Programming in
VAXRPG Il

Order Number: AA-R431B-TE

November 1985

This manual describes language elements, programming constructs,
and features of the VAX RPG Il language.

Revision/Update Information: This revised document supersedes
Programming in VAX RPG Il
(Order No. AA R431A-TE)

Operating System and Version: VAX/VMS V4.2 or later
MicroVMS V4.2 or later
Software Version: VAX RPG Il V2.0

digital equipment corporation
maynard, massachusetts

First Printing, February 1984
Revised, November 1985

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license and may
be used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip-
ment that is not supplied by Digital Equipment Corporation or its affiliated
companies.

Copyright ©1984, 1985 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this doc-
ument requests the user’s critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDT

DECUS RSTS

DECwriter RSX mﬂmﬂuau

ZK-2787
HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA & PUERTO RICO* CANADA INTERNATIONAL
Digital Equipment Corporation Digital Equipment Digital Equipment Corporation
P.0O. Box CS2008 of Canada Ltd. PSG Business Manager
Nashua, New Hampshire 100 Herzberg Road c/o Digital's local subsidiary
03061 Kanata, Ontario K2K 2A6 or approved distributor

Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.

in New Hampshire, Alaska, and Hawaii call 603-884-6660.

In Canada call 800-267-6215.

‘Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment Corporation,
Westminster, Massachusetts 01473.

Contents

Preface XV

Part |

Chapter 1 The VAX RPG Il Logic Cycle

1.1 The RPGII General LogicCycle 1-2

1.2 TheFirst Cycle. 1-2

1.3 TheLastCycle 1-3

1.4 ANormal Cycle 1-3
1.4.1 Total Time 1-4
1.4.2 Detail Time 1-5

1.5 RPGII Detail Program LogicCycle 1-16

Chapter 2 Developing Programs

2.1 Compiling Programs. 2-1
2.1.1 Default Compiler Options. i . 2-2

2.1.2 RPGII Compiler Qualifiers i 2-3
2.1.2.1 CHECK. ... 2-4

2.1.22 CROSS_REFERENCE i 2-5

2.1.23 DEBUG. 2-6

2.1.2.4 LIST .. 2-6

2.1.25 MACHINE_CODE. 2-7

2.1.26 OBJECT 2-7

2.1.2.7 SEQUENCE_CHECK, 2-8

2.1.2.8 WARNINGS. 2-8

2.2 Linking and Running Programs 2-8
2.3 Interpreting RPG Il Compiler Error Messages......................, 2-9

Chapter 3 Using the RPG Il Editor

3.1 RPGIIEditor Qualifiers 3-1
3.1.1 COMMAND ... 3-2
3.1.2 CREATE 3-3
3.1.3 JOURNAL 3-3
3.1.4 OUTPUT ... 3-3
3.1.5 READ_ONLY 3-3
3.1.6 RECOVER 34
3.1.7 START_POSITION e 34

3.2 The RPGIILEditor Screen i, 3-5

3.3 The RPGILEditor Cursor 3-8

3.4 TheRPGIIEditor Buffers........... i 3-9

3.5 Keysand Functions 3-9

3.6

iv

3.5.1 The GOLD Function i, 3-12
3.5.2 The HELP_KEYPAD Function............ 0 it 3-13
3.5.3 The HELP_SPECIFICATIONS Functionoo .. 3-14
3.54 The FIND_NEXTFunction«..... 3-16
3.5.5 TheFIND Function i 3-17
3.5.6 The DELETE_LINE Function 0 .. 3-17
3.5.7 The UNDELETE_LINE Function00 i, 3-17
3.5.8 The PAGE Function i 3-18
3.5.9 The COMMAND Function i 3-18
3.5.10 The SECTION Function i 3-19
3.5.11 The DISPLAY Function i 3-19
3.5.12 The REVIEW_ERRORFunction 3-19
3.5.13 The MOVE_TO_RULER Function 0., 3-20
3.5.14 The DELETE_FIELD Function 3-20
3.5.15 The UNDELETE_FIELD Functiono, 3-20
3.5.16 The ADVANCE Function i 3-20
3.5.17 The BOTTOM Function i, 3-21
3.5.18 The BACKUPFunction it 3-21
3.5.19 TheTOP Function i 3-21
3.5.20 The CUT Function i 3-21
3.5.21 ThePASTE Function i 3-21
3.5.22 The SHIFT_LEFT Function 3-22
3.5.23 The SHIFT_RIGHT Function i .. 3-22
3.524 TheFIELD Function s 3-23
3.5.25 The END_OF_LINE Function, 3-24
3.5.26 The DELETE_TO_END_OF_LINE Function e 3-25
3.5.27 The CHARACTER Function 0. 3-26
3.5.28 The COLUMN Function 3-26
3.56.29 The ENTERFunction 3-26
3.5.30 TheLINE Function i, 3-27
3.5.31 The OPEN_LINE Function 3-27
3.5.32 The SELECT Function 3-27
3.5.33 The RESET Function 3-27
3.5.34 The UPFunction e 3-27
3.5.35 The DOWN Function........ N 3-28
3.5.36 The RIGHT Function............ i, 3-28
3.5.37 The LEFT Function it 3-28
3.5.38 The FIELD_BACKWARD Function i, 3-28
3.5.39 The DELETE_CHARACTER Function i 3-28
3.5.40 The NEW_LINE Function 3-28
3.541 The FIELD_FORWARD Function i .. 3-29
3.5.42 The REFRESH_SCREEN Function i 3-29
3.5.43 The DELETE_TO_BEGINNING_OF_LINE Function 3-29
3.5.44 The EXITFunction e, 3-29
RPGII Editor Commands i 3-29
3.6.1 The COMPILE Command. 3-30
3.6.2 The DEFINEKEY Command 0. 3-31
3.6.3 The EXIT Command i, 3-34
3.64 TheHELPCommand. 3-35
3.6.5 The INCLUDE Command0t 3-37
3.6.6 The QUIT Command, 3-38
3.6.7 The RESEQUENCE Command................iiiiiiiiiiiiiiianaen... 3-39

3.7

3.8

3.6.8 TheSET Command i 3-40

3.6.81 The COMMAND Optionoiiiiiiiiiiii i 3-40
3.6.8.2 The DEFAULT Optionccoiiiiiiiiiiiiii i, 3-40
3.6.83 TheHELP Option........ ..o 341
3.6.84 The RULEROption i 3-41
3.6.85 TheSCROLLOption 3-43
3.6.8.6 The SECTION Optionoiiiiuiiiiiiiii i, 3-44
3.6.8.7 The STARTCOLUMNOptioncciiiiiiiiiii. .. 3-44
3.6.8.8 The SYNTAXCHECK Optioniiiiiiiiiiin... 3-44
3.6.9 The SHOW Command i 3-45
3.6.10 The SUBSTITUTE Command, 3-46
Customizing the Editor 3-48
3.7.1 Using Editor Commands........... i 3-48
3.7.2 StartupCommandFiles 3-48
3.7.3 Modifying Screen Length 3-50
Creating and Editing Programs 3-50
3.8.1 Creating ANewProgram 3-54
3.8.2 Editing An Existing Program 3-66

Chapter 4 Using Indicators

4.1

4.2

4.3

5.5

User Defined Indicators 4-1
4.1.1 Record-Identifying Indicators 4-1
4.1.2 FieldIndicators............. 44
4.1.3 ResultingIndicators 4-6
4.1.4 Control-Level Indicators........... 4-8
4.1.5 Overflow Indicators 4-12
4.1.6 KlIndicators....... ... i 4-12
Internally Defined Indicators 4-14
4.2.1 First-PageIndicator............ 4-14
4.2.2 Last-Record Indicator 4-15
4.2.3 Matching-Record Indicator 4-16
4.24 ExternalIndicators 4-16
4.25 HaltIndicators 4-17
Using Indicatorsas Fields 4-19
431 FINand ¥IND ... 4-19
4.3.2 FINKX . 4-19

File Names 5-1
Record Formats 5-2
File Types . ..o 5-2
File Organizations 5-2
5.4.1 Sequential Organization............ 5-2
5.4.2 Direct Organization i 5-3
5.4.3 Indexed Organization 54
File Access Methods 5-5
5.5.1 Sequential ACCeSSot 5-6
5.5.2 Sequential Access By Key 5-7

5.5.3 Sequential Access Within Limits 5-8

554 Random ACCESSiiiiiiii e 5-11

5285 70 S 5-11

5305 70 S 5-13

5385 70 PPt 5-14

5.56.,5 Sequential Access And/or Random AccessByKey 5-18

5.6 Creating Files 5-20
5.6.1 CreatingSequential Files............ 5-20
5.6.2 CreatingDirectFiles........ 5-20

5.6.3 CreatingIndexed Files i 5-21

5.7 AddingRecordsto Files i i 5-22
5.7.1 Adding Records To A Sequential File .. 5-23
5.7.2 Adding RecordsTo A DirectFile........... 5-24
5.7.3 Adding RecordsToAnIndexedFile 5-25

5.8 UpdatingRecordsinFiles 5-26
5.8.1 Updating A File Sequentially Or Randomly By Key 5-28

5.9 DeletingRecordsfrom Files 5-28
5.10 Processing Files with MatchingRecords ... 5-29
5.10.1 Checking Record Sequence for One Record Type 5-29
5.10.2 Checking Record Sequence for More Than One Record Type 5-29
5.10.3 Using Matching Fields with Field-Record-Relation Indicators................ 5-31
5.10.4 Using Matching Fields To Process More ThanOne File 5-33

5.11 Processing Files with Multiple Keys i 5-41

Chapter 6 Using Printer Output Files

6.1

6.2

6.3

6.4
6.5
6.6

Editing Output. 6-1
6.1.1 Using Edit Codes and Edit Code Modifiers..................................... 6-1
6.1.2 UsingConstants 6-2
Using Special Words 6-3
6.2.1 Printing the Date: UDATE, UDAY, UMONTH, UYEAR 6-3
6.2.2 Numbering Pages: PAGE and PAGE1 Through PAGE7 64
6.2.3 Saving Time by Repeating Data: *PLACE 67
Conditioning Qutput Lines 6-8
6.3.1 Printing Lines Before Reading the First Record: First-Page Indicator 6-8
6.3.2 Specifying Page Breaks: Overflow Indicator 6-10
Automatic Overflow 6-13
Definingthe Page Size 6-14
Formatting Output 6-14

Chapter 7 Using Tables

vi

Compile-Time Tables e 7-2
Pre-Execution-Time Tables. 7-2
Creating Table Input Records 7-3
Defining Tables 7-4
Searching Tables 7-7
Referencing Table Entries......... ... 7-10
Updating Tables 7-11

7.8 Outputting Tables 7-12

Chapter 8 Using Arrays

8.1 Typesof ATTays 8-1
8.1.1 Compile-Time ATraysc.uuiiiiiii e 8-2
8.1.2 Pre-Execution-Time Arrays................ i 84
8.1.3 Execution-Time Arrays............. ... i 84

8.2 Creating Array InputRecords 84

8.3 Defining ATTays oo 8-5
8.3.1 Defining a Compile-Time Array oo, 8-6
8.3.2 Defining a Pre-Execution-Time Array............ 8-6
8.3.3 Defining an Execution-Time Array 8-7
8.3.4 Defining Related Arrays in Alternating Format............................. ... 8-8

8.4 Referencing Arrays......... ...ttt 8-10

8.5 Searching Arrays i 8-15

8.6 Moving Array Data 8-18

8.7 Updating ATTaysttt 8-19

8.8 Outputting Arrays i 8-20

Chapter 9 Calling System Routines from VAX RPG Il

9.1 Introduction 9-1
9.1.1 Run-Time Library Routines......... 9-2
9.1.2 System Service Routines.............. 9-2

9.2 Calling System Routines from VAXRPGII 9-3
9.2.1 Determine the Type of Call (Procedure or Function) 9-4
9.2.2 Declarethe Arguments 9-5

9.2.2.1 Parameter Passing Mechanisms..................................... 9-10
9.2.2.2 Parameter Access Types (columnb4)................................. 9-12
9.2.2.3 Parameter Data Types (columns 55-57) 9-12
9.2.3 Declarethe System Routine. 9-14
9.2.4 Include Symbol Definitions 9-15
9.2.,5 Callthe Routineor Service i 9-15
9.2.5.1 Calling a System Routine in a FunctionCall 9-15
9.2.5.2 Calling a System Routine in a Procedure Call 9-19
9.2.6 ChecktheConditionValue....... 9-20
9.2.7 LocatetheResult 9-23
9.2.71 FunctionResults 9-23
9.2.7.2 ProcedureResults 9-23

9.3 Examples of Calling Run-Time Library Routines 9-24

9.4 Examples of Calling System Services..................... i, 9-28

9.5 Examples of Calling Subprograms 9-32

9.6 Screen Handlingin VAXRPGII 9-33

Chapter 10 Debugging VAX RPG Il Programs

10.1 Debugging RPGII Programs i 10-3
10.2 Debugger Commands and Keywords 10-3
10.3 Preparing to DebugaProgram 104

vii

10.3.1 SET LANGUAGE and SHOW LANGUAGE Commands 104

10.4 Controlling Program Execution............ i, 10-5
10.4.1 SET BREAK, SHOW BREAK, and CANCEL BREAK Commands 10-6
10.4.2 SET TRACE, SHOW TRACE, and CANCEL TRACE Commands 10-7
10.4.3 SET WATCH, SHOW WATCH, and CANCEL WATCH Commands............ 10-9
10.4.4 SHOW CALLSCommand i, 10-10
104.5 GO and STEPCommandsc.oouniiiiine i, 10-10
10.4.6 TYPE Command i e 10-11
104.7 EDITCommand e 10-12
10.4.8 CTRL/Y Command e 10-12
10.4.9 EXITCommandttt i 10-12
10.5 Examining and Modifying Locations 10-13
10.5.1 EXAMINE Command 10-13
10.5.2 DEPOSIT Commandt 10-14
10.5.3 EVALUATE Command.t 10-15

Chapter 11 Interpreting a Compiler Listing

Chapter 12 Optimizing Your Programs

12.1 Optimizing with Data Structures i 12-1
12.2 Optimizing with Adjacent Fieldsin Records.............. iii.. 12-2
12.3 Optimizing with Blank Factor1 12-3
12.4 Optimizing File Performance i 12-3
Figures

1-1 RPGIH LogicCycle e e e 1-6
1-2 Logic Cycle for the Matching-FieldsRoutine................ 1-16
1-3 Logic Cycle for Chained and Demand Files 1-18
1-4 Logic Cycle for Overflow Processing i i 1-19
1-5 Logic Cycle for Look-Ahead Processing, 1-20
5-1 Sequential File Organization i 5-3
5-2 Direct File Organization.............. .. i 5-3
5-3 Indexed File Organization i, 5-4
5-4 IndexKey Value 54
5-5 Sequential Access Within Limits 5-8
5-6 Random Accessby ADDROUT File 5-15
5=7 ADDROUTFIle i e e 5-15
5-8 Adding RecordstoaSequential File 5-23
5-9 Adding RecordstoaDirectFile 5-24
5-10 Using Matching Fields to Do Multifile Processing 5-35
7-1 TableInput Record. o 7-3
7-2 Related Tables. 7-4
8-1 ArrayInputRecord 84
8-2 Related Arraysot 8-5
Tables

2-1 RPGIICommand Qualifiers 24
3-1 RPG/EDIT Command Qualifiers....... 3-2
3-2 RPGII Editor Define Key Defaults 3-10

viii

3-3 RPG Keynames for Valid Definable Keys........... 3-33

5-1 File Access Methods. i 5-5
5-2 Matching Field Lengths 5-31
5-3 MatchingFieldValues e 5-34
5-4 Matching Field Values 5-39
5-5 Processing Records with Matching Fields 5-40
8-1 ArrayElement Values................ 8-11
8-2 ArrayElementsin Calculations 8-12
9-1 Run-Time Library Facilities i 9-2
9-2 Groups of System Services 9-3
9-3 VMS Data Structures 9-7
9-4 Passing Mechanisms 9-19
10-1 Debugger Commandsand Keywords............. 104
Part II
Chapter 1 Language Elements
1.1 RPGIICharacterSet S 1-1
1.2 RPGIIData Types.ttt e e e 1-1
1.2.1 Character 1-2
12,2 Binary .. .o 1-3
1.2.3 PackedDecimal.......... 1-3
1.24 OverpunchedDecimal 14
1.3 User-Defined Namesoooiiiii e e 1-6
Chapter 2 Specifications
2.1 Notation Conventions 2-2
2.2 CommonFields 2-4
221 LineNumber 2-4
2.2.2 Specification Type. 2-5
2.23 Comments i 2-5
2.3 Compiler Directing Statements 2-6
2.3 1 C0DY - 2-7
2.3.2 Copy From CDD 2-7
2.3.3 Copy Modifiers 2-9
2.4 Control Specification 2-11
2.4.1 Control Specification Format............. 2-12
2.4.2 Specification Type. 2-12
2.4.3 Currency Symbol 2-12
244 Inverted Print 2-12
2.4.5 Alternate Collating Sequenceo i, 2-13
2.46 FormsPosition 2-15
247 EXample 2-15
2.5 File Description Specification 2-16
2.5.1 File Description SpecificationFormat .. 2-16
2.5.2 Specification Type. 2-16
253 FileName.. 2-17
254 FileTypeo 2-17
2.5.5 FileDesignation 2-18
2.5.6 End-of-File..... 2-19
2.5.7T SEQUENCE. o 2-20
258 FileFormat 2-21
2.5.9 BlockLength 2-21
2.5.10 RecordLength 2-22
2.5.11 Modeof Processing i 2-23

2.6

2.7

2.8

2512 KeyLength e 2-27
2.5.13 Record Address Typeo 2-28
2.5.14 File Organization or Additional /O Area...................... 2-28
2.5.15 Overflow Indicators i 2-29
2516 KeyLocation 2-29
2.5.17 ExtensionCode 2-29
2518 Device Code 2-30
2.5.19 SymbolicDevice 2-31
2.5.20 TapeLabel 2-31
2521 CorelIndex 2-31
2.5.22 File Addition and Unordered Qutput 2-32
2.5.23 Expansion Factor 2-33
2.5.24 File Sharing........ ... 2-35
2.5.25 TapeRewind 2-37
2.5.26 File Condition 2-37
2.5.27 Example 2-38
Extension Specification 2-38
2.6.1 Extension Specification Format 2-39
2.6.2 Specification Type. 2-40
2.6.3 FromFileName 2-40
264 ToFileName 2-40
2.6.5 Tableor Array Nameot 2-41
2.6.6 Number of EntriesinaRecord 2-42
2.6.7 Number of Entriesina Tableor Array oo i i, 2-42
2.6.8 Lengthof Entry...... 2-43
2.6.9 Format 2-44
2.6.10 Decimal Positions.............. ... 2-44
2.6.11 SEQUENCE.ottt 2-45
2.6.12 Alternate Table or Array 245
2.6.13 Comments 2-46
2.6.14 Example 2-46
Line Counter Specification i 2-47
2.7.1 Line Counter Specification Format 2-48
2.7.2 Specification Type.t e 2-48
273 FileName. 2-48
274 FormLength 2-49
2.7 B 2-49
2.7.6 Overflow Line Number i, 2-49
2. 1T O 2-50
2.7.8 Example 2-50
Input Specification 2-50
2.8.1 Input Specification Format............ 2-51
2.8.2 Specification Type. 2-51
2.8.3 FileName. 2-51
2.8.4 DataStructures 2-52

2.8.4.1 Data Structure Statement 2-53

2.8.4.2 Data Structure Subfields 2-53

2.8.4.3 LocalDataArea i 2-55
2.8.5 SEQUENCE\ttt ettt e 2-55
2.86 Number. 2-56
2.8.7 OPLION . .. 2-56

2.8.8 Record-Identifying Indicator 2-56
2.8.9 Record IdentificationCodes 2-58
2.8.9.1 Position........... 2-59
2.8.9.2 NoOb... ... 2-59

2.8.9.3 CZDPortion. 2-59
2.8.9.4 Character 2-60

2.8.10 ANDI/OR ... 2-61
2.8 11 Format 2-62
2.8.12 Field Locations FromandTo 2-63
2.8.13 Decimal Positions. e 2-64
2.8.14 FieldName e 2-64
2.8.15 Examples of Using Data Structures... 2-65
2.8.15.1 Defining One Area of Storage More ThanOneWay 2-66

2.8.15.2 Defining Subfields Within a Field or Subfield FR 2-67

2.8.15.3 Reorganizing Fieldsin An InputRecord 2-67
2.8.15.4 Selecting the Internal Numeric Data Type for Fields 2—-68
2.8.15.5 Examplesof Using Local DataArea 2-69

2.8.16 Control-Level Indicator 2-71
2.8.17 Matching Fields 2-73
2.8.18 Field-Record-Relation Indicator 2-75
2.8.19 FieldIndicators..... 2-78
2.9 Calculation Specification 2-79
2.9.1 Calculation Specification Format 2-79
2.9.2 Specification Type. 2-79
2.9.3 ControlLevel 2-80
2.9.4 Indicators 2—-82
295 Factorsland 2 2-84
2.9.6 OperationCode 2-86
2.9.7 ResultField 2-86
2.9.8 FieldLength 2-87
2.9.9 Decimal Positions 2-87
2.9.10 HalfAdjust e e 2-88
2.9.11 ResultingIndicators 2-88
2.9.12 Comments 2-90
2.10 Output Specification 2-90
2.10.1 Output Specification Format 2-90
2.10.2 Specification Type 2-90
2.10.3 FileName 2-91
2104 ANDand ORLines e 2-91
2.10.5 RecordTypeot 2-93
2.10.6 ADDand DEL Options i 2-95
2.10.7 Fetch Overflow 2-96
2.10.8 Space Before and Space After 2-97
2.10.9 Skip Before and Skip After 2-98
2.10.10 Example 2-99
2.10.11 Indicators............... . 2-100
2.10.12 Field Name 2-102
2.10.13 EXCPTName 2-103
2.10.14 Edit Codes 2-104
2.10.15 Blank After 2-106
2.10.16 End PoSition 2-107

xi

2.10.17 Format o 2-109

2.10.18 Constantor Edit Word 2-109
2.10.18.1 Edit Code Modifiersco it 2-110
2.10.18.2 Constantsi i 2-111
2.10.18.3 Edit Words 2-112

Chapter 3 Operation Codes

3.2

3.3

3.4

3.5

3.6
3.7

3.8

xii

Arithmetic Operation Codes e 3-1
3.1 AD D . 3-2
3.1.2 Z—ADD 3-2
3.1.8 SUB .. 3-3
3.1.4 Z-SUB 3-3
3. 1.5 MULT ... 3-3
3.1.6 DIV 3-3
3. 0.7 MV R 3-3
3.1.8 SQRT ... 3-4
3.1.9 XFOOT . ..o 3-4
3.1.10 Example 3-4
Move Operation Codes it 3-5
3.2.1 MOVE . 3-5
3.2.2 MOVE A . 3-6
3.2.3 MOVEL. 3-6
3.2.4 Example 3-7
Set Operation Codest 3-9
3.3.1 SETON .. 3-9
3.3.2 SETOF 3-9
Subroutine Operation Codes. i i 3-10
3.4.1 BEGSR ... 3-10
3.4.2 ENDSR ... 3-10
3.4.3 EXSR ... 3-10
3.4.4 Example 3-10
Bit Operation Codes 3-11
3.5.1 BITON 3-11
3.5.2 BITOF ... 3-12
3.5.3 TESTB. ... 3-12
3.54 Example 3-12
Compare Operation Code. e 3-13
Input and Output Operation Codes i 3-14
3.7.1 CHAIN .. 3-14
3.7.2 DSPLY .. 3-16
3.7.3 Example 3-17
3.7.4 EXCPT . e 3-17
3.7.5 FORCE . .. 3-18
3.7.6 READ ... 3-19
3.7.7 SETLL 3-19
Branching Operation Codes i 3-20
3.8.1 GOTO ... 3-20
3.8.2 TAG .. 3-21
3.83 Example 3-22

3.9 Lookup Operation Code 3-22
3.9.1 Searching Tables 3-23

3.9.2 Searching Arrays 3-24
3.9.3 Example 3-25

3.10 Subprogram Operation Codest 3-25
3.10.1 CALL . 3-25
3.10.2 EXT RN ... 3-26
3.10.3 GIVNG ... 3-26
3.10.4 PARM ... 3-27
3.10.5 PARMD 3-28
3.10.6 PARMYV .. 3-28
3.10.7 PLIST .. 3-29
3.10.8 Example 3-30

Appendix A Character Sets

Appendix B Differences Between VAX RPG Il and PDP-11 RPG I

Appendix C PCA Applied to an RPG Il Program

Figures

1-1 Character String 1-2
1-2 Addressof a String. 1-2
1-3 Word Data Typeoii 1-3
1-4 Longword DataType oo 1-3
1-5 Packed Decimal DataType i 1-4
1-6 Overpunched Decimal Data Type e 1-6
1-7 Overpunched Decimal Data Type 1-6
Tables

1-1 Overpunched Decimal Representation of Nonleast Significant Digits 1-5
1-2 Overpunched Decimal Representations of Least Significant Digit and Sign 1-5
2-1 Modes of Processing for Primary, Secondary and Demand Files 2-24
2-2 Modes of Processing for Record Address Files 2-25
2-3 Modes of Processing for Input or Update Chained Files 2-26
2-4 Expansion Factor and Block Length Values 2-34
2-5 File Sharing. 2-36
2-6 EditCodesand Examples.......... 2-106
3-1 Summary of Operation Codes e 3-31

xiii

Preface

Intended Audience

This manual is intended for use by programmers familiar with the VAX RPG II language.

It is designed to be used both as a reference manual and as a user’s guide.

Document Structure

This manual contains 12 chapters in Part I (programming information), 3 chapters in Part

II (language information), and 3 appendixes.

Part1
Chapter 1 Explains the VAX RPG II logic cycle.
Chapter 2 Explains how to compile, link, and run programs.

Chapter 3 Explains how to use the VAX RPG II editor to create and edit programs.

Chapter 4 Explains how to use VAX RPG II indicators.

Chapter 5 Explains how to manage files.

Chapter 6 Explains those elements that affect printer output files.
Chapter 7 Explains how to create and access tables.

Chapter 8 Explains how to create and access arrays.

Chapter 9 Explains how to use the VAX RPG II CALL interface to access RTL pro-

cedures, system services, and subprograms.

Chapter 10 Explains how to use the VAX Symbolic Debugger to debug VAX RPG I1

programs.

XV

Chapter 11 Explains the format of a listing file.
Chapter 12 Explains how to improve the efficiency of programs.

Part I1

Chapter 1 Explains VAX RPG II elements and data types.

Chapter 2 Lists specifications, allowable entries, and their functions.
Chapter 3 Explains how to use VAX RPG II operation codes.
Appendix A Lists the VAX RPG II character sets.

Appendix B Explains the differences between the PDP-11 RPG II and the
VAX RPG II language and editor.

Appendix C Shows PCA applied to an RPG II program.
Conventions Used In This Document

Conventions Meaning

[| The RPG II editor cursor is represented by a box.
[1 Brackets enclose an optional portion of a format.
{} Braces enclose a mandatory portion of a format.

A vertical ellipsis indicates that not all of the program lines in an
example are shown.

Definitions

In this manual, the following definitions apply:

Column name The first letter of the first word of a column name is capitalized. For
example, Alternate collating sequence.

Program module A program module is a VAX RPG II main program or a subprogram.

Subprogram A subprogram is a separately compiled program module that must be
linked with the main program.

Subroutine A subroutine is a block of code executed by the EXSR operation code.

xvi

Important Information

The on-line release notes contain some brief information on the product, last-minute infor-
mation that was discovered too late to be printed in the documentation, and any known
restrictions. After you install VAX RPG II, read the release notes interactively by typing
the HELP RPG RELEASE_NOTES command. You can print the release notes by typing
the following DCL commands:

¢ HELP/OUTPUT=RPG.LIS RPG RELEASE_NOTES
% PRINT/DELETE RPG.LIS

Following is a list of some common problems and how to work around them:

o Leave the editor and make sure that the VMS terminal characteristics are set prop-
erly for your terminal by typing the SET TERMINAL/INQUIRE command if the fol-
lowing error message is displayed:

“TPU-E-NONANSICRT s SYS$INPUT must be an ANSI CRT

If you are using a VK100(GIGI) terminal and the terminal screen does not appear to
update correctly, leave the editor and type the SHOW TERMINAL command to make
sure that the device is a VK100. If it is not, type the SET TERMINAL/INQUIRE com-
mand to make sure that the VMS terminal characteristics are set properly for your-
terminal.

e Use the RPG/CHECK:BLANKS_IN_NUMERICS command to convert blanks in
numeric data to zeros if you run your program and receive the following message:

A numeric field contains invalid data

o If the line printer listing of a printer output file is not spacing as you expect, make
sure you are using the /NOFEED qualifier with the PRINT command.

e Ifa source line in the compiler listing contains one or more periods (.) where you have
not entered a period in the program line, it is because the program line contains a
nonprintable character (for example, a TAB character or a null character). It is possi-
ble to enter nonprintable characters when using an editor other than the RPG II edi-
tor to create or edit a program.

e Make sure you have a BYTLM quota of at least 8192, a PRCLM quota of at least 1, and
the TMPMBX privilege if you receive the following message immediately after invok-
ing the RPG II editor COMPILE command:

Subprocess not activated -
leave editor and check auotas and priviledes

xvii

e Ifyou continue to get the above message when using the RPG II COMPILE command,
increase the BYTLM quota.

e Make sure you can run the compiler without problems using the RPG command at the
DCL command level if you receive the following message:

Unexrpected error durind compilation -
leave editor and trv DCL RPG command

If you have no problem running the compiler using the RPG command, increase the
BYTLM quota.

The BYTLM and PRCLM quotas and the TMPMBX privilege can be changed by the
system manager using the VAX/VMS AUTHORIZE utility.

xviii

Chapter 1
The VAX RPG Il Logic Cycle

VAX RPG Il is an extended implementation of the RPG II language that was developed by
IBM as a problem-oriented language for commercial applications and includes DIGITAL
extensions for integration with the VMS architecture. In general, VAX RPG Il is a lan-
guage processor that provides a convenient means of preparing a wide variety of reports
and other commercial data processing applications. VAX RPG II runs under the VAX/VMS
or MicroVMS operating system and consists of a compiler and editor.

RPG II is a nonprocedural language; every program compiled by the RPG II compiler exe-
cutes according to a fixed, predefined logic cycle. Unlike the logic of a procedural language
such as COBOL, the logic is not supplied by the programmer, but is built into the compiler.
This built-in logic is called the RPG II logic cycle. The execution of an RPG II program
consists of a number of iterations of the logic cycle.

The RPG II specifications you code determine what happens within the various phases of
the logic cycle, but cannot change the basic sequence of program execution.

For example, you can code an Input specification to program RPG II to recognize and pro-
cess a particular record type, but you cannot program RPG II to read three input records in
arow, print a report heading, load a table, immediately write four different output records,
and then perform some total calculations; this series of steps, while perfectly acceptable in
a COBOL program, does not fit into the predetermined structure of the RPG II logic cycle.

The fixed logic cycle of RPG II was designed specifically to accommodate the sequence of
operations needed to generate most common business reports and file maintenance func-
tions. However, the fixed nature of the RPG 11 logic cycle does not prevent you from control-
ling the set of functions performed for each input record, and, to some extent, the sequence
and timing of these functions. For example, by setting various indicators (see Part I, Chap-
ter 4) on or off when certain conditions occur, you can actually affect the sequence of pro-
gram execution within the phases of the general logic cycle. Therefore, to write effective
RPG II specifications, and to take advantage of what flexibility and control RPG II does
provide, you must thoroughly understand the structure and timing characteristics of the
overall RPG II logic cycle, and recognize both RPG II's special capabilities and its
limitations.

1-1

1.1 The RPG Il General Logic Cycle

Every RPG II program follows the same basic series of execution steps, which form the
general logic cycle. Some of the programs you write will need to call upon one or more of the
additional operations of RPG II: matching fields, chaining, overflow processing, and look-
ahead processing. Each of these additional operations is executed according to a fixed logic
cycle within the overall logic cycle of the program. These functions are described later in
this chapter.

The RPG II general logic cycle is executed once for each input record of a primary or secon-
dary file. The general logic cycle consists of the following three steps, performed in order
for each record:

1. Inputting a record
2. Performing calculations
3. Outputting one or more records

Each logic cycle begins when a new record is input, and ends just before the next record is
input. The RPG II specifications you code determine the range and type of specific func-
tions performed during each phase. During the calculation and output steps within each
cycle, there are two distinct timing phases:

e Total time — operations are performed on summary data accumulated from a group of
related records.

e Detail time — operations are performed on individual records.
Sections 1.4.1 and 1.4.2 describe total-time and detail-time characteristics and operations.

The first and last iterations of the RPG II logic cycle are somewhat different from all other
iterations. Sections 1.2 and 1.3 describe these differences and explain how you can take
advantage of them.

1.2 The First Cycle

When program execution begins, and before the first input record is read, several one-
time-only operations are performed. You can exert control over this process by providing
detail-time output records conditioned by the 1P (first-page) indicator, and by using output
specifications with either no conditioning indicators or with all negative conditioning
indicators. (See Part I, Chapter 4 for more details on conditioning indicators.) During the
first cycle, RPG II performs the following initialization operations:

e Obtains the current date (UDATE, UDAY, UMONTH, and UYEAR - see Part I,
Chapter 6).

e Opens all files (see Part I, Chapter 5).

1-2 The VAX RPG II Logic Cycle

e Loads pre-execution-time tables and arrays (see Part I, Chapters 7 and 8).
e Initializes page number counters.

e Printsheading and detail lines conditioned by the 1P indicator, by all negative indica-
tors other than the 1P indicator, and by no indicators.

Although all iterations of the logic cycle (other than the first) include a total-time phase,
RPG II bypasses all total-time calculations and total-time steps during the first cycle
unless the LR (last-record) indicator is on. This behavior, like the logic cycle itself, is built
into RPG II.

After initialization tasks are performed, RPG Il reads the first record in the primary file, if
used, and then reads the first record in each secondary file, if used, and determines the type
of each record read.

1.3 The Last Cycle

The last cycle is performed after all the records you specified for processing until end-of-file
have been read from all primary and secondary files. When the last record from the last file
has been read, RPG Il sets on the LR (last-record) indicator and all the control-level indica-
tors (L1 through L9). Then, after this last record has been processed, RPG II performs the
following operations:

Performs total-time calculations.

Writes total-time output.

Outputs any tables or arrays that have output files associated with them.
Closes all files.

Ends program execution.

ok o=

1.4 A Normal Cycle

A normal cycle in an RPG II program can be defined as any cycle but the first or the last.
During a normal cycle, RPG II performs all operations necessary to process a single input
record. Because of the nature of most RPG I applications, a normal program cycle includes
two special phases — total time and detail time. Total time occurs before detail time. A
normal cycle consists of the following sequence of steps:

1. Outputting heading lines, if specified
2. Outputting detail-time information pertaining to the previous record

3. Reading an input record

The VAX RPG II Logic Cycle 1-3

4. Performing total-time calculations for the previous record, if required

Performing total-time output

6. Checking the LR (last-record) indicator; if it is on, terminates the program (see
Section 1.3 above)

7. Processing the record read in Step 3; performs all detail-time calculations
Steps 4 and 5 constitute total time; Steps 1, 2, and 7 constitute detail time.

This list of steps in a normal cycle is an overview only. See Figure 1-1 for a complete
description of a normal RPG II logic cycle.

1.4.1 Total Time

During total time, RPG II checks which control-level indicators (L1 through L9) you have
defined, and the control field you have associated with each. For example, if your applica-
tion involves the generation of a monthly sales report, you may have associated indicator
L9 with the grand total of monthly sales, indicator L.8 with total sales by region, indicator
L7 with total sales by district office, and indicator L6 with total sales by salesperson. (See
Part I, Chapter 4 for details on using control-level indicators.)

I N

erld length
Control level Decimal positions
IHalf adjust (H)
I

I
I Indicators Operation |
| | I 1lResulting
[Factor | Factor Result! Ilindicators
11 i | 2 field I 11+ -0
Cl NxxNxxNxx | | | | I 11> € = +- Comments --+
0 | i [l 2 1 3 4 | 5 | 6 | 7 |
12345678901234567890123456799012345678901234567890123456789012345678901234567890
T} * * * KRR % X ¥
CL9 MDNTH MULT 12 GRAND
CL8 REGION ADD REGION TOTREG
CcL? DIST ADD DIST TOTDIS

N I

ZK-4329-85

14 The VAX RPG II Logic Cycle

If, during a particular cycle, it is determined that the salesperson identification number in
the record just read is different from the salesperson number in the previous record, a con-
trol break has occurred at the salesperson total level. At this point, your program will out-
put the accumulated total sales for the salesperson whose number was found in the
previous record.

You might print each person’s name and sales total on a separate line. Or, you might choose
to print a page heading (with a date), and then print a salesperson’s total sales, thus pro-
viding a separate one-page report for each salesperson. The Output and Calculation speci-
fications you code determine the contents, order, and appearance of your report.

During another cycle, it might be determined that the region identifier of the record just
read is different from the region number in the previous record. Given the control-level
indicators described in the first paragraph in this section, this means that a three-level
control break has occurred. In this situation, you must first output the accumulated total
for an individual salesperson, then the accumulated total for a district office, and, finally,
the accumulated total for the region.

Similarly, after the last input record in the file has been read, a four-level control break has
automatically occurred. At that point, your program must first output the accumulated
total for the last individual salesperson in the last district office; then, the accumulated
total for the last district office; then, the accumulated total for the last region; and, finally,
the accumulated grand total of all sales for the month.

After all control breaks have been taken care of, total time ends and detail time begins.
Detail-time operations deal with the record just read.

1.4.2 Detail Time

During detail time, your program performs operations specific to each individual record.
In the example described in Section 1.4.1, each time a record is read, the detail-time opera-
tions might consist of the following steps:

1. Printing an output line on your report. For example, each record in your file might
contain a weekly sales figure for a particular salesperson. The report would list the
week’s beginning and ending dates, and the sales figure.

2. Adding the sales figure to all active accumulators. Then, when the next control
break occurs, each accumulator will contain the correct amount.

3. Performing any other operations you defined in your specifications. These might
include moving data fields and handling errors.

Figure 1-1 provides a detailed annotated illustration of a complete, normal RPG II pro-
gram cycle. Each processing and decision box is numbered; the numbers are keyed to the
annotations that immediately follow the figure.

The VAX RPG II Logic Cycle 1-5

1-6

1. First cycle

Get date if UDATE, UDAY, UMONTH, or UYEAR used.
Load pre-execution-time tables and arrays.
Open all files.

2. Beginning of normal cycle

+DETL

Perform heading, detail, and fetched overflow output. Overflow
Set 1P indicator off. routine.
3.
Any halt yes Terminate
indicators program
on? 9 :
4. no
Set off control-level and any record-identifying
indicators.
Set off overflow indicators unless they were set on
during detail-time calculation or output operations
of previous cycle.
5.
LR yes

indicator

on?

Figure 1-1: RPG II Logic Cycle

The VAX RPG II Logic Cycle

Key to Figure 1-1

1.

This step is executed only during the first cycle. It initializes your program for exe-
cution. Initialization consists of retrieving the date (if you specified UDATE,
UDAY, UMONTH, or UYEAR), opening all files, and loading all pre-execution-
time tables and arrays.

RPG II writes heading and detail lines (identified by H or D in column 15 (Type) of
the Output specification). Heading and detail lines are always executed at the
same time. If conditioning indicators are specified, the conditions for the indicator
must be satisfied. If the fetch overflow logic is specified, and the overflow indicator
ison, RPG II writes the appropriate overflow lines. If the 1P indicator is on (during
the first cycle only), RPG II prints all lines conditioned by it, then sets the 1P indi-
cator off. RPG II executes this step at the beginning of the program so that heading
lines can be printed before actual processing begins.

RPG II checks whether any halt indicators (H1 through H9) are on; if any are, the
program terminates. If you do not want your program to terminate here, you must
set all halt indicators off previous to this step. You can set halt indicators on, how-
ever, at any time during the program.

RPG II sets control-level indicators (L1 through L9) and all indicators used as
record-identifying indicators off. RPG II also sets overflow indicators (OA through
OG, OV) off, unless they were set on during detail time (detail-time calculation or
output operations) in the preceding cycle. All other types of indicators that are on
remain on.

Here, RPGII determines whether the LR indicator is on. If it is, RPG II branches to
step 15 and sets on control-level indicators L1 through L9, if used.

The VAX RPG I Logic Cycle ~ 1-7

1-8

Primary no

file
specified?

Read input record from the last file processed, if
required. (Not required for input files with
look-ahead fields, or on the first cycle).

For the first cycle, read and determine record type
and sequence of the first record in all primary and

secondary files.

End yes

Y

!

of file?

Determine record type and check sequence.

Determine which file to process.
If a FORCE operation was specified, use unless
the file is at its EOF.

Matching

If no FORCE operation was specified, call the
matching field routine.

|

field routine.

Figure 1-1: RPG II Logic Cycle (Cont.)

The VAX RPG II Logic Cycle

Key to Figure 1-1: RPG II Logic Cycle (Cont.)

6.

10.

RPG II determines whether a primary file was specified by the program. If not,
RPG II proceeds directly to step 16.

If required, RPG 1I reads an input record from the last primary or secondary file
processed. If this was an input file with look-ahead fields, the record is already
available; therefore, no read operation may be necessary at this time. On the first
cycle, a record is read from each primary and secondary file.

RPG II tests the file just read for end-of-file. If end-of-file has been encountered, the
program bypasses step 9.

If RPG II reads a record from a file, the record type is determined and the record
sequence is checked. If the record type cannot be determined, or the record is out of
sequence, the program terminates.

In this step, RPG II determines which file to process. If a FORCE operation was
executed during the previous cycle, the forced file is selected for processing. (All
records processed with a FORCE operation are processed with the MR (matching-
records) indicator set off.) However, if the forced file is at EOF (end-of-file), the nor-
mal multi-file logic selects the next record for processing. If no forced file was speci-
fied, RPG II determines whether matching fields were specified. If so, the
matching-fields routine is given control (see Figure 1-2). Otherwise, all records in
a primary file are processed first, then the records from each secondary file in order
of their specification.

The VAX RPG II Logic Cycle 1-9

1-10

11.

Should LR

yes
indicator T
be on?
12.
Set on the record-identifying indicator
for the selected record.
13.
Has a
control no o
break -
occurred?
14.
Save contents of the control fields.
15. — -
Set on control-level indicators,
as required.
Figure 1-1: RPG II Logic Cycle (Cont.)
The VAX RPG II Logic Cycle

Key to Figure 1-1: RPG II Logic Cycle (Cont.)

11.

12.

13.

14.

15.

Here, RPG II determines whether the LR indicator should be set on. The LR indi-
cator is set on when the program has reached the end of all the files that you have
specified for processing until the end-of-file, and when all the records from secon-
dary files that match the last primary record have been processed. If the LR indica-
tor should be set on, RPG II branches to step 15 and sets on indicators L1 through
L9.

RPG II sets on the record-identifying indicator for the record selected for process-
ing.

RPG II determines whether the record selected for processing has caused a control
break to occur. A control break occurs when the value in the control field of the
record being processed differs from the previous value of the control field. See Sec-
tion 1.4.1. for more information.

If a control break has occurred, RPG Il saves the contents of all appropriate control
fields.

If a control break has occurred, RPG II sets the appropriate control-level indicator
(L1 through L9) on; at the same time, RPG II sets all lower-level control-level
indicators on. The L1 through L9 indicators can be used for conditioning only if
they have been defined as conditioning indicators.

The VAX RPG II Logic Cycle 1-11

16.

17.

Should

18.

19.

20.

total-time no
calculations
be done
now?
Y
yes
+TOTC
Perform total-time calculations.
+TOTL
Perform total-time output and Overflow '
fetched overflow output. routine. ‘
LR Perform table and
indicat yes array output; close
in '?\i or files; terminate
on program.
Any
overflow no
indicators T

on?

Figure 1-1: RPG II Logic Cycle (Cont.)

1-12 The VAX RPG II Logic Cycle

Key to Figure 1-1: RPG II Logic Cycle (Cont.)

16.

17.

18.

19.

20.

RPG I determines whether total-time calculation and output operations should be
performed. If control-level indicators are not specified in columns 59 and 60 (Con-
trol level) of the Input specification, RPG II bypasses total-time calculation and
output operations during the first cycle only; after the first cycle, RPG II performs
total-time calculation and output operations for every cycle.

If control-level indicators are specified, RPG Il bypasses total-time calculation and
output operations until after the first record with control fields is processed. When
the LR indicator is on, RPG II always performs total-time calculation and output
operations.

In this step, RPG II performs all total-time calculations conditioned by a control-
level indicator or containing L0 in columns 7 and 8 of the Calculation specification.
Total-time calculations can include CHAIN operations, in which a record is imme-
diately retrieved from an input file (see Figure 1-3), or READ operations, in which
the next record is retrieved from a demand file.

Here, RPG II writes all total-time output lines that satisfy the conditions specified
by the indicators. If an overflow indicator (OA through OG, or OV) is on, and Fetch
overflow is specified, RPG II writes the overflow lines as well.

RPG II determines whether the LR indicator is on. If it is, RPG II performs table
and array output, closes all files, and terminates the program.

RPG II checks to determine whether any overflow indicators (OA through OG, and
OV) are on.

The VAX RPG II Logic Cycle 1-13

1-14

+OFL

Overflow routine.

21. ' yes
Perform overflow output.
22, o
Set MR indicator on or off, as required.
23. \
Extract data fields from the record to be processed.
Set field-record-relation indicators on or off, as
required.
24,
Look-ahead no
fields
specified?
25.

Perform look-ahead operation.

ook-aheadroutine

26.

+DETC
Perform detail-time calculations.

Return to the beginning of the normal cycle (step 2.).

Figure 1-1: RPG II Logic Cycle (Cont.)

The VAX RPG II Logic Cycle

ZK-1571-84

Key to Figure 1-1: RPG II Logic Cycle (Cont.)

21.

22.

23.

24.

25.

26.

If any overflow indicators are on, the overflow routine is given control (see Figure
1-4). RPG Il outputs all lines conditioned by those overflow indicators that are on.
However, RPG II outputs these lines only if they were not output by Fetch overflow
logic (step 2 or step 18).

RPG II determines whether the MR (matching-record) indicator should be set on.
If this is a multifile program, and the record being processed is a matching record,
RPG II sets the MR indicator on; it remains on for the duration of the cycle during
which the matching record is processed. If not appropriate, RPG II sets the MR
indicator off.

RPG Il extracts data fields from the record to be processed, and sets the field indica-
tors on or off, as appropriate, for those fields.

RPG II then determines whether look-ahead fields are specified in the last file
processed and whether it is an input file.

If the last file processed was an input file with look-ahead fields, RPG II passes
control to the RPG II look-ahead routine (see Figure 1-5). In this routine, RPG II
retrieves the look-ahead record and extracts the look-ahead fields. If look-ahead
fields are not specified, RPG II continues with detail-time calculations (step 26).

This is the detail-time calculations step. Here, RPG II performs all conditioned
detail-time calculations and subroutines. The calculations may include CHAIN
and READ operations (see Figure1-3). Detail-time calculations complete the
RPG II logic cycle. Then, the cycle branches to step 2 to begin again.

The VAX RPG II Logic Cycle 1-15

1.5 RPG Il Detail Program Logic Cycle

This section consists of annotated flowchart diagrams that illustrate in detail various rou-
tines within the predefined RPG II logic cycle. The following figures are provided:

e Figure 1-2 illustrates the RPG II matching-fields routine.

¢ Figure 1-3 illustrates RPG II file processing for chained and demand files.
e Figure 1-4 illustrates RPG II overflow processing.

e Figure 1-5 illustrates RPG II look-ahead processing.

1.

Determine the file
to be processed.

Matching

fields in y————————
specified

order?,

Issue a run-time
error message.

4. " yes

Move the matching fields
to the temporary buffer.

\

Return to program.

ZK-1458-83

Figure 1-2: Logic Cycle for the Matching-Fields Routine

1-16 The VAX RPG II Logic Cycle

Key to Figure 1-2

1.

RPG II determines whether the program uses more than one primary and secon-
dary file. If multifile processing is in effect, processing continues with step 2. Oth-
erwise, the program branches to step 3.

RPG II compares the matching fields to determine which file is to be processed.
RPG II extracts the matching fields and checks their sequence.

Ifthe matching fields are not in sequence, a run-time error occurs and the program
terminates.

RPG II moves the matching fields into a temporary buffer. The next record is
selected, based on the value of the matching fields.

RPG II returns to the program.

The VAX RPG II Logic Cycle 1-17

Retrieve the record.

Resulting
indicator

indicator.

Set on the record-identifying

3.

Y

Y

specified?

yes

Issue a run-time error.

Extract the spe
set on field ind

cified fields and
icators, if used.

Set on resulting indicator.

4.

Return to program.

ZK-1459-83

Figure 1-3: Logic Cycle for Chained and Demand Files

Key to Figure 1-3

1.

1-18

RPG Il retrieves the next record in the file specified by the CHAIN or READ opera-

tion code. If the record is not found on a CHAIN operation or an end-of-file occurs
during a READ operation and a resulting indicator is not specified, a run-time
error occurs. If the record is not found on a CHAIN operation or an end-of-file
occurs during a READ operation and a resulting indicator has been specified, the
indicator is set on and control returns to the program.

demand file for the record type read.

any field indicators associated with the record.

The VAX RPG II Logic Cycle

RPG II returns to the program.

RPG 1II sets on the record-identifying indicator associated with the chained or

Then, RPG II extracts the fields from the record just retrieved. Also, RPG Il sets on

Lines output
with a previous
fetch?

yes

2. no

Output lines conditioned
by the overflow indicator.

Return to the program.

ZK-1460-83

Figure 1-4: Logic Cycle for Overflow Processing

Key to Figure 1-4

1. RPGII determines whether the overflow lines were written previously, using the
fetch overflow routine. If so, the program branches to the specified return point;
otherwise, it continues with step 2.

2. RPG II evaluates all overflow lines and writes those lines that satisfy the condi-
tions of the indicator(s).

3. RPG II returns to the program.

The VAX RPG II Logic Cycle ~ 1-19

Retrieve next record
for this file.

Set all look-ahead
fields to 9s.

Extract look-ahead
fields.

3. ~

Return to program.

ZK-1461-83

Figure 1-5: Logic Cycle for Look-Ahead Processing

Key to Figure 1-5

1. RPGII reads the next record for the file being processed. If the end of the file has
been reached, all look-ahead fields are filled with 9s and control is returned to the
program.

RPG I1I extracts the look-ahead fields from the record.
RPG II returns to the program.

1-20 The VAX RPG II Logic Cycle

Chapter 2
Developing Programs

You can create a source program using the RPG II editor (See Part I, Chapter 3); then, you
must compile, link and run the program with commands to the VAX/VMS operating sys-
tem. If your RPG II program does not execute correctly, you must modify it and repeat
these steps until it does.

When you compile an RPG II program, the RPG II compiler creates an object module file.
When you link your program, you use the VAX Linker. The linker reads the object module
file and uses libraries to replace external references with the address of the executable
code that defines it. Then the linker places that code in an executable image file. When you
execute your program, the system executes that image.

2.1 Compiling Programs

To compile a source program, use the RPG command. Its format is:
RPG[/qualifier(s)] file-spec-list[/qualifier(s)]
where:

/qualifier(s) Specifies special actions the compiler is to perform. See Sections 2.1.2.1
through 2.1.2.8 for information on qualifiers.

file-spec-list Specifies the source file(s) to be compiled. Normally, you would specify a sin-
gle source file, but if you need to create a single object file from more than
one source file, separate the file specifications with plus (+) signs. RPG II
appends the files in the order you specify. If you separate source file specifi-
cations with commas (,), RPG II compiles the programs separately and cre-
ates a single object file for each source file.

When you execute the RPG command, RPG II compiles the program and generates an
object module with the specified file name and the default file type OBdJ. The compiler can
also generate other output files, depending on the qualifiers you supply.

2-1

When you compile a source file with the RPG command and specify only its file name, the
compiler searches for a source file with the specified name that:

e Is stored on the default device in the default directory

e Has a file type of RPG

If more than one file meets these conditions, the compiler chooses the one with the highest
version number.

For example, assume that your default device is DBAO:, your default directory is [SMITH],
and you give this command:

% RPG FIRSTTRY
$

The appearance of the second DCL command prompt ($) indicates that the compilation is
finished.

