VAX/VMS

Primer
Order No. AA-D030C-TE

May 1982

This tutorial document introduces the DIGITAL Command Language, the EDT editor,
file manipulation, program development, and basic operating system concepts.

REVISION/UPDATE INFORMATION: This revised document supersedes the
VAX/VMS Primer (Order No. AA-DO30B-TE).

SOFTWARE VERSION: VAX/VMS Version 3.0

digital equipment corporation - maynard, massachusetts

First Printing, August 1978
Revised, March 1980
Revised, May 1982

The information in this document is subject to change without notice and should not be con-
strued as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1978, 1980, 1982 by Digital Equipment Corporation.
All Rights Reserved.

Printed in U.S.A.

A postpaid READER’S COMMENTS form is included on the last page of this document. Your
comments will assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSX
DEC/CMS Edusystem UNIBUS
DECnet IAS VAX
DECsystem-10 MASSBUS VMS
DECSYSTEM-20 PDP

VT
DEGwiter ket lilgliltall

ZK2124
HOW TO ORDER ADDITIONAL DOCUMENTATION
In Continental USA and Puerto Rico call 800-258-1710 DIRECT MAIL ORDERS (CANADA)
In New Hampshire, Alaska, and Hawaii call 603-884-6660 Digital Equipment of Canada Ltd.
940 Belfast Road
In Canada call 613-234-7726 (Ottawa-Hull) Ottawa, Ontario K1G 4C2
800-267-6146 (all other Canadian) Attn: A&SG Business Manager
DIRECT MAIL ORDERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)
Digital Equipment Corporation Digital Equipment Corporation
P.0. Box CS2008 A&SG Business Manager
Nashua, New Hampshire 03061 c/o Digital's local subsidiary or
approved distributor
*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)
Internal orders should be placed through the Software Distribution Center (SDC). Digital Equipment
Corporation, Northboro, Massachusetts 01532

Contents

Preface

Chapter 2

Page
vil
Chapter 1 Accessing the System and Typing Commands

11 Terminals. 1-1

1.2 Keyboards. 1-2

1.3 LoggingIn. 1-2

1.3.1 Getting the Terminal Ready. 1-3

1.3.2 Gaining Access tothe System 14

1.4 Entering Commands. 1-4

1.41 Command Prompting 1-5

1.4.2 Abbreviating Commands 1-6

1.4.3 Recovering from Errors 1-6

1.5 System Responses 1-7

151 Defaults 1-7

1.5.2 Information Messages. 1-7

153 ErrorMessages. 1-8

1.6 The HELP Command 1-8

17 LoggingOut., 1-9

1.8 For More Information 1-9
Using an Editor: EDT

21 Files 2-1

211 FileNames. 2-1

212 FileTypes 2-1

213 FileVersions 2-2

22 Editors 2-2

2.3 Introductionto EDT. 2-3

i

Chapter 3

2.4

2.5

2.6

2.7

Keypad Editing in EDT oo 2-3

9241 TheGoldKey o« o o v o v v v v e 2-4
949 The HELP Command.« « « o o v v oo v 2-4
243 CreatingaFile. o oo 2-4
244 EditingaFileo e e e 2-6
2.45 Manipulating the Cursor« .o e 2-6
246 ScanningaFile. e 2-7
2.4.7 Changing the Cursor’s Direction.« 2-8
2.4.8 Deleting and Restoring Text. e e e e e e e e e e e s 2-9
2.49 Locating Text« o oo 2-10
2.410 Moving Text oo e 2-11
9.4.11 Entering Line Comands in Keypad Mode 2-13
2.4.12 Changing From Keypad to Line Editing 2-13
2.4.13 Subset of EDT Keypad-Editing Commands 2-13
Line Editing in EDT.« o v v oo e 2-14
951 The HELP Command. -+« o v v v o 2-15
952 CreatingaPFile. e 2-15
253 EditingaFile oo 2-16
2.5.4 Specifying Rangeso e 2-16
2.5.5 Inserting and Deleting Text« - 2-17
9256 Locating Text« . oo 2-17
2.5.7 Substituting Text.« o e 2-18
2.5.8 Copying and Moving Text. oo 2-18
2.5.9 Changing from Line to Keypad Editing 2-18
2510 Subset of EDT Line-Editing Commands 2-19
Special Features of EDT v oo 2-19
2.6.1 Multiple Bufferso 2-19
262 Journal Files o oo e 2-19
26.3 SET and SHOW Commands« « - « .« - 2-20
2.6.4 Start-up Command Files 2-20
265 Defining Keys o oo oo 2-20
2.6.6 Defining Macros oo e e 2-20
For More Information « « « v« o o s 2-21

Commands to Manipulate Files

3.1

3.2
3.3
3.4
3.5
3.6
3.7
3.8

Identifying Files« o o 3-1
311 NoOdes . « v v v v e e e e e e e e e 3-1
1.2 DEVICES . « v v o e e e e e e e e e e e e e e 3-2
3.1.3 Directories and Subdirectories.o 3-2
3.1.4 File Names, Types, and Versions « .« - . - 3-3
3.1.5 Wild Card Characters. « « o« o o o oo 3-4
Creating Files o o o oo e 3-5
Deleting Files o o o 3-5
Purging Files« . oo e 3-6
Displaying Files at Your Terminal oo v e e 3-6
Printing Files oo e 3-7
Listing Files in a Directory.« o v v v oo e 3-7
Creating Subdirectories« oo 3-8

Chapter 4

Chapter 5

Chapter 6

Glossary

Index

3.9 Changing Your Default Directory 3-8

3.10 Copying Files 3-9
3.11 Renaming Files 3-10
3.12 For More Information 3-10
Program Development
4.1 Creating the Program 4-1
4.2 Compiling or Assembling the Program 4-2
4.3 Linking the Object Module. 4-3
4.4 Executing the Program. 4-3
45 A FORTRAN Program. 4-5
4.5.1 Creating the Source Program 4-5
4.5.2 The FORTRAN Command 4-6
4.5.3 Linking the Object Module 4-8
4.5.4 Running the Program. 4-8
4.5.,5 Debugging the Program 4-9
46 A MACRO Program, . 4-10
4.6.1 Creating the Source Program 4-11
4.6.2 The MACRO Command 4-12
4.6.3 Linking the Object Module 4-13
4.6.4 Running the Program. 4-1
4.6.,5 Debugging the Program 4-14
4.7 For More Information 4-15
Logical Names: Files for Program Input/Output
5.1 Logical Names in Commands. 5-2
5.2 System Default Logical Names 5-3
5.3 FORTRAN Input/Output. 5-4
5.3.1 Changing Default Logical Names 5-4
5.3.2 Logical Names for Unit Numbers 5-5
5.3.3 Logical Names in OPEN Statements 5-6
5.4 MACRO Input/Output., 5-6
5.5 For More Information 5-7
Tailoring the Command Language
6.1 Symbols. e e 6-1
6.2 Command Procedures 6-2
6.2.1 Using Symbols in Command Procedures 6-3
6.2.2 Redefining System Commands 6-4
623 ALOGIN.COMFile 6-5
6.3 Batchdob Processing 6-6
6.4 Programming Command Procedures 6-6
6.5 For More Information 6-7

Tables

1 Sources of Information in VAX-11 Documentation. viii
92-1 Subset of EDT Keypad-Editing Commands 2-14
9-9 Subset of EDT Line-Editing Range Specifications 2-16
9-3 Subset of EDT Line-Editing Commands 2-19
Figures
1-1 The LA120 Terminal. «« o o o oo e 1-1
1-2 The VT100 Terminal.« « o o v o v o v 1-2
1-3 The LA120 and VT100 Keyboard Layouts. 1-3
9-1 The VI52 and VT100 Keypads « o« o o v o o o v v 2-3
4-1 Steps in Program Developmentol 4-4
4-2 Commands for FORTRAN Program Development 4-5
4-3 Commands for MACRO Program Development 4-10
5-1 Using Logical Names. « . .« o o o oo 5-2

Preface

A primer is a book for beginners. The VAX/VMS Primer introduces new users .
to the VAX/VMS operating system. Depending upon your prior experience,
you may want to read this book carefully or just skim it for specific details.

Between you and the computer is VAX/VMS, the operating system.
VAX/VMS allows users to share the resources of the computer and its hard-
ware devices, such as disks, tapes, terminals, and printers

1 as LisAxs, bapos, tellllllials, A/l priiavlls,

Communication with the operating system consists of commands that you
give it and messages that it gives in response. The set of commands that an
operating system recognizes constitutes its command language.

DIGITAL Command Language, or DCL, is the name of the command lan-
guage you use to communicate with VAX/VMS. One of the main objectives of
this primer is to introduce you to the DIGITAL Command Language.

Eventually, you will need to know more information about VAX/VMS, its
command language, and its services than this primer presents. Sections en-
titled “For More Information” conclude each of the following chapters; these
sections direct you to further sources of specific information about material
discussed in the preceding chapter. In addition, the VAX-11 Information
Directory and Index provides a guide to the entire VAX/VMS software docu-
ment set. See Table 1 for a list of VAX-11 documentation organized by
subject. :

Vit

Table 1: Sources of Information in VAX-11 Documentation

For information on:

Look in these manuals:

VAX/VMS Documentation

VAX/VMS Installation,
Management, and Operations:

DIGITAL Command Language

Program Development,
Testing, and Control

File and Record Management

Programming Utilities and
Development Tools

Compatibility Mode
Programming

VAX-11 Information Directory and Index

VAX/VMS Release Notes

VAX-11/780 Software Installation Guide

VAX-11/750 Software Installation Guide

VAX-11/730 Software Installation Guide

VAX-11/782 User’s Guide

VAX/VMS System Management and Operations Guide
VAX/VMS UETP User's Guide

VAX/VMS Command Language User’s Guide
VAX/VMS Guide to Using Command Procedures

VAX-11 SOS Text Editing Reference Manual

EDT Editor Manual

VAX/VMS DIGITAL Standard Runoff User’s Guide

VAX/VMS Magnetic Tape User’s Guide

VAX-11 Linker Reference Manual

VAX-11 Symbolic Debugger Reference Manual

VAX/VMS Real-Time User’s Guide

VAX/VMS Guide to Writing a Device Driver

VAX/VMS System Messages and Recovery Procedures
Manual

Introduction to' VAX-11 Record Management
Services

VAX-11 Record Management Services Reference
Manual

VAX-11 Record Management Services Utilities
Reference Manual

VAX-11 Record Management Services Tuning Guide

VAX-11 Utilities Reference Manual

VAX-11 PATCH Utility Reference Manual

VAX-11 SORT/MERGE User’s Guide

VAX/VMS System Services Reference Manual

VAX/VMS I/O User’s Guide

VAX-11 Run-Time Library User’s Guide

VAX-11 Run-Time Library Reference Manual

VAX/VMS System Dump Analyzer Reference Manual

VAX-11 Guide to Creating Modular Library
Procedures

VAX-11/RSX-11M Programmer’s Reference Manual
VAX-11/RSX-11M User’s Guide

Vil

Table 1: (Cont.) Sources of Information in VAX-11 Documentation

For information on: Look in these manuals:
Networking DECnet-VAX System Manager’s Guide
DECnet-VAX User’s Guide
VAX-11 Programming VAX-11 BASIC Installation Guide and Release Notes
Languages VAX-11 BASIC Language Reference Manual

VAX-11 BASIC User’s Guide

BLISS Language Guide

BLISS Pocket Guide

VAX-11 BLISS-32 User’s Guide
VAX-11 BLISS-16 User’s Guide

Installing VAX-11 C
Programming in VAX-11 C

VAX-11 COBOL Installation Guide/Release Notes
VAX-11 COBOL Language Reference Manual
VAX-11 COBOL Pocket Guide

VAX-11 COBOL-74 Translator Utility

VAX-11 COBOL User’s Guide

VAX-11 COBQL-74 Installation Guide/Release Notes
VAX-11 COBOL-74 Language Reference Manual
VAX-11 COBOL-74 User’s Guide

VAX-11 FORTRAN Installation Guide/Release Notes
VAX-11 FORTRAN Language Reference Manual
VAX-11 FORTRAN User’s Guide

VAX-11 MACRO Language Reference Manual
VAX-11 MACRO User’s Guide

VAX-11 PASCAL Installation Guide/Release Notes
VAX-11 PASCAL Language Reference Manual
VAX-11 PASCAL Primer

VAX-11 PASCAL User’s Guide

Introduction to VAX-11 PL/I

Programming in VAX-11 PL/I

VAX-11 PL/I Encyclopedia Reference

VAX-11 PL/I Guide to Program Debugging

VAX-11 PL/I Installation and System Management
Guide

VAX-11 PL/I Language Summary

VAX-11 PL/I User’s Guide

ix

Graphic Conventions Used in this Primer

ESC

DEL TAB
CTRLC) CTRUO
$ cshow time

OS5 -JUN-18982 11:55:22

g tvepe myfile.dat
£
*

+

All commands are

These symbols indicate that you press the ESCAPE,
RETURN, DELETE, or TAB key on the terminal.

These symbols indicate that you hold down the CTRL key
while you press a terminal key, for example, Y. These sym-
bols represent control key sequences. In some examples,
control key sequences are shown as a circumflex (7) and a
letter, for example "Y, because that is how the system dis-
plays them.

In examples of commands you enter and system responses,
all the lines you type are shown in red letters. Everything
the system prints or displays is shown in black letters.

A vertical ellipsis in an example means that not all the data
the system would display in response to the particular com-
mand is shown; or that not all the data a user would enter is
shown.

A word or phrase in bold indicates a term defined in the
Glossary at the end of this primer.

Chapter 1
Accessing the System and Typing Commands

To communicate with the VAX/VMS operating system you use a terminal
that is connected to the computer. You tell the operating system what to do
by typing a command or the terminal’s keyboard. The system responds by
executing your command. If the system cannot interpret what you type, it
displays an error message at your terminal; when the command has been
successfully executed, you type another.

When you communicate with the system in this manner, you are an interac-
tive user. A batch user, in contrast, communicates with the system by sub-
mitting all commands at one time in a batch job. This primer emphasizes how
to use VAX/VMS interactively. Chapter 6 shows how any of the commands
described can be submitted in a batch job.

1.1 Terminals

The terminals you can use to communicate with the VAX/VMS operating
system fall into two general categories: hard-copy terminals and video display
terminals.

Hard-copy terminals print on continuous forms of paper. Figure 1-1 shows one
type of hard-copy terminal, the LLA120.

Figure 1-1: The LA120 Terminal

1-1

Video display terminals display your typed input and system responses on a
screen similar to that of a television. Figure 1-2 shows an example of a video
display terminal, the VT100.

2K.759-82

Figure 1-2: The VT100 Terminal

1.2 Keyboards

Figure 1-3 shows the keyboard layouts of the LA120 and VT100 terminals. All
terminal keyboards have the same basic configuration as typewriter key-
boards. However, a terminal has additional keys that provide special signals
to the operating system; to use the terminal effectively, you should become
familiar with these keys.

In Figure 1-3, arrows point to the most commonly used of the special keys.
The symbols in the figure are used throughout this text as a shorthand nota-
tion to refer to pressing these special keys. For example, the symbol in
text means that you press the key labeled RETURN. means that you
hold down the key labeled CTRL while you press another key. To issue a
€®LY), for instance, hold the CTRL key down and press the Y key.

1.3 Logging In

1-2

To begin a session at the terminal, you must log in. Logging in consists of
getting the system’s attention and identifying yourself as an authorized user.

Before you can log in to the system, however, you must have an account.
Accounts are set up by the system manager, or whoever is responsible at your
installation for authorizing the use of the system. This person must provide
you with a user name and a password.

Your user name is a unique name that identifies you to the system and
distinguishes you from other users. In many cases, a user name is your first or
last name.

Accessing the System and Typing Commands

Your password, however, is for your protection. If you maintain its secrecy,
other users cannot use system resources under your user name or gain access
to files you wish to keep private.

When you log in, you must enter both your user name and your password
before VAX/VMS allows you to begin typing commands.

A CELAY - oo cilie piei0
@\@@Dll@l@l@@@@ll@ BOg8
3 dnanjo gy =Nooo)s
PEEPEIL B e

PERETIEE E

LA120

ﬁ

§

&]

8]

_
B]
<N

Lu]

1]
§

6

El_siTeiis umn EEEE
@BHHHHHHHHHHHHHHH’&%%&
SS0-cusgudoonng:Naoes

3]
A
§§

23 01 o o o 3 .
'“ l%@@@l

VT100 ZK-761-82

Figure 1-3: The LA120 and VT100 Keyboard Layouts

'ﬁ-ﬂ@m

i

1.3.1 Getting the Terminal Ready
Before you use the terminal, be sure that:

¢ The terminal is plugged in and the power is turned on.

