

4.2BSD System Manual

Order No. AA -BG55A -TE

digital equipment corporation, merrimack, new hampshire

First printing, May 1984

Copyright © 1984 by Digital Equipment Corporation.

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

The postage-paid READER'S COMMENTS form on the last page of this docu­
ment requests your critical evaluation to assist us in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC
DECUS
MASSBUS
PDP
ULTRIX
ULTRIX-11

ULTRIX-32
UNIBUS
VAX
VMS
VT

~DmDD~DTM

UNIX is a trademark of AT&T Bell Laboratories.

Information herein is derived from copyrighted material as permitted under a
license agreement with AT&T Bell Laboratories.

This software and documentation is based in part on the Fourth Berkeley Soft­
ware Distribution under license from the Regents of the University of California.
We acknowledge the Electrical Engineering and Computer Sciences Departments
at the Berkeley Campus of the University of California for their role in its
development.

iii

This software and documentation is based in part on the Fourth Berkeley Software
Distribution under license from The Regents of the University of California. We ack­
nowledge the following individuals for their role in its development:

Eric Allman, Ken Arnold, Ozalp Babaoglu, Scott B. Baden, Jerry Berkman, John
Breedlove, Earl T. Cohen, Robert P. Corbett, Mike Curry, Steve Feldman, Tom Fer­
rin, John Foderaro, Susan L. Graham, Charles Haley, Robert R. Henry, Andy
Hertzfeld, Mark Horton, S.C. Johnson, William Joy, Howard Katseff, Peter Kessler,
Jim Kleckner, J.E. Kulp, James Larus, Kevin Layer, Mike Lesk, Steve Levine, Jeff
Levinsky, Louise Madrid, M. Kirk McKusick, Colin L. McMaster, Mikey Olson,
Geoffrey Peck, Ed Pelegri-Llopart, Rob Pike, Dave Presotto, John F. Reiser, Asa
Romberger, Bill Rowan, Jeff Schreibman, Eric P. Scott, Greg Shenaut, Eric Shien­
brood, Kurt Shoens, Keith Sklower, Helge Skrivervik, Al Stanberger, Ken Thompson,
Michael C. Toy, Richard Tuck, Bill Tuthill, Mike Urban, Edward Wang, David Was­
ley, Joseph Weizenbaum, Jon L. White, Glenn Wichman, Niklaus Wirth.

4.2BSD System Manual

Revised July, 1983

4.2BSD System Manual 1

William Joy, Eric Cooper, Robert Fabry,

Samuel Leffler, Kirk McKusick and David Mosher

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720

(415) 642-7780

o. Notation and types
The notation used to describe system calls is a variant of a C language call, consisting of

a prototype call followed by declaration of parameters and results. An additional keyword
result, not part of the normal C language, is used to indicate which of the declared entities
receive results. As an example, consider the read call, as described in section 2.1:

cc = read(fd, buf, nbytes);
result int cc; int fd; result char *buf; int nbytes;

The first line shows how the read routine is called, with three parameters. As shown on the
second line cc is an integer and read also returns information in the parameter but.

Description of all error conditions arising from each system call is not provided here;
they appear in the programmer's manual. In particular, when accessed from the C language,
many calls return a characteristic -1 value when an error occurs, returning the error code in
the global variable errno. Other languages may present errors in different ways.

A number of system standard types are defined in the include file <sys/types.h> and
used in the specifications here and in many C programs. These include caddr_t giving a
memory address (typically as a character pointer), off_t giving a file offset (typically as a long
integer), and a set of unsigned types u_char, u_short, uj.nt and u_Iong, shorthand names for
unsigned char, unsigned short, etc.

UNIX is a trademark of Bell Laboratories

2 4.2BSD System Manual
1. Kernel primitives

The facilities available to a UNIX user process are logically divided into two parts: ker­
nel facilities directly implemented by UNIX code running in the operating system, and system
facilities implemented either by the system, or in cooperation with a server process. These
kernel facilities are described in this section 1.

The facilities implemented in the kernel are those which define the UNIX virtual
machine which each process runs in. Like many real machines, this virtual machine has
memory management hardware, an interrupt facility, timers and counters. The UNIX virtual
machine also allows access to files and other objects through a set of descriptors. Each
descriptor resembles a device controller, and supports a set of operations. Like devices on real
machines, some of which are internal to the machine and some of which are external, parts of
the descriptor machinery are built-in to the operating system, while other parts are often
implemented in server processes on other machines. The facilities provided through the
descriptor machinery are described in section 2.

4.2BSD System Manual 3
'\ 1.1. Processes and protection

I

1.1.1. Host and process identifiers

Each UNIX host has associated with it a 32-bit host id, and a host name of up to 255
characters. These are set (by a privileged user) and returned by the calls:

sethostid(hostid)
long hostid;

hostid = gethostidO;
result long hostid;

sethostname(name, len)
char *name; int len;

len = gethostname(buf, buflen)
result int len; result char *buf; int buflen;

On each host runs a set of processes. Each process is largely independent of other processes,
having its own protection domain, address space, timers, and an independent set of references
to system or user implemented objects.

Each process in a host is named by an integer called the process id. This number is in
the range 1-30000 and is returned by the getpid routine:

pid = getpidO;
result int pid;

On each UNIX host this identifier is guaranteed to be unique; in a multi-host environment,
the (hostid, process id) pairs are guaranteed unique.

1.1.2. Process creation and termination

A new process is created by making a logical duplicate of an existing process:

pid = forkO;
result int pid;

The fork call returns twice, once in the parent process, where pid is the process identifier of
the child, and once in the child process where pid is o. The parent-child relationship induces
a hierarchical structure on the set of processes in the system.

A process may terminate by executing an exit call:

exit(status)
int status;

returning 8 bits of exit status to its parent.

When a child process exits or terminates abnormally, the parent process receives infor­
mation about any event which caused termination of the child process. A second call provides
a non-blocking interface and may also be used to retrieve information about resources

4 4.2BSD System Manual
consumed by the process during its lifetime.

#include <sys/wait.h>

pid = wait(astatus);
result int pid; result union wait * astatus;

pid = wait3(astatus, options, arusage);
result int pid; result union waitstatus * astatus;
int options; result struct rusage * arusage;

A process can overlay itself with the memory image of another process, passing the newly
created process a set of parameters, using the call:

execve(name, argv, envp)
char *name, **argv, **envp;

The specified name must be a file which is in a format recognized by the system, either a
binary executable file or a file which causes the execution of a specified interpreter program to
process its contents.

1.1.3. User and group ids

Each process in the system has associated with it two user-id's: a real user id and a
effective user id, both non-negative 16 bit integers. Each process has an real accounting
group id and an effective accounting group id and a set of access group id's. The group id's
are non-negative 16 bit integers. Each process may be in several different access groups, with
the maximum concurrent number of access groups a system compilation parameter, the con­
stant NGROUPS in the file <sys/param.h>, guaranteed to be at least 8.

The real and effective user ids associated with a process are returned by:

ruid = getuidO;
result int ruid;

euid = geteuidO;
result int euid;

the real and effective accounting group ids by:

rgid = getgidO;
result int rgid;

egid = getegidO;
result int egid;

and the access group id set is returned by a getgroups call:

ngroups = getgroups(gidsetsize, gidset);
result int ngroups; int gidsetsize; result int gidset[gidsetsize];

4.2BSD System Manual 5
The user and group id's are assigned at login time using the setreuid, setregid, and set­

\ groups calls:

setreuid(ruid, euid);
int ruid, euid;

setregid(rgid, egid);
int rgid, egid;

setgroups(gidsetsize, gidset)
int gidsetsize; int gidset[gidsetsize];

The setreuid call sets both the real and effective user-id's, while the setregid call sets both the
real and effective accounting group id's. Unless the caller is the super-user, ruid must be
equal to either the current real or effective user-id, and rgid equal to either the current real or
effective accounting group id. The setgroups call is restricted to the super-user.

1.1.4. Process groups

Each process in the system is also normally associated with a process group. The group
of processes in a process group is sometimes referred to as a job and manipulated by high­
level system software (such as the shell). The current process group of a process is returned
by the getpgrp call:

pgrp = getpgrp(pid);
result int pgrp; int pid;

When a process is in a specific process group it may receive software interrupts affecting the
group, causing the group to suspend or resume execution or to be interrupted or terminated.
In particular, a system terminal has a process group and only processes which are in the pro­
cess group of the terminal may read from the terminal, allowing arbitration of terminals
among several different jobs.

