dlilgliltlall

VAX-11

Utilities Reference Manual
Order No. AA-H781A-TE

March 1980

This document describes utility programs for use on VAX-11 processors.

VAX-11

Utilities Reference Manual
Order No. AA-H781A-TE

SUPERSESSION/UPDATE INFORMATION: This is a new document for this release.
Chapter 3 supersedes and replaces Chapter 3
and Appendixes C and D of the VAX-11 Text
Editing Reference Manual. Chapter 4
supersedes and replaces the VAX-11 Disk
Save and Compress User’'s Guide

OPERATING SYSTEM AND VERSION: VAX/VMS V02

SOFTWARE VERSION: VAX/VMS V02

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, March 1980

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation, Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright C) 1980 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the wuser's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0S/8
DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI
DECnet IAS PDT

DATATRIEVE TRAX

PREFACE

CHAPTER

CHAPTER

CHAPTER

1

IR OO WD

NN O
L

[N ot

e e o o o o
e o o o o o

e L e = = ol SR =i Sl ol S

M WNDNNNODNDNNDNONNDNDNDNDNDNDND -

N
« o o o o
o o o
w N

NN NNDNNDNONNNDNODNDNNDND
e e o & 9 0 .
Nooaoouvuud wWwwwN -

w
« o o

wWwwww
L] . .
=
e o o
NN N

.

N~

CONTENTS

PERSONAL MAIL UTILITY

INVOKING MAIL

MAIL COMMANDS
BACK Command
DELETE Command
DIRECTORY Command
EXIT Command
FILE Command
FORWARD Command
HELP Command
NEXT Command
PRINT Command
READ Command
REPLY Command
SEND Command
Sending Messages via DECnet-VAX

Sending Messages to Distribution Lists

MESSAGE FILES
SYSTEM MANAGEMENT AND MAIL
MAIL STATUS MESSAGES

FILE TRANSFER UTILITY

INVOKING AND TERMINATING FLX

FLX COMMAND STRING

FLX QUALIFIERS
Volume Format Qualifiers
Transfer Mode Qualifiers
Control Qualifiers

TRANSFERRING FILES WITH FLX

DOS-11 VOLUME DIRECTORY MANIPULATION
Displaying DOS-11 Directory Listings
Initializing DOS-11 Volumes

RT-11 VOLUME DIRECTORY MANIPULATION
Displaying RT-11 Directory Listings
Initializing RT-11 Volumes
Deleting RT-11 Files

FLX MESSAGES

SLP AND SUMSLP EDITING UTILITIES

SLP
Invoking SLP
Running SLP Indirectly
The Input Source File
The SLP Command File

iii

Page

- P
[1 b
[

[P P e e e e e e
1
PR OOIIADNITTNOU S S WWN

[N le]

N
I
[

NN NNDNOMNDNDNDN
|
R OWOWY I NN

-10

-10
2-10
2-11
2-12
2-12
3-1

CONTENTS

Page
3.1.2.3 The Output File 3-4
3.1.2.4 The Listing File 3-4
3.1.3 Running SLP Interactively 3-4
3.1.4 How SLP Processes Files 3-4
3.1.5 SLP Qualifiers 3-6
3.1.5.1 Using the /AUDIT TRAIL Qualifier 3-7
3.1.5.2 Using the /CHECKSUM Qualifier 3-8
3.1.5.3 Using the /NOOUTPUT and /LIST Qualifiers 3-9
3.1.6 Specifying SLP Editing Commands 3-9
3.1.6.1 SLP Operators 3-9
3.1.6.2 General Form of an Editing Command 3-10
3.1.6.3 Adding Lines to a File 3-11
3.1.6.4 Deleting Lines from a File 3-13
3.1.6.5 Replacing Lines in a File 3-14
3.1.6.6 Specifying the Audit Trail Text 3-15
3.2 SUMSLP 3-15
3.2.1 Running SUMSLP 3-15
3.2.2 SUMSLP Input And Output Files 3-17
3.2.2.1 The Input Source File 3-17
3.2.2.2 The SUMSLP Command Files ' 3-17
3.2.2.3 The Output File 3-17
3.2.2.4 The Listing File 3-18
3.2.3 How SUMSLP Processes Files 3-19
3.3 SLP and SUMSLP MESSAGES 3-19
3.3.1 SLP Messages 3-19
3.3.1.1 SLP Information Messages 3-19
3.3.1.2 SLP Error Messages 3-20
3.3.2 SUMSLP Messages 3-24
3.3.2.1 SUMSLP Information Message 3-24
3.3.2.2 SUMSLP Error Messages 3-24
CHAPTER 4 DISK SAVE AND COMPRESS UTILITIES 4-1
4,1 TYPICAL USES FOR DSC UTILITIES 4-2
4,1.1 Backing Up the VAX/VMS System Disk 4-2
4.1.2 Backing Up Public or Private Disk Volumes 4-3
4,1.3 Compressing the Files on a Public or
Private Disk Volume 4-3
4.1.4 Regulating Disk Bad Block Information 4-3
4.1.5 Comparing the Contents of Two Volumes 4-4
4,1.6 Transporting Volumes 4-4
4.1.7 Device Transfers Supported by DSC Programs 4-5
4,2 SPECIFYING DSC COMMANDS 4-5
4,2.1 Invoking and Terminating Online DSC1l and
DSC2 4-5
4,2.2 Invoking and Terminating Stand-alone DSC-2 4-5
4.2.3 Specifying the DSC Command String 4-6
4.3 USING DSC PROGRAMS 4-8
4.3.1 Setting Up for DSC Operations 4-8
4.3.2 Using File Labels 4-9
4,3.3 Using the Verify Qualifier 4-10
4.3.4 Using the Density Qualifier 4-11
4.3.5 Using the Rewind Qualifier 4-11
4.3.6 Using the Append Qualifier 4-12
4.3.7 Using the Compare Qualifier 4-13
4.3.8 Using Bad Block Qualifiers 4-14
4,3.8.1 Using the /BAD=MAN Qualifier 4-14

iv

CONTENTS

Page
4,3.8.2 Using the /BAD=NOAUTO Qualifier 4-15
4,3.8.3 Using the /BAD=MAN:NOAUTO Qualifier 4-15
4.4 AUXILIARY PROCEDURES FOR DSC OPERATIONS 4-15
4.4.1 Translating File Identifications into File
Specifications 4-15
4,4.2 Converting Disk Addresses to Logical
Block Numbers 4-16
4.5 DSC MESSAGES AND ERROR RECOVERY PROCEDURES 4-17
4,5.1 DSC Message Categories 4-17
4.5.2 Interpreting DSC Messages 4-18
4,5.3 DSC Messages 4-19
4.5.4 DSC I/0 Error Messages 4-31
CHAPTER 5 BAD BLOCK LOCATOR UTILITY 5-1
5.1 LOCATING AND RECORDING BAD BLOCKS 5-1
5.1.1 Locating Bad Blocks 5-2
5.1,2 Recording Bad Blocks 5-2
5.1.2.1 Location of the Bad Block Descriptor 5-2
5.1.2.2 Format of the Bad Block Descriptor 5-3
5.2 ALLOCATING BAD BLOCKS 5-3
5.3 INVOKING AND TERMINATING BAD 5-3
5.4 BAD COMMAND STRING 5-4
5.4.1 Running BAD Interactively from Your
Terminal 5-4
5.4.2 Running BAD from Command Procedures 5-5
5.5 BAD QUALIFIERS 5-6
5.5.1 The List Qualifier 5-6
5.5.2 The Manual Qualifier 5-6
5.5.3 The Override Qualifier 5-8
5.5.4 The Retry Qualifier 5-8
5.5.5 The Update Qualifier 5-8
5.6 BAD MESSAGES 5-9
CHAPTER 6 FILE STRUCTURE VERIFICATION UTILITY 6-1
6.1 VALIDITY CHECKING 6-1
6.2 FILE ERROR RECOVERY 6=3
6.2,1 Restoring Files Marked for Deletion 6-3
6.2,2 Deleting Multiply-Allocated Blocks 6-4
6.2.3 Eliminating Free Blocks 6-4
6.2.4 Recovering Lost Blocks 6-4
6.3 INVOKING VFY 6-5
6.4 VFY COMMAND STRING 6-6
6.5 VFY QUALIFIERS 6—6
6.5.1 The Delete Qualifier 6-7
6.5.2 The Free Qualifier 6-7
6.5.3 The List Qualifier 6-7
6.5.4 The Lost Qualifier 6-8
6.5.5 The Read Check Qualifier 6-8
h.5.6 The Rebuild Qualifier 6-9
6.5.7 The Update Qualifier 6-9
6.6 VFY MESSAGES 6-10
CHAPTER 7 LIBRARIAN UTILITY 7-1
7.1 LIBRARIES 7-1
7.1.1 Types of Libraries 7-1

CHAPTER

CONTENTS

7.1.2 Structure of Library Indexes

7.2 THE DCL LIBRARY COMMAND

7.2.1 Library Command String

7.2.2 Command Qualifiers

7.3 HELP LIBRARIES

7.3.1 Creating Help Files

7.3.2 Formatting Help Files

7.3.3 Help Message Example

7.4 LIBRARIAN ROUTINES

7.4.1 LBRSCLOSE - Close a Library

7.4.2 LBRSDELETE DATA - Delete Text Records

7.4.3 LBRSDELETE_KEY - Delete a Key

7.4.4 LBRSFIND - Lookup a Key by its RFA

7.4.5 LBRSGET HEADER - Retrieve Library Header
Information

7.4.6 LBRSGET HELP - Return Help Text

7.4.7 LBRSGET INDEX - Return the Contents of an
Index

7.4.8 LBRSGET RECORD - Read a Text Record

7.4.9 LBRSINI CONTROL - Initialize a Library
Index

7.4.10 LBRSINSERT KEY - Insert a New Key

7.4.11 LBRSLOOKUP KEY - Lookup a Library Key

7.4.12 LBRSOPEN - Open a Library

7.4.13 LBRSPUT END - Terminate a Text Sequence

Written to a Library
7.4.14 LBRSPUT_RECORD - Write a Text Record
7.4.15 LBRSREPLACE KEY - Change Text Pointer or
Insert New Key

7.4.16 LBRSSEARCH - Search an Index

7.4.17 LBRSSET INDEX - Set the Primary Index
Number ~

7.4.18 LBRSSET MODULE - Read or Update a Module
Header ~

7.5 EXAMPLE OF LIBRARIAN ROUTINES

7.6 MESSAGES FOR LIBRARY COMMAND AND LIBRARIAN

ROUTINES

7.6.1 Messages For Library Command
7.6.1.1 Informational Messages
7.6.1.2 Success Messages

7.6.1.3 Warning Messages

7.6.1.4 Error Messages

7.6.1.5 Severe Error Messages

7.6.2 Librarian Routines Messages
7.6.2.1 Success Messages

T7.6.2.2 Warning Messages

7.6.2.3 Error Messages

8 MESSAGE UTILITY

8.1 THE FORMAT OF MESSAGES

8.2 THE MESSAGE CODE AND THE MESSAGE SYMBOL
8.3 CONSTRUCTING MESSAGES

8.3.1 The Message Source File
8.3.1.1 The Facility Definition
8.3.1.2 The Severity Definition
8.3.1.3 The Message Number Specifier

vi

CONTENTS

Page
8.3.1.4 The Message Definition 8-7
8.3.1.5 The Literal Directive 8-9
8.3.1.6 Listing Directives 8-10
8.3.1.7 The End Statement 8-10
8.3.1.8 Sample Message Source File 8-10
8.3.2 Compiling the Message Source File 8-11
8.3.3 Linking the Message Object Module 8-13
8.3.4 Running a Program with Messages 8-14
8.4 CHANGING MESSAGES 8-15
8.4.1 Pointers to Message Data 8-15
8.4.2 The SET MESSAGE Command 8-16
8.5 MESSAGE UTILITY MESSAGES 8-18
APPENDIX A FILES-11 DEVICES SUPPORTED BY VAX/VMS A-1
INDEX Index-1
FIGURES
FIGURE 1-1 MAIL Message File 1-1
2-1 DOS-11 Directory Listing 2-9
2-2 RT-11 Directory Listing 2-10
3-1 Files Used During SLP Processing 3-2
6-1 VFY Index File Listing 6-8
7-1 Help Messages for LIBRARY Command 7-15
7-2 HELP LIBRARY Display 7-16
8-1 Message Code 8-3
8-2 Linking a Message Object Module 8~14
8-3 Creating a Message Pointer 8-16
TABLES
TABLE - Summary of MAIL Commands -

SEND and REPLY Qualifiers

FLX Volume Format Qualifiers
FLX Transfer Mode Qualifiers
FLX Control Qualifiers

SLP Qualifiers

SLP Operators

SUMSLP Qualifiers

DSC Output File Qualifiers
Error Codes in DSC Messages
BAD Qualifiers

VFY Qualifiers

LIBRARY Command Qualifier Compatibilities
Librarian Routines

Library Header Information Array Offsets
Create-Options Array

Facility Definition QualifieYs
Message Definition Qualifiers
MESSAGE Command Qualifiers

SET MESSAGE Qualifiers
Magnetic Tape Devices

Disk Devices

[
NHFHHFHFOMNWNRFONIF IO U SO W

o)

e

[
[
jo) W~ S\e)

[
[}
~N N

DO OORINNNITITubDd DN WWWNNNRFERE
|

NHFEFDWNNFEDBWNNFFRPHENFWNDHFWNDEN

DPOOOOIIITIINOD D WWWNONNE
1

vii

PREFACE

This reference manual describes utility programs supported by DIGITAL
on the VAX/VMS operating system.

INTENDED AUDIENCE

This manual is intended for users who are already familiar with
VAX/VMS system concepts. Use of the wvarious utility programs is
appropriate for users at different levels of experience and
responsibility. The expected user group for each program is defined
below in the chapter summaries.

STRUCTURE OF THIS DOCUMENT
This manual is organized into eight chapters and one appendix.

Each chapter of this manual describes one utility program, except for
Chapter 3, which includes two related editors (SLP and SUMSLP),
Chapter 4 includes three variants of a disk back-up program (DPSC) and
Chapter 6 describes two variants of a verification utility. Each
chapter contains a list of the messages issued by the utility. The
following are the contents and intended audience of each chapter.

Chapter 1 describes the Personal Mail Utility, referred to as MAIL.
This program allows users to send messages to one another, within the
same system or between any VAX-11] computers that are connected by
means of DECnet-VAX. Use of MAIL is appropriate for all system users.

Chapter 2 describes the File Transfer Utility, referred to as FLX (and
generally pronounced 'FILEX'). This program transfers files from one
volume to another and performs volume format conversions, FLX is
intended for use by all system users.

Chapter 3 describes two related batch-oriented text editors, SLP and
SUMSLP. These editors are used to incorporate changes into source
files and to indicate these changes with an audit trail, SLP and
SUMSLP are intended for use by all system users.

Chapter 4 describes the Disk Save and Compress Utilities, referred to
as DSCl, DSC2, and DSC-2 (stand-alone). The DSC programs are used to
back up and restore disk volumes that have been formatted and
initialized as Files-11 volumes. These programs are intended for
VAX/VMS system managers, operators, systen programmers, and
application programmers.

ix

Chapter 5 describes the Bad Block Locator Utility, referred to as BAD.
This program determines and records the number and location of bad
blocks on block-structured volumes. BAD is intended for use by
VAX/VMS system managers, operators, and system programmers.

Chapter 6 describes the File Structure Verification Utilities,
referred to as VFYl and VFY2 (and pronounced 'VERIFY'). This program
checks the readability and wvalidity of Files-11 volumes. It is
intended for use by VAX/VMS system managers, operators, and system
programmers.

Chapter 7 describes the Librarian Utility, referred to as the
Librarian. This program allows you to store useful modules in a
central, easily accessible location. It is intended for wuse by all
VAX/VMS users.

Chapter 8 describes the Message Utility. This program allows vyou to
construct vyour own informational, warning, and error messages, or to
customize the messages provided by VAX/VMS. The Message Utility is
intended for use by VAX/VMS system programmers and application
programmers.

Appendix A lists the Files-11 structured devices supported by VAX/VMS,
with the characteristics and device code of each device. It presents

information needed by users of several of the wutilities in this
manual.

ASSOCIATED DOCUMENTS

To use the wutilities described 1in this document, you should be
familiar with the following manuals:

e VAX/VMS Primer

e VAX/VMS Command Language User's Guide

e VAX/VMS Summary Description

Some of the utilities require familiarity with disk structures and
volume concepts described in the following manuals:

e VAX/VMS System Manager's Guide

e Introduction to VAX-11 Record Management Services

e VAX-1l1l Record Managemeq;vsqujces Reference Manual

Some of the utilities run in compatibility mode; readers may wish to
consult the VAX-11/RSX-11M User's Guide.

Note that there are other utility programs that run on VAX-11
processors - PATCH and the System Dump Analyzer, for example. These
programs are described elsewhere in the VAX-1l1 documentation set. For
a complete list of VAX-1l1 documents, including a brief description of
each, see the VAX-11l Information Directory and Index.

CONVENTIONS USED IN THIS DOCUMENT

The following conventions are observed in this manual, as in the other
VAX-11 documents:

Convention

Uppercase words
and letters

Lowercase words
and letters

quotation marks
apostrophes

Meaning

Uppercase words and letters, used in
examples, indicate that you should type the
word or letter exactly as shown.

Lowercase words and letters, used in format
examples, indicate that you are to substitute
a word or value of your choice.

The term quotation marks 1is used to refer to
double quotation marks "). The term
apostrophe (') 1is used to refer to a single
quotation mark.

Square brackets indicate that the enclosed
item is optional.

Braces are used to enclose lists from which
one element is to be chosen.

A horizontal ellipsis 1indicates that the
preceding item(s) can be repeated one or more
times.

A vertical ellipsis indicates that not all of
the statements 1in an example or figure are
shown. '

RE) or <RET> A symbol with a 1- to 3-character
abbreviation indicates that you press a key
on the terminal, for example, @D .
CRX or <CTRL/x> The phrase <CTRL/x> indicates that you must
press the key labeled CTRL while vyou
simultaneously press another key, for example
<CTRL/C>, <CTRL/Y>, <CTRL/0>. 1In examples,
this control key sequence is shown as “x, for
example °C, °Y, "0, because that is how the
system echoes control key sequences.

Unless otherwise noted, all numeric values are represented in decimal
notation.

Unless otherwise specified, you terminate commands by pressing the
RETURN key.

xi

Where the term file-spec is used in this document, it refers to a file
specification constructed according to the following definitions, with
the format:

node::device:[directorylfilename.type;version
The punctuation marks (colons, brackets, period, semicolon) are

required syntax that separate the various components of the file
specification.

node
A network node name. This is applicable only to systems that
support DECnet-VAX.
device
The device on which the file is stored or is to be written.
directory
The name of the directory under which the file 1is cataloged on
the device specified. You can delimit the directory name with
square brackets, as shown, or with angle brackets (<>).
filename
The file by a name of up to 9 alphanumeric characters.
type
The type of data in the file; +type can be up to 3 alphanumeric
characters.
version

The version of the file. Versions are identified by a decimal
number, which 1is increased by 1 each time a new version of the
file is created. Either a semicolon or a period can be wused to
separate type and version.

You need not always state all elements of a file specification
explicitly. Frequently, only the file name is required. If you omit
other parts of the file specification, a default value is provided as
described in the following table.

Optional Element Default Value
node Local network node
device User's current default device
directory User's current default directory
type Depends on use, as described with the various

utilities

version Input: highest existing version
Output: highest existing version plus 1

Any variations in file specifications that a utility program requires
are stated in the description of that utility.

xii

CHAPTER 1

PERSONAL MAIL UTILITY

The Personal Mail Utility (MAIL) allows you to send messages to other
users oh your system or on any other VAX-11] computer that is connected
to your system by means of DECnet-VAX. You can also file, forward,
delete, print, and reply to messages that other users send to you.

Messages that you receive are stored in files called mnmessage files.
Your default message file, called MAIL.MAI, is created in your default
login directory the first time you receive mail. New messages that
you receive are appended to the end of MAIL.MAI. You can copy
messages to other message files that you name using the FILE command.
Message files are described 1in detail in Section 1.3. Figure 1-1
shows a sample message file.

From: HOV SE-JAN-BO 1HI2E
To? BOHROUP

Subnii Change of Location

Next Tuesdaw’ s review meeting has beern moved from Conference Room
A Lo Conferemnce Room 0 (o the secornd Tloor). See gou bLheve.

From: MENDOZA 24 JAN-80 10106
Tol REATIER

Sutrdd Pauwroll srogram

There i 8 new version of the sawroll srogram in o my divectorws
EMENDOZATFAYROLL JFORS 12,

From: NOEL 28-JAN-80 L1146
Tal READER

Subd: Source statement formst

You maw include as many seaces or Labs as wou want!

Figure 1-1 MAIL Message File

PERSONAL MAIL UTILITY

1.1 INVOKING MAIL

The DIGITAL Command Language (DCL) command MAIL can be used either
to invoke the MAIL utility or, if specified with parameters, to send
a file to another user and return you to DCL.

To invoke MAIL, enter the following command in response to the DCL
prompt:

$ MAIL
The utility responds with the prompt:
MAIL>

You can now issue the commands described in Section 1.2 to send and
display messages.

When the MAIL command is used with parameters, the command string
has the following format:

MAIL[/SUBJECT:"text"] [file-spec] [username{,...]] ["@listname"]
text

The subject of the message. If you include more than one word,
you must enclose the text in quotation marks.

If you omit the /SUBJECT qualifier, the message is sent without a
subject notation.

file-spec
A file containing message text to be sent. If you omit the file
type, the default file type is TXT. No wild card characters are
allowed in the file specification.

If you do not specify a file in the <command string, the MAIL
utility is invoked, as shown above.

username[,...]

One or more users to receive the message. Sending mail to
multiple users is described in Section 1.2.12.

If you do not specify a user name in the command string, you will
be prompted for the user name.

"@listname"

The name of a distribution list file. The default file type Iis
DIS. Setting up a distribution list file is described in Section
1.2.12.2. The quotation marks and at sign are required. A
distribution 1list name that follows a user name specification
must be preceded by a comma.

When MAIL sends you a message from another user, and you are logged
in, MAIL notifies you with a message on your terminal. For example:

New Mail from Weecd

You will also be notified that you have new mail when you log in and
when you invoke the MAIL utility.

PERSONAL MAIL UTILITY

1.2 MAIL COMMANDS

MAIL commands consist of one word typed in response to the prompt
MAIL>. These commands can be abbreviated to a unique, shorter form
(usually as short as one letter). Note that D is the short form of
DELETE (not DIRECTORY) and R is the short form of REPLY (not READ).

Table 1-1 summarizes the MAIL commands, which are described in the
following sections.

Table 1-1
Summary of MAIL Commands
Command Meaning
BACK Backs up to the previous message
DELETE Deletes the current (last-read) message
DIRECTORY Lists a summary of your messages
EXIT Exits from MAIL
FILE Copies current (last-read) message 1into a specified
file
FORWARD Forwards current (last-read) message to user or users
HELP Displays information on how to use MAIL
NEXT Skips to the next message
PRINT Prints the current (last-read) message
READ and Displays next page, next message, or (READ only)
<RETURN> specified message
REPLY Sends a reply to the sender of the current (last-read)
messsage
SEND Sends a message to a user or users

1.2.1 BACK Command

The BACK command displays the message preceding the current
(last-read) message.

PERSONAL MAIL UTILITY

1.2.2 DELETE Command
The DELETE command deletes the current (last-read) message.

You must be reading a message in order to delete it. For example:
MATL> READ

From: WEED 19-AFR-79 19315
Tol FIERSON
Suhd! Monthly Meetings

*

(messadge text)

MAIL> DELETE

Although this message is apparently deleted when you type DELETE, it
is not actually deleted from the file until you exit from MAIL or read
messages from another file. Thus, if you accidentally issue the
DELETE command to delete a message, you can abort the command by
typing <CTRL/Y>.

1.2.3 DIRECTORY Command
The DIRECTORY command lists a summary of the messages in the current
or specified message file, including message number, sender's name,
date, and subject:
DIRECTORY [filename]
filename
A message file. You only specify the filename element of the
file specification (up to nine alphanumeric characters); file
type MAI is assumed.

If a file name is specified, MAIL displays a summary of the

messages in the file. If no file name 1is specified, MAIL
displays a summary of the messages 1in the current file, as
follows:

MATL DIRECTORY

From Nate Subdect

1 MURRY FTELD TEST

2 STARIIFETER Cocde Review

X MARCEL Mornthly Meetinsgs
LIAVIS FascCaAl,

5 JOSH LINKER

PERSONAL MAIL UTILITY

1.2,4 EXIT Command

The EXIT command allows you to exit from the MAIL program.
MAIL> EXIT
$

You can also exit from MAIL by typing <CTRL/Z>.

1.2.5 FILE Command
The FILE command is used to save a copy of the current (last-read)
message 1in a specified message file. The copy is appended to the end
of the specified file.
FILE filename
filename
The message file in which the current message is to be saved.
You only specify the filename element of the specification (up to
nine alphanumeric characters). If the specified message file
does not exist, MAIL creates it in your default login directory,
giving it the file type MAI.

You must be reading a message in order to file it.

1.2.6 FORWARD Command

The FORWARD command sends a copy of the current (last-read) message to
a user or users. MAIL prompts you for the name of the user or users
to whom you want to forward the message. See the SEND command for
more information on sending messages.

You must be reading a message in order to forward it.

1.2.7 HELP Command

The HELP command allows you to obtain information about the MAIL
program,

To obtain information about all of the MAIL commands, type
HELP *

To obtain information about individual commands or topics, type HELP
followed by the command or topic name:

HELF DELETE
DELETE

Ieletes the current (last-read) messasge From wour current
messade Tile.

MATL.

PERSONAL MAIL UTILITY

1.2.8 NEXT Command

The NEXT command skips to the next message and displays it. This
command is wuseful if, while reading through your messages, you
encounter a particularly long message that vyou would 1like to skip
over,

1.2.9 PRINT Command

The PRINT command queues a copy of the current (last-read) message for
printing. The file(s) created by the PRINT command are not actually
released to the print queue until you exit from MAIL so that multiple
messages will be concatenated into one print job. The PRINT command
takes an optional qualifier, as follows:

PRINT [/QUEUE=queue-name]
/QUEUE = queue-name

The device on which a message is to be printed. 1If the qualifier
is not specified, the last queue name specified is used. If an
explicit queue name has never been specified, SYSSPRINT is used.

You must be reading a message in order to print it.

1.2.10 READ Command

The READ command displays your messages. It can be 1issued with or
without parameters, in the following formats:

READ [filename] [message-number]
message-number
<RETURN>

filename

A message file. You specify only the filename element of the
file specification (up to nine alphanumeric characters); file
type MAI and your default login directory are assumed.

If a file name is specified, MAIL will display messages from that
file. If no file name is specified, MAIL will display messages
from the current file. The default file when you enter the MAIL
utility is MAIL.MAI.

message-number

A number representing the position of a message in a message
file. If you specify a number greater than the number of
messages in the file, MAIL will display the last message 1in the
file. Therefore, to read the latest message in a file, specify a
very large message number.

You can display a message by entering only 1its message number,
without the READ command.

PERSONAL MAIL UTILITY

<RETURN>

The RETURN key. Pressing this key is the same as entering the
READ command without parameters.

The READ command can be issued without parameters. The first time
after invoking the MAIL utility that vyou issue the READ command
without parameters, or press <RETURN>, MAIL displays the first page of
your oldest unread message from your MAIL.MAI file. If there are no
unread messages, MAIL displays the oldest message in the file. Each
time you enter the READ command without parameters, or press <RETURN>,

MAIL displays the next page, or the next message if there are no more
pages in the current message.

1.2.11 REPLY Command

The REPLY command sends a message to the sender of the <current
(last-read) message.

REPLY[/qualifier] [file-spec]
qualifier

One of the qualifiers in Table 1-2,. If you specify both
qualifiers, the /EDIT qualifier is ignored.

file-spec

A file to be sent as your reply. If no file 1is specified, you
will be prompted for the text of your reply.

You must be reading a message in order to reply to it.

1.2.12 SEND Command
The SEND command sends a message to another user or group of users.
(If you simply want to send a file to another user or group of users,
you may want to use the extended form of the MAIL command described in
Section 1.1 instead of using SEND.) You can include a file
specification in the SEND command.

SEND[/qualifier] [file-spec]
See Table 1-2 for a description of the SEND qualifiers.

MAIL prompts you first for the name of the user or users who will
receive the message:

To:
You vreply with the wuser name(s) or with the file name of a
distribution list file (as described in Sections 1.2.12.1 and
1.2.12.2), in the following format:

[[nodename::]username,...] {,] [@listname)

Then MAIL prompts you for the subject of the mail:

Subj:

PERSONAL MAIL UTILITY
If you specify a file in the SEND command, the text in that file is
sent to the users.
If you do not specify a file, MAIL displays:
Enter your message below. Press CTRL/Z when complete.
Type the message that you want to send; then press <CTRL/Z>. Note
that once you have typed a line and pressed <RETURN>, there is no way

to change it. See Table 1-2 for instructions on invoking a text
editor to edit your messages.

Table 1-2
SEND and REPLY Qualifiers

Qualifier Function
/EDIT Specifies that a text editor is to be called to edit
the message that vyou are sending. If you have

included a file specification in the command, that
file will be opened for editing. If you have not
specified a file, the editor will be invoked so that
you can edit your new message.

If the 1logical name MAILSEDIT is defined, its
equivalence name will be wused as the name of a
command procedure that will invoke the editor. Note
that since the MAILSEDIT command procedure is
executed in the context of a subprocess, the
definition of MAILSEDIT and the command procedure
itself must not reference any process logical names
defined by the initiating process.

If MAILSEDIT is not defined, the command procedure
SYSSSYSTEM: MAILEDIT.COM will be called. This command
procedure contains the DCL command EDIT, which
invokes the S0S text editor.

The command that you use to exit from the editor will
complete the SEND or REPLY operation.

For this qualifier to work properly, vyour default
command interpreter must be DCL.

/LAST Specifies that the last message that you sent should
be used as the text for the message. The /EDIT

qualifier is ignored if /LAST is specified. |

1.2.12.1 Sending Messages via DECnet-VAX - If you include a node name
with the user name, the message is sent by means of DECnet-VAX to that
user. If you do not specify a node name, MAIL assumes that the user
is on your node. If the version of DECnet being used does not provide
automatic routing and the node is not connected directly to your node
you can specify routing as follows:

nodenamel::nodename?::...nodenameN-1::nodenameN::username

PERSONAL MAIL UTILITY

nodenamel::

The node directly connected to your node.
nodename2::...nodenameN-1

The intermediate nodes through which the message is to be routed.

nodenameN: :

The node at which the user who 1is to receive the message Iis
located.

username
The name of the user who is to receive the message.

You can specify node names and user names as logical names, They are
translated 1like VAX-11] RMS specifications: a node name or user name
is only translated if it is the first string 1in the specification,
Any access control information in the node name or logical name is
ignored.

NOTE
See the DECnet-VAX System Manager's

Guide for information on defining the
MAIL network object type.

1.2.12.2 Sending Messages to Distribution Lists - If you frequently
send mail to the same group of users, you may find it helpful to use a
distribution list. A distribution list is a file containing the names
of users to whom you want to send messages.

To set up a distribution list, use the DCL command EDIT or CREATE to
create a distribution 1list file with the file type DIS. Enter one
user name per line in this file. A distribution list can also include
the names of other distribution lists; the depth to which you can
nest distribution lists is determined by your Open File Quota. You
can include comments by entering lines whose first character is an
exclamation point (!). For example:

$ CREATE LIS.DIS

LAWRENCE
NOXIEZ4 2 SASHLEY

To use the distribution list file, you enter its file name preceded by
an at sign (@) in response to the To: prompt. For example

To: @LIS

You can enter separate user names along with the distribution list |if
the distribution list is the last entry. For example:

To: GEORGE, MARCEL, BEN, ERICA, QLIS

1-9

PERSONAL MAIL UTILITY

1.3 MESSAGE FILES

Mail messages are stored in your default 1login directory as ASCII
text, one 1line per record, in standard variable length record files.
Each message is delimited by two records, the first containing only
the ASCII form-feed character, and the second beginning with the word
"From:". FEach line of text can contain a maximum of 255 characters.

The default message file entered when MAIL is invoked is MAIL.MAI.

1.4 SYSTEM MANAGEMENT AND MAIL

A count of the number of new messages that a wuser has received is
stored in the user's system authorization record in
SYSSSYSTEM: SYSUAF.DAT. This count is used to make up the message that
you receive wupon logging in if you have new mail messages waiting to
be read. 1If the user authorization file is replaced with a copy (for
example, a backup copy), the count in the file, and therefore the
message received upon logging in, may not correspond to the actual
mail messages in wuser's mail files, This inconsistency disappears,
however, the first time a message file is read.

Mail keeps SYSUAF.DAT open while MAIL is being run, sometimes
preventing this file from being copied.

1.5 MAIL STATUS MESSAGES

This section lists, in alphabetical order, the common status messages
you can receive from MAIL. These are in the form:

¥MAIL-L-message, message-text

The L is a severity code, either E for error or W for warning. The
message 1is a mnenomic representing the specific error that occurred.
The message-text is a brief description of the condition that caused
the message to be issued.

After each message is an explanation of the ©probable cause of the

message and suggested wuser response, (For more information on

messages, refer to Chapter 8.)

$MAIL-E-LOGLINK, network error creating link to node node-name::
Explanation: An error occurred when MAIL attempted to use
DECnet-VAX to communicate with another system. This message is

usually accompanied by a system error message indicating the
reason for the error.

User Action: Resolve the problem and reenter the command.
¥MAIL-E-NOMOREMSG, no more messages

Explanation: You have no more messages to read.

User Action: If you want to read your messages again, enter the

READ command; otherwise enter another command in response to the
MAIL> prompt.

PERSONAL MAIL UTILITY

$MAIL-E-NOSUCHUSR, no such user user-name

Explanation: You attempted to send a message to a user that does
not exist as an authorized user of the computer system.

User Action: Reenter the command and specify a valid user name.
$MAIL-W-NOTREADIN, you aren't reading a message
Explanation: The command you typed, (DELETE, FILE, FORWARD,
PRINT, or REPLY) 1is appropriate only when you are reading a
message.
User Action: Read the desired message using the READ command and
then type the appropriate command in response to the MAIL>
prompt.
$MAIL-W-SYNTAX, error parsing

Explanation: You typed an incorrect command or user name,

User Action: Enter the correct command or user name in response
to the MAIL> prompt.

$MAIL-E-SENDERR, error sending to user user-name
Explanation: An error occurred when you attempted to send nmail
to the specified user. This message is usually accompanied by a
system error message indicating the reason for the failure.
User Action: Resolve the problem and reenter the command.
$MAIL-E-CREPRIJOB, error creating print job on queue queue-name
Explanation: An error occurred when you attempted to create a
print Jjob to queue a message for printing. This message is
usually accompanied by a system error message indicating the

reason for the failure.

User Action: Resolve the problem and reenter the command.

CHAPTER 2

FILE TRANSFER UTILITY

The File Transfer Utility (FLX) is a utility program that transfers
files from one volume to another. FLX can be used on D0OS-11, RT-1l1,
and Files-11 formatted volumes. It converts the format of the files,
as appropriate, when transferring files between volumes with different
formats. For example, when transferring D0S-11 files to Files-11
volumes, FLX converts the DOS-11 files to Files-11 format.
FLX performs file transfers and format conversions from:

e DOS-11 to DOS-11 volumes

e Files-11 to Files-11 volumes

e RT-11 to RT-11 volumes

e DOS-11 to Files-11 volumes

e Files-11 to DOS-11 volumes

e Files-11 to RT-11 volumes

e RT-11 to Files-1l1 volumes
FLX cannot transfer files directly between DOS-11 and RT-11 volumes.
In addition to transferring files, FLX allows you to:

e Initialize DOS-11 or RT-11 volumes

e List directories of DOS-11 or RT-11 volumes

e Delete files from RT-11 files-structured volumes

FLX recognizes all Files-11 volumes on VAX/VMS devices. It recognizes
DOS-11 formatted volumes on the following devices:

TE16, TU45, or TU77 magnetic tape
FLX recognizes RT-11 formatted volumes on the following devices:

TUS58 DECtape II data cartridge
RLO2 cartridge disk

RK06 or RKO7 cartridge disk
RX01 flexible disk

RX02 flexible disk

FILE TRANSFER UTILITY

Files-11 volumes are the default volumes initialized by the DCL
command INITIALIZE. They are either File-11 Structure Level 1 or
Files-11 Structure Level 2 volumes. DOS-11 and RT-11 volumes are
initialized wusing FLX commands. Since the formats of these volumes
are not recognized by VAX/VMS, the volumes must be mounted foreign,
that 1is, by use of the /FOREIGN qualifier. See the VAX/VMS Command
Language User's Guide for more information on the INITIALIZE and MOUNT
commands.

You can use FLX interactively or through a command procedure. FLX
allows only one level of indirect command file specification.

2.1 INVOKING AND TERMINATING FLX

To invoke FLX, enter the following in response to the DIGITAL Command
Language (DCL) prompt:

$ RUN SYSSSYSTEM:FLX
The utility responds with the prompt:
FLX>

You can now enter any FLX command string. To return to DCL at any
time, type <CTRL/Z>.

2.2 FLX COMMAND STRING

Formats for specifying FLX functions vary, as described 1in Sections
2.4 through 2.6. The following are possible formats for a FLX
command; each element in the command string is explained below.

device-spec/qualifier
device-spec=file-spec/qualifier
file-spec/qualifier
/qualifier

device-spec

The device name and directory for the FLX output device. It
takes the form:

devu: [directory]

The device name (dev) can be any of the 2-character device codes
listed below.

DOS-11
Device Code Device
MT TEl6, TU45, TU77
MS TS-11
Rt-11
Device Code Device
DD TU58
DL RL.O2
DM RK0OA, RKO7
DY RX02
Cs RX01 (VAX-11/780 console floppy)

2-2

FILE TRANSFER UTILITY

Files~11
Device codes for Files-11 devices are listed in Appendix A.

The u is the unit number of the device. FLX does not recognize
alphabetic controller designators. You must convert them to RSX
unit numbers when specifying devices to FLX; MTAl must be
specified as MT1l. The controller designator can still be used,
however, in ALLOCATE and MOUNT commands referring to volumes to
be used with FLX.1l

The colon (:) acts as the device name terminator and must follow
the device code.

The directory field is optional. The directory specification is
subject to restrictions depending on the medium to which it
applies.

RT-11 volumes accept no directory specification at all,

DOS-11 volumes accept only directories in the user identification
code (UIC) format, for example [310,22]. The two numbers are
octal, and must be in the range 0 through 377. When the
directory is specified in an input file specification, either
number or both may be indicated by a wild card character. If you
do not specify a directory, FLX uses vyour current default
directory, if it is in UIC format; otherwise, it uses your
process's UIC.

Files-11 volumes accept the standard form of VAX/VMS directory
specification documented 1in the VAX/VMS Command Language User's
Guide. Wild card characters may be specified only with a single
level of directory or with the UIC format. If you do not specify
a directory, FLX uses your current default directory.

file-spec
The file specification for an input or output file.

wWild card characters are valid only for input file
specifications. Version numbers are valid only for Files-11
files and cannot be specified as wild card characters. FLX does
not accept logical names in file specifications.

FLX does not permit output file specifications. The output files
take the names of the input files.

RT-11 volumes use 6-character file names, plus 3-character file
types; file names are truncated to six characters when files are
copied into RT-11 volumes.

/qualifier

Any of the qualifiers described in Section 2.3. Multiple
qualifiers can be used; their order is not important.

l. For information on converting VAX/VMS native mode unit numbers to
compatibility mode wunit numbers, see the explanation of mapping
physical device names in the VAX-11/RSX-11M User's Guide.

FILE TRANSFER UTILITY

2.3 FLX QUALIFIERS
FLX uses three types of qualifiers:

e Volume format qualifiers, which specify the format of the
volume on which files are stored: Files-11, DOS-11, or RT-11
volumes.

e Transfer mode qualifiers, which specify the format of a file
on a non-Files-11 volume. Files can be in formatted ASCII,
formatted binary, or file image format.

e Control qualifiers, which provide control functions for use in
FLX operations. These qualifiers can be used to specify such
items as the number of blocks to be allocated to an output
file or the density of a magnetic tape.

These three types of qualifiers are described in detail in the next
three sections.

2.3.1 Volume Format Qualifiers

The three volume format qualifiers are used in command strings to
define the format of volumes. They can also be used by themselves
after the FLX> prompt to change the default for input and output
volumes. Table 2-1 describes these qualifiers.

Table 2-1
FLX Volume Format Qualifiers
Qualifier Function
/DO Identifies the volume as a DOS-11 formatted volume
/RS Identifies the volume as a Files-11 formatted
volume
/RT Identifiesrthe volume as an RT-11 formatted volume

Initially, input volumes default to DOS-11 volumes and output volumes
default to Files-11 format. FLX assumes these default volume formats
if you do not specify a format qualifier in the file transfer command
string.
You can change the default by entering /DO or /RS on a command line by
itself. To specify that the default transfer 1is from D0OS-11 to
Files-11, type:
FLX>/DO
To specify that the default transfer is from Files-11 to D0OS-11, type:
FLX>/RS

If /RT is specified on one side of a command string, the default
qualifier for the other side is /RS. For example:

FLX>DMO : /RT=DD0:SYS1.MAC

FILE TRANSFER UTILITY

The input is defaulted to /RS. 1In the next example, the output is
defaulted to /RS:

FLX>DMO0 :=DM0:5YS1 .MAC/RT

You cannot transfer files directly between RT-11 and DOS-11 volumes
using FLX.

2.3.2 Transfer Mode Qualifiers

Transfer mode qualifiers are used to specify the format that an output
file should have after it 1is <copied or converted. FLX has three
transfer mode qualifiers, one for each type of file format: formatted
ASCII, formatted binary, and file image format. Format conversions
can be in either direction between DOS-11 files and Files-11 files or
between RT-11 files and Files~1ll files. Table 2-2 describes the
transfer mode qualifiers.

Table 2-2
FLX Transfer Mode Qualifiers

Qualifierl Function

/FA:n Formatted ASCII

Formatted ASCII files <consist of ASCII data
records terminated by carriage return/line feed
(CR-LF), form feed (FF), or vertical tab (VT)

characters. In transfers from DOS-11 or RT-11
files to Files-11 files, CR-LF pairs are removed
from the end of records. In transfers from

Files-11 files to D0S-11 or RT-11 files, CR-LF
pairs are added to the end of each record that
does not already end with LF or FF. All null,
rubout, and vertical tab characters are removed
from input records in any of these transfers.

If you specify /FA:n with Files-11 output,
fixed-length records of size n are generated.
Output records are padded with null characters as
necessary.

If you do not specify /FA:n with Files-11 output,
FLX generates variable-length records. The output
record size equals the input record size.

ASCII data is transferred as 7-bit codes. Bit 8
(the parity bit) of each byte is masked before
transfer. |

(continued on next page)

l. Note that n, which specifies record size, 1is useful only for
Files-11 volumes. If you enter it when specifying other volumes, it
will be ignored. All n values are interpreted 1in octal wunless
followed by a period.

FILE TRANSFER UTILITY

Table 2-2 (Cont.)
FLX Transfer Mode Qualifiers

Qualifierl

Function

/FB:n

/IM:n

Formatted Binary

If you specify /FB with DO0S-11 o
files, formatted binary headers a
added to the records.

Specifying /FB:n with Files-11
fixed-length records of size n, u
bytes long. FLX pads records with
to reach the specified length.