¢ If the terminal has a LOCAL/REMOTE switch, the switch is set to
REMOTE. (If you are using a dial-up connection, check installation
instructions for special procedures.)

The terminal should then be ready to accept your login. If you have any
problems with the login procedure described in the next section, get help from
the system operator or system manager. The terminal may not be properly
connected to the computer, or the baud rate (the speed at which the terminal
transmits or receives characters) may not be correctly set.

Accessing the System and Typing Commands 1-3

1.3.2 Gaining Access to the System

Press or to signal the system that you want to log in. The system
responds by prompting you for your user name. Enter your user name and
press @D. The system displays your user name as you type it. After you enter
your user name and press @D, the system prompts you to enter your pass-
word. When you type the password, the system does not display it; this
preserves the secrecy of your password. .

The login sequence looks like this:

RET
Username: MALCOLMGEED
Password: RET
WELCOME TO YAX/VUMS VERSION 3.0
%

The dollar sign is a symbol the system uses as a prompt. When VAX/VMS
displays this character in the left margin, it indicates that the login was
successful and that you can begin entering commands to the system.

Note that if you type your user name or your password incorrectly, the system
displays an error message. When an error message appears, you must repeat
the login procedure.

1.4 Entering Commands

1-4

All commands to the system are words, generally verbs, that describe the
functions they perform. You can type them in upper or lower case. For
example:

% show time@D

The system responds to this command by displaying the current date and
time, as follows: ‘

17-JUL-1882 11:55:40
k3

The commands are part of the DIGITAL Command Language (DCL), which
has its own vocabulary of keywords and rules of grammar. The vocabulary
consists of commands, parameters, and qualifiers. The grammar consists of
rules for using these keywords.

Command parameters define what the command will act upon, and command
qualifiers further define how that action will occur. For instance, the PRINT
command below requires an object, or parameter, to indicate what is to be
printed:

$ print myvfile.lis@D

In this command, MYFILE.LIS is a parameter for the PRINT command,
indicating the name of the file to be printed. A space separates the command
and its parameter.

Accessing the System and Typing Commands

Command qualifiers restrict or modify the function the command is to per-
form. For example:

% Pprint/cories=2 myfile.lis@ED

In this command, /COPIES=2 is a qualifier that indicates how many copies of
the file MYFILE.LIS you want printed. A slash character (/) precedes the
qualifier.

The entire command string, including the command and any parameters or
qualifiers it may have, is called the command line. The keywords (com-
mands, qualifiers, and parameters) that make up the DIGITAL Command
Language have predefined meanings; therefore, you must use them exactly as
defined, in some cases supplying a value to complete them. For example, the
/COPIES qualifier for the PRINT command requires a value: you supply the
number of copies you want printed.

The rules of grammar for the DIGITAL Command Language (that is, the
order of the words, the spacing, and the punctuation) are also strictly defined.
The VAX/VMS Command Language User’s Guide contains a dictionary of
DCL commands and discusses the rules of grammar.

1.4.1 Command Prompting

When you enter a command at the terminal, you do not need to enter the
entire command on one line. If you enter a command without specifying
required parameters, the system prompts you for the additional data it re-
quires, as shown below:

% print@D
& File: myfile.dat @D

In this example, no parameter was entered, so the system prompted for the
name of the file to be printed.

If a command requires two or more parameters, it prompts for each parame-
ter. In response to each prompt, you can enter just the prompted parameter or
all the remaining parameters. For example:

% pcopy @D
% _From: filel.dat@®D
% _To: file2.dat @D

In this example, each file name is entered separately. You could, however,
enter both file names after the first prompt, as shown below:

% copy @D
$_From: filel.dat fileZ.dat@ED

You could also enter the entire command line on one line.

¢ copy filel.dat fileZ.datRE

Accessing the System and Typing Commands 1-5

1-6

1.4.2 Abbreviating Commands

When you type commands, qualifiers, or parameters you do not always need
to type the full word. In fact, you never have to type more than the first four
characters, and in many cases you can type only one or two characters. The
rule to follow is: you must type at least the minimum number of characters
necessary to make the command unique.

For example, the SET, SEARCH, and SHOW commands all begin with the
letter ¢“S.” To make the SHOW command unique, you must type at least two
characters, SH. To make the SET and SEARCH commands unique, you must
type three characters, SET and SEA respectively.

The examples in this primer show full commands so that you can become
familiar with the commands and what they do.

1.4.3 Recovering from Errors

Some of the keys noted on the keyboard in Figure 1-3 provide editing func-
tions that you can use to correct mistakes you make while typing commands.
These keys are:

DEL

Backspaces over one character typed on the current line, then deletes the
character. Most video display terminals actually move the cursor (an under-
line or block that marks your position) backward and erase the character
when you press GED. Otherwise, the terminal prints a backslash character (\),
then each deleted charaster, then another backslash before it prints the next
character you enter. On some terminals, the key that performs the delete
function is marked RUBOUT.

Ignores the current line and performs a return so you can reenter the entire
line. Use €U when a line contains a number of mistakes and it would be
tedious to use ©ED.

CTRL/R

Performs a return and displays the current line, leaving the print element or
cursor at the end of the line so you can continue typing input. Use €TRLUR) when
you have deleted a lot of characters on a line, and cannot read the line easily
because of the backslash characters. For example:

% pron\noNint mudsudyCRUR

E print my

and CTRLY)

Cancel an entire command, regardless of how many lines were used to enter it.

Accessing the System and Typing Commands

You can also use CTRLY) or to interrupt the system while it is executing a
command. Such an interruption is useful in cases when you have entered a
command and you want to stop it. Press (or €RLC)) and then issue the
STOP command, as shown below:

% tvpe mvfile.lis@D
4+
+

[}

% stor@ED
kS

In this example, interrupted the typing of a long file and the STOP
command terminated the output.

€RUS) and €RLQ

To suspend and resume the upward movement, or scrolling, of the terminal
display, use and CRLQ . To temporarily stop the display from scrolling,
press CTRUS); to continue the scroiling, press €RLQ) . (The NO SCROLL key on
VT100 terminals performs the same function.)

1.5 System Responses

The system can respond to your command in several ways. It can execute the
command, indicating successful completion with the dollar sign prompt. It
can execute the command and inform you in a message of what it has done. It
can, if execution is not successful, inform you of errors you have made. It can
even act for you, supplying values that you have not supplied yourself.

1.5.1 Defaults

A default is the value supplied by the operating system when you do not
specify one yourself. For instance, if you do not specify the number of copies
as a qualifier for the PRINT command, the system uses the default value of 1.
By not explicitly stating a choice, you imply the default. VAX/VMS supplies
default values in several areas, including command qualifiers and parameters.
The defaults used with individual commands are specified with each com-
mand’s description in the VAX/VMS Command Language User’s Guide.

1.5.2 Information Messages

The system responds to some commands by giving you information about
what it has done. For example, when you use the PRINT command, the
system displays the job identification number it assigned to the print job and
shows the print queue the job has entered.

% print myvfile.lis@D

Job 210 evntersd on susue SYSEPRINT

Accessing the System and Typing Commands 1-7

Not all commands display informational messages; in fact, successful comple-
tion of a command is most commonly indicated by a dollar sign prompt for
another command. Unsuccessful completion is always indicated by one or
more error messages.

1.5.3 Error Messages

If you enter a command incorrectly, the system displays an error message and
prompts for a command line as if no command had been entered:

$ capy@ED

YOCL-W-IVVERB: unrecodgnized command
NCAPYA

%

The three-part code preceding the text of the message indicates that the
message is from DCL, the command interpreter; that it is a warning (W)
message; and that the mnemonic for this particular message is IVVERB.

You can also receive error messages during command execution if the system
cannot perform the function you have requested. For example, if you type a
PRINT command correctly, but the file that you specify does not exist, the
PRINT command informs you of the error:

$ print nofile.dat@

YPRINT-W-OPENIN: error orFeningd DBAL:[MALCOLMINDOFILE.DAT:
as inpPuUt

~-RMS-E-FNF+ file not found

The first message is from the PRINT command: it tells you it cannot open the
specified file. The second message indicates the reason for the first, that is,
the file cannot be found. “RMS” refers to the VAX/VMS file-
handling facility, Record Management Services; error messages related to file
handling are generally VAX-11 RMS messages.

1.6 The HELP Command

1-8

When you use the VAX/VMS operating system, you may not always have a
reference manual available at your terminal, and you may want to see the
format of a command before you enter it. The HELP command is designed to
provide you with this information.

For example, to display a list of commands for which HELP is available, type:
$ helr@D

The system responds by displaying the list of commands and prompting for a
choice of topic.

Accessing the System and Typing Commands

If you want information about a particular command, type that command
after the prompt. For instance, if you want information about the PRINT
command, type:

Toric? print@D
The information displayed includes a synopsis of what the PRINT command

does, the parameters it requires, and the qualifiers it can take.

If you want to know more about one of the PRINT command’s qualifiers,
respond to the prompt “PRINT subtopic?” with that qualifier. For example,
to display information about the /COPIES qualifier of the PRINT command,

type:
PRINT subtoric? /copies@D

If you know the subtopic on which you need help to begin with, you can
simply type:

% helep Print/cories@ED

When you have finished using HELP, type €L2). The dollar sign prompt will
appear in the left margin, indicating that VAX/VMS is ready to receive a
command.

1.7 Logging Out

When you have finished using the computer, use the LOGOUT command to
end the terminal session:

% lodout®D

The system responds:
MALCOLM lodsged out at 17-JUL-13BE 1Z2:43:10.38

Note that neither shutting off your terminal, nor setting the REMOTE/-
LOCAL switch to LOCAL, automatically causes you to log out. To ensure
that you have logged out, you should use the LOGOUT command to end a
terminal session. If you shut a terminal off without logging out properly,
another user may be able to turn the terminal on later and use your account.

1.8 For More Information

The VAX/VMS Command Language User’s Guide is the primary reference
manual for information about the DIGITAL Command Language. The man-
ual contains complete descriptions of DCL commands, defines the grammar
of the DCL command language, and illustrates command usage with many
examples.

Accessing the System and Typing Commands 1-9

Chapter 2
Using an Editor: EDT

2.1 Files

Before you use the VAX/VMS operating system, you need to know how to
identify and create files. This chapter briefly describes file identification and
editing with the EDT editor. If you are familiar with editors, you may want to
skip this chapter and go directly to Chapter 3, Commands to Manipulate
Files.

A file is the basic unit of storage for VAX/VMS. All user information is stored
in files, usually on auxiliary storage media such as magnetic tapes or disks. In
order to retrieve a file from storage or to create and store a new one, you must
be able to identify the file for the system.

VAX/VMS uses a unique file specification to identify each file. A complete
file specification includes the user’s network node, the device on which the
file is stored, the directory in which the file is cataloged, and the name, type,
and version of the file. Only the file name, type, and version are discussed
here. For a more complete explanation of file specifications, see Chapter 3.

2.1.1 File Names

By taking advantage of defaults, you can 1dent1fy a file by specifying only its
file name and file type in the format:

filename.tv¥Fre

The file name can have up to nine characters selected from the letters A
through Z and the numbers 0 through 9. When you create files, you can give
them any names that are meaningful to you.

2.1.2 File Types

The file type can be from zero to three characters and must be preceded by a
period. Again, you can choose from the letters A through Z and the numbers 0

through 9 for the file type. However, the file type usually describes specifically
the kind of data in the file, and the system recognizes several default file types
used for special purposes. (See Sections 3.1.4 and 4.1 for tables of default file

types.)

2.1.3 File Versions

In addition to a file name and file type, every file also has a version number to
distinguish it from other copies of the file. The version number is the last item
in the file specification and is connected to the file type by a semicolon (;) or a
period (.). The following example shows the format for version two of the file
MYFILE.DAT:

myfile.dati?

The system supplies version numbers by default if you do not specify them
yourself. When you create a file, the system always assigns it a version num-
ber of 1. When you edit the file, its version number is automatically increased
by 1. If you refer to an existing file without specifying a version number, the
system always locates the most recent version (that is, the file with the high-
est version number).

You can override these default version numbers by explicitly specifying a
version number:

% print myfile.dati3

This PRINT command requests that the third version of the file MY-
FILE.DAT be printed.

2.2 Editors

2-2

To edit a file you use a program called an editor, which has its own set of
commands for modifying files. VAX/VMS supports four editors. (There may
be other editors in addition to these at your installation.) Two, SUM and
SUMSLP, are batch editors. To use a batch editor, you submit a list of the
changes you want made to the file and the editor makes the changes as a
batch job.

VAX/VMS also supports the SOS and EDT editors. With both, you conduct
an interactive editing session: you give an editing command to which the
editor responds. This interaction continues until you give the final command
to store or delete the edits you have made.

To invoke any of these editors type the EDIT command, specifying as a
qualifier the name of the editor you want to use and, as a parameter, the name
and type of the file you want to edit. For example, to invoke SOS to edit the
file MYFILE.DAT type:

$ edit/s0e myfile.dat

Using an Editor: EDT

Because /EDT is the default qualifier for the EDIT command, you invoke the
EDT editor when you type:

£ pdit myfile.dat

2.3 Introduction to EDT

The DIGITAL Standard Editor, EDT, has a number of advanced features
that allow you to tailor it to your own needs. Some of these features are
mentioned in Section 2.6; however, most are beyond the scope of this primer.
For other sources of information about EDT and other editors, see Section 2.7.

EDT provides two basic methods of editing: line and keypad editing. When
you use EDT’s line editor, you specify both the editing command and the
line(s) of text you want the command to affect. The EDT line editor is avail-
able on both hard-copy and video display terminals.

The EDT keypad editor is designed to be used on video terminals that display

the editing as it takes place. When you use EDT’s keypad editor, you move

the cursor directly to the text you want to change and press either one or two
~ keys to perform most of the commands.

If you use a video terminal, you can use both keypad and line editing in EDT.
If you use a hard-copy terminal, you should skip Section 2.4 and go to Section

2.5, Line Editing in EDT.

2.4 Keypad Editing in EDT

The keypad is the small group of keys to the right of the larger keyboard on
your terminal. Each key in the keypad performs at least one editing function;
most of the keys perform two.

As you can see in the figure below, the keypads of the VT100 and the VT52
differ slightly, so that the keys performing a particular command are not
always the same on both terminals. Therefore, the sample editing sessions
that follow generally refer to the command (WORD) and its function (moves
the cursor forward or backward in word units), rather than to the key itself
(key 1). To learn which functions the keys on your keypad perform, refer to
the diagrams below or the EDT Editor Reference Card.

10 1 12 12 12 15 14 10 1 | 17
GoLp wep oest 1| neseace v bowN T RIGHT GoLo e presll | Mty
| ==
—J) JU JL
7) 3 13 (7] (s 18
PAGE FNDNXT DEL W DOWN PAGE SECT APPEND DEL W
'COMMANI FIND UND W SECT COMMAND L REPLACE UND W
L o
4 5 [14 4 5 s 19
ADVANCE BACKUP DEL C RIGHT ADVANCE BACKUP cutT DELC
BOTTOM TOP uNDC SPECING BOTTOM TOP PASTE uND C
— — J) —J
1 2 3 15 1 2 3 7
WORD EOL. cuT LEFT WORD EOL. CHAR
HNGCABE DEL EOL ASTE APPEND CHNOCASE DEL EOL SPECINS
J e | enER
— svas
[] 16 21 o 16
LINE SELECT ENTER LINE SELECT
OPEN LINE RESET sues OPEN LINE RESET
vT52 VT100

Figure 2-1: The VT52 and VT100 Keypads

Using an Editor: EDT 2-3

2-4

2.4.1 The Gold Key

As Figure 2-1 illustrates, most of the keys perform two editing functions. To
use the alternate, or lower, function of a key, press the GOLD key before you
press the second key. For example, key 1 (on both the VI'52 and the VT100)
performs two functions: WORD and CHNGCASE (Change Case). To enter
the WORD command, press key 1; to enter the CHNGCASE command, press
the GOLD key first and then key 1.

In the examples that follow, small diagrams of the VT52 and VT100 keypads
highlight the keys that perform the command being described. The text to the

left of the diagrams displays the effect of the command. For example, the
CHNGCASE command is pictured as:

BO00
HE/EE
EREN
_[H
g

VT100

Note that the GOLD key must be pressed before the second key in order to
invoke that key’s alternate function.

2.4.2 The HELP Command

The EDT keypad editor provides a HELP key that displays a diagram of the
kevpad and the various key functions:

If you want information about a specific key, press the HELP key and then
press the key in question. For example, if you want to know the function of the
WORD command, press the HELP key to find which key performs the WORD
function and then press key 1 for an explanation.

