
r -

•
! I I

1 1-

' ~DmD[lmD I -
I I

I I I I II

riiF.5555555 I

I I
I I I
I I I I

VAX/VMS
I/O User's Guide
Order No. AA-D028A-TE

--- I

- I ---I
1

illllill

I I I I !555555EY~ I I I
I I

I

August 1978

This document contains the information necessary to interface directly with
the I/O device drivers supplied as part of the VAX/VMS operating system.
Several examples of programming techniques are included. This document
does not contain information on I/O operations using VAX-11 Record
Management Services.

VAX/VMS
I/O User's Guide
Order No. AA-D028A-TE

SUPERSESSION/UPDATE INFORMATION: This is a new document for this release.

OPERATING SYSTEM AND VERSION: VAX/VMS V01

SOFTWARE VERSION: VAX/VMS V01

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment .Corporation, Maynard, Massachusetts 01754

digital equipment corporation · maynard, massachusetts

First Printing, August 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporaticin,;·assumes no responsibility
for any errors that may appear in this docum'ent.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre­
paring future documentation.

The following are tradema~ks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST-II
VAX
DECnet

DECsystem-lO
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-20
RTS-8
VMS
lAS

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-II
TMS-ll
ITPS-lO
SBI

PREFACE

CHAPTER 1

1.1
1.2
1.3
1.4
1.4.1
1.4.2
1.4.3
1.4.4
1.4.5
1.4.6
1.4.7
1.4.8
1.5
1.6
1.6.1
1.6.2
1.6.3
1.7
1.7.1
1.7.2
1.8
1.8.1
1.8.2
1.8.3
1.8.4
1.8.5
1.8.6
1.8.6.1
1.8.6.2
1.8.6.3
1.8.6.4
1.8.6.5
1.8.6.6
1.8.6.7
1.8.7
1.8.8
1.9
1.9.1
1.9.2
1.9.3
1.10
1.10.1

CHAPTER 2

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6

CONTENTS

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

OVERVIEW OF VAX/VMS I/O
VAX/VMS I/O DEVICES
SUMMARY OF I/O SYSTEM SERVICES
QUOTAS, PRIVILEGES, AND PROTECTION

Buffered I/O Quota
Buffered I/O Byte Count Quota
Direct I/O Quota
AST Quota
Physical I/O Privilege (PHY IO)
Logical I/O Privilege (LOG IO)
Mount Privilege -
Volume Protection

SUMMARY OF VAX/VMS QIO OPERATIONS
PHYSICAL, LOGICAL, AND VIRTUAL I/O

Physical I/O Operations
Logical I/O Operations
Virtual I/O Operations

I/O FUNCTION ENCODING
Function Codes
Function Modifiers

ISSUING I/O REQUESTS
Channel Assignments
Device Allocation
I/O Function Requests
$QIO Macro Format
$QIOW Macro Format
$QIO and $QIOW Arguments
Event Flag Number Argument
Channel Number Argument
Function Argument
I/O Status Block Argument
AST Address Argument
AST Parameter Argument
Device/Function Dependent Arguments
$INPUT and $OUTPUT Macro Format and
Status Returns for System Services

I/O COMPLETION
Event Flags
I/O Status Block
Asynchronous Sys~em Traps

DEVICE INFORMATION
$GETCHN and $GETDEV Status Returns

TERMINAL DRIVER

SUPPORTED TERMINAL DEVICES

Arguments

TERMINAL DRIVER FEATURES AND CAPABILITIES
Type-ahead
Line Terminators
Special Operating Modes
Escape Sequences
Terminal/Mailbox Interaction
Control Characters and Special Keys

iii

Page

ix

1-1

1-1
1-1
1-2
1-3
1-3
1-4
1-4
1-4
1-4
1-4
1-5
1-5
1-6
1-6
1-6
1-8
1-10
1-12
1-12
1-12
1-13
1-13
1-14
1-14
1-15
1-16
1-16
1-17
1-17
1-17
1-18
1-18
1-18
1-18
1-19
1-19
1-21
1-22
1-22
1-23
1-23
1-25

2-1

2-1
2-1
2-1
2-2
2-2
2-2
2-3
2-5

2.2.6.1
2.2.7
2.3
2.4
2.4.1
'2.4.1.1
2.4.1.2
2.4.2
2.4.2.1

2.4.2.2
2.4.3
2.4.3.1
2.4.3.2

2.5
2.6

CHAPTER 3

3.1
3.1.1
3.1.2
3.1.3
3.2
3.2.1
3.2.2
3.2.3
3.3
3.4
3.4.1
3.4.2
3.4.3
3.4.3.1
3.4.3.2
3.5
3.6

CHAPTER 4

4.1
4.1.1
4.2
4.2.1
4.2.2
4.2.3
4.3
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7
4.4.8
4.4.9
4.4.9.1
4.4.9.2

CONTENTS (Cont.)

Character Interpretation
Dial-up

DEVICE" INFORMATION
TERMINAL FUNCTION CODES

Read
Function Modifier Codes for Read QIO Functions
Read Function Terminators
Write
Functiorl Modifier Codes for Write QIO
Functions
Write Function Carriage Control
Set Mode
Hang-up Function Modifier
Enable CTRL/C AST and Enable CTRL/Y AST
Function

I/O STATUS BLOCK
PROGRAMMING EXAMPLE

DISK DRIVERS

SUPPORTED DISK DEVICES
RM03 Pack Disk
RP05 and RP06 Pack Disks
RK06 and RK07 Cartridge Disks

DRIVER FEATURES AND CAPABILITIES
Data Check
Overlapped Seeks
Error Recovery

DEVICE INFORMATION
DISK FUNCTION CODES

Read
Write
Set Mode
Set Mode
Set Characteristic

I/O STATUS BLOCK
PROGRAMMING EXAMPLE

MAGNETIC TAPE DRIVER

SUPPORTED MAGNETIC TAPE DEVICES
TE16 Magnetic Tape Drive

DRIVER FEATURES AND CAPABILITIES
Master Adapters and Slave Formatters
Data Check
Error Recovery

DEVICE INFORMATION
MAGNETIC TAPE FUNCTION CODES

Read
Write
Rewind
Skip File
Skip Record
Write End-of-Fi1e
Rewind Offline
Sense Tape Mode
Set Mode
Set Mode
Set Characteristic

iv

Page

2-8
2-10
2-10
2-13
2-14
2-15
2-16
2-16

2-17
2-17
2-20
2-23

2-23
2-24
2-26

3-1

3-1
3-1
3-1
3-2
3-2
3-2
3-3
3-3
3-4
3-6
3-9
3-10
3-10
3-10
3-11
3-12
3-14

4-1

4-1
4-1
4-1
4-2
4-2
4-3
4-3
4-5
4-8
4-10
4-10
4-11
4-11
4-11
4-12
4-12
4-12
4-12
4-13

CONTENTS (Cant.)

Page

4.5 I/O STATUS BLOCK 4-14
4.6 PROGRAMMING EXAMPLE 4-17

CHA~TER 5 LINE PRINTER DRIVER 5-1

5.1 SUPPORTED LINE PRINTER DEVICES 5-1
5.1.1 LP11 Line Printer Interface 5-1
5.1.2 LA11 DECprinter I 5-1
5.2 DRIVER FEATURES AND CAPABILITIES 5-1
5.2.1 Output Character Formatting 5-2
5.2.2 Error Recovery 5-2
5.3 DEVICE INFORMATION 5-3
5.4 LINE PRINTER FUNCTION CODES 5-4
5.4.1 Write 5-4
5.4.1.1 Write Function Carriage Control 5-5
5.4.2 Sense Printer Mode 5-8
5.4.3 Set Mode 5-8
5.5 I/O STATUS BLOCK 5-9
5.6 PROGRAMMING EXAMPLE 5-10

CHAPTER 6 CARD READER DRIVER 6-1

6.1 SUPPORTED CARD READER DEVICE 6-1
6.2 DRIVER FEATURES AND CAPABILITIES 6-1
6.2.1 Read Modes 6-1
6.2.2 Special Card Punch Combinations 6-2
6.2.2.1 End-of-Fi1e Condition 6-2
6.2.2.2 Set Translation Mode 6-2
6.2.3 Error Recovery 6-2
6.3 DEVICE INFORMATION 6-3
6.4 CARD READER FUNCTION CODES 6-5
6.4.1 Read 6-6
6.4.2 Sense Card Reader Mode 6-7
6.4.3 Set Mode 6-7
6.4.3.1 Set Mode 6-7
6.4.3.2 Set Characteristic 6-8
6.5 I/O STATUS BLOCK 6-8

CHAPTER 7 MAILBOX DRIVER 7-1

7.1 MAILBOX OPERATIONS 7-1
7.1.1 Creating Mailboxes 7-2
7.1.2 Deleting Mailboxes 7-3
7.1.3 Mailbox Message Format 7-3
7.2 DEVICE INFORMATION 7-4
7.3 MAILBOX FUNCTION CODES 7-5
7.3.1 Read 7-5
7.3.2 Write 7-6
7.3.3 Write End-of-Fi1e Message 7~7

7.3.4 Set Attention AST 7-7
7.4 I/O STATUS BLOCK 7-9
7.5 PROGRAMMING EXAMPLE 7-10

CHAPTER 8 DMC11 SYNCHRONOUS COMMUNICATIONS LINE INTERFACE
DRIVER 8-1

8.1 SUPPORTED DMC11 SYNCHRONOUS LINE INTERFACES 8-1

v

8.1.1
8.2
8.2.1
8.2.2
8.2.3
8.3
8.4
8.4.1
8.4.2
8.4.3
8.4.3.1
8.4.3.2
8.4.3.3
8.4.3.4
8.5

CHAPTER 9

9.1
9.1.1
9.2
9.3
9.4

APPENDIX A

APPENDIX B

FIGURE 1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9

2-1
2-2
2-3
2-4

2-5
2-6

2-7
2-8
2-9
2-10

3-1
3-2
3-3

CONTENTS (Cont.)

DIGITAL Data Communications Message
DRIVER FEATURES AND CAPABILITIES

Mailbox Usage
Quotas
Power Failure

DEVICE INFORMATION
DMC11 FUNCTION CODES

Read
Write
Set Mode
Set Mode and Set Characteristics
Enable Attention AST
Set Mode and Shut Down Unit
Set Mode and Start Unit

I/O STATUS BLOCK

QIO INTERFACE TO FILE SYSTEM ACPS

ACP FUNCTIONS AND ENCODING

Protocol

ACP Device/Function-Dependent Arguments
FILE INFORMATION BLOCK
ATTRIBUTE CONTROL BLOCK
I/O STATUS BLOCK

DISK, MAGNETIC TAPE AND ACP QIO FUNCTIONS

I/O FUNCTION CODES

FIGURES

Physical I/O Access Checks
Logical I/O Access Checks
Physical, Logical, and Virtual I/O
I/O Function Format
Function Modifier Format
System Service Status Return
I/O Status Block Format
CALL Instruction Argument List
Buffer Format for $GETCHN and $GETDEV System
Services
Terminal Mailbox Message Format
Character Interpretation
Terminal Information
Short and Long Forms of Terminator Mask
Quadwords
P4 Carriage Control Specifier
Write Function Carriage Control
(Prefix and Postfix Coding)
Set Mode Characteristics Buffer
IOSB Contents - Read Function
IOSB Contents - Write Function
IOSB Contents - Set Mode and
Set Characteristic Functions
Disk Information
Starting Physical Address
Set Mode Characteristics Buffer

vi

Page

8-1
8-2
8-2
8-3
8-3
8-3
8-6
8-6
8-7
8-7
8-8
8-8
8-9
8-9
8-10

9-1

9-1
9-2
9-3
9-11
9-14

A-I

B-1

1-7
1-9
1-11
1-12
1-13
1-20
1-22
1-23

1-25
2-4
2-9
2-10

2-16
2-17

2-20
2-21
2-24
2-24

2-25
3-4
3-9
3-11

FIGURE

TABLE

3-4
3-5
4-1
4-2
4-3
4-4
4-5
4-6
5-1
5-2
5-3

5-4
5-5
5-6
5-7
6-1
6-2
6-3
6-4
6-5
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
8-1
8-2
8-3
8-4
9-1
9-2
9-3
9-4
9-5
9-6
9-7

1-1
1-2
1-3
1-4

1-5
1-6

CONTENTS (Cont.)

FIGURES (Cont.)

Set Characteristic Buffer
IOSB Content
Magnetic Tape Information
IO$ SKIPFILE Argument
IO$-SKIPRECORD Argument
Set-Mode Characteristics Buffer
Set Characteristic Buffer
IOSB Content
Printer Information
P4 Carriage Control Specifier
Write Function Carriage Control
(Prefix and Postfix Coding)
Set Mode Characteristics Buffer
Set Characteristics Characteristics Buffer
~IOSB Contents - Write Function
-IOSB Contents - Set Mode Function
Card Reader Information
Binary and Packed Column Storage
Set Mode Characteristics Buffer
Set Characteristic Buffer
IOSB Contents
Multiple Mailbox Channels
Typical Mailbox Message Format
Mailbox Information
Read Mailbox
Write-Mailbox
Write Attention AST (Read Unsolicited Data)
Read Attention AST
IOSB Contents - Read Function
IOSB Contents - Write Function
Mailbox Message Format
DMCll Information·
PI Characteristics Block
IOSB Content
ACP QIO Interface
ACP Device/Function-Dependent Arguments
AC~ Device/Function Argument Descriptor Format
File Information Block Format
Typical Short.File Information Block
Attribute Control Block Format
IOSB Contents - ACP QIO Functions

TABLES

Read and Write I/O Functions
Device/Function Independent Arguments
$INPUT and $OUTPUT Arguments
$QIO, $QIOW, $INPUT, and $OUTPUT System
Status Returns
$GETCHN and $GETDEV Arguments
$GETCHN and $GETDEV Status Returns

vii

Services

Page

3-11
3-12
4-3
4-11
4-11
4-12
4-13
4-14
5-3
5-5

5-7
5-8
5-8
5-9
5-9
6-4
6-6
6-7
6-8
6-9
7-3
7-4
7-4
7-6
7-7
7-8
7-9
7-9
7-10
8-3
8-3
8-8
8-10
9-1
9-2
9-3
9-3
9-4
9-12
9-14

1-12
1-16
1-19

-1-20
1-24
1-26

TABLE 2-1
2-2
2-3
2-4
2-5
2-6
2-7

2-8

2-9

2-10
3-1
3-2
3-3
3-4
4-1
4-2
4-3
4-4
4-5

4-6
5-1
5-2
5-3

5-4

5-5
6-1
6-2
6-3
6-4

6-5
7-1
7-2
7-3
8-1
8-2
8-3
8-4
8-5
8-6
8-7
9-1
9-2
9-3
9-4
9-5
A-I
A-2
A-3

CONTENTS (Cont.)

TABLES (Cont.)

Terminal Control Characters
Special Terminal Keys
Terminal Device-Independent Characteristics
Terminal Characteristics
Read QIO Function Modifiers
Write QIO Function Modifiers
Write Function Carriage Control
(FORTRAN: Byte 0 not equal to 0)
Write Function Carriage Control
(P4 byte 0 = 0)

Value for Set Mode and Set Characteristic
PI Characteristics
Terminal QIO Status Returns
Disk Devices
Disk Device Characteristics
Disk I/O Functions
Status Returns for Disk Devices
Magnetic Tape Devices
Magnetic Tape Device-Independent Characteristics
Device-Dependent Information for Tape Devices
Magnetic Tape I/O Functions
Set Mode and Set Characteristic Magnetic
Tape Characteristics
Status Returns for Tape Devices
Printer Device-Independent Characteristics
Printer Device-Dependent Characteristics
Write Function Carriage Control (FORTRAN:
Byte 0 not equal to 0)
Write Function Carriage Control (P4 byte
o equal to 0)
Line Printer QIO Status Returns
Card Reader Device-Independent Characteristics
Device-Dependent Information for Card Readers
Card Reader I/O Functions
Set Mode and Set Characteristic Card Reader
Characteristics
Status Returns for Card Reader
Mailbox Read and Write Operations
Mailbox Characteristics
Mailbox QIO Status Returns
Supported DMCll Options
DMCll Device Characteristics
DMCll Device Types
DMCll Unit Characteristics
DMCll Unit and Line Status
Error Summary Bits
Status Returns for DMCll
Contents of the File Information Block
FIB Argument Usage in ACP QIO Functions
Attribute Control Block Fields
ACP QIO Attributes
ACP QIO Status Returns
10$ CREATE Arguments
IO$-ACCESS Arguments
IO$=MODIFY Arguments

viii

Page

2-5
2-8
2-11
2-12
2-15
2-17

2-18

2-19

2-22
2-25
3-1
3-5
3-7
3-12
4-1
4-4
4-4
4-6

4-13
4-14
5-3
5-4

5-6

5-6
5-9
6-4
6-5
6-5

6-8
6-9
7-1
7-4
7-10
8-1
8-4
8-4
8-5
8-5
8-6
8-11
9-5
9-9
9-12
9-13
9-15
A-2
A-4
A-6

PREFACE

MANUAL OBJECTIVES

This manual provides users of the VAX/VMS operating system with the
information necessary to interface directly with the I/O device
drivers supplied as part of the operating system. It is not the
objective of this manual to provide the reader with information on all
aspects of VAX/VMS input/output (I/O) operations.

INTENDED AUDIENCE

This manual is intended for system programmers who want to take
advantage of the time and/or space savings that result from direct use
of the I/O device drivers. Readers are expected to have some
experience with either VAX-II FORTRAN IV-PLUS or VAX-II MACRO assembly
language. Users of VAX/VMS who do not require such detailed knowledge
of I/O drivers can use the device-independent services described in
the VAX-II Record Management Services Reference Manual.

STRUCTURE OF THIS DOCUMENT

This manual is organized into nine chapters and two appendixes, as
follows:

• Chapter I contains introductory information. It provides an
overview of VAX/VMS I/O operations; I/O system services; and
I/O quotas, privileges, and protection. This chapter also
introduces I/O function encoding and how to make I/O requests,
and describes how to obtain information on the different
devices.

• Chapters 2 through 8 describe the use of all the I/O device
drivers supported by VAX/VMS:

- Chapter 2 deals with the terminal driver

- Chapter 3 deals with disk drivers

- Chapter 4 deals with magnetic tape drivers

- Chapter 5 deals with the line printer driver

- Chapter 6 deals with the card reader driver

- Chapter 7 deals with the mailbox driver

- Chapter 8 deals with the DMCII driver

ix

• Chapter 9 describes the Queue I/O (QIO) interface to file
system ancillary control processes (ACPS).

• Appendix A describes the QIO functions that are common to the
disk and magnetic tape drivers and the ACP QIO interface.

• Appendix B summarizes the QIO function codes, arguments, and
function modifiers used by the different device drivers.

ASSOCIATED DOCUMENTS

The following documents may also be useful:

• VAX-II Information Directory - contains a complete list of all
VAX-II documents

• VAX/VMS System Services Reference Manual

• VAX-II Linker Reference Manual

• VAX-II Software Handbook

• PDP-II Peripherals Handbook

• VAX-II FORTRAN IV-PLUS User's Guide

• VAX-II MACRO User's Guide

• VAX-II Record Management Services Reference Manual

CONVENTIONS USED IN THIS MANUAL

The following conventions are used in this manual:

• Brackets ([]) in QIO requests enclose optional arguments. For
example:

•

•

IO$_CREATE PI,[P2] ,[P3] ,[P4] ,[PS]

Horizontal ellipses (•••)
arguments that are not
omitted. For example:

indicate
pertinent

that characters or QIO
to the example have been

(that is, 8,16,24, •••).

Vertical ellipses in coding examples indicate
code not pertinent to the example are omitted.

TTCHAN: .BLKW I

that lines of
For example:

$ASSIGN_S DEVNAM=TTNAME,CHAN=:=TTCHAN

x

• Hyphens (-) in coding
arguments to the QIO
line(s}. For example:

examples indicate that additional
request are provided on the following

$QIO_S FUNC=#IO$_WRITEPBLK,­

CHAN=W"'TTCHANI,­
EFN=#I,­
PI=W"'ASTMSG,­
P2=#ASTMSGSIZE

iFUNCTION IS
iWRITE PHYSICAL
iTO TTCHAN I
iEVENT FLAG I
iPI = BUFFER
iP2 = BUFFER SIZE

• Angle brackets «» enclose a hexadecimal number representing
an ASCII character code or a mnemonic for an ASCII character
on the terminal keyboard. For example:

~ <0> <20-2F> ••• <40-7E>

• Unless otherwise noted, all numbers in the text are assumed to
be decimal. In coding examples, the radix -- binary, octal,
decimal, or hexadecimal -- will be explicitly indicated.

xi

CHAPTER 1

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

VAX/VMS supports a variety of input and output (I/O) devices,
including disks, terminals, magnetic tapes, card teaders, line
printers, synchronous line interfaces, and software mailboxes. This
manual describes the capabilities of VAX/VMS device drivers and their
programming interface and gives several simple programming examples
that use I/O drivers to perform input/output operations.

1.1 OVERVIEW OF VAX/VMS I/O

Input/output operations under VAX/VMS are designed to be as device­
and function-independent as possible. User processes issue I/O
requests to software channels which form paths of communication with a
particular device. Each process can establish its own correspondence
between physical devices and channels. I/O requests are queued when
they are issued, and processed according to the relative priority of
the process that issued them. I/O requests can be handled indirectly
by the VAX-II Record Management Services (RMS) or they can interface
directly to the VAX/VMS I/O system. (VAX-II RMS is described in the
VAX-II Record Management Services Reference Manual.)

To access the I/O services described in this manual, users issue
system service requests. In certain system service requests, a
function code included in the request defines the particular operation
to be performed. For example, Queue I/O (QIO) system service requests
can specify such operations as reading and writing blocks of data.

QIO requests can also specify a number of device-specific input/output
operations: for example, converting lowercase characters to uppercase
in terminal read operations, and rewinding magnetic tape.

1.2 VAX/VMS I/O DEVICES

VAX/VMS supports the following devices:

• Terminals, using the DZll Asynchronous
Multiplexer, and the VAX-ll/780 console

• Disk devices:

- RM03 Pack Disk

- RPOS and RP06 Pack Disks

- RK06 and RK07 Cartridge Disks

1-1

Serial Line

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

• TE16 Magnetic Tape

• Line printers:

- LPll Line Printer Interface

- LAll DECprinter

• CRll Card Reader

• DMCll Synchronous Line Interface

• Mailboxes -- virtual devices used for interprocess transfer of
information

Chapters 2 through 8 describe in detail the drivers for these I/O
devices and the I/O operations they perform.

1.3 SUMMARY OF I/O SYSTEM SERVICES

The following system services allow the direct use of the operating
system's I/O resources:

• Assign I/O Channel ($ASSIGN) system service

• Deassign I/O Channel ($DASSGN) system service

• Queue I/O Request ($QIO) system service

• Queue I/O Request and wait for Event Flag ($QIOW) system
service

• Allocate Device ($ALLOC) system service

• Deallocate Device ($DALLOC) system service

• Get Channel Information ($GETCHN) system service

• Get Device Information ($GETDEV) system service

• Cancel I/O on Channel ($CANCEL) system service

• Create Mailbox and Assign Channel ($CREMBX) system service

• Delete Mailbox ($DELMBX) system service

• wait for Single Event Flag ($WAITFR) system service

• wait for Logical AND of Event Flags ($WFLAND) system service

• Wait for Logical OR of Event Flags ($WFLOR) system service

• Set AST Enable ($SETAST) system service

• Set Resource Wait Mode ($SETRWM) system service

This manual describes the use of system services for I/O operations.
It also describes other system services used with I/O operations such
as asynchronous system traps (ASTs) and event flag services. Section
1.8 describes the QIO request system service; ASTs and event flags,
and $GETCHN are described in Sections 1.9 and 1.10, respectively.
Section 1.8.7 describes the use of the $INPUT and $OUTPUT macros,
which perform functions similar to the $QIOW macro.

1-2

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

See the VAX/VMS System Services Reference Manual for detailed
information on all these system serVices and examples of their use.
The VAX/VMS System Services Reference Manual also contains information
on physical and logical device-naming conventions.

1.4 QUOTAS, PRIVILEGES, AND PROTECTION

To preserve the integrity of the system, VAX/VMS I/O operations are
performed under the constraints of quotas, privileges, and protection.

Quotas establish a limit on the number and type of I/O operations that
a process can perform concurrently. They ensure that all users have
an equitable share of system resources and usage.

Privileges are granted to a user to allow the performance of certain
I/O-related operations; for example, create a mailbox and perform
logical I/O to a file-structured device. Restrictions on user
privilege protect the integrity and performance of both the operating
system and the services provided other users.

Protection is used to control access to files and devices. Device
protection is provided in much the same way as file protection:
shareable and nonshareable file devices and shareable nonfile devices
such as mailboxes, are protected by protection masks. Nonshareable,
nonfile devices such as terminals, can be accessed if they are not
allocated to another process.

The Set Resource Wait Mode ($SETRWM) system service allows a process
to select either of two modes when an attempt to exceed a quota
occurs. In the enabled (default) mode, the process waits until the
required resource is available before continuing. In the disabled
mode,' the process is notified immediately by a system service status
return that an attempt to exceed a quota has occurred. Waiting for
resources is transparent to the process when resource wait mode is
enabled; no explicit action is taken by the process when a wait is
necessary.

The different types of I/O-related quotas, privileges, and protection
are described in the following paragraphs.

1.4.1 Buffered I/O Quota

The buffered I/O quota specifies the maximum number of concurrent
buffered I/O operations a process can have active. In a buffered I/O
operation, the user's data is buffered in system dynamic memory. The
driver deals with the system buffer and not the user buffer. Buffered
I/O is used for terminal, line printer, card reader, and mailbox
transfers. The user's buffer does not have to be locked in memory for
a buffered I/O operation.

The buffered I/O quota value is established in the user~ authorization
file by the system manager or by the process's creator. ,Resource wait
mode is entered if enabled by the Set Resource Wai~l Mode system
service and an attempt to exceed the buffered I/O quota is made.

1-3

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

1.4.2 Buffered I/O Byte Count Quota

The buffered I/O byte count quota specifies the maximum amount of
buffer space that can be concurrently consumed from system dynamic
memory for buffering I/O requests. All buffered I/O requests require
system dynamic memory in which the actual I/O operation takes place.

The buffered I/O byte count quota is established in the user
authorization file by the system manager or by the process's creator.
Resource wait mode is entered if enabled by the Set Resource wait Mode
system service and an attempt to exceed the buffered I/O byte count
quota is made.

1.4.3 Direct I/O Quota

The direct I/O quota specifies the maximum number of concurrent
direct, that is, unbuffered, I/O operations that a process can have
active. In a direct I/O operation, data is moved directly to or from
the user buffer. Direct I/O is used for disk, magnetic tape, and
DMCll transfers. For direct I/O, the user's buffer must be locked in
memory during the transfer.

The direct I/O quota value is established in the user authorization
file by the system manager or by the process's creator. Resource wait
mode is entered is enabled by the Set Resource wait Mode system
service and an attempt to exceed the direct I/O quota is made.

1.4.4 AST Quota

The AST quota specifies the maximum number of asynchronous system
traps that a process can have outstanding. The quota value is
established in the user authorization file by the system manager or by
the process's creator. There is never an implied wait for this
resource.

1.4.5 Physical I/O Privilege (PHY_IO)

Physical I/O privilege allows a process to perform physical I/O
operations on a device. Physical I/O privilege also allows a process
to perform logical I/O operations on a device. (Figures 1-1 and 1-2
show the use of physical I/O privilege in greater detail.)

1.4.6 Logical I/O Privilege (LOG_IO)

Logical I/O privilege allows a process to perform logical I/O
operations on a device. A process can also perform physical
operations on a device if the process has logical I/O privilege, the
volume is mounted foreign, and the volume protection mask allows
access to the device. (Figures 1-1 and 1-2 show the use of logical
I/O privilege in greater detail.)

1-4

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

1.4.7 Mount Privilege

Mount privilege allows a process to use the 10$ MOUNT function to
perform mount operations on disk and magnetic tape-devices. IO$_MOUNT
is used in ACP interface operations (see Chapter 9).

1.4.8 Volume Protection

Volume protection protects the integrity of mailboxes and both foreign
and Files-II structured volumes. Volume protection for a foreign
volume is established when the volume is mounted. Volume protection
for a Files-II structured volume is established when the volume is
initialized. (The protection can be overridden when the volume is
mounted if the process that is mounting the volume has the override
volume protection privilege.)

Mailbox protection is established by the $CREMBX system service
protection mask argument.

Protection for structured volumes and mailboxes is provided by a
volume protection mask that contains four 4-bit fields. These fields
correspond to the four classes of users that are permitted to access
the volume. (User classes are based on the volume owner's user
identification code (UIC).)

The 4-bit fields are interpreted differently for volumes that are
mounted as structured (that is, volumes serviced by an Ancillary
Control Process ACP) and volumes that are mounted as foreign.

The 4-bit fields have the following format for volumes mounted as
structured:

15 11 7 3 0

I
world

I
group

I
owner I .""m I

/,
10 ~

I
delete

I
execute

I
write

I
read

I

The 4-bit fields have the following format for volumes mounted as
foreign:

11 10 9 8

Log I/O Phy I/O

*not used

Usually, volume protection is meaningful only for read and write
operations.

1-5

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

1.5 SUMMARY OF VAX/VMS QIO OPERATIONS

VAX/VMS provides QIO operations that perform three basic I/O
functions: read, write, and set mode. The read function transfers
data from a device to a user-specified buffer. The write function
transfers data in the opposite direction - from a user-specified
buffer to the device. For example, in a read QIO function to a
terminal device, a user-specified buffer is filled with characters
received from the terminal. In a write QIO function to the terminal,
the data in a user-specified buffer is transferred to the terminal
where it is displayed.

The set mode QIO function is used to control or describe the
characteristics and operation of a device. For example, a set mode
QIO function to a line printer can specify either uppercase or
lowercase character format. Not all QIO functions are applicable to
all types of devices. The line printer, for example, cannot perform a
read QIO function.

1.6 PHYSICAL, LOGICAL, AND VIRTUAL I/O

I/O data transfers can occur in anyone of three device addressing
modes: physical, logical, or virtual. Any process with rlevice access
allowed by the volume protection mask can perform logical I/O on a
device that is mounted foreign: physical I/O requires priviilege.
virtual I/O does not require privilege; however, intervention by an
ACP to control user access may be necessary if the device is under·ACP
control. (ACP functions are described in Chapter 9.)

1.6.1 Physical I/O Operations

In physical I/O operations, data is read from and written to the
actual, physically addressable units accepted by the hardware: for
example, sectors on a disk or binary characters on a terminal in the
PASSALL mode. This mode allows direct access to all device-level I/O
operations.

Physical I/O'requires that one of the following conditions be met:

• The issuing process has physical I/O privilege (PHY_IO)

• The issuing process has logical I/O privilege (LOG 10), the
device is mounted foreign, and the volume protection mask
allows physical access to the device

If neither of these conditions is met, the physical I/O operation is
rejected by the QIO system service with a status return of SS$ NOPRIV
(no privilege). Figure 1-1 illustrates the physical I/O access-checks
in greater detail.

1-6

ALLOW
ACCESS

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

YES

NO

NO

·Volume protection mask allows access

Figure 1-1 Physical I/O Access Checks

1-7

DENY
ACCESS

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

The inhibit error logging function modifier (IO$M INHERLOG) can be
specified for all physical I/O functions. IO$M INHERLOG inhibits the
logging of any error that occurs during the I/O operation.

1.6.2 Logical I/O Operations

In logical I/O. operations, data is read from and written to logically
addressable units of the device. Logical operations can be performed
on both block-addressable and record-oriented devices. For
block-addressable devices (for example, disks), the addressable units
are S12-byte blocks. They are numbered from a to n where n is the
last block on the device. For record-oriented or non-block-structured
devices (for example, terminals), logical addressable units are not
pertinent and are ignored. Logical I/O requires that one of the
following conditions be met:

• The issuing process has physical I/O privilege (PHY_IO)

• The issuing process has logical I/O privilege (LOG_IO)

• The volume is mounted foreign and the volume protection mask
allows access to the device

If none of these conditions is met, the logical I/O operation is
rejected by the QIO system service with a status return of SS$ NOPRIV
(no privilege). Figure 1-2 illustrates the logical I/O access -checks
in greater detail.

1-8

ALLOW
ACCESS

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

YES

YES

NO

NO

NO NO

NO

*Volume protection mask allows access

Figure 1-2 Logical I/O Access Checks

1-9

DENY
ACCESS

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

1.6.3 Virtual I/O Operations

Virtual I/O operations can be performed on both record-oriented
(non-file-structured) and block-addressable (file-structured) devices.
For record-oriented devices (for example, terminals), the virtual
function is the same as a logical function; the virtual addressable
units of the devices are ignored.

For block-addressable devices (for example, disks), data is read from
and written to open files. The addressable units in the file are
5l2-byte blocks. They are numbered starting at 1 and are relative to
a file rather than to a device. Block-addressable devices must be
mounted, structured, and contain a previously opened file.

Virtual I/O operations also require that the volume protection mask
allow access to the device (a process having either physical or
logical I/O privilege can override the volume protection mask). If
these conditions are not met, the virtual I/O operation is rejected by
the QIO system service with one of the following status returns:

Status Return

SS$_NOPRIV

SS$_DEVNOTMOUNT

SS$_DEVFOREIGN

Meaning

No privilege

Device not mounted

Volume mounted foreign (a foreign
volume is a volume that does not
contain a standard file structure
understood by any of the VAX/VMS
software)

Figure 1-3 shows the relationship of physical, logical, and virtual
I/O to the driver.

1-10

NO

error

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

YES

YES

010
REQUEST

NO

YES

GOTO
ACP

TRANSLATE LOGICAL
BLOCK ADDRESS

TO PHYSICAL
BLOCK ADDRESS

MAP VIRTUAL BLOCK
ADDRESS TO LOGICAL

BLOCK ADDRESS

YES

I/O
DRIVER

*Needed to map virtual address to logical address

WAKE ACPTO
CHANGE MAPPING

WINDOW

Figure 1-3 Physical, Logical, and virtual I/O

1-11

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

1.7 I/O FUNCTION ENCODING

I/O functions fall into three groups that correspond to the three I/O
device addressing modes (physical, logical, and virtual) described in
Section 1.6. Depending on the device to which it is directed, an I/O
function can be expressed in one, two, or all three modes.

I/O functions are described by 16-bit, symbolically-expressed values
that specify the particular I/O operation to be performed and any
optional function modifiers. Figure 1-4 shows the format of the
16-bit function value.

15 6 5 0

Figure 1-4 I/O Function Format

Symbolic names for I/O function codes are defined by the $IODEF macro,
as described in the VAX/VMS System Services Reference Manual.

1.7.1 Function Codes

The low-order 6 bits of the function value are a
the particular operation to be performed. For
read logical block is expressed as IO$ READLBLK.
symbolic values for read and write I/O-functions
modes.

Table 1-1
Read and write I/O Functions

code that specifies
example, the code for
Table 1-1 lists the

in the three transfer

Physical I/O Logical I/O Virtual I/O

IO$ READPBLK 10$ READLBLK 10$ READVBLK
1O$:WRITEPBLK 1O$:WR1TELBLK 1O$:WR1TEVBLK

The set mode I/O function has a symbolic value of IO$_SETMODE.

Function codes are defined for all supported devices. Although some
of the function codes (for example, 10$ READVBLK and 10$ WR1TEVBLK)
are used with several types of devices, most are device -dependent.
That is, they perform functions specific to particular types of
devices. For example, 10$ CREATE is a device-dependent function code;
it is used only with file-structured devices such as disks and
magnetic tapes. Chapters 2 through 8 provide complete descriptions of
the functions and function codes.

1.7.2 Function Modifiers

The high-order 10 bits of the function value are function modifiers.
These are individual bits that alter the basic operation to be
performed. For example, the function modifier 10$M NOECHO can be
specified with the function 10$_READLBLK to a termInal. When used

1-12

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

together, the two values are written as 10$ READLBLK!IO$M NOECHO.
This means that data typed at the terminal keyboard is entered in the
user buffer but not echoed to the terminal. Figure 1-5 shows the
format of function modifiers.

Figure 1-5 Function Modifier Format

As shown, bits 13 through 15 are device/function independent bits, and
bits 6 through 12 are device/function dependent bits. Device/function
dependent bits have the same meaning, whenever possible, for different
device classes. For example, the function modifier IO$M ACCESS is
used with both disk and magnetic tape devices to cause a file to be
accessed during a create operation. Device/function dependent bits
always have the same function within the same device class.

There are two device/function independent modifier bits:
IO$M INHRETRY and IO$M DATACHECK (a third bit is reserved).
IO$M:INHRETRY is used to inhibit all error recovery. If any error
occurs, and this modifier bit is specified, the operation is
immediately terminated and a failure status is returned in the I/O
status block (see Section 1.9.2). IO$M DATACHECK is used to compare
the data in memory with that on a disk or-magnetic tape.

1.8 ISSUING I/O REQUESTS

This section describes the entire process involved in issuing I/O
requests, including: assigning channels, allocating devices, and
issuing QIO requests; the $QIO, $QIOW, $INPUT, and $OUTPUT macros;
and, finally, status returns.

1.8.1 Channel Assignments

Before I/O requests can be made to a device, the user must assign a
channel to establish a link between the user process and the device.
A channel is a communication path associated with a device during
VAX/VMS I/O operations. The process uses the channel to transfer
information to and from the device.

The Assign I/O Channel ($ASSIGN) system service is used to assign a
channel to a device. To code a call to the $ASSIGN system service,
the user must supply the name of the device (physical device name or
logical name) and the address of a word to receive the assigned
channel number. The $ASSIGN system service returns the channel
number. The process can then request an I/O operation by calling the
Queue I/O ($QIO) system service and specifying, as one of the
arguments, the channel number returned by the $ASSIGN system service.