The process group associated with a process may be changed by the setpgrp call:

setpgrp(pid, pgrp);
int pid, pgrp;

Newly created processes are assigned process id's distinct from all processes and process
groups, and the same process group as their parent. A normal (unprivileged) process may set
its process group equal to its process id. A privileged process may set the process group of
any process to any value.

6 4.2BSD System Manual
1.2. Memory managementt

1.2.1. Text, data and stack

Each process begins execution with three logical areas of memory called text, data and
stack. The text area is read-only and shared, while the data and stack areas are private to the
process. Both the data and stack areas may be extended and contracted on program request.
The call

addr = sbrk(incr);
result caddr_ t addr; int incr;

changes the size of the data area by incr bytes and returns the new end of the data area, while

addr = sstk(incr);
result caddt,.t addr; int incr;

changes the size of the stack area. The stack area is also automatically extended as needed.
On the V AX the text and data areas are adjacent in the PO region, while the stack section is
in the PI region, and grows downward.

1.2.2. Mapping pages

The system supports sharing of data between processes by allowing pages to be mapped
into memory. These mapped pages may be shared with other processes or private to the pro­
cess. Protection and sharing options are defined in <mman.h> as:

/* protections are chosen from these bits, or-ed together * /
#define PROT_READ
#define PROT_WRITE
#define PROT_EXEC

Ox4
Ox2
Oxi

/* pages can be read * /
/* pages can be written * /
/* pages can be executed * /

/* sharing types; choose either SHARED or PRIVATE * /
#define MA~ SHARED I /* share changes * /
#define MAP_PRIVATE 2 /* changes are private * /

The cpu-dependent size of a page is returned by the getpagesize system call:

pagesize = getpagesizeO;
result int pagesize;

The call:

mmap(addr, len, prot, share, fd, pos);
caddr_t addr; int len, prot, share, fd; off_t pos;

causes the pages starting at addr and continuing for len bytes to be mapped from the object
represented by descriptor fd, at absolute position pas. The parameter share specifies whether

t This section represents the interface planned for later releases of the system. Of the calls described in
this section, only sbrk and getpagesize are included in 4.2BSD.

4.2BSD System Manual 7
modifications made to this mapped copy of the page, are to be kept private, or are to be

/ shared with other references. The parameter prot specifies the accessibility of the mapped
pages. The addr, len, and pos parameters must all be multiples of the pagesize.

A process can move pages within its own memory by using the mremap call:

mremap(addr, len, prot, share, fromaddr);
caddr_t addr; int len, prot, share; caddr_t fromaddr;

This call maps the pages starting at fromaddr to the address specified by addr.

A mapping can be removed by the call

munmap(addr, len);
caddLt addr; int len;

This causes further references to these pages to refer to private pages initialized to zero.

1.2.3. Page protection control

A process can control the protection of pages using the call

mprotect(addr, len, prot);
cadd~_J addr; int len, prot;

This call changes the specified pages to have protection prot.

1.2.4. Giving and getting advice

A process that has knowledge of its memory behavior may use the madvise call:

madvise(addr, len, behav);
caddLt addr; int len, behav;

Behav describes expected behavior, as given in <mman.h>:

#define MAD V_NORMAL 0 /* no further special treatment * /
#define MADV_RANDOM 1 /* expect random page references * /
#define MADV_SEQUENTIAL 2 /* expect sequential references * /
#define MADV_WILLNEED 3 /* will need these pages */
#define MADV_DONTNEED 4 /* don't need these pages * /

Finally, a process may obtain information about whether pages are core resident by using the
call

mincore(addr, len, vec)
caddtJ addr; int len; result char *vec;

Here the current core residency of the pages is returned in the character array vee, with a
value of 1 meaning that the page is in-core.

8 4.2BSD System Manual
1.3. Signals

1.3.1. Overview

The system defines a set of signals that may be delivered to a process. Signal delivery
resembles the occurrence of a hardware interrupt: the signal is blocked from further
occurrence, the current process context is saved, and a new one is built. A process may
specify the handler to which a signal is delivered, or specify that the signal is to be blocked or
ignored. A process may also specify that a default action is to be taken when signals occur.

Some signals will cause a process to exit when they are not caught. This may be accom­
panied by creation of a core image file, containing the current memory image of the process
for use in post-mortem debugging. A process may choose to have signals delivered on a spe­
cial stack, so that sophisticated software stack manipulations are possible.

All signals have the same priority. If multiple signals are pending simultaneously, the
order in which they are delivered to a process is implementation specific. Signal routines exe­
cute with the signal that caused their invocation blocked, but other signals may yet occur.
Mechanisms are provided whereby critical sections of code may protect themselves against the
occurrence of specified signals.

1.3.2. Signal types

The signals defined by the system fall into one of five classes: hardware conditions,
software conditions, input/output notification, process control, or resource control. The set of
signals is defined in the file <signal.h>.

Hardware signals are derived from exceptional conditions which may occur during execu­
tion. Such signals include SIGFPE representing floating point and other arithmetic excep­
tions, SIGILL for illegal instruction execution, SIGSEGV for addresses outside the currently
assigned area of memory, and SIGBUS for accesses that violate memory protection con­
straints. Other, more cpu-specific hardware signals exist, such as those for the various
customer-reserved instructions on the VAX (SIGIOT, SIGEMT, and SIGTRAP).

Software signals reflect interrupts generated by user request: SIGINT for the normal
interrupt signal; SIGQUIT for the more powerful quit signal, that normally causes a core
image to be generated; SIGHUP and SIGTERM that cause graceful process termination,
either because a user has "hung up", or by user or program request; and SIGKILL, a more
powerful termination signal which a process cannot catch or ignore. Other software signals
(SIGALRM, SIGVTALRM, SIGPROF) indicate the expiration of interval timers.

A process can request notification via a SIGIO signal when input or output is possible on
a descriptor, or when a non-blocking operation completes. A process may request to receive a
SIGURG signal when an urgent condition arises.

A process may be stopped by a signal sent to it or the members of its process group.
The SIGSTOP signal is a powerful stop signal, because it cannot be caught. Other stop sig­
nals SIGTSTP, SIGTTIN, and SIGTTOU are used when a user request, input request, or out­
put request respectively is the reason the process is being stopped. A SIGCONT signal is sent
to a process when it is continued from a stopped state. Processes may receive notification

4.2BSD System Manual 9
, with a SIGCHLD signal when a child process changes state, either by stopping or by terminat­
J ing.

Exceeding resource limits may cause signals to be generated. SIGXCPU occurs when a
process nears its CPU time limit and SIGXFSZ warns that the limit on file size creation has
been reached.

1.3.3. Signal handlers

A process has a handler associated with each signal that controls the way the signal is
delivered. The call

#inc1ude <signal.h>

struct sigvec {
int
int
int

};

(*sv_handler)0;
sv_mask;
sv_onstack;

sigvec(signo, sv, osv)
int signo; struct sigvec *sv; result struct sigvec *osv;

assigns interrupt handler address slLhandler to signal signo. Each handler address specifies
either an interrupt routine for the signal, that the signal is to be ignored, or that a default
action (usually process termination) is to occur if the signal occurs. The constants SIGJGN
and SIG DEF used as values for slLhandler cause ignoring or defaulting of a condition. The
sv_mask and sv_onstack values specify the signal mask to be used when the handler is invoked
and whether the handler should operate on the normal run-time stack or a special signal stack
(see below). If osv is non-zero, the previous signal vector is returned.

When a signal condition arises for a process, the signal is added to a set of signals pend­
ing for the process. If the signal is not currently blocked by the process then it will be
delivered. The process of signal delivery adds the signal to be delivered and those signals
specified in the associated signal handler's sv_mask to a set of those masked for the process,
saves the current process context, and places the process in the context of the signal handling
routine. The call is arranged so that if the signal handling routine exits normally the signal
mask will be restored and the process will resume execution in the original context. If the
process wishes to resume in a different context, then it must arrange to restore the signal
mask itself.

The mask of blocked signals is independent of handlers for signals. It prevents signals
from being delivered much as a raised hardware interrupt priority level prevents hardware
interrupts. Preventing an interrupt from occurring by changing the handler is analogous to
disabling a device from further interrupts.

The signal handling routine sLLhandler is called by a C call of the form

(*sv_handler)(signo, code, scp);
int signo; long code; struct sigcontext *scp;

10 4.2BSD System Manual
The signo gives the number of the signal that occurred, and the code, a word of information
supplied by the hardware. The scp parameter is a pointer to a machine-dependent structure
containing the information for restoring the context before the signal.