The compiler searches device DBAO: in directory [SMITH], seeking the highest version
of FIRSTTRY.RPG. If you do not specify an output file, the compiler generates the file
FIRSTTRY.OBJ and stores it on device DBAO: in directory [SMITH]; with a version num-
ber that is one higher than any existing version number for FIRSTTRY.OBJ.

2.1.1 Default Compiler Options

When you compile a program, you can specify options like /LIST or / NOWARNINGS. The
options you get when you do not specify them are called defaults.

You can change these defaults for your own programs by using qualifiers with the RPG
command. The RPG command accepts qualifiers to change the defaults for a single compi-
lation, as shown in the following example:

$ RPG/LIST/NOOBJECT MYPROG

This RPG command tells RPG II to compile a single source file MYPROG.RPG), and over-
rides the default compiler settings for

e Listing — The RPG II compiler will produce a compiler listing.
e Object file — The RPG II compiler will not produce an object file.

You can specify other defaults by defining RPG as a symbol, as shown in the following
example:

$ RPG :=="RPG/CHECK/LIST/CROSS"

If you type RPG MYPROG, the /CHECK, /LIST, and /CROSS qualifiers are in effect.

2-2 Developing Programs

2.1.2 RPG Il Compiler Qualifiers

This section describes the RPG command itself; Sections 2.1.2.1 through 2.1.2.8 describe
the RPG command qualifiers and list their default values.

You can change defaults by using qualifiers with the RPG command. Qualifiers have the
form:
/qualifier[= value]

Many qualifiers have a corresponding form that negates the action specified by the quali-
fier. The negative form is:

/NOqualifier
For example, /LIST tells the compiler to produce a listing file; /NOLIST suppresses the
listing.

You can specify qualifiers so that they affect either all files in the command, or only certain
files. If the qualifier immediately follows the RPG command, it applies to all files, as shown
in the following example:

% RPG/LIST ABCXYZIRST
This command specifies listing files for ABC.RPG, XYZ.RPG, and RST.RPG.

Qualifiers following a file specification (with some exceptions) affect only the associated
file, as shown in the following example:

$ RPG/LIST ABC,¥YZ/NOLIST,RST
The above RPG command specifies listing files for ABC.RPG and RST.RPG, but not for
XYZ.RPG. Qualifiers to a single file specification in an appended list of file specifications

are exceptions to this rule. (A list of file specifications separated by plus signs is called an
appended list.) See Example 5 in the following list.

1. & RPG/LIST AAABBB,CCC

RPGII compiles source files AAA .RPG, BBB.RPG, and CCC.RPG as separate files,
produces three object files (AAA.OBJ, BBB.OBJ, and CCC.OBJ), and three listing
files (AAA.LIS, BBB.LIS, and CCC.LIS).

2. % RPG JOM+YYY+ZZZ
RPG 1II appends source files XXX.RPG, YYY.RPG, and ZZZ.RPG, and compiles

them as a single program. This command produces one object file named
XXX.0BJ, but does not produce a listing file.

™

3. % RPG/0BJECT=SQUARE CIRCLE

RPG II compiles source file CIRCLE.RPG and produces object file SQUARE.OBJ.
This command produces no listing file.

Developing Programs 2-3

4. % RPG AAA+BBB,CCC/LIST

RPG II produces two object files: AAA.OBJ (created from AAA.RPG and
BBB.RPG), and CCC.OBJ (created from CCC.RPG). RPG II also produces the list-
ing file CCC.LIS.

5. & RPG ABC+DEF/NOOBJECT+XYZ

RPG II appends and compiles the source files ABC.RPG, DEF.RPG, and XYZ.RPG.
Because qualifiers in a list of appended files affect all files in the list, this command
suppresses the creation of an object file.

Table 2-1 lists the qualifiers you can use with the RPG command.

Table 2-1: RPG II Command Qualifiers

Qualifier Negative Form Default
/CHECK = [NOIJBOUNDS /NOCHECK /NOCHECK
[NOJRECURSION
[NOJBLANKS_IN_NUMERICS
ALL
NONE
/CROSS_REFERENCE /NOCROSS_REFERENCE /NOCROSS_REFERENCE
/DEBUG = [NOISYMBOLS /NODEBUG /DEBUG =(TRACEBACK,NOSYMBOLS)
[NOITRACEBACK
ALL
NONE
/LIST] = file-spec] /NOLIST /NOLIST (interactive)
/LIST (batch)
/MACHINE_CODE /NOMACHINE_CODE /NOMACHINE_CODE
/OBJECT] = file-spec] /NOOBJECT /OBJECT
/SEQUENCE_CHECK /NOSEQUENCE_CHECK /NOSEQUENCE_CHECK
/WARNINGS = [NOJOTHER /NOWARNINGS /WARNINGS = (OTHER,NOINFORMATION)
[NOJINFORMATION
ALL
NONE

Sections 2.1.2.1 through 2.1.2.8 describe RPG II command qualifiers in detail.

2.1.2.1 CHECK

The CHECK qualifier causes RPG II to check for errors in array indexes, recursive calls to
subroutines, and blanks in overpunched numeric fields. The CHECK qualifier format is:

/CHECK] = (optionl,...])]

2-4 Developing Programs

where option can be:

[NOJBOUNDS
[NOJRECURSION
[NOJBLANKS_IN_NUMERICS

ALL
NONE
where:
BOUNDS Checks array indexes to make sure they are within array
boundaries specified by the program.
RECURSION Verifies that subroutines are not called recursively.
BLANKS_IN_NUMERICS Converts blanks in overpunched numeric fields to zeros.
ALL Indicates that RECURSION, BOUNDS, and
BLANKS_IN_NUMERICS checking will be performed.
NONE Indicates that RECURSION, BOUNDS, and

BLANKS_IN_NUMERICS checking will not be performed.

Specifying CHECK is equivalent to specifying CHECK = ALL; NOCHECK is equivalent
to CHECK =NONE. NOCHECK is the default.

Use CHECK = (RECURSION,BOUNDS) for programs only during initial program debug-
ging, because compiling with this qualifier results in additional code and, consequently,
takes more time to process. Using NOCHECK means that the compiler does not signal an
error for an array reference outside the bounds of an array or for a subroutine that has
been called recursively. Therefore, using NOCHECK may result in your program getting a
memory-management or access-violation error at run time.

2.1.2.2 CROSS_REFERENCE

The CROSS_REFERENCE qualifier causes the compiler to include cross-reference infor-
mation in the listing file for the compiled source file. Cross-reference information lists
variable names, indicators, and the program lines in which they were referenced. Its for-
mat is:

/CROSS_REFERENCE

When you use CROSS_REFERENCE, you must also use LIST, or LIST must be in effect
(default for batch mode) to produce a listing file. NOCROSS_REFERENCE is the default.

Developing Programs 2-5

2.1.2.3 DEBUG

The DEBUG qualifier causes the compiler to provide information for the VAX Symbolic
Debugger and the system run-time error traceback mechanism. Its format is:

/DEBUG[= (option]...])]
where option can be:

[NOJSYMBOLS
[NOJTRACEBACK
ALL

NONE

where:

SYMBOLS Causes the compiler to provide the debugger with local symbol defini-
tions for user-defined names (including dimension information for
arrays). If you use SYMBOLS, you can refer to data entities by their
names when you use the debugger.

TRACEBACK Causes the compiler to provide an address correlation table so that the
debugger and the run-time error traceback mechanism can translate
absolute addresses into source program routine names and line numbers.

ALL Causes the compiler to provide both local symbol definitions and an
address correlation table.

NONE Prevents the compiler from providing debugging information.

Neither the TRACEBACK qualifier nor the SYMBOLS qualifier affects a program’s exe-
cutable code.

Specifying DEBUG is equivalent to specifying DEBUG = ALL; NODEBUG is equivalent
to DEBUG=NONE. DEBUG =TRACEBACK is the default. For information on debug-
ging, see Part I, Chapter 10.

2.1.2.4 LIST

The LIST qualifier controls whether or not RPG II produces a listing file for the compiled
program. The listing file contains the source program and a compilation summary. If you
also use the MACHINE_CODE qualifier, the listing file will include the compiler-gener-
ated object code for the compiled program. If you also use the CROSS_REFERENCE quali-
fier, the listing file will include cross-reference information. The format of the LIST
qualifier is:

/LIST[=file-spec]

You can include a file specification for the listing file. Otherwise, the output file defaults to
the name of the first source file and the file type LIS.

26 Developing Programs

If the RPG command is executed in interactive mode, the default is NOLIST. If the RPG
command is executed in batch mode, the default is LIST.

The listing file uses a listing page length which depends on the logical SYS$LP_LINES.
Any value between 30 and 255 can be used for SYS$LP_LINES. The listing page length
uses 3 line top and bottom margins. If the logical SYS$LP_LINES is not defined, the
default page length will be 66 lines (60 listing lines after the 3 line top and bottom margins
are subtracted).

2.1.2.5 MACHINE_CODE

The MACHINE_CODE qualifier specifies that the listing file include the compiler-gener-
ated object code. Its format is:

/MACHINE_CODE

When you use MACHINE_CODE, you must also use LIST, or LIST must be in effect
(default for batch mode) to produce a listing file. NOMACHINE_CODE is the default.

2.1.2.6 OBJECT
The OBJECT qualifier causes RPG II to produce an object module, and optionally specifies
its file name. Its format is:
/OBJECT][=file-spec]
The default is OBJECT.
By default, the compiler generates object files as follows:

e If you specify one source file, RPG II generates one object file.

o If you specify multiple source files separated by plus signs, RPG II appends the files
and generates one object file.

e If you specify multiple source files separated by commas, RPG II compiles and gener-
ates a separate object file for each source file.

You can use both plus signs and commas in the same command line to produce different
combinations of appended and separated object files. See examples in Section 2.1.2.

To produce an object file with an explicit file specification, you must use the OBJECT qual-
ifier, in the form OBJECT =file-spec. Otherwise, the object file has the same name as its
corresponding source file, and the default file type OBJ. By default, the object file produced
from appended source files has the name of the first source file specified. All other file speci-
fication attributes (node, device, directory, and version number) assume the default
values.

During the early stages of program development, you may find it useful to suppress the
production of object files until your source program compiles without errors. Use the
NOOBJECT qualifier to do this.

Developing Programs 2-7

2.1.2.7 SEQUENCE_CHECK

The SEQUENCE_CHECK qualifier causes the compiler to check the line numbers in col-
umns 1 through 5 of every program line to make sure they are in ascending line-number
sequence. If the line numbers are not in sequence, the compiler issues a warning message.
Its format is:

/SEQUENCE_CHECK
NOSEQUENCE_CHECK is the default.

2.1.2.8 WARNINGS

The WARNINGS qualifier allows you to specify whether RPG II displays information and
warning messages. Its format is:

/WARNINGS[= (option[,...])]

where option can be:

[NOJOTHER
[NO]JINFORMATION
ALL
NONE
where:
OTHER Causes RPG II to display warning messages.
INFORMATION Causes RPG II to display information messages. -
ALL Causes RPG II to display both warning and information messages. N
NONE Prevents RPG II from displaying warning or information messages.

Specifying WARNINGS is equivalent to specifying WARNINGS = ALL; NOWARNINGS is
equivalent to WARNINGS = NONE. WARNINGS = (NOINFORMATION,OTHER) is the
default.

2.2 Linking and Running Programs

The VAX Linker uses the object module produced by the RPG II compiler as input and
produces an executable image file as output. This file has the same name as your program
and the default file type EXE.

When your program calls other programs — that is, when it is made up of more than one
program module — the linker takes multiple object files and creates a single executable
image from them. See Part 1, Chapter 9 for information on subprograms.

“\’

2-8 Developing Programs \\

You use the LINK command to invoke the VAX Linker. The format of the LINK command
is:
LINKL/command-aualifier(s)] file-spec-listl/file-qualifier(s)]

where:

command-qualifier(s) ~ Specifies output file options. Use DEBUG to provide information
for the VAX Symbolic Debugger. See Part I, Chapter 10 for infor-
mation on debugging RPG II programs. See the VAX/VMS
Linker Reference Manual for information about other command

qualifiers.
file-spec-list Specifies a file or the files to be linked.
file-qualifier(s) Specifies input file options. See the VAX/VMS Linker Reference

Manual for information on file qualifiers.
When you type LINK, the system prompts with:
_File:

Respond by typing the file specification(s). If multiple file specifications do not fit on a sin-
gle line, type a hyphen (-) as the last character on the line and continue on the next line.

For example, to link the object file created from the program FIRSTTRY in Section 2.1,
type:

$ LINK FIRSTTRY
%

This command tells the linker to accept FIRSTTRY.OBJ as input, and to produce
FIRSTTRY.EXE as output. Once the executable file has been created, you run it with the
RUN command:

% RUN FIRSTTRY
%

2.3 Interpreting RPG Il Compiler Error Messages

The format of an RPG II compiler error message is:
fac-severity-IDENT

where:
fac Represents the facility. The facility is always RPG.

severity Indicates the severity of the error. Severity can be I (information), W (warn-
ing), E (error), or F (fatal).

IDENT Represents the IDENT field.

Developing Programs 2-9

The IDENT field of an RPG II compiler error message designates the error recovery action
taken by the RPG II compiler. IDENT fields can have one of the following values:

e SPEC_IGNORED

The current specification is ignored. The resulting program, if nonfatal, acts as if the
specification was not entered.

o ENTRY_IGNORED

The entry in the current field is ignored. The resulting program, if nonfatal, acts as if
the field was blank.

e DEFN_IGNORED

The current definition of this field is ignored. The resulting program, if nonfatal, uses
the previous definition.

e CHAR_IGNORED

The current character is ignored. The resulting program, if nonfatal, acts as if the
column was blank.

o FATAL

No error recovery action can be taken. The severity level is always fatal.
o ACCEPTED

The compiler accepts the entry exactly as specified.
¢ SEE_MESSAGE

The error text contains the recovery action taken by the RPG II compiler.
e 0_ASSUMED

The entry in the current field is ignored. The resulting program, if nonfatal, acts as if
the field contained 0.

2-10 Developing Programs

Chapter 3
Using the RPG Il Editor

This chapter explains how to use the RPG Il editor. You use the RPG II editor to create, edit
and read (or simply view) RPG II programs.

The RPG II editor is available on the VT100 family, VT200 family and VK100 (GIGI)
terminals.

The RPG II editor allows overstriking; that is, you can change a program line by placing
the cursor in the column where you want to make a change and typing a new character,
without affecting any characters to the right of the cursor.

The cursor is represented as a box () in the examples throughout this chapter.

All examples in this chapter assume a terminal page size of 24 lines, unless otherwise
noted.

3.1 RPG Il Editor Qualifiers

Invoke the RPG II editor by typing the RPG/EDIT command. To create a file, provide a file
specification, as shown in the following example:

% RPG/EDIT FIRSTTRY
You do not have to supply the file type .RPG, because it is the default.

To edit or read a file, include the name of the file you want to edit or read when you invoke
the RPG II editor. See Section 3.8.1 for an example.

When you invoke the editor, if the number of columns (SET TERMINAL/WIDTH =m) is
less than 80 or the number of lines (SET TERMINAL/PAGE =n) is less than 6, the editor
will display the following message, then will exit:

At least B lines and 80 columns on the screen are reauired
See the VAX/VMS DCL Dictionary for information on the SET TERMINAL command.
Note that the SET TERMINAL command must be done before invoking the editor.

3-1

If the file you specify when invoking the RPG II editor is a new file, the RPG II editor dis-
plays the following message:

File not found

If the file you specify when invoking the RPG II editor is an existing file, the RPG II editor
displays the message:

n lines read from file device:[directorvIfilename.tvpPeiversion
Finally, the RPG II editor displays the following message:

Press the PFZ Kevy to det help information

If the terminal page size is fewer than 17 lines, the initial help message is not displayed. If
HELP is requested using the HELP key or a SET HELP command in a startup command
file, and the terminal page size is less than 17 lines, the following message is displayed and
the usual HELP action will not be performed:

At least 17 lines on the screen are required by the editor to provide HELP

Table 3—1 lists the qualifiers that you can use with the RPG/EDIT command. If you precede
a qualifier with NO, that qualifier is not in effect.

Table 3-1: RPG/EDIT Command Qualifiers

Qualifier Negative Form Default
/COMMAND /NOCOMMAND /COMMAND
/CREATE /NOCREATE /CREATE
/[JOURNAL /NOJOURNAL /[JOURNAL
/OUTPUT /NOOUTPUT /OUTPUT
/READ_ONLY /NOREAD_ONLY /NOREAD_ONLY
/RECOVER /NORECOVER /NORECOVER
/START_POSITION /NOSTART_POSITION /START_POSITION

Sections 3.1.1 through 3.1.7 describe these qualifiers and explain how to use them.

3.1.1 COMMAND

The COMMAND qualifier causes the editor to execute a specified file in the startup com-
mand file. Its format is:

/COMMANDI = file-spec]

The RPG II editor will read commands from any file specified by COMMAND. Each com-
mand in the specified file will be treated as if the COMMAND function was used.

3-2 Using the RPG II Editor

COMMAND is present by default, with a default value of RPGINI. If NOCOMMAND is
used, then no command file is executed. See Section 3.7.2 for information on startup com-
mand files.

3.1.2 CREATE

The CREATE qualifier creates a file for the editing session. If the specified file already
exists, that file is opened. Its format is:

/CREATE[=file-spec]

CREATE is present by default. If NOCREATE is used, the file is not created. However, if
the file already exists, it is opened.

3.1.3 JOURNAL
The JOURNAL qualifier creates a journal file for the current editing session. Its format is:
/JOURNAL][=file-spec]

Ifyou should leave an editing session abnormally, you can use the journal file to re-execute
all the commands you issued during the session. To do this, type the RPG/EDIT/RECOVER
file-spec command.

JOURNAL is present by default. If you do not provide a file specification with JOURNAL,
the RPG II editor creates a journal file with the same name as your input file and the
default file type JOU.

3.1.4 OUTPUT
The OUTPUT qualifier defines the name of the output file. Its format is:
/OUTPUT] =file-spec]

OUTPUT is present by default. If you do not provide a file specification with OUTPUT, the
RPG II editor creates an output file with the same name and type as the input file, whose
version number is one higher than the highest existing version of the input file.

If you use NOOUTPUT, the RPG II editor does not create an output file. In this case, you
must either use the QUIT command or specify a file specification with the EXIT command
to leave the editor.

3.1.5 READ_ONLY

The READ_ONLY qualifier tells the RPG II editor not to create a journal file or an output
file for the file you are currently editing. Its format is:

/READ_ONLY

Using the RPG II Editor 3-3

You can use READ_ONLY when you want to view a file without changing its contents. In
this case, you must either use the QUIT command or specify a file specification with the
EXIT command to leave the editor.

NOREAD_ONLY is the default, and automatically creates a journal file and output file for
the file you are currently editing (unless you leave the RPG II editor using the QUIT
command).

Using READ_ONLY has the same effect as using both the NOOUTPUT and the
NOJOURNAL qualifiers with the RPG/EDIT command.

3.1.6 RECOVER

The RECOVER qualifier reads the commands from a journal file and re-executes all the
edits you made during an editing session. Its format is:

/RECOVER
Once the recovery is done, the RPG II editor responds with:
Recovery complete
At this time, you can continue editing your file.

If the name of the recovery journal file is different from the default (the same file name as
the input file with the JOU file type), use JOURNAL =file-spec and RECOVER to specify
another name, as shown in the following example:

% RPG/EDIT/JOURNAL=FILEl,JOU/RECODVER FILEZ.RPG

In this example, the journal file name is FILE1.JOU and the name of both the input and
output files is FILE2.RPG. If you do not use JOURNAL, the journal file name is
FILE2.JOU.

NORECOVER is the default.

3.1.7 START_POSITION

The START_POSITION qualifier determines where the VAX RPG II editor starts in the
editing buffer. Its format is:

/START_POSITIONI[= (line,column)]
START_POSITION is the default. The setting is line 1, column 1.
NOSTART_POSITION is equivalent to START_POSITION =(1,1)

34 Using the RPG II Editor

3.2 The RPG Il Editor Screen

The RPG II editor screen consists of the following:
e The help window
e An 80-column ruler
e Tab stops
e The editing window
e The Prompt line
e The Message line

Note that when you use a terminal without scrolling regions (for example, VK100 (GIGI)),
the RPG II editor must redisplay the information on the screen rather than scrolling new
information onto the screen.

Using the RPG II Editor 3-5

The screen below shows an example of each of the above listed items. Note that all screens
shown are based on a default setting of 24 lines with a top ruler. If you want to change the
page size, see the SET TERM/PAGE commands in the VAX/VMS DCL Dictionary.

PFi/PF2 - RPG II specification formats
Press the PF1/kEP7 key and type HELP for
information on commands and functions.

+ + +

Gold l Help Ian FndlDlL UdLI

+ — +

For help on a specific key, press the IPag CmdlSec DspIRev Mov|DlF UdFI
PF2 key followed by the key for which +
you want help information. |Adv BotchP ToplCut Pas|ShL ShRI help window
Other keys: BS_EKEY DEL_KEY +
TAB_EEY UP, DOUWN, LEFT, RIGHT |Fld IEol DElIChr Coll 1
CTRL_R_EEY CTRL_W_KEY + +Ent |
CTRL_U_KEY CTRL_Z_KEY | Lin UpL ISe] Resl |)
0 | i] 2 [3 | 4 | 5 | [| 7 8§0-column
1234567890123456789012345678901234567890123456789012345678901234567890123456789 ruler
Hé;; L . tab stops
H* FUNCTIONAL DESCRIPTION:
H¥ This program produces a report of shipments for various .
H¥ products broken down by division and department using an source window
Hx input file with the shipment data for the past 4 quarters.
H¥--
H
FSHIPS IP F 41 DISE

Search for: editor } prompt line
String not found * message line

ZK-4666-85

When you use the HELP function (default = PF2), the help window appears on the screen.
It includes a diagram of the keypad and other key functions.

When the keypad diagram is displayed and you enter the HELP function again, the follow-
ing message appears:
Press the Kev for which vou want further help information

You can press the HELP key and any other key listed in the keypad diagram to display
help information on that key in the help window. See Section 3.8.1 for an example.

The HELP_SPECS function (default = PF1/PF2) causes the help window to display the
specification format for the current line. See Section 3.8.1 for an example. See the
DISPLAY function, Section 3.5.11, for information on how to remove HELP from the
screen.

3-6 Using the RPG II Editor

If you do not request help information, the RPG II editor displays the program in the entire
screen except for the ruler and tab stops and the prompt and message lines, as shown in the
following example:

0 | 1 1 2 I 3 | 4 | 5 | 6 | 7 |
12345678901234567890123456789012345678901234567890123456789012345678301234567830

IR R R R TS RS P L Terestiertersssssaasatensans

| Hx++
H* FUNCTIONAL DESCRIPTION:
H* This program produces a report of shipments for various

H* products broken down by division and department using an
H* input file with the shipment data for the past 4 quarters.
H¥--

H

FSHIPS IP F 44 DISKE

FSUMREP 0 F 98 LPRINTER

E ary 4 20

LSUMREP 55FL 500L
ISHIPS AA 01

I i 5DIV L2
I 6 7 DEPT L{
I 8 16 PROD

I 17 24 aty

Cx

c o XFOOTATY PROATY 30

Press the PF2 key to get help information

N I

ZK-4330-85

An 80-column ruler in reverse video is displayed above or below the source window. See
Section 3.6.8.4 for information on setting the ruler. Below the ruler, a tab stop marks the
beginning of each field for the specification of the current line.

An asterisk (*) indicates a tab stop where you can enter a field value. A dot (.) indicates
that the column must be left blank. A dash (-) after an asterisk indicates that the field
must contain numeric data. Numeric data must be right-justified. Blanks after an asterisk
indicate that the field must contain alphanumeric data. Alphanumeric data must be left-
justified.

The RPG II editor marks the line after the last line in the editing buffer with the End-of-
Buffer [EOB] symbol. The [EOB] symbol will not appear in the output file.

The last two lines of the screen consist of the prompt line and the message line. The prompt
line displays prompts in reverse video for input when you use functions such as FIND and
COMMAND. The message line displays informational and error messages. The following

Using the RPG II Editor 3-7

example shows what the RPG II editor screen looks like with the specification format for
the current line, the prompt for the FIND function, and an informational message.

Currency symbol

Inverted print (DIJ)
| Alternate collating sequence (SE)
: : iP forms position (1)

|
[| |
| 2. 1 3] [)] 5] 6 I 7
1234567890123456789012345678901234567890123456789012345678901234567890123456)

LR L L LT

H¥++

H* FUNCTIONAL DESCRIPTION:

H#* This program produces a report of shipments for various
H# products broken down by division and department using an

H# input file with the shipment data for the past 4 quarters.
H¥--

H
FSHIPS IP F 41 DISK

Search for:
New mail on node MYNDDE from SYSTEM

N -

ZK-4331-85

0 | 1

3.3 The RPG Il Editor Cursor

The RPG II editor cursor is represented as a box (in reverse video) or an underscore,
depending on the cursor setting for your terminal. The cursor is displayed in the current
column on the current line. Note, however, that if the current column is column 81, the
cursor is displayed in column 80 on the current line. If you try to move the cursor to the
right of column 81 or to the left of column 1, the current column remains unchanged and
one of the following messages is displayed in the message line:

AttemPt to move pPast column B1

Attempt tomove beforecolumn i

3-8 Using the RPG II Editor

3.4 The RPG Il Editor Buffers

The RPG II editor uses the following four buffers:
e Editing

The editing buffer contains the file of source code that is displayed on the RPG II edi-
tor screen.

e Deleted-field

The deleted-field buffer contains the field deleted when you use the DELETE_FIELD
function (default = MINUS). See Section 3.5.14 for information on the
DELETE_FIELD function. You can access the contents of the deleted-field buffer by
using the UNDELETE_FIELD function. See Section 3.5.15 for information on the
UNDELETE_FIELD function.

e Deleted-line

The deleted-line buffer contains the line deleted by the DELETE_LINE function
(default = PF4). See Section 3.5.6 for more information on the DELETE_LINE func-
tion. You can access the contents of the deleted-line buffer by pressing the
UNDELETE_LINE (default = PF1/PF4). See Section 3.5.7 for more information on
the UNDELETE_LINE function.

e Paste

The paste buffer contains the range of lines delimited by the SELECT (default =
PERIOD) and CUT (default = KP6) functions (see Section 3.5.32). You can access the
contents of the paste buffer by using the PASTE function (default = PF1/KP6). See
Section 3.5.21 for more information on the PASTE function.

3.5 Keys and Functions

To make sure the RPG II editor is using the correct VMS terminal characteristics for your
terminal, type the DCL SET TERM/INQUIRE command before invoking the RPG II edi-
tor. The following diagram is a graphic representation of the RPG II editor keypad.

Using the RPG II Editor 3-9

UT100/UT200/VK100(GIGI) Kevpad

RPG II Editor Kevpad

PF1 PF2 PF3 PF4 Gold Helr Frnx Fnd|DIL UdL
7 8 9 - Pag Cmd|Sec Dsp|{Rev Mov|D1F UdF
4) B + Adwv Bot|iBck Tor[iCut Pas| ShL ShR
1 2 3 Fld Eol Del|Chr Col

Enter Ent
O ‘ Lin|0Oprl S5el Res

Chapter 3 refers to those keys with numbers and symbols as KPn, where KP means
keypad and n is the number of the key shown on the VT100 family, VT200 family, and
VK100 (GIGI) keypad. For example, KP6 refers to the keypad key numbered 6. Table 3—2
lists the name and default function of each key.

Note that many keys have alternate functions. An alternate function is enabled when you
press the GOLD key (default = PF1) followed by the key you want to use. This sequence is
referred to in this chapter as PF1/[key_namel].

Table 3-2: RPG II Editor Define Key Defaults

Command Key Default

DEFINE KEY PF1 GOLD

DEFINE KEY UP Up

DEFINE KEY DOWN DOWN

DEFINE KEY LEFT LEFT

DEFINE KEY RIGHT RIGHT

DEFINE KEY PF2 HELP_KEYPAD
DEFINE KEY/GOLD PF2 HELP_SPECIFICATIONS
DEFINE KEY PF3 FIND_NEXT
DEFINE KEY/GOLD PF3 FIND

DEFINE KEY PF4 DELETE_LINE
DEFINE KEY/GOLD PF4 UNDELETE_LINE
DEFINE KEY KP7 PAGE

DEFINE KEY/GOLD KP7 COMMAND
DEFINE KEY KP8 SECTION

DEFINE KEY/GOLD KP8 DISPLAY

DEFINE KEY KP9 REVIEW_ERROR
DEFINE KEY/GOLD KP9 MOVE_TO_RULER
DEFINE KEY MINUS DELETE_FIELD
DEFINE KEY/GOLD MINUS UNDELETE_FIELD
DEFINE KEY KP4 ADVANCE
DEFINE KEY/GOLD KP4 BOTTOM

DEFINE KEY KP5 BACKUP

DEFINE KEY/GOLD KP5 TOP

DEFINE KEY KP6 cuT

3-10 Using the RPG II Editor

(continued on next page)

Table 3-2: RPG II Editor Define Key Defaults (Cont.)

Command Key Default

DEFINE KEY/GOLD KP6 PASTE

DEFINE KEY COMMA SHIFT_LEFT

DEFINE KEY/GOLD COMMA SHIFT_RIGHT
DEFINE KEY KP1 FIELD

DEFINE KEY KP2 END_OF_LINE
DEFINE KEY/GOLD KP2 DELETE_TO_END_OF_LINE
DEFINE KEY KP3 CHARACTER

DEFINE KEY/GOLD KP3 COLUMN

DEFINE KEY ENTER ENTER

DEFINE KEY KPO LINE

DEFINE KEY/GOLD KPO OPEN_LINE

DEFINE KEY PERIOD SELECT

DEFINE KEY/GOLD PERIOD RESET

DEFINE KEY CTRL_H_KEY FIELD_BACKWARD
DEFINE KEY CTRL_I_KEY FIELD_FORWARD
DEFINE KEY RETURN NEW_LINE

DEFINE KEY CTRL_R_KEY REFRESH_SCREEN
DEFINE KEY CTRL_U_KEY DELETE_TO_BEGINNING_OF_LINE
DEFINE KEY CTRL_W_KEY REFRESH_SCREEN
DEFINE KEY CTRL_Z_KEY EXIT

DEFINE KEY DEL_KEY DELETE_CHARACTER
DEFINE KEY F10 EXIT

DEFINE KEY F12 FIELD_BACKWARD
DEFINE KEY F15 HELP_KEYPAD
DEFINE KEY Fi6 ENTER

DEFINE KEY E1 FIND

DEFINE KEY E2 PASTE

DEFINE KEY E3 CUT

DEFINE KEY E4 SELECT

DEFINE KEY E5 SECTION_BACKWARD
DEFINE KEY E6 SECTION_FORWARD

See DEFINE KEY (Section 3.6.2) for a complete list of definable keys. Sections 3.5.1
through 3.5.44 describe these functions and explain how to use them.

Using the RPG II Editor 3-11

3.5.1 The GOLD Function

The GOLD function (default = PF1) enables you to select the alternate function of a key.
In the following diagram of the keypad, the alternate key names appear on the right:

Gold Helrp Frnx Fnd]DIL UdL

Pagd Cmd|Sec Dsp|Rev Mov|DIF UdF

Adv Bot|Bck Tor|Cut Pas|ShL ShR

Fld Eol DE1|Chr Col

Ent

Lin OpFL Sel Res

3-12 Using the RPG II Editor

3.5.2 The HELP_KEYPAD Function

The HELP_KEYPAD function (default = PF2) displays the keypad diagram in the help
window, as shown in the following example:

0 N

PF1/PF2 - RPG II specification formats

+ + +
T + T

Press the PF1/KP7 key and type HELP for | Gold | Help Ian FndIDIL UdLI
information on commands and functions. + + + +

For help on a specific key, press the IPag CmdlSec Dsleev MovIDIF UdFI
PF2 key followed by the key for which - + +

you want help information. 1Adv BotchP TopICut PasIShL ShRI

Other keys: BS_KEY DEL_KEY R + +
TAB_KEY UP, DOWN, LEFT,RIGHT IFld lEol DElIChr Coll |

CTRL_R_EEY CTRL_W_EEY + +Ent [

CTRL_U_KEY CTRL_Z_KEY I Lin DpL ISel Res| |

0 I | I 2 | 3 | 4 | 5 l= 6 |
12345678901234567890123456789012345678901234567890123456789012345678901234567890

H* FUNCTIONAL DESCRIPTION:

H#* This program produces a report of shipments for various
Hx products broken down by division and department using an
H* input file with the shipment data for the past 4 quarters.

Hx--
H
FSHIPS 1P F # DISK

ZK-4333-85

If HELP is requested while the terminal page size is fewer than 17 lines, the following
message will be displayed and the usual HELP action will not be performed:

At least 17 lines on the screen are reauired by the editor to provide HELP

HELP cannot be displayed unless there are enough lines on the screen to position the
HELP window and still keep the ruler, prompt line, message line and one line of the edit-
ing window visible.

Using the RPG II Editor 3-13

If the keypad diagram is already displayed, you can get help information on any function
(except GOLD) by using HELP_KEYPAD (default = PF2) and the key for which you want
help information. Help information will appear in the help window. The following exam-
ple shows help on the CUT (default = KP6) and PASTE (default = PF1/KP6) functions:

- N

KP6

The CUT function moves the selected range of lines to the paste buffer. The
selected range of lines consists of the line identified by the SELECT
function up to the current line. The line following the selected range of
lines becomes the current line. The current column remains unchanged.

The PASTE function inserts the contents of the paste buffer directly in
front of the current line. The current line is moved down to accommodate
the lines from the paste buffer. The current column and line remain
unchanged.

0 I i I 2 | 3 | 4 I 5 | 3 I 7

12345678901234567890123456789012345678901234567890123456789012345678901234567890
2 2
l H¥++
H* FUNCTIONAL DESCRIPTION:
H¥ This program produces a report of shipments for various
Hx products broken down by division and department using an
Hx input file with the shipment data for the past 4 quarters.
H¥--
H
FSHIPS IP F 41 DISK

ZK-4332-85

3.5.3 The HELP_SPECIFICATIONS Function

The HELP_SPECIFICATIONS function (default = PF1/PF2) displays the specification
format for the current line. In the following example, if the current line is line 100, the

RPG II editor displays the Control specification format when you use
HELP_SPECIFICATIONS.

3-14 Using the RPG II Editor

- N

Currency symbol

Inverted print (DIJ)

| Alternate collating sequence (SE)

| | iP forms position (1)
I | |
|

H | |

0 | 1 | 2] 3 | 4 I] [6 | 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890
§ 100Hx++

H* FUNCTIONAL DESCRIPTION:

H# This program produces a report of shipments for various

Hx products broken down by division and department using an
H* input file with the shipment data for the past 4 quarters.
H¥--

H

FSHIPS IP F 41 DISE

N I

ZK-4334-85

To restore the editing buffer to the entire screen, as shown in the following example, use
the DISPLAY function (default = PF1/KP8).

Using the RPG II Editor 3-15

0 | 1 | 2] 3 | 4 | 5 | 6 I e 7 |
12345678901234567890123456789012345678301234567890123456789012345678901 234567890

¥ivevrsnnns LI ST TS T I I

H%¥ FUNCTIONAL DESCRIPTION:

H# This program produces a report of shipments for various
Hx products broken down by division and department using an
H* input file with the shipment data for the past 4 quarters.

Hoe--
H

FSHIPS IP F 4 DISK

FSUMREP 0 F 98 LPRINTER
E ATy 420

LSUMREP 55FL 500L
ISHIPS AA 01

I 1 5DIV L2
I 6 7 DEPT Li
1 8 16 PROD

I 17 24 Q1Y

C*

c 0t XFOOTATY PROQTY 30

c o PROQTY ADD DEPQTY DEPQTY 30

ZK-4335-85 .~

The RPG II editor automatically updates the tab stops and the specification format, if dis-
played, for the specification type of the current line after a terminator (such as TAB) is
typed.

3.5.4 The FIND_NEXT Function

The FIND_NEXT function (default = PF3) moves the cursor to the first character position
of the next occurrence of the search string, depending on the current direction (ADVANCE
or BACKUP). Use the FIND function to enter the search string. If the current direction is
ADVANCE, the RPG II editor will try to locate the next occurrence of the search string by
searching forward from the current column and line to the end of the editing buffer. If the
current direction is BACKUP, the RPG II editor will try to locate the next occurrence of the
search string by searching backward from the current column and line to the beginning of
the editing buffer. If the RPG II editor cannot locate the search string, the current column
and line remain unchanged and an error message is displayed in the message line. See
Section 3.8.2 for an example of the FIND_NEXT function.

3-16 Using the RPGII Editor .

3.5.5 The FIND Function

The FIND function (default = PF1/PF3) locates the search string you specify. The RPG II
editor moves the cursor forward or backward to the beginning of the nearest occurrence of
the search string, depending on the current direction (ADVANCE or BACKUP). If the cur-
rent direction is ADVANCE, the RPG II editor will try to locate the search string by
searching forwards from the current column and line towards the end of the editing buffer.
Ifthe current direction is BACKUP, the RPG II editor will try to locate the search string by
searching backwards from the current column and line towards the beginning of the edit-
ing buffer.

When you use the FIND function, the RPG II editor displays the following prompt in the
prompt line:

Search for:

You can enter up to 63 characters for the search string. If no search string is entered, the
RPG II editor will search for the last search string specified. Note that you cannot use con-
trol characters (RETURN, FORM FEED, TAB, and so on) in the search string.

If the RPG 1II editor cannot locate the search string, the current column and line remain
unchanged and the following error message is displayed in the message line:

Strindg not found
Terminate the search string by pressing either the RETURN key or the ENTER key.
See Section 3.8.2 for an example of the FIND function.

3.5.6 The DELETE_LINE Function

The DELETE_LINE function places the current line in the deleted-line buffer, at the same
time removing it from the screen. The line following the deleted line becomes the current
line. The current column remains unchanged. If there is no line following the deleted line,
the cursor is left in column 1 at the [EOB] mark.

3.5.7 The UNDELETE_LINE function

The UNDELETE_LINE function (default = PF1/PF4) inserts the contents of the deleted-
line buffer before the current line. The new line becomes the current line, and the current
column remains unchanged.

If the deleted-line buffer is empty, no action is taken but an error message is displayed in
the message line.

Using the RPG II Editor 3-17

3.5.8 The PAGE Function

The PAGE function (default = KP7) causes the editing buffer to move forward or back-
ward, depending on the current direction (ADVANCE or BACKUP), to the next page. A
page is the start or finish of a section with the same kind of specification type (column 6).

In the following example, if the current cursor position is in column 34 on line 120, the
current direction is ADVANCE, the current setting for the SET STARTCOLUMN com-
mand is 7, and you use the PAGE function, the RPG II editor moves the cursor to column 7
on line 170.

e T

0 | i | 2 | 3 | 4 |] | 6] 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890
*% * * * * * X-—REX X X ¥
10H*++

20H* FUNCTIONAL DESCRIPTION:
30H#* This program produces a report of shipments for various

40Hx products broken down by division and department using an
5OH* input file with the shipment data for the past 4 quarters.
60H¥*—-

70H

80FSHIPS IP F 41 DISK

90FSUMREP 0 F 98 LPRINTER

100E ary 4 20

110LSUMREP B5FL 500L
120ISHIPS AA 04

1301 { 5DV L2
1401 6 7 DEPT Li
1501 B8 16 PROD
1601 17 24 QTY
170C§

180C 0t XFOOTQTY PROGTY 30

190C 01 PROGTY ~ ADD DEPGTY DEPATY 30

N -

ZK-4336-85

3.5.9 The COMMAND Function

The COMMAND function (default = PF1/KP7) allows you to execute an RPG 1II editor
command. The RPG II editor displays the following prompt:

Command:

3-18 Using the RPG II Editor

The following commands can be entered:
e COMPILE
e DEFINE KEY
e EXIT
e HELP
¢ INCLUDE
e QUIT
e RESEQUENCE
e SET
e SHOW
e SUBSTITUTE

Sections 3.6.1 through 3.6.10 describe these RPG II editor commands and explain how to
use them.

3.5.10 The SECTION Function

The SECTION function (default = KP8) causes the editing buffer to move forward or back-
ward the number of lines specified by the current setting of the SET SECTION command.
The direction of the movement depends on the current direction (ADVANCE or BACKUP).
The current column remains unchanged. See Section 3.6.8 for information on changing the
SECTION value. See Sections 3.5.16 and 3.5.18 for information on setting the current
direction.

3.5.11 The DISPLAY Function

The DISPLAY function (default = PF1/KP8) removes any help information from the
screen.

3.5.12 The REVIEW_ERROR Function

If you use the RPG II editor COMPILE command to compile your program, and your pro-
gram contains errors, the RPG II editor moves the cursor to the column and line where the
first error occurs, and displays the error text in the message line. The REVIEW_ERROR
function (default = KP9) moves the cursor to the column and line where the next error
occurs, and displays the error message for that error in the message line. You can edit the
line to correct the error and use the REVIEW_ERROR function again to move the cursor to
the next error.

Using the RPG II Editor 3-19

If you use REVIEW_ERROR and there are no more errors, the RPG II editor displays the
following message in the message line:

No more errors found
If you added or deleted a line in the program while correcting errors, the RPG II editor will
display the following message when REVIEW_ERROR is used again:

Reissue the editor COMPILE command

3.5.13 The MOVE_TO_RULER Function

The MOVE_TO_RULER function (default = PF1/KP9) places the cursor as close as possi-
ble to the top of the ruler (if the editing window is above it) or towards the bottom of the
ruler (if the editing window is below it). The current column remains unchanged. Move-
ment is restricted to the boundaries of the SET SCROLL offsets. If the ruler is positioned
above the editing window and the last line of the buffer appears, movement is stopped. If
the ruler is positioned below the editing window and the first line of the buffer appears,
movement is stopped. The MOVE_TO_RULER function will have no effect if no ruler is
visible.

3.5.14 The DELETE_FIELD Function

The DELETE_FIELD function (default = MINUS) places all the characters between the
cursor and the next field (forward or backward, depending on the current direction) into
the deleted-field buffer and replaces the characters with spaces.

3.5.15 The UNDELETE_FIELD Function

The UNDELETE_FIELD function (default = PF1/MINUS) replaces the current field with
the contents of the deleted-field buffer. If the contents of the deleted-field buffer are longer
than the current field, the RPG II editor just copies to the current field untill it is filled.

If the contents of the deleted-field buffer are shorter than the current field, the RPG II
editor fills the current field to the right with spaces. Also, the cursor moves to the next
field, depending on the current direction (ADVANCE or BACKUP).

3.5.16 The ADVANCE Function

The ADVANCE function (default = KP4) sets the current direction to forward, that is, to
the right and down, toward the end of the editing buffer. ADVANCE sets the direction for
the following functions:

o CHARACTER
e DELETE_FIELD

3-20 Using the RPG II Editor

e UNDELETE_FIELD
e FIELD

e END_OF_LINE

e FIND

o FIND_NEXT

e LINE

e PAGE

e SECTION

3.5.17 The BOTTOM Function

The BOTTOM function (default = PF1/KP4) moves the cursor to the last line in the edit-
ing buffer. The current column remains unchanged.

3.5.18 The BACKUP Function

The BACKUP function (default = KP5) sets the current direction to backward, that is, to
the left and up, toward the beginning of the editing buffer. BACKUP sets the direction for
the same functions that ADVANCE sets direction for.

3.5.19 The TOP Function

The TOP function (default = PF1/KP5) moves the cursor to the first line in the editing
buffer. The current column remains unchanged.

3.5.20 The CUT Function

The CUT function (default = KP6) moves the selected range of lines to the paste buffer.
The selected range of lines consists of the line identified by the SELECT function (default
= PERIOD) to the current line. The line following the selected range of lines becomes the
current line. The current column remains unchanged. If there is no line following the
selected range, the cursor is left in column 1 at the [EOB] mark. See Section 3.8.2 for an
example using CUT.

3.5.21 The PASTE Function

The PASTE function (default = PF1/KP6) inserts the contents of the paste buffer directly
in front of the current line. The current line is moved down to accommodate the lines from
the paste buffer. The current column and line remain unchanged. See Section 3.8.2 for an
example using PASTE.

Using the RPG II Editor 3-21

3.5.22 The SHIFT_LEFT Function

The SHIFT_LEFT function (default = COMMA) causes the following events to occur:
e The character in the current column is deleted.
e All characters to the right of the current column are moved one column to the left.
e The cursor position remains the same.

In the following example, if the cursor is in column 45 on line 350, and SHIFT_LEFT is
used, the RPG II editor deletes the blank in column 45, moves all the characters to the
right of the cursor one column to the left, and inserts a blank in column 80.

Before using SHIFT_LEFT:

0 | 1 | 2 | 3 | 4 |] |) | 7 |

12345678901234567890123456789012345678901234567830123456789012345678901234567890
*% XXX X X * b2 5 Slalet 2]

3500 48 J'04 02 03 Q4 TOTAL'

ZK-4337-85

After using SHIFT_LEFT:

0 | 1 | 2 | 3 I 4 | 5] 6 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890
*% XREXK X X * XNR———%¥% cres
3500 48 01 02 Q3 Q4 TOTAL’
cursor

ZK-4338-85

3.5.23 The SHIFT_RIGHT Function
The SHIFT_RIGHT function (default = PF1/COMMA) causes the following events:

e All characters in the current column through the end of the line are moved one col-
umn to the right.

e A space is placed in the current column.
e The current column remains unchanged.

In the following example, if the cursor is in column 44 on line 350, and SHIFT_RIGHT is
used, the RPG 1I editor moves all characters one column to the right of the cursor and
inserts a blank in column 44. The blank in column 80 is lost.

3-22 Using the RPG II Editor

Before using SHIFT_RIGHT:

0 | 1 I 2 | 3 I 4 | 5 | b I 7 |
12345678901234567890123456783012345678901234567830123456789012345678901234567890
*¥% XXHNE X ¥ * L2 bt 2] cene
3500 4801 @2 @3 Q4 TOTAL’
cursor

ZK-4339-85

After using SHIFT_RIGHT:

0 | 1 | 2 | 3 I 4 | 5 | 6 | 7
12345678901234567890123456789012345678901234567890123456783012345678901234567890
*% EAREE K ¥ * HRK——— Rk eee
3500 481’61 02 Q3 Q4 TOTAL’
cursor
ZK-4340-85

3.5.24 The FIELD Function

The FIELD function (default = KP1) moves the cursor to the nearest character in the next
nonblank field. If the current direction is ADVANCE, using FIELD moves the cursor to the
beginning of the next nonblank field following the current column. If the current direction
is BACKUP, FIELD moves the cursor to the end of the next nonblank field preceding the
current column.

In the following example, if the cursor is in column 16 and the current direction is
ADVANCE, FIELD moves the cursor to column 21.

0 | i | 2 | 3 | 4 | 5 | 6 | 7

12345678901234567890123456789012345678301234567890123456789012345678901234567830
¥ L e T L e et T 'EEEEET

IINPUT AR §35cCA

T cursor after
cursor before

ZK-4341-85

Using the RPG II Editor 3-23

In the following example, if the cursor is in column 21 and the current direction is
BACKUP, FIELD moves the cursor to column 16.

0 | 1 | 2 | 3 | 4 | 5 | b | 7

12345678901234567890123456789012345678901234567890123456789012345678901234567890
*% * XX N——— ¥——= ¥——= RN * X R X X X ,,,,

IINPUT AR [35 CA

!

cursor before
cursor after

ZK-4342-85

Note that you cannot use FIELD to move from one program line to another.

3.5.25 The END_OF_LINE Function

The END_OF_LINE function (default = KP2) moves the cursor one column to the right of
the end of the current line (the last nonblank character) if ADVANCE is the current direc-
tion. If the current direction is BACKUP, END_OF_LINE moves the cursor one column to
the right of the end of the preceding line.

If the cursor is already at the end of the current line and the current direction is
ADVANCE, END_OF_LINE moves the current column one column to the right of the next
line.

In the following example, if the cursor is in column 45 and the current direction is
ADVANCE, and if you use END_OF_LINE, the RPG II editor moves the cursor to column
68.

0 | 1] 2 [3 [4] 5 i 6 | 7 |
12345678901234567890123456789012345678901234567890123456789012345678901234567890
*% ERRAE ¥ ¥ * [T T
3500 4B 0L 02 @3 Q4 TOTAL'H
cursor before cursor after

ZK-4343-85

3-24 Using the RPG II Editor

In the following example, if the cursor is in column 68 of line 350 and the current direction
is BACKUP, and if you use END_OF_LINE, the RPG II editor moves the cursor to column
54 in line 340.

0 | 1 | 2 | 3| 4 | | 6 | 7
i2345678901234567890i23456?89012345678901234567890123456789012345678901234567890
HRRHE X * P T] cees
3400 24 'PRODUCT’R
3500 48 '01 02 @3 Q4 TOTAL'N

T cursor before
cursor after

ZK-4344-85

3.5.26 The DELETE_TO_END_OF_LINE Function

The DELETE_TO_END_OF_LINE function (default = PF1/KP2) deletes the characters
from the current column to the end of the line. The cursor position remains unchanged.

In the following example, if the cursor is in column 46 and you use
DELETE_TO_END_OF_LINE, the RPG II editor deletes the characters in column 46
through 67.

Before using DELETE_TO_END_OF_LINE:

0 | i | 2 I 3 | 4 | 5 | 6 | 7 |

12345678901234567890123456789012345678901234567890123456789012345678901234567890
HRA———%%

3500 48 ‘1 G2 @3 @4 TOTAL'

}

cursaor

ZK-4345-85

After using DELETE_TO_END_OF_LINE:

0 | i | 2 | 3 1 4 |] | 6 | 7 |
12345678901234567890123456789012345678901234567890123456789012345678901234567890
* RRRRR X X * R —— R e

3500 48 '}
cursor

ZK-4346-85

Using the RPG II Editor 3-25

3.5.27 The CHARACTER Function

The CHARACTER function (default = KP3) moves the cursor position to the right or left,
depending on the current direction (ADVANCE or BACKUP). If you attempt to move the
cursor to the right of column 81 or to the left of column 1, no action is taken and an error
message is displayed in the message line.

In the following example, if the cursor is in column 47 and the current direction is
ADVANCE, and if you use CHARACTER, the RPG II editor moves the cursor to column
48. If the cursor is in column 47 and the current direction is BACKUP, and if you use
CHARACTER, the RPG II editor moves the cursor to column 46.

o I 1 1 2 1 3 1 4 1 5 0 & 0 7

12345678901234567890123456789012345678901234567890123456?89012345678901234567890
*% HERARE X % * HRR———RR e

3500 48 HEA @2 @3 @4 TOTAL’

TTcursor after (ADVANCE)
cursor before
cursor after (BACKUP)

ZK-4347-85

3.5.28 The COLUMN Function

The COLUMN function (default = PF1/KP3) highlights the number of the current column
by causing the column number in the 80-column ruler to blink. The column function takes
no action if no ruler is visible.

On a terminal without AVO, the COLUMN function performs no action.

On the VK100 (GIGI) terminal, the blinking for the COLUMN function is sometimes
wider than the width of one character.

3.5.29 The ENTER Function

The ENTER function (default = ENTER) terminates the following entries:
e The FIND function (see Section 3.5.5)
e RPG II editor commands (see Section 3.5.9)

The ENTER function also clears any information in the message line.

3-26 Using the RPG II Editor

3.5.30 The LINE Function

The LINE function (default = KPO) causes the cursor to move one line up or down, depend-
ing on the current direction (ADVANCE or BACKUP). The cursor is moved to the current
setting for the SET STARTCOLUMN command.

3.5.31 The OPEN_LINE Function

The OPEN_LINE function (default = PF1/KP0) creates a new line above the current line.
The new line becomes the current line, and the cursor is moved to the current setting for
the SET STARTCOLUMN command. If the current setting for the SET STARTCOLUMN
command is greater than 6, the new line will have the same specification format as the
previous line. See Section 3.8.2 for an example of the OPEN_LINE function.

3.5.32 The SELECT Function

The SELECT function (default = PERIOD) marks the current line as the beginning of the
range of lines you are selecting (select range). The SELECT function highlights column 1
of the current line in reverse video. You can use SELECT to select a range of lines to be
deleted or moved. You can then use CUT to move the selected lines from the editing buffer
to the paste buffer (see Section 3.5.20); and you can use PASTE to reinsert them into the
editing buffer at another location (see Section 3.5.21). The cursor position in the line does
not matter — the entire line will be moved into the paste buffer when CUT is used.