1-13

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

In the following example, an I/O channel is assigned to the device
TTB4. The channel number is returned in the word at TTCHAN •

TTNAME:

10$:
20$:
TTCHAN:

• LONG 20-10
• LONG 10$
.ASCII /_TTB4/

.BLKW 1

;TERMINAL NAME DESCRIPTOR

;TERMINAL CHANNEL NUMBER

$ASSIGN_S DEVNAM=TTNAME,CHAN=TTCHAN

If the first character in the device name (devnam) string is an
underline character (), the name is considered to be a physical
device name: otherwise: one level of logical name translation is
performed and the equivalence name, if any, is used.

The Create Mailbox and Assign Channel ($CREMBX) system service
provides another way to assign a channel to a device. In this case,
the device is a mailbox. $CREMBX creates a mailbox and then assigns a
channel to it (see Section 7.2.2).

The QIO system service can be performed only on assigned I/O ,"channels
and only from access modes that are equal to or more privileged than
the access mode from which the original channel assignment was made.

1.8.2 Device Allocation

A device can be allocated to a process (or subprocess) by the Allocate
Device ($ALLOC) system service. The allocated device is reserved for
the exclusive use of the requesting process, any subprocesses it
creates, and subprocesses created 'by any related subprocess. No other
process can allocate the device until the owning process explicitly
deal locates it.

Channels can be assigned to both allocated and nonallocated devices;
however, a process cannot assign a channel to a device that is
allocated to another process. When a channel is assigned to a
nonallocated, nonshareable device (for example, a line printer or a
magnetic tape device) VAX/VMS implicitly allocates the device.

Access to device functions is controlled by physical and logical I/O
privileges, the volume protection mask, and the mountability of the
device (a device is mountable if a MOUNT command can be issued for
it) • Even though a device is allocated to a process, the process
cannot perform I/O operations on the device unless access is allowed.

1.8.3 I/O Function Requests

After a channel has been assigned, the process can request I/O
functions by using the Queue I/O ($QIO) system service. The $QIO
system service initiates an input or output operation by queuing a
request to a specific device that is assigned to a channel.

Certain requirements must be met before a request is queued. For
example, a valid channel number must be included in the request, the
request must not exceed relevant quotas, and sufficient dynamic memory
must be available to complete the operation. Fiilure to meet such
requirements is indicated by a status return (described below in
Section 1.8.8).

1-14

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

The number of pending I/O requests, the amount of buffer space, and
the number of outstanding ASTs that a process can have are controlled
by quotas.

Each I/O request causes an I/O request packet to be allocated from
system dynamic memory. Additional memory is allocated under the
following circumstances:

• The I/O request function is an ACP function

• The target device is a buffered I/O device

• The target device is a network I/O device

After an I/O request is queued, the system does not require the
issuing process to wait for the I/O operation to complete. If the
process that issued the QIO request cannot proceed until the I/O
completes, an event flag can be used to synchronize I/O completion
(see Sections 1.8.6.1 and 1~9.1). In this case, the process should
request the wait for Single Event Flag ($WAITFR) system service at the
point where synchronization must occur: that is, where I/O completion
is required.

$WAITFR specifies an event flag for which the process is to wait.
(The $WAITFR event flag must have the same number as the event flag
used in the QIO request.) The process then waits while the I/O
operation is performed. On I/O completion, the event flag is set and
the process is allowed to resume operation.

Other ways to achieve this synchronization include the use of the
$QIOW system service and ASTs, described in sections 1.8.5 and 1.9.3,
respectively. In addition, the I/O status block can be specified and
checked if the user wants to determine whether the I/O operation
completed without an error, regardless of whether or not the process
waits for I/O completion (see Section 1.9.2.)

The QIO system service is accompanied by up to six device/ function
independent and six device/function dependent arguments. Section
1.8.6 below describes device/function independent arguments. The
device/function dependent arguments (PI through P6) are potentially
different for each device/function combination. However, similar
functions that are performed by all devices have identical arguments.
Furthermore, all functions performed by a particular class of device
are identical. Device/function dependent arguments are described in
more detail for the individual devices in Chapters 2 through 8.

1.8.4 $QIO Macro Format

The general format for the $QIO macro, using position-dependent
arguments, is:

[efn] ,chan,func, [iosb], [astadr], [astprm],­
[pI] , [p2] , [p3] , [p4] , [p5] , [p6]

The first six arguments are device/function independent. If keyword
arguments are used, they can be written in any order. Arguments PI
through P6 are device/function dependent. The chan and func arguments
must be specified in each request; arguments enclosed in brackets
([]) are optional.

1-15

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

The following example illustrates a typical QIO request using keyword
arguments:

EFN=#I,­
CHAN=TTCHANl,­
FUNC=#IO$ WRITEVBLK,­
Pl=BUFADD-;­
P2=#BUFSIZE

iEVENT FLAG 1
iCHANNEL
iVIRTUAL WRITE
: BUFFER ADDRESS'
iBUFFER SIZE

1.8.5 $OIOW Macro Format

The Queue I/O Request and Wait For Event Flag ($QIOW) system service
macro combines the $QIO and $WAITFR system services. It eliminates
any need for explicit I/O' synchronization by automatically waiting
until the I/O operation is completed before returning control to the
process. Thus, $QIOW provides a simpler way to synchronize the return
to the originating process when the process cannot proceed until the
I/O operation is completed.

The $QIOW macro has the same device/function independent and
device/function dependent arguments as the $QIO macro:

[efn] ,chan,func,[iosb] , [astadr] , [astprm] ,­
[pI] , [p2] , [p3] , [p4] , [p5] , [p6]

1.8.6 $010 and $QIOW Arguments

Table 1-2 lists the $QIO and $QIOW device/function independent
arguments and their meanings. Additional information is provided in
the paragraphs following the table and in the VAX/VMS System Services
Reference Manual.

Argument

efn (event
flag number)

chan (channel
number)

Table 1-2
Device/Function Independent Arguments

Meaning

The number of the event flag that is to be
cleared when the I/O function is queued and set
when it is completed. This argument is optional
in the macro form: if not specified, efn
defaults to O.

The number of the I/O channel to which the
request is directed. The channel number is
obtained from either the $ASSIGN or $CREMBX system
service. This argument is mandatory in the macro
form.

func The 16-bit function code and modifier value that
(function value) specifies the operation to be performed. This

argument is mandatory in the macro form.

iosb (I/O
status block)

The address of a quadword I/O status block to
receive the final I/O status. This argument is
optional in the macro form.

(Continued on next page)

1-16

Argument

astadr (AST
address)

astprm (AST
parameter)

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

Table 1-2 (Cont.)
Device/Function Independent Arguments

Meaning

The entry point address of an AST routine to be
asynchronously executed when the I/O completes.
This argument is optional in the macro form.·

The 32~it value to be passed to the AST routine
as an argument when the I/O completes. It can be
used to assist the routine in identifying the
particular AST. This argument is optional in the
macro form.

1.8.6.1 Event Flag Number Argument - The event flag number (efn)
argument is the number of the event flag to be associated with the I/O
operation. It is optional in a $QIO or $QIOW macro. The specified
event flag is cleared when the request is issued and set when the I/O
operation completes. The specified event flag is also set if the
service terminates without queuing the I/O request.

If the process requested the $QIOW system service, execution is
automatically suspended until the I/O completes. If the process
requested the QIO system service (with no subsequent $WAITFR, $WFLOR,
or $WFLAND macro), process execution proceeds in parallel with the
I/O. As the process continues to execute, it can test the event flag
at any point by using the Read Event Flags ($READEF) system service.

Event flag numbers must be in the range of 0 through 127 (however,
event flags 24 through 31 are reserved for system use). If no
specific event flag is desired, the efn argument can be omitted from
the macro. In that case, efn defaults to O.

1.8.6.2 Channel Number Argument - The channel number (chan) argument
represents the channel number of the physical device to be accessed by
the I/O request. It is required for all $QIO and $QIOW requests. The
association between the physical device and the channel is specific to
the process issuing the I/O request. The channel number is obtained
from the $ASSIGN or $CREMBX system service (as described above in
Section 1.8.1).

1.8.6.3 Function Argument - The function (func) argument defines the
logical, virtual, or physical I/O operation to be performed when the
$QIO or $QIOW system service is requested. It is required for all QIO
and QIOW requests. The argument consists of a 16-bit function code
and function modifier. Up to 64 function codes can be defin~d.
Function codes are defined for all supported device types; most of
the codes are device dependent. The function arguments for each I/O
driver are described in more detail in Chapters 2 through 8.

1-17

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

1.8.6.4 I/O Status Block Argument - The I/O status block (iosb)
argument specifies the address of the I/O status block to be
associated with the I/O request. It is optional in the QIO and QIOW
macros. If omitted, the iosb value is 0 which indicates no iosb
address is supplied. This block is a quadword that receives the final
completion status of the I/O request. Section 1.9.2 describes the I/O
status block in more detail.

1.8.6.5 AST Address Argument - The AST address (astadr) argument
specifies the entry point address of an AST routine to be executed
when the I/O operation is complete. If omitted, the astadr value is 0
which indicates no astadr address is supplied. This argument is
optional and can be used to interrupt a process to execute special:
code at I/O completion. When the I/O operation completes, the AST
service routine is CALLed at the address specified in the astadr
argument. The AST service routine is then executed in the access mode
from which the QIO service was requested.

1.8.6.6 AST Parameter Argument - The AST parameter (astprm) argument
is an optional, 32-bit arbitrary value that is passed to the AST
service routine when I/O completes, to assist the routine in
identifying the particular AST. A typical use of the astprm argument
might be the address of a user control block. If omitted, the astprm
value is o.

1.8.6. 7 Device/Function Dependent Arguments - Up to six L_,

device/function dependent arguments (PI through P6) can be included in
each QIO request. The arguments for terminal read function codes show c­

a typical use of PI through P6:

PI buffer address

P2 buffer size

P3 timeout count (for read with timeout)

P4 = read terminator descriptor block address

P5 prompt string buffer address

P6 prompt string buffer size

PI is always treated as an address. Therefore, in the S form of the
macro, PI always generates a PUSHAB instruction. P2-through P6 are
always treated as values. In the S form of the macro, these
arguments always generate PUSHL instructions.

Inclusion of the device/function dependent arguments in a QIO request
depends on the physical device unit and the function specified. A
user who wants to specify only a channel, an I/O function code, and an
address for AST routine might issue the following:

$QIO_S CHAN=XYCHAN,FUNC=#IO$ READVBLK,­
ASTADR=XYAST,Pl=BUFADR,P2=#BUFLEN

1-18

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

In this example, XYCHAN is the address of the word containing the
channel to which the request is directed; IO$_READVBLK is the
function code; and XYAST is the AST entry pointddress. BUFADR and
BUFLEN are the device/function dependent argAmcnts for an input
buffer.

1.8.7 $INPUT and $OUTPUT Macro Format and Arguments

Th~?$INPUT and $OUTPUT macros simplify the use of the $QIOW macro.
Tne'se macros generate code to perform virtual operations, using the
IQ$ READVBLK and IO$ WRITEVBLK function codes (the function code is
'automatically specified in the request), and wait:i·for' I/O completion.
The macro formats and arguments are:

$INPUT
$OUTPUT

chan,length,buffer, [iosb], [efn]
chan,length,buffer, [iosb], [efn]

Table 1-3 lists the $INPUT and $OUTPUT arguments1and their meanings.

Argument

chan

length

buffer

iosb

efn

Table 1-3
$INPUT and $OUTPUT Arguments

Meaning

The channel on which the I/O opera'tton .. is ,:to be
performed.

The length of the input or output buffer.

The address of the input or output buffer.

The address of the
completion status
argument is optional.

quadword that receives
of the I/O operation.

the
This

The number of the event flag for which the process
waits. This argument is optional; if not specified,
efn defaults to O.

Both the iosb and efn arguments are optional; all other arguments
must be included in each macro. Note that the order of the len and
buffer arguments is opposite that of the QIO and QIOW PI and P2
arguments. Also note that $INPUT and $OUTPUT do not have the astadr
and astprm arguments; neither of these operations can conclude in an
AST.

1.8.8 Status Returns for System Services

On completion of a system service ca~i, the, completion status is
returned as a longword value in register RO, shown in Figure 1-6.
(System services save the data in all rEgisters except'~RO 'and Rl.)

1-19

INTRODUCTION TO VAX!VMS INPUT/OUTPUT

31 16 15 0

RO:I L.....--_0_-----1...---1 _sta_tus _I
Figure 1-6 System Service Status Return

Completion status is indicated by a value in bits 0 through 15. The
low-order 3 bits are encoded with the error severity level; all
successful returns have an odd value:

0 = warning
1 = success
2 = error
3 = informational (nonstandard) success
4 severe error

5-7 = reserved

Each numeric status code has a symbolic name in the form SS$ code.
For example, the return might be SS$ NORMAL, which indicates
successful completion of the system service.- There are several error
conditions that can be returned. For example, SS$ IVCHAN indicates
that an invalid channel number was specified in an I/O request.

The VAX/VMS System Service Reference Manual describes the possible
returns for each system serV1ce. Table 1-4 lists the valid status
returns for the $QIO, $QIOW, $INPUT, and $OUTPUT system service
requests.

Table 1-4
$QIO, $QIOW, $INPUT, and $OUTPUT System Services Status Returns

Status

SS$_ILLEFC

SS$_INSFMEM

Meaning

The $QIO, $QIOW, $INPUT, or $OUTPUT request was
successfully completed; that is, an I/O request
was placed in the appropriate device queue.

The IOSB, the specified buffer, or the argument
list cannot be accessed by the caller.

The buffer quota, buffered I/O quota, or direct
I/O quota was exceeded and the process has
disabled resource wait mode with the $SETRWM
system service. (The $SETRWM system service is
described in Section 1.4.) SS$ EXQUOTA is also
set if the AST quota was exceeded.

An illegal event flag number was specified.

Insufficient dynamic memory is available to
complete the service and the process has
disabled resource wait mode with the $SETRWM
system service. (The $SETRWM system service is
described in Section 1.4.)

(Continued on next page)

1-20

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

Table 1-4 (Cont.)
$QIO, $QIOW, $INPUT, and $OUTPUT System Services Status Returns

Status Meaning

An invalid channel number was specified; that
is, a channel number larger than the number of
channels available.

The specified channel was assigned from
privileged access mode, the channel
assigned, or the user does not have the
privilege to access the device.

a more
is not
proper

A common event flag in an unassociated event
flag cluster was specified.

Status returns for systems services are not the same as the I/O status
returns described in Chapters 2 through 8 for the different I/O
drivers (see Section 1.9). A system service status return is the
status of the $QIO, $QIOW, $INPUT, $OUTPUT, or other system service
call after completion of the service, that is, after the system
returns control to the user. A system service status return does not
reflect the completion (successful or unsuccessful) of the requested
I/O operation. For example, a $QIO system service read request to a
terminal might be successful (status return is SS$ NORMAL) but fail
because of a device parity error (I/O status return is SS$ PARITY).
System service error status return codes refer only to' failures to
invoke the service.

An I/O status return
operation. It is
Although some of the
SS$ ACCVIO) can be
difrerent meanings.

1.9 I/O COMPLETION

is the status at the completion of the I/O
returned in the quadword I/O status block (IOSB).

symbolic names (for example, SS$ NORMAL and
used in both types of status returns, they have

Whether an I/O request completed successfully or unsuccessfully can be
denoted by one or more return conditions. The selection of the return
conditions depends on the arguments included in the QIO macro call.
The three primary returns are:

G Event flag--an event flag is set on completion of an I/O
operation.

o I/O status block--if the iosb argument was specified in the
QIO macro call, a code identifying the type of success or
failure is returned in bits 0 through 15 of a quadword I/O
status block on completion of the I/O operation. The location
of this block is indicated by the user-supplied iosb argument.

o Asynchronou~ system trap--if an AST address argument was
specified In the I/O request, a call to the AST service
routine occurs, at the address indicated, on completion of the
I/O operation. (The I/O status block, if specified in the I/O
request, is updated prior to the AST call.)

1-21

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

1.9.1 Event Flags

Event flags are status posting bits used by the $QIO, $QIOW, $INPUT,
and $OUTPUT system services to indicate the completion or occurrence
of an event. The system service clears the event flag when the
operation is queued and sets it when the operation is completed.
Event flag services allow users to set or clear certain flags, test
the current status of flags, or place a program in a wait state
pending the setting of a flag or group of flags.

Services Reference Manual for mo~e:0,information

1.9.2 I/O Status Block

The completion status of an I/O request is returned in the first word
of the I/O status block (IOSB), as ~own in Figure 1-7.

31 1615 0

transfer count I status

device-dependent data

Figure 1-7 I/O Status Block Format

The IOSB indicates whether the operation was successfully completed,
the amount of data transferred, and additional device-dependent
information such as the number of lines printed. The status return
code has the same format and bit significance (bit 0 set indicates
succeSSi bit 0 clear indicates error) as the system service status
code (see Section 1.8.8). For example, if the process attempts to
access a nonexistent disk, a status code of SS$ NONEXDRV is returned
in the I/O status block. The status returns-for the individual I/O
drivers are listed in Chapters 2 through 8.

The upper half of the first IOSB longword contains the transfer count
on completion of the I/O operation if the operation involved the
transfer of data to or from a user buffer. For example, if a read
operation is performed on a terminal, the number of bytes typed before
a carriage return is indicated here. If a magnetic tape unit is the
device and a read function is specified, the transfer count represents
the number of bytes actually transferred. The second longwordof the
IOSB can contain certain device-dependent information. This
information is supplied in more detail for each I/O driver in Chapters
2 through 8.

The status can be tested symbolically, by name. For example, the
SS$ NORMAL status is returned if the operation was completed
successfully. The following example illustrates the examination of
the I/O status block XYIOSB to determine if an error occurred:

BLBC

CMPW

BNEQ

CHAN=XYCHAN,FUNC=#IO$ WRITEVBLK,­
IOSB=XYIOSB,Pl=BUFADR~P2=#BUFLEN
RO,REQERR iCHECK SYSTEM SERVICE

iSTATUS CODE

#SS$_NORMAL,XYIOSB

ERROR

1-22

iCHECK I/O STATUS
iCODE

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

The status block can be omitted from a QIO request if the user wishes
to assume successful completion of the request and does not want to
know how many bytes were transferred. If specified, the IOSB is
cleared when the QIO request is issued and then filled with the final
status at I/O completion.

1.9.3 Asynchronous System Traps

As an option, an AST routine can be specified in the QIO request if
the user wants to interrupt the normal execution of a process to
execute special code on completion of the request. Even if the
process IS blocked for a $WAITFR or $QIOW, it will be interrupted.
When the I/O operation completes, a CALL instruction is used to
transfer control to the AST service routine at the entry point address
specified in the QIO astadr argument. The address must be the address
of an entry mask. The AST service routine is then executed at the
access mode from which the QIO request was issued. Figure 1-8 shows
the argument list for the CALL instruction.

5

astprm

RO

R1

PC

PSL

Figure 1-8 CALL Instruction Argument List

Using an AST to signal I/O completion allows the process to be
occupied with other functions during the I/O operation. The process
need not wait until some event occurs before proceeding to another
operation.

See the VAX Manual for more detailed
informat~io--n~--~~----~~--~----------------------

1.10 DEVICE INFORMATION

Two system services can be used to obtain information about devices:
Get Channel Information ($GETCHN) and Get Device Information ($GETDEV)
system services. The information obtained includes such categories as
device characteristics, device type, error count, and operation count.

The Get Channel Information ($GETCHN) system service is used to obtain
information about a device to which an I/O channel is assigned. The
$GETCHN system service can be performed only on assigned channels and
only from access modes that are equal to, or more privileged than, the
access mode from which the original channel assignment was made.

The Get Device Information ($GETDEV) system service is used to obtain
information about any device.

1-23

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

$GETCHN and $GETDEV return both primary and secondary device
characteristics. Usually, these characteristics are identical.
However, they can differ in three instances:

1. If the device is a spooled device, the primary
characteristics are those of the intermediate device and the
secondary characteristics are those of the spooled device.
See the VAX/VMS System Manager's Guide for information on
spooling.

2. If the device represents a logical link on a network, the
secondary characteristics contain information about the link.

3. If the device has an associated mailbox, the primary
characteristics are those of the device and the secondary
characteristics are those of the mailbox.

The macro format for a $GETCHN request is:

$GETCHN chan,[prilen], [pribuf], [scdlen], [scdbuf]

The macro format for a $GETDEV request is:

$GETDEV devnam, [prilen] ,[pribuf], [scdlen] ,[scdbuf]

Table 1-5 lists the $GETCHN and $GETDEV arguments and their meanings.

Argument

chan

devnam

prilen

pribuf

scdlen

scdbuf

Table 1-5
$GETCHN and $GETDEV Arguments

Meaning

The number of the I/O channel to which a $GETCHN
request is directed (this is not an argument for
$GETDEV) •

The address of a string descriptor for the name of
the device to which $GETDEV is directed (this is
not an argument for $GETCHN).

The address of the word to receive the
the primary characteristics. This
optional.

length
argument

of
is

The address of the buffer descriptor for the buffer
that is to receive the primary device
characteristics. An address of 0 indicates that no
buffer is specified. This argument is optional.

The address of the word to receive
the secondary characteristics.
optional.

the length of
This argument is

The address of the buffer descriptor for the buffer
that is to receive the secondary device
characteristics. An address of 0 indicates that no
buffer is specified. This argument is optional.

1-24

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

Figure 1-9 shows the format of the device information returned in the
primary and secondary buffers.

device characteristics

buffer size I type I class

device dependent information

offset to

I unit number
device name

owner process PID

owner process UIC

error count I
volume protection

mask

operation count

offset to

I volume label

Figure 1-9 Buffer Format for $GETCHN and $GETDEV System Services

In Figure 1-9, offsets are the displacement from the beginning of the
buffer to the specified field. Missing fields are denoted by offsets
of O. Both device name and volume label are stored in the buffer as
counted strings. They must be located through the use of their
respective offset values. Symbolic offsets for all fields are defined
by the $DIBDEF macro. If both a volume label and a device name are
returned, the buffer has a length of 64 bytes.

1.10.1 $GETCHN and $GETDEV Status Returns

As much information as possible is returned for each of the primary
and secondary characteristics. If all the information does not fit in
the specified buffers, an appropriate status value is returned. Table
1-6 lists the status return values for the $GETCHN and $GETDEV system
services.

1-25

Status

SS$_BUFFEROVF

INTRODUCTION TO VAX/VMS INPUT/OUTPUT

Table 1-6
$GETCHN and $GETDEV Status Returns

Meaning

The $GETCHN or $GETDEV
successfully completed.

system service

The caller cannot read a buffer descriptor,
write a buffer, or access the argument list.

An invalid channel number was specified in the
$GETCHN request, that is, a channel number
larger than the number of channels available;
the channel is nonexistent.

The caller does not have the privilege to access
the specified channel or the channel is
unassigned.

The $GETCHN or $GETDEV system service
successfully completed. The device information
returned overflowed the buffer(s) provided and
has been truncated.

1-26

CHAPTER 2

TERMINAL DRIVER

This chapter describes the use of the VAX/VMS terminal driver. This
driver supports the DZ-ll Asynchronous Serial Line Multiplexer and the
console terminal.

2.1 SUPPORTED TERMINAL DEVICES

Each DZ-ll multiplexer interfaces 8 or 16 asynchronous serial
communication lines for use with terminals. It supports programmable
baud rates; however, input and output speeds must be the same.
VAX/VMS supports the DZ-ll internal modem control.

The system console terminal is attached to the processor with a
special purpose interface.

2.2 TERMINAL DRIVER FEATURES AND CAPABILITIES

The VAX/VMS terminal driver provides the following capabilities:

• Type-ahead

• Specifiable or default line terminators

• Special operating modes, such as NOECHO and PASSALL

• American National Standard escape sequence detection

• Terminal/mailbox interaction

• Terminal control characters and special keys

• Dial-up

• Optional parity specification

2.2.1 Type-ahead

Input (data received) from a VAX/VMS terminal is always independent of
concurrent output (data sent) to a terminal. This capability is
called type-ahead. Type-ahead is allowed on all terminals unless
explicitly disabled by the Set Mode characteristic, inhibit type-ahead
(TT$M_NOTYPEAHD; see Section 2.4.3).

2-1

TERMINAL DRIVER

Data typed at the terminal is retained in the type-ahead buffer until
the user program issues an I/O request for a read operation. At that
time, the data is transferred to the program buffer and echoed at the
terminal where it was typed.

Deferring the echo until a read operation is active allows the user
process to specify function code modifiers that modify the read
operation. These modifiers can include, for example, noecho
(IO$M NOECHO) and convert lowercase characters to uppercase
(IO$M:CVTLOW) (see Section 2.4.1.1).

If a read operation is already in progress when the data is typed at
the terminal, the data transfer and echo are immediate.

The action of the driver when the type-ahead buffer fills depends on
the Set Mode characteristic TT$M HOSTSYNC (see Section 2.4.3). If
TT$M HOSTSYNC is not set, CTRL/G (BELL) is returned to inform the user
that- the type-ahead buffer is full. If TT$M HOSTSYNC is set, the
driver stops input by sending a CTRL/S and the terminal responds by
sending no more characters. These warning operations are begun a
characters before the type-ahead buffer fills. The driver sends a
CTRL/O to restart transmission when the type-ahead buffer empties
completely.

The VAX/VMS System Manager's Guide describes the type-ahead buffer
size.

2.2.2 Line Terminators

A line terminator is the control sequence that the user types at the
terminal to indicate the end of an input line. Optionally, the user
process can specify a particular line terminator or class of
terminators for read operations.

Terminators are specified by an argument to the QIO request for a read
operation. By def~ult, they can be any ASCII control character except
FF, VT, TAB, or BS. If included in the request, the argument is a
user-selected group of characters (see Section 2.4.1.2).

All characters are 7-bit ASCII characters unless data is input on an
8-bit terminal (see Section 2.4.1). (The characteristic TT$M EIGHTBIT
determines whether the terminal uses the 7-bit or a-bit character set;
see Table 2-4.) All input characters are tested against the selected
terminator(s). The input is terminated when a match occurs or the
user's input buffer fills.

2.2.3 Special Operating Modes

The VAX/VMS terminal driver supports many special operating modes for
terminal lines. Section 2.4.3 lists these modes. All special modes
are enabled or disabled by the Set Mode QIO.

2.2.4 Escape Sequences

Escape sequences are strings of two or more characters, beginning with
the escape character (decimal 27 or hexadecimal lB), that'indicate
that control information follows. Many terminals send and respond to
such escape sequences to request special character sets or to indicate
the position of a cursor.

2-2

TERMINAL DRIVER

The Set Mode characteristic TT$M ESCAPE (see Section 2.4.3) is used to
specify that VAX/VMS terminal lines can generate valid escape
sequences. If this characteristic is set, the terminal driver
verifies the syntax of the escape sequences. The sequence is always
considered a read function terminator and is returned in the read
buffer, that is, a read buffer can contain other characters that are
not part of an escape sequence, but an escape sequence always
comprises the last characters in a buffer. The return information in
the read buffer and I/O status block includes the position and size of
the terminating escape sequence in the data record (see Section 2.5).

Any escape sequence received from the terminal is checked for correct
syntax. If the syntax is not correct, SS$ BADESCAPE is returned as
the status of the I/O. If the escape sequence does not fit in the
user buffer, SS$ PARTESCAPE is returned. The remaining characters are
transmitted on the next read. No syntax integrity is guaranteed
across read operations. Escape sequences are never echoed. Valid
escape sequences are any of the following forms (hexadecimal
notation) :

where:

<int>

<fin>

~ <int> ••• <int> <fin>

is pressing the ~key, a byte (character) of lB

is an "intermediate character" in the range of 20 to 2F.
This range includes the character "space" and 15 punctuation
marks. An escape sequence can contain any number of
intermediate characters, or none.

is a "final character" in the range of 30 to 7E. This range
includes uppercase and lowercase letters, numbers, and 13
punctuation marks.

There are five additional escape sequence forms:

<i> <20-2F> ••• <30-7E>
<?) <20-2F) ••• <30-7E)
<P> <20-2F> ••• <30-7E>
<0> <20-2F> ••• <40-7E>
<Y> <20-7E> ••• <20-7E>

For example, when the IDENTIFY escape sequence, escape Z, is sent to a
VT-55 terminal, the response from the terminal is ~<C>. {Escape
sequences are neither displayed nor echoed on the terminal.>

Section 2.2.6 describes control character functions during escape
sequences.

2.2.5 Terminal/Mailbox Interaction

Mailboxes are virtual I/O devices used for communication between
processes. The terminal driver can use a mailbox to communicate with
a user process. Chapter 7 describes the mailbox driver.

A user program can use the $ASSIGN system service to
mailbox with one or more terminals. The terminal
messages to this mailbox when terminal-related events
require the attention of the user image.

2-3

associate a
driver sends

occur that

TERMINAL DRIVER

Mailboxes used in this way carry status messages, not terminal data,
from the driver to the user program. For example, when data is
received from a terminal for which no read request is outstanding
(unsolicited data), a message is sent to the associated mailbox to
indicate data availability. On recelvlng this message, the user
program must read the channel assigned to the terminal to obtain the
data. Messages are sent to mailboxes under the following conditions:

• Unsolicited data in the type-ahead buffer. The use of the
associated mailbox can be enabled and disabled as a
subfunction of the read and write QIO requests (see Sections
2.4.1 and 2.4.2). Thus, the user process can enter into a
dialog with the terminal after an unsolicited data message
arrives. Then, after the dialog is over, the user process can
re-enable the unsolicited data message function on the last
I/O exchange. The default for all terminals is enabled. Only
one message is sent between read operations.

• Terminal hang-up. Hang-up occurs when a remote line loses the
carrier signal; a message is sent to the mailbox. When
hang-up occurs on lines that have the characteristic
TT$M REMOTE set, the line characteristics are returned to the
system default characteristics (see the VAX/VMS System
Generation Reference Manual).

Messages placed in. the mailbox have the following content and format:

• Message type. The codes MSG$ TRMUNSOLIC (unsolicited data)
and MSG$ TRMHANGUP (hang-up)- identify the type of message.
Message types are defined by the $MSGDEF macro.

• Device unit number to identify the terminal that sent the
message.

• Counted string to specify the device name.

• Controller name

Figure 2~1 illustrates this format.

31 16 15 8 7 o

unit number I message type

controller name * I rounted "';ng

*does not include the colon (:1 character

Figure 2-1 Terminal Mailbox Message Format

2-4

TERMINAL DRIVER

Interaction with a mailbox associated with a terminal occurs through
standard QIO functions and ASTs. Therefore, the process need not have
outstanding read requests to an interactive terminal to respond to the
arrival of unsolicited data. The process need only respond when the
mailbox signals the availability of unsolicited data. Section 2.6
contains an example of mailbox programming.

The ratio of terminals to mailboxes is not always one to one. One
user process can have many terminals associated with a single mailbox.

2.2.6 Control Characters and Special Keys

A control character is a character that controls action at the
terminal rather than passes data to a process. An ASCII control
character has a code between 0 and 31, plus 126 and 127 (hexadecimal 0
through IF, plus 7E and 7F). That is, all normal control characters
plus DELETE and ALTMODE. Some control characters are typed at the
terminal by simultaneously pressing the CTRL key and a character key,
that is, ~nL/x). Other control characters, for example, RETURN, LINE
FEED, and ESCAPE, are typed by pressing a single key, that is,~,
~and~. Table 2-1 lists the VAX/VMS terminal control characters
(none of these characters are interpreted in the PASSALL mode). Table
2-2 lists special terminal keys.

Control
Character

~
(CTRL/I)

GQ
(CTRL/J)

Table 2-1
Terminal Control Characters

Meaning

Gains the attention of the enabled process if the
user program has enabled a CTRL/C .AST. If CTRL/C AST
is not enabled, (crn~9 is converted to ~R~~ (see
Section 2.4.3).

If echo is not disabled, the terminal performs a
newline (return followed by a line feed), types ~C,
and performs another newline. If (crR~q is converted
to ~RL/~ , then ~y is echoed.

Additional consequences of (cr~~ are:

• The type-ahead buffer is flushed.
• (crn~s) and (crR~O) are reset.
• The current I/O operation (if any) is successfully

completed. The status return is SS$_CONTROLC.

Tabs horizontally. Advances to the next tab stop on
terminals with the characteristic TT$M MECHTAB, but
the driver assumes tab stops on MODULO-(8), that is,
multiples of 8, cursor positions. On terminals
without this characteristic, enough spaces are output
to move the cursor to the next MODULO (8) position.

Performs line feed; filled if TT$M_LFFILL is set.

(continued on next page)

2-5

Control
Character

~
(CTRL/K)

C!D
(CTRL/L)

TERMINAL DRIVER

Table 2-1 (Cont.)
Terminal Control Characters

Meaning

Terminal performs a vertical tab.

Performs form feed. The driver sends enough LFs
(filled) to move the paper to the top of form
position described by the length of the page and the
current position on the page. The Set Mode function
can be used to set page length (see Section 2.4.3).
(VAX/VMS does not support terminals with mechanical
form feed.)

Discards output. Action is immediate. All output is
discarded until the next read operation, the next
write operation with a IO$M CANCTRLO modifier, or the
receipt of the next (crRW~ .- If echo is not disabled,
the terminal echoes ~O, followed by a newline. The
current write operation (if any), and write
operations performed while ~RW~ is in effect, are
completed with a status return of SS$_CONTROLO.

~TRl/~ , which reenables output, cancels (crRWS).
and (crRl/V) cancel (CTRl/O).

Controls data flow;
Restarts data flow
stopped by ~TRl/~ •
no echo. (crRl/Q)
read operations.

used by terminals and the driver.
to or from a terminal if previously
The action occurs immediately with
is also used to explicitly solicit

~RW~ is meaningless if the line does not have the
characteristic TT$M TTSYNC, the characteristic
TT$M HOSTSYNC, the characteristic TT$M_READSYNC, or is
not currently stopped by (crRl/S).

Displays current input. When «'RW~ is typed during a
read operation, a newline is echoed, and the current
contents of the input buffer is displayed. If the
current operation is a read with prompt
(10$ READPROMPT) operation, the current prompt string
is also displayed. ~RW~ has no effect if the
characteristic TT$M_NOECHO is set.

Controls data flow; used by both terminals and the
driver. ~TRw~stops all data flow; the action occurs
immediately with no echo. (crR~) is also used to stop
read operations. (crRl/~ is meaningful only if the
terminal has the TT$M TTSYNC, TT$M HOSTSYNC or
TT$M_READSYNC characteristTc. -

(continued on next page)

2-6

Control
Character

TERMINAL DRIVER

Table 2-1 (Cont.)
Terminal Control Characters

Meaning

Purges cur rent input data. When (crRL/U) is typed
before the end of a read operation, the current input
is flushed. If echo is not disabled, the terminal
echoes ~u, followed by a newline. The prompt string
is displayed again if the current operation is a read
with prompt (IO$_READPROMPT).

Purges the type-ahead buffer and performs a ~R~0
operation. Action is immediate. Inserts a CTRL/U in
the data stream if a read operation is in progress.

(crR~~ is a special interrupt or attention character
that is used to gain the attention of the command
interpreter for a logged-in process. ~RL/~ can be
enabled only from supervisor mode by an enable AST
I/O function. (~R~~ always gains the attention of
the command interpreter from a logged-in terminal~)
Typing (crRL/~ results in an AST to an enabled process
to signify that the user typed (crRL/~ • The terminal
performs a newline, types ~Y, and performs another
newline if the AST and echo are enabled. (crR~~ is
ignored (and not echoed) if no process is enabled for
the AST.

Additional consequences of ~RL/~ are:

• The type-ahead buffer is flushed.
• CTRL/S mode is reset.
• The current I/O operation (if any) is successfully

completed with a 0 transfer count. The status
return is SS$_CONTROLY.

(crR~q Echoes ~z when (crR~q is typed as a read terminator.
If ~ is not a read terminator it echoes as
itself (hexadecimal lA). By convention, (crR~q
constitutes end-of-file.

2-7

Control
Characters

ALTMODE

C§D
(DELETE)

~
(ESCAPE)

~
(RETURN)

TERMINAL DRIVER

Table 2-2
Special Terminal Keys

Meaning

(Decimal 126 or hexadecimal 7E) Converts to escape on
terminals that do not have the lowercase
cha.racteristic TT$M_LOWER set.

(Decimal 127 or hexadecimal 7F) Removes last typed
character from input stream. ~ is ignored if there
are currently no input characters. Hard copy
terminals echo the deleted character enclosed in
backslashes. for example, if the character z is
deleted, \z\ is echoed (the second backslash is
echoed after the next character is typed). CRT
terminals echo~ as a backspace followed by a space
and another backspace.

If escape sequences are recognized (the Set Mode
characteristic TT$M ESCAPE is set), pressing ~
signals the beginnIng of an escape sequence. On
these terminals ~ is' never echoed; however, on
terminals that do not recognize escape sequences, ~
is echoed as a dollar sign ($.> if it \'laS used as a
read terminator or as hexadecimal IB if it was not a
read terminator.

If used during a read (input) operation, ~
echoes a newline. All returns are filled on
terminals with TT$M_CRFILL specified.

2.2.6.1 Character Interpretation - All input characters are
interpreted according to their value and the characteristics of the
terminal.

Figure 2-2 illustrates the character interpretation process.

2-8

INPUT
CHARACTER

CHARACTER
TO TYPE-A-HEAD

BUFFER

CONVERT TO
UPPERCASE

Figure 2-2

TERMINAL DRIVER

PERFORM
FUNCTION

NO

ECHO CHARACTER
IF ALLOWED AND

PLACE IN
CHARACTER BUFFER

DONE

1. TT$M_PASSALL or IO$_READPBLK
2_ Except for CTRL/X. the function must

be enabled_ For example. CTRLlS is not
meaningful on a line without the
TT$M_TTSYNC characteristic.

