
V AXstation Native Graphics Procedures
Order Number AA-AG30A-TE

June 1984

This document describes the five native graphics procedures in the
VAXstation Display Management Library.

SUPERSESSION/UPDATE INFORMATION:

OPERATING SV~TFM AND VERSION:

SOFTWARE: DECLIT
AA
VAX
AG30A

New document

VAX/VMS Version 3.4
(or greater)

VAXstation Version 1.0

digital equipment corporation • marlboro, massachusetts

First Printing, June 1984

The information in this document is subject to change without notice and should not be construed as
a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only
in accordance with the terms of such license.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software on
equipment that is not supplied by DIGITAL.

Copyright © 1984 by Digital Equipment Corporation. All Rights Reserved.

Printed in the U.s.A.

The postage prepaid READER'S COMMENTS form on the last page of this document requests the
user's critical evaluation to assist us .in preparing future documentation.

Pellucida ™ fonts. © 1984, Bigelow & Holmes.

Pellucida, Macrotype, and Bigelow & Holmes are proprietary trade designations of Bigelow &
Holmes.

The following are trademarks of Digital Equipment Corporation:

~D~DDmD DECNET DECsystem-10
DECUS DECwriter

DECSYSTEM20 DIGITAL Edusystem
DIBOL PDP PDT
MASSBUS UNIBUS VAX
RSTS VAXstation VT
VMS

Contents

Preface

Chapter 1 Introdudion
The V AXstation Display System .. 1-1

Model of the Display Processor ... 1-1
Display Processor Operations .. : 1-2

Native Graphics Procedures .. 1-2
Virtual Displays as Source and Destination 1-2
Bitmaps as Source and Destination .. 1-3
Synchronizing Output ... 1--4

Calling the Procedures .. 1--4
Error Returns .. 1--4
Symbol Definitions .. 1--4

Chapter 2 Copying an Area
Description .. 2-1

Source " 2-1
Source Offset ... 2-1
Source Mask ... 2-2
Destination .. 2-3
Destination Offset .. 2-3
Map .. 2-3
Clipping Rectangles ... 2-5

The VSTA$COPY _AREA Procedure .. 2-5

Example Code ... 2--8

Chapter 3 Drawing a Curve
Description .. ~ 1

Path .. ~2
Patterned Lines ... ~5

Pattern Mode ... , ... ~5
Pattern String ... ~5
Pattern Multiplier ... ~5
Pattern State ... 3-6

Secondary Source ... 3-6
Secondary Source Offset ... 3-6

THE VSTA$DRA W _CURVE Procedure .. 3-6

Example Code .. ~11

Chapter 4 Printing Text
Description .. 4-1

Source .. 4-2
Program-Supplied Fonts ... 4-3
Defined Fonts .. 4-4

Mask Font ... 4-4
Destination .. 4-4
Initial Destination Offset ... 4-4
Text String ... 4-4
Control Commands ... 4-4
Character Pad .. 4-5
Space Pad ... 4-5

The VSTA$PRINT _TEXT Procedure ... 4-5

Example Code ... 4-8

Chapter 5 Filling an Area
Description . 5---1

Source .. 5---2
Path .. 5---2

The VSTA$FILL_AREA Procedure .. 5---3

Example Code ... 5---5

Chapter 6 Flooding an Area
Description .. 6-1

Source .. 6-2
Destination .. 6-2
Seed Point .. -............... 6-2
Clipping Rectangle .. 6-2
Boundary Map ... 6-2

The VSTA$FLOOD _AREA Procedure ... 6-2

Example Code ... 6-5

Appendix A Hardware Model Summary
v AXstation 100 Display System .. A-I

Constant Source Values ... A-I
Bitmap Storage Requirements .. A-I
Halftone Representation .. A-I

Appendix B Example Program

Glossary

Index

ii

Examples
2-1 UsingVSTA$COPY_AREA .. 2-8
3-1 Using VSTA$DRAW _CURVE ... 3-11
4--1 Using VSTA$PRINT _ TEXT .. 4--9
5-1 Using VSTA$FILL_AREA .. 5-5

Figures
1-1 Model of Display Processor ... 1-1
2-1 Source Offset and Destination Offset ... 2-3
3-1 Drawing a Curve ... 3--4
3-2 Drawing a Curve with Wide Lines ... 3--4
5-1 Filling Two Closed Areas ... 5-2
6-1 Destination Image before Flooding .. 6-3
6-2 Destination Image after Flooding .. 6-3
B-1 Mapping Functions .. B-1
B-2 Fill and Flood .. B-2

Tables
2-1 Map Types ... 2-4

iii

Preface

The V AXstation Display System implements five basic output operations in
hardware and firmware:

• Copying an area

• Drawing a curve

• Printing text

• Filling an area

• Flooding an area

Five procedures in the V AXstation Display Management Library (VST A) provide
direct access to these operations in the context of virtual displays, pasteboards,
and windows. This manual documents these five "native graphics" procedures.

The native graphics procedures are not documented with the rest of the library
in order to limit their use. The VAXstation Display System provides a "soft"
interface to the VAX, that is, it is defined in the loadable firmware. This interface
is newly developed, and it will be enhanced and tuned, for example, change the
partitioning of functions between the VAX and the display processor. Therefore,
customers should limit their use of this interface.

The software interface defined in this manual may change in
future releases of the VAX station Display Management
Library and V AXstation firmware.

The following guidelines are recommended:

• Use the standard V AXstation Display Management Library and V AXsta­
tion CORE Graphics Library procedures whenever possible.

• Isolate use of the native graphics procedures in your software so that
changing them will entail less effort.

Audience

This manual is intended for graphics applications programmers who are familiar
with the general concepts of bitmap graphics. Readers should also be familiar
with the VAX/VMS operating system, at least one high-level language, and the
standard procedures in the V AXstation Display Management Library and the
V AXstation CORE Graphics Library.

Related Documents

The documentation set for the V AXstation Display System software consists of:

• Programming for the V AXstation Display System
Order Number AA-P153A-TE

Describes the procedures in the V AXstation Display Management Library
and the V AXstation CORE Graphics Library.

• V AXstation User's Guide
Order Number AA-N660A-TE

Introduces users to the V AXstation Display System.

• V AXstation Software Installation Guide
Order Number AA-N661A-TE

Describes the installation procedure for the VAXstation software.

1
Introduction

The five native graphics procedures in the V AXstation Display Management
Library provide access to the firmware in the V AXstation Display System in a
form appropriate for programs written in high-level languages.

The V AXstation Display System

The V AXstation Display System is a display processor consisting of a controlling
microprocessor with its private instruction and data memory, a display monitor,
a frame buffer memory from which the monitor is refreshed, and an interface to
memory in the host computer. The system also has additional memory for stag­
ing graphics operations or caching commonly used images, fonts, halftones, and
soon.

Mapped into the display processor's address space are the processor's private
memory, the frame buffer memory, and some section of host memory. The dis­
play processor can perform operations on data residing in any of these memo­
ries. Thus the display system processor can operate on bitmaps stored in host
memory as well as in local display system memory.

Model of the Display Processor

At the most basic level, the display processor is a machine that inputs a source
and uses it to modify a destination in a specified way. However, in the most gen­
eral case, only certain pixels in the source are useq.; and only certain pixels in the
destination are available for modification.

Figure 1-1 illustrates this machine.

Source
Image

Source
Mask

Figure 1-1. Model of Display Processor

Clipping
Rectangle

Destination
Image

This machine is logically divided into three parts: the source, the destination,
and the map. The source and destination are always required; the map is
optional.

• Source. The source image and source mask define the source. The source
image provides pixel values; the source mask determines which pixels in
the source image are used to update the destination.

• Destination. The destination image, clipping rectangles, and destination
offset define the destination. Pixel values in the destination image are
modified. Clipping rectangles can be used to include only those pixels in
the rectangle, and thus to restrict the pixels that can be modified. The
destination offset can change the location of the area to be modified rela­
tive to the source.

• Map. In the simplest case, no map is used. The values of the destination
pixels are replaced by the values of the source pixels. The map allows des­
tination pixels to be replaced with logical functions of the source pixel val­
ues or logical functions of the source and destination pixel values.

Display Processor Operations

The display processor instructions perform five output operations:

• Copying an area from a source to a destination

• Drawing a curve

• Printing text

• Filling an area

• Flooding an area

Native Graphics Procedures

The five native graphics procedures that implement the five display system out­
put instructions are:

• VSTA$COPY _AREA

• VSTA$DRAW_CURVE

• VSTA$PRINT_TEXT

• VSTA$FILL_AREA

• VSTA$FLOOD_AREA

The parameters to these procedures provide the information required by the dis­
play processor. The procedures build command packets for the display proces­
sor and queue the packets for output.

The five native graphics procedures differ from the actual display processor
instructions in two ways:

1-2 Introduction

• The display processor instructions operate only on bitmaps, including the
frame buffer from which the screen is refreshed. The procedures operate
on virtual displays or program-controlled bitmaps, but do not directly
modify the frame buffer.

• The display processor itself can be used with different host computers
and different operating systems. The V AXstation Display System (which
includes the V AXstation software as well as the display processor) oper­
ates only with a V AX host running VMS. The native graphics procedures,
therefore, follow V AXlVMS conventions for subroutine libraries and use
the standard V AXlVMS methods for synchronizing 110.

Vinual Displays as Source and Destination

The V AXstation software implements a human interface in which the person
using the system can have several active applications and can determine what is
actually visible on the screen at any time. The physical screen is thus shared by
applications, none of which write directly to the screen.

Application programs write instead to virtual displays, which are created and
controlled with procedures in the standard V AXstation Display Management
Library.

Virtual displays can also be either the source or the destination in the native
graphics procedures.

Bitmaps as Source and Destination

A bitmap is an array of pixels, each of which represents an addressable point on
the screen and has a value which determines the color or brightness of the screen
at that point.

A bitmap has three dimensions: width, height, and depth. The width and height
correspond to the horizontal and vertical dimensions of the bitmap and deter­
mine the Cartesian coordinates of each pixel. Each pixel is addressed by its hori­
zontal (x) and vertical (y) coordinates. The depth of a bitmap represents the num­
ber of bits used for each pixel value. A bitmap whose depth is one has one bit per
pixel. Therefore, each pixel can have one of two values -zero or one. A bitmap
whose depth is two has two bits per pixel, and the values of the pixels range
from zero to three. The number of values each pixel can assume determines the
number of colors or number of gray shades that can appear on the screen at any
one time.

The maximum number of bits per pixel is fixed for a given hardware implemen­
tation. The VAX station 100, for example, has one bit per pixel. Since both the dis­
play processor instructions and the native graphics procedures are designed for
use with several display processors, the depth of a bitmap is specified in the data
structure.

Application programs can define bitmap data structures in their address space.
These data structures can be either the source image or the destination image for
the native graphics procedures.

Using bitmaps differs from using virtual displays in the following ways:

• Method of referencing. Virtual displays are referenced by a channel num­
ber; bitmaps are referenced by a bitmap descriptor .

• Address space. Virtual displays are maintained in the VAXstation ACP
address space; bitmaps are maintained in the program's address space.

Introduction 1-3

• Overlapping. Virtual displays never overlap; bitmaps can be specified so
that the same address space contains all or parts of more than one
bitmap.

• Visibility. Only virtual displays can be visible on the VAX station screen.
Program-controlled bitmaps are never visible, but must be copied to a vir­
tual display.

Synchronizing Output

The VAXstation Display System is a Direct Memory Access (DMA) device. The
primary attribute of a DMA device is that it accesses its data directly from the
computer memory rather than through a buffered communication link. Since the
device is accessing the same memory that the computer can access, this memory
must remain intact and uncorrupted during the 1/0 operation.

Memory for bitmaps and data structures such as path lists must be allocated by
the program and must not be modified or deallocated while an output request is
outstanding.

The standard V AXNMS mechanisms for synchronizing direct 1/0 are event flags
and AST routines. The five native graphics procedures allow the caller to specify
the normal V AX/VMS I/O synchronization parameters: event flag, AST service
routine, and a parameter to be passed to the specified routine.

Calling the Procedures

The five native graphics procedures follow the same calling conventions as the
standard VSTA library procedures. Refer to Programming for the VAXstation Dis­
play System for more information.

Error Returns

When the five native graphics procedures are called as functions, they return
one of two status codes. If the procedure successfully queues output, it returns
the status code SS$_NORMAL. If an error occurs, each procedure returns its
error code (listed with the procedure description).

If an error occurs, an error block exists and can be retrieved with the procedure
VSTA$GET _ERROR_BLOCK.

Since the procedures are asynchronous, the status codes returned as the value of
the function indicate whether queueing the output request is successful. The
procedures follow the VAX/VMS convention of using an 1/0 status block to
return information about the success of the output operation itself.

Symbol Definitions

The symbols listed in this manual are defined in the same files as the symbols for
the standard VSTA library procedures. The files SYS$LIBRARY:VSTAGBL.***
contain symbol definitions. The files SYS$LIBRARY:VSTAMSG.*** contain sta­
tus code definitions. The files with the appropriate language-specific extensions
are listed in Programming for the V AXstation Display System.

1-4 Introduction

Description

2
Copying an Area

Copying one area to another is the fundamental operation of the display system.
In the simplest form, copying an area merely moves a source image to a destina­
tion image. The source and destination are identically-sized rectangles; each
source pixel replaces the destination pixel at the corresponding coordinates.

Copying can also use only part of the source or destination images. A subset of
the source image can be selected using a source mask and source offset. The
placement of the source image in the destination image can be changed with a
destination offset. Clipping rectangles can restrict the parts of the destination
image to be modified.

In addition to simple replacement, a map can be specified so that the values
moved to the destination are a function of the source pixel values or a function of
both source and destination values.

The exact behavior of the copy area operation is determined by:

• Source type and source image

• Source offset

• Source mask type and source mask

• Destination type and destination image

• Destination offset

• Map type

• Clipping rectangles

Source

The source is an image whose pixel values are used to update the destination.
The source image can be one of five types:

• Constant. The source can be a single constant value that replaces all pixels
in the destination. A constant is used, for example, to set the entire desti­
nation to a single value (color or shade).

• Bitmap. The source can be a program-controlled bitmap. If the destina­
tion is also a program-controlled bitmap and the two bitmaps overlap, the
copy operation sequences through the pixels so that source pixels are not
modified before they are used to update the destination.

• Halftone bitmap. The source can be a program-controlled bitmap contain­
ing a halftone that is used to tile the destination. The bitmap is replicated
horizontally and vertically as needed to fill the destination.