You can continue to get help on specific keys by pressing them. When you
want to return to your editing, type a space. EDT resumes the display of your
file, returning the cursor to its previous position.

2.4.3 Creating a File

To create a file with EDT, type the EDIT command, specifying the file’s
name as a parameter:

$ edit myvfile.dat B
Input file doss not gxist
[EQB]

¥

Using an Editor: EDT

The first line that appears is the message “Input file does not exist” telling
you that you have no existing file named MYFILE.DAT (since you are creat-
ing that file). The second line, “[EOB),” denotes the end of the buffer, the
temporary storage area in which you edit text before it is stored in a file. The
third line, the asterisk, is the EDT line editor prompt.

To use EDT’s keypad editor, type “C” (for the CHANGE command) after the
asterisk prompt and press RETURN. The screen goes blank with only [EOB]
in the upper left hand corner, indicating that there is nothing currently stored
in the buffer. (In keypad editing, EDT always displays the [EOB] symbol on
the line after the last character in the buffer.)

Using the main keyboard, type the following text to create a new file:

Hevs diddle diddle: @

the cat plaved the fiddle . G@ED
the cow Jumped over the moon. GED
This is the fourth line. @

Use CTRL/Z to chande from
kevpad to line editing.

[EQB]

What you type is not recorded in a file until you instruct EDT to copy what
you have entered from the temporary storage of a buffer to a file. You can then
retrieve the file at a later time and make changes to it, such as adding and
deleting text.

To save, or store, your edits, enter the EXIT command. First, invoke the line
mode prompt by typing €RUz. Then type EXIT after the asterisk and press
RETURN:

Hev: diddle diddle:
the cat rlaved the Ffiddle:
cow Jumped ouer the moon.
the fourth line.
L/iF to chande from
to line editing.CRUD

When you enter the EXIT command, the system saves the contents of the
buffer in a file named MYFILE.DAT;1, issues the message below, and returns
you to the DCL command level:

DBEZ: [MALCOLMIMYFILE.DATIL B lines
%

If you do not want to save the edits you have just made, type QUIT after the

asterisk prompt. EDT will delete the contents of the buffer without creating a
file and return you to the DCL command level.

Using an Editor: EDT 2-5

2-6

2.4.4 Editing a File

You invoke EDT to edit an existing file the same way you do to create one:
type the EDIT command, specifying the file name as a parameter.

& edit mvyfile.dat
1 Hey s diddle diddle.

*

The first line of the latest version of the file, as well as the line editor prompt,
will appear on the screen. (Note that if you type the wrong file name in the
EDIT command line, you can terminate EDT without altering that file by
using the QUIT command.)

Type “C” for the CHANGE command to switch from line to keypad editing:
EDT displays the first 22 lines of your file on your screen. (The EDT keypad
editor does not display line numbers.)

Hev s diddle diddle:

the cat rlaved the fiddle:
the cow Jdumred over the moon.
This is the fourth line.

Use CTRL/Z to chande from
kevyerad to line editing.

[EDOB]

You can now begin editing your file.

2.4.5 Manipulating the Cursor

The right and left arrow keys move the cursor one character in the direction of
the arrow on the key. (When the left arrow is at the beginning of a line,
however, it moves vertically, and when the right arrow is at the end of a line of
text or the beginning of a blank line, it also moves vertically.) The location of

the arrow keys on your terminal depends on whether you have a VT52 or a
VT100:

ERE ERER (000
HEN | HREN

]
]
L]
u
[:IDD
|
oo
101

Using an Editor: EDT

You can also move the cursor by larger units of text, such as words, lines,
sections, and pages. For example, give the WORD command to move the
cursor to the beginning of the next word:

the o3t elaved the fiddle LU
ih;' ool ._il.thr;-d nuér- the f;\c;ai'xe DDDD
This is the fourth line. DDDD
Use CTRLAZ to chande from .DDD
kevead to line editing. DDD

TEOB] VT52

(If your cursor does not move as described, it may be set to move backward
rather than forward. See Section 2.4.7 to change the cursor’s direction.)

There are several ways to move through a file by line. To move the cursor to
the end of the line, give the EOL (End Of Line) command:

l;‘;:—’& -:I:-:i-:lie didggef?“l (101000 (0]
he cat plaveq e fiddles

the cow Jdumred ouser the moon. DDDD DD
This 1s the fourth line. QDDD DD
se CTRL/Z to chande from U.DD D.D
Kevead to line sditing. ‘:]DD ED

[EGB] VT52 VT100

(||
(| |

(The BACKSPACE key on the main keyboard moves the cursor in the oppo-
site direction — to the left margin.) To move up or down a line you can use the
up and down arrows, or you can use the LINE command, which moves the
cursor to the beginning of the next line:

Hey: diddle diddle. L1000
the cat plaved the fiddle: DDDD
the cow Jumeped aver the moorn.

This is thes fourth line. DDDD
Use CTRL/Z to chande fraom DDDD
kevpad to line editing. -DD

[EOB] VT52

I [[|

ngDDD
00000
Coo00

2.4.6 Scanning a File

In addition to moving the cursor by character, word, and line units, you can
scan several lines of text at a time with the SECT (Section) and PAGE

Using an Editor: EDT 2-7

commands. SECT moves the cursor across a 16-line section of text; PAGE
moves the cursor across a page' of text.

Another way to move the cursor quickly through a large portion of text is to
move it directly to the beginning or end of the file. The BOTTOM command
moves the cursor to the line following the last character:

e as 1aved the tiddle, RO00 mOoOo
‘;h;\ ;;;n 'llml;!;‘d n!!;z the mmsx DDDD DDDD
This iz the fourth line. .DDD .DDD
Use CTRL/Z to chande from HIBRR 000
kevpad to line editing. [:]DD [:]D
LEOB] rrsion o

o oot Plaved the fiddl mLLL
g cat rlaved the iddle

the cow Jumped over the moon. DDDD
This is the fourth line. D.DD
Use CTRL/AZ tno chande from DDDD
keverad to line sditing. [___H:]D

[TEQER] VT52

Do

§DDIDD
=
-

2.4.7 Changing the Cursor’s Direction

Many commands (including the CHAR, WORD, LINE, EOL, SECT, and
PAGE commands) move the cursor forward or backward unit by unit, de-
pending upon whether you last set the direction of the cursor with the AD-
VANCE or BACKUP command. Each of these commands controls the cur-
sor’s direction until you set the cursor in the opposite direction with the other
command.

To illustrate: give the BACKUP command to set the cursor in the backward
direction. (The cursor does not move when you set its direction.)

Hev s diddle diddle:

the cat rFlaved the fiddle:
the cow Jumeped ouver the mooin.
This is the fourth line.

Use CTRL/Z to chandge from

bevepad to line editing. [___:]DD

TEOB] VT52

OO0
sLomaoo
00000

(i

|

<
=]

1. By default a PAGE is defined as the text between form feed characters (ASCII characters
that determine the start of each line printer page).

2-8 Using an Editor: EDT

Now move the cursor one word (backward) with the WORD command:

e oot ploved the fiddie LU
2 LAy er LB 3 2

the cow Jumped ocuer the moovn. DDDD
This is the fourth line. DDDD
lee CTRLAZ . to chande from .DDD
pad to lins sditing. :]DD
]

Backur pPast tor of buffer

(=00
sLUOooo
00000

-

You should hear a bell (or buzzer) and see a message indicating that the
command requests EDT to backup past the top of the buffer. Now reset the
cursor’s direction with the ADVANCE command. (Again, the cursor does not
move.)

0000 0ood
2 Cat P LAY B Lhe i B s

the cow Jumped over the moon. DDDD DDDD

This is the fourth line. .DDD .DDD

Uze CTRL/Z to chande from DDDD DDD

kevrad to line sditing. L1000 I:]D

[EOE] VT52 VT100

Move the cursor forward one word with the WORD command:

Hey, diddle diddle. L0000
the cat Fplaveag the F =

the cow Jumred over the moon.

Thiszs iz the fourth line. DDDD
Use CTRL/Z to change from .DDD
Kevrad to line editing. GDD

[TEOB] VT52 -

0
0
0
0
8

<
=

This time the cursor moves forward to the beginning of the next word. The
cursor will remain set in this direction until you give the BACKUP command,;
you can change the cursor’s direction whenever it is convenient.

2.4.8 Deleting and Restoring Text

The delete commands work in units similar to those that manipulate the
cursor: there are commands to delete by character, by word, and by line. The
deleted text is stored in a buffer so that you can restore it with an undelete
command.

Using an Editor: EDT 2-9

2-10

The delete and undelete commands work in the same way: you can delete by
character (DEL C), word (DEL W), or line (DEL L); and you can restore that
character (UND C), word (UND W), or line (UND L). For example, enter the

DEL L (Delete Line) command:

He the cat 1 i the fiddl DD.D DDD.
¥t e cat plaved th iddle:

the cow Jumped over the moon. DDDD DDDD

This is the fourth line. DDDD DDDD

Use CTRL/Z to chande from DDDD DDD

kevead to line editing. DDD [:D

[EOB] VT52 VT100

The deleted line disappears and is replaced on the screen by the line following
it. Now give the UND L (Undelete Line) command to restore the line:

g ey, OO EOo
the cow Jumeped over the moon.

This is the fourth line. DDDD DDDD
Use CTRL/Z to change from DDDD DDD
kevpad to line editing. DDD 1:”:]

[EOB] VT52 VT100

The line reappears. The UND C (Undelete Character) and UND W (Undelete
Word) commands work in exactly the same way, allowing you to restore the
last character or word you deleted.

Note that the undelete commands restore only the corresponding units of text
that were most recently deleted. If you have deleted two lines of text with the
DEL L (Delete Line) command, for example, the UND L (Undelete Line)
command will restore only one line — the line most recently deleted.

2.4.9 Locating Text

In addition to scanning text, you can move the cursor to a specific location in
the file with the FIND and FNDNXT commands. The FIND command
searches for a particular character string between the current position of the
cursor and the beginning or end of the buffer, depending on whether the
ADVANCE or BACKUP command is in control. The FIND command is espe-
cially useful with long files that would be tedious to scan with other com-
mands.

For example, if you want to edit a particular string of text, specify that string
and EDT will search for it. If EDT finds the string, the cursor will move to the
beginning of the string. If EDT cannot find the string, the bell will ring and
the message “String was not found” will appear on the screen.

Using an Editor: EDT

Assume you want to locate the word MOON. You could instruct EDT to
search for the string by first giving the FIND command to invoke the Search
for: prompt.

Hey s diddle diddle,

the cat rlaved the fiddle.
the cow Jumeed ousr the moon.
This is the fourth linse.

Uzse CTRL/Z to chande from
Eevrad te line sditing.

[EOQR] VT52

sLioooo
:0000Om
-

[]
H
[
[

[
[]
[
U
[

SjD[:II:]D.

Type MOON in response to the prompt and then press ADVANCE (since you
want EDT to search in the forward direction).

Hev s diddle diddls:

th t Frla 1 the fiddl [][]
-1e oat LAY 8y 1 [=

the cow Jumeped ower the Mmoo . E[E:l'
B

This is the fourth line.
Use CTRL/Z to change from

kevpad to line editing. [:][][]

Search for: MOON

When EDT finds the string, it positions the cursor at the first character in the
string. (In a long file the message “Working” may flash on the screen while
EDT searches for the string.)

To find the next occurrence of the same string, give the FNDNXT (Find
Next) command. If there is no other occurrence of the string (as in this
instance), EDT will issue the message “String was not found.”

Note that the directional setting of the cursor determines the outcome of the
search. You can use either ADVANCE or BACKUP to enter the search string,
depending on the direction in which you want the cursor to search. (You can
also use the ENTER command, which applies the current direction to the
search.)

2.4.10 Moving Text

Moving text from one place to another in a file is called “cutting and pasting”
in EDT: you cut out the text you want to move and paste it in the place where
you want it. The first step in this operation is to select the range of text you
want to move.

Using an Editor: EDT 2-11

2-12

For example, to move the first line of text to the end of the file, move the
cursor to the beginning of line one and press SELECT. This marks the begin-
ning of the select range.

_l'iE‘,'r diddle; diddle:

the cat eplaved the fiddle:
the cow Jumred over the moon.
This is the fourth line:

Use CTRL/Z to chande from
keypad to line editing.

[EOB]

To mark the end of the select range, move the cursor to the end of line one. All
text between the select point and the cursor will be affected by the CUT
command. (A VT100 highlights the select range with reverse video.) Now
press CUT:

the cat plaved the fiddle:

the cow Jumpred over the moon. DDDD
This is the fourth line. DDDD
Use CTRL/Z to chande from DD.D
kevead to line editing. [_—___]DD

[EOB] VT52

The select range (in this case, line one) disappears from the screen. EDT holds
the text you delete with the CUT command in the PASTE buffer. To restore
it, move the cursor to the location where you want to place the text and enter
the PASTE command. For this example, move the cursor to the end of the
file. Now enter the PASTE command:

B At e tver the moon R
] {MP el L} y e 1

This iz the fourth line. DDDD

Use CTRL/Z to chande from DDDD

kevead to line editing. DD.D

Hevs diddle diddles_ [:]DD

[EDB] VT52

You can continue to use the PASTE command wherever you wish, since the
text remains in the paste buffer until it is replaced by another CUT operation.
The CUT and PASTE commands are especially useful in moving large pieces
of text from one place to another in a file.

Select ranges are also used with other commands, such as the APPEND,
FILL, and SUBSTITUTE commands. If you make a mistake during the pro-
cess of marking the select range (or any keypad command requiring a
sequence of keys), use the RESET command to cancel the first part of the
command and start over.

Using an Editor: EDT

2.4.11 Entering Line Commands in Keypad Mode

Occasionally, you may want to use line editing commands without actually
changing from keypad to line mode. You can do so with the COMMAND
function.

For example, to give the SET QUIET line command (which suppresses the
ringing of the bell or buzzer when an EDT error occurs), first invoke the
Command: prompt. Then type the command after the prompt.

the cat plaved the fiddles [|HEn O
0
0
O

the opow Jumped ouer the moovs

This is the fourth line. 5%%%
Use CTRL/Z to change from .

ktevead tno line editing. DDDD
Hev s diddle diddle: (_—_‘]D[]

[EQB] VT52

Command: SET QUIET_

Use ENTER to submit the command. (If you press RETURN by mistake, "M
will appear. Delete the *M and press ENTER.)

the ozt mla e Ller the nos Ou0u
tne Pkt LR p oue he moons -

Thiz is the fourth lineg. [][H][]
ise CTRL/Z to chande fraom [][][][]
Kevpad to linme editing. [][][][]
Hey: diddle diddle: ‘ |
[EOB] - VTQ.

You can also enter the EXIT and QUIT commands with the COMMAND
function.

2 4.12 Changing From Keypad to Line Editing

If at some point during keypad editing you want to change to line editing,
type €ALZ). The line-editing prompt, an asterisk, will appear at the bottom of
the screen, indicating that EDT is ready to receive line-editing commands.

2.4.13 Subset of EDT Keypad-Editing Commands

Table 2-1 presents some of the most frequently used keypad commands and
the main function of each. For a complete list of EDT keypad commands, see
the EDT Editor Manual.

Using an Editor: EDT 2-13

Table 2-1: Subset of EDT Keypad-Editing Commands

Command Function
ADVANCE Sets cursor movement in forward direction
BACKUP Sets cursor movement in backward direction
BOTTOM Moves the cursor to the bottom of the buffer
CHNGCASE Changes the case of specified characters
cur Deletes specified text from the main buffer and stores it in the paste buffer
DEL C Deletes the character at the cursor
DEL EOL Deletes text from the cursor to the end of the current line
DEL L Deletes text from the cursor through the end of the current line, moving
the following line up to the cursor
DEL W Deletes text up to the first character of the next word
EOL Moves the cursor to the end of the current line
FIND Locates specified text
FNDNXT Locates the next occurrence of specified text
HELP Invokes EDT’s keypad help facility
LINE Moves the cursor to the beginning of the next line
PAGE Moves the cursor across one page of text
PASTE Inserts the contents of the paste buffer at the cursor’s position
RESET Cancels GOLD, SELECT, or any key sequence
SECT Moves the cursor across 16 lines of text
SUBS Deletes specified text and inserts the contents of paste buffer
TOP Moves the cursor to the top of the current buffer
UND C Restores the character deleted by the last DEL C
UND L Restores the line deleted by the last DEL L
UND W Restores the word deleted by the last DEL W
WORD Moves the cursor one word
Restores the video display
Changes from keypad editing to line editing

2.5 Line Editing in EDT

In line editing, you do not move the cursor directly to the character or word
you want to edit. Instead, you type the command and specify the line or range
of lines you want the command to affect. (Although most of the line-editing
commands can be abbreviated, this chapter presents the full commands so
that you will recognize their functions.)

