
VAX-11 PL/I
User's Guide

Order No. AA-H951 A-TE

August 1980

Describes the operation of the VAX-11 PL/I compiler and the extensions to the
PL/I language that support the execution of PL/I programs in the VAX/VMS
operating system environment.

VAX-11 PL/I
User's Guide

Order No. AA-H951 A-TE

SUPERSESSION/UPDATE INFORMATION: This is a new document for this
release.

OPERATING SYSTEM AND VERSION: VAX/VMS V2.0

SOFTWARE VERSJON: VAX-11 PL/I V1 .0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation . maynard, massachusetts

Contents

Preface

Part I The Command Language

Chapter 1 Introduction to Program Development on VAX/VMS

1.1 VAX/VMS Commands for Program Development

1.1.1
1.1.2

Hints for Entering Commands.
HELP

1.2 File Specifications and Defaults . . .

1.3

1.2.1
1.2.2
1.2.3

Temporary Defaults
Changing the Default Directory
Logical Names

1.2.3.1
1.2.3.2
1.2.3.3

Logical Name Translation
Uses for Logical Names .
Commands to Control Logical Nam es .

File Creation and Maintenance .

Chapter 2 Compiling PL/I Programs

2.1
2.2

2.3

Functions of the Compiler
The PLI Command . . .

2.2.1 PLI Command Examples
2.2.2 Specifying Input and Output Files.
2.2.3 Concatenated Input Files

Compiler Diagnostic Messages and Error Conditions.

2.3.1
2.3.2

Suppressing Warning Messages and Parts of Messages
Interrupting the Compiler.

2.4 INCLUDE Files

2.4.1
2.4.2
2.4.3
2.4.4
2.4.5
2.4.6
2.4.7

Specifying INCLUDE Files
Text Libraries
Naming Text Modules . .
Specifying Library Files on the PLI Command .
Search Order of Libraries
Default PL/I Libraries
Default System INCLUDE Library

111

Page

xv

1-1

1-3
1-3

1-4

1-5
1-6
1-6

1-7
1-7
1-8

1-8

2-1
2-2

2-7
2-7
2-9

2-10

2-11
2-11

2-12

2-13
2-13
2-14
2-15
2-16
2-16
2-17

Chapter 6 Options of the ENVIRONMENT Attribute

6.1 Specifying and Using ENVIRONMENT Options. 6-1

6.1.1 Arguments for ENVIRONMENT Options 6-1

6.1.1.1 Specifying Expressions for ENVIRONMENT Options 6-2
6.1.1.2 Variable References 6-2
6.1.1.3 Boolean Values 6-2

6.1.2 Interpretation of F;NVIRONMENT Options for Existing Files. 6-3
6.1.3 Determining ENVIRONMENT Options 6-3
6.1.4 Device Independence of ENVIRONMENT Options. 6-3
6.1.5 Conflicting and Invalid ENVIRONMENT Options . 6-3

6.2 Summary of ENVIRONMENT Options . 6-4

6.2.1 APPEND Option. 6-10
6.2.2 BATCH Option. 6-10
6.2.3 BLOCK_BOUNDARY_FORMAT Option 6-11
6.2.4 BLOCK_IO Option 6-11
6.2.5 BLOCK_SIZE Option 6-12
6.2.6 BUCKET_SIZE Option 6-13
6.2.7 CARRIAGE_RETURN_FORMAT Option 6-15
6.2.8 CONTIGUOUS Option 6-15
6.2.9 CONTIGUOUS--13EST _TRY Option. 6-16
6.2.10 CREATION_DATE Option. . . . 6-16
6.2.11 CURRENT_POSITION Option. . 6-17
6.2.12 DEFAULT_FILE_NAME Option 6-18
6.2.13 DEFERRED_ WRITE Option. 6-18
6.2.14 DELETE Option 6-19
6.2.15 EXPIRATION_DATE Option 6-19
6.2.16 EXTENSION_SIZE Option 6-20
6.2.17 FILE_ID Option. 6-21
6.2.18 FILE_ID_TO Option 6-21
6.2.19 FILE_SIZE Option 6-22
6.2.20 FIXED_CONTROL_SIZE Option . 6-23
6.2.21 FIXED_CONTROL_SIZE_ TO Option 6-24
6.2.22 FIXED_LENGTH_RECORDS Option . 6-24
6.2.23 GROUP _PROTECTION Option . 6-25
6.2.24 IGNORE_LINE_MARKS Option 6-25
6.2.25 INDEX_NUMBER Option. . . . 6-26
6.2.26 INDEXED Option 6-27
6.2.27 INITIAL_FILL Option 6-27
6.2.28 MAXIMUM_RECORD_NUMBER Option . 6-27
6.2.29 MAXIMUM_RECORD_SIZE Option 6-28
6.2.30 MUL TIBLOCK_COUNT Option . 6-29
6.2.31 MULTIBUFFER_COUNT Option 6-30
6.2.32 NO_SHARE Option 6-31
6.2.33 OWNER-GROUP Option 6-32
6.2.34 OWNER-MEMBER Option . . . 6-33
6.2.35 OWNER-PROTECTION Option. 6-34
6.2.36 PRINTER-FORMAT Option. . 6-34
6.2.37 READ_AHEAD Option 6-38
6.2.38 READ_CHECK Option 6-38
6.2.39 RECORD_ID_ACCESS Option . 6-39
6.2.40 RETRIEV AL_POINTERS Option 6-39

v

9.3

9.2.3 Random and Sequential Access
9.2.4 Block Input/Output
9.2.5 Access by Record Identification

Record Formats

9.3.1
9.3.2
9.3.3

Fixed-Length Records . .
Variable-Length Records
Variable-Length Records with a Fixed-Length Control Area.

9.4 Carriage Control
9.5 Physical Organization of Stream Files.

Chapter 1 O Sequential Files

10.1 Creating a Sequential File

10.1.1 Appending Records to an Existing File.
10.1.2 Superseding an Existing File

10.2 Using Magnetic Tape Files

10.2.1 Format of Magnetic Tapes
10.2.2 Tape Positioning
10.2.3 Blocking a Magnetic Tape File
10.2.4 Performing Block I/O . .
10.2.5 Multi volume Tape Files.

10.3 Allocated and Spooled Devices

Chapter 11 Relative Files

11.1 The Organization of a Relative File.
11.2 Creating a Relative File

11.2.1 Maximum Record Number
11.2.2 Record Size
11.2.3 Bucket Size
11.2.4 File Size . .

11.3 Using Relative Files

11.3.1 Populating a Relative File.
11.3.2 Updating a Relative File .
11.3.3 Reading a Relative File Sequentially.
11.3.4 Error Handling

Chapter 12 Indexed Sequential Files

12.1 Indexed File Organization .
12.2 Creating an Indexed Sequential File
12.3 Defining Keys

12.3.1 Specifying Key Position and Size
12.3.2 Key Data Types
12.3.3 Index Numbers.
12.3.4 Key Options . .

vii

9-3
9-4
9-4

9-5

9-5
9-5
9-6

9-7
9-7

10-1

10-1
10-1

10-2

10-2
10-3
10-3
10-4
10-4

10-5

11-1
11-2

11-2
11-3
11-3
11-4

11-4

11-5
11-6
11-6
11-7

12-1
12-3
12-5

12-5
12-7
12-8
12-9

Chapter 15 Global Symbols

15.1 Using Global Symbols in PL/I Procedures 15-1

15.1.1 The GLOBALDEF and GLOBALREF Attributes. 15-2
15.1.2 Defining Global Symbols in PL/I 15-3
15.1.3 Using MACRO Global Symbols with Multiple Definitions. 15-3

15.2 The READONLY and VALUE Attributes . 15-4

15.2.1 The READONLY Attribute
15.2.2 The VALUE Attribute

15.3 Obtaining Definitions for System Global Symbols .

Chapter 16 Return Status Values

16.1 Format of Return Status Values
16.2 Testing for Success or Failure
16.3 Testing for Specific Return Status Values .
16.4 Setting and Displaying Fields Within a Status Value

Chapter 17 Error Signaling and Condition Handling

17.1 Relationship of VAX/VMS Condition Handlers to PL/I ON-Units.

17.1.1 Execution of ON-Units
17.1.2 Values for ON Condition Names
17.1.3 The ONARGSLIST Built-In Function .

17.2 VAX-11 PL/I Condition-Handling Extensions .

17.2.1 An ANYCONDITION ON-Unit
17.2.2 The VAXCONDITION Condition Name.

17.3 Actions That an ON-Unit Can Take

17.3.1 Handle the Condition.
17 .3.2 Resignal the Condition
17.3.3 Unwind
17 .3.4 Stopping the Program.

17.4 Search for ON-Units

17.4.1 Default Handling for Main Procedures .
17.4.2 Default Handling for Non-Main Procedures
17.4.3 Multiple Conditions

Part IV Programming Considerations and Examples

Chapter 18 Storage Allocation and Usage

18.1 Program Sections

18.1.1 Attributes of Program Sections . .
18.1.2 Program Sections Created by PL/I.
18.1.3 Sharing Program Sections with FORTRAN Procedures

18.2 Allocation of Storage in an Area

ix

15-4
15-4

15-5

16-1
16-3
16-3
16-5

17-1

17-2
17-3
17-4

17-7

17-7
17-8

17-9

17-9
17-9

. 17-10

. 17-11

. 17-12

. 17-12

. 17-13

. 17-14

18-1

18-1
18-2
18-3

18-5

Appendix B PL/I Messages

B.l Compiler Messages.
B.2 Run-Time Messages

B.2.1 PL/I Condition Messages
B.2.2 Informational Run-Time Messages.

Appendix C Correspondence of PL/I and RMS

Appendix D ASCII Character Set

Index

Figures

1 Documentation for VAX-11 PL/I Programmers
1-1 Commands for PL/I Program Development
2-1 Using INCLUDE Files .
2-2 Creating and Using an INCLUDE File Library
3-1 Linking Object Modules .
3-2 Creating and Using an Object Module Library.
4-1 A Command Procedure for PL/I Program Development
5-1 Translating Logical Names .
11-1 A Relative File
12-1 An Indexed Sequential File.
12-2 Defining Key Positions.
14-1 The Call Stack
14-2 An Argument List .
14-3 Argument Passing by Immediate Value .
14-4 Argument Passing by Reference.
14-5 Passing a Pointer Value as an Argument
14-6 Argument Passing by Descriptor
14-7 Coding a Character-String Descriptor .
17-1 Execution of an ON-Unit.
17-2 The Argument List Passed to an ON-Unit.
17-3 An ANYCONDITION ON-Unit.
17-4 Resignaling a Condi ti on
17-5 Unwinding the Call Stack
17-6 Search for an ON-Unit.
17-7 Effect of Multiple Conditions.
18-1 Initializing an Area
18-2 Allocation Within an Area .
18-3 Freeing Space Within an Area
20-1 Using Mailboxes.
21-1 Network Task-to-Task Communication
A-1 Default Compiler Listing .
A-2 Compiler Storage Map.
A-3 Compiler Performance Statistics
A-4 Machine Code Listing .

xi

B-1
B-28

B-28
B-30

xvii
1-2

2-12
2-14
3-2
3-8
4-8
5-5

11-1
12-2
12-6
14-2
14-3
14-4
14-5
14-8
14-9

. 14-11
17-2
17-5
17-7

. 17-10

. 17-11

. 17-14

. 17-15
18-5
18-6
18-7
20-3
21-3
A-2
A-4
A-7
A-8

Sample Programs

4-1 Obtaining the Command Line from the Command Interpreter
4-2 Using Logical Names to Pass Arguments to Main Procedures.
6-1 Explicit Carriage Control.
11-1 Creating a Relative File
17-1 Displaying Arguments Passed to a Condition Handler
18-1 Storage Management Within an Area.
19-1 Translating a Logical Name
19-2 Creating a Mailbox
19-3 Deleting the Mailbox.
19-4 Obtaining a System Time Value
19-5 Setting a Timer
19-6 Establishing a CTRL/C Routine
19-7 The CTRL/C Handler
19-8 Testing the CTRL/C Routine . .
19-9 TIMRE and TIMRB
20-1 Synchronous Mailbox Input/Output.
20-2 Asynchronous Mailbox Input/Output .
21-1 A PL/I Network Source Task .
21-2 A PL/I Target Task
22-1 Sorting Files. .
22-2 A Record Sort ...

Xlll

4-11
4-14
6-37
11-4
17-6
18-9
19-9

. 19-11

. 19-13

. 19-15

. 19-17

. 19-19

. 19-22

. 19-23

. 19-25
20-5
20-7
21-4
21-5
22-3
22-5

Preface

Manual Objectives

This manual describes how to use the VAX-11 PL/I compiler on the
VAX/VMS operating system and contains detailed explanations of the exten­
sions made to the standard PL/I language for VAX-11 PL/I. It includes infor­
mation on the VAX/VMS commands and utilities to aid in program develop­
ment, as well as information to assist in writing PL/I programs that take
advantage of features of the file system and the operating system.

Audience Assumptions

This manual is designed for programmers who have a working knowledge of
PL/I and some familiarity with the VAX/VMS operating system and its com­
mand language, DCL ..

Structure of This Document

This manual has four parts:

• Part I, "The Command Language," provides information on the commands
and utilities available for program development. This part provides infor­
mation on compiling, linking, and executing VAX-11 PL/I programs on
VAX/VMS.

• Part II, "The File System," provides specific information on the VAX-11
file system, RMS (Record Management Services). This part describes the
relationship between PL/I input/output statements and VAX/VMS files,
and provides detailed information on the ENVIRONMENT options of
VAX-11 PL/I, I/0 statement options, and file-handling built-in sub­
routines. This part provides examples of I/0 to sequential, relative, and
indexed sequential files and of file sharing.

• Part III, "Procedure Calling and Condition Handling," provides detailed
information on calling procedures written in other languages from PL/I
programs, including using system global symbols and return status values,
and on condition handling.

xv

Introduction to
VAX-11 PL/I

AA-H950A-TE

• Provides an overview of the
PL/I G Subset language

• Summarizes the VAX-11 extensions
to the PL/I language

• Introduces the tools tor PL/I
program development on VAX/VMS

VAX-11 PL/I
Encyclopedic Reference

AA-H952A-TE

VAX-11 PL/I
User's Guide

AA-H951A-TE

• Contains a complete definition
of the VAX-11 PL/I language

• Describes how to use

• Lists the semantics and syntax
rules tor all standard PL/I
language elements

~
VAX/VMS to compile. link. and run
PL!/ programs

• Provides detailed information
on input/output processing

• Explains extensions to VAX-11
PL/I to support procedure calling
and condition handling

/
VAX-11 PL/I

Language Summary
AV.J757A-TE

• Gives a concise summary of PL!.'
attributes. statements. built-in functions.
and conversion rules

•Provides quick reference tor VAX-11 PL/I
ENVIRONMENT options. the ASCII character set.
and PU command qualifiers and options

VAX-11 PL/I Installation and
System Management Guide

AA-J179A-TE

• Gives step-by-step instructions for
1nstall1ng the VAX 11 PL'' compiler

• Descnbes how to diagnose .and report
problems with the corrp1/er

VAX/VMS Documentation

• Contains a complete definition
of the VAX/VMS operating system
and its command language. DCL

• Provides specific reference
information for all operating
system components, facilities.
and utilities

The titles listed below may be of interest
to VAX-11 PL/I programmers:

VAX/VMS Command Language User's Guide

VAX-11 Linker Reference Manual

VAX-11 Record Management Services Reference Manual

Introduction to VAX-11 Record Management Services

VAX-11 SORT User's Guide

VAX-11 DECnet User's Guide

VAX/VMS System Services Reference Manual

VAX-11 Run-Time Library Reference Manual

VAX-11 Utilities Reference Manual

Figure 1: Documentation for VAX-11 PL/I Programmers

xvii

Part I
The Command Language

Chapter 1
Introduction to Program Development on VAX/VMS

The VAX-11 operating system, VAX/VMS, and its command language, DCL,
provide numerous tools and utilities for program development. This chapter
summarizes the basic things you need to know to use the command language
in developing and testing your PL/I programs, including:

• The commands you use to create, compile, link, and execute PL/I programs

• The rules for specifying input and output files for commands and programs

• The commands available to you for file creation, modification, and mainte­
nance

For a tutorial introduction to these concepts, see the VAX/VMS Primer. For
detailed definitions of commands and file specifications, see the VAX/VMS
Command Language User's Guide.

1.1 VAX/VMS Commands for Program Development

Figure 1-1 illustrates the DCL commands you use to create and run PL/I
programs.

The commands are shown in their simplest forms. You can, however, specify
qualifiers on these commands to request special processing or to indicate a
special type of input file, as in these examples:
$ PLI/LIST=LP: METRIC

$ LINK METRIC1MYLIB/LIBRARY

In this PLI command, the /LIST qualifier requests the compiler to create a
listing file for the source program METRIC.PL! and to output it on a line
printer device (LP: is the device name for line printers).

The LINK command uses the /LIBRARY qualifier to indicate that the input
file MYLIB is a program library consisting of object modules. The linker will
automatically search this library to locate external procedures and external
variables that are referenced in the source file METRIC.PL!.

1-1

1.1.1 Hints for Entering Commands

The next few chapters of this manual describe in detail the commands of
specific interest to PL/I programmers. You should note the following hints on
entering commands:

• You can truncate (shorten) any command name or qualifier name to four
characters. In some cases, fewer than four characters are accepted, as long
as there is no ambiguity about the name of the command.

• You must precede each qualifier name with a single slash character (/).

• If you omit a required parameter, for example, a file specification, the DCL
command interpreter will prompt you to enter it.

• You can enter a command on as many lines as you wish, as long as you end
each continued line with a hyphen (-) character.

• After you have entered a complete command, you must press~ to pass the
command to the system for processing.

• You can cancel a command before the final ~ by using (CTRL/Yl.

• You can interrupt com.mand execution by using (CTRL/Y). To resume the inter­
rupted command, enter the CONTINUE command. To stop processing
completely after pressing (CTRL/Y), you can begin entering other DCL
commands.

If you make an error entering a command, for example if you misspell a
command or qualifier name, the command interpreter issues an error message
and you must reenter the entire command string.

1.1.2 HELP

You can obtain online information about a command, its parameters, or qual­
ifiers by entering the HELP command. This command responds to a request
for help on a command name by displaying a brief description of the
command and by listing the additional information you can obtain. For exam­
ple, if you enter the following:

$ HELP PRINT

The HELP command response displays a description of the PRINT command
and a list of its qualifiers. To get further information, you must reenter the
HELP PRINT command with an additional parameter: the name of the
qualifier you want information about. For example:

$ HELP PRINT /JOB_COUNT

The HELP command responds to this request with a description of the syntax
for entering the /JOB-:--COUNT qualifier.

The HELP command also provides detailed information about the PLI
command and the VAX-11 PL/I language. You can obtain information about
PL/I topics by specifying a PL/I keyword. For example:

$HELP PLI !NOE)<

The HELP command responds to this request by displaying the syntax of the
INDEX built-in function.

Introduction to Program Development 1-3

Table 1-1: Summary of File Specification Syntax

Field

node

device
dev
c
u

directory
[name]
[name.name ...]

filename

file type

version

Syntax Rules Defaults Notes

1 - 6 characters local node node: :node: : defines a path
terminated by : : node"access-control": : in

VAX/VMS, username password
node: :"non-VMS-file-specification"

valid mnemonic or SYS$DISK CR -card reader NET -network device
logical name DB -disk device MB -mailbox
A-Z A DM -RK06/7 disk MT -magnetic tape
0 - 65535 0 DX -floppy disk TT -terminal

LP -line printer TU -cartridge tape

1 - 9 characters current default [*] all directories
up to 8 names, [name ...] all directories in path
separated by [* ... J all subdirectories in all directories
periods (.) [-.name] back up a directory

0 - 9 characters Input: temporary * - all file names
defaults apply *string* - match all names containing "string"

Output: same as str%ng - match any character in ~;_, position
input file

0 - 3 characters Applied by Wild card rules same as for filename
preceded by . command; temporary

defaults apply Command Input Output

PLI PLI, TLB OBJ, LIS
LINK OBJ, OLB EXE, MAP
LIBRARY OBJ OLB
LIBRARY /TEXT TXT TLB
RUN EXE
PRINT, TYPE LIS

0 - 32767 Input: highest * - all versions
preceded by ; or . Output: highest + 1 ; - use most recent version

1.2.1 Temporary Defaults

Many VAX/VMS file-handling commands use temporary defaults under
certain conditions. When a command such as PRINT or TYPE accepts a list
of input file specifications, it uses explicit elements of one file specification as
a temporary default for subsequent file specifications. Some examples follow:
$ PRINT [PROJECT.DATAJALPHA1BETA.DAT1GAMMA

The PRINT command uses the default input file type LIS for the first input
file and the file type DAT as specified for the second input file. It then applies
the temporary default DAT to the file GAMMA. The PRINT command prints
the highest existing versions of ALPHA.LIS, BETA.DAT, and GAMMA.DAT
from the directory [PROJECT.DATA] on the current default device.
$ PRINT [PROJECT.DATAJFOREST.TXT,.DAT1.REF

Here, the PRINT command uses the temporary default FOREST as a file
name and prints the files FOREST.TXT, FOREST.DAT, and FOREST.REF.

Introduction to Program Development 1-5

You must specify /GROUP on a DEFINE command to place a name in the
group logical name table, and you must have the GRPNAM user privilege.

• System logical name table. There is a single system logical name table. The
logical names in this table can be accessed by all users.· You must specify
/SYSTEM on a DEFINE command to place a name in the system logical
name table, and you must have the SYSNAM user privilege.

1.2.3.1 Logical Name Translation - When the system attempts to locate an
equivalence name for the name of a PL/I file, or for a portion of a file specifi­
cation, it is said to be performing logical name translation. When the system
translates a logical name, it searches the process, then group, then system
logical name tables, in that order, for a logical name. Each time the system
translates a logical name, it examines the result to see if it still contains a
logical name. If it does, it translates the result. This recursive translation
occurs until the file specification is complete or until ten recursive transla­
tions have been made.

You can determine the current equivalence for a logical name by entering the
SHOW TRANSLATION command. For example:

$ SHOW TRANSLATION SRC
SRC = [PROJECT,SRCJ (process)

The response gives the translation and indicates that the logical name SRC
was found in the process logical name table.

A logical name assignment is deleted either when a new definition is given for
the name or when the name is explicitly deleted with a DEASSIGN
command. For example:

$ DEASSIGN SRC

This command deletes the logical name table entry for the logical name SRC.

1.2.3.2 Uses for Logical Names - VAX/VMS system programs use logical
names in many ways. For example, the PL/I compiler and the linker use
logical names to provide default libraries for INCLUDE modules and object
module libraries, respectively. These uses of specific logical names are de­
scribed in Sections 2.4.6, "Default PL/I Libraries," and 3.3.3, "Default User
Object Module Libraries."

A principal use for programmers is to provide device and file independence for
executable program images or command procedures. For example, the name
you give a file constant in a PL/I source program can be a logical name: each
time you execute the program, you can issue a DEFINE command to provide
a different equivalence name for the PL/I file. The relationship between PL/I
file constants and VAX/VMS file specifications is described in detail in Chap­
ter 5, "Overview of the File System."

The use of logical names is not limited to file-related functions, however. For
an example of using logical names to pass string arguments to PL/I main
procedures, see Section 4.4.3, "Passing Data Via Logical Names."

Introduction to Program Development 1-7

Table 1-3: VAX/VMS Commands for File Maintenance

Category Command Command Function

File creation CREATE Creates a file from records or data that follows in the input
stream; for example, lines entered from a terminal or placed
in a batch input file.

EDIT Invokes one of the VAX/VMS interactive editing programs,
for example, SOS, EDT, or EDI.

Correcting and EDIT Invokes one of the interactive editors to make changes or
modifying files additions to a disk file.

Cataloging and CREATE/DIRECTORY Establishes a new directory or a hierarchy of directories to
organizing files catalog files.

DIRECTORY Lists files and information about them. Can list files with
common file names or file types, files in one or more directo-
ries, files created since a certain date, and so on.

LIBRARY Creates and maintains libraries of INCLUDE text modules
and libraries of object modules.

RENAME Changes the directory in which a file is cataloged; or changes
the file name, file type, or version number of a file or file.

SET DEFAULT Changes the current default device or directory.

Copying and {ALLOCATE} Provide device-handling and control commands that let you
backing up files INITIALIZE access data written on nonsystem disks, on magnetic tapes,

MOUNT or on punched cards; or to output data to a disk or tape.

COPY Copies the contents of a file or files to another file or files.

Deleting files DELETE Makes the contents of a file inaccessible by removing its
directory entry.

PURGE Deletes a specified number of earlier versions of a file or a
group of files.

Introduction to Program Development 1-9

Chapter 2
Compiling PL/I Programs

This chapter describes how to use the PLI command to compile your source
programs into object modules. It discusses:

• The functions of the compiler

• PLI command syntax and qualifiers

• Compiler diagnostic messages and error conditions

• INCLUDE files and libraries

2.1 Functions of the Compiler

The primary functions of the compiler are to verify the PL/I source statements
and to issue messages if there are any errors; to generate machine language
instructions from the source statements of the PL/I program; to group these
instructions into units called program sections, and to write the program
sections into an object module.

When it creates an object module, PL/I provides the linker with the following
inform a ti on:

• The module name. It takes this name from the name of the main procedure
in the source program, that is, the procedure that specifies OPTIONS
(MAIN). Note that this is not necessarily the name of the file containing the
object module. If no procedure specifies OPTIONS(MAIN), the name of the
object module is the name on the first procedure statement in the source
file.

• A list of all entry points, external variables, and global symbols that are
declared in the module. The linker uses this information when it binds two
or more modules together and must resolve references to the same names in
the modules.

• A summary of the program sections it has created and their attributes, the
generated machine instruction text, and relocation information.

2-1

You must separate multiple input file specifications with either commas(,)
or plus signs (+). The commas and plus signs have different meanings, as
follows:

• Commas delimit PL/I source files to be compiled separately. PL/I com­
piles each file and creates an object module for each.

• Plus signs delimit files to be concatenated or libraries containing IN­
CLUDE files. PL/I compiles the source files as a single file and creates
one object module. Library file specifications must be qualified with the
/LIBRARY qualifier.

If a file specification does not contain a file type, PL/I assumes a default file
type of PLI for a source file. If a file specification is qualified with /LIBRARY,
PL/I assumes a default file type of TLB. INCLUDE files and INCLUDE file
libraries are described in Section 2.4, "INCLUDE Files."

A single file may contain more than one PL/I procedure; PL/I concatenates
these procedures into a single object module as decribed in Section 2.2.3,
"Concatenated Input Files."

Command Qualifiers

Command qualifiers request processing options of the compiler. You can
specify qualifiers to the PLI command following the command name or
following an individual file specification. When a qualifier is specified
following the PLI command name, its action applies to each file in the list,
unless overridden by a qualifier specified for an individual file.

When a qualifier is specified following a file specification in a list of files
separated by commas, its action is applied only to the compilation of that
file.

/CHECK
/NO CHECK

Controls the checking of array subscripts and of positional references in
arguments to the SUBSTR built-in function. If you specify /CHECK, the
compiler provides the following checks:

• It checks that each reference to the SUBSTR built-in function or pseudo­
variable lies within the string's current length.

• It checks that each reference to an array specifies subscripts that are
within the bounds declared for the array.

• It checks that all string lengths are nonnegative and that all array extents
are positive.

The default is /NOCHECK. /CHECK is primarily of use during initial pro­
gram debugging; it results in the generation of additional code and, conse­
quently, a slower program.

Compiling PL/I Programs 2-3

Table 2-1: PL/I Compiler Options

Option

[N0JLIST-1NCLUDE

[NOJLIST_MAP

[NOJLIST_SOURCE

[NOJLIST_STATISTICS

/G_FLOAT
/NOG_FLOAT

Function

Print/do not print the contents of INCLUDE files and
modules in the program listing.

Print/do not print the storage map of the compiled pro-
gram in the prQgram listing. The storage map includes a
list of all external entry points, the size and attributes of
all variables that are referenced in the program, and a
program section summary and procedure definition map.

Print/do not print the source program statements in the
program listing.

Print/do not print performance statistics in the program
listing.

For VAX-11 computers that are equipped with the appropriate hardware
option, specifies the default representation of floating-point variables with
a precision in the range of 25 through 53.

By default, the compiler uses D (double-precision) floating point. Specify
/G_FLOAT to override this default and to request the compiler to use the
G floating-point type for these variables.

The default and maximum precisions for all floating-point formats are
summarized in the VAX-11 PL/I Encyclopedic Reference.

/LIST[=file-spec]
/NOLI ST

Controls whether a listing file is produced.

If the PLI command is executed from interactive mode, /NOLIST is the
default, unless the /CROSS_REFERENCE or /MACHINE_CODE quali­
fiers are specified. If the PLI command is executed from batch mode, /LIST
is the default.

When /LIST is in effect, the compiler gives a listing file the same file name
as the source file and a file type of LIS.

If you specify a file specification with /LIST, the compiler uses that file
specification to override the default values applied.

You can control the contents of the listing file by specifying the /CROSS_
REFERENCE and /MACHINE_CODE qualifiers, and by specifying
options on the /EN ABLE qualifier.

/MACHINE_CODE
/NOMACHINE_CODE

Controls whether the listing file produced by the compiler includes a listing
of the machine language code generated during the compilation.

For an example of a machine code listing, see Appendix A.

Compiling PL/I Programs 2-5

/WARNINGS
/NOW ARNINGS

Controls whether the compiler prints messages for diagnostic warnings.

By default, the compiler prints all diagnostic messages during compilation.
If you specify /NOWARNINGS to override this default, the compiler does
not print warning messages. It does, however, continue to display messages
for informational, error, and fatal diagnostics.

File Qualifier

/LIBRARY
Indicates that the associated input file is a library containing text modules
that may be included in the compilation of one or more of the specified
input files.

The specification of a library file must be preceded by a plus sign.

If the file specification does not contain a file type, PL/I assumes the
default file type of TLB.

For more information on creating and using INCLUDE file libraries, see
Section 2.4, "INCLUDE Files."

2.2.1 PLI Command Examples

$PL.I t·1ETF.'IC

The PLI command compiles METRIC.PL! and creates the file
METRIC.OBJ.

$ PL.I/ENABLE=L.IST_INCL.UDE/MACHINE_CODE APPL.IC
·$ PF.'IHT t1PPL.IC

The PLI command compiles the file APPLIC.PLI and creates the files
APPLIC.OBJ and APPLIC.LIS. The listing shows the contents of all files and
text modules included in the compilation by %INCLUDE statements, as well
as a machine code listing of the program. The /LIST qualifier is not necessary
because /MACHINE_CODE implies /LIST. The PRINT command queues a
copy of the listing file for printing. Note that the default file type created by
the compiler is LIS and that this is also the default file type assumed by the
PRINT command.

$ PL.I SWITCH.TXT/CHECK

The PLI command compiles the statements in the file SWITCH.TXT. The
/CHECK qualifier causes the compiler to verify all array references and sub­
string extents.

2.2.2 Specifying Input and Output Files

When you specify more than one input file on the PLI command, you can
separate the names of the files with either commas or plus signs. If you
separate them with commas, PL/I compiles each source file separately and
creates individual listing files and object files for each.

Compiling PL/I Programs 2-7

In the third and fourth examples, the listing files are not saved on disk; they
are deleted after output.

2.2.3 Concatenated Input Files

If you separate the names of input files with plus signs, PL/I concatenates the
contents of the files and compiles them as if they were a single input file. It
creates a single object file and (if /LIST is specified) one listing file for conca­
tentated input files.

The rules in effect for compiling concatenated input files are the same as for a
single file that contains more than one procedure. These are as follows:

• Only one procedure among all files that are to be concatenated may specify
OPTIONS (MAIN); this procedure is the main entry point.

• PL/I gives the object module the same name as the first procedure in the
file. It gives the object module output file the same file name as the first
input file in the command line.

• If files contain separate level-one procedures, the procedures may call one
another without declaration, but they may not reference internal variables
declared within other blocks. (A level-one procedure is a procedure whose
text is not contained within another procedure.)

For example, assume that the files A.PLI, B.PLI, and C.PLI have the follow­
ing contents:

A.PLI contains:

A: PROCEDURE;
DECLARE X FIXED BINARY;
CALL B;

END;

B.PLI contains:

B: PROCEDURE OPTIONS (MAIN);

END;

C.PLI contains:

C: PROCEDURE;

END;

These files may be concatenated in a compilation as follows:

$ PLI A+B+C

This command causes PL/I to create the file A.OBJ that contains an object
module named B; B is the main entry point. Within this module, procedures
A, B, and C may invoke one another without declaration, but none of the
procedures may refer to internal variables declared within the other. For

' example, B cannot reference the variable X declared within A.

Compiling PL/I Programs 2-9

Source file line number n
Specifies the source file line number of the statement that caused the error.
Note that this line number is assigned to a statement by the compiler. It is
not necessarily the same as the line number, if any, assigned by a text
editing program.

The messages produced by the VAX-11 PL/I compiler are listed in
Appendix B.

2.3.1 Suppressing Warning Messages and Parts of Messages

When you compile a PL/I program, you can use the /NOW ARNINGS qualifier
to request the compiler not to display warning (severity W) messages on .the
terminal. For example:

$ PLI METRIC/NOWARNINGS

When PL/I compiles the file METRIC.PL!, it does not display warning
messages on the output device. You may find this qualifier useful when you
are compiling programs that you know contain statements that cause warn­
mgs.

The DCL command SET MESSAGE lets you define whether you want to see
messages displayed in their entirety or in shortened form. For example, if you
do not want to see the %PLIG-s-ident part of messages, you can enter the
command:

$ SET MESSAGE /NOFACILITY/NDSEVERITY/NOIDENT

This command cancels the facility, severity, and identification portion of all
messages and remains in effect for all commands you subsequently enter,
until you reissue the SET MESSAGE command or log off the system.

2.3.2 Interrupting the Compiler

During the compilation of a file, PL/I sometimes detects an error from which
it cannot recover, that is, an error that causes additional errors to be detected.
For example, a syntax error in a DECLARE statement causes subsequent
references to the variables that were declared in that statement to generate
errors.

When errors of this sort occur, you can halt the compilation, correct the errors,
and restart the compiler. To do this, you can use the ~TRL© or (g"RL6] key
combinations, according to the following guidelines:

• If you specified /LIST, and would like to examine the listing, you can press
(CTRL/c). The compiler will close the listing file it is creating. Although the file
will not be complete (and may sometimes be empty), it often contains
enough of the program listing, with diagnostic messages, that you can print
it to determine which errors occurred and correct them.

Com piling PL/I Programs 2-11

2.4.1 Specifying INCLUDE Files

An INCLUDE file is requested by a %INCLUDE statement in a PL/I source
file. When the compiler reads the %INCLUDE statement during compilation
of a source program, it begins reading from the file specified by %INCLUDE.
When it reaches the end of the included file, it resumes reading from the
previous input file.

An INCLUDE file can contain a %INCLUDE statement. The maximum
depth to which INCLUDE files can be nested is four.

The syntax for specifying %INCLUDE is:

%INCLUDE { 'file-spec, } ;
text-module-name

file-spec
Is a file specification enclosed in apostrophes. The file specification can be
any valid VAX/VMS file specification, including a logical name.

When the file specification does not completely specify the name of the
INCLUDE file, PL/I uses the VAX/VMS system defaults for file specifica­
tions and uses the default file type of PLI.

text-module-name
Specifies the 1- to 31-character name of a text module in a library of
INCLUDE files or other text modules. A module name can consist of the
alphanumeric characters or the$ or_ characters. The name of the library
containing the module must be specified on the PLI command.

For example, the following specifications are different:

'X, I t.,lCL.l.JDE STATE;
'.\',I t·~CL.l..JDE ,.. STATE,.. ;

In the first example, PL/I searches any library files specified on the PLI
command for a module named STATE. In the second example, PL/I assumes
that STATE is a file specification and looks for the file STATE.PL! in the
current default directory.

If PL/I cannot locate a specified file or module, it issues a fatal error message
and terminates the compilation.

2.4.2 Text Libraries

A text library is a file that contains individual files and a table indexing them.
The LIBRARY command creates and modifies text libraries; these libraries
have a default file type of TLB. To use libraries for PL/I INCLUDE files, you
must:

1. Create one or more libraries consisting of INCLUDE files.

2. Specify the name of the INCLUDE module in a %INCLUDE statement in
the PL/I source program.

3. Specify the name of the library on the PLI command to compile the source
program or define a default library.

Compiling PL/I Programs 2-13

This command inserts the contents of the file DECLARE.PL! into the library
PLIFILES under the name EXTERNALDECLARATIONS. This module
can be included in a PL/I source file during compilation with the statement:

%INCLUDE EXTERNAL_DECLARATIONS;

Table 2-4 summarizes the commands that create libraries and provide main­
tenance functions. For a complete list of the LIBRARY command qualifiers,
and for a description of other DCL commands listed in Table 2-4, see the
VAX/VMS Command Language User's Guide.

Table 2-4: Commands to Control Library Files

Function

Create a library.

Add one or more modules to
a library.

Replace one or more modules
in a library

Specify the names of modules
to be added to a library.

Delete one or more modules
from a library.

Copy a module from a library
into another file.

List the modules in a library.

Rename a library or move a
library to another directory.

Delete a library.

Copy or backup a library.

1 Command Syntax

$ LIBRARY/TEXT/CREATE library-name file-spec, .. .

$LIBRARY/TEXT/INSERT library-name file-spec, .. .

$ LIBRARY/TEXT/REPLACE2
library-name file-spec,. ..

$LIBRARY/TEXT/INSERT library-name file-spec/MODULE=module-name

$ LIBRARY/TEXT/DELETE=(module-name,. ..) library-name

$ LIBRARY/TEXT/EXTRACT=module-name library-name

$ LIBRARY/TEXT/LIST/OUTPUT=file-spec library-name

$ RENAME old-library-name new-library-name

$ DELETE library-name

$ COPY input-library-name output-library-name

1. The LIBRARY command qualifier /TEXT indicates a text module library. By default, the LIBRARY com­
mand assumes an object module library.

2. REPLACE is the default function of the LIBRARY command, if no other action qualifiers are specified. If no
module exists with the given name, /REPLACE is effectively /INSERT.

2.4.4 Specifying Library Files on the PLI Command

When you specify a library file on a PLI command, you must precede the file
specification of the library with a plus sign and use the /LIBRARY qualifier.
For example:
$ PLI APPLIC+DATAB/LIBRARY

Compiling PL/I Programs 2-15

You can define the logical name PLI$LIBRARY in the process, group, or
system logical name table. If the name is defined in more than one table, the
PL/I compiler uses the equivalence for the first match it finds in the normal
order of search (that is, the process, then group, then system table). Thus, if
PLI$LIBRARY is defined in both the process and group logical name tables,
the process logical name table assignment overrides the group logical name
table assignment.

2.4.7 Default System INCLUDE Library

When it cannot find INCLUDE modules in libraries specified on the PLI
command or in the default library defined by PLI$LIBRARY, PL/I searches
the library identified by the following name:

SYS$LIBRARY:PLISYSDEF,TLB

Where SYS$LIBRARY is normally defined by the system manager to identify
the device and directory containing system libraries. PLISYSDEF.TLB is a
library of INCLUDE modules supplied by VAX-11 PL/I. It contains declara­
tions for the entry points for VAX/VMS system services, local symbol defini­
tions required for use with system services, and variables to test return status
values from system services. The contents of this library are described in
detail in Chapter 19, "System Services."

Note that you can define a second default private library by redefining the
logical name SYS$LIBRARY. For example, if you make a copy or subset of
PLISYSDEF.TLB or create your own library named PLISYSDEF.TLB, you
can make this library the second search library as follows:

$DEFINE PLI$LIBRARY DB1:[MALCOLM.LIBRARYJSTATEDATA.TLB
$DEFINE/USER SYS$LIBRARY DB1:CMALCOLM.LIBRARYJ
·$. PLI MA I LBD><

In this example, the DEFINE command creates process logical name table
assignments for PLI$LIBRARY and SYS$LIBRARY. When PL/I compiles
the program MAILBOX, it searches STATEDATA.TLB and then
PLISYSDEF.TLB in DBl:[MALCOLM.LIBRARYJ for any INCLUDE mod­
ules that are specified in MAILBOX. The /USER qualifier on the second
DEFINE command ensures that the logical name SYS$LIBRARY will be
deassigned following the execution of the PLI command. This is neces­
sary because other system programs (the linker, for example) that use
SYS$LIBRARY may not execute correctly if the library is not reassigned. For
additional information on logical names, see Section 1.2.3, "Logical Names."

Compiling PL/I Programs 2-17

Chapter 3
Linking Programs

This chapter describes how to use the linker and object module libraries to
combine object modules into executable programs. It discusses:

• The functions performed by the linker

• The LINK command and its input and output files

• Creating and using object module libraries

The topics in this chapter are confined to areas of particular interest to PL/I
programmers. For additional information on linker capabilities and detailed
descriptions of LINK command qualifiers and options, see the VAX-11
Linker Ref ere nee Manual.

3.1 Functions of the Linker

The primary functions of the linker are to allocate virtual memory within the
executable image, to resolve symbolic references among modules being linked,
to assign values to relocatable global symbols, and to perform relocation.

For any PL/I procedure, the object module generated by the compiler contains
calls and references to V AX-11 PL/I run-time procedures. For example, any
procedure that contains a PUT statement requires calls to routines to convert
nonchar~cter data to a character string and calls to l/O routines.

These run-time procedures are automatically located in the defauft system
object module libraries. These libraries are described in more detail in Section
3.3.4, "System Libraries."

A global symbol can be any of the following:

• The name of an external procedure or entry point. In PL/I terms, this is the
name specified on an ENTRY statement or on a PROCEDURE statement
in a level-one procedure, that is, a procedure at the outermost level whose
text is not contained within the text of any other procedure.

• The name of a variable declared with the EXTERNAL STATIC attributes.

• The name of a variable declared with the GLOBALDEF or GLOBALREF
attribute. Variables of this type are described in Chapter 15, "Global
Symbols."

3-1

Table 3-l: LINK Command Qualifiers

Function

Request output files
and define a file
specification.

Request and specify
the contents of a
memory allocation
listing.

Specify the amount
of debugging infor­
mation.

Indicate that input
files are libraries
and to specifically
include certain mod­
ules.

Request or disable
the searching of de­
fault user libraries
and system libraries.

Indicate that an in­
put file is a linker
options file.

Qualifiers

/EXECUTABLE[=file-specl
/SHARE ABLE[=file-spec l
/SYMBOL_ TABLE[=file-spec]

/BRIEF
/[NOJCROSS_REFERENCE
/FULL
/[NOJMAP

/[NOJDEBUG
/[NOJTRACEBACK

/INCLUDE=(module-name)
/LIBRARY
/SELECTIVE_SEARCH

/[NOJSYSLIB
/[NOJSYSSHR
/[NOJUSERLIBRARY[=tablel

/OPTIONS

3.2.1 Linker Messages

Defaults

/EXECUTABLE=name.EXE, where name
is the name of the first input file.
/NO SHAREABLE
/NOSYMBOL_TABLE

/NOCROSS_REFERENCE

/NOMAP (interactive)
/MAP=name.MAP (batch) where name
is the name of the first input file.

/NODEBUG
/TRACEBACK

/SYS LIB
/SYSSHR
/USERLIBRARY =ALL

If the linker detects any errors while linking object modules, it displays
messages indicating the cause and severity of the error. If any error or fatal
error conditions occur, that is, errors with severities of E or F, the linker does
not produce an image file.

The messages produced by the linker are descriptive, and you do not normally
need additional information to determine the specific error. Some of the more
common errors that occur during linking are as follows:

• An object module has compilation errors. This error occurs when you
attempt to link a module that had warnings or errors during compilation.
You can often link compiled modules for which the compiler flagged warn­
ings, but you should verify that the modules will actually produce the out­
put you expect.

• The modules that are being linked define more than one transfer address.
The linker generates a warning if more than one module has an entry point
designated with the OPTIONS (MAIN) keywords. The image file created
by the linker in this case can be run; the entry point to which control is
transferred is the first one that the linker found.

Linking Programs 3-3

This LINK command links the object module METRIC.OBJ with the mod­
ules PRINTLINE and TERMLINE from the library FORMATS.OLE. Any
references to external procedures and variables that are not defined in any of
these three modules will cause the linker to search the library
MATHLIB.OLB, in the directory [PROJECT.OBJLIBJ, before it searches the
system libraries.

The format and content of a linker options file are described in detail in the
VAX-11 Linker Reference Manual. You may wish to use an options file if you
have a very long list of input files to specify, if you want to link a module with
a shareable image file, or if you want to request special linker options.

When you specify more than one input file for the LINK command, the linker
combines individual object files or modules explicitly included from a library
in the order in which they are listed.

