August 1978

This document describes how the VAX-11 Linker works and how to use it.

VAX-11
Linker Reference Manual

Order No. AA-DO19A-TE

SUPERSESSION/UPDATE INFORMATION: This is a new document for this release.
OPERATING SYSTEM AND VERSION: VAX/VMS V01

SOFTWARE VERSION: VAX/VMS V01

To order additional copies of this document, contact the Software Distribution ‘
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, August 1978

. The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright (C) 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS~-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI
DECnet IAS

6/79-14

CONTENTS

Page

<
-
[N

PREFACE

(=
I

|
OTUTUT BB WN [l

CHAPTER LINKER OVERVIEW

REASON FOR A LINKER
Modular Programming
Simplifying Compilation and Assembly
Debug Capability
LINKER OPERATION AND FUNCTIONS
Virtual Memory Allocation
Resolution of Symbolic References
Image Initialization
Image Map
Symbol Table File

o o o
|

G wN - W=
Pt |

el

R o el ol o)) Sy S
.
PDNONNNDN R

e e+ s e e

N
I
n

CHAPTER

N

IMAGE CREATION

PROGRAM SECTIONS
IMAGE SECTIONS
CLUSTERS
OBJECT MODULE CONTENTS
PROGRAM SECTIONS
Program Section Name
Program Section Size
Program Section Alignment
Program Section Attributes
TYPES OF IMAGES
Executable Images
Shareable Images
System Images
GENERATION OF IMAGE SECTIONS
COMPRESSION OF UNINITIALIZED IMAGE SECTIONS

....
S wWN e
bl RN
NN

® 8 & & s e e e ¢ o+ e+ o .

oo UNTLTIUTLIUTL I WN -

. e .
wN =

W NNONNDNDNNDNDNDNONNNONNNODNNDN
}

CHAPTER SYMBOLS AND REFERENCES
DEFINITIONS: "SYMBOL" AND "REFERENCE"
TYPES OF SYMBOLS AND REFERENCES
Local Symbols
Global Symbols
Universal Symbols
SYMBOL TABLES
Global Symbol Table as Separate Output

111

» e e
wN -

|
Ut > W W= = OO VTWWWW

WWwWwwwww w NN N

.
WWNONNDN
wwwc;awww

.
(=)

=8
]
|—-I

CHAPTER

o>

LIBRARIES

1 LIBRARY TABLES USED BY THE LINKER 4-1
2 LINKER'S USE OF LIBRARIES 4-2
3 DEFAULT SYSTEM LIBRARY 4-3
3.1 VMSRTL.EXE 4-3
3.2 STARLET.OLB 4-4
4 EXAMPLE OF USING LIBRARIES 4-4

iii

CHAPTER

CHAPTER

CHAPTER

CHAPTER

5

o oo,
WNNNH
N =

=)}

~

o« .

NNNNNNNNSN
NDNNONNNDNDNNDND -
L L . .

00 ~JOY Ul WIN

o)
o o

. e)) ¢ o o
NN EFFE
L]

U W H

0O 00 00 0O 00 0O OO0 0O GO CO CO OO CO O
. . « e .
Noudbd wih e

CONTENTS (Cont.)

THE LINK COMMAND

COMMAND FORMAT

COMMAND AND FILE QUALIFIERS
Command Qualifiers
File Qualifiers

EXAMPLES

THE /OPTIONS FILE QUALIFIER

USES FOR AN OPTIONS FILE
Entering Frequently Used Input
Specifications
Identifying a Shareable Image as Input
Entering More Input Than the Command
Language Can Handle
Entering Non-Standard Link Instructions
CREATING AND SPECIFYING AN OPTIONS FILE
SPECIAL OPTIONS

IMAGE MAP

IMAGE MAP CONTENTS

IMAGE MAP SECTIONS
Object Module Synopsis
Image Section Synopsis
Program Section Synopsis
Symbols by Name
Symbol Cross Reference
Symbols by Value
Image Synopsis
Link Run Statistics

SHAREABLE IMAGES

SHAREABLE IMAGES: BENEFITS AND USES
Conserving Physical Memory
Conserving Disk Storage Space
Reducing Paging I/0
Using Shared Memory-Resident Data Bases
Making Software Updates Compatible

CREATION OF SHAREABLE IMAGES
LINK Command and Pertinent Options
UNIVERSAL= Option
GSMATCH= Option
Transfer Vectors
Shareable and Nonshareable Data
Position Independence
Rules for Creating Upward-Compatible
Shareable Images

Example of Transfer Vector and Universal

Symbols
Example of FORTRAN Shared COMMON
USING SHAREABLE IMAGES

iv

[e))]
U
N =

~ [e) e le o))
i
(S50 N\

|
HEWYWOOUUOWWE [

NN NN NN 9
i
oo

o
1
=

ooooooooooooo|ooooooooooooo
NARWWNNNMNNDEFE

CHAPTER

APPENDIX

APPENDIX

APPENDIX

9

O

W

=

o e o e o o

LoNoutd wh -

BWWWWLWWWWwwwwN -

S W N

.

Novovsotorovon
. o e o e
=

CONTENTS (Cont.)

CLUSTERING

MECHANICS OF CLUSTERING
USAGE GUIDELINES

LINKER MESSAGES
IMAGE MAP ILLUSTRATIONS
VAX-11 OBJECT LANGUAGE

INTRODUCTION
Summary of Language
GLOBAL AND UNIVERSAL SYMBOLS AND NAME FORMAT
MODULE HEADER RECORDS (HDR)
Header Type
Structure Level OBJ$C_STRLVL
Maximum Record Size OBJ$C_MAXRECSIZ
Module Name
Module Version
Dates and Times
Other Header Records
Header Types 1 through 4 and 6
Maintenance Status Header Record (MTC)
GLOBAL SYMBOL DIRECTORY (GSD) RECORDS
(OBJ$C_GSD)
P-Section Definition (OBJSC GSD PSC)
Global Symbol Specification OBJSC GSD SYM
Entry Point Symbol and Mask Definition
(OBJ$SC_GSD_EPM)
Procedure With Formal Argument Definition
(OBJ$C_GSD_PRO)
TEXT INFORMATION AND RELOCATION (TIR)
RECORDS (OBJ$C_IIR)
Commands
Record Length
Differences From RSX-11
Side Effects And Optimization
END OF MODULE (EOM) RECORD (OBJ$C_EOM)
Error Severity
DEBUGGER INFORMATION (DBG) RECORDS
(OBJSC DBG)
Traceback Information (TBT) Records
(OBJ$C_TBT)
LINK OPTION SPECIFICATION (LNK) RECORDS
(OBJ$C_LNK)

OOOOOOO?OOOOO Q w
QUICTEE RSB BWWHR

|
[NoREN RN

FIGURES

FIGURE

Modular Programming

Local and Global Symbols

Library Tables

Object Module Synopsis

Image Section Synopsis

Program Section Synopsis

Symbols by Name Section

Symbol Cross Reference

Symbols By Value

Image Synopsis

Link Run Statistics

No Transfer Vectors

Transfer Vectors

.Listing of CRF Transfer Vector
Command and Files to Create CRFSHR
Map of CRFSHR

Map Showing FORTRAN Shared Common
General Structure of an Object Module

| 1L N T U N T N N N D A TN NN B |
HFOUBWNHFONOAUTR WN

Ommmmmm\l?\l\l\l\l\l\lbwlﬂ

TABLES

TABLE 1 Command Qualifiers
2 File Qualifiers

-1 Special Options
1 Image Map Sections
2 PSECT Attributes
1

Interpretation of SYM$V_WK and SYM$V_DEF

vi

o
o
Q
(]

L N I T I D T I I I |
[=]

HEHEEFEOAOGHEFEWOWOON_ENDNDW

[|
wN o

WOOWOVMOONNNNNNNTIBWH

¢
N
o

PREFACE

MANUAL OBJECTIVES

The VAX-1ll Linker Reference Manual describes how the VAX-11 Linker
works and how to use it. This manual has both an educational and a
reference function: it provides detailed explanations of significant
topics, yet it 1is also designed for gquick look-up of important
information.

INTENDED AUDIENCE

This manual is intended for programming specialists and nonspecialists
alike. In general, the entire manual is intended to be informative
and useful to all readers; however, certain parts are designed
specifically to meet the needs of certain types of readers.

e If you are not yet proficient in programming under the VAX/VMS
system (for example, if you are a trainee programmer), or if
you do not need to become an expert, this manual is designed
to teach you the main concepts and techniques of linking as
clearly as possible. Chapters 1, 3 through 7, and Appendixes
A and B are aimed especially at this type of reader.

e If you are already proficient in programming under the VAX/VMS
system, this manual provides detailed information about some
of the more complex aspects of linking. Chapters 2, 8, 9, and
Appendix C are aimed especially at this type of reader.

STRUCTURE OF THIS DOCUMENT

Chapters 1 and 2 introduce the linker. Chapter 1 defines significant
terms, presents the reasons for the linker's existence, and discusses
in general terms how the linker works. Chapter 2 goes more deeply
into the process by which the linker creates images. Chapter 2 also
introduces new concepts and expands on concepts introduced in Chapter
1.

Chapters 3 and 4 focus on concepts that are important to understanding
the 1linker's operation. The discussion of symbols and references in
Chapter 3 derives from the linker's function of resolving symbolic
references between modules. Chapter 4 explains 1libraries, which
normally contain frequently used modules that the linker can include
in user images.

Chapter 5 discusses the LINK command and its command and file

qualifiers. Chapter 6 focuses on the /OPTIONS file qualifier,
describing how to create and use a linker options file.

vii

Chapter 7 explains the different forms of the image map that the
linker produces on request. This map provides information about the
image that was created and about the linking process itself.

Chapter 8 and 9 present detailed explanations of shareable images and
image clusters. The complex information in these chapters is intended
mainly for more sophisticated programmers and application designers.

The appendixes provide supplementary information. Appendix A lists
the error messages that the 1linker <can generate. Appendix B
illustrates complete brief, default, and full maps of the same image.
Appendix C 1is a specification of the object language accepted by the
linker; this information is useful to anyone designing a compiler or
assembler whose output must be acceptable to the VAX-11 Linker.

ASSOCIATED DOCUMENTS
The following documents contain information pertinent to linking:

e VAX-11 Information Directory

® VAX/VMS Primer

e VAX/VMS Command Language User's Guide

e VAX-11 Symbolic Debugger Reference Manual

e VAX/VMS System Manager's Guide

e VAX-11 MACRO Language Reference Manual

® VAX-11 MACRO User's Guide

e VAX-11 FORTRAN IV-PLUS Language Reference Manual

® VAX-11 FORTRAN IV-PLUS User's Guide

CONVENTIONS USED IN THIS DOCUMENT
The following conventions are used in this manual:

® Brackets ([]) enclose optional material, as in the following
examples:

/ [NO] DEBUG

The positive form of the qualifier is /DUBUG, and the negative
form is /NODEBUG.

CLUSTER=cluster-name, [base-address], [pfc], file-spec [,.

The base address, page fault cluster (pfc), and additional
file specifications are optional entries. Note, however, that
the commas following the base address and page fault cluster
are outside the brackets; therefore, if you omit these
entries, you must still enter the commas. For example:

CLUSTER=AUTHORS,, ,TWAIN,DICKENS

viii

Uppercase letters in format illustrations show keywords that
you must enter as shown; lowercase letters show variable
data, with the letter "n" specifying numeric data. Examples:
/EXECUTABLE=file-spec
/BASE=n
Horizontal ellipses (...) in a format illustration indicate
that the preceding entry can appear several times, as in the
following example:
UNIVERSAL=symbol-name [,...]
You can specify multiple symbol names,

Vertical ellipses indicate that lines of file contents or code
not pertinent to the example are not shown:

ix

CHAPTER 1

LINKER OVERVIEW

The VAX-1ll Linker is a programming development tool that takes the
output of language translators, such as the VAX-11 MACRO assembler or
the VAX-11 FORTRAN IV-PLUS compiler, and binds it into a form that can
be executed on the VAX-11l hardware. The primary outputs of VAX-11
language translators, and the primary inputs to the linker, are files
that contain object modules. The primary output of the linker is a
file called an image.

The linker can produce three types of images. The most common type,
called executable, 1is activated 1in response to a command that you
enter (such as RUN). Another type of image, called system, is
intended for stand-alone execution on the VAX-11l hardware. The third
type, called shareable, provides a means for sharing procedures and
data among multiple processes within the system. Shareable images
also provide a way of linking a very large application program in a
number of smaller phases. Chapters 2 and 9 discuss image creation in
detail. Chapter 8 focuses on shareable images.

The linker assigns values and virtual addresses not only to symbols
defined within each module, but also to symbols defined outside the
module that refers to them. If a symbol is not defined in a module
named in the LINK command, the linker searches one or more libraries.
Chapter 3 discusses the different types of symbols (for example, local
and global, strong and weak), and Chapter 4 discusses the use of
libraries.

The linker is activated by the LINK command, which you can enter
interactively or within a command procedure. The LINK command permits
many command qualifiers and file qualifiers, most of which have
default values that are suitable for most cases. One input file
qualifier is /OPTIONS, which allows you to convey additional input
file specifications and special instructions for the linker. Chapter
5 explains the LINK command and all its qualifiers. Chapter 6 focuses
on the /OPTIONS qualifier and the special items or options that can
appear in an options file.

In addition to the image itself, the linker can produce a printable
image map. You can control the level of detail provided in various
parts of the map. Chapter 7 explains and illustrates the image map.

1.1 REASON FOR A LINKER

The object modules that a VAX/VMS compiler or assembler creates are
nonexecutable, They must first be linked. The requirement that
object modules be linked contrasts with systems in which the output of
a compiler or assembler is directly executable.

LINKER OVERVIEW

The VAX-11 native translators require a linker for several reasons:
e Linking simplifies modular programming.

e The linker simplifies the job of each native compiler or
assembler.

e¢ The VAX-11 Symbolic Debugger and other features can be
accessed easily.

1.1.1 Modular Programming

Modular programming is the process of combining separately compiled or
assembled modules into an executable program or image. Modular
programming has two aspects:

e Automatic modularity because many source language statements
generate calls to common functional routines developed by
DIGITAL

@ Deliberate modular design implemented by some user sites

Most programs are automatically modular, because many source language
statements generate calls to routines that perform commonly needed
functions, such as opening and closing files. Examples of these
routines are the procedures in the VAX-11 Common Run-Time Procedure
Library, which is installed in the system as a shareable image. These
routines can be 1linked into different images regardless of the
programmer's original source language. At run time each routine can
be shared by a number of different processes, because each routine is
relocatable and reentrant. (Reentrant means that the code does not
modify itself, and consequently can be reused by different processes.)

Users can also make their programs deliberately modular. Under this
practice, a single complex program is written as a number of smaller
program modules. The modules are compiled or assembled, and 1later
linked to create an executable image. Figure 1-1 illustrates program
development in this environment. In this example, two programmers
write two program modules, a main section in VAX-11 FORTRAN IV-PLUS to
perform different calculations, and a second section in VAX-11 MACRO
to handle specific exception conditions.

Modular programming offers several advantages over the traditional
practice of having one programmer write an entire complex program as a
single source module:

e Smaller modules are usually more manageable and easier to
write.

o Different modules of the same program can be written in
different 1languages. You can select the language that best
suits the nature of the module's function or your own personal
preference.

® Errors are easier to analyze and correct in smaller modules.

LINKER OVERVIEW

\\ CALC, XCEPT.
FOR MAR

FORTRAN MACRO
Compiler Assembler
\
CALC. XCEPT.
oBJ oBJ
CALC. CALC.
EXE MAP
Optional

Figure 1-1 Modular Programming

1.1.2 Simplifying Compilation and Assembly

Having a linker perform certain essential functions eliminates the
need for every native compiler and assembler to handle these
functions. For example, the linker contains the 1logic. to allocate
virtual memory and to provide the memory management interface between
the program and the operating system.

A program's virtual memory can be allocated efficiently only after all
its constituent modules are known. The linker contains the logic
necessary to group parts of programs according to specific attributes,
with the goal of conserving memory and reducing the amount of paging
activity at run time.

LINKER OVERVIEW

Each program wusually interacts with the operating system. For
example, a program may use the stack within its process. The linker
can supply the program logic to access the stack and certain other
areas, rather than require each compiler and assembler to supply this
logic. The linker can also generate the proper program-to-system
interfaces for program modules that call VAX/VMS system services.

1.1.3 Debug Capability

Use of the VAX~1l1l Linker allows you to access the VAX-1l1 Symbolic
Debugger from the executable image. If you request the debugger, you
can choose whether to activate it at run time. The VAX-11 Symbolic
Debugger Reference Manual explains the capabilities and use of the
debugger. FORTRAN users should refer to the Debugging chapter in the
VAX-11 FORTRAN IV-PLUS User's Guide.

1.2 LINKER OPERATION AND FUNCTIONS
The linker performs the following operations when it creates an image:
e Allocates virtual memory for the image
® Resolves symbolic references among modules
e Initializes the image contents
® Generates the image map, if requested

® Generates a symbol table file, if requested

1.2.,1 Virtual Memory Allocation

The language translators that produce object modules do not allocate
addresses for two reasons:

® They do not know how the modules and sections of modules will
be grouped in the final executable image.

e They do not know how much address space is required for many
of the external modules that are called by the module being
assembled or compiled.

The linker, then, must assume the task of allocating virtual memory
for the image. Each object file input to the linker consists of one
or more program sections. The linker groups program sections from
different object files according to various section attributes-~for
example, whether the program section is concatenated or overlaid, and
what 1its memory protection requirements are (read-only, read/write,
etc.). For further information on how the linker maps the image, see
Chapter 2.

LINKER OVERVIEW

1.2.2 Resolution of Symbolic References

When a module makes references to symbols outside itself, the linker
searches for these references in other modules explicitly named in the
LINK command. If you specify any libraries, the linker searches them
to resolve references made by preceding files named in the LINK
command. If any references still remain unresolved, the linker
searches the default system 1library. For a detailed discussion of
libraries, see Chapter 4.

1.2.3 1Image Initialization

After it maps virtual memory and resolves references, the linker fills
in the actual contents of the image. This image initialization
consists mainly of copying the binary data and code that was written
by the compiler or assembler. However, the linker must perform two
additional functions to initialize the image contents:

@ It must insert addresses into instructions that refer to
externally defined fields. For example, if a module contains
an instruction moving FIELDA to FIELDB, and if FIELDB is
defined in another module, the 1linker must determine the
virtual address of FIELDB and insert it into the instruction.

e It must compute values that depend on externally defined
fields. For example, if a module defines X as being equal to
Y plus Z, and if Y and Z are defined in an external module,

the linker must compute the value of Y plus Z and insert it in
X.

1.2.4 1Image Map
If you so request, the linker generates an image map. The actual
contents of the map depend on the map-related command qualifiers that
you enter with the LINK command; however, entering just the /MAP
qualifier generates a default map with the following sections:

® An object module synopsis

e A program section synopsis

e A list of symbols, with the name and value of each

e An image synopsis

® Statistics of the link run

Chapter 7 discusses the command qualifiers that affect the image map.
It also illustrates the map sections and explains significant items.

1.2.5 Symbol Table File

If you so request, the linker produces a file that records the values
of symbols defined within the image. Section 3.3.1 contains further
information on the symbol table file.

CHAPTER 2

IMAGE CREATION

This chapter discusses the allocation of virtual memory and the
different kinds of images that the linker can produce. The concepts
of clustering, image sections, and program sections are introduced,
along with a description of the way in which the linker builds the
final image.

2.1 PROGRAM SECTIONS

The program section is the vehicle by which a language translator
describes the memory requirements of a particular object module.
Program sections are areas of memory that have a name, a length, and a
series of attributes describing the intended or permitted usage of
that memory. Section 2.5.4 provides a detailed description of these
attributes.

2.2 IMAGE SECTIONS

The image section is the means that the linker uses to describe the
memory requirements of the whole image to the VAX-11 memory management
software. An image section is a named collection of pages which have
the same hardware protection characteristics and the same sharing
nature. An image section is dealt with as a unit when page faults
occur.

The linker creates image sections by collecting program sections that
have similar (but not necessarily identical) attributes. The manner
in which program sections are grouped into image sections depends upon
both the attributes of each program section and the type of image
being produced (see Section 2.7).

2.3 CLUSTERS

Experience with virtual memory systems has shown that locality of
reference within large application programs affects their performance.
Clustering provides a way for the designer of an application to
describe that locality. A cluster contains a group of highly-related
object modules that are separable from some other groups of modules
within the application.

For example, a compiler usually goes through a number of distinct
phases during a single compilation run. These phases are often
separable into groups of object modules that can be designated as
clusters. The relationship between the groups or clusters is defined
through internal data structures, such as the symbol table.

2-1

IMAGE CREATION

Chapter 9 is devoted to clustering. However, at this point it is
sufficient to describe a cluster as a list of related image sections;
these image sections are produced by sorting the program sections read
in from a collection of related object module files. Every image
consists of at least one cluster. Note, however, that the cluster is
relevant only to the linker itself; it does not appear as a structure
anywhere else (such as in the memory management software of the
executive),

2.4 OBJECT MODULE CONTENTS

Each object module contains several types of records. All object
modules have header records and an end-of-module record. Some also
have other kinds of records, depending on the options specified at
compile time. All object modules also contain the following records
for each of the program sections:

e A global symbol record that includes the program section's
attributes. (A global symbol record is also used to describe
each global symbol defined in the module.)

® A text information and relocation record, containing the

section's binary data or code and certain commands to the
linker.

Appendix C contains a detailed specification of the object language
accepted by the linker.

2.5 PROGRAM SECTIONS

A program section is defined to the linker by the following:
® A name
e A size
e An alignment

e A series of single-bit attributes expressing whether the
program section is:

Relocatable or absolute

- Concatenated or overlaid

- Local to a cluster or global across all clusters
- Executable or not

- Writeable or not

- Readable or not

~ Position independent or not

- Potentially shareable or not

- Created by a user program or by the linker for internal use

IMAGE CREATION

2.5.1 Program Section Name

The program section name is an ASCII character string, one to fifteen
characters in length. You can use any printable ASCII character in
the name, but are cautioned against using the dollar sign ($), to
avoid possible naming conflicts with software supplied by DIGITAL.

Program sections with the same name but from different modules
normally must have the same attributes. Any exceptions to this rule
are noted in the discussions of specific attributes.

2.5.2 Program Section Size

The size field of a program section definition record is a 32-bit
count of the number of bytes that this module contributes to the
program section.

2.5.3 Program Section Alignment

The alignment field describes the address boundary at which the
module's contribution to the program section will be placed. The
alignment is expressed as a number from 0 to 9, representing a power
or exponent of the number 2. The base address of the program section
is rounded up to a multiple of that power of two.

In an overlaid program section, all contributing modules must specify
the same alignment; otherwise, the 1linker generates a diagnostic
error. In a concatenated program section, each contributing module
can specify a different alignment. The total allocation of the entire
concatenated program section will be aligned on a boundary which is a
multiple of the highest power of 2 specified by any of the
contributing modules.

2.5.4 Program Section Attributes

The following subsections explain the attributes that a program
section can have. Section 2.7 describes how the linker considers
certain significant attributes as it constructs different types of
images.

2.5.4.1 Relocatability (REL and ABS) - A program section can be
relocatable or absolute. A relocatable program section is one that
the linker can position in virtual memory according to the memory
allocation strategy for the type of image being produced.

Absolute program sections, on the other hand, are not considered in
the allocation of virtual memory. They contain no binary data or
code, and all appear as if they were based at a virtual address of
zero, Absolute program sections are used primarily to define global
symbols.

2.5.4.2 Concatenated versus Overlaid (CON and OVR) - This attribute
determines the relationship between the memory allocations when
several modules contribute program sections with the same name.

IMAGE CREATION

A concatenated program section contribution requires its own separate
address space in the image. If two program sections in different
modules have the same name, the sections will be placed 1in separate
yet contiguous address spaces. For example, if PSECTA in MODULEl and
PSECTA in MODULE2 have the concatenated attribute, PSECTA from MODULEl
will be allocated first, followed by PSECTA from MODULE2. The final
total size of a concatenated program section is the sum of the
individual contributions, plus any padding allowed for the individual
alignments.

An overlaid program section contribution, however, can share an
address space with other program sections that have the same name.
For example, if both PSECTA in MODULEl and PSECTA in MODULE2 have the
overlaid attribute, both program section contributions will be
allocated starting at the same base address in the image. The final
total size of an overlaid program section is that of the largest
contribution.

Note that any module can initialize the contents of an overlaid
program section. 1In this situation, the order in which you specified
the input modules is important, because the contents of an overlaid
program section are determined by the 1last contributing module
specified.

FORTRAN common areas are the most frequent use of overlaid program
sections.

2.5.4.3 Scope - Local versus Global (LCL and GBL) - The 1local or
global attribute 1is significant for an image that has more than one
cluster. The attribute determines whether program sections with the
same name but from modules in different clusters are finally placed in
separate clusters (LCL attribute) or in the same cluster (GBL
attribute). The memory of a global program section is allocated in
the cluster that contains the first contributing module. This subject
is discussed further in the treatments of shareable images and
clustering (see Chapters 8 and 9).

FORTRAN common is implemented with global program sections.

2.5.4.4 Executability (EXE and NOEXE) - Although the current VAX-11
hardware does not implement any kind of execute protection, this
attribute is reserved for possible future implementation. Another
reason for this attribute is that it permits possible future extension
of link time error detection and of software security protection.

The current version of the linker takes this attribute into account in
only two ways:

® Error checking on an image start address. The linker issues a
diagnostic message if a program transfer -address is defined in
a nonexecutable program section.

e Sorting of program sections into image sections. Executable
program sections in executable and shareable images are placed
in separate image sections from program sections that are not
executable,

IMAGE CREATION

2.5.4.5 Writeability (WRT and NOWRT) - This attribute determines
whether the program section contents will be protected against
modification when the image is executed. If the program attempts to
modify the contents of a non-writeable program section during
execution, an access violation occurs.

For executable and shareable images, writeable and nonwriteable
program sections are placed in different image sections. For system
images, this attribute is ignored, since by definition the VAX/VMS
system is not normally in control of the memory management of a system
image.

2.5.4.6 Readability (RD and NORD) - The current version of the linker
ignores this attribute. It is provided merely to allow the possible
future implementation of a data security system.

2.5.4.7 Position Independence (PIC and NOPIC) - This attribute
.identifies whether the content of a program section depends on where
that program section or something that it refers to 1is allocated in
the virtual address space. For example, the following types of
program sections are position independent:

e A program section that contains no virtual addresses

® A program section whose references to virtual memory are in
the form of a displacement from itself, if the targets of the
references must always be at the same displacement from the
calls which refer to them

This attribute applies only to shareable images, which are discussed
in Chapter 8.

2.5.4.8 Shareability (SHR and NOSHR) - As its name suggests, this
attribute 1is significant only for shareable image memory allocation
and memory management (see Chapter 8).

2.,5.4.9 User versus Library (USR and LIB) - This attribute is
reserved for possible future enhancements to the 1linker. It is
ignored for the current release, but should be set to =zero to
guarantee future compatibility.

2.6 TYPES OF IMAGES

The linker creates three types of images: executable, shareable, and
system. Each type has specific uses. System images differ
substantially in content and organization from executable images and
shareable images. The following subsections define each type.

IMAGE CREATION

2.6.1 Executable Images

An executable image is a program that you can activate by the ROUN
command. The most common use of the linker is to create executable
images.

An executable image cannot be linked with other images. However, the
same object modules can be linked in different combinations or with
different link options to form different executable images.

2.6.2 Shareable Images
There are two major reasons for shareable images:

e To provide a means of sharing a single physical copy of a set
of procedures and/or data between multiple application
programs

® To facilitate the linking of very large applications (say,
hundreds of modules) in more manageable pieces, rather than as
one monolithic link

As with executable images, when the 1link of a shareable image is
complete, all symbolic references are resolved and memory is allocated
to a group of image sections. A description of each image section is
written to the image header. Unlike an executable image, however, a
shareable image normally has a symbol table appended to it.

A shareable image is not directly runnable. It is intended for
reprocessing by the linker--that is, to be included in a subsequent
image. 1In processing a shareable image, the linker reads the image
header and generates a separate image cluster from the set of image
sections it finds.

After generating the cluster which is the incoming shareable image,
the linker processes the symbol table appended to the image just as if
it were an object module. This allows the shareable image to resolve
symbols (usually routine names) referred to by the modules with which
it is being linked. These symbols are called universal symbols (see
Section 3.2.3).

When you run a program that has been linked with a shareable image,
the VAX-1l1l image activator checks to see if the shareable image has
been installed by the system manager. If it has been installed, the
image activator sets a pointer that enables the process to use the
shareable image. Thus, whenever multiple processes request an
installed shareable image, the operating system makes the same
physical copy of the shareable image available to each requesting
process. Shareable images can therefore conserve physical memory at
run time.

Chapter 8 discusses shareable images further. At this point, however,
note the following information and conventions pertaining to shareable
images:

e The default common Run-Time Library provided with the VAX/VMS
system is a shareable image.

® You cannot link the VAX-11l Symbolic Debugger with a shareable
image; you must include at least one object module in the
link.

IMAGE CREATION

® You can request that the linker produce a private copy of a
shareable 1image in an executable image file. By default,
however, the linker does not do so, thereby saving disk space.

® Chapters 5 and 6 describe LINK command qualifiers and 1link
time options specifically intended for dealing with shareable
images. See the following:

/SYSSHR }
qualifiers
/SHAREABLE
UNIVERSAL=
) } options
GSMATCH=

2.6.,3 System Images

A system image is a special type of image intended for stand-alone
operation on the hardware; that is, it does not run under the control
of the VAX/VMS operating system.

The allocation of memory to a system image is much simpler than for
the other two types of images. The linker allocates memory to the
program sections based upon the alphabetical order of the program
section names. The only other factors that the linker considers are
program section size, alignment, and the following attributes:
concatenated or overlaid, and relocatable or absolute. These factors
are treated as described in Section 2.5.

The resulting image is a fixed-length record file, each record being a
512-byte block. A system image has no image header, no debug data,
and no symbol tables. It has no set format. That is to say, it
contains binary data and code just as they would appear in memory.

2.7 GENERATION OF IMAGE SECTIONS

The linker makes two passes over the input object modules. The first
pass builds the symbol table and the program section tables. The
second pass writes the binary contents of the image. Memory
allocation is performed between the two passes; the linker uses the
program section table of each cluster and generates an image section
table for each cluster.

When the first pass is complete, the linker has determined the sizes
of all the relocatable program sections by considering specific
attributes (concatenated versus overlaid, local versus global) and the
alignment, as discussed in Section 2.5. The 1linker has also
determined relative addresses of each module's contribution to a
particular program section. What remains to be done is to group the
program sections into image sections, and to position the whole image
cluster in the virtual address space.

IMAGE CREATION

Depending on the type of image being produced, the linker establishes
a mask for the program section attributes that it will consider:

e For an executable image, this mask includes only the
writeablity (WRT and NOWRT) and executability (EXE and NOEXE)
attributes.

e For a shareable image, this mask includes the writeability,
executability, position independence (PIC and NOPIC), and
shareability (SHR and NOSHR) attributes.

Then, for each possible combination of the significant attributes, the
linker searches the program section list of a cluster. If the linker
finds any program section with this combination of attributes, it
generates an image section. Each matching program section in the
image section is assigned an address relative to the base of the image
section, in alphabetical order by program section name.

All combinations of significant attributes are handled in this way,
until the complete set of image sections for the particular cluster is
generated. The next cluster (if there is one) is then treated in the
same way.

At this point, all image sections have cluster-relative base
addresses, and all program sections have image section-relative
addresses. The next step consists of allocating virtual address space
to the cluster and then relocating all image sections and program
sections within the cluster.

The choice of address space for the cluster is described in Chapter 9.
However, the choice depends on whether you specified an address in the
CLUSTER= option, and whether the cluster contains a shareable image.
It also depends upon the order in which you specified the clusters.

2.8 COMPRESSION OF UNINITIALIZED IMAGE SECTIONS

At the end of its first pass across the object modules, the linker
sorts all the program sections 1into a group of distinct image
sections. The sorting is determined by program section attributes,
and results in the complete allocation of the user virtual space.

In its second pass, the linker writes the binary contents of the
image. During this image initialization, the linker keeps track of
which program section is being initialized and to which of the image
sections that program section has been allocated. The first attempt
to initialize a part of an image section causes the linker to allocate
a buffer in its own program region to contain the generated image
binary contents. This allocation is achieved by the expand region
system service, and it requires that the linker have available a
virtually contiguous region of its own memory at least as large as the
image section being initialized.

After completing the second pass across the object modules, the linker
scans the list of 1image sections in an attempt to compress
uninitialized pages from the image, which is about to be written. The
linker attempts to perform this compression by creating demand zero
image sections.

IMAGE CREATION

If the linker finds an image section that does not have a buffer
allocated, it considers splitting the section into multiple image
sections, some demand zero and others copy on reference. To be
eligible for splitting, the image section must be writeable to the
user and larger than the minimum compression threshold size (see the
DZRO_MIN= option in Chapter 6). If the image section can be split,
the linker calls a memory management system service, passing it a
description of the image section buffer and the compression threshold
value. By calling this service in a loop, the linker finds out which
segments of the buffer are both larger than the threshold number of
pages and previously unmodified by the linker. This process results
in a single image section being replaced by a potentially large number
of alternating demand zero and copy on reference image sections.

The linker continues this splitting process, scanning the 1list of
image sections until it reaches the end or until the total number of
image sections reaches the 1limit specified or defaulted for the
ISD_MAX= option (see Chapter 6). During the entire process, the
linker keeps track of the size of the image header (where descriptors
of the 1image sections will be written) and of the image binary
contents. Thus, at the end of the scan the linker knows the precise
size of the image header and the contents, and it can now create the
image file. ‘

When the image file is successfully created, the linker makes another
scan of the image section descriptor list. During this scan it writes
the contents of all existing image section buffers to the image file,
assigning them virtual block numbers as it does so. Finally, the
linker writes the image header, starting at virtual block number 1 of
the image file.

By default, the 1linker <creates the image with the attribute
"contiguous best try," which becomes a permanent attribute of the
image file. However, you can specify the /CONTIGUOUS gqualifier to
force the image file to be created contiguously (see Chapter 5).

CHAPTER 3

SYMBOLS AND REFERENCES

One of the 1linker's functions is to resolve symbolic references
between modules. The 1linker recognizes different types of symbols,
and follows guidelines for each type when it tries to supply addresses
or values to statements that refer to these symbols.

3.1 DEFINITIONS: "SYMBOL" AND "REFERENCE"

A symbol is a name associated with a coding statement or with a data
area or field. A reference 1is the wuse of a symbol in a coding
statement or a data definition. Consider the following examples (not
tied to a specific programming language):

® A coding statement identified as ROUTINEA moves FIELDA to
FIELDB. ROUTINEA 1is the symbol associated with the coding
statement. FIELDA and FIELDB are references made by the
statement.

® A data definition statement defines FIELDA as being equal to
(A+B)/2. FIELDA 1is the symbol associated with the computed
value of (A+B)/2. A and B are references.

3.2 TYPES OF SYMBOLS AND REFERENCES
Each symbol is local, global, or universal:

e Local symbols are available for reference only within the
program module that defines them.

® Global symbols can be referred to by modules outside the
module that defines them. A global symbol has a strong or a
weak definition. Another module can make a strong or a weak
reference to a global symbol (regardless of whether the
symbol's definition is weak or strong).

® Universal symbols are a special type of global symbol. You
can specify universal symbols only for shareable images.

Figure 3-1 illustrates references to local and global symbols in three
modules. (The statements do not reflect a specific programming
language.) An arrow is drawn between each reference and the symbol to
which it refers.

SYMBOLS AND REFERENCES

MODULEA
LOCAL 1-e—
LOCAL2 ==
GLOBAL1
GLOBAL2-=
/—\/\/—\/\.’—
Move LOCAL1 to LOCAL2
Call GLOBAL3
’-\/_\/\‘N\/_\-
MODULEB MODULEC
»| OCAL1 LOCAL1 =
LOCAL2 - LOCAL2 =
e T — T T N
Add GLOBAL1 ——— Subtract GLOBAL2
to LOCAL1 from LOCAL2
<l W
<
Move LOCAL1 ‘'———————————»GLOBAL3 /
to LOCAL2 Move LOCAL2
to LOCAL1
r—— T S

Figure 3-1 Local and Global Symbols

Local and global symbols can be designated either automatically by the
language translator or by qualifiers in program statements. You can
specify the local or global symbol type only in certain languages. In
VAX-11 MACRO, for example, you can define a symbol as local or global
by using one or two equal signs or colons, as the following statements
show. Note that the term "local symbol" in this context has a
different meaning from the term in the context of a MACRO program (for

example, 10$:).
CRFC_MAXREC=292 Assigns a value of 292 to the 1local symbol
CRFC_MAXREC
CRFC_MAXREC==292 Assigns a value of 292 to the global symbol

CRFC_MAXREC
ERR_BRANCH: Makes the coding statement label ERR_BRANCH a
local symbol
ERR_BRANCH:: Makes the coding statement label ERR_BRANCH a
global symbol

In certain other languages, the compiler determines whether a symbol
is local or global. For example, the FORTRAN compiler makes statement
numbers local symbols, and module entry points and common areas global
symbols. For information about designating symbol type in a specific
programming language, see the appropriate language reference manual.

Universal symbols must be specified by the UNIVERSAL=
linker options file, Chapter 6 explains
qualifier with the LINK command.

option in the
the use of the /OPTIONS

SYMBOLS AND REFERENCES

3.2.1 Local Symbols

You can refer to local symbols only within the program module that
defines them. Most symbols in a typical program are local.

The compiler or assembler resolves references to 1local symbols, and
therefore they are not passed on to the linker.

3.2.2 Global Symbols

Global symbols can be referred to by object modules other than the
module that defines them.

Each global symbol has either a strong or a weak definition. An
external module can make a strong reference or a weak reference to any
global symbol.

3.2.2.1 Strong Definition - A global symbol with a strong definition
is available for reference if the module that defines it is either
explicitly named in the LINK command or contained in a library that is
searched by the 1linker. Global symbols usually have a strong
definition, and strong is the default if neither weak nor strong is
specified.

The librarian utility makes an entry for each global symbol with a
strong definition in the global symbol table of a library. Libraries
are discussed in Chapter 4.

3.2.2.2 Weak Definition - A global symbol with a weak definition is
available for reference only if the module that defines it is
explicitly included in the linking operation; that is, the module is
listed as an input file, specified with the /INCLUDE qualifier, or
included from a library because another (strong) symbol in the module
is needed.

The librarian utility routine does not make entries for global symbols
with weak definitions in the global symbol table of a library.

3.2.2.3 Strong Reference - A strong reference is one whose resolution
is critical to the linking operation. If the linker cannot resolve
all strong references by searching named input modules and 1libraries
and the default system library, it reports errors and assumes that the
symbol referred to has a value of zero.

Most references to global symbols are strong, and strong is the
default.

3.2.2.4 Weak Reference - A weak reference is one whose resolution is
not «critical to the 1linking operation. For a weak reference, the
linker searches only named input modules, but not user 1libraries or
the default system library. The linker does not treat an unresolved
weak reference as an error, but it does assume that the symbol
referred to has a value of zero.

SYMBOLS AND REFERENCES

An example of the use of weak references might occur in a program that
you want to 1link now, but that you want to add to and relink later.
In a particular subroutine you might make a weak reference to a symbol
in an external module that will not be written until later. You can
link the image and run it, as long as it does not try to use the
nonexistent symbol during the run.

3.2.3 Universal Symbols

A universal symbol is a special type of global symbol in a shareable
image. A universal symbol is accessible by other modules when they
link with the shareable image. Universal symbols in a shareable image
contrast with ordinary global symbols in the modules that make up the
shareable image; the ordinary global symbols are available only when
the modules are being linked to create the shareable image.

The VAX-11l MACRO assembler language provides the .TRANSFER directive
to identify an important class of universal symbols, namely transfer
vectors. Otherwise, you must identify universal symbols with the
UNIVERSAL= option in a 1linker options file (see Chapter 6). For
example, the following LINK command shows how to designate A and B as
universal symbols in the shareable image ABBOTT. COSTELLO is an
options file that includes the record UNIVERSAL=A,B.

$ LINK/SHAREABLE ABBOTT,COSTELLO/OPTIONS

COSTELLO.OPT

UNIVERSAL=A,B

An example of the need for universal symbols might occur if you write
an error-handling routine with several modules to be linked as a
shareable image. You define global symbols for references between the
modules. However, you must designate as universal any global symbols
that are to be available when the shareable image 1is 1linked with
object files or other shareable images: for example, entry points of
routines and perhaps some constants for defining possible errors.

3.3 SYMBOL TABLES

An image can have none, one, or both of the following symbol tables:
e A debug symbol table
e A global symbol table

The debug symbol table is included only if you specify /DEBUG at 1link
time. This table normally contains the following types of
information:

e Module names

e Routine names and/or program section names

e All local symbols

SYMBOLS AND REFERENCES

However, the local symbols are included only if you request debug at
both compilation time and link time.

The global symbol table is included in an executable image whenever
you include debug in the 1link. The global symbol table is always
included in a shareable 1image, regardless of the qualifiers vyou
specify at 1link time. The global symbol table contains an entry for
each global symbol in an executable image and for each universal
symbol in a shareable image. These symbols are listed in the Symbols
by Name section of the image map.

3.3.1 Global Symbol Table as Separate Output

You can output a copy of the image's global symbol table as a separate
file by wusing the /SYMBOL_TABLE qualifier at link time. The symbol
table file is a sequential file containing variable-length records.
Its format is identical to that of object modules (Appendix C explains
this format in detail).

You can specify a symbol table file as input to a 1linking operation.
This makes the global symbols in the symbol table file and their
values available to the object modules being 1linked, without also
linking in the entire image with which the global symbols are
associated. One primary use for specifying STB files at link time is
to make global symbols in a system image available to a number of
other images without binding the system image into each of the other
images.

CHAPTER 4

LIBRARIES

The linker searches one or more libraries to resolve references to
global symbols that are not defined in the object files specified
previously in the LINK command. A library contains object modules and
related information, including a list of the names of the modules and
a list of the global symbols contained in the modules. (A library can
also contain macros instead of object modules; however, the linker is
not concerned with macro libraries.)

When the linker matches a global symbol having an unresolved strong
reference with an entry in a library's table of global symbols, it
binds the module that defines the symbol into the image. You can also
explicitly include modules from a library in an image, thus
eliminating the need for the linker to search the global symbol table
of the 1library. In addition to any libraries that you specify, the
linker automatically searches the default system library for any
unresolved strong references.

To create a library, you must use the LIBRARY command, which is
explained in the VAX/VMS Command Language User's Guide.

4.1 LIBRARY TABLES USED BY THE LINKER

Each object module library contains two 1lists or tables that the
linker uses to resolve symbolic references:

® A module name table, containing an entry for each object
module in the 1library. Each entry includes the name of the
module and its address within the library file.

¢ A global symbol table, containing an entry for each global"
symbol in the modules in the library. Each entry includes the
name of the symbol and the location of the module that defines
the symbol.

For example, in a hypothetical library named MINE2, one of the modules
is MODULEZ, which contains the global symbols TAGl and TAG2. Although
it is not intended as an exact schematic illustration, Figure 4-1
shows the relationship of the module name table and the global symbol
table to the rest of the library.

Pointers to
the associated
module

LIBRARIES

MINE2.0LB
LIBRARY
HEADER
MODULE NAME
TABLE
MODULEZ One entry in the module name table for
each object module in the library.
GLOBAL SYMBOL
TABLE
TAG1 One entry in the global symbol table
TAG?2 for each global symbol in each module.
MODULEZ
MODULEB 1 OBJECT MODULES

Figure 4-1 Library Tables

4.2 LINKER'S USE OF LIBRARIES

You can include library modules in the

explic

itly:

image either implicitly or

Implicit inclusion occurs when a module specified in the LINK

command
the linker searches.
named MODULEl

specify:

refers to a global symbol defined in a library that
For example, an instruction in a module

moves FIELDA to FIELDB, yet FIELDB is defined
only in the module LIBMOD3 in the library BOBLIB.OLB. You can

$ LINK MODULEl,BOBLIB/LIBRARY

This causes the linker to search BOBLIB for any unresolved

references
defined in LIBMOD3,

image.

from MODULELl.

When
the linker includes that module in the

it discovers that FIELDB is

Explicit inclusion occurs when you name a module with the
/INCLUDE qualifier after the library name. To use the example
in the explanation of implicit inclusion, if you know that

FIELDB

defined in module

LIBMOD3 in BOBLIB, you can

simplify the linker's search and explicitly include LIBMOD3 in
the final executable image by specifying:

$ LINK MODULEl,BOBLIB/INCLUDE=LIBMOD3

LIBRARIES

The linker follows these conventions in using libraries:

e It processes all input files, including 1libraries, in the
sequence in which you name them. Thus, the linker searches a
library for unresolved strong references only from previously
named input files, For example, assume that you enter the
following command:

$ LINK A,B,C/LIBRARY,D,E

The linker searches library C for unresolved strong references
from object modules A and B, but not D and E. The search of
library C continues until no more symbols can be resolved.
For example, if module X is included from library C and module
X also has some unresolved strong references, the linker makes
another search of library C.

e If you specify both the /LIBRARY and /INCLUDE qualifiers after
a library's file specification, the linker includes the named
modules first and then, if necessary, searches the library.
This is true regardless of the order of the two qualifiers.
For example, the following two commands cause the 1linker to
perform identical actions:

$ LINK A,B/INCLUDE=(MOD1,MOD2)/LIBRARY
$ LINK A,B/LIBRARY/INCLUDE=(MOD1,MOD2)

® The linker searches the default system library for unresolved
strong references after it has processed all named input
files, including user libraries. (See Section 4.3 for a
discussion of the default system library.)

These conventions allow you considerable choice when the same global
symbol name is defined differently in modules in different libraries.
For example, if you know that a particular symbol is defined as you
need it 1in a particular module, but that the same symbol is defined
differently in another module (in one of your libraries or the default
system library), you can choose the desired definition by specifying
the module with the /INCLUDE qualifier. If you know that your own
library has global symbols that are defined differently in the default
system library, you can include your own symbols by specifying your
library with the /LIBRARY qualifier.

4.3 DEFAULT SYSTEM LIBRARY

If any unresolved strong references remain after the 1linker has
processed all vyour input, it begins a search of the default system
library. This "library" is in fact two files: one a shareable image
called VMSRTL.EXE and the other an object library called STARLET.OLB.
Both files reside on the device and directory given by the translation
of SYSS$SLIBRARY.

4.3.1 VMSRTL.EXE

If the linker needs to search the default system library, it searches
the VMSRTL shareable image first. This shareable image contains most
of the procedures described in the VAX-11 Common Run-Time Procedure
Library Reference Manual, including many routines required by almost
all FORTRAN programs.

LIBRARIES

If the linker finds no symbols that it needs in the shareable image,
it proceeds to search the object library STARLET and does not include
the shareable image VMSRTL in the image being created.

You can use the /NOSYSSHR qualifier to the LINK command to suppress
the linker's search of this shareable image (see Chapter 5).

4.3.2 STARLET.OLB

STARLET.OLB is an object module library in the form discussed in this
chapter. It contains all of the object files that were used to create
the shareable image version of the Run-Time Library, as well as many
less frequently used procedures of the same class. This object
library also contains modules for interfacing to VAX/VMS system
services.

The linker searches SYSSLIBRARY:STARLET.OLB if any wunresolved strong
references remain after it has searched SYSSLIBRARY:VMSRTL.EXE.

You can use the /NOSYSLIB qualifier to the LINK command to suppress
the 1linker's search of both STARLET.OLB and VMSRTL.EXE (see Chapter
5).

4.4 EXAMPLE OF USING LIBRARIES

The following example shows how you can specify both explicit and
implicit inclusion of modules from libraries. (The file types need
not be entered, but are included here for clarity.)

$ LINK LAUREL.OBJ,HARDY.OBJ,-
MINE2.0LB/INCLUDE=MODULEZ,-
MINE3.0LB/LIBRARY

These statements tell the linker:
1. Link the object modules LAUREL and HARDY.

2, Extract MODULEZ from the library MINE2 and link it with the
object modules LAUREL and HARDY.

3. If any unresolved strong references remain in LAUREL, HARDY,
or MODULEZ, search the library MINE3, and extract and link in
any modules needed to resolve these references.

4, For any strong references that are still unresolved, search
the default system library.

Note that the linker will not search MINE3.0OLB and the default system
library if the only unresolved references are weak references. For a
discussion of weak references, see Section 3.2.2.4.

CHAPTER 5

THE LINK COMMAND

To invoke the VAX-1ll Linker, use the DIGITAL Command Language (DCL)
LINK command. You can enter the LINK command interactively, or you
can include it in a command procedure,

The LINK command recognizes a number of command qualifiers and file
qualifiers. A command qualifier conveys information about the linking
operation and the image to be c¢reated -- for example, whether to
generate an image map, or whether to include a debugger in the image.
A file qualifier specifies information about a file that is input to
the linker =-- for example, identifying the file as a library. Some
qualifiers are valid only if they are used with other gualifiers, and
some qualifiers are incompatible with other .qualifiers.

This chapter discusses the LINK command and its qualifiers; however,
it is not concerned with command syntax. Syntax deals with the rules
for entering commands, such as how to specify a continuation line, or
the number of characters you must enter before the command interpreter
can recognize the entry. This chapter discusses matters of syntax
only where necessary to avoid errors or misunderstanding, and uses
spellings that most clearly suggest a qualifier's function. For
detailed information on command syntax, see the VAX/VMS Command
Language User's Guide.

5.1 COMMAND FORMAT
The LINK command has the following format:
$ LINK/command-qualifier... file-spec/file-qualifer,...

You must enter at least the LINK command name and one input file name.
You can enter multiple command qualifiers and file specifications, and
one or more file qualifiers for each file specification.

Slashes (/) separate qualifiers from each other and from the command
name or file specification with which they are associated. One or
more spaces normally separate the last command qualifier from the
first input file specification. Commas precede the second and
subsequent input file specifications.

THE LINK COMMAND

The following examples show some acceptable formats of the LINK
command (Section 5.3 explains these examples).

$ LINK PROGA
$ LINK/MAP/DEBUG PAYROLL,FICA,PAYLIB/LIBRARY

$ LINK/MAP/FULL/EXECUTABLE=STOOGES CURLY,-
LARRY ,MOE,TVLIB/INCLUDE=OLDIES, -
GOODIES/LIBRARY ,SLAPSTICK/OPTIONS

The names assigned to the image file, the map file, and other output
files depend on the first input file name, unless you specify
differently. 1In the second of the preceding examples, the image file
and the map file will be named PAYROLL. In the third example, the
image file will be named STOOGES, because you so specified with the
/EXECUTABLE qualifier, but the map file will be named CURLY. (To name
the map file STOOGES, you must specify /MAP=STOOGES.)

5.2 COMMAND AND FILE QUALIFIERS

You can enter many command and file qualifiers, but normally you will
not need to, because most qualifiers have default values that the
linker uses if you omit the qualifier.

Some qualifiers are incompatible with certain other qualifiers. The
linker takes one of two actions with incompatible qualifiers;
depending on the specific case, it might display an error message and
invalidate the entire LINK command, or it might ignore or override
certain qualifiers (generally accepting only the last valid one) and
allow the 1link to continue. For example, if you specify /FULL and
/BRIEF for the map, the linker rejects the entire command. But if you
specify the positive and negative forms of a qualifier (say,
/EXECUTABLE and /NOEXECUTABLE), the linker accepts the last one
entered.

Tables 5-1 and 5-2 list the command and file qualifiers, the default
value for each, and any incompatible qualifiers. A [NO] indicates
that the qualifier can be negated by prefixing NO (without
brackets) -- for example, /NODEBUG or /NOEXECUTABLE. Any entry after
the qualifier is valid only for the positive form of the qualifier;
for example, it would be nonsense to enter /NOEXECUTABLE=PAYROLL.

THE LINK COMMAND

Table 5-1
Command Qualifiers

Incompatible
Command Qualifier Default Qualifiers
/BRIEF Default map /NOMAP , /FULL,

/ [NO] CONTIGUOUS
/ [NO]CROSS_REFERENCE

/[NO]DEBUG[=file-spec]

/ [NO]EXECUTABLE [=file~spec]

/CROSS_REFERENCE

/NOCONTIGUOUS /NOEXECUTABLE
/NOCROSS_REFERENCE | /NOMAP,/BRIEF
/NODEBUG /NOTRACEBACK,
/SHAREABLE , /SYSTEM
/EXECUTABLE /SHAREABLE

/FULL Default map /NOMAP , /BRIEF
/[NO]JMAP [=file~spec] /NOMAP
/ [NO] SHAREABLE [=file-spec] /NOSHAREABLE /SYSTEM, /DEBUG,
/EXECUTABLE

/[NO]SYMBOL_TABLE[=file—Spec] /NOSYMBOL_TABLE
/ [NO] SYSLIB /SYSLIB
/ [NO] SYSSHR /SYSSHR /NOSYSLIB
/ [NO] SYSTEM [=base-address] /NOSYSTEM /DEBUG , /SHAREABLE
/ [NO] TRACEBACK /TRACEBACK

Table 5-2

File Qualifiers

File Qualifier

Default

Incompatible
Qualifiers

/INCLUDE=module-namel[,...]

(Does not apply)

All others, except

/LIBRARY
/LIBRARY File is an object All others, except
module. /INCLUDE
/OPTIONS File is an object All others

/SELECTIVE_SEARCH

/SHAREABLE

module.

Include all module
global symbols in
the image's global
symbol table.

File is an object
module.

All others, except
/SHAREABLE

All others, except
/SELECTIVE_SEARCH

THE LINK COMMAND

Sections 5.2.1 and 5.2.2 discuss the command qualifiers and file
qualifiers individually. Within each section the qualifiers are
presented in alphabetical order.

5.2.1 Command Qualifiers
/BRIEF

/BRIEF produces a brief form of the image map. A brief map
contains only the following sections:

® Object Module Synopsis
® Image Synopsis
e Link Run Statistics

A brief map does not contain the Program Section Synopsis and the
Symbols by Name sections, which are included in the default map.

/BRIEF is valid only if you specified /MAP previously in the LINK
command. /BRIEF is incompatible with /FULL and /CROSS_REFERENCE.

/CONTIGUOUS
/NOCONTIGUOUS

/CONTIGUOUS forces the entire image to be placed in consecutive
disk blocks. If sufficient contiguous space is not available on
the output disk, the linker reports the error and terminates the
link operation without generating an image.

You can use the /CONTIGUOUS qualifier to improve paging
performance for all types of images, because an image usually
runs slower if it is not contiguous. You can also use the
/CONTIGUOUS qualifier to satisfy the requirement of bootstrap
programs for certain system images, since many bootstrap programs
cannot handle discontiguous images.

If you do not specify /CONTIGUOUS, the linker assumes
/NOCONTIGUOUS by default. That is, if sufficient contiguous
space is not available, the 1image is divided and placed in
different areas on disk. (However, the operating system still
tries to make the image as contiguous as possible.)

/CROSS_REFERENCE
/NOCROSS_REFERENCE

/CROSS_REFERENCE causes the Symbols by Name section of the image
map to be replaced by a Symbol Cross Reference section, which
lists global symbols in alphabetical order and the following
information about each symbol:

e Its value

® The name of the first module that defines it

® The name of each module that refers to it
The number of symbols listed in the cross reference depends on

whether you specified /FULL for the map or accepted the default
map. A full map contains global symbols from all modules in the

THE LINK COMMAND

image, including modules extracted from libraries. The default
map generally excludes global symbols that are defined and
referred to only within the default system library.

/CROSS_REFERENCE is valid only if you specified MAP previously in
the LINK command. /CROSS_REFERENCE is incompatible with /BRIEF.

If you do not request a cross reference, none is provided; the
map still lists global symbols in alphabetical order, but gives
only the value for each one.

/DEBUG[=file-spec]
/NODEBUG

/DEBUG tells the linker to bind a debugging module into the
image. When the image 1is run, the debugger receives control
first.

If you specify /DEBUG, you can also enter the file specification
of a user-written debug module. If you enter a debugging module
file specification without specifying the file type, the 1linker
assumes OBJ.

If you specify /DEBUG without entering a file specification, the
linker uses the VAX-11 Symbolic Debugger. This debugger includes
a debug symbol table (discussed in Section 4.2) and coding 1logic
to help in debugging the image at run time. For further
information, see the VAX-11 Symbolic Debugger Reference Manual.

/DEBUG automatically includes /TRACEBACK. If you specify /DEBUG
and /NOTRACEBACK, the 1linker overrides your specification and
includes traceback information.

If you do not specify /DEBUG, the linker assumes /NODEBUG.

/EXECUTABLE [=file-spec]
/NOEXECTABLE

/EXECUTABLE tells the linker to create an executable image, as
opposed to a shareable 1image or a system image. You can also
enter a file specification for the image; however, if you do not
enter one, the linker uses the file name of the first input file
and the file type of EXE.

/NOEXECUTABLE tells the 1linker to perform all the actions
involved in creating an executable image, but not to output it.
You can use /NOEXECUTABLE to test combinations of files and
gualifiers without actually creating an image.

If you do not specify /NOEXECUTABLE, /SHAREABLE, or /SYSTEM, the
linker assumes /EXECUTABLE.

/FULL

/FULL produces the most complete map of the image. The full map
contains all the sections found in the default map, although
several sections contain more detailed information. The full map
also contains two sections not found in the default map.

THE LINK COMMAND

The following sections of a full map contain information about
all modules in the image. (In the default map, these sections
generally omit information about modules from the default system
library.)

® Object Module Synopsis
® Program Section Synopsis
e Symbols by Name

The following sections are included in a full map, but not in the
default map:

® Image Section Synopsis
e Symbols by Value

For illustrations and explanations of the image map sections, see
Chapter 7.

/FULL is valid only if you specified /MAP previously in the LINK
command. /FULL 1is incompatible with /BRIEF, but not with
/CROSS_REFERENCE.

/MAP [=file-spec]
/NOMAP

/MAP causes the linker to create an image map as a separate file.
You can enter a file specification for the image map file;
however, if you do not enter one, the linker uses the file name
of the first input file. If you do not enter a file type after
the file name, the linker assumes a file type of MAP.

If you enter /MAP, you can further specify the contents of the
map with the /BRIEF, /FULL, and /CROSS_REFERENCE qualifiers. 1If
you enter /MAP and no related qualifier, the 1linker produces a
default map that contains the following sections:

® Object Module Synopsis

® Program Section Synopsis

e Symbols by Name

® Image Synopsis

e Link Run Statistics

For illustrations and explanations of the image map sections, see
Chapter 7.

If you do not specify /MAP, the default is /NOMAP; that is, the
linker does not generate an image map.

/SHAREABLE [=file-spec]
/NOSHAREABLE

/SHAREABLE tells the linker to create a shareable image. (For an
explanation of shareable images, see Section 2.6.2 and Chapter
8.) You can also enter a file specification for the shareable
image; however, if you do not enter one, the linker uses the
file specification of the first input file.

THE LINK COMMAND

You cannot run a shareable image, but you can link it with object
modules or other shareable images. (See the explanation of the
/SHAREABLE file qualifier in Section 6.1.2.)

If you specify /SHAREABLE, you cannot specify /EXECUTABLE,
/SYSTEM, or /DEBUG.

If you do not specify /SHAREABLE, the linker assumes
/NOSHAREABLE; that is, the image is not a shareable image. (See
the explanation of the /EXECUTABLE command qualifier in this
section.)

/SYMBOL_TABLE [=file-spec]
/NOSYMBOL_TABLE

/SYMBOL_TABLE tells the linker to create a separate file, with a
default file type of STB, containing the image's global symbol
table. This qualifier does not affect the global symbol table in
the image itself; rather, it causes an additional global symbol
table to be created in object module format. You can also enter
a file specification for the global symbol table file; however,
if you do not make this entry, the linker uses the name of the
first input file.

You can include the symbol table file as input to future linking
operations, just as if it were an object module. For further
information, see Section 3.3.1.

If you do not specify /SYMBOL_TABLE, the linker assumes
/NOSYMBOL_TABLE; that 1is, it does not generate a symbol table
file.

/SYSLIB
/NOSYSLIB

/SYSLIB tells the linker to search the default system library for
unresolved strong references to global symbols after it has
searched any specified user libraries. You will probably want
the linker to search the default system library for almost all
linking operations. If you do not specify /NOSYSLIB, the 1linker
assumes /SYSLIB by default.

/NOSYSLIB tells the linker not to search the default system
library. You should specify /NOSYSLIB only if you know that
other specified libraries allow the linker to resolve all
symbolic references, and if you have a good reason for
suppressing the system library search.

/SYSSHR
/NOSYSSHR

/SYSSHR tells the linker to search the default system run time
library shareable image (SYSSLIBRARY:VMSRTL.EXE). If any symbol
within this image resolves an outstanding reference, the
shareable image is included in your program as the
highest-addressed part of the program region.

The primary use of this qualifier, however, 1is to express Iits
negative form. /NOSYSSHR tells the linker not to try to resolve
symbolic references by including the default system shareable
image. Note, however, that /NOSYSSHR has no effect upon the
search of the default system object library
(SYSSLIBRARY:STARLET.OLB).

THE LINK COMMAND

You might specify /NOSYSSHR, for example, when you need only one
library routine for a particular program. Since the shareable
image VMSRTL contains many routines, all of which would be
mapped, it would be inefficient to include all the routines if
you need only one. /NOSYSSHR directs the linker to use only the
default object library, which includes all the routines found in
VMSRTL.

/SYSTEM[=base-address]
/NOSYSTEM

/SYSTEM tells the linker to create a system image. (For an
explanation of system images, see Section 2.6.3.) You can also
specify a base address at which the system image will be loaded
at run time, and you can express this address in decimal (%D),
hexadecimal (%X), or octal (%0). If you specify /SYSTEM without
a base address, the linker assumes %X80000000.

If you specify /SYSTEM, you cannot specify /SHAREABLE or /DEBUG.

If you do not specify /SYSTEM, the linker assumes /NOSYSTEM;
that 1is, the image is not a system image. (See the explanation
of the /EXECUTABLE command qualfier in this section.)

/TRACEBACK
/NOTRACEBACK

/TRACEBACK tells the linker to include traceback information in
the image. Traceback is a facility that automatically displays
information from the call stack when a fatal program error
occurs. The output shows which modules were called before the
error occurred.

The linker assumes /TRACEBACK unless you exclude the facility by
specifying /NOTRACEBACK. If you enter /DEBUG, the linker
automatically includes traceback also; therefore, if you specify
both /DEBUG and /NOTRACEBACK, you receive a warning that
/NOTRACEBACK has been ignored.

5.2.2 File Qualifiers
/INCLUDE=module-name(,...]

/INCLUDE tells the linker to include the named module or modules
from the associated library in the image. (To specify more than
one module, enclose the list in parentheses and separate module
names with commas.) /INCLUDE does not cause the linker to search
the rest of the associated 1library for unresolved references,
unless you also specify /LIBRARY. For further information on
libraries, see Chapter 4.

The following two examples show uses of the /INCLUDE qualifier
with a library named REDS that contains many modules, among them
ROSE, MORGAN, and BENCH.
$ LINK TEAM,REDS/INCLUDE= (ROSE,MORGAN,BENCH)

This example tells the linker to extract modules ROSE, MORGAN,
and BENCH from the 1library REDS and include them in the
executable image which will be named TEAM (since that is the name
of the first input file).

$ LINK TEAM,REDS/LIBRARY/INCLUDE=(ROSE,MORGAN,BENCH)

5-8

THE LINK COMMAND

This example also tells the linker to include ROSE, MORGAN, and
BENCH in TEAM. However, the /LIBRARY qualifier tells the linker
to search the rest of the library REDS and 1link in any other
modules needed to resolve strong symbolic references in TEAM,
ROSE, MORGAN, and BENCH.

/LIBRARY

/LIBRARY identifies a file as a library. The linker searches
libraries that you specify if any unresolved strong symbolic
references between modules remain after it 1links in the named
input files and any library modules specified with the /INCLUDE
qualifier. For further information on libraries, see Chapter 4.

JLIBRARY cannot be the only qualifier on the first input file,
since there are as yet no outstanding references to be resolved
from this library.

/OPTIONS

/OPTIONS identifies a file as a linker options file. This file
can contain input file specifications, as well as special
instructions recognized only by the linker and not by the command
interpreter.

Chapter 6 explains how to create an options file and what it can
contain. Chapter 6 also discusses each of the special
instructions you can include in the options file.

/SELECTIVE_SEARCH

/SELECTIVE_SEARCH tells the linker to include in the 1image's
global symbol table only those global symbols in the associated
file that previously named input files refer to. If you do not
specify /SELECTIVE_SEARCH for an input file, all of its global
symbols are included in the global symbol table of the image.

/SHAREABLE

/SHAREABLE as an input file qualifier is wvalid only within a
linker options file. Section 6.1.2 explains the use of the
/SHAREABLE file qualifier.

EXAMPLES
1. §$ LINK PROGA

The linker binds the object module PROGA and creates an
executable image named PROGA. The linker searches only the
default system library for any unresolved strong symbolic
references in PROGA.OBJ. All linker defaults are used.

2. S LINK/MAP/DEBUG PAYROLL,FICA,PAYLIB/LIBRARY

The linker binds object modules PAYROLL and FICA, searching
the library PAYLIB for unresolved strong references in the
two object modules before searching the default system
library. The 1linker also includes the VAX-11 Symbolic
Debugger in the image.

The name of the executable image is PAYROLL. The linker also

generates an image map (in the default map format) with a
file name of PAYROLL and a file type of MAP.

5-9

3.

THE LINK COMMAND

$ LINK/MAP/FULL/EXECUTABLE=STOOGES CURLY, -
LARRY ,MOE,TVLIB/INCLUDE=OLDIES,-
GOODIES/LIBRARY ,SLAPSTICK/OPTIONS

The linker binds object modules CURLY, LARRY, and MOE, as
well as the module OLDIES from the library TVLIB. The linker
searches the library GOODIES for any unresolved symbolic
references in CURLY, LARRY, MOE, and OLDIES, before searching
the default system library. The linker uses the options file
SLAPSTICK for additional input file specifications or special
instructions.

The linker generates a full map, with the default file name
of CURLY and the file type of MAP. The executable image is
named STOOGES.

CHAPTER 6

THE /OPTIONS FILE QUALIFIER

The /OPTIONS file qualifier identifies a linker options file. You can
include two types of information in this file:

e Input file specifications and associated file qualifiers, in
addition to any that you enter in the LINK command itself

® Special instructions to the 1linker that are not available
through the standard command language

When you specify an options file at link time, the 1linker reads the
file before performing the linking operation.

6.1 USES FOR AN OPTIONS FILE

You can create an options file and use the /OPTIONS qualifier for .a
number of reasons:

@ To give the linker a series of file specifications and file
qualifiers that you use frequently in linking operations

e To identify a shareable image as an input file to the 1link
operation

e To enter a longer list of files and file qualifiers than the
VAX/VMS command interpreter can hold in its command input
buffers

e To specify information that applies only to LINK and to no
other command

6.1.1 Entering Frequently Used Input Specifications

You can create an options file containing a group of file
specifications and file qualifiers that you link frequently, and you
can specify this options file as input to the linker. The advantages
of this method are convenience and flexibility. Consider the
following two examples.

1. You want to create an executable image named PAYROLL
containing modules named PAYCALC, FICA, FEDTAX, STATETAX, and
OTHERDED. You also want to be able to make changes to any of
the modules and conveniently relink the image.

THE /OPTIONS FILE QUALIFIER

To accomplish these goals, you can use the EDIT command to
create the file PAYROLL.OPT containing the file
specifications of the five modules. Then, to link the image
initially or to relink it any time thereafter, you can simply
enter $ LINK PAYROLL/OPTIONS, instead of having to enter the
/EXECUTABLE=PAYROLL gqualifier and the file specifications of
all the input modules each time. (Note that wusing the
options file in this example produces an image named
PAYROLL.) The more file specifications and file qualifiers
you have in an options file, the greater is the convenience
of using it.

2. Two programmers, one writing PROGX and the other PROGY, both
need to include the modules MODA, MODB, and MODC, and to
search the library LIBZ. Someone can create an options file
(say, [G15]GROUP15.0PT) containing the file specifications
for MODA, MODB, and MODC, and the specification for LIBZ
followed by /LIBRARY. At link time, then, each programmer
needs to specify only the name of his or her module and the
options file-- for example:

$ LINK/MAP PROGX, [G15] GROUP15/0PTIONS

6.1.2 Identifying a Shareable Image as Input

To identify a shareable image as an input file to the linker, you must
use the /SHAREABLE file qualifier within an options file. (If you
include /SHAREABLE in the LINK command, the command interpreter
assumes that it is a command qualifier, not an input file qualifier.)

The format for /SHAREABLE as an input file qualifier is as follows:
/SHAREABLE [=[NO] COPY]

e /SHAREABLE identifies the associated input file as a shareable
image.

e You can optionally specify COPY or NOCOPY as keywords. COPY
causes the 1linker to produce a private copy of the shareable
image in the image being created. NOCOPY, which 1is the
default, causes the linker not to produce a private copy.

6.1.3 Entering More Input Than the Command Language Can Handle

At times you may need to 1link a series of input files and file
qualifiers that exceeds the buffer capacity of the command
interpreter. The maximum number of entries depends on the specific
entries themselves and how much of each line you use. However, as a
general guideline, if your LINK command statement exceeds six or seven
lines, the command interpreter may not be able to process it. In this
case, you must put some or all of the input file specifications and
file qualifiers in an options file.

6.1.4 Entering Non-Standard Link Instructions

The linker is more complex than most VAX/VMS utilities; it can
perform a number of optional functions in creating an image. Although
the LINK command could have been designed to accept a very large

THE /OPTIONS FILE QUALIFIER

number of command qualifiers, some of these optional functions are not
frequently used and apply only to the linker-- for example, specifying
the image's base address or the number of I/0O channels it can use.

Therefore, to keep the size of the command interpreter's internal
tables and code to a manageable level, the /OPTIONS qualifier was
developed. /OPTIONS is recognizable to the command interpreter, but
the special functions that the options file can specify are
recognizable only to the linker. When you specify an options file,
then, the command interpreter passes the file to the linker, which

reads and interprets its contents.

Table 6-1 lists the special functions that you can request only in an

options file, giving the following information for each: its format,
the default value, and a brief explanation. Section 6.3 provides
detailed explanations of each special function.
Table 6-1
Special Options
Format Default Explanation
BASE=n $X200 for executable Base virtual
and shareable address for the
$X80000000 for image
system
CHANNELS=n At least 32 Maximum number of

CLUSTER=cluster-name, -
[base~address] , -
[pfc],file-spec[,...]

DZRO_MIN=n

GSMATCH=keyword, -

major-id,minor-id

IOSEGMENT=n,-
[[NO] POBUFS]

ISD_MAX=n

STACK=n

UNIVERSAL=symbol-name
[,o..]

(See explanation
in Section 6.3.)

LEQUAL,0,0

32, POBUFS

Approximately 96

20

Global symbol
is not universal

I/0 channels the
image can use
during execution

Identifies a
cluster

Minimum number of
initialized pages
before compression
can occur

Sets match control
parameters of a
shareable image

Number of pages for
the image 1/0
segment

Maximum number of
image sections

Number of pages for
the user mode stack

Identifies a global
symbol as universal

- THE /OPTIONS FILE QUALIFIER

6.2 CREATING AND SPECIFYING AN OPTIONS FILE

To use the /OPTIONS qualifier, you must first create the options file.
Use the EDIT command, specifying any valid file name and a file type
of OPT. (You can use any file type, but the 1linker uses a default
file type of OPT with the /OPTIONS gqualifier.)

The options file can contain input file specifications and associated
file qualifiers, or the special link options outlined in Table 6-1, or
both types of information. The following rules apply to the contents
of a linker options file:

1. You must enter any input file specifications and associated
file qualifiers before any special options (see Table 6-1 for
the available special options).

2. You cannot enter command qualifiers.

3. You cannot enter the /OPTIONS file qualifier.

4, You can enter /SHAREABLE as an input file qualifier only in
an options file (see Section 6.1.2).

5. You cannot enter more than one special option on a line.

6. You can continue a file specification 1line or a special
option line,

7. You can enter comments after an exclamation point (!).
8. You can shorten the name of a special option, as long as you
enter at least the first four characters (for example,
CHAN=50 instead of CHANNELS=50).
The following example shows a file named PROJECT3.0PT that contains
both input file specifications and special options:

PROJECT3.0PT

MOD1 ,MOD7,LIB3/LIBRARY,-
LIB4/LIBRARY/INCLUDE= (MODX,MODY, MODZ),-
MOD12/SELECTIVE_SEARCH

CHANNELS=40 !THIS IS A COMMENT.

STACK=75

IOSEG=50

To include all the specifications and options in this example at 1link
time, you need specify only the file name followed by /OPTIONS. For
example:

$ LINK/MAP/CROSS_REFERENCE PROGA, PROGB,-
PROGC, PROJECT3/OPTIONS

If you have enter the SET VERIFY command, the contents of the options
file are displayed as the file is processed.

You can specify one or several options files in a LINK command
statement.

THE /OPTIONS FILE QUALIFIER

6.3 SPECIAL OPTIONS

This section lists the available special options in alphabetical order
and explains each one. Each option has the general format:

option_name=parameter[,...]

If the parameter is a number (indicated by "n"), you can express it in
decimal (%D, the default radix), hexadecimal (%X), or octal (%0).
However, the default and maximum numeric values 1in this manual are
usually expressed in decimal, as are the values in any linker error or
warning messages relating to these options.

BASE=n

BASE= specifies the base virtual address of the default
cluster. If you do not define any clusters with the CLUSTER=
option, the BASE= option value also specifies the base virtual
address of the whole image. 1If you specify an address that is
not divisible by 512, the 1linker automatically adjusts it
upward to the next multiple of 512 (that is, the next highest
page boundary).

The default base address is hexadecimal 200 (decimal 512) for
executable and shareable images, and hexadecimal 80000000 for
system images.

CHANNELS=n

CHANNELS= specifies the maximum number of I/O channels that
the image can use while it is running.

The default number of channels is determined by the operating
system, but it is at least 32. You cannot specify less than
32 or more than 64. If you specify from 0 to 32, the linker
uses the default; and if you specify more than 64, the linker
uses 64.

CLUSTER=cluster-name, [base~address], [pfc],file-spec[,...]

CLUSTER= defines a cluster. (Clusters are discussed 1in
Chapters 2, 8, and 9.) The CLUSTER= option specifies the
following information:

® The name the linker will assign to it
® Optionally, the base virtual address of the cluster

e Optionally, the page fault cluster (pfc) -- that is,
the number of pages to be read into memory when a
fault occurs for a page in the cluster

e Specifications for the file or files that the 1linker
is to wuse 1in creating the cluster. Note that you
should not specify in the LINK command itself any
files that you specify with the CLUSTER= option
(unless you want two copies of each file included in
the final image).

If you omit the base address or the page fault cluster, or
both, you must still enter the comma after each omitted
parameter. For example:

CLUSTER=AUTHORS,, ,TWAIN,DICKENS

THE /OPTIONS FILE QUALIFIER

The linker uses the following defaults in connection with the
CLUSTER= option:

e If you do not use the CLUSTER= option, the linker
creates a default cluster, as described in Chapter 9.

e If you use the CLUSTER= option but do not specify a
base address, the 1linker allocates the cluster
according to the procedure described in Chapter 9.

e If you use the CLUSTER= option but do not specify a
page ' fault cluster, VAX/VMS memory management
determines the value.

DZRO_MIN=n

DZRO_MIN= is an option that gives you some control over the
linker's compression of uninitialized pages in an executable
image. Before the linker writes the binary data and code of
the image, it attempts to compress certain uninitialized areas
by converting them to demand zero image sections. ("Demand
zero" means that the area does not occupy physical space in
the image on disk; but when the area 1is accessed during
execution, a portion of memory is allocated for it and
initially filled with binary zeroes.) An uninitialized area is
eligible for this compression if it can be written in by the
user and if its size is equal to or greater than a threshold
value: that is, the DZRO_MIN= value. The linker will not,
however, continue creating demand zero sections after the
total number of image sections reaches the maximum (see the
ISD_MAX= option in this section).

The default value for DZIRO_MIN= 1is 5; that is, an
uninitialized, writeable area is not eligible for compression
unless it occupies five or more contiguous pages. A DZRO_MIN=
value less than 5 might cause the linker to compress more
sections and create a greater number of image sections,
possibly reducing the image size on disk but decreasing its
paging performance. A value greater than 5 might cause the
linker to compress fewer sections and create a smaller number
of image sections, possibly increasing the image size on disk
but providing better performance during execution.

GSMATCH=keyword,major—-id,minor-id

GSMATCH= sets the match control parameters for a shareable
image that you are now creating. After the shareable image
has been 1linked with an executable image, and when the
executable image is being run, these parameters guide the
VAX/VMS image activator in choosing global sections. For
further information on this process, see Section 8.2.3.

The GSMATCH= option specifies the following information:

® A keyword expressing the match relationship between
the minor identifications in the user shareable image
section and in the installed global section. This
keyword is one of the following:

- EQUAL The minor identification of the user
shareable image section must be identiecal to that
of the installed shareable image section.

THE /OPTIONS FILE QUALIFIER

- LEQUAL The minor identification of the user
shareable image section must be less than or equal
to that of the installed shareable image section.
LEQUAL is the default, since it permits the creator
of a shareable image to update it (increasing the
minor identification) and install it, and yet avoid
the need for programs using that shareable image to
be relinked. (The minor identification of that
shareable image section in programs that are linked
to it will be less than the minor identification of
the updated installed shareable image section.)

- NEVER The linker is to assume that global sections
will never match (perhaps because the shareable
image will never be installed). Therefore, the
linker will always create a private copy of this
shareable image in any image that 1links to it,
(This keyword overrides any stated or defaulted
NOCOPY keyword in the /SHAREABLE file qualifier in
any subsequent 1link operation that names this
shareable image as an input file.)

- ALWAYS This keyword causes the image activator to
match image sections only by name and to ignore the
major and minor identifications. (However, the
syntax of this option requires that you still enter
major and minor identifications.)

® The major identification of the user shareable image
section, expressed as a number from 0 to 255.

® The minor identification of the user shareable image
section, expressed as a number from 0 to 2%*24-1.

The linker uses the following defaults for the GSMATCH=
option:

GSMATCH=LEQUAL,0,0
IOSEGMENT=n[, [NO] POBUFS]

IOSEGMENT= specifies the number of pages for the image 1I/0
segment, which holds the buffers and VAX-11 RMS control
information for all files that the image's process uses. If
the process needs more space than the IOSEGMENT value during
execution, VAX-11 RMS adds space for it at the end of the
program (P0) region.

You can also specify POBUFS or NOPOBUFS as parameters.
POBUFS, which 1is the default, permits RMS to use the program
region (P0) for any additional buffers that it needs.
NOPUBUFS denies RMS the option of using PO space for
additional buffers.

The default value for IOSEGMENT= is 32,P0BUFS. The only
reason to specify a number of pages greater than the default
is to guarantee that the program region will be contiguous 1if
you need to extend it and if the total size of your program's
buffers and VAX-11] RMS control information exceeds 32 pages.
In this case, you would also want to specify NOPOBUFS.

ISD_MAX=

STACK=n

THE /OPTIONS FILE QUALIFIER

n

ISD_MAX= is an option that gives you some control over the
linker's compression of uninitialized pages in an executable
image. (For an explanation of compression, see the DZRO_MIN=
option 1in this section.) The 1ISD MAX= value specifies the
maximum number of image sections allowed in the image. If the
linker 1is compressing the 1image by creating demand zero
sections and the total number of image sections reaches the
ISD_MAX= value, the compresson ceases at that point.

The default value for ISD MAX= is approximately 96. Note that
any value you specify 1s also an approximation. The linker
determines an exact ISD_MAX= value based on certain
characteristics of the image, including the different
combinations of section attributes. The exact value, however,
will be equal to or slightly greater than what you specify;
it will never be less.

STACK= specifies the number of pages to be allocated for the
image's user mode stack area.

The default value is 20. You may need to increase the stack
size 1if the program fails to run using the default value --
for example, if the stack is used for temporary storage of
data that exceeds 20 pages.

UNIVERSAL=symbol-name([,...]

UNIVERSAL= identifies one or more global symbols of a
shareable image as universal symbols. For a discussion of
universal symbols, see Section 3.2.3.

CHAPTER 7

IMAGE MAP

If you so request, the linker produces an image map containing
information about the contents of the image and about the linking
process itself.

The map is placed on your output disk and assigned a file type of MAP.
You can specify a file name with the MAP qualifier, or you can let the
VAX-11 software assign a default. You can print a copy of the map
with the PRINT command.

To obtain a map, you must include the /MAP qualifier in the LINK
command. You can further specify the type of map with the /BRIEF or
/FULL qualifier. If you enter either /MAP alone or /MAP with /FULL,
you can also include a symbol cross reference in the map by specifying
/CROSS REFERENCE. However, if you enter /MAP and no other map-related
qualifiers, the linker generates its default map.

The following examples show the LINK command qualifiers necessary to
produce different types of maps:

Command Qualifiers Type of Map Produced
$ LINK/MAP/BRIEF Brief map
$ LINK/MAP Default map

$ LINK/MAP/CROSS_REFERENCE Default map with symbol
cross reference

$ LINK/MAP/FULL Full map
$ LINK/MAP/FULL/- Full map with symbol
CROSS_REFERENCE cross reference

7.1 IMAGE MAP CONTENTS

A listing of the image map contains several sections; however, the
number of sections and the contents of certain sections depend on the
qualifiers that you enter.

Table 7-1 lists all the possible section names in the order in which
they can appear, the types of map in which each appears, and a brief
explanation of each section. A section shown as appearing in "all" is
included in all types of image maps; "default" and "full" identify
sections appearing in default and full maps, respectively. A brief
map thus contains only the map sections designated as "all." For
detailed explanations and illustrations of map sections, see Section
7.2,

IMAGE MAP

Table 7-1
Image Map Sections

Section Name Appears In Explanation
Object Module Synopsis All Object modules in the image
Image Section Synopsis Full Image sections and clusters
Program Section Synopsis | Default, Program sections and the

Full modular contributions

Symbols by Name Default, Symbols by Name lists
or Full global symbol names and
Symbol Cross Reference values. However, 1if you
specify /CROSS_REFERENCE,
Symbol Cross Reference
appears instead, 1listing
symbol names, values,
defining modules, and

referring modules.

Symbols by Value Full Hexadecimal symbol values

and names of symbols with
those values

Image Synopsis All Statistics and other

information about the
output image

Link Run Statistics All Statistics about the 1link

run that created the image

The contents of the following sections vary depending on whether the
map type is default or full:

Object Module Synopsis
Program Section Synopsis
Symbols by Name

Symbol Cross Reference

The difference between these sections in a default map and in a full
map is in the number of items:

A default map generally includes only information that applies
to modules and shareable images that you name as input to the
linker or that are extracted from libraries you name. A
default map normally does not list information that applies
only to modules taken from the default system library.

A full map includes information that applies to all modules

and shareable images, including those extracted from the
default system library.

7-2

IMAGE MAP

7.2 IMAGE MAP SECTIONS

The rest of this chapter explains and illustrates each available image
map section. The sections are presented in the order in which they
appear in a full map. Brief and default maps do not have all of these
sections, but the sections that they do have are in the order
presented here.

The illustrations reflect an image created from a simple FORTRAN
program (similar to the example developed in the VAX/VMS Primer).
Each illustration is from a full map. Headings and items in each
illustration are explained only if they are not self-explanatory.

Appendix B illustrates the complete brief, default, and full forms of
the map whose sections appear in this chapter.

7.2.1 Object Module Synopsis

The Object Module Synopsis lists object modules in the order in which
the linker processed them. This section appears in all types of maps.

The Object Module Synopsis provides the following information about
each module listed:

® Module name

e Module identification as it appears in the module header

e Module length in bytes

e Complete file specification for the module

Module creation date

e Language translator that created the module
The Object Module Synopsis also lists any errors that the linker
detected when it wrote the binary data and code--for example, a
warning message that a module refers to an undefined symbol. The
message appears immediately below the line that indicates the module

that the linker was processing when the error occurred.

Figure 7-1 illustrates the Object Module Synopsis section.

IMAGE MAP

s1sdoukg uotr3oag sbewr g-; 21Inbrd
66 0 wNHB3A/5837 FOOTILMSHA 438 NO A4DD FLIMM ava¥ 0 0 00EL0000 z 4
66 0 YNBA/S837 00T ILMSHA ATNO I93N 0 0 00ZT0000 8y £
66 0 WNYI/8831 TOO™TLMSHA ATNO IV3M 0 O 00900000 14 £ TTLNSHA
OMAZ ONYWIT 3LIMM O93Y 0 O 0081444, oz £8E
434 NO A403 3LIMM OY34 0 & 00800000 ¥ 0
ATND av3M 0 b 00900000 T 0
438 NO A403 FLIMM Q93N 0 £ 0000000 T 0
ATIND av3N 0 T 00E00000 T 0 HILSNII™LINYAIT
IIMONIN OINMOCYN HOLYW IWYN 238 199 ONIOVd ONY NOILIILOMd 344 NAA NSIT MIIY 3SYd S39¥d JdAL M31SNT
e +
i SIS4ONAS NOILD3IS IOWWI |
o +
s1sdouds STNpoW 3099(q0 T-, 2InBT4
LI*TOX TE-NNIT IZ100 BL&T-INM-0T CEIXAVLNSHACAIISASISZHaT 0 rT¢3x3* TLNSHA
FI-£°0X OMIVW TI-XYN TIST BLET-NNM-5& T4A10°LITNVLISCHITISASIiZAId © co HOLIANSAS
TI-£°0X DMIVW TT-X¥A £1vT BLOT-NNC-ST C49710° LITHVLISCAITNSASIIZaa] ¢ £-0 FOVNNI$SL0
OT-£°0X OMIUW TI-XYN Z10T BLET-NNr-ZO T4rd0°9Nd3Iqr9II1SASItZadn 8 10 Loogand3a
C6—L*0L SNTd~NI NYMLNOA TI-XUN 160 BLET-REW~TI CErd0* JIVHINVIAVNNNNILTAT ZOT TO NIVW$3IOUNIAY

HOLY3IND

JIVI NOTILY3AND

+

3InId

S3LAd IN3III

3WUN 3NI0W

IMAGE MAP

7.2.2 1Image Section Synopsis

The Image Section Synopsis lists information about the image sections
in the order in which they are mapped in the image. The Image Section
Synopsis appears only in a full map.

The Image Section Synopsis lists the following information about each
image section:

® Cluster in which the sections were allocated or found

e Type code (used internally by the linker)

® Number of pages

® Base virtual address within the image

® Base virtual block number within the image file on disk

® Page Fault Cluster (PFC) (Zero indicates that VAX/VMS memory
management determines the value.)

® Protection characteristic ("read-only" or "read/write") and
paging information ("copy on reference," "demand zero," or
blank for standard handling)

® Global section name if the cluster is a shareable image
e Match control of global sections
e Major and minor identification of global sections

Figure 7-2 illustrates the Image Section Synopsis.

7.2.3 Program Section Synopsis

The Program Section Synopsis lists information about program sections
(PSECTs), including relative addresses within the image and PSECT
attributes. This section appears in default and full maps.

The address information enables you to translate an address from a
program module listing into a virtual address in the image, and vice
versa. This ability can help you isolate errors or problems in the
image at run time--for example, by allowing you to relate an address
in an error message to a specific location within a specific module.

The attributes of each program section are also listed. The linker
considers certain attributes when it groups PSECTs into image sections
(ISECTs). For further information on this process, see Section 2.7.

The Program Section Synopsis lists the following information about
each program section:

® Program section name, in order of increasing base virtual
addresses

e Name of the module or modules that contribute binary data or
code to the program section

® Base and ending virtual addresses, 1in hexadecimal, of each
module's contribution to the PSECT

IMAGE MAP

e Alignment for the start of each module that contributes to the
PSECT. The number that follows the alignment description is
the power of 2 that expresses the 1length in bytes. (For
example, 2 to the power of 2 equals 4, the number of bytes in
a longword.) The alignment column can contain these entries:

- BYTE 0 - Byte alignment (1 byte)

- WORD 1 - Word alignment (2 bytes)

- LONG 2 - Longword alignment (4 bytes)
- QUAD 3 - Quadword alignment (8 bytes)
- PAGE 9 - Page alignment (512 bytes)

e Attributes of the PSECT. Most attributes are parts of
contrasting pairs; that is, the PSECT is normally one or the
other. Table 7-2 1lists the attribute abbreviations (in
alphabetical order), their meanings, and any contrasting
attributes, Section 2.5.4 explains the attributes.

Table 7-2
PSECT Attributes
Abbreviation Meaning - Contrasts With

ABS Absolute REL
CON Concatenated OVR
EXE Executable NOEXE
GBL Global LCL
LCL Local GBL
LIB Library (from USR

shareable image)
NOEXE Not executable EXE
NOPIC Not position PIC

independent code
NORD Not readable RD
NOSHR Not shareable SHR
NOWRT Not writeable WRT
OVR Overlaid- CON
PIC Position independent NOPIC

code
RD Readable NORD
REL Relocatable ABS
SHR Shareable NOSHR
USR User LIB
WRT Writeable NOWRT

Figure 7-3 illustrates the Program Section Synopsis.

IMAGE MAP

1¥M ‘qy

LUMON < 0

LHMON 4T

FR- [¢

LUMON ¢ Ty

3X3 SHHSONSTDT4T13HENOT4H¥SN4ITJON

43X3 SMHS 4T10714T13MENOIMSN4OTA

3X3 CHHS €TI0 IFWENOICMSN4IIA

43X30ONCHHSONS D4 1IN4NOD NSNS DI A

f3AXIONMHS $T10T1413MENODSNSN4 DT 4

SILNIIYLLY

IR Ry}

i

SR

uoT3109g weiboag

*0
0
'8
*8

(‘g
(*g

(*8£1
81

+.l.l(..|.
SISAONAS NOILI3S WYNIOMNA

~

~

00000000
00000000
80000000
80000000

£0000000
£0000000

v8000000
v8000000

20000000
J0000000

¥£000000
¥£000000

HLAONIT

80800000
80800000
£0800000
£0800000

38900000
38900000

68900000
68900000

J0¥00000
J0%00000

££200000
££200000

IN3

+ -

€-, 2Inb1Jd

80800000
80800000
00800000
00800000

38900000
28900000

00900000
00900000

00¥ 00000
00¥ 00000

0000000
00200000

Jsvd

HOLIANSAS
JOUNNITI$SL0
10099nN93d

FOUNNITI$SL0

NIVW$3IOvNINY

NIVH$3IOVNaNY

NIVW$39vNANY

(S)3TNION

¢ NNV

3103$810

03¢

a0

vivads

JWUN L035~-d

IMAGE MAP

7.2.4 Symbols by Name

The Symbols by Name section lists global symbols in alphabetical order
and gives the hexadecimal value of each one. The value may have one
of the following suffixes: -R for a relocatable symbol, -U for a
universal symbol, -RU for a relocatable universal symbol, -W for a
weak definition, or -* for an undefined 'symbol. (The linker assigns a
value of zero to undefined global symbols.)

The Symbols by Name section appears only in a default or full map that
does not have a cross reference. If you include /CROSS_REFERENCE in
the LINK command, this section is replaced by the Symbol Cross
Reference section.

Figure 7-4 illustrates the Symbols by Name section.

4 ' .
| SYMBOLS BY NAME !
o e e +
SYMBOL VALUE SYMBOL VALUE
AVERAGESMAIN 00000600-R
FOR$I0_END 00000CA8-RU
FOR$IO._F.R 00000CEO~RU
FOR$IO._L_R 00000CHO~-RU
FOR$READ.SF 00000C50~RU
FOR$STOF 00000E&0~-RU

FORSWRITE_SF 00000C88-RU
LIB$SK_.VERSION 00000600
OTS$LINKAGE 0000048C~R
SYS$IMGSTA 80000168

Figure 7-4 Symbols by Name Section

7.2.5 Symbol Cross Reference

The Symbol Cross Reference section lists global symbols in
alphabetical order and gives the following information about each one:

® Value in hexadecimal. The value can have one of the following

suffixes: -R for relocatable, -W for a weak definition, =%
for undefined, -U for universal, or RU for relocatable
universal.

@ Name of the first module that defines the symbol (blank if the
symbol is undefined).

® Name of each module that refers to the symbol. The name has
the prefix WK- if the module makes a weak reference to the
symbol.

The Symbol Cross Reference appears only in a default or full map for
which you specify /CROSS_REFERENCE. It replaces the Symbols by Name
section.

A primary value of the Symbol Cross Reference is that it shows which
modules are affected by each symbol. For example, if you want to
change a symbol definition, the Symbol Cross Reference tells you where
it is defined and what other modules may be affected by the change.

Figure 7-5 illustrates the Symbol Cross Reference section.

IMAGE MAP

e -t

| SYMBOL CROSS REFERENCE !

+ —m et
SYMBOL VALUE DEFINED BY REFERENCED' BY ...
AVERAGESMAIN 00000600-R AVERAGE$MATIN
FOR$I0_END 00000CA8-RU UMSRTL AVERAGE$MAIN
FOR$I0_F_K 00000CEO~RU UMSRTL AVERAGE$MAIN
FOR$IO_L_R 00000CTIO~RU UMSRTL AVERAGE $MAIN
FOR$READ._SF 00000C50~RU UMSRTL AVERAGE$MAIN
FOR$STOP 00000E40-RU UMSRTL AVERAGE$MAIN
FOR$WRITE_SF 00000C88-RU UMSRTL AVERAGE$MAIN
LIB$SK_VERSION 00000600 OTS$LINKAGE
OTS$LINKAGE 0000068C~R 0TS$L INKAGE AVERAGE$MAIN
-SYS$INGSTA 80000168 SYSVECTOR

Figure 7-5 Symbol Cross Reference

7.2.6 Symbols by Value

The Symbols by Value section lists the hexadecimal values of global
symbols in ascending numeric sequence, with the symbol or symbols that
correspond to each value. An R- prefix to the symbol name indicates
that the symbol is relocatable, and a U- prefix indicates that the
symbol is universal.

This section appears only in a full image map.

Figure 7-6 illustrates the Symbols by Value section.

e +

| SYMBOLS BY VALUE !

o e +
VALUE SYMBOLS. ..
00000600 R-AVERAGE$MAIN LIB$K.VERSION
00000468C R-0TS$LINKAGE

00000CS0O RU-FOR$READ._SF
00000C88 RU-FOR$WRITE..SF
00000CAS8 RU-FOR$IO.END
00000CEO RU-FOR$IO.F_R
00000CD0 RU~-FOR$IO.L.R
00000E&0 RU~-FOR$STOF
80000168 SYSEIMGSTA

KEY FOR SPECIAL CHARACTERS AROVE!:
+- - t
! %~ UNDEFINED !
U~ UNIVERSAL !
!
!

!
| R - RELOCATAELE

I WK - WEAK

+ -+

Figure 7-6 Symbols By Value

7.2.7 1Image Synopsis

IMAGE MAP

The Image Synopsis, which appears in all maps, gives miscellaneous
information about the output image. The items are self-explanatory.
Numbers are decimal if they are followed by a point (.); otherwise,

they are hexadecimal.

<

Figure 7-7 illustrates the Image Synopsis section.

IMAGE SYNOFPSIS

+ -+

VIRTUAL MEMORY ALLOCATED?

STACK SIZE?

IMAGE HEADER VIRTUAL BLOCK LIMITS?
IMAGE BINARY VIRTUAL EBLOCK LIMITS?
IMAGE NAME AND IDENTIFICATION?
NUMBER OF FILES!?

NUMBER OF MODULES?

NUMBER OF FROGRAM SECTIONS!
NUMBER OF GLOBAL SYMBOLS?

NUMBER OF IMAGE SECTIONS?

USER TRANSFER ADDRESS!

DEBUGGER TRANSFER ADDRESS?

IMAGE TYFE?

MAP FORMAT?

ESTIMATED MAF LENGTH!?

+ -4

00000200 00007SFF 00007400 (29696. RYTES,» S8. FAGES)
20. PAGES
1. 1. « 1. BLOCK)
2. Se (4., BLOCKS)
AVERAGE 01
40
Te
90
10.
80
00000600
00000800
EXECUTAELE,
FULL IN FILE "DR1:[CMURRAYJAVERAGE .MAF3F3"
26+ BLOCKS

Figure 7-7 1Image Synopsis

7.2.8 Link Run Statistics

The Link Run Statistics section, which appears in all maps, gives

statistics of the 1link
self-explanatory.

run that produced the image. The items are

Figure 7-8 illustrates the Link Run Statistics section.

IMAGE MAP

SOT3ISTIRIS uny jurJ g-, 2anbrtd

NALLINM SUM SOMOIAN 3THVL TTOFWAS 940719 0 40 "Wi0L v
TIAHINYIS AMUNEIT FHL NI LON STI0dWAS MO4 3MIM S3IHIUVIAS AMVMAIT O

STI0AWAS I3NIAIINN IANTOSAN 0L I3LIVHLXT & HLIM
0 = ATLIOITNAX3 I3LIVNLX3 SITNIOW 40 MIFWNN

SNJ0Td OT 40 MOUONIM VU ONISN
SN0 16 40 WLO0L ¥ IISSYAWOINT HOIHM
SNOILYNICL0 IV3N NJOTT AMOMAIT OT 3IM3IM 3INIHL

T3LVJ0TIV SNIOTE T HLIM 9 NIA LV ONILMULS SNILLIMM 3¥3m iVl 9Nd3d 40 S3LAd £L9C
SALAF v6E ONINIVLINOD SIMOIIM VIV ONG3T 3IN3IM 8 INYV SITHVYMHAIT NI 3Y¥3IM €9 HIIHM 40
64T $(5388Vd HLO|H) JV3Y SMM0I3M L03rd0 M3AWNN V10l

(JFOUWI ONIINTIIXI) JQVNOLS vivid 40 S38vd 0f INV S39¢d 08T 0L J3LIWIT L3S ONINMOM Y ONISH

LL*TOI00300 £6°00100:00 £8 -1S3NTYN NNY TYLOL
Z1*00:00200 00°00:00100 0 -11N4LN0 37YL I0EWAS
¥1°00:00:00 5740000100 TT ~1SISAONAS FINION LD3rd0 NIL4AY YLIVd JuW
88°00:00:00 T2+00:00300 £ -1 sSYd
Z£*00$00200 £0°00:00100 T ~INOILYIOTIN/NOTLYIOTTY
£T°70:00200 LY*00300:00 8¢ -31 559d
£7°00:00200 £0°00:00:00 &1 ~$ONISSII0NS ANVWWOD
IWIL T3S4YTI IWIL NI SLINYA 3994 SNOLVITANI 3ONYWNOANId
e +

i SOILSILYLS NNN NNIT i
tomm

7-11

CHAPTER 8

SHAREABLE IMAGES

This chapter describes in detail the nature and use of shareable
images. The material in this chapter is more complex than much of the
earlier material. Therefore, you are presumed to be familiar with the
earlier chapters of this manual, and particularly with Chapter 2.

8.1 SHAREABLE IMAGES: BENEFITS AND USES

The following subsections expand on and add to the discussion 1in
Section 2.6 of the benefits you can obtain from the use of shareable
images. These subsections also discuss the conceptual nature of
shareable images.

8.1.1 Conserving Physical Memory

Main physical memory is one of the prime resources that any operating
system has to control. The installation of shareable images produces
a set of global sections of memory--one for each image section built
in the shareable image. These global sections are the mechanism by
which sharing is realized, for they can be mapped into the address
space of many processes, The fact that the same physical pages of a
global section are mapped into many processes means that the
requirements for physical memory are reduced.

8.1.2 Conserving Disk Storage Space

All programs that are executed under the VAX/VMS system must be disk
resident. The wuse of shareable images, however, provides a way of
reducing the amount of disk space required.

When a shareable image is linked into an executable image, it 1is not
necessary to copy the physical content of the shareable image. The
installation of a shareable image causes the location of that image on
disk to be recorded in the global section data base. The subsequent
running of a program which wuses that shareable image causes the
VAX/VMS memory management software to load the copy from the separate
shareable image file. Thus, many programs can reside on disk and be
bound with a particular shareable image, and only one physical copy of
that shareable image file need exist on disk.

SHAREABLE IMAGES

8.1.3 Reducing Paging I/0

Paging occurs when a process attempts to access a virtual address
which 1is not in the process working set. When the fault occurs, the
page either is in a disk file (in which case paging I/0 1is required)
or 1is already in physical memory. One of the causes for a page to be
resident when a fault occurs is that it 1is a shared page, already
faulted by some other process which is sharing it. In this case, no
I/0 operation is required before mapping the page into the working
sets of subsequent processes. Thus, if many processes are using a
shareable image, it is very 1likely that its pages are already
physically resident.

8.1.4 Using Shared Memory-Resident Data Bases

There are many applications, particularly in data acquisition and
control systems, in which response times are so critical that control
variables and data readings must remain in central memory.
Frequently, many programs must make use of this data.

Shareable images help to simplify the implementation of such
applications. The shared data base may be a named FORTRAN common area
built into a shareable image. The shareable image may also include
routines to synchronize access to such data. When programs of the
application bind with the shareable image, they have easy access to
the data (and routines) at the FORTRAN level.

It is possible, moreover, for such data bases to <contain initial
values, and for the most recent values to be written back to disk on
system shutdown or at regular intervals. Recording the values at
regular intervals makes it possible for a system restart to use the
most recent values of the variables of an online process.

8.1.5 Making Software Updates Compatible

A major problem in maintaining a large software installation is how to
incorporate a new version of a piece of software in all programs that
use it. Packaging software facilities as shareable images can help
alleviate the problem.

By carefully organizing a shareable 1image and by using position
independent coding techniques, you can make significant changes and
enhancements to the content of the shareable image and yet eliminate
the need for all images bound with it to be relinked.

8.2 CREATION OF SHAREABLE IMAGES

The previous section described some features of shareable images and
some reasons for their development. This section deals with how to
produce a shareable image.

8.2.1 LINK Command and Pertinent Options

The LINK command for creating a shareable image is similar to that for
any other type of image, except that you must use the
/SHAREABLE[=file-spec] qualifier, which is described in Chapter 5.

SHAREABLE IMAGES

The UNIVERSAL= and GSMATCH= options are provided specifically to
control characteristics of shareable images. Chapter 6 describes the
syntax of these options. Sections 8.2.2 and 8.2.3 describe their
purpose.

8.2.2 UNIVERSAL= Option

Universal symbols are the global symbols of a shareable image which
are of use to the programs that subsequently link with the shareable
image. It is possible for none or all of the global symbols of a
shareable image to be universal symbols. However, typically a very
small set of the global symbols of the image are universal, since
these are all that are of use outside the shareable image. Universal
symbols are the only symbols written to the symbol table of a
shareable image.

Most programming languages provide no way of characterizing a symbol
as universal. (VAX-11 MACRO, however, has a declaration for building
transfer vectors--see Section 8.2.4.) Thus, to tell the linker which
symbols are to be universal, the option UNIVERSAL= is provided.

Normally, all the entry points (routine names) provided in a shareable
image are universal symbols. Sometimes, however, other constants are
of interest to users of the facility, and these can also be declared
as universal symbols. Section 8.2.8 contains an example showing the
declaration of several such constants in the Cross Reference Facility
as universal symbols.

8.2.3 GSMATCH= Option

When a shareable image is bound into a user executable image, its
image sections are promoted to global sections. (The VAX/VMS system
uses the same algorithm when a shareable image is installed.) When the
user image 1is activated, a search is made of the global section data
base for each of the global sections described 1in the user image
header.

Associated with the global section name, and forming a part of the
name for the search, is a two-part identification field containing a
major identification and a minor identification. During the search
for a global section at image activation time, the global section name
and the major part of the identification must match exactly. The
behavior of the comparison with the minor part of the identification
is determined by a control code which has the following possibilities:

e The minor identifications must match.

e The minor identification of the global section 1in the |user
image must be less than or egual to that in the global data
base.

The GSMATCH= option is provided to set these parameters when the
shareable 1image is being linked. See Chapter 6 for the format of the
GSMATCH= option.

Another match control available with the GSMATCH= option 1is "NEVER".
The purpose of this is to specify that the linker must always produce
a private copy of the shareable image in each user image file.

SHAREABLE IMAGES

8.2.4 /Transfer Vectors

In its simplest form, a transfer vector is a labeled virtual memory
location that contains an address of, or a displacement to, a second
location in virtual memory. This second location is the start of the
instruction stream that is of actual interest. In the use of
shareable images under VAX/VMS, such transfer vectors are normally
displacements rather than actual virtual addresses, for reasons of
position independence.

There are two main reasons for transfer vectors in shareable images:

® They make it easy to modify and enhance the contents of the
shareable image.

® They allow you to avoid relinking other programs that are
bound to the shareable image.

In Figure 8-1, the two routines A and B are bound into a shareable
image, which is then bound into a user program. No transfer vectors
are used. The user program calls both A and B. Thus, the user
program contains a representation of the addresses of both A and B.

- User Program
Routine A
Routine A CALL A
is expanded .
CALL 8
—————————— 1
|
. |
Routine B | .
i New position of
{ Routine B for
: larger A
1
1 1
e e e = - —

Shareable Image

Figure 8-1 No Transfer Vectors

Using the example in Figure 8-1, assume that it becomes necessary to
alter routine A, adding more code to it. When the shareable image is
relinked, routine A will have the same address; but because it has
increased 1in size, routine B must be given a "higher" address--higher
by the amount of code added to A. If the user program 1is not
relinked, it can successfully call A, since its address has not
changed. However, the call to B would result in a transfer of control
to the old address of B (which is now somewhere in the enlarged
routine A), and the desired result would not occur.

In Figure 8-2, the same routines are built into a shareable image, but
this time with transfer vectors at the beginning.

SHAREABLE IMAGES

BRW A-X X - User Program
Transfer Vectors ¢ | — — — — — — — —
BRW B-Y Y
CALL A
A z
CALL B
Routine A :

The transfer vector contains
a branch instruction which

B uses a displacement from
vector address to actual
routine.

Routine B The user program -actually
calls the appropriate vector
instruction.

Shareable Image

Figure 8-2 Transfer Vectors

In the case of Figure 8-2, if routine A is expanded and the shareable
image 1is relinked, the contents of the vector will change with no
adverse effect on the user program. This is true so long as the user
program calls the appropriate vector and the vector addresses do not
change.

The use of transfer vectors also allows you to add new routines to a
shareable image without needing to relink programs that use existing
routines. If a third routine (C) were to be added, it would be
desirable not to have to relink a user program that used only A and B.
Wwithout a vector, you would need to link the three routines in the
address sequence A,B,C; for otherwise A or B may be in.a different
place and all user programs linked to the shareable image would need
to be relinkead. If you use a transfer vector, however, you can
allocate a new vector location to C (after those for A and B). You
can then link the three routines in any order.

Although you cannot create transfer vectors with FORTRAN, you can do
so easily with VAX-11 MACRO. However, before you can build transfer
vectors, you must define or permit the compiler to define entry
points. With FORTRAN, the definition of entry points is done
automatically, but with VAX-11 MACRO, you must explicitly define them.
As an illustration, assume in the example above that routines A and B
are written in FORTRAN. In this case, the two global symbols A and B
are defined as entry points, and the definitions given to the linker
include a description of the registers to be saved by the call
instruction. (You can achieve the same effect by the MACRO directive
.ENTRY. See the VAX-11 MACRO Language Reference Manual.)

To create the transfer vector, you must use the VAX-11l MACRO assembler
language. Consider the following fragment of MACRO code:

. TRANSFER A ;Begin transfer vector to A
+MASK A ;Store register save mask
BRW A+2 ;BR to routine, beyond the

; register save mask

SHAREABLE IMAGES

As the example suggests, register save masks (required at the target
of a CALL instruction) occupy two bytes of memory. Thus, since it is
the vector that you actually call, the register save mask is stored in
the vector. The .MASK directive in the above example allocates the
two bytes and directs the linker to (1) f£ind the register save mask
accompanying symbol A, and (2) write the word as the first two bytes
of the vector. This mask is followed by a branch instruction that
transfers control to the routine A, at the instruction beyond the
entry mask. (This example assumes that A is within 32K bytes of the
vector; otherwise a JMP instruction would be required.)

The .TRANSFER directive has two purposes:

e It is an implicit universal declaration of symbol A if you are
building a shareable image.

® It causes the linker to assign the wuniversal symbol A the
address of the vector, rather than the address of the routine
within the image. This occurs after all uses of A within the
shareable image have been given the value within the image.

Thus, all entry points of a shareable image are universal when
vectored in this way. The user program outside the shareable image
can call the routine A in the same way as it would an ordinary object
module.

8.2.5 Shareable and Nonshareable Data

The sharing of routines between two or more processes must address the
issue of whether each process has access to data that one or more
other processes are using. Sometimes this sharing is a requirement,
as in the case of industrial data acquisition applications. However,
if a piece of data used by a routine is, say, a loop counter, each
process must have a separate counter, or the routine cannot be shared
simultaneously. Users familiar with this situation recognize this as
part of the problem referred to as reentrancy.

It is for this situation that the shareable (SHR) attribute of program
sections was introduced. As was mentioned in Chapter 2, the linker
allocates program sections with the SHR attribute in separate image
sections from program sections with the NOSHR attribute,

The image activator also treats image sections containing SHR program
sections differently from image sections containing NOSHR program
sections. The linker indicates this difference by an image section
attribute called "copy on reference" in the case of writeable NOSHR
program sections. (If the program section is not writeable, all
processes can use the same copy regardless of SHR/NOSHR, since no form
of data privacy or security is currently implemented.)

A copy on reference image section is thus one whose initial contents
are established from the copy contained in the shareable image file,
but which from then on during program execution is treated just like a
user private 1image section. For each user, completely separate
physical copies are produced for the copy on reference image sections
contained in shareable images, and the system paging file is used to
contain the pages of such sections when they are removed from the
working set.

SHAREABLE IMAGES

On the other hand, if an image section is not copy on reference, each
user has access to the same physical copy of its pages. 1In addition,
when a page of such an image is removed from all user working sets, it
is eventually written back into the shareablle image file on disk.
This last aspect makes it possible to rerun such applications as data
acquisition or transaction processing with the most recent values of
shareable, modifiable data.

Note that the cooperating user programs in such applications are
responsible for synchronizing access to such data. Note further that
should it be necessary to revert to the initial values of such data,
you must have made a separate copy before running the application the
first time.

The FORTRAN example in Section 8.2.9 shows both of these kinds of
data: variables generated by the compiler and the program are in copy
on reference image sections, whereas the common areas are 1in shared
data regions.

8.2.6 Position Independence

A position independent piece of code will execute correctly no matter
where it 1is placed in the virtual address space after it is linked.
That is, it can execute at an address different from that at which the
linker placed it. This section deals with position independence only
as it concerns shareable images.

A shareable image is position independent if all of the following
conditions are true:

e The only addresses that appear in the image are known to be
fixed in the virtual address space (for example, the system
service vectors of VAX/VMS).

e All instruction stream references to such addresses use
absolute addressing mode (autoincrement deferred off the PC).

e All data references to such fixed addresses contain the
complete actual virtual address.

e All references to any other location inside or outside the
image are relative to some base that is added to the address
computation at execution time. For example, in the
instruction stream, PC relative (or displacement from the PC)
addressing mode would be used.

e There is no possibility that, after linking, the relationship
between the target of a reference and the base to which it was
made relative can be changed.

The current version of the linker is unable to verify that all of the
above conditions have been met. Therefore, the following strategy has
been adopted:

e If any base address has been specified, the resultant
shareable image is not position independent.

SHAREABLE IMAGES

e The state of the position independence attribute of the
program sections 1is left to the user, and is considered only
in gathering program sections into image sections. That 1is,
the 1linker simply places PIC program sections in separate
image sections from NOPIC program sections.

e With assistance from the compiler or assembler, the linker
produces position independent instruction stream references.
(Refer to the discussion of the general addressing mode in the
VAX-11l MACRO Language Reference Manual.) Basically, this means
that the 1linker will choose the addressing mode (if so
directed) based on the relocatability of the target of the
reference.

e A shareable image that is not position independent is placed
at its 1link time base address when it is subsequently bound
into a user image.

e A shareable image that is position independent is allocated
the first (lowest addressed) space sufficient to contain it
when it is subsequently bound into a user image.

e Shareable images that are not position independent are
considered first by the linker.

If shareable images are to be most useful among many processes, they
should be position independent. The VAX-11] instruction set and
addressing modes lend themselves to convenient generation position
independent code. Much of the code generated by the FORTRAN IV-PLUS
compiler is position independent. However, if there are addresses in
data regions (for example, precompiled argument lists), the VAX-11
FORTRAN IV-PLUS compiler indicates the existence of such NOPIC data,
and the linker produces a NOPIC shareable image. The only problem
area in MACRO assembler coding 1is the initalization of a data
structure with an address; you are advised to use a self-relative
technique in such cases.

8.2.7 Rules for Creating Upward-Compatible Shareable Images

To be able to make changes to shareable images and not have to relink
users of that shareable image, you must observe the following rules:

® Transfer vectors must not be rearranged or removed.

® The new shareable image must have exactly the same number of
image sections.

SHAREABLE IMAGES

8.2.8 Example of Transfer Vector and Universal Symbols

Figure 8-3 is a listing of the source for the module which is the
transfer vector for the Cross Reference Facility. Figure 8-4 shows
the LINK command and options files used to create the shareable image
CRFSHR on the logical device EXEC$:. Figure 8-5 shows the map that
resulted from this link operation.

Note that of the 27 global symbols in the image, only 14 are of
interest outside the image-- 3 vectored entry points and 1l constants.
Note also that the transfer vector is placed in its own cluster. As
you can see from the example, explicitly defined clusters are
allocated first in the address space. The reason for putting the
transfer vector in its own cluster is to ensure that it is allocated
at the low-addressed end of the address space.

As was discussed in Section 8.2.4, the values of the transfer vector
symbols retain the values of the routine addresses. (See the listing
of the relocatable universal symbols in the map.)

An example of copy on reference data (described in Section 8.2.5) is
contained in the program section CRFS$DATA.

SHAREABLE IMAGES

I0309A I9FSueil QMO JO DBUTISTT ¢£-8

SINIOd A¥INI 3¥NiNd 804 wUO4 ¢

AdYWWNS 3IONI¥I4IN S§S08D Sifdiny ¢

A3¥ Vv 0l 30n3a4343y v §rd3SNT ¢

A3 IIN3¥3I43¥ SSOHI v SI¥ISNT ¢

an3*

Leh ‘P RI'M

241N0%449 Myq
iNos4ud HSWm®
lN0oE4ud u34SNVYL®
C+43y1uSNTIS 44D LE-D)
43¥18SNT 344D HSyw®
43HL8SNIS 44D ¥34Snval®
2+AINLHENIE 48D LEE]
AI¥LuSNTIs 48D WEVwW*
AInLuSNISIND d3JISnvyL®
IXILHMON‘YHS ' ITd 440 T Ty0123A8s LI38q"
3INON

"39YWI 3THVHVHS ¥ SV QINNIT 38 0L 489 $379vN3 3INUOW SIHI

2anbTg

$61234443 3018

3INON

83003 NOIL3NdADD

INON

3S1NdiNd 1I317awl

INON

18¥313wVHVE LNdINO

3NON

$8indnl LIDINgWI

ANON

$8Y313wvavd LNdNI

3NON

£3IINING3IS INITTID

“4¥3 40 ¥3ISN v Ay

377v] SINIOd A¥IN3 3IHL MU $HOLI3A H3IISAVEL IHL S3INIJ30 300w SIHL

INOUILdINIS30 TYNOILINNA

S¥0L1I3IATYIIONY YL

11188

+
+

@% 53 %0 8a Sn SN #4 SR SN L SN Bn B4 6L Ga Bn SL Gn B A SN a Gn Sa Fa S Sa Gc 6a Sa Sa Ga Bn e be

38
2t
118
pii
[-TA¢
I
Lyl
Sul
QA
nol
€0l
2ol
[T
avl
(-1
86
Lo
9e
Sé
né
6

16
1
68
-]
L8
98
1
ne
¢
2w
18
ne
&L

LL
9L
SL
L
€L
el
|13
aL
69
89
L9
99
s9
n9
€9
29
19
v¥9

dnev

900 CR200000
3430

Jeew 1 L,ed444
very L,Bnov
vavh

\ X

ledd 18,8444
SGa0 ,B080
S¢an

Seav

éedv 1§ ,0444
aN¢y L,k
weus

BBy
AANAR0BY
avign

ey

Aavn

wEdv

gRev

Gish

Vb

e

v

aane

vuav

Wy

Ag¢uw

o

vy,

"o

A¢nu

aean

nau

nvan

pava

uauu

savy

veoau

(A7

agdrt

Ry

nevu

e

Béo

ARy

ey

Wesu

WAy

]

oL

Aeda

Aguy

8-10

SHAREABLE IMAGES

I0309A I®Fsueldl L¥D JO HUTISTT (°3IUOD) ¢-8 =anbrtg

*$31Tav 3NI4 "@3IND T O*S0OAIVM € 4NI43Q Ol S139 € = SO HIQ 47N P
J3A¥41 480330455 dS=/I3ANALI5IFSSTI1/I3A04L48048080

*1U0d AdOWAW 33a4 N1 L1437 s3LAg *22582

*SONINNYM 30 gd0u43 ON 3J¥3w I43HL

3JLAW LMWON Ug 3X3 0 ¥MS 107 334 Nud wsh Jid 26 en2avnuy 43372 TH0LIIASS
3LAE Lam el Ixy ¥H8ON 107 13y NUD 48N Jldln fe 200NNy ¢ Ny
F4AH LHMON Q0N 3X3UN ¥WSON T $8v NGD Ll 21 4UN 9y L Pl * sgv °*

S1SdnOMAS NUILIJ3S wWVH90Hd

24 x Rr¥yExR¥ 1N0$4a
ev X LT ST L] 43419SNIS40D
44 X [T VYR, AIMLHSNITAND

8-11

SHAREABLE IMAGES

YHSIYD °=3eaad o3

*O3IN AVn
S¥3ASN LVHL ST0wWAS INIDd
AdIN3 NON 3FWL 321TvSHIAIND

2 = HUNIW *0 = JI H0PWVW
ONV JOXINGD HILVW 148

—

SOTTJd PUR PURUOC)

32ISINITHG4HD
='321800NT e 44D

= IAVSTHSIUD*H137130 ng 48)
=*543576430 %48
=/843INTSIVAT N 58D
«/93NTAvATHE 4D

= 3347984801430 Ne4¥)
=42¢NTNIA NG 48D

7~-8 sanbta

=#313SYTHE4¥I=IVSHIAIND

2¢24vN031=HILYWSY

1

HIASNVYLT 480230NTINT /9803 SPH0 Y 4 Y80 L73IATHIAONYHL=H3 1SN TD

3HL ¥0d4 ON3 03S$3¥0AV MO LV H3LSNTI 3LVAV43IS V 3iviyd

‘SNDLI3A ¥I4SNVEL

(3187v “AaxnaNT S

= 1NJ4¥33UONGITNE * I0ONHIES IXINLIT AINLNSNT
= aSNIHINS NG9 4aD ANSNIAuI Y 4THSNT 4nI) $30NTINT /JuI 2 ¢000

i

d

1

NI LI wNIT 0L Sidgw3ilv 39vwl
ONISN ANV 340438 Q3I¥NIT 38 L1SAW 9vw] I1GVIHVYHS SIHL
LYHL 310N *u3ANIT 3WL ST IN3S3dd LV ¥ISN NMONX AINO 3IHL

*w3X3°¥HEI¥II33X3y Q3VI
39941 37AVI¥VHS ¥ SV ALLTI0v4 3IN343434 SS04I NI 0L 3114 §NOILdO

AN T daHS 480 w00 " 4321

SNULLJO/¥NTHHSIHITEN0D SSOMI/TIINA/ HHSAHI ¢ dva=dVW/HHSANI e IXI=38VYHS/UHSSASON/UNT IS

18

CALLTTLIN IININILIY Ss0¥D 1s

3HL 40 39val 376V3IEVHS 3IHL 3INA0¥d 01 3714 ANVWWOD 19
Ty

w a3l N T Y4 H S (W0 * 4423 1%

ts

8-12

SHAREABLE IMAGES

gHS.I4O Fo deW G-8 °oInbTJ

AI¥ONIW qryorve HILVwW Jwyn *238 769
4 39vd 61°Tyx d3IxNnIT
P1=°aY 03Ivw llexvA 13812 Guel=9Nyasr
TT=g°adX 02V TTexvAa L1390 wl6l=filveny
T1=°AX ONIVW TlaxvyAa 91194 Qlel=9vann
T1=gax 0udyw Ti=xvA 915192 glel=9Nv=np
T1=€%3x 0¥OvW TlaxvA 9129, glelegny=ny
T1eg®IX 0dIV T1=xVA vlel=9NVeny
TI=g°AX C¥IVW TiaxvA L1239 6L6T=9NV=he
T1=€%6X O¥IVW 1laxXvA 9139y G/61=9Nveapy
T1=€®AX O¥IvW TTaxvA 9139¢ §L61=90veany
T1=€°3X 0¥IvW VTaxvA S129a glel=9ny=ny
TV=g®aX DaIvw Tlexvh G1297 glelednveny
11=€°%4X DAIVA T1exyA GI39¢ ylol=9Nvenn
T1=6%aX Q¥IVA TTexvA Gl120¢ gl6T=9NV=nb
20Lv3¥I 41v0 NOILVISD
1 39vd 61°Tux diwnin

-

t SISaunAS NUTLIIS 3F9wwl ¢

jrecvsncnnanccncasssennnad

L13yd 8L61«90V=t

438 WO Ad0D 31Td~ gvie @ 6 Japlvoue
AING Qv3Yd € |3 SAnevend

ND AdOD 34lam QAv3y ¢ [vangeoce
AING Qv3y ¥ 2 va2nvena

N0 Ad0D 3414 Qv3Y € %] vigenduve

INIOVd UNY NOLLIFLO¥d J4d NHA ¥SIJ 4udv 3ISVvE

[Py

14670°1374v1S[A11SAS) snvad ¢
PERID° 4801080 402)3nved f62
16870443 (w2 382) invaa 991
16070383 (Pu0 4831 8nvR0 €981
VEW0°443(080°%343)2nvag 6wl
14670 443 (P02 443180vAG 19
1EE0° 44 (P8l a83) snvag §22
14u0° 440 (a0 340) tnvyu €68
FEHN0° 440 (PO 44D) 3nvua e
140440 (Ld0*480]) 3nVHA ¢
TEEN0 3440080 342) ¢nvuQ 8
g0 483080 443) Snvaa §L2
P40 483 [fud*4480) 8 vvg 215

ERRE] S$31Ad

feccnessacncancscccsananad

1 SISdONAS 371Ndun 1230wWD |

{ecsvescanccccne

mmseaai

L1382 sL6L=9Nv=n

i [

9 3

) ? ¥31sn7271Inv43Q
1 €

z ? MO L1D3IATHIAENVHL
S§39vd JdAl ¥318N13

143x3°4HS4H8I {190 442] tnvaa

2y
PARL2
PARTF S
1°1Ex
B8 18x
28 10X
Po*10x
N 10X
0B 18x
1e*1ux
1a*14x
Tu*y0x
POt 10X

1N301

¥O0LIIASAS
%1817y
AANONT 4
1n0442
3goNalIng
3A0NHIYS
LX3INL3D
A3I%LASNI
L¥SNIHOUS
169449
AINSNI4¥I
434SNI14dD
HIASNYYHLITIND

IWYN 3TNQ0N

YHSJ¥IE$3XI

8-13

SHAREABLE IMAGES

gHSI¥D JOo dey (°3uo)) G-g 2anbta

® 3LA8 (°91) aluvodue §£I150Ane hallowew N9y
¢ LAY (*112)} £09220¢e Tul116aR2d 13u1¢V00 LNp442
2 3lAY (*91) ViAvbone s3civvien 1anlpeed 3Q0NU9INg
d 31A9 (*11) 11¢0vRes B6QV¥Tddee wdalvvoe AINLHSNL
v 3lAd (°211) wlVeepde 49913010 wSHTunde L1¥SNINDJYS
8 3lAe (‘ow) vSUuvPLe dh8ldved CRITeLEd AINSNT4¥)
lyM 108 ‘3XION'HHSON’I374734NCI SN DT 4 3 3LA8 (*esth) ndld¢2ee £IVTcwion 130 Tebde vivas4¥d
2 31A9 ("Ll) S1lvdeee 324¢uved v1i3v0uee 18y
& 3LA6 (°9%1) 84¥vZoYe 6l1308vEy 26Ud00EN Addanl g
¢ 31Ad (*esti) venudpuY 16Qvvved 2ledebie 1No443
8 3i1A8 (°€6) QSvveged 116vvloe S8RdLBRB 3Q0NGINE
2 3LA8 (18) 1SUPVMBEY hugdvIve h98ALERD 3Q0NHI8S
¢ 31A4 (*g22) 40008200 £98¢dLVY SHLAAMLE 1x3InL39
o 3lA8 (9L) 8L100840 NELUDVOY UB92RRBY AINLINENT
¢ ALrg (22) VICURYBY J090BusY 654000 1YSNIMIYS
8 31A9 (°gel) UBAN0AC 265vBUOY $1500820 AINSNT 483
¢ 3LAB (°GL2) §1Tupedue 219000PY vundudEa 43IMSNT 482
LAMONYQY “3x3 ‘WS ‘1I7¢T734°N0CI‘HSN DT 4 3law (°g9@e) 42932006 32400uRd Adndreed 30008443
¢ 3LA8 (¢) 403008 d YRNABIRA YUNUDLDY H0L1I3IASAS
2 31A9 (‘¢) $UGVIBYB venVYNYY UNIBBRY X187y
2 3LA9 (°¢) VBB uode A0NUBYAY vondbode AINGONL 4
¢ 1AM (‘¢) WEVYIRAY wVPBVLB2 RINBRLRR JGLEL]
0 AlAw (*2) AdUBAdBL GNP YUnAN04n 300NG01INg
¢ ILA8 (C¢) %0uGIB3L AYNNANEBY YRNIRERY JA0NKIYS
2 3LA8 (*9) VPVYYDRE VUNVUYERAD avndABRd 1x3Ini39
2 3LA8 (‘o) CURuAdY0 YUNneANRR Jdunvdoid AINLMSN]
2 3L1A8 (‘0) ©4%YRBYL Abhvdude VaNdooen 13SNINJYS
2 31Ad (2) YYud2a0d d¢nveIva venddvae 199483
2 dLAH (@) AAMue2e¢ 0ANQVURE VUNAkedR AINSNT 48D
o 31A8 (°¢) ¢y2uaBYe YINVVAVYE VUNBLYNO FEETLRE L]
1¥M fgd ‘3x3 ‘uHSON‘TIIT138N00HSNYDIdON 4 3LA8 (*w) VULNEBEL @ONIYYNE CundPLLY * NV
2 31A8 (°¢) VRVNBRYR AAZNAVRD VA220000 HIISNVELT 48D
lyv 0¥ ‘3IX3 ‘HHSON'TIITINNGDESNYITdON & 3148 (9) ¢ULdnveL vvevdiRe vo200eR * wnvIg ¢
@ 31Ay (*21S) YUIILARYd F4EeBvdu Me200OLY H3ASNVYLTIED
' LUMONYQY ‘3X3 ‘¥HS 014 1394N0IHSNYIId 2 3LAd (°21S) 92UV ERY 448280Be V2A0VLY 433727 H01I3A8S
mecoconans cesnsa cesasaes can c“sen cesaaga™a aesan
CEFOLEIE-TUN NIV HLONTT an3 asva (8)37nA0W IWNYN LI38=d

jecmsrcncsccnccnssnncnacsnnnd

1 SISdONAS NOILJ3S wY¥90Hd !

P scast

€ 39vd 6T°1ux MANNIT L1588 gL61=9NV=n 143X3°uHS483(r80"4283) tnvaa

8-14

SHAREABLE IMAGES

"

39vd

AINLHSNI

1x3NL3E9
1N0443

iN04u3

61°Tux a3NNIT

YHSIMD Fo deW (°3uoD) g-8 @Inbrg

AINLHSNI
100442
PRERE)
LYSNIHIAS
AINSNI 48D
A3XLUSNI

AInLESNT
AIXLIBSNI
AIMLINSNI

AINSNI 480
ISINEE)

1Nu 442
1NU4d
L1x3N139
ININFLD]
AIMSNT 44D
4SnNVaLT 44D
4348N1 490

iN0442

FRLVER- B

JUREE- k]

AaoNvaine
4SNVa1T 442
4SnvvylT 44D

434SN 48D

IUONC1INY

AINLASNT

434SNT4¥D
43¥SNT 4D
AINUNT 4
AINANT 4
43u8N1 48D
43
340HINS
a3
43
LNO4MD
434SN1 482
o e >m

tmaw

d3INFu343y

csmsencsaccancasn

P

T JON3I¥I434 SSOHD T0HWAS !

teemscscsnnsnanccnsascnand

L1tg2 BL6ET=9NV=n

LX3INL3D
dULJIIASAS
HO1J3ASAS

300NMIHS
14SNIMINS
1X3INL139
1X3N139
Mgy
1X3N139
1X3N139
1X3IN139

LXx3INL3I9

A3IM1dSN]

LX3INL39

AINANT S

AINUNT 4

A3ALASNT
AIni¥SNI
LASNIHIYS
110442
AINSNT H48D
#1671V
RELEL k]
18948
1689443
14948
14944
199489
199443
T8944)
ACEEL D]
189442
189380
438SNIJu)
AINSNI S8
XI9Ty
»lgv
3QUNATINY

A8 Q3INIZ3Q

u=3289pLL0 AdLINATSNVEL

2810eUve 0v4$SAS

gnivpadng 93udX3$SAS
d=h980¢ 0D 300NTHI S
yef 66PN LYSNITHOUS
yelvidpsvp 33vasTo3y
Hm68L00000 2vdsT 3N
d=nullaviy s¥18TIsmaN
y=4E880N6R 1TA8INITIAON
¥=32880300 AYINITIAON

u=43.00002 AT LIYSNIT90T
¥e24L000088 A3InTIL3T30T900

4=QU9IVRIBA AINTLASNT
Y=SHLUpUnd AddTLXNT L3O
y=26700242 AINTHINTANT S

UeyvVQA0rBLR AInTLIXINTONIS
¥=330laovy LasSNITan31T N0
u=20n1r398 9vI14TLESNIT YD
e LT AT ANOLSIHT4¥D
ny=2levradp AN0S38I
Y=BRATEYE AINIWILTIS44D
d=3811¢00D WIWNAGT1848)

NedvEuPpva SANIVATHE YD
Ne18n2p000 $33¥TSIVAT NS 4D
Ne1dddpRY0 IAVSTHS YD
N=200000Y2 PECMCEELE]

N=R34100062 3ZISAONT%$4YD
N=g2vvend® 37I1SIN3"%S4¥D

NedBRAPVLe 313730758449
Ne=2000¢A"8 $43075430 18442
Nej 008 3V0 430THS 442
N=ludurvee 2SN NIBTHSAYD
Ne20p2puvp 2108vNE 44D
NY=28n0endnA A34LuSNIS AN
Na=g15vpuRe AINLNSNISIND
4236300000 FRERLELEFT R
d=v13vpode FRERAZFTE]
¥=SHEAVBY 300NTQ1IN8

VA 108wAS

143X3°wHS4uD(ra0’ 4431 thvea

8-15

SHAREABLE IMAGES

]

19vd

VHSID Jo dew (*3uo)) ¢-g o2anbta

61°Tax d3INNIT

+n

cssncssncnnaga"y
1 XVIM e M T
T 376vivi0N3y -
! TYSYIAIND = N T
! G3INI4IUNN =

trenecasennan

$3A0av S¥ILIvavHI TvId3ds ¥04 A3IN

0Y43SAS 25120008

934dX3ISSAS gnianees

WIWNAQTN$ 480y 8112000

S¥1g I MINSy naliooed

9V 14T LaSNTI Tyl 012000

LUSNITdWI 1 T48d=y 23218000

ABOLSIHT A=y 2508102200

AINgwI L7648y 20010020

PREREET I WET] 36320000

ERERLE EERLY] vi30v000

ADITIXINTANT ded yvacoueo

AINTHINTANT d=y 26008200

1N0sd8d=y 2160000

3a0NTg Ny =y s8828000

JUONTHIYS = n98UReR0

TVANAINITIAON=y 41800000

AGLINITIAOWeYy 32800000

AMLINITGNV Y L=y 30800000

A3®T31371367 90N =y 24Luouv0R

AINTLESNTITO0 1=y 494L00000

3IvasT 13y 68.00000

3IvdeT0Iy=y tvLood00

ABdTLIXNTL39=y ICLITL)

AINT L USNTwy 00900000

LASNITHINS =Y £65S00000

AINLINSNISSdI=y 1500000

4IULIUSNTS 44 my LLLELLT

3Z1SAONTH§44I=N 24120000

3ZISINITHSI¥I=N §2000020

PECMCFEIMT ELRET: 200043000

S434TSIVATHS dud=n IAVST M 4d=N PE[ME I PEER 2ENTNIATHS dND =N 100a0000
$3INTVATHE48D=1 FECM ¥ ERL] 31373073 443=n 3128y ugdyd=n 20008000
oaaEesaseasas L LYY)
***S08NAS NvA

temccnccncancnacnsnd

1 3N7vA Ad ST0GwAS !

tocncncananae [

L1382 8i6Te9NVean 143X3*4HS483(rg0° 452] tnvaQ

8-16

SHAREABLE IMAGES

2=HONIW

39vd

YHSLD Fo dey (°3uod) g-g oanbtg

N3LLTH% Sv¥ SUu023¥ 374vL T08wWAS V809 # 40 VIOl v

Q3HIAVIS AYVHEIT 3 NI LON ST0WNAS 04 I3 S3InIYV3IS ANvHEIT 0@

ST08WAS UINT4IANA IAT0S3IYd 01 Q3LIVYIXI 1 WilIm

a1 = ATLIIITaX3 A343Yyix3 S3INA0OW 40 ¥3IBWAN

$»J078 ¥1 40 MOONIM v INISN
$¥J307d #ET 40 ViUl v Q3ISSYAWOINI HIIHM
SNOTLvy3d0 av3d %2078 AwvHEAITN N1 da3M 3u3HL

S3LAG LET1 UNINIVLINDGD SU¥0D3d VIVG 9Ne30 3a3m n2 ONY SITavauld NI 3Iwim 252 HITHm 40

nvs $(S38Svd H108) Av3IH SO¥UIIY LI3LE0 NaHWNN TVIO0L

(39VWI ONIONTIX3) 39VH0LS VIVY 40 $39vd €5 ONV S3Ivd @l 0L QILINIT L3S ONINHOM ¥V ONISH

9§t LAttt ae 69°Totvatan L6
CASF IR F FEYE S 'Vt iag @
6l'Paoniny LS ¢atnes vy 4

11%2at0ntan
3ot anive

Intvetocive 2l
EMU TR TS 21
Y§°2atanian (G U ieninag 12
gntlatpnign g2tApteatag 13

Awll Q38dv3 INIL NGI S1INv4 39vd

=383N7TvA NN IVIOL
=t iNdiNU 378v) T0EWAS
~1S18d0NAS 3NA0W 1J3rEQ 8314V vivd d¥w
«12 g8V
=iNOILVI0T34/N0ILVI0T Y
=31 ¢Svd
«39NTISSII08d ANVWHWOD

- aspe®nw

SHOLVIIANI 3IONVWHO4¥3d

teccnnsnrccnscnacnaannnnd

LS wnu wnITd

temconsnascnacnncsnanayd

T SJ3IisIuv

wlidva*yHS3yI[STIT%482) 2hvaUs 3714 NI 2ININI4Ty $S0¥D WLIM 1104
*ITdvIuVHS ‘Ila

fInN3QT *S'9 ‘4IvN03/8S3Tw = HILYW NOLLJIS 1vE0T9

($%2074 °8)
(%3078 *1)

(S39vd "8 ‘S3LAd "962n) 8421042 441 1¢dkv JUdviobuy

S¥JulE ‘s §LlYNIT dvw Q3LlvwIisa
Llvad04 dVW

$3dAl 39VNWI

‘s ISNOIL23S 39vWI 40 ¥IAWNN

L $93IN3¥I43Y SS04I 40 ¥IGWNN

*Le 18708wAS IVE0T9 40 ¥3ANNN

‘e PSNOILIIS wYNOONE 30 HIQWNN

‘st $837NA0W 40 ¥3BWNN

't $$3714 40 H3EWAN

143x3° yWSau) SNUTLVIIAIINIAI QNv 3wYN IIVWI

6 ‘e §SLIWIT %3078 1VNLIHIA AMYNIE 39VWI
¥ 't SSLINIT %3078 VHLIHIA ¥30VIH I9VWI
$39vg ‘0 137218 X%ovis

$Q31VI077 ANOW3IW TVNLYIA

temnccenccccan e}

1 SISHONAS 39vwl

bmana

L1igo 8l61=9Nnve=n

6T Tax HINNIT

LX)

T43X3 NHS4uI (g0 4421 30vEq

8-17

SHAREABLE IMAGES

8.2.9 Example of FORTRAN Shared COMMON

Figure 8-6 shows a global common (FORTRAN BLOCKDATA subprogram) linked
with a routine that modifies it (CHANGE) and one that displays its
contents (DISPLAY). There are actually three common areas, shown by
the program sections $BLANK, NAMEDCOMNl1l, and NAMEDCOMN2, which
correspond to blank common of FORTRAN and two named common areas.
Note the attributes of such program sections-- in particular, GBL,
OVR, and SHR:

® The GBL attribute causes the program section to be recorded in
the symbol table of this shareable image for later use by a
subsequent program.

® The OVR attribute ensures that all modules contributing to the
program section contribute (or in this case, map) to the same
address space.

e The SHR attribute indicates that only one copy of this
writeable data is to appear in memory.

SHAREABLE IMAGES

on [R OIEVAYER
an [4] Avne3Izss3n
an [’ vne3d/ss3n
[, enencse -
QIHONIW AIHOL VW HILVnW

4 39vd

61°1ax 25=uNIT

T1=€%0X OHIVW TT1=XVA

nl=g®@8L SNT14=Al NVHLN¥04 Ji=xyA
N1=8°@4 SNId=Al NVHLIHOd TI=XVA
n1=8'dL SNId=Al NVNLHO4 TTexvA

¥01lv3yd

1 39vd

UOUIO) PaIeysS NVNIYOod buimoys dey 9-g =anbrg

CeuTILESHA
2eATILYSHA
TAPTILHSHA

Iwve *238 *H9

A2°1Ax dINnI

quigy
gntel
AR FA
sE3L1
nneLl

HL61=9NVe~r

wlol=9Nv=¢a
glLol=(Nfen]
Glbl=Npanl
8L6l=(Nlen]

3iva

22°1Ax H¥3Y¥NIT

NOILV3¥d

434 ~NO Ad0D

434 ~n0 AdUD

434 N0 AdOD

ALT4r o3y v 9
AIND dvia ¢ “
AINU Qv t %]

311y uviy
ATINO QVIy
EPSE-LENG Y]
AT40 Jviaa
31law GvaY 2

-~ e

S

cassmsmssccsnnean Ahe scase

1eeLeoed

U l2ure
VhguRdée

P12 Y]
DA90¢ e
Aonneben
Jacueace
$P2eehng

anm

On19Vd ONY 0110310480 J4d NHA MSIQ ¥QGv 3Sva

emcancnnaccancnnasananncad

1

Py

16321 RL6T=9Nven

tmea

!

SISdUNAS NUTL33S 39vwl ¢

msmmssssscccnannsoanad

TE3x3°TLaSwA[B118AS]) 82480
14870°1378viS(8118A8) 22880
14P80°Ww0Iv 1481001 4251)818Q
TELu0*WODIONVHI (el 4281] 814Q
1irp0'w02198019 (0140511 8180

ERE]

cssane mese

——

SI18d0ONAS 37NACW 133740 1

Y

LS321 wlol=gNve=h

]

€
2ed
nse
21

S3ILAH

$39vd JaAl

T43xd

12
T2
1o

In30]

TLUSHA

¥318n71374nv 430

4318N7M)

n143x3°w027v8019[el’as1])t1ag

TLUSHA
39VuNIT8SL0
AvdSIOQ
J9NVHI
A02va0I9

sscascscsnas

IwVYN 2INAOW

w0J37vE019

8-19

SHAREABLE IMAGES

£

39vd

TR L]
LYMON ‘0
LY¥mON QY
iy ‘0d
g% ‘0d
Ll¥M ‘aH
lav ‘g
LuMON‘QY

uouwo) paxeys NVMILJOJd DBurmoys

3IX3I0ON‘HHSONYIIT4T38NOD ‘SN I]d

‘12947348102 88SN D1 g

‘737471348802 °8SN 21 ¢

9134 8A0 88N ‘D14

189134900 85N*J1d

1994734400 4SN ‘T4

fAHSON I3 138 NDD Y uSN DT dON

‘3274713400480 *J1d

S3LngIuilyv

w2 ldx ¥3INNIT

INOT (Cw
INDT (e
INDT (%0

wchA
9ng (

aNgT (°111
INUT (*e21
INgY (*gne

98D (
aNoY
INo T (
anoT (
94U (°
Inod
9n0 C°
INg (°

INOT
ang
INGT
an0

AlAas (e
LA (0

N0 (6l
INDTY (°bul
INOT (°161

NOIY

tecananes

LS32T 8L6T=9NV=n

~

e o

e

dey (*3u0)) 9-8 °INBTJ

QUGB oY
nuevoYRe
NABIBEYD

£AINNdNP
€NV

490006V
1890¢020
¢ 4vv0dBe

PAdvddan
nANIEANE
nIEVVOYD
nRABIOYE

rIuNe LR
PadurBL
novUIDRN
nou¢Bovee

r1AYURRVE
nVNdueYd
nYUraLo
nIANEBANY

“Ywvidde
AnaGedne

ANYvidBee
U9vanvel
446800006

Hi9N3T

svgduea
Bogeoved
wegevner

943vevie?
9494002 0¥

€490anpa
089V
2490210y

8INCIIBY
grnudeod
Genvduey
Bnhrdbiy

Lon2deen
Lvnesvdn
LenRdvoy
Lénedove

EPhAdsna
genduvae
ganddeve
Svhnaing

veeonvee
duavoive

34298400
Jo2avaee
38200009

aN3

sesavascsacacssd

! SISdONAS NOILIIS WVHIONd ¢

jeamccccsancncccannnvanannas

wegAvean
9B ORBNG
“rgIevey

n49980¢d
1494000

LT BT
w9003y
990 d0ve

BNAYIng
RONAVNAY
BUNIBNAR
BEnILdve

nANAKdne
nundRdaw
nunBvLaY
nrndede

IundAeare
viehdnede
wyndvove
wundveed

Av2Iv oY
Bn2aieded

nL2oupve
vy2avery
vo2aonee

asvy

AviasIQ
JINVH)

J9VNNITeSL0

AvI1481Q
JONVHD

Avidsla
39NVH)
Wod1vauly

Avidsla
JINVHI
wW031vgolo

Aviasla
JINVHI
wW031vao9

39VHNIIgSLO

Av14siQ
IINVYH)

($)37MQ0A

Ivl07s

30038810

30038

2NWOICIRYN

TNWOJIA3nVN

ANYIIES

* yiNvie !

vivads

INVYN 1I3Sed

r183x3*W0dv8019 (01 78ST]1 8180

20

SHAREABLE IMAGES

uoumo) paxeys NvIILyod butmoys den

AVI4SIQ IINVHI

AvidSIQ JONVHI

"t A8 (033N3Ix343y

trcscnccananssane

cmaans

T 3INIYI43y SS0HD 08wAS 1

tecacncansanncanancannnsad

h 39vd a2 Tex d3MNIT LS321 glel=9Nye=p

(*3uo)) 9-8 2anbta

ALd4SKHA
TLHSKWA
TLHSWA
L ASWA
TLHSWA
TLNSHA
TLHUSKWA
TLYSHA
TLYSHA
TLHSWA
TLASWA
1L 88wA
T18SKA
TLaSwWA
TLYSKHA
TL1uSwA
TLHSKWA
TLMSKA
TLuSWA
TLESWA
T14SHA
TLUSWA
TLHSHA
114SWA
TLESHA
TLASKHA
TLESWA
TLasSwA
TLHSWA
TLESWA
TLESHA
qLdSwWA
TLUSKA
TLHSHA
TLASKA
LHSHA
TLESKHA
ALdSnA
TL8SKWA
TLHSKA
TLHSKA
TLHSWA
ALYSWA
TLaSwA
L dSWA
ALuSwA
TLHSWA
TLYUSHA
TLUSKWA
TLYSKHA
Av1d8IQ
JINVHD

Ad G3n1430Q

Ny=8§62000¢g
Nuep488a000
Ny=8Q887000
NYy=20g0wniy
Nd=856An0vd
Ny=0568n0Y9Y
Ny=g88RaEVYe
Ny=29808avNY
Ny=8nevpuve
Ny=2r6RRBYY
Ny=8vevrelY
Ny=838vnode
Ny=plgapnfe
Ny=gigenave
Ny=2383pu00
Ny=Rnvvpevey
Na=B8EvONUBY
Ny=gEvagane
Ny=gBvdRBYY
Nie8d60¢uvVE
Ny=04600002
Ny=8468p000
Ny=336892V0
Ny=8Qsrad2
Nu=828230VYLe
Ny=818001099
NYy=2a681008
Nu=8lelnuvi
Ny=2 1300002
Ny=guvedAYYY
Ny=0vevrnZey
NY=8668@0VD
Nu=2662p0232
Ny=8860aV00
Ny=pl6BpYR
Ny=8d68737¢
Ny=RE6BPYLOR
Ny=gveRprnwe
Na=g2vdpude
Ny=22vinvdy
Ny=givenay
Ny=6lvapudo
Ny=2Bvopuodo
Ny=2R8BEAYEG
Nu=0860000Y
ny=82anpddy
Ny=gilepabe
Nie8v3VEOLG
Nu=31380090
Ny=0233p0¢e
Ny=n892pa0Rle
Ny=00892p0Ye

mge®a

anava

SQTATLTOIsu04
§aT1T0Is404
ATITOISH04
¥T1T0Isu04
ATNITOISH04
471701804
AT4T01$504
uT470I3804
ATI4T0I%y04
47234T0I%u04
AN3T0Isu04
ATQTOIS804
mﬂuuonﬁuou
ROt
9¥79I830TINISH04
4728307 INISH04
2871930 INISHO04
GNId43804
»TLIX33804
1IXx3$804
wToNSHuISH0 S
SNSH¥ISHO 4
3114GNI3804

Ow 300IN3S204
4nT360IN35804
¥T311474305204
371474304804
0WT3Q02305804
473002305804
ZTIN0TANISHO04
OTINOTANISHOS
ITLNOTANISHO S
ITLNOTANISH0S
9TLINOVANISHOS
4TLN0TANDISNOS
3TLINOTANIS N0 S
aTLNOTANISHO 4
ZNITANISN04
O0NITANISY04
ITNITANISH04
ITNITANIS204
9430 NITANISHO S
380725204
39VdSHIVEsH0S
AVSTSNSHANISSUOS
13878385304
HSNdTBISS04
d0dT8I35804
13978284004
AVIidSIQ

JINVHI

T08NWAS

n13Xx3°wpdlvao19tet1‘esiltiag

8-21

SHAREABLE IMAGES

S

39vd

MMM VA D IV QWQAULL MM Reae D gy

B2°1ax ¥3WNIT

Avlasid FINVHD

*** AR Q3INIHIATY

LS321 8L61=9iv=n

P

TLUSKHA
TLUSKHA
TLHSHA
TLYSWA
TLESKWA
TLi8SWA
JLESHA
TLESKWA
TLYSHA
T1HShA
TLHSHA
T1dSKWA
T18SKA
A1HSWA
T1HSKWA
T18SwA
TLNSHA
ALNSHA
ALYSWA
NL8SWA
TLHSKHA
qALHSWA
ALASKHA
TLHSwWA
TLUSWA
TLHSKHA
TLESHA
TLHSHA
TLHSWA
TLUSWA
TLuSKHA
TLESKA
TLESWA
TLHSWA
TLHSWA
TLHSHA
TLaSwA
TLHSWA
TLuSKWA
TLHUSHA
TLYSHA
q18SwA
TLYSWA
FLASKWA
FLHSHWA
qLESwA
TLYSWA
L HEHA
TLESWA
TLUSHA
TLHSWA
T1USKWA
TLYSWA
TLESHA
TLUSKA

A8 Q3NI430

ny=avguevPe GQT3334484817
Ny=88307008 9XATuTA40I85817
Ny=08QonR00 XOT¥TA40IS38I
N¥=9La0pd8y 9XAXATA409$$817
Ny=2.Q0pRP0 xJdxQTA40383817
Ny=8908vBd INVISSEIT
Ny=090u¥nnBY 13¥3A398611
Ny=8500A078 LN4LN0~LNdS8IN
Nd=05aRp0lE INLAOWERI
Ny=8nQ2no0e JLAOWSEIT
Nu=2nQoantd anNodITHILYWSEI
NY=8EQURR2d IHILYWSEIT
Na=08QBpYYR 220718617
ny=g2avmude H3IA0TINISEI
Ny=023020300 ASNISBIN
Ny=gTavpeve X30N18817
Ny=8404nadp WAT1399611
Ny=88Qd0n0dy lndnIT1398811
Ny=2100APY0 ONVWWOIT 1398817
Ny=240VnoYY WAT33d48819
Na=20000600 ¥3ANNTLI48617
NY=8430peY¥d L147dnxI 48810
Ny=2 430AL08 $44%817
Ny=g33¥n80a 2448811
Ny=2332¢¢00 AZLx3$817
Ny=80J34nuvda ALX3S8I7
Ny=00J28p0Av8 HSIvavis3aseIn
Ne=83200098 ¥3A07230%811
N¥=2334pud8 378v.1iTIN¥ISEIY
Ne=8ulurove J¥3$617
Ny=28220020 90¥a"NITiSVSEIN
Ny=2vQapR00 nNST3LIumsu04
Ne=8680ABYY 0ST31Tumsu04
Ny=2690p102 18731 1amMsu04
NY=88820EYA 48731 7umsu04
Ny=288vpvlo nav3lIymMsa04
nNy=gL8dnvvd 00731 Tumsu04
Ny=vL800000 40731IumMs804
Ne=R9vanBon d01S3u04
nu=eSyapade SONJ3$$804
Ny=2Sv22200 ONIM3INSH04
Ny=g9g0n002 nsTaviusy0s
Nu=2994n29%0 0sTavIxsu04
Ny=8Sedpude 18TavIus 04
Nu=2S800VGR 48Tav3INsu04
Ne=8ng0eadd noTav3usyuosd
Ny=0ngdpn0a 0aTav3INsu04
Ny=8§80208Y 407av3ysu04
Ny=8nvdpeda 38NVdsu04
Ny=9.L60p00Q N3d0sSu04
Nu=0L68p4Y0 vaTxT0Isu04
Nu=08600008 ATMTOISHO04
Ny=834880000 4THTOIS¥04
Ny=89600pv0@ ATNWT0Isy04
Ny=09620008 EMOEMOE TToP]

INIVA J08NWAS

n183x3°wWn3v80I9[2T’0ST] 8880

8-22

SHAREABLE IMAGES

uounIo) paxeys NydIyod butmoys dey

(*3uoD) 9-g oanbTa

8-23

TLYSHA ny=29a010¢@ nYTAXISHIN
JLHSHA Ny=858anvbe dX3ISHIN
TLHSWA Ny=88300uY0 HNVLASHIN
T1USKA Ny=08JunBLY NVLIQSHLINW
T1HSWA Ny=8S80ARMY SuTIYCSASHIN
TLYSKA Ny=8ngupndy Ly0SASHLIN
TLHSHA Nu=BngdrRve LUTNISQASHLW
TLHEWA N¥=§L320020 HNISQSMLW
TLaSWA Ny=8EduAVba NISOSHIN
VLuSwA Ny=22800293 QuT901QSHLN
TLYSWA Nu=8192p000 8yTA1901GSHIN
TLHSHA Ny=2180nu0e0 0190 10SHLN
TLySWA Ne=guaveeve 901QSH LN
TLHSWA Ny=0080p002 LYTdXIASH LN
F14SWA NY=g4voevve dX3IASH LN
TLHSWA Nu=2£80200Q LuTS0JASHLN
TLAUSWA Ny=nLll3vaRod HSOJQSHLN
TLASHA Nye82a00000 S0JQSHLN
TLHSHA Ny=24v29000 LaTNYLVASHIN
TLHSwA Nye83IVdpudR INYLVASHLN
TLUSWA Ny=n3vopwha NYLIVASHLRN
TLYSHA na=80yupeva 6MTNISVASHIN
TLYSWA Ny=aQvopune NISVASHINW
TLESHA NH=83v2pole 64T$0IVASHLN
TLYSWA Ny=23vApRY0 SOIVASHIN
TLYSWA Ny=89J8nvde L1¥0SISHIN
TLYSWA Ny=09300040 NISISHINW
T18SKA Ny=2.La8pava nATSOISHIN
TLUSWA NY=8520p0880 HSOJISHLINW
1L 4SwWA Ny=99q0ovdn SOJSHIN
TLYSWA Ny=8nlvpevy 90TISHIN
TLASWA Ny=2nIvpnve dX3ISHLN
RITLIY) Ny=8520na0Y S0JISHIN
TLESKA Ny=8EI0aABY SAVISHLIN
TLASKA Ny=88vBAR0Q NUYNVLIVSHLIN
TLNSWA Ny=v8avvpsde SNVLIVSHLIW
TLASWA N¥=8VvPVYe NVLVSHIRW
TLASWA Ny=AYvanndi SUTNISVSHLN
TLUSHA Ni=g6vepR02 NISVSHLINW
TLYSWA Ny=26v0poNe SHTO0TIVSHIK
TLUSKHA Ny=88vON0Ye SyTOI90IVSHIN
TLASWA Ny=28vupane BI190TVSHIN
TLUSWA Ny=gLvpang 90 1VSHLINW
VLHSWA Ny=ALvonaoey SyTS0IVSEHIN
TLASWA Nu=89vapavp SOJVSHIW
TLASKHA NYy=20QvMa03 4048$817
TLASWA Ny=83QvHvvd INVdSS8IT
FLUSHA Ny=R3Qvpa00 Jd98¢817
VLUSHA N¥=80Q0nE20 13470LTOISSAIN
TLESKA Nu=83Q8n0B0Y 1vN9ISsel
TL¥SWA Ny=86Q08p22e 937ga"113968817
TLUSKA Ny=0600na09 00711398$810
TLUSKA Nu=08QvQR23 940QaTN3I3¥3S$8I"
TLHSWA Nu=P80000@20 GQTN3IIN48$617
TLYSWA Ny=8Ya2a080 - 90aT 13344588817
moBseseesarsonsen eossconancan Cr L LX oseasas
“** A8 Q3ON3IH3I4TY A8 03N1430 INIVA 708WAS

9 39vd 22 °Tax 4N L5821 8L6T1=9Nven h183X3°W03 V801981 Y251]8160

SHAREABLE IMAGES

uoumIo) peIeys NWIIJO4 burtmoys dew (°3uod) 9-8 =2Inbra

TLaSWA
TLUSWA
QL8ShA
TL1dSKA
L ASHA
TLHSKA
TLYSUA
TLNSHA
TLUSHA
TLASKWA
TLHSKHA
TLASWA
TLHSWA
ALUSWA
LESHA
TLHSWA
T14SwA
TLUSHA
TLHSKA
I9vuNITESL0
L14SWA
N1dSkA
T14SwA
TLHSWA
TLaSWA
TLUSHA
TL4SWA
TLASKWA
TLdSKA

AVIdSIQ 39NVHI

cscescass

‘4% A" 03IN34343y A8 Q3NI430

L 39vd @2°*tex ¥3INNIT L5321 8L61=9NV=h

Ni=¢130rvio
Nyeg2J8pvlan
Ny=2£2¢prly
Na=823002908
Nay=8238c00a
Ny=81J0p0YY
Ny=06I8GAYY
Nu=848@pr0eo
Na=2490pro0le
nNy=93a@pada
Ny=038080009
NYy=8a84n0¢Y
Ny=98a800%8
NY=00Qvndve
NY=83a80vYed
N¥=0HQAPR0E
ny=alagende
Ny=8vaacedy
Ny=dvaaproby
y=nd90pnR0o
ny=gegopado
NYy=gviIopRYa
Nu=dvI8pedc
Ny=06a8000a
NYy=g8gdpedd
Ny=08g80nAvY
Ny=8630p002
Ny=8.80an0e
NY=0630p00D

ELRAAY

947gaT 113988540

ga711398$840

90aTNIIN4SSSL0

GGTNIINASSSLO0
90071334498540

aaT1335498S40
9XaT8TA40388840
XQT4TA40088540
9XAXATA40ISSS L0
XaxATA40988810

HM0d$SL0
fyM0d$S40
Qum0dss1o
rrmodssio
I1ImM0d3840
¥OM0dSSI0
£am0d$sL0
damM0dssi10
rIm0dssio
3OVHENISSLO
JALIdsSLO
HNVLSHLNW
NYLSHLIW
2471 HOSSHIN
LUDSSHLNW
PYTNISSHLNW
HNISSHLIN
NISSHIW
WOONYUSHLN

F08kAS

n183x3°W02TvE0719 (81 Y@ST)21aa

8-24

SHAREABLE IMAGES

U]

39vd

UouNIO) PaIeys NVIINOJd burtmoys dewy ('3uo)) 9-8 2anbtg

v iex ¥INNIT

***8709KWAS

tocnunnncncnscanunnt

1 3NTvA A8 S708nAS 1

teecccansessananannnt

L5321 Blet=o9nven

STINOTANISHUI=NY
3TLNH0TANIS 0 =Ny
ATLINOTANISEO 4Ny
ATLINOTANISE0 4=y
ZTINOTANAISHO =Ny
OTLNOTANISHOd=NY
ATINOTANISN0d=NYy
ITLNOTANISH0 =Ny
39vdSNIVASE04=NYy
N3IdN$u0 =Ny
vaATXTOI3¥04=NY
ATAMTOTSH0d=NYy
dTNMTOISE0d=NY
ATNITOT3Y0 4~Nn
EMaR M & LT ELT T
ATI4T0T$304=Ny
3704T0TS804=NY
SaTATLITOIS Y0 4Ny
ATMTOTSH0d=NY
CMEMERE LI EELT]
SATLT018404=NY
>Hm4o_anou-3m
aT8v01$004=Ny
ATITOIS¥0d=ny
¥TITOIS80 4Ny
ATATOISH0d=NYy
MM E LN
AT4ATOISH0 4Ny
¥T4TOI$80 4Ny
an3T0Ts804=Ny
NeT3Llamsd0d=Ny
0STIALTHMSU0=NY
18TILIuMSa04=Ny
4ST3LTamsu0d=NY
NAT31I8mS¥0 4=y
0a7ILIUMSH0d=NY
407311 umsU04=Ny
NSTAv3InsH0d=NYy
08Tav3InsuD4=Ny
IsTUYINSHOI=NY
4STAYINSUOA=NY
NUTAYINSUOI=NY
0GTAvINEB04=NY
40TAv3Ins¥0d=Ny
OWT3Q0IN3S$H04=NY
4WT3I00INASHO =Ny
OnT3002308804=Ny
4WT3002308804=Ny
3507178480 4=NY
39VINITSSLi0=Y
AV1dSIQ=Ny
JONVHIeNY

23600000
88600000
086020009
gvo00000
eveooeoe
86600000
26600000
9860V0000
agé0d000
gL600000
aL630000
99680000
896000200
85600000
05620000
3n600000
An6d0000
82620000
Ba6LRE0Y
24800000
34800090
83¢00200
0380000
gQgvpoRe
eQevedoe
8380uB00
[RELTT T
94800000
o8eR0000
aveoaeee
evevaoee
86800000
26801000
g88ooBEO
288000800
gL800000
eLe0080200
g9802000
29800000
958002008
25800000
gngo00e0e
engadeen
21820000
22900000
gispoeee
olea0000
g08@0000
00800000
ndi9e0000
n89020BB0
po900000

ANIVA

n163x3°wn3Tve019 (014251128180

8-25

SHAREABLE IMAGES

6

39vd

UOUWOD PaIeyUsS NVILdOod butmoys del

22°1ax 8INNIT

LS32T 8L6I=9NV=p

(*3uoD) 9-8 @anbta

**08708mwAS

NIgSHLIn=NY
raTS0ISHIN=NY
SOJsH =Ny
LEMCLEY LEGENE]
dX3ISHin=NY
SyTLHOSOSHLIW=NY
LuBsosHin=ny
LYTNISOSHLIN=NY
NISQSHLIn=NY
L¥TS0JasHIn=NY
S02aSHiW=NY
8¥7907aSH Lw=NY
BYTATS01ASHIN=NY
[AEDLRIGLIVENE]
90V HLIW=NY
LyTdx3a8HIN=NY
dx3Q$H Ln=Ny
LETNYLVOSH IR =N
ENVLIVOSH =N
NYLVQOSHIW=NY
64TNISVOIHIW=NY
NISVOSHIn=NY
647S0IVASHIN=NY
SOIVASHLIn=NY
nYYNYLIVSHLIN=NY
2NVlySHin=NY
NYLYEHin=NY

Sy NISYSHIN=NY
NISYSHLIW=NY
SuT90IvEHIn=NY
SYTRT90 IvsHIW=NY
2190 TySHLIN=NY

90 IvSHiw=Ny
SuTS0dvsHIneNYy
SOJysHLIW=NY
d0Lq5804=Ny
SANJ3g§¥0d=NYy
ANIMINSHOI=NY
ISNV4S80d4=Ny
9a7I83GTINISH0=NY
£372830TINTIS804=NY
2yTISI0TINTISHOA=NY
ZVNITANISH0 =Ny
0TNITANISE0 =Ny
ATNITANISHDd=NYy
ITNITANISH0d=Ny
ONI45804=Ny
9430TNITANISH0d=NY
MTLIXISH04=NY
LIX38804=Ny
MTSNSHEISUO =Ny
SNSHHISAOd=Ny
3T 4aN3S804=NYy
MT31I474308804=NY
371474305804=Ny

glLaoo00R
[JXT-L1X 1]
89802000
e9go2008
95920008
25622000
CLEDT 2]
2N82n000e
9t900000
28800000
82842000
[X4:1dL11]
glaveese
2luodooe
80800000
20800000
84V00000
04vV00000
83veaoee
d3veocoee
eQvaeeeo
edvenve
8Jvao000
ddvedeee
88vR0000
CavaveRo
evveaeeo
ovvaoeeo
s6vapeed
e6v20000
89vo0000
B8vo0000
elvevee
alvooveoe
89voNeno
29veg0ee
asvegeoe
oSvo0ee0
envagese
ohvooRee
gLvaoeer
agvadove
g2voovee
e2voee0ud
givaoeee
aiveesse
sdvodvee
devovene
84600000
24620000
83600000
@36Q2000
gQ600000
20630000
gl680000

h143x3°W021v8019([BTY05T)8180

8-26

SHAREABLE IMAGES

ot

39vd

UounmIo) paIeys NVIILI0d burtmoys dey

22°1aX ¥INNIT

L5321 8lol=9NVe=y

(*3uod) 9-8 °Inbta

**°8708WAS

230188 1=ny
4IAOTINTSEI =Ny
ASNIsHINany
X3ONTSE8ITeny
ANVWNOIT139$81 V1eny
INgNIT 139381 eny
#3ANNT LI 48HI YNy
1147dNxI 4881 N=ny
S4488] =Ny
JI4486INeNy
AZLX3sHIT=Ny
ALX3§dIeNy
HEITEVLI63SHI TNy
¥3IA0TIIQEHIVeNy
318vLiTI8I$8] 1=Ny
J¥YSEI YNy
90udTNITLSYSHITeNy
HNV (SMLIN=Ny

' NYLISHInw=NY
HNIgEH lweNy
WOONVHSH LA eNY
HNYLASH LweNy
NYLOSHLIW=NY
HANISQ$HiIN=NY
HS0JQSHiIn=NY
LYDSI§H LY
NISISHLIW=NY
S0JQSHLIW=NY
HSOISH LWeNY
901SHLIW=NY
dX3ISHIn=NY
SEVISHIW=NY
90QTN3IIN49$S10=Ny
GGTN3II¥468S10=Ny
90aT13344¢85L0=Ny
007 1339483510=ny
9570QT113988810=NYy
4ov113984S10=Ny
9x0THTAG0ISS$S 10Ny
XQT¥TAd0288S 10Ny
IXUXQTA0IS$S10=NY
X0XQTA4028$S10=Ny
4uM04$SL0=Ny
LYM04$SL0=Ny
LPM04SSL0=NY
1IMO4ES 40Ny
FAM0g$SL0=NYy
Q4M04$SL0=Ny
HAMO04$SL0=NN
AQMOA$SLO=NY
PIMO49SL0=Ny
INIQSSL0=NYy
2uTLIH0SSHIN=NY
LuBSSHiW=NY
PETNIGSHIN=NY

2€Q20000
e2Qvoeuve
o200
81000000
210000006
8000nB0D
eoqooeee
84300000
94204000
83Juv0voe
CERLI-TTT
803000209
2Q0J0vo0e
8J3J0u00L
82J02000
e8lvoeoR
@8J20000
8vivudoe
evI02000
g6J00009
a6Jvovee
882920008
29J00000
84200000
glleavee
892%0vd0K
29330080
853000200
2SJd0vee
enlageee
enduvdge
08000000
2¢Jeaeed
82200000
22leovee
8130a000
01300000
f@Jdevee
20J080000
84820000
V3800000
83800000
036020000
90023200
AQ000000
8J8020000
2Jgve0ed
eg8d0000
ag8002000
eveoa0ee
ovedodee
869200080
P6800000
egaeoeee
08800000

3NvA

n143x3°w02va0T19 (AT ‘asT)81aQ

8-27

SHAREABLE IMAGES

uouio) poIeys NVMINO4 Butmoys deW (°3uod) 9-8 oanbra

teana
! ¥y3IM = WM T
P 378VivI073y8 - 4 1
! TvS¥3AINA - N 1
1 G3INIJ3OND - = T

{rencscncnasccnagu}

t3A0EY SHILIVHVHI TvIddds ¥0d4 A3

P ey XY

AVSTSNSHyIESUOd=NY 82300000
1397g2¢%4804=Ny g2300000
13378358804 =Ny gl300000
d0dT82g8809=NY 213vaoen

HSMNdT8IeSU0d=NYy 80320200
WAT13988]Vend 84000200
wATIn4$81 Ny 24000000
INVAGSAITeNyY g3q02000
AdXgS8IN=Ny 23000000
1387047918881 1=Ny 800002000
d0lg$8IN=ny CILLLLT)
TynNSTgsEI =Ny 87000600
9AQTN3IIY4§S$8I =Ny e8Q00000
JaTNIFu4Ag88 1NNy 090000200
9007133448861 YNy gvaedeon
0071330488 NNy 2vageeee
9¥TQQTI1398$8] =Ny 06000000
aaT1139¢881 =Ny 260082000
9x0TET A0SR =Ny 88000000
XATdTAd0Ig$9TI YNy ¢8000000
9XAXQATAd0IS48IV=NY 8l0@0800
XGXuTAd0IsSEIVeNny nLQ0B3000
INVISSHIV=NY 8900020200
L¥3AINSETI NNy 29000000
LNdIN0TIN4$8I =Ny g5Q3a200
INLAOWSEI =Ny 2SQ0e00e
ILAOWSBINeny CELTLLLT
GNOITHILYWSEIT=ny erQa00en
IHILYWSEI Veny g£Q00000

**"SI0UWAS INTvA
Tt 39vd g2°Tox ¥IINIT LS321 8L6T=9NV=n n163x3°WnIv809 (BT ‘ST 818G

8-28

SHAREABLE IMAGES

UOUMIO) PaIeYS NVYILd0d butmoys dey (°3uod) 9-8 =2InbTJI

N3ILLIdm Svm SQ4023y 3T8VL 08wWAS VHOT9 21 40 Tviol v

AIHIAVAS AYVAEIT 3HL NI LUN STQENAS H04 3I¥3Im SIHINVIS AyvHEIT @

$708WAS G3NIJ43ANN 3AT0638 0L a343vEix3 | WilIm

ATLTIIIdXx3 0313vyix3 $3INA0W 40 ¥IEWNN

S$XJ078 A1 40 MOONIM v INISH

SW3018 [L 40 vi0l v Q3ISSVAWOINT HIIHM
SNOlLlvd3d0 Qv3Id %078 A¥VE8I) g J¥3Im IH3HL

S3LAn 122 ONINIVINOD SUHUJIIM VIVQ 9NHIC 3¥3IM 8 ONV SITHVHAIT NI 3Jddm ST HIIWM 40
né $(S36Svd +i08) Ov3y SUNOJdM LI3ILG0 HIEWNN TviO0L

(F9vWI ONIANTIXI) 39VHULS VIVU 40 S39vd ¢bv ONV S39vd vwit9 0L QILIWNIT L3S ONINEOM V ONISNH

futsatuving
stuptuntua
9¢ 1084800
nLteptdviag
ngtaRtun e

os.msuss"ss amﬂ
LA*P0EBLen 4
J6°PRisuing St
L1%¢0tnesav g
pRtavivLicn ee

21 tatvuning LS*evtavice s
2vtlytonstne 6¢ 3080V ing 2%

IWIl 038dvI3 Inll nad S1invd 39vd

tecvsnssnscnnenscannnsd
1 SOTLSTLIVLIS ~Nna WNIT 8
tPecarensncansncsscnssnaan
$¥3078 *SS
w6 idVW WDI V019 {0128t} 8Tagy 3113 NI 3IN3d3439 SS0HI HLIm 1In4
23dONIW ‘O=H0LVA ‘UNIAT °S°9 ‘wIVNDA/SS3Tw & WILVW NOILJI3S TVH0T9 .w;mqum<am ‘31d
g
‘661
‘o5t
‘at
'S
‘s
7143x3* w02vgo9
($%3078 °¢ } °n *e
(2098 °*1) 1 ‘1
§39vd "©
($39vd *8S ‘S31AR *96962) YMNLPVRE 445L0280 V8204400

tunmencscnsnnnanced

t SISHONAS 39vwl 1

trmencnccsnccannnd

et 39vd 22° 12X UIANIT L5321 8LoT=9NV=p

=31S3NTvA NNY CIvi0L
=3linNdLN0 37uvy 0BWAS

=iSISdONAS 3TNQOW 13080 8314V VIVA dVW

=12 gSvd
«INOILVI0T3A/NOTLVION Y
«t] g§vd

«39NISSII0Ya ANVWWOD

S¥NLVIIANT 3IINVWHO4¥3g

$lIN3T dvw QILVWILS3

1LVWN04 dYNW

B $3dAl 39VNWI

I1SNOIL338 39vwl 40 ¥3GWNN
$S3IINIFI4IN SSOHI 40 HIGWNN
§S108wWAS V8079 40 ¥IEWNN
ESNOILIIS WYNOONd 40 ¥IAWNN
$837INA0W 40 ¥3IBWNN

183714 40 ¥IBWNN

SNOILVIIAIINIAQTI ONv 3WVN 39VWI
ISLIWIT %J078 VNLHMIA AMYNIS 39VWI
ISLIWIT %3018 vNINIA ¥30V3IH 39YWI
. 13218 wivlse

$031v3079v AdOW3IN IVNLEIA

n1t3x3°w021vE0T19(B1 ‘85318180

8-29

SHAREABLE IMAGES

8.3 USING SHAREABLE IMAGES

To be of use, shareable images are normally linked into another image.
Usually shareable images are also installed by the system manager, to
make them available to the cooperating users at run time.
Installation of shareable images is dealt with in the VAX/VMS System
Manager's Guide.

You must use an options file (see Chapter 6) to specify a shareable
image as input to the linker. In an options file the /SHAREABLE
qualifier becomes a legal input file qualifier, identifying the
associated file as a shareable image. The /SHAREABLE qualifier
optionally accepts the keywords COPY or NOCOPY, specifying whether the
linker 1is to create a private copy of the shareable image in the user
image. The default value is that no copy is produced.

When an image containing a shareable image is activated, a search is
made for the global section match, as described in Section 8.2.3. 1If
that match fails, one of two things occurs, depending on whether the
executable image has a private copy of the shareable image:

e If the executable image has a private copy, that copy is used
instead of the global sections.

e If the executable image does not have a private copy, an error
message is issued indicating that the required global sections
are not available.

CHAPTER 9

CLUSTERING

The concept and main uses of image clustering were introduced in
Chapter 2. The present chapter expands on the earlier material,
describing the mechanics of clustering and some guidelines for usage.

9.1 MECHANICS OF CLUSTERING

Chapter 6 describes the CLUSTER= option, which is used to define the
position, character, and content of clusters. The cluster name is
merely for convenience in reading the Image Section Synopsis of the
image map.

Every image produced by the linker is automatically given a default
cluster. This cluster contains any object modules not explicitly
positioned in other clusters. The BASE= option serves to position the
default cluster in the address space.

Clusters are allocated virtual address space in the order in which you
specify them, unless you specify base addresses. In allocating
virtual address space, the linker first deals with clusters to which
you gave base addresses, and it considers them in the order of
specification. The linker reports an error if it detects any overlap.

A shareable image is treated as a cluster. If the image 1is not
position independent (NOPIC), it has a base address already assigned
and is treated in the same manner as ‘a user-specified cluster that has
a base address.

After the linker has allocated virtual space to all wuser-specified
clusters and shareable images, it allocates space to the default
cluster, if it contains any modules. Finally, the linker allocates
address space to the Run-Time Library shareable image, if it has been
automatically acquired.

9.2 USAGE GUIDELINES

Clustering is not likely to have any performance advantage for
applications smaller than 200K bytes. The reason is that each cluster
contains a group of image sections, and thus the address space is more
fragmented. Fragmentation can reduce program performance under
certain circumstances.

APPENDIX A

LINKER MESSAGES

This appendix lists the code and text portions of messages that the
linker can issue. The messages are listed in alphabetical order by
code.

The messages are designed to give you all the necessary information
about the error. Brief explanations are included for a few messages
that are not self-explanatory.

BADCCC, Module "[name]" has bad compilation completion code = [code]
BADIMGHDR, Bad shareable image header in file "[file-spec]"

BADPSC, Module "[namel" has transfer address in unknown P-section
" [number]"

BASESYM, Base address symbol "[name]" is undefined or relocatable
CLOSERR, Close failure on "[file-spec]" code = %$X[error codel]

CONFMEM, Conflicting virtual memory requirement at %X[address] for
[number of] pages for cluster "[name]"

CRE8BERR, Failed to create file "[file-spec]"

CRFERR, Error code %X[error code] received from Cross Reference
Facility

DBGTFR, Image "[file-spec]" has no Debugger transfer address
DIAGSISUED, Completed but with diagnostics

EMPTYFILE, File "[file-spec]" contains no modules

ENDPRS, Parameter parse completion error, code = %X[error code]
EOMFTL, Module "[name]" specifies Linker abort

EOMSTK, Module "[name]" leaves [number of] items on Linker internal
stack

ERRORS, Module "[name]" has compilation errors - image deleted
EXCPSC, Module "[name]" defines more than 256 P-sections

EXCSPAR, Too many parameters in option: [option name] of file
"ffile-spec]”

FAOBUG, FAO failure

LINKER MESSAGES

FATALERROR, Fatal error message issued
FIRSTMOD, First input being a library requires module extraction

FORMAT, File "[file-spec]" has illegal format

GSDTYP, File "[file-spec]" has an illegal GSD record (type = [type
codel)
ILLFMLCNT, Min. arg. count of [number] exceeds max. ([number]) 1in

formal spec. of "[routine name]"
ILLKEY, Unrecognized keyword in parameter of option file "[file-spec]"
ILLQUALVAL, Illegal qualifier value

ILLREP, Module "[name]" has store repeated count [number] greater than
[number]

ILLTIR, Module "[namel" has illegal relocation command = [number]
ILLVAL, Illegal parameter value in option file "[file-spec]"”
INITPRS, Parameter parse initialization error, code = %X[error code]

INSVIRMEM, Insufficient virtual memory for [number of] pages for
cluster "[name]"

INTSTKOV, Linker internal stack of [number of] items overflowed by
module "[namel"

INTSTKUN, Linker internal stack of [number of] items underflows in
module "[name]"

IVCHAR, Invalid character in parameter - option file "[file-spec]"

LIBFIND, Failed to find valid lib. mod. or shr., image STB. at RFA
$X[address] %X[address]

LIBFMT, Library "[namel" (format = [bad format]) has incorrect format
(not =[correct format]) for this Linker

e Might be caused by a corrupt library or an attempt to use an
RSX-11M library.

LIBNAMLNG, Library module name length ([number of characters]) is
illegal -

LINERR, Command line segment in error

\[errorl\

MATCHID, Global section match ident ([numberl]) exceeds max imum
([number])

MAXCHANS, [number of] channels exceeds maximum allowed of 64

MAXIOSEG, [number of] I/O segment pages exceeds maximum allowed of
65535

MAXISDS, [number of] I-sections exceeds maximum allowed of 65535

MAXPFC, Page fault cluster factor of [number] exceeds maximum (255)

LINKER MESSAGES

MAXSTACK, [number of] stack pages exceeds maximum allowed of 65535
MEMBUG, Memory (de)allocation bug [description] %X[address]
@ Internal linker error

MEMFUL, Linker virtual address space insufficient to complete this
link

MINDZRO, [number of pages] as minimum I-section size exceeds maximum
allowed of 65535

e DZRO_MIN option value too high

MODNAM, Illegal module name of [number of] chars. - not 1 to [number
of] chars.

MSGERR, Linker has error message bug [hex data]
MULDEF, Symbol "[name]" multiply defined by module "[name]"

® The named module defines a symbol that another module has
already defined.

MULPSC, Module "[name]l" has conflicting specifications for P-section
u[name]n

e A previously encountered module has already defined the
program section with other attributes,

MULTFR, Module "[name]" multiply defines transfer address
e The named module defines the image transfer address (starting
point), but a previously processed module has already defined
the transfer address.

SPNAMLNG, Illegal symbol/P-section name of [number of] chars. - not 1
to [number of] chars.

NOEOM, Module "[name]" not terminated with EOM record

NOEPM, Module "[name]" references undefined entry mask of symbol
n[name]n

NONBTAB, Non blank/tab between continuation and comment or end of
record in "[file-spec]"

NOMODS, No input modules specified (or found)
NOPSCTS, No P-sections defined in module "[name]"
NOSUCHMOD, Library "[name]" does not contain module "[namel"

NOTPSECT, Module "[name]" sets relocation base to other than a
P-section base

NOVALU Values not allowed in qualifier - option file "[file-spec]"
NUDFSYMS, "[number]" undefined symbol (s)
NULFIL, Null parameter in option file "[file-spec]"

NULPAR, Missing required parameter in option line [erroneous line] of
file "[file-spec]"

LINKER MESSAGES

OPIDERR, Pass [number] failed to open file "[file-spec]"

OPTREDERR, Read error (code=%X[error code]) on option file
"[file-spec]" ‘

OUTSIMG, Attempted store location %X[address] 1is outside "[region]"
(38X [base address] to %X[ending address])

e "Region" is expressed as either "image binary" or "Debug
Symbol Table."

OVRALI, Module "[name]" has conflicting alignment on overlayed
P-section "[name]"

PARMDEL, Invalid parameter delimiter in option file "[file-spec]"
PRIMIN, Input parameter parse error, code = %X[error code}

PRIMOUT, Image file specification error, code = %X[error codel

PSCALI, Illegal P-section alignment [number of bytes] - exceeds a page
PSCNXR, Transfer address in "[module-name]" not in EXE/REL P-section

® The transfer address is normally in a program section with the
executable and relocatable attributes.

PSCOVFLO, P-section "[name]" overflows region to %X[address]

RECLNG, File "[file-spec]" contains record of illegal length ([number
of] bytes)

RECTYP, File "[file-spec]" has an illegal record (type = [type code])
REDERR, Read failure in pass [number] on file "[file-spec]"

SECOUT, Map file specification error, code = %$X[error code]

SEQNCE, Illegal record sequence

SHRINSYS, Shareable image(s) cannot be linked into a system image

STRLVL, LINK [version] does not implement OBJ level [structure 1level]
- only to [structure level]

e The version of the object language is not compatible with the
current version of the linker.

STKOVFLO, Stack of [number of] pages falls below control region to
$X[address]

TFRSYS, Transfer address in system image "[file-spec]" ignored

TIRLNG, Module "[name]" has relocation command data ([number of]
bytes) overflowing record

TIRNYI, TIR command [number or name] not yet implemented (module
] [name] n)

TRACIGN, Suppression of traceback overidden by DEBUG specification

® Occurs when you specify /NOTRACEBACK and /DEBUG.

LINKER MESSAGES

TRIOUT, Symbol table file specification error, code = %X[error code]

TRUNC, Trunc. error in module "[name]", P-section "[name]", offset
$X[hex value]

TRUNCDAT, Computed value = %X[hex wvalue], value written = %X[hex
value] at %X[address]

UDEFPSC, Attempt to reference P-section no. [number] undefined 1in
" [module name]"

e Undefined program section
UDFSYM, "[symbol namel]"
® Undefined symbol

UNMCOD, Initial file name was "[file-spec]", RMS error code = %X[error
code]

UNRECOPT, Unrecognized option in file "[file-spec]"

UNRECQUAL, Unrecognized qualifier in option file "[file-spec]"
USEUNDEF, Module "[name]" references undefined symbol "[name]"
USRTFR, Image "[file-spec]" has no user transfer address

WRNERS, Module "[namel]" has compilation warnings

WRTERR, Write failure on file "[file-spec]", code = %X[error code]

VALREQ, Value required in qualifier - option file "[file-spec]"

APPENDIX B

IMAGE MAP ILLUSTRATIONS

This appendix illustrates the complete brief, default, and full forms
of a map of the same image. These illustrations do not include a
Symbol Cross Reference map section; however, this section does appear
in Chapter 7 (Figure 7-5).

The illustrations in this appendix are forms of the map used in
Chapter 7.

IMAGE MAP ILLUSTRATIONS

BRIEF MAP

@1=£°0X ONIVA T1=xVA 2141 8l6l=NN{e20
26%L°01 SNId=Al NVYLH04d I3exVA 23,8 GleleA®nel]

401lv3yd 31va NOILV3ND

i 39vd LT1%Tox ¥HINIT T3¢l

14040°9NB3Q(H118AS) 32800 8
21080°39vuaAY [AvaENKW] 2180 2

3114

fuocanssssnsassbsaEscsanans$

1 SISdONAS 3ITNUOW 123180 !t

$+m Seccssncccasssanchsssd

8L61=Nl=821

22

S3lA8

3]
Y]

iN34]

10089N83Q
NIvAS3IOVHIAAY

ANYN 3TNAONW

39va3AY

IMAGE MAP ILLUSTRATIONS

BRIEF MAP

4

39vd

L1°18Xx ¥INIT

N3LLINM SYM SQ¥023¥ 378VL 108WAS TvE0T9 @ 40 viol v

03HO¥V3S ANYHYEIT 3HL NI LON ST08WAS 404 3F¥3w SIHIYVIS AdvaEll 2

$708WAS GANIS3ANN 3AN0S3Y 01 A3LJvdix3d 2 HiIm
0 = ATLIIINEX3 @3LJvalx3 §3T7NA0W 40 ¥38WNN

%2078 83 40 mOQNImM v 9INISN
$%3078 16 40 vi0Ll V QaSSVAWOINI HIIHm
SNOILvy3d0 Qv3¥ %3078 AavesIl @1 3438 I¥3IHL

G31v30717V SXI078 1 HIIM 9 NBA v ONILAVISINILLIINM 3d3M viVa aNg3Q 40 $3LA8 492

S31A8 nb2 ONINIVINOD SUN0IIY VIVQ 9NE83Q 3¥3IM 8 ANV SITNVHEIT NI 4d4M 29 HIIWM 40

6Lt 3(S38Svd HL0®) Qv3y SO¥0J3Y 123760 ¥3IAWNN TviO0L

(39VWI INIGNTIX3I) 39VH0LS vivad 40 $39vd 8L ANV $39vd @81 OL QILIAIT L3S ONINNOM ¥V INISN

1120300800
L0°801002200
d0°epteRtoy
AT R LLT)
92'e0teesay
20*tptvotap
t1°o0t00t20

3WIL 038dV73

w9 bdVN"39VuIAY [AvaENW] 8180w 3714 NI 43148

’

9.L°008100300
pe*ealeeten
" ACTRY-TI'} Y1)
22'vetoaton
S¢*ootooten
2nopleoton
Leopteoto0

Inll ndI

€S =383NTVYA NNY VIOl
2 =3lndiNu 378Vl T0EWAS
0 =31SISHONAS I1NQOW LI3ANED 314V ViVQ dVW
9 =32 SSvd
? «INOILVI034/N0T4VI0TY
e i1 8SVd
"H4 «$9NLSS3I0ud UNVWWOD

$1nvd 39vd

SHILVIIONI 3INVWYE04¥3d

¢eacunetsssssnasannsasd

1 SJILSILVLIS NNY XNIT 8

Pacasansacsssauanaanand

($»307@ °n

(12078 °t

(S39Yd *8S ‘S31AB *96962) 0ONLRBRGD 445.0000 DA200800Q

$3%2078 ‘8 $4lUN3T dVW Q3ILVKILSI

1lVAY0d dVA

*376viN33x3 13dAL 39VNWI
288000020 1683400y ¥346NVEL 3399N630

22980000 1SR3adQy HIJASNVHL H3ASN

] 1GNOI1J3¢ 39vWI 40 ¥IBWNAN

‘el 187084AS IVEOT9 40 wIWUWNN

‘e SSNOLLIAS WYNO0dd 40 ¥3IEWNN

°s $837NA0W 40 ¥3EWNN

i] 183714 40 ¥3AWNN

10 39vVy3AV INOILVIIAILNIQT OGNV 3IWVN 39VNWI

‘s °2 1SLINIT %2018 WNL¥IA ANVNIS 39VWI
b ‘1 $SLINIT %078 WWni¥IA ¥3Qv3W 39VWI
$39vd ‘@22 $3ZI8 NIVIS

$Q3LVI01TV A¥OW3IR TVALYEIA

dosscasnscnvnansand

! SISAONAS 39VWI 1

LX LY

1131 8L6T=N=81

nasand

913x3*3avyIAY [AVHANW]I T8

IMAGE MAP ILLUSTRATIONS

DEFAULT MAP

1

bune

crsasncdesssesd

t HVIM @ M 1
T 378vivI0T3y « ¥ ¢
t AYSHIAINA = N 1
t QaNI43ANN « & 1

dnsscsasanans ase$

13A08V S¥31IVY¥VYHI TvId3ds

Y=@090uABD
L T Y] Seoeoscan aEssas amecseass L XYY ¥} “-esea
aNva T08WAS 3NvA 108WAS T08WAS INTeA
tmansscacccanscssnand
T 3WYN AH §708wAS 1
drecscasasccscanannd
B 31AY (°®) 92080000 L0QWABRQ VESVDVYO 10089n8aq
L¥m Q¥ ‘3x3 ‘YHSON'IITIHINOI‘HSNYITIAON & FiA8 (') 8000V000 L0O9000OD VPEDADOD
2 9NOT (°*8gl) VE0V0ODAG 69904000 PE920B0VD NIVWSIOVAIAY
LY¥MON’QY “3x3 ‘aHS ‘727 13u'NOJ‘NSN’I1d 2 9NOT ('8gt) v8DUodeC 689008VD BR292020Y
2 INOT (*2Y) 0200200 8UNOBLOY 20NBARRD NIVWSIOVNIAAY
ldw 0y ‘IXION‘AHBON‘TITININDI‘HSN‘IId 2 9NOT (°21) J20Vo0R¢ QONVDVdY 20N00ROR
2 9NOT (*2s) nEPURBPd £E200000 CV20VB0R NIVWS39VHIaY
LAMON‘GY ‘3X30N‘dHS ‘127734 'NOJ’¥SN*I1d 2 9NOT ('es) nEP0oBRd £9200020 PO2BOROR
S3LNBIYLLY NSIV HLONIT an3 3sve ($)31nQuNn
4t2svassnsncnssnasanacscacnand
1 SISJONAS NOILI3S nvN90Ne !
dasssscsanconacsananssasnasnnd
Bleg’aX OHIVYW TT=XVA uuma 8L6T=NNI=20 14r00°9n830(8178A6) 32880 8 o
26=L°021 SNVd=Al NVHLHO4 TTex¥A 2350 @Bl6l=ABn=]] 240a0'39vyaAvAvaanNn] tTaa 202 i2
Sacseoses Saseanscesashes sSeaae aases cenes
d0lv3ayd 31va NOILV3N¥D 314 S3lA8 In3ul

39vd

L1°1@x H¥INNIT

donconsnasrsacsnsnsssaanan

1 SIS8dONAS 3INAOW 423180 !

¢ansassasasa aad

vlisl eLel=TNrapt

¥04 A3x

NIVHSIOVHIAY

F08KWAS

' %NV °
3003$
vi0s
vivads

IWVYN L133Se=g

l0089n83Q
NIVWSIOVHIAY

INYN 3NA0K

39vu3AY

IMAGE MAP ILLUSTRATIONS

DEFAULT MAP

4

39vd

L1°1eX ¥IANIT

N3ILLIdM SVM SQu0J3¥ 378VL T08wAS TvE0T9 0 40 TVIO0L ¥

G3HIHV3IS A¥VNEIT 3ML NI LON ST08WAS ¥04 3¥3w SIHIUVIS A¥VAEIT @

$708WAS Q3INI43UNN 3AT083y 0L 034Jvaix3 2 HLIIm
2 = ATLIJITTdX3 Q31Jvalx3d $37INAOW 40 ¥IBWNON

$»3078 27 43 mOQNIM v ONISN
S¥3078 16 30 vI0L Vv GIaSSVAWOINT HIIHM
SNOTLVYY¥3d0 QV3IY MI018 Aavagll @21 Juim I¥IHL

@34vI0TTY $¥J3078 T WiIIM 9 NBA Lv ONILYVLISINILLINM 3¥3r viVO ang3Q 40 $3LA8 L92

S3ILAE P62 ONINIVINOD SON0J3d VIVQ 9N83Q 3¥3M 8 ANV SITHVHAIT NI 4¥dm 29 HIIWM 40

64t $($39Svd HL08) Qv3Y SQu0J3y LI3rd0 ¥36WNN TviOL

(39vWI ONIANTIXI) 39VHOLS viva 40 $39vd VL ONV S§39vd @871 0L Q3LIWIT L3S ONIMHOM vV INISN

29°20tudiee
11°00200300
90°00320100
9e‘ootodtan
s2'aoteeten
L1°tateotoe
21°0atuotae

INIL 038dVN3

wSldYR*39vH3AVIAVEYNW] 118As 3714 NI ANV33Q

(839vd *8S ‘s3lAe

£9°00t00380
Pe*oetvesed
TM-UH-TH I}
l2epteosen
reteotanioe
in*eetoveteon
na‘osiootoe

INIL Ndd

«3183NIYA NN vi0d
«iiNdlN0 378VL T08WAS
S «ISISEONAS 37NA0W 133080 a3,4Y VIVD dVW
s -12 §Svd
e «INOILY20934/NOILYION Y
(4] =31 S8vd
82 =39NiS83I08d ANVWWOD

§Lnv4d 39vd

si *
]

S¥ILVIIANI 3IINVWHOHd3d

bonscnvonsusnseancassansd

! SIILSILVLIS NNy MNIT !

X YT Y Y P LY Y

(sx30%8 *n

Oi3078 *3

*96962) 0BNLP0P0 44S.0000 Q02008000

sassued

s$¥J078 ‘Lt $4l9NIT dvW QILVWILS3

1lvWd0d dVW

*374vindax3 $3dAl 39Vnl
CLELY.CET toguday ¥IASNVAL ¥399N83Q

289000290 19R340QY 234SNvHL ¥3SN

] ISNOI L1338 39vWI 340 ¥IBWNN

‘ol 187084A8 V8019 40 ¥3IYWNN

‘e tSNOILI3S WYYO0N¥d 30 ¥3IEWNN

's $837NA0W 40 HILWNN

*n 1837114 40 ¥3AWNN

10 39va3AY INOILVIIAILNIAGL ANV 3WVN 39VWI

‘s *2 $SLINIT %3078 WNLNIA ANYNI® 39VWI
b ‘s $SLINIT %2018 WNLNIA ¥3AV3H 39VWI
$39vd ‘02 $3218 %IViS

$1Q3LVI0TY AdOWIW TVNLYEIA

éncansccccacnasand

! SISHONAS 39VWI !

dasnnnanse

B11ST 8l6l1=TN0=01

aanad

S43x3*FovyIAvIAvHENW] 1180

IMAGE MAP ILLUSTRATIONS

FULL MAP

1

L1°10X 2SeXNIT 12708 8L6l=1Nr=81
T1=€°0X OMIVA TlexvA 2icl 8L6T=NAf=S2
T1=E°3X OUIVW TTexVA Sinl QLoTaNN[=ST
@1=€°3X Q¥IVW TlaXVA 214l @Lel=NNl=20
262401 SNTd=Al NVHLHO4 TTexvA 2170 @glele=Avyell
LI Y YT Y T) oossavcenasnens
¥O1v3yd 31v3 NOI1V3¥D
I9vd LT°T2X ¥DINIT

243x3°1LuSWA [B11SAS) 32880
20870°1374vLS{8115A8) 12u80Q
26870°1379vLS (81754A8) 2268

14r90°9N8340(8178AS]) 2268Q
260r80°39vy3IAvAvyaNW]tTEa

N4

dacscncsnsnssscsssanssssannd

1 SIS4ONAS 3INAOW LJ3080 !

dacenascvasnancscssanacs -d

6831€1 8L6T=N1=01

NS S

eee

$3lA8

nyéaxa’
4]

=0

ie

e

in3dal

LUSHA
d0LJ3ASAS
JIMININSESLO
lo089n83Q
NIVWSIOVNIAY

IWYN 3TNAOK

39V H3IAY

IMAGE MAP ILLUSTRATIONS

FULL MAP

2

66
66
66

QINONIW

39vd

aId0rvw

IvyNBa/8837
BAULEVALTER
AL OLEVALER

INYN

L1°10x ¥ANNIT

€887 11UEKA
2807 1L8SKHA
1207 1L d8nWA

‘189

438 NO AdOD 34184 Qv3Iy
AINO QV3IY

ATINO Qv3Iy

0¥3Z ONYW3Q 3iIam QvIY
434 NO AdOD 3.iIdm Qvay
ATINO Qv3y

433 NO AdOJ 3lldm Qv
AINO QV3¥
oesaboesaataattonteans
ONI9Yd ANV NOILI3iONd

EX Y LY T

[} '] vagleooe
"] [’} ny210000
] [’} o2voveao
] [LELEFETS
[} S 00800008
[} L ve9BoRe
2 by venooReR
2 2 00200000

J4d N8A X%SIQ ¥QQv 3Sve

scensssssucansd

1 SISAONAS NOILJ3§S 3F9VWI !

doacsccnsnsstcucnsssssansd

60181 8L6T=IN0=01

2 n

ey €

(X 3 TLESWA
o2 £se

1 "

1 a

1)

1 A 343481374V 430
$39vd ddAal ¥318071)

£43x3°3avu3Av [Avaanwl ttad

IMAGE MAP ILLUSTRATIONS

FULL MAP

£

39vd

lym ‘qy

L¥MON ‘ QY

LHUMON ‘Q¥

lum ‘0y

LYMON‘aY

B 31A8 (°0) Qvdvenes
2 31A8 (*0) 00VRoVRY
B 31A8 ('8) evouvoene
f3X3 ‘HHBON‘I3T1THNOI'HSNYII4ON @ FLA8 (°8) sovBBRVe
2 INOT (°%) $0000000
f3X3 ‘HS ‘I137°194NOJ‘N¥SN’IId 2 9INOT (‘€) €0000000
2 9NOT (°rel) veeensse
3x3 ‘uMS 'T1I17139NOJ2‘NSNYII4 2 INDT (et) veeopoed
2 9NOTY (°21) Jvvvevor
fIXION‘AUHSON 41714734 'NOI Y¥8N*ITI4 2 ONDT (°28) Jeavpeen
2 9NDI (‘2) hsevaoe?
‘IXION‘HHS ‘T1IT13YINODHSN DI 2 INOT (°2s) nE20pa0R
s3inalaly NOIY Hi9N3T
LY TY Y YYYYS

L1°19X ¥INIT

90800000
gogevUee
LOguobOR
LogdoveR

18900000
39900000

68920002
68908902

40novood
aon20e0e

f1200000
£e200000

an3

ssessand

1 SISHONAS NQILI3S wWvHOOud !

doacsasevcssancacaconasssananyd

68181 §L61=INr=01

g0900veR
g0820000
00800008
20800080

J8900000
Js9eceoe

00908000
Q6900000

2ohe0000
denveeoe

oB2vRese
202002000

asve

¥01J3A84S
JOVINIIsSI0
100891834

JOVHINIT&SL0

NIVWSIOVNIAY

NIVWS39Vaday

NIVWS39VNIaAY

($)3nQun

* %NV

30028810

30038

Tvi07s

vivads

INVYN 133S=d

£43x3°39vuIAY [AVHENW] 2180

IMAGE MAP ILLUSTRATIONS

FULL MAP

L

INVA

39vd

108nAS

L1%18x ¥HINIT

T0ENAS

broasnsnnssacnnaand

1 3wVYN A8 ST0EnAS !

dracsccscnncssnscnand

68151 9L6T=Nr=01

q08WAS

CLALELTL]
d=J89¥v0uY

0B9VaduYY
Ny=84J84000
NY=0936000d
NY¥=0SJB20v0
NY=03q30v0vd
NY=R8J04000
NY=8VIBALBLY
Y=PV90uduid

anvA

VAISOWISSAS
F9VININESL0
NOISH¥IATHSEIN
4STILTuMsN04
d0LS$¥04
487Qv 348804
4T1T0oIsu04

a7 470Isu04
ON3ITOISH04
NIVWSIOVHIAY

T0EWAS

£43x3°3avyIAv[AvaENA] L TEA

IMAGE MAP ILLUSTRATIONS

FULL MAP

S

39vd

L1°1ax d3INIT

tesnncccanrcansaan=d

XYM = wM

1
1 378vivI03y = ¥ !

1
1

TYSHIAINN = N T
Q3INI43GNN = & 1

desasncnanccacnsnand

$3A08Y SH¥3LIVHVHI TvI134S 404 A3N

NOIS¥3ATSEIN

*SI08WAS

tmanas

1 aNTvA A8 $708wWAS 1

¢mosnvascsssssaannnnd

683t 8l6T1=N0 =21

shsancsvaswd

VISOATSESAS 89%v0008
d0LeSH04=NYy 29302000
¥TIT0TSa0 =Ny 2QJ00000
¥T4TOTSH0 4Ny 28700000
QON3T0rSH04=NY Qvicoeee
4873L14wsu04=NY 88300000
48TQv3HSa0d=NY 25300000
F9VINISSL0=d J8900000
NIVWSIOvyaAVel 20900000

£43x3°39vy3AV [Avaanw]) tiag

B-10

IMAGE MAP ILLUSTRATIONS

FULL MAP

9

39vd

N3LLIym SYM SQ¥0J3n 318VLI T08WAS 1vE0TD @ 40 Viod ¥

G3HJ4Y3S AUYHEIT 3HL NI LON S$T708WAS ¥0J I¥3Iw SIHIUVIS AdVHEIT @

$708WAS J3INI43ONN 3AT083Y 0L A3ILIVHLIXI 2 HLIIm
2z ATLIJINdX3 Q3LIvHlx3 $3NA0W 40 HIEWNN

$%3078 21 42 mOAONIM v ONISNH
$%20778 T6 40 TviOL ¥ Q3ISSYAWOINI HIIHM
SNOILVH3d0 Av3y¥ XI07€ AavagIl 21 Jy3am 3d3HL

Q3L4VI077Y 3078 1 HLIIM 9 NEBA LV ONILNVAIS'N3LLINM 3J¥3m ViV ang3Q 40 $31A6 492

S§31A6 762 ONINIVINOD SQ¥0J3¥ vivd 9NE3Q0 3I¥3M 8 ONV SIIHVHAIT NI d¥dm 29 HIIHM 40

oll $1(S3SSvd HI0B) QY3Y¥ SQ¥O0I3IY LI3r80 ¥IEWNN vi0L

(39VWI ONIGNTIX3I) 3IOVHOLS viva 40 S3ITVd VT GNY §39vd 081 OL QILIWIT 148 ONINHOmM ¥V ONISN

LL*20%08800 (X} =3183NTVA NNY vi0ld
21'¢otecion go°00tocioD @ «1lNdiNo 378VL 108WAS
AT HTHT) St'ootecion 11 *1SISdONAS 3INAOW L1I3L8BO #4314V VLIVA dVW
CEMC PR RET) 12%eeteotee L =12 §Svd
28 'eunioRion fo'eptopton 2 «INOILVI03N/NOILVI0TTY
£1°10t00t00 Lh'epteiol en =t] §Svd
£1'entooto0 Lo‘eotootop st «19NTS8S3J08d GNVHNWOD
SO0 saaseas L T] --e LI L XY ¥ J ;amen aAeds - cSeasealeben
3IWIL 038dvI3 3WIL Ndd S4NVY 39vd S¥NLVYITANI 3INVYWHOAB3d

¢tusacscesnsccocannnasnasad

1 SJTLSILVLS NNYE XNIT 1
joccansasncacvssascancnns
$X2018 ‘92
wEldvn®IOVHIAV [AVEENA] 388G 3714 NI N4
*378viNd3x3
vogeoeeR
20900200
‘e
‘ot

T2 39vy¥aAy
($%3078 °*h) °s *e
(%2078 °*t y v 't
$3a9vd ‘@2
(839¥d °8S ‘S3LlAB *96962) 0BH.LO200 145.00800 02200000

Pmsonscssncssanascad

! SISJONAS 39Vnl !

tmssncscansnsnannad

L1°18x ¥9ININ 601ET 8L6T Nl =0T

P lINIT dYW Q3LVWILS3
1iVnd0d dVNW
t3dAl 39VNWI

168340ay ¥I4SNVYEL ¥399N83Q
1883400y ¥3IJSNVHL ¥3SN

ISNOI L1338 3I9VYWI 40 ¥3IGRWNN

1ST108WAS IVE0T9 40 ¥3ISWNN
ESNOILI3S WYNI0¥d 40 H3IEWNN
£837NA0W 40 ¥3IENNN

183714 40 ¥3GWNN

INOILVIIAIINAQY ONY IWYN 39VWI
ESLIWIT %2078 IvNLHIA ABYNIE 39VYNWI
1SLIWIT %3079 IVNLEIA ¥3AV3IK 39VWI
83218 »Ivis

$Q31VI09°Y AMOWIW TVNLNIA

£43x3°3avy3AY [AvadNK] 1180

B-11

APPENDIX C

VAX-11 OBJECT LANGUAGE

The object language description in this appendix is taken from DIGITAL
software specifications.

C.1 INTRODUCTION

This document is a specification of the Object Language accepted by
VAX-11 Linkers, Object Module Librarians, and Object Patch Utilities.

The Object Language specified herein is for use by all VAX-11 family
software - 1i.e., no subsetting will occur. All language processors
which produce code for execution in native mode are free to use any or
all of the described functionality.

C.1l.1 Summary of Language

Object modules are the input to the Linker and are obtained from the
various language processors as individual files or as object library
files. All symbol table files created by the Linker are also in the
format specified here.

An object module consists of an ordered set of variable-length
records, of which the following types are defined:

OBJ$C_HDR 0 - Header Record (HDR)

OBJ$C_GSD 1 Global Symbol Directory Record (GSD)
OBJ$C_TIR = 2 - Text Information and Relocation Record (TIR)
OBJSC_EOM = 3 - End of Module Record (EOM)

OBJ$C_DBG =

-
I

Debugger Information Record (DBG)
OBJSC_TBT = 5 - Traceback Information Record (TBT)

OBJSC_LNK = 6 - Link Option Specification Record (LNK) (Ignored
by Release 1 of VMS Linker)

Refer to Figure C-1 for an illustration of the order in which record
types appear in the object module.

It is mandatory that there be at least two HDR records and exactly one
EOM Record. These records must begin and end the module,
respectively. Within the module, there must be at least one GSD
record and there may be any number of TIR, DBG, TBK and LNK records.

VAX-11 OBJECT LANGUAGE

As is described below, some ordering is implicit within the set of GSD
records,

In this document, the term "reserved" implies that the item must not
be present, as it is reserved for possible future use by the Linker
and DEC. If the particular implementation of the Linker does not have
a specification of wuse of such items, an error will be produced if
such an item is encountered.

All unused and ignored fields of records must be padded to conform to
the block 1lengths specified herein. The content of such fields will
be completely ignored by the Linker, and any other processors.

The remaining possible language record types are allocated as follows
but not defined in this specification:

Type 7-100 Reserved for future use by Linker

Type 101-200 Ignored always and completely

Type 201-255 Reserved for CSS and customer use
(Ignored by initial implementation)
MHD Module Header Record
GSDi Global Symbol Directory Record
TIR Text Information and Relocation
TIR Records
GSD Additional Global Symbol Directory
DBG Debugger Information Record
TBT Traceback Information Record
TIR More Text Information and Relocation
GSD More global symbol information
TIR More text
EM End of Module
Figure C-1

General Structure of an Object Module

This language is a development from RSX-11l systems. The reader who is
not familiar with the RSX-11 Task Builders 1is referred to the
documents listed.

VAX-11 OBJECT LANGUAGE

C.2 GLOBAL AND UNIVERSAL SYMBOLS AND NAME FORMAT
The Linker deals with two types of symbols, global and universal.

Global symbols are those symbols which are accessible to more than one
module of the set being linked. Universal symbols are a subset of the
global symbols. They are ones which the Linker retains when 1linking
an 1image to which another set of object modules and/or images will
subsequently be bound.

As well as the names of symbols, the Object Language deals with the
names of p-sections and object modules and may contain the names of
language processors and utilities. All such names are represented by
a l-byte character count followed by the ASCII character string.

The first customer ship (FCS) implementation of the Linker limits such
name strings to 15 characters, except in the case of header record
types 1-255 (see below). The size of symbols and names, etc., is
given by the parameter OBJ$C_SYMSIZ.

C.3 MODULE HEADER RECORDS (HDR)

This is a new type of record that is additional to the 1language used
in RSX-11. Its purposes are to collect in one place all module-wide
information, to include information never included by RSX-11, to
permit more functionality in the Librarian and Patch utilities, and to
permit extensibility of the language.

The MHD (Main Header Record) record contains the following information
in the format shown:

RECORD TYPE O 1 byte
HEADER TYPE O 1 byte
STRUCTURE LEVEL 1 byte
MAX RECORD SIZE 2 bytes
MODULE
NAME Variable (2-16 for FCS)
MODULE
VERSION Variable (2-16 for FCS)
CREATION
TIME 17 bytes
AND DATE
TIME AND
DATE OF 17 bytes
LAST PATCH

All entries are required. Detailed descriptions of the fields follow.

VAX-11l OBJECT LANGUAGE

C.3.1 Header Type
The language defines a general class of header records. Type O

(OBJ$C_HDR_MHD) is the record depicted above and is required in every
object module. Other types are described below.

C.3.2 structure Level OBJ$C_STRLVL

It is intended that the format of the MHD record remain fixed from
first implementation onward. The structure level is provided such
that extensions to the language, which require changes to other record
formats, can be dealt with without requiring recompilation of every

module which conforms to the previous format. The structure level is
zero FCS.

C.3.3 Maximum Record Size OBJ$C_MAXRECSIZ
The size in bytes of the longest record that can occur within this

object module. Limited by file system only. The FCS implementation
sets a practical limit of 512 bytes.

C.3.4 Module Name
The module name conforms to the format of all other names, i.e.,
length contained in a byte followed by an ASCII string. If the module

is a symbol table created by the Linker, the name will be the image
name assigned at link time.

C.3.5 Module Version

The module version conforms to the format of all names in the object
language.

C.3.6 Dates And Times
There are two date and time fields - that for module creation and that
of the last modification to the module (e.g., by an object module
patch utility). The format is a fixed l1l7-character ASCII string:
dd-mmm-yyyy hh:mm
where:
dd = day of month

mmm = standard 3-character abbreviation of month.

yyyy = year. Note the space that follows.

hh hour of day 00 to 23.

mm minute of hour 00 to 59.

VAX-11 OBJECT LANGUAGE

C.3.7 Other Header Records

The purpose of sub-header records is primarily to contain optional
textual information in printable form. Each record consists of a byte
which is zero to indicate a header record, followed by a sub-type
byte. The following sub-types are defined.

OBJ$C_HDR_LNM

1 - Language Processor (LNM) Name and Version.
One record 1is required and limited for FCS
implementation to 35 characters. The content
of this record appears on the 1link map

output.

OBJ$SC_HDR_SRC = 2 - List of file-specifications for the source
files from which object module was created.
Multiple records are permitted. (Ignored by
FCS)

OBJ$C_HDR_TTL = 3 - Title text (e.g., brief module description).
Only one record permitted. (Ignored by FCS)

OBJSC_HDR_CPR = 4 - A copyright statement. Only one record
permitted. (Ignored by FCS)

OBJSC_HDR_MTC = 5 - Maintenance Status. (MTC) Multiple records
permitted. (Ignored by FCS)

OBJSC_HDR_GTX = 6 - General Text. Multiple records permitted.

(Ignored by FCS)
Types 7-100 are reserved.

Types 101-255 always ignored.

C.3.8 Header Types 1 through 4 And 6

The purpose of these records is to allow the language processors to
provide printable information within the object modules for
documentation purposes. The only format definition is that the record
contain printing ASCII characters. Types 4 and 6 may be generated by
users, whereas types 1 through 3 are restricted to the language
processors.

C.3.9 Maintenance Status Header Record (MTC)

This record is of concern only to the object module patch utility. It
is ignored by the Librarian and the Linker.

VAX-11 OBJECT LANGUAGE

The format is as follows:

RECORD TYPE 0 1 byte
HEADER TYPE 5 1 byte
PATCH variable
UTILITY NAME 2-16 bytes
UTILITY variable
VERSION 2-16 bytes
UIC 2 bytes
INPUT FILE variable
SPECIFICATION 2-42 bytes
CORRECTION FILE variable
SPECIFICATION 2-42 bytes
DATE + TIME 17 bytes
SEQUENTIAL PATCH 1 byte

C.3.9.1 Record Type - Zero signifies a header record.

C.3.9.2 Header Type - The type is 5 signifying a maintenance status
record.

C.3.9.3 Patch Utility Name - This name identifies the patch utility
used to perform this patch on the module.

C.3.9.4 Utility Version - The patch utility is further identified by
its version number.

Cc.3.9.5 U.I.C. - This is the user identification code under which the
patch was made.

C.3.9.6 Inut File Specification - This filename identifies the input
file for this patch.

C.3.9.7 Correction File Specification - This filename identifies the
correction file for this patch.

VAX-11 OBJECT LANGUAGE

C.3.9.8 Date & Time - This 17-byte field contains the date and time
that this patch was performed. Format is as described above.

C.3.9.9 Sequential Patch Number - This number is a sequential count
of the patches made to this module. ‘

C.4 GLOBAL SYMBOL DIRECTORY (GSD) RECORDS (OBJSC_GSD)

Global symbol directory records contain all the information necessary
to allocate virtual address space and to combine all the program
sections into the separately protectable sections (image sections) of
the image being created.

GSD records are of the following types:
OBJSC_GSD_PsSC

OBJ$C_GSD_SYM
OBJ$C_GSD_EPM

0 - P-section definition.

1l - Global Symbol Specification.

2 - Entry Point Symbol and Mask
Definition.

3 - Procedure and Formal Argument
Definition.

OBJ$C_GSD_PRO

Within any GSD record, there may be many entry types. In such cases,
a single record appears as the concatenation of many, with the
omission of the byte containing the Object Language record type (the
value OBJ$C_GSD).

C.4.1 P-Section Definition (OBJ$C_GSD_PSC)

The format of a p-section definition is as follows:

RECORD TYPE 1 1 byte
GSD TYPE 0 1 byte
ALIGNMENT 1 byte
FLAGS 2 bytes
ALLOCATION 4 bytes
P-SECTION Variable
NAME 2-16 bytes

C.4.1.1 P-Section Name - This name has same format as all other
symbol names.

VAX-11 OBJECT LANGUAGE

C.4.1.2 Alignment - This field specifies the virtual address boundary
at which the p-section will be placed.

0 BYTE

1 WORD

2 LONGWORD

3 QUADWORD

i.e., n 2**N BYTES

Where n=0 to 9

Nine indicates page alignment and is the 1limit for p-section
alignment,

Each module contributing to a p-section can specify its own local
alignment with the restriction that p-sections whose contributions
overlay each other must all have the same alignment. It should also
be noted that an alignment specified within a p-section (e.g.,
assembler .ALIGN directive) must be 1less than or equal to the
p-section alignment to be guaranteed. For example, byte alignment of
the p-section may or may not cause longword aligned elements within
the p-section.

C.4.1.3 Flags -

Bit Name Use (meaning if set)

0 PSC$V_PIC P-section defined as position independent.

1 PSC$V_LIB The p-section was defined in the symbol table
of a shareable image, to which this. image is
bound.

2 PSCS$V_OVL Contributions to the same p-section are

overlaid. (The complement is concatenation).

3 PSC$V_REL P-section requires relocation (complement,
i.e., bit=0, means absolute and contains only
symbol definitions, thus the allocation of an
absolute p-section is zero).

4 PSC$V_GBL Scope of p-section is global. (Complement is
local).

5 PSC$V_SHR P-section is potentially shareable between
two or more active processes.

6 PSC$V_EXE The content of p-section is executable.

7 PSC$V_RD The content of the p-section may be read.

8 PCS$V_WRT The content of the p-section may be written.

9-15 Reserved.

Discussions of p-section attributes may be found in the related
documents. [See also Section 2.5.4 of this manual.]

VAX-11 OBJECT LANGUAGE

C.4.1.4 Allocation Field - The allocation field contains the length
contribution to the p-section in bytes. It must be zero for an
absolute p-section.

P-sections are assigned an identifying sequence number as their
respective GSD records are encountered. The p-section number ranges
from 0 through 255 within any single module. Note, however, that the
total number of p-sections in a single link operation is bounded only
by the Linker's virtual memory requirements. This p-section number is
used as an index in all references to the p-section. Note that this
permits any mixture of GSD records, as long as p-sections are defined
to the Linker in the same order as the index used by symbol
definitions.

C.4.2 Global symbol Specification OBJ$SC_GSD_SYM

Global symbol specification records may appear anywhere between the
MHD and EOM records and in any order.

The format of a global symbol specification is as follows:

RECORD TYPE 1 1 byte
GSD TYPE 1 1 byte
DATA TYPE 1 byte

FLAGS 2 bytes
PSECT INDEX 1 byte

5 bytes omitted
for a reference
VALUE 4 bytes (i.e. when
SYM$V_DEF=0)

SYMBOL Variable
NAME 2-16 bytes

C.4.2.1 Data Type - The data type record is encoded as described in
Appendix C of the VAX-11/780 Architecture Handbook.

NOTE

The first implementation of the Linker
ignores the data type field.

VAX-11 OBJECT LANGUAGE

C.4.2.2 Flags -

Bit Name Use

0 SYM$V_WEAK 0 for strong resolution.
1 for weak resolution.
Table C-1 describes the usage of SYM$V_WEAK
in conjunction with the definition bit
(SYM$V_DEF) .

1 SYMS$V_DEF 0 for reference
1 for definition

2 SYM$V_UNI 0 for within facility
1 for universal symbol
This bit is only of significance on a
definition. It indicates the symbol is to
be retained if this facility is shareable.
3 SYMSV_REL 0 for absolute symbol value
1 for relative symbol and the value is
augmented by the indexed p-section base
address (of this module's contribution)
4-15 Reserved.

Table C-1
Interpretation of SYM$SV_WK and SYM$V_DEF

SYM$V_WEAK SYM$V_DEF Interpretation
0 0 Strong Reference - symbol must be
resolved
1 0 Weak Reference - only resolved if the

symbol 1is defined for some reason
other than this reference. Does not
incur any searches or module loads.
Has the value zero if undefined, with
no error report.

0 1 Strong definition - will remain in all
required symbol tables/maps.

1 1 Weak definition - will be discarded
from all symbol tables/maps unless
there was a reference. Will also not
appear 1in the global symbol table
index of an object module library.

C.4.2.3 P-Section index - The p~section index is a number between 0
and 255 to be used as an index into the sequence of p-section
definition records. This field exists only for symbol definition
records (SYM$V_DEF=1) and identifies the p-section in which the symbol
was defined. The index is also used in TIR commands (see Section
5.1.1) for reference to p-section base addresses.

VAX-11 OBJECT LANGUAGE

All symbols encountered must be defined within a p-section,
independently of the relocatability of p-sections or symbols. For
example, the Linker does not require the base address of the "owning"
p-section if the symbol 1is absolute. However, for the purposes of
generating a readable map, it is very useful to maintain the hierarchy
of symbol within p-section within module within file.

C.4.2.4 Value - This field contains the value assigned to the symbol
by the language processor. This field does not exist if the record is
a symbol reference (SYM§$V_DEF=0).

C.4.3 Entry Point Symbol and Mask Definition (OBJ$C_GSD_EPM)

This format is an extended version of the global symbol definition
format above. Following the symbol value (which will be an entry
point address) is a two-byte field for the procedure's register save
mask (as used by CALL instructions). The format is as shown below.

RECORD TYPE 3 1 byte
GSD TYPE 2 1 byte
DATA TYPE 1 byte
FLAGS 2 bytes
PSECT INDEX 1 byte
VALUE 4 bytes
ENTRY MASK 2 bytes
SYMBOL variable
NAME 2-16 bytes

C.4.3.1 Entry Mask - The entry mask is written at the entry point of
a procedure entered via a CALLS or CALLG instruction, and in some
cases also is used in transfer vectors to such procedures. A TIR
command (see Section 5 of this appendix) is provided for the language
processor to direct the Linker to insert the mask at the procedure
entry point or at the transfer vector.

VAX-11 OBJECT LANGUAGE

C.4.4 Procedure With Formal Argument Definiton (OBJ$C_GSD_PRO)

This GSD format is an extension of the entry point and mask definition
format to define the formal arguments of the procedure. The format is
as shown below.

RECORD TYPE 1 1 byte
GSD TYPE 3 1 byte
DATA TYPE 1 byte
FLAGS 2 bytes
PSECT INDEX 1 byte
VALUE 4 bytes
ENTRY MASK 2 bytes
SYMBOL variable
NAME 2-16 bytes
MIN ACTUAL ARGS. 1 byte
MAX ACTUAL ARGS. 1 byte
FORMAL ARG 1 \

DESCRIPTOR variable length
(2-256 byte)
descriptors of

> formal arguments
arg n is optionally
function return
FORMAL ARG n value,
DESCRIPTOR)

Following is a description of the fields of a procedure definition
which are in addition to other GSD records.

C.4.4.1 Minimum and Maximum Actual Argument Counts - Permissible
values are 0 to 255 and specify, respectively, the minimum number and
the maximum number of arguments required for a valid call to this
procedure. The counts must include function return value if such
exists.

The FCS implementation does not validate procedure calls. However,
for its own integrity it validates that minimum number of actuals is
less than or equal to the maximum number of arguments. The maximum
number of actuals field is then used to process the formal argument
descriptors.

VAX-11 OBJECT LANGUAGE

C.4.4.2 Formal Argument Descriptors -~

Each of the formal argument descriptors of the record shown above has
the following format:

ARG. VAL. CTL. 1 byte ARGS$BVALCTL
REM. BYTE CNT. 1 byte ARGSBBYTECNT
DETAILED variable
0-255 bytes
ARGUMENT
ignored by FCS
DESCRIPTION implementation

C.4.4.2.1 Argument Validation Control Byte - This (the first) byte of
each formal description is used to control the validation of the
argument. The only field of this control byte used by the 1linker is
as follows:

Bits 0:1 ARGSVPASSMECH - Describes the mechanism by which the
argument of a valid call must be passed.

Bits 2:7 Reserved - Ignored by the FCS implementation.

The following argument passing mechanisms are defined:

ARGSK_UNKNOWN = 0 Unspecified
ARGSK_VALUE = 1 By value
ARGS$K_REF = 2 By reference
ARGS$K_DESC = 3 By descriptor

C.4.4.2.2 Remaining Byte Count - This field gives the length of the
remainder of this argument descriptor. For FCS implementation, it is
used as a count of bytes to be ignored by the linker. The content of
these remaining bytes is of a format not specified here and reserved
for possible future implementations.
NOTE: Any usage of formal argument descriptors in which

ARGSB_VALCTL bits 2:7 NEQ 0
and/or

ARGSB_BYTECNT NEQ 0

means that, should argument validation be implemented in a future
VAX-11 linker, re-compilation of all such objects may be necessary.

VAX-11 OBJECT LANGUAGE

C.5 TEXT INFORMATION AND RELOCATION (TIR) RECORDS (OBJ$C_TIR)

Text information and relocation records contain a sequential series of
commands and data for the Linker to compute and record the contents of
the image. The general form of a TIR record is as follows:

RECORD TYPE 2 1 byte
COMMAND 1 1 byte
DATA 1 —
COMMAND 2 1 byte
byte
DATA 2 - count
implied
by command.
COMMAND N 1 byte
DATA N -

C.5.1 Commands

The Linker's creation of the binary content of an image file is
completely driven by the language processor via the commands contained
in TIR records. To achieve this, the Linker maintains an internal
stack.

The commands available allow values to be placed on the stack and
operations to be performed on the items on top of the stack. These
commands also permit the writing of values from the stack to the
output image. Other commands permit the storing of a sequence of
bytes from object module to output image without alteration by the
Linker. They also provide for control of the relocation of the
position currently being written in the image.

In commands which refer to p-sections, the names are identified by the
sequence numbers assigned to them as described above. The p-section
indices are in the range 0 through 255.

The command byte has two formats:

7 6 0
1 —COUNT FORMAT 1
76 0
0 COMMAND FORMAT 2

VAX~-11l OBJECT LANGUAGE

The only command with FORMAT 1 is the Store Immediate (STOIM), which
merely causes the copying of the following bytes (given by the
negative count in the range -1 to -128) into the output image.

All other commands are described by the second format. There are four
groups of commands:

Stack Group
Store Group
Operator Group
Control Group

The stack upon which these commands operate is longword aligned at all
times. Furthermore, it must be completely collapsed at end of module,
but is retained between all other record types. The minimum stack
space available will be not less than 25 longwords.

C.5.1.1 Stack Group - The stack group of commands provides the
capability to store bytes, words, and longwords on the stack. The
value placed on the stack may follow the command in the TIR record;
it may be found from a global symbol; or it may be computed from the
base address of a p-section. Except for stacking the value of global
symbols or stacking addresses (calculated from p-sections), both
signed extension to longword and zero extension to longword are
provided for byte and word stack operations.

Code Command Description/Interpretation
0. Stack Global Symbol specification follows. As
(TIRSC_STA_GBL) with all other names, it consists

of the symbol 1length in a byte
followed by the ASCII string
defining the symbol:

LENGTH 1 byte

SYMBOL Variable
1-15 bytes

The value found from the symbol
table is a 32-bit quantity.

1. Stack Signed Byte Single signed byte constant
(TIR$C_STA_SB) follows. Value 1is sign extended

to 32 bits.

2. Stack Signed Word Single signed word constant
(TIR$C_STA_SW) follows. Value is sign extended

to 32 bits.

3. Stack Longword Single longword constant follows.
(TIR$C_STA_LW)

4, Stack PSECT base l-byte p-section number followed
plus byte offset by single signed byte offset.
(TIR$C_STA_ PB) A 32-bit quantity is computed by

addition of p-section base

address and the byte offset.

Code

5.

10.

11.

12.

vaX-11 OBJECT LANGUAGE

Command

Stack PSECT base
plus word offset
TIRSC_STA_PW)

Stack PSECT base
plus long word offset
(TIR$C_STA_PL)

Stack Unsigned Byte
(TIRSC_STA_UB)

Stack Unsigned Word
(TIR$C_STA_UW)

Stack Byte From Image
(TIRSC_STA_BFI)

Stack Word From Image
(TIR$C_STA_WFI)

Stack Longword From
Image (TIR$C_STA_LFI)

Stack Entry Point Mask
(TIR$C_STA_EPM)

Description/Interpretation

1-byte p-section number followed
by single signed word offset. A
32-bit quantity is computed by
addition of p-section base
address and the word offset.

l-byte p-section number followed
by signed longword offset. A
offset. A 32-bit quantity is

computed by addition of p-section
base address and the longword
offset.

Note that although the offsets in
the above three commands are
signed, negative values are very
rarely correct. Note also that
the base address is that of this
module's contribution to the
p-section.

As for TIRSC_STA_SB except that
the value is zero extended to 32
bits.

As for TIRSCSTASW except that the
value 1is zero extended to 32
bits.

the stack
address, in the

The longword on top of
is used as an

image, from which to retrieve a
byte. The byte is zero extended
and replaces top longword of
stack.

The word variant of previous
command.

Analogous to above,

This command has the same format
as TIRSC_STA_GBL. However,
instead of stacking the value of
the symbol, the entry point mask
(unsigned word) which accompanies
the symbol definition is stacked.
An error 1is produced if the
symbol referenced is not an entry
point.

VAX-11 OBJECT LANGUAGE

Code Command Description/Interpretation
13. Compare procedure The format of the command is as
arguments and stack follows:
TRUE or FALSE.
(TIRSC_STA CKARG) COMMAND CODE
SYMBOL
NAME
ARG INDEX
ACTUAL
ARGUMENT
DESCRIPTOR

The purpose of this command is to
compare an actual argument
descriptor with a formal
descriptor = for a particular
procedure, stacking an indicator
based upon match or mismatch of
arguments. This indicator is
TRUE if match is found or if
there 1is no formal argument
description. The indicator is
FALSE if (and only if) the
specified formal is described by
a procedure definition but the
description does not match the
accompanying actual argument
description.

The argument that is checked is
given by the index, and is thus
number 0 through 255. The format
of the actual argument descriptor
is 1identical to that of the
procedure definition GSD record
described in section 4.4.2 above.
The FCS linker compares only the
fields ARGSVPASSMECH, stacking
the TRUE indicator if they agree,
FALSE if they do not.

14-19 Reserved Commands

C.5.1.2 Store Group - All commands of the store group pop the top
longword from the stack upon completion of the command. Several of
the commands provide validation of the quantity being stored, with the
possibility of issuing truncation errors during the operation. Upon
completion of the command, the location counter is pointing to the
next byte in the output image.

VAX-11 OBJECT LANGUAGE

Code Command

20. Store Signed byte
(TIR$C_STO_SB)

21. Store Signed Word
(TIR$C_STO_SW)

22, Store Longword
(TIR$C_STO_LW)

23, Store Byte Displaced
(TIR$C_STO_BD)

24, Store Word Displaced
(TIRSC_STO_WD)

25. Store Longword
Displaced
(TIR$C_STO_LD)

26. Store Short Literal
(TIR$C_STO_LI)

27. Store Position
Independent Data
Reference
(TIR$C_STO_PIDR)

28, Store Position
Independent Code
Reference
(TIR$C_STO_PICR)

Description/Interpretation

Bits 31:7 must be identical. Low
byte written to image.

Bits 31:15 must be identical.
Lower word written to image.

One longword written to image.

Location counter subtracted from
top of stack. Decrement value.
Bits 31:7 must be identical.
Byte is then written to image.

Location counter plus 2
subtracted from top of stack.
Bits 31:15 must be identical.
Word written to image.

Location counter plus 4
subtracted from top of stack.
Longword written to image.

One longword from stack, bits
31:6 MBZ. Single byte written to
image.

The longword on top of stack is
assumed to be the address of a
data item, It occurs 1in a
non-executable p-section. If the
address is absolute, command

behaves as store longword. If
address 1is relocatable, command
behaves as store longword
displaced and in addition

provides information in the image
header for subsequent Linker
processing.,

The longword on top of the stack
is assumed to be the address of
address of an item to which a
a position independent
instruction makes reference. The
purpose of the command is to
generate a position independent
reference. If the top of stack
is absolute, the byte "9F" (hex)
is written (which is
autoincrement deferred addressing
mode on the PC and therefore
absolute) followed by the top as
for store longword. If, however,
top of stack is relocatable, the
byte "EF" (hex) is written (which
is longword displacement mode off
PC and therefore relative
addressing). Location counter is
incremented. Then the longword
is written Jjust as for store
longword displaced.

Code

28.
(Cont.)

29.

30.

31.

32.

33.

34.

35.

36.

37.

VAX-11l OBJECT LANGUAGE

Command

Store Position
Independent Code
Reference
(TIRSC_STO_PICR)

Store Repeated
Signed Byte
(TIR$SC_STO_RSB)

Store Repeated
Signed Word
(TIRSC_STO_RSW)

Store Repeated

Longword (TIRSCSTORL)

Store Arbitrary
Field (TIRS$SCSTOVPS)

Store Unsigned Byte
(TIR$SC_STO_USB)

Store Unsigned Word
(TIR$C_STO_USW)

Store Repeated
Unsigned Byte
(TIRSC_STO_RUB)

Store Repeated
Unsigned Word
(TIR$C_STO_RUW)

Store Byte
(TIR$SC_STO_B)

Description/Interpretation

This and the previous command are
discussed further in the
references on generation of
position independent images.

The longword on top of the stack
is used as the repeat count. The
low order byte of next 1longword
on the stack 1is written to the
image the indicated number of
times. Both longwords are
cleaned off stack on completion.

As above except that words are
written.

Analogous to above.

The bits 0 to (s-1) of the top
longword are written to image
starting at bit p of the current
location. The command byte in
the object module is followed by
p and s (respectively) which are
unsigned bytes such that 0 LEQ
p+s LEQ 32. Only the specified
bits of the image are altered.
After the operation the 1location
counter is the address of the
byte containing bit (p+s) of the
location modified.

Same as TIRSC_STO_SB except that
bits 31:8 must be zero.

Analogous to above (Bits 31:16
(Bits 31:16 MBZ).

Analogous to above.

Analogous to above.

If top longword on stack is
is negative, then bits 31:7 must
be 1. Else, bits 31:8 must be
zero. Low order byte is written
to image. This command permits
any 8 bit value from -128 to 255
to be written to the image.

VAX-11 OBJECT LANGUAGE

Code Command

38. Store Word
(TIR$C_STO_W)

39. Store Repeated Byte
(TIR$C_STO_RB)

40. Store Repeated Word
(TIR$C_STO_RW)

41-49. Reserved Commands

Description/Interpretation

If top longword is negative, bits

bits 31:15 must be 1. Else bits
31:16 MBZ. One word is longword
is popped from stack. This
command permits any 16 bit value
from -=-32768 to 65535 to be
written to the image.

The repeated version of store
byte. See TIR$SC_STO_RSB for

description of repeat count.

Analogous to above.

C.5.1.3 Operator Group - The Linker evaluates expressions in Post Fix

Polish form.
two's complement integers.
string or quadword computation.

All arithmetic operations are performed in signed 32-bit
There is no provision for floating point,

The commands of the operator group take as operands the top one or two

longwords on the stack.
is the top longword on the stack.

Upon completion of the operation, the result
Attempts to divide by zero

produce

a zero result, and a nonfatal diagnostic is issued.

Code Command

50. No-operation
(TIRSC_OPR_NOP)

51. Add. (TIR$C_OPR_ADD)

52. Subtract
(TIR$C_OPR_SUB)

53. Multiply
(TIR$C_OPR_MUL)

54. Divide
(TIR$C_OPR_DIV)

55. Logical AND
(TIR$C_OPR_AND)

56. Logical Inclusive OR
(TIR$C_OPR_IOR)

57. Logical Exclusive OR
(TIR$C_OPR_EOR)

58. Negate
(TIR$C_OPR_NEG)

59. Complement

(TIR$C_OPR_COM)

Description/Interpretation

Top two longwords are added.

Top longword is subtracted from

next.
Top two longwords are multiplied.

Divisor is top longword.

Logical AND of top two longwords.

Inclusive OR of top two
longwords.
Exclusive OR of top two
longwords.

Top longword is negated.

Top longword is complemented.

Code

60.

61.

62.

63.

64.

65.

66-79.

VAX-11 OBJECT LANGUAGE

Command

Insert field
(TIR$C_OPR_INSV)

Arithmetic Shift
(TIR$C_OPR_ASH)

Unsigned Shift
(TIRSC_OPR_USH)

Rotate
(TIRSC_OPR_ROT)

Select
(TIRSC_OPR_SEL)

Re-define Symbol to
current location.
(TIR$C_OPR_REDEF)

Reserved Commands

Description/Interpretation

This command is analogous to the
store of arbitrary bit field
above. The only difference is
that the target for bits from top
of stack is the next longword on
the stack, and location counter
is therefore wunaffected. Note
that top longword is popped and
that p,s are bytes following
command in the TIR record.

The longword on top of stack is
stack is the shift count to apply
to next longword. Negative
guantity causes a right shift
(with replication of sign bit).
Positive causes left shift with
zeroes moved into low order bits.

As above except that zeroes are
moved into high and low order.

Rotate count is top longword to
apply in a rotate (left if
positive, else right) of next
long word on stack. Rotate count
must have an absolute value
between 0 and 32.

Remove the top longword from the
stack. If it has the value TRUE
(low bit set) remove and discard
the next longword on the stack.
If the first longword removed has
the value FALSE (low bit clear)
copy the next longword on the
stack to the one that follows.
Thus, the command presumes there
are three longwords on the stack.
These are collapsed to a single
longword which is the value of
the second or third based on the
value of the first.

The command has the same format
as the TIRSCSTAGBL command.
Causes the symbol to be
re-defined on output of symbol
table(s) to have the value of the
location counter when this
command is processed. The
re~definition does not occur
until after all image binary is
written. If no binary is
generated (or is aborted) the
re-definition does not occur.

VAX-11 OBJECT LANGUAGE

C.5.1.4 Control Group - The control group of commands is provided for
manipulation of the location counter.

Code Command Description/Interpretation

80. Set Relocation Base The value on top of the stack is
(TIRSC_CTL_SETRB) popped into the location counter.

81. Augment Relocation Signed longword which is an

Base (TIR$C_CTL_AUGRB) increment to location counter
follows the command.

82-127. Reserved Commands

C.5.2 Record Length

TIR records may be quite 1long. There 1is an implementation 1limit
defined by OBJ$C_MAXRECSIZ. The maximum record size of the module is
recorded in the header word.

C.5.3 Differences From RSX-11

Note that TIR Records combine the information and capabilities of two
types (TXT and RLD) of record used by the RSX-1ll Task Builder. The
result is a sequential writing of the output image and a more
efficient object language. Note also the omission of the End GSD
Record, the addition of Module Header Record, and the placement of
Transfer Address at the end of the module.

In this specification there is also no mechanism for handling the
RSX-11 assembler directive to obtain program limits. The usefulness
of the LIMIT directive in VAX systems is questionable, and no proposal
is made to deal with it in the Linker,.

C.5.4 8Side Effects And Optimization -

In the interest of performance of the Linker a few implementation
decisions and their possible side effects should be noted.

1. For all store repeated commands, if the guantity being stored
is =zero, the linker does not write the zeroes into the bytes.
The reason for this 1is that the pages of an image are
guaranteed to be zero unless otherwise initialized by the
compiler. To achieve this, demand zero pages are used within
the linker and were the linker to attempt to write zeroes, the
fact that these are still empty pages of the 1image 1is lost.
‘Thus, it becomes very difficult to compress from the image all
empty pages.

There is, however, a side effect to this behavior, in that if
a cell of an image had been previously initialized, it will
not be zeroed by any repeated store commands. This can occur
in multiple modules contributing to and attempting to
initialize the content of overlayed p-sections, Notice,
however, that the results of such multiple initialization are
then dependent on the order of processing of object modules.
This side effect is therefore considered to be acceptable.

VAX-11l OBJECT LANGUAGE

2. The Linker is a two-pass processor of object modules. The
content of TIR records is completely ignored on the first pass
but verified and acted upon on the second pass. However, if,
either due to the command or some Link time error, no image is
being produced, all TIR records (as well as DBG and TBT
records) are ignored. A side effect, considered quite
acceptable, is that errors (user or compiler) potentially
detectable on pass two will not be detected. Truncation
errors are the most 1likely example of such undetected
situations.

C.6 END OF MODULE (EOM) RECORD (OBJ$C_EOM)

This record declares the end of a module. It declares the severity of
errors encountered by language processor, and, optionally, it declares
a transfer address within a p-section in this module. The format is
as follows:

RECORD TYPE 3 1 byte
ERROR SEVERITY 1 byte
P-SECT INDEX 1 byte
TRANSFER 4 bytes
ADDRESS

This record will be two or seven bytes, depending on existence of a
transfer address. Note that the p-section specification is by its
index within the module, as used above. The transfer address 1is an
offset from the base of this module's contribution to the specified
p-section.

C.6.1 Error Severity

The error severity byte specifies to the Linker whether errors were
encountered in the source code. It also indicates the severity of any
errors encountered.

Value Interpretation by Linker
0 No errors
1 Warnings were generated by language processor. Proceed

with link but issue warning message.

2 Errors were severe, proceed with 1link, but do not
produce an executable image.

3 Abort the link.
4-10 Reserved.
11-255 Ignored.

VAX-11 OBJECT LANGUAGE

C.7 DEBUGGER INFORMATION (DBG) RECORDS (OBJ$C_DBG)

The purpose of debugger information records is to allow the language
processors to pass information concerning local variables, etc., of
the compilation to the debugger. The transmission of this information
may make use of all the functions (commands) available in the TIR set.

The command stream in DGB records generates what is referred to as the
debug symbol table (DST). The DST follows immedjiately the binary of
the user image and the image header contains a descriptor of where in
the file such data has been written. The production of the DST in
memory makes use of a separate location counter within the Linker.
This location counter is initialized as if the DST were the highest
addressed part of the program region of the image. Note, however, the
DST is not in fact mapped into the user image.

The linker produces a DST only if the debugging qualifier was
specified at 1link time and only 1if an executable image is being
produced. If either of these is not true, DBG records are ignored.
See the above discussion of the side effects in TIR record processing.

C.7.1 Traceback Information (TBT) Records (OBJ$C_TBT)

Traceback information records are the means by which language
processors pass information to the facility which produces a traceback
of the call stack. From the point of view of the Linker and its
processing of these records, they are identical to DBG records. That
is, they may be mixed with DBG records and all data generated goes
into the DST as if they were in fact DBG records.

The purpose of separating this information from that contained in DBG
records 1is to allow inclusion of a DST containing only traceback data
when no debugging is requested at link time. If the production of
traceback information is desabled at link time then these records are
ignored. See the above section on side effects in processing TIR
records.

C.8 LINK OPTION SPECIFICATION (LNK) RECORDS (OBJSC_LNK)

The 1link option specification records are defined for the purpose of
allowing the compiler to provide the Linker with default parameters
which are used if none were given by the user at 1link time. Such
options of interest are libraries to be searched to resolve undefined
symbols, modules to be included in the link, adjustment of stack and
buffer region sizes.

The exact set of commands allowable will be supplied later, along with
the interaction of conflicting object module LNK records and user
commands. The general philosophy 1is to wuse the most recently
specified parameters unless there are good reasons to the contrary.
These records are ignored by the FCS Linker.

A

Attributes of program sections,

2-3 to 2-5, 7-6

concatenated (CON), 2-3 to
2-4

overlaid (OVR), 2-3 to 2-4

position independent code
(pIC), 2-5, 8-7 to 8-8

relocatable (REL), 2-3

shareable (SHR), 2-5, 8-6 to
8-7

BASE= option, 6-3, 6-5
/BRIEF command qualifier, 5-3,
5-4

C

CHANNELS= option, 6-3, 6-5
CLUSTER= option, 6-3, 6-5 to
6-6, 9-1
Clusters, 2-1 to 2-2, 6-5 to
6-6, 9-1
Command qualifiers, 5-1 to 5-8
/BRIEF, 5-3, 5-4
/CONTIGUOUS, 5-3, 5-4
/CROSS_REFERENCE, 5-3, 5-4
to 5-5
/DEBUG, 5-3, 5-5
/EXECUTABLE, 5-3, 5-5
/FULL, 5-3, 5-5 to 5-6
/MAP, 5-3, 5-6
/SHAREABLE, 5-3, 5-6 to 5-7
/SYMBOL_TABLE, 5-3, 5-7
/SYSLIB, 5-3, 5-7
/SYSSHR, 5-3, 5-7 to 5-8
/SYSTEM, 5-3, 5-8
/TRACEBACK, 5-3, 5-8
Compression, 2-8 to 2-9, 6-6

Copy on reference image sections,

2-9, 8-6 to 8-7

Concatenated attribute, 2-~3 to
2-4

/CONTIGUOUS command qualifier,
5-3, 5-4

Cross reference, 7-8 to 7-9

/CROSS_REFERENCE command quali-

fier, 5-3, 5-4 to 5-5

INDEX

D
Debug capabilities, 1-4, 5-5,
Cc-24
/DEBUG command qualifier, 5-3,
5-5

Default system library, 4-3
to 4-4, 5-7 to 5-8
Demand zero image sections,

2-9
DZRO_MIN= option, 2-9, 6-3,
6-6

Error messages, A-1 to A-5
/EXECUTABLE command qualifier,

5-3, 5-5
Executable images, 2-6, 5-5
F'
File qualifiers, 5-1 to 5-3,
5-8 to 5-9
/INCLUDE, 4-2 to 4-3, 5-3,
5-8 to 5-9
/LIBRARY, 4-2 to 4-3, 5-3
5-9 .

/OPTIONS, 5-3, 5-9, 6-1, 6-4
/SELECTIVE_SEARCH, 5-3, 5-9
/SHAREABLE, 5-3, 6-2
/FULL command qualifier, 5-3,
5-5 to 5-6

G

Global symbols, 3-1 to 3-4,
C-3, C-7 to C-13

GSMATCH= option, 6-3, 6-6 to
6-7, 8-3

Image map, 1-5, 7-1 to 7-11,
B-1 to B-11
Images, 1-1
types of, 2-5 to 2-7
Image sections, 2-1, 2-7 to
2-8

Index-1

INDEX (Cont.)

/INCLUDE file qualifier, 4-2
to 4-3, 5-3, 5-8 to 5-9

Initialization of image, 1-5,
2-7 to 2-9

IOSEGMENT= option, 6-3, 6-7

ISD_MAX= option, 2-9, 6-3, 6-8

L

Libraries, 4-1 to 4-4
default system library,
4-3 to 4-4, 5-7 to 5-8
/LIBRARY file qualifier, 4-2
to 4-3, 5-3, 5-9
LINK command, 5-1 to 5-10
examples, 5-9 to 5-10
format, 5-1 to 5-2
Local symbols, 3-1 to 3-3

M
Map, 1-5, 7-1 to 7-11, B-1
to B-11
/MAP command qualifier, 5-3,
5-6

Memory allocation, 1-4, 2-7
to 2-8, 9-1

Messages, A-1 to A-5

Modular programming, 1-2

Object language, 2-2, C-1 to
C-24
Options,

BASE=, 6-3, 6-5
CHANNELS=, 6-3, 6-5
CLUSTER=, 6-3, 6-5 to 6-6,
9-1
DZRO_MIN=, 2-9, 6-3, 6-6
GSMATCH=, 6-3, 6-6 to 6-7,
8-3
IOSEGMENT=, 6-3, 6-7
ISD_MAX=, 2-9, 6-3, 6-8
STACK=, 6-3, 6-8
UNIVERSAL=, 3-4, 6-3, 6-8,
8-3
/OPTIONS file qualifier, 5-3,
5-9, 6-1, 6-4
Options files, 6-1 to 6-8
rules for creating, 6-4
uses, 6-1 to 6-3
Overlaid attribute, 2-3 to 2-4

P
Position independent code, 2-5,
8~-7 to 8-8
Program sections, 2-1, 2-2 to
2-5

alignment, 2-3
attributes, 2-3 to 2-5
name, 2-3

size, 2-3

Q

Qualifiers - See "Command
qualifiers" and "File
qualifiers."

R

References, 3-1

strong, 3-3

weak, 3-3 to 3-4
Relocatable attribute, 2-3

S

/SELECTIVE_SEARCH file qualifier,
5-3, 5-9
Shareable attribute, 2-5, 8-6
to 8-7
/SHAREABLE command qualifier,
5-3, 5-6 to 5-7
/SHAREABLE file qualifier, 5-3,
6-2
Shareable images, 2-6 to 2-7,
8-1 to 8-30
benefits and uses of, 8-1
to 8-2
creating, 8-2 to 8-3
using, 8-30
STACK= option, 6-3, 6-8
STARLET.OLB, 4-4
Strong reference, 3-3
Symbol cross reference, 7-8
to 7-9
/SYMBOL_TABLE command qualifier,
5-3, 5-7
Symbol tables, 3-4 to 3-5, 5-7
Symbols, 3-1 .
global, 3-1 to 3-4, C-3, C-7
to C-13
local, 3-1 to 3-3
universal, 3-4, 8-3, C-3

Index-2

INDEX (Cont.)

/SYSLIB command qualifier, 5-3, 5-7 Universal symbols, 3-4, 8-3,

/SYSSHR command qualifier, 5-3, Cc-3
5-7 to 5-8
/SYSTEM command qualifier, 5-3, 5-8
System images, 2-7 \I
T VAX-11 object language, 2-2,
o C-1 to C-24
/TRACEBACK command qualifier, VAX-11l Symbolic Debugger, 1-4
5-3, 5-8 VMSRTL.EXE, 4-3 to 4-4
Transfer vectors, 8-4 to 8-6
U
w
UNIVERSAL= option, 3-4, 6-3,
6-8, 8-3 Weak reference, 3-3 to 3-4

Index-3

Please cut along this line.

‘ Name Date

VAX-11
Linker Reference Manual
AA-DO19A-TE

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance

Report (SPR) service, submit your comments on an SPR
form,

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience.
Student programmer

Oo0oood

Other (please specify)

Organization

Street

City State Zip Code
or
Country

— — — DoNotTear-Fold HereandTape —

| || || | No Postage

Necessary
Hﬂaﬂﬂan if Mailed in the
United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS TW/A14
DIGITAL EQUIPMENT CORPORATION

1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

- - DoNot Tear-FoldHere @ @ — — — — — — — — — — — — — — — — —_ —_— - -