2-14 Using an Editor: EDT

2.5.1 The HELP Command

The EDT line editor has a HELP command, which works much like the DCL
command HELP. If you need help with EDT line commands, type HELP
after the asterisk prompt, and EDT will display all the line-editing commands
available. To get help with a particular command, type HELP and the name
of the command (for example, HELP TYPE); EDT will display information
about that command.

2.5.2 Creating a File

To create a file with EDT’s line editor, give the EDIT command, specifying
the file’s name as a parameter:

% edit vourfile.dat

Input file doss not exict
[EOB]

¥

The first line is the message “Input file does not exist,” indicating that you
have no file in your default directory with the name YOURFILE.DAT (since
you are creating that file). The second line, “[EOB],” denotes the end of the
buffer, the temporary storage area in which you edit text before storing it in a
file. The third line, the asterisk, is the prompt for EDT’s line editor.

To insert text in your file, type INSERT after the prompt and press RE-
TURN: the cursor moves forward several spaces. EDT inserts what you type
after this command as text until you signal completion with ¢#lz).

Type the following lines from the main keyboard, using the DELETE key and
, which deletes text between the cursor and the left margin if you make a
mistake. (You cannot return to a preceding line to make an addition or correc-
tion once you have pressed RETURN, unless you give additional commands.)

¥ INSERT@ED

Hev s diddle diddle @D

the cat plaved the fiddle @D

the cow Jumped over the moon.CRR
[EOBZ

Terminate the insertion of text by typing C#2). EDT displays the [EOB] sign
and asterisk prompt, indicating it is ready to receive another line-editing
command.

When you use EDT, what you type is not recorded in a file until you instruct
the editor to copy your text from the temporary storage of a buffer to a file,
which you can later retrieve for editing. When you enter the EXIT command,
EDT saves the contents of the buffer in a file named YOURFILE.DAT;1,

Using an Editor: EDT 2-15

issues the message below, and returns you to the DCL command level (signi-
fied by the dollar sign prompt). Type EXIT after the asterisk prompt:

#EXITEED
DBEZ:[MALCOLMIYOURFILE.DATI1 3 lines
%

If you do not want to save your edits, type QUIT after the prompt. EDT will
delete the contents of the buffer without creating a file and return you to the
DCL command level.

2.5.3 Editing a File

You enter and exit EDT to edit an existing file the same way you do to create
one. To invoke EDT, give the EDIT command and specify the file name as a
parameter. The first line of the latest version of the file, as well as the line
editor prompt will appear.

$ edit vourfile.dat
1 Hey : diddle diddle:
¥

Note that if you type the wrong file name in the EDIT command line, you can
terminate EDT without altering that file by using the QUIT command.

2.5.4 Specifying Ranges

EDT initially assigns line numbers in increments of one to each line in the
buffer. You can use these numbers to specify the line or range of lines you
want the command to act upon. EDT also recognizes certain words in range
specifications; you can combine these words with line numbers in a range
specification. For example, if you want to delete the first two lines in the file,
you could type: “DELETE 1 THRU 2” or “DELETE BEGIN:2.”

Table 2-2 lists a small subset of range specifications possible in line editing to
help you begin using the line editor. Once you have begun, you can use the
line editor’s HELP facility and the EDT Editor Manual for complete instruc-
tions on specifying ranges.

Table 2-2: Subset of EDT Line-Editing Range Specifications

Specification Description

The current line

n THRU n Line number n through line number n

n:n Line number n through line number n

BEGIN The first line of the buffer

END The empty line after the last line of the buffer
BEFORE All the lines before the current line

REST The lines including and after the current line
WHOLE All the lines in the buffer

2-16 Using an Editor: EDT

In addition to using range specifications, you can press @7 to move forward
one line:

oy

Hev: diddle diddle:

+ @ET

the cat rlarved the fiddle:
% (RET

the cow Jumped ouer the moon.

2.5.5 Inserting and Deleting Text

The INSERT and DELETE commands take similar parameters. When you
specify a range, EDT inserts the text before the first line of the specified
range. (If you do not specify a range, EDT inserts the text immediately before
the current line.) For example, to add text to the end of the buffer, you could
specify line four or END to indicate the end of the buffer:

#INSERT END

This is the fourth line . @D

Tyre CHANGE to ziwitoh @D

from line to Kevead gditing.CRLZ)
[EOB]
#*

Terminate the insertion of text with €TRLZ). EDT assigns line numbers to the
new text and issues an asterisk prompt, indicating that it is ready to receive
another editing command.

The DELETE command works in much the same way, deleting those lines of
text specified in the range. If you do not specify a range, the current line is
deleted by default. (There is no line-editing command equivalent to the
UNDELETE keypad commands.)

2.5.6 Locating Text

To display the entire contents of the buffer, use the TYPE command and
specify WHOLE as the parameter:

sTYPE WHOLEGED

Hev: diddle diddle:

the cat rlaved the fiddle:
the ool Jumrped ouver the moon:
Thiz iz the fourth line:

Tvpe CHAMGE to switeh

from line to kevead editing.

AL IR P O PN

[EOB]

*

If you want to locate a text string in a long file without displaying the entire
buffer contents, you can use quotation marks. For example, to find the first
occurrence of the word FOURTH, type:

#"fourth" @D
i This is the fourth line:
¥

Using an Editor: EDT 2-17

2-18

EDT moves the cursor to the line containing the first occurrence of the string.
If you want to display all occurrences of the string, use the TYPE ALL com-
mand, followed by the string in quotation marks.

2.5.7 Substituting Text

To replace one character string in the current line with another, use the
SUBSTITUTE command. To replace every occurrence of one string with
another throughout the file, use WHOLE as the parameter.

For example, to replace all occurrences of the string THE with the string A,
type SUBSTITUTE, the old string, and the new string, separating all three
with delimiters, such as slashes. (You must use the same delimiter through-
out the command line.) Then specify WHOLE as the parameter:

*SUBSTITIUTE[the./a/HHDLE

2 a cat rlaved a fiddle

3 a cow Jumped cver a moon.
d This is a fourth line.

S substitutions
*

EDT displays the total number of substitutions made and issues the asterisk
prompt.

2.5.8 Copying and Moving Text

The MOVE command in line editing is similar to the CUT and PASTE
commands in keypad editing: the MOVE command deletes text in one loca-
tion and inserts it in another. The COPY command, in contrast, duplicates a
range of text in another location, without altering the original text.

For example, with the COPY command you can duplicate the entire file: first
type the command, then the range of lines to be copied, and finally the range
of lines to which you want to copy the text.

*COPY 1:68 TO END
B lines corpied
*

Lines 1 through 6 are duplicated in lines 7 through 12. (You can display the
change with TYPE WHOLE.)

When you have finished editing your file and are ready to store your changes,
enter the EXIT command (as described in Section 2.5.2).

2.5.9 Changing from Line to Keypad Editing

If at some point you want to change from line editing to keypad editing, give
the CHANGE command by typing “C” after the asterisk prompt. The screen
will display without line numbers the first 29 lines of the file, and you can
begin keypad editing immediately.

Using an Editor: EDT

2.5.10 Subset of EDT Line-Editing Commands

Table 2-3 presents some of the more frequently used EDT line-editing com-
mands and the main function of each. For a complete list of commands, see
the EDT Editor Manual.

Table 2-3: Subset of EDT Line-Editing Commands

Command Function
CHANGE Changes from line editing to keypad editing
COPY Duplicates text in specified location
DELETE Deletes specified range of lines
EXIT Ends an editing session by storing the buffer contents in a file
FIND Locates specified line
HELP Invokes EDT’s line editing help facility
INCLUDE Copies specified file into text buffer
INSERT Inserts text in the buffer
MOVE Deletes text in one location and inserts it in another
QUIT Ends an editing session by deleting the contents of the buffer

RESEQUENCE Assigns new line numbers in increments of one

SUBSTITUTE Replaces one character string with another
TYPE Displays a specified range of lines
WRITE Copies a specified range from the buffer to the specified file

2.6 Special Features of EDT

EDT offers several special features, a few of which are mentioned here. For
more information about these and other features of EDT, see the EDT Editor
Manual.

2.6.1 Multiple Buffers

When you edit a file with EDT, you are working on a copy of the file in a
buffer called MAIN. There are other buffers in addition to this main buffer.
One buffer, called PASTE, is maintained by EDT for its own use, but the
others are available for you to use as separate workspaces.

These additional buffers are useful in working with multiple pieces of text.
You can move part or all of a buffer into another buffer or several other
buffers. You can also copy a file into one of these buffers. To create a buffer for
additional workspace, you first name it, after which you can enter and exit
that buffer at any time.

2.6.2 Journal Files

When you edit a file with EDT, EDT keeps a journal file of all your edits. This
file has the same file name as the file you are working on and the file type of

Using an Editor: EDT 2-19

JOU. Should a system failure or inadvertent CTLY) end your editing session,
the journal file has a record of all your edits, with the possible exception of
those made just prior to the interruption.

To recover your lost edits, you use the same EDIT command and the exact
qualifiers you used to begin the original editing session — plus the /RE-
COVER qualifier. For instance, if you began a session with the command
EDIT YOURFILE.DAT, you would type EDIT/RECOVER YOURFILE.DAT
to recover your edits using the journal file. EDT will then reenact the editing
session, reading the commands from the journal file and executing them on
the screen. ’

If no interruption occurs, EDT deletes the journal file when you exit from the
editing session.

2.6.3 SET and SHOW Commands

The SET commands let you control certain characteristics of EDT’s operation
by setting certain parameters. Among the characteristics that you can set are:
the length of line displayed on the screen (SET SCREEN width), the default
delimiters for textual units, such as words and sentences (SET ENTITY), and
the display of line numbers during line editing (SETINOINUMBERS). The
SHOW commands display most of the characteristics you can set with the
SET command.

2.6.4 Start-up Command Files

You can create an EDT start-up command file to specify the default charac-
teristics for editing sessions. EDT looks for a start-up command file when you
begin an editing session; if you have one, it reads the commands and applies
the specifications to the current editing session. For example, if you place the
command SET MODE CHANGE in your start-up command file, you will
begin editing in keypad mode whenever you enter EDT.

2.6.5 Defining Keys

You can redefine the functions of the keys in the keypad and several of the
CONTROL and keyboard keys with the line command DEFINE KEY or the
keypad command . You can redefine keys for the current editing session,
or you can put the new key definitions in your start-up command file.

2.6.6 Defining Macros

You can group several line-editing commands together and use them as one
unit, or macro. To do so, give the DEFINE MACRO command and enter the
commands in the proper sequence. Later, EDT will execute that series of
commands whenever you type the name of the buffer containing the macro.
You can define a macro for the current editing session only, or you can put it
in your start-up command file.

Using an Editor: EDT

2.7 For More Information

There are several sources of information about EDT. Both the line and keypad
HELP facilities provide a quick reference for EDT commands. EDTCAL the
computer-aided course on EDT, is especially good for users unfamiliar with
text editors. The EDT Editor Reference Card provides a summary of EDT’s
keypad editing features, and the EDT Editor Manual contains an extensive
description of how to use EDT, including a complete list of EDT commands,
their parameters, and qualifiers.

For information about SOS, see the VAX-11 SOS Text Editing Reference
Manual; for information about batch editors SUM and SUMSLP, see the
VAX-11 Utilities Reference Manual.

Using an Editor: EDT 2-21

Chapter 3
Commands to Manipulate Files

The previous chapter described how to create and edit files using the EDT
editor. This chapter explains how to use DCL commands to manipulate files:
how to identify, create, delete, and purge files; how to create and list direc-
tories; and how to copy and rename files.

3.1 ldentifying Files

A complete file specification contains all the information the system needs to
locate and identify a file. A complete file specification has the format:

nodez:devicesldirectorv]filename.tvFeiversion

The punctuation marks (colons, brackets, period, semicolon) are required
syntax that separate the various components of the file specification.

3.1.1 Nodes

When computer systems are linked together to form a network, each system in
the network is called a node, and is identified within the network by a unique
node name. Your system may or may not be part of a larger network. To find
out, type SHOW NETWORK. If your system is part of a network, you
will see a list of node names displayed on your screen. (The node labeled
“LOCAL” is your own system’s node name.) If your system is not a part of a
network, a message indicating that no network is available will appear.

If your system is a network node, you may be able to gain access to a file
located at another node on the network by adding a node specification to the
first part of the file specification. (This specification will allow you access to
the file only if the user owning the file has permitted other users access to it.)
If you do not specify a node, the system assumes by default that the file
belongs to your own, or local, node. See the DECnet-VAX documentation for
an explanation of gaining access to files across a network.

3-1

3-2

3.1.2 Devices

The second part of a file specification, the device name, identifies the physical
device on which a file is stored. A device name has three parts:

e The device type, which identifies the hardware device (For example, an
RP06 disk is DB and a TE16 magnetic tape is MT.)

e A controller designator, which identifies the hardware controller to which
the device is attached

e The unit number, which uniquely identifies a device on a particular con-
troller

Some examples of device names are:
Name Device
DBA2 RP06 disk on controller A, unit 2
MTAO TE16 magnetic tape on controller A, unit 0
TTB3 Terminal on controller B, unit 3

If you omit a device name from a file specification, the system supplies the
default value; that is, it assumes the file is on the disk assigned you when the
system manager set up your account. This disk is your default disk.

3.1.3 Directories and Subdirectories

Since a disk can contain files belonging to many different users, each user of a
given disk has a directory that catalogs all the files belonging to him on that
device.

As with the default disk, if you do not specify another directory, or if you do
not specify any directory, the system applies the default; it assumes that the
files to which you refer are cataloged in your default directory. You can find
out what your current default disk and directory are by issuing a SHOW
DEFAULT command:

¢ show default@D

DBAZ:IMALCOLMI

This response from the SHOW DEFAULT command indicates that the user’s
default device is DBA2 and the default directory is [MALCOLMI.

You can gain access to files in other directories (including directories that
catalog files belonging to other users) by specifying the directory name in a
file specification. For example, to display on your terminal the contents of a
file named CONTENTS.DAT belonging to a user whose directory is [JONES],
issue the TYPE command as shown below:

$ tvee [Joneslcontents.datRED

Commands to Manipulate Files

Note that the file specification does not include a device name. For this
“command to execute successfully, the directory [JONES] must be on your
default disk device. This is because the system always applies a default when
you omit a device name. If user JONES’s directory is on the disk DBB2 you
would issue the TYPE command as:

% type dbb2:lioneslcontents.dat @D

In both of these examples, it is assumed that the user Jones has given other
users access to files in the directory. You can explicitly allow or restrict access
to your own files, either generally or on a file-by-file basis, with the SET
PROTECTION command. See the VAX/VMS Command Language User’s
Guide for information about directory and file protection and for a description
of the SET PROTECTION command.

Files can also be cataloged in subdirectories. A subdirectory is a file (cata-
loged in a higher directory) that contains additional files. A subdirectory
name is formed by concatenating its name to the name of the directory that
lists it. For example:

M R P — = iz O
ileslmemo.sum@BED

This TYPE command requests a display of the file MEMO.SUM that is
cataloged in the subdirectory [JONES.DATAFILES]. The subdirectory file

name is DATAFILES.DIR, and is cataloged in the directory [JONES].

Subdirectories are described in more detail in Section 3.8.

3.1.4 File Names, Types, and Versions

By taking advantage of your default node, disk, and directory, you can iden-
tify a file uniquely by specifying only its file name and file type in the format:

filename.tvyee

The file name can have from one to nine characters chosen from the letters A
through Z and the numbers 0 through 9. When you create files, you can give
them any names that are meaningful to you.

The file type can be from zero to three characters, and must be preceded by a
period; again, you can choose any of the letters A through Z or the numbers 0
through 9 for the file type. However, the file type usually describes more
specifically the kind of data in the file, and the system recognizes several
default file types used for special purposes. For example, each high-level
language has a default file type for source programs. (See Section 4.1 for a
table of these file types.)

Commands to Manipulate Files 3-3

3-4

Among the other default file types are:

File
Type Use

DAT Data file

EDT Start-up command file for EDT editor

EXE Executable program image file

JOU Journal file used by the EDT editor

LIS Output listing file

MAI Mail message file

OBJ Object module file output from a compiler or assembler

In addition to a file name and type, every file has a version number that the
system assigns to a file when the file is created or revised. When you initially
create a file, the system assigns it a version number of 1. Subsequently, when
you edit a file or create additional versions of it, the version number is auto-
matically increased by one.

You rarely need to specify the version number with a file specification. The
system assumes default values for version numbers, as it does with devices,
directories, and file types. Version number defaults are determined as follows:

1. For an input file, the system uses the highest existing version number of
the file.

2. For an output file, the system adds I to the highest existing version
number.

When you specify a version number in a file specification, you can precede the
version number with either a semicolon (;) or a period (.).

