
VAXOPS5
User's Guide
Order Number: AA-EZ18C-TE

May 1989

This document explains how to create, compile, execute, and debug VAX OPS5 programs.

If you want to use a VAXstation to perform those tasks, you should also read the VAX OPS5
Development Environment User's Guide and keep this document as a reference for the VAX
OPS5 compiler and run-time system diagnostic messages.

Revision/Update Information: This document supersedes the VAX OPS5 User's Guide,
AA-EZ188-TE.

Operating System and Version: VMS Version 5.1 or higher and DECwindows for the VAX
OPS5 Development Environment.

Software and Version:

digital equipment corporation
maynard, massachusetts

VMS Version 5.0 or higher for the VAX OPS5 compiler
and run-time system.

VAX OPS5 Version 3.0

First Printing, September 1985
Revised, February 1988
Revised, May 1989

The information in this document is subject to change without notice and should not be
construed as a commitment ·by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1985, 1988, 1989.

All rights reserved.
Printed in U.S.A.

The postpaid Reader's Comments form at the end of this document requests your critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DEC US
LN03
PDP
PrintServer 40
ScriptPrinter
UNIBUS

VAX
VAXcluster
VAXC
VAX COD
VAX DBMS
VAX DEC/CMS
VAX DEC/MMS

The following is a third-party trademark:

VAX DOCUMENT
VAX OPS5
VAXstation
VAX TPU
VMS

PosrScRJPT is a registered trademark of Adobe Systems, Inc.

ML-81162

Contents

Preface . vii

Chapter 1

1.1

1.2

Chapter 2

2.1

2.2

2.3

Chapter 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

VAX OPSS Architecture

Compiler .. .

Run-Time System
1.2.1 Recognize-Act Cycle .
1.2.2 Command Interpreter
1.2.3 Run-Time System Compiler

Introduction to Program Development on VMS

Commands for Program Development

Using the Help Facility

Specifying Files .

Compiling and Linking VAX OPSS Programs

VAX OPS5 Compiler Size Restrictions

The OPSS Command .. .

Using the %INCLUDE Compiler Directive

Using VAX OPSS Qualifiers to Control the Compiler and Linker
3.4.1 Creating an Index File for Modular Compilation (/[NO]CREATE)
3.4.2 Producing a Program Entry Point {/[NO]ENTRY)
3.4.3 Generating and Naming an Executable Image {/[NO]EXECUTABLE) .. .
3.4.4 Defining an Index File {/[NO]INDEX_FILE)
3.4.5 Producing a Listing File (/[NO]LIST)
3.4.6 Including Machine Code in the Listing File {/[NO]MACHINE_CODE) .. .
3.4.7 Naming Object Files {/[NO]OBJECT[=file-spec])

Linking VAX OPSS Programs

Compiling, Linking, Executing, and Debugging External Routines

Performing a Modular Compilation

1-1

1-2
1-2
1-2
1-2

2-1

2-3

2-3

3-1

3-2

3-2

3-3
3-4
3-4
3-5
3-5
3-5
3-6
3-6

3-6

3-7

3-7

iii

3.8

Chapter 4

4.1

4.2

4.3

4.4

4.5

4.6

Chapter 5

5.1

iv

Creating Shareable VAX OPS5 Programs
3.8.1 Creating a Shareable Image
3.8.2 Installing a Shareable Image
3.8.3 Calling a Shareable Image

Executing VAX OPS5 Programs

Running Programs .. .

Using the VAX OPS5 Command Interpreter
4.2.1 Entering VAX OPS5 Commands
4.2.2 Exiting the Command Interpreter
4.2.3 Setting Up Initial Conditions

4.2.3.1 Disabling and Enabling Run-Time Messages
4.2.3.2 Choosing a Conflict-Resolution Strategy
4.2.3.3 Initializing Working Memory

4.2.4 Using VAX OPS5 Command Files

Executing Recognize-Act Cycles .

Interrupting Recognize-Act Cycles
4.4.1 Ctrl/C .
4.4.2
4.4.3

Breakpoints .. .
HALT Actions .

Restarting Programs .

Adding Statements, Productions, and Catchers to Executable Images

Debugging VAX OPS5 Programs

Using VAX OPS5 Debugging Commands
5. 1.1 Using Breakpoints .

5.1.1.1 Setting and Deleting Breakpoints
5.1.1.2 Listing Breakpoints

5.1.2 Displaying Working-Memory Elements
5.1.2.1 Displaying the Contents of Working Memory
5.1.2.2 Displaying Specific Working-Memory Elements
5.1 .2.3 Displaying the Working .. Memory Elements of a Class
5.1.2.4 Displaying Working-Memory Elements that Match Element

Patterns
5.1 .3 Modifying Working Memory .

5.1.3.1 Creating Working-Memory Elements
5.1.3.2 Deleting Elements from Working Memory
5.1.3.3 Changing the Atoms in Working-Memory Elements

5.1.4 Displaying Conflict Set Information .
5.1.4.1 Displaying the Contents of the Conflict Set
5.1.4.2 Displaying the Instantiation of the Next Production To Be

Executed
5.1.5 Saving and Restoring the State of Working Memory and the Conflict

Set · · · · · · · · · ·
5.1.5.1 Using SAVESTATE
5.1.5.2 Using ADDSTATE
5.1.5.3 Using RESTORESTATE

3-11
3-11
.3-11
3-11

4-1

4-1
4-2
4-3
4-3
4-3
4-4
4-4
4-4

4-4

4-5
4-5
4-5
4-6

4-6

4-6

5-1
5-2
5-2
5-3
5-3
5-3
5-4
5-4

5-4
5-4
5-4
5-5
5-5
5-5
5-6

5-6

5-6
5-6
5-6
5-7

5.2

Chapter 6

6.1

6.2

6.3

5.1.6

5.1.7
5.1.8
5.1.9
5.1.10

Displaying Trace Information
5.1.6.1 Setting the Trace Level
5.1.6.2 Displaying the Current Trace Level
5.1.6.3 Trace Level 1-RULE
5.1.6.4 Trace Level 2-RULE and WM
5.1.6.5 Trace Level 3-RULE, WM and CS
5.1.6.6 Trace Level 4--RULE, WM, CS and PM
Displaying Match Information .
Backing Up over Recognize-Act Cycles .
Disabling Productions .
Using the Performance Measurement and Evaluation Package

VMS Debugger

Controlling Input and Output

Opening Files .

Setting the Default Input Source and Output Destination

Closing Files .. .

Appendix A Diagnostic Messages

A.1

A.2

A.3

A.4

Index

Figures

2-1
3-1

Tables

2-1

3-1

5-1

5-2

5-3

A-1

Message Order

Message Format .. .

Controlling Message Display .

List of VAX OPS5 Messages
A.4.1 Product License Messages .

Commands for VAX OPS5 Program Development

Modular Compilation .

File Specification System Defaults

VAX OPS5 Compiler Qualifiers

Debugging Commands

Trace Levels

Trace Keywords

Message Severity Levels .

5-7
5-8
5-8
5-8
5-9
5-9

5-10
5-10
5-12
5-13
5-13

5-14

6-1

6-2

6-2

A-1

A-2

A-3

A-3
A-29

2-2
3-9

2-4
3-3

5-1
5-7

5-7

A-2

v

Preface

Manual Objectives

VAX OPS5 is an extended implementation of the OPS5 language definition.

The VAX OPS5 User's Guide explains how to create, run, and revise VAX OPS5
programs on VMS operating systems. It also provides information about VAX
OPS5 features that pertain to the VAX OPS5 compiler's and run-time system's
interfaces with the programmer, user, and operating system.

If you want to use a VAXstation, you should also read the VAX OPS5 Development
Environment User's Guide and keep this document as a reference for the VAX
OPS5 compiler and run-time system diagnostic messages.

Intended Audience

This manual is for programmers who have a working knowledge of VAX OPS5.
Knowledge of VMS and familiarity with the Introduction to VMS are recom­
mended. Some sections of this manual require a more extensive understanding
of the operating system. In such sections, you are directed to other manuals for
additional information.

Structure of This Document

This manual consists of six chapters and an appendix.

Chapters 1and2 introduce VAX OPS5 architecture and program development on
VMS.

Chapters 3, 4, and 5 explain how to compile, link, execute, and debug VAX OPS5
programs. Chapter 3 also explains how to create shareable VAX OPS5 programs.

Chapter 6 describes special programming techniques. Chapter 6 explains how to
use the VAX OPS5 command interpreter to control input and output operations.

Appendix A summarizes the diagnostic messages generated by the VAX OPS5
compiler and run-time system.

vii

Associated Documents

For tutorial information, see the self-paced instruction (SP!) course The Artificial
Intelligence Education Series: VAX OPS5. For information about the VAX OPS5
programming language, see the VAX OPS5 Reference Manual.

The following documents provide additional information:

VAX OPS5 version 3.0 Release Notes (on-line)
VAX OPS5 Development Environment User's Guide
VMS DECwindows User's Guide
Introduction to VMS
VMS DCL Dictionary
Guide to Using VMS Command Procedures
VMS Utilities Reference Volumes
VAX Architecture Handbook
Introduction to VMS System Routines
VAX Record Management Services Ma,nual

For a complete list of VMS software documents, see the VMS Master Index.

NOTE

In addition to the aforementioned VAX documents, the following text
is also recommended: Rule-based Programming with OPS5 by Thomas
Cooper and Nancy Wogrin.

To order this text, write to:

Morgan Kaufmann Publishers, Inc.
P.O. Box 50490
Palo Alto, CA 94303-9953
Attn: Michael McClatchey

Or, you can phone the publisher at (415) 965-4081.

Conventions

viii

The following conventions are used in this document:

Convention

[]

Meaning

Square brackets usually enclose items that are optional. For
example:

[I qualifier ...]

However, when square brackets are used in the syntax of a
directory name in a VMS file specification, the brackets must
be included in the syntax.

A horizontal ellipsis means that the item preceding the ellipsis
can be repeated. For example:

/qualifier ...

A vertical ellipsis in a figure or example indicates that not all
the information the system displays is shown or that not all
the information you should enter is shown.

Convention Meaning

UPPERCASE characters DCL commands and qualifiers and the names of VAX OPS5
declarations, statements, actions, functions, commands, and
support routines are printed in uppercase characters. However,
you can enter them in uppercase, lowercase, or a combination
of uppercase and lowercase.

lowercase characters The arguments you must specify with DCL commands and VAX
OPS5 operators, declarations, statements, actions, functions,
commands, and support routines are printed in lowercase char­
acters. However, you can enter them in lowercase, uppercase,
or a combination of lowercase and uppercase characters.

lctr11xl lctr11xl indicates a control key sequence where X can be any
alphabetic character. Press the key labeled Ctrl while you
simultaneously press another key. For example:

blue-green ink

decimal notation

I ewe I or lctrl!Yl

The system echoes control key sequences as A followed by a
character X. Therefore, in examples of output, lctr11xl is shown as
AX. For example:

lctr11cl is displayed as AC
lctr11YI is displayed as AY

In examples, user input is printed in blue-green ink. For
example:

OPS5> EXIT
$

A carriage return is the implied terminator for user input at
the end of command lines. If a control character or other type
of terminator is required, it will be explicitly stated in the text.

All numeric values are represented in decimal notation unless
otherwise stated.

ix

Chapter 1

VAX OPS5 Architecture

VAX OPS5 is used in the field of artificial intelligence, to develop expert systems,
and in the field of cognitive psychology. VAX OPS5 is characterized by:

• A global data base

• Condition-action (or IF-THEN) rules programmed in the form of productions,
which operate on the global data base

• Productions that are executed in an unspecified order

• Computation with symbolic expressions and numbers

• Facilities to aid knowledge representation

• Easy-to-learn syntax

This chapter describes the architecture of the VAX OPS5 system software, which
consists of a compiler and a run-time system.

1.1 Compiler

NOTE
For additional information, the following text is recommended:
Rule-based Programming with OPS5 by Thomas Cooper and Nancy
Wogrin.

To order this text, write to:

Morgan Kaufmann Publishers, Inc.
P.O. Box 50490
Palo Alto, CA 94303-9953
Attn: Michael McClatchey

Or, you can phone the publisher at (415) 965-4081.

The VAX OPS5 compiler converts VAX OPS5 module source files into object
code for subsequent linking with modules written in VAX OPS5, or other VAX
languages, and the VAX OPS5 run-time system. If you have a single VAX OPS5
source file to compile and execute, the compiler can generate a command file that
controls linking, and submit the command file for execution.

For more information about the compiler and how to control compilation, see
Chapter 3.

VAX OPS5 Architecture 1-1

1.2 Run-Time System

The VAX OPS5 run-time system controls the execution of VAX OPS5 programs
and consists of a recognize-act cycle, command interpreter, and compiler.

1.2.1 Recognize-Act Cycle

The recognize-act cycle consists of four steps:

1. Recognize (find) matches

2. Select a match

3. Act (execute the selected production)

4. Go to step 1

While finding matches, the system compares working-memory elements with
the condition elements on the left-hand side of each production. When working­
memory elements match all the condition elements, the production is ready for
execution. A production ready for execution is placed into a conflict set. There
may be one or more productions in the conflict set at any time while a program is
running. The system selects one of the ready productions, executes the actions on
its right-hand side, and begins the cycle again. When there are no more matches,
the conflict set is empty and the program halts.

For more information about the recognize-act cycle, see the VAX OPS5 Reference
Manual.

1.2.2 Command Interpreter

The VAX OPS5 command interpreter let$ you use commands to:

• Execute recognize-act cycles

• Debug VAX OPS5 programs

• Control input and output

• Perform file operations

• Call external routines

• Control loops

For more information on the command interpreter, see Section 4.2.

1.2.3 Run-Time System Compiler

In VAX OPS5, you can add productions to an executing program. The compiler
is considered part of the run-time system when compiling these new productions
because compilation occurs while the program is executing. For more information
about adding productions to an executing program, see the description of the
BUILD action in the VAX OPS5 Reference Manual.

1-2 VAX OPS5 Architecture

Chapter 2

Introduction to Program Development on VMS

This chapter shows how the VMS command language (DCL) is used to:

• Create, compile, link, and execute VAX OPS5 programs

• Specify input and output files for VAX OPS5 commands and programs

For an introduction to these concepts, see the Introduction to VMS. For detailed
definitions of commands and file specifications, see the VMS DCL Dictionary.

2.1 Commands for Program Development

Figure 2-1 illustrates the DCL commands you use to create and execute the VAX
OPS5 program CHECKS.OPS. The commands in the figure are shown in their
simplest forms. You can also use qualifiers with the commands to request special
processing or to indicate a special type of input file.

Introduction to Program Development on VMS 2-1

Figure 2-1: Commands for VAX OPS5 Program Development

• Input/Output File

--c _ _Optional Input
or Output File

CHECKS.OPX

CHECKS.LIS

$ EDIT CHECKS.OPS

$ OPS5 CHECKS

/

$LINK CHECKS

$RUN CHECKS

External
Routine
Object Files

Other OPS5
Module
Object Files

OPS5
Run-Time
System

ML0·002246

1. The EDIT command invokes the system editor to create a file containing VAX
OPS5 source code.

2. The VAX OPS5 command invokes the VAX OPS5 compiler to process the
source code and verify that there are no syntax errors or violations of the
language rules. If no errors occur, the compiler generates an object file and
an optional listing file.

If you compile a single source file to produce an executable image, the com­
piler generates an object file, a command file and an optional listing file. The
command file invokes the. VMS Linker, which links the object file with the
VAX OPS5 run-time system to produce an executable image, and then deletes
the object files and itself (unless otherwise specified). If errors occur, correct
them and recompile. If only warnings occur, you can run the program, but the
results might not be what you expect.

3. The LINK command invokes the VMS Linker, which links the object file
with other object modules created with VAX OPS5 or other VAX languages,
and with the VAX OPS5 run-time system to produce an executable program
image.

2-2 Introduction to Program Development on VMS

If the LINK process fails or produces warning messages, you may have
specified the command wrongly. Try again. If the problem persists, check the
modules specified for the errors shown in the warning messages. Correct the
source code, recompile, and link again.

4. The RUN command executes a program image.

If your program fails or produces unexpected output, it probably contains an
error. Correct the source code, recompile, link again, and reexecute.

2.2 Using the Help Facility

Enter the HELP command for on-line information about a command, its
parameters, and its qualifiers. For example:

$ HELP OPS5

The help facility describes the OPS5 command, lists the additional information
available, and prompts you for an OPS5 subtopic:

OPS5 Subtopic?

If you want the help facility to display information about a qualifier, respond to
the prompt with the name of the qualifier. For example:

OPS5 Subtopic? /LIST

You can get the same information about the /LIST qualifier by typing the
following command:

$ HELP OPS5/LIST

For further information on DCL and VAX OPS5 commands and qualifiers, see the
VMS DCL Concepts Manual, Guide to Using VMS Command Procedures, and the
VMS DCL Dictionary.

2.3 Specifying Files

To define a VAX OPS5 source file, give it a unique name and the file type OPS.
Other components of the file specification can default to the system-supplied and
command-supplied names. The following DCL commands show how to compile,
link, and execute a VAX OPS5 program consisting of two source modules:

$ EDIT CHECKS.OPS
$ EDIT BALANCE.OPS
$ OPS5/CREATE/INDEX=CHECKS CHECKS
$ OPS5/INDEX=CHECKS BALANCE
$ LINK/EXECUTABLE=CHECKS.EXE CHECKS,BALANCE,OPSINTERP/LIBRARY
$ RUN CHECKS

The following example shows how to compile a single source file VAX OPS5
program into an executable image:

$ EDI~ CHECKS.OPS
$ OPS5/EXECUTABLE=CHECKS CHECKS
$ RUN CHECKS

The default file types for the OPS5 command are:

• EXE-for an executable image

• LIS-for a listing file

• OBJ-for an object file

Introduction to Program Development on VMS 2-3

• OPS-for a source file

• OPX-for an index file

The LINK command assumes OBJ as the default file type.

The RUN command assumes EXE to be the executable image default file type.

Table 2-1 summarizes the default values for file specification components.

Table 2-1 : File Specification System Defaults

Component Default Value

Directory User's current default directory

File name Input: None

Output: Same as input file; if no input file is specified, there is no default

Type Input:

Version

OPS-Source file

Input and Output:

OPX-Modular compilation index file
OBJ-Modular compilation object file

Output:

EXE-Executable or shareable image
LIS-Listing file

Input: Highest existing version number

Output: If no existing version, 1; if existing version, highest version
number plus 1

2-4 Introduction to Program Development on VMS

Chapter 3

Compiling and Linking VAX OPS5 Programs

This chapter explains how to use the OPS5 command to compile VAX OPS5
programs.

You compile a VAX OPS5 source file with the DCL command OPS5, which invokes
the VAX OPS5 compiler to process the source code and verify that it contains no
syntax errors or violations of the language rules. If no errors occur, the compiler
generates an object file, an index file and, optionally, an index file and a listing
file.