If you do not specify n for Files-
generates variable-length record
record size equals the input recor

Image Mode

Specifying an image mode transfer
fixed-length records. You can us
indicate the desired number of byt
(up to 512) for Files-11 output
specify n, FLX assumes a record
bytes.

l.Note that n,
Files-11 volumes.
will be ignored.

which

record size, is
it when specifying
are interpreted

specifies
If you enter
All n values

followed by a period,

FLX assumes the following default transfer modes for

Qualifier

/IM:n (Image

/FB (Formatted Binary)

File Type

Mode) TSK, OLB, MLB, SYS,

0BJ, STB, BIN, LDA

All others

/FA (Formatted ASCII)

2.3.3 Control Qualifiers

FLX provides control qualifiers to control file processing.

describes these qualifiers.

r RT-11 output
nd checksums are

output produces
p to 512 decimal
null characters

11 output, FLX
S. The output
d size.

always produces
e the value n to
es in the record
. If you do not
length of 512

useful only for
other volumes, it
in octal unless

these file types:

SML, ULB, EXE

Table 2-3

FILE TRANSFER UTILITY

Table 2-3
FLX Control Qualifiers

Qualifier

Function

/BL:n

/CO

/DE

/DI or /LI

Indicates the number of contiguous blocks (n) to
be allocated to the output file. If you do not
specify /BL, the input file size is wused as the
output file size.

/BL:n is used with RT-11 output to circumvent the
normal RT-11 file allocation scheme, which
allocates the 1largest available space on the
volume for a new file. Using /BL:n with the /RT
switch for the output file causes n blocks to be
allocated for the output file 1instead of the
largest available space. When FLX has finished
transferring the file to the RT-11 volume and the
file is closed, the output file will have the same
number of blocks as the input file, less than or
equal to n., If the input file size is larger than
n, an error will occur.

The /BL:n qualifier is normally used with the /CO
qualifier, as described below. Because all RT-11
files are contiguous, the /CO qualifier need not
accompany the /RT:n qualifier for RT-11 output.

Indicates that the output file is to be
contiguous.

The /CO qualifier is used only with disk output.

When the input file is in D0S-11 format, use /BL:n
with /CO (see the description of /BL:n above).

When the input is a Files-11 volume or~ an RT-11
disk, FLX assumes /CO in transferring file types
TSK, S8YS, and OLB to Files-11 volumes.

With /RT, deletes files from a disk with RT-11
formatted volumes.

When you specify /DE, the FLX command string needs
no output specification.

Causes a directory 1listing to be 1listed on a
specified output file. Use /RT with /DI or /LI to
generate a directory listing of RT-11 volumes.

If you do not specify an output device, the
directory will be sent to SYSSOUTPUT.

If you do not specify file name and file type on
the input file specifications, *.* is assumed.

You cannot list Files-11 volume directories wusing
FLX.

(Continued on next page)

FILE TRANSFER UTILITY

Table 2-3 (Cont.)
FLX Control Qualifiers

Qualifier

Function

/DNS:n

/FC

/1D

/LI

/NU:n

/RW and /-RW

/SP

/Ul

/ZE

already on the device.

Specifies the magnetic tape density in bits per
inch (bpi); n is either 800 or 1600. If n is any
other number or is not specified at all, an error
will occur. If you do not specify /DNS:n, the
magnetic tape density will default to 800 bpi. If
you specify /DNS with any device but magnetic
tape, FLX will ignore the qualifier.

With FORTRAN files on Files-ll-formatted output
files, indicates that FORTRAN carriage control
conventions should be used, that is, that FORTRAN
should interpret certain characters as carriage
control characters. (See the VAX-11 FORTRAN
Language Reference Manual for more information on
FORTRAN carriage control conventions, or see the
VAX-11 Record Management Services Reference Manual
for a discussion of the file access block and
record attributes, which include setting carriage
control.)

Requests that the current version number of FLX be
printed. You can specify /ID as part of an output
or input specification, or type it in response to
the FLX prompt (FLX>).

Same as /DI, explained above.

With the /ZE and /RT qualifiers, specifies the
number of directory blocks (n) to be allocated
when FLX initializes an RT-11 disk. If you do not
specify /NU:n, four directory blocks will be
allocated. The maximum number of blocks that can
be allocated is 31.

/RW rewinds the magnetic tape before FLX begins
the file transfer. /-RW causes FLX to begin the
transfer without first rewinding the magnetic
tape. The default is /RW.

If you specify /RW or /-RW with any device other
than magnetic tape, or with the qualifiers /DI,
/LI, or /ZE, FLX will ignore the rewind qualifier.

Indicates that the converted file 1is to be
spooled. /SP is used only:with Files-11 output
files.

Indicates that the output file is to have the same
directory as the input file. Do not use /UI when
you are specifying an explicit output UIC.

/Ul is valid only with output files in DO0S-11 or
Files-~11 format.

Initializes DOS-11 or RT-11 volumes. To
initialize RT-11 volumes, vyou must also specify
/RT and /NU:n. Initializing erases any files

FILE TRANSFER UTILITY

2.4 TRANSFERRING FILES WITH FLX

To transfer files from one volume to another, enter a command string
of the form

device-spec[/qualifier]l=file-spec([/qualifier]...file-spec[/qualifier]}

The FLX transfer specifies the output device on the left of the equal
sign and the files to be transferred on the right of the equal sign.

In constructing the transfer command string, keep in mind the
restrictions upon the various FLX qualifiers listed in Section 2.3, as
well as the restrictions upon the format of device and file
specifications.

2.5 DOS-11 VOLUME DIRECTORY MANIPULATION

You can display DOS-11 directory 1listings and initialize DO0OS-11
volumes using FLX qualifiers as described in the following sections.

Remember that DOS-11 volumes must be mounted foreign before you can
manipulate them using FLX.

2.5.1 Displaying DOS-11 Directory Listings

The /DI qualifier described in Table 2-3 sends the directory of the
DOS-11 volume specified in the input specification to the Files-11
file specified in the output specification. 1If you do not enter an
output specification, FLX sends the directory to SYSSOUTPUT. For
example:

FLX>MTO:/DO/DI

This command lists on your terminal all files from the DOS-11 volume
on the magnetic tape drive MTO.

Figure 2-1 shows a sample directory 1listing of a DOS-11 volume,
followed by notes keyed to the figure.

nirecTORY @ C OMTO3L360+2710)

29 JUN-79 @

FLXCHA . 10OC @ 3%.0 29 JUN-79
FRAGCTW. OOC 2 29 JUN-79
WATSE, B0C 3 29 JUN-79
TOTAL OF 40, RLOCKS IN 3. FILES @

Figure 2-1 DOS-11 Directory Listing
Notes to Figure 2-1:
The listing identifier.
The device name, unit number, and UFD.

The date the directory was listed.

0000

The file name and file type.

FILE TRANSFER UTILITY

The number of blocks in the file.

The file creation date.

0

The total number of blocks allocated to all files on the
volume.

2.5.2 1Initializing DOS-11 Volumes

You can initialize DOS-11 volumes using the /ZE qualifier. This
qualifier requires only the device specification for the volume you
are initializing. For example:

FLX>MTO0:/DO/ZE

This command initializes the magnetic tape on MT0 in DOS-11 format.

2.6 RT-11 VOLUME DIRECTORY MANIPULATION

You can display RT-11 directory 1listings, delete RT-11 files, and
initialize RT-11 volumes using FLX qualifiers as described in the
following sections.

Remember that VAX/VMS RT-11 volumes must be mounted foreign before you
can manipulate them using FLX.

2.6.1 Displaying RT-11 Directory Listings

The /DI qualifier, when combined with the /RT qualifier, sends the
directory of the RT-11 volume specified in the input specification to
the Files-11 file specified in the output specification. If you do
not enter an output specification, FLX will send the directory to
SYS$OUTPUT. For example:

FLX>DMO:* ,MAC/DI/RT

This command lists on your terminal all files with the file type of
MAC from the RT-11 volume on DM0.

Figure 2-2 shows a sample directory 1listing of an RT-11 volume,
followed by notes keyed to the figure.

DIRECTORY 0 Mo @
22 JUN-79

© o
STFROO . MAC e 49, @ B2 JUN-79
< UNUSEDN = &
SIF +« MAC 10. 2R JUN-7Q
STFCH MAC 7 D JUN-79
< UNUSED - 20 .
STFQRICO . MAC 7 22 JUN-79
< UNUSED = 26998,
27028, FREE BLOCKS o

o

TOTHL, OF 73, BLOCKS IN 4, FILES

Figure 2-2 RT-11 Directory Listing

FILE TRANSFER UTILITY

Notes to Figure 2-2:

The listing identifier.

The device name and unit number.
The date the directory was listed.

The file name and file type; < UNUSED > indicates free
space.

The number of blocks in the file or free space.
The file creation date; blank for free space.

The total number of free blocks on the volume.

0006 60600

The total number of blocks allocated to all files on the
volume.

2.6.2 1Initializing RT-11 Volumes

You can initialize RT-11 volumes using the /ZE qualifier with the /RT
qualifier. The /ZE qualifier requires only the device specification
for the volume you are initializing. For example:

FLX>DM1:/ZE/RT
This command initializes the RT-11 formatted volume on DM1.

When you initialize RT~11 volumes, /ZE takes an optional argument in
the form:

/ZE:n

The value n specifies the number of extra words per directory entry,
in addition to the 7-word default length. This capacity for
increasing the length of directory entries is useful for some RT-11
applications. Note that when you increase the number of words per
directory entry by specifying /ZE:n, you are reducing the number of
directory entries.

Using the /NU:n qualifier with /ZE and /RT specifies the number of
directory segments, n, to be allocated to the RT-11 volume. Four
directory segments (consisting of two disk blocks each) are allocated
by default. The maximum number of segments that can be allocated is
31(10). For example:

FLX>DMO:/ZE:2/NU:6/RT
This command

e Initializes the disk on DMO

e Allocates two extra words per directory entry

® Allocates six directory segments

FILE TRANSFER UTILITY

2.6.3 Deleting RT-11 Files
You can delete files from RT-11 disks using the /DE qualifier with the
/RT qualifier. The command string on which vyou specify /DE/RT
requires the device and file specifications for the file you are
deleting. For example:

FLX>DM1:SYS1.MAC/DE/RT

This command deletes the file SYS1.MAC from the RT-11 volume on DM1.

2.7 FLX MESSAGES

Errors encountered by FLX during processing are reported on the
initiating terminal. The FLX messages, their explanations, and
suggested user actions are described below.

FLX -- BAD LIST FILE SPEC

Explanation: One of the following was specified for a /DI
operation (directory listing):

e More than one output file

e Wild card characters in the output file

User Action: Reenter the command line correctly.
FLX -- CAN'T OPEN @ FILE

Explanation: The specified indirect command file could not be
opened for one of the following reasons:

e The file is protected against access,

e A problem exists on the physical device (for example, the disk
is not spinning).

e The volume is not mounted or is allocated to another user.

e The specified file directory does not exist,

e The named file does not exist in the specified directory.

e The volume is not online.

User Action: Correct the condition and reenter the command line.
FLX -- CO FILES TO OUTPUT DEVICE NOT ALLOWED

Explanation: An output device (for example, a magnhetic tape) was

entered with the /CO qualifier for which the /CO qualifier is not

valid.

User Action: Reenter the command line without specifying /CO.

FILE TRANSFER UTILITY

FLX —- COMMAND SYNTAX ERROR

Explanation: The command was entered in a format that does not
conform to syntax rules.

User Action: Reenter the command line with the correct syntax.

FLX -- CONFLICTING TRANSFER MODES SPECIFIED

Explanation: Conflicting transfer mode qualifiers were entered.
For example:

SY:=DM:F00.0BJ/IM/FB

User Action: Reenter the command line with only one transfer
mode qualifier specified.

FLX -- DOS-11 OR RT-11 DEVICE NOT VALID FORMAT

Explanation: The device specified with /DO has an incorrect
DOS-11 file structure, or the device specified with /RT has an
incorrect RT-11 file structure.

User Action: Correctly identify the file structure on each
volume, and reenter the command line.

FLX -- ERROR DURING DIRECTORY I/0

Explanation: One of the following conditions may exist:

4.

The volume is not write-enabled.

The wvolume format qualifiers (/DO, /RT or /RS) were
incorrectly specified.

The volume is not of the proper format.

A hardware error occurred during a directory 1I/0 operation
(for example, a bad tape).

User Action: The following responses correspond (by number) to
the conditions listed above.

l. Write~enable the volume.

2. Respecify the volume format qualifiers (/DO, /RT, or /RS)
correctly.

3. No recovery is possible with the wvolume currently mounted.
Mount a volume that is in the proper format, and retry the
operation.

4, Retry the operation.

FLX —— FILE NOT FOUND

Explanation: The named file does not appear as specified in the
requested directory.

User

Action: Retry the operation with the file name and

directory correctly specified.

2-13

FILE TRANSFER UTILITY

FLX -- @ FILE NESTING EXCEEDED

Explanation: More than one level of indirect command file was
specified.

User Action: Retry the operation with only one level of indirect
command file specified.
FLX -- @ FILE SYNTAX ERROR

Explanation: A syntax error occurred in the indirect command
file specification.

User Action: Edit the indirect command file. Rerun FLX using
the corrected indirect command file.

FLX —-- FMTD ASCII RECORD FORMAT BAD
or
FLX —-- FMTD BINARY RECORD FORMAT BAD

Explanation: Either the file is corrupted, or the file is not of
the specified type.

User Action: 1If the file is corrupted, no recovery is possible,
If the file type is incorrect, retry the operation specifying the
correct transfer mode switch.

FLX —-- INCORRECT # IN/OUT SPECS

Explanation: More than one input or output specification 1in a
command was entered where only one is allowed.

User Action: Reenter the command line with the proper syntax.

FLX -- INVALID DEVICE
Explanation: A device was specified that cannot be used for the
purpose specified; for example, a line printer was specified as
an input device.
User Action: Reenter the command 1line with a 1legal device
specified.

FLX -- INVALID DOS OR RT-11 FILE SPEC

or
FLX -- INVALID RSX FILE SPEC

Explanation: The file specification does not conform to proper
syntax, or the specified operation could not be performed on the
specified device.

User Action: Reenter the file specification with the proper
syntax.

FILE TRANSFER UTILITY

FLX -- INVALID SYNTAX

Explanation: A qualifier was entered that is not a wvalid FLX
qualifier or does not conform to proper syntax.

User Action: Reenter the command line with a correct qualifier
specification.
FLX -- I/0 ERROR
Explanation: One of the following conditions may exist:
e The specified device is ocffline.
e A hardware error occurred (for example, a bad tape).
User Action: Ensure that the device 1is online. Reenter the
command 1line. If a hardware error occurred, recovery may not be
possible,
FLX —-- I/0 ERROR INITIALIZING DIRECTORY
Explanation: One of the following conditions may exist:
e The specified directory is not online.
® The specified volume is not mounted.
e A hardware error occurred (for example, a bad tape).
User Action: Ensure that the device is online and 1is operable.

Reenter the command line with the required qualifier specified.
If a hardware error occurred, recovery may not be possible.

FLX —-- I/0 ERROR ON COMMAND INPUT
Explanation: An unexpected error in command input was
encountered from either an 1indirect command file or vyour

terminal; FLX exits.

User Action: Restart FLX.

FLX -- I/0 ERROR ON FLX TEMPORARY FILE
Explanation: FLX encountered an error condition with its
temporary file. FLX creates a temporary file on your default
disk for operations involving DOS-11 magnetic tape. This error

occurs when one of the following conditions exists:
e Your default disk is not online and mounted.

® Your default disk is write-locked.

e A protection violation occurred.

e A hardware error was encountered.

User Action: Correct the condition and reenter the command line.

FLX

FLX

FLX

FLX

FLX

FLX

FILE TRANSFER UTILITY

-= I/0 ERROR ON LIST FILE
Explanation: An error occurred on the output device during a /DI
or /LI sequence. There 1is a hardware problem with the output
device (for example, device powered down).

User Action: Correct the condition and reenter the command line.

-- OUTPUT DEVICE FULL

Explanation: The DOS-11 or RT-11 output volume does not contain
enough space for the output file.

User Action: Delete all unnecessary files and reenter the
command line.
-- QOUTPUT FILE SPEC NOT ALLOWED

Explanation: An output file specification was entered for a
command that dces not allow one,.

User Action: Reenter the command without an output file
specification.
--— RECORD TOO LARGE
Explanation: FLX detected an input record in a Files-1l1l transfer
that 1is larger than the specified or implied record size for the

file, that is, the file is corrupted.

User Action: 7The file in question is unusable.

—-—= WARNING -- SPECIFIED RECORD SIZE BAD, 512. USED
Explanation: The record size n specified with /FA:n, /FB:n, or
/IM:n 1is not acceptable. A record size of 512(10) bytes is
assumed.

User Action: This is a warning message. No action is required.

--UNABLE TO ALLOCATE FILE

Explanation: No space is available on the DO0S-11 or Files-11
volume for the specified file.

User Action: Delete all wunnecessary files and reenter the
command line.

FILE TRANSFER UTILITY

FLX -- UNABLE TO OPEN FILE

Explanation: A specified Files-11 input or output file could not
be opened. Possible reasons are:

e The input file does not exist.
e The volume is not mounted.
® A protection violation occurred.

User Action: Correct the condition and reenter the command line.

FLX —-- UNABLE TO OPEN LIST FILE
Explanation: The directory listing file cannot be opened under
the specified file name and directory, or the specified device
may not be a valid Files-11 volume.
User Action: Reenter the command 1line specifying the correct
file name and directory.

FLX -- UNDIAGNOSABLE REQUEST

Explanation: FLX does not recognize the command line syntax.

User Action: Reenter the command line with the proper syntax.

FLX -- /CO FILES FROM INPUT DEVICE NOT ALLOWED UNLESS /BL: SPEC

Explanation: When transferring files from magnetic tape, /CO can
only be specified when /BL is also specified.

User Action: Reenter the command line, specifying /BL.

FLX -- * IN OUTPUT UIC NOT ALLOWED

Explanation: A wild card character was detected in the user
identification code for the output volume.

User Action: Reenter the command 1line without wild card
characters in the output specifications.
FLX =- * IN VERSION NUMBER NOT ALLOWED

Explanation: A wild card character was detected in the version
number field of a file specification.

User Action: Reenter the command line with all version numbers
explicitly specified.

CHAPTER 3

SLP AND SUMSLP EDITING UTILITIES

Two batch-oriented text editors run on VAX-11 processors: SLP and
SUMSLP. To use either of these editing utilities, you generate a list
of the changes which you want to apply to your source file. The
utilities effect these changes and produce an edited output file.
This chapter describes how to use these editors.

3.1 SLP

SLP 1is a batch-oriented editing program used for source file
maintenance. The term "SLP" originally meant "source language input
program." SLP allows you to update (delete, replace, add) lines in an
existing file, Furthermore, SLP gives you a record (audit trail) of
editing changes. The SLP command file provides a reliable way to
duplicate the changes made to a file, at a later time or on another
computer system,

Input to SLP consists of (1) an 1input source file that you want
updated, and (2) a command file containing text lines and edit command
lines that specify the update operations to be performed. SLP locates
lines to be <changed by means of "locators" (sequence numbers or
character strings).

SLP output is an updated copy of the input source file. SLP provides
an audit trail that helps you keep track of the update status of each
line in the file. The audit trail 1is included permanently 1in the
output file. When a given file is updated with successive versions of
SLP command file, you can use different audit trails to differentiate
among the changes made at different times.

SLP output qualifiers modify the appearance of the output file. They
let vyou truncate lines, create or suppress an audit trail, eliminate

an existing audit trail, create checksums, and specify the length and
beginning position of the audit trail.

3.1.1 Invoking SLP

You can run SLP either indirectly or interactively. In either case,
you invoke SLP with the command line:

EDIT/SLP [/qualifiers(s)] infile-spec
qualifier (s)

Actions to be performed by SLP that control the generation and
format of the listing and output files (see Section 3.1.4).

SLP AND SUMSLP EDITING UTILITIES

infile-spec

The input source file specification (see Section 3.1.2.1).
When you run SLP indirectly from a SLP command file, this command
line, preceded by a dollar sign ($), is the first line of the file, as
described in Section 3.1.2.2.

When you run SLP interactively, this command line is typed in response
to the DCL prompt ($), as described in Section 3.1.3.

3.1.2 Running SLP Indirectly

SLP requires two types of input files: an input source file and a SLP
command file. These files are described 1in Sections 3.1.2.1 and
3.1.2.2.

The output file, described in Section 3.1.2.3, 1is the permanently
updated copy of the input file. It shows the changes SLP makes to the
input file.

You can also generate a listing file, described in Section 3.1.2.3.
Figure 3-1 shows the relationships among the SLP output and input

files. The contents of the various files in this figure are described
in the following sections.

Input File Listing File

MYFILE.TST1 MYFILE.LIS;1

w—‘—i > SLP
Command File Processor Output File

UPDATE.COM;1 MYFILE.TST;2

_—

Figure 3-1 Files Used During SLP Processing

SLP AND SUMSLP EDITING UTILITIES

3.1.2.1 The Input Source File - The input source file is the file to
be updated by SLP. It can contain any number of lines,.

To use SLP effectively, you should obtain a sequence-numbered 1listing
of the input file from which you can determine what editing commands
you will issue., Section 3.1.5.3 describes how to generate such a
listing wusing the /LIST qualifier. However, the input source file
actually updated by SLP can have any kind of line numbers.

3.1.2.2 The SLP Command File - The SLP command file is a VAX/VMS file
that contains SLP editing commands. It consists of four elements:

1. An initialization line that invokes SLP and specifies what
file to process:

$ EDIT/SLP [/qualifiers] infile-spec
This command line is described in Section 3.1.1.

2., SLP editing command lines that define changes to the input
file (see Section 3.1.6).

3. Input lines, that is, lines of text that are to be inserted
into the output file, either as new lines or to replace old
lines.

4. The SLP terminator, a single slash (/) in <column 1, that
causes SLP to hegin its processing (updating) of the file.

An interactive text editor is wusually used to <create SLP command
files. Once you have created the file, vyou <can submit it for
processing by using the DCL commands Execute Procedure (@) or SUBMIT.

The example below shows a SLP command file named UPDATE.COM, The

numbers to the right of the example correspond to the elements listed
above,

$ ERLT/GLF MYFILE.TST 1)
-3 [§eD)
INSERT THIS LINE AFTER LINE 3 3
by 4} 2
DELETE LINE 4 AND REPLACE IT WITH THIS LINE (3
/ 4

You can execute this file by using the Execute Procedure () command,
as follows:

$ QUPDATE

Because the file type is the default file type COM, it can be omitted
on the DCL command line. See the VAX/VMS Command Lanquage User's
Guide for information on using command procedures and running batch
jobs.

When SLP finishes its processing, the DCL prompt is issued:
$

You can request that SLP calculate a checksum value for SLP editing
commands and then use this value to determine whether you have made
the correct changes to your source file., See Section 3.,1.4.2 for a
description of calculating checksums.

SLP AND SUMSLP EDITING UTILITIES

3.1.2.3 The Output File - The SLP output file is the updated input
file. All of the updates specified by the SLP editing commands are
inserted in this file. An audit trail is applied, by default unless
suppressed, to new or changed lines (see Section 3.1.4). You can also
specify the text and length of an audit trail (see Section 3.1.6.6).

An output file is generated by default. You can suppress the output
file, however, by using the /NOOUTPUT qualifier, described in Section
3.1.4.2.

3.1.2.4 The Listing File - You can generate a listing file by using
the /LIST qualifier, described in Section 3.1.4.3. The listing file
shows the changes made to the source file. Each line in the 1listing
file shows the updates made to the source file. FEach line in the
listing is numbered in sequence. Updates are indicated by means of an
audit trail (unless you suppress audit-trail generation). Section
3.1.5 contains an example of a listing file.

A sequence-numbered listing of the input file can help vyou determine

what editing commands to use. Generating this listing is described in
Section 3.1.4.3.

3.1.3 Running SLP Interactively

To use SLP interactively, type the following command line in response
to the DCL prompt:

$ EDIT/SLP [qualifier(s)] infile-spec

If you do not enter the input source file specification, you will be
prompted for it with the prompt:

File:
After specifying the input source file specification, enter SLP
editing commands, one per line. Then enter the SLP terminator in the
first column of the next 1line. The utility will respond to the
terminator with the prompt:

SLP>

To end the interactive SLP editing session, type <CTRL/Z> in response
to the SLP> prompt.

3.1.4 How SLP Processes Files

This section uses an example to show how SLP processes files. It uses
the following source input file, named MYFILE.TST;l.

ETGHT
NINE
TEN

SLP AND SUMSLP EDITING UTILITIES

This file is to be updated under the control of the following SLP
command file, named UPDATE.COM. The editing commands used in the
command file are described in Section 3.1.6.

FEDTT/SLP/ZAUNTITLTRATL $SO/LIST MYFILE.TST

INSERT THIS LINE AFTER LINE 3

-4y 4

DELETE LINE 4 AND REFLACE IT WITH THIS LINE
/

Below is the listing file (MYFILE.LST) that results from issuing the
command @UPDATE.

MYFILE .TST/AULSE0 310 o MYFITLE=MYFILETST

1.
2
3.
4.
e
(.()0
7
8. SEVEN
P ETGHT
10+ NINE

1l TEN

EROLINE THREE 5 OKNE WXk
LINE 4 AND REFLACE IT WITH THIS LINE 7 RKNE WX
Kk

The audit trail, using the default audit trail texts described in
Section 3.1.5, shows the new 1lines (;**NEW**) and indicates where
lines have been removed (;**-1). In this case, a new 1line has been
added after 1line 3, and 1line 4 has been replaced, causing all
subsequent lines to be renumbered. The /AUDIT TRAIL qualifier in the
initialization 1line indicates that the audit Trail is to begin at the
next tab stop after column 50.

To process the files, SLP writes each line from the input source file
into the output file until it reaches a line to be modified, as
requested in the command. When SLP reaches a line to be modified, it
makes the indicated modification, notes the change in the audit trail,
and then continues writing lines to the output file, 1in sequence,
until it encounters another command or reaches the end of the source
file.

The output file, MYFILE.TST;2, is as follows:

ONE
TWO
THREE

INSERT THIS LINE AFTER LINE 3 5 KKNEWKK
i EOLINE 4 AND REFLACE TT WITH THIS LINE 5 RKNEWKK
FIVE Kok~
SIX
SEVEN
ETGHT
NTNE
TEN

SLP AND SUMSLP EDITING UTILITIES

3.1.5 SLP Qualifiers

SLP qualifiers control the generation and format of the 1listing file
and the output file. You can use them to control the audit trail and
output options associated with these files. Table 3-1 describes the
SLP qualifiers and their functions.

the use of SLP qualifiers.

Table 3-1
SLP Qualifiers

Format

Function

/AUDIT_TRAIL
[:(POSITION:pos,SIZE:1len)]
and /NOAUDIT_ TRAIL

/CHECKSUM [:n] and /NOCHECKSUM

/LIST [:list-file]

These qualifiers let you suppress
audit-trail generation, or
specify the beginning position and
length of the audit trail. The
default is to generate an audit
trail 8 characters long, starting
in column 80 -- that is,
/AUDIT_TRAIL:(POSITION:BO,SIZE:S).

The maximum allowed value for the
length parameter is 14.

The audit trail starts at the
first tab stop after the position
given (or defaulted) for the
/AUDIT TRAIL qualifier. Tab stops
are set every 8 columns.

The /CHECKSUM qualifier requests a
checksum calculation for SLP edit
commands. If you do not specify a
checksum value, SLP reports the

calculated checksum at your
terminal. If you do specify a
value, SLP will generate a
diagnostic message if the

specified values does not match
the checksum calculation. The
default is /NOCHECKSUM.

The /LIST qualifier causes SLP to
produce a sequentially numbered
version of the input file with the
same file name. The default file
type is LST. You can request a
different specification for the
listing file by using the
/LIST:1list-file qualifier,

(continued on next page)

The following sections illustrate

SLP AND SUMSLP EDITING UTILITIES

Table 3-1 (Cont.)
SLP Qualifiers

Format Function
/OUTPUT [:file-spec] By default, SLP generates an
and /NOOUTPUT output file with the same file
name and file type as the
correction input file. Its
version number is higher by 1 than
the highest version number

existing for the input file name
and type. You can request a
different specification for the
output file by using the
/OUTPUT: file-spec qualifier.

To suppress the output file,
specify /NOOUTPUT.

/REPORT and /NOREPORT The qualifier /REPORT causes SLP
to report any line truncation by
audit trails, If line truncation
occurs, SLP prints a diagnostic
message, If you specify creation
of a listing file, a question mark
(?) replaces the period (.) in the
line number of the truncation
line. The default is /NOREPORT.

/TAB_FILL and /NOTAB_FILL The qualifier /TAB_FILL causes SLP
to insert tabs at the end of each
text 1line containing an audit
trail. The default 1is to fill
such lines with spaces (that Iis,
/NOTAB FILL). Using /TAB_FILL
saves disk space, because fewer
tabs than spaces are required to
fill the lines in both the output
and the listing file.

/TRUNCATE [:position] The /TRUNCATE qualifier 1lets vyou
and /NOTRUNCATE truncate input lines to the given
column position.

If you specify /TRUNCATE but omit
position, SLP wuses the position
given (or defaulted) for the
/AUDIT TRAIL qualifier; position
is rounded to the next tab stop
before use. Set position at or
before the start of the old audit
trail that you want to delete,
Any trailing spaces or tabs after
position are also deleted.

3.1.5.1 Using the /AUDIT TRAIL Qualifier - You may want to change the
position of the audit Trail if your output device has fewer than 80
columns or if your source lines are all brief. The following example
shows the use of the /AUDIT_TRAIL qualifier to specify the position

SLP AND SUMSLP EDITING UTILITIES

and length of the audit trail. By default, audit trail texts are
;**NEW** for new 1lines and ;**-n for deleted lines, (See Section
3.1.6.6 for a description of changing the audit trail text.) The input
source file for this example is named MYFILE.TST and is made up of the
following lines:

ONE
TWO
THREE
FOUR
FIVE

The SLP command file is as follows:

SEDLT/BLPZAUDTITOTRATL S (POSITIONIZ0» STZE 21O /L ISTING MYFILE.TST
=20 sty ZTCHANGEOOL S

1. ONE

2+ NEW LINE 2 TCHANGEOOL
e NEW LINE 3 TCHANGEOG.
4, FOUR k-2

. FIVE

The values that you specified for position and length are stated in
the header of the listing file.

3.1.5.2 Using the /CHECKSUM Qualifier - To obtain a checksum value,
append the qualifier /CHECKSUM to the SLP initialization line. SLP
processes the file, prints the checksum value in a message on vyour
terminal, and exits.

If you want to check the accuracy of SLP editing commands, specify a
checksum value using the form /CHECKSUM:n, where n is the checksum
value previously calculated by SLP. 1If there is a mistake in the SLP
command file (for example, if the edit command is -4,4 and you type
-4,5), the checksum value will not match the value you specified with
the /CHECKSUM qualifier. If the two values differ, SLP prints a
diagnostic error message on your terminal, as described in Section
3.3.1.

SLP calculates a checksum value for all SLP edit commands except:
e The SLP initialization line
e Comments within the edit command line

e Spaces and/or tabs between characters included in the checksum
calculation and those characters excluded from the calculation

e The second comma on an edit command 1line and anything
following it (that is, audit trails and comments)

e The comment delimiter for an input 1line and any characters
following it (the comment delimiter is defined as the first
character in the current audit trail).

SLP AND SUMSLP EDITING UTILITIES

3.1.5.3 Using the /NOOUTPUT and /LIST Qualifiers - SLP processes
input by sequence number. However, sequence numbers appear only in
the listing file; they are not written to the output file.

To use SLP effectively, obtain an up-to-date numbered listing for use
when vyou create the SLP command file. Numbered listings generated by
other programs (such as S0S and the MACRO assembler) will not
necessarily be wuseful 1in preparing an SLP command file. Generate a
SLP numbered listing by submitting an editing command in the following
form:

$EDIT/SLP/NOOUTPUT/LIST[:1ist-file] file-spec

Here list-file is the name you optionally assign to the 1listing £file
that SLP produces, and input-file is the specification of the file
whose lines are to be numbered. The slash (/) tells SLP to Dbegin
processing the files. SLP generates a numbered listing file, but does
not produce an output file.

3.1.6 Specifying SLP Editing Commands

SLP editing commands let you update source files by adding, deleting,
and replacing 1lines in a file. These commands contain certain
characters that SLP interprets as operators. This section first
describes these operators and the general form for specifying SLP
editing commands. Then, it describes the editing commands used for
specific editing functions.

3.1.6.1 SLP Operators - When SLP encounters any of the characters
listed in Table 3-2 as the first character in an input line, it
interprets the character as an operator.

Table 3-2
SLP Operators

Operator Function
- (minus sign) First character of an SLP edit command
\ (backslash) Suppress audit trail generation
% (percent sign) Reenable audit trail generation
@ (at sign) Invoke a further command file for SLP

processing

/ (slash) Terminate the editing session

< (less than character) Escape character

The percent sign (%) operator is wused to reenable audit trail
generaton when generation has been suppressed by either the backslash

(\) operator or the /NOAUDIT TRAIL qualifier, described 1in Section
3.1.5. -

SLP AND SUMSLP EDITING UTILITIES

The at sign (@) operator tells SLP to read further input from a
another command file. This second command file can contain only SLP
edit commands and new text lines.

The less-than character (<) operator is the escape character that lets
you enter characters 1in the command file (in column 1) that SLP
otherwise would interpret as operators. For example, </ hides the
slash character from SLP, thereby enabling you to enter the slash into
the output file without terminating the SLP editing session. You can
use the less-than character as an escape character for all SLP
operators listed in Table 3-2 (including itself).

3.1.6.2 General Form of an Editing Command - The general form of a
SLP editing command is:

-locatorl[,locator2]{,/audittrail/] [;comment]
inputline

A minus-sign operator indicates that this is an SLP editing
command line.

locatorl

A line locator that causes SLP to move the current 1line ©pointer
to a specified line. 1If only locatorl is specified, the current
line pointer is moved to that line and SLP reads the next line in
the editing command file. This field can be specified using any
of the locator forms described below.

locator2

A line locator that defines a range of lines (that is, the range
beginning with locatorl and ending with locator2) to be deleted
or replaced. This field can be specified using any of the
locator forms described below.

/audittrail/

A character string used to keep track of the update status of
each 1line 1in the file. This audit trail is used to mark new or
replaced lines in the file until the audit trail 1is either
changed or suppressed. This argument must be delimited by
slashes (/). 1I1f there are not two locator fields in the editing

command, the audit trail specification must be preceded by two
commas.

Audit trails generated by SLP use the first character of the
specified string as a delimiter. Usually, the first character of
the audit trail is set to match the comment delimiter of the
source file being edited. Default audit trails are ;**NEW** for

new lines and ;**-n for lines that indicate where text has been
inserted.

3-10

SLP AND SUMSLP EDITING UTILITIES

inputline
A line of new text to be inserted into the file 1immediately
following the <current 1line. You can enter any number of input
lines.

jcomment
An optional comment. SLP ignores any text after a semicolon.

All fields in the command line are position-dependent; commas must be
included as specified above.

The locator fields can take one of the following forms:

/string[...stringl/
number [+n]

Parameters:

string

A string of ASCII characters. SLP locates the next line in which
string exists and moves the current line pointer to that line.
If the locator is specified in the form /string...string/ (that
is, two different strings of characters separated by three
periods), SLP locates the 1line in which the first character
string 1is followed by the second character string, regardless of
what characters may be in between them.

number

A sequence number in the range of 1 through 9999 to which the
current line pointer is to be moved.

A decimal value used as an offset from the line specified by the
locator. ©Note that n is always preceded by a plus sian (+). You
cannot back up from the locator.

A period represents the current line.

All forms of the line locator can be specified interchangeably in a
command line.

SLP can only edit files sequentially. Once the current 1line pointer

moves past a given 1line in the file, it cannot be returned to that
line.

3.1.6.3 Adding Lines to a File - The SLP editing command for adding
lines to a file contains only one locator field. Its form is:

-locator{,,/audittrail/) [;comment]
The locator has one of the forms defined in Section 3.1.5.2
If a numeric locator is specified, SLP inserts new line(s) after the

line specified by sequence number., Any lines you enter are inserted
as lines in the file,

SLP AND SUMSLP EDITING UTILITIES

If a string locator is specified, SLP locates the next occurrence of
the string in the file and moves the current line pointer to the line
containing the string. Any input lines following the command line are
then added to the file.

If you specify an offset (+n) SLP moves the current 1line pointer n
lines beyond the line specified in the locator field and then adds any
new input lines to the file.

Because there is only one locator field, the audit trail specification
must be preceded by two commas.

The example below shows how to add lines to a file. The input source
file consists of the following lines:

ARC
DEF
GHI
K1.M
1234546789
454
789
CERA
XYX
87

The SLP command file consists of the following commands and text
lines:

SENLT/SLP/ZLISTING/AUDTIT. . TRATIL (POSTTIONI32) MYFILE.TST
-/1237

INSERT THIS LINE AFTER LINE 3

/

SLP processing generates the following listing file:

MYFILE.TSTs MYF TLE=MYFILE. TST
i1+ ARC
2. DEF
3. GHI
4. KLM
Ue 1234546789
G INSERT THIS LINE AFTER LINE 5 # XORNE WX
70 45(‘)
g, 789
9, CBA
10+ XYX
Ll. 987

SLP has applied sequence numbers to the lines and added an audit trail
to the line following line 5, where SLP found the first occurrence of
the string 123,

The next example uses the same correction input file and the following
new SLP command file:

SEDIT/SLPZLTSTING/AUDTTUTRATL S (CPOSTITIONS32)Y MYFILE.TST
~/NEF/+2

THIS T8 NEW TEXT

7/

SLP AND SUMSLP EDITING UTILITIES

SLP processing generates the following listing file:

MYFILE.TSTyMYFILE ~ MYFILE.TST

1. ARC

2. DEF

3+ GHI

4. KLM

. THIS IS NEW TEXT §RANEWXX
6+ 123456789
7. 456

8. 789

?. CRA

10. XYX

11. 987

Again, SLP has numbered the lines in sequence; this time the new input
line 1is inserted two 1lines beyond the 1line containing the first
occurrence of the string DEF.

3.1.6.4 Deleting Lines from a File - The SLP editing command for
deleting lines from a file contains two locator fields. 1Its form is
given below.

-locatorl,locator2[,/audittrail/] (;comment]

The locatorl and locator2 fields can take any of the forms described
in Section 3.1.6.2. The first field, locatorl, specifies the line
where SLP is to begin deleting lines; locator2 specifies the last
line to be deleted. SLP deletes all lines from locatorl through
locator2, inclusive.

The example below shows how to delete lines from a file wusing SLP.
The input source file consists of the following lines:

ARC
DEF
GHI
KL.M
123456789
456
789
CRA
XYX
°87

The SLP command file for this example is as follows:

SENIT/S8LP/LISTING/AUDIT.OTRATL S (FOSTITIONS32) MYFILE.TST
=/l s R/ /IXYX/
/

SLP processing generates the following listing file:

1. ARC
2+ DEF
3. GHI
4. KLM
S. 987 R S

SLP AND SUMSLP EDITING UTILITIES

In this example, the ellipsis (...) is used to abbreviate the larger
string 123456789. SLP searches for the first occurrence of the string
1 and the first occurrence of the string 9 on the line, assuming these
two strings bracket a larger string, in this case, the string
123456789. SLP begins deleting 1lines at this 1line and continues
deleting lines until it deletes the last line, specified by the string
XYX. SLP applies the audit trail count of the lines it deleted to the
next line in the output file.

Using the same input source file, this example shows how to delete a
single 1line wusing the period locator. The command file for this
example is as follows:

SEDTIT/SLFALTISTING/AUDTT.TRATL P (FOSTTIONSZ2) MYFILE.TST
~/NEF/
/

SLP processing generates the following listing:

1. ARC

2¢ GHI ¥ kX1
3. KIL.M

4. 123456789

Ve ALb

b 789

7. LCRA

g. XYX

P, 987

SLP moves the current line pointer to the line containing the string
DEF and then finds the period as the second locator field. Since the
second locator field is specified, SLP interprets the editing command
as a delete operation and deletes the line containing DEF.

3.1.6.5 Replacing Lines in a File - A replacement 1is a deletion
followed by new text. The number of lines deleted need not match the
number of lines added. To replace lines in a file, use the full
2-locator command form, as in the delete command. The first line
locator field specifies the first line to be deleted. The second line
locator field defines the last line in the range to be deleted, which,
for replacement operations, is the 1line where new text 1is to be
inserted.

For example, the command -4,.+4 instructs SLP to move the line pointer
to 1line 4 and replace line 4 and the next four lines (as represented
by .+4) with new input lines that immediately follow the command line,
This command is equivalent to -4,8,.

The example below shows how to delete lines from a file and replace
them with new lines. The input source file consists of the following
lines:

ARC
DEF
GHT
123456789
RUN
CRE
BUR

SLP AND SUMSLP EDITING UTILITIES

The SLP command file is as follows:

SEDIT/SLP/LTSTING MYFILE.TST

=2yt

NEW LINE 2
NEW LINE 3
/

$EXTT

SLP processing generates the following listing file:

1l ARC

24 NEW LINE 2 § BORNE WX X
Js NEW LINE 3 § HORNE WXk
4, 123456789 § KK 2

e RON

6o CRR

7+ BUR

3.1.6.6 Specifying the Audit Trail Text - The following SLP edit
command changes the text of the audit trail:

-,,/nhewtrail/

Here newtrail is the new value (text) of the audit trail. If the
length of newtrail exceeds the length specified (or defaulted) for the
/AUDIT TRAIL qualifier, the audit trail is truncated to that 1length.
(The default audit trail, ;**NEW**, is never truncated, even if you
specify a length less that 8.)

All subsequent lines added will include the new audit trail text. All
lines that indicate where 1lines have been deleted will include the
first character of the new audit trail text as their first character.
For example, 1if vyou specify the new audit trail JANUARY, the audit
trail indicating a replaced line will be J**-2,

When you create a new audit trail, you may want to set the first
character of the string to correspond to the comment delimiter that is
used in the source file,

3.2 SUMSLP

SUMSLP is a batch-oriented editor similar to the SLP editor. It
supplements the functions of SLP by allowing multiple command files to
be applied to a single input file. The multiple command files are
combined according to fixed rules.

3.2.1 Running SUMSLP

SUMSLP can be run either indirectly from .a command procedure or
interactively from your terminal. To invoke SUMSLP interactively, you
issue a command line in response to the DCL prompt. To invoke SUMSLP
from a command procedure, precede the command with a dollar sign ($).
The command has the following format:

EDIT/SUM[/qualifier (s)] input-file[/qualifier]

SLP AND SUMSLP EDITING UTILITIES

/qualifier (s)

A command or file qualifier, as described in Table 3-2.
/OUTPUT and /LIST qualifiers are command qualifiers only;
/UPDATE qualifier is a file qualifier only.

input-file

The
the

The file specification for the source file to be edited. File
specifications are described above in Section 3.1.2.2.

Table 3-3

SUMSLP Qualifiers

Format

Function

/LIST[=file-spec]

/OUTPUT [=file~-spec]

/UPDATE [=(file-speCc,...)]

Controls whether a sequence-numbered
listing file, showing the original and
inserted lines and an audit trail, is
produced during the editing process.
If you do not specify a file, the
listing file takes the same name as
the input file, with a file type of
LIS. You can specify another file
type for the listing file, but LIS is
the default. The listing file
described in Section 3.2.2.4.

Specifies the output file to be used
in the editing operation. If you do
not specify a file, the output file
has the same name and type as the
input file, with a version number one
higher than the highest existing
version. The output file is described
in Section 3.2.2.3.

Indicates the file or files containing
the editing commands and changes to be
applied to the input source file. If
multiple file specifications are
listed, they must be separated by
commas, and the list must be enclosed
in parentheses., The default file type
of these files 1is initially UPD.
Default values for the other elements
of the file specification are
initially taken from the input file
specification; after the first file
specification in a list, values
default to those of the immediately
preceding file specification.

If no file specification or 1list of
file specifications given, SUMSLP
attempts to open a single update file
with the same file name as the input
file and a file type of UPD.

If you do not include the /UPDATE
qualifier 1in the command line, SUMSLP
will not attempt to find an update
file, but will generate any specified
output or listing file. Enter the
EDIT/SUM command with the /LIST
qualifier but without the /UPDATE
qualifier to generate a numbered
listing of your source program.

3-14

SLP AND SUMSLP EDITING UTILITIES

Examples
1. S$EDIT/SUM FILE1l.MAR/UPDATE

The input source file FILE1.MAR is updated with the SUMSLP
command file FILEl.UPD.

2. S$EDIT/SUM FILE2.MAR/UPDATE=UPD2

The input source file FILE2.MAR is updated with the SUMSLP
command file UPD2.UPD.