3.1.5 Wild Card Characters

A wild card character is a symbol that you can use with many DCL com-
mands to apply the command to several files at once, rather than specifying
each file individually. Two wild card characters, the asterisk (*) and the
percent sign (%) can be used in specifications of a directory, file name, and
file type. The asterisk can also be used to specify version numbers.

For example, you can specify all versions of a file by using an asterisk in place
of the version number in the file specification. If, for example, you want to
print all versions of the file TESTFILE.DAT without specifying each version
number separately, type:

% print testfile.dati#

Commands to Manipulate Files

If there were no wild card character in the above example, the PRINT com-
mand by default would apply only to the most recent version of the file
TESTFILE.DAT. The following command prints all versions of all files in the
current directory with the file type of DAT:

% print *,dati*

To print all versions of all files in the directory with the file name of TEST,
type:

$ Print test.*ix

The percent sign allows you to specify all files containing any single character
in the position that the percent sign occupies in the file specification. For
example, to print the latest version of several files with a file type of TXT and
a file name that begins with CHAP but ends in a series of different numbers,
as in CHAP1.TXT, CHAP2.TXT, and CHAP3.TXT, type:

& print char4.txt

Note that in this example the percent sign specifies only one character. There-
fore, the print command above would not affect a file named CHAP.TXT or
CHAPIX.TXT.

3.2 Creating Files

Chapter 2 explains how to create a file by using the EDIT command to invoke
an editor. You can also use the CREATE command to make a new file.
Specify the file name as a parameter. You can insert text immediately, termi-
nating the insertion with €RLZ).

$ create myfile.dat
This is the only line.

Unlike the EDIT command, the CREATE command does not modify an
existing file.

3.3 Deleting Files

Quite often, as you develop and revise programs you end up with many ver-
sions. Since these files take up space on your disk, you may want to delete
versions of files that you no longer need.

The DELETE command deletes specific files. When you use the DELETE
command, you must specify a file name, file type, and version number (hav-
ing to specify a version number provides some protection against accidental

Commands to Manipulate Files 3-5

deletion). However, any of these file components can be specified as a wild
card character. You can also enter more than one file specification on a com-
mand line separating the file specifications with commas. Some examples of
the DELETE command are:

Command Result
¢ delete averade,obJil Deletes the file named AVERAGE.OBJ;1
$ delete #*,.lisix Deletes all files with file types of LIS

(thus, this command deletes all versions of
all program listings)

4 delete a.datiira.dat3? Deletes the first two versions of the same
data file

3.4 Purging Files

You may want to clean up your directory by getting rid of all early versions of
particular files. If you have many versions of a file, naming them all in the
DELETE command would be tedious.

The PURGE command allows you to delete all but the most recent version of
a file; therefore, no version number is required by the PURGE command. For
example:

$ Furde averade.for@?D

This command deletes all files named AVERAGE.FOR except the file with
the highest version number.

The /KEEP qualifier of the PURGE command allows you to specify that you
want to keep more than one version of a file. For example:

% purde/Keep=2 test.dat@D

This command deletes all but the two most recent versions of the file
TEST.DAT.

3.5 Displaying' Files at Your Terminal

3-6

The TYPE command displays a file at your terminal. For example:

& tvype test.dat@D

This is the first line of
a file created with
the EDT editor.

While a file is being displayed, you can interrupt the output by using any of
the following CTRL key combinations:

suspends the terminal display of the file and the processing of the
command. To resume display, press €RUQ. The interrupted command dis-
plays lines beginning at the point at which processing was interrupted.

Commands to Manipulate Files

or interrupts command processing. The system then prompts you
to enter another command.

3.6 Printing Files

When you use the PRINT command to obtain a printed copy of a file, the
system cannot always print the file immediately, since there may be only one
or two line printers for all users to share. The system enters the name of the
file you want to print in a queue, and prints the file at the first opportunity.

A printed file is preceded by a header page describing the file so you can
identify your own listing. For example, if you issue the following command,
the header page will show your user name and the file name, type, and version
number of the file.

% print dbZ:[Joneslaverade.lis@D
Job 210 entered on aueus SYSHEPRINT

When you use the PRINT command, the system responds with a message
indicating the job number it assigned to the print job.

The PRINT command also has qualifiers that allow you to control the number
of copies of the file to print, the type of forms to print the file on, and so on.
More information on these qualifiers can be found in the VAX/VMS Com-
mand Language User’s Guide.

3.7 Listing Files in a Directory

The DIRECTORY command lists the names of files in a particular directory.
If you type the DIRECTORY command with no parameters or qualifiers, the
command displays the files listed in your default directory on the terminal.
For example:

% directory@D

DIRECTORY DBAZ:[MALCOLMI@

AVERAGE.EXEs2 AVERAGE.EXES1l AUVERAGE.FORIE AUVERAGE.FORIL
AVERAGE .OBJ3Z? AVERAGE.DBJ:1©

Total of 6 files.©

The following notes are keyed to this sample output of the DIRECTORY
command:

@ The disk and directory name.

@ The file names, file types, and version numbers of each file in the direc-
tory.

© The total number of files in the directory.

When you give the DIRECTORY command, you can provide one or more file
specifications to obtain a listing about only particular files. For example, to

Commands to Manipulate Files 3-7

find out how many versions of the file AVERAGE.FOR currently exist, issue
the DIRECTORY command as follows:

$ directory averade.for@E
DIRECTORY DBAl:[CRAMER]
AVERAGE . FOR2Z AVERAGE . FOR 1

Total of 2 files.

3.8 Creating Subdirectories

Normally, the system manager provides each system user with one directory
in which to maintain files. If you are a frequent user of the system and work on
several applications, you may find it convenient to create several subdirecto-
ries, cataloging them in your main directory. You can create subdirectories in
any directory in which you can create files.

The CREATE/DIRECTORY command creates a subdirectory. For example:

$ preate/directory [malcolm,testfiles]®D

This command creates the subdirectory file TESTFILES.DIR in the directory
IMALCOLM). You can specify the subdirectory name, [MALCOLM.TEST-
FILES], in commands or programs.

3.9 Changing Your Default Directory

3-8

To establish another directory or subdirectory as your default directory, use
the SET DEFAULT command. For instance, you could create a new file in
the subdirectory [MALCOLM.TESTFILES] by changing your default direc-
tory and then creating the file with the EDIT command:

% set default [malcolm.testfiles]BED
$ edit newfile.txt@D

Inrput file does mnot exist

[EDOB]

*

The new file will be cataloged in the subdirectory
[MALCOLM.TESTFILES]. (You could also do this by specifying the sub-
directory as part of the file specification when you use the EDIT command.)

You can also use the SET DEFAULT command to change your default disk.
For example:

Commands to Manipulate Files

After you issue this command, the system uses the disk DBB2 as the default
disk for all files that you access or create.

You can change your default disk and directory as often as is convenient. The
changes you make with the SET DEFAULT command remain in effect until
you either issue another SET DEFAULT command or log out.

3.10 Copying Files

The COPY command makes copies of files. You can use it to make copies of
files in your default directory, to copy files from one directory to another
directory, to copy files from other devices, or to create files consisting of more
than one input file.

When you issue the COPY command, you specify first the name(s) of the
input file(s) you want to copy, then the name of the output file. For example,
the following COPY command copies the contents of the file PAYROLL.TST
to a file named PAYROLL.OLD.

¥ copPy Pavroll.tst pavroll.old@D

If a file named PAYROLL.OLD exists, a new version of that file is created
with a higher version number.

T

You could copy a file from the eLtO‘ LM] to the subdirectory

y 1\
IMALCOLM.TESTFILES], and gi the new name, OLDFILE.DAT.
$ copy newfile.dat [imalcolm.testfilesloldfile,dat®D

When you copy files from devices other than your default disk, you must
specify the device name in the COPY command. For example, the following
COPY command copies a file from your default directory onto an RK06 disk.

£ copy Pavroll.tst dmal:@D

Note that the output file specification did not include a file name or file type;
the COPY command uses the same directory, file name, and file type as the
input file, by default.

Before you can copy any files to or from devices other than system disks, you
must gain access to these devices. You do this by:

* Mounting the volume, with the MOUNT command.

* Ensuring that the volume has a directory for cataloging the file. If no direc-
tory exists, use the CREATE command to create one.

Note that the VAX/VMS operating system protects access to volumes that
individuals maintain for private purposes, as well as access to system vol-
umes. For details on the commands and procedures necessary to prepare and
use disks and tapes, see the VAX/VMS Command Language User’s Guide.

Commands to Manipulate Files 3-9

3.11 Renaming Files

The RENAME command changes the identification of one or more files. For
example, the following command changes the name of the most recent version

of the file PAYROLL.DAT to TEST.OLD.
$ revame Pavroll.dat test.old@D
You can use the RENAME command to move a file from one directory to

another. For example, the following command moves test.old from the direc-
tory IMALCOLMI] to the subdirectory IMALCOLM.TESTFILES]:

% rename [malcolmltest.old [maleolm,testfiles]

You can use wild card characters if you want to change a number of files that
have either a common file name or file type. For example:

$ rerame Pavroll.*i% [malcolm.testfilesl®.%i%@ED
This RENAME command changes the directory name for all versions of all

files that have file names of PAYROLL. The files are now cataloged in the
subdirectory IMALCOLM.TESTFILES].

3.12 For More Information

3-10

The VAX/VMS Command Language User’s Guide describes in more detail
the commands presented here. Part II of that manual lists all the commands
in alphabetical order and includes descriptions of parameters and qualifiers,
as well as giving additional examples of each command.

Remember, too, that while you are using the terminal, you can use the HELP
command to receive on-the-spot assistance if you cannot remember a parame-
ter or qualifier. Or, you can let the system prompt you for command parame-
ters, if you cannot remember the order in which you have to enter them.

See the DECnet-VAX documentation for further explanation of networks and
node specifications.

Commands to Manipulate Files

Chapter 4

Program Development

Four steps are required to develop a program:

* Creating the source program file

® Compiling or assembling the source program file to produce an object

module file

¢ Linking the object module file to produce an image

e Executing and debugging the program

4.1 Creating the Program

In order to run your program, you must first create a file of the program source
statements. The default file type corresponds to the language in which the
program is written. For instance, if your program is written in VAX-11
BASIC, its file type default is BAS. The following are default file types for

source program files written in VAX-11 languages:

File
Type

BAS
B32
C
COB
COB
COR
FOR
MAR
PAS
PLI

Contents

Input source file for the VAX-11 BASIC compiler
Input source file for the VAX-11 BLISS-32 compiler
Input source file for the VAX-11 C cdmpiler

Input source file for the VAX-11 COBOL compiler
Input source file for the VAX-11 COBOL-74 compiler
Input source file for the VAX-11 CORAL-66 compiler
Input source file for the VAX-11 FORTRAN compiler
Input source file for the VAX-11 MACRO assembler
Input source file for the VAX-11 PASCAL compiler
Input source file for the VAX-11 PL/I compiler

4-1

4.2 Compiling or Assembling the Program

4-2

To prepare your source program for execution by the computer, a language
processor must translate it into a format that the computer can read. That is,
your program must be either assembled or compiled, depending upon whether
it is written in assembly language or in one of the high-level languages sup-
ported by VAX/VMS.

Both compilers and assemblers are programs that translate source programs
into binary machine code that can be interpreted by the computer. An as-
sembly language is usually designed for a specific computer, and it generally
assembles line for line into machine code. Most high-level languages, on the
other hand, are designed to be universal, and usually compile one line of
source code into several lines of machine code. If your source program is
written in assembly language (in this case, VAX-11 MACRO), you invoke the
VAX-11 MACRO assembler to translate it. If it is written in a high-level
language (such as BASIC, C, COBOL, FORTRAN, PASCAL, or PL/I), you
invoke the appropriate VAX-11 language compilers to compile the program.

There is a DCL command to invoke each language processor:

Command Invokes

BASIC VAX-11 BASIC compiler
BLISS VAX-11 BLISS-32 compiler
cC VAX-11 C compiler

COBOL VAX-11 COBOL compiler
COBOL/C74 VAX-11 COBOL-74 compiler
CORAL VAX-11 CORAL-66 compiler
FORTRAN VAX-11 FORTRAN compiler
MACRO VAX-11 MACRO assembler
PASCAL VAX-11 PASCAL compiler
PLI VAX-11 PL/I compiler

Each of these commands invokes a compiler (or assembler) to translate the
source program named in the file that follows the command. Although each
command differs slightly in its parameters and qualifiers, the command for-
mat is essentially the same:

% basic mvfile

This command invokes the BASIC compiler to translate the file MYFILE into
machine code, writing it to an output file called an object module. Since no
file type is specified, the compiler assumes the default file type of BAS.

Program Development

4.3 Linking the Object Module

An object module is not, in itself, executable; generally, it contains references
to other programs or routines that must be combined with the object module
before it can be executed. It is the function of the linker to do the combining.

The LINK command invokes the VAX-11 Linker. The linker searches system
libraries to resolve references to routines or symbols that are not defined
within the object modules it is linking. You can request the linker to include
more than one object module as input, or specify your own libraries of object
modules for it to search, The format of the LINK command is:

% linkK mrfTile

Since no file type is specified, the linker supplies a default file type of OBJ for
object modules.

The linker creates an image, which is a file containing your program in an
executable format.

4.4 Executing the Program

The RUN command executes an image, that is, it places the image created by
the linker into memory so that it can run. The format of the RUN command
is:

% run myfile

Since no file type is specified, the RUN command uses the default file type of
EXE for executable images.

The first time you run a program, it may not execute properly; if it has a bug,
or programming error, you may be able to determine the cause of the error by
examining the output from the program. When you have determined the
cause of the error, you can correct your source program and repeat the com-
pile, link, and run steps to test the result. Figure 4-1 illustrates these steps in
program development.

The remaining sections of this chapter illustrate the steps of program develop-
ment with two sample programs: a MACRO example for assembly language
users and a FORTRAN example for high-level language users. These sections
describe the input and output files used in each step and the naming conven-
tions for the files. They also present optional command qualifiers you can use
to create additional output files, including program listings. If you have access

to a terminal, you can create the programs and issue the commands that are
described.

At the end of the chapter, Section 4.7 lists additional documentation with
further information about the tools VAX/VMS provides, for program develop-
ment. For information about a particular VAX-11 language, see the docu-
ment set for that language.

Program Development 4-3

4-4

Figure 4-1:

Use the editor to create

a disk file containing your
source program statements.
Specify the name of this file
when you invoke the compiler
or assembler.

Commands invoke language
processors that check syntax,
create object modules, and

if requested, generate
program listings.

If a processor signals any
errors, use the editor to
correct the source program.

The linker searches the system
libraries to resolve references

in the object module and create
an executable image. Optionally,
you can specify private libraries
to search, and request the linker
to create a storage map of

your program.

The linker issues diagnostic
messages if an object module
refers to subroutines or symbols
that are not available or
undefined. If the linker cannot
locate a subroutine, you must
reissue the L/NK command
specifying the modules or
libraries to include. If a

symbol is undefined, you may

need to correct the source program.

The RUN command executes a
program image. While your
program is running, the system
may detect errors and issue
messages. To determine if your
program is error-free, check

its output.

if there is a bug in your
program, determine the cause
of the error and correct the
source program.

Program Development

Source
program

Y

Compiler

or
Assembler

Link the
object module

Run the
executable
image

yes

Correct the
source program

Bugs?

no

SUCCESS

Steps in Program Development

ZK-763-82

4.5 A FORTRAN Program

The steps required to prepare a VAX-11 FORTRAN' program to run on
VAX/VMS are illustrated in Figure 4-2. Figure 4-2 also notes the default file
types used by the FORTRAN, LINK, and RUN commands. For any of these
commands, you can specify an explicit file type to override the defaults when
you name an input or output file.

COMMANDS INPUT/OUTPUT FILES

$ EDIT/EDT AVERAGE.FOR
Use the file type of FOR to
indicate the file contains a
VAX-11 FORTRAN
program.

AVERAGE.FOR

Create a
source program

$ FORTRAN AVERAGE

The FORTRAN command

assumes the file type of an -

input file is FOR. Compile the AVERAGE.QOBJ
source program |y (AVERAGE.LIS)

(If you use the /LIST

qualifier, the compiler libraries

creates a listing file.)

$ LINK AVERAGE
The LINK command assumes
the file type of an input file
is OBJ.

AVERAGE.EXE
(AVERAGE.MAP)

Link the
object module

(If you use the /MAP qualifier,
the linker creates a map file.)

