VAX LISP/ULTRIX
User’s Guide

Order Number: AA-EVOBA-TE

May 1986

This document contains information required by a LISP language
programmer to interpret, compile, and debug VAX LISP programs.

Operating System and Version: ULTRIX-32 Version 1.2
ULTRIX-32m Version 1.2

Software Version: ' VAX LISP/ULTRIX Version 2.0

digital equipment corporation
maynard, massachusetts

First Printing, May 1986

The information in this document is subject to change without notice <::>
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility

for any errors that may appear in this document. ’

The software described in this document is furnished under a license
and may be wused or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

© Digital Equipment Corporation 1986.
All Rights Reserved.

Printed in U.S.A. <:>

A postage-paid READER’S COMMENTS form is included on the last page of
this document. Your comments will assist wus in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

0O

DEC UNIBUS ' PDP

DECUS VAX VMS

MicroVAX MicroVAX I1I MicroVMS
VAXstation VAXstation II AI VAXstation
DECnet ULTRIX ULTRIX-11
ULTRIX-32

ULTRIX-32m Eﬂgﬂnanm O

CONTENTS
<::> PREFACE

Part I
VAX LISP/ULTRIX SYSTEM CONCEPTS AND FACILITIES

CHAPTER 1 INTRODUCTION TO VAX LISP

OVERVIEW OF VAX LISP
vaxlisp Shell Command
Interpreter
Compiler
Error Handler
Debugging Facilities
Pretty Printer
Call-Out Facility
Alien Structure Facility
VAX LISP/ULTRIX Function, Macro, and Variable
Descriptions

.
.
.
N -

PRPRPRPPRPRRRRP
]

PRRRRERRBRPRRR

NoOUB WP PR

1.2 HELP FACILITIES
1.2.1 ULTRIX HELP
1.2.2 LISP HELP
1.3 ULTRIX FILE SPECIFICATIONS
1.3.1 File Name

<:> 1.3.2 Pathname
1.3.2.1 Directory Names
1.3.2.2 Slash (/) Separators
1.3.2.3 Sample Pathname
1.3.2.4 Host Names
1.3.3 Default Values
1.3.4 VAX LISP Default File Types

USING VAX LISP

g
>
)
]
t
o
N

INVOKING LISP

EXITING LISP

ENTERING INPUT

DELETING INPUT

ENTERING THE DEBUGGER

USING CONTROL KEY SEQUENCES

CREATING PROGRAMS

LOADING FILES

COMPILING PROGRAMS
1 Compiling Individual Functions and Macros
.2 Compiling Files
3
4

Advantages of Compiling LISP Expressions

. Advantage of Not Compiling LISP Expressions
0 vaxlisp COMMAND OPTIONS

0.1 Three Ways to Use the vaxlisp Command

[SESESASESESESESESESE S SN N SN X
P RPOOOVOVOVOOIOUTHE WN R

iii

[A N N R B B |
Vb B DD wwwi

PRRPRRPRRPRPRP P

PRRPRRRRERRARRRPRERRR
I
WO~~~ U

FRNDNDNDNDNDNDNDNDNDNDNDNDN

[l
WO WWNNN R

S

CHAPTER

CHAPTER

2.10

2.10.3

2

2.10.4
2.10.5
2.10.6
2.10.7
2.10.8
2.10.9
2.10.10
2.10.11
2.10.12

2.11

2.11.1
2.11.2

w

o e . .
* e . .
w N -

WWwwwwwwwww
. .
Wwwwwwihnn ek

(=N

.

.

O O R N N N N R
e ® e e . (] .

oI S B S WP
.

N e

w N

COMPILE
ERROR_ACTION
[NOJINITIALIZE
[NOJLISTING
[NOIJMACHINE_CODE
MEMORY
[NO]JOPTIMIZE
[NO]JOUTPUT_FILE
RESUME
[NO]VERBOSE
[NO JWARNINGS

USING SUSPENDED SYSTEMS
Creating a Suspended System
Resuming a Suspended System

ERROR HANDLING

ERROR HANDLER
VAX LISP ERROR TYPES
Fatal Errors
Continuable Errors
Warnings
CREATING AN ERROR HANDLER
Defining an Error Handler
Function Name
Error-Signaling Function
Arguments

Binding the *UNIVERSAL-ERROR-HANDLER* Variable

DEBUGGING FACILITIES

CONTROL VARIABLES
CONTROL STACK
ACTIVE STACK FRAME
BREAK LOOP
Invoking the Break Loop
Exiting the Break Loop
Using the Break Loop
Break Loop Variables
DEBUGGER
Invoking the Debugger
Exiting the Debugger
Using Debugger Commands
Arguments
Debugger Commands

Using the DEBUG-CALL Function

Sample Debugging Sessions
STEPPER

Invoking the Stepper

Exiting the Stepper

iv

2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-23
2-24
2-25
2-25
2-26

WWwwwwwwwwww
| I I I |
NN oonutes WP

[N - - N i A N
1

= !
WhRPOUWOVUONIIOUTE S S_WW

- -
]
[y
©

4.6.3 Stepper Output 4-21
<::> 4.6.4 Using Stepper Commands 4-24
4.6.4.1 Arguments 4-25
4.6.4.2 Stepper Commands 4-26
4.6.5 Using Stepper Variables 4-28
4.6.5.1 *STEP-FORM* 4-28
4.6.5.2 *STEP-ENVIRONMENT* 4-28
4.6.5.3 Example Use of Stepper Variables 4-29
4.6.6 Sample Stepper Sessions 4-31
4.7 TRACER 4-32
4.7.1 Enabling the Tracer 4-33
4.7.2 Disabling the Tracer 4-33
4.7.3 Tracer Output 4-34
4.7.4 Tracer Options 4-35
4.7.4.1 Invoking the Debugger 4-36
4.7.4.2 Adding Information to Tracer Output 4-36
<:> 4.7.4.3 Invoking the Stepper 4-36
4.7.4.4 Removing Information from Tracer Output 4-37
4.7.4.5 Defining When a Function or Macro 1Is Traced 4-37
4.7.5 Tracer Variables 4-37
4.7.5.1 *TRACE-CALL¥* 4-37
4.7.5.2 *TRACE-VALUES* 4-38

Ul

CHAPTER PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

O

5.1 PRETTY PRINTING WITH DEFAULTS 5-2
5.2 HOW TO PRETTY-PRINT USING CONTROL VARIABLES 5-3
5.2.1 Explicitly Enabling Pretty Printing 5-3
5.2.2 Limiting Output by Lines 5-4
5.2.3 Controlling Margins) _ 5-4
5.2.4 Conserving Space with Miser Mode 5-5
5.3 EXTENSIONS TO THE FORMAT FUNCTION 5-5
5.3.1 Using the WRITE FORMAT Directive 5-7
5.3.2 Controlling the Arrangement of Output 5-8
<:> 5.3.3 Controlling Where New Lines Begin 5-11
5.3.4 Controlling Indentation 5-13
5.3.5 Producing Prefixes and Suffixes 5-14
5.3.6 Using Tabs 5-15
5.3.7 Directives for Handling Lists 5-16
5.4 DEFINING YOUR OWN FORMAT DIRECTIVES 5-18
5.5 DEFINING PRINT FUNCTIONS FOR LISTS 5-19
5.6 DEFINING GENERALIZED PRINT FUNCTIONS 5-21
5.7 ABBREVIATING PRINTED OUTPUT ’ 5-23
5.7.1 Abbreviating Output Length 5-24
5.7.2 Abbreviating Output Depth 5-24
5.7.3 Abbreviating Output by Lines 5-25
5.8 USING MISER MODE 5-26
5.9 HANDLING IMPROPERLY FORMED ARGUMENT LISTS 5-28

CHAPTER 6 VAX LISP/ULTRIX IMPLEMENTATION NOTES

6.1 DATA REPRESENTATION 6-2
6.1.1 Numbers 6-2
6.1.1.1 Integers 6-2
6.1.1.2 Floating-Point Numbers 6-3
6.1.2 Characters 6-5
6.1.3 Arrays 6-6
6.1.4 Strings 6-7
6.2 PATHNAMES 6-7
6.2.1 Namestrings 6-8
6.2.2 wWhen to Use Pathnames 6-8
6.2.3 Fields in a COMMON LISP Pathname 6-9
6.2.4 Field Values of a VAX LISP Pathname 6-9
6.2.5 _ Three Ways to Create Pathnames 6-10
6.2.6 Comparing Similar Pathnames 6-12
6.2.7 Converting Pathnames into Namestrings 6-12
6.2.8 Functions That Use Pathnames 6-13
6.2.9 Using the *DEFAULT-PATHNAME-DEFAULTS* Variable 6-13
6.3 GARBAGE COLLECTOR 6-14
6.3.1 Frequency of Garbage Collection 6-15
6.3.2 Static Space 6-15
6.3.3 Messages 6-16
6.3.4 Available Space 6-16
6.3.5 Garbage Collection Failure 6-16
6.4 INPUT AND OUTPUT 6-16
6.4.1 Newline Character 6-17
6.4.2 Terminal Input 6-18
6.4.3 Terminal Output 6-18
6.4.4 End-of-File Operations 6-18
6.4.5 File Organization 6-19
6.4.6 Functions 6-19
6.4.6.1 OPEN Function 6-19
6.4.6.2 WRITE-CHAR Function 6-19 -
6.5 KEYBOARD FUNCTIONS 6-20
6.6 COMPILER 6-21
6.6.1 Compiler Restrictions 6-21
6.6.1.1 COMPILE Function 6-21
6.6.1.2 COMPILE-FILE Function 6-21
6.6.2 Compiler Optimizations 6-22
6.7 FUNCTIONS AND MACROS ‘ 6-24

Part II
VAX LISP/ULTRIX Function, Macro, and Variable Descriptions

APROPOS Function

APROPOS-LIST Function
BIND-KEYBOARD-FUNCTION Function
BREAK Function
CANCEL-CHARACTER-TAG Tag
CHAR-NAME-TABLE Function

OWoOdbdWE

vi

O

O

COMPILEDP Function

COMPILE-FILE Function
COMPILE-VERBOSE Variable
COMPILE-WARNINGS Variable
CONTINUE Function

DEBUG Function

DEBUG-CALL Function
DEBUG-PRINT-LENGTH Variable
DEBUG-PRINT-LEVEL Variable
DEFAULT-DIRECTORY Function
DEFINE-FORMAT-DIRECTIVE Macro
DEFINE-GENERALIZED-PRINT-FUNCTION Macro
DEFINE-LIST-PRINT-FUNCTION Macro
DELETE-PACKAGE Function
DESCRIBE Function

DIRECTORY Function

DRIBBLE Function

ERROR-ACTION Variable

EXIT Function

Format Directives Provided with VAX LISP
GC Function)

GC-VERBOSE Variable
GENERALIZED-PRINT-FUNCTION-ENABLED-P Function
GET-GC-REAL-TIME Function
GET-GC-RUN-TIME Function
GET-INTERNAL-RUN-TIME Function
GET-KEYBOARD-FUNCTION Function
HASH-TABLE-REHASH-SIZE Function
HASH-TABLE-REHASH-THRESHOLD Function
HASH-TABLE-SIZE Function
HASH-TABLE-TEST Function

LOAD Function

LONG-SITE-NAME Function
MACHINE-INSTANCE Function
MACHINE-VERSION Function
MAKE-ARRAY Function
MODULE-DIRECTORY Variable
POST-GC-MESSAGE Variable
PPRINT-DEFINITION Function
PPRINT-PLIST Function
PRE-GC-MESSAGE Variable
PRINT-LINES Variable
PRINT-MISER-WIDTH
PRINT-RIGHT-MARGIN Variable
PRINT-SIGNALED-ERROR Function
PRINT-SLOT-NAMES-AS-KEYWORDS Variable
REQUIRE Function

ROOM Function

SHORT-SITE-NAME Function

STEP Macro

STEP-ENVIRONMENT Variable
STEP-FORM Variable

vii

11
12
15
16
18
19
20
21
22
23
25
28
30
32
33
35
37
38
39
40
43
44
45
46
48
50
51
52
53
54
55
56
58
59
60
61
63
64
65
67
70
71
72
73
75
77
78
80
83
84
85
86

SUSPEND Function 87

THROW-TO-COMMAND-LEVEL Function 90
TIME Macro 91
TOP-LEVEL-PROMPT Variable 92
TRACE Macro 93
TRACE-CALL Variable 104
TRACE-VALUES Variable ’ 105
UNBIND-KEYBOARD-FUNCTION Function 106
UNCOMPILE Function 107
UNDEFINE-LIST-PRINT-FUNCTION Macro 108
UNIVERSAL-ERROR-HANDLER Function 109
UNIVERSAL-ERROR-HANDLER Variable 110
WARN Function 111
WITH-GENERALIZED-PRINT-FUNCTION Macro 112
APPENDIX A PERFORMANCE HINTS
Al DATA STRUCTURES A-1
A.l.1 Integers A-2
A.l.2 Floating-Point Numbers A-2
A.1.3 Ratios A-2
A.1.4 Characters A-3
A.1.5 Symbols A-3
A.1.6 Lists and Vectors A-4
aA.l1.7 Strings, General Vectors, and Bit Vectors A-5
A.1.8 Hash Tables A-6
A.1.9 Functions A-6
A.2 DECLARATIONS A-6
A.3 PROGRAM STRUCTURE A-10
A.4 COMPILER REQUIREMENTS A-12
INDEX
FIGURES
5-1 Variables Governing Miser Mode 5-26
TABLES
1-1 VAX LISP File Type Specifications 1-9
2-1 Control Key Sequences 2-3
2-2 Options of the vaxlisp Shell Command 2-12
2-3 Option Modes for the vaxlisp Command 2-14
3-1 Error-Signaling Functions : 3-7
4-1 Debugging Functions and Macros 4-1
4-2 Debugger Commands 4-10 -
4-3 Debugger Command Modifiers 4-12
4-4 Stepper Commands : 4-24

viii

1

o ooy o U
]
BWN R

w N

Format Directives Provided by VAX LISP 5-6
VAX LISP Floating-Point Numbers 6-3
Floating-Point Constants 6-4
VAX LISP Pathname Fields 6-10
Summary of Implementation-Dependent Functions and

Macros . 6-25
Format Directives Provided with VAX LISP ’ 40
Data Type Headings 81
TRACE Options 94

ix

PREFACE

Manual Objectives

The VAX LISP/ULTRIX User’s Guide is intended for use in developing and
debugging LISP programs, and for use in compiling and executing LISP

<:> programs on ULTRIX-32 and ULTRIX-32m systems. The VAX LISP language
elements are described in COMMON LISP: The Language.*

Intended Audience

This manual is designed for programmers who have a working knowledge
of LISP. Detailed knowledge of ULTRIX-32 is helpful but not
essential. However, some sections of this manual require more
extensive understanding of the operating system. 1In such sections,
you are directed to the appropriate manual(s) for additional
information.

Structure of This Document

An outline of the organization and chapter content of this manual

<:>follows:

PART I: VAX LISP/ULTRIX SYSTEM CONCEPTS AND FACILITIES

Part I consists of six chapters, which explain VAX LISP concepts and
describe the VAX LISP facilities.

e Chapter 1, Introduction to VAX LISP, provides an overview of
VAX LISP, explains how to wuse the help facilities, and
describes ULTRIX file specifications.

e Chapter 2, Using VAX LISP, explains how to invoke and exit
from VAX LISP, use control key sequences, enter and delete
input, create and compile programs, load files, and use

(::)* Guy L. Steele Jr., COMMON LISP: The Language, Digital Press (1984),
Burlington, Massachusetts.

xi

PREFACE

suspended systems. In addition, Chapter 2 describes the
ULTRIX vaxlisp command and its options.

e Chapter 3, Error Handling, describes the VAX LISP
error-handling facility.

@ Chapter 4, Debugging Facilities, explains how to use the VAX
LISP debugging facilities.

o Chapter 5, The Pretty Printer, explains how to use the VAX
LISP pretty printer.

e Chapter 6, VAX LISP/ULTRIX Implementation Notes, describes the
features of LISP that are defined by or are dependent on the
VAX implementation of COMMON LISP.
PART II: VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS
Part II describes functions, macros, and variables specific to VAX
LISP and any COMMON LISP objects that have specific implementation
characteristics in VAX LISP. = Each function or macro description
explains the function’s or macro’s use and shows its format,
applicable arguments, return value, and examples of wuse. Each
variable description explains the variable’s use and provides examples
of its use.
Associated Documents
The following documents are relevant to VAX LISP/ULTRIX programming:
e VAX LISP/ULTRIX Installation Guide
e COMMON LISP: The Language
@ VAX LISP/ULTRIX System Access Programming Guide
e ULTRIX-32 Programmer’s Manual
® ULTRIX-32 Supplementary Documentation

® VAX Architecture Handbook

N

xii

O

O

PREFACE

Conventions Used in This Document

The following conventions are used ' in this manual:

Convention

()

[]

UPPERCASE
lowercase

italics

bold

{ }*

Meaning

Parentheses used in examples of‘LISP cnde indicate the
beginning and end of a LISP form. For example:

(SETQ NAME LISP)

Square brackets enclose elements that are optional.
For example:

[doc-string]

Defined LISP characters, functions, macros, variables,
and constants are printed in uppercase characters;
however, you can enter them in uppercase, lowercase, or
a combination of uppercase and lowercase characters.

Lowercase italics in function and macro descriptions
and in text indicate arguments that you supply;
however, you can enter them in lowercase, uppercase, or
a combination of lowercase and uppercase characters.

Names of ULTRIX commands and command options in the
text (not in examples) are in bold type.

In LISP examples, a horizontal ellipsis indicates code
not pertinent to the example and not shown.

A vertical ellipsis indicates that all the information
that the system would display in response to the
particular function call is not shown; or, that all the
information a user is to enter is not shown.

In function and macro format specifications, braces
enclose elements that are considered to be one unit of
code. For example: ’
{keyword value}

In function and macro format specifications, braces
followed by an asterisk enclose elements that are
considered to be one wunit of code, which can be
repeated zero or more times. For example:

{keyword value}*

xiii

Convention

&OPTIONAL

&REST

&KEY

<RET>

<CTRL/x>

command(n)

PREFACE

Meaning

In function and macro format specifications, the word <:>

&OPTIONAL indicates that the arguments after it are
defined to be optional. For example:

PPRINT object &OPTIONAL package

Do not specify &OPTIONAL when you invoke a function or
macro whose definition includes &OPTIONAL.

In function and macro format specifications, the word
&REST indicates that an indefinite number of arguments
may appear. For example:

BREAK &OPTIONAL format-string &REST args

Do not specify &REST when you invoke the function or
macro whose definition includes &REST.

In function and macro format specifications, the word
&KEY indicates that keyword arguments are accepted.
For example:

COMPILE-FILE input-pathname &KEY {keyword value}*

Do not specify &KEY when you invoke the function or
macro whose definition includes &KEY.

A symbol with a 1- to 3-character abbreviation
indicates that’ you press a key on the terminal. For
example:

<RET> or <ESC>
In examples, carriage returns are implied at the end of
each line. However, the <RET> symbol is used in some
examples to emphasize carriage returns.
<CTRL/x> indicates a control key sequence where you
hold down the CTRL key while you press another key.
For example:)

<CTRL/C> or <CTRL/Y>
The (n) after a command is the section number of the
ULTRIX-32 Programmer’s Manual that contains a
description of that command. For example:

vi(l)

xiv

O

O

O

PREFACE

Convention Meaning

<:> Black print

In examples, output lines and prompting characters that
the system displays are in black print. For example:

Lisp> (CDR "(A B C))
(B C) .
Lisp>

Red print In examples, user input is shown in red print. For
example:

Lisp> (CDR (A B C))

(B C)
Lisp>

Xv

PART |
VAX LISP/ULTRIX SYSTEM CONCEPTS AND FACILITIES

-

CHAPTER 1
INTRODUCTION TO VAX LISP

LISP is a general purpose programming language. The language has been
used extensively in the field of artificial intelligence for research
and development of robotics, expert systems, natural-language
processing, game playing, and theorem proving. The LISP language is
characterized by:

e Computation with symboiic expressions and numbers
@ Simple syntax

® Representation of data by symbolic expressions or multilevel
lists

@ Representation of LISP programs as LISP data, which enables
data structures to execute as programs and programs to be
analyzed as data

e A function named EVAL, which is the language’s definition and
interpreter

® Automatic storage allocation and garbage collection

VAX LISP is implemented on both the VMS and the ULTRIX-32 operating -
systems. VAX LISP as implemented on the VMS operating system is
formally named VAX LISP/VMS. VAX LISP as implemented on the ULTRIX
operating system is formally named VAX LISP/ULTRIX. Both Vvax
LISP/ULTRIX and VAX LISP/VMS are the same language but with some
differences. For the differences, see the VAX LISP/ULTRIX Release
Notes. These notes: are kept on 1line in the VAX LISP product
directory, by default, /usr/lib/vaxlisp, in the file vaxlispnnn.men,
where nnn is the VAX LISP version number (for example, lisp020.mem for
version 2.0)

This manual describes VAX LISP/ULTRIX but refers to VAX LISP/ULTRIX by
VAX LISP where practicable.

i-1

INTRODUCTION TO VAX LISP

This chapter provides an overview of the VAX LISP language. The
overview is arranged so that it parallels the structure of thi<::>
manual. In addition to ‘the overview, the chapter describes:

@ On-line help facilities for ULTRIX and for LISP

@ ULTRIX file specifications

1.1 OVERVIEW OF VAX LISP

The VAX LISP language runs on the ULTRIX-32 and the ULTRIX-32m
operating systems. This manual refers to both operating systems as
ULTRIX except in a few situations where the operating systems differ.
VAX LISP is an extended implementation of the COMMON LISP languagﬁ::>
defined in COMMON LISP: The Language. In addition to the features
supported by COMMON LISP, VAX LISP provides the following extensions:

® VAX LISP shell command, vaxlisp

e Error handler

® Debugging facilities

e Pretty printer <:>

e Facility for calling out to C and other ULTRIX compiled
languages : ‘ ‘

® Facility for defining non-LISP data structures
e VAX LISP functions, macros, and variables

These extensions are described in Sections 1.1.1 through 1.1.7. <::>

NOTE

VAX LISP does not support complex numbers. However,
you can manipulate complex numbers by the use of the
alien structure and call-out facilities.

Some of the functions, macros, and facilities defined by COMMON LISP
are modified for the VAX LISP implementation. Chapter 6 provides
implementation-dependent information about the following topics:

® Data representation

® Pathnames <:>

1-2

INTRODUCTION TO VAX LISP

® Garbage collector
<::>' e Input and output
e Compiler

@ Functions and macros

1.1.1 vaxlisp Shell Command

You can invoke VAX LISP from either shell (the C Shell or the Bourne
shell) with the shell command vaxlisp. Depending on the option(s) you
use with the vaxlisp command, you can start the LISP interpreter or
the LISP compiler. Chapter 2 describes the vaxlisp shell command and
<:>_all the options you can use with it. Chapter 2 also explains how to:

e Invoke LISP
® Exit LISP
e Create programs

@ Load files

<:> e Compile programs

® Use suspended systems

1.1.1.1 1Interpreter - The VAX LISP interpreter reads an expression,
evaluates the equession, and prints the results. You interact with
<::>the interpreter in line-by-line input.

While in the interpreter, you can create LISP programs. You can also
use programs that are stored in files if you load the files into the
interpreter. Chapter 2 explains how to create LISP programs and how
to load files into the VAX LISP interpreter.

1.1.1.2 Compiler - The VAX LISP compiler is a LISP program that
, translates LISP code from text to machine code. Because of the
translation, compiled programs run faster than interpreted programs.

You can use the compiler to compile a single function or macro or to
compile a LISP source file. If you are in the LISP interpreter, you
can compile a single function or macro with the COMPILE function (see
Chapter 2).

1-3

INTRODUCTION TO VAX LISP

You can compile a program either from the shell or in LISP. If you

are in the shell, you must specify the wvaxlisp command with the s
compile (-c¢) option; if you are in LISP, you must invoke the<::>
COMPILE-FILE function. Chapter 2 explains how to compile LISP
programs that are stored in files.

1.1.2 Error Handler

VAX LISP contains an error handler, which is invoked when errors occur
during the evaluation of a LISP program. Chapter 3 describes the
error handler and explains how you can create your own error handler.

1.1.3 Debugging Facilities

VAX LISP provides several functions and macros that return or display
information you can wuse when you are debugging a program. VAX LISP
also provides four debugging facilities: the break 1loop, debugger,
stepper, and tracer. '

The functions that return debugging information and the break 1loop,
stepper, and tracer facilities are defined in COMMON LISP and are
extended in VAX LISP. The break 1loop 1lets you interrupt the
evaluation of a program, the stepper lets you use commands to step
through the evaluation of each form in a program, and the tracer lets
you examine the evaluation of a program. The debugger is a VAX LISP
facility. The facility provides commands that 1let you examine and
modify the information in the LISP system’s control stack frames.

Chapter 4 explains how to use the debugging facilities.

1.1.4 Pretty Printer O

VAX LISP provides a pretty printer facility. You can use the facility
to control the format in which LISP objects are printed. The pretty
printer can be helpful in making objects easier to understand by means
of indentation and spacing. You can use the pretty printer with the
existing defaults, or you can control it with control variables.
Chapter 5 explains how to use the pretty printer in both of these
ways.

1.1.5 Call-Out Facility

VAX LISP includes a call-out facility, which lets. you call routines <:>
written in C and other ULTRIX compiled languages. Chapter 2 of the

1-4

O

INTRODUCTION TO VAX LISP

VAX LISP/ULTRIX System Access Programming Guide describes the call-out
process and explains how to use the call-out facility.

1.1.6 Alien Structure Facility

VAX LISP supplies an alien structure facility. It 1lets you define,
create, and access VAX data structures that are used to communicate
between the VAX LISP 1language and C or other ULTRIX languages.
Chapter 3 of the VAX LISP/ULTRIX System Access Programming Guide
describes the alien structure facility and explains how to use it.

1.1.7 VAX LISP/ULTRIX Function, Macro, and Variable Descriptions

VAX LISP/ULTRIX contains many functions, macros, and variables that
are either not mentioned or are mentioned but not fully defined in the
COMMON LISP language. These functions, macros, and variables are
divided into the following categories:

e Implementation-dependent objects mentioned but not fully
defined in Common LISP: The Language

@ VAX LISP objects that implement the parts of VAX LISP that are
described in this manual

@ System access-specific objects (pertaining to the call-out,
alien structure, and interrupt function facilities)

These LISP objects let you use the VAX LISP facilities and some ULTRIX
facilities without exiting or calling out from the LISP system.

The LISP objects in the first two categories 1listed above are
described in Part II of this manual. System access-specific objects

are described in Part II of the VAX LISP/ULTRIX System Access
Programming Guide.)

1.2 HELP FACILITIES

You can get help in using VAX LISP both from the shell (on ULTRIX-32
only) and from the LISP interpreter.

1.2.1 ULTRIX HELP

Although ULTRIX-32 has the ULTRIX-32 Programmer’s Manual on line,
ULTRIX-32m does not. So, only if you are on ULTRIX-32, can you get

1-5

INTRODUCTION TO VAX LISP

information about ULTRIX commands, their parameters, and their
qualifiers by using the on-line ULTRIX-32 Programmer’s Manual. <::)

You display this manual’s information on your terminal by wusing the
shell command man(l) with a second command (the one about which you
want to find information) as an argument. The format for doing this
is:

man command-name
Example
% man vaxlisp

In the preceding example, the man(l) command will display one
screenful (the first 21 1lines of text on a terminal capable of
displaying 24 lines) of the manual’s explanation on the wvaxlisp
command. : <:>

Once you are reading a section of the on-line manual, you can move
through it in several ways:

@ To see one more line of text, press the RETURN key.
@ To see a second screen of text, press the SPACE bar.

e For further viewing commands, see the discussion of the <:>
more(l) command in the ULTRIX-32 Programmer’s Manual.

If the screen has displayed all of a section, you are automatically
returned to the shell prompt. If more is to be displayed, the last
line of your screen contains the phrase "--More--(xx%)". The percent
figure gives the fraction of the file (in characters) that has been
displayed so far. 1If you want to leave a section before all of it 1is

displayed, press the g key. <::>

1.2.2 LISP HELP

VAX LISP provides two functions you can use to obtain help during a
LISP session: DESCRIBE and APROPOS. The. DESCRIBE function displays
information about a specified LISP object. The type of information
the function displays depends on the object you specify as its
argument. You can use the APROPOS function to search through a
package for symbols whose print names contain a specified string. See
COMMON LISP: The Language for information about packages.
Descriptions of the DESCRIBE and APROPOS functions are provided in
Part II.

1-6

INTRODUCTION TO VAX LISP

1.3 ULTRIX FILE SPECIFICATIONS

An ULTRIX file specification indicates the input file to be processed
or the output file to be produced. A discussion of ULTRIX file name
syntax follows. For more information, see the ULTRIX-32 Programmer’s
Manual.

1.3.1 File Name

ULTRIX is case sensitive. So, a file name in uppercase letters
indicates a file different from the same name in lowercase letters.

ULTRIX file names can be from 1 to 255 ASCII characters in 1length.
Any character (printable or not) can be used except for the slash "/"
(the delimiter) and the null character (the terminator). However, to

<:> use only alphanumeric characters 1is best. Many nonalphanumeric
characters have special meaning to the shell and can create confusion
if you use them in a file name.

You can use a hyphen (-) in a file name, but you should not use a
hyphen as the first character in the name. The hyphen preceded by a
space indicates an option argument to a command, not a file name.

Although an extension to a file name (a file type) is not required,

<:> you can create file names with extensions by placing a period between
the extension and the base of the name; for example, factorial.lsp.
VAX LISP uses extensions (file types) to name files. See Section
1.3.4.

ULTRIX does not maintain version numbers for files. -So, if you make a
new version of an old file and do not rename the old version, the old
version will be lost.

O

1.3.2 Pathname

On ULTRIX, the pathname of a file is the file’s name plus the name of
the directory-tree structure that contains the file. The directory
tree goes from the system root directory to the file’s working
(default) directory. The directory tree is called a pathname because
it is like a path that leads to a file’s location.

The last component of a pathname is usually a file name, though it can
be a directory name if that is what is wanted. For example, if you
use the pwd(1l) command to show your working directory, that command
displays a pathname whose last component is a directory.

O

1-7

INTRODUCTION TO VAX LISP

NOTE

A pathname is also a COMMON LISP data type (see
Chapter 6). 1In the other chapters of this manual, the
word PATHNAME refers to the COMMON LISP data type.

1.3.2.1 Directory Names - In ULTRIX, a directory is named in the same
way as any other file with one exception: The first slash (/) in a
complete pathname indicates the system root directory. Other than the
system root directory, directories are simply file names ‘that are
branches of the root directory. So, the following specification could
be either of a file or of a directory:

s/usr/users/jones/lispl

1.3.2.2 Slash (/) Separators - Slashes (/) separate the components of
a pathname (directory names from each other, and a file name from its
directory). However, a single slash (/) by itself stands for the
ULTRIX system root directory.

1.3.2.3 sample Pathname - In the = following sampie pathname,
factorial.lsp is a file in the directory /usr/users/jones/lisp, and
lisp is a subdirectory of the directory /usr/users/jones:

s/usr/users/jones/lisp/factorial.lsp

1.3.2.4 Host Names - Normally, a host (computer) name is not included
in a pathname. However, when using the rcp(l) command to copy files
between computers, the host name followed by a colon (:) is added to
the front of a pathname. For example, in the following file
specification, miami is the host name: '

miami:/usr/users/jones/lisp/factorial.lsp

1.3.3 Default Values

You do not have to supply a complete pathname each time you compile a
file, load an initialization file, or resume a suspended system.
Also, the file name by itself without its type is sufficient if the
name is contained in your working directory. -

1-8

O

INTRODUCTION TO VAX LISP

The way the system fills in default values depends on the operation
that is being performed. For example, if you are compiling a file and
you specify only a file name, the compiler processes the source
program if it finds a file with the specified file name in the default
directory. The file (in your directory) does not have to have a type;
but if it does, it must have the default type of lsp for the system to
process the file without your specifying the file type (in vyour
command 1line). Suppose you pass the following file specification to
the compiler:

[}

% vaxlisp -c circle

Also, suppose the file circle is in the directory /usr/user/jones.
Then the previous file specification would be equivalent to:

[>)

% vaxlisp -c /usr/user/jones/circle.lsp

In either specification, the compiler searches through the
directory-tree structure of /, usr, user, and jones, seeking the file
circle or, if that does not exist, circle.lsp. Since no output £file
is specified, the compiler generates the file circle.fas and stores it
in directory jones.

©1.3.4 VAX LISP Default File Types

VAX LISP has the default file types listed in Table 1-1. These file
types are explained in Chapter 2.

Table 1-1: VAX LISP File Type Specifications

File Type Description
<:>fas Fast-loading file (output from compiler)
lis Error listing (output from compiler)
1sp Source file (input to LISP reader or compiler)
sus Suspended system (a copy of the LISP memory in use

during an interactive LISP session)

CHAPTER 2
USING VAX LISP

This chapter describes the shell command vaxlisp and its options and (
<:>explains the following:

e Invoking LISP
e Exiting LISP
@ Entering input
@ Deleting input
<:> e Entering the debugger
@ Using control key sequences
® Creating programs
e Loading files
<:> @ Compiling progréms

® Using suspended systems

2.1 INVOKING LISP

You invoke an interactive LISP session by typing the shell command
vaxlisp. When it 'is executed, a message identifying the VAX LISP
; system appears, and then the LISP prompt (Lisp>) 1is displayed. For
example:

% vaxlisp

Welcome to VAX LISP, Version V2.0

<:> Lisp>

2-1

USING VAX LISP

See Section 2.10 for a description of the options you can use with the

vaxlisp command. <:>

2.2 EXITING LISP
You can exit from LISP by using the LISP EXIT function. For example:

Lisp> (EXIT)

)

When you exit the LISP system, you are returned to the shell.

2.3 ENTERING INPUT . Q

You enter input into the VAX LISP system a line at a time. Once you
move to a new line, you cannot go back to the previous line. However,
you can recover an input expression or an output value by wusing the
following 10 unique variables:

/ * +
// *ok ++

/777 * k% +++ ::
These variables are described in COMMON LISP: The Language. The
following example illustrates the use of the plus sign (+) variable
that is bound to the expression most recently evaluated:

Lisp> (CDR ’'(A B C))
(B C)

Lisp> +

(CDR (QUOTE (A B C)))

Lisp> <:>

COMMON LISP symbols are not case sensitive.

2.4 DELETING INPUT

The keys that control how you delete input vary depending on whether
you use the Bourne or the C Shell and on what options you use in a
shell. For more information on deleting input, see the ULTRIX-32
Programmer’s Manual.

O

USING VAX LISP

2.5 ENTERING THE DEBUGGER

If you make an error in an interactive VAX LISP session, the error
automatically invokes the debugger, which replaces the LISP prompt
(Lisp>) with the debugger prompt (Debug 1>). If you continue to make
errors, each new error puts you into another level in the debugger.
The debug prompt indicates the level of interaction. For example, the
prompt "Debug 2>" means you are at a second level in the debugger.
For information on how to use the VAX LISP debugger, see Chapter 4.

Typing <CTRL/C> is a quick way to recover from an error without wusing
the VAX LISP debugger. "~ If you want to recover from an error by
discarding the expression you typed and starting over, type <CTRL/C>.
<CTRL/C> returns you to the read-eval-print loop, which displays the
LISP prompt (Lisp>).

2.6 USING CONTROL KEY SEQUENCES

Table 2-1 lists three helpful ULTRIX signals and the default control
key sequences bound to these signals. To display the settings of
control keys for various signals, type the stty all command. For
further information on characters that generate signals and on how to
change control key sequences bound to these signals, see the stty(1l)
command in the ULTRIX-32 Programmer’s Manual. The control keys that
generate these signals are the only control characters that can be
bound to functions with BIND-KEYBOARD-FUNCTION (see Part II for a
description of BIND-KEYBOARD-FUNCTION).

Table 2-1: Control Key Sequences

Default
Control-Key
Signal Sequence Function
SIGINT <CTRL/C> In LISP, <CTRL/C> first invokes the
CLEAR-INPUT function on the
TERMINAL-IO stream, then throws to
the catcher established for

CANCEL-CHARACTER-TAG. If you want to
recover from an error by discarding the
expression you typed and starting over,
type <CTRL/C>. (See the description of
CANCEL-CHARACTER-TAG in Part II for an
example of changing the behavior of
<CTRL/C>.)

2-3

USING VAX LISP

Table 2-1 (cont.)

Default
Control-Key
Signal Sequence Function
SIGQUIT <CTRLANAD By default, <CTRLA> (*\), makes a core
dump and exits LISP. <CTRL/\> can be
bound with the BIND-KEYBOARD-FUNTION
function.
SIGTSTP <CTRL/Z> In the C shell, suspends a process and

returns you to the shell, letting you
execute other commands while the
process (such as an interactive LISP
session) remains suspended. The shell
command jobs shows you the number of
any suspended processes. By typing %n
in response to the shell prompt, where
n is the number of your suspended
process, you will be returned to your
‘suspended process. See the ULTRIX-32

Programmer’s Manual for further
information regarding the SIGTSTP
signal.

2.7 CREATING PROGRAMS

The most common way to create a LISP program is by wusing a ‘text
editor. In this way, the program exists in a source file that can be
loaded into the LISP environment by the LISP LOAD function.

Although you can compose source programs with any text editor, the
ULTRIX wvi(l) screen editor provides three options that help you enter
and edit LISP source code.

e 1lisp Changes the (and) commands to move backward and
forward over LISP expressions.

e ai Properly indents LISP expressions.

e sm Briefly shows the on-screen position of an open
parenthesis that matches a close parenthesis.

You can set these options in the editor startup file EXINIT with the
line:

set lisp ai sm

2-4

O

USING VAX LISP

For more information on this editor, see the ULTRIX-32 Programmer’s
anual and the ULTRIX-32 Supplementary Documentation -- Volume I.

Another way to create LISP programs is to define them, using the LISP
interpreter in an interactive LISP session. If you define functions
with the DEFUN macro or macros with the DEFMACRO macro, the
definitions become a part of the interpreted LISP environment. You
can then invoke your defined functions and macros. However, since
these definitions are not in a permanent text file, your work is
stored only temporarily and disappears when you exit VAX LISP.
Entering programs by means of the interpreter is really useful only
for experimenting with small functions and macros.

2.8 LOADING FILES

<::>Before you can use a file in interactive LISP, you must load the file
into the LISP system. The £file can be compiled or interpreted;
compiled files load more quickly. You can load a file into the LISP
system in two ways:

e Load the file by specifying the vaxlisp INITIALIZE (-i) option
when in the shell. For example:

)

<:> % vaxlisp -i myinit.lsp
Welcome to VAX LISP, Version V2.0
Lisp>

The LISP prompt indicates the file has been successfully
loaded. If the file 1is not successfully loaded, an error
) message indicating the reason appears on your terminal screen.
Include the VERBOSE (-v) option to cause the names of
<:> functions loaded in an initialization file to be listed at the
terminal. For more information on the -i option, see Section

2.10.4.

® Load the file by using the LISP LOAD function when in an
interactive 'LISP session. For example:

Lisp> (LOAD "testprog.lsp")

; Loading contents of file /usr/users/Jones/testprog lsp
; FACTORIAL
i FACTORS-OF ‘
; Finished loading /usr/users/jones/testprog.lsp
T
Lisp>
(::) The file name, testprog.lsp, can be a string, symbol, stream,
or pathname. FACTORIAL and FACTORS-OF are the functions

1

2-5

USING VAX LISP

contained in the file testprog.lsp. The final T indicates
that the file has been successfully 1loaded. For more
information on the LOAD function, see Part II.

With the -i option, you can load more than one file at a time. With
the LOAD function, however, you can specify only one file at a time.

2.9 COMPILING PROGRAMS

You compile LISP programs by compiling the LISP expressions that make
up the programs. You can do this individually apart from any file or
in a file. You can compile LISP expressions individually by using the
LISP COMPILE function. You can compile a file of LISP expressions by

using the LISP COMPILE-FILE function or the shell wvaxlisp command with'

the COMPILE (=-c) option.

2.9.1 Compiling Individual Functions and Macros

In LISP, the unit of compilation is normally either a function or a
macro. You can compile a function or a macro in a currently running
LISP session by wusing the COMPILE function. This function 1is
described in COMMON LISP: The Language.

You normally call a LISP function first in interpreted form to see if
the function works. Once it works as interpreted, you can test it in
compiled form without having to write the function to a file. Use the
COMPILE function for this purpose. Section 2.9.3 has an example of
how the compiler can find errors that the interpreter misses.

When you compile a function or a macro that is not in a file, the
consequent compiled definition exists only in the current LISP
session; the definition is not in a file. However, you can use the
VAX LISP UNCOMPILE function to restore the interpreted definition.
This function, described in Part 1II, is wuseful when debugging
programs. Because the interpreted code shows you more of your
function’s evaluation than the compiled code, you can find errors more
easily. For more information on finding errors in your code, see the
description of the VAX LISP debugger in Chapter 4.

2.9.2 Compiling Files

Any collection of LISP expressions can make up a program and can be
stored in a file. The compiler processes such a file by compiling the

LISP expressions in the file and writing each compiled result +to an.

output file.

2-6

O

O

O

¥

O

USING VAX LISP

You can compile LISP files either in the shell with the wvaxlisp
command and the COMPILE (-c) option or in an interactive LISP session
with the LISP COMPILE-FILE function.

The -c option is described in Section 2.10.2. The COMPILE-FILE
function 1is described 1in Part II and in COMMON LISP: The Language.
The following example shows how the -c option is used to compile the
file myprog.lsp in the shell:

vaxlisp -c myprog.lsp

o o°

This example produces an output file named myprog.f£fas. The next
example shows how the COMPILE-FILE function can be used to compile the
file myprog.lsp from in the LISP system:

Lisp> (COMPILE-FILE "myprog.lsp")
Starting compilation of file /usr/users/jones/myprog.lsp

FACTORIAL compiled.

Finished compilation of file /usr/users/jones/myprog.lsp
0 Errors, 0 Warnings

"/usr/users/jones/myprog.fas"

Lisp>

Both methods of compiling LISP files are equivalent except in their
defaults. The COMPILE-FILE function automatically lists the name of
each function it compiles at the terminal, but the -c option does not.
Both methods produce fast-loading files (type fas) that run more
quickly than uncompiled files. The fast-loading files by default are
placed in the directory containing your source files.

The first method of compiling files, using the LISP =-c option, has the

advantage that you can compile several files in one step. For
example:

% vaxlisp -c filel.lsp file2.1sp file3.1lsp

When you use the COMPILE-FILE function, it takes several steps to
compile several files, since you can compile only one file at a time.

The second method of compiling files, wusing the LISP COMPILE-FILE
function, has the ' advantage of enabling you to stay in LISP both
during compilation and afterwards. This method is convenient if you
are compiling a single function and want to quickly check for errors
and correct them without leaving LISP. This method is necessary if
the compilation depends on changes you have made to the LISP
environment; that is, you have defined some macros or changed a
package. -

USING VAX LISP

2.9.3 Advantages of Compiling LISP Expressions

You can use both compiled and wuncompiled (interpreted) files and <::>

functions during a LISP session. Both compiled and uncompiled LISP
expressions have their advantages. The advantages of compiling a
file, a macro, or a function are:

e Compiling a function or a macro is a good initial debugging
tool, since the compilation does static error checking
(checking a program for errors without running it), . such as
checking the number of arguments to a function or a macro.
For example, consider the following function definition:

(DEFUN TEST (X)
(IF (> X 0)
(+ 1 X)
(TEST (TRY X) X)))

In the definition of the function TEST, the alternate
consequent (the false part) of the IF condition has two
arguments (" (TRY X)" and "X"), while the function definition
of TEST calls for only one argument. Despite this error, this
function might work correctly as an interpreted (uncompiled)
function if the argument given is a positive number, since it
uses only the first consequent (the true part); so you may not
detect the error. But if you compiled the function, the
compiler would detect the error in the second consequent and
issue a warning.

@ A compiled file not only loads much faster, but the compiled
code executes significantly faster than the corresponding
interpreted code.

2.9.4 Advantage of Not Compiling LISP Expressions

You can debug run-time errors in an interpreted function more easily
than you can debug them in a compiled file or function. For example,
if the debugger is invoked because an error occurred in an uncompiled
function, you can use the debugger to find out what code caused the
error. If the debugger is invoked because .an error occurred in a
compiled function, the code surrounding the form that caused an error
to be signaled may not be accessible. The stepper facility is also
more informative with interpreted than with compiled functions. See
Chapter 4 for information on the debugger and the stepper.

2-8

O

O

O

USING VAX LISP

2.10 vaxlisp COMMAND OPTIONS

The vaxlisp shell command can be specified with several options
according to the standard ULTRIX conventions. The format of the
command is:

vaxlisp [-option ...] [file] ...
The conventions are:
e Options and their arguments qualify the wvaxlisp command.

Files specified with the COMPILE option are the only arguments
to the command. Files specified with any other option are
arguments of that option only. Thus, files to be compiled do
not have to be specified immediately after the COMPILE option,
but files that are the argument of any other option have to be
specified immediately after that option. Also, options
specified with the COMPILE option apply to all the file(s) to
be compiled.

For example, in the following command 1line, myprogl.lsp and
myprog2.lsp are specified with the COMPILE (-c) option. These
file are the only arguments of the command wvaxlisp, and the
VERBOSE (-v) option applies to both of the files. The file
myinit.lsp is the argument of the INITIALIZE (-i) option.

vaxlisp -c -i myinit.lsp -v myprogl.lsp myprog2.lsp
® ULTRIX is case sensitive; the command name is in the 1lower
case and all the options, with the exception of the LISTING
(-L) and the VENDOR (-V) options, are in the- lower case.

@ Most options can be specified in two ways:

- As a VENDOR (-V) option with an option-name argument. For
example:

-V COMPILE

- As a single-letter option without the option name. For
example:

-C

@ Some options accept arguments. These arguments can be either
a file name, a number, a symbol, or a string depending on the
option. To specify an option argument, type the option
specifier followed by a space and the argument. For example:

2-9

USING VAX LISP

-1 myprog.lsp

or

-m 15000

or

-V NOWARNINGS

or

-V "NOWARNINGS"
To specify a list of option arguments, type a space after the
option specifier and either separate the arguments with
commas, or include the arguments in string quotes and separate
the arguments with spaces. For example:

-i myprogl.lsp,myprog2.lsp

or

-i "myprogl.lsp myprog2.lsp"
When specifying a number of options, you can specify them in
any order. However, an option that takes an argument must
have that argument follow the option specifier. For example:

-v -i file

or

-i file -v

Most options can be negated only in the -V form. You negate
an option by adding NO to the -V option name. For example:

-V NOVERBOSE
The two exceptions to this rule are the WARNINGS option and
the OUTPUT_FILE option. WARNINGS can be negated by NOWARNINGS
in the -V form or by -w; OUTPUT_FILE can be negated by
NOOUTPUT_FILE in the -V form or by -n.

If conflicting options are specified, the last option
specified is used. . :

If you use the -V option specifier, the rules for formatting
the argument(s) of the -V are:

2-10

USING VAX LISP

Case can be either upper, lower, or a mixture. For
example, the following are equivalent:

-V compile

-V COMPILE

-V Compile
Option names can be abbreviated to the fewest ambiguous
letters. For example, MEMORY can be abbreviated to ME, and
MACHINE_CODE can be abbreviated to MA.
Option-name arguments can be combined into one wunit by
joining them together with commas or in a string surrounded
by double quotes and separated by spaces. For example, the
following three command lines are equivalent:

-V INITIALIZE=file -V MACHINE_CODE -V COMPILE file

-V INITIALIZE=file,MACHINE_CODE,COMPILE file

-V "INITIALIZE=file MACHINE_CODE COMPILE" file
Options can be specified either as a string (with quotes)
or not (without quotes). For example, the following are
equivalent:

-V COMPILE

-V "COMPILE"

Specify an option argument by typing the option name
followed by an equal sign (=) and the argument. For
example:

-V "INITIALIZE=MYPROG.LSP"
or
-V INITIALIZE=MYPROG.LSP

Options specified with more than one argument (the
INITIALIZE and OPTIMIZE options) have to be in string
format with the arguments enclosed in parentheses and
separated by commas. For example:

-V "OPTIMIZE=(SPEED:3,SAFETY:2)"

In the format description, option arguments are surrounded
by braces ({ }) when you can choose only one value from a
list. For example:

]

2-11

USING VAX LISP

-V ERROR_ACTION={EXIT or DEBUG]}

Table 2-2 summarizes the.options you can use with the vaxlisp shell

O

command. Sections 2.10.2 through 2.10.13 describe each option in
detail.

Table 2-2: Options of the vaxlisp Shell Command

Option Function

-V COMPILE (or) -c

-V ERROR_ACTION={EXIT or DEBUG}

-V INITIALIZ2E=file(s) (or) =i file(s)
-V NOINITIALIZE

-V LISTING[=file]
-V NOLISTING

(or) -L

2-12

Invokes the VAX LISP ‘compiler
to compile one or more source
files (input arguments that
default to the file type lsp).

EXIT causes your
exit LISP when an error
occurs. EXIT is the default
in jobs not attached to a
terminal and when you use the
-c option. DEBUG invokes the
VAX LISP debugger when an
error occurs. DEBUG is the
default in an interactive LISP
session.

program to

Causes the LISP system to load
an initialization file(s).
The default file types for an
initialization file are: 1lsp
and fas. -V NOINITIALIZE
suppresses the loading of
initialization files.

Specifies that
be created during compilation.
You can specify a listing file
name only with the -V format

of the option. A listing
consists of the file name,
date of compilation, names of
the LISP expressions compiled
(if the -v option is
specified), and warning and
error messages. The default
file type for a 1listing file
is lis. -V NOLISTING

suppresses a listing file and
is
not attached to a terminal.
In such jobs, =V LISTING is
the default.

O

O

a listing file<:>

the default except in jobs .

USING VAX LISP

gable 2-2 (cont.)

Option

Function

-V
-V

'

<:>-v

MACHINE_CODE (or) =-a
NOMACHINE_CODE

MEMORY=number (or) =-m number
"OPTIMIZE=(SPEED:n,SPACE:n,

SAFETY:n,COMPILATION_SPEED:n)"
NOOPTIMIZE

OUTPUT_FILE=file (or) =-o file
NOOUTPUT_FILE (or) =-n

RESUME=file (or) -r file

VERBOSE (or) =-v .
NOVERBOSE

2-13

Includes LISP machine code in
the listing file. -V
NOMACHINE_CODE suppresses a
listing of the machine code
and is the default.

Specifies the amount of
dynamic wvirtual memory LISP
allocates in 512-byte pages.

Tells the compiler that each
quality has the corresponding
value. SPEED is the speed at
which the object code runs,
SPACE is the space occupied or
used by the code, SAFETY is
the run-time error checking of
the code, and
COMPILATION_SPEED is the speed
of the compilation process. n
is an integer in the range 0
to 3. The wvalue 0 1is the
lowest priority value; the
value 3 is the highest. The
default value for n is 1. See
Chapter 6 for a description of

optimization declarations.
-V NOOPTIMIZE suppresses
optimization.

Causes the name of the
compiled file to be the
specified name. The default
output file type is fas. -V
NOOUTPUT_FILE prevents
compiled code from being
written to a file.

Resumes a suspended LISP
system. The default file type
for a suspended LISP system is
sus. See Section 2.11 on
Using Suspended Systems.

Lists on the output device and
the listing file, if any, the
names of functions and macros
loaded (if -i) or compiled (if

USING VAX LISP

Table 2-2 (cont.)

Option A Function \V/

-c). -V NOVERBOSE suppresses
a listing of function and
macro names defined in a file.
-V NOVERBOSE is the default.

-V WARNINGS Specifies that the compiler is

-V NOWARNINGS (or) -w to produce warning messages.
-V WARNINGS is the -default.
-V NOWARNINGS prevents the
compiler from producing
warning messages.

2.10.1 Three Ways to Use the vaxlisp Command

Depending on the option modifying it, you can use the vaxlisp command
in one of the following three ways called modes:

e COMPILE -- to compile LISP files
@ INTERACTIVE -- to invoke an interactive LISP session
(the default) <::>

@ RESUME -- to resume a suspended LISP system

Table 2-3 lists the options of 'the wvaxlisp shell command that apply to
each mode. The wvaxlisp command without an option puts you in an
interactive LISP session (the default).

Table 2-3: Option Modes for the vaxlisp Command | O
Option Mode

COMPILE COMPILE

ERROR_ACTION INTERACTIVE or COMPILE or RESUME
INITIALIZE INTERACTIVE or COMPILE

LISTING - COMPILE

MACHINE_CODE COMPILE

MEMORY INTERACTIVE or COMPILE or RESUME
OPTIMIZE COMPILE

2-14

O

USING VAX LISP

Table 2-3 (cont.)