3.2.3 Linker Output Files

When you enter the LINK command interactively and do not specify any
qualifiers, the linker creates only an executable image file. By default, the
image file has the same file name as the first, or only, object module specified
and a file type of EXE. For example:
$LINK AiBtC

This LINK command links the object modules in the files A.OBJ, B.OBJ, and
C. OBJ and creates the image file A.EXE.

In a batch job, the linker creates both an executable image file and a storage
map file by default. The default file type for map files is MAP.

Some of the rules for naming input and output files are shown in Table 3-2.
These rules apply to the specification of names with the /MAP qualifier as
well.

Table 3-2:· Specifying Input and Output Files for the Linker

Rule

If you do not specify the $ LINK METRIC
/EXECUTABLE qualifier, the
linker gives the image file the
same name as the first input
file.

Example

If you specify /EXECUTABLE $ LINK METRIC,APPLIC/EXECUTABLE
following the name of an input
file, the linker uses that file's
name to name the output file.

Output File(s)

METRIC.EXE

APPLIC.EXE

If you give a file specification $ LINK/EXECUTABLE=TEST METRIC,APPLIC TEST.EXE
with the /EXECUTABLE
qualifier, the linker uses that
file specification.

When you specify a device $ LINK METRIC,- [PRO.JECT.OB.JLIBJFORMATS.EXE
and/or directory for a file speci- $_[PRO.JECT.ORJLIBJMATHLIB/LIBRARY,-
fication, that device and/or di- $_FORMATS , 'UTABLE
rectory becomes a temporary
default for the remaining input
and output files.

Linking Programs 3-5

3.2.5 Specifying Debugging Qualifiers

You can specify either the /DEBUG or /TRACEBACK qualifiers when you
link an image. These qualifiers control the amount of debugging information
that is available to the VAX-11 Symbolic Debugger and to the run-time error
reporting mechanism.

By default, the linker includes traceback information. This information lets
the run-time system list all of the active procedure invocations at the time of a
fatal run-time error. If you specify the /NOTRACEBACK qualifier, that infor­
mation will not be available.

Regardless of whether you specified /DEBUG to the PL/I compiler, you can
specify /DEBUG when you link the object module. This qualifier requests that
the object modules containing the debugger program be linked to your object
modules. When you execute the program, the debugger initially takes control.
The steps required to run a program under the control of the debugger and the
symbolic debugging capabilities available for PL/I programmers are described
in the VAX-11 PL/I Guide to Program Debugging.

3.3 Object Module Libraries

An object module library is a single file containing individual object modules
and two tables that index the modules:

1. A module name table lists the names of the modules in the library. These
are the names given to the modules when they are compiled.

2. A global symbol table lists all global symbols defined in each module.

These are the tables that are searched by the linker.

3.3.1 Creating an Object Module Library

The LIBRARY command creates and updates libraries. It assumes by default
that a library upon which it is performing a function is an object module
library. You can use object module libraries to:

• Catalog and group together commonly used subroutines and functions.

• Provide a default set of modules for the linker to use in resolving global
references in object modules it is linking.

• Enhance the performance of linking operations by putting all needed
modules in a single library, thus reducing the number of files that need be
opened during the linking.

Figure 3-2 illustrates the sequence of creating object modules, creating a
library, and using the library in linking programs.

Linking Programs 3-7

The LIBRARY command uses the following default file types:

• An object module library file is assumed to have a file type of OLB.

• An object module file is assumed to have a file type of OBJ.

When the LIBRARY command inserts an object module in a library, it:

• Enters the name of the module in the library's module name table.

• Enters all global symbols from the object module, including the names of all
entry points and all variables designated as global symbols, in the library's
global symbol table.

For example, a PL/I program named QUEUES.PL! might contain the follow­
ing designations:

READY: PROCEDURE;

ADDEL: ENTRY (QUEUE,POINTER);

REMVEL: ENTRY (QUEUE,POINTER);

This module can be compiled and placed in a library as follows:
$ PL. I QUEUES
$ LIBRARY/INSERT DEFL.IB QUEUES

After this LIBRARY command, the module name table for the library
DEFLIB.OLB contains an entry for the module named READY. The library's
global symbol table contains entries for the names ADDEL, REMVEL, and
READY. Object modules that refer to any of these names can be linked with
this library. When the library is specified as input to the linker, the linker
searches the library's module name table and global symbol table for
unresolved references.

3.3.2 Defining the Search Order for Libraries

When you specify libraries as input for the linker, you can specify as many as
you wish; there is no practical limit. More than one library can contain a
definition for the same module name. The linker uses the following conven­
tions to search libraries specified in the command string:

• A library is searched only for definitions that are unresolved in the previous
input files specified.

• If more than one library is specified for an object module, the libraries are
searched in the order in which they are specified.

For example:
$ LINK METRIC,DEFL.IB/L.IBRARY1APPL.IC

Linking Programs 3-9

2. The process, then group, and then system logical name tables are searched
for the name LNK$LIBRARY_l. If the logical name exists in any of these
tables, and if it contains the desired reference, the search is ended.

This search sequence is taken for each reference that remains unresolved.

The search order can be modified for a particular link operation. To override
the search of a library, you can do one of the following:

• Delete the logical name assignment for the library you do not want
searched. For example:

$ DEASSIGN LNK$LIBRARY

The DEASSIGN command deletes the logical name table entry
LNK$LIBRARY.

• Specify /USERLIERARY or /NOUSERLIERARY on the LINK command.
These qualifiers let you specify the PROCESS, GROUP, and SYSTEM
keyword options to explicitly control which log{cal name tables are to be
searched for default user libraries. For example:

·$ LINr~/lY3ERLIBf~ARY=GRIJIJP inPl..l.t·-file ;, ''

When it executes this command, the linker searches only the GROUP
logical name table. Specify /NOUSERLIERARY to exclude all default user
libraries in the search.

For complete details on defining and using default user libraries, see the
VAX-11 Linker Reference Manual.

3.3.4 System Libraries

The directory identified by the system-defined logical name SYS$LIERARY
contains the library files:

• VMSRTL.EXE

• STARLET.OLE

The file VMSRTL.EXE contains the VAX-11 Run-Time Library. The proce­
dures in this library provide:

• Commonly used mathematical and string-handling functions

• Procedures that support code produced by VAX/VMS compilers

VMSRTL.EXE is a library in shareable image format; that is, it is prelinked
and can be accessed by many images concurrently. The procedures in a share­
able image library can be used by a program even though the procedures
are not physically included in the program image; the references to the proce­
dures in the shareable image library are not resolved until the program is
actually run. For information about creating shareable image libraries, and a
description of the VAX-11 Run-Time Library, see the VAX-11 Run-Time
Library Reference Manual.

STARLET.OLE contains, in object module form, all the procedures in
VMSRTL.EXE, as well as additional run-time modules required by various

Linking Programs 3-11

Chapter 4
Running PL/I Programs on VAX/VMS

This chapter describes the following considerations for executing your PL/I
programs on the VAX/VMS operating system.

• Using the RUN command to execute programs interactively

• Passing status values to the command interpreter

• Executing programs in command procedures and batch jobs

• Passing arguments to a PL/I program from a DCL command string

For further information on any of the DCL commands or topics presented in
this chapter, see the VAX/VMS Command Language User's Guide.

4.1 The RUN Command

You execute a PL/I program with the RUN command. The RUN command
assumes by default that the file type of a program image is EXE, so you need
not specify it. For example:

$ RUN METRIC

This RUN command locates the file METRIC.EXE in the current default
directory. It then gives control to the main entry point, that is, the entry point
designated with the OPTIONS (MAIN) keywords on its PROCEDURE or
ENTRY statement. If no procedure specifies OPTIONS(MAIN), then control
is given to the first, or only, module in the image.

4.1.1 Image Exit

When the main procedure executes a RETURN or END statement, or when
any procedure in the program executes a STOP statement, the image is termi­
nated. In the context of the VAX/VMS operating system, the termination of
an image, or image exit, causes the system to perform a variety of clean-up
operations during which open files are closed, system resources are freed, and
so on.

4-1

Table 4-1: Effects of FINISH Condition

Procedure Procedure
Has MAIN Has FINISH Action When Image

Option ON-unit Exit Occurs1

yes yes The FINISH ON-unit is executed. If the ON-unit does
not execute a nonlocal GOTO, the program terminates
after the ON-unit executes.

yes no The program terminates normally. 2

no yes The FINISH ON-unit is executed. If the ON-unit does
not execute a nonlocal GOTO, the program terminates
following the ON-unit.

no no The image exits. 2

1. If the FINISH condition is signaled by the PL/I default condition handler following an
ERROR condition, no FINISH ON-unit is executed.

2. If the program is executed under control of the VAX-11 Symbolic Debugger, the Debugger
displays the PL/I FINISH message.

If there is a default PL/I condition handler, the message describes the error
that occurred in PL/I terms. Otherwise, the message describes the error in
VAX/VMS system terms.

In either case, the message is followed by a traceback. For each module that
has traceback information, the default handler lists the procedures that were
active when the error occurred and the sequence in which the procedures were
called, that is, the order of block activation.

For example, if an integer divide-by-zero condition occurs, and no ON-unit for
this condition exists in any active procedure block, the following run-time
messages appear:

%PLI-F-ERROR1 PL/I ERROR condition sisnaled
%SYSTEM-F-FLTDIV1 arithmetic trap, floatinS/decimal divide
by zero at PC=000007C41 PSL=03COOOA5

This message is followed by a traceback message as in the following example:

%TRACE-F-TRACEBACK 1 symbolic stacK dump follows

1;1odu1 e n arr1 e routine n ar;1e 1 ine relative PC absolute PC

SETUP Dit"JIDE 8 00000074 000007C4
SETIJ P BEGIN'X.4 4 00000035 00000707
SETUP SETUP 4 OOOOOOOC OOOOOGDO
LIBS NE/T 14 00000044 OOOOOGA3
LIBS LIBS 15 ooooooac oooooG5E

These columns provide information as described below.

module name
Indicates the name of a level-one procedure that was active when the error
occurred.

The first module name is the name of the module in which the error oc­
curred. Each subsequent line gives the name of the caller of the procedure

Running PL/I Programs on VAX/VMS 4-3

This command interrupts the program APPLIC. After you have interrupted a
command, you can cause it to terminate by entering a DCL command that
causes another image to be executed or by entering the DCL command EXIT.
In this case, PL/I signals the FINISH condition to allow a FINISH ON-unit to
execute before the given DCL command is executed.

Following a CTRL/Y interruption, you can also force an entry to the debugger
by entering the DEBUG command. The debugger is described in the VAX-11
PL/I Guide to Program Debugging.

There are some other DCL commands you can enter that have no direct effect
on the image. You can use these commands and resume the execution of the
image with the DCL command CONTINUE. For example:

$ RUN APPLIC
"·\/

I

$ SHOW TRANSLATION INFILE
INFILE = (undefined)

$DEFINE INFILE DBA1:CTESTFILESJJANUARY.DAT
$ CONTINUE

In this example, (CTRL/YJ interrupts the image APPLIC. The SHOW TRANSLA­
TION command indicates that no equivalence name is present for the logical
name INFILE. The DEFINE command establishes an equivalence for the
name and the CONTINUE command resumes the program.

For a complete list of the commands you can enter following a (CTRL/Y) interrup­
tion without affecting the current image, see the VAX/VMS Command Lan-
guage User's Guide. ·

In most cases, the effect of (CTRL/c) and (CTRL/Y) on a program is the same. How­
ever, some programs (including programs you may write) establish particular
actions to take to respond to (CTRL/c). If a program has no (CTRL/c) handling rou­
tine, then (CTRL/c) is the same as (CTRL/Y) and in fact is echoed as A Y on the
terminal. For information on writing a (CTRL/c) routine for a PL/I program, see
Section 19.4.4, "A CTRL/C Handling Routine."

4.2 Returning Status Values to the Command Interpreter

You can define a main procedure to be executed under the control of the DCL
command interpreter as a PL/I function. Then the RETURN statement can
specify a status value to be used as a success, failure, or informational indica­
tor to the command interpreter. For example:

TESTP: PROCEDURE OPTIONS CMAINl RETURNS CFIXED BINARYC31ll;

RETURN (1..ialue);

where the value specified on the RETURN statement can be any constant,
variable, or expression that can be converted to a fixed-point binary value.
For meaningful results, you must specify the returns descriptor on the RE­
TURNS option for the PROCEDURE statement as FIXED BINARY (31).

When any program or command is executed under the control of the DCL
command interpreter, the general register RO, by convention, indicates the

Running PL/I Programs on VAX/VMS 4-5

4.3 Using Command Procedures

A command procedure is a file that contains a sequence of VAX/VMS com­
mands and, optionally, data. You can cause the commands in the procedure
to be executed in either of two ways:

• Interactively, you specify the name of the file following the @ (Execute
Procedure) command. For example:

$ @TESTAM

The @ command assumes that the file type of a command procedure is
COM. This command executes the procedure TESTAM.COM.

• You can submit the command procedure to a system batch job queue for
execution. After the job completes, the system prints a log file that indicates
how the job ran. The SUBMIT command submits a job. For example:

$SUBMIT TESTAM

This command enters the file TESTAM.COM to the system batch job
queue.

You can devise and use command procedures to simplify and enhance your
program development. For example, you can write a command procedure that
will compile, link, and run a specific PL/I program. The command procedure
can specify all the needed libraries for the PLI and LINK commands, and can
even contain all the input data you would require to test the program.

Command procedures can also be generalized. By taking advantage of DCL
commands such as the assignment statement, and the IF, GOTO, and ON
commands, you can write a command procedure that looks like a PL/I pro­
gram: it can process variables, make decisions based on their values, and
perform error condition handling.

The example in Figure 4-1 shows a simple procedure that will give you an idea
of how to construct and use command procedures to help you with your PL/I
program development and testing.

Running PL/I Programs on V AXNMS 4-7

6. The program APPLIC is executed. It reads input data from the default
input device. When a command procedure executes, the default input
device is the command procedure itself. Thus, the data is read from the
procedure file. In a command procedure, any line that does not begin with
a dollar sign is treated as input data for the previous command or pro­
gram. Program input terminates (and an actual end-of-file condition oc- '
curs) when a line that begins with a dollar sign is read. In this example,
the program APPLIC reads all the lines between the RUN command and
the EXIT command.

For more detailed information on the commands shown above, and for addi­
tional examples of techniques you can use in command procedures, see the
VAX/VMS Guide to Using Command Procedures.

4.4 Passing Data to a Main Procedure

The VAX/VMS command interpreter does not provide an explicit interface
for passing arguments to a main program. There are, however,· programming
techniques that permit you to pass data at run time to affect the execution of
a program. This section describes the following techniques:

• Defining the program as a foreign DCL command and specifying data on the
command line that invokes the program

• Using logical names as program arguments

Both of these techniques are restricted to character-string arguments.

The examples in the sections that follow provide enough information for you
to duplicate them. Where appropriate, the text refers to additional required
conceptual information found elsewhere in this manual.

4.4.1 Passing Data from the Command Line

When any command is executed on the VAX/VMS system, the command
interpreter stores a copy of the command in an internal buffer. You can access
the data in this buffer from a PL/I program by coding a call to a run-time
library procedure named LIB$GET_FOREIGN. To use this routine, there are
two things you must do:

1. To pass data to a program when it is run, you must use a DCL assignment
command to equate a command symbol to a foreign command name. The
command name will be used instead of a RUN command to execute the
program image.

2. To obtain the data, the program must call a run-time library procedure to
obtain the command string and must perform all string parsing and analy­
sis itself.

Each of these mechanisms is described in detail on the following pages.

Running PL/I Programs on V AXNMS 4-9

Sample Program 4-1: Obtaining the Command Line from the Command
Interpreter

GETLINE: PROCEDURE OPTIONSCMAIN);

'.!.;INCLUDE $STSDEF; 0

DECLARE LIB$GET_FOREIGN EXTERNAL ENTRY C@
CHARACTER(*) 1 /* BUFFER TO RECEIVE COMMAND STRING */
CHARACTER(*) 1 /* PROMPT STRING, IF M'f'(-~/

FIXED BINC15l l /*LENGTH OF COMMAND STRING*/
RETURNS _CFIXED BINARYC31ll;

DECLARE COMMAND_STRING CHARACTERC500l, 1 • OUTPUT BUFFER */

ER~'OR:

END;

f) RETIJRN_LENGTH FU<ED BINARYC 15) 1 /·¥-: OUTPUT LENGTH ·"'fr:/

PROMPT._STRING CHARACTER(12l SHH IC INITIAL('Enter line:: 1 l;

0

0

STS$VALIJE = LIB$GET_FOREIGNCCOMMAND_STRING,
PROMPT._STRING,
RETU~'N .. _LENGTHl;

IF ~STS$SIJCCESS THEN GOTO ERROR;

0 PUT Si'.:IP LISTCSUBSTRCCOMMArm __ STRING 1l 1RETl .. JRt'-Ll_ENGTHl l;
RETURN;

PUT SKIP LIST('ERROR IN LIB$GEL.FOREIGN 1
J,

RETURN;

The following notes are keyed to Sample Program 4-1:

1. The procedure includes the module $STSDEF from the default INCLUDE
library PLISYSDEF.TLB. This module contains the declarations for the
variables STS$VALUE and STS$SUCCESS, which are used to test
whether the procedure LIB$GET_FOREIGN completed successfully.

2. LIB$GET_FOREIGN has three parameters: an output buffer, an op­
tional prompt string, and a variable to receive the length of the string
returned in the output buffer.

These parameters are declared in the entry declaration. The parameter
descriptors for the character-string parameters must be declared as
CHARACTER(*).

3. The corresponding arguments for the procedure's three parameters are
COMMAND_STRING, PROMPT_STRING, and RETURN_
LENGTH, respectively.

4. LIB$GET_FOREIGN is invoked as a function so that its return value can
be tested. The function reference returns the status into the variable
STS$VALUE. The variable STS$SUCCESS is a one-bit field based on
the low-order bit of STS$VALUE. This bit, if true, indicates a successful
return.

Running PL/I Programs on VAX/VMS 4-11

Logical names and equivalence names are each limited to 63 alphanumeric
characters, including dollar signs($) and underline characters(_). Uppercase
and lowercase letters are not equivalent. For example, the following com­
mands would result in different equivalence names:

$ DEFINE NAME MABEL
$ DEFINE NAME "Mabel"

Note that the command interpreter translates all strings that are not enclosed
in quotation marks to uppercase.

You can specify numeric character strings for integer arguments. For exam­
ple, to define an equivalence name for the logical name NUMBER_OF_
ITERATIONS, you could specify:

$ DEFINE NUMBER_QF_ITERATIONS 10

Note that the program that translates this name must perform an explicit
conversion of the character-string value to an arithmetic data item.

4.4.2.2 Translating Logical Name Arguments - A procedure that interprets a
logical name argument must explicitly translate the logical name by invoking
the SYS$TRNLOG system procedure. This procedure is in the default system
object module library, and will be automatically located when you link a
program that references it.

This procedure has the following parameters:

1. A CHARACTER(*) parameter that represents the logical name string to
be translated.

2. A FIXED BINARY(15) parameter in which the procedure places the
I

length of the resultant equivalence name string.

3. A CHARACTER(*) parameter in which the procedure places the trans­
lated equivalence name string.

4. Three optional parameters for which the procedure provides default val­
ues. These parameters are of no interest in this example and may be
omitted.

The program PRINT_NAME in Sample Program 4-2 illustrates a main pro­
cedure that translates the logical names NAME and NUMBER_OF_
ITERATIONS and uses the resulting equivalence name strings.

Running PL/I Programs on VAX/VMS 4-13

The following notes are keyed to Sample Program 4-2:

1. The procedure includes the INCLUDE modules SYS$TRNLOG and
$STSDEF. These modules are in the PL/I default INCLUDE library
PLISYSDEF.TLB; they contain the declarations of the SYS$TRNLOG
system service and the variables STS$VALUE and STS$SUCCESS,
which are used to test whether the system service call completed success­
fully.

2. For each logical name, the procedure declares a string initialized to the
logical name value, an output string variable, and an output length varia­
ble.

3. The integer variable ITERATION_COUNT is used in the conversion
of the character-string equivalence name returned for the logical name
NUMBER_OF_ITERATIONS.

4. SYS$TRNLOG is invoked as a function so that its return status can be
tested.

5. The trailing commas in the argument list indicate arguments that are not
specified - the SYS$TRNLOG system service provides default values for
these arguments. The commas must, however, be specified. For details on
omitting optional arguments to procedures, see Section 14.5.2, "Optional
Arguments."

6. The function reference returns the status into the variable STS$V ALUE.
The variable STS$SUCCESS is a one-bit field based on the low-order bit
of STS$V ALUE. This bit, if set to 1, indicates a successful return.

If either call to SYS$TRNLOG is not successful, the procedure exits. For
complete details on testing return status values, and a description of the
variables STS$V ALUE and STS$SUCCESS, see Chapter 16, "Return
Status Values."

7. The variable ITERATION_COUNT is assigned a value using the
SUBSTR built-in function, which extracts the valid portion of the equiva­
lence string from the 63-character equivalence name. This value is used to
control the execution of the DO-group that follows.

Note that the SYS$TRNLOG procedure returns a successful status if a
logical name is not defined; thus, the results are unpredictable (and usu­
ally cause an error) if the procedure does not explicitly test the return
status to see if a name was translated.

Running PL/I Programs on VAX/VMS 4-15

Part II
The .File System

Chapter 5
Overview of the File System

This chapter introduces aspects of the VAX/VMS operating system that re­
late to PL/I input and output. It describes:

• The relationship between PL/I input/output statements and VAX/VMS
input/output procedures

• File-naming and definition conventions, including a description of
VAX/VMS logical names and process permanent files

• File system error handling at run time

• ENVIRONMENT options for input/output optimization

5.1 Relationship of PL/I 1/0 to the VAX/VMS File System

When a PL/I program contains an input/output statement, for example,
OPEN or READ, the compiler translates the request into a call to the appro­
priate VAX/VMS operating system procedure.

In the VAX/VMS system, input/output is performed by:

• VAX-11 Record Management Services (RMS). RMS provides complete file
and record-handling capabilities.

• Input/output system services. System services provide direct control over
data transfer between the process executing an image and a peripheral
device.

Note that although it is possible to call RMS procedures and VAX/VMS
system services directly from a PL/I program, it is not normally necessary to
do so. A PL/I program executed on the VAX/VMS operating system has full
access to RMS capabilities through:

• Options of the ENVIRONMENT attribute

• Keyword options on PL/I input/output statements

• Built-in subroutines that invoke RMS file-handling services

RMS, in turn, manages the details of communicating with the VAX/VMS I/O
system to effect data transfer and to organize and arrange data on physical
devices.

5-1

2. It supplies missing fields from the value specified in the DEFAULT_
FILE_NAME option of the ENVIRONMENT attribute, if that option is
specified.

3. It then applies system defaults to complete the file specification.

If the file specification that is finally achieved is invalid (for example, if it
contains a dollar sign or underline character) or represents an illegal device or
file (for example, if an input file cannot be found), the UNDEFINEDFILE
condition is signaled.

The actions that PL/I and the file system take for each of these steps are
described in more detail in the following sections.

5.2.2 Using Logical Names

At the command level before executing a program, you can create a logical
name to assign a VAX/VMS file specification to the identifier of a PL/I file
constant or to a value specified in a TITLE option. For example, suppose a
PL/I program declares and opens a file as follows:

DECLARE INFILE FILE;

OPEN FILE (INFILE> RECORD INPUT;

You associate a VAX/VMS file with the identifier INFILE as in this example:

$ DEFINE INFILE DB1:CTEMPJA,DAT

The DEFINE command gives the PL/I file INFILE the VAX/VMS file equiva­
lent of DBl:[TEMPJA.DAT. In VAX/VMS terms, the name INFILE is a
logical name and the name DBl:[TEMPJA.DAT is an equivalence name for
the logical name.

You can also use the DEFINE command to specify alternate device or file
equivalents for the PL/I default file constants SYSIN and SYSPRINT. For
example, to redirect output for the default file SYSPRINT, you could specify
a command as follows:

$ DEFINE SYSPRINT TEST.OUT

While this assignment is in effect, any PL/I procedure that outputs data to
SYSPRINT (without opening SYSPRINT with an explicit title) will create a
file named TEST. OUT on the current default device.

Logical names may also be established by other commands. For example, you
can specify a logical name for a device when you enter an ALLOCATE or
MOUNT command while placing the device on line. For example:

$ ALLOCATE
$_De• . .iice: MT:
$_Lo.9_Nar11e: INFILE

_MTA1: ALLOCATED

This ALLOCATE command allocates a tape drive and establishes the logical
name INFILE for it. When a PL/I program reads from the file INFILE, the
system will translate the name INFILE and use the tape MT Al: as the input
device.

Overview of the File System 5-3

System logical PAY_DEV DBB2: 1

name table

Group logical WEEKLY _UPDATE PAY __ DEV:[WEEKL Y.BACKUP]WEEK42.DAT2

name table

Process logical OUTFILE WEEKL y __ UPDATE3

name table

1. This assignment may have been made when a disk
volume was placed on line with a command, as follows:

$ MOUNT /SYSTEM DBB2:
$ _Label: PAYROLL_FILES
$ _Log_Name: PAY _DEV

2. This assignment may have been made as follows:

$DEFINE/GROUP WEEKLY _UPDATE PAY __ DEV:[WEEKLY.BACKUP]WEEK42.DAT

3. This assignment may have been made as follows:

$DEFINE OUTFILE WEEKLY __ UPDATE

OPEN FILE(OUTFILE) RECORD OUTPUT;

To determine the file specification, the system:

1. Translates the name OUTFILE. The result is:
WEEKLY _UPDATE

2. Translates the name WEEKL Y ___ UPDA TE. The result is:
PAY _DEV:[WEEKLY.BACKUP]WEEK42.DAT

3. Translates the name PAY_ DEV. The final resulting
file specification is:

DBB2:[WEEKLY.BACKUP]WEEK42.DAT

Figure 5-1: Translating Logical Names

5.2.2.2 Process Permanent Logical Names - The system provides every user
and every batch job with a default set of process logical name table assign­
ments. These logical names are listed in Table 5-1. Because the files associ­
ated with these assignments exist for the life of the process, or job, and
because they are permanently open, they are called process permanent files.

Overview of the File System 5-5

• The equivalence name for the logical name REPORT does not contain a file
type. In this case, the file type LIS will be supplied by default to the
translated equivalence of the logical name REPORT.

VAX-11 PL/I uses the punctuation in the DEFAULT_FILE_NAME option
to determine which portion of the file specification is specified. Thus, the
period (.) in the above example indicates that the value is a file type. An
unpunctuated name is treated as a file name; a name terminated by a colon
(:) is treated as a device name (and can therefore be a logical name).

When the DEFAULT_FILE_NAME option is not specified for a file, PL/I
supplies a default value for the option of" .DAT"; that is, PL/I applies the file
type DAT to a file specification that does not have a file type.

PL/I applies the value of the DEFAULT_FILE_NAME option after it estab­
lishes the file's title. Thus, in the preceding example, the title, REPORT, is
established before the value ".LIS" is applied. Note that the only time that a
file name in a DEFAULT_FILE_NAME option is used is when the TITLE
option specifies a null string; that is, the TITLE option is specified as:

TITLE(")

A DEFAULT_FILE_NAME option can specify any portion of a file specifi­
cation. For example:

DECLARE REMOTE_FILE FILE RECORD INPUT
ENV(DEFAULT_FILE_NAME(

'RONDO::DBB2:[MALCOLMJ,TXT') >;

This option specifies a node name, device, directory, and file type. The file
name must be supplied when the file is opened. For example:

OPEN FI LE (REMOTE_F I LE i TITLE (,. ALLEGRO') ;

This OPEN statement opens the file:

RONDO: :DBB2:CMALCOLMJALLEGRO,TXT

Another OPEN statement for the file may specify a different TITLE option,
for example, TITLE(' ANDANTE'), to open a different file. Note that if no
TITLE option is specified in this example, the UNDEFINEDFILE condition
will be signaled because the default title, REMOTE_FILE, is an invalid
VAX/VMS file name.

5.2.4 Expanding File Specifications

After logical name translation and after values supplied by the DEFAULT_
FILE_NAME option, if any, are applied, the defaults that the file system
applies are as follows:

Field

node
device
directory
file name
file type
version number

System Default Provided

Local system
Current default device
Current default directory
None
DAT
For an input file, the most recent version; for an out­
put file, the highest existing version number, plus 1.

Overview of the File System 5-7

Example:

DCL STATES FILE RECORD OUTPUT;
OPEN FILE (STATES);

Steps:

1. Apply the default title) STATES.

2. Translate the logical name STATES to obtain the equivalence name,
DMA2:[BACKUPJ.

3. Apply default file type DAT and the default version number (for an out-
put file). Note that no default is supplied for the file name.

Final Specification: DMA2: [BACKUPJ.DAT;n where n is one higher than
the number of any existing version of the file

Example:

DCL TAPEFILE FILE RECORD ENVIRONMENT(
DEFAULT_FILE_NAME('TAPEF"ILE: I));

OPEN FILE(TAPEFILE) OUTPUT TITLE(1 TAPE1+FIL 1
);

Steps:

1. Apply the title TAPEl.FIL.

2. Translate the name TAPEFILE in the DEFAULT_FILE._NAME option
to its equivalence, MTAO:.

3. Use the system default version number for tape files, 0. Tape files do not
have directories.

Final Specification: MTAO:TAPEl .FIL;O

5.3 Error Handling

VAX-11 PL/I uses the standard PL/I ON condition names to signal run-time
errors that occur for file operations. The ON conditions that are signaled, and
the circumstances under which they are signaled, are:

• The UNDEFINEDFILE condition is signaled whenever a file cannot be
opened.

• The ENDFILE condition is signaled when the end-of-file is reached during
an input operation.

• The ENDPAGE condition is signaled for a file with the PRINT attribute
when the current line number exceeds the page size specified for the file.

• The KEY condition is signaled for a file with the KEYED attribute when
any error involving the interpretation, writing, or specification of a key
occurs.

• The ERROR condition is signaled for all other file-related errors.

Overview of the File System 5-9

5.3.2 Default Error Handling

If a file system error occurs during the execution of a PL/I statement, the PL/I
run-time system signals either the specific PL/I condition name or the
ERROR condition. If no user-specified ON-units exist to handle either the
specific PL/I condition or the ERROR condition, PL/I performs its default
con di ti on handling.

If any active procedure specified OPTIONS(MAIN), a default PL/I ON-unit
is present and executed. The default PL/I ON-unit prints a PL/I run-time
error message. If the default PL/I ON-unit is not present, the error signal is
passed to the default condition handler established by VAX/VMS, which
prints the message associated with the RMS error. If the error was a fatal
error, the handler terminates the program; otherwise, the program continues.

The following example illustrates the type of messages that the PL/I run-time
system displays when an error occurs during an 1/0 operation:

%PLI-F-ERROR, PL/I ERROR condition,
-PLI-I-IOERROR1 I/O error on file 'STATE_FILE'
-PLI-I-FILENAME1 File name: '_DB7:CMALCOLMJSTDATA.DAT;'
-PLI-I-NOTKEYD1 Not a KEYED file.
%TRACE-F-TRACEBACK, symbolic stack dump follows

module name routine name line relative PC absolute PC

PLI $CONDIT
PL UREAD
FLO~~ERS

FLOWERS
FLOWERS

$CODE
$CODE
BEG I N'X.35
BEG I N'X.2::1
FLO~~ERS

35
2::1
·1c::

()()()()()4DE:

()01:)0():]:3(:; ()()C1 ()::z~JdE

() () 0 C1 c:i () E: 5
0()C1()00eD ()()C1c1i::)c::oz:
()()()()()()[)] OOOOOB4Z

In this example, the error occurred because a keyed 1/0 statement was speci­
fied for a file that does not have the KEYED attribute. For an explanation of
the information in a traceback message, see Section 4.1.2, "Run-Time Er­
rors."

5.4 Input/Output Optimization

Many of the VAX-11 PL/I options for the ENVIRONMENT attribute provide
optimization features for input/output operations. Table 5-2 summarizes the
options that control disk file allocation. These options let you specify the
space requirements of a file when you create it. Table 5-3 summarizes the
options for run-time optimization of input/output processing. All options are
described in detail in Chapter 6, "ENVIRONMENT Options."

Overview of the File System 5-11

Chapter 6
Options of the ENVIRONMENT Attribute

The options to the ENVIRONMENT attribute provided by VAX-11 PL/I let
you:

• Describe the attributes of a file when it is created

• Request special processing and optimization options when the file is being
read or written

• Specify the disposition of a file when it is closed

Most of the options for the ENVIRONMENT attribute correspond directly to
RMS options and control values. PL/I, in some cases, provides different de­
faults than does RMS.

This chapter presents an overview of the ENVIRONMENT options and infor­
mation on how to specify them and gives a reference description of each
option. The descriptions of the ENVIRONMENT options begin in Section
6.2.1, and are arranged in alphabetic order.

6.1 Specifying and Using ENVIRONMENT Options

All ENVIRONMENT options may be specified in the declaration of a file
constant or in an OPEN statement to open a file. Certain options may also be
specified in a CLOSE statement.

6.1.1 Arguments for ENVIRONMENT Options

ENVIRONMENT options may be grouped in the following categories, based
on whether they require an argument and what type of argument is required:

• Many options require you to specify an expression representing a value to
override a default value provided by V AX-11 PL/I.

• A few ENVIRONMENT options require you to provide a reference to a
variable that either contains information pertaining to the open or that will
receive information when the related file is opened.

• All options that are not in one of the above categories may be specified with
a Boolean expression that enables or disables the option. If no value is
specified with an option, the option is enabled.

6-1

6.1.2 Interpretation of ENVIRONMENT Options for Existing Files

Many ENVIRONMENT options specify values that can be set only when a
file is created. For example, the length of records in a file with fixed-length
records is set when the file is created and cannot be changed thereafter. When
these options are specified for a file, they are applied to the file only if the
open of the file actually results in the creation of a new file. If the open results
in the opening of a file that already exists, the option is ignored.

6.1.3 Determining ENVIRONMENT Options

A PL/I program can determine the value or setting of an ENVIRONMENT
option at run time for an indicated file by calling the DISPLAY built-in
subroutine. This built-in subroutine returns information about a specified
PL/I file to a user-specified structure. The member names in the structure
correspond to the keywords of the ENVIRONMENT attribute.

For a description of the values returned by this subroutine, and an example of
calling it, see Section 8.1, "DISPLAY Built-In Subroutine."

Certain ENVIRONMENT options themselves return information to the pro­
gram when an existing file is opened. For example, the FIXED_ CONTROL_
SIZE_TO option may be specified when an existing file with a fixed control
area is opened. PL/I returns the size of the fixed control area to the program.

6.1.4 Device Independence of ENVIRONMENT Options

Many ENVIRONMENT options apply only to a particular type of device or
to a specific file organization. For example, the REWIND_ON_CLOSE and
REWIND_ON_OPEN options apply only to magnetic tape files, and the
FILE_SIZE option applies only to disk files.

When any ENVIRONMENT option is specified for a device to which the
option does not apply, the option is ignored.

6.1.5 Conflicting and Invalid ENVIRONMENT Options

Conflicting or invalid options or values for options may be detected during
compilation or at run time. At compile time, the compiler issues a diagnostic
message to indicate the error.

At run time, the UNDEFINEDFILE condition is signaled if conflicting op­
tions are in effect or if conflicting values are specified for the same option. For
example, if the FILE_SIZE option is specified in the DECLARE and OPEN
statements for a given file and if the options specify different values, UNDE­
FINEDFILE is signaled.

For run-time errors, an ON-unit can reference the ONCODE built-in function
to determine the specific error, if desired. If no ON-unit exists for the UNDE­
FINEDFILE condition, the PL/I run-time system displays an error message
describing the error that occurred.

Options of the ENVIRONMENT Attribute 6-3

0
"d
M-

o"
t::::$
r:ri

0,
M-
::r­
co
t_:Ij
z
< -~
0 z
~
t_:Ij
z
~

~
M­..,
~
~
M­eo

~
I

01

Table 6-1: Summary of ENVIRONMENT Options

Option Usage

APPEND Places output for a file at the end of an
existing file.

BATCH Submits a copy of the file to the sys-
tern batch job queue on close.

BLOCK_BOUNDARY_FORMAT Indicates that records must not cross
block boundaries.

BLOCK_lO Specifies a file will be read or written
by blocks instead of records.

BLOC K_SIZ E(expression) Specifies the size of a block for the ere-
ation of a magnetic tape file.

BUCKET _SIZE(expression) Defines the number of 512-byte blocks
in a bucket for an indexed sequential
or a relative file.

CARffiAGE_RETURN_FORMAT Indicates that records in the file will
be printed with default carriage con-
trol.

CONTIGUOUS Specifies that an output file must be
placed in a physically contiguous ex-
tent on disk.

CONTIGUOUS_BEST _TRY Requests that if possible an output file
be placed in a physically contiguous
extent on disk.

CREATION_DATE(variable) Overrides default creation date of file.

CURRENT _POSITION Leaves magnetic tape positioned at
last close.

Specify Valid Default
At 1/0 Value Data Type

Types

Create Record Disabled BIT(l)
Open Stream

Create Record Disabled BIT(ll
Open Stream
Close

Create Record Disabled BIT(ll
Stream

Create Record Disabled BIT(ll
Open

Create Record Mount FIXED BINARY(:H)
Stream value

Create Record Maximum FIXED BINARYW l
record size

Create Record Enabled BIT(ll

Create Record Disabled BIT(l)
Stream

Create Record Disabled BIT(ll
Stream

Create Record Current BIT (64) ALIGNED
Stream date and

time

Create Record Disabled BIT(l)
Open Stream

(Continued on next page)

0
'O
c-t-
5·
::s
r:n
0
>-+;,

c-t-
P""
([)

t_:rj

z
< ""'""4

~
0
z
~
t_:rj

z
""'3
> c-t­
rt­
>-;

~ c
c-t­
([)

~
I

--1

Table 6-l(Cont.): Summary of ENVIRONMENT Options

Option

INDEX_NUMBER(expression)

INDEXED

INITIAL_FILL

MAXIMUM_RECORD_NUMBER(expression)

MAXIMUM_RECORD_SIZE(expression)

MULTIBLOCK_COUNT(expression)

MULTIBUFFER_COUNT(expression)

NO_SHARE

OWNER_GROUP(expression)

Usage

Specifies the initial index to use in ac­
cessing records in an indexed sequen­
tial file.

Defines an indexed sequential file.

Requests the file system to leave
unused space in file index overflow
buckets.

Specifies the largest record number
that will be valid for records in a rela­
tive file.

Specifies the maximum size that is
valid for any record in the file.

Specifies the number of blocks to allo­
cate for file system buffering.

Specifies the number of buffers to allo­
cate for file system buffering.

Prohibits all type of shared access to
the file.

Specifies the group number in the user
identification code (UIC) of the owner
of the file.

Specify
At

Create
Open

Create
Open

Open

Create

Create

Create
Open

Create
Open

Create
Open

Create

Valid
1/0

Types

Record

Record

Record

Record

Record

Record

Record

Record

Record
Stream

*For sequential files with fixed-length records. For sequential files with variable-length records, the default is 510
bytes. For relative files, the default is 480 bytes.

t Disabled if the file is opened for input, enabled if opened for output or update.

0

Default
Value

Disabled

Disabled

0

512 bytes*

Current
process
default

Current
process
default

t

Current
process
group
number

Data Type

FIXED BINARY(31)

BIT(l)

BIT(l)

FIXED BINARY(31)

FIXED BINARY(31)

FIXED BINARY(31)

FIXED BINARY(31)

BIT(l)

FIXED BINARY(31)

(Continued on next page)

0
'O
M-c;·
~
00

0
~

M-
O""
ro
t_:rj

z
< -~
0 z
~
t_:rj

z
~

> M-
M-
1-S

0:
~
M­
ro

~

Table 6-l(Cont.): Summary of ENVIRONMENT Options

Option Usage

SCALARV ARYING Specifies that varying character
strings will be read/written using the
entire storage of the variable.

SHARED_READ Allows other users to read records in
the ·file.

SHARED_ WRITE Allows other users to read and write
records in the file.

SPOOL Queues· a copy of the file to the system
printer when the file is closed.

SUPERSEDE Replaces an existing file with the same
file name, file type, and version num-
her.

SYSTEM_PROTECTION(expression) Defines the type of file access allowed
to users with system user identifica-
tion codes.

TEMPORARY Specifies a temporary file for which no
directory entry is made.

TRUNCATE Truncates a sequential file at its logi-
cal end-of-file when it is closed.

WORLD_PROTECTION(expression) Specifies the type of file access al-
lowed to general system users.

WRITE_BEHIND Requests file system optimization on
output operations.

WRITE_CHECK Requests verification of output opera-
tions.

b * Enabled if the file is opened for input, otherwise disabled.

Specify Valid Default
At 1/0 Value Data Type

Types

Create Record Disabled BIT(l)
Open

Create Record * BIT(l)
Open

Create Record Disabled BIT(l)
Open

Create Record Disabled BIT(l)
Open Stream
Close

Create Record Disabled BIT(l)
Stream

Create Record Current CHAR(4)
Stream process

default

Create Record Disabled BIT(l)
Stream

Create Record Disabled BIT(l)
Update Stream
Close

Create Record Current CHAR(4)
Stream process

default

Create Record Disabled BIT(l)
Update Stream

Create Record Disabled BIT(l)
Update Stream

•Usage

When you specify both the TEMPORARY and DELETE options in conjunc­
tion with the BATCH option, the file is submitted to the batch job queue and
marked for deletion after the batch job completes.

6.2.3 BLOCK ___ BOUNDARY_FORMAT Option

The BLOCK_BOUNDARY_FORMAT option indicates that records in the
file must not cross block boundaries.

The format of this option is:

BLOCK_BOUNDARY_FORMAT [(boolean-expression) l

•Rules

1. The BLOCK_BOUNDARY_FORMAT option is meaningful only when a
file is created.

2. This option applies only to sequential files; it is ignored if specified for
relative or indexed sequential files.

3. If the BLOCK__BOUNDARY_FORMAT option is specified for a file, the
maximum record size must be less than 512 bytes.

4. BLOCK_BOUNDARY_FORMAT conflicts with the BLOCK__IO op­
tion. However, a file that is created with the BLOCK__BOUNDARY_
FORMAT option can later be read with the BLOCK__IO option.

•Usage

The BLOCK__BOUNDARY_FORMAT option can be paired with the
CARRIAGE_RETURN_FORMAT or PRINTER_FORMAT option to de­
fine the attributes of a file's records.

This option may be useful for the creation of files that will be read in terms of
blocks. Note, however, that this option may result in unused disk space when
records do not fill blocks.

6.2.4 BLOCK_IO Option

The BLOCK_IO option indicates that all 1/0 operations on the file will be in
terms of physical blocks rather than records. In an 1/0 statement, a block is
treated as if it were a single logical record. The format of this option is:

BLOCK_IQ [(boolean-expression)]

•Rules

1. The BLOCK_IO option is meaningful when a file is created or opened.
The file can be opened with any of the attributes INPUT, OUTPUT, or
UPDATE. If the file is opened for output, the created file is always se­
quential.

Options of the ENVIRONMENT Attribute 6-11

•Rules

1. The BLOCK_SIZE option is meaningful only when a file is created.

2. This option is applied only to magnetic tape files.

•Usage

When a tape file is opened with the BLOCK_IO option of ENVIRONMENT,
the block size of the file is used to determine the number of bytes to be
transferred in a single I/O operation.

Tape file input/output is described in Section 10.2, "Using Magnetic Tape
Files."

6.2.6 BUCKET_SIZE Option

The BUCKET_SIZE option lets you specify the number of blocks to use for
each bucket when you create a relative file. The BUCKET_SIZE option has
the format:

BUCKET _SIZE (integer-expression)

integer-expression
Is a fixed binary value in the range of 0 to 32, representing the number of
blocks in each bucket. If the bucket size is specified as 0, or if it is not
specified, PL/I applies the current RMS default. This default can be set
with the DCL command SET RMS_DEFAULT; its current value can be
determined with the command SHOW RMS_DEFAULT.

•Rules

1. The BUCKET_SIZE option is meaningful only when a file is created.

2. This option applies only to relative files.

•Usage

Selection of a bucket size for a relative file depends on the size of the records
in the file. Although records within a bucket can cross block boundaries,
records cannot cross bucket boundaries. Therefore, the number of blocks per
bucket that you specify with this option must conform to one of the formulas
given below.

Options of the ENVIRONMENT Attribute 6-13

By careful calculation of a bucket size, you can improve input/output opera­
tions on the file. In general, a bucket size of between four and eight blocks
results in good performance for most files. For detailed information on file
design and space considerations, see the RMS-11 User's Guide.