It is best to split large programs into a number of modules. You can write a
module in VAX OPS5 or another VAX language. With the VAX OPS5 compiler,
you can compile each VAX OPS5 module separately, then link the modules to each
other and to the VAX OPS5 run-time system to produce an executable image.

If you have a single VAX OPS5 source file that you want to compile into an
executable image, you can use the VAX OPS5 compiler's /EXECUTABLE switch
to combine the compile and link steps.

3.1 VAX OPS5 Compiler Size Restrictions

The VAX OPS5 compiler enforces the following restrictions:

• An atom name can have a maximum of 256 characters.

• A working-memory element (WME) can have a maximum of 255 scalar
attributes and one vector attribute.

• A declared vector attribute is assigned to field 256 in a WME.

• A vector can store a maximum of 127 atoms.

• A production can have a maximum of 32 positive condition elements and an
unlimited number of negative condition elements.

• The right-hand side (RHS) of a production can have a maximum of 64 CBIND
actions.

• A declaration, production, or STARTUP statement can have a maximum of
1024 actions, commands, or definitions.

Compiling and Linking VAX OPS5 Programs 3-1

3.2 The OPS5 Command

The syntax for the OPS5 command and its qualifiers is:

$ OPS5[/qualifier ...] file-spec, ...

qualifier
See Table 3-1 later in this ·chapter.

Additional qualifiers that can be used with the VAX OPS5 Development
Environment are described in the VAX OPS5 Development Environment User's
Guide.

file-spec
Names one or more source files to be compiled into either an object file (the
default) or an executable image (for single source file programs only).

If you specify more than one source file, separate the file names with either
a comma(,) or a plus sign(+). The compiler concatenates the files and com­
piles them as one source file. If you enter the OPS5 command without a file
specification, the operating system prompts you for a file:

$ OPS5
File:

The default file type for source files is OPS. You can specify another name
for an object file, a listing file, or an executable image, by including a file
specification with the /OBJECT, /LIST, or /EXECUTABLE qualifier. For example,
the following command generates the listing file CHECKSLIST.LIS and the object
file CHECKS.OBJ:

$ OPS5/LIST=CHECKSLIST CHECKS

The following example compiles the source file module CHECKS.OPS and
generates the object file MYCHECKS.OBJ:

$ OPS5/0BJECT=MYCHECKS CHECKS

The following example compiles the single source file program CHECKS.OPS,
generating the executable image MYCHECKS.EXE and the object file
CHECKS.OBJ:

$ OPS5/EXECUTABLE=MYCHECKS CHECKS

3.3 Using the o/olNCLUDE Compiler Directive

Just as complex programs can be broken down into many· parts, large source files
can be split up into different text files. These separate text files can be included
into one text file at compile time by using the %INCLUDE directive in a source
file.

The %INCLUDE directive makes it easy to create a source file, perhaps of
LITERALIZE declarations, to be used by different modules in a project. Each
module can %INCLUDE the common declaration file. The compiler opens and
reads the declaration file into the module in memory at the point where it finds
the %INCLUDE directive, compiling the result as if it were one file.

The format of the %INCLUDE directive is:

%INCLUDE file-spec

where file-spec is any valid VMS file specification for the text file to be included.

3-2 Compiling and Linking VAX OPS5 Programs

These restrictions apply to the %INCLUDE directive:

• Following an %INCLUDE directive, you can only enter a comment on the
same line. If you put anything else on the line, it will be ignored and you will
get a warning from the compiler.

• The VAX OPS5 compiler includes the specified source file at the point where
the %INCLUDE directive appears and prints the included source text at that
point in the program listing file (if one is specified).

• Files accessed by %INCLUDE may themselves contain %INCLUDE directives.

• If you do not specify a complete file-spec, VAX OPS5 assumes the default
device, default directory, and the file type OPS.

• If you want to use a file-spec that has a semicolon and version number, place
the file-spec between vertical bars, as shown below:

%INCLUDE I CHECKS.DAT;2 I

3.4 Using VAX OPS5 Qualifiers to Control the Compiler and Linker

The default settings for the OPS5 command produce an object file. However, by
specifying the command with qualifiers, you can precisely control the compilation
of a program. For example, you can tell the compiler to generate a listing file by
specifying the /LIST qualifier.

When you include a qualifier in a list of files to be concatenated, the qualifier
affects all the files in the list.

Table 3-1 lists the ways you can control compilation, with the corresponding
qualifiers (defaults are in bold print). The sections following the table explain
how to use the qualifiers.

Table 3-1 : VAX OPS5 Compiler Qualifiers

Qualifier Operation

/CREATE Create a new index file for a modular compilation. This
option is only valid with the /INDEX_FILE qualifier.

/NOCREATE Do not create an index file. Modular compilation is not
required.

/ENTRY Produce an image entry point for this module. The /ENTRY
qualifier only affects the first module of any program.

/NOENTRY Do not produce an image entry point for this module.

/EXECUTABLE[=file-spec] Produce and name the executable image for a program
consisting of only one source module.

/NOEXECUTABLE Do not produce an executable image.

/INDEX_FILE=file-spec Name the index file for a modular compilation. The default
file type is OPX.

/NOINDEX_FILE Do not generate an index file. Modular compilation is not
required.

/LIST[=file-spec] (batch) Generate a listing file. The default file type is LIS. This is
the default in batch mode.

(continued on next page)

Compiling and Linking VAX OPS5 Programs 3-3

Table 3-1 (Cont.): VAX OPS5 Compiler Qualifiers

Qualifier

/NOLIST (interactive)

/MACHINE_ CODE

/NOMACHINE_CODE

/OBJECT[=file-spec]

/NOOBJECT

Operation

Do not generate a listing file. This is the default in interac­
tive mode.

Include machine code in the listing file. This option is only
valid with the /LIST qualifier.

Do not include machine code in the listing file.

Name the object file generated by the compiler.

Do not generate an object file. The compiler only performs
syntax checking.

3.4.1 Creating an Index File for Modular Compilation (/[NO]CREATE)

The /CREATE qualifier creates a new index file for a modular compilation. It
must be used along with the /INDEX_FILE qualifier. The default file name
for the index file produced is INDEXFILE. The default file type is OPX. The
index file is created either in the directory to which you assign the logical name
OPS$USERLIB or the current directory if OPS$USERLIB is not assigned.

This qualifier only affects the first module of a modular compilation. For further
information, see the description of the /INDEX_FILE qualifier in Section 3.4.4.

The following example shows the command used to compile the module
CHECKS.OPS as the first module of a modular compilation. This command
creates the index file BALANCE.OPX:

$ OPSS/CREATE/INDEX_FILE=BALANCE CHECKS

3.4.2 Producing a Program Entry Point (/[NO]ENTRY)

This qualifier affects the entry point for the VAX OPS5 program to be compiled.
It is only valid for the first module in a modular compilation. If you are compiling
any other module, or using /EXECUTABLE, this qualifier has no effect.

A program's entry point is the point in the program's executable image where it
starts executing. By default, the VAX OPS5 compiler places the entry point for
the program in the first module you compile.

If you write a program in another language and want to call a subroutine written
in VAX OPS5, use the VAX OPS5 compiler's /NOENTRY qualifier when compiling
the VAX OPS5 module. This prevents the definition of a program entry point in
the VAX OPS5 module.

Subject to a few restrictions, described in Section 3.7, you can choose any module
as the first module of a modular compilation.

The following example compiles CHECKS.OPS into an object file, prevents the
assignment of a program entry point to it (allowing it to be used as a subroutine
in another program), and does not create an index file.

$ OPSS/NOENTRY CHECKS

This qualifier has no effect on the compilation of the second or subsequent
modules in a multi-module VAX OPS5 program.

3-4 Compiling and Linking VAX OPS5 Programs

3.4.3 Generating and Naming an Executable Image {/[NO]EXECUTABLE)

If your program consists of only one VAX OPS5 source file, you can generate and
name an executable image by using the /EXECUTABLE qualifier.

If you do not supply a file specification, the executable image produced by the
linker defaults to the name of the first VAX OPS5 source file specified in the
command, your default directory, and an EXE file type.

You can use the /EXECUTABLE qualifier to specify a specific device, directory, or
file name for the executable image. For example, suppose you want to compile a
source file named CHECKS.OPS but you want the name of the executable image
to be MYCHECKS.EXE rather than CHECKS.EXE. Specify the /EXECUTABLE
qualifier with the output file name MYCHECKS:

$ OPS5/EXECUTABLE=MYCHECKS CHECKS

3.4.4 Defining an Index File {/[NO]INDEX_FILE)

Use the /INDEX_FILE qualifier as follows:

• Alone, with a file name, to tell the compiler which modular compilation a
module belongs to

• With the /CREATE qualifier, to tell the compiler that the module specified is
the first module of a modular compilation

The following example compiles the module CHECKS.OPS as a module of the
modular compilation defined by the index file BALANCE.OPX:

$ OPS5/INDEX_FILE=BALANCE CHECKS

The next example compiles the module CHECKS.OPS as the first module of the
modular compilation defined in the index file CHECKSLIST.OPX and creates the
index file.

$ OPS5/CREATE/INDEX_FILE=CHECKSLIST CHECKS

For further information on /INDEX_FILE, see Section 3.7.

The compiler assumes /NOINDEX_FILE as the default.

3.4.5 Producing a Listing File {/[NO] LIST)

A listing file is useful for debugging because it provides information about errors
the compiler detects during compilation. In interactive mode, the compiler
produces a listing file only if you specify the /LIST qualifier. The compiler will not
produce a listing file by default. The default file specification consists of the name
of the first VAX OPS5 source file specified in the command, your default directory,
and a LIS file type. For example, the following command causes the compiler to
produce the listing file CHECKS.LIS:

$ OPS5/LIST CHECKS

If you want to give the listing file a different name, use the /LIST qualifier with
a file specification. For example, to compile the program CHECKS.OPS, naming
the listing file CHECKSLIST.LIS, use the following command:

$ OPS5/LIST=CHECKSLIST CHECKS

In batch mode, the compiler produces a listing file by default. To suppress the
listing file, use the /NOLIST qualifier.

Compiling and Linking VAX OPS5 Programs 3-5

3.4.6 Including Machine Code in the Listing File (/[NO]MACHINE_ CODE)

By default, the listing file consists of source code and a compilation summary.
However, the listing file also includes machine code if you specify the /MACHINE_
CODE qualifier with the /LIST qualifier. For example:

$ OPS5/LIST/MACHINE_CODE CHECKS

3.4.7 Naming Object Files (/[NO]OBJECT[=file-spec])

To produce an object file with a different name from your source file, use the
/OBJECT[=file-spec] switch, where file-spec is the new name for the object file.
The following command compiles the source file BALANCE.OPS into the object
file CHECKS.OBJ:

$ OPS5 BALANCE/OBJECT=CHECKS

To stop generation of an object file use the /NOOBJECT switch. The following
command compiles the source file CHECKS.OPS and generates a listing, but no
object file:

$ OPS5/LIST/NOOBJECT CHECKS

3.5 Linking VAX OPSS Programs

When you have successfully compiled all the modules of your program, you will
have to link them together and to the VAX OPS5 run-time system to produce an
executable image.

Two forms of the run-time system are provided with the VAX OPS5 compiler .kit:

• OPSINTERP.OLB-An object library

• OPSINTERP.EXE-A shareable image

If you wish to create a program that can run on systems without the VAX OPS5
run-time system installed, link your program modules to OPSINTERP.OLB. For
example:

$ LINK MYPROG,CHECKS,BALANCE,OPSINTERP/LIBRARY

On the other hand, if your program will only run on systems that have the
run-time system installed, use the LINK command's OPTIONS section to link the
program modules to OPSINTERP.EXE. For example:

$ LINK MYPROG,CHECKS,BALANCE,OPSINTERP/OPTIONS

When VAX OPS5 is installed, the logical OPSINTERP is defined as
OPS$LIBRARY:OPSINTERP.

3-6 Compiling and Linking VAX OPS5 Programs

3.6 · Compiling, Linking, Executing, and Debugging External
Routines

The procedure for compiling an external routine depends on the programming
language in which the routine is written. See the appropriate language user's
guide for instructions on how to compile an external routine. The compilation
produces an object file whose name you can include in the command you use to
link the VAX OPS5 program.

After you have compiled the VAX OPS5 and external routines, link the VAX OPS5
object files with the object files of the external routines to produce an executable
image. For example, where the external routine object file is STOCKSUB.OBJ,
compile the VAX OPS5 modules to object code:

$ OPS5/CREATE/INDEX FILE=STOCKCTRL STOCKINIT
$ OPS5/INDEX_FILE=STOCKCTRL DOSTOCK

Then LINK the VAX OPS5 and STOCKSUB object modules together and to the
appropriate run-time system.

$ LINK STOCKINIT,DOSTOCK,STOCKSUB,OPSINTERP/OPTIONS

The VAX OPS5 compiler compiles the source files STOCKINIT.OPS and
DOSTOCK.OPS. The linker then links the object files generated during com­
pilation with the object file STOCKSUB.OBJ created by another compiler.

If the compiler, or linker, generates errors, correct the errors and recompile, or
relink, the program. Execute the program when it compiles and links without
error. If execution errors occur, debug, recompile, relink and execute the program
again. For information about compiling, linking, executing, and debugging VAX
OPS5 programs, see Chapters 3, 4, and 5.

Use the CALL command at the comman,d interpreter level and the VMS
Debugger to debug external routines. For information about using the debugger,
see Chapter 5 and the VMS Debugger Manual.

3.7 Performing a Modular Compilation

Many programs are too large and complex to be contained in one source file.
These programs are usually broken down into logical sections, each of which
performs a specific task, or group of tasks, within the program.

You can store these sections in multiple source files or modules, which can be
compiled separately. Since the amount of code being compiled is reduced, the
program can be compiled more efficiently. After you have compiled and debugged
all the modules, you can link them to create an executable image.

Modular compilation also makes the debugging process faster because finding
errors in small pieces of code is easier than finding errors in a large program.

Compiling and Linking VAX OPS5 Programs 3-7

There are a few simple rules to follow when performing a modular compilation:

• Declare all attributes, class names and external routines before use, using
LITERAL, LITERALIZE, and EXTERNAL statements. The compiler makes
all declarations made in a module available to all the modules compiled after
it.

• Compile the first module with the /CREATE and /INDEX_FILE qualifiers.

• Compile the subsequent modules with the /INDEX_FILE qualifier, specifying
the same index file name as with the first module.

When you compile the first module of a program, the compiler creates an index
file. The compilation of each subsequent module adds information to the index
file. The index file stores the following information:

• The number of each module

• Declared attribute names

• Declared external-routine names

• Catcher names

• Whether a module contains a STARTUP statement

• Production names

The index file allows the compiler to check for duplication (for example, names
or declarations) and allows modules to use declarations made in previously
compiled modules. Figure 3-1 illustrates the steps needed to perform a modular
compilation.

Use the following command sequence to perform a modular compilation:

$ OPS5 module l/INDEX FILE=filename/CREATE
$ OPS5 module=2/INDEX=FILE=filename

$ OPS5 module n/INDEX FILE=filename
$LINK MODULEl, ... MODULEn,OPSINTERP/OPTIONS

You can specify additional qualifiers in either the OPS5 command (as described in
Section 3.4) or the LINK command (see the VMS Linker Utility Manual).

3-8 Compiling and Linking VAX OPS5 Programs

Figure 3-1: Modular Compilation

INPUT OPERATION

Compile First
Module and
Create an
Index File

Compile
Second
Module

Compile
Nth
Module

Compile
Language
Module (for
example, ADA)

Link All
Modules
Together
and to the
Run-Time
System

OUTPUT

CHECKS.EXE

CHECKS.OPX

Used as
Input to All
Subsequent
OPS5
Module
Compilations

ML0·002247

Compiling and Linking VAX OPS5 Programs 3-9

If the program consists of a large number of modules, it is often useful to save the
object files in a library. The following example shows how:

$ LIBRARY/CREATE MODLIB.OLB
$ OPSS/INDEX_FILE=CHECKS/CREATE CHECKSl
$ LIBRARY MODLIB.OLB CHECKSl.OBJ
$ OPSS/INDEX_FILE=CHECKS CHECKS2
$ LIBRARY MODLIB.OLB CHECKS2.0BJ

$ OPSS/INDEX_FILE=CHECKS CHECKSn
$ LIBRARY MODLIB.OLB CHECKSn.OBJ
$LINK MODLIB.OLB/INCLUDE=(CHECKSn.OBJ), MODLIB/LIB, OPSINTERP/OPTIONS

The /INCLUDE qualifier names the most recently compiled module. This module
references all other modules in the library, causing the linker to include them in
the executable image file.

1. The directory defined as OPS$USERLIB is the directory in which the compiler
places the index file for the modular compilation. The compiler will use the
current directory if OPS$USERLIB is not defined.

2. When you compile the first module, specify the /INDEX_FILE and /CREATE
qualifiers. The /INDEX_FILE qualifier specifies the file name for the index
file. The compiler assigns the file type OPX to the index file. In Figure 3-1,
the command specifies the file name CHECKS.

The /CREATE qualifier causes the compiler to create the index file in
OPS$USERLIB even if a file of that name already exists. The compiler then
places the first module's object file in the default directory or the directory
you specified.

3. When you compile the remaining modules, specify the /INDEX_FILE qualifier.
The /INDEX_FILE qualifier specifies in which index file to place the compi­
lation information. Specify the same index file name when you compile each
module. To update the contents of an index file for a module, you must specify
the name of the file with the /INDEX_FILE qualifier. In Figure 3-1, the file
name CHECKS is specified. Therefore, when you execute the commands, the
compiler references CHECKS.OPX when compiling each module. Each time
you compile a new module, index information for that module is added to the
index file.

If a module contains errors, you can edit and recompile the module. If you
change a declaration in a module, you must recompile that module and all
the modules originally compiled after it in the program. It is usually safest to
recompile the entire program if a declaration changes.

4. When you have successfully compiled all the modules, use the VMS LINK
command to link the VAX OPS5 object files (and external object files, if any)
together into an executable image.

To compile a single source file into an executable image, you should use the
/EXECUTABLE qualifier. For example:

$ OPSS/EXECUTABLE=MYCHECKS CHECKS

This command compiles the source file CHECKS.OPS into the executable
image MYCHECKS.EXE. This can only be done with a program contained in
one source file and thus is not practical for large or complex programs.

3-10 Compiling and Linking VAX OPS5 Programs

3.8 Creating Shareable VAX OPS5 Programs

A shareable image produced by the VMS Linker cannot be directly executed by
the DCL command RUN. A shareable image serves as input to another linking
operation that produces an executable image.

Shareable images are used for:

• Sharing a single physical copy of a set of procedures and data among more
than one application program

• Linking very large applications by breaking down a program into smaller
segments

• Modifying one section of a large program without having to relink the entire
program

3.8.1 Creating a Shareable Image

To create a shareable image, follow the instructions given in the VMS Linker
Utility Manual.