• Virtual display. Copying an area when the source is a virtual display is
the same copying as when the source is a bitmap.

• Halftone virtual display. Copying an area when the source is a halftone
virtual display is the same as copying an area when the source is a half­
tone bitmap.

Source Offset

The source offset specifies the point, relative to the upper left corner of the
source image, at which the upper left corner of the source mask is placed.

Source Mask
The source mask defines a rectangular subset of the source to be used to modify
destination pixels. That is, the source mask restricts the set of source pixels used
in the copy operation.

Three mask formats are available, depending on how the source subset is to be
determined.

• Rectangle Mask. A rectangle mask selects a rectangular subset of the
source image. Only the width and height of the rectangle are specified,
since the source offset determines the location of the upper left corner of
the rectangle on the source image.

• Virtual Display Mask. This is the most general form. The one-valued
pixels in the mask specify a subset of the pixels in the source image. Only
this subset is copied to the destination. The mask can be thought of as a
template or a stencil, with the one-valued pixels making some pattern to
be copied. When the mask is placed on the source image, the one-valued
pixels in the mask select pixels in the same pattern from the source image.
Once again, the source offset determines how the mask is to be placed
relative to the source image.

• Bitmap Mask. A program-controlled bitmap mask is used in the same
way as a virtual display mask.

Any of the three types of source mask can be selected with any type of source
image. For example, a rectangle mask with a constant or halftone source gener­
ates a rectangle filled with that color or halftone for use as the source. Copying
an area can thus perform a simple rectangle fill. (More complex fill operations
can be performed with VSTA$FILL_AREA.)

2-2 Copying an Area

A mask is not required. If no mask is specified, the result is the same as using a
rectangle mask the same size as the destination. With a constant or halftone
source, the entire destination is filled. With a virtual display or bitmap source,
the entire source is copied to the destination.

The source image or the destination image can also be specified as the mask.

Destination

The two types of destination image are:

• Virtual display

• Bitmap

Although the destination can be a bitmap, program-controlled bitmaps are never
visible on the V AXstation screen. The bitmap must be copied to a virtual display
before it is visible.

Destination Offset

The destination offset determines the placement of source pixels in the destina­
tion image. The source offset and source mask define a set of source image pixels
whose origin is relative to the upper left corner of the source image. The destina­
tion offset specifies where that origin should be placed in the destination image.

Figure 2-1 shows a source image, a rectangle source mask, and a destination
image after the source image is copied to it. The location of the source offset is
marked on the source image. The location of the destination offset is marked on
the destination image.

Source Image

499,499

Source Mask
250 x 250 Rectangle

D
Destination
Offset
(249,249)

0,0

Destination Image

499,499

Figure 2-1. Source Offset and Destination Offset

Map

The map defines the values used to replace the selected destination pixels.

For a one-bitplane device, the map types specify the 16 logical functions of the
source and destination pixel values. (For multiplane devices, other types of map­
ping are possible, such as mapping several source pixel values to one destination
pixel value.)

Copying an Area 2-3

Table 2-1 lists the symbols used to specify the map types for a one-bitplane
device and describes the logical function performed by each type.

Table 2-1. Map Types

Symbol

VSTA$K_MAP _DST

Fundion

No transformation. Source pixel values replace
the values of the selected destination pixels.

NOT source. The NOT function is applied to
the source pixel values. On a device with one
bitplane, the result is reverse video of the
source image before it is copied to the
destination.

No transformation. This function also has no
effect; destination pixels replace themselves.

NOT destination. The NOT function is applied
to the values of the selected destination pixels.
On a device with one bitplane, the result is
reverse video of the destination image.

Source AND destination. The AND function is
applied to the values of the source and destina­
tion pixels.

NOT source AND destination. The NOT func­
tion is applied to source pixel values; the results
are ANDed with destination pixel values.

Source AND NOT destination. The NOT func­
tion is applied to destination pixel values; the
results are ANDed with source pixel values.

VSTA$K_MAP _NOTSRC_AND_NOTDST NOT source AND NOT destination. The NOT

VSTA$K_MAP _BLACK

VSTA$K_MAP _ WHITE

2-4 Copying an Area

function is applied to the source pixels values
and to the destination pixel values; the results
areANDed.

Source OR destination. The values of the source
and destination pixels are ORed.

NOT source OR destination. The NOT function
is applied to the source pixel values; the results
are ORed with the destination values.

Source OR NOT destination. The NOT function
is applied to the destination pixel values; the
results are ORed with the source values.

NOT source OR NOT destination. The NOT
function is applied to the source pixel values
and to the destination pixel values; the results
areORed.

Source XOR destination. The XOR function is
applied to the source and destination pixel
values.

NOT (source XOR destination). The values of
the source and destination pixels are XORed;
the NOT function is applied to the results.

Replace all destination pixel values with zero.

Replace all destination pixel values with one.

Some results can be achieved in more than one way. For example, all pixels in
the destination image can be set to black by specifying a constant source and the
no transformation map type (VSTA$K_MAP _SRC). Specifying the black map
type (VSTA$K_MAP _BLACK) with any source type has the same result, but
requires transformations. Generally the method that requires the fewest transfor­
mations is the most efficient.

Clipping Redangles

Clipping rectangles restrict the copying operation to some subset of the pixels in
the destination. Each clipping rectangle specifies an area of the destination that
can be modified. Thus, the union of all clipping rectangles provides a boundary
that limits the copying operation. The clipping rectangles should not overlap; 'if
they do, the results are unpredictable.

The VSTA$COPY _AREA Procedure

Format

Parameters

The VSTA$COPY _AREA procedure implements the copy-area function.

Status = VSTA$COPY _AREA (source-type, source-image, source-offset-x, source-offset-y,
mask-type, mask, dest-type, dest-image, dest-offset-x, dest-offset-y, map-type,
[reserved 1], [reserved2], num-of-rectangles, clipping-rectangles, [wait-flag], [efn],
[astadr], [astprm], [iosb])

source-type. One of five symbols that specify the five source image types. Passed
by reference.

VSTA$K_SRC_CONST
VSTA$K_SRC_BM
VSTA$K_SRC_VD
VSTA$K_SRC_HT _BITMAP
VSTA$K_SRC_HT_VD

Source image is a constant.
Source image is a bitmap.
Source image is a virtual display.
Source image is a bitmap containing a halftone pattern.
Source image is a virtual display containing a halftone pattern.

source-image. An integer constant, a bitmap descriptor, or a channel number.
Passed by reference. The source image must be the type specified by the source­
type parameter.

A bitmap descriptor is a five-word block in the following format:

31 16 15

address of bitmap

height

o

width

bits per pixel

1 st and 2nd words

3rd and 4th words

5th word

source-offset-x, source-offset-y. Integers used to identify the upper left corner of
the subset of the source image used as the mask.

mask-type. One of four symbols that specify the four types of mask. Passed by
reference.

VSTA$K_ MSK_ NONE
VSTA$K_MSK_RECTANGLE
VSTA$K_ MSK_BITMAP
VSTA$K_ MSK_ VD

No mask. The mask parameter is ignored.
Mask is a rectangle.
Mask is a bitmap.
Mask is a virtual display.

Copying an Area 2-5

mask. The mask. Passed by reference.

If the mask is a rectangle, the mask parameter is a 2-word block. The first word
contains the width of the rectangle; the second word contains the height. (The
location of the upper left corner of the rectangle in the source image is specified
by the source offset.)

If the mask is a bitmap, the mask parameter is a sub-bitmap descriptor with the
following format:

31 16 15 o
address of bitmap 1 st and 2nd words

height of bitmap width of bitmap 3rd and 4th words

5th and 6th words mask origin x bits per pixel

mask width mask origin y 7th and 8tn words

mask height 9th word

If the mask is a virtual display, the mask parameter is a six-word block with the
following format:

31 16 15 o
channel 1 st and 2nd words

display y offset display x offset 3rd and 4th words

5th and 6th words mask height mask width

dest-type. One of two symbols that specify the two destination image types.
Passed by reference.

VSTA$K_DST _BITMAP
VSTA$K_DST_VD

Destination is a bitmap.
Destination is a virtual display.

dest-image. The destination image. Passed by reference. If the destination is a
bitmap, the dest-image parameter is a bitmap descriptor. If the destination is a

, virtual display, the parameter is a channel number.

dest-offset-x, dest-offset-y. Integers specifying horizontal and vertical offsets
from the upper left corner of the destination image. The specified area of the
source image is copied beginning at the location specified by the destination off­
set. Passed by reference.

map-type. One of 16 symbols that specify the 16 map function types. Passed by
reference. The symbols are:

VSTA$K_MAP _SRC
VSTA$K_MAP_NOTSRC
VST A$K_ MAP _ DST
VSTA$K_MAP_NOTDST
VSTA$K_MAP_SRC_AND_DST
VSTA$K_MAP_NOTSRC_AND_DST

No transformation.
NOT source.
No transformation; no effect.
NOT destination.
Source AND destination.
NOT source AND destination.

VSTA$K_MAP _SRC_AND_NOTDST Source AND NOT destination.
VSTA$K_MAP _NOTSRC_AND_NOTDST NOT source AND NOT destination.
VSTA$K_MAP_SRC_OR_DST
VSTA$K_MAP_NOTSRC_OR_DST

2-6 Copying an Area

Source OR destination.
NOT source OR destination.

VSTA$K_MAP_SRC_OR_NOTDST
VSTA$K_MAP_NOTSRC_OR_NOTDST
VSTA$K_MAP_SRC_XOR_DST
VSTA$K_MAP_NOT_SRCXORDST
VSTA$K_MAP_BLACK
VSTA$K_MAP _ WHITE

Source OR NOT destination.
NOT source OR NOT destination.
Source XOR destination.
NOT (source XOR destination).
Replace all destination pixel values with zero.
Replace all destination pixel values with one.

[reservedl, reserved2]. Reserved for future use.

num-of-rectangles. An integer specifying the number of rectangles in the clip­
ping rectangle list. Passed by reference.

dipping-rectangles. A list of rectangles in the destination image. Passed by
reference.

The format of the rectangle list is:

15 o
x coordinate 1stword

y coordinate 2nd word

width 3rd word

height 4th word

x coordinate 5th word

y coordinate 6th word

height

The rectangles must not intersect.

start of
Rectangle 1

start of
Rectangle 2

end of
Rectangle n

[wait-flag]. An integer flag specifying whether the procedure returns control to
the calling program after queuing the output request, or waits until I/O comple­
tion. Passed by reference.

This procedure uses either VMS event flag zero or the specified event flag as the
wait flag.

[efn]. An event flag number. The specified event flag is cleared when the I/O
request is queued, and set when the I/O is completed. Passed by reference.

The default event flag is event flag zero. Event flag zero is also the default event
flag for all VMS system services that use event flags and for the standard VSTA
procedures that read input from the mouse, the keyboard, and the tablet. Speci­
fying another event flag is recommended (even if the event flag is not tested) to
avoid possible conflicts.

[astadr]. The address of the AST service routine to be executed when I/O is com­
pleted. See the appropriate language reference manual for the method of passing
routine addresses. NOTE: Zero must be passed by value to specify that there is
no ASTroutine.

Copying an Area 2-7

Return Status

[astprm]. An integer value to be passed as a parameter to the AST routine.
Passed by reference. NOTE: The parameter is passed to the AST routine by
value.

[iosb]. An I/O status block. Passed by reference.

VSTA$_CPYARE
Message: Copy area failed.

Example Code

The following FORTRAN subroutine calls VSTA$COPY _AREA to copy one bit­
map to another bitmap. The subroutine is called by the example program listed
in Appendix B. The example program also illustrates other uses of the
VSTA$COPY _AREA procedure.

Example 2-1 Using VSTA$COPY _AREA

!--
SUBROUTINE copy_bitmap (source_descr, map_function)

!--

Function:

To copy either the bug bitmap or the bar bitmap to the
scratch bitmap using the mapping function map_function.
The bitmaps are the same size, there is no mask, and the
destination offset is 0,0.

Input args:
source descr
map_function

address of the source bitmap descriptor.
map function

Output args: none

IMPLICIT NONE

Include VAXstation defined symbols.

INCLUDE 'SYS$LIBRARY:VSTAGBL.FOR'

Argument declarations:

INTEGER*L;

Routine declarations:
INTEGER*L; status, VSTA$COPY_AREA
INTEGER*L; scratch(2,L;9), scratch_address
INTEGER*2 scratch_descr(5)
EQUIVALENCE (scratch_address, scratch_descr(1))
COMMON scratch_descr, scratch

2-8 Copying an Area

Set up the descriptor for the scratch bitmap.

scratch_address = %LOC(scratch)
scratch_descr(3) 6~

scratch_descr(~) ~9

scratch_descr(5) = 1

status = VSTA$COPY_AREA(
1 VSTA$K_SRC_BM, source_descr, 0, 0,
2 VSTA$K_MSK_NONE, ,
3 VSTA$K_DST_BITMAP, scratch_descr, 0, 0,
~ map_function, , ,
5 0, , 1, 5, , ,)

IF (.NOT. status) CALL show_error(status)

RETURN
END

Copying an Area 2-9

Description

3
Drawing a Curve

Drawing a curve paints a source image through a sequence of points, drawing
either a straight or a curved line from point to point.

Drawing a curve is similar to copying an area in some respects. Both operations
specify the source with a source image, source offset, and source mask; and
specify the destination with a destination image and destination offset. Drawing
a curve can also use a map to modify the way pixels are replaced, and clipping
rectangles to limit the area of the destination in which the curve is drawn in the
same way.

In addition, drawing a curve requires a path, that is, a list of points in the desti­
nation that define the line to be drawn. Drawing a curve can use a pattern for
drawing the line.

Drawing a curve proceeds as follows. First, the source is determined by the
source image, source mask, and source offset. Second, all points on the line to be
drawn are determined from the path. For a straight line, the path must contain at
least two points. For a curved line, the path must contain at least three points.
Curves are drawn using a cubic spline algorithm so that the curved line has no
abrupt bends. Then the source image is copied with its origin at each point on
the line.

The first point in any path is the destination offset. Each supplied point defines
the end of a segment of the path. Thus the first segment of the path goes from
the offset to the first point in the list of points; the second segment goes from the
first point to the second point, and so on.

If the source image is specified as a halftone, the halftone pattern is always
aligned with the destination to give the effect of painting with a halftone.