3. SEDIT/SUM FILE3.MAR/UPDATE=(UPD3A,UPD3B,.ENH,UPD3C)

The input source file FILE3.MAR is updated with the merged
contents of SUMSLP command files UPD3A.UPD, UPD3B.ENH, and
UPD3C.ENH. The editing commands in the three command files
are applied according to the rules given in Section 3.2.3.

3.2.2 SUMSLP Input And Output Files

SUMSLP requires two types of input files: an input source file and
one or more SUMSLP command files. SUMSLP produces two types of output
files: a source output file and, if requested, a listing file. These
four types of files are described in the following sections.

3.2.2.1 The Input Source File - The input source file is the file to
be updated by SUMSLP. It can contain any number of lines of code.

3.2.2.2 The SUMSLP Command Files - SUMSLP command files are very
similar to SLP command files, described in Section 3.1.2.2. They need
not, however, include an initialization line.

The editing command lines in SUMSLP command files are identical to
those used in SLP, with the following exceptions:

e the locator field, described in Section 3.1.6.2, cannot
contain strings.

e additional command files cannot be invoked with the at sign
(@) operator.

As in SLP, the final editing command line must be followed by a 1line
containing the slash operator (/), which serves as a terminator,.

3.2.2.3 The Output File - The SUMSLP output file contains the input
source file as updated by the additions and changes specified in the
SUMSLP command file(s). It does not include an audit trail or 1line
numbers.

If you do not include a file specification for the output file with
the /OUTPUT qualifier in the EDIT/SUM command, the output file takes
the same file name as the input source file, with a version number one
higher than the existing version number.

SLP AND SUMSLP EDITING UTILITIES

3.2.2.4 The Listing File - The SUMSLP listing file is produced if you
specify the /LIST qualifier in the EDIT/SUM command. If you do not
specify another name for it, it takes the same file name as the input
source file, with the file type of LIS. You can specify another file
type, but LIS is the default,

The following example illustrates the generation of a
The input source file, named MYFILE.TST, is:

listing file.

ONE
TWO
THREE
FOUR
FIVE
SIX
SEVEN
ETGHT
NINE
TEN

There are two SUMSLP command files.
the following editing commands:

The first, UPDATE.UPD, contains

~3y 3y /321 -MARS
INSERTED LINE
/

The second SUMSLP command file, NEWLINES.UPD, contains
editing commands:

the following

=7y /3 22-MAR/
NEW L INE
/

When the commands in these SUMSLP command files are applied to the
input source file, and the /LIST qualifier is applied, the following
listing file is produced:

1 UNE
2 TwWi

¥ 21 -MAR INSERTED LINE

-1

22-MAR

s,

<
J
3

>,

An audit trail is produced

4 FOUR

5 OFIVE

& BIX

7 SEVEN
NEW L INE
8 ETGHT

¢ NINE

TEN

automatically unless it has been suppressed

(see Section 3.1.5). This field will also contain a marker to
indicate the number of lines deleted or replaced from the original
file. The marker 1is placed on the first original line following a

deletion and has
The line numbers
original 1lines

begin with .1 at

The source lines

the form -n, where n is the number of lines deleted.

of inserted lines are distinguished from those of
by being preceded by a period. Inserted line numbers
the start of each group of new lines.

show the results of SUMSLP processing.

SLP AND SUMSLP EDITING UTILITIES

3.2.3 How SUMSLP Processes Files

SUMSLP applies the edits specified in the SUMSLP command file(s) to
the source 1lines of the input source file. When a list of command
files is specified with the /UPDATE qualifier, the editing commands in
the various files are arranged according to the following rules:

1. The editing commands are merged into a single stream in
ascending order according to the value of 1locatorl (as
described in Section 3.1.6.2). All edits that do not overlap
or conflict with any other edits are applied to the source
file without any further processing.

2. Editing commands which do conflict are resolved according to
the precedence of the SUMSLP command file in which the
commands occur. Precedence of SUMSLP command files is
determined by. the position of the file specifications
following /UPDATE. The file specification listed 1last after
/UPDATE has the highest precedence.

All inserts to the same source line are included in the output
file; those from the SUMSLP command file with the highest
precedence appear first.

An operation that deletes or replaces a line will affect not
only the specified line, but also any lower precedence inserts
or replacements to the same line., A deletion that specifies a
range of 1lines (for example, -10,15) will delete all lines
occurring in that range, including inserted lines from SUMSLP
command files of lower precedence,

3.3 SLP and SUMSLP MESSAGES

The following sections describe the diagnostic messages issued by SLP
and SUMSLP.

3.3.1 SLP Messages
The following sections describe the information and error messages

issued by SLP. Each message 1is followed by an explanation of its
meaning and a recommendation for user action.

3.3.1.1 SLP Information Messages

SLP -- COMMAND FILE CHECKSUM IS ######

Explanation: By specifying the /CHECKSUM gqualifier in the
command 1line, you requested SLP to calculate the checksum value
for the edit commands.

User Action: This message is for your information only. No
action is required.

SLP AND SUMSLP EDITING UTILITIES

SLP -- *DIAG*-ERROR IN COMMAND FILE filespec CHECKSUM

Explanation: An incorrect value was specified for the command
file checksum. If you enter the edit command lines directly from
the terminal, the command file in the error message is CMI.CMD.
Thus, the error message reads:

SLP -- *DIAG* - ERROR IN COMMAND FILE CMI.CMD CHECKSUM

User Action: This is a warning message only. The specified
output file is still created, although possibly not as intended.

SLP -- *DIAG*-n LINES TRUNCATED BY AUDIT TRAIL
command line

Explanation: Line truncation by the audit trail was detected,

User Action: This message is for vyour information only. The
specified output file is still created. (In the listing file, a
question mark (?) replaces the period (.) in the line number of
the 1lines that were truncated. It is possible that audit-trail
strings from the input file will be truncated by the new
audit-trail string although text strings will not be truncated.)
Determine where the truncation(s) occurred. If necessary, modify
the command file so that it contains commands that do not cause
truncation.,

3.3.1.2 SLP Error Messages - The SLP error messages listed below are
issued in two formats:

e¢ SLP followed by two dashes, the type of error message, and the
error message. If applicable, the command line or command
line segment that caused the message is printed on the next
line. For example:

SLP -- *FATAL*-ILLEGAL SWITCH
$EDIT/SLP/TUNCATE

® SLP followed by two dashes, the type of error message, the
error message, and the name of the file with which the error
is associated. For example:
SLP —~- *FATAL*-OPEN FAILURE LINE LISTING FILE filename
SLP -- *FATAL*-COMMAND SYNTAX ERROR

command line

Explanation: The command line format did not conform to syntax
rules. Open files were closed and SLP was reinitialized.

User Action: Reenter the command line.

SLP AND SUMSLP EDITING UTILITIES
SLP —-- *FATAL*-ILLEGAL DEVICE NAME
command line

Explanation: The device specified was not a legal device.
files were closed and SLP was reinitialized.

User Action: Reenter the command line.
SLP ~- *PFATAL*-ILLEGAL DIRECTORY
command line segment

Explanation: The directory was not specified correctly.
files were closed and SLP was reinitialized.

User Action: Reenter the command line with a correctly spec
directory.
SLP -- *FATAL*-ILLEGAL ERROR/SEVERITY CODE pl p2 p3

Explanation: This error message indicates that an error occ
in the SLP program.

User Action: Reenter the command line. If the error pers
submit a Software Performance Report (SPR) along with the re

Open

Open

ified

urred

ists,
lated

console dialogue and any other related information, such as

programs or listings.

SLP —-- *FATAL*-ILLEGAL FILE NAME

command line segment
Explanation: A file specification was longer than
characters or contained a wild card character (that i
asterisk in place of a file specification element). Open

were closed and SLP was reinitialized.

User Action: Reenter the command line.

SLP -- *FATAL*-ILLEGAL GET COMMAND LINE ERROR

Explanation: The system was unable to read a command line.

30(8)
s, an
files

This

indicates an internal system failure or an error in the SLP

program.

User Action: Reenter the command line. If the error pers
submit a Software Performance Report (SPR) along with the re
console dialogue and any other pertinent information.

SLP —-- *FATAL*-ILLEGAL SWITCH
command line segment

Explanation: Either the qualifier wused was not a valid
qualifier or a legal qualifier was used - in an invalid ma
Open files were closed and SLP was reinitialized.

User Action: Reenter the command line with the correct qual
specified.

ists,
lated

SLP
nner.

ifier

SLP AND SUMSLP EDITING UTILITIES

SLP —- *FATAL*-INDIRECT COMMAND SYNTAX ERROR

command line
Explanation: The command 1line format specified for the SLP
command file did not conform to syntax rules. Open files were
closed and SLP was reinitialized.
User Action: Reenter the command line.

SLP -- *FATAL*-INDIRECT FILE DEPTH EXCEEDED

command line
Explanation: More than three levels of indirection were
specified 1in a SLP command file. Open files were closed and SLP

was reinitialized.

User Action: Correct the command file and reenter the command

line.

SLP -- *FATAL*-I/0 ERROR COMMAND INPUT FILE
or

SLP -- *FATAL*-I/0 ERROR COMMAND OUTPUT FILE
or

SLP -~ *FATAL*-I/0 ERROR CORRECTION INPUT FILE filename
or

SLP -- *FATAL*-I/0 ERROR LINE LISTING FILE filename
or

SLP -- *FATAL*-I/0 ERROR SOURCE OUTPUT FILE filename

Explanation: One of the following conditions may exist:

® A problem exists on the physical device (for example, the
disk is not spinning).

e The length of the command 1line was greater than the
specified numbher of characters.

e The file is corrupted or the format is incorrect.
User Action: Determine which condition caused the message and
correct that condition. Reenter the command line.
SLP —-- *FATAL*-INDIRECT FILE OPEN FAILURE
command line
or
SLP -- *FATAL*-OPEN FAILURE CORRECTION INPUT FILE filename

or

SLP AND SUMSLP EDITING UTILITIES

SLP -- *FATAL*-OPEN FAILURE LINE LISTING FILE filename
or
SLP —-- *FATAL*-OPEN FAILURE SOURCE OUTPUT FILE filename

Explanation: One of the following conditions may exist:

e The file is protected against an access.

e A problem exists with the physical device (for example,

the device was not online).
e The volume is not mounted.

e The specified file directory does not exist.

e The named file does not exist in the specified directory.

These errors cause open files to be closed and SLP to

reinitialized.

User Action: Determine which condition caused the message

correct that condition. Reenter the command line.

SLP -- *FATAL*-LINE NUMBER ERROR
command line

Explanation: The command line printed contained
illegally-specified numeric line locator.

User Action: Terminate the SLP edit session and refer to
rules for specifying numeric line locators in Section 3.1.

Correct the error and reenter the command line.

SLP —-- *FATAL*-PREMATURE EOF CORRECTION INPUT FILE filename

be

and

an

the
h.2.

Explanation: An out-of-range line locator was specified in a
correction file or from the terminal; for example, -1000 was

specified for an 800-1line file.
User Action:
e Terminate the current editing session.
e Restart the editing session, entering the correct
number.
SLP -~ *FATAL*-PREMATURE EOF COMMAND INPUT FILE

Explanation: This error occurs if you do not terminate

line

SLP

command input with a slash (/) or if you inadvertently type

<CTRL/Z> at the terminal, which sends an end-of-file to

SLP

before the slash (/) character 1is read. SLP prints SLP>,

indicating that a new file specification is expected.
User Action: Restart the editing session at the point where
CTRL/Z was typed.

the

3.3.2
The £

issue
messa

appro

3.3.2

SUM-1I
editi

3.3.2

SLP AND SUMSLP EDITING UTILITIES

SUMSLP Messages

ollowing sections described the information and error messages
d by SUMSLP. All of the error messages are warnings. Each
ge is followed by an explanation of its meaning and, where
priate, a rrecommendation for user action.

.1 SUMSLP Information Message

~-EDIT$CLSH, edits clash
ng commands files specifications

Explanation: Two or more conflicting editing commands have been
entered, that is, more than one edit operation has been specified
for one line of source code. The relevant editing commands and
the file specifications of the SUMSLP command files are listed
following the message.

User Action: This message is for vyour information only. No
action is required.

.2 SUMSLP Error Messages

SUM-W-EDOUTSEQ, edits out of sequence

SUM-W

Explanation: The editing commands from a single SUMSLP command
file were not in ascending sequence. The edits have been moved
to the correct position.

User Action: Check output file. It should not be necessary for
you to edit the file again.

-PRMEOF, premature end-of-file
Explanation: A SUMSLP command file has terminated unexpectedly.
This is probably due to the absence of a terminator (/) at the

end of the command file.

User Action: 1Insert a terminator (/) at the end of the command
file and edit again.

SUM-W-SLPSYNERR, SLP command syntax error

editi

ng command file specification

Explanation: The editing command did not conform to the SUMSLP
syntax rules. However, processing of edits continued.

User Action: Check output file and, 1if necessary, edit again

with corrected editing commands.

CHAPTER 4

DISK SAVE AND COMPRESS UTILITIES

The Disk Save and Compress (DSC) utilities are used to back up and
restore disk volumes that have been formatted and initialized as
Files-11 structure Level 1 or Structure Level 2 volumes. There are
three DSC utilities:

e DSC2 saves, compresses, and restores Files-11 Structure Level
2 disk volumes. DSC2 runs online under the control of the
VAX/VMS operating system.

e DSCl1l performs the same functions as DSC2 for Files-11
Structure Level 1 disk volumes. DSCl runs online under the
control of the VAX/VMS operating system.

e DSC-2 is a stand-alone version of the online wutility DSC2.
DSC-2 is a component of the VAX-11 Diagnostic Package, and is
bootstrapped from diagnostic floppy diskettes.

This chapter describes the uses and features of the DSC utilities; it
is organized into four sections:

e Section 4.1, "Typical Uses of DSC," introduces the most common
uses of the DSC utilities.

e Section 4.2, "Specifying DSC Commands," defines the DSC
command 1line format and the functions of the DSC file
qualifiers.

e Section 4.3, "Using the DSC Utilities," demonstrates, with
examples, some of the typical uses for the DSC utilities.

e Section 4.4, "Auxiliary Procedures for DSC Operations,"
describes procedures useful to DSC users.

e Section 4,5, "DSC Messages and FError Recovery Procedures,"
defines all DSC-generated messages and indicates how you can
recover from DSC-related error conditions.

To use the DSC utilities, you should be a VAX/VMS operator and be
familiar with the following manuals:

e VAX-1l Software Installation Guide

e VAX/VMS Operator's Guide

e VAX/VMS Command Language User's Guide

You should also be familiar with BAD and VFY, volume maintenance
utilities described in this manual.

DISK SAVE AND COMPRESS UTILITIES

For information about Files-11 Structure Level 1 and Structure Level 2
disk volumes, refer to:

e VAX/VMS System Manager's Guide, which describes the Files-11
disk structures 1in the context of backing up public disk
volumes.

e Introduction to VAX-11 Record Management Services, which

describes the Files-11 disk structures in the context of
general disk organization

e VAX-11] Record Management Services Reference Manual, which
explains RMS-related record, file, and volume concepts and
formats.

4.1 TYPICAL USES FOR DSC UTILITIES

You use the DSC programs to back up and restore entire disk volumes
including the system files that define volume structure. The disk
volumes can be single-device volumes or disk volume sets (which
consist of one or more single-device disks bound together).

One typical use of the DSC utilities is restoring volumes which were
backed up. The purpose for wusing a DSC program to back up a disk
volume is to save a copy of the volume 1in case the data on the
original wvolume 1is corrupted. When you back up a disk volume onto
another disk, you create a usable copy of the original disk. When you
back up a disk volume onto a tape set, you create a file which can
later be used to restore the original disk.

Another typical use of a DSC wutility 1is copying the VAX/VMS
distribution medium. This operation, which uses stand-alone NDSC-2, is
described in the VAX-1ll Software Installation Guide.

Other typical uses for the DSC wutilities, as described 1in the
following sections, are:

e Backing up the VAX/VMS system disk

e Backing up public or private disk volumes

e Compressing the files on a public or private disk volume
e Regqulating disk bad-block information

e Comparing the contents of two volumes

e Transporting volumes

4,1.1 Backing Up the VAX/VMS System Disk
Use the stand-alone DSC-2 program to back up a VAX/VMS system disk.

Immediately after installing a new version of VAX/VMS, whether from a
DSC copy of the distribution medium or from a VAX/VMS update kit, back
up the new system using DSC-2 hefore you bring up the installation for
general time-sharing usage.

DISK SAVE AND COMPRESS UTILITIES

The system manager should provide schedules that define when the
VAX/VMS operating system should be shut down to back up the system
disk. On these occasions, you follow the shut-down procedures in the
VAX/VMS Operator's Guide and then use the DSC-2 program to back up the
system disk.

Although you could use the online DSC2 program to back up a system
disk (executing the procedure from any user terminal), DIGITAL
recommends that back-ups of the system disk be done when the system is
shut down. You execute the procedure using DSC-2 from the system
console.,

Note that operators at installations that have only one disk drive
must use the stand-alone DSC-2 program to back up the disk (onto
maghetic tape). Refer to the VAX/VMS Operator's Guide for
instructions.

4,1.2 Backing Up Public or Private Disk Volumes

To back up public or private disk volumes onto disk, refer to the
VAX/VMS Operator's Guide. Refer to the examples in this chapter if
you are requested to copy the contents of the volume(s) to magnetic
tape.

Use the online DSC programs DSC2 (for Filés-11 Structure Level 2
volumes) or DSCl (for Files-11 Structure Level 1 volumes) to back up
public and private disk volumes.

4,1.3 Compressing the Files on a Public or Private Disk Volume

To compress files on a disk volume (if backing up to tape) you back up
the wvolume and then immediately restore it. Because of the way DSC
programs execute, you cannot back up a volume without that volume
being compressed. How much compression occurs depends upon how the
volume has been used. For example, there may be very little
compression on a volume that has been used as a private volume; but
there may be a great deal of compression on a volume that has become
fragmented through general use.

4.1.4 Regulating Disk Bad Block Information

You may need to establish and keep current the bad block information
on the disk devices at your installation.

Bad block information is established for a disk when it is initialized
as a Files-11 volume. Section 5.2 describes how the DCL command
INITIALIZE command formats and labels a disk as a Files-11 volume;
refer to the VAX/VMS Command Language User's Guide for a complete
description of the INITIALIZE command.

DISK SAVE AND COMPRESS UTILITIES

As a disk device is used, the probability of a disk data error
increases. To ensure that only good data blocks are allocated to
users of a disk, you may need to establish a procedure that revises

the bad block information on a disk device. One such procedure could
be:

1. Run a DSC program to back up a disk volume, either to
magnetic tape or to another disk (that contains up-to-date
bad block information).

2. Run the Bad Block Locator (BAD) utility program (described in
Chapter 5) to determine the number and location of bad blocks
on the disk which you have just bhacked up. You supplement
the bad block information on the disk with the bad blocks
located by BAD.

3. Run the DSC program again to restore the original volume.

4.1.5 Comparing the Contents of Two Volumes

You can use a DSC program to compare the contents of two disk volumes
or the contents of a disk volume and a tape set. For example, suppose
you are using DSC to make 10 copies of a disk volume. You could
execute the DSC program 10 times, each time copying from the original
volume to a new volume, and each time specifying the Verify qualifier
to ensure that the volumes are identical. (Refer to Section 4.3.3 for
information on the use of the Verify qualifier.)

Or, you could save time by wusing the DSC Compare qualifier. The
procedure would be:

1. Back up the original wvolume wusing DSC with the Verify
qualifier.

2. Using the output volume from the previous NDSC operation each
time as the input volume to the next operation, execute DSC
nine more times, without the Verify qualifier.

3. Finally, use DSC with the Compare qualifier to compare the
contents of the first output volume and the last output
volume. If the volumes compare successfully, all 10 copies
are good; 1if the volumes do not compare, the operations must
be repeated.

You must decide whether the time saved by wusing this procedure |is
worth the (slight) risk of <complementary errors being carried
throughout the operations.

NOTE
Because the DSC programs do not support

tape-to-tape transfers, they cannot be
used to compare tape sets,

4,1.6 Transporting Volumes

The DSCl program provides a way to transport the contents of Files-11
Structure Level 1 volumes between VAX/VMS installations and bhetween
VAX/VMS and RSX-11M, RSX-11M-PLUS, and IAS installations. For

DISK SAVE AND COMPRESS UTILITIES

example, you may need to deliver the contents of several disk volumes
to another system. If it is impractical to physically deliver the
disk volumes, you can use the DSCl program to save the volumes on tape
sets and deliver the tape sets to the other installation. The
operator at that installation can then restore the volumes from the
tape sets using the DSCl program.

Similarly, the DSC-2 and DSC2 programs can be wused to transport
Files-11 Structure Level 2 volumes between VAX/VMS systems.

4,1.7 Device Transfers Supported by DSC Programs

The DSC programs support single- and multivolume file transfers
between disk devices and between disk and 9-track magnetic tape
devices. DSC programs do not support transfers between magnetic tape
devices. All devices supported by VAX/VMS, as listed in Appendix A,
are supported by the DSC programs.

Note an important distinction between disk-to-disk transfers and
disk-to-tape transfers. When a DSC program is used to back up a disk
to another disk, that output disk is a usable disk volume. However, a
tape set produced by a DSC program has no use, except to be input to

another DSC operation which is used to restore a disk from that tape
set.,

4.2 SPECIFYING DSC COMMANDS

This section describes how to invoke and terminate the DSC programs,
enter DSC command strings, and define DSC operations.

4.2.1 Invoking and Terminating Online DSCl and DSC2

To invoke DSCl or DSC2, type one of the following commands in response
to the DCL prompt.

For DSCl:

$ RUN SYSS$SYSTEM:DSC1l
For DSC2:

$ RUN SYSSSYSTEM:DSC2
The utility will reply with a prompt, indicating that it is ready to
accept a command string. The prompts are DSC> and DSC2>. You enter a
command string (followed by a carriage return) for the operation vyou
want performed. If the operation is successful, no completion message
will be displayed, and the utility will prompt for another command
string.

Terminate DSC by typing <CTRL/Z> in response to the DSC prompt.

4.,2.2 Invoking and Terminating Stand-alone DSC-2

The stand—-alone DSC-2 program does not run under control of the
VAX/VMS operating system. It is a component in the VAX-11 Diagnostic
Package, and is distributed on floppy diskettes with the package.

4-5

DISK SAVE AND COMPRESS UTILITIES

To invoke-DSC-2, follow the ©procedure "Backing Up Tape and Disk
Volumes," described in the VAX/VMS Operator's Guide. The DSC-2 prompt
is identical to the DSC2 prompt:

DSC2>

To terminate DSC-2, follow the procedure described in the VAX/VMS
Operator's Guide. :

4.2.3 ©Specifying the DSC Command String

The DSC command string specifies the operation that the DSC program is
to perform. The command string format is identical for the three DSC
programs. Note that the left side of the equal sign in this format
denotes output parameters, and the right side denotes input
parameters.

devcu: [,devcu:...] [dsclabel] [/qualifier(s)l=
devcu: [,devcu:...] [dsclabel] [/RW]
devcu

The physical device(s) to or from which data is to be
transferred, where dev is the 2-character device code, ¢ is the
device controller letter, and u 1is the device unit number,
followed by a colon (:). For example:

MTAO:

If there is more than one output device, specify each and
separate them with commas. For example:

MTAO: ,MTAl: ,MTB3:
dsclabel

An optional file 1label for the DSC file created when a
disk-to-magnetic tape operation is performed. If specified, the
label must be a 1- to l2-character alphanumeric label. If the
label is not specified in the output specification (disk-to-tape
operation), the volume label of the input disk volume becomes the
output DSC file 1label. If the label is not specified in the
input specification (tape-to-disk operation), the DSC programs
begin the operation with the first file on the first input device
in the command string.

For disk-to-disk operations, the label you specify becomes the
volume 1label of the output disk. If not specified, the output
disk volume label remains the same as the input disk wvolume
label.

Specify the label before any qualifiers.

/qualifier (s)
The output file qualifiers determine the operations to be
performed. They are defined in Table 4-1. They can be specified

in any order; for example, /DENS=1600/VE has the same effect as
/VE/DENS=1600.

DISK SAVE AND COMPRESS UTILITIES

/RW

The only valid input qualifier is /RW. When you specify /RW, the
DSC program first rewinds the tape reel mounted on the first
input device in the command string and then transfers data from
it.

Table 4-1
DSC Output File Qualifiers

Format Name and Function

/AP The Append qualifier appends files to the tape
volume specified by the first output device in
the command string. Use /AP with output tapes
only.

/AP is required if you want to preserve the
information on the output tape and the tape is
either at beginning-of-tape or vyou have also
specified the /RW output qualifier.

/BAD=MAN The Add Bad Blocks qualifier allows vyou to
supplement the output disk volume's bad block
file with manually entered bad blocks.

/BAD=NOAUTO The Ignore Bad Block File qualifier allows vyou
to ignore the bad block file on the output disk
for this operation. Using this qualifier
results in an allocated, but empty, bad block
file on the output disk volume.

/BAD=MAN :NOAUTO The Replace Bad Block File qualifier allows you
to replace the output disk's bad block file with
manually entered bad blocks during the DSC
operation.

/CMP The Compare qualifier does not produce data
transfers. When you use /CMP, you are comparing
the contents of the input device with the
contents of the output device, and identifying
any differences that may be present.

/DENS=1600 The Density qualifier allows you to create
output tape volumes recorded at 1600 bits per
inch (bpi). If not specified, output tapes are
recorded at 800 bpi.

/RW The Rewind qualifier causes the output tape
volume to be rewound before data is written to
it., Any data on the output tape is overwritten
unless the /AP qualifier is also specified.

/VE The Verify qualifier causes the DSC program to
compare the contents of the output and input
volumes and identify differences between them.
The verify operation occurs after the data
transfer has completed.

DISK SAVE AND COMPRESS UTILITIES

4.3 USING DSC PROGRAMS

This section demonstrates common uses of the DSC programs., Topics

include:
e Setting up for DSC operations
e Using DSC file labels
e Using DSC qualifiers

4.3.1

Setting Up for DSC Operations

There are several factors to <consider when setting up for DSC
operations:

User privileges required. If you are not the owner of a
volume that is to be backed up, you reed the VOLPRO privilege
to mount the volume using the MOUNT/FOREIGN command.

Foreign mounting of output devices. All DSC output devices
(both disk and tape) must be mounted with the DCL command
MOUNT using the /FOREIGN qualifier.

Valid scratch devices. Ensure that all output devices are
valid scratch devices. Remember that most DSC operations
destroy the original contents of the output volumes.

Physical device names. Use only physical device names in
input and output device specifications. Using logical names,
although valid, increases the risk of inadvertently specifying
an input volume as an output device. DSC programs initialize
output disks before transferring data to them.

Placed files. Since the DSC programs do not support files
created with placement controls, do not execute DSC to save or
compress disks unless you and the volume's owner agree that
file placement controls can be destroyed. For information
about file placement controls, refer to the RMS-11 User's
Guide or the VAX-11 Record Management Services Reference
Manual.

Index file placement. When you use the INITIALIZE command to
initialize a disk volume, you can specify the placement of the
index file for the volume's directory structure by means of
the /INDEX qualifier. (See the VAX/VMS Command Language
User's Guide for information on INITIALIZE.) However, when you
use DSC to 1initialize an output disk, it always places the
index file at the beginning of a disk volume.

Allocation errors when backing up a system disk. An
allocation error that occurs during a back-up of the system
disk usually indicates that the output disk contains too many
bad blocks and does not have enough contiguous space for some
of the larger contiguous system files. Retry the operation,
using another output disk.

Single disk systems. If your installation is configured with
only one disk drive, vyou must use the stand-alone DSC-2
program to perform the operations described in this chapter.
Once in the stand-alone environment provided by DSC-2, you can
perform all of the online NDSC2 functions described in this
chapter.

DISK SAVE AND COMPRESS UTILITIES

4.3.,2 Using File Labels

For disk-to-tape operations, use DSC file labels to 1identify tape
volumes as DSC-produced files.

If you do not specify an output file label, the DSC programs wuse the
input disk volume label to construct DSC file label(s) for the output
tape volume(s). When you specify an output DSC file 1label, the DSC
programs construct output tape file labels from the label you provide.

If you do not specify an input file label during a restore operation
from tape, the DSC programs transfer the first DSC-produced file from
the first input tape device in the command string. When you specify
an input file 1label during a restore operation from tape, the DSC
programs search for that file and begin the operation, if the file |is
found. Otherwise, the following error message is generated:

DSC -- *FATAL* 75 TAPE FILE file label NOT FOUND

For disk-to-disk operations, you may optionally use a DSC file label
to create a new volume label for the output disk.

Example: Saving a Private Volume Using DSC2

You are asked to save an RP06 wvolume with the disk volume label
FORTVOLV3 on tape. The DSC file label for the back-up tape set is to
be FORTBACKl. The back-up is expected to consume two full reels of
tape.

Mount the input disk on DBAl and the output tapes on MTAl and MTA2,
Invoke DSC2 and then enter the following command string in response
to the DSC prompt:

DSC2>MTAl: ,MTA2:FORTBACK1=DBAl:

This operation results in an output tape set containing the
multivolume file FORTBACKL.

Had you not specified the output file label, DSC2 would have used the
input disk's volume 1label to construct the output file label, which
would then be FORTVOLV3.

Example: Restoring a Private Volume Using DSC2

To restore the volume containing the file labeled FORTBACKl onto an
RP0O6, mount the input tape set, FORTBACKl, on MTAl and MTA2 and the
RP06 on DBA3. Invoke DSC2 and then enter the following command string
in response to the DSC prompt:

DSC2>DBA3:=MTAl: ,MTA2:FORTBACKI1

This operation results in a restored RP06 on DBA3 with the disk volume
label FORTVOLV3. Because vyou specified an input file label, DSC2
searched for that file before beginning the data transfers to the
output disk. Had you not specified an input file label, DSC2 would
have attempted to transfer the first DSC-produced file it found on
MTAl.)

In this case, FORTBACKLl was the only DSC-produced file on the tape.
If there were more than one DSC-produced tape file on the volume,
however, you would risk copying the wrong file to the output disk by
not specifying a file label.

DISK SAVE AND COMPRESS UTILITIES

4.3.3 Using the Verify Qualifier

Use the Verify (/VE) output qualifier when you want DSC to save, then
verify the copy in the same operation. Specifying /VE directs the DSC
program to compare each logical block on the input and output volumes
and to identify blocks that do not compare.

Note the difference between the use of the Compare qualifier (refer to
Section 4.3.7) and the Verify qualifier. DSC operations involving the
Compare qualifier produce no data transfers, but an operation
involving the Verify qualifier results in an output volume, then a
verification of that volume.

An example of using the stand-alone DSC-2 program to save and verify a
system disk is included in the VAX/VMS Operator's Guide.

Example: Backing Up and Verifying a Disk Volume Using DSC2

You are asked to back up an RP0O6 disk onto a tape, verifying the copy
and using the input disk's volume label (FORTDATAl) as the output tape
file label.

Mount the RP06 on DBB5 and the output scratch tape on MTA2. Invoke
DSC2 and them enter the following command string in response to the
DSC prompt:

DSC2>MTAl:/VE=DBB5:

The copy operation is completed before the verify operation begins,
When the copy 1is completed, the output tape is rewound, and DSC2
issues the following message as it begins the verify operation:

DSC -- 45 STARTING VERIFY PASS

As the verify operation proceeds, warning messages are issued 1if any
logical blocks do not compare. The messages are similar to the
following example:

DSC -- *WARNING* VERIFICATION ERROR ON DBB5:
FILE ID 000623,000004,000000,VBN 000000,000001

Note that the output tape is not rewound at the end of the DSC
operation unless more than a single volume (tape) is required. 1In
that case, all tape volumes will be rewound and unloaded when the
verification is complete.

Example: Backing Up and Verifying a Disk Volume Set Using DSC2

You are asked to back up onto magnetic tape and to verify the copy of
a disk volume set consisting of two RK0O7 disk volumes, mounted on DMAl
and DMA2. The volume set label is MASTER_SET. You have one tape
drive, MTAl, available. The backup will consume two reels of tape.

Invoke DSC2 and enter the following command string to back wup the
first volume in the set:

DSC2>MTAl :MASTER SET/VE=DMAl:

The result of this operation is that the contents of DMAl are copied
to the tape on MTAl until that reel 1is full. Then the tape is
rewound, and the copy (to that point) is verified. The tape 1is then
rewound and unloaded. DSC2 issues the following message:

DSC -- 44 MOUNT REEL 2 ON MTAl: AND HIT RETURN

DISK SAVE AND COMPRESS UTILITIES

At this point, remove the first backup tape and mount another on MTAl.
When vyou press carriage return, DSC resumes the backup operation and
issues the following message:

DSC -- 46 RESUME COPYING

The copy operation continues until the rest of DMAl has been
transferred. Then the verify operation resumes. DSC2 issues the
message:

DSC -- 45 STARTING VERIFY PASS

DSC2 then verifies the rest of DMAl. At the end of the operation, the
tape on MTAl 1is rewound and unloaded. Mount a new tape on MTAl and
enter another command string to back up the volume that is mounted on
DMA2:

DSC2>MTALl :MASTER_SET/VE=DMA2:

This second operation transfers DMA2 to magnetic tape.

4,3.4 Using the Density Qualifier

Use the Density (/DENS=1600) output qualifier when vyou want output
tape sets to be recorded at 1600 bpi. If you do not specify the

Density qualifier, output tapes are recorded at the default density of
800 bpi.

Note that the DSC programs automatically read DSC-produced tapes at
the recorded density when restoring disks from tape sets.

Example: Backing Up a System Disk to Tape at 1600 bpi

Using stand-alone DSC-2, you are to back up the system disk, an RPOA
with the volume label MYVMSRL1, onto a tape set recorded at 1400 bpi.
The DSC file label for the tape set is to be MONDAY; the tape drive
available for the back-up is MTA2.

Load the stand-alone DSC-2 program from the floppy diskette, Mount
the RP0O6 on device DBAO and the scratch reel on MTA2. To perform the

operation, enter the following command line in response to the DSC-2
prompt:

DSC2>MTA2:MONDAY/DENS=1600=DBA0:
The result of this operation is an output tape set with the DSC file

label MONDAY, recorded at 1600 bpi. You would specify this file label
in a DSC-2 operation to restore the system disk from the tape set.

4,3.5 Using the Rewind Qualifier

Use the Rewind (/RW) qualifier as an input qualifier when you want to
restore a disk from a tape set. Typically, you specify /RW when:

® You are certain that the first DSC-produced file on the first
mounted input tape is the correct file,

® You have specified an input DSC file 1label in the command
string and you want the first input tape rewound and searched
for that file label before the data transfer occurs

DISK SAVE AND COMPRESS UTILITIES

Use the Rewind qualifier as an output qualifier when you want to save
a disk onto a tape set. Typically, you would specify /RW when you
want output tapes rewound to beginning-of-tape before any data
transfers occur.

Example: Backing Up an RP06 Volume onto a Tape Set Using DSC-1

You are asked to back up an RP06 disk that is a Files-11 Structure
Level 1 volume. THE RP06 is on DBA6, and two tape drives, MTAl and
MTA2, are available for the backup. The DSC file label for the output
tape set is to be MRPMON.

Invoke DSCl and enter the following command string in response to the
DSC prompt:

DSC>MTAl:,MTA2:MRPMON/RW=DBAA :

The result of this operation is a copy of the RPOA on as many tape
reels as are necessary to contain the volume. The tape set created
has the DSC file label MRPMON. Because you specified /RW, the first
tape mounted on MTA2 is rewound before data is transferred to it.
Subsequent tapes mounted on MTA2 are also rewound before data is
transferred.

Example: Restoring an RP06 Volume from a Tape Set

To restore the RP06 in the example above from the tape set, mount the
RP06 on device DBB2 and the first and second relative volumes of the
DSC-produced file labeled MRPMON on MTA2 and MTAl. Enter the
following command string:

DSC>DBB2:=MTA2:,MTAl : MRPMON/RW

The result of this operation is a restored RP06 on device DBB2. The
DSC1l program checks for the correct DSC-produced file label and volume
sequence number after rewinding the tape on MTA2 and starts the
transfer. The restore operation continues between tapes on MTA2 and
MTAl. When the contents of one tape are transferred, 1t 1is rewound
and unloaded as the transfer continues from the next tape. When the
last tape volume has been transferred, it is rewound and unloaded. As
the copying proceeds from reel to reel, DSC checks the volume sequence
number to ensure that the tapes are mounted in the correct order.

4.3.6 Using the Append Qualifier

Use the Append (/AP) output qualifier to add a DSC file to a tape
volume that already contains other DSC-produced files. Typically, the
Append qualifier is used to copy the contents of several small disk
volumes to a tape set. Note that you use /AP only when appending
separate DSC-produced files to an output tape set. Also, you can
append DSC files to only the first volume in an output tape set. ’

Example: Backing Up Three Separate Disk Volumes Using DSCl

You need to back up onto tape three RK07 disk volumes with volume
labels FORTVOLO1l, FORTVOL02, and FORTVOLO3.

The first RKO7 is mounted on the only available disk device, DMAl, and
scratch tapes are mounted on devices MTAl and MTA2.

DISK SAVE AND COMPRESS UTILITIES

Invoke DSCl and start the first of three operations required by
entering the following command string in response to the DSC prompt:

DSC>MTAl:,MTA2:/RW=DMAl:

The result of this operation is a copy of FORTVOL0Ol to the tape on
MTAl, with the output DSC file label FORTVOLOl. The output tape has
been rewound. At this time, physically dismount the first RKO0O7 and
replace it with the second RKO7. To begin the second operation type
the following:

DSC>MTAl: ,MTA2:/AP=DMAl:

The result of this operation is a transfer of the second RK0O7 volume
to the tape on MTAl. If the transfer did not fill the reel, you can
append FORTVOLO3 to that reel, by following the same procedure. If
necessary, the third volume can continue onto MTA2, and onto as many
other tape volumes as necessary to complete the transfer.

If the transfer did fill the reel, that reel would be rewound and
unloaded, and the transfer of FORTVOL02 would continue on MTA2. 1In
this situation, you cannot append FORTVOL0O3 to the tape set, because
an Append qualifier can be used only to append files to the first
output volume in a tape set.

4,3.7 Using the Compare Qualifier

Use the Compare (/CMP) output qualifier to compare the contents of two
single-volume disks or a single-volume disk and a DSC-produced tape
set.

Example: Comparing a Disk to a Tape Set Using DSC2

You have been asked to use DSC2 to compare the contents of a 2-volume
tape set which has the DSC label PAYBACKUP with the RP0A disk volume
labeled PAYMASTER.

Mount the RP06 on device DBA2 and the tape volumes on MTA2 and MTA3.
Invoke DSC2 and enter the following command string in response to the
DSC prompt:

DSC2>DBA2:/CMP=MTA2: ,MTA3:PAYBACKUP/RW
The result of this operation is a listing of the blocks that do not
compare. For each block that did not compare, a message similar to

the following is issued:

DSC -- *WARNING* 42 VERIFICATION ERROR ON DBA2:
FILE ID 000221,000050,000000,VBN 000026,000013

This operation produces no data transfers: the contents of both input
and output volumes are unchanged. Thus, the same results could have
been obtained had you executed the operation by typing:

DSC2>MTA2: ,MTA3:PAYBACKUP/RW/CMP=DBA2:

NOTE

When comparing a tape set with a disk
which was not the input disk when the
tape was created, it is recommended that
the tape be specified as input.

4-13

DISK SAVE AND COMPRESS UTILITIES

4.3.8 Using Bad Block Qualifiers

On occasion you may need to use a DSC program to regulate the contents
of a disk volume's bad block file before you restore that disk. On
most disks, as described in Section 5.1.2, the last several blocks
contain a description of the bad blocks on the disk. This description
is left by the formatter or by the BAD utility. By default, DSC
constructs the volume's bad block file (BADBLK.SYS) from this data.
The bad block file includes the bad blocks and the bad block
description.

The DSC programs provide three output qualifiers for bad block
manipulation.

Qualifier Function

/BAD=MAN Adds logical block numbers to the disk's bad
block file

/BAD=NOAUTOQ Ignores the disk's bad block information for

the following DSC operation

/BAD=MAN :NOAUTO Replaces the disk's bad block information
with the logical block numbers entered during
the operation

NOTE

General procedures for establishing and
maintaining the disk bad block file are
described in the VAX/VMS Operator's
Guide. That manual defines the
situations in which vyou use other
methods for manipulating the contents of
disk volume bad block files. See also
the Bad Block Locator Utility (BAD),
described in Chapter 5, below.

4.3.8.1 Using the /BAD=MAN Qualifier - If you 1include the /BAD=MAN
qualifier in the DSC command string, the utility will prompt you for
the logical block numbers of the bad blocks that you want to add to
the volume's bad block file.

DSC>BAD=
You can enter the bad block numbers individually, pressing carriage
return after each entry, or you can enter the bad block numbers in
groups. For example:

DSC>BAD=702.:3

DSC>BAD=621.,622.

DSC>BAD=4057.
The first command enters bad blocks numbers (in decimal) 702, 703, and

704; the second command enter blocks 621 and 622; the third command
enters block 4057.

DISK SAVE AND COMPRESS UTILITIES

To terminate the 1list, press return 1in response to the prompt
DSC>BAD=,

The bad blocks entered manually become part of the disk's bad block
file; however, they do not become part of the permanently recorded
bad block description. This means that if the disk is later written
onto by DSC, the bad blocks that you have previously entered will be
forgotten.

4,3.8.2 Using the /BAD=NOAUTO Qualifier - Disk bad block files
prevent data corruption by not allowing the blocks marked as bad to be
written into by user programs. However, there may be occasions which
force you to ignore the bad block file on an output disk in order to
complete a DSC operation., - For example, it may be impossible to
allocate a very large contiguous file on the output disk, due to bad
blocks. On some disks, such as the RP06, it is possible to use the
bad blocks and rely on ECC correction. (This technique is not advised
where high data reliability is of paramount importance.)

Enter the following command string:

DSC2>DBA2:/BAD=NOAUTO=DBALl:

4.3.8.3 Using the /BAD=MAN:NOAUTO Qualifier - To replace a disk's bad
block file with a new list of bad blocks, include the /BAD=MAN:NOAUTO
qualifier in the DSC command string, as in the following example:
DSC2>DBA5:/BAD=MAN :NOAUTO=DBAG6 :
DSC2 prompts for the bad block numbers:
DSC>BAD=
You respond with the appropriate numbers, as shown in Section 4.3.9.1.
After the list is terminated by your responding with a <RET> to the

DSC prompt, the bad blocks that you entered replace the bad blocks in
the bad block file. Then disk-to-disk transfer begins.

4.4 AUXILIARY PROCEDURES FOR DSC OPERATIONS
Two procedures are useful to DSC users:
e Translating file identifications into file specifications

e Converting physical disk addresses to logical block numbers

4.4.1 Translating File Identifications into File Specifications

Many of the DSC messages report the file identification of a disk
volume's file. While a file identification is useful to identify a
unique file in a disk volume (or disk volume set), it does not tell
you who 1is the owner of the file; what is the owner's UIC; what is
the file name, file type, and version number; or what protection
codes are associated with the file.

DISK SAVE AND COMPRESS UTILITIES

You may need to translate a file identification from its virtual block
number format to a more readable form. You can do this using the MCR
DUMP command.

For example, DSC-2 may issue the following message during a back-up
operation:

DSC -- *WARNING* 41 I/0 INPUT ERROR I ON DBl: FILE ID 000050,000002

This back up operation continues to completion. To find out more
information about the deleted file (it was not copied to DBA2), use
the following procedure:

1. Reboot the VAX/VMS operating system here on DBAl).

2. Enter the following command string in response to the DCL
prompt:

§ MCR DMP TI:=DBAl:/FI:50:2/HD/BL:0

The file header (FILE ID 000050,000002, given in the warning
message above) is printed at the terminal.

From the record of this display, you can identify the file
specification and judge whether the deletion was appropriate. If not,
you may heed to repeat the back-up -or take some other action to
restore the file,

4.4.2 Converting Disk Addresses to Logical Block Numbers

Some disk manufacturers provide a list of bad blocks with a disk
device when it 1is shipped from the factory. Some disk diagnostic
programs (including the program ESRAC 1in the VAX-11 Diagnostics
Package) can be run to generate a list of bad blocks on a disk.
Often, these lists identify bad blocks by cylinder, track, and sector
number.

