
·------------
~D~DllmD

:
: :

...

•
Introduction to
VAX-11 PL/I

Order No. AA-H950A-TE

Ju!y 1980

Provides an overview of the VAX-11 PL/I programming language and its imple­
mentation and operation on the VAX/VMS operating system.

Introduction to
VAX-11 PL/I

Order No. AA-H950A-TE

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation . maynard, massachusetts

First Printing, July 1980

The information in this document is subject to change without notice and should not be construed as
a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be used or copied
in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
DIGITAL or its affiliated companies.

Copyright @ 1980 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this document requests the
user's critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DEC US
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-11
VAX
.DECnet
DATATRIEVE

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
IND AC
LAB-8
DECSYSTEM-20
RTS-8
VMS
IAS
TRAX

MAS SB US
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-11
TMS-11
ITPS-10
SBI
PDT

Contents

Preface

Chapter 1 PL/I Concepts

1.1 Program Structure and Statement Syntax.

1.1.1 Statements.
1.1.2 Blocks

1.2 Data Declarations and Data Types

1.2.1 Computational Data Types
1.2.2 Noncomputational Data Types
1.2.3 ., The Data Types of Constants .
1.2.4 Automatic and Static Storage for Data.
1.2.5 Internal and External Variables .

1.3 Aggregates. . . .

1.3.1 Arrays . .
1.3.2 Structures

1.4 Assignment and Expressions

1.4.1 Expressions.
1.4.2 Conversion of Data .
1.4.3 Operators
1.4.4 Aggregate Assignments

1.5 Input/Output Concepts. . . .

1.5.1 Types of Input/Output
1.5.2 Attributes of Files . .
1.5.3 Associating File Constants with External Files .

1.6 Stream Input/Output

1.6.1 List-Directed Stream I/0 .
1.6.2 Edit-Directed Stream I/O .
1.6.3 Declaration of Stream Files .
1.6.4 Print Files

1.7 Program Control ...

1.7.1 IF Statement.
1. 7 .2 DO Statement
1.7.3 GOTO Statement.

1.8 Procedures

1.8.1 Internal Procedures.
1.8.2 Parameters and Arguments
1.8.3 Subroutines and Functions
1.8.4 Declaring External Procedures.
1.8.5 Entry Points . . .
1.8.6 Recursion
1.8. 7 Built-In Functions . . .
1.8.8 Terminating Procedures.

Page
Vll

. 1-1

. 1-1

. 1-3

. 1-3

. 1-4

. 1-6

. 1-6

. 1-8

. 1-8

. 1-9

. 1-9
1-10

1-12

1-12
1-12
1-13
1-15

1-16

1-16
1-17
1-17

1-18

1-18
1-19
1-20
1-21

1-21

1-21
1-22
1-24

1-24

1-25
1-26
1-27
1-28
1-29
1-29
1-29
1-30

lll

1.9 Condition Handling

1.9.1 Condition Names.
1.9.2 The Execution of ON-Units .
1.9.3 The ONCODE Built-In Function

1.10 Record Input/Output.

1.10.1 File Organizations
1.10.2 Access Modes
1.10.3 Declaring and Opening Record Files .
1.10.4 Sequential Access.
1.10.5 Random Access.
1.10.6 Error Handling .

1.11 Storage Allocation and Control .

1.11.1 Locator-Qualified References
1.11.2 Pointers
1.11.3 Areas and Offsets .
1.11.4 Defined Variables.

Chapter 2 VAX-11 Extensions to PL/I

2.1 Extensions for Input/Output Processing .

2.1.1 Indexed Sequential Files
2.1.2 Relative Files.
2.1.3
2.1.4
2.1.5
2.1.6
2.1.7
2.1.8
2.1.9

File Disposition Options for Closing a File .
File Ownership and Protection.
Terminal 1/0
Fixed-Control Files
Magnetic Tape File Processing
Block 1/0
Record Id Access

2.2 Extensions for Calling and Condition Handling

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7

Argument-Passing Mechanisms .
Variable-Length Argument Lists.
Global Symbols.
New Storage Classes
VAX CONDITION and ANYCONDITION
Resignaling.
ONCODE and ONARGSLIST.

Chapter 3 Using PL/I in the VAX/VMS Environment

IV

3.1 Sample Terminal Session.
3.2 The File System

3.2.1 Subdirectories . .
3.2.2 Logical Names . .

3.3 The VAX/VMS Librarian

3.3.1 INCLUDE Files and Libraries.
3.3.2 Object Module Libraries

3.4 Command Procedures

1-31

1-31
1-32
1-33

1-33

1-34
1-35
1-35
1-35
1-36
1-36

1-37

1-38
1-39
1-40
1-41

. 2-1

. 2-2

. 2-2

. 2-3

. 2-3

. 2-4

. 2-4

. 2-5

. 2-6

. 2-6

. 2-6

. 2-7

. 2-8

. 2-8

. 2-9
2-10
2-10
2-11

. 3-1
3-10

3-11
3-12

3-13

3-13
3-14

3-15

VAX-11 PL/I Language Summary

Glossary

Index

Figures

1 Documentation for V AX-11 PL/I Programmers . viii
1-1 Block Activations . 1-3
1-2 Internal Variables . . 1-8
1-3 Static External Variables. . 1-9
1-4 An Internal Procedure . 1-25
1-5 List Processing in PL/I . 1-40
3-1 Creating a Directory Hierarchy . 3-11
3-2 Creating and Using an INCLUDE File Library 3-14

Tables

1-1 Computational Constants . 1-7
1-2 Summary of ON Conditions 1-32

v

Preface

Manual Objectives

This manual provides introductory information on the VAX-11 PL/I program­
ming language. This language is an implementation of the PL/I General­
Purpose (G) Subset, defined by the proposed ANSI standard BSR X3.74, with
extensions to support the execution of PL/I programs in the VAX/VMS oper­
ating system environment.

Audience Assumptions

It is assumed that readers are programmers who have used PL/I or some other
high-level programming language. This manual does not attempt to explain
programming concepts to the novice.

The information in this manual should be of particular value to the two
following audiences:

• Programmers who are familiar with the VAX/VMS operating system and
who wish to understand the concepts of programming in PL/I.

• Programmers having prior experience with other implementations of PL/I
who wish to understand the differences between those implementations and
V AX-11 PL/I.

Structure of this Document

This manual has three chapters, a glossary, and a language summary:

• Chapter 1, "PL/I Concepts," provides an overview of the PL/I programming
language. This chapter emphasizes only those aspects of VAX-11 PL/I that
are common among implementations of the ANSI standard PL/I language.

• Chapter 2, "V AX-11 Extensions to PL/I," describes the areas in which the
PL/I language has been extended for programs that execute under the con­
trol of the VAX/VMS operating system.

Vll

• Chapter 3, "Using PL/I in the VAX/VMS Environment," shows a sample
terminal session in which a PL/I program is written and executed. It also
discusses the program development tools provided by the VAX/VMS oper­
ating system.

• The "VAX-11 PL/I Language Summary" is a syntactic summary of the
VAX-11 PL/I language.

• The Glossary defines the terms that are introduced in this manual and that
are pertinent to an understanding of the PL/I language.

Related Documents

VAX-11 PL/I

This manual introduces concepts and techniques that are described fully in
the primary VAX-11 PL/I documents. Figure 1 shows the relationship be­
tween the PL/I documents and related material in the VAX/VMS documenta­
tion set.

For abstracts of the VAX/VMS documents shown in Figure 1 and their order
numbers, see the VAX/VMS Information Directory and Index.

Introduction to
VAX-11 PL/I
AA-H950A-TE

• Provides an overview of the
PU/ G Subset language

• Summarizes the VAX-11 extensions
to the PL/I language

• Introduces the tools for PL/I
program development on VAX/VMS

VAX/VMS Documentation

• Contains a complete definition
of the VAX/VMS operating system
and its command language, DCL

• Provides specific reference
information for all operating
system components, facilities,
and utilities

The titles listed below may be of interest
to VAX-11 PL// programmers:

Encyclopedic Reference
VAX-11 PL/I
User's Guide

AA-H951A-TE

VAX/VMS Command Language User's Guide

VAX-11 Linker Reference Manual
AA-H952A-TE

• Contains a complete definition
of the VAX-11 PL/I language

• Describes how to use
VAX/VMS to compile, link, and run
PU/ programs

VAX-11 Record Management Services Reference Manual

Introduction to VAX-11 Record Management Services

VAX-11 SORT User's Guide
• Lists the semantics and syntax

rules for all standard PL/I
language elements

• Provides detailed information
on input/output processing

~
• Explains extensions to VAX-11

PL/I to support procedure calling
and condition handling

/
VAX-11 PL/I

Language Summary
AV-J757A-TE

• Gives a concise summary of PL/I
attributes, statements, built-in functions,
and conversion rules

•Provides quick reference for VAX-11 PL/I
ENVIRONMENT options, the ASCII character set,
and PL/ command qualifiers and options

VAX-11 PL/I Installation and
System Management Guide

AA-J179A-TE

• Gives step-by-step instructions for
installing the VAX-11 PL/I compiler

• Describes how to diagnose and report
problems with the compiler

VAX-11 DECnet User's Guide

VAX/VMS System Services Reference Manual

VAX-11 Run-Time Library Reference Manual

VAX-11 Utilities Reference Manual

Figure 1: Documentation for VAX-11 PL/I Programmers

Vlll

Conventions Used inThis Document

A computational
data item

$RUN METRIC IBITl
Enter conversion mode:

option, ...

DECLARE X FIXED ;

quotation mark
apostrophe

[/qualifier ...]

{
'file-spec' }

module-name

An italicized word or phrase indicates a term
that is being introduced. These terms are de­
fined in the Glossary.

A symbol with a one- to three-character ab­
breviation indicates that you press a key on
the terminal, for example, IBITl or ®9.

The symbol (CTRL/x l indicates that you press the
key "x" while holding down the key labeled
CTRL, for example, (CTRL/c). In examples, this
control key sequence is shown as "x, for exam­
ple "C, because that is how the VAX/VMS
system prints control key sequences.

Command examples show all interactive ex­
amples in two colors. Program output and
prompting characters that the system prints
or displays are shown in black letters. All
user-entered commands and data are shown
in red letters.

Horizontal ellipses indicate that additional
parameters, options, or values can be entered.
When a comma precedes the ellipses, it indi­
cates that successive items must be separated
by commas.

Vertical ellipses indicate that not all of the
text of a program or program output is illus­
trated. Only relevant material is shown in the
example.

The term "quotation mark" is used to refer to
the quotation mark (") symbol. The term
"apostrophe" is used to refer to the single quo­
tation mark (,) symbol.

Square brackets indicate that a syntactic ele­
ment is optional and you need not specify it.
Square brackets are not optional, however,
when used to delimit a directory name in a
VAX/VMS file specification.

Braces surrounding two or more stacked items
indicate a choice; you must choose one of the
two syntactic elements.

IX

Chapter 1
PL/I Concepts

This chapter summarizes and provides brief examples of programming in
PL/I. It discusses PL/I in the following contexts:

• Program structure and statement syntax

• Data declarations and data types

• Aggregates (arrays and structures)

• Assignment and expressions

• Input/output concepts

• Stream input/output

• Program control

• Procedures (subroutines and functions)

• Condition handling

• Record input/output

• Storage allocation and control

For complete reference information on any of the PL/I concepts or language
elements discussed in this chapter, see the VAX-11 PL/I Encyclopedic
Reference.

1.1 Program Structure and Statement Syntax

PL/I is a block-structured language in which statements are grouped in units
called blocks.

1.1.1 Statements

Statements are used to declare variables and constants and to express actions
to be performed by a PL/I program. A statement consists of PL/I keywords,

1-1

user-specified identifiers, literal constants, operators, and punctuation. An
example of a PL/I statement is:

DECLARE (TOTAL,COUNTER> FIXED BINARY;

The elements DECLARE, FIXED, and BINARY are PL/I keywords; the ele­
ments TOTAL and COUNTER are user-specified identifiers for variables.
The parentheses, comma, spaces, and semicolon are punctuation that delimit
these elements and give the statement its semantic meaning.

In PL/I, keywords are not reserved words; PL/I recognizes them as keywords
within the context in which they are used. Thus, these words can be used as
identifiers.

Identifiers are user-defined names that can be created from any of the charac­
ters A through Z, a through z, 0 through 9, $, and_. Uppercase letters and
lowercase letters are equivalent (for example, the identifier A is the same as
the identifier a). An identifier cannot have more than 31 characters or any
embedded spaces.

Each PL/I statement must be terminated with a semicolon. Other than that,
the text formatting requirements of PL/I are quite loose. Any number of
spaces, tabs, or new-line characters can be entered in any position in a state­
ment where a space is required or permitted; more than one statement can be
entered on a single line. Most PL/I programmers prefer to specify only one
statement per line and to use indention within the text of a source file to
indicate nesting levels of blocks and groups of statements.

Here is an example of a simple PL/I program that shows one method of
formatting a program. This program, called ADDUP, obtains integer values
from the terminal and sums them:

ADDUP: PROCEDURE OPT IONS (MA HI);
DECLARE <TDTAL,CDUN~ER) FIXED BINARY;

COUNTER = 1;
TOTAL = o;
DD WHILE (COUNTER 0) ;

PUT SKIP LIST ('Enter nurr1ber:');
GET LI ST (COUNTER) ;
TOTAL = TOTAL + COUNTER;
END;

PUT LIST ('Total is' 1TOTAU;
RETURN;

A comment can appear in any position in a PL/I statement in which punctua­
tion is permitted or required. A comment is signified by the character pairs/*
and*/. For example, a statement in the program ADDUP may be commented
as shown below:

COUNTER= 1; /* initialize to any nonzero value */

The text between the comment characters can contain any characters except
the character pair * /.

A label may appear on most PL/I statements (the notable exceptions are
DECLARE statements and target statements for an ON statement or for an

1-2 PL/I Concepts

ELSE or THEN clause in an IF statement). A label is a user-specified identi­
fier that is terminated with a colon (:). For example:

C: BEGIN;

The identifier C is the label of the BEGIN statement that heads a begin block.
A statement can have at most one label.

1.1.2 Blocks

PL/I recognizes two types of block: procedure blocks and begin blocks. A
procedure is the basic executable program unit of PL/I. The statements in a
procedure block are contained within the limits of the statement pair
PROCEDURE and END. In the program ADDUP, shown above, the entire
program consists of a single procedure block.

A begin bl9ck is a program unit into which control flows during normal execu­
tion of a procedure. The statements of a begin block are contained within the
limits of a pair of BEGIN and END statements.

When either a procedure block or a begin block is entered, a block activation
is created for it. A block activation consists of the allocation of storage for
variables declared within the block and hardware information that connects
the block to the previous block. Figure 1-1 illustrates the relationship between
the PL/I statements PROCEDURE and BEGIN and block activations created
for procedure blocks and a begin block.

A

Block activation
created when
the program
is executed

B

1
Block activation
created when
Bis invoked

c

1
Block activation
created when
C is entered

Figure 1-1: Block Activations

A: PROCEDURE

. CALL B;

B: PROCEDURE

C: BEGIN;

I :
END;

END;

END;

1.2 Data Declarations and Data Types

A procedure block is activated by a
CALL statement or a function reference.

A begin block is entered when its BEGIN
statement executes during sequential execution.

When an END statement for a block is executed,
the block associated with that activation is released.

A variable is a data item whose value may change during the execution of a
PL/I program. All variables used in a PL/I program must be explicitly speci-

PL/I Concepts 1-3

fied in a DECLARE statement. In a DECLARE statement the declaration of
a variable consists of:

• An identifier that names the variable. Within the program, the data associ-
ated with the variable is accessed by references to this name.

• The data type, or characteristics, of the data that the variable represents.

• The storage requirements of the variable.

The data type and storage requirements of a variable are specified in a
DECLARE statement by PL/I keywords called attributes. Some examples of
variable declarations are:

DECLARE CODE CHARACTER;
DECLARE TOTAL FIXED BINARY;

In these declarations, the variables named by the identifiers CODE and
TOTAL are given the attributes described by the keywords CHARACTER
and FIXED BINARY. By default, these variables are allocated storage each
time the block that contains these declarations is activated.

Declarations of variables of the same data type may be factored. For example,
variables that have the data type BIT may be declared as follows:

DECLARE (YEStNOl BIT;

The variables YES and NO are both given the attribute BIT.

All declarations in a block may be grouped into a single DECLARE statement
by separating declarations with commas, as shown below:

DECLARE CODE CHARACTER,
TOTAL FIXED BINARY,
(YEStNOi BIT;

There are two categories of data types: computational and noncomputational.
Each of these is discussed next.

1.2.1 Computational Data Types

The computational data types represent data items whose values can be
manipulated. For example, arithmetic operations can be performed on arith­
metic data, and string operations can be performed on string data. PL/I pro­
vides the following attribute keywords to specify computational data types:

• FIXED BINARY, for fixed-point binary, or integer, data.

• FIXED DECIMAL, for fixed-point decimal data.

• FLOAT BINARY or FLOAT DECIMAL, for floating-point data.

• CHARACTER, for character-string data. A character string consists of zero
or more characters. The valid characters in a VAX-11 PL/I character string
are defined in the ASCII character set.

• BIT, for bit-string data or for Boolean values. A bit string consists of zero or
more of the binary digits, or bits, 0 and 1. A one-bit string with a value of

1-4 PL/I Concepts

(

zero represents a Boolean value of false; a one-bit string with a value of one
represents a Boolean value of true.

• PICTURE, for pictured data. Pictured data is data maintained in a charac­
ter form that may contain nonnumeric characters (for example, dollar signs
or actual decimal points).

When a variable is declared with any of the attributes listed above, the decla­
ration normally includes additional information that further describes the
data. For example, a character-string variable has an extent, or length. The
following is an example of a character-string declaration:

DECLARE TEXT_MESSAGE CHARACTER (10);

This declaration specifies that 10 characters, each occupying a byte of storage,
are required to hold the value of the variable TEXT_MESSAGE. When no
extent is given in a variable declaration, PL/I provides a default. For example,
the default extent for a character-string variable is one character. Character­
string variables may also be declared with the VARYING attribute. The
length of a varying-length character string is, at any given time, the length of
the current value of the variable.

Arithmetic data has a precision. The precision of an arithmetic data item is
simply the number of binary or decimal digits used to hold the data item's
value. For example, the following declaration reserves seven binary digits for a
fixed-point binary variable:

DECLARE INDEX FIXED BINARY(7);

PL/I always allocates a bit for the sign of a fixed binary value; thus, eight
binary digits (bits) are required to hold the value of the variable INDEX,
which can have a value in the range of -128 to 127. When no precision is
specified for a fixed-point binary variable, PL/I supplies a default precision of
31 bits.

In addition to a precision, a fixed-point decimal variable has a scale factor.
The scale factor specifies the number of digits of the value that are fractional,
for example:

DECLARE TOTAL_PRICE FIXED DECIMAL 19t2>;

This declaration indicates a fixed-point decimal value with a precision of nine
decimal digits, two of which are fractional. When no precision is specified for
a fixed-point decimal variable, PL/I supplies a default precision of 10 digits. If
no scale factor is specified, PL/I supplies a default scale factor of 0.

When a precision of 24 or less is specified for a floating-point variable,
VAX-11 PL/I creates a single-precision floating-point variable. When the pre­
cision is in the range of 25 through 53, VAX-11 PL/I creates a double-preci­
sion floating-point variable. A floating-point variable may be declared as in
the following example:

DECLARE DISTANCE_TO_STAR FLOAT 153);

A picture, specified for pictured data, is a representation of an arithmetic
value stored as a character string. A picture is like a fixed-point decimal

PL/I Concepts 1-5

value, including a precision and scale factor. However, a picture may also
contain special characters such as dollar signs and decimal points. For exam­
ple:

DECLARE PRICE PICTURE '$ZZZZ9V.99';

This declaration describes a fixed-point decimal value that, when output, will
be formatted with a dollar sign and decimal point. The precision and scale
factor of the value of PRICE are (7,2).

1.2.2 Noncomputational Data Types

Sometimes called program-control data types, the noncomputational data
types refer to data used within the program for control structures and linkage.

The attributes for noncomputational data types are:

• ENTRY. Entry data identifies a point of invocation for a procedure.

• FILE. File data is used to define a source of input data or a destination for
output data.

• LABEL. Label data represents statement labels.

• POINTER, AREA, and OFFSET. These data types describe other data
items in terms of their storage locations.

The ENTRY, FILE, and LABEL attributes may be used in declarations as in
the following example:

DECLARE WHICH ENTRY VARIABLE;

The VARIABLE attribute indicates that the variable named WHICH may be
assigned different entry values during the execution of the program.

Pointer, area, and offset variables must be declared with the POINTER,
AREA, and OFFSET attributes, respectively. These attributes are described
in Section 1.11, "Storage Allocation and Control."

1.2.3 The Data Types of Constants

A constant is a data item whose value does not change. Computational data
items and some noncomputational data items can be specified using con­
stants.

A computational constant is a literal representation of a value. Table 1-1
summarizes the types of constant recognized by VAX-11 PL/I for computa­
tional data.

VAX-11 PL/I has no constants of binary or pictured types. Binary and pic­
tured variables are given values by assigning them constant values or by
assigning them the values of variables of other data types.

1-6 PL/I Concepts

Table 1-1: Computational Constants

Data Type of
Constant Examples Comments

Fixed-point 55.1 All numeric constants are assumed to have a deci-
decimal 23 mal base. When the constant has a decimal point

and fractional digits, it is scaled. Otherwise, it is an
integer.

Floating point 4E33 The letter E follows the mantissa and precedes the
01.E-2 exponent.

Character string 'string' Apostrophes delimit the string.

Bit string or '0101 'B The letter B indicates a bit string.
Boolean

Hexadecimal '4F'B4 The notation B4, B3, B2, and Bl permits bit-string
Octal '77'B3 constants to be specified in other bases.

The terms entry constant, file constant, and label constant are used to refer to
names that are declared as follows:

• Entry and label constants may be declared implicitly by context. For
example:

PRINT_REPORT: BEGIN;

In this statement, PRINT_REPORT represents a label constant; it is a.
label whose value does not change. Similarly, a PROCEDURE statement or
ENTRY statement defines an entry constant:

METRIC: PROCEDURE;

• File constants, except the default file constants SYSIN and SYSPRINT,
must be explicitly declared. For example:

DECLARE STATE_FILE FILE;

This declaration represents a file constant. All I/O statements that reference
STATE_FILE affect the same file.

• An entry constant may be declared explicitly if the constant represents an
entry that is not in the current procedure. See Section 1.8.4, "Declaring
External Procedures.''

Any declaration of a file or entry data item is by default considered a con­
stant, unless the VARIABLE attribute is also specified.

PL/I also recognizes compile-time symbolic constants, called constant identi­
fiers. A constant identifier is defined and given a value by a %REPLACE
statement, as follows:

%REPLACE SLENGTH BY so;

After this statement is read during program compilation, all occurrences of
the identifier SLENGTH are replaced by the constant 80. Constant identifiers
are valid for arithmetic, character-string, and bit-string constants.

PL/I Concepts 1-7

1.2.4 Automatic and Static Storage for Data

A PL/I programmer can effectively manage the use of storage by selecting the
appropriate storage class for a variable. Two of the attributes that specify how
PL/I allocates storage for a variable are AUTOMATIC and STATIC.

An automatic variable is not allocated storage by PL/I until the block in
which it is declared is activated. When the block is deactivated, the storage is
released. All variables, except those declared with the ENTRY and FILE
attributes, are automatic by default.

A static variable, on the other hand, is allocated storage only once, and main­
tains its value from one activation of the block to the next.

Static and automatic variables may be initialized. They may be declared with
values in the INITIAL attribute and PL/I will assign them these values at
compile time. For example:

DECLARE PASSWORD STAT I c CHARACTER (5) INITIAL (I)-()-(YYZ I) ;

Other storage classes are based, defined, and parameter. Based and defined
variables are described in Section 1.11, "Storage Allocation and Control."
Parameter is the storage class of variables whose values are determined by
arguments specified when a procedure is invoked. Parameters are described in
Section 1.8.2, "Parameters and Arguments."

1.2.5 Internal and External Variables

An internal variable is one whose value is known only within the block that
declared it and all blocks whose source text is contained within that block.
The range of blocks in a program within which a name is known is called the
scope of the name.

Figure 1-2 illustrates internal variables.

A: PROCEDURE;
DECLARE INDEX FIXED BINARY;

B: PROCEDURE;
C: BEGIN; I DECLARE COUNTER F Ii<ED BI NARY;

END;

END;

END;

Figure 1-2: Internal Variables

In Figure 1-2, the internal variable INDEX is known in the block that de­
clares it, A, and in the contained blocks B and C. The internal variable
COUNTER, however, is known only within the block C; Chas no contained
blocks. All variables that are not explicitly declared with the EXTERNAL
attribute have the INTERNAL attribute by default.

1-8 PL/I Concepts

An external variable is one whose value can be known in separately compiled
procedures that are bound together by linking. All external variables have the
STATIC attribute.