$ RUN AVERAGE
The RUN command assumes Run the
the file type of an image is exs:-cutable
EXE. image

ZK-764-82

Figure 4-2: Commands for FORTRAN Program Development

4.5.1 Creating the Source Program

Use the editor (described in Chapter 2) to create a source program interac-
tively. For example, to create the FORTRAN program called AVERAGE,
issue the EDIT command as follows:

% edit averade.for@D
Ivirput file does not exist
[EOB]

*

1. The VAX-11 FORTRAN compiler is referred to simply as FORTRAN throughout this
manual.

Program Development 4-5

4-6

The asterisk prompt indicates that EDT is ready to accept a line-editing
command.

The program AVERAGE is shown below. When you type the input state-
ments, you can use the key to align the statement and comments col-
umns. Tabs are set at every eight character positions. The EDT line editor
assigns line numbers to help you locate text; the line numbers are not part of
the file, however. (To display the line numbers, give the TYPE WHOLE
command after the asterisk prompt.)

1 PROGRAM AVERAGE
2

3 c COMPUTES THE AVERAGE OF NUMBERS ENTERED AT TERMINAL

4 c TO TERMINATE THE PROGRAM: ENTER 9933

5

& TOTAL = © ! INITIALIZE ACCUMULATOR

7 N = 0 t INITIALIZE COUNTER

8

9 5 N o= N+ 1

10 WRITE (610} ! PROMPT TO ENTER NUMBER

11

12 10 FORMAT (’ ENTER NUMBER, END WITH 9989°)

13 READ (5,20) K | READ NUMBER FROM TERMINAL
14

15 20 FORMAT 110

16 IF (K .EQ. 9999) GOTO 40 | 9939 MEANS NO MORE INPUT
17 TOTAL = TOTAL + K ! COMPUTE TOTAL WITH NUMBER
18 GOTO 5

19

20 C NOMW» COMPUTE AVERAGE BY DIVIDING TOTAL BY THE NUMBER. OF
21 c TIMES THROUGH THE LOOP

22

23 40 AVERAG = TOTAL/N

24 WRITE (B:50) AVERAG ! DISPLAY THE RESULT

5

26 50 FORMAT (¢ AVERAGE IS ' F10,2)

27

28 STOP

29 END

The program AVERAGE reads and writes lines to the current input and
output devices; it prompts the user to enter numbers and then computes the
average of the numbers entered. This program purposely has a syntax error
and a bug, so you can get an idea of how to use VAX/VMS to correct program-
ming errors.

4.5.2 The FORTRAN Command

When you enter the FORTRAN command from the terminal, the FORTRAN
compiler, by default:

¢ Produces an object module that has the same file name as the source file
and a file type of OBJ

e Uses FORTRAN compiler defaults when it creates the output files (quali-
fiers on the FORTRAN command can override these defaults)

To compile the source program AVERAGE, issue the command:

o

% fortran aversds @ED

Program Development

Since the FORTRAN command assumes a file type of FOR, you need not
specify the file type when you name the file to be compiled. ’

If the compilation is successful — that is, if the compiler did not detect any
_errors — the system displays a prompt for the next command:

S

If there are any errors, the FORTRAN compiler displays information on the
terminal. If you entered the source program AVERAGE exactly as it appeared
above, then you received the message:

YEFORT-F-ERROR 23+ Mi=sing operator OF deiimiter symbol
[FORMAET 11 in module AVERAGE at line 8
YFORT-F-ENDNOOBS NEZ: [MALCOLMIAVERAGE . FOREL +
completed with 1 dizdnostio-
ohiect deleted

This message indicates that the FORMAT statement was incorrectly coded;
you must put parentheses around the format specification.

To correct the error, edit the source file. First, invoke EDT:

% pdit averade.for@D
i FProdram AYERAGE
¥

Now, use editor commands to correct the error, as shown below:

#rerlace 13
1 lipe deleted

Z0 FORMAT (110)€RD
X%

The REPLACE command deletes the line specified and inserts the line or
lines you type. If you had more than one error in your source file, correct these
errors, too.

When you are satisfied with the changes, use the EXIT command to write the
updated file onto disk:

#ouit @D
GEAZ: [MALCOLMIAVERAGE .FORE 28 lines
&

B+

Notice that EDT has created a new version of the file AVERAGE.FOR.
Now you can recompile the program:

% fortran averade@®D

The FORTRAN command always uses, by default, the version of the file with
the highest version number. If the program compiles successfully this time,

you can go on to the next step. Otherwise, repeat the procedure of correcting
the source file and compiling it.

Program Development — 4-7

4-8

When you compile a source program, use the /LIST qualifier on the FOR-
TRAN command to request the compiler to create a program listing. For
example:

% fortran/list averade@ED
The FORTRAN compiler creates, in addition to an object module, a file
named AVERAGE.LIS. To obtain a printed copy of the program, use the
PRINT command as shown below:

% Print auerade @D

The PRINT command uses the default file type of LIS.

4.5.3 Linking the Object Module
To link the program AVERAGE, issue the LINK command as follows:

% linK averade®D)

This LINK command creates a file named AVERAGE.EXE, which is an
executable program image. The linker automatically includes in the execut-
able image any library routines that the compiler requested for input/output
handling, error routines, and so on.

4.5.4 Running the Program

To execute the program AVERAGE, use the RUN command. When you issue
the RUN command, you provide the name of an executable image. By de-
fault, the RUN command assumes a file type of EXE. Thus, to run the
program AVERAGE, type the RUN command as follows:

$ run averade @D

AVERAGE is interactive: it prompts you to continue entering numbers and it
keeps a cumulative sum of the numbers you enter. When you enter 9999, it
computes the average of all the numbers you entered. A typical run of this
program might appear as follows:

ENTER NUMBER: END WITH oFf
32 @ED

ENTER NUMBER: ENMD WITH o¢
6 ED

ENTER NUMBER® END WITH =¢
99 G

ENTER MNUMBER: END HITH
89899 G

AVERAGE IS 48,50
FORTRAM STOF

&

£
iy
i}

8]
En]
jdx]
i)

0
o
]

AN}

R}
y

Program Development

As you can see, the program is not computing the average correctly. By look-
ing at the program listing, you can see that the error occurs because the loop
counter (N) is incremented a final time when you enter 9999 to terminate
entering numbers. The value N must be decremented by 1.

To correct the error, edit the source file again:

% edit averadge.for@D

i PFrodram fiverade
¥SubstituterTOTAL/ANYTotal siN-13% Z3RDD
23 40
AVERAG = TOTALA (M-
1 Substitution
Exit@®D
DBAZ: [IMALCOLMIAVERAGE .FORIZ 28 lines
%

The SUBSTITUTE command deletes the first string, TOTAL/N, and inserts
the second, TOTAL/(N-1), in the line specified. The EXIT command writes a
new version of the file onto disk.

Now, repeat the compile, link, and run steps:

% fortran averadeRED
% link averade@D

£ run averadsRED

EMTER MNUMBER . END WITH 333949
236D

ENTER MNUMBER. ERD WITH 29435
G55 EED

ENTER MNUMBERSF END WITH S3goo

ENTER MNUMBER: END WITH
GUYERAGE IS5 GEE.00
FORTRAM STOF

&

*

1l

]
s
i

In this example, the bug was easy to spot; this is not usually the case, how-
ever, and you may need to investigate a program further to debug it.

4.5.5 Debugging the Program

The VAX/VMS operating system has a debugger, a program that permits you
to debug your programs interactively. When you want to use the debugger,
you have to compile the source program with the /DEBUG and /NOOPTIM-
IZE qualifiers, as follows:

% fortranddetudi/noortimize averade@®ED
These qualifiers make the later use of the debugger program possible with this
FORTRAN program. When the compilation completes use the /DEBUG

qualifier when you link the object module:

$ link/debusg averade@D

Program Development 4-9

Now, when you use the RUN command to execute the program image AVER-
AGE.EXE, the debugger takes control, and you can use debugging commands
to stop the execution of the program at a particular statement and examine or
modify a variable.

For information on how to use the debugger, see the VAX-11 FORTRAN
User’s Guide.

4.6 A MACRO Program

4-10

The steps required to prepare a VAX-11 MACRO' program to run under
VAX/VMS are illustrated in Figure 4-3. Figure 4-3 also notes the default file
types used by the MACRO, LINK, and RUN commands. For any of these
commands, you can specify an explicit file type to override the default when
you name an input or output file.

COMMANDS ‘ INPUT/OUTPUT FILES

$ EDIT/EDT NAME.MAR

Use the file type of MAR to . NAME.MAR
indicate the source file Create the —
contains a VAX-11 MACRO source program %

program. libraries

$ MACRO NAME

The MACRQO command -
assumes the file type of an
input file is MAR. Assemble the NAME.OBJ
—_
source program (NAME.LIS)

If you use the /LIST)
qualifier, the assembler v libraries
creates a listing file.
$ LINK NAME
The LINK command assumes -

‘t:\eog.lle type of an input file Link the NAME.EXE
) object module (NAME.MAP)
If you use the /MAP qualifier,
the linker creates a map file.
$ RUN NAME Aun th
The RUN command assumes un tb(i
the file type of an image is exgcuta e
EXE. image
ZK-765-82

Figure 4-3: Commands for MACRO Program Development

1. The VAX-11 MACRO assembler is referred to simply as MACRO throughout this manual.

"Program Development

4.6.1 Creating the Source Program

Use the editor (described in Chapter 2) to create a source program interac-
tively. For example, to create the MACRO program called NAME, issue the
EDIT command as follows:

fedit name.mar @D
Ineput file does not
[EOBI]

#¥Insert @ED

s
e
pote
113
-+

1
A

EDT is now ready to accept input lines.

The program NAME is shown below. When you type the input statements,
you can use the key to align the operand and comments columns. Tabs are
set at every eight character positions. The EDT line editor assigns line num-
bers to help you locate text; the line numbers are not part of the file, however.
(To see the line numbers, give the TYPE WHOLE command after the asterisk
prompt.)

The program uses VAX-11 RMS to read and write lines to the current termi-
nal; it issues a prompting message asking for the user’s name and redisplays
whatever is entered in response. This program purposely has a syntax error
and a bug, so you get an idea of how to use VAX/VMS to correct programming
errors.

1 +TITLE NAME

2 +IDENT /01/

3 +PSECT FRWDATAWRT sNOEXE

4

5 i DEFINE CONTROL BLOCKS FOR TERMINAL INPUT AND OUTPUT

B

7 TRMFAB: %FAB FNM=SYS4$INPUT yRAT=CR+FAC=<GET,PUT> iFAB FOR TERMINAL
g

g TRMRAB: $RAB FAB=TRMFAB sUBF=BUFFER ;USZ=BUFSIZ, -

10 ROP=PMT, PBF=PMSG1l. PSZ=PiSIZ

11

iz BUFFER: .BLKB 132 i INPUT READ BUFFER
13 BUFSIZ= .-BUFFER i BUFFER LENGTH

14

15 PMSG1: +ASCII /ENTER YOUR NAME: i PROMPT MESSAGE
16 P1SIZ= . -PMBG1 i MESSAGE SIZE

17 :

18 OUTMSG: .ASCII /HELLO» YOUR NAME IS/ i OUTFUT MESSAGE
19 OUTBUF: BLKB 30 i MOVE NAME HERE
Z0 DUTLEN: LLONG OUTBUF -0UTMSG
21 MBGSIZ: .BLKL 1 i ADD LENGTHS HERE
23 +PSECT NAME +EXE +MNOWRT
24 +ENTRY BEGIN O i ENTRY MASK
Z5
26 $0PEN FAB=TRMFAB i OPEN TERMINAL FILE
27 BLBC ROJERROR i EXIT IF ERROR
Z8 $CONNECT RAB=TRMRAB i ESTABLISH RAB
2 BLBC ROJERROR i EXIT IF ERROR
30
31 $GET RAB=TRMRAB i ISSUE PROMPT
32 BLBC ROJERROR i EXIT IF ERROR
33
34 i MOVE NAME ENTERED INTO OUTPUT MESSAGE ., AND FIX UP LENGTH
35
36 MOWC3 TRMRAB+RAB$W_RSZ «BUFFER :DUTBUF
37 MOVZWL TRMRAB+RABEW_RS5Z sMSGSIZ
38 ADDL MEGSIZ +0OUTLEN

Program Development 4-11

1-12

a0 7 AFTER CONSTRUCTING OUTPUT MESSAGE. OUTPUT IT

a1

4z MOVAL OUTMSG , TRMRAB+RAB$L _RBF 3 UPDATE RAB: ADDRESS
43 MOUM MSGSIZ »TRMRAB+RABS$W_RSZ 3 UPDATE RAB: SIZE
a4 $PUT RAB=TRMRAB

45 BLBC RO VERROR i EXIT IF ERROR

46

47 ; ALL DONE, CLOSE THE FILE

as

49 $CLOSE FAB=TRMFAB

50

51 ERROR ¢

52

53 RET

54 JEND BEGIN

4.6.2 The MACRO Command
When you enter the MACRO command, the MACRO assembler, by default:

1. Produces an object module that has the same file name as the source file
and a file type of OBJ

9. Uses MACRO assembler defaults when it creates output files (qualifiers
on the command line can override these defaults)

3. Searches the system macro library for definitions for system macros, such
as the VAX-11 RMS macros $FAB and $RAB used in the sample program
NAME.MAR

To assemble the source program NAME, issue the command:
$ macro/list name@D

Since the MACRO command assumes a file type of MAR, you need not
specify the file type when you name the file to be assembled. The /LIST
qualifier indicates that you want a listing of the program; if there are any
errors in the assembly, you may need the listing to determine what the errors
are.

If the assembly is successful — that is, if the assembler did not detect any
errors — the system displays a prompt for the next command:

$

If errors occur, a message is displayed at the terminal. If you entered the
source program NAME exactly as it appeared above, then you received an
error message:

YMACRO-E-UNTERMARG: Unterminated ardument

There were 1 errors O warnings: and O information messades on

lines:

1501

This message indicates that'the ASCII string argument coded on line 15 is
incorrect; you must terminate the string with a slash (/) character.

Program Development

To correct the error, edit the source file. First, invoke EDT:

e

edit name.mar @D
1 TITLE HMAME

Now, use editor commands to locate the line and correct the error, as shown
below:

#REPLACE 15

1 line delsto:
+

d
PMSG1: . ASCII/ENTER YOUR NAME:/3iPROMPT MESSAGE CRLD

=
=

The REPLACE command deletes the line (15) that was in error, and inserts
the line or lines you type in its place. If you had more than one error in your
source file, correct these errors, too.

When you are satisfied with the changes, use the exit command to write the
updated file onto disk:

*exitRED
DEAZ: [MALCOLMINAME . MAaRE 54 lines
3

Notice that EDT has created a new version of the file NAME.MAR.
Now, you can reassemble the program:

¢ macro/list name®E)

If the program assembles successfully this time, you can go on to the next
step. Otherwise, repeat the procedure of looking at the listing, correcting the
source file, and assembling it.

4.6.3 Linking the Object Module
To link the program NAME, issue the LINK command as follows:

% linkK name@D

This LINK command creates a file named NAME.EXE, which is an execut-
able program image. The linker automatically includes in the executable
image any library procedures required by the VAX-11 RMS routines used.

4.6.4 Running the Program

To execute the program NAME, use the RUN command. When you issue the
RUN command, you provide the name of an executable image. By default,

Program Development 4-13

4-14

the RUN command assumes a file type of EXE. Thus, to run the program
NAME, type the RUN command as follows:

% run name GET

NAME is interactive: it prompts you to enter your name, then it creates an
output string from the string you entered and outputs it. A typical run of this
program might appear as follows:

ENTER YOUR NAME:y (R ICK @D
HELLO
%

As you can see, the program is writing only the first 6 characters of the output
message. If you examine the listing, you can see that on line 43 the MOVW
instruction places the wrong length in the buffer size field of the RAB; it uses
the MSGSIZ field (that is, the length of the string you entered) rather than
the sum of the string you entered and the OUTMSG string.

To correct the error, edit the source file again:

% edit wame.mar @D

1 +Title Name
*Rerplace 43
1 line deleted

MOUW DUTLEN: TRMRAB+RABRH.REZ: LPFDATE
RAE:SIZECRD
a4 $PUT RAB=TRMRAB
¥EHIT
DBAZ: [MALCOLMINAME .MAR3F3 54 lines
$

Now, repeat the assembling, linking, and running:

$ macrao name @D

$ link name@ED

$ run name GED

ENTER YOUR NAME:/0RICK®T
HELLO, YOUR NAME IS YORICK
S

In this example, the bug was easy to spot; this is not always the case, however,
and you may need to investigate a program further to debug it.