If you want to use a DSC program to enter these bad blocks into a
disk's bad block file, you must convert these physical addresses into
logical block numbers. The /BAD=MAN and the /BAD=MAN :NOAUTO
qualifiers require logical block numbers.

To convert physical addresses to logical block numbers, use the
following procedure:

1. If necessary, convert the «cylinder, track, and sector
addresses to decimal numbers.

2. Use the following formula to define the logical block number
of the bad block:

LBN = (((cylinder number * tracks-per-cylinder)+ track number)
* sectors-per—-track) + sector number

DISK SAVE AND COMPRESS UTILITIES

For example, a diagnostic program has reported a data error on an RP06
disk at cylinder 198, track 5, and sector 8. An RP06 contains 19
tracks per cylinder and 22 sectors per track. Applying the formula
produces the following result:

LB2 = (((198. * 19.) + 5.) * 22.) + 8.

((3762. + 5,) * 22.) + 8.

(3767. * 22.) + 8.

82874. + 8.

82882,

The logical block number 82882, can now be used in a DSC command.

4.5 DSC MESSAGES AND ERROR RECOVERY PROCEDURES

This section defines the formats of messages displayed by the DSC
programs, explains the meaning of each message, and indicates the user
action needed (if any) to correct the situation that caused the
message to be generated.

4.5.1 DSC Message Categories
There are four categories of DSC messages:

1. Information messages. These messages, displayed during DSC
processing, provide the operator with information about the
current DSC operation, For example:

DSC -- 45 STARTING VERIFY PASS

2, Instruction messages. These messages are displayed when
operator action is required to continue the current DSC
operation. The operation pauses until the operator performs
the requested action, then resumes. For example:

DSC -- 44 MOUNT REEL 2 ON MTAl: AND HIT RETURN

3. Warning messages. These messages are displayed when a
condition is detected that could cause a fatal error during
subsequent DSC operations or could affect the validity of the
operation. DSC processing continues as warning messages are
displayed. For example:

DSC -- *WARNING* 56 OUTPUT DISK DBAl: IS NOT BOOTABLE

4, Fatal messages. Fatal messages terminate the current DSC
operation; the program prompts for another command string.
You must correct the condition that caused the message and
retry the DSC operation or vyou must terminate the DSC
program. For example:

DSC -- *FATAL* 40 I/0 ERROR F ON DBA2:
PRIVILEGE VIOLATION
000360

DSC2>

DISK SAVE AND COMPRESS UTILITIES

4.5.2 1Interpreting DSC Messages

Some DSC error messages, including those classified as 1I/0 error
messages, contain error codes, the meanings of which provide
supplementary information about the error condition. Table 4-2
defines these codes.

Table 4-2
Error Codes in DSC Messages

Type of Message Code Meaning

General “ CODE A Failed to read storage map header

Error

Messages CODE B Input data out of phase
CODE C Nondata block encountered
CODE D Input file out of phase
CODE E File attributes out of phase
CODE F File header out of phase

I1/0 A Reading index file bit map

Error

Messages B Reading index file header
C Reading storage bit map
D Reading boot or home block
E Reading file header
F Input (or output) device
G Writing index file bit map
H Writing storage bit map header
I Reading input device
J In input tape labels
K Reading file attributes
L ' Readiné file header
M Reading index file data
N Reading summary data
0] Writing file header

DISK SAVE AND COMPRESS UTILITIES

4,5.3 DSC Messages

The general DSC messages are listed below with explanations and
suggested user actions. Section 4.5.4 lists the DSC I/0 messages., In
both sections the following notations are used:

FILE ID n File identifications are displayed as two or three
numbers, for example:

FILE ID 000050,000002
FILE ID 000654,003456,000001

VBN n VBNs are displayed as two numbers, for example:
VBN 000000,000001

aan: The physical device

"label" The DSC-produced file label

1 UNDEFINED ERROR

Explanation: An unidentifiable internal error was encountered.

User Action: First, retry the operation. 1If the error recurs,
submit a Software Performance Report (SPR).

2 CONFLICTING DEV. TYPES

Explanation: An 1illegal combination of device types was
specified.

User Action: Check for typographical errors in device
abbreviations; make sure that disks and tape drives are not
specified on the same side of the command string.

3 MIXED TAPE TYPES

Explanation: Two different types of tape drive were specified in
the command string.

User Action: Reenter the command specifying only the magnetic
tape drive.

4 ILLEGAL SWITCH

Explanation: The command string was entered with a qualifier
that cannot be used. i

User Action: Reenter the command with all qualifiers correctly
specified.

5 FILE LABEL TOO LONG

Explanation: A file label consisting of more than 12 characters
was specified.

User Action: Correct the file label, and retry the operation.

DISK SAVE AND COMPRESS UTILITIES

6 SYNTAX ERROR
Explanation: An error in the command string format occurred.
User Action: Check the command, and reenter the command in the
correct order.

7 DUP. DEV. NAME

Explanation: The same device was specified more than once in the
command string.

User Action: Reenter the command, specifying each device only
once,
8 TOO MANY DEV'S

Explanation: More than eight devices were specified on one side
of the command string.

User Action: Reenter the command, specifying no more than eight
devices per side.
9 DEV. aan: NOT IN SYSTEM

Explanation: The specified device 1is not present in the
configuration of the operating system being used.

User Action: Check the device identifier that was entered in the
command string, and reenter the command.
10 DEV. aan: NOT FILES-11

Explanation: The specified input device is not formatted as a
Files-11 device.

User Action: Check the input device to -ensure it 1is the one
desired, and reenter the command.
11 BAD BLOCK SYNTAX ERROR

Explanation: A syntax error occurred when bad block data was
entered manually.

User Action: Check the command that was entered, and reenter it
correctly.
12 BAD BLOCK COUNT TOO LARGE

Explanation: Too many bad blocks were manually entered 1in a
single group.

User Action: Check the blocks being entered. 1If possible, enter
one large group instead of several small groups.

13

14

15

16

17

18

19

DISK SAVE AND COMPRESS UTILITIES

BAD BLOCK CLUSTER OUT OF RANGE

Explanation: A manually entered bad block or group of bad blocks
did not exist on the output disk.

User Action: Check the numbers of the blocks entered, and
reenter them correctly.
OUTPUT TAPE aan: NOT AT BOT

Explanation: The specified continuation tape was not at load
point,

User Action: Remount or reset the tape at 1load point, and
reenter the command.
OUTPUT TAPE aan: FULL

Explanation: The specified tape 1is full; data cannot be
appended to it.

User Action: Reenter the command, and change the output tape.

OUTPUT TAPE aan: NOT ONLY REEL IN SET
Explanation: An illegal append operation was attempted.

User Action: Reenter the command, and either omit the Append
qualifier to write to the specified tape or change tapes.

TAPE aan: NOT ANSI FORMAT

Explanation: If aan: 1is an input tape, it is not in the correct
format. If an output tape, an 1illegal Append qualifier was
specified.

User Action: For input, check the tape format and change the
tape, 1if necessary. For output, either change tapes or omit the
Append qualifier from the command string.

OUTPUT TAPE aan: NOT DSC TAPE

Explanation: An append operation was attempted to a tape that
was not created by DSC.

User Action: Reenter the command, and either omit the Append
qualifier or change tapes.

TAPE aan: A CONTINUATION TAPE

Explanation: If aan: is an output tape, an 1illegal append
operation was attempted. You can use the Append qualifier only
on the first volume of a tape set. If aan: 1is an input tape,
the tape was mounted out of sequence.

User Action: Reenter the command, and change the output tape, or
reenter the command, and specify the input tapes in the correct
order.

DISK SAVE AND COMPRESS UTILITIES

20 CANNOT DETERMINE DENSITY OF TAPE aan:

Explanation: Either the tape is recorded at a density that DSC
cannot use or a hardware error has occurred.

User Action: Retry the operation. 1If the error recurs, notify
the owner of the tape that it cannot be used. If it is
determined later that the tape 1s recorded at the correct
density, contact DIGITAL Field Service to report a possible
hardware error.

21 FAILED TO FIND HOME BLOCK aan:
Explanation: A read error occurred during an attempt to copy
from the input disk. Either the disk is bad, the home block is
bad, or the disk is not in Files-1ll format.
User Action: Check the disk in question, change disk drives 1if
possible, and reenter the command.

22 FILE STRUCTURE LEVEL ON aan: NOT SUPPORTED

Explanation: The specified DSC utility- program and the structure
level of the specified volume did not agree.

User Action: Replace the device, and retry the operation.

23 I/0 ERROR A ON aan:

Explanation: One or more messages will accompany this message,
explaining why the specified file could not be read.

User Action: Retry the operation.

24 I/0 ERROR B ON aan:

Explanation: One or more messages will accompany this message,
indicating that an I/O error occurred and explaining why the file
header on the device could not be read. The specified file was
lost.

User Action: Retry the operation after correcting the cause of
the error on the device.
25 CODE A aan:

Explanation: The file header for the storage bit map file could
not be read.

User Action: The disk 1is wunusable and therefore cannot be
copied.

26

27

28

29

30

31

32

33

DISK SAVE AND COMPRESS UTILITIES

I/0 ERROR C ON aan:
Explanation: One or more messages will accompany this message,
explaining that an I/0 error occurred during an attempt to read
the specified file.

User Action: Retry the operation.

I/0 ERROR D ON aan:
Explanation: A diagnostic message will accompany this message,
indicating that a read error occurred during an attempt to read
the name or boot block of the disk,

User Action: Retry the operation on a new drive.

RELATIVE VOLUME n OF SET NOT MOUNTED
Explanation: The specified tape is not on the system.

User Action: Mount the tape, and reenter the command.

Reserved

Reserved

I/0 ERROR E ON aan: FILE ID n
Explanation: One or more messages will accompany this message,
explaining that an I/0 error occurred during an attempt to read
the specified file header.

User Action: Retry the operation.

INPUT DEVICE aan: FILE ID n NOT PRESENT

Explanation: The specified file did not have a file header in
the index file; the file was not copied.

User Action: This is a warning only. If desired, the operation
can be retried on a different disk drive.

INPUT DEVICE aan: FILE ID n IS DELETED

Explanation: The specified file was found to be partially
deleted on the input disk and was not copied.

User Action: This is a warning only. No action is required.

DISK SAVE AND COMPRESS UTILITIES

34 INPUT DEVICE aan: FILE ID n UNSUPPORTED STRUCTURE LEVEL
Explanation: The file's structure level recorded in the file
header did not match the volume's structure level. This

inconsistency is probably due to a garbled file header. There is
no such file as n.

User Action: No user action is necessary.

35 INPUT DEVICE aan: FILE ID n FILE NUMBER CHECK

Explanation: An incorrect file header was read from disk causing
the specified file to be lost.

User Action: Retry the operation.

36 INPUT DEVICE aan: FILE ID n FILE HEADER CHECKSUM ERROR

Explanation: Incorrect file header contents caused the specified
file to be lost,

User Action: Retry the operation.

37 INPUT DEVICE aan: FILE ID n SEQUENCE NUMBER CHECK
Explanation: The sequence number was incorrect.

User Action: Retry the operation, and/or replace the disk.

38 INPUT DEVICE aan: FILE ID n SEGMENT NUMBER CHECK

Explanation: The linkage connecting file segments was broken;
the specified file was lost.

User Action: Retry the operation.

39 DIRECTIVE ERROR - n

Explanation: An internal error occurred, usually the result of a
system overload,

User Action: Retry the operation.

40 I/0 ERROR F ON aan:

Explanation: One or more messages will accompany this message,
indicating that the specified input or output device may
subsequently cause an error.

User Action: This message is a warning only. No action is
required unless another error message is displayed. 1If another
error message is displayed, correct the cause of the -error and
reenter the command.

DISK SAVE AND COMPRESS UTILITIES

41 I/0 ERROR I ON aan: FILE ID n, VBN n

Explanation: One or more messages will accompany this message,
indicating that an I/0 error occurred that resulted in bad data
being read from the specified wvirtual block number on the
indicated device.

User Action: This 1is a warning message only. The block
specified .should be examined to determine the extent of the
error.

42 VERIFICATION ERROR ON aan: FILE ID n, VBN n

Explanation: This is a warning signifying that one block of the
input and output devices did not match.

User Action: When the operation is complete, you should decide
whether the mismatch requires that you retry the operation.

43 BAD DATA BLOCK ON aan: FILE ID n, VBN n
Explanation: A parity error occurred during an attempt to copy
the block's contents from disk. The block specified on the
output disk contains erroneous data.
User Action: When the copy operation 1is completed, the data
contained in the specified block should be examined and
corrected.

44 MOUNT REEL n ON aan: AND HIT RETURN

Explanation: This is an instruction only.

User Action: Mount the volume number requested on the specified
tape drive, and enter a carriage return when ready.

45 STARTING VERIFY PASS
Explanation: This is simply a message informing vyou that the
copy operation is complete and DSC is initiating the verify pass
(/VE was specified).

User Action: No user action required.

46 RESUME COPYING
Explanation: This is simply a message informing vyou that the
verify pass is complete (/VE was specified) and DSC is continuing
the copy operation.

User Action: No user action required.

DISK SAVE AND COMPRESS UTILITIES

47 aan: IS WRITE LOCKED. INSERT WRITE RING AND HIT RETURN

Explanation: The tape on the specified tape drive cannot be
written on until a write-enable ring is inserted.

User Action: Make sure the tape is the one you want, insert the
write ring, and press return.

48 INPUT FILE ON aan: WILL BE RESYNCHRONIZED
Explanation: The tape position was lost during an attempt to
read the input tape. The file specified in the message, as well
as some subsequent files, may be lost. Additional errors will

probably occur.

User Action: letry the operation from the beginning.

49 OUTPUT DEVICE aan: FULL FILE ID n
Explanation: The specified device is full and cannot accommodate
the data following the specified file. This may mean that more
data than anticipated was transferred due to an inconsistency 1in
the input tapes. Or, the output device may contain too many bad
blocks to allocate a large contiguous file.

User Action: FEReenter the command, using a larger output disk.

50 OUTPUT FILE HEADER FULL ON aan: - FILE ID n
Explanation: Too many blocks on the output disk have caused
inconsistencies in file header data. The specified file was
lost.

User Action: Retry the operation with a different output disk.

51 OUTPUT FILE HEADER ON aan: NOT MAPPED - FILE ID n

Explanation: Space for the specified file header was not
allocated. The file was lost.

User Action: Retry the operation; a new disk may be required.

52 I/0 ERROR G ON aan:
Explanation: One or more messages will accompany this message,
indicating that an I/0 error occurred during an attempt to write
the specified file.

User Action: Retry the operation.

53

54

55

56

57

58

59

DISK SAVE AND COMPRESS UTILITIES

FAILED TO READ FILE EXTENSION HEADER ON aan: - FILE ID n
Explanation: During an attempt to copy data from the input disk,
an extension header was searched for, but not found. The
remainder of the specified file was lost. A problem may exist
with the input disk, or a previous I/0 error may have caused an
inconsistency.

User Action: Retry the operation.

FAILED TO ALLOCATE HOME BLOCK aan:

Explanation: The home block could not be created on the
specified disk device because it has too many bad blocks.

User Action: Replace the device, and reenter the command.

INDEX FILE ALLOCATION FAILURE aan:

Explanation: Too many bad blocks exist to allow the allocation
for the specified file.

User Action: Replace the disk, and reenter the command.

OUTPUT DISK aan: IS NOT BOOTABLE

Explanation: Logical block number 0 of the specified disk or
tape is bad.

User Action: This is a warning only. No action is required.

INVALID BAD BLOCK DATA aan:
Explanation: The bad block data on the output disk is invalid.
User Action: Run the BAD utility on the disk, manually enter bad
block data, or reenter the command using a new disk.

BAD BLOCK FILE FULL aan:
Explanation: Too many bad blocks exist on the output disk.

User Action: Replace the disk, and reenter the command.

NO BAD BLOCK DATA FOUND aan:

Explanation: No bad block data exists for the specified output
disk.

User Action: If bad block data 1is not desired, ignore the
message. Otherwise, run the BAD program on the disk, manually
enter bad block data, or reenter the command using a new disk.

DISK SAVE AND COMPRESS UTILITIES

60 OUTPUT DEVICE aan: IS A DIAGNOSTIC PACK. DO NOT USE IT!

Explanation: The specified output disk is a diagnostic pack and
cannot be used.

User Action: Mount another output disk, and reenter the command.

61 CODE B ON aan: FILE ID n - VBN n EXPECTED, m FOUND

Explanation: The tape position was lost during an attempt to
read the virtual block number specified. Some data may be lost.

User Action: Determine the extent of the error. If necessary,
try the tape on another drive or create another tape.

62 CODE C ON aan: FILE ID n - VBN n

Explanation: The position of the tape was lost during an attempt
to read the specified data file. Data beyond the virtual block
number specified was lost.

User Action: Re-create the tape or retry the operation on a
different tape drive.

63 CODE D ON aan: FILE ID n EXPECTED, m FOUND

Explanation: The tape position was lost during an attempt to
read the specified tape. All of "n" and some of "m" were lost.

User Action: Retry the entire operation.

64 FAILED TO MAP OUTPUT FILE ON aan: FILE ID n, VBN n

Explanation: An inconsistency occurred during an attempt to
write the specified file to the output disk. The file header did
not specify the correct number of wvirtual blocks required to
write the file and the file was lost.

User Action: Retry the operation.

65 OUTPUT DISK aan: IS TOO SMALL - n BLOCKS NEEDED

Explanation: The output disk is not large enough to accommodate
the data to be transferred.

User Action: Retry the operation specifying a 1larger output
disk.

66 I/0 ERROR CODE C ON aan:

Explanation: One or more messages will accompany this message,
explaining that an I/0 error occurred during an attempt to read
the specified file.

User Action: Retry the operation.

DISK SAVE AND COMPRESS UTILITIES

67 I/0 ERROR CODE H ON aan:
Explanation: One or more messages will accompany this message,
explaining that an I/0 error occurred during an attempt to write
the specified file.

User Action: Retry the operation.

68 I/0 ERROR CODE J ON aan:
Explanation: One or more messages will accompany this message,
explaining that an I/O error occurred during an attempt to read
the tape labels on the specified device.

User Action: Retry the operation on a different tape drive.

69 INPUT TAPE ON aan: MUST BE AT BOT
Explanation: The specified tape must be at the beginning of the
tape (BOT) or at its load point., This message is also displayed
during a verify operation to indicate that the current volume is
rewinding to enable the verify pass.
User Action: 1If /VE was not specified, check the tape and
remount at load point,

70 WRONG INPUT TAPE ON aan: EXPECTING "label", FOUND "label"
Explanation: The input tapes were specified out of sequence.
User Action: Check the tapes and reenter them in the correct
order after receiving mount instructions.

71 CODE E ON aan: AFTER FILE ID n
Explanation: This is the result of a read error from tape.
During an attempt to read an attribute block, some other block

was accessed. The file following the file specified in the error
message was lost.

User Action: Retry the operation.

72 1/0 ERROR K ON aan: AFTER FILE ID n

Explanation: One or more messages will accompany this message,
indicating that an I/0 error occurred during an attempt to read
the specified file.

User Action: Retry the operation.

73 I/0 ERROR L ON aan: AFTER FILE ID n

Explanation: One or more messages will accompany this message,
indicating that an I/0 error occurred during an attempt to read
the file header.

User Action: Retry the operation.

DISK SAVE AND COMPRESS UTILITIES

74 INPUT TAPE aan: RESYNCHRONIZED AT FILE ID n

Explanation: The tape position was recovered. Some data
preceding the file specified was lost.

User Action: This message is usually displayed with one or more
error messages, all indicating that the input tape was either
read incorrectly or recorded badly. The tape should be
re-created and the operation reinitiated.

75 TAPE FILE "label" NOT FOUND aan:

Explanation: The input tape specified does not contain the file
identified as "label."

User Action: Check the file label and the tape, and reenter the
command when the correct tape and file label are specified.
76 EXPECTED EXTENSION HEADER NOT PRESENT ON aan: - FILE ID n

Explanation: A tape read error occurred, causing the specified
file to be lost.

User Action: If the error message was preceded by one or more
I/0 warning messages, the operation should be retried. 1If not,
the input tape is bad and should be regenerated.
77 CODE F ON aan: AFTER FILE ID n

Explanation: This is the result of a read error from tape.
During an attempt to read a file header, some other block type
was accessed. The file following the file specified in the error
message was lost.

User Action: Retry the operation.

78 I/0 ERROR M ON aan:

Explanation: One or more messages will accompany this message,
explaining why the specified file could not be read.

User Action: Retry the operation.

79 INDEX FILE DATA NOT PRESENT aan:

Explanation: During an attempt to read the input tape specified,
a file other than the index file was accessed due to a tape error
or an I/0 error.

User Action: Re-create the tape or retry the same tape on a
different tape drive.

DISK SAVE AND COMPRESS UTILITIES

80 I/0 ERROR N ON aan:
Explanation: One or more messages will accompany this message,
indicating that an 1I/0 error occurred during an attempt to
restore the index and storage map files from the specified input
tape.
User Action: Retry the operation using a different input tape
drive.

81 VOLUME SUMMARY DATA NOT PRESENT aan:

Explanation: Either the input tape is not a DSC tape or it
contains incomplete data.

User Action: Check the tape, and reenter the command.

82 I/0 ERROR O ON aan: FILE ID n
Explanation: One or more messages will accompany this message,
indicating that an I/0 error occurred during an attempt to write
the specified file header.

User Action: Retry the operation.

83 UNSUPPORTED DSC TAPE FORMAT ON aan:

Explanation: This tape cannot be processed with this version of
the DSC program.

User Action: Retry the operation. If the same failure recurs,

contact DIGITAL Software Support, or submit a Software
Performance Report (SPR).

4,5.4 DSC I/0 Error Messages

The DSC I/0 error messages are listed below.

BAD BLOCK NUMBER

Explanation: The block does not exist on the disk, an internal
DSC error occurred, or the block is bad.

User Action: Retry the operation with a new disk and/or disk
drive.

BAD BLOCK ON DEVICE
Explanation: A device malfunction occurred or a tape with bad
data on it was used, resulting in a block containing incorrect

information.

User Action: Retry the operation.

DISK SAVE AND COMPRESS UTILITIES

BLOCK CHECK OR CRC ERROR

DATA

Explanation: A parity error occurred indicating that bad data
may have been transferred.

User Action: Retry the operation.

OVERRUN

Explanation: The physical tape used was larger than expected or
got out of position, or was in the wrong format.

User Action: Make sure the tape is the right one and retry the
operation.

DEVICE NOT READY

Explanation: The device was not ready or not up to speed, or a
blank tape was used as an input tape.

User Action: Retry the operation after checking that the device
is online and correctly mounted.

DEVICE OFF-LINE

Explanation: The device is not in the systenm.

User Action: Check both the device and the device specification
in the command string, and reenter the command.

DEVICE WRITE LOCKED

Explanation: The disk drive is write locked.

User Action: Write enable the disk drive, and reenter the
command.

END OF FILE DETECTED

Explanation: The tape position was lost.

User Action: Retry the operation.

END OF TAPE DETECTED

Explanation: The tape position was lost.

User Action: Retry the operation.

END OF VOLUME DETECTED

Explanation: The tape position was lost.

User Action: Retry the operation.

DISK SAVE AND COMPRESS UTILITIES

FATAL HARDWARE ERROR

Explanation: A hardware malfunction occurred.

User Action: Retry the operation; if the werror recurs call

DIGITAL Field Service.

ILLEGAL FUNCTION

Explanation: An operation was attempted, but DSC
determine what it was.

User Action: Retry the operation. If the same failure

cannot

recurs,

contact DIGITAL Software Support or submit a Software Performance

Report (SPR).

INSUFFICIENT POOL SPACE
Explanation: The operating system is overloaded.

User Action: Retry the operation.

PARITY ERROR ON DEVICE

Explanation: A device malfunction or media incompatibility

occurred.

User Action: Retry the operation.

PRIVILEGE VIOLATION
Explanation: A device has been mounted as Files-11.
User Action: Dismount the disk, mount it as a foreign
and retry the operation.

UNKNOWN SYSTEM ERROR
Explanation: An undefinable I/0 error occurred.

User Action: Retry the operation.

volume,

CHAPTER 5

BAD BLOCK LOCATOR UTILITY

The Bad Block Locator utility (BAD) determines and records the logical
block numbers and location of faulty blocks that cannot reliably store
data. BAD can be used on the following block-structured volumes:

e TU58 DECtape II data cartridge
e RKO07 disk cartridges

e RL02 disk cartridge

e RMO3 disk packs

® RP06 disk packs

e RX01/02 floppy diskettes

Usually, BAD tests block-structured volumes that have not been
initialized. After BAD locates and records the bad blocks, you issue
the DIGITAL Command Language (DCL) command INITIALIZE so that the
operating system will allocate the faulty blocks to a special file,
In this way, users are protected from accessing these faulty blocks
for their files.

Section 5.1 below explains how BAD locates and records bad blocks;
Section 5.2 explains how the INITIALIZE command allocates bad blocks.
The remaining sections of this chapter describe now to invoke BAD, the
BAD command 1line format and qualifiers, and the messages BAD can
issue.

5.1 LOCATING AND RECORDING BAD BLOCKS

BAD locates bad blocks on a volume by testing whether the same data
that 1is written into blocks can be read out. When it finds a bad
block, BAD writes the address of that block 1into the bad block
descriptor (described in Section 5.1.2).

BAD BLOCK LOCATOR UTILITY

5.1.1 Locating Bad Blocks
To test the blocks on a volume, BAD:
e Writes a test pattern onto each block
e Reads the contents of blocks into a buffer

e Compares the data in the buffer with the data it wrote into
the blocks

If the data does not compare exactly, one or more blocks in the group
of blocks are bad and cannot reliably store data. In this case, BAD
will repeat the reading, writing, and comparing operations on each
block in the group to determine the bad block(s).

5.1.2 Recording Bad Blocks

When BAD locates a bad block, it records the address of the block.
Consecutive bad blocks are recorded as single entries. After it
finishes testing the disk, BAD writes the addresses of the bad blocks
into an area called the bad block descriptor.

5.1.2.1 Location of the Bad Block Descriptor - The 1location of the
bad block descriptor depends on whether the volume is a last-track
device. Last-track devices store bad block data on the last track of
the disk.

The first half of the track 1is reserved for the Manufacturer's
Detected Bad Sector File (MDBSF). The MDBSF stores the bad blocks
discovered by the manufacturer when the device was originally
formatted.

The second half of the track is reserved for the Software Detected Bad
Sector File (SDBSF). The bad block descriptor is located here.

Last-track devices are:

e RKO07, RL02 disk cartridges

e RM03/05 disk cartridges
Other devices (non-last-track devices) do not set aside the last track
of the disk to store bad block information. Instead, BAD creates the
bad block descriptor on the last good block of the disk. There nmust
be at 1least one reliable block in the last 256 bhlocks of the volume
for BAD to generate the bad block descriptor.
Non-last-track devices are:

e RP06 disk packs

e RX01/02 floppy diskettes

e TU58 DECtape II data cartridges

BAD BLOCK LOCATOR UTILITY

5.1.2.2 Format of the Bad Block Descriptor - If the volume is a
last-track device, each bad block descriptor entry contains the
cylinder, track, and sector addresses of the faulty block. The bad
block descriptor can record a maximum of 126 entries.

On volumes that are not last-track, bad block descriptor entries
contain the number of bad blocks minus 1 and bits 0 through 23 of the
logical block number (LBN) of the faulty block or sequence of faulty
blocks. A single entry can address one bad block or several
contiguous bad blocks. The bad block descriptor on non-last-track
devices can contain a maximum of 102 entries.

For both last-track and non-last-track devices, once the maximum
number of entries is exceeded, BAD terminates with an error message.

5.2 ALLOCATING BAD BLOCKS

After you run BAD, the final step in processing bad block data is to
issue the DCL command INITIALIZE. INITIALIZE changes the volume from
unstructured format to Files-11 format and allocates the bad blocks
found by BAD to a special file on the volume called [0,0]BADBLK.SYS.
Once they are allocated to BADBLK.SYS, the faulty blocks cannot be
used by other files. For further information on Files-11 format and
the INITIALIZE command, see the VAX/VMS Command Language User's Guide.

5.3 INVOKING AND TERMINATING BAD
When running BAD to test a device, keep in mind that:
e The device cannot be accessed by other programs
e The device cannot be mounted as a Files-11 volume

e The device is always purged by BAD's testing procedure; any
information stored on the disk is destroyed

To ensure that the device is not accessed by any other programs, vyou
must allocate the device with the DCL command ALLOCATE. See the
VAX/VMS Command Language User's Guide for more information on the
ALLOCATE command.

After you have allocated the device, you must give the DCL command
MOUNT with the /FOREIGN qualifier. When the device 1is mounted
foreign, the operating system does not recognize it as a Files-11
volume and BAD can execute.

There is no way to test the volume for bad blocks without destroying
its contents. However, vyou can update the bad block descriptor
without wiping out the volume by wusing the BAD qualifier /UPDATE.
This qualifier is described in detail in Section 5.5.5.

To invoke BAD, enter the following command in response to the DCL
prompt:

$ RUN SYSS$SYSTEM:BAD
The utility responds with the prompt:

BAD>

BAD BLOCK LOCATOR UTILITY

You can now enter any BAD command string (Section 5.4). To return to

DCL at any time, type <CTRL/Z>.

You can also invoke BAD by using the RSX-11M Monitor Console Routine

(MCR) command:

$ MCR BAD [device-name]

BAD issues the prompt BAD>. The device name format is the same as

described in Section 5.4.

5.4 BAD COMMAND STRING

The BAD command string has the following format:
BAD> device-name:[/qualifier...]

device-name

The device containing the volume on which BAD will be
device name has the form:

devu
where
dev = 2- character alphabetic device code
u = 1- or 2-digit octal device unit number

run. The

The colon (:) acts as the device-name terminator and must follow
the device name. BAD does not recognize alphabetic controller
designators. You must convert them to RSX-11M unit numbers when
specifying devices. For information on conversion between

VAX/VMS native mode unit numbers and compatibility

mode unit

numbers, see the explanation of mapping physical device names in

the VAX-11/RSX-11M User's Guide.

/qualifier (s)

The BAD qualifiers that modify BAD operation.

Multiple

qualifiers are entered on the same command line; no separators
are required. Section 5.5 discusses the BAD qualifiers in

detail.

5.4.1 Running BAD Interactively from Your Terminal

The example below shows the sequence of commands that you
when running BAD interactively from your terminal:

% ALLOCATE DRA2:

LOBRAZE ALLOCATED

$ MOUNT/FORETGN DIRA2:

ZMOUNT T --MOUNTED mounted on WOBARZS
$ RUN SYS$$YSTEM:BAH

BALTIRD ¢

BALL TOTAL NO. OF BAD RLOCKS = 2,
RAL- AL

%

should use

BAD BLOCK LOCATOR UTILITY

The ALLOCATE command requests the allocation of a specific disk drive,
DBA2. The response from the ALLOCATE command indicates that the
device was successfully allocated. The MOUNT/FOREIGN command mounts
the disk volume as a foreign disk. The MOUNT command response
indicates that DBA2 was successfully mounted. The RUN SYSSSYSTEM:BAD
command invokes BAD., Specifying DB2 causes BAD to analyze each block
on the disk volume and record the bad blocks., After BAD has tested
all the blocks, it indicates that the humber of bad blocks on DBA2 is
2. You exit from BAD by entering <CTRL/Z> in response to the BAD>
prompt.

5.4.2 Running BAD from Command Procedures

You can invoke the BAD utility from a VAX/VMS command procedure. The
following 1is a command procedure, named STEPS.COM, that invokes BAD
and gives other DCL commands.

$ ALLOCATE DRRI1S

$ MOUNT/FORETIGN DERRLS
$ RUN SYSHSYSTEM I RAN
D21/l

$ DISMOUNT/NOUNLOAD

$ INITIALTZE DERi2

To call the command procedure, type the following in response to the
DCL prompt:

$ @STEPS

The operating system executes the commands in the order they are given
within the command procedure.

Note that because you are calling the command procedure from DCL, the
default file type 1is COM and need not be specified. For a thorough
discussion of command procedures, refer to the VAX/VMS Guide to Using
Command Procedures.

BAD also allows you to use a command procedure execute a series of BAD
commands., The following example is a command procedure, named
BADCMD,.CMD, that contains the commands BAD 1is to execute. These
commands are explained in Section 5.5.2.

DM s /MAN
4%

102

€RLD

To call the command procedure, type:

$ MCR BAD

BAD> @BADCMDS

The default file type in this example is CMD because you are calling
the command procedure from the MCR command interpreter.

BAD is invoked, performs the requested functions, and exits. Note
that you can omit the file type when you call the command procedure.
You can call up to three other command procedures from within one
command procedure.

BAD BLOCK LOCATOR UTILITY

5.5 BAD QUALIFIERS

BAD provides five qualifiers which, when added to the command string,

modify BAD operation. Table 5-1 lists the BAD qualifiers and gives a
summary their functions.

Table 5-1
BAD Qualifiers

Qualifier Notation Function

List /LI Lists logical block numbers of bad
blocks at your terminal

Manual /MAN Enters specific bad blocks to the bad
block descriptor and tests the disk
volume

Override /OVR Converts last-track devices to

non-last-track devices

Retry /RETRY Enables the device driver to correct
soft errors

Update /UPD Updates the bad block descriptor
without testing the disk

The following sections describe each of these qualifiers in detail.

5.5.1 The List Qualifier
The List qualifier (/LI) causes all bad blocks to be listed by logical
block number (LBN) on your terminal. Each time BAD encounters a
faulty block, it writes the following message:

BAD —-- BAD BLOCK FOUND - LBN= n

The value of n is the logical block number (LBN) of the block in
decimal.

This qualifier is valid for all devices. 1If you do not specify the
LIST qualifier, BAD will execute without listing the bad blocks at
your terminal.
Example

BAD> DB2:/LI

BAD -- DB2: BAD BLOCK FOUND - LBN= 20663

5.5.2 The Manual Qualifier

The Manual qualifier (/MAN) permits you to enter specific blocks to
the bad block descriptor of an unformatted volume. You may want to
use this qualifier to allocate specific blocks or a series of blocks
so that they will not be used by other files.

BAD BLOCK LOCATOR UTILITY

When you use the Manual qualifier, BAD prompts for the 1logical block
number of the blocks you want to enter:

BAD> LBN(S)=
You can specify a single block or consecutive blocks in the form:
lbn: [count]

The value of 1lbn is the logical block number in decimal and count is
the number of consecutive blocks beginning at the specified LBN., You
must use the colon (:) when specifying consecutive blocks and separate
different LBNs or consecutive LBNs on a single line by a space, comma,
or tab. Both 1lbn and count default to decimal unless they are
preceded by the pound sign (#) to indicate octal,.

After you finish entering specific bad blocks, type <CTRL/Z> or <ESC>,.
BAD enters the blocks you have specified into the bad block descriptor
and then tests the volume for bad blocks.

If you do not specify an LBN in response to the prompt but instead
press <RETURN>, BAD lists the contents of the bad block descriptor in
the format:

lbn:count

The value of 1lbn is the initial LBN of a possible sequence of bad
blocks and count 1is the number of bad blocks in the sequence (in
decimal). Single blocks are represented in the same format as a
sequence of bad blocks.

Examples

1.
BANEDRO S /MAN
RALN: LEN(S)= 4% (D
RAY - DRO3 TOTAL BAD BLOCKS= 2,
BAD enters the block represented by LBN 45 into the bad block
descriptor, tests the disk for bad blocks, and reports the
total number of bad blocks that it found at your terminal.
(BAD does not include manually entered blocks in this total).

2.
BAL-IIM2 1 /MAN
BAI: LEN(S)= 100323 200810, 60
RAY - OM21 TOTAL RBAD RLOCKS= 13.
BAD enters blocks 100, 101, 3, and 200 through 209 into the
bad block descriptor.

3.

RADETIM3 ¢ /MAN
BAYC: LBN(S) = @ET
0001001002
QO0003 001
0002003100

BAD lists all blocks in the bad block descriptor by logical
block number and count.

BAD BLOCK LOCATOR UTILITY

5.5.3 The Override Qualifier

The Override qualifier (/OVR) causes BAD to ignore last-track
information (the MDBSF and SDBSF, described in Section 5.1.2.1).

When specified, /OVR creates a bad block descriptor on the last good
block before the 1last track of the disk, but does not generate a
message at your terminal. If the last track does not contain a bad
block descriptor, or if you suspect that the last track is faulty, use
/OVR.

The Override qualifier converts last-track devices to non-last-track
devices; thus, it is valid only on last-track devices.

5.5.4 The Retry Qualifier

The Retry qualifier (/RETRY) enables the device driver to correct soft
errors. A soft error 1is a type of hardware error that causes good
blocks to appear faulty. If /RETRY is not specified, BAD will prevent
the device driver from correcting soft errors, and blocks mistakenly
identified as bad will not be discovered.

There is no example for this qualifier because /RETRY produces no
output when it is enabled.

5.5.5 The Update Qualifier

The Update qualifier (/UPD) enters additional blocks to the bad block
descriptor without testing the volume. Use the Update qualifier when
you want to update the bad block descriptor without destroying the
contents of the volume.

The Update qualifier prompts for additional bad blocks in the same way
as the Manual qualifier. When vyou have finished specifying the
logical block numbers of the blocks you want entered to the bad block
descriptor, type <CTRL/Z> or <ESC>. BAD will update the descriptor
and exit.

If you do not specify an LBN in response to the prompt, but instead
press <RETURN>, BAD lists the contents of the bad block descriptor in
the format

lbn: count
as described in Section 5.5.2.

Example

$ RUN SYSHSYSTEM: RAD
BAL: DML Z7URD

BAL: LBN= 123

Bal: CRD

The Update qualifier causes BAD to enter logical block number 123 into
the bad block descriptor. Entering <CTRL/Z> returns control to DCL
without testing the device.

BAD BLOCK LOCATOR UTILITY

5.6 BAD MESSAGES

This section describes the diagnostic messages generated by BAD as it
executes., Each message begins with:

BAD -- devu:

where devu: 1is the device name of the block-structured volume that
BAD is testing.

BAD BLOCK FILE NOT FOUND
Explanation: The bad block descriptor cannot be read.

User Action: This message occurs when you have specified the
Update qualifier. It means that vyou cannot use /UPD on the
volume without re-initializing the device. (When the wvolume is
initialized, all previous data stored on the device is destroyed;
see the VAX/VMS Command Language User's Guide for information on
the INITIALIZE command.)

BAD BLOCK FILE OVERFLOW
Explanation: BAD detected more than the maximum number of bad
blocks (126 for 1last-track devices and 102 for non-last-track
devices). This message usually indicates a device unit failure.
User Action: Either the volume is bad or the drive requires
maintenance; contact your DIGITAL Field Service Representative.

BAD BLOCK FOUND - LBN= lbn
Explanation: Bad blocks are reported in this format when vyou
specify the List qualifier; 1lbn is the logical block number in
decimal.
User Action: None. This is an informational message and applies
only to the List qualifier.

BLOCK 0 BAD - DO NOT USE AS SYSTEM DISK
Explanation: This is a warning message that can be ignored on
VAX/VMS systems. Unlike RSX-11M and IAS systems, VAX/VMS does

not use block zero for bootstrapping purposes.

User Action: Ignore the message.

COMMAND I/O ERROR

Explanation: The operating system detected a hardware
transmission error from the keyboard.

User Action: Retype the command.

5-9

BAD BLOCK LOCATOR UTILITY

COMMAND TOO LONG

Explanation: The command line vyou typed 1is 1longer than 80
characters.

User Action: Shorten the command line.

DEVICE IS AN ALIGNMENT CARTRIDGE
Explanation: The factory-written label on the last track of a
last-track device indicates that the device 1is an alignment
cartridge.

User Action: Mount and process another device.

DEVICE NOT IN SYSTEM

Explanation: The requested device was not made part of the
system generation or the device unit does not exist on the host
configuration.

User Action: Reconfigure the system with the SYSGEN utility (see
the VAX/VMS System Manager's Guide for details on SYSGEN).

DEVICE NOT READY

Explanation: BAD cannot access the device because the unit has
not reached operating speed.

User Action: Allow the unit to reach operating speed and reenter
the command line.

DUPLICATE BLOCK NUMBER - 1lbn

Description: The logical block number you entered is already
present in the bad block descriptor.

User Action: Enter another block number. This message applies
only to the Manual and Update qualifiers.

FAILED TO ATTACH
Explanation: BAD cannot gain control of the unit to be tested.

User Action: The device is allocated to another user. Mount the
disk on another device unit.

FAILED TO READ MANUFACTURER'S BAD SECTOR FILE

Explanation: A disk-read hardware error has prevented BAD from
reading the MDBSF of a last-track device.

User Action: Run BAD again and specify the Override qualifier,

BAD BLOCK LOCATOR UTILITY

FAILED TO READ SOFTWARE BAD SECTOR FILE

Explanation: BAD cannot read the Software Detected Bad Sector
File with the Update qualifier enabled.

User Action: Run BAD again and specify the Override qualifier.

FAILED TO WRITE BAD BLOCK FILE
Explanation: BAD cannot make entries 1into the bad block

descriptor. This condition 1is wusually caused by a disk write
error.

User Action: Run BAD again. 1If the problem persists, the volume
should be discarded.
FATAL HARDWARE ERROR

Explanation: A machine hardware problem is preventing BAD from
running.,

User Action: Contact your DIGITAL Field Service Representative.

HANDLER/DRIVER MISSING

Explanation: The device driver associated with the device unit
that you specified is not loaded in the operating system.

User Action: Load the device driver with the SYSGEN wutility
(described in the VAX/VMS System Manager's Guide). For further
information on device drivers, consult the VAX/VMS Guide to
Writing a Device Driver.

ILLEGAL DEVICE

Explanation: BAD does not run on volumes that are not block
structured (for example, magnetic tapes).

User Action: Mount and run BAD on a block-structured volume.

INVALID BLOCK NUMBER - n
Explanation: You entered an invalid logical block number.

User Action: Type another value and reenter the command lines,
This message applies only to the Manual and Update qualifiers.

INVALID SWITCH
Explanation: BAD does not recognize the gqgualifier you specified.

User Action: Enter a valid BAD qualifier (see Section 5.5).

BAD BLOCK LOCATOR UTILITY

MANUFACTURER'S BAD SECTOR FILE CORRUPT

Explanation: The MDBSF is improperly formatted. This message
applies only to last-track devices.

User Action: Contact your DIGITAL Field Service Representative.

PRIVILEGE VIOLATION

Explanation: BAD accessed a device that was already mounted by
another user.

User Action: Mount the volume you want BAD to test on another
device unit.

SYNTAX ERROR
Explanation: BAD detected a syntax error on the command line.

User Action: Determine the correct syntax and reenter the
command line.

TOTAL NO. OF BAD BLOCKS = n
Explanation: This message indicates the total number of bad
blocks on the volume. This message appears when BAD finishes

testing the volume.

User Action: Write the bad block count on the device labhel.

UNRECOVERABLE ERROR n

Explanation: BAD is terminated by an I/O error. The value of n
represents the I/0 error number returned by the device driver.

User Action: Contact your DIGITAL Field Service Representative.

WRITE-LOCKED

Explanation: BAD attempted to run on the write-locked disk
volume,

User Action: Mount the device without the Nowrite qualifier to
unlock the device. See the VAX/VMS Command Language User's Guide
for information on the MOUNT command qualifiers.

CHAPTER 6

FILE STRUCTURE VERIFICATION UTILITY

The File Structure Verification Utilities (VFYl and VFY2) check the
readability and validity of Files-11 Structure Level 1 and 2 volumes.
With the addition of a qualifier, VFY can also:

e Print out the number of available blocks on a Files-11l volume
e Search for "lost files"®
e List all files in the index file

e Mark as "used" all blocks that appear available but actually
are allocated to a file

e Rebuild the storage bit map to reflect information in the
index file

e Restore files marked for deletion
e Perform a read check on every allocated block on the volume

The sections that follow describe wvalidity checking and error
recovery, how to invoke VFY, the VFY command 1line format and
qualifiers, and VFY error messages.