A pattern string provides for drawing of dashed or patterned lines and curves. A
patterned line alternates between writing and not writing pieces of a segment
based on strings of ones and zeros in the pattern string. Patterned lines also

allow the specification of a secondary source. A patterned line alternates
between the source and the secondary source, based on ones and zeros in the
pattern string. A pattern string and a secondary source can be used, for example,
to draw a line that alternates between two colors.

The exact behavior of drawing a curve is determined by:

• Source type and source image

• Source offset

• Mask type and mask

• Destination type and destination image

• Destination offset

• Map type

• Path

• Pattern mode and pattern

• Secondary source type and source image

• Secondary source offset

• Clipping rectangles

The source type, image, and offset; the destination type, image, and offset; the
map type, and the clipping rectangles are the same as for copying an area.

The source mask is specified and used in the same way as for copying an area.
However, the default is different when no mask is specified. For drawing a
curve, specifying no mask is the same as specifying a one-by-one rectangle,
which draws a line one pixel wide.

Path
A path is' specified as a list of segments. Each path segment is described by the x
and y coordinates of its end point and a flag word. The starting point is the end
of the previous segment. (For the first segment, the starting point is the destina­
tion offset.) The flag word describes the characteristics of that segment, and con­
tains the following flags:

• Origin or relative flag. Indicates how the end point coordinates are to be
interpreted. In origin mode, the coordinates are relative to the destination
origin. In relative mode, the coordinates are relative to the end of the pre­
vious segment in the path.

• Draw or move flag. Indicates whether the segment should actually be
drawn. If drawing is specified, the straight line or curve is actually drawn.
If moving is specified, the line is not drawn; the position is simply
advanced to the next point.

3-2 Drawing a Curve

Since the starting point for the first segment of a path is the destination
offset, the move flag is often set for the first point in the path so that an
invisible line is drawn from the destination offset to the first point. Such
invisible lines can also be used to provide information to the cubic spline
algorithm, or to draw several disconnected lines in a single draw curve
operation. When move is specified, the pattern string does not advance.

• Straight or curved flag. Indicates whether the segment is curved or
straight. If the flag is not set, a straight line is drawn from the previous
point to this point. If the flag is set, a curve is drawn using a cubic spline
algorithm. That is, the curve merges smoothly with the preceding and
following segments without abrupt bends. For a curve to be drawn
through a point, then, the point must have a predecessor and a successor
to define the tangents to the point.

• Start closed figure flag. Indicates that this point is the first in a series of
segments that define a closed figure. (A path is also specified for filling an
area, which requires a closed figure. Although the start and end closed
figure flags do not affect the way the curve is drawn, they are required for
filling an area.)

• End closed figure flag. Indicates that this is the last point in the closed
figure. The first and last points (that is, the start and end points) for a
closed figure must be identical. For example, a circle can be specified by
the following five-point path:

point 1 : move to P1 , start closed figure
point 2: draw curve to P2
point 3: draw curve to P3
point 4: draw curve to P4
point 5: draw curve to P1 , end closed figure

• Draw last image flag. In paths with several segments, the last point in one
segment is also the first point in the next. Therefore, either the pixel at
this point or some rectangular set of pixels whose origin is at the last point
are specified twice. The draw last image flag allows this last image to be
drawn only once.

When source pixel values directly replace destination pixel values, the
result is the same whether the last image is drawn once or twice. How­
ever, for some of the mapping functions where the current state of the
destination affects the pixel values, drawing the last image twice can
change the result.

The path is thus a list of points, where the format of each point is:

15 °
x offset

yoffset

flags

Various combinations of source and mask can be used to draw lines of different
widths. Assume that the path contains the following points, move flags, and ori­
gin flags:

endpoint 1 , x = 10, Y = 10, origin, move, straight
endpoint 2, x = 10, Y = 80, origin, draw, straight
endpoint 3, x = 50, Y = 80, origin, draw, straight
endpoint 4, x = 50, Y = 10, origin, draw, straight
endpoint 5, x = 10, Y = 10, origin, draw, straight

Drawing a Curve 3-3

Figure 3--1 shows the rectangle drawn along this path when the source is a con­
stant and there is no mask. For drawing a curve, specifying no mask is equiv­
alent to specifying a 1 x 1 rectangle mask. The line drawn is one pixel wide.

Segment 1 10 20 30 40 50 60 70 80 90
to end point 1
not drawn

10 0 ..
Segment 5

20 to end POint 5

30
Segment 2
to end

1 40 pOint 2

50 ! Segment 4
to end pOint 4

60

70 Segment 3
to end POints ..

0 80 0

90

Figure 3-1. Drawing a Curve

Figure 3--2 shows the same path when the source is a constant and the mask is a
5 x 10 rectangle.

0,0 10 20 30 40 50 60 70 80 90

10

20

30
::;::',

40 r::::

50 ,::'.'

60

70

80

90

Figure 3-2. Drawing a Curve with Wide Lines

The dots show each of the segment end points as in the preceding illustration.
The 5 x 10 rectangle mask is drawn with its upper left corner at 10, 10, then rep­
licated vertically until a 5 x 10 mask is drawn with its upper left corner at 80, 10.

3-4 Drawing a Curve

Because the width of the rectangle is less than its height, the vertical lines are
narrower than the horizontal lines.

Generally, drawing curves is faster when paths with several segments are speci­
fied in one procedure call than when each segment is specified in a separate pro­
cedure call. Overhead for procedure calls, for data transfers, and for setting up
the display processor is minimized with multi-segment paths.

PaHerned Lines

Patterns simplify the drawing of linearly patterned lines. A pattern can be used
in either single-source or alternate-source mode, and consists of the pattern
string and pattern multiplier. The current state of the pattern after the curve is
drawn can be returned to the calling program so that a pattern can be continued
across several curves.

Paltern Mode - The pattern string operates in two modes. Both modes select
the pattern in the same way, that is, with the pattern string. The pattern string
specifies which pixels in the destination are to be modified. The modes specify
how the pixels are modified.

The two modes are:

• Single-source mode. In this mode, the occurrence of a one bit in the pat­
tern causes the source to be copied to the current destination pixel along
the curve path, while a zero bit causes the destination pixel to be skipped.
Single-source mode allows the existing background to "show through"
the spaces in the pattern. Single-source mode can be used, for example,
to write a dashed line .

• Alternate-source mode. In this mode, the occurrence of a one bit in the
pattern causes the source to be copied to the current destination pixel
along the curve path, as above. However, a zero bit causes a different
source to be copied to the destination. Specifying one constant as the
source and another constant as the secondary source writes a patterned
line that alternates between two colors.

Thus, single-source mode alternates between writing and not writing a single
source. Alternate-source mode alternates between writing two different sources.

Paltern String - The pattern string is a list of 0 to 16 bits. The ones and zeros
in the pattern string modify the writing of the source as it is painted from pixel to
pixel in the destination. When the pattern string is exhausted, it is repeated
again from the start. The pattern is only applied to drawn segments. That is,
invisible (move mode) lines do not advance the pattern. A pattern string of
length 0 is identical to a pattern string with length 1 and value 1.

Paltern Multiplier - The pattern multiplier specifies the number of times each
bit in the pattern string is repeated before moving on to the next bit. For exam­
ple, if the pattern string is 10 and the pattern multiplier is 3, the pattern 111000 is
used to generate the patterned lines.

Drawing a Curve 3-5

PaHern State - The pattern state allows drawing a curve to continue at the
pattern string position at which a previous curve was completed. In this way,
pattern strings can be used across several draw curve procedures.

The pattern state consists of two 16-bit words, the pattern position and the pat­
tern count. The pattern position specifies the zero-origin offset of the starting bit
within the pattern string, and must be less than or equal to the size of the string
minus one. Pattern count specifies the starting count to be used for that bit on its
first use, and must be less than or equal to the pattern multiplier.

If a pattern state is specified, scanning the pattern string begins at the specified
pattern position. The specified starting bit is then repeated pattern-multiplier
minus pattern-count times. The scan then continues at the following bit, with
each bit used pattern-multiplier times.

The pattern state can be updated after the curve is drawn to indicate where in the
pattern string the next curve should begin.

Secondary Source

In alternate-source mode, the secondary source specifies the source that is
copied to the destination whenever a zero bit in the pattern string is encoun­
tered. The secondary source can be specified as any of the types allowed for the
single source.

Secondary Source Offset

The secondary source offset specifies how the source mask is applied to the sec­
ondary source, when the secondary source is selected in alternate-source mode.

The VSTA$DRAW_CURVE Procedure

Format

Parameters

The VSTA$DRAW _CURVE procedure implements the draw-curve function.

Status = VSTA$DRAW_ CURVE (source-type, source-image, source-offset-x, source-offset-y,
maSk-type, mask, dest-type, dest-image, dest-offset-x, dest-offset-y, map-type,
[reserved 1], [reserved2], num-of-points, path, pattern-mode, pattern-action,
pattern-block, pattern-state, sec-source-type, sec-source, sec-sou rce-offset-x ,
sec-source-offset-y, num-of-rectangles, clipping-rectangles, [wait-flag], [efn],
[astadr], [astprm], [iosbD

source-type. One of five defined symbols that -specify the five source image
types. Passed by reference.

VSTA$K_SRC_CONST
VSTA$K_SRC_BM
VSTA$K_SRC_VD
VSTA$K_SRC_HT _BITMAP
VSTA$K_SRC_HT_VD

Source image is a constant.
Source image is a bitmap.
Source image is a virtual display.
Source image is a bitmap containing a halftone pattern.
Source image is a virtual display containing a halftone pattern.

source-image. An integer constant, a bitmap descriptor, or a channel number.
Passed by reference. The source image must be the type specified by the source­
type parameter.

3-6 Drawing a Curve

A bitmap descriptor is a five-word block in the following format:

31 16 15 o
address of bitmap 1 st and 2nd words

3rd and 4th words height width

bits per pixel 5th word

source-offset-x, source-offset-y. Integers specifying the upper left corner of the
mask on the source image.

mask-type. One of four defined symbols that specify the four types of mask.
Passed by reference.

VSTA$K_MSK_NONE

VSTA$K_MSK_RECTANGLE
VSTA$K_ MSK_BITMAP
VSTA$K_MSK_VD

There is no mask. In this case, the mask parameter is
ignored. Specifying no mask draws a line one pixel wide.
Mask is a rectangle.
Mask is a bitmap.
Mask is a virtual display.

The default type is VSTA$K_MSK_NONE. For drawing a curve, the default
mask is a 1 x 1 rectangle, which draws a line one pixel wide.

mask. The mask. Passed by reference.

If the mask is a rectangle, the mask parameter is a 2-word block. The first word
contains the width of the rectangle; the second word contains the height. (The
location of the upper left corner of the rectangle in the source image is specified
by the source offset.)

If the mask is a bitmap, the mask parameter is a sub-bitmap descriptor with the
following format:

31 16 15

address of bitmap

height of bitmap width of bitmap

mask origin x bits per pixel

mask width mask origin y

mask height

o
1 st and 2nd words

3rd and 4th words

5th and 6th words

7th and 8th words

9th word

If the mask is a virtual display, the mask parameter is a block with the following
format:

31 16 15 o
channel 1 st and 2nd words

display y offset display x offset 3rd and 4th words

mask height mask width 5th and 6th words

Drawing a Curve 3-7

dest-type. One of two symbols that specify the two destination image tyPE
Passed by reference.

VSTA$K_DST _BITMAP
VSTA$K_DST_VD

Destination is a bitmap.
Destination is a virtual display.

dest-image. The destination image. Passed by reference. If the destination is
bitmap, the dest-image parameter is a bitmap descriptor. If the destination is
virtual display, the parameter is a channel number.

dest-offset-x, dest-offset-y. Integers specifying horizontal and vertical offsE
from the upper left corner of the destination image. The source image is copi(
beginning at the location specified by the destination offset. Passed by referen(

map-type. One of 16 symbols that specify the 16 map function types. Passed 1
reference.

VSTA$K_MAP _SRC
VSTA$K_MAP_NOTSRC
VSTA$K_MAP_DST
VSTA$K_MAP_NOTDST
VSTA$K_MAP_SRC_AND_DST
VSTA$K_MAP_NOTSRC_AND_DST
VSTA$K_MAP_SRC_AND_NOTDST
VSTA$K_MAP_NOTSRC_AND_NOTDST
VSTA$K_MAP_SRC_OR_DST
VSTA$K_MAP_NOTSRC_OR_DST
VSTA$K_MAP_SRC_OR_NOTDST
VSTA$K_MAP_NOTSRC_OR_NOTDST
VSTA$K_MAP_SRC_XOR_DST
VSTA$K_MAP_NOT_SRCXORDST
VSTA$K_MAP_BLACK
VSTA$K_ MAP _ WH ITE

No transformation.
NOT source.
No transformation; no effect.
NOT destination.
Source AND destination.
NOT source AND destination.
Source AND NOT destination.
NOT source AND NOT destination.
Source OR destination.
NOT source OR destination.
Source OR NOT destination.
NOT source OR NOT destination.
Source XOR destination.
NOT (source XOR destination).
Replace all destination pixel values with zero.
Replace all destination pixel values with one.

[reserved1, reserved2]. Reserved for future use.

num-of-points. An integer specifying the number of points in the path. Passe
by reference.

path. A list of points, each of which consists of three 16-bit words containing I
integer x value, an integer y value, and a flag word. Passed by reference.

The format of the flag word is:

15

reserved

3-8 Drawing a Curve

6 5 4 3 2 o

origin/relative, 1 = relative

draw/move,1 = move
straight/curve, 1 = curve

start closed figure, 1 = yes
end closed figure, 1 = yes

draw last pixel, 1 = yes

pattern-mode. One of two symbols that specify either single-source mode or
alternate-source mode. Passed by reference.

VSTA$K_PTN_SINGLE_SRC Mode is single source.
VSTA$K_PTN_ALTERN_SRC Mode is alternate source.

pattern-action. One of two symbols specifying whether the pattern state should
be updated on return from the procedure. Passed by reference.

VSTA$K_ PTN _ UPDATE Update the pattern state parameter.
VSTA$K_PTN_NO_UPDATE Do not update the pattern state parameter.

pattern-block. A three-word block containing the number of bits in the pattern,
the pattern itself, and the multiplier. Passed by reference.

The format is:

15 o
num of bits

pattern

multiplier

pattern-state. A two-word block containing a pattern position and multiplier
count. Passed by reference. These two words are updated after the curve is
drawn if updating is specified with the pattern-action parameter.

