Emulator interface, you must include a user-written extension to the
interface to have easy access to these special features.

Hardware and Terminals That VAXTPU Supports

Because VAXTPU does not use a work file, but does all of its work in memory,
you may have to adjust some system parameters or divide files into smaller seg-
ments if the files you want to work with are very large.

VAXTPU supports screen-oriented editing on all DIGITAL video display termi-
nals, except the VT52. One of the major goals in the design of VAXTPU was fast
performance for screen-oriented editing. Optimum screen-oriented editing
performance occurs when running VAXTPU from V220 and VT100 termi-
nals. Some Digital video display terminals have hardware behavior that does
not allow optimum VAXTPU performance.

Although you cannot use the VAXTPU screen-oriented features on the VI52
series of terminals, on hardcopy terminals, or on foreign terminals, you can run
VAXTPU on these terminals if you use a line mode style of editing.

The VAXTPU Language

VAXTPU is a high-level procedural programming language that allows you to
perform powerful text processing tasks. The VAXTPU language can be viewed
as the most basic component of VAXTPU. In order to access the features of
VAXTPU, write a program in the VAXTPU language and then use the VAXTPU
utility to compile and execute the program. A program written in VAXTPU can
be as simple as a single VAXTPU statement, or as complex as the section file that
creates the EVE interface.

The VAXTPU language is block-structured and is easy to learn and use. VAXTPU
language features include Boolean operators, error interception statements,
looping, case, and conditional statements, and an extensive set of data types.
Comments are indicated with a single comment character, so that you can doc-
ument your procedures internally. There are also capabilities for debugging
procedures with user-written debugging programs.

VAXTPU Data Types

The VAXTPU language has an extensive set of data types. Data types are used to
interpret the meaning of the contents of a variable. Unlike many languages, the
VAXTPU language has no declarative statement to enforce which data type must
be assigned to a variable. Variables in VAXTPU assume a data type when they are
used in an assignment statement.

The following statement assigns a string data type to the variable this_var:

this_var := ‘This can be a string of vour choice.’

The following statement assigns a WINDOW data type to the variable X. The
window occupies 15 lines on the screen, starting at line 1 and the status line is
OFF (not displayed):

X 1= CREATE_WINDOW (1, 15, OFF)

5-16 = VMS Program Development Utilities

Many of the VAXTPU data types (for example, LEARN and PATTERN) are dif-
ferent than data types usually found in programming languages. Following is a
list of VAXTPU data types:

* NULL — The initial state of a variable after it has been compiled, or added to
the VAXTPU symbol table.

= STRING — A string constant.
= INTEGER - An integer constant.

* BUFFER — A collection of text records. The CREATE BUFFER procedure
returns this data type as its result.

= WINDOW — A Window data type is a subdivision of the screen. The CREATE
WINDOW procedure returns this data type as its result.

= MARKER - A position within a buffer, tied to the character that resides at that
buffer position. The MARK procedure returns this data type as its result.

= RANGE - All of the text that occurs between and including two markers. The
CREATE RANGE procedure returns this data type as its result.

= PATTERN - A collection of pattern expressions. The pattern operators and
the pattern built-in procedures return a pattern as a result.

» PROGRAM - A collection of VAXTPU executable statements. The COMPILE
procedure returns this data type as its result.

= PROCESS — A VMS subprocess. The CREATE PROCESS procedure returns
this data type as its result.

s LEARN — A collection of VAXTPU keystrokes. The LEARN END procedure
returns this data type as its result.

VAXTPU Language Statements
VAXTPU language statements include the following:

* An assignment statement (:)

= Procedure statements (PROCEDURE-ENDPROCEDURE)
» Repetitive statements (LOOP-EXITIF-ENDLOOP)

= Conditional statements (IF-THEN-ELSE-ENDIF)

= Case statements (CASE-ENDCASE)

= Error statements (ON ERROR-ENDON ERROR)

5-17

VAXTPU Built-in Procedures

The VAXTPU language has many built-in procedures that perform functions
such as, screen management, key definition, text manipulation, and program
execution.

You can use built-in procedures, for example, to create an editing interface
with multiple windows. Multiple windows allow you to see parts of different
files (or different parts of the same file) on your screen at the same time. The
CREATEWINDOW procedure allows you to create and alter the number, posi-
tion, and size of the windows on the screen. Since you can also create multiple
buffers and associate them with windows on the screen, you can edit multiple
files concurrently with VAXTPU.

VAXTPU allows you to run more than one process concurrently. You can use
built-in procedures to create multiple processes. The CREATEPROCESS built-in
procedure allows you to create a subprocess and attach a buffer to it for storing
the output of the subprocess. In one process you can compile a large program,
sending any error messages to a message file, while you continue to develop a
program in another process. Limitations on subprocess activity are the same as
the limitations for VAX/VMS subprocesses.

~ You can use the DEFINEKEY procedure to bind a VAXTPU program to a partic-
ular key, or key combination. This allows you to control the actions that are
taken when a key is pressed. You can use the SAVE built-in to keep your key
definitions from session to session.

You can use the UNDEFINEKEY procedure to remove a key binding. The fol-
lowing example is a built-in procedure that removes the association between
the key sequence CTRL/Z and the code that it previously executed:

UNDEFINE_KEY (CTRL_Z_KEY)

You can use built-in procedures as statements within a VAXTPU procedure, or
as commands from either the EVE interface or the EDT Keypad Emulator inter-
face. See the interface manuals for a description of how to enter VAXTPU proce-
dures or commands. '

VAXTPU User-written Procedures

You can write your own procedures that combine VAXTPU language statements
with calls to VAXTPU built-in procedures. After you compile a procedure, you
can save it and call it when you need it.

The body of a procedure can contain zero or more VAXTPU statements. State-
ments are separated by semicolons. VAXTPU procedures can return values.
Procedures can be recursive.

5-18 = VMS Program Development Utilities

Example 5-1 is a sample procedure that uses VAXTPU language statements
(PROCEDURE - ENDPROCEDURE) and built-in procedures (SET and
MOVE_VERTICAL) to slow down the action of the up arrow key:

! This procedure slows down the speed
! of the ur arrow Kev while scrolling

PROCEDURE user_slow_uP_arrow

SET (AUTO_REPEAT: OFF)3
MOVE_VERTICAL (-1)3
SET (AUTO_REPEAT: ON)j

ENDPROCEDURE

Example 5-1 » Sample User-written Procedure

Invoking VAXTPU
To invoke VAXTPU at DCL level, simply type EDIT/VAXTPU, followed by the
name of your file. For example:

% EDIT/VAXTPU text_file.lis :

This command opens the file text_file lis for editing. Note that you can specify
only one input file on the command line. You can include additional files from
within VAXTPU later in your editing session.

When you invoke VAXTPU with the preceding command, you are placed in a
default editing interface (unless you specify /NOSECTION). The default editing
interface for VAXTPU is EVE. We suggest that you create a symbol like the fol-
lowing so that you can invoke EVE with a command that suggests the interface
being used:

$ EVE :==EDIT/VAXTPU

If you want to invoke VAXTPU with the EDT Keypad Emulator rather than EVE
as your editing interface, enter the following command after the system
prompt: ‘

$ EDIT/VAXTPU/SECTION=EDTSECINI,.GBL

Instead of typing such a long command line, you can create a DCLsymbol like
the following to invoke VAXTPU with the EDT Keypad Emulator interface:

% EDTEM :== EDIT/VAXTPU/SECTION=EDTSECINI.GBL

Then you can simply type EDTEM at DCL level to invoke VAXTPU with the EDT
Keypad Emulator interface. The terminal screen will look exactly as it does
when you use EDT, except for the two lines reserved at the bottom of the screen
for error and informational messages from VAXTPU.

EDIT/VAXTPU Command Qualifiers

You can add qualifiers to the DCL command EDIT/VAXTPU. VAXTPU qualifiers
control such items as recovery and initialization files. Qualifiers to the
EDIT/VAXTPU are listed in Table 5-1.

Table 5-1 = Qualifiers to the DCL command EDIT/TPU

Qualifier Default
/INOJCOMMAND /NOCOMMAND
/INOJSECTION /SECTION = EVESECINI
/[INO]DISPLAY /DISPLAY
/INOJOUTPUT /OUTPUT
/INOJJOURNAL /JOURNAL
/[INOJRECOVER /NORECOVER
/INOJREAD_ONLY /NOREAD_ONLY
Initialization Files

You can use two kinds of initialization files to create or customize a VAXTPU
interface: command files and section files.

A command file is a VAXTPU source code file that has a file type VAXTPU.
It is used with the VAXTPU qualifier /COMMANDfile-spec. By default,
no command file is read when you invoke VAXTPU. You must specify
/COMMANDfile-spec if you want to include a command file.

A section file is a compiled VAXTPU file. It is a binary file that has a GBL file
type. It is used with the VAXTPU qualifier /SECTIONfile-spec. By default, the
section file that creates the EVE interface is read when you invoke VAXTPU. You
must specify a different section file (for example, /SECTIONmysectionfile) or
/NOSECTION if you do not want to use the EVE interface. Note that when you
specify /NOSECTION, there is no intetface to VAXTPU. Even the RETURN and
DELETE keys are not defined. /NOSECTION is used in the process of creating
~ your own section file.

You can use either a command file or a section file to customize or extend an
existing interface. A command file is generally used for minor customization of
an interface. A section file is used to customize or extend an interface when the
customization is lengthy or complex because start-up time is faster with a sec-
tion file.

To create an interface that is not layered on top of one of the existing interfaces,
use a section file.

5-20 = VMS Program Development Utilities

Copies of both the command file and the section file for EVE and the EDT
Keypad Emulator are in SYS$SHARE. We included the command files on-line
so that you can read the VAXTPU source code to see how VAXTPU was used to
create the two different editing interfaces. The VAXTPU source file for EVE is
SYS$SHARE:EVESECINL.TPU. The compiled binary section file for EVE is
SYS$SHARE:EVESECINL.GBL. The VAXTPU source file for the EDT Keypad
Emulator is SYS$SHARE:EDTSECINLTPU. The compiled binary section file for
the EDT Keypad Emulator is SYS$SHARE:EDTSECINLGBL. If you cannot find
these files on your system, see your system manager.

Leaving a VAXTPU Editing Session

When you want to leave a VAXTPU editing session, you can either QUIT or
EXIT. If you QUIT the EVE or the EDT Keypad Emulator editing interfaces, the
work that you have done will not be saved. If you EXIT from these interfaces,
the current buffer will be written to a disk (if it was modified) and you will be
queried about writing other modified buffers to a disk.

The EDT Editér

EDT, the Digital standard editor, lets you enter and manipulate text and pro-
grams. With its extensive HELP facility, the EDT editor is designed to be learned
by novices. In addition, it provides many capabllmes that will appeal to
advanced users.

WHAT EDT DOES - EDT is a interactive text editor that provides:
= Both line and character editing facilities

= Screen editing using the keypad on VT100 or VT200 series video terminals

= The ability to work on multiple files simultaneously

* A journaling facility that protects against loss of edits due to system crashes
= An extensive HELP facility

= A default start-up command file, which allows a choice of editing options to
be set automatically

» A window into a file (on VT100 and VT200 terminals only) that lets you view
changes in buffer contents immediately

= Sharable installation for many users

5-21

BUFFERS - All editing with EDT is done using buffers. A buffer is a part of
EDT’s memory. When you begin editing, the input file is read into the MAIN
buffer, and when editing is complete, the MAIN buffer is written onto the disk
as a file. Thus, editing in the MAIN buffer is like editing a file directly.

START UP FILE - When you invoke EDT, the editor checks to see if you cre-
ated a start-up file. Editing options, such as SET MODE CHANGE and DEFINE
KEY, can be inserted in the start-up file. These options take effect automatically
when an editing session begins.

HELP FACILITIES - The HELP facilities on EDT are extensive. You can get
help on general EDT operations by typing HELP. If help is needed while in
keypad mode, pressing the help key displays information that is specific to
keypad editing. The help information is tree-structured, so that more specific
help canbe obtained on a general topic.

REDEFINING KEYPAD KEYS - You can redefine any of the keypad keys and
most of the control (CTRL) keys'on VT100 or VT200 terminals. With this fea-
ture, a series of commands can be assigned to a key. EDT then performs these
commands when the key is pressed.

THE SET AND SHOW COMMANDS - The SET command, with a variety of
qualifiers, affects EDT’s editing capabilities. SET controls screen’ parameters
such as line width. SET also lets you determine the appearance of text, such as
changing the window size to less that 22 lines. The SHOW command provides
information on the current state of the editor, such as terminal parameters, defi-
nitions of keypad keys, and the names of buffers in use during an editing
session.

JOURNAL PROCESSING - Journal processing protects your work against sys-
tem crashes. During an editing session, EDT saves all the input from a terminal
in a journal file. After a system crash and restart, you can retrieve and execute
commands in this saved file with the /RECOVER option. In this way, an editing
session can be recovered to nearly the time of the crash.