6.1 VALIDITY CHECKING

If you do not specify a qualifier on the VFY command 1line, VFY
performs a validity check of the volume mounted on a specified device
unit. VFY first checks the integrity of all the file headers
contained in the index file of the volume.

Each file on the volume has a file header that describes properties of
the file and 1its physical location on the volume. The file headers
are part of the index file [0,0]INDEXF.SYS, which is created when the
volume 1is initialized. VFY makes sure that blocks referenced in the
map area of each file header are reported as allocated in the storage
bit map file [0,0]BITMAP.SYS,.

FILE STRUCTURE VERIFICATION UTILITY

As it verifies the volume, VFY reports any file errors either at vyour

terminal or in a specified 1listing file (see Section 6.4). VFY

identifies different file errors. Each message is preceded by a file

identification line that identifies the file containing the error:
FILE ID n file-spec OWNER [uic]

n The file identification number assigned to the
file by VAX/VMS when it creates the file

file-spec The name, type and version number of the file that
contains the error

uic The user identification code of the owner of the
file

One or more of the messages listed below follows the file
identification line.
I/70 ERROR READING FILE HEADER-ERROR CODE

VFY failed to read the file header for the specified file
identification. One of the following conditions exists:

e the device is not mounted
e the device is offline
e the hardware has failed

e the header block is bad

BAD FILE HEARER

Software checks on the validity of the file header indicate that
the header has been corrupted. The file is permanently damaged.

MULTIFLE ALLOCATION nem

The specified logical block number is allocated to more than one
file. VFY indicates the logical block number (LBN) as two octal
integers n and m representing the low- and high- order bits of
the LBN.

If VFY detects a multiply-allocated block, it finishes the
validity check and scans the volume again to identify which files
share each block. After it lists each multiply-allocated block,
VFY prints a summary line for the file as follows:

SUMMARY $MULT=ry FREE=ny BAD=M,

MULT The number of multiple block allocations

FREE The number of blocks marked free that should have been
allocated

BAD The number of bad retrieval pointers in the file header

For information about deleting multiply-allocated blocks, see Section
6.2.2.

FILE STRUCTURE VERIFICATION UTILITY

BLOCK 18 MARKED FREE rym

The specified LBN is allocated to the indicated file but 1is not
marked as allocated in the storage bit map (see Section 6.2.3).

HALD RBLOCK NUMRER mym

The specified block number was found in the header for this file
but is 1illegal for the device (out of range). This indicates a
corrupted file header.

FILE T8 MARKEXD FOR DELETE

The operating system failed while the specified file was being
deleted. The deletion was not completed and the file header
still exists (see Section 6.2.1).

HEADER MaF QUT OF SYNC

VFY detected an error in the header map area which also indicates
a corrupted file header.

You can suppress VFY output on a terminal device by typing <CTRL/0>.

6.2 FILE ERROR RECOVERY

You can use the file error information obtained through the wvalidity
check to correct file errors on the volume. The following sections
discuss how to delete and restore files marked for deletion, how to
eliminate free and multiply-allocated blocks, and how to recover lost
blocks.

6.2.1 Restoring Files Marked for Deletion

If VAX/VMS fails before it finishes deleting a file, you can use VFY
to restore the file or resume the deletion process.

To restore a file marked for deletion, run VFY specifying the Delete
qualifier (Section 6.5.1) to reset the marked-for-deletion indicators
in the file headers. Once the deletion indicators has been reset, run
VFY specifying the Lost qualifier (Section 6.5.4) to scan the entire
file structure. You may not be able to restore the entire file
because the operating system may have deleted part of the file before
it failed.

Once you obtain the file identification of a marked-for-deletion file,
you can finish the deletion process by running the Peripheral
Interchange Program (PIP). Because PIP is an RSX-11M utility, vyou
must use the VAX/VMS MCR interface to invoke it. Enter the following
command at the DCL prompt:

$ MCR PIP
THE PIP utility responds with the prompt:

PIP>

FILE STRUCTURE VERIFICATION UTILITY

Specify the File identification you obtained from the VFY output (see
Section 6.1) in response to the PIP> prompt:

PIP:/FLI12820/0E
PIr e FATLED TO MARK FILE FOR DELETE-NO SUCH FILE

In the above example, the file with file identification 12,20 is
deleted from the default device. The PIP error message appears
because the file system denies the existence of files already marked
for deletion. However, the file is deleted.

If you have restored or deleted files, you should update the volume's

storage bit map by running VFY with the Rebuild qualifier (see Section
6.5.6).

6.2.2 Deleting Multiply-Allocated Blocks

VFY reports all files that contain multiply-allocated blocks (see
Section 6.1). Once you have the file specification of these files,
you can eliminate them with PIP, as described in Section 6.2.1, until
there are no more files that share blocks.

Be careful when deleting multiply-allocated files. After you have
deleted the files, run VFY again to ensure that all of the files with
multiply-allocated blocks have been eliminated.

6.2.3 Eliminating Free Blocks

After you have purged the files of multiply-allocated blocks,
eliminate blocks that '‘are erroneously marked as free in the storage
bit map. To correct the storage bit map, run VFY again and specify
the Update qualifier (Section 6.5.7). This qualifier allocates all
blocks that should have been marked as allocated.

Once you have cleared the volume of multiply-allocated blocks and
blocks mistakenly marked free, it is safe to create new files and
extend existing files. However, if multiply-allocated and "free"
blocks still exist, the volume may contain files whose blocks are
overwritten by multiple allocation.

6.2.4 Recovering Lost Blocks

To determine whether any blocks on a file-structured volume have been
lost, examine the 1last two lines of output from the validity check.
The last two lines of output give the free space on the volume. The
first of these two lines tells how much room is available according to
the index file (the number of blocks not in use). The second 1line
specifies how much room is available according to the storage bit map.
Assuming there are no other errors, these two figures should agree.

If the index file indicates that more blocks are free than the storage
bit map, those blocks are "lost" in the sense that they appear to be
allocated, but no file contains them. Run VFY again and specify the
Rebuild qualifier (Section 6.5.6) to recover these lost blocks.

FILE STRUCTURE VERIFICATION UTILITY

6.3 INVOKING VFY
When running VFY to validate a volume's structure, keep in mind that:
e No other activity should occur on the volume while VFY |is
executing. In particular, activities that create new files,
extend existing files, or delete files should not be attempted
while VFY is executing a function.
e Do not abort VFY if you have specified the Delete, Rebuild, or
Update qualifier. These qualifiers modify the index file and

the storage bit map; if you prevent them from completing
their functions, vyou may seriously endanger the integrity of
the volume.

e Before you run VFY, the volume must be mounted as a Files-11
structured volume. The volume can be write-locked if it is
not the system volume or if the required scratch file |is
directed to another file-structured volume and you are just
running a consistency check.

To 1invoke VFY, enter one of the following command lines, as
appropriate:

Files-11 Structure Level 1 Format
$ RUN SYSSSYSTEM:VFY1

Files-11 Structure Level 2 Format
$ RUN SYS$SYSTEM:VFY2

The utility responds with the prompt:
VFY>

You can now enter any VFY command string (Section 6.4). To return to
DCL at any time, type <CTRL/Z>.

You can also invoke VFY by using the RSX-11M Monitor Console Routine
(MCR) command. Enter one of the following command 1lines, as
appropriate:

$ MCR VFY1

$ MCR VFY2

Using the MCR command, you can enter a VFY command string on the
initial command line that invokes VFY. For example:

$ MCR VFYl command-string

VFY will execute this command string and return control to DCL.

FILE STRUCTURE VERIFICATION UTILITY

6.4 VFY COMMAND STRING
The VFY command string has the following format:

VFY> [list-file-spec, scratch-device-name:=] [input-device-name:] [/qualifier]
list-file-spec

The listing file to which VFY output will be directed. If vyou
omit this parameter, VFY output is displayed at your terminal.

scratch-device-name

The device on which the scratch file produced by VFY is to be
written. The scratch device name has the format:

devcu
where
dev 2-character alphabhetic device code
c l-character alphabetic controller designator
u 1- or 2-digit device unit number

When VFY validity checks or scans for lost files, it creates a
scratch file. This file 1is not entered in any directory, and
thus is transparent to the user. VFY automatically deletes the
scratch file when it finishes processing the volume.

If you omit this parameter, the system disk (SYSSDISK) 1is wused
automatically.

If you suspect that the default disk is faulty, wuse this
parameter to force the scratch file to another device. VFY does
not create a scratch file if you run it with either the Free or
List qualifiers,

input-device-name

The volume to be verified. This parameter has the same format as
the scratch device name.

/qualifier

One of the VFY qualifiers that specify the function to be
performed. Only one qualifier can be specified per command
string. If you specify more than one, an error occurs. If no
qualifier is specified, VFY validates the structure of the volume
mounted on the specified device. See Section 5.5 for a complete
description of each qualifier.

6.5 VFY QUALIFIERS

Table 6-1 summarizes the VFY qualifiers. The following sections
describe them in greater detail.

FILE STRUCTURE VERIFICATION UTILITY

Table 6-1
VFY Qualifiers

Qualifier Notation Function
Delete /DE Resets marked-for-deletion indicators
Free /FR Indicates the number of available blocks

on the volume, the number of used blocks
on the volume, and the total number of
blocks on the volume

List /LI Lists the entire index file by file
identification

Lost /LO Scans the entire file structure for files
that are not in any directory

Read Check /RC[:n] Checks readability of every block of
every file on the entire volume

Rebuild /RE Recovers blocks that appear to be
allocated but are not contained in a file

Update /UPD Allocates blocks that appear to be
available but have been allocated to a
file

6.5.1 The Delete Qualifier

The Delete qualifier (/DE) resets the marked-for-delete indicator in
the file header of a file that was marked for deletion, but never
actually deleted.

The volume being deleted must be write-enabled; VFY requires write
access to the index file [0,0] INDEXF.SYS.

VFY must be running under a system user identification code (UIC).

Do not abort VFY if you have specified the Delete qualifier.

6.5.2 The Free Qualifier

The Free qualifier (/FR) displays on your terminal a message
indicating the available space on a specified volume. The message has
the form:

devcu: HAS n. BLOCKS FREE, n. BLOCKS USED OUT OF n.

6.5.3 The List Qualifier

The List qualifier (/LI) 1lists the entire 1index file by file
identification. The output for each file specifies the file number,
file sequence number, file name, and owner. A typical 1index file
listing is illustrated in Figure 6-1.

o))
!
~

FILE STRUCTURE VERIFICATION UTILITY

VFY>DK: /LI
LISTING OF INDEX ON DKO:

FILE ID 000001,000001 INDEXF.SYS;1 OWNER [1,1]
FILE ID 000002,000002 BITMAP.SYS;1 OWNER [1,1
FILE ID 000003,000003 BADBLK.SYS;1 OWNER [1,1]}
FILE ID 000004,000004 000000.DIR;1 OWNER [1,1]
FILE ID 000005,000005 CORIMG.SYS;1 OWNER [1,1}
FILE ID 000006,000006 001001.DIR;1 OWNER [1,1]
FILE ID 000007,000007 001002.DIR;1 OWNER [1,2]
FILE ID 000010,000010 EXEMC.MLB;1 OWNER [1,1]
FILE ID 000011,000011 RSXMAC.SML;1 OWNER [1,1]
FILE ID 000012,000012 NODES.TBL;1 OWNER [1,1]
FILE ID 000013,000036 QIOSYM.MSG;311 OWNER [1,2]
FILE ID 000014,000037 F4PCOM.MSG;1l OWNER [1,2]

Figure 6-1 VFY Index File Listing

6.5.4 The Lost Qualifier

The Lost qualifier (/LO) scans the entire file structure looking for
files that are not in any directory and, are lost in the sense that
they cannot be referenced by file name. VFY creates a 1list of the
files and enters them in the lost file directory [1,3].

Before you use the /LO qualifier, see if the volume has the directory
[1,31. If this directory does not exist on the volume, create it
using the DCL command CREATE/DIRECTORY, explained in the VAX/VMS
Command Language User's Guide.

6.5.5 The Read Check Qualifier

The Read Check qualifier (/RC[:n]) checks to ensure that every block
of every file on a specified volume can be read.

The optional parameter [:n] is the blocking factor which indicates the
number of file blocks to be read at a time. The default value is the
maximum number of blocks in memory that are available to VFY.

Because Read Check 1is a read-only operation, the volume can be
write-locked.

When VFY detects an error, it identifies the file in the following
manner:

FILE ID n file-spec. blocks used/blocks allocated
VFY prints first the file identification line, then an error message.
If a blocking factor other than 1 is in use, VFY issues the following
message:

ERROR STARTING AT VBN n LBN n - ERROR CODE -err
VBN n is the virtual block number that marks the start of the error,

LBN n is the logical block number, and err is a negative number that
represents an error code.

FILE STRUCTURE VERIFICATION UTILITY

After VFY prints the first error message, it prints out one or more
error messages indicating the exact block or blocks in error. These
error message lines appears in the following format:

ERROR AT VBN n - ERROR CODE -err

If the VBN of the unreadable block listed in the ERROR AT 1line Iis
beyond the block-used-count, the data portion of the file is all
right.

The negative number -err is -4 to indicate a device parity error.
Other error codes are contained in the VAX/VMS System Messages and
Recovery Procedures Manual,

If VFY does not display an ERROR AT 1line, it has failed to read
multiple blocks, but individual blocks are still readable.

6.5.6 The Rebuild Qualifier

The Rebuild qualifier (/RE) recovers lost blocks, that is, blocks that
appear to be allocated but which are not contained in any file.

Before you can specify Rebuild, you must remove all multiply-allocated
blocks from the volume.

The volume being updated must be write-enabled; VFY requires
write-access to the storage bit map [0,0]BITMAP.SYS.

You must be running under a system UIC, or be the owner of the volume.

Do not abort VFY if you have specified the Rebuild qualifier.

6.5.7 The Update Qualifier

The Update qualifier (/UPD) allocates all blocks that appear to be
available but are actually allocated to a file.

Files with multiply-allocated blocks must be deleted from the file
structure before the update can be run.

The volume being updated must be write-enabled; VFY requires
write—-access to the storage map [(0,0]BITMAP.SYS.

VFY must be running under a system user identification code UIC.

The scratch file should be on another volume. If this is impossible,
the wvolume must be dismounted immediately after VFY terminates. The
procedure you should follow is the same for Update as it 1is for
Rebuild. VFY issues a detailed message specifying the scratch file to
be deleted.

Do not abort VFY if you have specified the Update qualifier.

FILE STRUCTURE VERIFICATION UTILITY

6.6 VFY MESSAGES

This section describes in detail the messages generated by VFY when it
encounters various kinds of errors. Messages are 1issued in the
format:

VFY -- message

COMMAND SYNTAX ERROR

Explanation: The command entered did not conform to command
syntax rules,

User Action: Retype the command line using the correct syntax.

FAILED TO ALLOCATE SPACE FOR TEMP FILE
Explanation: The volume specified for the scratch file is full,

User Action: Delete all unnecessary files on the volume and
rerun VFY.

FAILED TO ATTACH DEVICE
or

FAILED TO DETACH DEVICE
or

ILLEGAL DEVICE

Explanation: The file specification entered contains an invalid
device.

User Action: Retype the command line with the correct device
specified.
FAILED TO CLOSE DIRECTORY FILE

See I/0 ERROR messages.

FAILED TO ENTER FILE
Explanation: One of the following conditions may exist:
e VFY is not running under a system UIC.
@ The device is not online.
e The device is not mounted.
e The hardware has failed.
User Action: Determine which of the above conditions caused the

message and correct that condition, then reenter the command
line.

FILE STRUCTURE VERIFICATION UTILITY

FAILED TO OPEN DIRECTORY FILE

See OPEN FAILURE message.

ILLEGAL SWITCH

Explanation: The qualifier you specified is not a wvalid VFY
qualifier or you used a valid qualifier incorrectly.

User Action: Reenter the command line and specify the <correct
qualifier. |

I/0 ERROR ON INPUT FILE -- HANDLER ERROR CODE n
or

I/0 ERROR ON OUTPUT FILE —-- HANDLER ERROR CODE n
or

I/0 ERROR READING DIRECTORY FILE -- HANDLER ERROR CODE n
or
FAILED TO CLOSE DIRECTORY FILE -~ HANDLER ERROR CODE n
Explanation: 1In these messages, n 1is the handler error code

number. For an explanation of handler error codes, see the
VAX/VMS System Messages and Recovery Procedures Manual.

One of the following conditions may exist:
® The device is not online.
® The device is not mounted.
e The hardware has failed.
User Action: Determine which of the above conditions caused the
message and correct that condition, then reenter the command
line.
OPEN FAILURE ON BIT MAP
or
OPEN FAILURE ON INDEX FILE
or
OPEN FAILURE ON LISTING FILE
or
OPEN FAILURE ON TEMPORARY FILE
or

FAILED TO OPEN DIRECTORY FILE

THEY

FILE STRUCTURE VERIFICATION UTILITY

Explanation: One of the following conditions may exist:
e VFY is not running under a system UIC.
e The named file does not exist in the specified directory.
e The volume is not mounted.
e The specified directory does not exist.

User Action: Determine which of the above conditions caused the
message and correct that condition, then retype the command line.

ARE STILL LOST, COULD NOT FIND DIRECTORY

Explanation: The lost file directory [1,3] is not present on the
volume.

User Action: Use the MCR UFD command to enter UFD [1,3] on the

volume. (See the VAX-11/RSX-11M User's Guide for details on MCR
commands.)

)

-12

CHAPTER 7

LIBRARIAN UTILITY

The Librarian is a utility that allows you easy access to libraries.
Libraries are indexed files that contain frequently used modules of
code or text., There are four different types of 1libraries —-- object,
macro, help, and text. The library type indicates the type of module
that the library contains. Section 7.1 describes the four types of
libraries. Each library also contains indexes that store information
about the 1library's contents, including the type, location, and
modification history of the individual modules. Section 7.1.2
describes library indexes.

The Librarian consists of two parts: (1) the DIGITAL Command Language
(DCL) command LIBRARY (see Section 7.2) which you use to replace and
maintain modules in an existing library, or to create a new library;
and (2) a collection of Librarian routines (see Section 7.4) that you
can call from a program to initialize and open a 1library, and to
retrieve, insert, and delete modules.

7.1 LIBRARIES

The following sections describe the four 1library types -- object,
macro, help, and text -- and the contents of library indexes.

7.1.1 Types of Libraries
There are four types of libraries, distinguished by their file types:

e Object libraries (file type OLB) <contain frequently <called
routines and are wused as input to the linker. The linker
searches the object module library whenever it encounters a
reference it cannot resolve from the specified input files.
See the VAX-11 Linker Reference Manual for more information on
how the linker uses libraries.

e Macro libraries (file type MLB) contain macro definitions used
as input to the assembler. The assembler searches the macro
library whenever it encounters a macro that is not defined in
the input file. See the VAX-11 MACRO Language Reference
Manual for information on defining macros.

e Help libraries (file type HLB) contain help modules; that is,
modules that provide user information about a program., You
can retrieve help messages in your program by calling the
appropriate Librarian routines. See Section 7.3 for
information about creating help modules for insertion into
help libraries.

LIBRARIAN UTILITY

e Text libraries (file type TLB) contain any sequential record
files that you want to retrieve as data for your program.
Your programs can retrieve text from text libraries by calling
the appropriate Librarian routines. See the /INSERT qualifier
in Section 7.2.2 for information about inserting text files
into text libraries.

You use DCL commands to manipulate libraries in their entirety; for
example, the DELETE, COPY, and RENAME commands delete, copy, and
rename libraries, respectively. For more information on file

maintainance, see the VAX/VMS Command Language User's Guide.

7.1.2 Structure of Library Indexes

Every library contains a library header that describes the contents of
the library. The information in the library header includes:

e The type of library

e The number of indexes and their location in the file

e The version number of the Librarian

e The library's creation date and time

e The last update date and time

e The library's preallocated size and its current size
Each module has a module header that contains information about the
module, 1including its type, its attributes, and its date of insertion
into the library.
Libraries can contain more than one index. All libraries contain an
index for the module name table (MNT). Object module libraries also
contain an index called a global symbol table (GST) that is a list of
the global symbols defined in each of the lihrary modules.
The MNT catalogs modules by module name, rather than by the name of
the input file that contained the inserted module. The only exception
to this procedure occurs with text libraries, for which the file name

of the input file containing the text automatically becomes the module
name. See the description of the /MODULE qualifier in Section 7.2.,1.

7.2 THE DCL LIBRARY COMMAND

This section describes how to create, modify, and maintain 1libraries
using the DCL command LIBRARY. This information also appears in the
VAX/VMS Command Language User's Guide.

The purpose of the LIBRARY command is to maintain object, macro, help,
or text 1libraries. The command's default operation is to replace
modules., By specifying various qualifiers, vyou can also use the
LIBRARY command to create and modify 1libraries; and to insert,
delete, extract, and list library modules and symbols.

LIBRARIAN UTILITY

7.2.1 Library Command String

To use the LIBRARY command, enter the following command string in
response to the DCL prompt:

$ LIBRARY/qualifier (s) library-file-spec [input-file-spec[/MODULE=module-name]f,...]]
/qualifier (s)

The function(s) to be performed by the LIBRARY command. Section
7.2.2 describes the qualifiers in detail.

library-file-spec

The name of the library you want to create or modify. This
parameter is required. If you do not specify a library file, you
will be prompted for one as follows:

$_Library:

No wild card characters are allowed in the 1library file
specification.

If the file specification or a qualifier in the command line does
not 1include a file type, the LIBRARY command assumes a default
type of OLB, indicating an object library.

NOTE

Any attempt to modify a library that was
created by the VAX-11 Version 1.0
Librarian results in an automatic
compression into the new format
introduced with Version 2.0. The
compression occurs before the requested
modification. (See the /COMPRESS
qualifier in Section 7.2.2.)
Furthermore, 1libraries created before
Version 2.0 that have not bheen modified
or compressed will appear in a different
format when listed by the /LIST
qualifier.

input-file-spec[,...]

The names of one or more files that contain modules you want to
insert into the specified library.

Whenever you include an input file specification, the LIBRARY
command either replaces or inserts the modules contained in the
input file(s) 1into the specified 1library. The input file
specification 1is required when you specify either /REPLACE (the
LIBRARY command's default operation) or /INSERT, which is an
optional qualifier. If you do not specify an input file when you
use these qualifiers, you will be prompted for it as follows:

$ _File:

When you use the /CREATE qualifier to create a new library, the
input file specification 1is optional. If you include an input
file specification with /CREATE, the LIBRARY command first
creates a new library, and then inserts the contents of the input
file(s) into the library.

LIBRARIAN UTILITY

Note that the /EXTRACT qualifier does not accept an input file
specification.

If you specify more than one 1input file, separate the file
specifications with commas (,). The LIBRARY command will then
insert the contents of each file into the specified library.

If any file specification does not include a file type and if the
command string does not indicate one, the LIBRARY command will
assume a default file type of OBJ, designating an obhject library.
You can control the default file type by specifying the
appropriate qualifier as indicated below.

Qualifier Default File Type
/HELP HLP

/MACRO MAR
/OBJECT OBJ

/TEXT TXT

Note also that the file type you specify with the 1library file
specification affects the default file type of the input file
specification, provided that vyou do not specify the /CREATE
qualifier. For example, if the library file type is HLB, MLB,
OLB, or TLB, the input file type default will bhe HLP, MAR, OBJ,
or TXT, respectively.

Wild card characters are allowed in the input file
specification(s).

/MODULE=module-name

The module-name of a text module you want to insert or replace.
When vyou are inserting text modules into a library, the input
file that you specify is taken to be a single module. Therefore,
the file name of the 1input file specification becomes the
module-name., If you want the file you are inserting to have a
module-name different from the input file name, use the /MODULE
qualifier to name the added module.

You can also use the /MODULE qualifier to enter a text module
interactively. If you specify the logical name SYSSINPUT as the
input file, and issue the /MODULE qualifier, the LIBRARY command
will insert the text you enter from the <console into the
specified library module. To terminate the console input, press
<CTRL/Z>.

Remember that the /MODULE qualifier is an input file qualifier;
it assumes that you are either replacing or inserting a new text

module. Therefore, the qualifiers that remove
modules -- /EXTRACT, /DELETE, /REMOVE -- are incompatible with
/MODULE.

7.2.2 Command Qualifiers

When using the LIBRARY command, you can specify qualifiers that
request more than one function in a single command, with some
restrictions. Generally, you cannot specify multiple qualifiers that
request incompatible functions. The qualifiers that perform library
functions, related qualifiers, and qualifier incompatibilities are
summarized in Table 7-1.

LIBRARIAN UTILITY

Table 7-1
LIBRARY Command Qualifier Compatibilities

Qualifier Related Qualifiers Incompatible
Qualifiers

/COMPRESS /OUTPUT /CREATE, /EXTRACT

/CREATE 1 /SQUEEZE,2 /GLOBALS3 /COMPRESS, /EXTRACT
/SELECTIVE_SEARCH3

/CROSS_REFERENCE /ONLY /EXTRACT

/DELETE -—- /EXTRACT

/EXTRACT /OUTPUT /COMPRESS, /CREATE,

/DELETE, /INSERT
/LIST, /REMOVE

/REPLACE

/INSERT /SQUEEZE, 2 /GLOBALS 3 /EXTRACT
/SELECTIVE_SEARCH 3

/LIST /FULL, /NAMES,3 /ONLY /EXTRACT

/REMOVE 3 — /EXTRACT

/REPLACE /SQUEEZE, 2 /GLOBALS 3 /EXTRACT
/SELECTIVE_SEARCH 3

/MODULE 4 /TEXT /EXTRACT, /DELETE
/REMOVE

1. The /CREATE, /INSERT, and /REPLACE qualifiers are not incompatible;
however, 1if you specify more than one, /CREATE takes precedence over
/INSERT, and /INSERT takes precedence over /REPLACE. The related
qualifiers for /CREATE are applicable only if you enter one or more
input files.

2., This qualifier applies only to macro libraries,
3. This qualifier applies only to object libraries.

4, This file qualifier applies only to text libraries.

/COMPRESS [=(option(,...1)]

Requests the LIBRARY command to perform either of the following
functions:

® Recover unused space in the library resulting from module
deletion

e Reformat a library created by the VAX/VMS Version 1.0
Librarian into the Version 2.0 format

When you specify /COMPRESS, the LIBRARY command by default
creates a new library with a version number one higher than the
existing library. Use the /OUTPUT qualifier to specify an
alternate name for the compressed library.

LIBRARIAN UTILITY

Specify one or more of the following options to increase or
decrease the size of the library, overriding the values specified
when the library was created:

BLOCKS:n Specifies the number of 512-byte blocks to be
allocated for the library

GLOBALS:n Specifies the maximum number of global symbols the
library can contain (for object module libraries
only)

MODULES:n Specifies the maximum number of modules or macros

the library can contain

KEYSIZE:n Changes the maximum length of module names or
global symbol names.

If you specify more than one option, separate them with commas
and enclose the list in parentheses.

/CREATE [=(option(,...])]

Requests the LIBRARY command to create a new library. When you
specify /CREATE, vyou can optionally specify a file or a list of
files that contain modules to be placed in the library.

By default, the LIBRARY command creates an object module library;
specify /MACRO, /HELP, or /TEXT to indicate that the library is a
macro, help, or text library.

Specify one or more of the following options to control the size
of the library, overriding the system defaults:

BLOCKS:n Specifies the number of 512-byte blocks to be
allocated for the library. By default, the
LIBRARY command allocates 100 blocks for a new
library.

GLOBALS:n Specifies the maximum number of global symhols the
library can contain initially. By default, the
LIBRARY command sets a maximum of 128 global
symbols for an object module library. (Macro,
help, and text libraries do not have a global
symbol directory; therefore, the maximum for
these libraries defaults to 0.)

MODULES:n Specifies the maximum number of modules the
library can contain, By default, the LIBRARY
command sets an initial maximum of 512 modules for
an object module 1library and 256 modules for a
macro, help, or text library.

KEYSIZE:n Specifies the maximum name length of modules or
global symbols. By default, the LIBRARY command
limits the names of global symbols and object,
macro, and text modules to 31 characters. The
name length 1limit for help modules is 15
characters.

7-6

LIBRARIAN UTILITY

KEYSIZE:n When you specify a key-size value, remember that

(Cont.) VAX-~11 MACRO and the VAX-1l Linker do not accept
module names or global symbol names in excess of
31 characters.

If you specify more than one option, separate them with commas
and enclose the list in parentheses.

/CROSS_REFERENCE[=(option[,...])]
Requests a cross-reference listing of an object library.
If you omit this qualifier, cross-reference listings will not be
provided. However, if you specify /CROSS_REFERENCE without
specifying an option, you will obtain cross-reference listings by

default that contain only symbols by name and symbols by value.

You can specify one or more of the following options:

ALL Specifies that all types of cross references are
required
MODULE Specifies a cross-reference listing of both the

global symbol references in the module and the
global symbol definitions

NONE Specifies that no cross-reference 1listing is
required.

SYMBOL Provides a cross-reference listing by symbol name
VALUE Provides a cross-reference listing of symbols by
value

If you specify more than one option, separate the options with
commas and enclose the list in parentheses.

/DELETE=(module(,...])

Requests the LIBRARY command to delete (physically remove) one or
more the modules from a library. You must specify the names of
the modules to be deleted. If you specify more than one module,
separate the module names with commas and enclose the list in
parentheses.

Wild card characters are allowed in the module specification.

If you specify the /LOG qualifier with /DELETE, the LIBRARY
command will issue the message:

$LIBRAR-S-DELETED, MODULE module-name DELETED FROM library-name

/EXTRACT=(modulel....])

Copies one or more modules from an existing library into a new
file. If vyou specify more than one module, separate the module
names with commas and enclose the list in parentheses.

Wild card characters are allowed in the module specification.

If you specify the /OUTPUT qualifier with /EXTRACT, the LIBRARY
command will write the output into the file specified by the
/OUTPUT qualifier. If you specify /EXTRACT and do not specify
/OUTPUT, the LIBRARY command will write the file into a file that
has the same file name as the library and a file type of O0BJ,
MAR, HLP, or TXT depending on the type of library.

7-7

LIBRARIAN UTILITY

/FULL

Requests a full description of each module in the module name
table. Use this qualifier with the /LIST qualifier to request a
list of each library module in the format:

module-name [Ident nnldd Inserted dd-mmm-yyyy hh:mm: ss [n symbols]

The identification number and the number of symbols appear only
in object libraries.

/GLOBALS
/NOGLOBALS

Control, for object module libraries, whether the names of global
symbols in modules being inserted in the library are included in
the global symbol table.

By default, the LIBRARY command places all global symhol names in
the global symbol table. Use /NOGLOBALS when you do not want the
global symbol names in the global symbol table.

/HELP

Indicates that the library is a help library. When you wuse the
/HELP qualifier, the 1library file type defaults to HLB and the
input file type defaults to HLP.

/INSERT

Requests the LIBRARY command to add the contents of one or more
files to an existing library. 1If an object module input file
consists of concatenated object modules, the LIBRARY command will
create a separate entry for each object module in the file; each
module name table entry reflects an individual module name., If a
macro or help file specified as input contains more than one
definition, the LIBRARY command will create a separate entry for
each one, naming the module name table entries according to the
names specified on the .MACRO directives or in the key-1 name in
the HELP format (see Section 7.3.1).

In text libraries, unlike object, macro, and help libraries, the
input file contains data records of undefined contents.
Therefore, the Librarian catalogs the entire input file as a
single module using the input file specification as the module
name. If you want to rename the inserted module, use the /MODULE
qualifier described in Section 7.2.1.

When the LIBRARY command inserts modules into an existing
library, it checks the module name table hefore inserting each
module. If a module name or globhal symbol name already exists in
the 1library, an error message will be issued and the module or
symbol will not be added to the library.

To insert or replace a module in a library regardless of whether
there 1is a current entry with the same name, use the /REPLACE
qualifier (the default operation).

LIBRARIAN UTILITY

/LIST[=file-spec]
/NOLIST

/LOG

Control whether the LIBRARY command creates a listing of the
contents of the library.

By default, no listing is produced. If you specify /LIST without
a file specification, the LIBRARY command will write the output
file to the current SYSSOUTPUT device. If vyou include a file
specification that does not have a file type, the LIBRARY command
will use the default file type of LIS.

If you specify /LIST with qualifiers that perform additional
operations on the 1library, the LIBRARY command will create the
listing after completing all other requests; thus, the 1listing
reflects the status of the library after all changes have been
made.,

When you specify /LIST, the LIBRARY command provides, by default,
the following information about the library:

Directory of OBJECT library DBBO:[LIBRAR]LIBRAR.OLB;l on 14-NOV-1979 10:08:28

Creation date: 12-NOV-1979 19:40:36 Creator: VAX-1l1l Librarian V01,02
Revision date: 14-NOV-1979 16:04:58 Library format: 1.1
Number of modules: 15 Max. key length: 31
Other entries: 73 Preallocated index blocks: 35
Recoverable deleted blocks: 15 Total index blocks used: 12

/NOLOG

Control whether the LIBRARY command verifies each library
operation. If you specify /LOG, the LIBRARY command will display
the module name, followed by the library operation performed,
followed by the library file specification. Examples of the /LOG
qualifier appear in the descriptions of /DELETE and /REPLACE.

/MACRO

Indicates that the library is a macro library. When you specify
/MACRO, the library file type defaults to MLB and the input fil
type defaults to MAR. .

/NAMES
/NONAMES

Controls, when /LIST is specified for an object module library,
whether the LIBRARY command lists the names of all global symhols
in the global symbol table as well as the module names 1in the
module name table.

The default is /NONAMES, which does not list the global symbol
names. If you specify /NAMES, each module entry name will be
displayed in the format:

module "module-name"

global=-symbol global-symbol global-symbol glohal-symbol

If the library is a macro, help, or text library and you specify
/NAMES, no symbol names will be displayed.

LIBRARIAN UTILITY

/OBJECT

Indicates that the library is an object module library. This is
the default condition. The LIBRARY command assumes a library
file type of OLB and an input file type of OBJ.

/ONLY=(modulef{....])

Specifies the individual modules on which the LIBRARY command can
operate. When you use the /ONLY qualifier, the LIBRARY command
lists or cross references only those modules specified.

If you specify more than one module, separate the module names
with commas and enclose the list in parentheses.

Wild card characters are allowed in the module name
specification.

/OUTPUT=file~-spec

Specifies, when the /EXTRACT, /COMPRESS, or /CROSS_REFERENCE
qualifiers are specified, the file specification of the output
file.

For /EXTRACT, the output file contains the modules extracted from
a library; for /COMPRESS, the output file contains the
compressed library; for /CROSS REFERENCE, the output file
contains the cross-reference listing.

No wild card characters are allowed in the file specification.
If you omit the file type in the file specification, a default

will be used depending on the library function qualifier and, in
some cases, the library type qualifier as shown below.

Library
Type
Qualifier Qualifier Default File Type
/COMPRESS /JHELP HLB
/MACRO MLB
/OBJECT OLB
/TEXT TLB
/CROSS_REFERENCE -— LIS
/EXTRACT /HELP HLP
/MACRO MAR
/OBJECT OBJ
/TEXT TXT

/REMOVE=(symbol[,...])

Requests the LIBRARY command to delete one or more entries from
the global symbol table in an object library. 1If you specify
more than one symbol, separate the symbols with commas and
enclose the list in parentheses.

Wild card characters are allowed in the symbol specification.

To display the names of the deleted global symhols, you must also
specify the /LOG qualifier.

LIBRARIAN UTILITY

/REPLACE

Requests the LIBRARY command to replace one or more existing
library modules with the modules specified in the input file(s).
The LIBRARY command first deletes any existing 1library modules
with the same name as the modules in the input file. Then, the
new version of the module is inserted in the library. If any
modules contained in the input file do not have a corresponding
module in the library, the LIBRARY command will insert the new
modules in the library.

This is the LIBRARY command's default operation. If you specify
an input file parameter, the LIBRARY command will either replace
or insert the contents of the input file into the 1library. If
you use the /LOG qualifier with the /REPLACE qualifier, the
LIBRARY command will display, in the following form, the names of
each module that it replaces or inserts.

$LIBRAR-S-REPLACED, MODULE module-name REPLACED IN library-file-spec

$LIBRAR-S-INSERTED, MODULE module-name INSERTED IN library-file-spec
/SELECTIVE_SEARCH

Defines the 1input files being inserted into a 1library as
candidates for selective searches by the linker. 1If you specify
/SELECTIVE_SEARCH, the modules will be selectively searched by
the 1linker when the library is specified as a linker input file:
only the global symbol(s) in the module(s) réferenced by other

modules are included in the symbhol table of the output image
file.

/SQUEEZE
"/NOSQUEEZE

Control whether the LIBRARY command compresses individual macros
before adding them to a macro library. When you specify
/SQUEEZE, which is the default, trailing blanks, trailing tabs,
and comments are deleted from each macro bhefore insertion in the
library.

Use /SQUEEZE with the /CREATE, /INSERT, and /REPLACE qualifiers
to conserve space in a macro library. If you want to retain the
full macro, specify /NOSQUEEZE.

/TEXT
Indicates that the library is a text library. When you use the
/TEXT qualifier, the library file type defaults to TLB and the
input file type defaults to TXT.

/WIDTH=n
Controls the screen display width (in characters) for 1listing
global symbol names. Specify the /WIDTH qualifier with the
/NAMES qualifier to limit the line length of the /NAMES display.

The default display width is the width of the 1listing device.
The maximum width is 132.

7-11

Examples

l.

LIBRARIAN UTILITY

$ LIBRARY/CREATE TESTLIB ERRMSG,STARTUP

The LIBRARY command creates an object module library named
TESTLIB.OLB and places the modules ERRMSG.OBJ and STARTUP.OBJ
in the library.

$ LIBRARY/INSERT TESTLIB SCANLINE
$ LINK TERMTEST TESTLIB/LIBRARY

The LIBRARY command adds the module SCANLINE.OBJ to the
library TESTLIB.OLB. The 1library is specified as input to
the linker by wusing the /LIBRARY qualifier on the LINK
command. If the module TERMTEST,OBJ refers to any routines
or global symbols not defined in TERMTEST, the 1linker will
search the global symbol table of library TESTLIB.OLB to
resolve the symbols.

$ LIBRARY/EXTRACT=(ALLOCATE,APPEND)/OUTPUT=MYHELP SYSS$HELP:HELPLIB.HLB

The LIBRARY command specifies that the modules ALLOCATE and
APPEND be extracted from the help library HELPLIB,HLB and
output to the file MYHELP.HLP.

$ LIBRARY/CROSS REFERENCE=ALL/OUTPUT=SYSSOUTPUT LIBRAR

The LIBRARY command requests a cross-reference listing of the
object 1library LIBRAR.OLB. The cross-reference listing is
output on the terminal. The listing includes
cross~references by symbol, by value, and by module,

$ LIBRARY/REMOVE=(LIB_EXTRCT_MODS,LIB_INPUT_MAC)/LOG LIBRAR

The LIBRARY command requests the removal of the global
symbols LIB_EXTRCT_MODS and LIB_INPUT MAC from the object
library LIBRAR,OLB. The /LOG qualifier requests that the
removal of the symbols be confirmed by messages.

$ LIBRARY/MACRO/CREATE=(BLOCKS:40,MODULES:100) MYMAC TEMP
$ MACRO MYMAC/LIBRARY,CYGNUS/OBJECT

The LIBRARY command creates a macro library named MYMAC.MLB
from the macros in the file TEMP.MAR. The new library has
room for 100 modules in a 40-block file. If the input file
contains multiple macros, each macro will be entered in the
new library.

The MACRO command assembles the source file CYGNUS.MAR; the
/LIBRARY qualifier specifies the 1library MYMAC,MLB as an
input file. 1If the source file CYGNUS contains any macro
calls not defined within the file, the assembler will search
the library.

$ LIBRARY/LIST=MYMAC.LIS/FULL MYMAC.MLB

The LIBRARY command requests a full 1listing of the macro
library MYMAC; the output 1is written to a file named
MYMAC.LIS.

$ LIBRARY/INSERT/TEXT TSTRING SYSSINPUT/MODULE=TEXT1

The LIBRARY command inserts a module named TEXT1 into the
text library TSTRING.TLB. The input is taken from SYSSINPUT.

LIBRARIAN UTILITY

9. $ LIBRARY/LIST/NAMES/ONLY=$ONE/WIDTH=80 SYMBOLIB

The LIBRARY command requests a full 1listing of the module
SONE, contained in the object 1library SYMBOLIB.OLB. The
/WIDTH qualifier requests that the global-symbol display be
limited to 80 characters per line.

7.3 HELP LIBRARIES

Help messages are a convenient means of providing specific information
about a program to an interactive user. The help messages are stored
as modules in help libraries. Your programs can access the help
modules by <calling the appropriate Librarian routines described in
Section 7.4. 1In this way, users of your program can quickly retrieve
relevant information about using your program.

You create help libraries in the same manner that you create object,
macro, and text libraries, using the LIBRARY/CREATE command des~cribed
in Section 7.2.2. However, before you can insert modules into a help
library, you must format the input file so that the Librarian can
catalog its individual modules. This section describes how to <create
input files containing help modules.

7.3.1 Creating Help Files

The input file that you insert into a help library is a text file that
you build with a text editor. Each input file may contain one or more
help modules. A help module is a group of help messages that relates
to the same topic, or key.

Each module within a help library contains a group of related Kkey
names, or topics, numbered key-1 through key-n. The key-1 name
identifies the main topic of help information; for example, the name
of a <command in vyour program that requires explanation, The key-2
through key-n names identify subtopics that are related to the key-1
name; for example, the command's parameters and/or qualifiers. This
organization enables users of your program to find a general message
describing how to wuse the command, and then optionally to select
subtopics that provide additional information about the command's
parameters and qualifiers.

7.3.2 Formatting Help Files

Each key-1 line in the module consists of the key number (1) in the
first column, followed by the name of the key. Subsequent subkey
lines, key-2 through key-n, consist of the subhkey number followed by
the name of the subkey. For example, a help module for a command
might have the following two key lines:

1 Command name

help message text

2 Parameters

LIBRARIAN UTILITY

Each help source file can contain several modules. The Librarian
recognizes an individual module as a group of key-1 and subkey lines,
and their associated message text. A module is terminated either by
another key-1 line or an end-of-file (EOF) record.

The format of a help source file is:

1 key-1 name
help message text

2 key-2 name

help message text
n key-n name

1 key-1 name

The Librarian stores the key-1 name in 1its module name table;
therefore, the name of the module is the same as the key-1 name. The
subsequent numbers in the first column indicate that the 1line 1is a
subkey. A module can have several subkeys with the same number. For
example, a help module describing a command might have the following
key-2 lines:

2 parameters
2 arguments

You can insert comments anywhere in a module. When the Librarian
encounters an exclamation mark as the first character on a line, it
assumes that the line is for comments. Comment lines that follow a
key-1 1line are included in the module. However, when your program
retrieves help text, the Librarian does not output the comment lines.

The text of the help message may be any length; the only restriction
to the text is that it cannot contain a number or a slash (/) in the
first column of any line. A number in the first column of a 1line
indicates that the 1line 1is a key. A slash (/) in the first column
indicates a qualifier line.

A qualifier line is similar to a key line, except that the Librarian
returns a list of all the qualifier lines when you request help either
on a key~1l or on the key containing the qualifiers (usually a key-2
named "Qualifiers"). Therefore, if vyour help module describes a
command that has qualifiers, the Librarian will provide a list of all
the command's qualifiers whenever you request help on the command.

LIBRARIAN UTILITY

7.3.3 Help Message Example

The help module in Figure 7-1 shows the organization of help messages
for the DCL LIBRARY command.

Vo Nescrvistion of DCL LIBRARY commarnd

1 LIBRARY

Creates or mocdifies arn obJdect module library or 8 macro lLibrarwd or
insertsy deletesy rerlacesy or lists modulesy macrosy or global swumbol
names dn a8 librarg.

Format
LIBRARY libravu-file-srec Lineut-Ffile-sraCy,eo.]