Figure 1-3 illustrates the declaration of PL/I external variables. Two sepa­
rately compiled procedures, APPLIC and READY, declare the external varia­
ble FLAGS. In each procedure, FLAGS is declared with the same data type
attributes and with the EXTERNAL attribute.

Block activation created when
the main program is executed - APPLIC

Storage for static and static l lT
external variables - T __ FL-A-GS-~-

APPLIC: PROCEDURE OPTIONS(MAIN);
DECLARE FLAGS BIT(64) ALIGNED EXTERNAL;

READY

t

CALL READY;
END;

READY: PROCEDURE;
DECLARE FLAGS BIT (64) ALIGNED EXTERNAL;

A reference to FLAGS in either procedure
is resolved to the same storage
location when these procedures are linked.

Block activation created when
READY is invoked

Figure 1-3: Static External Variables

External variables provide a way for modular procedures to share common
data. A PL/I external variable is the same, functionally, as a FORTRAN
COMMON. For an example of a PL/I program and a FORTRAN program
sharing external variables, see the VAX-11 PL/I User's Guide.

1.3 Aggregates

A variable that represents a single element, or item, of data is called a scalar
variable. Scalar variables can be grouped into aggregates. There are two types
of aggregate:

• An array is an aggregate in which all items, called elements, have the same
data type attributes, including extent and precision. Individual elements of
an array are referred to by position, or order, in the array.

• A structure is an aggregate in which individual items, or members, are
organized in a hierarchical manner. Each member of a structure may be of a
different data type and each h~s a unique identifier within the structure.

Aggregates can also be formed from arrays whose elements are structures, or
from structures whose individual members are arrays.

1.3.1 Arrays

The number of dimensions of an array and the extent, that is the number of
elements, in each are specified in parentheses following the variable name in a

PL/I Concepts 1-9

DECLARE statement. The following example shows the declaration of an
array of fixed binary integers:

DECLARE POP_VALUES (100,20) FIXED BINARY(31>;

This statement declares an array named POP_ VALUES that has two dimen­
sions. The first dimension has 100 elements and the second dimension has 20
elements.

A reference to any element in the array is made by subscripts. Subscripts are
integer expressions that specify the position of an element within each dimen­
sion of the array. For example:

POP_VALUES <5014)

This reference specifies the element in row 50, column 4. Subscripts can be
specified using any expressions that result in integer values.

An array declaration specifies the range of subscripts to be used to refer to
array elements; these are the bounds of the array. When only one value is
given for a dimension, PL/I uses that value for the high bound and uses a
value of one for the low bound. In the array POP_ VALUES, the bounds are 1
to 100 for the first dimension and 1 to 20 for the second dimension.

Bounds may be declared explicitly as well. For example:

DECLARE TEMPERATURES C-40:120> FIXED BINARY<?>;

The first element of this array, that is, its low bound, is TEMPERA­
TURES(-40), the second element is TEMPERATURES(-39), and so on. The
upper limit, or high bound, is 120.

An array can have up to eight dimensions. Arrays are stored in memory in
row-major order, which means that the rightmost array subscript varies the
most rapidly.

Arrays can consist of noncomputational as well as computational data. For
example:

DECLARE PATH_CHOICES C10) LABEL;

This declaration represents an array of label variables, each of which may be
assigned values that represent label constants.

1.3.2 Structures

The hierarchy of the data items in a structure in PL/I is denoted by specifying
a level number preceding the declaration of each member of the structure; the
declarations of the members must be separated by commas. For example:

DECLARE 1 STATE,

1-10 PL/I Concepts

2 NAME CHARACTER (20 > '
2 POPULATION PICTURE 1 zz,zzz,zzz 1

,

2 CAPITAL,
3 NAME CHARACTER (30) t

3 POPULATION PICTURE 'ZZ1ZZZ1ZZZ''
2 SYMBOLS,

3 FLOWER CHARACTER (20) '
3 BIRD CHARACTER (20);

In the preceding example, the variable name that has the level number 1 is
the name of the major structure. Any reference to STATE will apply to the
entire structure. The subsequent numbers define additional levels of the hier­
archy. At the second level, the variable CAPITAL is further structured into
two third-level variables, NAME and POPULATION. CAPITAL, in this ex­
ample, is a minor structure, since it exists within a major structure and is
itself a structure.

A structure can have up to 15 levels. The level numbers that precede each
member name serve only to define the ordered relationship between the mem­
bers. The actual number has no other meaning.

An individual member of a structure can be referred to by means of a struc­
ture-qualified reference. A structure-qualified reference gives the names of the
minor and major structures at higher levels, separated by periods. For exam­
ple, the identifier NAME appears twice in the declaration of STATE, so a
reference to NAME would be ambiguous. However, the qualified reference
STATE.CAPITAL.NAME precisely references the element NAME at the
third level of the structure STATE.

A reference to an item in a structure must be qualified sufficiently to make it
unique within the block containing the reference. In the structure STATE
above, there are two members referred to as POPULATION. To distinguish
between the two, they must be referred to as shown below:

STATE, POPULATION
STATE.CAPITAL.POPULATION or CAPITAL.POPULATION

If, however, there is only one variable of a given name known within a block.
containing the structure, this variable can be referred to without qualifica­
tion. For example, if the identifier FLOWER is not used elsewhere in the
block that contains the declaration of the structure STATE or in a previous
block, then FLOWER may be referenced in any of the following ways:

FLOWER
SYMBOLS.FLOWER
STATE.SYMBOLS.FLOWER

A structure may itself be an element of an array, or contain array declara­
tions. For example:

DECLARE 1 STATE (50) t

2 NAME CHARACTER (20). t

2 POPULATION PICTURE 'ZZtZZZtZZZ' t

2 LARGEST _CITIES (10) t

3 NAME CHARACTER (20) t

This declaration of STATE creates an array of 50 elements, each of which is a
structure. Now, members of the structure must be referred to using a sub­
script, for example:

STATE,POPULATIONC50)

This references the member STATE.POPULATION in the structure
STATE(50). A subscript in a structure-qualified reference may appear follow­
ing any member name in the reference. For example, the reference above may
also be written STATE(50).POPULATION.

PL/I Concepts 1-11

The third member of STATE in the declaration shown above, LARGEST_
CITIES, is an array that is also structured. At this level, two subscripts must
be used to refer to members of this structure. For example:

STATE,LARGEST_CITIES.NAMEC2t2)

This reference refers to the second element of the array LARGEST_CITIES
in the second element of the array STATE.

1.4 Assignment and Expressions

The assignment statement gives a value to a variable. For example:

){ = 5;

This statement gives the value 5 to the variable X. In the assignment of
computational data, the source value of an assignment statement, that is, the
value or expression on the right of the equals sign, can be any valid PL/I
computational constant or expression.

Noncomputational variables may also be assigned values; however, they may
be assigned values only by variables or constants of the same types or by
expressions that yield the same types.

Variables can also be assigned values from a source outside of the program by
an input statement. The types of input/output statement provided by PL/I
are discussed in Section 1.5, "Input/Output Concepts."

1.4.1 Expressions

An expression is a representation of a value or a computation of a value. In
PL/I, an expression can consist of variable names, constants, operators, and
references to functions. A function is a procedure that is invoked when a
reference to its name appears in an expression. The function returns a value to
its point of invocation (functions are described in Section 1.8.3, "Subroutines
and Functions").

1.4.2 Conversion of Data

PL/I freely allows assignments between data of different computational types,
and most computations are valid as long as operands of the correct types are
used. This section gives examples of common conversions that PL/I performs.
The complete rules for conversions are given under the heading "Conversion
of Data" in the VAX-11 PL/I Encyclopedic Reference.

Every expression in a PL/I program has a data type that determines the
context in which it can be used. When two values or expressions that do not
have the same data type are used in an expression, PL/I uses a well-defined

1-12 PL/I Concepts

set of rules to perform an implicit conversion of the operands to a common
data type before performing the conversion. For example:

DECLARE A FIXED DECIMAL (10t2),
B FLOAT DECIMAL (8) t

C FI><ED BINARY;
C = A + B;

In this example, PL/I converts A to FLOAT DECIMAL before adding it to B.
Then, it converts the FLOAT DECIMAL sum to FIXED BINARY before
assigning this value to C.

In assignment statements, PL/I performs automatic conversions between any
two computational data types. For example:

DECLARE A CHARACTER (7) ,
B FIXED DECIMAL C51Zl;

A= '-121'.!.98';
B = Ai

Here, PL/I converts the value of the variable A from a character string to fixed
decimal at the time of the assignment of the value of A to the variable B.

The compiler also converts constants. For example:

DECLARE I FIXED BINARY;
DECLARE A FLOAT;

A= A I CI+ 1li

In this example, 1 is a fixed-point decimal constant. It is converted to fixed­
point binary before being added to the variable I. The fixed-point binary sum,
I + 1, is converted to floating-point binary before the division is performed.
The result of the division is floating-point binary. Most constants are con­
verted during compilation, so that only conversion of variables is performed
during execution.

1.4.3 Operators

An operator is a punctuation symbol or symbols used to represent a computa­
tion or operation. Each operator takes expressions, or operands, of specific
data types and returns a value of a specific data type. The operators are
summarized below:

• Arithmetic operators perform arithmetic operations. The arithmetic opera­
tors are:

+ (addition or prefix plus)
- (subtraction or prefix minus)
* (multiplication)
I (division)
** (exponentiation)

Operands of arithmetic operators must be arithmetic; the result is always
arithmetic.

PL/I Concepts 1-13

• Relational operators perform comparisons of data. The relational operators
are:

(equal to)
< (less than)
> (greater than)
<= (less than or equal to)
>= (greater than or equal to)
" (not equal to)
"< (not less than)
"> (not greater than)

Computational operands must be both arithmetic or they must both be of
the same data type. The result is either the bit-string value 'O 'B (false) or
the bit-string value '1 'B (true). Comparisons of the noncomputational data
types are restricted to the = and "= operators.

• Logical operators perform logical operations on Boolean values. The logical
operators are:

" (logical NOT prefix)
I (logical OR) 1

& (logical AND)

Operands must be bit strings. The result is a bit string.

• The string concatenation operator concatenates character strings or bit
strings. The concatenation operator is:

11

Operands must both be character strings or they must both be bit strings.
The result is a string with the same data type as the operands.

1. The ! character may be used in place of the I.

1-14 PL/I Concepts

An expression that contains more than one operator is evaluated on the basis
of the priorities, or precedence, of the operators. The operators have the fol­
lowing priorities, where a lower number indicates an operation that is per­
formed first:

Operator Priority

** 1

+ (prefix) 1

- (prefix) 1

1

* 2

I 2

+ 3

3

11 4

5

Operator

>

<

>

<

<=

>=

&

Priority

5

5

5

5

5

5

5

6

7

The PL/I rules of precedence tend to produce reasonable results. For instance,
in the expression:

A + B ... = C * D

the addition and multiplication are performed before the results are tested for
inequality. Operations involving operators of equal priority are performed
from left to right in all operations except exponentiation. Exponents are eval­
uated from right to left.

Parentheses may be used to specify the order of evaluation. For example:

C CA+B> I C) I 2

In this expression, the addition of A and Bis performed before the division of
the result by C; then the result of this operation is divided by 2. In any
expression that includes multiple operations, the expressions within the inner­
most set of parentheses are evaluated first.

1.4.4 Aggregate Assignments

An array variable may be specified as the target of an assignment statement
with a source expression that yields a scalar value. Every element of the array
is assigned the resulting value. For example:

DECLARE A (50150) FLOAT;

A = o;

This statement sets each element of the array A to zero.

PL/I Concepts 1-15

Both arrays and structures can be used in assignments according to the fol­
lowing rules:

• An array variable can be assigned to another array with the same number of
dimensions, extents, and attributes.

• A structure variable can be assigned to another structure that has the same
hierarchical organization and in which all members have the same attrib­
utes.

For example:

DECLARE X (10110) FIXED BINARY1
SAVE_X (10110) FIXED BINARY;

In this example, the value of each element of the array X is assigned to the
corresponding element in the array SA VE_X.

1.5 Input/Output Concepts

In PL/I, a file is a source of input data or a target for data output. A file
reference in an input/output statement is actually a reference to a file con­
stant or to a file variable that has been assigned a value. For example:

DECLARE INFILE FILE;

In the block that contains this declaration, the identifier INFILE may be used
in an I/0 statement to perform an operation on this file. File constants are
external, by default.

1.5.1 Types of Input/Output

PL/I distinguishes between two types of input/output processing. Each type of
processing handles input and output data in a different manner, and each has
a unique set of input/output statements and usage. These types of input/out­
put are:

• Stream input/output, or simply stream 1/0. The stream I/O statements are
GET and PUT.

• Record input/output, or simply record 1/0. The record I/O statements are
READ, WRITE, DELETE, and REWRITE.

When reading or writing a file using stream I/O, the data is treated as if it
forms a continuous stream of ASCII characters. Individual fields of data
within the stream are delimited by commas, spaces, and end-of-line indica­
tors, or by explicit format descriptions. A stream I/O statement specifies one
or more fields to be processed in a single operation.

When reading or writing a file using record I/0, however, a single record is
processed upon the execution of an 1/0 statement. For example, either stream

1-16 PL/I Concepts

I/O or record 1/0 may be used to accept input data from a terminal. Assume
the following data is to be read from a terminal:

THIS IS A LINE OF INPUT DATA.

If this line is read by a typical stream 1/0 statement, each word in this
sentence may be assigned to a different program variable; that is, the words
are fields delimited by spaces. However, if this line is read by a record I/0
statement, the entire sentence may be assigned to a single program variable.
The end of the line constitutes the end of the record.

Stream 1/0 and record I/0 are described individually in this chapter. Stream
1/0 is discussed in Section 1.6, which follows; record I/O is discussed in
Section 1.10.

1.5.2 Attributes of Files

The declaration of a file constant may specify attributes, called file descrip­
tion attributes, that indicate how the file is to be used. For example, the
STREAM attribute indicates a file that will be read or written using stream
I/O, and the RECORD attribute indicates a file that will be read or written
using record 1/0.

A file can be opened explicitly with an OPEN statement; the OPEN state­
ment may specify attributes that were not specified in the file's declaration.
For example:

OPEN FILE <INFILE) RECORD INPUT;

This statement opens the file associated with the identifier INFILE and gives
it the RECORD and INPUT attributes. The INPUT attribute indicates that
the file is an input file.

A file is closed with the CLOSE statement. For example:

CLOSE FILE <INFILE);

This statement makes the file INFILE inaccessible until it is reopened.

1.5.3 Associating File Constants with External Files

The TITLE option of the OPEN statement permits the specification of an
external file or device on which the input/output operations are to be per­
formed. For example:

OPEN FILE <STATE_FILE) INPUT
TITLE< 'DB1: [MALCOLMJSTATE.DAT I);

This OPEN statement defines the specific device and file that is to be opened
for input. If no TITLE option is specified in an OPEN statement, or if the
TITLE option does not completely specify a device or file, VAX-11 PL/I
follows a well-defined set of rules to determine the specific VAX/VMS file
with which a PL/I file is to be associated.

PL/I Concepts 1-17

For example, a file might be opened as follows:

OPEN FILE (TEMP) RECORD OUTPUT;

This OPEN statement does not specify a TITLE option. In this case, PL/I
uses the name of the file constant as a title. In the context of the VAX/VMS
operating system, this name can be a logical name. Thus, if a logical name
TEMP exists, its current equivalence is used. Otherwise, PL/I uses TEMP as
a file name and supplies a default file type of DAT.

For a complete description of the rules for associating PL/I files with
VAX/VMS files, see the VAX-11 PL/I User's Guide.

1.6 Stream Input/Output

In stream I/0, the data in the external file is treated as a stream of ASCII
characters. In a stream 1/0 operation, a list of program variables is associated
with actual input or output fields of data.

There are two forms of the stream I/O statements:

• List-directed stream I/0 is performed by the GET LIST and PUT LIST
statements.

• Edit-directed stream I/O is performed by the GET EDIT and PUT EDIT
statements.

Both forms of the stream I/O statements use the PL/I default files named
SYSIN (for input) and SYSPRINT (for output). For an interactive user, these
files are associated with the terminal by default. These files need not be
declared.

A third form of the stream I/0 statements, GET STRING and PUT STRING,
permits the manipulat!on of character strings.

1.6.1 List-Directed Stream 1/0

In list-directed stream input, input fields delimited by spaces, tabs, or com­
mas correspond exactly to the variables specified in the statement. When
output, variables are output in fields separated by spaces or tabs.

This form of the 1/0 statement is most commonly used for simple terminal
I/O. The program ADDTHREE, below, shows a GET LIST statement that
reads three data items from the current input device and assigns their values
to the variables A, B, and C. Then, a PUT statement adds these three varia­
bles and writes the result to the current output device.

ADDTHREE: PROCEDURE OPTIONS (MAIN);
DECLARE CAtB1C) FIXED BINARY;

GET LIST CA ,5 1C);
PUT LI ST (Ii s I 'A+B+C) ;

1-18 PL/I Concepts

If the current input device is a terminal, the following data items may be
entered when the GET statement is executed:

55 ti 23 GO (RD)

Following the entry of this data, the variable A has the value 55, the variable
B has the value 123, and the variable C has the value 60. The PUT LIST
statement writes the string 'is', evaluates the expression that adds these
three variables, and writes the total on the terminal. This output may appear
as follows:

is 238

In a GET LIST operation, PL/I automatically converts ASCII input data to
the data type of the variables specified in the GET LIST statement. In a PUT
LIST statement, PL/I converts a computational expression to its ASCII equiv­
alent for output.

The GET 'and PUT statements read and write data in fields, and do not
perform new line operations unless specifically requested to do so. Thus, when
a PUT statement precedes a GET statement, the output and input data may
all appear on the same line. For example, the following line may be added to
ADDTHREE to precede the GET statement:

PUT LIST< 'Enter nurnbers: ');

When the program is run, the output and input appear as:

Enter numbers: 55,123 G 0 (RD)
is 238

The SKIP option causes the GET or PUT statement to skip to a new line. For
example:

PUT SKIP(2) LIST('Finished');

This statement advances two lines and displays a message.

The SKIP option may be placed before or after the LIST option and its list of
variables. PL/I always performs the advancement before the input or output
operation, regardless of where the option appears in the statement.

The parenthesized list of input or output items must always follow the LIST
keyword.

1.6.2 Edit-Directed Stream 1/0

In edit-directed stream I/O, a special set of characters, called format items,
specify how PL/I is to process the data. When multiple items are processed, a
list of format items, called a format list, specifies the editing to be performed
on each item in the data list. Format items control:

• The specific type of conversion to be performed

• The width of an input or output field, that is, the number of characters or
digits in the field

PL/I Concepts 1-19

For example, the E format item describes the representation of floating-point
values. Assume that the result of a floating-point calculation is to be output.
The following PUT statement specifies the data to be output and its format:

PUT EDIT O(Yt,JAL) (E(10 12)) ;

The first set of parentheses encloses the output data list; the second set
encloses the format list. The EDIT keyword, the output data list of variables,
and the format list must appear in this order. This format specification indi­
cates that (1) the corresponding value in the data list, that is, XYV AL, is to
be converted to floating-point representation, and (2) the output field is to be
10 characters wide, with two fractional digits.

A value that is printed with this statement might appear as:

.6.68 + 3 2 E - 1 4

Where 66 indicates that this output field contains two leading spaces.

When a format list is supplied in a GET statement, the GET statement reads
a field of the specified width from the input stream. If commas, spaces, or
tabs appear in the field, they are treated as input data, not as field separators.
For example, the format item F, which represents fixed-point decimal num­
bers, may be specified as follows in a GET statement:

GET EDIT <SALARY) C FC5t2)) ;

This statement reads a field of five characters from the input stream, and
assumes that the last two characters read are fractional. It then converts the
characters to fixed-point decimal and assigns the result to the variable SAL­
ARY. For example, the input field read by this GET statement may be:

21358

The resulting value of the variable SALARY is 213.56.

Format items are supplied for each of the computational data types; addi­
tional format items provide page and columnar formatting for print files. A
detailed description of format items is given under the heading "Format Items
and Their Uses" in the VAX-11 PL/I Encyclopedic Reference.

1.6.3 Declaration of Stream Files

In GET and PUT statements, no file reference need be specified. By default,
PL/I uses the file constants named SYSIN (for input) and SYSPRINT (for
output). However, stream I/0 can be performed on any type of file or device as
long as the input or output data is to be treated as ASCII data.

For example, to prepare to read data from a card reader, the following state­
ments could be written:

DECLARE CARD_READER FILE;

OPEN FILE CCARD_READER) STREAM INPUT TITLE('CR:');

The TITLE option in this OPEN statement identifies the input device as a
card reader. After this OPEN statement, the file CARD_READER may be
specified in a GET statement, for example:

GET FILE CCARD_READER) LIST (GRADES);

1-20 PL/I Concepts

It is good practice to open files explicitly with an OPEN statement, but it is
not required. If a file is not opened with an OPEN statement, an 1/0 state­
ment for the file causes what is called an implicit open. For example, if the file
CARD_READER had not been open in the preceding example, PL/I would
have opened it with the STREAM and INPUT attributes because the GET
statement is a stream input statement.

1.6.4 Print Files

For stream output files directed to a terminal, line printer, or any device that
handles output in terms of pages and lines, PL/I performs special output
formatting. When PL/I outputs data to a file declared as a print file, it aligns
data in columns specified by predefined tab stops, and it counts lines and
pages.

The PRINT attribute indicates that a file is a print file. For example, the
print file with the identifier LINE_PRINTER may be declared as follows:

DECLARE LINE_PRINTER FILE PRINT;

The PRINT attribute implies the STREAM and OUTPUT attributes.

When a file is declared as a print file, the LINESIZE and P AG ESIZE options
may be specified when the file is opened. These options specify the maximum
width of an output line and the maximum number of lines per page, respec­
tively. For example, the file LINE_PRINTER may be opened like this:

OPEN FILE<LINE_PRINTERl
LINESIZE(30) PAGESIZE(40);

As PUT statements write data to this file, PL/I keeps track of the current
column position of data and performs new line operations as needed to keep
the data within the specified line size. When 40 output lines have been writ­
ten, PL/I notifies the program, by a signal, that the end of the page has been
reached. The ways in which a PL/I program can respond to such signals are
described in Section 1.9, "Condition Handling." For a print file, PL/I also
maintains a current page number and a current line number, which may be
accessed by the program through the PL/I built-in functions PAGENO and
LINENO. Built-in functions are described in Section 1.8.7, "Built-In
Functions.''

1. 7 Program Control

The statements in a PL/I program are normally executed in the sequence in
which they appear in the source program. The IF, DO, and GOTO statements
alter this flow.

1.7.1 IF Statement

The IF statement evaluates an expression for a Boolean value of true or false.
It executes a statement contained in a THEN clause if the result is true or
executes a statement in an optional ELSE clause if the result is false. The IF

PL/I Concepts 1-21

statement must have the THEN clause and may have the ELSE clause. The
statement in each clause must be terminated by a semicolon. For example:

IF A< B THEN PUT SKIP LIST('Less');
ELSE PUT SKIP LIST('Not less 1

);

Either clause may consist of a null statement. For example:

IF A < B THEN;
ELSE PUT SKIP LIST ('Not less than 1 l;

When PL/I evaluates the expression in an IF statement, a resulting bit-string
value of zero indicates false and a bit string with a nonzero value indicates
true. Thus, if any bit of a value is set to one, the entire expression has a true
value. The result of any expression that contains a relational operator is a
Boolean value. For example:

IF (A < Bl & (C = 0) THEN RESULT = OKAY;

This IF statement provides comparisons of the variables A and B and of the
variables C and D. If both comparisons result in true values, the entire expres­
sion is true and the assignment statement in the THEN clause is executed.

THEN and ELSE clauses can consist of multiple statements headed by a
BEGIN statement or a DO statement. For example:

IF A < B THEN oo; I* if true1 execute 00-SrouP */

ENO;
ELSE BEGIN; I* otherwise1 enter besin block*/

DECLARE TEMP F !>(ED BI NARY (31 l ;

mo;

A begin block is appropriate when the statements to be executed require the
declaration of automatic variables to be used solely for those statements.
Otherwise, a DO-group is used. DO-groups are described next.

1.7.2 DO Statement

The PL/I DO statement begins a sequence of statements called a DO-group. A
DO-group consists of all the statements between the DO statement itself and
a corresponding END statement. In its simplest form, a DO statement results
in the unconditional execution of the statements in the DO-group a single
time. For example:

IF A ~= B THEN oo;
PUT SKIP LIST('Continue:');
GET LI ST (NE>'.T) ;
ENO;

The DO statement may contain various options that control the execution of
the DO-group. A common form of the DO statement, called the iterative DO,

1-22 PL/I Concepts

initializes a variable, called a control variable, and executes a DO-group a
number of times, incrementing the control variable until it reaches a certain
value. For example:

DECLARE ARRAY(10) FIXED BINARYt
I NOE>< F Ii<ED;

DD INDEX = 1 TD 10;
ARRAY(INDEX> = INDEX;
END;

The statements in this DO-group are executed 10 times. The first time the
statements are executed, the control variable INDEX has the value 1, the
second time it has the value 2, and so on. This form of the DO statement may
also specify a value by which the control variable is to be modified, for
example:

DD INDEX = 10 TD 100 BY 10;

This DO statement increments the value of INDEX by 10 in each subsequent
execution of the DO-group.