The format is:

15 o
starting position

pattern count

sec-source-type. One of five symbols that specify the five source types. Passed
by reference. The symbols are listed with the source-type parameter. This
parameter is ignored if the mode is single source.

sec-source. A secondary source used in alternate-source mode. Passed by refer­
ence. See the source parameter for the possible formats. This parameter is
ignored if the mode is single source.

see-souree-offset-x, see-souree-offset-y. Integers specifying the location of the
upper left corner of the source mask in the secondary source. Passed by refer­
ence. These parameters are ignored if the mode is single source.

num-of-rectangles. An integer specifying the number of rectangles in the clip­
ping rectangle list. Passed by reference.

clipping-rectangles. A list of rectangles in the destination image. Passed by
reference.

Drawing a Curve 3-9

Return Status

The format of the rectangle list is:

15 o
x coordinate 1stword

y coordinate 2nd word

width 3rdword

height 4th word

x coordinate 5th word

y coordinate 6th word

height

The rectangles must not intersect.

start of
Rectangle 1

start of
Rectangle 2

end of
Rectangle n

[wait-flag]. An integer flag specifying whether the procedure returns control
the calling program after queuing the output request, or waits until I/O comp]
tion. Passed by reference.

This procedure uses either VMS event flag zero or the specified event flag as t~
wait flag.

[efn]. An event flag number. The specified event flag is cleared when the L
request is queued, and set when the I/O is completed. Passed by reference.

The default event flag is event flag zero. Event flag zero is also the default eve
flag for all VMS system services that use event flags and for the standard VSl
procedures that read input from the mouse, the keyboard, and the tablet. Spe
fying another event flag is recommended (even if the event flag is not tested)
avoid possible conflicts.

[astadr]. The address of the AST service routine to be executed when I/O is CO]

pleted. See the appropriate language reference manual for the method of passiJ
routine addresses. NOTE: Zero must be passed by value to specify that there
no ASTroutine.

[astprm]. An integer value to be passed as a parameter to the AST routir
Passed by reference. NOTE: The parameter is passed to the AST routine·
value.

[iosb]. An I/O status block. Passed by reference.

VSTA$_DRACUR
Message: Draw curve failed.

3-10 Drawing a Curve

Example Code

The following FORTRAN subroutine calls VSTA$DRAW _CURVE to draw a cir­
cle. The example program listed in Appendix B calls this subroutine. The exam­
ple program also shows other uses of the procedure VSTA$DRAW _CURVE.

Example 3-1: Using VSTA$DRAW _CURVE

!--
SUBROUTINE draw_circle (vd_id, width, color, radius, x, y,
1 offx, offy)

Function:

Draw a circle on the display whose channel number is vd_id,
the circle having a line width of width, a line color of
color, a radius of radius, and centered at (x,y) .

IMPLICIT NONE

Include the VAXstation defined symbols.

INCLUDE 'SYS$LIBRARY:VSTAGBL.FOR'

Input declarations.

INTEGER*L; vd_id, width, color, radius, x, y, offx, offy

Routine declarations.

PARAMETER
1
2
INTEGER*2
1
INTEGER*L;

f_rel = 1, f_move = 2, f_curve = L;,
f_start_closed = 5, f_end_closed = 16,
f_draw_last = 32
pathlist(21), mask(2), pattern_block(3),
pattern_state(2)
status, VSTA$DRAW_CURVE

DATA pattern_block I 3 * 0 I,
1 pattern_state I 2 * 0 I

Fill a pathlist for a circle.

pathlist(l)
pathlist(2)
pathlist(3)
pathlist(L;)
pathlist(5)
pathlist(6)
pathlist(7)
pathlist(5)
pathlist(9)

x - radius
y
f_move + f_start_closed
x
y - radius

~ f_move + f_curve
x + radius
y
f_curve

Drawing a Curve 3-11

pathlist(10)
pathlist(11)
pathlist(12)
pathlist(l:3)
pathlist(lL;)
pathlist(15)
pathlist(16)
pathlist(17)
pathlist(15)
pathlist(lCJ)
pathlist(20)
pathlist(21)

= x
y + radius
f_curve
x - radius
y
f_curve
x
y - radius
f_curve
x + radius
y
f_curve + f_move + f_end_closed

Make the mask a square of dimension width to draw a wide line.

mask(l) = width
mask(2) = width

Draw the circle.

status
1

VSTA$DRAW_CURVE(

2
:3
L;

5
6
7
5

VSTA$K_SRC_CONST, color, 0, 0,
VSTA$K_MSK_RECTANGLE, mask,
VSTA$K_DST_VD, vd_id, offx, offy,
VSTA$K_MAP_SRC, , ,
7, pathlist,
VSTA$K_PTN_SINGLE_SRC, VSTA$K_PTN_NO_UPDATE,

pattern_block, pattern_state,
, , , , 0, , 1, 5)

IF (.NOT. status) CALL show_error(status)

End of routine.

RETURN
END

3-12 Drawing a Curve

Description

4
Printing Text

Printing text outputs a character string. The operation requires a font and a text
string containing character codes. A font is a data structure containing both bit­
map images of the characters and the information required to locate each image
and to determine its width.

The print text operation scans the text string and copies each selected character
to the destination. The rectangles containing the bitmap images of the characters
are written horizontally.

To support simple string justification, the print text operation can add a fixed
number of pixels after each character or after each space character. An optional
control string provides for special formatting of output strings, including hori­
zontal and vertical adjustments (for example, for subscripts).

Fonts can be used in two ways to specify the character images:

• As a source image

• As a mask

When the font is used as a source image, each rectangular character cell is copied
to the destination. The cell contains both the character image and a background.
As with the copy area operation, a map can be used to transform the pixel values
for the image and background. Multiplaned systems can use a source image font
to contain antialiased characters, that is, characters with gray scale.

When the font is used as a mask (called a mask font), the cells of the mask font
define only the shapes of the characters. A mask font is always one bit per pixel,
independent of the number of bits per pixel of the implementation. When a
mask font is used, the source image can be either a constant or a halftone that
specifies the writing color. With a mask font, only the character shapes them­
selves are written. There is no background rectangle for the characters. Mask
fonts thus write characters without obliterating the underlying rectangular area.

Mask fonts are useful for writing overstruck characters and for writing characters
over lines. They also provide a storage-efficient mechanism for writing halftone
or single-color characters.

Both source fonts and mask fonts can be one of two types:

• A defined font

• A program-supplied font data structure

Defined fonts are the same as the fonts used with the standard VSTA library pro­
cedures and must be specified by the procedures VSTA$DEFINE_FONT or
VSTA$DEFINE_SYSTEM_FONT. Program-supplied fonts are data structures
containing information about the font and the bitmaps for each character.

The exact behavior of printing text is determined by:

• Source type and source image

• Maskfont

• Destination type and destination image

• Initial destination offset

• Map type

• Clipping rectangles

• Text string

• Control commands

• Character pad

• Space pad

The map type and the clipping rectangles are the same as for copying an area.
The others are discussed below.

Source
The source image for print text can be one of five types:

4-2 Printing Text

• A program-supplied font. Each element in the text string copies the speci­
fied rectangular font cell, including background, to the destination. No
mask font can be specified with this option.

• A defined font. The operation is the same as for a program-supplied font.

• A constant. The constant value is used as the writing color for the charac­
ters whose symbols are defined in a mask font.

• A halftone bitmap. The halftone is used as the writing color for the char­
acters whose symbols are defined in a mask font.

• A halftone virtual display. A halftone virtual display is used in the same
way as a halftone bitmap.

Description

4
Printing Text

Printing text outputs a character string. The operation requires a font and a text
string containing character codes. A font is a data structure containing both bit­
map images of the characters and the information required to locate each image
and to determine its width.

The print text operation scans the text string and copies each selected character
to the destination. The rectangles containing the bitmap images of the characters
are written horizontally.

To support simple string justification, the print text operation can add a fixed
number of pixels after each character or after each space character. An optional
control string provides for special formatting of output strings, including hori­
zontal and vertical adjustments (for example, for subscripts).

Fonts can be used in two ways to specify the character images:

• As a source image

• As a mask

When the font is used as a source image, each rectangular character cell is copied
to the destination. The cell contains both the character image and a background.
As with the copy area operation, a map can be used to transform the pixel values
for the image and background. Multiplaned systems can use a source image font
to contain antialiased characters, that is, characters with gray scale.

When the font is used as a mask (called a mask font), the cells of the mask font
define only the shapes of the characters. A mask font is always one bit per pixel,
independent of the number of bits per pixel of the implementation. When a
mask font is used, the source image can be either a constant or a halftone that
specifies the writing color. With a mask font, only the character shapes them­
selves are written. There is no background rectangle for the characters. Mask
fonts thus write characters without obliterating the underlying rectangular area.

Mask fonts are useful for writing overstruck characters and for writing characters
over lines. They also provide a storage-efficient mechanism for writing halftone
or single-color characters.

Both source fonts and mask fonts can be one of two types:

• A defined font

• A program-supplied font data structure

Defined fonts are the same as the fonts used with the standard VSTA library pro­
cedures and must be specified by the procedures VSTA$DEFINE_FONT or
VSTA$DEFINE_SYSTEM_FONT. Program-supplied fonts are data structures
containing information about the font and the bitmaps for each character.

The exact behavior of printing text is determined by:

• Source type and source image

• Mask font

• Destination type and destination image

• Initial destination offset

• Map type

• Clipping rectangles

• Text string

• Control commands

• Character pad

• Space pad

The map type and the clipping rectangles are the same as for copying an area.
The others are discussed below.

Source

The source image for print text can be one of five types:

4-2 Printing Text

• A program-supplied font. Each element in the text string copies the speci­
fied rectangular font cell, including background, to the destination. No
mask font can be specified with this option.

• A defined font. The operation is the same as for a program-supplied font.

• A constant. The constant value is used as the writing color for the charac­
ters whose symbols are defined in a mask font.

• A halftone bitmap. The halftone is used as the writing color for the char­
acters whose symbols are defined in a mask font.

• A halftone virtual display. A halftone virtual display is used in the same
way as a halftone bitmap.

Program-Supplied Fonts

A font data structure consists of a header describing the font and a bitmap con­
taining the character images.

The actual character images are stored in "strike" format. That is, all the charac­
ter images are concatenated to form a horizontal bitmap strip. The first character
(the one with the lowest index) is on the left, and the last is on the right. The
characters are aligned vertically so they have a common baseline. This combined
image is stored in a bitmap. The height of the bitmap is at least equal to the range
between the bottom of the lowest descender and the top of the tallest character.
There is no restriction on the height of a font or the width of the characters in it.

The font is specified as the address of a font data structure. The data structure
must be contiguous in memory. It consists of a header containing information
::tbout the font, followed by the bitmap containing the characters.

A font header is a table with the following format:

BITMAP<79:0>

FIRSTCHAR<15:0>

LASTCHAR<15:0>

LEFTARRAY<31 :0>

BASELlNE<15:0>

SPACE<15:0>

WIDTH<15:0>

specification of the bitmap containing the character images

the first valid character index in the font

the last valid character index in the font

a pointer to an array of 16-bit elements (indexed from FIRSTCHAR to
LASTCHAR + 1) each giving the first x coordinate of the associated char­
acter image in the font bitmap (required if WIDTH is zero or if any index
does not have an associated character image)

the height of the character baseline from the top of the character cells
(since origin is upper left)

the index of the space character in the font (32 decimal for ASCII fonts)

the width of all characters in a fixed-width font; otherwise, zero for a
variable-width font

All pointers in this table, including the LEFTARRAY pointer and the 32-bit
pointer in the BITMAP specification, are relative addresses that must be added to
the font address (that is, the address of the head of the font data structure). A
font is thus a contiguous data structure; the header table contains relative
addresses from the start of that data structure to the various components.

The font is accessed by indexing each character code into LEFT ARRAY to
retrieve the origin of the character bitmap. The element selected is
LEFTARRAY[CHAR-FIRSTCHAR]. The width of the character is the difference
between the origin of the character and the origin of its numerical successor (that
is, LEFTARRA Y[CHAR-FIRSTCHAR + 1] - LEFTARRA Y[CHAR-FIRSTCHAR]).
The height of the character is the height of the font bitmap.

Although an entry in LEFTARRA Y is required for every index (every character
code) between FIRST CHAR and LAST CHAR + I, a corresponding image in the
character bitmap is not required. A missing image is equivalent to an image of
zero width. The x coordinates in LEFTARRAY for the missing character and for
its successor are the same.

Any character not within the range (FIRSTCHAR, LASTCHAR) inclusive is an
error; the display terminates processing and reports the error to the host.

Printing Text 4-3

Defined Fonts

Fonts are defined by two standard VSTA library procedures.
VSTA$DEFINE_SYSTEM_FONT defines a font that can be used with any vir­
tual display. VSTA$DEFINE_FONT defines a font for one virtual display. Fonts
that are defined by either of these procedures can be used for the print text
operation.

Mask Font

A mask font can be one of two types: a program-supplied font data structure or a
defined font. In either case, the mask font defines the symbol shapes for the
characters in the font. The mask font is used with a constant or halftone source
that defines writing color for the characters in the text string.

Destination

The destination can be either a bitmap or a virtual display.

Initial Destination Offset

The initial destination offset is a point in the destination image where character
writing begins. The upper left corner of the character cell specified by the first
character in the text string is placed at the initial destination offset.

The print text operation optionally updates the offset at the end of the operation.
When updating is specified, the updated offset indicates the location of the pixel
following the last output character, which is the location where the next charac­
ter begins when output is continued on the same line.

For example, keyboard input characters can be echoed by specifying updating, a
single-character buffer, and the initial offset for a line of text. Each character
received from the keyboard can be stored in the buffer, then printed. When the
character is printed, the offset is updated and thus contains the correct x and y
values for the next character.

Text String

The text string can be a list of 8-bit character codes or 16-bit character codes.

Control Commands

By default, characters are written on a single horizontal line with the spacing
determined by the width of each character as stored in the font. This behavior
can be modified with control commands to adjust the horizontal or vertical posi­
tion and to skip some of the characters.

Each control command consists of a 16-bit opcode followed by zero to two 16-bit
operands. The control string is a list of 16-bit words containing control com­
mands. The commands are:

4-4 Printing Text

• OUT(n) (opcode = 0) outputs the next n characters of the text string,
where n is the single operand .

• OUTALL (opcode = 1) outputs all remaining characters of the text string.

• SKIP(n) (opcode = 2) skips the next n characters of the text string, where
n is the single operand.

• ADJUST(X, Y) (opcode = 3) adjusts the current character position by x
and y, where x and yare signed horizontal and vertical adjustments
specified in pixels.