Option Hode

OUTPUT_FILE COMPILE

RESUME RESUME

VERBOSE INTERACTIVE or COMPILE
WARNINGS COMPILE

2.10.2 COMPILE

The COMPILE option, abbreviated as =-c, invokes the VAX LISP compiler
to compile one or more source files. These source files are specified
as arguments to the vaxlisp shell command (rather than as arguments of
the =-c option). The compiler creates a fast-loading (fas) file from
each source file, which defaults to type lsp. Unlike other compilers,
such as those for C and FORTRAN, the LISP compiler does not generate
ULTRIX object a.out files. So, the LISP compiler does not have an "o"
file type. If the =-c option 1is used with the NOOUTPUT_FILE (-n)
option, the compiler compiles the source file but does not put the
compiled code in a file. That method is helpful if your purpose in
compiling the file is to check for errors. See Section 2.10.9 for
more information on the NOOUTPUT_FILE option.

By default, the compiler gives your newly compiled file the same name
as your source file with a fas file type, puts the new file in your
source file’s directory, and returns you to the . shell when the
compiler is finished. 1If you want function names to be listed on your
output device as they are compiled, you must specify the VERBOSE (-v)
option (see Section 2.10.11). If you want to compile files with the
aid of initialization files, use the INITIALIZE (-i) option (see
Section 2.10.4).

If you use the LISTING, MACHINE_CODE, OPTIMIZE, OUTPUT_FILE, VERBOSE,
and WARNINGS options with the COMPILE option, the options apply to all
the files to be compiled.

If you compile more than-one file at a time, separate file names with
a space. :

Format
vaxlisp -c filel ...
or -

vaxlisp -V COMPILE filel ...

1

2-15

USING VAX LISP

Example
% vaxlisp -c factorial.lsp
Mode

Compile

2.10.3 ERROR_ACTION

The ERROR_ACTION option can be specified only with the -V option. The
ERROR_ACTION option has two mutually exclusive values: EXIT and
DEBUG.

® EXIT causes the evaluation of your program to stop and exits
LISP if a fatal or a continuable error occurs (for a
description of errors and warnings, see Chapter 3). EXIT 1is
the default in jobs not attached to a terminal and in compile
mode; that is, with the =-c option.

e DEBUG calls the VAX LISP debugger if an error occurs. Once
you are in the VAX LISP debugger, you can look at your error,
inspect the control stack, and continue your program from the
point at which it stopped. DEBUG is the default in an
interactive session. See Chapter 4 for more information on
the debugger.

You can use the ERROR_ACTION option when invoking an interactive LISP
session or when compiling files with the COMPILE (~-c) option.: The
ERROR_ACTION option is mainly useful for jobs not attached to a
terminal and is equivalent to the VAX LISP *ERROR-ACTION* variable
(see Part II).
Format

vaxlisp -V ERROR_ACTION=value
Example

% vaxlisp -c -V ERROR_ACTION=DEBUG myprog.lsp
Mode

Interactive, Compile, or Resume

2-16

USING VAX LISP

2.10.4 [NOJINITIALIZE

The INITIALIZE option, abbreviated as -i, causes the LISP system to
load one or more initialization files containing LISP source code or
compiled code. An initialization file’s purpose 1is to predefine
functions you might want to use in a LISP session. The default is to
have no initialization file.

If the initialization files contain calls to exiting functions or if
these files contain errors and the ERROR_ACTION option is set to exit
(-V ERROR_ACTION=EXIT), the LISP system returns to the shell without
going into an interactive LISP session. If the initialization files
contain errors and the ERROR_ACTION option is set to debug (-V
ERROR_ACTION=DEBUG), the LISP system puts you into the LISP debugger.
See Section 2.10.3 for more information on the ERROR_ACTION option.

The -i option uses the LISP LOAD function to determine defaults for
the proper file type, directory, and other parts of a file
specification. For example, you do not have to specify the file type
with the name of your initialization file, if that file has a fas or a
lsp file type. If your directory contains a file name with both a fas
and a lsp file type, the LISP system selects the most recently created
file as the initialization file. 1If only a 1lsp type file or only a
fas type file of a given name and directory exists, the LISP system
selects the type file that exists.

Use the VERBOSE (-v) option (see Section 2.10.11) to display on the
terminal screen the names of the functions or macros in the
initialization file.
You can use the -i option when invoking an interactive LISP session or
when compiling files with the COMPILE (-c) option. You cannot use the
-i option with the RESUME (-r) option; if you do, the =i option is
disregarded.
<::>If you load more than one file by using the -V option format, you must

use parentheses inside quotes (see the following format). The
NOINITIALIZE form of this option (-V NOINITIALIZE) suppresses the -
loading of initialization files.
Format for Interactive Mode

vaxlisp -i filel[,...]

or

vaxlisp -V INITIALIZE=file

or

O vaxlisp -V "INITIALIZE=(filel[,...])"

2-17

USING VAX LISP

Format for Compile Mode
vaxlisp -i filel[,...] -c file - <:>
or

vaxlisp -V "INITIALIZE=(filel[,...]) COMPILE" file

Example
% vaxlisp -i myinit -v
Welcome to VAX LISP, Version V2.0

Loading contents of file
FACTORIAL

FACTORS-OF
Finished loading /usr/users/jones/myinit.lsp <:>

% we we we wo

In the preceding example, the file type defaults to 1sp.
FACTORIAL and FACTORS-OF are functions that are loaded into the
LISP system from Jones’s initialization file. The form (SETF
TOP-LEVEL-PROMPT "* ") in the initialization file changes the
Lisp> prompt to an asterisk (*). The *TOP-LEVEL-PROMPT* variable
is described in Part II. <:>

The SETF form and the prompt variable are not listed on an output
device when the file is loaded, because the VERBOSE option (-v)
lists only functions and macros defined in the file.

Mode

Interactive or Compile

O

2.10.5 |[NOI]LISTING -

The LISTING option,abbreviated as -L, is meaningful only if it is
specified with the COMPILE (-c) option. The -L option specifies that
the compiler generate a listing file during compilation. You must
specify this option if you want a listing file. A listing includes
the name of the file compiled, the date it was compiled, warning or
error messages produced during compilation, and a summary of warning
and error messages. If you specify the VERBOSE (-v) option and the -L
option, the listing also includes the names of the functions compiled.

You can specify a file name for the listing only in the -V format. Do

so only when you want the listing file name to be different frem the
name of the source file. If you specify the LISTING option without a <:>
file name, the LISP system produces a listing file with a lis file
type and the same name as the source file.

2-18

O

O

O

(

USING VAX LISP

The NOLISTING form of this option prevents the compiler from
generating a 1listing file and 1is the default except in jobs not
attached to the terminal. 1In such jobs, LISTING is the default.

Format
vaxlisp -c -I. file
or
vaxlisp -V COMPILE,LISTING[=file] file

Example

[}

% vaxlisp -c myprog.lsp -v -V listing=factorial.lis
Sample Listing File

Listing output for file /usr/users/jones.lis/myprog.lsp
Compiled at 10:33:30 on Friday, 20 April 1984 by JONES
Lisp Version V2.0 .

Starting compilation of file " /usr/users/jones.lis/myprog.lsp".
FACTORIAL compiled.

Finished compilation of file " /usr/users/jones.lis/myprog.lsp".
0 Errors, 0 Warnings

Mode

Compile

2.10.6 [NOJMACHINE_CODE

The MACHINE_CODE option,abbreviated as -a, is meaningful only if it is ~
specified with the COMPILE (-c) option. The -a option requests the
compiler to put a listing of the VAX LISP machine code in a file
separate from the fas file the compiler generates. The compiler also
puts anything usually included in a listing file in this file (see
Section 2.10.5 for a description of a listing file).

,VAX LISP machine code is similar to a standard assembly language code.
However, compiling LISP code does not generate object modules that can
be linked.

The -a option has no effect on the machine code; this option produces
only a machine-code 1listing file. The machine-code -listing file
generated when you use the -a option has the same name as your source
file and has a 1lis file type (unless you also used the LISTING option
to specify a different name),

2-19

USING VAX LISP

The NOMACHINE_CODE form of this option, the default, prevents the
compiler from generating a listing of the LISP machine code. <::>

Format

vaxlisp -a -c file

or

vaxlisp -V COMPILE,MACHINE_CODE file
Example

% vaxlisp -a -c myprog.lsp
Mode

Compile <:>

2.10.7 MEMORY

The MEMORY option, abbreviated as -m, lets you specify the amount of
dynamic virtual memory the LISP system allocates in 512-byte pages.

The LISP system requires a minimum of 6000 pages of dynamic virtual
memory in addition to the read-only and static memory. So, the <:>
default page size for the dynamic virtual memory is 6000 pages. If

you specify fewer than 6000 pages with the -m option, the system
disregards the requested page size and uses the default page size.

You do not need the -m option if you intend to use no more than 6000
pages of dynamic memory.

To see how many pages of memory are available at any point while you

are in LISP, wuse the LISP ROOM function. If you discover that you

need more memory, save your work by creating a suspended system and 1<:>
exit LISP. Then reenter LISP with the RESUME (-r) and the =-m options.

Use the -m option to specify a larger number of pages than you had
previously specified. For information on creating a suspended system,

see Section 2.11.1; for descriptions of the -r option and the ROOM
function, see Section 2.10.10 and Part II, respectively.

Format
vaxlisp -m value
or

vaxlisp -V MEMORY=value

2-20

USING VAX LISP

Example
% vaxlisp -m 15000
Welcome to VAX LISP, Version V2.0
Lisp>

Mode

Interactive or Compile or Resume

2.10.8 [NOJOPTIMIZE

The OPTIMIZE option can be specified only as a string argument of the
-V option. This option lets you optimize your program according to
the following qualities:

@ SPEED (execution speed of the code)

®© SPACE (space occupied by the code)

@ SAFETY (run-time error checking of the code)

<:> @ COMPILATION_SPEED (spéed of the compilation process)

You can optimize your program by setting a priority value for each
quality. That value must be an integer in the range of 0 to 3. The
value 0 means the quality has the lowest priority in relationship to
the other qualities; the wvalue 3 means the quality has the highest
priority in relationship to the other qualities. When you do not

specify the OPTIMIZE option, the qualities each take the default value
<::?f 1. To suppress optimization, use the NOOPTIMIZE form of this
ption.

The OPTIMIZE option is meaningful only if it is specified with the
COMPILE (-c) option. The optimize qualifier affects only the compiler
and does nothing to the interpreter, the debugger, or any other VAX
LISP facility. See Chapter 6, Appendix A, and COMMON LISP: The
Language for information on specifying optimization declarations.
Format

vaxlisp -c -V "OPTIMIZE=(quality:value[,...])" file

O

2-21

USING VAX LISP

Example
% vaxlisp -c -V "OPTIMIZE=(SPEED:3,SAFETY:2)" myprog.lsp <:>
or .
% vaxlisp -c -V "OPTIMIZE=SPEED:3" myprog.lsp

Mode

Compile

2.10.9 [NOJOUTPUT_FILE

The OUTPUT_FILE option, abbreviated as =-o, is meaningful only when it

is specified with the COMPILE (-c) option. The -o option tells the <:>
compiler to write the compiled code to a specific file. If you
specify the =-o option with a file name, the LISP system puts the
compiled code in a file with that specified name. Use the option only

when you want to change the name of the compiled file so that the

source file and the compiled file have different names. By default,
an output file is produced.

See the LISTING (-L) option (Section 2.10.5) for an explanation of a

The -o option does not specify a listing file, only a compiled file. <:>
listing file.

If this option is not specified, the compiler produces a file with the
same name as the source file arid a type of fas.

The NOOUTPUT_FILE option, abbreviated as -n, prevents compiled code
from being written to a file. 1If you want only to check a file for
errors, use this option with the COMPILE (-c) option. \ <:>
Format

vaxlisp -c -o file file

or

vaxlisp -V COMPILE,OUTPUT_FILE=file file

Example

% vaxlisp -c -o test.fas factorial.lsp

Compile <:>

2-22

Mode

USING VAX LISP

2.10.10 RESUME

The RESUME option, abbreviated as =-r, resumes a suspended LISP system
where the suspension occurred. See Section 2.11 for an explanation of
suspended systems. The -r and the INITIALIZE (-i) options cannot be
used together.

Format
vaxlisp -r file
or
vaxlisp -V RESUME=file
Example
% vaxlisp -r myprog.sus
Eisp>
Mode

Resume

2.10.11 [NOJVERBOSE

The VERBOSE option, abbreviated as -v, lists on an output device and
in the 1listing file the names of the functions 1loaded from an
initialization file, and the names of functions in a.file as they are
compiled. The -v option applies only to files loaded with the
INITIALIZE (-i) option or compiled with the COMPILE (-c) option.
The NOVERBOSE form of this option (the default) prevents the names of
functions compiled with the COMPILE option or loaded with the
INITIALIZE option from being listed in a file or at the terminal.
Format

vaxlisp -v -i file

or

vaxlisp -V VERBOSE,INITIALIZE=file

or

2-23

USING VAX LISP

vaxlisp -v -c file

O

or

vaxlisp -V VERBOSE,COMPILE file

Examples
1. % vaxlisp -v -i myinit.lsp

Welcome to VAX LISP, Version V2.0

<

Loading contents of file /usr/users/jones/myinit.lsp
FACTORIAL
FACTORS-OF

Finished loading /usr/users/jones/myinit.lsp

e O
FACTORIAL and FACTORS-OF are functions tﬁat are loaded into
the LISP system from Jones’s initialization file.

Tt ~e ~e S S

2. % vaxlisp -v -c myprog.lsp
Starting compilation of file /usr/users/jones/myprog.lsp
MULT compiled. '
SUB compiled. <:>
DIV compiled. .
Finished compilation of file /usr/users/jones/myprog.lsp

0 Errors, 0 Warnings

%

MULT, SUB, and DIV are functions compiled in the file,

myprog.lsp. The compiled definitions of these functions are

written to the file, myprog.fas. (:)
Mode

Interactive or Compile

2.10.12 [NOJWARNINGS

The WARNINGS option specifies that the LISP system is to produce
warning messages. Warning messages are the default when you use the
COMPILE (-c) option. Warnings can be specified only in the -V format.

A warning message indicates that the LISP system has detected a.

possible error. If warnings are signaled while a file is being <:>
compiled and the value of the *BREAK-ON-WARNINGS* variable is NIL, the

2-24

USING VAX LISP

default, the compilation continues. But, if errors are signaled,
\compilation of the expression causing the error is not continued
though the rest of the file 1is compiled. See Chapter 3 for more
information on the differences between warnings and errors.

The NOWARNINGS form of this option suppresses warning messages and is
abbreviated as -w.

The following example of a warning message is the message the compiler
displays for the TEST function defined in Section 2.9.3.

% vaxlisp -c test.lsp
Warning in TEST
TEST earlier called with 2 args, wants at most 1.

o°

<::>Format

vaxlisp -w -c file

or
vaxlisp -V NOWARNINGS,COMPILE file

Example

(::) % vaxlisp -w -c myprog.lsp
Mode

Compile

2.11 USING SUSPENDED SYSTEMS

A suspended system is a binary file that is a copy of the LISP memory
in use during an interactive LISP session up to the point at which you
create the suspended system. The purpose of a suspended system is to
save the state of an interactive LISP session. You might want to do
this if your work is incomplete. By resuming LISP from a suspended
system, you can continue your work from the point at which you
stopped. :

2.11.1 Creating a Suspended System

The VAX LISP SUSPEND function puts in a file the LISP memory in use
during an interactive LISP session, enabling you to resume the same
<::>LISP session at a later time. The SUSPEND function does not stop the

current LISP session; you can continue to use the LISP session after

3

2-25

USING VAX LISP

the SUSPEND function has put a copy of memory into a file. The
SUSPEND function also automatically invokes a garbage collection of/
dynamic memory space. See Chapter 6 for information on garbage<\,/
collections.

In the following example, the file filex.sus is created and a copy of
the memory in a LISP session is put into that file. The filé name can
be a string, symbol, or pathname. See Chapter 6 and COMMON LISP: The
Language for a description of pathnames.

Lisp> (SUSPEND "filex.sus")

; Starting garbage collection due to GC function.

; Finished garbage collection due to GC function.

; Starting garbage collection due to SUSPEND function.
; Finished garbage collection due to SUSPEND function.
NIL

Lisp> <:>
After your file is created, the system returns to your interactive
LISP session. You can exit LISP when you see the LISP prompt. Your
suspended system file is placed either in your default directory or in
the directory you specified in the file specification. The file is
usable only in an interactive LISP session. For a description of the

SUSPEND function, see Part II.

O

2.11.2 Resuming a Suspended System
To resume a suspended system, invoke the LISP system with the RESUME
(-r) option and the name of the file containing the suspended system.

Program execution continues from the point at which you called the
SUSPEND function. See Section 2.10.10 for an explanation of the -r

option.

2-26

O

O

O

‘CHAPTER 3
- ERROR HANDLING

The LISP system invokes the VAX LISP error handler when errors are
signaled during program evaluation. This chapter explains what the
error handler does when an error is signaled. Because the system’s
error handler might not meet your programming needs, VAX LISP allows
you to create your own error handler. The procedure for creating an
error handler is also explained in this chapter.

3.1 ERROR HANDLER

The VAX LISP error handler function, UNIVERSAL-ERROR-HANDLER, performs
four sequential steps.

1. Checks the number of nested errors that have occurred. If
three nested errors have occurred, the error handler aborts
your program, displays a message, and returns you to the
top-level read-eval-print loop; otherwise, the handler
continues to the next step.

2. Checks the type of error.

3. Displays an error message that provides you with information
about the error.

4. Performs the appropriate operation for the type of error that
was signaled.

'3.2 VAX LISP ERROR TYPES

Three types of errors can occur during the evaluation of a LISP
program:

e Fatal error

3-1

ERROR HANDLING

@ Continuable error
@ Warning

When an error is signaled, the VAX LISP system displays an error
message that provides you with the following information:

e The type of error that was signaled -- fatal error,
continuable error, or warning

@ The name of the function that caused the error

<

e The name of the function that was used to signal the error --
ERROR, CERROR, or WARN

e A description of the error

e If a continuable error, an explanation of what will happen if’

you continue the program’s evaluation from the point at which
the error occurred

The format of an error message and the information a message provides
depend on the type of the error. The next three sections describe the
types of errors; each description includes the error type’s message
format and the operation the error handler performs.

3.2.1 Fatal Errors

When a fatal error is signaled, the error handler displays a message
in the following format:

Fatal error in function function-name (signaled with ERROR).
Error description.

In the preceding format description, function-name is the name of the
function that caused the error, and ERROR is the name of the function
that was used to signal the error (see Table 3-1). The error
description 1is a message telling why the error occurred. The message
is generated from the format string and the arguments in the call to
the ERROR function; the message can be.displayed on more than one
line.

An example of a fatal error message follows:

Fatal error in function MAKE-ARRAY (signaled with ERROR).
Only vectors can have £fill pointers.

After the message is displayed, the error handler checks the value of

the VAX LISP *ERROR-ACTION* variable. 1Its value can be either the
<EXIT or the :DEBUG keyword. The ERROR_ACTION (-V

3-2

O

ERROR HANDLING

_"ERROR_ACTION=value®™) option you use with the wvaxlisp command sets the
<:;7alue of the *ERROR-ACTION* variable when you invoke the LISP system
(see Chapter 2). When the value 1is G:EXIT (you used the
ERROR_ACTION=EXIT form of the option), the error handler causes the
LISP system to exit on an error; when the value is :DEBUG (you used
the ERROR_ACTION=DEBUG form of the option, the default in an
interactive session), the handler invokes the VAX LISP debugger.

If the debugger is invoked, you can use it to locate the error in your
program. After you locate the error, you can correct it and restart
your program’s evaluation.

NOTE

You cannot continue your program’s evaluation from the
<::> point at which a fatal error occurred.

The *ERROR-ACTION* variable is described in Part II and the debugger
is described in Chapter 4.

3.2.2 Continuable Errors

then a continuable error is signaled, the error handler displays a
message in the following format:

Continuable error in function function-name (signaled with CERROR).
Error description.
If continued: Continue explanation.

In the preceding format description, function-name is the name of the
function that caused the error, and CERROR is the name of the function
'hat was used to signal the error (see Table 3-1). The error
description is a message telling why the error occurred. The message
is generated from the format string and the arguments in the call to -
the CERROR function; the message can be displayed on more than one
line. A line of text that explains what will happen if you continue
your program’s evaluation follows the error description.

An example of a continuable error message is:

; Continuable error in function ENTER-NAME (signaled with CERROR).
The value you specified is not a string.
If continued: You will be prompted for a new value.

After the message is displayed, the error handler checks the value of

the VAX LISP *ERROR-ACTION* variable in the same way it checks the
(::yalue after a fatal error (see Section 3.2.1).

)

3-3

ERROR HANDLING

If the debugger is invoked, you can do one of the following:

@ Continue from the error; the CERROR function performs the <:>

corrective action that is specified in the error message.

e Locate the error in your program. After you locate the error,
you can correct it and restart your program’s evaluation.

The *ERROR-ACTION* variable is described in Part II and the debugger
is described in Chapter 4.

3.2.3 Warnings

A warning is an error condition that exists in your program, which may
or may not affect your program’s evaluation. When this type of error
occurs, the system displays a message for the following reasons:

e You might want to correct the error later.

e Your program might correct the error, but you should know that
the error occurred.

When a warning is signaled, the error handler displays a message in
the following format:

Warning in function function-name (signaled with WARN).
Error description.

In the preceding format description, function-name is the name of the
function that caused the error, and WARN is the name of the function
that was used to signal the error (see Table 3-1). The error
description is a message telling why the error occurred. The message
is generated from the format string and the arguments in the call to
the WARN function; the message can be displayed on more than one line.

An example of a warning error message is:

Warning in function TE (signaled with WARN).
3 is not a symbol.

After the message is displayed, the error hénd;er checks the value of
the *BREAK-ON-WARNINGS* variable in the same way it checks the value
ERROR-ACTION variable after a fatal error (see Section 3.2.1).

NOTE

If the value of the *BREAK-ON-WARNINGS* variable is T,
the debugger is invoked when a warning is .signaled.

3-4

O

O

O

O

ERROR HANDLING

If the debugger is invoked, you can use it to locate the error in your
program. After you locate the error, you can correct it, exit the

debugger, and then continue your program’s evaluation from the point
where the error occurred.

The *BREAK-ON-WARNINGS* variable is described in COMMON LISP: The
Language. The *ERROR-ACTION* variable is described in Part II, and
the debugger is described in Chapter 4.

3.3 CREATING AN ERROR HANDLER

The VAX LISP *UNIVERSAL-ERROR-HANDLER* variable is bound to the

system’s error handler. This binding provides you with a way to

create your own error handler if the system’s handler does not meet
‘ <::>your programming needs. To create an error handler you must:

1. Define the error handler.

2. Bind the *UNIVERSAL-ERROR-HANDLER* variable to your defined
handler.

The *UNIVERSAL-ERROR-HANDLER* variable is described in Part II.

Osa

To define an error handler, you must define an error handler function.
This function must be able to accept two or more arguments since the
LISP system passes at least two arguments to the error handler each
time an error occurs in a program. Therefore, specify the arguments
in an error-handler definition in the following format:

Defining an Error Handler

<:> function-name error-signaling-function &REST args

The arguments provide the error handler with the following
information:

@ The name of the function that called the error—éignaling
function

@ The name of the error-signaling function

e The arguments that were passed to the error-signaling function

O

3-5

ERROR HANDLING

An example of an error handler definition is:

Lisp> (DEFUN CRITICAL-ERROR-HANDLER (FUNCTION-NAME
ERROR-SIGNALING-FUNCTION
&REST ARGS)
(WHEN (OR (EQ ERROR-SIGNALING-FUNCTION ’'ERROR)
(EQ ERROR-SIGNALING-FUNCTION ’CERROR))
(FLASH-ALARM-LIGHT)) .
(APPLY #'UNIVERSAL-ERROR-HANDLER
FUNCTION-NAME
ERROR-SIGNALING-FUNCTION
ARGS))
CRITICAL-ERROR-HANDLER

The preceding error handler checks whether a fatal or continuable
error is signaled. 1If either type of error is signaled, the handler
calls the function FLASH-ALARM-LIGHT and then passes the error signal
information to the VAX LISP error handler.

When you define an error handler, the definition can include a call to
the UNIVERSAL-ERROR-HANDLER function. If the definition does not
include a call to this function and you want the handler to check the
value of the *ERROR-ACTION* or *BREAK-ON-WARNINGS* variable, you must
include a check of the variable in the handler’s definition.

If you want an error handler to display error messages in the formats
described in Sections 3.2.1 to 3.2.3, include a call to either the
UNIVERSAL-ERROR-HANDLER or PRINT-SIGNALED-ERROR function.
Descriptions of these functions are provided in Part II.

The next three sections describe the arguments an error handler must
be able to accept.

3.3.1.1 Function Name - The function-name argument is the name of the
function that <calls an error-signaling function. This argument
enables the error handler to include the function’s name in the error
message the handler displays.

3.3.1.2 Error-Signaling Function - The error-signaling-function
argument is the name of the error-signaling function that is called to
generate the error signal. Depending on which function is called, a
fatal error, continuable error, or warning is signaled.

The error handler uses the error-signaling-function argument to
determine the contents of the args argument.

-

Table 3-1 1lists the functions that can be passed as _ the
error-signaling-function argument and briefly describes each function.

3-6

O

O

ERROR HANDLING

Table 3-1: Error-Signaling Functions

<:>FunctiOn Description
CERROR Function Signals a continuable error
ERROR Function Signals a fatal error
WARN Function Signals a warning

See COMMON LISP: The Language for detailed descriptions of the CERROR
and ERROR functions. See Part II for a description of the WARN
function.

<::>3.3.1.3 Arguments - The args argument is the list of arguments passed
to the error-signaling function when the error-signaling function is
invoked. The contents of the 1list depends on which function is
invoked. The 1list can include one or two format strings and their
corresponding arguments. The format strings and arguments are passed
to the FORMAT function, which produces the correct error message.

Os.s.z Binding the *UNIVERSAL-ERROR-HANDLER® Variable

Once you define an error-handling function, you must bind the
UNIVERSAL-ERROR-HANDLER variable to it. The following example shows
how to bind the variable to a function:

Lisp> (LET ((*UNIVERSAL-ERROR-HANDLER%*
#’CRITICAL-ERROR-HANDLER))
(PERFORM-CRITICAL-OPERATION))

<:>The LET special form binds the *UNIVERSAL-ERROR-HANDLER* variable to
the CRITICAL-ERROR-HANDLER function that was defined in Section 3.3.1
and calls a function named PERFORM-CRITICAL-OPERATION. When the form
is exited because the evaluation finished or the THROW function is
called, the *UNIVERSAL-ERROR-HANDLER* variable is restored to its
previous value.

3-7

O

CHAPTER 4
DEBUGGING FACILITIES

Debugging is the process of 1locating and correcting programming
errors. When an error is signaled, the VAX LISP error handler
displays a message, which provides you with your initial debugging
information: the error type, the name of the function that caused the
error, the name of the function the LISP system used to signal the
error, and a description of the error.

Once you know the name of the function that caused an error, you can
use the VAX LISP debugging functions and macros to locate and correct
the programming error. Table 4-1 lists the debugging functions and
macros with a brief description of each. See Part II for more
detailed descriptions.

Table 4-1: Debugging Functions and Macros

Function
Name or Macro Description
APROPOS Function Locates symbols whose print names
<:> contain a specified string argument as a
substring and displays information about
each symbol it locates.

APROPOS-LIST Function Locates symbols whose print names
contain a specified string argument as a
substring and returns a 1list of the
symbols it locates.

BREAK Function Invokes the break loop.

DEBUG Function Invokes the VAX LISP debugger.

DESCRIBE Function Displays detailed information about a

O

specified object. .

4-1

DEBUGGING FACILITIES

Table 4-1 (cont.)

Function

Name or Macro Description

DRIBBLE Function Sends the input and the output of an
interactive LISP session to a specified
file.

ROOM Function Displays information about the state of
internal storage and its management.

STEP Macro Invokes the stepper.

TIME Macro Displays timing information about the
evaluation of a specified form.

TRACE Macro Enables the tracer for functions and
macros.

UNTRACE ' Macro Disables the tracer for functions and
macros.

This chapter provides the following:

@ A list of the functions and the macro that provide you with
debugging information

® Descriptions of two variables that control the output of the
debugger, the stepper, 'and the tracer facilities o

® A description of the VAX LISP control stack

® Explanations of how to use the folloWing debugging facilities:

Break loop -- A read-eval-print loop you can invoke while
the LISP system is evaluating a program.

- Debugger -- A control stack debugger vou can use
interactively to inspect and modify the LISP system’s
control stack frames. .

- Stepper -- A facility you can use interactively to step
through a form’s evaluation.

- Tracer -- A facility you can use to inspect a program’s
evaluation.

4-2

DEBUGGING FACILITIES

4.1 CONTROL VARIABLES

VAX LISP provides two variables that control the output of the
debugger, the stepper, and the tracer facilities:
DEBUG-PRINT-LENGTH and *DEBUG-PRINT-LEVEL%*, These variables are
analogous to the COMMON LISP variables *PRINT-LENGTH* and
PRINT-LEVEL but are used only in the debugger.

DEBUG-PRINT -LENGTH Controls the number of displayed elements at
each 1level of a nested data object. The
variable’s value must either be an integer or
NIL. The default value is NIL (no limit).

DEBUG-PRINT-LEVEL Controls the number of displayed levels of a
nested data object. The variable’s value
must either be an integer or NIL. The

<:> default value is NIL (no limit).

4.2 CONTROL STACK

The control stack is the part of LISP memory that stores calls to

functions, macros, and special forms. The stack consists of stack

frames. Each time you call a function, macro, or special form, the
<::yAX LISP system does the following:

1. Opens a stack frame.

2. Pushes the name of the function associated with the function,
macro, or special form that was called onto the stack frame.

3. Pushes the function’s arguments onto the stack frame.
4. Closes the stack frame when all the function’s arguments are
<:> on the stack frame.

5. Evaluates the function.

The LISP system can have several open stack frames at a time because
the arguments used by LISP functions are frequently LISP expressions.

Each control stack frame has a frame number, which 1is displayed as
part of the stack frame’s output. Stack frame numbers are displayed
in the output of the debugger, the stepper, and the tracer.

There is always one active stack frame, and it can either be
significant or insignificant. Significant stack frames are those that
invoke documented and user-created functions. Insignificant stack
frames are those that invoke undocumented functions. -

4-3

DEBUGGING FACILITIES

Debugger commands show only significant stack frames wunless you
spec:fy the ALL modifier with & debugger command (see Section/fﬂv
4.%.3.1). Significant stack frames store one of the following calls: K\/

@ A call to a function named by a symbol that is in the current
package X

@ A call to a function that is accessible in the current package
and is explicitly or implicitly called by another function
that is in the current package

See COMMON LISP: The Language for information on packages.

Many stack frames in the control stack store internal, undocumented
functions. These stack frames are insignificant to most users;
therefore, by default, the debugger does not display their
representation. However, if you are using the debugger and you want

to examine these stack frames, you can specify the ALL modifier with <:>
debugger commands.

4.3 ACTIVE STACK FRAME

The active stack frame is a stack frame that stores a call to a
function the LISP system 1is evaluating. The system can evaluate a
function call in the active stack frame because the frame contains all <:>
the function’s argument values. Only one stack frame is active at a
time and an active stack frame can exist anywhere on the control
stack. :

The active stack frame can have a previous active stack £frame and/or
it can have a next active stack frame. The previous active stack
frame represents the caller of the function in the current active

stack frame. ::

4.4 BREAK LOOP

The break loop is a read-eval-print loop that you can invoke to debug
a program. You can invoke the break loop while a program is being
evaluated. 1If you do, the evaluation 1is interrupted and you are
placed in the loop.

4.4.1 Invoking the Break Loop

~

You can invoke the break loop by calling the BREAK function. The two (::>
ways of using the BREAK function to debug a program are:

4-4

DEBUGGING FACILITIES

@ Use a keyboard function to invoke the BREAK function directly
<::> while your program is being evaluated.

e Put the BREAK function in specific places in your programn.

In either case, the BREAK function displays a message: (if you
specified one in your form calling the BREAK function) and enters a
read-eval-print loop. If you specified a message, the BREAK function
displays the message in the following format:

Break in function function-name (signaled with BREAK).
description.

In the preceding format description, function-name represents the name
of the function the LISP system was evaluating when you entered the.
break loop. BREAK is the name of the function that caused the LISP
 system to invoke the break loop. The description is optional and can
<:> be printed on more than one line. A description usually provides the
reason the break loop was invoked.
An example of a break loop message follows:

Break in function CHECK-INPUT (signaled with BREAK).
Values are too high.

After the message is displayed, a prompt is displayed at the 1left
(::>margin of your terminal:

Break>

4.4.2 Exiting the Break Loop

When you are ready to exit the break loop and continue your program’s
<::>evaluation, invoke the VAX LISP CONTINUE function.

Break> (CONTINUE)
The CONTINUE function causes the evaluation of your program to
continue from the point where the LISP system encountered the BREAK
* function.
If you are in a nested break 1loop and you invoke the CONTINUE

function, you are placed in the previous break-loop level. A
description of the CONTINUE function is provided in Part II.

O

4-5

DEBUGGING FACILITIES

4.4.3 Using the Break Loop

Once you are in the break loop, you can check what your program is
doing by interacting with the LISP system as though you were in the
top-level loop. For example, suppose you define a variable named
FIRST and a function named COUNTER, which uses the variable *FIRST*.

Lisp> (DEFVAR *FIRST* 0)
FIRST
Lisp> (DEFUN COUNTER NIL
(IF (< *FIRST* 100)
(PROGN (INCF *FIRST*) (COUNTER))
FIRST))
COUNTER

You can bind <CTRLA> (~\) to the BREAK function in the following way:
BIND-KEYBOARD-FUNCTION #FS #fBREAK

Then, you interrupt a function’s evaluation by typing <CTRL/\>.
Lisp> (COUNTER)<RET> .
<CTRL/\>

Break>

Once you are in the break 1loop, you can check the value of the
variable *FIRST*.

Break> *FIRST*
16
Break>

1f you call the CONTINUE function, the evaluation of the function
COUNTER continues.

Break> (CONTINUE)
After you call the CONTINUE function, you can see that the evaluation
was continued by invoking the break loop again and rechecking the
value of the variable *FIRST*.

<CTRL/\>

Break> *FIRST*

93

Break>
Use the CONTINUE function again to complete the function’s evaluation.

Break> (CONTINUE)
100

4-6

O

DEBUGGING FACILITIES

Changes that you make to global variables and global definitions while
(::\ou are in the break loop remain in effect after you exit the loop and
your program continues. For example, if you are in the break loop and
you find that the value of the variable named *FIRST* has an incorrect
value, you can change the variable’s value. The change remains in
effect after you exit the break 1loop and continue your program’s
evaluvation. i

NOTE

The forms you type while you are in the break loop are
evaluated in a null 1lexical environment, as though
they are evaluated at top 1level. Therefore, you
cannot examine the lexical variables of a program that
you interrupt with the break loop. To examine those
<::> lexical variables, invoke the debugger (see Section

4.5). For information on lexical environments, see
COMMON LISP: The Language.

4.4.4 Break Loop Variables

The break loop uses a copy of the top-level-loop variables (plus (+),
Vyphen (-), asterisk (*), slash (/), and so on) the same way the
cop-level loop uses them (see COMMON LISP: The Language). These
variables preserve the input expressions you specify and the output
values the VAX LISP system returns while you are in the break loop.

4.5 DEBUGGER

The VAX LISP debugger is a control stack debugger. You can use it
)nteractively to inspect and modify the LISP system’s control stack
frames. The debugger has a pointer that points to the current stack
frame. The current stack frame is the 1last frame for which the
debugger displayed information. The debugger provides several
commands that:

® Display help

® Evaluate a form or reevaluate a function call a stack frame
stores

© Handle errors
© Move the pointer from one stack frame to another
(::) @ Inspect or modify the function call in a stack frame

H

4-7

DEBUGGING FACILITIES

» Display a summary of the control stack

The debugger reads its input from and prints its output to the s’creamC:>

bound to the *DEBUG-I0* and the *TRACE-OUTPUT* variables.

NOTE

The stack frames the debugger displays are no longer
active.

<

Before you use the debugger, you should be familiar with the VAX LISP
control stack. The contrcl stack is described in Section 4.2.

4.5.1 Invoking the Debugger

The VAX LISP system invokes the debugger when errors occur. You can
invoke the debugger by calling the VAX LISP DEBUG function. For
example:

Lisp> (DEBUG)

When the debugger is invoked, a message that identifies the debugger,
a message that identifies the current stack frame, and the command
prompt are displayed at the 1left margin of your terminal in the
following format:

Control Stack bebugger
Frame #5: (DEBUG)
Debug n>

The letter n in the prompt represents an integer, which indicates the
number of the nested command 1level you are in. The value of n
increases by one each time the command level increases. For example,
the top-level read-eval-print loop is level 0. If an error is invoked
from the top-level loop, the debugger displays the prompt Debug 1>.
If you make a mistake again causing an error while within the
debugger, that error causes the debugger to display the prompt
Debug 2>. ‘ .

After the debugger is invoked, you can use the debugger commands to
inspect and modify the contents of the system’s control stack.

A description of the DEBUG function is provided in Part II.

4-8

O

DEBUGGING FACILITIES

4.5.2 Exiting the Debugger

<::> To exit the debugger, use the QUIT debugger command. It causes the
debugger to return control to the previous command level.

Debug 2> QUIT
Debug 1>

If you specify the QUIT command when the debugger command level is 1
(indicated by the prompt Debug 1>), the command causes the debugger to
exit and returns you to the system’s top level. For example:

Debug 1> QUIT
Lisp>

By default, the QUIT command displays a confirmation message before
the debugger exits if a continuable error causes the debugger to be
<::> invoked. For example:

Debug 1> QUIT
" Do you really want to return to the previous command level?

If you type YES, the debugger returns control to the previous command

level.

Do you really want to return to the previous command level? YES
<:> Lisp>
If you type NO, the debugger prompts you for another command.

Do you really want to return to the previous command level? NO
Debug 1> .

You can prevent the debugger from displaying the confirmation message
by specifying the QUIT command with a value other than NIL. For
<:>example:

Debug 1> QUIT T
Lisp>

A description of the QUIT command is provided in Section 4.5.3.2.

4.5.3 Using Debugger Commands

The debugger commands let you inspect and modify the current control
stack frame and move to other stack frames. You must specify many of
the debugger commands with one or more arguments that qualify command
operations. These arguments are listed in Section 4.5.3.1-

4-9

DEBUGGING FACILITIES
You can abbreviate debugger commands to as few characters as you like,
as long as no ambiguity is in the abbreviation.

Enter a debugger command by typing the command name or abbreviation
and then pressing the RETURN key. For example:

Debug 1> BACKTRACE<RET>

If you press only the RETURN key, the debugger prompts you for another
command. ‘

Table 4-2 provides a summary of the debugger commands. <“Detailed
descriptions of the commands are provided in Section 4.5.3.2.

Table 4-2: Debugger Commands

Command Description

BACKTRACE _ Displays a backtrace of the control stack.

BOTTOM Moves the pointer to the first stack frame on the
control stack.

CONTINUE Enables you to correct a continuable error.

DOWN Moves the pointer down the control stack.

ERROR Redisplays the error message that was displayed
when the debugger was invoked.

EVALUATE Evaluates a specified form.

GOTO Moves the pointer to a specified stack frame.

HELP (or) ? Displays help text about the debugger commands.

QUIT Exits to the previous command level.

REDO Invokes the function in the current stack frame.

RETURN Evaluates its arguments. and causes the current

stack frame to return the same values the
evaluation returns. ‘

SEARCH - Searches the control stack for a specified
function. : .

SET Sets the values of the components in the current
stack frame. .

4-10

DEBUGGING FACILITIES

<ﬁ§ble 4-2 (cont.)
cémmand

Description

SHOW
STEP
TOP

UP

WHERE

@

Displays information stored in the current stack

frame.

-

Invokes the stepper for the function in
current stack frame.

Moves the pointer to the last stack frame in
control stack.

Moves the pointer up the control stack.

the

the

Redisplays the argument list and the function name

in the current stack frame.

4.5.3.1 Arguments - Some debugger

debugger

is an integer is usually optional;

commands require an argument; other

commands accept optional arguments. An argument whose value

an argument whose value is a symbol

or form is required. If you do not specify an argument that is
required, the debugger prompts you for the argument. For example:

Debug 1> RETURN<RET>

First Value:

The debugger does not prompt for arguments if you specify them in

command

line.

Enter an argument after the command it qualifies and then press
ey. For example:

RETURN k

<:> Debug 1> DOWN ALL<RET>

The types of arguments you can specify with debugger commands are:

Debugger command

Symbol
Form

Integer

Function name

Modifier

4-11

the

the

DEBUGGING FACILITIES

NOTE

Only parenthesized expressions and arguments to
evaluate (that 1is, arguments specified with the
EVALUATE command) are evaluated.

-

The preceding arguments are self-explanatory with the exception of the
integer and modifier arguments.

Integer arguments represent control stack frame numbers. Each stack
frame on the control stack has a frame number, which the-debugger
displays as part of the stack frame’s output. The debugger reassigns
these numbers each time it is invoked. You can specify a frame number
in a debugger command to refer to a specific stack frame. If you
refer to a frame number that is outside the current debugging session,
an error is signaled. If you refer to the stack frame number of a
frame that was established in another debugging session in a current
nested session, the command in which you specify the £frame number
results in an erroneous or unpredictable result.

Table 4-3 provides a summary of the modifier arguments you can specify
with debugger commands.

Table 4-3: Debugger Command Modifiers

Modifier Command Modification

ALL Operates on both significant and insignificant
stack frames.

ARGUMENTS Operates on the arguments specified with the
function in the current stack frame.

CALL Operates on the call to the current stack frame.

DOWN Moves the pointer down the control stack.

FUNCTION Operates on the function object in the current
stack frame.

HERE Operates on the current stack frame.

NORMAL Displays the function name and the argument 1list

’ in the control stack frames.

QUICK Displays the function name in the control stack
frames.

TOP Starts a backtrace at the top of the control
stack.

4-12

O

O

O

O

DEBUGGING FACILITIES

—.. Table 4-3 (cont.)

O

Modifier Command Modification
9) Moves the pointer up the control stack. '
VERBOSE Displays the function name, argument 1li&t, 1local

variable bindings, and special variable bindings
in the control stack frames.

4.5.3.2 Debugger Commands - The VAX LISP debugger provides commands

that you

stack.

HELP

O

EVALUATE

can use to move through and modify the system’s control

Help Command

The HELP command displays help text about the debugger
commands. You can specify this command with one
argument, which is the name of the debugger command
about which you want help text. If you specify the
HELP command without an argument, the debugger displays
a list of the debugger commands.

You can abbreviate this command by using a question
mark (?). '

Evaluation Command

You can evaluate LISP expressions while you are in the
debugger. If you want the LISP system to evalute a
parenthesized form, you can specify the form and then
press the RETURN key. If you want the system to
evaluate a symbol, you must use the EVALUATE command.
You can also evaluate expressions by entering the break
loop. For information on the break loop, see Section
4.4.

The EVALUATE command explicitly evaluates a specified
form. You must specify the command with an argument
that is the form you want the LISP system to evaluate.
The system evaluates the form in the 1lexical
environment of the current stack frame.

4-13

L e

CONTINUE

QUIT

REDO

RETURN

STEP

DEBUGGING FACILITIES

Error-Handling Commands

The debugger deals with errors that invoke the .

debugger. Each of the following debugger commands
deals with errors in a different way.

The CONTINUE command causes the debugger to réturn NIL,
letting you return from a continuable error or from a
warning if the wvalue of the *BREAK-ON-WARNINGS*
variable is T. This command is not the same as the

CONTINUE function. See Chapter 3 for a description of _

error types.

The QUIT command lets you exit to the previous command

level. If the current level of the debugger is 1, the
command causes the debugger to exit to the LISP prompt
(Lisp>). You can specify this command with an optional
argument. If a continuable error invokes the debugger
and the argument is NIL, the debugger displays a
confirmation message. 1If you respond to the message by
typing YES, the command returns control to the previous
command level. If the argument is not NIL, the
debugger does not display a message. The default value
for the optional argument is NIL.

The REDO command invokes the function in the current
stack frame, causing the LISP system o reevaluate the
function in that frame. This commarl 1is wuseful for
correcting errors that are not ccatinuable, such as
unbound variables and undefined functions. To do so,
first bind thé variables or define “he function with
the SET command, then use the REDO corimand.

The RETURN command evaluates its arg.xents and causes
the debugger to force the current st.ck frame to return
the same values the evaluation r2turns. You must
specify the command with an argumant that is a form.
When the command is executed, the form is evaluated.
When the evaluation is complete the current stack
frame returns the same values that :le evaluated form
returns.

The STEP command invokes the step;er for the function

that is in the current stack frime. When the stepper
is invoked, the LISP system reevi.vates the function.
This command is useful if you wént to repeat an error
to get information about the caus¢ of the error..

4-14

O

O

BOTTOM

DOWN

O GOTO

SEARCH

TOP

DEBUGGING FACILITIES

Movement Commands

The movement commands move the debugger’s pointer to
another stack frame. The debugger displays the new
stack frame’s information.

The BOTTOM command moves the pointer to the first
significant stack frame on the control stack. If you
specify the ALL modifier with the BOTTOM command, the
command moves the pointer to the first (oldest) stack
frame on the -control stack whether the frame is
significant or insignificant.

The DOWN command moves the pointer toward the bottom of
the control stack, one frame at a time. You can
specify this command with optional arguments. One of
the optional arguments is the ALL modifier. 1If you
specify ALL, the command moves the pointer down the
significant and insignificant stack frames on the
control stack.

You can also sbecify an optional integer argument,
which indicates the number of stack frames down which
the command is to move the pointer.

The GOTO command moves the pointer to a specified stack
frame. You must specify this command with an integer
that specifies the number of the stack frame.

The SEARCH command searches the control stack for a
specified function name. You must specify this command
with two arguments. The first argument must be either
the UP or the DOWN modifier to specify the direction of
the command’s search. The second argument must be the
name of the function for which the command is to
search.

You can also specify an optional integer argument.
This argument must follow the function name argument in
the command specification. The integer vyou specify
indicates the number of occurrences of the specified
function name that you want the command to skip.

The TOP command moves the pointer to the last (newest)
significant stack frame on the control stack. If you
specify the ALL modifier with the TOP command, the
command moves the pointer to the last stack frame on
the control stack whether the frame is significant or
insignificant.

4-15

UpP

WHERE

ERROR

SET

SHOW

DEBUGGING FACILITIES

The UP command moves the pointer toward the top of the
control stack. You can specify this command wit
optional arguments. One of the optional arguments is
the ALL modifier. If you specify it, the command moves
the pointer up the significant and insignificant stack
frames on the control stack. .

You can also specify an optional integer argument. It
indicates the number of stack frames up which the
command is to move the pointer.

The WHERE command redisplays the function name and
argument list in the current stack frame.

Inspection and Modification Commands

You can inspect and change. the information in a<::>
function call before the LISP system evaluates the
call. To do this, use the inspection and modification
commands.

The ERROR command redisplays the error message that was
displayed for the error that invoked the debugger.

The SET command sets the values of the components in
the current stack frame. You must specify this command
with three arguments. The first argument must be
either the ARGUMENTS or the FUNCTION modifier. The
modifier determines what the command sets. The
following 1list "describes what is set when you specify
each modifier:

@ ARGUMENTS -- The value of an argument in the current

stack frame. ‘ <:>

e FUNCTION -- The function object in the current stack
frame.

If you specify the ARGUMENTS modifier, the second
argument must be the symbol that names the argument to
be set, and the third argument must be a form that
evaluates to the new value. If you specify the
FUNCTION modifier, the second argument must be a form
that evaluates to a function or the name of a function.
The new function must take the same number of arguments
the old function takes.

The SHOW command displays information stored in the
current stack frame. You must specify this command .
with the ARGUMENTS, CALL, FUNCTION,.or HERE modifier. (:)
The modifier determines what the command is to display.

4-16

O

O

BACKTRACE

DEBUGGING FACILITIES

The following list describes what the command displays
when you specify each modifier:

® ARGUMENTS -- A list of the arguments in the current
stack frame.

e CALL -- The function call that created the current
stack frame. The command displays the function call
so that its output is easy to read. The arguments
in the call are represented by their values.

@ FUNCTION -- The function in the current stack frame.
The function can be either interpreted or compiled
with the COMPILE function. The function cannot be
displayed if it 1is a system function or if it is
loaded in a compiled file.

® HERE -- A description of the current stack frame.

Backtrace Command

The BACKTRACE command displays the argument 1list of
each stack frame in the control stack, starting from
the top of the stack. You can specify the command with
modifiers to specify the style and extent of the
backtrace.

The modifiers you can specify are ALL, NORMAL, QUICK,
HERE, TOP, or VERBOSE. By default, the command uses
the NORMAL and the TOP modifiers. The following list
describes the style or extent the BACKTRACE command
uses when you specify each modifier:

@ ALL -- Displays significant and insignificant stack
frames.

e NORMAL -- Displays the function name and argument
list in each stack frame.

e QUICK -- Displays the function name in each stack
frame.

® HERE -- Starts the backtrace at the current stack
frame.

e TOP -- Starts the backtrace at the top of the
control stack.

® VERBOSE -- Displays the function name, argument

list, and 1local variable bindings in each stack
frame.

4-17

DEBUGGING FACILITIES

4.5.4 Using the DEBUG-CALL Function

)
The DEBUG-CALL function returns a list representing the «call at the <:>
current debug stack frame. This function is a debugging tool and
takes no arguments. The list returned by DEBUG-CALL can be used to
access the values passed to the function in the current stack frame.

If used outside the debugger, DEBUG-CALL returns NIL. The following
example shows how to use the function:

Lisp> (SETF THIS-STRING "abcd")

"abcd"

Lisp> (FUNCTION-Y THIS-STRING 4)

.... Error in function FUNCTION-Y

Frame #4 (FUNCTION-Y "abcd" 4)

Debug 1> (SETF STRING (SECOND (DEBUG-CALL)))

"abcd"
Debug 1> (EQ "abcd" STRING) <:>
NIL

Debug 1> (EQ THIS-STRING STRING)

T

In this case, the function in the current stack frame is FUNCTION-Y.

The call to (DEBUG-CALL) returns the list (FUNCTION-Y "abcd" 4). The
form (SECOND (DEBUG-CALL)) evaluates "abcd", the first argument to
FUNCTION-Y in the current stack frame. Note that the string returned

by the call (SECOND (DEBUG-CALL)) is the same string passed to the
function FUNCTION-Y. See the description of the TRACE macro for <:>
another example of the use of the DEBUG-CALL function.

4.5.5 Sample Debugging Sessions

1. Lisp> (DEFUN FIRST-ELEMENT (X) (CAR X))
FIRST-ELEMENT
Lisp> (FIRST-ELEMENT 3) <:>

Fatal error in function CAR (signaled with ERROR).
Argument must be a list: 3

Control Stack Debugger

Frame #11: (CAR 3)

Debug 1> DOWN T
Frame #8: (BLOCK FIRST-ELEMENT (CAR X))
Debug 1> DOWN

Frame #5: (FIRST-ELEMENT 3)

Debug 1> SHOW HERE

It is a cons

Format: FIRST-ELEMENT x

-- Arguments -- .
X : 3 : <:>

4-18

DEBUGGING FACILITIES

Debug 1> SET

Type of SET operation: ARGUMENT
Argument Name: X

New Value: ‘(1 2 3)

Debug 1> WHERE

Frame #5: (FIRST-ELEMENT (1 2 3))
Debug 1> REDO

1

Lisp>

The argument in a stack frame is changed from an integer to a
list, and the function is reevaluated with the correct
argument.

Lisp> (DEFUN PLUS-Y (X) (+ X Y))
PLUS-Y
Lisp> (PLUS-Y 4)

Fatal error in function SYSTEM::%EVAL (signaled with ERROR).
Symbol has no value: Y

Control Stack Debugger

Frame #8: (BLOCK PLUS-Y (+ X Y))
Debug 1> DOWN

Frame #5: (PLUS-Y 4)

Debug 1> UP

Frame $8: (BLOCK PLUS-Y (+ X Y))
Debug 1> (SETF Y 1) '
1

Debug 1> WHERE

Frame $#8: (BLOCK PLUS-Y (+ X Y))
Debug 1> EVALUATE

Evaluate: Y

1

Debug 1> DOWN

Frame #5: (PLUS-Y 4)

Debug 1> REDO

5

Lisp>

The value of the variable Y is set with the SETF macro, and
the body of the function PLUS-Y is reevaluated.