1.3.4. Sending signals

A process can send a signal to another process or group of processes with the calls:

kill(pid, signo)
int pid, signo;

killpgrp(pgrp, signo)
int pgrp, signo;

Unless the process sending the signal is privileged, it and the process receiving the signal must
have the same effective user id.

Signals are also sent implicitly from a terminal device to the process group associated
with the terminal when certain input characters are typed.

1.3.5. Protecting critical sections

To block a section of code against one or more signals, a sigblock call may be used to
add a set of signals to the existing mask, returning the old mask:

oldmask = sigblock(mask);
result long oldmask; long mask;

The old mask can then be restored later with sigsetmask,

oldmask = sigsetmask(mask);
result long oldmask; long mask;

The sigblock call can be used to read the current mask by specifying an empty mask.

It is possible to check conditions with some signals blocked, and then to pause waiting
for a signal and restoring the mask, by using:

sigpause(mask);
long mask;

1.3.6. Signal stacks

Applications that maintain complex or fixed size stacks can use the call

struct sigstack {
caddr_t
int

};

sigstack(ss, oss)

ss_sp;
s8..J)nstack;

struct sigstack *ss; result struct sigstack *oss;

4.2BSD System Manual 11
to provide the system with a stack based at ss sp for delivery of signals. The value ss onstack
indicates whether the process is currently on the signal stack, a notion maintained in software

/ by the system.

When a signal is to be delivered, the system checks whether the process is on a signal
stack. If not, then the process is switched to the signal stack for delivery, with the return
from the signal arranged to restore the previous stack.

If the process wishes to take a non-local exit from the signal routine, or run code from
the signal stack that uses a different stack, a sigstack call should be used to reset the signal
stack.

12 4.2BSD System Manual
1.4. Timers

1.4.1. Real time

The system's notion of the current Greenwich time and the current time zone is set and
returned by the call by the calls:

#include <sys/time.h>

settimeofday(tvp, tzp);
struct timeval *tp;
struct timezone *tzp;

gettimeofday(tp, tzp);
result struct timeval *tp;
result struct time zone *tzp;

where the structures are defined in <sys/time.h> as:

struct timeval {
long
long

};

struct timezonE: {
int
int

};

tv_sec;
tv_usec;

tz_minuteswest;
tz_dsttime;

/* seconds since Jan 1, 1970 * /
/* and microseconds * /

/* of Greenwich * /
/* type of dst correction to apply * /

Earlier versions of UNIX contained only a I-second resolution version of this call, which
remains as a library routine:

time(tvsec)
result long *tvsec;

returning only the tv_sec field from the gettimeofday call.

1.4.2. Interval time

The system provides each process with three interval timers, defined in <sys/time.h>:

#define ITIMER_REAL 0 /* real time intervals * /
#define ITIMER_VIRTUAL 1
#define ITIMER""pROF 2

/* virtual time intervals * /
/* us~r and system virtual time * /

The ITIME~REAL timer decrements in real time. It could be used by a library routine to
maintain a wakeup service queue. A SIGALRM signal is delivered when this timer expires.

The ITIMER...YIRTUAL timer decrements in process virtual time. It runs only when
the process is executing. A SIGVTALRM signal is delivered when it expires.

4.2BSD System Manual 13
The ITIMEILPROF timer decrements both in process virtual time and when the system

: is running on behalf of the process. It is designed to be used by processes to statistically
profile their execution. A SIGPROF signal is delivered when it expires.

A timer value is defined by the itimerval structure:

struct itimerval {
struct
struct

};

timeval itJnterval; /* timer interval * /
timeval iLvalue; /* current value * /

and a timer is set or read by the call:

getitimer(which, value);
int which; result struct itimerval *value;

setitimer(which, value, ovalue);
int which; struct itimerval *value; result struct itimerval *ovalue;

The third argument to setitimer specifies an optional structure to receive the previous con­
tents of the interval timer. A timer can be disabled by specifying a timer value of O.

The system rounds argument timer intervals to be not less than the resolution of its
clock. This clock resolution can be determined by loading a very small value into a timer and
reading the timer back to see what value resulted.

The alarm system call of earlier versions of UNIX is provided as a library routine using
the ITIMER_REAL timer. The process profiling facilities of earlier versions of UNIX remain
because it is not always possible to guarantee the automatic restart of system calls after
receipt of a signal.

profil(buf, bufsize, offset, scale);
result char *buf; int bufsize, offset, scale;

14 4.2BSD System Manual
1.5. Descriptors

1.5.1. The reference table

Each process has access to resources through descriptors. Each descriptor is a handle
allowing the process to reference objects such as files, devices and communications links.

Rather than allowing processes direct access to descriptors, the system introduces a level
of indirection, so that descriptors may be shared between processes. Each process has a
descriptor reference table, containing pointers to the actual descriptors. The descriptors
themselves thus have multiple references, and are reference counted by the system.

Each process has a fixed size descriptor reference table, where the size is returned by the
getdtablesize call:

nds = getdtablesizeO;
result int nds;

and guaranteed to be at least 20. The entries in the descriptor reference table are referred to
by small integers; for example if there are 20 slots they are numbered 0 to 19.

1.5.2. Descriptor properties

Each descriptor has a logical set of properties maintained by the system and defined by
its type. Each type supports a set of operations; some operations, such as reading and writing,
are common to several abstractions, while others are unique. The generic operations applying
to many of these types are described in section 2.1. Naming contexts, files and directories are
described in section 2.2. Section 2.3 describes communications domains and sockets. Termi­
nals and (structured and unstructured) devices are described in section 2.4.

1.5.3. Managing descriptor references

A duplicate of a descriptor reference may be made by doing

new = dup(old);
result int new; int old;

returning a copy of descriptor reference old indistinguishable from the original. The new
chosen by the system will be the smallest unused descriptor reference slot. A copy of a
descriptor reference may be made in a specific slot by doing

dup2(0Id, new);
int old, new;

The dup2 call causes the system to deallocate the descriptor reference current occupying slot
new, if any, replacing it with a reference to the same descriptor as old. This de allocation is
also performed by:

close(old);
int old;

4.2BSD System Manual 15
~, 1.5.4. Multiplexing requests

The system provides a standard way to do synchronous and asynchronous multiplexing
of operations.

Synchronous multiplexing is performed by using the select call:

nds = select(nd, in, out, except, tvp);
result int nds; int nd; result *in, *out, *except;
struct timeval *tvp;

The select call examines the descriptors specified by the sets in, out and except, replacing the
specified bit masks by the subsets that select for input, output, and exceptional conditions
respectively (nd indicates the size, in bytes, of the bit masks). If any descriptors meet the fol­
lowing criteria, then the number of such descriptors is returned in nds and the bit masks are
updated.

• A descriptor selects for input if an input oriented operation such as read or receive is
possible, or if a connection request may be accepted (see section 2.3.1.4).

• A descriptor selects for output if an output oriented operation such as write or send is
possible, or if an operation that was "in progress", such as connection establishment, has
completed (see section 2.1.3).

• A descriptor selects for an exceptional condition if a condition that would cause a
SIGURG signal to be generated exists (see section 1.3.2).

If none of the specified conditions is true, the operation blocks for at most the amount of time
specified by tvp, or waits for one of the conditions to arise if tvp is given as O.

Options affecting i/o on a descriptor may be read and set by the call:

dopt = fcntl(d, cmd, arg)
result int dopt; int d, cmd, arg;

/* interesting values for cmd * /
#define F_SETFL
#define F_GETFL
#define F_SETOWN
#define F_GETOWN

3
4
5
6

/* set descriptor options * /
/* get descriptor options * /
/* set descriptor owner (pid/pgrp) * /
/* get descriptor owner (pid/pgrp) * /

The F_SETFL cmd may be used to set a descriptor in non-blocking i/o mode and/or enable
signalling when i/o is possible. F_SETOWN may be used to specify a process or process group
to be signalled when using the latter mode of operation.

Operations on non-blocking descriptors will either complete immediately, note an error
EWOULDBLOCK, partially complete an input or output operation returning a partial count,
or return an error EINPROGRESS noting that the requested operation is in progress. A
descriptor which has signalling enabled will cause the specified process and/or process group
be signaled, with a SIGIO for input, output, or in-progress operation complete, or a SIGURG
for exceptional conditions.

For example, when writing to a terminal using non-blocking output, the system will
accept only as much data as there is buffer space for and return; when making a connection

16 4.2BSD System Manual
on a socket, the operation may return indicating that the connection establishment is "in pro­
gress". The select facility can be used to determine when further output is possible on the i

terminal, or when the connection establishment attempt is complete.