The values in the iterative DO statement may be specified using variables of
any computational data type; in most cases, these values are integers.

The DO statement also has a WHILE option, which defines a condition that
must be satisfied. The condition must be placed in parentheses. The expres­
sion is always evaluated as a Boolean expression. Often, it contains a rela­
tional expression that yields a Boolean result, as in this example:

DD WHILE <A < B);

The statements in the DO-group following this statement are executed as long
as the value of the variable A is less than the value of the variable B. If A is
equal to or greater than B when this DO statement is first executed, the DO­
group is not executed at all.

The DO statement also permits combinations of forms. For example:

DD INDE>< = 1 TD 10 lrrnILE <A < B>;

The statements between this DO ·statement and its corresponding END state­
ment execute until the value of the variable A is equal to or greater than the
value of the variable B, or until the value of the control variable reaches 11,
whichever comes first.

The REPEAT option provides another way to modify a control variable. In
this form, an expression is evaluated following each execution of the DO­
group, and the result is assigned to the control variable. For example:

DD INDEX = 1 REPEAT <INDEX+ 3> WHILE <INDEX< 100);

This DO statement executes the following DO-group with values for INDEX
of 1, 4, 7, and so on, as long as INDEX is less than 100. The control variable,
initial value, and REPEAT expression can be of any data type (including
POINTER) that is valid for assignment. Thus, the REPEAT option provides
a convenient way to modify a pointer variable in list processing, as described
in Section 1.11.2, "Pointers."

PL/I Concepts 1-23

1.7.3 GOTO Statement

The GOTO statement provides an unconditional transfer of control to a la­
beled statement. For example:

IF CA < B> THEN GOTO DONE;

The GOTO statement transfers control to the label DONE if the value of A is
less than the value of B.

A GOTO statement can also specify a subscripted label name. For example,
labels may be written as follows:

CHOICEC1):

CHOICE(2):

CHOICE\3):

and so on. A GOTO statement can be written:

GOTO CHOICECINOEX>;

This GOTO statement transfers control to the label CHOICE whose subscript
is represented by the value of the variable INDEX.

A GOTO statement can transfer control to a label that exists in an active
block outside of the block containing the GOTO statement. When this type of
transfer, called a nonlocal GOTO, occurs, then the current block, and all
blocks between the current block and the block containing the specified label,
are released.

1.8 Procedures

A procedure is a block that begins with a PROCEDURE statement. A proce­
dure is executed by a RUN command or is invoked by either a CALL state­
ment or a function reference.

The main procedure or main entry point is the point at which control begins
when the program is executed by a RUN command. A main procedure is
designated by specifying OPTIONS (MAIN) on the procedure statement. For
example:

CONTROLLER: PROCEDURE OPTIONS \MAIN>;

Only one procedure in a program may specify the MAIN option. If no proce­
dure specifies OPTIONS(MAIN), or if there is only a single procedure in the
program, the RUN command executes the first or only procedure.

Other procedures may be contained within the text of the main procedure or
may be linked to it as external procedures. These procedures can be invoked,
or entered, by a CALL statement. For example, if a program has a procedure
named PRINT_ROUTINE, this procedure is entered with a statement like
the following:

CALL PRINT_ROUTINE;

1-24 PL/I Concepts

A procedure returns control with a RETURN statement. For example:

RETURN;

This statement releases the block for the current procedure and transfers
control to the next statement to be executed in the calling procedure.

The next few subsections introduce the following aspects of writing and invok­
ing procedures in PL/I:

• In tern al procedures

• Parameters and arguments

• Subroutines and functions

• Declaring external procedures

• Entry points

• Recursion

• Built-in functions

• Terminating procedures

1.8.1 Internal Procedures

PL/I provides for calls to either internal or external procedures. An internal
procedure is one whose text is contained within the text of another procedure.
Figure 1-4 illustrates invoking an internal procedure.

A: PROCEDURE OPTIONS <MAHO;

.o
B: PROCEDURE;

RETURNi
mo;

CALL B; f)

ENDi

Figure 1-4: An Internal Procedure

The flow of control in the example in Figure 1-4 is indicated by the circled
numbers. As procedure A executes (1), control branches around the state­
ments between the PROCEDURE statement for B and its corresponding END
statement. When A executes the CALL statement that invokes B (2), execu­
tion continues with the first statement in B (3). When B completes by exe­
cuting its RETURN statement, control returns to the statement following the
CALL statement in A (4). The procedure B can appear anywhere within the
text of procedure A.

PL/I Concepts 1-25

1.8.2 Parameters and Arguments

A procedure is. generally written so' that it may act upon different data or
values each time it executes. In PL/I, certain values, or arguments, are passed
by means of an argument list specified in the procedure invocation. The
arguments must correspond to the parameters specified in a parameter list
declared in the PROCEDURE statement of the invoked procedure.

For example:
PROCESS_LIST: PROCEDURE OPTIONS(MAINl;
DECLARE PRINT_LIST CHARACTER(132l;

CALL PRINT_ROUTINE<PRINT_LISTl;

PRINT_ROUTINE: PROCEDURE CLINE);
DECLARE LINE CHARACTERC132l;

END PRINT_ROUTINE;
END PROCESS_LIST;

When the main procedure calls PRINT_ROUTINE, it supplies an argument,
PRINT_LIST, that corresponds to PRINT_ROUTINE's parameter LINE.
The procedure PRINT_ROUTINE specifies the name of its parameter,
LINE, in parentheses following the PROCEDURE statement. This is its pa­
rameter list. Within PRINT_ROUTINE, LINE is declared with data type
attributes.

In most cases, PL/I passes an argument to an invoked procedure by reference
to the storage of the actual written argument. The parameter itself occupies
no storage within the procedure in which it is declared. When a parameter
refers to the actual storage of the written argument, the invoked procedure
can modify a parameter and thus pass a value to its invoker through the
parameter list. For example:
DECLARE cx,v,sUMl FLOAT;

CALL ADDFLOATCX1Y1SUMl;

ADDFLOAT: PROCEDURECA1B1TOTALl;
DECLARE CA1B1TOTALl FLOAT;

TOTAL = A+B;
RETURN;

El% ADDFLOAT;

In this example, the procedure ADDFLOAT sums the two floating-point num­
bers that are passed as its first two parameters and places the result in its
third parameter. This parameter, TOTAL, occupies the same storage as the
argument, SUM, declared in the main procedure.

PL/I does not pass arguments by reference to the argument's actual storage in
the following cases:

• When the written argument is a constant or expression

• When the written argument is a variable and its data type does not match
the data type of the parameter

1-26 PL/I Concepts

In either of these cases, PL/I creates a special variable called a dummy
argument. It then assigns the value of the written argument to the dummy
argument and passes the dummy argument by reference. Note what happens
in the second case: an assignment of a value to the parameter within the
invoked procedure will not modify the value of the written argument variable.
When a variable specified for an argument does not match the data type of
the corresponding parameter, the situation may represent a programming
error. Therefore in these cases the compiler issues a warning message to indi­
cate that it is creating a dummy argument.

Creation of a dummy argument may be forced by enclosing an argument in
parentheses. In this case, the c~mpiler does not issue a diagnostic message.

1.8.3 Subroutines and Functions

Procedures are Classified as either subroutines or functions. A subroutine is
invoked with a CALL statement; when it returns, program execution normally
continues with the next statement following the CALL statement. The exam­
ples thus far in this section have shown subroutines.

A function, on the other hand, is invoked when a reference to its name appears
in an expression; it cannot be invoked by a CALL statement. When this
reference, called a function reference, occurs, PL/I passes control to the func­
tion. When the function returns control, it passes a value, called a return
value, to its point of invocation. Program execution normally continues with
the evaluation of the expression in which the function reference occurred.

A function must specify:

• The RETURNS option in its PROCEDURE statement, describing the data
type of the value it returns. The attributes specified in the RETURNS
option are called the returns descriptor of the function.

• A value in the RETURN statement with which it relinquishes control. The
value must have the same data type as that specified in the RETURNS
option or be valid for conversion to that data type. The value is returned to
the point of invocation of the function.

The example below illustrates a function and a function reference. The assign­
ment statement at the beginning of the program OUTER contains two refer­
ences to the procedure ADDER, an internal function.

OUTER: PROCEDURE OPTIONS (MAIN>;
DECLARE (TOTAL1A1B1C1D) FLOAT;

TOTAL= ADDERCCrD> + ADDERCAtB);

ADDER: PROCEDURE (X1Y) RETURNS (FLOAT>;
DECLARE (X1Yl FLOAT;

RETURN (;<+Y l;
END ADDER;
END OUTER;

The function ADDER has two parameters, X and Y. They are floating-point
variables declared within the function. The procedure OUTER invokes the

PL/I Concepts 1-27

function twice in the assignment of a value to TOTAL. Each time this func­
tion is invoked, it is passed two arguments that correspond to its parameters.
It returns a floating-point value representing the sum of the arguments.

1.8.4 Declaring External Procedures

An external procedure is a procedure whose text is not contained within an­
other procedure. An external procedure is separately compiled and is com­
bined with the procedure that references it when the procedures are linked to
form an executable program. The name of an external procedure must begin
with an alphabetic letter.

In PL/I, all external procedures must be declared in the procedure that refer­
ences them. The ENTRY attribute indicates that a name is the name of an
external procedure. When any external procedure is declared, the declaration
must specify the data type attributes for each of its parameters. The list of
data type attributes for a given parameter is called a parameter descriptor.
For example:

DECLARE XYZ EXTERNAL ENTRY <FIXED BINARY, CHARACTER(*) l;

This declaration indicates to PL/I that XYZ is the name of an external sub­
routine that has two parameters. The parameter descriptors for XYZ indicate
that XYZ's first parameter is fixed binary and that its second parameter is a
character string. The asterisk (*) extent specified for this parameter indicates
that the character string may be of any length; this is a PL/I convention for
passing strings of undetermined lengths. The length will be provided at the
time the procedure is actually invoked. When XYZ is called, it must be
passed two arguments that correspond to those parameters.

An external function is declared in a similar manner, but the declaration must
also specify the RETURNS attribute. The RETURNS attribute must specify
a returns descriptor, which gives the data type attributes of the value that the
function returns. This returns descriptor is specified in the same way that the
returns descriptor is specified in the RETURNS option of the function's
PROCEDURE statement. For example:

DECLARE COPYSTRING ENTRY (CHARACTERC40l VARYING,
FI\ED BINARY\7))

RETURNS CCHARACTER\400) VARYING);

This declaration of the external function COPYSTRING indicates that it has
two parameters: (1) a varying-length character string with a maximum length
of 40, and (2) a fixed-point binary value. The PROCEDURE statement for the
procedure COPYSTRING and its associated parameter declarations might be
as follows:
COPYSTRING: PROCEDURE CINSTRING1REPCOUNT>

RETURNS CCHARACTERC400l VARYING);

DECLARE INSTRING CHARACTERC40l VARYING,
REPCOUNT FIXED BINARYC7l;

The variables INSTRING and REPCOUNT, specified in the parameter list in
the PROCEDURE statement, are declared with data type attributes within
the procedure. These attributes must match the attributes of the correspond­
ing arguments.

1-28 PL/I Concepts

1.8.5 Entry Points

An entry point is a statement at which a program or procedure begins execu­
tion. All entry points have user-specified identifiers, or entry names, which
can be specified in procedure calls or function references.

Only one procedure in a program may specify the MAIN option. Additional
entry points to a procedure may be defined with the ENTRY statement. For
example:

SUB 1: EtHRY;

This statement defines the entry SUBl as an entry point to the current proce­
dure. The entry name SUBl may be declared and invoked as an external
entry from another external procedure. When the procedure is invoked at its
main entry point and the ENTRY statement is encountered during the flow of
sequential execution, control passes to the first executable statement follow­
ing the ENTRY statement.

1.8.6 Recursion

A PL/I procedure may be recursive, that is, it may invoke itself. The entry
point at which the procedure will be recursively entered may be declared with
the RECURSIVE option. For example:

HANO I: PROCEDURE (T 1 ; T2; T3 t r~ I NGS) RECURS I 1)E:;

This statement declares the procedure HANOI as a recursive procedure.

1.8. 7 Built-In Functions

PL/I provides an extensive set of functions that are available without declara­
tion. These built-in functions provide the following types of capability:

• Arithmetic built-in functions provide information about the properties of
arithmetic values or perform common arithmetic calculations, for example,
obtaining the maximum or minimum of two values or rounding a value.

• Trigonometric built-in functions perform standard trigonometric calcula­
tions, for example, computing the the sine of an angle. These functions
always return floating-point values.

• String-handling built-in functions process character-string and bit-string
values, for example, locating a substring within a string or extracting a
substring from a given string.

• Conversion built-in functions convert data from one data type to another,
for example, obtaining the ASCII representation of a numeric value.

• Condition-handling built-in functions provide information about a specific
signaled condition, such as the error code that caused the condition.

• Array-handling built-in functions provide information about arrays, such as
the extent of a dimension or the value of the high or low bound of a dimen­
sion.

PL/I Concepts 1-29

• File control functions return the current page number or current line num­
ber of a print file.

• Storage control built-in functions manipulate pointer and offset variables,
for example, giving the storage location of a variable.

The sample program FIRST_LAST, below, illustrates the string functions
INDEX (which locates a character substring within a string), SUBSTR
(which extracts a substring from a string), and LENGTH (which returns the
length of a stri~g).

FIRST_LAST: PROCEDURE OPTIONSCMAIN>;
DECLARE CNAME1FIRST_NAME1LAST_NAME> CHARACTERCJO) VARYING1

mo;

BLANK FIXED BINARYC7>;

PUT LIST ('Enter Your name~');

GET LIST CNAME>;
BLANr{ = INDEY (NAME t ... l); /·*- locate bl ant: .. */
FIRST_NAME = SUBSTRC~rnME1l 1BLANl<-··1l;
LAST _NAME = SUBS TR (~rnME, BLAN~;+ 1 , C LEt--.jGTH C NAME)···· f\LM-ff)) ;

P U T s K I P L I S T c ' Y o u r f i r s t n a rr"1 e i s ' , F I R S T r··rn M E ,
'and ;.-our last narr"1e is / tl .. AST.._NAMEi;

RETURN;

This program assumes that strings are entered in the form:

'firstname lastname'

The apostrophes are required to ensure that the first name and the last name
are read in as a single string to the variable NAME. Using the INDEX built­
in function, this procedure locates the space between the first name and the
last name. Then, using the SUBSTR built-in function, it extracts the appro­
priate substrings from .the entire given string.

The built-in functions STRING, SUBSTR, PAGENO, and UNSPEC are per­
mitted on the left-hand side of an assignment statement. These pseudouari­
ables define the target of an assignment. For example, the SUBSTR pseudo­
variable may be used as shown below:

CHARACTERS = I AAAAA / ;
SUBSTR (CHARACTERS ,3 12) = /BB I;

In this example, the SUBSTR pseudovariable is used to change the third and
fourth positions of the variable CHARACTERS from AA to BB. The resulting
value of the string is AABBA.

1.8.8 Terminating Procedures

A procedure can be terminated by any of the following:

• A RETURN statement. A function must execute a RETURN statement. If
a subroutine does not execute a RETURN statement, the END statement
effects a normal return.

• A STOP statement. A STOP statement may appear anywhere in a program
or procedure. It differs from the RETURN statement in that it terminates

1-30 PL/I Concepts

the entire program, regardless of the procedure in which it is executed. This
statement is primarily of use when a procedure detects an error from which
it cannot recover.

• A GOTO statement that transfers control to a previous block.

• A run-time error or a program-generated signal that is not handled by the
current procedure.

The manner in which PL/I programs can signal, detect, and respond to errors
that occur at run time is described next.

1.9 Condition Handling

In PL/I, certain conditions that occur during the execution of a program can
result in the interruption of the normal sequence of execution. Floating-point
overflow, division by zero, end-of-file, and end-of-page are examples of these
types of conditions.

When a PL/I program incurs a condition of this nature, a signal that indicates
the type of condition is generated and PL/I attempts to locate an ON-unit to
handle the condition. An ON-unit is a single PL/I statement or a begin block
written specifically to take special action for a particular condition. For
example:

ON FIXEDOVERFLOW GOTO PRINT_MESSAGE;
' '

When this ON statement is executed, an ON-unit for FIXEDOVERFLOW
conditions is established. If a fixed-point overflow occurs after this ON state­
ment is executed, program control will be transferred to the statement labeled
PRINT_MESSAGE.

An ON-unit for a specific condition remains in effect until another ON state­
ment that specifies the same condition is executed, until the block that estab­
lished that ON-unit is released, or until a REVERT statement that specifies
that condition name is executed. For example:

REVERT FIXEDOVERFLOW;

This statement cancels the ON-unit in effect for the FIXEDOVERFLOW
condition.

1.9.1 Condition Names

PL/I ON conditions have associated language keywords, or condition names.
Any procedure can establish ON-units for any or all of these conditions. The
PL/I condition names are summarized in Table 1-2.

PL/I Concepts 1-31

Table 1-2: Summary of ON Conditions

Condition Name Usage

END FILE Handles end-of-file condition for a specified file

ENDPAGE Handles an end-of-page for a specified file with OUTPUT and
PRINT attributes

ERROR Handles miscellaneous error conditions and conditions for which
no specific ON-unit exists

FINISH Handles the condition signaled when the main procedure returns,
when any procedure in the program executes a STOP statement, or
when the program exits due to an error

FIXED OVERFLOW Handles fixed-point decimal and integer overflow exception condi-
tions

KEY Handles any error involving the key when using keyed access to a
specified file

OVERFLOW Handles floating-point overflow exception conditions

UNDEFINED FILE Handles any errors opening a specified file

UNDERFLOW Handles floating-point underflow exception conditions

ZERO DIVIDE Handles divide-by-zero exception conditions

1.9.2 The Execution of ON-Units

When any condition is signaled, PL/I searches for an ON-unit to handle the
condition, beginning in the current block. If there is no ON-unit in the current
block, PL/I searches the previous block, if any, and so on. It gives control to
the first ON-unit it finds for the indicated condition.

When there is no ON-unit to handle the condition, PL/I takes a default
action. If there is a procedure in the program that has the MAIN option, the
default action taken by PL/I in most cases is to signal the ERROR condition.
If no ON-unit exists for the ERROR condition, the program terminates.

When an ON-unit for a signaled condition completes execution, PL/I nor­
mally continues the execution of the procedure from the statement that
caused the error. For example, when many lines are being printed on a termi­
nal, PL/I signals the ENDPAGE condition after every 60 lines. An ENDPAGE
ON-unit can cause PL/I to continue output regardless of the signal, as shown
below:

ON ENDPAGE CSYSPRINT>;
DO INDEX=l TO 100;

PUT SKIP LIST CSTRING_ARRAYCINDEX> >;
END;

This ON statement specifies a null action. After the null ON-unit executes,
execution continues with the PUT statement.

1-32 PL/I Concepts

An ON-unit may transfer control elsewhere in the program. This is the usual
action for arithmetic errors, as shown in the program ADDNUMBERS below:

ADDNUMBERS: PROCEDURE OPTIONS(MAIN);
DECLARE X FIXED BINARY(7) 1

/*

TOTAL FI>(ED BINARY(31) 1
DATA_FILE FILE STREAM INPUT;

ON-unit for fixed-Point ouerf low conditions

ON FIXEDOVERFLOW GOTO PRINT_MESSAGE;

*/
Corr1Putation

}(= 1 ;
TOTAL = o;
DO WHILE ()-(... 0);

GET FILE(DATA_FILE> LIST(Xl;
TOTAL = TOTAL+ x;
END;

PUT LIST\ 'Total is '1TOTAL.l;
RETURr~;

PR I NT MESSAGE:
PUT sr:; IP LI ST ('l.JALUE OUT OF RANGE, CC::iRRECT O!H~~ FI L.E, _,) ;
RETURN;

ENO;

In this example, the variable X is declared with a precision of only seven
binary digits. Any input values for X that are not in the range of -128 to 127
cause PL/I to signal the FIXEDOVERFLOW condition during the processing
of the GET statement. The ON-unit transfers control to the label PRINT_
MESSAGE, where the procedure issues a message and terminates.

1.9.3 The ONCODE Built-In Function

Whenever a condition is signaled, PL/I sets an internally maintained variable
to the numeric value of the error condition. This condition value can be
obtained within the program by referencing the ONCODE built-in function.
For example:

ON ERROR BEGIN;
IF ONCODE(l = 10 THEN PUT LI'.3T (MESSAGE_.10l;

ELSE IF ON CODE () = 12 THEN PUT LI ST (MESSAGE._. L?.) ;
ELSE PUT LIST ('Un~:.no1 ... 1n sisna.l '10NCOOE\));

END;

This ON-unit tests the value returned by the ONCODE built-in function
following the signaling of the ERROR condition. Given either of two values, it
prints a message associated with a specific value. Otherwise, it prints the
value of ONCODE.

The meanings of the numeric values of ONCODE are defined by the
VAX/VMS system and by VAX-11 PL/I. It is possible to refer to these values
in a PL/I program using symbolic names defined by the system. For details on
declaring and using these symbolic names, see the VAX-11 PL/I User's Guide.

1.10 Record Input/Output

In record I/0, external data is treated in terms of records. A file containing
records is a record file.

PL/I Concepts 1-33

1.10.1 File Organizations

When a record file is created, its file organization is defined. The organization
of the file refers to the physical arrangement of the records in the file and the
implied order in which records will be accessed. VAX-11 PL/I recognizes the
following file organizations:

• Sequential - in a sequential file, records are arranged serially, with one
record after another.

• Relative - in a relative file, each record has a relative record number and
the records are ordered on the basis of their relative numbers.

• Indexed sequential - in an indexed sequential file, each record has one or
more data keys embedded within the record and the records are arranged
and located on the basis of these keys.

In any type of file organization, the record format of individual records - that
is, whether they are fixed or variable length, how long they are, and so on - is
specified by options in the ENVIRONMENT attribute when the file is
created.

For example:

DECLARE EMP_RECORDS FILE ENVIRONMENT (
FIXED_LENGTH_RECORDS1
MAXIMUM_RECORD_SIZE(80)) ;

This declaration describes a file with 80-byte, fixed-length records.

If no ENVIRONMENT options are specified when a file is created, PL/I uses
the default record format of variable-length records and a maximum record
size of 512 bytes.

When a PL/I program reads or writes records to a file, it specifies the name of
a variable whose declaration matches the size of the record. The variable may
be a structure whose members match the layout of the data within the file's
records. For example:

DECLARE 1 STATE1
2 NAME CHARACTER (20) ,
2 POPULATION PICTURE 'ZZ1ZZZ1ZZZ' 1
2 CAP ITAL I

3 NAME CHARACTER (30) 1

3 POPULATION PICTURE 'ZZ1ZZZ1ZZZ' 1

2 SYMBOLS,
3 FLOWER CHARACTER (20) 1

3 BI RD CHARACTER (20) 1

STATE_FILE FILE;

READ FILE (STATE_FILEl ItHO (STATE);

This READ statement reads a record from the file ST A TE___FILE into the
structure variable STATE. This statement assigns a value to each member of
STATE.

1-34 PL/I Concepts

1.10.2 Access Modes

Each time an existing file is opened, PL/I attributes define the manner in
which the records will be accessed, that is the access mode of the file. The file
description attributes that declare the access mode of a file for a particular
opening are:

• SEQUENTIAL - to indicate sequential access to a file

• DIRECT - to indicate random access only to a file

• KEYED SEQUENTIAL - to indicate sequential and random access to a
file

Combinations of these attributes with the attributes INPUT, OUTPUT, and
UPDATE determine the specific operations that can be performed on a file.
For example, if a file that does not already exist is opened with the DIRECT
and OUTPUT attributes, PL/I creates a relative file by default; only WRITE
statements may be used to access the file.

If, on the other hand, a file is opened with the SEQUENTIAL and INPUT
attributes, the file must already exist; only READ statements may be used to
access the file.

1.10.3 Declaring and Opening Record Files

All record files in PL/I must be declared as file constants or associated at open
time with the name of a file constant. For example:

DECLARE EMP_RECORDS FILE RECORD INPUT SEQUENTIAL;

The attributes RECORD, INPUT, and SEQUENTIAL indicate that the file
referred to by the name EMP _RECORDS is an input file that is to be pro­
cessed sequentially using record I/0 statements.

Although the attributes specified in the declaration of a file are considered
permanent, they may be augmented when the file is opened. The attributes
specified in the OPEN statement must not conflict with the file's perma­
nent attributes. For example, the OPEN statement to open the file
EMP _RECORDS may be specified as follows:

OPEN FILE CEMP_RECORDSl KEYED;

Adding the KEYED attribute to the file's description indicates that the file
will be accessed by key as well as sequentially. The file's organization, of
course, must be one of the types that permits keyed access.