Character Interpretation

2-9

TERMINAL DRIVER

2.2.7 Dial-up

VAX/VMS supports the DZ-ll internal modem control (for example, Bell
103A, Bell 113, or equivalent) in autoanswer, full-duplex mode. The
terminal driver does not support half-duplex operations on modems such
as the Bell 202. The terminal characteristic TT$M REMOTE designates
the line as being remote to the local computer. The driver
automatically sets TT$M_REMOTE if the carrier signal changes from off
to on.

Dial-up lines are monitored periodically to detect a change in the
modem carrier signal. The monitoring period is a system parameter.
The VAX/VMS System Manager's Guide describes the dial-up monitoring
period.

If a line's carrier signal is lost, the driver waits several monitor
periods for the carrier signal to return. If the carrier signal is
not detected during this time, the line 1S "hung-up." The hang-up
action signals the owner of the line, through a mailbox message, that
the line is no longer in use. (No dial-in message is sent; the
unsolicited character message is sufficient when the first available
data is received.) The line is not available for two monitor periods
after the hang-up sequence begins. The hang-up sequence is not
reversible. If the line hangs up, all enabled CTRL/Y ASTs are
delivered; the CTRL/Y AST P2 argument is overwritten with SS$ HANGUP.
The I/O operation in progress is cancelled and the status value
SS$_ABORT is returned in the IOSB.

When a line with the TT$M REMOTE
characteristics of the line are
characteristics.

2.3 DEVICE INFORMATION

characteristic is
returned to the

hlJng-up, the
sys.tem defaul t

The user process can obtain terminal characteristics by using the
$GETCHN and $GETDEV system services (see Section 1.10). The
terminal-specific information is returned in the first three longwords
of a user-specified buffer, as shown in Figure 2-3 (Figure 1-8 shows
the entire buffer).

31 2423 16 15 8 7 a

device characteristics

page width I type I class

page length I terminal characteristics

Figure 2-3 Terminal Information

The first longword contains device-independent data. The second and
third longwords contain device-dependent data.

Table 2-3 lists the device-independent characteristics returned in the
first longword.

2-10

TERMINAL DRIVER

Table 2-3
Terminal Device-Independent Characteristics

Characteristic Name l Meaning

DEV$M_AVL Terminal is on line and available

DEV$M_IDV Terminal is capable of input

DEV$M_ODV Terminal is capable of output

DEV$M_SPL Spooled

DEV$M_CCL Carriage control

DEV$M_REC Record oriented

DEV$M_TRM Terminal device

1 Defined by the $DEVDEF macro.

The device class (DC$ TERM) is returned in the first byte of the
second longword. The-terminal type is returned in the second byte and
corresponds to the type of terminal; for example, DT$ VT52. The
$DCDEF macro defines the symbols for terminal class and type. The
page width is returned in the third and fourth bytes. The page width
can have a value in the range of 0 to 255. A value of 0 has special
meaning if the characteristic TT$M_WRAP is not set (see Table 2-4).

The third longword contains terminal characteristics and page length.
Characteristics are contained in the first three bytes. Page length
is contained in the fourth byte. Terminal characteristics are
initially set at system generation time to anyone of, or any
combination of, the values listed in Table 2-4. They can be changed
by the Set Mode function (see Section 2.4.3) or by the Set Terminal
command. The VAX/VMS Command Language User's Guide describes the Set
Terminal command. The $TTDEF macro defines symbols for terminal
characteristics. Page length can have a value in the range of 0 to
255.

2-11

1

Value 1

TT$M_CRFILL

TT$M_ESCAPE

TT$M_HOLDSCREEN

TT$M_HOSTSYNC

TT$M_LOWER

TT$M_READSYNC

TT$M_TTSYNC

TT$M_WRAP

TERMINAL DRIVER

Table 2-4
Terminal Characteristics

Meaning

Terminal requires fill after ~ (the fill
type can be specified by the Set Mode function
P4 argument).

Terminal generates escape sequences (see
Section 2.2.4) • Escape sequences are
validated for syntax.

Terminal is in Holdscreen Mode. The driver
automatically causes the terminal to enter or
exit from the mode when the mode is changed at
the terminal. This mode is meaningful only to
DEC VT-52 and VT-55 terminals (see the
DEC scope User's Manual).

Host/terminal synchronization. ~RL/~ and
(crR~~ are used to control data flow and thus

keep the type-ahead buffer from filling.

Terminal requires fill after ~ (the fill
type can be specified by the Set Mode function
P4 argument).

Terminal has lowercase character set. Unless
the terminal is in PASSALL mode, all input,
output, and echoed lowercase characters
(hexadecimal 61 to 7A) are converted to
uppercase if TT$M_LOWER is not set.

Terminal has mechanical tabs. In order to
accomplish correct line wrapping, MODULO (8)
is assumed.

Input characters are not echoed on this
terminal line. A physical I/O function is
required to change this value. (See Section
2.2.1.)

Read synchronization. All read operations are
explicitly solicited by (crRL/Q) and terminated
by (CTRL/S) •

Terminal/host synchronization. Output to the
terminal is controlled by terminal-generated
(crR~Q) and (crRL/S) •

A newline should not be inserted if the cursor
moves beyond the right margin. If TT$M_WRAP
is not set, no newline is sent.

Prefix can be TT$M or TT$V. TT$M is a mask whose bits
correspond to the fieId set; TT$V_ is a bit number.

(Continued on next page)

2-12

Value l

TT$M_NOTYPEAHD

TT$M_EIGHTBIT

TERMINAL DRIVER

Table 2-4 (Cont.)
Terminal Characteristics

Meaning

Terminal is in PASSALL mode: all input and
output data is in binary (no data
interpretation occurs). Data termination
occurs when the buffer is full or the read
data matches the specified terminator. A
physical I/O function is required to change
this value. (See Section 2.4.1 for a
comparison with the read QIO function
IO$_READPBLK.)

Dial-up terminal. Terminal characteristics
are returned to the system default when a
hang-up occurs on the terminal line. A
physical I/O function is required to change
this characteristic. The VAX/VMS System
Generation Reference Manual describes system
default characteristics.

Terminal is a video screen display
terminal).

(CRT

Data must be solicited by a read operation.
Data is lost if received in the absence of an
outstanding read request, that is, unsolicited
data. Disables type-ahead capability (see
Section 2.2.1).

Terminal uses 8-bit ASCII character set.
Terminals without this characteristic use the
7-bit ASCII code. In this case, the eighth
bit is masked out on received characters and
ignored on output characters. The eighth bit
is meaningful only if TT$M_EIGHTBIT is set.

2.4 TERMINAL FUNCTION CODES

The basic terminal I/O
characteristics (see
function modifiers.

functions are read, write, and set mode or
Section 1.5). All three I/O functions can take
There are two set mode or characteristics

functions: Set Mode (IO$_SETMODE) and Set Characteristic
(IO$_SETCHAR).

2-13

TERMINAL DRIVER

2.4.1 Read

When a read function code is issued, the user-specified buffer is
filled with characters from the associated terminal. VAX/VMS defines
four basic read functions, which are listed with their function codes
below:

• IO$_READVBLK - read virtual block

• IO$_READLBLK - read logical block

• IO$_READPROMPT - read with prompt

• IO$_READPBLK - read phySical block (PASSALL)

Read operations are terminated if either of the following conditions
occurs:

• The user buffer is full

• The received character is included in a specified terminator
class (see Section 2.4.1.2)

The read function codes can take all six device/function-dependent
arguments (PI through P6) on QIO requests:

• PI = the starting virtual address of the buffer that is to
receive the data read

• P2 the size of the buffer that is to receive the data read
in bytes

• P3 = read with timeout, timeout count (see Table 2-5,
IO$M_TIMED)

• P4 = read terminator descriptor block address (see Section
2.4.1.2)

• P5 = the starting virtual address of the prompt buffer that
is to be written to the terminal. For read with prompt
operations (IO$_READPROMPT).

• P6 the size of the prompt buffer that is to be written to
the terminal. For read with prompt operations
(IO$_READPROMPT).

In a read with prompt operation, the PS and P6 arguments specify the
address and size of a prompt string buffer containing data to be
written to the terminal before the input data is read. In a read with
prompt operation, a write operation and a read operation are performed
on the specified terminal. The prompt string buffer is formatted like
any other write buffer, but no carriage control can be implicitly
specified. (Carriage control specifiers are described in Section
2.4.2.2.)

During a read with prompt operation, typing ~R~~ (which is turned
off at the start of any read) stops the prompt string. If (CTRL/U) or
(CTRL/~ is typed, the entire prompt string is written out again and the

current input is purged. If (CTRW~ is typed, the current prompt
string and input are written to the terminal.

Depending on the terminal type, and the user's input, the prompt
string can be very simple or quite complex - from single command
prompts to screen fills followed by data input.

2-14

TERMINAL DRIVER

In a read physical block operation, the data received from the
associated terminal is placed in the user buffer as binary information
without interpretation; the terminal line is in a temporary PASSALL
mode. Since 10$ READPBLK is a physical I/O function, it can be
specified only by a privileged user (see Section 1.6.1). 10$ READPBLK
puts the terminal line in a PASSALL mode which is in effect-only for
the read physical block operation. This is in contrast with the more
comprehensive PASSALL mode established by the Set Mode characteristic
TT$M PASSALL. All input and output data is in 8-bit binary format
when-TT$M_PASSALL is set (see Section 2.4.3).

Since 10$ READPBLK does not purge the type-ahead buffer (unless
requested- using the IO$M PURGE function modifier) the characters in
the type-ahead buffer may- have been subjected to CTRL/Y/C/S/Q/O
interpretation (Section 2.2.6.1). (Characters received while the
IO$_READPBLK is in progress are not interpreted.)

2.4.1.1 Function Modifier Codes for Read QIO Functions - Seven
function modifiers can be specified with 10$ READVBLK, 10$ READLBLK,
10$ READPROMPT, and 10$ READPBLK. Table 2-5- lists these-function
modIfiers. IO$M CVTLOW and IO$M NOFILTR are not meaningful to
IO$_READPBLK. - -

Code

IO$M_DSABLMBX

IO$M_TRMNOECHO

Table 2-5
Read QIO Function Modifiers

Consequence

Characters are not echoed (that is, displayed)
as they are entered at the keyboard. The
terminal line can also be set to a "no echo"
mode by the Set Mode characteristic TT$M NOECHO,
which inhibits all read operation echoing.

Lowercase alphabetic characters (hexadecimal 61
to 7A) are converted to uppercase when
transferred into the user buffer or echoed.

The terminal driver does not interpret (crRL/0
&TRWR) , or ~ They are passed to the user.

The P3 argument specifies the maximum time
(seconds) that can elapse between characters
received; that is, the timeout value for the
read operation. A value of 0 terminates the
read operation, that is, an I/O timeout occurs,
if no character is read within 1 second. In
effect, data is read from the type-ahead buffer
or an error is returned.

The type-ahead buffer is purged before the read
operation begins.

The mailbox is disabled for unsolicited data.

The termination character (if any) is not
echoed. There is no formal terminator if the
buffer is filled before the terminator is typed.

2-15

TERMINAL DRIVER

2.4.1.2 Read Function Terminators - The P4 argument to a read QIO
function either specifies the terminator set for the read function or
points to the location containing that terminator set. If p4 is 0,
all ASCII characters with a code in the range 0 through 31
(hexadecimal 0 through IF) except LF, VT, FF, TAB, and BS, are
terminators. (This is the RMS-32 standard terminator set.)

If P4 does. not equal 0, it contains the address of a quadword that
either specifies a terminator character bit mask or points to a
location containing that bit mask. The quadword has a short form and
a long form, as shown in Figure 2-4. In the short form, the
correspondence is between the bit number and the binary value of the
character; the character is a terminator if the bit is set. For
example, if bit 0 is set, NULL is a terminator; if bit 9 is set, TAB
is a terminator. If a character is not specified, it is not a
terminator. Since ASCII control characters are in the range of 0
through 31, the short form can be used in most cases.

The long form allows use of a more comprehensive set of
characters. Any mask size equal to or greater than
acceptable. For example, a mask size of 16 bytes allows
ASCII characters to be used as terminators; a mask size
allows all 8-bit characters to be used as terminators
terminals. An unspecified mask is assumed to be all O's.

31

SHORT: a

terminator character bit mask

31 1615

LONG: (not used) I mask size in bytes

address of mask

terminator
1 byte is

all 7-bit
of 32 bytes

for 8-bit

a

a

Figure 2-4 Short and Long Forms of Terminator Mask Quadwords

2.4.2 write

write operations display the contents of a user-specified
the associated terminal. VAX/VMS defines three basic
functions, which are listed with their function codes below:

CD IO$_WRITEVBLK write virtual block

• IO$_WRITELBLK write logical block

• IO$_WRITEPBLK write physical block

The write function· codes can take the
device/function-dependent arguments:

buffer on
write I/O

following

• PI = the starting virtual address of the buffer that is to
be written to the terminal

2-16

TERMINAL DRIVER

• P2 the number of bytes that are to be written to the
terminal

• P3 (ignored)

• P4 Carriage control specifier except
block operations. (Write function
described in Section 2.4.2.2.)

for write physical
carriage control is

P3, P5, and P6 are not meaningful for terminal write operations.

In write virtual block and write logical block operations, the buffer
(PI and P2) is formatted for the selected terminal and includes the
carriage control information specified by P4.

All lowercase characters are converted to uppercase if the
characteristics of the selected terminal do not include TT$M_LOWER
(this does not apply to write physical block operations).

Multiple line feeds are generated for form feeds. The number of line
feeds generated depends on the current page position and the length of
the page. Multiple spaces are generated for tabs if the
characteristics of the selected terminal do not include TT$M MECHTAB
(this does not apply to write physical block operations). Tao stops
are every 8 characters or positions (that is, 8, 16, 24, ••.).

2.4.2.1 Function Modifier Codes for write QIO Functions- Three
function modifiers can be specified with 10$ WRITEVBLK, 10$ WRITELBLK,
and ~O$_WRITEPBLK. Table 2-6 lists these function modifiers.

Code

IO$M_CANCTRLO

IO$M_ENABLMBX

Table 2-6
Write QIO Function Modifiers

Consequence

Turns off (CTRL/O) (if it is in effect) before the
write. Otherwise, the data may not be
displayed.

Enables use of the mailbox associated with the
terminal for notification that unsolicited data
is available.

Allows nonprivileged users to write information
without interpretation or form~t1 in effect the
terminal line is in a temporary PASSALL mode.

2.4.2.2 Write Function Carriage Control - The P4 argument is a
longword that specifies carriage control. Carriage control determines
the next printing position on the terminal. P4 is ignored in a write
physical block operation. Figure 2-5 shows the P4 longword format.

3 2

P4:

Figure 2-5 P4 Carriage Control Specifier

2-17

TERMINAL DRIVER

Only bytes 0, 2, and 3 in the longword are used. Byte 1 is ignored.
If the low-order byte (byte O) is not 0, the contents of the longword
are interpreted as a FORTRAN carriage control specifier. Table 2-7
lists the possible byte 0 values (in hexadecimal) and their meanings.

Table 2-7
Write Function Carriage Control (FORTRAN: Byte 0 not equal to O)

Byte
Value

(hexadecimal)

20

30

31

2B

24

All other
values

ASCII
Character

(space)

o

1

+

$

Meaning

Single-space carriage control.
(Sequence: line feed, print buffer
contents, return.'

Double-space carriage control.
(Sequence: line feed, line feed,
print buffer contents, return.)

Page eject carriage control.
(Sequence: form feed, print buffer
contents, return.)

Overprint carriage control.
(Sequence: print buffer contents,
return.) Allows double printing for
emphasis or special effects.

Prompt carriage control. (Sequence:
line feed, print buffer contents.)

Same as ASCII space character:
single-space carriage control.

If a low-order byte (byte 0) is 0, bytes 2 and 3 of the P4 longword
are interpreted as the prefix and postfix carriage control specifiers.
The prefix (byte 2) specifies the carriage control before the buffer
contents are printed. The postfix (byte 3) specifies the carriage
control after the buffer contents are printed. The sequence is:

Prefix carriage control - Print - Postfix carriage control

The prefix and postfix bytes, although interpreted separately, use the
same encoding scheme. Table 2-8 shows this encoding scheme in
hexadecimal.

2-18

Bit 7

o

o

Bit 7

1

1

TERMINAL DRIVER

Table 2-8
write Function Carriage Control (P4 byte 0 = 0)

Prefix/Postfix Bytes
(Hexadecimal)

Bits 0 - 6

o

1-7F

Bit 6 Bit 5

0 0

1 0

Bits
0-4

I-IF

I-IF

Meaning

No carriage control is specified,
that is, NULL.

Bits 0 through 6 are a count of
line feeds.

Meaning

Output the single ASCII control
character specified by the
configuration of bits 0 through
(7-bit character set) •

Output the single ASCII control
character specified by the
configuration of bits 0 through
which are translated as ASCII

4

4

characters 128 through 159 (8-bit
character set) •

Figure 2-6 shows the prefix and postfix hexadecimal coding that
produces the carriage control functions listed in Table 2-7. Except
for the last example (line skipping), this is an alternative way to
achieve these controls.

2-19

TERMINAL DRIVER

(Space)

P4, I 80 a

"a"

P4, I 80 2 a

"'"
P4, I 80 8C a

"+"

P4, I 80 a a

"$"

P4, I 0 8A a

Example: Skip 24 lines before printing

P4:
80 18 a

Figure 2-6 Write Function Carriage Control
(Prefix and Postfix Coding)

Sequence:

Prefix = NL
Print
Postfix = CR

Sequence:

Prefix = LF. LF
Print
Postfix = CR

Sequence:

Prefix = FF
Print
Postfix = CR

Sequence:

Prefix = NULL
Print
Postfix = CR

sequence:

Prefix = LF
Print
Postfix = NULL

Sequence:

Prefix = 24LF
Print
Postfix:= CR

In the first example, the prefix/postfix hexadecimal coding for a
single-space carriage control (line feed, print buffer contents,
return) is obtained by placing the value 1 in the second (prefix) byte
and the sum of the bit 7 value (80) and the return value (D) in the
third (postfix) byte:

2.4.3 Set Mode

80 (bit 7 = l)
+ D (return)

8d (postfix return)

Set mode operations affect the operation and characteristics of the
associated terminal line. VAX/VMS defines two types of set mode
functions:

e Set Mode

G Set Characteristic

2-20

TERMINAL DRIVER

The Set Mode function affects the mode and characteristics of the
associated terminal line. Set Mode is a logical I/O function and
requires the access privilege necessary to perform logical I/O. A
single function code is provided:

• IO$_SETMODE

The Set Characteristic function affects the characteristics of the
associated terminal line. Set Characteristic is a physical I/O
function and requires physical I/O privilege. A single function code
is provided:

These functions take the following device/function dependent arguments
if no function modifiers are specified:

• PI address of characteristics buffer

• P2 (ignored)

• P3 speed specifier

• P4 fill specifier (bits 0 through 7 CR fill count; bits 8
through 15 LF fill count)

• P5 = parity flags

The PI argument points to a quadword block, as shown in Figure 2-7.
With the exception of terminal characteristics, the contents of the
block are the same for both Set Mode and Set Characteristic functions.

31 2423 16 15 8 7 0

page width 1 type I class

page length I terminal characteristics

Figure 2-7 Set Mode Characteristics Buffer

The class portion of the block contains DC$ TERM, which is defined by
the $DCDEF macro. Type values are defined by the $DCDEF macro, for
example, DT$ LA36. Both the page width and page length can have
values in the range of 0 to 255. Table 2-9 lists the values for
terminal characteristics (Table 2-4 lists their meanings). These
values are defined by the $TTDEF macro.

2-21

TERMINAL DRIVER

Table 2-9
Value for Set Mode and Set Characteristic PI Characteristics

Terminal Applicable to:
Characteristics Set Mode Set Characteristic

TT$M_CRFILL X X

TT$M_EIGHTBIT X X

TT$M_ESCAPE X X

TT$M_HOLDSCREEN X X

TT$M_HOSTSYNC X X

TT$M_LFFILL X X

TT$M_LOWER X X

TT$M_MECHTAB X X

TT$M_NOECHO X

TT$M_NOTYPEAHD X X

TT$M_PASSALL X

TT$M_READSYNC X

TT$M_REMOTE X

TT$M_SCOPE X X

TT$M_TTSYNC X X

TT$M_WRAP X X

The P3 argument specifies the device speed, for example,
TT$C BAUD 300. P4 contains fill counts for the carriage return and
line-feed-control characters. Bits 0 through 8 specify the number of
fill characters used after a return. Bits 9 through 15 specify the
number of fill characters used after a line feed. (P4 is applicable
only if TT$M CRFILL or TT$M LFFILL is established as a terminal
characteristic; see Table 2-4.)

Three parity flags can be specified in the P5 argument:

TT$M_PARITY

TT$M_ODD

alter parity,
change parity on
terminal line if
set

enable parity on
terminal line if
set, disable if
clear

parity is odd if
set

2-22

TERMINAL DRIVER

If parity is enabled, the interface generates a parity check bit to
detect parity mismatch. Parity errors that occur during an I/O read
operation are fatal to the operation. Parity errors that occur when
no I/O operation is in progress may result in a character loss.

The Set Mode and Set Characteristic functions can take the Enable
CTRL/C AST, Enable CTRL/Y AST, and Hang-up function modifiers which
are described below.

2.4.3.1 Hang-up Function Modifier - The Hang-up
disconnects a terminal that is on a dial-up line.
described in Section 2.2.7.) Two combinations of
modifier are provided:

function modifier
(Dial-up lines are

functioh code and

• IO$_SETMODEIIO$M_HANGUP

• IO$_SETCHARIIO$M_HANGUP

The Hang-up function modifier takes no arguments.

2.4.3.2 Enable CTRL/C AST and Enable CTRL/Y AST Function
Modifiers - Both set mode functions can take the Enable CTRL/C AST and
Enable CTRL/Y AST function modifiers. These function modifiers
request the terminal driver to queue an AST for the requesting process
when the user types ~TRW9 or CcrRW~. Four combinations of function
code and modifier are provided:

o IO$_SETMODEIIO$M_CTRLCAST

o IO$_SETMODEIIO$M_CTRLYAST

o IO$_SETCHARIIO$M_CTRLCAST

o IO$_SETCHARIIO$M_CTRLYAST

Enable CTRL/C AST

Enable CTRL/Y AST

Enable CTRL/C AST

Enable CTRL/Y AST

These function code modifier pairs
device/function-dependent arguments:

take the following

• PI address of the AST service or 0 if the corresponding
AST is to be disabled

o P2 = AST parameter

o P3 access mode to deliver AST (maximized with caller's
access mode)

If the respective enable is in effect, typing ~TRL/C) or ~RL/~ gains
the attention of the enabling process (see Table 2-1). ~RL/~ can be
used to gain the attention of the command interpreter and thus allow
the user to input special commands such as DUMP, STOP, CONTINUE, etc.

Enable CTRL/C and CTRL/Y AST are single (one-time) enables. After the
AST occurs, it must be explicitly re-enabled by one of the four
function code combinations described above before the AST can occur
again. This function code is also used to disable the AST. The
function is subject to AST quotas. A CTRL/Y AST can only be enabled
from supervisor mode.

2-23

TERMINAL DRIVER

The user can have more than one CTRL/C or CTRL/Y enabled. All ASTs
are given, in their order of request, that is, first in first out,
when the character is typed. For example, typing ~TR~q results in
the delivery of all CTRL/C ASTs.

If no CTRL/C enable is present, the holder of a CTRL/Y enable will
receive an AST when (crR~q is typed; line feed, "Y, return is echoed.

CTRL/C enables are flushed by the Cancel I/O on Channel ($CANCEL)
system service. CTRL/Y enables are flushed only during unit run down,
that is, after the last deassignment by the Deassign I/O Channel
($DASSGN) system service.

Section 2.2.6 describes other effects of (crR~~ and ~TR~q

2.5 I/O STATUS BLOCK

The I/O status block fo~mats for the read, write, and set mode I/O
functions are shown In Figures 2-8, 2-9, and 2-10, respectively.
Table 2-10 lists the possible status returns for these functions.

+2 10SB

offset to terminator status

terminator size terminator

+6 +4

Figure 2-8 IOSB Contents - Read Function

In Figure 2-8, the offset to terminator at IOSB+2 is the count of
characters before the terminator character (see Section 2.4.1.2). The
terminator character(s) is in the buffer at the offset specified in
IOSB+2. When the buffer is full, the offset in IOSB+2 is equal to the
requested buffer size. At the same time, IOSB+4 is equal to o.
IOSB+6 contains the size of the terminator string, usually 1.
However, in an escape sequence, IOSB+6 contains the size of the
validated escape sequence (see Section 2.2.4). The sum of IOSB+2 and
IOSB+6 is the number of characters in the buffer.

byte count

o

status

Number of lines output
for the I/O function*

*0 If 10$_WRITEPBLK or PASSALL mode

Figure 2-9 IOSB Contents - Write Function

2-24

TERMINAL DRIVER

0 speed status

0 parity flags
LF fill

I
CR fill

count count

Figure 2-10 IOSB Contents - Set Mode and
Set Characteristic Functions

Status

SS$_PARTESCAPE

SS$_BADESCAPE

SS$_CONTROLO

Table 2-10
Terminal QIO Status Returns

Meaning

Successful completion. The operation
specified in the QIO was completed
successfully. On a read or write
operation, the second word of the IOSB
can be examined to determine the number
of bytes processed. The input or output
buffer contains these bytes.

Operation timeout. The specifi~d
terminal could not perform the QIO read
operation because a timeout occurred at
the terminal, that is, an interrupt was
lost, or IO$M TIMED was specified on a
read operation (see Table 2-5), or a
hardware timeout occurred •

. The operation was canceled by the Cancel
I/O on Channel ($CANCEL) system service.

Partial escape sequence was stored. An
escape sequence was started but
read-buffer space was exhausted before
the sequence was completed. The
remainder of the sequence is available
from the type-ahead buffer on the next
read unless the terminal line has the
TT$M NOTYPEAHD characteristic (see
SectIon 2.2.4).

Invalid escape sequence terminator
begins at the offset (IOSB+2).

write operation not completed because
(CTRL/O) was typed.

(Continued on next page)

2-25

Status

SS$_CONTROLC

SS$_CONTROLY

SS$_PARITY

TERMINAL DRIVER

Table 2-10 (Cont.)
Terminal QIO Status Returns

Meaning

Read and write operation
because (CTRL/C) was typed.

Read or write operation
because (CTRL/Y) was typed.

not completed

not completed

Parity bit mismatch detected by the
device interface during a read
operation. The I/O operation stopped
when the mismatch was detected. (Data
was received up to this point in the
operation.) SS$ PARITY is meaningful
only on terminal Tines that have parity
enabled.

2.6 PROGRAMMING EXAMPLE

The following program shows examples of several I/O operations, using
mailboxes, direct cursor addressing, and ASTs. The program
illustrates some important concepts concerning terminal driver
programming: creating a mailbox, assigning a terminal channel,
associating the mailbox to the channel, and enabling unsolicited input
ASTs and CTRL/C ASTs.

Initially, the program uses direct cursor addressing to write a
message on the terminal screen and then hibernates, that is, enters a
wait mode. The user then types an entry on the keyboard. The
terminal driver sends notice of, this unsolicited input to the mailbox
associated with the terminal channel and the program is wakened by a
mailbox AST. The AST routine reads the mailbox, reads the channel,
prints the message, and hibernates again. If the typed character is a
~TRL/0 the CTRL/C AST routine is entered and a different message is

printed. Section 7.5 shows another example of mailbox programming •

• TITLE TER~I~AL DRIVER PROGRAMMING EXAMPLE
.IDENT 1011

DEFINE NECESSARY SYMROLS

SIODEF ;DEFINE 110 FUNCTION CUDES

Allocate storage for necessary data structures

f'irst we have the message that is printed out upon receipt of unsolicited

AST_MESSAGE:
.BYTE 27,72,21,74 ;Home,and clear to end ot screen
.AYTE 216A9,42,S4 ;Set X 10 lines down Y to 22
.HYTE 0, sO'OCo,O ;Some nulls as fillers
.ASCII "U'~ nLI I TED INPUT RECEIVED"

;Define size of message

Now we hove the control Cast message which gets printed every time
that someone types control C.

10 13 ~Llne feed carriage return
"y6u HAVE TYPED CONTROL e" ;Message

;Line feed carriaQe return
;Define length of message

2-26

lines

input

across

TERMINAL DRIVER

NOW we must allocate some space for the mail

BUXBUFF:.ALKW 20
BOXBUFFSIZE=.-AOXBUrr

;Allocate space for mail
;Detine length of mailbox

! Allocate device name string and descriptor ,
UJ:;VIC(:;_DESCR:

.LUNG

.LO~G
10$: • ASe I I
20$: .

20S-10S
lOS
"PRINTER_I"

:Length of name string
;Address ot name string
:Name string
;Reference label

! Allocate space to store assigned channel number ,
UJ:;VICE_CHAN"IEL:

.ALI(W

~ow allocate space for the terminal input buffer

INPUT_MUFfEH: .BLKB 1 ;Reply in 1 byte please
;Uefine buffer size I NBlJFL"~NGTH=. - IfJI--UT_BUFFI::H

Now we have the initial prompt message

l'HOMPT_MESSAGE: .
;Home+clear to end of screen
;Prompt question :R~~II ~lR~2Y~~'t~EHE?

PHOMPTSIZE=.-PROMPT_MESSAGE ;Oefine message size

NOW allocate mailbox name string and descriptor

tWXNAME: .LO~G
.LONG
.ASCII

ENDBUX-NAMEI.WX
NA~EBOX
"146_MAIN_ST"

;Length of mailbOX string
;Address ot mbx string
;Name string NAMl::iWX:
;Reference label EN080X:

; Allocate space to store assiqned channel number
,
MAILBUX_CHAr-I: .BLKw ;Channel number goes_here

Program startinq point. Initially a mailbox Is created,then a channel
with an ~ssoclated mailbOX is assigned to the terminal. A prompt message
is printed to the terminal and both control C and unsolicited input AST
recognition Is enabled. The program then hibernates unt 1 a key IS struck

START: .WORD 0
SCHEMAX_S CHAN=MAILBOX_CHAN,­

PROMSK=,AXOOOO,­
BUFQUO=,AX0060,·
MAXMSG=,AX0060,­
LOGNAM=BOXNAME

CMPW .SSS_NORMAL,RO
BSBW ERROR_CHECK
SASSIGN_S DEVNAM=DEVICE_DESCR,­

CHAN=DEVICE_CHANNEL,·
MBX~AM=BOXNAME

CMPW 'SS$_~ORMAL,RO
BSBW ERROR_CHECK

;Entry mask
;Channel is mailbOX
;No protection
;Buffer quota is hex 60

;Logical name descriptor
;Directive OK?
;Find out
~AsSign channel
;Associated mailbox descriptor address
;tHrective OK?
;Find out

Specify an ast for wake up and control C delivery

HSBW
BSBW

WAKEUPASTGEN
I::NARLE_CTRLCAST

;Set up unsolicited input recognItIon
;And control C recognition

NOW do a write of the prompt message

SQIOW S CHAN=DEVICE_CHANNEL· ;Channel
- FUNC=.IOS_WRITEVBLK!IOSM_ENABLMBX,- 1Function is write vIrtual

Pl=PROMPT_MESSAGE,·- ;Buffer
P2='PRO~PTSIZE ;Size of buffer

CMPw #SSS_NORMAL,RO ;Directlve OK?
BSB~ ERROR_CHECK ;flnd out
SHIBER_S ;Hibernate until awoken

This 15 the unsolicited input AST entry point

ASTWAKEUP::
.WORD
SOIOW_S

CMPW
BSBw

o
FIJNC=.IO$_WRITEVBLK,·
CHAN=DEVICE_CHANNEL,­
Pl=AST_MESSAGE •
P2=_AST_MSG_SIZE
.SS$_NORMAL,RO
ERROR_CHECK

2-27

Entry maSK
Function = wrIte physical
To device_Channel
Pl=buffer containIng ,the AST message
P2=slze of message
Directive OK?
Find out

TERMINAL DRIVER

Now get the moan

SOIOW_S fUNC='IOS~PEAUVBLK!lUSM_NUW,- ;Head box now!
CHAN=~AILBOX_CHAN,· ;Channel=mailbox

CMPW
BSBW

PI=BOXBUFF -
P2=.ROXBUFFSIZE
#SSS_NORMAL,PO
ERROR_CHECK

;Where to read it
;How mUCh
;Uirective UK?
; fo"ind out

~ormallY the mailbox data is decoded 'at this point to determine
Which terminal sent the wake up AST. This will be omitted
From this example sinCe there is only one terminal involved.
The terminal which has the input is now read

CMPW
BSBW
BSBW
RET

CHAN=DEVICE_CHANNEL - ;Read terminal
FUNC=~IOS_READVBLK!lOSM_NOECHU,- ;Read
PI=INPUT_BUFFER,- ;where to read
P2=.INBUFLENGTH ;How much
#SSS_NORMAL,RO ;Directive UK?
ERROR_CHECK ;Find out
wAKEUPASTGEN ;Re-enable AST

;And return

This is where we come upon receipt ot a ~C AS!

terminal with no echo
it

awareness

CTRLCAST::
.WORD
BSBW
SQIOW_S

o
ENABLE_CTRLCAST
CHAN=DEVICE_CHANNEL,­
fUNC=.IOS_WRITEVBLK,­
PI =CTRII_C_MSG 1.­
P2=.CTRL_C_MSu_LEN
#SSS_NORMAL,RO
ERROR_CHECK

;Entry mask
;Re-enable ~C recognition
;Type out message to:device_channel
;Write virtual

CMPW
BSBW
RET

;Where message is
;Length ot it
;Directlve OK?
;find out
;Return

This subroutine sets up the mailbox to deliver an AST to the
User proqram upon receipt of a message.
The AST has to be re-enabled after each AST has been processed.

wAKEUPASTGEN::
C~AN=MAIL80X_CHAN - ;Mallbox Channel SQIOw_S

CMPW
RSHw
RSB

FUNC=.IOS_SETMODEIIOSM_WHTATTN,- iSet mode function
Pl=ASTWAKEUP,- ;Entry point ot AST service
P2=#~XOFfFF ;AST parameter
#SSS_NORMAL,RO ;Directive OK?
ERROR_CHECK ;find out

;And return

This is where we enable ~C AST delivery

ENA8LE_CTRLCAST:: , sorow_s CHAN=DEVICE_CHANNEL,- ;Channel=device_channel
FUNC=lfIO$_SETMUDE! IO$M_C RLCAST, - ; Function is "C AST
PI=CTRLCAST,- Address of AST routine
P2=."XOFADE,- AST parameter
P3=.3 User mode

CMPW 'SSS_NORMAL,RO Directive UK?
BSRW r.RROR_CHECK Find out
RSB Go back

~ .
, T~is is the error checking part of the program. Normally some kind
; Of recovery would be attempted but not for this example.
;

ERROR_CHECK:
BNEQ
RSH

EXIT: RET
EXIT

.END START

8ranch if directive failed
Else return
Return

2-28

CHAPTER 3

DISK DRIVERS

This chapter describes the use of the VAX/VMS disk drivers. These
drivers support the devices listed in Table 3-1. and-detailed in·
Section 3.1.

Model Type* RPM

RM03 Pack 3600

RP05 Pack 3600

RP06 Pack 3600

RK06 Cart 2400

RK07 Cart 2400

Table 3-1
Disk Devices

Surfaces Cylinders

5 823

19 411

19 815

3 411

3 815

*Pack = pack disk; Car~ = cartridge disk

3.1 SUPPORTED DISK DEVICES

Bytes/
Track Drive

16,384 67,420,160

11,264 87,960,576

11,264 174,423,040

11,264 13,888,512

11,264 27,550,480

The following sections provide greater detail on each of the disk
devices listed in Table 3-1.

3.1.1 RH03 Pack Disk

The RM03 pack disk is a removable, moving head disk that consists of
five data surfaces. The RM03 is connected to the system by a MASSBUS
adapter (MBA). Up to eight drives can be connected to each MBA.

3.1.2 RP05 and RP06 Pack Disks

The RP05 and RP06 pack disks consist of 19 data surfaces and a moving
read/write head. They offer large storage capacity and rapid access
time. The RP06 pack disk has nearly twice the capacity of the RP05.
These disks are connected to the system by an MBA. Up to eight drives
can be connected to each MBA.

3-1

DISK DRIVERS

3.1.3 RK06and RK07 Cartridge Disks

The RK06 cartridge disk is a removable, random-access, bulk-storage
device with three data surfaces. The RK07 is a double-density RK06.
The RK06 and RK07 are connected to the system by an RK6ll controller
which interfaces to the UNIBUS adapter (UBA). The subsystem is
expandable to eight drives and is suitable for medium- to large-scale
systems.

3.2 DRIVER-FEATURES AND CAPABILITIES

The VAX/VMS disk drivers provide the following capabilities:

• Multiple ~ontrollers of the same type~ for example, more than
one ,MBA or RK6ll can be used on the system

• Up to eight drives per controller

• Different types of drive on a single controller (MBA only)

• Overlapped seeks

• Data checks on a per-request, per-file, and/or per-volume
basis

• Full recovery from power failure for on-line drives with
volumes mounted

• Extensive error recovery algorithms~ for example, error code
correction and offset

• Dynamic, as well as static, bad block handling

• Logging of device errors in a file that can be displayed by
field service personnel or customer personnel

• On-line diagnostic support for drive level diagnostics

• Multiple block, noncontiguous, virtual I/O operations ,at the
driver level

The following sections describe the data check, overlapped seek, and
error recovery capabilities in greater detail.

3.2.1 Data Check

A data check is made after successful completion of a read or write
operation, and compares the data in memory with the data on disk to
make sure they match.