1.5.5. Descriptor wrapping. t
A user process may build descriptors of a specified type by wrapping a communications

channel with a system supplied protocol translator:

new = wrap(old, proto)
result int new; int old; struct dprop *proto;

Operations on the descriptor old are then translated by the system provided protocol transla­
tor into requests on the underyling object old in a way defined by the protocol. The protocols
supported by the kernel may vary from system to system and are described in the program­
mers manual.

Protocols may be based on communications multiplexing or a rights-passing style of han­
dling multiple requests made on the same object. For instance, a protocol for implementing a
file abstraction mayor may not include locally generated "read-ahead" requests. A protocol
that provides for read-ahead may provide higher performance but have a more difficult imple­
mentation.

Another example is the terminal driving facilities. Normally a terminal is associated
with a communications line and the terminal type and standard terminal access protocol is
wrapped around a synchronous communications line and given to the user. If a virtual termi­
nal is required, the terminal driver can be wrapped around a communications link, the other
end of which is held by a virtual terminal protocol interpreter.

t The facilities described in this section are not included in 4.2BSD.

" 1.6. Resource controls
,I

1.6.1. Process priorities

4.2BSD System Manual 17

The system gives CPU scheduling priority to processes that have not used CPU time
recently. This tends to favor interactive processes and processes that execute only for short
periods. It is possible to determine the priority currently assigned to a process, process group,
or the processes of a specified user, or to alter this priority using the calls:

#define PRIOYROCESS
#define PRIO_PGRP
#define PRIO_USER

prio = getpriority(which, who);
result int prio; int which, who;

setpriority(which, who, prio);
int which, who, prio;

o
1
2

/* process * /
/* process group * /
/* user id */

The value prio is in the range -20 to 20. The default priority is 0; lower priorities cause more
favorable execution. The getpriority call returns the highest priority (lowest numerical value)
enjoyed by any of the specified processes. The setpriority call sets the priorities of all of the
specified processes to the specified value. Only the super-user may lower priorities.

1.6.2. Resource utilization

The resources used by a process are returned by a getrusage call, returning information
in a structure defined in <sys/resource.h>:

18 4.2BSD System Manual

#define RUSAGE_SELF 0
#define RUSAGE_CHILDREN-1

getrusage(who, rusage)
int who; result struct rusage *rusage;

struct rusage {
struct
struct
int
int
int
int
int
int
int
int
int
int
int
int
int
int

} ;

timeval ru_utime;
timeval ru..§time;
ru_maxrss;
rujxrss;
rujdrss;
rujsrss;
rtLminflt;
ru_majflt;
ru_nswap;
rujnblock;
ru_oublock;
ru_msgsnd;
ru_msgrcv;
ru_nsignals;
ru_nvcsw;
ru_nivcsw;

/* usage by this process * /
/* usage by all children * /

/* user time used * /
/* system time used * /
/* maximum core resident set size: kbytes * /
/* integral shared memory size (kbytes*sec) * /
/* unshared data " * /
/* unshared stack " * /
/* page-reclaims * /
/* page faults * /
/* swaps */
/* block input operations * /
/* block output" * /
/* messages sent * /
/* messages received * /
/* signals received * /
/* voluntary context switches * /
/* involuntary" * /

The who parameter specifies whose resource usage is to be returned. The resources used by
the current process, or by all the terminated children of the current process may be requested.

1.6.3. Resource limits

The resources of a process for which limits are controlled by the kernel are defined in
<sys/resource.h>, and controlled by the getrlimit and setrlimit calls:

(

/

#define RLIMIT_CPU
#define RLIMIT_FSIZE
#define RLIMIT_DATA
#define RLIMIT_ST ACK
#define RLIMIT_CORE
#define RLIMIT_RSS

#define RLIM _ NLIMITS

#define RLIMJNFINITY

struct rlimit {
int
int

rlim.sur;
rlim_max;

};

getrlimit(resource, rlp)

o
1
2
3
4
5

6

4.2BSD System Manual 19

/* cpu time in milliseconds * /
/* maximum file size * /
/* maximum data segment size * /
/* maximum stack segment size * /
/* maximum core file size * /
/* maximum resident set size * /

Ox7fffffff

/* current (soft) limit * /
/* hard limit * /

int resource; result struct rlimit *rlp;

setrlimit(resource, rlp)
int resource; struct rlimit *rlp;

Only the super-user can raise the maximum limits. Other users may only alter rlim cur
within the range from 0 to rlim_max or (irreversibly) lower rlim_max.

20 4.2BSD System Manual
1.7. System operation support

Unless noted otherwise, the calls in this section are permitted only to a privileged user.

1.7.1. Bootstrap operations

The call

mount(blkdev, dir, ronly);
char *blkdev, *dir; int ronly;

extends the UNIX name space. The mount call specifies a block device blkdev containing a
UNIX file system to be made available starting at dir. If ronly is set then the file system is
read-only; writes to the file system will not be permitted and access times will not be updated
when files are referenced. Dir is normally a name in the root directory.

The call

swapon(blkdev, size);
char *blkdev; int size;

specifies a device to be made available for paging and swapping.

1.7.2. Shutdown operations

The call

unmount(dir);
char *dir;

unmounts the file system mounted on dir. This call will succeed only if the file system is not
currently being used.

The call

syncO;

schedules input/output to clean all system buffer caches. (This call does not require
priveleged status.)

The call

reboot(how)
int how;

causes a machine halt or reboot. The call may request a reboot by specifying how as
RB_AUTOBOOT, or that the machine be halted with RILHALT. These constants are defined
in <sys/re boot.h>.

1.7.3. Accounting

The system optionally keeps an accounting record in a file for each process that exits on
the system. The format of this record is beyond the scope of this document. The accounting
may be enabled to a file name by doing

\
/

acct(path);
char * path;

4.2BSD System Manual 21

If path is null, then accounting is disabled. Otherwise, the named file becomes the accounting
file.

22 4.2BSD System Manual
2. System facilities

This section discusses the system facilities that are not considered part of the kernel.

The system abstractions described are:

Directory contexts

Files

A directory context is a position in the UNIX file system name space. Operations on
files and other named objects in a file system are always specified relative to such a con­
text.

Files are used to store uninterpreted sequence of bytes on which random access reads
and writes may occur. Pages from files may also be mapped into process address space.
A directory may be read as a filet.

Communications domains
A communications domain represents an interprocess communications environment, such
as the communications facilities of the UNIX system, communications in the INTER­
NET, or the resource sharing protocols and access rights of a resource sharing system on
a local network.

Sockets
A socket is an endpoint of communication and the focal point for IPC in a communica­
tions domain. Sockets may be created in pairs, or given names and used to rendezvous
with other sockets in a communications domain, accepting connections from these sock­
ets or exchanging messages with them. These operations model a labeled or unlabeled
communications graph, and can be used in a wide variety of communications domains.
Sockets can have different types to provide different semantics of communication,
increasing the flexibility of the model.

Terminals and other devices
Devices include terminals, providing input editing and interrupt generation and output
flow control and editing, magnetic tapes, disks and other peripherals. They often sup­
port the generic read and write operations as well as a number of ioctl s.

Processes
Process descriptors provide facilities for control and debugging of other processes.

t Support for mapping files is not included in the 4.2 release.

v

4.2BSD System Manual 23
2.1. Generic operations

Many system abstractions support the operations read, write and ioctl. We describe the
basics of these common primitives here. Similarly, the mechanisms whereby normally syn­
chronous operations may occur in anon-blocking or asynchronous fashion are common to all
system-defined abstractions and are described here.

2.1.1. Read and write

The read and write system calls can be applied to communications channels, files, termi­
nals and devices. They have the fo.rm:

cc = read(fd, buf, nbytes);
result int cc; int fd; result caddLt buf; int nbytes;

cc = write(fd, buf, nbytes);
result int cc; int fd; caddr_ t buf; int nbytes;

The read call transfers as much data as possible from the object defined by fd to the buffer at
address buf of size nbytes. The number of bytes transferred is returned in cc, which is -1 if a
return occurred before any data was transferred because of an error or use of non-blocking
operations.

The write call transfers data from the buffer to the object defined by fd. Depending on
the type of fd, it is possible that the write call will accept some portion of the provided bytes;
the user should resubmit the other bytes in a later request in this case. Error returns because
of interrupted or otherwise incomplete operations are possible.