The format of a control command is:

15

opcode

operand 1

operand 2

o
0,1,2,or3

if required

if required

(all other opcodes
are reserved)

If the text string is exhausted before the control string, processing the control
string continues with the following interpretation:

• Any ADJUST commands are obeyed.

• Any OUTALL commands are ignored.

• Any SKIP(n) or OUT(n) commands with n greater than zero cause termi­
nation of the operation with error status.

If the control string is exhausted before the text string, the operation terminates
successfully at that point. '

Character Pad

The character pad specifies the number of pixels to be added to the destination
offset following each character (including the last character in the text string).

Space Pad
The space pad specifies the number of pixels to be added to the current destina­
tion offset following each space character. If both an character pad and a space
pad are specified, the pixels specified by the character pad and the pixels speci­
fied by the space pad are added after space characters.

The VSTA$PRINT _TEXT Procedure

Format

The VSTA$PRINT _ TEXT procedure implements the print text operation.

Status = VSTA$PRINT _TEXT (source-type, source-image, mask-type, mask-font, dest-type,
dest-image, dest-offset-action, dest-offset, map-type, [reserved 1], [reserved2], text-type,
string, control-count, control-list, character-pad, space-pad, num-of-rectangles,
clipping-rectangles [wait-flag], [efn], [astadr], [astprm], [iosb])

Printing Text ' 4-5

Parameters source-type. One of five defined symbols that specify the five source image
types. Passed by reference.

VSTA$K_SRC_CONST Source image is a constant. A mask font must be specified
to define the characters.
Source image is a bitmap containing a halftone pattern.
A mask font must be specified to define the characters.
Source image is a virtual display containing a halftone pat­
tern. A mask font must be specified to define the characters.
Source image is a program-defined font data structure.
A mask font cannot be used with this source type.
Source image is a defined font. A mask font cannot be used
with this source type.

source-image. An integer constant, a bitmap descriptor, a channel number, or a
defined font descriptor. Passed by reference. The source image must be the type
specified by the source-type parameter.

The format of a program-defined font data structure is defined above.

A defined font descriptor is a four-Iongword block containing the following
information:

31

string descriptor

pointing to typeface name

integer type size

rendition

o
1 st two longwords

3rd longword

4th longword

See Programming for the V AXstation Display System for more information about
typeface names, type sizes, and rendition symbols.

mask-type. One of three symbols that specify the three types of mask font.

VSTA$K_MSK_NONE There is no mask font.
VSTA$K_MSK_FONT _BITMAP Mask font is a program-supplied font data structure.
VSTA$K_ MSK_ DEFINED _ FONT Mask font is a defined font.

mask-font. A font data structure (if the mask type is a font bitmap) or a defined
font descriptor (if the mask type is a defined font). Passed by reference. This
parameter is ignored if no mask font is specified.

dest-type. One of two symbols that specify the two destination image types.
Passed by reference.

VSTA$K_ DST _ BITMAP
VSTA$K_DST_VD

Destination is a bitmap.
Destination is a virtual display.

dest-image. The destination image. Passed by reference. If the destination is a
bitmap, the dest-image parameter is a bitmap descriptor. If the destination is a
virtual display, the parameter is a channel number.

dest-offset-action. One of two symbols that specify whether the destination off­
sets are to be updated when the output is completed.

VST A$K_ DST _ UPDATE Update the destination x and y offsets.
VSTA$K_DST _NO_UPDATE Do not update the destination offsets.

4-6 Printing Text

dest-offset. A two-word block containing the x and y offsets for the first charac­
ter in the text string. If updating is requested, the x and y offsets after the text is
printed are returned in this block. Passed by reference.

map-type. One of 16 symbols that specify the 16 map function types. Passed by
reference. The symbols are:

VSTA$K_MAP _SRC
VSTA$K_MAP_NOTSRC
VSTA$K_MAP _DST
VSTA$K_MAP_NOTDST
VSTA$K_MAP_SRC_AND_DST
VSTA$K_MAP_NOTSRC_AND_DST
VSTA$K_MAP_SRC_AND_NOTDST
VSTA$K_MAP_NOTSRC_AND_NOTDST
VSTA$K_MAP_SRC_OR_DST
VSTA$K_MAP_NOTSRC_OR_DST
VSTA$K_MAP_SRC_OR_NOTDST
VSTA$K_MAP_NOTSRC_OR_NOTDST
VSTA$K_MAP_SRC_XOR_DST
VSTA$K_MAP_NOT_SRCXORDST
VSTA$K_MAP_BLACK
VSTA$K_MAP _ WHITE

No transformation.
NOT source.
No transformation; no effect.
NOT destination.
Source AND destination.
NOT source AND destination.
Source AND NOT destination.
NOT source AND NOT destination.
Source OR destination.
NOT source OR destination.
Source OR NOT destination.
NOT source OR NOT destination.
Source XOR destination.
NOT (source XOR destination).
Replace all destination pixel values with zero.
Replace all destination pixel values with one.

[reservedl, reserved2]. Reserved for future use.

text-type. One of two symbols that specify the two types of indexing in the font.

VSTA$K_ TXT _8BITS Font is indexed by 8-bit text codes.
VSTA$K_ TXT _ 16BITS Font is indexed by 16-bit text codes.

string. A text string. Passed by descriptor.

control-count. An integer specifying the number of words in the control string.
Passed by reference. If the control count is zero, the entire text string is printed
with no special controls.

control-list. A list of 16-bit words containing control commands. Each command
requires from one to three words. Passed by reference.

See the description of control commands above for the command opcodes and
the required operands. Opcodes 0 through 3 are currently used. All others are
reserved.

character-pad. An integer specifying the number of pixels to insert after every
character, including the last. Passed by reference.

space-pad. An integer specifying the number of pixels to insert after every space
character. The pixels specified for the character pad are also inserted after space
characters. Passed by reference.

num-of-rectangles. An integer specifying the number of rectangles in the clip­
ping rectangle list. Passed by reference.

clipping-rectangles. A list of rectangles in the destination image. Passed by
reference.

Printing Text 4-7

Return Status

The format of the rectangle list is:

15 o
x coordinate 1 st word

y coordinate 2nd word

width 3rd word

height 4th word

x coordinate 5th word

y coordinate 6th word

height

The rectangles must not intersect.

start of
Rectangle 1

start of
Rectangle 2

end of
Rectangle n

[wait-flag]. An integer flag specifying whether the procedure returns control to
the calling program after queuing the output request, or waits until 110 comple­
tion. Passed by reference.

This procedure uses either VMS event flag zero or the specified event flag as the
wait flag.

[efn]. An event flag number. The specified event flag is cleared when the I/O
request is queued, and set when the I/O is completed. Passed by reference.

The default event flag is event flag zero. Event flag zero is also the default event
flag for all VMS system services that use event flags and for the standard VST A
procedures that read input from the mouse, the keyboard, and the .tablet. Speci­
fying another event flag is recommended (even if the event flag is not tested) to
avoid possible conflicts.

[astadr]. The address of the AST service routine to be executed when I/O is com­
pleted. See the appropriate language reference manual for the method of passing
routine addresses. NOTE: Zero must be passed by value to specify that there is
no ASTroutine.

[astprm]. An integer value to be passed as a parameter to the AST routine.
Passed by reference. NOTE: The parameter is. passed to the AST routine by
value.

[iosb]. An I/O status block. Passed by reference.

VST A$_PRITXT
Message: Print text failed.

Example Code

The following FORTRAN subroutine prints a text string using a defined font as a
mask font. Appendix B shows a complete program that calls this subroutine.

4-8 Printing Text

Example 4-1: Using VSTA$PRINT _TEXT

!--
SUBROUTINE print_line (vd_id, dest_offset, text)

Function:

Print a text string on vd_id at dest_offset in the defined
font KILTER.

Input Args:

vd_id = virtual display id
dest_offset = destination offset
text = string to be printed

Output Args: none

IMPLICIT NONE

Include the VAXstation defined symbols

INCLUDE 'SYS$LIBRARY:VSTAGBL.FOR'

Argument declarations:

INTEGER*~ vd_id, dest_offset
CHARACTER*(*) text

Declarations:

INTEGER*~ status, VSTA$PRINT_TEXT
INTEGER*~ Font_desc(~)

CHARACTER*6 Font_TypeFace

Set up font descriptor.

Font_TypeFace = 'KILTER'

Font Typeface.

Font_desc(l) len(Font_TypeFace) ! Length of font name.
Font_desc(2) %LOC(Font_TypeFace) ! KILTER font type face.
Font_desc(3) = 1~ Font size.
Font_desc(~) = ° ! Font rendition code.

Status
1
2
3
~

5
6
7

RETURN
END

VSTA$PRINT_TEXT (
VSTA$K_SRC_CONST, 16,
VSTA$K_MSK_DEFINED_FONT, font_desc,
VSTA$K_DST_VD, vd_id,
VSTA$K_DST_NO_UPDATE, dest_offset,
VSTA$K_MAP_SRC, , ,
VSTA$K_TXT_5BITS, text,
0, , 0, 0, 0, , 1, 5, , ,)

IF (.NOT. status) CALL show_error(status)

Printing Text 4-9

Description

5
Filling an Area

Filling an area uses a color or halftone source image to fill one or more closed
shapes, then copies the shapes to the specified location in a destination image.

Filling an area is used when the boundary of the area to be filled is known and
can be defined by a list of straight or curved segments. Flooding an area, on the
other hand, is used when the boundary is not completely known, but the user
can specify one internal point of the closed area.

The source image for filling an area is a constant or halftone. A path, as in draw­
ing a curve, specifies a closed area in the destination image. Thus, filling an area
causes one or more areas of a destination image to be filled with one or more col­
ored shapes.

The exact behavior of filling an area is determined by:

• Source type and source image

• Destination type and destination image

• Destination offset

• Map type

• Clipping rectangle

• Path

The destination type and image, the destination offset, and the map type are the
same as for copying an area. The function of the clipping rectangle is the same as
for copying an area. However, only one clipping rectangle can be specified for
filling an area.

Source

The three types of source image for filling an area are:

• Constant

• Halftone bitmap

• Halftone virtual display

The source specifies the constant pixel value or halftone with which the dosed
area specified by the path is filled. Bitmap or virtual display source images are
not allowed.

Path
The path defines one or more dosed areas in the destination to be filled by the
pixel values specified by the source. The path is defined by a path list that is the
same as the path list for drawing a curve. Each segment of the path can be a
straight or a curved line.

Several dosed areas can be filled with one path. In this case, the start point and
the end point of each dosed area must be specified with the start-dosed-figure
and end-dosed-figure flags. The move flag specifies an invisible line from the
end of one dosed figure to the start of another.

Figure 5-1 shows the two filled diamonds generated by the following path.

segment x y flags

1 25 10 origin, move, start closed figure
2 10 40 origin, draw
3 25 70 origin, draw
4 40 40 origin, draw
5 25 10 origin, draw, end closed figure
6 65 10 origin, move, start closed figure
7 50 40 origin, draw
8 65 70 origin, draw
9 80 40 origin, draw

10 65 10 origin, draw, end closed figure

0,0 10 20 30 40 50 60 70 80
.........

10 ~>o------------o
20

30

40

50

60

70 o b

80

Figure 5-1. Filling Two Closed Areas

5-2 Filling an Area

If the start- and end-dosed-figure flags are not used, or if the move flag is used to
draw an invisible line to any point except one that starts a closed figure, the
results are unpredictable.

The VSTA$FILL_AREA Procedure

Format

Parameters

The VST A$FILL_AREA procedure implements the fill-area operation.

Status = VSTA$FILL_AREA (source-type, source-image, dest-type, dest-image, dest-offset-x,
dest-offset-y, map-type, [reserved 1], [reserved2], num-of-points, path,
num-of-rectangles, clipping-rectangles [wait-flag], [efn], [astadr], [astprm], [iosb])

source-type. One of three defined symbols that specify the three source image
types. Passed by reference.

VSTA$K_SRC_CONST Source image is a constant.
VSTA$K_SRC_HT _BITMAP Source image is a bitmap containing a halftone pattern.
VSTA$K_SRC_HT _ VD Source image is a virtual display containing a halftone pattern.

source-image. An integer constant, a bitmap descriptor, or a channel number.
Passed by reference. The source image must be the type specified by the source­
type parameter.

A bitmap descriptor is a five-word block in the following format:

31 16 15

address of bitmap

height

o

width

1 st and 2nd words

3rd and 4th words

bits per pixel 5th word

dest-type. One of two symbols that specify the two destination image types.
Passed by reference.

VSTA$K_DST _BITMAP
VSTA$K_DST_VD

Destination is a bitmap.
Destination is a virtual display.

dest-image. A bitmap descriptor or an integer channel number. Passed by
reference.

dest-offset-x, dest-offset-y. Integers specifying horizontal and vertical offsets
from the upper left corner of the destination image. The filled shapes generated
by the source and path parameters are placed relative to the destination offset.
Passed by reference.

map-type. One of 16 symbols that specify the 16 map function types. Passed by
reference.

VSTA$K_MAP _SRC
VSTA$K_MAP_NOTSRC
VSTA$K_ MAP _ DST
VSTA$K_MAP_NOTDST
VSTA$K_MAP_SRC_AND_DST
VSTA$K_MAP_NOTSRC_AND_DST
VSTA$K_MAP_SRC_AND_NOTDST
VSTA$K_MAP_NOTSRC_AND_NOTDST

No transformation.
NOT source.
No transformation; no effect.
NOT destination.
Source AND destination.
NOT source AND destination.
Source AND NOT destination.
NOT source AND NOT destination.

Filling an Area 5-3

VSTA$K_MAP_SRC_OR_DST
VSTA$K_MAP_NOTSRC_OR_DST
VSTA$K_MAP_SRC_OR_NOTDST
VSTA$K_MAP_NOTSRC_OR_NOTDST
VSTA$K_MAP_SRC_XOR_DST
VSTA$K_MAP_NOT_SRCXORDST
VSTA$K_MAP_BLACK
VSTA$K_MAP _ WHITE

Source OR destination.
NOT source OR destination.
Source OR NOT destination.
NOT source OR NOT destination.
Source XOR destination.
NOT (source XOR destination).
Replace all destination pixel values with zero.
Replace all destination pixel values with one.

[reservedl, reserved2]. Reserved for future use.

num-of-points. An integer specifying the number of points in the path. Passed
by reference.

path. A list of points, each of which consists of three 16-bit words containing a
signed integer x value, a signed integer y value, and a flag word. Passed by
reference.