EDT MODES OF OPERATION - With EDT there is a choice of keypad or line
mode editing. They allow you to

= Display a range of lines.

= Find, substitute, insert, and delete text.

= Move, copy, and renumber lines.

= Copy text into a buffer and write it on files.

* Define the functions of keys.

5-22 = VMS Program Development Utilities

Keypad editing is available on VT100 and VT200-series terminals. The group of
keys at the right of the keyboard is used to enter keypad functions.

Keypad editing is powerful and versatile, yet it is easy to learn and use. In
keypad editing, the active buffer is displayed on the screen as you edit. There is
a variety of editing functions available, each of which requires that only one or
two keypad keys be pressed to perform a function. You enter commands,
inserts text, and performs CONTROL functions from the keyboard.

Document-Formatting Utility (DSR)

Designing and producing printed materials can be simplified through the use of
the Digital Standard RUNOFF (DSR) utility. DSR reduces the time needed to
prepare a document by allowing both textual corrections and formatting
changes to be executed in the same pass over the file. And since text changes do
not affect the basic design, documents can be updated without extensive
retyping.

The input to DSR is a file containing the text of the document and the DSR
instructions. The output file is the print-ready document. After the program has
been run, the original file remains available for further editing.

Formatting instructions consist of commands and flags. Command lines are sig-
naled by a command flag, usually a period, in position one and can contain one
or more commands and text. Within the text are special characters — called
flags — that specify character enhancements such.as underlined text or bold-
face characters.

FILLING AND JUSTIFYING - DSR commands can set left and right margins,
so that you can enter text without concern for line width or variable spacing
between words. The DSR program can fill and justify the text when it is run.
Filling is the successive addition of words to a line until one more word would
exceed the right margin. DSRjustifies the line by adding enough spaces between
words to expand the line to the right margin.

5-23

DSR DEFAULT MODES - When an input file is processed by the Digital
Standard RUNOFF utility, certain default actions are performed that do not
depend upon command or flag entries for their execution. These actions are
similar to those performed during the preparation of a manually typed
document.

DSR default modes provide

= A standard page size, 70 characters x 58 lines.

= Sequential page numbering.

= Right margin of 70 characters, left margin 0.

= Single spacing.

= Automatic tab settings for every eight print positions.

= Automatic filling and justifying is turned on.

PAGE FORMATTING - The page formatting commands control the appear-
ance of each page for output. For example, there are page formatting com-
mands to enable or suspend page numbering, produce and format titles and
subtitles, or force the printer to advance to a new page.

Another page formatting command allows a conditional page advance, based
on the number of lines left on the page. This capability can be used to guarantee
that text which should appear on a single page (for example, tables and lists)
will not be broken up.

For example:
LAYOUT 2,5
The 2 indicates page titles will be flush right on odd pages, flush left on even

pages; pages will be numbered at center bottom with 4 blank lines after the
body of the text.

TITLE FORMATTING - Title formatting commands provide page, title, and
subtitle information for all pages. Such actions as placing only the chapter head-

ing on the first page of a chapter and printing any subtitles are provided for by
the title formatting commands.

5-24 w VMS Program Development Utilities

SUBJECT-MATTER FORMATTING - Subject-matter formatting includes
commands for managing the design and appearance of text, such as making a
ragged right margin, indenting a paragraph, skipping a number of lines, center-
ing a line of text, underlining, hyphenating, and overstriking. Parts of the text
can be formatted differently from one another, and commands can be com-
bined. For example, you can have lists justified or having them with ragged

margins.
Table 5-2 = Selected Examples of DSR Subject-Matter Formatting
Commands

Command Result

Sequence

ILM5RM58 Set the left margin at space 5 and the right margin
at space 58

NF Disables filling: causes a new line in the input file to
produce a new line in the output file

.NJ Disables justifying, lines are ragged right

BR Causes a break: current line is output without being
filled or justified

Sor.SK2 Skips two blank lines

PG Causes a .BR then starts the next page

TP25 TTests the current page to determine if there is a min-
imum of 25 lines remaining. This is done so certain
segments of text (i.e., paragraphs, or listings) can be
kept together and not create “widows at the begin-
ning of a page.

.center Centers subsequent line of text between the left and

T83,7,19,15,26...

P423

right margin.
Sets up to 32 new tap stops to override the default
tab stop values

Formats paragraphs in which: fitst word is indented
4 spaces; there are 2 blank lines between
paragraphs; there must be at least 3 lines remaining
on the page for the paragraph to be started on the
current page.

5-25

GRAPHIC, LIST, AND NOTE FORMATTING - It often becomes necessary to
accommodate graphics, lists, and tables, or to allow for special notes to be
inserted. Footnotes also have to be prepared in such a way as to fit on the
appropriate pages of the final document.

Table 5-3 * DSR Graphic, List,and Note Formatting Examples

Command Result

.FIG 24 Leaves 24 lines for a figure to be inserted

.FIG DEF 30 Leaves 30 lines, including at the top of the next
page, for a figure

LIST 1, «*» Sets up a list with 1 blank line between items and
an asterisk marking each item

LE Identifies the start of an element

.DLE “(“-,LL,)” Establishes a user-specified display format for lists:

in this case, sequential, lowercase letters will be
enclosed in parentheses.

These commands provide a properly numbered and formatted outline. The
right column indicates their output if these three header levels appear in chap-
ter 14 of a publication.

.HL 1 Plays 14.1 Plays
.HL 2 King Lear - 14.1.1 King Lear
.HL 3 Tragic Flaw 14.1.1.1 Tragic Flaw

5-26 » VMS Program Development Utilities

MISCELLANEOUS FORMATTING - Several useful DSR commands help you
to add comments (not printed to the output file) to the source file, to gather
externally located files into the input, to exert conditional control, and to set or
display time and date.

Table 54 = Miscellaneous Formatting Commands

Command Example

IF complete Processes the line following only if the qualifier
/VARTANT.-COMPLETE was given on the
command line. '

lappendix C DSR ignores comments .

.ELSE complete Marks the end of the line to process because of the

IF, and starts the alternative

ENDIF complete Marks the end of a group of conditionally
processed lines using the variant “complete”

FLAGS - Flags are special characters (for example, an ampersand)-that perform
specific operations (for example, underlining). The specified operation is
invoked when a character is recognized as a flag by DSR. Certain special charac-
ters initially are recognized by default.

INDEX AND TABLE OF CONTENTS - DSR has powerful facilities for creating
indexes and tables of contents easily. The TOC program generates tables of
contents.

Table 5-5 = DSR Flag, Index, and Table of Contents Commands
Flag, Index, and Table of Contents Commands

fix#some#space The SPACE flag (#) fixes one nonexpandable space
whenever it occurs

R_&D The ACCEPT flag (_) prevents DSR from inter-
preting the ampersand in R&D as an underline flag

X Satire Creates an index entry for Satire. DSR gives it the
current page number

ENTRY Parody>See Provides a cross reference to the index using the
Satire subindex flag

5-27
RUNNING THE DSR PROGRAM - DSR s initialized by entering the follow-
ing command:

RUNOFF filesrec@e
After processing the file, DSR terminates.

Table 5-6 * DSR Run Commands
$RUNOFF MYBOOK Processes MYBOOK RNO and produces
MYBOOK .MEM as output
Various qualifiers can be placed on the command line. Examples are:
/FORMSIZE =55 Sets page to 55 lines rather than the default of 60
lines
/PAGES=3-1:3-16, Prints only pages 3-1 through 3-16 and 4-1 through
4-1:4-16” 4-16
/DEBUG:echo Traces the operation of any DSR commands defined
by a parameter by echoing each execution in the
output file
/OUTPUTTT: Directs output to the terminal

Other Program Development Utilities

Some of the other major program development utilities available to you are:’
= The Command Definition Utility

* The Object Analyzer Utility

= The Message Utility

= The Exchange Utility

The Command Definition Utility (CDU)

The VMS Command Definition Utility (CDU) creates, deletes, or changes com-
mand definitions in a command table. As input, the CDU accepts a command
table and/or a file that contains command definitions. The CDU processes this
input to create a new command table. The new table can be either executable
code or an object module.

The CDU provides a way of defining command line syntax. The command table
is used by the CLI (command line interpretet) to parse commands. The CLI is
callable from the VAX Common Language Environment.

5-28 = VMS Program Development Utilities

The OBJECT Analyzer Utility.

The object module analysis utility checks an object module (or a concatenated
file containing several object modules) to see if it is in the correct format for
input to the linker. It is a diagnostic tool for writers of compilers or assemblers
that generate VAX object code. The program, invoked by the DIGITAL Com-
mand Language (DCL) command ANALYZE/OBJECT, can analyze the entire
module or only specified types of records. It checks the record type, contents,
and sequence of each object module record it examines. The program creates
an output file containing a record-by-record analysis of the object module,
including identification of any errors in the module.

The MESSAGE Utility

The MESSAGE utility allows you to construct informational, warning, or error
messages in standard VAX/VMS format. First, using a text editor, you create a
source file that specifies the information used in messages, message codes, and
message symbols. The MESSAGE command can then be used to compile the
source file.

The EXCHANGE Utility (EXCHANGE).

The VMS Utility EXCHANGE allows you to transfer files between foreign
volumes and VAX/VMS native volumes. It appropriately converts the file format
when transferring files between different structured volumes. EXCHANGE rec-
ognizes all Files-11 volumes of VAX/VMS devices, as well as all DOS-11 format-
ted volumes on nine-track magnetic tape devices.

EXCHANGE also recognizes several foreign file structures and supports most
operations that are useful for each volume structure. It allows you to initialize
and manipulate functions of the foreign volumes, for example.

You can use the EXCHANGE Ugtility to
= Locate bad blocks on volumes.

» List directories of volumes.

= Transfer files to and from volumes.

= Delete files and compfess volumes for block-addressable devices (such as

RT-11 disks.)

The EXCHANGE Utility employs defaults to ensure volume formats and file
structures are compatible with the type of operation you want to perform.

Chapter 6 = VAX Program Migration
and Cross-Development Tools

Overview

One important benefit inherent in VAX/VMS systems is Digital’s commitment to
software compatibility among the entire family of VAX processors and, in many
cases, other Digital systems as well. As a VAX/VMS user, you can migrate, or
move, many existing applications from one system to another and even develop
application programs on a VAX that will be executed on other Digital target
systems. These capabilities are realized through the use of the VAXELN Toolkit,
VAX-11 RSX, and the MicroPower/Pascal-VMS Toolkit.

* Realtime and other statically defined systems can be developed on a VAX/
VMS system with the VAXELN Toolkit and then run on a target VAX processor
without VMS present.

* Migration and cross development of many applications to and from the
RSX-11 family of operating systems is accomplished with the optional pro-
gram development product VAX-11 RSX.

= MicroPower/Pascal is a modular executive and software development tool
that runs under VMS and is used to develop PDP-11 (Q-Bus) based
microcomputer applications.

6-2 = VAX Program Migration and Cross-Development Tools

This chapter introduces you to 3 VAX/
VMS. optional software products that
provide for the migration and cross
development of application programs
between the VMS operating system
and other Digital operating systems.

VAX-11 RSX
MicroPower/Pascal-VMS

VAX-11 RSX simulates the RSX-11M/11M-
PLUS operating system environment-by
providing

o PDP-11 users with a familiar user interface
to the VMS operating system.

* Many RSX-11 and VMS program develop-
ment utilities and other facilities for writing
RSX-11 programs that will execute in VMS
compatibility mode or under the RSX-11
operating system.

* An Applications Migration Executive
(AME) that provides a means of executing
most nonpriviledged RSX-11 programs on
VMS.

The VAXELN Toolkit

The VAXELN Toolkit supports the develop-
ment of stand-alone, statically defined
software systems. VAXELN applications

® Are developed under VMS with VAXELN
Toolkit components and VMS program
development facilities, used for standard
VMS program development.

Applications runs on the entire line of VAX
processors without the VMS operating
system present.

Are typically, although not necessarily,
used to develop realtime applications.

Figure 6-1 = Overview Of Chapter 6

6-3

« VAXELN Toolkit Overview

The VAXELN Toolkit is an optional VAX software product for the development
of dedicated, realtime VAXELN systems that run on VAX and MicroVAX com-
puters. The toolkit runs on any VAX processor running the VMS or MicroVMS
operating system. This system is call the bost system . Once you have finished
building the application, called the VAXELN system, it runs directly on a farget
VAX processor without any operating system present.

Typical VAXELN applications run on individual processors used for “dedi-
cated” or otherwise predetermined functions and that are not needed simulta-
neously for general computing, program development, or other uses for which
a general operating system, VMS for example, is more appropriate. Examples of
situations requiring dedicated applications are industrial automation, worksta-
tions designed for a particular profession, Ethernet server networks, or robots.