If you select a line as the beginning of a select range and then delete that line, the select
range will no longer be in effect and a message will be displayed in the message line.

You cannot select the line where [EOB] appears. If you select a range of lines that includes
[EOB], [EOB] will not be placed in the paste buffer.

See Section 3.8.2 for an example of the SELECT function.

3.5.33 The RESET Function

You can clear the current setting for the SELECT function by using the RESET function
(default = PF1/PERIOD).

3.5.34 The UP Function

The UP function (default = UP) causes the cursor to move up one line. The current column
remains unchanged. If the current line is the first line in the editing buffer, the cursor will
not be moved and an error message will be displayed.

Using the RPG II Editor 3-27

3.5.35 The DOWN Function

The DOWN function (default = DOWN) causes the cursor to move down one line. The cur-
rent column remains unchanged. If the current line is the last line in the editing buffer, the
cursor will not be moved and an error message will be displayed.

3.5.36 The RIGHT Function

The RIGHT function (default = RIGHT) moves the cursor to the right one column. If the
current column is 80, the cursor is not moved and column 81 becomes the current column.
If the current column is 81, the cursor will not be moved and an error message will be
displayed.

3.5.37 The LEFT Function

The LEFT function (default = LEFT) moves the cursor to the left one column. If the cur-
rent column is column 1, the cursor will not be moved and an error message will be
displayed.

3.5.38 The FIELD_BACKWARD Function

The FIELD_BACKWARD function (default = BS_KEY) moves the cursor to the tab stop
preceding the current column, or, if the cursor is before the first tab stop, moves the cursor
to column 1. If the current column is 1, the cursor will not be moved and an error message
will be displayed.

3.5.39 The DELETE_CHARACTER Function

The DELETE_CHARACTER function (default = DEL_KEY) replaces the character to
the left of the cursor with a space and moves the cursor one column to the left. If you try to
delete a character to the left of column 1, the cursor will not be moved and an error message
will be displayed.

3.5.40 The NEW_LINE Function

The NEW_LINE function (default = RET_KEY) creates a new line following the current
line. The lines following the current line are moved down to accommodate the new line. If
the current line is the last line in the current buffer, a new last line is created. The cursor is
moved to the current setting for the SET STARTCOLUMN command. If the current set-
ting for the SET STARTCOLUMN command is greater than 6, the new line will have the
same specification format as the previous line.

3-28 Using the RPG II Editor

3.5.41 The FIELD_FORWARD Function

The FIELD_FORWARD function (default = TAB_KEY) moves the cursor to the next tab
stop after the current column. If the cursor has already passed the last tab stop,
FIELD_FORWARD moves the cursor to column 81. If the current column is column 81, the
cursor will not be moved and an error message will be displayed.

3.5.42 The REFRESH_SCREEN Function

The REFRESH_SCREEN function (default = CTRL_R_KEY and CTRL_W_KEY)
rewrites the screen display. The cursor location remains unchanged.

3.5.43 The DELETE_TO_BEGINNING_OF_LINE Function

The DELETE_TO_BEGINNING_OF_LINE function (default = CTRL_U_KEY)
replaces the characters from the current column to column 1 with spaces. The cursor loca-
tion remains unchanged.

3.5.44 The EXIT Function

The EXIT function (default = CTRL_Z_KEY) writes the editing buffer to an output file as
described in Section 3.1.2. If a journal file was created, it is not saved.

If you have issued the RPG II editor COMPILE command, and then leave the RPG II editor
using EXIT, the following message will be displayed:

SubpProcess terminated

If you invoked the RPG II editor with the NOOUTPUT or the READ_ONLY qualifier, the
following message will be displayed: '

Use EXIT with an output file specification or QUIT

EXIT performs the same function as the EXIT/NOSAVE command.

3.6 RPG Il Editor Commands

This section describes the RPG II editor commands and explains how to use them. You
must issue the COMMAND function before executing an RPG II editor command. Section
3.5.9 discusses the COMMAND function.

The following conditions exist when executing RPG II editor commands:

e If you type a command with a missing required parameter, you will get a prompt to
supply the missing parameter.

Using the RPG II Editor 3-29

e Qualifiers can appear anywhere on the line; they do not have to immediately follow
the command and can appear in any order.

e Qualifiers can be negated.
e Command line input can be in uppercase, lowercase, or mixed case.

e Abbreviations are allowed. You must type enough information to resolve any
ambiguity.

e You canenter full line comments, end of line comments, and blank lines in a command
line.

e You can continue a command line by entering a hyphen (-) at the end of the line. You
will get a prompt for more input.

e Terminate a command by pressing either the RETURN key or the ENTER key.

3.6.1 The COMPILE Command

The COMPILE command compiles the source code in the editing buffer, and displays both
of the following messages:

SubProcess activated
Bedinnind compilation

The message “Subprocess activated” appears only when the COMPILE command is issued
for the first time during an editing session.

The format of the COMPILE command is:
COMPILE [/LIST]
The following message is displayed indicating how many errors were found:
Compilation comeplete--n errors found
Ifnis 0, no errors were found and you can leave the editor, then link and run your program.

If the compilation encounters errors, the error text associated with the first error is dis-
played in the message line and the cursor is moved to the column and line where the first
error occurs. If there is more than one error, use the REVIEW_ERROR function to move
the cursor to the column and line causing the next error. See Section 3.5.12 for more infor-
mation on the REVIEW_ERROR function.

You can use only the LIST qualifier with the COMPILE command to create a listing file for
the compiled source code. The default is NOLIST. OBJECT is always in effect. However, if
the compilation encounters fatal errors, an object module will not be produced.

3-30 Using the RPG II Editor

You can specify a symbol definition at the DCL command level to change the defaults for a
compilation. When you issue the RPG II editor COMPILE command, the compiler will use
these settings. In the following example, the symbol RPG is defined to compile a program
and generate a listing file with machine-generated code. The compiler will also generate
code in the program to check for blanks in numerics.

$ RPG :== RPG/LIST/MAC/CHECK:BLANKS_IN_NUMERICS

To use the debugger after you enter the COMPILE command, you must first define the
following command before invoking the editor:

$ RPG := RPG/DEBUG
See Part I, Chapter 10 for information on how to set the appropriate source file.

The COMPILE command requires each line in the editing buffer to be 140 characters or
less.

If you define RPG to invoke something other than the RPG II compiler, or if the RPG II
compiler encounters an unexpected error, the following message is displayed in the mes-
sage line:

Urexpected error during compilation - leave editor and try DCL RPG command

3.6.2 The DEFINE KEY Command

The DEFINE KEY command allows you to bind specific keys to specific RPG editor func-
tions. These functions are listed with their default key definitions in Table 3-2 at the
beginning of Section 3.5.

The following keys are bindable in the RPG editor:
e Control keys
e Cursor keys
e Editing keys (LK201 except Rainbow)
e Function keys (LK201 except Rainbow)
e Keypad keys
e Gold versions of all these keys
exceptions

The following list contains seven control key restrictions. These are special functions of
the VMS operating system.

CTRL_C_KEY

CTRL_O_KEY CTRL-T_KEY

CTRL_Q_KEY CTRL-X_KEY
CTRL_S_KEY CTRL_Y_KEY

Using the RPG II Editor 3-31

Note that key redefinition does not cause automatic update to the editor keypad diagram
and key-specific help text.

The format of the DEFINE KEY command is:
DEFINE KEY[/GOLD] key_name function

In this command, /GOLD indicates that you must press GOLD followed by key_name to
execute the chosen function. For example:

DEFINE KEY/GOLD KPS CUT

When you enter this command and then press the GOLD key, followed by the KP5 key, the
CUT function is executed.

If “key_name” is not a valid definable key, or if “function” is not a valid RPG editor func-
tion that is bindable to a key, a message is displayed.
To redefine the GOLD key, enter the following line at the command prompt:

DEFINE KEY Kevy_mwame GOLD

To remove the GOLD key completely, enter the following line at the command prompt:
DEFINE KEY/GOLD PF1 GOLD

Note that if you use a key name other than PF1 with this command, it will be treated as if
PF1 had been entered.

Note also that you must redefine the GOLD key (default = PF1) before you can define the
PF1 key to a function other than GOLD.

See Table 3-2 for a list of default key definitions. This table provides a list of definitions
that are bindable to keys. Note that in some cases, more than one key is bound to the same
procedure. Note also that TAB_KEY and CTRL_I_KEY (the default settings for
FIELD_FORWARD), and the RETURN_KEY and CTRL_M_KEY (default settings for
RETURN), can only be bound to the same function, while the F10 key and CTRL_Z_KEY
(the default settings for EXIT) may be bound to separate functions.

The SECTION_FORWARD and the SECTION_BACKWARD functions are not bound by
default to any key on the VT'100 family and VK100 (GIGI) terminal keyboards. However,
you can bind any of the valid definable keys to those functions.

3-32 Using the RPG II Editor

Table 3—-3 contains additional keys that are bindable to the functions listed in Table 3—-2.

Table 3-3: RPG KEYNAMES FOR VALID DEFINABLE KEYS

RPG Keyname LK201 VT100 Family
VK100 (GIGI)

PF1 PF1 PF1

PF2 PF2 PF2

PF3 PF3 PF3

PF4 PF4 PF4

KPO0,KP1,...,.KP9 0,1,....9 0,1,....9

PERIOD . .

COMMA s s

MINUS - -

ENTER Enter Enter

UP Up-arrow Up-arrow

DOWN Down-arrow Down-arrow

LEFT Left-arrow Left-arrow

RIGHT Right-arrow Right-arrow

E1l Find/E1

E2 Insert-here/E2

E3 Remove/E3

E4 Select/E4

E5 Prev-screen/E5

E6 Next-screen/E6

HELP Help/F15

DO Do/F16

F7...,F20 F7,...,F20

TAB_KEY Tab Tab

RET_KEY Return Return

DEL_KEY <X] Delete

LF_KEY Line-feed

BS_KEY Back-space

CTRL_A_KEY Ctrl/A CTRL/A

CTRL_B_KEY Ctrl/B CTRL/B

CTRL_Z_KEY Ctrl/Z CTRL/Z

Note the list of exceptions at the beginning of this section.

You can modify the key bindings shown in Table 3-2 at editor startup by creating a startup
command file with the desired DEFINE KEY commands. See Section 3.7.2, Startup Com-
mand Files, for more information on using DEFINE KEY.

Using the RPG II Editor =~ 3-33

3.6.3 The EXIT Command

The EXIT command writes the editing buffer to the output file and leaves the RPG II edi-
tor, returning to the DCL command prompt ($), as shown in the following example:

0 | 1 | 2 I 3 | 4 |]] b I 7
12345678901234567890123456789012345678901234567890123456789012345678901234567830
*3% * XER K——— b g *——- 2 it Dttt 24 * X X X X X .,

{OH*++

20H* FUNCTIONAL DESCRIPTION:

JOH* This program produces a report of shipments for various
40H* products broken down by division and department using an
50H* input file with the shipment data for the past 4 quarters.
60H%--

70H

80OFSHIPS IP F 41 DISK
90FSUMREP 0 F 98 LPRINTER
100E ary 4 20

110LSUMREP 55FL 500L
120ISHIPS AA OF

1301 1 5DIV L2
1401 6 7 DEPT Li
1501 8 16 PROD
1601 17 24 QTY
170C*

180C 04 XFOOTaTY PROQTY 30

190C 04 PROQTY ADD DEPQTY DEPQTY 30

53 records written to file MYDISK:[MYDIRECTORYIMYFILE.RPG,;?2

ZK-4348-85
The format of the EXIT command is:
EXIT [/SAVE] [file-spec]
The output file is one of the following:
e The file name you supplied with the EXIT command
o The file name you supplied with the OUTPUT qualifier to the RPG/EDIT command

e The same file name as the input file you specified when you invoked the RPG Il editor,
ifthe READ_ONLY or the NOOUTPUT qualifiers were not used with the RPG/EDIT
command

The RPG II editor will write the editing buffer to the output file even if no changes have
been made.

3-34 Using the RPG II Editor

You can use the SAVE qualifier with the EXIT command to save the journal file, if one was
created. The file name of the journal file is the name of the output file, if specified, with the
JOU file type. If a journal file name was not specified, the RPG II editor uses the same file
name as the input file. See Section 3.1.3 for information on journal files.

If an error occurs during the execution of an EXIT/SAVE command and you resume edit-
ing, the journaling facility will still be in effect.

If you have issued the RPG II editor COMPILE command and then leave the RPG II editor
by typing the EXIT command, the following message will be displayed in the message line:

SubrProcess terminated

3.6.4 The HELP Command

The HELP command displays information on RPG II editor functions and commands in
the help window of the RPG II editor screen. The following example shows what the screen
looks like after you issue the COMMAND function, type the HELP command, and press
either the RETURN key or the ENTER key:

I N

read this help information while using the editor by typing the HELP
command.

Additional information available:

Commands Cursor Functions Help Journal Keypad Specs
0] i I 2] 3 I 4 | 5 I 6 I 7 I
12345678901234567830123456789012345678901234567890123456789012345678901234567890
LIRREEE N N LI LT Phrertsessr e asertaenanas
B 10Hx++

20H* FUNCTIONAL DESCRIPTION:

30H* This program produces a report of shipments for various
40H* products broken down by division and department using an
50H#* input file with the shipment data for the past 4 quarters.

60H*--
70H
80FSHIPS IP F 4 DISE

ZK-4349-85

Using the RPG II Editor 3-35

The format of the HELP command is:
HELP [/FULL] [/PAGE] [/PROMPT] list-of-topics

The PAGE qualifier is similar to the DCL HELP command PAGE qualifier. If the help text
does not fit in a logical page (in this case, the help window), the text is displayed a page at a
time and you must enter a RETURN to advance to the next page. The default is NOPAGE.

The PROMPT qualifier is similar to the DCL HELP command PROMPT qualifier. Once
help for the given list of topics is displayed, you are prompted for additional topics, which
are then linked to the current list of topics. Press RETURN repeatedly to back up through
the levels of help text. CTRL/Z terminates the HELP command. The default is
NOPROMPT.

The FULL qualifier uses the entire screen, except for the prompt and message lines, to
display help text. When the requested help has been displayed, the previous screen layout
is restored. You are prompted to enter a RETURN before the screen is repainted. If the
previous screen contained help text, it is not restored. Instead, the last 11 lines of text from
the current HELP is left in the help window. The default is NOFULL.

Note that FULL, PAGE and PROMPT are positional qualifiers. If they occur after a topic
or subtopic, they are interpreted as subtopics on which help is desired.

There is no fixed number on the list of topics. Whatever can fit on the command line is
valid. If you use the PROMPT mode, you can extend the depth indefinitely.

By default, the RPG II editor searches its own help library (SYS$HELP:RPGEDIHLP) for
the given list of topics.

You can access other libraries in the following ways:
o If the first topic has the form @filespec, that library is searched instead.

e If you define logical names of the form HLP$SLIBRARY, HLP$LIBRARY_1, ...,
HLPSLIBRARY_999, the LIBRARIAN searches them in the following order: root
library, main library, process libraries, group libraries, and system libraries.

3-36 Using the RPG II Editor

The following example shows what the screen looks like after you issue the COMMAND
function, type HELP COMMANDS, and press either the RETURN key or the ENTER key:

COMMANDS

Editor commands are executed by pressing the COMMAND function (PFi/KP7 - see
information for FUNCTIONS). Any command, parameter or gualifier can be
abbreviated so that the information typed is unambiguous. The prompt
"Command: " is displayed in reverse video on the prompt line. Any
characters that can normally be typed in the editor may be typed at the
prompt.

Qualifiers can be negated and can also appear in any order on a command line
after the name of the command.

Blank command lines are ignored. Also any text on a command line after an
exclamation point ("!") is ignored.

Additional information available:

COMPILE DEFINE EXIT HELP INCLUDE QuIT RESEQUENCE
SET SHOW SUBSTITUTE

] 2 | 3 | 4 | 5 | b | 7]

0 | 1
12345678901234567890123456789012345678901234567890123456789012345678901234567890)

LI A AR LT
B LOHx++
20H* FUNCTIONAL DESCRIPTION:
30H* This program produces a report of shipments for various
40H* products broken down by division and department using an
50H* input file with the shipment data for the past 4 quarters.
60H*--
70H
BOFSHIPS

IP F 44 DISK

ZK-4350-85

After you press either the RETURN key or the ENTER key to execute a HELP command
and help information is displayed, the RPG II editor returns the cursor to its current col-
umn and line so you can resume editing.

3.6.5 The INCLUDE Command

The INCLUDE command copies a text file into the source buffer using the VAX RPG 11
editor. The format of the INCLUDE command is:

INCLUDE file-spec

The file is copied into the editing buffer, immediately before the current line. The cursor
position remains unchanged. Note that the lines read in are not syntax checked.

Using the RPG II Editor 3-37

If the INCLUDE is successful, the number of records read in is displayed on the message
line.

3.6.6 The QUIT Command

The QUIT command allows you to leave the RPG II editor and return to DCL command
level, without writing the editing buffer to the output file, as shown in the following
example:

| 2 | 3 | 4 | 5 | b | 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890
*% ¥ RER ¥——— ¥——— F——— [T S 1 EEEEETNE

{OH*++

20H%¥ FUNCTIONAL DESCRIPTION:

30H* This program produces a report of shipments for various
40H* products broken down by division and department using an
50H* input file with the shipment data for the past 4 quarters.

60H*-~

70H

BOFSHIPS IP F 41 DISE
90FSUMREP 0 F 98 LPRINTER
100E aTy 4 290

110LSUMREP 55FL 500L
120ISHIPS AA 01

1301 f §5DIV L2
1401 6 7 DEPT L1
1501 8 16 PROD
1601 17 24 QTy
170Cx

180C 04 XFOOTQTY PROQTY 30

190C 04 PROQTY ADD DEPQTY DEPRTY 30

Command: QUIT

AN -

ZK-4351-85

The format of the QUIT command is:
QUIT [/SAVE]

Use the QUIT command if you have made no changes to the editing buffer or if you have
decided not to save the changes you made. If you have made changes, or if you have pressed

3-38 Using the RPG II Editor

keys to move the cursor past the last nonblank character in any line, the RPG 1I editor
displays the following message:

The current buffer mavy have been modified, do vou really want to suit?
You can respond with Y, YE, or YES. Any other response will continue the editing session.

Ifyouresume editing, a journal file for your edits will not be created. To resume journaling,
you must leave the RPG II editor, and invoke the RPG II editor again.

You can use the SAVE qualifier with the QUIT command to save the journal file, if one was
created.

If you have issued the RPG Il editor COMPILE command and then leave the RPG II editor
by typing the QUIT command, the following message will be displayed in the message line:

Subprocess terminated

3.6.7 The RESEQUENCE Command

The RESEQUENCE command either generates a new line number for each program
line in the editing buffer or resequences existing line numbers. The format of the
RESEQUENCE command is:

RESEQUENCE [/REMOVE] [initial-value [increment]]

The RESEQUENCE command renumbers program lines up to the first line containing the
delimiter //blank or **blank in columns one through three. Lines are numbered beginning
at initial-value (default = 10) and incrementing by the increment value (default = 10).

The maximum line number is 99,999. If, during resequencing, a line number plus the
increment exceeds 99,999, that line and all remaining lines are numbered 99,999. In this
case, reissue the RESEQUENCE command with smaller values for initial-value and
increment.

The RESEQUENCE/REMOVE command will remove all line numbers in the editing
buffer.

The following command will renumber the line numbers in the editing buffer beginning
with 100 and increment each number by 20:

RESEQUENCE 100 20
See Section 3.8.2 for another example of the RESEQUENCE command.

Using the RPG II Editor 3-39

3.6.8 The SET Command

The SET command controls RPG II editor options. Once set, these options are in effect
until you leave the RPG II editor or reissue the SET command.

You can include SET commands in a startup command file. See Section 3.7.2 for
information.

The format of the SET command is:
SET option
RPG II editor options include:
¢ COMMAND
e DEFAULT
e HELP
e RULER
e SCROLL
e SECTION
e STARTCOLUMN
e SYNTAXCHECK

3.6.8.1 The COMMAND option

The COMMAND option allows you to process additional startup command files at the
beginning of the RPG II session. The format of the COMMAND option is:

SET COMMAND file-spec
See Section 3.7.2, Startup Command Files, for information on the SET COMMAND

option.

3.6.8.2 The DEFAULT option

The DEFAULT option allows you to determine the default value of qualifiers used in other
editor commands. The format of the DEFAULT option is:

SET DEFAULT option

For example, the command:
SET DEFAULT PAGE sPROMPT

means that any later HELP command uses the PAGE and PROMPT options by default.
You can turn defaults off by using the negated form of a qualifier. (For example, SET
DEFAULT NOPROMPT.)

340 Using the RPG II Editor

3.6.8.3 The HELP option

The HELP option allows you to choose a variety of settings. The format of the HELP option
is:

SET HELP { KEYPAD | NONE | SPECIFICATIONS }

The HELP KEYPAD option acts as if you used the HELP_KEYPAD function (default =
PF2). See Section 3.5.2 for information on HELP_KEYPAD.

The HELP NONE option allows you to start up as if you have used the DISPLAY function.
See Section 3.5.11 for information on DISPLAY.

The HELP SPECIFICATIONS option acts as if you used the HELP_SPECIFICATIONS
function (default = PF1/PF2). See Section 3.5.3 for information on
HELP_SPECIFICATIONS.

3.6.8.4 The RULER option

The RULER option moves the three-line 80-column ruler with tab stops as a unit, to either
the top or bottom of the current window. SET RULER NONE removes the ruler from the
screen.

The format of the RULER option is:
SET RULER {TOP | BOTTOM | NONE }

Using the RPG II Editor 341

The example below shows an editor screen as it appears after a SET RULER BOTTOM
command, with an 18-line terminal page size. The next example shows the same screen
followed by a help request.

- N

FSHIPS IP F 4 DISK
FSUMREP 0 F 98 LPRINTER
E aty 4 20

LSUMREP B5FL 500L
ISHIPS AA 01
I

i1 S5DIV L2
| I 6 7 DEPT L4
I 8 16 PROD
I 17 24 ary
Cx
c of XFooTaTy PROGTY 30
¢ ot PROQTY ADD DEPQTY DEPATY 30

0 | 1 | 2 | 3 | 4 |] | 6 | 7

12345678901234567890123456789012345678901234567890123456783012345678901234567
*% * XEX K——— #——- ¥ B e] XXX X X X ,,,,

N -

ZK-4352-85

3—42 Using the RPG II Editor

- N

+ + +

PF1/PF2 - RPG II specification formats + + + + t
Press the PF1/KP7 key and type HELP for | Gold | Help |IFnx FndIDIL UdLI
information on commands and functions. + + + + +
For help on a specific key, press the IPag Cmd|Sec DsplRev MovIDIF UdFlI
PF2 key followed by the key for which + + + + +
you want help information. IAdv Bot|Bck ToplCut Pas|ShL ShRI
Other keys: BS_KEY DEL_KEY + + + + +
TAB_KEY UP, DOWN, LEFT,RIGHT IFld IEol DElIChr Coll |
CTRL_R_KEY CTRL_W_KEY + + + +Ent |
CTRL_U_KEY CTRL-Z_KEY | Lin OpL I1Sel Resl |
[] I 6 7 DEPT L1
I 8 16 PROD
0 I 1 I 2 I 3 I 4 I 5 [6 | 7
12345678901234567890123456789012345678901234567890123456789012345678901234567

*% * KR ¥——— ¥ *-—- . * Ok X X X X ..,

N -

ZK-4353-85

3.6.8.5 The SCROLL option
The SCROLL option specifies the region within the editing window where the cursor will
stay.

The format of the SCROLL option is:
SET SCROLL [top-offset [bottom-offset]]

Top-offset is the number of lines from the top of the editing window to the top of the scrol-
ling region. Bottom-offset is the number of lines from the bottom of the scrolling region to
the bottom of the editing window. If bottom-offset is omitted, the current offset from the
bottom is not changed. If the top and bottom offsets are omitted, both offsets are set to the
initial editor defaults of zero.

Using the RPG II Editor 3—43

If you enter SET SCROLL 0 1, then the cursor will move from the line next to the ruler on
the top, to within one line above the bottom of the editing window. If you want to keep the
cursor from hitting the top line, enter a number greater than zero for top-offset. The higher
the number, the greater the number of source code lines that will remain on the screen
between the cursor and the top or bottom of the editing window.

3.6.8.6 The SECTION option

The SECTION option specifies the number of lines the RPG II editor will move the cursor
(forward or backward) when the SECTION function (default = KP8) is used and there is
no help information displayed. You can specify any value between one, and five less than
the terminal page length. By default, the bottom line of the editing window moves to the
top (just under the tab stops), regardless of the size of the window.

The format of the SECTION option is:
SET SECTION lines

If you specify a SECTION value other than the default, the SECTION value, when help is
displayed, is proportional to the visible number of lines in the editing window.

3.6.8.7 The STARTCOLUMN option
The STARTCOLUMN option specifies the current column for the following functions:
e NEW_LINE
e OPEN_LINE
e LINE
e PAGE
The format of the STARTCOLUMN option is:
SET STARTCOLUMN column

The default value is column 7. When the setting for the STARTCOLUMN qualifier is
greater than 6, the RETURN key and OPEN_LINE (default = PF1/KP0) function supply
the same specification type in column 6 as is present in the current line.

3.6.8.8 The SYNTAXCHECK option

The SYNTAXCHECK option specifies that syntax checking and automatic right justifica-
tion of numeric fields will occur.

The format of the SYNTAXCHECK option is:
SET SYNTAXCHECK { ON | OFF | PROMPT }

344 Using the RPG II Editor

By default, the RPG II editor starts up with the SYNTAXCHECK option on. This setting
can be changed in a startup command file, or interactively.

If you modify a line when syntax checking is on, and then attempt to move off the line, one
of the following will occur:

e If there are no errors on the line, and all numeric entries are properly justified, the
requested action takes place.

e If there are no errors on the line, but one or more numeric entries are not properly
justified, the numeric entries are justified, the justified fields are highlighted, and the
requested action takes place. The highlighting is removed from the field(s) when the
next line is syntax checked.

e If a syntax error is detected, the requested action does not take place. The cursor is
positioned at the column of the error, and the error message is displayed on the mes-
sage line. You can either correct the error, or ignore the error by immediately moving
off the line. Another syntax check will take place on that line only if you modify it
again.

If you enter table and array data while SYNTAXCHECK is on, there is a risk that the data
will be right-justified as if it were part of the source program, yielding unexpected results.
Therefore, it is recommended that SYNTAXCHECK be set off while entering table and
array data, or that you use the PROMPT option. When PROMPT is in effect, the editor will
highlight any proposed numeric right justification before the justification is actually done,
and will prompt you to see if you want it done.

3.6.9 The SHOW Command
The SHOW command displays the current settings for the following options:
e DEFAULT
e SCROLL
e SECTION
e STARTCOLUMN
o SYNTAXCHECK
e VERSION
The format of the SHOW command is:
SHOW option

Using the RPG II Editor 345

The current settings appear in the message line, as shown in the following examples:

COMMAND: SHOW DEFAULT PAGE:PROMPT
Current defaults are NOPAGE:NOPROMPT

Command: SHOW SCROLL
Scroll offset from torp is Os from bottom is O

Command: SHOW SECTION
Section lendth is: 18 or when HELP is displaved: 7

Command: SHOW STARTCOLUMN
STARTCOLUMN value is: 7

Command: SHOW SYNTAXCHECK
SYNTAXCHECK is ON

The VERSION qualifier displays the current version of the RPG II editor and a VAX
RPG II copyright statement, as shown in the following example:

Command: SHOW VERSION
UAX RPG II V2,0 editor COPYRIGHT (C) DIGITAL EQUIPMENT CORPORATION 1985

3.6.10 The SUBSTITUTE Command

The SUBSTITUTE command allows you to substitute text using the VAX RPG II editor.
The format of the SUBSTITUTE command is:

SUBSTITUTE search-argument replace-argument [/SELECT] [/QUERY]

The SUBSTITUTE command replaces all occurrences of the search-argument with the
replace-argument in the specified range. If SELECT is specified, the command applies to
all lines in the select range. Otherwise, it applies to all lines in the buffer.

Only exact matches of the search-argument with text in the editing buffer are performed.

Only equal length substitutions are performed. If one argument is shorter than the other,
it is padded on the right with spaces before searching and replacing begins.

If you specify QUERY, then at each occurrence of the string to be substituted the following
occurs:

e The string to be substituted is highlighted.

o A “Substitute this occurrence (YES, NO, ALL, or QUIT)? ” prompt is displayed on the
prompt line.

e You may answer YES, NO, ALL, or QUIT.
e If you answer YES, the text is replaced and the editor finds the next occurrence.

e If you answer NO, the text is not replaced and the editor finds the next occurrence.

3—46 Using the RPG II Editor

e If you answer ALL, the current text is replaced as well as any further occurrences of
the text, without additional prompting.

e If you answer QUIT, the text is not replaced and the SUBSTITUTE command
terminates.

e If you make any other response, the above sequence is repeated from the point where
the prompt message is displayed.

IfSYNTAXCHECK is on, the current line is syntax checked after each change is made. Ifa
syntax error is found, the substitution is terminated.

The command does not display the lines in which substitutions are made (except in
QUERY mode).

Upon completion of this command, the message “Substitutions: n” is displayed in the
message area, where ‘n’ indicates the number of substitutions performed.

Upon completion of this command when SELECT was specified, the select range is
removed.

The SUBSTITUTE command ignores the current editing direction. It always proceeds
from the beginning of the range to the end. The current editing direction is not changed, it
is just ignored for the duration of the command.

The cursor is returned to where it was before the command was issued.
Rules for specification of search-argument and replace-argument

e The search-argument must contain at least one non-blank character. If it does not, the
message “The search string must contain at least one non-blank character” is dis-
played in the message area.

e If lowercase characters are desired in the substitution, the argument must be
enclosed within double quotation marks (for example, “string”). Otherwise, lowercase
characters are converted to uppercase.

e If the argument contains a terminator, such as a blank space or a slash (/), the argu-
ment must be enclosed within double quotation marks (for example, “ ” and “/”).

e Ifthe argument contains a double quotation mark, two double quotation marks must
be entered.

e Single quotation marks are not treated like double quotation marks.

e Control characters cannot be entered in arguments.

Using the RPG II Editor 347

3.7 Customizing the Editor

This section discusses several RPG II editor commands that are available to you. These
commands enable you to customize your editing environment.

3.7.1 Using Editor Commands

For the purpose of this example, assume that you want the ruler to lie on the bottom of the
screen and the keypad help to show in the help window. Because you are entering a pro-
gram with a compile-time table or array, you would like to be prompted before any numeric
fields are right-justified. Because you have chosen a small scrolling region, you would like
the SECTION function to give you 10 lines. Finally, you would like to use CTRL/P to
review errors.

You would use the COMMAND function (default = PF1/KP7) to enter each of the follow-
ing commands:

SET RULER BOTTOM
SET SCROLL 2 2
SET SECTION 10
SET MELP KEYPAD
SET SYNTAXCHECK PROMPT
DEFINE KEY CTRL.P_KEY REVIEW_ERROR
See Section 3.6.8 for an example of a screen with the ruler on the bottom and the keypad

help displayed.

3.7.2 Startup Command Files

Startup command files allow you to specify a set of commands to be executed automatically
each time you begin an editing session. A startup command file can contain any of the VAX
RPG I editor commands. It can also contain comment and blank lines to improve readabil-
ity. Each command is executed as if the COMMAND function were used.

The editor uses the COMMAND qualifier to find a startup file. This qualifier is present by
default, with a default value of RPGINI.

The uses of the COMMAND qualifier and their effects are:
¢ If COMMAND = filespec is used, the specified file is executed.

e If just COMMAND or if no COMMAND qualifier is used, the editor looks for the file
RPGINI. If found, it is executed.

o If/NOCOMMAND is used, no command file is executed.

All startup files are opened with a default file type of RPG. The value for the COMMAND
qualifier can be a full or partial filespec, or a logical name that translates to a filespec.

348 Using the RPG II Editor

Control can be passed from one startup file to another by using the COMMAND option of
the SET command. When the editor is executing commands from a startup command file
and encounters a SET COMMAND command, it tries to find the associated file, translat-
ing logical names if necessary. If a file is found, the contents of that file are then executed in
the same way as the original startup file. The rest of the commands in the startup file are
not executed. If the file is not found, the rest of the commands in the startup file are
executed.

Following are several ways of using these options to customize your editing environment.

If you do not want to execute any startup file, your command line should look like this:

RPG/EDIT/NOCOMMAND file-srec

To execute your own startup commands, create a file of editor commands and define the
logical name RPGINI to reference it. For example, if you create the file MYSTARTUP.RPG
to contain:

SET DEFAULT PAGE,PROMPT

SET HELP KEYPAD

SET RULER NONE
DEFINE KEY CTRL_N_KEY REVIEW_ERROR

and add to your LOGIN.COM the following:
$ DEFINE RPGINI MYDISK:[MYDIRECTORYIMYSTARTUP.RPG

then, whenever you invoke the editor, your commands will be executed.

One way to establish a customized environment for many users at once is described here. A
system-wide startup command file can be established by defining the logical name
RPGINI in the system logical name table. Suppose that the following file exists with the
filename SYSRPGINI.RPG in the directory addressed by SYS$PUBLIC:

! Svstem-wide startur commands

SET HELP SPECIFICATIONS

SET RULER BOTTOM
SET COMMAND RPGINI.RPG

If RPGINI was defined by:
$ DEFINE/SYSTEM RPGINI SYS$PUBLIC:SYSRPGINI.RPG

then by default, all users on the system would have that set of commands executed auto-
matically. The last command shown would mean that after executing the system-wide
commands, the editor would also execute any commands found in the file RPGINIL.RPG in
the default directory.

Using the RPG II Editor 349

3.7.3 Modifying Screen Length

You can determine the number of lines on the terminal screen that are used by the RPG II
editor. This is a useful option for a variety of reasons. If you have a terminal in the VT100
family that does not have Advanced Video Option, you have only 14 lines when in 132
column mode. It is also useful if you have a terminal with more than 24 lines. Also, if you
have a terminal that runs at a slow baud rate, you can control the number of lines dis-
played on the editor screen. This would improve performance over a slow communication
line by decreasing the number of lines on the screen that must be kept updated during an
editing session.

Use the DCL command SET TERMINAL/PAGE =n to set the length of the page on your
terminal screen. You can also set the width of the page with SET TERMINAL/WIDTH =n.
If you set the width to 132 columns, you will get the full text of the editor error messages.

Note that there must be at least six lines on the screen, to allow for the two line ruler, tab
stop line, prompt line, message line, and one line in the source editing window.

3.8 Creating and Editing Programs

This section contains a sample RPG II program and some of the output it might produce.
Section 3.8.1 shows you how to create a program using the RPG II editor, and Section 3.8.2
shows you how to use the RPG II editor to edit a program. Both sections use the sample
program shown here.

3-50 Using the RPG II Editor

Note that this example assumes a 24-line screen and no startup file.

| 2 I 3 I 4 |] | 6 | 7
12345678901234567890123456789012345678301234567890123456789012345678901234567890

H¥*++

H* FUNCTIONAL DESCRIPTION:

H* This program produces a report of shipments for various
H* products broken down by division and department using an
Hx input file with the shipment data for the past 4 quarters.

H--

H

FSHIPS IP F 41 DISK

FSUMREP 0 F 98 LPRINTER
E aTY 420

LSUMREP 55FL 500L
ISHIPS AA 01

I 1 5DIV L2
I 6 7 DEPT Li
I 8 16 PROD

I 17 24 aty

C*

¢ of XFooTaTy PROQTY 30

c ot PROQTY ADD DEPQTY DEPATY 30

Cx

CL1 DEPQTY ADD DIVATY DIVATY 30

CL1 Z-ADDO DEPQTY

CL2 DIVATY ADD FINQTY FINGTY 40 4—‘—_—_‘—___———””///
Cx*

ZK-4354-85

Using the RPG II Editor 3-51

0 | 1 | 2 | 3 | 4 | 5 | b | 7 |
12345678901234567890123456789012345678901234567890123456789012345678901234567890

OSUMREP H 001 1P

0 48 'PRODUCT SHIPMENT REPORT’
0 H 02 iP

0 UDATE Y {2

0 48 ’'PRODUCT SHIPMENT REPORT’
0 H 1 iP

0 42 'SHIPMENTS’

0 H 2 1P

0 15 'DIVISION DEPT’

0 24 'PRODUCT’

0 48 '01 02 Q3 Q4 TOTAL’
0 D 1 01

0 L2 DIV 8

0 L1 DEPT 14

0 PROD 25

0 ATY Z 4

0 PROQTYZ 48

0 T 1 L1

0 T 0 L2

0 DIV 69

0 T 0 L2

0 DIV 69

0 T 02 L2

0 DIVQTYZB 48

0 63 '<{== Total for’

0 DIV 69

0 T 0 LR

0 FINQTYL 48

0 65 '<== GRAND TOTAL'

ZK-4355-85

3-52 Using the RPG II Editor

A sample of the output from this program might appear as follows:

0 H 1 i 2 i 3 : 4] 5 i 6 i 7 i
1234567890123456789012345678901234567890123456789012345678901234567890123456789
0

9/09/8%5 PRODUCT SHIPMENT REPORT
SHIPMENTS
DIVISION DEPT PRODUCT Q1 02 03 04 TOTAL
East 12 CPU-19 12 13 14 15 54
CPU-20 11 11 11 10 43
13 TERM-12 12 34 34 35 115
TERM-13 23 24 25 26 98
TERM-Z20 11 12 13 14 50
360 <== Total for East

North 23 DISK-45 18 17 15 14 G4
DISK-48 12 14 20 35 81
DISK-GO io 10 10 11 41
24 TAPE-12 8 7 G 3 24
TAPE-13 1 2 4 11 i8
TAPE-32 10 10 10 11 41
TAPE-33 4 4 4 5 17

286 <== Total for North
South 25 MEMORY-11 19 20 21 21 81
MEMORY-168 19 18 17 16 70
MEMORY-17 12 13 13 12 50

201 «<== Total for South
West 39 SOFT-12 i1 13 13 12 49
SOFT-14 [} 7 8 8 29
SOFT-23 13 14 20 19 G6
40 SOFT-24 15 14 14 13 56
SOFT-25 3 3 4 7 17

217 <== Total for Mest
1,084 <== GRAND TOTAL

Using the RPG II Editor 3-53

3.8.1 Creating a New Program

Invoke the RPG II editor by typing the following command:
% RPG/EDIT MYFILE

The RPG II editor displays the following message:

File not found

The following screen is displayed:

0 I 1 | 2 I 3 I 4 | 5 | b | 7 |
12345678901234567890123456789012345678901234567890123456789012345678901234567830

ZK-4356-85

Although RPGII does not require a Control specification, it is useful to place an asterisk in
column 7 of a Control specification to include a comment describing what your program
does. Press either the TAB key or the RIGHT key repeatedly to move the cursor to column
6. Enter H in column 6. Use the HELP_SPECS function (default = PF1/PF2) to display

the specification format for the Control specification. Because the current line is a Control

3-54 Using the RPG II Editor

specification, the RPGII editor automatically displays the tab stops for the Control specifi-

cation. Help information will be displayed in the help window of the RPG II editor screen,
as shown in the following example:

- N

Currency symbol

I Inverted print (DIJ)
!

|

[

|

| Alternate collating sequence (SE)

| I 1P forms position (1)

] | |

| | |

0 | 1 [2 I 3 I 4 I 5 I b [7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567830
*..

. TresssesusesstuEs e srn s

(EOB]

TS S N T N

N -

ZK-4357-85

Enter an asterisk (*) in column 7. Type the description of the program. Press the RETURN
key at the end of each line. After the RETURN key is pressed, the RPG II editor moves the
current line on the screen one line up, if necessary; automatically enters H in column 6;
and moves the cursor to column 7. (Column 7 is the default setting for the SET
STARTCOLUMN command.) To display the current default for the SET STARTCOLUMN

Using the RPG II Editor 3-55

command, issue the COMMAND function (default = PF1/KP7), type SHOW
STARTCOLUMN, and press the RETURN key, as shown in the following example:

Currency symbol

Inverted print (DIJ)

| Alternate collating sequence (SE)

| | iP forms position (1)

| I |

I | |
0 [1 [2 3 I 4 | 5]) I 7

12345678901234567890123456789012345678901234567890123456789012345678901234567890
Eovvasnsaaaa ¥ ¥ oo u ¥k i iiiinnnenand ¥,
H¥++
H* FUNCTIONAL DESCRIPTION:
Hx* This program produces a report of shipments for various
H# products broken down by division and department using an
H# input file with the shipment data for the past 4 quarters.
H¥--
HE

[EOB]

<PF1/KP7

ZK-4358-85

The specification type for the current line will be duplicated until you enter a new specifi-
cation type in column 6. H is automatically entered in column 6 and the cursor is moved to
column 7. The next specification needed is the File Description specification. To replace H,
move the cursor to column 6 by using the FIELD_BACKWARD function (default =
BS_KEY), and enter F (File description).

Enter the name of the file, beginning in column 7, and then use the FIELD_FORWARD
function, hereafter referred to by its default setting, TAB_KEY. Since help information is

3-56 Using the RPG II Editor N

displayed in the help window of the RPG II editor screen, once TAB_KEY or any termina-
tor is pressed, the RPG II editor displays the specification format and tab stops for the File
Description specification, as shown in the following example:

i N

llen len
I | Il
| 2 | 3 | 4 5 7 |

90123456789012345678901234567890123456789012345678901234567890)
=R kR NEE R———E o R

Mode (LR)
Ikey length
Type (IOUD) 11 Record address type (API) Addtn(AU)
IDes (PSRCTD)11 I0Organization (IT,1-9) |Expand
| IEOF (E) Il [10verflow indicator I 1Share
I11Seq (AD) 11 11l Eey location 11l Rewnd
File IH1Fmt (FV¥) |1 111 1 Extension (EL) i
name I11IBlk. Rec Il 111 | IDevice Symb Tape Core Il IFile
| 1 I 1111 lcode dev label index |Il lcond
1 IR 1

K — — — —

*%

H*++
H¥ FUNCTIONAL DESCRIPTION:
H* This program produces a report of shipments for various
Hx products broken down by division and department using an
H* input file with the shipment data for the past 4 quarters.
H¥--
H
FSHIPS |
[EOB]

N -

ZK-4359-85

Using the RPG II Editor 3-57

Remember, you can press TAB_KEY to move the cursor to the next tab stop. Enter the rest
of the File Description specifications as shown in the following example:

- BN

Mode (LR)
Ikey length
Type (IOUD) 1l Record address type (API) Addtn(AU)
IDes (PSRCTD) 1| IOrganization (IT,1-9) |Expand
IEOF (E) Il 110verflow indicator I 1Share
I11Seq (AD) 11 111 Key location 11l Rewnd
File FHIFmt CFV) [0 111 1 Extension (EL) RN
name IT11IBIk Rec Il 111 | IDevice Symb Tape Core 111 IFile
| itiillen len 11 111 | lcode dev label index 11l lcond
Fl AR e I el | I | 11l

I 1 | 2 | 3 | 4 |

12345678901234567890123456789012345678901234567890123456789012345678901234567830
** RRRRRR———N——— RN E——— * ¥yurr Hm——— T TN
H*¥ FUNCTIONAL DESCRIPTION:
H#* This program produces a report of shipments for various
H#* products broken down by division and department using an
H#* input file with the shipment data for the past 4 quarters.

H--

FSHIPS IP F 4 DISK
FiUMREP 0 F 98 LPRINTER
d

[EOB]

N -

ZK-4360-85

3-58 Using the RPG II Editor

Replace F in column 6 with E (Extension). Press TAB_KEY. The RPG Il editor displays the
specification format and tab stops for the Extension specification. Then, enter the rest of
the entries for the Extension specification, as shown in the following example:

p—

N

------ F = Format (PB)
| -=--- D = Decimal positions
Il ----§ = Sequence (AD)
11
I11Alternating table or array
From To Table EntEnt Lenlliname Len
file file or perin of FIII of F
name name array RecTbl EntiDI| EntlD
| | name | | | [ISI I 1S
111

E | | I | I
0] 1 | 2 | 3

|
4

| 11l+-- Comments ---+
|] |

b | 7 |

12345678901234567890123456789012345678301234567890123456789012345678901234567890

L * * D T BT T T [T

H* This program produces a report of shipments for various
H* products broken down by division and department using an
H* input file with the shipment data for the past 4 quarters.
H¥--

FSHIPS IP F 41 DISE

FSUMREP 0 F 98 LPRINTER

E aTy 4 20

|

[EOB]

S~

-

ZK-4361-85

Using the RPG II Editor 3-59

Enter L (Line Counter) in column 6. Then, enter the rest of the entries for the Line Counter
specification, as shown in the following example:

|
\

Form length (1-112)
File FL (if Form length used)

| I I 0L (if Overflow line used)

|

name | | Overflow line number (1-112)
|
|

LI 1
0 | 1 | 2 | 3 | 4 | 5] b | 7
12345678901234567890123456789012345678301234567890123456789012345678901234567890
*% K% N-—-%

H* products broken down by division and department using an

n* input file with the shipment data for the past 4 quarters.
¥ .

FSHIPS IP F 41 DISK

FSUMREP 0 F 98 LPRINTER

E ary 4 20

LSUMREP §5FL 500L

L
[EOB]

N B

ZK-4362-85

3—-60 Using the RPG II Editor \

Enter the Input specifications, as shown in the following example:

p—

Sequence (AA-ZZ, 01-99)

Number (1-N)

10ptional (0)

I IRecord identifying indicator

N

Decimal positions
| Control level
| | Match field

I
11l + Identifying codes + Format | I | Fld rec rel
File i I | (PB) IField | I |
name (RN C C Cl IField Iname | | | Field
| I z z Z| 1locationll I 1 | indicatrs
Il 111 Pos NDcPos NDcPos NDc IFr To I I 11 +-0
0 [1 [2 [3] 4] 5 | b | 7 I

12345678901234567890123456789012345678901234567890123456789012345678901234567890

*¥%

* XXX ¥——- ¥——= b St X X % X %X .,

E ary 4 20
LSUMREP 55FL 500L
ISHIPS AA 01
I i 5DIVv L2
I 6 7 DEPT L1
I 8 16 PROD
I 17 24 ary
I
[EOB]

S~

-

ZK-4363-85

Using the RPG II Editor 3-61

Use the DISPLAY function (default = PF1/KP8) to display the program on the entire
screen (except lines 1 through 3, 23, and 24), as shown in the following example:

0 | i I 2 | 3 I 4 I] | b I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890
*% * ARR K——— ¥ H=—— I e 1] * X X X X X ..,

H*++

H* FUNCTIONAL DESCRIPTION:

H* This program produces a report of shipments for various
H# products broken down by division and department using an
H* input file with the shipment data for the past 4 quarters.

H—-

FSHIPS IP F 4 DISK

FSUMREP 0 F 98 LPRINTER
E aTY 420

LSUMREP 55FL 500L
ISHIPS AA 01

I 1 5DIV L2
I 6 7 DEPT L4
I 8 16 PROD

I 17 24 ary

I

[EOB]

N I

ZK-4364-85

3-62 Using the RPG II Editor

Enter the Calculation specifications without displaying the specification format in the

help window, as shown in the following example:

0 | 1 I 2 I 3 I 4

N

] I 6 | 7 |

12345678901234567890123456789012345678901234567890123456789012345678301234567890

*% % * * * * E——REX X ¥ ¥
H¥--
FSHIPS IP F 44 DISK
FSUMREP 0 F 98 LPRINTER
E ary 4 20
LSUMREP 55FL 500L
ISHIPS AA 01
I 1 §5DIV L2
I 6 7 DEPT L¢
I 8 16 PROD
I 17 24 aty
C*
c o1 XFOOTQTY PROBTY 30
c of PROQTY ADD DEPQTY DEPQTY 30
Cx
CL1 DEPQTY ADD DIVQTY DIVATY 30
CLi Z-ADDO DEPQTY
CL2 DIVATY ADD FINRTY FINGTY 40
Cx*
ca
[EOB]
\\\ /

ZK-4365-85

Using the RPG II Editor 3-63

Enter the Output specifications. Note that the RPG II editor screen can display only 19
source lines at a time, when the terminal has 24 lines and when the ruler is displayed.
Once you enter more than 19 lines, the RPG II editor moves the editing window up.

I N

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

12345678901234567890123456789012345678901234567890123456789012345678901234567890
*% RRREX ¥ ¥ * HH——— N Cees

OSUMREP H 004 P

0 48 'PRODUCT SHIPMENT .REPORT’
0 H 02 ip

0 UDATE Y 12

0 48 'PRODUCT SHIPMENT REPORT’
0 H 1 P

0 42 "SHIPMENTS’

0 H 2 ipP

0 15 'DIVISION DEPT’

0 24 'PRODUCT’

0 48 'Q4 B2 @3 @4 TOTAL'

0 D 1 01

0 DIV 8

0 L DEPT 14

0 PROD 25

0 Yy 7 4

0 PROGTYZ 48

0 T 1 L1

08

N -

ZK-4366-85

3-64 Using the RPG II Editor

Enter the rest of the Output specifications. Use the EXIT function (default =
CTRL_Z_KEY) to save the contents of the editing buffer and leave the RPG II editor.
When EXIT is used, the RPG II editor displays the following message:

45 records written to file MYDISK:[MYDIRECTORYIMYFILE.RPGi1

This is shown in the following example:

I2I3I4I5I

12345678901234567890123456789012345678901234567890123456789012345678301234567890

** IR * ERH——— KR e
0 H 02 iP

0 UDATE ¥ 12

0 48 'PRODUCT SHIPMENT REPORT’
0 H 1 1P

0 42 "SHIPMENTS’

0 H 2 ipP

0 15 'DIVISION DEPT’

0 24 'PRODUCT'

0 48 '01 @2 Q3 Q4 TOTAL'

0 D 1 01

0 DIV 8

0 Li DEPT 14

0 PROD 25

0 ety Z 44

0 PROGTYZ 48

0 T 1 L1

0 T 0 LR

0 FINQTYL 48

0 65 '<== GRAND TOTAL’

N -

ZK-4367-85

Using the RPG II Editor 3-65

3.8.2 Editing an Existing Program

When you invoke the RPG II editor to edit the program created in Section 3.8.1, the RPG 11
editor displays the following message:

45 records read from file MYDISK:[MYDIRECTORYIMYFILE.RPGi1

And the following screen is displayed:

g N

0 | i [2 | 3 | 4 | 5 | 3 | [
12345678901234567890123456789012345678901234567890123456789012345678901234567890
T

H*++

H* FUNCTIONAL DESCRIPTION:

H¥ This program produces a report of shipments for various
Hx products broken down by division and department using an
H# input file with the shipment data for the past 4 quarters.

H--
H

FSHIPS IP F 4 DISK
FSUMREP 0 F 98 LPRINTER
E aTY 420

LSUMREP ~ 55FL 500L
ISHIPS AA 01

I 1 §5DIV L2
I 6 7 DEPT Ui
I 8 16 PROD

I 17 24 Q1Y

C*

c ot XFOOTQTY PROQTY 30

c ot PROQTY ADD DEPQTY DEPQTY 30

Press the PF2 key to pet help information

N -

ZK-4368-85

366 Using the RPG II Editor

In this session, the control-level indicator L2 needs to condition the DIV field in the detail
record Output specification. Use the FIND function (default = PF1/PF3) to locate DIV.
The RPG II editor displays the command prompt “Search for: ”. Enter the search string
DIV and press the ENTER key, as shown in the following example:

0 I 1 I 2 [3 I 4. | 5 I 3 | 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890
R TR 2 I ceeas

H*++

H* FUNCTIONAL DESCRIPTION:

Hx* This program produces a report of shipments for various
H* products broken down by division and department using an
H# input file with the shipment data for the past 4 quarters.

H--
H

FSHIPS IP F # DIS

FSUMREP 0 F 98 LPRINTER
E aTY 420

LSUMREP 55FL 500L
ISHIPS AA 01

I 1 5DIV L2
I 6 7 DEPT Li
I 8 16 PROD

I 17 24 aty

C*

c o XFOOTATY PROQTY 30

C 01 PROQTY ADD DEPGTY DEPQTY 30

Search for: DIV

N I

ZK-4369-85

Using the RPG II Editor 3-67

The RPG II editor responds by moving the cursor to the first character of the first occur-
rence of the search string DIV (see the comment line), as shown in the following example:

el N

0 | 1 | 2 i 3 | 4 | 5 ! b I 7
12345678901234567890123456789012345678901234567890123456789012345678901234567830

LR I,y

H¥++

H* FUNCTIONAL DESCRIPTION:

H* This program produces a report of shipments for various
Hx products broken down by [fivision and department using an
H¥* input file with the shipment data for the past 4 quarters.