6.2.7 CARRIAGE __ RETURN_FORMAT Option

The CARRIAGE_RETURN_FORMAT option indicates that each record in
the file is to be preceded by a line feed and followed by a carriage return when
the line is written to a carriage control device such as a terminal or line
printer. The format of this option is:

CARRIAGE_RETURN_FORMAT [(boolean-expression) J

•Rules

1. The CARRIAG E_RETURN_FORMAT option is meaningful only when a
file is created.

2. CARRIAGE_RETURN conflicts with the PRINTER__FORMAT and
BLOCK__IO options and with the PRINT file description attribute.

•Usage

CARRIAGE_RETURN_FORMAT is the default format for record files.

This type of carriage control is an attribute of the file that is known to the file
system; it does not require space within the file's records.

6.2.8 CONTIGUOUS Option

The CONTIGUOUS option specifies that disk space for the associated file
must be allocated using contiguous blocks on the disk. The format of this
option is:

CONTIGUOUS [(boolean-expression)]

•Rules

1. The CONTIGUOUS option is meaningful only when a file is created.

2. This option applies only to disk files.

3. If specified with the CONTIGUOUS_BEST_ TRY option, the CONTIG­
UOUS_BEST _TRY option takes precedence.

•Usage

By default, a disk file consists of areas, or extents, on a disk volume that are
not contiguous. When a file is accessed, the file system must maintain a
pointer to each extent. However, there is a maximum number of extents that
can be maintained. For very large files that must be accessed quickly, an
initial allocation of contiguous space can result in more efficient input/output
operations.

Options of the ENVIRONMENT Attribute 6-15

•Usage

The time value required can be obtained by using the SYS$BINTIM (Convert
ASCII String to Binary Time) system service procedure. For an example of a
call to this procedure to obtain a system time value for the CREATION_
DATE option, see Section 19.4.3, "Timer and Time Conversion Routines."

6.2.11 CURRENT _POSITION Option

The CURRENT_POSITION option specifies that a magnetic tape volume be
positioned immediately after the most recently closed file when the next file is
created. The format of this option is:

CURRENT _POSITION [(boolean-expression) J

•Rules

1. The CURRENT_POSITION option is meaningful only when a file is
created.

2. This option applies only to magnetic tape files.

3. If the REWIND_ON_OPEN option is also selected, it takes precedence
over the CURRENT_POSITION option.

•Usage

This option lets you close an output file on a magnetic tape and proceed to
write another file on the tape immediately after the current file. For example:

DECLARE TAPEFILE FILE RECORD OUTPUT ENVC
DEFAUL T FILE_NAME ('TAPEFILE: I));

OPEN FILECTAPEFILEl ENVCCURRENT_POSITIDNl
TITLE('TAPELFIL I);

CLOSE FILECTAPEFILEl;
OPEN FILECTAPEFILE) TITLE('TAPE2.FIL'l;

When the second OPEN statement executes, the tape identified by the logical
name TAPEFILE remains positioned as it was following the CLOSE state­
ment.

Magnetic tape file positioning is described in Section 10.2, "Using Magnetic
Tape Files."

Options of the ENVIRONMENT Attribute 6-17

•Usage

The DEFERRED_ WRITE option can provide better 1/0 performance for
output operations, especially when a relative or indexed sequential file is
being initially loaded with records and the records are being added sequen­
tially.

If a system problem occurs when 1/0 is being performed with the
DEFERRED_ WRITE option enabled, data may be lost. To ensure the integ­
rity of the file during processing with this option, a PL/I program can call the
FLUSH built-in subroutine at critical times to rewrite all buffers. The
FLUSH built-in subroutine is described in Chapter 8, "File-Handling Built-In
Subroutines."

6.2.14 DELETE Option

The DELETE option specifies that the file is to be deleted when it is closed.
The format of this option is:

DELETE [(boolean-expression)]

•Rules

1. The DELETE option can be specified when a file is created, opened, or
closed.

2. Once the DELETE option has been enabled for a file on a particular open,
it cannot be disabled.

•Usage

When this option is used in conjunction with the SPOOL or BATCH options,
the file is marked to be deleted after it is either printed or processed as a batch
job.

This option can also be used to delete an existing file. For example:

DECLARE INFILE FILE;
OPEN FILE <INFILE> ENVIRONMENTCDELETE>;
CLOSE FILE<INFILE);

When this CLOSE statement executes, the VAX/VMS file associated with the
PL/I file constant INFILE is deleted.

6.2.15 EXPIRATION_DATE Option

The EXPIRATION_DATE option specifies the time at which a magnetic
tape file expires. The file cannot be deleted or overwritten until the specified
date. The format of the EXPIRATION_DATE option is:

EXPIRATION_DATE (variable-reference)

Options of the ENVIRONMENT Attribute 6-19

Each time the addition of a record to a file requires the file system to allocate
additional disk extents for the file, RMS allocates the amount of space speci­
fied by the EXTENSION_SIZE value. Thus, if you specify a value that is
larger than the default that RMS uses, the number of times that a file must
be extended will be decreased.

However, if a large extension quantity is specified for a file, and the file does
not require the allocated space, the disk space is wasted.

6.2.17 FILE_ID Option

When the FILE_ID option is specified in the opening of an existing file, PL/I
uses the value specified in the FILE_ID option to locate the file. This format
of the option is:

FILE_ID (variable-reference)

varia hie-reference
Specifies the name of a six-element array variable that gives the file identi­
fication obtained when the file was created.

The variable must be declared as (6) FIXED BINARY(31) and must be
connected.

•Rules

1. The FILE_ID option is valid only when an existing file is opened.

2. This option conflicts with the TITLE, DEFAULT_FILE_NAME, and
FILE_ID_ TO options.

3. If there is no file with the indicated file identification, the UNDEFINED­
FILE condition is signaled.

•Usage

This option is provided for use with the TEMPORARY option; you must
specify the FILE_ID option to reopen a file that was created with the
TEMPORARY option.

6.2.18 FILE_ID_ TO Option

When a file is created, the FILE_ID_ TO option requests PL/I to return the
file identification to a user-specified variable. Its format is:

FILE_ID_ TO(variable-reference)

varia hie-reference
Specifies the name of a six-element array variable to receive the file identi­
fication of the created file.

The variable must be declared as (6) FIXED BINARY(31) and must be
connected.

Options of the ENVIRONMENT Attribute 6-21

If the specified file size is not a multiple of the cluster size of the disk, the
allocation is rounded up to a multiple of the cluster size.

Note that if you allocate more space for a file than it requires, the unused
space is wasted, since it is unavailable for other uses.

6.2.20 FIXED_CONTROLSIZE Option

The FIXED_CONTROLSIZE option specifies that a file will have a fixed­
length control area associated with each variable-length record and specifies
the size of the fixed control area.

The format of this option is:

FIXED_CONTROL_SIZE(integer-expression)

integer-expression
Is an integer expression in the range 0 to 255, indicating the number of
bytes in the fixed control field of the record. If you specify a value of 0, PL/I
uses the default size of two bytes.

•Rules

1. The FIXED_CONTROL_SIZE option is meaningful only when a file is
created.

2. This option applies only to relative and sequential files with variable­
length records.

3. The FIXED_CONTROLSIZE option conflicts with the BLOCK_IO
and INDEXED options and with the STREAM and UPDATE file de­
scription attributes.

4. You must specify the FIXED_CONTROLSIZE option to create a file
containing records with a fixed-length control area.

•Usage

When a file is created with the FIXED_CONTROL_SIZE option, WRITE
and REWRITE statements for the file may specify the FIXED_CONTROL_
FROM option to write a value into the fixed control area. For example:

DECLARE OUTFILE FILE RECORD OUTPUT ENVIRONMENT
F I><ED_CONTROL_S I ZE (2)) ;

OPEN FILE<OUTFILE);
WRITE FILE <OUTFILE) FROM (NEWLINE) OPTIONS (

FIXED_CONTROL_FROM(LINE_NUMBER));

If the FIXED_CONTROLFROM option is not specified when a record is
written to a file with fixed control records, VAX-11 PL/I writes zeros in the
fixed control area of the record.

The format of variable-length records with a fixed-length control area is de­
scribed in Section 9.3.3, "Variable-Length Records with a Fixed-Length Con­
trol Area." For an additional example of writing a file with a fixed control
area, see Section 7.2.3, "FIXED_CONTROL_FROM Option."

Options of the ENVIRONMENT Attribute 6-23

6.2.23 GROUP _PROTECTION Option

The GROUP _PROTECTION option defines the type of access to be permit­
ted to the file by other users in the owner's group. The format of this option is:

GROUP _PROTECTION (character-expression)

character-expression
Is a one- to four-character string expression indicating the access privileges
to be granted to users in the owner's group. The expression can contain any
of the following letters to indicate the access allowed:

Letter Meaning

R Read access is allowed
W Write access is allowed
E Execute access is allowed
D Delete access is allowed

The lowercase forms of these letters are also permitted. Letters may be
repeated, but the maximum length of the string is four. All other characters
are invalid. If any other character is present in the string, the UNDE­
FINEDFILE condition is signaled.

•Rules

1. The GROUP _PROTECTION option is meaningful only when a file is
created.

2. If no protection options are specified, PL/I uses the current system and
process defaults. If any protection options are specified, the protection for
unspecified user categories defaults to no access.

•Usage

For information on specifying protection options, see Chapter 13, "File Pro­
tection and File Sharing."

6.2.24 IGNORE_LINE___MARKS Option

The IGNORE_LINE_MARKS option overrides the default manner in which
VAX-11 PL/I interprets end-of-line indicators on stream input operations,
which is to treat an end-of-line on a stream input operation as a field delimiter
in a GET LIST or GET EDIT statement. The format of this option is:

IGNORE_LINE_MARKS [(boolean-expression) 1

•Rules

1. The IGNORE_LINE_MARKS option may be specified when a file is
opened.

2. This option applies only to stream input files; that is, it conflicts with the
RECORD, OUTPUT, and UPDATE attributes and with any attributes
that imply these attributes.

Options of the ENVIRONMENT Attribute 6-25

6.2.26 INDEXED Option

The INDEXED option specifies that a file is an indexed sequential file. The
format of this option is:

INDEXED [(boolean-expression)]

•Rules

1. The INDEXED option is meaningful when an existing file is opened.

2. This option applies only to indexed sequential files.

3. INDEXED conflicts with the APPEND, BATCH, BLOCK_IO, FIXED_
CONTROL_SIZE, MAXIMUM_RECORD_NUMBER, and
PRINTER__FORMAT options and with the PRINT file description
attribute.

•Usage

The INDEXED option is never required; however, you may use it as a check
when you open an existing indexed sequential file so that PL/I will verify the
file's organization before opening it.

6.2.27 INITIALFILL Option

The INITIALFILL option specifies, when an indexed sequential file is
opened, that the initial fill value specified when the file was created is to be
used. The format of this option is:

INITIAL_FILL [(boolean-expression)]

•Rules

The INITIALFILL option is meaningful only when an indexed sequential
file is initially opened for output.

•Usage

As an indexed sequential file is initially loaded with records, the fill size
specified causes buckets to appear full when they are actually less than full.
Thus, room remains in each bucket for subsequent additions to the file.

For information on using indexed sequential files, see Chapter 12, "Indexed
Sequential Files."

6.2.28 MAXIMUM_RECORD_NUMBER Option

The MAXIMUM_RECORD_NUMBER option sets, for a relative file, the
largest record number that can be written to the file.

The format of this option is:

MAXIMUM_RECORD_NUMBER(integer-expression)

Options of the ENVIRONMENT Attribute 6-27

integer-expression
Is a numeric expression with values in the range of 1 to a maximum deter­
mined by record format and file organization, as follows:

File Organization

Sequential
Relative
Relative
Indexed sequential
Indexed sequential

Record Format

Fixed or variable length
Fixed length
Variable length
Fixed length
Variable length

Maximum
Allowed

32,767
16,383
16,381
16,362
16,360

For variable-length records with a fixed-length control area, the size of the
fixed control area must be subtracted from the maximum value allowed.

A value of 0 indicates that there is no user-defined limit to the size of
records.

If the value is out of range, the UNDEFINEDFILE condition is signaled.

•Rules

The MAXIMUM_RECORD_SIZE option is meaningful only when a file is
created. If not specified, PL/I provides a default length based on the file
organization and record format, as follows:

File Organization Record Format Default

Sequential Fixed length 512
Sequential Variable length 510
Relative Fixed or variable length 480

If the file has variable with fixed-length control records, the size of the fixed
control area is subtracted from the default value listed above.

6.2.30 MUL TIBLOCILCOUNT Option

The MUL TIBLOCK_COUNT option specifies the number of blocks to allo­
cate in each internal buffer for operations on a sequential disk file. Its format
is:

MUL TIBLOCK_CO UNT(integer-expression)

integer-expression
Is a fixed binary expression in the range of 0 to 127, indicating the number
of blocks to be allocated to each buffer. If 0 is specified, PL/I uses the
system default. You can determine the current system default by entering
the DCL command SHOW RMS_DEFAULT. Use the SET RMS_
DEFAULT command to establish a new default value, if desired.

If the value is not within the required range, the UNDEFINEDFILE condi­
tion is signaled.

Options of the ENVIRONMENT Attribute 6-29

•Rules

1. The MUL TIBUFFER_COUNT option is meaningful when a file is
created or opened.

2. This option applies only to disk files.

3. This option has no effect if BLOCK_IQ is specified.

•Usage

When you use the MULTIBUFFER_COUNT option, it decreases the number
of actual data transfers and thus increases a program's execution speed. For
example:

OPEN FILE(REL_FILE)
ENl,J I RONMENT (

READ_AHEAD,
MULTI BLOCK _COUNT U! > ,

MULTI BUFFER _COUNT (l!)) ;

This option can be specified for sequential, relative, or indexed sequential
files. For inserting records in an indexed sequential file, a good rule of thumb
is to specify one buffer for each index in use, plus two or more buffers for data.
Thus, an indexed sequential file with a primary key and two alternate keys
could be opened with:

ENVIRONMENT(MLJLTIBUFFER_COUNT(5))

This option specifies five buffers.

Multibuffering is also effective for sequential files when combined with the
ENVIRONMENT options READ_AHEAD or WRITE_BEHIND. These
options are described individually in this chapter.

6.2.32 NO_SHARE Option

The NO_SHARE option prohibits sharing of the data in a file. The format of
the NO_SHARE option is:

NO_SHARE [(boolean-expression)]

•

Options of the ENVIRONMENT Attribute 6-31

•Usage

Note that although the value may be specified to PL/I in decimal, the
VAX/VMS system always displays UICs in octal format. For information
on specifying protection options, see Chapter 13, "File Protection and File
Sharing."

6.2.34 OWNEFLMEMBER Option

The OWNER_MEMBER option overrides the default member number in the
user identification code associated with the file's owner. The member number
of a file's owner, together with the group number, provides protection for the
file. Its format is:

0 WNER_MEMBER(integer-expression)

integer-expression
Is a numeric value in the range of 0 to 255.

•Rules

1. The OWNER_MEMBER option is meaningful only when a file is cre­
ated.

2. If not specified, PL/I uses the member number in the current UIC.

3. To specify an owner UIC for a file that is different than the UIC under
which the current program is executing, the process must have the
SYSPRV user privilege or must have a system UIC.

•Usage

Note that although the value may be specified to PL/I in decimal, the
VAX/VMS system always displays UICs in octal format. For information

·(m specifying protection options, see Chapter 13, "File Protection and File
Sharing."·

Options of the ENVIRONMENT Attribute 6-33

•Rules

1. The PRINTER_FORMAT option is meaningful only when a file is cre­
ated.

2. The FIXED_CONTROL_SIZE option should be specified with the
PRINTER_FORMAT option. The size of the fixed control area must be
two to six bytes. If FIXED_CONTROL_SIZE is not specified, the size of
the fixed control area defaults to two bytes.

3. This option may be applied only to relative or sequential files

4. PRINTER_FORMAT conflicts with the STREAM file description attrib-
ute and with the following ENVIRONMENT options:

CARRIAG E_RETURN_FORMAT
FIXED_LENGTH_RECORDS
BLOCK_IO

•Usage

This option indicates that a file is in printer format, that is, that the fixed
control area of each record contains carriage control information. Printer file
format provides more explicit carriage control than the default type of car­
riage control, called carriage return format. Printer format is particularly
useful in formatting a printed listing.

Table 6-2 summarizes the coding specifications for the fixed-length control
area for files with printer format. The first byte in the fixed control area is
called the prefix byte: it gives the carriage control to perform before writing
the record. The second byte is the postfix byte: it gives the carriage control to
perform after writing the record. The values shown in Table 6-2 have the
same meanings in either byte; the bytes are interpreted separately.

Table 6-2: Printer File Format Carriage Control

Bit 7 Bits 0 - 6 Meaning

0 0 No carriage control

0 1 - '7F'B4 Bits 0 through 6 contain the count of line
feeds

Bit 7 Bit 6 Bit 5 Bits 0 - 4 Meaning

1 0 0 1 - 'lF 'B4 The carriage control is specified by the ASCII
value in bits 0 through 4.

The carriage controls associated with the ASCII values are listed in the table
of ASCII codes in Appendix D.

Options of the ENVIRONMENT Attribute 6-35

Sample Program 6-1: Explicit Carriage Control

PRINTER _FORMAT _E><AM PLE: PROCEDURE 0 PT IONS (MA IN> ; I 1

bit fields */ I* Declare structure definitions for carriase control
I* and a FIXED BIN<15) variable for the fixed control area *I 0
DECLARE 1 LINE_FEEDS STATIC,

2 COUNT BIT<7)' I* contains count of line feeds *I
2 INDICATOR BIT<l> INIT< 'O'B) 1/* r11ust be zero *I
CARRIAGE_CONTROL STATIC1
2 CODE BIT(5), I* bits 0-4 ASCII code for action *I
2 FILLER BIT<2> INIT< 'OO'b) t I* bits 5 and G */
2 E)-(PLICIT BIT<l) INIT('l'B), I* bit 7 r11ust be set*/

CONTROL_FIELD BIT<lG) ALIGNED;

I* Set UP variables for Form Feeds and CRs */

DECLARE (NE!tLLI NE, NE!tLPAGE > BIT (8) , ~
I FI)<ED; ~

I = 12; /* ASCII decimal code for Form Feed */
CODE = UNSPEC<I>; I* assisn 12 to CODE field */
NEW_PAGE STRING<CARRIAGE_CONTROL);

I = 13; /* ASCII decimal code for CR */
CODE = UNSPEC<I>; I* assisn 13 to CODE field */
NEW_LINE = STRING<CARRIAGE_CONTROL);

I* declare and open PRINTFILE1 with character-strins variable for I/O *I
DECLARE PRINTFILE RECORD OUTPUT FILE ENV<

FI)ffD_CONTROL_S I ZE (2) , @)
PR I NTER_FORMAT) ,

PRINTREC CHARACTER<BO) VARYING;

OPEN FILE<PRINTFILEi;

I* output first line with no carriase control */
PRINTREC ='Output first line 1,1ith no carriaSe control'; G)
WRITE FILE<PRINTFILE) FROM<PRINTREC>;

I* Prepare to output five line feeds followed by a new line */

I = 5; /* assisn 5 to LINE __ FEEDS.COUNT */
LI NE-FEEDS. COUNT UNSPEC (I l ; 0
CONTROL_FIELD = STRING<LINE_FEEDSl: :NEW_LINEi
PRINTREC = 'Record Preceded bY 5 line feeds ';

WRITE FILE<PRINTFILEl FROM <PRINTREC1 OPTIONS<
FIXED_CONTROL_FROM<CONTROL_FIELDll;

'* Prepare to output a PaSe eJect followed bY a new line */

CONTROL-FIELD = NEVLPAGE:: NEW_LINE; Ci)
PRINTREC = 'Ne1,1 Pa Se';

WRITE FILE<PRINTFILEl FROM<PRINTRECl OPTIONS(
FIXED_CONTROL_FROM<CONTROL_FIELDl l;

CLOSE FILEIPRINTFILEl ENVISPOOLl;
END;

Options of the ENVIRONMENT Attribute 6-37

6.2.39 RECORD_ID_ACCESS Option

The RECORD_ID_ACCESS option indicates that the records in a file will
be accessed randomly using the internal identification of the records. The
format of this option is:

RECORD_ID_ACCESS [(boolean-expression) l

•Rules

1. The RECORD_ID_ACCESS option is meaningful when a file is created
or opened.

2. This option applies only to disk files.

3. The RECORD_ID_ACCESS option conflicts with the BLOCK_IO op­
tion.

•Usage

You must open a file with this option to use the RECORD_ID_ TO and
RECORD_ID options of the record I/O statements. These options are de­
scribed in Chapter 7, "I/O Statement Options."

When a file is opened with the RECORD_ID_ACCESS option, access by
record identification can be mixed with sequential access or access by key
during this open of the file. However, a statement cannot specify a record both
by key and by record identification.

6.2.40 RETRIEVALPOINTERS Option

The RETRIEV AL_POINTERS option specifies the number of extent
pointers to be maintained in main memory for file access. Each pointer pro­
vides access to a separate extent in the file; increasing the number of pointers
for a noncontiguous file can increase the speed with which records are ac­
cessed during I/O operations. Its format is:

RETRIEV ALPOINTERS(integer-expression)

integer-expression
Is a fixed binary expression in the range of 0 to 127, or -1. A value in the
range of 1 to 127 indicates the number of pointers. If you specify -1, the file
system maps as much of the file as possible. If the option is not specified, or
if the expression has a value of 0, the file system uses the default number
established when the volume was initialized or mounted.

•Rules

The RETRIEV AL_POINTERS option is meaningful when a file is created or
opened.

Options of the ENVIRONMENT Attribute 6-39

•Usage
Magnetic tape file positioning is described in Section 10.2, "Using Magnetic
Tape Files."

6.2.43 SCALARVARYING Option

The SCALARVARYING option specifies that character strings with the
VARYING attribute will be read and written in strict accordance with the
PL/I ANSI standard. Its format is:

SCALARV ARYING [(boolean-expression)]

•Rules

1. The SCALARVARYING option is meaningful when a file is created or
opened.

2. SCALARV ARYING conflicts with the STREAM file description attrib­
ute.

•Usage
The SCALARV ARYING option has the following effect on input/output oper­
ations involving VARYING character-string variables:

• When a record is written from a varying-length character string, the entire
storage of the string is written, including the word containing the string's
current length.

• When a record is read into a varying-length character-string variable, the
first word of the record is read into the variable's current length field.

Thus, records to be read into or from variables with the VARYING attribute
should be images of a varying character string - including the two-byte count
field at the beginning of the string.

When SCALARV ARYING is not specified, character-string variables with the
VARYING attribute are handled so as to facilitate reading and writing files
with variable-length records. The rules are:

• On an input operation, the entire record read into the variable is treated as
a character string and assigned to the variable. Thus, the current length of
the variable is always set to the record length of the record read, unless
truncation occurs.

• On an output operation, only the characters of the string's current value are
written.

For strings with the VARYING attribute that are embedded in arrays or
structures, the entire storage is always read or written.

When a file is to be read with SCALARVARYING in effect, the target varia­
ble must be declared CHARACTER VARYING and the length of the target
variable must match the record length of each record in the file, minus two
bytes. If the length does not match, the ERROR condition is signaled.

Options of the ENVIRONMENT Attribute 6-41

•Rules

1. The SHARED_ WRITE option is meaningful when a file is created or
opened.

2. This option applies to relative and indexed sequential files.

3. SHARED_ WRITE conflicts with the NO_SHARE option.

4. If SHARED_READ and SHARED_ WRITE are both specified, the effect
is the same as if only SHARED_ WRITE were specified.

•Usage

By default, the SHARED_ WRITE option is disabled.

For information on file sharing, see Chapter 13, "File Protection and File
S har.ing."

6.2.46 SPOOL Option

The SPOOL option requests that the file be submitted to the system printer
job queue when it is closed. The format of this option is:

SPOOL [(boolean-expression)]

•Rules

1. The SPOOL option can be specified when a file is created, opened, or
closed.

2. This option applies to stream files as well as to record files of any file
organization.

3. Once the SPOOL option has been specified for a file on a particular open,
it cannot be disabled.

•Usage

If you specify the DELETE option in conjunction with the SPOOL option, the
file is submitted to the queue SYS$PRINT when it is closed and marked to be
deleted after printing.

You can control the queue to which the file is submitted by using the DEFINE
command to equate the logical name SYS$PRINT with the name of a specific
queue before running the program. For example:

$ DEFINE SYS$PRINT LPCO:
$ RUN PRINTER

If the PL/I program PRINTER closes a file with the SPOOL option, the file is
queued to the printer device LPCO:.

Options of the ENVIRONMENT Attribute 6-43

The lowercase forms of these letters are also permitted. Letters may be
repeated, but the maximum length of the string is four. All other characters
are invalid. If any other character is present in the string, the UNDE­
FINEDFILE condition is signaled.

•Rules

1. The SYSTEM_PROTECTION option is meaningful only when a file is
created.

2. If no protection options are specified, PL/I applies the current system and
process defaults. If any protection options are specified, the protection for
unspecified user categories defaults to no access.

•Usage

For information on specifying protection options, see Chapter 13, "File Pro­
tection and File Sharing."

6.2.49 TEMPORARY Option

The TEMPORARY option creates a temporary file with no directory entry.
The format of this option is:

TEMPORARY [(boolean-expression)]

•Rules

1. The TEMPORARY option is meaningful only when a file is created.

2. TEMPORARY conflicts with the TITLE and the DEFAULT_FILE_
NAME options.

•Usage

When you create a file with the TEMPORARY option, the file system does
not create a directory entry for the file. A file thus created can be used during
the execution of the program and deleted on completion, without the overhead
required to create and remove the directory entry.

The file may be deleted when it is closed or, if needed later, deleted after it
has been reused.

Options of the ENVIRONMENT Attribute 6-45

•Usage

You can specify this option to conserve disk space. If a file's allocation is
greater than is required for the contents of the file, and if the file is not
expected to increase in size, you may want to use this option to reclaim the
allocated but unused space.

6.2.51 WORLD_PROTECTION Option

The WORLD_PROTECTION option defines the type of access to be permit­
ted to the file by users who are not in the owner's group and who do not have
system user identification codes. The format of this option is:

WORLD_PROTECTION (character-expression)

character-expression
Is a one- to four-character string expression indicating the access privileges
to be granted to users in the world category. The character-string expres­
sion can contain any of the following letters to indicate the access allowed:

Letter

R
w
E
D

Meaning

Read access is allowed
Write access is allowed
Execute access is allowed
Delete access is allowed

The lowercase forms of these letters are also permitted. Letters may be
repeated, but the maximum length of the string is four. All other characters
are invalid. If any other character is present in the string, the UNDE­
FINEDFILE condition is signaled.

•Rules

1. The WORLD_PROTECTION option is meaningful only when a file is
created.

2. If no protection options are specified, PL/I uses the current system and
process defaults. If any protection options are specified, the protection for
unspecified user categories defaults to no access.

•Usage

For information on specifying protection options, see Chapter 13, "File Pro­
tection and File Sharing."

6.2.52 WRITE~BEHIND Option

The WRITE_BEHIND option requests the file system to overlap the writing
of buffers with computing operations. The format of this option is:

WRITE_BEHIND [(boolean-expression)]

Options of the ENVIRONMENT Attribute 6-47

Chapter 7
1/0 Statement Options

V AX-11 PL/I permits the specification of the OPTIONS keyword on I/O
statements and supports certain options for each statement. This chapter
describes how to code options for 1/0 statements, lists the valid options for
each I/0 statement, and describes each option individually.

7 .1 How to Code 1/0 Statement Options

All options are specified in an option list following the OPTIONS keyword, as
follows:

OPTIONS (option, ...) ;

Options must be separated by commas and enclosed m parentheses. For
example:

GET LIST <PASSWORD) OPTIONS (
PROMPT< 'Enter Pass1"1ord: ')'
NO_ECHOt
PURGE_TYPE_AHEAD>;

Any option that does not require an argument may be followed by a Boolean
expression in the format:

option (boolean-expression)

If no Boolean expression is specified and the option is present in the option
list, the default value of true is supplied.

7.2 Summary of 1/0 Statement Options

Table 7-1 lists the 1/0 options and indicates which options are valid for each
I/0 statement.

7-1

7.2.1 CANCELCONTROLO Option

The CANCEL_CONTROL_O option specifies, when the output device is a
terminal, that the effect of (CTRL/ol is disabled prior to output. This ensures that
the beginning of the output list is displayed.

•Rules

1. The CANCEL_CONTROL_O option is valid only on a PUT statement.

2. This option is ignored when the output device is any device other than an
interactive terminal.

•Usage

Use this option on a PUT statement that you want to display regardless of
whether previous output has been interrupted by (CTRL/o). By default, the
(CTRL/o) function remains in effect until another (Qfffi.JQ). For example:

PUT SKIP LIST< 'Phase 1 complete.,. bes inn ins Phase 2.,, ')
OPTIONS CCANCEL_CONTROL_O);

If program output had been suspended by (CTRL/o) before this PUT statement
executes, the PUT statement cancels the effect of the (CTRL/o) and outputs the
data list.

7.2.2 FAST_DELETE Option

The FAST_DELETE option specifies, for a record in an indexed sequential
file with alternate indexes, that only the current index for the file is to be
updated.

The alternate indexes for the deleted record are not updated until the next
time access is attempted to the record through the alternate index.

•Rules

1. The FAST_DELETE option is valid only on a DELETE statement.

2. This option applies only to indexed sequential files.

•Usage

This option can improve the speed of deletions when an indexed sequential
file is updated.

7.2.3 FIXED_CONTROLFROM Option

The FIXED_CONTROL_FROM option specifies a value to be written in the
fixed control portion of a record in a file with variable-length records and a
fixed control area. The format of the option is:

FIXED_CONTROL_FROM (variable-reference)

1/0 Statement Options 7-3

7.2.4 FIXED_CONTROL TO Option

The FIXED_CONTROL_ TO option specifies that the contents of the fixed
control area of a record in a file with a fixed control area are to be assigned to
a specified variable. The format of the option is:

FIXED_CONTROL_ TO (variable-reference)

variable-reference
Specifies the variable associated with the fixed control area. The variable
can be a scalar or a connected aggregate variable. It must not be an
unaligned bit string or an aggregate consisting entirely of unaligned
bit-string variables.

•Rules

1. The FIXED_CONTROL_ TO option is valid only on a READ statement.

2. The file must have variable-length records with a fixed-length control area
and must be opened with the INPUT attribute and with the
ENVIRONMENT option FIXED_CONTROLSIZE_ TO.

3. If the file is an existing file, the length of the variable must match the
length of the fixed control area. If the length is not correct, the ERROR
condition is signaled.

7.2.5 INDELNUMBER Option

The INDEx_NUMBER option specifies the particular index in an indexed
sequential file to which a KEY option applies (primary index, secondary
index, and so on).

The format of this option is:

INDEx_NUMBER (integer-expression)

integer-expression
Specifies the index to use. The value of expression must be the number of
an index for records in an indexed sequential file. The primary index is
zero, the secondary index is one, and so on.

•Rules

1. The INDEx_NUMBER option is valid on a READ, REWRITE, or
DELETE statement.

2. The file must be an indexed sequential file, and the KEY option must also
be specified on the statement.

1/0 Statement Options 7-5

In the following example, STATE._FILE's third alternate key (that is, index
number three) is a fixed binary population value:

DECLARE 1 STATEt
2 NAME CHARACTERC20> t I* PrimarY Key *I
2 POPULATION Fii<ED BINARYC31) ti* index :t:l:3*/
2 CAPITALt

SIZE Fii<ED BINARY<31) t

STATE_FILE FILE RECORD INPUT KEYED SEQUENTIAL;

GET SKIP LIST<SIZE) OPTIONSCPROMPT(
'Population value: '));

READ FILECSTATE_FILE) INTOCSTATE> KEYCSIZE>
OPTIONSCMATCH_GREATERtINDEX_NUMBERC3l);

This READ statement obtains the record for the state whose population is
greater than the value entered for the GET statement. For example, a value
may be entered in response to this prompt as follows:

Population value: 8000000

In this case, the READ statement would read the first record in the index
numbered three whose key value is greater than 8000000.

7.2.7 MATCH_GREATEfLEQUAL Option

The MATCH_GREATER_EQUAL option specifies that the record of inter­
est is the record whose key matches the key specified in the KEY option or, if
no match is found, the first record whose key is greater than the key specified.

•Rules

1. The MATCH_GREATER_EQUAL option is valid on the READ,
REWRITE, and DELETE statements.

2. The KEY option must also be specified.

3. The file must be an indexed sequential file or a relative file.

4. MATCH_GREATER_EQUAL conflicts with the MATCILGREATER
option.

When MATCH_GREATER_EQUAL has been specified, it remains in effect
for all subsequent keyed accesses of the file, until overridden by its specifica­
tion with a false Boolean value or by the MATCILGREATER option.

1/0 Statement Options 7-7

7 .2.10 PROMPT Option

The PROMPT option specifies, when the input device is a terminal, a charac­
ter-string prompt to be displayed prior to actual input. The format of this
option is:

PROMPT (string-expression)

string-expression
Specifies a 1- to 254-character string expression.

•Rules

1. The PROMPT option is valid only on a GET statement.

2. This option is meaningful only when the input device is a terminal.

• Usage

Unlike a PUT statement followed by a GET statement, a GET statement
with the PROMPT option is actually executed as a single statement. For
example:

GET LIST <NLJM) OPTIONS <PROMPT<'Enter nu1r1ber: '));

When this statement is executed, the terminal display would be as follows:

Enter 1H1111ber: 44(8IT)

The prompting string and the input data occur in the same statement.

On a terminal, use of the PROMPT option provides the following benefits:

1. If the display of the prompting string is interrupted, for example, by a
broadcast message, the entire string is redisplayed following the message
that interrupted it.

2. If (CTRL/uJ or (CTRL/R) is entered in response to the prompt, the prompt message
is repeated until data is entered.

The PROMPT option causes any data that was not processed by the last GET
operation to be ignored. If the SKIP option is not specified, the prompt is
output at the current cursor position. If the SKIP option is specified in con­
junction with the PROMPT option, the SKIP operation is performed before
the prompting message is displayed.

1/0 Statement Options 7-9

• Usage

The following example illustrates a record whose record identification is saved
for a later access of the file:

DECLARE BOOKFILE FILE RECORD KEYEDr
INBUF CHARACTERC180) VARYINGr
SAVE_RECORD_ID<2> FIXED BINARYC31> 1

KEYVALUE CHARACTERC10l;

OPEN FILECBOOKFILE> ENVCRECORD_IO_ACCESS>;
READ FILECBOOKFILE> INTOCINBUF> KEYCKEYVALUEl

OPTIONSCRECORD_ID_TOCSAVE_RECORD_IOl);

CLOSE FILECBOOKFILE>;

OPEN FILECBOOKFILE> INPUT ENVCRECORD_ID_ACCESS>;
READ FILECBOOKFILE> INTOCINBLJF) OPTIONS(

RECORD_ID_FROMCSAVE_RECORD_IO>>;

During the first open of the file, the record identification of a specified record
is obtained and saved. When the file is subsequently reopened, this value is
used to access a record and to effectively position the file at that record.

7.2.13 RECORD_ ID_ TO Option

The RECORD_ID_ TO option specifies the name of a variable to be assigned
the value of the record identification of the record on which the current opera­
tion is being performed.

The format of this option is:

RECORD_ID_ TO (variable-reference)

varia hie-reference
Is a reference to a two-element array variable to receive the value of the
record's identification.

The variable must be declared as (2) FIXED BINARY(31) and it must be
connected.

•Rules

1. The RECORD_ID_ TO option is valid on the READ, WRITE, and
REWRITE statements.

2. The file on which the operation is being performed must have been opened
with the RECORD_ID_ACCESS option of the ENVIRONMENT attrib­
ute.

1/0 Statement Options 7-11

Chapter 8
File-Handling Built-In Subroutines

In addition to the PL/I input and output statements and the functions and
features available through the options of the ENVIRONMENT attribute,
there are also several built-in file-handling subroutines. These subroutines
invoke VAX-11 RMS procedures. They are called built-in subroutines be­
cause you do not need to declare them before using them in a PL/I program.
These subroutines are summarized in Table 8-1. They are described individu­
ally beginning in Section 8.1.

Table 8-1: Summary of File-Handling Built-In Subroutines

Subroutine Function

DISPLAY Returns information about a file.

EXTEND Allocates additional disk blocks for a file.

FLUSH Requests the file system to write all buffers onto disk to preserve the
current status of a file.

NXTVOL Begins processing the next volume in a multivolume tape set.

REWIND Positions a file at its beginning or at a specific record.

SPACEBLOCK Positions a file forward or backward a specified number of blocks.

8.1 DISPLAY Built-In Subroutine

The DISPLAY built-in subroutine returns information about a specified file.
Its calling sequence is:

CALL DISPLAY (file-reference, variable-reference) ;

file-ref ere nee
Specifies the file variable or constant for which information is to be ob­
tained. If the file is not currently open, the DISPLAY subroutine implicitly
opens the file with the attributes specified in the declaration of the file.

variable-reference
Specifies the name of a structure variable into which information about the
file is to be placed.

8-1

•ENVIRONMENT Option Values Returned by DISPLAY

Table 8-2 summarizes the values returned by DISPLAY that correspond to
ENVIRONMENT options and the data type of each structure member. For
information on any of these ENVIRONMENT options, see the description of
the option in Chapter 6, "ENVIRONMENT Options."

Table 8-2: ENVIRONMENT Option Values Returned by DISPLAY

Member Name

APPEND

BATCH

BLOCK_BOUNDARY_FORMAT

BLOCK_lO

BLOCK_SIZE

BUCKET_SIZE

CARRIAGE_RETURN_FORMAT

CONTIGUOUS

CONTIGUOUS_BEST_TRY

CREATION_DATE

CURRENT_POSITION

DEFERRED_ WRITE

DELETE

EXPIRATION_DATE

EXTENSION_SIZE

FILE_lD

FILE_SIZE

FIXED_CONTROL_SIZE

FIXED_LENGTH_RECORDS

GROUP _PROTECTION

IGNORE_LINE_MARKS

INDEX_NUMBER

INDEXED

INITIAL_FILL

Data Type of
Value Returned

BIT(l)

BIT(l)

BIT(l)

BIT(l)

FIXED BIN(31)

FIXED BIN(31)

BIT

BIT(l)

BIT(l)

BIT(64)

BIT(l)

BIT(l)

BIT(l)

BIT(64)

FIXED BIN(31)

(6)FIXED BIN(31)

FIXED BIN(31)

FIXED BIN(31)

BIT(l)

CHAR(4) VARYING

BIT(l)

FIXED BIN(31)

BIT(l)

BIT(l)

Meaning

APPEND option is enabled/disabled

BATCH option is enabled/disabled

Records can cross block boundaries

File is opened for block 1/0

Block size of file (disk files only)

Bucket size of file (disk files only)

Records have carriage return carriage
control

CONTIGUOUS option is enabled/disa­
bled

CONTIGUOUS_BEST_ TRY option is
enabled/ dis a bled

Creatibn date of file

CURRENT _POSITION option is
enabled/disabled

DEFERRED_ WRITE option is
enabled/disabled

DELETE option is enabled/disabled

Expiration date (magnetic tape files
only)

Current extension size (disk files only)

File identification (disk files only)

File allocation (disk files only)

Size of fixed control area

File has fixed-length records

Protection for group members

IGNORE_LINE_MARKS option is
enabled/disabled

Current index number

File is an indexed sequential file

INITIAL_FILL option is enabled/disa­
bled

(continued on next page)

File-Handling Built-In Subroutines 8-3

• File Attribute Information Returned by DISPLAY

Table 8-3 summarizes the file attribute information returned by DISPLAY,
including:

• PL/I file description attributes and options specified for the file

• The file's organization, expanded file specification, and, if the file is an
indexed sequential file, the number of keys it has

All names in Table 8-3 are second-level members of the structure PLL
FILE_DISPLA Y.

Table 8-3: File Attribute Information Returned by DISPLAY

Member Name

COLUMN_NUMBER

DIRECT

EXPANDED_ TITLE

FILE_ORGANIZATION

FORTRAN_FORMAT

INPUT

KEYED

LINE_NUMBER

LINE SIZE

NUMBER_OF_KEYS

OUTPUT

PAGE_NUMBER

PAGESIZE

PRINT

RECORD

SEQUENTIAL

STREAM

UPDATE

Data Type of
Value Returned

FIXED BIN(31)

BIT(l)

CHAR(128) VARYING

CHAR(3)

BIT(l)

BIT(l)

BIT(l)

FIXED BIN(31)

FIXED BIN(31)

FIXED BIN(31)

BIT(l)

FIXED BIN(31)

FIXED BIN(31)

BIT(l)

BIT(l)

BIT(l)

BIT(l)

BIT(l)

Meaning

Current column (stream out­
put files only)

File has/does not have DI­
RECT attribute

Expanded file specification

SEQ, REL, or IDX

File has/does not have FTN
(ASA) carriage control

File has/does not have IN­
PUT attribute

File has/does not have
KEYED attribute

Current line number (stream
output files only)

File's line size (stream output
files only)

Number of keys (indexed se­
quential files only)

File has/does not have OUT­
PUT attribute

Current page number
(PRINT files only)

Page size (PRINT files only)

File has/does not have
PRINT attribute

File has/does not have REC­
ORD attribute

File has/does not have SE­
QUENTIAL attribute

File has/does not have
STREAM attribute

File has/does not have UP­
DATE attribute

File-Handling Built-In Subroutines 8-5

Table 8-4 (Cont.): Device Information Returned by DISPLAY

Member
Name Meaning

SPL Device is/is not spooled

SQD Device is/is not sequential block-oriented (magnetic tape)

SWL D~vice is/is not currently software write-locked

TRM Device is/is not a terminal

WCK Device performs write checking

8.2 EXTEND Built-In Subroutine

The EXTEND built-in subroutine increases the amount of space allocated to
a disk file. Its calling sequence is:

CALL EXTEND (file-reference,integer-expression) ;

file-reference
Specifies the name of a file variable or constant associated with the file that
is to be extended. If the file is not currently opened, the EXTEND subrou­
tine opens the file with the OUTPUT attribute in order to extend it.

integer-expression
Is a fixed binary expression in the range of 0 to 4,294,967,295, specifying the
number of 512-byte disk blocks to add to the file. If 0 is specified, PL/I uses
the default extension quantity for the file.

To specify a value larger than 2,147,483,647 (the largest value that can be
contained in a fixed binary integer in PL/I), you must express the number
as a negative value; RMS inteprets the number as an unsigned integer.

•Usage
Use the EXTEND built-in subroutine to explicitly extend a file during pro­
cessing. Normally, RMS extends a file automatically, using a current exten­
sion size value, whenever an output operation causes a file to exceed its
allocated space. The default value that RMS uses to extend a file is set by the
ENVIRONMENT option EXTENSION_SIZE.

You can improve the performance of a program that is going to add a large
number of records to a file by an explicit call to EXTEND before adding
records to the file. If the call to EXTEND occurs before records are added,
then RMS does not need to extend the file during the actual I/O operations.

File-Handling Built-In Subroutines 8-7

8.5 REWIND Built-In Subroutine

The REWIND built-in subroutine positions a file so that the next record to be
read will be the first record in the file or index. Its calling sequence is:

CALL REWIND (file-reference) ;

file-ref ere nee
Specifies the name of the file constant or file variable associated with the
file to be rewound. If the file is not currently open, the REWIND subroutine
implicitly opens the file with the attributes specified in the declaration of
the file.

•Usage

Use this subroutine to begin processing a file at its logical beginning. This
subroutine is valid for disk files of all organizations and for sequential files on
tape volumes. The position of the file following the call to the REWIND
subroutine is as follows:

• If the file is a sequential file, the REWIND service positions the file to the
first record in the file.

• If the file is a relative file, the REWIND service positions the file to the first
occupied cell.

• If the file is an indexed sequential file, the REWIND service positions the
file at the lowest key value in the current index.

• If the magnetic tape file is on a single volume, the volume is rewound. If the
tape file exists on a multivolume tape set, the REWIND built-in subroutine
rewinds the file to the beginning of the volume set.

You can also use the REWIND built-in subroutine to reposition a stream file
after an end-of-file condition. Normally, if end-of-file ((CTRL/z) on a terminal) is
entered during an input operation on a stream input file, the PL/I program
must close the input file and reopen it before it can read any more data.
However, an ENDFILE ON-unit can be coded as follows:

ON ENDFILE(STREAMFIL) CALL REWIND(STREAMFIL);

This ON-unit calls the REWIND built-in subroutine each time an end-of-file
is encountered for the file constant STREAMFIL. The REWIND built-in
subroutine "repositions" the stream file at its beginning so that the program
can continue reading input.

File-Handling Built-In Subroutines 8-9

Chapter 9
File and Record Concepts

This chapter describes the following considerations for designing, creating,
and using files:

• The file organization, that is, the physical arrangment of the records in the
file

• The type of access that will be used to read, write, or update the records in
the file, that is, whether the records will be accessed in sequential order or
by a key

• The type of record in the file, that is, whether the records are variable length
or fixed length

• The type of carriage control information, if any, used to print the records

• The format of stream files

Chapters 10 through 12 contain examples of creating and accessing files with
different organizations and record formats in PL/I. For more detailed informa­
tion on file design, see the RMS-11 User's Guide.