3.8.2 Installing a Shareable Image

You can use the VAX OPS5 language to create large expert systems. If such
a system is frequently used, creating and installing a shareable image for the
system reduces the overall system requirements for main physical memory.

After you have created a shareable image, install the image by following the
procedures outlined in the VMS Install Utility Manual.

3.8.3 Calling a Shareable Image

After a shareable image has been installed, you can call the image as a subroutine
from programs written in other VAX programming languages.

You call a shareable image by specifying its entry point with the call routine
appropriate to the language. For example, suppose you create a shareable image
CHECKSHR.EXE having the entry point CHECKS. The following MACRO
routine CALLCHECKS.MAR calls the shareable image:

.TITLE CALLCHECKS

.EXTERNAL CHECKS

.PSECT

.ENTRY
CALLS

RET

MYPSECT,EXE,NOWRT
DOIT,"M<>
#0,G"CHECKS

.END DOIT

Note general-mode
addressing

To assemble this MACRO routine, follow the procedures given in the VMS DCL
Dictionary under the MACRO command. You can also refer to the VAX MACRO
and Instruction Set Reference Manual.

Compiling and Linking VAX OPS5 Programs 3-11

Link the object module of the assembled MACRO routine with the VAX OPS5
shareable image as follows:

$ LINK CALLCHECKS,SYS$INPUT:/OPTIONS
SYS$LIBRARY:CHECKSHR.EXE/SHAREABLE
lctrvzl

Enter a carriage return after the /OPTIONS qualifier and again after the
/SHAREABLE qualifier. Then, enter Ctrl/Z to indicate the End-of-File.

This command produces the executable image CALLCHECKS.EXE, which calls
the VAX OPS5 shareable image CHECKSHR.EXE. (The procedure for linking
shareable images is explained in the VMS Linker Utility Manual.)

If you do not place a copy of the shareable image in the system library, inform the
image activator where to find the image before you execute the routine that calls
the image. The image activator is a set of VMS system procedures that prepares
an image for execution. To inform the activator where the image is, define a
logical name that includes the device, directory, and file name of the image. For
example, if the shareable image CHECKSHR.EXE resides on the device DBAl in
directory [SMITH.CHECKS], define a logical name as follows:

$ DEFINE CHECKSHR DBAl: [SMITH.CHECKS]CHECKSHR

Now you can execute the image CALLCHECKS.EXE. For information on calling
external programs and routines from a VAX OPS5 program, see the VAX OPS5
Reference Manual.

3-12 Compiling and Linking VAX OPSS Programs

Chapter 4

Executing VAX OPS5 Programs

VAX OPS5 programs are executed under the control of the VAX OPS5 run-time
system, which processes the executable image by executing recognize-act cycles.
This chapter explains how to run an executable image and how to control
program execution by submitting commands interactively to the run-time
system's command interpreter. This chapter also explains how to interrupt
recognize-act cycles to invoke the command interpreter.

4.1 Running Programs

There are two ways to run a VAX OPS5 program:

• Use the DCL command RUN on the executable image. If the file is found,
the operating system passes control to the VAX OPS5 run~time system,
which either starts executing recognize-act cycles or invokes the command
interpreter. If the program contains a startup statement that includes
the VAX OPS5 command RUN, the system immediately starts executing
recognize-act cycles. If there is no startup statement, the system invokes the
command interpreter.

• Use the DCL command RUN to load' and execute a program that calls the
VAX OPS5 program. When the VAX OPS5 program is called, control passes
to the VAX OPS5 run-time system, under the same conditions as above, and
returns to the calling program when the VAX OPS5 routine terminates­
provided the command DISABLE HALT is in the VAX OPS5 STARTUP
statement. If the VAX OPS5 routine does not contain a DISABLE HALT
statement, the routine will return control to the VAX OPS5 run-time system,
but not. to the calling program.

See the VAX OPS5 Reference Manual for more information on calling VAX
OPS5 programs from other languages, and calling routines written in other
languages from VAX OPS5 programs.

4.2 Using the VAX OPS5 Command Interpreter

The VAX OPS5 command interpreter lets you interactively control the execution
of a program by entering VAX OPS5 commands. Use the VAX OPS5 commands
to:

• Set up initial conditions

• Execute recognize-act cycles

• Restart VAX OPS5- programs

• Add statements, productions, and catchers to executable images

Executing VAX OPSS Programs 4-1

• Debug VAX OPS5 programs

• Control input and output

• Call external routines

• Control loops

Section 4.2.3 explains how you can use commands to set up initial conditions;
Section 4.3 explains how to execute recognize-act cycles; Section 4.5 explains how
to restart VAX OPS5 programs; and Section 4.6 explains how to add statements,
productions, and catchers to executable images. Chapters 5 and 6 provide ·
information on how to debug VAX OPS5 programs and control input and output.
See the VAX OPS5 Reference Manual for information about controlling loops and
calling external routines.

4.2.1 Entering VAX OPS5 Commands

When the run-time system is not executing a recognize-act cycle, and the run-time
system's HALT switch is enabled, the system invokes the command interpreter
and di.splays the prompt:

OPS5>

To enter a VAX OPS5 command, type the command, with arguments if appropri­
ate, and then press the Return key. To extend a command over more than one
line, you can either enclose it in parentheses (which you can optionally use for
single-line commands also) or use the continuation character(-).

If you press the Return key without entering a command, the command inter­
preter redisplays the prompt.

An example of a single-line command entered, without parentheses, at the
run-time system prompt is:

OPS5>CS

If you end a line with the continuation character, the command interpreter
prompts you for the rest of the command each time you press the Return key. For
example:

OPSS>MAKE CHECK ANUMBER 102 AAMOUNT 10.06 ACOUNTED NO -
OPS5>ADATE 2 NOV 1988

If you begin a command with a parenthesis, you must make sure you have the
same number of left and right parentheses, as the interpreter will try to match
each left parenthesis with a corresponding right parenthesis before accepting the
command. An example of a command entered with parentheses is:

OPSS>(MAKE CHECK ANUMBER 102 AAMOUNT 10.06 ACOUNTED NO -
_OPS5>ADATE 2 NOV 1988)

If you want to include an extra, unmatched, parenthesis in such a command, you
must enclose it in quote characters, for example, I (I , otherwise the interpreter
will count it as a parenthesis to be matched before it will allow you to end the
command.

To specify arguments, which can be required or optional, enter the arguments
after the command they modify. For example:

OPSS>MAKE CHECK ANUMBER 102 AAMOUNT 10.06 ACOUNTED NO ADATE 2 NOV 1988

4-2 Executing VAX OPSS Programs

The resulting working-memory element looks like this:

10 [NIL] (CHECK ANUMBER 102 AAMOUNT 10.06 ACOUNTED NO ADATE 2 NOV 1988)

The command interpreter does not evaluate arguments. Therefore, command
arguments cannot be variables or function calls.

If you do not specify a required argument, the run-time system displays a
warning message and redisplays the command interpreter prompt. For example:

OPSS>MAKE
?OPSRT-W-NOARGS, No arguments specified
OPSS>

4.2.2 Exiting the Command Interpreter

Use the EXIT command or type Ctrl/Z to exit the command interpreter and
return control to the operating system or the program calling the VAX OPS5
program.

OP SS> EXIT
$

The STARTUP statement in a VAX OPS5 program allows you to decide what
happens when your program ends, or if it fails unexpectedly.

The DISABLE HALT command causes the command interpreter to exit, dropping
you back to the DCL prompt level, or back into the program calling the VAX
OPS5 routine.

The ENABLE HALT command brings you back to the OPS5 prompt when your
program finishes executing recognize-act. cycles.

OPSS>

4.2.3 Setting Up Initial Conditions

You can use VAX OPS5 commands to set up initial conditions, which include
whether the run-time system should display messages, which conflict-resolution
strategy the run-time system is to use, and the initial contents of working mem­
ory. You can set up such conditions by including the commands in a STARTUP
statement or by specifying them in response to the command interpreter prompt.

4.2.3.1 Disabling and Enabling Run-Time Messages

By default, the run-time system prompts for commands and displays informa­
tional, warning, and fatal error messages. You can suppress these messages by
using the DISABLE or ENABLE commands with the keywords WARNING or
HALT respectively.

Specifying DISABLE HALT causes control to be returned to DCL, or a calling
program, when the run-time system stops executing recognize-act cycles. For·
example:

'
OPSS>DISABLE HALT
OP SS> RUN
$

You can enable warning messages again by using the ENABLE command with
the keyword WARNING. For example:

OPSS>ENABLE WARNING

Executing VAX OPS5 Programs 4-3

The VAX OPS5 run-time system (or command interpreter) has ENABLE HALT
set as the default. This means that the VAX OPS5 interpreter command prompt
appears when recognize-act cycles stop executing.

For more information about run-time messages, see Appendix A.

4.2.3.2 Choosing a Conflict-Resolution Strategy

You can choose which of two conflict-resolution strategies you want the run-time
system to use by using the STRATEGY command with the keyword LEX or MEA.
For example, to choose the MEA strategy, type:

OPSS>STRATEGY MEA

To see which strategy is in use, use the STRATEGY command without a keyword.

See the VAX OPS5 Reference Manual for information about conflict resolution and
the conflict-resolution strategies.

4.2.3.3 Initializing Working Memory

The run-time system cannot start executing recognize-act cycles until working
memory contains an element. To create a working-memory element, use the
MAKE command as follows:

OPSS>MAKE START

For more information about creating working-memory elements, see Section 5.1.3.1.

4.2.4 Using VAX OPSS Command Files

You can store a list of VAX OPS5 commands in a file and execute it later by using
the VAX OPS5@ command. For example, the following command opens the file
CHECKS.DAT and causes the command interpreter to execute the commands
stored in that file:

OPS5>@ CHECKS.DAT

If the file you specify with the @ command contains information other than VAX
OPS5 commands, the run-time system displays the following message:

%0PSRT-W-ILLCMD, Invalid corrunand: AAA.AAA

4.3 Executing Recognize-Act Cycles

The run-time system starts executing recognize-act cycles when it executes the
VAX OPS5 command RUN. You can include the RUN command in a STARTUP
statement, or type the command in response to the command interpreter prompt.

If you included the RUN command in a program's STARTUP statement, the
run-time system starts executing recognize-act cycles when you enter the DCL
command RUN. Suppose the VAX OPS5 program named CHECKS.OPS contains
the following STARTUP statement:

(STARTUP
(DISABLE HALT)
(STRATEGY MEA)
(MAKE START)
(RUN))

4-4 Executing VAX OPS5 Programs

The system starts executing recognize-act cycles when you type the following
DCL command:

$ RUN CHECKS

If a program does not contain a STARTUP statement that includes the RUN
command, you can enter the command in response to the command interpreter
prompt as follows:

OPSS>RUN

You can control the number of recognize-act cycles the run-time system executes
by specifying the RUN command with an integer. For example, to execute four
recognize-act cycles, specify:

OPS5> (RUN 4)

4.4 Interrupting Recognize-Act Cycles

You can invoke the command interpreter while a program is executing by:

• Typing Ctrl/C

• Setting a breakpoint for a particular production in the executing program

• Including the HALT action in the right-hand side of a production in the
program

4.4.1 Ctrl/C

If you type Ctrl/C while the run-time system is executing a program, the system
completes the execution of the current recognize-act cycle, displays a message,
and invokes the command interpreter. For example:

$ RUN CHECK

What date do you want to search for? 14 NOV 1988
lctrl!CI

%0PSRT-I-CTRLCNOTED, CTRL/C -- return to command interpreter

OPS5>

NOTE

If you type Ctrl/C during a recognize-act cycle that requires user input,
you must supply the input before the interruption can occur.

4.4.2 Breakpoints

When the run-time system encounters a breakpoint, the system stops executing
recognize-act cycles before executing the production for which the breakpoint is
set, displays a message, and invokes the command interpreter.

%0PSRT-I-PBREAK, PBREAK encountered
OPS5>

You can set a breakpoint to make the system stop at the following points:

• Before a particular production in a program by using the PBREAK command

Executing VAX OPS5 Programs 4-5

• ·When a particular working-memory element is made by using the WBREAK
·command

Refer to Section 5.1.1 for further information on the PBREAK and WBREAK
commands.

4.4.3 HALT Actions

When the run-time system executes a HALT action, the system completes the
current recognize-act cycle, displays the following message, and invokes the
command interpreter.

%0PSRT-I-HALTED, HALT -- right-hand-side action
OPSS>

4.5 Restarting Programs

While debugging a VAX OPS5 program, frequently it is necessary to rerun
the program from the beginning. Instead of exiting to the DCL level and then
rerunning the program, you can use the RESTART command.

For example, the following command restarts the program CHECKS.EXE.

OPSS>RESTART CHECKS.EXE

The RESTART command:

• Removes all elements from working memory and the conflict set

• · Resets the time-tag counter

• Resets the DEFAULT WRITE, DEFAULT ACCEPT, and DEFAULT TRACE
files to NIL

• Closes all files opened with the OPENFILE command

• Resets the recognize-act cycle counter

• Executes the STARTUP statement

4.6 Adding Statements, Productions, and Catchers to Executable
Images

The BUILD command lets you add a STARTUP statement, a production, or a
catcher to a running program that has been paused.

Use the following procedure.

1. Pause the running program.

2. Enter BUILD at the OPS5> prompt. OPS5 should display the _BUILD>
prompt.

3. Enter the information you want to add to the program. Use as many lines as
necessary.

4. Enter ENDBUILD or type Ctrl/Z. OPS5 should display the OPS5> prompt.

5. Enter RESTART to resume execution with the new information in effect.

4-6 Executing VAX OPS5 Programs

For example, TEST.EXE is a program that does not yet have any constructs in it.
The following entries add a STARTUP statement to TEST.EXE.

OPS5>BUILD
_BUILD> (STARTUP (MAKE X))

BUILD> ENDBUILD
OPSS>RESTART

The following entries add a production to TEST.EXE.

OPSS>BUILD
BUILD> (P TEST (<X>) --> (WRITE (CRLF) I Dear Subscriber: I))

=BUILD> lctr11zl
OPSS>RESTART

Now TEST.EXE prints the following message.

Dear Subscriber:

Executing VAX OPS5 Programs 4-7

Chapter 5

Debugging VAX OPS5 Programs

You can use the VAX OPS5 debugging commands to find errors detected by the
compiler and run-time system, and programming errors that you detect yourself.
If a program calls external routines, you can use the VMS Debugger to find errors
in the routines.

This chapter explains how to use VAX OPS5 commands to debug VAX OPS5
programs and briefly describes the VMS Debugger.

5.1 Using VAX OPS5 Debugging Commands

The command interpreter provides commands that perform debugging operations.
Table 5-1 lists these commands with their corresponding operations. Tables 5-2
and 5-3 (later in this section) list the commands for setting trace levels within
the VAX OPS5 command interpreter.

Table 5-1: Debugging Commands

Commands

ADD STATE
RESTO RESTATE
SAVESTATE

AFTER

BACK

BUILD

cs
NEXT

DISABLE
ENABLE

EXCISE

MAKE
MODIFY
REMOVE

MATCHES

PBREAK
WBREAK

Operation

Save and restore the state of working memory and the conflict set

Set the recognize-act counter for a catcher

Back up over recognize-act cycles

Add a statement, production or catcher to a running program that
has been paused.

Display the contents of the conflict set

Change the state of program operation

Disable productions

Modify working memory

Display match information

Use breakpoints

(continued on next page)

Debugging VAX OPS5 Programs 5-1

Table 5-1 (Cont.): Debugging Commands

Commands

PPWM
WM

REPORT

RESTART

RUN

STRATEGY

WATCH

Operation

Display working-memory elements

Use the Performance Measurement and Evaluation package

Rerun a VAX OPS5 program without returning to DCL

Run a VAX OPS5 program or routine

Choose which strategy to use

Display trace information

The following sections explain how to use the commands. Detailed descriptions of
the commands are provided in the VAX OPS5 Reference Manual.

5.1.1 Using Breakpoints

You can set, delete, and list breakpoints for productions by using the PBREAK
command.

You can set, delete, and list breakpoints for working-memory elements by using
the WBREAK command.

When the run-time system encounters a breakpoint, the system finishes exe­
cuting the current recognize-act cycle, displays one of the following messages,
and invokes the command interpreter to allow you to enter other debugging
commands:

%0PSRT-I-PBREAK, PBREAK encountered
OPS5>

or

%0PSRT-I-WBREAK, WBREAK encountered
OPS5>

If a breakpoint is set for a production, the run-time system encounters the
breakpoint before executing that production.

5.1.1.1 Setting and Deleting Breakpoints

To set or delete a breakpoint, specify the PBREAK or WBREAK command with
the name of the production or WME. If you specify the name of a production or
WME that does not have a breakpoint set, the command sets a breakpoint. If you
specify the name of a production or WME that already has a breakpoint set, the
command deletes the breakpoint.

For example, suppose the production FIND-CHECKS does not have a breakpoint
set and the production COUNTED-CHECKS has a breakpoint set. The following
command sets a breakpoint for the production FIND-CHECKS and deletes the
breakpoint from the production COUNTED-CHECKS:

OPS5>PBREAK FIND-CHECKS COUNTED-CHECKS

Similarly, for the working-memory elements CHECK and DATE, CHECK has no
breakpoint set and DATE has a breakpoint set. The following command sets a
breakpoint for CHECK and deletes the breakpoint for DATE:

OPS5>WBREAK CHECK DATE

5-2 Debugging VAX OPS5 Programs

5.1.1.2 . Listing Breakpoints

To see which productions have breakpoints set, use the PBREAK command
without an argument. The following example shows that breakpoints are set for
the productions WHAT-DATE and COUNTED-CHECKS:

OPS5>PBREAK
WHAT-DATE
COUNTED-CHECKS

To see which working-memory elements have breakpoints set, use the WBREAK
command without an argument. The following example shows that breakpoints
are set for the working-memory elements DATE and CHECK:

OPS5>WBREAK
DATE
CHECK

5.1.2 Displaying Working-Memory Elements

During a debugging session, you might 'want to examine the contents of working
memory to make sure it contains correct information. Missing or erroneous
working-memory elements can cause a production to be executed at the wrong
time.

The WM and PPWM commands display the contents of working memory. The
run-time system provides the following information about each working-memory
element:

• The element's time tag

• The name of the production that added the element to working memory

• The element's class name, attributes, and the attributes' values

The run-time system displays this information in the following format:

time-tag [production-name] (class-name attribute-1 value-1
attribute-2 value-2 ...)