Disk drivers support data-checks at three levels:

• Per request -- users can specify the data check function
modifier (IO$M DATACHECK) on a read logical block, write
logical block, read virtual block, write virtual block, read
physical block, or write physical block I/O operation.

3-2

DISK DRIVERS

• Per volume -- users can specify the characteristics "data
check all reads" and/or "data check all writes" when the
volume is mounted. The VAX/VMS Command Language User's Guide
describes volume mounting and dismounting.

• Per file -- users can specify the file access attributes "data
check on read" or "data check on write." File access
attributes are specified when the file is accessed. Chapter 9
of this manual and the VAX-II Record Management Services
Reference Manual describe file access.

Offset recovery is performed during a data check but Error Code
Correctable (ECC) correction is not (see section 3.2.3). This means
that if a read operation is perf~rmed and an ECC correction applied,
the data check would fail even though the data in memory is correct.
In this case, the driver returns a status code indicating that the
operation was successfully completed, but that the data check could
not be performed because of an ECC correction.

Data checks on read operations are extremely rare and users can either
accept the data as is; treat the ECC correction as an error; or
accept the data, but immediately move it to another area on the disk
volume.

3.2.2 Overlapped Seeks

A seek operation involves moving the disk read/write heads to a
specific place on the disk without any transfer of data. All transfer
functions, including data checks, are preceded by an implicit seek
operation (except when the seek is inhibited by the physical I/O
function modifier IO$M INHSEEK). Seek operations can be overlapped.
That is, while one -drive performs a seek operation, any number of
other drives can also perform seek operations.

During the seek operation, the controller is free to perform transfers
on other units. Thus, seek operations can also overlap data transfer
operations. For example, at anyone time, seven seeks and one data
transfer could be in progress on a single controller.

This overlapping is possible because, unlike I/O transfers, seek
operations do not require the controller once they are initiated.
Therefore, seeks are initiated before I/O transfers and other
functions that require the controller for extended periods.

3.2.3 Error Recovery

Error recovery in VAX/VMS is aimed at performing
operations to successfully complete an I/O operation.
operations fall into four categories:

• Handling special conditions such as power
interrupt timeout

• Retrying nonfatal controller and/or drive errors

• Applying error correction information

all possible
Error recovery

failure and

e Offsetting read heads to try to obtain a stronger recorded
signal

3-3

DISK DRIVERS

The error recovery algorithm uses a combination of these four types of
error recovery operations to complete an I/O operation.

Power failure recovery consists of waiting for mounted drives to spin
up and come on line followed by a re-execution of the I/O operation
that was in progress at the time of the power failure.

Device timeout is treated as a nonfatal error. The operation that was
in progress when the timeout occurred is re-executed up to eight times
before a timeout error is returned.

Nonfatal controller/drive errors are simply re-executed up to eight
times before a fatal error is returned.

All normal error recovery (nonspecial conditions) can be inhibited by
specifying the inhibit retry function modifier (IO$M INHRETRY). If
any error occurs and this modifier is specified, the virtual, logical,
or physical I/O operation is immediately terminated, and a failure
status is returned. This modifier has no effect on power failure and
timeout recovery.

3.3 DEVICE INFORMATION

Users can obtain information on all disk device characteristics by
using the $GETCHN and $GETDEV system services (see Section 1.10). The
disk-specific information is returned in the first three longwords of
a user-specified buffer, as shown in Figure 3-1 (Figure 1-8 shows the
entire buffer).

31 1615 8 7 o

device characteristics

buffer size type class

cylinders tracks sectors

Figure 3-1 Disk Information

Table 3-2 lists the device characteristics returned in the first
longword.

3-4

DISK DRIVERS

Table 3-2
Disk Device Characteristics

Dynamic Bits 1
(Conditionally Set) Meaning

DEV$M_AVL Device is on line and available

DEV$M_FOR Foreign device

DEV$M_MNT Volume mounted

DEV$M_RCK Perform data check all reads

DEV$M_WCK Perform data check all writes

Static Bitsl
(Always Set) Meaning

DEV$M_FOD File-oriented device

DEV$M_IDV Device is capable of input

DEV$M_ODV Device is capable of output

DEV$M_RND Device is capable of random access

DEV$M.SHR Device is shareable

1 Defin~d by the $DEVDEF macro.

The second longword contains ;information on the device class and type,
and the buffer size. T.hedevice class for disks is DC$_DISK and the
device types are:

Device Type Disk

DT$_RM03 RM03

DT$_RP05 RP05

DT$_RP06 RP06

DT$_RK06 RK06

DT$_RK07 RK07

THE $DCDEF macro defines the device type and class names. The buffer
size is the default to be used for disk transfers (this default is
normally 512 bytes).

The third longword contains information on the number of cylinders per
disk, the number of tracks per cylinder, and the number of sectors per
track.

3-5

DISK DRIVERS

3.4 DISK FUNCTION CODES

VAX/VMS disk drivers can perform logical, virtual, and physical I/O
functions.

Logical and physical I/O functions allow access to volume storage and
require only that the issuing process have access to the volume.
Virtual I/O functions require intervention by an Ancillary Control
Process (ACP) and must be executed in a prescribed order. The normal
procedure is to create a file and access it. Information is then
written to the file and the file is deaccessed. The file is
subsequently accessed, the information is read, and the file is
deaccessed. The file is deleted when the information it contains is
no longer useful.

Any number of blocks (up to a maximum of 65K bytes) can be read or
written by a single request. The number itself has no effect on the
applicable quotas (direct I/O, buffered I/O, and AST). Reading or
writing 1 block or 10 blocks subtracts the same amount from the quota.

The volume to which a logical or virtual function is directed must be
mounted in order for the function to actually be executed. If it is
not mounted, either a device not mounted or invalid volume status is
returned in the I/O status block.

Table 3-3 lists the logical, virtual, and physical disk I/O functions
and their function codes. These functions are described in more
detail in Appendix A. Chapter 9 describes the QIO level interface to
the disk device ACP.

3-6

Function Code and
Arguments

10$ CREATE PI,[P2],-
- [P3],[P4],[P5]

IO$_ACCESS PI,[P2],­
[P3], [P4], [P5]

10$ DEACCESS PI,[P2],-
- [P3],[P4],[P5]

10$ MODIFY PI,[P2],-
- [P3],[P4],[P5]

10$ DELETE PI,[P2],-
- [P3],[P4],[P5]

IO$_READVBLK PI,P2,P3

IO$_READLBLK PI,P2,P3

IO$_READPBLK PI,P2,P3

IO$_WRITEVBLK PI,P2,P3

IO$_WRITELBLK PI,P2,P3

IO$_WRITEPBLK PI,P2,P3

IO$_SETMODE PI

IO$_SETCHAR PI

DISK DRIVERS

Table 3-3
Disk I/O Functions

Type 1 Funct ion Function
Modifiers

V IO$M CREATE
IO$M-ACCESS
IO$M:DELETE

Create a directory
entry or a file

V IO$M CREATE
IO$M:ACCESS

Search a directory
for a specified file
and access the file
if found

V

V

V

v

L

P

v

L

P

L

P

IO$M_DELETE

Deaccess a file and,
if specified, write
final attributes
in the file header

Modify the file
attributes and/or
allocation.

Remove a directory
entry and/or file I

header

IO$M DATACHECK Read virtual block
IO$M:INHRETRY

IO$M DATACHECK Read logical block
IO$M:INHRETRY

IO$M DATACHECK Read physical block
IO$M-INHRETRY
IO$M=)NHSEEK

IO$M DATACHECK write virtual block
IO$M:INHRETRY

IO$M DATACHECK write logical block
IO$M:INHRETRY

IO$M DATACHECK write physical block
IO$M-INHRETRY
IO$M:INHSEEK

Set disk character­
istics for subse­
quent operati.ons

Set disk character­
istics for subse­
quent operati.ons

1 V = virtual; L = logical; P physical

3-7

DISK DRIVERS

The function-dependent arguments for 10$ CREATE,
IO$_DEACCESS, IO$_MODIFY, and IO$_DELETE are: -

• PI the address of the File Information Block (FIB)
descriptor.

• P2 the address of the file name string descriptor
(optional). If specified, the name is entered in the
directory specified by the FIB.

• P3 -- the address of the word that is to receive the length of
the resulting file name string (optional).

• P4 -- the address of a descriptor for a buffer that is to
receive the resulting file name string (optional).

• PS the
(optional).
(10$ ACCESS)
IO$_MODIFY) •

address of a list of attribute descriptors
If specified, the indicated attributes are read
or written (IO$_CREATE, IO$_DEACCESS, and

The function-dependent arguments for IO$_READVBLK,
IO$_WRITEVBLK, and IO$_WRITELBLK are:

IO$_READLBLK,

• PI -- the starting virtual address of the buffer that is to
receive the data in the case of a read operation; or, in the
case of a write operation, the virtual address of· the buffer
that is to be written on the disk.

• P2 -- the number of bytes that are to be read from the disk,
or written from memory to the disk. An even number must be
specified if the controller is an RK6ll.

• P3 -- the starting virtual/logical disk address of the data to
be transferred in the case of a read operation; or, in the
case of a write operation, the disk address of the area that
is to receive the data.

In a virtual read or write, the address is expressed as a
block number within the file, that is, block 1 of the file is
virtual block 1. (Virtual block numbers are converted to
logical block' numbers via mapping windows set up by the file
system ACP process.)

In a logical read or write, the address is expressed as a
block number relative to the start of the disk. For example,
the first sector on the disk contains (at least the beginning
of) block o.

The function-dependent arguments for IO$_READPBLK and IO$_WRITEPBLK
are:

o PI -- the starting virtual address of the buffer that is to
receive the data in the case of a read operation; or, in the
case of a write operation, the starting virtual address of the
buffer that is to be written on the disk.

• P2 -- the number of bytes that are to be read from the disk,
or written from memory to the disk. An even number must be
specified if the controller is an RK6ll.

3-8

DISK DRIVERS

• P3 -- the starting physical disk address of the data to be
read in the case of a read operation; or, in the case of a
write operation, the starting physical address of the disk
area that is to receive the data. The address is expressed as
sector, track, and cylinder in the format shown in Figure 3-2.

31 16 15 8 7 0

P3: ,--I ___ C_Ylin_der ___ L--I _t_rack __ Il.....--_se_ctor_----J1

Figure 3-2 Starting Physical Address

The function dependent
IO$_SETCHAR is:

argument for IO$_SETMODE and

• PI the address of a quadword device characteristics
descriptor

3.4.1 Read

This function reads data into a specified buffer from disk starting at
a specified disk address.

VAX/VMS provides three read function codes:

• IO$_READVBLK - read virtual block

• IO$_READLBLK - read logical block

• IO$_READPBLK - read physical block

If a read virtual block function is to a volume that is mounted
foreign, it is converted to a read logical block function. If a read
virtual block function is to a volume that is mounted structured, it
is handled in the normal manner for a file-structured device.

Three function-dependent arguments are used with these codes: PI, P2,
and P3. These arguments were described above, in the beginning of
Section 3.4.

The data check function modifier (IO$M DATACHECK) can be used with all
read functions. If this modifier is specified, a data check operation
is performed after the read data operation has been completed. A data
check operation is 'also performed if the volume read, or the volume on
which the file resides (virtual read), has the characteristic "data
check all reads." Furthermore, a data check is performed after a
virtual read if the file has the attribute "data check on read."

The inhibit retry function modifier (IO$M INHRETRY) can be used with
all read functions. If this modifier is specified, all error recovery
attempts are inhibited. IO$M INHRETRY takes precedence over
IO$M DATACHECK. If both are specified and an error occurs, there is
no attempt at error recovery and no data check operation is performed.
If an error does not occur, the data check operation is performed.

3-9

DISK DRIVERS

3.4.2 Write

This function writes data from a specified buffer to disk starting at
a specified disk address.

VAX/VMS provides three write function codes:

• IO$_WRITEVBLK - write virtual block

• IO$_WRITELBLK - write logical block

• IO$_WRITEPBLK - write physical block

If a write virtual block function is to a volume that is mounted
foreign, it is converted to a write logical block function. If a
write virtual block function is to a volume that IS mounted
structured, it is handled in the normal manner for a file-structured
device.

Three function-dependent arguments are used with these codes: PI, P2
and P3. These arguments were described above, in the beginning of
Section 3.4.

The data check function modifier (IO$M DATACHECK) can be used with all
write functions. If this modifier- is specified, a data check
operation is performed after the write data operation has been
completed. A data check operation is also performed if the volume
written, or the volume on which the file resides (virtual write), has
the characteristic "data check all writes." Furthermore, a data check
is performed after a virtual write if the file has the attribute "data
check on write."

The inhibit retry function modifier (IO$M INHRETRY) can be used with
all write functions. If this modifier is specified, all error
recovery attempts are inhibited. IO$M INHRETRY takes precedence over
IO$M DATACHECK. If both are specified and an er.ror occurs, ther.e is
no attempt at error recovery and no data check operation is performed.
If an error does not occur, the data check operation is performed.

3.4.3 Set Mode

Set mode operations affect the operation and
associated disk device. VAX/VMS defines
functions:

• Set Mode

• Set Characteristic

characteristics of the
two types of set mode

3.4.3.1 Set Mode - The Set Mode function affects the operation and
characteristics of the associated disk device. Set Mode is a logical
I/O function and requires the access privilege necessary to perform
logical I/O. A single function code is provided:

• IO$_SETMODE

This function takes the following device/function dependent argument
(other arguments are not valid):

• PI -- the address of characteristics buffer

3-10

DISK DRIVERS

The PI argument points to a quadword block shown in Figure 3-3.

31 16 15 o

buffer size I not used

disk characteristics

Figure 3-3 Set Mode Characteristics Buffer

The buffer size is the default to be used for disk transfers (this
default is normally 512 bytes). Disk characteristics are listed in
Table 3-2.

3.4.3.2 Set Characteristic - The Set Characteristic function affects
the characteristics of the associated disk device. Set Characteristic
is a physical I/O function and requires the access privilege. necessary
to perform physical I/O functions. A single .func.tion code is
provided:

• IO$_SETCHAR

This function takes the following device/function dependent argument
(other arguments are not valid):

• PI -- the address of characteristics buffer

The PI argument points to a quadword block as.shown in Figure 3-4.

31 1615 8 7

buffer size I type I class

disk characteristics

Figure 3-4 Set Characteristic Buffer

The device class for disks is DC$ DISK.
characteristics are listed in Section 3.3.~

3-11

Disk

0

type.s and

DISK DRIVERS

3.5 I/O'STATUS'BLOCK

Figure 3-5 shows the I/O ,'status block (IOSB) for disk device QIO
functions. Table 3-~,lists the status returns for these functions.

31

*0 for disk devices

Status

SS$_CTRLERR

SS$_DATACHECK

SS$_DRVERR

16 15 o

byte count I status

device-dependent data *

Figure 3-5 IOSB Content

Table 3-4
Status Returns for Disk Devices

Meaning

Successful completion of the operation
specified in the QIO request. The second word
of the IOSB can be examined to determine the
actual number of bytes transferred to or from
the buffer.

Controller-related error.
more of the following
this error:

• Late data
• Error confirmation
• Invalid map register
• Interface timeout
• Missed transfer
• Programming error
• Read timeout

For example, one or
conditions can cause

Data check error. A mismatch between the data
in memory and the data on disk was detected
during a data check operation (see Section
3.2.1) •

Drive-related error.
of the following
error:

For example, one or more
conditions can cause this

• Driver ~iming error
• Illegal function
• Illegal register
• Operation incomplete
• Register modify refused
• write clock failure

(continued on next page)

3-12

Status

DISK DRIVERS

Table 3-4 (Cont.)
Status Returns for Disk Devices

Meaning

Format error. Format specified by driver does
not correspond to format as specified in
sector headers. Disk has been formatted for
another computer, such as, DECsystem-2D.

Invalid disk address error~ Either an invalid
starting disk address or a disk address that
was incremented causes this error. This error
occurs for physical read and write operations
or as the result of a hardware error.

Medium off line. The addressed drive
currently does not have a volume mounted and
on line.

Nonexistent drive. The addressed drive does
not exist or the drive select plug has been
removed.

Parity error. For example, one or more of the
following conditions can cause this error:

• Drive parity error
• ECC hard error
• Header compare error
• Map parity error
• Header CRC error
G MASSBUS control parity error
• MASSBUS data parity error

Drive unsafe. The addressed drive is
currently unsafe and cannot perform any
operation as the result of a hardware erro~.

Volume invalid. The addressed drive has not
been mounted and therefore does not have
volume valid set, or a status change has
occurred in the drive so that it has changed
to an unknown, and therefore, invalid state.
All logical and virtual functions will be
refected with this status until volume valid
is set. Volume valid is set when a volume is
mounted and cleared when the volume is
unloaded, the respective drive changes to an
unknown state, or the power fails. The driver
automatically sets volume valid when the
proper volume is mounted and/or power is
restored.

Data check not performed. The function was a
read data that was completed successfully by
applying one or more ECC corrections. The
specified data check, however, was not
performed.

Write lock error. An attempt was
write on a write locked drive.
hardware write protected.

3-13

made to
Volume is

DISK DRIVERS

3.6 PROGRAMMING EXAMPLE

The following program provides an example of optimizing access time to
a disk file. The program creates a file using VAX-II RMS, stores
information concerning the file, and closes the file. The program
then accesses the file and reads and writes to the file using the
Queue I/O system service •

• TITLE Dis~ Driver Programming ~xample
.IUENT 1011

Define necessary symbols

$FIRD~F
SIODEF
SRMSDEF

Local storage

;Uefine File Information Block Offsets
;Uefine 110 function codes
;Uefine HHS-32 Return Status Values

Define number of records to be processed

NUM_RECS=100 ;One hundred records

Allocate storage for necessary data structures

Allocate File Access Bloc~
A file access block is required by RMS-32 to open and close a file.