1.10.4 Sequential Access

The following example illustrates a sequential READ statement in which the
records in the file are read into the variable STATE:

DECLARE STATE_FILE FILE RECORD;
OPEN FILECSTATE_FILE) INPUT;
READ FILECSTATE_FILEl INTO CSTATEl;

After this READ statement executes, the variable STATE contains the con­
tents of the first record in the file ST ATE_FILE. The next READ statement

PL/I Concepts 1-35

that specifies the file ST ATE_FILE reads the next sequential record, and so
on, until the file is closed or until the end-of-file is reached.

When the last record has been read from a file being accessed sequentially,
PL/I uses its condition-signaling mechanism to signal an end-of-file condition
to the program. Thus, the program can establish an ON-unit to perform
special processing when the end-of-file is reached. For example:

ON ENDFILE CSTATE_FILEl BEGIN;
CLOSE FILECSTATE_FILEl;
CALL PRINT_LISTCSTATE_QUEUE_HEADl;
END;

This ENDFILE ON-unit for the file STATE_FILE closes the file and calls
the procedure PRINT_LIST with the argument STATE_QUEUE_HEAD.
When this ON-unit completes execution, the program continues execution
following the READ statement that caused the ENDFILE condition to be
signaled.

1.10.5 Random Access

A file opened with the KEYED attribute can be accessed randomly; that is,
individual records in the file can be read, added, deleted, or rewritten by
specifying the key associated with the record. Depending on the organization
of the file, the key can be:

• A relative record number - this type of key applies to a file with relative
organization, in which each record has a number corresponding to its posi­
tion in the file.

• A data key - this type of key applies to a file with indexed sequential
organization, in which data keys are embedded within each record.

For example, an indexed sequential file may be processed as follows:

DECLARE STATE_FILE FILE RECORD KEYED
ENVIRONMENT< INDEXED>,

INPUT_NAME CHARACTERC20l VARYING;

OPEN FILE CSTATE_FILEl;
PUT SKIP LIST('Which state';· / l;
GET LIST (INPUT_NAMEl;
READ FILE CSTATE_FILE> INTO <STATE> KEY (INPUT .. _t\rnMEl;

In this READ statement, the record that is read into the variable STATE is
specified by the key INPUT_NAME. The value of this key is obtained by a
GET LIST statement that reads the name of a state.

1.10.6 Error Handling

PL/I signals one of the following conditions when errors occur while processing
either a stream or a record file:

• UNDEFINEDFILE - this condition is signaled whenever an error occurs
opening a file, for example, if the file cannot be located, or if the file's
attributes are incompatible with the access attempted to the file.

1-36 PL/I Concepts

• KEY - this condition is signaled whenever a key reference causes an error,
for example, if a key does not have an appropriate data type, or if a key
cannot be located.

• ERROR - this condition is signaled for all other miscellaneous error condi-
tions that occur during file processing.

ON-units for any of these conditions can reference PL/I built-in functions to
obtain information about the specific nature of the error:

• The specific file for which the error occurred (the ONFILE built-in
function)

• The key value that caused a KEY condition (the ONKEY built-in function)

• The specific numeric error value (the ONCODE built-in function)

For example:

ON KEYCSTATE_FILE> BEGIN;
PUT SKIP

LIST C ,.Err-or-' tONCODEC),-' Proce<:.sin.9 l<.eY -' dJNhEYC));
STOP;
END;

This ON-unit is executed if an error is signaled because of an invalid key in
any I/0 operation on the file STATE_FILE. The ON-unit displays the values
returned by ONCODE and ONKEY and stops the program.

1.11 Storage Allocation and Control

PL/I provides a special storage class, called based, for variables whose storage
allocation is under explicit control of the programmer. Based variables are
useful in the following situations:

• Allocation of storage for variables whose extents vary from one execution of
the program to another

• Temporary allocation of storage

• List processing

A based variable describes storage that is accessed by means of a pointer. The
pointer specifies a virtual memory location - it points to the data associated
with the based variable's description. The BASED attribute defines a based
variable and optionally specifies the pointer to be used to reference it. For
example:

DECLARE STATE_POINTER POINTER;

DECLARE 1 STATE BASED CSTATE_POINTER>,
2 NAME CHARACTER C 20) 1
2 POPULATION PICTURE 'ZZ1ZZZ1ZZZ-';

The structure STATE is declared with the BASED attribute and associated
with the pointer STATE_POINTER. When the program containing these
declarations begins execution, no storage actually exists for the variable
STATE and it is invalid to reference STATE until STATE_POINTER is
given .a value.

PL/I Concepts 1-37

STATE_POINTER can be given a value in an explicit allocation of storage
for the variable. The following example shows the allocation of storage with
the ALLOCATE statement:

ALLOCATE STATE SET <STATE_POINTERl;

This statement obtains as much storage as is necessary to contain the variable
and sets the value of the variable STATE_POINTER to the location in
memory of the allocated storage.

After storage has been allocated ·for a based variable, it can be referenced:

STATE. NAME = 'A 1 ab ar11a 1
;

The FREE statement releases an allocation of storage obtained for a based
variable. For example:

FREE STATE;

This FREE statement releases the storage for the structure STATE that is
referenced by ST ATE_POINTER.

1.11.1 Locator-Qualified References

More than one allocation of storage can be obtained for a based variable. Each
ALLOCATE statement must specify the SET option to indicate the pointer of
reference. For example:

DECLARE CFIRSTtSECONDl POINTER,
LIST(10l FLOAT BASED;

ALLOCATE LIST SET <FIRST);
ALLOCATE LIST SET <SECOND);

When more than one allocation exists for a based variable, as in the above
example, a reference to the variable or any of its members must be a locator­
qualified reference. This type of reference specifies the pointer that locates the
specific allocation of interest by means of the -> symbol. This is a locator
qualifier.

For example, following the two allocations of storage for the based array
variable LIST, a reference to an element in the first allocation must contain
the locator-qualified reference as follows:

FIRST -> LIST(5) = o;

This assignment statement gives the value of zero to the fifth element of LIST
in the allocation pointed to by the pointer variable FIRST.

1-38 PL/I Concepts

A locator qualifier may also be used to associate a particular storage location
with a based variable that is not bound to a particular pointer. For example:

DECLARE DATA CHARACTERC10) BASED,
DP POINTER,
LINE CHARACTERC10>;

LINE= 'strin.9';
DP = ADDR<LINE);
PUT LIST< DP->DATA 1,

The locator qualifier (->) in this PUT statement associates the based variable
DATA with the storage occupied by the variable LINE, pointed to by the
pointer DP.

1.11.2 Pointers

All pointer variables must be explicitly declared. They may be assigned val­
ues in assignment statements, in ALLOCATE statements (as shown above),
and in the following ways:

• The ADDR built-in function returns a pointer value giving the location of a
specific variable.

• The SET option of the READ statement copies a record to internal storage
and sets a pointer variable to the location of the record. A subsequent
REWRITE statement replaces the record in the file from the internal stor­
age buffer.

Pointer variables may also be used in relational expressions of equality and
inequality. For example:

DECLARE CNEXTtSAVE) POINTER;

IF NEXT = SAVE THEN CALL FINISH_up;

In this example, the IF statement tests whether the values of two pointers are
the same.

PL/I also provides the following ways to test and use pointers:

• The NULL built-in function returns a null pointer value. This value can be
used to mark the end of a list of structures that are linked by pointers.

• The REPEAT option of the DO statement provides a convenient way to step
through a linked list.

Figure 1-5 illustrates linked-list processing in PL/I using the NULL built-in
function and the REPEAT option of the DO statement. It shows a procedure
that outputs a linked list with any number of structures. The based structures
are linked with pointers; the first member of each structure is a pointer to the
next structure in the list.

PL/I Concepts 1-39

next

data next

data

Allocations of storage tor a linked list
that were allocated and linked in an external
procedure. The procedure invokes PRINT _UST,
giving it as arguments the pointer to the head
of the queue and the length of the data portion.

next

data 0

data

Print_list: Procedure (9ueue_head1data_lenSthl ;

declare 9ueue_head PO
data_lensth f

declare 1 list based

n t er 1

xed binarY(31l ;
p) I

2 next Po in er,
2 data character(data_lensthl

declare P Pointer ;

/*start of 9ueue*/
/*lensth of data*/
/* structure of 9ueue

do P = 9Ueue_head repeat (P-)list.nextl
1,.1hile (p···= null());

return;
end;

Put list (p-)list.datal;

Figure 1-5: List Processing in PL/I

1.11.3 Areas and Offsets

eler11ents*/

Allocations of storage for based variables can be explicitly located within
larger allocations of storage, called areas. Within an area, a specific allocation
of storage for a variable can be located by an offset variable, which gives the
location of the storage re la ti ve to the beginning of the area.

When variables are allocated within areas, the contents of an entire area can
be either copied to another area in an assignment statement or written to an
output file or device in a single WRITE statement. Since an offset gives the
location of a variable relative to the start of an area, the values of the offset
variables within an area do not change when the contents of an area are
moved or assigned. Pointer variables, on the other hand, contain virtual mem­
ory addresses and so will not remain valid if they are written out and read
back in another execution of the program.

1-40 PL/I Concepts

Area and offset variables must be declared with the AREA and OFFSET
attributes. For example:

DECLARE MAP_SPACE AREA C408G>,
BLOCK_A OFFSET CMAP_SPACEl;

These declarations define an area of 4096 bytes and an offset variable to be
associated with that area.

In some implementations of PL/I, the ALLOCATE statement allocates stor­
age within an area and sets an offset variable to the position of the storage
within the area. In VAX-11 PL/I, the actual placement of data within an area
and the assignment of values to offset variables must be performed by a user­
written procedure. For an example of such a procedure, see the VAX-11 PL/I
User's Guide.

1.11.4 Defined Variables

PL/I also permits a variable to share the storage of another variable, so that a
reference to either variable accesses the same data. This type of variable is a
defined variable and it is declared with the DEFINED attribute.

For example:

DECLARE X CHARACTERC20l DEFINED CSTATE.NAMEl;

This declaration defines the variable X but does not allocate any storage for
it. When Xis referenced, the current value of the variable STATE.NAME is
obtained.

The use of defined variables is allowed only when the data types of the varia­
bles specified are the same or can be overlaid in a meaningful way. For
complete details on the criteria under which storage may be shared by defined
variables, see the VAX-11 PL/I Encyclopedic Reference.

PL/I Concepts 1-41

Chapter 2
VAX-11 Extensions to PL/I

The implementation of the PL/I Subset G for the VAX-11 computer contains
extensions that may be used by PL/I programs that will execute exclusively
under the control of the VAX/VMS operating system. The extensions are
primarily in the following areas:

• Extensions for input/output processing - these provide VAX-11 PL/I pro­
grams with full access to the file organizations, access modes, and file place­
ment and control capabilities of the VAX-11 file system, the Record Man­
agement Services (RMS).

• Extensions to support VAX-11 calling and condition-handling conventions
- these provide support for PL/I procedures that call or are called by
procedures written in programming languages other than PL/I.

This chapter describes these extensions in general terms and provides some
examples of the capabilities they offer. For a complete description of any of
these items, see the VAX-11 PL/I User's Guide.

2.1 Extensions for Input/Output Processing

The VAX-11 PL/I language provides extensions to input/output support in
the following ways:

• Options to the ENVIRONMENT attribute that can be specified when a file
is created, opened, or closed. ENVIRONMENT options are specified follow­
ing the ENVIRONMENT keyword on a DECLARE, OPEN, or CLOSE
statement for a file.

• Options to I/O statements that provide specific processing for an I/O opera­
tion. I/O statement options are specified following the OPTIONS keyword
in an I/O statement.

• Built-in subroutines that perform file control operations.

Examples in the subsections 2.1.1 through 2.1.9 illustrate ENVIRONMENT
options, statement options, and built-in subroutines.

2-1

2.1.1 Indexed Sequential Files

Records in an indexed sequential file are accessed by specification of a data
key embedded in the record. In VAX-11 PL/I, the key may be character,
fixed-point binary, or fixed-point decimal with a zero scale factor. Records
may have more than one key; each key has a separate index.

In a file with multiple indexes, each key field has a user-specified index
number. The primary index number is zero, the secondary index is one, and so
on. The record I/O statements READ, REWRITE, and DELETE may specify
the INDEX_NUMBER option to specify which. key number applies to the
current operation. For example:

READ FILE <STATE_FILE) INTO <INREC)
OPTIONS< INDEX_NLJMBE~:(2));

This READ statement accesses the indexed file ST ATE_FILE sequentially
using the second alternate key.

After an index number is specified, it applies to subsequent sequential
or keyed I/O operations on the file, until the INDE:x__NUMBER option is
again specified. The INDE:x__NUMBER option may also be specified in the
ENVIRONMENT attribute to define an initial index number value. For
example:

DECLARE STATE_FILE FILE KEYED ENVIRONMENT
(I NDEiLNUMBER (2)) ;

When no index number is specified, V AX-11 PL/I uses index zero, the
primary index.

By default, a key specified in an I/O statement must exactly match the key in
a record for the operation to be successful. However, VAX-11 PL/I provides
the MATCH_GREATER and MATCH_GREATER_EQUAL options for
the READ, REWRITE, and DELETE statements. These options specify
greater-than key matches or greater-than-or-equal-to key matches.

2.1.2 Relative Files

To create a relative file in VAX-11 PL/I, no ENVIRONMENT options are
required. When a file with the KEYED attribute is opened for output, PL/I
creates a relative file unless ENVIRONMENT options specify otherwise. In
each WRITE statement, the KEYFROM option specifies the relative record
number of the record. When a relative file is accessed, the KEY option on the
READ statement specifies the relative record number of a record to be read.
For example:

DECLARE EMPLOYEE_NUMBER FIXED,
EMP_RECORDS FILE,
EMP_REC CHARACTER(80);

GET LISTCEMPLOYEE_NLJMBER);
READ FILE(EMP_RECORDS) INTO(EMP_REC)

KEY CEMPLOYEE_NUMBER);

This READ statement reads the record whose relative record number is ob­
tained by a GET statement. It places the contents of the record in the variable
EMP_REC.

2-2 V AX-11 Extensions to PL/I

When a relative file is created, the ENVIRONMENT option MAXIMUM_
RECORD_NUMBER can be specified to define the maximum number of
records that the file can have. This value, once set, cannot be changed. If no
value is specified for the maximum record number, V AX-11 PL/I does not
provide a default maximum; that is, the file can have any number of records.
However, when a relative file has no maximum record number, the file system
does not check the validity of records that are added to the file to ensure that
they are within a specified range.

2.1.3 File Disposition Options for Closing a File

The ENVIRONMENT attribute can be used on a CLOSE statement to spec­
ify the disposition of a file as it is closed. Options that can be specified on the
CLOSE statement are:

• DELETE ,__ specifies that the file be deleted.

• SPOOL and BATCH - specify that the file be submitted to the system
printer or batch job queue, respectively.

• REWIND_ON_CLOSE - specifies that a magnetic tape file be rewound
when it is closed.

• TRUNCATE - truncates the file at its logical end-of-file.

These ENVIRONMENT options may be enabled or disabled at run time. For
example:

DECLARE IFDELETE BIT (1);

CLOSE FILE(TEMP) ENVIRONMENT (DELETE (IFDELETE)) ;

This CLOSE statement deletes the file TEMP only if the current value of the
Boolean variable IFDELETE is true.

These options may also be specified when a file is opened; if an option is
respecified on the CLOSE statement, it can override the effect of the option
on OPEN.

2.1.4 File Ownership and Protection

When a file is declared or opened, the following options may be specified to
define the file's owner and to specify the type of access permitted to other
system users:

• The OWNER_GROUP and OWNER_MEMBER options together specify
the files' owner.

• The options GROUP _PROTECTION, OWNER_PROTECTION, SYS­
TEM_PROTECTION, and WORLD_PROTECTION specify the types of
access (read, write, execute, or delete) permitted each category of user.

V AX-11 Extensions to PL/I 2-3

For example:

OPEN FILE CMEMOl OUTPUT RECORD ENVIRONMENT (
GROUP PROTECTIC!N (1 R~·JED 1

));

This OPEN statement creates a file that can be accessed for reading, writing,
or deleting by any member of the owner's group. When no options are speci­
fied, PL/I supplies default values based on the current system- and user­
defined defaults.

2.1.5 Terminal 1/0

The stream input/output statements, GET and PUT, have options that pro­
vide special processing when the I/0 device is an interactive terminal. The
GET statement provides the following options:

• PROMPT - specifies a prompting string to be displayed on the output
device before the GET statement accepts an input list.

• NO_ECHO - suppresses the display of data as it is entered, for example,
in order to mask the entering of sensitive information.

• NO_FILTER - passes the ASCII codes for the (CTRL/u), (CTRL/R), and @ill func­
tion keys to the program for processing. These characters are normally
interpreted by the terminal.

• PURGE_TYPE_AHEAD - clears the terminal's type ahead buffer before
the GET statement reads the input list.

The following example illustrates several GET statement options:

GET LIST CPASSWORDl OPTIONS C
P R D M P T (/ E n t e r P .::1. s ~j 1,\1 o r d :: /) ,
NO ECHD t

PURGE TYPE r1HE?-~1D) ;

The PUT statement option CANCEL_CONTROL_O overrides the effect of
the (CTRL/o) function key on the terminal to ensure that the beginning of the
output list is displayed.

2.1.6 Fixed-Control Files

A special record format, called variable-length with fixed-length control, can
be processed using VAX-11 PL/I record I/O statements. In this record format,
each record has associated with it a data area that is not a part of the actual
record. This area, called a fixed-control area, can contain any type of data,
such as line sequence numbers, carriage control information, and so on.

The ENVIRONMENT option FIXED_CONTROL_SIZE defines the size of
the fixed-control area. The I/O statement options FIXED_CONTROL_ TO
and FIXED_CONTROL_FROM may be specified on READ and WRITE
statements, respectively, to read and write the fixed-control area of a record.

2-4 V AX-11 Extensions to PL/I

For example, to create and write a record to a file whose records have an eight­
byte fixed-control area, the OPEN and WRITE statements might appear as
follows:

DECLARE LINE_NUM PICTURE '89888888';

OPEN FILE (OUTFILE) RECORD SEQUENTIAL OUTPUT
ENVIRONMENT CFIXED_CONTROL_SIZE<Bl) ;

WRITE FILE (OLJTFILE) FROM <DATA_RECORDl
OPTIONS <FIXED_CONTROL_FROM <LINE_NUMl l;

Each WRITE statement that outputs a record to this file specifies the
FIXED_CONTROLFROM option. In this example, the option specifies the
eight-byte pictured variable LINE_NUM.

2.1. 7 Magnetic Tape File Processing

VAX-11 PL/I provides the following features for processing magnetic tape
files:

• ENVIRONMENT options that control the positioning of a magnetic tape.
These are:

REW I ND_ON_O Pm
REW I ND_Ot'LCLOSE
CURRENT_POSITION

• The NXTVOL built-in subroutine. This subroutine performs end-of-volume
switching for files that span more than one physical tape.

This subroutine can be invoked for input or output operations. If necessary,
the subroutine sends a message to the system operator requesting that a new
volume be mounted. The subroutine does not return control to the program
until the next tape volume is mounted and ready.

• The EXPIRATION_DATE optiOn of ENVIRONMENT. This option per­
mits the specification of an expiration date and time for a magnetic tape
file.

• The ENVIRONMENT options BLOCK_IO and BLOCK_SIZE permit a
magnetic tape file to be read or written in terms of blocks of a user-specified
size.

For example:

OPEN FILE <TAPEFILEl OUTPUT RECORD ENVIRONMENT
BLOCK_ IO,
BLOCK_SIZEC2048ll

This OPEN statement opens a magnetic tape in which records are to be
blocked in 2048-byte blocks. The actual blocking is performed by RMS as the
program writes individual records to the file.

V AX-11 Extensions to PL/I 2-5

2.1.8 Block 1/0

Any sequential disk file can be read and/or written in terms of logical disk
blocks. When a file is opened for block I/0, both PL/I and RMS ignore record
lengths and record formats. The PL/I program itself must interpret all data in
the file in units of 512-byte blocks. For example:

OPEN FILE <FAST_COPYl KEYED ENVIRONMENT <BLOCK_IO>;

This OPEN statement opens the file FAST_COPY for block I/0 with keyed
access. The program may use the READ and WRITE statements to randomly
access blocks in the file.

2.1.9 Record Id Access

For faster input/output operations on record files, a file can be opened for
record id, access by specifying the RECORD_ID_ACCESS option on the
ENVIRONMENT attribute. When a file is opened with this option, the
RECORD_ID_ TO option can be specified on any record I/O statement that
performs an operation on a record. The value returned by RECORD_ID_ TO
may be used in a subsequent operation involving the same record, thus elimi­
nating the overhead required for the run-time system to search for the record.
For example:

DECLARE ID_VAL (2l FIXED BINARY<31l;

READ FILE <DATA_FILEl INTO <STATE>
OPTIONS <RECORD_IO~TO (IO_l.JALl l;

REWRITE FILE <DATA_FILEl FROM (STATE>
OPT IONS <RECORD_ ID (IO_UALl) ;

In this example, the array ID_ VAL is used to obtain the record identification
of a record read into the variable STATE. When the same record is subse­
quently rewritten, the RECORD_ID option specifies the same variable.

2.2 Extensions for Calling and Condition Handling

Extensions to enable PL/I procedures to interact with system procedures and
programs not written in PL/I include:

• Attributes for the declaration of non-PL/I external entry points and their
parameters

• Attributes for the declaration of external variables and constants whose
values are defined by non-PL/I procedures

• New storage class attributes

• Additional condition name keywords for the ON, SIGNAL, and REVERT
statements

• Built-in functions to provide information to an ON-unit about system­
specific values

2-6 V AX-11 Extensions to PL/I

These extensions permit PL/I programs to call:

• VAX/VMS system services - system services are operating system proce­
dures that can be used to develop application programs.

• Run-time library procedures - the VAX-11 Run-Time Library contains
procedures that perform common functions not provided by PL/I.

• Miscellaneous system programs - examples are the generalized message­
handling and output facilities and the librarian utility routines.

All of these procedures conform to the conventions described in the next
subsections.

2.2.1 Argument-Passing Mechanisms

On the VAX-11 computer, the argument list for a procedure is always repre­
sented by an array of longwords (a longword is a storage unit of 32 bits). The
first longword in the list contains the number of arguments, that is, the
number of longwords remaining in the list. Each remaining longword in the
list represents a single argument that has been passed using one of the follow­
ing mechanisms:

• By reference. The argument list longword contains the address of the actual
argument.

• By descriptor. The argument list longword contains the address of a data
structure, called a descriptor, that describes the actual argument, including
its extent and its address.

• By immediate value. The argument list longword contains the actual argu-
ment value, which cannot be longer than 32 bits.

PL/l's standard method is to pass arguments associated with parameters with
asterisk extents by descriptor and to pass all other arguments by reference.
For calls to non-PL/I procedures, VAX-11 PL/I provides the following attrib­
utes that modify the standard PL/I methods:

• The VALUE attribute. This attribute specifies that the argument is to be
passed by immediate value. In PL/I terms, this means that a dummy argu­
ment is always created - the dummy argument is created directly in the
argument list longword.

• The ANY attribute. This attribute specifies that the argument is to be
passed by reference and also that the argument may have any data type. A
dummy argument is never created for a variable reference. This attribute is
convenient for passing arrays with nonconstant extents to FORTRAN pro­
grams that do not use the descriptor mechanism.

• The ANY and VALUE attributes together. These attributes specified to­
gether indicate that the argument is to be passed by immediate value and
that the data type of the argument is any type that will fit in 32 bits.

V AX-11 Extensions to PL/I 2-7

The ANY attribute may be specified only in the parameter descriptor in the
declaration of an external entry. For example:

DECLARE SYSSGETTIM ENTRY !ANY);

This declaration indicates that the procedure SYS$GETTIM requires one
argument to be passed by reference. When the ANY attribute is specified, no
data type attributes are allowed in the parameter descriptor.

2.2.2 Variable-Length Argument Lists

In V AX-11 PL/I, the declaration of an external entry may specify
OPTIONS(V ARIABLE). This option can indicate one or more of the
following:

• The specified entry point can be invoked with a variable number of argu­
ments.

• Not all of the parameters of the entry point are listed in the parameter
descriptor.

• Arguments for which the invoked procedure provides default values may be
omitted from an argument list.

For example:

DECLARE SYSSASCTIM ENTRY (ANY, CHARACTER(*))
CJPTI(JN~; (1.)Ar~If:~BL.E>;

CALL SYSSASCT IM (, TI Mt~~ BUFF·Er~, ,) ;

In this example, the system service SYS$ASCTIM is declared with two pa­
rameter descriptors and the VARIABLE option. The procedure actually has
four parameters, but it provides default values for the first, third, and fourth
parameters if they are not specified. The omission of these arguments is
indicated in the procedure call by the commas that would separate the argu­
ments if they were present. PL/I places zeros in the argument list longwords
for these arguments.