H--

H

FSHIPS IP F 4 DISK
FSUMREF 0 F 98 LPRINTER
E ary 4 20

LSUMREP ~ 55FL 500L
ISHIPS AA 01

I 1 §5DIV L2
I 6 7 DEPT L1
I 8 16 PROD

I 17 24 ary

Cx

c ot XFOOTATY PROATY 30

c o1 PROQTY ADD DEPQTY DEPQTY 30

N -

ZK-4370-85

3-68 Using the RPG II Editor

Because this is not the correct string, use the FIND_NEXT function (default = PF3). The
RPG II editor moves the cursor to the first character of the next occurrence of the string
DIV, as shown in the following example:

o | 14 1 2 1 3 1 4 1 85 1 6 1 7 1
1234567890123456789012345678901 2345678901 234567890123456789012345678901234567890
*% *ORRE H——— H—m— E——— R E——— RN "EEEEEI

H¥++

H*¥ FUNCTIONAL DESCRIPTION:

H#* This program produces a report of shipments for various
H* products broken down by division and department using an
H#* input file with the shipment data for the past 4 quarters.

H--
H

FSHIPS IP F 44 DISK
FSUMREP 0 F 98 LPRINTER
E aTy 420

LSUMREP 55FL 500L
ISHIPS AA 04

I 1 5@V L2
I 6 7 DEPT Li
I 8 16 PROD

I 17 24 QTY

C*

¢ ot XFOOTATY PROGTY 30

¢ ot PROGTY ADD DEP@TY DEPQTY 30

N -

ZK-4371-85

Using the RPG II Editor 3-69

Again, this occurrence of the string DIV is not correct, so issue the FIND_NEXT function
five more times to move the cursor to the correct occurrence. You could have specified DIV
and a blank as the search string to avoid duplicating key strokes. L2 must be entered in
columns 24 and 25. To do this, move the cursor to column 24 by pressing the BS_KEY to
column 23, then use the RIGHT function (default = RIGHT) once. Enter the string L2 in
columns 24 and 25, as shown in the following example:

I RN

0 I 1 | 2 I 3 I 4 I 5 | b I 7
12345678901234567890123456783012345678901234567890123456789012345678901234567890
*% KEREE K ¥ * FT T i
g 01 PROQTY ADD DEPQTY DEPATY 30

*

CL1 DEPATY ADD DIVATY DIVATY 30
CL1 Z-ADDO DEPQTY

CL2 DIVQTY ADD FINQTY FINGTY 40
Cx

OSUMREP H 004 1P

0 48 "PRODUCT SHIPMENT REPORT’
0 Hoz 1P

0 UDATE Y 12

0 48 "PRODUCT SHIPMENT REPORT’
0 H1 oo ogp

0 42 SHIPMENTS'

0 Ho2 P

0 15 'DIVISION DEPT’

0 24 "PRODUCT’

0 48 01 02 03 04 TOTAL

0 D1 ot

0 Lag DIV 8

!

-

ZK-4372-85

3-70 Using the RPG II Editor

Number the program lines for reference by issuing the COMMAND function (default =
PF1/KP7) and typing the RESEQUENCE command, as shown in the following example:

| 3 |

N

4 I 5 | b |

7

12345678901234567890123456789012345678901234567890123456789012345678901234567890
* b2 2 Bttt 2]

ADD DEPQTY DEPQTY 30

0 | 1 | 2
*% MTTITEE

190C 04 PROATY
200C*
210CL1 DEPATY
220CL1
230CL2 DIVATY
240C*
2500SUMREP H 001 (P
2600
2700 H 02 iP
2800
2900
3000 H 1 iP
3100
3200 H 2 iP
3300
3400
3500
3600 D 1 01
3700 L2#

Command: RESEQUENCE

S~

ADD DIVATY DIVRTY 30
Z-ADDO DEPATY
ADD FINBTY FINQTY 40

48

UDATE Y 12
48

42
15
24
48

DIV 8

"PRODUCT SHIPMENT REPORT’

"PRODUCT SHIPMENT REPORT’
"SHIPMENTS’
'DIVISION DEPT’

'PRODUCT’
‘M4 G2 @3 64 TOTAL'

Using the RPG II Editor

-

ZK-4373-85

3-71

Use the SECTION function (default = KP8) to move the cursor the number of lines set by
the SET SECTION command, as shown in the following example:

0 | 1 | 2 I 3 | 4 | 5 | 6 I 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890
*¥ ERRRE X X * RN =N R e

2800 UDATE Y 12

2900 48 'PRODUCT SHIPMENT REPORT’

3000 H 1 1P

3100 42 "SHIPMENTS’

3200 H 2 1P

3300 15 'DIVISION DEPT’

3400 24 'PRODUCT’

3500 48 'Q1 G2 Q3 Q4 TOTAL'

3600 D 1 01

3700 L2 DIV 8

3800 L1 DEPT 14

3900 PROD 25

4000 ety Z 4

4100 PROGTYZ 48

4200 T 1 L1

4300 T 0 LR

4400 FINGTYL 48

4500 | | 65 ’<== GRAND TOTAL’
[EOB]

Attempt to move past end of buffer

N -

ZK-4374-85

3-72 Using the RPG II Editor

Enter two Output specifications between lines 420 and 430 by using the following

functions:

" 1. UP (default = UP) to line 430
2. OPEN_LINE (default = PF1/KPO) to create a new line

Use the OPEN_LINE function to create a line preceding the current line. The RPG II edi-
tor automatically places the specification type of the current line in column 6 and moves
the cursor to column 7. Enter the new specifications, as shown in the following example:

—

N

0 1 2 3 4 | 5 6 | 7
123456789012345678901 2345678901 2345678901 2345678901 2345678901 2345678901 234567890
*¥% HERNE X X * R R———%NR P
2900 48 'PRODUCT SHIPMENT REPORT’
3000 H o1 {p
3100 42 'SHIPMENTS’
3200 H 2 1P
3300 15 'DIVISION DEPT’
3400 24 "PRODUCT’
3500 48 'Q1 Q2 Q3 Q4 TOTAL’
3600 D 1 01
3700 L2 DIV 8
3800 L1 DEPT 14
3900 PROD 25
4000 ATY Z 4
4100 PROGTYZ 48
4200 T 1 L1
0 T 0 L2
0 DIV 69]
4300 T O LR
4400 FINGTYL 48
4500 65 ’<== GRAND TOTAL’

S~

-

ZK-4375-85

Using the RPG II Editor 3-73

Enter another two specifications (identical to the two specifications just entered), by using
the following functions:

1. SELECT (default = PERIOD) to mark the beginning of the selected region N
2. UP (default = UP) once

3. CUT (default = KP6) to place the selected region into the paste buffer

4. PASTE (default = PF1/KP6) twice

The following example shows the effects of the procedure described above:

0 I 1 I 2 I 3 I 4 [] [6 I 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890
* RRREE X ¥ * [T T Ciea
2900 48 "PRODUCT SHIPMENT REPORT’
3000 H 1 ipP
3100 42 'SHIPMENTS’
3200 H 2 1P
3300 15 'DIVISION DEPT’
3400 24 'PRODUCT’
3500 48 '01 Q2 Q3 04 TOTAL'
3600 D 1 01
3700 L2 DIV 8
3800 L1 DEPT 14 ~
3900 PROD 25
4000 arty 7z 4
4100 PROGTYZ 48
4200 T 1 L1
0 T 0 L2
0 DIV 69
0 T 0 L2
0 ' DIV 69
4300 T 0 LR |

N~ -

ZK-4376-85

3-74 Using the RPG II Editor N

Enter another four specifications. Then, remove the line numbers, as shown in the follow-
ing example:

0 | i | 2 | 3 | 4 | 5 | 6 | 7 |
12345678901234567890123456789012345678901234567890123456789012345678901234567890
*% [T K * [T T cee

0 H 2 iP

0 15 ’DIVISION DEPT'
1] 24 ’'PRODUCT’

0 48 'Q1 @2 @3 04 TOTAL'
0 D 1§ 01

0 L2 DIV 8

0 Li DEPT 14

0 PROD 25

0 ATY Z 4

0 PROQGTYZ 48

0 T 1 L1

0 T 0 L2

0 DIV 69

0 T 0 L2

0 DIV 69

0 T 02 L2

0 DIVATYZB 48

0 63 ‘<== Total for’
0 DIV 69]

Command: RESEQUENCE/REMOVE

N -

ZK-4377-85

Using the RPG II Editor 3-75

Use the COMMAND function and type the EXIT command to save the modified program,
as shown in the following example:

il N

12345678901234567890123456789012345678901234567890123456?8901234567890123456?890
RRRRX X ¥ * [T R T

H 2 1P

15 'DIVISION DEPT’
24 'PRODUCT’
48 '01 02 83 Q4 TOTAL’'

D 1 04
L2 DIV 8
L1 DEPT 14
PROD 25
ary 7 44
PROQTYZ 48
T 1 L1
T 0 L2
DIV 69
T 0 L2
DIV 69
T 02 L2

DIVATYZB 48
63 '<== Total for’
DIV 69)

N I

ZK-4378-85

%%
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

3-76 Using the RPG II Editor

Chapter 4
Using Indicators

Indicators are two-character alphabetic, numeric, or alphanumeric entries that condition
the steps of a program cycle.

Each indicator has a specific function; however, some indicators can be used for more than
one purpose. Generally, you use indicators to control the following program decisions:

e Under what conditions RPG II uses a file during program execution

e When and under what conditions RPG II performs calculations

e When RPG II can access a field for input

e Under what conditions RPG II writes a field or record to an output file

To use an indicator to control program operations, you first define the conditions under
which it is set on or off. Then, you check the status (on or off) of the indicator to determine
what steps your program should perform.

This chapter discusses types of indicators and explains how to use them.

4.1 User Defined Indicators

You can define certain groups of indicators in your program; others are defined internally.
Sections 4.1 through 4.1.5 discuss those indicators you can define. Section 4.2 describes
internally defined indicators.

4.1.1 Record-ldentifying Indicators

Record-identifying indicators, as their name implies, identify record types. Define each
record type by specifying an identification code in columns 21 through 41 of the Input spec-
ification. Then, associate an indicator in columns 19 and 20 with that record type.

In the following example, RPG II associates the record-identifying indicator 01 with a
record type.

41

Sequence (AA-ZZ, 01-99)
| Number (1-N)

| I0ptional (D) Decimal positions
I 1IRecord identifying indicator | Control level
1111 | | Match/chain field
I 11l + Identifying codes + Format | I | Field rec rel
File P I IField | 1 |
name [RN c C Cl IField Iname | | | Field
| [NN z Z ZI llocationl| I I | indicators
Il | 11l Pos NDcPos NDcPos NDc IFr To 1| 11 +-0
0 I i | 2 | 3 | 4 i 5] 6 I 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890
%3 * OREE H—-— Fm—— Em—— N k¥ S
IINPUT AA 04 20 CH
7K-4387-85

In this example, if the character in the twentieth position is the number 1, the indicator 01
is set on. Then, you can use the indicator to condition operations for that particular record
type.

You can use any of the following indicators as record-identifying indicators:
e 01 through 99
e L1 through L9
e LR
e H1 through H9

By assigning a different record-identifying indicator for each record type in a file, you can
condition calculation and output operations for specific record types.

The record-identifying indicator for a particular record type is set on when RPG II
processes a record of that type. For a primary or secondary file, the record-identifying indi-
cator is set on before total-time calculations. For a chained or demand file, the record-iden-
tifying indicator is set on immediately after the record is read. In either case, it is set off
when the program reaches the end of the current program cycle (after detail-time output).

4-2 Using Indicators

You can use record-identifying indicators to condition both detail-time and total-time
operations in that cycle and indicate which operation(s) to perform for each record type.
The following example shows how record-identifying indicators can be used to condition
program operations:

11

[1

ISALES AA

121

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
3t
32
33
34
35
36
37
38
39
40
M
42
43
44

01
01
01

REPORT H
OR

OR

T1

O00000000000000000000000OOOO H HHH

In this example:

e Line 11 causes RPG II to begin reading records from the file SALES. The identifica-
tion code (columns 21 through 41) groups these records according to a code that repre-
sents the month. If the code for the month is J, the record-identifying indicator 01 is
set on.

] 2

04 1¢J

SALES
TSALES
TCOST
TPROFI
201 1P
OF

H 22 ip

oF

01

LR

SuB
ADD
ADD
ADD

3

C0ST
SALES
CosT
NET

UDATE Y
PAGE

ITEM 3
DESCR

SALES 1
CosT 1
PROFITH

TSALESH
TCOST 1
TPROFI{

4 | 5 I 6] 7 |
12345678901234567890123456789012345678901234567890123456789012345678901234567830

2 50ITEM
10 16 DESCR
20 2425ALES
30 342C0ST
40 432PROFIT

NET 52
TSALES 62
TCOST 62
TPROFI 62

72
68

23
4
56
72

25
4
57
72

30
41
57
72

' JANUARY SALES REPORT’
"PAGE’

"ITEM'
'DESCRIPTION’
'SALES’
'COST’
"PROFIT’

"TOTALS’
r $ ’
1 s r
r $ 1
ZK-4388-85

Using Indicators 4-3

e Lines 17 through 19 use the same record-identifying indicator 01 to condition detail-
time calculations. RPG II performs the calculation each time a record is read of the
type described on line 11.

e Line 34 uses the same record-identifying indicator to condition detail-time output.
RPG II performs the output operation each time a record is read of the type described
on line 11.

The output file produced by this program might appear as follows:

0 H 1 H 2 i 3 i 4 i 5 i B H 7 i
234567880123456789012345678901234567890123456789012345678901234567890123456788¢C
2/4/83 JANUARY SALES REPORT PAGE 1

ITEM DESCRIPTION SALES CosT PROFIT

10005 AMMONIA 60.30 50,00 10,30

10882 MATCHES 295.00 205,00 90.00

22650 NUTMEG 208.00 170,00 39.00

TOTALS $564.30 $425.,00 $139.,30

If you use the CHAIN or READ operation to retrieve records, the program does not set the
record-identifying indicators off until the beginning of the next program cycle. Be careful
when performing more than one CHAIN or READ operation for a file with multiple record
types, because more than one indicator can be set on during a single cycle.

4.1.2 Field Indicators

Field indicators test a field in an input record for a positive, negative, zero, or blank value.
The following lists ways to test for these values:

e For a positive value, specify a field indicator in columns 65 and 66 of the Input
specification.

e For a negative value, specify a field indicator in columns 67 and 68 of the Input
specification.

e For a zero or blank value, specify a field indicator in columns 69 and 70 of the Input
specification.

You can use any of the following indicators as field indicators:
e 01 through 99
e H1 through H9

44 Using Indicators \

Field indicators are set when the data in the field is extracted from the record. Once a field
indicator is set, it remains set until the next time the field is extracted, unless it is set off by
another use of the same indicator in the program. A field indicator can be used to condition
any detail-time or total-time operations. However, at total time, the field indicators
assigned to fields from a primary or secondary file retain the setting from the previous
detail-time cycle.

The following example shows how field indicators can be used to condition a calculation:

0 | 1 | 2 | 3 | 4 |] | 6 | 7 |
12345678901234567890123456789012345678901234567890123456789012345678301234567890)

24 IPARTLIS AA 01 1 CF

25 1 2 100INVCDE 112233
4 C .11 ITEM MULT FACT1 ORDER 62H
42 C 22 ITEM MULT FACT2 ORDER 62H
43C 33 ITEM MULT FACT3 ORDER 62H

ZK-4389-85

In the above example:

e Line 25 tests the value of the field INVCDE to see if it contains a positive value, a
negative value, or a zero value. The following lists which indicator is set on for each
value:

— Ifthe field contains a positive value, indicator 11 is set on and indicators 22 and 33
are set off.

— Ifthe field contains a negative value, indicator 22 is set on and indicators 11 and 33
are set off.

— If the field contains a zero value, indicator 33 is set on and indicators 11 and 22 are
set off.

e Lines 41 through 43 calculate the number of parts to order according to the status of
the field indicators.

Using Indicators 45

4.1.3 Resulting Indicators

Resulting indicators condition operations that depend on the result of a calculation. These
indicators specify the test (>, <, or =) and indicate the result of the calculation. If the
result matches the test, the indicators are set on. The following lists when these indicators
are set off:

e The next time the calculation is performed and the result of the calculation does not
satisfy the test the indicator specifies

e By another use of the same indicator in the program

You specify resulting indicators in columns 54 through 59 of the Calculation specification.
You can use any of the following indicators as resulting indicators:

e 01 through 99
e L1 through L9
e LR
e H1 through H9
e OA through OG, and OV
e U1-U8
e KA through KZ
e KO through K9
Resulting indicators in columns 54 and 55 test for the following conditions:
e The Result field contains a positive value after an arithmetic operation.
e The value in Factor 1 is higher than the value in Factor 2 in a COMP operation.

e The value of the element found in Factor 2 is higher than the value in Factor 1 in a
LOKUP operation.

o The record is not found in a CHAIN operation.

e Each bit defined in Factor 2 is off in the Result field for a TESTB operation.
Resulting indicators in columns 56 and 57 test for the following conditions:

e The Result field contains a negatiVe value after an arithmetic operation.

e The value in Factor 1 is lower than the value in Factor 2 in a COMP operation.

e The value of the element found in Factor 2 is lower than the value in Factor 1 in a
LOKUP operation.

4-6 Using Indicators

o The defined bits in Factor 2 are of mixed status (some on, some off) in the Result field
for a TESTB operation.

e A subprogram returns with an error status from a CALL operation.
Resulting indicators in columns 58 and 59 test for the following conditions:

e The Result field contains a zero after an arithmetic operation.

e The value in Factor 1 is equal to the value in Factor 2 in a COMP operation.

e The value of the element found in Factor 2 is equal to the value in Factor 1 in a
LOKUP operation.

e An end-of-file condition occurs for the demand file in a READ operation.
e Each bit defined in Factor 2 is on in the Result field for a TESTB operation.

Resulting indicators are also used with the SETON and SETOF operation codes to specify
that the indicator(s) be set on or off.

The following example shows how resulting indicators can be used to control program
operations:

Field length
Control level | Decimal positions
I 1Half adjust (H)

|
| Indicators Operation [N
I | I IlResulting
11 Factor | Factor Result! Ilindicators
I 1 | 2 field I 11+ -0
C1 NxxNxxNxx| | | | | 11> < = +- Comments --+
0 | 1 | 2] 3 [4 | 5 [6 [7
12345678901234567890123456789012345678901234567890123456789012345678901234567890
T * * * * E——kEE % ¥ ¥
10 C SEARCH LOKUPTAB1 10 14
20 C FLD1 COMP 100 222324
30 C KEY CHAINFILE1 32
40 C TESTB’123’ TEST 404142
5 C READ FILE{ 50
60 C SETOF 1014
70 € FLD1 SUB FLD2 RES 606162

ZK-4390-85
In the above example:
e Line 10 causes RPG II to search for the field SEARCH in the table TAB1. If RPGII can
find an entry that is equal to the search word, indicator 11 is set on. If RPG II can find

an entry that is nearest to and higher in sequence than the search word, indicator 10
is set on.

Using Indicators 4-7

e Line 20 causes RPG II to compare the contents of the field FLD1 with the numeric
literal 100. If the contents of FLD1 are greater than 100, indicator 22 is set on and
indicators 23 and 24 are set off. If the contents of FLD1 are less than 100, indicator 23
ic cot an and indicatore 22 and 24 are cet off Ifthe contente of F1.D1 2qual 100 indica.

tor 24 is set on and indicators 22 and 23 are set off.

e Because the input file is an indexed file, line 30 tells RPG II to retrieve a record using
the key KEY from the indexed file FILE1. If the record is not found, indicator 32 is set
on. Otherwise, indicator 32 is set off.

o Line 40 causes RPGII to test the bits 1, 2, and 3 in the field TEST. If the bits are all off,
indicator 40 is set on and indicators 41 and 42 are set off. If some bits are on and some
are off, indicator 41 is set on and indicators 40 and 42 are set off. If the bits are all on,
indicator 42 is set on and indicators 40 and 41 are set off.

o Line 50 causes RPG II to read the next record from FILE1. If an end-of-file condition
occurs, indicator 50 is set on. Otherwise, indicator 50 is set off.

e Line 60 sets indicators 10 and 11 off.

e Line 70 causes RPG I to evaluate the contents of the Result field after the SUB opera-
tion. If the Result field contains a positive value, indicator 60 is set on and indicators
61 and 62 are set off. If the Result field contains a negative value, indicator 61 is set on
and indicators 60 and 62 are set off. If the Result field contains a zero value, indicator
62 is set on and indicators 60 and 61 are set off.

4.1.4 Control-Level Indicators

You use control-level indicators to indicate that a particular field in the input record is a
control field. Each time RPG II reads a record that contains the control field, it compares
the data in the control field with the current value of the control field. If the contents
change, a control break occurs, the control-level indicator is set on, and the value in the
control field becomes the new current value.

You associate a control-level indicator with an input field by specifying the indicator in
columns 59 and 60 of the Input specification.

You can use L9, L8, L7, L6, L5, L4, L3, L2, and L1 as control-level indicators. The lowest
control level is L1 and the highest is L9. When you use more than one control-level indica-
tor and a higher level control-level indicator is set on because of a control break, RPG II
automatically sets on all lower level control-level indicators. When you use a control-level
indicator as another type of indicator (for example, as a record-identifying indicator), and
that indicator is set on, lower level control-level indicators are not automatically set on.

4-8 Using Indicators

A control break is likely to occur after the first record with a control field is read. RPG II
compares the data in the control field with hexadecimal zeros. Therefore, RPG II bypasses
total-time calculation and output operations for the first record containing control fields.

All control-level indicators are set on before total-time calculations when the LR (last-
record) indicator is on. All control-level indicators are set off after detail-time output.

The following example shows how to use three different control-level indicators to condi-
tion calculation and output operations.

Using Indicators 49

0 | 1 | 2 | 3 | 4 | 5 [6 | 7 |
12345678901234567890123456789012345678901234567890123456789012345678901234567890

H

FSLSCAR IP F DISEK

FSLSREP 0 F 132 OF PRINTERTMP

ToLSCAD Ax G4

I i 20BRANCHL3
I 3 40SLSPERL2
I 5 90CUSTNOL1
I 10 142SLSAMT

c 0f SLSAMT ADD CUSTOT CUSTOT 62

CL{ cusToT ADD SPTOT SPTOT 72

CL2 SPTOT ADD BRTOT BRTOT 72

CL3 BRTOT ADD FINTOT FINTOT 82

OSLSREP H 201 1P

0 OR OF

0 UDATE Y 9

0 25 ’SALES REPORT’

0 38 'PAGE’

0 PAGE 43

0 H 1 iP

0 OR OF

0 6 "BRANCH’

0 22 "SALESPERSON’

0 35 'CUSTOMER’

0 46 'SALES’

0 H 2 ipP

0 OR OF

0 4 'NO’

0 19 ’NO’

0 32 'NO’

0 46 'AMOUNT’

0 D 1 01

0 BRANCHZ 4

0 SLSPERZ 16

0 CUSTNDZ 30

0 SLSAMT1 45

0 T 2 L1

0 CUSTOTIB 45

0 46 "%’

0 T 12 L2

0 42 'TOTAL SALESPERSON’
0 SLSPERZ 45

0 SPTOT 1B 54

0 56 "xx’

0 T 3 L3

0 46 'TOTAL BRANCH NO’
0 BRANCHZ 49

0 BRTOT 1B 61

0 65 Tx¥x’

0 T 1 LR

0 46 'FINAL TOTAL’

0 FINTOTL 59 ’'¢’

0 64 TExxn’

4-10

Using Indicators

ZK-4391-85

In this example:

e Lines 5 through 7 assign three control-level indicators, one each to three different
control fields. The specification associates the highest control-level indicator (L3) to
the most significant input field BRANCH. The specification associates the next high-
est control-level indicator to SLSPER and the lowest control-level indicator to
CUSTNO.

If the value of BRANCH changes from the previous record, indicator L3 is set on.
Also, when indicator L3 is set on, indicators L2 and L1 are automatically set on. These
three indicators can be used to condition calculation and output operations.

e Inline 10, when indicator L1 is on, RPG IT adds the amount of the customer sale to the
total sales for a particular salesperson. In line 11, when indicator L2 is on, RPG 11
adds the total sales for the salesperson to the total sales for each branch. In line 12
when indicator L3 is on, RPG II adds the total sales for each branch to compute the
final total.

e Line 36 causes RPG II to output the total sales for each customer number when L1 is
on.

e Line 39 causes RPG II to output the total sales for each salesperson when L2 is on.
e Line 44 causes RPG II to output total sales for each branch when L3 is on.

You can assign the same control-level indicator to more than one control field. These fields
are called split-control fields. The following example shows how to use split-control fields:

Sequence (AA-ZZ, 01-99)
| Number (1-N)

I 10ptional (D) Decimal positions
I IlIRecord identifying indicator | Control level
11 I | Match field
I 111 + Identifying codes + Format | I | Fld rec rel
File ol I | (PB) IField | |
name P c C Cl IField Iname | | | Field
| (N z z ZI llocationl| I 1 | indicatrs
Il I 11l Pos NDcPos NDcPos NDc IFr To |l 11 +-0
0 I 1 | 2 I 3 I 4 |] | b | 7 I
12345678901234567890123456789012345678301234567890123456789012345678901234567890
¥ *ORHE K——— E——— E——— RE———R——— kN EEEETT
51 1 20BRANCHL1
61 3 40SLSPERL1
71 5 90CUSTNOL1

ZK-4392-85

In this example, the fields BRANCH, SLSPER, and CUSTNO combine to form the control
field. When RPG II compares the data in these fields with the same fields in a previous
record, indicator L1 is set on when the data changes.

Using Indicators 4-11

4.1.5 Overflow Indicators

When the printer reaches the overflow line that signals the end of the page, RPG II sets on
the overflow indicator assigned to that printer output file.

You can use OA, OB, OC, OD, OE, OF, OG, and OV as overflow indicators. Define overflow
indicators in columns 33 and 34 of the File Description specification.

In the following example, after reaching the overflow line, RPG II sets on the overflow indi-
cator OF. Then, the printer moves to the top of the next page and outputs the heading lines.

Type (HDTE) Edit codes ;, 0 NoCR -
IFetch overflow (F) rx mmmmeeeee—-
| ISpace | Y date edit Y Y 1 A J
Il Skip - | Z zero suppress Y N 2 B kK
il | N Y 3 CL
Il 1 Indicators IBlank-after (B) N N 4D H

File IR | Field IlEnd position

name 1 | name |Il Format (PB)

| (NN | | I |
|IB 11 I+ Constant or edit word +

i

0 | 2 | 3 4 | 5 | b | 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890
*¥ REREK X ¥ * RHH——— N K Ceee

14 OSLSREP H 201 OF

150 UDATE Y 9

16 0 25 'SALES REPORT’
17 0 38 'PAGE’

18 0 PAGE 43

ZK-4393-85

See Part I, Chapter 6 for a full description of the overflow routine and overflow indicators.

4.1.6 K Indicators

K indicators can be used to condition calculations, output records and output fields. They
can also be used as resulting indicators.

4-12 Using Indicators

In the following program, the K indicator turned on is displayed when its associated cursor
control key is typed. CTRL/Z is typed to end the program.

0 | 1 | 2 | 3 [4 | 5 | 6 | 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890)

Fx+

F* File: READ_CURSOR.RPG

Fx

WEL

F% This RPG II program demonstrates the use of the RTL routine
F* SMG$READ_KEYSTROEE to read a keystroke from the terminal.

Fx

F* The program takes input from the terminal until CTRL/Z is typed.
F* If any of the four cursor positioning keys is typed, a string
F* is displayed corresponding to the key.

F*

F* Build this program using the following commands:

Fx*

F% ¢ RPG READ_CURSOR

F% $ CREATE SMGDEF.MAR

F* LTITLE SMGDEF - Define SMG$ constants
F* .Ident /1-000/
Fx $SMGDEF GLOBAL

Fx END
F% ¢ MACRO SMGDEF
F% ¢ LINK READ_CURSOR, SMGDEF

F¥-

FTTY D Vv 5 TTY

C CALL REAEEY

C* External definitions for SMG routines.

C CREKB EXTRN’SMG$CREATE_VIRTUAL _KEYBOARD’
C DELKB EXTRN’SMG$DELETE_VIRTUAL _KEYBOARD’
c REAKEY EXTRN’SMG$READ_KEYSTROKE’

C* External definitions for SMG terminators.

C _| EXTRN’SMG$E_TRM_UP’

C T_DOWN EXTRN’SHG$E_TRM_DOWN’

C T_LEFT EXTRN’SHG$E_TRM_LEFT’

C T_RIGHT ~ EXTRN'SMG$K_TRM_RIGHT’

[T_-CTRLZ EXTRN’SMG$K_TRM_CTRLZ’

C* Create the virtual keyboard.

C N99 CALL CREKB

C PARM KB_ID 90 WL

C SETON 99

C% Read a keystroke.

C CALL REAKEY

C PARM KB_ID 90 RL

C PARM T_CODE 50 WW

C* Turn on an indicator if a cursor positioning key was typed.
C - COMP T_UP LA
[T_CODE COMP T_DOWN KB
C T.CODE COMP T_LEFT kC
C T_CODE COMP T_RIGHT KD
C* Turn on LR to quit if CTRL/Z was typed.

C T.CODE COMP T_CTRLZ LR
C% Display a message if a cursor positioning key was typed.
C K ‘up’ DSPLYTTY

C KB ’DOWN’ DSPLYTTY

C KC JLEFT! DSPLYTTY

c KD 'RIGHT’ DSPLYTTY

C# Delete the virtual keyboard.

CLR CALL DELKB

CLR PARM KB_ID 90 RL

ZK-4661-85

Using Indicators

4-13

4.2 Internally Defined Indicators

There are some indicators that you need not define; RPG II defines them for you. This sec-
tion describes internally defined indicators and exnlains how to 11se them

4.2.1 First-Page Indicator

When you specify a first-page (1P) indicator, it is set on at the start of the program and set
off after detail-time output but before the first record is read. Therefore, you can use the 1P
indicator to condition those heading lines you want printed before RPG II processes the
first record.

You specify the 1P indicator, which is always represented by 1P, in columns 24 and 25, 27
and 28, or 30 and 31 of the Output specification.

The following example shows how to use the 1P indicator to print a header on the first page
of a report:

Type (HDTE) Edit codes , 0 NoCR -
IFetch overflow (F) X memmmeeeeee——
| ISpace | Y date edit Y Yy { A J
Il Skip | Z zero suppress Y N 2 B K
N N Y 3 C L
HEE o Indicators |Blank-after (B) N N 4 D H
File I | Field |lEnd position
name NN | name |Il Format (PB)
| (R 1 | (N |
0l I IBAB A NxxNxxNxx| 11 I+ Constant or edit word +
| 2 3 | 4 | [6 [7 |
12345678901234567890123456789012345678901234567890123456789012345678901234567890
*¥ EEEEE X ¥ * [T T e
OOUTPUT H 201 1P
0 OR oF
0 UDATE Y 8
0 43 ’'SALES REPORT’
0 PAGE 72
0 67 'PAGE’
0 H 22 iP
0 OR oF
0 5 "ITEM’
0 23 'DESCRIPTION’
0 41 ’SALES’
0 56 'COST’
0 72 'PROFIT’

ZK-4385-85

4-14 Using Indicators

The following heading lines are printed on the first page:

0 ' 1 i 2 i 3 j 4 ! 5 i G ! 7 !
12345678901234567890123456789012345678901234567890123456789012345678901234567890
5/19/83 SALES REPORT PAGE 1
ITEM DESCRIPTION SALES cosT PROFIT

You can use the 1P indicator to condition only detail or heading output lines. If you have a
detail or heading output line conditioned by no indicators or all negative indicators, use a
negative 1P (N1P) indicator to prevent this line from being output on the first cycle before
the first record is read.

4.2.2 Last-Record Indicator

Like the first cycle in an RPG II program, the last cycle differs from all other program
cycles. Once RPG II processes the last record in all primary and secondary files for which
you specified processing until the end-of-file, the last-record (LR) indicator is set, along
with all the other control-level indicators you specified. The LR indicator causes RPG II to
perform all total-time calculation and output operations conditioned by any control-level
indicators and by the LR indicator.

The LR indicator is always represented by LR, as shown in the following example:

|
I+ Constant or edit word +
4] 5 | 6 7

Type (HDTE) Edit codes , 0 No CR -
|IFetch overflow (F) I ittt
| 1Space | Y date edit Y vyt A J
Il Skip | Z zero suppress Y N 2 B kK
NN | NY 3 CL
o Indicators |Blank-after (B) N N 4 D M
File e | Field I1End position
name i | name |11 Format (PB)
1
1B

| | H
I

0l

|
|
0 | | 3. 1 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

*% HHERE X ¥ XN KK

0 T1 LR

0 30 'TOTALS’
0 TSALESL 41 ¢’

0 TCOST 1 57 '$’

0 TPROFIL 72 "¢’

ZK-4384-85

The following information is printed only after processing the last record.
) ! 1 ! 2 : 3 | a ! 5 : 6 ; 7 !
12345678901234567890123456789012345678901234567890123456789012345678901234567890

TOTALS $564.30 $425.,00 $139,30

Using Indicators 4-15

If your program does not contain a primary input file, you must set on the LR indicator to
end the execution of the program. If your program sets on the LR indicator, RPG II auto-
matically sets on all control-level indicators just before total-time calculations. If the LR
indicator is oet on during totaltime calenlations RPG IT does not. antomatically set on all

control-level indicators.

4.2.3 Matching-Record Indicator

When you use more than one primary and secondary file, RPG II multifile logic supplies
you with a method of selecting the next record to process. You can designate one or more
fields in each record to be the matching fields (columns 61 and 62 of the Input specifica-
tion). When the fields from a primary file and one or more of the secondary files m: :ch, the
matching-record (MR) indicator is set on. The MR indicator remains set on whil - nrocess-
ing the records from the primary and secondary file that match. See Part I, Chapter 5 for a
complete discussion of multifile processing.

At the beginning of detail time, the MR indicator is set on or off, as determined by the
matching status of the record to be processed. Therefore, at total time, the MR indicator
reflects the matching status of the previous record with the record to be processed. See Part
I, Chapter 5 for examples of using the matching-record indicator.

4.2.4 External Indicators

You can use external indicators to condition any operation in yeur program. External
indicators, which are always represented by U1 through U8, can alsc appear in columns 71
and 72 of the File Description specification, and in columns 54 through 59 of the Calcula-
tion specification. To use the external indicator, you must also assign the logical name
RPGS$EXT_INDS to an external indicator using the DEFINE or ASSIGN command, as
shown in the following example:

$ DEFINE RPG$EXT_INDS "external-indicator-list"

An external indicator is set on by specifying it in the external-indicator-list. An external
indicator is set off by not specifying it in the external-indicator-list.

The following example sets on external indicators U1, U5, and U4 and sets off external
indicators U2, U3, U6, U7, and U8.

$ DEFINE RPG$EXT_INDS "54"

When you use an external indicator to condition a file, the file is opened only when the
external indicator is on. If the external indicator is off, input files being processed sequen-
tially are treated as if the end-of-file was reached. Use the same external indicator as a
conditioning indicator to control calculation and output operations for those files being
processed by methods other than sequential processing. Otherwise, a run-time error will
occur when you attempt input or output operations to a file that was not opened because
the external indicator was off.

4-16 Using Indicators

External indicators can also be used as resulting indicators.

4.2.5 Halt Indicators

You can use halt indicators (H1 through H9) as record-identifying indicators, field indica-
tors, or resulting indicators to stop a program when a specific condition occurs. When you
use a halt indicator as a record-identifying indicator, a specific type of record causes the
halt.

The following example causes the program to check the character in position 80 of records
read from the input file FILEIN. If the eightieth character is not a S, the halt indicator H1
is set on and the program will halt execution. A run-time message is displayed saying that
this indicator is on.

Sequence (AA-ZZ, 01-99)
I Number (1-N)

| 10ptional (0) Decimal positions
| IlRecord identifying indicator | Control level
I 1 | | Match field
I 11l + Identifying codes + Format | I | Fld rec rel
File RN I 1 (PB) IField | |
name (RN C c Cl IField Iname | | | Field
| (RN z z Z1 llocationl| I 1 | indicatrs
Il | 111 Pos NDcPos NDcPos NDc IFr To || 11 +-0
i I 2] 3 I 4 | 6
1234567890123456789012345678901234567890123456789012345678901234567
*% *ORRE - Ko—— R RR———R——— kK 'EEEEER
IFILEIN AA Hi B8ONCS
I 02 80 CS
I 1 10 FIELDL

ZK-4383-85

When a halt indicator is used as a field indicator, a halt occurs because of erroneous input
data.

Using Indicators 4-17

The following program uses a halt indicator as a field indicator. When a record is read from
the input file FILEIN, FIELD1 is checked for a negative value. If FIELD1 contains a nega-
tive value, H2 is set on. After this record has been processed, the program will halt.

] 1 ! 2] 3] 4 | 5] 6 | 7 |

i23456789012345678901234567890i23456?890i234567890123456789012345678901234567890
TR * * * K——kKE X K ¥

IFILEIN AA 01

I i SOFIELDA H2
C NH2 SORT FIELD1 FDL2 95

ZK-4382-85

When a halt indicator is used as a resulting indicator, a halt occurs when calculations pro-
duce erroneous results during either detail time or total time.

In the following example, if the field FIELD1 is equal to zero, the halt indicator H4 is set
on. After the current record has been processed, the program halts.

erld length
Decimal positions
IHalf adjust (H)

Control level
|

l
| Indicators Operation [
(| | I 1lResulting
I Factor | Factor Resultl Ilindicators
I i | 2 field I 11+ -0
Cl NxxNxxNxx| | | | | 1l*» < = +- Comments --+
0 | i | 2] 3 | 4 | [| 3 I 7 |
1234567890123456?890123456789012345678901234567890123456?89012345678901234567890
X% K * [T EE
C FIELDA SUB 59 0 FIELDi H4

C NH4 FIELD2 DIV FIELD{ FIELD1
ZK-4381-85

When a halt indicator is set on, a halt does not occur immediately. Before the program

halts, it completes the current cycle and processes the record that caused the error
condition.

If any halt indicators are on after detail-time output, a run-time error occurs.

Halt indicators can also be used as field-record-relation indicators and to condition calcu-

lation and output operations. See Part II, Chapter 2 for more information on using halt
indicators as field-record-relation indicators.

4-18 Using Indicators

4.3 Using Indicators As Fields

The *IN, *IN,n and *INxx special words refer to predefined indicators and allow you to use

those indicators in your program. Sections 4.3.1 and 4.3.2 describe each type of special
word.

4.3.1 *IN and *IN,n

*IN is a predefined array with 99 one-position character elements. The elements in this
array represent indicators 01 through 99. Use *IN,n, where n is the array index, to refer-
ence an indicator. For example, *IN,54 refers to indicator 54.

The elements in this array can assume only two character values — 1 and 0. If you refer-
ence an indicator using *IN,n and the contents of the element are 0, the indicator is off. If
the contents of the element are 1, the indicator is on.

You can use either the array or the array element to reference an indicator anywhere any
other one-character array or array element can be used. You cannot, however, specify the
entire array *IN as the Result field of a PARM operation. To prevent unpredictable results
when modifying an element in *IN, assign the character literal 0 or 1 to *IN.

In the following example, the program tests whether the setting for indicator 15 is equal to
the setting for indicator 20. In the next line, indicator 20 is set on. Using the MOVE opera-
tion to transfer 1 to *IN,20 produces the same result as using the SETON operation code to
set on indicator 20.

Field length

Control level | Decimal positions
I IHalf adjust (H)

I

I Indicators Operation (|

[| | TlResulting
I Factor | Factor Result! Ilindicators
I 1 I 2 field I 11+ -0

| I 3

C

NXXNXxNxx | | | I 11z = +- Comments --+

0 | i | 2 | 4 | | b | 7 |
12345678901234567890123456789012345678901234567830123456789012345678901234567830

% % * * * * X——REE % ¥ ¥

C *IN, 20 COMP *IN, 15 99

c MOVE "1’ *¥IN, 20
ZK-4380-85

4.3.2 *INxx

*INxx is a predefined one-position character field where xx represents any indicator except
the 1P (first-page), overflow, or external indicators. Like *IN, it can contain only the char-
acter O or 1.

You can use *INxx anywhere any other one-character field can be used, except as the
Result field of a PARM operation.

Using Indicators 4-19

In the following example, the value of the MR indicator is compared to the value of M. If
they are the same, indicator 99 is set on. The MR indicator is represented as *INMR.

0

| | |

2 |

3 | 4

| 5 | 6 | 7 |

4-20

IFILEL 01

I
I

IFILE2 02

I
I
c

*INMR

Using Indicators

COMP M

20 TEXT
20 MATCH M1
21 TEXT
21 MATCH M1

99
ZK-4379-85

://‘\\

Chapter 5
Using Files

A file is a collection of information, organized into groups or sections, called records. Each
record is made up of one or more blocks of characters or numbers, called fields.

This chapter explains the RPG II file organizations and record operations that are imple-
mented through VAX Record Management Services. For additional information on file
organization and file and record operations, see the VAX/VMS Record Management
Services Reference Manual.

5.1 File Names

Columns 7 through 14 (File name) of the File Description specification define the file
name. RPG II uses the entry in columns 7 through 14 (File name) and the entry in columns
47 through 52 (Symbolic device) to associate the file name with the VAX/VMS file specifi-
cation. The default type for an RPG II file is DAT.

You can use a logical name for the entry in columns 47 through 52 (Symbolic device), and
then assign a VAX/VMS file specification to the logical name. If you assign a full file speci-
fication to the logical name, RPG Il ignores the entry in columns 7 through 14 when deter-
mining the file specification. If you do not assign the file-name part of the file specification
to the logical name, RPG II uses the entry in columns 7 through 14 when determining the
file specification. If you do not assign a file type to the logical name, RPG II uses DAT.

If you do not specify an entry in columns 47 through 52, you can use a logical name as the
entry in columns 7 through 14 for the VAX/VMS file specification. If you do not specify a
logical name as the entry in columns 7 through 14, the file specification will consist of the
file name in columns 7 through 14 and the file type DAT.

The entry in columns 7 through 14 is used as the RMS default file name string. The entry
in columns 47 through 52 (Symbolic device) is used as the RMS file name string. See the
VAX/VMS Record Management Services Reference Manual for information about file-
name strings and default file-name strings.

5-1

5.2 Record Formats

The records in a file can be all the same length (fixed) or of different lengths (variable).

Variahle-length recards often nge digk storage snace mare efficiently The characterictics
and requirements of individual applications should be carefully considered when you
decide whether to use fixed-length or variable-length records.

5.3 File Types

You can use files in three ways:
e Asinput to an RPG II program
e As output from an RPG II program
e As an update file where the records in the file are changed by the program

5.4 File Organizations

The organization of a file determines how the records in it are arranged. RPG II allows
three different file organizations:

e Sequential
e Direct
e Indexed

Sections 5.4.1 through 5.4.3 describe these file organizations.
5.4.1 Sequential Organization

Sequential file organization is available on all types of devices. Sequential files contain
records in the order that they were written. The first logical record in the file is always in

5-2 Using Files

the first physical record position, the second logical record in the file is always in the sec-
ond physical record position, and so on. If you need to access the fourth logical record, you
can find it between the third and fifth physical records, as shown in Figure 5-1:

1 2 3 4 5

T fourth record

ZK-1462-83

Figure 5-1: Sequential File Organization

You can retrieve records from a sequential file either sequentially, by reading through the
entire file from beginning to end, or randomly, by using relative record numbers or an
ADDROUT file.

5.4.2 Direct Organization

Direct file organization is available on disk devices only. RMS handles RPG II direct files
as files with relative file organization. A direct file consists of a series of fixed-length posi-
tions (or cells) that are numbered consecutively from 1 to n. This number is the relative
record number; it indicates the record’s position relative to the beginning of the file. (The
relative record number of the first cell is always 1.) Each record you write is assigned to a
specific cell within the file. For example, you can assign the second record to the fourth cell;
its relative record number would be 4. This assignment can result in empty cells; there-
fore, you must specify a record’s relative record number to access it. Figure 5-2 shows that
cell number 2 and 5 are empty cells.

cell no. — 1 2 3 4 5 6
records —gm= 1 2 3 4
empty cell empty cell
ZK-1463-83

Figure 5-2: Direct File Organization

Using Files 5-3

Direct files can be accessed sequentially or randomly by using the CHAIN operation code
or by using an ADDROUT file. When you access a direct file sequentially, empty cells are
skipped. When you access a direct file randomly using the CHAIN operation, the indicator
specified in columns 54 and 55 of the Calculation specification will be set on for an empty
cell.

5.4.3 Indexed Organization

Indexed file organization is available on disk devices only. Each record in an indexed file
contains an index key value, as shown in Figure 5-3:

index key value data

record

ZK-1464-83

Figure 5-3: Indexed File Organization

An index key is a field within each record that is defined by its relative location within the
record, and by its length. The index key is the primary means of locating records within
the file. For example, you could use an employee’s badge number as the index key value for
an employee record. The index key value in Figure 54 is the first six characters in the
record, 768979.

key

/\

768979Henry Alberts

record

ZK-1465-83

Figure 54: Index Key Value

You can retrieve a record from an indexed file by specifying its index key value. In fact, you
can retrieve records in an indexed file either sequentially or randomly by using index key
values, or randomly by using an ADDROUT file.

54 Using Files

Another way to access records from an indexed file is sequentially within limits. See Sec-
tion 5.5 for more information on accessing records from indexed files.

5.5 File Access Methods

There are several ways you can access the records in a file, depending on its organization.
Table 5-1 lists file organizations and the methods you can use to retrieve records.

Table 5-1: File Access Methods

File Designation Organization Access Method

Primary Sequential Sequentially
Secondary Randomly by ADDROUT file!
Demand Direct Sequentially
Full-procedural Randomly by ADDROUT file!
Indexed Sequentially
Sequentially by key
Sequentially within limits
Randomly by ADDROUT file!
Chained Sequential Randomly by relative record number?
Full-procedural Direct Randomly by relative record number
Indexed Randomly by key

' You cannot process demand or full-procedural files using an ADDROUT file.

2 You can access the records in a sequential file randomly by relative record number only
if the records are fixed-length and the file resides on disk.

Although you cannot change the organization of a file after you have created it, you can
change the file access method each time you use the file. The method you use depends on
how many records your file contains and how often you need to access a record . Use the
following guidelines in selecting a file organization and access method:

e If you always process all the records in a file from beginning to end (as in a payroll
application), use a sequential file and access the records sequentially.

e If you need to access some or all records under changing or unpredictable conditions
(as in a transaction processing system), use an indexed or direct file and access the
records randomly.

Sections 5.5.1 through 5.5.7 describe each file access method and provide programming
guidelines for each.

Using Files 5-5

5.5.1 Sequential Access

When you access a file sequentially, each input operation retrieves the next record in the
file, regardless of the file organization, until either the end of the file is reached or the
program terminates. For an indexed file, records are retrieved in primary key order.

To specify sequential access, you must make the following entries in its File Description
specification:

e Column 15 (File type) — Specify I or U to indicate whether the file is to be open for
input or for update.

e Column 16 (File designation) —Specify P, S, D, or F to indicate whether the input file is
primary, secondary, demand, or full-procedural.

e Column 19 (Record format) — Specify F or V to describe the record format.

e Columns 24 through 27 (Record length) — Specify the length of fixed-length records or
the maximum length of variable-length records.

The following example specifies the name of a file, INPUT, designated as an input primary
file with fixed-length records and a record length of 60 bytes:

Mode (LR)
Ikey length
Type (IOUD) || Record address type (API) Addtn(AU)
IDes (PSRCTD)II |0rganization (IT,1-9) IExpand
I IEOF (E) Il liOverflow indicator I IShare
I11Seq (AD)Y 11 11l Key location 111 Rewnd
File ITTIFmt (FV) 11 111 | Extension (EL) e
name ITITIBlk Rec 11 111 | IDevice Symb Tape Core Il IFile
| Ii11len len Il 111 I lcode dev label index |1l lcond
RN e N A A A | A
] 1 [2 [3] 4 I 5 I 6] 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890

——— Rk k- kAR K———XK R TR IR L]
FINPUT IP F 60 DISK

ZK-4394-85

5-6 Using Files

5.5.2 Sequential Access by Key

You can process only indexed primary, secondary, demand, and full-procedural files
sequentially by key. VAX RMS reads records in ascending key sequence until it reaches
the end of the file or until the program terminates.

To specify sequential access by key for a file, you must make the following entries in its
File Description specification:

e Column 15 (File type)—Specify I or U to indicate whether the file is to be open for input
or for update.

e Column 16 (File designation)—Specify P, S, D, or F to indicate whether the input file is
primary, secondary, demand, or full-procedural.

e Column 19 (Record format)-Specify F or V to describe the record format.

o Columns 24 through 27 (Record length)—Specify the length of fixed-length records or
the maximum length of variable-length records.

o Columns 29 and 30 (Key length)-Specify the length of the key field.

e Column 31 (Record address type)-Specify either A or P to tell RPG II that the index
keys are in character (A) or packed decimal (P) data format.

e Column 32 (File organization)-Specify I to indicate that the file is an indexed file.

e Columns 35 through 38 (Key location)-Specify the starting character position of the
key field.

The following example specifies a primary input file, INPUT, with fixed-length records 60
bytes long. The file organization is indexed with its index keys in packed decimal data
format.

Mode (LR)
Ikey length
Type (IOUD) |1 Record address type (API) Addtn(AU)
IDes (PSRCTD) 1| I0rganization (IT,1-9) |Expand
IHEOF (E) Il [10verflow indicator I 1Share
I11Seq (AD) 11 111 Key location 11l Rewnd
File ITHIFmt CFV) 11 111 | Extension (EL) I
name I111IBIk Rec Il II1 | IDevice Symb Tape Core |IlI IFile
| I1111len len 11 111 1 lcode dev label index IIl lcond
Fl R e A R N i [| I Pt
0 [1 1 2] 3 I 4 i 5 [6 | 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890
** ERERRE———f——— R R AR KN * ¥oryrs oo HE, HE
FINPUT IP F 60 3PI 1 DISK

ZK-4395-85

Using Files 5-7

5.5.3 Sequential Access Within Limits

You can process indexed files sequentially within limits by creating a record-limits file
that specifies a range of index keys in each record.

record record-limits file
A data \ C E —=—— first record
B data E G --—— second record
C data
file
D data high key
low key
E data
F data /

key

ZK-1466-83

Figure 5-5: Sequential Access Within Limits

In Figure 5-5, the first record in the record-limits file causes RPG II to retrieve those
records whose keys are greater than or equal to the low key (C) and less than or equal to
the high key (E). When the program reaches a record with a key value greater than E or
reaches the end-of-file, it reads the next record from the record-limits file to get a new high
and low range. The second record in the record-limits file causes the program to retrieve
those records whose keys are greater than or equal to the low key (E) and less than or equal
to the high key (G). The indexed file is processed until it reaches the end of the record-
limits file or the program terminates.

When using a record-limits file to process indexed files, observe the following rules:
o In the record-limits file, specify only one set of limits per record.
e The record length must be at least twice the length of the record key.

o The low key must begin in character position 1, and the high key must immediately
follow the low key.

5-8 Using Files

e The length of the high and low keys must be the same, and must be equal to the length
of the key field in the file to be processed.

e Numeric keys can contain leading zeros.
e Alphanumeric keys can contain blanks.

To access a file sequentially within limits, you must make the following entries in its File
Description specifications:

e Column 15 (File type) — Specify I or U to indicate whether the file is to be open for
input or for update.

e Column 16 (File designation)—Specify P, S, D, or F to indicate whether the input file is
primary, secondary, demand, or full-procedural.

e Column 19 (Record format) — Specify F or V to describe the record format.

e Columns 24 through 27 (Record length) — Specify the length of fixed-length records or
the maximum length of variable-length records.

e Column 28 (Access mode) — Specify L to indicate that the indexed file is to be processed
sequentially within limits.

e Columns 29 and 30 (Key length) — Specify the length of the key field.

e Column 31 (Record address type) — Specify either A or P to indicate that the index
keys are in character (A) or packed decimal (P) data format.

e Column 32 (File organization) — Specify I to indicate that the file is an indexed file.

e Columns 35 through 38 (Key location) — Specify the starting character position of the
key field.