fAB_BLUCK: ;
;lnitial file size is to be 100 bloc~s
;Flle Access Type is output

SFAB ALQ = 100,-
~~~ ~ ~¥lE:NAME,-
fNS = FILE_SIZE,­
FOP = CTG,-
MRS = 512,-
NA~ = NAM_BLOCK,­
ORG = SEQ,-
RFM = FIX 

Allocate file information bloc~ 

;file name string address 
;flle name string size 
;File is to be contiguous 
;Max1mum record size is 512 bytes 
;F1le name bloc~ address 
;F1le organization is to be sequential 
:Hecord format is fixed length 

A file information bloc~ is requ1red as an argument in the Queue 1/0 
system service call that accesses a file. 

l'l.B_BLUCK: 
.HLKB 

Allocate tile information bloc~ descriptor 

~'lB_DESCR : 
.LONG 
.LONG 

;. 

fIBSK_LENGTH 
FIB_BLOCK 

;Length of file information block 
;Address of file information block 

~ Allocate File Name Block 
A file name bloc~ is required by RMS-32 to return information concerning 
a file (e.g. the resultant filename string after logical name translatIon 
and defaults have been applied). 

, 
~ 
~ 
~ , 
NAM_BLOCK: 

SNAM 

Allocate Record Access Block 
A record access block is required by RMS-32 for record operatIons on.a 
file. 

HAB_BLUCK: 
SRAB fo'AB 

RAC 
RBf 
RSZ 

= FAa_BLOCK,-
~ ~~g6RU_BUfFEH,-
= 512 

Allocate· direct access buffer 

BLOCK_BUFFER: 
.BLKB 1024 

;File access block address 
;Record access is to be sequential 
;Hecord buffer address 
;Record buffer size 

;Oirect access buffer is 10~4 bytes 

Allocate space to store channel number returned by the Assign Channel system 
service 

3-14 



DISK DRIVERS 

DEVICE_CHANNEL: 
.BLKW . 

~ ~ Allocate device n~me string and descriptor , 
DEVIC~_DESCR: 

.LONG 

.LONG 
20$-10S 
lOS 
ISYSsnrSKI 

;Length of devIce name strIng 
;Address ot device name strIng lOS: .ASCII 
;~evlce on whIch created tIle wIll resIde 
;Reterence label to calculate length 20$: 

! Allocate file name string and define strIng length symbol , 

FIL~_NAME: 
.ASCII ISYS$DISK:MYDATAfIL.DAT/';Flle ,name strIng 

FIL~_SIZE=.-FILE_NAME ;File name strIng length 
o , 
~ Allocate 110 status quadword storage , 
10_STATUS: 

.BLKQ 

Allocate output record bufter 

R~CORD_BUFFER: 
.BLKS S12 ;Record buffer is 512 bytes 

, 
~ Program starting point 
~ ~ The general logic of the program is to create a file called MYDATAFIL.DAT 
'0' using RMS-32 1 store information concerning" the fIle, write 100 records each 
, ot wnich contains its record numDer in every byte, close the tIle, and then 
;0 access and read and wrIte the file directly using the Queue 1/0 system servIce. 
'0 It any errors are detected6 the program returns to its caller wIth the tinal 
, error status in reqlster R • ' 
; 

.ENTRY DISK_EXAMPLE,-M(R2,R3,R4,RS,R6> ;Program startIng address 

FIrst create the file and open it usIng RMS-32 

$C~£ATE FAR = FAB_BLOCK 
BLBC RO,20$ 

;first part of example 
;Create and open fIle 
;It low bit clear, creation failure 

Second connect the record access blOCK to the created file 

SCONNECT RAS = RAB_BLOCK 
ALBC RO,30s 

;Connect the record access blOCK 
;It low bit clear, connectIon failure 

NOW write 100 records each containing its record number 

;Set record write loop count 

Fill each byte of the record to De written with its record number 

lOS: SURB3 

MOVCS 
R6,#NUM_RECS+l,R~ ;Calculate record number 

_O,(R6),R5,_512,R~CORD_BUFFER ;FIll record bufter 

Next write the record Into the newly created file usIng RMS-32 

SPUT 
BLBC 
SOBGTR 

RAB = RAB_BLOCK 
RO,30S 
R6,10S 

;Put record in file 
;If low bit clear, put failure 
;Any more recordS to wrIte? 

The file creation part of the example is almost complete. All that remains to 
be done is to store the tIle information returned by RMS-32 and close the tIle. 

20$: 

MOVW 
MOVW 
MOVW 
SCLOSE 
BLBS 
RET 

NAM_BLOCK+NAMSW_FID,FIB_BLOCK+FIBSW_FID 60save fIle IdentifIcatIon 
NAM_BLOCK+NAMSW_~'lD+2,FIB_BLOCK+FIB$W_Fr +2 ;Save seguence number 
NAM_BLOCK+NAMSW_FID+4,flB_BLOCK+FIBSW_FlD+4 ;Save relative volume 
FAB = FAB_BLUCK ;Close tIle 
RO,PART_2 ;It low bit set! successful close 

;Return wIth RM~ error status 

3-15 



DISK DRIVERS 

Record stream connection or put record failure 

Close file and return status 

30S: PUSHL 
SCLOSE 
POPL 
RET 

RO 
FAB = FAB_BLUCK 
RO 

:Save error status 
;Close tile 
;Retrieve error status 
;Return WIth RMS error status 

The second part of the example illustrates accessing the previously created 
tile airectly using the Queue l/U system service, randomly reading and writing 
various parts of the file, and then deaccessing the file. 

~'irst assiqn a channel to the appropriate device and access the file 

10$: 

20S: 

SASSIGN_S DEVNA~ = DEVICE_D~SCR,~ ;Assign a channel to file device 
CHAN = DEVIC~_CHANNEL ; 

BLBC RO 20S ;If low bit clear, ~ssignment failure 
MUVL #FfBSM_NOWRITElflBSM_WRITE,- ;Set for read/w~ite access 

FIB_BLUCKtFIB$L_ACCTL ; 
SQto~_s CHAN = DEVICE_CHANN~L,- ;Access file on devic~ channel 

FUNC = #IOS_ACC~SS!IOSM_ACCESS,- ;1/0 function is access file 
IOSB = IO_STATUS,- ;Address of 110 status quadword 
P1 = FIB_DESCR ;Address of information block descriptor 

BLBC RO,10S ;If low bit clear, access failure 
MOVZWL IU_STATUS,RO ;Get tinal 110 completion status 

HLHS RO,30$ 
PUSHL RO 
$DASSGN_S CHAN = 
POPL RO 
RET 

;If low bit set, successful 110 function 
;Save error status 

DEV1C~_CHANN~L ;Deassign file device channel 
;Retrieve error status 
;Return with 110 error status 

The tile is now ready to be read and written randomly. Since the records are 
fixed length and exactly one block long, the record number corresponds to the 
virtual block number ot the record in the file. ThUS a particular record can 
be read or written simply by specifying its record number in the file. 

The tollowing code reads 2 records at a time and Checks to see that they contain 
their respective record numbers in every byte. The records are then written back 
1nto the flle In reverse order. This results In record 1 having the old contents 
of record 2 and record 2 the old contents of record 1 tetc. After the example 
has been run, it 1s suggested that the flle dump utili~y be used to verity this 
tact. 

30S: MOVZBL #1,R6 ;Set starting record (bloCk) number 

; Read next 2 records into block buffer 
; 

40S: 

HSBB 

CHAN 
FUNC 
1058 
P1 = 
P2 = 
P3 = 
50$ 

= D~VICE_CHANNEL,­= .IOS_READVBLK,­= IO_STATUS,­
ALOCK_BUFFER,­
'1024,-
R6 

;Read next 2 records from file channel 
;1/0 function is read virtual block 
;Address of 110 status quadword 
;Address of 110 but fer 
;Size ot 110 buffer 
;Starting virtual block of transfer 
;Check 110 completion status 

CheCK each record to make sure it contains the correct data 

SKPC 

ANEQ 
AODL3 

R6,.512,bLOCK_8UffER ;Sklp over equal record numbers in data 

60S ;If not equal, data match failure 
#1,R6,RS ;Calculate even record number 

SKPC 

B~EO 

R5,#512,BLUCK_~UFFERt512 ;Skip over equal record numbers in data 

60S 

Record data matches 

write records in reverse order in file 

SQIO~_S CHAN 
FUNC 
lOSB 
PI = 

DEVICE_CHANNEL,­
'IO$_WRIT~VBLK,­
IO_STATUS,-

LOCK_BUFfERtS12,-

;It not equal, data match failure 

Write even numbered record in odd slot 
1/0 function is write virtual block 
Address of 110 status quadword 
Address of even record buffer 

3-16 



DISK DRIVERS 

BSAB 
ADDL3 
SQIOW_S 

BSBB 
ACBB 

BRB 

P2 = #512,­
P3 = Rb 
50S 
U,R6,R5 

CHAN = D~VIC[_CHANN[L,­
FUNC = 'IOS_wRITEVBLK,-
~~S~ ~L~gK~~6~~~R:-
P2 = '512,-
P3 = R5 
50S 
.NIJM_RgCS-1,#2,H6,40S 

70S 

CheCK I/O completion status 

~O$: BLHC 
MOVZWL 
ALBC 
RSB 

RO,70$ 
IO_STATUS,RO 
RO,70$ 

Record number mismatch in data 

60$: MNEGL #4,RO 

;Length of even record buffer 
;Record number of odd record 
;Check I/U completion status 
;Calculate even record number 
;Write odd numbered record in even slot 
;1/0 function is write virtual block 
;Address of 110 status QuadwOrd 
;Address of odd record buffer 
;LenQth of odd record buffer 
;Record number of even record 
;Check I/O completion status 
;Any more records to be read? 

;It low bit clear, service failure 
;Get final I/U complet1on status 
:It low bit clear, I/O function failure , 

;Set dummy error status value 

All records have been read, verified, and odd/even pairs inverted 

70S: PUSHL RO 
SQIOW_S CHAN = DEVICE_CHANNEL,-

FUNC = #lOS_DEACCESS 
SDASSG~_S CHAN = DEVICE_CHANN~L 
POPL RO 
RET 
.END DISK_EXAM~LE 

Save final status 
De'access file 
1/0 function 1s deaccess t1le 
Deassign f1le dev1ce channel 
Retr1eve f1nal status 

3-17 





CHAPTER 4 

MAGNETIC TAPE DRIVER 

This chapter describes the use of the VAX/VMS magnetic tape driver. 
This driver supports the device listed in Table 4-1 and detailed in 
Section 4.1.1. 

No. of 
Model Tracks 

TE16 9 

Table 4-1 
Magnetic Tape Devices 

Recording Tape Max. data transfer 
density speed rate in bytes per 

(bpi) (ips) second 

800 or 45 36,000 (for 800 
1600 bpi): 72,000 (for 

1600 bpi) 

I NRZI = non-return-to-zero-inverted; PE = phase encoded. 

4.1 SUPPORTED MAGNETIC TAPE DEVICES 

Recording 
method 

NRZI or 
PEl 

The following section describes the TE16 magnetic tape drive in 
greater detail. 

4.1.1 TEl6 Magnetic Tape Drive 

The TE16 magnetic tape drive holds one 9-track reel with a capacity of 
40 million characters. The drive reads data at 45 inches per second 
with an average transfer time of 14 microseconds per byte at the 1600 
bpi density. 

4.2 DRIVER FEATURES AND CAPABILITIES 

The VAX/VMS magnetic tape drivers provide the following features: 

• Multiple master adapters and slave formatters 

• Different types of devices on a single MASSBUS adapter; for 
example, RP05 disk and TM03 tape formatter 

4-1 



MAGNETIC TAPE DRIVER 

• Reverse read and reverse data check functions 

• Data checks on a per-request, per-file, and/or per-volume 
basis 

• Full recovery from power failure for on-line drives with 
volumes mounted, including repositioning by the driver 

• Extensive error recovery algorithms; for example, 
non-return-to-zero-inverted (NRZI) error correction 

• Logging of device errors in a file that may be displayed by 
field service or customer personnel 

• On-line diagnostic support for drive level diagnostics 

The following sections describe master and slave controllers, and data 
check and error recovery capabilities in greater detail. 

4.2.1 Master Adapters and Slave Formatters 

VAX/VMS supports the use of multiple master adapters of the same type 
on a system. For example, more than one MASSBUS adapter (MBA) can be 
used on the same system. A master adapter is a device controller 
capable of performing and synchroriizing data transfers between memory 
and one or more slave formatters. 

VAX/VMS also supports the use of multiple slave formatters per master 
adapter on a system. For example, more than one TM03 Magnetic Tape 
Formatter per MBA can be used on a system. A slave formatter accepts 
data and/or commands from a master adapter and directs the operation 
of one or more slave drives. The TM03 is a slave formatter. The TE16 
Magnetic Tape Transport is a slave drive. 

4.2.2 Data Check 

A data check is made after successful completion of an I/O operation 
to compare the data in memory with that on the tape. After a write or 
read (forward) operation, the tape drive backspaces and then performs 
a write check data operation. After a read in the reverse direction, 
the tape drive forward spaces and then performs a write check data 
reverse operation. Magnetic tape drivers support data checks at three 
levels: 

• Per request -- users can specify the data check function 
modifier (IO$M DATACHECK) on a read logical block, write 
logical block, read virtual block, write virtual block, read 
physical block, or write physical block I/O function. 

• Per volume -- users can specify the characteristics "data 
check all reads" and/or "data check all writes" when the 
volume is mounted. The VAX/VMS Command Language User's Guide 
describes volume mounting and dismounting. 

• Per file -- users can specify the file attributes "data check 
on read" or "data check on write." File access attributes are 
specified when the file is accessed. Chapter 9 of this manual 
and the VAX-II Record Management Services Reference Manual 
describe file access. 

4-2 



MAGNETIC TAPE DRIVER 

4.2.3 Error Recovery 

Error recovery in VAX/VMS is aimed at performing 
operations to complete an I/O operation successfully. 
error recovery operations fall into two categories: 

• Handling special conditions such as power 
interrupt timeout 

• Retrying nonfatal controller and/or drive errors 

all possible 
Magnetic tape 

failure and 

The error recovery algorithm uses a combination of these two types of 
error recovery operations. 

Power failure recovery consists of waiting for mounted drives to be 
unloaded by the operator. When the drives are reloaded, the driver 
automatically spaces to the position held before the power failure. 
The I/O operation that was in progress at the time of the power 
failure is then re-executed. To solicit reloading of mounted drives, 
device not ready messages are sent to the operator console after a 
power failure. 

Device timeout is treated as a fatal error with a loss of tape 
position. A tape on which a timeout has occurred must be dismounted 
and rewound before the drive position can be established. 

Nonfatal controller/drive errors are simply re-executed up to 16 times 
before returning a fatal error. The tape is repositioned as necessary 
before each retry. 

All normal error recovery 
specifying the inhibit 
any error occurs and this 
immediately terminated, 
modifier has no effect on 

(nonspecial conditions) can be inhibited by 
retry function modifier (IO$M INHRETRY). If 
modifier is specified, the- operation is 
and a failure status is returned. This 
power failure and timeout recovery. 

Up to 16 extended inter record gaps can be written during the error 
recovery for a write operation. The writing of these gaps can be 
suppressed by specifying the inhibit extended inter record gap function 
modifier (IO$M_INHEXTGAP). 

4.3 DEVICE INFORMATION 

Users can obtain information on device characteristics by using the 
$GETCHN and $GETDEV system services (see Section 1.10). The 
information is returned in a user-specified buffer shown in Figure 
4-1. Only the first three longwords of the buffer are shown in Figure 
4-1 (Figure 1-8 shows the entire buffer). 

31 1615 8 7 o 

device characteristics 

buffer size I type I class 

device-dependent information 

Figure 4-1 Magnetic Tape Information 

4-3~ 



MAGNETIC TAPE DRIVER 

The device characteristics returned in the first longword are listed 
in Table 4-2. 

Table 4-2 
Magnetic Tape Device-Independent Characteristics 

Dynamic Bitsl 
(Conditionally Set) Meaning 

DEV$M_AVL Device is on line and available 

DEV$M_FOR Foreign volume 

DEV$M_MNT Volume mounted 

DEV$M_RCK Perform data check all r2ads 

DEV$M_WCK Perform data check all writes 

Static Bitsl 
(Always Set) Meaning 

DEV$M_FOD File-oriented device 

DEV$M_IDV Device is capable of input 

DEV$M_ODV Device is capable of output 

DEV$M_SQD Device is sequential access 

1 Defined by the $DEVDEF macro. 

The second longword contains information on device class and type, and 
the buffer size. The device class for tapes in DC$ TAPE. The device 
type is DT$_TEl6. -

The $DCDEF macro defines the device type and class names. The buffer 
size is the default to be used for tape transfers (this default is 
normally 2048 bytes). 

The third longword contains device-dependent information. Table 4-3 
lists this information. The $MTDEF macro defines the values listed., 

Table 4-3 
Device-Dependent Information for Tape Devices 

Value Meaning 

MT$M_LOST If set, the current tape position is unknown. 

MT$M_HWL If set, the 
write-locked. 

selected drive is hardware 

MT$M_EOT If set, an end-of-tape (EaT) condition was 
encountered by the last operation to move tape in 
the forward direction. 

(Continued on'next page) 

4-4 



MAGNETIC TAPE DRIVER 

Table 4-3 (Cont.) 
Device-Dependent Information For Tape Devices 

Value 

MT$V DENSITY 
MT$S=DENSITY 

MT$V FORMAT 
MT$S=FORMAT 

Meaning 

If set, a tape mark was encountered by the last 
operation to move tape. 

If set, a beginning-of-tape (BOT) marker was 
encountered by the last operation to move tape in 
the reverse direction. 

If set, all data transfers are performed with even 
parity. If clear (normal case), all data 
transfers are performed with odd parity. Only 
NRZI recording at BOO bpi can have even parity. 

Specifies the density at which all data transfer 
operations are performed. possible density values 
are: 

MT$K_PE_1600 

MT$K_NRZI_BOO 

Phase encoded, 1600 bpi. 

Non-return-to-zero-inverted, 
bpi. 

BOO 

Specifies the format in which all data transfers 
are performed. A possible format value is: 

MT$K_NORMALll Normal PDP-II form~t. Data bytes 
are recorded sequentially on tape 
with each byte occupying exactly 
one frame. 

4.4 MAGNETIC TAPE FUNCTION CODES 

The VAX/VMS magnetic tape driver can perform logical, virtual, and 
physical I/O functions. 

Logical and physical I/O functions to magnetic tape devices allow 
sequential access to volume storage and require only that the 
requesting process have direct access to the device. Virtual I/O 
functions require intervention by an ancillary control process (ACP) 
and must be executed in a prescribed order. The normal procedure is 
to create a file and access it. Information is then written to the 
file and the file is deaccessed. The file is subsequently accessed, 
the information is read, and the file is deaccessed. The file can be 
written over when the information it contains is no longer useful and 
the file has expired. 

Any number of bytes (up to a maximum of 65K) can be read from or 
written into a single block by a single request. The number of bytes 
itself has no effect on the applicable quotas (direct I/O, buffered 
I/O, and AST). Reading or writing any number of bytes subtracts the 
same amount from a quota. 

4-5 



MAGNETIC TAPE DRIVER 

The volume to which a logical or virtual function is directed must be 
mounted in order for the function to actually be executed. If it is 
not, either a device not mounted or invalid volume status is returned 
in the I/O status block. 

Table 4-4 lists the logical, virtual, and physical magnetic tape I/O 
functions and their function codes. These functions are described in 
more detail in the following paragraphs and in Appendix A. Chapter 9 
describes the QIO level interface to the magnetic tape device ACP. 

Table 4-4 
Magnetic Tape I/O Functions 

Function Code and Type l 
Arguments 

10$ CREATE Pl,[P2],- V 
- [P3],[P4],[P5] 

10$ ACCESS Pl,[P2],- V 
- [P3],[P4],[P5] 

10$ DEACCESS Pl,[P2],- V 
- [P3],[P4],[P5] 

10$ MODIFY Pl,[P2],- V 
- [P3],[P4],[P5] 

IO$_READVBLK Pl,P2 V 

IO$_READLBLK Pl,P2 L 

IO$_READPBLK Pl,P2 P 

IO$_WRITEVBLK Pl,P2 v 

IO$_WRITELBLK Pl,P2 L 

Function 
Modifiers 

IO$M CREATE 
IO$M=ACCESS 

IO$M CREATE 
IO$M:ACCESS 

Function 

Create a file 

Search a tape 
for a specified file 
and access the file 
if found and 
IO$M ACCESS is set. 
If tlie file is not 
found and IO$M CREATE 
is set, create-a file 
at end-of-tape 

Deaccess a file arid, 
if the file has been 
written, write out 
trailer records 

write user labels 

IO$M DATACHECK Read virtual block 
IO$M-INHRETRY 
IO$M:REVERSE 

IO$M DATACHECK Read logical block 
IO$M-INHRETRY 
IO$M:REVERSE 

IO$M DATACHECK Read physical block 
IO$M-INHRETRY 
IO$M:=REVERSE 

IO$M DATACHECK write virtual block 
IO$M-INHRETRY 
IO$M:INHEXTGAP 

IO$M DATACHECK write logical block 
IO$M-INHRETRY 
IO$M-INHEXTGAP 

1 v = vir~ual; L = logical; P = physical. 

(continued on next page) 

4-6 



MAGNETIC TAPE DRIVER 

Table 4-4 (Cont.) 
Magnetic Tape I/O Functions 

Function Code and Type l 
Arguments 

IO$_WRITEPBLK PI,P2 P 

IO$_SKIPFILE PI L 

IO$_SKIPRECORD PI L 

IO$_REWINDOFF L 

IOS_SENSEMODE L 

IO$_SETMODE PI L 

IO$_SETCHAR PI P 

IO$ ACPCONTROL PI,[P2],- V 
- [P3],[P4],[P5] 

V 

Function 
Modifiers 

IO$M DATACHECK 
IO$M-INHRETRY 
IO$M:INHEXTGAP 

IO$M INHRETRY 
IO$M:NOWAIT 

IO$M_INHRETRY 

IO$M_INHRETRY 

IO$M INHRETRY 
IO$M:INHEXTGAP 

IO$M INHRETRY 
IO$M:NOWAIT 

IO$M_INHRETRY 

IO$M_INHRETRY 

IO$M_INHRETRY 

IO$M_DMOUNT 

4-7 

Function 

write physical block 

Reposition tape to 
the beginning of 
tape (BOT) marker 

Skip past a specified 
number of tape marks 
in either a forward 
or reverse direction 

Skip past a specified 
number of blocks in 
either a forward or 
reverse direction 

write an extended 
inter record gap 
followed by a tape 
mark 

Rewind and unload the 
tape on the selected 
drive 

Sense the tape 
characteristics 
and return them 
in the I/O status 
block 

Set tape character­
istics for subsequent 
operations 

Set tape character­
istics for subsequent 
operations 

Perform miscellaneous 
CONTROL FUNCTIONS 
(SEE SECTION 9.1) 

Mounts a volume; 
requires mount 
privilege. 



MAGNETIC TAPE DRIVER 

The function-dependent arguments 
IO$_DEACCESS, and IO$_MODIFY are: 

for IO$_ACCESS, 

• PI the address of the File Information Block (FIB) 
descriptor. 

• P2 the address of the file name string descriptor 
(optional). If specified with 10$ ACCESS, the name identifies 
the file being sought. If specified with IO$_CREATE, the name 
is the name of the created file. 

• P3 -- the address of the word that is to receive the length of 
the resultant file name string (optional). 

• P4 -- the address of a descriptor for a buffer that is to 
receive the resultant file name string (optional). 

• PS the address of a list of attribute descriptors 
(optional). If specified with 10$ ACCESS, the attributes of 
the file are returned to the user. If specified with 
10$ CREATE, PS is the address of the attribute descriptor list 
for-the new file. All file attributes for IO$_MODIFY are 
ignored. 

The function-dependent arguments for 10$ READVBLK, 10$ READLBLK, 
IO$_READPBLK, IO$_WRITEVBLK, IO$_WRITELBLK, and IO$_WRITEPBLK are: 

• PI -- the starting virtual address of the buffer that 
receive the data in the case of a read operation; or, 
case of a write operation, the virtual address of the 
that is to be written on the tape. 

is to 
in the" 
buffer 

• P2 -- the number of bytes that are to be read from the tape, 
or written from memory to the tape. 

The function-dependent argument for 
is: 

IO$_SKIPFILE and IO$_SKIPRECORD 

• PI -- the number of tape marks to skip over in the case of a 
skip file operation; or, in the case of a skip record 
operation, the number of blocks to skip over. If a positive 
number is specified, the tape moves forward; if a negative 
number is specified, the tape moves in reverse. (The maximum 
number of tape marks or records that PI can specify is 
32,767.) 

4.4.1 Read 

This function reads data into a specified buffer in the forward or 
reverse direction starting at the next block position. 

VAX/VMS provides three read function codes: 

• IO$_READVBLK - read virtual block 

• IO$_READLBLK - read logical block 

• IO$_READPBLK - read physical block 

A read virtual block function to a volume that is mounted foreign is 
converted to a read logical block function. A read virtual block 
function to a volume that is mounted structured is handled in the 
normal manner for a file-structured device. 

4-8 



MAGNETIC TAPE DRIVER 

If the reverse function modifier (IO$M REVERSE) is specified, the read 
operation is performed in the reverse airection instead of the forward 
direction. 

The data check function modifier (IO$M DATACHECK) can be used with all 
read functions. If this modifier is specified, a data check operation 
is performed after the read data operation has been completed. (A 
space reverse or space forward is performed between the read and the 
data check operation.) A data check operation is also performed if the 
volume read, or the volume on which the file resides (virtual read), 
has the characteristic "data check all reads." Furthermore, a data 
check is performed after a virtual read if the file has the attribute 
"data check on read." 

If a read physical block or read logical block operation is performed 
and the reverse function modifies IO$M REVERSE is not specified, an 
end-of-tape status is returned if either of the following conditions 
occur and no other error condition exists: 

• The tape is positioned past the end-of-tape position at the 
start of the read operation 

• The tape enters the end-of-tape region as a result of the read 
operation 

The transferred byte count reflects the actual number of bytes read. 
If a read in the reverse direction is performed when the tape is 
positioned past the end-of-tape position, an end-of-tape status is not 
returned. 

If a tape mark is read during a logical or physical read operation in 
either the forward or reverse direction, an end-of-file status is 
returned if any of the following conditions exist: 

• The tape is positioned past the end-of-tape position at the 
start of the read operation 

• The tape enters the end-of-tape region as a result of the read 
operation 

• A tape mark is read as a result of a read operation but the 
tape does not enter the end-of-tape region 

An end-of-file status is also returned if a read operation in the 
reverse direction is attempted when the tape is positioned at the BOT 
marker. All conditions that cause an end-of-file status result in a 
transferred byte count of zero. 

If an attempt is made during a logical or physical read operation to 
read a block that is larger than the specified memory buffer, a data 
overrun status is returned. Only the first part of the block is read 
into the specified buffer. (Only the latter part of the block is read 
into the buffer on a read in the reverse direction.) The transferred 
byte count is equal to the actual size of the block~ Read reverse 
starts at the top of the buffer. Thus, the start of the block is at 
PI plus P2 minus the length read. 

It is not possible to read a block that is less than 14 bytes in 
length. such records are termed "noise blocks" and are completely 
ignored by the driver. 

4-9 



MAGNETIC TAPE DRIVER 

4.4.2 write 

This function writes data from a specified buffer to tape in the 
forward dir.ection starting at the next block position. 

VAX/VMS provides three write function codes: 

• IO$_WRITEVBLK - write virtual block 

• IO$_WRITELBLK - write logical block 

• IO$_WRITEPBLK - write physical block 

If a write virtual block function is to a volume that is mounted 
foreign, it is converted to a write logical block function. If a 
write virtual block function is to a volume that 1S mounted 
structured, it is handled in the normal manner for a file-structured 
device. 

The data check function modifier (IO$M DATACHECK) can be used with all 
write functions. If this modifier- is specified, a data check 
operation is performed after the write data operation has been 
completed. (A space reverse is performed between the write and the 
data check operation.) A data check operation is also performed if the 
volume written, or the volume on which the file resides (virtual 
write), has the characteristic "data check all writes." Furthermore, a 
data check is performed after a virtual write if the file has the 
attribute "data check on write." 

A data check operation is also forced by the driver when an error 
occurs during a write operation. This ensures that the data can be 
reread. 

If a write physical block or write logical block operation is 
performed, an end-of-tape status is returned if either of the 
following conditions occurs and no other error condition exists: 

• The tape is positioned past the end-of-tape position at the 
start of the write operation 

Q The tape enters the end-of-tape region as a result of the 
write operation 

(The transferred byte count reflects the size of the block written.) 

It is not possible to write a block less than 14 bytes in length. An 
attempt to do so results in the return of a bad parameter status for 
the QIO request. 

4.4.3 Rewind 

This function repositions the tape to the beginning-of-tape (BOT) 
marker. If the IO$M NOWAIT function modifier is specified, the I/O 
operation is completed when the rewind is initiated. Otherwise, I/O 
completion does not occur until the tape is positioned at the BOT 
marker. IO$_REWIND has no function-dependent arguments. 

4-10 



MAGNETIC TAPE DRIVER 

4.4.4 Skip File 

This logical I/O function skips past a specified number of tape marks 
in either a forward or reverse direction. A function-dependent 
argument (PI) is provided to specify the number of tape marks to be 
skipped, as shown in Figure 4-2. If a positive file count is 
specified, the tape moves forward: if a negative file count is 
specified, the tape moves in reverse. (The actual number of files 
skipped is returned in the I/O status block.) 

31 1615 a 

P1:1 ~ ____________ n°_t_us_ed ____________ ~I ___________ f_ile_C_ou_n_t __________ ~1 

Figure 4-2 IO$_SKIPFILE Argument 

Only tape marks (when the tape moves in either direction) and the BOT 
marker (when the tape moves in reverse) are counted during a skip file 
operation.' The BOT marker terminates a skip file function in the 
reverse direction. The end-of-tape (EaT) marker does not terminate a 
skip file function in either the forward or reverse direction. Note 
that a negative skip file function leaves the tape positioned just 
before a tape mark, that is, at the end of a file, unless the BOT 
marker is encountered whereas, a positive skip file funciton leaves 
the tape positioned just past the tape mark. 

4.4.5 Skip Record 

The skip record function skips past a specified number of physical 
tape blocks in either a forward or reverse direction. A 
device/function-dependent argument (PI) specifies the number of blocks 
to skip, as shown in Figure 4-3. If a positive block count is 
specified, the tape moves forward: if a negative block count is 
specified, the tape moves in reverse. (The ·~~tual number of blocks 
skipped is returned in the I/O status block.) 

31 16 15 a 

p" I'--__________ n_o_t u_s_ed ____________ I'--_________ b_IO_C_k_co_u_nt __________ .....J1 

Figure 4-3 IO$_SKIPRECORD Argument 

Skip record is terminated by end-of-file when the tape moves in either 
direction, by the BOT marker when the tape moves in reverse, and by 
the EaT marker when the tape moves forward. 

4.4.6 write End-of-File 

This function writes an extended inter record gap (of approximately 3 
inches for NRZI recording and 1.5 inches for PE recording) followed by 
a tape mark. No device/function-dependent arguments are used with 
IO$_WRITEOF. 

4-11 



MAGNETIC TAPE DRIVER 

An end-of-tape status is returned in the I/O status block if either of 
the following conditions is present and no other error conditions 
occur: 

• A write end-of-file function is executed while the tape is 
positioned past the EOT marker. 

• A write end-of-file function causes the tape position to enter 
the end-of-tape region. 

4.4.7 Rewind Offline 

The rewind offline function rewinds and unloads the tape on the 
selected drive. If the IO$M NOWAIT function modifier is specified, 
the I/O operation is completed as soon as the rewind is initiated. No 
device/function-dependent arguments are used with IO$_REWINDOFF. 

4.4.8 Sense Tape Mode 

This function senses the current device-dependent tape characteristics 
and returns them to the caller in the second longword of the I/O 
status block (see Table 4-3). The contents of the second longword are 
identical to the device dependent information shown in Figure 4-1. No 
device/function-dependent arguments are used with IO$_SENSEMODE. 

4.4.9 Set Mode 

Set mode operations affect the operation and characteristics of the 
associated magnetic tape device. VAX/VMS defines two types of set 
mode functions: 

• Set Mode 

• Set Characteristic 

4.4.9.1 Set Mode - The Set Mode function affects the characteristics 
of the associated tape device. Set Mode is a logical I/O function and 
requires the access privilege necessary to perform logical I/O. A 
single function code is provided: 

• IO$_SETMODE 

This function takes the following device/function-dependent argument 
(other arguments are ignored): 

• PI -- the address of a quadword characteristics buffer 

Figure 4-4 shows the quadword Set Mode characteristics buffer. 

31 16 15 o 

buffer size I not used 

tape characteristics 

Figure 4-4 Set Mode Characteristics Buffer 

4-12 



MAGNETIC TAPE DRIVER 

Table 4-5 lists the tape characteristics and their meanings. The 
$MTDEF macro defines the symbols listed. 

Table 4-5 
Set Mode and Set Characteristic Magnetic Tape Characteristics 

MT$V DENSITY 
MT$S=DENSITY 

If set, all data transfers are performed with even 
parity. If clear (normal case), all data transfers 
are performed with odd parity. Even parity can be 
selected only for NRZI recording at 800 bpi. Even 
parity cannot be selected for phase encoded 
recording (tape density is MT$K PE 1600) and is 
ignored. - -

Specifies the density at which all data transfers 
are performed. Tape density can be set only when 
the selected drive's tape position is at the BOT 
marker. Possible density values are: 

MT$K_DEFAULT 

MT$K_PE_1600 

MT$K_NRZI_BOO 

Default system density 

Phase encoded, 1600 bpi 

Non-return-to-zero-inverted, 800 
bpi 

r-----------------r---------~------~~------------------------------.-----.-

MT$V FORMAT 
MT$S=FORMAT 

Specifies the format in which all data transfers 
are performed. possible format values are: 

MT$K_DEFAULT 

MT $ K_NORMAL I I 

4.4.9.2 Set Characteristic - The 
affects the characteristics of 
Characteristic is a physical I/O 
privilege necessary to perform 
function code is provided: 

Default system format 

Normal PDP-II format. Data bytes 
are recorded sequentially on tape 
with each byte occupying exactly 
one frame 

Set Characteristic function also 
the associated tape device. Set 

function and requires the access 
physical I/O functions. A single 

This function takes the following device/function-dependent argument 
(other arguments are not valid): 

• PI -- the address of a quadword characteristics buffer 

Figure 4-5 shows the quadword Set Characteristic characteristics 
buffer. 

31 16 15 8 7 o 

buffer size I type I class 

tape characteristics 

Figure 4-5 Set Characteristic Buffer 

4-13 



MAGNETIC TAPE DRIVER 

The first longword contains information on device class and type, and 
the buffer size. The device class for tapes is DC$_TAPE. The device 
type is DT$_TE16. 

The $DCDEF macro defines the device type and class names. The buffer 
size is the default to be used for tape transfers (this default is 
normally 2048 bytes). 

Table 4-5 lists the tape characteristics for the Set Characteristic 
function. 

4.5 I/O STATUS BLOCK 

The I/O status block (IOSB) for QIO functions on magnetic tape devices 
is shown in Figure 4-6. Table 4-6 lists the status returns for these 
functions. Table 4-3 (in Section 4.3) lists the device-dependent data 
returned in the second longword. The 10$ SENSEMODE function can be 
used to return this data. -

31 16 15 a 

byte count I status 

device-dependent data 

Figure 4-6 IOSB Content 

The byte count is the actual number of bytes transferred to or from 
the process buffer or the number of files or blocks skipped. 

Status 

SS$_CTRLERR 

Table 4-6 
Status Returns for Tape Devices 

Meaning 

Successful completion of the operation specified 
in the QIO request. The second word of the IOSB 
can be examined to determine the actual number 
of bytes transferred to or from the buffer or 
the number of files or blocks skipped. 

Controller-related error. One or more of the 
following conditions can cause this error: 

• Data late 
• Error confirmation 
• Invalid map register 
• Interface timeout 
• Missed transfer 
• Programming error 
• Read timeout 

(continued on next page) 

4-14 



Status 

SS$_DATACHECK 

SS$_ENDOFFILE 

SS$_ENDOFTAPE 

MAGNETIC TAPE DRIVER 

Table 4-6 (Cont.) 
Status Returns for Tape Devices 

Meaning 

write check error. A mismatch between the data 
in memory and the data on tape was detected 
during a write check operation. (See Section 
4.2.1) 

Drive-related error. One or more of 
following conditions can cause this error: 

• Drive timing error 
• Illegal function 
• Illegal register 
• Operation incomplete 
• Register modify refused 
• Nonexecutable function 

the 

End-of-file condition. A tape mark was 
encountered during the operation. For data 
transfer functions, the byte count is 0; for 
skip record functions, the count is the number 
of blocks skipped. 

End-of-tape condition. This is a normal 
completion and is typically treated as such. 
The end of an input tape is normally denoted by 
a series of tape marks and/or trailer labels 
that are independent of the end-of-tape marker. 
This ensures a decision based on a consistent 
end-of-tape condition independent of the tape 
drive. 

Format error. Format specified by last set tape 
characteristics function is not implemented in 
slave controller. 

Medium offline. The addressed drive currently 
does not have a volume mounted and on line. 

Nonexistent drive. The addressed drive does not 
exist. 

(continued on next page) 

4-15 



Status 

SS$_DATAOVERUN 

MAGNETIC TAPE DRIVER 

Table 4-6 (Cant.) 
Status Returns for Tape Devices 

Meaning 

Parity error. Ohe or more of the following 
conditions can cause this error: 

• 
• 
• 
• 
• 
• 
• 
• • 
• 
• 
• 
• 
• 
• 

CRC error (NRZI only) 
Control bus parity error 
Correctable data error (PE only) 
Correctable skew (PE only) 
Data bus parity error 
Incorrectable error (PE only) 
Invalid tape mark (NRZI only) 
Nonstandard gap 
Longitudinal parity error 
(NRZI only) 
Format error (PE only) 
Vertical parity error (NRZI only) 
Map parity error 
MASSBUS control parity error 
MASSBUS data parity error 
Read data substitute 

Drive unsafe. The addressed drive is currently 
unsafe and cannot perform any function. 

Volume invalid. The addressed drive has not 
been mounted and therefore does not have volume 
valid set, or a status change has occurred in 
the drive so that it has changed to an unknown, 
and therefore, invalid state. All logical and 
virtual functions will be rejected with this 
status until volume valid is set. Volume valid 
is set when a volume is mounted and cleared when 
the volume is unloaded, the respective drive 
changes to an unknown state, or the power fails. 
The driver automatically sets volume valid when 
the proper volume is mounted and/or power is 
restored. 

Write lock error. An attempt was made to write 
on a write locked drive. 

Data overrun. The data block read was longer 
than the assigned buffer. In the case of a read 
reverse, the last data on tape (that is, the 
data nearest the end-of-tape at the beginning of 
the operation) is the first data read. This 
data is in the buffer. 

4-16 



MAGNETIC TAPE DRIVER 

4.6 PROGRAMMING EXAMPLE 

The following program is an example of how data is written to and read 
from magnetic tape. In the example, QIO operations are performed 
through the magnetic tape ACP. These operations could have been 
performed directly on the device using the magnetic tape driver. 
However, this would have involved additional programming, for example, 
writing header labels and trailer labels • 

• TITLE M~GTAPE PROGRAMMING EXAMPLE 
.IDENT 1011 

Define necessary symbols 

SFIBDEr 
srODEF 

;Define fIle information block symbols 
;Define 1/0 function codes 

Allocate storaqe for the necessary data structures 

Allocate magtape device name string and descriptor 

TAP£NAME: 
.LONG 
.LONG 

20S-10S 
10$ 
ITAPEI 

; 
;Length of name string 
;Address of name string 
;Name string lOS: .ASCII 

20S: ;Reference label 

; ! Allocate space to store assigned channel number , 
TAP~CHAN: 

.BLKW 
; 
;Tape channel number 

Allocate space for the 1/0 status quadword 

IUSTATUS: 
.BLKQ 

; 
;1/0 status quadword 

~ Allocate storage for the inputloutput butfer 
, 
HUYfEH: 

.R~PT 256 

.ASCII I~I 

.ENDR 
-;ln1t1alise buffer to contain 'A' 

we now define the rIB-file information blOck-which the ACP uses 
in order to access1deaccess the file.We SUPPly some 1nformation 
in this blocK and ~he ACP will SUPply further information. 

FIB_OESCR: 
.LONG 
.LONG 

;Start of FIB 
ENDFIB-FIB ;Length of file information block 
FIR ;Address of file 1nformation block 

rIB: .LONG rIB$M_WRITE!f'IB$M_NOWRITE ;Read/write access allowed 
.WORO 
.wORD 
.LONG 

0,0,0 ;File 10 
'0,0,0 ;D1rectory 10 
10 ;Context 

.WORD 

.WORD 
~ENU£lB: 

; 0 ;Name flags 
, 0 ;Extend control 

;Reference label 
; 
! we now define the file name string and descriptor , 
NAME_DESCR: 

.LONG 

.LONG 
NAME: .ASCII 
END_NAME: 

END_NAME-NAME 
NAME 
"MYDATA.DAT;l" 

. 
;rlle name descriptor 
;Address of name string 
;f1le name str1ng 
;Heference label 

Now the main program 

The program firstly assigns a channel to the magnetic tape unit. 
It then performs an access fUnction to create and access a f1le 
called "MYDATA.DAT". It now writes 26 blocks of data to the tape 
contalninq the letters of the alphabet. The first block contains 
all A's the next all B's and so on. It starts by writing a block 
of 256 bytes and each subsequent block is reduced in size by two 
bytes so by the time it writes the block conta1ning Z's the block 
size is only 206 bytes. The magtape ACP will not allow reading of 
a tile that has been written unt11 one of three things happens. 
The file is de-accessed, the fIle 1s rewound or the flle 1s back­
spaced. In this example the file 1s backspaced zero blockS and 
then it is read in reverse (incrementing the blocK size every block 
and the data checked against What Is meant to De there. If all 15 
well the file 1s de-accessed and the program exits 

4-17 



MAGNETIC TAPE DRIVER 

ENTNY ~AGTAPE_EXAMPLE,AM<R3,R4,R5,Rb,R7,R8> 

First assign a channel to the tape unit 

SASS~GN_S TAPENA~E{,TAPECHAN 
CMPW .SSS_NORMA ,RO 

;Assign tape unit 
;OK? 

BSBW ERRCHECK ;Find out 

uext create and access the file -MYDATA.UAT-

CMPW 
BSAW 

CHAN=TAPECHAN - ·Channel is magtape 
FUNC=.IO$_CREATE1IOSM_ACCESS110SM_CREATE,-;Function 
IOSB=IOSTATUS,- . ;Address of 1/0 status word 
P1=FIB_DESCR - ;FIB descriptor 
P2=,NAME_DEStR ;Name descriPtor 
.SSS_NORMAL,RO ;UK? 
ERRCHECK ;flnd out 

is create 

LUUP1 consists of writing the alphabet to the tape as described earlier 

HOVL ,26 RS 
~OVL .25&,R3 

;Set up looP count 

LUUP1: 
;Set up Initial byte count In R3 
;Start of looP 

sQIOW_S CHAN=TAPECHAN,­
FUNC=.IO$_WRITEVBLK,­
P1=BUFFER,-
P2=R3 

CMPW .SSS_NORMAL,RO 
BSBw ERRCHECK 

;Perform QIO to tape channel 
;functlon 15 write virtual block 
; Butter address 
;Byte count 
;OK? 
;Flnd out 

, 
.~ NOW we decrement the byte count ready for the next write, set up a 
~ loop count for updatIng the character and LOOP2 performs the update , 

LOOP2: 

SUHL2 
MOVL 
MOVAL 
INCB 
SOBGTR 
SOBGTR 

'2,R3 
R3 R8 
BU~FER,R7 
(R7)+ 
R8,LOOP2 
RS,LOOP1 

;Decrement byte count for next wrIte 
;Copy byte count to R8 for LOOP2 count 
;Get buffer address In R7 
;Increment Character 
;Untl1 finiShed 
;Repeat LUOP1 until alphabet complete 

We now fall through LOOP1 and should UPdate the byte count so that 
It truly reflects the size of the last block written to the tape 

AUDL2 '2,R3 ;Update byte count 

We now want to read the tape but must first perform one of the three 
operatIons outlined above otherwise the ACP wIll not allow write 
access. We will perform an ACP control tunctlon on it specIfying 
Skip zero blocks. ThIs Is a special case of Skip reverse and will 
cause the ACP to now allow read access. 

CLRL fIB+FIBSLS_C~TRLVAL ;Set up to space zero blocks 
MOVW 'FIBSC_SPACE~FIB+FIBSWS_CNTRLFUNC;Set up tor space function 
SOlOW S CHAN=TAPECHAN - ; Perform QIO to tape channel 

- FUNC=.IOS_ACPtONTROL,- ;Perform an ACP control function 
P1=FIB_DESCR ;Uefine the FIB 

CMPW 'SSS_NORMAL,RO ;success? 

·BSBW ERRCHECK ,Find out 

Now we read the file In reverse 

LOUP3: 
MOVL 
MOVB 

MOVAL 
SQIOW_S 

CMPW 
RSBW 

'26,RS ;Set up loop count 
,AA/Z/,R6 ;Get first character In R6 
BUFFER t R7 ;And buffer address to R7 
CHAN=TAPECHAN - ·Channel 15 magtape 
FUNC=.IOS_READVBLKIIOSM.REVERSE,- ,FunctIon 15 read 
IOSB=IOSTATUS,- IDefine 110 status quadword 
Pl=BUFFER,- ;And buffer address 
P2=R3 ;R3 bytes 
'SSS_NORMAL,RO ;Successl 
ERRCHECK ;Flnd out 

reverse 

Now we will cheCK the data we have read In to make sure 
that It agrees with What was wr1tten 

MOVL 
CH~CKDATA: 

CMPB 
BNEO 
SOBGTR 
DECS 
ADDL2 
SORGTR 

R3,R4 

(R7)+LR6 
HISMA'reH 
H4,CHECKDATA 
R6 
'2,R3 
RS,LOOP3 

Copy Rl to R4 for loop count 
Check each character 
Print message on error 
Carryon until finished 
Go backwardS through al~habet 
Update byte count by 2 for next block 
Read next block 

4-18 



MAGNETIC TAPE DRIVER 

NOW we deaccess the file 

SQ IOW 5 CHAN=TAP~CHAN -
- FUNC=.IO;_D~AtC~SS,­

IOSB=IOSTATUS 

;Channel is ma9tape 
;Ueaccess tunction 
;1/0 status 

NOW we deassign the channel and exit 

~Xll' : 

, 

SDASSGN_S CHAN=TAP~CHAN 
RET 

;Ueassign channel 
;~xit 

; we are now at a place where normallr we would attempt to generate some error 
~ messaqe but for th1s example we wil s1mply ex1t , 
MISMATCH: 

BRB EXIT 
EftRCHI::CK: 

HNF:Q EXIT 
RS~ 

.I::~U MAGTAPF:_EXA~PLE 

Exit 
If error then ex1t 
Exit if not UK 
Else return 

4-19 





CHAPTER 5 

LINE PRINTER DRIVER 

This chapter describes the use of the VAX/VMS line printer driver. 
This driver supports the LPll LinePrinter Interface and the LAll 
DECprinter I. 

5.1 SUPPORTED LINE PRINTER DEVICES 

The following sections describe the LP11 Line Printer Interface and 
the LAll DECprinter I. 

5.1.1 LP11 Line Printer Interface 

The LPll is a high-speed, l32-column, line printer available in 
several models. Printers are available with either a 64- or 
96-character ASCII print set. The LPll-R and LPll-S are fully 
buffered models that operate at a standard speed of 1110 lines per 
minute. Other LPll models have 20-character print buffers, and can 
print at full speed if the printed li.ne is 20 characters or less. 
Longer lines are printed at a slower rate. Forms with up to six parts 
can be used for multiple copies. 

5.1.2 LA11 DECprinter I 

The LAll DECprinter I is a medium-speQd printer that operates at a 
standard speed of 180 characters per second. It incorporates such 
features as a forms length switch to set the top of form to any of 11 
common lengths, paper-out switch and alarm, and variable forms width. 
The LAll uses a 96-character ASCII set: the column width is 132 
characters. 

5.2 DRIVER FEATURES AND CAPABILITIES 

The VAX/VMS line printer driver provides output character formatting 
and error recovery, as described in the following sections. 

5-1 



LINE PRINTER DRIVER 

5.2.1 Output Character Formatting 

In write virtual and write logical block operations, user-supplied 
characters are output as follows (write physical block data is not 
formatted, but output directly): 

1. Rubouts are discarded. 

2. Tabs move the horizontal print position to the next MODULO 
(8) position. 

3. All lowercase alphabetic, characters 
uppercase before printing (unless 
specifying lowercase characters is set; 
and Table 5-2). 

are converted to 
the characteristic 
see Section 5.4.2 

4. On printers where the line feed, form feed, vertical tab, and 
return characters empty the printer buffer, returns are held 
back and output only if the next character is not a form 
feed, line feed, or vertical tab. Returns are always output 
on units that do not have the return function characteristic 
set (see Section 5.4.2 and Table 5-2). 

5. The horizontal print position is incremented on the output of 
all nonprinting characters such as the space character. 
Nonprinting characters are discarded if the horizontal print 
position is equal to or greater than the carriage width. 

6. On printers without mechanical form feed (the form feed 
function characteristic is not set; see Section 5.4.2 and 
Table 5-2), a form feed is converted to multiple line feeds. 
The number of line feeds is based on the current line count 
and the page length. 

7. Print lines are counted and returned to the caller in the 
second longword of the I/O status block. 

5.2.2 Error Recovery 

The VAX/VMS line printer driver performs the following error recovery 
operations: 

• If the printer is off line for 30 seconds, a "device not 
ready" message is sent to the system operator process. 

• If the printer runs out of paper or has a fault condition, a 
"device not ready" message is sent to the system operator 
every 30 seconds. 

• The current operation is retried every 2 seconds to test for a 
changed situation, for example, the printer coming on line. 

• The current I/O operation can be canceled at the next timeout 
without the printer being on line. 

• When the printer comes on line, device operation resumes 
automatically. 

5-2 



LINE PRINTER DRIVER 

5.3 DEVICE INFORMATION 

The user process can obtain information on printer characteristics by 
using the $GETCHN and $GETDEV system services (see Section 1.10). The 
printer-specific information is returned in the first three 10ngwords 
of a user-specified buffer, as shown in Figure 5-1 (Figure 1-8 shows 
the entire buffer). 

31 2423 16 15 8 7 o 

device characteristics 

page width I type I class 

page length I printer characteristics 

Figure 5-1 Printer Information 

The first longword contains device-independent data. The second and 
third 10ngwords contain device-dependent data. 

Table 5-1 lists the device-independent characteristics returned in the 
first longword. 

Table 5-1 
Printer Device-Independent Characteristics 

Dynamic Bitsl 
(Conditionally Set) Meaning 

DEV$M_SPL Spooled device 

DEV$M_AVL Printer is on line and available 

Static Bitsl 
(Always Set) Meaning 

DEV$M_REC Record-oriented device 

DEV$M_CCL Carriage control 

DEV$M_ODV Device is capable of output 

1 Defined by the $DEVDEF macro. 

In the second longword, the device class is DC$ LP. The printer type 
is a value that corresponds to the printer:- LP$ LP11 or LP$_LA1l. 
The page width is a value in the range of a to 255. -

The third 10ngword contains printer characteristics and the page 
length. The printer characteristics part can contain any of the 
values listed in Table 5-2. 

5-3 



Value 

LP$M_LOWER 

LINE PRINTER DRIVER 

Table 5...;2 
Printer Device-Dependent Characteristics 

Meaning 

Printer can print lowercase characters. If this 
value is not set, all lowercase characters are 
converted to uppercase when output. 

Printer has mechanical form feed. This 
characteristic is used when variable form length 
is required, for example, check printing. 
Driver sends ASCII form feed (decimal 12). 
Otherwise, multiple line feeds are generated. 
The page length determines the number of line 
feeds. 

Printer requires carriage return. (See note 4, 
Section 5.2.1). 

Maximum page length is 255. 

The $LPDEF macro defines the values for the printer characteristics; 
the $DCDEF macro defines the device class and types. 

5.4 LINE PRINTER FUNCTION-CODES 

The basic line printer I/O functions-are write, sense mode, and set 
mode. None of the function codes takes function modifiers. 

5.4.1 Write 

The line printer write functions print the contents of the user buffer 
on the designated printer. 

The write functions and their QIO function codes are: 

• IO$_WRITEVBLK - write- vir-tual block 

• IO$_WRITELBLK - write logical block 

• IO$ WRITEPBLK w~ite physical block (the data 
formatted, but output directly, as in PASSALL 
terminals) 

is not 
mode on 

The write function codes can take the following device/function 
dependent arguments: 

• PI = the starting virtual address of the buffer that is to be 
written 

• P2 = the number of bytes that are to be written 



LINE PRINTER DRIVER 

• P3 (ignored) 

e P4 = carriage contrQl specifier except for write physical 
block operations (write function carriage control is described 
in Section 5.4.1.1) 

P3, P5, and P6 are not meaningful for line printer write operations. 

In write virtual block and write logical block operations, the buffer 
specified by PI and P2 is formatted for the selected line printer and 
includes the carriage control information specified byP4. 

All lowercase characters are converted to uppercase if the 
characteristics of the selected terminal do not include LP$M_LOWER 
(this does not apply to write physical block operations). 

Multiple line feeds are generated for form feeds only if the printer 
does not have a mechanical form feed, that is, the LP$M MECHFORM 
characteristic. The number of line feeds generated depends- on the 
current page position and the length of the page. 

Section 5.2.1 describes character formatting in greater detail. 

5.4.1.1 Write Function Carriage Control - The P4 argument is a 
longword that specifies carriage control. Carriage control determines 
the next printing position on the line printer. (P4 is ignored in a 
write physical block operation.) Figure 5-2 shows the P4 longword 
format. 

P4: 

Figure 5-2 P4 Carriage Control Specifier 

Only bytes 0, 2, and 3 in the longword are used. Byte 1 is ignored. 
If the low-order byte (byte 0) is not 0, the contents of the longword 
are interpreted as a FORTRAN carriage control specifier. Table 5-3 
lists the possible byte 0 values (in. hexadecimal) and their'meanings. 

If the low-order byte (byte 0) is 0, bytes 2 and 3 of the P4~ longword 
are interpreted as the prefix and postfix carriage control specifiers. 
The prefix (byte 2) specifies the carriage control before the buffer 
contents are printed. The postfix (byte 3) specifies the carriage 
control after the buffer contents are printed. The sequence is: 

Prefix carriage control - Print - Postfix carriage control 

The prefix and postfix bytes, although interpreted separately, use the 
same encoding scheme. Table 5-4 shows this encoding scheme in 
hexadecimal. 

5-5 . 



LINE PRINTER DRIVER 

Table 5-3 
write Function Carriage Control (FORTRAN: Byte 0 not equal to 0) 

Byte 0 ASCII 
Value Character 

(hexadecimal) 

20 (space) 

30 0 

31 1 

2B + 

24 

All other 
values 

$ 

Meaning 

S ingle-space carr iage control. (Sequence: 
line feed, print buffer contents, return.) 

Double-space carr iage control. (Sequence: 
line feed, line feed print buffer 
contents, return.) 

Page eject carriage control. (Sequence: 
form feed, print buffer contents, return.) 

Overpr int carr iage control. (Sequence: 
print buffer contents, return.) Allows 
double printing for emphasis. 

Prompt carriage control. (Sequence: line 
feed, print buffer contents.) 

Same as ASCII space character: 
single-space carriage control. 

Table 5-4 
write Function Carriage Control (P4 byte 0 equal to 0) 

Bit 7 

0 

0 

Bit 7 

1 

1 

Prefix/Postfix Bytes 
(Hexadecimal) 

Bits 0 - 6 

0 

1-7F 

Bit 6 Bit 5 

0 0 

1 0 

Bits 
0-4 

I-IF 

I-IF 

Meaning 

No carriage control is specified, 
that is, NULL. 

Bits 0 through 6 are a count of 
line feeds. 

Meaning 

Output the single ASCII control 
character specified by the 
configuration of bits 0 through 4 
(7-bit character set). 

Output the single ASCII control 
character specified by the 
configuration of bits 0 through 4 
which are translated as ASCII 
characters 128 through 159 (8-bit 
charactpr spt.l 

5-6 



LINE PRINTER DRIVER 

Figure 5-3 shows the prefix and postfix hexadecimal coding that 
produces the carriage control functions listed in Table 5-3. Except 
for the last example (line skipping), this is an alternative way to 
achieve these controls. 

(Space) Sequence: 

P4, I Prefix = NL 
8D 0 Print 

Postfix = CR 

"0" Sequence: 

P4, I Prefix = LF. LF 
8D 2 0 Print 

Postfix = CR 

"1" Sequence: 

P4, I Prefix = FF 

8D 8C 0 Print 
Postfix = CR 

"+" Sequence: 

P4, I Prefix = NULL 
8D 0 0 Print 

Postfix = CR 

"$" Sequence: 

P4, I Prefix = LF 
0 8A 0 Print 

Postfix = NULL 

Example: Skip 24 lines before printing Sequence: 

P4: Prefix = 24LF 
8D 18 0 Print 

Postfix:= CR 

Figure 5-3 write Function Carriage Control 
(Prefix and Postfix Coding) 

In the first example, the prefix/postfix coding for a single-space 
carriage control (line feed, print buffer contents, return) is 
obtained by placing the value (1) in the second (prefix) byte and the 
sum of the bit 7 value (80) and the return value (D) in the third 
(postfix) byte: 

80 (bi t 7 = 1) 
+ D (return) 

8D (postfix = return) 

5-7 



LINE PRINTER DRIVER 

5.4.2 Sense Printer Mode 

This function senses the current device-dependent prJn~er 
characteristics and returns them in the second longword . ..:.of·the I/O 
status block. No device/function-dependent arguments ar~~ used with 
IO$_SENSEMODE. 

5.4.3 Set Mode 

the operation and characteristics of the 
VAX/VMS provides two types of set mode 

Set characteristics. Set Mode requires 
Set characteristics requires physical I/O 

codes are provided: 

Set mode operations affect 
associated line printer. 
functions: Set Mode and 
logical I/O privilege. 
privilege. Two function 

• IO$_SETMODE 

ct IO$_SETCHAR 

These functions take the following device/function-dependent argument 
(other arguments are not valid): 

• PI -- the address of a characteristics buffer 

Figure 5-4 
IO$_SETMODE. 

shows the quadword PI characteristics buffer 
Figure 5-5 shows ths same buffer for IO$_SETCHAR. 

31 2423 1615 o 

page width I not used 

page length printer characteristics 

Figure 5-4 Set Mode Characteristics Buffer 

31 2423 16 15 8 7 0 

page width I type I class 

page length I printer characteristics 

Figure 5-5 Set Characteristic Characteristics Buffer 

for 

In the buffer, the device class is DC$ LP. The printer type is a 
value that corresponds to the printer: DT$ LPII or DT$ LAII. The 
type can be changed by the 10$ SETCHAR function: The page width is a 
value in the range of 0 to 2557 

The printer characteristics part of the buffer can contain any of the 
values listed in Table 5-2. 

5-8 



LINE PRINTER DRIVER 

5.5 I/O STATUS BLOCK 

The I/O status blocks (IOSB) for the write and set mode I/O functi'ons 
are shown in Figure 5-6 and 5-7. Table 5-5 list~ the status returns 
for these functions. 

31 16 15 o 

byte count 1 status 

number of lines the paper moved* 

;; *0 if IO$_WRITEPBLK 

Figure 5-6 IOSB Contents - write Function 

31 16 15 0 

0 I status 

I 0 

Figure 5-7 IOSB Contents - Set Mode Function 

Table 5-5 
Line Printer QIO Status Returns 

Status Meaning 

SS$_NORMAL Successful completion. The operation specified in the 
QIO was completed successfurly. On a write operation, 
the second word of the IOSB can be examined to 
determine the number of bytes written. 

SS$_ABORT The operation was canceled by the Cancel I/O on Channel 
($CANCEL) system service. 

5-9 



LINE PRINTER DRIVER 

5.6 PROGRAMMING EXAMPLE 

The following simple program is an example of I/O to the line printer 
that shows how to use the different carriage control formats. This 
program prints out the contents of the output buffer (OUT BUFFER) 10 
times using 10 different carriage control formats. The-formats are 
held in location OUTPUT FORMAT • 

• TITLE LINE PRINT~R PROGRAMMING EXAMPLE 
.IDENT lOll 

10etlne necessary symbols , 
SlaDEI'" ;Define I/O function codes 

Allocate storaqe for the necessary data structures 

Allocate output buffer and fill with required output text 

OUT_BUFFER: 
.ASCII "VAX_PRINTER_EXAMPLE" 

OUT_BUFFER_SIZE=.-OUT_BUFFER ;Define size of output strln9 . 
: Allocate device name string and descriPtor 
1 

DEVICE_DESCR: 
.LONG 
.LONG 

lOS: .ASCII 
20$: . 

20S-10S 
lOS 
ILINE_PRINTI:.RI 

. 
;Length of name strin9 
1Address of name strin9 
1Name str1ng of output device 
;Reference label to calculate len9th 

; Allocate space to store asslqned channel number 
; 

OI:.V1CE_CHANNEL: 
.BLKW'I 

; 
,Channel number 

NOW set UP the carriage control formats 

OUTPUT_FORMAT: 
.BYTE 
.BYTE 
.BYTE 
.BYTE 
.BYTE 
.BYTE 

° 0 0 0 32,6,6,0 
48,0,0,0 
49,0,0,0 
43,0,0,0 
30,0,0,0 

1 
;No carriage control 
;Blank=LF+ ••• TEXT •• +CR 
;Zero=LF+Lf+.TEXT •• +CR 
;Une=FF+ ••• TEXT •••• +CR 
;Plus=Overprint, ••• +CR 
;Dollar=LF+TEXT~prompt) 

NOW tne prefix-postfix carriage control formats 
.BYTE 

.BYTE 

.BYTE 

.BYTE 

0,0,1,141 

0,0,24{141 
0,0,2, 41 
0,0,140,141 

;LF+ ••••• TEXT ••••• +CR 

124LF+ ••• TEXT ••••• +CR 
;LF+LF+ •• TEXT ••••• +CR 
1FF+ ••••• TEXT ••••• +CR 

Program starting point 

The program assigns a channel to the output device,sets up a looP 
count for the number of times it wishes to print, and performs ten 
010 and wait system services.The channel is then deasslgned • 

• ENTRY PRINTER_EXAHPLE,"M<R2,R3>1Program startin9 address 

First assign a channel to the output device 
SASSIGN_S DEVNAM=DEVICE_DESCR,- !ASsign a channel to pr1nter 

CHAN=DEVICE_CHANNEL , 
BLBC RO{50S ;If low bit clear,ass1gnment fa1lure 
HOVL .1 R3 1Set up loop coun~ 
MOVAL OUTPUT_FORMAT,R2 ;Set up olp format address In R2 

Start of printinq loop 

JOS: 

40$: 
~O$: 

SQIOW_S CHAN=OEVICE_CHAhNEL,· 
FUNC=.IOS_WRITEVBLK,· 