When parameter descriptors are omitted, all parameters beyond those expli­
citly listed are considered to have the same attributes as the last parameter
for which a descriptor is entered. In the preceding example, the final two
arguments are assumed to have the CHARACTER(*) data type. However,
since the arguments are not specified at the time of the call, PL/I places zeros
in the argument list.

2.2.3 Global Symbols

A global symbol is a special type of external variable; it permits a PL/I
procedure to share a variable with another PL/I procedure or with a procedure
written in another language. The GLOBALDEF and GLOBALREF attributes
define and declare global symbols. One PL/I procedure declares the global
symbol using the GLOBALDEF attribute, as shown below:

DECLARE BUFFER CHARACTER (2048) GLCJBALDEF;

2-8 V AX-11 Extensions to PL/I

Other procedures must declare this variable using the GLOBALREF attribute
as follows:

DECLARE BUFFER CHARACTERC2048l GLOBALREF;

Global symbols with similar attributes may be specifically grouped into the
same program section. This grouping provides more efficient use of memory
than external variables declared using the PL/I EXTERNAL attribute, since
each PL/I external variable requires a unique program section.

2.2.4 New Storage Classes

VAX-11 PL/I provides the READONLY and VALUE attributes to declare
special storage classes for variables. The VALUE attribute specifies that a
reference to the variable is a reference to the actual value of the variable, and
not a reference to the variable's memory location.

Within the VAX/VMS operating system, global symbol values are used to
represent such things as:

• Return values from system procedures or functions

• Offsets to values within system data structures

• Condition values signaled for exception conditions

The values of these symbols can be referenced in a PL/I program by declaring
the names of these symbols with the GLOBALREF and VALUE attributes.
For example, the names SS$_ W ASSET and SS$_ W ASCLR are system
global symbol names. These names may be declared in PL/I as follows:

DECLARE CSS$_WASSETtSS$_WASCLRl GLOBALREF VALUE
FI>(ED BINARY C31 l;

When a name is defined with the GLOBALREF and VALUE attributes,
its actual value is not determined until the program is linked. The linker
automatically locates the definitions of these symbols in the default system
libraries.

The VALUE attribute may be applied only to fixed-point binary variables or
to aligned bit-string variables with a length of 32 bits or less.

Any static variable in a VAX-11 PL/I program that will not be modified
during the execution of the program can be declared with the READONLY
attribute. For example:

DECLARE AM_MESSAGE CHARACTERCZOl STATIC READONLY
INITIAL ('Good mornins'l;

The use of this attribute permits PL/I to allocate program sections efficiently.
PL/I places all variables with the READONLY attribute in the same program
section as the procedure's code. When the READO NL Y and GLOBALDEF
attributes are combined, PL/I creates a read-only program section.

V AX-11 Extensions to PL/I 2-9

2.2.5 VAXCONDITION and ANYCONDITION

The normal PL/I mechanism for error signaling and error handling is com -
patible with the VAX-11 condition-signaling and condition-handling mecha­
nism. VAX-11 PL/I has added the keywords listed below to extend these
capabilities.

• VAX CONDITION - this keyword can specify a condition value for which
the ON-unit is established.

• ANYCONDITION - this keyword can define an ON-unit that is executed
when any condition is signaled for which no specific ON-unit exists.

These keywords can be specified in the ON, SIGNAL, and REVERT state­
ments.

The VAX-specific or user-specific conditions that can be specified in the
V AXCONDITION keyword can be defined as global symbol names. Thus, to
define an ON-unit for a specific condition value, the condition name can be
declared with the GLOBALREF attribute, as shown below:

DECLARE SS$_DECOVF GLOBALREF FIXED BINARY(31l VALUE;
ON VAXCONDITION <SS$_DECOVF> BEGIN;

END;

This ON-unit receives control when the VAX condition SS$_DECOVF
(fixed-point decimal overflow) is signaled.

2.2.6 Resignaling

Standard PL/I considers a condition '.'handled" when any ON-unit is found
for the condition. Within the VAX/VMS condition-handling facility, a condi­
tion handler, that is, an ON-unit, can resignal a condition. When a condition
is resignaled, the condition-handling facility continues its search for an ON­
unit to handle the condition. In VAX-11 PL/I, an ON-unit can call the
RESIGNAL built-in subroutine to resignal a condition.

For example, an ON-unit that handles more than one condition may want to
give other ON-units a chance to gain control. This ON-unit may contain lines
like the following:

ON ANYCONDITION BEGIN;
IF (ONCODE (> .·. = SS$_DECOl.JF) &: (ONCODE (l SSS I NTO'-.JF l

THEN CALL RESIGNAL(>;
ELSE

BEGIN;

END;

This ON-unit receives control when any condition is signaled. It checks the
value of ON CODE for two specific conditions. If it is neither of these, the ON­
unit calls the RESIGNAL built-in subroutine. PL/I then searches for another
ON-unit, beginning in this block.

2-10 V AX-11 Extensions to PL/I

2.2.7 ONCODE and ONARGSLIST

When the ONCODE built-in function is referenced in an ON-unit in a PL/I
program executing under the control of the VAX/VMS operating system, the
value returned is always a unique system condition value. All system-defined
condition values have symbolic names.

VAX-11 PL/I also provides the ONARGSLIST built-in function, which pro­
vides additional information to the ON-unit. For example, some conditions
may have arguments associated with them; these arguments can be accessed
by invoking the ONARGSLIST built-in function. The ONARGSLIST built-in
function also provides access to hardware information associated with the
condition, for example, the program counter (PC), and the contents of the
general registers RO and Rl.

For details on using ON-units in VAX-11 PL/I, including information on
declaring symbolic names for condition values, see the VAX-11 PL/I User's
Guide.

V AX-11 Extensions to PL/I 2-11

Chapter 3
Using PL/I in the VAX/VMS Environment

This chapter describes the capabilities offered by the VAX/VMS operating
system for developing PL/I programs. It contains:

• A sample terminal session that illustrates the commands to create, compile,
link, and run a simple PL/I program

• A description of the VAX/VMS file system and of its logical naming capa­
bility, which provides device and file independence for program input/
output

• An overview of the VAX/VMS librarian, which can be used for PL/I
compile-time INCLUDE file libraries as well as for object module libraries

• An overview of command procedures, which can be used to catalog fre-
quently executed sequences of commands

For a tutorial introduction to VAX/VMS and its command language, DCL,
see the VAX/VMS Primer. Additional tutorial and reference information on
any of the DCL commands presented in this chapter is contained in the
VAX/VMS Command Language User's Guide. For more information on PL/I
program development, see the VAX-11 PL/I User's Guide.

3.1 Sample Terminal Session

The sample terminal session begins on the next page. Terminal input/output,
as it would appear if you entered all these lines, is shown on the left-hand
page. Explanations of the commands in the examples are shown on the right.

3-1

(BIT)
Use rna1r1e:
Pass1A1ord:

0
MALCOLM(BIT)

(BIT)

VAX/VMS Version 2.0

***** TiMe Sharins Until 20:00 *****

0
: EDIT METRIC.PLIIBIT)@)
InPut:[DBA1:[MALCOLMJMETRIC.PLI;1J
00100 * METRIC CONt.JERS I ON PROGRAM *I (BIT)
00200 CONt.JERT: PROCEDURE; (BIT)
00300 DECLARE (INt.JALUE tOUTl.lALUE) FD(ED DECIMAL (10 t2) tffi!

00400 (I NUN IT t OUT UN IT) CHARACTER (2) ; (BIT)
00500 DECLARE UNITS (8t2) CHARACTER <2> STATIC INTERNAL(BIT)
00800
00700
00800
00800
01000
01100
01200
01300
01400
01500
01800
01700
01800
01800
02000
02100
02200
02300
02400
02500
02800
02700
02800
02800
03000
03100
03200
03300
03400
03500
03800
03700
03800
03800
04000
04100

INITIAL ('in ' t 'c frl' t 'c !Tl' t ' in ' t 'ft ' t '!Tl ' t '!Tl ' t (BIT)
I f t I t I !Tli I t I ~\ !Tl I t I ~\!Tl I t I ITli I) ; (BIT)

DECLARE FACTORS (8) F !>(ED DEC I MAL (10 t 2) INTERNAL STAT I Cffi)
INITIAL (2 + 54 t 0. 38 t 0. 30 t 3. 28 t1 • 81 t 0. 82) ; (80

DECLARE INDD< FI}-(ED BINARY ;(8IT)

ON ENDPAGE<SYSPRINT> ;(8IT)

I NOE}< = 1 ; (BIT)
DO WHILE (INOD(... _ 0) ;(8IT)

END;~
RETURN; (80
END;(lli)

PUT SKIP LIST ('Enter conversion 1r1ode: ') ;(8IT)
PUT
PUT
PUT
PUT
PUT
PUT
PUT
PUT
PUT
PUT
GET
IF

SKIPiID
SKIP
SKIP
SKIP
SKIP
SKIP
SKIP
SKIP

LIST
LIST
LIST
LIST
LIST
LIST
LIST

('1 - inches to centi1T1eters');(8IT)
('2 - centifTleters to inches') ;(8IT)
('3 - feet to Mete rs') ;(8IT)
('4 - fTleters to feet') ;(8IT)
('5 - fTliles to ~\iloMeters');ffi)

('G - ~\ilo1r1eters to fTliles') ;(8IT)
('0 - exit');IBITJ

SKIP;(8IT)
SKIP LIST ('ITlOde? ') ;(8IT)
LIST INDD(;(80

I NOE>< ... = 0 THEN DD; (8IT)
IF (!NOE}-(> (l) &: <INDE}·(< 7) THEN DO;IBITJ

PUT SKIP LIST ('Enter value to convert:
GET LI ST (I Nt.JALUE) ; (8IT)
OUTt.JALUE = INt.JALUE * FACTORS(!NOE><> ;(BIT)
INUNIT = UNITS<INDD(t1>;(8IT)
OUTUNIT = UNITS< !NOD(t2i ;(8IT)
PUT SK IP LI ST (INt.JALUE tI NUN IT t (BIT)

I = I t OUTl.lALUE t OUTUN IT) ; IBrn
END;ffi)
ELSE PUT SKIP LIST< 'Ini.ialid code -- retn') ;~

* E (BIT)
[DBA1:[MALCDLMJMETRIC.PLI;1J
$

0

3-2 Using PL/I on VAX

1. Login to the system.

To log in, press ~. The system prompts for a user name, then for a
password. It does not display (echo) the password. After validating the
name and password, it displays a system identification and daily mes­
sages, if any.

2. Wait for a command prompt.

All requests to the system are entered by words that give a command. A
dollar sign ($) prompt indicates that you can begin entering commands
that will be interpreted by the system.

All commands are English-language words that describe a request. Usu­
ally, a command is accompanied by parameters and qualifiers that limit
the scope of the command. For example, if a command modifies a file in
some way, the command parameter specifies the particular file of interest.

3. Create a PL/I source program.

The EDIT command invokes the default system editor, SOS, to create the
program METRIC.PL!. The message from SOS indicates that no file with
the name METRIC.PL! currently exists and that one is being created.
SOS begins prompting you to enter input lines.

Each line must be terminated with ffi).

4. Leave the editor.

After the last line of input, press (§9. The asterisk (*) prompt indicates
you can enter a command to SOS. The E (Exit) command terminates the
editing session. SOS displays the name of the file that it has now saved on
disk.

Using PL/I on VAX 3-3

·$ PLI METR I Cru:J
%PLIG-E-STMTSYNTOK,

0
In• .. 1alid syntax in a ,.set' state1r1ent, 0
'INDEX' was found where a '(' was expected.
Source file line number 27,

%PLIG-W-ENDGIVEN1 An END statement has been suPPlied to close
a do-sroup, besin-blocK, or Procedure.
Source file line number 41,

%PLIG-E-TEXT, Completed with severe diasnostics, No obJect Produced •
....
::p

'$ EDIT METRIC,PLiru:J
Edit:DBA1:CMALCOLMJMETRIC.PLI ;iJ
·ii-fGET@gruJ
02700
'"I NDE><@9 (I NDE><) @gru:J
02700

02700
02:300
02~300

03000
0:3100
()32C1 0
()33()0

()3L!()C1

0:3500
():JGC1 0
0:37()()

0:3800 END;
oaooo RETURN;
04100 END;
·ifi:J800rul 4D
()3::350

GET LI ST INDEi<;

GET LI ST (I NOD<) ;

GET LI ST (I NDEiO ;
IF INDEX ~= 0 THEN DO;

IF (INDEX > 0) & <INDEX< 7) THEN DO;

END; ffi)

PUT SKIP LIST C 'Enter value to convert: ');
GET LIST (INVALUE>;
OUTVALUE = INVALUE * FACTORS(INDEX>;
INUNIT = UNITS(INDE>(11 >;
OUTUNIT = UNITS(INDEX,2>;
PUT SKIP LIST (INVALUE1INUNIT1

I = I 10UTl,JALUE 10UTUl\JIT>;
END;

ELSE PUT SKIP LIST('Invalid code -- retry');

*Erul
CDBA1:CMALCOLMJMETRIC,PLI;2J

3-4 Using PL/I on VAX

5. Invoke the VAX-11 PL/I compiler.

The PLI command invokes the VAX-11 PL/I compiler to compile
METRIC. The PLI command assumes, when no file type is specifed, that
the file type is PLI.

6. Examine the diagnostic messages.

The messages from the compiler indicate that it detected a syntax error in
a GET statement and a missing END statement.

7. Correct the source program.

The EDIT command again invokes the editor, this time to modify the
existing file METRIC.PL!.

8. Locate a line in the file.

To locate a line in an SOS file, use the F (Find) command to specify a
string to locate. The search string must be terminated with @.

9. Change a character string in the line.

The S (Substitute) command changes character strings. This command
puts parentheses around the string INDEX. In a substitute command, (§9
delimits the string to be changed and the new string.

10. Display the remaining lines in the file.

The P.:* command requests SOS to display the lines in the file between
the current line (symbolized by a period) and the end of the file (symbol­
ized by the asterisk). The colon symbol denotes a range of lines on which
SOS is to act.

11. Insert a line in the file.

The I (Input) command adds a line to the file. The i3800 command indi­
cates that a line is to be added after the line numbered 3800 SOS prompts
for the line 3850. The END statement is added.

12. Leave the editor.

The E (Exit) command terminates this session. The editor does not
change the original version of the file, but creates a new copy. This is
indicated by the version number of 2 in the file specification displayed by
sos.

Using PL/I on VAX 3-5

$

$

·$ PL I METR I C(ffi) ~

$ LINK METRIC(ffi) 41)
$

$

$RUN METRIC(ffi) "'

Enter conversion Mode:

1 - inches to centiMeters
2 - centiMeters to inches
3 - feet to Meters
4 - Meters to feet
5 - Miles to KiloMeters
G - KiloMeters to Miles
0 - exit

fTl 0 d e ';:• 5 (ffi)

Enter value to convert:

32,00 rrli

Enter conversion Mode:

1 - inches to centiMeters
2 centiMeters to inches
3 - feet to Meters
4 - Meters to feet
5 - Miles to KiloMeters
G - KiloMeters to Miles
0 -- exit

ir'I 0 d e ';:• 8 (ffi)

Invalid code -- retry

Enter conversion Mode:
1 - inches to centiMeters
2 - centiMeters to inches
3 - feet to Meters
4 - Meters to feet
5 - Miles to KiloMeters
G - KiloMeters to Miles

0 - exit

r11 o d e ';:. 2 (ffi)

Enter value to convert:

88.00 C frl

3-6 Using PL/I on VAX

3 2 (ffi)

51+ 52

BG(ffi)

33+5Ll in

13. Invoke the compiler.

The PLI command again invokes the PL/I compiler. This time, there are
no messages. When the compilation is successful, the compiler creates an
object module consisting of the machine language instructions to execute
the program. This object module is written to the file named
METRIC.OBJ.

To obtain a listing of the program, you must explicitly request a listing
when you enter the PLI command interactively. Specify:

$ PL! METRIC/LISTIBD)

where /LIST is a qualifier for the PLI command. The PLI command cre­
ates a listing file named METRIC.LIS, which can be printed with the
command:

$ PR I N:r METRIC 00)

14. Link the object module.

The LINK command invokes the linker to bind object modules into an
executable image. In this example, only one object module is supplied.
When multiple files are being linked, you separate them with commas, for
example:

$LINK AtBtC

The LINK command assumes that the file type of an input file is OBJ.
The linker automatically searches the run-time library to locate any PL/I
routines that are referenced in the object module(s).

The executable image file created by the linker from METRIC.OBJ is
METRIC.EXE.

15. Execute the program.

The RUN command initiates the execution of the image. The program
METRIC continues to prompt for a type of metric conversion and to
calculate a result until a 0 is entered in response to the prompt.

Using PL/I on VAX 3-7

Enter conversion mode~

- inches to centimeters
2 centimeters to inches
3 feet to meters
4 - meters to feet
5 - miles to kilometers
G - kilometers to miles
0 ···· e ;.<it

MO de·-; ru
-~ 1 D .:3 D f ru ~

MALCO M lossed out at 14-MAR-1880 14:32:17.31

3-8 Using PL/I on VAX

16. Logoff the system.

The LOGOFF command terminates the connection with the computer.

Using PL/I on VAX 3-9

3.2 The File System

In VAX/VMS, a file can be uniquely identified in terms of:

• The device on which the file resides, for example, a disk or a tape

• If the device is a disk, the directory in which the file is cataloged

• A file name, a zero- to nine-character name given by the user who created
the file

• The file type, a zero- to three-character name that is either supplied by the
user who created the file or supplied by default by a program that created
the file as an output file ,

• The file version number, a numeric value indicating the version of the file

All of these elements comprise a file specification. A file specification has the
format:

deuice:[directorYJfilename.filetYPe;uersion-number

The colon, brackets, period, and semicolon are required syntactic delimiters.
A file specification may also be preceded with a node name followed by a
double colon, if the current system is connected to a network.

When a file specification does not specify all of these items, the system or the
program that is processing the file provides default values.

Some examples of file specifications are shown below. The examples also
illustrate some of the more frequently used VAX/VMS commands that pro­
cess files.

$ DIRECTORY/FULL DBA1: [MALCOLMJMETRIC. PLI ~

This file specification indicates the PLI source file cataloged in the directory
MALCOLM on the disk device DBAl. The DIRECTORY command with the
/FULL qualifier lists a complete set of information about the file and its
attributes.

$TYPE [MUGGSIEJALPHA.SRT~

The TYPE command displays the contents of a file on the terminal. This file
specification indicates a file ALPHA.SRT that is cataloged in the directory
[MUGGSIEJ. Since no device is given, a default value is provided. The ab­
sence of a device name always defaults to the default device defined for a user;
this is almost always a disk device.

$DELETE METRIC.OBJ;1~

The DELETE command releases all the disk space occupied by a file and
makes the file inaccessible. The explicit version number indicates which ver­
sion of the file METRIC.OBJ in the current default directory is to be deleted.
The DELETE command requires either a version number or a ; with no
number. When no number is specified, the DELETE command deletes the
most recent version of a file.

3-10 Using PL/I on VAX

$PRINT METRIC(Bill

The PRINT command uses the current default device and provides a default
file type of LIS. This command prints the file METRIC.LIS on the system
line printer.

3.2.1 Subdirectories

When a user is given an account on a VAX/VMS system, the system manager
generally provides a default directory for the user's personal use. Within a
private directory, a user can create a set of subdirectories, and place the
entries for related files in the same subdirectory.

The CREATE/DIRECTORY command creates a subdirectory. Figure 3-1 il­
lustrates the creation of a simple directory hierarchy. The user MALCOLM
creates separate directories for source files, object modules, and listings. After
the creati0n of the three directories, the REN AME command changes the
directories associated with the files in the default directory [MALCOLM].

The asterisks (*) in the file specifications for the RENAME command indi­
cate "all files" - thus, all files with file types of PLI are renamed to the
directory [MALCOLM.SRCJ; all files with file types of OBJ are renamed to
the directory [MALCOLM.OBJ]; and all files with the file type LIS are re­
named to the directory [MALCOLM.LIST]. When the files are renamed and
the REN AME command does not specify output file names and file types, the
output files have the same file names and file types as the input files.

$SHOW DEFAULT
DBA 1 :[MALCOLM]

$ CREATE/DIRECTORY [MALCOLM.SAC]
$CREATE/DIRECTORY [MALCOLM.OBJ]
$CREATE/DIRECTORY [MALCOLM.LIST]

$ RENAME *.PLI;* [MALCOLM.SAC]
$ RENAME *.OBJ;* [MALCOLM.OBJ]
$ RENAME *.LIS;* [MALCOLM.LIST]

MALCOLM.DIR

SRC.DIR

OBJ.DIR
UST.DIR

Figure 3-1: Creating a Directory Hierarchy

SAC.DIR

METRIC.PL/;1
METRIC.PL/;2

OBJ.DIR

METRIC. OBJ;1

LIST.DIR

METRIC.LIS;1

Using PL/I on VAX 3-11

3.2.2 Logical Names

A logical name represents a device or file specification. When a logical name is
used in a command or in a program, the system translates the logical name
and uses the file specification with which the logical name is associated. For
example:

OPEN FILE (INFILE) RECORD INPUT;

When this OPEN statement is executed in a PL/I program, PL/I uses the
default title INFILE. Then, the run-time system will attempt to translate the
logical name INFILE. If such a logical name exists, the related file specifica­
tion, or equivalence name, is the name that is actually used.

A logical name and its equivalence name become associated by a DEFINE
command:

$ DEF I NE Uff I LE ALPHA, SRT 00)

This DEFINE command creates the logical name INFILE and associates it
with the file specification ALPHA.SRT. Each time a program is run, a differ­
ent equivalence can be made for a logical name. When no logical name assign­
ment exists for INFILE, VAX-11 PL/I provides a default file specification of
INFILE.DAT.

VAX/VMS provides default logical name equivalences for the default disk
device and for the default terminal. These names are:

• SYS$DISK - the default disk device.

• SYS$INPUT - the default input device. This logical name is associated
with the default PL/I file SYSIN.

• SYS$0UTPUT - the default output device. This logical name is associated
with the default PL/I file SYSPRINT.

• SYS$ERROR - the default diagnostic and error message output device.

• SYS$COMMAND - the default command input device.

These names can be used as equivalence names in logical name assignments
as well. Consider the OPEN statement:

OPEN FILE (REPORT_DATA> OUTPUT RECORD SEQUENTIAL;

To verify the output of this program for testing purposes, the following equiv­
alence can be made for the file REPORT_DATA:

$ DEFINE REPORT _DATA SYS$0UTPUT 00)

When WRITE statements in this program write records to the file REPORT_
DAT A, the records are actually displayed on the terminal.

3-12 Using PL/I on VAX

3.3 The VAX/VMS Librarian

A library is a collection of files contained within another, larger file. The
library contains its own directory of files within it. There are two types of
library file of interest to PL/I programmers:

• Text libraries - these libraries contain modules of PL/I source statements
to be copied at compile time by %INCLUDE statements. A text library file
has the file type TLB.

• Object module libraries - these libraries contain external subroutines and
functions that are frequently invoked by PL/I programs. An object module
library file has the file type OLB.

You can create either of these types of library with the DCL command
LIBRARY. This command also lists the modules in a library and permits the
addition, deletion, extraction, and replacement of modules within a library.

3.3.1 INCLUDE Files and Libraries

An INCLUDE file is an external file containing PL/I source text. The contents
of the file can be copied into any PL/I program during compilation by means
of the PL/I statement %INCLUDE. For example:

'X.INCLIJDE 'APPLIC.SYt1';

This %INCLUDE statement copies the contents of the file APPLIC.SYM
from the current default directory into the PL/I source program. The default
file type for INCLUDE files is PLI. For example, the following statement
includes the contents of DECLARE.PL!:

i.. I NCLIJDE I DECLARE I;

When individual INCLUDE files are combined into libraries, the name of the
library may be specified on the PLI command. When a %INCLUDE state­
ment in the program specifies a module name, the compiler will search that
library for the module. For example:

'X.INCLIJDE APPLIC;

This statement requests the module named APPLIC. When a module is in­
cluded in a source file from a library, its name must not be enclosed in
apostrophes. Figure 3-2 illustrates creating the library that contains the mod­
ule APPLIC and specifying the library in a PLI command.

Using PL/I on VAX 3-13

$LIBRARY/TEXT/CREATE
$_LIBRARY: PLIFILES
$_FILE: APPLIC.SYM,DECLARE.PLI

$ PLI METRIC+PLIFILES/LIBRARY

The LIBRARY /TEXT command creates a library
containing text modules. This command creates
the library PLIFILES.TLB that contains the modules
APPLIC and DECLARE.

The PLI command processes the input files
METRIC.PU and uses the iibrary PLiFiLES.TLB
to locate all INCLUDE file references in the
format %INCLUDE module-name.