VAXELN is especially suited to, although not limited to, creating realtime appli-
cations. These software programs are used by a processor operating in an envi-
ronment where response to external events is critical. Such applications include
the typical scientific and industrial data processing situations in which the com-
puter’s operation has to be precisely synchronized with machines and special
input/output devices.

The VAXELN toolkit simplifies the design and implementation of such applica-
tions by offering high-level implementation languages (Pascal and C), a concep-
tually simple and small kernel executive (which manages resources, processes,
and data), and pregenerated optionally included service programs and device
drivers (which implement a file system, network communication facilities, and

/O device handling). -

VAXELN provides multitasking in Pascal or C programs. Therefore, you can
write a program made up of several concurrently executing parts. Besides mul-
titasking, multiprogramming is also supported, This means that entire pro-
grams, including multitasking programs, can be scheduled concurrently on the
same CPU. (Multiprogramming is different from multiprocessing. Multiproces-
sing programs literally execute in parallel, on different processors on the same
bus. Multiprocessing is not available through VAXELN.)

VAXELN Systems

A VAXELN system is a set of programs executmg on VAX hardware, along with
standard code and data that manage the program’s execution. VAXELN systems
can run on individual VAX or MicroVAX computers or, with networking soft-
ware provided in the Toolkit, they can be connected in an Ethernet local area
network (LAN) This network may include VAX/VMS nodes or any other nodes
using the DIGITAL Network Architecture DECnet services and protocols.

6-4 w VAX Program Migration and Cross-Development Tools

Since DECnet is supported by all of DIGITAL’s operating systems, VAXELN
applications can communicate with programs running on processors anywhere
in a DECnet network. This makes it easy to distribute an application’s programs
among several network nodes, and changing the network location of a program
typically requires no changes to the program code.

The hardware configuration for a VAXELN system also includes optional
peripheral devices, such as disks and terminals, and communication hardware
to support the execution of the programs on various nodes in a LAN. Besides,
the configuration may include special hardware you have designed or acquired,
such as custom device interfaces.

The programs executing in a VAXELN system are of two kinds:

= Your programs. These can include user-written device drivers or resource ser-
vices, as well as typical computational programs.

= Programs (services and drivers) supplied by DIGITAL. Examples are the Net-
work Setvice, the File Service, and drivers for the standard supported periph-
eral devices.

You can develop VAXELN systems entirely in a high-level language, including
the handling of devices, exceptions, timeouts, and power failures. The recom-
mended languages are VAXELN Pascal or the VAX C programming language.

VAXELN Pascal is a compatible superset of ISO-standard Pascal. Any program
written in ISO-standard Pascal can be compiled by the VAXELN Pascal compiler
and executed as part of a VAXELN system. VAXELN Pascal is supported by a
highly optimizing compiler that generates position-independent, native-mode
code. It is the primary implementation language of the VAXELN Toolkit itself.
VAXELN also supplies you with a set of C runtime library functions that
provides you with the capability to write C programs running under
VAXELN. The VAXELN C Runtime library contains a compatible subset of
the VAX/VMS C Runtime library and the typical UNIX* runtime environ-
ment. It also provides access to all VAXELN features.

Many C programs originally written for VAX/VMS or UNIX will run in a
VAXELN system with only minor modifications. However, the VAXELN C run-
time library does not support all VAX C or UNIX-emulation functions.

*UNIX is a Trademark of AT&T.

6-5

You develop a VAXELN system by writing new programs in VAXELN Pascal or
VAX C. Programs can also contain existing subroutines written in other VAX
languages, provided that they do not call VAX/VMS services or language-specific
runtime routines calling VMS services. Then, with simple VAX/VMS commands,
you combine the programs with each other, with any of the standard services
and drivers you want, and with the VAXELN kernel to form an executable sys-
tem. If you are programming for a set of computers linked by a network, you
simply prepare a VAXELN system for each connected machine, or node.

Once a VAXELN system has been prepared, the system image is ready to be
booted on a target processor. A VAXELN system can be booted from a disk,
from a TU58 tape cartridge, from a diskette, or, if the host system has the
optional DECnet-VAX license and Ethernet hardware, by down-line loading the
system into the target computer. VAXELN system images also are suitable for
placement in read-only memories (ROMs) and booting from them. However,
the ROM-blasting equipment and software are not part of the Toolkit and must
be acquired separately.

After booting or downline loading a VAXELN system image onto each target
machine in your local area network, you have a completely defined VAXELN
application. The typical structure of such a network-based application consists
of:

» A VAX processor running the VAX/VMS or MicroVMS operating system that
serves as the host development system. This processor is used to develop and
build each VAXELN system. It also contains the VAXELN debugger, which
can remotely access one or more VAXFLN target system nodes at the same
time for debugging purposes.

= One or more target machines connected by the Ethernet to the VAX proces-
sor serving as the host development system and to each of the other target
machines. Each target machine is a node in the network and contains its own
running VAXELN system.

Toolkit Components
Along with other software modules, you receive the following program devel-
opment utilities (VAX/VMS program images) in the VAXELN Toolkit.

» The VAXELN Pascal compiler.
= The VAXELN debugger.
= The VAXELN system builder.

6-6 w VAX Program Migration and Cross-Development Tools

Application programs are written with the aid of the usual VMS text editors and
other utilities and are compiled with the VAXELN Pascal compiler or the VAX C
compiler (acquired with a separate license), as appropriate to the development
language in use. The compiled code is linked to special runtime libraries also
supplied with the Toolkit, using the standard VMS linker.

The runtime libraries provide special support for VAXELN Pascal and VAX
C I/O operations, the standard Pascal routines such as SIN, the standard C rou-
tines commonly associated with UNIX such as printf, and certain procedures
used in system programming. The libraries are provided both in object-library
and shareable-image forms in the Toolkit. In the latter case, only those share-
able images containing code called by application programs are included in the
finished VAXELN system, resulting in a finished systém with a minimal amount
of unused code, while maintaining maximum ease of use in program
development.

The VAXELN Pascal compiler can also be used for VMS programming. The
compiler generates the same Debugger Symbol Table (DST) information as
used by the VAX Symbolic Debugger. It is, therefore, possible to use that debug-
ger to debug VAXELN Pascal programs running under VMS.

The VAXELN debugger is used to debug the programs in a developed,
executing VAXELN system. It can be used to debug a VAXELN system “locally”
using the target computer’s console terminal, or, if you have the optional
DECnet-VAX license and Ethernet hardware, it can be used remotely to debug
VAXELN systems running on Ethernet nodes from your terminal on a VAX/VMS
node.

In the remote case, you can examine and manipulate variables and other items
by their declared names (symbolic debugging) and can examine lines of source
code in the program being debugged. The remote debugger can display the
states of all VAXELN processes and jobs in the local area network, and it can
dynamically change your “session scope” from one process or node to another.

In either case, when using the Debugger, you can evaluate expressions, exe-
cute a large set of debugger commands in the same general syntax as used in
the VAX debugger, define new debugger commands and variables for use in
a debugging session, and debug kernel-mode code.

The VAXELN System Builder combines program images, the VAXELN kernel

image, and run-time routines to produce an image of the finished VAXELN
system.

Also included in the Toolkit are a number of program images réady for inclu-
sion in your VAXELN system (additional information is given later in this
document).

6-7

The VAXELN File Service supports I/0 operations from VAXELN programs
to file-storage devices, as well as remote file access to and from other DECnet
nodes. I/O requests from your programs are interpreted by the File Service
and performed by the appropriate device driver program. The File Service
and the Toolkit’s disk driver programs use the DIGITAL Data Access Proto-
col (DAP), Version 7.0, for all low-level I/O operations with consumer pro-
grams and remote requests. Any user-written device drivers can be
combined with the File Setvice and programming tools are supplied in the
Toolkit for this purpose.

In a network application involving several VAXELN nodes, only one needs to
provide the File Service (and disk or tape hardware and driver) for use by all the
others. That is, the node can act as a file server for the others.

The VAXELN Network Service provides completely transparent network com-
munication between VAXELN nodes in a local area network and between VAX-
ELN nodes and other DECnet nodes. VAXELN provides the capability to restrict
node access to a specified list of users and for a program to determine the iden-
tity of a user issuing a network request through an optional setvice called the
Authorization Service (explained later in this document).-

In network applications, each VAXELN node runs its own VAXELN system, and
each system is built including the Network Service. Given such a configuration,
the network locations of VAXELN application programs are completely invisi-
ble to each other; that is, a program can communicate with a program on
another node using precisely the same statements as if both programs were on
the same node. Internode communication is transparent.

The VAXELN kernel is included in every VAXELN system. It manages the sys-
tem’s processes and data, providing the controlled sharing of the system’s
resources. The operations of the kernel are reflected in VAXELN programs by
special procedure calls, almost all of which are predeclared in the language. (A
few kernel procedures are not predeclared, although their calling interfaces are
documented and are provided in declarations that you can include explicitly.
These procedures are low-level routines and are typically of no use to general
programming.) For C programming, these kernel procedures are contained in a

include module.

High-performance device drivers are supplied for the commonly used UNIBUS
(VAX) and Q-22 bit (MicroVAX) devices. All are implemented in VAXELN
Pascal and are supplied both in source form and in image (binary) form. The
driver sources can be used as templates for user-written drivers. (Refer to the
Optional Hardware section of this document for the list of devices supported
by drivers.)

A variety of other programming aids are supplied, such as template device driv-
ers, declarations of Data Access Protocol (DAP) interfaces, and declarations of
exception arguments.

6-8 = VAX Program Migration and Cross-Development Tools

The Toolkit is delivered with complete user documentation, including refer-
ence manuals for the VAXELN Pascal language and the VAXELN C runtime
library.

VAX-11 RSX

VAX-11RSX is an emulator for RSX-11 operating system family and executes on
all VMS and MicroVMS systems. It runs in compatibility mode on processors
that support a PDP-11 instruction set subset in hardware or microcode and it
also runs on certain processors without this support by providing its own soft-
ware emulation of the same PDP-11 instruction set subset. It provides special
capabilities that enable PDP-11 users to develop programs for execution in any
of the following environments:

= VAX/VMS compatibility mode .

= MicroVAX II/MicroVMS (software-emulated compatibility mode)
= VAXstation II/MicroVMS (software-emulated compatibility mode)
= RSX-11M-PLUS

= RSX-11M

= RSX-11S

= Micro/RSX

= P/OS

VAX-11 RSX also allows for the migration of many existing RSX-11 applications
to VAX/VMS and MicroVMS.

6-9

Program Development Capabilities
The program development facilities provided by VAX-11 RSX consist of

= The PDP-11 Instruction Set Emulator (CEM$EMULATOR) which emulates
the PDP-11 machine instruction set and allows RSX-11 tasks to run on
MicroVAX I and VAXstation II processors that do not contain the compatibil-
ity mode hardware.

= The MCR command line interpreter (CLI). This CLI emulates the RSX-11
MCR CLI so that you can interact with a familiar user interface. MCR also pro-
vides access to many of the native VAX/VMS and MicroVMS program devel-
opment facilities.

= The RSX-11 Application Migration Executive (AME) that emulates the
RSX-11 Executive services.

» The Indirect Command File Processor (ICM) that allows RSX-11 indirect
command files to be executed on VAX/VMS and MicroVMS.

= The DCL command back translator (BACKTRANS) that allows RSX-11 utili-
ties to be invoked through the use of the DCL command interface.

= A subset of the RSX-11 program development utilities and libraries.

* A subset of the RMS-11 Version 2.0 program development utilities and
libraries.

The following RSX-11 program development utilities are available to users of
VAX-11 RSX:

= BRU — Backup and Restore Utility

= CRF - Cross Reference Processor

= DMP - File Dump Utility

= DSC - Disk Save and Compress Utility Program
= EDI - Line Text Editor ,

» FLX - File Transfer Utility Program

= LBR - Librarian Utility Program

= MAC—PDP-11 MACRO-11 Assembler
* PAT — Object Module Patch Utility -

= PIP — Peripheral Interchange Program
= SLP - Source Language Input Program
* TKB - Task Builder

= ZAP - Task/File Patch Program

6-10 = VAX Program Migration and Cross-Development Tools

The following RSX-11 program development libraries and components are
available to VAX-11 RSX users:

= FCSRES.STB - File Control Services symbol table

* FCSRES.TSK - File Control Services resident library

= ODT.OBJ - On-Line Debugging Tool object module

= QIOSYM.MSG — Standard RSX-11 QIO error messages
= RSXMAC.SML — Standard RSX-11 macros

» SYSLIB.OLB - System object library (non-ANSI version)
* VMLIB.OLB - Virtual memory subroutine library

The following RMS-11 program development utilities are available to VAX-11
RSX users:

= BCK - File Backup Utility

= CNV - File Conversion Utility
= DEF - File Definition Utility

= DES - File Design Utility

= DSP - File Display Utility

® IFL — Index File Load Utility
= RST - File Restore Utility

The following RMS-11 program development libraries and components are
available to VAX-11 RSX users:

= RMSLIB.OLB - RMS-11 object library
= RMSMAC.MLB — RMS-11 macro library
= RMS11.0DL ~ Prototype disk-based overlay descriptor

= RMS11S.ODL — Minimum-size partial-function overlay descriptor

s RMS11X.ODL — Minimum-size full-function overlay descriptor

= RMS12S.0DL — Medium-size partial-function overlay descriptor

= RMS12X.ODL — Medium-size full-function overlay descriptor

* DAP11X.ODL - Full-function including remote support overlay descriptor
= RSMDES.IDX — Help file for the RMS DES utility

6-11

The following utility for file transfer to and from Micro/RSX systems is avail-
able to VAX-11 RSX users:

« MFT - Micro/RSX File Transfer Utility

General Access

When using VAX-11 RSX, you can gain access to the system through the normal
VMS LOGINOUT procedure. You can request MCR as your command line inter-
preter (CLI) or have it specified as the default CLI in your User Authorization
File. You can also use the VMS CLI, DCL. Under DCL, however, not all of the
RSX and RMS program development utilities are directly available. Some of the
utilities are available through DCL commands (LIBRARY/RSX11, for example,)
but for some other utilities, you must explicitly request the utility to execute by
typing RUN SYS$SYSTEM:utility-name or MCR utility-name.