~~~~gfiT~~~~~~R:SIZE,-
P4=(R2)+

BLaC RO,40S
~gR~§~N_~3c~g~=DEVICE_CHANNEL
RET .
• END PRINTER_EXAMPLE

;Print on device channel
11/0 tunction Is write virtual
:Address of output buffer
;Size of buffer to print
;Format control In R2
;Will auto-increment.
:If low bit clear,110 failure
;8ranch if not finished
;Deassign channel
;Return

5-10

CHAPTER 6

CARD READER DRIVER

This chapter describes the use of the VAX/VMS card reader driver.
This driver supports the CRll Card Reader.

6.1 SUPPORTED CARD READER DEVICE

The CRll Card Reader reads standard SO-column punched data cards.

6.2 DRIVER FEATURES AND CAPABILITIES

The VAX/VMS card reader driver provides the following capabilities:

• Multiple controllers of the same type: for example, more than
one CRll can be used on the system

• Binary, packed Hollerith, and translated 026 or 029 read modes

• Unsolicited interrupt support for automatic card reader input
spooling

• Special card punch combinations to indicate an end-of-file
condition and to set the translation mode

• Error recovery

The following sections describe the read modes, special card punch
combinations, and error recovery in greater detail.

6.2.1 Read Modes

VAX/VMS provides two card reader device/function-dependent modifier
bits for read data operations: read packed Hollerith (IO$M PACKED)
and read binary (IO$M BINARY). If IO$M PACKED is set, the data is
packed and stored Tn sequential bytes of the input buffer. If
IO$M BINARY is set, the data is read and stored in sequential words of
the input buffer. IO$M_BINARY takes precedence over IO$M_PACKED.

The read mode can also be set by a set translation mode card (see
Section 6.2.2.2) or by the Set Mode function (see Section 6.4.3).

6-1

CARD READER DRIVER

6.2.2 Special Card Punch Combinations

The VAX/VMa,card reader driver recognizes three special card punch
combinatio~~~in column 1 of a card. One combination signals an
end-of-file~G9ndition. The other two combinations set the current
translation ,.ntode.

6.2.2.1 End-of-File Condition - A card with the l2-ll-0-l-6-7-8-9 .. 0
holes punched in column 1 signals an end-of-file condition. If the te
read mode is binary, the first eight columns must contain this punch
combination.

6.2.2.2 Set Translation Mode - If the read mode is nonbinary,
nonpacked Hollerith (the IO$M_BINARY and IO$M PACKED function
modifiers are not set), the current translation mode can be set to the
026 or 029 punch code. A card with the 12-2-4-8 holes punched in
column 1 sets the translation mode to the 026 code. A card with the
12-0-2-4-6-8 holes punched in column 1 sets the translation mode to
the 029 code. The translation mode can be changed as often as
required.

If a translation mode card contains punched information in columns 2
through 80, it is ignored.

Logical, virtual, and physical read functions result in only one card
being read. If a translation mode card is read, the read function is
not completed and another card is read immediately.

6.2.3 Error Recovery

The VAX/VMS card reader driver performs the following error recovery
operations:

• If the card reader is off line for 30 seconds, a "device not
ready" message is sent to the system operator.

• If a recoverable card reader failure is detected, a "device
not ready" message is sent to the system operator every 30
seconds.

• The current operation is retried every two seconds to test for
a changed situation, for example, the removal of an error
condition.

• The current I/O operation can be canceled at the next timeout
without the card reader being on line. When the card reader
comes on line, device operation resumes automatically.

There are four categories of card reader failures:

• Pick check -- the next card cannot be delivered from the input
hopper to the read mechanism.

• Stack check -- the card just read did not stack properly in
the output hopper.

6-2

CARD READER DRIVER

• Hopper check -- either the output hopper is full or the input
hopper is empty.

• Read check -- the last card was read incorrectly due to torn
edges or punches after column 80.

Manual intervention is required if any of these errors occur. The
recovery is transparent to the user program issuing the I/O request.

When a recoverable card reader failure is detected, a "device not
ready" message is displayed on the system operator console. When this
message is received, the card reader indicator lights should be
examined to determine the reason for the failure. The indicator
lights and the respective recovery procedures are:

• Pick check -- the next card cannot be delivered to the read
mechanism. Remove the next card to be read from the input
hopper and smooth the leading edge, that is, the edge that
will enter the read mechanism first. Replace the card in the
input hopper and press the RESET button. Card reader
operation will resume automatically. If a pick check error
occurs again on the same card, remove the card from the input
hopper and repunch it. Place the duplicate card in the input
hopper and press the RESET button. If the problem persists,
either an adjustment is required or nonstandard cards are in
the input hopper.

• Stack check -- the card just read did not stack properly in
the output hopper. Remove the last card read from the output
hopper and examine the condition. If it is excessively worn
or mutilated, repunch it. Place either the duplicate or the
original card in the read station of the input hopper and
press the RESET button. Card reader operation will resume
automatically. If the stack check error reoccurs immediately,
an adjustment is required.

• Hopper check -- either the input hopper is empty or the output
hopper is full. Examine the input hopper and, if empty,
either load the next deck of input cards or an end of file
card. If the input hopper is not empty, remove the cards that
have accumulated in the output hopper and press the RESET
button. Card reader operation will resume automatically.

• Read check -- the last card was read incorrectly. Remove the
last card from the output hopper and examine its condition.
If it is excessively worn, mutilated, or contains punches
before column 0 or after column 80, repunch the card
correcting any incorrect punches. Place either the original
or duplicate card in the read station of the input hopper and
press the RESET button. Card reader operation will resume
automatically. If the read check error reoccurs immediately,
an adjustment is necessary.

6.3 DEVICE INFORMATION

Users can obtain information on card reader characteristics by using
the $GETCHN and $GETDEV system services (see Section 1.10). The
information is returned in a user-specified buffer shown in Figure
6-1. Only the first three longwords of the buffer are shown in Figure
6-1 (Figure 1-8 shows the entire buffer).

6-3

CARD READER DRIVER

31 1615 8 7 o

device characteristics

buffer size I type I class

device-dependent information

Figure 6-1 Card Reader Information

The device characteristics returned in the first longword are listed
in Table 6-1.

Table 6-1
Card Reader Device-Independent Characteristics

Dynamic Bit 1
(Conditionally Set) Meaning

DEV$M_AVL Device is on line and available

Static Bi ts 1
(Always Set) Meaning

DEV$M_IDV Device is capable of input

DEV$M_REC Device is record oriented

1 Defined by the $DEVDEF macro

The second longword contains information on device class and type, and
the buffer size. The device class for card readers is DC$_CARD. The
device type is DT$_CRll for the CRII.

The $DCDEF macro defines the device type and class names. The buffer
size is the default to be used for all card reader devices (this
default is 80 bytes).

The third longword contains device-dependent card reader
characteristics. Table 6-2 lists these characteristics. The $CRDEF
macro defines the characterstics values.

6-4

CARD READER DRIVER

Table 6-2
Device-Dependent Information for Card Readers

Value Meaning

CR$V TMODE Specifies the translation mode for nonbinary,
CR$S::TMODE nonpacked Hollerith data transfers. l Possible

values are:

CR$K_T026 Translate according to 026 punch
code

CR$K_T029 Translate according to 029 punch
code

1 Section 6.2.2.2 describes the set translation mode punch code.

6.4 CARD READER FUNCTION CODES

The VAX/VMS card reader can perform logical, virtual, and physical I/O
functions. Table 6-3 lists these functions and their function codes.
These functions are described in more detail in the following
paragraphs.

Table 6-3
Card Reader I/O Functions

Function Code and Type l Function Function
Arguments Modifiers

IO$_READLBLK PI,P2 L IO$M BINARY
IO$M::PACKED

Read logical block

IO$_READVBLK PI,P2 V IO$M BINARY Read virtual block
IO$M:PACKED

IO$_READPBLK PI,P2 P IO$M BINARY Read physical block
IO$M:PACKED

IO$_SENSEMODE L Sense the card reader
characteristics and
return them in the
I/O status block

IO$':"SETMODE PI L Set card reader
characteristics for
subsequent operations

IO$_SETCHAR PI P Set card reader
characteristics for
subsequent operations

1 V = virtual~ L = logical~ P = physical

6-5

CARD READER DRIVER

6.4.1 Read

This function reads data from the next card in the card reader input
hopper into the designated memory buffer in the specified format.
Only one card is read each time a re~d function is specified.

VAX/VMS provides three read function codes:

Two

• IO$_READVBLK - read virtual block

• IO$_READLBLK - read logical block

• IO$_READPBLK - read physical block

function-dependent arguments are used with these codes:

• PI -- the starting virtual address of the buffer that is to
receive the data

• P2 -- the number of bytes that are to be re~d!in'the~specified
format

The read binary function modifier (IO$M BINARY) and the read packed
Hollerith function modifier (IO$M PACKED) can be used with all read
functions. If IO$M BINARY is specifIed, successive columns of data
are stored in sequential word ilocations of the input buffer. If
IO$M_PACKED is specified, successive columns of data are packed and
stored in sequential byte locations of the input buffer. If neither
of these function modifiers are specified, successive columns of data
are translated in the current mode (026 or 029) and stored in
sequential bytes of the input buffer. Figure 6-2 shows how data is
stored by IO$M_BINARY and IO$M_PACKED.

Binary column (lO$M_BINARY):

15 1211 0

1 1'211 0 1 2 3 4 5 6 7 8 _I
*Bits 12 ·15 are 0

Packed column (IO$M_PACKED):

7 3' 2 0

112 11 0 9 "I n' 1

*n = 0 if no punches in rows 1 ·7
= 1 if a punch in row 1
= 2 if a punch in row 2

= 7 if.a punch in row 7

Figure 6-2 Binary and!pa~k~dColumn Storage

Regardless of the byte count specified "by the'P2 : atgUment , ':'a ,:;'rtlaxd;mum
of 160 bytes of data for binary readolie:ratibnsand 80 bytes"of/:data
for nonbinary read operations (IO$M PACKED,0or~fi26 or 029 modes) are
transferred to the input buffer: If ·-P2 specifies less than the
maximum quantity for the respective mode, only the number of bytes
specified are transferred; any remaining buffer locations are not
filled with data.

6-6

CARD READER DRIVER

6.4.2 Sense Card Reader Mode

This function senses the current device-dependent card reader
characteristics and returns them in the second longword of the I/O
status block (see Table 6-5). No device/function dependent arguments
are used with IO$_SENSEMODE.

6.4.3 Set Mode

Set mode operations affect the operation and characteristics of the
associated card reader device. VAX/VMS defines two types of set mode
functions:

• Set Mode

• Set Characteristic

6.4.3.1 Set Mode - The Set Mode function affects the characteristics
of the associated card reader. Set Mode is a logical I/O function and
requires the access privilege necessary to perform logical I/O. A
single function code is provided:

• IO$_SETMODE

This function takes the following device/function dependent argument:

• PI the address of a characteristics buffer

Figure 6-3 shows the quadword Set Mode characteristics buffer.

31 16 15 o

buffer size I not used

card reader characteristics

Figure 6-3 Set Mode Characteristics Buffer

Table 6-4 lists the card reader characteristics and their meanings.
The $CRDEF macro defines the characteristics values.

6-7

CARD READER DRIVER

Table 6-4
Set Mode and Set Characteristic Card Reader Characteristicss

Value 1 Meaning

CR$V TMODE Specifies the translation mode for nonbinary,
CR$S:TMODE nonpacked Hollerith data transfers. Possible

values are:

CR$K_T026 Translate according to 026 punch
code

CR$K_T029 Translate according to 029 punch
code

* If neither the 026 or 029 mode is specified, the default mode can
·be set by the SET CARD READER command.

6.4.3.2 Set Characteristic - The Set Characteristic function also
affects the characteristics of the associated card reader device. Set
Characteristic is a physical I/O function and requires the access
privilege necessary to perform physical I/O functions. A single
function code is provided:

• IO$_SETCHAR

This function takes the following device/function dependent argument:

• PI the address of a characteristics buffer

Figure 6-4 shows the Set Characteristic characteristics buffer.

31 1615 8 7 o

buffer size

I
type

I class

card reader characteristics

Figure 6-4 Set Characteristic Buffer

The device type value is DT$ CRII. The device class value is
DC$ CARD. Table 6-4 lists the card reader characteristics for the Set
Characteristic function.

6.5 I/O STATUS BLOCK

The I/O status block (IOSB) format for QIO functions on the card
reader is shown in Figure 6-5. Table 6-5 lists the status returns for
these functions. Table 6-2 lists the device-dependent data returned
in the second longword. The IO$_SENSEMODE function can be used to
obtain this data.

6-8

31

Status

SS$_DATAOVERUN

SS$_ENDOFFILE

CARD READER DRIVER

16 i5 o

byte count I status

device-dependent data

Figure 6-5 10S8 Contents

Table 6-5
Status Returns for Card Reader

Meaning

Successful completion of the operation specified
in the QIO request. The second word of the 10S8
can be examined to determine the actual number
of bytes written to the buffer.

Data overrun. Column data was delivered to the
controller data buffer before previous data had
been read by the driver.

End-of-file condition. An end-of-file card was
encountered during the read operation.

6-9

CHAPTER 7

MAILBOX DRIVER

VAX/VMS supports a virtual device, called a mailbox, that is used for
communication between processes. Mailboxes provide a controlled and
synchronized method for processes to exchange data. Although
mailboxes transfer information in much the same way that other I/O
devices do, they are not actual devices. Rather, mailboxes are
software implemented devices that can perform read and write
operations.

7.1 MAILBOX OPERATIONS

Software mailboxes can be compared to the actual metal boxes used for
mail delivery. As shown in Table 7-1, both types of mailbox perform
similar operations.

Operation

Receive Mail

Receive
Notification
of Mail

Table 7-1
Mailbox Read and Write Operations

Use of Conventional
Mailboxes

Resident checks mailbox to
see if any mail was delivered.
If so, picks it up, opens it,
and reads it.

The mail carrier leaves noti­
fication to the resident that
mail can be picked up at the
post office.

7-1

Use of VAX/VMS
Software Mailboxes

A process initiates a read
to a mailbox to obtain data
sent by another process.
The process reads data
if a message was
previously transmitted
to the mailbox.

A process specifies that it
wants to be notified
through an AST when a
message is sent to the
mailbox.

(Continued on next page)

MAILBOX DRIVER

Table 7-1 (Cont.)
Mailbox Read and write Operations

Operation

Send Mail
(without
notification
of receipt)

Send Mail
(with notifi­
cation of
receipt)

Reject Mail

Use of Conventional
Mailboxes

The resident leaves mail
addressed to another person
in the mailbox, but neither
waits for nor expects notif­
ication of its delivery.

The resident leaves mail
addressed to another person
in the mailbox and asks to
be notified of its delivery.

The resident discards
junk mail.

7.1.1 Creating Mailboxes

Use of VAX/VMS
Software Mailboxes

A process initiates a write
request to a mailbox to
transmit data to another
process. The sending
process does not wait until
the data is read by the
receiving process before
completing the I/O operatio

A process initiates a write
request to a mailbox to
transmit data to another
process. The sending
process waits until the
receiving process reads the
data before completing the
I/O operation.

The receiving process reads
messages from the mailbox,
sorts out unwanted messages
and responds only to useful
messages.

A process uses the Create Mailbox and Assign Channel ($CREMBX) system
service to create a mailbox, and assign a channel and logical name to
it. The system enters the logical name in either the system
(permanent mailbox) or group (temporary mailbox) logical name table
and gives it an equivalence name of MBn, where n is a unique unit
number.

$CREMBX also establishes the characteristics of
characteristics include a protection mask,
maximum message size, and buffer quota.

the mailbox. These
permanence indicator,

Other processes can assign additional channels to the mailbox using
the Assign I/O Channel ($ASSIGN) system service. The mailbox is
identified by its logical name both when it is created and when it is
assigned channels by cooperating processes.

Figure 7-1 illustrates the use of $CREMBX and $ASSIGN.

Creating mailboxes requires privilege. If sufficient dynamic memory
for the mailbox data structure is not available, a resource wait may
occur if resource wait mode is enabled.

The programming example at the end of this chapter (Section 7.5)
illustrates mailbox creation and interprocess communication.

7-2

USER OR
SYSTEM
PROCESS
CREATES
MAILBOX

MAILBOX DRIVER

EJ B
Figure 7-1 Multiple Mailbox Channels

7.1.2 Deleting Mailboxes

The system maintains a count of all channels assigned to a temporary
mailbox. As each process finishes using a mailbox, it deassigns the
channel using the Deassign I/O Channel ($DASSGN) system service. The
channel count is decremented by one. The system automatically deletes
the mailbox when no more channels are assigned to it (that is, when
the channel count reaches 0).

Permanent mailboxes must be explicitly deleted using the Delete
Mailbox ($DELMBX) system service. This can occur at any time.
However, the mailbox is actually deleted when no processes have
channels assigned to it.

When a mailbox is deleted, its message buffer quota is returned to the
process that created it.

7.1.3 Mailbox Message Format

There is no standardized format for mailbox messages and none is
imposed on users. Figure 7-2 shows a typical mailbox message format.
Other types of messages can take different formats; for an example,
see Figure 2-1 in Section 2.2.5.

7-3

MAILBOX DRIVER

31 1615 o

not used I message type

data

Figure 7-2 Typical Mailbox Message Format

7.2 DEVICE INFORMATION

Users can obtain information on mailbox characteristics by using the
$GETCHN and $GETDEV system services (see section 1.10). The
information is returned in a user-specified buffer. The first three
longwords of the buffer are shown in Figure 7-3 (Figure 1-8 shows the
entire buffer).

31 1615 8 7 o

device characteristics

buffer size type I class

unused number of messages in mailbox

Figure 7-3 Mailbox Information

The first longword in the buffer contains the device characteristics
values listed in Table 7-2. The $DEVDEF macro defines these values.

Dynamic Bit

Table 7-2
Mailbox Characteristics

Meaning
(Conditionally Set)

DEV$M_SHR Shareable device

Static Bits
(Always Set) Meaning

DEV$M_REC Record-oriented device

DEV$M_IDV Device is capable of input

DEV$M_ODV Device is capable of output

DEV$M_MBX Mailbox device

7-4

MAILBOX DRIVER

The second longword of the buffer contains information on the device
class and type, and the buffer size. The device class is DC$ MBX.
The device type 1S DT$ MBX. The $DCDEF macro defines these symbols.
The buffer size is the-maximum message size in bytes.

7.3 MAILBOX FUNCTION CODES

The VAX/VMS mailbox I/O functions
end-of-file, and set attention AST.

are: read, write, write

No buffered I/O byte coufit'quota checking is performed on mailbox I/O
messages. Instead, the byte "count or buffer quota of the mailbox is
checked for sufficient $pace to buffer the message being sent. The
buffered I/O quota and AST quota are also checked.

7.3.1 Read

Read mailbox QIO requests are used to obtain messages written by other
processes. The three:'mailbox functions and their codes are:

• IO$_READVBLK - read virtual block

• IO$_READLBLK - read logical block

• IO$_READPBLK - read physical block

These function codes take two device/function-dependent arguments:

• PI --the starting virtual address of the buffer that is to
receive the message read

• P2 --:·the size of the buffer in bytes (limited by the maximum
message size for.the. :mailbox)

One function"'modif ier.can be specified wi th a QIO read request:

• IO$M NOW -- the.I!Oc9peration is completed immediately with no
wai t -for.a write.: request from another process

Figure 7-4 illustrates~the read mailbox functions~ in this figure,
Process A reads a mailbox message written by Process B. As the figure
indicates, a mailbox read request requires a corresponding mailbox
write request (except in the case of an error). The requests can be
made in any sequence~ that is, the read request can either precede or
follow the write request.

Two possibilities exist if Process A issues a read request before
Process B issues a write request. If Process A did not specify the
function modifier IO$M NOW, Process Als request is queued during the
wait for Process B -to issue the write request. Wnen this request
occurs, the data is transferred from Process B, through the system
buffers, to Process A to complete the I/O operation.

However, if Process A did specify the IO$M NOW function modifier, the
read operation is completed immediately. That is, Process Als request
is not queued during the wait for the message from Process B, and no
data is transferred from Process B to Process A.

7-5

MAILBOX DRIVER

If Process B sends a message (with no function modifier; see Section
7.3.2) before Process A issues a read request (with or without a
function modifier), Process A finds a waiting message in the mailbox.
The data is transferred and the I/O operation is completed
immediately.

To issue the read request, Process A can specify any of the read QIO
function codes; all perform the same operation.

PROCESS
A

0)or0

o
NOTE: Numbers indicate order of events.

0)or0

WRITE 010

MAILBOX

DATA

Figure 7-4 Read Mailbox

7.3.2 Write

PROCESS
B

Write mailbox QlO requests are used to transfer data from a process to
a mailbox. The three mailbox functions and their QIO function codes
are:

• IO$_WRITEVBLK write virtual block

• IO$_WRlTELBLK write logical block

• IO$_WRITEPBLK write physical block

These function codes take two device/function-dependent arguments:

• PI -- the starting virtual address of the buffer that contains
the message being written

• P2 -- the size of the buffer in bytes (limited by the maximum
message size for the mailbox)

One function modifier can be specified with a QIO write request:

• lO$M NOW - the I/O operation is completed immediately with no
wait-for another process to read the mailbox message

Figure 7-5 illustrates the write mailbox function; in this figure,
Process A writes a message to be read by Process B. As in the read
request example above, a mailbox write request requires a
corresponding mailbox read request (unless an error occurs), and the
requests can be made in any sequence.

Two possibilities exist if Process A issues a write request before
Process B issues a read request. If Process A did not specify the
function modifier IO$M NOW, Process A's write request is queued during
the wait for Process B to issue a read request. When this request
occurs, the data is transferred from Process A to Process B to
complete the I/O operation.

7-6

MAILBOX DRIVER

However, if Process A did specify the IO$M NOW function modifier, the
write operation is completed immediately. The data is available to
Process B and is transferred when Process B issues a read request.

If Process B issues a read request (with no function modifier) before
Process A issues a write request (with or without the function
modifier), Process A finds a waiting request in the mailbox. The data
is transferred and the I/O operation is completed immediately.

To issue the write request, Process A can specify any of the write QIO
function codes; all perform the same operation.

PROCESS
A

NOTE: Numbers indicate order of events.

MAILBOX

DATA

Figure 7-5 write Mailbox

7.3.3 Write End-of-File Message

PROCESS
B

write End-of-File Message QIO requests are used to insert a special
message in the mailbox. The process that reads the end-of-file
message is returned the status code SS$_ENDOFFILE in the I/O status
block. No data is transferred. This function takes no arguments or
function modifiers. VAX/VMS provides a single function code:

• IO$_WRITEOF -- write end-of-file message

7.3.4 Set Attention AST

Set Attention AST QIO requests are used to specify that an AST be
given to notify the requesting process when a cooperating process
places an unsolicited read or write request in a designated mailbox.
Because the AST only occurs when the read or write request arrives
from a cooperating process, the requesting process need not repeatedly
check the mailbox status.

The Set Attention AST functions and their function codes are:

• IO$_SETMODEIIO$M_READATTN - read attention AST

• IO$_SETMODEIIO$M_WRTATTN - write attention AST

These function codes take two device/function-dependent arguments:

• PI -- AST address (request notification is disabled if the
address is 0)

7-7

MAILBOX DRIVER

• P2 -- AST parameter returned in the argument list when the AST
service routine is called

• P3.-- access mode to deliver AST; maximized with requester's
mode

These functions are one-time AST enables; they must be explicitly
re-enabled once the AST has been delivered if the user desires
notification of the next unsolicited request. Both types of enables,
and more than one of the each type, can be set at the same time. The
number of enables is limited only by the AST quota for the process.

Figure 7-6 illustrates the write attention AST function. In this
figure, an AST is set to notify Process A when Process B sends an
unsolicited message.

Process A uses the 10$ SETMODE!IO$M WRTATTN function to request an
AST. When Process B sends a message to the mailbox, the AST is
delivered to Process A. Process A responds to the AST by issuing a
read request to the mailbox. The function modifier IO$M NOW is
included in the read request. The data is then transferred to
complete the I/O operation.

If several requesting processes have set ASTs for unsolicited messages
at the same mailbox, all ASTs are delivered when the first unsolicited
message is placed in the mailbox. However, only the first process to
respond to the AST with a read request receives the data. Thus, when
the next process to respond to an AST issues a read request to the
mailbox, it may find the mailbox empty. If this request does not
include the function modifier IO$M NOW, it will be queued during the
wait for the next message to arrive in the mailbox.

o
AST SPECIFIED BY

IO$_SETMODE
!IO$M_WRTATTN

AST

PROCESS
A

DATA

NOTE: Numbers indicilte order of events.

MAILBOX
PROCESS

B

Figure 7-6 write Attention AST (Read Unsolicited Data)

Figure 7-7 illustrates the read attention AST function. In this
figure, an AST is set to notify Process A when Process B issues a read
request for which no message is available.

7-8

MAILBOX DRIVER

Process A uses the 10$ SETMODE!IO$M READATTN function to specify an
AST. When Process B issues a read-request to the mailbox, the AST is
delivered to Process A. Process A responds to the AST by sending a
message to the mailbox. The data is then transferred to complete the
I/O operation.

If several requesting processes have set ASTs for read requests at the
same mailbox, all ASTs are delivered when the first read request is
placed in the mailbox. Only the first process to respond with a write
request is able to transfer data to Process B.

8
AST SPECIFIED BY

IO$_SETMODE
!IO$M_READATTN

AST

o

PROCESS
A

NOTE: Numbers indicilte order of events.

MAILBOX

DATA

Figure 7-7 Read Attention AST

7.4 I/O STATUS BLOCK

PROCESS
B

The I/O status blocks (IOSB) for mailbox read and write QIO functions
are shown in Figures 7-8 and 7-9. Table 7-3 lists the status returns
for these functions.

+2 10SB

byte count I status

sender process identification (PID)*

+4

*0 if the sender was a system process

Figure 7-8 IOSB Contents - Read Function

7-9

MAILBOX DRIVER

+2 IOS8

byte count I status

receiver process identification (PID)*

+4
*0 if 10$M_NOW was specified

Figure 7-9 IOSB Contents - Write Function

Table 7-3
Mailbox QIO Status Returns

Status Meaning

SS$_NORMAL Successful completion. The operation specified
in the QIO was completed successfully. The
second word of the IOSB can be examined to
determine the number of bytes transferred.

SS$_ENDOFFILE No message available at the mailbox or
end-of-file (10$ _ENDOFFILE) message read.

7.5 PROGRAMMING EXAMPLE

The following pro~ram creates a mailbox and puts some mail in it; no
matching read IS pending on the mailbox. First, the program
illustrates that if the function modifier IO$M NOW is not used when
mail is deposited, the write function will wait until a read operation
is performed on the mailbox. In this case, IO$M NOW is specified and
the program continues after the mail is left in the mailbox.

Next, the mailbox is read. If there was no mail in the mailbox the
program would wait at this point because IO$M NOW is not specified.
IO$M_NOW should be specified if there is any doubt concerning the
availability of data in the mailbox and it is important for the
program not to wait.

It is up to the user to coordinate what data goes into and out of
mailboxes. In this example the process reads its own message.
Normally, two mailboxes are used for interprocess communication: one
for sending data from process A to process B, and one for sending data
from process B to process A. If a program is arranged in this manner,
there is no possibility of a process reading its own message.

7-10

MAILBOX DRIVER

MAILBOX DRIVER PROGRAMMING EXAMPLE
1011

Define necessary symbols

SIODEF ;Define 1/0 function codes

Allocate stor~ge for necessary data structures

Allocate terminal device name string and descriptor

DEVICE_DESCR:
.LONG
.LONG

20S-10S
lOS
ITERMINALI

.
;Length of name string
;Address of name string

lOS: • ASCII
20$:

;Name string of output device
;Reference label

;
! Allocate space to store aSsigned cnannel number ,
DEVICJ::_CHANNEL:

.E4LKW ;Channel number

Allocate mailboX name ~tring and descriptor

MAILBUX_NAME:
.LONG
.LONG

INAMEBUX:.ASCII

ENOHOX-NAMEBOX
NA"!EBOX
1146_MAIN_STI

:Lengtn of name string
;Address of name string
;Name string

ENDBOX: ;Reference label .
; Allocate space to store assigned channel number
;

MAILBUX_CHANNEL:
.BLKW 1

.
:Channel number

;
; Now allocate space to store tne outgoing and incoming messages
IN_SOX_BUFFER:

iAllocate 40 bytes for received message
;Define input buffer length

.BLKB 40
IN_LENGTH=.-IN_BOX_BUFFER

OUT_BOX_BUFFER:
;MeSSage to send .ASCII ISHgEP ARE VERY DIMI

OUT_LENGTH=.-OUT_BOX_BUFFER ;Define length of message to send

Now allocate space for the 1/0 status quadword

STATUS: .OUAD ;I/U status quadword

Now tne proqram. A mailboX is created and a cnannel is assigned
to tne terminal. A message is put in the mailbox and a message
is received from tne mailbox (tne same message).Tne contents of
tne mailbOX ~re tnen printed on tne terminal •

STAR'r: • WORD 0 ;Entry mask
SCPEMBX_S CHAN=MAILBOX_CHANNEL,-;Channel is the mailbox

PROMSK=.·XOOOO,- ;NO protection
BUFQUO=.·X0060,- ;Buffer quota is hex 60
LOGNAM=MAILBOX_NAME,- ;Logical name descriptor
MAXMSG=.·X0060 ;Maximum message is hex 60

CMPW 'SSS_NORMAL,RO ;Test for normal return
BSBw ERROR_CHECK ;See if all well
SASSIGN_S -;Assign channel

DEVNAM=OEVICE_DESCR -;Device descrIptor
CHAN=DEVICE_CHANNEL ;Channel

CMPW .SSS_NORMAL,RO ;Test for normal return
BSBw ERROR_CHECK ;See if all is well

Now we will write the message to the mailbox using the function
modifier 10SM_NOW so that we may continue without waIting for a
read on the mailbox

SOIOw_S FUNC=.IOS_riRITEVBLK1IOSM_NOW t - ;write message NOW
CHAN=MAILBUX_CHANNEL,- ;To ~ne mailbox cnannel
Pl=OUT_BOX_BUFFER,- ;Buffer to write

7-11

MAILBOX DRIVER

CMPW
BSBW

P2=.OUT_LENGTH
.SSS_NURMAL,RO
ERROR_CHECK

Now the mailbox Is read

CMPII
BSBW

FUNC='IOS_R~ADVBLK -
CHAN=MAILBUX_CHANNEL,­
IOSR=S'UTUS -
Pl=IN_BOX_HUFFER,­
P2=.IN_LENGTH
'SSS_NORMAL,RO
ERROR_CHECK

;How mUCh to wrIte
;Test for normal return
;See It all Is well

tread box
;Ma1lbox Channel
;Def1ne status to rece1ve message length
;Where to read It
;How much
;Test for normal return
;See if all Is well

Now we find out how much mall was 1n the box and pr1nt 1t to the term1nal
The amount of mail read is held In STATUS+2

~OVZWL STATUS+2 R2
SOIUW_S FUNC='IOS_WRIT~VBLK,­

CHAN=DEVICE_CHA~~EL,­
Pl=IN_BOX_BUFFER,­
P2=R2 t -
P4=.3l

we now deass1qn the channel and ex1t

;Put brte count 1nto R2
;Funct on 15 write
;To the terminal
;Address of buffer to wr1te
:How mUCh to wr1te
;Carr1agecontrol (IH ,)

EXIT: SDASSGN_S CHAN=OEVICE_CHANNEL ;Deasslgn channel
RET : Return

This 1s the error CheckIng part of the program. Normally some k1nd of
error recovery would be attempted here but not for this example.

~RRUR_CHECK:
BNEO
RSH

EXIT

.END START

7-12

:Dlrectlve fa1led so ex1t
;IUse return

CHAPTER 8

DMCll SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER

This chapter describes the use of the VAX/VMS DMCll Synchronous
Communications Line Interface driver. The DMCll provides a
direct-memory-access interface (DMA) between two computer systems
using the DIGITAL Data Communications Message Protocol (see Section
8.1.1 below). The DMCll supports DMA data transfers of up to 16K
bytes at rates of up to 1 million baud for local operation (over
coaxial cable) and 56,000 baud for remote operation (using modems).
Both full- and half-duplex modes are supported.