P This section lists the sarameters Lo the LIBRARY commandg

2 Paramelers

Libwvarw-Fil
Sreecific

G5 g
the name of the Librarw o be corested or modified

Wild cards are not allowed in the librare f : iFication.s UF
Lthe file srecification does not include & file the LIBRARY
commantt as a8 defaunlt File twure of QLR 4if T is
srectfied drer exe ¢ cefsulty a A
Lure of MLEB @ ZMACRO i« Fieds g default il “;fv nl ML
it ZHELRP sraeifiedy or & default file ture it /TEXT
is srecified.
el f ATl PPN
Seecifies the names of orme or more files thalt corntain modules to
be dnserted in Lhe seecid 4o libhrsr,

Wild car: @ allowed in drwent, file s
any Tile acification does not include a
command aesumes 3 defaullt Tile twure of ORJ whon
geecified eibther imelicitly or by defaulls a
whern /MACKRD gsracified ang /ZREXLL is nnL L
ture of MAC whern /ZMACRO and /ZRSXLL are :
FThi s section s Lhe aualifiers to tLhe

4

tions. IT

vy bLhe LIBRAORY
ECT ds

of MAR

and a Tile

tRARY commanc.

7 COMPRESS
Recuests th IlnknhY command Lo recover wunused srace in bthe
Litrrary resulting from module deletion.

Oetions to override initial il tes for librarwd
BLOCKS N
GLORALS I
MODULES $ i

JCREATED=0rbtionsy ¢ o sl
Reauests the LIBRARY command to oreate & mew library. Whern wou
greacify /CREATEs wou can aglso srecifwy a8 FTile or a3 list of
files thal contain modules to he wlaced in the librarw.

Figure 7-1 Help Messages for LIBRARY Command

LIBRARIAN UTILITY

/GLORALS (I

ZNOGLORALS

Controlsy for obdect module librariesy whether the
names of global sumbols in modules being inserted
i the library are included in the global swmbol
table.,

By defaulty the LIBRARY commandg wlace
sumbol names in the slobal swmbol tLab)
/NOGLORALS when wou do not wanl slobal
sumbol names in the slobal swmbol table.

all slohal
+ Use

/TEXT
Trdicates thal the librarwy is & text library, The defasult
Library extension is TLE and the defaull file exbension is

Sracities thal the width of the listing of #lok suminols
(reauested bw /NAMES) should be of the siven widbth. The
will determine Lhe width of the Listing device if /WINTH
not srecified,

ibravian

Figure 7-1 (Cont.) Help Messages for LIBRARY command

When you retrieve help messages, you specify the key-1 level, followed
by any subkeys that contain appropriate help information. The
Librarian returns the help message associated with the key path vyou
specified.

To retrieve the LIBRARY command's key-1 help information, you would
type the DCL command HELP LIBRARY. The Librarian would return the
associated help message, followed by the message, "Additional
information available:" and a 1list of all the key-2 names in the
module. In this case, the Librarian also returns a list of all the
qualifiers specified in the qualifier lines. Fiqure 7-2 displays the
message returned from the HELP LIBRARY command.

L TERARY
Creates or modifies an obdect module librarw aor @ macvro library’
ar insertsy deletesy rerlacesy or lists modulesy macrosy or dlobal
swmbol names in a librarw,

Faormat
LIRRARY Llibrare [file-sracy.,..]

Additiornal information availablel

etiongs e, el JGREATEC=0Ftionsy .. ,1 /CROSSL=0rtiony,ssd (D=SYMEOLy VALUE) /UEL “=mOBULEY v

ZEXTRACT=moculer v /FULL /GLORALS (I /NOGLORALS /HELF /INSERT /LI8TL=file~srecl
/NOLIST () /.06 /MACRO /MOIULE=module._namel /NAMES /NONAMES (1) ZORJECT (10
ZONLY=(moduler module) /0UTFUT=file-sFec /REMOVE=s9mboly ey /REFLACE (X /REX11 /SELECTIVE _SEARCH

/SQAUEEZE /TEXT ZWIDTH=r

Figure 7-2 HELP LIBRARY Display

LIBRARIAN UTILITY

Note that you could not retrieve the key-2 1level, ‘'“parameters," by
typing HELP PARAMETERS. The Librarian searches for a subkey only
after successfully finding the higher-level keys. 1In other words, 1if
you want to retrieve a key-3 message, you would have to specify the
key-1 and key-2 lines that are associated with the key-3 line,

Note also that 1if you request help information on the /GLOBALS
qualifier, the Librarian wil return /NOGLOBALS as well. As shown in
Figure 7-2, you can provide information on a qualifier that has more

than one form by associating two qualifier lines with a single help
message.

When the Librarian successfully searches the key path to the requested
key, it displays all the key names in that path, followed by the help
message associated with the last specified key. For example:

SHELF LIBRARY /HELRF
LIBRRARY
ZHELF
ITrdicates that the librarw is a8 HELP lLibrarw. The
defauslt Libravry FTile twre is HLE arndg the insut Ffile twure
is HLP.
If you try to retrieve a help message that does not have a

corresponding key in the module name table, the Librarian will issue a
message. For example:

$HELP FIRE

Sorrwy no documentation on FIRE

Additionsl dinmformation availashle!

This message will be followed by a list of all the module names in the
module name table.

If you have correctly specified the key-1 line, but have requested a
subkey that does not exist, the Librarian will print a message. For
example:

SHELF LIBRARY /ZFLRE
Sorrwy no documentation on LIBRARY/ZFIRE
Acditional information availabhles’

Farameters Qualifiers

ZCOMPRESSE=0rbions. « o0 ZURENTEL=0rtiorns. .l
*
*

¥

The message will include a list of all the subkeys associated with the
last correctly specified key.

The help library serves as the repository for all your help messages.
You <can include help messages 1in vyour ©programs by calling the
appropriate Librarian routines described in the next section.

LIBRARIAN UTILITY

7.4 LIBRARIAN ROUTINES

The Librarian provides a set of 18 routines that vyour programs can
call to:

e Initialize a library

e Open a library

e Look up a key in a library

e Insert a new key in a library

e Return the names of the keys

e Delete a key and its associated text
e Read text records

e Write text records

Your programs can call the Librarian routines wusing the VAX-11
standard calling sequence provided 1in all 1languages that produce
VAX-11 native-mode instructions. When vyour program calls the
Librarian routines, it must furnish whatever arguments that the
routine requires. When the routine completes execution, it returns
control to your prodgram. Your program should then analyze the success
or failure of the requested operation. See Section 7.5 for an example
of calling Librarian routines from a program.

When you link programs that contain calls to the Librarian routines,
you must specify an options file to the input file parameter of the
LINK command. The options file must contain the following file
specification and qualifier:

SYSSLIBRARY:LBRSHR/SHARE

See Section 7.5 for an example of linking a program that references
the Librarian routines.

For detailed infaormation on linker option files, see the VAX-1l1 Linker
Reference Manual.

Table 7-2 lists each Librarian routine and its function.

The following sections describe, in detail, each of the Librarian
routines. The routines appear in alphabetical order. The order in
which you <call them in vyour program depends upon the library
operations vyou need to perform. However, in all cases, you must call
LBRSINI_CONTROL, followed by LBR$SOPEN, before calling any other
routine.

Each description of a routine provides the general format for calling
the routine from your program. Spaces between arguments are included
for readability, and are not part of the syntax. Following the format
is a description of each of the arguments.

Each section lists the possible return status codes for the specific
routine, with an explanation of the code. Success codes appear
alphabetically before an alphabetical listing of the warning and error
codes. For more information on return status codes, see Section 7.6,

In addition, each section provides further information, under "Notes,"
about the routine, including specific information about arguments.

Any information that does not appear in another category appears under
"Notes."

7-18

LIBRARIAN UTILITY

Table 7-2
Librarian Routines

Routine name

Function

LBRSINI_CONTROL

LBRSOPEN
LBRSGET_ HEADER
LBRSCLOSE

LBR$SET_INDEX
LBR$SET_MODULE
LBRSLOOKUP_KEY
LBRSFIND
LBRSINSERT_KEY
LBRSREPLACE_KEY

LBRSDELETE_KEY

LBR$DELETE_DATA
LBR$GET_RECORD
LBR$PUT_RECORD
LBR$PUT_END
LBR$SEARCH

LBRSGET_INDEX

LBR$GET_HELP

Initializes a library index for wuse by all
other routines

Opens an existing library or creates a new one
Retrieves information from the library header
Closes an open library

Sets the 1index number to be used during
processing of the library

Reads, and optionally updates, a module header
Looks up a key 1in the current 1index in
preparation for reading the key's associated
text

Looks up a key by its record identification in
preparation for reading the key's associated
text

Inserts a new Key in the current library index

Replaces an existing key in the current

library index
Deletes a key from a library index

Deletes all the text records associated with a
specified module

Reads a text record associated with a

specified key

Writes a text record to be associated with a
specified key

Terminates a sequence of records written with
LBRSPUT_RECORD

Finds index keys that point to specified text
Calls a user-supplied routine to return the
contents of an index optionally qualified by a

key

Retrieves help text

LIBRARIAN UTILITY
LBRSCLOSE

7.4.1 LBRSCLOSE - Close a Library
The LBR$CLOSE routine closes an open library.
Format
LBRSCLOSE (library-index)
library-index

A pointer to a longword that contains the library index returned
by the LBRSINI_CONTROL routine. The library must be open.

Return Status
LBRS_LIBNOTOPN

The specified library is not open,
LBRS_ILLCTL

The specified library index is not valid.
Notes

If the library index is 0, LBRSCLOSE immediately returns with
success,

Upon successful completion, LBRSCLOSE closes the open library,
and deallocates all of the memory used for processing the
library.

LIBRARIAN UTILITY
LBRSDELETE__DATA

7.4.2 LBRSDELETE_DATA - Delete Text Records

The LBRSDELETE DATA routine deletes all the text records associated
with the specified module.

Format
LBRSDELETE DATA (library-index, txtrfa)
library-index

A pointer to a longword that contains the library index returned
by the LBRSINI_CONTROL routine. The library must be open.

txtrfa

A pointer to a 2-longword array that contains the record's file
address (RFA) of the text you want to delete.

Return Status
LBR$_ILLCTL

The specified library index is not valid.
LBRS INVRFA |

The specified RFA is not valid.
LBR$_LIBNOTOPN

The specified library is not open.
LBR$_STILLKEYS

Keys in other indexes still point at the text; therefore, the
specified text was not deleted.

Notes

If the reference count of the text 1is 0 (there are no other
indexes pointing at the text), LBR$SDELETE DATA will delete the
specified text records. If the reference count is not 0 (there
are keys in other indexes pointing at the text), the Librarian
returns the error LBRS_STILLKEYS.

The Librarian reuses data blocks that contain no text.

LIBRARIAN UTILITY
LBRSDELETE__KEY

7.4.3 LBRSDELETE_KEY - Delete a Key
The LBR$DELETE_KEY routine deletes a key from a library index.
Format
LBR$DELETE_KEY (library-index, key-name)
library-index

A pointer to a longword that contains the index returned by the
LBRSINI_CONTROL routine. The library must be open.

key-name
A longword that contains one of the following:
1. The value of the key (for libraries with binary keys)

2. The address of a string descriptor for the key (for libraries
with ASCII keys)

Return Status
LBR$_ILLCTL
The specified library index is not wvalid.
LBRS_KEYNOTFND
The specified key has not been found.
LBRS_LIBNOTOPN
The specified library is not open.
LBR$_UPDURTRAV
The specified index update is not valid as an embedded routine.
Notes

If LBRSDELETE_KEY finds the key specified by key-name in the
current index, it deletes the key.

You cannot call LBRSDELETE_KEY within the user-supplied routine
specified in either the LBRSSEARCH or LBRSGET_INDEX routines.

LIBRARIAN UTILITY

7.4.4 LBRSFIND - Lookup a Key by its RFA

LBRSFIND

The LBR$FIND routine looks up a 1library key by 1its record's file
address (RFA) and prepares to read the key's associated text.

Format
LBRSFIND (library-index, txtrfa)

library-index

A pointer to a longword that contains the lihrary index returned
by the LBRSINI_CONTROL routine. The library must be open.

txtrfa

A pointer to a 2-longword array that contains the RFA returned by

the LBRSLOOKUP_KEY routine.
Return Status
LBR$_ILLCTL

The specified library index is not valid.
LBRS_ILLIDXNUM

The specified index number is not valid.
LBRS“INVRFA

The specified RFA is not valid.
LBR$_LIBNOTOPN

The specified library is not open,
Notes

If the specified RFA is walid, LBRSFIND
tables so that you can read the associated

initializes 1internal
text.

LIBRARIAN UTILITY

LBR$GET__HEADER

7.4.5 LBRSGET_HEADER - Retrieve Library Header Information
The LBRSGET_ HEADER routine returns information from 1library's header
to the caller.
Format
LBRSGET_HEADER (library-index, retary)
library-index
The pointer to a longword that contains the 1library index

returned by the
open.

LBRSINI_CONTROL routine. The library must be

retary

An array of 128 longwords that receives the library header. The
information in the returned array is shown in Table 7-3.

Table 7-3
Library Header Information Array Offsets
Offset in
Longwords Symbolic Name Contents

0 LHISL_TYPE Library type

1 LHISL NINDEX Number of indexes

2 LHISL MAJORID Library format major identification

3 LHISL_MINORID Library format minor identification

4 LHIST LBRVER ASCIC version of Librarian

12 LHISL CREDAT Creation date/time

14 LHI$L_UPDTIM Date/time of last update

16 LHISL_UPDHIS Virtual Block Numbher (VBN) of start
of update history (reserved)

17 LHISL_FREEVBN First logically deleted block

18 LHISL_FREEBLK Number of deleted blocks

19 LHISB_NEXTRFA Record's File Address (RFA) of end
of library

21 LHISL_NEXTVBN Next VBN to allocate at end of file

22 LHISL FREIDXBLK Number of free pre-allocated index
blocks

(continued on next page)

LIBRARIAN UTILITY

Table 7-3 (Cont.)
Library Header Information Array Offsets

Offset in
Longwords Symbolic Name Contents
23 LHISL FREEIDX Listhead for pre-allocated index
blocks
24 LHISL HIPREAL VBN of highest pre-allocated block
25 LHISL_IDXBLKS Number of index blocks in use
26 LHISL IDXCNT Number of index entries (total)
27 LHI$L_MODCNT Number of entries in index 1 (module
names)
28 LHISL_ MHDUSZ Number of bytes of additional infor-
mation reserved in module header
29-128 Reserved to DIGITAL

Return Status
LBR$_LIBNOTOPN

The specified library is not open.
LBR$_ILLCTL

The specified library index is not valid.
Notes

Upon successful completion, LBRSGET HEADER places the library
header information into the array.

LIBRARIAN UTILITY

LBRSGET__HELP

7.4.6 LBR$GET_HELP - Return Help Text

LBRSGET HELP returns help text in a help library to the
program.

Format:

LBRSGET _HELP (library-index, [line-width], [routine],
key-1, key-2,...,key-n)

library-index

A pointer to a longword that contains the index returned
LBRSINI_CONTROL routine. The library must be open.

line-width

The address of a longword that contains the width of the
line.

routine

The address of specified routine to call for each 1line
you want output.

data

The address of a longword of data to pass to the
specified in the routine argument.

key-1,key-2,...,key-n

The address(es) of one or more string descriptors for the
that define the text to be output.

Return Status
LBRS_ILLCTL

The specified library index is not valid.
LBR$_LIBNOTOPN

The specified library is not open.
LBR$~NOTHLPLIB

The specified library is not a help library.
Notes

The optional 1line-width argument controls the width

calling

[datal,

by

the

listing

of

text

routine

key (s)

of

the

listing 1line when available help topics are printed. If you do
not supply a line-width, or if you specify 0, the line-width

defaults to 80 characters per line.

LIBRARIAN UTILITY

If you do not supply a routine argument, LBRSGET HELP calls the
Run-Time Library procedure LIB$SPUT OUTPUT to send the help text
lines to the current output device (SYS$SOUTPUT). However, if you
want SYS$OUTPUT for vyou program to be a disk file, rather than
the terminal, it is recommended that vyou supply a routine to
output the test.

If the key-1 descriptor 1is 0, or if it 1is not present,
LBRSGET HELP will assume that the key-1 name is "HELP," and it
ignores all the other keys. For key-2 through key-n, a
descriptor address of 0, or a length of 0, or a string address of
0 will terminate the list.

The key argument may contain any of the following special
character strings:

String Meaning
* Return all first-level help text in the library
KEY... Return all help text associated with the

specified key and its subkeys
oo Return all help text in the library

LBRSGET HELP returns all help text in the same format as the
output ~returned by the DCL command HELP. If you do not want the
help text indented to the appropriate help level, you must supply
your own routine to change the format.

The routine that you specify to output each help text line
contains an argument list of four longwords:

1. The first argument contains the address of a string
descriptor for the line to be output.

2. The second argument contains the address of a longword
that points to one or more flag bits. The flags
describe the contents of the text being passed. The
possible flags are:

HLPSM_NOHLPTXT - The specified help text cannot be
found.
HLPSM KEYNAMLIN - The text contains the key names of the
- printed text.
HLPSM OTHERINFOC - The text is part of the information
- provided on additional help available.

Note that if no flag bit is set, help text 1is being
passed.

3. The third argument is the address specified in the data
argument in LBRSGET HELP (or the address of a 0 constant
if no argument has been supplied).

4. The fourth argument is the address of a longword
containing the current key level.

The routine that you specify must return with success or failure
status. A failure status (low bit = 0) terminates the current
call to LBR$GET HELP.

LIBRARIAN UTILITY
LBRSGET__INDEX

7.4.7 LBR$GET_INDEX - Return the Contents of an Index

LBRSGET INDEX calls a user-supplied routine to return the contents of
an index optionally qualified by a key.

Format:

LBR$GET_INDEX (library-index, index~-nunber, routine-name,
[match-desc])

library-index

A pointer to a longword that contains the index returned by the
LBRSINI_CONTROL routine. The library must be open.

index-number

A pointer to a longword that contains the number of the primary
index you want to return.

routine-name

The name of a routine that you supply to be called for each
element in the index. '

match-desc

The address of a string descriptor that identifies selected
entries.

Return Status
LBR$_ILLCTL

The specified library index is not valid.
LBR$_ILLIDXNUM

The specified index number is not valid.
LBR$_LIBNOTOPN

The specified library is not open.
LBRS_NULIDX

The specified index is empty.
Notes

LBRSGET INDEX calls with two arguments the routine you specified
in the routine-name argument. The two arguments are:

1. Either address of a string descriptor for the entry (for
libraries with ASCII keys) or the address of a value (for
libraries with binary keys)

LIBRARIAN UTILITY

2, Address of a 2-longword array containing the entry's RFA

If the routine returns a false value (low bit = 0), LBRSGET_INDEX
stops searching the index.

Note that the string descriptor passed to your routine 1is wvalid
only for the duration of the supplied routine. If you need to
use the string descriptor in later processing, vyou must first
copy the string.

If you include the match-desc argument, LBRSGET INDEX supplies
only entries that match the specified string. The string can
contain embedded asterisks (*) and percent signs (%) that serve
as wild card characters in the string description. If you do not
supply the match-desc argument, LBRSGET INDEX uses an asterisk
and matches all entries. The match-desc argument is supported
only in libraries with ASCII keys.

The routine that you specify in routine-name cannot contain calls
to either the LBRSDELETE or LBRSINSERT_KEY routine.

LIBRARIAN UTILITY

LBRSGET__RECORD

7.4.8 LBRSGET_RECORD - Read a Text Record

The LBR$GET_RECORD routine returns the next text record associated
with a key.

Format
LBRSGETuRECORD (library-index, inbufdes [, outbufdes])
library-index
A pointer to a longword that contains the index returned by the
LBRSINI_CONTROL routine. The 1library must be open and the
LBRSLOOKUP_KEY routine must have been called.
inbufdes
A pointer to a string descriptor for the user-supplied buffer.
outbufdes
A pointer to a string descriptor for the actual record returned.
Return Status
LBR$_ILLCTL
The specified library index is not valid.
LBR$S_LIBNOTOPN
The specified library is not open.
LBR$MLKPNOTDON
The requested key lookup has not been done.
RMSS$_EOF
An attempt has been made to read past the logical end of text.
Notes
Before calling LBRSGET_ RECORD, you must first find the key by
calling LBRSLOOKUP_KEY or LBRSFIND, When you call
LBRSGET_RECORD, the Librarian fills the input buffer (described
by inbufdes) with the text record. If vyou have optionally

specified the output buffer string descriptor (outbufdes), the

Librarian fills it with the actual length and address of the
data.

LIBRARIAN UTILITY

LBRSINI_CONTROL

7.4.9 LBRSINI_CONTROL - Initialize a Library Index

The LBRSINI_CONTROL routine initializes a library index for use by all
other Librarian routines. You must call this routine before calling
any other Librarian routine.

Format

LBRSINI_CONTROL (library-index, func, [type, namblk])
library-index

A pointer to a longword that will receive the index for the
library.

func

The address of a longword that contains the library function to
be performed. Valid functions are LBRSC_CREATE, LBRSC_READ, and
LBRSC_UPDATE.

type

The address of a longword that contains the library type. If you

specify a library type, LBRSOPEN will check for the correct
library type.

namblk

The address of a VAX-11 Record Management Services (VAX-11 RMS)
NAM block. If the NAM block has a file identification in it
because it was used before, the Librarian will use the VAX-11 RMS
open-by~NAM block option. The Librarian will £fill in the
information in the NAM block so that it can be used at a later
time to open the library. This argument is optional and should
be used if the library will be opened many times during a single
run of the program. For a detailed description of VAX-11] RMS NAM
blocks, see the VAX-11] Record Management Services Reference
Manual.

Return Status
LBRS_NORMAL

The library index was initialized successfully.
LBRS_ILLFUNC

The function requested is not valid.

LBRS_ILLTYP

The specified library type is not valid.
LBR$_INVNAM

The specified VAX-11] RMS NAM block is not valid.

LIBRARIAN UTILITY

LBR$_TOOMNYLIB

An attempt was made to allocate more than 16 control indexes; 16
is the maximum allowed.

Notes:

After you initialize the 1library 1index, you must open the
library, or create a new one using the LBRSOPEN routine. You can
then call other Librarian routines that you need. Once you have

completed working with a library, close it with the LBRSCLOSE
routine.

LBRSINI CONTROL initializes a library by filling the 1longword
referenced by the 1library-index argument with the index of the
library. Upon completion of the call, the index can be used to
refer to the current 1library in all future routine calls.
Therefore, your program must not alter this value.

LIBRARIAN UTILITY

LBRSINSERT__KEY

7.4.10 LBR$INSERT_KEY - Insert a New Key

The LBR$INSERT KEY routine inserts a new key in the current library
index. -

Format
LBRSINSERT_KEY (library-index, key-name, txtrfa)
library-index

A pointer to a longword that contains the library index returned
by the LBRSINI_CONTROL routine. The library must be open.

key-name
A longword that contains one of the following:

1., The address of the value of the key (for 1libraries with
binary keys)

2. The address of a string descriptor for the key (for libraries
with ASCII keys)

txtrfa
A pointer to a 2-longword array that contains the RFA of the
associated text. VYou must use the RFA returned by the first call
to the LBRSPUT_RECORD routine.
Return Status
LBR$_IDXFUL
The specified index is full.
LBRS_ILLCTL
The specified library index is not valid.
LBR$_INVRFA
The specified RFA does not point to valid text.
LBR$_KEYINDEX
The index already contains the specified key.
LBR$_LIBNOTOPN
The specified library is not open.
LBRS$_UPDURTRAV
The specified index update is not valid as an embedded routine.
Notes

You cannot call LBRSINSERT KEY within the wuser-supplied routine
specified in either the LBRSSEARCH or LBRSGET_INDEX routines.

LIBRARIAN UTILITY

LBRSLOOKUP__KEY

7.4.11

LBR$LOOKUP_KEY - Lookup a Library Key

The LBRSLOOKUP_KEY routine looks up a key in the 1library's current
index and prepares to read the text associated with the key.

Format

LBRSLOOKUP_KEY (library-index, key-name, txtrfa)

library-index

A pointer to a longword that contains the index returned by the
LBRSINI_CONTROL routine. The library must be open.

key-name

A longword that contains one of the following:

1.

2.

txtrfa

The address of the value of the key (for 1libraries with
binary keys)

The address of a string descriptor for the key (for libraries
with ASCII keys)

A pointer to a 2-longword array that receives the RFA of the text
you want to read.

Return Status

LBR$_ILLCTL

The specified library index is not valid.

LBRS_KEYNOTFND

The specified key was not found.

LBRS_LIBNOTOPN

The specified library is not open.

Notes

If

LBRSLOOKUP KEY finds the specified key, it initializes

internal tables so that you can read the associated text.

The Librarian returns the RFA (consisting of the VBN and the byte
of fset) to the 2-longword array pointed to by txtrfa. Note that
the array contains an RFA of only 48 bits.

7-34

LIBRARIAN UTILITY

LBR$OPEN

7.4.12 LBRS$SOPEN - Open a Library

The LBR$SOPEN routine opens an existing library or creates a new one,
This routine must be called after you call LBRSINI_CONTROL and before
you call any other Librarian routine,

Format

LBRSOPEN (library-index [,fns, create-options, dns, rlfna, rns,
rnslen])

library-index

A pointer to a longword that contains the index returned by
LBRSINI_CONTROL.

fns

The address of a string descriptor for the file name string.
This argument must be included unless the VAX-11] RMS NAM block
address was previously supplied in the LBRSINI_CONTROL routine
and it contained a file identification. Otherwise, an error
(LBR$_NOFILNAM) will result.

create-options

If you are creating a library with LBRSC CREATE, you must include
the create-options argument. The create-options argument is an
array of 20 longwords that describes the characteristics of the
library you want to create. Table 7-4 shows the entries that the
array must contain.

dns
The address of a string descriptor for the default file name
string.

rlfna
The address of a VAX-11 RMS NAM block for the related file name.
If you do not specify rlfna, no related file name processing
occurs., See the VAX-11 Record Management Services Reference
Manual for details on processing related file names.

rns
The address of a string descriptor for the resultant file name
string. If an error occurs during an attempt to open the
library, the expanded name string will be returned.

rnslen

A pointer to a longword that receives the length of the resultant
file name string (or the length of the expanded name string if
there was an error in opening the library).

LIBRARIAN UTILITY

Return Status
LBRS_OLDLIBRAR
The speci
LBRS_ILLCREOPT
The reque
LBR$_ILLCTL
The speci
LBRS_I LLFMT

The speci

Y

Table 7-4
Create-Options Array
Offset in
Longwords Symbolic Name Contents
0 CRESL_TYPE Library type
LBR_SC_TYP_UNK (0) Unknown/unspecified
LBR_SC_TYP_OBJ (1) Object and/or shareable
image
LBR_$C_TYP_MLB (2) Macro
LBR_$C_TYP_HLP (3) Help
LBR_$C_TYP_TXT (4) Text
(5-127) Reserved to DIGITAL
LBR_SC_TYP_USR (128-255) User-defined
1 CRESL_KEYLEN 0 32-bit unsigned keys
non-0 Maximum length of ASCII
keys

2 CRESL_ALLOC non-0 Initial library file
allocation

3 CRESL_IDXMAX Number of primary indexes
(maximum of 8)

4 CRESL_UHDMAX Number of additional bytes
to reserve in module
header

5 CRESL_ENTALL Number of index entries to
pre-allocate

6-20 Reserved to DIGITAL

fied Version 1.0 library has been opened.

sted create options are not valid or not supplied.

fied library index is not valid.

fied library format is not valid.

LIBRARIAN UTILITY

LBRS_ILLFUNC
The specified library function is not valid.
LBRS_INSVIRMEM

No virtual memory is available for the specified function.
LBRS_LIBOPN
The specified library is already open.

LBRS_NOFILNAM

The fns argument was not supplied, or the VAX-11] RMS NAM block
was not filled in.

LBR$_OLDMISMCH

The library function requested conflicts with the o0ld 1library
type specified.

LBR$_TYPMISMCH

The library type requested conflicts with the 1library type
specified.

Notes

When the library is successfully opened, the Librarian reads the
library header into memory, sets the default index to 1, and
updates the library index.

If the library cannot be opened because it is already open for a
write operation, LBR$SOPEN will retry the open operation every one
second for a maximum of 30 seconds before returning the VAX-11
RMS error, RMS$_FLK, to the caller.

LIBRARIAN UTILITY
LBR$PUT_END

7.4.13 LBRSPUT_END - Terminate a Text Sequence Written to a Library

The LBRSPUT_END routine terminates a text sequence written to a
library by the LBRSPUT RECORD routine.

Format
LBRSPUT_END (library-index)
library-index

A pointer to a longword that contains the index returned by the
LBRSINI_CONTROL routine. The library must be open,

Return Status
LBR$_ILLCTL
The specified library index is not wvalid.
LBR$_LIBNOTOPN
The specified library is not open.
Notes
Call LBRS$PUT END after you have written text records to the
library with the LBRSPUT RECORD routine. LBR$PUT END terminates

a text sequence by attaching a three-byte logical end-of-file
record (hexadecimal 77,00,77) to the text.

LIBRARIAN UTILITY
LBRSPUT__RECORD

7.4.14 LBRSPUT_RECORD -~ Write a Text Record

The LBRSPUT RECORD routine writes a text record beginning at the next
free location in the library.

Format
LBR$PUT_RECORD (library-index, bufdes, txtrfa)
library-index

A pointer to a longword that contains the index returned by the
LBRSINI_CONTROL routine. The library must be open.

bufdes

A pointer to a string descriptor that <contains the buffer to
receive the record output.

txtrfa

A pointer to a 2-longword array that receives the RFA of the
newly created module header.

Return Status
LBRS_ILLCTL
The specified library index is not valid.
LBRS_LIBNOTOPN
The specified library is not open.
Notes
If this is the first call to LBRSPUT_RECORD, the Librarian first
writes a module header and returns its RFA to the 2-longword

array pointed to by txtrfa. LBRSPUT RECORD then writes the
supplied text record to the library.

LIBRARIAN UTILITY

LBRSREPLACE__KEY

7.4.15 LBR$REPLACEmKEY - Change Text Pointer or Insert New Key
The LBR$REPLACE_KEY routine inserts a new key in an index by changing
the pointer associated with an existing key, or by inserting a new
key.
Format

LBRSREPLACE_KEY (library-index, key-name, oldrfa, newrfa)

library-index

A pointer to a longword that contains the index returned by the
LBR$INI_CONTROL routine. The library must be open.

key-name
A longword that contains one of the following:

1. The address of the key's value (for libraries with binary
keys)

2. The address of a string descriptor for the key (for libraries
with ASCII keys)

oldrfa

A pointer to a 2-longword array that contains the RFA of the old
text.

newrfa

A pointer to a 2-longword array that contains the RFA of the new
text.

Return Status
LBR$_ILLCTL

The specified library index is not valid.
LBR$_LIBNOTOPN

The specified library is not open.
LBR$_INVRFA

The specified RFA is not valid.
Notes

If LBRSREPLACE_KEY does not find the key in the current index, it
calls the LBRSINSERT KEY routine to insert the key.

LIBRARIAN UTILITY

If LBRSREPLACE_KEY finds the specified key, it performs the
following:

1. Decreases by 1 the reference count for the old text (pointed
to by oldrfa)

2. Increases by 1 the reference count for the new text (pointed
to by newrfa)

3. Modifies the entry for the key so that it now points to the
new text

LIBRARIAN UTILITY
LBR$SEARCH

7.4.16 LBR$SEARCH - Search an Index

The LBRSSEARCH routine finds index keys that point to the specified
text.

Format
LBRSSEARCH (library-index, index-number, rfa-to-find, routine-name)
library-index

A pointer to a longword that contains the index returned by the
LBRSINI_CONTROL routine. The library must be open.

index-number

A pointer to a longword that contains the number of the primary
index you want to search.

rfa~to-find

A pointer to a 2-longword array that contains the RFA of the key
you want to find.

routine-name

The name of a routine that you supply to call for each key
containing the matching RFA,

Return Status
LBRS_ILLCTL
The specified library index is not valid.
LBRS_ILLIDXNUM
The specified index number is not valid.
LBRS_KEYNOTFND
The Librarian did not find any keys with the specified RFA.
LBR$_LIBNOTOPN
The specified library is not open.
Notes
Use LBRSSEARCH to find index keys that point to some specified
text. For example, vyou <can call LBRSSEARCH to find all the
global symbols associated with an object module in an object

library.

If LBRSSEARCH finds an 1index key, it <calls a user-supplied
routine with two arguments. The two arguments are:

1. Either the address of a string descriptor for an ASCII key or
the address of the value of a binary key

2. Address of a 2-longword array that points to the RFA of the
associated text

7-42

LIBRARIAN UTILITY

If the specified routine returns a false value (low bit = 0),
then the index search terminates.

Note that the key-name argument is valid only for the duration of
the call to the user-supplied routine., If you want to use the
key—-name argument later, you must copy it.

The routine that you specify in routine-name cannot contain any
calls to either the LBRSDELETE or LBRSINSERT_KEY routine.

LIBRARIAN UTILITY

LBRSSET__INDEX

7.4.17 LBRSSET_INDEX - Set the Primary Index Number

The LBRS$SET INDEX routine sets the index number to use - during
processing of libraries that have more than one index.

Format
LBRSSET_INDEX (library-index, index-number)
library-index

A pointer to a longword that contains the library index returned
by the LBRSINI_CONTROL routine. The library must be open.

index-number

A pointer to a longword that contains the number of the index you
want to set.

Return Status

LBR$_ILLCTL
The specified library index is not valid.

LBRS_ILLIDXNUM
The index number specified is not valid.

LBR$_LIBNOTOPN
The specified library is not open.

Notes
You call LBRSSET INDEX when working with libraries that contain
more than one index. Macro, help, and text libraries contain
only one index; therefore, you do not need to call
LBRSSET_INDEX. Object 1libraries contain two indexes. If you
want to access the global symbol table, you mnust call the
LBRSSET INDEX routine to set the index number. User-developed
libraries can contain more than one index; therefore, you may
need to call LBRSSET INDEX to set the index number.
Upon successful completion, LBRSSET INDEX sets the current index

to the requested index number. The Librarian numbers indexes
starting with 1.

LIBRARIAN UTILITY

LBR$SET__MODULE

7.4.18 LBRS$SET_MODULE - Read or Update a Module Header

The LBRSSET_MODULE routine reads, and optionally updates, the module
header associated with a given record's file address (RFA).

Format
LBRSSET_MODULE (library-index, rfa, [bufdesc,buflen,updatedesc])
libfary—index

The address of a 1longword that <contains the 1library index
returned by the LBRSINI_CONTROL routine. The library must be

open.

rfa
A pointer to the RFA associated with the module header. The
Librarian returns the RFA as a result of either the first call to
the LBRSPUT_RECORD routine, or a previous call to the
LBRSLOOKUP_KEY routine, For a description of record access by
RFA, see the VAX-11 Record Management Services Reference Manual,

bufdesc
A pointer to a string descriptor for the buffer that receives the
module header.

buflen
The address of a longword to contain the length of the returned
module header.

updatedesc

A pointer to a string descriptor of additional data that the
Librarian stores with the module header. If you include this
argument, the Librarian will update the module header with the
additional information.

Return Status

LBR$_HDRTRUNC
The buffer supplied to hold the module header was too small.

LBR$_ILLCTL
The specified library index is not valid.

LBR$_ILLOP
The updatedesc argument was supplied and the library was a
Version 1.0 1library or the 1library was opened only for read
access.

LBRS_INSVIRMEM

No virtual memory is available for the specified function.

LBRS_

LBRS_

Notes

LIBRARIAN UTILITY

INVRFA
The specified RFA does not point to a valid module header.
LIBNOTOPN

The specified library is not open.

If you specify bufdesc, the Librarian will return the module
header into the buffer. If you specify buflen, the Librarian
will also return the buffer's length., If you specify updatedesc,
the Librarian will update the header information.

You define the maximum length of the update information when vyou
create the library. The Librarian will zero-fill the information
if it 1is 1less than the maximum 1length, or truncate the
information if it exceeds the maximum length.

7.5 EXAMPLE

This section describes LBRDEMO, a VAX-11 FORTRAN program example
illustrates the use of the Librarian routines.

LIBRARIAN UTILITY

OF LIBRARIAN ROUTINES

that

LBRDEMO contains calls

to the Librarian routines that perform the following operations:

e Open

The sample program LBRDEMO is shown below.
program are keyed to the descriptions that

.TITLE DEMOMAC

or create a text library

Replace or insert text modules
Extract text modules
List the help topics in the system

Retrieve help text from the system

’

; macros

’
Scredef ; d
$Sdscdef ; d
$lbrdef i d
$lbrctltbl ; d
Snamdef ; d

~ me Ne e

+PSECT

.long
.long
.long
.long
.long
.long
. long

.long
.long
.long
.long
.long
.long

.SBTTL

+
+

Inputs:

St Ne N We Se Ne we Ne v

initialize array to be an

Call nam_init (nam_array,

lbrdata, PIC, OVR, REL, GBL, SHR,

f

lbr$c_read
f

lbrS$c_create

NOEXE, RD, WRT,

Name and initialize a text library

help library
help library

The circled numbers in the
follow.

efine
efine
efine
efine
efine

create options array offsets
string descriptor offsets
librarian parameters

library control table offsets
NAM block offset

set up FORTRAN COMMON block to allow FORTRAN main program to @
access librarian data

LONG

unc_read
unc_create

lbr$c_update func_update
lbr$c_typ_txt type_text
lbr$c_typ_hlp type_help
rms$.eof rmseof

Ne N Ne N e we e

dscsk_class_d c

offsets into create optio

lass_dynamic

ns array:

;
; values are divided by 4 to convert byte

; offsets into longword off
cre$l type/4

cre$l keylen/4
cre$l_alloc/4

creSl_idxmax/4
cre$l_uhdmax/4
cre$l_entall/4

N Se Ne Se e w

NAM_INIT - initialize RMS NAM block

RMS NAM block @

Calling sequence:

result_desc)

sets

type of library

max key length

initial library disk allocation

number of indices

size of additional module header data
number of index entries to preallocate

LIBRARIAN UTILITY

nam_array Address of array of 56 bytes to be initialized
as a NAM block
result_desc Address of string descriptor for resultant name
string.
Outputs:

the nam_array is initialized as a NAM block, with the expanded
and resultant name strings pointing to the string described hy
result_desc.

Routine value:

Always success

e Se e e Se N e ms Ne s Se waowe N oNe e we

.PSECT $code$, PIC, REL, SHR, EXE, RD, NOWRT

.ENTRY nam_init,"mR2, R3, R4, R5, R6>

movl 4 (AP), R6 ; Get address of NAM block
movcS #0, (SP), #0, #nam$c bln, (r6) ; Zero the NAM block
movl 8 (AP), RO - ; Get address of resultant name string descriptor
$NAM_STORE NAM = R6,- ; Initialize the NAM fields
BLN = #nam$c_bln,- ; block length
BID = #nam$c bid,~- ; block id
RSS = dsc$w_length (RO),~- ; tesultant name string size
ESS = dsc$w_length (RO),- ; expanded name string size
RSA = @dscSa_pointer (RO),- ; resultant name string address
ESA = @dsc$a_pointer (RO),- ; expanded name string address
movl #1,r0 ; return with success
ret

.SBTTL retrieve_rmsstv
Retrieve the RMS STV returned from the last Librarian operation @

Calling sequence:

istv = retrieve_rmsstv (0)
Inputs:

NONE
Implicit inputs:

The library must be open.
Outputs:

NONE
Routine value:

The RMS STV from the last librarian operation

e me Ne o Na EoSe S Ne e Se Ne e Ne Se e N W we

.ENTRY retrieve_rmsstv, "M<

movl glLbr$gl_rmsstv,r0 ;get the STV value
ret ;and return with that as the function value

LIBRARIAN UTILITY

.SBTTL set locate_mode

+
+

Set the current library to read in locate mode
Calling sequence:

call set_locate_mode
Inputs:

NONE
Implicit inputs:

An operation must have been done ¢n the desired library
(i.e. LBRSOPEN) before calling this routine.

Outputs:

NONE

Ne Ne Ne Ne Mo N We We Ne %o ws We N Ne We %o We we W N we

.ENTRY set_locate_mode, "M>

movl g~1br$gl_control,r0 ;get address of éontrol block
bisl2 #lbrsm_locate,1br$1_usrflg(rO) ;set locate mode

movl 1,RO ;return success

ret

.END

C
C Demo program for library access procedures
(o
PROGRAM LBRDEMO
IMPLICIT INTEGER (A-Z)
EXTERNAL list module
c
c The common block is declared in a MACRO source module to gain
c access to system definitions not available to FORTRAN.
C
COMMON /lbrdata/ func_read, func_create, func_update,
1 type_text, type_help, rmseof, class_dynamic, create_type,
2 create_keylen, create_alloc, create_idxmax, create_uhdmax,
3 create_entall
CHARACTER*128 library name, library_rsn, module_name
CHARACTER*128 input_lTne
CHARACTER*32 keyl, key2, key3
BYTE help_namblk (56), string_desc_bytes (8), dyn_desc_bytes (8)
DIMENSION create_options (0:49), old module_rfa (2), module_rfa (2),
1 dyn_string (2), string_desc (2)
C
C The equivalence of the STRING_DESC array with the STRING_DESC_BYTES
C array is done to access the string descriptor class field.
C

LIBRARIAN UTILITY

EQUIVALENCE (string_desc, string_desc_bytes),
1 (dyn_string, dyn_desc_bytes)

library open = .false.
have_name = .false.
C
C Initialize NAM block for use with HELP library
C
CALL nam_init (help_namblk, library_rsn) @
C
C Allocate a dynamic string and initialize string descriptors
C
dyn_string (1) =0
dyn_string (2) =0
dyn_desc_bytes (4) = class_dynamic
string_desc (1) =0 -
string desc (2) = 0
string_desc_bytes (4) = class_dynamic
status = -
1l lib$sgetl dd (2048, string desc) tallocate 2048 byte string
IF (status) GOTO 100 -
10 CALL 1libS$signal (%VAL (status))
STOP '
c
o Main dispatch loop -- Get action and dispatch(’
o

100 TYPE 9000
READ (5, *, END=300) action
GOTO (1000, 2000, 3000, 4000, 5000, 6000, 7000), action + 1
GOTO 100
200 CALL libS$signal ($VAL (status))
GOTO 100

Close library and exit

[eNeXKe!

300 IF (library_open) THEN
status = lbr$close (text_index)
IF (.NOT. status) GOTO 10
END IF
STOP

Give some help

aonn

1000 TYPE 9020
GOTO 100

Name new library

If there is a library open, it will be closed. The new library name
is accepted.

aaoaaoaoaan

2000 IF (library open) THEN@
status = lbrSclose (text index)
IF (.NOT. status) CALL 1Tb$signal ($VAL (status))
library open = .false.
END IF ~
TYPE 9040
2050 READ (5, 9110, END=100) name_length, library_name
library name = library name (l:name_length)/7'.TLB'
have_name = .true, -
GOTO 100

Open or Create a TEXT library @

oaon

3000 IF (.NOT. have_name) GOTO 8000

[oNeoNe]

[eNeKe!

[eNeKe]

[eEeKe!

[eNeNe]

LIBRARIAN UTILITY

3010 TYPE 9540
3020 READ (5, *, END = 100) create_flag
3050 IF (create flag) THEN

TYPE 9060

READ (5, *, END=100) max key length @
function = func create ~
create_options Tcreate~type) = type_text
create_options (create_keylen) = max_key_length
create_options (create_alloc) = 100
create_options (create_idxmax) =1
create options (create uhdmax) = 0
create:options (create entall) = 100
ELSE -

function = func update

END IF -

Initialize librarian for this library

status = lbr$ini_control (text_index, function, type_text)
IF (.NOT. status) GOTO 200

Open or create the library

3070 status = lbrS$open (text_index, library_ name, create_options)@)
IF (.NOT. status) GOTO 200
library_open = .TRUE.

Note: if using locate mode for record transfer, call set_locate_mode here.