9.1 File Organizations

V AX-11 RMS supports three file organizations for record files. These are:

• Sequential

• Relative

• Indexed sequential

The relative and indexed sequential file organizations are valid only for disk
devices. To read or write files on tape or unit record devices, you must use
sequential organization.

The type of organization you select for a file and the attributes of the file, that
is, the record format and size, the file size, and so on, are set when you create
a file and need not be specified thereafter. When a program subsequently
accesses an existing file, the file's organization and attributes are known to
the file system.

9-1

9.2.1 Sequential Access

You can access records in a file with any file organization using sequential
access. When you access a file sequentially, each read or write operation reads
or writes the "next" record in the file.

As you process a file sequentially, PL/I always keeps track of the current
record, that is, the record just read or written, and the next record, the record
that follows the record just read or written.

When you access a relative file sequentially, the records are read or written in
order by relative record number. In a file in which not all cells contain records,
sequential input operations only involve cells that contain data records.

When you access an indexed sequential file sequentially, you may specify the
number of the index on which to base the sequence. The "next" record in the
input operation is the next ordered record in the specified index.

9.2.2 Random Access

When you access a file randomly by key, each input/output request must
contain the KEY or KEYFROM option. The contents of the specified key
depends on the file's organization, as follows:

• For a relative file, the key is the relative record number of the record to be
accessed.

• For a~ indexed sequential file, the key is the portion of the record defined as
a key field.

• In a disk file with fixed-length records, the key value is the relative record
number of the record with respect to the beginning of the file. The first
record in the file is .relative record number 1, the second record is relative
record number 2, and so on.

By default, a READ statement accesses a record based on an exact match of
the key specified. In VAX-11 PL/I, you can optionally request that the READ
statement match any record with an equal or greater key value, or any record
with a greater key value.

9.2.3 Random and Sequential Access

When you access a file for random and sequential access, you can read records
sequentially or randomly. For example, you can use a keyed READ statement
to position the file at a specified record and then read or process records
sequentially from that position.

File and Record Concepts 9-3

9.3 Record Formats

VAX-11 RMS allows the following types of record format:

• Fixed-length records

• Variable-length records

• Variable with fixed-length control records

Fixed-length records and variable-length records are allowed for all file organ­
izations. Variable with fixed-length control records are allowed in sequential
and relative files only.

You need specify the format only when you create a file. Thereafter, each time
you open the file PL/I determines the format of the records in the file.

9.3.1 Fixed-Length Records

In a file containing fixed-length records, all records have the same length.
When you create a file with fixed-length records, you must specify the length
of each record in the file; this size cannot be changed thereafter.

To create a file with fixed-length records in a PL/I program, use the FIXED_
LENGTH_RECORDS option of the ENVIRONMENT attribute. The
MAXIMUM_RECORD_SIZE option specifies the size of each record. For
example:

DECLARE FIXED_FILE FILE RECORD KEYED OUTPUT
ENl,! I RONMEtH (

FIXED_LENGTH_RECORDSr
MAXIMUM_RECORO_SIZE(80));

When the file FIXED_FILE is opened, its record format is established as
having fixed-length 80-character records.

When a file that has fixed-length records is processed by READ and WRITE
statements, the file system checks the length of the variable specified in the
INTO or FROM option to see if it is the same as the length of the records in
the file. If not, the ERROR condition is signaled.

When you process a file with fixed-length records, you can specify the
SCALARV ARYING option of ENVIRONMENT to process records in the
standard PL/I manner. For an example of using the SCALARV ARYING op­
tion, see Section 6.2.43, "SCALARVARYING Option.''

9.3.2 Variable-Length Records

In a file consisting of variable-length records, each record can have a different
size. RMS places a count field at the beginning of each record to indicate its
size; however, this count field is not considered a part of the data record, nor
is the length of the count field included in the size of the record.

File and Record Concepts 9-5

9.4 Carriage Control

VAX-11 PL/I provides a default carriage control for files that will be printed.
This format, called carriage return format, may be specified in the ENVI­
RONMENT option list with the CARRIAGE___RETURN_FORMAT option;
this option is never required.

When a file has carriage return format, the file can be output to a printer or
terminal on a record-by-record basis. On output, each record is automatically
preceded by a line feed (<LF>) character and followed by a carriage return
(<CR>) character; these characters are not stored in the record. Thus, each
record in the file occupies one line of output. This type of carriage control is
valid for any file or record organization.

An alternate form of carriage control, called PRINTER_FORMAT, provides
more explicit control of the output format and printing. Using printer format,
you can specify such things as overprinting, skipping multiple lines, and so
on. In a PL/I program, you will almost never need to use printer format; the
PUT statement provides the same functions when it outputs data to a file
with the PRINT attribute.

For details on using printer format, see Section 6.2.36, "PRINTER_
FORMAT Option."

9.5 Physical Organization of Stream Files

In a P~/I program, the GET and PUT statements can access only files that
have the STREAM attribute. A file has the STREAM attribute if:

• The file was declared explicitly with a DECLARE statement and the
STREAM attribute. Or, the file was declared explicitly with a DECLARE
statement and with neither the STREAM nor the RECORD attribute.

• The file was specified in and opened implicitly by a GET or PUT statement.

Files that are declared with the STREAM attribute have the following char­
acteristics:

• Sequential organization of records.

• Variable-length records, with the maximum length of either 132 (default) or
the length defined by the LINESIZE option.

• When the attributes STREAM, OUTPUT, and PRINT appear in the same
declaration, a fixed control area that contains formatting information for
the output file (see "Print File" and "PRINT Attribute" in the VAX-11
PL/I Encyclopedic Reference).

Stream files contain only ASCII data. The ASCII format used to represent
program data in a stream output file differs depending on the attributes given
to the file. For example, the representation of character strings differs depend­
ing on the presence or absence of the PRINT attribute in the file declaration.

File and Record Concepts 9-7

Chapter 10
Sequential Files

This chapter shows examples of some typical sequential file input/output
operations on sequential disk files and on sequential devices, including mag­
netic tapes.

10.1 Creating a Sequential File

Whenever a PL/I program opens a file with the SEQUENTIAL OUTPUT
attributes, VAX-11 PL/I normally creates a new sequential file. By default,
records are 510-byte variable-length records. Each WRITE statement adds a
new record to the file.

10.1.1 Appending Records to an Existing File

In VAX-11 PL/I, you can open a file with the APPEND option of ENVIRON­
MENT to add new records at the end of an existing sequential file. This
overrides the default action of PL/I, which is to create a new version of an
existing file when the existing file is opened for output. For example:

OPEN FILECBIRD_FILE> OUTPUT SEQUENTIAL
TITLEC 'BIRDS.DAT') ENVCAPPENDl;

WRITE FILECBIRD_FILE) FROM CNEWDATA>;

This OPEN statement opens the file BIRD_FILE and positions it at its
current end-of-file. The WRITE statement adds a new record at the end of the
file.

10.1.2 Superseding an Existing File

The VAX-11 PL/I ENVIRONMENT option SUPERSEDE lets you create a
new version of a file each time you write it, deleting an existing version. By
default, each time a specific file is written, VAX-11 PL/I gives it a new
version number and does not replace the existing version. For example:

OPEN FI LE (CONTROL) OUTPUT RECORD TITLE (I CONTROL I DAT; 1 I)

ENVIRONMENTCSUPERSEDE>;

This OPEN statement opens the file CONTROL.DAT;l. If this file already
exists, it is deleted.

10-1

10.2.2 Tape Positioning

When an existing magnetic tape file is opened, it is by default rewound, if
necessary, and positioned at its beginning. This positioning can be overridden
in the following ways:

• If the APPEND option of ENVIRONMENT is specified and if the file is
opened with the OUTPUT attribute, the tape is wound and positioned at
the end of the specified file. The next WRITE statement adds a new record
at the end of the existing file.

• The CURRENT_POSITION option of ENVIRONMENT causes the tape
to remain at its current position when the next file is opened. Thus, if the
file is in the middle of the tape, it is not rewound when the next OPEN
statement is specified for the tape.

By default, when a file is closed, the tape remains positioned following the last
record that was read or written. The ENVIRONMENT option REWIND_
ON_CLOSE can override this action and position the tape at its beginning.

While the file is open, the program can call the REWIND built-in subroutine
to rewind the tape to its beginning.

For example:

DECLARE TAPEFILE FILE;

OPEN FILE CTAPEFILE> OUTPUT RECORD ENVIRONMENT<APPEND>;
WRITE FILE <TAPEFILE) FROM CNEWREC>;

CLOSE FILE<TAPEFILE) ENVIRONMENT (REWINO_ON_CLOSE);
OPEN FILE<TAPEFILE) INPUT RECORD;

In this example, the file TAPEFILE is opened for output with the APPEND
option. WRITE statements add new records at the end of the tape file. Then,
the CLOSE statement specifies that the tape is to be rewound, and the next
OPEN statement opens the file for input. The first READ statement reads the
first record in the file.

10.2.3 Blocking a Magnetic Tape File

On a magnetic tape, a block is a unit consisting of an integral number of
records. Because of the control information needed to separate records on a
tape, operations on a tape can be improved by blocking.

To create a blocked tape file, you must open it with the ENVIRONMENT
option BLOCK_SIZE. This option specifies the size of the blocks. RMS
automatically performs the blocking necessary. For example:

OPEN FILE<TAPEFILE) ENVIRONMENT<
BLOCICS I ZE (2048 > t

MAXIMUM_RECORO_SIZE (512> t

FIXED_LENGTH_RECORDS>;
WRITE FILECTAPEFILE> FROM CBIG_RECORD>;

Following this open, each WRITE statement writes a single record; the file
system buffers the records until it accumulates four records and transfers
them, blocked, to the tape volume.

Sequential Files 10-3

• When a file that spans two or more volumes is being read and the tape
reaches end-of-tape, the magnetic tape ACP sends a message to the system
operator requesting the operator to mount the next tape in the volume set.

A PL/I program can request that the next volume in a volume set be mounted,
for either an input or an output operation, by calling the NXTVOL built-in
subroutine. The NXTVOL subroutine is described in Chapter 8, "File-Han­
dling Built-In Subroutines."

The physical process of volume switching, whether the switching is performed
automatically by RMS or as a result of a call to the NXTVOL built-in subrou­
tine, is transparent to the PL/I program. As a user, you may wish to function
as an operator to receive the volume switching requests and to mount the
volumes yourself. For a description of the procedure for handling volume
switching, see the VAX/VMS Command Language User's Guide.

10.3 Allocated and Spooled Devices

VAX/VMS spools low-speed input/output devices such as printers by accu­
mulating data for the device in a file, and then queueing the file for processing
when it is closed.

In a PL/I program, when you specify a device name such as LPAO: in a TITLE
option, the specified device may be currently allocated for use by another user
or be spooled. Depending on the status of the device, the following can occur:

• If the device is spooled, all output to the device is written to a temporary
file. When the file is closed, it is submitted to the queue for the spooled
device.

• If the device is allocated to another user, the UNDEFINEDFILE condition
is signaled. If referenced in an ON-unit for this condition, the ONCODE
built-in function returns the value associated with the status code
SS$_DEV ALLOC.

• If the device is allocated to the current process, PL/I assigns a channel to
the device and each WRITE statement writes a physical line to the device.

• If the device is not allocated and is not spooled, PL/I assigns a channel to
the device. This assignment performs an explicit allocation of the device to
the current process.

You can allocate a device before running a program by issuing the DCL
command ALLOCATE. Within a PL/I program, you can invoke the system
service SYS$ALLOC to allocate a device. For information on commands for
device allocation and control, see the VAX/VMS Command Language User's
Guide. For information on allocating devices using the SYS$ALLOC system
service, see the VAX/VMS System Services Reference Manual.

Sequential Files 10-5

Chapter 11
Relative Files

This chapter describes considerations for creating and using relative files and
shows examples of some typical relative file input/output operations.

11.1 The Organization of a Relative File

The relative file organization is suitable for files with data that can be ar­
ranged serially and uniquely identified by an integer value, for example, a
part number or an employee identification number. Within the file, records
are written into cells that are numbered. There is a one-to-one correspondence
between the cell number and the integer value associated with the data in the
record. This number is called the relative record number; the relative record
number is the key by which records are written and accessed.

Figure 11-1 illustrates a relative file in which not all cells contain records. The
first record written to the file was relative record number one (which may
have been data for a part numbered one or an employee whose number is one,
for example). The second record written was relative record number two. The
third record written was relative record number four; thus cell number three
does not contain a record.

CELL
NUMBERS

FIRST
RECORD
WRITTEN

2

SECOND
RECORD
WRITTEN

3 4

THIRD
RECORD
WRITTEN

Figure 11-1: A Relative File

n-1. n
5

• • •

Although the cells in a relative file have the same length, the records need not
be fixed-length records. However, when a record is smaller than the length of
a cell, the unused space is wasted.

11-1

11.2.2 Record Size

When you specify the length of the records in a file, RMS uses the value you
specify in the MAXIMUM_RECORD_SIZE option to calculate a cell size. It
uses the following formulas to calculate the size:

Fixed-Length Records
cell-size = 1 + record-size

One byte is required for overhead; this byte contains a deletion indicator.

Variable-Length Records
cell-size = 3 + maximum-record-size

Three bytes are required for overhead; two bytes for the individual record size,
and one byte for a deletion indicator.

When you select a record size for a relative file, you should try to specify a size
that is no greater than the largest record that will be written. Otherwise, any
unused space in each cell will be wasted. If you do not specify a maximum
record size for either fixed- or variable-length records, VAX-11 PL/I uses the
default length of 480 bytes.

11.2.3 Bucket Size

A bucket is the storage unit for data in the file. Records are arranged
in buckets, which consist of an integral number of physically contiguous
512-byte disk blocks. Within the bucket, records can cross block boundaries;
however, records cannot cross bucket boundaries.

When VAX-11 RMS transfers data from a file, it transfers data a bucket at a
time; thus, a large bucket size reduces the number of actual data transfers
that are required. When you do not specify a bucket size, RMS uses the cell
size rounded to a multiple of 512 bytes. When records are written to the file,
RMS places as many records as will fit in each bucket. Excess space is wasted.

You can improve 1/0 performance by specifying a bucket size that is a multi­
ple of the cell size, and doing some simple calculations to determine whether
space is being wasted. For example:

DECLARE EMP_FILE OUTPUT RECORD ENVIRONMENT
FIXED_LENGTH_RECORDS,
MAXIMUM_RECORD_SIZE (80)
BUCKET_SIZE (4)) ;

In this example, the file EMP _FILE will be created with 81-byte cells and
buckets that are 2048 bytes (that is, four 512-byte blocks). Each bucket can
contain 25 81-byte cells; 23 bytes in each bucket are unused.

When you specify a maximum record size and a bucket size for a relative
file, you should consult the description of the BUCKET_SIZE option in
Chapter 6, "ENVIRONMENT Options." That description contains formulas
for calculating the bucket size within the limits required by RMS.

Relative Files 11-3

The following notes are keyed to Sample Program 11-1:

1. The structure PARTLIST describes the layout of the records in the file.
The records will be ordered in the relative file according to part number,
that is, using the field PARTLIST.NUMBER.

2. The file OLDFILE is the sequential file containing the records to be cop­
ied to a relative file. When the end-of-file is reached, the STOP statement
terminates the program.

3. The relative file PARTS is declared with a maximum record number of
.600. It has fixed-length, 38-byte records.

4. As each record is read into the structure PARTLIST, the value of
NUMBER is copied to the fixed binary integer RECORD_NUMBER.
The part number is maintained in each record in its character-string form.

5. Each WRITE statement copies the record to the output file, specifying the
value of the part number as a relative record number.

Records in this file can subsequently be accessed either sequentially or by part
number. To access a record by part number, you specify the number as a key.
For example:

GET LIST<INPUT_NLJMBER) OPTIONS(PROMPT\'Part'? '));
READ FILE<PARTS> INTOCPARTLIST> KEYCINPUT_NUMBERl;

Here, the value entered in response to the GET statement is used as a key
value to access a record in the file.

11.3.1 Populating a Relative File

In the example in the preceding section, the file PARTS is created by the
opening of the file with the KEYED and OUTPUT attributes. When this
program executes, the amount of space allocated for the file PARTS depends
on the relative record numbers of the records that are written to the file. For
example, if the largest record number specified for any record in the file is 600,
but the largest record number specified for a record is 200, then RMS allocates
only as much space as is needed for 200 records.

When you initially populate a file and you plan to fill the entire file, through
the maximum record number, you can cause RMS to allocate space for the
entire file using either of the following techniques:

• Specify the FILE_SIZE option to allocate space for the file when it is
created, as described in Section 11.2.4, "File Size."

• Write the record with the largest relative record number first. This will force
RMS to allocate space for the entire file.

These techniques can optimize the throughput for the subsequent file addi­
tions, since RMS will not need to perform repeated extensions to the file as
records are added. ·

Relative Files 11-5

11.3.4 Error Handling

PL/I signals the KEY condition when errors occur while processing record
numbers for relative files. For example, it signals the KEY condition when a
relative record number exceeds the maximum record number specified for the
file, or when the number of a record that already exists is specified in a
KEYFROM option in a WRITE statement.

The sample ON-unit below shows how to detect whether a record already
exists in a relative file or whether a record number specified exceeds the file's
maximum record number.

ON KEYCPARTS) BEGIN;
DECLARE (RMS$_REXt RMS$_MRN> GLOBALREF FIXED BINARYC31) VALUE;
I* Check for duplicate records */

IF ONCODEC) = RMS$_REX THEN DO; I* if duPlicate */
PUT s~:IP ED ITC 'Part nurnber',

PARTLIST.NUMBER1'exists, Reenter'
CA 1}'. 1A 1\ 1A>;

GET LISTCPARTLIST,NUMBERl; I* Get new ualue */
GOTO GET_DATA; /* Go set other data */
END;

I* Check for maximum record number exceeded */
ELSE IF ONCODE = RMS$_MRN THEN DO;

PUT SldP ED ITC 'Part 1Hti11ber' ,pr:iRTLIST .~.WMF.!ER,
'invalid. Reenter 1

)

END;

(Ar)< rA r>(rA);

GET LISTCPARTLIST,NUMF.!ER>;
GOTO GET._DATA;
END;

GET_DATA:

I* Get new ualue */
'* Go set other info • 1

In this example, the ON-unit declares symbolic names for two specific status
values returned by ONCODE:

• The value RMS$_REX indicates that a record already exists.

• The value RMS$_MRN indicates that a relative record number specified
exceeds the maximum record number.

In an ON-unit for the KEY condition for a relative file, ONCODE may also
return the values associated with the following status codes:

• RMS$_RNF, which indicates that there is no record in the file with the
relative record number specified by a KEY option.

• RMS$_KEY, which indicates that a key value is invalid, for example, if it
is not an integer.

The symbolic names for these status codes must be declared with the
GLOBALREF and VALUE attributes because the names are defined as
global symbols by the VAX/VMS system. For more information on defining
symbols and using symbols in ON-units, see Chapters 15, "Global Symbols,"
and 17, "Error and Condi ti on Handling."

Relative Files 11-7

Chapter 12
Indexed Sequential Files

This chapter describes considerations for creating and using indexed files and
shows examples of some typical operations on indexed sequential files.

12.1 Indexed File Organization

In an indexed sequential file, the file contains data records and pointers to the
records. Data records and record pointers are arranged in buckets, which
consist of an integral number of physically contiguous 512-byte disk blocks.

Individual records within the file are located by the specification of the keys
associated with the records. Each file must have a primary key; this is a field
within the record that has a unique value to distinguish it from all other
records in the file. An indexed sequential file can also have up to 254 alternate
keys, which need not have unique values.

As RMS writes records to an indexed file, it writes them in collating sequence
according to the primary key, in buckets that are chained together. Thus, the
file can be accessed sequentially using any key.

Figure 12-1 illustrates an indexed sequential file with a single key, or index.

12-1

The records in the file illustrated in Figure 12-1 consist of address data that
might have been defined in a PL/I structure as follows:

DECLARE 1 ADDRESS_FILE1
2 EMPLOYEE_NAME CHARACTER(30l,
2 ADDRESS,

3 STREET CHARACTEk' (20) ,
3 ZIP_CODE CHARACTERC5l;

In this file, the key is the employee name.

When RMS writes records to an indexed sequential file, it builds and main­
tains a tree-like structure of key value and location pointers. When records are
accessed by key, RMS uses the tree to locate individual records. Thus, when a
PL/I program wants to access the record whose key value is JONES, RMS
traverses the indexes to locate the record.

When new records are added to an indexed sequential file, a data bucket may
not have enough room to accommodate a new record. In this case, RMS
performs what is called bucket splitting - it inserts a new bucket in the chain
of data buckets and moves enough records from the previous bucket to pre­
serve the primary key sequence. Bucket splitting is transparent to the PL/I
program; the program only knows that it has added a record to the file.

12.2 Creating an Indexed Sequential File

To create an indexed sequential file for VAX-11 PL/I, you must use the
RMS-11 utility program DEFINE. After you create the file, you can use PL/I
to populate the file by opening it with the UPDATE attribute and using
WRITE statements to write records to it.

To invoke the DEFINE utility, enter the following command:

$ MCR DEF

This command invokes the RMS-11 utility by its task name, DEF. This
utility is interactive: it prompts you to enter data and responds with error
messages when you enter data incorrectly. It also provides information when
you enter a question mark (?) in response to any of its prompts.

The short example below shows how to create the indexed sequential file that
contains the records for the address file in Figure 12-1. The file will be named
ADDRESS.DAT, and its character-string key field will be defined as the
first 30 bytes of each record. Note that the only information that you
must specify is:

• The file specification of the file you are creating

• IDX, to indicate that the file is an indexed sequential file

• The position of the key within the file's records

• The size of the key

Indexed Sequential Files 12-3

12.3 Defining Keys

An indexed sequential file must have at least one key. It can have up to 255
keys; however, for file processing efficiency it is recommended that no more
than seven or eight keys be defined. The time required to insert a new record
or update an existing record is directly related to the number of keys defined.
The retrieval time for an existing record is unaffected by the number of keys.

When you design an indexed sequential file, you must define each key in the
following terms:

• The position and size of the key

• The data type of the key

• The index number of the key

• Key options selected for the key

In the example in the preceding section, only one key is defined, beginning in
the first field of the record. However, when you want to define more than one
key, or to define keys of different data types, you must be careful when you
specify the key fields. The next few subsections describe some considerations
for specifying keys.

12.3.1 Specifying Key Position and Size

When you specify a key, you must specify its position in the record and its
length. The position must be specified with respect to the beginning of the
record - thus, a key that is positioned beginning in the first byte of the record
has a starting position of 0, a key positioned beginning in the 21st byte has a
key position of 20, and so on.

To determine the key positions for fields within a structure, you can examine
the storage map in the program listing that defines the structure. Figure 12-2
illustrates the relationship between the key field definitions and the storage
map offsets.

Indexed Sequential Files 12-5

The keys in Figure 12-2 can be specified as follows for DEFINE:

IT'S TIME TO DEFINE THE PRIMARY KEY
ENTER DATA TYPE<STR) :ID
ENTER POSIT ION OF KEY: OID ~
ENTER SIZE OF KEY:20ID ~
ENTER NAME OF KEY<NONE):ID
WILL YOU ALLOW DUPLICATE KEYS<NOi?ID

DO YOU WANT TO DEFINE MORE KEYS<NOl?YID ~
ENTER DATA TYPE<STR) :ID
ENTER POSIT ION OF KEY: 11 GID ~
ENTER SIZE OF KEY:30ID ~
ENTER NAME OF KEY(NONE) :ID
WILL YOU ALLOW DUPLICATE KEYS<YESl?ID
WILL YOU ALLOW KEYS TO CHANGE<YESPID
DO YOU WI SH TO DEF I NE A NULL KEY t)AL.UE (NO) ';'ID

JUST FINISHED ALTERNATE KEY NUMBER 1
DO YOU WANT TO DEFINE MORE KEYS<NOl?YID ~
ENTER DATA TYPE<STRl:ID
ENTER POSITION OF KEY: 14GID ~
ENTER SIZE OF KEY:30ID ~
ENTER NAME OF KEY(NONE) :ID
WILL YOU ALLOW DUPLICATE ~:EYS<YES)r;-'ID

WILL.YOU ALLOW KEYS TO CHANGE<YESl'?ID
DO YOU WISH TO DEFINE A NULL KEY 1-.lALUE(NOl'?ID

JUST FINISHED ALTERNATE KEY NUMBER 2
DO YOU WANT TO DEFINE MCIRE KEYS<NOi?YID ~
ENTER DATA TYPE (STR): INT ID ~
ENTER POSITION OF ~:EY: 20(BIT) ~

ENTER s I ZE OF KEY: 4ID ~
rnTER NAME OF KEY<NONEi:ID
W I LL Y 0 U ALLOW DU P. L I CATE r;: E Y S (YES) ? ID
WILL YOU ALLOW KEYS TO CHANGE<YESPID
DO YOU WISH TO DEFINE A NULL ~:EY l.JALUE(NO)r;-'ID

JUST FINISHED ALTERNATE KEY NUMBER 3
DO YOU WANT TO DEFINE MORE ~:EYS<NO)?~,~ID ~

After all the keys are defined (that is, "N" is entered in response to the last
question above), DEFINE begins prompting for file placement and allocation
information, and then prompts for file protection information. You can press
IBITl to answer all prompts. Or, you can study the file's requirements and

specify placement and allocation information using the guidelines described
in the RMS-11 User's Guide.

12.3.2 Key Data Types

Table 12-1 summarizes the valid data types for keys in VAX-11 RMS indexed
sequential files, lists the corresponding PL/I data type declaration, and shows
how to specify the key data type and length to the DEFINE utility.

Indexed Sequential Files 12-7

12.3.4 Key Options

When you define alternate indexes for an indexed sequential file, you can
specify:

• Whether duplicate keys are allowed. If you select the duplicate key option,
multiple records in the file can have the same key value in the alternate
index. If you do not allow duplicate keys, PL/I signals the KEY condition if
you attempt to write a record with a duplicate key.

• Whether the key of a record can be changed. If you select the change option,
a rewrite request can modify one or more key fields in the record. By de­
fault, PL/I signals the KEY condition if you attempt to rewrite a record in
which a key field has been modified.

• Whether keys are to be initialized with null values. When a null value has
been specified for a key and a record is inserted with the given key field
equal to the null value, no index entry will be made in that alternate index.

These options are described in the RMS-11 User's Guide.

12.4 Using Indexed Sequential Files

After you have created an indexed sequential file with the DEFINE utility,
you can write records to it by opening it with the UPDATE attribute and
using PL/I WRITE statements. For example:

OPEN FILECSTATE_FILE> RECORD DIRECT UPDATE;

WRITE FILECSTATE_FILE> FROMCSTATE> KEYFROMCSTATE.NAME>;

This WRITE statement writes the record whose key value is specified by the
field STATE.NAME in the structure STATE.

When a WRITE statement adds a record to an indexed sequential file, the
value of the KEYFROM option must always be the primary key. In fact, the
WRITE statement causes the index number to be reset to zero if any other
index number is in effect.

Indexed Sequential Files 12-9

12.4.3 Accessing Records by Alternate Key

To read a record in an indexed sequential file using an alternate key, specify
the INDEx_NUMBER option on a READ statement. For example, to access
the record for a state whose flower is MAGNOLIA, the following statements
could be written:

OPEN FILE(STATE_FILE> KEYED INPUT;
READ FILE(STATE._FILE> SET(STATE PTR) KEY(lMAGNOL.IAl)

OPT IONS (HIDEiLNIJMBER (1));

The INDEX_NUMBER option specifies the first alternate index, the
FLOWER field. The INDEx_NUMBER option is also valid on the
REWRITE and DELETE statements.

You can access a file starting with an alternate index by opening the file with
the INDEX_NUMBER·option of ENVIRONMENT. For example:

OPEN FILE(STATE_FILE> SEQUENTIAL INPUT ENV(
I t~DEiCNUMBER (2)) ;

READ FILE(STATE_FILE> SETCSTATE_PTR);
DO WHILE (... EDF);

PUT SKIP EDIT(STATE,BIRD,lis the bird af l 1STATE.NAME>

READ FILE(STATE_FILE) SET(STATE_PTR>;
nrn;

These statements, executed until the end-of-file is reached, access the records
in the file STA1'E_FILE based on its second alternate index, the BIRD field.

12.4.4 , Updating Records in an Indexed Sequential File

You can modify records in an indexed sequential file by opening the file with
the UPDATE attribute and using REWRITE and DELETE statements to
modify or delete records from the file.

The following example shows the correction of an invalid field in a record in
the file STATE_FILE:

DECLARE (STATENAME1NEWNAMEi CHARACTERC30) VARYING;

OPEN FILECSTATE_FILE> KEYED SEQUENTIAL UPDATE;
GET SKIP LISTCSTATENAME) OPTIONSCPROMPTC lState: l));
READ FILECSTATE_FILE) SET(STATE_PTR) KEYCSTATENAME>;
GET SKIP LIST(NEWNAME) OPTIONS(

PROMPT(lNe1,.1 state fla1,.1er narrie: 1
));

STATE.FLOWER = NEWNAME;
REWRITE FILE<STATE_FILE>;

The REWRITE statement rewrites the current record in the file, that is, the
record that was just read with the READ SET statement.

Indexed Sequential Files 12-11

ON KEYCSTATE_FILE> BEGIN;
DECLARE CRMS$_RNF1 RMS$_DUP> GLOBALREF FIXED BINARYC31) VALUE;
/* Check for a record not found */

IF ONCODE(> = RMS$_RNF THEN DO; I* if record not found */
PUT SKIP EDITCSTATENAME1 1 tfot found,');

STOP;
END;

I* Check for duplicate keY */
ELSE IF ONCODE = RMS$_DUP THEN DO;

PUT SKIP EDIT< 'Record already e><ists for' 1~:3TATf.::NAME>;

STOP;
END;

In this example, the ON-unit declares symbolic names for two specific status
values returned by ONCODE:

• The value RMS$_RNF indicates that no record exists with the specified
key value.

• The value RMS$_DUP indicates that a record already exists with the spec-
ified key in an index for which duplicate keys are not allowed.

In an ON-unit for the KEY condition, ONCODE may also return the value
associated with the status code RMS$_KEY, which indicates that a key
value is invalid, for example, if it is an incorrect data type.

The symbolic names for RMS status codes must be declared with the GLO­
BALREF and VALUE attributes because the names are defined as global
symbols by the VAX/VMS system. For more information on defining symbols
and using symbols in ON-units, see Chapters 15, "Global Symbols," and 17,
"Error and Condition Handling."

Indexed Sequential Files 12-13

Chapter 13
File Protection and File Sharing

This chapter provides examples of using ENVIRONMENT options to take
advantage of special processing options of RMS. It includes discussions of:

• File protection

• File sharing

13.1 File Protection

Each user who is authorized to use the system is assigned a UIC (User Identi­
fication Code) by the system manager. When a PL/I program creates a file,
the current UIC associated with the process executing the program defines the
file's ownership.

Based on this UIC, called the owner UIC, the file system defines the protec­
tion of the file in terms of (1) which other users on the system can access the
file and (2) what operations they can perform on the file. The other users in
the system are defined as follows:

• Owner. Any other process that has the same UIC as that established as the
file's owner is also the owner of a file.

• Group. A process that has the same group number in its U~C is a member of
the owner's group.

• System. A process that has a group number in the system-defined range or
that has the SYSPRV user privilege is in the system user category.

• World. All jobs and processes that do not fall into the other three categories
belong to the world category.

13-1

13.1.2 Defining a File's Protection

When you specify ENVIRONMENT options for a file you are creating in a
PL/I program, you can specify the following options to define the access per­
mitted to various users:

OWNER_PROTECTION
GROUP _PROTECTION
SYSTEM_PROTECTION
WORLD_PROTECTION

These options specify the types of access permitted by the specification of the
following codes

• R - gives the right to read the file.

• W - gives the right to modify the file.

• E - gives, for files containing executable program images, the right to
execute the program.

• D - gives the right to delete the file.

These codes can be specified in any order for an option; if you specify an
option and omit a code, that category of user is denied that type of access. If
you specify one or more protection options, the protection for categories you
do not specify defaults to no access. If you do not specify any protection
options, then PL/I uses the current default protection for all the categories.

For example:

EN 1.,JIRDNt1ENT (
c:1w·~ER_PRDTECTIDN ('Ri·lE')
SYSTEM_PRDTECTIDN ('RI)
GRDUP_PRDTECTIDN('R'))

This specification defines protection to a file as follows:

• The OWNER_PROTECTION option specifies RWE, that is, read, write,
and execute access. Because D is not specified, the owner is not allowed
delete access and thus cannot inadvertently delete the file.

• The SYSTEM_PROTECTION and GROUP _PROTECTION options
specify only read access for system and group users.

• The WORLD_PROTECTION option is not specified; this denies all access
to all users who are in the world category.

Note that the DCL command SET PROTECTION allows the owner of a file
to change the file's protection at any time. Additional commands and user
privileges allow the protection of a file to be overridden or changed. For details
on these commands and privileges, see the VAX/VMS Command Language
User's Guide.

The file system applies the protection you specify for a file when the file is
accessed from a program or from the DCL command level. It also applies the
protection when the file is to be shared, as described in the next section.

File Protection and File Sharing 13-3

of the file. Other processes may access the file only for reading; they must
specify SHARED_ WRITE, to indicate that they allow writing of the file
while they are reading it.

If SHARED_ WRITE is specified, processes that subsequently access the file
with the SHARED_ WRITE option may write the file.

Both the SHARED_READ and SHARED_ WRITE options may be specified
for a file.

Table 13-1 summarizes the effects of opening a file with file-sharing options.

Table 13-1: Effects of File-Sharing Options

Open Option
and Access Open Option

Specified by Specified by a Access Allowed
First Opener Subsequent Opener Subsequent Opener

ENV(NO_SHARE) 1 ENV(NO_SHARE) None. The UNDEFINED-
INPUT, OUTPUT, ENV(SHARED_READ) FILE condition is signaled 2

or UPDATE ENV(SHARED_ WRITE)

ENV(SHARED_READ) ENV(NO_SHARE) None. The UNDEFINED-
INPUT FILE con di ti on is signaled 2

ENV(SHARED_READ) The file is accessed for input

ENV (SHARED_ WRITE) The UNDEFINED FILE
condition is signaled 2

ENV(SHARED_READ) ENV(NO_SHARE) None. The UNDEFINED-
OUTPUT or FILE con di ti on is signaled 2

UPDATE

ENV(SHARED_READ) None. The UNDEFINED-
FILE condition is signaled 2

ENV(SHARED_ WRITE) The file can be accessed for
input only

ENV(SHARED_ WRITE) ENV(NO_SHARE) The UNDEFINED FILE
INPUT condition is signaled 2

ENV(SHARED_READ) The file can be accessed for
input, output, or update

ENV(SHARED_WRITE) The file can be accessed for
input, output, or update

ENV(SHARED_ WRITE) ENV(NO_SHARE) None. The UNDEFINED-
OUTPUT or FILE condition is signaled 2

UPDATE

ENV(SHARED_READ) None. The UNDEFINED-
FILE condition is signaled 2

ENV(SHARED_WRITE) The file can be accessed for
input, output, or update

1. You must have write access privilege to open the file with the NO_SHARE option.
2. ONCODE returns the value for RMS$_FLK. See Section 13.2.2, "File Locking."

File Protection and File Sharing 13-5

A record is locked when both of the following are true:

• A READ statement is issued for the record.

• The file containing the record was opened with the OUTPUT or UPDATE
attribute.

A record remains locked until one of the following occurs:

• The locked record is rewritten or deleted.

• A READ, WRITE, REWRITE, or DELETE statement is executed to access
another record in the same file.

• The REWIND built-in subroutine is called to rewind the file to its begin-
ning.

• The file is closed.

Records are also locked for the duration of a WRITE, REWRITE, or DELETE
statement to ensure that the I/0 completes. The records are unlocked when
these statements complete.

If a procedure in another process attempts to access a record that is locked,
the ERROR condition is signaled. In an ON-unit that executes following this
condition, a reference to the ONCODE built-in function returns the value
associated with the RMS status code RMS$_RLK (meaning that the record
is locked).

Thus, a file-sharing application can test whether a record in a file is currently
locked in an ON-unit, as in the following example:

ON ERROR BEGIN;
DECLARE RMS$_RLK GLOBALREF FIXED BINARY(31) VALUE;

END;

IF ONCODE(> = RMS$_RLK THEN CALL RECORDSYNC;
ELSE CALL RESIGNAL();

The ON-unit in this example tests whether any ERROR condition is signaled
as a result of attempting to access a locked record. If so, it calls a procedure
that will synchronize with the other process reading the record. Otherwise,
it calls the RESIGNAL built-in subroutine to perform default condition
handling.

File Protection and File Sharing 13-7

Part III
Procedure Calling and Condition Handling

Chapter 14
Argument Passing

The architecture of the VAX-11 defines a set of conventions for passing argu­
ments among procedures. These conventions make it possible for procedures
that are written in PL/I to invoke, with a CALL statement or with a function ·
reference, procedures written in other programming languages, for example
FORTRAN, PASCAL, and assembly language. These conventions are known
as the VAX-11 Calling Standard.

This chapter describes the calling standard and the argument-passing mecha­
nisms defined in it, and explains the VAX-11 extensions to the PL/I language
that support it.

This chapter assumes a knowledge of the PL/I conventions and rules for
passing arguments to external procedures, as described in the VAX-11 PL/I
Encyclopedic Reference under the heading "Parameters and Arguments." Al­
though the argument-passing structures used by the system are transparent to
your PL/I programs, they are presented in this chapter (in a simplified for­
mat) to provide you w1th the necessary background to write calls to non-PL/I
procedures.

14.1 The Call Stack

A call stack is a temporary area of storage that the system allocates for each
user process. On the call stack, the hardware maintains information about
each block activation in the current image.

14.1.1 Call Frames

Each time a procedure block is activated in a PL/I program, the hardware
creates a structure on the call stack. This structure is the call frame for the
procedure invocation. The call frame for each active procedure contains:

• A pointer to the call frame of the previous block activation. This pointer is
called the Frame Pointer (FP).

• The saved Argument Pointer (AP) of the previous procedure invocation.

• The address in storage of the point of invocation of the procedure, that is,
the address of the next instruction following the CALL instruction or CALL

14-1

Argument Pointer (AP)

n = argument count
not used n

bits 4 through 31
argument_ 1 are reserved to

DIGITAL
argument-2

argument_n

Figure 14-2: An Argument List

The calling standard defines three ways that data can be passed in an argu­
ment list. When you are coding a reference to a non-PL/I procedure, you must
note the mechanism by which each argument is to be passed and write the
parameter descriptor for each argument accordingly.

The three argument-passing mechanisms are:

• By immediate value. When an argument is passed by immediate value, the
actual value of the argument is present in the argument list.

• By reference. When an argument is passed by reference, the address in
storage of the argument is present in the argument list.

• By descriptor. When an argument is passed by descriptor, the address in
storage of a data structure describing the argument is present in the argu­
ment list.

Sections 14.2 through 14.4 describe these argument-passing mechanisms in
detail. These sections describe the arguments in terms of PL/I data types,
dummy arguments created, if any, parameter-passing conventions, and at­
tributes to define the manner in which parameters are to be passed. Figures
14-3 through 14-6, which accompany these sections, illustrate these mecha­
nisms.

Remember that when PL/I creates a dummy argument, modifications, if any,
that the called procedure makes to the dummy argument are not accessible to
the caller.

Note that most of the examples show calls to VAX/VMS system service proce­
dures. These examples do not describe the procedures themselves. For general
and specific descriptions of system services, see the VAX/VMS System Ser­
vices Reference Manual. For additional details on calling system services from
PL/I programs, see Chapter 19, "System Services."

14.2 Passing Arguments by Immediate Value

You must use the VALUE attribute in a parameter descriptor for an argument
to be passed by immediate value. The following declaration of the external

Argument Passing 14-3

parameter descriptor is specified with the ANY and VALUE attributes, the
data types of the dummy arguments that PL/I creates are:

Data Type of
Written Argument

FIXED BINARY, or

FIXED DECIMAL (p,0)

BIT or BIT ALIGNED

ENTRY

OFFSET

POINTER

Data Type of
Dummy Argument

FIXED BINARY (31)

BIT (32) ALIGNED

ENTRY

OFFSET

POINTER

If a parameter descriptor is specified as VALUE with a particular data type
(as opposed to being specified as ANY), a dummy argument of that data type
is always created, and the written argument is assigned to the dummy. The
written argument must be valid for conversion to the data type specified in
the corresponding parameter descriptor.

14.3 Passing Arguments by Reference

By reference is the default argument-passing mechanism used by PL/I for all
arguments except character strings and arrays with nonconstant extents. The
parameter descriptor for an argument to be passed by reference need specify
only the data type of the parameter.

For example, the Read Event Flags (SYS$READEF) system service requires
its first argument to be passed by immediate value and its second argument to
be passed by reference. This procedure can be declared as follows:

DECLARE SYS$READEF ENTRY <FIXED BINARY(31) VALUEt
BIT <32> ALIGNED>;

When this procedure is invoked, the second argument must be a variable
declared as BIT(32) ALIGNED. PL/I passes the argument by reference. Fig­
ure 14-4 illustrates argument passing by reference.

FLAGS
DECLARE FLAGS BIT (32) ALIGNED;

DECLARESYS$READEFENTRY(
FIXED BINARY(31) VALUE,
BIT(32) ALIGNED); Argument Pointer (AP)

CALL SYS$READEF(4,FLAGS);
number of arguments:

first argument:

second argument: pointer to variable

Figure 14-4: Argument Passing by Reference

Argument Passing 14-5

a PL/I parameter descriptor with asterisk extents. In FORTRAN, arrays must
always be passed by reference; the array's extents are, by custom, passed as
separate argu-ments. The ANY attribute provides a convenient way to express
an array parameter for FORTRAN, as in the following example:

FTNARRAY: PROCEDURE(X);
DECLARE SUM ENTRY (ANYt FIXED BINARYC31))

RETURNS (FLOAT) ;

DECLARE CS, X(*)) FLOAT;

S = SUM 0(t DIM 0(t1)) ;

In this example, SUM is a FORTRAN procedure that sums the elements of a
one-dimensional array of floating-point numbers. Its second parameter is the
number of elements in the array.

14.3.3.2 Dummy Arguments for Arguments Passed by ANY - When a param­
eter that is declared with the ANY attribute but without the VALUE attrib­
ute is associated with a written argument that is a variable, PL/I places the
address of the actual variable in the argument list. If the procedure is invoked
with a constant or expression for this argument, PL/I creates a dummy argu­
ment and places the address of the dummy argument in the argument list.

In creating a dummy argument, PL/I performs the conversions listed below:

Data Type of
Written Argument

BIT (unaligned)

FIXED BINARY, or

FIXED DECIMAL (p,0)

CHARACTER VARYING

Data Type of
Dummy Argument

BIT ALIGNED

FIXED BINARY (31)

CHARACTER nonvarying

In all other cases, the data type of the dummy argument is the same as the
data type of the written argument.

14.3.4 Using Pointer Values for Arguments Passed by
Reference

When an argument is passed by reference, PL/I places the address of the
actual argument in the argument list. This address can be interpreted as a
pointer value. In fact, you can explicitly specify a pointer value as an argu­
ment for data to be passed by reference. For example:

DECLARE SYS$READEF CANY VALUE, POINTER VALUE),
FLAGS BITC32) ALIGNED;

CALL SYS$READEF ca, ADDR<FLAGS));

At this procedure invocation, PL/I places the pointer value returned by the
ADDR built-in function directly in the argument list. Figure 14-5 illustrates
the argument list for this example. Note that the actual argument list in this
example corresponds to the argument list shown in Figure 14-4.

Argument Passing 14-7

DECLARE UNSTRING ENTRY <CHARACTER<*>>,
TESTBITS ENTRY <BITC3)),
MODEST ENH?Y C 1 ,

2 CHARACTER C *) ,
Zr

3 BIT(3),
3 BIT(3) ! ;

\

Figure 14-6 illustrates a character-string descriptor and shows how a charac­
ter-string argument is passed by descriptor. This example illustrates the type
of character-string descriptor used by system services; this descriptor does not
contain additional information required by other classes of descriptor.