VAX-11 RSX indirect command files may be executed from either MCR or DCL
but must contain only indirect directives and MCR commands.

On VMS and MicroVMS it is only possible to switch from one CLI to another by
logging out of the current CLI and then logging in again using the new CLI or
by using the DCL or MCR SPAWN command. This differs from RSX-11M and
RSX-11M-PLUS.

Disk and Tape Volumes

In addition to a native disk file structure, VMS and MicroVMS also provide a
disk file structure (called Files-11 Structure Level 1) that is compatible with
RSX-11. This provides for easy cross migration of code and data. Both file struc-
tures are available to programs running in either compatibility or native mode.
VAX-11 RSX supports general access to magnetic tape volumes. Tapes created
on an RSX-11 system by BRU, DSC, FLX, PIP, and RMS BCK can also all be read
on VAX-11 RSX by corresponding utilities. Similarly, it is possible to create tapes
on VAX-11 RSX to be read on an RSX-11 system.

6-12 » VAX Program Migration and Cross-Development Tools

Intersystem Facilities

VAX-11 RSX includes support for the Micro/RSX Data Terminal Emulator
(DTE) and File Transfer Program (MFT). Two-way file transfer capabilities to
and from Micro/RSX systems are provided by the MFT utility supplied with
VAX-11 RSX that executes on the VMS or MicroVMS system and the DTE utility
that executes on the Micro/RSX system. Files of any type or size can be trans-
ferred from one system to the other in this manner. However, the file transfer
process can only be initiated from the Micro/RSX system. The Micro/RSX user
connects to the VMS or MicroVMS host system via a serial terminal line using
the Micro/RSX Data Terminal Emulator (DTE) utility. The Micro/RSX user can
then log into the host system as though the user’s terminal were directly con-
nected to the host.

DEChnet is not available to RSX programs executing under VAX-11 RSX with one
exception: applications written to use RMS-11 Version 2.0 will have full access
to DECnet.

Compatibility
This product is an emulator of the RSX-11 family of operating systems. Specifi-
cally, this product is designed to emulate:

» RSX-11M-PLUS Version 3.0
= Micro/RSX Version 3.0
= RSX-11M and RSX-11S Version 4.2

As of Version 2.0, VAX-11 RSX now supports:

= Memory Resident Ovetlays

= Cluster Libraries

= FCSRES

= Search lists consisting of only devices and rooted directories
= VAXcluster SYSCOMMON (common system disk)

MCR Compatibility

The following RSX-11 MCR commands are supported:
ALLOCATE ASN BYE CANCEL
DEALLOCATE DEBUG DMOUNT EDT
HELP INIT MOUNT RESUME

RUN TIME UFD

6-13

The following VMS DCL commands are also available from the MCR CLI:

APPEND ATTACH
CONTINUE COPY
CREATE CREATE/DIRECTORY
CREATE/NAME_TABLE DEASSIGN
DEFINE DELETE
DEPOSIT DIFFERENCES
DIRECTORY DUMP
EXAMINE LOGOUT
MAIL MERGE
PRINT PURGE
RENAME RUNOFF
SEARCH SET

SHOW SORT

SPAWN STOP

SUBMIT TYPE

The installation procedure provides the option to install an MCR help library
that contains help text on both the RSX MCR and DCL commands, part of the
MCRCLIL

Indirect Command File Compatibility

All indirect command file directives and functions are supported to some
extent except .FORM, .WAIT, and .XQT. Most RSX-11 indirect command files can
be executed successfully on VAX-11 RSX.

The following system generations and network generations are specifically
supported:

= RSX-11M-PLUS Version 3.0

= RSX-11M Version 4.2

= RSX-11S Version 4.2

= DECnet-11M-PLUS Version 3.0
= DECnet-11M Version 4.2

= DECnet-11S, Version 4.2

Note

MicroVAX II and VAXstation IT are NOT recommended for RSX-
11 system generations or DECnet network generations due to the
performance characteristics.of the PDP-11 instruction-set emulator
on these processors.

6-14 = VAX Program Migration and Cross-Development Tools

General Areas of Incompatibility
Every effort has been made to make the functions VAX-11 RSX supports as
compatible as possible with the RSX-11 environment. However, certain areas of
incompatibility do exist in this product and may continue to exist in future ver-
sions. The few areas of incompatibility mentioned in the various sections are
not guaranteed to be all inclusive.

Other areas where incompatibilities exist include:

= No support for supervisor mode libraries

= No support for I-and-D space separation
= There are several differences between RMS-11 and VAX RMS

Compatibility with Other Derivatives of RSX-11
P/OS support is limited to the P/OS directives which are identical to RSX-11M-
PLUS directives and are listed in the table above.

No compatibility is expressed or otherwise implied with any other versions of
the RSX-11 family of operating systems or related operating systems, except
where specifically noted.

Optional Software
The following optional software products require VAX-11 RSX as a prerequisite
for being generated or run on VMS and MicroVMS systems.

ALL-IN-1 Office Menu V1.4 (Form Editor Application only)
CORAL 66/VAX to RSX Cross Compiler
DECnet-11M (network generation only)
DECnet-11M-PLUS (network generation only)
DECnet-11S (network generation only)

FORTRAN IV/VAX to RSX
MicroPower/Pascal-VMS

PDP-11 DATATRIEVE/VAX

PDP-11 FORTRAN-77 DEBUG/VAX to RSX
PDP-11 FORTRAN-77/VAX to RSX

PLXY-11/VAX

Professional Host Communications

Professional Host Tool Kit

Professional Host Tool Kit BASIC-PLUS-2
Professional Host Tool Kit COBOL-81
Professional Host Tool Kit DIBOL

Professional Host Tool Kit FORTRAN-77
Professional Host Tool Kit FORTRAN-77 DEBUG

6-15

Professional Host Tool Kit Pascal
Professional Real Time Interface Library
RSX-11M (system generation only)
RSX-11M-PLUS (system generation only)
RSX-11S (system generation only)
RTEM-11

VAX CORAL 66

MicroPowet/Pascal-VMS: Modular Executive and
Microcomputer Software Development Toolset

MicroPower/Pascal-VMS is a VAX/VMS optional program development prod-
uct. MicroPower/Pascal is a modular executive and software development
package for PDP-11 (Q-bus) based microcomputer applications. It includes
software components needed to create, build and debug/test concurrent real-
time application software running stand-alone on a target runtime microcom-
puter system.

MicroPower/Pascal-VMS supports application software development using two
distinct hardware environments:

= Host VAX/VMS development system

= Target PDP-11 (Q-bus only) runtime system for the microcomputer
application

The application software is created arid linked with the appropriate Micro-
Power/Pascal runtime software components on the VMS host development sys-
tem. When the application software is ready for debugging/testing, it is
transported to the target runtime system. The application software can then be
executed on the target runtime system. If a serial line is connected between the
host development system and the console port of the target runtime system, the
execution of the application software in the target can be controlled and
tracked from the host with the help of the debugging tools provided in Micro-
Power/Pascal-VMS.

6-16 w VAX Program Migration and Cross-Development Tools

The separation of the host development system from the target runtime sys-
tem allows you to make use of a high-performance VAX/VMS host develop-
ment system and test the application software in the target runtime
environment. The MicroPower/Pascal-VMS Software Package includes the
following components:

= MicroPower/Pascal-VMS Installation/Verification command procedures
= Host-Development System Software components

— Extended Pascal compiler

— Symbolic debugger

— MicroPower/Pascal-VMS Utilities

— MPBUILD Application Building Command Procedure
* MicroPower/Pascal target Runtime System Software

* Modular realtime executive

= Target runtime device handlers

= RT-11 compatible file system

= Timer services (clock process)
= Pascal Object Time System (OTS) for target
= MACRO-11 source libraries

An extended version of Pascal is provided as the system implementation lan-
guage suitable for most user applications. The extensions in the language enable
the user to write realtime applications entirely in Pascal; however, MACRO-11
can also be used as the implementation language for sections of code.

Several components of MicroPower/Pascal-VMS (such as the MicroPower/Pas-
cal-VMS Utilities and the MicroPower/Pascal-VMS Pascal Compiler) run under
VAX-11 RSX.

Chapter 7 = Language and Tool Integration in the VAX/VMS
Software Development Environment

Overview

There are many approaches to developing software products; this chapter gives
you an overview of how many of our teams develop software at Digital. Specifi-
cally, it shows you how VAX/VMS languages, tools, and VMS services and pro-
gram development utilities are integrated to create a consistent software
development environment.

Your method of developing software may be different. Maybe you use only a
few of the steps and techniques discussed in this chapter. You may have been
looking for ways to enhance the productivity of your department. The products
discussed in this chapter might help you achieve that goal. .

If you’re interested in using a highly productive environment of software devel-
opment tools, then welcome to the VAX/VMS Software Development
Environment.

Topics in this chapter include ‘

* An outline of the product development life cycle used within Digital.

* An example of how we use VAX languages, tools, and VMS Services and Pro-

7-2 w Language and Tool Integration in the VAX/VMS
Software Development Environment

THIS CHAPTER:

Provides you with

Figure 7-1 » Overview of Chapter 7

Phase 0 Je— if
I4/a specific example of
Phase | 4 how a shop of seven
Phase Il 1 developers creates a
Phase IlI hypothetical software
Phase IV 3 system using VAX/VMS
products in the five
556 sGEmmamen socaamensroShaapen rrosmsenen Tnee e PNases of the program
development life
R¥uers [P o cycle.
" |roaueemen|| Forcons asies oo o o I
s " appicanon sy
ERREEY
7
e SiEven
e
/J FRobueTs Ihbh The Program Development Life Cycle
1 “—| Life Cycle Phase | Phase Deliverable |
V | Phase 0: |% Requirements document |
Business and	* Preliminary Functional specification
Risk Analysis	% Prototype or 'breadboard' (sometimes)
	4 Preliminary testing strategy
]	* Technical analysis
“Phase 1:	* Design Document
Design	* EFinal functional specification I
]	% Einal Development Plan
")	
Identifies deliverables	
generated in each :	% "Early prodict' code
phase of the life	Phase 2:
cycle and the products	Implementation
from the VAX/VMS	
.	
Environment used to	
produce those outputs. ‘	
	% Unit tests]
	* Performance Testing
]	* System Testing i
	% Final Test Modules 1
	4 Field Test Kit]
	% Write a maintenance document
Phase 3: {* Customer Environment Test	
Qualification	% Final Product (Sw/Doc) Kit
Phase 4:	% Archive Copies of Sources _& Documents
Production,	% Eix bugs, when reported I
Maintenance_g&	% Enhance the product, if justified
Evolution]]	
Phase 0: Phase 1: Phase 2: Phase 3: Phase 4:
Requirements and Design Implementa- Qualifi- Support
Analysis tion cation :
- - Provides you with
/ \/ \ a detailed description
| puei 31 Pretin. 1 Satell 1 Topl \Tentina | Froduces of each phase in the
usiness an relim. etai mplemen- |Testing roduction
| Technical | Design | Design | tation |and | Haintenznc;, ngram develOpmem
| Risk | | | |Verifi- | and life cycle, as we
| Analysis | | | |cation | Evolution define it a Digital.
\ /
v
The Program Development Life Cycle

7-3

« Introduction

We are going to look at a specific example of how the VAX languages, VAX tools,
VMS services, and program development utilities can be collectively applied to
solving program development problems. First, let’s review the program devel-
opment life cycle and take a close look at each phase of that life cycle. We will
review the output a programming department might produce in each of those
phases, and the VAX languages, tools, and program development utilities that
can be used.

The Program Development Life Cycle

As you can see below, we have chosen to define the program development life
cycle in terms of five phases. Some of these are further divided into more spe-
cific areas. These may vary from company to company. The general concept,
however, is valid in the design of any software system.