Scattering of data on input or gathering of data for output is also possible using an array
of input/output vector descriptors. The type for the descriptors is defined in <sys/uio.h> as:

struct iovec {
caddr_t
int

} ;

iov_msg;
iovJen;

The calls using an array of descriptors are:

cc = readv(fd, iov, iovlen);

/* base of a component * /
/* length of a component * /

result int cc; int fd; struct iovec *iov; int iovlen;

cc = writev(fd, iov, iovlen);
result int cc; int fd; struct iovec *iov; int iovlen;

Here iovlen is the count of elements in the iov array.

2.1.2. Input/output control

Control operations on an object are performed by the ioctl operation:

24 4.2BSD System Manual

ioct1(fd, request, buffer);
int fd, request; caddr_t buffer;

This operation causes the specified request to be performed on the object fd. The request
parameter specifies whether the argument buffer is to be read, written, read and written, or is
not needed, and also the size of the buffer, as well as the request. Different descriptor types
and subtypes within descriptor types may use distinct ioctl requests. For example, operations
on terminals control flushing of input and output queues and setting of terminal parameters;
operations on disks cause formatting operations to 'occur; operations on tapes control tape
positioning.

The names for basic control operations are defined in <sys/ioctl.h>.

2.1.3. Non-blocking and asynchronous operations

A process that wishes to do non-blocking operations on one of its descriptors sets the
descriptor in non-blocking mode as described in section 1.5.4. Thereafter the read call will
return a specific EWOULDBLOCK error indication if there is no data to be read. The pro­
cess may dselect the associated descriptor to determine when a read is possible.

Output attempted when a descriptor can accept less than is requested will either accept
some of the provided data, returning a shorter than normal length, or return an error indicat­
ing that the operation would block. More output can be performed as soon as a select call
indicates the object is writeable.

Operations other than data input or output may be performed on a descriptor in a non­
blocking fashion. These operations will return with a characteristic error indicating that they
are in progress if they cannot return immediately. The descriptor may then be selected for
write to find out when the operation can be retried. When select indicates the descriptor is
writeable, a respecification of the original operation will return the result of the operation.

\
\

I

4.2BSD System Manual 25
2.2. File system

2.2.1. Overview

The file system abstraction provides access to a hierarchical file system structure. The
file system contains directories (each of which may contain other sub-directories) as well as
files and references to other objects such as devices and inter-process communications sockets.

Each file is organized as a linear array of bytes. No record boundaries or system related
information is present in a file. Files may be read and written in a random-access fashion.
The user may read the data in a directory as though it were an ordinary file to determine the
names of the contained files, but only the system may write into the directories. The file sys­
tem stores only a small amount of ownership, protection and usage information with a file.

2.2.2. Naming

The file system calls take path name arguments. These consist of a zero or more com­
ponent file names separated by "I" characters, where each file name is up to 255 ASCII char­
acters excluding null and "I".

Each process always has two naming contexts: one for the root directory of the file sys­
tem and one for the current working directory. These are used by the system in the filename
translation process. If a path name begins with a "I", it is called a full path name and inter­
preted relative to the root directory context. If the path name does not begin with a "I" it is
called a relative path name and interpreted relative to the current directory context.

The system limits the total length of a path name to 1024 characters.

The file name " .. " in each directory refers to the parent directory of that directory. The
parent directory of a file system is always the systems root directory.

The calls

chdir(path);
char *path;

chroot(path)
cblr *path;

change the current working directory and root directory context of a process. Only the super­
user can change the root directory context of a process.

2.2.3. Creation and removal

The file system allows directories, files, special devices, and "portals" to be created and
removed from the file system.

2.2.3.1. Directory creation and removal

A directory is created with the mkdir system call:

26 4.2BSD System Manual

mkdir(path, mode);
char *path; int mode;

and removed with the rmdir system call:

rmdir(path);
char *path;

A directory must be empty if it is to be deleted.

2.2.3.2. File creation

Files are created with the open system call,

fd = open(path, oflag, mode);
result int fd; char *path; int oflag, mode;

The path parameter specifies the name of the file to be created. The ofiag parameter must
include ° CREA T from below to cause the file to be created. The protection for the new file
is specified in mode. Bits for ofiag are defined in <sys/file.h>:

#define O_RDONL Y
#define O_WRONL Y
#define O_RDWR
#define O_NDELA Y
#define O_APPEND
#define O_CREAT
#define O_TRUNC
#define O_EXCL

000
001
002
004
010
01000
02000
04000

/* open for reading * /
/* open for writing * /
/* open for read & write * /
/* non-blocking open * /
/* append on each write * /
/* open with file create * /
/* open with truncation * /
/* error on create if file exists * /

One of O_RDONLY, O_WRONLY and O_RDWR should be specified, indicating what
types of operations are desired to be performed on the open file. The operations will be
checked against the user's access rights to the file before allowing the open to succeed. Speci­
fying O_APPEND causes writes to automatically append to the file. The flag O_CREA T
causes the file to be created if it does not exist, with the specified mode, owned by the current
user and the group of the containing directory.

If the open specifies to create the file with O_EXCL and the file already exists, then the
open will fail without affecting the file in any way. This provides a simple exclusive access
facility.

2.2.3.3. Creating references to devices

The file system allows entries which reference peripheral devices. Peripherals are dis­
tinguished as block or character devices according by their ability to support block-oriented
operations. Devices are identified by their "major" and "minor" device numbers. The major
device number determines the kind of peripheral it is, while the minor device number indi­
cates one of possibly many peripherals of that kind. Structured devices have all operations
performed internally in "block" quantities while unstructured devices often have a number of
special ioctl operations, and may have input and output performed in large units. The mknod

~ call creates special entries:

/ mknod(path, mode, dev);
char *path; int mode, dev;

4.2BSD System Manual 27

where mode is formed from the object type and access permissions. The parameter dev is a
configuration dependent parameter used to identify specific character or block i/o devices.

2.2.3.4. Portal creationt

The call

fd = portal(name, server, param, dtype, protocol, domain, socktype)
result int fd; char *name, *server, *param; int dtype, protocol;
int domain, socktype;

places a name in the file system name space that causes connection to a server process when
the name is used. The portal call returns an active portal in fd as though an access had
occurred to activate an inactive portal, as now described.

When an inactive portal is accesseed, the system sets up a socket of the specified sock­
type in the specified communications domain (see section 2.3), and creates the server process,
giving it the specified param as argument to help it identify the portal, and also giving it the
newly created socket as descriptor number o. The accessor of the portal will create a socket in
the same domain and connect to the server. The user will then wrap the socket in the
specified protocol to create an object of the required descriptor type dtype and proceed with
the operation which was in progress before the portal was encountered.

While the server process holds the socket (which it received as fd from the portal call on
descriptor 0 at activation) further references will result in connections being made to the same
socket.

2.2.3.5. File, device, and portal removal

A reference to a file, special device or portal may be removed with the unlink call,

unlink(path);
char *path;

The caller must have write access to the directory in which the file is located for this call to be
successful.

2.2.4. Reading and modifying file attributes

Detailed information about the attributes of a file may be obtained with the calls:

t The portal call is not implemented in 4.2BSD.

28 4.2BSD System Manual

#include <sys/stat.h>

stat(path, stb);
char *path; result struct stat *stb;

fstat(fd, stb);
int fd; result struct stat *stb;

The stat structure includes the file type, protection, ownership, access times, size, and a count
of hard links. If the file is a symbolic link, then the status of the link itself (rather than the
file the link references) may be found using the lstat call:

lstat(path, stb);
char *path; result struct stat *stb;

Newly created files are assigned the user id of the process that created it and the group
id of the directory in which it was created. The ownership of a file may be changed by either
of the calls

chown(path, owner, group);
char *path; int owner, group;

fchown(fd, owner, group);
int fd, owner, group;

In addition to ownership, each file has three levels of access protection associated with it.
These levels are owner relative, group relative, and global (all users and groups). Each level of
access has separate indicators for read permission, write permission, and execute permission.
The protection bits associated with a file may be set by either of the calls:

chmod(path, mode);
char *path; int mode;

fchmod(fd, mode);
int fd, mode;

where mode is a value indicating the new protection of the file. The file mode is a three digit
octal number. Each digit encodes read access as 4, write access as 2 and execute access as 1,
or'ed together. The 0700 bits describe owner access, the 070 bits describe the access rights for
processes in the same group as the file, and the 07 bits describe the access rights for other
processes.

Finally, the access and modify times on a file may be set by the call:

utimes(path, tvp)
char *path; struct timeval *tvp[2];

This is particularly useful when moving files between media, to preserve relationships between
the times the file was modified.

4.2BSD System Manual 29
2.2.5. Links and renaming

~ Links allow multiple names for a file to exist. Links exist independently of the file
) linked to.