Lisp> (DEFUN ONE-PLUS (X) (1+ X))
ONE-PLUS
Lisp> (ONE-PLUS '(1 2 3 4))

Fatal error in function 1+ (signaled with ERROR).
Argument must be a number: (1 2 3 4)

Control Stack Debugger
Frame #11: (1+ (1 2 3 4))

4-19

DEBUGGING FACILITIES

Debug 1> SET FUNCTION

Function: ’‘CAR

Debug 1> WHERE

Frame #11: (CAR (1 2 3 4))

Debug 1> DOWN

Frame #8: (BLOCK ONE-PLUS (1+ X))
Debug 1> UP :
Frame #11: (CAR (1 2 3 4))

Debug 1> REDO

1

Lisp> (PPRINT-DEFINITION ’'ONE-PLUS)
(DEFUN ONE-PLUS (X) (1+ X))

Lisp>

O

This example shows that changing the contents of a stack
frame does not change the contents of other stack frames or
the function that was originally evaluated. | <:>

4.6 STEPPER

The stepper is a facility you can use to step interactively through
the evaluation of a form. You can control the stepper with stepper
commands as it displays and evaluates each subform of a specified

form. <::>

The stepper has a pointer that points to the current stack frame on
the system’s control stack. The current stack frame is the last frame
for which the stepper displayed information.

The stepper prints its command interaction to the stream bound to the
DEBUG-IO variable; it prints its output to the stream bound to the
TRACE-OUTPUT variable.

You can invoke the stepper by calling the STEP macro with a form as an
argument. The following example invokes the stepper with a call to a
function named FACTORIAL: ' T

4.6.1 Invoking the Stepper

Lisp> (STEP (FACTORIAL 3))

When the stepper is invoked, it displays a line of text that includes
the first subform of the specified form and the stepper prompt. The
output is displayed at the 1left margin of your terminal in the
following format:

: #9: (FACTORIAL 3) . <:>
Step>

4-20

O

DEBUGGING FACILITIES

After the stepper is invoked, you can use the stepper commands to
control the operations the stepper performs and the way the stepper
displays output.

4.6.2 Exiting the Stepper

Usually, when you use the stepper, you press the RETURN key until the
stepper steps through the entire specified form. 1If you want to exit
from the stepper before it steps through a form, use the QUIT stepper
command. This command causes the stepper to return control to the
previous command level that was active when the stepper was invoked.

Step> QUIT
Lisp>

By default, the QUIT command displays a confirmation message before it
causes the stepper to exit. For example:

Step> QUIT)
Do you really want to exit the stepper?

If you type YES, the stepper exits and returns control to the command
level that was active when the stepper was invoked.

Do you really want to exit the stepper? YES
Lisp> '

If you type NO, the stepper prompts you for another command.

Do you really want to exit the stepper? NO
Step>

You can prevent the stepper from displaying the confirmation message
by specifying the QUIT command with a value other than NIL. For
example:

Step> QUIT T
Lisp>

A description of the QUIT command is provided in Section 4.6.4.2.
4.6.3 Stepper Output
Once you invoke the stepper with a specified form, the stepper

displays two types of information as the LISP system evaluates the
form:

4-21

DEBUGGING FACILITIES

@ A description of each subform of the specified form

@ A description of the return value from each subform
If the subform being evaluated is a symbol, the stepper displays the
descriptions in a line of text that includes the following
information: - ‘

@ The nested level of the symbol

@ The control stack frame number that indicates where the symbol
and its return value are stored

®© The symbol

@ The return value
The stepper indicates the nested level of a symbol with indentation.
When the number of nested levels increases, the indentation increases.
After making the appropriate indentation, the stepper displays the
control stack frame number, the symbol, and the return value in the
following format: ’

$#n: symbol => return-value
If the subform being evaluated is not a symbol, the stepper displays
the descriptions in a 1line of text that includes the following
information:

® The nested level of the subform

® The control stack £frame number that indicates where the
subform is stored

® The subform
The stepper indicates the nested level of a subform with indentation.
When the number of nested levels increases, the indentation increases.
After making the appropriate indentation, the stepper displays the
control stack frame number and the subform in the following format:
#n: (subform)
The description of a return value includes the following information:

® The nested level of the return value

® The control stack frame number that indicates where the return
value is stored

® The return value

4-22

©

DEBUGGING FACILITIES

The stepper also indicates the nested level of each return value with

(::ﬁndentation. The indentation matches the indentation of the
corresponding call. After making the appropriate indentation, the
stepper displays the control stack frame number and the return value
in the following format:

#n => return-value
Suppose you define a function named FACTORIAL.
Lisp> (DEFUN FACTORIAL (N)
(IF (<= N 1) 1 (* N (FACTORIAL (- N 1)))))
FACTORIAL

The following example illustrates the format of the output the stepper
displays when you invoke it with the form (FACTORIAL 3):

Lisp> (STEP (FACTORIAL 3))
#4: (FACTORIAL 3)

Step> STEP

: #10: (BLOCK FACTORIAL (IF (<= N 1) 1 (* N (FACTORIAL (- N 1)))))
Step> STEP

: @ #14: (IF (<= N 1) 1 (= N (FACTORIAL (- N 1))))

Step> STEP

: 1 #18: (<= N 1)

Step> STEP

<:::) Toro: ot #22: N => 3

: ¢ ¢ #18 => NIL

: ot ot #17: (* N (FACTORIAL (- N 1)))
Step> STEP
Tl #21: N => 3

: : : #21: (FACTORIAL (- N 1))

Step> STEP
t st #26: (- N 1)

Trororr #26 => 2

<:::> $: : i : #27: (BLOCK FACTORIAL (IF (<= N 1) 1 (* N (FACTORIAL (- N 1)))))
Step> OVER
T #2T = 2

T #14 => 6
: #10 => 6
#4 => 6

6

Note that the FACTORIAL function is a recursive function and, in the
preceding example, has three 1levels of recursion. The stepper
indicates the nested 1level of each subform with an indentation,
indicated with a colon followed by a space (:). The stepper
indicates the number of the stack frame in which a call is -stored with
(::>an integer. The integer is preceded with a number sign and followed
by a colon (#n:). .

4-23

DEBUGGING FACILITIES

The nested level of each return value matches the indentation of the
corresponding subform. The stepper indicates the number of the
control stack frame onto.which the LISP system pushes the wvalue with
an integer that matches the stack frame number of the corresponding
subform. The integer is preceded by a number sign and followed by an

arrow (#n =>) that points to the return value.
L]

4.6.4 Using Stepper Commands

Stepper commands let you wuse the stepper to step through the
evaluation of a LISP expression, form by form. You must specify some
commands with arguments. They provide the stepper with additional
information on how to execute the command.

You can abbreviate stepper commands to as few characters as you 1like,
as long as no ambiguity is in the abbreviation.

Each time a command is executed, the stepper displays a return value
if the subform returns a value, displays the next subform, and prompts
you for another command. Enter a stepper command by typing the
command name or abbreviation and then pressing the RETURN key. For
example:

Step> STEP<RET>
: : #22: (IF (<= N1) 1 (* N (FACTORIAL (- N 1))))
Step>

If you press only the RETURN key, the LISP system evaluates the
subform the stepper displays. ' If the evaluation returns a value, the
stepper displays the value and the next subform and then prompts you
for another command.

Step><RET>
: ¢ #22: (IF (<= N 1) 1 (* N (FACTORIAL (- N 1))))
Step>

Table 4-4 provides a summary of the stepper commands. Descriptions of
the stepper commands are provided in Section 4.6.4.2.

Table 4-4: Stepper Commands

O

Command Description

BACKTRACE Displays a backtrace of a form’s evaluation.

DEBUG Invokes the debugger.

EVALUATE Evaluates a spécified form . with the stepper‘<::>
disabled.

4-24

O

DEBUGGING FACILITIES

Table 4-4 (cont.)

Command Description

FINISH Finishes the evaluation of the form that was
specified in the call to the STEP macro with the
stepper disabled.) '

HELP (or) ? Displays help text about the stepper commands.

OVER Evaluates the subform in the current stack frame

with the stepper disabled.

SHOW Displays the subform in the current stack frame.
QUIT Exits the stepper.

RETURN Forces the current stack frame to return a value.
STEP Evaluates the subform in the current stack frame

with the stepper enabled.

UP Evaluates subforms with the stepper disabled until
the stepper gets back to a subform that contains
the subform in the current stack frame.

4.6.4.1 Arguments - Stepper command arguments modify the operations
the stepper commands perform. Some stepper commands require an
argument, and some commands accept optional arguments. The arguments
you can specify with the stepper commands are:

e Integer

e Form

e Stepper command

NOTE
Only parenthesized expressions and arguments to

evaluate (that 1is, arguments specified with the
. EVALUATE command) are evaluated.

Enter an argument after the command it modifies and press the RETURN
key. For example:

Step> EVALUATE (<= N 1)<RET>

4-25

DEBUGGING FACILITIES

If an argument is required and you omit it, the stepper prompts you
for the argument. For example:

Step> EVALUATE<KRET>
Evaluate: (<= N 1)

The stepper does not prompt for arguments if you specify theh in the
command line.

4.6.4.2 Stepper Commands - The stepper provides commands that let you
control how it steps through a form’s evaluation.

Help Command

HELP The HELP command displays help text about the stepper

? commands. You can specify this command with one
argument, the name of the stepper command about which
you want help text. If you specify the HELP command
without an argument, the stepper displays a list of the
stepper commands.

You can abbreviate this command by wusing a question
mark (?).

Evaluation Command

You can evaluate expressions while. you are in: the
stepper. If you want the LISP system to evaluate a
parenthesized form, you can specify the form and then
press the RETURN key. If you want the system to
evaluate a symbol, you must use the EVALUATE command.

EVALUATE The EVALUATE command causes the LISP system to
explicitly evaluate a specified form. You must specify
the command with an argument, which must be the form
you want the system to evaluate. The system evaluates
the form in the 1lexical environment of the form
currently being stepped.

Debugger Command
DEBUG The DEBUG command invokes the debugger at the control
stack frame that stores the call to the current form.

When the debugger returns control to the stepper, the
stepper prompts you for a command.

4-26

O

<:j&)'aHOW

QUIT

O

BACKTRACE

O

Commands That

O

FINISH

DEBUGGING FACILITIES

Display Command

The SHOW command displays the subform in the current
stack frame.

Exiting Command

The QUIT command causes the stepper to exit and return
control to the command level that was active when the
stepper was invoked. You can specify this command with
an optional argument. If you specify NIL, the stepper
displays a confirmation message before it causes the
stepper to exit. If you respond to the message by
typing YES, the stepper exits. If you specify a value
other than NIL, the stepper does not display a message.
The default value for the optional argument is NIL.

Backtrace Command

The BACKTRACE command lists the subforms of the form
being stepped through. You can specify the command
with an optional integer, which determines the number
of subforms that are to be listed. The stepper works
its way back the specified number of subforms and then
lists the subforms in the order in which they were
invoked. If you do not specify the argument, the
stepper 1lists all the subforms the LISP system is
evaluating.

Continue Evaluation of the Form Being Stepped Through

Several. . stepper commands continue the evaluation of the
form being stepped through, each command continuing the
evaluation in a different way.

The FINISH command evaluates the form you specified in
the <call to the STEP macro. You can specify the
command with an optional argument that is a form. When
the stepper executes the command, the LISP system
evaluates the form. If the evaluation returns a value
other - than NIL, the stepper steps through the
evaluation of the form until it reaches the end of the
evaluation. If the evaluation returns NIL, the LISP
system disables the stepper and then evaluates the form
you specified in the <call to the STEP macro. The
default value for the optional argument is NIL.

4-27

DEBUGGING FACILITIES

OVER The OVER command causes the LISP system to evaluate the
subform in the <current stack frame with the stepper(j\
disabled. _)

RETURN The RETURN command causes the LISP system to evaluate

the RETURN command’s argument and causes the stepper to
force the current stack frame to return the values
returned by the evaluation. This command must be
specified with an argument that must be a form. When
you execute the command, the LISP system evaluates the
form. When the evaluation is complete, the current
stack frame returns the values returned by the
evaluated form.

STEP The STEP command causes the LISP system to evaluate the
subform in the <current stack frame with the stepper
enabled. This command is equivalent to pressing the
RETURN key. Q

Up The UP command causes the LISP system to evaluate
subforms with the stepper disabled wuntil control
returns to the subform that contains the subform in the
current stack frame. You can specify the command with
an optional integer argument (n). If you specify the
argument, the system evaluates subforms with the
stepper disabled until control returns to the subform
that contains the subform in the current stack frame n<:>
levels deep. The default value of the argument is 1.

4.6.5 Using Stepper Variables
The stepper facility has two special variables that are wuseful

debugging tools when in the stepper: *STEP-FORM* and
STEP-ENVIRONMENT .

4.6.5.1 *STEP-FORM* - The *STEP-FORM* variable is bound to the form
being evaluated while stepping. For example, while executing the form

(STEP (FUNCTION-Z ARGl ARG2))

the value of *STEP-FORM* is the list (FUNCTION-Z'ARGl ARG2). When not
stepping, the value is undefined.

4.6.5.2 V*STEP-ENVIRONHENT* - The *STEP-ENVIRONMENT* variable is bound
to the 1lexical environment in which *STEP-FORM* is being evaluated.
By default in the stepper, the lexical environment is used if you use

4-28

3 (+ (FUNCTION-X (-

DEBUGGING FACILITIES

the EVALUATE command. See COMMON LISP: The Language for a description
of dynamic and lexical environment variables.

Some COMMON LISP functions (for example, EVALHOOK, APPLYHOOK, and
MACROEXPAND) take an optional environment argument. The wvalue bound
to the *STEP-ENVIRONMENT* variable can be passed as an envigonment to
these functions to allow evaluaton of forms in the context of the
stepped form.

4.6.5.3 Example Use of Stepper Variables - The following example
illustrates the use of the *STEP-FORM* and *STEP-ENVIRONMENT* special
variables.

Lisp> (SETF X "Top level value of X")
"Top level value of X"
Lisp> (DEFUN FUNCTION-X (X)
(IF (< X 3) 1
(+ (FUNCTION-X (- X 1)) (FUNCTION-X (- X 2)))))
FUNCTION-X
Lisp> (STEP (FUNCTION-X 5))
#4: (FUNCTION-X 5)
Step> STEP
: #10: (BLOCK FUNCTION-X (IF (¢ X 3) 1
(+ (FUNCTION-X (- X 1))
(FUNCTION-X (- X 2)))))
Step> STEP '
: ¢ #14: (IF (< X 3) 1 (+ (FUNCTION-X (- X 1))
(FUNCTION-X (- X 2))))
Step> STEP
: ¢ #18: (< X 3)
Step> STEP
: : o $#22: X => 5
: : #18 => NIL
: : #17: (+ (FUNCTION-X (- X 1)) (FUNCTION-X (- X 2)))
Step> STEP
: : ¢ : #21: (FUNCTION-X (- X 1))
Step> STEP
T oo oz #25: (- X 1)
Step> STEP

e o0 oo

: #29: X => 5
#25 => 4
#27: (BLOCK FUNCTION-X (IF (< X 3) 1

e o oo
es oo oo
e o0 e
e oo oo

o

(FUNCTION-X (-
Step> STEP
$ s ooz #31: (IF (< X 3)1
(+ (FUNCTION-X (- 1))
(FUNCTION-X (- X 2))))]
Step> STEP
s s oo $#35: (¢ X 3)

4-29

DEBUGGING FACILITIES

Step> STEP ,
A #39: X => 4 (f\\
#35 => NIL N
HEE #34: (+ (FUNCTION-X (- X 1)) (FUNCTION-X (- X 2)))
Step> STEP

A #38: (FUNCTION-X (- X 1))

Step> EVAL *STEP-FORM*

(FUNCTION-X (- X 1))

Step> STEP
S $#42: (- X 1)
Step> STEP

T o:o:oto:o:o:o: #46: X => 4
T ot ot s ot oo $#42 => 3
t 0 ¢ ¢ ¢ s : #44: (BLOCK FUNCTION-X

(IF (< X 3) 1
(+ (FUNCTION-X (- X 1))
(FUNCTION-X (- X 2)))))
Step> EVAL *STEP-FORM* <:>
(BLOCK FUNCTION-X
(IF (< X 3) 1 (+ (FUNCTION-X (- X 1)) (FUNCTION-X (- X 2)))))
Step> STEP
$ s :o:oto:o:o:to: $48: (IF (¢ X 3) 1
(+ (FUNCTION-X (- X 1))
(FUNCTION-X (- X 2))))

Step> STEP
T oot ot #52: (¢ X 3)

Step> STEP (::)
T r oo otoso:otosoto: $56: X => 3 '

oo oto:ro:o:oro:o: $#52 => NIL
- #51: (+ (FUNCTION-X (- X 1))
(FUNCTION-X (- X 2)))
Step> STEP
T s oz ot : : : : #55: (FUNCTION-X (- X 1))
Step> EVAL X
3
Step> (EVAL 'X) <:>
"Top level value of X"
Step> EVAL *STEP-FORM*
(FUNCTION-X (- X 1))
Step> (EVALHOOK ’'X NIL NIL NIL)
"Top level value of X"
Step> (EVALHOOK ‘X NIL NIL *STEP-ENVIRONMENT*)
3
Step> (EVALHOOK (CADR *STEP-FORM*) NIL NIL *STEP-ENVIRONMENT*)
2
Step> STEP

. . .

I : : #59: (- X 1)
Step> STEP

: #63: X => 3

459 => 2 A

#61: (BLOCK FUNCTION-X . <:j>
(IF (< X 3) 1

ee o0 o
e0 o0 o
°s o0 o
ee oo o0

e o0 oo

o oo oo

* oo oo
0o oo oo
oo oo oo
oe oo oo
ee oo

4-30

DEBUGGING FACILITIES

(+ (FUNCTION-X (- X 1))
<::> (FUNCTION-X (- X 2)))))
Step> FINISH

5

This example shows that the *STEP-FORM* special variable is bound to
the form being evaluated while stepping. The example also ¢hows that
the *STEP-ENVIRONMENT* special variable is bound to the lexical
environment in which the currently stepped form is being evaluated.

The call to EVALHOOK evaluates the form (- X 1) in the 1lexical
environment of the stepper, that is, with the local binding of X. A
call to EVALHOOK with a null environment specified shows that X's
value in the null 1lexical environment differs from that in the
stepper. The EVAL command uses the *STEP-ENVIRONMENT* environment;
the EVAL function uses the null lexical environment.

4.6.6 Sample Stepper Sessions

1. Lisp> (DEFUN FIRST-ELEMENT (X) (CAR X))
FIRST-ELEMENT
Lisp> (SETF MY-LIST ' (FIRST SECOND THIRD))
(FIRST SECOND THIRD)

Lisp> (STEP (FIRST-ELEMENT MY-LIST))
) : $#9: (FIRST-ELEMENT MY-LIST)
Step> STEP

: : #14: MY-LIST => (FIRST SECOND THIRD)
: : #15: (BLOCK FIRST-ELEMENT (CAR X))

Step> STEP
: : : #22: (CAR X)
Step> EVALUATE (CAR X)
FIRST
Step> FINISH
<:> FIRST
Lisp>
2. Lisp> (DEFUN PLUS-Y (X) (+ X Y))
PLUS-Y
Lisp> (SETF Y 5)
5

Lisp> (STEP (PLUS-Y 10))

: #9: (PLUS-Y 10)

Step> STEP

¢ : #15: (BLOCK PLUS-Y (+ X Y))
Step> EVALUATE

Evaluate: (+ X Y)

15

Step> STEP
<:> t o : #22: (+ X Y)

4-31

DEBUGGING FACILITIES

Step> BACKTRACE
(PLUS-Y 10) : <:>
: (BLOCK PLUS-Y (+ X Y))
(+ X Y)
Step> SHOW
(+ X Y)
Step> OVER
: #22 => 15
: #15 => 15
$#9 => 15
15
Lisp>

3. Lisp> (DEFUN ADDITION (X) (+ X Y))
ADDITION
Lisp> (SETF Y 5)
5
Lisp> (STEP (ADDITION 4))
: #9: (ADDITION 4)
Step> STEP
#15: (BLOCK ADDITION (+ X Y))
Step> STEP
: #22: (+ X Y)
Step> BACKTRACE
(ADDITION 4)
(BLOCK ADDITION (+ X Y))
0 (+ X Y)
Step> EVALUATE
Evaluate: (+ X Y)
9 .
Step> STEP :
: o #27: X
: : #26: Y
: o #22 => 9
: ¢ #15 => 9
: #9 => 9
9
Lisp>

e ee ee o

4.7 TRACER

The VAX LISP tracer is a macro you can use to inspect a program’s
evaluation. The tracer informs you when a function or macro is called
during a program’s evaluation by printing information about each call
and return value to the stream bound to the *TRACE-OUTPUT* variable.
To use the tracer, you must enable it for each function and macro you
want traced.

4-32

DEBUGGING FACILITIES

NOTE

<::> You cannot trace special forms.

4.7.1 Enabling the Tracer

You can enable the tracer for one or more functions and/or macros by
specifying the function and macro names as arguments in a call to the
TRACE macro. For example:

Lisp> (TRACE FACTORIAL ADDITION COUNTER)
(FACTORIAL ADDITION COUNTER)

The TRACE macro returns a list of the functions and macros that are to

<::>be traced.

If you try to trace a function or macro that is already being traced,
a warning message is displayed. To avoid this error, call the TRACE
macro without an argument to produce a 1list of the functions and
macros for which tracing is enabled. For example:

Lisp> (TRACE)
(FACTORIAL ADDITION COUNTER)

<::>A description of the TRACE macro is provided in Chapter 8.

4.7.2 Disabling the Tracer

To disable the tracer for a function or macro, specify the name of the

function or macro in a call to the UNTRACE macro. It returns a list

of the functions and macros for which tracing has just been disabled.
<:>For example:

Lisp> (UNTRACE FACTORIAL ADDITION COUNTER)
(FACTORIAL ADDITION COUNTER)

You can disable tracing for all the functions for which tracing is
enabled by calling the UNTRACE macro without an argument. If you try
to disable tracing for a function that is not being traced, a warning
message is displayed.

3
The UNTRACE macro is described in COMMON LISP: The Language.

O

4-33

DEBUGGING FACILITIES

4.7.3 Tracer Output

Once you enable the tracer for a function or macro, the tracer <::>

displays two types of information each time that function or macro is
called during a program’s evaluation: ‘

@ A description of each call to the specified function®or macro

e A description of each return value from the specified function
or macro

The description of a call to a function or macro consists of a line of
text that includes the following information:

@ The nested level of the call

@ The control stack frame number that indicates where the call
is stored

@ The name and arguments of the function associated with the
function or macro that is called

The tracer indicates the nested level of a <call with indentation.
When the number of nested levels increases, the indentation increases.
After making the appropriate indentation, the tracer displays the

control stack frame number, the function name, and the arguments in <::>

the following format:

$n: (function-name arguments)
The tracer also displays a line of text for the return value of :each
evaluation. The 1line of text the tracer displays for each value
includes the following information:

® The nested level of the return value

@ The control stack frame number that indicates where the return
value is stored

@ The return value
The tracer indicates the nested 1level of. each return value with
indentation. The indentation matches the indentation of the
corresponding call. After making the indentation, the tracer displays
the control stack frame number and the return value in the following
format:

#n => return-value

4-34

DEBUGGING FACILITIES

Suppose you define a function named FACTORIAL.

Q Lisp> (DEFUN FACTORIAL (N)
(IF (<= N 1) 1 (* N (FACTORIAL (- N 1)))))
FACTORIAL

The following example illustrates the format of the output the tracer
displays when the function FACTORIAL is called with the argument 3:

Lisp> (FACTORIAL 3)
#11: (FACTORIAL 3)
#27: (FACTORIAL 2)

. . #43: (FACTORIAL 1)

. . #43 => 1

. #27 => 2

#11 => 6

O ¢

The FACTORIAL function is a recursive one and, 1in the case of the
preceding example, has three 1levels of recursion. The tracer
indicates the nested level of each call with indentation. Each 1level
of indentation is indicated with a period followed by a space (.).
The tracer indicates the number of the stack frame in which a call is
stored with an integer. The integer is preceded with a number sig
and followed by a colon (#n:). .

he nested level of each return value matches the indentation of the
corresponding call. The tracer indicates the number of the control
stack frame onto which the LISP system pushes the value with an
integer. This integer matches the stack frame number of the
corresponding call and is preceded with a number sign and followed by
an arrow (#n =>) that points to the return value.

0.7.4 Tracer Options

You can modify the output of the tracer by specifying options in the
call to the TRACE macro. Each option consists of a keyword-value
pair. The format in which to specify keyword-value pairs for the
TRACE macro 1is:

(TRACE (function-name keyword-l value-1
keyword-2 value-2
; eee))

You can also specify options for a list of functions and/or macros.
The TRACE macro format in which to specify the same options for a list
of functions and macros is:

<::> (TRACE ((name-1 name-2 ...) keyword-1 value-1
keyword-2 value-2
essl))

4-35

DEBUGGING FACILITIES

Forms the system evaluates just before or just after a
call to a function or macro for which tracing is
enabled are evaluated in & null 1lexical environment.
For information on lexical environments, see COMMQN
LISP: The Language.

The keywords you can use to specify options are:
e :DEBUG-IF ---

: PRE-DEBUG-IF | -- Invoke the debugger
:POST-DEBUG-IF --

® :PRINT ---
:PRE-PRINT |-- Add information to tracer output
:POST-PRINT --

® :STEP-IF -- Invokes the stepper

@ :SUPPRESS-IF -- Removes information from tracer output

e :DURING -- Determines when a function or macro is traced

4.7.4.1 1Invoking the Debugger - You can cause the tracer to invoke
the debugger by specifying the :DEBUG-IF, :PRE-DEBUG-IF, or
:POST-DEBUG-IF keyword. These keywords must be specified with a form.
The LISP system evaluates the form before, after, or before and after
each call to the function or macro being traced. If the form returns
a value other than NIL, the tracer invokes the debugger after each
evaluation.

4.7.4.2 Adding Information to Tracer Output - You can add information
to tracer output by specifying the :PRINT, :PRE-PRINT, or :POST-PRINT
keyword. You must specify these keywords with a list of forms. The
LISP system evaluates the list of forms and the tracer displays the
return values before, after, or before and .after each call to the
function or macro being traced. The tracer displays the values one
per line and indents them to match other tracer output. If the forms
to be evaluated cause an error, the debugger is invoked.

4.7.4.3 1Invoking the Stepper - You can cause the tracer to invoke the
stepper by specifying the :STEP-IF keyword. You must specify this
keyword with a form. The LISP system evaluates the form before .each
call to the function or macro being traced. 1If the form returns a
value other than NIL, the tracer invokes the stepper.

4-36

O

O

-

O

A

O

DEBUGGING FACILITIES

4.7.4.4 Removing Information from Tracer Output - You <can remove
information from tracer output by specifying the :SUPPRESS-IF keyword.
You must specify this keyword with a form. The LISP system evaluates
the form before each call to the function or macro being traced. If
the form returns a value other than NIL, the tracer does not display
the arguments and the return value of the function or macro being
traced.

4.7.4.5 Defining When a Function or Macro Is Traced - You can define
when a function or macro, for which tracing is enabled, is to be
traced by specifying the :DURING keyword. You must specify this
keyword with a function or macro name or a list of function and/or
macro names. The functions and macros for which the tracer is enabled
are traced only when they are called (directly or indirectly) from
within one of the functions or macros whose names are specified with
the keyword.

4.7.5 Tracer Variables

You can use two special variables with the TRACE macro. These are
helpful debugging tools: *TRACE-CALL* and *TRACE-VALUES*. With these
variables and the preceding tracer options, you can control when to
debug or step depending on the arguments to a function or the return
values from a function. '

4.7.5.1 *TRACE-CALL* - The *TRACE-CALL* variable 1is bound to the
function or macro call being traced. The following example shows how
to use the variable:

Lisp> (DEFUN FUNCTION-X (X)
(IF (¢ X 3) 1
(+ (FUNCTION-X (- X 1)) (FUNCTION-X (- X 2)))))
FUNCTION-X

Lisp> (TRACE (FUNCTION-X

:PRE-DEBUG-IF (< (SECOND *TRACE-CALL*) 2)

:SUPPRESS-IF T))
(FUNCTION-X)
Lisp> (FUNCTION-X 5)
Control Stack Debugger
Frame #26: (DEBUG)
Debug 1> DOWN
Frame #21: (BLOCK FUNCTION-X

(IF (¢ X 3) 1
(+ (FUNCTION-X (- X 1))
(FUNCTION-X (- X 2)))))

4-37

DEBUGGING FACILITIES

Debug 1> DOWN

Frame #19: (FUNCTION-X 3)
Debug 1> (CADR (DEBUG-CALL))
3

Debug 1> CONTINUE

Control Stack Debugger
Frame #19: (DEBUG)

Debug 1> CONTINUE

5

@ In this example, FUNCTION-X is first defined.

@ Then the TRACE macro 1is <called for FUNCTION-X. TRACE 1is
specified to invoke the debugger if the first argument to
FUNCTION-X (the function call being traced) is 1less than 2.
Since the PRE-DEBUG-IF option is specified, the debugger is
invoked before the call to FUNCTION-X. As the :SUPPRESS-IF
option has a value of T, calls to FUNCTION-X do not cause any
trace output.

e The DOWN command moves the pointer down the control stack.

@ The DEBUG-CALL function returns a 1list representing the
current debug frame function call. 1In this case, the CADR of
the list is 3. This accesses the first argument to the
function in the current stack frame.

e Finally the CONTINUE command continues the evaluation of
FUNCTION-X.

4.7.5.2 *TRACE-VALUES* - The *TRACE-VALUES* variable is bound to the
list of wvalues returned by a traced function. Consequently, the
variable can be used only with the :POST- options to the TRACE macro.
Before being bound to the return values, the variable returns NIL.
The following example shows how to use the variable:

Lisp> (TRACE (FUNCTION-X
: POST-DEBUG-IF (> (FIRST *TRACE-VALUES*) 2)))

(FUNCTION-X)

Lisp> (FUNCTION-X 5)

$#4: (FUNCTION-X 5)

. #11: (FUNCTION-X 4)

. . #18: (FUNCTION-X 3)

. . . #25: (FUNCTION-X 2)

e« . #25=> 1

. . . #25: (FUNCTION-X 1)

e o . #25=> 1

. . #18=> 2

. . #18: (FUNCTION-X 2)

. . $#18=> 1

4-38

DEBUGGING FACILITIES

Control Stack Debugger
Frame #12: (DEBUG)
Debug 1> BACKTRACE
-- Backtrace start --
Frame #12: (DEBUG)
Frame #7: (BLOCK FUNCTION-X
' (IF (< X 3) 1
(+ (FUNCTION-X (- X 1))
(FUNCTION-X (- X 2)))))
Frame #5: (FUNCTION-X 5)
Frame #1: (EVAL (FUNCTION-X 5))
-- Backtrace ends --
Frame #12: (DEBUG)
Debug 1> CONTINUE
. #11=> 3
#11: (FUNCTION-X 3)
#18: (FUNCTION-X 2)
#18=> 1
. . #18: (FUNCTION-X 1)
$18=> 1
#11=> 2
Control Stack Debugger
Frame #5: (DEBUG)
Debug 1> CONTINUE
#4=> 5

TRACE is called for FUNCTION-X (the same function as

in the

previous example) to start the debugger if the value returned

exceeds 2. The value returned exceeds 2 twice -- once
returns 3 and at the end when it returns 5.

4-39

when it

CHAPTER 5
PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

Pretty printing clarifies the meanings of LISP objects” by modifying

<::) their printed representations. It inserts indentation and line breaks
at appropriate places, making pretty-printed output easier to read
than output produced with standard print functions. Pretty printing
is an alternative to standard printing for all LISP objects, but is
particularly useful for printing LISP code, complex data lists, and
arrays.*

When pretty printing is enabled, any output function that prints
output can potentially perform pretty printing. The following example

contrasts the standard and pretty-printed treatments of a COND
<:> structure: -

Lisp> (SETF T-QUESTION ’(COND ((EQUAL TERMINAL
'VT240) START) (T (PRIN1 ’(WHAT TERMINAL TYPE ARE YOU
USING?)))))
(COND ((EQUAL TERMINAL (QUOTE VT240)) START) (T (PRIN1
(QUOTE (WHAT TERMINAL TYPE ARE YOU USING?)))))
Lisp> (PPRINT T-QUESTION)
(COND ((EQUAL TERMINAL ’'VT240) START)
<:> (T (PRIN1 ' (WHAT TERMINAL TYPE ARE YOU USING?))))

The first version (produced by the standard read-eval-print loop)
breaks the line at an awkward place and provides no indentation. Only
one line is being printed. The line is either wrapped or truncated,
depending on the operating system (VMS or ULTRIX-32) and the setting
of the terminal. The pretty-printed (PPRINT) version is more readable
because it starts a new 1line at the beginning of a nested list,
indenting the list to: line wup with the structure nested to the
equivalent level in the first line.

* VAX LISP pretty printing and the extensions to FORMAT are based on a
program described in the paper PP: A Lisp Pretty Printing System,
A.I. Memo No. 816, December, 1984. The paper and the program were

Qwritten by Richard C. Waters, Ph.D., of the MIT Artificial
Intelligence Laboratory.

5-1

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

This chapter describes four ways to print LISP objects:
e Section 5.1 tells how to pretty-print-objects. <:>

® Section 5.2 tells how to control the format of pretty-printed
objects using print control variables.
)
e Section 5.3 tells how to use the VAX LISP FORMAT directives
that support pretty-printing.

@ Sections 5.4 through 5.9 tell how you can extend the VAX LISP
print functions to handle specific structures and types of
structures by defining new print functions.

5.1 PRETTY PRINTING WITH DEFAULTS Q

. Three print functions let you pretty-print without explicitly wusing
print control variables:

e PPRINT formats an object and prints it to a stream.

© PPRINT-DEFINITION formats the function object of a symbol and
prints it to a stream.

@ PPRINT-PLIST formats the property list of a symbol and prints <:>
it to a stream.

Use PPRINT when you want to let the system decide how best to format
an object. PPRINT prints whatever object is given as its argument.
The COND structure at the beginning of this chapter is an example of
the output format specified for 1lists starting with a particular
symbol. ‘

You can use PPRINT-DEFINITION to print the definition of a LISP <::>
function. Supply the function name as the argument, as follows:
Lisp> (DEFUN BELONGS (THIS PILE) (COND ((NULL PILE) NIL) ((EQUAL
THIS (CAR PILE)) PILE) (T (BELONGS THIS (CDR PILE)))))
BELONGS
Lisp> (PPRINT-DEFINITION ’'BELONGS)
(DEFUN BELONGS (THIS PILE)
(COND ((NULL PILE) NIL)
((EQUAL THIS (CAR PILE)) PILE)
(T (BELONGS THIS (CDR PILE)))))

If the object to be printed is the property 1list of a symbol, wuse
PPRINT-PLIST, as shown in the following example:

Lisp> (SETF (GET 'PLACES 'CITIES) ’(AUGUSTA SACRAMENTO)) - <::>
(AUGUSTA SACRAMENTO)

5-2

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

Lisp> (SETF (GET 'PLACES 'STATES) ' (MAINE CALIFORNIA))
<::> (MAINE CALIFORNIA)
Lisp> (PPRINT-PLIST ’'PLACES)

(STATES (MAINE CALIFORNIA)
CITIES (AUGUSTA SACRAMENTO))

PPRINT-PLIST prints only indicator-value pairs for which the®indicator
is accessible in the current package. PPRINT-PLIST emphasizes the
relationships between the indicator-value pairs.

5.2 HOW TO PRETTY-PRINT USING CONTROL VARIABLES

VAX LISP supports the global print control variables included in
COMMON LISP. In addition, VAX LISP provides three variables that
<::>affect only pretty-printed output:

® *PRINT-RIGHT-MARGIN*
@ *PRINT-MISER-WIDTH%*
® *PRINT-LINES*

By changing the values of these variables, you can adjust
<::>pretty—printed output to suit a variety of situations.

You can also specify values for these three variables in calls to the
WRITE and WRITE-TO-STRING functions. These functions have been
extended to accept the following keyword arguments:

:RIGHT-MARGIN
tMISER-WIDTH
:LINES

<:>If you specify any of these arguments, the corresponding special
variable is bound to the value you supply with the argument before any
output is produced.

5.2.1 Explicitly Enabling Pretty Printing

When the COMMON LISP variable *PRINT-PRETTY* is non-NIL, it enables
pretty printing. If you set *PRINT-PRETTY* to T, you can pretty print
by calling any print function. The LISP read-eval-print loop will
also pretty-print when *PRINT-PRETTY* is non-NIL.

The following example shows the effect of a PRIN1 function call when
pretty printing is enabled:

5-3

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

Lisp> (SETF *PRINT-PRETTY* T)

T O
Lisp> (PRIN1 ' ((TIGER TIGER BURNING BRIGHT) (IN THE FORESTS OF

THE NIGHT) (WHAT IMMORTAL HAND OR EYE) (COULD FRAME THY FEARFUL
SYMMETRY)))

((TIGER TIGER BURNING BRIGHT)

(IN THE FORESTS OF THE NIGHT)

(WHAT IMMORTAL HAND OR EYE)

(COULD FRAME THY FEARFUL SYMMETRY))

You can also enable pretty printing by specifying a non-NIL value for
the :PRETTY keyword in functions such as WRITE and WRITE-TO-STRING.

5.2.2 Limiting Output by Lines

Pretty printing lets you abbreviate output by controlling the number<::>
of lines printed. With the variable *PRINT-LINES* set to any integer
value, the print function you use stops after printing the specified
number of lines. The output stream replaces omitted output with the
characters " ...". Abbreviation by number of lines occurs only when
pretty printing is enabled. See Section 5.7 for more details on
abbreviating output.
The following example shows pretty-printed output with *PRINT-LINES*
set to 2. <:>

Lisp> (SETF *PRINT-LINES* 2)

2

Lisp> (SETF *PRINT-PRETTY* T)

T

Lisp> (PRINT ’((IN WHAT DISTANT DEEPS OR SKIES) (BURNT THE FIRE

OF THINE EYES) (ON WHAT WINGS DARE HE ASPIRE) (WHAT THE HAND

DARE SEIZE THE FIRE))) Q

((IN WHAT DISTANT DEEPS OR SKIES)
(BURNT THE FIRE OF THINE E ...

e

5.2.3 Controlling Margins

The *PRINT-RIGHT-MARGIN* variable 1lets you adjust the width of
pretty-printed output. The value should be an integer; it specifies
the exclusive upper limit on column numbers. With the left margin at
0, *PRINT-RIGHT-MARGIN* specifies the number of columns in which you
can print. The default value, NIL, causes the print functions to
guery the output stream for the right margin value. The default
varies, but is always appropriate to the output device.

Output may exceed the right margin if the printer. encounters -a 1long
symbol name or string. The left margin is normally 0, but you can

5-4

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

change it by using logical blocks with the FORMAT function to indent

<::> (see Section 5.3).

5.2.4 Conserving Space with Miser Mode

Miser mode can help you avoid running out of horizontal space when you
print complicated structures. Pretty printing adds line breaks and
indentation to output to indicate levels of nesting, so that deeply
nested structures often wuse wup much of the line width. Miser mode
conserves line width by minimizing indentation and inserting new lines
where possible. You can wuse this feature by setting the variable
PRINT-MISER-WIDTH to an integer value two or three times the 1length
of the longest symbol in the output (usually a value between 20 and 40
is appropriate).

<:> The system subtracts the value of *PRINT-MISER-WIDTH* from the right
margin of the output stream to determine the column at which miser
mode takes effect. In other words, miser mode becomes effective when
the total line width available for printing after indentation is less
than the value of *PRINT-MISER-WIDTH*. You can set

PRINT-MISER-WIDTH to NIL to disable miser mode. See Section 5.8 for
more details.

<:> The default value of *PRINT-MISER-WIDTH* is 40.

5.3 EXTENSIONS TO THE FORMAT FUNCTION

VAX LISP provides eight FORMAT directives in addition to those
specified in COMMON LISP. The added directives allow you to specify:

<::> e Logical blocks, which are groupings of related output tokens

@ Multiline mode new lines, which result in new lines if output
cannot fit on one line ’

e Indentation, which aids in indenting portions of a form
Table 5-1 lists and briefly describes the FORMAT directives that VAX
LISP provides. This section provides a guide to their use. The
section presupposes a ‘thorough knowledge of the LISP FORMAT function.
See COMMON LISP: The Language for a full description of FORMAT.
Use the FORMAT function as follows:
FORMAT destination control-string &REST arguments
(::>This function formats the arguments according to the format you

specify with directives in the control string. destination specifies

5-5

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

the output stream. The arguments identify the objects to be operated
on by the control string. The sections that follow describe the
application of these directives and the effects of the colnn and
at-sign modifiers on them.

Table 5-1: Format Directives Provided by VAX LISP

Directive Effect

~

W Prints the corresponding argument wunder direction of
the current print variable values.

Begins a logical block. Depending on modifiers, this
directive causes FORMAT to print one or more of the
arguments following the control string.

. Ends a logical block.

Specifies a multiline mode new line. This directive is
effective only in a logical block.

nI Sets indentation to n columns after the 1logical block
or after the prefix. This directive is effective only
in a logical block.

“n/FILL/ Prints the elements of a list with as many elements as
possible on each line. If n is 1, FORMAT encloses the
printed 1list in parentheses. This directive is
effective only in a logical block.

“n/LINEAR/ If the elements of the list to be printed cannot be
printed on a single line, this directive prints each
element on a separate line. If n is 1, FORMAT encloses
the printed 1list in parentheses. This directive is
effective only in a logical block.

“n,m/TABULAR/ Prints the list in tabular form. If n is 1, FORMAT
encloses the 1list in parentheses; m specifies the
column spacing. This directive is effective only in ‘a
logical block.

These FORMAT directives provide the sole means of performing pretty
printing in VAX LISP. All functions that explicitly perform pretty
printing (for example, PPRINT and PPRINT-DEFINITION) do so by wusing
these directives. Objects printed with FORMAT are printed normally
unless pretty printing is enabled. Pretty printing is enabled when
both the following conditions exist:

5-6

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

1. A logical block is started.

<::> 2. *PRINT-PRETTY* is non-NIL, or the colon modifier is specified
in the logical block directive (7:!).

Nothing prevents you from starting a logical block when *PRINT-PRETTY*
is NIL. However, any conditional new lines or indentation'specified
within the logical block will be ignored. This feature results in
normal-looking output, as opposed to pretty-printed output. By
allowing this flexibility, FORMAT lets you use one control string to
format data, and the data is either printed normally or
pretty-printed, according to the value of *PRINT-PRETTY*.

5.3.1 Using the WRITE FORMAT Directive

<::>USe the "W FORMAT directive to print an element when you want to use
the current values of the print control variables. The argument for
"W can be any LISP object. In contrast, "A and S specify the values
of print control variables.

You can use up to four prefix parameters with "W to pad the printed
object:

<::> “mincol,colinc,minpad, padcharw

For an explanation of these parameters, see the description under
"FORMAT Directives Provided with VAX LISP" in Part II of this manual.

The colon modifier (7 :W) binds the following print control variables
for the duration of the WRITE: *PRINT-ESCAPE* to T, *PRINT-PRETTY* to
T, *PRINT-LENGTH* to NIL, *PRINT-LEVEL* to NIL, and - *PRINT-LINES* to
NIL. The following example contrasts the effects of using "W and " :W.

<:> Lisp> (SETF *PRINT-PRETTY* NIL)
NIL
Lisp> (SETF *PRINT-ESCAPE* NIL)
NIL
Lisp> (SETF *PRINT-LENGTH* 2)
2

Lisp> (SETF COLORS ' (("Yellow" "Purple" "Orange" "Green") ("Aqua"
"Pink" "Beige" "Buff") ("Peach" "Violet" "Chartreuse")))

Lisp> (FORMAT T "“W" COLORS)
((Yellow Purple ...) (Aqua Pink ...) ...)
NIL
Lisp> (FORMAT T "™ :W" COLORS)
(("Yellow" "Purple" "Orange" "Green")
Q ("Aqua" "Pink" "Beige" llBuffll)
("Peach" "violet" "Chartreuse"))

5-7

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

The first FORMAT call truncates the first two sublists to two <colors
and truncates the outer list to two sublists. This truncation occurs<::>
because *PRINT-LENGTH* is 2. The first FORMAT call omits guotation
marks because *PRINT-ESCAPE* is NIL. The second FORMAT call produces

the full list of colors and includes quotation marks, because it
implicitly sets *PRINT-LENGTH* to NIL and *PRINT-ESCAPE* to T. The
second FORMAT call also indents the lists because it implicitly sets
PRINT-PRETTY to T.

5.3.2 Controlling the Arrangement of Output

Two concepts support the dynamic arrangement of output for pretty
printing: logical blocks and conditional new lines. Logical block
directives divide the total output into hierarchical groupings, which

are referred to as logical blocks or subblocks. The goal of FORMAT is <:>
to print an entire logical block (including all its subblocks) on one
line. If pretty printing is enabled, the logical block is printed on

one line only if the logical block fits between the current 1left and
right margins. Printing all the output on one line is referred to as
single-line mode printing.

The output for a logical block may not fit on one 1line when pretty
printing. In this case, the block must be subdivided into sections at
points where it may be split into multiple - lines. Conditional new
line directives specify these points. Multiline mode printing is the <:>
name given to the condition where a logical block must occupy multiple
lines.

When pretty printing is enabled, FORMAT buffers the contents of a
logical block wuntil it can decide whether to use single-line mode or
multiline mode printing.

A third mode, miser mode, is described briefly in Section 5.2.4 and in
detail in Section 5.8. <:>

Use the ! and ©. directives to specify a logical block in the form: -
“tblock™.

where block can include any FORMAT directives. A logical block takes
one argument from the FORMAT argument list. If that argument is a
list, any directives within the logical block that take arguments take
them from that list, as shown in the following example:

Lisp> (SETF *PRINT-RIGHT-MARGIN* 40)
40 \ :

Lisp> (SETF *PRINT-PRETTY* T)

T

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

i Lisp> (FORMAT T "~ !“W." ' ((STARS (BETELGEUSE
(;:) DENEB SIRIUS)) (PLANETS (MERCURY VENUS EARTH
MARS JUPITER SATURN NEPTUNE PLUTO))))
(STARS (BETELGEUSE DENEB SIRIUS))
(PLANETS (MERCURY VENUS EARTH MARS
JUPITER SATURN URANUS NEPTUNE
PLUTO))

The logical block takes the entire 1list as its argument. The "W
directive within the logical block causes FORMAT to pretty-print the
list because *PRINT-PRETTY* is set to T.

I1f the argument is not a list, the 1logical block 1is effectively
replaced by the "W directive.

You can alter the directive to start a logical block (7!) by adding
two modifiers. When the directive includes a colon (T:!), the
directive sets *PRINT-PRETTY* and *PRINT-ESCAPE* to T and
PRINT-LENGTH, *PRINT-LEVEL*, and *PRINT-LINES* to NIL for all the
printing controlled by the logical block.

When the ! directive includes an at-sign (7@!), the directives
within the 1logical block take successive arguments from the FORMAT
argument list. The logical block uses up all the arguments, not just
a single list argument. Therefore, no directives that take arguments
from the argument list can appear after a logical block modified by an

<:>at-sign in the logical block directive (see the last example in this
section). You can use the " directive inside a 1logical block to
check whether the 1logical block arguments have been reduced to a
non-NIL atom. See Section 5.9 for information on handling improperly
formed argument lists.

The output associated with any FORMAT directive is subject to pretty
printing when the directive occurs within a 1logical block and
PRINT-PRETTY is non-NIL.

A logical block defines an indentation level and can define a prefix
and a suffix. By default, when pretty printing is enabled, the
indentation level is the position of the first character in the
logical block. Each 1line following the first line in the logical
block is printed preserving indentation and per-line prefixes, so that
the first character in the 1line normally lines up with the first
character in the block following the prefix. However, no default
prefix or suffix is associated with a logical block.

You can create nested logical blocks within a logical block, using the
“tblock™. directive. For example:

O

5-9

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

Lisp> (SETF *PRINT-RIGHT-MARGIN* 70)

0 O
Lisp> (SETF *PRINT-PRETTY* T)

T

Lisp> (FORMAT T ""!Stars: “!”S "S”. Planets: "!7s "s~.7."

' ((BETELGEUSE DENEB) (MARS JUPITER)))
Stars: BETELGEUSE DENEB Planets: MARS JUPITER

In this example, two logical blocks are created within the principal
logical block. Each 1logical block wuses the next argument for
printing:

® The enclosing logical block uses the elements of the principal
list ((BETELGEUSE DENEB) (MARS JUPITER)) as its arguments.

e The first inner logical block uses the elements of . the 1list
(BETELGEUSE DENEB) as its arguments. .

@ The second inner logical block uses the elements of the 1list
(MARS JUPITER) as its arguments.

Lisp> (FORMAT T "":!Stars: "!”S 7S§”. Planets: "!"s "s~.7."
' ((BETELGEUSE DENEB) (MARS JUPITER)))
Stars: BETELGEUSE DENEB Planets: MARS JUPITER

In this example, the colon in the 7:! directive enables pretty
printing implicitly, producing the same output as the previous (:)
example.

Lisp> (SETF *PRINT-PRETTY* T)
. .
Lisp> (FORMAT T "“@!~S ~%S ~3~S ~3~s~."
' (BETELGEUSE DENEB SIRIUS) 'POLARIS 'VEGA 'ALGOL

" ALDEBERAN)
(BETELGEUSE DENEB SIRIUS) '
POLARIS (::)
VEGA
ALGOL

In this example, the at-sign causes the 1logical block to wuse all
following arguments. Unneeded arguments are used up by the logical
block but not printed. The first S applies to the first argument
(the list (BETELGEUSE DENEB SIRIUS)). The remaining three ~S
directives apply to POLARIS, VEGA, and ALGOL. ALDEBERAN goes
unprinted, because there is no corresponding directive.

Lisp> (FORMAT T ""@!Stars: "!”S "S". Planets: "!7s "s7.7.".
' (BETELGEUSE DENEB) ' (MARS JUPITER))
Stars: BETELGEUSE DENEB Planets: MARS JUPITER
In this example the at-sign in the outermost logical block directive <::>
("@!) directs the logical block to use all the arguments. The first

5-10 -

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

inner logical block uses the elements of the list (BETELGEUSE DENEB);
the second inner logical block uses the elements of the list (MARS
JUPITER).

5.3.3 Controlling Where New Lines Begin

Five FORMAT directives let you specify places where new 1lines can

start according to the demands of the situation. Each directive

delimits a section in a logical block.

® The "% directive produces an wunconditional new line. When
used within a logical block, the directive preserves
indentation and per-line prefixes.

<:> ® The "& directive produces a fresh line. When used within a

logical block, the directive preserves indentation and
per-line prefixes.

@ The "_ directive produces a multiline mode new line when used
within a logical block.

® The ":_ directive'produces an if-needed new 1line when used
within a logical block.

<:> @ The "@_ directive produces a miser-mode new 1line when wused

within a logical block.

You can specify unconditional new lines (7%) and fresh lines ("&) if
you know in advance how the text should be laid out. If a new line is
produced by one of these directives when the FORMAT function is
printing a 1logical block, FORMAT prints the logical block in the
multiline mode, preserving indentation and per-line prefixes.

(::ﬁhe “& directive specifies a fresh 1line, whether or not pretty

printing 1is enabled. If the 7& directive occurs inside a logical
block when pretty printing is enabled and any output is on the 1line -
other than prefixes and indentation, the FORMAT call starts a fresh
line, preserving indentation and per-line prefixes. The following
examples show the use of the "% and “& directives:

5-11

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

Lisp> (FORMAT T "Stars™:!;7@€;7%° S "%°S "% s™."
" (BETELGEUSE DENEB SIRIUS))

Stars;
; BETELGEUSE
; DENEB
; SIRIUS

NIL

Lisp> (FORMAT T "Stars™:!;"@;”& S &S ~&"S™."
: ' (BETELGEUSE DENEB SIRIUS))

Stars; BETELGEUSE.
; DENEB
; SIRIUS

The first FORMAT call starts a new line after the prefix ";", because
the “% directive starts a new line wherever the directive occurs.
Replacing the "% directive with the "& directive changes the output,
because the fresh line is not needed after the prefix.

The remaining three new line directives offer flexibility because they

are conditional. However, they have no effect on output (except
length abbreviation -- see Section 5.7.1) when pretty printing is not
enabled.