Figure 3-2: Creating and Using an INCLUDE File Library

3.3.2 Object Module Libraries

An object module library can contain external procedures and functions.
When the library is specified on a LINK command, the linker automatically
searches the library if it cannot resolve references to external variables, proce­
dures, or functions. For example, if the program METRIC contains a refer­
ence to an external entry named KILOMETERS that is in the library
DEFLIB.OLB, the module METRIC may be linked as follows:

$ LINK METRIC 1DEFLIB/LIBRARY IBITl

This LINK command specifies that the object module library DEFLIB.OLB
be searched for modules that are referenced but not contained in the module
METRIC.OBJ.

In VAX/VMS, you can define a default user library for the linker to search by
equating the logical name LNK$LIBRARY with the name of an object module
library. For example:

$ DEF I NE LNK $LI BR ARY AP PLI C. OLB IBITl

When this logical name assignment is in effect, the linker will search the
library APPLIC.OLB after it searches all object modules and libraries speci-

3-14 Using PL/I on VAX

fied on the LINK command. Additional default user libraries can be defined
with the logical names LNK$LIBRARY_l, LNK$LIBRARY_2, and so on.

After searching object modules and libraries specified on the LINK command
and then any default user libraries, the linker searches the default system
libraries named VMSRTL.EXE and STARLET.OLE.

3.4 Command Procedures

Sequences of commands that are frequently executed in a particular order can
be placed in files called command procedures. A command procedure is sim­
ply a file that contains DCL commands. For example, a command file named
PLIMETRIC.COM can contain the lines:

$ PLI METRIC
$ LINK METRIC

Each line in the file represents a command for the system to process. The lines
are executed when the name of the procedure is specified following an @

(Execute Procedure) command. The procedure PLIMETRIC is executed as
follows:

$ @PLI METRIC ffi)

Command procedures can be very simple, like the two-line example shown
above, or they can be very complex. For example, arguments can be passed to
a command procedure in much the same way that arguments are passed
within a PL/I program. Each argument is associated with one of the symbolic
names Pl, P2, and so on. For example:

$ PLI 'Pi'
$LINK 'Pi'

This procedure compiles and links any PL/I source program whose name is
passed to it as a parameter. If the procedure's name is PLILINK.COM, it
could be invoked as follows:

$ @PLILINK METRIC ffi)

In this example, the parameter METRIC is substituted for the symbol Pl.
This execution of the procedure compiles METRIC.PL! and links
METRIC.OBJ.

The VAX/VMS command language provides additional capabilities for use in
command procedures, including:

• Symbol definition and assignment for character strings and integers

• Error processing by means of an ON statement

• Procedure control by means of IF and GOTO statements

• Options for processing command procedures as batch jobs

For additional information on creating and using command procedures, see
the VAX/VMS Guide to Using Command Procedures.

Using PL/I on VAX 3-15

VAX-11 PL/I Language Summary

1.0 Introduction

This document summarizes the syntax of VAX-11 PL/I statements.

This summary is intended as a quick reference to use when writing PL/I
programs and not as a formal or complete description of the language. More
detailed information on VAX-11 PL/I features can be found in the VAX-11
PL/I Encyclopedic Reference and VAX-11 PL/I User's Guide.

2.0 Symbols and Conventions

• Brackets ([]) enclose optional language elements. Long brackets enclose
lists of elements from which one and only one element may be chosen.

• Braces ({}) enclose lists of items from which one and only one item must be
chosen.

• Text in green ink describes language features that are not in the proposed
ANSI General Purpose Subset (BSR X3.74). All features of the subset are in
VAX-11 PL/I.

1

~

< >
~
I

1--'
1--'

~

£
~
~
~

(Jq
c
~

(Jq
ro
[/)
c s s
~
~
~

3.0 Statements

allocate-statement:

{
ALLOCATE} identifier [SET(reference)];

ALLOC

assignment-statement:
reference = expression;

See also Section 5.0, "Expressions and References."

begin-statement:
BEGIN;

call-statement:
CALL reference [(argument, ...)];

The reference must be to a built-in subroutine or to an entry point defined without the RETURNS option.

close-statement:
CLOSE FILE(reference) [ENVIRONMENT(environment-option, ...)1;

declare-statement:

{DECLARE} declaration, ... ;
DCL

declaration:
[level] { identifier }

(declaration, ...) [
([lower-bound:]upper-bound) [attribute ...] J

(*)

The bound expressions must have integer values.

< > :x
I

I-"
I-"

t-0
f;
r-1
~
::s

crq
s::
~

crq
('D

w. s:: s s
~

~

~

delete-statement:
DELETE FILE(reference) [KEY(expression)J [OPTIONS(option, ...)J;

option:
FAST_DELETE
IND EX_NUMBER(expression)

[
MATCH_GREATER J
MATCH_GREATER_EQUAL

RECORD-1D(reference)

do-statement: . [[TO expression] [BY e~pression] J [WHILE(expression)];
DO (reference=expresswn] REPEAT express10n

end-statement:
END [identifier];

entry-statement:
ENTRY [(parameter-identifier, ...)] [RETURNS(data-attribute ...)];

See also Section 4.0, "Attributes."

format-statement:
label: FORMAT (format-specification, ...);

format-specification:

{

format-item }
format-iteration-factor format-item
format-i teration-factor(format-specification, ...)

~

< >
:><
I

I--"
I--"

1-'(j

£
~
$l:)
:;:$

(J'q
c
$l:)

(J'q
('D

w c s s
$l:) ..,
«:

Format Item Format Specified Remarks

F(w[,d]) fixed point format w and d must be integers
E(w[,d]) floating point format w and d must be integers
P 'picture' picture format see PICTURE attribute
A[(w)l character format w required on input
B[(w)l bit string format w required on input
Bl[(w)l bit string format w required on input
B2[(w)l base-4 string format w required on input
B3[(w)] octal string format w required on input
B4[(w)l hexadecimal format w required on input

TAB[(count)] tab control count must be an integer; print files only
LINE(n) line control n must be an integer; print files only
SKIP[(count)] line control count must be an integer
COL[UMN](n) column control n must be an integer
X [(count)] spacing control count must be an integer
PAGE page control print files only

R(label) remote format label is of FORMAT statement

free-statement:
FREE [reference->] identifier;

get-statement:
GET [LIST(input-target, ...) J

EDIT(input-target, ...) (format-specification, ...)

[
[FILE(reference)] [SKIP[(expression)]] [OPTIONS(option, ...)] J

STRING(expression)

< >
~
I

1--'
1--'

~

£
l4
~
~

(Jq
c
~

(Jq
(t)

w c s s
~
>-i

'-<

01

options:
NO_ECHO
NO_FILTER
PROMPT (expression)
PURGE_TYPE_AHEAD

For the definition of format specifications, see "format-statement."

input-target:

{

reference }
(input-target, ... DO [reference=expression [[TO expression] [BY expression]]] [WHILE(expression)])

REPEAT expression

goto-statement:

{ GOTO } label·
GOTO '

if-statement:

IF expression THEN

include:

{

do-group }
begin-block
statement

%INCLUDE { 'file-spec' }
text- module-name

{

do-group }
[ELSE begin-block]

statement

The file-spec must be a valid VAX/VMS file specification identifying a file of valid PL/I
source text. The text-module name must be a 1- to 31-character name of a module in a library
of INCLUDE modules.

~

< > :x
I

I-'
I-'

~

£
~
Sl:J
:::1

l)'q
c
Sl:J

l)'q
(t)

w c s s
Sl:J

~

on-statement:

ON

ANYCONDITION
ENDFILE (reference)
ENDPAGE (reference)
FINISH
KEY (reference)
UNDEFINED FILE (reference)
ERROR
FIXED OVERFLOW
OVERFLOW
UNDERFLOW
VAXCONDITION (expression)
ZERO DIVIDE

open-statement:

{
statement \
begin-blockf

OPEN FILE (reference) [TITLE(expression)]

[STREAM] [[INPUT] [LINESIZE(integer)J [PRINT [PAGESIZE(integer)J J]
OUTPUT

[
[INPUT]] [DIRECT]

RECORD OUTPUT [SEQ[UENTIAJLJ
UPDATE

[KEYEDJ

[ENVIRONMENT(environment-option, ...)]

~
~
I

I-'
I-'

~

£
t"4
~
i:j

(Jq
c
~

(Jq
('[)

w.
c s s
~

~

-l

The reference is a reference to a declared file constant or variable. For a description of
environment options, see "attribute." If a file has certain individual attributes, additional
attributes are implied, as follows:

Has:

DIRECT
KEYED
PRINT
SEQUENTIAL
UPDATE

Implied:

RECORD KEYED
RECORD
STREAM OUTPUT
RECORD
RECORD

If the statement has RECORD but not DIRECT or SEQUENTIAL, SEQUENTIAL is im­
plied. Certain attributes are implied if the statement lacks either of two alternatives, as
follows:

Lacks:

STREAM or RECORD
INPUT, OUTPUT, or UPDATE

procedure-statement:

Implied:

STREAM
INPUT

{PROCEDURE} [(parameter-identifier, ...)] [OPTIONS(option, ...)] [RETURNS(data-attribute ...)] [RECURSIVE];
PROC

options:
MAIN
ID ENT(expression)
UNDERFLOW

00

< > :x
I

1--'
1--'

~ s
~
~
~

(Jq
c
~

(Jq
(0

w.
c s s
~ ..,
~

put-statement:
PUT [LIST (output-source, ...)]

EDIT (output-source, ...) (format-specification, ...)

[

[FILE(reference)J [PAGEJ [LINE[(expression)JJ [SKIP[(expression)JJ [OPTIONS(CANCEL_CONTROL_O)J]

STRING(reference)

For definition of format specification, see "format-statement."

output-source:

{

expression }
(output-source, ... DO [reference = expression [[TO expression] [BY e~pression]]] [WHILE (expression)])

REPEAT express10n

read-statement:
READ FILE (reference) {INTO(reference)} [KEY(expression)] [OPTIONS(option, ...)]·

SET(reference) KEYTO(reference) '

options:
FIXED_ C 0 NTRO L_FRO M (reference)
INDEX_NUMBER (expression)

[
MATCH_GREATER]
MATCH_GREATER_EQUAL

RECORD_lD(reference)
RECORD_lD_TO (reference)

replace:
%REPLACE identifier BY constant;

return-statement:
RETURN [(expression)];

< >
~
I
~
~

"'O s
r4
P'
~

(JQ

c
P'

(JQ
('!)

w c s s
P'
~

~

~

revert-statement:
REVERT condition-name;

For definition of condition name, see "on-statement."

rewrite-statement:
REWRITE FILE(reference) [FROM(reference) [KEY(expression)J] [OPTIONS(option, ...)J;

options:

signal-statement:

FIXED_CONTROL_FROM(reference)
INDEX_NUMBER(expression)

[
MATCH_GREATER]
MATCH_GREATER_EQUAL

RECORD_ID(reference)
RECORD_ID_ TO(reference)

SIGNAL condition-name;

For definition of condition name, see "on-statement."

stop-statement:
STOP;

write-statement:
WRITE FILE(reference) FROM(reference) [KEYFROM(expression)J [OPTIONS(option, ...)J;

options:
FIXED_C 0 NTRO L_FRO M (reference)
INDEX_NUMBER (expression)
RECORD_ID_TO (reference)

o 4.0 Attributes

< >
~
I

fo-'
fo-'

~

£
~
~
~

(Jq
s::
~

(Jq
ro
\fl
s:: s
s
~

~

attribute:

Computational data:

CHAR[ACTERJ [(length)] [VAR[YINGJJ
BIT [(length)] [ALIGNED]
PICTURE 'picture'
FLOAT [BIN[ARYJJ [(precision)]
FIXED [BIN[ARYJJ [(precision)]
BIN[ARYJ [FLOATJ [(precision)]
DEC[IMALJ [FIXED] [(precision[,scale-factor])J
FLOAT DEC[IMALJ [(precision)]

Picture:

Picture Character

9
z
*
y
v
(n)
T
I
R

' I
B

Meaning

Decimal digit, including leading zeros
Decimal digit with leading-zero suppression
Decimal digit with asterisk for leading zero
Decimal digit with space for any zero
Position of assumed decimal point
Iteration factor for subsequent character
Position of digit and encoded plus sign or minus sign
Position of digit and encoded plus sign if number >= 0
Position of digit and encoded minus sign if number < 0
Position at which decimal point is inserted
Position at which comma is inserted
Position at which slash is inserted
Position at which space is inserted

(Continued on next page)

< >
~
I

I-'
I-'

""d

£
t-t
p:i

::s
(Jq
c
p:i

(Jq
co
w
c s s
p:i .,

'<!

--

Picture Cont:

Picture Character

$
+

s
CR
DB

Meaning

Position[s] of [drifting] dollar sign
Position[s] of [drifting] phis sign if number >=0
Position[s] of [drifting] minus sign if number < 0
Position[s] of [drifting] plus sign or minus sign
Positions at which 'CR' is inserted if number < 0
Positions at which 'DB' is inserted if number < 0

After all its iterations are expanded and all its insertion characters are removed, a picture
must satisfy the following syntax rules (the notation character ... indicates a series of the same
character, with no embedded characters).

picture:
'n eft-part] center-part [right-part]'

left-l~l

right-part:

{ g~-part}

-N

< >
~
I

1--'
1--'

~

£
t'-4
~
::s

(Jq
c
~

(Jq
CP

00
c
s
s
~

~

center-part:
9 ... [V[9 ... JJ
V9 .. .
Z ... [9 ... [V[9 ... JJJ
Z ... [V[9 ... JJ
[Z ... JVZ .. .
* ... [9 ... [V[9 ... JJJ
* ... [V[9 ... JJ
[* ... JV* .. .
++ ... [9 ... [V[9 ... JJJ
++ ... [V[9 ...]]
--... [9 ... [V[9 ... JJJ
--... [V[9 ... JJ
SS ... [9 ... [V[9 ...]]]
SS ... [V[9 ... JJ
$$... [9 ... [V[9 ... JJJ
$$... [V[9 ... JJ
+[+ ... JV+ .. .
-[- ... JV- .. .
S[S ... JVS .. .
$[$... JV$.. .

NOTE

The character Y, T, I, or R may appear wherever 9 is valid
except that only one character T, I, or R may appear in a
picture, and a picture may not contain T, I, or R if it also
contains S, +, -, CR, or DB.

< >
><:
I

1--'
1--'

~

f;
rt
~
::i

(Jq
i::
~

(Jq
('t)

rn
i:: s s
~

~

-~

Noncomputational data:

AREA
ENTRY [VARIABLE]
FILE [VARIABLE]
LABEL
OFFSET
POINTER

Storage class:

[

[AUTO[MATIC]] [lNIT[IAL] (initial-element, ...)] l
BASED [(reference)]
DEF[INED] (reference) [POSITION(expression)]
STATIC [INIT[IAL](initial-element, ...)] [READONLY]

initial-element:

[(iteration-facfor)] arit_hmetic-constant {
string-constant,_.,.,~ }

(iteration-factor) scal~.~erence
(iteration-factor) (scalar-expression)
[(iteration-factor)] *

STATIC variables may be initialized only with constants and with
the NULL built-in function.

Scope:

[

EXT[ERNALl [GLOBALDEF[(psect-name)]
GLOBALREF

[INT[ERNAL]]

[READONLYJ] l
VALUE

-~
< >
~
I

I-'
I-'

~

£
~
p;
~

(J'q

c
p;

crq
ro
r:n
c s s
p;

~

File description:

[STREAM] [[INPUTJ [LINESIZE(integer)J [PRINT [PAGESIZE(integer)J J]
OUTPUT

[

[INPUTJ J
RECORD OUTPUT

UPDATE [
DIRECT J
[SEQ[UENTIALJLJ [KEYEDJ

[ENVIRONMENT(environment-option, ...)]

Argument-passing:

[ANYJ [VALUEJ

Entry-name attributes:

{
BUILTIN }
ENTRY [VARIABLE] [OPTIONS(VARIABLE)J [RETURNS (data-attribute ...)J

~
~
I

1--'
1--'

1-rj

£
~
~
::i

(Jq
c
~

(Jq
(D

w
c s s
~

~

-~

Summary of ENVIRONMENT Options

Option

APPEND

BATCH

BLOCK_BOUNDARY_FORMAT

BLOCK_lO

BLOCK_SIZE(expression)

BUCKET _SIZE(expression)

CARRIAGE_RETURN_FORMAT

CONTIGUOUS

CONTIGUOUS_BEST _TRY

CREATION_DATE(variable)

CURRENT_POSITION

Usage

Places output for a file at the end of an
existing file.

Submits a copy of the file to the sys-
tern batch job queue on close.

Indicates that records must not cross
block boundaries.

Specifies a file will be read or written
by blocks instead of records.

Specifies the size of a block for the ere-
ation of a magnetic tape file.

Defines the number of 512-byte blocks
in a bucket for an indexed sequential
or a relative file.

Indicates that records in the file will
be printed with default carriage con-
trol.

Specifies that an output file must be
placed in a physically contiguous ex-
tent on disk.

Requests that if possible an output file
be placed in a physically contiguous
extent on disk.

Overrides default creation date of file.

Leaves magnetic tape positioned at
last close.

Specify Valid Default
At 1/0 Value Data Type

Types

Create Record Disabled BIT(l)
Open Stream

Create Record Disabled BIT(l)
Open Stream
Close

Create Record Disabled BIT(l)
Stream

Create Record Disabled BIT(l)
Open

Create Record Mount FIXED BINARY(31)
Stream value

Create Record Maximum FIXED BINARY(31)
record size

Create Record Enabled BIT(l)

Create Record Disabled BIT(l)
Stream

Create Record Disabled BIT(l)
Stream

Create Record Current BIT (64) ALIGNED
Stream date and

time

Create Record Disabled BIT(l)
Open Stream

(Continued on next page)

;; Summary of ENVIRONMENT Options (Cont.)

< >
~
I

1--'
1--'

~

£
~
~
::::i

(Jq
c
~

(Jq
("I)

w
c s s
~

~

Option

DEFAULT _FILE_N AME(expression)

DEFERRED_ WRITE

DELETE

EXPIRATION_DATE(variable)

EXTENSION_SIZE(expression)

FILE_ID(variable)
FILE_ID_TO(variable)

FILE_SIZE(expression)

FIXED_CONTROL_SIZE(expression)
FIXED_CONTROL_SIZE_TO(variable)

FIXED_LENGTH__RECORDS

GROUP _pROTECTION(expression)

Usage

Defines a default file specification for
a file.

Requests file system optimization of
output.

Specifies that the file be deleted when
it is closed.

Defines the expiration date for a mag-
netic tape file.

Specifies a default extension size for a
disk file.

Identifies a file by its internal file
identification.

Defines the initial number of blocks to
allocate for a file.

Defines records as variable length with
fixed-length control and specifies the
size of the fixed control area. On open,
returns the length of the fixed control
area.

Specifies a file with fixed-length re-
cords of a maximum record size.

Defines the type of file access allowed
to members of the owner's group.

Specify
At

Create
Open

Create
Update

Create
Open
Close

Create

Create
Update

Create
Open

Create

Create
Open

Create

Create

Valid Default
1/0 Data Type

Types Value

Record '.DAT' CHAR(128)
Stream

Record Disabled BIT(l)

Record Disabled BIT(l)
Stream

Record Creation BIT (64) ALIG NED
Stream date

Record System FIXED BINARY(31)
Stream default

Record n/a (6) FIXED BINARY(31)
Stream n/a (6) FIXED BINARY(31)

Record n/a FIXED BINARY(31)
Stream

Record Disabled FIXED BINARY(31)

Record Disabled BIT(l)

Record Current CHAR(4)
Stream process

default

(Continued on next page)

< >
~
I --1-tj

£
r
~
~

crq
c
~

crq
Ct>

00
c s s
~
1-1
"<

--l

Summary of ENVIRONMENT Options (Cont.)

Option

IGNORE_LINE_MARKS

INDEX_NUMBER(expression)

INDEXED

INITIAL_FILL

MAXIMUM_RECORD_NUMBER(expression)

MAXIMUM_RECORD_SIZE(expression)

MUL TIBLOCK_CO UNT(expression)

MUL TIBUFFER_COUNT(expression)

NO_SHARE

OWNER_GROUP(expression)

Usage

Specifies that end-of-line characters
are not to be treated as field delimiters
in GET LIST statements.

Specifies the initial index to use in ac­
cessing records in an indexed sequen­
tial file.

Defines an indexed sequential file.

Requests the file system to leave
unused space in file index overflow
buckets.

Specifies the largest record number
that will be valid for records in a rela­
tive file.

Specifies the maximum size that is
valid for any record in the file.

Specifies the number of blocks to allo­
cate for file system buffering.

Specifies the number of buffers to allo­
cate for file system buffering.

Prohibits all type of shared access to
the file.

Specifies the group number in the user
identification code (UIC) of the owner
of the file.

* Disabled if the file is opened for input, enabled if opened for output or update.

Specify
At

Create
Open

Create
Open

Create
Open

Open

Create

Create

Create
Open

Create
Open

Create
Open

Create

Valid
1/0

Types

Stream

Record

Record

Record

Record

Default
Value

Disabled

0

Disabled

Disabled

0

Record I 512 bytes

Record I Current
process
default

Record I Current
process
default

Record 1 *

Record I Current
Stream process

group
number

Data Type

BIT(l)

FIXED BINARY(31)

BIT(l)

BIT(l)

FIXED BINARY(31)

FIXED BINARY(31)

FIXED BINARY(31)

FIXED BINARY(31)

BIT(l)

FIXED BINARY(31)

(Continued on next page)

oo Summary of ENVIRONMENT Options (Cont.)

~
~
I

1--'
1--'

~

£
~
~
~

(Jq
c
~

(Jq
('O

00
c s s
~

~

Option

OWNER-MEMBER(expression)

OWNER-PROTECTION (expression)

PRINTER-FORMAT

READ_AHEAD

READ_ CHECK

RECORD_ID_ACCESS

RETRIEV AL_POINTERS(expression)

REWIND_ON_CLOSE

REWIND_QN_OPEN

Usage

Specifies the member number in the
user identification code (UIC) of the
owner of the file.

Specifies the type of file access al-
lowed the owner of the file.

Specifies that records in the file will be
printed using printer format carriage
control embedded in-the fixed control
area of the records.

Requests file system optimization on
read operations.

Requests verification of read opera-
tions.

Indicates that records will be accessed
by internal file system identification.

Specifies the number of file system ex-
tent pointers to maintain for file ac-
cess.

Requests that a magnetic tape volume
be rewound when the file is closed.

Requests that a magnetic tape volume
be rewound when the file is opened.

Specify Valid
Default

1/0 Data Type
At

Types Value

Create Record Current FIXED BINARY(31)
Stream process

member
number

Create Record Current CHAR(4)
Stream process

default

Create Record Disabled BIT(l)

Open Record Enabled BIT(l)
Stream

Create Record Disabled BIT(l)
Open Stream

Create Record Disabled BIT(l)
Open

Create Record Current FIXED BINARY(31)
Open Stream system

default

Create Record Disabled BIT(l)
Open Stream
Close

Create Record Enabled BIT(l)
Open Stream

(Continued on next page)

~
~
I

1--'
1--'

1-tj s
~
~
::i

(Jq
c
~

(Jq
('!)

w c s s
~

~

Summary of ENVIRONMENT Options (Cont.)

Option Usage

SCALARV ARYING Specifies that varying character
strings will be read/written using the
entire storage of the variable.

SHARED_READ Allows other users to read records in
the file.

SHARED_ WRITE Allows other users to read and write
records in the file.

SPOOL Queues a copy of the file to the system
printer wheri the file is closed.

SUPERSEDE Replaces an existing file with the same
file name, file type, and version num-
her.

SYSTEM_FROTECTION (expression) Defines the type of file access allowed
to users with system user identifica-
tion codes.

TEMPORARY Specifies a temporary file for which no
directory entry is made.

TRUNCATE Truncates a sequential file at its logi-
cal end-of-file when it is closed.

WORLD_PROTECTION (expression) Specifies the type of file access al-
lowed to general system users.

WRITE_BEHIND Requests file system optimization on
output operations.

WRITE_CHECK Requests verification of output opera-
tions.

~ * Enabled if the file is opened for input, otherwise disabled.

Specify Valid Default
At 1/0 Value Data Type

Types

Create Record Disabled BIT(l)
Open

Create Record * BIT(l)
Open

Create Record Disabled BIT(l)
Open

Create Record Disabled BIT(l)
Open Stream
Close

Create Record Disabled BIT(l)
Stream

Create Record Current CHAR(4)
Stream process

default

Create Record Disabled BIT(l)
Stream

Create Record Disabled BIT(l)
Update Stream
Close

Create Record Current CHAR(4)
Stream process

default

Create Record Disabled BIT(l)
Update Stream

Create Record Disabled BIT(l)
Update Stream

5.0 Expressions and References

express10n:
[(]logical-expression[)]
[(]relational-expression[)]
[(]concatenation-expression[)]
[(]arithmetic-expression[)]
[(]reference[)]
[(]constant[)]

logical-expression:

! expressio~ { ~ } expression l
l expression !