The format of the flag word is:

15

reserved

6 5 4 3 2 o

origin/relative, 1 = relative

draw/move,1 = move
straight/curve, 1 = curve

start closed figure, 1 = yes
end closed figure, 1 = yes

draw last pixel, 1 = yes

num-of-rectangles. An integer specifying either one clipping rectangle or no clip­
ping rectangles. Passed by reference.

dipping-rectangles. A clipping rectangle in the following format:

15

x coordinate

y coordinate

width

height

Passed by reference.

o
1stword

2nd word

3rd word

4th word

[wait-flag]. An integer flag specifying whether the procedure returns control to
the calling program after queuing the output request, or waits until I/O comple­
tion. Passed by reference.

This procedure uses either event flag zero or the specified event flag as the wait
flag.

[efn]. An event flag number. The specified event flag is cleared when the 110
request is queued, and set when the 110 is completed. Passed by reference.

The default event flag is event flag zero. Event flag zero is also the default event
flag for all VMS system services that use event flags and for the standard VST A

5-4 Filling an Area

Return Status

procedures that read input from the mouse, the keyboard, and the tablet. Speci­
fying another event flag is recommended (even if the event flag is not tested) to
avoid possible conflicts.

[astadr]. The address of the AST service routine to be executed when I/O is com­
pleted. See the appropriate language reference manual for the method of passing
routine addresses. NOTE: Zero must be passed by value to specify that there is
no AST routine.

[astpnn]. An integer value to be passed as a parameter to the AST routine.
Passed by reference. NOTE: The parameter is passed to the AST routine by
value.

[iosb]. An I/O status block. Passed by reference.

VSTA$_FILARE
Message: Fill area failed.

Example Code

The following FORTRAN subroutine illustrates both the VSTA$FILL_AREA
procedure and the VSTA$FLOOD_AREA procedure discussed in Chapter 6.
The example program listed in Appendix B calls this subroutine.

Example 5-1. Using VSTA$FILL_AREA

!--
SUBROUTINE fill_polygon(vd_id, xsize, ysize,
1 background_color,
2 foreground_color, flood_color)

Function:

Use FILL_AREA to draw a solid square, then use FLOOD_AREA to
flood the background.

Input:

vd_id = channel number of virtual display
xsize = x dimension of virtual display
ysize = y dimension of virtual display
background_color = background color
foreground_color = color to fill rectangle
flood_color = color to flood background

IMPLICIT NONE

Include the VAXsta~ion native mode graphics symbol table.

INCLUDE 'SYS$LIBRARY:VSTAGBL.FOR'

Argument declarations.

INTEGER*L;
1

vd_id, xsize, ysize, background_color,
foreground_color, flood_color

Filling an Area 5-5

Routine declarations.

Fill

Fill

map BYTE
INTEGER*t;
1
INTEGER*2
1

mapsize, nclip, status,
VSTA$FILL_AREA, VSTA$FLOOD_AREA
pathlist(3,13), patternstate(2),
patternblock(3), doff(2)

DATA patterns tate / 2 * 0 / ,
1 patternblock / 3 * 0 /

a pathlist to form a rectangle based on vd size.

pathlist(l,l) xsize/t;
pathlist(2,1) ysize/t;
pathlist(3,1) 10
pathlist(1,2) xsize * 3 / t;
pathlist(2,2) pathlist(2,1)
pathlist(3,2) 0
pathlist(1,3) pathlist(1,2)
pathlist(2,3) ysize * 3 / t;
pathlist(3,3) 0
pathlist(l,t;) pathlist(l,l)
pathlist(2,t;) pathlist(2,3)
pathlist(3,t;) 0
pathlist(1,5) pathlist(l,l)
pathlist(2,5) pathlist(2,1)
pathlist(3,5) 16

the rectangle.

nclip = 0
status VSTA$FILL_AREA (
1 VSTA$K_SRC_CONST, foreground_color,
2 VSTA$K_DST_VD, vd_id, 0, 0,
3 VSTA$K_MAP_SRC, , ,
t; 5, pathlist,
5 nclip, , 1, 5)
IF (.NOT. status) CALL show_error(status)

Write some text on the square.

doff(l) = xsize/2 - 30
doff(2) = ysize/2
CALL print_line (vd_id, doff, 'fill')

Set the boundary map for VSTA$FLOOD_AREA such that the color that
the rectangle was filled with is the boundary, thus preventing
leaking if the background color is a halftone.

IF (foreground_color .EQ. 0) THEN
map 1

ELSE
map 2

ENDIF
mapsize 1

5-6 Filling an Area

Flood the background.

status
1
2
3
L;

5

VSTA$FLOOD_AREA (
VSTA$K_SRC_CONST, flood_color,
VSTA$K_DST_VD, vd_id,
mapsize, map,
1, 1,
nclip, , 1, 5)

IF (.NOT. status) CALL show_error(status)

Write some text on the background.

doff(l) = xsize/2 - 30
doff (2) = ysize * 7 / 5
CALL print_line (vd_id, doff, 'flood')

End of routine.

RETURN
END

Filling an Area 5-7

Description

6
Flooding an Area

The flood area operation floods bounded areas of a destination image with a sin­
gle color or a halftone. The result of flooding an area is the same as the result of
filling an area. However, filling an area requires that the program specify the
area to be filled. The area to be flooded depends on the current state of the desti­
nation image and is determined by a flood algorithm.

Flooding is often used for interactive applications that allow the user to modify
the image on the screen. The area to be flooded may be obvious to a user who
has drawn the outlines of several objects and wants one of the outlines to be
filled in with a solid color. To flood the area, that program can ask the user to
specify an interior point. To fill the area, the program would have to construct a
path from a history of the user's actions.

The flood algorithm determines the area of the destination to be flooded. The
algorithm locates the inside and outside portion of the closed area and selects
those pixels inside the flooded area.

The determination of the bounded area requires a seed point and a boundary
map. The seed point specifies a single pixel in the destination image; this point
must be in the bounded area.

The boundary map is a table of zeros and ones that determines whether points
are interior or boundary points. The algorithm examines the eight pixels adjacent
to the seed point (the seed point's 'neighbors'). The value of each pixel is an
index into the boundary map table. If the corresponding value in the boundary
map table is zero, then this point is an inside point; otherwise, it is a boundary
point. If an inside point is found, the algorithm examines its neighbors. Process­
ing continues until the neighbors of all internal points have been examined.

If the seed point is found to lie on a boundary, the algorithm terminates
immediately.

Once the boundary has been determined, the inside area is flooded with the
source.

The exact behavior of flooding an area is determined by:

• Source

• Destination

• Seed Point

• Clipping Rectangle

• Boundary Map

Source

The source image can be one of three types:

• A constant

• A halftone bitmap

• A halftone virtual display

The specified area in the destination is flooded with the color specified by the
constant, or with the halftone in the bitmap or virtual display.

Since the source for flooding an area specifies only a color or halftone, a source
mask and a source offset are not used.

Destination

The two types of destination image are bitmaps and virtual displays. The flood
algorithm determines the area to be flooded according to the values of the pixels
in the destination.

Seed Point

The seed point is a single point in the destination image that lies within the area
to be flooded.

Clipping Redangle

Only one clipping rectangle can be used with the flood area operation. If a clip­
ping rectangle is specified, the operation is constrained by the clipping area. If no
clipping rectangle is specified, the operation is constrained by the size of the des­
tination image.

Boundary Map

The boundary map is a binary-valued table defining the int~rnal and external
points of the closed figure in the destination bitmap. Bit i in the table indicates
whether pixels of value i are interior points (to be flooded) or boundary points.
Any pixel value mapping to a zero entry in the table is an interior point; any
value mapping to a one is a boundary point.

In general, in an n-bit-per-pixel system, 2n bits are required to specify whether
each of the possible 2n pixel values is a boundary. For example, a system with
three bits per pixel requires eight entries in the boundary map. Each of the possi­
ble pixel values is an index into the table; the zero and one entries in the table

6-2 Flooding an Area

specify whether a pixel with the index value is an interior pixel or a boundary
pixel. In the following boundary map, pixel values 0, 2, 3, and 5 are boundary
values; and pixel values 1,4,6, and 7 are interior values.

Pixel value (index)

Table entry

7 6

o
5 4

o
3 2 o

o

Figure 6-1 shows a destination image with two overlapping, irregular, closed
curves. The background is white (pixel value 1); the lines are black (pixel value
0). If the boundary map table shown above is specified, pixels whose value is 1
are interior; pixels whose values are 0 are the boundary.

The seed point is location 45,50.

0,0 10 20 30 40 50 60 70

10

20

30

40

50

60

70

Figure 6-1. Destination Image before Flooding

The pixel at 45,50 is surrounded by pixels whose values are 1 (and therefore inte­
rior), so their neighbors are examined. Moving left from the seed point, the
boundary is reached at 41,50.

Figure 6-2 shows the destination image after flooding.

0,0 10 20 30 40 50 60 70

10

20

30

40

50

60

70

Figure 6-2. Destination Image after Flooding

Flooding an Area 6-3

The VSTA$FLOOD_AREA P~ocedure

Format

Parameters

The VSTA$FLOOD_AREA procedure implements the flood-area operation.

Status = VSTA$FLOOD_AREA (source-type, source-image, dest-type, dest-image,
boundary-map-size, boundary-map, seed point-x, seedpoint-y, num-of-rectangles,
clipping-rectangles [wait-flag], [efn], [astadr], [astprm], [iosb])

source-type. One of three symbols that specify the three source image types.
Passed by reference.

Source image is a constant. VSTA$K_SRC_CONST
VSTA$K_SRC_HT _BITMAP
VSTA$K_SRC_HT_VD

Source image is a bitmap containing a halftone pattern.
Source image is a virtual display containing a halftone pattern.

source-image. An integer constant, a bitmap descriptor, or a channel number.
Passed by reference. The source image must be the type specified by the source­
type parameter.

A bitmap descriptor is a five-word block in the following format:

31 16 15

address of bitmap

height

a

width

bits per pixel

1 st and 2nd words

3rd and 4th words

5th word

dest-type. One of two symbols that specify the two destination image types.
Passed by reference.

VSTA$K_DST _BITMAP
VSTA$K_ DST _ VD

Destination is a bitmap.
Destination is a virtual display.

dest-image. The destination image. Passed by reference. If the destination is a
bitmap, the dest-image parameter is a bitmap descriptor. If the destination is a
virtual display, the parameter is a channel number.

boundary-map-size. An integer specifying the size of the boundary map in
bytes. Passed by reference.

An error is generated if the specified size does not agree with the size calculated
from the depth of the destination image.

boundary-map. A bit table in which the zeros and ones represent pixel values
that are interior points or boundary points. Passed by reference.

seedpoint-x. An integer specifying the x coordinate of the seed point. Passed by
reference.

seedpoint-y. An integer specifying the y coordinate of the seed point. Passed by
reference.

num-of-rectangles. An integer specifying either one clipping rectangle or no clip­
ping rectangles. Passed by reference.

6-4 Flooding an Area

Return Status

clipping-rectangles. A clipping rectangle in the following format:

15

x coordinate

y coordinate

width

height

a
1st word

2nd word

3rd word

4th word

Passed by reference. This parameter is ignored if the number of clipping rectan­
gles is zero.

[wait-flag]. An integer flag specifying whether the procedure returns control to
the calling program after queuing the output request, or waits until 110 comple­
tion. Passed by reference.

This procedure uses either event flag zero or the specified event flag as the wait
flag.

[efn]. An event flag number. The specified event flag is cleared when the I/O
request is queued, and set when the I/O is completed. Passed by reference.

The default event flag is event flag zero. Event flag zero is also the default event
flag for all VMS system services that use event flags and for the standard VST A
procedures that read input from the mouse, the keyboard, and the tablet. Speci­
fying another event flag is recommended (even if the event flag is not tested) to
avoid possible conflicts.

[astadr]. The address of the AST service routine to be executed when 1/0 is com­
pleted. See the appropriate language reference manual for the method of passing
routine addresses. NOTE: Zero must be passed by value to specify that there is
no AST routine.

[astprm]. An integer value to be passed as a parameter to the AST routine.
Passed by reference. NOTE: The parameter is passed to the AST routine by
value.

[iosb]. An 1/0 status block. Passed by reference.

VSTA$_FLDARE
Message: Flood area failed.

Example Code

The example code for Chapter 5 shows the VSTA$FLOOD_AREA procedure as
well as the VSTA$FILL_AREA procedure.

Flooding an Area 6-5

A
Hardware Model Summary

This appendix lists the curent V AXstation Display System models and gives
information about using the native graphics procedures that applies only to a
specific model.

V AXstation 100 Display System

Constant Source Values

The value specified by a constant source is an index into a color lookup table. The
corresponding entry in the table specifies the color. On the V AXstation lOa, the
range of constant values is a to 16. The constant a selects black; the constant 16
selects white. The constants from 1 through 15 select halftones. The halftone
selected by the constant 1 has the highest proportion of black; the halftone
selected by 15 has the highest proportion of white. The halftone selected by 8 is
half and half.

Bitmap Storage Requirements

Bitmaps for the V AXstation 100 use one bit per pixel. The VAXstation 100 repre­
sents a bitmap as a sequence of horizontal scan lines stored in contiguous mem­
ory locations. Each scan line must begin on the boundary of a 16-bit word. That
is, although a bitmap can have any horizontal width in pixels, the storage in
which the bitmap is kept must have sufficient space so that each horizontal line
can be word-aligned. If the horizontal width in pixels is not evenly divisible by
16, the last bits in the last word of the storage for each horizontal line are not
used. For any bitmap of dimensions (X,Y) on the VAXstation lOa, the storage
requirement is ((X + 15)/16)*Y words.

Halftone Representation

The V AXstation 100 uses only a single format for a halftone bitmap or a halftone
virtual display. The halftone pattern must be specified as a square bitmap 16
pixels on a side. Therefore, to use a "standard" 4-by-4 halftone pattern, the pat­
tern is replicated horizontally and vertically to form a 16-by-16 pattern.

B
Example Program

The FORTRAN example program listed in this appendix draws the illustrations
in Figures B-1 and B-2. Figure B-1 shows the screen the first time the subroutine
wait is called. Figure B-2 shows the screen the second time the same subroutine
is called. The subroutines listed in the example code sections of Chapter 2
(copy_bitmap), Chapter 3 (draw_circle), Chapter 4 (print_line), and Chapter 5
(fill_ polygon) are called by this program. These subroutines are not included in
the appendix.