Two types of links exist, hard links and symbolic links. A hard link is a reference count­
ing mechanism that allows a file to have multiple names within the same file system. Sym­
bolic links cause string substitution during the pathname interpretation process.

Hard links and symbolic links have different properties. A hard link insures the target
file will always be accessible, even after its original directory entry is removed; no such
guarantee exists for a symbolic link. Symbolic links can span file systems boundaries.

The following calls create a new link, named path2, to pathl:

link(pathl, path2);
char *pathl, *path2;

symlink(pathl, path2);
char *pathl, *path2;

The unlink primitive may be used to remove either type of link.

If a file is a symbolic link, the "value" of the link may be read with the readlink call,

l~n = readlink(path, buf, bufsize);
result int len; result char *path, *buf; int bufsize;

This call returns, in but, the null-terminated string substituted into pathnames passing
through path.

Atomic renaming of file system resident objects is possible with the rename call:

rename(oldname, newname);
char *oldname, *newname;

where both oldname and newname must be in the same file system. If newname exists and is
a directory, then it must be empty.

2.2.6. Extension and truncation

Files are created with zero length and may be extended simply by writing or appending
to them. While a file is open the system maintains a pointer into the file indicating the
current location in the file associated with the descriptor. This pointer may be moved about
in the file in a random access fashion. To set the current offset into a file, the lseek call may
be used,

oldoffset = lseek(fd, offset, type);
result off t oldoffset; int fd; off t offset; int type;

where type is given in <sys/file.h> as one of,

30 4.2BSD System Manual

#define L_SET
#define LJNCR
#define L_XTND

o
1
2

/* set absolute file offset * /
/* set file offset relative to current position * /
/* set offset relative to end-of-file * /

The call "lseek(fd, 0, LJNCR)" returns the current offset into the file.

Files may have "holes" in them. Holes are void areas in the linear extent of the file
where data has never been written. These may be created by seeking to a location in a file
past the current end-of-file and writing. Holes are treated by the system as zero valued bytes.

A file may be truncated with either of the calls:

truncate(path, length);
char *path; int length;

ftruncate(fd, length);
int fd, length;

reducing the size of the specified file to length bytes.

2.2.7. Checking accessibility

A process running with different real and effective user ids may interrogate the accessi­
bility of a file to the real user by using the access call:

accessible = access(path, how);
result int accessible; char *path; int how;

Here how is constructed by or'ing the following bits, defined in <sys/file.h>:

#define F_OK
#define X_OK
#define W_OK
#define R_OK

o
1
2
4

/* file exists * /
/* file is executable * /
/* file is writable * /
/* file is readable * /

The presence or absence of advisory locks does not affect the result of access.

2.2.8. Locking

The file system provides basic facilities that allow cooperating processes to synchronize
their access to shared files. A process may place an advisory read or write lock on a file, so
that other cooperating processes may avoid interfering with the process' access. This simple
mechanism provides locking with file granularity. More granular locking can be built using
the IPC facilities to provide a lock manager. The system does not force processes to obey the
locks; they are of an advisory nature only.

Locking is performed after an open call by applying the flock primitive,

fiock(fd, how);
int fd, how;

where the how parameter is formed from bits defined in <sys/file.h>:

#define LOCK_SH
#define LOCK~X
#define LOCK_NB
#define LOCK_UN

1
2
4
8

4.2BSD System Manual 31

/* shared lock * /
/* exclusive lock * /
/* don't block when locking * /
/* unlock */

Successive lock calls may be used to increase or decrease the level of locking. If an object is
currently locked by another process when a flock call is made, the caller will be blocked until
the current lock owner releases the lock; this may be avoided by including LOCK~B in the
how parameter. Specifying LOCK_UN removes all locks associated with the descriptor.
Advisory locks held by a process are automatically deleted when the process terminates.

2.2.9. Disk quotas

As an optional facility, each file system may be requested to impose limits on a user's
disk usage. Two quantities are limited: the total amount of disk space which a user may allo­
cate in a file system and the total number of files a user may create in a file system. Quotas
are expressed as hard limits and soft limits. A hard limit is always imposed; if a user would
exceed a hard limit, the operation which caused the resource request will fail. A soft limit
results in the user receiving a warning message, but with allocation succeeding. Facilities are
provided to turn soft limits into hard limits if a user has exceeded a soft limit for an unrea­
sonable period of time.

To enable disk quotas on a file system the set quota call is used:

setquota(special, file)
char *special, * file;

where special refers to a structured device file where a mounted file system exists, and file
refers to a disk quota file (residing on the file system associated with special) from which user
quotas should be obtained. The format of the disk quota file is implementation dependent.

To manipulate disk quotas the quota call is provided:

#include <sys/quota.h>

quota(cmd, uid, arg, addr)
int cmd, uid, arg; caddr_t addr;

The indicated cmd is applied to the user ID uid. The parameters arg and addr are command
specific. The file <sys/quota.h> contains definitions pertinent to the use of this call.

32 4.2BSD System Manual
2.3. Interprocess communications

2.3.1. Interprocess communication primitives

2.3.1.1. Communication domains

The system provides access to an extensible set of communication domains. A commun­
ication domain is identified by a manifest constant defined in the file <sys/socket.h>. Impor­
tant standard domains supported by the system are the "unix" domain, AF UNIX, for com­
munication within the system, and the "internet" domain for communication in the DARPA
internet, AF INET. Other domains can be added to the system.

2.3.1.2. Socket types and protocols

Within a domain, communication takes place between communication endpoints known
as sockets. Each socket has the potential to exchange information with other sockets within
the domain.

Each socket has an associated abstract type, which describes the semantics of communi­
cation using that socket. Properties such as reliability, ordering, and prevention of duplica­
tion of messages are determined by the type. The basic set of socket types is defined in
<sys/ socket.h>:

/* Standard socket types * /
#define SOCKj)GRAM 1
#define SOCK_STREAM 2
#define SOCK_RAW 3
#define SOCK_RDM 4
#define SOCK_SEQP ACKET 5

/* datagram * /
/* virtual circuit * /
/* raw socket * /
/* reliably-delivered message * /
/* sequenced packets * /

The SOCK j)GRAM type models the semantics of datagrams in network communication: mes­
sages may be lost or duplicated and may arrive out-of-order. The SOCK_RDM type models
the semantics of reliable datagrams: messages arrive unduplicated and in-order, the sender is
notified if messages are lost. The send and receive operations (described below) generate
reliable/unreliable datagrams. The SOCK_STREAM type models connection-based virtual
circuits: two-way byte streams with no record boundaries. The SOCK_SEQP ACKET type
models a connection-based, full-duplex, reliable, sequenced packet exchange; the sender is
notified if messages are lost, and messages are never duplicated or presented out-of-order.
Users of the last two abstractions may use the facilities for out-of-band transmission to send
out-of-band data.

SOCK_RAW is used for unprocessed access to internal network layers and interfaces; it
has no specific semantics.

Other socket types can be defined. t
Each socket may have a concrete protocol associated with it. This protocol is used

within the domain to provide the semantics required by the socket type. For example, within

t 4.2BSD does not support the SOCK RDM and SOCK SEQPACKET types.

4.2BSD System Manual 33
the "internet" domain, the SOCK_DGRAM type may be implemented by the UDP user ,

,) datagram protocol, and the SOCK_STREAM type may be implemented by the TCP transmis­
sion control protocol, while no standard protocols to provide SOCK_RDM or
SOCK_SEQPACKET sockets exist.

2.3.1.3. Socket creation, naming and service establishment

Sockets may be connected or unconnected. An unconnected socket descriptor IS

obtained by the socket call:

s = socket(domain, type, protocol);
result int s; int domain, type, protocol;

An unconnected socket descriptor may yield a connected socket descriptor in one of two
ways: either by actively connecting to another socket, or by becoming associated with a name
in the communications domain and accepting a connection from another socket.

To accept connections, a socket must first have a binding to a name within the commun­
ications domain. Such a binding is established by a bind call:

bind(s, name, namelen);
int s; char *name; int namelen;

A socket's bound name may be retrieved with a getsockname call:

getsockname(s, name, namelen);
int s; result caddLt name; result int *namelen;

while the peer's name can be retrieved with getpeername:

getpeername(s, name, namelen);
int s; result caddt...t name; result int *namelen;

Domains may support· sockets with several names.

2.3.1.4. Accepting connections

Once a binding is made, it is possible to listen for connections:

listen(s, backlog);
int s, backlog;

The backlog specifies the maximum count of connections that can be simultaneously queued
awaiting acceptance.