DECLARE NAME CHARACTER (5)
STATIC INITIAL ('ORION');

DECLARE SYS$SETPRN ENTRY
(CHARACTER(*));

CALL SYS$SETPRN(NAME);

N 0 R 0

Argument Pointer (AP)

number of arguments:

first argument: pointer to descriptor

0

pointer to variable

Figure f4-6: Argument Passing by Descriptor

14.4.2 Passing Character Strings

When you declare a ·non-PL/I procedure that requires a character-string
descriptor for an argument, specify the parameter descriptor as CHARAC­
TER(*). For example, the Set Process Name (SYS$SETPRN) system service
requires the address of a character-string descriptor as an argument. You can
declare this service as follows:

DECLARE SYS$SETPRN ENTRY (CHARACTER(*)>;

When a parameter is declared as CHARACTER(*), its written argument can
be:

• A character-string constant or expression

• A fixed-length character-string variable

• A varying character-string variable or a variable declared as
CHARACTER(*) VARYING

For any of these arguments, PL/I constructs a character-string descriptor and
places its address in the procedure's argument list.

Argument Passing 14-9

2. Declare a structure variable in your program whose members and attrib­
utes correspond to the structure declared in the parameter descriptor for
the argument.

3. Assign values to the members of the structure variable providing the re­
quired information. For a character-string descriptor, you must provide
the length of the string and a pointer to the variable containing its value.

4. Pass the name of the structure variable as an argument in the procedure
invocation.

The Set Process Name (SYS$SETPRN) system service shown in Figure 14-7
requires a text name string to be passed by descriptor. The structure variable
NAME_DESC is a character-string descriptor: its members describe the
length and location of the character-string variable NEWNAME. The value of
NEWNAME is the actual argument passed to the procedure. Note that the
call in this example is equivalent to the example shown in Figure 14-6 of
passing an argument by descriptor.

DECLARE SYSSSETPRN ENTRY Cl,
2 Fli<ED BINARYC31) '0
2 POINTER);

DECLARE 1 NAME_DESCi
2 NAME_LENGTH FI ><ED BI NARY (31) 'A
2 NAME_ADDRESS POINTER; ~

DECLARE NEWNAME CHARACTER (5) STA TI c IN IT I AL (I OR ION I) ;

NAME_DESC,NAME_LENGTH = LENGTHCNEWNAME>;
NAME_DESC. NAME_ ADDRESS = ADDR C NnH'.!AME) ; @)

CALL SYSSSETPRN (NAME._DESC >; 0

Figure 14-7: Coding a Character-String Descriptor

Note that this example can be simplified by declaring SYS$SETPRN as
follows:

DECLARE SYSSSETPRN ENTRY CANYl;

All other variables, and the procedure call, would be the same as in Figure
14-7.

14.4.3 Using the DESCRIPTOR Built-In Function

If a parameter descriptor specifies ANY without VALUE, a corresponding
argument may be a reference to the DESCRIPTOR built-in function. For
example:

DECLARE P ENTRY <ANY>;
DECLARE (X,Y> FIXED DECIMAL (7,2>;

CALL P <DESCRIPTOR(}()) ;
CALL PCY);

Here, X is passed by descriptor because the DESCRIPTOR built-in function
so specifies. Y is passed by reference.

Argument Passing 14-11

OPTIONS (VARIABLE). At least one parameter descriptor must be speci­
fied; the last parameter descriptor given in the ENTRY attribute is used for
any extra arguments.

The Formatted ASCII Output (SYS$FAO) system service is an example of a
procedure that has a variable-length argument list. It can be declared as
follows:

DECLARE SYS$FAO ENTRY <CHAR(*) t Fli<ED BINARY(15) t

CHAR (*) t ANY t.JALLJE) OPTIONS (l.JARIABL.E);

This parameter descriptor specifies only four arguments. When SYS$F AO is
invoked with more than four arguments, PL/I uses the parameter descriptor of
the last parameter (ANY VALUE) to pass all the additional arguments. If any
argument that will be specified is not to be passed by value, you must specify
a parameter descriptor for the argument in the declaration.

14.5.2 Optional Arguments

In the PL/I language, there can be no optional parameters to a PL/I proce­
dure. You must always specify a written argument for each parameter in the
entry declaration.

Many non-PL/I procedures with fixed-length argument lists accept optional
arguments and provide a default action if no value or a value of zero is
specified for the optional argument. When an optional argument is not speci­
fied, its corresponding argument list longword must contain a zero.

In PL/I, 'you can omit the specification of an optional argument in a written
argument list as long as you enter the correct number of commas to ensure
that the argument list will have the correct number of longwords. You can
indicate that you are not specifying an optional argument in either of the
following ways:

• Omit the argument from the argument list.

• If the argument is to be passed by immediate value, specify a zero for the
written argument.

For example, an argument list that has three optional arguments can be
written as follows:

(t t)

If the parameter descriptor of each argument specifies ANY VALUE, the
argument list may also be written:

(0 tO tO)

In either case, the called procedure must detect and interpret zeros in the
argument list. The following example illustrates optional arguments omitted
from an argument list:

DECLARE SYS$ASCTIM ENTRY (
ANYtCHAR<*> 1ANY) OPTIONS (1-.JARIABLE),

TIME_STRING CHARACTER<24);

CALL SYS$ASCTIM< tTIME_STRINGt 1);

Argument Passing 14-13

Chapter 15
Global Symbols

In standard PL/I, a variable that is to be shared by external procedures must
be declared with the EXTERNAL attribute in each procedure that references
it. VAX-11 PL/I provides an alternate method for defining external variables.
Using the GLOBALDEF attribute, one module may completely declare an
external variable; all other modules that reference the variable declare it with
the GLOBALREF attribute. The VALUE and READONL Y attributes pro­
vide additional control over the storage of these variables.

Even if a PL/I program does not itself define external variables in this way,
the GLOBALREF attribute permits a PL/I program to access variables de­
fined in modules written in other languages.

This chapter describes:

• Using global symbols within PL/I procedures

• The READO NL Y and VALUE attributes

• Declaring and using system-defined global symbols

15.1 Using Global Symbols in PL/I Procedures

Within your PL/I programs, you can define variables as global external sym­
bols when you are coding calls to system procedures. You can also use global
symbols instead of external variables in .PL/I procedures and functions.

Table 15-1 summarizes the differences between global symbols and external
variables. Note that a primary difference between thes.e variables is the man­
ner in which the linker allocates storage for them. Linker storage allocation is
described in Chapter 18, "Storage Allocation and Usage."

15-1

• Only one procedure in a program may declare a particular external variable
with the GLOBALDEF attribute.

The GLOBALREF attribute indicates that the declared name is a global
symbol defined in an external procedure.

The GLOBALREF attribute implies the EXTERNAL and STATIC attrib­
utes. The corresponding name must be declared in another procedure with the
GLOBALDEF attribute or, if the external procedure is written in another
programming language, its equivalent in that language.

The following restrictions apply to the use of the GLOBALREF attribute:

• The GLOBALREF attribute conflicts with the INITIAL, GLOBALDEF,
and INTERNAL attributes.

• If GLOBALREF is specified with the FILE attribute, no other file descrip­
tion attributes can be specified.

15.1.2 Defining Global Symbols in PL/I

To create a global symbol definition in a PL/I program, you must declare it
with the GLOBALDEF attribute in one, and only one, PL/I external proce­
dure. The GLOBALDEF attribute implies the EXTERNAL attribute.

An external variable defined with the GLOBALDEF attribute can be accessed
by external procedures that declare the name with the GLOBALREF attrib­
ute. For example, the procedure ABC contains:

ABC: p,RDCEDURE;
DECLARE UNIQLJE_VALUE GLOBALDEF FIXED BINARY

INITIAL <GO>;
DECLARE XYZ EXTERNAL ENTRY CCHARACTER (*));

CALL XYZ C 'STRING'>;

The procedure XYZ contains:

><'r'Z: PROCEDURE <STRING_l.JAL);
DECLARE UNIQUE_VALUE GLDBALREF FIXED BINARY;

In the preceding example, the external variable UNIQUE__ VALUE is de­
clared with the GLOBALDEF attribute and initialized in the procedure ABC.
The called external procedure XYZ declares this variable with the attribute
GLOBALREF and the appropriate data type attributes.

15.1.3 Using MACRO Global Symbols with Multiple Definitions

Using the VAX-11 MACRO programming language, it is possible to give a
global external variable more than one name. However, in a PL/I procedure,
only one global symbol name may be used for a particular variable. PL/I
assumes that distinct global symbol names denote distinct storage locations;
the storage associated with different names may not overlap. This rule applies
only to global symbols that are declared without the VALUE attribute.

Global Symbols 15-3

4. All declarations of the variable must specify the VALUE attribute.

5. The variable is not addressable; thus it cannot be used as the argument of
the ADDR built-in function.

A variable declared with the VALUE attribute can be specified as a value to
initialize another variable; it must have the same data type as the variable
that is being initialized. For example:

DECLARE TEMP GLDBALDEF FIXED VALUE INITIALC10),
ABC FIXED STATIC INITCTEMP>;

The declaration of ABC in this example gives ABC the value 10.

15.3 Obtaining Definitions for System Global Symbols
Within the VAX/VMS system, many global symbol definitions are used and
accessed by programs and procedures in many ways. The most common uses
are to define symbolic names for:

• Return status values from system procedures

• Function codes for system programs

• Symbolic names for system mailbox message senders

• Bit field definitions in system data structures

From a PL/I program, you can declare the symbolic names for system global
symbols with the GLOBALREF and VALUE attributes. The format of these
declarations is:

DECLARE symbol-name GLOBALREF FIXED BINARY(31) VALUE;

The GLOBALREF attribute indicates to PL/I that the variable is a reference
to a global symbol defined in another module. The VALUE attribute indicates
that the value of the variable is to be treated as if it were a constant.

The definitions for system global symbols are declared in the default system
object module libraries. These libraries are automatically searched when you
link a PL/I program. Of particular interest are the global symbols that define
symbolic names for system service and file system return status values. Their
use is described in the next chapter, "Return Status Values."

Global Symbols 15-5

Chapter 16
Return Status Values

The VAX-11 mechanism for returning a status value among procedures is to
return a fixed-point binary value in the general register RO. This value, called
a return status value, indicates the success or failure of the operation per­
formed by the called procedure.

In PL/I, passing a return status value in RO is equivalent to a function return
of a value declared as FIXED BINARY(31). In fact, when a PL/I function that
returns a value that can be expressed in 64 bits or less executes a RETURN
statement, PL/I places the return value specified in RO, and Rl if necessary,
before returning control to the caller.

Thus, to obtain a return status value from any system procedure, you can
declare the procedure as a function as shown in the following example:

DECLARE SYS$SETEF ENTRY <FIXED BINARY(31> VALUE>
RETURNS (F Ii<ED B !NARY (31)) ;

This declaration of the SYS$SETEF procedure allows you to invoke the pro­
cedure as a function and to obtain a return status value.

This chapter provides information on:

• The format of a return status value, that is, the meaning of particular bits
within the value

• Recommended techniques for testing a return status value for success or
failure or for a specific condition

The information in this chapter also applies to the return status values sig­
naled by PL/I run-time procedures. Error signaling and condition handling
are described in detail in Chapter 17, "Error Signaling and Condition Han­
dling.''

16.1 Format of Return Status Values

All VAX/VMS system procedures and programs use a longword value to com­
municate specific return information. When a main procedure executing un­
der the control of. the DCL command interpreter executes a RETURN state­
ment to return control to the command level, the command interpreter uses
the return status value to display a message on the current output device.

16-1

module $STSDEF. This module is in the default PL/I text library
PLISYSDEF.TLB (described in Section 2.4.7, "Default System INCLUDE
Library"). The module $STSDEF contains the following declarations:

declare stsSualue fixed binary(31), I* status value*/
1 stsSfields based Caddr(stsSualue)) 1

2 stsSseveritY, I* low-order 3 bits */
3 stsSsuccess bit(l), I* low-order bit*/
3 stsSrest bit(2l' I* bits 1 through 2 */

2 stsSmsg, /* bits 3 through 15 */
3 sts$r11sg_no bit(12), I* nur11eric i.ialue */
3 stsSfac_sp bit(l) 1 I* if set' facility specific *I

2 stsSfac 1 I* bits lG - 27 */
3 sts$fac_no bitC11), I* facility number*/
3 stsScust_def bit (1), I* 0 = DIGITAL */

2 stsScontrol,
3 stsSinhib_msg bit(l),
3 stsSreserved bit(3l,

2 stsSfiller character(Ol;

I* 1 = do not Print */
I* 32 bits */
I* for byte alignment */

To obtain these declarations, specify a %INCLUDE statement in a PL/I pro­
gram as follows:

%INCLUDE $STSDEF;

The compiler will locate this module in PLISYSDEF automatically.

The next three sections describe the following ways you can use these
variables:

• To test for successful or nonsuccessful completion of a procedure

• To test whether a procedure returned a specific value

• To determine, set, or display any field within a longword status value

Remember that you can test return status values from system procedures only
if you declare the procedures as functions.

16.2 Testing for Success or Failure

To test a return status value for success or failure, you need only test the
variable STS$SUCCESS declared in the structure STS$FIELDS. If this bit is
true, it indicates that the return value is a successful value. For example:

DECLARE SYS$SETPRN ENTRY (CHARACTER(*)>
RETURNS (FI)<ED BINARY(31) >;

%INCLUDE $STSDEF;

STS$VALUE = SYS$SETPRN('Student');
IF ~STS$SUCCESS THEN GOTO BAD_NAME;

The statements at the label BAD_NAME can test the value of the variable
STS$VALUE and take some action based on its value.

16.3 Testing for Specific Return Status Values

Each numeric return status value defined by the system has a symbolic name
associated with it. The names of these values are defined as system global
symbols, and their values can be accessed by referring to their symbolic
names.

Return Status Values 16-3

The next example illustrates the invocation of the Set Event Flag
(SYS$SETEF) system service, followed by tests for (1) success or failure and
(2) the successful status code SS$_ W ASSET.

DECLARE SS$_WASSET FIXED BINARY GLOBALREF VALUE,
SYS$SETEF ENTRY (FIXED BINARY(31l VALUE);

%INCLUDE $STSDEF;

STS$VALUE = SYS$SETEF (4);

IF ···sTS$SUCCESS THEN RETURN (STS$l,JALUE>; 0
IF STS$VALUE = SS$_WASSET THEN DO; 8

In this example, the symbolic name SS$_ W ASSET is declared as a global
symbol. The value associated with this return status is a successful value; it
indicates that the flag specified in the procedure invocation was previously
set.

The procedure invocation returns the status value in the variable
STS$VALUE. The IF statement checks the variable STS$SUCCESS for
success or failure. If the service returned a failure condition, the procedure
returns with the value of STS$V ALUE in the RETURN statement. If the
service returned a successful status, the procedure continues with an IF state­
ment that checks whether the flag was pre:viously set. If so, the DO statement
specified in the THEN clause activates the DO-group.

Note the effect of the RETURN statement in this example. If this procedure is
the main procedure, the RETURN statement that specifies the current value
of the variable STS$V ALUE will cause the command interpreter to display
the error message associated with this return status value.

16.4 Setting and Displaying Fields Within a Status Value

You can use the structure STS$FIELDS to set or display fields within a status
value. For example, if you wish to define application-specific message num­
bers using the format used by VAX/VMS, you can specify a facility-wide
message number, set the STS$CUST_DEF field to '1 'B, assign unique num­
bers to messages, and define severities for the messages.

Since the fields within this structure are defined as bit strings, and it is
usually more convenient to express facility or message numbers as integers,
you must use the UNSPEC built-in function to convert integer values to the
appropriate bit-string representation. The following example shows how to

Return Status Values 16-5

Chapter 17
Error Signaling and Condition Handling

The standard PL/I language provides error handling and signaling through the
use of the ON, REVERT, and SIGNAL statements and several built-in
functions. In VAX-11 PL/I, these statements and the functions they perform
have been extended to encompass VAX-specific and program- or application­
specific error signaling and condition handling. This chapter describes:

• The relationship of the VAX/VMS condition-handling facility to VAX-11
PL/l's condition-handling features

• V AX-11 PL/I extensions for con di ti on handling

• The actions that an ON-unit can take

• The search for ON-units when a condition is signaled and the default
handling performed when no ON-unit exists for a given condition

All VAX-11 PL/I run-time procedures use PL/I condition handling. The
information in this chapter supplements the information on ON conditions
and ON-units in the VAX-11 PL/I Encyclopedic Reference, by providing
details that are specific to PL/I programs executed under the control of the
VAX/VMS operating system.

17.1 Relationship of VAX/VMS Condition Handlers to PL/I ON­
Units

In the VAX/VMS environment, an exception condition is a hardware- or
software-detected condition that synchronously interrupts the execution of an
image. A condition handler is a procedure that exists specifically to respond to
one or more such conditions; each procedure in the program can establish a
condition handler. It is usually the responsibility of each handler to determine
the specific condition that was signaled, and to decide whether or not to
handle it.

Most high-level languages establish condition handlers by calling the VAX-11
Run-Time Library procedure LIB$ESTABLISH. The PL/I language, however,
has in the ON-unit a condition handler defined to handle a specific condition.
By using the keyword condition names defined by PL/I and the extensions
provided by VAX-11 PL/I, you can write ON-units to handle any possible

17-1

17 .1.2 Values for ON Condition Names

For any condition that is signaled, the built-in function ONCODE returns the
specific 32-bit status value that describes the condition. The low-order three
bits of this value contain the severity of the condition (success, warning, error,
and fatal). The severity of a condition is important only when no ON-unit
exists for a condition, and default condition handling is performed by either
PL/I or the system (see Section 17.4, "Search for ON-Units").

All VAX/VMS-defined conditions have symbolic names associated with them.
Table 17-1 lists the PL/I keyword condition names and the global symbol
names for the VAX/VMS condition values associated with them. If the
ONCODE built-in function is invoked in an ON-unit for the related PL/I
condition name, it returns the value of the indicated global symbol.

Table 17-1: ONCODE Values for PL/I ON Conditions

PL/I Condition

END FILE

ENDPAGE

ERROR

FINISH

FIXED OVERFLOW

KEY

OVERFLOW

UNDEFINED FILE

UNDERFLOW

VAX CONDITION

ZERO DIVIDE

VAX/VMS Global Symbol Name1

PLl$_ENDFILE

PLl$_ENDPAGE

A specific status value associated with the error that caused the
condition to be signaled2

PLl$_FINISH

SS$_DECOVF or SS$__INTOVF

RMS$_name, where name is one of the following specific RMS
condition names that describe a key error: RMS$_RNF,
RMS$_DUP, RMS$_KEY, RMS$_MRN, RMS$_REX; or,
PLl$_name, where name describes a PL/I run-time error, for
example PLl$_CNVERR2

SS$_FLTOVF

RMS$_name, where name indicates a specific status value
associated with an RMS error; or, PLl$_name, where name
describes a PL/I run-time error2

SS$_FLTUND

Any user-defined condition value that was signaled

SS$_FLTDIV

1. If a PL/I condition is explicitly specified in a SIGNAL statement, the ONCODE value
corresponds to the condition message associated with the condition, for example,
PLl$_UNDFILE, PLl$_KEY, and so on.

2. These names correspond to the identification fields in the run-time messages. The RMS
messages are listed in the VAX-11 Record Management Services Reference Manual. PL/I
messages are listed in Appendix B of this manual.

Error Signaling and Condition Handling 17-3

ARGUMENT LIST WHOSE LOCATION
IS RETURNED BY ONARGSLIST

2

pointer to signal array

pointer to mechanism array

SIGNAL ARRAY

condition name

1------------1
first signal argument, if any

additional arguments,
if any

1------------t
PC

PSL

MECHANISM ARRAY

4

number of arguments in this array

usually contains the same value as
that returned by ONCODE

} depend on the condWoo

program counter at the time
the condition occurred

processor status longword at
the time the condition occurred

number of arguments in this array

establisher frame
copy of the frame pointer of the block
that established the .ON-unit

1------------1 depth of block activation of the block
depth in which the condition occurred, relative

1--------------1 to the establisher frame

RO
1--------------1

R1 ..____ ________ __,

contents of Register 0 when the condition
was signaled

contents of Register 1 when the condition
was signaled

Figure 17-2: The Argument List Passed to an ON-Unit

The text module $CHFDEF contains PL/I declarations of these structures, as
shown below:

declare chf$arSPtr Pointer;
declare 1 chf$arslist based (chf$arSPtr),

2 chf$count fixed binarY(31l
2 chf$sisarslst Pointerr
2 chf$Mcharslst pointer;

declare 1 chf$sisnal_arraY based Cchf$sisarslst),
2 chf$sis_arss fixed binarYC31l, I* arSuMent count */
2 chf$sis_naMe fixed binary(31l, I* condition naMe */
2 chf$sis_ars Cchf$sis_arss-3) fixed binary(31l'
2 chf$pc fixed binarYC31l,
2 chf$psl fixed binary(31l,
chf$Mech_arraY based Cchf$Mcharslstl,
2 chf$Mch_arss fixed binarYC31l,
2 chf$Mch_fraMe fixed binary(31l,
2 chf$Mch_dePth fixed binarY(31l'
2 chf$Mch_savr0 fixed binary(31l,
2 chf$Mch_savr1 fixed binarYC31l

This module is in the default PL/I text library PLISYSDEF.TLB. You can
include this module in a PL/I program by specifying:

%INCLUDE $CHFDEF;

The PL/I compiler locates this module in PLISYSDEF.TLB when it compiles
the source program (see Section 2.4.7, "Default System INCLUDE Library").

Error Signaling and Condition Handling 17-5

17 .2 VAX-11 PL/I Condition-Handling Extensions

VAX-11 PL/I defines two special keywords for the ON statement to provide
additional flexibility in condition handling:

• The ANYCONDITION keyword lets you establish an ON-unit to trap all
nonspecific conditions.

• The V AXCONDITION keyword lets you handle and signal either
VAX/VMS-specific conditions or application-specific conditions.

These keywords, and the ways you can use them in your applications, are
described individually in the next subsections.

17.2.1 An ANYCONDITION ON-Unit

An ANYCONDITION ON-unit is, in effect, a "catch-all" condition handler.
It is executed whenever a condition for which no ON-unit exists is signaled in
the current block or any of its descendents. Figure 17-3 illustrates three blocks
in the calling sequence. Procedure A establishes an ON-unit for FIXED­
OVERFLOW conditions and procedure B establishes an ANYCONDITION
ON-unit. If any condition (including the FIXEDOVERFLOW condition) is
signaled in procedure B after this ON statement is executed, or in procedure
C, the ANYCONDITION ON-unit in procedure B is given control.

A

A: PROCEDURE OPTIONS (MAIN) ;
ON FIXEDOVERFLOW BEGIN;

END;
CALL B;

B: PROCEDURE ;
ON ANYCONDITION BEGIN ;

B END;
CALL C;

c

C:PROCEDURE;

END;

Figure 17-3: An ANYCONDITION ON-Unit

Within the VAX/VMS programming environment, the ANYCONDITION
keyword provides a way to ensure that conditions signaled by PL/I procedures
are not passed to non-PL/I procedures. This is particularly useful for proce­
dures that use the VAXCONDITION condition to signal information from
one block activation to another.

Note that exiting from an ANYCONDITION ON-unit with a nonlocal GOTO
requires special coding. This situation is described in Section 17 .3.3,
"Unwind."

Error Signaling and Condition Handling 17-7

When these ON-units are in effect, other procedures can declare and use the
names SIGNAL_STOP, SIGNAL_FOUND, and SIGNAL_NOTFOUND to
signal these conditions. For example:

DECLARE SIGNAL_FOUND GLOBALREF FIXED BINARY;

SIGNAL VAXCONDITIDN<SIGNAL_FOUND>;

Note that in this example, the application-specific values are initialized to the
integers 9, 17, and 33. In actual practice, these values should be defined using
the entire 32 bits of a status value, with the appropriate bit set to indicate
that the value is a customer-defined value. For information on interpreting
and setting status values, see Chapter 16, "Return Status Values." For infor­
mation on declaring global symbols with the GLOBALDEF attribute, see
Chapter 15, "Global Symbols."

17 .3 Actions That an ON-Unit Can Take

The possible courses of action an ON-unit can take during its ~xecution as a
result of a condition are:

• Handle the condition and return control to the point at which the condition
was signaled

• Resignal the condition and request PL/I to locate another ON-unit fo han­
dle it

• Execute a nonlocal GOTO statement and cause PL/I to unwind the call
stack

• Stop the program

These courses of action are described individually.

17 .3.1 Handle the Condition

A condition is assumed to be handled in PL/I when the ON-unit established
for the condition completes executing without performing one of the following
actions:

• Executing a nonlocal GOTO

• Calling the RESIGNAL built-in subroutine

• Signaling another condition

• Executing a STOP statement

When the condition is handled, PL/I continues execution of the program at
the point of interruption.

17 .3.2 Resignal the Condition

In VAX-11 PL/I, an ON-unit can decide that it does not want to handle a
condition and request that, rather than returning control to the point of inter­
ruption, PL/I continue to look for another ON-unit to handle the condition.

Error Signaling and Condition Handling 17-9

This removal of call frames from the call stack is called an unwind. Figure
17-5 illustrates a situation in which an unwind occurs. The circled numbers
indicate the order of execution. The ERROR ON-unit established in proce­
dure A receives control when the ERROR condition is signaled in procedure C.
This ON-unit executes the GOTO PRINT_MSG statement. The label
PRINT _MSG is in procedure A. Thus, the call stack is unwound and the call
frames for the ON-unit, procedure C, and procedure B, in that order, are
removed from the stack, and execution continues at the label PRINT_MSG.

A

A: PROCEDURE OPTIONS (MAIN) ; 0
ON ERROR GOTO PRINT _MSG ;

CALL B;
PRINT. _MSG:

0

B: PROCEDURE;

B
CALL C;

RETURN;
END;

c

e

Figure 17-5: Unwinding the Call Stack

C: PROCEDURE ; 8 ERROR signaled

-------RETURN;
END;

1----,
I I
I I

I I
I I
I _____ !

ERROR ON-unit established by
procedure A

When an unwind occurs in the VAX/VMS environment, each call frame in the
calling sequence is examined to determine if a condition ON-unit exists for
that frame. If so, the ON-unit is called with the ·condition value
SS$_UNWIND, and the ON-unit has the chance to perform block- or proce­
dure-specific cleanup operations.

17 .3.4 Stopping the Program

An ON-unit may specify that the program is to be terminated by executing a
STOP statement. For example:

ON UNDEFINEDFILECINFILE> BEGIN;

PUT EDITC'File'tONFILE()t'undefined. Error'tONCODE(l)

STOP;
END;

Error Signaling and Condition Handling 17-11

• If the signal is the ENDPAGE condition, the default PL/I handler exe­
cutes a PUT PAGE for the file, and then continues the program at the
point at which ENDPAGE was signaled.

• If the signal is the ERROR condition and the severity is fatal, the
default handler signals the FINISH condition. Then, one of the follow­
ing occurs:

- If a FINISH ON-unit is found, it is given a chance to execute. If it
executes a nonlocal GOTO or signals another condition, program exe­
cution continues.

- If no FINISH ON-unit is found, or if a FINISH ON-unit completes
execution by handling the condition, then PL/I resignals the condition
to the default VAX/VMS condition handler. This handler prints a
message, displays a traceback, and terminates the program.

• If the signal is any condition other than ENDPAGE or ERROR with a
fatal severity, the default PL/I handler signals the ERROR condition
with the severity of the original condition. Then, one of the following
occurs:

- If an ERROR ON-unit is found, it is executed. If it completes execu­
tion by handling the condition, the program continues.

- If an ERROR ON-unit is not found, the default PL/I handler resignals
the condition. If this resignal results in control returning to the sys­
tem, the default VAX/VMS condition handler prints a message and a
traceback. If the error is a fatal error, the default handler terminates
the program; if the error is nonfatal, the pro'gram continues.

17.4.2 Default Handling for Non-Main Procedures

If the call frame at which the procedure was entered did not specify the MAIN
option, the default condition handling is as follows:

1. PL/I searches for specific ON-units in the following order:

1. A VAXCONDITION ON-unit established for the specific condition
value that is being signaled

2. A PL/I ON-unit established for a PL/I condition name, if PL/I defines a
name for the con di ti on

3. An ANYCONDITION ON-unit

If one of these ON-units exists, it is executed and the search is ended. If
the ON-unit completes execution by handling the condition, the program
continues at the point at which the condition was signaled.

2. If no ON-units are found in any call frame, the condition is resignaled to
the caller. If the resignal results in return of control to the system, the

Error Signaling and Condition Handling 17-13

Figure 17-7 illustrates the search sequence when a second condition occurs
during the execution of an ON-unit. The circled numbers indicate the order of
execution. The ERROR condition in procedure C is handled by the ON-unit
established in procedure B. During the execution of this ON-unit, a
FIXEDOVERFLOW condition is signaled. PL/I locates the ON-unit estab­
lished for FIXEDOVERFLOW conditions in procedure C and gives it control.

A

A: PROCEDURE OPTIONS (MAIN) ;

0
CALL B;

B: PROCEDURE; f)

B

ON ERROR BEGIN ;

END;

CALL C;

c

0

C: PROCEDURE;

Original
ERROR

/signaled

ON FIXEDOVERFLOW BEGIN;

END;

L-----..J

0
ERROR ON-unit established
by Procedure B

FIXEDOVERFLOW

---- signaled
in ERROR
ON-unit

Figure 17-7: Effect of Multiple Conditions

Note that if the second condition is the same condition as the first, and the
ON-unit does not establish another ON-unit, the same ON-unit will be exe­
cuted repeatedly as the condition is signaled. A similar situtation results when
a STOP statement is executed within a FINISH or ANYCONDITION
ON-unit - that is, the program will enter an interminable loop when the
STOP statement executes. The STOP statement signals FINISH, the current
ON-unit is reexecuted, the STOP statement is executed again, and so on.

In a PL/I program, an ANYCONDITION ON-unit or a VAXCONDITION
ON-unit established specifically to handle the SS$_UNWIND condition is
invoked during the unwind. The following example illustrates a
VAXCONDITION ON-unit:.

DECLARE SS$_UNWIND GLOBALREF VALUE FIXED BINARYC31);
ON VAXCONDITIONCSS$_UNWIND> BEGIN;

CLOSE FILE<DATA_REC_TEMP> ENVIRONMENT<
DELETE (NO)) ;

When an ON-unit that is handling the unwind condition completes execution,
the unwind continues.

Error Signaling and Condition Handling 17-15

Part IV
Programming Considerations and Examples

Chapter 18
Storage Allocation and Usage

This chapter provides some general information on:

• How the compiler and linker use program sections

• How to allocate storage within an area

18.1 Program Sections

When the PL/I compiler creates an object module, it groups data in the object
module into contiguous areas called program sections. The grouping is
performed on the basis of the attributes of the data - for example, whether it
contains executable code or read/write variables.

The compiler also writes, into each object module, information about the
program sections contained in it. The linker uses this information when it
binds object modules into an executable image. As the linker performs its task
of allocating virtual memory for the image, it groups together program
sections that have similar attributes.

18.1.1 Attributes of Program Sections

Table 18-1 lists the attributes that can be applied to program sections. The
first column lists pairs of conflicting attributes.

18-1

Table 18-2: Program Sections for PL/I Variables

Storage Program Program
Class Section Section

Attributes Name1 Attributes

EXTERNAL STATIC 2 name PIC, OVR, REL, GBL, SHR,
NOEXE, RD, WRT

EXTERNAL READONLY name PIC, OVR, REL, GBL, SHR,
NOEXE, RD, NOWRT

INTERNAL STATIC $DATA PIC, CON, REL, LCL, NOSHR,
NOEXE, RD, WRT

INTERNAL READONLY $CODE PIC, CON, REL, LCL, SHR, EXE,
RD, NOWRT

GLOBALDEF $DATA PIC, CON, REL, GBL, SHR,
NOEXE, RD, WRT

GLOBALDEF (psect-name) psect-name PIC, CON, REL, GBL, SHR,
NOEXE, RD, WRT

GLOBALDEF READONLY $CODE or PIC, CON, REL, GEL, SHR,
psect-name NOEXE, RD, NOWRT

1. name is the identifier of the variable declared with the specified attribute. psect-name is the
name specified in the definition of the global symbol.

2. File constants have the same attributes as EXTERNAL STATIC variables, but with the
NOSHR attribute instead of the SHR attribute.

18.1.3 Sharing Program Sections with FORTRAN Procedures

In a FORTRAN program, separately compiled procedures share data by
declaring COMMON sections and specifying the names of one or more· varia­
bles to be placed in those sections. Each named COMMON represents a
separate program section; each procedure that declares the COMMON with
the same name can access the same variable.

A PL/I external variable called name therefore corresponds to a FORTRAN
COMMON with the same name. The examples below illustrate PL/I proce­
dures and FORTRAN procedures that share data.

STRING.PL! contains:

STRING: PROCEDURE OPTIONSCMAIN>;
DECLARE XYZ EXTERNAL CHARACTERC20),

PRSTRING ENTRY;

STOP;
END;

XYZ = 'THIS IS A STRING I;
CALL PRSTRING;

Storage Allocation and Usage 18-3

18.2 Allocation of Storage in an Area

VAX-11 PL/I supports the AREA and OFFSET data type attributes, but does
not provide support for allocation of storage for variables within the area.
There are a variety of techniques that can provide management of space
within an area; the algorithm to use for a particular application depends on
the application's requirements.

This section presents an algorithm for storage management in an area that
illustrates some of the considerations involved. It describes three procedures
that allocate and free space within an area:

• INITIALIZE_AREA initializes an area of a given size. The area size must
be a multiple of eight bytes. .

• ALLOCATE_IN_AREA determines whether there is sufficient free space
within the area for a given variable. If so, it returns an offset to the allocated
space. If not, it returns a null offset value.

• FREE_AREA reclaims free space when a given variable is deallocated from
an area.

Figures 18-1through18-3 illustrate calls to these procedures and the resulting
area and space allocation following each call. The procedures and the algor­
ithms used by each are described in Sample Program 18-1, which follows the
figures.

E LARE MAPFILE AREAC51?> I

INITIALIZE_AREA ENTRY CARE ii

INITIALIZE AREA <MAPFILE 1 •

O must be zero 0
0

4 free list pointer f)
8

8 next free block pointer }

i---------1 12 size of this free block
0

504

1. The first longword of an area must be zero. This longword is reserved to DIGIT AL.

2. The second longword points to the beginning of the free list. that is. a chain of free blocks
within the area. When this procedure initializes an area. it sets this free list pointer to point
to the next longword in the block.

3. Each free block header has the format:

DECLARE 1 FREEBLK BASED,
2 NEXT OFFSET (TARGET_AREA),
2 SIZE FIXED BINARY(31);

When the area is initialized. the NEXT field of the first free block header is set to c=i null
offset value and the SIZE field is set to the size of the area. minus the eight bytes required
for the reserved first longword and the free list pointer.

Figure 18-1: Initializing an Area

Storage Allocation and Usage 18-5

DECLARE FREE_IN_AREA ENTRY (FIXED BINARY(31) OFFSET AR~A'*' 11

CALL FREE_IN_AREA (1001 FILEDFF(2) MAPFILE11

0

8

328

280

0 must be zero

4 free list pointer

8 next free block pointer 0
12

size of this free block
16

Remaining free space
in this block

288
} Allocation for request

YV"'\..A~;l(LJ' of 40 bytes
328

next free block pointer

size of this free block

432

512
l Allocation for request

of 80 bytes

Allocated space

Free space

1. FREE_IN_AREA updates the NEXT field of the first free block header to point to the
freed space.

2. The first two longwords of the freed space are written with a free block header. The NEXT
field is set to zero (since there are no more free blocks), and the SIZE field is set to indicate
the number of bytes in the block.

Figure 18-3: Freeing Space Within an Area

Storage Allocation and Usage 18-7

Sample Program 18-1: Storage Management Within an Area

l*
This module controls allocation within an area.

There are three entry Points:

*I

ALLDCATE_IN-AREA -
INITIALIZE_AREA -
FREE_IN_AREA -

allocate sPace within an area
initialize area for storase allocation
free storase within an area

0
ALLDCATE_IN_AREA: PRDCEDURE<REQUEST_SIZEtREQUEST_AREA> RETURNS(OFFSET>;

Parar11eters
*I
DECLARE REQUEST_SIZE FD<ED BINARY(31) t I* reciuest size in bnes */ f)

*I
DECLARE

*I

REQUEST_AREAt
2 AREA_SIZE FIXED BINARY(15) t I* descriptor size field */
2 FILLER FIXED BINARY(15) t I* unused filler word*/
2 AREA_POINTER PDINTERt I* address of the area*/

TARGET_AREA AREA(AREA_SIZE> BASED(AREA_POINTER>;

data structure~ within the inPut area 9

AREA_HEADER BASED(AREA_POINTER> t

2 RESERt.lED FI }-{ED BI NARY< 31 > t /* reserved to DIGITAL */
2 FREE-LIST DFFSET(TARGET_AREA> t I* offset to first free block */

I* lowest entry */ 2 LOl .. LLIMIT FD<ED BINARY(31) t

FREEBLK BASED1
2 NEXT OFFSET<TARGET_AREA> t

2 SIZE FD(ED BINARY (31 >;

local 1.iariables

I* free block entrY */
I* offset to next entry
I* size of entry */

DECLARE NEXT_OFFSET OFFSET(TARGET_AREA> t

NEXT_OFFSET_VALUE FIXED BINARY<31) DEFINED(NEXT_OFFSET> t

FREE_OFFSET OFFSETt
FREE_OFFSET_VALUE FIXED BIN(31) DEFINED<FREE_OFFSET> t

TEMP_OFFSET OFFSET<TARGET_AREA> 1 I* temporary offset variable */
TEMP_OFFSET_VALUE FIXED BINC31) DEFINEDETEMP_OFFSET> t

PREVIDLJS_OFFSET OFFSETCTARGET_AREA> t

PREVIDLJS_OFFSET_VALUE FIXED BIN(31) DEFINED<PREVIOUS_OFFSET>;

(Continued on page 18-11)

Storage Allocation and Usage 18-9

Sample Program 18-1 (Cont.): Storage Management Within an Area

rr I

allocate storase in tarset_area

Find first free blocK that is lars~ enoush to contain the re~uested
allocation. StoP at the end of the list -- no sPace for allocation.

PREt.1 I DUS_ OFFSET = OFFSET (ADDR (FREE_L I ST) , TARGELAREA) ;
DD NEXT_OFFSET = FREE_LIST

REPEAT(NEXT_OFFSET->FREEBLK.NEXT)
WHILE(NEXT_OFFSET->FREEBLK.SIZE < RDUND(REQUEST_SIZE));

IF NEXT_OFFSET->FREEBLK.NEXT =NULL() THEN
RETURN(NULL()); I* no space to allocate*/ f)

PREVIOUS_OFFSET = NEXT_OFFSET;
ENDi

Charise free blocK header to reflect the allocation.
If the allocation re~uires the entire blocK' remove the header
from the free list.

Return offset of allocated space at end of this free blocK,

NEXT_OFFSET->FREEBLK,SIZE =
ND<T _OFFSET - >FREEBLK, SIZE - ROUND (REQUEST _SIZE') ; Ci)

IF NEXT_OFFSET->FREEBLK.SIZE = 0 THEN
PREVIDUS_OFFSET->FREEBLK.NEXT = 0

NEXT_OFFSET->FREEBLK.NEXT;
NEXT_OFFSET_VALUE = NEXT_OFFSET_VALUE + NEXT_OFFSET->FREEBLK+SIZE; ~
RETURN(NEXT_OFFSETl;

Initialize area header

INITIALIZE_AREA: ENTPY(REQUEST_AREAl;

AREA_HEADER.RESERt.JED = o; I* DIGITAL's lons1,.1ord r11ust be zero*/ fD
FREE_LI ST = OFFSET (ADDR (LOW_LI MIT) , TARGET _AREA) ;
FREE_LIST- FREEBLK.NEXT =NULL();
FREE_LIST- FREEBLK.SIZE =

REQUES _AREA,AREA_SIZE - s;
RETURN;

(Continued on page 18-13)

Storage Allocation and Usage 18-11

Sample Program 18-1 (Cont.): Storage Management Within an Area

Free an allocated block of storase in area

FREE_IN_AREA: ENTRY(REQUEST_SIZE1FREE_OFFSET1REQUEST_AREA>; ~

*I

Search the free list to find the Place to insert the freed block,

PREt.JIOUS_OFFSET = DFFSET(ADDR(FREE_LIST> 1TARGET_AREA>;
DD TEMP_OFFSET = FREE-LIST

REPEAT(TEMP_OFFSET->FREEBLK.NEXT>
WHILE((FREE_OFFSET_VALUE < PREVIOUS_OFFSET_VALUE

FREE_OFFSET_VALUE > TEMP_OFFSET_VALUEl &
TEMP_OFFSET ~=NULL());

PREVIOUS_OFFSET = TEMP_OFFSET; ~
END;

PREVIOUS_OFFSET->FREEBLK+NEXT = FREE_OFFSET;
NEXT_OFFSET = FREE-OFFSET;
NEXT_OFFSET->FREEBLK+NEXT
NEXT_OFFSET->FREEBLK.SIZE

TEMP_OFFSET; ~

ROUNDCREQUEST_SIZE>;

Combine any adJacent free blocks into a sinsle free block.

TEMP_OFFSET = FREE_LIST; ~

DD WHILE(TEMP_OFFSET h= NULL());
NEXT_OFFSET_VALLJE = TEMP_OFFSET_VALUE + TEMP_OFFSET-)FREEBLK.SIZE;
IF NEXT_OFFSET = TEMP_OFFSET->FREEBLK+NEXT THEN DO;

TEMP_OFFSET->FREEBLK,SIZE =

END;

RETURN;
I"!.·

TEMP_OFFSET->FREEBLK,SIZE + NEXT_OFFSET->FREEBLK.SIZE;
TEMP_OFFSET->FREEBLK,NEXT = NEXT_OFFSET->FREEBLK+NEXT;
ENO;

ELSE
TEMP_OFFSET TEMP_OFFSET->FREEBLK.NEXT;

Subroutine to round the re9uest sizes to 8 bYte units
*I
ROUND: PROCEDURE(INPULSIZE) RETURNS(Fli<ED BIN(31)); CD
DECLARE (INPUT_SIZE tI) Fii<ED BINARY(31);

I= MODCINPUT_SIZE18);
IF I h= 0 THEN I = 8 - 1;
RETLJRNCINPUT_SIZE + I>;

END ROUND;

END ALLOCATE_IN_AREA;

Storage Allocation and Usage 18-13

Chapter 19
System Services

System services are procedures implemented by the VAX/VMS operating
system. Although the use of some system services is restricted by privilege
requirements, many services are available for general programming use.
System services are described in detail in the VAX/VMS System Services
Reference Manual.

This chapter provides information on:

• Declaring system services in PL/I

• Specifying arguments for system services

• Testing status values returned from system services

The last section of this chapter provides examples of calling system services
from PL/I programs.

19.1 Declaring System Services

The default PL/I text library PLISYSDEF.TLB contains declarations for all
system services as external entries. The text module names have the form:

SYS$name

where SYS$name is the name of the system service. Thus, to include the
declaration of a system service you are going to use, you specify a SCINCLUDE
statement as in this example:

%INCLUDE SYS$TRNLOG;

The compiler, by default, locates the module SYS$TRNLOG in
PLISYSDEF.TLB during its compilation.

Global symbol definitions for the entry vectors of all system services are
located in the default system object module library, STARLET.OLB in
SYS$LIBRARY. When you link a PL/I program, the linker searches this
library by default.

19-1

Table 19-1: Input Arguments for System Services

Parameter Declaration Program
Argument Data Type in PLISYSDEF Reference

Numeric values: FIXED BINARY(31)
Indicator 19-2
Channel number 19-3

Event flag 19-5
Access mode
Binary mask 19-6
Buffer size 19-6,19-9
Process identification
UIC

Character strings: CHARACTER(*) 19-1
Logical name
Process name 19-2
Device name
Cluster name 19-4, 19-5
Time string

Bit masks: 19-2
32 bits or less BIT(32) ALIGNED
64 bits BIT(64) ALIGNED

Time values BIT(64) ALIGNED 19-5

Entry mask or routine EXTERNAL ENTRY 19-6

Buffers: ANY 19-9
Item list
Quota list

AST parameter ANY VALUE 19-6

Two-longword array (2) FIXED BINARY(31)

Table 19-2: Output Arguments for System Services

Parameter Declaration Program
Argument Data Type in PLISYSDEF Reference

Numeric values: 19-1
String length FIXED BINARY(15) 19-2
Channel number FIXED BINARY(15)
Access mode FIXED BINARY(7)
Table number FIXED BINARY(7)
Process identification FIXED BINARY(31)

Character strings: CHARACTER(*)
Equivalence name 19-1
Time string

Buffers: ANY
1/0 status block 19-6

Time value BIT(64) ALIGNED 19-4

Two-longword array (2) FIXED BINARY(31)

System Services 19-3

For symbolic names that are not defined as VAX/VMS global symbols,
VAX-11 PL/I provides text modules in the default INCLUDE library
PLI.SYSDEF. All symbolic definitions in these modules are defined using
SoREPLACE statements. Thus, they are treated as constant identifiers rather
than as variable references.

The names of the text modules, and the names and values of the symbols
defined in each, are the same as the MACRO definitions in the system macro
library, STARLET.MLB.