GOTO 100

Insert or replace a module in the text library

4000 IF (.NOT. library open) GOTO 80200
TYPE 9080 -

4020 READ (5, 9110, END=100) name_length, module_name
replacing = lbrS$lookup_key (text index,
1 module name (l:name length), old module rfa)
TYPE 9100 - - -

4100 READ (5, 9110, END = 4200) line_length, input_line
status = lbr$put record (text index,
1 input line (1:Tine length), module rfa)

4120 IF (.NOT. status) CALL lib$signal ($VAL (status))
GOTO 4100

Module text has been inserted into the library. Terminate the module

4200 status = lbrSput_end (text_index)
IF (.NOT. status) CALL lib3signal (%VAL (status))@
status = lbrSreplace_key (text_index,
1 module_name (l:name_length), old_module_rfa, module_rfa)
IF (.NOT. status) CALL 1lib$sigal ($VAL (status))
status = ,TRUE.
IF (replacing) status = lbr$delete_data (text_index,
1 old_module_rfa)
IF (.NOT status) GOTO 200
GOTO 100

Extract module from library and type on terminal

5000 IF (.NOT. library_open) GOTO 80200)

TYPE 9400
READ (5, 9050, END = 100) module_name
status = lbr$lookup key (text_index, module_name, module_rfa)

IF (.NOT. status) GOTO 200
5100 status = lbrsget_record (text_index, string_desc, dyn_string)

aoon

[eNoNe]

[eXeKe! QOO aoaon

oo

6000

7000

7020

7040

8000

8020

9000
9020

9040
9050

LIBRARIAN UTILITY

IF ((.NOT. status) .AND. status .NE. rmseof)
1 CALL 1libS$signal ($VAL (status))

IF (status .EQ. rmseof) GOTO 100

CALL libSput_output (dyn_strin)

GOTO 5100 -

List contents of index of SYS$SHELP:HELPLIB.HLB

status = lbr$ini control (help_index, func_read, type help)m
IF (.NOT. status) GOTO 200 -

status = lbrSopen (help_index, %descr ('SYSSHELP:HELPLIB.HLB'))
IF (.NOT. status) GOTO 200

status = lbrS$get_index (help index, 1, list_module)

IF (. NOT. status) CALL lib$signal (VAL (status))

status = lbrSclose (help index)

IF (.NOT. status) GOTO 200

GOTO 100

Lookup help text in SYSSHELP:HELPLIB.HLB and display on the terminal

TYPE 9200

READ (5, 9110, END = 100) KEY1LEN, KEY1 (®

IF (KEY1LEN .EQ. 0) GOTO 7020

TYPE 9220

READ (5, 9110, END = 100) KEY2LEN, KEY2

IF (KEY2LEN .EQ. 0) GOTO 7020

TYPE 9240

READ (5, 9110, END = 100) KEY3LEN, KEY3

status =

1 1br$ini_control (help_index, func_read, type_help, help_namblk)
IF (status) GOTO 7040

GOTO 200

status = lbr$open (help_index, %descr ('sys$help:helplib.hlb'))
IF (.NOT. status) GOTO 200

status = lbr$get_help (help_index, 80, ,

1 keyl (l:keyllen), key2 (ltkey2len), key3 (l1:key3len))

IF (.NOT. status) CALL lib$signal (%VAL (status))

status = lbrS$close (help index)

IF (.NOT. status) CALL 1Ib$signal (%VAL (status))

GOTO 100

Error routines

No library name given

TYPE 9500
GOTO 100

No library open

TYPE 9520
GOTO 100

Format statements

FORMAT (' Action (0 for help): ',$)

FORMAT (' Commands:',/' 1 - Name library',/,

1' 2 - Open or Create a text library',/,

2' 3 - Replace/insert module',/,

4' 4 - Extract module',/,

3' 5 - List directory of SYSSHELP:HELPLIB.HLB',/,
5' 6 - Lookup help text in SYS$SHELP:HELPLIB.HLB')
FORMAT (' New library name: ',$)

FORMAT (A)

LIBRARIAN UTILITY

9060 FORMAT (' Maximum key length: ',$)

9080 FORMAT (' Module name: ',$)

9100 FORMAT (' Enter text. Terminate with a Control-Z:')

9110 FORMAT (Q, A)

9200 FORMAT (' Enter KEY1l: ',S)

9220 FORMAT (' Enter KEY2: ',S)

9240 FORMAT (' Enter KEY3: ',$)

9400 FORMAT (' Module to extract: ',S$)

9500 FORMAT (' No library name given')

9520 FORMAT (' No library open')

9540 FORMAT
1 (' Open existing library (0) or create new library (l): ',$)
END

INTEGER FUNCTION 1ist_modu1e (keyname, keyrfa)
IMPLICIT INTEGER (A-2)
CHARACTER *(*) keyname

TYPE *,keyname
list_module = .true.
RETURN

END

LBRDEMO calls 11 of the Librarian routines. To call these
routines, LBRDEMO uses a FORTRAN COMMON block to access symbols
that are unavailable to FORTRAN. The symbols specify the
functions available for initializing a library and the options
available for creating a text library. (See i))

The COMMON block is initialized in the VAX-11 MACRO source module
DEMOMAC; the symbols are accessed by linking the two programs
together. The Librarian routines are accessed by specifying an
options file that requests the linker to include the Librarian
shareable image. To assemble and link the two programs, you can
create a command procedure that contains the following commands:

$ FORTRAN /LIST LBRDEMO

$ MACRO /LIST DEMOMAC

$ LINK /EXE=DEMO /MAP=DEMO /FULL LBRDEMO, DEMOMAC, SYSS$INPUT/OPTIONS
!

!

!

S

OPTIONS INPUT

YSSLIBRARY : LBRSHR/SHARE {Include librarian

This command procedure produces the executable image DEMO.EXE.

DEMOMAC contains a subroutine, NAM INIT, that initializes an
array to be used as a VAX-11 RMS NAM bhlock when retrieving help
messages from the system help library. (See ® for information
on how to use the NAM block option; for an example of opening a
library without the NAM block option, see @)

The subroutine RETRIEVE_RMSSTV returns the VAX-11 RMS STV value
from the last library operation (see the VAX-11 Record Management

Services Reference Manual). LBRDEMO does not call
RETRIEVE_RMSSTV. However, if it were to be included, it would be
declared as INTEGER*4, and the call would be

ISTV=RETRIEVE RMSSTV(0).

LIBRARIAN UTILITY

DEMOMAC also contains a subroutine, SET LOCATE _MODE, that you can
use to specify the VAX-11 RMS locate mode of record transfer.
LBRDEMO does not call this subroutine. However, 1if this
subroutine were to be included, it would be called after the
LBRSOPEN routine (see the program comment following line 3070).

For more information on using locate mode, see the VAX-11 Record
Management Services Reference Manual.

The main part of LBRDEMO, beginning at 1line 100, asks what
library operation you want to perform. By typing "0" (for help),

you request an operation menu that 1lists the program's six
library functions:

1. Name library

2. Open or create a text library

3. Replace/insert module

4. Extract module

5. List directory of SYSSHELP:HELPLIB.HLB
6. Lookup help text in SYSSHELP:HELPLIB.HLB

Each operation on the menu references at 1least one of the
Librarian routines. After the Librarian performs the requested
operation, it returns you to this menu. At this point, you can
either perform another operation by typing the appropriate
number, or you can terminate the program by typing <CTRL/Z>.
Typing <CTRL/Z> performs the following functions:

a. Calls the LBRSCLOSE routine (line 300) to «close a
previously opened text library

b. Executes the STOP instruction to terminate the program

The first operation on the menu allows you to hame the library
you want to access. If a text library has been previously
opened, LBRDEMO calls the LBRSCLOSE routine (line 2000) to close
the library. LBRDEMO then prompts you for the library name (line
2050), appends the text library file type TLB to the name you
specify, and assigns the string to the symbol LIBRARY NAME. The
variable HAVE NAME is set to true, and LBRDEMO returns to the
operations menu.

The second operation on the menu opens or creates a library using
the 1library name you specify in 1. LBRDEMO asks whether you are
opening an existing library or creating a new one (line 3010).
If you want to create a library, the variable FUNCTION will take
the value stored in FUNC CREATE; if you are opening a 1library,
the wvariable FUNCTION will take the value stored in FUNC_UPDATE.
In either case, LBRDEMO <calls +the LBRSINI CONTROL routine to
initialize the text library index. -

The three arguments to the LBR$SINI CONTROL routine specify that
the library index is named TEXT INDEX, the library function to be
performed is contained in the variable FUNCTION, and the 1library
type 1is TEXT. The variable FUNCTION is accessed through the
COMMON block. Note that the call to LBRSINI CONTROL initializes
a library index without using the-NAM block option. Instead, the
call to LBRSOPEN (line 3070) opens a library using the
specifications contained in the LIBRARY NAME argument.

Note also that the call to the LBR$INI_CONTROL routine does not
enable vyou to access a library; it merely initializes a library

7-54

LIBRARIAN UTILITY

index to which the other Librarian routines can refer. The
subsequent call to LBRSOPEN opens the library for access. If you
try to perform a library operation before initializing a library
index and opening a library file, LBRDEMO will print "No library
name given" (line 4000) and will return vyou to the operations
menu.

If you are opening an existing library, the LBRSOPEN routine will
open for access the library specified in LIBRARY NAME. If you
are creating a new library, the LBRSOPEN routine will wuse the
information in the CREATE OPTIONS array (line 3070) to create the
library. The symbols in the create options array are accessed
through the COMMON block. You must supply the maximum key length
of the library (line 3050); the rest of the create options are
predefined by the program.

After you have initialized and opened (or created) a library, you
can 1insert or replace a text module (the third operation on the
menu). The method by which the Librarian inserts a module
depends on whether the key to the module already exists in the
library index.

In the sequence beginning at line 4000, the variable REPLACING is
associated with the status of the LBR$LOOKUP KEY routine. This
variable is later used to test whether the module being inserted
already exists in the library (see@).

LBRDEMO creates the new text module by prompting you to specify
the module name and enter the text (lines 4020 and 4100,
respectively). As you enter the text records, LBRDEMO calls the
LBRSPUT_RECORD routine to write the text records to the module
you specified. Note that the first call to LBRSPUT RECORD fills
in the MODULE RFA argument with the address of the module. 1In
this way, the first call to LBRSPUT RECORD provides a mechanism
for accessing the new module 1in subsequent calls to the
Librarian. After the module is written, LBRDEMO <calls the
LBRSPUT END routine (line 4200) to terminate the writing
sequence.

LBRDEMO 1inserts the module into the library using the
LBRSREPLACE KEY routine. I1f the key you are inserting does not
already exist in the module name table, LBRSREPLACE KEY will
insert the key into the index. The new key will point to the
inserted module,

If the key you are inserting already exists, LBRSREPLACE_KEY must
perform a replace operation. In a replace operation, the
Librarian changes the index key from the address specified in
OLD_MODULE_RFA to the address specified by MODULE_RFA. The key
then points to the new module, but the old module still exists
physically in the 1library. Therefore, after the call to
LBR$REPLACE_KEY, LBRDEMO must delete the old module.

If the value of REPLACING is true, the call to LBRSLOOKUP KEY
will find a module with the same name and return its address in
the location specified by the argument OLD MODULE RFA, LBRDEMO
then calls the LBRSDELETE DATA routine "~ (line 7300) to delete
physically the old module from the library.

LIBRARIAN UTILITY

The fourth operation on the menu extracts a module from the
currently open library and displays it on the terminal. LBRDEMO
first prompts you for the module you want to extract, then calls
LBR$LOOKUP_KEYm The call to LBR$LOOKUP_KEY searches TEXT INDEX
for the key specified by the MODULE NAME argument. If the key is
found, LBRSLOOKUP_KEY will f£ill "in the array specified by
MODULE_RFA with the record's file address (RFA) of the module you
want to read.

Once the module 1is found, LBRDEMO calls the LBRSGET RECORD
routine to retrieve the text records. The first argument to the
routine, STRING DESC, specifies the input buffer that receives
the text record. The second argument, DYN STRING, is an optional
argument that receives the actual length and address of the text
record read.

The program sequence beginning at line 5100 constitutes a read
loop. As LBRSGET_RECORD returns each text record, LBRDEMO checks
for the end of file (RMSEOF). If it is not at the end of the
file, LBRDEMO will call the Run-Time Library procedure
LIBSPUT OUTPUT to output the text record described by the string
descriptor DYN_ STRING.

After LBRSGET_RECORD retrieves all the text records in the
module, LBRDEMO returns you to the operations menu.

The fifth operation on the menu, beginning at 1line 6000, 1lists
the contents of the system help library, SYSSHELP:HELPLIB.HLB.

The LBRSINI CONTROL routine initializes the library index, called
HELP INDEX. The second argument, FUNC READ, indicates that the
library is initialized for reading. Therefore, any attempt to
modify the 1library in subsequent calls will result in an error.
The symbol FUNC_READ is accessed through the COMMON block.

The call to LBRSOPEN opens system help library for read access.
The second argument to the routine contains the file
specification for the library.

The call to LBRSGET INDEX retrieves the contents of the library
index specified by the first argument, HELP_INDEX, which was
returned by the preceding call to LBRSINI CONTROL. The second
argument tells the routine to get index number 1. The third
argument, LIST MODULE, is the name of the user-supplied routine
(at the end ~of the program) that LBR$GET_INDEX calls to return
the list of index entries.

The final call in this sequence, LBRSCLOSE, closes the index
returned by the LBR$INI_CONTROL routine and deallocates all of
the space for processing the library.

The sixth and last operation on the menu retrieves help text from
the system help library, SYSSHELP:HELPLIB.HLB. After prompting
you for the help keys (line 7000), LBRDEMO calls the
LBRSINI CONTROL routine to initialize an index for the help
library.

Note that this call to LBRSINI_CONTROL uses the VAX-11 RMS NAM
block option to initialize and open the help library. When you
first select operation 6, the Librarian fills in the NAM block,
HELP_NAMBLK, with the file identification of the system help
library. Thereafter, when you select operation 6, the Librarian
uses the HELP NAMBLK argument containing the file identification
to reopen the Tibrary. Using the NAM block method for opening a
library is much faster because no directory accesses are
required. Although the NAM block argument is optional 1in the

7-56

LIBRARIAN UTILITY

LBRSINI_CONTROL routine, you should use it whenever you
repeatedly open and close a library.

The LBRSOPEN routine opens the system help library in preparation
for the <call to LBRSGET HELP. LBRSGET HELP retrieves the help
text associated with the key path specified in the argument list.
The number 80 before the list of help keys optionally requests
that the text be displayed in 80-character lines.

After printing the help text, LBRDEMO calls the LBRS$CLOSE routine

to close the 1library. You then return to the operations menu
where you can terminate LBRDEMQO by typing <CTRL/Z> (see 4).

7.6 MESSAGES FOR LIBRARY COMMAND AND LIBRARIAN ROUTINES

This section 1lists messages issued by the LIBRARY command and
Librarian routines, and provides an explanation of each message and
suggestions for user action in response to error and severe-error
messages. The messages appear in decreasing order of severity.
Informational and success messages inform you that the Librarian has
performed the specified request. Warning messages indicate that the
command may have performed some, but not all of your request, and that
you need to verify command or program output. Error messages indicate
that the command or program output is incorrect, although the system
may attempt to continue execution. Severe-error messages tell you
that the error required the system to stop execution of the command or
program,

7.6.1 Messages For LIBRARY Command

This section lists the information, success, warning, error, and
severe-error messages for the LIBRARY command.

7.6.1.1 Informational Messages
CNVRTING, library file-spec is a copy of old library file-spec

Explanation: Any modification to a Version 1.0 library
automatically converts it to the new library format.

7.6.1.2 Success Messages

NORMAL, success

INSERTED, module module-name inserted in library file-spec
DELETED, module module-name deleted from library file-spec
REPLACED, module module-name replaced in library file-spec
REMOVED, symbol symbol-name removed from library file-spec

EXTRACTED, module module-name extracted from library file-spec

LIBRARIAN UTILITY

7.6.1.3 Warning Messages
DIFTYP, expected library file-spec to be library type

Explanation: The referenced library is actually of a different
type from that specified in the command string.

User Action: No action is necessary. Processing continués based
on the actual library type.

CLOSEIN, error closing input file
Explanation: This is an error detected by VAX-11 RMS,
User Action: Reenter the command line after taking corrective
action based on the accompanying message.

CLOSEOUT, error closing output file
Explanation: This is an error detected by VAX-11 RMS.
User Action: Reenter the command line after taking corrective
action based on the accompanying message.

COMCOD, compilation error in module module-name file library file-spec

Explanation: The object module you are inserting contains a
compilation error, a warning, or an invalid compilation code.

User Action: Recompile the module before reentering the command
string.
ENDWRNGMAC, .ENDM does not end macro macro-name in library file-spec

Explanation: The macro name following the .ENDM statement does
not match the name of the macro it should end.

User Action: Reformat the macro source file.

EXTRAENDM, extraneous .ENDM in library file-spec

Explanation: The specified library contains a LENDM statement
that does not terminate any macro.

User Action: Reformat the macro source file.

NOHLPTXT, no level 1 help text found in input file-spec

Explanation: The specified input file does not contain a
properly formatted help file.

User Action: Reformat the help input file bhefore reentering the
command line.

LIBRARIAN UTILITY

NOMACFOUND, no .MACRO found in input file-spec

Explanation: The specified 1input file does not contain a
properly formatted macro.

User Action: Reformat the macro source file,
NOMTCHENDM, no matching LJENDM for macro macro hame in libhrary
file-spec

Explanation: The specified macro does not contain a matching
.ENDM statement.

User Action: Reformat the macro source file,
NOMTCHENDR, number missing .ENDR for macro macro-name in library
file-spec

Explanation: The Librarian found a nmatching .(ENDM statement
before finding the required .ENDR statement,

User Action: Reformat the macro source file.

NOMTCHFOU, no matches found for module-name

Explanation: The module specified with the /ONLY qualifier is
not in the module name table.

User Action: Make sure that the specified module exists.

TOOMNYENDR, too many .ENDR in macro macro-name in library file-spec

Explanation: The specified macro contains a nonmatching JENDR
statement,

User Action: Reformat the macro source file.

7.6.1.4 Error Messages

DELKEYERR, error deleting module-name from library file-spec
Explanation: The module you want to delete does not appear in
the module name table; or a VAX-11l RMS error occurred; or there

was not enough virtual memory.

User Action: Correct the problem and reenter the command line,

DELDATERR, error deleting data from library file-spec

Explanation: An error occurred during an attempt to delete the
text; or a VAX-11 RMS error occurred; or there was not enough
virtual memory.

User Action: Compress the o0ld library before deleting the
specified text.

LIBRARIAN UTILITY

DUPGLOBAL, global symbol symbol name from file 1library file-spec
already in library library file spec.

Explanation: An attempt was made to insert an object module
containing a global symbol that was already in the global symbol

table.

User Action: Replace the module rather than insert it; or
remove the global symbol from the library before inserting the
module.

DUPMOD, module module-name from file 1library file-spec already in
library file-spec

Explanation: The module you are inserting into the library
already exists in the module name table.

User Action: Change the name of the module, or replace the
existing module with the new one.

FAOFAIL, system service failure
Explanation: This is an unexpected internal consistency check.
User Action: Submit a Software Performance Report.

GSDTYP, module module-name file library file-spec has an illegal GSD
record record type
Explanation: The specified object module is invalidly formatted.
User Action: Recompile the object module before inserting it
into the library.

ILLKEYLVL, illegal key level number key keyname in library file-spec
expected key number

Explanation: The help module you want to insert into the library
is not formatted properly.

User Action: Reformat the module before inserting it into the
library.

INDEXERR, index error in library file-spec
Explanation: An error occurred during an attempt to search the
index; or a VAX-11 RMS error occurred; or there was not enough

virtual memory available.

User Action: Compress the lihrary before reentering the command
string.

7-60

LIBRARIAN UTILITY

INSERTERR, error inserting module name in library file-spec

Explanation: The LIBRARY command could not insert the specified
modules into the library for one of the following reasons:

e The modules are not formatted properly

e The organization of the input file is incorrect
e A VAX-11l RMS error occurred

e There was not enough virtual memory

User Action: Correct the error and insert the file.

KEYNAMLNG, key key-name name length illegal in library file-spec

Explanation: The name of the module you are inserting exceeds
the name length limit for the library.

User Action: Rename the module before inserting it into the
library.

LOOKUPERR, error looking up module-name in library file-spec
Explanation: The Librarian could not find the requested module
in the module name table; or a VAX-11 RMS error occurred; or
there was not enough virtual memory available.

User Action: Reenter the command 1line specifying an existing
module name,

MACNAMLNG, macro macro-name is too long in library file-spec

Explanation: The name of the macro you are 1inserting into the
library exceeds the name length limit.

User Action: Either rename the macro or extend the library's
name length limit.
MODNAMLNG, illegal module name module-name of number characters in

library file-spec

Explanation: The name of the object module vyou are inserting
into the library exceeds the name lenqgth limit.

User Action: Rename the module before inserting it 1into the
library.
NESTLEVEL, nesting level exceeded in macro macro name file 1library

file-spec

Explanation: The specified macro has exceeded the nesting 1limit
of 63.

User Action: Change the macro before inserting it into the
library.

LIBRARIAN UTILITY
NOEOM, module module-name is not terminated with EOM record in library
file-spec

Explanation: The object module you want to insert into the
library does nct contain a legal EOM record.

User Action: Recompile the object module.

NOMODNAM, no module name found for input-file-spec

Explanation: An attempt was made to insert unnamed text modules
into a text library.

User Action: Use the /MODULE qualifier to name the text modules.

NOTOBJLIB, not an object library

Explanation: An attempt was made to cross reference a library or
to use the /REMOVE qualifier in a macro, help, or text library.

User Action: Reenter the command 1line, specifying an object
library that contains the requested symbol.
OPENIN, input file open error

Explanation: The LIBRARY command could not open the input file
for one of the following reasons:

e The user directory or file is protected against read access

e A physical device problem; for example, the volume is not
mounted

e The specified directory does not exist
@ The specified file does not exist

e On create and compress operations, there is not enough space
to allocate the new library file.

User Action: Correct the problem and reenter the command line.

READERR, error reading file file
Explanation: This is an error detected by VAX-11 RMS.
User Action: Check that the file exists and that you have read
privilege to it.

RECLNG, illegal record length number in module module-name in 1library
file-spec

Explanation: The specified module contains records exceeding the
maximum record length of 2048 bytes.

User Action: Correct the record 1length before inserting the
module in the library.

LIBRARIAN UTILITY

RECTYP, illegal record type type in module module-name in 1library
file-spec

Explanation: The specified object module contains an 1illegal
record type.

User Action: Recompile the module bhefore reentering the command
string.
SEQNCE, illegal record sequence in module module-name in library

file-spec

Explanation: The object module you want to insert is 1illegally
formatted.

User Action: Recompile the object module before inserting it
into the library.
SPNAMLNG, PSECT module module-name file library file-spec has 1illegal

length number

Explanation: The program-section name lenath exceeds the maximum
length of 31 characters.

User Action: Recompile the module before reentering the command
line.
STRLVL, object structure level number unsupported in module

module-name in library file-spec

Explanation: The object file vyou are inserting 1is 1invalidly
formatted.

User Action: Recompile the object file before inserting it into
the library. '
SYMNAMLNG, module type module module-name file library file-spec has

illegal length number

Explanation: The specified module name exceeds the name length
limit.

User Action: Make sure that all the symbol names in the module
are less than the library's name length limit; or compress the
library with a larger key length.

WRITEERR, error writing file

Explanation: This is an error detected by VAX-11 RMS.

User Action: Make sure that the file is open and that vyou have
write privilege to it.

LIBRARIAN UTILITY

7.6.1.5 Severe Error Messages

BADKEY, illegal key
Explanation: The specified module is not valid.
User Action: Reenter the command 1line, specifying a wvalid
module.

MHDERR, module header error for module name in library-file-spec

Explanation: The specified module has an 1invalidly formatted
header.

User Action: Compress the library before reentering the command
line.

INITERR, error initializing library-file-spec.
Explanation: There is not enough virtual memory available.

User Action: 1Increase your working set limit.

OPENOUT, error opening output file
Explanation: This is an error detected by VAX-11 RMS,

User Action: Make sure that the file is open and that you have
write privilege to it.

7.6.2 Librarian Routines Messages

This section lists the success, warning, and error messages for the
Librarian routines. Note that any of the Librarian routines may
produce VAX-11 RMS errors. On a VAX-1l1 RMS I/O error, the wvariable
LBRSGL RMSSTV is the VAX-11l RMS STV value of the failing operation.
On a successful call to LBRSOPEN, the VAX-11 RMS STV (Status Value) is
the type of library opened. For more detailed information on VAX-11
RMS errors, see the VAX-11 Record Management Services Reference
Manual.

7.6.2.1 Success Messages
NORMAL success

OLDLIBRARY old format library opened

7.6.2.2 Warning Messages
LBRS_HDRTRUNC, header truncated

Explanation: The buffer supplied to LBR$SET MODULE 1is smaller
than the header information.

User Action: Supply a larger buffer to LBRSSET MODULE.

LIBRARIAN UTILITY

LBRS_LIBOPN, library already open
Explanation: The library you attempted to open is already open.

User Action: No action is necessary; processing continues.

LBRS_NOMATCHFOU, no match found

Explanation: The specified module does not appear in the module
name table.

User Action: Make sure that the module exists in the current
library.
LBR$_NULIDX, index is empty

Explanation: On a call to LBRSGET_INDEX, the specified index is
empty.

User Action: No action is necessary; processing continues,

LBRS_OLDMISMCH, old format library type mismatch

Explanation: The requested Version 1.0 library is of a different
type from that expected.

User Action: No action is necessary; processing continues bhased
on the actual library type.
LBR$_RECTRUNC, record truncated

Explanation: The buffer supplied in the routine is too small for
the record.

User Action: Supply a sufficiently large buffer to contain the
record.

LBRS_STILLKEYS, keys still point at data

Explanation: Keys in other indexes still point to the text.
Therefore, the call to LBRSDELETE_DATA did not delete the text.

User Action: No action is necessary; processing continues.

LBRS_TYPMISMCH, library type mismatch
Explanation: On a call to LBRS$SOPEN, the 1library type vyou
requested conflicts with the library type you specified in the
create-options argument.

User Action: No action is necessary; processing continues bhased
on the actual library type.

7-65

LIBRARIAN UTILITY

7.6.2.3 Error Messages

LBRS_DUPKEY, duplicate key in index

Explanation: On a call to LBRSINSERT KEY, the specified key
already exists.

User Action: Call LBRSREPLACE_KEY to replace the existing key.

LBR$_ILLCTL, illegal control index

Explanation: Either the 1library 1is not open, or vyou have
specified an invalid library index.

User Action: Make sure the library 1is open, and the library
index is correct.

LBR$_ILLCREOPT, illegal create options

Explanation: The create options you specified for LBRSOPEN are
invalid; or no options were specified.

User Action: Correct the create options before calling the
routine.

LBRS_ILLIDXNUM, illegal index number

Explanation: The index number you specified is invalid.

User Action: Correct the index number before calling the
routine.

LBR$_ILLFMT, illegal library format

Explanation: The file you specified calling LBRSOPEN is not an
actual library.

User Action: Specify an actual library.

LBRS _ILLFUNC, illegal library function

Explanation: The library function you specified in LBR$SOPEN is
invalid.

User Action: Correct the library function before calling the
routine.

LBR$_ILLOP, illegal operation for access requested

Explanation: You have attempted to modify a Version 1.0 library;
or you have attempted to modify a library that you opened for
read access,

User Action: Compress the library into the current format; or
change the access privileges to the library file.

LIBRARIAN UTILITY

LBRS_ILLTYP, illegal library type

Explanation: The type of library specified in LBRSINI_CONTROL is
invalid.

User Action: Correct the 1library type before <calling the
routine.

LBR$S_INVKEY, invalid key

Explanation: The specified key is either of 0 length or it |is
greater than the maximum allowable length.

User Action: Either change the module name, or change the
library's name length limit by compressing the library.

LBR$_INVNAM, invalid NAM block
Explanation: The NAM block passed to LBRSINI_CONTROL is invalid.

User Action: Correct the NAM block before calling the routine.

LBR$_INVRFA, invalid RFA

Explanation: The specified record's file address (RFA) is
invalid.

User Action: Correct the RFA before calling the routine.

LBRS_KEYNOTFND, key not found

Explanation: The Librarian could not find the key you specified
in the key-name argument to the LBR$SLOOKUP_KEY routine.

User Action: Correct the key-name argument before calling the
routine.

LBRS_LIBNOTOPN, library not open

Explanation: Except for LBRSINI CONTROL and LBRSOPEN, all
routines require that the library be open.

User Action: Open the library before calling the routine.

LBRS_LKPNOTDON, lookup has not been done

Explanation: Before calling LBRSGET_RECORD, you must first call
LBR$LOOKUP_KEY.

User Action: Call LBRSLOOKUP_KEY before calling LBRSGET_RECORD.

LBRS_NOFILENAM, no file specification found

Explanation: 1In the LBRSOPEN routine, either the fns argument
was not supplied, or the NAM block was not filled in,

User Action: Correct the problem before calling the routine,

LIBRARIAN UTILITY

LBRS_NOHLPTXT, help text not found

Explanation: There is no help text associated with the specified
key path.

User Action: Check that the help module is properly formatted.

LBR$“NOTHLPLIB, not a HELP library

Explanation: The library type specified in LBRSGET_HELP is not a
help library.

User Action: Make sure that the library is a help library before
calling the routine.

LBR$S_RECLNG, illegal record length
Explanation: The record length exceeds 2048 bytes.

User Action: Reformat the module.

LBRS_RFAPASTEOF, VBN in map block request past EOF
Explanation: This is an internal consistency check.

User Action: Submit a Software Performance Report.

LBRS_TOOMNYLIB, too many libraries open
Explanation: Only 16 libraries can be open concurrently.
User Action: Use LBRSCLOSE to close any library you do not need
to access.,

LBR$_UPDURTRAV, index update during traverse illegal
Explanation: The routine that you specify in the routine-name
argument cannot contain any calls to either LBRSDELETE or

LBRSINSERT KEY.

User Action: Remove any embedded calls to either LBRSDELETE or
LBR$INSERT_KEY before calling the routine.

CHAPTER 8

MESSAGE UTILITY

The VAX-11 Message Utility allows programmers to control the
generation of messages by VAX/VMS.

Messages are produced by VAX-11 software products under many
circumstances -- for example, when a routine has run successfully,
when an error has occurred, or when a default value has been assigned.

Messages are displayed to the user as a line of alphanumeric codes and
text that explains the condition that caused the message to be issued.
A message is represented to the VAX-1l processor as a longword called
the message code. This 32-bit value can be referred to in programs by
means of a global symbol called the message symbol.

The information that appears in the message that users receive, the
values that make up the message code, and the characters that make up
the message symbol are all defined in files <called message source
files. VAX/VMS has a file of system message information called
SYSMSG .EXE.

You can use your own message files by means of the VAX-11 Message
Utility, following these steps:

e Use a text editor to create a source file that specifies the
information wused in messages, message codes, and nmessage
symbols.

e Use the MESSAGE command to compile this source file.

o Link the resulting object module, either by 1itself or with
another object module containing a program.

e Run your program so that the messages are accessed, either
directly or through the use of pointers.

You can modify messages at run time by using the SET MESSAGE command
or by using pointers to message information. These features allow you
to suit messages to the requirements of your installation.

This chapter begins with a description of messages, the message code,
and the message symbol. It then explains the components of a message
source file, and how the file <can bhe compiled and 1linked. It
describes different methods of changing messages at run time, and
concludes with a list of the messages issued by the Message utility
itself.

MESSAGE UTILITY

8.1 THE FORMAT OF MESSAGES
Messages have the following format:

$FACILITY-L-IDENT, message-text

% and ,
The percent sign (%) and comma (,) are included as delimiters if
any of the first three fields -- FACILITY, L, or IDENT -- is
present.

FACILITY

The abbreviated name of the software product that 1issued the
message. You specify the facility name to be used in your
message source file by means of the facility definition,
described 1in Section 8.3.1.1. The FACILITY field can contain up
to nine characters from the character set described in Section
8.3.1.

You can suppress the appearance of FACILITY for your process by
means of the /NOFACILITY qualifier on the DCL command SET
MESSAGE, described in Section 8.4.2.

L
An indicator showing the severity level of the condition that
caused the message. There are five levels, represented by the
following codes:
Code Function
S Success
I Informational
W Warning
E Error
F Fatal or severe
You set the severity level of messages iIn your message source
file wusing either the severity definition, described in Section
8.3.1.2, or a severity qualifier on the message definition,
described in Section 8.3.1.4.
You can suppress the appearance of the severity 1level indicator
for your process by means of the /NOSEVERITY qualifier on the DCL
command SET MESSAGE, described in Section 8.4.2.
IDENT

A symbol of up to nine characters representing the nmessage.
Valid characters are described in Section 8.3.1. You specify the
symbol in the message definition 1line of vyour message source
file, described in Section 8.3.1.4.

You can suppress the appearance of the IDENT symbhol for your
process by means of the /NOIDENTIFICATION qualifier on the DCL
command SET MESSAGE, described in Section 8.4.2.

MESSAGE UTILITY

message-text

A brief explanation of the cause of the message. You specify the
message text in the message definition 1line of your message
source file, described in Section 8.3.1.4,.

If you suppress FACILITY, L, and IDENT, the first character of
the message text will be capitalized by the Put Message (SPUTMSG)
system service.

You can suppress the appearance of the message text for your
process by specifying the /NOTEXT qualifier on the DCL command
SET MESSAGE, described in Section 8.4.2,

The message can also include up to 255 formatted-ASCII-output (FAO)
arguments; that 1is, character strings that can be used to display,
for example, the instruction at which an error occurred or a value of
which the user should be aware. The following sample message includes
the file specification as an FAO argument:

$TYPE-W-OPENIN, error opening _DBO:[MARCEL]BBBB.FOR; as input

8.2 THE MESSAGE CODE AND THE MESSAGE SYMBOL

Messages are formatted by the Put Message (SPUTMSG) system service,
described in the VAX/VMS System Services Reference Manual. The system
service finds the information to use in the message by using a message
argument vector. The message argument vector includes a 32-bhit value
that uniquely identifies the message. This 32-bit value is called the
message code.

The message code is made up of the following elements, which are
described individually in Section 8.3.1:

e The severity level defined in the severity definition or
message definition

e The message number assigned automatically by a message
definition or specified with the message number specifier

e The facility number defined in the facility definition

e The customer facility bit of the control area, the setting of
which can be inhibited in the facility definition

Figure 8-1 shows the arrangement of the bits in the message code. The
message code 1is described fully in the VAX-11 Architecture Handbook
description of "Condition Value." '

31 28 27 16 15 32 0

control facility number message number sev

Fiqure 8-1 Message Code

MESSAGE UTILITY

The message symbol is the symbol that represents the message code. It
appears in the object module (the compiled message file) as a global
symbol.,

The message symbol is constructed of the following elements, described
in Section 8.3:

e The symbol prefix defined in the facility definition

e The symbol name defined in the message definition

8.3 CONSTRUCTING MESSAGES

You construct messages by creating a message source file that contains
the information that you want to include in the message, the message
code, and the message symbol. You then compile the message source
file with the Message compiler and link the resulting object module
with the VAX-11l Linker. This section describes the contents of the
message source file and the use of the compiler and linker to convert
the message source file into usable form. It concludes with a sample
program that generates messages at run time.

8.3.1 The Message Source File

The message source file contains the information that makes wup the
message, the message code and the message symbol. The file is made up
of statements that establish the various fields of the message, define
symbols, and control the output 1listing of the file. The message
source file has the default file type MSG.

The elements of the message source file, described 1in the following
sections, are:

e Facility definition

e Severity definition

® Message number specifier

® Message definition

e Literal directive

e Listing directives

e End statement
The format of each statement in the message source file 1is described
in the appropriate section below. A statement in a message source
file can take up any number of lines; text that reaches the end of a
line and 1is to be continued on the next line must end with a hyphen
(-=). The only exceptions to this are the listing title specified with
the LJTITLE directive and the message text specified in the message
definition, which must occupy only one line.
Any line in the message source file can include a comment, delimited

by an exclamation point (!). In any line, you can freely insert extra
spaces and tabs to improve readability.

MESSAGE UTILITY

Symbols defined in the Message utility can include any of the
following characters:

A - Z
a - z
1 -9
$ (dollar sign)

(underline)

Expressions used in the Message utility can include any of the
following radix operators to specify the radix of a numeric value:

Operator Radix Example
X Hexadecimal “X10
“0 Octal “030
D Decimal “Dls

The default radix is decimal.

Expressions can include symbols and the unary operators plus sign (+),
which assigns a positive value, and minus sign (-), which assigns a
negative value. Expressions can also include the following binary
operators:

Operator Function

Addition
Subtraction
Multiplication
Division
Arithmetic shift

DN\ * | +

Expressions can include parentheses as special operators. Expressions
enclosed in parentheses are evaluated first. Nested parenthetical
expressions are evaluated inside to outside.

8.3.1.1 The Facility Definition -- The texts of messages are grouped
in a message source file by the facility (software product) to which
they apply, broken down by severity levels. Therefore, a facility
definition, specifying the facility to which messages will apply, is
the first definition in a message source file. All of the 1lines
following a facility definition apply to that facility, until an end
statement or another facility statement is reached.

The facility definition has the format:
LFACILITY[/qualifier,...] facnam[,]facnum [/qualifier,...]
qualifier
One of the qualifiers listed in Table 8-1.
facnam
The facility name, which will be used as the facility field of
the message and in the symbol that represents the facility
number. It can have up to nine characters. Facility names for

VAX/VMS facilities are listed in the VAX/VMS System Messages and
Recovery Procedures Manual.

MESSAGE UTILITY

facnum

The facility number, a decimal value in the range of 1 to 32768,
or an expression that evaluates to a value in that range. (For
information on expressions, see the VAX/VMS Command Language
User's Guide.) Facility numbers are usually assigned by the
system manager so that no two facilities have the same number.

The facility number is used to construct the 32-bit value of the
message code.

Note that both the facility name and the facility number are required.
They can be separated by a comma or by any number of spaces or tabs.

The facility definition creates a global symbol of the form:

facnam$_FACILITY

This symbol can be used to refer to the facility number assigned to
the facility.

Table 8-1
Facility Definition Qualifiers

Qualifier Function

/PREFIX=prefix Defines an alternate symbol prefix to be used
in the message symbol for all messages
referring to this facility. The alternate
prefix can have up to nine characters. The
default symbol prefix 1is the facility name
followed by an underline (). If /SYSTEM is
also specified, the default prefix 1is the
facility name followed by a dollar sign and an
underline ($_).

/SHARED Inhibits setting the facility specific bit in
the message codes. This qualifier is used only
for system service and shared messages. This
qualifier is reserved for DIGITAL use.

/SYSTEM Inhibits setting the customer facility bit 1in

the message codes. This qualifier is reserved
for DIGITAL use.

8.3.1.2 The Severity Definition -- Following the facility definition,
the message source file generally contains a severity definition
specifying the severity level to be associated with the messages that
follow. You must include a severity definition if you do not specify

the severity individually on each message definition (see Section
8.3.1.4).

MESSAGE UTILITY

The severity definition has the format:
SUCCESS
INFORMATIONAL

WARNING
.SEVERITY
ERROR

SEVERE
FATAL

SEVERE is equivalent to FATAL and can be used interchangeably with it;
the severity 1level code for both of these, as described in Section
8.1, is F.

If you attempt to define a message without specifying a severity
level, an error will result, A new facility definition cancels the
severity level in effect before it.

8.3.1.3 The Message Number Specifier -- The message number is a value
used in constructing the message code that represents the message (see
Section 8.2). All of the messages following a facility definition are
numbered sequentially, beginning with 1 after each facility
definition.

In some cases, you may need to supersede this numbering system -- for
example, if vyou want to reserve some message numbers for future
assignment. You can specify a message number of your choice using the
message number specifier, .BASE, which has the following format:

.BASE number
number

A message number to be associated with the next message
definition, or an expression that is evaluated as the desired
number. This message number is used as a base for the sequential
numbering of all messages that follow until another .BASE is
encountered or until the end of the messages belonging to the
facility.

8.3.1.4 The Message Definition -- The message definition specifies
the body of the message symbol, the message text, and the number of
arguments that can be printed with the message. Any number of message
definitions can follow the severity definition. The message
definition has the format:

name [/qualifier,...] <message-text>[/qualifier,...]
name
Up to nine characters. This symbol name is combined with the

symbol prefix defined in the facility definition to make up the
message symbol.

MESSAGE UTILITY

The symbol name is used in the IDENT field of the message (see
Section 8.1) unless the /IDENTIFICATION=name qualifier is
specified in the message definition, as described in Table 8-2.

/qualifier

Any of the qualifiers listed in Table 8-2. Qualifiers <can be
placed before or after the message text, in any order.

message-text

An explanation of the condition that caused the message to be
issued. The message text can be delimited either by angle

brackets (<>), as shown above, or by quotation marks ("). The
text can be up to 255 bytes long; however, you cannot continue
the delimited text onto another 1line. The message text can

include directives that insert ASCII strings into the resulting
message; these directives are used by the Formatted ASCII Output
(SFAQ) system service and are described in the VAX/VMS System
Services Reference Manual. If you include an FAO directive, vyou
must also use the /FAO_COUNT qualifier, described in Table 8-2.

Table 8-2
Message Definition Qualifiers

Qualifier Function

/FAQ_COUNT=n Specifies the number of FAO arguments to
be 1included in the message at execution
time. (See the VAX/VMS System Services
Reference Manual for an explanation of FAO
arguments.) The value n must be a decimal
number in the range 0 through 255, The
SPUTMSG system service uses n to determine
how many arguments are to be given to the
SFAO system service when constructing the
final message text. The default value for
n is zero.

/IDENTIFICATION=name Specifies an alternate character string to
be used as the IDENT field of the message
(see Section 8.1). The string can include
up to nine characters. If this qualifier
is not specified, the symbol name defined
in the message definition (see above) will
be used in the IDENT field of the message.

/USER_VALUE=n Specifies an optional user value that can
be associated with the message. The value
n must be a decimal number in the range of
0 through 255. The default is zero. The
value can be retrieved by the Get Message
(SGETMSG) system service for wuse 1in
classifying messages by type or hy action
to be taken.

(continued on next page)

MESSAGE UTILITY

Table 8-2 (Cont.)
Message Definition Qualifiers

Qualifier Function

/SUCCESS Specify the severity level to be assoc-
iated with the message. You can use these

/INFORMATIONAL qualifiers to supersede the severity level
defined in a severity definition. You can

/WARNING also use these qualifiers 1instead of in-
cluding severity definitions in your mes-

/ERROR sage source file., Only one severity qual-
ifier can be included per message defini-

/SEVERE tion.

/FATAL

8.3.1.5 The Literal Directive -- The literal directive allows you to

define global symbols 1in vyour message source file. You can either
assign values to these symbols or use the default values provided by
the statement. The .LITERAL directive has the form:

.LITERAL symbol [=valuel [,...]
symbol
A symbol name.

value

Any valid expression. If value is omitted, a default value is
assigned. The default wvalue 1is 1 for the first symbol in the
statement; for subsequent symbols in the same statement, the
default value is 1 plus the last value assigned.

You can assign default values to a list of symbols. For example:
.LITERAL A,B,C
The values of A,B, and C will be 1, 2, and 3.

You can use the .LITERAL directive to define a symhol as the value of
another previously defined symbol, or as an expression that results
from operations performed on previously defined symbols. In the
following example, symbols defined 1in the facility and message
definitions are used to assign values to symbols created with the
LLITERAL directive.

LFACILITY SAMPLE,l/PREFIX=MSG$_

.SEVERITY ERROR

FIRST <first error>

LAST <last error>

.LITERAL LASTM$G=MSG$_LAST

.LITERAL NUMSG=(MSG$_LAST@—3)—(MSGS_FIRST@—B) ! # of messages

MESSAGE UTILITY

The first .LITERAL directive defines a symbol that has the value of
the last 32-bit message code defined. The second .LITERAL directive
defines the total number of messages in the source file.

8.3.1.6 Listing Directives -- You can use two special statements to
control the output 1listing that 1is produced when you compile your
message source file, These statements are the .PAGE directive and the
.TITLE directive.

The .PAGE directive enables you to force page hreaks in the output
listing. It has the format:

.PAGE

You can only specify one page break with any one .PAGE directive;
however, you can use the .PAGE directive as often as you like.

The .TITLE directive enables you to specify the module name and title
text that will appear on the top of each page of the listing file. It
has the format:

.TITLE modname [listing-title]

modname

A character string of up to 31 characters that will appear in the
object module as the module name.

listing-title

Text to be used as the title of the 1listing. The text begins
with the first nonblank character after the module name through
the end of the line. The listing title cannot be continued onto
another line.