An accept call:

t = accept(s, name, anamelen);
result int t; int s; result caddr_t name; result int * anamelen;

returns a descriptor for a new, connected, socket from the queue of pending connections on s.

34 4.2BSD System Manual
2.3.1.5. Making connections

An active connection to a named socket is made by the connect call:

connect(s, name, namelen);
int s; caddr_t name; int namelen;

It is also possible to create connected pairs of sockets without using the domain's name
space to rendezvous; this is done with the socketpair callt:

socketpair(d, type, protocol, sv);
int d, type, protocol; result int sv[2];

Here the returned sv descriptors correspond to those obtained with accept and connect.

The call

pipe(pv)
result int pv[2];

creates a pair of SOCK STREAM sockets in the UNIX domain, with pv[O] only write able and
pv[l] only readable.

2.3.1.6. Sending and receiving data

Messages may be sent from a socket by:

cc = sendto(s, buf, len, flags, to, tolen);
result int cc; int s; caddr_t buf; int len, flags; caddU to; int tolen;

if the socket is not connected or:

cc = send(s, buf, len, flags);
result int cc; int s; caddtJ buf; int len, flags;

if the socket is connected. The corresponding receive primitives are:

msglen = recvfrom(s, buf, len, flags, from, fromlenaddr);
result int msglen; int s; result caddr_t buf; int len, flags;
result cadd:r....t from; result int *fromlenaddr;

and

msglen = recv(s, buf, len, flags);
result int msglen; int s; result caddr_t buf; int len, flags;

In the unconnected case, the parameters to and tolen specify the destination or source of
the message, while the from parameter stores the source of the message, and *fromlenaddr
initially gives the size of the from buffer and is updated to reflect the true length of the from
address.

t 4.2BSD supports socketpair creation only in the "unix" communication domain.

4.2BSD System Manual 35
All calls cause the message to be received in or sent from the message buffer of length

r' len bytes, starting at address but. The flags specify peeking at a message without reading it
or sending or receiving high-priority out-of-band messages, as follows:

#define MSG-PEEK Oxl /* peek at incoming message * /
#define MSG_OOB Ox2 /* process out-of-band data */

2.3.1.7. Scatter/gather and exchanging access rights

It is possible scatter and gather data and to exchange access rights with messages. When
either of these operations is involved, the number of parameters to the call becomes large.
Thus the system defines a message header structure, in <sys/socket.h>, which can be used to
conveniently contain the parameters to the calls:

struct msghdr {
cadd:r:-.t

};

int
struct
int
caddLt
int

msg.»ame;
mSKJlamelen;
iov. *msgjov;
msgjovlen;
msg-llccrights;
msg~ccrightslen;

/* optional address * /
/* size of address * /
/* scatter/gather array * /
/* # elements in msg iov * /
/* access rights sent/received * /
/* size of msg accrights * /

Here mSLname and ms~namelen specify the source or destination address if the socket is
unconnected; mSLname may be given as a null pointer if no names are desired or required.
The msgjov and mSgJovlen describe the scatter/gather locations, as described in section 2.1.3.
Access rights to be sent along with the message are specified in mSLaccrights, which has
length msuccrightslen. In the "unix" domain these are an array of integer descriptors, taken
from the sending process and duplicated in the receiver.

This structure is used in the operations sendmsg and recvmsg:

sendmsg(s, msg, flags);
int s; struct msghdr *msg; int flags;

msglen = recvmsg(s, msg, flags);
result int msglen; int s; result struct msghdr *msg; int flags;

2.3.1.8. Using read and write with sockets

The normal UNIX read and write calls may be applied to connected sockets and
translated into send and receive calls from or to a single area of memory and discarding any
rights received. A process may operate on a virtual circuit socket, a terminal or a file with
blocking or non-blocking input/output operations without distinguishing the descriptor type.

2.3.1.9. Shutting down halves of full-duplex connections

A process that has a full-duplex socket such as a virtual circuit and no longer wishes to
read from or write to this socket can give the call:

36 4.2BSD System Manual

shutdown(s, direction);
int s, direction;

where direction is 0 to not read further, 1 to not write further, or 2 to completely shut the
connection down.

2.3.1.10. Socket and protocol options

Sockets, and their underlying communication protocols, may support options. These
options may be used to manipulate implementation specific or non-standard facilities. The
getsockopt and setsockopt calls are used to control options:

getsockopt(s, level, optname, optval, optlen)
int s, level, optname; result caddr..J optval; result int *optlen;

setsockopt(s, level, optname, optval, optlen)
int s, level, optname; caddr_t optval; int optlen;

The option optname is interpreted at the indicated protocol level for socket s. If a value is
specified with optval and optlen, it is interpreted by the software operating at the specified
level. The level SOL SOCKET is reserved to indicate options maintained by the socket facili­
ties. Other level values indicate a particular protocol which is to act on the option request;
these values are normally interpreted as a "protocol number".

2.3.2. UNIX domain

This section describes briefly the properties of the UNIX communications domain.

2.3.2.1. Types of sockets

In the UNIX domain, the SOCK..§TREAM abstraction provides pipe-like facilities,
while SOCK_DGRAM provides (usually) reliable message-style communications.

2.3.2.2. Naming

Socket names are strings and may appear in the UNIX file system name space through
portalst.

2.3.2.3. Access rights transmission

The ability to pass UNIX descriptors with messages in this domain allows migration of
service within the system and allows user processes to be used in building system facilities.

2.3.3. INTERNET domain

This section describes briefly how the INTERNET domain is mapped to the model
described in this section. More information will be found in the document describing the

t The 4.2BSD implementation of the UNIX domain embeds bound sockets in the UNIX file system name
space; this is a side effect of the implementation.

\ network implementation in 4.2BSD.

/

2.3.3.1. Socket types and protocols

4.2BSD System Manual 37

SOCK.l'TREAM is supported by the INTERNET TCP protocol; SOCJ<..l)GRAM by the
UDP protocol. The SOCK_SEQP ACKET has no direct INTERNET family analogue; a proto­
col based on one from the XEROX NS family and layered on top of IP could be implemented
to fill this gap.

2.3.3.2. Socket naming

Sockets in the INTERNET domain have names composed of the 32 bit internet address,
and a 16 bit port number. Options may be used to provide source routing for the address,
security options, or additional address for subnets of INTERNET for which the basic 32 bit
addresses are insufficient.

2.3.3.3. Access rights transmission

No access rights transmission facilities are provided in the INTERNET domain.

2.3.3.4. Raw access

The INTERNET domain allows the super-user access to the raw facilities of the various
network interfaces and the various internal layers of the protocol implementation. This allows
administrative and debugging functions to occur. These interfaces are modeled as
SOCK RAW sockets.

38 4.2BSD System Manual
2.4. Terminals and Devices

2.4.1. Terminals

Terminals support read and write i/o operations, as well as a collection of terminal
specific ioctl operations, to control input character editing, and output delays.

2.4.1.1. Terminal input

Terminals are handled according to the underlying communication characteristics such
as baud rate and required delays, and a set of software parameters.

2.4.1.1.1. Input modes

A terminal is in one of three possible modes: raw, cbreak, or cooked. In raw mode all
input is passed through to the reading process immediately and without interpretation. In
cbreak mode, the handler interprets input only by looking for characters that cause interrupts
or output flow control; all other characters are made available as in raw mode. In cooked
mode, input is processed to provide standard line-oriented local editing functions, and input is
presented on a line-by-line basis.

2.4.1.1.2. Interrupt characters

Interrupt characters are interpreted by the terminal handler only in cbreak and cooked
modes, and cause a software interrupt to be sent to all processes in the process group associ­
ated with the terminal. Interrupt characters exist to send SIGINT and SIGQUIT signals, and
to stop a process group with the SIGTSTP signal either immediately, or when all input up to
the stop character has been read.

2.4.1.1.3. Line editing

When the terminal is in cooked mode, editing of an input line is performed. Editing
facilities allow deletion of the previous character or word, or deletion of the current input line.
In addition, a special character may be used to reprint the current input line after some
number of editing operations have been applied.

Certain other characters are interpreted specially when a process is in cooked mode.
The end of line character determines the end of an input record. The end of file character
simulates an end of file occurrence on terminal input. Flow control is provided by stop out­
put and start output control characters. Output may be flushed with the flush output charac­
ter; and a literal character may be used to force literal input of the immediately following
character in the input line.

2.4.1.2. Terminal output

On output, the terminal handler provides some simple formatting services. These
include converting the carriage return character to the two character return-linefeed sequence,
displaying non-graphic ASCII characters as ""character", inserting delays after certain stan­
dard control characters, expanding tabs, and providing translations for upper-case only termi­
nals.