4.6.5 Debugging the Program

The VAX/VMS operating system has a debugger, a program that permits you
to debug your programs interactively. When you want to use the debugger,
you can assemble the source program with the /ENABLE=DEBUG qualifier,
as follows:

$ macrodenablesdehud n

. FET

Program Development

This qualifier requests the assembler to include, in the object module, special
information the debugger can use. When you link the object module you must
specify the /DEBUG qualifier to link the debugger program with your pro-
gram. For example:

% link/debud name @D

Now when you use the RUN command to execute the program image
NAME.EXE, the debugger takes control, and you can use debugging com-
mands to stop the execution of the program at a particular instruction and
examine or modify a variable.

For information on how to use the debugger, see the VAX-11 Symbolic
Debugger Reference Manual.

4.7 For More Information

The two program examples presented in this chapter show only the simplest
cases, using defaults for getting a program to run. VAX/VMS provides many
capabilities beyond those presented in these examples. Some of the
VAX/VMS manuals you may find useful are described below.

e The VAX/VMS Command Language User’s Guide contains reference infor-
mation for all the commands that have been used in the examples in this
chapter.

e The VAX-11 Linker Reference Manual describes how to use the linker and
describes the options available to you when you link a program.

e The VAX-11 MACRO Language Reference Manual describes the features
and syntax of the VAX-11 MACRO language.

e The VAX-11 MACRO User’s Guide provides details on how to use the
VAX-11 MACRO assembler.

e The VAX-11 Symbolic Debugger Reference Manual describes the features
of the VAX-11 Symbolic Debugger.

e The VAX/VMS System Services Reference Manual presents additional pro-
gramming capabilities through the VAX/VMS system services.

e The Introduction to VAX-11 Record Management Services describes the
file formats used in VAX/VMS, and the VAX-11 Record Management Ser-
vices Reference Manual describes the macros that can be used to create,
read, and update files. The VAX-11 Record Management Services Utilities
Reference Manual describes the VAX-11 RMS utilities that can be used to
design, create, load, and analyze files. The VAX-11 Record Management
Services Tuning Guide describes the concepts behind designing efficient
files and provides tutorial explanations of the utilities.

e The VAX-11 Common Run-Time Procedure Library contains procedures
that do such tasks as: perform common mathematical functions, manipu-
late character string data for input and output routines, and convert data

Program Development 4-15

4-16

from one type to another (e.g., changing a numeric ASCII string to a binary
value or a floating-point number to scientific notation). The VAX-11 Run-
Time Library Reference Manual contains descriptions of all general purpose
procedures in the Run-Time Library.

* The VAX-11 Guide to Creating Modular Library Procedures describes
methods for designing and coding procedures for insertion in an object mod-
ule library or a shareable image.

Each of the VAX-11 languages is documented in a separate set of manuals
that generally includes a language reference manual and a user’s guide for
that particular language. For further information about a high-level language,
see the document set for that language. -

Separate documentation exists for the following VAX-11 languages:

VAX-11 BASIC
VAX-11 BLISS
VAX-11 C

VAX-11 COBOL
VAX-11 CORAL
VAX-11 FORTRAN
VAX-11 PASCAL
VAX-11 PL/I

See the VAX-11 Information Directory and Index for a list of the individual
manuals in the document sets for the VAX-11 languages.

Program Development

Chapter 5
Logical Names: Files for Program Input/Output

When you design programs to read and write data, you can code the programs
to read or write different files each time you run them. This is called device
and file independence.

In the VAX/VMS operating system, device independence is accomplished
through the use of logical names. When you code a program, you refer to an
input or output file according to the syntax requirements of the language you
are using. After the program is compiled and linked, but before you run it, you
can make the connection between the logical names you used in the program
and the actual files or devices you want to use when you run the program.

The ASSIGN command makes this connection: it establishes the correspond-
ence between a logical name (that is, the name you use in the program) and
an equivalence name (that is, the actual file or device to use).

Figure 5-1 shows how logical names are used. The program FICA contains
OPEN, READ, and WRITE statements in a general form; the program reads
from a file referred to by the logical name INFILE, and writes to a file referred
to by the logical name OUTFILE.

For different runs of the program, the ASSIGN command establishes different
equivalence names for INFILE and OUTFILE. In the first example, the pro-
gram reads the file JANUARY.DAT from the device DBA1 and writes to the
file JANUARY.OUT onsthe same disk device. In the second example, it reads
the file FEBRUARY.DAT from the device DBA2 and writes the file FEBRU-
ARY.OUT to that device.

5-1

Terminal Display Disk Input/Output Files

$ SHOW DEFAULT
DBA1: [WELLADAY]

$ ASSIGN JANUARY.DAT INFILE= -
$ ASSIGN JANUARY.OUT OUTFILE -
$ RUN FICA d

The program, FICA.EXE contains 1/0 DBA1
statements to open, read, and write
files referred to by the logical names
INFILE and OQUTFILE:

OPEN ‘INFILE’, ‘OUTFILE’

READ INFILE
WRITE OUTFILE

$ ASSIGN DBA2:FEBRUARY.DAT INFILE = -
$ ASSIGN DBA2:FEBRUARY.OUT OUTFILE———
$ RUN FICA w

DBA2

ZK-766-82
Figure 5-1: Using Logical Names

5.1 Logical Names in Commands

5-2

The use of logical names is not restricted to application programs. Commands
that read or write files, such as COPY and TYPE, also accept logical names
for a file specification. For example:

¢ accign [chucklpersonnel.rec myfile®ED
$ tvpe myfile@ED

The ASSIGN command equates the logical name MYFILE to the file
PERSONNEL.REC listed in the directory CHUCK. The TYPE command
requests the system to display this file on the terminal.

Logical Names: Files for Program Input/Output

A logical name can also define only the first portion of a file specification. For
example:

t st @D

%
3
3

The ASSIGN command equates the logical name TEST to the disk device
and directory DBA2:[MALCOLM.TESTFILES]. Subsequently, the RUN
command executes the program image MEMO.EXE cataloged in this sub-
directory and the PRINT command prints another file. The system always
examines file specifications to see if the portion of the file specification that
precedes the colon (:) is a logical name; if it is (as in this example), the system
substitutes the equivalence name.

5.2 System Default Logical Names

When you log in to the system or submit a batch job, the system provides
several default logical names. These names are used by the command inter-
preter' to read your commands and to print responses or error messages.
Among these logical names are:

Logical
Name Use

SYSHINPUT The default input stream from which the system reads com-
mands and your programs read data
Default interactive assignment: your terminal

Default batch assignment: the command procedure or
batch stream

[A5]
ip}
W
.
s
..—!
fasl
i
.“.l

The default output stream to which the system writes re-
" sponses to commands and your programs write data

Default interactive assignment: your terminal
Default batch assignment: batch job log file
5vssERROR The default device to which the system writes all error and
informational messages
Default interactive assignment: your terminal
Default batch assignment: batch job log file

5YS$DISK Your default disk device

Default assignment: set in User Authorization File
You can use these logical names in programs. For example, if you code a
program to write a file to a device named SYS$OUTPUT, the output file goes

to your terminal if you execute the program interactively, or to the batch job
log file if you execute the program in a batch job.

Logical Names: Files for Program Input/Output 5-3

You can also assign a logical name to another logical name. For example, to
test the program FICA shown in Figure 5-1, you could assign the logical name
OUTFILE to the logical name SYS$OUTPUT, as follows:

pasidn svsfouteut outfile@D
Then, when FICA writes to the logical device OUTFILE, the output is di-

rected to your terminal.

The remaining sections of this chapter contain additional
language-specific examples of how logical names are used for program input
and output.

5.3 FORTRAN Input/Output

5-4

The VAX/VMS system supplies several default logical names for use with
FORTRAN programs. These logical names provide default devices for the
input/output statements indicated.

Logical
Name Use

FORSREAD Default input device read by READ statements that do not
specify a logical unit number
Default assignment: Sv¥SsINPUT

ForsPRINT Default output device written by PRINT statements
Default assignment: S¥S0UTPUT

ForRsacCEFT Default input device read by ACCEPT statements
Default assignment: Sv¥S$INPUT

FORETYPE Default output device written by TYPE statements
Default assignment: S¥S5$0UTFUT

You do not need to take any special action to direct input or output when you
use these statements: the system translates the logical name SYS$INPUT or
SYS$OUTPUT and locates the current equivalence for that logical name.

However, when you want to have a program read or write data from or to a
device or file other than a default, or when you specify a logical unit number
on an input/output statement, you can take special action: you can assign an
equivalence name for the logical name.

5.3.1 Changing Default Logical Names

The ASSIGN command changes the equivalence for a logical name. For ex-
ample, suppose you have a FORTRAN program named STAT that uses both
TYPE and PRINT statements, as follows:

TYPE 30+ :B:C

+

PRINT 100D EF

Logical Names: Files for Program Input/Output

To execute this program so that output from the PRINT statement goes to a
disk file rather than to the terminal, enter an ASSIGN command before
running the program:

L

assidn statdata.out forderint @D
run stat @D

When STAT finishes execution, all output lines written by the PRINT state-
ment are contained in the file STATDATA.OUT. The system uses your de-

fault disk device and directory to catalog the file.

5.3.2 Logical Names for Unit Numbers

The concept of logical names and default logical name assignments applies to
specifying input/output files by logical unit numbers. Each logical unit num-
ber has an associated default logical name, and each logical name has a
default equivalence name. These logical names and equivalence names are as
follows:

Logical Default
Unit Name Equivalence
1 FORO001 FORO001.DAT
2 FOR002 FOR002.DAT
3 FORO003 FORO003.DAT
4 FOR004 FOR004.DAT
5 FORO005 SYSSINPUT
6 FORO006 SYS$OUTPUT
n FOROnn FOROnn.DAT

For example, a program named BALANCE may contain the lines:
RFEAD (Z23:58018:8.0
g0 FORMAT (3F10.43

In the above example, 23 is a logical unit number. Before executing this
program, you can assign an equivalence name to the logical name FOR023 so
that the READ statements read from a specific file, as follows:

% assign libra.tst fTor0Z3@D
% run balanaces@D

If you do not assign FOR023, the system uses the default equivalence name
FORO023.DAT. In either case, the system uses your current default disk and
directory.

Logical Names: Files for Program Input/Output 5-5

5.3.3 Logical Names in OPEN Statements

If you code a program that uses an OPEN statement to define an input or
output file, you can specify the NAME parameter to give the file specification
for the file. In this case, the system does not use the default equivalence name
to locate a file for input or output, but uses the name specified.

A typical OPEN statement may look like the following:
OFEM (UNIT=19 :NAME= "HEATHER.ETE)

When the program uses a READ statement to read the logical unit 19, it reads
the file WEATHER.STS. Note that the system supplies your current disk and
directory defaults to locate the file.

You can also specify a logical name with the NAME parameter. For example:
OPEN (UNIT=Z0 :NAME= "OUTFILE

Before you execute the program containing this OPEN statement, you can
assign an equivalence name to the logical name OUTFILE, as follows:

% assidn dmal:lscratochltest3.out outfile@D

Now, when an input/output statement in the program refers to logical unit
20, the system uses the equivalence name established for OUTFILE. Thus,
the following statement results in a read from the file
DMA1:[SCRATCHITEST3.0UT:

READ (20:3014.:8.C

If there is no equivalence name for the logical name OUTFILE when you run
this program, the system assumes that OUTFILE is a file specification. It uses
your current disk and directory defaults and the default file type of DAT to
complete the file specification for the output file.

You can find additional details on how to specify input and output files for
FORTRAN programs in the VAX-11 FORTRAN User’s Guide.

5.4 MACRO Input/Output

5-6

VAX-11 Record Management Services (RMS) provide macros for device- and
file-independent input/output operations.

VAX-11 RMS uses control blocks to obtain information about the file or
device you want to access (the File Access Block, or FAB) and the way you
want to access records in the file (the Record Access Block, or RAB).

The $FAB macro constructs a FAB. When you code the SFAB macro, specify
the file name (FNM) parameter to give the file specification of the file or
device to which input/output is directed. For example:

OUTFARB: $FAB FHM=<{WEATHER.STE:
DUTRAB: $RABE FAB=0OUTFAB

Logical Names: Files for Program Input/Output

The $RAB macro constructs a control block for record processing information.

The $OPEN and $CONNECT macros open the file for processing, and estab-
lish the connection between the FAB and the RAB. For example:

sOPEN FAB=0OUTFAE
SCOMMECT RAB=0OUTRAB

When the program uses a $PUT macro to write to the output file defined by
this FAB and RAB, it writes to the file WEATHER.STS. Note that the
system supplies your current default disk and directory name to identify the
file.

You can also specify a logical name with the FNM parameter in the $FAB
macro. For example:

OUTFAB: $FAB FNM=<OUTFILE®X
DUTRAB: $RAB FAB=0UTFAR

Before you execute the program to write this output file, you can assign an
equivalence name to the logical name OUTFILE, as follows:

% assidn dmal:lseratchltestl.out outfile®D

]

Now, when a $PUT macro refers to the RAB established for OUTFILE, the
system uses the equivalence name. For example, the following line in a pro-
gram results in a write to the file DMAIL:[SCRATCHITEST3.0UT:

£PUT RAB=0OUTRAB

If there is no equivalence name for the logical name OUTFILE when you run
this program, the system assumes that OUTFILE is a file specification. It uses
your current disk and directory defaults to complete the file specification,
but does not supply -a default file type. The output file would be named
OUTFILE.

5.5 For More Information

For more information about logical names see the VAX/VMS Command Lan-
guage User’s Guide and the VAX/VMS System Services Reference Manual.

For details about using VAX-11 RMS macros, see the VAX-11 Record Man-
agement Services Reference Manual. Additional information on using logical
names in MACRO programs is contained in the VAX-11 MACRO User’s
Guide.

Logical Names: Files for Program Input/Output 5-7

Chapter 6
Tailoring the Command Language

As you continue to use the command language, you will discover that it is a
powerful and flexible programming and applications development tool. You
can simplify the command language to save yourself time during interactive
terminal sessions and to establish your own default commands and command
qualifiers. You can create command procedure files to execute batch jobs,
either interactively or from a card reader. You can construct command proce-
dures to perform development and applications programming tasks.

This chapter provides some elementary information on techniques you can
use to tailor the command language to your individual needs. For example,
you can:

¢ Establish synonyms to use in place of command names and entire command
strings, as well as to establish default qualifiers for commands.

¢ Create command procedures to perform a specialized set of commands.
¢ Submit command procedures for processing as batch jobs.

e Use command procedures to perform programming functions, using the
command language as a high-level programming language.

6.1 Symbols

You can equate symbols to character strings or arithmetic values by defining
them in assignment statements. In addition to their use in command proce-
dures (see Section 6.2), symbols are useful as synonyms for long, frequently
used command strings. For example, you can equate the symbol ST to the
command SHOW TIME:

$ st = "show time" RED
and subsequently use the symbol ST in place of SHOW TIME:

$ =t @)
g-JuL-1882 10:45:189

6-1

Symbols can be defined for command lines containing qualifiers as well as
the command itself. For example, if you want to define a synonym for the
DIRECTORY command that automatically includes the /FULL qualifier,
you can define the symbol LIST as follows:

% list = "directory/full@®D

Then, if you issue the following command line, the system substitutes the
name DIRECTORY/FULL for the symbol LIST:

% list m¥file.dat@

The system executes the command string DIRECTORY/FULL
MYFILE.DAT.

Symbols can be concatenated with other symbols or items on a command line.
In this case, the symbol must be enclosed in apostrophes (*) to indicate to the
system that it must perform symbol substitution. For example, you can assign
the symbol PQUALS to the following qualifiers for the PRINT command:

% paygals = "Joories=Z/forms=4d/moburst” @D

Then, to use the symbol with the PRINT command, you must enclose it in
apostrophes: :

$ print rerort.dat ' eauals @D

The system recognizes the apostrophes and substitutes the appropriate value
(in this case a string of qualifiers) for the symbol PQUALS: PRINT
REPORT.DAT/COPIES=2/FORMS=4/NOBURST

(Information about the effect of these qualifiers on the PRINT command can
be found in the VAX/VMS Command Language User’s Guide.)

6.2 Command Procedures

A command procedure is a file containing a sequence of commands to be
executed by the operating system. You submit a command procedure with one
command: the Execute Procedure (@) character for interactive processing or
the SUBMIT command for batch processing.

For instance, you could create a command procedure to compile, link, and run
the program AVERAGE mentioned in Chapter 4. First, create a file contain-
ing the commands below. (The default file type for a command procedure file
is COM.)

FORTRAN AVERAGE
LINK AVERAGE
ASSIGN/USER_MODE TTBEZ: ZYVEsINPUT

RUNM AVERAMGE

O R

6-2 Tailoring the Command Language

The dollar signs before the commands of a command procedure are required
syntax, indicating that the subsequent line is a command to be executed by
the operating system. (They should be placed in column one of each command
line.)