Figure B-1. Mapping Fundions

Figure B-2. Fill and Flood

!--
PROGRAM bugandbar

!--

Function:

Demonstrate the mapping functions of VSTA$COPY_AREA.

IMPLICIT NONE

Include the Vaxstation defined symbols.

INCLUDE 'SYS$LIBRARY:VSTAGBL.FOR'

Routine declarations.

INTEGER*L;
INTEGER*2
INTEGER*L;
1
2
INTEGER*L;
EQUIVALENCE
1
CHARACTER*28
CHARACTER*10

B-2 Example Program

mapvalue(16)
bug_descr(5), bar_descr(5), doff(2)
vd_ids(L;), bug(2,L;9), bug_address,
bar_address, vd_x_size, vd_y_size, bar_color,
i, j, offx, offy, origoffy, ind
status, VSTA$COPY_AREA
(bug_address, bug_descr(1)),
(bar_address, bar_descr(1))
maptext(16)
ichar

xoff, yoff INTEGER*L;
INTEGER*L;
INTEGER*L;
INTEGER*2
EQUIVALENCE
COMMON

bar1(2,L;g), bar2(2,L;g)
scratch(2,L;g), scratch_address
scratch_descr(5), mask(2)
(scratch_address, scratch_descr(1))
scratch_descr, scratch

DATA
1
2
:3
L;

5
6
7
5
g

1
1
2
:3
L;

5
6

DATA
1
2
:3
L;

5
6
7
5
g
1
1
2
:3
L;

5
6

map value /
VSTA$K_MAP_DST,
VSTA$K_MAP_NOTSRC,
VSTA$K_MAP_SRC,
VSTA$K_MAP_NOTDST,
VSTA$K_MAP_SRC_AND_DST,
VSTA$K_MAP_NOTSRC_AND_DST,
VSTA$K_MAP_SRC_AND_NOTDST,
VSTA$K_MAP_NOTSRC_AND_NOTDST,
VSTA$K_MAP_SRC_OR_DST,
VSTA$K_MAP_NOTSRC_OR_DST,
VSTA$K_MAP_SRC_OR_NOTDST,
VSTA$K_MAP_NOTSRC_OR_NOTDST,
VSTA$K_MAP_SRC_XOR_DST,
VSTA$K_MAP_NOT_SRCXORDST,
VSTA$K_MAP_BLACK,
VSTA$K_MAP_WHITE /

maptext /
'VSTA$K_MAP_DST
'VSTA$K_MAP_NOTSRC
'VSTA$K_MAP_SRC
'VSTA$K_MAP_NOTDST

, , ,

'VSTA$K_MAP_SRC_AND_DST ,
'VSTA$K_MAP_NOTSRC_AND_DST "
'VSTA$K_MAP_SRC_AND_NOTDST "
'VSTA$K_MAP_NOTSRC_AND_NOTDST',
'VSTA$K_MAP_SRC_OR_DST "
'VSTA$K_MAP_NOTSRC_OR_DST "
'VSTA$K_MAP_SRC_OR_NOTDST '
'VSTA$K_MAP_NOTSRC_OR_NOTDST '
'VSTA$K_MAP_SRC_XOR_DST
'VSTA$K_MAP_NOT_SRCXORDST
'VSTA$K_MAP_BLACK
'VSTA$K_MAP_WHITE

, , ,
, ,
, /

DATA bug/
1 'OOOOOOOO'x,'OOOOOOOO'x, 'OOOOOOOO'x,'OOOOOOOO'x,
1 'OOOOOOOO'x,'OOOOOOOO'x, 'OOOOOOOO'x,'OOOOOOOO'x,
1 'OOOOOOOO'x,'OOOOOOOO'x, 'OOOOOOOO'x,'OOOOOOOO'x,
1 'OOOOOOOO'x,'OOOOOOOO'x, 'OOOOOOOO'x, 'OOOOOOOO'x,
1 'OOOOOOOO'x,'OOOOOOOO'x, 'COOOOOOO'x, 'OOOOOOO:3'x,
1 'EOOOOOOO'x,'00000007'x, 'FOOOOOOO'x, 'OOOOOOOF'x,
1 'FOOOOOOO'x,'OOOOOOOF'x, 'FOOOOOOO'x, 'OOOOOOOF'x,
2 'F5000000'x,'0000001F'x, 'F5000000'x,'0000001F'x,
2 'F5000000'x,'0000001F'x, 'F5COOOOO'x,'00000:31F'x,
:3 'FgAOOOOO'x,'000005gF'x, 'FF:300000'x, 'OOOOOCFF'x,
:3 'FE150000'x,'0000157F'x, 'FEOCOOOO'x, '0000:307F'x,
L; 'FC060000'x,'000060:3F'x, 'FEL;20000'x, 'OOOOL;27F'x,
L; 'FFAOOOOO' x, '000005FF' x, 'FF:300000' x, 'OOOOOCFF' x,
5 'FE150000'x,'0000157F'x, 'FE050000'x, '0000107F'x,
5 'FEOCOOOO'x, '0000:307F'x, 'FECL;OOOO'x, '00002:37F'x,

Example Program B-3

6 iFF~~0000'x,'000022FF'x, 'FE~00000'x,'0000027F'x,
6 'FE600000'x,'0000067F'x, 'FE200000'x,'00000~7F'x,

7 'FC300000' x, '00000C3F' x, 'FC100000' x, '0000083F' x,
7 'FC100000' x, '0000083F' x, 'FC180000' x, '0000183F' x,
8 'F8080000'x,'0000101F'x, 'F0080000'x,'0000100F'x,
8 'OOOOOOOO'x,'OOOOOOOO'x,'OOOOOOOO'x,'OOOOOOOO'x,
8 '00000000' x, '00000000' x, '00000000' x, '00000000' x,
8 'OOOOOOOO'x,'OOOOOOOO'x,'OOOOOOOO'x,'OOOOOOOO'x,
8 'OOOOOOOO'x, 'OOOOOOOO'x, 'OOOOOOOO'x,'OOOOOOOO'x,
8 'OOOOOOOO'x, 'OOOOOOOO'x /

Create a pasteboard and ~ virtual displays.

Draw a white bar on one display, and a halftone 8 bar on another.

CALL draw_bar(vd_ids(l), ~g, ~g, 16, xoff(l), yoff(l)
CALL draw_bar(vd_ids(2), ~g, ~g, 8, xoff(l), yoff(l)

Copy the bars from the displays to bitmaps.

bar_address = %LOC(bar1) bitmap descriptor
bar_descr(3) 6~ ! x
bar_descr(~) = ~g y
bar_descr(5) = 1 ! z
status VSTA$COPY_AREA(
1 VSTA$K_SRC_VD, vd_ids(l), 0, 0,
2 VSTA$K_MSK_NONE, ,
3 VSTA$K_DST_BITMAP, bar_descr, 7, 0,
~ VSTA$K_MAP_SRC, , ,
5 0, , 1, 5, , ,)
IF (.NOT. status) CALL show_error(status)

bar_address = %LOC(bar2)
status VSTA$COPY_AREA(
1 VSTA$K_SRC_VD, vd_ids(2), 0, 0,
2 VSTA$K_MSK_NONE, ,
3 VSTA$K_DST_BITMAP, bar_descr, 7, 0,
~ VSTA$K_MAP_SRC, , ,
5 0, , 1, 5, , ,)
IF (.NOT. status) CALL show_error(status)

Draw two bugs. Generate a bitmap descriptor for the bug bitmap
and copy the bitmap next to the bars at the top of the virtual
displays.

bug_address = %LOC(bug)
bug_descr(3) 6~

bug_descr(~) = ~g

bug_descr(5) = 1
status VSTA$COPY_AREA(
1 VSTA$K_SRC_BM, bug_descr, 0, 0,
2 VSTA$K_MSK_NONE, ,
3 VSTA$K_DST_VD, vd_ids(l), ~3, 0,
~ VSTA$K_MAP_SRC_OR_DST, , ,
5 0, , 1, 5, , ,)
IF (.NOT. status) CALL show_error(status)

B-4 Example Program

VSTA$COPY_AREA(status
1
2
3
L;

VSTA$K_SRC_BM, bug_descr, 0, 0,
VSTA$K_MSK_NONE, ,
VSTA$K_DST_VD, vd_ids(2), L;3, 0,
VSTA$K_MAP_SRC_OR_DST, , ,

5 0, , 1, 5, , ,)
IF .NOT. status) CALL show_error(status)

Label the columns.

doff(l) = 15
doff(2) = 0
CALL print_line (vd_ids(3), doff, 'src')
doff(l) = 355
CALL print_line (vd_ids(3), doff, 'src')
doff(l) = 65
CALL print_line (vd_ids(3), doff, 'dst')
doff(l) = L;05
CALL print_line (vd_ids(3), doff, 'dst')
doff(l) = 155
CALL print_line (vd_ids(3), doff, 'Mapping Function')

Copy bars onto bugs on scratch bitmap using all the map functions,
then copy scratch bitmap to displays at appropriate offsets.

doff(l) = 5
DO i = 2, 16

offy = yoff(i)
DO j = 1, 2

offx = xOff(i)

Copy bug to scratch bitmap.

Copy either white bar or halftone bar to scratch bitmap using one
of the map functions.

bar_address = %LOC(bar1)
IF (j .eg. 2) bar_address = %LOC(bar2)
CALL copy_bitmap (bar_descr, mapvalue(i)

Copy scratch bitmap to left display or right display at appropriate
destination offset.

status = VSTA$COPY_AREA(
1 VSTA$K_SRC_BM, scratch_descr, 0, 0,
2 VSTA$K_MSK_NONE, ,
3 VSTA$K_DST_VD, vd_ids(j), 16, offy,
L; VSTA$K_MAP_SRC, , ,
5 0, , 1, 5, , ,)

IF (.NOT. status) CALL show_error(status)
doff(2) = (i-1)*50+ 10

Print the symbol for the map function.

CALL print_line (vd_ids(L;), doff, maptext(i))
ENDDO

ENDDO

Example Program B-5

Pause for user to see screen.

CALL wait

Make the center display white using a constant source and a rectangle
mask the same size as the display.

mask(1) = 235
mask(2) = 500
status VSTA$COPY_AREA(
1 VSTA$K_SRC_CONST, 16, 0, 0,
2 VSTA$K_MSK_RECTANGLE, mask,
3 VSTA$K_DST_VD, vd_ids(~), 0, 0,
~ VSTA$K_MAP_SRC, , ,
5 0, , 1, 5, , ,)
IF (.NOT. status) CALL show_error(status)

Use fill and flood.

CALL fill_polygon (vd_ids(~), 235, 500, 16, 0, 5)

Pause for user to see illustration.

CALL wait
CALL EXIT
END

!--
SUBROUTINE VS_INIT~ (screen_color, text_color,
1 vd_ids, vd_x_size, vd_y_size)

Function:

Create a pasteboard with ~ virtual displays.

Input Args:

screen color = screen color of the virtual displays (0 - 16)
text color text color within the virtual displays (0 16)

Output Args:

vd_ids = array of channel numbers of virtual displays
vd_x_size x size of mapping virtual displays in pixels
vd_y_size = y size of mapping virtual displays in pixels

IMPLICIT NONE

Include the Vaxstation defined symbols.

INCLUDE 'SYS$LIBRARY:VSTAGBL.FOR'

B-6 Example Program

Argument declarations.

INTEGER*L;
INTEGER*L;

screen_color, text_color
vd_ids(L;)

Routine wide declarations.

INTEGER*L;
1
2
CHARACTER*2

i, status, VSTA$CREATE_PASTEBOARD,
VSTA$CREATE_DISPLAY, VSTA$PASTE_DISPLAY,
VSTA$CREATE_WINDOW
ichar

VSTA$CREATE_PASTEBOARD declarations.

INTEGER*L;
1

z_value, n_lines, line_height,
x_size, y_size, pastebQard_id

VSTA$PASTE_DISPLAY declarations.

INTEGER*L;

VSTA$CREATE_WINDOW declarations.

INTEGER*L;

VSTA$CREATE_DISPLAY declarations.

INTEGER*L;
1

vd_x_offset, vd_y_offset,
vd_x_size, vd_y_size

Define pasteboard and window data.

z_value 111 for VS100 DATA
DATA
DATA
DATA
DATA

n_lines 101
line_height 101
paste_x_offset/OI
paste_y_offset/OI

number of text text on VD
line height in pixels
pasteboard x offset
pasteboard y offset

Create a pasteboard.

x size L;:38
y_size 82L;
status VSTA$CREATE_PASTEBOARD
1 (x_size, y_size, pasteboard_id)
IF (.NOT. status) CALL show_error(status)

Create window into pasteboard (viewport is attached automatically).

status
1
2
:3

VSTA$CREATE_WINDOW
(x_size, y_size, pasteboard_id, paste_x_offset,
paste_y_offset, window_id,
'VSTA$COPY_AREA Map Functions')

IF .NOT. status) CALL show_error(status)

Set size of the vds that will display the mapping functions.

vd_x_size 99
vd_y_size 798

Example Program B-7

For each virtual display that is going to display mapping:

DO i = 1, 2

1) calculate its offsets

vd_x_offset
vd_y_offset

2) create it

(i-l) * 335
22

status = VSTA$CREATE_DISPLAY
1 (vd_x_size, vd_y_size, z_value, screen_color,
2 text_color, n_lines, line_height, vd_ids(i)

IF (.NOT. status) CALL show_error(status)

3) paste it to left or right side of pasteboard

status = VSTA$PASTE_DISPLAY
1 (vd_ids(i), pasteboard_id,
2 vd_x_offset, vd_y_offset)

IF (.NOT. status) CALL show_error(status)
ENDDO

Create a header vd.

1) create it

status
1
2
3

= VSTA$CREATE_DISPLAY
(x_size, 20, z_value, screen_color,
text_color, n_lines, line_height,
vd_ids (3), , ,)

IF .NOT. status) CALL show_error(status)

2) paste it to pasteboard

status = VSTA$PASTE_DISPLAY
1 (vd_ids(3), pasteboard_id,
2 0, 0)
IF .NOT. status) CALL show_error(status)

Create a vd for center

1) create it.

status = VSTA$CREATE_DISPLAY
1 (235, 500, z_value, screen_color,
2 text_color, n_lines, line_height, vd_ids(~)

IF .NOT. status) CALL show_error(status)

2) paste it to pasteboa~d.

status = VSTA$PASTE_DISPLAY
1 (vd_ids(~), pasteboard_id, 101, 20)
IF (.NOT. status) CALL show_error(status)

B-8 Example Program

End of routine.