When you use the MAKE command to create a working-memory element, the
atom NIL appears in the second field of the display rather than the name of a
production. For example:

1 [NIL] (CHECK ANUMBER 102 AAMOUNT 10.06 ACOUNTED NO ADATE 2 NOV 1988)

5.1.2.1 Displaying the Contents of Working Memory

To display the entire contents of working memory, use either the WM or PPWM
command without an argument. For example:

OPS5>WM
1 [NIL] (CHECK A NUMBER 102 A AMOUNT 10.06 ACOUNTED NO A DATE 02 NOV 1988)
2 [NIL] (CHECK A NUMBER 103 A AMOUNT 22.45 ACOUNTED NO ADATE 14 NOV 1988)
3 [NIL] (CHECK A NUMBER 104 A AMOUNT 56.00 A COUNTED NO ADATE 14 NOV 1988)
4 [NIL] (CHECK A NUMBER 108 A AMOUNT 13.10 A COUNTED NO A DATE 25 NOV 1988)
6 [WHAT-DATE] (COUNT AVALUE 0)
7 [WHAT-DATE] (REPLY ADATE 14 NOV 1988)

Debugging VAX OPS5 Programs 5-3

5.1.2.2 Displaying Specific Working-Memory Elements

To display particular working-memory elements, specify the time tags of those
elements with the WM command. The following example displays the working­
memory elements that have time tags 3 and 4:

OPS5>WM 3 4
3 [NIL] (CHECK ANUMBER 104 AAMOUNT 56.00 ACOUNTED NO ADATE 14 NOV 1988)
4 [NIL] (CHECK ANUMBER 108 AAMOUNT 13.10 ACOUNTED NO ADATE 25 NOV 1988)

You can find out which time tags are assigned to working-memory elements by
setting the run-time system's trace level to 2 or 3. For further information, see
Section 5.1.6.

5.1.2.3 Displaying the Working-Memory Elements of a Class

To display the working-memory elements of a particular class, use the PPWM
command with the name of that class. For example:

OPS5>PPWM CHECK
1 [NIL] (CHECK ANUMBER 102 A AMOUNT 10.06 A COUNTED NO ADATE 02 NOV 1988)
2 [NIL] (CHECK ANUMBER 103 "AMOUNT 22.45 A COUNTED NO ADATE 14 NOV 1988)
3 [NIL] (CHECK A NUMBER 104 A AMOUNT 56.00 "COUNTED NO "DATE 14 NOV 1988)
4 [NIL] (CHECK A NUMBER 108 A AMOUNT 13.10 A COUNTED NO ADATE 25 NOV 1988)

5.1.2.4 Displaying Working-Memory Elements that Match Element Patterns

To display the working-memory elements that match a specific element pattern,
use the PPWM command followed by the pattern you want to match. An element
pattern can be a complete, or partial, specification of a working-memory element.

The following example displays the elements in working memory that match the
partial element pattern A DATE 14 NOV 1988.

OPS5>PPWM ADATE 14 NOV 1988
2 [NIL] (CHECK ANUMBER 103 AAMOUNT 22.45 ACOUNTED NO ADATE 14 NOV 1988)
3 [NIL] (CHECK ANUMBER 104 AAMOUNT 56.00 ACOUNTED NO ADATE 14 NOV 1988)

5.1.3 Modifying Working Memory

If working memory contains incorrect information, the productions in a program
might not be executed as you anticipate. You can modify working memory by:

• Creating elements

• Deleting elements

• Changing the atoms in existing elements

5.1.3.1 Creating Working-Memory Elements

You can create new working-memory elements by using the MAKE command with
a class name. You can optionally specify attributes with values. The following
command creates an element with a class name CHECK:

OPS5>MAKE CHECK ANUMBER 102 AAMOUNT 10.06 ACOUNTED NO ADATE 2 NOV 1988

The element is stored in working memory as follows:

OPS5>WM
1 [NIL] (CHECK ANUMBER 102 "AMOUNT 10.06 ACOUNTED NO ADATE 02 NOV 1988)

NIL is placed in the field that stores the name of the production that created the
element.

5-4 Debugging VAX OPS5 Programs

5.1.3.2 Deleting Elements from Working Memory

The REMOVE command deletes elements from working memory. To delete
specific elements, specify their time tags. The following example deletes the
working-memory elements whose time tags are 3 and 4:

OPS5>REMOVE 3 4

To delete all working-memory elements, specify the command with an asterisk
(*). For example:

OPS5>REMOVE *

5.1.3.3 Changing the Atoms in Working-Memory Elements

To change one or more atoms in a working-memory element, use the MODIFY
command with the time tag of the element whose atoms you want to change and
the attributes and new atoms.

Suppose, for example, working memory contains the following elements:

OPS5>WM
1 [NIL] (CHECK "NUMBER 102 "AMOUNT 10.06 "COUNTED NO "DATE 02 NOV 1988)
2 [NIL] (CHECK "NUMBER 103 "AMOUNT 22.45 "COUNTED NO "DATE 14 NOV 1988)
3 [NIL] (CHECK "NUMBER 104 "AMOUNT 56.00 "COUNTED NO "DATE 14 NOV 1988)
4 [NIL] (CHECK "NUMBER 108 "AMOUNT 13.10 "COUNTED NO "DATE 25 NOV 1988)
6 [WHAT-DATE] (COUNT "VALUE 0)
7 [WHAT-DATE] (REPLY "DATE 14 NOV 1988)

The following command changes the atom for the attribute "COUNTED of the
working-memory element whose time tag is 3:

OPS5>MODIFY 3 "COUNTED YES

The run-time system then rebuilds the element using the new atom and places
the element in working memory with a new time tag:

9 [NIL] (CHECK "NUMBER 104 "AMOUNT 56.00 "COUNTED YES "DATE 14 NOV 1988)

5.1.4 Displaying Conflict Set Information

The conflict set is a list of matched working-memory elements and condition
elements. You can display the contents of the conflict set or the instantiation of
the next production to be executed.

Each member of the conflict set is an instantiation. An instantiation includes a
production name and a list of time tags of the working-memory elements that
satisfy the production's left-hand side. The format the run-time system uses to
display an instantiation is:

production-name time-tag-1 time-tag-2 ...

For example:

FIND-CHECKS 12 3 11

The instantiations in the conflict set indicate which productions can be executed.

Debugging VAX OPS5 Programs 5-5

5.1.4.1 Displaying the Contents of the Conflict Set

The CS command displays the contents of the conflict set. For example:

OPSS>CS
FIND-CHECKS 12 3 11
FIND-CHECKS 12 4 11
FIND-CHECKS 12 5 11
FIND-CHECKS 12 6 11
FIND-CHECKS 12 2 11

5.1.4.2 Displaying the Instantiation of the Next Production To Be Executed

To display the instantiation of the next production the run-time system will
execute, use the NEXT command. For example:

OPSS>NEXT
FIND-CHECKS 12 6 11

This shows that the next production the run-time system will execute is FIND­
CHECKS. The production will be executed with its positive condition elements
matched by the working-memory elements whose time tags are 12, 6, and 11.

5.1.5 Saving and Restoring the State of Working Memory and the Conflict Set

If you are debugging a VAX OPS5 program and you need to stop execution to do
something else, you might want to save the state of working memory and the
conflict set as it exists at that time. By using VAX OPS5 commands you can save
the state to a file and then restore it later.

5.1.5.1 Using SAVESTATE

You can copy the state of working memory and the conflict set to a file by using
the SAVESTATE command. The following command copies the state of working
memory and the conflict set to the file CHECKS.DAT:

OPS5>SAVESTATE CHECKS.DAT

5.1.5.2 Using ADDSTATE

Once you save the state of working memory and the conflict set in a file, you can
add the contents of that file to the current state of working memory and the con­
flict set by using the ADDSTATE command. Suppose you used the SAVESTATE
command to copy the state of_ working memory and the conflict set to the file
CHECKS.DAT. You could use the following command to add the contents of that
file to working memory and the conflict set:

OPS5>ADDSTATE CHECKS.DAT

The ADDSTATE action:

• Adds the working-memory elements in the saved state to current working
memory

• Adds the instantiations arising from the working-memory elements in the
saved state to the current conflict set

5-6 Debugging VAX OPS5 Programs

5.1.5.3 Using RESTORESTATE

The RESTORESTATE command clears and restores working memory and the
conflict set to the state recorded in a file produced by the SAVESTATE com­
mand. Suppose you used the SAVESTATE command to copy the state of working
memory and the conflict set to the file CHECKS.DAT. The following command
restores working memory and the conflict set to the state recorded in the file
CHECKS.DAT:

OPSS>RESTORESTATE CHECKS.DAT

The RESTORESTATE action:

• Clears current working memory

• Clears the current conflict set

• Restores working memory from the saved state

• Restores the conflict set from the saved state

NOTE

The state of external user-supplied routines is not saved by the
SAVESTATE command and thus cannot be restored with the
ADDSTATE or RESTORESTATE command.

5.1.6 Displaying Trace Information

The VAX OPS5 run-time system displays trace information while executing a
program. Trace information can be enabled for rules, working memory (WM), the
conflict set (CS), and production memory (PM).

The amount of trace information the system displays depends on the current
trace level. The integers 0 to 4 represent the five trace levels (see Tables 5-2 and
5-3); trace level 0 is the default.

Table 5-2: Trace Levels

Level Effect

0 Disables all tracing

1 Enables rule tracing

2 Enables rule and WM tracing

3 Enables rule, WM, and CS tracing

4 Enables rule, WM, CS, and PM tracing

Table 5-3: Trace Keywords

Level Effect

Enables rule, CS, PM, and WM tracing ALL

cs
PM

Enables tracing of instantiations into and out of the conflict set

Enables tracing of productions into and out of production memory

(continued on next page)

Debugging VAX OPS5 Programs 5-7

Table 5-3 (Cont.): Trace Keywords

Level

RULE
WM

NO ALL

NOCS
NOPM
NO RULE
NOWM

Effect

Enables tracing of firing rules

Enables tracing of working memory elements
into and out of working memory

Disables all tracing

Disables conflict set tracing

Disables production memory tracing

Disables rule tracing

Disables working memory tracing

5.1.6.1 Setting the Trace Level

To set the trace level, specify the WATCH command with an integer in the range
0 to 4, or with a trace keyword (or a list of keywords). For example, if you want
the system to display as much trace information as possible, set the trace level to
4 or ALL.

OPSS>WATCH 4

or

OPSS>WATCH ALL

5.1.6.2 Displaying the Current Trace Level

To display the current trace level, use the WATCH command without an argu­
ment. The following example shows the current trace level is 2:

OP SS> WATCH
RULE WM

5.1.6.3 Trace Level 1-RULE

At trace level 1, the run-time system displays a line of text, which includes the
following information, each time the system executes a production:

• The number of productions executed

• The name of the production executed

• The time tags of the working-memory elements that matched the production's
condition elements

The run-time system displays this information in the following format:

number: production-name time-tag-1 time-tag-2 ...

In the following example, trace level 1 output is shown in bold print:

OPS5>RUN
1: WHAT-DATE 10
What date do you want to search for?

Enter the day, the first three letters of the month, and the year.
For example -- 14 NOV 1988

Type STOP to halt the program.

Date>>>2 NOV 1988
2: FIND-CHECKS 12 8 11

5-8 Debugging VAX OPS5 Programs

Found check number 101 for $ 40.30 dated 2 NOV 1988
3: FIND-CHECKS 12 l 15

5.1.6.4 Trace Level 2-RULE and WM

When the trace level is 2, the run-time system displays the same information as
it displays for trace level 1 plus the elements added to and deleted from working
memory. The system displays the following information for each element:

• The element's time tag

• The name of the production that added or deleted the element

• The element's attributes and the attribute values

The system displays this information in the following format:

time-tag [production-name] (class-name
attribute-1 value-1 attribute-2 value-2 ...)

If an element was added to working memory, the time tag is preceded by the
symbol =>WM:. If an element was deleted from working memory, the time tag is
preceded by the symbol <=WM:.

In the following example, trace level 2 output is shown in bold print:

OPSS>WATCH 2
OPSS>RUN
l: WHAT-DATE 10
What date do you want to search for?

Enter the day, the first three letters of the month, and the year.
For example -- 14 NOV 1988

Type STOP to halt the program.

Date>>>
=>WM: 11 [WHAT-DATE] (COUNT AVALOE O) 2 ~ov 1988
=>WM: 12 [WHAT-DATE] (REPLY ADATE 2 NOV 1988)
<=WM: 10 [NIL] (START)
2: FIND-CHECKS 12 8 11

When all WMEs are deleted, for example, in a RESTORESTATE action (or in a
REMOVE* action), the system displays:

<=WM: ** All WMEs Removed **

5.1.6.5 Trace Level 3-RULE, WM and CS

When the trace level is 3, the run-time system displays the same information as
trace level 2 plus the instantiations added to and deleted from the conflict set.
The system displays the following information for an instantiation:

• The name of the production for which the instantiation was added or deleted

• The time tags of the working-memory elements that match condition elements
in the production's left-hand side

The system displays this information in the following format:

production-name time-tag-1 time-tag-2 ...

Debugging VAX OPS5 Programs 5-9

If an instantiation was added to the conflict set, the production name is preceded
by the symbol =>CS:. If an instantiation was deleted from the conflict set, the
production name is preceded by the symbol <=CS:.

In the following example, trace level 3 output is shown in bold print:

OPSS>WATCH 3
OP SS> RUN
1: WHAT-DATE 10
What date do you want to search for?

Enter the day, the first three letters of the month, and the year.
For example -- 14 NOV 1988

Type STOP to halt the program.

Date>>>
=>WM: 11 [WHAT-DATE] (COUNT AVALUE 0)2 NOV 1988
=>WM: 12 [WHAT-DATE] (REPLY ADATE 2 NOV 1988)
=>CS: FIND-CHECKS 12 1 11
=>CS: FIND-CHECKS 12 8 11
<=WM: 10 [NIL] (START)
2: FIND-CHECKS 12 8 11

When all conflict set elements are deleted, the system displays:

<=CS: ** All CS Entries Removed **

5.1.6.6 Trace Level 4-RULE, WM, CS and PM

When the trace level is 4, the run-time system displays the same information as
trace level 3 plus the productions added to and deleted from production memory.
The system displays the following information for a production:

• The name of the production added to (using BUILD) or deleted from (using
EXCISE) production memory.

The system displays this information in the following format:

symbol production-name

If a production was added to production memory, the production name is preceded
by the symbol =>PM:. If a production was deleted from production memory, the
production name is preceded by the symbol <=PM:.

In the following example, trace level 4 output is shown in bold print:

OPSS>WATCH 4
OPSS>EXCISE FIND-CHECKS
<=PM: FIND-CHECKS

5.1. 7 Displaying Match Information

You can display match information for specific productions by using the
MATCHES command. By examining match information, you can detect whether
condition elements are being matched correctly by working-memory elements.

Match information includes the time tags of working-memory elements that
match condition elements in the productions you specify. First, the command
displays the name of the production. Then the command lists the time tags for
the working-memory elements that match the first condition element, the second
condition element, and so on. The format of the match output follows:

5-10 Debugging VAX OPS5 Programs

>>> production-name <<<

*** matches for n ***
time-tag

The n in this format indicates the position of the condition element in the
production. For example, if the condition element is the first element in a
production, n is 1.

More than one condition element can match the same working-memory element.
Therefore, the MATCHES command also displays the time tags of the working­
memory elements that match more than one condition element. The following
format displays the time tags of working-memory elements that match two
condition elements simultaneously:

>>> production-name <<<

*** matches for n m ***
time-tag

The n and m in this output represent the two condition elements that match the
same working-memory elements.

The format for a production that contains three condition elements might look
like the following:

>>> production-name <<<

*** matches for 1 ***
time-tag

*** matches for 2 ***
time-tag

*** matches for 1 2 ***
time-tag time-tag

*** matches for 3 ***
time-tag

*** matches for 1 2 3 ***
time-tag time-tag time-tag

Suppose working memory contains the following elements:

OPS5>WM
1 [NIL] (CHECK "'NUMBER 102 "'AMOUNT 10.06 "'COUNTED NO "'DATE 2 NOV 1988)
2 [NIL] (CHECK "'NUMBER 103 "'AMOUNT 22.45 "'COUNTED NO "'DATE 14 NOV 1988)
3 [NIL] (CHECK "'NUMBER 104 "'AMOUNT 56. o.o "'COUNTED NO "'DATE 14 NOV 1988)
4 [NIL] (CHECK "'NUMBER 108 "'AMOUNT 13.10 "'COUNTED NO "'DATE 25 NOV 1988)
5 [WHAT-DATE] (COUNT "'VALUE 0)
6 [WHAT-DATE] (REPLY "'DATE 14 NOV 1988)

Debugging VAX OPSS Programs 5-11

Look at this production:

(P FIND-CHECKS
(REPLY ADATE { <DAY> <> STOP } <MONTH> <YEAR>)
{ <CHECK> (CHECK ANUMBER <NUMBER> AAMOUNT <AMOUN~>

ACOUNTED NO ADATE <DAY> <MONTH> <YEAR>)
{ <COUNTER> (COUNT AVALUE <VALUE>) }

-->
(WRITE (CRLF) (CRLF) !Found check number! <NUMBER> lfor $1

<AMOUNT> !dated! (SUBSTR 1 DATE INF))
(MODIFY <CHECK> ACOUNTED YES)
(MODIFY <COUNTER> AVALUE (COMPUTE 1 +<VALUE>)))

The following command displays the matches for this production:

OPS5>(MATCHES FIND-CHECKS)
>>> FIND-CHECKS <<<
*** matches for 1 ***
6
*** matches for 2 ***
1
2
3
4
*** matches for 1 2 ***
6 2
6 3
*** matches for 3 ***
5
*** matches for 1 2 3 ***
6 2 5
6 3 5

The output shows that the working-memory element with time tag 6 matches
the first condition element and the working-memory elements with time tags 1,
2, 3, and 4 match the second condition element. The working-memory element
with time tag 6 matches the first condition element while the working-memory
elements with time tags 2 and 3 match the second condition element. The
element with time tag 5 matches the third condition element. The working­
memory element combinations with time tags of 6, 3, and 5, and 6, 2, and 5
together, both satisfy the first, second, and third condition elements.

5.1.8 Backing Up over Recognize-Act Cycles

You can restore and inspect a previous state of working memory and the conflict
set by using the BACK command to back up over a specified number of recognize­
act cycles. Specify the command with an integer, which indicates the number of
cycles the system is to back up.

By default, the BACK command is disabled. You must enable it, using the
ENABLE command with the keyword BACK, before you use it. For example:

OPS5>(ENABLE BACK)

If you specify the following command, the run-time system executes five
recognize-act cycles and then displays the command interpreter prompt:

OPS5>(RUN 5)
1: WHAT-DATE 10
What date do you want to search for?

Enter the day, the first three letters of the month, and the year.
For example -- 14 NOV 1988

Type STOP to halt the program.

5-12 Debugging VAX OPS5 Programs

Date>>>14 NOV 1988
2: FIND-CHECKS 12 6 11

Found check number 107 for $ 16.15 dated 14 NOV 1988
3: FIND-CHECKS 12 5 15

Found check number 106 for $ 250.00 dated 14 NOV 1988
4: FIND-CHECKS 12 4 19

Found check number 105 for $ 27.25 dated 14 NOV 1988
5: FIND-CHECKS 12 3 23

Found check number 104 for $ 56.00 dated 14 NOV 1988
%0PSRT-I-PAUSED, Pause

OPS5>

The run-time system backs up two cycles if you specify:

OPS5>(BACK 2)

If you use the RUN command to execute another recognize-act cycle, you can see
how the run-time system backed up two eycles.