The "_ directive (multiline mode new line) starts a new 1line if the
output for the enclosing logical block is too long to fit on one line
or if any other directive in the logical block causes a new line.
When the output is too long, FORMAT uses multiline mode, and every "~ _
directive in a logical block starts a new 1line. The 7“:_ directive
(if-needed new 1line) produces a new line if it is needed: if the
following section of output is too long to fit on the current line.
The 7“@_ directive (miser-mode new line) produces a new line if pretty
printing is enabled with miser mode in effect (see Section 5.8 for
details). The FORMAT function ignores the three conditional new line
directives when they occur outside a logical block.

The following example shows how you can specify a multiline mode new
line and an if-needed new line:

Lisp> (SETF *PRINT-RIGHT-MARGIN* 16)
16
Lisp> (FORMAT T "~:!S ~“_"S ~:_"§s ~_"s~."
' (BETELGEUSE ALDEBERAN MERCURY JUPITER))
BETELGEUSE
ALDEBERAN
MERCURY

JUPITER

This FORMAT function produces output in the multiline mode, because
the output will not £fit on one line. The multiline mode new line

directives ("_) produce a new line for each element. The ~:_

directive directs FORMAT to start a new line before MERCURY if needed
(and a new line is needed).

5-12

O

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

You can produce printed output that fills up the space available in
each line by wusing the at-sign (@) modifier with the directive that
ends the logical block (" !block™@.). This modifier causes FORMAT to
start a new line if needed following every blank space or tab and is
equivalent to inserting a ":_ directive after each element to be
printed, as shown in the following example: .
Lisp> (SETF *PRINT-RIGHT-MARGIN* 25)
25
Lisp> (FORMAT T ""@:!ANTARES ALPHECCA ALBIREO CANOPUS CASTOR
POLLUX MIRZAM ALGOL BELLATRIX CAPELLA MIRA
MIRFAK DUBHE POLARIS "@.")
ANTARES ALPHECCA ALBIREO
CANOPUS CASTOR POLLUX
MIRZAM ALGOL BELLATRIX
CAPELLA MIRA MIRFAK DUBHE

<:> POLARIS

5.3.4 Controlling Indentation

With pretty printing enabled, a call to FORMAT indents the output for
a logical block so that the first character in each succeeding line
falls under the first character following the prefix in the first
line. When pretty printing is not enabled, the FORMAT call does not
produce indentation, and the indentation directive has no effect.

Use the "nI directive or the "n:I directive if you want to change the
standard pretty-printed indentation. The "nI directive causes FORMAT
to indent subsequent lines n spaces from the position of the first
character in the 1logical block. The "n:I directive, on the other
hand, causes FORMAT to indent subsequent 1lines n spaces from the
output column corresponding to the position of the directive. If you
omit the parameter n, the default is 0. Although this parameter can
be 1less than 0 when used with the colon, the indentation cannot move
to the 1left of the first character in the 1logical block. An
indentation directive affects only indentation produced on subsequent
new lines.

The following example shows several variations of the indentation
directive:

Lisp> (SETF *PRINT-RIGHT-MARGIN* 15)
15 .
Lisp> (FORMAT T "":!7s "217:_"s ":I1"s “_"s "117_"s™."
' (BETELGEUSE DENEB SIRIUS VEGA ALDEBERAN))
BETELGEUSE
DENEB SIRIUS
VEGA

O ALDEBERAN

5-13

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

~

DENEB lines up under the T in BETELGEUSE, because the directive
produces a new line and "2I causes an indentation of 2 spaces past the
beginning of the block. . The ":I directive for the third argument sets
the indentation to the column of the first S in SIRIUS, so that the Vv
of VEGA lines up with the S. ALDEBERAN lines up with the first E in
BETELGEUSE, because the 71I directive resets the 1ndentat10n to one
column past the first character in the logical block.

The "I directives only set the indentation. They do not start new
lines and they do not take effect until new lines begin. Therefore,
in the directives for DENEB and ALDEBERAN, the indentation directives
precede the new line directives.

5.3.5 Producing Prefixes and Suffixes

You can specify FORMAT control strings that add prefixes and suffixes
to the printed output produced for a logical block. Several options
are available. :

If you divide the format control string into three sections by
inserting the 7; directive twice, the string will specify a prefix and
a suffix, as follows: “lprefix” ;body” ;suffix”.. The first ~;
directive marks the end of the prefix; the second marks the beginning
of the suffix. If you omit the second ~; directive, no suffix Iis
specified. Although the body can be any FORMAT control string, the
prefix and suffix cannot include FORMAT directives.

When a FORMAT call prints output for a logical block that includes a
prefix and pretty printing is enabled, the second line of the output
is indented so that the second line lines up with the first character
in the block following the prefix. When the logical block includes a
suffix, the FORMAT call always prints the suffix at the end, even if
abbreviation directives eliminate some of the body of the block.

In the following examples, "Starsv<" forms the prefix, and ">" forms
the suffix.

Lisp> (FORMAT T ""!Stars <";78 "%"s "_"8";>"."
' (SIRIUS VEGA DENEB))
Stars <SIRIUS

VEGA

DENEB>
NIL
Lisp> (SETF *PRINT-LENGTH* 2)
2

Lisp> (FORMAT T ""!Stars <7;78 "%7s “_"s";>~."
' (SIRIUS VEGA DENEB))
Stars <SIRIUS
VEGA...>

5-14

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

In the second example, FORMAT truncates the 1list to two elements,
ecause *PRINT-LENGTH* 1is set to 2 (see Section 5.7), but it still
dds the suffix after the last list element. VEGA 1lines up under

SIRIUS in the first column for the body of the logical block.

You can specify the prefix parameter 1 in the logical block ‘directive
("1!block™.), causing the FORMAT call to wuse parentheses for the
prefix and suffix, as shown:

Lisp> (FORMAT T "71:!"s "&7s~."

" (CASTOR POLLUX))

(CASTOR

POLLUX)

You can create per-line prefixes in a logical block by specifying the

at-sign modifier in the 7; directive used to indicate the end of the

orefix (7@;). This modifier causes FORMAT to repeat the prefix at the
<::peginning of each line, as shown in the following example:

Lisp> (FORMAT T "7:!1<<7@;7S "%7S "_7"8 7_"s7;>»™."
' (ALGOL ANTARES ALBIREO ALPHECCA))

<<ALGOL

<<ANTARES

<<ALBIREO

<<ALPHECCA>>
<::>he prefixes and the list elements line up.

If you nest logical blocks, you can specify a prefix with each block,
as shown:

Lisp> (FORMAT T "":!Bright stars™; "@!<<"@;”S "s "%"s ~
87T .7
still twinkle.™."
' (SIRIUS VEGA DENEB ALGOL))
(::) Bright stars <<SIRIUS VEGA
<<KDENEB ALGOL>> still twinkle.

The prefix and suffix for the outer logical block are "Bright stars"
‘and "still twinkle". The prefix for the inner logical block, "<«<", is
printed on each line after the indentation required by the prefix for
the first 1logical block. The suffix for the inner logical block,
">>", is printed once at the end of the block.

]

5.3.6 Using Tabs

You can use the tab directive to arrange output in columns. When
pretty printing is enabled, the "n,mT tab directive counts spaces,
(::}eginning with the indentation of the immediately enclosing logical
nlock. The integer n specifies a number of columns. The .integer m

5-15

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

specifies an increment: the number of columns to be added at one tim%,\\
until the column width is at least n columns. The at-sign modifier
makes the tab directive relative, so that “n,m@T counts spaces

beginning with the current output column. When pretty printing is not
enabled, on the other hand, the "n,mT directive counts spaces from the
beginning of the line, as specified in COMMON LISP. The defaults for
n and m are 1 (see COMMON LISP: The Language for details). *

In the iterative example that follows, the tab directive precedes the
if-needed new line directive:

Lisp> (SETF *PRINT-RIGHT-MARGIN* 29)
29
Lisp> (FORMAT T "Stars: ~:@!7{"s™~ 711718 "~ ~:_"}7.")
' (POLARIS DUBHE MIRA MIRFAK BELLATRIX CAPELLA ALGOL
MIRZAM POLLUX CANOPUS ALBIREO CASTOR ALPHECCA

ANTARES)) °
Stars: POLARIS DUBHE <:>
MIRA MIRFAK
BELLATRIX CAPELLA
ALGOL - MIRZAM
POLLUX CANOPUS
ALBIREO CASTOR

ALPHECCA ANTARES

the tab directives do not have to account for the fact that the whole

Since the tabs are éounted from the indentatioh of the logical block,<::>
block is shifted seven columns to the right.

5.3.7 Directives for Handling Lists

VAX LISP provides three FORMAT directives that simplify the printing
of lists. Each implicitly uses the "W directive repeatedly to print
elements. <:>

e If pretty printing is enabled, the "n/FILL/ directive causes -
FORMAT to £fill the available line width by inserting a space
and an if-needed new line after each list element except the
last. FORMAT encloses the list in parentheses if n is 1. 1If
pretty printing is not enabled, “n/FILL/ causes FORMAT to
print the output in .single-line mode.

e If pretty printing is enabled, the "n/LINEAR/ directive causes
FORMAT to print the list on a single line if the list fits.
Otherwise, FORMAT prints each element on a separate line.
FORMAT encloses the list in parentheses if n is 1. If pretty
printing is not enabled, "n/LINEAR/ causes FORMAT to print the -
output in single-line mode. . <::>

5-16

O

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

e If pretty printing is enabled, the “n,m/TABULAR/ direc
causes FORMAT to print the list as a table, using columns
spaces for list elements. The default wvalue for m is
FORMAT encloses the list in parentheses if n is 1. If pr
printing is not enabled, "n,m/TABULAR causes FORMAT to p

the output in single-line mode. .

The following examples show the kinds of formats you can produce
the list-handling directives:

Lisp> (SETF *PRINT-RIGHT-MARGIN* 36)
36
Lisp> (FORMAT T "Stars: ~@:!” /FILL/ ."
" (POLARIS DUBHE MIRA MIRFAK BELLATRIX CAPELLA ALGOL
MIRZAM POLLUX CANOPUS ALBIREO CASTOR ALPHECCA
ANTARES))
Stars: POLARIS DUBHE MIRA MIRFAK
BELLATRIX CAPELLA ALGOL
MIRZAM POLLUX CANOPUS
ALBIREO CASTOR ALPHECCA

ANTARES
NIL
Lisp> (SETF *PRINT-RIGHT-MARGIN* NIL)
NIL

Lisp> (FORMAT T "Stars: ~“@:!”/LINEAR/ ."
" (POLARIS DUBHE MIRA MIRFAK BELLATRIX CAPELLA ALGOL
MIRZAM POLLUX CANOPUS ALBIREO CASTOR ALPHECCA
ANTARES))
Stars: POLARIS

DUBHE

MIRA

MIRFAK

BELLATRIX

CAPELLA

ALGOL

MIRZAM

POLLUX

CANOPUS

ALBIREO

CASTOR

ALPHECCA

ANTARES
NIL
Lisp> (FORMAT T "Stars: ~“@:!70,20/TABULAR/ ."
" (POLARIS DUBHE MIRA MIRFAK BELLATRIX CAPELLA ALGOL
MIRZAM POLLUX CANOPUS ALBIREO CASTOR ALPHECCA

ANTARES))

Stars: POLARIS DUBHE MIRA
MIRFAK BELLATRIX CAPELLA
ALGOL MIRZAM POLLUX
CANOPUS ALBIREO CASTOR
ALPHECCA ANTARES

5-17

tive
of m
16.
etty
rint

with

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

5.4 DEFINING YOUR OWN FORMAT DIRECTIVES

™
VAX LISP lets you define your own FORMAT directives to supplement the <;/)
directives supplied with the system. Any FORMAT directive that you
define you can use in the control string argument to a FORMAT call.
DEFINE-FORMAT-DIRECTIVE name '
(arg stream colon at-sign
&OPTIONAL (parameterl default)
(parameter2 default)
eel)
&BODY forms

This macro defines a directive named name. After you define a FORMAT
directive, you can use it (whether or not pretty printing is enabled)
by including " /name/ in a FORMAT control string.

O

NOTE

If you do not specify a package with name when you
define the directive, name is placed in the current
package. If you do not specify a package when you
refer to the directive, the FORMAT directive looks in
the USER package for the directive definition.

O

For the body of the macro call, the symbols you supply for arg,
stream, colon, and at-sign are bound as follows:

e arg is bound to the argument list for the FORMAT directive you
define.

® stream is bound to the stream on which the printing is to be

done. <:>

e The colon and at-sign arguments are bound to NIL unless the
colon and at-sign modifiers are used with the directive. -

There must be one optional argument for each prefix parameter that is
allowed in the directive. A parameter argument will receive the
corresponding prefix parameter if it was specified in the directive.
Otherwise, the default value will be wused, as with all optional
arguments.

The body is evaluated to print the argument arg on the output stream.
A user-defined FORMAT directive can be useful because it provides a
level of indirection. In addition, you can call '‘the directive
repeatedly, which may save you some time coding and debugging. The
following example shows a format directive used to produce error -

messages: : . <:>

5-18

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

- Lisp> (DEFINE-FORMAT-DIRECTIVE EVALUATION-ERROR
<;/) (SYMBOL STREAM COLON-P ATSIGN-P
&OPTIONAL (SEVERITY 0))
(DECLARE (IGNORE ATSIGN-P))
(FRESH-LINE STREAM)
(PRINC (CASE SEVERITY

(0 "Warning: ")
(1 "Error: ")
(2 "Severe Error: "))
STREAM)
(FORMAT STREAM "7 :!The symbol S " :_does not have an ~
integer value.”%Its value is: ":_"S"."

SYMBOL (SYMBOL-VALUE SYMBOL))
(WHEN COLON-P
(WRITE-CHAR #\BELL STREAM)))
EVALUATION-ERROR
Lisp> (SETF PROCESS NIL)
<:> NIL

Lisp> (FORMAT T ""1:/EVALUATION-ERROR/" ’'PROCESS)
Error: The symbol PROCESS does not have an integer value.

Its value is: NIL
<BEEP>

This example shows the definition of a FORMAT directive, an
application of the directive, and the printed output. It assumes that
the current package is USER. The prefix parameter 1 in
"~ :/EVALUATION-ERROR/" indicates the severity of the error being
signaled. The colon in the FORMAT call produces a beep on the
terminal.

5.5 DEFINING PRINT FUNCTIONS FOR LISTS

You can use DEFINE-LIST-PRINT-FUNCTION to define functions to print
specific kinds of lists in formats of your choice. Functions that you
define are effective only if pretty printing is enabled. The printer
checks the first element of each list that it prints. 1If the first
element of a list matches the name of a list-print function, the 1list
is printed according to the format you have specified. Create a
list-print function according to the following format:

DEFINE-LIST-PRINT-FUNCTION symbol (list stream)
: &BODY forms
This macro defines or redefines a print function for lists for which
the first element is symbol. 1list is bound to the list to be printed
and stream is bound to the stream on which the printing is to be done.
The forms are evaluated to output list.

<:>For example, if you define a 1list-print function for the symbol
MY-SETQ, any 1list beginning with MY-SETQ will be printed in your

5-19

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

format when pretty-printing is enabled:

Lisp> (DEFINE-LIST-PRINT-FUNCTION MY-SETQ (LIST STREAM)
(FORMAT STREAM
LITWTS TITR{TWTS T WAL
LIST))
MY-SETQ
Lisp> (SETF BASE ' (MY-SETQ HI 3 BYE 4))
(MY-SETQ HI 3 BYE 4)
Lisp> (PRINT BASE)
(MY-SETQ HI 3 BYE 4)
(MY-SETQ HI 3 BYE 4)
Lisp> (PPRINT BASE)
(MY-SETQ HI 3
BYE 4)

When pretty printing is not enabled, the wvalue of BASE 1is printed
without regard to the list-print function defined for MY-SETQ. PPRINT
enables pretty printing, producing a representation of the value of
BASE using the specified list-print function.

VAX LISP pretty printing incorporates predefined list-print functions
for many standard LISP functions. However, if you define a list-print
function for a LISP keyword, your function will override the one built
into the system.

NOTE "

When you wuse DEFINE-LIST-PRINT-FUNCTION, you may
encounter two kinds of ‘output that you do not expect:

e In most cases, a list whose first element 1is the
symbol for a defined list-print function will be
printed in the format specified, even if the
context and meaning of the list are irregular and
the format is inappropriate. For example, if your
data says (LET 1IT BE) and LET is the symbol of a
defined list-print function, the resulting output
may be inappropriate.

e List-print functions are not used when you print a

list under control of a wuser-defined FORMAT
directive.

You can disable any defined 1list-print function by wusing the
UNDEFINE-LIST-PRINT-FUNCTION macro. Its format is:

UNDEFINE-LIST-PRINT-FUNCTION symbol

5-20

O

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

This macro disables the list-print function defined for symbol. The
following example disables the LET list-print function defined in the
example at the beginning of this section:

Lisp> (UNDEFINE-LIST-PRINT-FUNCTION MY-SETQ)
MY-SETQ

5.6 DEFINING GENERALIZED PRINT FUNCTIONS

Using generalized print functions, you can specify how any object 1is
pretty-printed, regardless of its form. Functions that you define and
enable are effective only if pretty printing is enabled. First you
define a function with DEFINE-GENERALIZED-PRINT-FUNCTION. Then you
enable the function. You can enable it globally, using
GENERALIZED-PRINT-FUNCTION-ENABLED-P. Or you can enable it locally,
using WITH-GENERALIZED-PRINT-FUNCTION.

Use the following format when you define a generalized print function:

DEFINE-GENERALIZED-PRINT-FUNCTION name (object stream)
predicate
&BODY forms

This macro defines or redefines a print function with the name name.
object 1is bound to the object to be printed. stream is bound to the
stream to which output is to be sent. predicate governs the
application of the generalized print function. The predicate is
operative on any LISP object. A generalized print function will be
used if it 1is enabled and the predicate evaluates to true on the
object to be printed. (NULL OBJECT) is the predicate in the sample
generalized print function shown at the end of this section. The
output stream can use your generalized print function to print any
object for which the predicate does not evaluate to NIL. forms
identifies arguments to be evaluated in the call to FORMAT.

If a generalized print function and a list-print function for the same -
symbol are both enabled, the generalized print function will be used.

A related function lets you test whether a specific generalized print
function is enabled:

GENERALIZED-PRINT-FUNCTION-ENABLED-P name

You can also use this function to globally change the status of the
function, using SETF as shown:

5-21

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

(SETF (GENERALIZED-PRINT-FUNCTION-ENABLED-P name) T)
or
(SETF (GENERALIZED-PRINT-FUNCTION-ENABLED-P name) NIL)

Use the WITH-GENERALIZED-PRINT-FUNCTION macro to locally ‘enable a
generalized print function in the following format:

WITH-GENERALIZED-PRINT-FUNCTION name &BODY forms

This macro locally enables the generalized print function named name
when it evaluates the specified forms.

The printer checks generalized print functions that have been enabled
in reverse order from the order of their enabling. This means that in
cases where two or more generalized print functions apply, the most
recently enabled function is used.

Enabling a generalized print function globally is less efficient than
enabling it 1locally, because the printer must check the predicate of
globally enabled print functions against every object to be printed.
If you enable the generalized print function locally, the printer
checks the function’s predicate against the object being printed only
during execution of the code within the macro, instead of on every
call to a print function. Since the read-eval-print 1loop 1is wused
often, the difference in efficiency can be significant.

Consider the following examples:

Lisp> (SETF *PRINT-RIGHT-MARGIN* 25)
25
Lisp> (GENERALIZED-PRINT-FUNCTION-ENABLED-P ’'PRINT-NIL-AS-LIST)
NIL
Lisp> (DEFINE-GENERALIZED-PRINT-FUNCTION PRINT-NIL-AS-LIST
(OBJECT STREAM)
(NULL OBJECT)
(PRINC "()" STREAM))
PRINT-NIL-AS-LIST
Lisp> (PRINT NIL)
NIL
NIL
Lisp> (PPRINT NIL)
NIL
Lisp> (WITH-GENERALIZED-PRINT-FUNCTION ’PRINT-NIL-AS-LIST
(PRINT NIL)
(PPRINT NIL))
NIL

()

5-22

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

Lisp> (SETF (GENERALIZED-PRINT-FUNCTION-ENABLED-P

Q " PRINT-NIL-AS-LIST) T)

i

O

T
LISP> (PPRINT NIL)
()

The first PRINT call prints NIL, because pretty printina is not
enabled. The first PPRINT call prints NIL, because the generalized
print function PRINT-NIL-AS-LIST is not enabled. The second PRINT
call prints NIL, because pretty printing is again not enabled. The
second PPRINT call prints (), because the generalized print function
is enabled 1locally and pretty printing is enabled. The third PPRINT
call prints (), because the generalized print function 1is enabled
globally and pretty printing is enabled.

NOTE

A generalized print function controls the printing of
an object only if the following conditions exist:

1. The generalized print function is enabled globally
or locally.

2. The predicate specified with DEFINE-GENERALIZED-
PRINT-FUNCTION is true.

3. The object to be printed does not come under
control of a user-defined FORMAT directive.

In cases where two or more generalized print functions
are applicable, only one is chosen. The one .chosen is
the most recently enabled (globally or locally)
generalized print function for which the predicate
specified with DEFINE-GENERALIZED-PRINT-FUNCTION is
true.

Generalized print functions are not used when vyou

print an object under control of a user-defined FORMAT
directive.

5.7 ABBREVIATING PRINTED OUTPUT

You can abbreviate printed output according to:
@ The length of the object to be printed
® The depth of nested logical blocks

@ The number of lines in the output

5-23

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

Lenyth and depth abbreviatior are supported in COMMON LISP and are
effective whether o¢r not pretty printing is enabled. 1In addition,
abbreviation based un the number of lines of output 1is supported in
VAX LISP; this is effective only when pretty printing is enabled.

5.7.1 Abbreviating Output Length

You can control the number of sections of printed output by setting

the *PRINT-LENGTH* variable. The value you supply specifies the
number of sections to be printed for any affected logical block. The
directives _, %, and "& mark the sections of a logical block (see
Section 5.3.3 for details). After the output stream prints
PRINT-LENGTH sections of a 1logical block, it prints an ellipsis
(...) and stops processing the logical block. If the 1logical block

is nested with other logical blocks, the output stream terminates only
the processing of the immediately enclosing logical block. Output is
not truncated if the value of *PRINT-LENGTH* is NIL.

The following example shows output abbreviation based on length:

Lisp> (SETF *PRINT-RIGHT-MARGIN* 47)
47
Lisp> (SETF *PRINT-LENGTH* 11)

11
Lisp> (SETF *PRINT-PRETTY* T) <:>
T
Lisp> (FORMAT T "Stars: "@!"{"w ™~ ":_"}"."
' (POLARIS DUBHE MIRA MIRFAK BELLATRIX CAPELLA ALGOL

MIRZAM POLLUX 'CANOPUS ALBIREO CASTOR ALPHECCA

ANTARES))
Stars: POLARIS DUBHE MIRA MIRFAK BELLATRIX

CAPELLA ALGOL MIRZAM POLLUX CANOPUS

ALBIREO ... :::

Each star name in the 1list constitutes a separate 1logical block
section. FORMAT prints " ..." after the eleventh star name to
indicate that the list has been abbreviated at that point.

5.7.2 Abbreviating Output Depth

Use the variable *PRINT-LEVEL* to control the depth of printed output.
PRINT-LEVEL specifies the lowest level of dynamically nested logical
blocks to be printed. When your program calls FORMAT recursively, the
output stream keeps track of the actual nesting level and abbreviates
output when the level reaches *PRINT-LEVEL*. The printed character
indicates where the stream has truncated the output. You can prevent .
depth abbreviation by setting *PRINT-LEVEL* to NIL. <:>

5-24

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

Dynamic nesting of logical blocks occurs frequently when you print
complicated structures. This nesting may not be obvious as you read
the program. For example, if you have defined 1list-print functions
for the primitives IF and PROGN, printing a program that uses a
combination of these primitives would involve dynamic nesting of
logical blocks, since each list print function uses the "W.directive
implicitly. The following example shows how the output stream
abbreviates the printing of a structure in accord with the value of
PRINT-LEVEL:

Lisp> (SETF *PRINT-LEVEL* 3)

3

Lisp> (PPRINT ' (LEVEL1 (LEVEL2 (LEVEL3 (LEVEL4 (LEVEL5))))))

(LEVEL1 (LEVEL2 (LEVEL3 #)))

Lisp> (SETF *PRINT-LEVEL* 2)

2

Lisp> (PPRINT ' (LEVEL1 (LEVEL2 (LEVEL3 (LEVEL4 (LEVEL5))))))

(LEVEL1 (LEVEL2 #))

Lisp> (PPRINT ’(LEVEL1 4 5 6 (LEVEL2 (LEVEL3 (LEVEL4
(LEVEL5))))))

(LEVEL1 4 5 6 (LEVEL2 #))

5.7.3 Abbreviating Output by Lines

You can control the number of lines printed in the output by setting
the *PRINT-LINES* variable. The value you supply specifies the number
of lines to be printed for the outermost logical block. The output
stream prints " ..." at the end of the last line to indicate where it
has truncated the output. If *PRINT-LINES* is NIL, the output stream
will not abbreviate the number of lines printed. This abbreviation
mechanism is effective only when pretty printing is enabled.

In the following example, printing stops at the end of the fourth
line:

Lisp> (SETF *PRINT-LINES* 4)
4
Lisp> (FORMAT T "Stars: " :!”/LINEAR/ ."
' (POLARIS DUBHE MIRA MIRFAK BELLATRIX CAPELLA ALGOL
MIRZAM POLLUX CANOPUS ALBIREO CASTOR ALPHECCA
ANTARES))
Stars: POLARIS
DUBHE
MIRA
MIRFAK ...

5-25

‘PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

5.8 USING MISER MODE

If you print large structures with deeply nested logical blocks, you
may find the miser mode useful. Indentation produced in the output by
the nesting of logical blocks, prefixes, and the "nI directive reduces
the line 1length available for printing. Miser mode helpss you avoid
running out of space and printing beyond the right margin. Miser mode
does not, however, guarantee the elimination of these problems.

Pretty printing uses single-line mode if the output fits on one 1line.
If the FORMAT control string permits new lines and the output requires
two or more lines, pretty printing normally uses multiline mode. The
printer determines whether to print a logical block in miser mode
according to the current column of the output at the beginning of the
logical block and the values of two variables:

@ *PRINT-RIGHT-MARGIN*

@ *PRINT-MISER-WIDTH*
PRINT-RIGHT-MARGIN specifies the 1location of the right margin.
PRINT-MISER-WIDTH specifies a number of columns before the right
margin. When the current output column at the beginning of a 1logical
block is equal to or greater than the difference between
PRINT-RIGHT-MARGIN and *PRINT-MISER-WIDTH*, then the logical block
is printed in miser mode. This condition occurs when the total

available line width is less than the value of *PRINT-MISER-WIDTH*, as
- shown in Figure 5-1.

COLUMN AT WHICH

PRINTER
ENTERS MISER MODE *PRINT-RIGHT-MARGIN#*

PRINT-MISER-WIDTH
Figure 5-1: Variables Governing Miser Mode

You can disable miser mode by setting *PRINT-MISER-WIDTH* to NIL.
Miser mode .saves space by:

© Ignoring indentation FORMAT directives

5-26

O

O

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

o Starting a new line at every conditional new line directive:
<:> Multiline mode new line (" _)
If-needed new line (7 :_)
Miser mode new line (T@_)

The two examples that follow contrast pretty printing in multiline
mode and miser mode:

Lisp> (SETF *PRINT-RIGHT-MARGIN* 60)
60
Lisp> (SETF *PRINT-MISER-WIDTH* 35)
35
Lisp> (FORMAT T "":!Stars with Arabic names: "S S "2717:_"s ~
~:IT@_"s T_7s T1i1v_"~st."
<:> ' (BETELGEUSE (DENEB SIRIUS VEGA)
ALDEBERAN ALGOL (CASTOR POLLUX) BELLATRIX)
Stars with Arabic names: BETELGEUSE (DENEB SIRIUS VEGA)

ALDEBERAN ALGOL
(CASTOR POLLUX)

BELLATRIX

NIL

Lisp> (FORMAT T ""!Stars with Arabic names: ":@!"S ":_"S ~©
st

“2717:_"s ":17@_"s "_"s "1i1”
Q ' (BETELGEUSE (DENEB SIRIUS VEGA)
ALDEBERAN ALGOL (CASTOR POLLUX) BELLATRIX)
Stars with Arabic names: BETELGEUSE
(DENEB SIRIUS VEGA)
ALDEBERAN
ALGOL
(CASTOR POLLUX)
BELLATRIX

<:>In the first output sample, FORMAT uses multiline mode. Miser mode is
never enabled, because the logical block begins at column 0 and miser
mode takes effect only if the column begins at column 25 (60 - 35). -
ALDEBERAN 1lines up with the T in BETELGEUSE, because the "27I
directive sets the indentation for following lines at column 27 and
the 7:_ directive produces a new line. The ":I7@_"S directive sets
the column for the next line at the level of the A in ALGOL. The 71I
directive controls the last argument, BELLATRIX, setting the
indentation to column 1.

'The second output example shows the effects of miser mode, because the
text in the outer logical block, "Stars with Arabic names:", causes
the inner logical block to begin at column 26. With
PRINT-MISER-WIDTH set to 35, FORMAT enables miser mode when the
logical block begins past column 25. FORMAT conserves space by
starting a new line at every multiline mode new line directive ("_)
and every if-needed new line directive (“:_). FORMAT also .inserts a

5-27

PRETTY PRINTING AND USING EXTENSIONS TO FORMAT

new line at the miser mode new line directive (T@_) and ignores the
indentation directives ("nI). : (::)

5.9 HANDLING IMPROPERLY FORMED ARGUMENT LISTS

VAX LISP provides a method for gracefully handling argument lists that
are improperly formed. The function of the "* directive, when used in
a logical block, differs slightly from the corresponding function in
COMMON LISP.

In COMMON LISP the "~ directive is used with the iteration directives
“{ and "} to check whether the argument list has been reduced to NIL.
If the list is NIL, iteration stops.

You can also use the "~ directive to check whether the argument list
for a logical block has been reduced to a non-NIL atom. If the check
shows that the argument list is a non-NIL atom, the printer prints
space-dot-space (.) and uses the "W directive to print the value of
the atom. FORMAT then stops processing the immediately enclosing
logical block, after printing the suffix (if one is there). No error
condition results. The following example shows the use of FORMAT to
print a dotted pair:

Lisp> (FORMAT T "~1:!~@{"8"~ ~}~." Q
* (CASTOR POLLUX DENEB . ALDEBERAN))
(CASTOR POLLUX DENEB . ALDEBERAN)

This feature serves as a useful debugging tool, because it 1lets the
FORMAT function work even when the argument list is improperly formed.

NOTE

When the ™" directive is included in a logical block, <:>
the FORMAT function checks whether the argument list

is a non-NIL atom, even when pretty printing is not

enabled.

5-28

CHAPTER 6
VAX LISP/ULTRIX IMPLEMENTATION NOTES

VAX LISP is an implementation of LISP that is based on COMMON LISP as
described in COMMON LISP: The Language. This chapter describes how
implementaton-dependent aspects of COMMON LISP are implemented on the
ULTRIX-32/32m operating systems. This chapter does not describe
implementation differences between VAX LISP/VMS (VAX LISP as
implemented on VMS) and VAX LISP/ULTRIX (VAX LISP as implemented on
ULTRIX). For such differences, see the VAX LISP/ULTRIX Release Notes.
These are on-line in the file /usr/lib/vaxlisp/lispnnn.mem, with nnn
standing for the VAX LISP/ULTRIX version number. For example,
lisp020.mem is the file containing the release notes for Version 2.0.

Most of the information in this chapter refers to subjects that COMMON
LISP: The Language refers to as implementation dependent. The purpose
of this chapter is to clarify the implementation specifics for the
following topics:

e Data representation

e Pathnames

e The garbage collector

e Input and output

] Keyboard functions that execute asynchronously when you type a
control character

e The compiler

e Functions and macros

NOTE

Complex numbers are documented in COMMON LISP: The
Language, but they are not implemented in VAX LISP.

6-1

VAX LISP/ULTRIX IMPLEMENTATION NOTES

T, NIL, and keywords are not legal function names 1in
VAX LISP.

VAX LISP supports only symbols that are in the package
named LISP.

6.1 DATA REPRESENTATION

COMMON LISP defines the data types implemented in VAX LISP but COMMON
LISP does not define implementation-dependent information related to
the data types. This section provides data type information specific
to VvVAX LISP. Complete descriptions of data types are provided in
COMMON LISP: The Language. The following data types require VAX LISP
implementation information: ‘

@ Numbers
@ Characters
® Arrays

@ Strings

6.1.1 Numbers

Sections 6.1.1.1 and 6.1.1.2 provide implementation information about
the integer and floating-point number data types.

6.1.1.1 Integers - COMMON LISP defines two subtypes of integers:
fixnums and bignums. The ranges of these two integer types depend on
the implementation. 1In VAX LISP, the integers in the range -2%%*29 to
2*¥%29-1 are represented as fixnums; integers not in the fixnum range
are represented as bignums. VAX LISP stores bignums as two'’s
complement bit sequences.

In VAX LISP, the EQ function returns T when it is called with two
fixnums having the same value. 4

The values of the COMMON LISP integer constants are implementation
-dependent. The names of the constants and the corresponding VAX LISP
values follow:

@ MOST-POSITIVE-FIXNUM -- 536870911

@ MOST-NEGATIVE-FIXNUM -- -536870912

6-2

O

VAX LISP/ULTRIX IMPLEMENTATION NOTES

NOTE

The range of integers represented as fixnums will
likely be cut in half in VAX LISP Version 3.0. That
is, integers in the range -268,435,456 to +268,435,456
(-2%*28 to 2**28-1) will be represented as fixnumg.
The current range for fixnums is =-2**29 to 2%*29-1,
Remember this note when placing FIXNUM declarations in
your programs. '

Descriptions of these constants are provided in COMMON LISP: The
Language.

]
(*]

e

ok

6.1.1.2 Floating-Point Numbers - COMMON LISP defines the following
types of floating-point numbers:

Short floating-point numbers
Single floating-point numbers
Double floating-point numbers

Long floating-point numbers

In VAX LISP, these four types are implemented with VAX floating data

types. Both the short and single floating-point numbers are

implemented as VAX F_floating data. Double floating-point numbers are

implemented as VAX G_floating data. Long floating-point numbers are

implemented as VAX H_floating data. For information on the VAX

floating data types, see the VAX Architecture Handbook.

Table 6-1 lists the types of COMMON LISP floating-point numbers, the
<::>corresponding VAX data types, and the number of bits allocated for the

exponent and significand of each floating-point type.

Table 6-1: VAX LISP Floating-Point Numbers

COMMON LISP Type VAX Type Exponent Significand

SHORT-FLOAT : F_floating 8 24

SINGLE-FLOAT F_floating 8 24

DOUBLE-FLOAT G_floating 11 53

LONG-FLOAT H_floating 15 113

O

6-3

VAX LISP/ULTRIX IMPLEMENTATION NOTES

NOTE

If your system does not have G and H floating-point
instructions, see the ULTRIX-32 Programmer’s Manual
Binder IIIA "System Managers" for information on how
to configure your system to use the g/h floating-point
emulator.

The wvalues of the COMMON LISP floating-point constants are
implementation dependent. You can use the values of these constants
to compare the range of values and the degrees of precision of the VAX
LISP floating-point types. Table 6-2 lists the names of the constants
and provides the actual hexadecimal values and the decimal
approximations for VAX LISP.

Table 6-2: Floating-Point Constants Q
Approximate
Hexadecimal Decimal
Constant Representation value
DOUBLE-FLOAT-EPSILON A0HONUAd AWVB3ICCH 1.,114-16
DOUBLE-FLOAT-NEGATIVE~EPSILON AW#00AUG ANBB3CCA 1.114-16
LEAST-NEGATIVE~DOUBLE-FLOAT nANYeueY 88vUBALA -5.56d~3¢¥9
LEAST-NEGATIVE~LONG-PLOAT HUVBAYYN AVOBUAYA “ﬂﬂﬂ“ﬂﬂ_ﬂ dgeasadl -8.41L-4933
LEAST-NEGATIVE-SHORT-FLOAT CITLLTEL - -2.94e¢-39 O
LEAST-NEGATIVE-SINGLE-FLOAT [TTLETLET) -2.98¢-39
LEAST~POSITIVE-DOUBLE-FLOAT 004PU0¥0 VUBENAL0 5.564-389
LEAST-POSITIVE-LONG-FLOAT AOAVUNUR BUBBOVAN YOANNUEY HIJVAAR) 8.41L-4933
LEAST-POSITIVE-SHORT-FLOAT uéuaao) 2.94e-39
LEAST-POSITIVE-SINGLE-FLOAT [LLEITLT] 2.94e-39
LONG-PLOAT-EPSILON VAGUBNAY GVPUBONAY ABOAVYVED RUBAIFIS 9.63L-35
_LONG-!LOAT-NBGAT!VB-!PSILON GUBUNALG FEOAUBNA OARANBWH OVOUIPIA 9.63L-35
MOST-NEGATIVE-DOUBLE~FLOAT PPFFFPPPF FPFPPPPPP -8.994387 O
MOST-NEGATIVE-LONG~-FLOAT FFFFPFFFF FPFFPFFF FPFFPPFP PPPPPPPP ~5.95L4931
MOST-NEGATIVE-SHORT-FLOAT FFFPFPFP - ~1.,76038
MOST-NEGATIVE-SINGLE-FLOAT PPPFPFFP -1.78e38
MOST-POSITIVE-DOUBLE~FLOAT FPFFFFPF FPPPFIPFP 8.994397
MOST-POSITIVE-LONG-FLOAT FPFPFFFF FFFPFFFF FFFFFFPP FFPPPIPPP 5.95L4931
HOST-POSITIVE~-SHORT-FLOAT FFFPIFFP ’ 1.74e38
MOST-POSITIVE-SINGLE-FPLOAT FFFPIFFP) 1.78e38
SHORT-FLOAT-EPSILON #nee348e 5.96¢-8
SHORT~FPLOAT-NEGATIVE-EPSILON 00603488 5.96e~-8
SINGLE-PLOAT-EPSILON $AUP348H 5.96e-8
SINGLE-FLOAT-NEGATIVE-EPSILON #40A3488 5.96e-8

Descriptions of these constants are provided in COMMON LISP: The <:>
Language.

6-4

VAX LISP/ULTRIX IMPLEMENTATION NOTES

(::) COMMON LISP allows an implementation to define a floating-point minus
zero. In VAX LISP, floating-point minus zero does not exist.

6.1.2 Characters

COMMON LISP defines characters as objects that have three attributes:
code, bits, and font. The code attribute specifies the way a
character is printed or formatted. The bits and font attributes
specify extra flags to be associated with a character.

In VAX LISP, the character attributes are defined as follows:

e The code attribute consists of eight bits and is encoded using
<:> the extended ASCII character set. However, the ULTRIX

operating system masks the eighth bit, which produces the same
effect as having specified 7-bit characters.

NOTE

You can prevent the masking of the eighth bit
by setting the terminal in RAW mode, but this

<:> is not recommended (see tty(4) in the
ULTRIX-32 Programmer’s Manual).

© The bits attribute consists of the four COMMON LISP bits:
CONTROL, HYPER, META, and SUPER.

@ The font attribute consists of four bits.

<:> NOTE

The CONTROL attribute bit has\ no association with
control characters in the ASCII character set.

The VAX LISP implementation of COMMON LISP functions that perform
character comparisons bases its comparisons on the numeric values that
correspond to the extended 8-bit ASCII character set. The character
, predicate functions and the rules that the functions use to compare
characters are described in COMMON LISP: The Language.

The ordering of two characters that have different bits and font
attributes and the same character code is undefined in VAX LISP.

<:> The COMMON LISP character constants that are the exclusive upper
limits on the = code, bits, and font attributes have

6-5

VAX LISP/ULTRIX IMPLEMENTATION NOTES

1

implementation-dependent values. The names of the constants and the
corresponding VAX LISP values are:

¢ CHAR-CODE-LIMIT -- 256

e CHAR-BITS-LIMIT -- 16
e CHAR-FONT-LIMIT -- 16

NOTE

The values of these constants might change in future
releases of VAX LISP.

Descriptions of these constants are provided in COMMON LISP: The
Language.

You can obtain a table of valid VAX LISP character names by calling
the VAX LISP CHAR-NAME-TABLE function described in Part II.

6.1.3 Arrays

COMMON LISP defines an array as an object whose components are
arranged according to a Cartesian coordinate system and whose number
of dimensions is called its rank. The 1limits on an array’s rank,
dimensions, and total size are implementation dependent.

The names of the array constants and the corresponding VAX LISP values
are:

® ARRAY-DIMENSION-LIMIT -- 536870911
® ARRAY-RANK-LIMIT -- 536870911
® ARRAY-TOTAL-SIZE-LIMIT -- 536870911

These constants are described in COMMON LISP: The Language.

COMMON LISP defines a specialized array as an array that c¢an contain
only elements of a specific type. VAX LISP creates a more efficient

specialized array when an array’s element type is STRING-CHAR, .

(SIGNED-BYTE 32), or a subtype of FLOAT or (UNSIGNED-BYTE 1-29). If
an array does not have one of these element types, VAX LISP creates a
general array (element type is T).

6-6

O

O

VAX LISP/ULTRIX IMPLEMENTATION NOTES

6.1.4 Strings

<::%OMMON LISP defines a string to be a vector of string characters. In
VAX LISP, a string can be composed of as many as 65,535 characters.

A string character is a character that can be stored in string
object. 1In VAX LISP, the characters that compose the 8-bit XQCII (see

the first note in Section 6.1.2) character set are string characters.
String characters cannot have a bits or font attribute.

6.2 PATHNAMES

Pathnames exist both in ULTRIX and in COMMON LISP. However, pathnames
are used with different meanings in the ULTRIX operating system and in

OCOMMON LISP.

¢ In ULTRIX, a pathname is an ULTRIX file specification. See
Chapter 1 for a description of ULTRIX pathnames.

@ In COMMON LISP, a pathname is a LISP data object that
represents a file specification. See COMMON LISP: The
Language for a description of COMMON LISP pathnames.
This section describes how VAX LISP implements COMMON LISP pathnames
on the ULTRIX operating system; this section is not about ULTRIX
pathnames. Unless otherwise noted, references to pathnames in this
section are references to the word as used by COMMON LISP and as
implemented by VAX LISP. The section is divided as follows:
® Namestrihgs
® When to use pathnames’
<:> © Fields in a COMMON LISP pathname
- @ Field values of a VAX LISP pathname
© Three ways to create pathnames
@ Comparing similar pathnames
® Converting pathnames into namestrings

® Functions that use pathnames

@ Using the *DEFAULT-PATHNAME-DEFAULTS* variable

6-7

VAX LISP/ULTRIX IMPLEMENTATION NOTES

6.2.1 Namesirings | O

In VAX LISP, file names can be represented by pathnames, namestrings,
symbols, or streams. Besides the term PATHNAME, COMMON LISP has
introduced the term NAMESTRING. Since computer systems (for example,
VMS and ULTRIX) have different ways of formatting file names, COMMON
LISP uses namestrings to translate between ' pathnames
(implementation-independent names) and file names
(implementation-dependent names).

A namestring is a string naming a file in an implementation-dependent
form customary for the file system. A VAX LISP namestring is a string
containing a valid ULTRIX file specification. For example, if a file
in the ULTRIX file system 1is called /usr/users/doe/.profile, the
equivalent namestring would be displayed as "/usr/users/doe/.profile".

File system functions, such as LOAD, accept pathnames but internally
convert them to namestrings. For more information on namestrings, see
Section 6.2.7.

6.2.2 When to Use Pathnames

Pathnames do not replace the traditional ways of representing a file
in LISP. 1Instead, the pathnames add a new way of representing a file
to make LISP programs portable between systems with different
file-naming conventions.

Pathnames, however, do not have to refer to an existing file or give
complete file specifications; pathnames can exist as data objects in
themselves and are used as arguments to pathname functions (see
Section 6.2.8 and COMMON LISP: The Language).

Several pathname functions and most functions that deal with the file
system can take either pathnames, namestrings, symbols, or streams as
their arqguments. However, the values of the following variable and
arguments must be pathnames: -

N e The *DEFAULT-PATHNAME-DEFAULTS* variable

® The defaults argument in a call to the PARSE-NAMESTRING
function

See Section 6.2.9 and COMMON LISP: The Language for a description of
the preceding variable and function.

@

6-8

VAX LISP/ULTRIX IMPLEMENTATION NOTES

6.2.3 Fields in a COMMON LISP Pathname

A COMMON LISP pathname is a LISP data object composed of six fields.
Each field represents one of the following aspects of a file
specification:

@ Host - file system

@ Device - file structure or a (physical or logical)
device on which files are stored

® Directory group of related files
@ Name - file name

e Type - file extension

® Version number incremented every time the file is

modified

6.2.4 Field Values of a VAX LISP Pathname

Although all VAX LISP pathnames contain the six fields of a COMMON
LISP pathname to make its files portable, VAX LISP/ULTRIX uses only
four of the fields. Since the ULTRIX operating system does not wuse
version numbers or specifically "indicate devices in its £file
specifications, VAX LISP/ULTRIX pathnames do not use the device and
version fields of a COMMON LISP pathname. For a description of ULTRIX
file specifications, see Chapter 1.

The following examples show how the components of an ULTRIX file
specification are mapped into the fields of a VAX LISP pathname. The
first example shows an ULTRIX file specification:

miami:/usr/users/doe/test.lsp

The second example shows the pathname that represents the preceding
file specification:

#S(PATHNAME :HOST "miami:" :DEVICE NIL
:DIRECTORY "/usr/users/doe" :NAME "test"
:TYPE "lsp" :VERSION NIL)

Table 6-3 names the fields of a VAX LISP pathname, the ULTRIX file

components that correspond to those fields, and the data type each
field accepts.

6-9

VAX LISP/ULTRIX |MPLEMENTATION NOTES

Table 6-3: VAX LISP Pathname Fields

ULTRIX

Field Name Component Field Value

:HOST ' node String or NIL. An example of a host
field value is "miami:". .

:DEVICE not used

:DIRECTORY directory String or NIL. This field does not
include the slash (/) that separates a
directory from a file name. Examples of
directory field values are
"usr/users/doe", "doe", and "..".

:NAME filename String, NIL, or the :WILD keyword. The
:WILD keyword 1is translated into the
ULTRIX wildcard symbol, the asterisk
(*). Examples of name field values are
"lisp" and "l*sp".

:TYPE filetype String, NIL, or the :WILD keyword. The
:WILD keyword is translated into the
ULTRIX wildcard symbol, the asterisk
(*). This field does not include the
period (.) that precedes the type.
Examples of type field values used with
the MAKE-PATHNAME function are "lsp" and
" fas n .

:VERSION not used

6.2.5 Three Ways to Create Pathnames

You can create a pathname in any one of three ways depending on which -
of the following functions you use:

® The MAKE-PATHNAME function

Lisp> (MAKE-PATHNAME :HOST "miami:"
"¢:DIRECTORY "/usr/users/doe"
+:NAME "test"
:TYPE "lsp")
#S(PATHNAME :HOST "miami:" :DEVICE NIL
:DIRECTORY "/usr/users/doe" :NAME "test"
:TYPE "lsp" :VERSION NIL)

6-10

O

VAX LISP/ULTRIX IMPLEMENTATION NOTES

® The PATHNAME function

<:;> Lisp> (PATHNAME "miami:/usr/users/doe/test.lsp")
#S (PATHNAME :HOST "miami:" :DEVICE NIL
:DIRECTORY " /usr/users/doe" :NAME "test"
:TYPE "lsp" :VERSION NIL)

® The PARSE-NAMESTRING function

Lisp> (PARSE-NAMESTRING "miami:/usr/users/doe/test.lsp")
#S (PATHNAME :HOST "miami:" :DEVICE NIL
+:DIRECTORY "/usr/users/doe" :NAME "test"
:TYPE "lsp" :VERSION NIL)

The MAKE-PATHNAME function directly creates a pathname from the

user-input keywords :HOST, :DIRECTORY, and so on. On the other hand,

the PATHNAME function and the PARSE-NAMESTRING function create a
<::)pathname by:

@ Using a pathname, namestring, symbol, or stream as an
argument.

@ Parsing the argument.
® Returning a pathname, if the parse operation is a success.
<::>See COMMON LISP: The Language for descriptions of these functions.

You can create a pathname that represents a directory name. To do so,
place a slash (/) after the directory. For example, the string
"/usr/users/doe" names the file doe 1in the directory /usr/users.
However, the string "/usr/users/doe/" names only a directory,
/usr/users/doe, and no file name.

NOTE

The LISP system does not check that you enter an
existing or a complete file specification when you
create a pathname. So, you can create a pathname that
is not wusable in ULTRIX. If that situation occurs,
and you perform a file operation, the operation will
not succeed. To correct the problem, you must change
the pathname to conform with an ULTRIX file
specification. See Chapter 1 for a description of
ULTRIX file specifications and see Section 6.2.4 for a
description of the field wvalues in a VAX LISP
pathname.

6-11

VAX LISP/ULTRIX IMPLEMENTATION NOTES
6.2.6 Comparing Similar Pathnames

You should use the EQUAL function to compare pathnames with the same
field -entries. This function 1is sensitive to keywords and their
equivalent symbols (that 1is, :WILD 1is eguivalent to "*"). For
example, if the MAKE-PATHNAME and PARSE-NAMESTRING functibns create
different pathnames for the file test.*, you can wuse the EQUAL
function to compare the pathname that is returned by each function
(see COMMON LISP: The Language). The following <calls to the SETF
macro set the pathnames created by the MAKE-PATHNAME and
PARSE-NAMESTRING functions to the variables X and Y:

Lisp> (SETF X (MAKE-PATHNAME :NAME "test" :TYPE "*"))
#S(PATHNAME :HOST "miami:" :DEVICE NIL :DIRECTORY NIL
:NAME "test" :TYPE "*" :VERSION NIL)
Lisp> (SETF Y (PARSE-NAMESTRING "test.*"))
#S(PATHNAME :HOST "miami:" :DEVICE NIL :DIRECTORY NIL
:NAME "test" :TYPE ":WILD" :VERSION NIL)

The EQUAL function can be used to compare the variables X and Y, even
though the keyword :WILD and its string equivalent ("*") are used.

Lisp> (EQUAL X Y)
T

The function returns T, indicating that the pathname values of X and Y
are equal.

6.2.7 Converting Pathnames into Namestrings

You can convert a pathname into a namestring by specifying the
pathname in a call to the NAMESTRING function. The VAX LISP
implementation of the NAMESTRING function removes the host value if
the value 1is the current host. The following call to the SETF macro
sets THIS-PATHNAME to the pathname that is created with the PATHNAME
function:

Lisp> (SETF THIS-PATHNAME
(PATHNAME "/usr/user/doe/test.lsp"))
#S(PATHNAME :HOST "miami:" :DEVICE NIL
+DIRECTORY "/usr/users/doe" :NAME "test"
:TYPE "1lsp" :VERSION NIL)

When the NAMESTRING function is called with THIS-PATHNAME as its
argument, the namestring that is returned does not include the
pathname’s host:

Lisp> (NAMESTRING THIS-PATHNAME)

"/usr/user/doe/test.lsp"

6-12

O

O

O

O

VAX LISP/ULTRIX IMPLEMENTATION NOTES

6.2.8 Functions That Use Pathnames

<:;> Most of the functions you can use to create and manipulate VAX LISP
pathnames are described 1in COMMON LISP: The Language. However, the
following two functions need further explanation:

- ® The DIRECTORY function d

The DIRECTORY function (described in Section 6.7) converts its
argument to a pathname and merges that pathname with the
following ULTRIX file specification:

host:directory/*

The values for the host and directory fields are supplied by
the *DEFAULT-PATHNAME-DEFAULTS* variable (see next section).

<:> e The DEFAULT-DIRECTORY function

The DEFAULT-DIRECTORY function (described in Part 1II) is
supplied by VAX LISP in addition to the pathname functions
described in COMMON LISP: The Language. This function returns
a pathname that refers to the current directory.

Q 6.2.9 Using the *DEFAULT-PATHNAME-DEFAULTS* Variable

The value of the *DEFAULT-PATHNAME-DEFAULTS* variable is used by some
pathname functions to £fill pathname fields not specified in their
arguments. The default value of this variable is a pathname whose
host and directory fields indicate the current directory and whose
device, name, type, and version fields contain NIL.