The DMCll is a message-oriented communications line interface that is
used primarily to link two separate but cooperating computer systems.

8.1 SUPPORTED DMCll SYNCHRONOUS LINE INTERFACES

Table 8-1 lists the DMCll options supported by VAX/VMS.

Type

Table 8-1
Supported DMCll Options

Use

DMCll-AR with DMCll-FA Remote DMCll and EIA or
DMCll-AR with DMCll-DA line unit

DMCll-AL with DMCll-MD Local DMCll and 1M bps
DMCll-AL with DMCll-MA bps

8.1.1 DIGITAL Data Communications Message Protocol

V35/DDS

or 56

To ensure reliable data transmission, the DIGITAL Data Communications
Message Protocol (DDCMP) has been implemented, using a high-speed
microprocessor, on the VAX-ll/780 processor. For remote operations, a
DMCll can communicate with a different type of synchronous interface
(or even a different type of computer), provided the remote system has
implemented the DDCMP, version 4.

8-1

DMCll SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER

The DDCMP detects errors on the communication line interconnecting the
systems using a 16-bit Cyclic Redundancy Check (CRC). Errors are
corrected, when necessary, by automatic message retransmission.
Sequence numbers in message headers ensure that messages are delivered
in the proper order with no omissions or duplications.

The DDCMP specification (Order No. AA-D599A-TC) provides more detailed
information on the DDCMP.

8.2 DRIVER FEATURES AND CAPABILITIES

DMCll driver capabilities include:

• A nonprivileged QIO interface to the DMCll. This allows use
of the DMCll as a raw-data channel.

• unit attention conditions transmitted through attention ASTs
and mailbox messages.

• Both full- and half-duplex operation.

• Interface design common to all communications devices
supported by VAX/VMS.

• Error logging of all DMCll microprocessor and line unit
errors.

• On -line diagnostics.

• Separate transmit and receive quotas.

The following sections describe mailbox usage and I/O quotas.

8.2.1 Mailbox Usage

The device owner process can associate a mailbox with a DMCll by using
the $ASSIGN system service (see Section 7.1.2). The mailbox is used
to receive messages that signal attention conditions about the unit.
As illustrated in Figure 8-1, these messages have the following
context and format:

• Message type; this can be anyone of the following:

Message type

MSG$ XM DATAVL
MSG$-XM-SHUTDN
MSG$:XM:ATTN

Meaning

Data is available
Unit has been shutdown
A disconnect, timeout, or
check occurred

The $MSGDEF macro is used to define message types

• Physical unit number of the DMCll

• Size (count) of the ASCII device name string

• Device name string

8-2

data

DMCll SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER

31 16 15 8 7 0

unit I type

I count

device name

Figure 8-1 Mailbox Message Format

8.2.2 Quotas

Transmit operations are considered direct I/O operations and are
limited by the process's direct I/O quota.

The quotas for the receive buffer free list (see Section 8.4.3.4) are
the process's buffered I/O count and buffered I/O byte limit. After
start up, the transient byte count and the buffered I/O byte limit are
adjusted.

8.2.3 Power Failure

When a system power failure occurs, no DMCll recovery is possible.
The device is in a fatal error state and is shutdown.

8.3 DEVICE INFORMATION

Users can obtain information on device characteristics by using the
$GETCHN and $GETDEV system services (see Section 1.10). The
information is returned in a user-specified buffer shown in Figure
8-2. Only the first three longwords of the buffer are shown in Figure
8-2 (Figure 1-8 shows the entire buffer).

31 2423 16 15 8 7 o

device characteristics

maximum message size type class

not used I error summary status characteristics

Figure 8-2 DMCll Information

The first longword in the buffer contains the device characteristics
values listed in Table 8-2. The $DEVDEF macro defines these values.

8-3

DMCll SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER

Table 8-2
DMCll Device Characteristics

Dynamic bit Meaning
(Conditionally Set)

DEV$M_NET Network device

Static bits Meaning
(Always Set)

DEV$M ODV Output device
DEV$M::IDV Input device

The second longword contains information on the device class and type,
and the maximum message size. The device class for the DMCll is
DC$ SCOM. Table 8-3 lists the device types. The device class and
types are defined by the $DCDEF macro.

Device Type

DT$_XM_ ARDA

DT$_XM_ARFA

DT$_XM_ALMD

DT$_XM_ALMA

Table 8-3
DMCll Device Types

Meaning l

DMCII-AR with DMCII-DA

DMCII-AR with DMCII-FA

DMCII-AL with DMCll-r.1D

DMCII-AL with DMCII-MA

1 Table 8-1 describes the different
device types

The maximum message size is the maximum send or receive message size
for the unit. Messages greater than 512 bytes on modern controlled
lines are more prone to transmission errors and therefore may require
more retransmissions.

The third longword contains unit characteristics and status, and an
error summary.

Unit characteristics bits govern the DDCMP operating mode. They are
defined by the $XMDEF macro and can be read or set. Table 8-4 lists
the unit characteristics values and their meanings.

8-4

DMCll SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER

Table 8-4
DMCll Unit Characteristics

Characteristic Meaningl

XM$M_CHR_MOP

XM$M_CHR_SLAVE

XM$M_CHR_HDPLX

XM$M_CHR_LOOPB

XM$M_CHR_INHER

DDCMP maintenance mode

DDCMP half-duplex slave station

DDCMP half-duplex

DDCMP loop back

Inhibit error logging. Since
DMCll operation is independent
of individual I/O operations,
error logging cannot be
inhibited on a per-request
basis.

Shows the status of the mailbox
that can be associated with the
unit; if this bit is set, the
mailbox is enabled to receive
messages signaling unsolicited
data. (This bi t can also be
changed as a subfunction of read
or write QIO functions)

1 Section 8.1.1 describes the DDCMP

The status bits show the status of the unit and the line. The values
are defined by the $XMDEF macro. They can be read, set, or cleared as
indicated. Table 8-5 lists the status values and their meanings.

Status

Table 8-5
DMCll Unit and Line Status

Meaning

Protocol is active. This bit is
set when 10$ SETMODE!IO$ STARTUP
is done and- cleared when the
unit is shut down. (Read only.)

Timeout~ If set, indicates that
the receiving computer is
unresponsive. DDCMP time outs.
(Read or clear.)

Data overrun. If set, indicates
that a message was received but
lost due to the lack of a
receive buffer. (Read or
clear.)

(Continued on next page)

8-5

DMCll SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER

Status

XM$M_STS_DCHK

XM$M_STS_DISC

Table 8-5 (Cont.)
DMCll Unit and Line Status

Meaning

Data check. If set,
that a retransmission
has been exceeded.
clear.)

indicates
threshold
(Read or

If set, indicates that the Data
Set Ready (DSR) modem line went
from on to off. (Read or
clear.)

The error summary bits are set only when the driver must shut down the
DMCll because a fatal error occurred. These are read-only bits that
are cleared by any of the 10$ SETMODE functions (see Section 8.4.3).
The XM$M STS ACTIVE status -bit is clear if any error summary bit is
set. TabIe 8=6 lists the error summary bit values and their meanings.

Error Summary
Bit

XM$M_ERR_START

XM$M_ERR_LOST

Table 8-6
Error Summary Bits

Meaning

DDCMP maintenance
received

message

DDCMP START message received

Data was lost when a message was
received that was longer than
the specified maximum message
size.

An unexpected hardware/software
error occurred.

8.4 DMCll FUNCTION CODES

The basic DMCll function codes are read, write, and set mode. All
three functions take function modifiers.

8.4.1 Read

VAX/VMS provides three read function codes:

• IO$_READLBLK - read logical block

• IO$_READPBLK - read physical block

• IO$_READVBLK - read virtual block

8-6

DMCll SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER

Received messages are multi-buffered in system dynamic memory and then
copied to the user's address space when the read operation is
performed.

The QIO arguments for the three function codes are:

• PI -- the starting virtual address of the buffer that is to
receive data

• P2 -- the size of the receive buffer in bytes

The read QIO functions can take two function modifiers:

• IO$M_DSABLMBX - disables use of the associated mailbox for
unsolicited data notification

8.4.2 write

- complete the read operation immediately if no
message is available

VAX/VMS provides three write QIO function codes:

• IO$_WRITELBLK - write logical block

• IO$_WRITEPBLK - write physical block

• IO$_WRITEVBLK - write virtual block

Transmitted messages are sent directly from the requesting process's
buffer.

The QIO arguments for the three function codes are:

• PI -- the starting virtual address of the buffer containing
the data to be transmitted

• P2 -- the size of the buffer in bytes

The message size specified by P2 cannot be larger than the maximum
send message size for the unit (see Section 8.3). If a message larger
than the maximum size is sent, a status of SS$ DATAOVERUN is returned
in the I/O status block. -

The write QIO functions can take one function modifier:

• IO$M_ENABLMBX - enable use of the associated mailbox

8.4.3 Set Mode

Set mode operations are used to perform protoco~, operational, and
program/driver interface operations with the DMCII. VAX/VMS defines
five types of set mode functions:

• Set Mode

• Set Characteristics

• Enable Attention AST

8-7

DMCll SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER

• Set Mode and Shut Down Unit

• Set Mode and Start Unit

8.4.3.1 Set Mode and Set Characteristics - These functions set device
characteristics such as maximum message size. VAX/VMS provides two
function codes:

• IO$_SETMODE - set mode (requires logical I/O privilege)

• IO$ SETCHAR - set characteristics (requires
privilege)

One argument is used with these function codes:

physical I/O

• P1 -- the virtual address of the quadword characteristics
buffer block if the characteristics are to be set. If this
argument is zero, only the unit status and characteristics are
returned 1n the I/O status block (see Section 8.5). Figure
8-3 shows the PI characteristics block.

31 2423 16 15 8 7 a

maximum message size type class

not used

I
error summary status characteristics

Figure 8-3 PI Characteristics Block

In the buffer designated by PI the device class is DC$ SCOM. Table
8-3 (in Section 8.3) lists the device types. The maximum message size
describes the maximum send or receive message size.

The second longword contains device/func~ion dependent
characteristics: unit characteristics, status, and error summary
bits. Any of the characteristics values and some of the status values
can be set or cleared (see Tables 8-4, 8-5, and 8~6).

If the unit is active (XM$M STS ACTIVE is set), the action of a Set
Mode or Set Characteristics function with a characteristics buffer is
to clear the status bits or the error summary bits. If the unit is
not active, the status bits or the error summary bits can be cleared,
and the maximum message size, type, device class, and unit
characteristics can be changed.

8.4.3.2 Enable Attention AST - This function enables an AST to be
queued when an attention condition occurs on the unit. An AST is
queued when the driver sets or clears either- an error summary bit or
any of the unit status bits, or when a message is available and there
is no waiting read request. The Enable Attention AST function is
legal at any time, regardless of the condition of the unit status
bits.

8--8

DMCll SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER

VAX/VMS provides two function codes:

• IO$_SETMODEIIO$M_ATTNAST - enable attention AST

• IO$_SETCHARIIO$M_ATTNAST - enable attention AST

Enable Attention AST is a single (one-time) enable. After the AST
occurs, it must be explicitly re-enabled by the function before the
AST can occur again. The function code is also used to disable the
AST. The function is subject to AST quotas.

The Enable Attention AST functions take the following device/function
dependent arguments:

• PI address of AST service routine or 0 for disable

• P2 (ignored)

• P3 access mode to deliver AST

The AST service routine is called with an argument list. The first
argument is the current value of the device/function dependent
characteristics longword shown in Figure 8-3. The access mode
specified by P3 is maximized with the requester's access mode.

8.4.3.3 Set Mode and Shut Down Unit - This function stops the
operation on an active unit (XM$M STS ACTIVE must be set) and then
resets the unit characteristics. --

VAX/VMS provides two function codes:

• IO$_SETMODEIIO$M_SHUTDOWN - shut down unit

• IO$_SETCHARIIO$M_SHUTDOWN - shut down unit

These functions take one device/function dependent argument:

• PI -- the virtual address of the quadword characteristics
block (Figure 8-3) if modes are to be set after shutdown. PI
is 0 if modes are not to be set after shutdown.

These functions stop the DMCII microprocessor and release all
outstanding message blocks; any messages that have not been read are
lost. The characteristics are reset after shutdown. Except for the
signaling of attention ASTs and mailbox messages, the action of these
functions is the same as the action of the driver when shutdown occurs
because of a fatal error.

8.4.3.4 Set Mode and Start Unit - This function sets the
characteristics and starts the protocol on the associated unit.
VAX/VMS provides two function codes:

• IO$_SETMODEIIO$M_STARTUP - start unit

• IO$_SETCHARIIO$M_STARTUP - start unit

8-9:

DMCll SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER

These functions take
arguments:

the following device/function dependent

• PI -- the virtual the address of the quadword characteristics
block (Figure 8-3) if the characteristics are to be set.
Characteristics are set before the device is started.

• P2 (ignored)

• P3 the number of pre-allocated receive-message blocks to
ensure the availability of buffers to receive messages.

The total quota taken from the process's buffered I/O byte count quota
is the DMCII work space, plus the number of receive-message buffers
specified by P3 times the maximum message size. For example, if six
200-byte, buffers are required, the total quota taken is 1456 bytes:

256
+ 1200

1456

(DMCII work space)
(number of buffers X buffer size)

(total quota taken)

This quota is returned to the process when shutdown occurs.

Receive-message blocks are used by the driver to receive messages that
arrive independent of QIO read request timing. When a message
arrives, it is matched with any outstanding read requests. If there
are no outstanding read requests, the message is queued and an
attention AST or mailbox message is generated.
(10$ SETMODE!IO$M ATTNAST or 10$ SETCHAR!IO$M ATTNAST must be set to
enabIe an attention AST; IO$M ENABLMBX must be used to enable a
mailbox message.) -

When read, the receive-message block is returned to the
receive-message "free list" defined by P3. If the "free list" is
empty, no receive-messages are possible. In this case, a data lost
condition can be generated if a message arrives. This nonfatal
condition is reported by device-dependent data and an attention AST.

8.5 I/O STATUS BLOCK

The I/O status block (IOSB) usage for all DMCll QIO functions is shown
in Figure 8-4. Table 8-7 lists the status returns for these
functions.

+2 IOS8

transfer si ze I
status

device-dependent characteristics

+4

Figure 8-4 IOSB Content

In Figure 8-4, the transfer size at IOSB+2 is the actual number of
bytes transferred. Table 8-4 lists the device-dependent
characteristics returned at IOSB+4. These characteristics can also be
obtained by using the $GETCHN and $GETDEV system services (see Section
8.3) •

8-10

DMCll SYNCHRONOUS COMMUNICATIONS LINE INTERFACE DRIVER

Status

SS$_DATAOVERUN

SS$_ENDOFFILE

SS$_DEVOFFLINE

SS$_DEVACTIVE

Table 8-7
Status Returns for DMCll

Meaning

Fatal hardware error or
progress.

I/O canceled in

Message received overran buffer
(read), or message too big (write).

allocated

No data available (read) when IO$M_NOW was
specified.

Operation was successfully completed
write, or set modes).

(read,

Device protocol not started (read or write).
The function is inconsistent with the current
state of the unit (Set Mode ••

The function is inconsistent with the current
state of the unit.

8-11

CHAPTER 9

010 INTERFACE TO FILE SYSTEM ACPS

An ancillary control process (ACP) is a process that interfaces
between the user process and the driver, and performs functions that
supplement the driver's functions. Virtual I/O operations involving
file-structured devices (disks and magnetic tapes) often require ACP
intervention. In most cases, ACP intervention is requested by VAX-II
Record Management Services (RMS) and is transparent to the user
process. However, user processes can request ACP functions directly
by issuing a 010 request and specifying an ACP function code, as shown
in Figure 9-1.

The DECnet/VAX User's Guide describes network ACP (NETACP) interface
operations.

User
Process I I Driver

l
ACP

I

Figure 9-1 ACP QIO Interface

This chapter describes the 010 interface to ACPs for disk and magnetic
tape devices (file system ACPs). The example program in Chapter 4
performs 010 operations to the magnetic tape ACP.

9.1 ACP FUNCTIONS AND ENCODING

All VAX/VMS ACP functions can be expressed using six function codes
and five function modifiers. The function codes are:

• 10$_CREATE -- creates a directory entry or file.

• 10$ ACCESS -- searches a directory for a specified file and
accesses that file, if it is found.

o $10 DEACCESS -- deaccesses a file and, if specified, writes
the-final attributes in the file header.

• 10$ MODIFY
allocation.

• 10$_DELETE

modifies the file attributes and/or file

deletes a directory entry and/or file header.

9-1

010 INTERFACE TO FILE SYSTEM ACPS

• IO$_MOUNT -- \mounts a volume: requires mount privilege.

• IO$_ACPCONTROL -- performs miscellaneous control functions.

Appendix A describes the function codes in more detail. The function
modifiers are:

• IO$M ACCESS -- opens the file on the user's channel:
only-to the create and access functions

applies

• IO$M CREATE -- creates a file: applies only to the create and
access functions

• IO$M DELETE -- deletes the file (or marks
applIcable only to create and delete
devices.

it for deletion):
functions to disk

• IO$M DMOUNT -- dismounts a volume: applies only to the ACP
control function

9.1.1 ACP Device/Function-Dependent Arguments

In addition to the function codes and modifiers, VAX/VMS ACPs take
five device/function-dependent arguments, as shown in Figure 9-2.

31 o

P1: Address of FIB descriptor

P2: Address of file name string descriptor (optional)

P3: Address of word to receive resultant string length (optional)

P4: Address of resultant string descriptor (optional)

P5: Address of attribute control block (optional)

Figure 9-2 ACP Device/Function-Dependent Arguments

The first argument, PI, is the address of the File Information Block
descriptor. Section 9.2 describes the FIB in detail.

The second argument, P2, is an optional argument used in directory
operations. It specifies the address of the descriptor for the file
name string to be entered in the directory. The file name itself must
be in read/write memory.

Argument P3 is the address
name string length. The
length is returned in P3.
buffer to receive the
arguments are optional.

of a word to receive the resultant file
resultant string is not padded. The actual
P4 is the address of a descriptor for a

resultant file name string. Both these

The fifth argument, PS, is an optional argument containing the address
of the attribute control block. Section 9.3 describes the attribute
control block in detail.

9-2

QIO INTERFACE TO FILE SYSTEM ACPS

Figure 9-3 shows the format for the descriptors.

31 16 15 o

I

not used I count

address

Figure 9-3 ACP Device/Function Argument Descriptor Format

9.2 FILE INFORMATION BLOCK

The File Information Block (FIB) contains much of the information that
is exchanged between the user process and an ACP. Figure 9-4 shows
the format of the FIB. Because the FIB is passed by a descriptor (PI
in Figure 9-2), its length can vary. Thus, a short FIB can be used in
ACP calls that do not need arguments toward the end of the FIB. The
ACP automatically zero-extends a short FIB. Figure 9-5 shows the
format of a typical short FIB, in this case one that would be used to
open an existing file. Table 9-1 lists the values of the FIB fields.

31 24 23 1615 8 7 o

FIB$B_WSIZE I FIB$L_ACCTL

FIB$W_FID

I fIBSW_DID

FIB$L_WCC

fIB$W_CNTRLFUNC*/FIB$W_EXCTL I FIB$W_NMCTL

FIB$L_CNTRLVAL*/FIB$L_EXSZ

FIB$L_EXVBN

I FIB$B_ALALIGN I FIB$B_ALOPTS

j.- FIB$W_ALLOC -

*Only for magnetic tape

Figure 9-4 File Information Block Format

9-3

31

QIO INTERFACE TO FILE SYSTEM ACPS

2423 16 15 8 7

FIB$B_WSIZE I F/8$L_ACCTL

FIB$W_FID

I FIB$W_DID

FIB$L_WCC

-°1 FIB$W_NMCTL

o

--0
etc.

Figure 9-5 Typical Short File Information Block

9-4

Field

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-1
Contents of the File Information Block

Field Bits

FIB$M_NOREAD

FIB$M_NOWRITE

FIB$M_DLOCK

j
i
I

FIB$M_SEQONLY

FIB$M_REWIND

FIB$M_UPDATE

Meaning

Specifies field values
control access to the file.
following bits are defined:

that
The

Set for write access;
read-only access.

clear for

Set to deny read access to others

Set to deny write access to others

Set to enable deaccess lock (close
check). Only for disk-devices.

Used to flag a file as
inconsistent in the event the
program currently modifying the
file terminates abnormally. If
the program then closes the file
without performing a write
attributes operation, the file is
marked as locked and cannot be
accessed until it is unlocked.

Set for sequential-only access.
Only for disk devices.

Set to rewind magnetic tape before
access

Set to create magnetic tape file
at current position (note: a
magnetic tape file will be created
at the end of the volume set if
neither FIB$M REWIND nor
FIB$M CURPOS are -set). If the
tape Is not positioned at the end
of a file, FIB$M CURPOS creates
the file at the next file
position.

2Set to position at start of a
:magnetic tape file when opening
~ile for write; clear to position
at end-of-file

Set to enable read checking of the
file

i ,
Set to eniable'~'w'ri te:t(che~klngj·: of'
the file

(Continued on next page)

9-5

Field

010 INTERFACE TO FILE SYSTEM ACPS

Table 9-1 (Cont.)
Contents of the File Information Block

Field Bits

FIB$M_ALLNAM

FIB$M_ALLTYP

FIB$M_ALLVER

FIB$M_NEWVER

Meaning

Controls the size of the file
window used to map a disk file.
The ACP will use the volume
default if FIB$B WSIZE is O. A
value of 1 to 127- indicates the
number of retrieval pointers to be
allocated to the window. A value
of -1 indicates that the window
should be as large as necessary to
map the entire file.

Specifies the file identification.
The user supplies the file
identifier when it is known; the
ACP returns the file identifier
when it becomes known, for
example, as a result of a create
or directory lookup

Contains the file identifier of
the directory file

Maintains
processing
operations

position context when
wild card directory

Controls the processing of a name
string in a directory operation.
The following bits are defined:

Set if name string contains wild
cards

Set to match all name field values

Set to match all field type values

Set to match all version field
values

Set to create file of same name
with next higher version number.
Only for disk devices.

FIB$M_SUPERSEDE Set to supersede an existing file
of the same name, type, and
version. Only for disk devices.

FIB$M_FINDFID Set to search a directory for the
file identifier in FIB$W_FID

Set on return from a CREATE if a
lower numbered version of the file
exists. Only for disk devices.

(Continued on next page)

9-6

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-1 (Cont.)
Contents of the File Information Block

Field

FIB$W NMCTL
(Cont:)

FIB$W_CNTRLFUNC

Field Bits

FIB$M_HIGHVER

FIB$M_EXTENDI

FIB$M_TRUNC 1

FIB$M_NOHDREXT

FIB$M_ALCON

FIB$M_ALCONB

FIB$M_FILCON

FIB$M_ALDEF

Meaning

Set on return from a CREATE if a
higher numbered version of the
file exists. Only for disk
devices.

Specifies extend control for disk
devices. The following bits are
defined:

Set to enable extension

Set to enable truncation

Set to inhibit generation
extension file headers

Allocate contiguous space

of

Allocate contiguous space, best
effort

Mark file contiguous

Allocate the extend size
(FIB$L EXSZ) or the system
defaulI, whichever is greater

Controls magnetic tape functions.
In an ACPCONTROL function, the
FIB$W CNTRLFUNC field can contain
one of the following values:

FIB$C_REWINDFIL Rewind to beginning of file

FIB$C_POSEND

FIB$C_NEXTVOL

FIB$C_SPACE

Position to end of volume set

Force next volume

Space n blocks forward or
reverse

in

FIB$C_REWINDVOL Rewind to beginning of volume set

Specifies the number of blocks to
allocate to, or remove from, a
disk file depending on the
FIB$W EXCTL field configuration.
For truncate operations, this
field must contain o.

1 Only one of these can be set at one time; that is, extension
cannot be enabled at the same time truncation is enabled, and
vice versa.

(Continued on next page)

9-7

Field

FIB$L EXSZ
(Cont:)

FIB$L_CNTRLVAL

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-1 (Cont.)
Contents of the File Information Block

Field Bits Meaning

The number of blocks actually
allocated or removed is returned
in this longword. The value may
differ from the user-requested
value because of adjustments for
cluster boundaries. More blocks
are allocated and fewer blocks
removed to meet cluster
boundaries.

If FIB$C SPACE is indicated, the
FIB$L CNTRLVAL field specifies the
number of magnetic tape blocks to
space forward if positive or space
backward if negative.

Specifies the starting disk file
virtual block number at which the
allocated blocks are to appear in
an extend operation, or the first
virtual block number to be removed
in a truncate operation. For
extend operations, this field must
contain either the end-of-file
block number plus 1, or O. For
truncate operations, this field
specifies the first virtual block
number to be removed. The actual
starting virtual block number of
the extend or truncate operation
is returned in this field.

Table 9-2 shows which FIB fields and field values are used in the
respective ACP QIO functions. Some of the FIB fields and values are
applicable only to disk devices or only to magnetic tape devices.
See Table 9-1.

9-8

I/O Function

IO$_CREATE

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-2
FIB Argument Usage in ACP QIO Functions

Application Arguments

FIB Field

FIB$L_ACCTL

FIB$B_WSIZE

FIB$W_FID2

FIB$W_DID

FIB$W_NMCTL

FIB$L_ACCTL

FIB$B_WSIZE

FIB$W_FID 3

9-9

Field Values

FIB$M WRITE
FIB$M-NOREAD
FIB$M-NOWRITE
FIB$M-DLOCK
FIB$M-SEQONLY
FIB$M-REWIND
FIB$M-CURPOS
FIB$M-UPDATE
FIB$M-READCK
FIB$M:WRITECK

FIB$M NEWVER
FIB$M-SUPERSEDE
FIB$M-LOWVER5
FIB$M=HIGHVER5

FIB$M EXTEND6
FIB$M-TRUNC
FIB$M-NOHDREXT
FIB$M-ALCON
FIB$M-ALCONB
FIB$M-FILCON
FIB$M:ALDDEF

FIB$M WRITE
FIB$M-NOREAD
FIB$M-NOWRITE
FIB$M-DLOCK
FIB$M-SEQONLY
FIB$M-REWIND
FIB$M-CURPOS
FIB$M-UPDATE
FIB$M-READCK
FIB$M::WRITECK

(Continued on next page)

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-2 (Cont.)
FIB Argument Usage in ACP QIO Functions

I/O Function Application Arguments

FIB Field Field Values

10$ ACCESS FIB$W_DID
(CONT.)

FIB$L_WCC4

FIB$W_NMCTL FIB$M WILD
FIB$M-ALLNAM
FIB$M-ALLTYPE
FIB$M:ALLVER

10$ DEACCESS
(no -arguments used)

FIB$W_FID 3 IO$_MODIFY

FIB$W_DID

FIB$L_WCC 4

FIB$W_NMCTL FIB$M WILD
FIB$M-ALLNAM
FIB$M-ALLTYPE
FIB$M:ALLVER

FIB$W_EXCTL FIB$M EXTEND***
FIB$M-TRUNC
FIB$M-NOHDREXT
FIB$M-ALCON
FIB$M-ALCONB
FIB$M-FILCON
FIB$M=ALDEF

FIB$L_EXSZ

FIB$L_EXVBN

IO$_DELETE FIB$W_FID 3

FIB$W_DID

FIB$L_WCC 4

FIB$W_NMCTL FIB$M WILD
FIB$M-ALLNAM
FIB$M-ALLTYP
FIB$M:ALLVER

(Continued on next page)

9-10

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-2 (Cont.)
FIB Argument Usage in ACP QIO Functions

I/O Function Application Arguments

FIB Field Field Values

10$ MOUNT
(no arguments used)

IO$_ACPCONTROLI FIB$W_CNTRLFUNC FIB$C REWINDFIL
FIB$C-POSEND
FIB$C-NEXTVOL
FIB$C-SPACE
FIB$C:REWINDVOL

FIB$L CNTRLVAL
(if FIB$C SPACE
is indicated)

1 If IO$M_DMOUNT is not set, the magnetic tape control function
field specifies one of the field values listed.

2 If FIB$W DID = 0 and IO$M CREATE is not set;
output argument if IO$M_CREATE is set.

FIB$W_FID is an

3 If FIB$W DID is 0; FIB$W_FID is an output argument if FIB$W_DID
is not o. -

4 If FIB$V_WILD is set.

S Output argument

6 Only FIB$M EXTEND or FIB$M TRUNC can be set at any given time;
they cannot ooth be set at tne same time.

9.3 ATTRIBUTE CONTROL BLOCK

The attribute control block contains the codes that control the
reading and writing of file attributes, for example, file protection
and record attributes. Device/function-dependent argument PS
specifies the address of this list. The list consists of a variable
number of 2-1ongword control blocks, terminated by a zero longword, as
shown in Figure 9-6. The maximum number of attribute control blocks
in one list is 14. Table 9-3 describes the attribute control block
fields.

9-11

31

f---

-

Field

QIO INTERFACE TO FILE SYSTEM ACPS

1615 a

ATR$W_ TYPE I ATR$W_SIZE

ATR$L_ADDR

-
(additional control blocks)

-

a

Figure 9-6 Attribute Control Block Format

Table 9-3
Attribute Control Block Fields

Meaning

Specifies the number of bytes of the attribute to
be transferred. Legal values are from 0 to the
maximum size of the particular attribute (see
Table 9-4).

Identifies the individual attribute to be read or
written.

Contains the buffer
space to or from
transferred. The
determines whether
written, as follows:

address of the user's memory
which the attribute is to be
particular I/O function

the attribute is read or

I/O Function

Create
Access
Deaccess
Modify
Delete
Mount
ACP Control

Operation

write
Read
write
write
Not used
Not used
Not used

Table 9-4 lists the valid attributes for ACP QIO functions. The
maximum size (in bytes) is determined by the required attribute
configuration. For example, the file name uses only 6 bytes, but is
always accompanied by the file type and file version - so a total of
lO'bytes is required. Each attribute has two names: one for the code
(for example, ATR$C UCHAR) and one for the size (for example,

ATR$S_UCHAR). -

9-12

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-4
ACP QIO Attributes

Attribute
Name

Maximum
Size (bytes)

(unnamed) 5

(unnamed) 3

ATR$C UCHAR
ATR$S::UCHAR 4

ATR$C RECATTR
ATR$S::RECATTR 32

ATR$C FILNAM
ATR$S::FILNAM 10

ATR$C FILTYP
ATR$S:=FILTYP 4

ATR$C FILVER
ATR$S:=FILVER 2

ATR$C EXPDAT
ATR$S:=EXPDAT 7

ATR$C STATBLK
ATR$S=:STATBLK 10

ATR$C HEADER
ATR$S:=HEADER 512

ATR$C BLOCKSIZE
ATR$S:=BLOCKSIZE 2

ATR$C ASCDATES
ATR$S:=ASCDATES 35

ATR$C ALCONTROL
ATR$S:=ALCONTROL 14

ATR$C ASCNAME
ATR$S:ASCNAME 20

ATR$C CREDATE
ATR$S=:CREDATE 8

ATR$C REVDATE
ATR$S:REVDATE 8

ATR$C EXPDATE
ATR$S:EXPDATE 8

Meaning

Two-byte file owner UIC plus the
next attribute and the
first byte of ATR$C UCHAR. Used
for compatibility mode only.

Two-byte file protection plus
the first byte of ATR$C UCHAR.
Used for compatibility mode only

Four-byte file characteristics.

Record attribute area.

Six-byte Radix-50 file name plus
ATR$C_FILTYP and ATR$C_FILVER.

Two-byte Radix-50 file type plus
ATR$C_FILVER.

Two-byte binary version number.

Expiration date in ASCII.

Statistics block.

Complete file header.

Magnetic tape block size.

Revision count; revision date,
creation date, and expiration
date, in ASCII.

Compatibility mode allocation
data.

File name, type, and version,
in ASCII.

64-bit creation date and time.

64-bit revision date and time.

64-bit expiration date and time.

(Continued on next page)

9-13

Attribute
Name

ATR$C BAKDATE
ATR$S::BAKDATE

ATR$C UIC
ATR$S::UIC

ATR$C FPRO
ATR$S:FPRO

ATR$C RPRO
ATR$S:RPRO

ATR$C ACLEVEL
ATR$S:ACLEVEL

ATR$C SEMASK
ATR$S:SEMASK

ATR$ C_U IC_RO

QIO INTERFACE TO FILE SYSTEM ACPS

Maximum

Table 9-4 (Cont.)
ACP QIO Attributes

Meaning
Size (bytes)

64-bit backup date and
8

4-byte file owner UIC.
4

File protection.
2

Record protection.
2

File access level.
7

File security mask and
4

4 4-byte file owner UIC
(read only; ignored if

9.4 I/O STATUS BLOCK

time.

limit.

write)

Figure 9-7 shows the I/O status block (IOSB) for ACP QIO functions.
Table 9-5 lists the status returns for these functions.

The file ACP returns a completion status code in the first longword of
the IOSB. In an extend operation, the second longword is used to
return the number of blocks allocated to the file. If a contiguous
extend operation (FIB$V_ALCON) fails, the second longword is used to
return the size of the file after truncation.

Values returned in the IOSB are "most useful during operations in
compatibility mode. When executing programs in the native mode, the
user should use the values returned in the FIB locations.

+2 IOS6

not used status

+4

Figure 9-7 IOSB Contents - ACP QIO Functions

If an extend operation (including CREATE) was performed, IOSB+4
contains the number of blocks allocated, or the largest available
contiguous space if a contiguous extend operation failed. If a
truncate operation was performed, IOSB+4 contains the number of blocks
added to the file size to reach the next cluster boundary.

9-14

Status

SS$_ACCONFLICT

SS$_ACPVAFUL

SS$_BADATTRIB

SS$_BADCHKSUM

SS$_BADFILEHDR

SS$_BADFILENAME

SS$_BADFILEVER

SS$_BADIRECTORY

SS$_BADPARAM

SS$ BLOCKCNTERR

SS$_DEVICEFULL

SS$_DIRFULL

010 INTERFACE TO FILE SYSTEM ACPS

Table 9-5
ACP 010 Status Returns

Meaning

Access mode conflict. Requested access mode
conflicted with existing file accesses, for
example, an attempt to open a file for a
write when the file is write locked.

The magnetic tape ACP's virtual address space
is full. Since each volume set has a virtual
page assigned to it, additional volume sets
cannot be handled. Corrective action
consists of starting a different ACP using
the unique switch and MOUNT.

Invalid attribute code or size specified in
read or write attribute list.

Invalid checksum in the file header.

Invalid file header, for example, structure
is inconsistent or the storage map indicates
free blocks.

Invalid syntax in file
string contains illegal
larger than 9 characters.

name string.
characters,

The
or is

Invalid file version number, that is, a
number greater than 32767.

Invalid directory file. The file is not a
directory or the file contains invalid data.

Invalid parameter list.
contains options not
function.

For example, the FIB
applicable to this

Block count error. The number of blocks read
differs from the number of blocks recorded in
the trailer labels. There is a possibility
that a record was skipped or an extra noise
record was read.

File created by an ACCESS function with a
CREATE function modifier.

Device full. No free blocks are available on
the device or the nu~ber of contiguous blocks
specified in a contiguous request is not
available.

Directory
creating
specified
entries.
blocks.

is full. An error occurred while
a disk file because the directory
is full and cannot catalog any more

A directory is limited to 1024

(Continued on next page)

9-15

Status

SS$_DUPFILENAME

SS$_ENDOFFILE

SS$_FCPREADERR

SS$_FCPREWINDERR

SS$_FCPSPACERR

SS$_FCPWRITERR

SS$_FILELOCKED

SS$_FILENUMCHK

SS$_FILESEQCHK

SS$_FILESTRUCT

SS$_FILNOTEXP

SS$_HEADERFULL

SS$_IDXFILEFULL

SS$_ILLCNTRFUNC

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-5 (Cont.)
ACP QIO Status Returns

Meaning

Duplicate file name. Another directory entry
with the same name, type, and version already
exists.

End-of-file. End of allocated space
encountered in a virtual I/O operation or an
attempted truncation.

FCP read error. An I/O error
file structure data, for
directory, was read.

occurred when
example, a

File process rewind error. An I/O error
occurred when rewinding a volume.

File process space error. An
occurred when spacing within
spacing files.

a
I/O error

file or

FCP write error. An I/O error occurred when
file structure data, for example, a
directory, was written.

File deaccess locked. Attempted to access a
locked file. A file becomes locked when it
is accessed with FIB$M DLOCK set and then
deaccessed without writIng attributes.

File identifier number check. The index file
contains invalid data.

File identifier sequence check. A directory
entry points to a file that has been deleted.

Unsupported file structure. The file
structure on the accessed volume is not
compatible with the ACP. For example, an
attempt was made to use a structure level 2
ACP with a structure level 1 disk.

File not expired. A magnetic tape file that
has not expired cannot be written over unless
the override expiration qualifier was
specified in MOUNT.

File header map area is full and header
extension is inhibited. This can occur on a
volume's index file in a CREATE operation.

Volume index file is full. The maximum
number of files specified at initialization
time has been reached.

Illegal control function. An illegal
function is specified for 10$ ACPCONTROL.

(Continued on next page)

9-16

Status

SS$_NOMOREFILES

SS$_NOSUCHFILE

SS$_NOTAPEOP

SS$_NOTLABELMT

SS$_SUPERSEDE

SS$_TAPEPOSLOST

SS$_TOOMANYVER

SS$_WRTLCK

QIO INTERFACE TO FILE SYSTEM ACPS

Table 9-5 (Cont.)
ACP QIO Status Returns

Meaning

No more files exist which match the given
wild card in a file specification string. At
least one file was found, that is, one match
was made.

No privilege. Volume or file protection will
not allow the requested operation.

No such file. No file with the given file
name or file identifier exists. Can be
caused by a directory entry that points to a
file that has been deleted.