OPS5> (RUN 1)
4: FIND-CHECKS 12 4 19

Found check number 105 for $ 27.25 dated 14 NOV 1988

The maximum number of cycles that can be backed up is 64.

NOTE

The BACK command restores only working-memory elements that are
created, deleted, or modified. The command does not reverse operations
such as input and output operations and does not call external routines.

5.1.9 Disabling Productions

When debugging a VAX OPS5 program, you might want to disable productions
that appear to be causing errors. To disable productions, use the EXCISE
command. The command disables a production by deleting all instantiations
for that production from the conflict set. The following example disables the
productions FIND-CHECKS and COUNTED-CHECKS:

OPS5>(EXCISE FIND-CHECKS COUNTED-CHECKS)

NOTE

After you have disabled a production, the run-time system cannot place
an instantiation of that production back into the conflict set.

5.1.10 Using the Performance Measurement and Evaluation Package

VAX OPS5 provides a Performance Measurement and Evaluation (PME) package,
which you can use to collect data to monitor a program's execution. The package
uses the data to create two reports: a timing CPU report and a cause report.
The timing CPU report shows where a program is spending most of its time and
includes the following information for each production:

• The number of times the production was executed

• The amount of CPU time (in 10-millisecond ticks) used to execute the
left-hand side of the production

Debugging VAX OPS5 Programs 5-13

• The amount of CPU time (in 10-millisecond ticks) used to execute the
right-hand side of the production

The timing CPU report shows where a program is spending most of its time.

The cause report lists the name of each production executed and the name of the
production that caused it to be executed. A production causes another production
to be executed if it creates working-memory elements that satisfy the other
production's left-hand side. For example, if the production WHAT-DATE created
working-memory elements that satisfied the left-hand side of the production
FIND-CHECKS, the cause report lists the production names as follows:

PRODUCTION NAME

FIND-CHECKS

EFFECTING PRODUCTION NAME

WHAT-DATE

The information the cause report provides lets you trace back through a program's
execution. For example, while you are debugging a VAX OPS5 program, you
might find that a particular production is being executed when it should not be.
You can find out which production is creating working-memory elements that
satisfy that production's left-hand side by referring to the cause report.

To enable the PME package, use the ENABLE command with the keyword
TIMING. For example:

OPSS>(ENABLE TIMING)

Use the DISABLE command with the keyword TIMING to stop collecting
performance data.

To create the reports, use the REPORT command with the keyword TIMING.

OPSS>(REPORT TIMING)

The timing CPU report is placed in the file TIMINGCPU.TXT and the cause
report is placed in the file TIMINGCAU.TXT.

The following example shows the format of the reports:

Timing CPU report on 4-Apr-1988 15:08:14.00

PRODUCTION NAME # FIRINGS LHS TIME

WHAT-DATE
FIND-CHECKS
COUNTED-CHECKS
STOP-COUNT

Cause report on

PRODUCTION NAME

FIND-CHECKS
COUNTED-CHECKS
BUS-STOP

5.2 VMS Debugger

3 8
15 34
3 10
1 5

4-Apr-1988 15:08:14.00

EFFECTING PRODUCTION NAME

WHAT-DATE
FIND-CHECKS
COUNTED-CHECKS

RHS TIME

24
72
18
11

If a VAX OPS5 program calls routines written in other VMS programming
languages, you can use the VMS Debugger to debug the routines. The debugger
lets you control the execution of the routine to monitor locations, change the
contents of locations, check the sequence of program control, and locate and
correct errors as they occur.

5-14 Debugging VAX OPS5 Programs

The VMS Debugger is interactive. The debugger also understands a variety of
languages, such as VAX C, VAX FORTRAN and VAX PIA, letting you change
from one language to another during a debugging session.

With a module of external routines called BALANCE.PAS, you can invoke the
VMS Debugger by compiling the VAX Pascal module with the DEBUG qualifier
selected as follows:

$ PASCAL/DEBUG BALANCE
$ OPS5 CHECKS

You then link and run the modules in one of two ways. One way is:

$ LINK/EXE=MONEY/DEBUG CHECKS,BALANCE,OPSINTERP/OPTIONS
$ RUN MONEY
DBG>

The other way is:

$ LINK/EXE=MONEY CHECKS,BALANCE,OPSINTERP/OPTIONS
$ RUN/DEBUG MONEY
DBG>

For information about how to use the VMS Debugger, see the VMS Debugger
Reference Manual.

Debugging VAX OPS5 Programs 5-15

Chapter 6

Controlling Input and Output

You can use the VAX OPS5 command interpreter to control where a VAX OPS5
program reads input and sends output. This chapter explains how to use the
command interpreter to:

• Open files

• Set the default input source and output destination

• Close files

Detailed descriptions of the commands mentioned in this chapter are provided in
the VAX OPS5 Reference Manual.

6.1 Opening Files

To open a file for input or output, use the OPENFILE command. Specify the
command with a file identifier, a file specification, and the keyword IN, OUT, or
APPEND, which indicates whether you are opening the file for reading or writing.
The command opens the file and associates the file identifier with the file. For
example, the following command opens the file CHECKS.DAT for reading and
associates the file identifier CHECKS! with that file:

OPSS>OPENFILE CHECKSI CHECKS.DAT IN

To send output to the file CHECKS.LOG, open the file with the following
command:

OPSS>OPENFILE CHECKSO CHECKS.LOG OUT

To open CHECKS.LOG for output and add data to the end of the file, open the
file with the following command:

OPSS>OPENFILE CHECKSO CHECKS.LOG APPEND

NOTE

The comment character for VAX OPS5 is a semicolon(;). Therefore, if
the VMS file specification you give includes a semicolon(;), enclose the
specification within a pair of vertical bars (I I). For example:

OPSS>OPENFILE CHECKSO I CHECKS.LOG;S I IN

Once a file is open and associated with a file identifier, you can use that file for
input or output operations by specifying the file identifier with the following
actions, functions, and commands:

• ACCEPT function (input)

• ACCEPTLINE function (input)

Controlling Input and Output 6-1

• CLOSEFILE action (input and output)

• CLOSEFILE command (input and output)

• DEFAULT action (input and output)

• DEFAULT command (input and output)

• WRITE action (output)

The VAX OPS5 Reference Manual explains how to use the ACCEPT and
ACCEPTLINE functions and the WRITE action to perform input and output
operations.

6.2 Setting the Default Input Source and Output Destination

Use the DEFAULT command to set the default source for input operations and
the destination for output operations. The argument values you specify with the
command determine the source or destination.

By default, input comes from SYS$INPUT. To set the source to a file, specify the
DEFAULT command with the file identifier of an open input file and the keyword
ACCEPT. Suppose CHECKS! is the file identifier for an open input file. The
following example sets that input file to be the default source for input:

OPSS>DEFAULT CHECKSI ACCEPT

Once the default for input is set to a file, all input required by the ACCEPT and
ACCEPTLINE functions is taken from that file, unless the ACCEPT command
specifies an alternative source of input. To set the default back to the original
value, specify the symbol NIL with the keyword ACCEPT.

OPSS>DEFAULT NIL ACCEPT

The terminal is also the default destination for output. To set the destination to a
file, specify the DEFAULT command with the file identifier of an open output file
and the keyword TRACE or WRITE. The keyword TRACE sets the destination for
trace output (see Section 5.1.6) and the keyword WRITE sets the destination for
the WRITE action. Suppose CHECKSO is the file identifier for an open output
file. The following example sets that output file to be the default destination for
trace output:

OPSS>DEFAULT CHECKSO TRACE

Once the destination for trace output has been set to a file, all trace output
produced by the run-time system is sent to that file. Likewise, if you substitute
the keyword WRITE for TRACE, all output produced by the WRITE action is sent
to that file.

To set the DEFAULT destination back to the terminal, specify the symbol NIL
with the appropriate keyword. For example:

OPSS>DEFAULT NIL TRACE

6.3 Closing Files

To close files, specify the CLOSEFILE command with the file identifiers of
the files you want to close. This command dissociates the file identifiers from
the files. For example, to close files whose file identifiers are CHECKS! and
CHECKSO, specify the following:

6-2 Controlling Input and Output

OPS5>(CLOSEFILE CHECKSI CHECKSO)

You no longer can use those identifiers with other actions, functions, or commands
to perform input and output operations. To use the files again, you must reopen
them.

Controllfng Input and Output 6-3

Appendix A

Diagnostic Messages

This appendix lists and explains all the diagnostic messages produced by the VAX
OPS5 compiler and run-time system. Each message appears here in the same
form as on the display terminal or hard-copy terminal listing.

Some messages describe error conditions that you cannot resolve. When you
receive a message of this type, you should submit a Software Performance Report
(SPR) to Digital. An SPR is a form that customers who have warranties or who
have support services can use to report faults in the software and suggest product
improvements.

The following sections explain the order in which the messages are listed,
describe the message formats, and explain how to control message display.

A.1 Message Order

The messages are arranged in alphabetical order. This appendix uses two
conventions to alphabetize messages that contain special characters and general
symbols that refer to parts of programs and commands.

The first convention deals with messages that contain general symbols, which
appear in various messages and stand for specific names or values· that are copied
directly from programs and commands. They are not used for alphabetizing.
These symbols are:

Symbol

AAAAAA

BBBBBB

Description

A symbol the VAX OPS5 compiler or run-time system copies into
messages from the program you are compiling or executing

Same as above

DEV:FILNAM.TYP A file specification the DCL command line interpreter copies into
messages from a command

dd-mmm-yyyy A date (day, month, year) the VAX OPS5 compiler includes in mes­
sages

hh:mm:ss

n

s.ss

A time (hour, minutes, seconds) the VAX OPS5 compiler includes in
messages

An integer the VAX OPS5 compiler or run-time system includes in
messages

A unit of time (seconds) the VAX OPS5 compiler includes in messages

Diagnostic Messages A-1

The second convention is that the first digit or letter in the message is used for
alphabetizing. General symbols and special characters are ignored. For example,
the following message is alphabetized under the letter o:

%OPSCOMP-E-NOOPS5, No OPSS files specified

A.2 Message Format

VAX OPS5 diagnostic messages appear in the following format:

%facility-l-ident, text

The message text is prefixed with the following:

• The name of the facility that is reporting the error. This can be OPSCOMP
(compiler), OPSRT (run-time system) or LICENSE (License Management
Utility). A percent sign(%) prefixes the facility.

• A severity level code (1) that indicates the severity of the message (see
Table A-1)

• The message identification, which is usually an abbreviation of the message
text

• Message text that briefly describes the condition that caused the message to
be displayed

Table A-1 : Message Severity Levels

Code Level Effect

I Information If the message is displayed by the compiler, execution continues.
The condition might affect execution at a later time and might
require future action.

If the message is displayed by the run-time system, the message
means program execution stopped.

W Warning Execution continues. A condition exists that might cause errors in
execution. Corrective action might be necessary.

E Error Execution might terminate. An error exists that might cause other
errors during execution. Corrective action is necessary.

F Fatal/Severe Execution terminates. A serious error exists. You must enter
another command to continue processing.

When the compiler generates the following syntax error message, the listing file
includes another message that identifies the compiler's recovery action.

%OPSCOMP-E-SYNTAX_ERROR, One of the following symbols was
expected: AAAAAA AAAAAA ...

The format of the syntax recovery messages follows:

;*** text ***

A-2 . Diagnostic Messages

A.3 Controlling Message Display

By default, the operating system displays four message fields: facility, severity,
identification, and text. You can control which fields of a message the system is
to display by specifying the DCL command SET MESSAGE with the appropriate
qualifiers. For example, if you want to include only message text, specify the
following command:

$ SET MESSAGE/NOFACILITY/NOSEVERITY/NOIDENTIFICATION

A message display now looks like the following:

No OPS5 files specified

To reset the message display to include the facility, severity, and identification
fields, specify the SET MESSAGE command with the positive forms of the
qualifiers.

$ SET MESSAGE/FACILITY/SEVERITY/IDENTIFICATION

For more information about the SET MESSAGE command, see the VMS DCL
Dictionary.

You can also control whether the run-time system displays messages by using
the VAX OPS5 commands DISABLE and ENABLE. Specifying these commands
with the keyword HALT controls run-time information messages. Specifying the
commands with the keyword' WARNING controls run-time messages produced for
warnings and fatal errors. See Chapter 4 for more information. about disabling
and enabling VAX OPS5 run-time system messages.

A.4 List of VAX OPS5 Messages

;*** '~'inserted before symbol ***

Explanation: The compiler recovered from a syntax error by inserting
the symbol AAAAAA before an erroneous symbol. This message appears
only in a listing file and is associated with a previous syntax error
message.

Your Response: The message is informational.

%0PSCOMP-E-BADBUILD, Attempted to BUILD AAAAAA construct

Explanation: Your program specified a BUILD action for one of
the following declarations: EXTERNAL, LITERAL, LITERALIZE,
VECTOR-ATTRIBUTE.

Your Response: Edit your program to remove or correct this invalid
action and try again.

%0PSCOMP-E-BUFFOFLOW, Buffer overflow-source line too long. Line
truncated

Explanation: A single line of source code exceeded 256 bytes, which
is the maximum amount allowed for the compiler's input buffer. An
overflow occurred.

Your Response: Break the line into smaller multiple lines, each less
than 256 bytes.

Diagnostic Messages A-3

%0PSCOMP-E-EXMEM, Exceeded memory allocation for BUILD action

Explanation: An attempt was made to build a rule, catcher, or startup
statement so complex that it exceeded the 64K byte capacity of the
compiler's internal object code buffer.

Your Response: Edit the program to simplify the production causing
this error.

%0PSCOMP-E-INC_NONAME, No file name given. %INCLUDE ignored

Explanation: You used %INCLUDE without specifying a file.

Your Response: %INCLUDE must be followed by a file name.

%0PSCOMP-E-LOADINDEX, Unable to load index file

Explanation: 1. The /INDEXFILE qualifier was specified in the
command without the /CREATE qualifier, and the specified index file
does not exist.

2. The directory in which the index file and object module library for a
modular compilation were to be placed is not defined correctly.

Your Response: 1. Create the index file by specifying the /INDEXFILE
qualifier and the /CREATE qualifier in the command.

2. Define a directory to the logical name OPS$USERLIB.

%0PSCOMP-E-NOOPS5, No OPS5 source files specified

Explanation: A required VAX OPS5 source file was not specified in the
command.

Your Response: Correct the command by specifying a VAX OPS5
source file.

%0PSCOMP-E-OPENIN, Unable to open DEV:FILNAM.TYP for input

Explanation: The input file DEV:FILNAM.TYP was not found.

Your Response: Correct the command by referring to an existing file or
proper device.

%0PSCOMP-E-OPENINDEXIN, Unable to open file DEV:FILNAM.TYP for
input

A-4 Diagnostic Messages

Explanation: 1. The /INDEX_FILE qualifier was specified in the
command without a file name.

2. The directory in which the index file and object module library for a
modular compilation were to be placed was not defined correctly.

Your Response: 1. Specify the /INDEX_FILE qualifier with a file
name.

2. Check that the logical name OPS$USERLIB is defined to be the
directory containing the modular compilation index file.

%0PSCOMP-E-OPENINDEXOUT, Unable to open file DEV:FILNAM.TYP
for output

Explanation: 1. The /INDEX_FILE qualifier was specified in the
command without a file name.

2. The directory in which the index file and object module library for a
modular compilation were to be placed was not defined correctly.

Your Response: 1. Specify the /INDEX_FILE qualifier with a file
name.

2. Check that the logical name OPS$USERLIB is defined to be the
directory containing the modular compilation index file.

%0PSCOMP-E-PREMATURE_EOF, Premature end of file

Explanation: The compiler expected additional input.

Your Response: Check the source file for a missing closing parenthesis
or missing code.

%0PSCOMP-E-SYNTAX_ERROR, One of the following symbols was
expected: AAAAAA AAAAAA •••

Explanation: The compiler identified an incorrect symbol-syntax
error-in the input file. The values AAAAAA are symbols that can
replace the incorrect symbol. In a listing file, this message is usually
followed with another message that identifies the compiler's recovery
action.

Your Response: Check for a typing error, replace the incorrect symbol,
and recompile the program.

%0PSCOMP-E-UNRECOVERABLE, Unrecoverable syntax error

Explanation: The compiler could not recover from a syntax error. This
message is always preceded by the syntax error message.

Your Response: Check the source file for a typing error, replace the
incorrect symbol, and recompile the program.

%0PSCOMP-F-DIRECTORY, Insufficient resources available or error in
directory ·

Explanation: 1. You exceeded your disk quota.

2. Not enough room was available on the specified device to create the
output file.

3. The default directory was set to a directory that could not be written
to.

Your Response: 1. Use the DCL command PURGE to create additional
disk space or ask the system manager to increase your disk quota.

2. Enlarge storage space by deleting unnecessary files from the output
volume and transferring them to a backup volume. Use another volume
with more space or use a larger volume-for example, from RX02
diskette to RL02.

3. Set the default directory to a directory that can be written to or
change the default directory's protection.

Diagnostic Messages A-5

%0PSCOMP-F-FATAL_ERROR, Fatal error-compilation aborted

Explanation: An unrecoverable error occurred. This message is always
preceded by a message that gives the reason for the abort.

Your Response: Refer to the· message that preceded this message and
take the appropriate corrective action.

%0PSC~MP-F-INCOMPAT, OPS5 compiler not compatible with VMS
version

Explanation: The version of the VMS operating system was not recent
enough.

Your Response: Upgrade the VMS operating system to a more recent
version, reinstall the VAX OPS5 compiler, and try again.

%0PSCOMP-F-LIZELIM, Maximum number of unique literalize entries
exceeded

Explanation: The VAX OPS5 compiler's internal capacity for literalize
entries was exceeded. The current limit on the number of literalize
entries you can declare in a single program is 2048.

Your Response: Edit the source file to reflect the proper limit.

%0PSCOMP-F-LIZENOADD, Maximum number of literalize entries
exceeded-AAAAAA not added

Explanation: The VAX OPS5 compiler could not declare the literalize
entry AAAAAA because too many literalize entries were declared for the
program. The current limit on the number of literalize entries you can
declare in a single program is 2048.

Your Response: Edit the source file to reflect the proper limit.

%0PSCOMP-F-NOVIRMEM, Insufficient memory

Explanation: The compiler exhausted virtual memory.

Your Response: Ask the system manager to check that your pro­
cess quota PGFLQUOTA and the value of the SYSGEN parameter
VIRTUALPAGECNT are large enough.

%0PSCOMP-F-PUNT, Internal inconsistency-AAAAAA

Explanation: The compiler detected an internal inconsistency.

Your Response: Submit an SPR to Digital, specifying AAAAAA
from the message. Include with the SPR a program listing and a
machine-readable source program, if possible.