The modules required for any system service are included within the text
module declaration for that service. For example, arguments to the Create
Process (SYS$CREPRC) system service require symbolic names defined in
the modules $PRVDEF and $PQLDEF. The module SYS$CREPRC in
PLISYSDEF contains:

%INCLUDE $PQLDEF;
%INCLUDE $PRVDEF;

/* 9uota list definitions */
I* Priuilese bit definitions *

Table 19-3 summarizes the symbolic definition text modules in PLISYSDEF
and gives the names of the modules in which they are included.

Table 19-3: Symbolic Definition Modules in PLISYSDEF

Module Included in

$ACCDEF SYS$SNDACC

$JBCMSGDEF SYS$SNDACC, SYS$SNDSMB

$JPIDEF SYS$GETJPI

$0PCDEF SYS$SNDOPR

$PQLDEF SYS$CREPRC

$PRVDEF SYS$CREPRC, SYS$SETPRV

$PSLDEF n/a

$SEC DEF SYS$CRMPSC, SYS$MGBLSC, SYS$DGBLSC

$SMRDEF SYS$SNDSMB

System Services 19-5

19.4 Examples of System Services

The examples on the next few pages illustrate a number of system service
calls. These examples illustrate:

• Translating a logical name

• Creating and deleting a mailbox

• Using timer and time conversion routines

• A CTRL/C routine

• Obtaining status and performance information about the current job or
process

All the sample programs use the system service INCLUDE files in
PLISYSDEF to declare the system services. The text of each sample program
shows the INCLUDE file for the system service.

All procedures also include the module $STSDEF; however, the contents of
this text module are not shown in the examples. The contents of $STSDEF
are listed in this manual in Chapter 16, "Return Status Values."

System Services 19-7

Sample Program 19-1: Translating a Logical Name

ORION: PROCEDURE RETURNS(FIXED BINARYl31ll;

%INCLUDE SYSSTRNLOG;
I* Translate Losical Name sYstem service *I
declare sys$trnlos external entry (

char(*) t I* loSical nar1ie
0

strin.9 */
fixed bin\15) 1

char(*),
fixed bin(7),
fixed bin\7)'

/* variable to receive translated lensth */
'* variable to receive translated name */
/* variable to receive table number */
/ .. ;.;. 1.!ariable to recei1.!e access 11iode */

fixed bin(31l value) I* table search disable masK */

oPtions(variablel returns(fixed bin(31l l;
%INCLUDE $STSDEF;

DECLARE CYGDES CHARACTER(G) STATIC INITIAL.('CYGNUS') t

NAMEDES CHARACTER (63) 1

NAMELEN FIXED BINARYC15l;

DECLARE SS$_NOTRAN GLOBALREF FIXED BINARYC31) VALUE; 8
'.3TS$ 1)ALUE = SYS$TRNLOC (CY GOES ·'.r~AMELEr~ d~AMEDES;;;;) ; 0
IF STSSVALUE = SSS_NOTRAN THEN

ELSE
PUT SKIP LI'.3T('C'YGNUS not defined ..); 0

IF STS$SUCCE S THEhl 0
PUT LIST 'CYGNUS i5 1

1

UBSTR C NAME DES, 1 d"1At·1EL.EN l 1 ,

RETURt~ (STS$l.JALIJE ; f)
END;

System Services 19-9

Sample Program 19-2: Creating a Mailbox

CREATE_MAILBOX: PROCEDURE OPTIONS<MAIN> RETURNS
<FIXED BINARYC31>>;

%INCLUDE SYS$CREMBX;
I* Create Mailbox and Assisn Channel sYstem service */
declare sys$cre1r1bx external entr~' (O

fixed bin(31) value, /*Permanent flaS *I
fixed bin(15l /*variable to receive channel number *I
fixed bin(31> value1 /*maximum messase si~e *I
fixed bin(31) value, I* buffer size*/
bit(32l alisned value1 /*Protection mask*/
fixed bin(31l value 1 I* access mode *f
char(*)) /*mailbox losical name *f

oPtions(variablel returns(fixed binC31ll;
%INCLUDE $STSDEF;
%REPLACE MESSAGE_SIZE BY 132;

DECLARE PERMANENT FI>(ED BINARYC31) STATIC INITIAL. (1 l, f)
CHANNEL Fii<ED BINARY(15),
MAiLLENGTH FI >'.ED BI NARY C 31 l STATIC I t--l IT I AL C t1ESSAGE S I ZE l , f)
PROT_MASK BITC1Gl ALIGNED STATIC INITIAL(1 FFOO'BL!l, 0
MAILBOX_NAME STATIC CHARACTER 111)

HIITIALC 'PLLMAILB0/ 1
);

!* Call SYSSCREM~X omittins oPtional arsuments, *
STSSVALUE = SYSSCREMBXC

PERMANENT,
CHA~WEL,

MAX_LENGTH1 0
'PROT _MASK"; I

t·1A I LBO/. ... NAME l ;

Return to command level with status. If SYSSCREMBX comPleted
with an error, the aPProPriate messase is disPla1ed at the command
le1_.1el.

RETURN(STSSVALUEl;
Hm;

System Services 19-11

Sample Program 19-3: Deleting the Mailbox

DELETE_MAILBOX: PROCEDURE OPTIONS (MAINl RETURNS (FIXED BINARY(31ll;

%INCLUDE SYSSASSIGN;
I* AssiSn I/O Channel system service */
decldre sys$assisn external entry (

0

char(*), I* device name or losical name */
variable to receive chatinel number */

I* access mode */
fixed bin(15l, I*
fixed bin(31l
char(*))

1.i a 1 u e '
I* associated mailbox name */

oPtions(variablel returns(fixed binarYC31));

%INCLUDE SYSSDELMBX;
I* Delete Mailbox system service */
declare sys$delmbx external entry (

fixed bin(31l value) /*channel number of mailbox */

returns (fixed bin(31));

DECLARE MAILBOX_NAME CHARACTER(11J STATIC INITIAL
<

1 PLI_MAILBO>i' l 1

CHANNEL FIXED BINARY(15l;

%INCLUDE $STSDEF;

,l.*"

..... ·:=?-

Call SYS$ASSIGN and checK return; if not successful exit

STS$VALUE = SYS$ASSIGNCMAILBOX_NAME1CHANNEL1, ,)
IF ~STS$SUCCESS THEN GOTO EXIT_WITH_STATUS;

Cal SYS$DELMBX and checK return

~;T:3$ 1.,JALUE = S\':3·$DELMB>'. C C::Hf:iNNEl l ; €)

EXIT_WITH_STATUS:
RETURNCSTS$VALUEl;
Et'-jD;

System Services 19-13

Sample Program 19-4: Obtaining a System Time Value

This Procedure converts a time siven in ASCII format ta a
84-bit time value that is used internally by VAX/VMS,
lnPut strinss must be of the farm:

dd-mmm-· hh~mm:ss.cc

d d d d h h :: ill ii°I :: S ·:;. I C C

(far an absolute date or time)
(far a delta time)

GETBINTIM: PROCEDURE (ASCJI_STRINGl RETURNS(BITlG4l ALIGNED)

%INCLUDE SYS$BINTIM;
'* Convert ASCII Strins ta Binary Time system service *'
d e c l a r e '; / ·::; $ b i n t i ir"1 e ;-.<: t e r n a l e n t r Y (0

ch a r (-*·) '* ASCII strins */
bit(Gt~) alisnedl '* variable ta receive sYstem time */

returns (fixed binaryl3111,
'X.It··.j[l.1....IDE $-:3TSDEF;

DEC:LARE ASC:II_STRING CHARAC:TER(*) I

BINARY_TIME BIT(GQl ALIGNED;

':3T'3·$- 1)(11.l....IE: SYS$BINTIM(ASC:II_STRING1BINARY_TIMEl; @

If successful, return binary time ta paint of inuacatian. Otherwise•
eturn 0 this results in absolute time 17-NOV-1858,

IF STS$SUC:CESS THEN RETURNIBINARY_TIMEl;
[l :3E i;'ETURN (0 l ;

System Services 19-15

Sample Program 19-5: Setting a Timer

SET_TIMER: PROCEDURE OPTIONS(MAIN> RETURNS
(FIXED BINARYC31ll;

%INCLUDE SYS$CLREF;
I* Clear Euent Flas system seruice */
declare sys$clref external entry (

fixed binC31) ualue) /* euent flas number */

returns (fixed bin(31 l l;

%INCLUDE SYSSSETIMR;
I* Set Timer sYstem seruice */
declare sys$setimr external entrY (

fixed bin(31l ualue1 /* euent flas number*/
bit(G4) alisned1 /*time value*/
entry value, I* external AST Procedure */
fixed bin(31) value) /*AST Parameter*/

DPtions(uariable) returns(fixed bin(31ll;
%INCLUDE SYSSWAITFR;
I* Wait for Event Flas sYstem service */
declare sys$waitfr external entry (

fixed binC31) ualuel /* euent flas *I

returns (fixed bin(31) l;

%INCLUDE $STSDEF;
DECLARE GETBINTIM ENTRY

CHAR(*) l /* character strina tiirie */ 0
RETURNS CBITCG4l ALIGNED>;

I* Clear euent f las 5 */
STSSVALUE = SYS$CLREFC5);
IF ~STSSSUCCESS THEN RETURNCSTSSVALIJEl;

I* Set the timer for 10 seconds */
STS$l.JALUE = SYS$SETIMRC5 1GETB-INTIMC 'O 00:00: 10 / 1, 1, 6)
IF ~STS$SIJCCESS THEN RETURNCSTSSVALUEl;

I* Wait for euent flas 5 */
STS$VALIJE = SYS$WAITFRC5l;
IF ~STSSSUCCESS THEN RETURN CSTSSVALIJEl; 0
PUT Sl'\:IP LIST('Tiirier upl 1

);

RETIJR~·l (1 l;
ENDi

System Services 19-17

Sample Program 19-6: Establishing a CTRL/C Routine

SET_CTRLC: PROCEDURE RETURNS(FIXED BINARY(31ll;

%INCLUDE SYS$ASSIGN;
I* Assisn I/O Channel sYstem
declare sys$assiSn external

cha.r(*),
fixed bin(15) t

fixed bin(31l value1
char(*))

0
seri.iice *I

entrY (
f* device name or losical name
f* variable to receive channel
f* access mode */
I* associated mailbox name */

oPtions(variablel returns(fixed binarYC31ll;
%INCLUDE SYS$QIO;
I* Queue I/O Reguest system service */
declare sys$gio external entry (

fixed binC31) \!alue1
fixed bin(31) value,
fixed bin(31l val~e,

an Y,

f* event flas number */
channel number */

I* I/O function code *f
I* I/O status block */
I* external AST Procedure ••

*f
nu1r1ber

entry i.ialue,
anY 1.ialue) '* AST Parameter and 1/0 Parameters */

oPtions(variablel returns (fixed binC31l);
%INCLUDE SYSSWAITFR;
I* Wait for Event Flas system service */
declare sYsSwaitf r external entry

fixed bin(31l value> /*event flas */

returns (fixed binC31));
%INCLUDE SSTSDEF;

Declare input and outPut arsuments. The [_INTERRUPT variable is an
arbitrary value sPecif ied for the VAXCONDITION condition

DECLARE TTCHAN FIXED BINAR (15l
IO$_SETMOOE1IO$M_ TRLC STl

1 ·i>i- t ri11inal channel·~·/ f)
I* 0 function codes ·~·/ 6)

FIXED BINARY(1l G OBALREF V LUE;

(Continued on page 19-21)

System Services 19-19

Sample Program 19-6 (Cont.): Establishing a CTRL/C Routine

DECLARE l rose'
:2 1)Al_UE FI/ED (15) I /~. r;:eturn <:;t tu ~-/ e
? t··-10T USED\:J) F"I/ED\ 15) •

.... ?~ST Et···1TRY \P1Jit\ITEF'), 1 ·~· CTl-~liC f:1:3T rout1.n;;:.· *' 0
1 .•. • .•• Jt···1TEF'RUPT FI/ED f.3It··-1?~F'\'(3l '·~· ?i:3T P<:irainett:.·r ·~·/ 0

E/TERNAL STATIC INIT\555);

UECL..!:~r~·E I!J ... f3UC::C::F:.'.3E; BITI 1) AL.ICNED t3A:::;E[)({1DDF~(1u:::1e,, 1)('1LUFl) ~ f)
i* Call Assisn I/O channel to Set a terminal channel and then */
I* call Queue I/O Re9uest to enable the terminal for CTRL/C */

Eno;

STS$t,!ALIJE = SY"S$ASS I Ct'-j ('TT' 1 TTCHM-1, ,) ; @
IF ~STS$SIJCCESS THEN RETIJRN(STS$VALIJE);

STS$l,!ALIJE = SYS$C) I 0 (1 I TTCHM-1 I

IO$_SETMODE+IO$M_CTRLCAST1/* function */ 0
IOSB-1 /* I/O status block */
11 i* omit OIO AST arsumen *
C_AST, i* AST routine for 10$_ TR CAST*/
ADDR(C>._.UHERRUPT) +/·~· Para.Meter for CTRL C :3T */
'' 11); i* unspecified p:J and P *

IF ~STS$SUCCESS THEN RETURN\BTSSVALUE);

STS$VALU = SYS$WAITFR\1);
IF .·.I O .. _s CCES'.3 THEN RETIJF't'-1 (I o:;e + 1)AU .. JE) ; 4D>
RETIJRt··~ (1

System Services 19-21

19.4.4.3 Testing the CTRL/C Routine - The procedure TESTC, in Sample
Program 19-8, tests the SET _CTRLC and C_AST routines. The techniques
used in this procedure can be applied to any procedure in which you want to
detect and respond to an external interrupt via (CTRL/c). The following notes are
keyed to Sample Program 19-8:

1. The procedure declares the external routine SET_CTRLC and the exter­
nal variable C_INTERRUPT.

2. The value of C_JNTERRUPT is used as a condition value for the
V AXCONDITION keyword. This ON statement establlshes an ON-unit
to receive control when any procedure uses the V AXCONDITION key­
word to signal the condition value C_INTERRUPT. In this short test
example, the ON-unit merely displays a message, resets the CTRL/C
handler, and continues the program. In effect, a CTRL/C handler can be
much more elaborate: you may want to use it to close files, to advance
processing to a labeled statement or block, and so on.

Note that once a CTRL/C handler has executed, it cannot be executed
again unless the I/O request that establishes a handler is reexecuted. To
keep a CTRL/C handler active, it is common practice to reenable the
CTRL/C routine within the AST routine itself. In this example, the
ON-unit reenables the CTRL/C handler by calling SET_CTRLC.

3. The procedure calls SET_CTRLC to establish the CTRL/C handler.

4. This procedure places itself in a loop. Each time (CTRL/c) is entered, it
displays its message for the C_INTERRUPT ON-unit and continues.

Note that when this program is run, it can be interrupted at the terminal and
stopped only by the (CTRL/Y) function.

Sample Program 19-8: Testing the CTRL/C Routine

TESTC: PROCEDURE OPTIONS(MAINl RETURNS(FIXED BIN(31l l;

%INCLUDE $STSDEF;
DECLARE SET_CTRLC ENTRY RETURNSIFIXED BIN(31l l,

C_INTERRUPT FI>zED BINARY E>'.TERNAL STATIC H1ITl555l; 0

ON VAXCONDITIONCC_INTERRUPTl BEGIN; 8

END;

PUT SKIP LISTC'CTRL/C interruPt 1
);

STS$VALUE = SET_CTRLC();
END;

STS$l.JALUE = SET _CTRLC (l ; f)
IF ~STS$SUCCESS THEN RETURN(STS$VALUEl;

DO WHILE C 1<2 l; 0
ENDi W

System Services 19-23

Sample Program 19-9: TIMRE and TIMRB

TIME: PROCEDURE;

%INCLUDE SYSSGETJPI;
I* Get Job/Process Information system service */
declare sys$SetJPi external entry (

fixed bin(31l value, I* event flas number */
fixed bin(31l, I* Process identification */
char(*), I* Process nar11e strinS */
anY, I* iter11 list */ 0
any, I* I/O status block */
entry value'
anY \.Jaluel

I* external AST Procedure */
I* AST Procedure arSument */

options (variable) returns (fixed bin(31ll;

I* INCLUDE file for definitions re9uired by SYS$GETJPI */

%include $JPIDEF; I* iter11 codes */ 8

%INCLUDE $STSDEF;

DECLARE 1 JPI_LIST STATIC EXTERNAL, 8
2 JPI_BUFIO, /* Buffered I/O count */

3 LENGTH FU<ED BIN(15) INIT CL!l,
3 CODE FI><ED BIN(15l INIT (JPILBUFIOl' 0
3 ADDRESS PTRt
3 RETURN_LENGTH FU<ED BIN(31l INIT (0)'

2 JPI_CPUTIM, /*CPU time */
3 LENGTH FI><ED BIN(15l INIT CL!l,
3 CODE FI>(ED BIN(15) INIT (JPILCPUTIMl' 0
3 ADDRESS PTRt
3 RETURN_LENGTH F !>(ED BIN (31) IN IT (0 l ,

2 JPI_DIRIO, /*Direct I/O count */
3 LENGTH FrnED BIN(15) INIT (Lil INIT (JPILDIRIOl' 0
3 CODE FI><ED BIN(15),
3 ADDRESS PTRt
3 RETURN_LENGTH FI><ED BIN(31) INIT (0)'

2 JPI_PAGEFLTSt /* Pase faults */
3 LENGTH FI><ED BIN(15) INIT CL!),
3 CODE FI><ED BINC15l INIT (JPILPAGEFLTSl' 0
3 ADDRESS PTRt
3 RETURN_LENGTH F U<ED BIN (31) IN IT (0) '

2 ENDLIST FIXED BIN(31l INIT (0);

DECLARE CTO,CLOCICTIME) FLOAT BIN\24) STATIC E\TERNAL; 0
DECLARE FORSSECNDS ENTRY (FLOAT BINf2il)) RETURNS (FLOAT BINf2i!)J,

DECLARE BUFI01END_BUFIO,CPU M END_CPUTIM1DIRI01END_DIRI01
AGEFLTS END_PAGEFLT IXED BIN\31) STATIC EXTERNAL;

DECLARE PUSECON S FLOAT BIN ii
DECLARE S$_NORM L FIXED BIN 1 GLOBALREF VALUE;

(Continued on page 19-27)

System Services 19-25

Sample Program 19-9 (Cont.): TIMRE and TIMRB

TIMRE: ENTRY;
.JPLBUFIO.ADDRESS':=ADDR(END_BUFIO); 0
JPI_CPUTIM.ADDRESS=ADDRCEND_CPUTIMl;
JPI_DIRIO.ADDRESS=ADDR!END_DIRIOl;
JPI-PAGEFLTS.ADDRESS=ADOR(END_PAGEFLTS>;

IF SYS$GETJPIC ,,,JPLLIST111)···=SS$.. _.NORMAL f)
THEN. PUT SKIP LIST (1 Error fror11 SYS$GET.JPI ');

CLOCK_TIME=FOR$SECNDS<TOl;
CPUSECONDS=CEND~CPUTIM-CPUTIMl/lOOEO;
BUFIO=END_BUFIO-BUFIO; CD
DIRIO=END_DIRIO-DIRIO;
PAGEFLTS=END_PAGEFLTS-PAGEFLTSi
PUT SKIP EDIT ('TiMes in seconds' ,'Pase' 1'Direct' ,'Buffered')

CAC20) 1A(10) ,A(10) 1A(10l);
PUT Sl<IP EDIT ('CPU','ElaPsed'1'Faults 1 1··1;0•,'I/O'l

CAC10) 1AC10l 1AC10) 1AC10) 1AC10));
PUT SKIP EDIT CCPUSECONDS1CLOCK_TIME1PAGEFLTS1DIRI01BUFIOl

CF\711) 1COLUMNC11l 1F(tl11) 1COL..UMNC21l 1FC710l 1COL.UMNCJll,
FC710l 1COLUMN\Ll1) 1F\710ll;

I* After callins TIMRE1 fall throush here to re-initialize*/

TIMRB: ENTRY; 0
TO=FOR$SECNDSCOE0);
.JPLBUFIO.ADDRESS=ADDR\BUFIOl; (S)
JPI_CPUTIM.ADDRESS=ADORCCPUTIMl;
JPI_DIRIO,AODRESS=ADORCDIRIOl i
JPI_PAGEFLTS.ADDRESS=AODRCPAGEFL.TSl;

IF SYS$GETJPI(I' 1JPI_LIST1' 1)":::SS$... NDr~M{1l..
THEN PUT SKIP LIST ('Error froM SYS$GETJPI ');

RETURN;
Et··.jD i

System Services 19-27

Chapter 20
Mailboxes

A mailbox is a virtual input/output device that provides a means of communi­
cation for images executing in different processes. Mailboxes are used by the
operating system to initiate and record system operations; they can also
provide communication facilities for user applications.

This chapter provides:

• Some general information on using mailboxes

• Examples of simple procedures that perform input and output to mailboxes

Note that this chapter provides only information that is pertinent to actual
input/output to mailboxes and does not describe mailbox creation. There is a
system procedure to create a mailbox, the Create Mailbox and Assign Chan­
nel system service (SYS$CREMBX). For an annotated example of a call to
this system service, see Section 19.4.2, "Mailbox Services."

20.1 Using Mailboxes

The next few subsections provide information on how the system controls
the creation and use of mailboxes and a typical use of mailboxes in an
application.

20.1.1 System Information

When a program creates a mailbox, the operating system allocates dynamic
memory to store control information about the device and to buffer input and
output data. The ability to create mailboxes is controlled by two separate
privileges:

• The privilege to create temporary mailboxes (TMPMBX) permits a user to
create a mailbox that is automatically deleted when the image that created
it completes execution.

• The privilege to create permanent mailboxes (PRMMBX) permits a user to
create a mailbox that continues to reside in system memory until it is
specifically deleted.

20-1

PROCESS A (CONTROLLING)

1. Creates the mailbox and gives it the
logical name PL/_MAILBOX. The system
gives it the device name MBA99:

2. Opens the file:

OPEN FILE (MFILE) INPUT RECORD
TITLE(. PLl_MAILSOX.);

3. Continuously reads data and messages
from the mailbox:

LOOP: READ FILE (MFILE) INTO(M ..

GOTO LOOP; !(

PROCESS C
1. Opens the mailbox for writing:

OPEN FILE (MAILS) OUTPUT RECORD
TITLE('PLI MAI LSOX');

2. Writes messages to the mailbox:

WRITE FILE(MAILS) FROM (M. TEXT);

3. When there are no more messages to
write, closes the file:

CLOSE FILE (MAILS) ;

Figure 20-1: Using Mailboxes

20.1.3 Effects of the OPEN Statement

PROCESS B
1. Opens the mailbox for writing:

OPEN FILE(F) OUTPUT RECORD
TITLE(' PLl_MAILSOX ');

2. Writes messages to the mailbox:

WRITE FILE(F) FROM (MSG) ;

3. When there are no more messages to
write, closes the file:

CLOSE FILE(F);

When the TITLE option of an OPEN statement specifies the logical name of a
mailbox; the run-time system associates a PL/I file with the mailbox device.
The OPEN statement actually assigns an 1/0 channel to the mailbox; a chan­
nel is an input/output path used by the operating system to perform data
transfers.

Every OPEN statement executed for the same mailbox assigns another
channel to the device. The system keeps a count of all channels assigned to a
mailbox so it knows when to delete the mailbox.

20.1.4 Effects of the CLOSE Statement

A CLOSE statement for a mailbox disassociates the PL/I file from the device
and deassigns the channel to the device. When the count of channels assigned
to a temporary mailbox reaches zero, the system deletes the mailbox and its
logical name equivalence, if any. When the count of channels assigned to a
permanent mailbox that is marked for deletion reaches zero, the system de­
letes the permanent mailbox and its logical name equivalence, if any. The
system service Delete Mailbox (SYS$DELMBX) must be invoked to mark a
permanent mailbox for deletion.

Each time a CLOSE statement is executed for a mailbox, the file system
writes an end-of-file to the mailbox. When this end-of-file is encountered
during an input operation, the ENDFILE condition is signaled.

Mailboxes 20-3

3. The OPEN statement for the mailbox specifies that it is an input file and
that its logical name is PLLMAILBOX.

4. LOGGER opens an output log file named MAILTEST.OUT.

5. This procedure establishes an ENDFILE ON-unit for the mailbox. This
ON-unit transfers control to the label LOOP, which is the main read loop
of the procedure. This statement ensures that LOGGER will not be
accidentally terminated if an ENDFILE condition is signaled as a result of
a program executing a CLOSE statement to close the mailbox file.

6. Each READ statement is followed by a test of the first field in the mailbox
record. By application convention, when the value associated with the
global symbol END_RUN is written to this field, it indicates that the
program is complete. If this field contains any other value, LOGGER
writes the record into the log file and loops to read another record.

7. When the termination value END_RUN is received, control transfers to
the label FINISH, where LOGGER closes both files and returns.

Sample Program 20-1: Synchronous Mailbox Input/Output

LOGGER: PROCEDURE;
0

DECLARE (MAILFILE10UTFILEl FILE;
DECl_ARE 1 LOG._MESSAGE' A

Z TYPE Fii<ED Bil'lARY\31 l, ~
2 SYSTEM_TIME CHARACTERl25),
2 REQUESTOR CHARACTERC15l 1

2 STATUS FIXED BINARY\31l;

DECLARE END_RUN GLOBALREF FIXED BINARY\31) VALUE;

OPE~~ FILECMAILFILEl RECORD H1PIJT SEOIJEtHH\L f)
TITLE C'PLLMAILBO/');

OPEN FILECOUTFILEl PRitH TITLE\ 'MAil...TES1-.oUT'); 0

m,j ENDFILE\MAILFILEl GOTO LOOF'i /* I.9nore end····Df· .. file */ 0

LOOP:

FHHSH:

RETURN;
mo;

READ FI LE C MA I LF I LE l I t'HO C LOG_MES:3AGE) ;

IF LOG_MESSAGE,TYPE = END_RUN THEN GOTO FINISH; Q

PUT FILECOUTFILEl SKIP LISTCTYPE1SYSTEM_TIME1REOIJESTOR1
STATUS l ;

GOTO LOOP;

CLOSE FILE(MAILFILEl; f)
CLOSE FILECOIJTFILEl;

Mailboxes 20-5

Sample Program 20-2: Asynchronous Mailbox Input/Output

EMPTY-BOX: PROCEDURE OPTIONS(MAINl RETURNS <FIXED BINARYl31l l;

%INCLUDE SYS$ASSIGN;
/* Assisn I/O Channel S'/ste1r1 sert.Jice */ 0
declare s'/s$assisn external entr'/ (

.ch a r (*) ' / * de \.J i c e n a Ille or losical name */
fixed bin(15l
fixed bin(31)
char(*))

1.Jalue1
/* \.Jariable to
/* acce~s mode */
I* associated mailbox

oPtions(variablel returns(fixed binar'/(31));

%INCLUDE SYS$QIO;
/* Queue I/O Reguest s1stem service */
declare s1s$sio external entr'/

fixed bin(31l value1
fixed binC31l value,
fixed bin(31l value'
an Y'

/* event flas number */
I* channel number */
I* I/O function code *!

/* I/O status blocK *
I* external AST Proce ure */

nu1r1ber */

entry \.!alue1
anY \.Jaluel I* AST Parameter and /0 Parameters */

oPtions(variablel returns (fixed bin!31ll;

%INCLUDE SYS$WAITFR;
/* Wait for Event Flas system service */
declare sys$waitfr external entry (

fixed bin(31l value)

returns (fixed binC31));

%INCLUDE $STSDEF;

DECLARE MBXCHAN FIXED BINARYC15l;

DECLARE !SS$ HWOFFILE 1IO$... READ 1-.JBU< 1IO$M __ Nrn.lJ FI\ED Bit··rnr:;;YC31) f)
GLOBALREF l.JALUE ,
1 IO_STATUS,

2 VALUE FIXED !15)
2 BYTES_TRANSFERRED FI\EDC15l,
2 NOT _USED F Ii<ED CJ 1 l r

IO_SUCCESS BIT Cl) ALIG~ED BASEDCADDRCIO_STATUS,VALUEJ);

DECLARE MESSAGE CHARACTERC132); 0

STS$ 1-.JALUE = SYS$ASS I GN C 'PL I __ MA I LBO\' r MB/CHAN, , l ; 0
IF ~STS$SUCCESS THEN RETURN CSTS$VALUEJ;

'*Use a DO-loop to read the mailbox; each OIO is followed
bY a test of the return status from QIOr then a wait for
the I/O completion. Then, the status value in the I/O
status blocK is checked. If it contains SS$_ENDOFFILE,
return STSSSUCCESS. Other-wiser return error value

DO WHILE CIO_STATUS,VALUE ~= SS$_ENDOFFILEJ;
STSS 1..JALUE = SYS$0IO C 1 rt1B/CHAN' 0

IO$_READVBLK+l0$M_NOWr 0
I O_STATUS' r' f) 0
ADDR (MESSAGE l rLEt'-lGTH (MESSAGE l , , r, 1,

IF ~STS$SUCCESS THEN RETURN<STS$VALUEJ;

(Continued on next page)

Mailboxes 20-7

Chapter 21
Accessing Files on a Network

If your system supports DECnet-VAX facilities, and your computer is one of
the nodes in a DECnet-VAX network, you can communicate with other nodes
in the network by means of standard PL/I input/output statements. These
statements provide two distinct types of network operations:

• Remote file access lets you read and write files on a remote node as if the file
were on your local system.

• Task-to-task communication lets you exchange data directly with a job that
is executing at a remote location.

Examples of both remote file access and task-to-task communication using
PL/I statements are given in this chapter. For complete details on using the
DECnet-VAX facilities, see the DECnet-VAX User's Guide.

21.1 Remote File Access

To access a file on a remote system, you include the node name in the file
specification Of the external file you identify for the execution of the program.
For example:

BOSTON::DBAO:[MALCOLMJTEMPS.TST

This file specification identifies the file TEMPS.TST in the directory
DBAO:[MALCOLMJ on the node BOSTON.

You can specify a node name in a file specification in either of the following
contexts:

• In the file specification in the TITLE option of an OPEN statement

• In the equivalence name you assign to a logical name before running a
program that refers to a file by logical name

21-1

SOURCE(HOST)SYSTEM

0 OPEN FILE (TASKFILE) RECORD OUTPUT
TITLE (. HSTN"MALCOLM YES"· :"TASK LOGGER".):

The OPEN statement initiates task-to-task communication
with the target node by specifying a task name. LOGGER.
in the file specification. The network program uses the
default directory of the user MALCOLM. specified in
the network file specification. to locate the command
file LOGGER.COM.

The cooperating task on the target network specifies
the logical name SYS$NET in the OPEN statement that
completes the network connection between the two
tasks. When this OPEN statement completes. communication
can begin.

TARGET SYSTEM

LOGGER.COM f)

$RUN COPYTASK@)

The network program submits the
specified command file to the
batch job queue on the target system.

This command file executes the
program image of the cooperating
program.

OPEN FILE (NETFILE) RECORD SEQUENTIAL
INPUT TITLE (. SYS$NET.): 0

0
WRITE FILE (TASKFILE) FROM (TASK REC): --------- READ FILE (NETFILE) INTO (LOG REC):

All communication across this network link
is synchronous. Following each WRITE request
by the source task. the task must wait until
the target task reads the record

CLOSE FILE (TASKFILE): (l)

The CLOSE statement destroys the logical link
and terminates the task-to-task communication

Figure 21-1: Network Task-to-Task Communication

The following notes are keyed to Figure 21-1:

1. The program that initiates the communication is called the source task. It
requests a network connection to a target task by specifying a task name
in a file specification that contains a node name. This OPEN statement
initiates the request and associates a PL/I file with a network logical link
created by DECnet.

2. DECnet locates the command file LOGGER.COM on the remote node
specified in the OPEN statement. The name of the command file is speci­
fied by the task specification string, TASK=LOGGER. DECnet submits
this command file for execution on the remote system.

3. The command file must contain the command necessary to initiate the
execution of the cooperating program, COPYT ASK.

4. The cooperating target task must complete the connection to the source
task by executing an OPEN statement to open the file
SYS$NET. SYS$NET is a logical name assigned by DECnet to the net­
work job that identifies the source task's node and process.

5. After the logical link is established, the cooperating programs, or tasks,
read and write data using the PL/I files associated with the logical link.

6. When either program executes a CLOSE statement for the file, the logical
link is broken and an end-of-file record is written to the cooperating task.

Accessing Files on a Network 21-3

The following notes are keyed to Sample Program 21-2:

1. The image file TARGET.EXE contains the compiled and linked code for
the procedure TARGET_TASK. The declarations in the procedure
TARGET_TASK include the files INFILE and OUTFILE, a structure
into which messages will be read across the logical link, and a message
field from which data will be written to the output file.

2. The procedure establishes an UNDEFINEDFILE ON-unit for any error
conditions that occur creating the logical link; at the label FILE_
ERROR, the status code is reported and the procedure exits.

3. The ENDFILE condition provides for a normal termination of the logical
link. When the program SOURCE_TASK closes the file TASKNAME,
an end-of-file condition is returned on the next read attempted in
TARGET_ TASK.

4. The first OPEN statement opens the file SYS$NET; if this open is
successful, the network connection is established. The second OPEN
statement opens the file TASK.DAT, the output file that will be created
at the target node, in the default directory for the user name BEANS.

5. The read loop in this procedure reads a message from the logical link, edits
the data, and places the record in the output file.

Sample Program 21-2: A PL/I Target Task

D E C L f.'1 r:;; E C I t-J F I L E , U LI T F I L.. E ! F I L.. E ; F i 1 E! "" ,

D E C L (1 F< E l I ... iJ C t'1 E :::::; S (1 G E , / " ::::; t 1· u c t 1.1 e 1 0d in e ase ~ 1

STATUS FI ED BIN(31l
TEXT CHARACTER(QO! VARYING;

DECLARE MESSAGE CHARACTER(80!; Variable to conuert Me ase ~;

Cl t.j LI t-J D E F I N E D F I L E (I t··~ F I L.. E l C; U T D F I L.. [.... E F< F< iJ F< ; . / " 1-1 e t 1.'.1 u r I< 1! r r a r ' =~ i f}

UN ENDFILE(INFILEl GIJTIJ FINISH; / ·+ t-·.j a r ii"°1 .::J. 1 c a ii"°1 F 1 "~ t :i a n ~- / @)

LDDP ::

FINISH~

IJPEN FILE (lNFILE! RECDRD SEWUENTIAL INPUT
TITLE (.'SY~:;*t··.jET.'l; ii• 0FPn '.:3Y':3:t.-NET f./ 0

IJPEN FILE(DUTFILEl RECORD SEWUENTIAL IJUTPUT
TITLE(.'Ti~SK,Df:1T.'l; i* DFen outFut las f i1P f/

l"-?EAD FILE(INFILEl INTD (LDG ME~:3~3f:1C;E);
PUT STRING(MESSAGEl EDITCSTATUStTEXTl
WRITE FILE\DUTFILE) FROM (MESSAGE);
G1JTC:1 L.C:11]p;

CLOSE FILE(INFILEl;
CLOSE FILE<OUTFILEl;
RETURN;

0
(F (l:3 l , /, (\ l ;

FI LE._EF.'RDR:

END;

PUT SKIP LIST< .'InFut file error.' tONCDDE' 11 ~

F.'ETUF.'N;

Accessing Files on a Network 21-5

Chapter 22
Calling SORT Procedures

VAX-11 SORT is a utility program that provides a range of sorting capabili­
ties and options. You can use the SORT program in two ways:

• At the DCL command level, you can invoke the DCL command SORT. By
specifying input and output files and sorting options, you can perform
sorting functions interactively from the terminal.

• In a PL/I program, you can call SORT procedures. These procedures, or
subroutines, are summarized below.

For complete details on using SORT, see the VAX-11 SORT User's Guide.
For additional information on invoking procedures that are written in lan­
guages other than PL/I, and for an explanation of ways of passing parameters
to non-PL/I procedures and testing the return status from a procedure, see
Part III, "Procedure Calling and Condition Handling."

22.1 Declaring SORT Procedures

The default PL/I text library PLISYSDEF.TLB contains declarations for
SORT procedures as external functions. The text module names have the
forms:

SOR$name

where SOR$name is the name of the SORT procedure. Thus, to declare a
SORT procedure, specify a %INCLUDE statement as in this example:

%INCLUDE SORSPASS_FILES;

The compiler, by default, locates the module SOR$PASS_FILES in
PLISYSDEF.TLB during the compilation.

All SORT parameters are passed either by descriptor or by reference.

SORT procedures do not require you to specify commas for omitted trailing
arguments.

All SORT procedures are declared with the attribute RETURNS (FIXED
BINARY(31)). You must invoke the procedures as functions, and you may
test the value returned as an indication of success or failure.

22-1

Sample Program 22-1: Sorting Files

SORTEM: PROCEDURE RETURNS (FIXEDl;

'* Include the declarations of the SORT Procedures re9uired
far a sort usins the file interface. *I

%INCLUDE SOR$PASS_FILES;
declare sar$pass_files external

character(*) 1

character(*),

en tr Y (

f:i.lP */
f:i.le ·~/

0

fi1\ed bin~HY(7)

fiHed binan'(/)

!·~· inPut
!·~·output

/·•·output
/·•· OUtPUt

file orsanization *I

file rPcord forMat */
fixed binan'(7l
fixed binarY(15l
fixed binary(15),
fixed binar·/(31),
fixed binary(Jl))

I* output file bucket size */
I* out.Put file block size */
/* output file MaxiMUM record size */
/* output file allocation */

/* file oPtions */

oPtionsCvariablel returns (fixed binarylJ111,
%INCLUDE SOR$1NIT_SORT;
declare sor$init_sort entrY(

an Y ,

fixed binary(15l,
fixed binary(Jll,
fi:><ed binary(/)
fixed binary(/)
fi><ed binary(/)
e n t r Y 1 • .1 a 1 u. e ,
bit(32l ali;::fned)

'* sort keY buffer */
'* lonsest record lensth *I

·~ inPut file size */
'* nuMber of work files *I

I* tYPe of sort */
I·•· t~eY ;::.1ze ·:it/

/* coMParison routine */

I* sort DPtions */

oPtions(variable) returnslfixed binarY(31ll
%INCLUDE SOR$SORT_MERGE;
%INCLUDE SOR$END_SORT;
declare sor$end_sort external entrY

returns(fi><:ed binary(Jl));

%INCLUDE $STSDEF;

Declare the inPut and output files; these are losical naMes
which Mu.st be defined before the ProsraM is run, *I

DECL.ARE INPIJT.. ... FIL.E CHARACTE~R(f3) '.3TfHIC It.,lIT('INFILE' f)
OUTPUT FIL.E CHAPACTERl7l SHiTIC INIT('OUTFil.E'l;

1* Declare the keY buffer array re9uired to sort the first 80
characters of any record. This 'array' is declared as a
structure to clarify the exaMPle, An array can also be used. *I

DEC::LARE KEY_BIJFFER STATIC,
NUMBER 1:::-JF KE\'S FIXED Bit.,l?iP\' (J.:;1 INIT(l),

.. .., KEY TYPE FI\ED Blt"~f::iRY (J.:;) INIT11l, /·•· charact;:,;r ·~·/

~ KEY_ORDER FIXED BINAPY (15l INIT(Q), ''*'ascend ins order•'
... ,. '.3TART POS FI /ED B HUH~""{ (1 ::;) I t'H T (1 l I

.. .., KEY l_ENGTH FI\ED BIN{;RY(15l INIT(\:30l,
ONGEST_RECORD FIXED BINARY(lSl STATIC INITCBOl

'* Declare slobal SYMbol naMes for RMS values to define th;:,; outPut file */

DECl.ARE (FAB$C l..'AR1 F?iBSC: REl....l Gl....DBnl.f:;iEF Fl\ED f.31Nf:if~·Y(:Jll 1...J(il....LI[; G)

DE:CLAf~·E f~·ECOF.'D ... TYPE FI.'.ED BIN(.. .,
F'Il....E OPG F'I::.ED f.3INf::if:;iY(... 1 1,

f~FCORD TYPE
Fil....E DRC;

Fr;e·tc: 1)AR;
F'f:if.3$C r~EI....

(Continued on next page)

Calling SORT Procedures 22-3

Sample Program 22-2: A Record Sort

"!: !

This ProsraM sorts the file STATE_FILE based on the field
CAPITAL.NAME in each record,

Losical naMe e9uiualences are re9uired for the inPut file STATE_FILE
and an output file SORTED_FILE,

STATESORT: PROCEDURE OPTIONS (MAINl RETURNS (FIXED BINARY(31l l

Declare SORT routines
*/
%INCLUDE SORSINIT_SORT;
declare sor$init_sort entry(

an':/ ,
fixed binarY(15l,
fixed binarY(31l,
fi:><:ed binar/ '•
fi;-<:ed binar"/ 1 •• /.!

fixed binan'(/),
entry •.,1alue 1

bit(32l ali.9nedl

0

!* sort key buffer */
!* lonsest r~card lensth *'
!* input file size */
'* number of work files */
!* t/Pe of sort */
!·*· f;.e/ size it'·/

* comParison routine */
!* sort OPtions *'

oPtions(uariablel returns(fixed binary(31l l

%INCLUDE SOR$RELEASE_REC;
declare sorSrelease_rec external entry

: fixed binar/ 15)
2 fixed binar/(15)
.:.. Pointer)

!* descriptor for record buffer */
!* lensth of record */
/'ft: filler·¥:/
i* address of record *I

returns (fixed binary(Jlll;

%INCLUDE SORSSORT_MERGE;
declare sor$sort_Merse external entr/

returns (fii<:ed binar?"(31));

%INCLUDE SORSRETURN_REC;
declare sor$return_rec external entr/(

: fixed binar/ 151
: fixed binarY 15)
_ Pointer

fixed binarYC15ll

;* descriptor for record buffer */
!* lensth of record */
/:'fr filler*/
!* address of record *I
!* return lensth */

oPtions(uariablel returns(fixed binar/(311 l

%INCLUDE SORSEND_SORT;
declare sor$end_sort external entr/

returns(fixed binar/(31.i.i,

%INCLUDE SSTSDEF;

(Continued on page 22-7)

Calling SORT Procedures 22-5

Sample Program 22-2: (Cont.) A Record Sort

DECLARE SS$_ENDOFFILE GLOBALREF FIXED BINARYC31l VALUE,@
EDF BIT (1 l ;
EDF= 'O'Bi

KeY buffer and data for SORT routines

DECLARE 1 KEY_BUFFER STATIC,
2 NUMBER_OF_KEYS FI>(ED BINARY (15) INIT(1) ~

2 KEY_TYPE FIXED BINARY (15) INITC1l, I* character Ke1s *I
2 KEY_ORDER FIXED BINARY C15l INITCOl, I* ascend ins order *I
2 START_POS Fii<ED BINARY\15) INITC25) 1 6)
2 KEY .. _LENGTH Fii<ED BINARY(15l ItHT(20)'

LONGEST_RECORD Fii<ED BihlARYC15l STATIC I~~ITC18Gl' 0
KEYFIELD FIXED BINARY17l, I* Code to decide sort I
RETURN_LENGTH FIXED BINARYl15l; /* Re9uired parameter *

I* Declare a buffer to construct each record to be Passed to SO T */

DECLARE 1 STATE_RECORD1 /·~· COir"1Plete record*/ 0
2 KEYFIELD CHARACTERC20l t

2 STATE,
3 NAME CHARACTER (20) ,
3 POPULATION FIXED BINARYC31l,
3 CAPITAL,

LI NAME CHARACTER C 20 l ,
LI POPULATION FIXED BINARYC31l

3 LARGEST __ CITIESC2l,
LI NAME CHARACTER C 30 l ,
LI POPULATION FIXED BINARYC31l

3 SYMBOLS1
LI FLOWER CHARACTER (30 l ,
LI BI RD CHARACTER C 30 l ;

DECLARE 1 RECORD_DESCRIPTOR1
2 LENGTH F I>'.ED BI hlARY (15) , 0
° FILLER FIXED BINARYC15l,
2 ADDRESS POINTER;

InPut and outPut files

DECLARE STATE_FILE FILE INPUT RECORD SEPUENTIAL1 8
SORTED_FILE FILE RECORD OUTPUT SEQUENTIAL;

*/

call SOR$INIT_SORT

STS$VALUE = SOR$INIT_SORT(KEY_BUFFER1LONGEST_RECORDI;
IF hSTSSSUCCESS THEN RETURNCSTSSVALUEI;

(Continued on page 22-9)

Calling SORT Procedures 22-7

Sample Program 22-2: (Cont.) A Record Sort

Enter DO-loop to read the inPut file STATE_FILE, Then1 call
SORSRELEASE_REC+ The record consists of the key field concatenated
with the contents of STATE.