Phase O: Phase 1: Phase 2: Phase 3: Phase 4:

Requirements and Design Implemen- Qualifi- SupPort

Analvsis tation cation

/ \/ \

o e e e e = - - - - +

! Business and ! Prelim., ! Detail ! Implemen- iTestind | Production,

i Technical i Design | Design i tation iand i Maintenance:

i Risk H H ! Verifi- | and

i Analvsis H ! ! ication ! Evolution

o i +

A et D /
v

The Program Develorment Life Crcle

7-4 » Language and Tool Integration in the VAX/VMS
Software Development Environment

Table 7-1 shows us some of the typical output generated in each phase.

Table 7-1 » The Program Development Life Cycle

Life Cycle Phase Phase Deliverables
Phase 0: * Requirements document
Business and * Preliminary Functional specification
Risk Analysis * Prototype or “breadboard” (sometimes)
* Preliminary testing strategy
* Technical analysis
* Business Plan
Phase 1: * Design Document
Design * Final functional specification
* Final Development Plan (Project schedule)
* Test specification
* “Early product” code
Phase 2: * Code modules
Implementation * Debug modules
* Updated project documents
* Intermediate working versions of the system
(Baselevels)
* User documents
* Unit tests
* Performance Testing
* System Testing
* Final Test Modules
* Field Test Kit
* White a maintenance document
Phase 3: * Customer Environment Test
Qualification * Final Product (Sw/Doc) Kit
Phase 4: * Volume reproduction of final product
Production, * Archive Copies of Sources _& Documents
Maintenance_& * Fix bugs, when reported
Evolution * Enhance the product, if justified

7-5

These deliverables can be categorized as documents, programs, tests, and
files. We use combinations of software tools to specifically manage delivera-
ble in each category. For example, we can use the Language Sensitive Editor
to call up templates for documents (as well as programming languages),
DEC/CMS to track changes in documents, the VAXTPU editor to actually
make changes, DSR to format chapters of each document, and DEC/MMS to
actually control the construction of one or more documents.

A brief description of each Engineering Phase is given below. A detailed expla-
nation of how VAX/VMS tools, languages, and core development utilities can be
used during a phase to produce the required output is found in the second
section of this chapter, beginning under the subhead, “Here’s a Specific
Example”.

PHASE 0: BUSINESS AND RISK ANALYSIS

Project definition is the first phase in the product development life cycle. Dur-
ing this phase a team of technical and product management people defines bus-
iness opportunities, product objectives, and technical options. The cost versus
benefit of the project is analyzed. At the completion of this phase, the project
team has defined project goals and: has written a requirements documents, a
business plan, and perhaps a preliminary functional specification document.
The technical team also makes sure that they will be able to confirm correct
operation of the potential product.

During the analysis portion of this phase, the project team is determmmg tech- -
nical approaches needed to build the intended product. Often, possible solu-
tions to difficult technical problems are breadboarded or prototyped to make
sure the implementation risks are well understood. Prototyping is especially
important in understanding the human interface to the software and its ability
to be used. At the end of this stage of development, the system is generally
defined, and a business decision is made on whether to attempt an actual pro-
ject start.

PHASE 1: DESIGN

During this phase, the project team determines precisely what has to be built
and how it will be accomplished. The first step in this phase is writing the final
Functional Specification and the Development Plan (schedule), and Documen-
tation plan. When project specifications are complete, design can then take
place and the software product takes on full-system definition (Note, this chap-
ter uses “design” in the same context that many organizations use “analysis”).

Top-level designs for all forms, data structures, program modules, file formats,
and human interfaces are made based on the items listed in the functional speci-
fication. Once completed, the design gives the project technical definition.

7-6 » Language and Tool Integration in the VAX/VMS
Software Development Environment

A Design Specification and a Test Plan, generated during this phase, serve as
a basis for acceptance of the design. A design document makes it possible to
keep the design specifications in one location, accessible by all program-
mers. As the project design evolves, so does the design document.

PHASE 2: IMPLEMENTATION

The implementation phasé of the program development life cycle is most often
associated with building source code modules, then compiling, linking, and
executing the resulting images. Often, the system is implemented in a series of
stages or baselevels in which each baselevel adds more and more of the required
functionality. However, because program development is an evolutionary pro-
cess, many other steps also occur concurrently.

During the implementation phase, user documentation and the test generation
also run at full speed. The tests defined in the requirements document must be
created and run to complete ensure a correctly operating implementation.
Unforeseen problems in implementing design requirements might mean that
specifications and designs require rework. If this is the case, then the effects of
changes in requirements or designs must be reflected accurately in both the
programs being written and the user documentation set. At successful comple-
tion of this phase, the project should have a software system that works.

The project team must analyze the structure and performance of the software in
this Phase, in addition to passing functional tests without errors. During this
phase, design, code, and documentation reviews are held frequently. Other
groups can be given copies of the software to determine how well the program
works under. controlled conditions. Performance analysis ensures the system
will meet certain customer-environment requirements.

PHASE 3: QUALIFICATION

During this phase, the software is in use in selected customer environments.
The technical team stays in close contact with external test sites, making sure
any needed corrections are reflected in the version of the software and/or docu-
mentation to be shipped to our general customer base. In later stages of this test
petiod, the sources and documentation are frozen, and final copies of the books
and distribution media are prepared.

7-7

= PHASE 4: VOLUME PRODUCTION, MAINTENANCE AND

EVOLUTION

In this phase, master copies of the documentation and the software are handed
to a high-volume production group for replication and distribution to Digital
Software Specialists (support groups) as well as customers with support con-
tacts in effect. Copies of the master kit are archived, in case of physical disasters.
A post-mortem review is held on the overall project development cycle just
completed:

After the product has been shipped, a process of maintenance and evolution
begins. Should there be errors in the software or documentation, bug fixes and
updates will be made. Enhancements to support new operating system or hard-
ware releases may be planned. Suggestions arrive from customers using the new
product. In fact, because a software system is frequently evolving, this phase
becomes an information-gathering activity which could initiate Phase 0 for the
next version of the software.

Figure 7-2 lists VAX/VMS program development products. Each product can
play an important part in the program development life cycle. The specific fea-
tures and benefits of each of these products have already been explained in
earlier chapters of this handbook.

7-8 » Language and Tool Integration in the VAX/VMS
Software Development Environment

VMS CORE SERVICES
1. The VMS Operating System

2. VMS Services
— The Digital Command Language (DCL)
— The VMS Runtime Library (RTL)
— VMS system services
— The VAX Record Management Services
(RMS)

3. The VMS Program Development Utilities
— The VAX/VMS Symbolic Debugger
— Sort/Merge
— The VAX Linker
— The VAX Librarian
— VAXTPU text processing utility
— DSR text-formatting utility
"— Mail

VAX OPTIONAL PROGRAM
DEVELOPMENT PRODUCTS

4. VAX Languages
— VAX Ada
— VAX Apl
— VAX BASIC
— VAX BLISS
— VAX C
— VAX COBOL
— VAX CORAL
— VAX DIBOL
— VAX DSM
6.1 — VAX FORTRAN
— VAX LISP
— VAX PASCAL
— VAX PL/
6.7 — VAX RPG'II
— Other VAX Languages

DEBUGGER

66165
5. VAX Software Productivity Tools
— VAX DEC/Code Management System

(CMS)
6 — VAX DEC/Module Management System
(MMS)

— VAX Language-Sensitive Editor
6.11 — VAX Performance and Coverage
: Analyzer (PCA)

6.10 — VAX DEC/Shell
— VAX DEC/Test Manager
— VAX Graphical Kernel System (GKS)

6. Related Program Development Products

6.1 VAX CDD 6.7 VAX FMS

6.2 VAX DBMS 6.8 DECnet Communications
6.3 VAX Datatrieve Products

6.4 VAX Rdb/VMS (ELN) 6.9 VAXELN

6.5 VAX ACMS 6.10 VAX-11 RSX

6.6 VAX TDMS 6.11 MicroPower/Pascal-VMS

Figure 7-2 » The VMS operating system, VAX Languages, VAX Tools, Program
Development Utilities, and Related VAX Software Products

7-9

Table 7-2 » VAX/VMS Products Used In The Software Development

Life Cycle
Life Cycle Phase Deliverables Generated VAX/VMS Service or
During The Phase Product Used
Phase 0 * Requirements document ~ * text editor(s) and DSR
Business and * Preliminary Functional text-formatting utility
Risk Analysis Specification * Mail utility
* Business Plan * Language Sensitive
* Prototype or Editor (document
“breadboard” templates)
(sometimes) * DEC/MMS
* Preliminary testing * DEC Test Manager
strategy * DEC/CMS
* Technical analysis
Phase 1 * Design Document * System Services
Design * Final Functional * Common Run Time
Specification Library
* Final Development Plan ~ * Record Management
(schedule) Services
* Test specification * VAXTPU Editor and DSR
* “Early Product” code text-formatting utility

* Mail utility

* Language Sensitive
Editor (document
templates)

* Common Data
Dictionary (CDD)

* FMS (Forms Manage-
ment) or VAX TDMS

* DEC/CMS

* DEC/MMS

* DEC/Shell or DCL

* Language Compilers

(continued on next page)

7-10 = Language and Tool Integration in the VAX/VMS

Software Development Environment

Table 7-2 = VAX/VMS Products Used In The Product Development

Life Cycle (Cont.)
Life Cycle Phase - Deliverables Generated VAX/VMS Setrvice or
During The Phase Product Used
Phase 2 * Code modules * System Services
Implementation * Debug modules * Common Run Time
* Final Test Modules Library
* Intermediate working * Common Data
version of the System Dictionary (CDD)
(Baselevels) * FMS (Forms Manage-
* Unit Tests ment) or VAX TDMS
* User documents * Record Management
* Updated project Services
documents * VAXTPU Editor and DSR
* Performance Tests text-formatting utility
* System Tests * Mail utility
* Field test kit * Debugger
* Maintenance Document =~ * Linker
* Language Sensitive
Editor
* DEC/Test Manager
* Performance and Cover-
age Analyzer (PCA)
* DEC/Shell or DCL
* DEC/CMS
* DEC/MMS
* Language Compilers
Phase 3 * Use in a customer * Debugger
Qualification environment * text editors
* Final Product Kit * DEC/Test Manager
(SW/Doc) * Performance and
Coverage Analyzer
* Language Compilers
* Language Sensitive
Editor
Phase 4 * Archive a copy of * All services and products
Production, the master kit listed above
Maintenance, * Fix bugs, when reported
and Evolution * Enhance the product, if

justified

7-11

= Here’s a Specific Example

The rest of this chapter is an example of how you might use VAX/VMS tools and
languages in your department to produce software. We will follow the develop-
ment of a hypothetical software system through each phase of the program
development life cycle (defined eatlier in this chapter).

Keep in mind the purpose of this example. It gives you the opportunity to see
how we use VAX/VMS products to develop software at Digital. It has also been
provided to emphasizes the unique ability of our products to help you maintain
and control the base of knowledge that must be managed if you are to program
productively.

Your Department

Figure 7-3 introduces you to your department — six programmers and a docu-
mentation specialist; all are working on a VAX processor running the VMS opet-
ating system (services and program development utilities included), multiple
VAX languages, and productivity tools installed. Note that these software prod-
ucts are organized vertically along the left side of Figure 7-3.

Team member 1 is the Project Leader for the software system your department
is about to begin work on. Members 2 and 3 are senior programmers, while 4,5,
and 6 are junior programmers. Team member 7 is the writer/documentation
specialist.

Member 3 is a FORTRAN programmer and Member 4 has prior experience
with COBOL. The rest of your department uses VAX C. It may, therefore, be
necessary to write the software system in several languages if programmers 3
and 4 are to be as productive as possible. The VAX Common Language Archi-
tecture, as we will see later, makes it possible for a single application to be writ-
ten using more than one VAX language. '

Once again, in Figure 7-3, at the top of the column titled, VAX/VMS Program
Development Environment, you will note there are a number of VMS services
running across the entire figure, below all the programmers. These services —
DCL, RMS, RTL, and VMS system services — are provided by the VMS operat-
ing system and are always present on the system. (For more on these services,

see Chapter 4 of this handbook.)

The first VMS service (a horizontal bar directly below the assignment boxes)
represents the command language interpreter used by all programmers.
Programmer 1, because she comes from a Unix environment, is using the VAX
DEC/Shell command language interpreter in conjunction with DCL.

VMS

CORE
SOFTWARE
PRODUCTS

VMS
OPERATING
SYSTEM

VMS -
PROGRAM

DEVELOPMENT

UTILITIES

PHASE
ASSIGNMENT

[

PROJECT
LEADER

YOU
(THE BOSS)

2 .

7\

SENIOR SENIOR JUNIOR JUNIOR
PROGRAMMER PROGRAMMER PROGRAMMER PROGRAMMER TRAINEE

DOCUMENTATION..