RETURN
END

!--
INTEGER function xoff *~ (ind)

!--
IMPLICIT NONE
INTEGER*~ ind
INTEGER*~ i,j,k

xoff = 50 * (ind-1)/16

RETURN
END

!--
INTEGER function yoff *~ (ind)

!--
IMPLICIT NONE
INTEGER*~ ind
INTEGER*~ i,j,k

yoff = 50 * (mod ((ind-1), 16))
RETURN
END

!--
SUBROUTINE show_error(status)

Function:

Show error block.

Input:

status status from a VSTA$ function call

IMPLICIT NONE

Input declarations.

INTEGER*~ status

VSTA$GET_ERROR_BLOCK declarations.

INTEGER*~

Example Program B-9

SYS$GETMSG declarations.

INTEGER*~ ilen
CHARACTER*80 mesbuf

Routine declarations

CHARACTER*80 sp80
DATA" sp80/" /

Call VSTA$GET_ERROR_BLOCK.

s = ~2

ilen = 0
s = VSTA$GET_ERROR_BLOCK()

If unable to get error block, call SYS$GETMSG.

Exit.

IF (.NOT.s) THEN
PRINT*, 'could not even get error block'
mesbuf = sp80 ! initialize message buffer
CALL SYS$GETMSG(%VAL(status) , ilen, mesbuf, %VAL(15),
PRINT '(z10)',status
PRINT '(a80)',mesbuf

ENDIF

CALL exit
RETURN
END

!--
SUBROUTINE draw_bar(vd_id, vd_x_size, vd_y_size, color,
1 offx, offy)

!--

Function:

Draw a bar on the display whose channel number is vd_id
and whose dimensions are vd_x_size by vd_y_size
in the specified color.

IMPLICIT NONE

Input declarations.

INTEGER*~

Routine declarations.

INTEGER*~

1
2

B-10 Example Program

status, proj~5,
line_width, average_dimension,
screen_middle_x, screen_middle_y, circle_radius

Check input for bad x and y dimensions.

IF ((vd_x_size .It. 1) .or. (vd_y_size .It. 1)) THEN
PRINT*,' Bad vd dimensioning ,
STOP

ENDIF

Calculate location, radius, and line width of circle.

screen_middle_x = vd_x_size / 2
screen_middle_y = vd_y_size / 2
average_dimension = (vd_x_size + vd_y_size) / 2
circle_radius = .~25 * float (average_dimension
line_width = .05 * float (average_dimension)
IF (circle_radius .LT. 1) circle_radius = 1
IF (line_width .LT. 1) line_width = 1

Draw a circle centered at middle of display.

CALL draw_circle
1

vd_id, line_width, color, circle_radius,
screen_middle_x, screen_middle_y,
offx, offy) 2

Draw a diameter of the circle at ~5 degrees.

proj~5 =
CALL draw
1
2
3
~

5

End of routine.

RETURN
END

float(circle_radius) / 1.~1~159

line (vd_id, line_width, color,
(screen_middle_x - proj~5),
(screen_middle_y + proj~5),
(screen_middle_x + proj~5),
(screen_middle_y - proj~5),

offx, offy)

!--
SUBROUTINE draw_line (vd_id, width, color, xl, yl, x2, y2,
1 offx, offy)

!--
!

Function:

Draw a line on the display whose channel number is vd_id, fr~

point (xl,yl) to point (x2,y2) with width and color
specified.

IMPLICIT NONE

Include the VAXstation native mode graphics symbol table.

INCLUDE 'SYS$LIBRARY:VSTAGBL.FOR'

Example Program B-11

Input declarations.

INTEGER*L; vd_id, width, color, xl, yl, x2, y2, offx, offy

Routine declarations.

INTEGER*2 pathlist(6), mask(2), pattern_block(3),
1 pattern_state(2)
INTEGER*L; status, VSTA$DRAW_CURVE, masktype
PARAMETER flag_move = 2
DATA pattern_block I 3 * 0 I,
1 pattern_state I 2 * 0 I

Fill a pathlist for a line.

pathlist(l)
pathlist(2)
pathlist(3)
pathlist(L;)
pathlist(5)
pathlist(6)

xl
yl
flag_move
x2
y2
o

Make the mask a square of dimension width to draw a wide line.

mask(l)
mask(2)

Draw the line.

status
1
2
3
L;

5
6
7
()

width
width

VSTA$DRAW_CURVE(
VSTA$K_SRC_CONST, color, 0, 0,
VSTA$K_MSK_RECTANGLE, mask,
VSTA$K_DST_VD, vd_id, offx, offy,
VSTA$K_MAP_SRC, , ,
2, pathlist,
VSTA$K_PTN_SINGLE_SRC, VSTA$K_PTN_NO_UPDATE,

pattern_block, pattern_state,
, , , , 0, , 1, 5)

IF (.NOT. status) CALL show_error(status)

End of routine.

RETURN
END

B-12 Example Program

!--
SUBROUTINE wait

!---

Function:

to wait until user presses <RETURN>

CHARACTER*10 more

PRINT*,' more?'
accept'(a)',more

RETURN
END

Example Program B-13

Glossary

Bitmap: A data structure consisting of a rectangular array of pixel
values. The specification of a bitmap includes its starting
address in memory and the size of the rectangular array
of pixels that it represents, including height, width, and
depth (that is, the number of bit planes or bits/pixel).

Clipping Rectangle: A rectangle used to constrain an operation on a set of
pixels in a bitmap. The intersection of a clipping rectangle
with a destination bitmap rectangle forms a restricting
boundary on the operation being executed.

Display: For the purposes of this document, a physical device con­
sisting of a high-resolution raster-scan monitor, key­
board, pointing device, control processor, microcode,
and firmware. A memory in the display specifies the
intensity or color for each dot on the monitor. Each dot is
individually addressable from the host.

Firmware: A control program that is loaded into the display (see
Microcode) .

Font: A collection of logically related bitmaps, addressed by
index, usually defining the symbols of a character set.

Frame Buffer: The bitmap memory used to store the current value of
each pixel from which the physical display monitor is
refreshed.

Halftone: A rectangular pattern used to tile a destination bitmap.
That is, the halftone is replicated in the destination along
its width and height to fill the destination. Halftones are
used to supply levels of grey or texture on a system with­
out shading, as in newspaper printing.

Microcode: A control program which is fixed in hardware (that is, not
loadable), usually in ROMs or PROMs.

Pixel: A single picture element or addressable point on a dis­
play. Each pixel has a value, represented by one or more
bits, that describes its state (that is, the intensity or color
of that point).

Point: The address of a pixel in a two-dimensional Cartesian
coordinate system. The coordinates are specified as 16-bit
signed x and y components. Within a bitmap, pixels are
addressed relative to the upper left corner.

Pointer:

Rectangle:

Glossary-2

A small image that is superimposed on the screen to indi­
cate the current position of the pointing device. The
pointer is automatically moved by the display hardware
to reflect pointing device movement. The pointer image
does not interfere with the current state of the frame
buffer.

A rectangular array of pixels within a bitmap. A rectangle
is specified by the coordinates of its origin (upper left cor­
ner) within the bitmap and its extent (width and height).

Index

A
Alternate-source mode

drawing a curve, 3-5

B
Bitmap, 1-3

V AXstation 100, A-I
Boundary, 6-1
Boundary-map,6-2
Boundary-map parameter

VSTA$FLOOD _AREA, 6-4
Boundary-map-size parameter

VSTA$FLOOD _AREA, 6-4

C
Character pad, 4-5
Character-pad parameter

VSTA$PRINT _TEXT, 4-7
Clipping rectangles, 2-5, 3-2, 4-2, 5-1, 6-2
Clipping-rectangles parameter

VSTA$COPY _AREA, 2-7
VSTA$DRA W _CURVE, 3-9
VSTA$FILL_AREA, 5-4
VSTA$FLOOD _AREA, 6-5
VSTA$PRINT _TEXT, 4-7

Closed figures, 5-3
Control string

printing text, 4-4
Control-count parameter

VSTA$PRINT _TEXT, 4-7
Control-list parameter

VSTA$PRINT _TEXT, 4-7
Copying an area, 2-1

clipping rectangles, 2-5
destination, 2-3
destination offset, 2-3
map, 2-3
source mask, 2-2
source offset, 2-2
source type, 2-1

Curved flag, 3-3

D
Dest-image parameter

VSTA$COPY _AREA, 2-6
VSTA$DRA W _CURVE, 3-8
VSTA$FILL_AREA,5-3
VSTA$FLOOD_AREA,6-4
VSTA$PRINT _ TEXT, 4-6

Dest-offset parameter
VSTA$COPY_AREA, 2-6
VSTA$DRAW_CURVE,3-8
VSTA$FILL_AREA,5-3
VSTA$PRINT _TEXT, 4-7

Dest-offset-action parameter
VSTA$PRINT _TEXT, 4-6

Dest-type parameter
VSTA$COPY _AREA, 2-6
VSTA$DRAW_CURVE, 3-8
VSTA$FILL_AREA, 5-3
VSTA$FLOOD_AREA,6-4
VSTA$PRINT _TEXT, 4-6

Destination, 1-2,2-3,3-2,4-4,5-1, 6-2
Draw flag, 3-2
Draw last image flag, 3-3
Drawing a curve, 3-1

E

path,3-2
pattern string, 3-5
patterned lines, 3-5

End closed figure flag, 3-3, 5-2

F
Filling an area, 5-1

differences from flood, 5-1
path, 5-2
source, 5-2

Flooding an area, 6-1
boundary,6-1
clipping rectangles, 6-2
destination, 6-2
differences from fill, 6-1
seed point, 6-1
source, 6-2

Fonts

L

data structure, 4-3
defined, 4-2, 4-4
mask, 4-1, 4-4
program-supplied, 4-2, 4-3
source, 4-1

Lines
invisible, 3-2, 5-2
patterned, 3-5
wide, 3-4

M
Map, 1-2, 2-3, 3-2, 4-2, 5-1
Map-type parameter

VSTA$COPY _AREA, 2-6
VSTA$DRA W _CURVE, 3-8
VSTA$FILL_AREA, 5-3
VSTA$PRINT _TEXT, 4-7

Mask font, 4-4
Mask parameter

VSTA$COPY _AREA, 2-6
VSTA$DRAW _CURVE, 3-7

Mask-font parameter
VSTA$PRINT _TEXT, 4-6

Mask-type parameter
VSTA$COPY _AREA, 2-5
VSTA$DRAW _CURVE, 3-7
VSTA$PRINT _TEXT, 4-6

Move flag, 3-2, 5-2

N
Num-of-points parameter

VSTA$DRA W _CURVE, 3-8
VSTA$FILL_AREA,5-4

Num-of-rectangles parameter
VSTA$COPY_AREA,2-7
VSTA$DRAW _CURVE, 3-9
VSTA$FILL_AREA,5-4
VSTA$FLOOD _AREA, 6-4
VSTA$PRINT _TEXT, 4-7

o
Origin flag, 3-2

p
Path, 3-2, 5-2
Path flags, 3-2 to 3-3, 5-2, 5-4
Path parameter

VSTA$DRAW _CURVE, 3-8
VSTA$FILL_AREA,5-4

Pattern multiplier, 3-5
Pattern state, 3-6
Pattern string, 3-5
Pattern-action parameter

VSTA$DRAW _CURVE, 3-9
Pattern-block parameter

VSTA$DRAW _CURVE, 3-9
Pattern-mode parameter

VSTA$DRAW _CURVE, 3-9
Pattern-state parameter

VSTA$DRAW _CURVE, 3-9
Printing text, 4-1

adjustment, 4-5
character pad, 4-5
control commands, 4-4
destination offset, 4-4
justification, 4-5
mask font, 4-4

Index-2

R

source, 4-2
space pad, 4-5
text string, 4-4

Relative flag, 3-2
Returned destination offset, 4-7
Returned pattern state, 3-9

5
Sec-source parameter

VSTA$DRA W _CURVE, 3-9
Sec-source-offset parameter

VSTA$DRAW _CURVE, 3-9
Sec-source-type parameter

VSTA$DRAW _CURVE, 3-9
Seed point, 6-1
Seed point parameter

VSTA$FLOOD _AREA, 6-4
Source, 1-2,2-1,3-2,4-2,5-2,6-2
Source-image parameter

VSTA$COPY _AREA, 2-5
VSTA$DRA W _CURVE, 3-6
VSTA$FILL_AREA,5-3
VSTA$FLOOD _AREA, 6-4
VSTA$PRINT _TEXT, 4-6

Source-offset parameter
VSTA$COPY _AREA, 2-5
VSTA$DRA W _CURVE, 3-7

Source-type parameter
VSTA$COPY _AREA, 2-5
VSTA$DRAW _CURVE, 3-6
VSTA$FILL_AREA, 5-3
VSTA$FLOOD _AREA, 6-4
VSTA$PRINT _TEXT, 4-6

Space pad, 4-5
Space-pad parameter

VSTA$PRINT _TEXT, 4-7
Start closed figure flag, 3-3, 5-2
Status codes, 1-4
Straight flag, 3-3
String parameter

VSTA$PRINT _TEXT, 4-7
Symbols, 1-4

T
Text String, 4-4
Text-type parameter

VSTA$PRINT_TEXT,4-7

V
V AXstation 100, A-I
Virtual display, 1-3
VSTA$COPY _AREA, 2-5
VSTA$DRAW_CURVE,3-6
VSTA$FILL_AREA, 5-3
VSTA$FLOOD_AREA, 6-4
VSTA$PRINT _TEXT, 4-5

Reader's Comments

VAXstation
Native Graphics Procedures

AA-AG30A-TE

Note: This form is for document comments only. Digital will use comments submitted on this form at
the company's discretion.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for
improvement: ___ __

Did you find errors in this manual? If so, specify the error and the page number: _________ _

Please indicate the type of user/reader that you most nearly represent:

D Assembly language programmer

D Higher-level language programmer

D Occasional programmer (experienced)

D User with little programming experience

D Student programmer
D Other (please specify) ----___________________ _

Name ___ Dare ____________________ _

Organ~ation __ ___

Srreet~ __ __

City ___________________________ S,tate _______ Zip Code or Country _______ _

------- DoNotTear-FoldHereandTape ---------------------------------

II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

A TIN: Software Publications Group MR01-2/L 12

DIGITAL EQUIPMENT CORPORATION

200 FOREST STREET

MARLBORO, MA 01752

No Postage
Necessary

if Mailed in the

United States

------- Do Not Tear-Fold Here and Tape ---------------------------------