%0PSCOMP-F-PUNTADDANY, Internal inconsistency-ADD_ANY_TEST

Explanation: The compiler detected an internal inconsistency.

Your Response: Submit an SPR to Digital. Include with the SPR a
program listing and a machine-readable source program, if possible.

%0PSCOMP-F-PUNTLIZE, Internal inconsistency-ADD_TO_E_CLASS

Explanation: The compiler detected an internal inconsistency.

A-6 Diagnostic Messages

Your Response: Submit an SPR to Digital. Include with the SPR a
program listing and a machine-readable source program, if possible.

%0PSCOMP-F-PUNTOPCODESYN, Internal inconsistency-OPCODESYN

Explanation: The compiler detected an internal inconsistency.

Your Response: Submit an SPR to Digital. Include with the SPR a
program listing and a machine-readable source program, if possible .

.. ,.

%0PSCOMP-F-PUNTOPERANDS, Internal inconsistency-operand stack
overflow

Explanation: The compiler detected an internal inconsistency.

Your Response: Submit an SPR to Digital. Include with the SPR a
program listing and a machine-readable source program, if possible.

%0PSCOMP-F-PUNTOPERATORS, Internal inconsistency-operator
stack overflow

Explanation: The compiler detected an internal inconsistency.

Your Response: Submit an SPR to Digital. Include with the SPR a
program listing and a machine-readable source program, if possible.

%0PSCOMP-F-PUNTPRSSP, Internal inconsistency-parse stack over­
flow

Explanation: The compiler detected an internal inconsistency.

Your Response: Submit an SPR to Digital. Include with the SPR a
program listing and a machine-readable source program, if possible.

%0PSCOMP-F-PUNTRHSOVFL, Internal inconsistency-REMOVE_LIST

Explanation: The compiler detected an internal inconsistency.

Your Response: Submit an SPR to Digital. Include with the SPR a
program listing and a machine-readable source program, if possible.

%0PSCOMP-I-ENDCOMPILE, End of compilation dd-mmm-yyyy
hh:mm:ss

Explanation: The compilation completed. The message includes the
date and time the compilation completed.

Your Response: None. The message is informational.

%0PSCOMP-I-LINESREAD, Compiled n lines

Explanation: The compiler processed n lines of source code.

Your Response: None. The message is informational.

%0PSCOMP-I-NOERRORS, No errors detected

Explanation: The compiler completed the compilation without detecting
an error.

Your Response: None. The message is informational.

%0PSCOMP-I-NUMERRORS, n errors detected

Explanation: The compiler detected n errors.

Your Response: Use an editor to correct the errors in the source file
and recompile it.

Diagnostic Messages A-7

%0PSCOMP-I-NUMWARNINGS, n warnings detected

Explanation: The compiler detected n warnings.

Your Response: Use an editor to correct the errors in the source file
and recompile it.

%0PSCOMP-I-OPENLISTOUT, Unable to open DEV:FILENAME.TYPE­
/NOLIST assumed

Explanation: The /LIST qualifier was specified with an output file that
could not be opened. The source file was com piled but no listing file was
generated.

Your Response: None. The message is informational.

%0PSCOMP-I-RECOMPILE, Recompile module n

Explanation: This message is always preceded by a message that
informs you that an attribute name was declared in more than one
LITERAL declaration in the program. The message informs you which
module contains the incompatible declaration.

Your Response: Specify a unique attribute name in the erroneous
LITERAL declaration and then recompile the module.

%0PSCOMP-I-TIMEUSED, Time used was s.ss seconds

Explanation: The compiler used s.ss seconds to perform the specified
compilation.

Your Response: None. The message is informational.

%0PSCOMP-W-ARGCOUNT, Number of arguments used does not match
number declared

Explanation: You used a different number of arguments than you
declared.

Your Response: Correct and recompile the module(s) concerned.

%0PSCOMP-W-BADINDEX, Index file DEV:FILNAM.TYP corrupted

Explanation: A modular compilation was performed and the resulting
data base was corrupted.

Your Response: Recompile the modules.

%0PSCOMP-W-BADI~EXFILE, Conflicting values in index file for
attribute name AAAAAA

A-8 Diagnostic Messages

Explanation: The attribute name AAAAAA was defined with two
different values. An attribute name can have only one value in a
program.

Your Response: Correct the appropriate module. If the program
consists of more than one module, recompile the module you corrected
specifying the /CREATE qualifier to rebuild the modular compilation
index file. Then recompile the remaining modules without specifying the
/CREATE qualifier.

%0PSCOMP-W-BADMODIFYCE, Invalid condition element number
specified in MODIFY action: n

Explanation: A condition element was specified by a number that
was greater than the number of positive condition elements in the
production's left-hand side.

Your Response: Replace the number with a number that is less than
or equal to the number of positive condition elements in the production's
left-hand side. Alternatively, bind the condition element to an element
variable on the production's left-hand side and replace the erroneous
number with that variable.

%0PSCOMP-W-BADREMOVECE, Invalid condition element number
specified in REMOVE action: n

Explanation: A condition element was specified by a number that
was greater than the number of positive condition elements in the
production's left-hand side.

Your Response: Replace the number with a number that is less than
or equal to the number of positive condition elements in the production's
left-hand side. Alternatively, bind the condition element to an element
variable on the production's left-hand side and replace the erroneous
number with that variable.

%0PSCOMP-W-BADSUBSTRCE, Invalid condition: element number
sp,ecified in call to SUBSTR function: n

Explanation: A condition element was specified by a number that
was greater than the number of positive condition elements in the
production's left-hand side.

Your Response: Replace the number with a number that is less than
or equal to the number of positive condition elements in the production's
left-hand side. Alternatively, bind the condition element to an element
variable on the production's left-hand side and replace the erroneous
number with that variable.

%0PSCOMP-W-BIGWATCH, Argument to WATCH greater than 4

Explanation: In the startup statement, the argument to WATCH was a
value greater than 4.

Your Response: Respecify the argument to WATCH with a value
between 0 and 4.

%0PSCOMP-W-CALLOLD, External routine result assumed to be in RO

Explanation: Your program called an external function expecting the
result to be returned in RO, but the declaration of the function implies
the result will be returned using OPS$VALUE.

Your Response: Check the external routine, its declaration in the
program, and how it is called. For further information, see the VAX
OPS5 Reference Manual.

Diagnostic Messages A-9

%0PSCOMP-W-CANTLIT, Unable to assign literalize entries within n
literal values-values assigned at random

Explanation: A LITERALIZE declaration contained n attribute names
and n was greater than 256. (A working-memory element cannot have
more than 256 atoms.)

Your Response: Rename some of the attributes in your program to
conform to the maximum limit.

%0PSCOMP-W-DUPCATC1IllERE, Duplicate production name or
catcher name AAAAAA in this module-catcher ignored

Explanation: The symbol AAAAAA named more than one catcher in
the module or named a catcher and a production in the module. The
names of catchers and productions in a program must be unique.

Your Response: Correct the source file.

%0PSCOMP-W-DUPCATCHTHERE, Duplicate production name or
catcher name AAAAAA in another module-catcher ignored

Explanation: The CATCH action was specified with the symbol
AAAAAA, and that symbol named a production in a different module.
The names of catchers and productions in a program must be unique.

Your Response: Use the DCL command SEARCH to search each source
file for the duplicate name. When you find the duplicate name, change
it.

%0PSCOMP-W-DUPDECLIT, Duplicate attribute name AAAAAA-second
occurrence ignored

Explanation: The attribute name AAAAAA was specified more than
once in a LITERALIZE declaration. All attribute names specified in a
LITERALIZE declaration must be unique.

Your Response: Correct the source file.

%0PSCOMP-W-DUPDECRULE, Duplicate production name, AAAAAA­
production ignored

Explanation: More than one production in the source file had the name
AAAAAA. The names of the productions in a program must be unique.

Your Response: Correct the source file.

%0PSCOMP-W-DUPRULEHERE, Duplicate production name or catcher
name AAAAAA in this module-production ignored

Explanation: The symbol AAAAAA named more than one production
in the module or named a production and a catcher in the module. The
names of catchers and productions in a program must be unique.

Your Response: Correct the source file.

A-10 Diagnostic Messages

%0PSCOMP-W-DUPRULETHERE, Duplicate production name or
catcher name AAAAAA in another module-production ignored

Explanation: The source files for one or more modules contained
productions that have the name AAAAAA. The names of the productions
in a program must be unique.

Your Response: Use the DCL command SEARCH to search each source
file for the duplicate name. When you find the duplicate name, change
it.

%0PSCOMP-W-DUPWMECLASS, Duplicate LITERALIZE declaration for
working-memory element class AAAAAA

Explanation: Two LITERALIZE declarations specify the same class
name.

Your Response: Make sure each LITERALIZE declaration specifies a
unique class name.

%0PSCOMP-W-EXTCALL, Subroutine AAAAAA not declared external

Explanation: The subroutine AAAAAA was specified in a right-hand
side call action but was not previously declared with the EXTERNAL
declaration. ·

Your Response: Declare the subroutine AAAAAA in an EXTERNAL
declaration before using the subroutine in a right-hand side CALL
action.

%0PSCOMP-W-EXTDUPL, Routine AAAAAA already declared. Declaration
ignored

Explanation: External routine AAAAAA has already been declared in
this module. The compiler uses the first declaration.

Your Response: Delete the second declaration.

%0PSCOMP-W-EXTFUNC, Function AAAAAA not declared external

Explanation: An attempt to call the external function AAAAAA failed
because AAAAAA was not declared.

Your Response: Correct the source file.

%0PSCOMP-W-EXTGLOB, Routine AAAAAA declared in another module.
Declaration ignored

Explanation: External routine AAAAAA has already been declared in
a previous module. The compiler uses the first declaration.

Your Response: Delete the second declaration.

%0PSCOMP-W-ILLCOMPLIT, Literalize declaration incompatible with
other modules

Explanation: A LITERALIZE declaration assigned to a working­
memory element different attribute names than were assigned in
another module. This message is always followed by a message that
informs you which module to correct.

Your Response: Make sure all LITERALIZE declarations assign the
same attribute names to working-memory elements that have the same
class name.

Diagnostic Messages A-11

%0PSCOMP-W-INC_EOL, Non-commentary text after %INCLUDE ig­
nored

Explanation: The compiler found text that was not a comment
following a %INCLUDE on the same line.

Your Response: Check the line.

%0PSCOMP-W-INCOMPLIT, Literal declaration AAAAAA = n incompati­
ble with other modules

Explanation: More than one LITERAL declaration assigned a field to
the attribute name AAAAAA. An attribute name can have only one field
in a program.

Your Response: Correct the appropriate source file.

%0PSCOMP-W-INDEXEOF, Premature end of index file DEV:FILNAM.TYP

Explanation: A modular compilation failed because one or more of the
modules was not complete.

Your Response: Check that all modules are complete and recompile
them.

%0PSCOMP-W-INVLITVAL, Attribute name AAAAAA not declared

Explanation: The symbol AAAAAA was specified in a call to the
LITVAL function and was not previously declared with the LITERAL,
LITERALIZE, or VECTOR-ATTRIBUTE declaration.

Your Response: Declare the symbol.

%0PSCOMP-W-INVTEST, Invalid test on symbol

Explanation: The predicate greater-than (>), greater-than-equal-to
(>=),less-than(<), or less-than-equal-to(<=) was used to test a symbol.
These predicates must be used only with numbers or variables bound to
numbers.

Your Response: Correct the source file.

%0PSCOMP-W-IVPRED, Invalid predicate with variable AAAAAA

Explanation: A predicate was used with the variable AAAAAA before
the variable was bound to a value.

Your Response: Bind the variable to a value before you use the
variable with a predicat~ other than the equal operator(=).

%0PSCOMP-W-LITCLASH, Literal value clash involving AAAAAA in
literalize declaration-old value kept

Explanation: A LITERALIZE declaration contains an attribute name
that was previously assigned a field that does not match the attribute
name's current field.

Your Response: Correct the source file.

A-12 Diagnostic Messages

%0PSCOMP-W-LITIZE1, Attribute name AAAAAA was previously as­
signed the value 1-this conflicts with LITERALIZE conventions

Explanation: The attribute name AAAAAA was specified in a
LITERALIZE declaration and field 1 was previously assigned to
that name. The LITERALIZE declaration always assigns field 1 to class
name; therefore field 1 cannot be assigned to AAAAAA.

Your Response: Correct the LITERALIZE declaration by using a
different attribute name.

%0PSCOMP-W-MECHBAD, Passing mechanism in declaration ignored

Explanation: The declaration of the external routine used in a CALL
action specified an argument-passing mechanism.

Your Response: A CALL action passes all arguments in the result
element. Check the external routine and the EXTERNAL declaration.

%0PSCOMP-W-NEGWATCH, Argument to WATCH less than 0

Explanation: In the startup statement, the argument to WATCH was a
value less than 0.

Your Response: Respecify the argument to WATCH with a value
between 0 and 4.

%0PSCOMP-W-NOCONCAT, File concatenation not allowed with modu­
lar compilation

Explanation: An attempt to perform a modular compilation failed
because the command contained more than one source file.

Your Response: Compile each source file with a separate command.

%0PSCOMP-W-QUOTE, Atom missing closing quote

Explanation: An atom was specified with an opening quote but no
closing quote.

Your Response: Place a closing quote after the atom.

%0PSCOMP-W-REASSGNLIT, Attempt to assign attribute name AAAAAA
a new value-old value kept.

Explanation: A LITERAL declaration failed to reassign a new field to
the attribute name AAAAAA. The attribute name retained its old field.

Your Response: Correct the source file.

%0PSCOMP-W-RETIGNORE, Return value specified in declaration
ignored

Explanation: The declaration of the external routine used in a CALL
action specified a function return type.

Your Response: A CALL action does not expect any return type. Check
the external routine and the EXTERNAL declaration.

%0PSCOMP-W-STARTTHERE, STARTUP already compiled from another
module

Explanation: More than one module contains a STARTUP statement.

Your Response: Either merge the STARTUP statements or delete all
but one of them.

Diagnostic Messages A-13

%0PSCOMP-W-TOOMANYCES, Too many positive condition elements on
left-hand side

Explanation: The left-hand side of a production has more positive
condition elements than are allowed. The maximum number allowed is
32.

Your Response: Simplify your program so that no more than 32
positive condition elements are specified for the left-hand side of any
production.

%0PSCOMP-W-TWOSTARTS, More than one STARTUP statement found

Explanation: The source file contained more than one STARTUP
statement.

Your Response: Either merge the STARTUP statements or delete all
but one of them.

%0PSCOMP-W-TWOVAS, Working-memory element class AAAAAA con­
tains the names of two vector attributes

Explanation: A LITERALIZE declaration contains the name of more
than one vector attribute.

Your Response: Correct the source file.

%0PSCOMP-W-TYPEBAD, Type used (AAAAAA) does not match declared
type (BBBBBB)

Explanation: An external routine was called with an argument of type
AAAAAA, but in the EXTERNAL declaration, the argument had type
BBBBBB.

Your Response: Check the EXTERNAL declaration and how the
routine is called.

%0PSCOMP-W-UNDECCEVAR, Element variable AAAAAA not bound

Explanation: The element variable AAAAAA was used in a MODIFY
action, REMOVE action, or a call to the SUBSTR function, but was not
previously bound to a working-memory element on the left-hand side of
the production or in a right-hand side CBIND action.

Your Response: Bind the element variable to a working-memory
element on the left-hand side of the production or in a right-hand side
CBIND action.

%0PSCOMP-W-UNDECLIT, Attribute name AAAAAA not declared­
assigned 1

Explanation: The source file contained the attribute name AAAAAA,
which was not declared. The VAX OPS5 run-time system assigns field 1
to the attribute name.

Your Response: Make sure you typed the attribute name correctly and
declared it in a LITERAL or LITERALIZE declaration.

A-14 Diagnostic Messages

%0PSCOMP-W-VARNOTBOUND, Variable AAAAAA not bound

Explanation: The variable AAAAAA was referred to on the right-hand
side of a production and was not previously bound to a value on the -
left-hand side of the production or in a right-hand side BIND action.

Your Response: Bind the variable to a value on the left-hand side of
the production or in a right-hand side BIND action.

%0PSCOMP-W-VERYBIGNUM, Size of number exceeds implementation
limits

Explanation: The source file contained a number that exceeded the
maximum number allowed.

Your Response: See the VAX OPS5 Reference Manual for the valid
range for integers or for :floating-point numbers and correct the source
file.

%0PSRT-F-BADCBINDVAR, CBIND-too many CBIND actions

Explanation: The right-hand side of a production contained more
CBIND actions than are allowed. The maximum number allowed is 64.

Your Response: Simplify your program so that no production has more
than 64 CBIND actions on the right-hand side.

%0PSRT-F-BADCENUM, CBIND-invalid element designator: n

Explanation: The run-time system detected an internal inconsistency.

Your Response: Submit an SPR to Digital. Include with the SPR a
program listing and a machine-readable source program, if possible.

%0PSRT-F-BADWRITE, Writing nonexistent file

Explanation: The run-time system tried to write to a file that did not
exist.

Your Response: Submit an SPR to Digital. Include with the SPR a
program listing and a machine-readable source program, if possible.

%0PSRT-F-CREZONE, Code inconsistency attempting to create memory
zone

Explanation: A problem occurred when the run-time system tried to
create a memory zone.

Your Response: Ask the system manager to check that your pro­
cess quota PGFLQUOTA and the value of the SYSGEN parameter
VIRTUALPAGECNT are both large enough.

%0PSRT-F-FREEMEM, Code inconsistency attempting to free virtual
memory

Explanation: A problem occurred when the run-time system tried to
free virtual memory.

Your Response: Ask the system manager to check that your pro­
cess quota PGFLQUOTA and the value of the SYSGEN parameter
VIRTUALPAGECNT are both large enough.

Diagnostic Messages A-15

%0PSRT-F-GETMEM, Code inconsistency attempting to get virtual
memory

Explanation: A problem occurred when the run-time system. tried to
get more virtual memory.

Your Response: Ask the system manager to check that your pro­
cess quota PGFLQUOTA and the value of the SYSGEN parameter
VIRTUALPAGECNT are both large enough.

%0PSRT-F-INSVIRMEM, Insufficient virtual memory

Explanation: The run-time system exhausted virtual memory.

Your Response: Ask the system manager to check that your pro­
cess quota PGFLQUOTA and the value of the SYSGEN parameter
VIRTUALPAGECNT are both large enough.

%0PSRT-F-MISMATCH, Incompatible versions

Explanation: The versions of the run-time system and the compiler are
not the same.

Your Response: Use the DCL ·command ANALYZE/IMAGE to make
sure the versions of the run-time system and compiler are the same, or
reinstall VAX OPS5.

%0PSRT-I-BREAKNOTED, BREAK-break

Explanation: The VAX OPS5 run-time system encountered a break­
point set by the PBREAK or WBREAK command.

Your Response: None. The message is informational.

%0PSRT-I-CANCELED, OPS$CANCEL_RUN used

Explanation: The OPS$CANCEL_RUN support routine was used by
your program.