Using Files 5-9

The following example specifies an input secondary file, INPUT, with fixed-length records
60 bytes long. This file is to be processed sequentially within limits. The file organization is

indexed, the key field is three bytes long beginning in character position 1, and the keys
are in character format.

Mode (LR)
Ikey length
Type (IOUD) || Record address type (API) Addtn(AU)
IDes (PSRCTD) 11 IOrganization (IT,1-9) |Expand
I 1EOF (E) Il Il0verflow indicator | 1Share
I11Seq (AD) 11 11l Key location 11l Rewnd
File I11IFmt (FV) 11 111 | Extension (EL) i
name I1111Blk Rec Il 111 1 IDevice Symb Tape Core |1l IFile
| Hithlen len 11 11D Ilcode dev label index Ill lcond
Fl R e e A | | | 111l
12345678901234567890123456789012345678901234567890123456789012345678901234567890

%% [T L B T T T e T * EE
FINPUT IS F 60L 3AI i DISE

ZK-4396-85

To access a file sequentially within limits, you must make the following entries for the
record-limits file in its File Description specification:

e Column 15 (File type) — Specify I to indicate that the file is to be open for input.

e Column 16 (File designation) — Specify R to indicate that the file named in columns 7
through 14 is a record-limits file.

e Column 19 (Record format) — Specify F or V to describe the record format.

e Columns 2427 (Record length) — Specify the length of fixed-length records or the
maximum length of variable-length records.

e Columns 29 and 30 (Key length) — Specify the length of the key field.

e Column 31 (Record address type) — Specify either A, P, or blank to indicate that the
index keys are in character (A), packed decimal (P), or the same data format as the file
being processed by the record-address file (blank).

e Column 39 (Extension) — Specify E to cause the system to look for an Extension
specification.

You must also make the following entries for the record-limits file in its Extension
specification:

e Columns 11 through 18 (From file name) — Specify the name of the record-limits file.

e Columns 19 through 26 (To file name) — Specify the name of the file to be processed by
the record-limits file.

5-10 Using Files

The following example specifies the File Description and Extension specifications for
processing a file sequentially within limits:

0 I 1 | 2 I K| | 4 | 5 | 6 | 7 |
12345678901234567890123456789012345678901234567890123456789012345678901234567890)

FIDXAi2 IR F 6 3A EDISE

FIDXI12 IP F 60L 3AI 1 DISK

E IDXA12 IDXIi2

ZK-4397-85

An indexed demand or full-procedural file can also be processed sequentially within limits
using the SETLL operation. See Part I, Chapter 3 for information on the SETLL operation
code.

5.5.4 Random Access

Accessing records randomly allows you to retrieve or write a record anywhere in the file.
To do this, you must specify the record location using:

e Relative record numbers
e Keys
o ADDROUT file

The method you use depends on the organization of the file. Sections 5.5.4.1 through
5.5.4.3 explain these methods.

5.5.4.1 Random Access by Relative Record Number

You can randomly access records in sequential and direct files by specifying relative record
numbers that identify records relative to the beginning of the file. For example, the rela-
tive record number for the fifth record is 5. Accessing a sequential file using this method
requires that the records be of fixed length and that the file reside on disk.

To access a file randomly by relative record number, you must make the following entries
in its File Description specification:

e Column 15 (File type) — Specify I or U to indicate whether the file is to be open for
input or for update.

e Column 16 (File designation) — Specify C or F to indicate whether the file named in
columns 7 through 14 is a chained or full-procedural file.

e Column 19 (Record format) — Specify F or V to describe the record format.

Using Files 5-11

e Columns 24 through 27 (Record length) — Specify the length of fixed-length records or
the maximum length of variable-length records.

e Column 28 (Mode) — Specify R to cause RPG II to access the file randomly, using a
relative record numper.

You must also make the following entries for the file in its Calculation specification:

e Columns 18 through 27 (Factor 1) — Specify the relative record number of the record
you want to retrieve.

e Columns 28 through 32 (Operation code) — Specify the CHAIN operation code. Use an
indicator in columns 54 and 55 to signal an empty cell condition for a direct file. Oth-
erwise, attempting to CHAIN to an empty cell will cause a run-time error.

e Columns 33 through 42 (Factor 2) — Specify the name of the file that contains the
record you want to retrieve.

The following example randomly accesses the direct file RANO7A by relative record num-
ber. The primary input file RANIO7 provides the record numbers in the field ITEM#.

0 I 1 I 2 | 3 I 4 |]] 6 I 7
12345678901234567890123456789012345678901234567890123456783012345678901234567890

FRANIO7 IP F 13 DISE

FRANO7A UC F 10R DISK

FRANO7B 0 F 30 PRINTER

IRANIO7 AA 01

I 1 11 STORE

I 13 130ITEM#
IRANO7A AB 02

I 1 10RECH

I 3 BOACCESS

I 7 10 VALUE

C ITEM# CHAINRANO7A 50

¢ 50 GOTO HANDLR

c 1 ADD ACCESS ACCESS

c SETON 40

C EXCPT

C SETOF 40

C HANDLR TAG

¢ 50 SETON LR
ORANO7A E 02 40

0 RECH 1

0 ACCESS 5

0 VALUE 10

ORANO7B H 22 1PN40

0 22 "STORE PURCHASES’
0 D 01N40

0 STORE 14

0 ACCESS 20

0 VALUE 27

ZK-4398-85

5-12 Using Files

5.5.4.2 Random Access by Key
You can randomly retrieve records from an indexed file by specifying their index keys.

To access a file randomly by key, you must make the following entries in its File Descrip-
tion specification:

e Column 15 (File type) — Specify I or U to indicate whether the file is to be open for
input or for update.

e Column 16 (File designation) — Specify C or F to indicate whether the file named in
columns 7 through 14 is a chained or full-procedural file.

e Column 19 (Record format) — Specify F or V to describe the record format.

e Columns 24 through 27 (Record length) — Specify the length of fixed-length records or
the maximum length of variable-length records.

e Column 28 (Mode) — Specify R to tell RPG II to access records randomly, using index
key values.

e Columns 29 and 30 (Key length) — Specify the length of the key field.

e Column 31 (Record address type) — Specify either A or P to indicate that the index
keys are in character (A) or packed decimal (P) data format.

e Column 32 (File organization) — Specify I to indicate that the file is an indexed file.

e Columns 35 through 38 (Key location) — Specify the starting character position of the
key field.

You must also make the following entries for the file in its Calculation specification:

e Columns 18 through 27 (Factor 1) — Specify the index key of the record you want to
retrieve.

e Columns 28 through 32 (Operation code) — Use the CHAIN operation code. The record
you specify can be read from the file either during detail-time or total-time calcula-
tions. Specify an indicator in columns 54 and 55 to signal a record-not-found condi-
tion. Otherwise, a record-not-found condition will cause a run-time error.

e Columns 33 through 42 (Factor 2) — Specify the name of the file to be processed.

Using Files 5-13

The following example randomly accesses the indexed file GROCER using keys. The
primary input file STORES provides the keys in the field ITEM#.

[0 1 {1 12 1 3 1 4 1 5 1 6 1 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FSTORES IP F 13 DISK

FGROCER IC F 10R 1AI { DISK

FREPORT 0 F 30 PRINTER

ISTORES AA 01

I 1 14 STORE

I 13 130ITEM#

IGROCER AB 02

I i 10RECH

I 3 5OCOUNT

I , 7 10 VALUE

C ITEM# CHAINGROCER 50

¢ 50 SETON LR

OREPORT H 22 1PN40

0 22 'STORE PURCHASES’

0 D 01N40

0 STORE 14

0 COUNT 20

0 VALLE 27

ZK-4399-85

5.5.4.3 Random Access by ADDROUT File

Another way to process files is by using an ADDROUT file. You can use a record-limits file
to process only indexed files. You can use an ADDROUT file to process sequential, direct, or
indexed files.

5-14 Using Files

ADDROUT files are created by the VAX SORT/MERGE Utility when you use the
PROCESS=ADDRESS qualifier. You specify a field or fields in the record by which the
utility sorts the records, as shown in Figure 5-6:

record
A data
D data
C data
B data
field to sort

ZK-1467-83

Figure 5-6: Random Access by ADDROUT File

The utility sorts the records and places the disk addresses of the sorted records in an
ADDROUT file, as shown in Figure 5-7:

000143 | —e—— address of A

948567 | -w——— address of B

762341 | -w—— address of C

098745 | -w——— address of D

ADDROUT file

ZK-1468-83

Figure 5-7: ADDROUT File

Using Files 5-15

The program reads the records (addresses) in the ADDROUT file sequentially. Each record
in the ADDROUT file corresponds to a record in the original file. The addresses of the
records are referred to as Record File Addresses (RFAs) by RMS. For additional informa-
tion on RFAs, see the VAX/VMS Record Management Services Reference Manual.

To access a file using an ADDROUT file, you must make the following entries in the File
Description specification for the file to access:

e Column 15 (File type) — Specify I or U to indicate whether the file is to be open for
input or for update.

e Column 16 (File designation) — Specify P or S to indicate that the file named in col-
umns 7 through 14 is primary or secondary.

e Column 19 (Record format) — Specify F or V to describe the record format.

e Columns 24 through 27 (Record length) — Specify the length of fixed-length records or
the maximum length of variable-length records.

e Column 28 (Mode) — Specify R to cause RPG II to access records randomly.

e Columns 29 and 30 (Key length) — Specify the length of the key field if you plan to
access an indexed file.

e Column 31 (Record address type) — Specify I to cause the program to access the file
according to the ADDROUT file.

e Column 32 (File organization) — Specify I if you plan to access an indexed file.

e Columns 35 through 38 (Key location) — Specify the starting character position of the
key field if you plan to access an indexed file.

To access a file using an ADDROUT file, you must make the following entries for the
ADDROUT file in its File Description specification:

e Column 15 (File type) — Specify I to indicate that the file is to be open for input.

e Column 16 (File designation) — Specify R to indicate that the file named in columns
7 through 14 is an ADDROUT file.

e Column 19 (Record format) — Specify F to describe the record format.

e Columns 24 through 27 (Record length) — Specify 6, because record addresses are
always 6 bytes in length.

e Columns 29 and 30 (Key length) — Specify 6, because record addresses are always
6 bytes in length.

e Column 31 (Record address type) — Specify I to indicate that thisis an ADDROUT file.

5-16 Using Files

e Column 32 (File organization) — Specify T to indicate an ADDROUT file.

o Column 39 (Extension) — Specify E to cause RPG II to look for an Extension

specification.

You must also make the following entries for the ADDROUT file in the Extension

specification:

e Columns 11 through 18 (From file name) — Specify the name of the ADDROUT file.

o Columns 19 through 26 (To file name) — Specify the name of the file to be processed by

the ADDROUT file.

The following example specifies the ADDROUT file IDXA13 and the file IDXI13 to be

accessed by the ADDROUT file:

| 5 I b | 7 |

12345678901234567890123456789012345678901234567890123456789012345678901234567890

0 | i | 2 I 3 |
FIDXA13 IR F 6 6IT EDISEK
FIDXI13 IP F 60R 3II 1 DISK
FIDX13A 0 F 80 oF PRINTER

E IDXA13 IDXIM3
IIDXI13 AA 02

I

I

I

I

I

I

I

I

I

I

I

0IDX13A H 202 1P

0 OR OF

0 UDATE Y 10
0

0 PAGE 77
0 D1 02

0 TOWN 13
0 COUNTY 26
0 STATE 30
0 CENGO J 38
0 CEN70 J 46
0 CENGO J 54
0 CENSO J 62
0 CEN4O J 70
0 CEN3O J 78

i

1
13
15
26
31
36
41
46
51
56

3 LEY
12 TOWN
14 STATE
25 COUNTY
30 ZIP
350CEN30
400CEN40
450CENSQ
500CEN6O
550CEN70
600CENBO

49 'NEW HAMPSHIRE TOWNS’

ZK-4400-85

Using Files 5-17

5.5.5 Sequential Access and/or Random Access by Key

A full-procedural file allows you to read a file both randomly and sequentially. If the full-
procedural file is an indexed file, then you can read the file randomly by key using the
CHAIN or SET'LL operation, and you can read the tile sequentially.

To specify an indexed full-procedural file, make the following entries for the file in its File
Description specification:

e Columns 7 through 14 must contain the file name.

e Column 15 (File type) — Specify I or U to indicate that the file is open for input or
update.

e Column 16 (File designation) — Specify F to indicate a full-procedural file.
e Column 32 (File organization) — Specify I to indicate an indexed file.
e Columns 40 through 43 (Device code) — Specify DISK.

5-18 Using Files

The following example specifies the full-procedural file FPFJ01 to be accessed by a CHAIN
operation with the key specified in FPFIO1. The file FPFJO01 is then processed sequentially
from that point on.

0 | 1 I 2 | 3 I 4 I 5 | 6 I 7
1234567890123456789012345678901234567890123456783012345678301 2345678901234567830
FTTY D F 80 TTY
FFPFIOL ID F 04 DISE
FFPFJO1 IF V 47R04A1 1 DISE
FFPFO1A 0 V 73 LPRINTER
LFPFO4A 55FL 500L
IFPFIOA
I 1 4 PARTNO
IFPFJO1
1 4 PARTNO
5 39 DESCR
40 43 PRICE

98
98

NLR
NLR

FPFO1A

OO0 0000O0O0O0OOOOOOOOOOOOC O k-

44 47 AMOUNT
READ FPFIO1

PARTNO CHAINFPFJO1 98
EXCPT
"BAD’ DSPLYTTY
GOTO END
LOOP TAG
READ FPFJO1 LR
EXCPT
GOTO LOOP
END TAG
H 204 {P
32 "PARTS SUMMARY INVENTORY’
H 10 1P
11 "PART NO’
30 'DESCRIPTION’
H 00 iP
30 ! 14
H 01 1P
11 ! ’
E 01
PARTNO 9
DESCR 47

ZK-4662-85

Using Files 5-19

5.6 Creating Files

There are a variety of ways to create files with sequential, direct, and indexed organiza-

.......... DD TT wnaan

e sl i ooy LI A2 T [N IO R S . | 2 Ponabe s
L10I1S. DECLIVILS ¥.0.1 LILIUURIL 9.0.0 UESCLIUE 1IUW LU LLITALT 111CS UDLILE Qll 1vi U 11 Progralii.

You can create sequential files by writing records, one after another, to an output file. Once
a sequential file is created, you can use it as an input file, an update file, or an output file
with the ADD option.

5.6.1 Creating Sequential Files

To create a sequential file, you must make the following entries in the File Description
specification:

e Column 15 (File type) — Specify O to indicate the creation of an output file.
e Column 19 (Record format) — Specify F or V to describe the record format.

e Columns 24 through 27 (Record length) — Specify the length of fixed-length records or
the maximum length of variable-length records.

The following program creates a sequential file OUT60A:

0 | 1 | 2 | 3 I 4 I] | 6 | 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FOUTI24 IP F 24 DISK.

FOUTE0A 0 F 24 DISK

I0UTI24 AA

I 1 3PN

I 4 10 PNAME

I 11 12 WHOUSE

I 13 17 COLOR

I 18 20 WEIGHT

I 21 24 Q1Y

00UTe0A D NiP

0 PN 3

0 PNAME 10

0 4 1’

0 WHOUSE 12

0 COLOR 17

0 WEIGHT 20

0 ary 24

ZK-4401-85

5.6.2 Creating Direct Files

You can create a direct file by specifying a chained output file. To do this, you must make
the following entries in its File Description specification:

e Column 15 (File type) — Specify O to indicate the creation of an output file.

5-20 Using Files

e Column 16 (File designation) — Specify C to indicate that the file named in columns
7 through 14 is a chained file.

e Column 19 (Record format) — Specify F or V to describe the record format.

e Columns 24 through 27 (Record length) — Specify the length of fixed-length records or
the maximum length of variable-length records.

e Column 28 (Mode) — Specify R to cause RPG II to load a direct file.
The following program creates a direct file OUT60B with variable-length records:

0 I 1 I 2] 3] 4 [] I 6] 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FOUTI24 IP F 24 DISK

FOUT6OB 0OC V 24R DISK

TOUTI24 AA

I 1 3PN

I 4 10 PNAME
I 11 12 WHOUSE
I 13 17 COLOR
I 18 20 WEIGHT
I 21 24 QTY

C COUNT ADD 1 COUNT 10

C COUNT CHAINOUT60B 99
00UTeO0B D NiP 25

0 PN 3

0 PNAME 10

0 473

0 WHOUSE 12

0 COLOR 17

0 WEIGHT 20

0 aTy 24

ZK-4402-85

5.6.3 Creating Indexed Files

You can create an indexed file either in ordered key sequence or in unordered key
sequence. If you specify unordered, you can write records to an indexed file in any order,
regardless of the key sequence. If you specify ordered, you must write records in the order
of their key; the order must be ascending. Once the file is created, VAX RMS sorts the
index keys in ascending order, regardless of the way they were written.

To create an indexed file in ordered sequence, you must make the following entries in its
File Description specification:

e Column 15 (File type) — Specify O to indicate the creation of an output file.
e Column 19 (Record format) — Specify F or V to describe the record format.

e Columns 24 through 27 (Record length) — Specify the length of fixed-length records or
the maximum length of variable-length records.

Using Files 5-21

e Columns 29 and 30 (Key length) — Specify the length of the key field.

e Column 31 (Record address type) — Specify either A or P to indicate that the index
keys are in character (A) or packed decimal (P) data format.

e Column 32 (File organization) — Specify I to indicate an indexed file.

e Columns 35 through 38 (Key location) — Specify the starting character position of the
key field.

The following program creates an indexed file OUT60A with an alphanumeric key that is
three bytes long. The key begins in character position 1 of each record.

0 I 1 I 2 I 3 I 4 I 5 I b I 7
12345678901234567890123456789012345678901234567830123456783012345678901234567890

FOUTI24 IP F 24 DISK

FOUTeOA O V 24 3Al 1 DISK

I0UTI24 AA 01

I i 3PN

I 4 10 PNAME

I 11 12 WHOUSE

I 13 17 COLOR

I 18 20 WEIGHT

I 21 24 QTY

00UT60A D 01

0 PN 3

0 PNAME 10

0 417

0 WHOUSE 12

0 COLOR 17

0 WEIGHT 20

0 aTy 24

ZK-4403-85

To create an indexed file in unordered sequence, make the same entries as for an ordered
sequence and specify U in column 66 (Unordered).

5.7 Adding Records to Files

After you create a file, it may be necessary to add new records to the file. You can add
records to a file at detail-time or total-time output, or by using exception output. Sections
5.7.1 through 5.7.3 explain how to add records to files on the basis of their file organization.

5-22 Using Files

5.7.1 Adding Records to a Sequential File

Because the location of each record in a sequential file is fixed in relation to all others,
there is no unused space where a new record might be inserted. Therefore, you can add
records to a sequential file only at the end of the file, as shown in Figure 5-8:

ZK-1469-83

Figure 5-8: Adding Records to a Sequential File

To add a record to the end of a sequential file, you must make the following entries in its
File Description specification:

e Column 15 (File type) — Specify O to indicate the creation of a new record.
e Column 19 (Record format) — Specify F or V to describe the record format.

e Columns 24 through 27 (Record length) — Specify the length of fixed-length records or
the maximum length of variable-length records.

e Column 66 (File addition) — Specify A to cause RPG II to add new records to the file.
You must also make the following entries in the file’s Output specification:

e Columns 7 through 14 (File name) — Define the output file name.

e Columns 16 through 18 — Specify ADD to identify the record to be added.

The following example accepts input from the terminal and writes records to the end of the
file LOG:

0 I 1 | 2 | 3 | 4 | 5 l 6 | 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890)
FINPUT IP F 80 TTY
FLOG 0 F 80 DISK A
IINPUT 01

I 1 80 DATA
0LO0G DADD 01
0 DATA 80

ZK-4404-85

Using Files 5-23

5.7.2 Adding Records to a Direct File

To add a new record to a direct file, you can either specify the relative record number of an
empty cell or add the record at the end of the file, as shown in Figure 5-9:

1 2 3 4

1 1. |

ZK-1470-83

Figure 5-9: Adding Records to a Direct File

To add records to empty cells in a direct file, you must make the following entries for the
file in its File Description specification:

e Column 15 (File type) — Specify I or U to indicate that the file is open for input or
update.

e Column 16 (File designation) — Specify C or F to indicate a chained or full-procedural
file.

e Column 19 (Record format) — Specify F or V to describe the record format.

e Columns 24 through 27 (Record length) — Specify the length of fixed-length records or
the maximum length of variable-length records.

e Column 28 (Mode) — Specify R to access records randomly, using a relative record
number.

e Column 66 (Addition) — Specify A to add records to the file.
You must also make the following entries in the Calculation specification:

e Columns 18 through 27 (Factor 1) — Specify the relative record number of the empty
cell.

e Columns 28 through 32 (Operation code) — Specify the CHAIN operation code. Use an
indicator in columns 54 and 55 to see whether the cell is empty. The indicator will be
set on if it is. If the cell is empty and an indicator is not specified, a run-time error
occurs.

e Columns 33 through 42 (Factor 2) — Specify the name of the file to which you want to
add the record.

5-24 Using Files

Finally, you must make the following entry in the Output specification:
e Columns 7 through 14 (File name) — Define the output file name.
e Columns 16 through 18 — Specify ADD to identify the record to add.

The output operation must follow the CHAIN operation, but before the next CHAIN opera-
tion. If not, the output will be to the cell specified by the second CHAIN operation.

The following example reads a primary input file and adds records to the direct file
DIRECT. The input field RECNO specifies the record cell to which the field is written.

0 | 1 | 2 I 3 I 4 I 5 I b I 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FINPUT IP F 35 DISK

FDIRECT IC F 30R DISK A

FTTY D F 30 TTY

TINPUT

I 1 30 DATA

I 31 350RECNO

IDIRECT

C RECNO CHAINDIRECT 99

C N99 'EXISTS’ DSPLYTTY

ODIRECT DADD 99
0 DATA 30

ZK-4405-85

5.7.3 Adding Records to an Indexed File

Ifthe file is an indexed file, you can add records at any location. The key values for the new
records are placed in the index and the entire index is sorted in ascending sequence.

NOTE

When adding records to an indexed file, you cannot specify A in column 66
(File addition) of the File Description specification for indexed files processed
sequentially within limits or processed by an ADDROUT file.

You can add new records to an indexed file while processing the file by specifying an A in
column 66 (File addition) of the File Description specification. The file can be an input or
update file that is processed sequentially or randomly. If you want only to add records, you
can specify an output file.

You must also make the following entry in the Output specification:
e Columns 7 through 14 (File name) — Define the output file name.
e Columns 16 through 18 — Specify ADD to identify the records to be added.

Using Files 5-25

The following program adds records to an indexed file using the ADD option on the Output
specification:

[0 1| 1 12 1 3 1 4 | 8§ | & 1 7 |
2345678901234567890123456789012345678901234567890123456789012345678901234567830

FIDXIOL IP F 24 DISE

FOUT43A 0 F 24 3AI 1 DISK A
IIDXI01 AA

I 1 24 PN

00UT43A DADD NiP
0

ZK-4406-85

5.8 Updating Records in Files

RPG II allows you to update the records in a primary, secondary, demand, full-procedural
or chained file. RPG II allows you to update the records in a sequential file only if the
records are of fixed length. You can update a record in a primary or secondary file only once
during the program cycle at detail time. Unlike other types of update files, records in a
chained, full-procedural or demand file can be updated at detail time or at total time.

To update a record, you must retrieve the record you want to change, change the contents,
and then write the record back to the file. You need only specify the fields to be changed in a
record. The remainder of the record is rewritten, using the data that was read into the
input buffer.

You can use a data structure to update a record. See Part I, Chapter 12 for an example of
updating files with data structures.

RPG II allows you to change the length of a variable-length record being updated. RPG II
determines the length of the record by using the highest End position (columns 40 through
43 of the Output specification) of any field in the record. If you need to change the contents
of a field in the middle of a variable-length record, but do not want to change the length of
the record, you must define the length of the record by defining a one-character field in the
last character position of the record.

The following example updates records in the master file MASTER. MASTER contains
two different record types of different lengths. Both records contain the field that must be
updated EMP# in different character positions. The fields LNGTH1 and LNGTH2 ensure
that the records are updated using the correct length. The records of type 01 are 80 charac-
ters long. The records of type 02 are 60 characters long.

5-26 Using Files

0 | 1 | 2 | 3

| 4

] | 6 |

7 |

12345678901234567890123456789012345678901234567890123456789012345678901234567890

FTRANSACTIP F 25 DISK
FMASTER UC V BOR21AI 1 DISK
ITRANSACT

I

I

IMASTER 01 1 CA

I

I

I 02 1 CB

I

I

C* Update record type 01

C MOVEL ' A’ KEY
C MOVE NAME KEY
C KEY CHAINMASTER

c EXCPT

C SETOF

C* Update record type 02

C MOVEL’B’ KEY
C KEY CHAINMASTER

c EXCPT

OMASTER E 01

0 NEW# 40
0 LNGTHY 80
OMASTER E 02

0 NEWH# 50

0 LNGTH2 60

36
80

46
60

20
25

40
80

50
60

24

24

NAME
NEWH#

EMP#
LNGTHY

EMPH
LNGTH2

01

ZK-4407-85

To update the records in a direct or indexed file and simultaneously add new records, com-
plete the following entries for the file in its File Description specification:

e Column 15 (File type) — Specify U to indicate that the file is open for update.

e Column 66 (File addition) — Specify A to add new records to the file.

You must also define both Input and Output specifications for the file to be updated. Enter
ADD in columns 16 through 18 of those Output specifications that identify the records to
be added. The output records without ADD in columns 16 through 18 identify those records

to be updated.

Using Files

5-27

5.8.1 Updating a File Sequentially or Randomly by Key

You can update records in an indexed file randomly by key, sequentially, or both randomly
and sequentially if the file is defined as a full-procedural file. To specify an indexed full-
procedural file to be processed in the update mode, make the following entries for the file in
its File Description specification:

e Column 15 (File type) — Specify U to indicate that the file is open for update.
e Column 16 (File designation) — Specify F to indicate a full-procedural file.

e Column 32 (File organization) — Specify I to indicate an indexed file.

5.9 Deleting Records From Files

You can delete records only from update direct and indexed files. To prevent the deletion of
needed records, perform the following steps:

e Retrieve the record.
o Evaluate its contents.

e Based on the results of the evaluation, set an indicator to control deletion of the
record.

The last record retrieved from the file is the one that is deleted when you specify DEL in
columns 16 through 18 of the Output specification. You do not need to describe any fields in
the output record, because the operation deletes the entire record.

The following example deletes a record in the master file MASTER, depending on the keys
read from the file DELETE:

0 I 1 I 2 I 3 I 4 I] I 6 I 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FDELETE IP F 4 DISK

FMASTER UC F 50R 4AI 47 DISE fA

FTTY D F 80 TTY

IDELETE

I 1 4 FKEY

IMASTER

¢ KEY CHAINMASTER 99

c 99 "NOTFOUND’DSPLYTTY

OMASTER DDEL NIINLP

ZK-4408-85

5-28 Using Files

5.10 Processing Files With Matching Records

Matching fields can be used with primary and secondary files to check the sequence of
records and to define the order in which records are selected from multiple files.

To use matching fields to verify that the records in the file are in sequence (either ascend-
ing or descending), you define one or more fields to be checked by specifying a matching
field value (M1 through M9) in columns 61 and 62 in the Input specification. Then, your
program checks the sequence by comparing the matching field of one record with the
matching field of the previous record. If the field is out of order, a run-time error occurs.

5.10.1 Checking Record Sequence for One Record Type

You designate a record sequence by specifying A or D (ascending or descending) in column
18 of the File Description specification. Assign a matching field value (M1 through M9) to
one or more fields you want to use as matching fields in columns 61 and 62 (Matching field)
of the Input specification. When you specify more than one matching field, assign M9 to the
most important field. Your program considers all matching fields as one contiguous field
with the M9 field in the leftmost position, next to the M8 field, and so on, until you reach
M1, even though the fields may not be adjacent in the record or in numeric (M9 to M1)
order.

5.10.2 Checking Record Sequence for More Than One Record Type

The fields in a record of one type can be in a different order from the fields in other record
types in the same file. Suppose a payroll file consists of two different record types, one type
representing commission payment and the other type representing salary. All employee
records are to be in ascending sequence according to district (DSTRCT). Records in a dis-
trict are to be in ascending sequence according to department and employee number.
Therefore, three fields (DSTRCT, DEPT, and EMPNUM) must be checked in each record.
M3 is assigned to DSTRCT, the most important field; M2 is assigned to DEPT, the next

Using Files 5-29

most important field; and M1 is assigned to EMPNUM, the least important field. Refer to
the following example:

Sequence (AA-ZZ, 01-99)
| Number (1-N)

| 10ptional (0) Decimal positions
| IlRecord identifying indicator | Control level
11 I | Match field
I 11l + Identifying codes + Format | I | Fld rec rel
File [RN I | (PB) IField | 1 |
name P C C Cl IField Iname | | | Field
| [N z z Z1 llocationl| I I | indicatrs
| 11l Pos NDcPos NDcPos NDc IFr To Il 11 +-0

1 | 2 | 3] 4 | 5 | b I 7 I
12345678901234567890123456789012345678901234567830123456789012345678901234567890
*% X REK K-—— K——— K———

IPAYROLL AA 01 80 CC

1 3 DEPT M2
6 7 DSTRCT M3
14 152C0MM
25 27 EMPNUM M1

BB 02 80 CS
i 3 DEPT M2
8 9 DSTRCT M3
13 1725ALARY
25 27 EMPNUM M1

.
I e R N B B B B B]

ZK-4409-85

First, the program determines the record type. Then, it looks at the matching fields for the
same record type.

In the example above, the same three matching fields (DSTRCT, DEPT, and EMPNUM)
appear in both record types and are the same length.

The length of matching fields assigned to the same match code must be the same length for
each record type. Table 5-2 shows that this is true for the following example:

IPAYROLL AA 01 80 CC <— first record type
1 3 DEPT He
6 7 DSTRCT M3
25 27 EMPNUM M1
BB 02 80 CS -«— second record type
1 3 DEPT M2
8 9 DSTRCT M3
25 27 EMPNUM Mi

bt b

It

ZK-4410-85

5-30 Using Files

Table 5-2: Matching Field Lengths

Record Matching Field Field
Type Field Location Length
first DSTRCT 6to7 2
DEPT 1to3 3
EMPNUM 25 to 27 3
8 total
second DSTRCT 8to9 2
DEPT 1to3 3
EMPNUM 25 to 27 3
8 total

Matching fields need not be specified for all the record types in a file.

5.10.3 Using Matching»Fields With Field-Record-Relation Indicators

Although there may be different record types in a file, very often the fields for each record
type are the same. Many fields have the same name, contain the same data, and are in the
same character positions for all the record types in a file. When only a few fields differ, you
can describe more than one record type in an OR relationship. Refer to the following
example:

Sequence (AA-ZZ, 01-99)

| Number (1-N)
I 10ptional (0) Decimal positions
| IIRecord identifying indicator | Control level
1 | | Match/chain field
I 111 + Identifying codes + Format | | | Field rec rel
File [N 1 IField | | |
name L C C Cl IField Iname | | | Field
I L z z Z| llocationl| I | | indicators
I | 111 Pos NDcPos NDcPos NDc IFr To || 11 +-0
0 | 1 | 2 [3] 4 [5 |) I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890
*% * RN K——— R-—— R——— RE-—— kK EEEEEIY
IPAYROLL AA 01 80 CS
I OR 02 80 CM

ZK-4411-85

Using Files 5-31

You specify common fields only once, because they apply to both record types. The field-
record-relation indicators specified in columns 63 and 64 of the Input specification identify
the fields unique to a particular record type. Therefore, the COMM field in the following
example is associated with record type 01 and the SALARY field is associated with record
type 02. Because DSTRCT, DEPT, and EMPNUM are matching fields used in checking the
sequence of the records in the PAYROLL file and because M1, M2, and M3 are described
only once in columns 61 and 62 without any field-record-relation indicators in columns 63
and 64, they apply to both record types (01 and 02) as shown in the following example:

Sequence (AA-ZZ, 01-99)
Number (1-N)
I0ptional (D)

I IRecord identifying indicator |

Decimal positions
Control level
| | Match/chain field

11
11l + Identifying codes + Format | I | Field rec rel
File i |1 IField | | 1
name (NN C C Cl IField Iname | | | Field
| i z z Zl llocationll I | | indicators
Il 111 Pos NDcPos NDcPos NDc IFr To || 11 +-0
0 | i I 2 | 3 | 4 | 5] 6 l 7 |
12345678901234567890123456789012345678901234567890123456789012345678901234567890
*% T L L i S S T R —T] I EEEENS
IPAYROLL AA 01 80 CS
I OR 02 80 CM
I i 3 DEPT M2
I 8 9 DSTRCT M3
I 25 27 EMPNUM Mi
I 14 152COMM 01
I 13 172SALARY 02

5-32 Using Files

ZK-4412-85

If one of the matching fields is in a different record position for each record type, you must
assign matching field entries, as shown in the following example:

Sequence (AA-ZZ, 01-99)
| Number (1-N)

I 10ptional (0) Decimal positions
I |lIRecord identifying indicator | Control level
11 | | Match/chain field
I 11l + Identifying codes + Format | I | Field rec rel
File P I IField 1 1 |
name P c c Cl IField Iname | | | Field
| (RN Z z ZI 1locationli| 11 | indicators
I | 111 Pos NDcPos NDcPos NDc IFr To |l 11 +-0
0] i I 2] 3 I 4 | 5] 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890)
*¥ *ORAR H—-— K——— ——— '
IPAYROLL AA 01 80 CS
I OR 02 80 CM
I 1 3 EMPNUM M1
I 20 21 DSTRCT M3
I 6 72COMM 01
I 10 12 DEPT M204
I 5 7 DEPT M202
I 10 1425ALARY 02
2K-4413-85

For a 01 record type, matching field DEPT is in Field location 10 through 12. For a 02
record type, matching field DEPT is in Field location 5 through 7.

5.10.4 Using Matching Fields to Process More Than One File

The processing of a primary file with one or more secondary files is called multifile process-
ing. In multifile processing without matching fields, RPG II first reads all the records from
the primary file, then reads all the records from each secondary file in the same order in
which they are specified in the File Description specification. By using matching fields,
your program can select the records from the secondary file before selecting the records
from the primary file, based on the value of their matching fields.

When you use matching fields to process more than one file, the program selects records
according to the contents of the matching fields, as follows:

e One record is read from every file and the matching fields are compared. If the records
are in ascending order, the record with the lowest matching field value is selected for
processing. If the records are in descending order, the record with the highest match-
ing field value is selected for processing.

e When a record is selected from a file and processing of that file takes place, the next
record from the file is read. The new record is then compared with the other records
not selected in the previous cycle.

Using Files 5-33

You can combine records with and without matching fields in the same file. Records with-
out matching fields are processed before records with matching fields. If two or more of the
records being compared have no matching fields, selection of those records is determined
by the priority of their files, as follows:

e The records in primary files are processed before the records in secondary files.

e The records in secondary files are processed in order of appearance in the File Descrip-
tion specifications.

In the following example, the matching fields from a primary file are compared with the
matching fields from a secondary file to select records in ascending sequence. The letters
represent the data in the matching fields.

Table 5-3: Matching Field Values

Matching Field Values
Record Number Primary File Secondary File
1 A B
2 C D2
3 D1 X
4 F Z

Key to Figure 5-10

1.

5-34

The first record from the primary file is read and the matching field (A) is located.
The first record from the secondary file is read and the matching field (B) is located.

The contents of the matching field (A) from the first record in the primary file are
compared with the contents of the matching field (B) from the first record in the
secondary file. A is selected.

The second record from the primary file is read and the matching field (C) is
located.

The contents of the matching field (B) from the first record in the secondary file are
compared with the contents of the matching field (C) from the second record in the
primary file. B is selected.

The second record from the secondary file is read and the matching field (D2) is
located.

The contents of the matching field (D2) from the second record in the secondary file
are compared with the contents of the matching field (C) from the second record in
the primary file. C is selected.

Using Files

Primary File Secondary File
1. A | Record 1 2 B | Record 1
Process A.
fields.
Cycle n
4. C | Record 2
Process B.
fields.
Cyclen + 1
6.
D2 | Record 1
Compare
match Process C.
fields. 7.
Cyclen + 2

Figure 5-10: Using Matching Fields to Do Multifile Processing

Using Files

5-36

Key to Figure 5-10 (Cont.)

8.

10.

11.

12.

13.

Using Files

The third record from the primary file is read and the matching field (D1)

located. \

The contents of the matching field (D2) from the second record in the secondary file
are compared to the contents of the matching field (D1) from the third record in the

primary file. D1 is selected.

The fourth record from the primary file is read and the matching field (F) is
located.

The contents of the matching field (D2) from the second record in the secondary file
are compared to the contents of the matching field (F) from the fourth record in the
primary file. D2 is selected.

The third record from the secondary file is read and the matching field (X) is
located.

The contents of the matching field (F) from the fourth record in the primary file are
compared to the contents of the matching field (X) from the third record in the sec-
ondary file. F is selected. Because the primary file is now at its end, the remaining
records in the secondary file (X and Z) are processed in order of appearance.

Process D1.
fields.
Cyclen + 3
10.
F | Record 4
Compare
match Process D2.
fields. .
'Cycle n+4
12.
X | Record 3
Compare
match Process F.
fields.
Cyclen + 5

ZK-1475-83

Figure 5-10: Using Matching Fields to Do Multifile Processing (Cont.)

When the matching fields from a primary file match one or more of the secondary files,
RPG II sets the matching-record (MR) indicator on before detail-time calculations. You can
use the MR indicator to condition calculation and output operations for the record just

Using Files 5-37

5-38

selected. The indicator remains on for one complete program cycle. It is set off if the record
selected for processing contains no matching fields. A record selected using the FORCF
operation code causes the MR indicator to remain off for one program cycle while the forc(

record is processed. '

RPG II processes matching records for two or more files in the following ways:

e When a record from the primary file matches a record from the secondary file, the
record from the primary file is processed before the record from the secondary file is
processed. The record-identifying indicator that identifies the record type just
selected is on at the time the record is processed.

e When records from ascending files do not match, your program processes the record
with the lowest matching field content first.

e When records from descending files do not match, your program processes the record
with the highest matching field content first.

e A record type that has no matching field specification is processed immediately after
the previous record is processed. In this case, the MR indicator is set off. If this record
type is the first in the file, your program processes this record first, even when it is not
in the primary file.

e The matching of records makes it possible to enter data from primary records into
their secondary records because your program processes the record from the primary
file before matching the record from the secondary file. However, the transfer of data
from the secondary record to matching primary records can be done only when loo!
ahead fields are specified. .

In the following example, matching fields are used to combine a primary file with two sec-
ondary files in ascending sequence. Record-identifying indicators are assigned in the fol-
lowing way:

e 01-Records from the primary file with matching fields

e 02—Records from the primary file without matching fields

e 03—Records from the first secondary file with matching fields

e 04-Records from the first secondary file without matching fields
e 05-Records from the second secondary file with matching fields

e 06—Records from the second secondary file without matching fields

Using Files <

0 | 1

4

]

] | 6 - | 7 |

12345678901234567890123456789012345678901234567890123456789012345678901234567890
FRECI99A IP AF

| FRECI99B IS
FRECI99C IS
FOUTPUT O
IRECI99A
I
I
I

I
IRECI99B
I

I

I

I
IRECI99C
I

I

I

I
O0OUTPUT D
0

F
F
F
04
02

03

04
05

06

2 I 3]
80 DISK
80 DISK
80 DISK
80 DISK
80 Ci
80 C2
80 C3
80 C4
80 C5
80 Cé6
NiP
TEXT 80

[S

(S,

80

80
80

80
80

80

TEXT
MATCH

TEXT

Mi

TEXT
MATCH M1
TEXT

TEXT

MATCH M{

TEXT

ZK-4414-85

Table 5—4 lists the contents of the matching fields for all three files: primary, first secon-

dary, and second secondary. Field values with A after the value represent values from the

nrimary file. Field values with B after the value represent values from the first secondary
3. Field values with C after the value represent values from the second secondary file.

Table 5-4: Matching Field Values

Record Primary First Secondary Second Secondary
Number File File File
1 none none 10C
2 none 20B 30C
3 20A 30B 50C
4 20A 30B 50C
5 40A 60B none
6 50A none 60C
7 none 70B 80C
8 60A 80B 80C
9 80A 80B none

Using Files

5-39

Table 5-5 lists the steps involved in processing these files and those indicators that must
be set on for the operation to occur.

Table 5-5: Processing Records with Matching Fields N

Step Record Type Matching Field Value Indicators for Processing

1 02 none Not MR and 02
2 02 none Not MR and 02
3 04 none Not MR and 04
4 05 10C Not MR and 05
5 01 20A MR and 01
6 01 20A MR and 01
7 03 20B MR and 03
8 03 30B Not MR and 03
9 03 30B Not MR and 03
10 05 30C Not MR and 05
11 01 40A Not MR and 01
12 01 50A MR and 01
13 02 none Not MR and 02
14 05 50C MR and 05
15 05 50C MR and 05
16 06 none Not MR and 06
17 01 60A MR and 01
18 03 60B MR and 03
19 04 none Not MR and 04
20 05 60C MR and 05 P
21 03 70B Not MR and 03 [
22 01 80A MR and 01 L
23 03 80B MR and 03
24 03 80B MR and 03
25 05 80C MR and 05
26 05 80C MR and 05
27 06 none Not MR and 06

540 Using Files \

5.11 Processing Files With Multiple Keys

he following program reads one input file with three keys. It uses three different file spec-
ifications to pick up the three keys. Note that the three filenames use identical fields, and
that each filename uses a different key to point to the same file. Also note the use of the
same fields by a data structure.

0 ! 1 | | 3] 4]] | b | 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890
FIDXIOL IP F 24 44l 21 DISK
FIDXJO1 IS F 24 3Al 1 DISk. IDXIOi
FIDXkO1 IS F 24 241 11 DISK IDXIO4
FIDX03A 0 F 24 DISE
IIDXI0OL AA
I 1 3PN
I 4 10 PNAME
I i1 12 WHOUSE
I 13 17 COLOR
I 18 20 WEIGHT
I 24 24 Q1Y
IIDXJO1 BB
I 1 3PN
I 4 10 PNAME
I 11 12 WHOUSE
I 13 17 COLOR
I 18 20 WEIGHT
I 21 24 Q1Y
IIDXKO1 CC
I 1 24 FIELDS
IFIELDS DS
I 1 3PN
I 4 10 PNAME
I 11 12 WHOUSE
I 13 17 COLOR
I 18 20 WEIGHT
I 21 24 Q1Y
0IDX03A D N{iP
0 FIELDS 24

ZK-4667-85

Using Files

~

Chapter 6
Using Printer Output Files

If you want to create a formatted report by printing an output file, you must decide what
the report will look like before you write your program. You must know what information
is to be printed on each heading, detail, and total line, and where the individual fields are
to appear.

Designing the physical layout of your report is an important part of the work necessary to
produce a formatted report. RPG II provides several features you can use to print certain
information automatically and to control the printing of other information. Sections 6.1
and 6.2 describe these features and explain how to use them.

Printer output files cause a file to be in VAX/VMS print-file format. The default PRINT
command causes the insertion of a form-feed character when the form nears the end of a
page. To suppress the insertion of form-feed characters, use the NOFEED qualifier to the
PRINT command when printing printer output files created by RPG II programs.

6.1 Editing Output

You can use predefined Edit codes and Edit words to format numeric data for your report.
Edit codes and words supply additional information about the output, thus increasing your
report’s usefulness to the end user. Section 6.1.1 describes Edit codes and explains how to
use them. See Part II, Chapter 2 for information on Edit words.

6.1.1 Using Edit Codes and Edit Code Modifiers

You can specify specialized editing for numeric data by entering one of the one-character
Edit codes in column 38 of the Output specification. Edit codes consist of (1) simple Edit
codes (X, Y, and Z) that perform one predefined function, and (2) combined Edit codes (1, 2,
3,4,A,B,C,D, J, K, L, and M) that perform a combination of predefined functions. See
Part II, Chapter 2 for information on Edit codes.

6-1

In most cases, using one or more Edit codes to format numeric data is sufficient. However,
there are some cases where you might want to use an Edit code modifier to perform the
following special formatting:

e Replace leading zeros with asterisks.
e Put a dollar sign immediately to the left of the leftmost character.
See Part II, Chapter 2 for information on Edit code modifiers.

6.1.2 Using Constants

Constants are usually used to specify headings that describe the contents of a particular
column. To specify a constant, enter the constant string, enclosed in apostrophes, in col-
umns 45 through 70 (Constant or edit word). In the following example, SALES REPORT
appears in character positions 24 through 35 of the printed output file:

Type (HDTE) Edit codes , ONoCR -
|IFetch overflow (F) rx s
I 1Space I Y date edit Y Y 1 A J
111 Skip | Z zero suppress Y N 2 B K
ol | N Y 3 C L
Il I Indicators |Blank-after (B) N N 4 DM
File (N | Field IlEnd position
name i | name |Il Format (PB)
| (R | | 1 |
0l | IBAB A NxxNxxNxx| 11 |+ Constant or edit word +

0 I 1 | 2] 3 | 4 |]] 6] 7
12345678901234567890123456789012345678301234567890123456789012345678901234567890

*¥ TTITEK * ERH——— Rk seae
0 35 'SALES REPORT’

ZK-4415-85

When using constants, consider the following rules:
e Constants can contain from 1 to 24 characters.

e Enclose constants in apostrophes (for example, ' EMPLOYEE NAME’). The apostro-
phes are not printed.

e When using constants, leave columns 32 through 39 and column 44 blank.

See Part II, Chapter 2 for information on Edit words.

6-2 Using Printer Output Files

6.2 Using Special Words

RPG 1II provides special words that enable you to perform the following kinds of
formatting:

e Printing the date
e Printing a page number and incrementing the page number by one for each new page
e Repeating data fields in an output record

This section describes special words and explains how to use them.

6.2.1 Printing the Date: UDATE, UDAY, UMONTH, UYEAR

UDATE automatically prints the date in the format month, day, year. To put slashes (/)
between the month, day, and year (for example, 5/17/85), specify Y in column 38 of the
Output specification.

The default date is the system date. To change the default date, define the logical name
RPG$UDATE to the date you want. The format of the date is dd-mmm-yyyy. The following
example changes the date to November 2, 1985.

$ DEFINE RPG$UDATE "2-NOV-1985"

You can change the UDATE output format by specifying D, I, or J in column 21 of the Con-
trol specification. Specifying D changes the UDATE format to day/month/year. Specifying
I or J changes the UDATE format to day.month.year.

Using Printer Output Files 6-3

You can use UDAY, UMONTH, and UYEAR to print each component of the date in the
format you need, as shown in the following example:

Type (HDTE) Edit codes ; O NoCR -
IFetch overflow (F) rx mmmememee——
I 1Space | Y date edit Y Y 1 A J
11 Skip | Z zero suppress Y N 2 B K
i | N Y 3 CL
o Indicators |Blank-after (B) N N 4 D H
File e i Field |1End position
name i l name IIl Format (PB)
| (NN | | (] |
0l | IBAB A NxXxNxxNxx| 11 I+ Constant or edit word +
0 | i | 2 | 3 | 4 |) | 6 I 7 |
12345678901234567890123456789012345678901234567890123456789012345678901234567890
*% HERER % ¥ * TR T e
0 H iP
0 UYEAR 8
0 9 r_7
0 UMONTH i1
0 i2 -
0 UDAY 14

ZK-4416-85

In this example, the special words UYEAR, UMONTH, and UDAY in the Output specifica-
tion change the date format to year-month-day. The output might look like this:

85-05-16
When using special words, observe the following rules:

e You cannot specify Y in column 38 (Edit code) of the Output specification for UDAY,
UMONTH, or UYEAR. Instead, specify a constant in columns 45 through 70 (Con-
stant or edit word) to separate the day, month, and year.

e You can use these special words in Factor 1 or 2 of the Calculation specification.
e You cannot use these special words in the Result field of the Calculation specification.

e You cannot use the Blank after option (column 39 of the Qutput specification) with
these special words.

6.2.2 Numbering Pages: PAGE and PAGE1 through PAGE7

RPG II provides eight special words, PAGE and PAGE1 through PAGE7, for numbering
pages in printed output files. RPG Il automatically increments the page number by one for
each new page. You can use more than one paging special word to number several different
output files.

64 Using Printer Output Files

To use one of the paging special words, specify it as a field in the Input, Calculation, or
Output specifications. When you use a paging special word as an input field or as the
Result field of a calculation, you can use any Field length up to 15 digits, but you must
specify zero Decimal positions. RPG II suppresses leading zeros and signs on output unless
you use an Edit word, use an Edit code, or specify a packed decimal or binary data format.

If you do not define the length of a paging special word elsewhere (for example, defining a
field to represent the page number as a result of a calculation), the page number is output
as a four-digit numeric field with zero decimal positions. Page numbering begins with 1.

To change the beginning page number, enter the page number you want to use as an input
record and name the field PAGE or use a PAGE field as the result of a calculation. Enter the
field in columns 53 through 58 of the Input specification, as shown in the following
example:

0 | 1 | 2 | 3 | 4 | 5 | 6

I
12345678901234567890123456789012345678901234567890123456789012345678901234567830

IINPUT AA 99
1 1 40PAGE

QOUTPUT H 2 1P

0 OR OF

0 UDATE Y 8

0 36 'DEPOSIT’
0 49 "REPORT

0 68 'PAGE’

0 PAGE 72

ZK-4417-85

In this example, the contents of the field PAGE appear in character positions 69 through
72. If the value of the field is 0032, the page numbering begins with 33, because RPG I1
adds 1 to the number. The output appears as follows:

0 H 1 i 2 i 3 | 4 i 5 i G i 7
1234567890123456789012345678901234567890123456789012345678901234567890123456789

5/16/83 DEPDSIT REPODRT PAGE 33

Using Printer Output Files 6-5

Another way to change the page number is to assign the page number you want minus one
to a PAGE field in the Result field, as shown in the following example:

0 I 1 I 2 | 3 | 4 | 5 | 6 I 7

12345678901234567890123456783012345678901234567890123456789012345678301234567830

C N99 Z-ADDBY PAGE

C SETON 99
0OUTPUT H 2 1P
0 OR oF
0 UDATE Y 8
0 36 'DEPOSIT’
0 49 ' REPORT
0 68 'PAGE’
0 PAGE 72
ZK-4418-85
The output appears as follows:
0 ' 1 ! 2 ! 3 ' 4 ' 5 ! B ! 7 :

12345678901234567890123456789012345678901234567890123456789012345678901234567890

5/16/85 DEPODSIT REPORT PAGE 80

In this example, Z-ADD assigns 89 to PAGE. RPG II adds 1 to this number and begins
numbering pages with 90. The assignment occurs when indicator 99 is set off. That way,
RPG II makes the initial page number assignment only once and not every time a record is
read.

You can restart page numbering at any point in the program. Use any one of these methods
to reset the value of a PAGE field:

e Specify the Blank after option (column 39 of the Output specification) for a PAGE field
to reset the page number to 1 after the current record is output.

e Use a PAGE field as the result of an operation in the Calculation specification or as an
input field.

e Use output indicators in the Output specification to condition the value of a PAGE
field. When the indicator is on, the value of the page field is reset to 1 before the cur-
rent record is output. You cannot use these indicators to control the printing of a
PAGE field, because a PAGE field is always printed.

6-6 Using Printer Output Files

6.2.3 Saving Time by Repeating Data: *PLACE

You can use the special word *PLACE to repeat data in an output record. The fields or
constants you want to repeat must have been previously defined. Then, you can use the
same fields or constants without having to specify their Field names (columns 32 through
37 of the Output specification) and End positions (columns 40 through 43 of the Output
specification). When you specify *PLACE in columns 32 through 37, RPG Il repeats all the
data between the beginning position and the highest End position for any previously
defined field in the output record. To prevent overlapping, the End position on the same
specification as *PLACE must be at least twice the highest End position of the group of
fields you want to repeat.