SPECIALIST

VAX

PROGRAM :
DEVELOPMENT
ENVIRONMENT

CLl ——————

RUNTIME
CAPABILITY —

RMS . ————

SYS. SER.——

VAXTPU
EDT
DSR

* DEBUGGER
e LINKER -

e LIBRARIAN

e OTHER VMS

" UTILITIES

Figure 7-3 » A Model Program Development Department

JudrHOMIAUT] 14UA0J205(] 240MIfOS

SINA/XVA 291 41 uonpi3azu] joo] puv I3vnduvT = Z1-/

VAX

PROGRAM
DEVELOPMENT
PRODUCTS

VAX
PRODUCTIVITY
TOOLS

VAX C

VAX
LANGUAGES §

VAX COBOL

VAX FORTRAN

VAX
LANGUAGE-
SENSITIVE
EDITOR

VAX DEC/TEST
MANAGER

VAX
PERFORMANCE
AND COVERAGE|
ANALYZER (PCA)

VAX DEC/CMS
(Code
Management
System)

VAX DEC/IMMS
(Module
Management
System)

Figure 7-3 (Cont.) » A Model Program Development Department

(4

7-14 » Language and Tool Integration in the VAX/VMS
Software Development Environment

Getting Started

Figures 7-4 through Figure 7-8 show us your programming staff in each phase
of the program development life cycle. These figures illustrate project assign-
ments, the work flow of each assignment, and VAX/VMS products used to
accomplish those assignments. For example, Figure 7-4 illustrates the flow of
work in Phase 0 of the life cycle, Business and Risk Analysis.

The general layout of these figures is important to understand before you con-
tinue reading. They serve as the basis for the discussion of work done in each
phase.

You will note that below each team member’s picture in Figures 7-4 through
Figure 7-8 is a block containing his/her assignment for that particular phase. In
Figure 7-4, for example, under programmer 1’s picture is the assignment: pro-
ject requirements.

Directly below that assignment block is the first step in a sequence of steps she
must petform to successfully complete the assignment. Again, in Figure 7-4, we
see that the first step in writing the requirements document is to create text files
(DSR source-input “.RNO” files) in which to write and store the document.

The names of the primary VAX/VMS products used to complete a step are
located in the column titled, the VAX/VMS Program Development Environ-
ment. (Located at the left side of the figure.) Thus, in Figure 7-4, programmer 1
has used VAXTPU or the VAX Language-Sensitive Editor (with appropriate
template files), to create and store text in a DSR input file. (Note the VAXTPU
editor is used to create the DSR input “RNO” files and the DSR text-formatting
utility is used to produce “.MEM” output files.)

Defining and Analyzing the Software System with VAX/VMS
Now that you understand the format of these figures, we can continue with our
example.

The definition and analysis of a new software system is one of the most impot-
tant parts of a software system’s development. During phase 0, you must make
many important decisions that will affect subsequent phases of the life cycle.
Therefore, it is of prime importance that input from all the programmers and
support personnel be quantified and organized into output that is accessible to
everyone involved in the project. Doing it right the first time mmxmlzes the
amount of fine tuning necessary later in the life cycle.

As you can see in Figure 7-4, you and your staff are about to begin. Not all the
staff members are involved in the new project. (Notice that team members 4, 5,
6, and 7 are still working on a previous project.) Assignments for this phase are
listed below the staff member.

7-15

Defining and Analyzing the Software System with VAX/VMS
Now that you understand the format of these figures, we can continue with our
example.

The definition and analysis of a new software system is one of the most impot-
tant parts of a software system’s development. During phase 0, you must make
many important decisions that will affect subsequent phases of the life cycle.
Therefore, it is of prime importance that input from all the programmers and
support personnel be quantified and organized into output that is accessible to
everyone involved in the project. Doing it right the first time minimizes the
amount of fine tuning necessary later in the life cycle.

As you can see in Figure 7-4, you and your staff are about to begin. Not all the
staff members are involved in the new project. (Notice that team members 4, 5,
6, and 7 are still working on a previous project.) Assignments for this phase are
listed below the staff member.

YOU (THE BOSS)

PHASE 0
PROJECT SENIOR SENIOR JUNIOR JUNIOR . DOCUMENTAT\ON
LEADER PROGRAMMER PROGRAMMER | PROGRAMMER PROGRAMMER TRAINEE SPECIALIST
| pecishel] [
PHASE I
ASSIGNMENT . Project Breadboard The rest of your staff is still
_— Prp;ect Functional or assigned to projects unrelated to
VAX Requirements Specification Prototype this application system.
PROGRAM
DEVELOPMENT
ENVIRONMENT
REQ_DOC.RNO | |SPEC_DOC.RNO
VAXTPU
EDT
DSR >
(text
editor,
o REQ.DOC.MEM | [SPEC DOC.MEM
utility)

Figure 7-4 » Phase 0 — Defining and Analyzing the Software System

JudmnOBAUT 14d0jaa3(] 24vmifos

SIWA/XVA 2437 1 uo1pa3aru] j0o] puv s3vmdur] = 9[-/

1

i

PROJECT REQUIRMENTS

PROJECT SPECIFICATIONS

MMS MMS :
DESCRIPTION P DESCRIPTION
DEC/CMS FILE , FILE
(Code (to
Management document) m m
System)
PART 1 OVERVIEW
INPUT
C/MM DEC/MMS BUILDS

bE s THE APPLICATION

PROGRAM, PROJECT -
Module DOCUMENTATION, AND

anagement THE USER DOC SET

System) FROM CMS LIBRARIES

OUTPUT

PHASE 0
PROJECT DOCUMENTATION

Figure 7-4 (Cont.) = Phase 0 — Defining and Analyzing the Software System

A4

7-18 = Language and Tool Integration in the VAX/VMS
Software Development Environment

You and your three senior programmers will generate the project require-
ments, preliminary functional specification, and analyze difficult technical
problems. The output of each of these assignments represents a single sec-
tion in the project documentation. Programmer 1 will generate the require-
ments document, you and Programmer 2 will write the preliminary
functional specification. Programmer 3 will begin to work on the technical
problems associated with the overall project.

It is important to note that each of these assignments, even though only one
person is ultimately responsible for its completion, is really a team project. All
team members generate input that must be incorporated into each other’s doc-
uments. A number of VAX/VMS tools are available to help you better manage
these paperwork aspects of the project — the DEC/Code Management System
(CMS), the VAXTPU text editor, the DSR text-formatting utility, the VMS MAIL
utility, and DEC/Module Management System (MMS) and the VAX Language
Sensitive Editor.

You and each programmer create your documents with the VAXTPU editor or
Language Sensitive Editor (using document-related templates specific to DSR
and the type of document(s) to be produced) and DSR text-formatting facility.
Each document then becomes a require file for a DSR document. As they are
created, these files are stored in one or more CMS libraries. Then, once you have
determined how to put the document together, DEC/MMS can build or rebuild
the versions you require with a single command.

CMS helps track the reasons, the time and date, and the initiator for modifica-
tions to the documentation. A number of intermediate stages of the document
can be established. By consulting these, each person involved in creating the
document can see exactly what the most current version of the document looks
like, or, if necessary, reconstruct past versions of the document. This control
enables those you choose to see how the document has evolved; who changed
what, when, and why.

The Requirements document, the Preliminary Functional Specification, and
Project Plan document can be part of the same CMS documentation library or
each can be stored in its own CMS library. DEC/MMS can be used to build each
document (or all of the documents, in one operation, if so desired). MMS can
build a document by fetching files from one or more CMS libraries. Once a
document has been completed and approved, you can issue commands to
DEC/CMS to “freeze” a particular version of the document under a CMS-class
name you specify. You also have the ability to make the now-frozen version of a
document read-only, i.e. unalterable by project members.

7-19

One of the things often done in this phase is rapid prototyping of target system
capabilities. The power of the Language Sensitive Editor and the various VAX
language implementations — VAX Ada or VAX BASIC, for example, can be ben-
eficial in this phase. The symbolic debugger works with the VAX languages to
enable you to see actual source code in a window on your terminal-while you
are debugging code running in another window. VAX DATATRIEVE can help
with report generation during design. VAX COBOL has powerful
screen-handling and report-writing capabilities. The Shell and the Digital Com-
mand Language (DCL) have powerful utility programs which are also very help-
ful in prototyping some types of applications.

Data structures, file formats, and forms are frequently prototyped in this phase.
Many projects use the Common Data Dictionary to hold the definitions of
major data structures. The dictionary saves this information in a lan-
guage-independent form, and a valid declaration can be extracted by many of
the VAX languages. This allows you to define a record structure, and access data
using it, from programs written in BASIC, COBOL, DATATRIEVE, FORTRAN,

. PASCAL, or other languages-yet only a single declaration exists (in the diction-
ary). When building a system, DEC/MMS is capable of checking declarations
stored in the Common Data Dictionary (CDD), and recompiling program mod-
ules which depend on records whose structure has been altered. Similarly, MMS
can check forms libraries to make sure that programs which depend on forms
are recompiled, if need be.

Designing the Software System with VAX/VMS

After the requirements for a software system are defined, you next start the
actual design of the system. As you will note in Figure 7-5, more members of
your staff have become involved in the process. During this phase, further work
may be done to clarify the specification and the project plan, in addition to
writing a design document for the project. Programmer 4 writes test specifica-
tions, and the documentation specialist starts on the user-documentation plan.
All participate in design reviews.

With the VAX Language Sensitive Editor, you can create and then use templates
for documentation formats and specifications. This eliminates the need to
retype boiler-plated sections of your document and promotes consistency
throughout your documentation — particularly when multiple team members
are involved.

PHASE |

YOU
(THE BOSS)

ITEMS ON LINE FROM PRIOR PHASES

PROJECT
LEADER

SENIOR
PROGRAMMER

SENIOR
PROGRAMMER

JUNIOR JUNIOR
PROGRAMMER PROGRAMMER

TRAINEE

DOCUMENTATION
SPECIALIST

[oecshel | |
PHASE 1 1 1 1} !
A i
ASSIGNMENTS e proTorvee | [WRITE SECTION START WRITING WRITE
VAX DOCUMENT CODE FOR 2 OF DESIGN TEST SPECIFICATIONS DOCUMENTATION
PROGRAM SECTION 1 DESIGN PHASE DOCUMENT (under your superyision) PLAN
DEVELOPMENT
ENVIRONMENT 1
VAXTRU l DES_1.RNO | PROTO 2.C l DES 2.RNO | |TEST_SPEC,RNO| DOC_PLN.RNO
L o
EDT PROTO 1.C
DSR DES_1.MEM rDES_Z‘MEM] ITEST_SPECME‘MI DOC_PLN.MEM
-

VAX LANGUAGE-
SENSITIVE EDITOR

VAX LANGUAGES
VMS DEBUGGER

VMS PROGRAM
DEVELOPMENT
UTILITIES
(LINKER)

LIBRARY
FILES

. FOR
OBJECTS

Figure 7-5 » Phase 1 — Designing the Software System with VAX/VMS

JudMnOLIAUT 1H2ud0jaaa(] 24rMIfoS

SINA/XVA 243 ur u0ypi3apu] (00 puv 38vn3ur] » 0Z-/

prototyped design

test

documentation

Sy specs. code document specifications plan
DEC/CMS requirements .
Code
lanagement
System)
DEC/CMS libraries
stored from prior phases
PROTOTYPED
INPUT APPLICATION
DEC/MMS DEC/MMS BUILgS
. THE APPLICATION OUTPUT POINTERS T6 CODE
fodse L [~ oA, A
Mané t DOCU , AN
Sya;:%;:men THE USER DOC SET

FROM CMS LIBRARIES

PHASE |
PROJECT DOCUMENTATION

Figure 7-5 (Cont.) = Phase 1 — Designing the Software System with VAX/VMS

I¢L

7-22 w Language and Tool Integration in the VAX/VMS
Software Development Environmerit

Above the pictures of your programmers in Figure 7-5 (not found in Figure
7-4) are “Items Online From Prior Phases”. For example, a representation
of Phase 1 project documentation is there. This means the time-stamped
documentation you developed in Phase 1 is online, and accessible to every-
one in your department.

Any project documentation developed in this phase (the design and documen-
tation plans) or necessary corrections to Phase 1 documentation (after all, this
can be an evolutionary process) will be incorporated into Phase 1 project docu-
mentation and become Phase 2 project documentation when Phase 2 is

finished.
(See Chapter 1 for a general overview of all these tools.)

Implementing the Software System With VAX/VMS

During the implementation phase (see Figure 7-6), you are making coordinated
use of many VMS tools. All the personnel in your department are now fully
involved in implementation of the software system. The design phase has been
completed, and during this time, code is written to build a product to the given

specifications.