Your Response: None. The message is informational.

%0PSRT-I-CTRLCNOTED, CTRUC-return to command interpreter

Explanation: A Ctrl/C was typed during program execution. Typing
Ctrl/C invokes the command interpreter.

Your Response: The message is informational. Respond to the
command interpreter prompt with a command.

%0PSRT-I-EMPTYCS, HALT-no satisfied productions

Explanation: Execution of the program halted because the conflict set
was empty.

Your Response: None. The message is informational.

%0PSRT-I-EXIT, User entered EXIT or CTRUZ

Explanation: The EXIT or Ctrl/Z command was entered by the user.

Your Response: None. The message is informational.

A-16 Diagnostic Messages

%0PSRT-I-HALTED, HALT-right-hand-side action

Explanation: Execution of the program halted because the HALT
action was executed.

Your Response: None. The message is informational.

%0PSRT-I-NORMAL, Normal, successful completion

Explanation: The program completed normally without errors.

Your Response: None. The message is informational.

%0PSRT-I-NOSTARTUP, No STARTUP code in program

Explanation: The program does not include a STARTUP statement.

Your Response: The message is informational. You may include a
STARTUP statement and recompile the program, if you wish.

%0PSRT-I-PAUSED, Pause

Explanation: The VAX OPS5 run-time system paused program
execution because the RUN command was specified with an integer n,
and n recognize-act cycles were processed. The command interpreter
was invoked.

Your Response: The message is informational. Respond to the prompt
with a command.

%0PSRT-I-PBREAK, PBREAK encountered

Explanation: The VAX OPS5 run-time system encountered a break­
point set by the PBREAK command.

Your Response: The message is informational. Respond to the prompt
with a command.

%0PSRT-I-WBREAK, WBREAK encountered

Explanation: The VAX OPS5 run-time system encountered a break­
point set by the WBREAK command.

Your Response: The message is informational. Respond to the prompt
with a command.

%0PSRT-W-ACCEPTARGS, ACCEPT-too many arguments

Explanation: More than one argument was specified with the ACCEPT
function.

Your Response: Delete the extra arguments.

%0PSRT-W-ACCEPTFILE, ACCEPT-file not open for input

Explanation: The file identifier specified with the ACCEPT function
was not associated with an open input file.

Your Response: Check for a typing error in the file identifier. If no
typing error exists, use the OPENFILE action or command to open the
appropriate file for input and associate the file with a file identifier.

Diagnostic Messages A-17

%0PSRT-W-ADDFILE, ADDSTATE-error in file processing

Explanation: The VAX OPS5 run-time system was unable to open the
file specified with the ADDSTATE action or command.

Your Response: Make sure the file specification used with the
ADDSTATE action or command is a valid VMS file specification.

%0PSRT-W-AFTERUSAGE, AFTER-invalid format

Explanation: The AFTER action or command was not specified in the
correct format.

Your Response: See the VAX OPS5 Reference Manual for a description
of the correct syntax format and correct the source file or the command.

%0PSRT-W-ALPHATOKEN, Deleting nonexistent token

Explanation: An internal run-time error occurred.

Your Response: Submit an SPR to Digital. Include with the SPR a
program listing and a machine-readable source program, if possible.

%0PSRT-W-BACKDISABLD, BACK-command disabled

Explanation: An attempt was made to use the BACK command and
the command was disabled.

Your Response: The BACK command is disabled by default. Use the
ENABLE command to enable the BACK command before you use it.

%0PSRT-W-BACKLIMIS, BACK-the current limit is n

Explanation: The argument value specified with the BACK command
exceeded the limit of recognize-act cycles over which you can back up.
The maximum number is 64 cycles.

Your Response: Specify an integer less than or equal to 64 as the
argument value to the BACK command.

%0PSRT-W-BACKPOS, BACK-argument value is negative

Explanation: The argument value specified with the BACK command
was negative.

Your Response: Specify the BACK command with a positive integer.

%0PSRT-W-BACKTOOFAR, BACK-argument value exceeds limit

Explanation: The argument value specified with the BACK command
exceeded the limit of recognize-act cycles over which you can back up.
The maximum number is 64 cycles.

Your Response: Specify an integer less than or equal to 64 as the
argument value for the BACK command.

%0PSRT-W-BADARGNUM, Wrong number of arguments

Explanation: The DEFAULT action or command was not specified with
two arguments, or the OPENFILE action or command was not specified
with three arguments.

Your Response: Specify the DEFAULT action or command with
two arguments: a file identifier and the keyword ACCEPT, TRACE,
or WRITE. Specify the OPENFILE action or command with three

A-18 Diagnostic Messages

arguments: a file identifier, VMS file specification, and the keyword IN,
OUT, or APPEND.

%0PSRT-W-BADCOMPUTE, COMPUTE-symbol used in arithmetic
expression: AAAAAA

Explanation: The COMPUTE function or the routine OPS$CVAN was
specified with a symbol or a variable bound to a symbol.

Your Response: Check for a typing error. Specify the COMPUTE
function with numbers or variables bound to numbers.

%0PSRT-W-BADCVNA, OPS$CVNA-overftow while converting an inte­
ger to an atom

Explanation: An integer was converted to a numeric atom,. and the
atom did not fit in 30 bits (32 bits minus two tag bits) of storage space.

Your Response: Make sure the integer converts to a numeric atom that
fits in 30 bits of storage space. That is, a numeric atom must be in the
range of -(2**30-1) to (2**30-1).

%0PSRT-W-BADFILESPEC, OPENFILE-invalid file specification:
DEV:FILNAM.TYP .

Explanation: The VAX OPS5 run-time system could not open the file
specified with the OPENFILE action or command.

Your Response: Check for a typing error. The second argument value
specified with the OPENFILE action or command must be a symbol that
represents a valid VMS file specification.

%0PSRT-W-BADMODE, OPENFILE-argument value not IN, OUT or
APPEND: AAAAAA

Explanation: The third argument value specified with the OPENFILE
action or command was a keyword other than IN, OUT, or APPEND.

Your Response: Check for a typing error. Specify the OPENFILE
action or command with the keyword IN, OUT, or APPEND.

%0PSRT-W-BADMODIFYPOS, MODIFY-attempted to change an atom in
a nonexistent field

Explanation: 1. The maximum number of atoms a working-memory
element can have is 383. This limit was exceeded.

2. An attempt was made to create a vector value that uses more than
the allowable number of fields.

3. An invalid value was specified with the OPS$TAB support routine.

Your Response: Correct the source file so that no working-memory
element has more than 383 atoms.

%0PSRT-W-BADREAD, Reading nonexistent file

Explanation: The VAX OPS5 run-time system tried to read a file that
did not exist.

Your Response: Submit an SPR to Digital. Include with the SPR a
program listing and a machine-readable source program, if possible.

Diagnostic Messages A-19

%0PSRT-W-BADTABVAL, PPWM-attribute name not declared: AAAAAA

Explanation: The PPWM command was specified with an attribute
whose name was not declared.

Your Response: Check for a typing error and reenter the command. If
no typing error exists, declare the attribute name in the source file and
then recompile the file.

%0PSRT-W-BETATOKEN, Deleting nonexistent token

Explanation: An internal run-time error occurred.

Your Response: Submit an SPR to Digital. Include with the SPR a
program listing and a machine-readable source program, if possible.

%0PSRT-W-CANTOPEN, OPENFILE-unable to open file:
DEV:FILNAM.TYP

Explanation: The VAX OPS5 run-time system could not open the file
specified with the OPENFILE action or command.

Your Response: Check for a typing error. Check that the file exists and
that you have the appropriate access rights to it.

%0PSRT-W-CLOSEFILEID, CLOSEFILE-file-identi:fication name not a
symbol: n

Explanation: The file identifier specified with the CLOSEFILE action
or command was not a symbol.

Your Response: Specify the CLOSEFILE action or command with a file
identifier that is a symbol.

%0PSRT-W-CSARG, CS-arguments specified

Explanation: The CS command was specified with an argument.

Your Response: Reenter the CS command with no arguments.

%0PSRT-W-CYCLEOFLOW, Cycle count overflow. The cycle count will
be reset

Explanation: The number of recognize-act cycles overflowed the 32-bit
integer limit of the counter. This overflow temporarily disables the
BACK command.

Your Response: None. The counter will reinitialize itself.

%0PSRT-W-DEFAULTARGS, DEFAULT-wrong number of arguments

Explanation: The DEFAULT action or command was not specified with
two arguments.

Your Response: Specify the DEFAULT action or command with two
arguments: a location and a keyword.

%0PSRT-W-DEFAULTFILEID, DEFAULT-file-identification name not·a
symbol: n

Explanation: The file identifier specified with the DEFAULT action or
command was not a symbol.

Your Response: Specify the DEFAULT action or command with a file
identifier that is a symbol.

A-20 Diagnostic Messages

%0PSRT-W-DEFAULTIN, DEFAULT-file not open for input: AAAAAA

Explanation: The DEFAULT action or command was specified with the
ACCEPT keyword and a symbol that was not a file identifier for an open
input file.

Your Response: Use the OPENFILE action or command to open the
appropriate file for input and associate the file with a file identifier.
Then specify the DEFAULT action or command with that file identifier
and the keyword ACCEPT.

%0PSRT-W-DEFAULTOUT, DEFAULT-file not open for output: AAAAAA

Explanation: The DEFAULT action or command was specified with the
TRACE or WRITE keyword and a symbol that was not a file identifier
for an open output file~

Your Response: Use the OPENFILE action or command to open the
appropriate file for output and associate the file with a file identifier.
Then specify the DEFAULT action or command with that file identifier
and the keyword TRACE or WRITE.

%0PSRT-W-DEFAULTUSE, DEFAULT-argument value not ACCEPT,
TRACE, or WRITE: AAAAAA

Explanation: The second argument used with the DEFAULT action or
command was not the ACCEPT, TRACE, or WRITE keyword.

Your Response: Use the keyword ACCEPT, TRACE, or WRITE as the
second argument when you use the DEFAULT action or command.

%0PSRT-W-DEFIN, ACCEPT-default file not open for input

Explanation: An attempt was made to read a file that was not open for
input.

Your Response: Open the file prior to the Read action.

%0PSRT-W-DEFOUT, WRITE-default file not open for output

Explanation: An attempt was made to write to a file that was not open
for output.

Your Response: Open the file prior to the Write action.

%0PSRT-W-DEFTRACE, TRACE-default file not open for output

Explanation: An attempt was made to write trace output to a file that
was not open for output.

Your Response: Open the file prior to the Write action. If a file is
not open to receive trace output, the data is sent to the user's terminal
screen.

%0PSRT-W-DELWME, Attempted to use a WME that has been deleted

Explanation: The working-memory element your program tried to use
has already been deleted.

Your Response: Correct and recompile the program module(s).

Diagnostic Messages A-21

%0PSRT-W-FILEIDINUSE, OPENFILE-file-identification name already
in use: AAAAAA

Explanation: The file identifier specified with the OPENFILE action or
command was not unique.

Your Response: Make sure the file identifier you specify with the
OPENFILE action or command has not been assigned to a file in a
previous use of the OPENFILE action or command.

%0PSRT-W-ILLARG, -invalid argument value: AAAAAA

Explanation: The argument value specified with a command was not
valid.

Your Response: Reenter the command with a valid argument value.

%0PSRT-W-ILLCMD, Invalid command: AAAAAA

Explanation: The VAX OPS5 command interpreter did not recognize
the command entered.

Your Response: Check for a typing error and enter a valid VAX OPS5
command.

%0PSRT-W-ILLSTRATEGY, STRATEGY-argument value not LEX or
MEA:AAAAAA

Explanation: The STRATEGY command was specified with a keyword
other than LEX or MEA.

Your Response: Check for a typing error and reenter the command
with a correct argument value.

%0PSRT-W-ILLTAB, Attribute operator (A) specified

Explanation: The attribute operator (") was specified with the
ADDSTATE, RESTORESTATE, or SAVESTATE action or command.

Your Response: Check for a typing error and correct the source file.

%0PSRT-W-LITVALARG, LITVAL-attribute name not declared:
AAAAAA

Explanation: The LITVAL function was specified with an attribute
name that was not declared with the LITERAL, LITERALIZE, or
VECTOR-ATTRIBUTE declaration.

Your Response: Check for a typing error. If no typing error exists,
declare the attribute name with the LITERAL, LITERALIZE, or
VECTOR-ATTRIBUTE declaration.

%0PSRT-W-NEGARG, Argument value is negative: -n

Explanation: The RUN command was specified with a zero or a
negative integer.

Your Response: Reenter the RUN command without an argument or
with a positive integer.

A-22 Diagnostic Messages

%0PSRT-W--NILFILEID, OPENFILE-NIL specified as file-identification
name

Explanation: NIL was specified as a file identifier in a call to the
OPENFILE action or command.

Your Response: Specify a symbol other than NIL for the file identifier.

%0PSRT-W-NOARGS, No arguments specified

Explanation: The @, ADDSTATE, CALL, DISABLE, ENABLE, MAKE,
RESTORESTATE, or SAVESTATE command was specified without an
argument.

Your Response: Reenter the command and specify the appropriate
arguments.

%0PSRT-W-NOBUILDCOMP, BUILD-construct not built

Explanation: The construct was not built due to a previously reported
error.

Your Response: Correct the error previously reported and try the
BUILD again.

%0PSRT-W-NOINI, Already initialized

Explanation: The program called OPS$INITIALIZE more than once.

Your Response: Check the calling program.

%0PSRT-W-NONNUMARG, Argument value is a symbol

Explanation: In a RUN or BACK command, a symbolic argument was
entered instead of a numeric argument.

Your Response: Reenter the command with a numeric argument.

%0PSRT-W-NORUN, OPS$RUN is not active

Explanation: The. OPS$RUN support routine is not active.

Your Response: Check the calling program.

%0PSRT-W-NOSUCHWME, No such WME

Explanation: Your program tried to use a working-memory element
that does not exist.

Your Response: Correct and recompile the relevant program module(s).

%0PSRT-W-NOTABVAL, No value after attribute operator (A)

Explanation: The CALL, MAKE, or PPWM command was specified
with an attribute that was not followed by a value.

Your Response: Reenter the command and specify a value after the
attribute.

%0PSRT-W-NOTACATCH, AFTER-argument value not a catcher:
AAAAAA

Explanation: The argument value specified with the AFTER action or
command was not the name of a catcher.

Your Response: Specify the AFTER action or command with the name
of a catcher.

Diagnostic Messages A-23

%0PSRT-W-NOTARULE, Argument value not a production name:
AAAAAA

Explanation: The argument value specified with the MATCHES or
EXCISE command was not the name of a production.

Your Response: Reenter the command with the name of a production.

%0PSRT-W-NOTEXTERNAL, CALL-routine not declared external:
AAAAAA

Explanation: The subroutine AAAAAA was specified in a right-hand
side call action but was not previously declared with the EXTERNAL
declaration.

Your Response: Declare the subroutine AAAAAA in an external
declaration before using the subroutine in a right-hand side CALL
action.

%0PSRT-W-NOTINBUILD, Not executing a BUILD command

Explanation: ENDBUILD was specified without a BUILD action.

Your Response: Remove ENDBUILD. It should only be specified to end
a BUILD action.

%0PSRT-W-NOTINI, Not initialized

Explanation: The program has not called the OPS$INITIALIZE
support routine.

Your Response: OPS$INITIALIZE should be called before any other
support routines. This only applies if the VAX OPS5 routine was
compiled with /NOENTRY.

%0PSRT-W-NOTKEYWRD, ENABLE/DISABLE-argument value not
BACK, HALT, TIMING or WARNING

Explanation: The ENABLE or DISABLE command was specified with
an argument value other than BACK, HALT, TIMING, or WARNING.

Your Response: Check for a typing error and reenter the command
with a correct argument value.

%0PSRT-W-OFLOWBACK, You cannot BACK over this point

Explanation: The number of recognize-act cycles overflowed the 32-bit
integer limit of the counter. This overflow temporarily disables the
BACK command.

Your Response: None. The counter will reinitialize itself.

%0PSRT-W-OPENARGS, OPENFILE-wrong number of arguments

Explanation: The OPENFILE action was not specified with three
arguments.

Your Response: Make sure the OPENFILE action is specified with the
correct number of arguments.

A-24 Diagnostic Messages

%0PSRT-W-OPENERR, @-unable to open specified file

Explanation: The specified input file could not be opened for the @

command.

Your Response: Make sure the file exists and is not protected against
Read access.

%0PSRT-W-OPENFILEID, OPENFILE-file-identification name not a
symbol: AAAAAA

Explanation: The file identifier specified with the OPENFILE action or
command was not a symbol.

Your Response: The file identifier you specify with the OPENFILE
action or command must be a symbol.

%0PSRT-W-OUTRANGEARG, WATCH-argument value outside valid
range

Explanation: A value greater than 4 or less than 0 was specified as an
argument to WATCH.

Your Response: Correct the program to place the WATCH argument
value within the range of 0 to 4.

%0PSRT-W-PARAMARG, OPS$PARAMETER-invalid argument: n

Explanation: The argument specified with the OPS$PARAMETER
routine did not point to a field in the result element.

Your Response: The maximum number of atoms the result ele­
ment can have is 383. Make sure that the value specified with the
OPS$PARAMETER routine does not exceed this limit.

%0PSRT-W-PMEDISABLED, REPORT-ti~ing was never enabled

Explanation: The keyword TIMING was not specified in the REPORT
command line.

Your Response: Reenter the REPORT command with the keyword ·
TIMING specified.

OPSRT-W-PMEKEYWORD, REPORT-argument value not TIMING

Explanation: A keyword other than TIMING was specified in the
REPORT command line. (TIMING is the only valid keyword for the
REPORT command.)

Your Response: Reenter the REPORT command with the proper
keyword-TIMING.

%0PSRT-W-RESTOREOF, RESTORESTATE-premature end of file

Explanation: Information, such as conflict set information and
working-memory elements, was missing from the end of the file specified
with the RESTORESTATE action or command.

Your Response: Make sure the file specified with the RESTORESTATE
action or command is a file created with the SAVESTATE action or
command and the file has not been edited. If the file was created and
edited, use SAVESTATE to create the file again.

Diagnostic Messages A-25

%0PSRT-W-RESTORERR, RESTORESTATE-error in file processing

Explanation: The VAX OPS5 run-time system could not open the file
specified with the RESTORESTATE action or command.

Your Response: Check for a typing error. The argument value specified
with the RESTORESTATE action or command must be a valid VMS file
specification.

%0PSRT-W-RHSBADELEM, MODIFY-referred to nonexistent element

Explanation: An attempt was made to modify a working-memory
element that does not exist.

Your Response: Check that the arguments specified with the MODIFY
action or command are correct.

%0PSRT-W-RJCRLF, WRITE-CRLF cannot follow RJUST

Explanation: A call to the CRLF function immediately follows a call to
the RJUST function.

Your Response: Correct the source file.