When using *PLACE, the following columns in the Output specification that contain
*PLACE must be left blank:

e Column 38 (Edit code)
e Column 39 (Blank after)
e Column 44 (Data format)
e Columns 45 through 70 (Constant or edit word)
In the following example, *PLACE specifies the following fields again:
o LIST#
e DESCR
o STOCK#
e ONHAND
e PRICE

Using Printer Output Files 6-7

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

12345678901234567890123456789012345678901234567890123456789012345678301234567890

FOUTI9L IP F 26 DISK

FOUT91A 0 F 80 PRINTER

Ix

I0UTI9L AA Of

I 1 6 STOCK#

I 7 18 DESCR

I 19 2100NHAND

I 22 262PRICE

Cx

c 0 LISTH ADD 1 LISTH 30

0%

oouT9iAa D NiP

0 LISTH Z 4

0 DESCR 18

0 STOCE# 26

0 ONHANDZ 34

0 PRICE K 39 '$’

0 #PLACE 79

7K-4419-85
Sample output from this example might look like the following:

1 PARSNIPS VEGIP® 17 %.89 1 PARSNIPS VEGIPO 17 .89
2 SKIM MILK DAROSK 134 1,70 2 SKIM MILK DAROSK 134 $1,70
3 POTATO CHIPS SNK945 100 $1.19 3 POTATO CHIPS SNK945 100 $1,19
4 2 ORT PEPSI DRNK1A 87 $1.,29 4 2 QRT PEPSI DRNKIA 87 $1.29
5 BAKED BEANS CANFOD 90 .65 5 BAKED BEANS CANFOD 90 $,B65

6.3 Conditioning Output Lines

Although you can use any type of indicator to condition output, the 1P (first-page) and
overflow indicators specifically affect output. Sections 6.3.1 and 6.3.2 describe how these
indicators affect output.

6.3.1 Printing Lines Before Reading the First Record: First-Page Indicator

When you specify the 1P (first-page) indicator, the indicator is set on at the start of the
program and set off after detail-time output but before the first record is read. Therefore,
you can use this indicator to condition those heading lines you want printed before RPG 11
processes the first record.

You specify the 1P (first-page) indicator, which is always represented by 1P, in columns 24
and 25, 27 and 28, or 30 and 31 of the Output specification.

6-8 Using Printer Output Files

The following example shows how to use the 1P (first-page) indicator to print a header on
the first page of a report:

Type (HDTE) Edit codes , ONoCR -
|Fetch overflow (F) X emmmmmemeeeeee
| |Space 1 Y date edit Y v 1 A J
11 Skip | Z zero suppress Y N 2 B K
i | N Y 3 C L
i Indicators IBlank-after (B) N N 4 DM
File [N Field |IEnd position
name i | name || Format (PB)
| (RN | | 1 |
0l | IBAB A NxxNxxNxx| 11 I+ Constant or edit word +
| 2] 3 | 4] 5] 6 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890
*% HARRE X ¥ * R ——— N veas
OOUTPUT H 204 (P
0 OR oF
0 UDATE Y 8
0 43 'SALES REPORT’
0 PAGE 72
0 67 'PAGE’
0 H 22 iP
0 OR oF
0 5 "ITEM'
0 23 'DESCRIPTION'
1] 41 'SALES’
0 56 'COST’
0 72 'PROFIT’
ZK-4420-85
The following lines are printed on the first page:
0 ! 1 ! 2 : 3 ' 4 ! 5 ! B ! 7
1234567890123456789012345678901234567890123456789012345678901234567890123456789
5/19/85 SALES REPORT PAGE 1
ITEM DESCRIPTION SALES COST PROFIT

You can use the 1P (first-page) indicator to condition only detail-time output. If you have a
detail line that is not conditioned by any indicators or by all negative indicators, you can
specify N1P as an indicator to prevent the line from being output before the first input
record is read.

Using Printer Output Files 6-9

6.3.2 Specifying Page Breaks: Overflow Indicator

You use overflow indicators to specify when a page break should occur before certain lines
are printed. These indicators are used primarily to condition the printing of heading lines,
but can also be used to condition calculation operations and other types of output lines.

You can use only overflow indicators for output files going to the printer. You define the
indicator in columns 33 and 34 of the File Description specification. The same overflow
indicator must be used to condition the overflow lines for that same file. If no indicator is
specified for that file, RPG II automatically handles overflow. See Section 6.4 for informa-
tion on automatic overflow.

RPG II sets on an overflow indicator only the first time an overflow condition occurs for the
current page. An overflow condition exists whenever one of the following circumstances
occurs:

e A line is printed on the overflow line.
e A line is printed past the overflow line.
e The overflow line is passed during a space operation.
e The overflow line is passed during a skip operation.
When using overflow indicators on an Output specification, observe the following rules:
e Spacing past the overflow line sets the overflow indicator on.

o Skipping past the overflow line to any line on the same page sets the overflow indica-
tor on.

e Skipping past the overflow line to any line on the new page does not set the overflow
indicator on unless the skip is specified past the overflow line on the new page.

o A skip to a new page specified on a line not conditioned by an overflow indicator sets
the overflow indicator off before the form advances to a new page.

o If you specify a skip to a new line and the printer is currently on that line, a skip does
not occur.

e When an OR line is specified for an output print record, the Space and Skip entries of
the preceding line are used. If space and skip requirements differ from the preceding
line, enter Space and Skip entries on the OR line.

e Anoverflow indicator can appear in either line of an AND or an OR relationship. In an
AND relationship, the overflow indicator must appear on the main specification line
for that line to be considered an overflow line. In an OR relationship, the overflow
indicator can be specified on either the main specification line or the OR line. How-
ever, only one overflow indicator can be associated with one group of output
indicators.

6-10 Using Printer Output Files

e If an overflow indicator is used on an AND line, the line is not an overflow line. In this
case, the overflow indicator is treated like any other output indicator.

e An overflow indicator cannot condition an exception line (E in column 15 of the Out-
put specification), but can condition fields within the exception record.

During a normal program cycle, RPG II checks the overflow indicator only once (immedi-
ately after total-time output) to see if it is set on. The overflow routine performs the follow-
ing operations:

1. RPGII prints all total lines conditioned by an overflow indicator when the indica-
tor is on.

2. RPGII prints those heading and detail lines conditioned by an overflow indicator
when the indicator is on.

3. Advancement to a new page does not happen automatically. Normally, one of the
overflow lines specifies a skip to the top of a new page.

If the overflow indicator is on, you can fetch the overflow routine before printing any total
or detail line by specifying F in column 16 (Fetch overflow) of the Output specification.
Fetch overflow lets you alter the RPG II logic cycle to prevent printing detail, total, and
exception lines on or over the perforation between pages. When you fetch the overﬂow rou-
tine, RPG II performs the following operations:

e When an output line specifies Fetch overflow, RPG II finds out if the overflow indica-
tor for that file is on. If it is, RPG II calls the overflow routine and prints only those
overflow lines associated with the file described on the Output specification.

o After RPG II prints the overflow lines, it prints the line that specified the Fetch
overflow.

o RPGII prints any detail-time and total-time lines left for that program cycle.
When fetching the overflow routine, observe the following rules:

o If you want to fetch the overflow line for each record in an OR relationship, you must
specify F in column 16 (Fetch overflow) for each line.

e You cannot specify an overflow indicator in columns 23 through 31 on the same line
with F in column 16 (Fetch overflow).

To decide when to fetch the overflow routine, study all possible overflow situations and
count lines, spaces, and skips to determine what happens when an overflow occurs.

In the following example, the length of a page is 15 lines. The overflow line is line 12. When
the overflow line is reached, the overflow indicator OG is set on, which conditions the head-
ing line that prints the date, report title, and page number at the top of each page.

Using Printer OQutput Files 6-11

0 | 1 | 2 | 3 | 4 |] | 6 | 7

12345678901234567890123456789012345678901234567890123456789012345678901234567890
FOUTI93 IP F 74 DISK
FOUT93A 0 F 80 06 LPRINTER
LOUT93A 15FL 120L
IOUTI93 AA 01

I i1 5§ ZIP

I 10 150CEN30

I 16 210CEN40

I 22 270CENS0

I 28 J30CENGO

I 34 390CEN70

I 40 450CEN8SO

I 46 47 STATE

I 48 59 COUNTY

I 63 74 TOWN

00UT93A H 102 (P

0 OR 0G

0 ‘ UDATE Y 10

0 47 ’'SOUTHERN NEW HAMPSHIRE’

0 53 'TOWNS’

0 PAGE 77

0 D1 01

0 TOWN 13

0 COUNTY 26

0 STATE 30

0 CENBO J 38

0 CEN70 J 46

0 CENGO J 54

0 CEN40 J 82

0 CEN4O J 70

0 CEN30 J 78

ZK-4421-85
A sample of the output from this example might look like the following:
0 H i H 2 H 3 H 4 i 35 | G H 7 H
12345678901234567890123456789012345678901234567890123456789012345678901234567880
12/14/85 SOUTHERN NEW HAMPSHIRE TOWNS 1

Hampstead RocKindgham NH 3.:785 2401 1,261 823 823 773
Kingston Rockindham NH 4,111 24882 14672 14002 1,002 14017
Litchfield Hillsborough NH 4,150 1,420 721 341 341 286
Newmarket RocKindgham NH 4,290 3:361 3:153 2,640 24,640 2,511
AtKinson RocKindham NH 4,397 2,291 1,017 434 434 407
Rve RocKindham NH 4,508 4,083 3244 14+246 1+246 1,081
Hollis Hillsboroudh NH 4:879 24616 1,720 996 996 879
Peterborough Hillsborough NH 4,885 3+807 24+963 24470 2,470 23521
Ravmond RocKindgham NH 5,453 3+003 1+867 1,340 1+340 1,165

6-12 Using Printer Output Files

12/714/85

Plaistow
Windham
Seabrook
Pelham
Amherst
Milford
Bedford
Hampton
Exeter

12/714/85

Goffstown
Londonderry
Hudson
Merrimack
Derrv

Salem
Portsmouth
Nashua
Manchester

SOUTHERN NEW HAMPSHIRE TOWNS

RocKindham NH 5,609
RocKingham NH S5.:664
Rockingham NH 5,917

Hillshoroudh NH 8,080
Hillsboroudh NH 8,243
Hillsboroudh NH B8:685
Hillsboroudh NH 9,481
RocKindham NH 10,493
RocKindham NH 11,024

SOUTHERN NEMW

Hillsboroudgh NH 11,315
RocKkindham NH 13,588
Hillsborough NH 14,022
Hillsboroudh NH 15,408

RocKindham NH 18:875
RocKindham NH 24,124
RocKindham NH 26,254

Hillsborough NH B7.:86%5
Hillsboroudh NH 90,936

6.4 Automatic Overflow

4,712
3,008
3,053
5.:408
44,6035
G+G22
5,859
8,011
8,892

2,915
1,317
2,209
2,605
2,031
4,863
3:636
5379
72243

HAMPSHIRE TOWNS

9,284
5,346
10,638
8,595
11,712
20,142
254717
554820
874754

7230
24437
5876
2,989
6,987
9,210
26,900
39,096
88,282

1:414

630
1,782

979
15174
348927
14561
24137
5,388

44247
1+428
3,409
14253
34400
3267
144,821
32,927
77683

1+414

B30
1782

979
1,174
3,827
1,561
24137
5,398

1247
1,429
3+4089
1,253
5,400

1267

14,821
3248927
77685

=2

1,366

538
14+666

814
14115
4,068
1326
14507
44872

3839
14373
24702
1,084
5131
24751
14,483
31,463
76834

When an overflow indicator is not assigned to an output file going to the printer, the com-
piler assigns the first unused indicator to the file. This causes a skip to line 1 whenever an

overflow occurs, and the overflow routine executes for this file.

You can override the printing of overflow lines by specifying an overflow indicator on the
File Description specification. However, do not use the same indicator to condition any out-
put line. This causes continuous printing of lines, regardless of page boundaries.

Using Printer Output Files

6-13

6.5 Defining the Page Size

The Line Counter specification allows you to alter the default format of a printed output
file. You can use this specification to change the number of lines on a page and to change
the overflow line.

To define the page size, you must make the following entries in the Line Counter
specification:

e Columns 7 through 14 (File name) — Specify the name of the output file. This file must
have been previously defined on the File Description specification with PRINTER in
columns 40 through 46 (Device code) and L in column 39 (Extension).

e Columns 15 through 17 (Form length) — Specify the number of lines printed in a page.

e Columns 18 and 19 (FL) — If you specify an entry in columns 15 through 17 (Form
length), you must enter FL in columns 18 and 19. This entry indicates to the compiler
that columns 15 through 17 define the Form length.

If you do not specify an entry for Form length, the default is 66 lines.

To define the overflow line, you must make the following entries in the Line Counter
specification:

e Columns 20 through 22 (Overflow line number) — Specify the line number where an
overflow occurs.

e Columns 23 and 24 (OL) — If you specify an overflow line number in columns 20
through 22, you must enter OL in columns 23 and 24. This entry indicates to the com-
piler that columns 20 through 22 define the Overflow line number.

If you do not specify an entry for the Overflow line, the default is line 60.

6.6 Formatting Output

You can define how your printed output file will look by specifying the number of lines to
space or skip. Spacing is relative to the line currently being printed; therefore, use spacing
between detail lines in a report. Skipping repositions the printer to an absolute line num-
ber; therefore, specify skipping for the column headers of a report. For example, if you
specify skip to line number 2, the output line associated with that specification will be
printed only on the second line of each page.

6-14 Using Printer Output Files

To specify the number of lines to space, you must make the following entries in the Output
specification:

e Column 17 (Space before) — Specifies the number of lines to be spaced before printing
a line.

e Column 18 (Space after) — Specifies the number of lines to be spaced after printing a
line.

To specify the number of lines to skip, you must make the following entries in the Qutput
specification:

e Columns 19 and 20 (Skip before) — Specifies the line number to skip to before printing
a line.

e Columns 21 and 22 (Skip after) — Specifies the line number to skip to after printing a
line.

If you make entries in both spacing and skipping columns for the same line, RPG II for-
mats the output in the following order:

1. Skip before

2. Space before

3. Print the output line
4. Skip after

5. Space after

You can specify entries in columns 17 through 22 (Space and Skip) for the second line in an
OR relationship; otherwise, the preceding line specifies the entries for spacing and
skipping.

Using Printer Output Files 6-15

The following example prints TOP on line 1, TEST LINE on line 7, PRINT TWICE FOR
BOLDING on line 13, and the fields beginning on line 16:

Type (HDTE) Edit codes , 0O NoCR -
|IFetch overflow (F) rx e
| 1Space | Y date edit Y Y 1 A J
11 Skip | Z zero suppress Y N 2 B K
i | NY 3 CL
Il I Indicators |Blank-after (B) NN 4 DN
File i Field |IEnd position
name i | name Il Format (PB)
| (NN | | 11 |
0l . | IBAB A NxxNxxNxx| i I+ Constant or edit word +
0 I i | 2] 3 [4 | 5 | 3 | 7]
12345678901234567890123456789012345678901234567890123456789012345678901234567890
% HARE X # * FTT T cees
00UT92A H iP
0 41 'TOP’
0 H 320411 1P
0 44 'TEST LINE’
0 H 0 iP
0 30 "PRINT TWICE FOR BOLDING’
0 H 15 {P
0 30 ‘PRINT TWICE FOR BOLDING’
0 D1 NiP
0 DESCR 18
0 STOCK# 26
0 ONHANDZ 34
0 PRICE K 39 ¢’

ZK-4422-85

6-16 Using Printer Output Files

Sample output from this example might look like the following:

o] i 1 i 2 i 3 i 4 i 5 i 6] 7 i
12345678901234567890123456789012345678901234567890123456789012345678901234567890
1 TOP
3
4
5
6
7 TEST LINE
8
9
10
11
12
13 PRINT TWICE FOR BOLDING
14
15
16 1 LB CARROTS VEGIMO a7 $.,79
17 6 PACK S0ODA DRNKZA 40 $1.48
18 1 LB BUTTER DAROBT 38 $1.59
19 STEAK METO 22 $3.15
20 HEAD LETTUCE VEGIW®Q 63 $.35

Using Printer Output Files 6-17

Chapter 7
Using Tahles

A table is a collection of similar items arranged in a specific order. Each entry in a table
must have the same length and the same data type (either character or numeric). In
RPG 11, you use tables to locate a specific item quickly and easily.

There are single tables and related tables. Single tables consist of just one group of similar
entries. When you search this type of table, the result of the operation lets you know
whether the item you are searching for is present in the table. If the search is successful,
that entry becomes the current entry.

Related tables are two associated tables (like a Table of Contents) that can be entered in
alternating format. For an example of alternating format using arrays, see Part I, Section
8.3.4. You search the first table to find out if the entry is present. If the entry is found,
RPG II retrieves the corresponding entry from the second table. Related tables need not
have the same number of entries unless they are described in alternating format in the
same Extension specification.

If you describe a table in alternating format, the first entry from the first table is read first;
then, the first entry from the second table is read. This alternate reading continues until
all entries from both tables are read. Together, the corresponding entries from each table
form one record.

Any table can be loaded at either compile time or pre-execution time. Loading is the pro-
cess by which the program assigns the data you supply to the entries in the table.

The following characteristics help determine when a table should be loaded:
o Its contents
e The frequency with which its entries require changing
e The way it is to be used

Sections 7.1 and 7.2 describe compile-time tables and pre-execution-time tables.

7.1 Compile-Time Tables

Compile-time tables are part of the source program. They are compiled with the source
program and become a permanent part of the object program. The following example
shows a source program and a compile-time table:

0 I 1 I 2 I 3 I 4 | 5 | 6 | 7 |
12345678901234567890123456789012345678901234567830123456789012345678901234567890

FINPUT IPE F 30 DISK

FREPORT 0O 40 DISK

E TABA 10 50 5

IINPUT AA 01

I 1 &5 ITEM

I 6 102FLD1

I 15 30 FLD2

c 01 ITEM LOKUPTABA 11

C Nii SETON Hi

c U 100 ADD FLD1 NEW 62

OREPORT D 01 14

0 NEW B 20

//

10001100021000310004100051000640007100081000910010
20001200022000320004100052000610007200082000920010
30001300023000330004100053000610007300083000930010
40001400024000340004100054000610007400084000940010
50001500025000350004100055000610007500085000950010
/%

ZK-4431-85

One advantage of compile-time tables is that they do not need to be loaded separately each
time the program is run. However, if you need to change any of the entries in a compile-
time table, you must revise the table, and then recompile the program with the revised
table. You can, however, make temporary changes in the table during calculations. To
make these temporary changes permanent, you would have to output the table. See Sec-
tion 7.8 for information about outputting tables.

The data in a compile-time table must follow the source program and alternate sequence
records, if any.

7.2 Pre-Execution-Time Tables

Pre-execution-time tables are not part of the object program. Rather, each table is loaded
separately from an input data file. One advantage of pre-execution-time tables is that you
can make frequent changes to the table without recompiling the program.

Pre-execution-time tables are loaded before the first program cycle begins.

7-2 Using Tables

1.3 Creating Table Input Records

Table input records are the values for the entries in a table. When creating table input
records, observe the following rules:

e The first entry must begin in character position 1; all entries must be contiguous, with
no space between entries, as shown in Figure 7-1:

record

/ entry entry entry entry entry \

/ \/ \/ \/ \/ \

12345678901234567890123456789012345678901234567890 —-————— table

ZK-1471-83
Figure 7-1: Table Input Record

This table consists of five entries in a record, each entry being ten characters long.

e You cannot span an entry across two records. Therefore, the length of a record is lim-
ited to the device’s maximum record length. If you use related tables in alternating
format, corresponding records cannot exceed the maximum record length.

e Each input record must have the same number of entries except the last. This record
can be shorter to accommodate an uneven number of entries.

When creating compile-time table input records, observe the following rules:

e The first record must be preceded by a record containing either double slashes (/) and
a blank or double asterisks (¥**) and a blank in character positions 1 through 3. Since
these strings are delimiters, records in a compile-time table cannot contain either of
these three characters in positions 1 through 3.

e The last record of the last table or array can be followed with a record containing a
slash and an asterisk (/*) in the first two character positions. This record is optional.

When creating table input records for related pre-execution-time and compile-time tables
in alternating format, you must enter an entry from the first table and then follow with the
corresponding entry from the second table.

Using Tables 7-3

If you define each entry from the first table to be one character long and each entry from
the second table to be three characters long, your table input record might appear as in
Figure 7-2:

entry

/ \

13331333133313331333 «=g————— one record

entry from second table

entry from first table

ZK-1474-83

Figure 7-2: Related Tables

In this example, each record contains five entries. Each entry consists of two related
entries. The first entry is one character long. The second entry is three characters long.

7.4 Defining Tables

To define a single table, you must make the following entries in the Extension specifica-
tion:

e Columns 27 through 32 (Table name) — Specify the name of the table. Table names
can be up to six characters long, but the first three characters must always be TAB.

e Columns 33 through 35 (Entries per record) — Specify the number of entries in a
record. Because tables can have one or more entries per record, calculate the maxi-
mum number of entries in a record by dividing the record length by the length of an
entry.

e Columns 36 through 39 (Number of entries per table) — Specify the number of entries
in the table.

e Columns 40 through 42 (Length of entry) — Specify the length of each entry.

-4 Using Tables

e Column 43 (Data format) — If the table contains numeric data, you must specify its
format. Specify P (packed decimal format), B (binary format), or leave blank
(overpunched decimal format). When you specify packed decimal format, make sure
the Length of entry represents the length of the numeric data in unpacked form.
When you specify binary format, the Length of entry you specify must indicate the
number of bytes required to store the binary field. (Use 4 for two-byte signed binary
numbers or 9 for four-byte signed binary numbers.)

This column must be blank for a compile-time table.

e Column 44 (Decimal positions) — For numeric data, specify the number of positions to
the right of the decimal point. You must specify 0 for no Decimal positions.

e Column 45 (Sequence) — Specify A (ascending) or D (descending) to indicate that the
entries in a table are in the specified sequence, or leave this column blank to specify
an unsequenced table.

In the following example, the table name is TABLE1. There are 10 entries in the table,
with one entry in each record. The length of each entry is 5 digits, with 2 decimal positions.
The data type of the entry in each record is overpunched numeric by default.

------ F = Format (PB)
| - D = Decimal positions
Il ----§ = Sequence (AD)
11
I11Alternating table or array
From To Table EntEnt Lenlliname Len
file file or perin of FII| of F
name name array RecTbl EntiDI| Ent1D
| | name | | | 1ISI 1118
E | | | [A I 1ll+-- Comments -—-+

0 | | 2 | |) | 7]

12345678901234567890123456789012345678901234567890123456789012345678901234567890
¥, 0¥ * * D St T 11 R—— Rk RH

TABLEL { 10 52

ZK-4423-85

You can define one or two tables either individually, or as a table with an alternate table
defined in alternating format. To define an alternate table, you must make the following
entries for the alternate table in the same Extension specification you used to describe the
main table:

e Columns 46 through 51 (Table name) — Specify the name of the alternate table. Table
names can be up to six characters long. The first three characters must be TAB.

e Columns 52 through 54 (Length of entry) — Specify the length of each entry in the
alternate table.

Using Tables 7-5

o Column 55 (Data format) — If the alternate table contains numeric data, you must
specify its format. Specify P (packed decimal format), B (binary format), or leave
blank (overpunched decimal format). When you specify packed decimal format, make
sure the Length of entry represents the length of the numeric data in unpacked form.
When you specify binary format, the Length of entry you specify must indicate the
number of bytes required to store the binary field. (Use 4 for two-byte signed binary

numbers or 9 for four-byte signed binary numbers.)

This column must be blank for a compile-time table.

e Column 56 (Decimal positions) — For numeric data, specify the number of positions to
the right of the decimal point. You must specify 0 for no Decimal positions.

e Column 57 (Sequence) — You can specify A (ascending) or D (descending) to indicate
that the entries in a table are in the specified sequence, or leave this column blank to

specify an unsequenced table. ,

The main table’s values for Entries per table (columns 36 through 39), From file name (col-
umns 11 through 18), and Entries per record (columns 33 through 35) are also used for the

alternate table.

In the following example, two related tables are loaded from the input file INPUT. The

second table, TAB2, is the alternate table.

—————— F = Format (PB)
| === D = Decimal positions
Il --—-§ = Sequence (AD)
I
I11Alternating table or array
From To Table EntEnt LenllIname Len
file file or perin of Fill of F
name name array RecTbl EntiIDII EntiD
| I name | | 1 [ISI 1 118
E | | [| | 111+-- Comments ---+
0 1 1 | 2]] 6 I 7 |
12345678901234567890123456789012345678901234567890123456789012345678901234567890
... .0% * * [L 111 [T
E INPUT TAB1 2 4 5 0ATAB2 5 0A

ZK-4424-85

When defining compile-time tables, observe the following rules:

e If the compile-time table contains numeric data, it must be in overpunched format.
Therefore, leave column 43 (Data format) blank or leave column 55 (Data format)
blank, if you are using related tables in alternating format.

e The input records for compile-time tables must be in the same order in which the

tables appear in the Extension specification.

7-6 Using Tables

To define a pre-execution-time table, make the same entries you made for a single table.
Also, in columns 11 through 18 (From file name), enter the name of the input file that
contains the data for the table, as shown in the following example:

------ F = Format (PB)
| - D = Decimal positions
Il ----8 = Sequence (AD)
11
I11Alternating table or array
From To Table EntEnt Lenlliname Len
file file or perin of FIlI of F
name name array RecTbl EntiDI| EntiD
| | name | | I 1181 I 1S
E I | | 11 L | 1ll+-- Comments --—-+
(| 6 | 7 |
12345678901234567890123456789012345678901234567890123456789012345678901234567890)
*,...% * * D e TTT T - RREE
E INPUTFIL TABLEA 10 50 5

ZK-4425-85

The table input file must be defined in a File Description specification with T in column 16
(File designation).

When using pre-execution-time tables, observe the following rules:

e The input file cannot contain more entries than are defined for the table. If it does, a
run-time error occurs.

e The input file can contain fewer entries than are defined for the table, only if you do
not specify a sequence. When you do not specify a sequence and the table contains
fewer entries than are defined, the remaining entries are automatically filled with
blanks for character data or zeros for numeric data.

1.5 Searching Tables

The LOKUP operation code searches for an entry in a table. This operation starts with the
first entry, and searches each element for a match with the search argument. Specifying a
table sequence is not necessary when performing LOKUP operations for an equal match.
However, if you specify a sequence, the table can be searched faster. To save time searching

an unsequenced table, place the more frequently referenced entries at the beginning of the
table.

Using Tables 7-7

To search a table for an entry, you must make the following entries in the Calculation spec-
ification:

e Columns 18 through 27 (Factor 1) — Specify a field or literal representing the entry
you want to locate. Make sure the search argument has the same length and data
format as the entries of the table being searched.

e Columns 28 through 32 (Operation code) — Specify the LOKUP operation code.
e Columns 33 through 42 (Factor 2) — Specify the name of the table to be searched.

e Columns 54 through 59 (Resulting indicator) — Specify one or more indicators to con-
dition the search and to indicate whether the search has been successful. You can use
this indicator to condition subsequent calculation and output operations.

In the following example, the program tries to match the search argument, ITEM, with an
entry in the table, TABA. If a matching entry is found, indicator 11 is set on. If no matching
entry is found, the halt indicator, H1, is set on and the program terminates.

0 I | I 2 I 3 I 4 I 5 I b [7
12345678901234567890123456789012345678901234567830123456789012345678301234567830

FINPUT IPE F 30 DISK

FREPORT O 40 DISK

E TABA 10 50 5§

IINPUT AA 0f

I 1 5 ITEM

I 6 102FLD1

I 15 30 FLD2

c o ITEM LOKUPTABA 1

C Nit SETON Hi

¢ 11 100 ADD FLD1 NEW 62

OREPORT D 01 11

0 NEW B 20

//

10001100021000310004100051000610007100081000910010
20001200022000320004100052000610007200082000920010
30001300023000330004100053000610007300083000930010
40001400024000340004100054000610007400084000940010
50001500025000350004100055000610007500085000950010
/%

ZK-4431-85

In this compile-time table, there are ten entries in a record and fifty entries in a table. Each
entry is five characters long.

7-8 Using Tables

When you specify a sequence (either ascending or descending), you can use resulting
indicators (EQUAL, HIGH, and LOW) in the Calculation specification to indicate the con-
dition to search for and the result of the search. You can specify one of the following search
conditions:

e Columns 54 and 55 (HIGH) — Nearest to but greater than value only
e Columns 56 and 57 (LOW) — Nearest to but less than value only

e Columns 54 and 55, and 58 and 59 (EQUAL or HIGH) — Equal or nearest to but
greater than value

e Columns 56 and 57, and 58 and 59 (EQUAL or LOW) — Equal or nearest to but less
than value

The following program searches the unsequenced table TABLE2 for the value LENGTH,
and searches the sequenced table TABLE] to check for a value greater than or equal to
COST. If both conditions are satisfied, the subroutine PROCES is called to process the
entry.

0] i | 2 I 3 I 4 I 5 I b] 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567830
R R R R R R RN IR R L IR R TR R R IR NT N it b L P L S PPN

FFILE4 IT F 80 80 EDISK

FFILE2 IT F 80 80 EDISK

FINFILE IP F 80 80 DISK

E FILE4 TABLEL 1 6 3 2A

E FILE2 TABLE2 1 6 30

IINFILE AA 11

I 1 32C08T

I 4 B6OLENGTH
I 7 100NUMBER
c 1 LENGTH LOKUPTABLE?2 20
C N20 11 GOTO NOPROC

¢ i1 CosT LOKUPTABLE{ 26 26
C N2e GOTO NOPROC

c EXSR PROCES

c NOPROC TAG

ZK-4430-85

You can also specify a table in the Result field to retrieve the entry that corresponds to the
entry located in a LOKUP operation. (See the example in Section 7.6.)

Using Tables 7-9

7.6 Referencing Table Entries

When you use a table name as an operand in an operation other than as Factor 2 or other
than as the Result field in a LOKUP operation, the table name refers to the data retrieved
by the last successful search. You can then use the entry as an operand in a calculation or

modify the contents of the entry when the table name is used as the Result field in a
calculation.

In the following example, FLD1 is the search argument in the LOKUP operation. If the
program can locate FLD1 in TAB1, indicator 10 is set on. Then, the result of the calcula-
tion on the next line replaces the current contents of the located entry in TAB1 because the
table entry is used as the Result field.

Field length
Control level | Decimal positions
|

IHalf adjust (H)

|
| Indicators Operation [
11 | I 1IResulting
11 Factor | Factor Resultl Ilindicators
[i | 2 field I Il+ -0
Cl NxxNxxNxx | | | | I 11> £ = +- Comments -—-+
0 | i | 2 3 | 4 | 5 | b | 7
1?2345678901234567890123456789012345678901234567890123456789012345678901234567890
I"l.l**l*llllllll*lillIIIII*IIll*l!Ullllll*lllll*--***l*l*l*lllllllllllllllt!'ll
FLD1 LOKUPTAB{ 10
c 10 TAB4 MULT 100 TAB1

ZK-4426-85

You can specify which entry is the current entry for related tables, and then reference the
current entry in subsequent calculations. In the following example, FLD1 is the search
argument in the LOKUP operation. If the program locates FLD1 in TABI, that entry
becomes the current entry. Then, RPG II locates the corresponding entry in TAB2 and it
then becomes the current entry for TAB2. When you reference these entries in subsequent
calculations, RPG II uses the current entry in both tables.

7-10 Using Tables

Field length
Control level | Decimal positions
| IHalf adjust (H)
I

|
| Indicators Operation |
I | I 1lResulting
I Factor | Factor Resultl |lindicators
(I 1 | 2 field I 1+ -0
Cl NxxNxxNxx| | | | | 11> < = +- Comments -—+

0 1 | 2 I 3 | 4 I 5 | 6 | 7

12345678901234567890123456789012345678901234567890123456789012345678901234567890
I L T P IR R R R R R L L R EE T N L1 1 T T B
C FLD4 LOKUPTABA TAB2 10

ZK-4427-85

1.7 Updating Tables

To change the contents of an entry in or add new entries to a pre-execution table, edit the
input file that contains the table. You can also use a program to modify a table and output
the new entries.

The following example searches related tables in alternating format. The first table TABA
consists of a list of numbers of items in stock. The second table TABB consists of a list of
unit prices corresponding to the item numbers. We want to raise the unit price of each item
by 5% and output the updated table.

0 I 1 I 2 | 3 | 4 | 5 I 6 | 7
12345678901234567890123456789012345678901234567890123456783012345678901234567890
*% TR * RR——— R veea
FMASTER IPE F 30 DISK
FTABLEL IT F 22 EDISK
FTABLEZ 0 F 22 DISK
FREPORT 0 F 60 DISK

E TABLEYL TABLE2 TABA 2 10 5 TABB 62
IMASTER AA 01

I 1 5 ITEM

c o ITEM LOKUPTABA TABB 11
C N SETON Hi

¢ 4 1.05 MULT TABB TABB 62H
OREPORT D 1

0 TABB 20

ZK-4428-85

The related tables TABA and TABB are pre-execution-time tables. They are loaded from
the input table file TABLE1. In the Extension specification, the output file TABLEZ2 is
automatically created. (Automatic creation means that the output file does not require an
Output specification.)

Using Tables 7-11

When the program executes, it reads the first record from the primary input file MASTER.
ITEM is the search argument. If the search argument is matched, indicator 11 is set on and
the corresponding entry from TABB is made available for processing. If no match is found,
the halt indicator H1 is set on and the program terminates without creating the output file
TABLE2.

When the program ends, the tables TABA and TABB are written to file TABLE2 with the
same number of Entries per record as the table input file TABLE1.

7.8 Outputting Tables

When you specify the name of an output file in columns 19 through 26 (To file name) of the
Extension specification, your program creates the file automatically, as shown in the
example in Section 7.7.

When you specify a table as a field on an Output specification, you can output only the
entry found by the last LOKUP operation.

In the following example, the table TABSH is read from the file TABFILE. For this exam-
ple, the table is short, meaning not all 80 entries contain data. The LOKUP operation
searches the table for the first entry containing zeros. This entry is replaced with a field
read from the input file IFILE. The EXCPT operation code outputs the entry TABSH with
the new data. Remember, the entry that is updated and then output by the Output specifi-
cation is the entry found by the last LOKUP operation. When the last cycle occurs, the
entire updated table will be written to the file TABFILEZ2.

0 I 1 I 2 | 3 | 4 |] I b | 7
12345678901234567890123456789012345678901234567830123456789012345678901234567890

¥ ERAHE X X NN

FIFILE IP F 80 DISK

FTABFILE IT F 80 EDISK

FTABFILE20 F 80 DISK

FOFILE 0 F 80 DISK

E TABFILE TABFILEZTABSH 10 80 4 0
ITFILE AA 04

I 1 40ENTRY

c o0t 0000 LOKUPTABSH 20
C 0120 Z-ADDENTRY TABSH

C 0120 EXCPT

O00FILE E

0 TABSH 10

ZK-4429-85

7-12 Using Tables

Chapter 8
Using Arrays

An array, like a table, is a collection of similar items arranged in a specific order. You can
reference individual array elements by specifying an array index, or process an entire
array by specifying the array name during calculation operations.

You use an array instead of a table when you want to affect all the elements in the array
with a single reference or to reference a number of separate entries at the same time. For
example, when you want to compute a 5% sales tax for each element in an array, you use a
single specification to perform the operation for every element.

8.1 Types of Arrays

Array types are differentiated at the time they are loaded. An array can be loaded at any
one of the following times:

e Compile time
e Pre-execution time
e Execution time

Loading is the process by which the program assigns the data you specify to the elements
in an array.

The following characteristics determine when an array should be loaded:
e The contents of an array
o The frequency with which the elements in the array require changing

e The way the array is to be used

81

8.1.1 Compile-Time Arrays

Compile-time arrays are part of the source program; they are compiled with the source
program and become a permanent part of the object program. One advantage of compile-
time arrays is that they do not need to be loaded separately each time the program is run.
However, if you need to change any of the entries in a compile-time array, you must revise
the array, and then recompile the program with the revised array. You can, however, make
temporary changes in the array during calculation operations. To make these temporary
changes permanent, you would have to output the array and then, using the output file as
input, recompile the program. See Section 8.8 for information about outputting arrays.

When you use a compile-time array, the array input data must follow the source program
and any alternate sequence (ALTSEQ) records. If you use more than one array, the data for
each array must follow in the same sequence as is specified on the Extension specifications.

8-2 Using Arrays

The following example shows a source program with the input data for two compile-time

arrays and their alternate compile-time arrays:

0 | i | 2 | 3 | 4 | 5 | 6 | 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890
01010H NOPRIN
01040FPROCD IP F 80 DISK NOPDAT NOPRIN
01050FINLIST 0 F 132 OF PRINTER NOPRIN
02010E AR 1 5 5 0AALT 20 NOPRIN
02020E AR2 4 4 5 0AALT 42
03010IPROCD AA 01
030201 1 50PRODNO
030301 6 BOQUAN
04010C Z-ADD1 I 20
04020C PRODNO LOKUPARY, I 20
04030C Z-ADD4 T 20
04040C PRODNO LOKUPAR2, T 21
04050C 21 QUAN MULT ALT2,T AMT 72
050100INLIST H 201 1P
050200 OR OF
020300 UDATE 8" 7 7 7
050400 47 "INVENTORY PARTS LIST’

050500 PAGE 65 ' 0’

050600 H 1 iP

050700 OR OF

050800 32 "PRODUCT PRODUCT’
050900 53 'UNIT’

051000 H 2 iP

051100 OR OF

051200 17 'NUMBER’

051300 45 'DESCRIPTION aTy’
051400 64 'PRICE AMOUNT’
060100 D 1 01

060200 PRODNO 16 ' 0’

060300 20 ALTY, I 39

060400 N20 39 ’%%%NO DESCRIPTION***'
060450 21 ALT2, T 53 7 0. '

060500 QUAN 45 7 0 '

060700 N24 53 ’*NONE’

060800 21 AMT 65 7 , 0. '

060900 T1 LR

061000 27 'END OF PRICE LIST’

*

igigfggkgu compile-time array ARi)
19226NAIL and the alternate compile-time
251 16NUT array ALT

29258MAGNESIUM COVER
**

175260126181710059192260173292585843
/%

compile-time array AR2 and
the alternate compile-time
array ALT2
ZK-4448-85

Using Arrays 8-3

8.1.2 Pre-Execution-Time Arrays

Pre-execution-time arrays are not part of the object program. Rather, each array is loaded
separately (before the first program cycle begins) and is used like an input data file. One
advantage of pre-execution-time arrays is that you can make frequent changes to the
array without recompiling the program.

8.1.3 Execution-Time Arrays

Execution-time arrays are created by using Input or Calculation specifications. These
arrays are loaded either from input data or as the result of calculation operations after
program execution begins.

8.2 Creating Array Input Records

When creating array input records for compile-time and pre-execution-time arrays,
observe the following rules:

o The first entry must begin in character position 1; all entries must be contiguous, with
no space between entries, as shown in Figure 8-1:

12345678901234567890123456789012345678901234567890 —=-k—— array

entry

ZK-1473-83

Figure 8-1: Array Input Record
This array can be defined to consist of five entries. Each entry is ten characters long.

e Each array input record must have the same number of entries except the last. This
record can be shorter to accommodate an uneven number of entries.

e You cannot span an entry across two records. Therefore, the length of a record is lim-
ited to the device’s maximum record length. If you use related arrays in alternating
format, corresponding entries cannot exceed the maximum record length.

When creating compile-time array input records, observe the following rules:

e The first record must be preceded by a record containing either double slashes (//) and
a blank or double asterisks (**) and a blank in character positions 1 through 3.
Because these strings are delimiters, compile-time array records cannot contain these
characters in positions 1 through 3.

84 Using Arrays

e The last record of the last compile-time table or array can be followed by a record con-
taining /* in the first two character positions. This must be the last record in the
source program, if used.

When creating array input records for related pre-execution-time and compile-time arrays
in alternating format, you must enter an entry from the first array and then follow with
the corresponding entry from the second array.

If you define each entry from the first array to be one character long and each entry from
the second array to be three characters long, your array input record might appear as in
Figure 8-2:

entry

A

12221222122212221222 ————— one record

entry from second array
entry from first array
ZK-1472-83
Figure 8-2: Related Arrays

In this example, each record contains five entries. Each entry consists of two related
entries. The first entry is one character long. The second entry is three characters long.

8.3 Defining Arrays

To define any array, you must make the following entries in the Extension specification:

e Columns 27 through 32 (Array name)-Specify the name of the array. You cannot use
TAB as the first three letters of an array name.

e Columns 36 through 39 (Number of entries per array)-Specify the number of entries
in the array.

e Columns 40 through 42 (Length of entry)-Specify the length of each entry.

e Column 44 (Decimal positions)-For numeric data, specify the number of positions to
the right of the decimal point. You must specify 0 for no decimal positions.

You can indicate an order to the records in an array by specifying either A (ascending) or D
(descending) in column 45 (Sequence) of the Extension specification.

Using Arrays 8-5

8.3.1 Defining a Compile-Time Array

To define a compile-time array, you must make the following entry in the Extension speci-
fication in addition to the entries required for all arrays:

e Columns 33 through 35 (Entries per record)-Arrays can have one or more entries per
record. The length of all entries in a compile-time array cannot exceed 96 characters.

All records, except the last, must contain the same number of entries; each entry must
be the same length.

The following example describes the compile-time array Al. The array has eight entries
with four entries in each record. Each entry is a character field that is six bytes long. The
array records are located at the end of the program.

—————— F = Format (PB)
| - D = Decimal positions
Il ----§ = Sequence (AD)
11
I11Alternating table or array
From To Table EntEnt Lenliiname Len
file file or perin of Flll of F
name name array RecTbl EntIDII EntlD
I | name | | | [ISI I 118
11

| | | | | 1ll+-- Comments ---+
0] | 2 | 3 5 | 6 | 7 |

12345678901234567890123456789012345678901234567890123456789012345678901234567890)
* [e B T T [T T

E Al 4 8 6

*%

KAUNISKAUPPANAINENKAIKKI
MUKAVAPALJONJUUSTOOSOITE
V4 ;

ZK-4434-85

8.3.2 Defining a Pre-Execution-Time Array

To define a pre-execution-time array, you must make the following entries in the Exten-
sion specification in addition to the entries required for all arrays:

e Columns 11 through 18 (From file name)—Specify the name of the input file that con-
tains the data for the array. This input file is called a table input file. It must be
defined in a File Description specification with T in column 16 (File designation); the
T associates the file with the array.

8-6 Using Arrays

e Columns 33 through 35 (Entries per record)—Arrays can have one or more entries per
record. The length of all entries in a pre-execution-time array cannot exceed the max-
imum number of characters for the device from which the array is loaded. All records
except the last must contain the same number of entries; each entry must be the same
length.

If your pre-execution-time array contains numeric data, you can indicate the data format
by specifying P (packed decimal format) or B (binary format), or by leaving the column
blank (overpunched decimal format). When you specify packed decimal format, make sure
the Length of entry represents the length of the numeric data in unpacked form. When you
specify binary format, the Length of entry you specify must indicate the number of bytes
required to store the binary field. (Use 4 for two-byte signed binary numbers or 9 for four-
byte signed binary numbers.)

When using pre-execution-time arrays, observe the following rules:

e The input file cannot contain more entries than are defined for the array. If it does, a
run-time error occurs.

e The input file can contain fewer entries than are defined for the array, only if you do
not specify a sequence. When you do not specify a sequence and the array contains
fewer entries than are defined, the remaining entries are automatically filled, either
with blanks for alphanumeric data or with zeros for numeric data.

8.3.3 Defining an Execution-Time Array

To define an execution-time array, no additional entries need be made in the Extension
specification over those that are required for all arrays.

If you want to load an execution-time array from an input file, you must make the follow-
ing entries for the array input file in its Input specification:

e Column 43 (Data format)-When using arrays containing numeric data, indicate the
data format by specifying P (packed decimal format) or B (binary format), or by leav-
ing the entry blank (overpunched decimal format).

e Columns 44 through 51 (Field location)-Specify the beginning and ending character
positions of the entire array, partial array, or array element being loaded. If the data
format is packed decimal or binary, the field location must represent the actual size of
an array element in bytes.

The following example shows how to use the Input specification to load an entire execu-
tion-time array containing packed decimal numbers as a single field. The array, ARR, con-
tains seven elements; each element is four bytes long. The execution-time array is loaded
from the input file ARRIN as a single field in packed decimal format.

Using Arrays 8-7

0 | 1 | 2] 3 ! 4 | 5 | 6 | 7 !

12345678901234567890123456789012345678901234567890123456789012345678901234567890,

ARR 770

E
IARRIN AA 03
I P 1 280ARR

ZK-4435-85

You can load part of an execution-time array using one input field. The length of the field
must be a multiple of the length of one entry. The array is loaded beginning with the first
element and continues loading elements until it reaches the end of the input field.

0 | 1 | 2 ! 3 I 4 |] | 6 | 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

E ARR 25 1
IARRIN AA 03
I 1 100ARR

ZK-4436-85

In this example, ARR contains 25 entries. Each entry is one character long. RPG II loads
the first ten elements of the array ARR.

8.3.4 Defining Related Arrays in Alternating Format

You can define related arrays either individually or in alternating format. To define arrays
in alternating format, you must make the following entries for the second (alternate)
array in the same Extension specification you used to describe the first (main) array:

e Columns 46 through 51 (Array name)—Specify the name of the alternate array.

e Columns 52 through 54 (Length of entry)-Specify the length of an entry in the alter-
nate array.

e Column 55 (Data format)-You need only specify the data format for alternate pre-
execution-time arrays that contain numeric data. Specify P (packed decimal format)
or B (binary format), or leave the entry blank (overpunched decimal format). When
you specify packed decimal format, make sure the Length of entry represents the
length of the numeric data in unpacked form. When you specify binary format, the
Length of entry you specify indicates the number of bytes required to store the binary
field. (Use 4 for two-byte signed binary numbers or 9 for four-byte signed binary
numbers.)

8-8 Using Arrays

e Column 56 (Decimal positions)-For numeric data, specify the number of positions to
the right of the decimal point. You must specify 0 for no decimal positions.

e Column 57 (Sequence)—You can indicate the order of entries in an alternate array by
specifying either A (ascending) or D (descending).

The entries made in the following columns for the main array also apply to the alternate
array:

e Columns 11 through 18 (From file name)
e Columns 33 through 35 (Entries per record)
o Columns 36 through 39 (Entries in array)

The following example describes the pre-execution-time array Al with six entries in each
record and 24 entries in the array. The entries for array Al are alternated with entries for
array B1l. Al contains overpunched numeric data that is six digits long with no decimal
places. B1 contains overpunched numeric data that is four digits long with two decimal
places. Each record in the data file contains 6 entries for A1 and 6 entries for B1. The
arrays are loaded from the file ARRFIL.

A sample record from ARRFIL might look like this:

QOOO012450000002162400000343200000047390000005777700000B6350
\ T /\T AN T /\1 / A
Als1l Bl+1 ALS2 B1,2 . . .
------ F = Format (PB)
| - D = Decimal positions
Il ----§ = Sequence (AD)
11
I11Alternating table or array
From To Table EntEnt Lenllliname Len
file file or perin of FlI| of F
name name array RecTbl EntiIDI| Ent|D
| | name | | | 118l I IS
E | | | I 1 | 1l11+-- Comments ---+
0] 1] 2] 3] 4 | 5] b | 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890)
¥, % * * e B TITT] RN X
E ARRFIL Al 6 24 60 B1 42

ZK-4437-85

Using Arrays 8-9

8.4 Referencing Arrays

With tables, you can reference only the entry retrieved by the last LOKUP operation. With
arrays, you can refer to either an entire array or to an individual array element. One
advantage of referring to an entire array is that a single operation can affect all the ele-
ments in the array.

You can specify an array name, a comma, and an index that is up to ten characters for
Factor 1 or Factor 2 in a Calculation specification. You can specify an array element that is
up to six characters for the Result field.

You can use an entire array as Factor 1, Factor 2, or the Result field in the following opera-
tions:

e ADD

e Z-ADD
e SUB

e Z-SUB
e MULT
e DIV

e SQRT

e MOVE
¢ MOVEL
e MOVEA
e XFOOT
¢ LOKUP
e PARM

When you specify an array name in the following calculations, RPG II repeats the opera-
tion for each element in the array:

e ADD
e Z-ADD
o SUB
"o Z-SUB
e MULT

8-10 Using Arrays

¢ DIV

e SQRT

e MOVE
¢ MOVEL
e PARM

When using entire arrays (nonindexed) in any of the above calculations, observe the fol-
lowing rules:

e When you specify arrays with the same number of elements for Factor 1, Factor 2, and
the Result field, RPG II performs the operation on the first element, then on the sec-
ond element, and so on, until all the elements in the array have been processed.

If the arrays do not have the same number of elements, RPG II ends the operation
when the last element of the array with the fewest elements is processed.

¢ When one Factor is a field or constant and the other Factor or Result field is an entire
array, RPG II performs the operation once for every element in the array.

o If the operation requires Factor 2 only and the Result field is an array, RPG II per-
forms the operation once for every element in the array.

¢ You must specify an array for the Result field.
e You cannot use resulting indicators to condition calculations with arrays.

If you use an array for the Result field and an element as one of the Factors in a calculation,
RPGII alters the value of the element as a result of the calculation. When this occurs,
RPGII uses the new value in all subsequent operations that reference that element.
Suppose two numeric arrays have the data in Table 8-1:

Table 8-1: Array Element Values

Array Element Value

ARR1,1
ARR1,2
ARR1,3
ARR1 4

ARR2,1
ARR22
ARR2,3
ARR2,4

O U ~IDD U1 o

Using Arrays 8-11

Ifevery element of ARR1 is added to element ARR2,3 and the result is placed in ARR2, the
elements of the resulting array are in Table 8-2:

Table 8-2: Array Elements in Calculations

Array Element Expression Resulting Value

ARR2,1 (4 +5) 9
ARR2,2 3 +5) 8
ARR2,3 (1+5) 6
ARR2,4 5+ 6) 11

You can specify an array element in most operations that take a character or numeric field
as Factor 1, Factor 2, or the Result field. To specify an individual array element, code the
array name, a comma, and the index. For example, ARR,12 specifies the twelfth element of
array ARR. You can also use a field name to represent the index. For example, if you spec-
ify ARR,FLD, the index value is determined by the value of the field FLD.

An array index, whether it be a literal or a field, must always be greater than or equal to 1
and less than or equal to the number of elements in the array. If it is not, and you specify
the CHECK = (BOUNDS) qualifier to the RPG command, a run-time error will occur. If
not, and you do not specify the CHECK =(BOUNDS) qualifier to the RPG command,
unpredictable results will occur.

If you plan to use the same array element in a calculation for every program cycle, use a
constant number as the index. If, however, you want to reference different array elements,
use a field name as the index.

When array elements are scattered throughout an input record, each field must be
described individually on the Input specification. A field description indicates the position
of an element in the array. In such cases, there are two ways to load the data into the array:

e Assign a unique field name to each field of array data on the input record, and then
code calculations to move each data field individually into the appropriate array
element.

e Assign the array name with the proper index to each field of array data in the input
record. The array is loaded automatically as the data is read.

8-12 Using Arrays

The following example shows you how to load each element of an execution-time array

individually:

0 | 1 I 2 I 3

ARR

ARRIN AA 03

b b bt b e e [T

12345678901234567890123456789012345678901234567890123456789012345678901234567890

I 4 ! 5 I) I 7

7 70

1 404RR,1{
5 B80ARR,2
9 120ARR,3
13 160ARR, 4
17 200ARR,5
21 240ARR,6
25 280ARR,7

WO OU VUV

ZK-4438-85

In the following example, a company employs eight salespeople whose weekly sales
amounts are recorded in an input file. Each record of the file contains the weekly sales
amounts; one new record is recorded in the file each week. At the end of the year, the com-
pany likes to have a report listing the sales totals for each week and the grand total for the

entire year.

0 [1 I 2 I 3 I 4 I] I b | 7 I
12345678301234567890123456789012345678901234567890123456789012345678901234567890

FINPUTL IPE F 60 DISK

FREPORT 0 F 60 DISK

E WEEK 8 6 2

E YEAR 8 8 2

TIINPUTE AA OF

I 1 4B2WEEK

c 0 XFOOTWEEF. TOTAL 82

c o WEEK ADD YEAR YEAR

CLR XFOOTYEAR GRAND 102

OREPORT D 01

0 20 "WEEKLY TOTAL='

0 TOTAL vy, 7

0 T LR

0 20 "YEARLY TOTAL='

0 GRAND _v's , , .7

ZK-4439-85

Using Arrays 8-13

Two execution-time arrays, WEEK and YEAR, are defined in the Extension specification.
The Input specification tells the program to load the array WEEK after reading each sales
record from the input file INPUT1.