PHASE Il ITEMS ON LINE FROM PRIOR PHASES

PHASE | PHASE |
PROJECT Il SOURCE CODE
DOCUMENTATION SR ;
©YOU . : PROJECT 'SENIOR .- SENIOR™ - JUNIOR JUNIOR Lo DOCUMENTATION
(THE BOSS) LEADER PROGRAMMER &

_PROGRAMMER ' PROGRAMMER -PROGRAMMER “TRAINEE S IS

[DECishen] [

TN K

susmuosaus] jusmdojaas(a4vmfos

SINA/XVA 291 42 uoip4321u] 100] puv I3on3ur m -/

- PHASE 1 ¥ SE g ¥ ‘
ASSIGNMENTS ~ WRITE WRITE WRTE [wRITE o e | | wRiTE user
s MODULE 1 MODULE 2 MODULES || MooULE4 || TETE iy MANUAL
PROGRAM & ' '
DEVELOPMENT . -
* ENVIRONMENT : - i -
VAXTPU A e R R N L | HELP.ANH J_ _,[DOC_SE‘T.F!NO]
EDT G e e e e e —=1 T ~
DSR S R 1o -
| recere | |pocseTmem|
SEnaVeAGE | [Twop1.c | [mopzc | [Mopsror | [Mop4cos | [Testcom | [ONLINE HELP |
: EDITOR . JcomPled— e — T] SR TGN SENCIENIENNINCT SRS B SN
VAX LANGUAGES | DEBUG . T) SN [:
< | vMs DEBUGGER*| ‘[mop.1.08J | [Mop208J | [mopa.osy | mop4.08s | —
e o e e
-DEVI LNKER—————————== — —>{ DECITEST] ELP
| UTILITIES Y APP.EXE MANAGER . |_|B|-|!4AR|ES

Figure 7-6.= Phase 2 — Implementing the Software Systéih With VAX/VMS

PROTOTYPE
CODE

—— VOL. 3
esign Spec. VoL 2
Doc. Plan
- VOL. 1

Require.
DEC/CMS Pro Spec
(Code
Management =~ —_————iree el ,————— e -]
System) HELP.RNH

USER DOCUMENTATION
CODE SET LIBRARIES
LIBRARIES (CLS 1)
DOCUMENTATION (CLS 1)
LIBRARIES
(CLSY) |
.
Phase Il
Source Code
INPUT
DEC/MMS DEC/MMS BUILDS
THE APPLICATION

(Module | .| PROGRAM, PROJECT
Management DOCUMENTATION, AND Phase Il
System) THE USER DOC SET User Documentation Set

FROM CMS LIBRARIES Project Documentation

OUTPUT [

|

Figure 7-6 (Cont.) » Phase 2 — Implementing the Software Systen: With

VAX/VMS

(€474

7-26 = Language and Tool Integration in the VAX/VMS
Software Development Environment

Assignments for this phase are as follows — programmer 1, 2, 3, and 4 each
have to write a module of code, as outlined in the project document. Pro-
grammers 5 and 6, under your supervision, will start to write tests (These
will be incorporated into the DEC/Test Manager.) They will also develop an
online help facility. The writing of user documentation is in full swing dur-
ing this phase.

Some of the most valuable tools used during this phase are the VAX language
compilers. These high-quality compilers all meet or exceed industry standards
and all have been designed as part of the VAX Common Language Architecture
(discussed in Chapter 1).

Often implementation is done in several stages or baselevels. Each base level
adds more of the specified features you are building into the software system.
Sometimes, several programmers work on the same module. Source code
changes can be easily controlled using the Reserve and Merge features of VAX
DEC/CMS.

The integrated use of various VAX language compilers, the VAX Language
Sensitive Editor, and the VAX Symbolic Debugger makes the
edit-compile-link-debug process much more efficient. The VAX Performance
and Coverage Analyzer finds performance bottlenecks in the emerging code
and ensures sufficient test coverage. Programmers can perform test procedures
quickly using the VAX DEC/Test Manager.

VMS SERVICES IN THE IMPLEMENTATION PHASE

Operating system services and program development utilities are used exten-
sively during the implementation phase. These features are the VMS system ser-
vices, the VAX Runtime Library (RTL), VAX Record Management Services
(RMS), and the VAX program development utilities (including the powerful VAX
Debugger).

VMS offers your programmers System Services and Run Time Library pro-
cedures that can be called by the software module they are writing. The Run
Time Library has procedures which include screen management,
terminal-independent I/O, virtual memory management, and parsing routines,
in addition to the language and mathematics support procedures one expects.
VAX Record Management Services (RMS) makes file access consistent and effi-
cient, independent of which language you are programming in. Access to files
can be limited through the use of VMS Access Control Lists (ACLs). The
powerful VAX SORT utility allows you to order files quickly and efficiently. This
combination of System Services, Run Time Library utility procedures, and file
handling procedures allows your programmers (and your design and code
reviews) to concentrate on routines that are unique to their project.

7-27

Programmers sometimes use the Digital Command Language (DCL) to write
tests, run tests; and prototype simple concepts. If a programmer is accustomed
to a UNIX® -style environment, then VAX DEC/Shell provides them with a
Bourne Shell with which to interface to VMS, and to many UNIX-style utilities
(including pipes). The VAX DEC/Shell can be used as a script language for

prototyping.

USING THE VAX LANGUAGE SENSITIVE EDITOR DURING
IMPLEMENTATION

The VAX Language-Sensitive Editor is a high-performance, screen-oriented
editor with multiple windows and buffers for program development.

Highlights of the VAX Language Sensitive Editor are listed below.

= The VAX Language Sensitive Editor lets you code, edit, compile, review, and
correct compilation errors within a single editing session. In review mode,
compilation errors are displayed in one window of the editor with the corre-
sponding source code presented in the second window.

= The VAX Language Sensitive Editor gives you DCL-like line-mode commands
and a keypad layout that makes it easy for users familiar with VAXTPU to
quickly become familiar with the VAX Language Sensitive Editor.

The Language Sensitive Editor is fully integrated with VAX languages that
have been designed to the common language architecture. The editor has a
set of templates for the major constructs in each language. For example, you
can insert an IF statement in your favorite language into a source file by simply
typing IF and then a <CTRL/E> (for expand). A complete IF-THEN-ELSE
block will then appear at the cursor. Now, just fill in the template.

= The VAX Language Sensitive Editor also provides online language-oriented
help. For example, if you are editing a FORTRAN program and can’t quite
remember how to spell that OPEN-statement keyword, you can request
online help for FORTRAN and the OPEN statement. You can then determine
the valid options, and insett them into your program without ever leaving the
editor.

You can tailor the editor to your own environment. You can provide the defi-
nition of a language, a memo header, or other textual templates to the editor.
You can also change or add definitions of the supported language and, there-
fore, conform to a specified programming convention:

®UNIX is a registered trade mark of AT&T Bell Laboratories.

7-28 = Language and Tool Integration in the VAX/VMS
Software Development Environment

USING VAX DEBUGGER IN THE IMPLEMENTATION PHASE ,
The VAX Debugger is a powerful program development utility. It is designed to
work in cooperation with the other program development productivity tools
(VAX Language Sensitive Editor, VAX DEC/Test Manager, and many of the VAX
languages).

The VMS program debugging fac1]1ty (DEBUGGER) is a powerful and flexible
tool that allows programmers to find errors in source code programs.

The DEBUGGER

= Is interactive. You can execute debugger commands from your termmal and
see their effects immediately.

= Is symbolic. You can refer to program locations by the symbols you used for
them in your program.

* Supports many languages. You use the debugger in the language of your
source program. If your application is written in more than one language, you
can change from one language to another in the course of a debugging
session.

* Permits a variety of data forms and types for entry and display.

= Allows you to select and display your program’s language statements.

= Has a screen mode that provides multlple windows for screen-oriented
debugging.

* Has a debugger-defined keypad key definitions for your termmal s numeric
keypad.

= Gives online help.

In DEBUGGER screen mode, you can divide a terminal screen into several dif-
ferent windows and specify what you want to see in each window. For example,

= Create a window into the source file you are debugging.

= Create a window to track the change in specific variables through the debug
session.

Typically, one of those windows is a source dlsplay When DEBUGGER
encounters a break point, watch point, or exception condition, it displays the
line of source code in which that event occurs (and several above and below it)
in the source window.

DEBUGGER also allow you scroll through information on the screen. You can
use the the terminal’s arrow keys to move forward or backward through a win-
dow to review information that has appeared in that space.

7-29

You can invoke the VAX Language Sensitive Editor from the Debugger. When
doing so, the cursor will be positioned on the current source code, unless you
specify differently, in edit mode. After you have corrected the error to the
source code, you can return to the DEBUGGER where you left off.

USING DEC/CMS AND DEC/MMS TOGETHER TO MANAGE
CHANGE DURING IMPLEMENTATION

Programmers use DEC/CMS(Code Management System) and DEC/MMS
(Module Management System) to manage the continually evolving software
system in this phase. With code stored in CMS libraries, programmers now have
a complete audit trail of every addition and change to the software system since
the first source code file was included in the CMS library. Freezing baselevels
and then recreating those modules, while the code is still evolving, is essential to
reaching goals within time and budget.

Programmers use DEC/Module Management System (MMS) to build and per-
form consistency checks on the system. DEC/MMS works in conjunction with
DEC/CMS (Code Management System). When building the system, DEC/MMS
only builds the parts of the system changed since the last time it was built. MMS,
because it is integrated with the VMS operating system itself, builds your system
reliably using a minimum of CPU time. Keeping the MMS description file in a
CMS library allows it to evolve with the system too.

DEC/MMS, used with DEC/CMS, keeps all programmers working on the same
system without “version skew”. Multiple versions of the software system can be
enhanced at the same time and are available to all programmers. Since it is so
easy to rebuild your system (all you do is use a single MMS command) you can
always have an up-to-date version of your system available.

USING RELATED VAX SOFTWARE PRODUCTS IN
IMPLEMENTATION PHASE

DECnet-VAX software products allow you to connect multiple VAX systems
together and, therefore, increase your productivity. Communication with
projects on other machines is possible with the VMS MAIL and PHONE utilities.
Files may be shared even though you are accessing them remotely, over a
DECnet link . Testing software in different machine environments is made easier
by the SET HOST command, which allows you to log in to a remote system over
DECnet.

CONFIGURATION MANAGEMENT IN THE IMPLEMENTATION
PHASE WITH VAX/VMS - Because the implementation of a real software sys-
tem is much more complex than the example presented here, you can quickly
see that managing this complexity in a “real” program development life cycle
can quickly become a challenge.

7-30 = Language and Tool Integration in the VAX/VMS
Software Development Environment

Configuration Management of your system can’t be automatically done on
VMS, but with careful planning and a solid program development methodol-
ogy, you can use VMS tools to manage your software system’s configuration.

To do this, you will need to identify all of your “configuration items” and put
them, or references to them, in a CMS library or libraries. MMS “description
files”, descriptions of your up-to-date system, will need to be written with care
and then updated as development continues. You need to define where your
tests are to be placed, where your documents are to be built, and then you can
use DEC/MMS to manage the configuration of your system.

The Development Plan, described in the Design Phase, is your first important
step to managing this complexity. If you have a viable Development Plan, then
you can separate the implementation of specific features of your software sys-
tem into discrete stages or baselevels.

By using baselevels, you can build each new level of your system without
rebuilding those you have already finished. This allows you to build each level
in increments, i.e. in discrete stages. You only have to manage the new features
of the next baselevel while the VAX management tools are taking care of the rest
of the system.

When a baselevel is reached, all the documentation and source modules, the
MMS description file, the test cases, and the benchmark files are placed into
a CMS “class” to identify precisely the content of each baselevel. The CMS
“class” is then made read-only so that it cannot be changed inadvertently.
The MMS description file identifies the relationships between the modules
and can be set up so specific test cases are run when a module changes. The
CMS history file provides an audit trail of changes to the system. This adds
traceability to your development process.

7-31

USING DEC/MMS TO DEVELOP TIMELY PROGRAM EXAMPLES IN
USER MANUALS - Your project may need to guarantee the accuracy of all pro-
gram examples, output, or etror messages included in the documentation set.
What the users find in the documentation should be the same as the program
example output or error messages they see on their terminals. You can eliminate
the many hours spent revising such examples when programmers revise a pro-
gram and forget to tell the writer, or the writer makes changes to an example to
improve its readability or style.
Using DEC/MMS, we
= Extend the description file, making the tested system (a null file used only for
its time of creation time-stamp) depend on all the system components. The
actions to build the tested system are running DEC/Test Manager with all the
examples, and updating the time stamp file.

Make the finished book depend on all the text files of the book and on the
examples produced by the testing. The actions to build the book include
running DSR. The DSR source file has .REQUIRE statements to pull in the
examples (i.e. test files).

You may need to process the test results before they can be put in the book. For
instance, you may want to enclose the example between .LITERAL and .END
LITERAL statements so DSR will not try to change the format. Or you might
want to discard a portion of the test output keeping only enough to demon-
strate one point. That is easy too. Just write a small program in whatever lan-
guage is convenient, and add a step to the description file which invokes the
program. You might need to write several such small programs, but the effort
will be repaid by the timeyou have made two or three drafts of each book.