All operands must be bit-string expressions. VAX-11 PL/I also permits
the use of the exclamation point (!) as the OR operator.

All logical expressions result in bit strings.

relational-expression:

expression

>
>=

<
<=
>

<

expression

Both operands must be arithmetic, or both must be of the same type. All
relational expressions have Boolean results of type BIT(l).

concatenation-expression:
expression II expression

Both operands must be bit-string expressions, or both must be character­
string expressions. Concatenation expressions have results of the same
type as the operands.

VAX-11 PL/I also permits the use of a double exclamation point (! !) as
the concatenation operator.

20 VAX-11 PL/I Language Summary

arithmetic-expression:
expression I expression
expression * expression
expression - expression
expression + expression
expression * * expression
expression

All operands must be arithmetic expressions.

reference:
[reference->] [structure-qualification] identifier [(subscript-expres­
sion, ...)]
A subscript-expression is any valid expression with an integer result.

structure-qualification:
[structure-qualification] identifier [(subscript-expression, ...)].

Priority of Operators

Operator Priority Operator Priority

** 1 5

+ (prefix) 1 > 5

- (prefix) 1 < 5

1 5

* 2 > 5

I 2 < 5

+ (infix) 3 >= 5

- (infix) 3 <= 5

4 & 6

7

In the evaluation of expressions, parentheses may be used to group operands
so that they are evaluated irrespective of the priority of operators.

VAX-11 PL/I Language Summary 21

6.0 Built-In Functions and Pseudovariables

6.1 Built-In Functions

A built-in function reference may be used wherever a reference of the same
type is valid. The following built-in functions are supported.

1. Arithmetic Functions

• ABS(x) - returns the absolute value of x.

• CEIL(x) - returns smallest integer greater than or equal to x.

• DIVIDE(x,y,p[,q]) - returns x/y to precision p and scale factor q.

• FLOOR(x) - returns largest integer less than or equal to x.

• MAX(x,y) - returns larger of the values x and y.

• MIN(x,y) - returns smaller of the values x and y.

• MOD(x,y) - returns x modulo y.

• ROUND(x,k) - returns value of a scaled fixed-point decimal x
rounded to k digits.

• SIGN (x) - returns -1, 0, or 1 to indicate sign of x.

• TRUNC(x) - returns truncated (integer) form of x.

2. Mathematical Functions

• ACOS(x) - returns arc cosine of x in radians.

• ASIN(x) - returns arc sine of x in radians.

• ATAN(y,[x]) - returns arc tangent in radians.

• ATAND(y[,x]) - returns arc tangent in degrees.

• ATANH(x) - returns inverse hyperbolic tangent of x.

• COS(x) - returns cosine of radian-angle x.

• COSD(x) - returns cosine of degree-angle x.

• COSH(x) - returns hyperbolic cosine of x.

• EXP(x) - returns e to the power x.

• LOG(x) - returns base-e logarithm of x.

• LOGlO(x) - returns base-10 logarithm of x.

• LOG2(x) - returns base-2 logarithm of x.

• SIN(x) - returns sine of radian-angle x.

• SIND(x) - returns sine of degree-angle x.

• SINH(x) - returns hyperbolic sine of x.

22 V AX-11 PL/I Language Summary

• SQRT(x) - returns square root of x.

• TAN(x) - returns tangent of radian-angle x.

• TAND(x) - returns tangent of degree-angle x.

• TANH(x) - returns hyperbolic tangent of x.

3. String Functions

• BOOL(x,y,z) - returns bit-string result of Boolean operation z on bit
strings x and y. The argument z is a 4-bit string giving the Boolean
results of bitwise comparisons of x and y:

- Bit 1 of z: result of x-bit = 0, y-bit = 0

- Bit 2 of z: result of x-bit = 0, y-bit = 1

- Bit 3 of z: result of x-bit = 1, y-bit = 0

- Bit 4 of z: result of x-bit = 1, y-bit = 1

• COLLATE() - returns string containing ASCII character set in collat-
ing order.

• COPY(s,c) - returns string containing c concatenated copies of strings

• INDEX(s,c) - returns position of character c in string s.

• LENGTH(s) - returns number of characters or bits in string s.

• STRING(s) - returns string containing concatenated string represen­
tations of values in array or structure s.

• SUBSTR(s,i[,j]) - returns part of string s beginning at position i and j
characters in length.

• TRANSLATE(s,c[,d]) - returns translation of string s, such that char­
acters in string d are replaced with characters from string c; if d is
omitted, its value defaults to COLLATE()

• V ALID(x) - returns a Boolean value indicating whether the character­
string contents of x are valid with respect to the picture declared for x.

• VERIFY(s,c) - returns position of first character in strings that is not
found in string c.

4. Conversion Functions

• BINARY(x[,p[,0]]) - returns arithmetic value of x converted to binary
precision p and scale factor 0.

• BIT(s[,l]) - returns value of s converted to bit string of length 1.

• BYTE(x) - returns ASCII character represented by integer x.

• CHARACTER(s[,l]) - returns value of s converted to character string
of length 1.

VAX-11 PL/I Language Summary 23

• DECIMAL(x[,p[,q]]) - returns value of x converted to decimal value of
precision p and scale factor q.

• FIXED(x,p[,q]) - returns value of x as a fixed-point number of preci­
sion p and scale factor q.

• FLOAT(x,p) - returns value of x as a floating-point number of preci­
sion p.

• RANK(c) - returns integer representation (ASCII code) of character c.

• UNSPEC(x) - returns internally coded form of x as a bit string.

5. Condition-Handling Functions

• ONARGSLIST() - returns pointer to argument lists of exception con­
dition.

• ONCODE() - returns error .code of the most recent run-time error.

• ONFILE() - returns name of file constant for which the most recent
ENDFILE, ENDPAGE, KEY, or UNDEFINEDFILE condition was sig­
naled.

• ONKEY() - returns value of the key that signaled the KEY condition.

6. Array-Handling Functions

• DIMENSION(x,n) - returns number of elements in the nth dimension
of the array variable x.

• HBOUND(x,n) - returns upper bound of the nth dimension of the
array variable x.

• LBOUND(x,n) - returns lower bound of the nth dimension of the ar­
ray variable x.

7. Storage Functions

• ADDR(x) - returns pointer identifying the storage referenced by x.

• NULL() - returns the null pointer value.

• OFFSET(p,a) - returns the offset (into area a) for the location indi­
cated by pointer p.

• POINTER(o,a) - returns pointer to the location at offset o within area
a.

8. Timekeeping Functions

• DATE() - returns string containing system date m format
YYMMDD.

• TIME() - returns string containing system time of day in format
HHMMSSXX.

24 VAX-11 PL/I Language Summary

9. File Control Functions

• LINENO(reference) - returns line number of the referenced print file.

• PAGENO(reference) - returns page number of the referenced print
file.

10. Argument-Passing Function

• DESCRIPTOR(x) - forces the argument x to be passed by descriptor
to a non-PL/I procedure.

6.2 Pseudovariables

Pseudovariables may be used on the left-hand side (that is, as the reference)
of an assignment statement and in certain other assignment contexts.

1. PAGENO(reference) - changes the current page number of the refer­
enced print file.

2. STRING(reference) - assigns substrings to elements/members of the
referenced array/structure.

3. SUBSTR(s,i[,jJ) - replaces the indicated substring with a string expres­
sion.

4. UNSPEC(reference) - replaces the internal representation of the refer­
enced variable with a bit-string expression.

7 .0 Built-In Subroutines

A built-in subroutine is used as the reference in a CALL statement. For
detailed information on built-in subroutines, see the VAX-11 PL/I User's
Guide.

The following built-in subroutines are supported.

1. File-Handling Subroutines

• DISPLAY (file,structure) - returns, in the referenced structure, the
attributes of the referenced file.

• EXTEND (reference,expression) - increases the space allocated for
the referenced file by the number of disk blocks specified by the expres­
sion (which must be an integer).

• FLUSH (reference) - preserves all RMS buffers and attributes for the
referenced file.

• NXTVOL (reference) - sends request to system operator to mount the
next volume of the referenced multivolume tape file.

VAX-11 PL/I Language Summary 25

• REWIND (reference) - repositions the referenced file such that the
next record to be read is the first record in the file, relative record 1, or
the lowest key value in the current index, for sequential, relative, and
indexed sequential files, respectively.

• SPACEBLOCK (reference,expression) - positions the referenced file
forward or backward the number of blocks specified by the expression
(which must be an integer).

2. Condition-Handling Subroutines

• RESIGNAL() - allows an ON-unit to "pass" on a condition signal
and causes the condition to be resignaled for handling by a different
ON-unit.

8.0 ASCII Characters

The ASCII Character Set

ASCII ASCII
Decimal Decimal
Number Character Meaning Number Character Meaning

0 NUL Nuil 33 ! Exclamation mark
1 SOH Start of heading 34 " Quotation mark
2 STX Start of text 35 # Number sign
3 ETX End of text 36 $ Dollar sign
4 EOT End of transmission 37 % Percent sign
5 ENQ Enquiry 38 & Ampersand
6 ACK Acknowledgement 39 ' Apostrophe
7 BEL Bell 40 (Left parenthesis
8 BS Backspace 41) Right parenthesis
9 HT Horizontal tab 42 * Asterisk

10 LF Line feed 43 + Plus sign
11 VT Vertical tab 44

'
Comma

12 FF Form feed 45 - Minus sign or hyphen
13 CR Carriage return 46 Period or decimal point
14 so Shift out 47 I Slash
15 SI Shift in 48 0 Zero
16 DLE Data link escape 49 1 One
17 DCl Device control 1 50 2 Two
18 DC2 Device control 2 51 3 Three
19 DC3 Device control 3 52 4 Four
20 DC4 Device control 4 53 5 Five
21 NAK Negative acknowledgement 54 6 Six
22 SYN Synchronous idle 55 7 Seven
23 ETB End of transmission block 56 8 Eight
24 CAN Cancel 57 9 Nine
25 EM End of medium 58 : Colon
26 SUB Substitute 59 ; Semicolon
27 ESC Escape 60 < Left angle bracket
28 FS File separator 61 = Equal sign
29 GS Group separator 62 > Right angle bracket
30 RS Record separator 63 ? Question mark
31 us Unit separator 64 @ At sign
32 SP Space or blank 65 A Upper case A

(Continued on next page)

26 VAX-11 PL/I Language Summary

The ASCII Character Set (Cont.)

ASCII ASCII
Decimal Decimal
Number Character Meaning Number Character Meaning

66 B Upper case B 97 a Lower case a
67 c Upper case C 98 b Lower case b
68 D Upper case D 99 c Lower case c
69 E Upper case E 100 d Lower cased
70 F Upper case F 101 e Lower case e
71 G Upper case G 102 f Lower case f
72 H Upper case H 103 g Lower case g
73 I Upper case I 104 h Lower case h
74 J Upper case J 105 i Lower case i
75 K Upper case K 106 j Lower case j
76 L Upper case L 107 k Lower case k
77 M Upper case M 108 1 Lower case 1
78 N Upper case N 109 m Lower case m
79 0 Upper case 0 110 n Lower case n
80 p Upper case P 111 0 Lower case o
81 Q Upper case Q 112 p Lower case p
82 R Upper case R 113 q Lower case q
83 s Upper case S 114 r Lower case r
84 T Upper case T 115 s Lower cases
85 u Upper case U 116 t Lower case t
86 v Upper case V 117 u Lower case u
87 w Upper case W 118 v Lower case v
88 x Upper case X 119 w Lower case w
89 y Upper case Y 120 x Lower case x
90 z Upper case Z 121 y Lower case y
91 [Left square bracket 122 z Lower case z
92 \ Back slash 123 I Left brace
93 l Right square bracket 124 I Vertical line
94 or t Circumflex or up arrow 125 I Right brace
95 <-Or_ Back arrow or UI,lderscore 126 - Tilde
96 Grave accent 127 DEL Delete

VAX-11 PL/I Language Summary 27

Glossary

This Glossary defines the terms that are used to describe the VAX-11 PL/I
language. The terms defined here are used throughout the VAX-11 PL/I docu­
mentation. The definitions in this glossary are followed by one of the following
codes to indicate sources that provide more detailed information than is pro­
vided in this manual:

Code Document

'Pedia VAX-11 PL/I Encyclopedic Reference

User's Guide VAX-11 PL/I User's Guide

VAX/VMS VAX/VMS Command Language User's Guide or related
VAX/VMS documentation

Consult the index of the appropriate document for page number references.

access mode

Manner in which records in a record file will be read or written. The access modes are
sequential, direct, or keyed sequential. (User's Guide)

aggregate

A collection of related data items that can be referred to individually or collectively.
See array and structure. ('Pedia)

allocation

area

(1) Specific unit of storage obtained for a based variable. (2) Activity of obtaining
storage for a v~riable. ('Pedia)

Unit of storage in which based variables may be allocated. ('Pedia)

Glossary-1

argument

Variable or expression value that is passed to an invoked subroutine or function.
('Pedia, User's Guide)

argument list

Zero or more arguments, specified m the invocation of a procedure or a built-in
function. ('Pedia, User's Guide)

arithmetic data

Data of the fixed-point binary, fixed-point decimal, floating-point, or pictured types.
('Pedia)

arithmetic operator

array

One of the punctuation symbols (+, - , /, * , or **) that requests an arithmetic
operation. ('Pedia)

A named collection of data items that have the same attributes and in which individ­
ual items, called elements, are accessed by subscripts. ('Pedia)

array reference

A variable reference that denotes an entire array (as opposed to an element of an
array). ('Pedia)

ASCII character set

Numeric values used to represent characters and control information. ('Pedia)

assignment statement

An executable statement that gives a value to a variable. ('Pedia)

attribute

Characteristic of a data item, such as fixed- or floating-point, decimal or binary,
extent, and so on. ('Pedia)

automatic variable

A variable for which storage is allocated when the block that declares it is activated.
The storage is released when the block is deactivated. ('Pedia)

based variable

A variable that is used to describe storage that is· accessed using a pointer. ('Pedia)

2-Glossary

begin block

bit

A sequence of statements headed by a BEGIN statement and terminated by a corre­
sponding END statement. A begin block is entered when control flows into the
BEGIN statement. When a begin block is entered, a block activation is created for it
and for the variables declared within it. ('Pedia)

(1) A unit of storage that can hold either of the binary digits 0 or 1. (2) Data type
applied to variables consisting of bit values. ('Pedia)

bit string

block

Zero or more of the binary digits 0 or 1. ('Pedia)

A sequence of PL/I statements that is delimited by one of the statement pairs
PROCEDURE and END or BEGIN and END. ('Pedia)

block activation

Hardware context created each time a block is entered, including the allocation of
storage for automatic variables and hardware information that connects the block to
the previous block. ('Pedia)

block 1/0

The performance of I/0 in which each physical 512-byte block in a file is treated as a
record, regardless of the structure of the records in the file. (User's Guide)

Boolean

bound

A logical value that can be either true or false. In PL/I, a one-bit string with a value of
zero indicates a Boolean value of false and a one-bit string with a value of one
indicates a Boolean value of true. ('Pedia)

Upper or lower limit to the subscript values of a dimension of an array. ('Pedia)

built-in function

A function provided by the PL/I language. ('Pedia)

by descriptor

Argument-passing mechanism used to pass arguments to a parameter declared with
asterisk extents. (User's Guide)

Glossary-3

by immediate value

Argument-passing mechanism used to pass arguments to parameters declared with
the VALUE attribute. (User's Guide)

by reference

Conventional PL/I method for passing arguments. (User's Guide)

character

(1) A single element of the ASCII character set. (2) Data type applied to variables
consisting of characters. ('Pedia)

character string

Zero or more characters. ('Pedia)

command

An instruction or request for the system or a system program to perform a particular
action. (VAX/VMS)

command procedure

A file containing a sequence of operating system commands to be executed.
(VAX/VMS)

comment

Any sequence of characters appearing between the character pairs/* and */. Com­
ments are for documentation purposes and have no special meaning to PL/I. ('Pedia)

comparison operator

See relational operator.

compiler

A program that translates source statements in a high-level programming language
into an object module. The object module consists of machine instructions and relo­
cation information to be used by the linker to form an executable image. (User's
Guide)

computational

One of the data types on which operations can be performed. The computatic~nal data
types are arithmetic (including pictured) and string. ('Pedia)

4-Glossary

concatenation operator

Punctuation symbol (: : or ! !) that joins two string values to form a single string.
('Pedia)

condition

An occurrence that causes the interruption of the program and initiates a search for a
sequence of statements to be executed in response. See also ON condition. ('Pedia)

condition name

Keyword associated with a specific ON condition, whose name suggests the nature of
the condition. ('Pedia)

condition value

A unique 32-bit number that identifies a specific operating system error, warning, or
informational condition. (User's Guide)

constant

(1) A literal value specified to represent a computational data item. (2) An entry or
label name that is declared implicitly by context. (3) A name declared with one of the
attributes ENTRY or FILE and without the VARIABLE attribute. ('Pedia)

constant identifier

An identifier that is replaced by a constant .at compile time. ('Pedia)_

control variable

A variable whose value is modified for each iteration of a DO-group and which may
be tested to determine whether or not the statements in the DO-group are to be
executed. ('Pedia)

conversion

Transformation of a value from one data type to another. ('Pedia)

data type

DCL

Class to which a data item belongs, for example, fixed-point decimal or character
string. The data type of a variable determines the operations that can be performed
on it. ('Pedia)

DIGITAL Command Language. Set of commands and utilities that invoke programs
provided by the VAX/VMS operating system. (VAX/VMS)

Glossary-5

debugger

Interactive program that permits the display and modification of program variables
during the execution of the program. (User's Guide)

declaration

Explicit or contextual specification of an identifier and its data type. ('Pedia)

defined variable

A variable declared with the DEFINED attribute that refers to all or part of another
variable's storage. ('Pedia)

descriptor

device

See by descriptor, parameter descriptor, returns descriptor.

General term for a physical system component or a link connected to the computer
that is capable of storing or transmitting data. (VAX/VMS)

diagnostic

Message from the compiler indicating that a statement contains a syntax error or a
violation of the language rules. (User's Guide)

dimension

A set of bounds describing one extent of an array. ('Pedia)

directory

File that contains a list of files cataloged on a particular device. (VAX/VMS)

DO-group

A sequence of statements headed by a DO statement and terminated with a corre­
sponding END statement. ('Pedia)

dummy argument

A unique variable allocated by the compiler to contain a copy of an argument speci­
fied in a procedure invocation. ('Pedia, User's Guide)

edit-directed stream 1/0

Transmission of data between a program and an external input/output device for
which the formatting and conversion of data are controlled by format specifications
in a GET or PUT statement. ('Pedia)

6-Glossary

editor

Program designed for the interactive creation and modification of files. (VAX/VMS)

element

Individual data item in an array. ('Pedia)

entry name

Identifier on a PROCEDURE or ENTRY statement that defines an entry point for
that procedure. ('Pedia)

entry point

Statement or instruction at which the execution of a procedure can commence.
('Pedia)

equivalence name

Character string equated to a logical name to be used in a VAX/VMS file specifica­
tion. (VAX/VMS)

expression

extent

A variable reference or constant, or any expression involving variable references,
constants, operators, built-in functions, or procedure function references. ('Pedia)

(1) The range comprising the low-bound:high-bound for one dimension of an array.
(2) Length of a string. ('Pedia)

external procedure

A procedure that is not contained in another procedure. ('Pedia)

external variable

field

A variable that is known in all blocks that declare it with the EXTERNAL attribute.
('Pedia)

A string of characters that corresponds to an input or output variable in a stream 1/0
statement. ('Pedia)

Glossary-7

file

(1) In PL/I, the input source or output target specified in an I/0 statement. ('Pedia)
(2) In VAX/VMS, a physical device or named collection of records on a mass storage
device such as a disk or magnetic tape. (VAX/VMS)

file constant

A name declared with the FILE attribute but not the VARIABLE attribute. ('Pedia)

file description attribute

One of the PL/I attribute keywords that can be specified in the declaration of a file
constant or used in an OPEN statement. The file description attributes indicate the
properties of the file and the manner in which a file will be used. ('Pedia)

file name

A zero- to nine-character component of a file specification that is generally a name
supplied by the user. (VAX/VMS)

file organization

Manner in which the records in a record file are arranged. The file organizations that
may be used in VAX-11 PL/I are sequential, relative, and indexed sequential. (User's
Guide)

file reference

The use of an identifier declared as a file constant, a scalar reference to a variable
with the FILE attribute, or a function that returns a file value. ('Pedia)

file specification

Unique identification of a file to the VAX/VMS operating system. (VAX/VMS)

file type

A zero- to three-character component of a file specification that generally describes
the usage of the file. (VAX/VMS)

file version number

Numeric component of a file specification, indicating the number of times a file has
been updated. (VAX/VMS)

fixed-control area

A data area associated with a record that is maintained separately from the data
portion of the record and that can be read or written in an I/0 operation. (User's
Guide)

8-Glossary

fixed-point binary

Data type for integer values. ('Pedia)

fixed-point decimal

Data type for decimal data with a fixed number of fractional digits. ('Pedia)

floating point

Data type used for very small or very large numbers. A floating-point value has a
mantissa and an optionally signed integer exponent. ('Pedia)

format item

A character code· and possibly associated value or values indicating input or output
data representation and formatting. ('Pedia)

format list

A list of format items corresponding to variable references or output data items for
edit-directed stream 1/0. ('Pedia)

function

A procedure that is entered when a reference to its name appears in an expression and
that returns a value to its point of reference. ('Pedia)

function reference

Appearance of the name of a user-written or built-in function in a PL/I statement.
('Pedia)

global symbol

External static variable declared with the GLOBALDEF or GLOBALREF attribute.
Global symbols may also have the VALUE attribute; symbols so declared are con­
stants that do not occupy any storage, but whose values are resolved at link time.
(User's Guide)

high bound

Upper limit of one dimension of an array. ('Pedia)

identifier

A user-supplied name of from 1 to 31 characters that denotes the name of a variable,
statement label, entry point, or file constant. ('Pedia)

Glossary-9

image

Output from the linker; created by processing one or more object modules. An image
is the executable version of a program. (User's Guide)

INCLUDE file

External file from which the compiler reads source text during the compilation of a
PL/I program. (User's Guide)

index number

The key field to which a key specified in a given 1/0 operation applies. An indexed
file can have multiple keys; each of which has an index. The first, or primary, index is
always zero. (User's Guide)

indexed sequential file

A record file in which each record has one or more data keys embedded in it. Records
in the file are individually accessible by specifying a key associated with a record.
(User's Guide)

infix operator

An operator that is positioned between two operands in an expression to define the
operation.

integer constant

Optionally signed string of decimal digits. ('Pedia)

integer data

Data declared as FIXED BINARY or FIXED DECIMAL with a zero scale factor.
('Pedia)

internal procedure

A procedure that is contained within another procedure. ('Pedia)

internal variable

A variable whose value can be referenced within the block that declared it and any
blocks contained within the block that declared it. ('Pedia)

iteration factor

An integer constant written in parentheses that specifies the number of times to use a
value in the initializing of array elements, or the number of times to use a given
format item or picture specification. ('Pedia)

IO-Glossary

key

(1) A value used in I/O statements to specify a particular record in a file. (2) A data
item embedded within a record in an indexed sequential file, or the relative record
number of a record in a relative file. ('Pedia, User's Guide)

keyed access

See random access.

keyword

label

An identifier that has a specific meaning to PL/I when used m the appropriate
context. ('Pedia)

A PL/I identifier, terminated by a colon (:), which is used to identify a statement.
('Pedia)

level number

library

linker

An integer constant that defines the relationship of a name within the hierarchy of a
structure with respect to other names in the structure. ('Pedia)

A file that contains modules and a directory listing those modules. The two types of
library used in PL/I program development are text libraries of INCLUDE files and
object module libraries. (User's Guide)

The program that arranges object modules into an executable image and that re­
solves references among external variables declared in the modules. (User's Guide)

list-directed stream 1/0

listing

Transmission of data between a program and an input/output device, for which PL/I
provides automatic data conversion and formatting. ('Pedia)

Output file created by the compiler that lists the statements in the source program,
the line numbers it has assigned to them, the names of variables and constants
referenced in the program, and additional optional information. (User's Guide)

Glossary-11

locator-qualified reference

Specification of a based variable in terms of a pointer or offset value that indicates
the location of the variable. ('Pedia)

locator qualifier

Pointer reference and punctuation symbol (->) that associate a storage location with
a based variable. ('Pedia)

logical name

Alternate name used to refer to VAX/VMS files or devices by other than their unique
file specifications. (VAX/VMS)

logical operator

login

log off

One of the punctuation symbols (", &, ! , or :) that performs a logical operation on
bit-string values. ('Pedia)

Sequence of terminal interaction that establishes a user's communication with the
operating system. (VAX/VMS)