The input file for the execution-time array is not like a table input file with a correspond-
ing File Description specification. Therefore, data is not automatically loaded into the
array at the beginning of execution. Instead, you must describe the input data to be loaded
into the array on Input specifications.

The array elements are in consecutive positions in the input record. Therefore, when the
name of the array is specified as the field name, the data is automatically loaded into the
appropriate elements of the array as the input record is read. In this case, only one Input
specification is necessary to describe an input record of array data.

The XFOOT operation calculates the sum of all the elements in the array WEEK and puts
the sum in the Result field TOTAL. The next calculation adds one array to the other.
Adding arrays involves adding each element of one array to the corresponding element of
the other array. Normally, when you use an array name in a calculation, the operation is
performed on each element of the array; then, an array of the results is created. Therefore,
you cannot use resulting indicators to indicate the result of the operation.

These arrays have the same number of elements; therefore, any specified operation is per-
formed until all elements have been processed. In the case of two arrays containing differ-
ent numbers of elements, the specified operation would be performed only until the last
element in the shorter array was processed.

In the following example, the program produces results identical to those of the previous
example. However, here the array elements are scattered throughout the input record.

8-14 Using Arrays

0 | 1 I 2 | 3 | 4 | 5 | 6 | 7 |

12345678901234567890123456789012345678901234567890123456789012345678901234567890

FINPUT2 IPE F 60 DISK

FREPORT 0 F 60 DISK

E WEEK 8 6 2

E YEAR 8 8 2

IINPUT AA 01

I 1 62WEEK,1
I 8 132WEEK,2
I 15 202WEEK,3
I 22 272WEEK, 4
I 29 342UEEK,5
I 36 412UEEK, 6
I 43 4B2UEEK,7
I 50 552WEEK,8
¢ o1 XFOOTWEEK TOTAL 82

c of WEEK ADD YEAR YEAR

CLR XFOOTYEAR GRAND 102
OREPORT D 01

0 20 'WEEKLY TOTAL='
0 TOTAL 3% 'y , .7

0 T LR

0 20 'YEARLY TOTAL=’
0 GRAND _v's , , .7

ZK-4440-85

8.5 Searching Arrays

The LOKUP operation code can search for an element in an array. To determine whether a
particular element exists, you specify a search argument and define the conditions under
which the LOKUP operation will succeed. You must also use a resulting indicator that
specifies the condition and that will indicate the result of the LOKUP operation. The indi-
cator is set on only if the search is successful; otherwise, the indicator is set off. When
searching for a HIGH or LOW condition, you must specify a sequence for the array in col-
umn 45 (Sequence) of the Extension specification. Enter an indicator in these columns to
test for the following conditions:

e Columns 58 and 59 (EQUAL)-Equal
e Columns 54 and 55 (HIGH)-Nearest to but greater than value
e Columns 56 and 57 (LOW)-Nearest to but less than value

e Columns 54 and 55, and 58 and 59 (EQUAL or HIGH)-Equal or nearest to but greater
than value

Columns 56 and 57, and 58 and 59 (EQUAL or LOW)-Equal or nearest to but less
than value

Using Arrays 8-15

If you specify both EQUAL and HIGH or EQUAL and LOW, the EQUAL condition takes
precedence if entries satisfy both conditions.

To search an array for an element, you must make the following entries in the Calculation
specification:

e Columns 18 through 27 (Factor 1)-Specify a field, literal, array element, or table rep-
resenting the element you want to locate. Make sure the search argument has the
same length and data format as the elements in the array being searched.

e Columns 28 through 32 (Operation code)—Specify the LOKUP operation code.
e Columns 33 through 42 (Factor 2)—Specify the name of the array to be searched.

e Columns 54 through 59 (Resulting indicator)—Specify one or more indicators to test
for a condition and to indicate whether the search has been successful. You can use
these indicators to condition subsequent calculation and output operations.

In the following example, the program tries to match the search argument QTY with an

entry in the array ARR. If a matching entry is found, indicator 11 is set on. If the entry is
not found, indicator 11 is set off.

Field length
Control level I Decimal positions
| IHalf adjust (H)

|
| Indicators Operation I
I | I llResulting
11 Factor | Factor Resultl |Ilindicators
I 1 | 2 field I 11+ -0
Cl NxxNxxNxx| | | | I 11> < = +- Comments --+
0 | i | : | 3 | 4 | 5 | 6 | 7 |
12345678901234567890123456789012345678901234567890123456789012345678901234567890),
'} * * * * K——RAX % ¥ ¥
cC 01 Ty LOKUPARR i1

ZK-4441-85

8-16 Using Arrays

If you want to start searching an array at some point other than at the beginning, specify
the array and its index where you want to begin the search. The index can be a literal or a

field name. In the following example, the search begins with the seventh element of array
ARR:

Field length
Control level | Decimal positions
| |Half adjust (H)

|
| Indicators Operation o
| | I llResulting
1 Factor | Factor Result! Ilindicators
11 i | 2 field I 11+ -0
Cl NXxNxxNxx | | | | I 11> < = +- Comments --+
0] i] 2 | 3] 4 | 5 | 3 | 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890
T * * * * H——NRE X X %
c o aTy LOKUPARR, 7 11

ZK-4442-85

If you want to reference the element found in the last LOKUP operation, specify the array
name and an index field in Factor 2 of the LOKUP operation. If the search is successful, the
index value of the array element that satisfied the condition is stored in the index field and
the resulting indicator is set on. If the search is unsuccessful, the value 1 is placed in the
index field and the resulting indicator is set off. If you do not specify the index field, a suc-
cessful LOKUP operation indicates whether an element contains the data for which you
are searching, but does not return the element’s index value.

If you want to begin the search with the first element, you must initialize the index field to
1 before the LOKUP operation.

You can also search for more than one array element by locating all the elements in an
array that satisfy a certain condition. When the condition is satisfied, the program adds 1
to the value in the index field to continue the search with the next element.

In the following example:
e The program loads a pre-execution-time array from the file INPUT1.

e The search argument SEARCH contains the value of 50000; the LOKUP operation
searches for any array element containing a value lower than the search argument.

o If the search is successful, indicator 56 is set on. This indicator causes the EXCPT
operation to print the contents of each array element (with its index) that satisfies the
search condition.

o After the program prints the array element, it sets indicator 56 off and adds 1 to the
field containing the array index. As long as the index field remains below 11, the
search continues by setting indicator 54 on; this causes the program to loop back to
line 01090. This process continues until all 10 elements are searched.

Using Arrays 8-17

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

12345678901234567890123456789012345678901234567890123456789012345678901234567890)

01020FINPUTL IT F 50 EDISK
01030FINPUT2 IPE F 10 DISK
02040FOUTPUT 0 F 60 DISK
01050E INPUTY ARYL 10 10 5 0D
01060IINPUT2 AA OF
010701 1 5O0SEARCH
01080C 01 Z-ADD1 I 20
01090C Loop TAG
04100C 01 SEARCH LOKUPARY1, I 56
01105C b6 EXCPT
01107C SETOF 56
04110C 01 i ADD I I
01120C 01 11 COMP I 54
01130C 01 54 GOTO LOOP
0114000UTPUT E 56
011500 7 "INDEX='
011600 I 9
011700 18 ’VALUE='
011800 ARY1, I 23
ZK-4443-85
An example of the output file might appear as follows:
0 ! 1 ! 2 ! 3 ! 4 ! 5 ' B ! 7 !
12345678901234567890123456789012345678901234567890123456789012345678901234567890
INDEX=06 VALUE=40000
INDEX=07 VALUE=30000
INDEX=08 VUALUE=20000
INDEX=09 UALUE=10000
INDEX=10 UALUE=00000

The column numbers in this example are for reference and do not appear in the output.

8.6 Moving Array Data

You can use the MOVEA operation code to move:
e Contiguous array elements to a field
e A field or literal to contiguous array elements

e Contiguous elements of one array to contiguous elements of another array

8-18 Using Arrays

Ifthe array is not indexed, data movement starts with the first element of an array or field.
Ifthe array is indexed, the move starts with the element you specify. Data movement stops
when either of the following conditions is met:

e The last array element is moved or filled.

e The number of characters moved equals the length of the shorter field, as specified
either in columns 33 through 42 (Factor 2) or in columns 43 through 48 (Result field)
of the Calculation specification.

See Part II, Chapter 3 for more information on the MOVEA operation code.

The following example shows a pre-execution-time array ARR20 being loaded from the file
ARRFILE. A copy of ARR20 is moved into the execution-time array ARR15 using the
MOVEA operation code.

] | 1 I 2 I 3 I 4 ! 5 I 6 I 7 [
12345678901234567890123456789012345678901234567890123456789012345678901234567890
FARRFILE IT F 80 EDISK
E ARRFILE ARR20 § 60 4
E ARR1S 50 4
C MOVEAARR20 ARR1S

ZK-4444-85

8.7 Updating Arrays

To change the contents of an element in a compile-time array, or to add new elements to
such an array, edit the source program containing the array data, and then recompile the
program.

To change the contents of an element in a pre-execution-time array, or to add new elements
to such an array, edit the table input file that contains the array.

You can make temporary changes in arrays during program execution by using the array
name as a Result field. You can make these temporary changes permanent by writing the
array to an output file that you can use later as an input file.

The following example describes the array COSTL, which is made up of six-digit
overpunched numeric data with two decimal places. This array is read from the file
ARRAYIN. During program execution, changes can be made to this array. At the comple-
tion of the program the array will be written to the output file ARRAYOUT. The format in
which it is written is the same as that in which it was read; that is, eight entries in each
record with each entry being a six-digit overpunched numeric with two decimal positions.
The files ARRAYIN and ARRAYOUT must also be described on File Description specifica-
tions as an input table file (ARRAYIN) and an output file (ARRAYOUT).

Using Arrays 8-19

Format (PB)

| -—--- D = Decimal positions
Il ----8 = Sequence (AD)
11
I11Alternating table or array
From To Table EntEnt Lenlliname Len
file file or perin of FIII of F
name name array RecTbl EntiDI| EntiD
I | name | | | 118] I 118
1

| | | |1l+-- Comments ---+

0 I 1 | 2 | | 6 | 7

12345678901234567890123456789012345678901234567890123456789012345678901234567890)
FAE) * * R e T 1 T K== R RHK
E ARRAYIN ARRAYOUTCOSTL 8 100 6 2

ZK-4445-85

8.8 Outputting Arrays

You can output either an entire array or individual array elements. To output entire
arrays, you can make entries either in an Extension specification or in an Output
specification.

To write a compile-time or pre-execution-time array using an Extension specification, you
must make the following entry:

e Columns 19 through 26 (To file name)—Specify the name of a sequential output file.
This file must have been previously defined in a File Description specification. The
program automatically writes the compile-time or pre-execution-time array you spec-
ified in the Extension specification to this output file after reaching the end of the
program.

To write a compile-time, pre-execution-time, or execution-time array using an Output
specification, you must make the following entries:

e Columns 32 through 37 (Field name)-Specify the name of the array you want to write.
The array is written every time the program processes a record unless you specify
indicators in columns 23 through 31 of the Output specification.

e Columns 40 through 43 (End position)-Specify the character position where the last
entry of the array ends.

8-20 Using Arrays

In the following example, for each record read from FILEA, the execution-time array
DISCNT is written out to the file FILEB using Output specifications:

0 | 1 | 2 ! 3 | 4 | 5 | 6 I 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890)

E COSTLIST PRICE 5 10 52

E DISCNT 10 52

IFILEA AA 04

I 1 22PERCNT
c 01 PRICE MULT PERCNT DISCNT

OFILEB D 1 01

60 'COST WITH DISCOUNT OF ’
PERCNT3 72

74 1'%’

ocoooo

DISCNT 120 * 40. '
ZK-4446-85

To output an individual array element, specify the array and the index of the desired ele-
ment (in the form ARR,n where n is either a constant or a field name) in columns 32
through 37 (Field name).

The following example outputs only the first and second element of the array DSCT:

0 | 1 | 2 | 3 | 4 |] | 6 | 7

12345678901234567890123456789012345678901234567890123456789012345678901234567890

E COSTLIST PRICE & 10 § 2

E DSCT 10 52

IFILEA AA OF

I 1 22PERCNT
c O PRICE MULT PERCNT DSCT

OFILEB D 1 04

20 'ITEM {1 COST: '
DSCT, 1 327 $0. '

50 "ITEM 2 COST: '
DSCT, 2 62 ' $0. '

oOo0o0o

ZK-4447-85

If you want to output numeric array elements, you can use Edit codes or Edit words to add
commas or dollar signs, or to suppress leading zeros. Do not use Edit codes or Edit words to
modify array data if you are going to use the data as input to subsequent programs.

When you specify an Edit code with an entire array (nonindexed), RPG II automatically
inserts two spaces between elements of the array in the output record.

Using Arrays 8-21

Chapter 9
Calling System Routines from VAX RPG I

9.1 Introduction

This chapter describes the use of RPG II operation codes to access VAX/VMS Run-Time
Library (RTL) procedures, VAX/VMS system services, utilities (such as FMS and TDMS),
and subprograms written in languages other than RPGII. You can access these routines by
using the following RPG II operation codes:

e The CALL operation code, which invokes the routine.
e The PLIST operation code, which defines the parameter list, if used.

e The PARM, PARMD, and PARMYV operation codes, which determine the parameter
passing mechanism.

e The GIVNG operation code, which receives a function value or return status.
See Part II, Chapter 3 for more information on these operation codes.

Although calling RTL procedures, system services, and subprograms can provide many
advantages, keep the following suggestions in mind:

e Do not call these routines if you can perform the same task using RPG II.
e Do not mix RTL and RPG II output routines.

e If an RTL procedure and a system service perform the same task, use the RTL
procedure.

System routines are prewritten subroutines and functions provided by VAX/VMS. Each
system routine has an entry point (the routine or service name) and an argument list. It
may also return a function value or condition value to the program that calls it.

System routines perform common tasks, such as finding the square root of a number or
allocating virtual memory. If you use system routines, you will not have to rewrite code
every time you want to perform a common task. Using system routines allows you to con-
centrate on application specific tasks, not utility tasks. Some system routines even help
independent parts of programs to allocate resources cooperatively.

9-1

A system routine can be called from any VAX language providing that language supports
the data structures required by the particular routine. The results of a system routine will
be the same, no matter what language you use.

The system routines that are most commonly called from user programs are Run-Time
Library routines and system services. These system routines are documented in the
VAX/VMS Run-Time Library Routines Reference Manual and the VAX/VMS System
Services Reference Manual.

9.1.1 Run-Time Library Routines

Run-Time Library routines are grouped in facilities that represent specific types of com-
mon tasks. These facilities and the types of tasks they perform are shown in Table 9-1.

Table 9-1: Run-Time Library Facilities

Facility Types of Tasks the Routines Perform

LIB$ General purpose procedures. Obtain records from devices, manipulate strings, con-
vert data types for I/O, allocate resources, obtain the system date or time, signal
exceptions, establish condition handlers, enable detection of hardware exceptions,
and process cross-reference data.

MTH$ Mathematics procedures. Perform arithmetic, algebraic, and trigonometric calcu-
lations.
OTS$ Language-independent support procedures. Perform tasks such as data type con-

versions as part of a compiler’s generated code.

SMG$ Screen management procedures. Assist you in designing, composing, and keeping
track of complex images on a video screen; provide terminal-independent tasks.

STR$ String manipulation procedures. Perform tasks such as searching for substrings,
concatenating strings, and prefixing and appending strings.

9.1.2 System Service Routines

System service routines perform various tasks, such as controlling processes, communicat-
ing among processes, and coordinating I/O.

Unlike Run-Time Library routines which are divided into facilities, all system services
share the same facility prefix (SYS$). However, these services are logically divided into
groups of services which perform similar tasks. Table 9-2 describes these groups.

9-2 Calling System Routines from VAX RPG II

Table 9-2: Groups of System Services

Group Types of Tasks the Services Perform

AST Allow processes to control the handling of ASTs.

Change Mode Change the access mode of particular routines.

Condition Handling Designate condition handlers for special purposes.

Event Flag Clear, set, read, and wait for event flags, and associate with event flag
clusters.

Information Return information about the system, queues, jobs, processes, locks,
and devices.

Input/Output Perform I/O directly, without going through VAX RMS.

Lock Management Enable processes to coordinate access to shareable system resources.

Logical Names Provide methods of accessing and maintaining pairs of character
string logical names and equivalence names.

Memory Management Increase or decrease available virtual memory, control paging and
swapping, and create and access shareable files of code or data.

Process Control Create, delete, and control execution of processes.

Security Enhance the security of VAX/VMS systems.

Timer and Time Schedule events, obtain and format binary time values.

Conversion

9.2 Calling System Routines from VAX RPG Il

There are seven steps required to call any system routine.

1.

A T

7.

Determine the type of call (procedure or function).
Declare the arguments.

Declare the system routine.

Include symbol definitions (if applicable).

Call the routine or service.

Check the condition value (if applicable).

Locate the result.

As an example, you can follow these steps in writing a program to call LIB§STAT_TIMER.
LIB$STAT_TIMER returns to its caller one of five statistics: (1) elapsed time, (2) CPU
time, (3) buffered I/O count, (4) direct I/O count, or (5) page fault count.

Calling System Routines from VAX RPG II 9-3

9.2.1 Determine the Type of Call (Procedure or Function)

Before you can set up a call to a system routine, you must determine whether the call to the
routine or service should be a procedure call or a function call. N

A system routine must be called as a function if:
e it returns a function value, or

e it returns a condition value.

NOTE

To call a system routine as a function in RPG II, you must use the GIVNG
opcode. A system routine should be called as a procedure only if it does not
return a function value or a condition value.

Although it is possible to call most of the system routines as procedures, it is recommended
that you do so only when the text in the RETURNS section says:

RETURNS
None

You may call a system routine as a procedure if you are not interested in the condition code.
However, this is highly discouraged because not checking the condition code can lead to
many undiscovered errors. (Checking condition values is described in Section 9.2.6.)

To determine whether a routine returns a function value or a condition value, look at the
description provided in the RETURNS section of the system routine description. For
example, the RETURNS section of the LIB$STAT_TIMER documentation contains the
following description:

RETURNS
VMS Usage: cond-_value
type: longword (unsigned)
access: write only

mechanism: by value

If this text appears in the RETURNS section, the system routine returns a condition value
and must be called as a function. In routines which return function values, the function
value is described in the RETURNS section.

Because LIB$STAT_TIMER does return condition values, you must call it as a function.

94 Calling System Routines from VAX RPG II ~

9.2.2 Declare the Arguments

Most system routines have one or more arguments. These arguments are used to pass
information to the system routine and to obtain information from the system routine.
Arguments can be required or optional.

For example, consider the arguments for the Run-Time Library routine
LIB$STAT_TIMER. This routine had three arguments: two are required and one is
optional. You can tell which arguments are required by looking at the FORMAT section in
the documentation of the system routine. In the case of LIB§STAT_TIMER, the format is:

LIBSSTAT_TIMER code ,value [,handle-adr]

The handle-adr argument appears in brackets ([]) indicating that it is an optional argu-
ment. Only optional arguments to a system routine appear in brackets in that routine’s
FORMAT section. For this example, you only want to use the two required arguments, so
you need declare only the first two arguments.

To declare an argument for a system routine, first look at that argument’s description. The
argument description provided for the code argument is as follows:

code

VMS Usage: function_code

type: longword integer (signed)
access: read only

mechanism: by reference

Code specifies the statistic to be returned. The code argument contains the address of a
signed longword integer that is this code. It must be an integer from one to five.

Next, look at the VMS Usage entry, function_code. Table 9-3 lists the VAX RPG II
equivalent for each of the VMS Usages. You can declare the argument using the code pro-
vided in Table 9-3.

When your program passes a parameter by reference, the parameter list contains the
address of the location that contains the value of the parameter. Most languages pass sca-
lar data by reference.

When passing a parameter by reference, you may specify an access type and a data type in
columns 54 through 57 of the Calculation specification for numeric data. Character data is
always passed as a fixed-length string. Numeric data, by default, is passed as a packed
decimal string. See Sections 9.2.2.2 and 9.2.2.3 for information on access type and data

type.

Calling System Routines from VAX RPG II 9-5

In the following example, the parameter contained in the field CODE is passed by
reference.

Field length
Control level | Decimal positions
| IHalf adjust (H)

|
| Indicators Operation Il
(| | | 1lResulting
(I Factor | Factor Resultl |lindicators
(I i | 2 field I I+ -0
Cl NxxNxxNxx| | | | I 11> < = +- Comments --+
[i | 2 | 3 | 4 | 5 | 6 | 7 |
12345678901234567890123456789012345678901234567890123456789012345678901234567890,
X% % * * * * K——KE% ¥ ¥ ¥
C PARM CODE 90 RL
ZK-4630-85

The procedure used in declaring an argument is also used in declaring the value argu-
ment. First, check the description of the value argument.

value

VMS Usage: varying-—arg
type: unspecified
access: write only

mechanism: by reference

The value argument contains the address of a longword or quadword, and that is the statis-
tic returned by LIB$STAT_TIMER. All statistics are longword integers except elapsed
time, which is a quadword.

The VMS Usage varying_arg indicates that the data type returned by the routine is
dependent on other factors. In this case, the data type returned is dependent on the statis-
tic you want to return. For this example, the statistic that you want to return is code 5,
page fault count. This statistic is returned in a signed longword integer. Therefore, you
need to check Table 9-3 to find the VAX RPG II statements that are used to declare a
longword_signed.

9-6 Calling System Routines from VAX RPG II

Field length
Control level I Decimal positions
I 1Half adjust (H)

|
| Indicators Operation I
1 | I IlResulting
1| Factor | Factor Result! Ilindicators
11 i | 2 field I 11+ -0
Cl NxxNxxNxx| | | | I 1l « = +- Comments —-+
0 | i | 2 | 3 | 4 [] | b | 7 |
12345678901234567890123456789012345678901234567890123456789012345678901234567890
T * * * TR EE
C PARM CODE 90 RL
C PARM VALUE 90 WL

ZK-4631-85

Regardless of which Run-Time Library routine or system service you are calling, the decla-
ration statements for the arguments can be found by looking up the VMS Usage in Table
9-3.

Table 9-3: VMS Data Structures

VMS Data Structure VAX RPG II Implementation
access_bit_names NA
access_mode Declare as text string of one byte. When using this data struc-

ture, you must interpret the ASCII contents of the string to
determine the access_mode.

address L

address_range Q'

arg_list NA

ast_procedure L

Boolean NA

byte_signed Declare as text string of one byte. When using this data struc-
ture, you must interpret the ASCII contents of the string.

byte_unsigned Same as for byte_signed.!

channel w!

char_string TEXT STRING

complex_number DATA STRUCTURE

! Technically, RPG II does not support unsigned data structures. However, unsigned information may be passed
using the signed equivalent as long as the contents do not exceed the range of the signed data structure.

(continued on next page)

Calling System Routines from VAX RPG II 9-7

Table 9-3: VMS Data Structures (Cont.)

VMS Data Structure VAX RPG II Implementation

cond_value condvalue GIVNG OPCODE
Columns 43 through 58

context L

date_time Q!

device_name TEXT STRING

ef_cluster_name TEXT STRING

ef_number L

exit_handler_block DATA STRUCTURE

fab

file_protection

floating_point

function_code
io_status_block
item_list_2
item_list_3
item_quota_list
lock_id
lock_status_block
lock_value_block
logical_name
longword_signed
longword_unsigned
mask_byte
mask_longword
mask_quadword

mask_word

Implicitly generated by the compiler on your behalf. It is not pos-
sible for a user to access the fab data structure from an RPG II
program.

Wl

ForD
Column 55

F

Q

DATA STRUCTURE
DATA STRUCTURE
NA

L

DATA STRUCTURE
DATA STRUCTURE
TEXT STRING

L

L

NA

L

Q

w

! Technically, RPG II does not support unsigned data structures. However, unsigned information may be passed
using the signed equivalent as long as the contents do not exceed the range of the signed data structure.

(continued on next page)

9-8 Calling System Routines from VAX RPG II

Table 9-3: VMS Data Structures (Cont.)

VMS Data Structure VAX RPG II Implementation
null_arg NA
octaword_signed DATA STRUCTURE
octaword_unsigned DATA STRUCTURE
page_protection L

procedure L

process_id L

process_name TEXT STRING
quadword_signed Q
quadword_unsigned Q!

rights_holder Q'

rights_id L

rab NA

section_id Q'

section_name TEXT STRING
system_access_id Q!

time_name TEXT STRING

uic L

user_arg L

varying_arg
vector_byte_signed
vector_byte_unsigned

vector_longword_signed

vector_longword_unsigned
vector_quadword_signed

vector_quadword_unsigned

vector_word_signed
vector_word_unsigned
word_signed

word_unsigned

Dependent upon application.

ARRAY OF CHARACTER STRING
ARRAY OF CHARACTER STRING!
ARRAY OF LONGWORD INTEGER (SIGNED) L
ARRAY OF LONGWORD INTEGER L!

NA

NA

ARRAY OF WORD INTEGER (SIGNED) W
ARRAY OF WORD INTEGER W*

W

wt

! Technically, RPG II does not support unsigned data structures. However, unsigned information may be passed
using the signed equivalent as long as the contents do not exceed the range of the signed data structure.

Calling System Routines from VAX RPG II 9-9

9.2.2.1 Parameter Passing Mechanisms
This section describes conventions for passing arguments in RPG II programs.

A calling program can pass a parameter in one of three ways:
e By value
The PARMYV operation code passes a parameter by value.
e By reference
The PARM operation code passes a parameter by reference.
e By descriptor
The PARMD operation code passes a parameter by descriptor.

When your program passes a parameter by value, the parameter list contains the actual,
uninterpreted 32-bit value of the parameter.

In the following example, the constant 0 is passed by value.
Field length

Control level | Decimal positions
| ' I IHalf adjust (H)

| Indicators Operation 1l
11 | I 1lResulting
I Factor | Factor Result!l Ilindicators
I 1 i | 2 field | |1+ -0
Cl NxxNxxNxx| | | | | 1l* < = +- Comments --+
0 [1 | 2 | 3 | 4 | 5 | 6] 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890
*E ¥ * * * * e TT I
C PARMY 0

ZK-4632-85

When your program passes a parameter by reference, the parameter list contains the
address of the location that contains the value of the parameter. Most languages pass sca-
lar data by reference.

When passing a parameter by reference, you may specify an access type and a data type in
columns 54 through 57 of the Calculation specification for numeric data. Character data is

always passed as a fixed-length string. Numeric data, by default, is passed as a packed
decimal string.

9-10 Calling System Routines from VAX RPG II

In the following example, the parameter contained in the field TIMLEN is passed by
reference.

Field length
Control level | Decimal positions
| | IHalf adjust (H)

| Indicators Operation [
I | I IlResulting
11 Factor | Factor Resultl |lindicators
11 i | 2 field I 11+ -0
Cl NxxNxxNxx | | | 1l* < = +- Comments --+

0 | 1 | 2 3 I 4 I] I 6 | 7]
12345678901234567890123456789012345678901234567830123456789012345678901234567890)

* e TN EE
C PARM TIMLEN 90 WL

ZK-4633-85

When your program passes a parameter by descriptor, the parameter list entry contains
the address of a descriptor for the parameter.

In the following example, the field TIMBUF containing the parameter (fixed-length
string) is passed by descriptor.

Field length
Control level | Decimal positions
| | IHalf adjust (H)

| Indicators Operation ol

(| | I IIResulting

(I Factor | Factor Result! |lindicators

|1 i | 2 field I i+ -0
Cl NxxNxxNxx| | | | I 11> < = +- Comments --+
0 | i | 2 | 3] 4] 5 | 6 | 7]

12345678901234567890123456789012345678901234567890123456789012345678901234567890

[T * * * * K——kEE X X ¥

C PARMD TIMBUF 23

ZK-4634-85

Calling System Routines from VAX RPG II 9-11

9.2.2.2 Parameter Access Types (column 54)

The parameter access type indicates the actions that the RTL procedure is permitted to
perform on the parameter. Access types that you can use in RPG II are:

e Read-only—-R
The parameter can only be read.
e Write-only—W
The parameter can only be written.
e Modify—-M
The parameter can be modified (read and written).

You can specify only the parameter access type and data type of a parameter with the

PARM operation code. If you specify a parameter access type, you must also specify its data
type.

In the following example, the TIMLEN field is a longword integer (column 55) with write-
only access (column 54).

Field length
Control level | Decimal positions
] I IHalf adjust (H)

I Indicators Operation Il

Il | I IIResulting
I Factor | Factor Result! [Ilindicators
I 1 i | 2 field | 11+ -0

Cl NxxNxxNxx| |

| I Il* < = +- Comments --+
0 | i | 2 | 3] 4 | 5] b I 7
12345678901234567890123456789012345678901234567890123456789012345678901 234567890

* k-—KEK K K X
c PARM TIMLEN 90 WL

ZK-4635-85

9.2.2.3 Parameter Data Types (column 55-57)

If you specify a parameter access type, you must also specify its data type. When a program
passes a parameter to an RTL procedure, the RTL procedure expects the parameter to be of

a particular data type. The parameter data types that can be passed from an RPG II pro-
gram are:

¢ Word integer (signed) - W
e Longword integer (signed)—L
¢ Quadword integer (signed)—-Q

e F_floating single-precision—F

9-12 Calling System Routines from VAX RPG II

e D_floating double precision—D

e Numeric string, right overpunched sign— NRO

e Packed decimal string (default data type for numeric data)
e Character string (default data type for character data)

Define the parameter data type in columns 55 through 57 of the Calculation specification.
You can specify a data type only for numeric fields passed by reference.

In the following example, the data type of the numeric field TIMLEN is a right
overpunched sign.

Field length
Control level I Decimal positions
| IHalf adjust (H)

|
| Indicators Operation Il
(I | I 1lResulting
I Factor | Factor Resultl |lindicators
11 | | 2 field I 11+ -0

|

Cl NxxNxxNxx|

| | 1l* < = +- Comments --+
[3] 4 | [| 6 | 7 I

0 | 1 | 2

12345678901234567890123456789012345678901234567890123456789012345678901234567890
* R-—kEX X X X
c PARM TIMLEN MNRO

ZK-4637-85

Calling System Routines from VAX RPG II 9-13

9.2.3 Declare the System Routine

Declare a system routine in your program as you declare any other external routine. The

declaration statement will vary depending on whether the system routine is being called
as a procedure or function.

The routine declaration statement for calling LIB$STAT_TIMER as a function should
appear as follows:

Field length
Control level | Decimal positions
I [Half adjust (H)

I Indicators Operation (N
I | I IlResulting
I Factor | Factor Result!l Ilindicators
[i | 2 field I 11+ -0
Cl NxxNxxNxx| | | | I 1l» < = +- Comments --+
0 | 1 | 2 [3 | 4 | 5 | 6 | 7 |
12345678901234567890123456789012345678901234567890123456789012345678901234567890),
[T * * * * A——KE % X X%
C STATIN EXTRN’LIB$STAT.TIMER’
C CALL STATIM
C PARM CODE 90 RL
C PARM VALUE 90 WL
C GIVNG RETVAL

ZK-4638-85

The routine declaration statement for calling LIBSSTAT_TIMER as a procedure should
appear as follows:

Field length
Control level I Decimal positions
| 1Half adjust (H)

| Indicators Operation 11l
I | I 1lResulting
[Factor | Factor Result! |lindicators
I | | 2 field I 11+ -0
| NxXNxxNxx| | | | I 11> < = +- Comments --+
| 1 [2 [3 | 4 | 5 | 3 1 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890,

* * * Fo—KEE X X ¥
c STATIM EXTRN’LIB$STAT_TIMER’

C CALL STATIM

C PARM CODE 90 RL

c PARM VALUE 90 WL

ZK-4639-85

9-14 Calling System Routines from VAX RPG I1

9.2.4 Include Symhol Definitions

Many system routines depend on values that are defined in separate symbol definition
files. For example, when you call any Run-Time Library routine in the SMGS$ facility, you
must include SMGDEF.

For Run-Time Library routines, you need to include symbol definitions such as when you
are calling an SMGS$ routine, or when you are calling a routine that is a jacket to a system
service. (A jacket routine in the Run-Time Library is a routine that provides a simpler,
more easily used interface to a system service.)

All system services, however, require that you include SSDEF to check status. Many other
system services require other symbol definitions as well. To determine whether or not you
need to include other symbol definitions for the system service you wish to call, refer to the
documentation for that service. If the documentation states that values are defined in the
XXXXX macro, you must include those symbol definitions in your program.

In VAX RPG II a definition macro is included as follows:

$ CREATE SMGDEF.MAR
+TITLE SMGDEF - Define SMG$% constants
$SMGDEF GLOBAL
+END

$MACRD SMGDEF

$LINK RPGPROGSMGDEF

As you can see from the documentation for LIB$STAT_TIMER, it does not use any
included definition files, so this step is not applicable for this example.

9.2.5 Call the Routine or Service

The call to the routine or service is set up as an external call in VAX RPG II. The syntax of
the call statement will depend on whether the call is a function call or a procedure call.

9.2.5.1 Calling a System Routine in a Function Call

In this example, LIB§STAT_TIMER returns a condition value called ret_status. To call a
system routine, set up the function call in the same order as the FORMAT in the routine or
service description. In this case, the format is as follows:

LIBSSTAT_TIMER code ,value [,handle-adr]

As stated earlier, you are not using the optional handle-arg argument. In a format state-
ment, an optional argument can appear in one of two ways:

e [,optional-argument]

¢ ,[optional-argument]

Calling System Routines from VAX RPG II 9-15

If the comma appears outside of the brackets (,[optional-argument]) you must pass a zero
by value. In the following example, the constant 0 is passed by value.

Control level

Field length
|
|

Decimal positions
IHalf adjust (H)

|
I Indicators Operation [
| I 1IResulting
11 Factor | Factor Result! Ilindicators
11l 1 | 2 field I 11+ -0
€l NxxNxxNxx| | | I | Ilx < = +- Comments --+
0 [1] 2 I 3 | 4 | 5 I 6] 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890
[T * * * * H——kER ¥ X X

ZK-4636-85

If the comma appears inside the brackets ([,optional-argument]) you can omit the argu-
ment, as long as it is the last argument(s) in the list. For example, look at the optional
arguments of an imaginary routine, LIBSEXAMPLE_ROUTINE:

LIBSEXAMPLE_ROUTINE arg1 [,arg2] [,arg3] [,arg4]

You can omit all of the optional arguments without using a placeholder:

Field length
Control level | Decimal positions
| I

IHalf adjust (H)

| Indicators Operation [B
11] I 1IResulting
I Factor | Factor Result! Ilindicators
11 i | 2 field I I+ -0

|

Cl NxXNxxNxx| | | | 1l* « = +- Comments —-+
0 | 1 | 2 | kS | 4 | 5 | 6] 7 |
12345678901234567890123456?89012345678901234567890123456789012345678901234567890
[T * ¥-—NRE X X ¥

C LIBEXA EXTRN LIB$EXAHPLE ROUTINE’
C CALL LIBEXA

c PARM ARG

c GIVNG RETSTA

ZK-4640-85

9-16 Calling System Routines from VAX RPG II

However, if you omit an optional argument in the middle of the argument list, you must
insert a placeholder:

Field length
| Decimal positions

Control level
|

IHalf adjust (H)

|

| Indicators Operation I

11 | I IlResulting

1| Factor | Factor Result! Ilindicators

1 i | 2 field | 11+ -0
Cl NxxNxxNxx | | | | I 1> < = +- Comments --+

0 | i | 2 3 | 4 | 5 | 3 | 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890

[T * * * * [T R
C LIBEXA EXTRN'LIB$EXAMPLE_ROUTINE’
C CALL LIBEXA
C PARM ARGL
C PARMY 0
C PARM ARG3
C GIVNG RETSTA

ZK-4641-85
In general, Run-Time Library routines use the format:
[,optional-argument]
while system services use the format:

,[optional-argument]

Calling System Routines from VAX RPG II 9-17

Therefore, taking into account the optional argument (ARG2), the function call
LIBSEXAMPLE_ROUTINE routine would appear as follows:

Field length
Control level | Decimal positions
| IHalf adjust (H)

I
| Indicators Operation [
(| | I 1IResulting
I Factor | Factor Result!l Ilindicators
I 1 | 2 field I 11+ -0
Cl NxxNxxNxx| | | | I 1% < = +- Comments --+
0 | i | 2 | 3] 4] 5] 6] 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890
[Tk} * * * * R——EE ¥ ¥ *
c LIBEXA EXTRN’LIB$EXAMPLE_ROUTINE’
c CALL LIBEXA
c PARM ARG1
c PARN ARG2
c PARM ARG3
c GIVNG RETSTA

7K-4642-85
In passing the arguments to the procedure, you must declare the passing mechanism.
When passing parameters by descriptor (using the PARMD operation code), RPG II uses:

e An array descriptor for entire arrays

e A scalar decimal descriptor for numeric data with positions to the right of the decimal
point

e A scalar descriptor for all other data types

RPG II passes parameters using a scalar form, unless the parameter is an entire array. See
Section 9.2.2.1 for information on parameter passing mechanisms.

The passing mechanism required for a system routine argument is indicated in the argu-
ment description. This is shown in the following description of the one-char-str argument
to LIB§CHAR:

one-char-str

VMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

In this case, the passing mechanism required is “by descriptor.” The passing mechanisms
allowed in system routines are those listed in the VAX Procedure Calling and Condition
Handling Standard section of the Introduction to VAX/VMS System Routines.

9-18 Calling System Routines from VAX RPG II

To pass an argument using a specific passing mechanism, use the specifiers listed in Table
9-4.

Table 9—4: Passing Mechanisms

Passing Mechanism Desired Specifier Required

By value PARMV

By reference PARM

By descriptor PARMD
NOTE

Any passing mechanisms not listed in this table are unsupported in
VAX RPGII. If a system routine requires a passing mechanism not listed in this
table, it is not possible to call that routine directly from VAX RPG II.

You are required to specify the passing mechanism, as shown in the following example
where the PARM opcodes indicate that both CODE and VALUE are being passed by
reference:

Field length
Control level | Decimal positions
| I |Half adjust (H)

| Indicators Operation [B

I | I 1lResulting

(I Factor | Factor Result! Ilindicators

(| i | 2 field | 11+ -0
Cl NxxNxxNxx| | | | I 11> < = +- Comments --+
0 | i | 2 | 3 | 4 | L] | 6 | 7 |

12345678901234567890123456789012345678901234567390123456789012345678901234567890

% % * * * R——RNE X % ¥

C STATIM EXTRN’LIB$STAT_TIMER’

C CALL STATIM

C PARM CODE 90 RL
C PARM VALUE 90 WL
C GIVNG RETSTA

ZK-4643-85

9.2.5.2 Calling a System Routine in a Procedure Call

If the routine or service you are calling does not return a function value or condition value,
you may call the system routine as a procedure. The same rules apply to optional argu-
ments, and you still follow the calling sequence presented in the FORMAT section.

Calling System Routines from VAX RPG II 9-19

One system routine that does not return a condition value or function value is the Run-

Time Library routine LIB$SIGNAL. LIB$SIGNAL should always be called as a procedure,
as shown in the following code:

Field length
Control level | Decimal positions
| IHalf adjust (H)

|
| Indicators Operation [
11 | I 1lResulting
11 Factor | Factor Result! [lindicators
[i I 2 field I 11+ -0
Cl NxxNxxNxx| | | | I 11* ¢ = +- Comments --+

| 1 | 2 | 3 I 4 I 5 | 6 I 7

12345678901234567890123456789012345678901234567890123456789012345678901 234567890
X % * ¥ * ¥ e TTEEE
C SIGNAL EXTRN’LIB$SIGNAL’
C CALL SIGNAL
c PARMV CODE 90

ZK-4644-85

9.2.6 Check the Condition Value

After you call the system routine and control is returned to your program, you should
check the condition value returned, if there is one. In general, all system routines return a
condition value with the following exceptions:

e The system routine returns a function value. (If the routine returns a function value
this is described in the RETURNS section.)

e The CONDITION VALUES RETURNED section states “None.”

e There is no CONDITION VALUES RETURNED section but rather a CONDITION
VALUES SIGNALED section. (Success conditions are not signaled.)

e The call to the routine was made as a procedure call. (In this case, no condition values
are returned.)

If any of the conditions listed above apply, there is no condition value to check.

If there is a condition value, you must check this value to make sure that it indicates suc-
cess. All success condition values are listed in the CONDITION VALUES RETURNED

section of the system routine description. Success condition values always appear first in
this list.

9-20 Calling System Routines from VAX RPG II

Many system routines return the condition value SS§_NORMAL as a success value. If this

is the only possible success condition, you can test for its presence, as shown in the follow-
ing example:

Field length
| Decimal positions
I IHalf adjust (H)

Control level

|
| Indicators Operation 11l
[| I IIResulting
I Factor | Factor Resultl |lindicators
[i | 2 field I 11+ -0
Cl NxxNxxNxx| | | | I Il* % = +- Comments --+
0 | i | 2 | 3 | 4 [5 | 6 | 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890

*% *

* * * * X-—KEE X X X

C SSNORM EXTRN’SS5$_NORMAL '

C STATIN EXTRN’LIB$STAT_TIMER'

C CALL STATIM

C PARM CODE 90 RL

C PARM VALUE 90 WL

c GIVNG RETSTA

C SSNORM COMP RETSTA 01
C STOP EXTRN’LIB$STOP’

C NO{ CALL STOP

C PARMY RETSTA 90 RL

ZK-4645-85

It is also possible to check for any success code because all success codes are odd. The fol-
lowing code will continue execution if any success code is returned. The call to STATIM is
conditioned by an indicator which will be set off if any success code is returned.

Field length
Control level | Decimal positions
| I |Half adjust (H)

| Indicators Operation 1l
[| I IlResulting
I Factor I Factor Resultl Ilindicators
1 1 | 2 field | 11+ -0

|

Cl NxxNxxNxx|

| | | |l* < = +- Comments --+

0 I 1 | 2 I 3 | | 5 | 6 | 7

12345678901234567890123456789012345678901234567890123456789012345678901234567890

* * * X——RER X X ¥

C STATIM EXTRN’LIB$STAT_TIMER’
CALL STATINM 01

c PARM CODE 90 RL

C PARM VALUE 90 WL

C GIVNG RETSTA

c STOP EXTRN’LIB$STOP’

¢ ot CALL STOP

C PARMV RETSTA 90 RL

ZK-4646-85

Calling System Routines from VAX RPG II 9-21

When several success condition values are possible, you can continue execution on specific
success codes. For example, the system service $SETEF returns one of two success values,
SS$_WASSET or SS$_WASCLR. If you want to continue when the sucess code
SS$_WASSET is returned, you can check for this condition value as follows:

Field length
Control level | Decimal positions
I 1Half adjust (H)

|
| Indicators Operation (I
I | I 1IResulting
I Factor | Factor Result!l |lindicators
I | | 2 field I I+ -0
Cl NxxNxxNxx| | | | I 11> < = +- Comments --+

0 | 1 | 2 | 3 | 4 | 5 | b I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

% % * * * * =TT EE

c SETEF EXTRN’SYS$SETEF’

C CALL SETEF

C PARM EFN RL

C GIVNG RETSTA

c WASSET EXTRN’S55%_WASSET’

c WASSET COMP RETSTA 01

ZK-4647-85

If indicator 01 is on, then SS$_WASSET was returned by the call.

If the condition value returned is not a success condition, then the routine did not complete
normally and the information it was supposed to return may be missing, incomplete, or
incorrect.

If the condition value returned was not a success code, you can check for a particular error
condition, as shown in the following example:

0 I 1] 2 I 3 | 4 I 5 I 6 I 7 I
12345678901234567890123456789012345678901234567890123456789012345678901234567890

xk * * * * * X——REX X X ¥

C MOVE 'Input: ' PRMSTR 7

¢ RMSEOF EXTRN’RMS$_EOF’

C GETINP EXTRN’LIB$GET_INPUT’

C CALL GETINP 02

C PARMD INPSTR255

c PARMD PRMSTR

c PARM INPLEN W

c GIVNG RETVAL

¢ 02 "Error’ DSPLYTTY

¢ 02 RMSEOF COMP RETVAL 03

c 03 " EOF’ DSPLYTTY

ZK-4648-85

9-22 Calling System Routines from VAX RPG II

9.2.7 Locate the Result

Once you have declared the arguments, called the procedure, and checked the condition
value, you are ready to use the result. To find out where the result is returned, look at the
description of the system routine you are calling.

9.2.7.1 Function Results

If the routine is a function, the result is written into the variable in Factor 2 of the GIVNG
opcode.

For example, in this call to MTH$ACOS the result is written into the variable RESULT:

0] i I 2 I 3 I 4 I]] b I 7 |
1234567890123456789012345678901234567890123456789012345678901234567890123456?890

% R * e I EEE

C ACUS EXTRN MTH$ACDS’

C CALL ACOS

C PARM C0s RF

C GIVNG RESULT

ZK-4649-85

This result is described in the RETURNS section of the system routine description.

9.2.7.2 Procedure Results

If the system routine is called as a procedure, the result is written into one or more of the
arguments. To determine which argument holds the result, examine the “access” entry in
the argument descriptions. If the access entry in an argument description says “write
only” or “modify”, that argument contains output information written by the procedure.

For example, LIBSCURRENCY returns the default system currency symbol. Looking at
the argument descriptions, you know that the currency string is returned in the
currency_str argument.

currency-str

VMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

In all system routines, the output information returned by the routine or service has an
access of “write only” or “modify”.

Calling System Routines from VAX RPG II 9-23

9.3 Examples of Calling Run-Time Library Routines

The following examples demonstrate calls to system routines in VAX RPG 1I programs.

You will not be able to call all Run-Time Library procedures because RPG II cannot supply
some types of parameters, such as addresses. See the VAX/VMS Run-Time Library
Routines Reference Manual for information on all RTL procedures and the parameters
they require.

The following example shows a call to the STR§UPCASE procedure to change the lower-
case string to uppercase letters. This procedure requires two parameters: 1) the source
string, and 2) the destination string. Both the source string HEAD and the destination
string RESULT must be passed by descriptor, so the PARMD operation code is used.

Because the name of this RTL procedure is longer than eight characters, the EXTRN oper-
ation code is used to refer to STR$UPCASE as UPCASE.

Field length
Control level | Decimal positions
I IHalf adjust (H)

I Indicators Operation [B
11 | I IlResulting
11 Factor | Factor Result! |lindicators
11 1 | 2 field I i+ -0
Cl NxxNxxNxx| | | | | 1l> 4 = +- Comments --+
0 | i] 2 | 3 I 4 | 5 | 6 | 7
i23456789012345678901234567890123456789012345678901234567890123456?8901234567890
X% ¥ * * T T
C HOVE rep head’HEAD 8
C UPCASE EXTRN’STR$UPCASE”’
C CALL UPCASE
C PARMD RESULT 8
C PARMD HEAD

ZK-4650-85

9-24 Calling System Routines from VAX RPG I1

The following example calls the LIB§SET_SYMBOL procedure to redefine
MY_PARAMETER, the Command Language Interpreter (CLI) symbol, to be the string
OFF. This procedure requires two parameters to be passed by descriptor: 1) the symbol to
be defined, and 2) the value to be given to the symbol. Line 220 moves the string OFF (the
value to be given to the symbol) to the field SETVAL. Line 230 assigns a five-character
name, STSYM, to this procedure name. Lines 240 and 250 assign the 12-character string
MY_PARAMETER to the field SYMBL, the symbol to be defined. Line 260 invokes this
procedure. Lines 270 and 280 pass the two parameters to the procedure.

Field length
Control level | Decimal positions
I IHalf adjust (H)

|
| Indicators Operation [
I | I IlResulting
11 Factor | Factor Resultl |lindicators
11 i | 2 field I 11+ -0
Cl NxxNxxNxx| | | | I 11> < = +- Comments --+
0 | 1 [2 I 3 [4 | 5 | 6] 7 |

12345678901234567890123456789012345678901234567890123456789012345678901234567890

*% % * * * T EEE

220C MOVE 'OFF’ SETVAL 3

230C STSYM EXTRN’LIB$SET_SYMBOL'

240C MOVE 'METER’ SYMBL {2

250C MOVEL'MY_PARA’ SYMBL

260C CALL STSYM

270C PARMD SYMBL

280C PARMD SETVAL

ZK-4651-85

Calling System Routines from VAX RPG II 9-25

The following example calls the LIBSGET_INPUT procedure to ask the user for input
from the terminal screen. This procedure requires three parameters: 1) the input text
INPSTR (passed by descriptor) from the screen, 2) the prompt string PRMSTR (passed by
descriptor) that is displayed before accepting input, and 3) the number of characters
INPLEN (passed by reference) that are written to the input text. Also, this example sup-
plies the field RETVAL to accept the return status (RMS$_EOF is the RTL symbolic con-
stant representing one possible return status) of the operation. Actually, the program uses
the EXTRN operation code to retrieve the value of the symbolic constant representing a
return status. If the operation is unsuccessful, indicator 02 is set on and the string Error is
displayed on the terminal screen. If the operation is unsuccessful because the file is at its
EOF, the string EOF is displayed along with Error.

Field length
Control level I Decimal positions
I IHalf adjust (H)

|
| Indicators Operation I 1
11 | I 1lResulting
(| Factor | Factor Result! Ilindicators
11 i | 2 field I 11+ -0
Cl NxxNxxNxx| | | | I 11* < = +- Comments —-+
| i | 2 | 3 | 4 | 5] 6] 7
12345678901234567890123456789012345678901234567890123456789012345678901 234567890,
T} * * * * TR EE
C MOVE 'Input: ' PRMSTR 7
(o RMSEOF EXTRN"RMS$_EOF’
C GETINP EXTRN’LIB$GET_INPUT’
C CALL GETINP 02
C PARMD INPSTR255
C PARMD PRMSTR
C PARM INPLEN W
C GIVNG RETVAL
c 02 "Error’ DSPLYTTY
c 02 RMSEOF COMP RETVAL 03
¢ 03 ' EOF’ DSPLYTTY

ZK-4652-85

9-26 Calling System Routines from VAX RPG II

The following example executes TIME, a subroutine, that calls two procedures:
COBSACC_TIME and RPG$UDATE, to return the system date and time as a 12-digit
field. The time format is hhmmssmmddyy (hours,minutes,seconds,month,day,year). Note
that RPG will automatically call the RPG$UDATE RTL routine whenever UDATE,
UDAY, UMONTH or UYEAR is referenced in the RPG program.

0 | 1] 2 | 3 i 4] 5 | 6] 7
12345678901234567890123456789012345678901234567890123456789012345678901234567830

FTTY D F 80 TTY

CHt++

C* Execute the TIME subroutine

Cx—-

C EXSR TIME

Cx++

Cx Display the time

C¥--

c TIMBUF DSPLYTTY

C¥++

C* Set on an indicator to end the program

Cx--

C SETON LR
Cx

C TIME BEGSR

CH++

C* Call COB$ACC_TIME to get the current time
C¥--

C GTIME EXTRN'COB$ACC_TIME’

C CALL GTIME

C PARMD. TEMP8 8
Cx

c MOVELTEMPB HHMMSS 6
CH++

Cx Call RPG$UDATE to get the date

Cx--

C GDATE EXTRN’RPG$UDATE’

C CALL GDATE

C PARM DAY 2
c PARM MMDDYY 6
C PARM YEAR 2
Cx

c MOVELDAY TEMP4 4
C MOVE YEAR TEMP4

c MOVE TEMP4 MMDDYY

C*

c MOVE MMDDYY TIMBUF {2
C MOVELHHMMSS TIMBUF

C ENDSR

ZK-4653-85

Calling System Routines from VAX RPG II 9-27

_ The information provided in this chapter is general to all system services and Run-Time
Library routines. For specific information on these routines, refer to the following manu-
als:

o The VAX/VMS Run-Time Library Routines Reference Manual
e The VAX/VMS System Services Reference Manual

9.4 Examples of Calling System Services

Most system services are used primarily by the VAX/VMS operating system on behalf of
users. However, many system services are useful for application programming.

The use of some system services is restricted to protect system performance and the integ-
rity of user processes. The privileges and quotas assigned in the User Authorization File
determine whether you can use a restricted system service. These privileges and quotas
apply to every image that your process executes.

The following example calls the SYS$ASCTIM system service to obtain the time. The time
is converted from 64-bit system time format to an ASCII string. This service requires three
parameters: 1) the length of the returned output string TIMLEN, passed by reference, 2)
the character string TIMBUF, to receive the converted time passed by descriptor, and 3)
the conversion value 0, passed by value. A conversion value of 1 causes only the hour, min-
ute, second, and hundredth of second fields to be returned. A value of 0 causes the full date
and time to be returned. Remember, the length of the returned output string must be long
enough to accommodate the data to be returned. Because the TIMLEN parameter must be
a longword, the access type (write-only) and data type (longword integer) are specified in
columns 54 and 55.