In VAX LISP, you can change the value of the
<:> *DEFAULT-PATHNAME-DEFAULTS* variable in two ways:

@ With the SETF macro

The following example illustrates using the SETF macro to
change a pathname’s directory from " /usr/users/doe" to
" susr/users/doe/test":

Lisp> (SETF *DEFAULT-PATHNAME-DEFAULTS*
" (MAKE-PATHNAME :DIRECTORY "/usr/users/doe/test"))
) #S(PATHNAME :HOST "miami:" :DEVICE NIL
+DIRECTORY "/usr/users/doe/test" :NAME NIL
:TYPE NIL :VERSION NIL)

® With the DEFAULT-DIRECTORY function
<:> The value of the *DEFAULT-PATHNAME-DEFAULTS* variable is set

to the wvalue of your default directory when LISP starts and

6-13

VAX LISP/ULTRIX IMPLEMENTATION NOTES

when you change your directory with the form (SETF
(DEFAULT-DIRECTORY) ...). To check the value of your default
directory, call the DEFAULT-DIRECTORY function. For example:

Lisp> (DEFAULT-DIRECTORY)

#S(PATHNAME :BHOST "miami:" :DEVICE NIL
:DIRECTORY "/usr/users/doe" :NAME NYL
:TYPE NIL :VERSION NIL)

The pathname returned in this example indicates that the
default directory is Jusr/users/doe on host miami. In this
case, each time a pathname function £fills a pathname field
with a default value, the corresponding value in the directory
"/usr/users/doe" is used.

To change the value of your default directory, set it with the

SETF macro. For example, the following illustrates how to
change a default directory from /usr/users/doe to
/usr/users/doe/test:

Lisp> (SETF (DEFAULT-DIRECTORY) "./test/")
"./test/"

The next example illustrates that when the directory is
changed, the DEFAULT-DIRECTORY function returns a new pathname
referring to the new default directory:

Lisp> (DEFAULT-DIRECTORY) ’

#S(PATHNAME :HOST "miami:" :DEVICE NIL
:DIRECTORY " /usr/users/doe/test" :NAME NIL
:TYPE 'NIL :VERSION NIL) .

NOTE

The value of the *DEFAULT-PATHNAME-DEFAULTS* variable
must be a pathname. Do not set this variable to a
namestring, symbol, or stream.

6.3 GARBAGE COLLECTOR

When VAX LISP is executing, LISP objects are created dynamically.
Some of the objects that are created are always used and referred to,
while others are referred to for only a short time. When a LISP
object can no 1longer be referred to, the space that the object
occupies can be reclaimed by the VAX LISP system. This process of
reclaiming space is called garbage collection.

The VAX LISP garbage collector is a stop-and-copy . garbage collector.
The LISP system includes a dynamic memory pool, which is divided into

6-14

O

O

VAX LISP/ULTRIX IMPLEMENTATION NOTES

-two equal-sized spaces: dynamic-0 space and dynamic-1 space. At a
(;/;iven time, LISP objects are allocated in either dynamic-0 or
dynamic-1 space. When the memory in the current space 1is exhausted,
LISP processing is temporarily suspended, and the LISP data objects
that can still be referred to are copied to the other space. The
objects that cannot be referred to are not copied.
: ’
You can ignore garbage collections of dynamic memory space when you
are writing LISP programs. Garbage collections occur automatically
when the current dynamic space is exhausted. Though LISP processing
is suspended during a garbage collection, LISP processing continues
when a garbage collection is complete.

Sections 6.3.1 through 6.3.5 provide information about the VAX LISP
garbage collector.

O

6.3.1 Frequency of Garbage Collection

The frequency of garbage collection is proportional to the amount of
dynamic memory space that is available in the VAX LISP system. You
can set the amount of dynamic memory space that is to be available by
specifying the MEMORY (-m) option (see Chapter 2) when you invoke the
LISP system. Garbage collection occurs less often if vyou wuse this
option to increase the size of the dynamic memory space.

The degree to which the frequency of garbage collection and the size
of dynamic memory affects run-time efficiency depends on the program
being executed. 1If a program creates more permanent objects than
objects that can be referred to for a short period of time, the
garbage collector has to perform more copy operations. As a result,
the program slows down. The fewer the copy operations the garbage
collector has to perform, the faster the garbage collection is

<::finished.

6.3.2 Static Space

LISP objects that are created in static space are not collected by the
garbage collector. These objects do not move and they are not
deleted, even if they can no longer be referred to. You can create
objects in static - space by using the :ALLOCATION keyword with the

;s MAKE-ARRAY function (see Part II) or with the constructor functions
that are defined by the DEFINE-ALIEN-STRUCTURE macro for alien
structures. (See the description of the DEFINE-ALIEN-STRUCTURE macro
in Part II.)-

O

6-15

VAX LISP/ULTRIX IMPLEMENTATION NOTES

6.3.3 Messages

When a garbage collection occurs, a message 1is displayed when the<::>

operation begins and when it is finished. You can suppress these
messages by changing the value of the VAX LISP *GC-VERBOSE* variable
to NIL. When the value is NIL, messages are not displayed.

You can also specify the contents of the messages by changing the
values of the VAX LISP *PRE-GC-MESSAGE* and *POST-GC-MESSAGE*
variables. The *GC-VERBOSE*, *PRE-GC-MESSAGE*, and *POST-GC-MESSAGE*
variables are described in Part II.

NOTE

If you suppress or change the garbage collection
messages and a garbage collection is initiated due to
a control stack overflow, to determine whether your
program is in a recursive loop is difficult.
Therefore, you should not suppress or change the
messages before you debug your program.

6.3.4 Available Space

Garbage collection generally occurs when a LISP object 1is being
created. If a garbage collection occurs and not enough dynamic memory
space is available to allocate the object, an error is signaled. When
this situation- exists, you can suspend the LISP image and resume it
later with more dynamic-memory space. For information about how to
suspend and resume a LISP image, see Chapter 2.

6.3.5 Garbage Collection Failure

The garbage collection process may fail to complete. 1If, for example,
a garbage collection is initiated because of control stack overflow,
the size of the control stack must increase, and the amount. of dynamic
memory space must decrease. If the reduced dynamic memory space
cannot contain all the LISP objects that can be referred to, the VAX
LISP process 1is terminated, and control returns to the shell. This
condition is usually caused by a user programming error, such as a
function that is recursive and nonterminating.

6.4 INPUT AND OUTPUT

VAX LISP terminal I/0 and file I/0 are implemented by way of low-level
ULTRIX system I/O routines. See the ULTRIX-32 Programmer’s Manual for
a description of ULTRIX I/0.

6-16

O

VAX LISP/ULTRIX IMPLEMENTATION NOTES

The VAX LISP implementation dependencies for I/O have to do with the
following topics:

Newline character
Terminal input
Terminal output
End-of-file operations
File organization

Functions

The implementation-dependent information about these topics is
provided in Sections 6.4.1 through 6.4.5.

6.4.1

Newline Character

COMMON LISP defines the #\NEWLINE character as a character that 1is
returned from the READ-CHAR function as an end-of-line indicator. 1In
VAX LISP, the character code for the #\NEWLINE character has an
integer value of 255.

In VAX LISP, the WRITE-CHAR and WRITE-STRING functions interpret the
#\NEWLINE character as follows:

When the WRITE-CHAR function is called with the #\NEWLINE
character as its argument value, the function starts writing a
new line. This call is equivalent to a call to the TERPRI
function (see COMMON LISP: The Language).

When the WRITE-STRING function is called with an argument
string that contains the #\NEWLINE character, the function
divides the string into two lines. The following example
shows the output that is displayed by the WRITE-STRING
function when the #\NEWLINE character is not used:

Lisp> (WRITE-STRING (CONCATENATE ’STRING
"NEW"
. "LINE"))
NEWLINE
"NEWLINE"

Both of the strings NEW and LINE are displayed on the same
line. A call to the WRITE-STRING function, which includes a
string argument that contains the #\NEWLINE character, 1looks
like the following:

6-17

VAX LISP/ULTRIX IMPLEMENTATION NOTES

Lisp> (WRITE-STRING (CONCATENATE 'STRING

n NEW "
(STRING #\NEWLINE)
"LINE"))

NEW

LINE

"NEW

LINE"

This call to the WRITE-STRING function displays the strings
NEW and LINE on separate lines.

The #\NEWLINE character is the only character that causes a new line

to be written. VAX LISP writes carriage returns and linefeeds without
special interpretation.

6.4.2 Terminal Input

In VAX LISP, terminals perform input operations in line mode. Input
is returned by the READ-CHAR function only after you press the RETURN
key.

The READ-CHAR function returns ASCII characters as data wunless a
character is used by the ULTRIX terminal driver for terminal control.

See the ULTRIX-32 Programmer’s Guide [see ioctl(2) and stty(l) tty(4)]
for information on terminal control characters.

6.4.3 Terminal Output

ULTRIX truncates terminal output rather than wraps. To make output
more readable, set the *PRINT-PRETTY* variable to T.

6.4.4 End-of-File Operations

In VAX LISP, read operations from a file do not indicate the end of
the file wuntil the operation after the last character in the file is
performed.

Read operations from a terminal do not indicate the end of a file in
VAX LISP.

In VAX LISP, you can close a stream that is connected to your terminal
if the stream is not related to the stream bound to the *TERMINAL-IO*

O

O

O

variable. If you attempt to close the stream bound to *TERMINAL-IO*, (::>

no action is performed.

6-18 "

O

VAX LISP/ULTRIX IMPLEMENTATION NOTES

6.4.5 File Organization

VAX LISP creates ULTRIX files that are sequential streams.

6.4.6 Functions

Two COMMON LISP functions used for I/O have VAX LISP dependencies and
need further explanation. The implementation information for the
following functions is provided in the next two sections:

@ OPEN

® WRITE-CHAR

6.4.6.1 OPEN Function - Before you can access a file, you must open
it with the OPEN function or the WITH-OPEN-FILE macro. The OPEN
function can be specified with keywords that determine the type of
stream that 1is to be created and how errors are to be handled. The
keywords you can specify are the following:

® :DIRECTION

e }ELEMENT-TYPE

® :IF-EXISTS

@ :IF-DOES-NOT-EXIST

VAX LISP restricts the values you can specify for the preceding
keywords. The rest of this section explains the restrictions.

For the :IF-EXISTS keyword values of :RENAME, :RENAME-AND-DELETE, and
:SUPERSEDE, the o01ld file is renamed to the same name with the string
"0ld" appended to the file type. On closing files opened with any of
these three values, and specifying :ABORT T, the new version is
deleted and the old is restored to its former name. On closing files
with :ABORT NIL, on :RENAME there is no action; with :RENAME-AND
DELETE or :SUPERSEDE, the old file is deleted.

VAX LISP supports all the values for the :ELEMENT-TYPE keyword except
CHARACTER. VAX LISP allows you to open binary streams, but the
maximum byte size for a stream is 512 8-bit bytes.

6.4.6.2 WRITE-CHAR Function - In VAX LISP/ULTRIX, if a file is opened
with :DIRECTION :I0, . the user must set the file position with the
FILE-POSITION function when changing from reading to writing and vice

6-19

VAX LISP/ULTRIX IMPLEMENTATION NOTES

versa. Not setting the file position will cause the file to be left
in an inconsistent state.

The WRITE-CHAR function disregards the bit and font attributes of
characters.

6.5 KEYBOARD FUNCTIONS

A keyboard function is a function that is invoked when the user types
a particular control key. The BIND-KEYBOARD-FUNCTION function binds
an ASCII control character to a function, creating a keyboard
function. A keyboard function interrupts the current LISP processing
as soon as the specified control key 1is typed. wWhen the keyboard
function exits, the VAX LISP system resumes processing at the point
where it was interrupted.

Note that you can use the BIND-KEYBOARD-FUNCTION to bind only three
characters (C, \, and Z). See Chapter 2 for more information on these
characters.

Keyboard functions are not always called as soon. as the specified
control key is typed. 1If a low-level LISP function, such as CDR or
CONS, is being evaluated or a garbage collection is being performed,
keyboard functions are placed in a queue until they can be evaluated.
Delays in keyboard function evaluation are generally not perceptible.
An example of when you might perceive a delay is when the system
performs a garbage collection.

VAX LISP also provides a means by which you can assign different
priorities for keyboard functions. These priorities, called interrupt
levels, are described in the VAX LISP/ULTRIX System Access Programming
Guide.

If you suspend the LISP system when keyboard functions are defined,
the functions are still defined when the system is resumed. The
key/function bindings are not lost.

Besides the BIND-KEYBOARD-FUNCTION function are the VAX LISP functions
GET-KEYBOARD-FUNCTION and UNBIND-KEYBOARD-FUNCTION. The
GET-KEYBOARD-FUNCTION function returns information about a function
that is bound to a control character, and the UNBIND-KEYBOARD-FUNCTION
function removes the binding of a function from a control character.

Descriptions of the BIND-KEYBOARD-FUNCTION, GET-KEYBOARD-FUNCTION, and
UNBIND-KEYBOARD-FUNCTION functions are provided in Part II.

6-20

O

O

VAX LISP/ULTRIX IMPLEMENTATION NOTES

6.6 COMPILER

For information on how to compile LISP expressions and the advantages
and disadvantages of compiling LISP expressions, see Chapter 2. This
section describes two compiler restrictions (one with the COMPILE
function and one with the COMPILE-FILE function) and compiler
optimizations. '

6.6.1 Compiler Restrictions

The VAX LISP compiler translates interpreted function definitions into
function objects that contain VAX instructions. The COMPILE function
causes these objects to be bound as the definitions of the symbols
that name them. The COMPILE-FILE function puts the objects into an
output file. Because of the way these two functions handle such
objects, a restriction exists for the use of each of the functions.

6.6.1.1 COMPILE Function - The compiler cannot compile pieces of code
unless they are function definitions defined at top level. Therefore,
you cannot use the COMPILE function to compile a function unless you
create the function in a null lexical environment (not top level). An
example of a LISP expression that cannot be evaluated follows:

Lisp> (LET ((COUNTER 0))
(COMPILE NIL #'(LAMBDA () (INCF COUNTER))))

The COMPILE function cannot compile the function object in the
preceding example because the object depends. on the 1lexical
environment in which it was created. 1In the following example, the
COMPILE function 1is <called with a lambda expression rather than a
function object:

Lisp> (LET ((COUNTER 0))
(COMPILE NIL ' (LAMBDA () (INCF COUNTER))))

The call to the COMPILE function in the preceding example compiles the
lambda expression. The value that is returned is a compiled object
that increments the dynamic value of COUNTER. The compiled object
does not increment the local value of COUNTER, which encloses the call
to the COMPILE function.

6.6.1.2 COMPILE-FILE Function - The COMPILE-FILE function encloses
each top-level form of the file it is compiling with an anonymous
function definition. Therefore, the function cannot put a compiled
function object that is recognized as data into an output file.
Consider the following form:

6-21

VAX LISP/ULTRIX IMPLEMENTATION NOTES

Lisp> (SETF F ’#.(COMPILE NIL ' (LAMBDA (C) (PRINT C))))
#<Compiled Function #:G1149 #x504C4C>

When the COMPILE-FILE function reads the preceding form from a file
that 1is being compiled, an anonymous function 1is created. This
function becomes part of the third element of the 1list whose first
element is the SETF special form. The preceding call to the SETF
special form can be compiled but the 1list cannot be put into the
output file.

6.6.2 Compiler Optimizations

In VAX LISP, you can control two qualities of compiled code: the

speed of the generated code and whether run-time safety checking is to
be performed. The default value for these qualities is 1. You " can

set the wvalues globally and locally. - To set the values globally in
VAX LISP, you can either wuse the shell wvaxlisp command with the

COMPILE (-c) and the OPTIMIZE (-V "OPTIMIZE=value") options (see
Chapter 2) or specify the OPTIMIZE declaration in a call to the
PROCLAIM function (see COMMON LISP: The Language). Both methods of

setting the quality values produce the same results. For example, if
you are in the 'shell and you want to set the global values of the
speed quality (speed of object code) to 3 and the safety quality
(run-time error checking) to 2, use the following ULTRIX command
specification:

% vaxlisp -V "COMPILE OPTIMIZE=(SPEED:3,SAFETY:2)" myprog.lsp

If you are in LISP and you want to set the global values of the speed
and safety qualities, specify the PROCLAIM function as the first form
in the file. For example, to set the values of the gqualities to the
same values that were set in the preceding example, specify the
following call to the PROCLAIM function as the first form in the file

myprog.lsp:
(PROCLAIM ' (OPTIMIZE (SPEED 3) (SAFETY 2)))

You can also set the quality values locally. To do this, you must use
the OPTIMIZE declaration within the form for which you want the values
to be set. Local optimization quality values override global quality
values. ' - ')

All proclamations are put into the fastload file so that they also
occur when fastloaded. However, the compiler observes INLINE
proclamations only when the OPTIMIZE SPEED quality is greater than the
OPTIMIZE SPACE quality, and does not check for stack overflow.

I1f you are more concerned about the safety of your code than the speed

at which it 1is evaluated, the value of the safety quality must be
greater than 1, or the value of the speed quality must be less than 2.

6-22

O

O

~

VAX LISP/ULTRIX IMPLEMENTATION NOTES

When this relationship exists between the two quality values, the
compiler generates safe code. Safe code is code that checks arguments
to ensure that the arguments are of the proper data type. Examples of
safe code are the following:

@ Code that uses generic arithmetic
L}
@ Code that checks if the arguments of calls to functions that
require list arguments are lists

@ Code that checks whether indices used to access arrays are
bound :

If you are more interested in producing code that 1is evaluated fast
than in producing safe code, the value of the speed quality must be
greater than or equal to 2, and the value of the safety quality must
be less than or equal to 1. When this relationship exists between the
two quality values, the compiler considers type declarations and
generates type-specific code. Type-specific code executes faster than
safe code. If you want the compiler to generate type-specific code,
you must specify declarations in your code in addition to setting the
values of the speed and the safety qualities to the correct values.

Consider the following code and suppose the value of the safety
gquality is 1 and the speed quality is 2:

(DEFUN LOOP-OVER-A-SUBLIST (INPUT-LIST)
(DO ((I (GET-INITIAL-VALUE) (1+ I))
(L INPUT-LIST (CDR L)))
((OR (>= I (THE FIXNUM *FINAL-VALUE¥*))

(ENDP L))
L)
(DECLARE (FIXNUM I)
(LIST L))

(DO-SOME-WORK L I)))
Since the value of the safety quality is less than 2 and the value of
the speed quality is greater than 1, the compiler regards the type
declarations. 1In this example, the types FIXNUM and LIST are declared
with the following form:

(DECLARE (FIXNUM I)
(LIST L))

When the example code is compiled, the compiler wuses the type
declarations and translates the 1+, CDR, ENDP, and »= functions in the
code as follows:

e The 1+ function becomes one VAX instruction.

@ The CDR function becomes one VAX instruction.

6-23

VAX LISP/ULTRIX IMPLEMENTATION NOTES

©® The ENDP function is transformed into the NULL function.

e The >= function becomes two VAX instructions: a longword<:>
comparison and a branch.

The value of the *FINAL-VALUE* variable and the return value of the
GET-INITIAL-VALUE function must be fixnums. Also, the INPUT-LIST
argument specified for the LOOP-OVER-A-SUBLIST function must be a true
list (not an atom or a dotted list).

If a declaration is violated, the error that results is not signaled.
For example, if you <call the LOOP-OVER-A-SUBLIST function with the
symbol LOOP, an error results because the argument is not a list, but
the error 1is not signaled. Errors such as this can cause damage to
the LISP environment, which cannot be repaired. By default, the
values of the speed and safety qualities are set such that error
checking and signaling code are generated for all operations; such
values prevent you from damaging the LISP environment. <:>

If the INPUT-LIST argument in the preceding example is not guaranteed
to always be a list, you can add an explicit type check before the DO
loop. The following form is an example of an explicit type check:

(UNLESS (LISTP INPUT-LIST)
;but doesn’t check for a dotted list
(ERROR "Cannot loop through this object: “S." INPUT-LIST)) <:>

The check performed by the LISTP function is evaluated at run time,
even though the compiler might heed the FIXNUM and LIST declarations.

If you want a function to be compiled inline, you must proclaim it
INLINE. Declaring a function INLINE has no effect. However, once a
function has been proclaimed INLINE, it will be compiled inline unless
specifically declared NOTINLINE.

For more information on making LISP compiled code run fast, see the<::)
release notes.

6.7 FUNCTIONS AND MACROS

Several functions and macros described in COMMON LISP: The Language
have implementation dependencies. Table 6-4 lists the names of these
functions and macros and provides a brief explanation of the type of
information that is implementation dependent. For a summary
description of these functions and macros, see Part 1II.. Each
description consists of the function’s or macro’s use,
implementation-dependent information, format, applicable arguments,
return value, and examples of use. See COMMON LISP: The Language for.
further information regarding these functions and.macros. <:>

‘ 6-24

VAX LISP/ULTRIX IMPLEMENTATION NOTES

Table 6-4: Summary of Implementation-Dependent Functions and Macros
<::> Function Implementation-Dependent
Name or Macro Information
APROPOS Function Optional argument and PO-SYMBOLS
macro
APROPOS-LIST Function Optional argument and DO-SYMBOLS
: macro
BREAK Function Facility invoked
COMPILE-FILE Function Keywords and return value
DESCRIBE Function Displayed output
<::> DIRECTORY Function Argument merged with wildcards
DRIBBLE Function Cannot nest calls
GET-INTERNAL-RUN-TIME Function Meaning of return value
LOAD Function Finds latest file
<::> LONG-SITE-NAME Function Location of information for
string returned
MACHINE-INSTANCE Function Return value
MACHINE-VERSION Functioq Return value
MAKE-ARRAY Function :ALLOCATION keyword
<:> REQUIRE Function Modules
ROOM Function Displayed output
SHORT-SITE-NAME Function Location of information for
string returned
TIME Macro Displayed output
TRACE Macro Keywords
,WARN Function Facility invoked

6-25

PART I
VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

O

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

APROPOS Function

Searches through packages for symbols whose print names contain a
specified string. The function 1is not sensitive to the case of
characters. The string can be either the print name or a substring of
the symbol’s print name. .

The APROPOS function displays a message that shows the string that ‘is
being searched for and the name of the package that is being searched.
When the function finds a symbol whose print name contains the string,
the function displays the symbol’s name. If the symbol has a value,
the function displays the phrase "has a value" after the symbol as
follows:

MY-SYMBOL, has a value

If the symbol has a function definition, the function displays the
phrase "has a definition" after the symbol as follows:

MY-FUNCTION, has a definition
In VAX LISP, the APROPOS function uses the DO-SYMBOLS macro rather
than the DO-ALL-SYMBOLS macro. As a result, the function displays by
default only symbols that are accessible from the current or specified
package. For information on packages, see COMMON LISP: The Language.
Format
APROPOS string &OPTIONAL package
Arguments
string
The string to be searched for in the symbols’ print names. If
you specify a symbol for this argument, the symbol’s print name
is used.
package
An optional argument. If you specify the argument, the symbols
in the specified package are searched. If you specify T, all
packages are searched. If you do not specify the argument, the
symbols that are accessible in the current package are searched.

Return Value

No value.

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

APROPOS Function (cont.) Q
Example
Lisp> (APROPOS. "*PRINT")

Symbols in package USER containing the string "*PRINT":®
PRINT-CIRCLE, has a value
PRINT-SLOT-NAMES-AS-KEYWORDS, has a value
PRINT-RADIX, has a value
PRINT-ESCAPE, has a value
PRINT-ARRAY, has a value
PRINT-GENSYM, has a value
PRINT-LEVEL, has a value
PRINT-PRETTY, has a value
PRINT-LENGTH, has a value :
PRINT-RIGHT-MARGIN, has a value <:>
PRINT-MISER-WIDTH, has a value
PRINT-BASE, has a value
PRINT-CASE, has a value
PRINT-LINES, has a value

Searches the package USER for the string *PRINT and displays a
list of the symbols that contain the specified string.

O

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

APROPOS-LIST Function

Searches through packages for symbols whose print names contain a
specified 'string. The function 1is not sensitive to the case of
characters. The string can be either the print name or a substring of
the symbol’s print name.

'
When the function completes its search, it returns a 1list of the
symbols whose print names contain the string.

In VAX LISP, the APROPOS-LIST function uses the DO-SYMBOLS macro
rather than the DO-ALL-SYMBOLS macro. As a result, the function
includes by default only symbols that are accessible from the current
package in the 1list it returns. For information on packages, see
COMMON LISP: The Language.

<:>Format

APROPOS-LIST string &OPTIONAL package

Arguments
string
The string to be searched for in the symbols’ print names. If
<:> you specify a symbol for this argument, the symbol’s print name
is used.
package

An optional argument. If you specify the argument, the symbols
in the specified package are searched. 1If you specify T, all
packages are searched. If you do not specify the argument, the
symbols that are accessible in the current package are searched.

<:>Return Value

A list of the symbols whose print names contain the string.
Example

Lisp> (APROPOS-LIST "ARRAY")
(ARRAY-TOTAL-SIZE ARRAY-DIMENSION ARRAY-DIMENSIONS
SIMPLE-ARRAY ARRAY-DIMENSION-LIMIT ARRAY-ELEMENT-TYPE

; ARRAYP *PRINT-ARRAY* ARRAY-RANK ARRAY-RANK-LIMIT
MAKE-ARRAY ARRAY-TOTAL-SIZE-LIMIT ARRAY-ROW-MAJOR-INDEX
ADJUST-ARRAY ARRAY ARRAY-IN-BOUNDS-P ADJUSTABLE-ARRAY-P
ARRAY-HAS-FILL-POINTER-P)

Searches the symbols that are accessible in the current package
<:> for the string ARRAY and returns a list of the symbols that
contain the specified string.

VAX LISP/ULTRIX FUNCTION, MACRO., AND VARIABLE DESCRIPTIONS

BIND-KEYBOARD-FUNCTION Function

Binds an ASCII keyboard control character (characters of codes 0 to<::>
31) to a function. When a control character is bound to a function,

you can execute the function by typing the control character on your
terminal keyboard. A function bound in this way is called a keyboard
function. '

On ULTRIX, the control characters that can be bound are those that
generate the SIGINT, SIGQUIT, and SIGTSTP signals, by default
<CTRL/C>», <CTRL/\>, and <CTRL/Z> respectively. You can use the shell
command stty(l) (stty all) to find the current bindings of these
signals. : ,

When you type the control character, the LISP system is interrupted at
its current point, and the function the control character is bound to
is called asynchronously. The LISP system then evaluates the function
and returns control to where the interruption occurred. <:>

You can delete the binding of a function and a control character by
using the UNBIND-KEYBOARD-FUNCTION function. You can wuse the
GET-KEYBOARD-FUNCTION function to get information about a function
that is bound to a control character.

You can specify an interrupt level (an integer in the range 0 through

7) for a keyboard function by using the :LEVEL keyword. A keyboard
function can only interrupt code that is executing at an interrupt<::>
level below its own. Keep the following guidelines in mind when
specifying an interrupt level:

e The default interrupt level for keyboard functions is 1.

e Interrupt level 6 is used by LISP to handle keyboard input;
therefore, a keyboard function executing at interrupt level 6
cannot receive input from the keyboard. For this reason, be
careful when using interrupt level 6. <:>

e Interrupt level 7 can interrupt any code that is not in the -
body of a CRITICAL-SECTION macro. A keyboard function
executing at interrupt level 7 must terminate by executing a
THROW to a tag, such as CANCEL-CHARACTER-TAG.

e If you bind a control character to the BREAK or DEBUG
functions, use a level that is high enough to interrupt your
other keyboard functions but that is less than 6.

The VAX LISP/ULTRIX System Access Programming Guide contains more
information about using interrupt levels and about the
CRITICAL-SECITON macro.

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

BIND-KEYBOARD-FUNCTION Function (cont.)
NOTE
When you bind a control character to a function, the

stream bound to the *TERMINAL-IO* variable must be
connected to your terminal. d

See Chapter 6 for an explanation about calling functions
asynchronously.
Format

BIND-KEYBOARD-FUNCTION control-character function
&KEY :ARGUMENTS :LEVEL

Arguments
control-character
The ASCII control character to be bound to the function. You can
bind a function to a control character that generates the ULTRIX
SIGINT, SIGQUIT, or SIGTSTP signal (by default, <CTRL/C>,
<CTRL/\>, and <CTRL/Z>).
function
The function to which the control character is to be bound.
:ARGUMENTS
A list containing arguments to be passed to the specified
function when it is called. The arguments in the list are
evaluated when the BIND-KEYBOARD-FUNCTION function is called.
:LEVEL

An integer in the range 0-7, specifying the interrupt 1level for
the keyboard function. The default is 1.

Return Value

T.

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

BIND-KEYBOARD-FUNCTION Function (cont.) - | Q
Example

Lisp> (BIND-KEYBOARD-FUNCTION #\FS #'BREAK)

Eisp> <CTRL,A> |

Break>

Binds <CTRL/\> to the BREAK function. You can then invoke a break
loop by typing <CTRLAN>.

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

BREAK Function

<:> Invokes a break loop. A break loop is a nested read-eval-print loop.
For more information about break loops, see Chapter 4.

Format

BREAK &OPTIOﬁAL format-string &REST‘args
Arguments
format—sfring»

The string of characters that is passed to the FORMAT function to
create the break-loop message.

O =

The arguments that are passed to the FORMAT function as arguments
for the format string.

Return Value

When the CONTINUE function is called to exit the break loop, the
BREAK function returns NIL.

<:> Example

(WHEN (UNUSUAL-SITUATION-P CONDITION)
(BREAK "Unusual situation "D encountered. Please investigate"
CONDITION))

Calls the BREAK function if the value of the UNUSUAL-SITUATION-P
function 1is not NIL. The break message contains the condition

<::> code.

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

CANCEL-CHARACTER-TAG Tag

CANCEL-CHARACTER-TAG, when used in a CATCH construct, catches the (v/

throw that occurs whenever the cancel character is typed at the
keyboard. 1In VAX LISP/ULTRIX, <CTRL/C> by default causes a THROW to
CANCEL-CHARACTER-TAG. Thus, you can use CANCEL-CHARACTER-TAG in a
CATCH construct to alter the behavior when a user types <CTRL/C>. To
check the characters that are bound to signals, type the shell command
stty all. '

You can also use CANCEL-CHARACTER-TAG in a THROW construct to cause an
exit to the VAX LISP read-eval-print 1loop. 1In this way, you can
partially simulate the action of the cancel character from within your
code. (The cancel character also invokes the CLEAR-INPUT function on
the *TERMINAL-IO* stream.)
Format

CANCEL-CHARACTER-TAG

Example

Lisp> (DEFUN TRAPPER ()
(CATCH 'CANCEL-CHARACTER-TAG

(LOOP))
(PRINC "Execution came through here"))
TRAPPER
Lisp> (TRAPPER)
<CTRL/C>

Execution came through here
"Execution came through here"
Lisp>

e The TRAPPER function sets up a catcher for
CANCEL-CHARACTER-TAG, then enters an infinite loop.

® The user types <CTRL/C>.
® The PRINC function prints a string, indicating that execution

continued following the CATCH form rather than returning
directly to the Lisp> prompt.

O

O

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

CHAR-NAME-TABLE Function
Displays a formatted list of the VAX LISP character names.
Format
CHAR-NAME-TABLE
Return Value
No value.
Example
Lisp> (CHAR-NAME-TABLE)

Hex Code Preferred Name Other Names

00 NULL NUL
01 ~A SOH
02 “B STX
03 ~C ETX
04 D EOT
05 ~“E ENQ
- 06 ~“F ACK
07 BELL ~G BEL
08 BACKSPACE “H BS
09 TAB ~I HT
0A LINEFEED ~J LF
0B “K VT
oc PAGE ~ ~“L FORMFEED FF
0D RETURN “M CR
OE N SO
OF ~0 SI
10 P DLE
11 ~Q XON DC1
12 “R DC2
13 ~S XOFF DC3
14 AT DC4
15 U NAK
16 v SYN
17 W ETB
18 X CAN
19 Y EM
1a ~Z SUB
1B ESCAPE ESC ALTMODE
ic FS
iD GS
1E RS
iF Us
20 SPACE SP
7F RUBOUT DELETE DEL

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

CHAR-NAME-TABLE Function (cont.)

84
85
86
87
88
89
8A
8B
8C
8D
8E
8F
90
91
92
93
94
95
96
97
9B
9cC
9D
9E
9F
FF

IND
NEL
SSA
ESA
HTS
HTJ
VTS
PLD
PLU
RI
552
SS3
DCS
PU1
PU2
STS
CCH
MW
SPA
EPA
CsI
ST
0oscC
PM
APC
NEWLINE

10

O

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

COMPILEDP Function

<::> A predicate that checks whether an object 1is a symbol that has a
compiled function definition.

Format

COMPILEDP name
Argument
name

The symbol whose function, macro, or special form definition is
to be checked.

<:> Return Value

The interpreted function, macro, or special form definition, if
the symbol has an interpreted definition that was compiled with
the COMPILE function. Returns T, if the symbol has a compiled
definition that was not compiled with the COMPILE function.
Returns NIL, if the symbol does not have a compiled function
definition.

<::> Example

Lisp> (DEFUN ADD2 (X) (+ X 2))
ADD2

Lisp> (COMPILEDP 'ADD2)

NIL

Lisp> (COMPILE 'ADD2)

ADD2 compiled.

ADD2
Lisp> (COMPILEDP 'ADD2)
<:> (LAMBDA (X) (BLOCK ADD2 (+ X 2)))

@ The call to the DEFUN macro defines a function named ADD2.

@ The first call to the COMPILEDP function returns NIL, because
the function ADD2 has not been compiled.

® The call to the COMPILE function compiles the function ADD2.
@ The second call to the COMPILEDP function returns the

interpreted function definition, because the function ADD2 was
previously compiled.

11

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

COMPILE-FILE Function

Compiles a specified LISP source file and writes the compiled code as<::>

a binary fast-loading file (type fas).
Format

COMPILE-FILE input-pathname
&KEY :LISTING :MACHINE-CODE :0OPTIMIZE
:OUTPUT-FILE :VERBOSE :WARNINGS

Arguments
input-pathname

A pathname, namestring, symbol, or stream. The compiler uses the
value of the *DEFAULT-PATHNAME-DEFAULTS* variable to fill in file
specification components that are not specified. The file type
defaults to lsp.

tLISTING

Specifies whether the compiler is to produce a listing file. The
value can be T, NIL, or a pathname, namestring, symbol, or
stream. If you specify T, the compiler produces a listing file.
The 1listing file is assigned the same name as the source file
with the file type lis, and is placed in the directory that
contains the source file. : '

If you specify NIL, no listing is produced. The default value is
NIL. '

If you specify a pathname, namestring, symbol, or stream, the
compiler uses the value as the specification of the listing file.
The compiler uses the 1lis file type and the value of the
input-pathname to £fill the components of the file specification
that are not specified.

¢:MACHINE-CODE

Specifies whether the compiler is to include the machine code it
produces for each function and macro .it compiles in the listing
file. The value can be T or NIL. 1If you specify T, the 1listing
file contains the machine code. 1If you specify NIL, the listing
file does not contain the machine code. The default value is
NIL.

tOPTIMIZE

O

O

O

Specifies the optimization qualities the compiler is to use

during compilation. The value must be a list of sublists. Each
sublist must contain a symbol and a value, which specify the

12

O

O

O

O

VAX LISP/ULTRIX FUNCTION, MACRO. AND VARIABLE DESCRIPTIONS

COMPILE-FILE Function (cont.)

optimization qualities and corresponding values that the compiler
is to use during compilation. For example:

((SPACE 2) (SAFETY 1))
The default value for each quality is one. For a detailed
discussion of compiler optimizations, see Chapter 6.

:OUTPUT-FILE

Specifies whether the compiler is to produce a fast-loading file.
The value can be T, NIL, or a pathname, namestring, symbol, or
stream. If you specify T, the compiler produces a fast-loading
file. The output file is assigned the same name as the source
file with the file type fas and is placed in the directory that
contains the source file. The default value is T.

If you specify NIL, no fast-loading file is produced.

If you specify a pathname, namestring, symbol, or stream, the
compiler wuses the value as the specification of the output file.
The compiler uses the fas file type and the value of the
input-pathname to £ill the components of the file specification
that are not specified.

:VERBOSE

Specifies whether the compiler is to display the name of
functions and macros it compiles. The value can be T or NIL. 1If
you specify T, the compiler displays the name of each function
and macro. If a listing file exists, the compiler also includes
the names in the listing file. If you specify NIL, the names are
not displayed or included in the listing file. The default value
is the value of the *COMPILE-VERBOSE* variable (By default, T).

:WARNINGS

Specifies whether the compiler is to display warning messages.
The value can be T or NIL. If you specify T, the compiler
displays warning messages. If a 1listing file exists, the
compiler also includes the messages in the listing file. 1If you
specify NIL, warning messages are not displayed or included in
the 1listing file. The default wvalue is the value of the
COMPILE-WARNINGS variable (By default, T).

Return Value

If the compiler generated an output file, a namestring is
returned. Otherwise, NIL is returned.

13

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

COMPILE-FILE Function (cont.)

Examples

1.

Lisp> (COMPILE-FILE "factorial" :VERBOSE T)
Starting compilation of file /usr/users/smith/facto%ial.lsp
FACTORIAL compiled.

Finished compilation of file /usr/users/smith/factorial.lsp
0 Errors, 0 Warnings
"/usr/usrs/smith/factorial.fas"

Compiles the file factorial.lsp, which is in the current
directory. A fast-loading file named factorial.fas is
produced. The compilation is logged to the terminal, because
the :VERBOSE keyword is specified with the value T.

Lisp> (COMPILE-FILE "factorial" :OUTPUT-FILE NIL
tLISTING T
:WARNINGS NIL
:VERBOSE NIL)
NIL

Compiles the file factorial.lsp, which 1is in the current
directory. A fast-loading file is not produced, because the
:OUTPUT-FILE keyword is specified with the wvalue NIL. A
listing file named factorial.lis is produced. Warning
messages are suppressed, because the :WARNINGS keyword is
specified with the value NIL.

14

O

O

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

COMPILE-VERBOSE Variable
<::>Controls the amount of information that the compiler displays.

The COMPILE-FILE function binds the *COMPILE-VERBOSE* variable to the
value supplied by the :VERBOSE keyword. If the :VERBOSE keyword is
not specified, the function wuses the existing value * of the
COMPILE-VERBOSE variable. If the wvalue is not NIL, the compiler
displays the name of each function as it is compiled; if the value 1is
NIL, the compiler does not display the function names. The default
value is T.

Example

Lisp> (COMPILE-FILE "math")
Starting compilation of file /usr/users/smith/math.lsp

<:> FACTORIAL compiled.
FIBONACCI compiled.

Finished compilation of file /usr/users/smith/math.lsp
0 Errors, 0 Warnings - :

" /usr/users/smith/math.fas"

Lisp> (SETF *COMPILE-VERBOSE* NIL)

NIL
Lisp> (COMPILE-FILE "math")
(:) "/usr/users/smith/math. fas"

@ The first call to the COMPILE-FILE function shows the output
the compiler displays during the compilation of a file, when
the *COMPILE-VERBOSE* variable is set to T.

@ The call to the SETF macro sets the value of the wvariable to

NIL.

<::) e The second call to the COMPILE-FILE function compiles the file
without displaying output, because the variable’s value is
NIL.

15

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

COMPILE-WARNINGS Variable

Controls whether the compiler displays warning messages during g::>
compilation.

The COMPILE-FILE function binds the *COMPILE-WARNINGS* variable to the
value supplied with the :WARNINGS keyword. 1If the :WARNINGS keyword

is not specified, the function wuses the existing valud of the
COMPILE-WARNINGS variable. If the value is not NIL, the compiler
displays warning messages; if the value is NIL, the compiler does not
display warning messages. The default value is T.

NOTE

The compiler always displays fatal and continuable
error messages.

Example

Lisp> (COMPILE-FILE "math")
Starting compilation of file /usr/users/smith/math.lsp

Warning in FACTORIAL
N bound but value not used.
FACTORIAL compiled.
Warning in FIBONACCI - <:>
N bound but value not used.
- FIBONACCI compiled.

Finished compilation of file /usr/users/smith/math.lsp
0 Errors, 2 Warnings

"/usr/users/smith/math.fas"

Lisp> (SETF *COMPILE-WARNINGS* NIL)

NIL
Lisp> (COMPILE-FILE "math") <:>
Starting compilation of file /usr/users/smith/math.lsp

FACTORIAL compiled.
FIBONACCI compiled.

Finished compilation of file /usr/users/smith/math.lsp
0 Errors, 2 Warnings
"/usr/users/smith/math.fas"

e The first call to the COMPILE-FILE function shows the output
the compiler displays during the compilation of a file, when
the *COMPILE-WARNINGS* variable is set to T.

® The call to the SETF macro sets the value of the variable to
NIL. .)

16

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

COMPILE-WARNINGS Variable (cont.)

@ The second call to the COMPILE-FILE function compiles the file

without displaying warning messages in the output, because the
variable’s value is NIL.

17

VAX LISP/ULTRIX FUNCTION. MACRO. AND VARIABLE DESCRIPTIONS

CONTINUE Function

Enables you to exit the break loop. When you call this function, it
causes the BREAK function to return NIL and the evaluation of your
program to continue from the point at which the break 1loop was
entered.

Format
 CONTINUE

Return Value
NIL.

Example

Lisp> (BIND-KEYBOARD-FUNCTION #\FS #'BREAK)

Lisp> (LOAD "fileb.lsp")

; Loading contents of file /usr/usrs/sml.

“\

Break> (LOAD "filea.lsp")

Loading contents of file /usr/usrs/smlth/fllea 1sp
FUNCTION-A

Finished loading /usr/usrs/smith/filea.lsp

J Se we we

Break> (CONTINUE)
Continuing from break loop...
FUNCTION-B
Finished loading /usr/usrs/smith/fileb.1lsp

3 e =

isp>

@ The BREAK function is bound to <CTRLANA> (f\).

@ The file fileb.lsp is loaded.

® The programmer, realizing that filea.lsp (which is needed to -
initialize an environment for fileb.lsp) is not yet loaded,
invokes the BREAK loop.

e The file filea.lsp is then loaded.

e Finally, the call to the CONTINUE function continues the

loading of fileb.lsp and then returns the programmer to the
top-level loop.

18

O

O

O

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DEBUG Function
Invokes the VAX LISP debugger.
For information about how to use the VAX LISP debugger, see Chapter 4.
Format
DEBUG
Return Value

Returns NIL. You can cause the debugger to return other values
(see Chapter 4).

Example

Lisp> (DEBUG)

Control Stack Debugger
Frame #5: (DEBUG)
Debug 1>

Invokes the VAX LISP debugger. When you invoke the debugger, it

displays an identifying message, stack frame information, and the
debugger prompt.

19

VAX LISP/ULTRIX FUNCTION, ‘MACRO, AND VARIABLE DESCRIPTIONS

DEBUG-CALL Function

Returns a list representing the current debug frame function call.<:>
This function 1is a debugging tool and takes no arguments. The list
returned by the DEBUG-CALL function can be used to access the values
passed to the function in the current stack frame.

Format
DEBUG-CALL

Return Value
A list representing the current debug frame function call. NIL
is returned if this function is called outside the debugger.

Example <:>

Lisp> (SETF THIS-STRING "abcd")

"abcd"

Lisp> (FUNCTION-Y THIS-STRING 4)

«... Error in function FUNCTION-Y

Frame #4 (FUNCTION-Y "abcd" 4)

Debug 1> (SETF STRING (SECOND (DEBUG-CALL)))

"abcdll

Debug 1> (EQ "abcd" STRING) 4

NIL <:>
Debug 1> (EQ THIS-STRING STRING)

T

In this case, the function in the current stack frame is
FUNCTION-Y. The call to (DEBUG-CALL) returns the 1list
(FUNCTION-Y "abcd 4). The form (SECOND (DEBUG-CALL)) evaluates

"abcd", the first argument to FUNCTION-Y in the current stack
frame. Note that the string returned by the call (SECOND
(DEBUG-CALL)) is the same string passed to the function<:>
FUNCTION-Y. See the description of the TRACE macro for another
example of the use of the DEBUG-CALL function.

20

O

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DEBUG-PRINT-LENGTH Variable

Controls the output that the debugger, stepper, and tracer facilities
display. This variable controls the number of objects these
facilities can display at each level of a nested data object. The
variable’s value can be either a positive integer or NIL. If the
value is a positive integer, the integer indicates the gumber of
objects at each 1level of a nested object to be displayed. If the
value is NIL, no limit is on the number of objects that can be
displayed. The default value is NIL.

The value of this variable might cause the printer to truncate output.
An ellipsis (...) indicates truncation.

This variable is similar to the *PRINT-LENGTH* variable described 1in
COMMON LISP: The Language.

Example

Lisp> (SETF ALPHABET "(AB CDEF GHTIJK))
(ABCDEVFGHTIJK)

Lisp> (SETF *DEBUG-PRINT-LENGTH* 5)

5

Lisp> (+ 2 ALPHABET)

Fatal error in function + (signaled with ERROR).
Argument must be a number: (A B CDEVFGHTIJK)

Control Stack Debugger

Frame #5: (+ 2 (A B CDE ...))

Debug 1> (SETF *DEBUG-PRINT-LENGTH* 3)
3

Debug 1> WHERE

Frame #5: (+ 2 (A B C ...))

@ The call to the SETF macro sets the symbol ALPHABET to a 1list
of single-letter symbols.

@ The value of the *DEBUG-PRINT-LENGTH* variable is set to 5.

e The illegal call to the plus sign (+) function causes the LISP
system to invoke the debugger. The debugger displays only
five elements of the list that is the value of the symbol
ALPHABET the first time it displays the stack frame numbered
5.

® The call to the SETF macro within the debugger sets the value
of the *DEBUG-PRINT-LENGTH* variable to 3.

e The debugger displays three elements of the 1list, after you
change the value of the variable.

21

VAX LISP/ULTRIX FUNCTION. MACRO. AND VARIABLE DESCRIPTIONS

DEBUG-PRINT-LEVEL Variable

Controls the output that the debugger, stepper, and tracer facilities
display. This wvariable controls the number of levels of a nested
object these facilities can display. The variable’s wvalue can be
either a positive integer or NIL. If the value is a positive integer,
the integer indicates the number of levels of a nested objeegt to be
displayed. If the value is NIL, no limit is on the number of levels
that can be displayed. The default value is NIL.

The value of this variable might cause the printer to truncate output.
A number sign (#) indicates truncation.

This variable is similar to the *PRINT-LEVEL* variable described in
COMMON LISP: The Language.

Example

Lisp> (SETF ALPHABET ’'(A (B (C (D (E))))))
(A (B (C (D (E)))))

Lisp> (SETF *DEBUG-PRINT-LEVEL* 3)

3

Lisp> (+ 2 ALPHABET)

Fatal error in function + (signaled with ERROR).
Argument must be a number: (A (B (C (D (E)))))

Control Stack Debugger

Frame #5: (+ 2 (A (B #)))

Debug 1> (SETF *DEBUG-PRINT-LEVEL* NIL)
NIL '

Debug 1> WHERE

Frame #5: (+ 2 (A (B (C (D (E))))))

O

O

e The call to the SETF macro sets the symbol ALPHABET to a<::>

nested list.
@ The value of the *DEBUG-PRINT-LEVEL* variable is set to 3.

e The illegal call to the plus sign (+) function causes the LISP
system to invoke the debugger. The debugger displays only
three levels of the nested list (that is the value of the
symbol ALPHABET) the first time it displays the stack frame
numbered 5. ’

@ The call to the SETF macro within the debugger sets the value
of the *DEBUG-PRINT-LEVEL* variable to NIL.

@ The debugger displays all the levels of the nested list, after
you change the value of the variable.

22

O

O

VAX LISP/ULTRIX FUNCTION. MACRO, AND VARIABLE DESCRIPTIONS

DEFAULT-DIRECTORY Function

Returns a pathname with the host and directory fields filled with the
values of the current default directory.

The DEFAULT-DIRECTORY function is similar to the ULTRIX shell command
pwd. For information about the pwd command, see the*ULTRIX-32
Programmer’s Guide.

You can change the default directory by using the SETF macro. Setting
your default directory with this macro also resets the value of the
DEFAULT-PATHNAME-DEFAULTS variable. Performing this operation is
similar to wusing the ULTRIX shell command cd. See Chapter 6 and
COMMON LISP: The Language for information about pathnames and the
DEFAULT-PATHNAME-DEFAULTS variable.

Note that the directory must exist for the change of directory to
succeed.

Format

DEFAULT-DIRECTORY
Return Value

The pathname that refers to the default directory.
Examples

1. Lisp> (DEFAULT-DIRECTORY)
#S(PATHNAME :HOST "miami:" :DEVICE NIL
:DIRECTORY "/usr/users/smith" :NAME NIL :TYPE NIL
:VERSION NIL)
Lisp> (SETF (DEFAULT-DIRECTORY) "./tests/")
"./tests/"
Lisp> (DEFAULT-DIRECTORY)
#S(PATHNAME :HOST "miami:" :DEVICE NIL
¢:DIRECTORY "/usr/users/smith/tests" :NAME NIL :TYPE NIL
:VERSION NIL)

e The first call to the DEFAULT-DIRECTORY function returns
the pathname that points to the default directory.

e The call. to the SETF macro changes the default directory
to /usr/users/smith/tests. A slash 1is included in the
string to indicate that tests is a subdirectory rather
than a file.

® The second call to the DEFAULT-DIRECTORY function verifies
the directory change.

23

VAX LISP/ULTRIX FUNCTION. MACRO, AND VARIABLE DESCRIPTIONS

DEFAULT-DIRECTORY Function (cont.)

2.

Lisp> (DEFAULT-DIRECTORY)

#S(PATHNAME :HOST "miami:" :DEVICE NIL

+DIRECTORY "/usr/users/smith/tests" :NAME NIL :TYPE NIL
:VERSION NIL)

Lisp> *DEFAULT-PATHNAME-DEFAULTS* s
#S(PATHNAME :HOST "miami:" :DEVICE NIL)
:DIRECTORY "/usr/users/smith/tests" :NAME NIL :TYPE NIL
:VERSION NIL)

Lisp> (NAMESTRING (DEFAULT-DIRECTORY))
"/usr/users/smith/tests/"

Lisp> (SETF (DEFAULT-DIRECTORY) "../")
" n
oo/
Lisp> (NAMESTRING (DEFAULT-DIRECTORY))
" /usr/users/smith/"
Lisp> (NAMESTRING *DEFAULT-PATHNAME-DEFAULTS*)
" /usr/users/smith/"

e The first call to the DEFAULT-DIRECTORY function returns
the pathname that points to the default directory.

® The call to the *DEFAULT-PATHNAME-DEFAULTS* variable shows
that 1its wvalue 1is the same as the value returned by the
DEFAULT-DIRECTORY function.

e The call to the NAMESTRING function returns the pathname
as a string.

@ The call to the SETF macro changes the default directory
to /usr/users/smith.

@ The last two calls to the NAMESTRING function show that
the return values of the DEFAULT-DIRECTORY function and
the *DEFAULT-PATHNAME-DEFAULTS* variable are still the
same.

24

O

VAX LISP/ULTRIX FUNCTION. MACRO, AND VARIABLE DESCRIPTIONS

DEFINE-FORMAT-DIRECTIVE Macro

<:> Defines a directive for use in a FORMAT control string, supplementing
directives supplied with VAX LISP. 1In a call to FORMAT, specify a
directive you have defined in the form:
~ /name/ . b
You can also specify colon and at-sign modifiers:
~@:/name/
You can also specify one or more parameters:
“n,n/name/
DEFINE-FORMAT-DIRECTIVE provides means for the body of the format
<:> directive you define to receive the wvalue of parameters and the
presence or absence of colon and at-sign modifiers.
See Section 5.4 for more information about defining format directives.

Format

DEFINE-FORMAT-DIRECTIVE name
(arg stream colon-p atsign-p
<:> &OPTIONAL (parameterl default)
(parameter2 default)...)
&BODY forms

Arguments
name
<::> The name of the FORMAT directive defined with this macro.
NOTE

If you do not specify a package with name when
you define the directive, name is placed in the
current package. If you do not specify a package
when you refer to the directive, the FORMAT
directive looks in the USER package for the
directive definition.

arg

A symbol that is bound to the argument to be formatted by the
directive.

O

25

VAX LISP/ULTRIX FUNCTION, MACRO. AND VARIABLE DESCRIPTIONS

DEFINE-FORMAT-DIRECTIVE Macro (cont.)

stream : ‘ <::>

A symbol that is bound to the stream to which the printing is to
be done.

colon-p

A symbol that is bound to T or NIL, indicating whether a colon
was specified in the directive.

atsign-p

A symbol that is bound to T or NIL, indicating whether an at-sign
was specified in the directive.

parameters <:>

There must be one optional argument for each prefix parameter
that 1is allowed in the directive. A symbol supplied as a
parameter argument will be bound to the corresponding prefix
parameter if it was specified in the directive. Otherwise, the
default value will be used, as with all optional arguments.

forms <:>

Forms which are evaluated to print argqument to stream. The body
can begin with a declaration and/or documentation string.