OPEN FILE(STATE_FILEi;
RECORD_DESCRIPTOR.LENGTH = 19G; ~
RECORD_DESCRIPTOR.ADDRESS = ADDR<STATE_RECORD) i

ON ENDFILECSTATE_FILEl EDF= '1'B;

READ FILE CSTATE_FILE) INTO(STATEi;
DO WHILE c···EoFl;

STATE_RECORD.KEYFIELD = CAPITAL.NAME; Ci)
STSSVALUE = SORSRELEASE_REC(

RECORD_DESCRIPTORl
IF hSTSSSUCCESS THEN RETURNCSTSSVALUE>;
READ FILECSTATE..-FILEl INTOCSTATE>;
END;

CLOSE FILECSTATE_FILEl;
PUT SK IP LI ST ('**** ALL RECORDS RELEASED_,) ;
/*

_/ ·¥

*

Call SORSSORT_MERGE to sort the records that were released

C.T:;st..JALI IE = :;nps:;npT MEPGE () ; 6.\

iF-~STS;SUCC~~i ~~~N-RE~UR~~~TSSVALUEl; ~

loop throush the DO-sroup to Set back each record and write it
to the sorted output file.

ST:3$ 1)ALUE = 1;
OPEN FILECSORTED_FILEJ OIJTPUTi 4D
RECORD_DESCRIPTOR,LENGTH = 17Gi
RECORD_DESCRIPTOR,ADDRESS = ADDRCSTATE>;
DO WHILE CSTSSVALUE h= SSS_ENDOFFILE>;

STSSVALIJE = SOR$RETIJRN_RECCRECORD_DESCRIPTOR1RETURN_LENGTH>;
IF STSSSUCCESS THEN WRITE FILECSORTED_FILE> FROM <STATE>;
ELSE IF hSTSSSUCCESS & <STSSVALUE h= sss_ENDOFFILE>

THEN RETIJRNCSTSSVALUEJ;
ENDi

CLOSE FILE <SORTED_FILEl;

Call SORSEND_SORT to finish up

STSSVALUE = SORSEND_SORTC1, m
IF ~STSSSUCCESS THEN RETURN<STSS~ALUEl

RETURNC1l; /*successful completion*'

All errors come here to return to the command level with the
status value of the error in RO,

E ROR: RETURNCSTSSVALUE>;
E Di

Calling SORT Procedures 22-9

Appendix A
Compiler Listing Format

This appendix provides sample annotated listings from the VAX-11 PL/I
compiler. It illustrates:

• Effects of the options in the /EN ABLE qualifier

• The machine code generated by PL/I

Figure A-1 illustrates the default listing and describes the information
provided in the listing.

Figure A-2 illustrates a storage map of the same program. The VAX-11 PL/I
compiler generates a storage map if you specify /ENABLE=LIST_MAP on
the PLI command; it generates a cross-reference listing in the storage map if
you specify /CROSS_REFERENCE.

Figure A-3 illustrates the statistic summary generated if , the
/ENABLE=LIST_STATISTICS qualifier is specified.

Figure A-4 illustrates a portion of a listing of a program compiled with the
/MACHINE_CODE qualifier.

A-1

7
8
g

10
1 1
12
1 3
1 LI
15
1G
1 7·
18
18
20
21
22

The following notes are keyed to Figure A-1:

1. The name of the first level-one procedure in the source program and its
identification. If the main procedure did not specify OPTIONS(IDENT)
the compiler uses the default identification VOOl.

2. The date and time of compilation, and the version of the compiler that
was used to compile the program.

3. The date and time that the file containing the source program was
created, and its full file specification (to a maximum of 44 characters).

4. The page number of the listing file and the page number of the source file.

5. Compiler-generated line numbers. The compiler assigns a number to each
line in the source program, including comment lines and lines read from
INCLUDE files.

Note that these line numbers do not necessarily correspond to the line
numbers, if any, assigned to the file by an editor that is line-number
oriented.

6. The nesting level, or def>th, of each statement. The outermost procedure is
always level 1. Additional level numbers are assigned to statements within
internal procedures, begin blocks, and DO-groups.

7. A vertical bar (:) character indicates a line that contains only a comment.

If the program is compiled with the qualifier /ENABLE=LIST_INCLUDE,
the %JINCLUDE statements are followed by the contents of the INCLUDE
files, with line numbers, as follows:

'X, I NCLIJDE STATE;
DECLARE 1 STATE BASED !STATE_PTRl 1

2 NAME CHARACTER 1201, '* Primary KeY */
,_ POPULATION FI>(ED BINARYC31) 1/* 3rd alternate f~.eY */
2 CAPITAL•

3 NAME CHARACTER \ 20) ,
3 POPULATION Fii(ED BINARY\31),

,_ LARGEST_CITIESC2l 1

3 NAME CHARACTER (30) 1

3 POPULATION FIXED BINARYl31l,
2 SYMBOLS,

3 FLOWER CHARACTER (30 l ,
3 BI RD CHARACTER (30) ,

STATE_PTR POINTER1
STATE_FILE FILE;

'* secondary - 1st alternate - KeY *I
I* tertiary - 2nd alternate - KeY */

The listing page shown in Figure A-2 illustrates the storage map page of the
program listing. This page is generated if either /ENABLE=LIST_MAP or
/CROSS_REFERENCE is specified on the PLI command. The notes keyed
to Figure A-2 appear below it.

Compiler Listing Format A-3

0
0 s
'E.
;-
~

~
oo·
rt-
5·

(Jq

"'zj
0
~ s
s:o
rt-

>
I
~

FLOWERS
t;ioo 1

Besin BlocK on line 3G

11 JUN-1880 15:43:51 VAX-11 PL/I v1.o Pase 3
11 JUN-1880 15:42:57 _DB7:CMALCOLMJFLOWERS.PLI;17

Identifier Naf!le Storase ::; i z e Line Attribute·::

INPUT_FLOWER au.toiTiat1c 32 b 'i]7 character(30), <.1arYin.;1, unali.9ned

Psect SYnOPsis e

Psect Nar11e Allocation Attributes

$CODE
$DATA
SYS IN
SYSPRINT
STATLF I LE

1054 b)'
1
450 b/
4
4

b '.'

b/

P sit ion-independent, relocatable, share, execute• read
ro it ion-independent• relocatable, read, write
rosition-inderendent • ouerlaY• relocatable, slobal •
Position indePendent • ouerla/, relocatable, slobal •

share,
share,

read• write
read• write

r ition~indePendent' ouerla/• relocatable, slobal • share• read' write

Procedure Definition MaP 0

Line Nar11e

3 FLOWERS
23 BEGIN
3G BEGIN
48 BEGIN

Cor1lf11and Line 0

!LIST=STORAGE/ENAB=LIST_MAP FLOWERS+STATETXT LIBRARY

Figure A-2 (Cont.): Compiler Storage Map

1. The compiler lists the names of all external entry points in the module and their attributes.

:Z. For each procedure in the source program, the compiler lists each declared name, giving:

- The user-specified identifier of the name

- The storage class to which the name belongs

- The amount of storage allocated for the name, where:

bi - indicates that the size is given in bits
by - indicates that the size is given in bytes

- The line number on which the declaration of the name appears. Note that if a declaration
is continued on more than one line (for example, in a structure declaration), the line number
is always the number of the line on which the DECLARE statement is terminated.

- The data type attributes of the name. If the name represents a member of a structure, the
attributes are preceded by the offset of the structure member from the base of the structure.

3. The Program Section (Psect) Synopsis lists the program sections created by
the compiler and their attributes. For an explanation of program sections and their
attributes, see Section 19.1.2, "Program Sections Created by PL/I."

4. The Procedure Definition Map lists each procedure and begin block in the program, giving the
line number on which the block is defined.

5. The Command Line shows the PLI command string that was processed, including input files,
qualifiers, and library files.

0
0
s
'E.
ro-
~

Figure A-3 illustrates the statistical summary that PL/I includes in the listing
if the /ENABLE=LIST_STATISTICS qualifier is specified. The following
notes are keyed to Figure A-3:

1. The compiler accumulates statistics for each phase of its operation.

2. For each phase of the compiler's operation, it lists I/0, memory, and CPU
time usage statistics.

FLOWERS
I.JOO 1

11 JUN-1880 15:44:16
11 JUN-1880 15:42:57

1)A/ 11 PL 1) 1 ()
_DB7:[MALCOLMJFLOWERS.PL.I;17

+-- ---------- I

: Performance Indicator
+ -·· -

Phase 0 f) buf i!o dir i./o pa.g·eflt uirt1i"1e11·1 1,.1orf'.set CPUtliri

Pass 1 totals
declare totals
Pass 2 totals

live analrsis
reorder invariants
eliminate redundancy
eliminate assisnments

oPtimizer totals
allocator totals

senerate code list
resister allocation
Peephole optimization
branch Jump resolution
write obJect module

code senerator totals
total compilation

63 lines compiled

4
0
C:1

0
0

(i

J
0
0
0
0
u
0
0
0
0
0
0
0

6

compilation rate was 1073 lines Per minute

3 i

0
1 2

2
c:

c:

0
0
3

1 5
1
(J

2
4

1 7

8 c:;

()

1.)

16
0
(:1

0
0
0
0

134
0
(.1

0
0

134
80

305
:::::os
]05

t:1
1
6
1

u;
1

55
16
5 ~:i

c;

G
]

8
E:7

3 ~5 2:

t; Figure A-3: Compiler Performance Statistics
en
M-

~· If you specify /MACHINE_CODE when you compile a PL/I program, the
~ compiler prints the generated assembly language code and object code in the
S listing. The notes keyed to the sample machine code listing in Figure A-4
~ appear below the figure.

> I .
....::t

Pa;;ie ::::
;1;

0
0 s
'E.
;-"
~

~
~·
M-

5·
(JQ

"'rj
0
~ s
p:i
M-

> I
~

52 FE AD 9E
53 7C

00000000* EF 1G
FF7E CD 9F

00000080 BF DD
00000000* EF 02 FB

52 FF7E CD BO
50 FF7E CD 9E

51 52 3C

FLOWERS
l.JOO 1

00000000* EF 1G
50 FF42 CF 9E

51 OA 3C
00000000* EF 1G
00000000* EF 17

2 ELSE

OEG
OEA
OEC
OF2
OFG
OFC
103
108
10D

11 0
11G
115
11 E
124

1i"1 o 1.,.1 a b - 0 2 (f P) t r 2
c 1 r-9

isb P ISPUTFILE
Pushab - 082(fp)
PU·::;.hl # 0
calls :t:t 1PLISONKE
;;;o•..J1,,1 - 08 (fp), r
if10 1...iab - 08 (fp) .tr
iii0 1...iz1 11 r tr

11-JUN-1980 15:50:20
11-.JUN-1S80 15:42:57

isb PLLSPUTLISTVCHA
mouab $CODE+5C1rO
if11:.::i 1.,.1z1 _1l #Atri
jsb PLISPUTLISTCHAR
!MP PLISPUT_END

l.JA>(-11 PL/I l.J1.0
_DB7:*[MALCOLMJFLOWERS.PLI;17

27
28 2 PUT SKIP LISTl'Error on fc.ey",ONl<EY(), error no. ,ONCODE!.;);

51 5D DO
03 AF GC FA

0080 31

C87C
5E FEF8 CE SE

5C 00000000 EF SE
50 7C

FE AD 01 BO
52 FE AD SE

53 7C
0000000 * EF 1G

50 FE 8 CF BE
1 oc 3[

00000 * EF 1G
E CD SF

0000 0 BF DD

12A •.!cs, 3:
12A
12D
131
134 •.ic.9.4:
134
13G
135
1Li2
144
148
14C
14E
154
15S
15[
1G2
1GG

Figure A-4 (Cont.): Machine Code Listing

fii QI.) 1 f P 'r 1
cal l .9 I a P) , • . .1 cs, LI

br1..--.1 I.) c -~.; 5

. en t r ·, '..J c s , c o d e , ··· 111 < d • . .1 1 i •.J , r 2 , r 3 , r 4 , r 5 , r G , r 11 >
!"ri iJ !) a b 0 1 0 8 (s P) t s P

movab SYSPRINT1aP
l [' ·=i [' 0

iii 0 ~) 1.:..1 :j::j: 1 t - 0 2 (f p)

rti o 1.,.1 a b 0 2 (f P) t r 2
l r '1 r 3

i b PLISPUTFILE
ouab $CODE+50•r0
0 1

) Z !_,._I l # [: t r 1
isb P ISPUTLISTCHAR
ushab 082(fp)

PU hJ. # (l

1. The machine language code is generated in line with the PL/I source
statements. Thus, you can see the code that is generated by each state­
ment following the statement itself.

2. The listing shows, in hexadecimal, the object module location of each
generated statement directly to the left of the machine language code. To
the left of the object location is the object code generated by the V AX-11
PL/I compiler.

Pase 2
(1)

Appendix B
PL/I Messages

This appendix describes the messages produced:

• By the VAX-11 PL/I Compiler

• By the VAX-11 Run-Time System

For a description of the format of messages produced by the compiler, see
Section 2.3, "Compiler Diagnostic Messages and Warning Conditions." For a
description of the format and information provided by run-time messages, see
Section 4.1.2, "Run-Time Errors."

B.1 Compiler Messages

The diagnostic messages produced by the VAX-11 PL/I compiler are listed
below, alphabetized by identification. Within the text of a message, an item
in italics represents data that is supplied by the compiler to provide specific
information about the error.

The description of each message gives the severity, followed by additional
explanatory text and suggested action. For example:

Warning. A division operation contains a fixed-point ...

Here, "Warning" indicates that the message has a severity level of Warning.

Compiler messages with severities of error or fatal require that you recompile
the program after correcting the source text.

Note that the VAX-11 PL/I compiler also writes messages whose text it shares
with other VAX/VMS programs; these messages are almost always self-expla­
natory and are not listed in this appendix; see the VAX/VMS System Mes­
sages and Recovery Procedures manual for descriptions of these messages.

B-1

ARITHSYN Invalid syntax in an arithmetic constant.

Error. The statement contains an arithmetic constant that is incorrectly specified.

User Action. This message may be followed by additional messages that provide syntactic reasons for the
failure. Determine the type of constant required in the statement and the correct way to specify the
constant. Correct the statement.

ARRA YBYV AL An argument corresponding to an array, structure, or area
is not a reference. The procedure/funct,ion is "name".

Error. PL/I can pass aggregates and areas only by reference; thus, this error occurs when the parameter
descriptor for an external entry or the parameter declaration for an internal procedure specifies a structure,
dimension, or area that does not match the argument specified.

User Action. Correct either the parameter descriptor or the declaration of the argument.

ARRAYOVFL FIXEDOVERFLOW occurred in calculating the multipliers or
virtual origin of the array "array-name".

Error. In an array with constant bounds (for some or all of its dimensions), the FIXEDOVERFLOW
condition occurred when the compiler tried to calculate the multipliers and virtual origins of the array.

User Action. Check that the values specified for the array bounds are correct. Avoid using lower bound
values that are very large numbers.

ASSIGNCVT Implicit conversion in an assignment, expression
has been converted to a data-type target.

Warning. The data type of the indicated expression does not match the data type of the target variable in
the assignment and the PL/I compiler has converted the expression to the data type of the target variable.
This situation may or may not constitute an error.

User Action. To avoid this message in circumstances in which you want the compiler to convert the
expression to the data' type of the target, use an explicit conversion built-in function (for example, CHAR­
ACTER, BINARY, or FLOAT). You can also suppress the message by compiling the program with the
/NOWARNINGS qualifier.

ATTRNOTSPC Incomplete attributes have been specified for "variable-name".

Error. Something is missing in a declaration.

User Action. Correct the declaration.

BADAGGARG The argument "argument" does not match the
corresponding array, structure, or area parameter as is required by
the rules for passing such arguments by reference.

Error. An array dimension or a structure declaration specified in a parameter descriptor does not match
the corresponding dimension or structure of the variable specified in the procedure reference. For example,
this error occurs if a parameter descriptor specifies a two-dimensional array and the procedure reference
specifies the corresponding argument with a reference to a three-dimensional array.

User Action. Determine whether the parameter descriptor correctly specifies the data type, dimensions,
and structure of the required parameter. If so, correct the declaration of the corresponding argument or the
corresponding argument reference. If the argument is specified correctly, correct the parameter descriptor.
If the procedure is a non-PL/I procedure, use the ANY attribute in the parameter descriptor.

BAD ANY ARG A procedure argument, expression, is not valid for passing
to the corresponding parameter, which was declared as ANY or ANY VALUE.

Error. A parameter descriptor specifies ANY or ANY VALUE, but the argument list specifies an expres­
sion that is not valid for these argument passing attributes. For example, this error occurs when an
expression whose value cannot be contained within 32 bits is specified for a parameter declared with the
VALUE attribute.

User Action. Determine how the argument is to be passed and correct either the parameter descriptor or
the argument reference.

PL/I Messages B-3

BADCLATTR "name" is declared with duplicate or conflicting attributes.
"attribute" conflicts with "attribute".

Error. This error occurs when conflicting attributes of any type are specified. Some examples of errors that
produce this message are:

• When file description attributes are specified with data type attributes, or are specified for file variables
or file parameters.

• When the VALUE attribute is specified for any variable for which no data type attributes are specified or
is specified with the READONLY attribute.

User Action. Determine which are the correct attributes of the name and remove the invalid attribute from
the declaration.

BADCLSLABL The closure label in this statement does not match the
label prefix of the containing DO, BEGIN, or PROCEDURE block.

Error. Multiple closure is not permitted in VAX-11 PL/I. Each DO, BEGIN, and PROCEDURE statement
in the program must have a corresponding END statement.

User Action. Verify the label on the END statement in error. The label must match the label on the most
recent DO, BEGIN, or PROCEDURE statement that does not already have a corresponding END state­
ment.

BADCODE Invalid code generation sequence.

Fatal. An internal compiler error occurred.

User Action. Gather as much information as you can about the conditions in effect when the error occurred
and submit an SPR.

BADCOMPARE Invalid comparison. The operands of relational operators must both be
arithmetic values, string values or compatible noncomputational items.
Noncomputational data can only be compared for equality.

Error. A variable or value of a noncomputational data type is specified in a relational operation using the <
or > operators or forms of these operators. For example, this error occurs if you use pointer or file variables
in a comparison other than equality or inequality.

User Action. Verify that the correct variable references are specified in the expression and that the
statement does not violate the rules for operands of relational operators. Correct the statement.

BADCONARG The first argument, expression, of a conversion
built-in function is not a computational value.

Error. The indicated argument reference or expression does not have a computational data type and
therefore cannot be converted to the computational data type result of the function.

User Action. Correct the argument list for the function.

BADENV AL Invalid argument in an ENVIRONMENT option.
A value-type was not found where expected.

Error. An ENVIRONMENT option requires either a restricted integer expression, a Boolean expression, a
character string, or a variable reference. The statement in error contains an ENVIRONMENT option that
specifies a value that is not consistent with its type. For example, this error occurs if a character-string
argument is specified for the MAXIMUM_RECORD_SIZE argument.

User Action. Determine the data type required and correct the ENVIRONMENT option.

PL/I Messages B-5

BADPSECT The psect specified in this statement has
conflicting READONLY attributes with another definition
of the same psect.

Warning. A variable declared with the GLOBALDEF attribute and with a program section name specifies
the same name for the program section as another global symbol. However, one declaration contains the
READO NL Y attribute and the other does not.

User Action. Determine whether the progam section can be declared with the READO NL Y attribute. If so,
specify READO NL Y in all declarations that specify this program section. Otherwise, place read-only and
read/write global symbols in different program sections.

BADRETVAL The value, expression, in a return statement
is not valid for conversion to the data-type function type.

Error. The indicated return value specified in the RETURN statement does not have a data type that is
valid for conversion to the data type specified in the corresponding returns descriptor.

User Action. Determine the data type that is to be returned by the function and correct either the returns
descriptor or the RETURN statement.

BADSTRDCL "name" is an apparent structure member,
but does not immediately follow a variable with a
level number.

Error. A structure is incorrectly declared, or a variable declaration is preceded with an extraneous integer.

User Action. If the variable is a member of a structure, verify that the structure declaration is properly
numbered and properly punctuated. The first level number iri a structure declaration must be 1. If the
variable is not a member of a structure, check the syntax of the declaration; remove the number preceding
the variable name.

BADTARGET A reference in an assignment context is not valid for
assignment.

Error. The target of an assignment is a reference to a named constant, or to a variable with the
READONL Y or VALUE attribute.

User Action. Correct either the reference or the declaration of the name.

BADTEXTEND Invalid end of text. Check for unbalanced apostrophes or
unbalanced comments.

Error. The compiler reached the end of the input file while it was reading a character-string constant or a
comment.

User Action. Locate the unterminated comment or string constant and correct it.

BADUNSPREF The argument of UNSPEC must be a reference to a scalar
variable or a reference to an element of an array of scalar
values.

Error. The UNSPEC built-in function is used incorrectly.

User Action. Correct the reference to UNSPEC. Its argument may not be a constant or a structure name.

BADVALUSE An expected data-type value was not found. One of the
values in this statement has a data type that cannot be
converted to the type required by the context in which
the value is used.

Error. A noncomputational data type is specified when a computational data type is required, or vice
versa. For example, this error occurs if the CHARACTER built-in function specifies a pointer or entry value
for an argument.

User Action. Verify that the variable in question is correctly declared. If it is, correct the statement so tha';
it refers to a variable of the correct data type.

PL/I Messages B-7

BLANKGIVEN An arithmetic constant must be separated from the following
symbol by a delimiter. A blank delimiter has been
supplied.

Warning. This message indicates a syntax error in a constant, for example, an invalid character in a
floating-point number or the omission of apostrophes around a bit-string constant.

User Action. Correct the constant.

BUGCHECK Compiler bug check during phase.
Submit an SPR with a problem description.

Fatal. An internal error occurred in the compiler.

User Action. Gather as much information as possible about the conditions in effect when the error
occurred and submit an SPR.

CMPLXDOPE The dope vector required for the argument
"name" is too complicated.

Error. A structure parameter has so many members with asterisk(*) extents that the required dope vector
cannot be represented in the compiler's intermediate language.

User Action. Simplify the parameters.

CNDNAMEVAL A parenthesized name or value is not valid with
the "condition-name" condition.

Error. Only the 1/0 condition names and the VAXCONDITION condition name may specify values.

User Action. Correct the ON condition name in the statement.

COMPILERR Previous errors prevent continued compilation.
Correct all errors and recompile.

Fatal. The compiler cannot continue.

User Action. Correct the errors indicated in the preceding messages.

CONFLATTR Attributes declared for "name" conflict
with factored attributes.

Error. An attribute specified for a variable within a list of factored attributes conflicts with an attribute
specified in the variable declaration. For example, this error occurs if a precision or extent is specified twice
and the values do not match, as in: DECLARE (X CHAR(8),Y) CHAR(lO);

User Action. Determine which declaration of the attribute is valid and correct the statement.

CONPREC The precision arguments of BINARY, DECIMAL, FIXED, FLOAT, and
DIVIDE built-in functions must be decimal integer constants.

Error. A nonconstant value is specified for the precision argument of one of the built-in functions listed.

User Action. Correct the argument list for the built-in function in error so.that it specifies a constant value
for the precision argument. Replace the variable specified for the precision argument with a decimal integer
constant.

CONSTCOND A condition occurred while evaluating an
expression with constant operands.

Warning. The compiler evaluated an expression at compile time which resulted in the occurrence of a PL/I
condition. The most common condition that occurs is FIXEDOVERFLOW.

User Action. Try to determine what expression caused the condition. Look especially at subscripts, the
second and third arguments of SUBSTR references, expressions for string sizes, and array bounds. When
you locate the reference (you may want to use the debugger to help locate the reference), correct it.

PL/I Messages B-9

User Action. Check that the reference is correctly spelled; if not, correct the spelling of the reference. If the
variable is not declared, declare it with the appropriate attributes for its use.

DIVIDE The divide operator was used with FIXED BINARY operands.
The compiler transformed this to DIVIDE(x,y,31).

Warning. In full ANSI PL/I, the divide operator with FIXED BINARY operands usually yeilds a scaled
result, that is, it has fractional digits. However, VAX-11 PL/I does not support scaled binary data. The
compiler treated the division of fixed binary values as integer division.

User Action. Rewrite the statement using the DIVIDE built-in function instead of the division operator.

DUMMYARG A dummy argument has been created for argument
because it does not exactly match the data-type parameter.

Warning. The compiler converted the argument to the data type of the corresponding parameter, and
placed the result in a dummy argument. It is passing a reference to the dummy argument rather than to the
actual argument to the called procedure.

User Action. If the conversion is acceptable, and if the argument will not modified in the called procedure,
you need do nothing. You can enclose the argument in parentheses to suppress the message. However, if the
argument must be passed by reference so that the called procecure may modify it, correct the declaration of
the argument or the parameter descriptor or parameter list for the corresponding parameter.

DUPDCL This statement contains a duplicate declaration of
"name".

Error. The same identifier is used in more than one declaration at the same level.

User Action. Determine which declaration of the variable specifies the correct attributes, if they are
different, and change the incorrect declaration.

DUPLABL This statement contains a label prefix that has appeared
on a previous statement in the same block.

Error. Two labels in the same block specify the same user-specified identifier and constant subscript.

User Action. Correct the identifier and/or the subscript and all references to it.

DUPOPTN This statement contains duplicate options.

Error. A statement contains more than one specification of the same option, for example the LIST option is
specified more than once in a PUT statement.

User Action. Determine which specification of the duplicated option is the correct one and delete the other
from the statement.

DUPSIGN "token" contains multiple sign symbols.

Error. A picture specification contains more than one sign (+ or -) symbol.

User Action. Correct the picture so that it contains only a single sign.

EMPTYARG "name" has been referenced with an argument list which
is incompatible with its declaration. An empty argument list
is required to satisfy the declaration.

Error. A CALL statement or a function reference specifies an argument list for a procedure that has no
parameters.

User Action. Verify the arguments required for the procedure invocation. If the parameter descriptor or
parameter list does not specify any parameters, the procedure invocation must not specify any arguments.
Note whether the parameter descriptor list or parameter list is in error; if so, correct it. Otherwise, correct
the procedure invocation.

PL/I Messages B-11

FL TBPREC The precision specified for "name" exceeds
the implementation's limit of FLOAT BINARY(precision).
The maximum precision of precision has been supplied.

Warning. The compiler changed the precision of the floating-point variable.

User Action. Correct the declaration of the variable so that it does not specify a precision greater than the
system's maximum.

FLTDPREC The precision specified for "name" exceeds
the implementation's limit of FLOAT DECIMAL(precision).
The maximum precision of precision has been supplied.

Warning. The compiler changed the precision of the floating-point variable.

User Action. Correct the declaration of the variable so that it does not specify a precision greater than the
system's maximum.

IDENTSIZE An identifier contains more than 31 characters.
Only the first 31 characters will be used.

Warning. The compiler truncated a user-specified identifier that is longer than 31 char~cters.

User Action. Shorten the identifier to 31 characters or fewer.

IMPLBLTIN name has been implicitly declared as a built-in function.

Warning. The undeclared name of a built-in function with no arguments has been used without an explicit
empty argument list, for example DATE was specified instead of DATE().

User Action. Declare the function or specify with the empty argument list.

INCNESTLVL %INCLUDE statements cannot be nested more
than 4 levels deep.

Fatal. The compiler encountered a %INCLUDE statement when it was already at the maximum nesting
level of INCLUDE files.

User Action. If the LIST_INCLUDE option was not in effect when you compiled the program, recompile
the program specifying /LIST and /ENABLE=(LIST_INCLUDE). Then, examine the listing to ascertain
which INCLUDE file caused the error. Correct the logical nesting of the INCLUDE files and/or modules so
that the nesting level is no greater than four.

INCSYN Invalid syntax in %INCLUDE statement. The correct syntax
is "%INCLUDE 'file-spec';" or "%INCLUDE text-module-name;".

Error. A %INCLUDE statement is incorrectly specified.

User Action. Examine the %INCLUDE statement. If the INCLUDE file is in an individual file, the file
specification must be enclosed in apostrophes. If the INCLUDE file is in a text library module, no apos­
trophes must be specified and the module name must not contain any punctuation marks.

INITCVT One of the initial values specified for "name"
cannot be converted to the type of the variable.

Error. An invalid value is specified in an INITIAL attribute.

User Action. Compare the data type of the constants specified in the INITIAL attribute list with the
attributes specified for the variable. Determine which has the appropriate data type and correct the other.

PL/I Messages B-13

User Action. Correct the declaration of the parameter so that it does not specify a storage class attribute. A
parameter occupies the storage of its corresponding argument at the timt'! of the invocation, and thus
cannot be allocated storage in any other way. It also cannot be used as a label.

INVSTARUSE "name" is declared with an * extent but is not
a parameter or a descriptor.

Error. An asterisk is specified for the length of a character string or for the dimension of an array, and the
string or array is not a parameter.

User Action. Correct the declaration of the variable so that its extent is specified using a constant or a
valid variable declaration.

INVSUBLABL "name" is a subscripted label prefix
previously declared with a different data type or a
different number of dimensions.

Error. A label conflicts with the declaration of a variable.

User Action. If the label prefix has the same identifier as a declared variable, change either the label or the
variable and correct all references to them.

ITERFACT If an iteration factor is used with a string constant,
the constant must be enclosed in parentheses.
This construction means "iteration" occurrences of the
constant as opposed to concatenation.

Warning. An iteration factor is specified for a string constant in an INITIAL attribute, but the iteration
factor is not enclosed in parentheses. The compiler assumes that the factor is in parentheses.

User Action. Place the iteration factor in parentheses, for example: INITIAL((5)('strings')).

ITERVAL "token" has been declared with a variable iteration
factor. An iteration factor of one has been supplied.

Error. A nonconstant iteration factor was used to initialize a static variable. Nonconstant iteration factors
are valid only in the initialization of automatic variables.

User Action. Specify a constant in the iteration factor. Or, declare the variable with the AUTOMATIC
attribute.

LIB ERROR Error while reading library "library-name".

Fatal. The compiler cannot read the indicated library. Either the file is not a library, or its format has been
corrupted.

User Action. Verify that the library file is specified correctly, and that it is a valid VAX/VMS text library.

LIBLOOKUP "module-name" was not found in any of the specified libraries.

Fatal. The compiler failed to locate the indicated module in any library specified on the PLI command, in
the library specified as PLI$LIBRARY, if any, or in the default INCLUDE library.

User Action. Check the PLI command line to verify that the library containing the specified INCLUDE
text module was specified and that the name of the module was spelled correctly. If the library is a default
user library, determine whether it has been assigned to the logical name PLI$LIBRARY.

LOCNEED "name" is a based variable referenced without a
locator qualifier.

Error. A variable is declared with the BASED attribute without a pointer variable and is referenced
without a locator qualifier (- >).

User Action. Specify a pointer variable in the declaration of the variable, or specify the current pointer
reference in the statement that caused the error.

PL/I Messages B-15

NOLABL PROCEDURE, ENTRY, and FORMAT statements must have a label.

Error. The indicated statement is not labeled.

User Action. Place a label on the statement that caused the error.

NOLISTING No listing file produced.

Informational. The compiler did not create a listing file.

User Action. None.

NOLOCNEED "name" is a nonbased variable referenced with
a locator qualifier.

Error. A locator-qualified reference is specified for a variable that does not have the BASED attribute.

User Action. Remove the locator qualifier (- >) from the reference. If you expected that the variable needed
a locator qualifier, verify that the variable has the BASED attribute.

NONCONEXTN "name" is declared with nonconstant extents but is
not an automatic, based, or defined variable.

Error. The indicated variable or descriptor for a character-string, bit-string, or array variable used a
variable instead of a constant to define the extent. Variables are permitted for extents only for automatic,
based, and defined variables.

User Action. Correct the declaration of the variable.

NONCONINIT "name" has been declared with a nonconstant initial
value. Static variables must have constant initial values.

Error. A static variable is incorrectly initialized.

User Action. Correct the declaration so that it uses only constant values in the INITIAL attribute.

NORETVAL All RETURN statements in a function must return values.

Error. A RETURN statement in a function does not specify a value.

User Action. Specify a value on the RETURN statement, ensuring that the data type of the value matches
the data type specified on the RETURNS option of the PROCEDURE statement.

NOTARITH Implicit conversion. A nonarithmetic expression, expression,
has been used in a context requiring an arithmetic value.

Warning. A bit-string or character-string expression was used in a context where an arithmetic expression
is required. The PL/I compiler has converted the expression to arithmetic. This situation may or may not
constitute an error.

User Action. To avoid this message in circumstances in which you want the compiler to convert the
expression to the appropriate arithmetic data type, use the BINARY built-in function to convert a bit
string or the BINARY, FIXED, DECIMAL, or FLOAT built-in function to convert a character string. You
can also suppress the message by compiling the program with the /NOWARNINGS qualifier.

NOTARRAY The first argument to a LBOUND, HBOUND, or DIM built-in
function must be an array reference.

Error. The argument list for one of the functions listed is incorrectly specified.

User Action. Correct the argument list for the built-in function.

NOTBASED The variable "name" is not a BASED variable.

Error. The target variable specified in the ALLOCATE statement does not have the BASED attribute.

User Action. Verify that the variable is specified correctly. If so, correct the variable's declaration so that it
specifies BASED.

PL/I Messages B-17

User Action. Verify that the reference in the condition name is to a file constant or file variable that is
declared correctly.

NOTINT Implicit conversion. A noninteger expression, expression,
has been used in a context requiring an integer value.

Warning. A character-string, bit-string, or noninteger arithmetic expression is used in a context where an
integer is required. The PL/I compiler has converted the expression to an integer. This situation may or
may not constitute an error.

User Action. To avoid this message in circumstances in which you want the compiler to convert the
expression to an integer, use the BINARY built-in function to convert bit- or character-string expressions to
an integer. You can use the FIXED built-in function to convert floating-point expressions or fixed-point
decimal. expressions with a nonzero scale factor to integers. You can also suppress the message by compil­
ing the program with the /NOWARNINGS qualifier.

NOTINTBND A constant has been used as an array bound, but it is not an
integer constant whose value is less than 2**29. If a
constant is used as a bound, it must be a valid integer.

Error. An invalid constant is specified for an array bound.

User Action. Verify that the bound specified is within the valid range for array bounds and correct the
declaration. Note that this error may occur when any parenthesized expression follows an identifier in a
declaration. In this context, the message indicates that the statement syntax is in error and must be
corrected.

NOTINTCON An expected optionally signed integer was not found.

Error. A nonconstant expression is specified in a context that requires an integer constant.

User Action. Specify an integer constant.

NOTINTVAL A noninteger value is specified as a VAXCONDITION
value.

Warning. A noninteger value is specified for the VAXCONDITION condition name.

User Action. Specify an integer value in the ON, SIGNAL, or REVERT statement.

NOTLOCATOR A value that is not a pointer or offset value has been
used in a context requiring a locator value.

Error. The reference specified as a locator qualifier is not a pointer or offset value.

User Action. Correct the locator-qualified reference so that the item on the left of the locator qualifier (- >)
is a pointer or offset.

NOTSCALAR An array or structure value has been used in a context
that requires a scalar value.

Error. An array or structure reference is specified in an invalid context, for example, as an operand of an
arithmetic operation.

User Action. Correct the statement so that it does not contain a reference to an aggregate.

NOTSUBROUT The reference in a CALL statement is not
a subroutine reference.

Error. A CALL statement specifies the name of an entry that has the RETURNS attribute.

User Action. If the invoked procedure is a function, correct the statement in error so that the procedure is
invoked as a function reference. Otherwise, delete the RETURNS option from the PROCEDURE state­
ment of the procedure so that it can be invoked by a CALL statement.

PL/I Messages B-19

REQINIT An INITIAL attribute must be specified for "name".

Warning; The indicated name is not specified with the INITIAL attribute. This error occurs for names
declared with the READONLY or VALUE attributes. Since names with these attributes cannot be modi­
fied, their values are unpredictable if they are not initialized.

User Action. Specify the INITIAL attribute to give the name a value.

RETANY A returns descriptor must not specify ANY
as its data type.

Error. The ANY attribute is specified in a returns descriptor.

User Action. Correct the returns descriptor so that it specifies data type attributes for the return value.
The ANY attribute is valid only for parameter descriptors for non-PL/I procedures.

RETLENGTH A RETURNS attribute must not specify an array, structure,
or area.

Error. The data type specified in a returns descriptor is an aggregate or area.

User Action. Ensure that the returns descriptor in the RETURNS option of the PROCEDURE statement
for the function does not specify an aggregate or area value.

RETSTAR Invalid *-extent in a RETURNS attribute.

Error. An asterisk is specified for an extent or precision in a RETURNS attribute. The only valid use of an
asterisk in a RETURNS attribute is RETURNS (CHARACTER(*)).

User Action. Specify a value in the RETURNS attribute.

RETURNON A RETURN statement is not allowed in an ON-unit.

Error. A RETURN statement is specified within a begin block specified for an ON-unit.

User Action. To exit from the program, use a nonlocal GOTO within the ON-unit.

RETVAL A RETURN statement in a subroutine cannot return a value.

Error. A RETURN statement in a subroutine specifies a value.

User Action. Ascertain whether the indicated procedure is to be invoked as a subroutine or as a function. If
it is a subroutine, remove the return value from the RETURN statement. If it is a function, specify the
RETURNS option on its PROCEDURE statement.

RETVALCVT Implicit conversion of the return value,
expression, to· the function type data-type.

Warning. The data type specified in a RETURN statement does not match the data type given in the
corresponding returns descriptor, and the compiler has performed an implicit conversion of the value to the
specified data type. In the case of a procedure with multiple entry points, this message may be issued once
for each occurrence of a RETURN statement that requires an implied conversion.

User Action. If the conversion is desirable, either use a specific conversion built-in function to return the
value, as in RETURN(CHAR(n)). Either correct the RETURNS option on the PROCEDURE or ENTRY
statement that is in error, or correct the value specified in the RETURN statement.

PL/I Messages B-21

STRDEPTH The depth of nesting of a structure exceeds the
implementation's limit of 16.

Fatal. A structure contains too many levels.

User Action. Correct the declaration of the structure. If necessary, modify the structure so that it has no
more than 16 levels.

STREFCNT A structure-qualified reference contains ·more than 15
qualifying names.

Error. A reference in the form namel.name2.name3 ... contains more than 15 names.

User Action. Examine the structure-qualified reference and compare it with the declaration of the struc­
ture, to ensure that each qualifying name is specified correctly.

STRGTOOBIG The length of a name or constant exceeds the
implementation's limit of 1000 characters.
Check to see if all string constants are properly delimited
with ' and that any contained 's occur in pairs.
Also check for unbalanced /* * /.

Fatal. The compiler read more than 1000 characters following the occurrence of an open apostrophe (') or
comment (/*).

User Action. Locate the beginning of the unterminated string or comment, and terminate it at the
appropriate location.

STRINGBIF The argument of the STRING built-in function must be a
variable that is suitable for use in string overlay
defining. It must contain only bit or only character data
and must not be VARYING or ALIGNED or be an unconnected
array.

Error. The STRING built-in function is used incorrectly.

User Action. Verify that the correct argument is specified for the STRING built-in function. If the
argument seems correct, be sure that its declaration does not violate any of the rules given in the message.

SUBRANGE The integer value "token" does not lie in
the range minimum : maximum.

Error. The PL/I compiler detected a reference to an array in which a subscript is not within the declared
bounds of the array or an argument in a SUBSTR built-in function that references a position that is not
within the extent of the target string. This message is issued only if /CHECK was specified on the PLI
command to compile the program.

User Action. Correct the reference to the array.

SUBROUT The subroutine name has been called as a function.

Error. The statement contains a reference to a procedure that does not have the RETURNS attribute.

User Action. If the invoked procedure is a subroutine, correct the statement in error so that the procedure
is invoked with a CALL statement. Otherwise, delete the RETURNS attribute from the PROCEDURE
statement of the procedure so that it can be invoked by a function reference.

SYMTABOVFL The total number of symbol table pages exceeds
the implementation's limit. Reduce the
number and size of names, constants, extent expressions,
and argument or returns descriptors.

Fatal. The program is too complex.

User Action. Simplify the program.

PL/I Messages B-23

TOOMANYERR The total number of errors exceeds the implementation's
limit of 100.

Fatal. The compiler cannot continue.

User Action. Correct the errors indicated by the preceding messages.

TOOMANYOPS More than 253 operands have been used with an operator,
function, or call.

Error. An expression contains more than 253 operands.

User Action. Simplify the statement in error.

TOOMANYSUB "name" has been referenced with too many subscripts.

Error. The number of subscripts in the reference to an array element exceeds the number of dimensions of
the array.

User Action. Examine the declaration of the array to determine the number of subscripts required,
determine the subscript(s) in excess, and correct the statement.

TOOMANYVAL Excess initial values have been specified for "name".

Warning. An INITIAL list for an array declaration specifies more constant values than array elements. Or
multiple values were specified for a scalar constant. A list of values is valid only in an array declaration.
The declaration DCL (A,B) ... INIT(l,2) initializes both A and B to 1. The second value specified is
ignored.

User Action. Delete the excess values.

TOPOLOGY An assignment target, parameter descriptor, or returns
descriptor is not an array or structure of the proper shape
to receive the array or structure value being assigned to it.

Error. An array or structure is being assigned or passed to an array or structure with a different dimension,
data type, or arrangement.

User Action. Compare the declaration of the array or structure that is specified as an argument or as a
source expression with the corresponding parameter or target expression. Determine which declaration is
correct and modify the incorrect specification.

UABORT Compilation terminated by user.

Fatal. You interrupted the compilation with (CTRL/Cl and the compiler has terminated.

User Action. None.

UNDCLBASE "name" is undeclared and has been used in an
ALLOCATE statement as the name of a based variable.

Error. The target variable in the ALLOCATE statement is a name that is not declared.

User Action. Verify that the variable is specified correctly. If so, declare it with the BASED attribute.

UNDCLPARM "name" is an undeclared parameter. It has been
declared in its containing block and will acquire default
attributes.

Warning. A name specified in a parameter list is not declared with data type attributes. The compiler gave
the parameter the attributes FIXED BINARY(31).

User Action. Declare the parameter with the appropriate data type attributes.

PL/I Messages B-25

UNRSTREF A structure-qualified reference to "name" cannot be
resolved to any declaration known to this block.

Error. A reference in the form namel.name2.name3 ... cannot be resolved.

User Action. Examine the structure-qualified reference in the statement that caused the error. Verify that
the structure member that is referenced is a part of the specified structure. Correct the reference so that it
refers to the correct structure or to the correct member.

UPPRGTRLOW One of the bounds declared for "array-name" is invalid
because the lower bound is greater than the upper bound.

Error. An array is incorrectly declared.

User Action. Correct the declaration of the array variable in error so that all bounds are valid. In the
declaration of the a bound x:y, the value of x must be numerically less than the value of y.

V ALSIZE The size or precision of "name"
is incompatible with the VALUE attribute.

Error. A parameter descriptor or variable declared with the VALUE attribute specifies a fixed binary value
with a precision not equal to 31 or a bit-string value with a length not equal to 32.

User Action. Correct the declaration so that it i;;pecifies a variable that requires 32 bits or less of storage.

VAL TYPE The data type of "name" is incompatible with
the VALUE attribute.

Error. The VALUE attribute is specified for a variable that does not have either the FIXED BINARY or
BIT(32) ALIGNED attribute.

User Action. Correct the declaration.

VARYING "name" has been declared with the VARYING attribute.
Only CHARACTER variables may be declared VARYING.

Error. The VARYING attribute is specified for a variable to which it cannot be applied.

User Action. Correct the declaration so that it does not specify VARYING.

VARYSCALE The scale factor, q, specified for "name" is not
in the range Osqsp, where p is the variable's precision.
The scale factor has been set to zero.

Warning. A scale is specified for a variable that is not in its declared range.

User Action. Specify a scale factor in the allowed range.

WHATBIF "name" is not a built-in function or procedure
known to this implementation. If this is an external entry,
it must be declared by a DECLARE statement with an ENTRY
attribute.

Error. A reference to a procedure cannot be resolved.

User Action. Verify that the variable referenced in the statement is a valid subroutine or function. If it is
an external function, declare it with the ENTRY attribute.

ZEROSCALE "name" has been declared with a nonzero scale factor.
A zero scale factor has been supplied.

Warning. A variable is declared FIXED (p,q} or FIXED BINARY (p,q}.

User Action. Either specify the DECIMAL attribute or delete the scale factor, q, from the declaration.

PL/I Messages B-27

For other types of print files, you may want to take special action for the ENDPAGE condition and code an
ON-unit to perform the action.

ERROR PL/I ERROR condition

Fatal. This message is displayed whenever the ERROR condition is signaled and not handled within the
procedure.

User Action. This message is usually followed by additional messages that indicate the specific error that
occurred. Examine these messages to determine the corrective action required.