Termination of a user's communication with the operating system. (VAX/VMS)

low bound

Lower limit of one dimension of an array. ('Pedia)

main procedure

Procedure that defines the primary entry point for a program. ('Pedia)

major structure

Name given to an entire structure, by which all members of the structure can be
specified in a single reference. A major structure always has a level number of 1.
('Pedia)

member

A data item in a structure that may itself be a structure. ('Pedia)

12-Glossary

memory

Addressable locations into which storage acquired for variables is mapped. (User's
Guide)

minor structure

A member of a structure that is itself a structure. ('Pedia)

noncomputational

A data item that is not string or arithmetic. The noncomputational data types are
entry, file, label, pointer, area, and offset. ('Pedia)

nonlocal GOTO

A GOTO statement that results in a transfer of program control to a statement in a
previous block. ('Pedia)

object module

offset

Output from a language compiler or assembler that can be linked with other modules
to form an executable image. (User's Guide)

A data item whose value represents a displacement from the beginning of an area.
('Pedia)

ON condition

Any one of several named conditions that can interrupt a program and generate a
signal, such as a fixed-point or a floating-point overflow. ('Pedia)

ON-unit

PL/I statement or begin block specifying the action to be taken when a specific ON
condition is signaled during the execution of a PL/I program. ('Pedia)

operator

Punctuation symbol that requests or causes PL/I to perform a specific function such
as addition or comparison. ('Pedia)

parameter

(1) A variable that is matched to an argument when the procedure is invoked. (2) The
storage class of a variable whose value is obtained from an invoking procedure. (3) In
VAX/VMS, a value passed to a command or command procedure. ('Pedia)

Glossary-13

parameter descriptor

Set of attributes in a PL/I program describing a parameter to be passed to an external
procedure. The attributes in the parameter descriptor can specify data type and
argument-passing mechanism. ('Pedia)

parameter list

Specification of the names of variables whose values will be determined when a
procedure is invoked. The parameter list is specified on the PROCEDURE or
ENTRY statement for the procedure's entry point. ('Pedia)

password

A string of characters associated with a user name. A user logging into the system
must supply the correct password before the system will allow access. (VAX/VMS)

picture

(1) A specification of the character-string representation of an arithmetic value. The
specification is given as a character-string constant that defines the position of a
decimal point, zero suppression, sign conventions, and so on. (2) A data type for
which fixed-point decimal values are stored internally as character strings, in
accordance with a picture specification. ('Pedia)

pointer

A data item whose value is the address of a location in memory. ('Pedia)

precedence

The priority of an operator applied to the evaluation of operations in an expression.
An operation with a higher precedence is performed before an operation with a lower
precedence. ('Pedia)

precision

The number of digits in an arithmetic data item. ('Pedia)

prefix operator

One of the operators + or - that precedes a variable or constant to indicate or change
its sign. ('Pedia)

print file

A stream output file for which PL/I aligns certain data on predefined tab stops,
controls output by a page size and line size, and does not enclose strings in apos­
trophes. ('Pedia)

14-Glossary

procedure

A sequence of statements, headed by a PROCEDURE statement and terminated by
an END statement, that define an executable set of program instructions. A proce­
dure can be a subroutine that is invoked by a CALL statement or a function that is
invoked by a function reference. ('Pedia)

procedure block

A sequence of statements headed by a PROCEDURE statement and terminated by
an END statement. A procedure block is entered when its name is specified in a
CALL statement or a function reference. When a procedure block is entered, a block
activation is created for it and for the internal variables declared within it. ('Pedia)

pseudovariable

A built-in function that can be used on the left-hand side of an assignment to give a
special meaning to the assignment. ('Pedia)

qualified reference

See locator-qualified reference, structure-qualified reference.

qualifier

Keyword that modifies the operation of a DCL command. Qualifiers are always
preceded by slash (/) characters. (VAX/VMS)

random access

record

The performance of I/O to a record file by specifying individual records to be read,
written, rewritten, or deleted. Records are specified by a key that can be either a data
key embedded in the record or a relative record number. ('Pedia, User's Guide)

An organized collection of data transmitted by a record I/O statement. ('Pedia, User's
Guide)

record file

A file that is processed in terms of records. ('Pedia)

record format

The properties of the records in a specific file, including the record length and varia­
bility. (User's Guide)

Glossary-15

record id access

The specification of a record by its internal file identification. (User's Guide)

record 1/0

The transmission and interpretation of data grouped in well-defined units called
records. ('Pedia)

recursive procedure

A procedure that may invoke itself. ('Pedia)

reference

The appearance of an identifier in any context except the one in which it is declared.
('Pedia)

relational operator

One of the punctuation symbols (>, <, =, <=, >=, A<, A>, or A=) that states a
relationship between two expressions and results in a one-bit Boolean value indicat­
ing whether the relationship is true or false. ('Pedia)

relative file

A record file in which each record occupies a fixed-length, numbered cell. Records in
the file are individually accessed by specifying the number of a cell, relative to the
first record in the file. The first cell in the file is numbered 1. (User's Guide)

relative record number

(1) The position of a specific record in a relative file. (2) The key by which a record in
a relative file is accessed randomly. (User's Guide)

resignal

Mechanism by which a condition handler, or ON-unit, indicates that a signal is still
active. (User's Guide)

return value

Value returned by a function to be used at its point of invocation. ('Pedia)

returns descriptor

Set of attributes describing the data type of the return value of a function. ('Pedia)

16-Glossary

row-major order

The order of storage of an array's elements, and the order of ~ssignment of values to
an array. In row-major order, the rightmost subscript varies the most rapidly.
('Pedia)

run-time library

Collection of procedures that support the execution of a PL/I program. (User's Guide)

scalar

A data item that is neither an array nor a structure. ('Pedia)

scale factor

scope

The number of fractional digits for a fixed-point decimal data item. ('Pedia)

The range within a program m which the declaration of an identifier is known.
('Pedia)

sequential access

The performance of 1/0 to a file by accessing records serially. ('Pedia, User's Guide)

sequential file

signal

A record file in which the records are arranged serially, to which new records can be
added only at the end of the file and from which records cannot be deleted. ('Pedia,
User's Guide)

Mechanism by which PL/I indicates that an error or other special condition occurred.
('Pedia)

statement

A sequence of PL/I keywords, user-specified identifiers, and punctuation marks that
specifies an executable instruction or data declaration in a program. ('Pedia)

static variable

A variable whose storage is allocated for the entire execution of a program. ('Pedia)

Glossary-17

storage

Contiguous region of the computer's memory that is associated with a particular
variable. ('Pedia)

storage class

The attribute of a variable that describes how its storage is allocated and released by
PL/I. The storage classes are automatic, static, based, defined, and parameter.
('Pedia)

stream 1/0

The transmission and interpretation of input or output data in terms of sequences of
ASCII characters that are delimited by spaces, tabs, commas, or fields defined by
format items. ('Pedia)

string data

One of the data types character string or bit string. ('Pedia)

structure

A hierarchical arrangement of related data items, called members, that need not
have the same data type. ('Pedia)

structure-qualified reference

Naming of a member of a structure by specifying each higher-level name within the
structure and separating the names with periods. ('Pedia)

structure reference

A variable reference denoting an entire structure (as opposed to a member of a
structure). ('Pedia)

subdirectory

Directory file cataloged m a higher-level directory that lists additional files.
(VAX/VMS)

subroutine

A procedure that is entered by a CALL statement and that does not return a value to
its point of invocation. ('Pedia)

subscript

An integer expression that specifies an element in an array or a label. ('Pedia)

18-Glossary

system service

Operating system procedure used by VAX/VMS for controlling resources of the sys­
tem. (User's Guide)

user name

Name by which the system identifies a particular user and under which a user gains
access to the system. (VAX/VMS)

variable

A data item whose value may change during the execution of a program. ('Pedia)

variable reference

A reference to all or part of a variable. The reference may include qualification by
member names and subscripts. ('Pedia)

G lossary-19

Index

A
Access mode, 1-35, G-1
Addition operator, 1-13
ADDR built-in function, 1-39
Aggregate, 1-9, G-1

assignments, 1-15
ALLOCATE statement, 1-38
Allocation, 1-38, G-1
AND operator, 1-14
ANY attribute, 2-7
ANYCONDITION condition, 2-10
Area, 1-40, G-1

data type, 1-6
AREA attribute, 1-6, 1-41
Argument, 1-26, G-2

dummy, 1-27
Argument list, 1-26, G-2

hardware representation, 2-7
variable length, 2-8

Argument passing,
PL/I conventions, 1-26 .
VAX-11 conventions, 2-7

Arithmetic data, 1-4, G-2
Arithmetic operator, 1-13, G-2
Array, 1-9, G-2

assignment, 1-15
order of assignment, 1-10

Array reference, G-2
ASCII character set, 1-4, G-2
Assignment statement, 1-12, G-2

aggregates, 1-15
conversion of data, 1-13

Asterisk,
extent, 1-28
wild card character, 3-11

Attribute, 1-4, G-2
AUTOMATIC attribute, 1-8
Automatic variable, 1-8, G-2

B
BASED attribute, 1-37
Based storage, 1-37
Based variable, 1-37, G-2
BATCH option, 2-3

Begin block, 1-3, G-3
compared to DO-group, 1-22

BEGIN statement, 1-3
following IF, 1-22

BINARY attribute, 1-4
Bit, 1-4, G-3
BIT attribute, 1-4
Bit string, 1-4, G-3

constant, 1-7
Block, 1-1, G-3
Block activation, 1-3, G-3

effect of GOTO, 1-24
Block I/0, 2-6, G-3
BLOCK_lO option, 2-5 to 2-6
BLOCK_SIZE option, 2-5
Boolean, 1-4, G-3
Boolean expression,

in DO statement, 1-23
Bound, 1-10, G-3
Built-in function, 1-29, G-3
Built-in subroutines, 2-1
By descriptor, 2-7, G-3
By immediate value, 2-7, G-4
By reference, 1-26, 2-7, G-4

c
CALL statement, 1-24
CANCEL_CONTROL_O option, 2-4
Character, 1-4, G-4
CHARACTER attribute, 1-4
Character string, 1-4, G-4

constant, 1-7
CLOSE statement, 1-17
Closing a file, 1-17
Command, 3-3, G-4
Command procedure, 3-15, G-4
Comment, 1-2, G-4
Comparison operator,

see relational operator
Compiler, 3-5, G-4
Computational data, 1-4, G-4
Concatenation operator, 1-14, G-5
Condition, 1-31, G-5

handling, 1-31
Condition name, 1-31, G-5

Index-I

Condition value, 1-33, G-5
Constant, G-5

bit string, 1-7
character string, 1-7
conversion, 1-13
data types, 1-6
fixed-point decimal, 1-7
floating point, 1-7

Constant identifier, 1-7, G-5
Control variable, 1-23, G-5
Conversion, 1-13, G-5
CREATE/DIRECTORY

command, 3-11

DAT file type, 1-18
Data type, 1-4, G-5
DCL, 3-1, G-5

D

Debugger, G-6
DECIMAL attribute, 1-4
Declaration, 1-4, G-6

factored, 1-4
DECLARE statement, 1-2, 1-4

array declaration, 1-10
DEFINE command, 3-12
DEFINED attribute, 1-41
Defined variable, 1-41, G-6
DELETE command, 3-10
DELETE option, 2-3
DELETE statement, 1-16
Descriptor, see

by descriptor
parameter descriptor
returns descriptor

Device, 3-10, G-6
Diagnostic, 3-5, G-6
Dimension, 1-9, G-6
DIRECT attribute, 1-35
Directory, 3-10, G-6

subdirectory, 3-11
DIRECTORY command, 3-10
Division,

divide-by-zero condition, 1-32
Division operator, 1-13
DO-group, 1-22, G-6
DO statement, 1-22

following IF, 1-22
REPEAT option, 1-23, 1-39
WHILE option, 1-23

Double-precision floating point, 1-5
Dummy argument, 1-27, G-6

passed by immediate value, 2-7

2-Index

E
EDIT command, 3-3
Edit-directed stream I/0, 1-18, G-6

examples, 1-19
Editor, 3-3, G-7
Element, 1-9, G-7
END statement, 1-3

end DO-group, 1-22
End-of-file, 1-32, 1-36
End-of-page, 1-21, 1-32
End-of-volume switching, 2-5
ENDFILE condition, 1-32, 1-36
ENDPAGE condition, 1-32
ENTRY attribute, 1-6, 1-8, 1-28

options, 2-8
Entry constant, 1-7
Entry data, 1-6

default storage class, 1-8
Entry name, 1-29, G-7
Entry point, 1-29, G-7
ENTRY statement, 1-7, 1-29
Entry variable, 1-6
ENVIRONMENT attribute, 1-34
ENVIRONMENT options, 2-1
Equal operators, 1-14
Equivalence name, 3-12, G-7
ERROR condition, 1-32 to 1-33, 1-37
Error handling, 1-31
Execute a program, 3-7
@ (Execute Procedure) command, 3-15
EXPIRATION_DATE option, 2-5
Exponentiation operator, 1-13
Expression, 1-12, G-7

in an IF statement, 1-22
Extent, G-7

array, 1-9
character string, 1-5

EXTERNAL attribute, 1-8 to 1-9
External procedure, 1-28, G-7
External variable, 1-9, G-7

F
Field, 1-16, G-7

edit-directed stream I/0, 1-20
key, 2-2
list-directed stream I/O, 1-18

File, 1-16, G-8
ownership, 2-3
protection, 2-3

FILE attribute, 1-6 to 1-8
File constant, 1-7, 1-35, G-8

File data, 1-6
default storage class, 1-8

File description attribute, 1-17, G-8
File name, 3-10, G-8
File organization, 1-34, G-8
File reference, 1-16, G-8
File specification, 3-10, G-8

associate with PL/I file, 1-17
logical name, 3-12

File type, 3-10, G-8
File variable, 1-35
File version number, 3-10, G-8
FINISH condition, 1-32
FIXED attribute, 1-4
Fixed-control area, 2-4, G-8
FIXED_CONTROL_FROM option, 2-4 to 2-5
FIXED_CONTROL_SIZE option, 2-4 to 2-5
FIXED_CONTROL_ TO option, 2-4
FIXED_LENGTH_RECORDS option, 1-34
Fixed-point binary data, 1-4, G-9

precision, 1-5
Fixed-point decimal data, 1-4, G-9

constant, 1-7
overflow condition, 1-32
precision, 1-5
scale factor, 1-5

FIXEDOVERFLOW condition, 1-31 to 1-32
example of ON-unit, 1-33

FLOAT attribute, 1-4
Floating-point data, 1-4, G-9

constant, 1-7
overflow condition, 1-32
precision, 1-5
underflow condition, 1-32

Format,
of PL/I statement, 1-2
of records, 1-34

Format item, 1-19, G-9
Format list, 1-19, G-9
FORTRAN COMMON, 1-9
FREE statement, 1-38
Function, 1-27, G-9
Function reference, 1-27, G-9

G
GET statement, 1-16

GET EDIT, 1-20
GET LIST, 1-18
GET STRING, 1-18
1/0 options, 2-4

Global symbol, G-9
GLOBALREF attribute, 2-9 to 2-10

GOTO statement, 1-24
in ON-unit, 1-33

Greater-than operators, 1-14
GROUP _PROTECTION option, 2-3

H
Hexadecimal notation, 1-7
High bound, 1-10, G-9

1/0,
block 1/0, 2-6
error handling, 1-36
record id access, 2-6

1/0 concepts, 1-16
1/0 statements,

options, 2-1
Identifier, 1-2, G-9

rules, 1-2
IF statement, 1-21

I

Image, 3-7, G-10
INCLUDE file, 3-13, G-10

%INCLUDE statement, 3-13
libraries, 3-13

%INCLUDE statement, 3-13
INDEX built-in function, 1-30
Index number, 2-2, G-10
INDEX_NUMBER option, 2-2
Indexed sequential file, 1-34, G-10

1/0 options, 2-2
Infix operator, G-10
INITIAL attribute, 1-8
INPUT attribute, 1-17, 1-35
Integer constant, 1-7, G-10
Integer data, 1-4, G-10
Integer overflow, 1-33
INTERNAL attribute, 1-8
Internal procedure, 1-25, G-10
Internal variable, 1-8, G-10
Iteration factor, G-10

K
Key, 1-34, G-11
KEY condition, 1-32, 1-37
KEY option, 2-2
Keyed access,

see random access
KEYED attribute, 1-35

Index-3

KEYFROM option, 2-2
Keyword, 1-1, G-11

Label, 1-2, G-11
array, 1-20
constant, 1-7
data type, 1-6
subscripted, 1-24

L

LABEL attribute, 1-6, 1-10
Length,

of character string, 1-5
LENGTH built-in function, 1-30
Less-than operators, 1-14
Level number, 1-10, G-11
Library, 3-13, G-11

INCLUDE files, 3-13
object module, 3-14

LIBRARY command, 3-13
Line number of a print file, 1-21
LINENO built-in function, 1-21
LINESIZE option, 1-21
LINK command, 3-7

specify libraries, 3-14
Linker, 3-7, G-11

specify libraries, 3-14
/LIST qualifier, 3-7
List-directed stream I/O, 1-18, G-11

examples, 1-18
Listing, 3-7, G-11
LNK$LIBRARY, 3-14
Locator-qualified reference, 1-38, G-12
Locator qualifier, 1-38, G-12
Logical name, 3-12, G-12

in TITLE option, 1-18
Logical operator, 1-14, G-12
Login, 3-3, G-12
Logoff; 3-9, G-12
LOGOFF command, 3-9
Low bound, 1-10, G-12

M
MAIN option, 1-24
Main procedure, 1-24, G-12
Major structure, 1-11, G-12
MATCH_GREATER option, 2-2
MATCH_GREATER_EQUAL option,

2-2
MAXIMUM_RECORD_NUMBER option,

2-3

4-Index

MAXIMUM_RECORD_SIZE option,
1-34

Member, 1-9, G-12
Memory, 1-37, G-13
Minor structure, 1-11, G-13
Multiplication operator, 1-13

N
NO_ECHO option, 2-4
N O_FIL TER option, 2-4
Noncomputational data, 1-6, G-13
Nonlocal GOTO, 1-24, G-13
NOT operator, 1-14
NULL built-in function, 1-39
NXTVOL built-in subroutine, 2-5

0
OBJ file type, 3-7
Object module, 3-7, G-13

library, 3-14
Octal notation, 1-7
Offset, 1-40, G-13

data type, 1-6
OFFSET attribute, 1-6, 1-41
OLB file type, 3-13
ON condition, 1-31, G-13
ON statement, 1-31, 2-10

action, 1-32
ANYCONDITION, 2-10
for VAXCONDITION, 2-10

ON-unit, 1-31, G-13
FIXEDOVERFLOW condition, 1-33
for any condition, 2-10
for VAX-specific condition, 2-10
search, 1-32

ONARGSLIST built-in subroutine, 2-11
ONCODE built-in function, 1-33, 1-37,

2-10 to 2-11
ONFILE built-in function, 1-37
ONKEY built-in function, 1-37
OPEN statement, 1-17, 1-35
Opening a file, 1-17
Operator, 1-2, 1-13, G-13
OR operator, 1-14
OUTPUT attribute, 1-21, 1-35
OVERFLOW condition, 1-32
OWNER-GROUP option, 2-3
OWNER-MEMBER, 2-3
OWNER-PROTECTION option, 2-3
Ownership, file, 2-3

p

Page number of a print file, 1-21
PAGENO built-in function 1-21
PAGESIZE, 1-21 ,
Parameter, 1-26, G-13

for DCL command, 3-3
storage class, 1-26

Parameter descriptor, G-14
Parameter list, 3-3, G-14
Password, 3-3, G-14
Picture, 1-5, G-14
PICTURE attribute, 1-5
Pictured data, 1-5
PLI command, 3-5
PLI file type, 3-5
Pointer, 1-37, G-14

assign values, 1-39
data type, 1-6

POINTER attribute, 1-6, 1-37
Precedence, 1-15, G-14
Precision, 1-5, G-14

of pictured data, 1-6
Prefix operator, G-14
Preprocessor statements,

%INCLUDE, 3-13
%REPLACE, 1-7

PRINT attribute, 1-21
PRINT command, 3-7, 3-11
Print file, 1-21, G-14
Procedure, 1-24, 1-30, G-15

parameter list, 1-26
recursive, 1-29
terminating, 1-30

Procedure block, 1-3, G-15
PROCEDURE statement, 1-3, 1-7, 1-24 to 1-26

function, 1-27
PROMPT option, 2-4
Protection,

file, 2-3
Pseudovariable, 1-30, G-15
PURGE_ TYPE__AHEAD option, 2-4
PUT statement, 1-16

1/0 options, 2-4
PUT EDIT, 1-20
PUT LIST, 1-19
PUT STRING, 1-18

Q
Qualified reference, see

locator-qualified
structure-qualified

Qualifier, 3-3, G-15
Queues, 1-39

R
Random access, 1-35, G-15
READ statement, 1-16, 1-35, 2-2

SET option, 1-39
READO NL Y attribute, 2-9
Record, 1-33, G-15
RECORD attribute, 1-17, 1-35
Record file, 1-33, G-15
Record format, 1-34, G-15
Record id access, 2-6, G-16
RECORD-1D option, 2-6
RECORD_ID__ACCESS option, 2-6
Record 1/0, 1-16, G-16
Recursive procedure, 1-29, G-16
Reference, 1-4, G-16

file, 1-16
function, 1-27
locator-qualified, 1-38
structure-qualified, 1-11

Relational operator, 1-14, G-16
Relative file, 1-34, 2-2, G-16
Relative record number, 1-34, 1-36

2-2, G-16
REPEAT option, 1-23, 1-39
%REPLACE statement, 1-7
Resignal, 2-10, G-16
RESIGNAL built-in subroutine, 2-10
RETURN statement, 1-25, 1-30

function, 1-27
Return value, 1-27, G-16
RETURNS attribute, 1-27 to 1-28
Returns descriptor, 1~27 to 1-28, G-16
RETURNS option, 1-27 to 1-28
REVERT statement, 1-31, 2-10
REWIND_ON_CLOSE option, 2-3
REWRITE statement, 1-16
Row-major order, 1-10, G-17
RUN command, 3-7
Run-time library, 2-7, G-17

Scalar, 1-9, G-17
Scale factor, 1-5, G-17
Scope, 1-8, G-17

s

Sequential access, 1-35, G-17
SEQUENTIAL attribute, 1-35
Sequential file, 1-34, G-17

Index-5

SET option, 1-38
Signal, 1-31, G-17
SIGNAL statement, 2-10
Single-precision floating point, 1-5
SKIP option, 1-19
sos, 3-3
SPOOL option, 2-3
Statement, 1-1, G-17

formatting requirements, 1-2
STATIC attribute, 1-8
Static variable, 1-8, G-17
STOP statement, 1-30, 1-32
Storage, 1-4, G-18
Storage class, 1-8, G-18

VAX-11 PL/I, 2-9
STREAM attribute, 1-17
Stream I/0, 1-16, G-18
String data, 1-4, G-18

functions, 1-30
Structure, 1-9, G-18

assignment, 1-16
based, 1-37

Structure-qualified reference,
1-11, G-18

Structure reference, G-18
Subdirectory, 3-11, G-18
Subroutine, 1-27, G-18
Subscript, G-18

array, 1-10
label, 1-24

SUBSTR built-in function, 1-30
SUBSTR pseudovariable, 1-30
Subtraction operator, 1-13
Symbols,

global, 2-8
in command procedures, 3-15

SYS$COMMAND, 3-12
SYS$DISK, 3-12

SYS$ERROR, 3-12
SYS$INPUT, 3-12
SYS$0UTPUT, 3-12
SYSIN, 1-18, 1-20, 3-12
SYSPRINT, 1-18, 1-20, 3-12

6-Index

System service, 2-7, G-19
SYSTEM_PROTECTION option, 2-3

T
Tape I/0 operations, 2-5
TITLE option, 1-17, 1-20
TLB file type, 3-13
TRUNCATE option, 2-3
TYPE command, 3-10

u
UNDEFINEDFILE condition, 1-32, 1-36
UNDERFLOW condition, 1-32
UPDATE attribute, 1-35
User name, 3-3, G-19

v
VALUE attribute, 2-7, 2-9
Variable, 1-3, G-19
VARIABLE attribute, 1-6 to 1-7
VARIABLE option, 2-8
Variable reference, G-19
VARYING attribute, 1-5
VAX-11 PL/I compiler,

invoke, 3-5
V AXCONDITION condition, 2-10

w
WHILE option of DO, 1-23
WORLD_PROTECTION option, 2-3
WRITE statement, 1-16, 2-2

z
ZERODIVIDE condition, 1-32

READER'S COMMENTS

Introduction to
VAX-11 PL/I

AA-H950A-TE

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

D
D
D
D
D
D Other (please specify) __________________________ _

Organization ____________________________________ _

Street--

City __________________ __
State ------ Zip Code--------­

or
Country

- - Do Not Tear- Fold Here and Tape - - - - - - - - - -

Do Not Tear - Fold Here

I II

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS TW/A14

DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY. MASSACHUSETTS 01876

No Postage

Necessary

if Mai led in the

United States