You can use this technique even if you'do not have DEC/Test Manager. Simply
invoke your program with redirected input and output You should check that
the results are reasonable, either by looking at them, or by having additional
programs validate the output.

Testing and Verifying the Software System with VAX/VMS

In order for the implementation phase to be completed, systemwide testing,
debugging, and in-house testing of the software must be completed. The soft-
ware system is considered a releasable product only when you are assured that it
has been thoroughly tested and works well for users under a variety of condi-
tions. Tests and system-builds should be integrated to make you as productive
as possible in this phase. Figure 7-7 helps you to understand this.

7-32 w Language and Tool Integration in the VAX/VMS
Software Development Environment

Your programming staff’s assignments are listed in the phase assignment row.
Programmers 1 and 2 will continue to test and debug the software system. Pro-
grammers 3 and 4 have been assigned the task of building additional tests for
the system. Many new problem areas in the system have been identified and
now require testing. Programmers 5 and 6 will continue to test and write text
for the online help facility. The documentation specialist must incorporate
review comments into various manuals and prepare the documentation set for
Field Test release. Field Test is the business of Phase 3; the intent is to make sure
that a software product which has been thoroughly tested in-house can perform
successfully in actual customer environments. If the software performs cor-
rectly, and the documentation is both accurate and helpful, then the product
becomes a candidate for volume reproduction and sale to the general customer
base. ‘ ‘

Elements generated in Phase 2 are now online for reference or further-develop-
ment (column 2).

RO

PHASE Il

~ \JHE NEXT PROJECT
o YOU -
*(THE BOSS)

ITEMS ON LINE FROM PRIOR PHASES

o PROJECT
° LEADER

SHES THINKING ABOUT e
LEAVING AFTER THIS PROJECT)
ISOVER, -

SENIOR

SENIOR

PHASE Il SOURCE CODE

JUNIOR
PROGRAMMER - PROGRAMMER = PROGRAMMER PROGRAMMER

JUNIOR
TRAINEE

USER DOCUMENTATION

DOCUMENTATION
SPECIALIST

| DECrshel] [DCL
. ¥ ¥]) ¥ ¥ ¥
PHASE CONTINUE TO : INCORPORATE
ASSIGNMENTS, TEST AND WRITE NEW TESTS, CONTINUE TO WRITE ONLINE | - JREVIEW COMMENTS]
ST DEBUG THE MODULES TEST AND DEBUG HELP FACILITY PHASES CORRECTIONS INTO
VAX OF THE APPLICATION SYSTEM USER DOC SET. *
PROGRAM —
DEVELOPMENT - -
ENVIRONMENT l HELP.RANH | l DOC_SET.RNO l
VAXTPU,:EDT, DSR
,\Dﬁfgﬁgg ol I MODULE 2 [MODULE 4 | RUN | susMmIT NEW | HELP. HLPJ Loocser MEMl
’ | NEW] DECTest
DEBQG ——» MODULE 1 MODULE 3 :\TESTS MANAGER ONLINE HELP
= £ 1
Zw
DEC/PCA:*~ Gl = PCA data will help you
(Perforriance l 5 § E 8 det‘errtnr:ne what chacli'\ges 1
r X 0 the source code
: Qe r~ HELP
and - P EXE i 2 REVIEW PCA | must be made, or what
Coverage - AR » DATA A Tde, oy LIBRARIES
Analyzer) written (CLS 1)

Figure 7-7 » Phase 3 — Testing and Verifying the Software System with

VAX/VMS

Judmosau juaudoppas(g sivmyfos

SIWA/XVA 291 41 401v4327u] J0O] puv s3vm3ur w p¢-/

PROTOTYPE
CODE

Design Spec. VOL. 3
Doc. Plan HELP.RNH voL.2
Require. MOD 3.FOR VOL. 1
Proj. Spec MOD 4.COB
DEC/ICMS
: USER-DOCUMENTATION
SOURCE CODE SET LIBRARIES
PROJECT DOCUMENTATION LIBRARIES (CLS 1)
LIBRARIES (CLS 1) (CLS 1)
)
Phase i
Source Code
INPUT

DEC/MMS BUILDS

THE APPLICATION
DEC/MMS PROGRAM, PROJECT

DOCUMENTATION, AND
THE USER DOC SET
FROM CMS LIBRARIES

l

Phase Il
Project Documentation

Phase il

!

Figure 7-7 (Cont) » Phase 3 — Testing and Verifying the Software System with

VAX/VMS

(94

7-36 w Language and Tool Integration in the VAX/VMS
Software Development Environment

The VAX/VMS tools used in this phase are listed, vertically, along the left side
of the figure. We have already discussed the uses of many of these tools. They
all continue to be used for the same functions as in previous phases (for
example, the DEC/Test Manager still is used to manage regression-testing
even though the nature of those tests have changed). The VAX Performance
and Coverage Analyzer is extremely beneficial in analyzing how extensively
your systems’ tests cover your entire system.

USING THE VAX PERFORMANCE AND COVERAGE ANALYZER
(PCA) TO TEST AND VERIFY YOUR SOFTWARE SYSTEM

The VAX Performance and Coverage. Analyzer uses VAX/VMS AST (asynchro-
nous system traps) services to sample the execution of events that occur in your
program at runtime. It then writes data regarding those events to a file. You can
then use the analyzer portion of the Performance and Coverage Analyzer to
format the data into different types of output.

Analyzing the performance of a program is done interactively. You can experi-
ment with a number of different parameters until you find the information you
really want. The VAX Performance and Coverage Analyzer provides perform-
ance coverage (PC) histograms, information on page-faults, system service calls
and /O calls.

In the Performance and Coverage Analyzer’s (PCA) test-coverage analysis
mode, you can ask for breakpoints on every routine, statement, or path in a
program. Then, after program execution, a command will show you how many
of those routines or statements were actually executed during the execution of
the program. A project using the DEC/Test Manager can put PCA commands
into its DEC/Test Manager prologues and get coverage analysis while running
tests for validity of the product. The user can also ask for coverage while review-
ing tests in the DEC/Test Manager.

USING THE DEC/TEST MANAGER IN THE TESTING PHASE

When finishing a specific module, programmers will need to test their code.
This testing is done over the entire implementation phase (and during the rest
of the life cycle). DEC/Test Manager provides for a single test system for the
entire project. It gives you the ability to select a subset of tests for checking only
part of a system and also can help you efficiently review the results of those tests.

7-37

DEC/Test Manager

= Runs a collection of tests on your software system.

= Compares the output of each test it runs to output that are known to be
correct.

* Provides a set of commands that automatically helps your project members
execute a set of tests.

= Helps you quickly look at the results of those tests.

Many times, when testing for a certain condition or feature, your programmers
may want to run one specific test with a combination of tests. With the
DEC/Test Manager, it is simple to collect those specific tests for a run, run them,
and review their results.

You can keep your test cases and benchmark files in a CMS library so that those
tests can evolve with the system too. When you make a change to a system, you
add a test case(s) to test the change. You also re-run the other test case(s) in your
test system to verify the change has not “broken” anything else.

When a bug is fixed, you create a test-case to demonstrate the bug and capture
the cotrect output Running these tests at a later date ensures that the bug stays
fixed.

Maintaining the Software System With VAX/VMS

From many programmer’s point of view, the program development life cycle is
complete once the first four phases of the software system life cycle are com-
pleted. But you know much of the work (as much as 45 percent of it) on the
software system doesn’t even start until you enter Phase 4-volume production,
sale to customers, and maintenance of the product in the field.

Quite often, once a large project is completed, programmers who have done
most of the original design and coding work are put on other projects or seek
new career opportunities. Replacing key personnel is never an easy task. When
key programmers leave, they take a piece of your department. Therefore, to
maintain your department’s high productivity level, you must maintain con-
tinuity in the skill level of all programmers. Doing this insures that whomever
you hire to replace these programmers is not going to spend a year getting “up
to speed” on the system and learning the software system. The DEC/MMS
description files, stored in a CMS Library, contain the information or how to
build (or rebuild) the system as it currently exists, and how it existed at different
points in the project’s history.

7-38 w Language and Tool Integration in the VAX/VMS
Software Development Environment

By using the VAX/VMS products outlined in this handbook, all your code, doc-
uments, tests, and test results have been stored in CMS libraries for easy retrieval
and reference. A new team member can easily use these libraries to determine
the “who, what, when and why” of all work done for the first release of the
software system.

7-39

PHASE |

e

You
(THE BOSS)

~ PHASE
ASSIGNMENTS
—_—

VAX

PROGRAM
DEVELOPMENT
ENVIRONMENT

ITEMS ON LINE FROM PRIOR PHASES

‘PROJECT SENIOR " SENIOR - JUNIOR JUNIOR

DOCUMENTATION

LEADER PROGRAMMER ' PROGRAMMER = PROGRAMMER 'PROGRAMMER TRAINEE SPECIALIST

VAXTPU, EDT, DSR

LANG.-SENS.
EDITOR

b VERSION 2.

VAX LANGUAGES

PCA

|, DEBUGGER

TEST MANAGER

[oEcisher] []
¥ ¥ R B
ENHANCE'
~ ENTATION SET
WORKING TOWARDS NEXT RELEASE CONTINUE TESTING AND “BUGCHECKs" | |0
“* " WRITE MAINT. DOC.— REVISE FOR VI RELEASE CHANGE, -
PROJECT DOCUMENTATION PAGES WITH -
CODE UPGRADES

OF THE
APPLICATION SYSTEM

(minor upgrades

VERSION 1.1
12,13

of the app:
program)

© VMS UTILITIES

Figure 7-8 » Phase 4 — Maintaining the Software System With VAX/VMS

JumMUOAUT] JU2d0202(] 240MfOS

SIWA/XVA 247 4t u01v43a1u] J0O puv 33vn3uv] m Op-/

Design Spec.

PROTOTYPE
CODE

VOL. 2
Doc. Plan HELP.RNH VoL 1
Require. MOD 3.FOR :
DEC/CMS Proj. Spec MOD 4.COB
(Code
Management —"
System) HELP
LIBRARIES
(CLS 1)
USER-DOCUMENTATION
SOURCE CODE SET LIBRARIES
PROJECT DOCUMENTATION LIBRARIES (CLS 1)
LIBRARIIES (CLS 1) (CLS 1)
e
+ | vou VoL VoL
INPUT 1 2 3
DEC/MMS DEC/MMS REBUILDS /
THE APPLICATION
Module PROGRAM, PROJECT
anagement DOCUMENTATION, AND \ + VoL VOL VoL
System) THE USER DOC SET 1 2 3
FROM CMS LIBRARIES
OUTPUT
+ | voL VoL VOL
1 2 3

Figure 7-8 (Cont.) » Phase 4 — Maintaining the Software System With

VAX/VMS

It/

742 w Language and Tool Integration in the VAX/VMS
Software Development Environment

Let’s take a brief look (Figure 7-8) at your development department in Phase
4 of the software life cycle. The software system is now six-months old and in
use at several hundred locations. Already, you have requests to change one
of the software modules to add functionality not included in the first release
due to lack of time you had to spend on the project, cost constraints, or lack
of support from a related software system.

Often, development cycles are kept short deliberately. In this case, the initial
release will perform the basic functions required. It is expected that after
release, customers will request functions that were not included. These features
are candidates for subsequent releases so that the system can evolve towards a
closer match with the customer’s needs than would be possible if an attempt
was made to put everything in the initial release. This leads to Phase 0 for the
next version of the product, if it appears economically or strategically justifiable.

You can see that programmers 1, 2, and 3 are working on the next software
system. We should mention here that you have recently brought programmer 4
into the department. Although he is not familiar with the software or your
department, he is able to be productive. He has a full history and audit trail of
the project’s code and internal documentation and can match it to the project.
The VAX Language-Sensitive Editor helps him with language templates and
walks him through the code. The DEC/MMS description file describes the sys-
tem for him. The tools have made it possible for him to pick up where the last
programmer 4 had left off.

Programmers 4, 5, and 6 will continue to make minor bug-fixes and general
housekeeping on the first release. The documentation specialist has to revise the
documentation set in much the same manner and issue change pages with the
software upgrade releases.

This software system may evolve over the next five or six years, maybe longer,
before it is replaced or retired. Therefore, it is essential that all records of
changes to project documentation, source code, and user documentation be
tracked over that entire period of time. Personnel may come and go, but an
audit trail of the whole evolution must be available.

Conclusion

This chapter has shown you how a software development project can use
Digital’s VMS Productivity Environment to your advantage.

The importance of developing software from an engineering perspective cannot
be minimized. Our VAX languages, VAX tools and and VMS program develop-
ment utilities are designed to make you and your development staff software
engineers. Our products will allow you to build a software system in a single
integrated environment with the industry’s best engineered products.