FINISH PL/I Program FINISH condition

Success. This message is displayed when the FINISH condition is signaled and the program has no ON-
unit for the FINISH condition. ,

User Action. In many cases, this message is displayed when you have interrupted a program with (CTRL/Cl or
(CTRL/Yl and executed another program or a DCL command. In these cases, no action is required. Otherwise,
you may want to write an ON-unit to respond specifically to the FINISH condition in a program. For a
description of image exit, and the circumstances under which PL/I signals the FINISH condition, see
Section 4.1. l, "Image Exit."

FIXOVF PL/I FIXEDOVERFLOW condition.

Fatal. This message is displayed when the FIXEDOVERFLOW condition occurs or is signaled and no ON­
unit exists for FIXEDOVERFLOW.

User Action. Determine the variable whose value overflowed and give it a larger precision, or verify that
the program logic is correct and is not trying to assign a value larger than it should to the variable. If the
condition is expected, code an ON-unit in your program that handles this condition.

KEY PL/I KEY condition on file 'file-spec '

Fatal. This message is followed by one or more messages that indicate the specific error that occurred while
processing the key on the given file.

User Action. Determine the specific error that occurred by examining the accompanying RMS message.
Verify in your program that the correct key value was specified in the I/O statement, that the data type of
the key value can be converted to the data type of the given key, and so on. Also determine whether the file
to which the I/O was attempted is the correct file. If appropriate, write an ON-unit to handle the KEY
condition.

UNDFILE PL/I UNDEFINED FILE condition on file 'file-spec '

Fatal. This message is followed by one or more messages that indicate the specific error that occurred
opening the given file.

User Action. Determine the corrective action from the accompanying messages. Verify the file specifica­
tion in the FILENAME message to determine whether the correct defaults are being applied, whether all
required logical name assignments are in effect, and so on.

VAXCOND User-defined condition, condition-value

Warning. This message is displayed when VAXCONDITION is signaled and no ON-unit exists to handle
the specific numeric condition value.

User Action. Verify that the condition value specified in the SIGNAL statement matches the condition
value in a corresponding ON-unit. Correct the source program and recompile.

ZERODIV PL/I ZERODIVIDE condition.

Fatal. This message is displayed when the ZERODIVIDE condition occurs; that is, the divisor in a division
operation has a value of zero. This message is displayed when the condition is not handled by an ON-unit
within the PL/I program.

User Action. Determine the statement that caused the error and correct the program logic, if possible. If
practical, code an ON-unit to detect the condition and take appropriate action.

PL/I Messages B-29

CONFIXLEN FIXED_LENGTH_RECORDS conflicts with other attributes or options.

Informational. The file's attribute list contains the FIXED_LENGTH_RECORDS option and an option
that conflicts with it.

User Action. Consult the option description(s) in Chapter 6 to determine the options in conflict and correct
the program.

CONPRINTCR CARRIAGE_RETURN_FORMAT conflicts with PRINT attribute.

Informational. A PL/I file with the PRINT attribute has variable with fixed-length control records;
the carriage control information is provided by PL/I. The CARRIAGE_RETURN_FORMAT option of
ENVIRONMENT cannot be specified for it.

User Action. Determine whether the file is to be a PL/I PRINT file or a file with VAX/VMS carriage return
format and correct the file's attribute list.

CONPRTFRM PRINTER_FORMAT conflicts with other attributes or options.

Informational. The ENVIRONMENT option PRINTER._FORMAT conflicts with the CARRIAGE_
RETURN_FORMAT option and with the PRINT and STREAM file description attributes.

User Action. Correct the file's attribute list.

CREINDEX Attempting to create an indexed file. Use RMS DEFINE.

Informational. A file was opened with the OUTPUT attribute and with the ENVIRONMENT option
INDEXED. You cannot create an indexed sequential file in a PL/I program. Indexed files can only be
opened for UPDATE or INPUT.

User Action. Use the RMS-11 utility program DEFINE to create the file. Correct the program to open the
file with the UPDATE attribute and write records to it.

CVTPICERR Error in picture conversion.

Informational. A value could not be edited as specified by the corresponding picture.

User Action. If the value is negative, be sure that the picture includes one of the sign characters.

ENDSTRING End of string encountered during GET STRING or PUT STRING.

Informational. A GET STRING statement attempted to read past the end of the source string variable; or,
a PUT STRING statement attempted to write past the end of the target string variable. This error occurs
most frequently when a LIST option is specified on a GET STRING statement and the target string does
not have either a trailing blank or a comma.

User Action. Verify the length of the target or source string variable, the data types specified in the GET or
PUT list, correct the program, and recompile.

ENVPARM PL/I compiler/run-time error. Please submit an SPR.

Informational. An error occurred in the execution of the PL/I compiler or a run-time module.

User Action. Gather as much information as possible about the circumstances under which the error
occurred and submit an SPR report.

FILEIDENT PL/I compiler/run time error. Please submit an SPR.

Informational. An error occurred in the execution of the PL/I compiler or a run-time module.

User Action. Gather as much information as possible about the circumstances under which the error
occurred and submit an SPR report.

FILENAME File name: 'file-spec'

Informational. This message specifies the VAX/VMS file specification of the file to which input/output
was attempted.

User Action. Examine this informational message to determine the full specification of the VAX/VMS file
on which the input/output that failed was attempted. From this name, you can verify whether the file was
correctly specified in the TITLE option, whether the correct logical name assignments exist, whether the
correct defaults are being applied, and so on.

PL/I Messages B-31

INVFMTP ARM Invalid format parameter specified.

Informational. A value specified for a format item was not a positive integer; or, the value was not in the
valid range for the given format item. For example, this error occurs if a negative number is specified for the
A or B format item, or if a value greater than 31 is specified for the F format item.

User Action. Correct the value specified for the format item in the source program and recompile.

INVFORGKEY Invalid file organization for KEYED access.

Informational. The KEYED attribute was specified for a file that cannot be accessed by key, for example,
a magnetic tape file.

User Action. Verify that the correct file is being opened by checking the TITLE and DEFAULT_FILE_
NAME options, if any, logical name assignments, and file specification defaults. If the file is the expected
file, correct the attribute list so that it does not specify the KEYED attribute.

INVFORMAT PL/I compiler/run-time error. Please submit an SPR.

Informational. An error occurred in the execution of the PL/I compiler or a run-time module.

User Action. Gather as much information as possible about the circumstances under which the error
occurred and submit an SPR report.

INVFXCSIZ Invalid FIXED_CONTROL_SIZE specified.

Informational. The value specified in the FIXED_CONTROL_SIZE ENVIRONMENT option is not in
the range of 0 through 255.

User Action. Verify that the expression in the FIXED_CONTROL_SIZE option is correctly specified or
that it refers to the correct variable. Or, choose a fixed-control size that is within the valid range. Correct
and recompile the program.

INVINDNUM Invalid INDEx_NUMBER specified.

Informational. The value specified for the INDEx_NUMBER option does not have a corresponding
index in the indexed sequential file.

User Action. Verify that the expression specified in the option is correct or that it refers to the correct
variable. Or, specify an index number that is in the proper range, ensuring that the indexed sequential file
was defined with the correct number of index keys. Correct and recompile the program.

INVMAXREC Invalid MAXIMUM_RECORD_SIZE specified

Error. The value specified for the MAXIMUM_RECORD_SIZE option of ENVIRONMENT is not in
the range of 0 through 32767.

User Action. Correct the value so that it is not larger than 32767.

INVML TBLK Invalid MUL TIBLOCK_COUNT specified.

Informational. The value specified in the MUL TIBLOCK_COUNT count of the ENVIRONMENT op­
tion is not in the range of 0 through 127, or is not a valid integer expression.

User Action. Verify that the expression in the MULTIBLOCK_COUNT option is correct, or that the
correct variable reference is specified. Correct and recompile the program.

INVMLTBUF Invalid MULTIBUFFER._COUNT specified.

Informational. The value specified in the MUL TIBUFFER._COUNT count of the ENVIRONMENT
option is not in the range of -128 through 127, or is not a valid integer expression.

User Action. Verify that the expression in the MULTIBUFFER._COUNT option is correct, or that the
correct variable reference is specified. Correct and recompile the program.

PL/I Messages B-33

LINESIZE Invalid LINESIZE specified.

Informational. The value specified in the LINESIZE option exceeds the implementation's limit of 32, 767.
Or, the value is not a positive integer value.

User Action. Correct the LINESIZE option and recompile the program.

NOCURREC No current record.

Informational. A DELETE or REWRITE statement was specified for a file opened with the UPDATE
attribute, but the KEY option was not specified. These statements may omit the KEY option only if the
"current record" contains a valid value.

User Action. Correct the statement in the source program and recompile.

NOFROM No FROM specified or buffer not allocated.

Informational. A REWRITE statement wa&, specified without the FROM option. The REWRITE state­
ment is valid without the FROM option only if a previous READ statement on the file specified the SET
option to allocate a buffer and set a pointer to the record read.

User Action. Correct the previous READ statement for the file so that is specifies the SET option or
correct the REWRITE statement so that is specifies the FROM option.

NOKEY No KEY or KEYFROM specified.

Informational. A keyed I/O statement must specify a KEY or KEYFROM option.

User Action. Correct the statement and recompile the program. If you are attempting sequential access to
a file, verify that you have also specified SEQUENTIAL in the file's attribute list.

NOSHARE SHARED_READ or SHARED_ WRITE conflicts with NO_SHARE.

Informational. The ENVIRONMENT options SHARED_READ and SHARED_WRITE permit read or
write sharing on a file, but the NO_SHARE option prohibits all sharing.

User Action. Determine whether the file is to be accessed for sharing. If not, delete the option in error. If it
is to be shared, delete the NO_SHARE option. Recompile the program.

NOTINDEXED Requested operation requires an INDEXED file.

Informational. A keyed I/O statement specifies an operation that is valid only for a file with indexed
sequential file organization.

User Action. Determine from the information in the FILENAME message whether the operation was
requested to the appropriate file. If the file is correctly specified but is not an indexed file, it may not have
been properly created.

NOTINPUT Attempting to GET from an OUTPUT or UPDATE file.

Informational. A GET statement is not valid on a file that is opened with the OUTPUT or UPDATE
attributes.

User Action. Correct the file's attribute list and recompile.

NOTKEYD Not a KEYED file.

Informational. A KEY or KEYFROM option was specified in a record I/0 statement for a file that does not
have the KEYED attribute.

User Action. Verify that the file is a keyed file, and if it is, correct the DECLARE or OPEN statement for
the file so that it specifies the KEYED attribute.

NOTOUT Attempting to PUT to an INPUT or UPDATE file.

Informational. The PUT statement is not valid for files that are opened with the INPUT or UPDATE
attribute.

User Action. Correct the file's attribute list and recompile.

PL/I Messages B-35

PROMPTOBIG PROMPT option too long. Must be < 254 characters.

Informational. The string specified in the PROMPT option of the GET statements exceeds the maximum
length of 253 characters.

User Action. Shorten the prompting string and recompile.

READOP PL/I compiler/run-time error. Please submit an SPR.

Informational. An error occurred in the execution of the PL/I compiler or a run-time module.

User Action. Gather as much information as possible about the circumstances under which the error
occurred and submit an SPR report.

READOUT Attempting to READ from an OUTPUT file.

Informational. A file that is opened with the OUTPUT attribute cannot be accessed with a READ
statement. If you are attempting to read a file that was just written, you must first close the file and reopen
it with the INPUT attribute.

User Action. Correct the source program and recompile.

RECID File not open for RECORD_ID_ACCESS.

Informational. The RECORD_ID_TO and RECORD_ID_FROM options are valid only if the file's
ENVIRONMENT option list specified RECORD-1D_ACCESS.

User Action. Correct the ENVIRONMENT option list and recompile the program.

RECIDKEY RECORD_ID_FROM conflicts with KEYED or KEYFROM.

Informational. A record I/O statement may not specify the KEY or KEYFROM option and the
RECORD_ID_FROM option at the same time.

User Action. Correct the statement and recompile the program~

RECORD Record length does not match target length.

Informational. A fixed-length character string buffer is not the same length as a record being read by a
READ statement.

User Action. Verify that the variable to which you are transferring data is the correct length for the records
in the file. Correct the source program and recompile.

RECURSIO Illegal recursive I/0 attempted.

Informational. An input or output operation was attempted to a file on which another I/0 operation is
currently being performed.

User Action. Correct the logic of the program and recompile.

STROVFL Stream item too big. Must be less than 1000 characters.

Informational. The run-time system cannot process a string longer than 1000 characters.

User Action. Correct the input or output field width and recompile the program. If necessary, use more
than one stream I/O statement.

SUBRANGE Subscript range check error.

Error. The compiler detected a value that is beyond the range specified for a variable. This message is
issued only if the procedure containing the reference was compiled with the /CHECK qualifier.

User Action. Correct the reference.

PL/I Messages B-37

SUBSTR2 Operand two of a SUBSTR is out of range.

Error. The second operand in a reference to a SUBSTR built-in function or pseudovariable is beyond the
range of the string. This message is issued only if the procedure containing this reference was compiled with
the /CHECK. qualifier.

User Action. Correct the reference.

SUBSTR3 Operand three of a SUBSTR is out of range.

Error. The third operand in a reference to a SUBSTR built-in function or pseudovariable is beyond the
range of the string. This message is issued only if the procedure containing this reference was compiled with
the /CHECK qualifier.

User Action. Correct the reference.

TITLE Invalid TITLE specified.

Informational. The size of the character-string expression specified in the TITLE option exceeds the
maximum size of 128 bytes.

User Action. Select a smaller file title and correct the program.

VIRMEMDEAL PL/I compiler/run-time error. Please submit an SPR.

Informational. An error occurred in the execution of the PL/I compiler or a run-time module.

User Action. Gather as much information as possible about the circumstances under which the error
occurred and submit an SPR report.

WRITEIN Attempting to WRITE to an INPUT file.

Informational. A file that is opened with the INPUT attribute cannot"be accessed with a WRITE state­
ment. If you are attempting to write a file that was just read, you must first close the file and reopen it
either with the UDPATE attribute or with the OUTPUT attribute and ENVIRONMENT(APPEND).

User Action. Correct the source program and recompile.

PL/I Messages B-39

Appendix C
Correspondence of PL/I and RMS

Table C-1 lists the VAX-11 PL/I ENVIRONMENT options and gives the
V AX-11 RMS macro, field, or bit setting, as appropriate, that corresponds to
each.

For detailed descriptions of the RMS fields, see the VAX-11 Record Manage­
ment Services (RMS) Reference Manual.

Table C-1: RMS Fields for PL/I ENVIRONMENT Options

Options RMS Macro/Field

APPEND $RAB ROP=EOF
$FAB FOP=CIF,-
'MXV, 'NEF, 'SUP

BATCH $FAB FOP=SCF

BLOCK_BOUNDARY_FORMAT $FAB RAT=BLK

BLOCK-10 $FAB FAC=BIO

BLOCK_SIZE $FAB BLS

BUCKET _SIZE $FAB BKS

CARRIAGE_RETURN_FORMAT $FAB RAT=CR

CONTIGUOUS $FAB FOP=CTG

CONTIGUOUS_BEST_TRY $FAB FOP=CBT

CREATION_DATE $XABDAT CDT

CURRENT_POSITION $FAB FOP=POS

DEFAULT_FILE_NAME $FAB DNM

DEFERRED_ WRITE $FAB FOP=DFW

DELETE $FAB FOP=DLT

EXPIRATION_DATE $XABDAT EDT

EXTENSION_SIZE $FAB DEQ

(Continued on next page)

C-1

Table C-1 (Cont.): RMS Fields for PL/I ENVIRONMENT Options

Options RMS Macro/Field

TEMPORARY $FAB FOP=TMP

TRUNCATE $FAB FOP=TEF

WORLD_PROTECTION $XABPRO PRO

WRITE_BEHIND $RAB ROP=WBH

WRITE_CHECK $FAB FOP=WCK

Correspondence of PL/I and RMS C-3

Appendix D
ASCII Character Set

ASCII Character Set

ASCII ASCII
Decimal Decimal
Number Character Meaning Number Character Meaning

0 NUL Null 40 (Le ft parenthesis
I SOH Start of heading 41) Right parenthesis
2 STX Start of text 42 * Asterisk
3 ETX End of text 43 + Plus sign
4 EOT End of transmission 44

'
Comma

5 ENQ Enquiry 45 Minus sign or hyphen
6 ACK Acknowledgement 46 Period or decimal point
7 BEL Bell 47 I Slash
8 BS Backspace 48 0 Zero
9 HT Horizontal tab 49 I One

IO LF Line feed 50 2 Two
11 VT Vertical tab 51 3 Three
12 FF Form feed 52 4 Four
13 CR Carriage return 53 5 Five
14 so Shift out 54 6 Six
15 SI Shift in 55 7 Seven
16 OLE Data link escape 56 8 Eight
17 DC! Device control l 57 9 Nine
18 DC2 Device control 2 58 Colon
19 DC3 Device control 3 59 Semicolon
20 DC4 Device control 4 60 < Left angle bracket
21 NAK Negative acknowledgement 61 = Ec.~ual sign
22 SYN Synchronous idle 62 > Right angle bracket
23 ETB End of transmission block 63 ? Question mark
24 CAN Cancel 64 (a, At sign
25 EM End of medium 65 A Upper case A
26 SUB Substitute 66 B Upper case B
27 ESC Escape 67 c Upper case C
28 FS File separator 68 D Upper case D
29 GS Group separator 69 E Upper case E
30 RS Record separator 70 F Upper case F
31 us Unit separator 71 G Upper case G
32 SP Space or blank 72 H Upper case H
33 ! Exclamation mark 73 I Upper case I
34

,,
Quotation mark 74 J Upper case J

35 # Number sign 75 K Upper case K
36 $ Dollar sign 76 L Upper case L
37 % Percent sign 77 M Upper case M
38 & Ampersand 78 N Upper case N
39 Apostrophe 79 0 Upper case 0

(Continued on next page)

D-1

Index

A

$ACCDEF, 19-5
Access modes, 9-2

block I/O, 9-4
random by key, 9-3
record identification, 9-4
relative record number, 9-3
sequential, 9-3

Access privileges, 13-2
ADDR built-in function, 15-5

pass pointer value, 14-7
ALIGNED attribute

bit-string arguments, 19-10
ALLOCATE command, 1-9, 5-3, 10-2
Allocation

device, 10-5
determine status, 8-6

disk file space
extend, 8-7
set default quantity, 6-20
specify size, 6-22

storage in area, 18-5 to 18-6
Alternate keys, 12-1

access file using, 7-1, 7-7
access records by, 12-11
define, 12-6
specify numbers, 12-8

ANSI magnetic tape labels, 10-2
ANY attribute, 14-4, 14-6 to 14-7, 19-24

examples, 19-10
used with VALUE, 14-5

ANYCONDITION condition
errors, B-28

ANYCONDITION ON-unit, 17-7
called during unwind, 17-15
effect of nonlocal GOTO, 17-16
located in search for ON-units,

17-12 to 17-13
STOP statement in, 17-15

AP (Argument Pointer), 14-1 to 14-2
APPEND (ENVIRONMENT option), 6-5,

6-10, 10-3, C-1
determine if set, 8-3
example, 10-1

Index-I

Area, 18-5
allocate storage in, 18-5 to 18-6, 18-10
free storage, 18-7, 18-12 to 18-13
initialize, 18-5, 18-10 to 18-11
longword reserved to DIGITAL,

18-5, 18-10
pass as argument, 18-8
storage control, 18-6 to 18-13

AREA attribute, 18-5
Argument list, 14-2 to 14-3

meaning of zeros, 14-13
passed to ON-unit, 17-4
variable-length, 14-12

Argument pointer, 14-1 to 14-2
Arguments

default values, 14-13
dummy, 14-4
for AST routines, 19-20
for system services, 19-2 to 19-3
main procedure

LIB$GET_FOREIGN, 4-10
logical names, 4-12

optional, 14-13
pass by descriptor, 14-8
pass by immediate value, 14-3 to 14-4
pass by reference, 14-5 to 14-6
pass to main procedure, 4-9
passed to ON-unit display, 17-6
passing conventions, 14-2
specifying pointer values, 14-7

Array descriptor, 14-8
Arrays

bound checking, 2-3
pass as arguments, 14-5 to 14-6, 14-8

to FORTRAN procedures, 14-6
pass by descriptor, 14-9

ASCII character set, D-1
ASCII data (in stream files), 9-7
Assembly language code

print in listing file, 2-5
ASSIGN command, 1-8
Assign I/O Channel system service, 19-12
AST routines

considerations, 19-18 to 19-20
pass parameters, 19-18

Cell (in relative file), 11-1
calculate size, 6-28
relationship to record number, 9-2

Channel number
assign, 19-18
mailbox, 19-10, 20-3

assign, 19-12
deassign, 20-3
specify, 20-6

specify as argument, 19-3
Character set, ASCII, D-1
Character strings

arguments to ENVIRONMENT options,
6-2

as procedure arguments
for system services, 19-3
pass by descriptor, 14-9, 19-2
varying-length, 14-10

constants
as arguments, 19-8

descriptors, 14-10
user-coded, 14-10

in stream files, 9-7
keys in indexed files, 12-8
reading and writing

fixed-length, 9-5
varying-length, 6-41, 9-6

/CHECK qualifier, 2-3
$CHFDEF

example, 17-6
fields defined in, 17 -5

CLOSE statement
deassign mailbox channel, 20-3
destroy logical network link, 21-3
specify ENVIRONMENT options, 6-1

$CODE program section, 18-2
Colon

in DEFAULT_FILE_NAME option, 5-7
in TITLE option, 5-2

Column number, determine current, 8-5
COM file type, 4-7
Command procedures, 4-7

submit to batch queue, 6-10
used for network 1/0, 21-4

Commands
hints for entering, 1-3
maintaining files, 1-9
pass data to a program, 4-9
program development, 1-1

Commas in argument list, 14-13
omit for SORT, 22-1

COMMON block, 15-2, 18-3

Compiler
control optimization, 2-6
diagnostic messages, B-1 to B-27
format, 2-10
functions, 2-1
input and output files, 2-7
listing, 2-5, A-1
listing options, 2-4
options, 2-3
stop, 2-11

Concatenated input files, 2-9
Condition handler, 17-1

argument list, 17 :4
catch all conditions, 17-7
compared to ON-unit, 17-1
courses of action, 17 -9
default, 17-12
LIB$ESTABLISH, 17-2

Condition handling, 17-1to17-14
Condition values, 17-3

bits defined in, 16-2
file errors, 5-10
user-defined, 17-8 to 17-9

Conditions, 17 -1
CTRL/C, 19-18 to 19-19
effect of handling, 17 -9
image exit, 4-3
multiple active, 17-14
resignaling, 17-9 to 17-10
run-time, 4-2
unwinding the call stack, 17 -10

CONTIGUOUS (ENVIRONMENT option),
5-12, 6-5, 6-15, C-1

determine if set, 8-3
CONTIGUOUS-BEST-TRY

(ENVIRONMENT option), 5-12, 6-5,
6-16, C-1

determine if set, 8-3
CONTINUE command, 4..:5
Control bits (in status value), 16-2
COPY command, 1-4, 1-9
Copying PL/I source text, 2-12
CREATE command, 1-9
CREATE/DIRECTORY command, 1-9
CREATION_DATE (ENVIRONMENT

option), 6-5, 6-16, C-1
example, 19-14

Creation date of file
determine, 8-3
specify, 6-16

example, 19-14
/CROSS-REFERENCE qualifier, 2-4, A-6

Index-3

Device independence, 1-7
ENVIRONMENT options, 6-3

DIRECT attribute, 9-2
determine if file has, 8-5

Directory
changing default, 1-6
default, 5-7
SYS$LIBRARY, 2-17, 3-11

DIRECTORY command, 1-9
Directory specifications, rules, 1-5
Disk files

allocate contiguous, 6-15
block I/O, 6-12
extend allocation, 8-7

Disk space, conserve, 6-46
Display

file information, 8-1
logical names, 1-8

DISPLAY built-in subroutine, 8-1 to 8-7
device information, 8-6 to 8-7
ENVIRONMENT information, 8-3
file attribute information, 8-5

Dope vector, 14-8
Double-precision floating-point, 2-5
Dummy arguments, 14-3

for by-descriptor arguments, 14-12
for by-reference arguments, 14-6 to 14-7
for by-value arguments, 14-4

Duplicate keys, 12-9
test for errors, 12-13

E

EDIT command, 1-2, 1-9
/ENABLE qualifier,_2-4, A-1
END statement in main procedure, 4-1
End-of-file

in block I/0, 6-12
indicated by SORT, 22-8
meaning in mailbox I/0, 20-3 to 20-4
meaning in network communication,

21-3
stream files, call REWIND, 8-9
truncate file at logical, 6-46

End-of-line delimiter for stream input, 6-25
End-of-tape on volume, 10-5
End-of-volume switching, 10-4
ENDFILE condition, 5-9

errors, B-28
mailbox 1/0, 20-3, 20-5
network I/0, 21-5
rewind stream file, 8-9
signal value, 17-3

ENDPAGE condition, 5-9
action by default handler, 17-13
errors, B-28
signal value, 17-3

ENTRY attribute
declare non-PL/I procedures, 14-4
OPTIONS (VARIABLE), 14-12

Entry name, pass as procedure argument,
14-4

Entry point, 2-1
as global symbol, 3-1
main, 3-3, 4-1

ENVIRONMENT options, 6-1 to 6-48
file sharing, 13-5
for input/output optimization, 5-12
obtain information, 8-2 to 8-3
specify arguments, 6-2
specifying, 6-1
summary, 6-4 to 6-9
see also entries for individual options

ERROR condition
action by default handler, 17-13
default ON-unit action, 17-9
errors, B-29
for file errors, 5-9
signal value, 17-3
signaled by default ON-unit, 17-13

Error (severity)
meaning to compiler, 2-10
numeric value and meaning, 16-2

Errors
at run time, 4 2
compiler, B-1 to B-27

message format, 2-10
display system messages, 4-5
ENVIRONMENT options, 6-3
handling, 17 -1

file errors, 5-9, 5-11
indexed sequential files, 12-12
linking, 3-3
relative files, 11-7

Event flag
as argument, 19-3
clear, 19-16 to 19-17
wait for, 19-16 to 19-17, 19-20
with a timer, 19-16 to 19-17

EXE file type, 3-5
Executable image, create, 3-1
Execute

command procedures, 4-7
programs, 4-1

EXIT command, 4-2, 4-5
Expiration date of file

determine, 8-3

Index-5

Files (Cont.),
carriage control, 9-7
compiler input and output, 2-7
creating, 10-1
creation date, 6-16

example, 19-14
deleting, 6-19
error conditions, 5-9
expiration date, 6-19

example, 19-14
indexed sequential, 6-27, 9-2, 12-1 to 12-13
linker input and output, 3-4
locked, 13-6
magnetic tapes, 10-2
mailboxes, 20-3
network access, 21-1
opening, ENVIRONMENT options, 6-3
ownership, 13-1

specify, 13-2
position at beginning, 8-9
printer format, 9-7
process permanent, 5-5
protection, 13-1

specify, 13-3
reading and writing, 7-4, 7-11, 10-3,

11-5 to 11-6, 12-9 to 12-10
relative, 9-2, 11-1 to 11-7
sequential, 9-2, 10-1 to 10-5
sharing, 13-4 to 13-8
sorting, 22-1 to 22-3

example, 22-2 to 22-3
specify size, 6-22
stream, 9"'.'7
te~ porary, 6-45
truncate at end-of-file, 6-46
see also Indexed sequential files,

Relative files, Sequential files
FINISH condition, 4-2

at image exit, 4-5
effect of MAIN option, 4-3
errors, B-29
signaled by default handler, 17-13
signaled by STOP statement, 17-12
STOP statement in ON-unit, 17-15

Fixed control area, 9-6
determine size, 6-24, 8-3
in printer format file, 6-35
read, 7-5
specify size, 6-23
writing or rewriting, 7-3

example, 7-4
FIXED-CONTROL-FROM option,

7-2 to 7-3, 9-6

FIXED-CONTROL-SIZE
(ENVIRONMENT option), 6-6,
6-23, 9-6, C-2

FIXED-CONTROL-SIZE-TO
(ENVIRONMENT option), 6-6,
6-24, C-2

FIXED-CONTROL_ TO option, 7-2,
7-5, 9-6

FIXED-LENGTH-RECORDS
(ENVIRONMENT option), 6-6,
6-24, 9-5, C-2

determine if set, 8-3
Fixed-length records, 6-24, 9-5

specify record size, 6-28
FIXEDOVERFLOW condition

errors, B-29
sample ON-unit, 17-4
signal value, 17-3

Floating-point, select default format, 2-5
FLUSH built-in subroutine, 8-8
Foreign command, define, 4-10
Form feeds, specify in printer format,

6-36 to 6-37
Formats, of records, 9-5
FORTRAN programs

COMMON block, 18-3
passing arrays, 14-6

FP (Frame Pointer), 14-1
when condition signaled, 17-5

Free storage in area, 18-5, 18-7,
18-12 to 18-13

FTN carriage control, 8-5
/FULL qualifier, 3-6
Function codes (I/0), 19-18

for mailbox I/O, 20-6

G

/G_FLOAT qualifier, 2-5
G floating-point format, 2-5
General register 0, 4-5, 16-1
General registers, saved, 14-2
GET statement

default file title, 5-6
interpretation of end-of-line,

6-26
NO-ECHO optien, 7-8
suppress display of input, 7-8
valid options, 7 -2
with NO_FILTER option, 7-8
with PROMPT option, 7-9

GETBINTIM procedure, 19-15

Index-7

Initialize
area, 18-5, 18-10 to 18-11
global symbols, 15-3

INITIALIZE command, 1-9, 10-2
INPUT attribute

determine if file has, 8-5
effect on file sharing, 13-4

Input files
compiler, 2-7
define for program 1/0, 5-2

Input/output
block, 9-4
file specifications, 5-2
optimization, 5-11
overview of VAX/VMS features, 5-1
PL/I and RMS, 5-1
using mailboxes, 20-1, 20-4 to 20-8
see also Files, 1/0 entries

Integer overflow, detect, 17-4
Integer values, assign to bit strings,

6-36, 16-5
Internal variables, program sections,

18-3
Interrupting

DCL commands, 1-3
program execution, 4-4
the PL/I compiler, 2-11

Invoking
non-PL/I procedures, 14-1
PL/I compiler, 2-2
the linker, 3-2

Item list (SYS$GETJPI), 19-24

$JBCMSGDEF, 19-5
$JPIDEF, 19-5, 19-24

KEY condition, 5-9

J

K

attempting to change a key, 12-9
duplicate keys, 12-9
errors, B-29
sample ON-unit, 11-7, 12-13
signal value, 17-3

Key fields
define, 12-5
use compiler storage map, 12-5

Key number, see Index number

KEY option
required with INDEX-NUMBER, 7-5
specify for indexed file, 12-8
specify for relative file, 11-5

Key values
in block 1/0, 6-12
in relative files, 11-1
indexed sequential files, 12-1

valid data types, 12-7
KEYED attribute, 9-2

create relative file, 11-2
determine if file has, 8-5

Keys
alternate, 12-1

access file using, 7-1, 7-7
access records by, 12-11
define, 12-6
specify numbers, 12-8

binary, 12-8
character-string, 12-8
decimal, 12-8
define for SORT, 22-2, 22-6
determine number, 8-5
duplicate, 12-9
for relative files, 11-1
generic matching, 12-12
handle duplicate errors, 12-13
handle invalid data type errors, 12-13
handle key not found errors,

11-7, 12-13
match key values

match greater, 7-6, 12-12
match greater or equal, 7-7

modify alternate, 12-9
options, 12-9
specify alternate, 12-11
specify index number, 6-26
specify position in record, 12-5
specifying, 12-5

L

Labels, magnetic tape, 10-2
Length

of fixed control area, 9-6
of variable-length records, 9-6

Level-one procedure, 2-9, 3-1
identify in listing, A-3

LIB$ESTABLISH, 17-1
LIB$GET_FOREIGN, 4-10

example, 4-11 to 4-12

Index-9

M

Machine code listing, A-7 to A-9
/MACHINE-CODE qualifier, 2-5, A-7
Magnetic tapes, 10-2

allocate drive, 5-3
block 1/0, 6-12
blocking, 10-3
labels, 10-2
mount next volume, 8-8
multivolume, 8-8, 10-4
positioning, 6-17, 10-3
rewind, 8-9
rewind on close, 6-40
rewind on open, 6-40
set expiration date, 6-19

example, 19-14
specify block size, 6-12
version numbers, 10-2
volume switching, 10-4

Mailbox messages
type codes, 20-4

Mailboxes, 20-1 to 20-8
assign channel example, 19-12
create, 19-10 to 19-11
delete, 19-12 to 19-13, 20-1, 20-3
determine if file is a mailbox, 8-6
specify OPEN, 20-3
temporary and permanent, 20-1

MAIN option
as program transfer address, 3-3
default condition handling, 17-12
effect on program termination, 4-2
in concatenated input files, 2-9

Main procedure
default condition handling, 17-12
exit handler, 4-1
FINISH ON-unit, 4-3
pass data, 4-9 to 4-15
return status values, 4-5

Map file (linker), 3-6
contents of brief, 3-6
contents of default, 3-6
contents of full, 3-6
specify name for, 3-6

MAP file type, 3-5
/MAP qualifier, 3-6
Mapping windows, 6-39
MATCH-GREATER option, 7-2, 7-6
MATCH-GREATER-EQUAL option, 7-2,

7-7
example, 12-12

Maximum record number, 11-2
determine, 8-4
handling error condition, 11-7
specify, 6-27

MAXIMUM-RECORD-NUMBER
(ENVIRONMENT option), 6-7, 6-27,
11-2, C-2

Maximum record size
determine, 8-4
specify, 6-28

MAXIMUM-RECORD-SIZE
(ENVIRONMENT option), 6-7, 6-28,
9-5 to 9-6, 11-3, C-2

Mechanism array arguments, 17 -6
display, 17-6

Member number, of file's owner, 6-33
determine, 8-4

Memory, 18-1
Memory allocation listing, see Map file

(linker)
Message identification, B-1, B-30

suppress display in messages, 2-11
Message number, 16-2

code in global symbol name, 16-4
set, 16-5

Messages, B-1 to B-39
after image exit, 4-5
compiler, B-1 to B-27

format, 2-10
severity, B-1

correspondence to status values, 16-2
displayed at run time, 4-2
facility name, 2-10
identification, 2-10
linker, 3-3
run-time, B-28 to B-39

format, 4-3
severity, 2-10
suppress compiler warnings, 2-11

Module name
assigned by compiler, 2-1
in concatenated input files, 2-9
in run-time traceback, 4-3
object module, 3-9
table, 3-7, 3-9
text module, 2-13

specify name, 2-14, 2-16
MOUNT command, 1-9, 5-3, 10-2
Multiblock count

determine, 8-4
specify, 6-29

MUL TIBLOCK-COUNT (ENVIRONMENT
option), 5-12, 6-7, 6-29, C-2

Index-11

OPTIONS option
ENTRY attribute, 14-12
1/0 statements, 7 -1

/OPTIONS qualifier (LINK command), 3-4
OPTIONS (VARIABLE), 14-12 to 14-14
OUTPUT attribute

create a new file, 10-1
determine if file has, 8-5
effect on file sharing, 13-4

Output files (program)
define, 5-2
spool to line printer, 6-43, 10-5

OVERFLOW condition
signal value, 17-3

Owner of a file
define, 13-2
determine, 8-4

OWNER-GROUP (ENVIRONMENT option),
6-7, 6-32, 13-2, C-2

OWNER-MEMBER (ENVIRONMENT
option), 6-8, 6-33, 13-2, C-2

OWNER-PROTECTION (ENVIRONMENT
option), 6-8, 6-34, 13-3, C-2

p

Page number of print files
determine current, 8-5

Page size of print files
determine current, 8-5

Parameter descriptors
non-PL/I procedures, 14-3
omitting, 14-14
VALUE attribute, 14-4

Parentheses, enclose arguments, 14-6, 14-10
PC (Program Counter), 14-2

display in ON-unit, 17-6
in run-time traceback, 4-4
when condition signaled, 17-5

PL/I compiler
diagnostic messages, B-1 to B-27
functions, 2-1
invoking, 2-2
listing file, 2-5
listing options, 2-4
options, 2-3

PL/I condition values, 17-3
PLI command, 1-1 to 1-2, 2-1 to 2-9, 3-8

diagnostic messages, B-1 to B-27
format, 2-10

examples, 2-7 to 2-8
qualifiers, 2-3
specify libraries, 2-15

·PLI file type, 2-3, 2-13
PLI-FILE_DISPLA Y structure, 8-2

device attributes, 8-6
ENVIRONMENT information, 8-3
file attribute information, 8-5

PLI$LIBRARY, define in more than one
logical name table, 2-17

PLISYSDEF.TLB, 2-17, 19-5
$CHFDEF, 17-5
$STSDEF, 16-3
SORT procedure declarations, 22-1
symbolic definition modules, 19-5
system service declarations, 19-1

Pointers, pass as actual arguments, 14-7
Position

files
using READ, 9-3
using REWIND, 8-9

key (in indexed file), 12-5 to 12-6
magnetic tapes, 6-17, 6-40, 10-3

$PQLDEF, 19-5
Primary key, 12-1, 12-8
PRINT attribute, 9-7

determine if file has, 8-5
PRINT command, 1-5
Printer device, see Line printer
Printer format, 6-35, 9-7

detect, 8-4
size of fixed control area, 6-35
specify line and form feeds, 6-36 to 6-37

PRINTER-FORMAT (ENVIRONMENT
option), 6-8, 6-34, 9-7, C-2

characters, 6-35
example, 6-36

Procedures
block activations, 14-1
libraries, 3-7
non-PL/I, 14-1
pass as arguments, 14-4
run-time, 3-1

Process, obtain information, 19-24
Process logical name table, 1-6, 5-5
Process permanent files, 5-5
Program Counter, see PC (Program Counter)
Program output

redefine SYSPRINT, 5-3
spool to line printer, 5-2, 6-43, 10-5
submit to batch queue, 6-10

Program sections
attributes, 18-1 to 18-2
COMMON blocks, 18-3
created by compiler, 2-1, 18-2
for external variables, 18-2
for file constants, 18-3

Index-13

References
global symbols

resolve, 15-5
to system services, 19-1
unresolved, 3-4

Registers
saved, 14-2
variables in, 2-6

Relative files, 9-2, 11-1 to 11-7
creating, 11-2

using SORT, 22-2
error handling, 11-7
examples, 11-1, 11-4
populate, 11-5
rewind to first occupied cell, 8-9
specify maximum record number, 6-27
updating, 11-6

Relative record number, 11-1
maximum, 11-2

Remote file access, 21-1
RENAME command, 1-9
RESIGNAL built-in subroutine, 17-9 to 17-10
Resolution of references, 3-1

global symbols, 15-5
Retrieval pointers

determine number, 8-4
RETRIEVAL-POINTERS (ENVIRONMENT

option), 5-12, 6-8, 6-39, C-2
RETURN statement, 16-1

effect of status values, 4-5
effect on call stack, 14-2
main procedure, 4-1

specify value, 4-5
return status value, 16-1

Return status values, 16-1
format, 16-1
I/0 requests, 19-20
set fields, 16-5
system services, 19-6
test for success or failure, 16-3
testing, 16-3

RETURNS attribute, main procedure, 4-5
REWIND built-in subroutine, 8-9

effect on locked records, 13-7
REWIND_QN_CLOSE (ENVIRONMENT

option), 6-8, 6-40, 10-3, C-2
determine if set, 8-4

REWIND_QN_OPEN (ENVIRONMENT
option), 6-8, 6-40, C-2

determine if set, 8-4
REWRITE statement, valid options, 7-2
RFA (Record File Address), see Record

Identification

RMS
condition values, 12-13, 17-3
multibuffering, 6-31
relationship to PL/I, 5-1

Routine name
in run-time traceback, 4-4

RUN command, 1-2, 4-1
Run-time errors, 4-2

messages, B-28 to B-39
Run-time library, 3-11
Run-time procedures

linking, 3-1
Running programs, 4-1

s
SCALARV ARYING (ENVIRONMENT

option), 6-9, 6-41, C-2
determine if set, 8-4

Search order
INCLUDE file libraries, 2-16
logical name tables, 1-7
object module libraries, 3-9
logical name tables, 3-10
ON-units, 17-12 to 17-14

$SECDEF, 19-5
Sections, program, see Program sections
Segmented character-string keys, 12-8
Sequence numbers, in fixed control area, 7-4
Sequential access to files, 9-3
SEQUENTIAL attribute, 9-2

determine if file has, 8-5
Sequential files, 9-2, 10-1 to 10-5

append records to, -10-1
create, 10-1
magnetic tapes, 10-2 to 10-4

Services, system, see System services
SET DEFAULT comman<i, 1-6, 1-9
SET MESSAGE command, 2-11
SET PROTECTION command, 13-3
Severity, 16-2

of compiler errors, 2-10
of conditions, 17 -3
of resignaled condition, 17-13
suppress display in messages, 2-11

Shareable image file, linker options file for,
3-5

Shareable image library, VMSRTL.EXE,
3-11

SHARED-READ (ENVIRONMENT option),
6-9, 6-42, 13-4, C-2

determine if set, 8-4

Index-15

SYS$ASSIGN system service, 19-12, 19-18
SYS$BINTIM system service, 19-14
SYS$CLREF system service, 19-16 to 19-17
SYS$COMMAND, 5-6
SYS$CREMBX system service, 19-10
SYS$DELMBX system service, 19-12, 20-3
SYS$DISK, 5-6
SYS$ERROR, 5-6
SYS$EXIT system service, 4-2

called by STOP statement, 17-12
SYS$FORCEX system service, 4-2
SYS$GETJPI system service, 19-24 to 19-27
SYS$INPUT, 5-6
SYS$LIBRARY, 2-17, 3-11

redefine, 2-17
SYS$NET, 21-5
SYS$0UTPUT, 5-6

output compiler listing to, 2-8
SYS$PRINT, 6-43
SYS$QIO system service, 19-18

mailboxes, 20-6
SYS$SETIMR system service, 19-16 to 19-17
SYS$TRNLOG system service,

4-13 to 4-15, 19-8 to 19-9
SYS$WAITFR system service, 19-16 to 19-17
SYSIN, 5-6

redefine, 5-3
SYSNAM user privilege, 1-7
SYSPRINT, 5-6

redefine, 5-3
System libraries

object module, 3-11
PLISYSDEF.TLB, 2-17

System logical name table, 1-7, 5-5
System messages, 4-5
System services, 19-1 to 19-27

arguments, 19-3
symbolic definition files, 19-4
test return status, 19-6
variable-length argument lists, 19-4

SYSTEM_PROTECTION (ENVIRONMENT
option), 6-9, 6-44, 13-3, C-2

T

Tables
global symbol, 3-7
logical name, 1-6 to 1-7, 5-5

Tapes, see Magnetic tapes
Task-to-task communication, 21-2 to 21-5
TEMPORARY (ENVIRONMENT option),

6-9, 6-45, C-3
determine if set, 8-4
use with FILE-1D option, 6-21

Temporary defaults for
file specifications, 1-5

Temporary files, 6-45
Terminal

I/O with $QIO, 19-20
TT logical name, 19-20 •

Terminal input
display prompting message, 7-9
suppress display, 7-8

Termination (program), 4-1
Text libraries, 2-7, 2-13
Text modules, specify name for, 2-14, 2-16
Time

convert ASCII string to binary, 19-14
specify for ENVIRONMENT options, 19-14
system 64-bit value, 19-14 to 19-15

Timer, set with system service, 19-16 to 19-17
TIMRB, 19-24 to 19-27
TIMRE, 19-24 to 19-27
TITLE option, 5-2

default for SY SIN, 5-6
default for SYSPRINT, 5-6
determine expanded value, 8-5
specify logical name, 5-4
specify mailbox, 20-3
specify remote file, 21-2

TLB file type, 2-3, 2-7
Traceback

compiler information, 2-2
exclude from image, 4-4
following con di ti on signal, 17 -13 to 17 -14
for run-time errors, 4-3

file errors, 5-11
information, 4-4

linker information, 3-7
specify at compile time, 2-4
specify at link time, 3-7

/TRACEBACK qualifier, 3-7
Translate logical names, 1-7,

4-13, 5-5, 19-8 to 19-9
TRUNCATE (ENVIRONMENT option),

6-9, 6-46, C-3
determine if set, 8-4

TT logical name, assign channel, 19-20
Type-ahead buffer, purging, 7-10
TYPE command, 1-5

u
UIC, see User identification code
UNDEFINEDFILE condition, 5-9

ENVIRONMENT option conflicts, 6-3
errors, B-29
invalid file specifications, 5-3

Index-17

READER'S COMMENTS

VAX-11 PL/I
User's Guide

AA-H951A-TE

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indkate the type of user/ reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

0
0
D
0
D
0 Other (please specify) __________________________ _

Name ____________________ Date--------------------

Organization ______________________________________ _

Street __ __

City ___________________ _
State ------ Zip Code--------­

or
Country