Return Value

The name of the FORMAT directive that has been defined.

Example <:>

Lisp> (DEFINE-FORMAT-DIRECTIVE EVALUATION-ERROR
(SYMBOL STREAM COLON-P ATSIGN-P
&OPTIONAL (SEVERITY 0))
(DECLARE (IGNORE ATSIGN-P))
(FRESH-LINE STREAM)
(PRINC (CASE SEVERITY

(0. "Warning: ")

(1 "Error: ")

(2 "Severe Error: "))
STREAM)

(FORMAT STREAM "~ :!The symbol S " :_does not have an ~
integer value.”%Its value is: ":_"8~."
SYMBOL (SYMBOL-VALUE SYMBOL))
(WHEN COLON-P .
(WRITE-CHAR #\BELL STREAM))) : Q
EVALUATION-ERROR

26

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DEFINE-FORMAT-DIRECTIVE Macro (cont.)

Q Lisp> (SETF PROCESS NIL)
NIL
Lisp> (FORMAT T ""1:/EVALUATION-ERROR/" 'PROCESS)
Error: The symbol PROCESS does not have an integer value.
Its value is: NIL ’
<BEEP>

e This example shows the definition of a FORMAT directive, a use
of the directive, and the printed output.

e The prefix parameter 1 in "71:/EVALUATION-ERROR/" indicates

the severity of the error being signaled. The colon produces
a beep on the terminal.

27

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DEFINE-GENERALIZED-PRINT-FUNCTION Macro

Defines a function that specifies how any object 1is to be prettg:>

printed, regardless of 1its form. Generalized print functions are
effective only when they are enabled (globally or 1locally) and when
pretty printing 1s enabled. You can enable a generalized print

function globally, wusing GENERALIZED-PRINT-FUNCTION-ENABLEb-P. Or,
you can enable it locally, using WITH-GENERALIZED-PRINT-FUNCTION. An
enabled generalized print function is used if its predicate evaluates
to a non-NIL value.

See Section 5.6 for more information about generalized print
functions.

Format

DEFINE-GENERALIZED-PRINT-FUNCTION name (object stream) predicate

&BODY forms <:>

Arguments
name

The name of the generalized print function being defined.
object

A symbol that is bound to the object to be printed. <:>
Stream

A symbol that is bound to the stream to which output is to be
sent. '

predicate

A form. When the generalized print function has been enabled<:>
(globally or 1locally), the system evaluates this form for every -
object to be pretty printed. If the form evaluates to non-NIL on
the object to be pretty printed, the generalized print function
will be used.

forms
Forms that print object to stream, or take any other action.
These forms can refer to the object and stream by means of the
symbols used for object and stream. The body can begin with a
declaration and/or documentation string.

Return Value

The name of the generalized print function that has been defined. <:>

28

VAX LISP/ULTRIX FUNCTION, MACRO, AND VAHIABLE UCOURIF11UNG

) DEFINE-GENERALIZED-PRINT-FUNCTION Macro (cont.)
<:;) Example

Lisp> (DEFINE-GENERALIZED-PRINT-FUNCTION PRINT-NIL-AS-LIST
(OBJECT STREAM)
(NULL OBJECT)
(PRINC "()" STREAM))

PRINT~-NIL-AS-LIST

Lisp> (PRINT NIL)

NIL

NIL

Lisp> (PPRINT NIL)

NIL

Lisp> (WITH-GENERALIZED-PRINT-FUNCTION ’'PRINT-NIL-AS-LIST
(PRINT NIL)

(PPRINT NIL))
O 1L

()
Lisp> (SETF (GENERALIZED-PRINT-FUNCTION-ENABLED-P

'PRINT-NIL-AS-LIST)
T)
T
Lisp> (PPRINT NIL)

()

<:> ® The first PRINT call prints NIL, because the generalized print
function PRINT-NIL-AS-LIST is not enabled.

e The first PPRINT call prints NIL, because PRINT-NIL-AS-LIST is
still not enabled.

e The second PRINT call prints NIL, because pretty printing is
not enabled.

<:> ® The second PPRINT call prints (), because the generalized
print function is enabled locally.

e The third PPRINT call prints (), because the generalized
print function is enabled globally.

29

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DEFINE-LIST-PRINT-FUNCTION Macro

O

Defines and enables a function to print 1lists that begin with a
specified element. Defined functions are effective only when pretty
printing is enabled. The system checks the first element of each list
to be printed for a match. 1If the first element of a list metches the
name of a list-print function, the list is printed according to the
format you have defined.

See Section 5.5 for more information about list-print functions.
Format

DEFINE-LIST-PRINT-FUNCTION symbol (list stream) &BODY forms
Arguments

symbol <:>

The first element of any 1list to be printed in the defined
format.

list

A symbol that is bound to the list to be printed.

stream ' | <:>

A symbol that is bound to the stream on which printing is to be
done.

forms

Forms to be evaluated. The forms refer to the list to be printed
and the stream by means of the symbols you supply for list and
stream. The body can include declarations. Calls to FORMAT may
also be included.

Return Value
The name of the list-print function that has been defined.
Example

Lisp> (DEFINE-LIST-PRINT-FUNCTION MY-SETQ (LIST STREAM)
(FORMAT STREAM
"TLTWTS TeITe{TwWr T _TweTeT Lt
LIST))
MY-SETQ
Lisp> (SETF BASE ' (MY-SETQ HI 3 BYE 4))
(MY-SETQ HI 3 BYE 4) . <:>

30

VAX LISP/ULTRIX FUNCTION. MACRO, AND VARIABLE DESCRIPTIONS

Q DEFINE-LIST-PRINT-FUNCTION Macro (cont.)

‘Lisp> (PRINT BASE)
(MY-SETQ HI 3 BYE 4)
(MY-SETQ HI 3 BYE 4)
Lisp> (PPRINT BASE)
(MY-SETQ HI 3

BYE 4)

@ The list-print function MY-SETQ is defined.

@ The call to PRINT does not use the list-print function MY-SETQ
to print the value of BASE, because pretty-printing is not
enabled.

@ The call to PPRINT does use the list-print function MY-SETQ to
<:> print the value of BASE.

31

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DELETE-PACKAGE Function
Uninterns all the symbols interned in the package, unuses all '(:he<::>
packages the function wuses, and deletes the package. An error is
signaled if the package is used by any other package.
Format
DELETE-PACKAGE package
Argument
package
A package, or a string or symbol naming a package
Return Value <:>
T.
Example
Lisp> (DELETE-PACKAGE "TEST-PACKAGE")

T .
Lisp> (FIND-PACKAGE "TEST-PACKAGE")

O

32

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DESCRIBE Function

<;:> Displays information about a specified object. If the specified
object has a documentation string, this function displays the string
in addition to the other information the function displays. The type
of information the function displays depends on the t pe of the
object. For example, if a symbol is specified, the function displays
the symbol’s value, definition, properties, and other types of
information. If a floating-point number is specified, the number’s
internal representation is displayed in a way that is useful for
tracking such things as roundoff errors.

Format

DESCRIBE object

<::> Argument

object
The object about which information is to be displayed.
Return Value

No value.

{
(::) Examples

1. Lisp> (DESCRIBE 'C)

It is the symbol C
Package: USER
Value: unbound
Function: undefined

Q 2. Lisp> (DESCRIBE ‘FACTORIAL)

It is the symbol FACTORIAL

Package: USER

Value: unbound

Function: a compiled-function
FACTORIAL n

3. Lisp> (DESCRIBE PI)
It is the long-float 3.1415926535897932384626433832795L0
Sign: +

Exponent: 2 (radix 2) o
Significand: 0.78539816339744830961566084581988L0

S ,

33

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DESCRIBE Function (cont.)

4. Lisp> (DESCRIBE ’'#(1 2 3 4 5))
It is a simple-vector
Dimensions: (5)

Element type: t -
Adjustable: no
Fill Pointer: no
Displaced: no

Displays information about the simple-vector #(1 2 3 4 5).

34

O

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DIRECTORY Function

Converts its argument to a pathname and returns a list of the
pathnames for the files matching the specification. The DIRECTORY
function is similar to the ULTRIX 1ls command.
Format
DIRECTORY pathname
Argument
pathname
The pathname, namestring, stream, or symbol for which the list of
file system pathnames is to be returned. In VAX LISP/ULTRIX,
this argument 1is merged with the following default file
specification:

host::directory/*

The host and directory values are supplied by the
 DEFAULT-PATHNAME-DEFAULTS variable.

Specifying Jjust a directory is equivalent to specifying a
directory with wild cards (*) in the name field of the argument.
For example, the following two expressions are equivalent:
(DIRECTORY "MYDIRECTORY/")
(DIRECTORY "MYDIRECTORY/*")

Both expressions return a list of pathnames that represent the
files in the directory mydirectory.

The following equivalent expressions return the list of pathnames
for files in your default directory:

(DIRECTORY "")
(DIRECTORY (DEFAULT-DIRECTORY))
Return Value

A list of pathnames, if the specified pathname is matched, and
NIL, if the pathname is not matched.

35

VAX LISP/ULTRIX FUNCTION. MACRO, AND VARIABLE DESCRIPTIONS

DIRECTORY Function (cont.)

Example

Li

sp> (DEFUN MY-DIRECTORY (&OPTIONAL (FILENAME ""))
(LET ((PATHNAME (PATHNAME FILENAME))
(DTRECTORY (DIRECTORY FILENAME)))
(COND ((NULL DIRECTORY)
(FORMAT T
"“%No files match "A.7%"
(NAMESTRING FILENAME)))
(T (FORMAT T
"“%The following ":[files are™ ;file is 7]
in the directory “A"
(EQUAL (LENGTH DIRECTORY) 1)
(PATHNAME-DIRECTORY
(NTH 0 DIRECTORY)))
(DOLIST (DIRECTORY)
(FORMAT T ""& " 2T"A" (FILE-NAMESTRING X)))
(TERPRI)))
(VALUES)))

MY-DIRECTORY

Li
Th

Li
Th

sp> (MY-DIRECTORY)

e following files are in the 'directory /usr/usrs/smith/tests
test5.drb

testl.lsp

example. txt

test3.1sp

test6.1sp

sp> (MY-DIRECTORY "*.lsp") _

e following files are in the directory /usr/usrs/smith/tests
testl.1lsp

test3.1lsp

test6.1lsp

The call to the DEFUN macro defines a function that formats
the output of the DIRECTORY function, making the output more
readable. The function is defined such that it accepts an
optional argument and does not return a value.

The first call to the function MY-DIRECTORY shows how the
function formats the directory output when an argument is not
specified.

The second call to the function MY-DIRECTORY includes an
argument; the output includes only the files of type 1lsp.

36

O

O

O

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

DRIBBLE Function

Echoes the input and output of an interactive LISP session to a
specified file, enabling you to save a record of what you do during
the session in the form of a file.

When you want to stop the DRIBBLE function from echoing input and
output to the pathname, close the file by calling the DRIBBLE function
without an argument.

In VAX LISP/ULTRIX, there is one restriction on the use of the DRIBBLE
function: you cannot nest calls to the DRIBBLE function.

Format

DRIBBLE &OPTIONAL pathname
Argument
pathname

The pathname to which the input and output of the LISP session is
to be sent.

Return Value

If an argument is specified with the function, no value 1is
returned and dribbling is turned on. If debugging is on and the
‘function is called with no arguments, then T is returned and
dribbling is turned off. If dribbling is off and is called
without an argument, NIL is returned.

Examples
1. Lisp> (DRIBBLE "newfunction.lsp")
Dribbling to /usr/users/smith/newfunction.lsp
Lisp>
Creates a dribble file named newfunction.lsp. The LISP
system sends input and output to the file until you call the
DRIBBLE function again (without an argument) or exit LISP.

2. Lisp> (DRIBBLE)
T .

Closes the dribble file that was previously opened.

37

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

ERROR-ACTION Variable

Determines the action the VAX LISP error handler is to take when an <::>

error occurs. The wvalue of this variable can be the :EXIT or the
:DEBUG keyword. If the value is :EXIT, the error handler causes the
LISP system to exit; if the value is :DEBUG, the handler invokes the
VAX LISP debugger. The default value is :DEBUG for interactive LISP
sessions; the default value is :EXIT otherwise.

In addition to setting this variable within a LISP form, you can also
set it on LISP initialization with the -V "ERROR_ACTION=value" option
(see Chapter 2).

Example
Lisp> (CAR 'A)

Fatal error in function CAR (signaled with ERROR).
Argument must be a list: A.

Control Stack Debugger

Frame #5: (CAR A)

Debug 1> QUIT

Lisp> (SETF *ERROR-ACTION* :EXIT)
cEXIT

Lisp> (CAR 'A)

Fatal error in function CAR (signaled with ERROR).
Argument must be a list: A.

%

e When the first error occurs, the LISP system invokes the VAX
LISP debugger because the value of the *ERROR-ACTION* variable’
is :DEBUG (the default).

O

@ The call to the SETF macro sets the value of the variable to (::)

:EXIT.

e The second time the error occurs, the LISP system exits and
control returns to ULTRIX.

38

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

EXIT Function

\v;%auses the LISP system to exit and to return control to ULTRIX.
You can pass the status of the LISP system to the shell when you exit
the LISP system by specifying an optional argument. Whep the LISP

system exits, the argument’s value is passed to ULTRIX.

Format

EXIT &OPTIONAL status

Argument

Status
A fixnum or a keyword that indicates the status of the LISP
system that is to be returned to ULTRIX when the LISP system

exits. The keywords you can specify and the types of status they
return are the following:

:ERROR Error status (-1)
: SUCCESS Success status (0)

Return Value
<::> No value.
Examples

1. Lisp> (EXIT)

G

Exits the LISP system.
<:> 2. Lisp> (EXIT :ERROR)

Exits the LISP system. When control returns to ULTRIX, VAX ~
LISP has returned -1.

39

VAX LISP/ULTRIX FUNCTION. MACRO, AND VARIABLE DESCRIPTIONS

Format Directives Provided with VAX LISP

VAX LISP provides eight directives for the FORMAT function, in<::>
addition to those described in COMMON LISP: The Language. Table 1
lists and describes these directives. See Section 5.3 for more
information about using these directives.

¢

Table 1: Format Directives Provided with VAX LISP

Directive Effect

"W Prints the corresponding argument under direction of
the current print variable values. The argument for "W
can be any LISP object. This directive takes a colon
modifier and four prefix parameters.

Use the colon modifier (7:W) when you want to set <:>
PRINT-PRETTY and *PRINT-ESCAPE* to T, and set
PRINT-LENGTH, *PRINT-LEVEL*, and *PRINT-LINES* to
NIL.

The prefix parameters specify padding. These
parameters are identical to those wused with the "A
directive.

“mincol,colinc,minpad,padcharw <:>

mincol specifies the minimum width of the printed
representation of the object. FORMAT inserts padding
characters on the right, until the width is at least
mincol columns. Use the at-sign with minpad to insert
the padding characters on the 1left instead. The
default for mincol is 0.

colinc specifies an increment: the number of padding <:>
characters to be inserted at one time until the width
is at least mincol columns. The default is 1. -

minpad specifies the minimum number of padding
characters to be inserted. The default is 0.

padchar, preceded by a single quote, specifies the
padding character. The default is the space
character.

-

Begins a 1logical block. A logical block ‘is a
hierarchical grouping of FORMAT directives treated as a
unit. FORMAT must be processing a logical block with
PRINT-PRETTY true to enable pretty printing..
Directives inside a logical block refer to elements of <:>
a single 1list taken from the argument list to FORMAT.

40

VAX LISP/ULTRIX FUNCTION. MACRO. AND VARIABLE DESCRIPTIONS

Format Directives Provided with VAX LISP (cont.)

<::>Table 1 (cont.)

Directive

Effect

nl

(If the argument supplied to the logical block is not a
list, then the 1logical block 1is skipped and the
argument is printed as if with "W.) The 1logical block
directive takes colon and at-sign modifiers.

When the directive is modified by a colon (7:!), the
directive sets *PRINT-PRETTY* and *PRINT-ESCAPE* to T
and *PRINT-LENGTH*, *PRINT-LEVEL*, and *PRINT-LINES* to
NIL.

When the directive is modified by an at-sign (T@€!), the
directives within the 1logical block take successive
arguments from the FORMAT argument list. The 1logical
block uses up all the arguments, not just a single list
argument. Arguments not needed by the 1logical block
are used up as well, so that they are not available for
subsequent directives.

Specify a parameter of 1 (71!) to enclose the output in
parentheses.

Ends a logical block. 1f modified by an at-sign (7@!),
the directive inserts a new line if needed after every
blank space character.

Specifies a multiline mode new line and marks a logical
block section. This directive takes colon and at-sign
modifiers. When modified by a <colon (T:_), the
directive starts a new line if not enough space is on
the line to print the next logical block section. When
modified by an at-sign (T@_), the directive starts a
new line if miser mode is enabled.

The “_ directive and its variants are effective only
when wused within a logical block with pretty printing
enabled.

Sets indentation for subsequent 1lines to n columns
after the beginning of the logical block or after the
prefix. When modified by a colon ("n:I), the directive
causes FORMAT to indent subsequent lines n spaces from
the column corresponding to the position of the
directive. The “"nl directive and the "n:I variant are
effective only when used within a 1logical block with
pretty printing enabled.

41

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

Format Directives Provided with VAX LISP (cont.)

Table 1 (cont.)

Directive

Effect

“n/FILL/

~n/LINEAR/

“n,m/TABULAR/

Prints the elements of a list with as many eltments as
possible on each line. If n is 1, FORMAT encloses the
printed list in parentheses. 1If pretty printing is not
enabled, the directive causes FORMAT to print the
output on a single line.

If the elements of the list to be printed cannot be
printed on a single line, this directive prints each
element on a separate line. 1If n is 1, FORMAT encloses
the printed list in parentheses. 1If pretty printing is
not enabled, this directive causes FORMAT to print the
output on a single line.

Prints the list in tabular form. If n is 1, FORMAT
encloses the 1list in parentheses; m specifies the
column spacing. If pretty printing is not enabled,
this directive causes FORMAT to print the output on a
single line. :

42

O

O

O

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GC Function

Invokes the garbage collector. The LISP system initiates garbage
collection during normal system use whenever necessary. You cannot
disable this process. However, the GC function enables you to

initiate garbage collection during system interaction. .

NOTE

The LISP system does not use the GC function to
initiate garbage <collections. Therefore, redefining
the GC function does not prevent garbage collection.

You might want to use the GC function to invoke the garbage collector
just before a time-critical part of a LISP program. Using the GC

<::> function this way reduces the possibility of the LISP system
initiating a garbage collection when a critical part of the program is
executing.

See Chapter 6 for a description of the garbage collector.
Format
GC
<:> Return-Value
T, when garbage collection is completed.
Example
Lisp> (GC) ~

; Starting garbage collection due to GC function.
<::> ; Finished garbage collection due to GC function.
T

Invokes the garbage collector. Whether the messages are printed
when a garbage collection occurs depends on the value of the
GC-VERBOSE variable.

43

VAX LISP/ULTRIX FUNCTION, MACRO. AND VARIABLE DESCRIPTIONS

GC-VERBOSE Variable

A variable whose value is used as a flag to determine whether the LISP <:>
system 1is to display messages when a garbage collection occurs. If

the flag is NIL, the system displays messages. If the flag is not
NIL, the system displays a message before and after . @ garbage
collection occurs. The default value is T.

The messages the LISP system displays are controlled by the VAX LISP
PRE-GC-MESSAGE and *POST-GC-MESSAGE* variables.

For more information on garbage collector messages, see Chapter 6.
Example

Lisp> *GC-VERBOSE*

T
Lisp> (GC) Q

; Starting garbage collection due to GC function.
; Finished garbage collection due to GC function.
T

Lisp> (SETF *GC-VERBOSE* NIL)

NIL

Lisp> (GC)

T

e The first evaluation of the *GC-VERBOSE* variable returns the <::>
default wvalue T, which indicates that the LISP system will
display a message before and after a garbage collection occurs
(depending on the values of the *PRE-GC-MESSAGE* and
POST-GC-MESSAGE variables).

e The call to the GC function shows the default messages the
system displays when a garbage collection occurs and the
variable’s value is T.

@ The call to the SETF macro sets the value of the wvariable to <::>
NIL.

® The second call to the GC function shows that the system does
not display messages when the variable’s value is NIL.

44

C

O

VAX LISP/ULTRIX FUNCTION, MACRO. AND VARIABLE DESCRIPTIONS

GENERALIZED-PRINT-FUNCTION-ENABLED-P Function

Used to globally enable a generalized print function or test whether a
generalized print function is enabled. GENERALIZED-PRINT-FUNCTION-
ENABLED-P is a predicate, and it can be used as a place form with
SETF. .

See Chapter 5 for more information about wusing generalized print
functions.

Format

GENERALIZED-PRINT-FUNCTION-ENABLED-P name
Argument
name

A symbol identifying the generalized print function to be enabled
or tested.

Return Value
T or NIL.
Example

Lisp> (GENERALIZED-PRINT-FUNCTION-ENABLED-P 'PRINT-NIL-AS-LIST)

NIL

Lisp> (DEFINE-GENERALIZED-PRINT-FUNCTION PRINT-NIL-AS-LIST
(OBJECT STREAM)
(NULL OBJECT)

(PRINC "()" STREAM))

PRINT-NIL-AS-LIST

Lisp> (SETF (GENERALIZED PRINT-FUNCTION-ENABLED-P
"PRINT-NIL-AS-LIST)

T)
T
Lisp> (PPRINT NIL)

()

e The first use of the GENERALIZED-PRINT-FUNCTION-ENABLED-P
function returns NIL, because no generalized print function
named PRINT-NIL-AS-LIST has been defined.

e The <call to DEFINE-GENERALIZED-PRINT-FUNCTION defines the
generalized print function PRINT-NIL-AS-LIST.

@ The call to SETF globally enables the generalized print
function PRINT-NIL-AS-LIST.

e The PPRINT call prints (), because the generalized print -
function is enabled globally and pretty printing is enabled.

45

VAX LISP/ULTRIX FUNCTION. MACRO, AND VARIABLE DESCRIPTIONS

GET-GC-REAL-TIME Function

O

Lets you inspect the elapsed time used by the garbage collector during
program execution. This function is useful for tuning programs.

The function measures its value in terms of the
INTERNAL-TIME-UNITS-PER-SECOND constant. This value is cumulative.
It includes the elapsed time used for all the garbage collections that
have occurred. A description of the INTERNAL-TIME-UNITS-PER-SECOND
constant is provided in COMMON LISP: The Language.
When a suspended system is resumed, the elapsed time is set to 0.
For more information on the garbage collector, see Chapter 7.
Format
GET-GC-REAL-TIME <:>

Return Vvalue

The real time that has been used by the garbage collector.

Examples
1. Lisp> (GET-GC-REAL-TIME)
3485700000 <::>
Lisp> (GC)

; Starting garbage collection due to GC function.
; Finished garbage collection due to GC function.

T
Lisp> (GET-GC-REAL-TIME)
401210000

e The first call to the ~GET-GC-REAL-TIME function returns
the real time used by the garbage collector. <:>

e The call to the GC function invokes a garbage collection.

e The second call to the GET-GC-REAL-TIME function returns

the updated real time that has been used by the garbage
collector. g

46

VAX LISP/ULTRIX FUNCTION, MACRO. AND VARIABLE DESCRIPTIONS

GET-GC-REAL-TIME Function (cont.)

<:> 2. Lisp> (DEFMACRO GC-ELAPSED-TIME (FORM)

N(LET* ((START-GC (GET-GC-REAL-TIME))
(VALUE ,FORM)
(END-GC (GET-GC-REAL-TIME)))
(FORMAT *TRACE-OUTPUT*
"~2GC elapsed time: "D seconds” %"
(TRUNCATE ‘
(- END-GC START-GC)
INTERNAL-TIME-UNITS-PER-SECOND))))

L)

GC-ELAPSED-TIME
Lisp> (GC-ELAPSED-TIME (SUSPEND "myfile.sus"))

.
1
.
4
.
’

Starting garbage collection due to GC function.
Finished garbage collection due to GC function.
Starting garbage collection due to SUSPEND function.

<:> ; Starting garbage collection due to SUSPEND function.
GC elapsed time: 54 seconds
NIL
@ The call to the DEFMACRO macro defines a macro named

GC-ELAPSED-TIME, which evaluates a form and displays the
amount of elapsed time that was used by the garbage
collector during a form’s evaluation.

The call to the GC-ELAPSED-TIME function displays the

amount of elapsed time the garbage collector used when the
LISP system evaluated the form (SUSPEND "myfile.sus").

47

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GET-GC-RUN-TIME Function

Lets you inspect the CPU time used by the garbage collector during <:>
program execution. This function is useful for tuning programs.

The function measures its value in terms of the
INTERNAL-TIME-UNITS-PER-SECOND constant. This value is chmulative.
It includes the CPU time used for all the garbage collections that
have occurred. A description of the INTERNAL-TIME-UNITS-PER-SECOND

constant is provided in COMMON LISP: The Language.
When a suspended system is resumed, the CPU time is set to 0.
For more information on the garbage collector, see Chapter 6.
Format
GET-GC-RUN-TIME <:>
Return Value
The CPU time that has been used by the garbage collector.
Examples

1. Lisp> (GET-GC-RUN-TIME)
: O
Lisp> (GC)

; Starting garbage collection due to GC function.
; Finished garbage collection due to GC function.
T .

Lisp> (GET-GC-RUN-TIME)

13400000

e The first call to the GET-GC-RUN-TIME function returns the
CPU time used by the garbage collector. (:)

e The call to the GC function invokes a garbage collection. -
e The second call to the GET-GC-RUN-TIME function returns

the wupdated CPU time that has been used by the garbage
collector. .

48

—

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GET-GC-RUN-TIME Function (cont.)

2.

Lisp> (DEFMACRO GC-CPU-TIME (FORM)

“(LET* ((START-GC (GET-GC-RUN-TIME))
(VALUE ,FORM)
(END-GC (GET-GC-RUN-TIME)))
(FORMAT *TRACE-QUTPUT*
"“%GC CPU time: D seconds™ %"
(TRUNCATE
(- END-GC START-GC)
INTERNAL-TIME-UNITS-PER-SECOND)))

GC-CPU-TIME
Lisp> (GC-CPU-TIME (SUSPEND "myfile.sus"))

o we wo weo

’

Starting garbage collection due to GC function.
Finished garbage collection due to GC function.
Starting garbage collection due to SUSPEND function.
Starting garbage collection due to SUSPEND function.

GC CPU time: 10 seconds
NIL

The call to the DEFMACRO macro defines a macro named
GC-CPU-TIME, which evaluates a form and displays the
amount of CPU time that was used by the garbage collector
during a form’s evaluation.

The call to the GC-CPU-TIME function displays the amount

of CPU time the garbage collector used when the LISP
system evaluated the form (SUSPEND "myfile.sus").

49

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GET-INTERNAL-RUN-TIME Function

Returns an integer that represents the elapsed CPU time used for the <:>
current process. The function value 1is measured in terms of the
INTERNAL-TIME-UNITS-PER-SECOND constant. A description of the
INTERNAL-TIME-UNITS-PER-SECON constant is ©provided in COMMON LISP:

The Language. S :

Format
GET-INTERNAL—RUN?TIME
Return Value

The elapsed CPU time used for the current process.

Example ' <:>

Lisp> (DEFMACRO MY-TIME (FORM)
SN(LET* ((START-REAL-TIME (GET-INTERNAL-REAL-TIME))
(START-RUN-TIME (GET-INTERNAL-RUN-TIME))
(VALUE ,FORM)
(END-RUN-TIME (GET-INTERNAL-RUN-TIME))
(END-REAL-TIME (GET-INTERNAL-REAL-TIME)))
(FORMAT *TRACE-OUTPUT*
"“&Run Time: ~,2F sec.,
Real Time: ~,2F sec.” %" <:>
-(/ (- END-RUN-TIME START-RUN-TIME)
INTERNAL-TIME-UNITS-PER-SECOND)
(/ (- END-REAL-TIME START-REAL-TIME)
INTERNAL-TIME-UNITS-PER-SECOND))

~

VALUE))
MY-TIME

Defines a macro that displays timing information about the
evaluation of a specified form. (:)

50

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

GET-KEYBOARD-FUNCTION Function

<:> Returns information about the function that is bound to a control
character.

Format
GET-KEYBOARD-FUNCTION control-character
Argument
control-character
The control character to which a function is bound.
Return Vvalue
<:> Three values:
1.- The function that is bound to the control character.
2. The function’s argument list.

3. The function’s interrupt level.

If a function is not bound to the specified control character,
(::) the function returns NIL for all three values.
Examples

1. Lisp> (BIND-KEYBOARD-FUNCTION #\FS #’BREAK)
T
Lisp> (GET-KEYBOARD-FUNCTION #\FS)
#<Compiled Function BREAK #x261510> ;

NIL ;
O 1
e The call to the BIND-KEYBOARD-FUNCTION function binds -
<CTRL/\> to the BREAK function.

® The call to the GET-KEYBOARD-FUNCTION function returns the

) function to which <CTRLA\> 1is bound; the function’s
argument list, which is NIL; and the function’s interrupt
level, which is 1.

2. Lisp> (GET-KEYBOARD-FUNCTION #\"2)

NIL ;
NIL ;
NIL
<::> All three values returned are NIL, because <CTRL/Z> is not
bound to a function. X

51

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

HASH-TABLE-REHASH-SIZE Function

Returns the rehash size of a hash table. The rehash size indicates<::>
how much a hash table is to increase when it is full. You specify
that value when you create a hash table with the MAKE-HASH-TABLE
function. For information on hash tables, see COMMON ?ISP: The
Language.

Format
HASH-TABLE-REHASH-SIZE hash-table
Argument
hash-table
The name of the hash table whose rehash size is to be returned. <:>
Return Value
An integer greater than 0 or a flbating—point number greater than
1. If an integer is returned, the value indicates the number of
entries that are to be added to the table. If a floating-point

number is returned, the value indicates the ratio of the new size
to the old size.

Example ' <:>

Lisp> (SETF *PRINT-ARRAY* NIL)

NIL
Lisp> (SETF TABLE-1 (MAKE-HASH-TABLE :TEST #'EQUAL
' :SIZE 200
+REHASH-SIZE 1.5
:REHASH-THRESHOLD .95))
#<Hash Table #x503BA8>
Lisp> (HASH-TABLE-REHASH-SIZE TABLE-1) <:>
1.5

® The first call to the SETF macro sets the value of the
PRINT-ARRAY variable to NIL.

® The second call to the SETF macro sets TABLE-1 to the hash
table created by the call to the MAKE-HASH-TABLE function.

® The call to the HASH-TABLE-REHASH-SIZE fﬁnction returns the
rehash size of the hash table, TABLE-1.

52

VAX LISP/ULTRIX FUNCTION, MACRO. AND VARIABLE DESCRIPTIONS

HASH-TABLE-REHASH-THRESHOLD Function

Returns the rehash threshold for a hash table. The rehash threshold
indicates how full a hash table can get before its size has to be
increased. You specify that value when you create a hash table with
the MAKE-HASH-TABLE function. For information on hash tables, see
COMMON LISP: The Language. '

Format
HASH-TABLE-REHASH-THRESHOLD hash-table
Argument
hash-table
The hash table whose rehash threshold is to be returned.
Return Value

An integer greater than 0 and less than hash table’s rehash size
or a floating-point number greater than 0 and less than 1.

Example

Lisp> (SETF *PRINT-ARRAY* NIL)

NIL

Lisp> (SETF TABLE-1 (MAKE-HASH-TABLE :TEST #'EQUAL
:SIZE 200
:REHASH-SIZE 1.5
:REHASH-THRESHOLD .95))

#<Hash Table #x503BA8> :

Lisp> (HASH-TABLE-REHASH-THRESHOLD TABLE-1)

0.95

e The first call to the SETF macro sets the wvalue of the
PRINT-ARRAY vapiable to NIL.

® The second call to the SETF macro sets TABLE-1 to the hash
table created by the call to the MAKE-HASH-TABLE function.

e The call to the HASH-TABLE-REHASH-THRESHOLD function returns
the rehash threshold of the hash table, TABLE-1.

53

VAX LISP/ULTRIX FUNCTION. MACRO, AND VARIABLE DESCRIPTIONS

HASH-TABLE-SIZE Function . o . -

Returns the current size of a hash table. You specify that value when
you create a hash table with the MAKE-HASH-TABLE function. For
information on hash tables, see COMMON LISP: The Language.

Format

HASH-TABLE-SIZE hash-table
Argument
hash-table

The hash table whose initial size is to be returned.

Return Value ' : <:>

An integer that indicates the initial size of the hash table.

Example

Lisp> (SETF *PRINT-ARRAY* NIL)
NIL

Lisp> (SETF TABLE-1 (MAKE-HASH—TABLE :TEST #'EQUAL /
:SIZE 200 ‘

:REHASH-SIZE 1.5 <:>
: :REHASH-THRESHOLD .95))

#<Hash Table #x503BA8>

Lisp> (HASH-TABLE-SIZE TABLE -1)
233

® The first call to the SETF macro sets the value of the
PRINT-ARRAY variable to NIL.

® The second call to the SETF macro sets TABLE-1 to the hash <::>
table created by the call to the MAKE-HASH-TABLE function.

® The call to the HASH-TABLE-SIZE function returns the initial
size of the hash table, TABLE-1.

54

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

HASH-TABLE-TEST Function

Returns a value or a symbol that indicates how a hash table’'s keys are
compared. The value is specified when you create a hash table with
the MAKE-HASH-TABLE function. For information on hash tables, see
COMMON LISP: The Language.

Format

HASH-TABLE-TEST hash-table
Argument
hash-table

The hash table whose test value is to be returned.

<::>Return Value

Either a function (#'EQ, #’'EQL, or #'EQUAL) or a symbol (EQ, EQL,
or EQUAL). EQL is the default when creating a hash table.

Example
Lisp> (SETF *PRINT-ARRAY* NIL)

NIL
<:> Lisp> (SETF TABLE-1 (MAKE-HASH-TABLE :TEST #'EQUAL
i ' :SIZE 200
:REHASH-SIZE 1.5
«:REHASH-THRESHOLD .95))
$<Hash Table #x503BA8>
Lisp> (HASH-TABLE-TEST TABLE-1)

EQUAL
<::> e The first call to the SETF macro sets the wvalue of the
PRINT-ARRAY variable to NIL.

e The second call to the SETF macro sets TABLE-1 to the hash -
table created by the call to the MAKE-HASH-TABLE function.

o The call to the HASH-TABLE-TEST function returns the test for
the hash table, TABLE-1l.

55

VAX LISP/ULTRIX FUNCTION. MACRO. AND VARIABLE DESCRIPTIONS

LOAD Function
Reads and evaluates the contents of a file into the LISP environment. <:>

In VAX LISP, if the specified file name does not specify an explicit
file type, the LOAD function locates the source file (type 1lsp) or
- fast-loading file (type fas) with the latest file write date and loads
it. This ensures that the 1latest version of the file is loaded,
whether or not the file is compiled.

Format

LOAD filename
&KEY :IF-DOES-NOT-EXIST :PRINT :VERBOSE

Arguments

filename <::>

The name of the file to be loaded.
:IF-DOES-NOT-EXIST

Specifies whether the LOAD function signals an error if the file
does not exist. The value can.be T or NIL. If you specify T,

the function signals an error if the file does not exist. If you
specify NIL, the function returns NIL if the file does not exist. (::)
The default value is T.

¢PRINT

Specifies whether the value of each form that is 1loaded is
printed to the stream bound to the *STANDARD-OUTPUT* variable.

The value can be T or NIL. If you specify T, the value of each
form in the file is printed to the stream. If you specify NIL,

no action is taken. The default value is NIL. This keyword is <:>
useful for debugging.

:VERBOSE

Specifies whether the LOAD function is to print a message in the
form of a comment to the stream bound to the *STANDARD-OUTPUT*
variable. The value can be T or NIL. If you specify T, the
function prints a message. The message includes information such
as the name of the file that is being 1loaded. If you specify
NIL, the function uses the value of *LOAD-VERBOSE* variable The
default is T. :

Return vValue

A value other than NIL if the load operation .is successful. (::>

56

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

LOAD Function (cont.)
Example
Lisp> (COMPILE-FILE "factorial")

Starting compilation of file /usr/users/smith/factorialflsp

FACTORIAL compiled.

Finished compilation of file /usr/users/smith/factorial.lsp
0 Errors, 0 Warnings

"/usr/users/smith/factorial.fas"
Lisp> (LOAD "factorial")

Loading contents of file /usr/users/smith/factorial.fas
FACTORIAL

Finished loading /usr/users/smith/factorial.fas

J we we ~o

e The call to the COMPILE-FILE function produces a fast-loading
file named factorial.fas.

e The call to the LOAD function locates the fast-loading file
factorial.fas and loads the file into the LISP environment.

57

VAX LISP/ULTRIX FUNCTION. MACRO. AND VARIABLE DESCRIPTIONS

LONG-SITE-NAME Function

If the file lispsite.txt exists in the LISP product directory, the
LONG-SITE-NAME function finds the file, reads it, and returns its
content as a string that represents the physical 1location of the
computer hardware on which the VAX LISP system is running. cherwise,
the LONG-SITE-NAME function returns NIL.

The LISP product directory 1is the directory referred to by the
environment variable VAXLISP if it exists, or by /usr/lib/vaxlisp if
the environment variable does not exist. See the VAX LISP/ULTRIX
Installation Guide for more information on the LONG-SITE-NAME function
and on creating the file lispsite.txt.

Format
LONG-SITE-NAME
Return Value

A string that represents the physical location of the computer
hardware on which the VAX LISP system is running or NIL.

Example

Lisp> (LONG-SITE-NAME)
"Smith’s Computer Company
Artificial Intelligence Group
22 Plum Road

Canterbury, Ohio 47190

58

O

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

MACHINE-INSTANCE Function

Returns a string naming the current host or NIL.

Format
MACHINE-INSTANCE

Return Value
A string naming the computer hardware on which a VAX LISP system
is running. This string is the current node name. If no host
name exists, this function returns NIL.

Example

Q Lisp> (MACHINE-INSTANCE)
"miami"

59

VAX LISP/ULTRIX FUNCTION, MACRO. AND VARIABLE DESCRIPTIONS

MACHINE-VERSION Function

The MACHINE-VERSION function displays the same information that thé::>
shell command hostid(1l) displays.

Format

MACHINE-VERSION
Return Value

An integer is returned, which is the host ID.
Example

Lisp> (MACHINE-VERSION)

332 Q

60

O

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

MAKE-ARRAY Function

Creates and returns an array. VAX LISP has added the :ALLOCATION
keyword to this COMMON LISP function. When the function is used with
the :ALLOCATION keyword and the value :STATIC, the function creates a
statically allocated array. .

During system usage, the garbage collector moves LISP objects. You
can prevent the garbage collector from moving an object by allocating
it in static space. Arrays, vectors, and strings can be statically
allocated if you wuse the :ALLOCATION keyword and :STATIC value in a
call to the MAKE-ARRAY function. Once an object 1is statically
allocated, 1its wvirtual address does not change. Note that such
objects ar never garbage collected and their space cannot be
reclaimed. By default, LISP objects are allocated in dynamic space.

NOTE

A statically allocated object maintains its memory
address even if a SUSPEND/RESUME operation is
performed.

Calling the MAKE-ARRAY function with the :ALLOCATION :STATIC
keyword-value pair is wuseful if you are creating a large array.
Preventing the garbage collector from moving the array causes the
garbage collector to go faster. '

The MAKE-ARRAY function has a number of other keywords that can be
used. See COMMON LISP: The Language for information on the other
MAKE-ARRAY keywords.

VAX LISP creates a specialized array when the array’s element type is
STRING-CHAR, (SIGNED-BYTE 32), or a subtype of FLOAT or (UNSIGNED BYTE
1-29). For all other element types, VAX LISP creates a generalized
array, with the element type T. For compatibility of VAX types with
LISP types when calling external routines, see the tables on data
conversion in the call-out chapter of the VAX LISP/ULTRIX System
Access Programming Guide.

Format

MAKE-ARRAY dimensions
&KEY :ALLOCATION other-keywords

Arguments
dimensions
A list of positive integers that are to be the dimensions of the

array.

61

VAX LISP/ULTRIX FUNCTION, MACRO. AND VARIABLE DESCRIPTIONS

MAKE-ARRAY Function (cont.)

: ALLOCATION | | Q

Specifies whether the LISP object is to be statically allocated.
You can specify one of the following values with the :%LLOCATION

keyword:
:DYNAMIC The LISP object is not to be statically
~ allocated. This value is the default.
:STATIC The LISP object 1is to be statically
allocated.

other-keywords

See COMMON LISP: The Language. <::>
Return Value

The statically allocated object.
Example

Lisp> (DEFPARAMETER BIT-BUFFER
(MAKE-ARRAY ' (1000 1000) :ELEMENT-TYPE ’'BIT <::>

:ALLOCATION :STATIC))
BIT-BUFFER

Creates a large array of bits named BIT-BUFFER, which 1is not
intended to be removed " from the system. The :ELEMENT-TYPE
keyword is one of the other keywords (described in COMMON LISP:
The Language) that this function accepts.

62

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

Q “MODULE-DIRECTORY* Variable

A variable whose value refers to the directory containing the module
that 1is being loaded into the LISP environment due to a call to the
REQUIRE function. The value is a pathname.

This variable is useful to determine the location of a hodule if
additional files from the same directory must be loaded by the module.
For example, consider the following contents of a file called
requiredfilel.lsp:

(PROVIDE "requiredfilel"™)
(LOAD (MERGE-PATHNAMES "requiredfileZ" *MODULE-DIRECTORY*))
(DEFUN TEST

cee)

<:> When you specify the preceding module with the REQUIRE function, you

do not have to identify the module’s directory if it is in one of the
places the REQUIRE function searches (see Part II for a description of
the REQUIRE function). Furthermore, wusing the *MODULE-DIRECTORY*
variable as in this example ensures that the file requiredfile2 will
be 1loaded from the same directory. After the module is loaded, the
MODULE-DIRECTORY variable is rebound to NIL.

Q NOTE

As this variable is bound during calls to the REQUIRE
function, nested calls to the function cause its value
to be updated appropriately.

O

63

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

POST-GC-MESSAGE Variable

Controls the message the LISP system displays after a garbage (:)

collection occurs. The value of this variable can be NIL, a string of

message text, or the null string (""). If the wvalue is NIL, the
system displays a system message. If the value is a string, the
system displays the string. If the variable’s wvalue 1is the null
string (""), the system displays no output. The default value is NIL.

The system messages appear in the following form:
; Finished garbage collection due to GC function.

System messages differ according to the cause of the garbage
collection. If you set the *POST-GC-MESSAGE* variable, the message
you establish supersedes all system messages displayed after a garbage
collection, regardless of cause.

Example

Lisp> (GC)

; Starting garbage collection due to GC function.
; Finished garbage collection due to GC function.
T .

Lisp> (SETF *POST-GC-MESSAGE* "")

"nn

Lisp> (GC)

; Starting garbage collection due to GC function.
T

Lisp> (SETF *POST-GC-MESSAGE* "GC -
"GC -- finished" '

Lisp> (GC)

; Starting garbage collection due to GC function.
GC -- finished

T

finished")

@ The first call to the GC function shows the garbage collection <:>

messages the LISP system displays by default.

@ The first call to the SETF macro sets the value of the
POST-GC-MESSAGE variable to the null string ("").

e The second call to the GC function shows that the system does
not display a message when a garbage collection is finished
when the variable’s value is the null string.

® The second call to the SETF macro sets the wvalue of the
variable to the string "GC -- finished".

e The third call to the GC function shows that the system

displays the new message when a garbage collection is finished
if the variable’s value is a string.

64

O

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

PPRINT-DEFINITION Function
<::> Pretty prints to a stream the function definition of a symbol.
Format
PPRINT-DEFINITION symbol &OPTIONAL stream
Arguments
symbol

The symbol whose function value is to be pretty-printed.

stream
The stream to which the code 1is to be pretty-printed. The
<::> default stream is the stream bound to the *STANDARD-OUTPUT*
variable.

Return Value

No value.
Examples
(:) 1. Lisp> (DEFUN FACTORIAL (N)

"Returns the factorial of an integer."
(COND ((<= N 1) 1) (T (* N (FACTORIAL (- N 1))))))
FACTORIAL
Lisp> (PPRINT-DEFINITION ’'FACTORIAL)
(DEFUN FACTORIAL (N)
"Returns the factorial of an integer."
(COND ((<= N 1) 1) (T (* N (FACTORIAL (- N 1))))))

<:> e The call to the DEFUN macro defines a function called
FACTORIAL, which returns the factorial of an integer.

e The call to the PPRINT-DEFINITION function pretty-prints
the function value of the symbol FACTORIAL.

2. Lisp> (DEFUN RECORD-MY-STATISTICS
(NAME AGE SIBLINGS MARRIED?)
(UNLESS (SYMBOLP NAME)
,) (ERROR "”S must be a symbol." NAME))
(SETF (GET NAME 'AGE) AGE
(GET NAME 'NUMBER-OF-SIBLINGS) SIBLINGS
(GET NAME 'IS-THIS-PERSON-MARRIED?) MARRIED?) NAME)
RECORD-MY-STATISTICS

65

VAX LISP/ULTRIX FUNCTION. MACRO. AND VARIABLE DESCRIPTIONS

PPRINT-DEFINITION Function (cont.) ' Q

Lisp> (PPRINT-DEFINITION "RECORD-MY-STATISTICS)
(DEFUN RECORD-MY-STATISTICS (NAME AGE SIBLINGS MARRIED?)
(UNLESS (SYMBOLP NAME)
(ERROR "7S must be a symbol." NAME))
(SETF (GET NAME 'AGE) AGE
(GET NAME ’'NUMBER-OF-SIBLINGS) SIBLINGS
(GET NAME ’'IS-THIS-PERSON-MARRIED?) MARRIED?)
NAME)

®© The call to the DEFUN macro defines a function called
RECORD-MY-STATISTICS.

e The call to the PPRINT-DEFINITION function pretty-prints
the function value of the symbol RECORD-MY-STATISTICS.

O

66

O

O

O

O

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

PPRINT-PLIST Function

Pretty-prints to a stream the property list of a symbol. A property
list is a list of symbol-value pairs; each symbol is associated with a
value or an expression. The PPRINT-PLIST function prints the property
list in a way that emphasizes the relationship between the symbols and
their values.

PPRINT-PLIST prints only the symbol-value pairs for which a symbol is
accessible in the current package. (For information on packages, see
COMMON LISP: The Language.) On the other hand, SYMBOL-PLIST returns
all the symbol-value pairs (the entire property list) of a symbol,
even those not accessible in the current package. So, the form
(PPRINT-PLIST 'ME) is not equivalent to the form (PPRINT (SYMBOL-PLIST
'ME). The following example shows the differences between the two
forms:

Lisp> (MAKE-PACKAGE ’'PLANET)
Lisp> (SETF (SYMBOL-PLIST 'ME)
' (GIRL "SAMANTHA" BOY "DANIEL"
PLANET: : INHABITANT-OF "EARTH"))
(GIRL "SAMANTHA" BOY "DANIEL" PLANET::INHABITANT-OF "EARTH")
Lisp> (PPRINT (SYMBOL-PLIST 'ME))
(GIRL "SAMANTHA" BOY "DANIEL" PLANET::INHABITANT-OF "EARTH")
. Lisp> (PPRINT-PLIST 'ME)
(GIRL "SAMANTHA"
BOY "DANIEL")

The form (PPRINT (SYMBOL-PLIST 'ME)) prints the symbol-value pair
PLANET: : INHABITANT-OF "EARTH", but the form (PPRINT-PLIST 'ME) does
not print that pair. This is because the symbol INHABITANT-OF in the
package PLANET is not accessible in the current package (a symbol can
be in another package but still be accessible in the current package).
The symbol ME in the current package is associated with the
symbol-value pair INHABITANT-OF "EARTH" in the PLANET package, but the
PPRINT-PLIST function does not print that symbol-value pair because it
is not accessible in the current package.

Format

PPRINT-PLIST symbol &OPTIONAL stream
Arguments
, symbol

The symbol whose property list is to be pretty-printed.

67

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

PPRINT-PLIST Function (cont.)

stream ‘<::>

The stream to.which the pretty-printed output is to be sent. The
default stream is the stream. bound to the *STANDAgD-OUTPUT*
variable.

Return Value

No value.
Examples
1. Lisp> (SETF (GET ’'CHILDREN 'SONS) ' (DANNY GEOFFREY))
(DANNY GEOFFREY)
Lisp> (SETF (GET 'CHILDREN 'DAUGHTERS) ’'SAMANTHA)
SAMANTHA

Lisp> (PPRINT-PLIST 'CHILDRENf
(DAUGHTERS SAMANTHA
SONS (DANNY GEOFFREY))

e The calls to the SETF macro give the symbol CHILDREN the
properties SONS and DAUGHTERS. The property list of the
symbol CHILDREN has two properties: DAUGHTERS whose value
is SAMANTHA and SONS whose value is the list (DANNY
GEOFFREY) . <:>

e The call to the PPRINT-PLIST function pretty-prints the
property 1list of the symbol CHILDREN. The pretty-printed
output emphasizes the relationship between each property
and its value.

2. Lisp> (DEFUN RECORD-MY-STATISTICS (NAME AGE SIBLINGS MARRIED?)
(UNLESS (SYMBOLP NAME)
(ERROR "7 S must be a symbol." NAME)) <::>
(SETF (GET NAME ’'AGE) AGE
(GET NAME ’'NUMBER-OF-SIBLINGS) SIBLINGS
(GET NAME ’'IS-THIS-PERSON-MARRIED?) MARRIED)
NAME)
RECORD-MY-STATISTICS A
Lisp> (DEFUN SHOW-MY-STATISTICS (NAME)
(UNLESS (SYMBOLP NAME)
(ERROR "™ S must be a symbol." NAME))
(PPRINT-PLIST NAME))
SHOW-MY-STATISTICS
Lisp> (RECORD-MY-STATISTICS 'TOM 29 3 NIL)
TOM
Lisp> (SHOW-MY-STATISTICS ’TOM)
(1S-THIS-PERSON-MARRIED? NIL »
NUMBER-OF-SIBLINGS 3 : Q
AGE 29)

68

VAX LISP/ULTRIX FUNCTION, MACRO. AND VARIABLE DESCRIPTIONS

PPRINT-PLIST Function (cont.)

The first call to the DEFUN macro defines a function named
RECORD-MY-STATISTICS.

The second call to the DEFUN macro defines a, function
named SHOW-MY-STATISTICS. The definition includes a call
to the PPRINT-PLIST function.

The call to the RECORD-MY-STATISTICS function inputs the
properties for the symbol TOM.

The call to the SHOW-MY-STATISTICS function pretty-prints
the property list for the symbol TOM.

69

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

]

PRE-GC-MESSAGE Variable

Controls the message the LISP system displays when a garbage <::>

collection starts. The value of this variable can be NIL, a string of
message text, or the null string (""). If the wvalue is NIL, the
system displays a system message. If the value is a string pf message
text, the system displays the message text. 1If the wvariable’s wvalue
is the null string, the system displays no output. The default value
is NIL.

System messages appear in the following form:
; Starting garbage collection due to GC function.

VAX LISP messages preceding garbage collection differ depending on the
cause of the garbage collection. If you set the *PRE-GC-MESSAGE*
variable, the message you establish supersedes all system messages,
regardless of cause.

Example

Lisp> (GC)

; Starting garbage collection due to GC function.
; Finished garbage collection due to GC function.
T

Lisp> (SETF *PRE-GC-MESSAGE* "")

nw

Lisp> (GC)

; Finished garbage collection due to GC function.
T

Lisp> (SETF *PRE-GC-MESSAGE* "GC -- started")
"GC -- started"

Lisp> (GC)

GC -- started

; Finished garbage collection due to GC function.
T

e The first call to the GC function shows the garbage collection
messages that are printed by default.

e The first call to the SETF macro sets the wvalue of the
PRE-GC-MESSAGE variable to the null string ("").

e The second call to the GC function causes the system not to
display a message when the garbage collection starts.

@ The second call to the SETF macro sets the wvalue of the
variable to the string "GC -- started".

e The third call to the GC function causes the system to display -
the new message text when the garbage collection starts.

70

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

PRINT-LINES Variable

Specifies the number of lines to be printed by an outermost logical

block. The default for this variable is NIL, which specifies no
abbreviation. *PRINT-LINES* is effective only when pretty printing is
enabled. When the system 1limits output to the number of lines

specified by *PRINT-LINES*, it indicates abbreviation by repiacing the

last four characters on the last line printed with " ...".

The WRITE and WRITE-TO-STRING functions have been extended in VAX LISP
to accept the :LINES keyword. If you specify this keyword,
PRINT-LINES is bound to the value you supply with the keyword before
any output is produced.