No tape operator. There is no tape operator
and a need to communicate with one exists,
for example, the next volume in a volume set
must be mounted.

Magnetic tape not labeled. A request to read
a magnetic tape failed because the tape does
not have standard labels.

An existing file of the same name, type, and
version has been deleted by a CREATE
function.

Magnetic tape position lost.

Too many versions. The maximum number of
file versions already exists. All are higher
versions than the one being created.

The device is software write locked or the
hardware write lock switch on the drive is
set.

9-17

APPENDIX A

DISK, MAGNETIC TAPE, AND ACP QIO FUNCTIONS

This appendix provides detailed descriptions of the common functions
performed by the disk and magnetic tape drivers and the ACP QIO
interface.

A.I CREATE FILE

This virtual I/O function creates a directory entry and/or a file on a
disk device, or a file on a magnetic tape device.

The function code is:

• IO$_C~EATE

The function modifiers are:

• IO$M_CREATE

• IO$M_ACCESS

• IO$M_DELET,E

The device/function-dependent arg'lilftents for 10$_ CREATE are:

• PI -- the addre'ss of the File Information
descriptor.

Block (FIB)

• P2 -- the address of the file name string descriptor
(optional). If specified for a disk file, the name is entered
in the directory specified by the FIB. If specified for a
magnetic tape file, the name is the name of the created file.

• P3 -- the address of the word that is to receive the length of
the resultant file name string (optional).

• P4 -- the address of a descriptor for a buffer that is to
receive the resultant file name string (optional).

• PS -- the address of a list of attribute descriptors
(optional). If specified for a disk file, the indicated
attributes are written to the file header. If specified for a
magnetic tape file, PS is the address of the descriptor list
for the new file.

The name string is entered in the disk directory specified by the
FIB$W DID field of the FIB. If the resultant string descriptor is
present, a string representing the full directory entry is returned.
If the address of a word to receive the resultant string size is

A-l

DISK, MAGNETIC TAPE, AND ACP QIO FUNCTIONS

specified, the size, in bytes, of the string is returned. A disk file
can also be extended if FIB$M EXTEND is set. The number of blocks
allocated is returned in the second longword of the IOSB.

A disk file header is created if IO$M CREATE is specified. (The file
ID is returned in FIB$W FID.) If an attribute list is present, the
indicated attributes are wrItten to the file header. If IO$M DELETE
is specified,' the disk file is marked for deletion. This function
modifier may only be used in conjunction with IO$M CREATE and
IO$M_ACCESS. -

If IO$M ACCESS is specified, the disk or magnetic tape file is
accessed, that is, opened on the user's channel.

In the name control field (FIB$W NMCTL) of the FIB, the FIB$M NEWVER
and FIB$M SUPERSEDE bits funcIion as described in Table ~-l~- other
flags are Ignored. The wild card context field, FIB$L_WCC, is also
ignored.

The FIB$L ACCTL and FIB$W EXCTL FIB fields are interpreted as
described In Table 9-1.

Table A-I lists the arguments for 10$ CREATE in the order in which
they are used. All other arguments are illegal and must be zero.

A.2 ACCESS FILE

Table A-I
IO$_CREATE Arguments

IO$M_CREATE

FIB$M_EXTEND (disk only)

FIB$W_EXCTL (disk only)

FIB$W_DID

FIB$W_NMCTL

FIB$L_WCC

Attribute List

IO$M_ACCESS

FIB$L_ACCTL

IO$M_DELETE (disk only)

This virtual I/O function searches a directory on a disk device, or a
magnetic tape, for a specified file and accesses that file if found.

The function code is:

A-2

DISK, MAGNETIC TAPE, AND ACP QIO FUNCTIONS

The function modifiers are:

• IO$M_CREATE

G IO$M_ACCESS

IO$M CREATE changes the 10$ ACCESS function code to 10$ CREATE if the
dire~tory search failed ;ith a "file not found" ~ondition. The
function is then re-executed as a CREATE. If IO$M ACCESS is
specified, the file is accessed. A file must be accessed before it
can be read or written.

The device/function-dependent arguments for IO$_ACCESS are:

o PI -- the address of the File Information
descriptor.

Block (FIB)

• P2 -- the address of the file name string descriptor
(optional). If, specified for disks, the name is entered in
the directory specified by the FIB. If specified for magnetic
tapes, the:.name identifies the file being sought.

• P3 -- the -address of the word that is to receive the length of
the resultant file name string (optional).

o P4 -- the address of a descriptor for a buffer that is to
receive the resultant file name string (optional).

• PS -- the address of a list of attribute descriptors
(optional). If specified for disks, the indicated attributes
are written to the file header. If specified for magnetic
tapes, the file attributes are returned to the user.

Initially, a search is made for the name string indicated in a
directory specified in FIB$W_DID. If the resultant string descriptor
is present, a string representing the full directory entry is
returned. The size of the string is returned if the address of the
resultant string size word is present. The file identifier is
returned in FIB$W_FID.

Several other FIB fields are used in 10$ ACCESS execution. In the
FIB$W_NMCTL field, FIB$M_ALLNAM, FIB$M ALLTYP, and FIB$M ALLVER
control matching of the name fields. If FIB$M WILD is set, FIB$W WCC
indicates the position in the directory to resume the search; on
return, this field contains the position of the directory entry found.
The FIB$L_ACCTL field is interpreted as described in Table 9-1.

If an attribute list is present, the indicated file attributes are
read.

Table A-2 lists the arguments for 10$ ACCESS in the order in which
they are used. All other arguments are illegal and must be O.

A-3

DISK, MAGNETIC TAPE, AND ACP QIO FUNCTIONS

A.3 DEACCESS FILE

Table A-2
IO$_ACCESS Arguments

FIB$W_DID

FIB$W_NMCTL

FIB$W_WCC

IO$M_CREATE

IO$M_ACCESS

FIB$L_ACCTL

Attribute List

(Extend control data is ignored)

This virtual I/O function deaccesses a file and, if specified, writes
final attributes in the file header.

Attributes are written to a disk file if they are present and if the
file was accessed for a write operation. (If a write operation and no
attributes are specified, and if FIB$M DLOCK is set, the file is
checked to determine if it is locked, that is, access is inhibited.)

The function code is:

• IO$_DEACCESS

The device/function-dependent arguments for IO$_DEACCESS are:

• pI -- the address of the File Information
descriptor.

Block (FIB)

• p2 -- the address of the file name string descriptor
(optional). If specified, the name is entered in the
directory specified by the FIB.

• P3 -- the address of the word that is to receive the length of
the resultant file name string (optional).

• P4 -- the address of a descriptor for a buffer that is to
receive the resultant file name string (optional).

• P5 -- the address of a list of attribute descriptors
(optional). If specified, the indicated attributes are
written to the file header.

Only two legal arguments can be used for 10$ DEACCESS: the attribute
list and the FIB$L ACCTL field (used in that order); the FIB$L ACCTL
flag bits are ignored. The FIB$W FID field can be nonzero. If so, it
must match the file identifier of the accessed file. All other
arguments are illegal and must be O. IO$_DEACCESS takes no function
modifiers.

A-4

DISK, MAGNETIC TAPE, AND ACP QIO FUNCTIONS

A.4 MODIFY FILE

This virtual I/O function
allocation of a disk file.
FILE is basically a NOP.

modifies the file attributes and/or
If used with a magnetic tape file, MODIFY

The function code is:

• IO$_MODIFY

The device/function-dependent arguments for IO$_MODIFY are:

• PI -- the address of the File Information
descriptor.

Block (FIB)

• P2 -- the address of the file name string descriptor
(optional). If specified, the name is entered in the
directory specified by the FIB.

• P3 -- the address of the word that is to receive the length of
the resultant file name string (optional).

• P4 -- the address of a descriptor for a buffer that is to
receive the resultant file name string (optional).

• P5 -- the address of a list of attribute descriptors
(optional). If specified, the indicated attributes are
written to the file header.

An initial search is made for the indicated name string. The search
is performed the same way, and with the same consequences, as the
10$ ACCESS search (see Section A.2). The file can be either extended
or -truncated. If extended (FIB$M EXTEND is set), the amount is
indicated by the extend control data (FIB$L EXSZ) and the total number
of blocks allocated to the file is returned in the second longword of
the 10SB. If truncated (FIB$M TRUNC is set), the file is shortened to
the number of blocks specified-in FIB$L EXVBN, minus 1. The resulting
file size is returned in the second longword of the IOSB.

The FIB$W_EXCTL field is interpreted as described in Table 9-1.

FIB$L_EXVBN and FIB$L EXSZ are used
virtual block number (VBN) and
allocated or truncated.

to return the actual
size, respectively, of

starting
the area

The FIB$W NMCTL and FIB$L WCC fields are interpreted as described for
10$ ACCESS (see Section- A.2). If an attribute list is present, the
indicated file attributes are written. IO$_MODIFY takes no function
modifiers.

Table A-3 lists the legal arguments for 10$ MODIFY in the order in
which they are used. All other arguments are illegal and must be O.

A-5

DISK, MAGNETIC TAPE, AND ACP QIO FUNCTIONS

A.5 DELETE FILE

Table A-3
IO$_MODIFY Arguments

FIB$W_DID (disk only)

FIB$W_NMCTL (disk only)

FIB$L_WCC (disk only)

FIB$M_EXTEND (disk only)

FIB$L_EXSZ (disk only)

FIB$W_EXCTL (disk only)

FIB$M_TRUNC (disk only)

Attribute List

This virtual I/O function removes a directory header and/or file
header from a disk file.

The function code is:

The function modifier is:

The device/function-dependent arguments for IO$_DELETE are:

e PI -- the address of the File Information
descriptor.

Block (FIB)

o P2 -- the address of the file name string descriptor
(optional). If specified, the name is entered in the
directory specified by the FIB.

• P3 -- the address of the word that is to receive the length of
the resultant file name string (optional).

• P4 -- the address of a descriptor for a buffer that is to
receive the resultant file name string (optional).

• P5 -- the address of a list of attribute descriptors
(optional). If specified, the indicated attributes are
written to the file header.

A search is made for the directory entry to be deleted. The search is
performed the same way as the 10$ ACCESS search (see Section A.2) •
The directory entry is then remoied. The function modifier
(IO$M_DELETE) deletes the file header specified by FIB$W~FID.

The only arguments for 10$ DELETE are FIB$W DID and IO$M DELETE, used
in that order. All other arguments are illegal and must-be O.

A-6

DISK, MAGNETIC TAPE, AND ACP QIO FUNCTIONS

A.6 MOUNT

This virtual I/O function mounts a disk or magnetic tape volume.
Mount privilege is required, IO$_MOUNT takes no arguments or function
modifiers.

A. 7 ACP CONTROL

This virtual I/O function performs miscellaneous control functions,
depending on the specified argument. If the function modifier
IO$M DMOUNT is not set, the FIB control function field
(FIB$W CNTRLFUNC) has one of its field values set. Listed below are
the legal arguments for IO$ ACPCONTROL in the order in which they are
used; all other arguments are illegal and must be 0:

IO$M_DMOUNT

FIB$W_CNTRLFUNCI field values:

FIB$C_REWINDFIL

FIB$C_POSEND

FIB$C_NEXTVOL

FIB$C_SPACE

FIB$_REWINDVOL

FIB$L_CNTRLVAL 1

10nly for magnetic tape devices

A-7

APPENDIX B

I/O FUNCTION CODES

This appendix lists the function codes and function modifiers defined
in the $IODEF macro. The arguments for these functions are also
listed.

B.l TERMINAL DRIVER

Function

10$ READVBLK
IO$-READLBLK
IO$-READPBLK
IO$=READPROMPT

10$ WRITEVBLK
IO$-WRITELBLK
IO$=WRITEPBLK

10$ SETMODE
IO$=SETCHAR

10$ SETMODEIIO$M HANGUP
IO$=SETCHARIIO$M=HANGUP

10$ SETMODEIIO$M CTRLCAST
IO$-SETMODE!IO$M-CTRLYAST
IO$-SETCHAR!IO$M-CTRLCAST
IO$=SETCHARIIO$M=CTRLYAST

10nly for 10$ READPROMPT

Arguments

PI - buffer address
P2 - buffer size
P3 - timeout
P4 - read terminato£

block address
P5 - prompt string

buffer address1
P6 - prompt string

buffer size1

PI - buffer addre~
P2 - buffer size)
P 3 - (i g-llO'r ed-)
P4 - carriage control

specifier 2

PI - characteristics
buffer address

P2 - (ignored)
Pl - speed specifier
P4 - fill specifier
PS - parity flags

(none)

Modifier

IO$M NOECHO
IO$M-CVTLOW
IO$M-NOFI LT'R
IO$M-TIMED
IO$M-PURGE
IO$M-DSABLMSX
IO$M=TRMNOECHO

IO$M CANCTRLO
IO$M-ENA-BLMS}I
IO$-M=NOFORIMW

PI - AST service routine address
P2 - AST parameter
P3 - access mode to deliver AST

20nly for IO$_WRITELBLK and IO$_WRITEVBLK

B-1

I/O FUNCTION CODES

B.2 .DISK DRIVERS

Functions

10$ READVBLK
IO$-READLBLK
IO$-READPBLK
IO$-WRITEVBLK
IO$-WRITELBLK
IO$=WRITEPBLK

IO$ SETMODE
IO$=SETCHAR

IO$ CREATE
IO$-ACCESS
IO$-DEACCESS
IO$-MODIFY
IO$=DELETE

Arguments

PI - buffer address
P2 - byte count
P3 - disk address

PI - characteristic buffer
address

PI - FIB descriptor address
P2 - file name string

address
P3 - result string length

address
P4 - result string descriptor

address
P5 - attribute list address

10nly for IO$ READPBLK and IO$ WRITEPBLK
20n l y for IO$ CREATE and IO$ ACCESS
30nly for IO$_CREATE and IO$_DELETE

B.3 MAGNETIC TAPE DRIVERS

Functions Arguments

IO$ READVBLK PI - buffer address
IO$-READLBLK P2 - byte count
IO$-READPBLK
IO$-WRITEVBLK
IO$-WRITELBLK
IO$=WRITEPBLK

IO$ SETMODE PI - characteristics buffer
IO$=SETCHAR address

IO$ CREATE PI - FIB descriptor address
IO$-ACCESS P2 - file name string
IO$-DEACCESS address
IO$-MODIFY P3 - result string length
IO$=ACPCONTROL address

P4 - result string descriptor
address

P5 - attribute list address

IO$_SKIPFILE PI - skip n tape marks

IO$_SKIPRECORD PI - skip n records

10nly for read functions
20nly for write Functions
·30n l y for IO$ CREATE and IO$ ACCESS

40nly for IO$_ACPCONTROL

B-2

Modifiers

IO$M DATACHECK
IO$M-INHRETRY
IO$M=INHSEEKI

IO$_INHRETRY

IO$M CREATE2
IO$M-ACCESS 2
IO$M=DELETE3

Modifiers

IO$M DATACHECK
IO$M-INHRETRY
IO$M-REVERSEI
IO$M=INHEXTGAp 2

IO$M INHRETRY
IO$M=INHEXTGAP

IO$M CREATE3
IO$M-ACCESSJ
IO$M=DMOUNT4

IO$M_INHRETRY

IO$M_INHRETRY

I/O FUNCTION CODES

Functions Arguments

(none)

10$ REWIND (none)
IO$=REWINDOFF

IO$_WRITEOF (none)

10$ SENSEMODE (none)

10nIy for read functions
20nIy for write functions

30n Iy for 10$ CREATE and 10$ ACCESS
4'On ly for 10$ _ACPCONTROL

B.4 LINE PRINTER DRIVER

Functions

10$ WRITEVBLK
IO$-WRITELBLK
IO$=WRITEPBLK

10$ SETMODE
IO$-SETCHAR

Arguments

PI - buffer address
P2 - buffer size
P3 - (ignored)
P4 - carriage control

specifier1

PI - characteristics buffer
address

10nIy for 10$ WRITEVBLK and IO$_WRITELBLK

B.5 CARD READER DRIVER

Functions Arguments

10$ READLBLK
IO$-READVBLK
IO$-READPBLK

P] - buffer address
P2 - byte count

10$ SETMODE
IO$=SF.TCHAR

PI - characteristics
buffer address

IO$_SENSEMODE (none)

B.6 MAILBOX DRIVER

Functions

10$ READVBLK
IO$-READLBLK
IO$-READPBLK
IO$-WRITEVBLK
IO$-v~RITELBLK
IO$=WRITEPBLK

IO$_WRITEOF

IO$ SETMODE!IO$M READATTN
IO$=SETMODEIIO$M=WRTATTN

Arguments

PI - buffer address
P2 - buffer size

(none)

PI - AST address
PI - AST parameter

B-3

Modifiers

IO$M INHRETRY
IO$M=NOWAIT

IO$M INHEXTGAP
IO$M=:INHRETRY

IO$M_INHRETRY

Modifiers

(none)

(none)

Modifiers

IO$M BINARY
IO$M=PACKED

(none)

Modifiers

I/O FUNCTION CODES

B.7 DMCII DRIVER

Functions Arguments Modifiers

10$ READLBLK
10$ READPBLK
IO$-READVBLK
IO$-WRITELBLK
IO$-WRITEPBLK
IO$=WRITEVBLK

PI - buffer address
P2 - message size
P6 - diagnostic buffer l

IO$M DSABLMBX2
IO$M-NOW2
IO$M=ENABLMBX3

10$ SETMODE
IO$=SETCHAR

10$ SETMODEIIO$M ATTNAST
IO$=SETCHARIIO$M=ATTNAST

10$ SETMODEIIO$M SHUTDOWN
IO$=SETCHARIIO$M=SHUTDOWN

10$ SETMODEIIO$M STARTUP
IO$=SETCHARIIO$M=STARTUP

PI - characteristics
buffer address

PI - AST service
routine address

P2 - (ignored)
P3 - AST access mode

PI - characteristics
block address

PI - characteristics
block address

P2 - (ignored)
P3 - receive message

blocks

10nly for 10$ READPBLK and 10$ WRITEPBLK
20n l y for 10$ READLBLK and 10$ READPBLK
30n l y for IO$_WRITELBLK and IO$_WRITEPBLK

B.8 ACP INTERFACE DRIVER

Functions Arguments Modifiers

10$ CREATE
IO$-ACCESS
IO$-DEACCESS
IO$-MODIFY
IO$-DELETE
IO$=ACPCONTROL

PI - FIB descriptor address
P2 - file name string

address
P3 - result string length

address

IO$M CREATEl
IO$M-ACCESSI
IO$M-DELETE2
IO$M=DMOUNT3

P4 - result string descriptor
address

P5 - attribute list address

(none)

10nly for 10$ CREATE and 10$ ACCESS
2'On l y for 10$ CREATE and 10$ DELETE

3'Only for 10$ _ACPCONTROL -

B-4

$ASSIGN, 1-13, 2-3, 7-2, 8-2
$CREMBX, 1-14, 7-2
$GETCHN, 1-24
$GETDEV, 1-24
$INPUT, 1-19
$OUTPUT, 1-19
$QIO and $QIOW device/function

independent arguments, 1-16
$QIO macro, 1-15
$QIOW macro, 1-16
$WAITFR, 1-15

026 code, 6-2
029 code, 6-2

8-bit ASCII, 2-13

A

Access, 1-5, 1-6, 1-14
Access file, A-2
ACP functions, 9-1
ACP interface driver I/O

functions, B-4
ACP QIO functions, 9-1, 9-9

arguments, 9-2
attributes, 9-12
disk magnetic tape and, A-I
function modifiers, 9-2
status returns, 9-14

Allocate contiguous space, 9-7
Allocate Device ($ALLOC) system

service, 1-14
ALTMODE, 2-8
Ancillary control process (ACP),

9-1
Arguments, 1-15

ACP QIO functions, 9-2
device/function dependent,

1-18
device/function independent,

1-16
I/O function codes, B-1

Assign I/O Channel ($ASSIGN)
system service, 1-13, 7-2

Assigning channels, 1-13
AST address, 1-18
AST parameter, 1-18
AST quota, 1-4, 7-5
Asynchronous System Traps, 1-23

INDEX

Attention AST,
enable DMCll , 8-8
read, 7-7
write, 7-7

Attribute control block, 9-11
Attributes, ACP QIO, 9-12

B
Beginning-of-tape (BOT), 4-10
Block-addressable devices, 1-8,

1-10
Buffered I/O byte count quota,

1-4
Buffered I/O quota, 1-3, 7-5

c
CALL, 1-23
Card punch combinations, 6-2
Card reader,

device characteristics, 6-4
end-of-file, 6-2
I/O functions, 6-5, B-3
I/O status block, 6-8
read function, 6-6
set characteristic, 6-7
set mode, 6-7
status returns, 6-8
translation mode, 6-2

Carriage control,
line printer, 5-5
terminal, 2-17

Channels, 1-13
Channel assignments, 1-13
Channel number, 1-17
Character bit mask,

terminator, 2-16
Character formatting, line

printer, 5-2
Character interpretation, 2-8
Characteristics (see Device

characteristics)
Close check, 9-5
Completion status, 1-19, 1-22
Console terminal, 2-1
Contiguous space,

allocate, 9-7
Control characters,

terminal, 2-5
Create file, A-I
Create Mailbox and Assign

Channel ($CREMBX) system
service, 1-14, 7-2

Index-l

INDEX (Cont.)

CTRL/C, 2-5, 2-23
CTRL/C AST,

enable, 2-23
CTRL/I, 2-5
CTRL/J, 2-5
CTRL/K, 2-6
CTRL/L, 2-6
CTRL/O, 2-6
CTRL/Q, 2-6, 2-12
CTRL/R, 2-6
CTRL/S, 2-6, 2-12
CTRL/U, 2-7
CTRL/X, 2-7
CTRL/Y, 2-7, 2-23
CTRL/Y AST,

enable, 2-23
CTRL/Z, 2-7

Data check,

D

disk, 3-2, 3-9, 3-10
magnetic tape, 4-2, 4-9, 4-10

Data interpretation, 2-8, 2-13
DDCMP, 8-1, 8-4
Deaccess file, A-4
Deaccess lock, 9-5
Deassign I/O channel ($DEASSGN)

system service, 7-3
DELETE, 2-8
Delete file, A-6
Delete mailbox ($DELMBX) system

service, 7-3
Device allocation, 1-14
Device characteristics,

card reader, 6-3
disk, 3-4
DMCll, 8-3
line printer, 5-3, 5-4
magnetic tape, 4-3
mailbox, 7-4
terminal, 2-10

Device information, 1-23
Device-dependent

characteristics, line
printer, 5-4

Device-independent
characteristics, line
printer, 5-3

Device/function dependent
arguments, 1-18

Device/function dependent bits,
1-13

Device/function independent
bits, 1-13

Devices, 1-1
Dial-in message, 2-10
Dial-up, 2-10, 2-13, 2-23

DIGITAL data communications
message protocol (DDCMP),
8-1

Direct I/O quota, 1-4, 8-3
Directory file, 9-6
Disk, magnetic tape, and ACP

QIO functions, A-I
Disk,

device characteristics, 3-4
devices, 3-1
drivers, 3-1
error recovery, 3-4, 3-9,

3-10
I/O functions, 3-6, B-2
I/O status block, 3-12
read function, 3-9
set characteristic, 3-11
set mode, 3-10
status returns, 3-12
write function, 3-10

DMCll synchronous
communications line
interface driver, 8-1

DMCll,
device characteristics, 8-3
enable attention AST, 8~8
error summary bits, 8-6
I/O functions, 8-6, B-4
I/O status block, 8-10
mailbox usage, 8-2
message size, 8-4
read function, 8-6
set characteristics, 8-8
set mode, 8-7, 8-8
shut down unit, 8-9
start unit, 8-9
status returns, 8-10
unit characteristics, 8-5
write function, 8-7

DZ-ll Asynchronous Serial Line
Multiplexer, 2-1

E
ECC correction, 3-3
Enable attention AST,

DMCll, 8-9
mailbox, 7-7

Enable CTRL/C AST, 2-23
Enable CTRL/Y AST, 2-23
End-of-file, card reader, 6-2
End-of-file message, write, 7-7
End-of-file status, 4-9
End-of-tape status, 4-9, 4-10
Error recovery,

Index-2

disk devices, 3-3, 3-9, 3-10
line printer, 5-2
magnetic ~ape, 4-3

INDEX (Cont.)

Error severity level, 1-20
Error summary bits, DMC11 , 8-6
ESCAPE, 2-8
Escape sequences, 2-2, 2-12
Event flags, 1-15, 1-22
Event flag number, 1-17
Extend control, 9-7

F
FIB argument usage, 9-9
FIB fields, 9-3
File attributes, 9-11
File identification, 9-6
File Information Block (FIB),

9-3
Fill specifier, 2-21
Foreign volume, 1-10
FOru.1 FEED, 2-6
Form feeds, 2-17, 5-4
Free list,

receive buffer, 8-3, 8-10
Full-duplex, 2-10
Function codes, 1-12, 1-17, B-1
Function modifiers, 1-12, B-1

G
Get Channel Information

($GETCHN) system service,
1-23

Get Device Information
($GETDEV) system service,
1-23

H
Half-duplex, 2-10
Hang-up, 2-10, 2-13
Hang-up function modifier, 2-23
Hang-up,

terminal, 2-4
Ho1dscreen Mode, 2-12
Host/terminal synchronization,

2-12

I/O completion, 1-21
I/O function code,

arguments, B-1
I/O function codes, 1-12, B-1
I/O functions, 1-6, 1-12, B-1

card reader, 6-5
disk, 3-6

I/O functions (Cont.),
DMC11 , 8-6
line printer, 5-4
magnetic tape, 4-5
mailbox, 7-5
terminal, 2-13

I/O operations, 1-6
logical, 1-8
physical, 1-6
virtual, 1-10

I/O quota,
buffered, 1-3, 7-5
byte count, 1-4
direct, 1-4, 8-3

I/O requests, 1-1, 1-13, 1-15
I/O status block, 1-15, 1-18,

1-22
ACP QIO interface, 9-14
card reader, 6-8
disk devices, 3-12
DMC11 , 8-10
line printer, 5-9
magnetic tape devices, 4-14
mailbox, 7-9
terminal, 2-24

I/O status returns, 1-21
I/O system services, 1-2
Inhibit retry, 3-9, 3-10, 4-6,

4-7
Input/output operations, 1-1
Interactive terminal, 2-5
IO$M ACCESS, 3-7, 4-6, 9-2
10 $M-BINARY, 6-1
10 $ M-C REATE , 3-7, 4-6, 9-2
IO$M-DATACHECK, 3-7, 4-6
IO$M-DELETE, 3-7, 9-2
IO$M-DMOUNT, 4-7, 9-2
IO$M-INHERLOG, 1-8
IO$M-INHEXTGAP, 4-6
IO$M-INHRETRY, 3-7, 4-6
IO$M-INHSEEK, 3-7
IO$M-NOWAIT, 4-7
IO$M-PACKED, 6-1
IO$M-REVERSE, 4-6
10$ ACCESS, 3-7, 4-6, 9-9, 9-10
IO$-ACPCONTROL, 4-7, 9-11
IO$~CREATE, 3-7, 4-6, 9-9
IO$-DEACCESS, 3-7, 4-6
IO$-DELETE, 3-7, 9-10
IO$-MODIFY, 3-7, 4-6, 9-10
IO$-MOUNT, 4-7, 9-2
lOSE, 1-22
Issuing QIO requests, 1-13

K

Keywords, 1-15

Index-3

INDEX (Cont.)

L
LINE FEED, 2-5
Line feeds, 2-17
Line printer,

carriage control, 5-5
character formatting, 5-1
device-dependent

characteristics, 5-4
device-independent

characteristics, 5-3
driver, 5-1
error recovery, 5-2
I/O functions, 5-4, B-3
I/O status block, 5-9
set characteristics, 5-8
set mode, 5-8
status returns, 5-9
write function, 5-4

Line,
remote, 2-4, 2-10, 2-13

Logical I/O operations, 1-8
Logical I/O privilege, 1-4, 1-6,

1-8
Logical name, 1-14
Lowercase, 2-12, 2-17, 5-2, 5-4

M
Magnetic tape and ACP QIO

functions, A-I
Magnetic tape,

device characteristics, 4-3
driver, 4-1
error recovery, 4-3
I/O functions, 4-5, B-2
I/O status block, 4-14
read function, 4-8
set characteristics, 4-12
set mode, 4-12
status returns, 4-14
write function, 4-10

Mailbox,
creation, 1-14
device characteristics, 1-24,

7-4
driver, 7-1
I/O functions, 7-5, B-3
I/O status block, 7-9
message format, 7-3
protection, 1-5
QIO requests, 7-5, 7-6
read attention AST, 7-7
set attention AST QIO

requests, 7-7
status returns, 7-9
terminal, 2-3
usage (DMC11), 8-2

Mailbox (Cont.),
write attention AST, 7-7
write end-of-fi1e message, 7-7

Master adapter, 4-2
Mechanical form feed, 5-4
Mechanical tabs, 2-12
Message format, mailbox, 7-3
Message size, DMC11, 8-4
Modem control, 2-1, 2-10
Modify file, A-5
MOUNT, 1-14
Mount privilege, 1-5
Mounted foreign, 1-8, 1-10, 3-9,

3-10

N

Name string, 9-6
Network, 1-24

o
Offset recovery, 3-3

p

Page length, 2-11
Page width, 2-11
Parity flags, terminal, 2-22
PASSALL, 2-12, 2-13, 2-15
Physical device name, 1-14
Physical I/O operation, 1-6
Physical I/O privilege, 1-4,

1-6, 1-8
Printer (see Line printer)
Privilege, 1-3

logical I/O, 1-4, 1-6, 1-8
mount, 1-5
physical I/O, 1-4, 1-6, 1-8

Prompt buffer, terminal, 2-14
Protection, 1-3, 1-5
Protection mask, 1-5, 1-6, 1-8,

1-10
Protocol (DDCMP), 8-1, 8-9

Q
QIO interface to ACPs, 9-1
QIO macro, 1-15
QIOW macro, 1-16
Queue I/O ($QIO) system service,

1-1, 1-14
Queue I/O Request and Wait For

Event Flag ($QIOW) system
service, 1-16

Quotas, 1-3, 3-6, 4-5, 7-5, 8-3

Index-4

INDEX (Cont.)

R
Read access, 9-5
Read attention AST, 7-7
Read binary, 6-1, 6-6
Read checking, 9-5
Read function,

card reader, 6-6
disk devices, 3-9
DMC11 , 8-6
magnetic tape devices, 4-8
terminal, 2-14

Read mailbox QIO requests, 7-5
Read packed Hollerith, 6-1, 6-6
Read QIO function, 1-6
Read with prompt, 2-14
Read with timeout, 2-14
Receive buffer free list, 8-3,

8-10
Receive-message blocks, 8-10
Record-oriented devices, 1-8,

1-10
Remote line, 2-4, 2-10, 2-13
Resource wait mode, 1-3, 7-2
RETURN, 2-8
Rewind offline, 4-12
RMS, 1-1

s
Seek operations, 3-3
Sense card reader mode, 6-7
Sense tape mode, 4-12
Set attention AST QIO requests,

7-7, 8-8
Set characteristics,

card reader, 6-7
disk devices, 3-10
DMC11 , 8-7
line printer, 5-8
magnetic tape devices, 4-12
terminal, 2-21

Set mode QIO function, 1-6
Set mode,

card reader, 6-7
disk devices, 3-10
DMC11 , 8-7
line printer, 5-8
magnetic tape devices, 4-12
terminal, 2-21

Set Resource Wait Mode ($SETRWM)
system service, 1-3

Set Terminal command, 2-11
Severity level,

error, 1-20
Shut down unit (DMC11), 8-9
Skip file, 4-11
Skip record, 4-11

Slave formatter, 4-2
Software channels, 1-1
Software mailboxes, 7-1
Spaces (terminal), 2-17
Speed specifier (terminal),

2-21
Spooled device characteristics,

1-24
SS$_ABORT, 2-25, 5-9, 8-11
SS$_ACCONFLICT, 9-15
SS$ ACCVIO, 1-20, 1-26
SS$-ACPVAFUL, 9-15
SS$-BADATTRIB, 9-15
SS$-BADCHKSUM, 9-15
SS$-BADESCAPE, 2-25
SS$-BADFILEHDR, 9-15
SS$-BADFILENAME, 9-15
SS$-BADFILEVER, 9-15
SS$:BADlRECTORY, 9-15
SS$ BADPARAM, 9-15
SS$:BLOCKCNTERR, 9-15
SS$ BUFFEROVF, 1-26
SS$-CONTROLC, 2-26
SS$-CONTROLO, 2-25
SS$-CONTROLY, 2-26
SS$-CREATED, 9-15
SS$-CTRLERR, 3-12, 4-14
SS$:DATACHECK, 3-12, 4-15
SS$_DATAOVERUN, 4-16, 6-9, 8-11
SS$ DEVACTlVE, 8-11
SS$-DEVFOREIGN, 1-10
SS$-DEVICEFULL, 9-15
SS$-DEVNOTMOUNT, 1-10
SS$-DEVOFFLINE, 8-11
SS$-DIRFULL, 9-15
SS$-DRVERR, 3-12, 4-15
SS$-DUPFILENAME, 9-16
SS$:ENDOFFILE, 4-15, 6-9, 7-10,

8-11, 9-16
SS$ ENDOFTAPE, 4-15
SS$-EXQUOTA, 1-20
SS$-FCPREADERR, 9-16
SS$-FCPREWINDERR, 9-16
SS$-FCPSPACERR, 9-16
SS$-FCPWRITERR, 9-16
SS$-FILELOCKED, 9-16
SS$-FILENUMCHK, 9-16
SS$-FILESEQCHK, 9-16
S3$-FILESTRUCT, 9-16
SS$-FILNOTEXP, 9-16
SS$-FORMAT, 3-13, 4-15
SS$-HEADERFULL, 9-16
SS$-IDXFILEFULL, 9-16
SS$-ILLCNTRFUNC, 9-16
SS$-ILLEFC, 1-20
SS$-INSFMEM, 1-20
SS$-IVADDR, 3-13
SS$-IVCHAN, 1-21, 1-26
SS$:MEDOFL, 3-13, 4-15

Index-5

INDEX (Cont.)

SS$ NOMOREFILES, 9-17
SS$-NONEXDRV, 3-13, 4-15
SS$-NOPRIV, 1-6, 1-8, 1-10,

-1-21, 1-26, 9-17
SS$ NORMAL, 1-20, 1-26, 2-25,

-3-12, 4-14, 5-9, 6-9, 7-10,
8-11

SS$ NOSUCHFILE, 9-17
SS$-NOTAPEOP, 9-17
SS$-NOTLABELMT, 9-17
SS$-PARITY, 2-26, 3-13, 4-16
SS$-PARTESCAPE, 2-25
SS$-SUPERSEDE, 9-17
SS$-TAPEPOSLOST, 9-17
SS$-TIMEOUT, 2-25
SS$-TOOMANYVER, 9-17
SS$-UNASEFC, 1-21
SS$-UNSAFE, 3-13, 4-16
SS$-VOLINV, 3-13, 4-16
SS$-WASECC, 3-13
SS$-WRITLCK, 3-13, 4-16
SS$-WRTLCK, 9-17
Start unit (DMCll), 8-9
Status returns,

ACP QIO interface, 9-14
card reader, 6-8
disk devices, 3-12
DMCll , 8-10
I/O, 1-21
line printer, 5-9·
magnetic tape devices, 4-14
mailbox, 7-9
system services, 1-20
terminal, 2-24

Status,
completion, 1-19, 1-22

System services, I/O, 1-2
System services status returns,

1-20

T
TAB, 2-5
Tabs, 2-12, 2-17
Tape (see Magnetic tape)
Terminal,

carriage control, 2-17
characteristics, 2-10
control characters, 2-5
driver, 2-1
enable CTRL/C AST, 2-23
enable CTRL/Y AST, 2-23
function modifiers, 2-15
hang-up, 2-4
hang-up function modifier,

2-23
I/O functions, 2-13, B-1
I/O status block, 2-24

Terminal (Cont.),
mailbox, 2-3
read function, 2-14
read terminator set, 2-16
set characteristic, 2-20
set mode, 2-20
status returns, 2-24
write function, 2-16

Terminal/host synchronization,
2-12

Terminator character bit mask,
2-16

Terminator set, 2-16
Transfer count, I/O, 1-22
Translation mode, card reader,

6-2
Truncation, 9-7, 9-14
Type-ahead, 2-1, 2-4, 2-13, 2-15

u
Unsolicited data, 2-4
Uppercase, 2-12, 2-17, 5-2, 5-4

v
VAX-II Record Management

Services (RMS), 1-1
VAX/VMS System Services

Reference Manual, 1-3
Version number, 9-6
VERTICAL TAB, 2-6
Virtual I/O operations, 1-10
Volume protection, 1-5

w
Wait for Single Event Flag

($WAITFR) system service,
1-15

Wild card directory, 9-6
Write access, 9-5
Write attention AST, 7-7
Write checking, 9-5
Write end-of-file, 4-11
Write end-of-file message, 7-7
Write function,

disk, 3-10
DMCll, 8-7
line printer, 5-4
magnetic tape, 4-10
terminal, 2-16

Write mailbox QIO requests, 7-6
Write QIO function, 1-6

Index-6

· ~

.S

m
c
o
o

READER'S COMMENTS

VAX/VMS
I/O User's Guide
AA-D028A-TE

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

[] Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experi~nced)

[] User with little programming experience

[] Student programmer
[] Other (please specify) __________________________________ ___

Name Date ______________________ ___

Organization __ __

Street __ __

City ____________________________ State _____________ Zip Code ____________ _

or
Country

---Fold lIere--

--- Do Not Tear - Fold lIere and Staple ---

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Documentation
146 Main Street ML5-5/E39
Maynard, Massachusetts 01754

FIRST CLASS

PERMIT NO. 33

MA YNARD, MASS.