Ifthe operation is successful, the date and time (TIMBUF) are displayed on the terminal. If
the operation is unsuccessful, indicator 02 is set on.

9-28 Calling System Routines from VAX RPG II

Field length
Control level | Decimal positions

| I IHalf adjust (H)
| Indicators Operation (I
11 | I I1Resulting
| Factor 1 Factor Result! |lindicators
: | 1 | 2 field | II+ -0
|

C

NXXNXXNXX | | | I 1l* < = +- Comments --+
i 2] 3 | 4] 5 | 6 | 7 |

12345678901234567890123456789012345678901234567890123456?89012345678901234567890
T * * * K——NEE X ¥ ¥

c ASCTIM EXTRN’SYS$ASCTIM'

c CALL ASCTIM 02
C PARM TIMLEN WL

C PARMD TIMBUF 23

C PARMV 0

€ No2 TIMBUF DSPLYTTY

ZK-4654-85

The following example calls two system services — SYS$CRELOG and SYS$GETMSG.
SYS$CRELOG sets on the external indicators 3 and 7 to control the opening of files in a
RPG II program by calling SYS$CRELOG to define the logical name RPG$EXT_INDS. If
the operation is not successful, BUFFER receives the error message which SYS$GETMSG
returns, and the program displays the error message.

Calling System Routines from VAX RPG II 9-29

This example also demonstrates a method for modifying the external indicators logical.
The effect is that subsequent program runs will have the appropriate external indicators
turned on, depending on the value of the RPGSEXT_INDS logical. The external indicators
in the program example below are not modified in the currently running program. See
Part I, Chapter 4 for information on modifying the external indicators in a currently run-
ning program.

0 | i | 2 I 3 | 4 | 5 | 6 | 7 [
12345678901234567890123456789012345678901234567890123456789012345678901234567890

FERROR D F 80 TTY

CH++

C* Call SYS$CRELDG to set on the external indicators 3 and 7.

C¥——

C MOVEL 'RPG$EXT."LOGNAM 12

C MOVE "INDS’ LOGNAM

C MOVE '3,7’ STRING 3

C*

C CRELOG EXTRN’SYS$CRELOG”

C CALL CRELDG 99

(PARMY i

C PARMD LOGNAM

C PARMD STRING

C PARMY 0

C GIVNG RETVAL

C++
C* If the call was not successful,
C¥ call SYS$GETMSG to get the error text

Cx—-

¢ 99 CALL GETMSG

C PARMV RETVAL 100

c PARM LENGTH 90 WL
C PARMD BUFFER 80

C PARMYV 0

C PARMV 0

C GETMSG EXTRN’SYS$GETMSG’

Co++

C* Display the error text

C¥—-

¢ 99 BUFFER DSPLYERROR

Cx++

C* Set on an indicator to end the program

Cx--

C SETON LR

ZK-4655-85

9-30 Calling System Routines from VAX RPG II

The following example calls an RTL procedure and a system service. The RTL routine
LIB$CVT_HTB accepts as input an eight digit hexadecimal value. The program calls the
system service SYS$GETMSG to get the error message text associated with the condition.

0] 1] 2 [3] 4 | 5] 3 i 7

12345678901234567890123456789012345678901234567890123456789012345678901234567890

FERROR D F 80 TTY

CH++

C* Prompt message

Cx-—-

C MOVE 'x value:’MESSAG 16

C MOVEL’Enter ’ MESSAG

C MESSAG DSPLYERROR HEX 8

CH++

C* Call LIB$CVT_HTB to convert to binary

C*--

C CALL CVTHTB

C PARMV 8

C PARM HEX

C PARM VALUE WL

c CVTHTB EXTRN’LIB$CVT_HTB’

Cx++

Cx Call SYS$GETMSG to get the error text

Cx-—-

C CALL GETMSG

C PARMY VALUE 90

C PARM LENGTH 90 WL

C PARMD BUFFER 80

C PARMY 0

C PARMV 0

C GETMSG EXTRN"SYS$GETMSG'

CH++

C# Display the error text

Cx--

c BUFFER DSPLYERROR

Cx++

g* Set on an indicator to end the program

-

C SETON LR

ZK-4656-85

Calling System Routines from VAX RPG II 9-31

For additional information on coding considerations when using external routines, refer to
the following manuals:

e The Introduction to VAX/VMS System Routines
e The Guide to Creating Modular Procedures on VAX/VMS

Section 2 of the Introduction to VAX/VMS System Routines contains the VAX Procedure
Calling and Condition Handling Standard. The VAX/VMS Modular Programming Stan-
dard can be found in Appendix A of the Guide to Creating Modular Procedures on
VAX/VMS.

9.5 Examples of Calling Subprograms

Just as they call RTL procedures and system services, RPG II programs can call sub-
programs written in other languages.

The following program calls a VAX COBOL subprogram and a VAX BASIC subprogram.

0 | 1 I 2] 3] 4]]] 6] 7
12345678901234567890123456789012345678901234567890123456789012345678901234567830)

T ¥--NEE X X ¥

C¥—-

C#++

C* The same parameter list is used by both calls

Cx—-

c PARAN PLIST

c PARM MESSAG 16

CH++

C# Call the VAX COBOL program

Cx—-

C MOVEL'RPG call "MESSAG

C HMOVE ’ed COBOL’MESSAG

c CALL ’COBOL1’ PARAM

C*++

C* Call the VAX BASIC program

C¥—-

¢ MOVE 'BASIC’ MESSAG

c CALL ’"BASIC1" PARAM

C*+4

C* Set on an indicator to end the program

Cx—-

c SETON LR

ZK-4657-85

9-32 Calling System Routines from VAX RPG 11

The following example is the VAX COBOL subprogram.

IDENTIFICATION DIVISION,
PROGRAM-ID, COBOL1.
DATA DIVISION,
LINKAGE SECTION,
01 MESSAGE-1 PIC X(1B6).
PROCEDURE DIVISION USING MESSAGE-1.
PO,
DISPLAY MESSAGE-1.
EXIT PROGRAM,

The following example is the VAX BASIC subprogram.

100 SUB BASBIC!1 (STRING MESSAGE = 16 BY REF)
200 PRINT MESSAGE
300 END SUB

9.6 Screen Handling in VAX RPG Il

This section provides examples of RPG II program fragments that perform screen han-
dling using TDMS, FMS and SMG.

VAX TDMS (Terminal Data Management System), VAX FMS (Form Management Sys-
tem), and SMG (Screen Management) are designed to make it easier to develop interactive
applications. Both TDMS and FMS provide utilities that let you define all the screen forms
outside the RPG II program. They also let you design forms by typing them directly onto
the terminal screen. An example of a TDMS program is provided in
SYS$EXAMPLES:RPGTDMS.COM.

The following TDMS examples are part of the complete program example provided in
SYS$SEXAMPLES.

The following example demonstrates the use of data structures and COPY from CDD in an
RPG 1I program that calls TDMS. See Part II, Chapter 2 for more information on data
structures and COPY from CDD.

0 | i | 2] 3] 4 | 5 I b I 7]
12345678901234567890123456789012345678901234567830123456789012345678901234567890
IEMPLOY
I 1 91 EMPREC
IEMPREC DS

I/COPY_CDD 'EMPLOYEE_RECORD’

ZK-4669-85

Calling System Routines from VAX RPG II 9-33

The following example demonstrates the use of long character literals in an RPG II pro-

gram which calls TDMS. See Part II, Chapter 2 for more information on long character
literals.

Field length
| Decimal positions
IHalf adjust (H)

Control level

| |
| Indicators Operation [
11 | I 1lResulting
11 Factor | Factor Result! [Ilindicators
(I 1] 2 field I I+ -0
| NxxNxxNxx| | | | | 11> < = +- Comments --+
| i | 2 | 3 | 4 | 5 | 6 | 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890
* * * EITEEE
C REQUES EXTRN’TSS$REQUEST’
C CALL REQUES 99
C PARM CHAN 90 WL
C PARM LIBID 90 WL
C PARMD "
C"

"EMPLOYEE_INITIAL _REQUEST’

ZK-4658-85

For further information on VAX TDMS, see the following related documents:
e VAX TDMS Forms Manual ‘

o VAX TDMS Request Manual
e VAX TDMS Application Programming Manual
o VAX TDMS Sample Application Manual

The following fragment is from an RPG II program that calls FMS to display a form.
Field length

Control level | Decimal positions
| I IHalf adjust (H)
| Indicators Operation [
I | I 1lResulting
I Factor i Factor Result!l |lindicators
[| 2 field | i+ -0

[

Cl NxxNxxNxx|

| | I 1l* < = +- Comments --+

0 | i] 2 | 3 1 4 | 5 | 6] 7

12345678901234567890123456789012345678901234567890123456789012345678901234567890
* * * * TR

FCLRSH EXTRN’FDV$CLRSH’

CALL FCLRSH

C

C MOVE 'FIRST * FORML 6
c

c PARMD FORMY

ZK-4659-85

9-34 Calling System Routines from VAX RPG II

For further information on VAX FMS, see the following related document:
e VAX FMS Reference Manual

Following is an RPG II program calling SMG$ routines. This program displays the word
"Menu’ beginning at line 2, column 5.

See the VAX/VMS Run-Time Library Routines Reference Manual for information on SMG
routines.
Field length

Control level | Decimal positions
I IHalf adjust (H)

|
| Indicators Operation [
1 | I |lResulting
[Factor | Factor Result! |lindicators
11 1 | 2 field I 11+ -0
Cl NxxNxxNxx| | | | | 11> < = +- Comments --+

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

12345678901234567890123456789012345678901234567890123456789012345678901234567890
* * * ¥ e T T

CREPAS EXTRN’ SMG$CREATE_PASTEBOARD’

CREDIS EXTRN’SMG$CREATE_VIRTUAL_DISPLAY’

PUTCHA EXTRN’ SMG$PUT_CHARS’

PASDIS EXTRN’SMG$PASTE_VIRTUAL_DISPLAY'

*
*
*

Z-ADDO ZEROD 90
Z-ADD1 LINCOL 90
Z-ADD2 LINE 90
Z-ADDS COLUMN 90

MOVE ‘Menu’ ouT 4
Create the pasteboard.
CALL CREPAS

C

C

c

c

C

C

C

c

C

c

C

C PARM PASTID 90 WL
C PARMV ZERO

c PARM HEIGHT 90 WL
c PARM WIDTH 90 WL
C* Create the virtual display.

c CALL CREDIS

c PARM HEIGHT RL
C PARM WIDTH RL
c PARM DISPID 90 WL
C* OQutput the "Menu’.

c CALL PUTCHA

C PARM DISPID RL
C PARMD out

C PARM LINE RL
c PARM COLUMN RL
C# Paste the virtual display.

c CALL PASDIS

c PARM DISPID RL
C PARM PASTID RL
c PARM LINCOL RL
C PARM LINCOL RL
c SETON LR

ZK-4668-85

Calling System Routines from VAX RPG II 9-35

Chapter 10
Debugging VAX RPG Il Programs

The VAX/VMS Symbolic Debugger enables you to debug RPG II programs by monitoring
the flow of program execution and logic. For a complete description of debugger capabili-
ties, see the VAX/VMS Symbolic Debugger Reference Manual.

The debugger lets you:

e Set breakpoints. (Breakpoints stop program execution just before a specified line is
executed.)

e Set tracepoints. (Tracepoints cause the debugger to pause and display a message
whenever a specified line is executed.)

e Set watchpoints. (Watchpoints cause the debugger to stop and display a message
whenever a specified variable is modified.)

e Examine and modify source code.
¢ Examine and modify data.
e Evaluate arithmetic expressions.

e Step through a program (Single STEP commands cause the debugger to execute one
or more lines and then stop program execution.)

The debugger needs information generated by both the RPG II compiler and the VAX/VMS
Linker. Specifying the DEBUG qualifier with the RPG command creates the symbolic
information for the debugger. Specifying the DEBUG qualifier with the LINK command
makes the information available to the debugger.

RPG II supports the following options at compile time for the DEBUG = options qualifier.
e ALL
e NONE
¢ [NOJTRACEBACK
¢ [NOISYMBOLS

10-1

Specifying the DEBUG =SYMBOLS qualifier for the RPG command allows you to
examine and change the contents of variables throughout your program. However, file
names from File Description specifications are not available as variables.

If you omit the DEBUG qualifier from the RPG and LINK commands, you can specify the
DEBUG qualifier with the RUN command. In this case, no symbolic information is availa-
ble to the debugger; you must make every reference to a program variable in terms of its
absolute address.

If you do not specify the DEBUG qualifier with any of the RPG, LINK, or RUN commands,
and an error occurs, you receive a traceback list (a description of the logic flow up to the
point where the error was detected). However, you cannot invoke the debugger. If you com-
pile your program with the DEBUG =NOTRACEBACK qualifier or link your program
with the NOTRACE qualifier, you do not receive the traceback list. The default options for
the DEBUG qualifier are TRACEBACK and NOSYMBOLS.

If you want to use the source line display while using the COMPILE command, you must
inform the debugger where the source file resides. To do this, complete the following steps:

1. Define the symbol RPG to include symbols for the VAX/VMS Symbolic Debugger
(for example, RPG : = = RPG/DEBUG).

2. Execute the RPG II editor COMPILE command during the editing session.
3. Execute the LINK/DEBUG command after exiting from the editor.
4. Execute the RUN command.

5. Enter the debugger command: SET SOURCE source-file-spec.

See Part I, Chapter 2 for information on compiling and linking RPG II programs and their
respective command qualifiers.

If you are using the VAX/VMS Performance and Coverage Analyzer, you must specify the
following:

/DEBUG=8YS$LIBRARY :PCA%$0BJ.0BJ MYPROGRAM.OBJ

The VAX/VMS Performance and Coverage Analyzer consists of a collector and an ana-
lyzer. The collector gathers information (such as execution counts) on your program while
it is executing. The analyzer makes it possible to interpret the data gathered by the collec-
tor. The analyzer is used to track a performance problem in a whole program down to a
certain module, or even down to a certain line of code. See Appendix C for an example of the
VAX/VMS Performance and Coverage Analyzer applied to an RPG II program.

10-2 Debugging VAX RPG II Programs

10.1 Debugging RPG Il Programs

Debugging RPG II programs is somewhat different from debugging programs in other lan-
guages. The RPG II program cycle determines the order in which the program lines are
processed. See Part I, Chapter 1 for a complete discussion of the RPG II program cycle.

You can reference those line numbers RPG II assigns to your program in the listing file.
The line numbers you specify in columns 1 through 5 of a specification are not used. The
compiler assigns line numbers only to certain specifications at specific points in the logic
cycle; therefore, you can specify a breakpoint or tracepoint at these points in the program:

e A break at a File Description specification occurs just before an input or update file is
opened or just before an output file is created. The line number of this break corre-
sponds to the File Description specification for this file.

e A break at an Input specification occurs before the fields are loaded with data from a
record. The line number of this break corresponds to the record definition in an Input
specification.

e You can set two breaks for each Calculation specification. The first break occurs just
after testing control-level indicators, if used, and just before testing conditioning
indicators. The second break occurs just before executing the operation code. For
example, if a Calculation specification begins with line number 25, you can specify
the line and statement number SET BREAK 25.1 to test indicators. SET BREAK 25.2
breaks just before executing the operation code. If a particular Calculation specifica-
tion has no indicators, SET BREAK 25 breaks just before executing the operation
code.

e A break at an Output specification occurs after the output buffer has been built but
before the record is output. The line number of the break corresponds to the record
definition in an Output specification.

10.2 Debugger Commands and Keywords

There are many debugger commands, but not all debugger commands are appropriate for
use in debugging RPG II programs. Table 10-1 lists some debugger commands and
keywords (and their abbreviations) that are helpful in debugging RPG II programs.

Debugging VAX RPG II Programs 10-3

Table 10-1: Debugger Commands and Keywords

Command Names Keywords

SET (SE) LANGUAGE (LA)
SHOW (SH) MODULE (MODU)
CANCEL (CAN) SCOPE (SC)
EXAMINE (E) BREAK (B)
EVALUATE (EV) TRACE (T)
DEPOSIT (D) WATCH (W)

EXIT (EXI)

STEP (S)

GO (®)

EDIT (ED)

The rest of this chapter describes these debugger commands and explains how to use them.

10.3 Preparing to Debug a Program

This section describes the SET LANGUAGE and SHOW LANGUAGE commands. These
commands are used to establish the proper environment for debugging an RPG II program.

10.3.1 SET LANGUAGE and SHOW LANGUAGE Commands

The SET LANGUAGE command causes the debugger to conduct the debugging dialog
according to the conventions of the specified language. If your program does not call any
subprograms written in languages other than RPG 11, you do not need to use the SET LAN-
GUAGE command. If your program calls a subprogram written in another language, you
can cause the debugger to execute the subprogram by specifying the STEP/INTO com-
mand. See Section 10.4.5 for information about the INTO qualifier. Once the debugger isin
the subprogram, you must use the SET LANGUAGE command to specify the language of
the subprogram. After you have finished executing the subprogram and you have returned
to the main program, you must use the SET LANGUAGE command to specify the lan-
guage of the main program.

The format of the SET LANGUAGE command is:
SET LANGUAGE language
where:

language Specifies the language to be used.

104 Debugging VAX RPG II Programs

To determine the language of the program currently being executed, use the SHOW
LAN GUAGE command. The format of the SHOW LANGUAGE command is:

SHOW LANGUAGE

The debugger responds by displaying the program’s language, as shown in the following
example:

DBG»SHOW LANGUAGE
landuade: RPG

10.4 Controlling Program Execution

To see what is happening during execution of your program, you must be able to suspend
and resume the program at specific points. The following commands are available for these
purposes:

SET BREAK
SHOW BREAK
CANCEL BREAK
SET TRACE
SHOW TRACE
CANCEL TRACE
SET WATCH
SHOW WATCH
CANCEL WATCH
SHOW CALLS
GO

STEP

TYPE

CTRL/Y

EXIT

You can specify an RPG II label as a breakpoint or a tracepoint. These labels correspond to
specific points in the logic cycle. The following list describes RPG II labels:

e *DETL — Breaks just before outputting heading and detail lines

e *GETIN — Breaks just before reading the next record from the primary or secondary
file

e *TOTC — Breaks just before performing total-time calculations
e *TOTL — Breaks just before performing total-time output
e *OFL — Breaks just before performing overflow output

e *DETC — Breaks just before performing detail-time calculations

Debugging VAX RPG II Programs 10-5

10.4.1 SET BREAK, SHOW BREAK, and CANCEL BREAK Commands

The BREAK commands allow you to select specific locations for program suspension, so
that you can examine or modify the following data:

e Variables
e Table entries
e Array elements

When you specify a table name, you can examine or modify the entry retrieved from the
last LOKUP operation.

You can also set a breakpoint at any place listed in Section 10.1.
The BREAK commands perform the following functions:
e SET BREAK defines the line number that will suspend execution.
e SHOW BREAK displays all breakpoints currently set in the program.
¢ CANCEL BREAK removes selected breakpoints.
The format of the SET BREAK command is:
SET BREAK %LINE lin-num[.stmnt-num] [DO(command(s))]

where:
lin-num Specifies the line number where the breakpoint will occur. You can
also specify a logic cycle label, a TAG name, or a subroutine label.
stmnt-num Specifies the statement number where the breakpoint will occur.

You can use statement numbers only with Calculation specifica-
tions that have conditioning indicators.

DO(command(s)) Requests the debugger to perform the specified debugger com-
mands, if specified, when the breakpoint is reached.

In the following example, SET BREAK examines variables TOTAL and AREA when the
breakpoint at line 100 is reached:

DBG:SET BREAK %LINE 100 DO(EXAMINE TOTALj; EXAMINE AREA)
The format of the SHOW BREAK command is:
SHOW BREAK

106 Debugging VAX RPG II Programs

SHOW BREAK takes no arguments. The debugger responds by displaying the current
breakpoints, as shown in the following example:

DBG»SET BREAK LOOP

DBG*SET BREAK %ZLINE S0
DBG:SHOW BREAK

breakpoint at ARRX3I7\LOOP
breakpoint at ARRX37\ZLINE 350

The format of the CANCEL BREAK command is:

CANCEL BREAK %LINE lin-num[.stmnt-num]
/ALL

where:

lin-num[.stmnt-num] Removes the breakpoint at the specified line and statement num-
ber, logic cycle label, TAG name, or subroutine label

/ALL Removes all breakpoints in the program

Normally, the debugger displays the line number when it suspends execution because of a
breakpoint or step. There are two exceptions to this behavior:

e When stepping through a subroutine, the debugger displays the subroutine label.

DBG:*STEP
sterrped to PROGI\SUBI1

e When stepping through a TAG, the debugger displays the TAG name.

DBG:STEP
sterred to PROGINTAGI

-10.4.2 SET TRACE, SHOW TRACE, and CANCEL TRACE Commands

The TRACE commands let you set, examine, and remove tracepoints in your program. A
tracepoint is similar to a breakpoint in that it suspends program execution; however, after
displaying the trace variables, program execution resumes immediately. Thus, trace-
points let you follow the sequence of program execution to ensure that execution is being
carried out in the proper order.

Tracepoints and breakpoints are mutually exclusive. If you set a tracepoint at a current
breakpoint, the breakpoint will be canceled. If you set a breakpoint at a current tracepoint,
the tracepoint will be canceled.

Debugging VAX RPG II Programs 10-7

The TRACE commands perform the following functions:

e SET TRACE establishes points within the program where execution is momentarily
suspended.

e SHOW TRACE displays the points in the program where tracepoints are currently
set.

o CANCEL TRACE removes one or more tracepoints currently set in the program.
The format of the SET TRACE command is:

SET TRACE %LINE lin-num[.stmnt-num]
where:

lin-num[.stmnt-num] Specifies the line and statement number, logic cycle label, TAG
name, or subroutine label where the tracepoint will occur.

The format of the SHOW TRACE command is:
SHOW TRACE

SHOW TRACE takes no arguments. The debugger responds by displaying the current
tracepoints, as shown in the following example:

DBG:*SET TRACE LOOPZ

DBG>SET TRACE %LINE 100

DBG=5HOW TRACE

tracepoint at ARRX37\LOOPZ2

tracerpoint at ARRX37\ZLINE 100

The format of the CANCEL TRACE command is:

CANCEL TRACE 9%LINE lin-num[.stmnt-num]
JALL

where:

lin-num[.stmnt-num] Removes the tracepoint at the specified line and statement num-
ber, logic cycle label, TAG name, or subroutine label

/ALL Removes all tracepoints in the program

10-8 Debugging VAX RPG II Programs

10.4.3 SET WATCH, SHOW WATCH, and CANCEL WATCH Commands

The WATCH commands let you monitor the contents of variables. Watchpoints determine
when an attempt is made to modify variables. When an attempt is made, the debugger
halts program execution, and prompts for a debugger command. Watchpoints are moni-
tored continually. Thus, you can determine whether a particular variable is being modified
inadvertently during program execution. Watchpoints, tracepoints, and breakpoints are
mutually exclusive. The WATCH commands perform the following functions:

e SET WATCH defines the variable(s) to be monitored.
o SHOW WATCH displays the variable currently being monitored.
o CANCEL WATCH disables monitoring of specified variables.
The format of the SET WATCH command is:
SET WATCH vbl
where:

vbl Specifies the variable to be monitored. You can monitor variables and array ele-
ments.

In the following example, SET WATCH sets a watchpoint for the variable AREA:
DBG>SET WATCH AREA

The format of the SHOW WATCH command is:
SHOW WATCH

SHOW WATCH takes no arguments. The debugger responds by displaying the current
watchpoints, as shown in the following example:

DBG:>SET WATCH INDEXZ

DBG>SHOW WATCH

watchroint of ARRM37\INDEXZ

The format of the CANCEL WATCH command is:

CANCEL WATCH vbl
/ALL

where:
vbl Specifies the variable that disables monitoring.
/ALL Removes all watchpoints from the program.

The following command cancels the watchpoint for the variable AREA:
DBG>CANCEL WATCH AREA

Debugging VAX RPG II Programs 10-9

10.4.4 SHOW CALLS Command

SHOW CALLS can be used to produce a traceback of calls to program modules. It is partic-
ularly useful when you have returned to the debugger following a CTRL/Y command. The
format of the SHOW CALLS command is:

SHOW CALLS [n]

The debugger displays a traceback list, showing the sequence of calls to program modules
leading to the current module.

If you include a value for n, the n most recent calls are displayed.

10.4.5 GO and STEP Commands

GO and STEP let you initiate and resume program execution. GO initiates execution from
the current line or at a specified point in the program, and continues to the end of the pro-
gram or to the next breakpoint. STEP initiates execution from the current line, and contin-
ues for a specified number of lines.

The format of the GO command is:
GO [%LINE lin-num[.stmnt-num]]
where:

lin-num[.stmnt-num] Specifies the line and statement number, TAG name, or subrou-
tine label where execution will begin.

The normal use of GO is to continue execution after a breakpoint or at program initiation.
Resuming execution at a point other than the current line can cause unpredictable results
because of the nature of the RPG II logic cycle.

Use the STEP command to execute one or more RPG II program lines and immediately
return to the debugger. The format of the STEP command is:

STEP [/qualifiers] [n]

The value specified for n determines the number of statements to be executed. If you spec-
ify 0, or omit a value for n, a value of 1 is assumed.

You can specify the following qualifiers with the STEP command:

SYSTEM Causes the debugger to count steps wherever they occur. The NOSYS-
[NOJSYSTEM TEM qualifier is the default.

OVER Causes the debugger to ignore calls to subprograms as it steps through
the program. That is, to step over each call to a subprogram. The
OVER qualifier is the default.

10-10 Debugging VAX RPG II Programs

INTO Causes the debugger to recognize calls to subprograms as it steps
through the program. That is, to step into each subprogram. The
NOINTO qualifier is the default.

LINE Causes the debugger to step througﬁ the program on a line-by-line
basis. The LINE qualifier is the default.

SOURCE Causes the debugger to display the line(s) of source code that corre-
sponds to the line(s) being executed with each step. Source lines are
also displayed when a breakpoint or watchpoint occurs. When step-
ping through Input and Output specifications, the debugger displays
the first line of a record definition.

You can specify one or more qualifiers each time you issue a STEP command, or you can
use a SET STEP command to override the defaults.

The following command specifies that the defaults for the LINE, INTO, and SYSTEM
qualifiers are overridden:

DBG*SET STEP NOLINE,INTO,SYSTEM

When you subsequently issue a STEP command with no qualifiers, the debugger assumes
these qualifiers NOLINE, INTO, and SYSTEM) are in effect. You can, however, supersede
the current qualifiers by including a qualifier with a STEP command.

The following command executes ten lines, regardless of the SET STEP command:
DBG*STEP/LINE 10

It is advisable to use STEP to execute only one or a few lines at a time. To execute many
lines and then stop, use a SET BREAK command to set a breakpoint, then issue a GO
command.

10.4.6 TYPE Command

The TYPE command displays the line of source code you specify. The format of the TYPE
command is:

TYPE [lin-num[:line-num][,...]]
where:
lin-num[:lin-num] Specifies the number of lines of source code to be displayed.

The following command displays lines 1 through 30:
DBG>TYPE 1:30

Debugging VAX RPG II Programs 10-11

The following command displays lines 1 and 30:
DBG:TYPE 1 130

You can display the line after the current line by typing TYPE and by pressing the
RETURN key.

10.4.7 EDIT Command

The EDIT command allows you to edit the file you are debugging. Before entering the
debugger, you must define the symbol LSEDIT as follows:

$ LSEDIT :== RPG/EDIT
The editing session begins at the current debugging line.

EDIT/EXIT specifies that you want to end the debugging session and begin an editing
session.

EDIT/NOEXIT specifies that you want to return to the debugging session after you make
your edits. The NOEXIT qualifier is the default.

10.4.8 CTRL'Y Command

You can use the CTRL/Y command at any time to return to the system command level. You
issue this command when you press the CTRL key and the Y key at the same time. The
dollar sign ($) prompt will be displayed on the terminal. To return to the debugger, type
DEBUG. Use the CTRL/Y command if your program goes into an infinite loop or, for some
reason, fails to stop at a breakpoint. To find out where you were at the instant CTRL/Y was
executed, use the SHOW CALLS command after you have returned to the debugger.

10.4.9 EXIT Command

The EXIT command lets you exit from the debugger when you are ready to terminate a
debugging session. The format of the EXIT command is:

EXIT

EXIT takes no arguments. To return to system command level, after your program has
terminated, use the EXIT command.

10-12 Debugging VAX RPG II Programs

10.5 Examining and Modifying Locations

Once you have set breakpoints and begun execution, the next step is to see whether correct
values are being generated and, if necessary, to change the contents of variables as execu-
tion proceeds. You may also want to calculate the value of an expression that appears in
your program. The debugger provides the following commands for these purposes:
EXAMINE, DEPOSIT, and EVALUATE.

10.5.1 EXAMINE Command
The EXAMINE command lets you look at the contents of:
e A variable
e The current table entry
e An array element
e The I/O buffer
The format of the EXAMINE command is:
EXAMINE vbl [,vbl]
where:
vbl Specifies a simple or subscripted variable.
The following command displays the contents of the variable SALES:
DBGEXAMINE SALES
The following command displays the contents of the ninth element in array ARRAY:
DBG>EXAMINE ARRAY(9)

The following command displays the contents of the first through the tenth elements of the
array ARRAY.

DBG*EXAMINE ARRAY(1:10)

You can examine indicators to see whether they are set on or off. Precede the indicator you
want to examine with the string *IN. If an indicator is set on, 1 is displayed. If an indicator
is set off, 0 is displayed.

The following command displays the current setting for indicator 56:
DBGFEXAMINE *INSB

The debugger responds by displaying:

*IN3B: "O"

Debugging VAX RPG II Programs 10-13

You cannot examine external indicators this way, but you can do the following. To deter-
mine the current value of U5, for example, enter

DBG> CALL RPG$EXTINDS(S3)

The debugger responds by displaying:

value returned is O

The program must have been linked with the NOSEYSSHARE qualifier to do this.

You can also display the current contents of the I/O buffer. To display the I/O buffer, specify
the name of the input file, update file, or output file, a dollar sign ($), and the string BUF.

The following command displays the contents of the I/O buffer for the input file INPUT:
DBGEXAMINE INPUT$BUF

10.5.2 DEPOSIT Command

The DEPOSIT command lets you change the contents of specified variables. The format of
the DEPOSIT command is:

DEPOSIT vbl=value

where:
vbl Specifies the variable that the value is deposited into.
value Specifies the value to be deposited.

You can change the contents of a specific variable or of several consecutive variables, as
shown in the examples in this section.

Values deposited into numeric fields are aligned on the decimal point. Shorter fields are
padded with zeros to the left and right of the decimal point.

The following command places the decimal value 100 into the variable BONUS:
DBG>DEPOSIT BONUS=100

The following command places the decimal values 100, 150, and 200 into elements 1, 2,
and 3 of array ARRAY:

DBG:*DEPOSIT ARRAY(1)=100, 150, 200

The delimiters used to enclose ASCII strings in the DEPOSIT command can be either sin-
gle () or double (”) quotation marks. Use the keyboard apostrophe for the single quotation
mark.

Values deposited into character fields are left justified. If the value contains fewer charac-
ters than the character field, the field is padded on the right with spaces.

10-14 Debugging VAX RPG II Programs

The following command places the string ACTIVE in the variable STATUS:
DBG*DEPOSIT STATUS="ACTIVE"

You can also use DEPOSIT to set indicators on or off. Precede the indicator you want to set
with the string *IN. To set an indicator on, specify 1 as the variable value. To set an indica-
tor off, specify 0 as the variable value.

The following command sets indicator 56 on:

DBG*DEPOSIT *INSG = "1

10.5.3 EVALUATE Command

The EVALUATE command lets you use the debugger as a calculator to determine the
value of arithmetic expressions. The format of the EVALUATE command is:

EVALUATE expression
where:
expression Specifies the expression whose value is to be determined.

The following command displays the value of the expression ARRAY(FLD1) * FLD2:
DBG*EVALUATE ARRAY(FLD1) * FLDZ

Debugging VAX RPG II Programs 10-15

Chapter 11

Interpreting a Compiler Listing

This chapter explains the parts of a full compiler listing. This sample listing is for the pro-
gram shown under the Source Listing title. The circled numbers on the program listing
correspond to the following numbered text.

1.

AR

10.

The program name.

The date and time of compilation.

The name and version number of the compiler.
The creation date and time of the source file.

The complete file specification (device:[directorylfilename.type;version) for the
source file. The number in parentheses is a text editor page number.

Items 1 through 5 appear at the top of each page in the listing file.
The 80-column ruler.

Source line numbers assigned by the compiler. The VAX/VMS Symbolic Debugger
uses these line numbers as location specifications.

A ‘C’ after the line number indicates that the line was generated by a copy
directive.

Source Listing — Source code.

Machine Code Listing — The compiler-generated object code for the program you
compiled.

Cross Reference in Alphabetical Order — The user-defined names in alphabetical
order and the line numbers in which they are referenced. The first column with the
pound sign (#) after the number lists the line number where the data name is
defined. For example, DEPQTY is defined in line 19 and referenced in lines 19, 21,
and 22.

DEPQTY 19+ 19 21 22

11-1

11.

12.
13.
14.

15.

16.
17.
18.
19.

11-2

Indicator Cross Reference — The indicators and the line numbers in which they are
referenced. For example, indicator 01 is referenced in lines 12, 18, 19, and 36.

01 12 18 19 36
PROGRAM SECTIONS — Names the PSECT numbers and names.
The bytes allocated for each PSECT.

The PSECT attributes. See the VAX/VMS Linker Reference Manual for informa-
tion on PSECT attributes.

COMMAND QUALIFIERS — Lists the command line you entered and names the
compiler defaults that were in effect when the program was compiled.

The actual CPU time it took to compile the program.
The elapsed time it took to compile the program.
The number of page faults.

The number of virtual memory pages used to compile the program.

Interpreting a Compiler Listing

Sunysty sorrdwo)) e 3urjeadisuy

€11

SHIPS @

Source Listing

@

[S =R S

[BLS I i N I N

Lo s)

W WP MR MNP
~

-

r)

1

2

3

®
®

) S

28-Jun-1985 15:58:45 VAX RPG II VZ.,0

®

28-Jun-1985 15:56:12 RPG$: [TSAKERES.RPGISHIPS.,RPGi1

<] 7 8

12345678901234567890123456789012345678901234567890123456789012345678901234567890

H¥++

H* FUNCTIONAL DESCRIPTION:

H¥* This prodram produces a report of shipments for various
H¥* products broken down by division and department using an
H#* input file with the shipment data for the past 4 quarters.
H*--

H

FSHIPS IP F DISK

FSUMREP O F LPRINTER

E QTY 4 20

LSUMREP SSFL So0L

ISHIPS AA 01

I 1 S DIV Lz

I 6 7 DEPT L1

I 8 16 PROD

I 17 24 OTY

Cx*

c 01 XFOOTQTY PROQTY 30

c 01 PROQTY ADD DEPQTY DEPQTY 30

C*

CL1 DEPQTY ADD DIVQTY DIVATY 30

CL1 Z-ADDO DEPQTY

CcLz DIVATY ADD FINQTY FINQTY 40

Cx

OSUMREP H 001 1P

0 48 ‘PRODUCT SHIPMENT REPORT”
0 H 02 1P

0 UDATE Y 12

0 48 ‘PRODUCT SHIPMENT REPORT'
0 H 1 1P

0 42 ‘SHIPMENTS”

0 H Z 1P

0 S ‘DIVISION DEPT’

0 24 'PRODUCT”

0 48 ‘Q1 Q2 Q3 Q4 TOTAL'

(1)

Pade

11

SunysirT sepidwo)) e Sungeadisjuy

36
37
38
39
40

SHIPS

OCO0OO0000000O0O0OO0oo0o0DoO0OoOo0

QO

02

Q

01

Lz DIY

L1 DEPT
PROD
QTY Zz
PROQTYZ

L1

Lz
DIV

Lz
DIv

Lz
DIVQTYZB
DIv

LR
FINQTY1

14

41

48

69

69

48

G3
G9

48
G5

Total

GRAND

for’

TOTAL’

28-Jun-1985 15:58:45

VAX RPG II V2.0

Pagde

Machine Code Listing (:) 28-Jun-1985 15:56:12 RPG$: [TSAKERES.RPGISHIPS.,RPG31 (1)

+POOOOOOOO +BYTE KBB4 KAB X494 X50,"X53 i "SHIPS"
00000008 +BYTE “KS3 9 THSS 4 "XAD » XS24 T XAS » "XB0 i "SUMREP"
Q0000010 +BYTE THAT 2 TROB TKOZ 5T KA0 K20 KIL 1" RGL T RAL T K2ZF T KO2 KAy T H2F T HA2 K00 i "Ges@ +ouD/WD/ 0"
00000020 +BYTE TRAT 9 TKOZy TROZ KA K20, TXI2 " i"G..@ Wt
00000028 +BYTE CHATTROB 4 THOZ THA0 K20, TKD3 " i"Go.@ Wt
00000030 +BYTE TRAT RO T RKOZ KAy THZO yTHIL T RA4 T HEC » T HIZ T HOT "KL RO0 F "G B D"
0000003C +BYTE TROO KO0, X000, "X0C Pt
00000040 +LONG TXO0000003
00000044 +ADDRESS UDAY
00000048 +ADDRESS UMONTH
0000004C +ADDRESS UYEAR
00000050 +LONG “XO0000001
Q0000054 +ADDRESS SHIPS+G8
00000058 +LONG TROO000002
Q000005C +LONG TROO000002
00000060 +ADDRESS SHIPS
Q0000064 +LONG “RO0000001
00000068 +ADDRESS SHIPS

3unsry seridwo)) e Surjeadiejuy

bt |

0000006C
Q0000070
00000074
00000078
0000007C
00000080
00000084
00000088
0000008C
00000090
00000094
00000098
0000009C
Q00000A0
000000B0O
00000088
000000C4
000000D4
000000E4
000000EC
Q00000OF0
QO0000F 4
000000F8
00000108

00000000
00000002
00000009
00000010
Q0000013
Q000001A
00000021
00000028

§
i
i

+LONG
+LONG
+ADDRESS
+LONG
+ADDRESS
+LONG
+LONG
+ADDRESS
+LONG
+ADDRESS
+LONG
+LONG
+ADDRESS
+BYTE
WBYTE
+BYTE
+BYTE
+BYTE
+BYTE
+LONG
+LONG
+ADDRESS
+BYTE
+BYTE
+PSECT
+VENTRY
MOVAB
MOVAB
SuUBLZ2
MOVAB
MOVAB
MOVAB
MOVAB

+
Prodram epilog

“ROO000002
“HOO000001
SHIPS
“RO0000001
SUMREP+G8
“XO0000002
“R00000002
SUMREP
“RO0000001
SUMREP
“KO0000002
“HOQO00001
SUMREP
“HB0

TR20 7K

TRAA " XA9 " XEB»"X49 " X53
CHS1 K31 "K20"X20, X514, "X32,
RSy KAF " KBd KA1, " XAC
“X00000002
TROO00Q003

SHIPS
“H3C " X3D»"X3D "X

$CODE

SHIPS, "XOFFC
G"RPG$HANDLER» (FP)
$LOCAL+"XZ2B» -(SP)
#°X0C, SP
$LOCAL+"XBO,» R11
$PDATA+"XBO,» R10

G"RPG$IOEXCEPTION, RO"

G"RPG$PRINT, RSB

ue code

THOZTRAF " XA4 XS5 X433y "
24" R4S "KD0 " XAF » X524 "X54
“HS3NAB» TXA9 NS0 " XAD » " XAS » "XAE » " X545 " %53

CHAD y TRAF "XAE » TXEO0 9 "XEO ¢

TR20, K20, X511 X33 K20 TX20, "

{20 " XS54 "XBF » " X744
“HK3C s K3D+"X3D»"K20," X474 "KE2,"

KOA " X200 X33 "X4B» X499 "XS50,"

44" X485,

XB1 s "XBC »"X20 " XBB»"XBF »"
KA1y "XAE » " X443y " X204 " XS4 » " XAF »*

X4D » " X454 "X4E » " XS54

K30 »"X54

K1 " U344 " K20, "X20

K72

XSd " Xd1,"X4C

"PRODUCT SHIPMENT"
" REPORT"
"SHIPMENTS"
"DIVISION
"Q1 Q2
"TOTAL"

DEPT"

Q3 Q4 ¢

Total for"
GRAND TOTAL"

911

Sunst] seidwio)) e Surjeadisjuy

00000539 CALL
00000541 BLBS
00000544 CALL
Q0000548 BRB

0000054A 7Z%:
0000054A 73%:

Q000054A MOVL
Q0000340 RET
SHIPS

G

G

$PDATA+"XBC(R10)» G"RPGSTERM_PRINT

RO, 72%

$PDATA+ " X94(R10)» G"RPG$IOEXCEPTION(RI)

73%

#°X01 s RO

Cross Reference in Alphabetical Order

DEPQTY
DEPT
DIV
DIVATY
FINQTY
PROD
PROQTY
oTY
SHIPS
SUMREP
UDATE

SHIPS
Indicator Cross Refere

01
L1
Lz
LR
1P

SHIPS
Compilation Summary

19%
14%
13%
21%
23%
154
18%
10%
B
g
28

nce

12
14
13
51
25

19
38
37
21
23
39
19
16
12

11

©

18
21

23

a4
23
52

a1
18

19
22
37

30

46
48

40

36
38
43

32

S0

45 47

28-Jun-1885
28-Jun-1885

28-Jun-1985
28-Jun-1985

28-Jun-1885
28=Jun-1985

15:58:45
15:56:12

15:58:45
15:56:12

15:58:45
15:56:12

VAX RPG II V2.0 Pade
RPG$: [TSAKERES.RPGISHIPS.RPG31 (1)

UAX RPG II VZ.0 Pagde
RPG$: [TSAKERES.RPGISHIPS.RPGi1 (1)

UAX RPG II VZ.0 Pagde
RPG$: [TSAKERES.RPGISHIPS.RPG31 (1)

dunysry seridwo)) e urjeadiajug

L-11

PROGRAM SECTIONS

Name @

$CODE
$LOCAL
$PDATA
RPG$UDATE
RPG$HALTS

COMMAND QUALIFIERS @

oW oR e

Brvtes

1358
1280
279
6

9

Attributes

PIC
PIC
PIC
PIC
PIC

CON
CON
CON
OUR
OVR

®)

REL
REL
REL
REL
REL

LCL
LCL
LCL
GBL
GBL

SHR
NOSHR
SHR
NOSHR
NOSHR

EXE
NOEXE
NOEXE
NOEXE
NOEXE

RD NOWRT
RD WRT
RD NOWRT
RD WRT
RD WRT

Align(2)
Align(Z)
Align(2)
Alidn(2)
Align(2)

RPG /LIST/MACHINE_CODE/CROSS_REFERENCE/CHECK=ALL/DEBUG/OBJECT/SEQUENCE_CHECK/WARNINGS=ALL SHIPS.RPG

/CROSS_REFERENCE /MACHINE_CODE
/DEBUG=(SYMBOLS » TRACEBACK)
/WARNINGS=(0THER » INFORMATION)
STATISTICS
Run Time: 5.26 seconds
Elapsed Time: 6.58 seconds
Pade Faults: 270

Dynamic Memory: 348 pPades

0006

/SEQUENCE_CHECK
/CHECK=(RECURSION ;BOUNDS yBLANKS_IN_NUMERICS)

a

Chapter 12
Optimizing Your Programs

The word optimization, as used in this chapter, refers to the process of improving the effi-
ciency of programs. The objective of optimization is to produce programs that achieve the
greatest amount of processing with the least amount of time, memory and secondary
storage.

12.1 Optimizing with Data Structures

Using data structures to update files can improve the run-time performance of your pro-
grams. This example updates a file with a data structure defined in an Input specification
and used in an Output specification.

12-1

0 ! 1 I 2 I 3 I 4 |] I 6 | 7 |

12345678901234567890123456789012345678901234567890123456789012345678901234567890

FOUT94A UD F 24 DISK

FOUT94B UD F 24 DISK

I0UT94A AA
i 3PN
4 10 PNAME
11 12 WHOUSE
13 17 COLOR
18 20 WEIGHT
22 240QTY

O0UT94B AA

DS94B _ D8

1 24 DS94B

1 3 PN2
4 10 PNAME2
11 12 wHous2
13 17 COLOR2
18 20 WEIGH2
22 2408TY2

L R L L e e R R R R R N

00UT944 E

0 PN 3
0 PNAME 10
0 WHOUSE 12
0 COLOR 17
0 WEIGHT 20
0 ary 24
00UT94B E

0 DS94B 24

ZK-4432-85

Notice in the above program example that the fields to be updated in the Output specifica-
tions for file OUT94B are not listed for a second time, as they would have to be without use
of a data structure. This results in less written code and a program less prone to error,
because the layout of the fields is described only once in the data structure. Without a data
structure, the fields must be described on both the Input and Output specifications.

12.2 Optimizing With Adjacent Fields in Records

Note that RPG II extracts adjacent fields from the record buffer with a single VAX MOVE
instruction and writes them back the same way, which saves time. This optimization is
performed provided no data conversion is necessary. Therefore, it is a good idea to keep the
fields contiguous, to avoid requiring multiple MOVE instructions.

122 Optimizing Your Programs

a

12.3 Optimizing with Blank Factor 1

If you use blank Factor 1, you will have less to write and your program will be less prone to
error because you are not writing the same factor twice. The following example, which is
part of the above program, demonstrates this technique:

0] 1 | 2 I 3 I 4] 5 I b] 7
12345678901234567890123456789012345678901234567890123456789012345678901234567890

I 22 24007Y2

C* Read records from update files.

C READ OUT94A LR

C NLR READ OUT94B

C* Update quantity to reflect the fact that 100 of each part came in.
C NLR ADD 100 QTY

C NLR ADD 100 aTyz

C* Write the updated records.

C NLR EXCPT

ZK-4433-85

12.4 Optimizing File Performance

You can control file access and imprové file performance through optimizing techniques
discussed in this manual and in the Guide to VAX/VMS File Applications manual. The
following optimizing techniques are discussed in Part II of this manual:

e For information on the use of Expansion factors to prevent bucket splitting and to
improve search efficiency, see Section 2.5.23.

e For information on file sharing, see Section 2.5.24.
e For information about multibuffer count, see Section 2.5.21.

e For information on longer block length for decreasing I/O processing time, see Section
2.5.9.

e For information on multiblock count, see Section 2.5.14.

All of the sections mentioned above point to the Guide to VAX/VMS File Applications man-
ual, which provides pertinent information on tuning sequential, relative, and indexed
files. That manual also discusses optimizing file performance and processing in a
VAXcluster, and offers performance recommendations.

Optimizing Your Programs 12-3

Chapter 1
Language Elements

This chapter describes the following elements of the RPG II language:
e Character set
e Data types

o User-defined names

1.1 RPG Il Character Set
RPG 1II uses the full ASCII character set. This includes:

o A through Z, uppercase except for character literals and comment fields
e The digits 0 through 9
e Special characters

Appendix A contains the full ASCII character set and character values.

1.2 RPG Il Data Types

All data in RPG II input and output operations has a specific data type that determines
how many bits of storage should be considered as a unit and how the unit is to be inter-
preted and manipulated.

RPG 1I supports five different data types for data in input and output operations. Follow-
ing sections describe each data type.

e Character
e Word binary numeric

e Longword binary numeric

1-1

e Packed decimal

e Overpunched decimal

1.2.1 Character

Character data is a string of bytes containing ASCII codes as binary data. The length can
be from 1 to 9999 bytes. The format of a character string is illustrated in Figure 1-1.

NOTE

In all subsequent diagrams, A represents the address of the first byte of the
string and L represents the length of the string in bytes.

7 0

~— A+L-1

ZK-1452-83

Figure 1-1: Character String

The address of a string specifies the first character of a string. XYZ is represented in Fig-
ure 1-2.

7 0
X —~—— A
Y e A+ 1
Z - A +2
ZK-1451-83

Figure 1-2: Address of a String

1-2 Language Elements

1.2.2 Binary

Binary data is stored as binary values in a word or a longword. A word is two contiguous
bytes, starting on an arbitrary byte boundary. The bits are numbered from the right (0
through 15). When interpreted as a signed quantity, a word is a two’s complement number
with bits increasing in significance from bit 0 through bit 14, and with bit 15 designating
the sign. A two byte word supports up to four decimal digits. The largest number that can
be represented by a word in RPG I is 9,999. A word is represented in Figure 1-3.

15 0

ZK-1453-83

Figure 1-3: Word Data Type

A longword is four bytes, starting on an arbitrary byte boundary. The bits are numbered
from the right 0 through 31. When interpreted as a signed quantity, a word is a two’s com-
plement number with bits increasing in significance from bit 0 through bit 30, and with bit
31 designating the sign. A four byte longword supports up to 11 decimal digits. The largest
number that can be represented by a longword in RPG II is 99,999,999,999. A longword is
represented in Figure 1-4.

31 0

ZK-1454-83

Figure 14: Longword Data Type

1.2.3 Packed Decimal

Packed decimal data is stored as a string of bytes. Each byte is divided into two 4-bit half
bytes (nibbles), with one decimal digit stored in each half byte. The first, or most signifi-
cant, digit is stored in the high-order half byte of the first byte, the second is stored in the
low-order half byte of the first byte, the third digit is stored in the high-order half byte of
the second byte, and so on. The sign of the number is stored in the low-order half byte of the
last byte of the string. The number + 123, in packed decimal format, is represented in
Figure 1-5.

Language Elements 1-3

1 2 - A
3 12 - A+ 1
ZK-1455-83

Figure 1-5: Packed Decimal Data Type

A decimal 10, 12, 14, or 15 represents a plus sign, with 12 used when the number is created
as a result of a VAX arithmetic instruction. A decimal 11 or 13 represents a minus sign,
with 13 used when the number is created as a result of a VAX arithmetic instruction.

The following formula can be used to determine the length in digits of a packed decimal
field:

number of digits = 2n—1
where n = number of bytes used

See Part II, Section 2.8.15 for examples of selecting numeric data types in an RPG II
program.

1.2.4 Overpunched Decimal

Overpunched decimal data is a contiguous sequence of bytes in memory, with one decimal
digit in a byte. Digits of decreasing significance are assigned to increasing addresses. The
sign is superimposed on the last digit (trailing numeric string).

All bytes of overpunched decimal data, except the least significant digit, must contain
ASCII decimal digit characters (0 through 9). Table 1-1 lists the representation for these
nonleast significant digits.

14 Language Elements

Table 1-1: Overpunched Decimal Representation of Nonleast Significant Digits

Sign Decimal Hexadecimal ASCII Character

0 48 30 0
1 49 31 1
2 50 32 2
3 51 33 3
4 52 34 4
5 53 35 5
6 54 36 6
7 55 37 7
8 56 38 8
9 57 39 9

There are several variations of overpunched decimal format. Alternate forms of
overpunched decimal format are accepted on input. The normal form of overpunched deci-
mal format is generated on output. Valid representations of the digit and sign in each of
the latter two formats (input and output) are shown in Table 1-2.

Table 1-2: Overpunched Decimal Representations of Least Significant

Digit and Sign
Overpunched Decimal Format ASCII Characters
Digit Decimal Hexadecimal Normal Alternate
0 48 30 0 {[?
1 49 31 1 A
2 50 32 2 B
3 51 33 3 C
4 52 34 4 D
5 53 35 5 E
6 54 36 6 F
7 55 37 7 G
8 56 38 8 H
9 57 39 9 I
-0 125 7D }]:!
-1 74 4A J
-2 75 4B K
-3 76 4C L
—4 77 4D M
-5 78 4E N
-6 79 4F (6)
-7 80 50 P
-8 81 51 Q
-9 82 52 R

Language Elements 1-5

The following diagrams illustrate the representation of 123 and —123 in trailing numeric
string format. Figure 1-6 represents 123 and Figure 1-7 represents —123.

7 4 3 0
3 1 —~—— A
3 2 — A + 1
3 3 - A +2

ZK-1456-83
Figure 1-6: Overpunched Decimal Data Type
7 4 3 0
3 1 - A
3 2 - A + 1
4 C — A+ 2
ZK-1457-83

Figure 1-7: Overpunched Decimal Data Type

1.3 USER-DEFINED NAMES

A user-defined name is a named quantity that identifies an entity in an RPG II program.
The name