See Chapter 5 for more information on wusing the *PRINT-LINES*
variable.

<::>Example

Lisp> (SETF *PRINT-LINES* 4)

4

Lisp> (FORMAT T "Stars: ~:!”/LINEAR/ ."

' (POLARIS DUBHE MIRA MIRFAK BELLATRIX CAPELLA ALGOL
MIRZAM POLLUX CANOPUS ALBIREO CASTOR ALPHECCA

ANTARES))
Stars: POLARIS
Q DUBHE
MIRA
MI ...

@ With *PRINT-LINES* set to 4, printing stops at the end of the
fourth line.

@ The last four characters of the last 1line are not printed.
<:> MIRFAK becomes MI.

71

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

PRINT-MISER-WIDTH Variable

Controls miser mode printing. If the available line width between the <:>

indentation of the current logical block and the end of the line is
less than the value of this variable, the pretty printer enables miser

mode. When output is printed in miser mode, all indentations are
ignored. 1In addition, a new line is started for every conditional new
line directive (" _, T, “e_). The default value for

PRINT-MISER-WIDTH is 40.

You <can prevent the use of miser mode by setting the
PRINT-MISER-WIDTH variable to NIL.

The WRITE and WRITE-TO-STRING functions have been extended in VAX LISP
to accept the :MISER-WIDTH keyword. If you specify this keyword,
PRINT-MISER-WIDTH is bound to the value you supply with the keyword
before any output is produced.

For more information about miser mode and the use of the
PRINT-MISER-WIDTH variable, see Sections 5.5 and 5.8.

Example

Lisp> (SETF *PRINT-RIGHT-MARGIN%* 60)
60
Lisp> (SETF *PRINT-MISER-WIDTH* 35)
35
Lisp> (FORMAT T "~ !Stars with Arabic names: ~:@
~2717:_7s T:17@_"Ss “_"s T1i17_ "
" (BETELGEUSE (DENEB SIRIUS VEGA)
ALDEBERAN ALGOL (CASTOR POLLUX) BELLATRIX)
Stars with Arabic names: BETELGEUSE
(DENEB SIRIUS VEGA)
ALDEBERAN
ALGOL
(CASTOR POLLUX)
BELLATRIX

s “: s~

~
1

!

~ ~
S . .

e The text, "Stars with Arabic names:", in the outer 1logical
block causes the inner logical block to begin at column 26.
With *PRINT-MISER-WIDTH* set to 35, FORMAT enables miser mode
when the logical block begins past column 25.

e FORMAT conserves space by starting a new 1line at every
multiline mode new line directive (7_) and every if-needed new
line directive (7:_).

® FORMAT starts a new line at the miser mode new line directive
("@_) and ignores the indentation directives ("nI).

72

O

O

O

O

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

PRINT-RIGHT-MARGIN Variable

Specifies the right margin for pretty printing. Output may exceed
this margin if vyou print 1long symbol names or strings, or if your
FORMAT control string specifies no new line directives of any type.
If the value of *PRINT-RIGHT-MARGIN* is NIL, the print function uses a
value appropriate to the output device. '

The WRITE and WRITE-TO-STRING functions have been extended in VAX LISP
to accept the :RIGHT-MARGIN keyword. If you specify this keyword,
PRINT-RIGHT-MARGIN is bound to the value you supply with the keyword
before any output is produced.

See Chapter 5 for more information about using the
PRINT-RIGHT-MARGIN variable.

Example

Lisp> (DEFUN RECORD-MY-STATISTICS
(NAME AGE SIBLINGS MARRIED?)
(UNLESS (SYMBOLP NAME)
(ERROR "7S must be a symbol." NAME))
(SETF (GET NAME 'AGE) AGE
(GET NAME '’'NUMBER-OF-SIBLINGS) SIBLINGS
(GET NAME ’'IS-THIS-PERSON-MARRIED?) MARRIED)
NAME)
RECORD-MY-STATISTICS
Lisp> (SETF *PRINT—RIGHT-MARGIN*'40)
40
Lisp> (PPRINT-DEFINITION ’'RECORD-MY-STATISTICS)
(DEFUN
RECORD-MY-STATISTICS
(NAME AGE SIBLINGS MARRIED?)
(UNLESS
(SYMBOLP NAME)
(ERROR
""S must be a symbol."
NAME)) '
(SETF
(GET NAME 'AGE) AGE i}
(GET NAME 'NUMBER-OF-SIBLINGS)
SIBLINGS
(GET
NAME ‘
'IS-THIS-PERSON-MARRIED?)
MARRIED)
NAME)

@ The call to the DEFUN macro defines a function named
RECORD-MY-STATISTICS.

73

VAX LISP/ULTRIX FUNCTION. MACRO, AND VARIABLE DESCRIPTIONS

PRINT-RIGHT-MARGIN Variable (cont.)

@ The call to the SETF macro sets the value of ‘the
PRINT-RIGHT-MARGIN variable to 40.

© The call to the PPRINT function shows the effect the
variable’s value has on the pretty-printed output.
PPRINT-DEFINITION stops printing each 1line before reaching
column .40.

74

O

O

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

PRINT-SIGNALED-ERROR Function

Used by the VAX LISP error handler to display a formatted error
message when an error is signaled. The function prints all output to
the stream bound to the *ERROR-OUTPUT* variable. The error message

formats are described in Chapter 3.
12

You can include a call to this function in an error handler that you
create (see Chapter 3).

Format

PRINT-SIGNALED-ERROR function-name
error-signaling-function &REST args

Arguments
function-name

The name of the function that is to call the specified
error-signaling function.

error-signaling-function

The name of an error-signaling function. valid function names
are ERROR, CERROR, and WARN.

args

The specified error-signaling function’s arguments.
Return Value

Undefined.
Example

Lisp> (DEFUN CONTINUING-ERROR-HANDLER (FUNCTION-NAME
ERROR-SIGNALING-FUNCTION
&REST ARGS)
(IF (EQ ERROR-SIGNALING-FUNCTION 'CERROR)
(PROGN
(APPLY #'PRINT-SIGNALED-ERROR
' FUNCTION-NAME
ERROR-SIGNALING-FUNCTION
ARGS)
(FORMAT *ERROR-OUTPUT*
"~ &It will be continued automatically.”2%.")
NIL)

75

VAX LISP/ULTRIX FUNCTION, MACRO. AND VARIABLE DESCRIPTIONS

PRINT-SIGNALED-ERROR Function (cont.)

(APPLY #'UNIVERSAL-ERROR-HANDLER
FUNCTION-NAME
ERROR-SIGNALING-FUNCTION
ARGS)))

CONTINUING-ERROR-HANDLER

Defines an error handler that automatically continues

continuable error after displaying an error message.
errors are passed to the system’s error handler.

76 -

from a
All other

O

O

O

VAX LISP/ULTRIX FUNCTION, MACRO. AND VARIABLE DESCRIPTIONS

PRINT-SLOT-NAMES-AS-KEYWORDS Variable

Determines how the slot names of a structure are formatted when they
are displayed. The value can be T or NIL. If the value is T, slot
names are preceded with a colon (:). For example:

#S(SPACE :AREA 4 :COUNT 10)

If the value is NIL, slot names are not preceded with a colon. For
example:

#S(SPACE AREA 4 COUNT 10)

The default value is T.

Example

Lisp> (DEFSTRUCT HOUSE

ROOMS
FLOORS)

HOUSE

Lisp> (MAKE-HOUSE :ROOMS 8 :FLOORS 2)

#S (HOUSE :ROOMS 8 :FLOORS 2)

Lisp> (SETF *PRINT-SLOT-NAMES-AS-KEYWORDS * NIL)
NIL

Lisp> (MAKE-HOUSE :ROOMS 8 :FLOORS 2)

#S(HOUSE ROOMS 8 FLOORS 2)

The call to the DEFSTRUCT macro defines a structure named
HOUSE.

The first call to the constructor function MAKE-HOUSE creates
a structure named HOUSE. Colons are included in the output
because the wvalue of the *PRINT-SLOT-NAMES-AS-KEYWORDS *
variable is T.

The call to the SETF macro changes the value of the
PRINT-SLOT-NAMES-AS-KEYWORDS variable to NIL.

The second call to the constructor function MAKE-HOUSE creates
a@ structure named HOUSE. Colons are not included in the
output because the value of the *PRINT-SLOT-NAMES-AS-KEYWORDS*
variable is NIL. -

77

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

REQUIRE Function

Examines the *MODULES* variable to determine if a specified module has <::>

been loaded. If the module 1is not loaded, the function loads the
files that you specify for the module. 1If the module is loaded, its
files are not reloaded. .

When you call the REQUIRE function in VAX LISP, the function checks
whether you explicitly specified pathnames that name the files it is
to load. 1If you specify pathnames, the function loads the files the
pathnames represent. If you do not specify pathnames, the function
searches for the module’s files in the following order:

1. The function searches the current directory for a source file
or a fast-loading file with the specified module name. If
the function finds such a file, it loads the £file into the
LISP environment. This search forces the function to locate
a module you have created before the function 1locates a
module of the same name that is present in one of the public
places (see following steps).

2. If the environment variable MODULES is defined, the function
searches the directory this environment variable refers to
for a source file or a fast-loading file with the specified
module name. This search enables the VAX LISP sites to
maintain a central directory of modules.

3. The function searches the directory referred to by the
environment variable VAXLISP if it is defined or the
directory usr/lib/vaxlisp for a source file or a
fast-loading file with the specified module name. This
search enables you to locate modules that are provided with
the VAX LISP system. See the VAX LISP/ULTRIX Installation
Guide for a description of the wuse of the environment
variable VAXLISP.

4. 1If the function does not find a file with the specified
module name, an error is signaled.

When you load a module, the pathname that refers to the directory that
contains the module is bound to the *MODULE-DIRECTORY* variable. A
description of the *MODULE-DIRECTORY* variable is provided earlier in
Part II.

The REQUIRE function checks the *MODULES* variable to determine if a
module has already been loaded. However, the REQUIRE function, when
loading a module, does not update the *MODULES* variable to indicate
that the module has been loaded. The PROVIDE function (described in
COMMON LISP: The Language) does update the *MODULES* variable. Use

the PROVIDE function in a file containing a module to be loaded to

O

indicate to the LISP system that the file contains a module of this (::>

~ hame.

78

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

REQUIRE Function (cont.)

<:~>If the loaded file does not contain a corresponding PROVIDE, a
subsequent REQUIRE of the module will cause the file to be reloaded.

Format

REQUIRE module-name &OPTIONAL pathname
Arguments
module-name

A string or a symbol that names the module whose files are to be
loaded.

<::)pathname

A pathname or a list of pathnames that represent the files to be
loaded into LISP memory. The files are loaded in the same order
the pathnames are listed, from left to right.

Return Value

Undefined.

<::)Examp1e

Lisp> *MODULES*

("calculus" "newtonian-mechanics")

Lisp> (REQUIRE ’'relative)

T

Lisp> *MODULES*

("relative" "calculus" "newtonian-mechanics")

(::> - @ The first call to the *MODULES* variable shows that the
modules calculus and newtonian-mechanics are loaded.

® The call to the REQUIRE function checks whether the module
relative 1is loaded. The previous call to the *MODULES*
variable indicated that the module was not loaded, therefore,
the function loaded the module relative.

® The second call to the *MODULES* wvariable shows that the
module relative was loaded.

79

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

ROOM Function

Displays information about LISP memory. Information is displayed for <::>
the following memory spaces:

® Read-only space
e Static space
e Dynamic space
The following information is provided for each type of space:
e Total number of memory pages that can be used
e Current number of memory pages being used
e Percentage of free memory pages available for use <:>

The information for each storage type is displayed on one line in the
following format: ‘

Read-Only Storage Total Size: 4352, Current Allocation: 4113, Free: 6%

All counts are in 512-byte pages.

Format <j>

ROOM &OPTIONAL value
Argument

value

Optional argument whose value can be T or NIL. If you specify

NIL, the function displays the same information that it displays <:>
when the argument is not specified. If you specify T, the
function displays additional information for the read-only, ~
static, and dynamic storage spaces. The additional information
consists of a breakdown of the storage space being used by each

VAX LISP data type. The information is displayed in the
following tabular format: S

Read-Only Storage Total Size: 4352, Current Allocation: 4113, Free: 5Y%

(reserved) 0 Functions: 191 Arrays: 0 B-Vectors: 6
Strings: 381 U-Vectors: 3403 S Flo Vecs: 0 D Flo Vecs: 0
L Flo Vecs: 0 L Wrd Vecs: 0 Bignums: 1 (reserved) 0
Sngl Flos: 1 Dbl Flos: 1 Long Flos: 1 Ratios: 0
Complexes: 0 Symbols: 0 Conses: 128 (reserved) 0
Ctrl Stack: 0 Bind Stack: 0

Table 2 lists the headings and VAX LISP data types the ROOM <:>
function displays for each type of storage space.

80

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

ROOM Function (cont.)
Return Value

No value.

Table 2: Data Type Headings

Heading Data Type

Functions Compiled function descriptors

Arrays Nonsimple array descriptors

B-Vectors Boxed vectors -- simple vectors of LISP objects

Strings Character strings

U-Vectors Unboxed vectors -- simple vectors that contain
compiled code, alien structures, or integers of
type (mod n)

S Flo Vecs Simple float vectors

D Flo Vecs Simple double float vectors

L Flo Vecs Simple long float vectors

L Wrd Vecs Simple longword vectors

Bignums Bignums

Sngl Flos ' Single float numbers

Dbl Flos Double float numbers

Long Flos Long float numbers

Ratios Ratios

Symbols Symbols

Conses - Conses

Ctrl Stack Control Stack

Bind Stack Binding Stack

81

VAX LISP/ULTRIX FUNCTION, MACRO. AND VARIABLE DESCRIPTIONS

ROOM Function (cont.)

Examples

1.

Lisp> (ROOM)

Read-Only Storage

Static Storage

Dynamic-0 Storage

Displays a list of the current memory storage information.

Lisp> (ROOM T)

Read-Only Storage
(reserved)
Strings:

L Flo Vecs:
Sngl Flos:
Complexes:
Ctrl Stack:

Static Storage
(reserved)
Strings:

L Flo Vecs:
Sngl Flos:
Complexes:
Ctrl Stack:

Dynamic-0 Storage
(reserved)
Strings:

L Flo Vecs:
Sngl Flos:
Complexes:
Ctrl Stack:

Read-Only Storage

Displays a
information.

38

OO+ OO

O ONMNO OO

0

254

0
1
o]

129

Total Size: 4352, Current Allocation: 4113, Free: 5%
Total Size: 2176, Current Allocation: 2146, Free: 1%

Total Size: 3065, Current Allocation: 1292, Free: 58%

Total Size: 2176, Current Allocation:

Total Size: 3065, Current Allocation:

Total Size:
Functions: 101
U-Vectors: 3403
L Wrd Vecs: 0
Dbl Flos: i
Symbols: 0
Bind Stack: 0
Functions: 322
U-Vectors: 257
L Wrd Vecs: 0
Dbl Flos: 2
Symbols: 360
Bind Stack: 0
Functions: 3
U-Vectors: 12
L Wrd Vecs: 0
Dbl Flos: i
Symbols: 4
Bind Stack: 36

Total Size: 4352, Current Allocation:

82

4352, Current Allocation:

Arrays: o]
S Flo Vecs: 0
Bignums: 1
Long Flos: 1
Conses: 128

Arrays: 1
S Flo Vecs: 0
Bignums: 1
Long Flos: 0
Conses: 544

Arrays: 1
S Flo Vecs: 1
Bignums: 3
Long Flos: 1

656

Conses:

4113, Free:

B-Vectors:

D Flo Vecs:

(reserved)
Ratios:
(reserved)

2146, Free:

B-Vectors:

D Flo Vecs:

(reserved)
Ratios:
(reserved)

1280, Free:

B-Vectors:

D Flo Vecs:

(reserved)
Ratios:
(reserved)

4113, Free:

5%

5%

oo Ne NN]

O

detailed 1list of the current memory storage <:>

O

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

SHORT-SITE-NAME Function

If the file lispsite.txt exists in the LISP product directory, the
SHORT-SITE-NAME function finds the file, reads it, and returns the
first line of text as a string that represents the physical 1location
of the computer hardware on which the VAX LISP system ig running.
Otherwise, the SHORT-SITE-NAME function returns NIL.

The LISP product directory 1is the directory referred to by the
environment variable VAXLISP if it exists, or by /usr/lib/vaxlisp if
the environment variable does not exist. See the VAX LISP/ULTRIX
Installation Guide for more information on the SHORT-SITE-NAME
function and on creating the file lispsite.txt.
Format

SHORT-SITE-NAME

Return Value

A string with a brief description of the physical location of the
computer hardware on which a VAX LISP system is running, or NIL.

Example

Lisp> (SHORT-SITE-NAME)
"Smith’s Computer Company"

83

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

STEP Macro
Invokes the VAX LISP stepper.
The STEP macro evaluates the form that is its argument and returns
what the form returns. In the process, you can interactively step
through the evaluation of the form. Entering a question mark (2) in
response to the stepper prompt displays helpful information. The
stepper is command oriented rather than expression oriented - do not
surround commands with parentheses. For further information on using
the VAX LISP stepper, see Chapter 4.
Format
STEP form

Argument
form

A form to be evaluated.
Return Value

-The Qélue returned by form.
Example

Lisp> (STEP (FACTORIAL 3))

: #9: (FACTORIAL 3)
Step 1>

Invokes the VAX LISP stepper for the function call (FACTORIAL 3).

84

O

O

O

VAX LISP/ULTRIX FUNCTION, MACRO., AND VARIABLE DESCRIPTIONS

STEP-ENVIRONMENT Variable

The *STEP-ENVIRONMENT* variable, a debugging tool, is bound to the
lexical environment in which *STEP-FORM* 1is being evaluated. By
default in the stepper, the lexical environment is used if you use the
EVALUATE command. See COMMON LISP: The Language for a desc;iption of
dynamic and lexical environment variables.

Some COMMON LISP functions (for example, EVALHOOK, APPLYHOOK, and
MACROEXPAND) take an optional environment argument. The value bound
to the *STEP-ENVIRONMENT* variable can be passed as an environment to

these functions to allow evaluaton of forms in the context of the
stepped form.

Example

Step> EVAL *STEP-FORM*
(FUNCTION-X (- X 1))

Step> (EVALHOOK ’'(- x 1) NIL NIL *STEP-ENVIRONMENT*)
2

The use of the *STEP-ENVIRONMENT* variable in this «call to the
EVALHOOK function causes the local value of X to be used in the
evaluation of the form (- X 1). See Chapter 4 for the full
stepper sessions from which this excerpt is taken.

85

VAX LISP/ULTRIX FUNCTION, MACRO. AND VARIABLE DESCRIPTIONS

STEP-FORM Variable

The *STEP-FORM* variable, a debugging tool, is bound to the form being<::>
evaluated while stepping. For example, while executing the form

(STEP (FUNCTION-Z ARGl ARG2))

the value of *STEP-FORM* is the list (FUNCTION-Z ARGl ARG2). When not
stepping, the value is undefined.

Example
Step> STEP
A #39: X => 4
: o+t : #35: => NIL
HE S S #34: (+ FUNCTION-X (- X 1)) (FUNCTION-X (- X 2)))
Step> STEP
: : : : : : : : #38: (FUNCTION-X (- X 1)) <:>

Step> EVAL *STEP-FORM*
(FUNCTION-X (- X 1))

See Chapter 4 for the full stepper session from which this
excerpt is taken. In this case, the *STEP-FORM* variable is

bound to (FUNCTION-X (- X 1)).°

86

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

SUSPEND Function

Writes information about a LISP system to a file, making it possible
to resume the LISP system at a later time. The function does not stop
the current system, but copies the state of the LISP system when the
function is invoked to the specified file. When you reinvokg the LISP
system with the RESUME (-r) option and the file name that was
specified with the SUSPEND function, program execution continues from
“the point where the SUSPEND function was called.

Only the static and dynamic portions of the LISP environment are
written to the specified file. When you resume a suspended system,
the read-only sections of the LISP environment are taken f£from
lispsus.sus in VAXLISP or in /usr/lib/vaxlisp. You must make sure
that your original LISP system is in lispsus.sus; if it 1is not, you
will not be able to resume the system.

When a suspended system is resumed, the LISP environment is identical
to the environment that existed when the suspend operation occurred,
with the following exceptions: ’

@ All streams except the standard streams are closed.

@ The *DEFAULT—PATHNAME-DEFAULTS* variable is set to the current
directory.

<:> @ Call-out state might be 1lost (see Chapter 2 of the VAX
LISP/ULTRIX System Acess Programming Guide).

Format
SUSPEND pathname
Argument

<:> pathname

A pathname, namestring, or symbol that represents the file name -
to which the function writes the LISP-system state.

Return Value

T, when the LISP system is resumed at a later time and NIL, when
execution continues after a suspend operation.

87

VAX LISP/ULTRIX FUNCTION, MACRO. AND VARIABLE DESCRIPTIONS

SUSPEND Function (cont.)

Example <:>

Lisp> (DEFUN PROGRAM-MAIN-LOOP NIL
(LOOP (PRINC "Enter number> ")
(SETF X (READ *STANDARD-INPUT*))
(FORMAT *STANDARD-OUTPUT*
"“%$The square root of "F is "F. 7%
X
(SQRT X))))
PROGRAM-MAIN-LOOP
Lisp> (DEFUN DUMP-PROGRAM NIL
(SUSPEND "myprog.sus")
(FRESH-LINE)
(PRINC "Welcome to my program!")

(TERPRI)
(PROGRAM-MAIN-LOOP)) <:>
DUMP - PROGRAM

Lisp> (DUMP-PROGRAM)

; Starting garbage collection due to GC function.

; Finished garbage collection due to GC function.

; Starting garbage collection due to SUSPEND function.
; Finished garbage collection due to SUSPEND function.
Welcome to my program

Enter number> 25

The square root of 25.0 is 5.0. <:>
Enter number> 5

The square root of 5.0 is 2.236038.

Enter number)

<CTRL/C>

Lisp> (EXIT)
% vaxlisp -r myprog.sus <::>
Welcome to my program

Enter number)

@ The first call to the DEFUN macro defines a function named
PROGRAM-MAIN-LOOP.

@ The second call to the DEFUN macro defines a -function named
DUMP-PROGRAM. !

e The call to the DUMP-PROGRAM function copies the current state
of the LISP environment to the file myprog.sus. The LISP
system continues to run, displaying the message "Welcome to my
program" and then executes the PROGRAM-MAIN-LOOP function.

e The call to the EXIT function exits the LISP system. <:>

88

O

O

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

SUSPEND Function (cont.)

The vaxlisp -r myprog.sus
system, displays the
PROGRAM-MAIN-LOOP function.

89

specification
message,

reinvokes the

and

executes

LISP
the

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

THROW-TO-COMMAND-LEVEL Function

Transfers control. This function exists only for compatibility with (::>
VAX LISP/VMS V1.x, in which it transferred control to a numbered
command level. VAX LISP V2 does not have numbered command levels. 1In

VAX LISP V2, THROW-TO-COMMAND-LEVEL either throws s to the
CANCEL-CHARACTER-TAG tag or does nothing.

Format

THROW-TO-COMMAND-LEVEL level
Argument
level

Either an integer or a keyword. Depending on the argument,
THROW-TO-COMMAND-LEVEL takes the following action: <:>

integer No action
: CURRENT Throw to CANCEL-CHARACTER-TAG
:PREVIOUS No action
¢ TOP Throw to CANCEL-CHARACTER-TAG

Return Value

Undefined. <::>
Example

Lisp> (FACTORIAL M)

Fatal error in function SYSTEM::%EVAL (signaled with ERROR).
Symbol has no value: M

Control Stack Debugger <:>
Frame #3: (EVAL (FACTORIAL M))

Debug> (THROW-TO-COMMAND-LEVEL :TOP)

Lisp>

e The debugger is invoked, because an error was signaled when
the FACTORIAL function was called.

@ The call to the THROW-TO-COMMAND-LEVEL function returns
control to the top-level loop.

90

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TIME Macro

<::Lvaluates a form, displays the form’s CPU time and real time, and
returns the values the form returns.

The time information is displayed in the following format:
CPU Time: 0.03 sec., Real Time: 0.23 sec.
1f garbage collections occur during the evaluation of a call to the
TIME macro, the macro displays another line of time information. This
line includes information about the CPU time and real time used by the
garbage collector.
Format
TIME form
Argument
form
The form that is to be evaluated.
Return Value
(::) The form’s return values are returned.
Example
Lisp> (TIME (TEST))

CPU Time: 0.03 sec., Real Time: 0.23 sec.
6

O

91

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TOP-LEVEL-PROMPT Variable

Lets you change the top-level prompt. The value of this variable can<:>

be:
® A string

B
e A function of no arguments that returns a string
e NIL
If you specify NIL, the default prompt "Lisp>" is used.
Example
Lisp> (SETF *TOP-LEVEL-PROMPT* "TOP> ")
"TOP> "
TOP>

Sets the value of the variable *TOP-LEVEL-PROMPT* to "TOP> ".

92

O

O

O

O

O

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE Macro

Enables tracing for one or more functions and macros.

VAX LISP allows you to specify a number of options that suppress the
TRACE macro’s displayed output or that cause additional info;mation to
be displayed. The options are specified as keyword-valucz pairs. The
keyword-word value pairs you can specify are listed in Table 3.

NOTE

The arguments specified in a call to the TRACE macro
are not evaluated when the call to TRACE is executed.
Some forms are evaluated repeatedly, as described
below.

Format

TRACE &REST trace-description
Argument
trace-description

One or more optional arguments. If an argument is not specified,
the TRACE macro returns a list of the functions and macros that
are currently being traced. Trace-description arguments can be
specified in three formats:

@ One or more function and/or macro names can be specified which
eénables tracing for that function(s) and/or macro(s).

name-1 name-2 ...

® The name of each function or macro can be specified with
keyword-value pairs. The keyword-value pairs specify the"
operations the TRACE macro is to perform when it traces the
specified function or macro. The name and the keyword-value
pairs must be specified as a list whose first element 1is the
function or macro name.

(name keyword-1 value-1
keyword-2 value-2 ...)

@ A list of function and/or macro names can be specified with
keyword-value pairs. The keyword-value pairs specify the
operations the TRACE macro is to perform when it traces each
function and/or macro in the list. The list of names and the
keyword-value pairs must be specified as a 1list whose first
element is the list of names.

93

“VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE Macro (cont.)

((name-1 name-2

...) keyword-1 value-1

keyword-2 value-2 ...)

Table 3 lists the keywords and values that can be specified. The
forms that are referred to in the value descrip%ions are
evaluated in the null lexical environment and the current dynamic

environment.

Table 3: TRACE Options

Keyword-Value Pair

Description

:DEBUG-IF form

:PRE-DEBUG-IF form

:POST-DEBUG-IF form

¢PRINT form-list

Specifies a form that 1is to be
evaluated before and after each
call to the specified function or
macro. If the form returns a value
other than NIL, the VAX LISP
debugger is invoked before and
after the function or macro is
called.

Specifies a form that is to be
evaluated before each call to the
specified function or macro. If
the form returns a value other than
NIL, the VAX LISP debugger is
invoked before the specified
function or macro is called.

Specifies a form that 1is to be
evaluated after each <call to the
specified function or macro. If
the form returns a value other than
NIL, the VAX LISP debugger is
invoked after the specified
function or macro is called.

Specifies a list of forms that are
to be evaluated and whose values
are to be displayed before and
after "each call to the specified
function or macro. The values are
displayed one per 1line and are
indented to match other output
displayed by the TRACE macro. If
the TRACE macro cannot evaluate the
argument, the debugger is invoked
(see Chapter 4).

94

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE Macro (cont.)

O

O

Table 3 (cont.)

Keyword-Value Pair

Description

:PRE-PRINT form-list

:POST-PRINT form-list

:STEP-IF form

:SUPPRESS-IF form

:DURING name

Specifies a list of forms®that are
to be evaluated and whose values
are to be displayed before each
call to the specified function or
macro. The values are displayed
one per line and are indented to
match other output displayed by the
TRACE macro. If the TRACE macro
cannot evaluate the argument, the
debugger 1is invoked (see Chapter
4).

Specifies a list of forms that are
to be evaluated and whose values
are to be displayed after each call
to the specified function or macro.
The values are displayed one per
line and are indented to match
other output displayed by the TRACE
macro. If the TRACE macro cannot
evaluate the argument, the debugger
is invoked (see Chapter 4).

Specifies a form that 1is to be
evaluated before . each call to the
specified function or macro. If
the form returns a value other than
NIL, the stepper is invoked and the
function or macro is stepped
through. See Chapter 4 for
information on the stepper.

Specifies a form that is to be
evaluated before each call to the
specified function or macro. If
the form returns a value other than
NIL, the TRACE macro does not
display the arguments and the
return value of the specified
function or macro.

Specifies a function or macro name
or a 1list of function and macro
names. The function or macro
specified by the TRACE function is
traced only when it is called

95

VAA LISP/ULIRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE Macro (cont.)

Table 3 (cont.) (::)

Keyword-vValue Pair 4 Description

(directly or indirectly) from
within one of the functions or
macros specified by the :DURING
keyword.

Return Value

A list of the functions currently being traced.

Examples

1.

O

Lisp> (TRACE FACTORIAL COUNT1 COUNT2)
(FACTORIAL COUNT1 COUNT2)

Enables the tracer for the functions FACTORIAL, COUNT1, and
COUNT2.

Lisp> (TRACE)
(FACTORIAL COUNT1 COUNT2)

Returns a list of the functions for which the tracer is <:>
enabled.

Lisp> (DEFUN REVERSE-COUNT (N)
(DECLARE (SPECIAL *GO-INTO-DEBUGGER*))
(IF (> N 3) -
(SETQ *GO-INTO-DEBUGGER* T)
(SETQ *GO-INTO-DEBUGGER* NIL))

(COND ((= N 0) 0) <:>
(T (PRINT N) (+ 1 (REVERSE-COUNT (- N 1))))))
Lisp> (SETQ *GO-INTO-DEBUGGER* NIL)
NIL
Lisp> (REVERSE-COUNT 3)
3
2
1
3 : .
Lisp> (TRACE (REVERSE-COUNT :DEBUG-IF *GO-INTO-DEBUGGER*))
(REVERSE-COUNT)
Lisp> (REVERSE-COUNT 3)
#4: (REVERSE-COUNT 3)
3
. #16: (REVERSE-COUNT 2)

2 .
. . #28: (REVERSE-COUNT 1) <::>

96

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE Macro (cont.)

O

1
. . . #40: (REVERSE-COUNT 0)
. . . #40=> 0
. #28=> 1
. #16=> 2
$4=> 3
3

Lisp> (REVERSE-COUNT 4)
#4: (REVERSE-COUNT 4)
4

. #16: (REVERSE-COUNT 3)
Control Stack Debugger
Frame #17: (DEBUG)

Debug 1> CONTINUE

3

. . #28: (REVERSE-COUNT 2)
2
. . . #40: (REVERSE-COUNT 1)
1
. « « « #52: (REVERSE-COUNT 0)
.« . . ¥52=> 0

. . . #40=> 1

. . #28=> 2

. #16=> 3

$#4=> 4

4

Lisp>

The recursive function REVERSE-COUNT is defined to count down
from the number it is given and to return. that number after
the function is evaluated. 1If, however, the number given is
greater than 3 (set low to simplify the example), the global
variable *GO-INTO-DEBUGGER* (preset to NIL) is set to T.

The first time the REVERSE-COUNT function is traced using the
DEBUG-IF keyword, the argument is 3. The second time the
function is traced, the argument is over 3. This sets the
global variable *GO-INTO-DEBUGGER* to T, which causes the
debugger to be invoked during a trace of the REVERSE-COUNT
function. The debugger is invoked after the function’s
argument is evaluated.

To reset the global variable *GO-INTO-DEBUGGER* to NIL, the
REVERSE-COUNT function must be completed. So, the evaluation
of the function was continued with the Debug command
CONTINUE.

Lisp> (TRACE (REVERSE-COUNT

¢:PRE-DEBUG-IF *GO-INTO-DEBUGGER%*))
(REVERSE-COUNT)

97

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE Macro (cont.)

~

Lisp> (REVERSE-COUNT 4)
#4: (REVERSE-COUNT 4)
4

#16: (REVERSE-COUNT 3)
Control Stack Debugger
Frame #17:
Debug 1>

The 4 argument to the REVERSE-COUNT function causes the
GO-INTO-DEBUGGER variable to be set to T, which in turn
causes the debugger to be invoked before the first recursive
call to the REVERSE-COUNT function.

Lisp> (TRACE (REVERSE-COUNT
: POST-DEBUG-IF *GO-INTO-DEBUGGERY))
(REVERSE-COUNT)
Lisp> (REVERSE-COUNT 4)
#4: (REVERSE-COUNT 4)

4

. #15: (REVERSE-COUNT 3)

3

. . #28: (REVERSE-COUNT 2)

2

. . $#40: (REVERSE-COUNT 1)
1

. . . . #52: (REVERSE-COUNT 0)
. . . . #52=> 0

. . . #40=> 1

. . $#28=> 2

. #16=> 3

$4=> 4

4

Lisp> (TRACE (REVERSE-COUNT

: POST-DEBUG-IF (NOT *GO-INTO-DEBUGGER¥))})
(REVERSE-COUNT) ‘
Lisp> (REVERSE-COUNT 4)
$4: (REVERSE-COUNT 4)

4

$#16: (REVERSE-COUNT 3)

W e

. #28: (REVERSE-COUNT 2)

. . . #40: (REVERSE-COUNT 1)

1

. . . . #52: (REVERSE-COUNT 0)
Control Stack Debugger

Frame #53: (DEBUG)

Debug 1> CONTINUE

e o . . #52=> 0

98

O

O

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE Macro (cont.)

Control Stack Debugger
Frame #41: (DEBUG)
Debug 1> CONTINUE

#40=> 1
Control Stack Debugger
Frame #29: (DEBUG)
Debug 1> CONTINUE

#28=> 2
Control Stack Debugger
Frame #17: (DEBUG)
Debug 1> CONTINUE

$#16=> 3
Control Stack Debugger
Frame #5: (DEBUG)
Debug 1> CONTINUE

$#4=> 4
4
Lisp>

Here, the first time the REVERSE-COUNT function is evaluated,
the debugger is not invoked despite the :POST-DEBUG-IF
keyword, because the keyword invokes the debugger only if its
condition is met after the function is evaluated. However,
after the function is evaluated, the *GO-INTO-DEBUGGER*
variable is reset back to NIL. If the form (SETQ
GO-INTO-DEBUGGER NIL) were removed from the definition of
the REVERSE-COUNT function, the variable would not have been
reset to NIL, and the debugger would have been invoked.

The second time the REVERSE-COUNT function is invoked, the
form (NOT *GO-INTO-DEBUGGER*) evaluates to T, since the value
of its argument is NIL. This gives the :POST-DEBUG-IF
keyword a T wvalue, which in turn fulfills the condition of
invoking the debugger after the function is evaluated.

In this situation, the Debug CONTINUE command causes only one
evaluation. Here, the CONTINUE command must be repeated to
evaluate all the recursive calls. This example differs from
example 1, where the CONTINUE command did not have to be
repeated.

Lisp> (SETF *L* 5 *M* 6 *N* 7)

7

Lisp> (TRACE (* :PRINT (*L* *M* *N%*)))
(*)

Lisp> (+ 2 3 *L* *M*x *N%*)

99

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE Macro (cont.)

23 <:>

Lisp> (* 2 3 *L* *M* *N%)
#4: (* 2 3 56 7)

#4 *L* is 5
#4 *M* is 6
#4 *N* is 7
#4=> 1260

#4 *L* is 5
$4 *M* is 6
#4 *N*x is 7
1260

The + function is not traced, but the * function 1is traced.
The wvalues of the global variables *L*, *M*, and *N* are
displayed before and after the call to the * function is
evaluated. <:>

7. Lisp> (TRACE (* :PRE-PRINT (*L* *M* *N%)))
(*)
Lisp> (* 2 3 *L* *Mx *N¥x)
$#4: (* 2 3 56 7)

$#4 *L* is 5
$#4 *M* is 6
#4 *N* is 7

#4=> 1260 (:)
1260

The values of the global variables *L*, *M*, and *N* are
displayed before the call to the * function is evaluated.

8. Lisp> (TRACE (* :POST-PRINT (*L* *M* *N*)))
(*)
Lisp> (* 2 3 *L* *M*x *N*)
#4: (* 2 356 7) <::>
#4=> 1260
#4 *L* is 5
#4 *M* is 6
#4 *N* is 7
1260

The values of the global variables *L*, *M*x, and *N* are
displayed after the call to the * function is evaluated.

9. Lisp> (TRACE +)
(+)
Lisp> (+ 2 3 (SQUARE 4) (SQRT 25))
#4: (+ 2 3 16 5.0)
#4=> 26.0

26.0 .
Lisp> (SETQ *STOP-TRACING* T) (:)

100

O

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE Macro (cont.)

10.

11.

12.

NIL

Lisp> (TRACE (+ :SUPPRESS-IF *STOP-TRACING¥*))

(+) -
Lisp> (+ 2 3 (SQUARE 4) (SQRT 25))

26.0 C o

In the first example, the call to the + function 1is traced.
In the second example, the <call to the + function is not
traced because of the form (+ :SUPPRESS-IF *STOP-TRACING*).

Lisp> (TRACE (FACTORIAL :STEP-IF T))
(FACTORIAL)
Lisp> (+ (FACTORIAL 2) 3)
#5: (FACTORIAL 2)
#9: (BLOCK FACTORIAL (IF (> 2 N) 1 (* N (FACTORIAL (1- N)))))
Step>
#16: (IF (> 2 N) 1 (* N (FACTORIAL (1- N))))
Step>
: : #22: (> 2 N)
Step>

The call to the FACTORIAL function invokes the stepper.

Lisp> (TRACE (LIST-LENGTH :DURING PRINT-LENGTH))
(LIST-LENGTH)

Lisp> (PRINT-LENGTH ' (CAT DOG PONY))

#13: (LIST-LENGTH (CAT DOG PONY))

#13=> 3

The length of (CAT DOG PONY) is 3.
NIL

The PRINT-LENGTH function has been defined to find the length .
of its argument with the function LISP-LENGTH. The
LIST-LENGTH function 1is traced during the call to the
PRINT-LENGTH function.

Lisp> (DEFUN FUNCTION-X (X)
(IF (< X 3) 1
(+ (FUNCTION-X (- X 1)) (FUNCTION-X (- X 2)))))
FUNCTION-X

Lisp> (TRACE (FUNCTION-X
¢:PRE-DEBUG-IF (< (SECOND *TRACE-CALL*) 2)
:SUPPRESS-IF T))

(FUNCTION-X)

Lisp> (FUNCTION-X 5)

101

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE Macro (cont.)

13.

Debug 1> DOWN

Control Stack Debugger <:>
Frame #26: (DEBUG)
Debug 1> DOWN
Frame #21: (BLOCK FUNCTION-X
(IF (< ¥ 3) 1
(+ (FUNCTION-X (- X 1))
(FUNCTION-X (- X 2)))))

Frame #19: (FUNCTION-X 3)
Debug 1> (CADR (DEBUG-CALL))
3

Debug 1> CONTINUE

Control Stack Debugger

Frame #19: (DEBUG)

Debug 1> CONTINUE
s O

@ In this example, FUNCTION-X is first defined.

® Then the TRACE macro is called for FUNCTION-X. TRACE is
specified to invoke the debugger if the first argument to
FUNCTION-X (the function call being traced) is 1less than
2. Since the PRE-DEBUG-IF option 1is specified, the
debugger is invoked before the call to FUNCTION-X. As the
:SUPPRESS-IF option has a value of T, calls to FUNCTION-X<::>
do not cause any trace output.

e The DOWN command moves the pointer down the control stack.

© The DEBUG-CALL function returns a 1list representing the
current debug frame function call. 1In this case, the CADR
of the list is 3. This accesses the first argument to the
function in the current stack frame.

@ Finally the CONTINUE command continues the evaluation of<::>
FUNCTION-X. -

Lisp> (TRACE (FUNCTION-X
:POST-DEBUG-IF (> (FIRST *TRACE-VALUES*) 2)))
(FUNCTION-X)
Lisp> (FUNCTION-X 5)
#4: (FUNCTION-X 5)
. #11: (FUNCTION-X 4)
. . #18: (FUNCTION-X 3)
. . . #25: (FUNCTION-X 2)
e « . #25=> 1
. . . #25: (FUNCTION-X 1)

.« « . #25=> 1 <::>
. . #18=> 2

102

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE Macro (cont.)

o)

. #18: (FUNCTION-X 2)

$#18=> 1
Control Stack Debugger
Frame #12: (DEBUG)
Debug 1> BACKTRACE
-- Backtrace start --
Frame #12: (DEBUG)
Frame #7: (BLOCK FUNCTION-X

(IF (< X 3) 1
(+ (FUNCTION-X (- X 1))
(FUNCTION-X (- X 2)))))

Frame #5: (FUNCTION-X 5)
Frame #1: (EVAL (FUNCTION-X 5))
-- Backtrace ends --
Frame #12: (DEBUG)
Debug 1> CONTINUE
. #11=> 3
. #11: (FUNCTION-X 3)

#18: (FUNCTION-X 2)

. #18=> 1 ‘ :

#18: (FUNCTION-X 1
. . #18=> 1
. #11=> 2
Control Stack Debugger
Frame #5: (DEBUG)
Debug 1> CONTINUE
$#4=> 5

TRACE is called for FUNCTION-X (the same function as in the
previous example) to start the debugger if the value returned
exceeds 2. The value returned exceeds 2 twice -- once when
it returns 3 and at the end when it returns 5.

103

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE-CALL Variable

The *TRACE-CALL* variable, a debugging tool, is bound to the function <:>

or macro

call being traced.

Examples -

1.

Lisp> (TRACE (FUNCTION-X
:SUPPRESS-IF (> (SECOND *TRACE-CALL*) 1)))

This causes FUNCTION-X to be traced only if its first
argument is 1 or less

Lisp> (TRACE (FUNCTION-X
:SUPPRESS-IF (<= (LENGTH *TRACE-CALL*) 2)))

This causes FUNCTION-X to be traced if it is called with more
than 1 argument.

Lisp> (TRACE (FUNCTION-X
:PREDEBUG-IF (< (SECOND *TRACE-CALL*) 2)
:SUPPRESS-IF (< (SECOND *TRACE-CALL*) 2)))
FUNCTION-X

In this case, the TRACE macro is enabled for FUNCTION-X. The
debugger will be invoked and tracing suppressed if the first
argument to FUNCTION-X (the SECOND of the wvalue of the
TRACE-CALL variable) is 1less than 2. So for example, if
FUNCTION-X is called with the arguments 3 and 5, *TRACE-CALL*
is bound to the form (FUNCTION-X 3 5); as 3 is greater than
2, the call is traced and the debugger not entered. See the
description of the TRACE macro for further examples of the
use of *TRACE-CALL*.

104

O

O

O

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

TRACE-VALUES Variable

The *TRACE-VALUES* variable, a debugging tool, is bound to the list of
values returned by the traced function. You can use the value bound
to this variable in the forms used with the trace option keywords such
as :DEBUG-IF.

Example

Lisp (FACTORIAL 4)

$4: (FACTORIAL 4)

. $#11: (FACTORIAL 3)

. . #18: (FACTORIAL 2)

. . . #25: (FACTORIAL 1)

. . . #25=>1

. « . #25=> *TRACE-VALUES* is (1)
. . #18=> 2

. . #18=> *TRACE-VALUES* is (2)

. #11=> 6

. #11=> *TRACE-VALUES* is (6)
$#4=> 24

$4=> *TRACE-VALUES* is (24)

24

In this case, the values returned by the FACTORIAL function and
bound to the *TRACE-VALUES* variable are displayed as (1), (2),
(6), and (24). Since the *TRACE-VALUES* variable is bound to the
list of values returned by a function, it can be used only in the
:POST- options to the TRACE macro. Before being bound to the
return values, it returns NIL. See the description of the TRACE
macro for further examples of the wuse of the *TRACE-VALUES*
variable. .

105

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

JNBIND-KEYBOARD-FUNCTION Function

Removes the binding of a function from a control character. <:>

Format -
UNBIND-KEYBOARD-FUNCTION control-character

Argument

control-character

The control character from which a function’s binding is to be
removed.

Return Value

T, if a binding is removed. NIL, if the control character is not (::)
bound to a function.

Example

Lisp> (BIND-KEYBOARD-FUNCTION #\FS #'BREAK)
T f
Lisp> (UNBIND-KEYBOARD-FUNCTION #\FS)

' | O
e The call to the BIND-KEYBOARD-FUNCTION function binds <CTRL N>
to the BREAK function.

@ The call to the UNBIND-KEYBOARD-FUNCTION function removes the
binding of the function that is bound to <CTRL/\>.

O

106

""VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

UNCOMPILE Function

Restores the interpreted function definition of a symbol, if the
symbol’s definition was compiled with a call to the COMPILE function.

The UNCOMPILE function is useful for looking at function .dgfinitions
and debugging. For example, if you are not satisfied with the results
of a function compilation, you can uncompile the function, look at it,
redefine it, and then recompile it.

NOTE

You cannot uncompile system functions and macros or

functions and macros that were loaded from files that

were compiled by the COMPILE-FILE function or the
<::> compile (=-c) option of the vaxlisp command.

Format
UNCOMPILE symbol
Argument
<:> symbol

The symbol that represents the function that is to be uncompiled.

Return Value

The name of the function, if the specifed symbol represents an
existing compiled 1lambda expression and has an interpreted
definition; NIL, if it does not.

<:> Example

Lisp> (DEFUN ADD2 (FIRST SECOND) (+ FIRST SECOND))
ADD2

Lisp> (COMPILE 'ADD2)

ADD2 compiled.

ADD2

Lisp> (UNCOMPILE ’'ADD2)

ADD2 :

® The call to the DEFUN macro defines the function ADD2.
@ The call to the COMPILE function compiles the function ADD2.

® The call to the UNCOMPILE function successfully restores the

<:> interpreted definition of the function ADD2, because the
function is defined and was compiled with the COMPILE
function.

107

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

UNDEFINE-LIST-PRINT-FUNCTION Macro
Disables the list-print function defined for a symbol. | If anothegij)
list-print function was superseded by the 1list-print function

undefined, the older function is reenabled. Otherwise, no other
list-print function exists for the given symbol.

See Chapter 5 for more information about list-print function;.
Format

UNDEFINE-LIST-PRINT-FUNCTION symbol
Argument
symbol

The name of the list—print function to be disabled. (:)
Return Value

The name of the list-print function that has been disabled.
Example

Lisp> (UNDEFINE-LIST-PRINT-FUNCTION MY-SETQ)
MY-SETQ <::>

Undefines the list-print function named MY-SETQ.

108

O

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

UNIVERSAL-ERROR-HANDLER Function

The function to which the VAX LISP system sends all errors that are
signaled during program execution. By default, the VAX LISP
UNIVERSAL-ERROR-HANDLER variable is bound to this function.

The VAX LISP error handler is described in Chapter 3.
Format

UNIVERSAL-ERROR-HANDLER function-name
error-signaling-function &REST args

Arguments
function-name

The name of the function that produced or signaled the error.
error-signaling-function

The name of an error-signaling function. valid function names
are ERROR, CERROR, and WARN.

args
The specified error-signaling function’s arguments.
Return Value

Invokes the VAX LISP debugger, exits the LISP system, or returns
NIL.

Example

Lisp> (DEFUN CRITICAL-ERROR-HANDLER (FUNCTION-NAME
ERROR-SIGNALING-FUNCTION
&REST ARGS)
(WHEN (OR (EQ ERROR-SIGNALING-FUNCTION ’'ERROR)
(EQ ERROR-SIGNALING-FUNCTION ’'CERROR))
(FLASH-ALARM-LIGHT))
(APPLY #'UNIVERSAL-ERROR-HANDLER
FUNCTION-NAME
ERROR-SIGNALING-FUNCTION
ARGS))
CRITICAL-ERROR-HANDLER

Defines an error handler that checks whether a fatal or
continuable error is signaled. If either type of error is
signaled, the handler flashes an alarm light and then passes the
error signal information to the universal error handler. For
information on how to create an error handler, see Chapter 3.

109

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

UNIVERSAL-ERROR-HANDLER Variable

By default, this variable is bound to the VAX LISP error handler, the <::>
UNIVERSAL-ERROR-HANDLER function. If you create an error handler, you
must bind the *UNIVERSAL-ERROR-HANDLER* to it. :

Example

Lisp> (DEFUN CRITICAL-ERROR-HANDLER (FUNCTION-NAME
ERROR-SIGNALING-FUNCTION
&REST ARGS)
(WHEN (OR (EQ ERROR-SIGNALING-FUNCTION ’'ERROR)
(EQ ERROR-SIGNALING-FUNCTION ’‘CERROR))
(FLASH-ALARM-LIGHT))
(APPLY #'UNIVERSAL-ERROR-HANDLER
FUNCTION-NAME)
ERROR-SIGNALING-FUNCTION
ARGS)) <:>
CRITICAL-ERROR-HANDLER
Lisp> (LET ((*UNIVERSAL-ERROR-HANDLER%*
#'CRITICAL-ERROR-HANDLER))
(PERFORM-CRITICAL-OPERATION))

@ The call to the DEFUN macro defines an error handler named
CRITICAL-ERROR-HANDLER.

e The call to the special form LET binds the <:>
UNIVERSAL-ERROR-HANDLER variable to the error handler named
CRITICAL-ERROR-HANDLER, while the PERFORM-CRITICAL-OPERATION

function is evaluated.

110

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

WARN Function

<:> Invokes the VAX LISP error handler. The error handler displays an
error message and checks the wvalue of the *BREAK-ON-WARNINGS%*
variable. If the value is NIL, the WARN functions returns NIL; if the
value 1is not NIL, the error handler <checks the wvalue of the
ERROR-ACTION variable. The value of the *ERROR-ACTION* vatiable can
be either the :EXIT or the :DEBUG keyword. If the value is :EXIT, the
error handler causes the LISP system to exit; if the value is :DEBUG,
the handler invokes the VAX LISP debugger.

For more information on warnings, see Chapter 3.
Format
WARN format-string &REST args
<::> Arguments
format-string

The string of characters that is passed to the FORMAT function to
create a warning message.

args

<::> The arguments that are passed to the FORMAT function as arguments
for the format string. '

Return Value

NIL.
Example
<:> Lisp> (DEFUN LOG-ERROR (STATUS-CODE)
(LET ((MESSAGE (FIND-MESSAGE-FOR-STATUS-CODE
- STATUS-CODE)))
(IF MESSAGE
(WRITE-LINE MESSAGE *ERROR-LOG*)
(WARN "There is no message for status code “D."
STATUS-CODE))))
LOG-ERROR

Defines a function that is an error 1logging facility. The
function logs a message to an error log file. If the message for
a status code cannot be determined, a warning is issued.

111

VAX LISP/ULTRIX FUNCTION, MACRO, AND VARIABLE DESCRIPTIONS

WIiTH-GENERALIZED-PRINT-FUNCTION Macro
Locally enables a generalized print function when it evaluates th£::>
specified forms. See Chapter 5 for more information about using
generalized print functions.
Format
WITH-GENERALIZED-PRINT-FUNCTION name &BODY forms
Arguments
name
A symbol identifying the generalized print function to be
enabled. The enabled generalized print function supersedes any
previously enabled generalized print function for name. <:>
forms
A call or calls to print functions.
Return Value
Output generated by the call or calls to print functions.

Example <::>

Lisp> (DEFINE-GENERALIZED-PRINT-FUNCTION PRINT-NIL-AS-LIST
(OBJECT STREAM)
(NULL OBJECT)
(PRINC "()" STREAM))
PRINT-NIL-AS-LIST
Lisp> (WITH-GENERALIZED-PRINT-FUNCTION ’PRINT-NIL-AS-LIST

(PPRINT NIL))
0 O

The PPRINT call prints (), because the generalized print -
function is enabled locally and pretty printing is enabled.

112

APPENDIXES

APPENDIX A
PERFORMANCE HINTS

LISP code normally does much type checking at runtime. You can reduce
execution time and amount of memory required by using data structures
more efficiently and by wusing certain programming and debugging
techniques.

This appendix lists what you can do to optimize the speed of execution
of your LISP code and the amount of memory required. The sections
also give the following information:

@ Number of instructions executed by certain functions

e Relative speed of certain functions compared with others that
can be used to achieve the same result

e Explanations of why certain functions and operations require
so much time and memory

@ Data structure representation

This information can help you choose the most efficient way to code a
program.

Some VAX instructions are mentioned in this appendix. Refer to the
VAX Architecture Handbook for more information on the VAX instruction
set.