8.3.1.7 The End Statement -- A group of message definitions is
terminated by either: another severity definition, to begin a new
group of another severity; an end statement, which terminates the
entire 1list of messages for the facility; or a new facility
statement. The end statement has the format:

.END

A new facility statement performs an implicit .END.

8.3.1.8 Sample Message Source File -- The following sample message
source file illustrates the various elements described above.

.TITLE SAMPLE Error and Warning Messages
.FACILITY SAMPLE, 1/PREFIX=ABC__

.SEVERITY ERROR

UNRECOG <Unrecognized keyword !AS>/FAO_COUNT=1
AMBIG <Ambiguous keyword>

.SEVERITY WARNING

.BASE 10

SYNTAX <Invalid syntax in keyword>

.END

MESSAGE UTILITY

The messages defined in this message source file belong to a facility
with the name SAMPLE and the facility number 1. The first two
nmessages have the severity 1level E; the third message has the
severity level W,

The first message definition above includes the FAO directive IAS
(which inserts an ASCII string at the end of the message text) and the
corresponding qualifier /FAO_COUNT, as described in Section 8.3.1.4.

The message symbols defined in this message source file are
ABC_UNRECOG, ABC_AMBIG, and ABC_SYNTAX., The message numbers are 1, 2,
and 10.

8.3.2 Compiling the Message Source File

Message source files must be compiled into object modules before the
messages defined in them can be used. You compile your message source
file by issuing the MESSAGE command in response to the DIGITAL Command
Language (DCL) prompt. The MESSAGE command can also be used to create
object modules that do not contain message data; instead, they
contain pointers to files that contain message data. These pointers
are described in Section 8.4.1.

The MESSAGE command has the following format:
MESSAGE [/qualifier,...] file-spec[,...]
/qualifier

Any of the qualifiers 1listed in Table 8-3. Note that some
qualifiers are mutually exclusive.

file-spec

The message source file to be compiled. If you do not specify a
file type, the default is MSG.

You can specify more than one message source file, separated by
either commas (,) or plus signs (+). The files will bhe
concatenated and compiled as a single file,

If you specify SYSSINPUT, the message source file(s) must
immediately follow the MESSAGE command in the input stream, and
both the object module name (given by the /OBJECT qualifier) and
the 1listing file name (given by the /LIST qualifier) must be
explicitly stated.

For your convenience, you can put message object modules into object
module 1libraries. These libraries can then be linked with facility
object modules.

MESSAGE UTILITY

Table 8-3

MESSAGE Command Qualifiers

Qualifier

Function

/FILE_NAME=file-spec
/NOFITE_NAME

/LIST[=file~spec]
/NOLIST

/OBJECT [=file-spec]
/NOOBJECT

Specifies whether the object module con-
tains a pointer to a file containing
messages. (Pointers are described in
Section 8.4.1.) The default is
/NOFILE NAME, indicating that the object
module <contains only compiled message
information, and no pointers.

Whenever you specify /FILE NAME=file-spec,
the /NOTEXT qualifier 1is implied; that
is, the /FILENAME and /TEXT qualifiers are
mutually exclusive. The /OBJECT qualifier
must be in effect, either explicitly or
implicitly.

The file specification identifies a
nonexecutable message file, as explained
in Section 8.4.1. The default device and
directory for the file specification is
SYSSMESSAGE; and the default file type is
EXE. No wild card characters are allowed
in the file specification.

Controls whether an output 1listing is
created, and optionally provides an output
file specification for the listing.

When you compile message source files in
batch mode, the output listing is created
by default. However, in interactive mode,
the default 1is to produce no output
listing.

The default file type for listing files is
LIS.

The default device and directory are vyour
default device and directory. No wild
card characters are allowed in the file
specification.

Controls whether an object module is
created by the message compiler, and
optionally provides a file specification
for the object module.

By default, the compiler creates an object
module with the same name as the first
message source file and with the file type
OBJ. The default device and directory are
your default device and directory. No
wild card characters are allowed in the
file specification.

(continued on next page)

MESSAGE UTILITY

Table 8-3 (Cont.)
MESSAGE Command Qualifiers

Qualifier Function
/SYMBOLS Controls whether global symbols will be
/NOSYMBOLS present in the object module. By default,
object modules are created with global
symbols.,

The /SYMBOLS qualifier requires that the
/OBJECT qualifier be in effect, either
explicitly or implicitly.

/TEXT Controls whether the data portion of the
/NOTEXT object module, containing the information
specified in facility, severity, and
message definitions, is present 1in the
object module. (Section 8.4.1 describes

the use of pointers, which require that
data not he present in the object module.)

The default is /TEXT. The /TEXT and
/FILE NAME qualifiers are mutually
exclusive. The /TEXT qualifier requires
that the /OBJECT qualifier be in effect,
either explicitly or implicitly.

The /NOTEXT qualifier can be used with the
/SYMBOLS qualifier to produce an object
module containing only global symbols.

8.3.3 Linking the Message Object Module

Before your messages can be used, your program must be linked by the
VAX-11 Linker. The VAX-11] Linker resolves symbolic and library
references and assigns virtual memory addresses to the relative
addresses assigned by the compiler. It produces an executable image
file with the file type EXE, which can be run on a VAX-11l processor.

The message object module that results from compiling your message
source file can be 1linked in two different ways. It can be linked
with an object module from the facility to which it applies, <creating
one executable 1image that contains both the facility code and the
nessage data. Or, it can be 1linked by itself to create a
nonexecutable message file. A nonexecutable message file can be used
as a process permanent message file (see Section 8.4.2) or can be
referenced at run time by a pointer (see Section 8.4.,1).

Figure 8-2 shows the two ways of linking a message object module.

To link your message object module, issue the DCL command LINK in
tresponse to the DCL prompt, as described in the VAX-11 Linker
Reference Manual. The following is the command that links the object
module CCBOLCODE.OBJ and the message object file COBOLMSG.OBJ. The
command creates an image map file. The resulting executable image
file is named CCBOLCODE.EXE.

LINK/MAFP CUBOLCODE ,COBOLMSG

MESSAGE UTILITY

NON-
MESSAGE
1) OBJECT LINKER a| EXECUTABLE
MODULE MESSAGE
FILE
MESSAGE

OBJECT
MODULE \

\ EXECUTABLE

PROGRAM,

LINKER ™1 INCLUDING
MESSAGE DATA

2)

FACILITY
OBJECT r”///

MODULE

Figure 8-2 Linking a Message Object Module

8.3.4 Running a Program with Messages

This section shows how a program, linked with a message object module,
produces messages when run.

The program is a FORTRAN program named TEST.FOR. It contains the
following lines:

EXTERNAL MSG_SYNTAX,MSG_ERRORS

CALL LIB$SIGNAL (MSG_SYNTAX,$VAL (1), 'ABC')
CALL LIB$SIGNAL (MSG_ERRORS)

END

This program calls the run-time procedure LIBSSIGNAL, described in the
VAX-11 Run-Time Library Reference Manual. The message symbols
MSG_SYNTAX and MSG_ERRORS are included as arguments in the procedure
calls. The function $VAL is a required FORTRAN compile-time function.
The first call also includes the string 'ABC' as an FAO argument.

You compile the FORTRAN program by issuing the following command:
$ FORTRAN TEST
This command results in an object module named TEST.OBJ.

The message source file, TESTMSG.MSG, contains the following lines:

LFACILITY EFGA,l1 /PREFIX=MSG

.SEVERITY ERROR -

SYNTAX <Syntax error in string '!AS'>/FAO=1
ERRORS <Errors encountered during processing>
.END

MESSAGE UTILITY

You compile the message source file by issuing the following command:
$ MESSAGE TESTMSG

This command results in a message object module named TESTMSG.OBJ.

You link the two object modules by issuing the following command:
LINK/NOTRACE TEST+TESTMSG

This command results in an executable program named TEST.EXE. You run
this program by issuing the following command:

RUN TEST
The following messages are issued when the program is run:

$EFGH-E-SYNTAX, Syntax error in string 'ABC'
$EFGH-E-ERRORS, Errors encountered during processing

8.4 CHANGING MESSAGES

Under some circumstances, you may want to change the messages for a
facility that runs on your VAX-11 processor. You can make run-time
changes on two levels:

1. per image, by using pointers to message data
2. per process, by using the DCL command SET MESSAGE

Using pointers is described in Section 8.4.1; wusing the SET MESSAGE
command is described in Section 8.4.2.

8.4.1 Pointers to Message Data

If you have linked vyour message object module directly with the
facility object module, vyou will have to alter the resulting
executable image file to change the message data included in it. This
can be time consuming and the resources needed to link the image may
not be available. To avoid having to alter the executable image, you
can use pointers to a message file instead of linking the message data
into the image.

A pointer is created by referring to a non-executable message image in
a MESSAGE command, using the /FILE NAME qualifier (described in
Section 8.4). The non-executable message file is a message source
file that has been compiled and linked by itself.

The MESSAGE/FILE_NAME command results in an object module containing
only global symbols and the file specification of the message file,
which can then be linked with facility object modules.

An object module containing a pointer to message files should have a

different file name from the module that actually contains message
data.

MESSAGE UTILITY

The following command creates an object module named MESPNTR.OBJ,
which contains a pointer to the non-executable message file
COBOLMF.EXE., (COBOLMF.EXE was created by compiling the message file
COBOLMSG .MSG and 1linking the resulting object module by itself with
the qualifier /EXECUTABLE=COBOLMF.) Note that it is not necessary to
include the file type EXE in the /FILE NAME qualifier, because EXE is
the default. The object module, MESPNTR.OBJ, contains the global
symbols defined in the message source file COBOLMSG.MSG.

MESSAGE/FILE_NAME=COBOLMF /OBJECT=MESPNTR COBOLMSG

When the resulting facility image file is run, the message data Iis
retrieved from the message file COBOLMF by the S$SGETMSG system service,

Figure 8-3 illustrates the relationship of the files affected by this
command.

NON-
MESSAGE MESSA
SOURCE OE,;S JECiE LINKER EXECUTABLE
FILE =1 COMFILER - MODULE /EXECUTABLE— =] MESSAGE
COBOLMF FILE
COBOLMSG.MSG COBOLMSG.0BJ COBOLME EXE
1
|
I $GETMSG
!
I
-
COMPILER MESSAGE EXECUTABLE
JFILENAME - POINTER PROGRAM,
COBOLMF - OBJECT LINKER INCLUDING
/OBJECT - MODULE POINTER TO
MSGPNTR MSGPNTR.0BJ | MESSAGE DATA
FACILITY

OBJECT
MODULE

Figure 8-3 Creating a Message Pointer

8.4.2 The SET MESSAGE Command

You can override or supplement the system messages on your system by
using the DCL command SET MESSAGE. This command allows you to
suppress for your process the wvarious fields of the messages
(described 1in Section 8.1) or to substitute the message data in a
nonexecutable message image for the system message data.

The SET MESSAGE command has the followinag format:
SET MESSAGE[/qualifier...] [file-spec]

/qualifier

A qualifier listed in Table 8-4. Multiple command qualifiers can
be used, specified in any order.

file-spec

An optional nonexec
EXE; no wild
specification.

The specified messa
file already in eff
in effect at any ti

The messages contained i
the SGETMSG system servi
system-wide messages.

MESSAGE UTILITY

utable message file. The default file type is
card characters are allowed in the file

ge file supersedes any per-process message
ect; only one per-process message file can be
me.

n the specified message file are searched by
ce after the per-image messages and before the

Table 8-4
SET MESSAGE Qualifiers

Qualifier

Function

/DELETE

/FACILITY
/NOFACILITY

/IDENTIFICATION
/NOIDENTIFICATION

/SEVERITY
/NOSEVERITY

/TEXT
/NOTEXT

Removes the process message file from your
process. This qualifier cannot be used if
you have included a file specification 1in
the SET MESSAGE command; selecting a new
per—-process message file automatically
removes any existing process message file,

Control whether the facility name field (see
Section 8.1) is displayed for all messages
that occur in your process.

Control whether the IDENT field (see Section
8.1) is included for all messages that occur
in your process.

Control whether the severity level indicator
(see Section 8.1) is displayed for all
messages that occur in your process,

Control whether the message text field is
displayed for all messages that occur in
your process.

Examples

1. $ SET MESSAGE M

YMSG

The SET MESSAGE command specifies that the message

information 1in
messages.

2. $ TYPE BBBB.FOR
$TYPE-W-OPENIN,
-RMS-E-FNF, fil

$ SET MESSAGE/N
$§ TYPE BBBB.FOR

$TYPE-W, error
-RMS-E, file no

MYMSG .EXE supplements the existing system

error opening DBl:[MARCEL]BBBB.FOR; as input
e not found

OIDENTIFICATION

opening DBl:[MARCEL]IBBBB.FOR; as input
t found

MESSAGE UTILITY

When the first TYPE command is entered, error messages
contain all fields. Entering the SET MESSAGE command with
the /NOIDENTIFICATION qualifier eliminates the IDENT field
from the messages that are subsequently issued.

8.5 MESSAGE UTILITY MESSAGES

This section lists, in alphabetical order, the error messages issued
by the Message <compiler, with an explanation of the condition that
caused the error and a recommended user response to the message. Most
of the user responses entail changing the message source file and
re-entering the MESSAGE command.

All of these messages have the severity level ERROR.
MESSAGE-E-BADVALUE, illegal qualifier value

Explanation: You have specified a qualifier wvalue that 1is
invalid.

User Action: Reenter the statement with a valid qualifier value.

MESSAGE-E-CONFFAC, facility definition conflicts with previous
definition

Explanation: You have specified the same facility name or
facility number for two different facilities.

User Action: Reenter the facility definitions so that each
facility name corresponds to one facility number.

MESSAGE-E-DATAOVFL, data area overflow in section -~ please submit SPR

Explanation: An internal error in the compiler has been
detected.

User Action: Submit a Software Performance Report (SPR) to
DIGITAL, describing a situation.

MESSAGE-E-DUPMSG, message code nn already assigned as ss

Explanation: You have assigned the same message code, (here
represented by nn) to more than one message symbol. The first
message symbol assigned to the message code 1is shown (here
represented by ss).

User Action: Check that you have not assigned the same message
number or symbhol name twice for the same facility. Reenter the
message definition(s) so that each message symbol is assigned to
one message code.

MESSAGE-E-DUPSYM, duplicate symbol definition

Explanation: You have assigned the same symbhol to represent two
values. This message may refer to symbols defined in a message
definition, a facility definition, or the .LITERAL directive.

User Action: Reenter your source statements with each symhol
defined only once.

MESSAGE UTILITY
MESSAGE-E-FACOVFL, facility table overflow in section - please siubnmit
SPR

Explanation: An internal error in the compiler has been
detected.

User Action: Submit a Software Performance Report (SPR) to
DIGITAL, describing the situation.

MESSAGE-E-INDEXOVFL, index area overflow in section - please submit
SPR

Explanation: An 1internal error in the compiler has been
detected.

User Action: Submit a Software Performance Report (SPR) to
DIGITAL, describing the situation.

MESSAGE-E-NOMSGS, no messages defined

Explanation: No messages have been defined in the message source
file.

User Action: Ensure that at least one message definition appears
in the message source file.

MESSAGE-E-NOSEVER, severity unspecified, ERROR used
Explanation: You have omitted defining the severity of a
facility's messages. The Message Utility has assigned the level
ERROR to the messages.
User Action: Add the appropriate severity levels to the message
source file, either with severity definitions or with severity
qualifiers on message definitions.

MESSAGE-E-SHARCONF, /SHARED conflicts with facility number

Explanation: You have specified the /SHARED qualifier on the
facility definition with a facility number other than 0.

User Action: Remove the /SHARED qualifier from the facility
definition.,

MESSAGE-E-SYMTOOLNG, symbol name too long

Explanation: You have assigned a symbol name with more
characters than are permitted. ’

User Action: Shorten the symbol name.

APPENDIX A

FILES-11 DEVICES SUPPORTED BY VAX/VMS

Tables A-1 and A-2 list the Files-11 structured devices supported by
VAX/VMS, with their storage characteristics and the device codes used
to refer to them. Table A-1 lists magnetic tape devices; Table A-2
lists disk devices. See the VAX/VMS 1/0 User's Guide for more
information on these devices.

Table A-1
Magnetic Tape Devices

No. of [Recording Tape Max. data transfer | Recording
Model Code Tracks density speed rate in bytes per method
(bpi) (ips) second
TE1l6 MT 9 800 or 45 36,000 (for 800 NRZI or
1600 bpi); 72,000 (for pE1L
1600 bpi)
TS11 MS 9 800 or 45 36,000 (for 800 NRZI or
1600 bpi); 72,000 (for PE
1400 bpi)
TU45 MT 9 800 or 75 60,000 (for 800 NRZI or
1600 bpi) 120,000 PE
(for 14600 bpi)
TU77 MT 9 860 or 125 100,000 (for 800 NRZI or
1600 bpi) 200,000 PE
(for 1600 bpi)

1. NRZI = non-return-to-zero-inverted; PE = phase encoded.

FILES-11 DEVICES SUPPORTED BY VAX/VMS

Table A-2

Disk Devices

Bytes/ Bytes/
Model Code Typel RPM Surfaces Cylinders Track Drive
RLO2 DL Cart 2400 2 512 10,240 10,485,760
RMO3 DR Pack 3600 5 823 16,384 67,420,160
RPOS DB Pack 3600 19 411 11,264 87,960,576
RPO6 DB Pack 3600 19 815 11,264 174,423,040
RKO7 DM Cart 2400 3 815 11,264 27,550,480
RX01 DX Flop 360 1 77 3,328 256,256
RX02 DY Flop 360 1 77 3,3282 256,256 2
6,6563 512,5123
TU584 DD Cart #4 ## ## #4 262,144
1. Pack = pack disk; Cart = cartridge disk; Flop = floppy (flexible
diskette)

2. Single density

3. Double density

4. A magnetic tape device,

disk device

the TU58 operationally resembles a

INDEX

A

Aborting
deletion (MAIL), 1-4
VFY, 6-5, 6-7, 6-9
Add Bad Blocks qualifier
4-7, 4-14, 4-15
Adding lines to a file
through 3-13
Allocating bad blocks (BAD), 5-3

(DSC) ,

(sLp), 3-11

Alteration of messages (MSG), 8-15
through 8-18
per image, 8-15, 8-16
per process, 8-16 through 8-18
Append qualifier (DSC), 4-7, 4-12,
4-13
/AP qualifier (DSC), 4-7, 4-12,
4-13

/AUDITnTRAIL qualifier (SLP), 3-6
through 3-8

BACK command (MAIL), 1-3
Backing up disks (DSC), 4-1
through 4-3, 4-9 through 4-13
BAD, 5-1 through 5-12
invoking, 5-3 through 5-4
terminating, 5-4
Bad block descriptor file, 5-3
format, 5-3
location, 5-2
Bad Block Locator Utility, 5-1
through 5-12
invoking, 5-3 through 5-4
terminating, 5-4
Bad blocks
allocating with BAD, 5-3
locating with BAD, 5-2
recording with BAD, 5-
recording with DSC,
4-14, 4-15
/BAD qualifiers
4-15
BADBLK.SYS file, 5-3
.BASE definition (MSG), 8-7
Batch-oriented text editors, 3-1
through 3-24
/BL:n qualifier (FLX), 2-7
Block-structured volumes, 5-1

C

Cancelling deletion (MAIL), 1-4
Carriage return (MAIL), 1-7

5-2, 5-3
4-3, 4-7

(pscy,

Changing the audit trail (SLP),
position and length, 3-6
through 3-8
text, 3-10, 3-15
Changing messages
through 8-18
per image, 8-15, 8-16
per process, 8-16 through 8-18
/CHECKSUM qualifier (SLP), 3-6,
3-8
CLOSE Librarian routine
7-20
Closing a library (LBR),
7-20
/CMP qualifier (DSC), 4-7,
Code, message (MSG) 8-3
/CO qualifier (FLX), 2-7
Command file, SLP, 3-3
Command files, SUMSLP,
Command string
BAD, 5-4
psc, 4-6, 4-7
FLX, 2-2, 2-9 through 2-12
LBR, 7-3 through 7-13
sLp, 3-1, 3-2
SUMSLP, 3-15 through 3-17
VFY, 6-6
Commands
MAIL, 1-3
SLP editing,
Comments
in help files (LBR), 7-14
in message source statements
(MSG), 8-4
Compare qualifier (DSC),
Comparing volumes (DSC),
4-10, 4-13
Compiling message source files
{(MSG), 8-11 through 8-13
/COMPRESS qualifier (LBR), 7-5,
7-6
Compressing files (DSC), 4-3
Converting physical disk addresses

(MSG), 8-15

(LBR) ,
4-13

3-17

3-9 through 3-11

4-7,
4-4,

(DSC), 4-16, 4-17
Copying distribution medium (DSC),
4-2
/CREATE qualifier (LBR), 7-6,
7-7, 7-12
/CROSS REFERENCE qualifier (LBR),
7-7, 7-12
D

DECnet-VAX,
1-8, 1-9

sending mail via,

Index~-1

Default
audit trail
SLP, 3-10
SUMSLP, 3-18
file specifications (SUMSLP),
3-16
file types (LBR), 7-4
message numbers (MSG), 8-7
symbol values (MSG), 8-9
transfer qualifiers (FLX), 2-4
through 2-5

Definitions (MSG), 8-4 through 8-11

DELETE command (MAIL), 1-4
DELETE DATA Librarian routine
(LBR), 7-21
DELETE KEY Librarian routine
(LBR), 7-22
Delete qualifier (FLX), 2-8
/DELETE qualifier
LBR, 7-7
MSG, 8-17
Delete qualifier (VFY), 6-7
Deleting
index keys (LBR), 7-22
RT-11 files using FLX, 2-12
source lines (SLP), 3-13
through 3-14
text records (LBR), 7-21
Deletion clashes (SUMSLP), 3-19
Deletion resumed using VFY, 6-3
/DENS qualifier (DSC), 4-7, 4-11
Density qualifier
psc, 4-7, 4-11
FLX, 2-8
/DE qualifier
FLX, 2-7
VFY, 6-7
Device specifications
BAD, 5-4
DSC, 4-6
FLX, 2-2, 2-3
Devices
disk. See Disks
pos-11, 2-1, 2-2
Files-11, A-1, A-2
recognized by DSC, 4-5
recognized by FLX, 2-1
RT-11, 2-1, 2-2
supported by VAX/VMS, A-1, A-2
tape. See Tapes
Diagnostic messages., See Error
messages
/DI qualifier (FLX), 2-7, 2-9,
2-10
Directives (MSG), 8-9, 8-10
DIRECTORY command (MAIL), 1-4
Directory listings displayed via
FLX, 2-9 through 2-11
DOS-11, 2-9 through 2-10
RT-11, 2-10 through 2-11

INDEX

Disk Save and Compress Utilities,
4-1 through 4-33
invoking, 4-5, 4-6
terminating, 4-5, 4-6
Disks
backing up (DSC), 4-1 through
4-3, 4-9 through 4-13

bad block information, 4-3 through

4-4, 4-14 through 4-15 5-2
through 5-3
comparing to tape (DSC), 4-4,
4-7, 4-10, 4-13
compressing (DSC), 4-3
Files-11, A-2
RT-11 format (FLX), 2-1, 2-2
supported by VAX/VMS, A-2
Displaying directory listings
(FLX), 2-9 through 2-11
Distribution lists, sending mail
to, 1-9
Distribution medium, copying
(DSC), 4-2
/DNS:n qualifier (FLX), 2-8
/DO qualifier (FLX), 2-4
DOS-11 devices supported by FLX,
2-1, 2-2
DSC, 4-1 through 4-33
invoking, 4-4, 4-6
terminating, 4-5, 4-6

E

Editing commands (SLP), 3-9
through, 3-11

Editing mail messages (MAIL), 1-8
/EDIT qualifier (MAIL), 1-8
End statement (MSG), 8-10
Error messages

BAD, 5-9 through 5-12

Defining (MSG), 8-4 through 8-9

DSC, 4-17 through 4-33

FLX, 2-12 through 2-17

LBR, 7-57 through 7-68

MAIL, 1-10, 1-11

MSG, 8-18, 8-19

SLP, 3-19 through 3-23

SUMSLP, 3-24

VFY, 6-10 through 6-12
/ERROR qualifier (MSG), 8-9
EXIT command (MAIL), 1-5
Expressions (MSG), 8-5
/EXTRACT qualifier (LBR), 7-7,

7-12

F

Facility
definition (MSG), 8-5, 8-6
field (MSG), 8-2

Index-2

Facility, (Cont.)

name (MSG), 8-5, 8-6

number (MSG), 8-3, 8-5, 8-
/FACILITY qualifier (MSG), 8
/FA:n qualifier (FLX), 2-5
FAO arguments (MSG), 8-3,
/FAO_COUNT qualifier (MSG
/FATAL qualifier (MSG 8

O~
I

)
)l -
/FB:n qualifier (FLX), 6
/FC qualifier (FLX), 2
FILE command (MAIL), 1
File
compression (DSC), 4-3
errors (VFY), 6-2
headers, integrity checked
(VFY), 6-1 through 6-3
identifications, translating
(bsc), 4-15, 4-16
labels (DSC), 4-9
/FILE NAME qualifier (MSG),
8=12, 8-15
File precedence (SUMSLP), 3-19
Files,
editing with SLP, 3-1 through
3-15
editing with SUMSLP, 3-15
through 3-19
help (LBR), 7-13 through 7-17
mail message, 1-10
message source (MSG), 8-4
through 8-11
nonexecutable message (MSG),
8-13 through 8-17
Files-11 devices, A-1
File specifications

2
-8
-5

converting file identifications

into (DSC), 4-15, 4-16
FLX, 2-3
File Structure Verification
Utilities, 6-1 through 6-12
invoking, 6-5
terminating, 6-5

File Transfer Utility, 2-1 through

2-17
invoking, 2-2
terminating, 2-2
FIND Librarian routine, 7-23
FLX, 2-1 through 2-17
invoking, 2-2
terminating, 2-2
Format conversion using FLX, 2-4
through 2-5
Format of help files (LBR), 7-13
through 7-16
Format qualifiers (FLX), 2-4
through 2-5
Formatted ASCII arguments in
messages (MSG), 8-3, 8-8
Formatted ASCII mode (FLX), 2-5,
2-6

INDEX

Formatted Binary mode (FLX), 2-6

Formatting help files (LBR),
7-13 through 7-16

FORWARD command (MAIL), 1-5

Free qualifier (VFY), 6-7

/FR qualifier (VFY), 6-7

/FULL qualifier (LBR), 7-8, 7-12

G

Generating messages (MSG), 8-1
through 8-19

GET HEADER Librarian routine
“(LBR), 7-24

GET HELP Librarian routine
T (LBR), 7-26

GET INDEX Librarian routine
“(LBR), 7-28

$GETMSG system service (MSG), 8-14

8-17

GET_RECORD Librarian routine
(LBR), 7-30

/GLOBALS qualifier (LBR), 7-8

Global symbol table (LBR), 7-8,
7-9

H

HELP command (MAIL), 1-5

Help libraries (LBR), 7-1, 7-4,
7-8, 7-13, 7-26

Help modules (LBR), 7-13 through
7-17

/HELP qualifier (LBR), 7-8

IDENT field (MSG), 8-2
/IDENTIFICATION qualifier
on message definition (MSG),
8-8
on SET MESSAGE command (MSG),
8-17
/ID qualifier (FLX), 2-8
Ignore Bad Block File qualifier
(bsC), 4-7, 4-15
Image mode qualifier (FLX), 2-6
/IM:n qualifier (FLX), 2-6
Index file, 6-1, 6-4, 6-7, 6-8
placement, 4-8
Index, library (LBR), 7-2, 7-22,
7-28, 7-31 through 7-34,
7-37, 7-40 through 7-44
Informational messages
defining (MSG), 8-7, 8-9
See also Error Messages
/INFORMATIONAL qualifier (MSG),
8-9

Index-3

INI CONTROL Librarian routine
(LBR), 7-18, 7-31
Initializing volumes using FLX,
2-8, 2-10, 2-11
DOS-11 volumes, 2-10
RT-11 volumes, 2-11
INSERT KEY Librarian routine
(LBR), 7-33
/INSERT qualifier (LBR), 7-8,
7-12
Invoking
BAD, 5-3 through 5-4
DSCl, 4-5
DSC2, 4-5
DSC-2 (stand-alone), 4-6
FLX, 2-2

MAIL, 1-2

sLp, 3-1, 3-2
SUMSLP, 3-15, 3-16
VFY1l, 6-5

VFY2, 6-5

I/0 error messages (DSC), 4-31
through 4-33

K

Key lines in help files (LBR),
7-13 through 7-17

L

Last-track devices (BAD), 5-2,
5-3

/LAST qualifier (MAIL), 1-8

LBN, see Logical block numbers

LBR, 7-1 through 7-68

LBRSCLOSE routine (LBR), 7-20

LBR$DELETE_DATA routine (LBR),
7-21

LBR$DELETE_KEY routine (LBR),
7-22

LBRSFIND routine (LBR), 7-23

LBRSGET HEADER routine (LBR}),

7-24

LBRSGET_HELP routine (LBR),
7-256

LBR$GET_INDEX routine (LBR),
7-28

LBRsGET_RECORD routine (LBR),
7-30

LBRSINI_CONTROL routine (LBR),
7-18, 7-31

LBRSINSERT KEY routine (LBR),
7-33

LBRSLOOKUPﬁKEY routine (LBR),
7-34

LBRSOPEN routine (LBR), 7-18,
7-35

INDEX

LBRSPUT END routine (LBR), 7-38
LBR$PUT;RECORD routine (LBR),
7-3
LBR$REPLACE_KBY routine (LBR),
7-40
LBRSSEARCH routine (LBR), 7-42
LBRSSET_INDEX routine (LBR),
7-44
LBRSSET MODULE routine (LBR),
7-45%
L field (MSG), 8-2
Librarian Utility, 7-1 through
7-68
routines, 7-18 through 7-45
LIBRARY Command (LBR), 7-3
through 7-13
Library
header (LBR), 7-24
index (LBR), 7-2, 7-22, 7-28,
7-31 through 7-34, 7-37,
7-40 through 7-44
options, creating (LBR), 7-4,
7-35 through 7-37
types, creating (LBR), 7-3,
7-4, 7-6
LIBSSIGNAL run-time procedure
(MSG), 8-14
Linking
programs containing calls to
Librarian routines, 7-18
the message object module (MSG),
8-13, 8-14
/LI qualifier
BAD, 5-6
FLX, 2-7
VFY, 6-7 through 6-8
Listing directives (MSG), 8-10
Listing file
sLp, 3-4, 3-5, 3-6, 3-9
SyMsLp, 3-16, 3-18
Listing qualifier
BAD, 5-6
FLX, 2-7, 2-9, 2-10
VFY, 6-7 through 5-8
/LIST qualifier
LBR, 7-9, 7-12, 7-13
MSG, 8-12
sLp, 3-5, 3-9
SUMSLP, 3-16
Literal directive (MSG), 8-9
8-10
Locating bad blocks using BAD,
5-1, 5-2
Locators (SLP), 3-10, 3-11
Logical block numbers
calculating (DSC), 4-1%4
specifying (BAD), 5-7
/LOG qualifier (LBR), 7-9, 7-12
LOOKUP KEY Librarian routine
(LBR), 7-34 '

Index-4

INDEX

/LO qualifier (VFY), 6-8
Lost qualifier (VFY), 6-3, 6-8

Macro libraries (LBR), 7-1, 7-4,
7-9
/MACRO qualifier (LBR), 7-9, 7-12
Magnetic tape devices. See Tapes
MAIL commands, 1-3
MAIL message files, 1-10
Mail Utility, 1-1 through 1-11
invoking, 1-2
terminating (exiting), 1-5
/MAN qualifier (BAD), 5-6
through 5-7
Manual qualifier (BAD), 5-6
through 5-7
Manufacturer's Detected Bad
Sector File (BAD), 5-2, 5-8
MDBSF (BAD), 5-2, 5-8
Merging command files (SUMSLP),
3-19
Message
code (MSG), 8-3
compiler (MSG), 8-11 through
8~13
files (MAIL), 1-10
format (MSG), 8-2
number (MSG), 8-3, 8-7
object module (MSG), 8-11
through 8-16
source file (MSG), 8-4
through 8-11
symbol (MSG), 8-4
Message-text field (MSG), 8-3
Message Utility messages (MSG),

8-18, 8-19
Messages
defining (MSG), 8-4 through
8-11

deleting (MAIL), 1-4
diagnostic and error, see Error
Messages
editing (MAIL), 1-8
filing (MAIL), 1-5
forwarding (MAIL), 1-5
help (LBR), 7-13 through 7-17
mail (MAIL), 1-1, 1-4 through
1-10
sending (MAIL), 1-7 through 1-9
MNT, See Module name table
Module name table (LBR), 7-8,
7-9
/MODULE qualifier (LBR), 7-4,
7-12
Multiply-allocated blocks (VFY),
6-2, 6-4, 6-9

N

/NAMES qualifier (LBR), 7-9
NEXT command (MAIL), 1-6
/NOAUDIT_TRAIL qualifier (SLP),
3-6
/NOCHECKSUM qualifier (SLP), 3-6,
3-8
/NOFACILITY qualifier (MSG), 8-17
/NOFILE NAME qualifier (MSG), 8-12
/NOGLOBALS qualifier (LBR), 7-8
/NOIDENTIFICATION qualifier (MSG),
8-17
/NOLIST qualifier
LBR, 7-9
MSG, 8-12
/NOLOG qualifier (LBR), 7-9
/NONAMES qualifier (LBR), 7-9
Nonexecutable message files (MSG),
8-13 through 8-17
Non-last-track devices (BAD), 5-2,
5-3
/NOOBJECT qualifier (MSG), 8-12
/NOOUTPUT qualifier (SLpP), 3-7,
3-9
/NOREPORT qualifier (sLP), 3-7
/NOSEVERITY qualifier (MSG), 8-17
/NOSQUEEZE qualifier (LBR), 7-11
/NOSYMBOLS qualifier (MSG), 8-13
/NOTAB FILL qualifier (SLP), 3-7
/NOTEXT qualifier
on MESSAGE command (MSG), 8-13
on SET MESSAGE command (MSG),
8-17
/NOTRUNCATE qualifier (SLP), 3-7
Number, message (MSG), 8-3, 8-7
/NU:n qualifier (FLX), 2-8, 2-11

o)

Object module libraries (LBR),
7-1, 7-4
Object module, message (MSG), 8-11
through 8-16
/OBJECT qualifier
LBR, 7-10
MSG, 8-12
Offsets for library header infor-
mation (LBR), 7-24, 7-25
/ONLY qualifier (LBR), 7-10,
7-13
Opening a library (LBR), 7-18,
7-35
OPEN Librarian routine (LBR),
7-18, 7-35
Operators
MSG, 8-5
sLp, 3-9

Index-5

TINDEX

Options for libraries (LBR), 7-6, FLX volume format qualifiers,
7-35 through 7-37 2-4, 2-5
Output device specifications LIBRARY command qualifiers,
DSC, 4-6 7-4 through 7-13
FLX, 2-2, 2-3 LIBRARY file qualifier, 7-4
Output from VFY, 6-2 through 6-3, MESSAGE command qualifiers (MSG)
6-6, -8 8-12, 8-13
/OUTPUT qualifier Message definition qualifers (MSG)
LBR, 7-10, 7-12 8-8, 8-9
SLP, 3-7 REPLY command qualifiers (MAIL),
SUMSLP, 3-16 1-8
Override qualifier (BAD), 5-8 SEND command qualifiers (MAIL),
/0OVR qualifier (BAD), 5-8 1-8
SET MESSAGE command qualifiers,
p (MSG), 8-17

SLP qualifiers, 3-6 through 3-9
VFY file qualifiers, 6-7

.PAGE directive (MSG), 8-10

Per image alteration of messages

(MSG), 8-15, 8-15 R
Per process alteration of messages
(MSG), 8-16 through 8-18 /RC:n qualifier (VFY), 6-9
Personal Mail Utility, 1-1 through Read check qualifier (VFY), 6-8
1-11 READ command (MAIL), 1-6 through
invoking, 1-2 1-7
terminating (exiting), 1-5 Reading text records (LBR), 7-30
PIP (Peripheral Interchange Rebuild qualifier (VFY), 6-4, 6-9
Program), 6-3 through 6-4 Recovery of hardware errors using
Pointers to message data (MSG), BAD, 5-8
8-15, 8-14% Reenable audit trail operator
Precedence of command files (SLP), 3-9
(SUMSLP), 3-19 Regulating bad block information
/PREFIX qualifier (MSG), 8-6 (Dsc), 4-3, 4-7, 4-14, 4-15
Primary index number, setting /REMOVE qualifier (LBR), 7-10,
(LBR), 7-44 7-12
PRINT command (MAIL), 1-56 Replace Bad Block File qualifier
Priority of messages (MSG), 8-17 (Dsc), 4-7, 4-15
PUT_END Librarian routine (LBR), REPLACE KEY Librarian routine
7-38 (LBR), 7-40
SPUTMSG system service (MSG), 8-3 /REPLACE qualifier (LBR), 7-11
PUT RECORD Librarian routine Replacing source lines (SLP),
(LBR), 7-39 3-14 through 3-15
REPLY command (MAIL), 1-7
() qualifiers, 1-8
/REPORT qualifier (SLP), 3-7
Restorinag files marked for
Qualifier lines in help files deletion (VFY), 6-3 through
(LBR), 7-14 through 7-17 h-4
Qualifiers: Restoring volumes using DSC, 4-2,
BAD qualifiers, 5-5 4-9, 4-12
DSC input qualifier, 4-7 /RETRY qualifier (BAD), 5-8
DSC output file qualifiers, 4-7, Return status codes (LBR), 7-18,
4-10 through 4-15 7-64 throuqh 7-68
Facility definition qualifiers Rewind qualifier
(MSG), 8-6 pDsc, 4-7, 4-11, 4-12
FLX control qualifiers, 2-7 FLX, 2-8
through 2-8 Routines, Librarian (LBR), 7-18
FLX transfer mode qualifiers, through 7-45
2=5, 2-6 /RS qualifier (FLX), 2-4, 2-5

Index-6

RT-11 devices supported by FLX,
2-1, 2-2

/RT qualifier (FLX), 2-4, 2-5

Run-time, changing messages at
(MSG), 8-15 through 8-18

/RW qualifier (DSC), 4-7, 4-11,
4-12

/RW and /-RW qualifiers (FLX),
2-8

S

Scratch file (VFY), 6-6
SDBSF (BAD), 5-2, 5-8
SEARCH Librarian routine (LBR),
7-42
Searching for lost files (VFY),
6-3 through 6-4, 6-9
/SELECTIVE SEARCH qualifier
(LBR), 7-11
SEND command (MAIL), 1-7 through
1-9
qualifiers, 1-8
SET INDEX Librarian routine
T(LBR), 7-44
SET MESSAGE command (MSG), 8-146
through 8-18
SET MODULE Librarian routine
(LBR), 7-45
/SEVERE qualifier (MSG), 8-9
Severity
definition (MSG), 8-6, 8-7
field (MSG), 8-2
levels (MsG), 8-2, 8-7, 8-9
/SEVERITY qualifier (MSG), 8-17
Severity qualifiers on message
definitions (MSG), 8-9
/SHARED qualifier (MSG), 8-6
Single-disk systems and DSC, 4-8
SLP, 3-1 through 3-15, 3-19
through 3-23
command file, 3-3
editing commands, 3-9 through
3-11
input source file, 3-3

listing file, 3-4, 3-5, 3-6, 3-9

messages, 3-19 through 3-23

output file, 3-4, 3-5, 3-7, 3-9

qualifiers 3-6 through 3-9
Soft errors (BAD), 5-8

Software Detected Bad Sector File

(BAD), 5-2, 5-8
Source file, message (MSG), 8-4
through 8-11

Specifying message numbers (MSG),

8-7
/SP qualifier (FLX), 2-8
/SQUEEZE qualifier (LBR), 7-11

INDEX

Stand-alone DSC-2, 4-1, 4-2, 4-5,

4-6, 4-11

Storage bit map (VFY), 6-1, 6-4,
6-9

Subkeys (LBR), 7-14, 7-16, 7-17,
7-27

Success messages (MSG), 8-2, 8-7
8-8

/SUCCESS qualifier (MSG), 8-9
SUMSLP, 3-15 through 3-19, 3-24
command files, 3-17
editing commands, 3-17
input source file, 3-17
listing file, 3-16, 3-18
merging rules, 3-19
messages, 3-24
output file, 3-16, 3-17
qualifiers, 3-16
Suppressing
audit trail (SLP), 3-6
message fields (MSG), 8-2
8-3, 8~16 through 8-18
Switches., See Qualifiers
Symbol,
definition of global (MSG),
8-4, 8-9, 8-10
message (MSG), 8-4
/SYMBOLS qualifier (MSG), 8-13
/SYSTEM qualifier (MSG), 8-6

T

/TAB_FILL qualifier (SLP), 3-7
Tapes
backing up disks onto (DSC),
4-2, 4-3, 4-9 through 4-13
comparing disks to (DSC), 4-4,
4-7, 4-10, 4-13
DOS-11, 2-1, 2-2
recording density, 2-8, 4-7,

A-1
restoring disks from (DSC),
4-9, 4-12

supported by VAX/VMS, A-1
Terminating
BAD, 5-4
DsSCl, 4-5
DsC2, 4-5
DSC~2 (stand-alone), 4-6
FLX, 2-2
MAIL, 1-5
SLp, 3-9
SUMSLP, 3-17
VFY1l, 6-5
VFY2, 6-5
Terminator (SLP), 3-9
Text libraries, 7-2, 7-4, 7-8,
7-11

Index-7

INDEX

/TEXT qualifier
LBR, 7-11, 7-12
on MESSAGE command (MSG), 8-13
on SET MESSAGE command (MSG),

8-17
Text records, manipulating (LBR),
7-21, 7-26, 7-30
.TITLE directive (MSG), 8-10
Translating file identifications
using DSC,
4-15, 4-16
Transporting Files-11 volumes
(Dsc), 4-4, 4-5
/TRUNCATE qualifier (SLP), 3-7
U

/UI qualifier (FLX), 2-8
/UPDATE qualifier

BAD, 5-8

SUMSLP, 3-16, 3-17
Update qualifier (VFY), 6-4, 6-9
/UPD qualifier (VFY), 6-9
/USER_VALUE qualifier (MSG), 8-8

\'}

Validity checking
through 6-3

/VE qualifier (DSC),
4-11

Verify qualifier
4-11

Verifying volumes
through %-3

(VFY), 6-1
4-7, 4-10,

(bsc), 4-7, 4-10,

(VFY), 6-1

VFY, 6-1 through 6-12
invoking, 6-5
terminating, 6-5
Volume format qualifiers (FLX),
2-4, 2-5
Volumes,
block-structured, 5-1

disk, backing up (DSC), 4-1
through 4-3, 4-9 through 4-13
disk, comparing (DSC), 4-4, 4-7,

4-10, 4-13
disk, compressing (DSC), 4-3

Files-11, A-1, A-2

readability check (VFY), 6-8, 6-9

restoring (DSC), 4-2, 4-9, 4-12

transferring contents of (FLX),
2-9

validity check
through 6-3

verification (VFY),
6-3

(VFY), 6-1

6~-1 through

w

Warning messages
defining (MSG), 8-2, 8&-7, 8-9
See also Error Messages

/WARNING qualifier (MSG), 8-9

/WIDTH qualifier (LBR), 7-11,

7-13
Writing text records (LBR),

Z

(FLX),

7-39

/ZE qualifier
2-11

2-8, 2-10,

Index-8

NOTE:

VAX-11 Utilities
Reference Manual
AA-H781A-TE
READER'S COMMENTS

This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

riegse cur aiong Ttnis line,

Please indicate the type of reader that you most nearly represent.

DOooogdo

Name

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

Other (please specify)

Date

Organization

Street

City.

State Zip Code
or
Country

- — — — DoNotTear- Fold Here and Tape — — — — — — — — — — — — — — — — — — =~

dlilgliltlall

- — e Do Not Tear - Fold Here

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS TW/A14
DIGITAL EQUIPMENT CORPORATION
1925 ANDOVER STREET

TEWKSBURY, MASSACHUSETTS 01876