%0PSRT-W-RJNUMBER, RJUST-argument value is a symbol: AAAAAA

Explanation: The RJUST function was specified with a symbol.

Your Response: Specify the RJUST function with a positive integer.

%0PSRT-W-RJPOSITIVE, RJUST-argument value is less than or equal
to 0: n

Explanation: The RJUST function was specified with 0 or a negative
integer.

Your Response: Specify the RJUST function with a positive integer.

%0PSRT-W-RJRJ, WRITE-RJUST cannot follow RJUST

Explanation: A call to the RJUST function immediately follows another
call to the &JUST function.

Your Response: Correct the source file.

%0PSRT-W-RJTABTO, WRITE-TABTO cannot follow RJUST

Explanation: A call to the TABTO function immediately follows
another call to the RJUST function.

Your Response: Correct the source file.

%0PSRT-W-RUNNING, OPS5 system called recursively

Explanation: The OPS$RUN support routine is running and has been
called again.

Your Response: Check the calling program.

A-26 Diagnostic Messages

%0PSRT-W-SAVEDWMES, RESTORESTATE-too many working-memory
elements in saved file

Explanation: The RESTORESTATE action or command tried to create
an instantiation that contained too many time tags.

Your Response: Make sure the file specified with the RESTORESTATE
action or command is a file created with the SAVESTATE action or
command and the file has not been edited. If the file was created and
edited, use SAVESTATE to create the file again.

%0PSRT-W-SAVEFILE, SAVESTATE-error in file processing

Explanation: The VAX OPS5 run-time system could not open the file
specified with the SAVESTATE action or command.

Your Response: Check for a typing error. The argument value specified
with the SAVESTATE action or command must be a valid VMS file
specification.

%0PSRT-W-SAVEVERSION, RESTORESTATE or ADDSTATE used old
SAVESTATE file which will not be supported after this release

Explanation: The savestate file used by a RESTORESTATE or
ADDSTATE operation is in an old format.

Your Response: Create the SAVESTATE file again.

%0PSRT-W-SHOKEYWORD, SHOW-argument value not SPACE

Explanation: An argument other than SPACE was specified in the
SHOW command line.

Your Response: Reenter the SHOW command with the argument
SPACE.

%0PSRT-W-STRINGSIZE, WRITE-string is too long for output buffer

Explanation: An attempt was made to write to an output file whose
buffer was not large enough to store the string. The maximum buffer
size allowed for storing a string is 2048 characters.

Your Response: Use the CRLF function to break the string into smaller -
pieces that fit the buffer.

%0PSRT-W-SUBSTRARG, SUBSTR-unbound argument value: AAAAAA

Explanation: The value of the second or third argument specified with
the SUBSTR function was an attribute name that was not declared with
the LITERAL, LITERALIZE, or VECTOR-ATTRIBUTE declaration.

Your Response: Check for a typing error. If no typing error exists,
declare the attribute name with the LITERAL, LITERALIZE, or
VECTOR-ATTRIBUTE declaration.

%0PSRT-W-SUBSTRINDEX, SUBSTR-second or third argument value
is less than 1: n

Explanation: The value of the second or third argument specified with
the SUBSTR function was an integer less than one. The second and
third arguments point to fields in an element.

Your Response: Specify integers greater than or equal to one for the
second and third arguments to the SUBSTR function.

Diagnostic Messages A-27

%0PSRT-W-TABTONUMBER, TABTO-argument value is a symbol:
AAAAAA

Explanation: The TABTO function was specified with a symbol or a
variable bound to a symbol.

Your Response: Check for a typing error. Specify the TABTO function
with an integer or a variable bound to an integer that is greater than or
equal to one.

%0PSRT-W-TABTOPOSITIVE, TABTO-argument value is less than or
equal to 0: n

Explanation: The TABTO function was specified with 0 or a negative
integer.

Your Response: Specify the TABTO function with a positive integer.

%0PSRT-W-TAGOFLOW, Time tag overflow. WMEs will be reassigned
new time tags in the. original order

Explanation: The WME time-tag counter has overflowed. All WMEs
in working memory when this occurs are given new time tags, however,
their order of recency is preserved.

Your Response: None.

%0PSRT-W-TOOMANYARGS, Too many arguments specified

Explanation: More· than one argument was specified with the
@,ADDSTATE,DISABLE,ENABLE,RESTORESTATE,RUN,
SAVESTATE, or STRATEGY command.

Your Response: Specify only one argument with the @, ADDSTATE,
DISABLE, ENABLE, RESTORESTATE, RUN, SAVESTATE, or
STRATEGY command.

%0PSRT-W-TOOMANYCHARS, Too many characters in atom

Explanation: The number of characters in an atom's print name
exceeded the maximum limit of 256.

Your Response: Rename the atom so that the number of characters is
valid.

%0PSRT-W-TOOMANYPBREAKS, PBREAK-maximum number of break­
points exceeded

Explanation: ·The number of breakpoints set at a given time exceeded
the maximum limit of 8.

Your Response: Delete as many breakpoints as necessary to keep
within the maximum limit.

%0PSRT-W-TYPEBAD, Atom is not of the required type

Explanation: The atom used is of a different type than declared.

Your Response: Correct and recompile the program module(s).

A-28 Diagnostic Messages

%0PSRT-W-UNBOUNDTAB, Attribute name not declared: AAAAAA

Explanation: The source file contains an attribute name that was not
declared with the LITERAL, LITERALIZE, or VECTOR-ATTRIBUTE
declaration.

Your Response: Check for a typing error in the name. If there is no
error, declare the attribute name with the LITERAL, LITERALIZE, or
VECTOR-ATTRIBUTE declaration.

%0PSRT-W-WRITENOTIDNG, WRITE-no arguments specified

Explanation: The WRITE action was specified without arguments.

Your Response: Specify the WRITE action with at least one argument.

;*** Scanner advanced to "AAAAAA" ***

Explanation: The compiler recovered from a syntax error by stepping
past input until it read the symbol AAAAAA. This message appears only
in a listing file and is associated with a previous syntax error message.

Your Response: The message is informational.

;*** Symbol deleted ***

Explanation: The compiler recovered from a syntax error by deleting
an erroneous symbol. This message appears only in a listing file and is
associated with a previous syntax error message.

Your Response: The message is informational.

;*** Symbol replaced by "AAAAAA" ***

Explanation: The compiler recovered from a syntax error by replacing
an erroneous symbol. This message appears only in a listing file and is
associated with a previous syntax error message.

Your Response: The message is informational.

A.4.1 Product License Messages

The following messages are displayed if you attempt to use OPS5 without a
compiler license.

%LICENSE-F-NOAUTH, DEC OPS5, use is not authorized on this node

-LICENSE-F-NOLICENSE, no license is active for this software product

-LICENSE-1-SYSMGR, please see your system manager

Explanation: An attempt has been made to access the OPS5 compiler
on an unlicensed node. The action has failed.

Your Response: See the system manager about obtaining the proper
license.

Diagnostic Messages A-29

A
ACCEPT keyword, 6-2
Adding statements, productions, and catchers to

executable images, 4-6
ADDSTATE command, 5-1

See also RESTORESTATE, SAVESTATE
using, 5-6

AFTER command, 5-1
APPEND keyword, 6-1

B
BACK command, 5-1

using, 5-12
BACK keyword, 5-12
Breakpoints, 4-5

See also PBREAK command
deleting, 5-2
listing, 5-3
setting, 5-2
using, 5-2

BUILD command, 4-6, 5-1

c
CALL command, 3-7
Catchers

adding to executable images, 4-6
Causereport, 5-14
CLOSEFILE command, 6-2

See also OPENFILE command
@ command, 4-4
Command files, 4-4
Command interpreter, 1-2

commands
See also individual commands
@, 4-4
DISABLE, 4-3
ENABLE, 4-3
EXIT, 4-3
RUN, 4-4
STRATEGY, 4-4

command summary, 5-1
debugging commands, 5-1
entering commands, 4-2
exiting, 4-3
using, 4-1

Command interpreter commands
BUILD, 4-6

Commands
RESTART, 4-6

Compiler, 1-1
restrictions, 3-1
run-time system, 1-2
using, 3-1

Compiler messages
See Diagnostic messages

Conflict-resolution strategies, 4-4
Conflict set, 5-5

displaying, 5-6
restoring state of, 5-6
saving s.tate of, 5-6

CPU report
See Timing CPU report

/CREATE qualifier, 3-3
See also Modular compilation
using, 3-4, 3-10

Creating
working-memory elements, 5-4

CS, 5-9
CS command, 5-1

using, 5-6
Ctrl/C, 4-5
Ctrl/Z, 4-3

D
DCL commands

See also individual commands
EDIT, 2-2
HELP, 2-3
program development, 2-1
SET MESSAGE, A-3

Debugger
See VMS Debugger

Debugging commands, 5-1
DEFAULT command, 6-2
DEFINE command, 3-12

modular compilation, 3-10
Deleting

working-memory elements, 5-5
Deleting breakpoints, 5-2
Diagnostic messages, A-1

controlling display, A-3
descriptions, A-3 to A-29
format, A-2
order, A-1
run-time system

disabling, enabling, 4-3, A-3

Index

lndex-1

Directives
%INCLUDE, 3-2

DISABLE command, 5-1
See also ENABLE command
disabling message display, 4-3, A-3
disabling PME package, 5-14

DISABLE HALT
using, 4-3

Displaying

E

conflict set, 5-6
next instantiation, 5-6
working memory, 5-3
working-memory elements, 5-3

EDIT command
using, 2-2

ENABLE command, 5-1
See also DISABLE command
enabling BACK command, 5-12
enabling message display, 4-3, A-3
enabling PME package, 5-14

ENABLE HALT
using, 4-3

Entry point
producing, 3-4

/ENTRY qualifier, 3-3
using, 3-4

Error messages
See Diagnostic messages

EXCISE command, 5-1
using, 5-13

Executable file
producing an entry point, 3-4

Executable images, 3-1
adding statements, productions, and catchers, 4-6
naming, 3-5
suppressing, 3-5

/EXECUTABLE qualifier, 3-3
using, 3-5

EXIT command, 4-3
External routines

compiling, 3-7

F
File identifier

with CLOSEFILE command, 6-2
with DEFAULT command, 6-2
with OPENFILE command, 6-1

Files
closing, 6-2
executable

producing an entry point, 3-4
executable image, 3-1

naming, 3-5
suppressing, 3-5

including source files, 3-2
index, 3-8

creating, 3-4
naming, 3-5
producing, 3-5
suppressing, 3-5

listing
including machine code, 3-6

lndex-2

Files
listing (cont'd.)

naming, 3-5
producing, 3-5
suppressing, 3-5

loading
See @ command

object, 3-1
naming, 3-6
suppressing generation, 3-6

opening, 6-1
shareable image, 3-11

calling, 3-11
creating, 3-11
installing, 3-11

source, 3-1
Firing

See Recognize-act cycle

H
HALT action, 4-3, 4-6
HALT keyword, 4-3
HELP command, 2-3

Images
adding statements, productions, and catchers, 4-6

%INCLUDE, 3-2
Including source files, 3-2
Index file

creating, 3-4
logicals

OPS$USERLIB, 3-4
Index files, 3-8

naming, 3-5
producing, 3-5
suppressing, 3-5

/INDEX_FILE qualifier, 3-3
See also Modular compilation
using, 3-5, 3-1 0

IN keyword, 6-1
Input

controlling, 6-1 to 6-3
setting default, 6-2

Instantiations, 5-5
displaying next, 5-6

Introduction to VAX OPS5, 1-1

K
Keywords

ACCEPT, 6-2
APPEND, 6-1
BACK, 5-12
HALT, 4-3
IN, 6-1
LEX, 4-4
MEA, 4-4
OUT, 6-1
TIMING, 5-14
TRACE, 6-2
WARNING, 4-3
WRITE, 6-2

L ~
LEX keyword, 4-4
Linker, 2-2, 3-1
Linking VAX OPS5 programs, 3-6
Listing breakpoints, 5-3
Listing files

machine code
including, 3-6

naming, 3-5
producing, 3-5
suppressing, 3-5

/LIST qualifier, 3-3
using, 3-5

Logical names
OPS$USERLIB, 3-4

M
/MACHINE_CODE qualifier, 3-4

using, 3-6
MAKE command, 5-1

initializing working memory, 4-4
using, 5-4

MATCHES command, 5-1
using, 5-10

Match information,. 5-1 o
MEA keyword, 4-4
MODIFY command, 5-1

using, 5-5
Modifying

working memory, 5-4
working-memory elements, 5-5

Modular compilation, 3-7 to 3-10

N
NEXT command, 5-1

using, 5-6
/NOCREATE qualifier, 3-3
/NOENTRY qualifier, 3-3

using, 3-4
/NOEXECUTABLE qualifier, 3-3

using, 3-5
/NOINDEX_FILE qualifier, 3-3

using, 3-5
/NOLIST qualifier, 3-4

using, 3-5
/NOMACHINE_CODE qualifier, 3-4

using, 3-6
/NOOBJECT qualifier, 3-4

using, 3-6

0
Object file

naming, 3-6
suppressing generation, 3-6

Object files, 3-1
Object module library, 3-8
/OBJECT qualifier, 3-4

using, 3-6
OPENFILE command, 6-1

See also CLOSEFILE command
OPS$USERLIB logical name, 3-4
OPS5 command

qualifiers, 3-3 to 3-1 O

OPS5 command
qualifiers (cont'd.}

See also individual qualifiers
/LIST, 3-5
/NOENTRY, 3-4
/NOINDEX_FILE, 3-5
summary, 3-3

using, 3-2
OUT keyword, 6-1
Output

p

controlling, 6-1 to 6-3
setting default, 6-2

PBREAK command, 5-1
using, 5-2, 5-3

Performance Measurement and Evaluation (PME)
package, 5-13

PM, 5-10
PPWM command, 5-2

using, 5-3
Productions

adding to executable images, 4-6
disabling, 5-13

Program
See VAX OPS5 program

Programs, restarting, 4-6

Q
Qualifiers

See OPS5 command and individual qualifiers

R
Recognize-act cycle, 1-2

backing up, 5-12
executing, 4-4
interrupting, 4-5

REMOVE command, 5-1
using, 5-5

REPORT command, 5-2
using, 5-14

Reports
cause, 5-14
timing CPU, 5-13

RESTART command, 4-6, 5-2
Restarting programs, 4-6
RESTORESTATE command, 5-1

See also ADDSTATE, SAVESTATE
using, 5-7

Restrictions
compiler, 3-1

RULE, 5-8
Rules

See Productions
RUN command, 5-2

DCL, 2-3
VAX OPS5, 4-4

Run-time system, 1-2
See also Command interpreter
compiler, 1-2
messages

See Diagnostic messages
returning to OPS5 prompt, 4-3

lndex-3

s
SAVESTATE command, 5-1

See also ADDSTATE, RESTORESTATE
using, 5-6

SET MESSAGE command, A-3
Setting breakpoints, 5-2
Shareable image

calling, 3-11
creating, 3-11
installing, 3-11

Shareable images, 3-11
Shareable programs, 3-11 to 3-12
Source file, 3-1
STARTUP statement, 4-1, 4-4

enable/disable halt, 4-3
Statements

adding to executable images, 4-6
Strategies

·conflict-resolution, 4-4
STRATEGY command, 4-4, 5-2

T
liming CPU report, 5-13
TIMING keyword, 5-14
TRACE keyword, 6-2
Trace output, 5-7 to 5-10

v

CS, 5-9
level 1, 5-8
level 2, 5-9
level 3, 5-9
level 4, 5-1 0
PM, 5-10
RULE, 5-8
setting default, 6-2
WM, 5-9

VAX/VMS Linker, 2-2, 3-1
VAX OPS5 command

using, 2-2
VAX OPS5 command files

See Command files
VAX OPS5 compiler, 1-1
VAX OPS5 directives

%INCLUDE, 3-2
VAX OPS5 program

compiling, 2-2, 3-1, 3-7
creating, 2-2
debugging, 3-7, 5-1
executing, 2-3, 3-7, 4-1
executing recognize-act cycle, 4-4
initial conditions, 4-3
running, 4-1

VMS Debugger, 3-7, 5-14

w
WARNING keyword, 4-3
WATCH command, 5-2

using, 5-8
WBREAK command, 5-1

using, 5-2, 5-3
WM, 5-9
WM command, 5-2

lndex-4

WM command (cont'd.)
using, 5-3

Working memory
displaying, 5-3
initializing, 4-4
modifying, 5-4
restoring state of, 5-6
saving state of, 5-6

Working-memory elements
creating, 4-4, 5-4
deleting, 5-5
displaying, 5-3
modifying, 5-5

WRITE keyword, 6-2

HOW TO ORDER ADDITIONAL DOCUMENTATION

From

Alaska, Hawaii,
or New Hampshire

Rest of U.S.A.
and Puerto Rico*

Call

603-884-6660

1-800-DIGITAL

Write

Digital Equipment Corporation
P.O. Box CS2008
Nashua, NH 03061

*Prepaid orders from Puerto Rico, call Digital's local subsidiary (809-754-7575)

Canada

Internal orders
(for software
documentation)

Internal orders
(for hardware
documentation)

800-267-6219
(for software
documentation)

613-592-5111
(for hard ware
documentation)

DTN: 234-4323
508-351-4323

Digital Equipment of Canada Ltd.
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6
Attn: Direct Order desk

Software Distribution Center (SDC)
Digital Equipment Corporation
Westminster, MA.01473

Publishing & Circulation Serv. (P&CS)
NR03-l/W3
Digital Equipment Corporation
Northboro, MA 01532

Reader's Comments VAX OPS5
User's Guide

AA-EZ18C-TE

Your comments and suggestions will help us improve the quality of our future documentation. Please note
that this form is for comments on documentation only.

I rate this manual's:
Accuracy (product works as described)
Completeness (enough information)
Clarity (easy to understand)
Organization (structure of subject matter)
Figures (useful)
Examples (useful)
Index (ability to find topic)
Page layout (easy to find information)

What I like best about this manual:

What I like least about this manual:

Excellent
D
D
D
D
D
D
D
D

Good
D
D
D
D
D
D
D
0

My additional comments or suggestions for improving this manual:

I found the following errors in this manual:
Page Description

Please indicate the type of user/reader that you most nearly represent:

D Administrative Support
D Computer Operator
D Educator/Trainer
D Programmer/Analyst
D Sales

N amefl'itle

Company

Mailing Address

10/87

D Scientist/Engineer
D Software Support
D System Manager
D Other (please specify)

Fair
D
D
D
D
D
D
D
D

Dept.

Phone

Date

Poor
D
D
D
D
D
D
D
D

Do Not Tear - Fold Here and Tape

Do Not Tear - Fold Here

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
CORPORATE USER PUBLICATIONS·
PK03-1/30D
129 PARKER STREET
MAYNARD, MA 01754-2198

111 111 ••• 1.1.1 •• 1 .. 11.1 •• 1.1 •• 1 ••• 1.1.1 ••• 11.1

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