A.1 DATA STRUCTURES

This section describes how to optimize the use of data structures in
your code.

PERFORMANCE HINTS

A.1.1 Integers

Fixnum arithmetic is much faster than bignum arithmetic. Therefore, <:>

if possible use numbers in the range -2**29 to 2**29-1. (The range of
integers represented as fixnums in future versions is likely to be cut
in half: -2%*28 to 2**28-1. Keep this in mind when placing fixnum
declarations in your programs.) You must use fixnum declarations for
each argument to an arithmetic function and for the result as well to
generate fixnum-only in-line VAX instructions. The result must be
declared to be type fixnum, and even though all input values for an
arithmetic function may be fixnums, the result may not be. (That is,
fixnums are not closed under arithmetic operations).

When fixnum declarations are used, fixnum arithmetic takes two
instructions for each addition or subtraction operation (except
incrementing and decrementing, which require one instruction each) and
four instructions for each multiplication and division operation.
Fixnum comparisons consist of a CMPL instruction and the appropriate
branch; the result’s type need not be declared.

Fixnums are never allocated (they are immediate: they are always
manipulated directly, rather than through pointers). Therefore,
fixnum arithmetic requires less memory and less time for garbage
collection than arithmetic with bignums.

Bignums require two longwords for a header and enough space to
represent the number in two’s complement format. Therefore, working
with bignums consumes much more time than working with fixnums. For
example, to print 1000 factorial takes much longer than to compute it.
Much more garbage is produced while calculating the print
representation than in calculating the result.

A.1.2 Floating-Point Numbers

When using floating-point arithmetic, the system allocates new space
for the results. 1In-line code is generated only when both arguments
to an arithmetic function are declared to be of the same
floating-point type. In-line conversions (CVTxx) are not done. The
VMS math library routines are used for complicated functions, such as
trigonometric functions. '

Floating-point rumbers always have a 1-longword header.

A.1.3 Ratios

When working with ratios, the system calls the GCD function after each
ratio is created, and stores the ratio in canonical form. Use the
TRUNCATE or REM function when you do not need exact answers or when

A-2

PERFORMANCE HINTS

you want a remainder. The TRUNCATE function executes faster if you

<::> can declare the result to be a fixnum. The TRUNCATE and REM functions
are faster than the FLOOR and MOD functions. These in turn are faster
than the ROUND function.

Ratios occupy two longwords; they do not have headers.

(5]

A.1.4 Characters

When representing characters, it is usually not necessary to specify
bit and font attributes. String characters utilize an 8-bit code that
is compatible with the ASCII and DIGITAL multinational standards, and
with the VAX architecture.

The CHAR= function used without type checking is the same as the EQ

<:> function. The CHARK, CHAR<=, CHAR>, and CHAR>= functions generate the
same code as the fixnum comparisons when no type checking is required
because declarations were wused. This code consists of a CMPL
instruction followed by the appropriate branch. Like fixnums,
characters are never allocated (they are immediate), thereby requiring
less memory and less time for garbage collection.

Q A.1.5 Symbols

Symbols let you easily associate data with a name. Symbols are
interned when read by the READ function, and remain interned until
they are uninterned from all packages using them. So, when you create
anonymous variables and functions, use uninterned symbols (created
using the MAKE-SYMBOL or GENSYM function).

instructions, depending on the declarations and optimizations used.
Normally, accessing a dynamic variable is slower than accessing 1local
variables but faster than accessing closed-over lexical variables. A -
local variable can be accessed quickly because it is stored on the
stack. A closed-over variable is stored in a vector and passed to
other functions that use them. Therefore, to access a closed-over
variable may require several instructions. To reduce the overhead of
dynamic variable access to one instruction, set the optimization
declaration SPEED +to 3 and SAFETY to 0, eliminating unbound variable
; checking, and thus reducing execution time.

<:> For VAX LISP, accessing a dynamic variable may require several

When a special variable is bound to a new value, LISP saves the symbol
and its old value on the binding stack and stores the new value in the
value cell of the symbol. This requires either four or five
instructions. Unbinding a special variable requires one instruction.
(::) Accessing the parts of a symbol, such as its name, property 1list,
package, and value, requires only one instruction each, if you have

A-3

PERFORMANCE HINTS

used the appropriate declarations to declare the variable as a symbol.
However, setting a symbol’s function cell is very slow.

Symbols occupy five longwords each.

A.1.6 Lists and Vectors

Use lists when the number of elements changes often. Typically, you
push elements onto and pop elements off the front of the list to
simulate a stack. Conses are convenient for creating tree structures,
especially when you need values only at the leaves. If you must
access many values at each internal node of a tree, use structures
rather than lists. Conses require two longwords.

Use vectors when you must access elements often at any position.
Vectors wuse half as much space as lists, and can cause less paging
when accessed because vector elements are stored in adjacent memory
locations. A simple-vector has a single-longword header.

Use the noncopying (or destructive) versions of the sequence and 1list
functions whenever possible. For example, the NCONC function is
faster than the APPEND function and the NSTRING-UPCASE function is
faster than the STRING-UPCASE function. You can use the form
(NREVERSE (THE LIST x)) rather than the copying version (the REVERSE
function) to get elements back to their original order if you are just
gathering the results in a list. To copy input lists or strings once
and then do destructive operations is more efficient than to always
use copying versions of functions.

Copying vectors by using the COERCE or SUBSEQ function results in
simple vectors (of the type SIMPLE-VECTOR, SIMPLE-STRING,
SIMPLE-BIT-VECTOR, or SIMPLE-ARRAY) which can be manipulated by
simpler, faster operations. Therefore, you can copy a vector to
manipulate it quickly thereafter. However, to avoid numerous garbage
collections, do not use copying versions of functions unless you must.

NOTE

Use destructive versions of functions with care, as
shared data may be modified.

CAR, CDR, and the other list-manipulating functions by default always
check their arquments to make sure they are lists and not atoms. To
increase the speed of list-intensive applications, properly declare
all 1lists and use the optimization declaration SPEED = 2 or use SPEED
= 3 and SAFETY = 0. The CAR, CDR, RPLACA, and RPLACD functions each
require one instruction when used with these declarations.

O

O

O

PERFORMANCE HINTS

If you frequently splice or concatenate lists, use a pointer to the
middle or end of the 1list. This is faster than using the NTHCDR,
MEMBER, APPEND, and NCONC functions on the entire list, as they always
process from the beginning of the list. The fastest (and default)
tests for the MEMBER, ASSOC, and RASSOC functions are EQ and EQL.

Use property lists when you want values for keys to be %1obal in
scope. Do not wuse property 1lists if the number of keys is fairly
constant and known in advance. Instead, use structures and include a
slot in the structure for a list to be used like a property list for
the keys that change.

Use association lists when you want values for keys to be dynamic in
scope, since pushing entries onto the front of an association list
shadows later entries. You can use dynamic variables as pointers into
association lists to help you recall additions to the lists.

A.1.7 Strings, General Vectors, and Bit Vectors

Simple-vectors are processed faster than nonsimple vectors (vectors
with fill pointers, adjustable vectors, or displaced vectors).
Simple-vectors take less space since they do not have separate array
headers and they are created faster.

Avoid using lists of characters when manipulating symbol names (that
is, never implement EXPLODE or IMPLODE). Strings are fully supported
in this language, unlike in older versions of LISP. Some common
operations on simple strings use the VAX character instructions.

Many data structures that used to be implemented with 1lists can be
more efficiently implemented with simple-vectors (the default
DEFSTRUCT representation). If the domain of a set is fixed and set
operations are frequent, using simple bit vectors is much faster than
using lists. Accessing or updating slots of a declared structure
takes only one instruction given the appropriate declarations.
Accessing or updating characters in a simple string or bits in a
simple bit wvector is slower than accessing or updating elements of a
simple-vector; when accessing or wupdating characters in a simple
string or bits in a simple bit vector, data must be converted between
the internal representation and the LISP representation. For both
characters and fixnums, this involves at least an ASHL instruction.
However, there are specialized routines for handling simple strings
and simple bit vectors (for example, the STRING-UPCASE and BIT-AND
functions with the proper declarations).

These representations take less space than simple vectors that hold
characters or bits.

PERFORMANCE HINTS

A.1.8 Hash Tables

Hash tables provide a good way of storing and accessing arbitrary<::>
objects. Although some overhead is required for each access or store,

the total time required is usually reasonable even for 1large numbers

of objects. VAX LISP hash tables use chains to resolve co}l}sions.

You can access hash tables that use the EQ and EQL functions faster
than hash tables that use the EQUAL function, because the comparisons
are faster. However, hash tables that use the EQ and EQL .functions
must be completely rehashed after each garbage collection. Hash
tables are preferable to lists and bit vectors for representing sets,
when the number of objects may be large and extremely variable.

A.1.9 Functions Q

Compiled code is faster than interpreted code; when interpreted code
is evaluated, much consing occurs.

Closures are slower than regular functions.

You can compile single functions at any time without using files. For
example, to compile a function you have just defined, you can use
(COMPILE 'FUNCTION-NAME) or (COMPILE NIL “(LAMBDA () ,...) if you want

to create anonymous code to be stored and executed later. You can use <:>
the FUNCTION or FTYPE type specifier in a declaration or proclamation

to inform the compiler about the types of the arguments and the return
type of a function.

A.2 DECLARATIONS
This section describes how to use declarations to optimiée LISP code. <:>

By default, most standard VAX LISP functions check their arguments for
type and other attributes. The compiler can generate much faster code
for many simple operations by assuming the arguments are of the
correct type. Therefore, use declarations to supply this information.

Whether the compiler takes advantage of declarations, and to what
extent it does, is controlled by the OPTIMIZE declaration. Depending
on the values of the optimization options, different code may be
generated, given the presence of type declarations or the assumption
of such type declarations.

PERFORMANCE HINTS

NOTE
<::> Currently, the COMPILATION-SPEED option is ignored.
The format for using the OPTIMIZE declaration and its optlons with the
PROCLAIM and DECLARE functions is as follows:
(PROCLAIM ' (OPTIMIZE (SPEED x) (SAFETY y) (SPACE z)))
or
(DECLARE (OPTIMIZE (SPEED x) (SAFETY y) (SPACE z)))
The possible switch values are:
<:> x=1,y=1,2z=1 (the default)

No particular optimizations done. Generally, type checking will
be done on all arguments to LISP functions.

x=2,y<2

Observes user supplied declarations. Useful when some variables
are guaranteed to be of the declared type and speed is desired,
but when not all variables (such as function arguments) can be

<:> guaranteed to be correct. Some macros (such as DOTIMES and
DOLIST) expand into code with these declarations already
supplied.

x>1,y=0
Skips bounds checking for vector and array references.

Q x=3,y=0

Assumes correct argument types to many functions, such as CAR,
SYMBOL-NAME, and SCHAR. Useful for guaranteed correct and
debugged functions. Special variable references do not check for
unbound values.

x>y

Does tail recursion removal, if it can.

The THE function generates tests for objects being the specified
type. Useful for fixnum declarations to detect overflows into

: bignums.

PERFORMANCE HINTS

x>z ’ <::)
Tries to open-code some sequence functions. Observes in-line
declarations.

Explicit type checking code, such as (IF (CONSP X) ...), is always
executed regardless of a type declaration for X and the oﬁ%imization
settings. Therefore, you can retain type checking and still increase
the speed of execution by wusing declarations. In the following
example, faster code is generated for incrementing X by wusing the
appropriate optimization settings without having to rebind X.
Meanwhile, type checking is retained at the start of the function by
using the explicit type checking code (IF (FIXNUMP X).

(DEFUN FOO (X)
(DECLARE (FIXNUM X))
(IF (FIXNUMP X) <:>
(LET ... (INCF X) ...)

(ERROR ...)))

Another function that always executes is COERCE, since it is assumed
that a type <check will be executed, even if no coercion needs to be
done.

Use fixnum and floating-point declarations for fast arithmetic. The
"compiler needs to know the types of all the arguments (and for
fixnums, the result type, too) before it can generate the fast, (::>
type-specific code available on a VAX. Floating-point operations with
operands (and therefore results) of the same type can also generate

fast code.

Use simple-vector and similar array declarations for fast sequence and
array operations. Declaring structures is equally helpful.

The PROCLAIM and DECLARE functions are used to declare a function’s
arguments and results whenever the function is called. For example, <:>
when the proclamation (PROCLAIM ' (FTYPE (FUNCTION (FIXNUM)
SINGLE-FLOAT) MYFUNCTION)) is used, each time MYFUNCTION is called the
arguments are automatically declared to be fixnums and its result is
automatically declared to be a single-float. An FTYPE declaration
does not automatically provide declaration of the LAMBDA-LIST variable

in the function definition. y

It is important to provide type declarations, .especially for the
SIMPLE-VECTOR, SIMPLE-STRING, and SIMPLE-BIT-VECTOR types, for the
arguments to sequence functions. The compiler can generate fast code
for many common cases such as calls without any keyword arguments.

Multidimensional array operations also need declarations. Unlike the
vector operations, multidimensional arrays need the actual (fixnum)-
bounds for each dimension at compile-time, to generate efficient array <:>
indexing code. In these cases it is helpful to use the DEFTYPE macro
or a macro that expands into a call to the DECLARE function.

A-8

O

PERFORMANCE HINTS

The functions defined in the following examples will be compiled with
either (1) type-checking code if SPEED 1is 1less than 2, or (2)
non-type-checking code if SPEED equals 3 and SAFETY -equals O.
However, the second example produces code that does not check the type
of X but does check the type of (CDR X), when SPEED equals 2 and
SAFETY 1is less than 2. This 1is because there is a declaration
allowino the optimization of the CDR operation, but no declaration for
the CAR operation.

(DEFUN EXAMPLE1l (X)
(CADR X))

(DEFUN EXAMPLE2 (X)
(DECLARE (LIST X))
(CADR X))

In the following examples, a call to EXAMPLE3 always produces generic
code, since it 1is not known that the result of the addition will
necessarily be a fixnum. The declaration in EXAMPLE4 provides that
information, and all the arithmetic operations are fixnum-specific.

(DEFUN EXAMPLE3 (X Y)
(DECLARE (FIXNUM X Y))
(+ X Y))

(DEFUN EXAMPLE4 (X Y)
(DECLARE (FIXNUM X Y))
(THE FIXNUM (+ X Y)))

The next example returns a 1list of the first, indexed, and last
characters. With SPEED greater than or equal to 2 and SAFETY equal to
0, all the character fetching from the STRING argument will be very

fast. The LENGTH operation will also be very fast, since it need not
check for the type of the argument like the generic sequence function
normally would. (This also means executing the form (LENGTH (THE LIST

X)) is faster than executing the form (LENGTH X).) If SAFETY is
greater than 0, bounds checking is still done, but type checking (of
the string, for example) may not be, depending on what optimizations -
are used.

(DEFUN EXAMPLES5 (STRING INDEX)
(DECLARE
(SIMPLE-STRING STRING)
(FIXNUM INDEX))
(LIST (AREF STRING 0)
(CHAR STRING INDEX)
(SCHAR STRING (1- (LENGTH STRING)))))

Array access is fast in the following code:

PERFORMANCE HINTS

(EVAL-WHEN (COMPILE LOAD EVAL)
(DEFCONSTANT I-SIZE 3)
(DEFCONSTANT J-SIZE 4)
(DEFCONSTANT K-SIZE 5)
(DEFTYPE FOOARRAY (&OPTIONAL ELEMENT-TYPE)
“(SIMPLE-ARRAY ,ELEMENT-TYPE (,I-SIZE ,J-SIZE ,K-SIZE))))

(DEFUN FOO ()
(DECLARE (TYPE (FOOARRAY T) X)
(TYPE (FOOARRAY STRING-CHAR) Y))

(DOTIMES (I I-SIZE)

(DOTIMES (J J-SIZE)
(DOTIMES (K K-SIZE)
(SETF (AREF X I J K)
(FOO (AREF Y I J K)))))))

A.3 PROGRAM STRUCTURE

Avoid using closed-over variables (that is, lexical variables used in
functions created within their scope). References to closed-over
variables are slower than references to true 1local variables (which
are stack allocated), because closed-over variables must be found in
simple vectors that represent the lexical environment that may take
several instructions.

In tight inner loops, use macros or in-line functions rather than
called functions. Always compile macros, functions declared in-line,
and calls to the DEFSTRUCT macro before compiling code that uses them.
Normally, you proclaim a function in-line just before defining it.
Any calls to that function will then have the body expanded in-line at
the <calling site, unless you use the NOTINLINE declaration. If you
declare or proclaim a function using the INLINE declaration without
later providing a definition, a compiler error will result because no
definition was provided for an in-line function. .

The FUNCALL and APPLY functions are slower than calls to functions
whose names are known at compile time. This is because the LISP
system must check the following:

e Whether the object is a function

e What kind of function (by symbol or function object,
interpreted or compiled)

O

O

PERFORMANCE HINTS

® The number of arguments the function takes

The FUNCALL and APPLY functions are usually two to three times slower
than a compiled call to a fixed function with a fixed number of
arguments.

The CATCH special form and operations that wuse the " catch-throw
mechanism are slower than calling a function, wusing the APPLY
function.

No more penalty 1is inflicted for wusing the lambda-list keyword
&OPTIONAL than for wusing required arguments. However, an &REST
variable causes a list to be created for those arguments passed after
the required and &OPTIONAL arguments. &KEY arguments are the slowest;
they have the consing overhead of &REST keyword, plus the run-time
code to parse that 1list and assign the proper values for the given
keywords.

Using multiple values requires less time and space than consing a list
or vector of results. Both methods are slower than just returning
single values. (Consing requires garbage collections later.)

The READ function is slower than the READ-LINE or READ-CHAR function,
since READ has to parse the input according to the current LISP reader
syntax, create numbers, and intern symbols. The READ-CHAR function is
slower than the READ-LINE function, due to the general overhead of
streams.

The WRITE, FORMAT, and PPRINT functions are slower than explicit calls
to the PRINC and PRIN1 functions.

Using the xxx-TO-STRING functions for getting a string representation
of a LISP object 1is faster than wusing the WITH-OUTPUT-TO-STRING
function. The WITH-OUTPUT-TO-STRING function must create a stream and
use the usual stream functions. The READ-FROM-STRING and
PARSE-INTEGER functions are faster than the WITH-INPUT-FROM-STRING
function for the same reason.

The compiler compiles each top-level form in a file when it compiles a
file by surrounding arbitrary forms in the following manner:

(PROGN (DEFUN #:TOP-LEVEL-FUNCTION () arbitrary-top-level-form)
(#:TOP-LEVEL-FUNCTION))

An arbitrary-top-level-form is any LISP form other than a call to the
EVAL-WHEN or PROGN special form, the DEFUN or DEFMACRO macro, the
PROCLAIM function, or a package function. Creating, compiling,
dumping, and 1loading these temporary functions takes time, so it is
wise to gather many arbitrary forms into functions of reasonable size.
Typically, such forms can be calls to data initialization functions
(such as (SETF (GET ...) ...)). To have these function calls inside a
function definition anyway is desirable so that you can do selective
initialization from the program without having to reload the file.

A-11

PERFORMANCE HINTS

A.4 COMPILER REQUIREMENTS

The PROCLAIM, PROVIDE, REQUIRE, and package functions like USE—PACKAGE<::>
and IN-PACKAGE must be used at "top level" for the compiler to
recognize them. A top-level form is defined as a form without
surrounding parentheses, or a form at top level within a call to
either the EVAL-WHEN or PROGN special form. Uses of the DEYUN macro
and anonymous lambdas that would get evaluated in code get compiled as
separate functions (closures if they use closed-over variables). This

is true in the following call to the DEFUN macro and to the anonymous
lambda that follows.

(LET ((COUNTER 0)) (DEFUN NEXT () (INCF COUNTER)))
(TRY 4’ (LAMBDA (X) (PRINT X)))

If you want functions as data objects (that 1is, in data structures
where they would not be processed during normal evaluation), you must.<:>
compile them explicitly. This 1is exemplified by the difference
between the following:

(LIST #'(LAMBDA () (F00))
#' (LAMBDA () (BAR)))

and

'"(#’(LAMBDA () (FO00)) ' <:>
#’ (LAMBDA () (BAR)))

In the first case, the compiler recognizes the functions and creates
compiled-function objects for them. 1In the second case, the compiler
does not notice the fucntions since the entire form is quoted.

If you leave the code in the list at run time, the explicit calls to
the FUNCALL function on each element of the list would run the code
interpretively. So, to have compiled code in the list, you must fill
it with compiled functions. You can do this at run time by using the
COMPILE function with NIL as the first argument, or you can £fill the -
list with compiled functions once, when loading. Or, you can compile
a file, using macros that expand into definitions of functions with
names created using the GENSYM function. Then, have an initialization
function fill up the list with those compiled functions at load time.

A-12

INDEX

Page numbers in the Index in the form c-n (for example, 2-13) refer to
a page in Part I. Page numbers in the form n (for example, 25) refer
to a page in Part II. *

? ARRAY-TOTAL-SIZE-LIMIT constant,
debugger command 6-6
description, 4-13 Arrays, 6-6
(table), 4-10 constants, 6-6
stepper command creating, 61
description, 4-26 specialized, 6-6, 61

(table), 4-25

A -B_
Abbreviating output by lines, BACKTRACE
5-25 debugger command
Abbreviating output depth, 5-24 description, 4-17
Abbreviating output length, 5-24 (table), 4-10
Abbreviating printed output, 5-23 stepper command
Active stack frame, 4-4 description, 4-27
Alien structure facility, 1-5 (table), 4-24
ALL debugger command modifier, BIND-KEYBOARD-FUNCTION function
4-12 description, 4
with BACKTRACE command, 4-17 keyboard functions, 6-20
with BOTTOM command, 4-15 Binding stack, 80
with DOWN command, 4-15 Bits attribute, 6-5
with TOP command, 4-15 BOTTOM debugger command
with UP command, 4-16 description, 4-15
:ALLOCATION keyword (table), 4-10
- MAKE-ARRAY function, 6-15, 61 BREAK function, 18
APROPOS function binding control character to, 4
debugging information, 4-1 debugging information, 4-1
description, 1 description, 7
help, 1-6 invoking the break loop, 4-4
(table), 6-25 (table), 6-25
APROPOS-LIST function Break loop, 1-4, 4-4 to 4-7
debugging information, 4-1 exiting, 4-5, 7, 18
description, 3 : invoking, 4-4, 7
(table), 6-25 message, 4-5
, ARGUMENTS debugger command prompt, 4-5
modifier, 4-12 using, 4-6
with SET command, 4-16 variables, 4-7
with SHOW command, 4-17 *BREAK-ON-WARNINGS* variable,
ARRAY-DIMENSION-LIMIT constant, 4-14
6-6 defining an error handler, 3-6
ARRAY-RANK-LIMIT constant, 6-6 WARN function, 111

Index-1

INDEX

-C-

CALL debugger command modifier,
4-12
with SHOW command, 4-17
Call-out facility, 1-5
Cancel character, 8
CANCEL-CHARACTER-TAG tag
description, 8
CERROR function, 109
defining an error handler,
error messages, 3-3

3-7

CHAR-BITS-LIMIT constant, 6-6
CHAR-CODE-LIMIT constant, 6-6
CHAR-FONT-LIMIT constant, 6-6
CHAR-NAME-TABLE function, 6-6
description, 9
Characters, 6-5
attributes, 6-5
comparisons, 6-5
constants, 6-6
names, 9
Code attribute, 6-5
Command levels, 90
debugger, 4-8
stepper, 4-27
tracer, 4-34
Command modifiers
See Debugger
COMMON LISP, 1-2
COMPILE (-c) option
compiling files, 2-7
description, 2-15
modes, 2-14
optimizing compiler, 6-22
(table), 2-12
with ERROR_ACTION option, 2-16
with INITIALIZE option, 2-17
with LISTING option, 2-19
with MACHINE_CODE option, 2-19
with NOOUTPUT_FILE option, 2-22
with NOWARNINGS option, 2-25
with OPTIMIZE option, 2-21
with OUTPUT_FILE option, 2-22
with VERBOSE option, 2-23

COMPILE function, 1-3, 11, 107
compiler restrictions, 6-21
compiling functions and macros,

2-6

COMPILE-FILE functio, 1-4

COMPILE-FILE function, 15, 16
compiler restrictions, 6-21

COMPILE-FILE function (Cont.)
compiling files, 2-7
description, 12 to 14
(table), 6-25

COMPILE-VERBOSE variable
default for :VERBOSE_k@yword,

13
description, 15

COMPILE-WARNINGS variable

default for :WARNINGS keyword,
13
description, 16

COMPILEDP function
description, 11

Compiler, 1-3, 6-21 to 6-24
optimizations, 2-21, 6-22 to

6-24, 12
fast code,
safe code, 6-23

restrictions, 6-21
COMPILE function, 6-21
COMPILE-FILE function, 6-21
Conditional new line directives,
5-8

Constructor function
allocating static space, 6-15

CONTINUE
debugger command

description, 4-14
(table), 4-10
function
description, 18
exiting the break loop, 4-5,
7)

Control characters
binding to functions, 6-20, 4
returning information about

bindings, 6-20, 51

6-23

(table), 2-3
unbinding from functions, 6-20,
106

Control stack, 4-3
debugger, 4-7
overflow, 6-16
stack frame
See Stack frame
storage allocation, 80
Controlling indentation, 5-13
Controlling margins, 5-4
Controlling where new lines begin,
5-11

Index-2

O

O

O

O

O

CPU time
displaying, 91
garbage collector, 48
getting, 50
<CTRL/\>
recovering from an error, 2-3
<CTRL/C>
and CANCEL-CHARACTER-TAG, 8
invoking the break loop, 2-4,
4-5
<CTRL/Z2>
suspending a process, 2-4
:CURRENT keyword

INDEX

:DEBUG keyword

See *ERROR-ACTION* variable
DEBUG-CALL

function, 4-18

description, 20

:DEBUG-IF keyword)

TRACE macro, 4-36, 94 »
DEBUG-IO variable

debugger, 4-8

stepper, 4-20
DEBUG-PRINT-LENGTH variable

controlling output, 4-3

description, 21

THROW-TO-COMMAND-LEVEL function, *DEBUG-PRINT-LEVEL* variable

90
Current package, 67
Current stack frame, 4-7

-D-

Data
representation, 6-2 to 6-7
structure, 1-1
Data types
arrays, 6-6, 61 -
constants, 6-6
specialized, 6-6
characters, 6-5
attributes, 6-5
comparisons, 6-5
constants, 6-6
names, 9
floating-point numbers, 6-3
constants, 6-4
integers, 6-2
constants, 6-2
numbers, 6-2
package, 3
packages, 1
pathnames, 35
strings, 6-7, 61
vectors, 61
DEBUG
function
debugging information, 4-1
description, 19
invoking the debugger, 4-8
stepper command
description, 4-26
(table), 4-24
DEBUG function
binding control character to,

controlling output, 4-3
description, 22
Debugger, 1-4, 4-7 to 4-20
commands
arguments, 4-11
entering, 4-11
descriptions, 4-13 to 4-17
modifiers (table), 4-12
(table), 4-10
controlling output, 21, 22
error handler, 3-2 to 3-4
exiting, 4-9, 4-14
invoking, 4-8, 4-26, 4-36, 19,
94
prompt, 4-8
sample sessions, 4-18
using, 4-9
Debugging facilities, 1-4
See also Break loop, Debugger,
Stepper, and Tracer
Debugging functions and macros
(table), 4-1
Declarations, 6-23
Default directory
changing, 23
DEFAULT-DIRECTORY function, 23
See also
DEFAULT-PATHNAME-DEFAULTS
variable
description, 23
DEFAULT-PATHNAME-DEFAULTS
variable
default directory, 23
DIRECTORY function, 6-13, 35
filling file specification
components, 12
resuming a suspended system, 87
4 using, 6-13

Index-3

DEFINE-ALIEN-STRUCTURE macro
allocating static space, 6-15
DEFINE-FORMAT-DIRECTIVE macro
description, 25
DEFINE-GENERALIZED-PRINT
-FUNCTION
macro, 5-21
DEFINE-GENERALIZED-PRINT-
FUNCTION macro
description, 28
DEFINE-LIST-PRINT- FUNCTION
macro, 5-19 A
DEFINE-LIST-PRINT-FUNCTION macro
description, 30
Defining list-print functions,
5-19
DEFMACRO macro
creating programs, 2-5
DEFUN macro
creating programs, 2-5
DELETE-PACKAGE
function
description, 32
DESCRIBE function
debugging information, 4-1
description, 33
help, 1-6
(table), 6-25
:DEVICE keyword
pathname field, 6-10
:DIRECTION keyword
OPEN function, 6-19
! directive, 5-6
"% directive, 5-11
“& directive, 5-11
~. directive, 5-6
“:_ directive, 5-11
“@_ directive, 5-11
"~ directive, 5-28
“_ directive, 5-6, 5-11
Directives for handling lists,
5-16
DIRECTORY function
description, 35
pathnames, 6-13
(table), 6-25
:DIRECTORY keyword
pathname field, 6-10
DO-ALL-SYMBOLS macro, 1, 3
DO-SYMBOLS macro, 1, 3
Documentation string, 33

~

INDEX

Double floating-point numbers,

6-3
DOUBLE-FLOAT-EPSILON constant, <:>
6-4 .
DOUBLE-FLOAT-NEGATIVE-EPSILON
constant, 6-4
DOWN
debugger command
description, 4-15
(table), 4-10
debugger command modifier, 4-12
with SEARCH command, 4-15
DRIBBLE function
debugging information, 4-2
description, 37
(table), 6-25 .
:DURING keyword
TRACE macro, 4-37, 95 (:)
Dynamic memory, 2-20, 80, 87
garbage collector, 6-15, 6-16

-E-

Editor :
creating programs, 2-5
:ELEMENT-TYPE keyword
OPEN function, 6-19 <:>
Enabling pretty printing, 5-3
End-of-file operations, 6-18
EQ function, 6-2
EQUAL function, 6-12
ERROR
debugger command
description, 4-16
(table), 4-10
function, 109 <:>
defining an error handler,
3-7
error messages, 3-2
Error
listing
file type, 1-9
messages
compiler, 16
debugger, 4-16
error handler, 75
error-handler definition, 3-6
format, 3-2
warnings, 2-25, 16
types, 3-2 to 3-5

continuable, 3-3 <:>
fatal, 3-2

Index-4 -

O

Error

types (Cont.)
warning, 3-4, 111

Error handler, 1-4, 38

binding *UNIVERSAL-ERROR-
HANDLER* variable, 3-7
creating, 110
debugging information, 4-1
defining, 3-5
description, 3-1
error message, 75
invoking, 111
UNIVERSAL-ERROR-HANDLER
function, 109
:ERROR keyword
EXIT function, 39
ERROR-ACTION variable, 38
See also error_action option
continuable error, 3-3
defining an error handler, 3-6
description, 38
fatal error, 3-3
WARN function, 111
warning, 3-4
ERROR-OUTPUT variable
PRINT-SIGNALED-ERROR function,
75
Error-signaling functions, 109
(table), 3-7
ERROR_ACTION option, 2-16
See also *ERROR-ACTION%*
variable
description, 2-16
fatal error, 3-3
modes, 2-14
(table), 2-12
with INITIALIZE option, 2-17
ESCAPE key
terminal input, 6-18
EVAL function, 1-1
EVALUATE
debugger command
description, 4-13
(table), 4-10
stepper command
description, 4-26
(table), 4-24
EXIT function
description, 39
exiting LISP, 2-2
¢:EXIT keyword
See *ERROR-ACTION* variable

INDEX

Extensions to the FORMAT function,

5-5 to 5-17
-F -

Fast-loading file, 2-7, 2-15
file type, 1-9 '
loading, 56
locating, 56
producing, 12, 13

File
compiling, 2-6
directory name, 1-8
host name, 1-8
loading, 2-5
name, 1-7

representation, 6-8
organization, 6-19
pathname, 1-7
specification

See also Pathnames,

Namestrings

defaults (table), 1-9
type, 1-9

File name representation
See File

~“/FILL directive, 5-6

FINISH stepper command
description, 4-27
(table), 4-25

Floating-point numbers, 6-3
constants (table), 6-4
(table), 6-3

Font attribute, 6-5

FORMAT
function, 5-5 to 5-17

FORMAT directives
user defined, 5-18

FORMAT directives in VAX LISP,

5-6

Format Directives Provided with

VAX LISP, 40

FORMAT function
break-loop messages, 7
error messages, 3-7
warning messages, 111

Fresh line directive, 5-11

Function
compiled, 11
compiling, 2-6
defining, 2-5
definition

Index-5

INDEX

Function
definition (Cont.)
editing, 107

pretty printing, 65
implementation-dependent
(table), 6-24

interpreted, 11
interrupt
garbage collector,
keyboard, 6-20
creating, 4
suspended systems, 6-20
modifying, 2-6
FUNCTION debugger command
modifier, 4-12
with SET command,
with SHOW command,

6-20

4-16
4-17

-G~

Garbage collector, 6-14 to 6-16
available space, 6-16
changing messages, 6-16
control stack overflow,
CPU time, 48
displaying time, 91
dynamic memory, 6-15,
elapsed time, 46
failure, 6-16
frequency of use, 6-15
interrupt functions, 6-20
invoking, 43
message, 70

See also *POST-GC-MESSAGE*
variable
messages, 44, 64
See also *PRE-GC-MESSAGE*
variable, *POST-GC
-MESSAGE* variable
run-time efficiency, 6-15
static memory, 6-15, 61
suspended systems, 2-26

GC function
description, 43

GC-VERBOSE variable
changing garbage collector

messages, 6-16
description, 44
Generalized print functions, 5-21
GENERALIZED-PRINT-FUNCTION-
ENABLED-P
function, 5-21

6-16

6-16

GENERALIZED-PRINT-FUNCTION-
ENABLED-P function
description, 45
GET-GC-REAL-TIME function
description, 46
GET-GC-RUN-TIME functi ony
description, 48
GET-INTERNAL-RUN-TIME functio
description, 50 ‘
(table), 6-25
GET-KEYBOARD-FUNCTION function, 4
description, 51
returning information about key
bindings, 6-20
Global
definitions, 4-7
variables, 4-7
GOTO debugger command
description, 4-15
(table), 4-10

-H-

Handling lists, 5-16
Hash table
comparing keys, 55
initial size, 54
rehash size, 52
rehash threshold, 53
HASH-TABLE-REHASH-SIZE function
description, 52
HASH-TABLE-REHASH-THRESHOLD
function ’
description, 53
HASH-TABLE-SIZE function
description, 54
HASH-TABLE-TEST function
description, 55
HELP
debugger command
description, 4-13
(table), 4-10
stepper command
description, 4-26
(table), 4-25
Help facilities
debugger, 4-13
LISP, 1-6
stepper, 4-26
ULTRIX, 1-6

Index-6

O

O

O

O

INDEX

HERE debugger command modifier,
4-12
with BACKTRACE command,
with SHOW command, 4-17
¢+HOST keyword
pathname field, 6-10

4-17

-T=-

~“I directive, 5-6
:IF-DOES-NOT-EXIST keyword
LOAD function, 56
OPEN function, 6-19
:IF-EXISTS keyword
OPEN function, 6-19
If-needed new line directive,
5-11
Implementation notes, 6-1 to 6-25
Improperly formed argument lists,
5-28
Indentation, 5-13
preserving, 5-9
INITIALIZE (-i) option
description, 2-17
loading files, 2-5
modes, 2-14
(table), 2-12
with COMPILE option, 2-15
with RESUME option, 2-23
with VERBOSE option, 2-23
Input/Output, 6-16 to 6-20
end-of-file operations, 6-18
file organization, 6-19
functions, 6-19
#$\NEWLINE character,
terminal input, 6-18
terminal output, 6-18
WRITE-CHAR function, 6-20
Insignificant stack frame, 4-4
Integers, 6-2
constants, 6-2
INTERNAL-TIME~-UNITS-PER-SECOND
constant, 46, 48, 50
Interpreted function definition
restoring, 107
Interpreter, 1-3
creating programs, 2-5
Interrupt functions
garbage collector, 6-20
Interrupt levels
keyboard functions, 4

6-17

K
Keyboard functions, 6-20
creating, 4
interrupt level, 4
specifying, 5 .
passing arguments to, %
suspended systems, 6-20

-L-

LEAST-NEGATIVE-DOUBLE-FLOAT
constant, 6-4
LEAST-NEGATIVE-LONG-FLOAT
constant, 6-4
LEAST-NEGATIVE-SHORT-FLOAT
constant, 6-4
LEAST-NEGATIVE-SINGLE-FLOAT
constant, 6-4
LEAST-POSITIVE-DOUBLE-FLOAT
constant, 6-4
LEAST-POSITIVE-LONG-FLOAT
constant, 6-4
LEAST-POSITIVE-SHORT-FLOAT
constant, 6-4
LEAST-POSITIVE-SINGLE-FLOAT
constant, 6-4
:LEVEL keyword
BIND-KEYBOARD-FUNCTION function,
4
Lexical environment
compiler restrictions, 6-21
Limiting output by lines, 5-4,
5-25
“/LINEAR/ directive,
:LINES keyword
WRITE and WRITE-TO-STRING,
LISP
exiting, 2-2, 39
implementation notes, 6-1 to
6-25
input/output
See Input/Output
invoking, 2-1
program, 1-1
compiling, 2-6
creating, 2-4
loading
See File
programming language, 1-1
prompt, 2-1
storage allocation, 1-1

5-6

5-3

Index-7

INDEX

LISP
storage allocation (Cont.)
See also Memory '
List-print functions,
LISTING (-L) option
description, 2-19
modes, 2-14
(table), 2-12
with COMPILE option, 2-15
with NOOUTPUT_FILE option, 2-22
Listing file, 2-19
producing, 12
:LISTING keyword
COMPILE-FILE function,
LOAD function, 2-5, 2-17
converting pathnames, 6-12
description, 56
(table), 6-25
LOAD-VERBOSE variable
load message, 56
Logical block, 5-5
Logical names
translating, 59
Long floating-point numbers, 6-3
LONG-FLOAT-EPSILON constant, 6-4
LONG-FLOAT-NEGATIVE-EPSILON
constant, 6-4
LONG-SITE-NAME function
description, 58
(table), 6-25

5-19

12

:MACHINE-CODE keyword

COMPILE-FILE function, 12
Machine-code listing, 2-19
MACHINE-INSTANCE function

description, 59

(table), 6-25
MACHINE-VERSION function

description, 60

(table), 6-25
MACHINE_CODE (-a) option, 2-19

modes, 2-14

(table), 2-13

with COMPILE option, 2-15
Macro

compiling, 2-6

defining, 2-5

implementation-dependent

(table), 6-24
modifying, 2-6

MAKE-ARRAY function

allocating static space, 6-15
description, 61
(table), 6-25
MAKE-HASH-TABLE function, 52 to
55

MAKE-PATHNAME function ®

constructing pathnames, 6-11

setting pathnames, 6-12
Memory, 80

control stack, 4-3

dynamic, 2-20, 80, 87

garbage collector, 6-15, 6-16
read-only, 2-20, 80, 87
static, 2-20, 61, 80, 87

garbage collector, 6-15

MEMORY (-m) option
description, 2-20
garbage collector, 6-15
modes, 2-14
(table), 2-13
Miser mode, 5-5, 5-26, 72
Miser-mode new line directive,
5-11
¢:MISER-WIDTH keyword .
WRITE and WRITE-TO-STRING, 5-3
Modifiers
See Debugger
Module, 78
MODULE-DIRECTORY variable, 78
description, 63
Modules, 63
MOST-NEGATIVE-DOUBLE-FLOAT
constant, 6-4
MOST-NEGATIVE-FIXNUM constant,
6-2

~
o/

O

O

MOST-NEGATIVE-LONG-FLOAT Constant,<::>

6-4
MOST-NEGATIVE-SHORT-FLOAT
constant, 6-4
MOST-NEGATIVE-SINGLE-FLOAT
constant, 6-4
MOST-POSITIVE-DOUBLE-FLOAT
constant, 6-4
MOST-POSITIVE-FIXNUM constant,
6-2
MOST-POSITIVE-LONG-FLOAT constant,
6-4
MOST-POSITIVE-SHORT-FLOAT
constant, 6-4
MOST-POSITIVE-SINGLE-FLOAT
constant, 6-4

Index-8

O

INDEX

Multil:i:ne mcde, 5-8
<::>Mu1til;nn mede new line directive,
5-1.

-1 -

“n,m/TABULAR '~ directive, 5-6
“n/FILL/ directive, 5-6, 5-16
“n/LINEAR, directive, 5-6, 5-16
“n/TABULAR/ directive, 5-17
:NAME keyword
pathname field, 6-10
NAMESTRING function
constructing namestrings, 6-12
Namestrings, 6-8, 6-12
See also File
constructing, 6-12
New lines, 5-11
#\NEWLINE character
description, 6-17
“ni directive, 5-6
NOLISTING option
description, 2-19
NOMACHINE_CODE option
description, 2-20
NOOPTIMIZE option
description, 2-21
NOOUTPUT_FILE (-n) option
description, 2-22
modes, 2-15
(table), 2-13
with COMPILE option, 2-15
NORMAL debugger command modifier,
4-12
with BACKTRACE command, 4-17
<:> NOVERBOSE option
description, 2-23
NOWARNINGS (-w) option
description, 2-25
modes, 2-15
(table), 2-14
Null lexical environment
break loop, 4-7
compiler restrictions,
tracer, 4-36, 94
Numbers, 6-2

O

6-21

o
OPEN function, 6-19

Optimization gqualities
See Compiler

OPTIMIZE declaration, 6-22
:OPTIMIZE keyword
COMPILE-FILE function, 12
OPTIMIZE option
descraiption,
medes, z-14)
opt:mizing compiler, 6222
ttabley, 2-13
with COMPILE option,
:QUTPUT-FILE keyword
COMPILE-FILE function, 13
OUTPUT_FILE (-o0) option
description, 2-22
modes, 2-15
(table), 2-13
with COMPILE option, 2-15
OVER stepper command
description, 4-28
(tabley), 4-25

2-21

2-15

-Pe-

Packages, 1, 3
current, 1, 3, 67
PARSE-NAMESTRING function
constructing pathnames, 6-11
setting pathnames, 6-12
PATHNAME function
constructing pathnames, 6-11
Pathnames
See also File
constructing, 6-11
default directory, 23
description, 6-9
DIRECTORY function, 35
fields, 6-10
(table), 6-10
functions, 6-13
Per-line prefix, 5-15
Per-line prefixes
preserving, 5-9
:POST-DEBUG-IF keyword
TRACE macro, 4-36, 94
POST-GC-MESSAGE variable, 44
changing garbage collector
messages, 6-16
description, 64
:POST-PRINT keyword
TRACE macro, 4-36, 95
PPRINT

function, 5-2

Index-9

INDEX

PPRINT-DEFINITION
function, 5-2
PPRINT-DEFINITION function
description, 65
PPRINT-PLIST
function, 5-2
PPRINT-PLIST functiocn
description, 67
:PRE-DEBUG-IF keyword
TRACE macro, 4-36, 94
PRE-GC-MESSAGE variable, 44
changing garbage collector
messages, 6-16
description, 70
:PRE-PRINT keyword

TRACE macro, 4-36, 95
Prefix, 5-14
per-line, 5-15

Preserving indentation, 5-9
Preserving per-line prefixes,
Pretty printer, 1-4
controlling margins, 73
miser mode, 72
Pretty printing,
:PREVIOUS keyword
THROW-TO-COMMAND-LEVEL function,
90
Print control variables,
:PRINT keyword '
LOAD function, 56

5-9

5-1 to 5-28

5-3

TRACE macro, 4-36, 94
PRINT-LENGTH, 5-24
PRINT-LEVEL, 5-24
PRINT-LINES, 5-4, 5-25

PRINT-LINES variable
description, 71
PRINT-MISER-WIDTH,

variable, 5-5
PRINT-MISER-WIDTH variable
description, 72
PRINT-RIGHT-MARGIN,
variable, 5-4
PRINT-RIGHT-MARGIN variable
description, 73
PRINT-SIGNALED-ERROR function
defining an error handler, 3-6
description, 75
PRINT-SLOT-NAMES-AS-KEYWORDS
variable
description, 77
PROCLAIM function,

5-26

5-26

6-22

Prompt
break loop, 4-5
debugger, 4-8
stepper, 4-20
top-level, 2-1

changing, 92

vaxlisp, 2-1

Property list
pretty-print, 67

..Q-

QUICK debugger command modifier,
4-12
with BACKTRACE command, 4-17
QUIT
debugger command, 4-9
description, 4-14
(table), 4-10
stepper command
description, 4-27
exiting stepper, 4-21
(table), 4-25

-R-

READ-CHAR function
#\NEWLINE character,
terminal input, 6-18

Read-only memory, 2-20, 80, 87

Real time
displaying, 91
garbage collector, 46

REDO debugger command
description, 4-14
(table), 4-10

Relative tabbing, 5-16

REQUIRE function, 63 -
description, 78
(table), 6-25

RESUME (-r) option, 2-26, 87
description, 2-23
modes, 2-15
(table), 2-13
with INITIALIZE option, 2-17
with MEMORY option, 2-20

RETURN
debugger command

description, 4-14
(table), 4-10
key .
as a stepper command, 4-28

6-17

O

Index-lO

O

O

O

¥

O

INDEX

RETURN
key (Cont.)
entering
debugger command arguments,
4-11
debugger commands, 4-10
stepper commands, 4-24
terminal input, 6-18
stepper command
description, 4-28
(table), 4-25
:RIGHT-MARGIN keyword
WRITE and WRITE-TO-STRING,
ROOM function
debugging information, 4-2
description, 80
specifying memory, 2-20
(table), 6-25
Run-time efficiency, 6-15

5-3

-G -

SEARCH debugger command
description, 4-15
(table), 4-10
SET debugger command
~ description, 4-16
(table), 4-10
SETF macro
changing the default directory,
23
setting pathnames, 6-12
Shell commands
vaxlisp, 2-1
Short floating-point numbers, 6-3
SHORT-FLOAT-EPSILON constant, 6-4
SHORT-FLOAT-NEGATIVE-EPSILON
constant, 6-4
SHORT-SITE-NAME function
description, 83
(table), 6-25
SHOW
debugger command
description, 4-17
(table), 4-11
stepper command
description, 4-27
(table), 4-25
Significant stack frame, 4-4
SIGQUIT signal
and CANCEL-CHARACTER-TAG, 8

Single floating-point numbers,

6-3
SINGLE-FLOAT-EPSILON constant,
6-4
SINGLE-FLOAT-NEGATIVE-EPSILON
constant, 6-4

- B
Source file

compiling, 12
file type, 1-9
loading, 56
locating, 56
Specialized arrays, 6-6
Stack frame, 4-3
active, 4-4
current, 4-7
insignificant, 4-4
number
debugger command argument,
4-12
stepper output,
tracer output,
significant, 4-4
STANDARD~-QOUTPUT variable
LOAD function, 56
PPRINT-DEFINITION function,
PPRINT-PLIST function, 68
:STATIC keyword
See :ALLOCATION keyword
Static memory, 2-20, 61, 80, 87
garbage collector, 6-15
Status return, 39
STEP .
debugger command
description, 4-14
(table), 4-11
macro
debugging information,
invoking stepper, 4-20
stepper command
description, 4-28
(table), 4-25
Step
macro
description, 84
STEP-ENVIRONMENT
variable, 4-28
description, 85
STEP-FORM
variable, 4-28
description, 86
:STEP-IF keyword
TRACE macro, 4-36, 95

4-22
4-34

65

4-2

Index-11

INDEX

Stepper, 1-4, 4-20 to 4-32
commands

description, 90

arguments, 4-25 TIME macro

descriptions, 4-26 to 4-28
(table), 4-24
exiting, 4-21, 4-27

debugging information, 4-2

description, 91
(table), 6-25

invoking, 4-14, 4-20, 4-36, 84, TOP

95
output, 4-21
controlling, 21, 22
prompt, 4-20
sample sessions, 4-31

debugger command
description, 4-15
(table), 4-11

THROW-TO-COMMAND-LEVEL function

debugger command modifier, 4-12

with BACKTRACE command,

using, 4-24 :TOP keyword
THROW-TO-COMMAND-LEVEL function,

Storage allocation, 1-1

See also Memory 90
Streams, 87 Top-level loop
Strings, 6-7 prompt, 2-1

creating, 61

:SUCCESS keyword *TOP-LEVEL-PROMPT* variable

EXIT function, 39

variables, 2-2

description, 92

suffix, 5-14 TRACE macro

:SUPPRESS-IF keyword
TRACE macro, 4-37, 95
SUSPEND function
creating suspended systems,
2-26

debugging information, 4-2

description, 93

enabling the tracer, 4-33

options, 4-35
(table), 6-25

description, 87 *TRACE-CALL¥*

Suspended systems, 87
creating, 2-26
file type, 1-9
garbage collector, 2-26
Internal time, 48
keyboard functions, 6-20

Variable
description, 104
variable, 4-37

TRACE-OUTPUT variable

stepper, 4-20
tracer, 4-32

real time, 46 *TRACE-VALUES*

resuming, 2-23, 2-26
Symbolic expressions, 1-1

variable, 4-38
description, 105

Tracer, 1-4, 4-32 to 4-39

o

“T directive, 5-15
Tab directive, 5-15
Tabs, 5-15
~ /TABULAR/ directive, 5-6
Terminal
input, 6-18
TERMINAL-IO variable
BIND-KEYBOARD-FUNCTION function,
5
end-of-file operations, 6-18

disabling, 4-33
enabling, 4-33, 93
options

adding to output, 4-36

defining when to trace a

function, 4-37

4-17

invoking the debugger, 4-36
invoking the stepper, 4-36
removing information from

output, 4-37
options (table), 94
output, 4-34

controlling, 21, 22

TERPRI function :TYPE keyword.

#\NEWLINE character, 6-17

pathname field, 6-10

Index-12

O

O

O

INDEX

-U-

ULTRIX commands
vaxlisp, 1-3
ULTRIX file specification

See File
UNBIND-KEYBOARD-FUNCTION function,
4

description, 106
unbinding control characters,
6-20
UNCOMPILE function
description, 107
retrieving interpreted
definitions, 2-6
Unconditional new line directive,
5-11
UNDEFINE-LIST-PRINT-FUNCTION
macro, 5-20
UNDEFINE-LIST-PRINT-FUNCTION
macro
description, 108
UNIVERSAL-ERROR-HANDLER function,
3-1
defining an error handler, 3-6
description, 109
UNIVERSAL-ERROR-HANDLER
variable, 3-5, 109
description, 110
UNTRACE macro
debugging information, 4-2
disabling the tracer, 4-33
UpP
debugger command
description, 4-16
(table), 4-11
debugger command modifier, 4-13
SEARCH debugger command, 4-15
stepper command
description, 4-28
(table), 4-25
User defined FORMAT directives,

5-18
-v_
Variable
print control, 5-3
vaxlisp

command, 1-3, 2-1
option descriptions, 2-9 to
2-25

vaxlisp
command (Cont.)
option modes (table), 2-14
options (table), 2-12
Vectors
creating, 61
VERBOSE (-v) option
description, 2-23
loading files, 2-5
modes, 2-15
(table), 2-13
with COMPILE option, 2-15
with INITIALIZE option, 2-17
with LISTING option, 2-19
with NOOUTPUT_FILE option, 2-22
VERBOSE debugger command modifier,
4-13
with BACKTRACE command, 4-17
:VERBOSE keyword
COMPILE-FILE function, 13, 15
LoAaD function, 56
:VERSION keyword
pathname field, 6-10

- -

“W directive, 5-6
WARN function, 109

description, 111

error messages, 3-4

(table), 6-25
WARNING function

defining an error handler, 3-7
:WARNINGS keyword

COMPILE-FILE function, 13, 16
WARNINGS option

modes, 2-15

(table), 2-14

with COMPILE option, 2-15
WHERE debugger command

description, 4-16

(table), 4-11
:WILD keyword

See :TYPE and :NAME keywords
WITH-GENERALIZED-PRINT-FUNCTION

macro, 5-22
WITH-GENERALIZED-PRINT-FUNCTION

macro

description, 112
WRITE

FORMAT directive, 5-7

 Index-13

WRITE function

pretty-printing control

keywords, 5-3

WRITE-CHAR function, 6-19,

#$\NEWLINE character,

6-17

6-20

INDEX

WRITE-STRING function,

6-17

WRITE-TO-STRING function
pretty-printing control

Index-14

keywords, 5-3

O

	Contents
	Preface
	Part 1: VAX LISP/ULTRIX system concepts and facilities
	1. Introduction to VAX LISP
	2. Using VAX LISP
	3. Error handling
	4. Debugging facilities
	5. Pretty printing and using extensions to FORMAT
	6. VAX LISP/ULTRIX implementation notes

	Part II: VAX LISP/ULTRIX function, macro, and variable descriptions
	Appendix A: Performance hints
	Index