4.2BSD System Manual 39
2.4.1.3. Terminal control operations

\ / When a terminal is first opened it is initialized to a standard state and configured with a
set of standard control, editing, and interrupt characters. A process may alter this
configuration with certain control operations, specifying parameters in a standard structure:

struct ttymode {

};

short
int
short
int

tt ispeed;
tf]flags;
tt...,9speed;
tt..9flags;

/* input speed * /
/* input flags * /
/* output speed * /
/* output flags * /

and "special characters" are specified with the ttychars structure,

struct ttychars {
char tc~rasec;

char tc_killc;
char tcjntrc;
char tc_quitc;
char tC.J)tartc;
char tc_stopc;
char tc~ofc;
char tc_brkc;
char tcj'uspc;
char tc_dsuspc;
char tc .l'prntc;
char tc_flushc;
char tc_werasc;
char tcJnextc;

};

2.4.1.4. Terminal hardware support

/* erase char * /
/* erase line * /
/* interrupt * /
/*quit*/
/* start output * /
/* stop output * /
/* end -of-file * /
/* input delimiter (like nl) * /
/* stop process signal * /
/* delayed stop process signal * /
/* reprint line * /
/* flush output (toggles) * /
/* word erase * /
/* literal next character * /

The terminal handler allows a user to access basic hardware related functions; e.g. line
speed, modem control, parity, and stop bits. A special signal, SIGHUP, is automatically sent
to processes in a terminal's process group when a carrier transition is detected. This is nor­
mally associated with a user hanging up on a modem controlled terminal line.

2.4.2. Structured devices

Structures devices are typified by disks and magnetic tapes, but may represent any
random-access device. The system performs read-modify-write type buffering actions on block
devices to allow them to be read and written in a totally random access fashion like ordinary
files. File systems are normally created in block devices.

40 4.2BSD System Manual
2.4.3. Unstructured devices

Unstructured devices are those devices which do not support block structure. Familiar
unstructured devices are raw communications lines (with no terminal handler), raster plotters,
magnetic tape and disks unfettered by buffering and permitting large block input/output and
positioning and formatting commands.

4.2BSD System Manual 41
2.5. Process and kernel descriptors

'\
I

Y The status of the facilities in this section is still under discussion. The ptrace facility of
4.1BSD is provided in 4.2BSD. Planned enhancements would allow a descriptor based process
control facility.

42 4.2BSD System Manual
I. Summary of facilities

1. Kernel primitives

1.1. Process naming and protection

sethostid
gethostid
sethostname
gethostname
getpid
fork
exit
execve
getuid
geteuid
setreuid
getgid
getegid
getgroups
setregid
setgroups
getpgrp
setpgrp

1.2 Memory management

<mman.h>
sbrk
sstkt
getpagesize
mmapt
mremapt
munmapt
mprotectt
madviset
mincoret

1.3 Signals

<signal.h>
sigvec
kill
killpgrp
sigblock
sigsetmask

t Not supported in 4.2BSD.

set UNIX host id
get UNIX host id
set UNIX host name
get UNIX host name
get process id
create new process
terminate a process
execute a different process
get user id
get effective user id
set real and effective user id's
get accounting group id
get effective accounting group id
get access group set
set real and effective group id's
set access group set
get process group
set process group

memory management definitions
change data section size
change stack section size
get memory page size
map pages of memory
remap pages in memory
unmap memory
change protection of pages
give memory management advice
determine core residency of pages

signal definitions
set handler for signal
send signal to process
send signal to process group
block set of signals
restore set of blocked signals

sigpause
sigstack

1.4 Timing and statistics

<sys/time.h>
gettimeofday
settimeofday
getitimer
setitimer
profil

1.5 Descriptors

getdtablesize
dup
dup2
close
select
fcntl
wrapt

1.6 Resource controls

<sys/resource.h>
getpriority
setpriorlty
getrusage
getrlimit
setrlimit

1.7 System operation support

mount
swap on
umount
sync
reboot
acct

2. System facilities

2.1 Generic operations

read
write
<sys/uio.h>
readv

t Not supported in 4.2BSD.

4.2BSD System Manual 43
wait for signals
set software stack for signals

time-related definitions
get current time and timezone
set current time and time zone
read an interval timer
get and set an interval timer
profile process

descriptor reference table size
duplicate descriptor
duplicate to specified index
close descriptor
multiplex input/output
control descriptor options
wrap descriptor with protocol

resource-related definitions
get process priority
set process priority
get resource usage
get resource limitations
set resource limitations

mount a device file system
add a swap device
umount a file system
flush system caches
re boot a machine
specify accounting file

read data
write data
scatter-gather related definitions
scattered data input

44 4.2BSD System Manual
writev
<sys/ioctl.h>
ioctl

2.2 File system

gathered data output
standard control operations
device control operation

Operations marked with a * exist in two forms: as shown, operating on a file name, and
operating on a file descriptor, when the name is preceded with a "f".

<sys/file.h>
chdir
chroot
mkdir
rmdir
open
mknod
portalt
unlink
stat*
lstat
chown*
chmod*
utimes
link
symlink
readlink
rename
lseek
truncate*
access
flock

2.3 Communications

<sys/socket.h>
socket
bind
getsockname
listen
accept
connect
socketpair
sendto
send
recvfrom
recv
sendmsg
recvmsg

file system definitions
change directory
change root directory
make a directory
remove a directory
open a new or existing file
make a special file
make a portal entry
remove a l1nk
return status for a file
returned status of link
change owner
change mode
change access/modify times
make a hard link
make a symbolic link
read contents of symbolic link
change name of file
reposition within file
truncate file
determine accessibility
lock a file

standard definitions
create socket
bind socket to name
get socket name
allow queueing of connections
accept a connection
connect to peer socket
create pair of connected sockets
send data to named socket
send data to connected socket
receive data on unconnected socket
receive data on connected socket
send gathered data and/or rights
receive scattered data and/or rights

shutdown
getsockopt
setsockopt

4.2BSD System Manual 45
partially close full-duplex connection
get socket option
set socket option

2.5 Terminals, block and character devices

2.4 Processes and kernel hooks

~ HOW TO ORDER ADDITIONAL DOCUMENTATION
I

DIRECT TELEPHONE ORDERS

In Continental USA
and Puerto Rico
call 800-258-1710

In Canada
call 800-267-6146

In New Hampshire,
Alaska or Hawaii
call 603-884-6660

DIRECT MAIL ORDERS (U.S. and Puerto Rico*)

DIGITAL EQUIPMENT CORPORATION
P.O. Box CS2008

Nashua, New Hampshire 03061

DIRECT MAIL ORDERS (Canada)

DIGITAL EQUIPMENT OF CANADA LTD.
940 Belfast Road

Ottawa, Ontario, Canada K1 G 4C2
Attn: A&SG Business Manager

INTERNATIONAL

DIGITAL EQUIPMENT CORPORATION
A&SG Business Manager

c/o Digital's local subsidiary
or approved distributor

Internal orders should be placed through the Software Distribution Center (SOC), Digital
Equipment Corporation, Northboro, Massachusetts 01532

* Any prepaid order from Puerto Rico must be placed
with the Local Digital Subsidiary:

80~754-7575

Reader's Comments

ULTRIX - 32
Programmer's Manual

AA-BG55A-TE

Note: This form is for document comments only. DIGITAL will use comments
submitted on this form at the company's discretion. If you require a writ­
ten reply and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please
make suggestions for improvement. __________________ _

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

o Assembly language programmer

o Higher-level language programmer
o Occasional programmer (experienced)

o User with little programming experience

o Student programmer
o Other (please specify) ________________ _

Name Date ___________ _

Organization ___________________________________ _

Street ___ __

City ___________________________ State ___ Zipo~ode-------
Country

I
I
I

- - - - - Do Not Tear· Fold Here and Tape -.:... --'

mDmDomo """
BUSINESS REPL V MAIL
FIRST CLASS PERMIT NO 33 MAYNARD MASS

POSTAGE WILL BE PAID BY ADDRESSEE

Documentation Manager
ULTRIX-32TM Documentation Group
MK02-1/H10
Continental Blvd.
Merrimack, N.H.

03054

No Postage

Necessary

if Mailed in the

United States

-----Do Not Tear· Fold Here and Tape -------------------------------------

'\
I

Notes:

Notes:

Notes:

Notes:

~I
/

Notes:

Notes:

Notes:

Notes:

" /

Notes:

Notes:

