dlilgliltlall

VAX-11

Linker Reference Manual
Order No. AA-DO19B-TE

March 1980

This document describes how the VAX-11 Linker works and how to use it.

VAX-11

Linker Reference Manual
Order No. AA-DO19B-TE

SUPERSESSION/UPDATE INFORMATION: This revised document supersedes the
VAX-11 Linker Reference Manual
(Order No. AA-DO19A-TE)
OPERATING SYSTEM AND VERSION: VAX/VMS V02

SOFTWARE VERSION: VAX/VMS V02

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

diaital eaquipment corporation - maunard, massachusetts

First Printing, August 1978
Revised, March 1980

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright @ 1978, 1980 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the wuser's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI
DECnet IAS PDT

DATATRIEVE TRAX

PREFACE

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

1

1.1
l.1.1
l.1.2
1.1.3
1.2
1.2.1
l1.2.2
1.2.3
1.2.4
1.2.5

2

2.1

2.2
2.2.1
2.2.2
2.2.2,1
2.2.2.2
2.2.2.3
2,2.2.4
2.2.3
2.3
2.3.1

3

3.1

3.2

3.3
3.4
3.4.1
3.4.2
3.5

4

4.1

4.2
4.2.1
4.2.2
4.3

5

5.1
5.1.1

CONTENTS

LINKER OVERVIEW

REASON FOR A LINKER
Modular Programming
Simplifying Compilation And Assembly
Debug Capability
LINKER OPERATION AND FUNCTIONS
Virtual Memory Allocation
Resolution Of Symbolic References
Image Initialization
Image Map
Symbol Table File

SYMBOLS AND REFERENCES

DEFINITIONS: "SYMBOL" AND "REFERENCE"
TYPES OF SYMBOLS AND REFERENCES

Local Symbols

Global Symbols

Strong Definition

Weak Definition

Strong Reference

Weak Reference

Universal Symbols
SYMBOL TABLES

Global Symbol Table As Separate Output

LIBRARIES

LIBRARY TABLES USED BY THE LINKER
LINKER'S USE OF LIBRARIES
USER-DEFINED DEFAULT LIBRARIES
DEFAULT SYSTEM LIBRARY

VMSRTL

STARLET
EXAMPLE OF USING LIBRARIES

THE LINK COMMAND

COMMAND FORMAT

COMMAND AND FILE QUALIFIERS
Command Qualifiers
File Qualifiers

EXAMPLES

THE /OPTIONS FILE QUALIFIER
USES FOR AN OPTIONS FILE

Entering Frequently Used Input
Specifications

iii

Page

=
»

—
|
[

[l i o e
}
GBS LD BWWNN

N
|
[

w NNNDNNDNDNDDNDDNDNN
|
bbb bdhwwWwwwwH+~

1
—

WWwWwww ww
i
aUutUUnwN -

CONTENTS

Identifying A Shareable Image As Input

Entering More Input Than The Command

Language Can Handle

Entering Non-standard Link Instructions
CREATING AND SPECIFYING AN OPTIONS FILE
SPECIAL OPTIONS

[0,]
L] L]
—
L] L]
w N

.
>

(OGN0,]
s e o
w N =

CHAPTER

(<2}

IMAGE MAP

IMAGE MAP CONTENTS

IMAGE MAP SECTIONS
Object Module Synopsis
Image Section Synopsis
Program Section Synopsis
Symbols By Name
Symbol Cross Reference
Symbols By Value
Image Synopsis
Link Run Statistics

(el e We We WMo e Wo) e W o)
e o o o & s s o o o
NN NN
e o e o o s o o

O S WK

CHAPTER

~

IMAGE CREATION

PROGRAM SECTIONS
IMAGE SECTIONS
CLUSTERS
OBJECT MODULE CONTENTS
PROGRAM SECTIONS
Program Section Name
Program Section Size
Program Section Alignment
Program Section Attributes
Relocatability (REL and ABS)
Concatenated versus Overlaid (CON and OVR)
Scope - Local versus Global (LCL and GBL)
Executability (EXE and NOEXE)
Writeability (WRT and NOWRT)
Readability (RD and NORD)
Position Independence (PIC and NOPIC)
Shareability (SHR and NOSHR)
User versus Library (USR and LIB)
Protection (VEC and NOVEC)
TYPES OF IMAGES
Executable Images
Shareable Images
System Images
GENERATION OF IMAGE SECTIONS
COMPRESSION OF UNINITIALIZED IMAGE SECTIONS
MECHANICS OF CLUSTERING

o o o o s o s s o o @
OB D B D DB D DD WN
* 5 6 o s o s s s @

HOOJIHhUdWN -

o

e & & & & & & e o s e & e o

oSNV OO WN -
L . 1 .
w N =

NN NSNSNSNNNSNANNNNNNNNNNNNNNNNN

(e o]

CHAPTER SHAREABLE IMAGES

SHAREABLE IMAGES: BENEFITS AND USES
Conserving Physical Memory
Conserving Disk Storage Space
Reducing Paging I/0
Using Shared Memory-Resident Data Bases
Making Software Updates Compatible

00 00 0O 0O © O
. L] . [1] L)
=
e e e o o
U W N

iv

t

0O wWWwWWwk

oo

| I I L |

[o)Je k=) o) Yo Bfo) Wie) Jie) Be) o))

~
[T A AL A T N T Y N A A N N N O | I
RFONNANUNUIOO VBB BWWWWWINNNHFRF

NNNNNNNNNSNNNSNGNUNSNGNNNNNNNNNS

CONTENTS

WRITING SOURCE PROGRAMS FOR SHAREABLE IMAGES

.1 Shareable and Nonshareable Data

.2 Position Independence

.3 Transfer Vectors

.4 Rules for Creating Upwardly Compatible

Shareable Images

8.3 LINK COMMAND AND PERTINENT OPTIONS

8.3.1 UNIVERSAL= Option

8.3.2 GSMATCH= Option

8.3.3 PROTECT = Option and /PROTECT Qualifier

8.4 EXAMPLES OF SHAREABLE IMAGES

8.4.1 Example of Transfer Vector and Universal
Symbols

4.2 Example of FORTRAN Shared COMMON

5 USING SHAREABLE IMAGES

APPENDIX A LINKER MESSAGES
APPENDIX B IMAGE MAP ILLUSTRATIONS

BRIEF MAP
DEFAULT MAP
FULL MAP
APPENDIX VAX~-11 OBJECT LANGUAGE
INTRODUCTION
Summary of Language
GLOBAL AND UNIVERSAL SYMBOLS AND NAME FORMAT
HEADER RECORDS (HDR)
Module Header Records (MHD)
Header Type
Structure Level OBJS$C_STRLVL
Maximum Record Size OBJSC MAXRECSIZ
Module Name -
Module Version
Dates and Times
Other Header Records
Header Types 1 through 4 and 6
Maintenance Status Header Record (MTC)
Record Type
Header Type
Patch Utility Name
Utility Version
Uu.I.C
Input File Specification
Correction File Specification
Date & Time
Sequential Patch Number
GLOBAL SYMBOL DIRECTORY (GSD) RECORDS
(OBJSC GSD)
Program Section Definition (OBJSC GSD PSC)
1 Program Section Name -~
2 Alignment
3 Flags
4 Allocation Field

.
[

e o e ® & o o

BLWWWLWWWWWWWWWWwWwwuwwwwwwN ==

NNRDNONNNNONNR N e

e o o o o o
AU WN -

e o @ & 6 & o o o e o @
e o o & 8 o o © o s o 8 o & o »
NDNONNDNDNNDNDDNDNDN -
oAU WN -

QOO0 O00000a0 (@]

www
[
fo) I (8]

(@]

[O T I 1 D D T T T T A A B |
NN aanUITNIA DL BRBBWWWE =

N0 000000000

L
O oo~

QOO0

CONTENTS

Page
C.4.2 Global Symbol Specification OBJSC GSD SYyM C-9
C.4.2.1 Data Type - c-10
C.4.2.2 Flags c-10
C.4.2.3 Program Section Index Cc-11
C.4.2.4 Value c-11
C.4.3 Entry Point Symbol and Mask Definition
(OBJSC GSD EPM) Cc-11
C.4.3.1 Entry Mask c-11
C.4.4 Procedure with Formal Argument Definition
(OBJSC GSD PRO) Cc-11
C.4.4.1 Minimum and Maximum Actual Argument Counts C-12
C.4.4.2 Formal Argument Descriptors Cc-13
C.4.4.2.1 Argument Validation Control Byte Cc-13
C.4.4.2.2 Remaining Byte Count Cc-13
c.5 TEXT INFORMATION AND RELOCATION (TIR)
RECORDS (OBJSC TIR) Cc-14
C.5.1 Commands - c-14
C.5.1.1 Stack Group Cc-15
C.5.1.2 Store Group Cc-18
C.5.1.3 Operator Group c-21
C.5.1.4 Control Group Cc-22
C.5.2 Record Length Cc-23
C.5.3 Side Effects and Optimization Cc-23
C.6 END OF MODULE (EOM) RECORD (OBJ$C_EOM) C-24
C.6.1 Error Severity c-24
C.6.2 Transfer Address Flags Cc-24
C.7 DEBUGGER INFORMATION (DBG) RECORDS
(OBJSC DBG) c-25
C.7.1 Traceback Information (TBT) Records
(OBJSC TBT) Cc-25
c.8 LINK OPTION SPECIFICATION (LINK) RECORDS
(OBJSC_LNK) Cc-25
APPENDIX D THE ANALYZE PROGRAM D-1
D.1 THE ANALYZE COMMAND D-1
D.2 THE OUTPUT FILE D-2
D.2.1 Debugger Information Record D-2
D.2.2 End of Module Record D-3
D.2.3 Global Symbol Directory (GSD) Record D-3
D.2.4 Module Header Record D-3
D.2.5 Subheader Records D-4
D.2.6 Text Information and Relocation
(TEXT/RELOCATION) Record D-4
D.2.7 Traceback Information Records D-4
D.3 ANALYZE PROGRAM ERROR MESSAGES D-4
INDEX Index-1

vi

CONTENTS

Page
rIGURES
FIGURE 1-1 Modular Programming 1-3
2-1 Local and Global Symbols 2-2
3-1 Library Tables 3~-2
6-1 Object Module Synopsis Section 6-4
6-2 Image Section Synopsis Section 6-4
6-3 Program Section Synopsis Section 6-7
6-4 Symbols by Name Section 6-7
6-5 Symbol Cross Reference Section 6-9
6-6 Symbols by Value Section 6-9
6-7 Image Synopsis Section 6-11
6-8 Link Run Statistics Section 6-11
8-1 No Transfer Vectors 8-5
8-2 Transfer Vectors 8-6.
8-3 Transfer Vector Example Listing 8-11
8-4 Transfer Vector Example Link Command 8-14
8-5 Transfer Vector Example Map 8~-15
8-6 Listing of FORTRAN Shared COMMON Subprogram 8-21
8-17 LINK Command for FORTRAN Shared COMMON
Subprogram 8-23
8-8 Map of FORTRAN Shared COMMON Subprogram 8-24
8-9 Listing of FORTRAN Program Using Shared
COMMON 8-28
8-10 LINK Command for FORTRAN Program Using
Shared COMMON 8-30
8-11 Map of FORTRAN Program Using Shared COMMON 8-31
Cc-1 Order of Records Within an Object Module c-2
TABLES
TABLE 4-1 Command Qualifiers 4-3
4-2 File Qualifiers 4-4
5-1 Special Options 5-3
6-1 Image Map Sections 6-2
6-2 PSECT Attributes 6-6
7-1 Order of Image Sections in Clusters 7-9
Cc-1 Interpretation of GSYSV WEAK and
GSY$V_DEF - c-10

vii

PREFACE

MANUAL OBJECTIVES

The VAX-1l Linker Reference Manual describes how the VAX-11 Linker
works and tells you how to use it., This manual is designed to educate
as well as to provide easy reference.

INTENDED AUDIENCE

This manual is intended for programming specialists and nonspecialists
alike. Certain parts of the manual are designed specifically to meet
the needs of certain types of readers.

e If you are not yet proficient in programming under the VAX/VMS
system or if you do not need to become an expert, this manual
is designed to teach you the main concepts and techniques of
linking as clearly as possible, Chapters 1 through 6 and
Appendixes A and B are aimed especially at this type of
reader,

e If you are already proficient in programming under the VAX/VMS
system, this manual provides detailed information about some
of the more complex aspects of linking. Chapters 7 and 8 and
Appendixes C and D are aimed especially at this type of
reader.

STRUCTURE OF THIS DOCUMENT

Chapter 1 introduces the 1linker. It defines significant terms,
presents the reasons for the 1linker's existence, and discusses in
general terms how the linker works.

Chapters 2 and 3 focus on concepts important to understanding the
linker's operation. The discussion of symbols and references in
Chapter 2 derives from the linker's function of resolving symbolic
references between modules. Chapter 3 explains 1libraries, which
normally contain frequently used modules that the linker can include
in user images.

Chapter 4 discusses the LINK command and its command and file
qualifiers. Chapter 5 focuses on the /OPTIONS file qualifier,
describing how to create and use a linker options file.

Chapter 6 explains the various forms of the image map that the 1linker

produces on request. This map provides information about the image
that was created and about the linking process itself,

ix

Chapter 7 goes more deeply into the process by which the 1linker
creates images. Chapter 7 expands on concepts introduced in Chapter 1
and introduces new concepts. .

Chapter 8 presents detailed explanations of shareable images. The
complex information in this chapter 1is intended mainly for more
sophisticated programmers and application designers.

The appendixes provide supplementary information. Appendix A 1lists
the error messages that the 1linker can generate. Appendix B
illustrates complete brief, default, and full maps of the same image.
Appendix C 1is a specification of the object language accepted by the
linker; this information is useful to anyone designing a compiler or
assembler whose output must be acceptable to the VAX-11 Linker.
Appendix D explains the object module analysis (ANALYZE) program.

ASSOCIATED DOCUMENTS
The following documents contain information pertinent to linking:

e VAX-1l Information Directory and Index

e VAX/VMS Primer

e VAX/VMS Command Language User's Guide

e VAX-11 Symbolic Debugger Reference Manual

e VAX/VMS System Manager's Guide

e The user's guide for your programming language (s)

This document uses the following conventions:

Convention Meaning
Uppercase words Uppercase words and letters, used in examples,
and letters indicate that you should type the word or
letter exactly as shown.
Lowercase words Lowercase words and letters, used in format
and letters examples, indicate that you are to substitute

a word or value of your choice,

Quotation marks The term quotation marks is used to refer to

Apostrophes double quotation marks "). The term
apostrophe (') 1is wused to refer to a single
quotation mark.

[] Square brackets indicate that the enclosed
item 1is optional (except when used in file
specifications where square brackets delimit
directory names).

{ } Braces are used to enclose 1lists from which
one element is to be chosen.

ces A horizontal ellipsis indicates that the
preceding item(s) can be repeated one or more
times.

. A vertical ellipsis indicates that not all of

. the statements in an example or figure are

. shown.

SUMMARY OF TECHNICAL CHANGES

This manual describes the VAX-1ll Linker, Version 2. The following are
technical changes from the previous version.

User-defined default object libraries are allowed. These libraries do
not have to be explicitly specified in the LINK command and are
searched before the system default libraries. The LINK command
qualifier /USERLIBRARY controls user-defined default object libraries.

When creating a shareable image, the linker defers the relocation of
virtual addresses. Deferred relocation allows the linker to create
position-independent shareable images that contain relocatable address
data. Each wuser 1is given a private copy of image sections that
contain relocatable address data.

The linker supports 3l-character symbol names.

The linker can create three new kinds of images: 1) system images
with image headers, 2) executable images that are only stored in PO
address space, and 3) protected shareable images. The LINK command
qualifiers /HEADER, /POIMAGE, and /PROTECT are used to create these
images. The PROTECT= 1linker option and the VEC program section
attribute can also be used to create protected shareable images.

The order of image sections within a cluster and the order of clusters
within an image section has been changed.

The PSECT ATTR= linker option changes program section attributes when
an image Is being linked. The COLLECT= linker option collects program
sections into specified clusters.

The default values for the GSMATCH= option have changed. An
executable image that is linked with a shareable image created with
the default GSMATCH= option must be relinked if the shareable image is
changed.

The ANALYZE utility is provided to analyze the contents of object

modules and to ensure that they conform to the object language
specification.,

xi

CHAPTER 1

LINKER OVERVIEW

The VAX-1l Linker is a programming development tool that takes the
output of a native mode language translator, such as an assembler or
compiler, and binds it into a form that can be executed on the VAX-11
hardware. The primary input to the VAX-1ll Linker is the primary
output from the VAX-11l language compilers and assembler: files that
contain object modules. The primary output of the linker is a file
called an image.

The linker can produce three types of images. The most common type,
called executable, 1is activated in response to a command that you
enter (such as RUN). Another type of 1image, called system, |is
intended for stand-alone execution on the VAX-1l hardware. The third
type, called shareable, provides a means for sharing procedures and
data among multiple processes within the system. You use a shareable
image by running an executable image that has been 1linked with it.
Shareable images also provide a way of 1linking a very 1large
application program in a number of smaller phases. Chapter 7
discusses 1image <creation in detail. Chapter 8 focuses on shareable
images.

The linker assigns values and virtual addresses not only to symbols
defined within each module, but also to symbols defined outside the
module that refers to them. If a symbol is not defined in a module
named in the LINK command, the linker searches one or more libraries
to find the definition of the symbol. Chapter 2 discusses the various
types of symbols. Chapter 3 discusses the use of libraries.

The linker is activated by the LINK command, which you can enter
interactively or within a command procedure. The LINK command permits
many command and file qualifiers, most of which have default values
that are suitable for most cases. One input file qualifier is
/OPTIONS, which allows vyou to convey additional input file
specifications and special instructions for the linker. Chapter 4
explains the LINK command and all its qualifiers. Chapter 5 focuses
on the /OPTIONS qualifier and the special items or options that can
appear in an options file.

The linker can produce, in addition to the image itself, a printable
image map. You can control the level of detail provided in various
parts of the map. Chapter 6 explains and illustrates the image map.

LINKER OVERVIEW

1.1 REASON FOR A LINKER

The object modules that a VAX-1ll language compiler or assembler
creates are nonexecutable. You must link the object modules before
you can run them.

The VAX-1l language compilers and assembler require a linker for
several reasons:

e Linking simplifies modular programming.

e The linker simplifies the job of each language compiler or
assembler.

e The VAX-11 Symbolic Debugger and other features can be
accessed easily.

1.1.1 Modular Programming

Modular programming is the process of combining separately compiled or
assembled modules into an executable program or image. Modular
programming has two aspects:

e Automatic modularity because different source language
statements generate calls to the same routine developed by
DIGITAL (such as a routine to open or close a file)

® Modular programming that you design into your program

Some routines developed by DIGITAL that perform commonly needed
functions are the procedures in the VAX-11 Common Run-Time Procedure
Library, which is installed in the system as a shareable image. These
routines can be 1linked into different images regardless of the
program's original source language. At run time each routine can be
shared by a number of different processes because each routine is
relocatable and reentrant. (Reentrant code does not modify itself and
consequently can be reused by different processes.)

Users can also make their programs deliberately modular. Under this
practice, a single complex program is written as a number of smaller
program modules. The modules are compiled or assembled separately and
later 1linked to <create an executable image. Figure 1-1 illustrates
program development in this environment. In this example, two
programmers write two program modules: a main section in VAX-11
FORTRAN to perform various calculations, and a second section in
VAX-11 MACRO to handle specific exception conditions.

Modular programming offers several advantages over the traditional
practice of having one programmer write an entire complex program as a
single source module:

e Smaller modules are usually more manageable and easier to
write.

e Different modules of the same program can be written 1in
different 1languages. You can select the language that best
suits the nature of the module's function or your own personal
preference.

e Errors are easier to analyze and correct in smaller modules.

LINKER OVERVIEW

CALC. XCEPT.
FOR MAR

4 Y

FORTRAN MACRO
Compiler Assembier
CALC. XCEPT.
OBJ. oBJ
CALC. CALC.
EXE MAP

Optional

Figure 1-1 Modular Programming

1.1.2 sSimplifying Compilation And Assembly

Having a linker perform certain essential functions eliminates the
need for every native compiler and assembler to handle these
functions. For example, the linker is able to allocate virtual memory
and to provide the memory management interface between the program and
the operating system.

A program's virtual memory can be allocated efficiently only after all
its constituent modules are known. The linker contains the logic
necessary to group parts of programs according to specific attributes,
with the goal of conserving memory and reducing the amount of paging
activity at run time.

Most programs interact with the operating system. For example, a
program may use VAX/VMS system services. The linker can generate the
proper program-to-system interfaces that are required.

1.1.3 Debug Capability

Use of the VAX-11 Linker allows you to access the VAX-1ll Symbolic
Debugger from the executable image. If you request the debugger, you
can choose whether to activate it at run time. The VAX-11 Symbolic
Debugger Reference Manual explains the capabilities and use of the
debugger. Programmers should also refer to the information on
debugging in their language user's guides.

LINKER OVERVIEW

1.2 LINKER OPERATION AND FUNCTIONS
The linker performs the following operations when it creates an image:
e Allocates virtual memory for the image
® Resolves symbolic references among modules
@ Initializes the image contents
e Generates the image map, if requested

® Generates a symbol table file, if requested

1.2.1 vVirtual Memory Allocation

The language translators that produce object modules do hnot allocate
addresses for two reasons:

e They do not know how the modules and sections of modules will
be grouped in the final executable image.

e They do not know how much address space is required for many
of the external modules that are called by the module being
assembled or compiled.

The linker, then, must assume the task of allocating wvirtual memory
for the 1image. Each object file input to the linker consists of one
or more program sections. The linker groups program sections from
different object files according to various section attributes--for
example, whether the program section is concatenated or overlaid and
what its memory protection requirements are. For further information
on how the linker maps the image, see Chapter 7.

1.2.2 Resolution 0f Symbolic References

When a module makes references to symbols outside itself, the 1linker
searches for these references in other modules explicitly named in the
LINK command. If you specify any libraries, the linker searches them
to resolve references made by preceding files named in the LINK
command. If any references still remain unresolved, the linker
searches any user—-defined default 1libraries and the default system
library. For a detailed discussion of libraries, see Chapter 3.

1.2.3 1Image Initialization

After it maps virtual memory and resolves references, the linker fills
in the actual contents of the image. This image initialization
consists mainly of copying the binary data and code that was written
by the compiler or assembler. However, the linker must perform two
additional functions to initialize the image contents:

e It must insert addresses into instructions that refer to
externally defined fields. For example, if a module contains
an instruction moving FIELDA to FIELDB, and if FIELDB is
defined in another module, the 1linker must determine the
virtual address of FIELDB and insert it into the instruction.

LINKER OVERVIEW

e It must compute values that depend on externally defined
fields. For example, if a module initializes location X to
contain Y plus Z, and if Y and Z are defined in an external
module, the linker must compute the value of Y plus Z and
insert it in X.

1.2.4 1Image Map

If you so
contents
you enter
qualifier

request, the linker generates an image map. The actual
of the map depend on the map-related command qualifiers that
with the LINK command; however, entering Jjust the /MAP
generates a default map with the following sections:

e An object module synopsis

e A

e A

program section synopsis

list of symbols, with the name and value of each

e An image synopsis

e Statistics of the link run

Chapter 6

discusses the command qualifiers that affect the image map.

It also illustrates the map sections and explains significant items.

1.2.5 Symbol Table File

If you so

request, the linker produces a file that records the wvalues

of symbols defined within the image. Section 2.3.1 contains further
information on the symbol table file.

CHAPTER 2

SYMBOLS AND REFERENCES

One of the linker's functions 1is to resolve symbolic references
between modules. The linker recognizes different types of symbols and
follows guidelines for each type when it tries to supply addresses or
values to statements that refer to these symbols.

2.1 DEFINITIONS: "SYMBOL"™ AND "REFERENCE"

A symbol is a name associated with a coding statement or with a data
area or field. A reference 1is the use of a symbol in a program
statement or a data definition. Consider the following examples (not
tied to a specific programming language):

e A program statement identified as ROUTINEA moves FIELDA to
FIELDB. ROUTINEA is the symbol associated with the program
statement. FIELDA and FIELDB are references made by the
statement.

e A data definition statement defines FIELDA as being equal to
(A+B)/2. FIELDA is the symbol associated with the computed
value of (A+B)/2. A and B are references.

2.2 TYPES OF SYMBOLS AND REFERENCES
Each symbol is local, global, or universal:

e Local symbols are available for reference only within the
program module that defines them.

e Global symbols can be referred to by modules outside the
module that defines them. A global symbol has a strong or a
weak definition (see Section 2.2.2). Another module can make
a strong or a weak reference to a global symbol (regardless of
whether the symbol's definition 1is weak or strong). The
linker resolves the global references with the global
definition in the other module.

e Universal symbols are a special type of global symbol that can
be specified only for shareable images.

SYMBOLS AND REFERENCES

Figure 2-1 illustrates references to local and global symbols in three
modules. (The statements do not reflect a specific programming
language.) An arrow is drawn between each reference and the symbol to
which it refers.

MODULEA

LOCAL1-=—
LOCAL2--
»GLOBAL1
GLOBAL2=

1

Move LOCAL1 to LOCAL2
Call GLOBAL3

P e e e e el

MODULEB MODULEC
LOCAL1 LOCAL1 =
LOCAL2 - LOCAL2-=

’\w
Add GLOBAL1 L subtract GLOBAL2
Move LOCAL1 ——————————»GLOBAL3 /

to LOCAL2 Move LOCAL2
to LOCAL1

F—— T T A

Figure 2-1 Local and Global Symbols

Local and global symbols can be designated either automatically by the
language compiler or explicitly by qualifiers in program statements.
You can specify the local or global symbol type only in certain
languages. In VAX-11l MACRO, for example, you can define a symbol as
local or global by using one or two equal signs or colons, as the
following statements show. Note that the term "local symbol" in this
context is different from the term "local label" (for example, 10$:)
in the context of a MACRO program.

Statement Effect

CRFC_MAXREC=292 Assigns a value of 292 to the 1local symbol
CRFC_MAXREC

CRFC_MAXREC==292 Assigns a value of 292 to the global symbol
CRFC_MAXREC

ERR_BRANCH: Makes the coding statement label ERR_BRANCH a
local symbol

ERR_BRANCH: : Makes the coding statement label ERR_BRANCH a
global symbol

In certain other languages, the compiler determines whether a symbol
is local or global. For example, the FORTRAN compiler makes statement
numbers local symbols, and it makes module entry points and common
area names global symbols. For information about designating symbol
type in a specific programming language, see the appropriate 1language
reference manual.

SYMBOLS AND REFERENCES

Universal symbols must be specified by the UNIVERSAL= option in the
linker options file. Chapter 5 explains the use of the /OPTIONS
qualifier with the LINK command.

2.2.1 Local Symbols

You can refer to local symbols only within the object module that
defines them. Most symbols in a typical program are local.

The compiler or assembler resolves references to local symbols, and
therefore they are not passed on to the linker.

2.2.2 Global Symbols

Global symbols can be referred to by object modules other than the
module that defines them.

Each global symbol has either a strong or a weak definition, An
external module can make a strong reference or a weak reference to any
global symbol.

2.2.2.1 Strong Definition - A global symbol with a strong definition
is available for reference if the module that defines it is either
explicitly named in the LINK command or contained in a library that is
searched by the linker. Global symbols usually have a strong
definition, and strong is the default if neither weak nor strong is
specified.

The librarian utility makes an entry for each global symbol with a
strong definition in the global symbol table of a library. Libraries
are discussed in Chapter 3.

2.2.2.2 Weak Definition - A global symbol with a weak definition is
available for reference only if the module that defines . it is
explicitly included in the linking operation; that is, the module is
listed as an input file, specified with the INCLUDE qualifier, or
included from a library because another (strong) symbol in the module
is needed. Weak symbols can be defined in VAX-11 MACRO and VAX-1l1
BLISS. See the VAX-11] MACRO Language Reference Manual for more
information.

The librarian utility routine does not make entries for global symbols
with weak definitions in the global symbol table of a library.

2.2.2.3 Strong Reference - A strong reference is one whose resolution
is critical to the linking operation. If the linker cannot resolve
all strong references by searching named input modules and 1libraries
and the default system library, it reports errors and assumes that the
symbol referred to has a value of zero.

Most references to global symbols are strong, and strong 1is the
default.

SYMBOLS AND REFERENCES

2.2.2.4 Weak Reference - A weak reference is one whose resolution is
not <critical to the 1linking operation. For a weak reference, the
linker searches only named input modules, but not user 1libraries or
the default system library. The linker does not treat an unresolved
weak reference as an error, but it does assume that the symbol
referred to has a value of =zero. Weak references can be made in
VAX-11] MACRO.

An example of the use of weak references might occur in a program that
you want to 1link now, but that you want to add to and relink later.
In a particular subroutine you might make a weak reference to a symbol
in an external module that will not be written until later. You can
link the image and run it, as long as it does not try to use the
nonexistent symbol during the run.

2.2.3 Universal Symbols

A universal symbol is a special type of global symbol in a shareable
image. A universal symbol is accessible by other modules when they
link with the shareable image. Universal symbols in a shareable image
contrast with ordinary global symbols in the modules that make up the
shareable image; the ordinary global symbols are available only when
the modules are being linked to create the shareable image.

VAX-11 MACRO provides the .TRANSFER directive to identify an important
class of wuniversal symbols, namely transfer vectors. Otherwise, you
must identify universal symbols with the UNIVERSAL= option in a linker
options file (see Chapter 5). For example, the following LINK command
shows how to designate A and B as universal symbols in the shareable
image ABBOTT. COSTELLO 1is an options file that includes the record
UNIVERSAL=A,B.

$ LINK/SHAREABLE ABBOTT,COSTELLO/OPTIONS

COSTELLO.OPT

UNIVERSAL=A,B

An example of the need for universal symbols might occur if you write
an error-handling routine with several modules to be linked as a
shareable image. You define global symbols for references between the
modules. However, you must designate as universal any global symbols
that are to be available when an executable image is linked with the
shareable image. For example, the executable image needs access to
the error-handling shareable image's entry points and perhaps some
constants for defining possible errors.

2.3 SYMBOL TABLES

An image can have neither, one, or both of the following symbol
tables:

e A debug symbol table

e A global symbol table

SYMBOLS AND REFERENCES

The debug symbol table is included only if you specify /DEBUG at 1link
time. This debug symbol table normally contains the following types
of information:

e Module names
e Routine names and/or program section names
e All local symbols

However, the local symbols are included only if you request debug at
both compilation time and link time.

The global symbol table is included in an executable image whenever
you include debug in the 1link. The global symbol table is always
included in a shareable 1image, vregardless of the qualifiers vyou
specify at 1link time. The global symbol table contains an entry for
each global symbol in an executable image and for each universal
symbol in a shareable image. These symbols are listed in the Symbols
by Name section of the image map.

2.3.1 Global Symbol Table As Separate Output

You can output a copy of the image's global symbol table as a separate
file by wusing the /SYMBOL_TABLE qualifier at link time. The symbol
table file is a sequential file containing wvariable-length records.
Its format is identical to that of object modules (Appendix C explains
this format in detail).

You can specify a symbol table file as input to a 1linking operation.
The linker makes the global symbols in the symbol table file and their
values available to the object modules being 1linked, without also
linking the entire image with which the global symbols are associated.
One primary use for specifying symbol table files at link time 1is to
make global symbols in a system image available to a number of other
images without binding the system image into each of the other images.

CHAPTER 3

LIBRARIES

A library contains object modules and related information, including a
list of the names of the modules and a list of the global symbols
contained in the modules. (A library can contain modules other than
object modules; however, the 1linker is only concerned with object
libraries.) The linker searches one or more 1libraries to resolve
references to global symbols that are not defined in the object files
previously specified in the LINK command.

When the linker matches a global symbol having an unresolved strong
reference with an entry 1in a library's table of global symbols, it
binds the module that defines the symbol into the image. You can
eliminate the need for the linker to search the global symbol table of
the library by explicitly including modules from a 1library in an
image. In addition to any libraries that you specify, the linker
automatically searches the following for any unresolved strong
references:

e User-defined default libraries, if there are any (See Section
3.3)

e The default system library

To create a library, you must wuse the LIBRARY command, which Iis
explained in the VAX/VMS Command Language User's Guide.

3.1 LIBRARY TABLES USED BY THE LINKER

Each object module library contains two 1lists or tables that the
linker uses to resolve symbolic references:

e A module name table, containing an entry for each object
module in the 1library. Each entry includes the name of the
module and its location within the library file.

e A global symbol table, containing an entry for each global
symbol in the modules in the library. Each entry includes the
name of the symbol and the location of the module that defines
the symbol.

For example, in a hypothetical library named MINE2, one of the modules
is MODULEZ, which contains the global symbols TAGl and TAG2. Although
it is not intended as an exact schematic illustration, Figure 3-1
shows the relationship of the module name table and the global symbol
table to the rest of the library.

LIBRARIES

MINE2,0LB
LIBRARY
HEADER
MODULE NAME
TABLE
MODULEZ One entry in the module name table for
each object module in the library.
GLOBAL SYMBOL
Pointers to TABLE
the associated
module TAG1 —One entry in the global symbol table
TAG2 for each global symbol in each module.
MODULEZ
MODULEB > OBJECT MODULES

Figure 3-1 Library Tables

3.2 LINKER'S USE OF LIBRARIES

You can include library modules in the image either implicitly or
explicitly:

Implicit inclusion occurs when a module specified in the LINK
command refers to a global symbol defined in a library that
the linker searches. For example, an instruction in a module
named MODULEl moves FIELDA to FIELDB, yet FIELDB is defined
only in the module LIBMOD3 in the library BOBLIB.OLB. You can
specify:

$ LINK MODULE1l,BOBLIB/LIBRARY

This causes the linker to search BOBLIB for any unresolved
references from MODULEL. When it discovers that FIELDB is
defined in LIBMOD3, the linker includes that module in the
image.

Explicit inclusion occurs when you name a module with the
/INCLUDE qualifier after the library name. To use the example
in the explanation of implicit inclusion, if vyou know that
FIELDB 1is defined in module LIBMOD3 in BOBLIB, vyou can
simplify the linker's search and explicitly include LIBMOD3 in
the final executable image by specifying:

$ LINK MODULE1l,BOBLIB/INCLUDE=LIBMOD3

LIBRARIES

The linker follows these conventions in using libraries:

e It processes all input files, including 1libraries, in the
sequence in which you name them. Thus, the linker searches a
library for unresolved strong references only from previously
named input files. For example, assume that you enter the
following command:

$ LINK A,B,C/LIBRARY,D,E

The linker searches library C for unresolved strong references
from object modules A and B, but not D and E. The search of
library C continues until no more symbols can be resolved.
For example, if module X is included from library C and module
X also has some unresolved strong references, the linker makes
another search of library C.

e If you specify both the /LIBRARY and /INCLUDE qualifiers after
a library's file specification, the linker includes the named
modules first and then, if necessary, searches the library.
This 1is true regardless of the order of the two qualifiers.
For example, the following two commands cause the 1linker to
perform identical actions:

$ LINK A,B/INCLUDE=(MOD1,MOD2)/LIBRARY
$ LINK A,B/LIBRARY/INCLUDE=(MOD1,MOD2)

e The 1linker searches the following default 1libraries for
unresolved strong references after it has processed all named
input files, including user libraries:

- Any user-defined default libraries (see Section 3.3)
- The default system library (see Section 3.4)

These conventions allow you considerable choice when the same global
symbol name is defined differently in modules in different libraries.
For example, if you know that a particular symbol is defined as vyou
need it in a particular module but is defined differently in another
module (in one of your libraries or the default system library), you
can choose the desired definition by specifying the module with the
/INCLUDE qualifier. If you know that vyour own library has global
symbols that are defined differently in the default system library,
you can include your own symbols by specifying your library with the
/LIBRARY qualifier.

3.3 USER-DEFINED DEFAULT LIBRARIES

You can define one or more default libraries for the linker to search
before it searches the default system library. You must equate the
logical names LNKSLIBRARY, LNKSLIBRARY 1, and so on (up to
LNK$SLIBRARY_999) to the file specifications of your default libraries,
You can define these logical names in the process, group, and system
logical name tables.

The linker automatically searches any user-defined default libraries
for unresolved strong references, unless you specify the
/NOUSERLIBRARY qualifier in the LINK command. You can specify in the
/USERLIBRARY qualifier the tables, PROCESS, GROUP, or SYSTEM, that you
want the linker to search. If vyou specify /USERLIBRARY without a

LIBRARIES

table 1list (or do not specify it at all), the linker assumes all
tables are to be searched (/USERLIBRARY=ALL). The search of
user-defined default libraries proceeds as follows:

1. If you specify /USERLIBRARY=PROCESS or /USERLIBRARY, the
linker searches the process logical name table for the name
LNKSLIBRARY. If this entry exists, the linker translates the
logical name and searches the specified 1library for
unresolved strong references. If you exclude PROCESS from
the table 1lsit in /USERLIBRARY or if no entry exists for
LNKSLIBRARY, the linker proceeds to step 4 (searching the
group logical name table).

2. If any unresolved strong references remain, the 1linker
searches the process logical name table for the name
LNKSLIBRARY 1, and follows the logic of step 1. If no entry
exists for LNKSLIBRARY 1, the linker proceeds to step 4
(searching the group logical name table).

3. If any unresolved strong references remain, the linker
follows the logic of step 1 for LNKSLIBRARY_ 2, LNKSLIBRARY_ 3,
and so on, until it finds no match in the process logical
name table, at which point it proceeds to step 4.

4, If you specify /USERLIBRARY=GROUP or /USERLIBRARY, the linker
follows the 1logic in steps 1-3 using the group logical name
table. If you exclude GROUP from the table 1list in
/USERLIBRARY or when any logical name translation fails, the
linker proceeds to step 5.

5. If vyou specify /USERLIBRARY=SYSTEM or /USERLIBRARY, the
linker follows the logic in steps 1-3 using the system
logical name table. If you exclude SYSTEM from the table
list 1in /USERLIBRARY or when any logical name translation
fails, the linker searches the default system library (if any
unresolved strong references remain).

An example use of user-defined default libraries is that you may want
the 1linker to wuse your private libraries MINE1.OLB and MINE2.0OLB as
default libraries, and everyone in your group may want the 1linker to
use [PROJX]PROJECTX.O0LB as a default library. Moreover, the system
manager may want SYSSLIBRARY:MYSITE.OLB as a default library for all
users, The following commands make the necessary 1logical name
definitions (the GRPNAM and SYSNAM privileges are required to use the
/GROUP and /SYSTEM qualifiers, respectively):

$ DEFINE LNKSLIBRARY DBAl:[GOLD]MINEl

$ DEFINE LNKSLIBRARY 1 DBAl:[GOLD]MINE2

$ DEFINE/GROUP LNKSLIBRARY DBA1l:[PROJX]PROJECTX
$ DEFINE/SYSTEM LNKSLIBRARY SYSSLIBRARY:MYSITE

Note that the logical names in each table must be used consecutively
(LNKSLIBRARY, LNKSLIBRARY 1, LNKSLIBRARY 2, ...). In the preceding
example, if you were to deTete LNKSLIBRARY from the process logical
name table, the 1linker would not search for LNK$LIBRARY*1 in the
process logical name table, because it proceeds to the next table as
soon as logical name translation fails.

LIBRARIES

3.4 DEFAULT SYSTEM LIBRARY

If any unresolved strong references remain after the 1linker has
processed all your input, it begins a search of the default system
library. This "library" is in fact two files: one a shareable image
called VMSRTL (default file specification is SYSSLIBRARY:VMSRTL.EXE)
and the other an object 1library called STARLET (default file
specification is SYSSLIBRARY:STARLET.OLB).

3.4.1 VMSRTL

If the linker needs to search the default system library, it searches
the VMSRTL shareable image first. This shareable image contains most
of the procedures described in the VAX-1ll1 Run-Time Procedure Library
Reference Manual, including many routines required by almost all high
level language programs,

If the linker finds no symbols that it needs in the shareable image,
it does not include the shareable image VMSRTL in the image being
created.

You can use the /NOSYSSHR qualifier with the LINK command to suppress
the linker's search of VMSRTL (see Chapter 4).

3.4.2 STARLET

STARLET is an object module library. It contains all the object files
used to create the shareable image version of the Run-Time Library, as
well as other less frequently used procedures, This object 1library
also contains modules for interfacing to VAX/VMS system services.

The linker searches STARLET if any unresolved strong references remain
after it has searched VMSRTL.

You can use the /NOSYSLIB qualifier to the LINK command to suppress
the linker's search of both STARLET and VMSRTL (see Section 4.2.1).

3.5 EXAMPLE OF USING LIBRARIES
The following example shows how you can specify both explicit and
implicit inclusion of modules from libraries. (Assume that there are
no user-defined default libraries.)
$ LINK LAUREL,HARDY-
MINE2/INCLUDE=MODULEZ, ~
MINE3/LIBRARY
These statements tell the linker:
1. Link the object modules LAUREL and HARDY.

2. Extract MODULEZ from the library MINE2 and link it with the
object modules LAUREL and HARDY.

LIBRARIES

3. If any unresolved strong references remain in LAUREL, HARDY,
or MODULEZ, search the library MINE3, and extract and link
any modules needed to resolve these references.

4. For any strong references that are still unresolved, search
the default system library.

Note that the linker will not search MINE3.0LB and the default system
library if the only unresolved references are weak references. For a
discussion of weak references, see Section 2.2.2.4.

CHAPTER 4

THE LINK COMMAND

To invoke the VAX-11 Linker, use the DIGITAL Command Language (DCL)
LINK command. You can enter the LINK command interactively, or you
can include it in a command procedure.

The LINK command recognizes a number of command qualifiers and file
qualifiers. A command qualifier conveys information about the linking
operation and the image to be created -- for example, whether to
generate an image map, or whether to include a debugger in the image.
A file qualifier specifies information about a file that is input to
the 1linker -- for example, identifying the file as a library. Some
qualifiers are valid only if they are used with other qualifiers, and
some qualifiers are incompatible with other qualifiers.

This chapter discusses the LINK command and 1its qualifiers, but
discusses command syntax only where necessary to avoid errors or
misunderstanding. For detailed information on command syntax, see the
VAX/VMS Command Language User's Guide.

4,1 COMMAND FORMAT
The LINK command is usually entered in the following format:
$ LINK/command-qualifier... file-spec/file-qualifer,...

You must enter at least the LINK command name and one input file name.
You can enter multiple command qualifiers and file specifications, and
one or more file qualifiers for each file specification.

Slashes (/) separate qualifiers from each other and from the command
name or file specification with which they are associated. One or
more spaces or tabs must separate the last command qualifier from the
first input file specification. A comma must precede the second and
subsequent input file specifications.

The following examples show some acceptable formats of the LINK
command (Section 4.3 explains these examples).

$ LINK PROGA
$ LINK/MAP/DEBUG PAYROLL,FICA,PAYLIB/LIBRARY
$ LINK/MAP/FULL/EXECUTABLE=STOOGES CURLY,-

LARRY ,MOE,TVLIB/INCLUDE=OLDIES, -
COMEDY/LIBRARY ,SLAPSTICK/OPTIONS

THE LINK COMMAND

The names assigned to the image file, the map file, and other output
files depend on the first input file name, unless you specify
differently. You can specify a different output filename by
specifying a name in an /EXECUTABLE, /SHAREABLE, /MAP, or
/SYMBOL TABLE qualifier or by entering one of these qualifiers after a
file specification (see Section 4.2). 1In the second of the preceding
examples, the image file and the map file will be named PAYROLL. In
the third example, the image file will be named STOOGES because you so
specified with the /EXECUTABLE qualifier, but the map file will be
named CURLY. (To name the map file STOOGES, vyou must specify
/MAP=STOOGES.)

4.2 COMMAND AND FILE QUALIFIERS

You can enter many command and file qualifiers, but normally you will
not need to because most qualifiers have default values that the
linker uses if you omit the qualifier.

Some qualifiers are incompatible with certain other qualifiers. The
linker takes one of two actions if you specify incompatible
qualifiers: either it invalidates the entire LINK command and
displays an error message, or it ignores certain qualifiers
(generally, all except the last valid one) and allows the 1link to
continue. For example, if you specify /FULL and /BRIEF for the map,
the linker rejects the entire command; but if vyou specify the
positive and negative forms of a qualifier (say, /EXECUTABLE and
/NOEXECUTABLE), the linker accepts the last one entered.

Tables 4-1 and 4-2 list the command and file qualifiers, the default
value for each command qualifier, the function for each file
qualifier, and incompatible qualifiers. A [NO] indicates that the
qualifier can be negated by prefixing NO (without brackets) -- for
example, /NODEBUG or /NOEXECUTABLE, Any entry after a negative
qualifier 1is not wvalid; for example, it would be nonsense to enter
/NOEXECUTABLE=PAYROLL.

Sections 4.2.1 and 4.2.2 discuss the command qualifiers and file
qualifiers individually. Within each section the qualifiers are
presented in alphabetical order.

THE LINK COMMAND

Table 4-1
Command Qualifiers

Command Qualifier

Default

Incompatible
Qualifiers

/BRIEF

/[NO]JCONTIGUOUS
/[NO]CROSS_REFERENCE

/[NO]DEBUG [=file-spec]

/ [NO]EXECUTABLE [=file-spec]
/FULL

/HEADER

/[NO]MAP [=file-spec]
/POIMAGE

/PROTECT

/[NO]SHAREABLE [=file-spec]

/[NO]SYMBOL_TABLE [=file-spec]
/[NO]SYSLIB
/[NO]SYSSHR

/[NO]SYSTEM [=base-address]

/ [NO] TRACEBACK

/[NO]USERLIBRARY [=(table[,...1)]

Default map

/NOCONTIGUOUS
/NOCROSS_REFERENCE

/NODEBUG

/EXECUTABLE

Default map

/NOMAP (interactive)

/MAP (batch)

/NOSHAREABLE

/NOSYMBOL_TABLE
/SYSLIB
/SYSSHR

/NOSYSTEM

/TRACEBACK

/USERLIBRARY=ALL

/NOMAP, /FULL,
/CROSS_REFERENCE

/NOEXECUTABLE
/NOMAP , /BRIEF
/NOTRACEBACK,
/SHAREABLE, /SYSTEM,
/NOEXECUTABLE
/SHAREABLE

/NOMAP, /BRIEF

/SYSTEM,
/EXECUTABLE

/SYSTEM,

/DEBUG,
/EXECUTABLE

/NOSYSLIB

/DEBUG,
/SHAREABLE

THE LINK COMMAND

Table 4-2
File Qualifiers
Incompatible
File Qualifier Function Qualifiers

/INCLUDE=module-name[,...]| Includes one or All others, except
more object modules|/LIBRARY
from a library in
the link

/LIBRARY Identifies an All others, except
object module /INCLUDE
library

/OPTIONS Identifies a All others
linker options
file

/SELECTIVE_SEARCH Includes only All others, except
global symbols /SHAREABLE
referred to by
previously named
input files

/SHAREABLE [=[NO] COPY] Identifies a All others, except
shareable image /SELECTIVE_SEARCH
input file; valid
only in a linker
options file

4.2,1 Command Qualifiers
/BRIEF
/BRIEF produces a brief form of the image map. A brief map

contains only the following sections:

e Object Module Synopsis

e Image Synopsis

e Link Run Statistics

A brief
Symbols

/BRIEF is valid only
command.

if vyou

also

specify /MAP in
/BRIEF is incompatible with /FULL and /CROSS_REFERENCE..

map does not contain the Program Section Synopsis and the
by Name sections, which are included in the default map.

the LINK

For illustrations and explanations of the image map sections, see

Section 6.2.

THE LINK COMMAND

/CONTIGUOUS
/NOCONTIGUOUS

/CONTIGUOUS forces the entire image to be placed 1in consecutive
disk blocks. If sufficient contiguous space is not available on
the output disk, the linker reports the error and terminates the
link operation without generating an image.

You <can use the /CONTIGUOUS qualifier to improve paging
performance for all types of images because an image usually runs
slower if it is not contiguous. You can also use the /CONTIGUOUS
qualifier to satisfy the requirement of bootstrap programs for
certain system 1images, since many bootstrap programs cannot
handle discontiguous images.

If you do not specify /CONTIGUOUS, the linker assumes
/NOCONTIGUOUS by default. That 1is, 1if sufficient contigquous
space is not available, the 1image is divided and placed 1in
different areas on disk. (However, the operating system still
tries to make the image as close to contiguous as possible.)

/CROSS_REFERENCE
/NOCROSS_REFERENCE

/CROSS_REFERENCE causes the Symbols by Name section of the image
map to be replaced by a Symbol Cross Reference section, which
lists global symbols in alphabetical order and the following
information about each symbol:

e Its value
e The name of the first module that defines it
e The name of each module that refers to it

The number of symbols listed in the cross reference depends on
whether you specified /FULL for the map or accepted the default
map. A full map contains global symbols from all modules in the
image, 1including modules extracted from libraries. The default
map generally excludes global symbols that are defined and
referred to only within the default system library.

/CROSS_REFERENCE is valid only if you also specify /MAP in the
LINK command. /CROSS_REFERENCE is incompatible with /BRIEF.

If you do not request a cross reference, none is provided; the
map still 1lists global symbols in alphabetical order, but gives
only the value for each one.

/DEBUG[=file-spec]
/NODEBUG

/DEBUG tells the linker to bind a debugging module into the
image. When the 1image 1is run, the debugger receives control
first. /DEBUG does not have any effect on the location of code
within the image; the 1image map 1is the same with /DEBUG or
/NODEBUG.

If you specify /DEBUG, you can also enter the file specification
of a user-written debug module. 1If you enter a debugging module
file specification without specifying the file type, the linker
assumes OBJ.

THE LINK COMMAND

If you specify /DEBUG without entering a file specification, the
linker uses the VAX-11 Symbolic Debugger. This debugger includes
a debug symbol table (discussed in Section 2.3) and coding logic
to help in debugging the 1image at run time. For further
information, see the VAX~11 Symbolic Debugger Reference Manual.

/DEBUG automatically includes /TRACEBACK. If you specify /DEBUG
and /NOTRACEBACK, the 1linker overrides your specification and
includes traceback information.

If you do not specify /DEBUG, the linker assumes /NODEBUG.

/EXECUTABLE [=file-spec]
/NOEXECTABLE

/EXECUTABLE tells the linker to create an executable image, as
opposed to a shareable image or a system image. You can also
enter a file specification for the image; however, if you do not
enter one, the linker uses the file name of the first input file
or if you specify /EXECUTABLE after an input file specification,
the name of the modified file. If you do not enter a file type
after the filename, the linker assumes a file type of EXE.

If you specify both /SYSTEM and /EXECUTABLE, the linker creates a
system image but uses the /EXECUTABLE qualifier to determine the
image's file-specification.

/NOEXECUTABLE tells the 1linker to perform all the actions
involved 1in creating an executable image, but not to output it.
You can use /NOEXECUTABLE to test combinations of files and
qualifiers without actually creating an image.

If you do not specify /NOEXECUTABLE, /SHAREABLE, or /SYSTEM, the
linker assumes /EXECUTABLE.

/FULL

/FULL produces the most complete map of the image. The full map
contains all the sections found in the default map, although
several sections contain more detailed information. The full map
also contains two sections not found in the default map. The
following sections of a full map contain information about all

modules in the image. (In the default map, these sections
generally omit information about modules from the default system
library.)

e Object Module Synopsis
e Program Section Synopsis
e Symbols by Name

The following sections are included in a full map, but not in the
default map:

e Image Section Synopsis
e Symbols by Value

For illustrations and explanations of the image map sections, see
Section 6.2,

/FULL is valid only if you also specify /MAP in the LINK command.
/FULL is incompatible with /BRIEF but not with /CROSS_REFERENCE.

THE LINK COMMAND

/HEADER

/HEADER is used with /SYSTEM; it tells the linker to «create a
system image with a header. If you specify /SYSTEM without
/HEADER, the linker creates a system image without a header.
Executable and shareable images always have 1image headers;

consequently, /HEADER is ignored in LINK commands creating these
images.

/MAP [=file-spec]
/NOMAP

/MAP causes the linker to create an image map as a separate file.
You can enter a file specification for the image map file;
however, if you do not enter one, the linker uses the file name
of the first 1input file or, if you specify /MAP after an input
file specification, the name of the modified file. If you do not

enter a file type after the file name, the linker assumes a file
type of MAP.

If you enter /MAP, you can further specify the contents of the
map with the /BRIEF, /FULL, and /CROSS_REFERENCE qualifiers. If
you enter /MAP and no related qualifier, the 1linker produces a
default map that contains the following sections:

e Object Module Synopsis

e Program Section Synopsis
e Symbols by Name

e Image Synopsis

e Link Run Statistics

For illustrations and explanations of the image map sections, see
Section 6.2,

If you do not specify /MAP, the default for interactive mode is
/NOMAP; that is, the linker does not generate an image map. In
a batch job the default is /MAP; that is, the 1linker generates
its standard (default) map.

/POIMAGE

/POIMAGE is used to create executable images that modify Pl
address space. The linker places the stack and RMS buffers that
usually go in Pl address space in PO address space. See the
VAX-11] Architecture Handbook for a description of PO and Pl
address space.

/PROTECT

/PROTECT is used with /SHAREABLE; it tells the linker to protect
the shareable 1image, making it a privileged shareable image. A
privileged shareable image can execute change mode instructions
even when it 1is 1linked into a nonprivileged executable image.
See the VAX/VMS Real-Time User's Guide for more information on
privileged shareable images.

THE LINK COMMAND

/SHAREABLE [=file-spec]
/NOSHAREABLE

/SHAREABLE tells the linker to create a shareable image. (For an
explanation of shareable images, see Section 7.6.2 and Chapter
8.) You can also enter a file specification for the shareable
image; however, 1if you do not enter one, the linker uses the
file name of the first input file or, if you specify /SHAREABLE
after an input file specification, the name of the modified file.
If you do not enter a file type after the file name, the linker
assumes a file type of EXE.

You cannot run a shareable image, but you can link it with object
modules or other shareable images. (See the explanation of the
/SHAREABLE file qualifier in Section 5.1.2.)

If you specify /SHAREABLE, you cannot specify /SYSTEM or /DEBUG.
If you specify both /SHAREABLE and /EXECUTABLE, the linker
ignores /EXECUTABLE and creates a shareable image.

If you do not specify /SHAREABLE, the linker assumes
/NOSHAREABLE; that is, the image is not a shareable image. (See
the explanation of the /EXECUTABLE command qualifier in this
section.)

/SYMBOL TABLE[=file-spec]
/NOSYMBOL_TABLE

/SYMBOL TABLE tells the linker to create a separate file, with a
default™ file type of STB, containing the image's global symbol
table. This qualifier does not affect the global symbol table in
the 1image itself; rather, it causes an additional global symbol
table to be created in object module format. You can also enter
a file specification for the global symbol table file; however,
if you do not make this entry, the linker uses the name of the
first input file or, if you specify /SYMBOL TABLE after an input
file specification, the name of the modified file.

You can include the symbol table file as input to future 1linking
operations, just as 1if it were an object module. For further
information, see Section 2.3.1l.

If you do not specify /SYMBOL TABLE, the linker assumes
/NOSYMBOL TABLE; that 1is, it does not generate a symbol table
file. -

/SYSLIB
/NOSYSLIB

/SYSLIB tells the linker to search the default system library for
unresolved strong references to global symbols after it has
searched any specified wuser 1libraries and any user-defined
default 1libraries. (Section 3.4 explains the default system
library.) You will probably want the linker to search the default
system library for almost all linking operations. If you do not
specify /NOSYSLIB, the linker assumes /SYSLIB by default.

/NOSYSLIB tells the linker not to search the default systen
library (VMSRTL.EXE and STARLET.OLB). You should specify
/NOSYSLIB only if you know that other specified 1libraries allow
the 1linker to resolve all symbolic references and if you have a

good reason for suppressing the system library search. If vyou
specify both /NOSYSLIB and /SYSSHR, the /SYSSHR qualifier is
ignored.

THE LINK COMMAND

/SYSSHR
/NOSYSSHR

/SYSSHR tells the linker to search the default system run time
library shareable 1image (VMSRTL.EXE) for unresolved strong
references to global symbols. If any symbol within this
shareable image resolves an outstanding reference, the shareable

image is included in your program as the highest-addressed part
of the program region.

The primary use of this qualifier, however, is in 1its negative
form. /NOSYSSHR tells the linker not to try to resolve symbolic
references by including the default system shareable image.
Instead it directs the 1linker to use only the default object
library (STARLET.OLB), which includes all the routines in VMSRTL.
To tell the linker to search neither the default system shareable

image nor the default system object library, use the /NOSYSLIB
qualifier.

/SYSTEM [=base-address]
/NOSYSTEM

/SYSTEM tells the linker to create a system image. (For an
explanation of system 1images, see Section 7.6.3.) You can also
specify a base address at which the system image will be 1loaded
at run time, and you can express this address in decimal (%D),
hexadecimal (%X), or octal (%0) format. If you specify /SYSTEM
without a base address, the 1linker assumes %X80000000. The
linker uses the filename of the first input file and the file
type EXE. If you want a different output file-specification, you
must also specify /EXECUTABLE.

If you specify /SYSTEM, you cannot specify /SHAREABLE or /DEBUG.

If you do not specify /SYSTEM, the linker assumes /NOSYSTEM;
that 1is, the image is not a system image. (See the explanation
of the /EXECUTABLE command qualfier in this section.)

/TRACEBACK
/NOTRACEBACK

/TRACEBACK tells the linker to include traceback information in
the image. Traceback is a facility that automatically displays
information from the call stack when a fatal program error
occurs., The output shows which modules were called before the
error occurred,

The linker assumes /TRACEBACK unless you exclude the facility by
specifying /NOTRACEBACK. If you enter /DEBUG, the 1linker
automatically includes traceback also; therefore, if you specify
both /DEBUG and /NOTRACEBACK, you receive a warning that
/NOTRACEBACK has been ignored.

/USERLIBRARY [=(tablel,...])]
/NOUSERLIBRARY

/USERLIBRARY tells the linker to search any user-defined default
libraries after it has searched any specified user libraries.

4-9

THE LINK COMMAND

The linker searches the process, group, and system logical name
tables to find the file specifications of the user-defined
libraries. (Section 3.3 explains user-defined default
libraries.) You <can specify the following tables that you want
the linker to search:

ALL The linker searches the process, group, and system
logical name tables for user-defined library
definitions.

GROUP The linker searches the group 1logical name table for

user-defined library definitions.

NONE The linker does not search any 1logical name table;
/USERLIBRARY=NONE is equivalent to /NOUSERLIBRARY.

PROCESS The linker searches the process logical name table for
user-defined library definitions.

SYSTEM The linker searches the system logical name table for
user—defined library definitions.

If you do not specify either /NOUSERLIBRARY or
/USERLIBRARY=(table), the 1linker assumes /USERLIBRARY=ALL by
default.

/NOUSERLIBRARY tells the linker not to search any user-defined
default libraries.

4.2,2 File Qualifiers
/INCLUDE=module-namel[,...]

/INCLUDE tells the linker to include the named module or modules
from the associated library in the image. To specify more than
one module, enclose the list in parentheses and separate module
names with commas. /INCLUDE does not cause the linker to search
the rest of the associated 1library for unresolved references,
unless you also specify /LIBRARY. For further information on
libraries, see Chapter 3.

The following two examples show uses of the /INCLUDE qualifier
with a library named NATIONAL that contains many modules, among
them REDS, DODGERS, and PHILS.

$ LINK LEAGUE,NATIONAL/INCLUDE=(REDS,DODGERS,PHILS)

This example tells the linker to extract modules REDS, DODGERS,
and PHILS from the 1library NATIONAL and include them in the
executable image which will be named LEAGUE (since that 1is the
name of the first input file).

$ LINK LEAGUE,NATIONAL/LIBRARY/INCLUDE=(REDS,DODGERS,PHILS)
This example also tells the linker to include REDS, DODGERS, and
PHILS in LEAGUE. However, the /LIBRARY qualifier tells the
linker to search the rest of the library NATIONAL and link in any
other modules needed to resolve strong symbolic references in
LEAGUE, REDS, DODGERS, and PHILS.

THE LINK COMMAND

/LIBRARY

/LIBRARY identifies a file as a library. The 1linker searches
libraries that vyou specify if any unresolved strong symbolic
references between modules remain after it links the previously
named input files and any previously named 1library modules
specified with the /INCLUDE qualifier. For further information
on libraries, see Chapter 3.

/LIBRARY cannot be the only qualifier on the first input file,

since there are as yet no outstanding references to be resolved
from this library.

/OPTIONS

/OPTIONS identifies a file as a linker options file. This file
can contain 1input file specifications, as well as special

instructions recognized only by the linker and not by the command
interpreter.

Chapter 5 explains how to create an options file and what it can
contain. Chapter 5 also discusses each of the special
instructions you can include in the options file.

/SELECTIVE_SEARCH

/SELECTIVE_SEARCH tells the linker to 1include in the image's
global symbol table only those global symbols in the associated
file that previously named input files refer to. If you do not
specify /SELECTIVE_SEARCH for an input file, all of its global
symbols are included in the global symbol table of the image.

/SHAREABLE [=[NO] COPY]

/SHAREABLE as an input file qualifier 1is wvalid only within a
linker options file. Section 5.1.2 explains the use of the
/SHAREABLE file qualifier.

EXAMPLES
1. §$ LINK PROGA

The linker binds the object module PROGA and creates an
executable 1image named PROGA. The linker searches any
user-defined default libraries and the default system library
for any unresolved strong symbolic references in PROGA.OBJ.
All linker defaults are used.

2. $ LINK/MAP/DEBUG PAYROLL,FICA,PAYLIB/LIBRARY

The linker binds object modules PAYROLL and FICA, searching
the 1library PAYLIB for unresolved strong references in the
two object modules before searching any user-defined default
libraries or the default system library. The linker also
includes the VAX-11] Symbolic Debugger in the image.

The name of the executable image is PAYROLL. The linker also
generates an 1image map (in the default map format) with a
file name of PAYROLL and a file type of MAP.

3.

THE LINK COMMAND

$ LINK/MAP/FULL/EXECUTABLE=STOOGES CURLY,-
LARRY ,MOE,TVLIB/INCLUDE=OLDIES, -
COMEDY/LIBRARY ,SLAPSTICK/OPTIONS

The linker binds object modules CURLY, LARRY, and MOE, as
well as the module OLDIES from the library TVLIB. The linker
searches the 1library COMEDY for any unresolved symbolic
references in CURLY, LARRY, MOE, and OLDIES, before searching
any user-defined default 1libraries or the default system
library. The 1linker uses the options file SLAPSTICK for
additional input file specifications or special instructions.

The linker generates a full map, with the default file name
of CURLY and the file type of MAP. The executable image is
named STOOGES.

CHAPTER 5

THE /OPTIONS FILE QUALIFIER

The /OPTIONS file qualifier identifies a linker options file. You can
include two types of information in this file:

o Input file specifications and associated file qualifiers, in
addition to any that you enter in the LINK command itself

® Special instructions to the 1linker that are not available
through the DCL command language

When you specify an options file at link time, the 1linker reads the
file before performing the linking operation.

5.1 USES FOR AN OPTIONS FILE

You can create an options file and use the /OPTIONS qualifier for a
number of reasons:

e To give the linker a series of file specifications and file
qualifiers that you use frequently in linking operations

e To identify a shareable image as an input file to the 1link
operation

® To enter a longer list of files and file qualifiers than the
VAX/VMS command interpreter can hold 1in its command input
buffers

e To specify information that applies only to LINK and to no
other command

5.1.1 Entering Frequently Used Input Specifications

You can create an options file containing a group of file
specifications and file qualifiers that you link frequently, and you
can specify this options file as input to the linker. The advantages
of this method are convenience and flexibility, Consider the
following two examples.

l. You want to create an executable image named PAYROLL
containing modules named PAYCALC, FICA, FEDTAX, STATETAX, and
OTHERDED. You also want to be able to make changes to any of
the modules and conveniently relink the image.

To accomplish these goals, you can use the EDIT or CREATE
command to create the file PAYROLL.OPT containing the file

THE /OPTIONS FILE QUALIFIER

specifications of the five modules. Then, to link the image
initially or to relink it any time thereafter, you can simply
enter SLINK PAYROLL/OPTIONS, instead of having to enter the
/EXECUTABLE=PAYROLL qualifier and the file specifications of
all the input modules each time. (Note that wusing the
options file in this example produces an image named
PAYROLL.) The more file specifications and file qualifiers
that you need to 1link an image, the greater is the
convenience of using an option file.

2. Two programmers, one writing PROGX and the other PROGY, both
need to include the modules MODA, MODB, and MODC, and to
search the library LIBZ. Someone can create an options file
(say, I[G15]GROUP15.0PT) containing the file specifications
for MODA, MODB, and MODC, and the specification for LIBZ
followed by /LIBRARY. At link time, then, each programmer
needs to specify only the name of his or her module and the
options file-- for example:

$ LINK/MAP PROGX, [G15]GROUP15/0PTIONS

5.1.2 1Identifying A Shareable Image As Input

To identify a shareable image as an input file to the linker, you must
use the /SHAREABLE file qualifier within an options file. (If you
include /SHAREABLE in the LINK command, the linker assumes that it is
a command qualifier, not an input file qualifier.)

The format for /SHAREABLE as an input file qualifier is as follows:
/SHAREABLE [=[NO]COPY]

e /SHAREABLE identifies the associated input file as a shareable
image.

e You can optionally specify COPY or NOCOPY as keywords. COPY
causes the 1linker to produce a private copy of the shareable
image in the 1image being created. NOCOPY, which is the
default, causes the linker not to produce a private copy.

5.1.3 Entering More Input Than The Command Language Can Handle

At times you may need to 1link a series of input files and file
qualifiers that exceeds the buffer capacity of the command interpreter
(255 characters). The maximum number of entries depends on the length
of the specific entries themselves and how much of each line you use.
However, as a general guideline, if your LINK command statement
exceeds six or seven lines, the command interpreter may not be able to
process it, In this case, you must put some or all of the input file
specifications and file qualifiers in an options file.

5.1.4 Entering Non-standard Link Instructions

The linker is more complex than most VAX/VMS wutilities; it can
perform a number of optional functions in creating an image. Although
the LINK command could have been designed to accept a very large
number of command qualifiers, some of these optional functions are not
frequently used and apply only to the 1linker -- for example,

THE /OPTIONS FILE QUALIFIER

specifying the image's base address or the number of I/O channels it
can use,

Therefore, to keep the size of the command interpreter's internal
tables and code to a manageable level, the /OPTIONS qualifier was
developed. /OPTIONS is recognizable to the command interpreter, but
the special functions that the options file can specify are
recognizable only to the linker. When you specify an options file,
then, the command interpreter passes the file to the linker, which
reads and interprets its contents.

Table 5-1 lists the special functions that you can request only in an
options file, giving the following information for each: 1its format,
the default value (if applicable), and a brief explanation. Section
5.3 provides detailed explanations of each special function.

Table 5-1
Special Options

Format Default Explanation
BASE=n $X200 for executable Base virtual
and shareable address for the
$X80000000 for image
system
CHANNELS=n 128 (See Section 5.3) | Maximum number of

I/0 channels the
image can use
during execution;
reserved for future

use
CLUSTER=cluster-name,- | (See explanation Defines a
[base-address], - in Section 5.3.) cluster
[pfc],file~-spec(,...]
COLLECT=cluster-name,- Moves the named
psect-name[,...] program sections to
the specified
cluster
DZRO_MIN=n 5 Minimum number of

uninitialized pages
before demand zero
compression can

occur
GSMATCH=keyword, - EQUAL, X,y Sets match control
major-id,minor-id (see Section 5.3) parameters of a

shareable image

IOSEGMENT=n, ~ 32, POBUFS Number of pages for
[[NO] POBUFS] the image I1/0
segment
ISD_MAX=n Approximately 96 Maximum number of
(See Section 5.3) image sections

(continued on next page)

THE /OPTIONS FILE QUALIFIER

Table 5-1 (Cont.)
Special Options

Format Default Explanation
_ JYES .
PROTECT= NO NO Specifies protected

clusters when
creating a
shareable image

PSECT_ATTR=psect-name,- Specifies the
attribute[,...] attributes of a
program section

STACK=n 20 Initial number of
pages for the user
mode stack

SYMBOL=name,value Defines the named
symbol as global
and assigns it a

value
UNIVERSAL=symbol-name Identifies a global
P | symbol as universal

5.2 CREATING AND SPECIFYING AN OPTIONS FILE

To use the /OPTIONS qualifier, you must first create the options file.
Use the EDIT command, specifying any valid file name and a file type
of OPT. (You can use any file type, but the 1linker uses a default
file type of OPT with the /OPTIONS qualifier.)

The options file can contain input file specifications and associated
file qualifiers, or the special link options outlined in Table 5-1, or
both types of information. The following rules apply to the contents
of a linker options file:

1. You must enter any input file specifications and associated
file qualifiers before any special options (see Table 5-1 for
the available special options). The input file
specifications must be on the first line of the options file
or on a continuation of the first line and must be separated
by commas.

2. You cannot enter command qualifiers.
3. You cannot enter the /OPTIONS file qualifier.

4., You can enter /SHAREABLE as an input file qualifier only in
an options file (see Section 5.1.2).

5. You cannot enter more than one special option on a line.

6. You can continue a file specification 1line or a special
option line.

THE /OPTIONS FILE QUALIFIER

7. You can enter comments after an exclamation point (!).

8. You can shorten the name of a special option, as long as you
enter at least the first four characters (for example,
CHAN=50 instead of CHANNELS=50).

The following example shows a file named PROJECT3.0PT that contains
both input file specifications and special options:

PROJECT3.0PT

MOD1 ,MOD7,LIB3/LIBRARY,-
LIB4/LIBRARY/INCLUDE=(MODX,MODY, MODZ),-
MOD12/SELECTIVE SEARCH

STACK=75 -

SYMBOL=JOBCODE, 5

To include all the specifications and options in this example at 1link

time, vyou need specify only the file name followed by /OPTIONS. For
example:

$ LINK/MAP/CROSS_REFERENCE PROGA, PROGB,-
PROGC, PROJECT3/0OPTIONS

If you have entered the SET VERIFY command, the contents of the
options file are displayed as the file is processed.

You can specify one or several options files in a LINK command
statement.

If you want the LINK command to be in a command procedure, you can
specify SYSSINPUT: as an options file. Otherwise the LINK command
will be in two files, For example, a command procedure, LINKPROC.COM
could contain the following:

$ LINK MAIN,SUB1,SUB2,SYS$INPUT:/OPTIONS
MYPROC/SHAREABLE

SYS$LIBRARY :APPLPCKGE/SHAREABLE

STACK=75

$ L

5.3 SPECIAL OPTIONS

This section lists the available special options in alphabetical order
and explains each one. Each option has the general format:

option_name=parameter[,...]

If the parameter is a number (indicated by "n"), you can express it in
decimal (%D), hexadecimal (%X), or octal (%0) format. The default and
maximum numeric values in this manual are expressed in decimal, as are
the wvalues in any linker error or warning messages relating to these
options.

THE /OPTIONS FILE QUALIFIER

BASE=n

BASE= specifies the base virtual address of the default
cluster. If you do not define any clusters with the CLUSTER=
option, the BASE= option value also specifies the base virtual
address of the whole image. If you specify an address that is
not divisible by 512, the linker automatically adjusts it
upward to the next multiple of 512 (that is, the next highest
page boundary).

The default base address is hexadecimal 200 (decimal 512) for
executable and shareable images, and hexadecimal 80000000 for
system images.

CHANNELS=n

CHANNELS= specifies the maximum number of I/0 channels that
the image can wuse while it is running. This option is
currently ignored by the linker. All images have a maximum of
128 channels.

CLUSTER=cluster-name, [base-address], [pfc],file~-spec[,...]

CLUSTER= defines a cluster. Clusters are discussed in
Chapters 7 and 8. The CLUSTER= option specifies the following
information:

e The name the linker will assign to it
e Optionally, the base virtual address of the cluster

e Optionally, the page fault cluster (pfc) -- that |is,
the number of pages to be read into memory when a
fault occurs for a page in the cluster

e Specifications for the file or files that the linker
is to wuse 1in creating the cluster. Note that you
should not specify in the LINK command itself any
files that vyou specify with the CLUSTER= option
(unless you want two copies of each file included in
the final image).

If you omit the base address or the page fault cluster, or
both, vyou must still enter the comma after each omitted
parameter, For example:

CLUSTER=AUTHORS,, ,TWAIN,DICKENS

The linker uses the following defaults in connection with the
CLUSTER= option:

e If you do not use the CLUSTER= option, the 1linker
creates a default cluster, as described in Section
7.9.

e If you use the CLUSTER= option but do not specify a
base address, the linker allocates the cluster
according to the procedure described in Section 7.9.

e If you use the CLUSTER= option but do not specify a

page fault cluster, VAX/VMS memory management
determines the value.

5-6

THE /OPTIONS FILE QUALIFIER

COLLECT=cluster-~name,psect-name[,...]

COLLECT= causes the named program sections to be placed in the

specified cluster, If the cluster name is also used in a
CLUSTER= option, the named program sections are added to that
defined cluster. If the cluster name is not also used in a

CLUSTER= option, the COLLECT= option defines the cluster.

The COLLECT= option can only specify program sections defined
with the GBL attribute.

The COLLECT= option cannot specify any program sections that
are defined in shareable images.

DZRO_MIN=n

DZRO_MIN= is an option that gives you some control over the
linker's compression of uninitialized pages in an executable
image. Before the linker writes the binary data and code of
the image, it attempts to compress certain uninitialized areas
by converting them to demand zero 1image sections. ("Demand
zero" means that although an area does not occupy physical
space in the image on disk, when the area is accessed during
execution, a portion of memory 1is allocated for it and
initially filled with binary zeroes.) An wuninitialized area
is eligible for this compression if it can be written in by
the user and if its size 1is equal to or greater than a
threshold value: that 1is, the DZRO MIN= value. The linker
will not, however, continue creating demand zero sections
after the total number of image sections reaches the maximum
(see the ISD _MAX= option in this section).

The default value for DZRO_MIN= 1is 5; that is, an
uninitialized, writeable area is not eligible for compression
unless it occupies five or more contiguous pages. A DZRO_MIN=
value less than 5 might (depending on the contents of the
object modules) cause the linker to compress more sections and
create a greater number of image sections, possibly reducing
the image size on disk but decreasing its paging performance.
A value greater than 5 might cause the linker to compress
fewer sections and create a smaller number of image sections,
possibly increasing the image size on disk but providing
better performance during execution,

GSMATCH=keyword,major-id,minor-id

GSMATCH= sets the match control parameters for a shareable
image that you are now creating. After the shareable image
has been 1linked with an executable image, and when the
executable image 1is being run, these parameters guide the
VAX/VMS image activator in choosing global sections. For
further information on this process, see Section 8.3.2,

The GSMATCH= option specifies the following information:

e A keyword expressing the match relationship between
the minor identifications in the user shareable image
section and in the installed global section. This
keyword is one of the following:

- EQUAL The minor identification of the user
shareable image section must be identical to that
of the installed shareable image section.

THE /OPTIONS FILE QUALIFIER

- LEQUAL The minor identification of the user
shareable image section must be less than or equal
to that of the installed shareable image section.
LEQUAL permits the creator of a shareable image to
update it (increasing the minor identification) and
install 1it, and yet avoid the need for programs
using that shareable image to be relinked. (The
minor identification of that shareable image
section in programs that are linked to it will be
less than the minor identification of the updated
installed shareable image section.)

- NEVER The linker is to assume that global sections
will never match (perhaps because the shareable
image will never be installed). Therefore, the
linker will always <create a private copy of this
shareable image in any image that 1links to it,
(This keyword overrides any stated or defaulted
NOCOPY keyword in the /SHAREABLE file qualifier in
any subsequent 1link operation -that names this
shareable image as an input file.)

- ALWAYS This keyword causes the image activator to
match image sections by name only and to ignore the
major and minor identifications. (However, the
syntax of this option requires that you still enter
major and minor identifications.)

e The major identification of the user shareable image
section, expressed as a number from 0 through 255,

e The minor identification of the user shareable image
section, expressed as a number from 0 through 2%**24-1.

The linker uses the following defaults for the GSMATCH=
option:

GSMATCH=EQUAL, X,y

where "x" and "y" together are the middle 32 bits of the
2-longword creation time that is stored in the shareable image
file header. This default value forces user images that are
linked to this (installed) shareable image to be relinked each
time the shareable image is updated. To ensure that other
users will not have to relink images that are linked to your
shareable image whenever you modify it, specify the following
GSMATCH= value:

GSMATCH=LEQUAL,0,0
IOSEGMENT=n[, [NO]POBUFS]

IOSEGMENT= specifies the number of pages for the image 1I/0
segment, which holds the buffers and VAX-11 RMS control
information for all files that the image's process uses. If
the process needs more space than the IOSEGMENT value during
execution, VAX~-11] RMS adds space for it at the end of the
program (PO) region.

You can also specify POBUFS or NOPOBUFS as parameters.
POBUFS, which 1is the default, permits RMS to use the program
region (PO) for any additional buffers that it needs.
NOPOBUFS denies RMS the option of wusing PO space for
additional buffers.

THE /OPTIONS FILE QUALIFIER

The default value for IOSEGMENT= 1is 32,P0BUFS. The only
reason to specify a number of pages greater than the default
is to guarantee that the program region will be contiguous 1if
you need to extend it and if the total size of your program's
buffers and VAX-11 RMS control information exceeds 32 pages.
In this case, you also need to specify NOPOBUFS.

ISD_MAX=n

ISD MAX= is an option that gives you some control over the
linker's compression of uninitialized pages in an executable
image. (For an explanation of compression, see the DZRO_MIN=
option in this section.) The 1ISD MAX= value specifies the
maximum number of image sections allowed in the image. If the
linker 1is compressing the image by creating demand zero
sections and the total number of image sections reaches the
ISD_MAX= value, the compression ceases at that point.

The default value for ISD MAX= is approximately 96. Note that
any value vyou specify Is also an approximation. The linker
determines an exact ISD_MAX= value based on certain
characteristics of the image, 1including the different
combinations of section attributes, The exact value, however,
will be -equal to or slightly greater than what you specify;
it will never be less.

PROTECT= {YES}

NO

PROTECT= controls whether clusters are protected. PROTECT=YES
specifies that all clusters defined (in a CLUSTER or COLLECT
option) between it and the next PROTECT= option are protected.
PROTECT=NO (default condition) specifies that all clusters
defined between it and the next PROTECT= option are not
protected. Protected clusters are used in privileged
shareable images to execute privileged instructions. See the
VAX/VMS Real-Time User's Guide for more information on
privileged shareable images.

PSECT_ATTR=psect-name,attributel[,...]

STACK=n

PSECT_ATTR= specifies one or more attributes of the named
program section. This option is used to change the compiled
or assembled attributes of a program section.

You must use the abbreviation given in Section 6.2.3 for each
attribute, If you do not list a complete set of attributes,
this option does not <change any attributes that are not
listed. For example, the option

PSECT_ATTR=ALPHA ,NOWRT

can be used to make the program section ALPHA not writeable
instead of writeable; however, all other attributes of ALPHA
remain the same.

STACK= specifies the initial number of pages to be allocated
for the image's user mode stack area. If when the program is

executed it requires more stack space than was allocated, the
stack is automatically expanded.

The default value is 20.

THE /OPTIONS FILE QUALIFIER

SYMBOL=name,value

SYMBOL= defines "name" as an absolute global symbol with the
specified value. The value must be expressed as a number.

Because the linker processes special options before input file
specifications, the name and value specified by the SYMBOL=
option constitute the first definition of that symbol. If an
input object module also defines that symbol, one of the
following occurs:

e If the object module defines the symbol as
relocatable, that definition 1is 1ignored and the
definition by the SYMBOL= option is used. A warning
message is issued.

e If the object module defines the symbol as absolute,
that definition 1is ignored and the definition by the
SYMBOL= option is used. No warning message is issued.

UNIVERSAL=symbol-name[,...]
UNIVERSAL= 1identifies one or more global symbols of a

shareable image as universal symbols. For a discussion of
universal symbols, see Section 2.2.3.

CHAPTER 6

IMAGE MAP

If you so request, the 1linker produces an image map containing
information about the contents of the image and about the linking
process itself.

To obtain a map, you must include the /MAP qualifier in the LINK
command. You can specify a file name with the MAP qualifier, or you
can let the linker assign a default. You can further specify the type
of map with the /BRIEF or /FULL qualifier. If you enter either /MAP
alone or /MAP with /FULL, you can also 1include a symbol cross
reference in the map by specifying /CR0OSS REFERENCE. However, if you
enter /MAP and no other map-related qualifiers, the 1linker generates
its default map.

The map is placed on your output disk and assigned a default file type
of MAP. You can print a copy of the map with the PRINT command.

The following examples show the LINK command qualifiers necessary to
produce different types of maps:

Command Qualifiers Type of Map Produced
$ LINK/MAP/BRIEF Brief map
$ LINK/MAP Default map

$ LINK/MAP/CROSS_REFERENCE Default map with symbol
cross reference

$ LINK/MAP/FULL Full map
$ LINK/MAP/FULL/- Full map with symbol
CROSS_REFERENCE cross reference

6.1 IMAGE MAP CONTENTS

A listing of the image map contains several sections; however, the
number of sections and the contents of certain sections depend on the
qualifiers that you enter.

Table 6-1 lists all the possible section names in the order in which
they appear, the types of map in which each appears, and a brief
explanation of each section. A section shown as appearing in "all" is
included in all types of image maps; "default" and "full" identify
sections appearing in default and full maps, respectively. A brief
map thus contains only the map sections designated as "all." For
detailed explanations and illustrations of map sections, see Section
6.2.

IMAGE MAP

Table 6-1
Image Map Sections

Section Name Appears In Explanation
Object Module Synopsis All Object modules in the image
Image Section Synopsis Full Image sections and clusters
Program Section Synopsis | Default Program sections and the

Full modular contributions

Symbols by Name Default Symbols by Name lists
or Full global symbol names and
Symbol Cross Reference values. However, 1if vyou
specify /CROSS_REFERENCE,
Symbol Cross Reference
appears instead, 1listing
symbol names, values,
defining modules, and

Symbols by Value Full Hexadecimal symbol values

Image Synopsis All Statistics and other

Link Run Statistics All Statistics about the 1link

referring modules.

and names of symbols with
those values

information about the
output image

run that created the image

The contents of the following sections vary depending on whether the
map type is default or full:

Object Module Synopsis
Program Section Synopsis
Symbols by Name

Symbol Cross Reference

The difference between these sections in a default map and in a full
map is in the number of items:

A default map generally includes only information that applies
to modules and shareable images that you name as input to the
linker or that are extracted from 1libraries you name,. A
default map normally does not list information that applies
only to modules taken from the default system library.

A full map includes information that applies to all modules
and shareable images, including those extracted from the
default system library.

IMAGE MAP

6.2 IMAGE MAP SECTIONS

The rest of this chapter explains and illustrates each available image
map section. The sections are presented in the order in which they
appear in a full map. Brief and default maps do not have all of these
sections, but the sections that they do have are 1in the order
presented here.

The illustrations reflect an 1image created from a simple FORTRAN
program (similar to the example developed in the VAX/VMS Primer).
Each illustration is from a full map. Headings and items 1in each
illustration are explained only if they are not self-explanatory.

Appendix B contains examples of the brief, default, and full forms of
the image map.

6.2.1 Object Module Synopsis

The Object Module Synopsis lists object modules in the order in which
the linker processed them. This section appears in all types of maps.

The Object Module Synopsis provides the following information about
each module listed:

e Module name

® Module identification as it appears in the module header

e Module length in bytes

o Complete file specification for the module

e Module creation date

e Language translator that created the module
The Object Module Synopsis also 1lists any errors that the 1linker
detected when it wrote the binary data and code--for example, a
warning message that a module refers to an undefined symbol. The
message appears immediately below the line that indicates the module

that the linker was processing when the error occurred. .

Figure 6-1 illustrates the Object Module Synopsis section.

6.2.2 Image Section Synopsis

The Image Section Synopsis lists information about the image sections
in the order in which they are mapped in the image. The Image Section
Synopsis appears only in a full map.

The Image Section Synopsis lists the following information about each
image section:

@ Cluster in which the sections were allocated or found
e Code used internally by the linker
e Number of pages

e Base virtual address within the image

AVERAGE 22=FEB=198p 14114 LINKER v@2,40 Page 1
PesnesnrTweewecssneDaRYRRe
| Object Module Synmopsis |
Yosasvesossonesenwnnnewsed
Module Name Ident Bytes File Creation Date Croator
Seeenseasan L L L X} L L L 2] LA 2 1 1] L2 LA 1 1 3 71 1] *EwSwNw
AVERAGE 21 222 .DBB23 [GOLDMAN)AVERAGE,O08Js1 22=Feb=1980 143d5 VAXell FORTRAN T1,95=36
OTSSLINKAGE 1=203 3 _ORAS3(SYSLIB)STARLET,OLBs1 19=FEB= 1980 21157 VAXell Macro VE2,41
SYSVECTOR 2219 2 ,ORASI[SYSLIB)STARLET,OL8;31 19«FEB=1980 21159 VAXell Macro V2,41
VMSRTL «EXEj1 ¥ _DRAS3[SYSLIB]VMSRTL,,EXEs! 2@=FEB~1982 18355 LINK=32 v@2,39
Figure 6-1 Object Module Synopsis Section
«DBB2: (GOLDMAN] AVERAGE (EXEs 22=-FEB=1980 14114 LINKER V22,4e Page 2
(e rmscosnERseesesnenesnand
| Image Section Synopsis |
feTasascssesvnsssoueseROS
Cluster Type Pages Base Addr Disk YAN PFC Protection and Paging Global Sec, Name Match Majorig Minorid
eseeswa Pwee wewmes CENTeSTWE GESESARG SO0 CEPTSESGROWNTSENSERWRWS SesesewsuGeEeYwNeRw meuneew LA L L L LY] mEmeweew
DEFAULT_ CLUSTER] 1 daguRanas 2 3 READ ONLY
] 1 2Ageadey 3 3 READ WRITE COPY ON REF
e 1 20002600 4 @ READ ONLY
253 e TFFFD8@n 7] 3 READ WRITE DEMAND ZERO
VMSRTL 3 11 22¢ee@B2u @ 1 READ ONLY VMSRTL 2@ LESS/EWUAL 1 2809
3 193 rdvRlECQ P @ READ ONWLY VMSRTL 002 LESS/EGUAL 1 2dde
4 4 “aa1ALOY 3 2 REAC WRITE COPY ON REF VMSRTL 003" LESS/EQUAL i 2eda

Figure 6-2 1Image Section Synopsis Section

dVW JOVNWI

IMAGE MAP
e Base virtual block number within the image file on disk (zero
indicates that the image section is not in the image file)

e Page Fault Cluster (PFC) (zero indicates that VAX/VMS memory
management determines the value)

e Protection characteristic ("read-only" or ‘"read/write") and

paging information ("copy on reference," "copy always"
(shareable images only), "demand zero," or blank for standard
handling)

® Global section name if the cluster is a shareable image
e Match control of global sections
e Major and minor identification of global sections

Figure 6-2 illustrates the Image Section Synopsis section.

6.2.3 Program Section Synopsis

The Program Section Synopsis lists information about program sections
(PSECTs), 1including relative addresses within the image and PSECT
attributes. This section appears in default and full maps.

The address information enables you to translate an address from a
program module 1listing into a virtual address in the image, and vice
versa. This ability can help you isolate errors or problems in the
image at run time--for example, by allowing you to relate an address
in an error message to a specific location within a specific module.

The attributes of each program section are also listed. The linker
considers certain attributes when it groups PSECTs into image sections
(ISECTs). For further information on this process, see Section 7.7.

The Program Synopsis, illustrated in Figure 6-3, lists the following
information about each program section:

e Program section name, in order of increasing base virtual
addresses

e Name of the module or modules that contribute binary data or
code to the program section

e Base and ending virtual addresses, in hexadecimal, of each
module's contribution to the PSECT

e Alignment for the start of each module that contributes to the
PSECT. The number that follows the alignment description is
the power of 2 that expresses the 1length in bytes, (For
example, 2 to the power of 2 equals 4, the number of bytes in
a longword.) The alignment column can contain these entries:

BYTE 0 Byte alignment (1 byte)
WORD 1 Word alignment (2 bytes)
LONG 2 - Longword alignment (4 bytes)

QUAD 3 - Quadword alignment (8 bytes)
PAGE 9 - Page alignment (512 bytes)

e Attributes of the PSECT. Most attributes are parts of
contrasting pairs. Table 6~-2 lists the attribute
abbreviations (in alphabetical order), their meanings, and any
contrasting attributes. Section 7.5.4 explains the
attributes.

IMAGE MAP

Table 6-2

PSECT Attributes

Abbreviation

ABS

CON

EXE

GBL

LCL

LIB

NOEXE

NOPIC

NORD

NOSHR

NOVEC

NOWRT

OVR

PIC

RD

REL

SHR

USR

VEC

WRT

Meaning

Absolute
Concatenated
Executable
Global

Local

Library (from
shareable image)

Not executable

Not position-
independent code

Not readable
Not shareable
Not vectors for
privileged
shareable image

Not writeable

Overlaid

Position-independent

code

Readable
Relocatable
Shareable

User

Vectors for
privileged
shareable image

Writeable

Contrasts With

REL
OVR
NOEXE
LCL
GBL

USR

EXE

PIC

RD
SHR

VEC

WRT
CON

NOPIC

NORD
ABS
NOSHR
LIB

NOVEC

NOWRT

s -4

~06E2t [GOLDOMAN] AVERAGE,EXE 1

Psect Name
SPDATA
$LOCAL
$CODE

L0TSSCODE

o BLANK

Module Name

AVERAGE

AVERAGE

AVERAGE

OTSSLINKAGE

OTSSLINKAGE
SYSVECTOR

4DBB23 [GOLDMAN] AVERAGE EXE 1

Symbol

AVERAGE
L]
L]

[]
FORSIO, X DA
FORSLINKAGE
FORSOPEN

L]

[]

Valye

seone
00000600=R
.
.

.
20002970=RU
0002069C=R
@0008978<RU

[]

»

L]

22=FEB=1980 14114

XA T IR Y PP PR R L LY 23

| Program Section Symopsis |

teomnescssssovsensacsccnvrsesaned

Figure 6-4

Symbols

LINKER V@2,40

by Name Section

Page 3

Base End Lengtn Align Attributes
L L X} ase oYeagw - eew eSS eRewww
20000202 299292233 A2QR2234 (52,) LONG 2 PIC,USR,CON,REL,LCL, SHR,NOEXE, RD,NOWRT,NOVEC
00930220¢ VA220233 02080034 (S2.) LONG 2 ’
20Q20400 POPDRURAF 20440018 (16,) LONG 2 PIC,USR,CON,REL,LCL)NOSHR,NOEXE, RD, WRT,NOVEC
0007040@ 2V20240F 2290221¢ (16,) LONG 2
20320600 20233699 0220029A (154.) LONG 2 PIC,USR,CON,REL,LCL, SHR, EXE, RD,NOWRT,NOVEC
20020600 22000699 02920094 (154,) LONG 2
B0000869C A3C0P0A69E 22000403 (3,) LONG 2 PIC,USR,CON,REL,LCL, SHR, EXE, RD,NOWRT,NOVEC
0V00069C 0B20NN69E 00RRE2B3 (3.,) LONG 2
99000807 02000807 02020200 (2.,) BYTE @ NOPIC,USR,CON,REL,LCL,NOSHR, EXE, RD, WRT,NOVEC
200020800 22000800 22200002 (@,) BYTE @
P00CQ800 OGPVOBE 02000002 (@,) BYTE @
Figure 6-3 Program Section Synopsis Section
22-FEB=1982 {4314 LINKER V22,48 Page 4
éuseesssvesvesasvned
| Symbols By Neme |
Yesovesssoswosacnsd
Symbol Value Symbo! Value Symbo! value
esesew esvew oeeeew oesaw (21117} mReRS
BASSINPUT LINE @2081180=RU BASSSCALE D, RI 022081278«RU FORSSCB_POP POCDRE10=RU
L] L] . [] L]
L] [] L] L] 1] L]
E] . L]
LIBSPUT.OUTPUT 32@02DS8=RU MTHSDEXP 32020AF8=RU OTSSSFREEN,DD ©@@8aC28=RU
LIBSREVERT 20eeeD6B=RU MTHSDEXP _ Ré 200008800«=RU OTSSSFREEN,DD6 @0BBAC3G=RU
LIBSSCANC 22800208D68=RU MTHSDEXP R7 29020800=RU OTS$SGET{ DD 20208CR8=RY

dVW JOVWI

IMAGE MAP

6.2.4 Symbols By Name

The Symbols by Name section lists global symbols in alphabetical order
and gives the hexadecimal value of each one. The value may have one
of the following suffixes: -R for a relocatable symbol, -U for a
universal symbol, -RU for a relocatable universal symbol, -W for a
weak definition, or -* for an undefined symbol. (The linker assigns a
value of zero to undefined global symbols.)

The Symbols by Name section appears only in a default or full map that
does not have a cross reference. If you include /CROSS_REFERENCE in
the LINK command, the Symbols by Name section 1is replaced by the
Symbol Cross Reference section.

Figure 6-4 illustrates the Symbols by Name section.

6.2.5 Symbol Cross Reference

The Symbol Cross Reference section lists global symbols in
alphabetical order and gives the following information about each one:

e Hexadecimal value. The value can have one of the following
suffixes: -R for relocatable, -W for a weak definition, -*
for wundefined, -U for wuniversal, or RU for relocatable
universal.

e Name of the first module that defines the symbol (blank if the
symbol is undefined).

e Name of each module that refers to the symbol. The name has
the prefix WK- 1if the module makes a weak reference to the
symbol.

The Symbol Cross Reference section appears only in a default or full
map for which you specify /CROSS_REFERENCE. It replaces the Symbols
by Name section.

A primary value of the Symbol Cross Reference section is that it shows
which modules are affected by each symbol. For example, if you want
to change a symbol definition, the Symbol Cross Reference section
tells vyou where it is defined and what other modules may be affected
by the change.

Figure 6-5 illustrates the Symbol Cross Reference section.

6.2.6 Symbols By Value

The Symbols by Value section lists the hexadecimal values of global
symbols in ascending numeric sequence, with the symbol or symbols that
correspond to each value. The symbol name can have one of the
following prefixes: R~ for relocatable, U- for universal, or RU- for
relocatable universal.

This section appears only in a full image map.

Figure 6-6 illustrates the Symbols by Value section.

6-9

DBB21 [GOLDMAN] AVERAGE ,EXE32

Symbol Value
AVERAGE 20000680<R
[]
L]
FORS 10, END @0B0BEAB=RY
FORSIOLFC,R 20000940<RU
FORSIOLFC,V 02000948=RU
FORSIOLF_R 20200880=RU
FORSIOLFLV 2rQee8Bs=RU

.DBB23 [GOLOMAN] AVERAGEEXEs

Value
genepsee ReAVERAGE
2002069C ReBASSLINKAGE
30000800 RU=FORSCLOSE
020008088 RU=FORSDECODE (MF
eeeeo8ie RU=FORSDECODE MO
20090818 RU=FORSENCODE MF

L L]

.]

[] .

Key for special charac
jovceveoncversase
| *» e Undef{ned
I U = Universal
{ R =« Relocatasb
| WK = Wegk

22=FEB=1982 14114 LINKER v@2,d0

éovoccssse ow L]

i1 Symbol Cross Reference |

devocncvonnscoveavovsenned

Defined By Referenced By ..,

AVERAGE

VMSRTL AVERAGE
VMSRTL
VMSRTL
VMSRTL AVERAGE
VMSRTL

Figure 6-5 Symbol Cross Reference Section

22=FEB=1980 14114 LINKER Vv@2,48

jocesoenecsecsanaeneyd

| Symbols By Value |

donsccccsccocascsansd

Symbois,es

ReFORSLINKAGE ReQOTSSLINKAGE

ters sboveg

weeod

le

& o= o= o= o=

e ose

Figure 6-6 Symbols by Value Section

Page

Page

[}

7

dVW JOVNWI

IMAGE MAP

6.2.7 Image Synopsis

The Image Synopsis, which appears in all maps, gives miscellaneous
information about the output image., The virtual memory allocation
lists (in hexadecimal radix) the 1image's starting address, ending
address, and total size in bytes and (in decimal radix) the total size
in bytes and pages. The other items are self-explanatory. Numbers
are decimal if they are followed by a point (.); otherwise, they are
hexadecimal.

Figure 6-7 illustrates the Image Synopsis section.

6.2.8 Link Run Statistics

The Link Run Statistics section, which appears in all maps, gives
statistics of the 1link run that produced the image. The items are
self-explanatory.

Figure 6-8 illustrates the Link Run Statistics section.

T1-9

408828 [GOLDMAN] AVERAGE ,EXE3 1

Virtus) memory alloceteds

Stack sizes . 20, pages

Image header virtual bleck lim{tss 1, 1, 1, bloek)
Image bimary virtual block limits: 2. 4, 3. bleeke)
Image name and identifications AVERAGE @1

Numper of files:? 3.

Number of moduless 4,

Numper of program gsections? 9

Nymber of global symbolss 271,

Number of image sectionst 8,

User transfer address? 22000600

Debugger trangfer address: 802vA168

Image type! EXECUTABLE,

Map format}
Estimated map lengthg

22-FEB=1980 14314

+

+

I Image Synopsis |
+ +

00820200 POBIATFF 2081A600 (108832, bytes, 211, Pages)

FULL {m file ", DBB2s (GOLDMAN]AVERAGE MAPsL"

S8, blocks

Figure 6-7 Image Synopsis Section

teconscnceccecescasasnccn}

! Link Run Statistics |

teecsvonceccsvevacssnnd

Performence Indicators Page Faults CPU Time Elapsed Time
Command processing? 15 egspezon,as g0300109,27
Pass 13 399 A2320301,17 e0p00102,73
Allocation/Relocation: a3 0231303020,26 0A3008323,40
Pass 2% 64 20320100,25 20300301,43
Map data after object module synopsist 150 29300101,89 203100383,45
Symbo! table outputi 12 #031¢0300,00 P21020102,18

Total rum valyes!? 723 82300303,62 09102108,.46

LINKER V2,40

Jsing a working set lim{ted to 273 opeges end 48 pages of deta storage (excluding image)
Total number object records read (both passes)! 175

ot which 67 were in libraries end 4 were DEBUG dets records contaiming {58 bytes
143 bytes of DEBUG deta were written,starting st VBN S with 1 blocks allocated

Number of modules extrascted explicitly s 2
with 2 extracted to resolve undefined symbols

2 library searches were for asymbols not in the l{brary searched
A total! of @ global svymbol table records was written

/MAP/FULL AVERAGE

Figure 6-8 Link Run Statistics Section

dVW JOVNWI

CHAPTER 7

IMAGE CREATION

This chapter discusses the allocation of wvirtual memory and the
different kinds of images that the linker can produce. The concepts
of program sections, image sections, and clusters are introduced,
along with a description of the way in which the linker builds the
final image.

7.1 PROGRAM SECTIONS

Program sections are areas of memory that have a name, a length, and a
series of attributes (detailed 1in Section 7.5.4) that describe the
intended or permitted usage of that portion of memory. The program
section 1is the vehicle by which a language compiler describes the
memory requirements of a particular object module.

7.2 IMAGE SECTIONS

Image sections are named collections of pages; each page in an image
section has the same hardware protection characteristics and the same
sharing nature. The image sections describe the memory requirements
of the whole image to the VAX/VMS memory management software.

The linker creates image sections by collecting program sections that
have similar (but not necessarily identical) attributes. The manner
in which program sections are grouped into image sections depends upon
both the attributes of each program section and the type of image
being produced (see Section 7.7).

7.3 CLUSTERS

Clusters are collections of image sections. Clustering provides a way
for the designer of an application program to ensure that an image
section is near, in virtual memory, to the image sections that it
references and that reference it. Having related image sections near
each other improves the performance of large application programs.

An example of an application program that could use clustering is a
compiler. A compiler usually goes through a number of distinct phases
during a single compilation run. Each phase of the compiler could be
made into a separate cluster to improve the compiler's performance.

Every image consists of at 1least one cluster. You can specify
additional clusters in two ways: by object modules or by program
sections. The CLUSTER= option (see Section 5.3) causes image sections

IMAGE CREATION

created from the specified object modules to be in the same cluster.
The COLLECT= option (see Section 5.3) causes image sections created
from the specified program sections to be in the same cluster. 1In

both cases, the image sections are put in the cluster in the order
described in Section 7.7.

Note that clusters are relevant only to the linker itself; they do
not appear as a structure to anything else (such as to the VAX-11
memory mahagement software). See Section 7.9 for more information.

7.4 OBJECT MODULE CONTENTS

Each object module contains several types of records. All object
modules have header records and an end-of-module record. Some also
have other kinds of records, depending on the options specified at
compilation. All object modules also contain the following records
for each of the program sections:

e A global symbol record that includes the program section's
attributes. (A global symbol record is also used to describe
each global symbol defined in the module.)

e A text information and relocation record, <containing the
section's binary data or code and certain commands to the
linker.

Appendix C contains a detailed specification of the object 1language
accepted by the linker.

7.5 PROGRAM SECTIONS

A program section is defined to the linker by the following:
® A name
e A size
e An alignment

e A series of single-bit attributes expressing whether the
program section is:

- Relocatable or absolute

Concatenated or overlaid

- Local to a cluster or global across all clusters

- Executable or not

- Writeable or not

- Readable or not

- Position-independent or not

- Potentially shareable or not

- Created by a user program or by the linker for internal use
- Has protected vectors or not

7-2

IMAGE CREATION

7.5.1 Program Section Name

The program section name is an ASCII character string, 1 through 31
characters 1in 1length. You can use any printable ASCII character in
the name, but are cautioned against using the dollar sign ($), to
avoid possible naming conflicts with software supplied by DIGITAL.

Program sections with the same name but from different modules
normally must have the same attributes. Any exceptions to this rule
are noted in the discussions of specific attributes.

7.5.2 Program Section Size

The size field of a program section definition record 1is a 32-bit
count of the number of bytes that this module contributes to the
program section.

7.5.3 Program Section Alignment

The alignment field describes the address boundary at which the
module's contribution to the program section will be placed. The
alignment is expressed as a number from 0 through 9, representing a
power of 2. The base address of the program section is rounded up to
a multiple of that power of two.

In an overlaid program section, all contributing modules must specify
the same alignment; otherwise, the 1linker generates a diagnostic
error. In a concatenated program section, each contributing module
can specify a different alignment. The total allocation of the
concatenated program section is aligned on a boundary which 1is a
multiple of the highest power of 2 specified by any of the
contributing modules,

7.5.4 Program Section Attributes

The following subsections explain the attributes that a program
section can have. Section 7.7 describes how the linker considers
certain significant attributes as it constructs different types of
images. Section 5.3 describes the PSECT_ATTR option, which allows you
to change the attributes of a program section.

7.5.4.1 Relocatability (REL and ABS) - A program section can be
relocatable or absolute. A relocatable program section is one that
the linker can position in virtual memory according to the memory
allocation strategy for the type of image being produced.

Absolute program sections, on the other hand, are not considered in
the allocation of wvirtual memory. They contain no binary data or
code, and all appear as if they were based at a virtual address of
zero. Absolute program sections are used primarily to define global
symbols.

IMAGE CREATION

7.5.4.2 Concatenated versus Overlaid (CON and OVR) - This attribute
determines the relationship between the memory allocations when
several modules contribute program sections with the same name.

A concatenated program section contribution requires separate address
space in the 1image. If two program sections from different modules
have the same name, the sections will be placed in separate but
contiguous address spaces. For example, if PSECTA in MODULEl and
PSECTA in MODULE2 have the concatenated attribute, the allocation of
PSECTA from MODULEl will be followed by the allocation of PSECTA from
MODULE2. The total size of a concatenated program section is the sum
of the individual contributions and any padding allowed for the
individual alignments.

An overlaid program section contribution, however, can share an
address space with other program sections that have the same name.
For example, if PSECTA in MODULEl and PSECTA in MODULE2 each have the
overlaid attribute, both program section contributions will be
allocated starting at the same base address in the image. The total
size of an overlaid program section is that of the largest
contribution.

Note that any module can initialize the contents of an overlaid
program section. Because of this, the order in which you specify the
input modules is important: the contents of an overlaid program
section are determined by the last contributing module specified.

BASIC and FORTRAN common areas are the most frequently used overlaid
program sections.

7.5.4.3 Scope - Local versus Global (LCL and GBL) - The 1local or
global attribute 1is significant for an image that has more than one
cluster. The attribute determines whether program sections with the
same name but from modules in different clusters are finally placed in
separate clusters (LCL attribute) or in the same cluster (GBL
attribute). The memory of a global program section is allocated in
the cluster that contains the first contributing module.

BASIC and FORTRAN common areas are implemented with global program
sections.

7.5.4.4 Executability (EXE and NOEXE) - Although the current VAX-1l1
hardware does not implement any kind of execute protection, this
attribute 1is reserved for possible future implementation. This
attribute also permits possible future extension of link time error
detection and of software security protection.

The current version of the linker takes this attribute into account in
only two ways:

e Error-checking on an image start address. The linker issues a
diagnostic message if a program transfer address is defined in
a nonexecutable program section.

® Sorting of program sections into image sections. Executable
program sections in executable and shareable images are placed
in image sections separate from program sections that are not
executable.

IMAGE CREATION

7.5.4.5 Writeability (WRT and NOWRT) - This attribute determines
whether the program section contents will be protected against
modification when the image is executed. 1If the program attempts to
modify the contents of a non-writeable program section during
execution, an access violation occurs.

For executable and shareable images, writeable and nonwriteable
program sections are placed in different image sections. For system
images, this attribute is ignored, since by definition the VAX/VMS
system is not normally in control of the memory management of a system
image.

7.5.4.6 Readability (RD and NORD) - The current version of the linker
ignores this attribute. It is provided merely to allow the possible
future implementation of a data security system.

7.5.4.7 Position Independence (PIC and NOPIC) -~ This attribute
identifies whether the content of a program section depends on where
that program section or something that it refers to 1is allocated in
the wvirtual address space. For example, the following types of
program sections are position independent:

e A program section that contains no virtual addresses

e A program section whose references to virtual memory are in
the form of a displacement from itself, if the targets of the
references must always be at the same displacement from the
calls which refer to them ‘

This attribute applies only to shareable images, which are discussed
in Chapter 8.

7.5.4.8 Shareability (SHR and NOSHR) - As its name suggests, this
attribute 1is significant only for shareable image memory allocation
and memory mahagement (see Chapter 8).

7.5.4.9 User versus Library (USR and LIB) - This attribute is
reserved for possible future enhancements to the 1linker. It is
ignored for the current release but should be set to USR to guarantee
future compatibility.

7.5.4.10 Protection (VEC and NOVEC) - The VEC attribute specifies
that the program section contains privileged change mode vectors.
Program sections with the VEC attribute are automatically protected in
shareable 1images. See the description of privileged shareable images
in the VAX/VMS Real-Time User's Guide for more information.

7.6 TYPES OF IMAGES

The linker creates three types of images: executable, shareable, and
system, Each type has specific uses. System images differ
substantially in content and organization from executable images and
shareable images. The following subsections define each type.

7-5

IMAGE CREATION

7.6.1 Executable Images

An executable image is a program that you can activate by the RUN

gommand. The most common use of the linker is to create executable
images.

An executable image cannot be linked with other images. However, the
object modules that make up one executable image can be linked in
different combinations or with different 1link options to form
different executable images.

7.6.2 Shareable Images
There are two major reasons for shareable images:

e To provide a means of sharing a single physical copy of a set

of procedures and/or data between nmultiple application
programs

e To facilitate the linking of wvery 1large applications (say,
hundreds of modules) in manageable segments

As with executable images, when the 1link of a shareable image is
complete, all symbolic references are resolved and memory is allocated
to a group of image sections. A description of each image section is
written to the image header. Unlike an executable image, however, a
shareable image normally has a symbol table appended to it.

A shareable image is not directly runnable, It is intended for
reprocessing by the 1linker--that is, to be included in a subsequent
image. In processing a shareable image, the linker reads the image
header and generates a separate image cluster from the set of image
sections it finds.

After generating the cluster that is the incoming shareable image, the
linker processes the symbol table appended to the image just as if it
were an object module. This allows the shareable 1image to resolve
symbols (usually routine names) referred to by the modules with which
it is being linked. These symbols are called universal symbols (see
Section 2.2.3).

When you run a program that has been linked with a shareable image,
the VAX-11 1image activator checks to see if the shareable image has
been installed by the system manager. If it has been installed, the
image activator sets a pointer that enables the process to use the
shareable image. Thus, whenever multiple processes request an
installed shareable 1image, the operating system makes the same
physical copy of the shareable image available to each requesting
process. Shareable 1images can therefore conserve physical memory at
run time. If the shareable image has not been installed, the image
activator creates a private copy of the shareable image.

Chapter 8 discusses shareable images further. At this point, however,
note the following information and conventions pertaining to shareable
images:

e The default common Run-Time Procedure Library provided with
the VAX/VMS system is a shareable image.

e You cannot link the VAX-11] Symbolic Debugger with a shareable
image.

IMAGE CREATION

e You can request that the linker produce a private copy of a
shareable 1image 1in an executable image file. By default,
however, the linker does not do so, thereby saving disk space.

e Chapters 4 and 5 describe LINK command gqualifiers and 1link
time options specifically intended for dealing with shareable
images. See the following:

/SYSSHR

qualifiers
/SHAREABLE
UNIVERSAL=

options
GSMATCH=

7.6.3 System Images

A system image is intended for stand-alone operation on the VAX-1ll1
hardware; that 1is, it does not run under the control of the VAX/VMS
operating system.

The allocation of memory to a system image is much simpler than for
the other two types of images. The linker allocates memory to the
program sections based on the alphabetical order of the program
section names. The only other factors that the linker considers are
program section size, alignment, and the following attributes:
concatenated or overlaid, and relocatable or absolute. These factors
are treated as described in Section 7.5.

The resulting image is a fixed-length record file, each record being a
512-byte block. A system image has no image header (unless the
/HEADER qualifier is specified), no debug data, and no symbol tables.
It has no set format., That is to say, it contains binary data and
code just as they would appear in memory.

7.7 GENERATION OF IMAGE SECTIONS

The linker makes two passes over the input object modules. The first
pass builds the symbol table and the program section tables., The
second pass writes the binary contents of the image. Memory
allocation 1is performed between the two passes; the linker uses the
program section table of each cluster and generates an image section
table for each cluster.

When the first pass is complete, the linker has determined the sizes
of all the relocatable program sections by considering specific
attributes and the alignment, as discussed in Section 7.5. The linker
has also determined relative addresses of each module's contribution
to a particular program section. What remains to be done is to group
the program sections into image sections, and to position the whole
image cluster in the virtual address space.

IMAGE CREATION

Depending on the type of image being produced, the linker establishes
a mask for the program section attributes that it will consider:

e For an executable 1image, this mask includes only the
writeability (WRT and NOWRT), executability (EXE and NOEXE),
and protected vector (VEC and NOVEC) attributes.

e For a shareable image, this mask includes the writeability,
executability, position independence (PIC and NOPIC),
shareability (SHR and NOSHR), and protected vector (VEC and
NOVEC) attributes.

For each possible combination of the significant attributes, the
linker searches the program section list of a cluster. If the linker
finds any program section with this combination of attributes, it
generates an 1image section, Each program section with matching
attributes in the image section is assigned an address relative to the
base of the image section, in alphabetical order by program section
name.

All combinations of significant attributes are handled in this way,
until the complete set of image sections for the particular cluster is
generated. Table 7-1 lists the order that the linker stores the image
sections within a cluster. Each 1line of the table specifies a
possible combination of significant attributes. The next cluster (if
there is one) is then treated in the same way.

At this point in image creation, all image sections have
cluster-relative base addresses, and all program sections have image
section-relative addresses. The next step consists of allocating
virtual address space to the cluster and then relocating all image
sections and program sections within the cluster.

The choice of address space for the cluster depends on whether you
specified an address in the CLUSTER= option, and whether the cluster
contains a shareable image. It also depends on the order in which you
specified the clusters.

7.8 COMPRESSION OF UNINITIALIZED IMAGE SECTIONS

At the end of its first pass across the object modules, the linker
sorts all the program sections into a group of distinct image
sections. The sorting is determined by program section attributes and
results in the complete allocation of the user virtual space.

In its second pass, the linker writes the binary contents of the
image. During this 1image initialization, the linker keeps track of
the program section being initialized and the image section to which
it has been allocated. The first attempt to initialize part of an
image section causes the linker to allocate a buffer in 1its own
program region to contain the binary contents of the generated image
section. This allocation is achieved by the expand region system
service, and it requires that the linker have available a virtually
contiguous region of its own memory at least as large as the image
section being initialized.

After completing the second pass across the object modules, the linker
scans the list of 1image sections 1in an attempt to compress
uninitialized pages from the image, which is about to be written. The
linker attempts to perform this compression by creating demand zero
image sections. The linker scans the image sections and attempts to
compress uninitialized pages when it is creating executable images
only.

IMAGE CREATION

Table 7-1
Order of Image Sections in Clusters
Type of Image Image Section PSECT Attributes
Executable NOWRT NOEXE - - NOVEC
WRT NOEXE - - NOVEC
NOWRT EXE - - NOVEC
WRT EXE - - NOVEC
NOWRT NOEXE - - VEC
WRT NOEXE - - VEC
NOWRT EXE - - VEC
WRT EXE - - VEC
Shareable NOWRT NOEXE SHR NOPIC NOVEC
WRT NOEXE SHR NOPIC NOVEC
NOWRT EXE SHR NQPIC NOVEC
WRT EXE SHR NOPIC NOVEC
NOWRT NOEXE NOSHR NOPIC NOVEC
WRT NOEXE NOSHR NOPIC NOVEC
NOWRT EXE NOSHR NOPIC NOVEC
WRT EXE ~ NOSHR NOPIC NOVEC
NOWRT NOEXE SHR PIC NOVEC
WRT NOEXE SHR PIC NOVEC
NOWRT EXE SHR PIC NOVEC
WRT EXE SHR PIC NOVEC
NOWRT NOEXE NOSHR PIC NOVEC
WRT NOEXE NOSHR PIC NOVEC
NOWRT EXE NOSHR PIC NOVEC
WRT EXE NOSHR PIC NOVEC
NOWRT NOEXE SHR NOPIC VEC
WRT NOEXE SHR NOPIC VEC
NOWRT EXE SHR NOPIC VEC
WRT EXE SHR NOPIC VEC
NOWRT NOEXE NOSHR NOPIC VEC
WRT NOEXE NOSHR NOPIC VEC
NOWRT EXE NOSHR NOPIC VEC
WRT EXE NOSHR NOPIC VEC
NOWRT NOEXE SHR PIC VEC
WRT NOEXE SHR PIC VEC
NOWRT EXE SHR PIC VEC
WRT EXE SHR PIC VEC
NOWRT NOEXE NOSHR PIC VEC
WRT NOEXE NOSHR PIC VEC
NOWRT EXE NOSHR PIC VEC
WRT EXE NOSHR PIC VEC
System - - - - -
(only one image section)

IMAGE CREATION

If the linker finds an image section that does not have a buffer
allocated, it considers splitting the section into multiple image
sections, some demand zero and others copy on reference. To be
eligible for splitting, the 1image section must be writeable to the
user and larger than the minimum compression threshold size (see the
DZRO_MIN= option in Chapter 5). If the image section can be split,
the linker calls a memory management system service, passing it a
description of the image section buffer and the compression threshold
value. By calling this service in a loop, the linker finds out which
segments of the buffer are both larger than the threshold number of
pages and previously unmodified by the linker. This process results
in the replacement of a single image section by a potentially large
number of alternating demand zero and copy on reference image
sections.

The linker continues the splitting process, scanning the list of image
sections until it reaches the end or until the total number of image
sections reaches the 1limit specified or defaulted for the ISD MAX=
option (see Chapter 5). During the entire process, the linker Keeps
track of the size of the image header (where descriptors of the image
sections will be written) and of the image binary contents. Thus, at
the end of the scan the linker knows the precise size of the image
header and the contents, and it can then create the image file.

When the image file is successfully created, the linker makes another
scan of the image section descriptor list. During this scan it writes
the contents of all existing image section buffers to the image file,
assigning them virtual block numbers as it does so. Finally, the
linker writes the image header, starting at virtual block number 1 of
the image file.

By default, the 1linker creates the 1image with the attribute
"contiguous best try," which becomes a permanent attribute of the
image file. However, you can specify the /CONTIGUOUS qualifier to
force the image file to be created contiguously (see Chapter 4).

7.9 MECHANICS OF CLUSTERING

Section 5.3 describes the CLUSTER= and COLLECT= options, which are
used to define the position, character, and content of clusters. The
cluster name is merely for convenience in reading the 1Image Section
Synopsis of the image map.

Every image produced by the linker is automatically given a default
cluster. This cluster contains any object modules not explicitly
positioned in other clusters. The BASE= option serves to position the
default cluster in the address space.

A shareable image is treated as a cluster. If the image 1is not
position 1independent (NOPIC), it has a base address already assigned
and is treated in the same manner as a user-specified cluster that has
a base address.

IMAGE CREATION

The linker allocates wvirtual address space for clusters in the
following order:

e Clusters that have fixed bases (including position-dependent
shareable 1images). I1f any of these clusters overlap, the
linker displays an error message.

® User-specified clusters without fixed bases. These are
allocated in the order specified.)

e Default cluster (if it contains any modules and does not have
a fixed base)

e Position-independent shareable images

e Run-time library shareable image (if it 1is 1included in the
image)

Clustering is not 1likely to have any performance advantage for
applications smaller than 200K bytes. The reason is that each cluster
contains a group of image sections, and thus the address space is more
fragmented than it would be without clustering. Fragmentation can
reduce program performance under certain circumstances.

CHAPTER 8

SHAREABLE IMAGES

This chapter describes in detail the nature and use of shareable
images. The material in this chapter is more complex than much of the
earlier material. Therefore, you are presumed to be familiar with the
earlier chapters of this manual, particularly Chapter 7.

8.1 SHAREABLE IMAGES: BENEFITS AND USES

The following subsections expand on the discussion in Section 7.6 of
the benefits you can obtain from the use of shareable images. These
subsections also discuss the conceptual nature of shareable images.

8.1.1 Conserving Physical Memory

Main physical memory is one of the prime resources that any operating
system has to control. The installation of shareable images produces
a set of global sections of memory -- one for each image section built
in the shareable image. These global sections are the mechanism by
which sharing is realized, for they can be mapped into the address
space of many processes. The fact that the same physical pages of a
global section are mapped into many processes means that the
requirements for physical memory are reduced.

8.1.2 Conserving Disk Storage Space

All programs executed under the VAX/VMS system must be disk resident.
The use of shareable images, however, provides a way of reducing the
amount of disk space required.

When a shareable image is linked into an executable image, it is not
necessary to copy the physical contents of the shareable image. The
installation of a shareable image causes the location of that image on
disk to be recorded in the system's global section data base. The
subsequent running of a program that uses that shareable image causes
the VAX/VMS memory management software to 1load the copy from the
separate shareable image file. Thus, many programs can reside on disk
and be bound with a particular shareable image, and only one physical
copy of that shareable image file need exist on disk.

SHAREABLE IMAGES

8.1.3 Reducing Paging 1/0

Paging occurs when a process attempts to access a virtual address
which 1is not in the process working set. When the fault occurs, the
page either is in a disk file (in which case paging I/0 1is required)
or 1is already in physical memory. One of the reasons a page can be
resident when a fault occurs is that it 1is a shared page, already
faulted by some other process which is sharing it. 1In this case, no
I/0 operation is required before mapping the page into the working
sets of subsequent processes. Thus, if many processes are using a
shareable image, it 1is wvery 1likely that its pages are already
physically resident.

8.1.4 Using Shared Memory-Resident Data Bases

There are many applications, particularly in data acquisition and
control systems, in which response times are so critical that control
variables and data readings must remain in main memory. Frequently,
many programs must make use of this data.

Shareable images help to simplify the implementation of such
applications. The shared data base may be a named FORTRAN common area
built into a shareable image. The shareable image may also include
routines to synchronize access to such data. When programs of the
application bind with the shareable image, they have easy access to
the data (and routines) at the FORTRAN level.

It is possible, moreover, for such data bases to contain initial
values, and for the most recent values to be written back to disk on
system shutdown or at regular intervals. Recording the values at
regular intervals makes it possible for a system restart to use the
most recent values of the variables of an online process.

8.1.5 Making Software Updates Compatible

A major problem in maintaining a large software installation is how to
incorporate a new version of a piece of software in all programs that
use it. Packaging software facilities as shareable images can help
alleviate the problem.

By carefully organizing a shareable image and by using
position-independent coding techniques, you can make significant
changes and enhancements to the content of the shareable image and yet
eliminate the need to relink all the images bound with it.

8.2 WRITING SOURCE PROGRAMS FOR SHAREABLE IMAGES

In order to obtain all the benefits of a shareable image, you must
observe certain conventions in the source programs used to create it.
This section describes these conventions.

SHAREABLE IMAGES

8.2.1 Shareable and Nonshareable Data

The sharing of routines between two or more processes must address the
issue of whether each process has access to data that one or more
other processes are using. Sometimes this sharing is a requirement,
as in the case of industrial data acquisition applications. However,
if a piece of data used by a routine is, for instance, a loop counter,
each process must have a separate counter, or the routine cannot be
shared simultaneously. It is for this situation that the shareable
(SHR) attribute of program sections was introduced. Users familiar
with this situation recognize it as part of the problem referred to as
reentrancy.

As was mentioned in Chapter 7, the linker allocates program sections
with the SHR attribute 1in image sections separate from program
sections with the NOSHR attribute. The image activator also treats
image sections containing SHR program sections differently from image
sections containing NOSHR program sections. The linker indicates this
difference by an image section attribute called "copy on reference" in
the case of writeable NOSHR program sections., (If the program section
is not writeable, all processes can use the same copy regardless of
SHR/NOSHR, since no form of data privacy or security 1is currently
implemented.)

Thus, a copy on reference image section is one whose initial contents
are established from the copy contained in the shareable image file,
but which from then on during program execution is treated just like a
user private 1image section. For each user, completely separate
physical copies are produced for the copy on reference image sections
contained in shareable images, and the system paging file is used to
contain the pages of such sections when they are removed from the
working set.

On the other hand, if an image section is not copy on reference, each
user has access to the same physical copy of its pages. In addition,
when a page of such an image is removed from all user working sets, it
is eventually written back 1into the shareable image file on disk.
This last aspect makes it possible to rerun such applications as data
acquisition or transaction processing with the most recent values of
shareable, modifiable data.

Note that the cooperating user programs in applications like these are
responsible for synchronizing access to such data. Note further that
should it be necessary to revert to the initial values of the data,
you must have made a separate copy before running the application the
first time.

The FORTRAN example in Section 8,4.2 shows both kinds of data:
variables generated by the compiler and the program are in copy on
reference image sections, whereas the common areas are in shared data
regions.

8.2.2 Position Independence

A position independent piece of code will execute correctly no matter
where it 1is placed in the virtual address space after it is linked.
That is, it can execute at an address different from the one at which
the 1linker placed it. This section deals with position independence
only as it concerns shareable images.

SHAREABLE IMAGES

A shareable image is position independent if all of the following
conditions are true:

The only addresses that appear in the image are known to be
fixed in the wvirtual address space (for example, the system
service vectors of VAX/VMS). Note that if vyou specify a
relocatable address in a shareable 1image, the linker will
maintain the position independence by deferred relocation of
the address.

All instruction stream references to such addresses use
absolute addressing mode (autoincrement deferred off the PC).

All data references to such fixed addresses contain the
complete virtual address.

All references to any other location are relative to some base
that 1is added to the address computation at execution time.
For example, in the instruction stream, PC relative (or
displacement from the PC) addressing mode would be used.

There is no possibility that, after linking, the relationship
between the target of a reference and the base to which it was
made relative can be changed.

The current version of the linker is unable to verify that all the
above conditions have been met. Therefore, the following strategy has
been adopted:

If any base address has been specified, the resultant
shareable image is not position independent.

The state of the position-independence attribute of the
program sections 1is left to the user, and is considered only
in gathering program sections into image sections. That 1is,
the 1linker simply places PIC program sections in image
sections separate from NOPIC program sections.

With assistance from the compiler or assembler, the linker
produces position-independent instruction stream references.
(Refer to the discussion of the general addressing mode in the
VAX-11 MACRO Language Reference Manual.) Basically, this means
that the linker will choose the addressing mode (if so
directed) based on the relocatability of the target of the
reference,

With assistance from the compiler or assembler, the linker
produces position-independent address data by means of
deferred relocation.

A shareable image that is not position independent 1is placed
at its 1link-time base address when it is subsequently bound
into a user image.

A shareable image that is position independent 1is allocated
after user~defined clusters when it is subsequently bound into
a user image.

Shareable images that are not position independent are
considered first by the linker.

Deferred relocation is the relocation of address data that is deferred

until
linker

the executable image is linked from the shareable image. The
uses deferred relocation when an image section contains a

SHAREABLE IMAGES

.ADDRESS directive (VAX-11 MACRO) specifying a relocatable address,
The linker marks the image section as COPY ALWAYS. When an executable
image 1is linked from the shareable image, the linker copies the image

section into the executable image and then calculates the correct
address.,

Note that to retain the benefits of a shareable image, .ADDRESS with a
relocatable address should only occur in an image section that
contains nonshareable data. These are the image sections that have
the NOSHR and WRT attributes.

If shareable images are to be most useful among many processes, they
should be position independent. The VAX-11 instruction set and
addressing modes lend themselves to convenient generation of
position-independent code. All the code generated by the VAX-11
FORTRAN and VAX-1l1] BASIC compilers is position independent.

8.2.3 Transfer Vectors

In its simplest form, a transfer vector is a labeled wvirtual memory
location that <contains an address of, or a displacement to, a second
location in virtual memory. The second location is the start of the
instruction stream of interest. In the use of shareable images under
VAX/VMS, transfer vectors are normally displacements rather than
virtual addresses, for reasons of position independence.

There are two main reasons for transfer vectors in shareable images:

e They make it easy to modify and enhance the contents of the
shareable image.

e They allow you to avoid relinking other programs that are
bound to the shareable image.

In Figure 8-1, the two routines A and B are bound into a shareable
image, which 1is then bound into a user program. No transfer vectors
are used. The user program calls both A and B. Thus, the user
program contains a representation of the addresses of both A and B.

- User Program
Routine A Routine A
ise ded
s expan CALL A
__________ L CALL B
New position Routine B
of Routine B
for larger A
New Expansion Area { Expansion Area

Shareable Image

Figure 8-1 No Transfer Vectors

SHAREABLE IMAGES

Using the example in Figure 8-1, assume that it becomes necessary to
add more code to routine A. When the shareable image is relinked,
routine A will have the same address but because routine A has
increased in size, routine B must be given a "higher"
address -- higher by the amount of code added to A. If the wuser
program is not relinked, it can successfully call A, since its address
has not changed. However, the call to B would result in a transfer of
control to the o0ld address of B (which 1is now somewhere in the
enlarged routine A), and the desired result would not occur. Note
that 1if the total size of the shareable image is larger, the user
program must be relinked. (See Section 8.2.4).

In Figure 8-2, the same routines are built into a shareable image, but
this time with transfer vectors at the beginning.

BRW A-X X t——— User Program
Transfer Vectors L e e - -
BRW B-Y Y <t
CALL A
A z
CALL B
Routine A °

The transfer vector contains
a branch instruction which

B uses a displacement from
vector address to actual
routine.

Routine B The user progran'f actually
calls the appropriate vector
instruction.

Expansion Area

Shareable Image

Figure 8-2 Transfer Vectors

In Figure 8-2, if routine A is expanded and the shareable image is
relinked, the contents of the vector will change with no adverse
affect on the user program. This is true so long as the user program
calls the appropriate vector and the vector addresses do not change.

The use of transfer vectors also allows you to add new routines to a
shareable image without needing to relink programs that use existing
routines. If a third routine (C) were added, it would be desirable
not to have to relink a user program that used only A and B. Without
a vector, you would need to link the three routines in the address
sequence A,B,C; -- otherwise A or B could be in a different place and
all user programs linked to the shareable image would need to be
relinked. If you use a transfer vector, however, you can allocate a
new vector location to C (after those for A and B). You can then link
the three routines in any order.

Although you cannot create transfer vectors with FORTRAN, you can do
so easily with VAX-11 MACRO. However, before you can create transfer
vectors, you must define or permit the compiler to define entry
points. With FORTRAN, the definition of entry points is done
automatically, but with VAX-11 MACRO, you must explicitly define them.
As an 1illustration, assume in Figure 8-2 that routines A and B are

SHAREABLE IMAGES

written in FORTRAN. 1In this case, the two global symbols A and B are
defined as entry points, and the definitions given to the linker
include a description of the registers to be saved with the call
instruction, (You can achieve the same effect with the MACRO
directive .ENTRY. See the VAX-11 MACRO Language Reference Manual.)

To create the transfer vector, you must use the VAX-11l MACRO assembler
language. Consider the following fragment of MACRO code:

. TRANSFER A ;iBegin transfer vector to A
. MASK A ;Store register save mask
BRW A+2 ;BR to routine, beyond the

; register save mask

As the example suggests, register save masks (required at the target
of a CALL instruction) occupy two bytes of memory. Thus, since it is
the vector that you actually call, the register save mask is stored in
the vector. The .MASK directive in the above example allocates the
two bytes and directs the linker to (1) find the register save mask
accompanying symbol A, and (2) write the word as the first two bytes
of the vector. This mask is followed by a branch instruction that
transfers control to routine A, at the instruction beyond the entry
mask. (This example assumes that A is within 32K bytes of the vector;
otherwise a JMP instruction would be required.)

The .TRANSFER directive has two purposes:

e It is an implicit universal declaration of symbol A if you are
building a shareable image.

@ It causes the linker to assign the wuniversal symbol A the
address of the vector, rather than the address of the routine
within the image. This occurs after all uses of A within the
shareable image have been given the value within the image.

Thus, all entry points of a shareable 1image are universal when
vectored in this way. The user program outside the shareable image

can call the routine A in the same way as it would an ordinary object
module.

8.2.4 Rules for Creating Upwardly Compatible Shareable Images

To be able to make changes to shareable images and not have to relink
users of that shareable image, you must observe the following rules:

e Transfer vectors must not be rearranged or removed.

e The new shareable image must have exactly the same number of
image sections.

e The shareable image must not be larger than it originally was
unless the shareable image is the cluster with the largest
virtual address in the 1image (this position 1is usually
reserved for the run-time library).

While a shareable image is being developed, it is useful to reserve
expansion space to allow the image to grow. If you exceed the
expansion space, you must relink all executable images that are linked
with the shareable image. Because there is a substantial overhead for
increasing the size of a shareable image (one entry 1in the system's
Global Page Table per shareable page), you should reduce the expansion
area when the shareable image is no longer being developed.

SHAREABLE IMAGES

8.3 LINK COMMAND AND PERTINENT OPTIONS

The LINK command for creating a shareable image is similar to that for
any other type of image, except that you must use the
/SHAREABLE [=file~-spec] qualifier, which is described in Chapter 4.

The UNIVERSAL=, GSMATCH=, and PROTECT= options and the /PROTECT
qualifier are provided specifically to control characteristics of
shareable images. Chapter 5 describes the syntax of these options.
Sections 8.3.1, 8.3.2, and 8.3.3 describe their purpose.

8.3.1 UNIVERSAL= Option

Universal symbols are the global symbols of a shareable image which
are of use to the programs that subsequently link with the shareable
image. It is possible for none or all of the global symbols of a
shareable 1image to be universal symbols. Typically, however, a very
small set of the global symbols of the image are universal because few
of them are of use outside the shareable image. Universal symbols are
the only symbols written to the symbol table of a shareable image.

Most programming languages provide no way of characterizing a symbol
as universal. (VAX-1l1 MACRO, however, has a declaration for creating
transfer vectors. See Section 8.2.3.) Thus, to tell the linker which
symbols are to be universal, the option UNIVERSAL= is provided.

Normally, all the entry points (routine names) provided in a shareable
image are universal symbols. Sometimes, however, other constants are
of interest to users of the facility, and these can also be declared
as universal symbols. Section 8.4.1 contains an example showing the
declaration of several such constants in the Cross Reference Facility
as universal symbols.

8.3.2 GSMATCH= Option

When a shareable image is bound into a user executable image, its
image sections are promoted to global sections. (The VAX/VMS system
promotes image sections to global sections when a shareable image |is
installed.) When an executable 1image 1is run, the image activator
checks to see if the shareable image that the executable image was
linked with matches the current one. The image activator compares the
values specified in the GSMATCH= option when the shareable images were
linked (see Section 5.3).

The GSMATCH= option sets the matching requirements for versions of the
shareable image and causes a two-part identification field to be
associated with the global section name. During the search for a
global section at image activation time, the global section name and
the major part of the identification must match exactly. The behavior
of the comparison with the minor part of the identification is
determined by the keyword specified in the GSMATCH= option. The
keyword can be:

e EQUAL -- the minor identifications must match.
e LEQUAL -- the minor identification of the global section in

the user image must be 1less than or equal to that in the
global data base.

SHAREABLE IMAGES

@ NEVER -- even 1if both parts of the identification match
exactly, the image activator rejects the shareable image. The
purpose of NEVER is to specify that the linker should always

produce a private copy of this shareable image 1in each
executable image file.

® ALWAYS -- the image activator only checks to see that the
global section names are the same and ignores both parts of
the identification.

The GSMATCH= option is provided to set these parameters when the
shareable 1image is being linked. See Section 8.5 for mre information
on the effects of these parameters.

8.3.3 PROTECT = Option and /PROTECT Qualifier

The PROTECT= option and the /PROTECT command qualifier are used to
create privileged shareable images. A privileged shareable image can
execute change mode to kernel and execute change mode to executive
instructions even when it is linked with a nonprivileged executable
image. A privileged shareable image allows executable images to call
user-written procedures with enhanced privileges in the same way that
they call system services.

The PROTECT= option protects specified image <clusters, and the
/PROTECT command qualifier protects the entire shareable image.
Another way to protect code 1is by wusing the VEC program section
attribute which protects an individual program section.

There are three effects of protecting a segment of a shareable image:
e The shareable image is made a privileged shareable image.

e Within the protected segment, the change mode instructions are

allowed even when the process does not have the necessary
privilege.

e Code executing in user mode cannot write in protected areas.

When creating a privileged shareable image, you should protect the
clusters that require privilege, and not protect the clusters to which
code executing in user mode needs write access. The /PROTECT command
qualifier should only be used when the entire shareable image needs to
be protected. The VEC program section attribute should only be used
for the program section that contains the change mode dispatch
vectors. See the VAX/VMS Real-Time User's Guide for more information
on privileged shareable images.

8.4 EXAMPLES OF SHAREABLE IMAGES

The following sections contain examples of shareable images.

8.4.1 Example of Transfer Vector and Universal Symbols

Figure 8-3 is a listing of the source code for the module that is the
transfer vector for the Cross Reference Facility. Figure 8-4 shows
the LINK command and options files used to create the shareable image
CRFSHR on the 1logical device EXECS$:. Figure 8-5 shows the map that
resulted from this link operation,

SHAREABLE IMAGES

Note that of the 26 global symbols in the image, only 17 are of
interest outside the image -- 8 vectored entry points and 9 constants.
Note also that the transfer vector is placed in 1its own cluster to
ensure that it is allocated at the low-addressed end of the address
space. (As you can see from the example, explicitly defined clusters
are allocated first in the address space.)

The values of the transfer vector symbols retain the values of the

routine addresses. (See the 1listing of the relocatable universal
symbols in the map in Figure 8-5.)

T1-8

CRF _TRANSFER
v

1,02

FFFD®

FFF8’

FFF3’

FFEE’

1A
H
’
'
H
?
?
’
H
1
'
H
'
s
’
H
!
'
3
3
H
H
3
’
H
Y
?
’
Y
Y
'
'
H
H
3=

TRANSFER_VECTORS
2000 (1]
2d09 [3}
(L1 1] 62
. [1] 63
o290 64
2089 (3]
2000 (1]
-L1.1] 67
ogesd 68
neeo 69
8080 70
2p0e2 71
pede 72
geae 73
oeee T4
peeo 75
deea 76
02000 77
11} 78
oase 79
agee 1]
02000 81
0800 82
200e 83
2020 84
2000 8s
20990 86
e00e 87
aoee 88
2009 89
-1 1"1} 90
nooY 91
voea 92
egee 93
22060 94
@aaoo 9
aeade 96
¢ae2 97

200006000 98
veae 99
0009 ol
2200 100

0000° veee 104

31 e@eo2 le2
0eas 103
0005 104

2000° 0005 105

31 o007 126
080 107
0008A 108

9008° 290A 109

31 eeec 110
oooF 111
ooaF ol

avpe’ @oeF 2
31 9011 o3
2814 4

Figure 8-3

20oFEB=1908 28151137 VAXeil Magro VB3.4

6=JUL=1978 15189324 _DBBAI(CRF, ‘RC]CRFTF&V!C HAR'O

«SBTTL TRANSFER,_VECTORS
FUNCTIONAL DESCRIPTION:

THIS MODULE DEFINES THE TRANSFER VECTORS FOR THE ENTRY POINTS CALLED

BY A USER OF CRF, THIS MODULE ENABLES CRF TO BE LINKED AS A SNARABLE IMAGE,

CALLING SEQUENCES
NONE

INPUT PARAMETERSS
NONE

IMPLICIT INPUTS:
NONE

OUTPUT PARAMETERS:
NONE

IMPLICIT OUTPUTS:
NONE

COMPLETION CODES3

© NONE
SIDE EFFECTS:

«~ NONE

WPSECT SSVECTOR,@,CRF,PIC,SHR,NOWRT,EXE
CRF _TRANSFER

o« TRANSFER CRFSINSRTKEY

JMASK CRFSINSRTKEY

BRW CRFSINSRTKEY+2

+TRANSFER CRFSINSRTREF

JMASK CRFSINSRTREF

BRA CRPBINSRTREF+2

+TRANSFER CRFSOUT

+MABK CRFSOUT

BRM CRFSOUT+2

+TRANSFER LIBSCRF INS KEY

SMASK LIBSCREINS KEY

BRHW LIBSCRFLINSLKEY+2

7 INSERTS A CROSS REFERENCE KEY

3 INSERTS A REFERENCE TO A KEY

3 OUTPUTS CROSS REPERENCE SUMMARY

3 INSERT CROSS REFERENCE KEY

Transfer Vector Example Listing

3
33

SUOVWI dT9VIHVHS

¢i-8

CRF,TRANSFER
vey, m2

TRANSFER,_VECTORS

a14 .5

peBe® uai4 ot
FFE9® 31 adie o7
ve19 .8

2019 .9

2@ee’ 2019 L,1@
FFE4® 31 @018 .11
BR1E W12

201E L13

FFDF* 31 WALE .14
ueat .15

av21 W16

FFDC’ 31 o021 W17
eg2s L18

20000200 0024 19
0208 113

Figure 8-3 (Cont.)

«TRANSFER
«MASK
BRM

+« TRANSFER
+ MASK
BRW

+« TRANSFER
BRM

+« TRANSFER
BRW

«BLKB
«END

20=FEB=1980 22151137
6=JUL=1978 15109124

LIBSCRF INS, REF
LIBSCRF INS REF
LIBSCRF_INS REF+2

LIBSCRF,OUTPUT
LIBSCRF _QUTPUT
LIBSCRFOUTPUT+2

CRFSGET MEM
CRFSGET MEM

CRFSFREE MEM
CRFSFREE_MEM

512=<,=CRF _TRANSFER>

VAX=1} Macro V@2,41
+DBBB1 [CRF,SRCICRFTFRVEC,MAR)9

INSERT REFERENCE TO A KEY

QUTPUT CROSS REFERENCE

ALLOCATE DYNAMIC MEMORY
J88 ENTRY

DEALLOCATE DYNAMIC MEMORY

PAD TO FULL PAGE

Transfer Vector Example Listing

Page

4
3)

SIOVWI JTAVIYVHS

€1-8

EXE
EXE

20=FEB=1980 86151137 VvAXeil Macro VER,41 Page
6=JUL=1978 15109324 _DBBB1(CRF,SRCICRFTFRVEC,MAR}9

RD WRT NOVEC BYTE
RD NOWRT NOVEC BYTE

CRF_TRANSFER
Symbol tabte
CRFSFREE_MEM ARRKNNRN X 02
CRFSGET _MEM RRAAANRR X 22
CRFSINSRTKEY SRR AR R X 22
CRFSINSRTREF RERKRRAR X 22
CRFSOUT ARRRRRRE X [}
CRF_TRANSFER 20000802 R 02
LIBSCRF_INS,_KEY wakxkwex X B2
LIBSCRF_INS REF aawawxax X 22
LIBSCRF, OUTPUT amswankw X]
deccsssssvcanseved
| Psect synopsis |
Veensacenesessaesd
PSECT name Alloceation PSECT No, Attributes
cssnascens svescsscea esecsress scsvewswee
« ABS ngouveaen (2,) 98 (@,) NOPIC USR CON ABS LCL NOSHR NOEXE NORD NOwWRT NOVEC BYTE
o BLANK 20820000 (2.) 21 (1,3 NOPIC USR CON REL LCL NOSHR
$SSVECTOR, B, CRF paerp2ee (S12,) @2 ¢ 2,) PIC USR CON REL LCL SHR
e ooy
! Performance {ndicators |
* +
Phase Page faults CPU Time Elapsed Time
Initialization 23 vaseQ:00,05 093003120,40
Commang processing 32 02:00300,24 eg3001922,42
Pass 1 195 003100100,62 20300206,25
Symbol table sort '] 90:00300,01 pOt0C30@,01
Pass 2 37 07102300,46 62100103,46
Symbol! table output b ?0:120300,01 P03003320,01
Psect synopsis output a4 00100:00,082 201208300,082
Cross=reference output @ 0dtves00,0a 80:100120,00
Agssemdler run totals 208 00:100381,41 ?0:00312,57

The working set 1{mit was 502 pages,

1399 bytes (3 pages) of virtual memory were used to buffer the intermediate code,

There were 12 pages of symbol table space alloceted to hold 9 noneiocal and @ lecal symbols,
135 source 1i{nes were read in Pass |, producing 12 object records in Pass 2.

@ pages of virtual memory were usea to defime 0 macros,

+ senyt
i Macro 1{brary statistics |

{ernencoscorssassovsvronnnusd

Macros defined

Macro library name

DBBA4s [CRF,O0BJICRF,MLBy [’}
ADBBU (SYSLIBISTARLET MLBjY "}
TOTALS (811 libraries)]

2 GETS were required to define @ macros,
There were no errors, warnings or information messages.

/LIS=LISS1CRFTFRVEC/0BJSOBJSsCRFTFRVEC MSRCSICRFTFRVECSLIBSICRF/LID

Figure 8-3 (Cont.) Transfer Vector Example Listing

s
33

SIOVWI JTEVIHVHS

p1-8

i
1
1
1 Link cross reference facility

§
DELETE EXESICRFSHR,EXEjn,MAPSt,MAP)%

Options {nput

BJSI1CRF/INCLUDE=(CRF_CREF)/LIBRARY

TRANSFER VECTORS,

mmprom Qoo NN NOOWB@

[CRF,COM]CRPSHRLNKS,,COM

LINK /SHARESEXEStCRFOHR /MAP=MAPSICRFSHR /FULL SYSSINPUT/OPTIONS

CREATE A SEPARATE CLUSTER AT LOW ADDRESSED END FOR THE

CLUSTERaTRANSFER VECTOR,,,0BJSICRF/INCLUDERCRF TRANSFER

GSMATCH = LEQUAL, 1, 184

UNIVERSALSCRFSK_ASCIC,=
CRFSK BIN V32,
CRFSK_DEF, CRFSK REF,=
CRFSK_VALUES, =
CRFSK,_VALS REFS,«
CRFSK,_DEFS_ REFS,~
CRFSK,DELETE, CRFSK,SAVE

SYMBOLSCRFSC_HASHSIZE, 719

Figure 8-4 Transfer Vector

| UNIVERSALIZE THE NON ENTRY
{ POINT SYMBOLS THAT USERS
1 MAY NEED,

| HASH TABLE SIZE == SHOULD BE PRIME

Example Link Command

SIOVWI JT9VIYVHS

ST-8

EXE$:CRFSHR

Module Name
CRF_TRANSFER
CRF_CREF
GETMEM
CRFGBL

CRFOR

CRFSUB
SYSVECTOR

Ident

vel,e2
vee, ot
vel,es
vae,a1
X21,04
vei,e2
vel9

2@=FEB=1982 17354

PeCaerRTee TR TRSOTsERRSRw P

| Ooject Module Synoosis |

toveseswreseeneeenveanaesed

LINKER v@2,39

Creation Dete Creator

LI LT L2 X 1 12] SBwaeRas
20=FEB=1980 02151 VAXe{] Macro VB2,41
2P=Feb=1980 @2152 VAX=1i Bl{sse32 V2=622
20=FEB=1980 291592 VAX=li Macro VE2.4}
20-FEB=1980 02149 VAX=il Macro V32,41
2P=FEB= 1980 P2150 VAX=l] Macro VB2.41
2¢=FEB=1980 22151 VAXel] Macro VO2,41
'19=FEBw1980 21159 VAX=11l Macro V@2,41

Bytes File

S12 ,DBB4: [CRF,0BJICRF,0LB)Y
1747 ,DBB43s (CRF,08J]ICRF,OLB)1
282 _DBB43 [CRF,O0BJICRF,OLBSY

n ,D8B4s (CRF,0BJICRF,OLB}1

76 ,0BBY3 (CRF,O0BJICRF,OLBY
292 ,DBBUs [CRF,0B8JICRF,0LB)Y

? ,0BB4: (SYSLIBISTARLET,OLBy!

Figure 8-5 Transfer Vector Example Map

Page

1

SHOVNWI JTIVIYVHS

9T1-8

+0BB4 [CRF,OBJJCRFSHR(EXEy

Cluster

TRANSFER,VECTOR

DEFAULT CLUSTER

Type Pages
3 1
2 s

+DBB4: [CRF,0BJICRFSHR,EXE!

Psect Name
SSVECTOR,_ W, CRF

« BLANK

SCODES

« BLANK

Module Nhame

CRF,TRANSFER

CRF,TRANSFER

CRF CKREF
GE TMEM
CRFOR
CRFSUB

GETMEM
CRFGBL
CRFOR
CRFSUB
SYSVECTOR

Base Addr Disk VBN PFC

spperz2an

Jepdada

Base

2vBsB220R
20090229

QN AA200
Q3vne2an

232724420
202ve42a
20020403
BUBIARED
a0022C39

230vRERR
22220EGO
2004pEA0
28220E0RS
22032EaQD
00022E00

27=FEB=1982 17154 LINKER Ve2,39

AL YL PP YR L R ELELL d

! Image Section Synopsis |

teracusnucnascanvesessenont

Protection and Paging Global Sec, Name Match Majoria
2 @ READ ONLY
3 2 READ ONLY
22=FER=19802 17354 LINKER V2,39
¢ssmsvnwscersssesncsssussswd
| Program Section Synocosis |
I L T P Y T P P P Y Y R LY T T Y)

End Length Align Attributes
Qdavn3FF 20002200 (512.) BYTE @ PIC,USR,CON,REL/LCL, SHR, EXE,
VARER3FF @orge2ee (512.) BYTE 2
23PR2227% 22020202 (2.) BYTE @ NOPIC,USR,CON,REL,LCL,NOSHR, EXE,
agaed289 2a3aeeve? (3,) BYTE 2
22000D0W2 00022963 (2327.) LONG 2 NOPIC,USR,CON,REL,LCL,NOSHR, EXE,
2P0LpPAD2 22020603 (1747.) LONG 2
24VPRBEC @0@302114 (282.) BYTE @
22000C38 @2@2@24C (76.) BYTE 8
a2eeabr2 aoezpela (2%2.) BYTE @

AyoerEE? Q2000380a (@e) BYTE © NOPIC,uSR,CON,REL,LCL,NOSHR, EXE,
2OnANEDD voedp2Re (@.) BYTE @
A00@RERN ngaoease (@.) BYTE ©
V000PEGY pRQRRERR (2.) BYTE @
eerpeERe 202000002 (9.) BYTE @
20000E00 @¢P@Qerad (v,) BYTE 8

Figure 8-5 (Cont.)

Transfer Vector Example Map

Page 2
Minorid
Page 3

RD) NOWRT,NOVEC

RD, wRT,NOVEC

RD,NOWRT, NOVEC

RD, WRT,NOVEC

SIOVWI dTdVIUVHS

ADBB4L [CRF,0BJ) CRFSHR, EXE} Y 20°FEB-1982 17134 LINKER V82,39 Page 4

LT-8

{ Symbols By ‘Neme |

¢ - - *
Symbo! Valye
Pwoeoes aeeee
CRFSC_HASHSIZE Qodce2CF
CRFSC_MAXCOL oee0ed40
CRFSC_MAXLINWID cco2ee8dy
CRFSFREE MEM 92000860=RY
CRFSGET _MEM GRRCOAEF=RY
CRFSINSRTKEY 202082558=RU
CRFSINSRTREF 20022589=RU
CRFSK_ASCIC 200002008~V
CRFSK_BIN_U32 02000080 =V
CRFSK_DEF do0egesi-u
CRFSK_DEFS_REFS Q0000p002-V
CRFSK,DELETE 20000000=Y
CRFSK_REF goo0eceo-U
CRFSK_SAVE 20000001y
CRFSK_VALS_REFS 00000001=U
CRFSK_VALUES 00020000=U
CRFSOUT A8080781=RU
FREE_MEM 20000B6D=R
GET MEM 0P00PAFA=R
GET,_ZMEM 00028AD3I=R
LIBSCRF_INS _KEY 00B0@BED=RU
LIBSCRF_INS, REF 38000C@2<RU
LIBSCRF_OUTPUT o@0@@pCiBeRUY
SORT_HASH,_TABLE 0020@C61i=R
SYSSEXPREG 80402148
SYSSFAQ 80000150

SIOVWI JTIVIUVYHS

Figure 8-5 (Cont.) Transfer Vector Example Map

81-8

+DBB4: [CRF,0BJICRFSHR,EXEsy

Value

23020ra0
odoeoeel
egoepeae
239000040
eee0088y
2eareacF
eepeasss
gogenses
eoe0n7B}
Q0028AD3
G0BBGAEF
B0RQA0AFA
80000860
@00a0BED
eeepocCar
gadeeecCiB
2@g0e08C6}
89002148
8g0ee15¢

U=CRFSK_ASCIC
U=CRFSK,BIN,_U32
U=CRFSK_DEFS,REFS
CRFSC,MAXCOL
CRFSC MAXLINWID
CRFSC,HASHSIZE
ReCRFSINSRTKEY
ReCRFSINSRTREF
ReCRFSOUT
ReGET ZMEM
Re=CRFSGET MEM
ReGET MEM
ReCRFSFREE MEM
ReLIBSCRF, INS, KEY
ReLIBSCRF, INS REF
ReLIBSCRF,_OUTPUT
Re=SORT HASH, TABLE
SYSSEXPREG
SYSSFAQ

Key for special charac
LI LT YT ITPT YT Y LY)
1 * = Undefined
1 U = Unfverse!
{ R = Relocatad
§ WK = Neak

20=FEB=1982 17154

Prenvenssenrnsvessnsased

I Symbols By Value |

¢osoncenssecencessa}

LINKER VB2,.39

Symbolsese

U=CRFSK, DELETE U=CRFSK_ REF UeCRFSK, VALUES
U=CRFSK,DEF U=CRFSK, _SAVE U=CRFSK,VALS REFS
R=FREE MEM

ters above!
LI L]

3

)
e |

)

boeve -

Y
.e

Figure 8-5 (Cont.) Transfer Vector Example Map

Page

S

SIOVWI dTHYIUVHS

61-8

oDBBU [CRF,0BJICRFEHREXE Y

Virtual memory allocated:

Stack sizel

Image header virtuas! block 1imitss
Image binary virtys) block timitat
Image name and jdenti{ficationt
Number of filest

Number of modulest

Number of program sections!

Number of Qlobal symbols:

Number of image sections!

Image type:

Map formatt

Estimated map lengthg

Performance Indicators

20=FEB=1982 17:54

booscencscsnvovonssd

{ Image Synopsis |

bovasscccsvenvenad

03200202 QB0BCDFF 20900C020 (3272, bytes, 6. pages)

9, pages
1e 1,

2
CRFSHR ,0LBs

4.

PIC, SHAREABLE, Globa! section metch = "LESS/EQUAL",

1, bloeck)

é, bloecks)

FULL im f{le " DBB4J[CRF,LISICRFSHR MAP};1"

29, blocks

¢tesnecesseesnnvensensvad

1 Link Rum Statistics |

decnscsacunsssasvennsswd

Page Faults

Command processingt 49
Pass 1} 109
Allocation/Relocationt 15
Pass 2! 23
Map data sfter object module synopsist 29
Symbo] table output: 5
Totel rur valyes! 221

CPU Time

20:00300,17
@2:100:100,82
201020302,927
20:1003082,29
0d:00100,21
203030190 ,04
22100301,60

Elapsed Time
VOSSOV eRD
GD31090308,85
pO320105,00
20300300,68
p210201082,26
P0100100,87
P01003030,28
2a320309,86

Using @ working set limited to S¢@ pages and 78 pages of datas storage (excluding image)

Total number object records read (both passes)t 369
of which 173 were in libraries and 26 were DEBUG dats records containing 9¢7 bytes

Number of modules extracted explicitly

z 2

with S5 extracted to resolve undefined symbols

2 library searches were for symbols not in the libprary searched

A total of 4 global symbol table records was written

/SHAREBEXES s CRFSHR/MAPaMAPS 1CRFSHR/FULL SYSSINPUT/OPTIONS

Figure 8-5 (Cont.)

Transfer Vector Example Map

LINKER Vi©R,39

Page

Majorsi, MinorEliél

]

SAOVWI dTdVIYVHS

SHAREABLE IMAGES

8.4.2 Example of FORTRAN Shared COMMON

This section contains an example of FORTRAN shared COMMON. The
FORTRAN subroutine SHRSUB 1is a shareable image that contains two
COMMON areas. One is a shared or global COMMON area (GLOBAL COMMON).
This is a data area that is shared by all executable images linked
with the shareable image. The other 1is a nonshared COMMON area
(LOCAL_COMMON) ; each executable image has its own copy of
LOCAL COMMON. The program section attributes control whether a COMMON
area is shared or not. Note the attributes of such program section —-
in particular, GBL, OVR, and SHR.

e The GBL attribute causes the program section to be recorded in
the symbol table of the shareable image for later use by an
executable image. The FORTRAN compiler sets the GBL attribute
for all COMMON areas.

e The OVR attribute ensures that all modules contributing to the
program section start at the same address space. The FORTRAN
compiler sets the OVR attribute for all COMMON areas.

® The SHR attribute specifies that only one copy of the COMMON
area is to appear in physical memory. The FORTRAN compiler
sets the SHR attribute for all COMMON areas. Note that a
PSECT_ATTR option in an options file changes the program
section attribute of LOCAL_COMMON to NOSHR.

Figure 8-6 shows the listing of the FORTRAN subprogram SHRSUB that
defines GLOBAL COMMON and LOCAL COMMON; Figure 8-7 shows the LINK
command to create the shareable image; and Figure 8-8 shows the
resulting map. Figure 8-9 shows the listing of a FORTRAN program MAIN
that calls SHRSUB; Figqgure 8-10 shows the LINK command for MAIN; and
Figure 8-11 shows the resulting map.

1¢-8

[.I]$}

aep2
2ee3

aeey

e8es
111
eee7
eeos
2009
oo1e
[-L28]
oot2
ge1s
0014
@015

PROG

BEWN— S

ENTK

VARI

3w

ARRA

Je
ey

SeMer=1982 18108153
SeMare1982 17159101

SUBROUTINE SHRSUB

[XeXoNal

LOCAL_COMMON will be private pereimage common
GLOBAL,COMMON wil) be a shareable common

COMMON /LOCAL _COMMON/ J,J1(S11)
COMMON /GLOBAL _COMMON/ K,K1(511)

TYPE #,° J {s in the COPY=ON«REF gommon,

1 K is {n a shareable common’

TYPE *,° Entering o zero will leave the variable unchanged’
10 TYPE x,° *

TYPE *,° Previous valyest J 8 %,J,* K s %K

IF (M (NE, @) J = M

IF (N (NE,) K = N

TYPE »,’ Current valuest J = *%,J,° K& ?,K

TYPE %,° Enter new values for J,K’

ACCEPT =,M,N

IF ((M EQ. @) ,AND. (N EQ, @)) RETURN

GOTO 10

END

RAM SECTIONS
Name

$CODE

$PDATA

SLOCAL

LOCAL _COMMON
GLOBAL _COMMON
Y POINTS
Address Type

20000000

ABLES
Address Type

2200200 Ix4

1£]
Address Type

20000004 Ixd
00200004 Iwd

Bytes Attribyutes

316 PIC CON REL LCL SHR EXE RD NOWRT LONG
191 PIC CON REL LCL SHR NOEXE RD NOWRY LONG
72 PIC CON REL LCL NOSHR NOEXE RD WRT LONG
2048 PIC OVR REL GBL SHR NOEXE RD WRT LONG
2048 PIC OVR REL GBL SHR NOEXE RD WRT LONG

Name

SHRSUB

Name Address Type Name Address Type Name
J 4=00000008 x4 K 2=000800008 Ix4 M
Name Bytes Dimensions

Ji 2044 (S511)

K1 2084 (S11)

VAX={1 FORTRAN 73,9836
4DBB23 (3OLDHAN] 8HRSUB,FOR)S

Address

2=200e0¢004a

Figure 8-6 Listing of FORTRAN Shared COMMON Subprogram

Type

Irg

Name

N

Page 1

SIOVWI J'T9VIYVHS

Zc-8

SHRSUB SeMgrei980 18320153 YAXe=1] FORTRAN T1,95e36 Page 2
SeMapr=1982 17359184 &DBB21 [GOLDMAN] SNRSUB,FOR}S

LABELS
Address Labe!

1=02000B3F i@
Total Spsce Allocated = 4675 Bytes

COMMAND QUALIFIERS
FORTRAN /LIST SHRSUB
/CHECKm (NOBOUNDOS, OVERFLOW)

/DEBUG=(NOSYMBOLS, TRACEBACK)
/FTT /NOG,FLOATING /14 /OPTIMIZE /WARNINGS /NOD_LINES /NOMACHINE_CODE /CONTINUATIONS®!{S

COMPILATION STATISTICS

Run Timel 1,33 seconds
Elapsed Timet 8,26 seconds
Page Faults: 342

Dynamic Memoryt 37 pages

Figure 8-6 (Cont.)Listing of FORTRAN Shared COMMON Subprogram

SAOVWI HTIVIUVHS

€2-8

$ LINK /SHARE=SHRSUB /MAPsSHRSUB /FULL SHRSUB, SYSSINPUT3/OPTIONS

i

| Options input for SHRSUR shareable image

i

PSECT=LCCAL ,_COMMON, NOSHR
COLLECT=LOCAL_ CLUSTER,LOCAL, COMMON
UNIVERSAL=SHRSUS

Figure 8-7

LINK Command for FORTRAN Shared COMMON Subprogram

SIDVWI HTdVIUVHS

¥c-8

SHRSUB 22~FEB=1980 14126 LINKER Vve2.42 Page 1

EX P I PR Y P P Y P R R L LY N

| Onject Module Synopsis |

ievecssescncunssvonensasad

Modyle Name ldent 3ytes File Creation Date Creator

SHRSUB 91 4665 ,UBE23 [GOLDMAN]SHRSUB,08Jy1 22=Feb=1980 14326 VAXe]] FORTRAN T1,95=36
OTSSLINKAGE ledid3 3 LORASI[SYSLIB)STARLET,OLB831 19=FEB=1983 213157 VAX=1] Macro vE2.,41

VMSRTL «EXEpt v ,DRASS [SYSLIB)IVMSRTL,,EXEs) 20=FEB=1980 18155 LINK=32 VvQ2,39

LOBB2: [GCLDMAN] SHRSUB,EXE 1 22=FER=19RQ2 {4326 LINKER vaz,42 Page 2

4ecenssvesvssssscansnevewes

! Image Section Synopsis |

oo ranscecorvsasssnanane $

Cluster Type Pages Base Aodr Digsk VBN PFC Protection ana Paging Globa) Sec, Name Match Majorid Minorid

LOCAL,CLUSTER 4 4 v es 2 & READ WRITE COPY ON REF

DEFAULT CLUSTER 3 1 gaerRagy 6 @ READ ONLY
3 4 Jagpecev 7 2 READ WRITE
3 1 4eguidew i1 @ READ ONLY
4 1 aaea160u 12 3 READ wRITE COPY ALWAYS

VMSRTL 3 11 20201800 @ 1 READ ONLY VMSRTL 23} LESS/EGUAL 1 2008
3 193 200CER: 2 3 READ ONLY VMSRTL @a2 LESS/EQUAL i 2098
4 4 caeigaey ¥ 9 READ WRITE COPY ON REF VHMSRTL 233 LESS/EQUAL i 2oeee

Figure 8-8 Map of FORTRAN Shared COMMON Subprogram

SIOVWI dJ19VIUVHS

GC-8

408828 [GOLDMAN]SHRSUB,EXE)}

Psect Name
LOCAL,COMMON
SPDATA

o BLANK ,
GLOBAL _COMMON
SCODE

LOTSSCODE

SLOCAL

Module Name

SHRSUB

SHRSUB

OTSSLINKAGE

SHRSUB

SHRSUB

OTSSLINKAGE

SHRSUB

Base

peRo0200
voo0c208

82000A0D
o0200Aae

20200400
2¢d0ovace

20220CHe
dpacecee

a0eai40e
geealunre

200v1534
22021534

20001690
236310680

Figure 8-8 (Cont.)

+

e2=FEB=1982 14126

| Program Section Synopsis

* -

Yovvevenssee

End

220009FF
BO00B9FF

02000ABE
Q2000ABE

22000ARA
22000400

VORRL3FF
GOPR13FF

“e09@21531
00021531

AQ6R1536
P28RA1536

2a0R1647
22081647

Length

goo0e8ee (
oegessse (

208280BF (
92a300BF (

oeoedeed (
peeeanad (

g22008g2 (
aa02e80a (

gegeaide (
gedpei32 (

00028203 (
g2ea2eal3 (

30003048 (
a02ppa48 (

2048,)
2048,)

191.)
191,)

8.)
2.)

2048,)
2248,)

3026,)
306.)

3.}
3.)

72.)
72.)

Alf{gn

LONG
LONG

LONG
LONG

BYTE
BYTE

LONG
LONG

LONG
LONG

LONG
LONG

LONG
LONG

[[V, NN

N n v VAL] LY,V

LINKER v@2,48

Attributes

PIC,USR,CON,REL,LCL,

PICyUSRyOVR,REL,GBL,

PIC,USR,CON,REL,LCL)

PIC,USR,CON,REL,LCL,

Map of FORTRAN Shared COMMON Subprogram

PIC,U8R,OVR,REL,GBL,NOSKR, NOEXE,

SHR,) NOEXE,

NOPIC,USR,;CON,REL,LCL,NOSHR,

EXE,

SHR. NOEXEO

SHR,

SHR,

EXE,

EXE,

PIC,USR,CON,REL,LCL,NOSHR,NOEXE,

Page 3

RD, WRT,NOVEC
RD, NOWRT, NOVEC
RDy WRT,NOVEC
RD, WRT,NOVEC
RDy NOWRT,NOVEC
RD,NOWRT,NOVEC

RD, WRT,NOVEC

SIOVWI JTAVIYVHS

9Z-8

08821 [GOLDMAN] SHRSUB,EXE}s1

Symbo! Value
PBosee L L LT)
BASSSBLNK LINE 208823A0=RU
BASSSCB_GET epen238a-RU
B8A8SSCB_POP 20082370=RU

L] L]

L] L]

L] .

PBB2: [GOLDOMAN] SHRSUB,,EXEj 1

Value
onses
d0geiqee RU=SHRSUB
20801534 R=BASSLINKAGE
08001800 RU=FORSCLOSE

[]]

L[] .

. L]

Symbol
BASSINSTR
BASSIN,D R
BASSIN,F_R

[]

L]

L]

22=FEB=198Q {4126

jeccanrenccacancnond

| Symbols By Name |

jvsneansmessevneswevad

Value Symbol
290020B@=RU BASSSCRATCH
A0Q@21FR=RU BASSSTATUS
A0Q@21E8=RY BASSSTR,D

(] L]

. .

22=FEB=1980 14326

¢trevasecevravanaccss

! Symbols By Value |

teusssesnseascsasened

Symbols, ..

ReFORSLINKAGE

Key for special characters abovet

boewnccrsccacsnsnawsd

{ * = Undefined
1 U = Universal

H
i

| R = Relocatable |

| WK = wWeak

)

Povevssvwesssersssene

Figure 8-8 (Cont.)

R=QOTSSLINKAGE

LINKER Vv@2,.40

Value
Q0222328=RU
20202338=RU
geca20eCa=RY

L]

[]

L]

LINKER vB2,48@

Map of FORTRAN Shared COMMON Subprogram

Symbe!
FORSSCB, PUSH
FORSSCA RET

FORSSERRINS SAV

Page 4
Value
[1 L 11]
00081E88=RY
0900iE18=R0
2020iE28«R0
.
L]
Page 7

STOVWI JTgVIYVHS

LZ-8

~DBB2: [GOLDMAN] SHRSUB,EXE 1

Virtual memory allocated:

Stack size:

Image neader virtusl block limits:
Image bpinary virtual block limits:
Image name andg identification:
Number of filest

Number of modules:

Number of program sections:

Number of glohal symbols:

Number of image sections?

Image type:!

Map format:

Estimated map lenqgthy

Performance Indicators

Commano processing?

22=FEB=1982 14326

dovnssvesesoesswwd

| Image Synropsis |

tescccwnsvasvacnss

Peue2069 AABIBTFF 2RA1B6NG (112128,

3, pages
1. 1e (1. block)

2. 12, ¢ 11, bloeks)

SHRSUB ,08J;

9

PIC, S;AREABLE. Global section match = "EQUAL", G.S, Ident, Majorz2dd, Minorz8262915

bytes,

FULL in file ", CBR2t[GOLOMAN]SHRSUB MAP3"

55, hlocks

¢temscovseswvweonssevenSw §

! Link Rum Statistics |

tronessssevnenusssensuen§

Page Faults CPU Time

42 2oIve1ee, 26

Pass 11 182 27300180 ,71
Allpcation/Relocation: 122 apsgesae, 2e
Pass 2t 70 6uIAP:0BE,23
Map cata after Object module synopsis? 159 ausensal a4

Symbol table output:
Total run values:

22 0210038, 13
575 éeinanld, 23

Elapsed Time
P3:22:02,78
ptBBLB2,35
$1320802,91
LT EY I U3
gosIsIA3, 64
PALI3269,83
Basd8229,92

Using & working set limited to 268 nages and 51 paqges of data storage (excluding image)

Total number object records read (poth pasges): 75
of which 16 were in libraries anad 4 were CER!'G data records containimg 149 bytes

Number of modules extracted explicitly

=z 2

with | extracted to resolve uncdefined symrols

@ liorary searches were for symbolsg not in the library searched

A total of 24 global gymbol tanle records was written

/SHARE=SHKSUB/MAP=SHRSUB/FULL SHRSU],SYSSINPUTI/QPTIONS

Figure 8-~8 (Cont.)

Map of FORTRAN Shared COMMON

LINKER V22,40

219, pages)

Subprogram

Page

15

SUOVWI dT9VIAVHS

8¢-8

22=Feb=1980 14326158
29=Nov=1979 {5t24120

2291 PROGRAM MAIN

egee COMMON /LOCAL_COMMON/ J,J1(511)

"I'T}] COMMON /GLOBAL,COMMON/ K,K1(512)

a0y TYPE *,* This program tests COPY«ON=REF commons®
0085 CALL SHRSUB

eegs TYPE *,° Final values: J = *,J,°

2097 STQ
2ens END

PROGRAM SECTIONS
Name

$CODE
$SPDATA
SLOCAL
LOCAL COMMON
GLOBAL,COMMON

EWwWNe-R

ENTRY POINTS
Address Type

@=geeoperae

VARIABLES
Address Type

300400302 Ixd4

ARRAYS
Address Type

J=Q0a000Rd Ix4
4=00000004 Iwd

P *Common test complete’

Bytes
115
8%
32
2vius
2452
Name
MAIN
Name dddress
J 412000400
Name Bytes
J1 2044
K1 2248

Figure 8-9

K s *,K

Attributes

PIC CON REL LCL SHR EXE RD NO
PIC CON REL LCL SHR NOEXE RD NO
PIC CON REL LCL NOSHR NOEXE RD
PIC OVR REL GBL SHR NOEXE RD
PIC OVR REL GBL SHR NQEXE RO

Type Name

I=d K

Dimensions

(511)
(512)

WRT
WRT
WRT
WRT
WRT

VAX={{ FORTRAN Ti,95=3¢
+DBB23 [GOLDOMANIMAIN,FORs Y

LONG
LONG
LONG
LONG
LONG

Listing of FORTRAN Program Using Shared COMMON

Page 1

SIOVHWI dTIVIUVHS

6¢-8

FUNCTIONS AND SUBROUTINES REFERENCED
SHRSUB

Total Space Allocated = 4332 Bytes

MAIN 22=Feb=1980 14326156 VAX=11 FORTRAN T1,95-36
29=Nov=1979 15324322 LOBB21 [GOLDMANIMAIN,FORS

COMMAND QUALIFIERS
FORTRAN /LIST MAIN
/CHECK=(NUBOUNDS,OVERFLOW)

/DEBUG= (NOSYMBOLS, TRACEBACK)
/F77 /NOG.FLOATING /I4 /OPTIMIZE /WARNINGS /NOO,_LINES /NOMACHINE,CODE /CONTINUATIONS=19

COMPILATION STATISTICS

Run Times ¥,59 seconds
Elapsec Time: 3,82 seconds
Page Faultss 316

Dynamic Memoryil 36 pages

Figure 8-9 (Cont.) Listing of FORTRAN Program Using Shared COMMON

Page 2

SIOVWI J'19VIYVHS

0€-8

$
i
:

!

LINK /EXE=MAIN /MAPzMAIN sFULL MAIN, SYSSINPUTI/OPTIONS

Options {nmput to link maim program

SHRSUB/SHARE
PSECT=LOCAL, COMMON, NOSHR

Figure 8-10

LINK Command for FORTRAN Program Using Shared COMMON

SIOVWI JTHVIUVHS

Tt-8

MAIN

Module Nanme
SHRSUB

MAIN
OTSSLINKAGE
SYSVECTOR

Ident
cEXE’l
a1
1=0023
2219

LDBB2: [GOLDMAN]IMAIN,EXE ;]

Cluster

SHRSUB

VMSRTL

DEFAULT CLUSTER

Tvpe Pages

S wWw SEWUWWE

wWoesSsw

LR - R

193

R s e

22=FER=1982 14127

¢reevecswrvawereessesesenw

! Object Hodule Synoosis |

éevecconsvasessevswasnnemad

Bytes

File
4 ,DBB823 [GOLDMAN)SHRSUB,EXESs
4332 _DBB27[GOLDMAN]MAIN,08Jy1
3 ,ORAS53(SYSLIB]STARLET,OLBs!
@ ,ORAS3[SYSLIBISTARLET,OLB1

22=FER=1980 14127

treusssnsenmesesevmnssennnt

! Image Section Synmopsis |

o sraeT s TS TT YT RS ARORT S

Base Adar Oisk y3%N PFC Protection and Paging

20020830 @ 2 READ WRITE COPY ON REF
@ean1d2y @ @ READ ONLY

200R1200 @ ¢ READ WRITE

00R01A0L a4 @ READ ONLY

20021C06 5 2 READ WRITE COPY ALWAYS
20er1E00 @ 1 READ ONLY

Jupa3see © @ READ ONLY

20018600 ¢ @ READ WRITE COPY ON REF

-200up20¢ 2 @ READ ONLY

20002400 3 ¢ READ WRITE COPY ON REF
32000602 4 @ READ ONLY

TFFFD8QR ® @ READ WRITE DEMAND ZERD
Figure 8-11 Map

LINKER v22.43 Page
Creation Date Creator
LI L L L L L L4 XX} TeueoRew
22~FEB=1980 14126 LINK=32 VO2,40
22=Feb=1980 143126 VAXel{ FORTRAN T1,95=36
19=FEB=1980 21157 VAX=1l Macro V02.,4}
19=FEB= 1980 213159 VaAXeiy Macro V32,41
LINKER V22,48 Page
tlobal Sec, Name Match Majorid Hinortd
SHRSUB 221 EQUAL 244 8264915
SHRSUB 0@2 EQUAL 244 8260915
SHRSUB_ @23 EQUAL 244 8260915
SHRSUB_0@a4 EQUAL 244 8260915
VMSRTL @2} LESS/EGUAL 1 2009
VMSRT(0@2 LESS/EQUAL 1 2099
VHSRTL‘GBS LESS/EQUAL 1 28pa

of FORTRAN Program Using Shared COMMON

H

2

SAOVWI JTIVIUVHS

Ze-8

DBB23 [GOLOMANIMAIN,EXE 1

Psect Name
SPDATA
SLOCAL
SCODE

»0TSSCODE

e« BLANK ,

LOCAL,COMMON

GLOBAL COMMON

Module Name

MAIN

MAaIN

MAIN

OTSSLINKAGE

OTSSLINKAGE
SYSVECTOR

SHRSUB
MAIN

SHRSUB
MAIN

Base

Yedep2de
graea2an

HaaaRLY
L EL T

BB ddend
gepveena

vwavAVeTL
20203674

duere8un
0A%ARBR
ara2@8uyY

Ar3v@sap
424008902
VwIRA281Q

232@1200
eeamieawn
24801229

22=FEB=1981¥ 14327

tPvseswesesesescsnsTeussTERO O

{ Program Saeaction Svynopsis |

{eevcoencssncaseseussrenesoonD

Enc

Nea@n2sy
2Aeee2s5d

ARAPRALF
VANDAULF

vavees7e
nAavReeT2

¢Q0RR6TS
20220676

raveusea
294208423
?AU02B80Q

2RYIRAFFF
A3V098Y2
PAYRWFFF

49021A03
28631204
221403

Figure 8-11 (Cont.)

Length

a3deeess
32200255

dedann2e
22900029

¥adrARnT3
42020273

¥a20Q2203
22030203

a2Qav0er2
32200000
p202a2v2

ae2¢08ns
29209702
aAapose2

4aonased
a28920222
agoeanpd

(

~ o~

Align

LONG
LONG

LONG
LONG

LONG
LONG

LONG
LONG

BYTE
BYTE
BYTE

LONG
LONG
LONG

LONG
LONG
LONG

VRV VI VLV V] S0 e NN LVE) LY V) LV,

LINKER vd2,40

Attributes

PIC,USR,CONyREL,LCL, 8HR,NOEXE,

PIC,USR,CON/REL,LCL,)NOSHR,NOEXE,

PIC,USR,CON,REL,LCL, 8HMR, EXE,
PIC,USR,CON,REL,LCL, SHR, EXE,
NOPIC,USR,CON,REL,LCL,NOSHR, EXE,

PIC,USR,OVR,REL,GBL,NOSHR, NOEXE,

PIC,USR,OVR,REL,GBL, ;HR,NOEXE-

Map of FORTRAN Program Using Shared COMMON

Page 3

RD, NONRT, NOVEC

RO, WRT,NOVEC

RD, NONRY, NOVEC

RD, NOWRT,NOVEC

RD, WRT,NOVEC

RD, WRT,NOVEC

RD, WRT,NOVEC

SYOVWI JTdVIUVHS

€E-8

L0BBR: [GOLDMAN]IMATIN,EXE]

Sympo)

BASSSBUNK, LINE

BAS$SCB,GET
BASSSCB, POP
[]

Valye
BB0029A=RY
20222982=RU
IBAV29T7n=RU

.

.

L]

»0BB2: [GOLDMANIMAIN,EXES]

Sympol
BASSINSTR
BASSIN,D,R
BASSIN,F R

L]

.

L]

22=FER=198p 14327

fucssnwscencensnn

! Symbeols By Name |

fesncsnucnscssrond

Value Symbol
A22026BA=RU BASSSCRATCH
AAnP27FB=RY BASSSTATUS
22902 TEB=RU BASSSTR,D

22-FEB=198a 14327

teenevenvnenssavacws

| Symbols B8y Valye |

¢oesesseuveavsesvwasd

Symbols,ee

Value

22000623 ReMAIN
20000674 ReBASSLINKAGE
AQBALAGD RU=SHRSUB

e
*
.

ReFORSLINKAGE

Key for special characters above!

Posncsvesvenvssunend

i * o Undefined H
1 U e Universal i
| R =« Relocatable |}
| WK = Weak]

émvcovecnncsesassven

Figure 8-11 (Cont.)

ReQTSSL INKAGE

Map of FORTRAN Program Using Shared COMMON

LINKER V22,40

Value
2A002908=RU
24202938=RU
200226C2=RU
[]
L]

LINKER V©2,42

Sympol
FORSSCB, PUSH
FORSSCB RET

FORSSERRSNS . SAV

Page 4

Value
BUBR2408=RU
28202418«RU
RBAP2428=RU

L]

L]

L]

Page 7

SAOVWI HI19VIUVHS

rE-8

LOBR23 [GOLDMAN]MAIN,EXE L

virtual memory allocateds

Stack size:

Image header virtual block limits:
Image binmary virtual block limitses
Image name and identification:
Number of files:

Number of modules:

Number of program sectiong!

Number of global symbols:

Nyumber of image sectiorsg?

User transfer addresss

Debugger transfer address:?

Image tvpe!

Map format:

Estimatea map length:

Performance Indiceators

22-FEB=1980 14127

uecscoenvecavcavsd

{ Image Synopsis |

¢evuconsssnsnannnd

2@ch02rd 2AQIBDFF QAR1IBCY? (113664, bytes, 222, Pages)

23, paces
1. 1.
2' SI

Hdrenna
LIPS YY)
EXECUTABLE,

1. block)

4, blocks)

FULL im file ¥ D382: [GOLDMAN]HATIN MAP "

A8, hlocks

teesecseasweseusanwvwewn &

| Link Rum Statistics |

R T T T T TP Py

Page Feults

Commend processingt L)
Pass 13 322
Allocation/Relocationy 73
Pass 23 51
Map datas after obJect module syropsist 163
Symbo) table cutput: 13
Tota! run valuess 626

CPU Time

eyseosem, 1y
dei00301,32
BA3201080,26
eas@osva,28
gaseage2, a9
aB:p2300,3¢
@0200394,45

lemssed Time
L L A L L 11 7]
22103301, 29
28100:05,022
22102102, 7%
@2:08102.19
02100805,19
P@3180102,56
eB300314,80

Using & worikimg set limited to 32¢¥ panes and 5@ cages of data storage (excludirg image)

Total number oblect records read (both passes)!? 219
of which 67 were {n libraries ano 4 were DEBUG data reccordas containing 139 bytes

124 bytes of DEBUG cate were written,starting at vBN 6 with 1 blocks allocated

Number of modules extracted explicitliy

with 2 extracted to resoive yndefined symbols

@ Yforary searches were for sympcls not

in the

A total of @ globa) symbo)l table recoras was written

JEXESMAIN/MAPZMAIN/FULL MAIN,SYSSINPUT:/OPTIONS

Figure 8-11 (Cont.)

liorary searched

Map of FORTRAN Program Using Shared COMMON

LINKER v@2,40

Page

15

SYOVWI JT9dVIAUVHS

SHAREABLE IMAGES

8.5 USING SHAREABLE IMAGES

To be of use, shareable images are normally linked into another image.
Usually shareable images are installed by the system manager to make
them available to the cooperating users at run time. Installation of
shareable images is dealt with in the VAX/VMS System Manager's Guide.

You must use an options file (see Chapter 5) to specify a shareable
image as input to the linker. In an options file the /SHAREABLE
qualifier becomes a 1legal input file qualifier, identifying the
associated file as a shareable image. The /SHAREABLE qualifier
optionally accepts the keywords COPY or NOCOPY, specifying whether the
linker 1is to create a private copy of the shareable image in the user
image. The default value is that no copy is produced.

When an executable image is 1linked with a shareable 1image, the
shareable image 1is assigned virtual address space in the executable
image. But the linker does not copy the shareable image binary into
the executable image file unless COPY is specified.

When an executable image that is linked with a shareable image is run,
the 1image activator opens the shareable image and checks the global
section match, as described in Section 8.2.3. 1If the match succeeds,
the image activator maps the shareable image into the assigned virtual
address space. One of two things happen depending on whether the
shareable image has been installed with the /SHARE qualifier.

If the shareable image has been installed with the /SHARE qualifier,
all processes share the same copy of the shareable image in physical
memory. If the executable image references a page of the shareable
image that 1is not currently in physical memory, that page is read in
from the shareable image. If the executable image references a page
that is already in physical memory, that page is used. Note that once
a page of a shareable image is read into physical memory for one
process, any other process can use the same page in physical memory.

If the shareable image has been installed without the /SHARE qualifier
or if it has not been installed, or if the global section has the
copy-on-reference attribute, the image activator creates a private
copy of the shareable image. 1In this case, the private copy of the
shareable image is treated as part of your executable image. Each
process that is linked with the shareable image must have its own copy
of the shareable image in physical memory.

If the match fails, the image activator displays an error message
indicating that the required global sections are not available.

If the image activator cannot find the shareable image and if the
executable 1image has a private copy of the shareable image, that copy
is used. But if the executable image does not have a private copy,
the image activator displays an error message indicating that the
shareable image was not available.

Note that, if the image activator finds a shareable 1image and the
match fails, it will not use a private copy even if one is present in
the executable image.

SHAREABLE IMAGES

NOTE

The image activator assumes that both
installed and uninstalled shareable
images are in the directory defined by
the logical name SYSSSHARE. If you want
to use a shareable 1image that 1is in
another directory, you must assignh the
file specification of the shareable
image to the name of the shareable
image. Note that you should assign the
complete file specification, including
the device and directory. For example:

$ ASSIGN DBAO: [TEST]SHRSUB.EXE SHRSUB

APPENDIX A

LINKER MESSAGES

This appendix lists the code and text portions of messages that the

linker <can issue. The messages are listed in alphabetical order by
code.

The messages are designed to give you all the necessary information
about the error. Brief explanations are included for a few messages
that are not self-explanatory.

BADCCC, Module "[namel" has bad compilation completion code = [code]

BADIMGHDR, Bad shareable image header in file "[file-spec]"

BADPSC, Module "[namel"® has transfer address in unknown P-section
" [number]"

BASESYM, Base address symbol "([name]" is undefined or relocatable
CLOSERR, Close failure on "[file-spec]" code = %X[error code]

CONFMEM, Conflicting virtual memory requirement at $%X[address] for
(number of] pages for cluster "[name]"

CRE8ERR, Failed to create file "[file-spec]"

CRFERR, Error code %X[error <code] received from Cross Reference
Facility

DBGTFR, Image "[file-spec]" has no Debuqgger transfer address
DIAGSISUED, Completed but with diagnostics

EMPTYFILE, File "[file-spec]" contains no modules

ENDPRS, Parameter parse completion error, code = %$X[error code]
EOMFTL, Module "[namel" specifies Linker abort

EOMSTK, Module "[name]" leaves [number of] items on Linker internal
stack

ERRORS, Module "[namel" has compilation errors - image deleted
EXCPSC, Module " [name]" defines more than 256 P-sections

EXCSPAR, Too many parameters in option: [option name] of file
"[file~gpec]"

FAOBUG, FAO failure

LINKER MESSAGES

FATALERROR, Fatal error message issued
FIRSTMOD, First input being a library requires module extraction

FORMAT, File "[file-spec]" has illegal format

GSDTYP, File "[file-spec]" has an illegal GSD record (type = [type
code])
ILLFMLCNT, Min. arg. count of [number] exceeds max. ({number]) in

formal spec. of "[routine namel"
ILLKEY, Unrecognized keyword in parameter of option file "[file-spec]"”
ILLQUALVAL, Illegal qualifier value

ILLREP, Module "[name]" has store repeated count [number] greater than
[number]

ILLTIR, Module "[name]" has illegal relocation command = [number]
ILLVAL, Illegal parameter value in option file "[file-spec]"

ILLVPS, Module "[name]" contains illegal position ([number]) or size
([number]) in TIRSC_STO_VPS command

INITPRS, Parameter parse initialization error, code = %$X[error codel

INSVIRMEM, Insufficient virtual memory for [number of] pages for
cluster "[name]™"

INTSTKOV, Linker internal stack of [number of] items overflowed by
module " [namel"

INTSTKUN, Linker internal stack of [number of] items underflows 1in
module " [namel]"

IVCHAR, Invalid character in parameter - option file "[file-spec]"

LIBFIND, Failed to find valid lib. mod. or shr. image STB. at RFA
$X [address] %X[address]

LIBFMT, Library "[name]" (format = [bad format]) has incorrect format
(not =[correct format]) for this Linker

e Might be caused by a corrupt library or an attempt to use an
RSX-11M library.

LIBNAMLNG, Library module name 1length ([number of characters]) is
illegal

LINERR, Command line segment in error

\[error]\

MATCHID, Global section match ident ([number]) exceeds maximum
([numberl)

MAXCHANS, [number of] channels exceeds maximum allowed of 64

MAXIOSEG, [number of] I/0 segment pages exceeds maximum allowed of
65535

MAXISDS, [number of] I-sections exceeds maximum allowed of 65535

LINKER MESSAGES

MAXPFC, Page fault cluster factor of [number] exceeds maximum (255)
MAXSTACK, [number of] stack pages exceeds maximum allowed of 65535
MEMBUG, Memory (de)allocation bug [description] %X[address]

o Internal linker error

MEMFUL, Linker virtual address space insufficient to complete this
link

MINDZRO, [number of pages] as minimum I-section size exceeds maximum
allowed of 65535

e DZRO_MIN option value too high

MODNAM, Illegal module name of [number of] chars. - not 1 to [number
of] chars.

MSGERR, Linker has error message bug (hex data]
MULDEF, Symbol "[name]" multiply defined by module " [namel"

e The named module defines a symbol that another module has
already defined. '

MULPSC, Module "[namel" has conflicting specifications for P-section
" [name] n

e A previously encountered module has already defined the
program section with other attributes.

MULTFR, Module "[name]" multiply defines transfer address
e The named module defines the image transfer address (starting
point), but a previously processed module has already defined
the transfer address.

SPNAMLNG, Illegal symbol/P-section name of [number of] chars. - not 1
to [number of] chars.

NOEOM, Module "[name]" not terminated with EOM record

NOEPM, Module "[name]" references undefined entry mask of symbol
" [name]"

NONBTAB, Non blank/tab between continuation and comment or end of
record in "[file-spec]"

NOMODS, No input modules specified (or found)
NOPSCTS, No P-sections defined in module " [namel]"
NOSUCHMOD, Library "[name]" does not contain module " [name]"

NOTPSECT, Module "[name]" sets relocation base to other than a
P-section base

NOVALU Values not allowed in qualifier - option file "[file-spec]"
NUDFSYMS, "[number]" undefined symbol (s)

NULFIL, Null parameter in option file "[file-spec]"

LINKER MESSAGES
NULPAR, Missing required parameter in option line [erroneous line] of
file "[file-spec]"
OPIDERR, Pass [number] failed to open file "[file-spec]"

OPTREDERR, Read error (code=%X[error code]) on option file
"[file-spec]"

OUTSIMG, Attempted store location %$X[address] 1is outside "[region]"
($X[base address] to %X[ending address])

e "Region" is expressed as either "image binary" or "Debug
Symbol Table."

OVRALI, Module "[namel]" has conflicting alignment on overlayed
P-section " [name]"

PARMDEL, Invalid parameter delimiter in option file "[file~spec]"
PRIMIN, Input parameter parse error, code = %$X[error code]

PRIMOUT, Image file specification error, code = %$X[error code]

PSCALI, Illegal P-section alignment [number of bytes] - exceeds a page
PSCNXR, Transfer address in "[module-name]" not in EXE/REL P-section

® The transfer address is normally in a program section with the
executable and relocatable attributes.

PSCOVFLO, P-section "[name]" overflows region to %X[address]

RECLNG, File "[file-spec]" contains record of illegal length ([number
of] bytes)

RECTYP, File "[file-spec]" has an illegal record (type = [type codel])
REDERR, Read failure in pass [number] on file "[file-spec]"

SECOUT, Map file specification error, code = %X[error code]

SEQONCE, Illegal record sequence

SHRINSYS, Shareable image (s) cannot be linked into a system image

STRLVL, LINK [version] does not implement OBJ level [structure level]
- only to [structure level]

e The version of the object language is not compatible with the
current version of the linker.

STKOVFLO, Stack of [number of] pages falls below control region to
$X[address]

TFRSYS, Transfer address in system image "[file-spec]" ignored

TIRLNG, Module "[name]" has relocation command data ([number of]
bytes) overflowing record

TIRNYI, TIR command [number or name] not vyet implemented (module
" [name] n)

LINRKER MESSAGES

TRACIGN, Suppression of traceback overridden by DEBUG specification
e Occurs when you specify /NOTRACEBACK and /DEBUG.
TRIOUT, Symbol table file specification error, code = %$X[error code]

TRUNC, Trunc. error in module "[namel]", P-section "[namel]", offset
$X [hex value]

TRUNCDAT, Computed value = %X[hex wvalue], value written = $%$X[hex
value] at %X[address]

UDEFPSC, Attempt to reference P-section no. [number] undefined 1in
"[module name]"

e Undefined program section
UDFSYM, "[symbol name]"
e Undefined symbol

UNMCOD, Initial file name was "([file-specl", RMS error code = %X[error
code]

UNRECOPT, Unrecognized option in file "[file-spec]"

UNRECQUAL, Unrecognized qualifier in option file "[file~-spec]"
USEUNDEF, Module " [namel]" references undefined symbol "[namel"
USRTFR, Image "[file-spec]" has no user transfer address

WRNERS, Module "[name]" has compilation warnings

WRTERR, Write failure on file "[file-specl", code = %X[error code]

VALREQ, Value required in qualifier - option file "([file-spec]"

APPENDIX B

IMAGE MAP ILLUSTRATIONS

This appendix illustrates the brief, default, and full forms of a map
of the same image.

In addition, after the full form of the map, a Symbol Cross Reference
map section is illustrated.

The image map is described in Chapter 6.

DEMO

Module Name
Teswesssewes
DEMO
sysi
FUNY
FUN2

ldent

21

21
21

Bytes

388
179

23

26°FEB=198¢2 10217

fesesevesEsUsES ISR YRS

| ObJect Module Symopeise |

¢souseesssassensResSERNRR$

File

OS99
.DBB28 [GOLDMAN]DEMO,08J32
.DBB23 [GOLDMAN]}SUBL1,0BJ32
DBB21 [GOLDMANIFUNL,0BJ)
2DBB2: (GOLDMAN]FUN2,0BJ 1

Creation Date
LI A L LAl L LD 1]]
26=Feb=1980 10116
26=Feb=1968 10115
26=Feb=1980 10115
26=Febe=169808 10115

LINKER Vo2,49

Croator

sSebeew
VAX={] FORTRAN T1,95=36
VAXe1{ FORTRAN T1,95=36
VAXe11 FORTRAN T1,99=36
VAXe1]l FORTRAN T1,95=36

Page

1

dVIN 43148

SNOILVYLSNTII dVW JDVWI

LD8B2: [GOLDMAN]DEMOLEXE1

26=FEB=19808 10317

bevescsusssscensesd

{ Image Synopsis |

$eecsencsrsosscncsend

LINKER vV#2,40

Virtual memory allocated! 2007203 QOO1ATFF 000iA60R2 (128032, bytes, 211, pages)
Stack sizes 23, pages

Image header virtual block 1imits: 1. 1, 1. block)

Image binary virtual block limits: 2. 4o 3., blecks)

Image name and {dent{ficationg DEMO @1

Number of f{les!? 6,

Number of modules: 6.

Nymber of program sections! 8,

Number of Qlobal symbolst 276,

Number of image sections!? .

User transfer addresss 2enGR622

Debugger transfer address: 84GAN168

Image typet EXECUTASLE,

Map formats BRIEF {n file ", DBB2:{GOLOMAN]DEMOBR,MAPy2"
Estimated map lengtht 8, blocks

Veeoesesevsvescsecunesw

| Link Run Statistics |

¢osoenrecesosvasevasand

Performance Indicators

Page Faults

Command processingt 17
Pass 11t 19S
Allocation/Relocations 25
Pass 21 33
Map data after object module symopsis: @
Symbol table oputput: 4
Total rum valyes: 274

CPU Time

sptensep,18
»a300:90,95
20:00:90,11
22:120209,302
02302329,02
223001080,02
323120101 ,56

Elapsed Time
PSSO PEOSYRNS
PB320c28,69
2B8100@848,31
P2120206,44
02300112,98
24100300,20
20s3e2103,54
92121819,96

Using a working set limited to 242 pages and 49 pages of dates storage (excluding image)

Total number object records read (both passes)i 183

of which Si were in libraries and 8 were DEBUG data records conmtaining 189 bytes

169 bytes of DEBUG date were writtenm,starting at VBN 5 with | blocks allocated

Number of modules extracted explicitly s D
with { extracted to resclive undefined symbols

2 liorary searches were for symbols not {n the libreary searched

A total of @ globa) symbo! table records was written

/MAP2DEMOBR/BRIEF DEMO,SUB1,FUNi,FUN2

dVIN 43148

SNOILVYLSNTII d¥W IOVNWI

DEMQ 26=FEB=1982 102118 LINKER VER,40 Page 1
LI Y PP YT LY P YN LT Yy
{ Object Module Synopais |
P OO RNNON NP PR NRIYBER¢
Module Name ldent Bytes File Crestion Date Creator
"Pusceswesew LA L LT] eSesee veoeoew NNV RRTe esseene
DEMO 21 388 ,DBB231 [GOLDMAN]DEMO,0BJs2 26=Fobe (980 10316 VAXell FORTRAN T{,95=36
sus1l 21 179 ,D0BB2:{GOLDMANISUBYL,0BJj2 26=Febe{980 {2315 VAXe§i FORTRAN 71,9536
FUNY a1 23 _0BB21 [GOLDMANIFUNL,0BJp 26=Feb={980 10315 VAXeil FORTRAN T1,95=36
FUN2 81 23 ,DBB23 [GOLDMAN]FUNR,0BJ) 26=Feb=1980 10115 VAX=11 FORTRAN T1,95=36
teCoveseUsRuTRssesRCTSRERSOEBRSTR
| Program Section Synmopeis |
--..-.....-..---.-....-...
Psect Name Module Name Base Length Align Attributes
(A7 1T T 11 17197 TeReePaseR® L 11] oewYeww aSewew Ll i I I I 1 11X}
SPDATA 200228200 P0RCR20F Q0Q2@B8i8 (16,) LONG 2 PIC,USR,CON,REL,LEL, SMNR,NOEXE, RD,NOWRT,NOVEC
DEMO 03000200 VARAA2PF QQ00BA18 (16.,) LONG 2
SLOCAL 23022400 Yee2A588 2000018C (396,) LONG 2 PIC,USRyCON,REL,)LCL)NOSHR,NOEXE, RD, WRT,NOVEC
DEMO 22900400 20000533 Q000P134 (3A8,) LONG 2
sust 220002534 23PQQA583 @2@eRRSe (88,) LONG 2
FUN1Y 20004584 0aeenS87T @rAeasey (4.) LONG 2
FUN2 20000588 020200588 22208204 (4,) LONG 2
SCODE PP00R6AT DR0VR6CA 0000@BCB (203,) LONG 2 PIC,USR,CON,REL,LCL, SMR, EXE, RD,NOWRT,NOVEC
DEMO 02000620 VORARL3IF P2OBO04R (64,) LONG 2
SuBt 00000642 20P006A2 20082063 (99.) LONG 2
FUN1 Bo2206AY POPOREBS 2ABIB013 (19,) LONG 2
FUN2 22eN06B8 202006CA 00000213 (19,) LONG 2
$eovvveucscsvesvenssd
! Symbols By Neme |
XTI Y YT Y Y Y YL Y LY
Symbol Velue Symbol Value Symbo! Value Symbel Valye
L L 1 1] "TmEmae Tessee LL L 1 L] eoessewa a"wees sseeee 1 121
DEMO 2P800600=R
FUN} 0200A6AU=R
FUN2 200206B8=R
L111-3% P022064Q=R

Key for speciasl characters sbovel
doenonsvosnenspewseved
| » = Undefined]
! U = Universal 4
{ R = Relocatable |
| WK = Wesk)

Pocsscesweenseeseand

dVIN 11Nnv430a

SNOILVHLSNTII dVW JOVWI

»DBB2¢ (GOLDMAN]DEMO,EXEy2

Virtual memory allocated!

Stack sizet

Image header virtual block limite:
Image binary virtual bloeck Yimitss
Image name and fcentification:
Numper of fi{les:

Number of modules:

Number of program sectionss

Number of global gymbols:

Number of image sectionss

User transfer address:

Debugger transfer address:

Image type:

Map formats

Estimated map lengthi

Performance Indicators

26eFEB=1982 {2118

LA IITITY Y YT YYYY "¢

| Image Synmopsis |

donccsewesvasewveé

20020200 PBVIATFF 2001A600 (128232, bytes, 211, pages)

23, pages
1. 1.
2 4,
DEMO 21

8.
aoeepeRoe
84000168
EXECUTABLE,

1, block)

3, blocks)

DEFAULY {m f{le ",DBB21[GOLDMAN]DEMODEF,MAP 2"

13, blocks

Vescsvesvnsnsvsssennend

| Limk Run Statistics |

¢ewesvesesevransaseswed

Pasge Faults

Command processings 21
Pass ¢ 206
Allocation/Relocationt 15
Psss 2: 39
Map deta after Object module synmopsist 11
Symbo)! table output: 7
Tota! run valuess 299

CPU Time

P03100:00,09
243203021 ,02
@0:02302,08
oR300102,35
20300324,07
P01003022,02
P03120101,63

Elapsed Time
L LAt L L LY X1 X]
20100106,84
82162158,70
82100104,72
20180320,22
09:00303,82
Qa:1p23101,22
e:101127,48

Using & working set limited to 242 pages end 49 pages of data storage (excluding image)

Total number object records read (both passes)t 183
of which 51 were in li{braries and 8 were DEBUG data records containimg 189 bytes

169 bvytes of DEBUG data were written,starting at VBN 5 with | blocks allocated

Number of modules extracted explicitly

s 0

with | extracted to resolve undefined symbols

@ librery searches were for symbols not in the Vibrary searched

A total of 2 global symbo]l table records was written

/MAP=DEMODEF DEMOD, SUB1, FUN1,FUN2

LINKER v@g,4e

Page

e

dVIN 17nv43a

SNOILVHLSNTII dVW FOVWI

DEMO

Module Name
DEMO

suBy

FUN]

FUN2
SYSVECTOR
VMSRTL

Ident
[}
[
21

2219
«EXEg!

Bytes

388
179

23
@

26=FEB=1980 10320

YeceavesssvenseEeRRTOPSIBTE

| Object Module Synopsis |

fecuonsnennrsesssuseseveead

File
088231 [GOLDMAN] DEMQ,08J92
LDBB21: [GOLDMAN]ISUBE ,0BJy2
LDBB23 [GOLOMAN]FUNL,08J)1
L0BB23 [GOLDMAN]FUN2,0BJp
+ORASI (SYSLIB]JSTARLET,OLB1
LORASE [SYSLIBIVMSRTL.EXEr]

LINKER v@a,4o Page

Creation Date Creator

LA L L Lt L L L L4]] oweesee
26=Feb=3980 10116 VAXe=il FORTRAN T1,95=36
26=Feb=1982 10315 VAX«=11l FORTRAN T1,95-3é
26=Feb=1980 10315 VAXe)i FORTRAN T1,95e36
26=Febn1980 10115 VAX=11 FORTRAN T1,95=36
19«FEB=1988 213159 VAX=11 Mescro V@2,41
20=FEB=1980 18355 LINK=32 V022,39

i

dVIN 17n4

SNOILVYLSATII dVH FOVNWI

+DBB23 ([GOLDMAN]DEMO,EXE:3

Cluster Type Pages
DEFAULT_CLUSTER %] 1
[} 1

@ 1

253 20

VMSRTL 3 11
3 193

4 4

Base Agar

anveseew
100004020
Jageasea
TFFFDBOA

20080800
200@1E00Q
2001A080¢

26=FEB=1980 {2120

$PseovmwssewssevenTnesTeswd

! Image Section Symopsis |

{rvevesesessevsaveesneswewesd

Disk VBN PFC Protection anc Paging

READ ONLY
READ WRITE
READ ONLY
READ WRITE DEMAND ZERO

COPY ON REF

Ve W
[~R-N. S

READ ONLY
READ ONLY
READ WRITE

Q9
LR

COPY ON REF

LINKER

Global! Seec, Name

VMSRTL 201
VMSRTL, 202
VMSRTL 983

voe.4e

Mateh

LESS/EQUAL
LESS/EQUAL
LESS/EGUAL

Majorid

Paqp

Minorid

2000
2008
20uv8

2

dVIN 11Nnd

SNOILVYLSNTII dVW JOVWI

&DBB21 [GOLDMAN]DEMOLEXE)3

Psect Name

SPDATA

SLOCAL

SCODE

» BLANK ,

Module Name

DEMO
SuBl
FUN1
FUNg

DEMO
suB1
FUN{
FuUN2

DEMO
SuBt
FUNY
Fung

SYSVECTOR

Base

a9pve2ne
22020280
Bdyeo02ie
yygeneie
gagep2ia

eageesen
seeon4r0
202002534
240008584
23008588

pooen6aa
2n@oB600
pagdvedn
89d2Ub AL
BOANR6BS

povARsaR
ooeeo8B0

YevesscavescaneTeRssBEESRRed

! Program Section Synopsis |

teoroesssessTEsITTORSOsERRe

End

2202020F
2200020F
e0r0021Q
yegue2ia
22000212

rQeoases
20229533
reeepsS83
ueAPase7
20020568

200206CA
QA02B63F
00PPR6A2
“oBaBebe
206836CA

PocRRERA
neeeesea

Length

goagaoie
@a02n0le
Ll Ll
80Q00e00
oaoo0oed0

22neB18c
22000134
730000502
20000004
J00ea0e4q

22008uCB
20020040
40004063
gAaeRAz13
22u¥AeR13

NN~~~ ~~ N~

e~

Japepdrae (
a200p002 (

26=FEB=1980 {08320

Align

LONG
LONG
LONG
LONG
LONG

LONG
LONG
LONG
LONG
LONG

LONG
LONG
LONG
LONG
LONG

BYTE
BYTE

| VRV RV VR, NN NVNN

LINKER V02,40

Attributes

PIC)USR,CON,REL,LCL, SHR,NOEXE,

PIC,USR,CON,REL,LCL,)NOSHR,NOEXE,

PIC,USR,CON,REL,LCL, SHR, EXE,

NOPIC,USR,CON,REL,LCL,NOSHR, EXE,

Page 3

RD;NONRT'NUVEC

RD, WRT,NOVEC

RD, NOWRT, NQVEC

RD, WRT,NOVEC

dVIN 711nd

SNOILVMLSNTTII dVYW IOVWI

»0BB23s [GOLDMANIDEMO,EXE;3

Symbol
BASSSBLNK_LINE
BASSSCB_GET
BASSSCB POP

L]

L]

L]
BASSINIT RS
BASSINPUT
BASSINPUT,LINE

Value
¥oRA13A0=RU
200@138@=RU
20001370=RU
.
L]

.
20021116=RU
20aR11A0=RU
03ani18A=RUY

26-FEB=1982 10120

dennvassnevonswvand

| Symbols By Name |}

¢revenwsvesvaswsvend

Symbol Value Symbol
ceeeew L LT 2] sTweSew
BASSINSTR A20810B@=RU BASSSTATUS
BASSIN,D R VP02 1F2=RU BASSSTR,D
BASSIN,_F R 29001 1E8=RU BASSSTR,F

.) .]

L[] L] L]

[] 1 L]
BASSRSET R 22081 @AQ=RY DEMO
BASSSCALE,D,R1 202A1078«RU FORSSCB, GET
BASSSCRATCH 22001308=RU FORSSCB_ POP

LINKER v@2,4@¢

Value

20001338~RU
20Qd10Ca=RY
90001088=RU

.
00300 68a=R
2020QE202=RY
200RBELA=RU

Symbo)

oweees
FORSSCB_ PUSH
FORSSCB_ RET

FORSSERRSNS SAV

. .
FORSIOLB,R
FORSIO0,B,V
FORSIO,DC.R

Page 4

value
L L L] 1]
2evoRE@8=RY
VQ0YeEL18=RU
PB2PRE2B=RY

L]
204298EQ=RU
Q000B28E8=RU
20220928=RYU

dVIN 771Nnd

SNOILVHYLSNTII dVW IOVWI

01-d

+DBB2t (GOLUMAN] DEMO,EXE)3

Symbo)

FORS10,0C,V
FORSIO, D R

suei
SYSSIMGSTA

Value
ADURARE32=RU
BWBYRBBLA=RY

.
¥0000642=R
8000na168

Symbo!

Valye
PBURA6A4=R
BAPPALBA=R

L]

.

.

26=FEB=19802 10320

Symbeol
L L L1 1]
MTHSASIN RS
MTHSATAN

L]

L]

»

LINKER v@2,4¢

Value
Ll L L1]
P000PAAD=RU
002RGAAB=RY
L)
L]
L]

Symbel

OTSSCVT_ L,TZ

OTSSCVT, TI L
[]

Page 5

Valye
YOQVVEAB-RU
BOCORALB=RU
L
.

dVIA T11Nnd

SNOILVYLSNTII dVW JOVWI

1T1-d

20882 (GOLOMAN]DEMOL,EXE)3

Value

YToSow

00800660
dvepo6uD
0000644
20002688
P0200v800
300028¢8

[
80290168

26=FEB=1980 @320

‘o vevwnevesensnsevead

| Symbols By Value |}

¢ccecasnscscssvesesed

SymEo18,,4¢

R=DEMOQ

R=SUB}

ReFUNY

RefFUN2
RU=FORSCLOSE
RU=FORSDECODE MF

SYSSIMGSTA

Key for specia) characters above:
Poenaswccesswesssend
! » e |ndefimed }
U e Unfversal B
R = Relocetable |
| WK = Weak]
+

¢Yvevoncovsecsassssave

LINKER V@2,40

Page

7

CA ARl E

SNOILVHLSNTII dVW FOVHWI

Z1-d

»0BB21 [GOLDMAN]DEMO,EXE}3

Virtual memory allocatedt

Stack sizes

Image header virtual block limitss
Image binary virtua! block 1imitss
Image name and {dentificationt
Number of files!

Number of modyles:

Number of program sections

Number of globa) aymbelsi

Number of {mage sectionsi

User transfer address!

Debugger transfer addresst?

Image types

Map formats

Estimated map lengtht

Pertormance Indicators

26=FEB=1987 12120

{ecessussescscenssd

| Image Synopsis |

bunesecacancsoveaved

22000200 Q@QIATFF 0001A6080 (108832, bytes, 21!{. pages)

24, pages
1. 1,
2. 4,
DEMO 21

8.
202006020
8RUPR168
EXECUTABLE,

1, bloek)

3, blocks)

FULL in fi{le "_DBB22 [GOLOMAN]DEMOFULL MAP;2"

S8, blocks

¢eesusessrsrsesosesTeRee

! Link Run Statisticse |

j$evwvecennesvvsvrosevwend

Page Faults

Command processing: 17
Pass (¢ 259
Allocation/Relocation: 72
Pass 2% 69
Map date after object module symopaiss 91
Symbol table outputi 8
Totsl run valuest Sié

CPU Time

2@i00:20,15
22300101,15
00:1020100,30
20320309,31
00:1001061,98
ep320100,73
20:102193,92

Elapsed Time
L e L L L Ly 1]
PQg003@85,L27
2031001:27,61
P01281:07,65
e2g@e113,22
P0:1001:33,3}4
g8i1dv1084,07
00101:30,93

Using a working set limited to 237 cages and 49 pages of data storgge (excluding i{mage)

Tota! number object records read (both passes): 18%
of which 51 were in l{braries and 8 were DEBUG dets records containing 189 bytes

169 bytes of DEBUG Jdata were written,starting at VBN S with { blocks allocated

Number of modyules extracted explicitly

z 2

with | extracted to resolve undefined symbols

2 Yibrary searches were for symbols mot in the library searched

A total of @ global symbol table records was written

/MAPEDEMOFULL/FULL DEMO,SUB1,FUNL,FUN2

LINKER V22,40

Page

13

dVIA 11Nd

SNOILVULSNTII dVW FOVWI

£€1-4d

«DB8823 [GOLDMAN]DEMOEXE 4

Symbo!

BASSSBLNK L INE

BASSSCB,GET

L]
DEMO
FORSSCB,GET
FORSSCB_POP

L]

L

.
FUNY
FUN2

.

.

susy’
SYSSIMGSTA

Value

aSewes

2e0a13A8=RU

2203138@2=RU
L]

.
2000P600=R
2e0@0E20-RU
200PREiaeRY

L]

L

L]
222006A4=R
200006B8=R

L]

L]

28000640=R
8p000168

Defined By

DEMO
VMSRTL
VMSRTL

FUN1
FUN2

Susy
SYSVECTOR

26=FEB=1982 13131}

¢esessenesnveonnsesovevenend

! Symbo! Cross Reference |

PRSPPSO RN YN USRS E ¢

LINKER

Referenced By ,.,

suB1
sust

DE™MO

Vo, 4e

F,g.

JON3H3d3H SSOHD TOHNAS

SNOILVHLSNTII dVW JOVNWI

APPENDIX C

VAX-11 OBJECT LANGUAGE

The object language description in this appendix is taken from DIGITAL
software specifications. This appendix is useful for anyone writing a
compiler or assembler that must generate object modules acceptable for
input to the VAX-11 Linker. The object module analysis program
(ANALYZE), discussed in Appendix D, checks an object module to see if

it conforms to the requirements in the DIGITAL software
specifications.

C.l1 INTRODUCTION

The VAX-1l object language is accepted by VAX-11] 1linkers, object
module librarians, and object patch utilities.

The object language described herein is for use by all VAX-11 family
software -- that is, no subsetting will occur. All language
processors that produce code for execution in native mode are free to
use any or all of the described object language.

C.l.1 Summary of Language

Object modules are the input to the linker and are obtained from the
various 1language processors as individual files or as object library
files. All symbol table files created by the linker are also in the
format specified here.

An object module consists of an ordered set of variable-length
records, of which the following types are defined:

OBJSC_HDR 0 - Header Record (HDR)

OBJSC_GSD = 1 - Global Symbol Directory Record (GSD)
OBJSC_TIR = 2 - Text Information and Relocation Record (TIR)
OBJSC_EOM = 3 - End of Module Record (EOM)

OBJ$C_DBG = 4 - Debugger Information Record (DBG)

OBJSC_TBT = 5 - Traceback Information Record (TBT)

OBJSC_LNK = 6 - Link Option Specification Record (LNK) (Currently
ignored)

Refer to Figure C-1 for an illustration of the order in which records
appear in the object module.

VAX-11 OBJECT LANGUAGE

MHD Module Header Record

GSD Global Symbol Directory Record

TIR Text Information and Relocation
TIR Records

GSD Additional Global Symbol Directory
DBG Debugger Information Record

TBT Traceback Information Record

TIR More Text Information and Relocation
GSD More global symbol information

TIR More text

EOM End of Module

Figure C-1 Order of Records Within an Object Module

It is mandatory that there be at least two HDR records, a Module
Header Record (MHD) and a Language Name Record (LNM), and exactly one
EOM Record. These records must begin and end the module,
respectively. Within the module, there must be at least one GSD
record and there may be any number of TIR, DBG, TBT and LNK records.
As is described below, some ordering is implicit within the set of GSD
records.

In this document, the term "reserved" implies that the item must not
be present because it is reserved for possible future use by the
linker and DIGITAL. The linker produces an error if a reserved item
is found in an object module.

All unused and ignored fields of records must be padded to conform to
the block 1lengths specified in this document. The content of such
fields will be completely ignored by the 1linker and any other
processors.
The remaining possible lanquage record types are allocated as follows
but not defined in this document:

Type 7-100 Reserved for future use by linker

Type 101-200 Ignored always

Type 201-255 Reserved for customer use
(Ignored by current implementation)

VAX-11 OBJECT LANGUAGE

C.2 GLOBAL AND UNIVERSAL SYMBOLS AND NAME FORMAT
The linker deals with two types of symbols, global and universal.

Global symbols are those that are accessible to more than one module
of the set being linked. Universal symbols are a subset of the global
symbols. They are ones that the linker retains when linking an image

to which another set of object modules and/or images will subsequently
be bound.

The Object Language also deals with the names of program sections and

object modules and may contain the names of language processors and
utilities.

All names are represented by a l-byte character count followed by the
ASCII character string.

The current implementation of the linker limits such name strings to

31 characters, except 1in the case of header record types 1-255 (see
Section C.3.2).

C.3 HEADER RECORDS (HDR)

The object language defines a general class of header records. The
Module Header Record (MHD) is described in Section C.3.1.

The Language Name Record and the remaining header types are described
in Section C.3.2,

C.3.1 Module Header Records (MHD)

The module header records (MHD) collect in one place all module-wide
information. The module header records are needed by the librarian

and patch utilities and permit future expansion of the object
language.

The MHD (Module Header Record) record contains the following
information in the format shown:

RECORD TYPE 0 1 byte

HEADER TYPE O 1 byte
STRUCTURE LEVEL 1 byte

MAXIMUM RECORD

SIZE 2 bytes

MODULE NAME Variable (2-32)
MODULE VERSION Variable (2-32)

CREATION TIME
AND DATE 17 bytes

- TIME AND DATE
OF LAST PATCH 17 bytes

VAX-11 OBJECT LANGUAGE

All entries are required. Detailed descriptions of the fields follow.

C.3.1.1 Header Type - The MHD header type is 0 (OBJSC_HDR_MHD).

C.3.1.2 Structure Level OBJSC STRLVL - It is intended that the format
of the MHD record remain fixed from first implementation onward. The
structure level is provided such that extensions to the language,
which require changes to other record formats, can be dealt with
without requiring recompilation of every module that conforms to the
previous format. The structure level is zero.

C.3.1.3 Maximum Record Size OBJSC_MAXRECSIZ - The size in bytes of
the 1longest record that «can occur within this object module. The
maximum size is 2048 bytes.

C.3.1.4 Module Name - The module name conforms to the format of all
other names, that is, length contained in a byte followed by an ASCII
string. If the module is a symbol table created by the linker, the
name will be the image name assigned at link time.

C.3.1.5 Module Version - The module version conforms to the format of
all names in the object language.

C.3.1.6 Dates and Times - There are two date and time fields, one for
module creation and one for the last modification to the module (by an
object module patch utility). The format 1is a fixed 17-character
ASCII string:

dd-mmm-yyyy hh:mm
where:

dd = day of month

mmm = standard 3-character abbreviation of month

YYYY = year; note the space that follows

hh

hour of day 00 to 23

minute of hour 00 to 59

mm

VAX-11 OBJECT LANGUAGE

C.3.2 Other Header Records

The purpose of subheader records is primarily to contain optional
textual information in printable form. Each record consists of a byte
which is zero to indicate a header record, followed by a subtype byte.
The following subtypes are defined.

1]

OBJ$C_HDR_LNM 1 Language Processor (LNM) Name and Version,
One record 1is required and limited for the
current implementation to 35 characters. The
content of this record appears on the link

map output.

OBJSC_HDR_SRC = 2 List of file-specifications for the source
files from which object module was created.

Multiple records are permitted. (Currently
ignored)

OBJSC_HDR_TTL = 3 Title text (e.g., brief module description).
Only one record permitted. (Currently
ignored)

OBJSC_HDR_CPR = 4 A copyright statement. Only one record
permitted. (Currently ignored)

OBJSC_HDR_MTC =5 Maintenance Status. (MTC) Multiple records
permitted. (Currently ignored)

OBJSC_HDR_GTX = 6 General Text. Multiple records permitted.
(Currently ignored)

Types 7-100 are reserved.

Types 101-255 are always ignored.

C.3.2.1 Header Types 1 through 4 and 6 - The purpose of these records
is to allow the language processors to provide printable information
within the object modules for documentation purposes. The only format
definition 1is that the record contain printing ASCII characters.
Types 4 and 6 may be generated by users, whereas types 1 through 3 are
restricted to the language processors,

C.3.2.2 Maintenance Status Header Record (MTC) - This record 1is of
concern ohly to the object module patch utility and the object module
analysis (ANALYZE) utility (see Appendix D). It 1is 1ignored by the
librarian and the linker.

VAX-11 OBJECT LANGUAGE

The format is as follows:

RECORD TYPE 0 1 byte
HEADER TYPE 5 1 byte
PATCH variable
UTILITY NAME 2-32 bytes
UTILITY variable
VERSION 2-32 bytes
uIcC 2 bytes
INPUT FILE variable
SPECIFICATION 2-42 bytes
CORRECTION FILE variable
SPECIFICATION 2-42 bytes
DATE + TIME 17 bytes
SEQUENTIAL PATCH 1 byte

C.3.2.2.1 Record Type - Zero signifies a header record.

C.3.2.2.2 Header Type - The type is 5 signifying a maintenance status
record.

C.3.2.2.3 Patch Utility Name - This name identifies the patch utility
used to perform this patch on the module. This field begins with one
byte containing the number of bytes in the field (not including the
count byte itself).

C.3.2.2.4 Utility Version - The patch utility is further identified
by its version number. This field begins with one byte containing the
number of bytes in the field (not including the count byte itself).

C.3.2.2.5 U.I.C. - This is the user identification code under which
the patch was made.

C.3.2.2.6 Input File Specification - This filename 1identifies the
input file for this patch. This field begins with one byte containing
the number of bytes in the field (not including the count byte
itself).

VAX-11 OBJECT LANGUAGE

C.3.2.2.7 Correction File Specification - This filename identifies
the <correction file for this patch. This field begins with one byte
containing the number of bytes in the field (not including the count
byte itself).

C.3.2.2.8 Date & Time - This 17-byte field contains the date and time
that this patch was performed. Format is as described above.

C.3.2.2.9 Sequential Patch Number - This number is a sequential count
of the patches made to this module.

C.4 GLOBAL SYMBOL DIRECTORY (GSD) RECORDS (OBJ$C_GSD)

Global symbol directory records contain all the information necessary
to allocate virtual address space and to combine all the program

sections into the separately protectable sections (image sections) of
the image being created.

GSD records are of the following types:
OBJSC_GSD_PSC

OBJSC_GSD_SYM
OBJSC_GSD_EPM

0 Program section definition.

1 Global Symbol Specification.

2 Entry Point Symbol and Mask
Definition.

3 Procedure and Formal Argument
Definition.

0BJS$C_GSD_PRO

Within any GSD record, there may be many entry types. In such cases,
a single record appears as the concatenation of many, with the
omission of the byte containing the Object Language record type (the
value OBJ$C_GSD).

C.4.1 Program Section Definition (OBJS$C_GSD_PSC)

The format of a program section definition is as follows:

RECORD TYPE 1 1 byte

GSD TYPE 0 1 byte
ALIGNMENT 1 byte
FLAGS 2 bytes
ALLOCATION 4 bytes
PROGRAM SECTION Variable
NAME 2-32 bytes

VAX-11 OBJECT LANGUAGE

C.4.1.1 Program Section Name - This name has the same format as all
other symbol names.

C.4.1.2 Alignment - This field specifies the virtual address boundary
at which the program section will be placed. The alignment is 2 to
the power specified in the field.

Value Alignment
0 1 (BYTE)
1 2 (WORD)
2 4 (LONGWORD)
3 8 (QUADWORD)
4 2%%4
9 2**9 (PAGE)

Nine indicates page alignment and is the 1limit for program section
alignment.

Each module contributing to a program section can specify its own
local alignment, with the restriction that program sections whose
contributions overlay each other must all have the same alignment. It
should also be noted that an alignment specified within a program
section (for example, the assembler .ALIGN directive) must be less
than or equal to the program section alignment to be guaranteed. For
example, byte alignment of the program section may or may not cause
longword aligned elements within the program section.

C.4.1.3 Flags - The flag bits in the program section definition have
the following meaning:

Bit Name Meaning If Set

0 GPSS$V_PIC Program section defined as position
independent.

1 GPS$V_LIB The program section was defined in the symbol
table of a shareable image, to which this
image is bound.

2 GPSSV_OVL Contributions to the same program section are
overlaid. (The complement is concatenation).

3 GPSSV_REL Program section requires relocation (the
complement, bit=0, means absolute and
contains only symbol definitions. Thus the
allocation of an absolute program section is
Zero).

4 GPSS$V_GBL The scope of program section is global. (The
complement is local).

5 GPSSV_SHR Program section 1is potentially shareable
between two or more active processes.

6 GPSSV_EXE Content of the program section is executable.

VAX-11 OBJECT LANGUAGE

Bit Name Meaning If Set

7 GPSS$V_RD Content of the program section may be read.

8 GPS$V_WRT Content of the program section may be
written.

9 GPS$V_VEC Program section contains change mode dispatch
vectors.

10-15 Reserved.

Discussions of program section attributes may be found in the related
documents. (See also Section 7.5.4 of this manual.)

C.4.1.4 Allocation Field - The allocation field contains the length

contribution to the program section in bytes. It must be zero for an
absolute program section.

Program sections are assigned an identifying sequence number as their
respective GSD records are encountered. The program section number
ranges from 0 through 255 within any single module. Note, however,
that the total number of program sections in a single link operation
is bounded only by the linker's virtual memory requirements. This
program section number 1is used as an index in all references to the
program section, Note that this permits any mixture of GSD records,
as long as program sections are defined to the linker in the same
order as the index used by symbol definitions.

C.4.2 Global Symbol Specification OBJSC_GSD_SYM

Global symbol specification records may appear anywhere between the
MHD and EOM records and in any order.

The format of a global symbol specification is as follows:

RECORD TYPE 1 1 byte
GSDTYPE 1 1 byte
DATA TYPE 1 1 byte
FLAGS 2 bytes
PSECT INDEX 1 byte
VALUE 4 bytes
SYMBOL Variable
NAME 2-32 bytes

The 5 bytes for PSECT INDEX and VALUE are omitted for a reference.
(that is, when SYMSV_DEF=0).

VAX-11 OBJECT LANGUAGE

C.4.2.1 Data Type - The data type record is encoded as described in
Appendix C of the VAX-11 Architecture Handbook.

NOTE

The current implementation of the linker
ignores the data type field.

C.4.2.2 Flags - The flag bits in the global symbol specification have
the following meaning:

Bit Name Use
0 GSYSV_WEAK 0 for strong resolution.
1 for weak resolution.

Table C-1 describes the use of GSYS$SV_WEAK
in conjunction with the definition bit
(GSY$V_DEF).

1 - GSYSV_DEF 0 for reference
1 for definition
2 GSYS$V_UNI 0 for within facility
1 for universal symbol
This bit is significant only on a
definition. It indicates the symbol is to
be retained if this facility is shareable,
3 GSYSV_REL 0 for absolute symbol value
1 for relative symbol and the value is
augmented by the 1indexed program section
base address (of this module's
contribution)
4-15 Reserved.
Table C-1

Interpretation of GSY$V_WEAK and GSY$V_DEF

GSYS$V_WEAK GSYSV_DEF Interpretation
0 0 Strong Reference -- symbol must be
resolved
1 0 Weak Reference —-- resolved only if the

symbol is defined for some reason
other than this reference. Does not
incur any searches or module loads.
Has the value zero if undefined, with
no error report.

0 1 Strong Definition -- remains in all
required symbol tables/maps.

1 1 Weak Definition -- is discarded from
all symbol tables/maps unless there
was a reference. Does not appear in
the global symbol table index of an
object module library.

VAX-11 OBJECT LANGUAGE

C.4.2.3 Program Section Index - The program section index is a number
between 0 and 255 to be used as an index into the sequence of program
section definition records. This field exists only for symbol
definition records (GSYS$V DEF=1) and identifies the program section in
which the symbol was defined. The index is also used in TIR commands
(see Section C.5.1.1) for reference to program section base addresses.

All symbols encountered must be defined within a program section,
independently of the relocatability of program sections or symbols.
For example, the linker does not require the base address of the
"owning" program section if the symbol is absolute. However, for the
purposes of generating a readable map, it is very useful to maintain

the hierarchy of symbol within program section within module within
file.

C.4.2.4 Value - This field contains the value assigned to the symbol
by the language processor. This field does not exist if the record is
a symbol reference (GSYSV_DEF=0).

C.4.3 Entry Point Symbol and Mask Definition (OBJ$SC_GSD_EPM)

This format is an extended version of the global symbol definition
format above. Following the symbol value (which will be an entry
point address) is a two-byte field for the procedure's register save
mask (as used by CALL instructions). The format is as shown below.

RECORD TYPE 3 1 byte

GSD TYPE 2 1 byte
DATA TYPE 1 byte
FLAGS 2 bytes
PSECT INDEX 1 byte
VALUE 4 bytes
ENTRY MASK 2 bytes
SYMBOL variable
NAME 2-32 bytes

C.4.3.1 Entry Mask - The entry mask is written at the entry point of
a procedure entered via a CALLS or CALLG instruction, and in some
cases also is used in transfer vectors to such procedures. A TIR
command (see Section C.5) is provided for the language processor to
direct the linker to insert the mask at the procedure entry point or
at the transfer vector.

C.4.4 Procedure with Formal Argument Definiton (OBJ$C_GSD_PRO)

This GSD format is an extension of the entry point and mask definition
format to define the formal arguments of the procedure. The format is
as shown below.

VAX-11 OBJECT LANGUAGE

RECORD TYPE 1 1 byte

GSD TYPE 3 1 byte

DATA TYPE 1 byte

FLAGS 2 bytes

PSECT INDEX 1 byte

VALUE 4 bytes

ENTRY MASK 2 bytes

SYMBOL variable

NAME 2-32 bytes

MINIMUM ACTUAL 1 byte

ARGUMENTS

MAXIMUM ACTUAL 1 byte

ARGUMENTS

FORMAL ARG 1

DESCRIPTOR variable length
(2-256 byte)
descriptors of

> formal arguments

arg n is optionally
function return

FORMAL ARG n value.

DESCRIPTOR)

Following is a description of the fields of a procedure definition
different from the fields described in the other types of GSD records.

C.4.4.1 Minimum and Maximum Actual Argument Counts - Permissible
values are 0 through 255 and specify, respectively, the minimum number
and the maximum number of arguments required for a valid call to this
procedure. The counts must include the function return value if such
exists.

The current implementation does not validate procedure calls.
However, for its own integrity, the current implementation validates
that the minimum number of actuals 1is 1less than or equal to the
maximum number of arguments. The maximum number of actuals field is
then used to process the formal argument descriptors.

VAX-11 OBJECT LANGUAGE

C.4.4.2 Formal Argument Descriptors - Each of the formal argument
descriptors of the record shown above has the following format:

ARG. VAL. CTL. 1 byte ARG$B_VALCTL

REM. BYTE CNT. 1 byte ARG$B_BYTECNT

DETAILED variable

ARGUMENT 0~255 bytes

DESCRIPTION ignored by current
implementation

C.4.4.2.1 Argument Validation Control Byte - This (the first) byte of
each formal description 1is wused to control the validation of the

argument. The only field of this control byte used by the 1linker is
as follows:

Bits 0:1 ARGSV_PASSMECH - Describes the mechanism by which the
argument of a valid call must be passed.

Bits 2:7 Reserved - Ignored by the current implementation.

The following argument-passing mechanisms are defined:

ARGSK_UNKNOWN = 0 Unspecified
ARGSK_VALUE = 1 By value
ARGSK_REF = 2 By reference
ARG $K_DESC = 3 By descriptor

C.4.4.2.2 Remaining Byte Count - This field gives the length of the
remainder of this argument descriptor. For the current
implementation, it is used as a count of bytes to be ignhored by the
linker. The content of these remaining bytes is reserved for possible
future implementations.,

NOTE
Any use of formal argument descriptors
in which
ARGSB_VALCTL bits 2:7 NEQ O
and/or

ARGSB_BYTECNT NEQ O

means that, should argument validation
be implemented in a future VAX-11
Linker, recompilation of all such
objects may be necessary.

c-13

VAX-11l OBJECT LANGUAGE

C.5 TEXT INFORMATION AND RELOCATION (TIR) RECORDS (OBJSC_TIR)

Text information and relocation records contain a sequential series of
commands and data for the linker to compute and record the contents of
the image. The general form of a TIR record is as follows:

RECORD TYPE 2 1 byte
COMMAND 1 1 byte
DATA 1 Byte count implied by command
COMMAND 2 1 byte
DATA 2 Byte count implied by command
COMMAND N 1 byte
DATA N Byte count implied by command

C.5.1 Commands

The linker's creation of the binary content of an image file Iis
completely driven by the lanquage processor via the commands contained
in TIR records. To achieve this, the 1linker maintains an internal
stack.

The commands available allow values to be placed on the stack and
operations to be performed on the items on top of the stack. These
commands also permit the writing of values from the stack to the
output image. Other commands permit the storing of a sequence of
bytes from object module to output image without alteration by the
linker. They also provide for control of the relocation of the
position currently being written in the image.

In commands which refer to program sections, the names are identified
by the sequence numbers assigned to them as described above. The
program section indexes are in the range 0 through 255,

The command byte has two formats:

76 0
FORMAT 1 1 -COUNT

7 6 0
FORMAT 2 0 COMMAND

VAX-11] OBJECT LANGUAGE

The only command with FORMAT 1 is the Store Immediate (STOIM), which
merely causes the copying of the following bytes (given by the
negative count in the range -1 through -128, into the output image.

All other commands are described by the second format., There are four
groups of commands:

Stack Group
Store Group
Operator Group
Control Group

The stack on which these commands operate is longword aligned at all
times. Furthermore, it must be completely collapsed at end of module,
but is retained between all other record types. The minimum stack
space available will be not less than 25 longwords.

C.5.1.1 Stack Group - The stack group of commands provides the
capability to store bytes, words, and longwords on the stack. The
value placed on the stack may follow the command in the TIR record;
it may be found from a global symbol; or it may be computed from the
base address of a program section. Except for stacking the wvalue of
global symbols or stacking addresses (calculated from program
sections), both signed extension to longword and =zero extension to
longword are provided for byte and word stack operations. The codes
in the following list are decimal.

Code Command Description/Interpretation
0 Stack Global Symbol specification follows. As
(TIRSC_STA_GBL) with all other names, it consists

of the symbol 1length in a byte
followed by the ASCII string
defining the symbol:

LENGTH 1 byte
SYMBOL Variable
1-31 bytes

The value found from the symbol
table is a 32-bit quantity.

1 Stack Signed Byte Single signed byte constant
(TIRSC_STA_SB) follows. Value 1is sign extended
to 32 bits.
2 Stack Signed Word Single signed word constant
(TIRSC_STA_SW) follows. Value is sign extended
to 32 bits.
3 Stack Longword Single longword constant follows,
(TIR$C_STA_LW)
4 Stack PSECT base l-byte program section number
plus byte offset followed by single signed byte
(TIRSC_STA_PB) offset. A 32-bit quantity is

computed by addition of program
section base address and the byte
offset.

Code

10

11

12

VAX-11 OBJECT

Command

Stack PSECT base
plus word offset
TIR$C_STA_ PW)

Stack PSECT base
plus long word offset
(TIRSC_STA_PL)

Stack Unsigned Byte
(TIR$SC_STA_UB)

Stack Unsigned Word
(TIRSC_STA_UW)

Stack Byte From Image
(TIRSC_STA_BFI)

Stack Word From Image
(TIRSC_STA WFI)

Stack Longword From
Image (TIRSC_STA LFI)

Stack Entry Point Mask
(TIR$C_STA_ EPM)

LANGUAGE

Description/Interpretation

l-byte program section number
followed by single signed word
offset. A 32-bit quantity is
computed by addition of program
section base address and the word
offset,

l-byte program section number
followed by signed longword
offset. A 32-bit quantity is
computed by addition of program
section base address and the
longword offset.

Note that although the offsets in
the above three commands are
signed, negative values are very
rarely correct. Note also that
the base address is that of this
module's contribution to the
program section.

As for TIRSC_STA_SB except that
the value is zero extended to 32
bits.

As for TIRSC_STA SW except that
the value is zero extended to 32
bits.,

This command 1is reserved for
future use. The longword on top
of the stack is wused as an
address, in the image, from which
to retrieve a byte. The byte is
zero extended and replaces the
top longword of stack.

This command is reserved for
future use. It 1is the word
variant of the previous command.

This command is reserved for
future use. It is analogous to
the previous two commands.

This command has the same format
as TIRSC STA GBL. However,
instead of stacking the value of
the symbol, the entry point mask
(unsigned word) which accompanies
the symbol definition is stacked.
An error 1is produced if the
symbol referenced is not an entry
point.

VAX-11 OBJECT LANGUAGE

Code Command

13 Compare procedure
arguments and stack
TRUE or FALSE,
(TIRSC_STA_CKARG)

14-19 Reserved Commands

Description/Interpretation

The format of the command is as
follows:

COMMAND CODE

SYMBOL
NAME

ARG INDEX

ACTUAL
ARGUMENT
DESCRIPTOR J

The purpose of this command is to
compare an actual argument
descriptor with a formal
descriptor for a particular
procedure, stacking an indicator
based on match or mismatch of
arguments. This indicator is
TRUE if match 1is found or if
there 1is no formal argument
descriptor. The indicator is
FALSE if (and only if) the
specified formal is described by
a procedure definition but the
descriptor does not match the
accompanying actual argument
descriptor.

The argument that is checked 1is
given by the index, and is thus
number 0 through 255. The format
of the actual argument descriptor
is identical to that of the
procedure definition GSD record
described in Section C.4.4.2
above., The linker currently
compares only the fields
ARGSV PASSMECH, stacking the TRUE
indicator if they agree, FALSE if
they do not.

VAX-11 OBJECT LANGUAGE

C.5.1.2
longword from the

Store Group - All commands of the store
stack upon completion of the command.

group pop the top
Several of

the commands provide validation of the quantity being stored, with the

possibility of
next byte in the output image.
Code Command

20 Store Signed byte
(TIRSC_STO_SB)

21 Store Signed Word
(TIRSC_STO_SW)

22 Store Longword
(TIRSC_STO_LW)

23 Store Byte Displaced
(TIRSC_STO_BD)

24 Store Word Displaced
(TIRSC_STO_WD)

25 Store Longword
Displaced
(TIR$C_STO_LD)

26 Store Short Literal
(TIR$C_STO_LI)

27 Store Position-
Independent Data
Reference
(TIR$SC_STO_PIDR)

issuing truncation errors during the operation. Upon
completion of the command, the location counter is

pointing to the

Description/Interpretation

Bits 31:7 must be identical. Low
byte written to image.

Bits 31:15 must be 1identical.
Lower word written to image.

One longword written to image.

Location counter subtracted from
top of stack. Decrement value,
Bits 31:7 must be identical.
Byte is then written to image.

Location counter plus 2
subtracted from top of stack.
Bits 31:15 must be identical.
Word written to image.

Location counter plus 4
subtracted from top of stack.
Longword written to image.

stack, bits
Single byte

One longword from
31:6 must be zero.
written to image.

The longword on top of stack is
assumed to be the address of a

data item. It occurs in a
nonexecutable program section.
If the address is absolute,
command behaves as store
longword. If address is

relocatable, command behaves as
store longword displaced and in
addition provides information in
the image header for subsequent
linker processing.

Code

28

29

30

31

32

33

VAX-11 OBJECT LANGUAGE

Command

Store Position-

Independent Code
Reference
(TIR$SC_STO_PICR)

Store Repeated
Signed Byte
(TIR$C_STO_RSB)

Store Repeated
Signed Word
(TIRSC_STO_RSW)

Store Repeated

Longword (TIRSC_STO_RL)

Store Arbitrary

Field (TIR$C_STO_VPS)

Store Unsigned Byte
(TIR$C_STO_USB)

Description/Interpretation

The longword on top of the stack
is assumed to be the address of
an item to which a position-
independent instruction makes
reference. The purpose of the
command is to generate a
position-independent reference,
If the top of stack is absolute,
the byte "9F" (hex) is written
(which is autoincrement deferred
addressing mode on the PC and
therefore absolute) followed by
the top as for store longword.
I1f, however, top of stack Iis
relocatable, the byte "EF" (hex)
is written (which 1is 1longword
displacement mode off PC and
therefore relative addressing).
Location counter is incremented.
Then the longword is written just
as for store longword displaced.

This and the previous command are
discussed further in the
references on generation of
position independent images.

The 1longword on top of the stack
is used as the repeat count. The
low order .byte of next longword
on the stack 1is written to the
image the indicated number of
times. Both longwords are
cleaned off stack on completion.

As above except that words are
written.

Analogous to above.

The bits 0 to (s-1) of the top
longword are written to image
starting at bit p of the current
location. The command byte in
the object module is followed by
p and s (respectively) which are
unsigned bytes. Only the
specified bits of the 1image are
altered. After the operation the
location counter is the address
of the byte containing bit (p+s)
of the location modified. Note
that the value of p+s must be
greater than zero and less than
or equal to either 32 or
((P+8)/8)*8-1, whichever is less.

Same as TIRSC_STO_SB except that
bits 31:8 must be zero.

Code

34

35

36

37

38

39

40

41

42

43-49

VAX-11 OBJECT LANGUAGE

Command

Store Unsigned Word
(TIRSC_STO_USW)

Store Repeated
Unsigned Byte
(TIRSC_STO_RUB)

Store Repeated
Unsigned Word
(TIRSC_STO_RUW)

Store Byte
(TIR$C_STO_B)

Store Word
(TIRSC_STO_W)

Store Repeated Byte
(TIR$C_STO_RB)

Store Repeated Word
(TIRSC_STO_RW)

Store repeated
Immediate Variable
Bytes
(TIR$C_STO_RIVB)

Store Position
Independent
Reference Relative
(TIR$C_.STO_.PIRR)

Reserved Commands

Description/Interpretation

Analogous to above (Bits 31:16

must be zero)

Analogous to above.

Analogous to above.

If top longword on stack is
is negative, then bits 31:7 must
be 1. Otherwise, bits 31:8 must
be zero. Low order byte is
written to image. This command
permits any 8 bit value from -128
to 255 to be written to the
image.

If top longword is negative, bits

31:15 must be 1. Otherwise bits
31:16 must be 2zero. Low order
word is written to image. This

command permits any 16-bit value
from -32768 to 65535 to be
written to the image.

The repeated version of store
byte. See TIR$C_STO_RSB for
description of repeat count.
Analogous to above.

One byte of byte count (N) fol-
lowed by N bytes. The N bytes
are written to the image and
repeated the number of times
specified by the top longword of
the stack, which is removed from
the stack on completion. (A O

repeat count stores nothing.)

The longword (longword 1) on the
top of the stack is the address
of a data item. If it is an
absolute value the command is the
same as Store Longword except
that a second value 1is cleared
from the 1linker stack. If the
address is relocatable, the
second longword (longword 2) is
taken from the stack. If its
value is -1, the current value of
the location counter is
substituted for longword 2. The
value then stored is 1longword 1
minus longword 2).

VAX-11 OBJECT LANGUAGE

C.5.1.3 Operator Group - The linker evaluates expressions in Post Fix

Polish form.
2's complement integers.
string, or quadword computation.

All arithmetic operations are performed in signed 32-bit
There is no provision

for floating point,

The commands of the operator group take as operands the top one or two

longwords on the stack.
is the top longword on the stack.

At

Upon completion of the operation, the result

tempts to divide by zero produce

a zero result, and a nonfatal diagnostic is issued.

Code Command

50 No-operation
(TIRSC_OPR_NOP)

51 Add (TIR$SC_OPR_ADD)

52 Subtract
(TIR$C_OPR_SUB)

53 Multiply
(TIR$C_OPR_MUL)

54 Divide
(TIR$C_OPR_DIV)

55 Logical AND
(TIR$C_OPR_AND)

56 Logical Inclusive OR
(TIRSC_OPR_IOR)

57 Logical Exclusive OR
(TIRSC_OPR_EOR)

58 Negate
(TIR$C_OPR_NEG)

59 Complement
(TIR$SC_OPR_COM)

60 Insert Field
(TIR$C_OPR_INSV)

61 Arithmetic Shift

(TIR$C_OPR_ASH)

Description/Interpretation

Top two longwords are added.

Top subtracted from

next.

longword is

Top two longwords are multiplied.

Divisor is top longword.

Logical AND of top two longwords.

Inclusive OR of top two
longwords.

Exclusive OR of top two
longwords.

Top longword is negated.

Top longword is complemented.
This command 1is reserved for
future use., It is analogous to
the store of arbitrary bit field
TIR$C_STO VPS (code 32). The
only =~ difference is that the

target for bits from top of stack

is the next longword on the
stack, and location counter is
therefore unaffected. Note that

top longword is popped and that p
and s are bytes following command
in the TIR record,

The 1longword on top of stack is
the shift count to apply to next
longword. Negative quantity
causes a right shift (with
replication of sign bit).
Positive causes left shift with
zeroes moved into low order bits.

VAX-11 OBJECT LANGUAGE

Code Command Description/Interpretation

62 Unsigned Shift As above except that zeroes are
(TIRSC_OPR_USH) moved into high and low order.

63 Rotate Rotate count 1is top longword to
(TIR$C_OPR_ROT) apply in a rotate (left if

positive, otherwise right) of
next longword on stack. Rotate
count must have an absolute value
between 0 and 32.

64 Select Remove the top longword from the
(TIRSC_OPR_SEL) stack, If it has the value TRUE
- (low bit set) remove and discard
the next longword on the stack.
If the first longword removed has
the value FALSE (low bit clear)
copy the next 1longword on the
stack to the one that follows.
Thus, the command presumes there
are three longwords on the stack.
These are collapsed to a single
longword which is the value of
the second or third based on the
value of the first.

65 Redefine Symbol to The command has the same format
Current Location. as the TIRSC_STA GBL command.
(TIRSC_OPR_REDEF) Causes the symbol to be

re-defined on output of symbol
table (s) to have the value of the
location counter when this
command is processed. The
re-definition does not occur
until after all image binary is
written. If no binary is
generated (or 1is aborted) the
redefinition does not occur.

66-79 Reserved Commands

C.5.1.4 Control Group - The control group of commands is provided for
manipulation of the location counter.

Code Command Description/Interpretation

80 Set Relocation Base The value on top of the stack is
(TIRSC_CTL_SETRB) popped into the location counter.

81 Augment Relocation Signed longword which is an

Base (TIRSC_CTL_AUGRB) increment to location counter
follows the command.

82 Define Location The top longword on the stack is
(TIRSC CTL DFLOC) removed and used as an index.
- The current 1location counter is
stored away, qualified by the
index and the object module
containing it. This command is
only legal in traceback and debug
records.

VAX-11 OBJECT LANGUAGE

Code Command ' Description/Interpretation
83 Set Location The top longword on the stack is
(TIR$C_CTL_STLOC) removed and used as an index.

The saved location counter (from
a corresponding TIRSC_CTL_DFLOC)
is set as the current location
counter, and the location counter
saved for index (n) is deleted.
This command 1is only 1legal in
traceback and debug records.

84-127 Reserved Commands

C.5.2 Record Length

TIR records may be quite 1long. There is an implementation 1limit
defined by OBJSC_MAXRECSIZ. The maximum record size of the module is
recorded in the header word.

C.5.3 side Effects and Optimization

In the interest of performance of the 1linker a few implementation
decisions and their possible side effects should be noted.

1. For all store repeated commands, if the quantity being stored
is zero, the linker does not write the zeroes into the bytes.
The reason for this 1is that the pages of an image are
guaranteed to be 2zero unless otherwise initialized by the
compiler, To achieve this, demand zero pages are used within
the linker and were the linker to attempt to write zeroes, the
fact that these are still empty pages of the image is lost,
Thus, it becomes very difficult to compress from the image all
empty pages.

There is, however, a side effect to this behavior, in that if
a cell of an image has been previously initialized, it will
not be zeroed by any repeated store commands. This can occur
in multiple modules contributing to and attempting to
initialize the content of overlaid program sections. Notice,
however, that the results of such multiple initialization are
then dependent on the order of processing of object modules.
This side effect is therefore considered to be acceptable.

2. The linker is a two-pass processor of object modules. The
content of TIR records is completely ignored on the first pass
but verified and acted upon on the second pass. However, if
no 1image 1is being produced because of a command or link time
error, all TIR records (as well as DBG and TBT records) are
ignored. A side effect, considered quite acceptable, is that
errors (user or compiler) potentially detectable on pass two
will not be detected. Truncation errors are the most likely
example of such undetected situations.

VAX-11 OBJECT LANGUAGE

C.6 END OF MODULE (EOM) RECORD (OBJ$C_EOM)

This record declares the end of a module. It declares the severity of
errors encountered by language processor, and, optionally, it declares
a transfer address within a program section 1in this module. The
format is as follows:

RECORD TYPE 3 | 1 byte
| ERROR SEVERITY 1 byte

P-SECT INDEX 1 byte

TRANSFER 4 bytes

ADDRESS

TRANSFER FLAGS 1 byte

This record will be 2, 7, or 8 bytes, depending on the existence of a
transfer address. Note that the program section specification is by
its index within the module, as used above. The transfer address is
an offset from the base of this module's contribution to the specified
program section. The transfer flags byte may only be present if the
transfer address is present.

C.6.1 Error Severity

The error severity byte specifies to the linker whether errors were
encountered in the source code. It also indicates the severity of any
errors encountered.

Value Interpretation by linker
0 No errors
1 Warnings were generated by language processor. Proceed

with link but issue warning message.

2 Errors were severe, proceed with 1link, but do not
produce an executable image.

3 Abort the link.
4-10 Reserved.
11-255 Ignored.

C.6.2 Transfer Address Flags

The transfer address flags byte directs the linker in the processing
of transfer addresses.

Bit Interpretation by linker

0 Weak transfer address. If a transfer address
is already defined, no error is produced.

1:7 Reserved, must be 0.

VAX-11 OBJECT LANGUAGE

C.7 DEBUGGER INFORMATION (DBG) RECORDS (OBJ$C_DBG)

The purpose of debugger information records is to allow the language
processors to pass information, such as descriptions of 1local
variables, of the compilation to the debugger. The transmission of
this information may make wuse of all the functions (commands)
available in the TIR set.

The command stream in DGB records generates what is referred to as the
debug symbol table (DST). The DST follows immediately the binary of
the user image and the image header contains a descriptor of where in
the file such data has been written. The production of the DST in
memory makes use of a separate location counter within the 1linker.
This 1location counter is initialized as if the DST were the highest
addressed part of the program region of the image. Note, however, the
DST is not in fact mapped into the user image.

The linker produces a DST only if the debugging qualifier was
specified at 1link time and only if an executable image is being
produced. If either of these is not true, DBG records are ignored.
See the above discussion of the side effects in TIR record processing.

C.7.1 Traceback Information (TBT) Records (OBJS$C_TBT)

Traceback information records are the means by which language
processors pass information to the facility which produces a traceback
of the call stack. From the point of wview of the 1linker and its
processing of these records, they are identical to DBG records. That
is, they may be mixed with DBG records and all data generated goes
into the DST as if they were in fact DBG records.

The purpose of separating this information from that contained in DBG
records 1is to allow inclusion of a DST containing only traceback data
when no debugging is requested at link time. If the production of
traceback information is disabled at link time then these records are
ignored. See the above section on side effects in processing TIR
records.

C.8 LINK OPTION SPECIFICATION (LNK) RECORDS (OBJ$C_LNK)

The link option specification records are defined for the purpose of
allowing the compiler to provide the linker with default parameters
that are used if none were given by the user at link time. Options of
interest are libraries to be searched to resolve undefined symbols,

modules to be included in the link, adjustment of stack and buffer
region sizes.

The exact set of commands allowable will be supplied later, along with
the interaction of conflicting object module LNK records and user
commands. The general philosophy 1is to use the most recently
specified parameters wunless there are good reasons to the contrary.
These records are currently ignored by the linker.

APPENDIX D

THE ANALYZE PROGRAM

The object module analysis (ANALYZE) program checks an object modulé
to see if it is in the correct format for input to the VAX-11l Linker.
(The program can also analyze a concatenated file containing several
object modules.) This program is a diagnostic tool for writers of
compilers or assemblers that must generate native-mode code. To use
this program intelligently, you must be familiar with the VAX-1l1

object language specification in Appendix C. ’

To invoke the program, use the DCL command ANALYZE. The program can
analyze the entire module or only specified types of records. It
checks the record type, contents, and sequence of each object module
record it examines. The program creates an output file containing a
record-by-record analysis of the object module, including
identification of any errors in the module.

The program, however, has a more limited set of operations than the
linker. The ANALYZE program:

e Does not verify that all data arguments to commands are in the
correct format

e Does not check whether "store data"™ commands are storing
within legal address limits

These restrictions exist because the program does not actually perform
the object 1language commands in the module. Therefore, if you have
run ANALYZE against an object module and received no errors, you
should perform the additional check of linking the module, requesting
a full map.

D.l1 THE ANALYZE COMMAND

The ANALYZE command requires no user privileges and follows the
standard DCL syntax conventions. For a complete discussion of this
command, see the VAX/VMS Command Language User's Guide. The general
format of the command is as follows:

SANALYZE input-file-spec[/MHD] [/GSD][/TIR} [/DBG] [/TBT] [/EOM]
Command Qualifiers: Default:

/OUTPUT=file~spec Output file name = input file name;
output file type = ANL

/INTERACTIVE /NOINTERACTIVE -- you are not prompted
after each record is displayed.

THE ANALYZE PROGRAM

D.2 THE OUTPUT FILE

The analysis of each record contains information pertinent to that
record type, and begins with a line in the following format:

>>>>>RECORD [number] IS [record typel [number of] BYTES LONG

For example:
>>>>>RECORD 4 IS A TEXT/RELOCATION 58 BYTES LONG

Errors in the object module are identified 1in 1lines beginning with
asterisks. For example:

kkkk* RECORD 3 IS RESERVED TYPE 49 **kkxkkkkhkkkkhhhkk

The program also prints the hexadecimal representation of the
erroneous record's contents. A complete list of the error messages
appears later in this appendix.

The following subsections (D.2.1 to D.2.7) discuss the information
given for the following record types:

Debugger information record

End of module record

Global symbol directory (GSD) record

Module header record

Subheader record

Text information and relocation (TEXT/RELOCATION) record
Traceback information record

The record types are explained in alphabetical order for ease of
reference. In the actual output file, the order reflects the order of
the records in the module. The only requirement for sequence is that

a module header and any subheader records come first, and an end of
module record come last.

D.2.1 Debugger Information Record

Debugger information records identify one or more commands to the
linker, including the data or symbol associated with each command.
(The object language commands are discussed in Appendix C.) For
example, a Store Immediate (STOIM) command is followed by the decimal
number of bytes to be stored and the hexadecimal representation of
this data. A Stack Global (STA GBL) command is followed by the name
of the symbol whose value is to be placed on the linker stack.

To the right of each command is the notation "STACK = n," where "n" is
the decimal number of bytes that would be on the linker's internal
stack if the linker were actually processing the object module. The
ANALYZE program reports an error if the count is not equal to zero at
the end of each object module analysis (that is, if bytes would be
left on the linker stack or if more bytes would be removed than were
placed on the stack).

THE ANALYZE PROGRAM

D.2.2 End of Module Record
The end of module record contains the following information:
e Number of compiler errors and warnings, including any 1link
abort specification by the 1language processor due to fatal
compilation errors

@ Number of the program section that contains the transfer
address

e Transfer address expressed as an offset from the program
section base

e Number of program sections defined in the module

D.2.3 Global Symbol Directory (GSD) Record

A GSD record can contain one or more program section definitions, one
or more global symbol specifications, or a combination or both.

For each program section definition, the following information is
given:

e Program section alignment
e Flag bits that are set
e Maximum length of the program section

For each global symbol specification, the following information is
given:

e Specification function - that is, whether the specification is
a reference to a global symbol or a definition of a global
symbol

e Data type (For example: "procedure entry mask," data type 23;
or "unknown," data type 0)

e Flag bits that are set

e Number of the program section in which the symbol 1is defined
(for global symbol definitions only)

e Value of the symbol (for global symbol definitions only)

e Name of the global symbol

D.2.4 Module Header Record

The module header record lists the following information about the
module:

e Structure level of the object language
e Maximum length that a record in the module can have

e Name

THE ANALYZE PROGRAM

e Identification
e Creation date and time

e Date and time of the last patch

D.2.5 Subheader Records
Most module subheader records consist of ASCII data and are printed as
such. These subheader types include identification of the language
processor used, the compilation options specified, and the title
specified for the compilation listing.
Another type of subheader identifies the maintenance status 1if the
module has been patched. The maintenance status subheader record
lists the following information:

e Patch utility name and version number

e UIC under which the patch was executed

e Input file specification for the patch

@ Correction file specification for the patch

e Date and time of the patch

o Sequential patch number

D.2.6 Text Information and Relocation (TEXT/RELOCATION) Record

Text information and relocation records contain the same type of
information as debugger information records (see Section D.2.1).

D.2.7 Traceback Information Records

Traceback information records contain the same type of information as
debugger information records (see Section D.2.1).

D.3 ANALYZE PROGRAM ERROR MESSAGES

Errors in the object module are identified by 1lines beginning with
asterisks (*****)_ Most of these error messages appear in the output
file, but some are displayed on the terminal. The messages are
presented in alphabetical order, with explanations for those that are
not self-explanatory.

ABSOLUTE PSECT HAS NON-ZERO LENGTH

All absolute program sections must have a length of zero,

ARGUMENT DESCRIPTOR MISSING FOR FORMAL ARGUMENT # [number]

The specified argument requires a character string descriptor.

THE ANALYZE PROGRAM

ARGUMENT INDEX IS MISSING
BYTE COUNT GOES BEYOND END OF RECORD [number of] BYTES

A byte count contained in the record indicates that the data that
follows does not fit within the record.

(number of] BYTES WERE LEFT ON THE LINKER'S STACK
The object language commands in the module place more bytes on
the linker's internal stack than they remove. The linker's stack
should be empty when it finishes processing each object module.

[number of] BYTES WERE NOT PLACED ON THE LINKER'S STACK BUT WERE
REMOVED FROM IT

The object language commands in the module remove more bytes from
the linker's stack than they place on it.

COMMAND [number] IS ILLEGAL TYPE [number]
COMMAND [number] IS RESERVED [code]

(See Appendix C for a list of the assigned and reserved codes.)
CORRECTION FILE SPECIFICATION WAS NOT IN COMPRESSED FORM

The correction file specification in the maintenance status
subheader record contains nulls, tabs, or blanks.

DATE/TIME FIELD CONTAINS ILLEGAL CHARACTER CHARACTER [position]
IS [ASCII representation] ([number] HEX)

ENTRY POINT GSD HAS ILLEGAL LENGTH [number of]} BYTES - NOT BETWEEN
[minimum number] AND [maximum number]

FILE [file name] DOES NOT END WITH EOM

The end of the module record is missing or out of sequence.
FIRST CHARACTER OF GLOBAL SYMBOL IS NUMERIC OR BLANK
FIRST CHARACTER OF CCRRECTION FILE SPECIFICATION IS NUMERIC OR BLANK
FIRST CHARACTER OF INPUT FILE SPECIFICATION IN NUMERIC OR BLANK
FIRST CHARACTER OF MODULE NAME IS NUMERIC OR BLANK
FIRST CHARACTER OF PATCH UTILITY NAME IS NUMERIC OR BLANK
FIRST CHARACTER OF P-SECT NAME IS NUMERIC OR BLANK
FORMAL ARGUMENT DESCRIPTOR IS MISSING REMAINING BYTE COUNT

The record is not long enough to hold the remaining byte count.

GLOBAL SYMBOL CONTAINS ILLEGAL CHARACTERS CHARACTER [position] IS
[ASCII representation] ([number] HEX)

Valid characters are . (period), $ (dollar sign), _(underscore),
0 through 9, and A through Z.

THE ANALYZE PROGRAM
GLOBAL SYMBOL DEFINITION RECORD HAS ILLEGAL LENGTH [number of]
BYTES -~ NOT BETWEEN [minimum length] AND [maximum length]

GLOBAL SYMBOL FIELD LENGTH [length] ILLEGAL NOT 1 TO [number of]
CHARACTERS

GLOBAL SYMBOL LENGTH ([number of] BYTES) ILLEGAL - SHOULD BE 1 TO
[number of] CHARACTERS

GLOBAL SYMBOL REFERENCE RECORD HAS ILLEGAL LENGTH [number of]
BYTES — NOT BETWEEN [minimum number] AND [maximum number]

GSD TYPE [number] DOES NOT EXIST
(Appendix C lists the valid GSD types.)

IDENT CONTAINS ILLEGAL CHARACTER CHARACTER [position] IS [ASCII
representation] ([number] HEX)

IDENT LENGTH [length] ILLEGAL SHOULD BE 1 TO [number of] CHARACTERS
ILLEGAL ALIGNMENT - GREATER THAN [maximum permitted])

ILLEGAL CORRECTION FILE SPECIFICATION LENGTH OF ZERO, SHOULD BE 1 TO
[number of] CHARACTERS

The correction file specification in the maintenance status
subheader record is zero.

ILLEGAL INPUT FILE SPECIFICATION LENGTH OF ZERO, SHOULD BE 1 TO
[number of] CHARACTERS

The input file specification in the maintenance status subheader
record has a length of zero.

ILLEGAL MAXIMUM RECORD LENGTH - MUST BE BETWEEN {minimum 1length] AND
[maximum length]

The maximum record length for the module, as specified in the
module header record, is outside the acceptable range.

ILLEGAL PSECT ALLOCATION - EXCEEDS [number of] BYTES

ILLEGAL RECORD LENGTH [length] NOT BETWEEN [minimum number] AND
[maximum number] BYTES

ILLEGAL SEVERITY CODE {code]

The severity code specified in an end of module record is illegal
(see Section C.6.1).

ILLEGAL STARTING BIT POSITION- NOT 0 TO 31

A variable bit field command specifies an illegal starting bit
position.

ILLEGAL STRUCTURE LEVEL - ONLY [highest level currently supported] IS
SUPPORTED

The structure level (format) of the object language in the module
is not yet supported by the ANALYZE program. The program

analyzes only structure levels 0 through the level specified 1in
the message.

THE ANALYZE PROGRAM

ILLEGAL SUBHEADER TYPE OF [type]

The specified subheader type is not recognized by the ANALYZE
program.

ILLEGAL SYNTAX FOR DATE/TIME

The date and time must be in a fixed-length ASCII string with the
following format:

dd-mon-yy hh:mm: ss

ILLEGAL TRANSFER ADDRESS (NOT BETWEEN 0 AND [highest available virtual
address])

The transfer address is outside the virtual address space.

[flag bit number]) ILLEGALLY
The specified flag bit is set, but is reserved (invalid). This
message follows the message "THE FOLLOWING FLAG BITS ARE SET:"
and a listing of the flag bits legally set.

INCOMPLETE RECORD - NEXT FIELD AT BYTE [location within record] BEYOND
RECORD

A byte count contained in a module header record is greater than
the number of bytes remaining in the record.

INPUT FILE SPECIFICATION WAS NOT IN COMPRESSED FORM

The input file specification of the maintenance status subheader
record contains blanks, nulls, or tabs.

INVALID ARGUMENT INDEX OF [number] NOT BETWEEN [minimum] AND [maximum]

INVALID MAXIMUM ACTUAL ARGUMENT COUNT OF [number] NOT BETWEEN [number]
AND [number]

INVALID MINIMUM ACTUAL ARGUMENT COUNT OF [number] NOT BETWEEN [number]
AND [number]

INVALID SEQUENCE - MHD SHOULD NOT FOLLOW TYPE [type] RECORD
The only record type that can precede a module header is type 3
(end of module record for the previous module in a concatenated
file).

INVALID SEQUENCE - SHOULD NOT FOLLOW EOM OR BEGIN A MODULE

Nothing can follow an end of module record except an end-of-file
or a module header record in a concatenated file.

INVALID SEQUENCE - SUB-HEADER RECORD SHOULD NOT FOLLOW TYPE [type]
RECORD

A subheader record should only follow a module header record or
another subheader record.

INVALID SYNTAX OF CORRECTION FILE SPECIFICATION IN: [error part]

The correction file specification in the maintenance status
subheader record has a syntax error in the specified part.

THE ANALYZE PROGRAM

LANGUAGE PROCESSOR RECORD FOLLOWS [number of] TIR, GSD, OR TBT RECORDS

The language processor subheader record should follow the module
header record.

LANGUAGE PROCESSOR RECORD LARGER THAN [number of] CHARACTERS
MINIMUM IS GREATER THAN MAXIMUM

The minimum actual argument count specified is greater than the
maximum actual argument count specified.

MODULE NAME CONTAINS ILLEGAL CHARACTERS CHARACTER [position] IS [ASCII
representation] ([number] HEX)

MODULE NAME LENGTH ILLEGAL SHOULD BE 1 TO [number of] CHARACTERS
NO P-SECTIONS DEFINED IN MODULE
An object module must contain at least one program section.

PATCH UTILITY NAME CONTAINS ILLEGAL CHARACTER CHARACTER [position] IS
[ASCII representation] ([number] HEX)

The patch utility name in the maintenance status subheader record
contains the specified illegal character.

PATCH UTILITY NAME LENGTH ILLEGAL SHOULD BE 1 TO [number of]
CHARACTERS

The length of the patch utility name in the maintenance status
subheader record is illegal.

PATCH UTILITY VERSION CONTAINS ILLEGAL CHARACTERS

The patch utility version in the maintenance status subheader
record contains an illegal character,

PATCH UTILITY VERSION LENGTH [length] ILLEGAL SHOULD BE 1 TO [number
of] CHARACTERS

The length of the patch utility version in the maintenance status
subheader record is outside the indicated range.

PROCEDURE WITH FORMAL ARGUMENT DEFINITION HAS ILLEGAL LENGTH ([number
of] BYTES) - NOT BETWEEN [minimum number] AND [maximum number]

PROCEDURE WITH FORMAL ARGUMENT DEFINITION IS MISSING MAXIMUM ACTUAL
ARGUMENT COUNT

PROCEDURE WITH FORMAL ARGUMENT DEFINITION IS MISSING MINIMUM ACTUAL
ARGUMENT COUNT

P-SECT DEFINITION RECORD HAS ILLEGAL LENGTH [number of] BYTES - NOT
BETWEEN [minimum length] AND [maximum length]

P-SECT NAME CONTAINS ILLEGAL CHARACTER CHARACTER [position] IS [ASCII
representation] ([number] HEX)

PSECT NAME LENGTH IS ILLEGAL [length]

THE ANALYZE PROGRAM

P-SECTION NUMBER EXCEEDS COUNT OF THOQSE DEFINED IN MODULE [number of
program sections defined]

The program section number supplied in the program section index
field of an end of module record is greater than the number
assigned to any program section in the module. 1In other words,
the transfer address 1is specified as being in a nonexistent
program section.

[number of] PSECT(S) DEFINED - TIR REFERENCES PSECT NUMBER (number)

A text information and relocation record contains a reference to
a program section that 1is not defined in the module. Program
sections are assigned a number in the range 0 through 255, in the
order in which they are defined.

RECORD [number] IS ILLEGAL - ZERO LENGTH

The record length byte in the specified record contains zero.
RECORD [number] IS RESERVED TYPE [type]

The record type of the specified record in invalid.

RECORD [number] LENGTH ([length]) GREATER THAN MAX. PERMITTED LENGTH
([maximum length])

The length of the specified record is greater than the maximum
permitted length specified in the module header record. The last
number in the message is the actual 1length of the specified
record.

REQUIRED DATA NOT CONTAINED WITHIN RECORD

Inconsistencies exist within the record that make it impossible
for the ANALYZE program to interpret it. For example, a byte
count of 3 might be followed by a symbol with more than 3
characters.

This message is followed by the contents of the record in
hexadecimal representation.

RESERVED BIT #[number] SET IN ARGUMENT VALIDATION CONTROL BYTE
RESERVED DATA TYPE
(For a list of legal data types, see the "Procedure Calling and

Condition Handling" appendix in the VAX-1ll Architecture Handbook
or in the VAX-11l Run-Time Library Reference Manual.)

A

ANALYZE command, D-1
ANALYZE utiltiy, D-1 through D-9
Analyzing object modules D-1
through D-9
Attributes of program sections,
5-9, 6-5 through 6-7, 7-2
through 7-5
changing, 5-9
concatenated (CON), 7-4
overlaid (OVR), 7-4
position independent code
(PIC), 7-5, 8-3 though 8-5
relocatable (REL), 7-3
shareable (SHR), 7-5, 8-3
Vector (VEC), 7-5

BASE= option, 5-6, 7-10, 7-11
/BRIEF command qualifier, 4-4, 6-2

C

Changing program section attri-
butes, 5-9
CHANNELS= option, 5-6
CLUSTER= option, 5-7
Clusters, 5-7, 7-1, 7-2, 7-7
through 7-11
COLLECT= option, 5-7
Command qualifiers, 4-1 through
4-12
/BRIEF, 4-4
/CONTIGUOUS, 4-5
/CROSS REFERENCE, 4-5
/DEBUG’, 4-5, 4-6
/EXECUTABLE, 4-6
/HEADER, 4-7
/MAP, 4-7
/POIMAGE, 4-7
/PROTECT, 4-7
/SHAREABLE, 4-8
/SYMBOL_TABLE, 4-8
/SYSLIB, 4-8
/SYSSHR, 4-9
/TRACEBACK, 4-9
/USERLIBRARY, 4-9, 4-10
Compression, 5-7, 5-9, 7-8, 7-10
Copy on reference image sections,
7-5, 8-3, 8-20
Concatenated attribute, 7-4
/CONTIGUOUS command qualifier,
4-5

INDEX

Cross reference, 4-5, 6-8, 6-9
/CROSS REFERENCE command quali-

fier, 4-5
Debug capabilities, 1-3, 4-5,
4-6, C-25

/DEBUG command qualifier, 4-5

Default system library, 3-5,
4-8, 4-9

Default user libraries, 3-3, 3-4,
4-9, 4-10

Deferred Relocation, 8-4, 8-5

Demand zero image sections, 5-7,
7-8, 7-10

DZRO_MIN=option, 5-7, 7-8, 7-10

Error messages, A-1 through A-5

/EXECUTABLE command qualifier,
4-6

Executable images, 1-1, 4-6, 7-6

F

File qualifiers, 4-1, 4-2, 4-4,
4-10 through 4-12, 5-2

/INCLUDE, 3-2, 3-3, 4-10
/LIBRARY, 3-2, 3-3, 4-11
/OPTIONS, 4-11, 5-1
/SELECTIVE SEARCH, 4-11
/SHAREABLE, 4-11, 5-2, 8-35

/FULL command qualifier, 4-6

G

Global symbols, 2-1 through 2-5,
5-10, C-3, C-9, C-10

GSMATCH= option, 5-7, 5-8, 8-8,
8-9, 8-35

Image map, 1-5, 4-4 through 4-7,
6-1 through 6-11, B-1
through B-13
Images, 1-1
types of, 7-5 through 7-7
Image sections, 7-1, 7-7 through
7-10

Index-1

INDEX

/INCLUDE file qualifier, 3-2,
3-3, 4-10

Initialization of image, 1-4,
1-5, 7-7 through 7-10

IOSEGMENT= option, 5-8, 5-9

ISD_MAX= option, 5-9, 7-10

L

Libraries, 3-1 through 3-6, 4-8
through 4-11
default system library, 3-5,
4-8, 4-9
default user libraries, 3-3,
3-4, 4-9, 4-10
/LIBRARY file qualifier, 3-2,
3-3, 4-11
LINK command, 4-1 through 4-12
examples, 4-11, 4-12
format, 4-1, 4-2
Local symbols, 2-1 through 2-3,
2-5

Map, 1-5, 4-4 through 4-7, 6-1

through 6-11, B-1 through
B-13

/MAP command qualifier, 4-7

Memory allocation, 1-4, 7-4, 7-7
through 7-11

Messages, A-1 through A-5

Modular programming, 1-2, 1-3

(o)

Object language, 7-2, C-1 through
c-25
Object modules, 1-1, 7-2
analyzing, D-1 through D-9
Options,
BASE=, 5-6, 7-10, 7-11
CHANNELS=, 5-6
CLUSTER=, 5-7
COLLECT=, 5-7
DZRO_MIN=, 5-7, 7-8, 7-10
GSMATCH=, 5-7, 5-8, 8-8, 8-9,
8-35
IOSEGMENT=, 5-8, 5-9
ISD_MAX=, 5-9, 7-10
PROTECT=, 5-9
PSECT ATTR=, 5-9
STACK=, 5-9
SYMBOL=, 5-10
UNIVERSAL=, 2-4, 5-10, 8-8
/OPTIONS file qualifier, 4-11,
5-1

Options files, 5-1 through 5-10
rules for creating, 5-4, 5-5
uses, 5-1 through 5-3

Overlaid attribute, 7-4

P

/POIMAGE command qualifier, 4-7
Position independent code, 7-5,
8-3 through 8-5
Program sections, 5-9, 6-5
through 6-7, 7-2 through 7-5.
alignment, 7-3
attributes, 5-9, 7-2 through 7-3
collecting into clusters, 5-7
name, 7-3
size, 6-5, 7-2
synopsis, 6-5 through 6-7
PROTECT= option, 5-9, 8-9
/PROTECT command qualifier, 4-7,
8-9
Protected shareable images, 4-7,
5-9, 7-5
PSECT_ATTR= option, 5-9

Q

Qualifiers - See "Command
qualifiers" and "File
qualifiers."

References, 2-1 through 2-4
strong, 2-3
weak, 2-3, 2-4
Relocatable attribute, 7-3
Relocation, deferred, 8-4, 8-5

S

/SELECTIVE SEARCH file quali-
fier, 4-11
Shareable attribute, 7-5, 8-3
/SHAREABLE command qualifier,
4-8
/SHAREABLE file qualifier, 4-11,
5-2, 8-35
Shareable images, 4-8, 7-5
through 7-7, 7-10, 7-11, 8-1
through 8-36
benefits and uses of, 8-1, 8-2
linking, 4-8, 8-8, 8-9
protected, 4-7, 5-9, 8-9
source programs for, 8-2
through 8-7
using, 8-35, 8-36

Index-2

INDEX

STACK= option, 5-9
STARLET.OLB, 3-5, 4-9
Strong reference, 2-3
Symbol cross reference, 4-5, 6-8,
6-9
SYMBOL= option, 5-10
/SYMBOL TABLE command qualifier,
4-8
Symbol tables, 2-4, 2-5, 4-8
Symbols, 2-1 through 2-5, 5-10
global, 2-1 through 2-5, 5-10
C—3, C—9, C_lo
local, 2-1 through 2-3, 2-5
universal, 2-4, 5-10, 8-8
/SYSLIB command qualifier, 4-8
/SYSSHR command qualifier, 4-9
/SYSTEM command qualifier, 4-9
System images 4-7, 4-9, 7-7

T

/TRACEBACK command qualifier, 4-9
Transfer vectors, 8-5 through 8-7

UNIVERSAL= option, 2-4, 5-10,
8-8

Universal symbols, 2-4, 5-10,
8-8

User—-defined default libraries,
3-3, 3-4, 4-9, 4-10

/USERLIBRARY command qualifier,
4-9, 4-10

|

VAX-1ll object language, 7-2, C-1
through C-25

Vector Attribute, 7-5

VMSRTL.EXE, 3-5, 4-9

w

Weak reference, 2-4

Index-3

Please cut along this line.

VAX-11
Linker Reference Manual
AA-DO19B~-TE

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

Assembly language programmer

Higher-level language programmer

Occasional programmer (experienced)

User with little programming experience

Student programmer

Other (please specify) R

Ooogoo

Name Date

Organization

Street

City. State Zip Code
or
Country

— — Do Not Tear - Fold Here and Tape — — — — — — — — —

Aital A

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS TW/A14
DIGITAL EQUIPMENT CORPORATION
1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

- Do Not Tear - Fold Here — e e

No Postage
Necessary
if Mailed in the |
United States

Cut Along Dotted Line