To execute this command procedure, use the Execute Procedure command
(@) as shown below:

$ Baverade @

When this command is executed, the system searches for the file AVER-
AGE.COM. When it locates the file, the system reads and executes, in turn,
each command line in the file.

Note that to execute this command procedure for the AVERAGE.FOR pro-
gram created in Chapter 4, you must substitute the device name of your own
terminal for TTB3: in the ASSIGN command (line 3) of the procedure.

6.2.1 Using Symbols in Command Procedures

The sample command procedure shown in the preceding section is not very
flexible: it can be used to compile, link, and execute only the FORTRAN
program named AVERAGE. Command procedures can be made more general
by using undefined symbols in the procedure and defining the symbols when
the procedure is executed.

The following examples show two ways to write a generalized procedure to
compile, link, and run any FORTRAN program.

* Using global symbols in command procedures

If you use the symbol PROGRAM rather than the file name AVERAGE in
the command procedure DOFOR.COM below, you can later assign different
file names to the symbol PROGRAM, making the command procedure in-
dependent of a particular source program file.

% FORTRAN ‘PROGRAM®
3 LIWNK ‘PROGRAMS
RUN ‘“PROGRAHM-’

Before you execute this command procedure you must define the symbol
PROGRAM. Use the assignment statement as shown below:

£ Prodram == "auprage" RET)

In this assignment statement, the two equal signs are required to make the
symbol PROGRAM a global symbol. Global symbols are recognized and
substituted in any command procedure you execute. (Local symbols, on
the other hand, are restricted by the command level at which they were
assigned; thus, a local symbol assigned in one command procedure cannot
be used outside that command procedure. Local symbols are assigned with
one equal sign.)

Tailoring the Command Language 6-3

6-4

Now when you enter the following command line, the system substitutes the
value AVERAGE for the symbol PROGRAM in each line of the command
procedure:

$ Bdofor@D

If you subsequently redefine the value of PROGRAM to a different file
name and execute DOFOR.COM again, a different source program will be
compiled, linked, and run.

e Passing parameters to command procedures

An alternate way to code the procedure DOFOR.COM is to take advantage
of special symbols that the system defines automatically when you execute
a command procedure. These symbols, called parameters, are named P1,
P2, P3, and so on up to P8, and are defined on the @ command line.

For example, assume that DOFOR.COM has the lines:

¢ FORTRAN ‘F1°
$ LINK "F1°
$ RUN ‘P1°

To define a value — in this example, the file name — for the symbol P1,
enter the file name when you give the @ command to execute the command
procedure DOFOR.COM, as follows:

4 Bdofor averade@ED

The system automatically equates the name AVERAGE to the symbol P1,
the first (and, in this example, the only) parameter passed to the command
procedure. P2 through P8 are equated to null strings. When the command
procedure executes, the value AVERAGE is substituted for the symbol P1.

6.2.2 Redefining System Commands

You can use command procedures and symbol assignment statements to-
gether to redefine and expand system commands.

For example, suppose that during your terminal sessions you frequently com-
pile and recompile programs, creating many listing files (with a file type of
LIS). To keep your directory uncluttered, you may want to purge these list-
ings regularly. To do this housekeeping, you could create a command proce-
dure named LOG.COM that contains the lines:

$ PURGE *.LIS
$ LOGOUT

You can use this command procedure in place of the LOGOUT command
when you want to end your terminal session, as follows:

& @10 BED

Tailoring the Command Language

The PURGE command line is automatically executed before you log out.
Moreover, you could define a symbol named LO that is equated to the follow-
ing command string:

2 lo == "Blosg"@D

Then, when ybu type the command line

% 1o@ED

the system substitutes the symbol LO with the @LOG command string, and
executes your command procedure.

6.2.3 A LOGIN.COM File

If you become a frequent user of the VAX/VMS system, you may find that you
are entering the same sequence of commands or assignment statements every
time you log in. To avoid such repetition, you can place these commands and
statements in a special command procedure.

The command procedure file must be named LOGIN.COM, and it must be in
your default disk directory. When you log in to the system, the system auto-
matically searches for a file with this file name. If the system locates the
LOGIN.COM file, the system automatically executes the commands within
that file.

For example, a LOGIN.COM file might contain:

$ ST == "SHOW TIME®

$ LIST == "QOIRECTORY™

& LO == "BLOGH

% ASSIGN [MALCOLM.TESTFILES] TEST

TEST == "SET DEFAULT [MALCOLM.TESTFILESI®

Note that all the symbols defined above are global symbols, assigned with two
equal signs. If these symbols were local (assigned with one equal sign) they
would be recognized only within the LOGIN.COM file, and would therefore be
useless to you.

Command procedures can be executed from within other command proce-
dures. You may want to place the global assignment statements you use for
command synonyms in a separate file, and execute this procedure in the

LOGIN.COM file. For example, suppose the file SYNONYM.COM contains
the lines:

$ 5T == "SHOW TIME"
$ LISET == "DIRECTORY™
2 LO == ®"@LOG"

Your LOGIN.COM file would contain the line:

F ESYHONYM

Tailoring the Command Language 6-5

When this command is executed, the definitions in the synonym file are
established.

6.3 Batch Job Processing

If you use the Execute Procedure command (@) interactively, you cannot
enter other commands to do other work while the procedure is executing. If
you want to execute a command procedure that requires a great deal of pro-
cessing time, you can submit the command procedure as a batch job. When
you submit it, the batch job is queued by the operating system; your terminal
is then free for you to continue working interactively.

Use the SUBMIT command to request the operating system to place the
command procedure in the batch job queue. The SUBMIT command assumes
your current disk and directory defaults, as well as the default file type of
COM. For example:

$ SUBMIT DOFORGED
Job 317 entered on aueue BYS$BATCH

In this command, DOFOR is the file name of a command procedure. The
system responds to the SUBMIT command with a message indicating that
the job was successfully queued to the SYS$BATCH queue and has the job
identification number of 312. As soon as the batch job is queued, you can
continue interactive use of the terminal; the system will process the batch job.

6.4 Programming Command Procedures

6-6

The examples of assignment statements and command procedures in this
chapter show only a few things you can do with command procedures. There is
a special set of commands that you can use in command procedures to per-
form functions similar to those available in high-level programming lan-
guages. Some brief examples of these commands are shown below to illustrate
the versatility of VAX/VMS command procedures. You can:

* Assign arithmetic values to symbol names, and use these symbols in assign-
ment statements with arithmetic expressions. For example:

$ COUNT == 1

+

$ COUNT == COUNT + 1

e Transfer control to a command line in a procedure that is not the next line
in the file. For example:

g LOTO LOOP

Tailoring the Command Language

¢ Conditionally execute a command based on a comparison of values, strings,
or symbols. For example:

$ IF COUNT.LT.1O THEW GOTO LOOF

e Interactively define a value for a symbol by displaying a prompting message
on the terminal. For example:

¢ INQUIRE NUMBER
$ IF NUMBER.EG.1 THEN GOTO NEXT

¢ Establish a default course of action should an error occur during processing
of any command or program. For example:

$ ON ERROR THEW EXIT

6.5 For More Information

For additional examples of developing command procedures, see the
VAX/VMS Guide to Using Command Procedures.

Tailoring the Command Language 6-7

Glossary

assembler

Language processor that translates a source program containing assembly language
directives and machine instructions into an object module.

assembly language

Machine oriented programming language. VAX-11 MACRO is the assembly lan-
guage for the VAX-11 computer.

assignment statement

Definition of a symbol name to use in place of a character string or numeric value.
Symbols can define synonyms for system commands or can be used for variables in
command procedures.

batch

Mode of processing in which all commands to be executed by the operating system
and, optionally, data to be used as input to the commands are placed in a file or
punched onto cards and submitted to the system for execution.

buffer

A temporary storage area.
command

An instruction or request for the system to perform a particular action. An entire
command can consist of the command name, parameters, and qualifiers.

Glossary-1

command interpreter

The operating system component responsible for reading and translating interactive
and batch commands. The default command interpreter for the VAX/VMS operating
system interprets the DIGITAL Command Language (DCL).

command line

The entire command string, including the command and any parameters or qualifiers
it may have.

command procedure

File containing a predefined sequence of commands to be executed by the operating
system. The command procedure can be submitted for execution at the terminal or as
a batch job.

compiler

Language processor that translates a source program containing high-level language
statements (for example, FORTRAN) into an object module.

concatenate

To link together in a series.

cursor

A line or block indicator used in a video display terminal to indicate position.

debugger

Interactive program that allows you to display and modify program variables during
execution and to step through a program to locate and detect programming errors.

default

Value supplied by the system when a user does not specify a required command
parameter or qualifier.

default disk

The disk from which the system reads and to which the system writes, by default, all
files that you create. The default is used whenever a file specification in a command
does not explicitly name a device.

delimiter

Character that marks the beginning or end of a string.

2-Glossary

device name

Identification of a physical device (for example, DBA2) or a logical name (for exam-
ple, SYS$OUTPUT) that is equated to a physical device name.

directory

File cataloging a user’s files on a particular device for a user.

editor

Program that creates or modifies files. In VAX/VMS, the default system editor is
interactive.

equivalence name

Character string equated to a logical name, such that when a command or program
refers to a file or device by its logical name, the system translates the logical name to
its predefined equivalence name.

file
Collection of data treated as a unit; generally used to refer to data stored on magnetic
tapes or disks.

file name

The name component of a file specification, consisting of from one to nine characters.

file specification

Unique identification of a file. A file specification describes the physical location of
the file, as well as file name and file type identifiers that describe the file and its
contents.

file type

The type component of a file specification, consisting of from one to nine characters.
A file type generally describes the nature of a file, or how it is used. For example,
FOR indicates a FORTRAN source program.

global symbol
A symbol defined with an assignment statement that is recognized in any command

procedure that is executed.

header page
Printed page at the beginning of a listing that identifies the printed file.

Glossary-3

image

Output from the linker, created from processing one or more object modules. An
image is the executable version of a program.

input file

File containing data to be transferred into the computer.

interactive

Mode of communication with the operating system in which a user enters a com-
mand, and the system executes it and responds.

job
(1) The accounting unit equivalent to a process; jobs are classified as batch or in-
teractive. (2) A print job.

keypad
The small set of keys next to the main keyboard on a terminal.

keyword
A command name, qualifier, or option. Keywords must be typed verbatim or trun-
cated according to the rules of DCL.

line editor
Program that allows you to make additions and deletions to a file on a line by line
basis.

linker
Program that creates an executable program, called an image, from one or more
object modules produced by a language compiler or assembler. Programs must be
linked before they can be executed.

local symbol

A symbol defined with an assignment statement that is recognized only within the
command procedure in which it is defined.

logical name

Character string used to refer to files or devices by other than their specific names. A
command or program can refer to a file by a logical name; the logical name can be
equated to an equivalence name at any time; when the command or program refers to
the logical name, the system translates the logical name to its defined equivalence
name.

4-Glossary

log in

To perform a sequence of actions at a terminal that establishes a user’s communica-
tion with the operating system and sets up default characteristics for the user’s
terminal session.

log out

To terminate interactive communication with the operating system. The LOGOUT
command executes the procedure and ends a terminal session.

machine code

A sequence of binary machine instructions in a form executable by the computer.

network

A collection of interconnected computer systems.

node specification

The component of a file specification which identifies the location of a computer
system in a network of computer systems.

object module

Output from a language compiler or assembler that can be linked with other object
modules to produce an executable image.

operating system

The system software that controls the operations of the computer.

output file

File to which the computer transfers data.

parameter

Object of a command. A parameter can be a file specification, a symbol value passed
to a command procedure, or a word defined by the DIGITAL Command Language.

password
Protective word associated with a user name. A user logging in to the system must

supply the correct password before the system will permit access.

prompt

Word(s) used by the system as cues to assist a user’s response

Glossary-5

qualifier

Command modifier that describes the operation of a command. A qualifier is always
preceded by a slash character (/).

queue

A line of items waiting to be processed.

range specification

Used with EDT line editor to define the line(s) to be affected by the editing com-
mand.

reverse video

A feature of the VT100 terminal that reverses the default video contrast. If black
figures upon a white background is the default, reverse video displays white upon
black. Used with some EDT keypad commands to highlight a range of text.

scrolling

A feature of a video terminal that allows the display of more than one screenful of
text by vertical movement.

source program

A program written in a language other than machine code that must be compiled or
assembled to be used.

subdirectory

Directory file cataloged in a higher-level directory that lists additional files belonging
to the owner of the directory.

terminal

Hardware communication device, with a typewriter-like keyboard that receives and
transmits information between users and the system.

user name

Name by which the system identifies a particular user. To gain access to the system,
a user specifies a user name followed by a password.

version number

Numeric component of a file specification. When a file is edited, its version number is
increased by one.

6-Glossary

wild card character

A symbol used with many DCL commands in place of all or part of a file specification
to refer to several files rather than specifying them individually.

Glossary-7

Index

A

Assembler, 4-2
Assembly language, 4-2

Assignment statement, 6-1 to 6-2

B
Batch
editor, 2-2
job, 1-1, 6-6
user, 1-1
C

Command, 1-4
abbreviation, 1-6
EDT subset of, 2-14, 2-19
format, 1-4
HELP, 1-8 to 1-9
language, 1-4
line, 1-5
parameter, 1-4
prompt, 1-5
qualifier, 1-4
Command procedure, 6-2
LOGIN.COM file, 6-5
parameters in, 6-4
symbols in, 6-3
Compile commands, 4-2
Compiler, 4-2
Control key, 1-6 to 1-7

Cursor, 1-6, 2-6, 2-8
D

DCL, 1-5
Default, 1-7
file specification, 3-1
logical names, 5-3
Device name, 3-2

DIGITAL Command Languagé, 1-5

Directory, 3-2 to 3-3
change of default, 3-8
Documentation, VAX-11, viii

E

Editor, 2-1, 2-2
batch, 2-2
default, 2-3
EDT

See EDT
interactive, 2-2
SOS, 2-2
SUM, 2-2
SUMSLP, 2-2

EDT, 2-1
HELP, 2-4, 2-15
invoking, 2-4, 2-15

keypad command subset, 2-14

keypad editor, 2-3 to 2-13
line command subset, 2-19
line editor, 2-14 to 2-19

Index-1

EDT (Cont.)
range specification, 2-16
termination of, 2-5, 2-16
Equivalence name, 5-1
Error message, 1-8

F

File, 2-1
COPY command, 3-9
creation of, 3-5
default specification, 2-1
deletion of, 3-5, 3-6
display of, 3-6
identification of, 3-1

list of in directory, 3-7 to 3-8

name, 2-1, 3-3
PRINT command, 3-7
PURGE command, 3-6
RENAME command, 3-10
specification
See File specification

type, 2-1 3-3, 3-4
version, 2-1, 3-4

File name, 2-1, 3-3

File specification, 3-1
device name, 2-1
directory, 2-1
file name, 2-1
file type, 2-1
node name, 2-1
version number, 2-2

File type, 2-1 3-3, 34
default, 3-4, 4-1

File version, 2-1, 3—4

G

Global symbol, 6-3

H

HELP command, 1-8 to 1-9
DCL, 1-8 to 1-9
EDT, 2-4, 2-15

Image, 4-3

Interactive
editor, 2-2
user, 1-1

Index-2

Keypad, 2-3
diagram of, 2-3
editor, 2-3 to 2-13
Keypad commands
subset of, 2-14
Keypad editor
cursor manipulation, 2-6, 2-8
Keys
control, 1-6 to 1-7
Keyword, 1-4

Language
assembly, 4-2
high level, 4-2
Line commands
subset of, 2-19
Line editor, 2-14 to 2-19
Linker, 4-3
Local symbol, 6-3
Logical name, 5-1
ASSIGN command, 5-1
equivalence name, 5-1
in commands, 5-2
system default, 5-3
Login, 1-2 to 1-4
LOGIN.COM file, 6-5

Logout, 1-9
M
Message
error, 1-8
N
Network, 2-1
Node, 2-1
Node name, 2-1, 3-1
0

Object module, 4-3
Operating system, 1-1

P

Parameter, 1-4

Password, 1-2 to 1-3

Program, 4-1
assembly of, 4-2

Program (Cont.) Symbol (Cont.)

compiling, 4-2 global, 6-3
creation of, 4-1 local, 6-3
execution of, 4-3
Program development T
FORTRAN example, 4-5 to 4-9
MACRO example, 4-10 to 4-14 Terminal
hardcopy, 1-1
Q keyboard, 1-3
video, 1-2
Qualifier, 1-4
U
R
User name, 1-2
Range specification, 2-16
\"%
S VAX-11 documentation, viii
Version number, 2-2
Subdirectory, 3-3
creation of, 3-8 W
Symbol, 6-1, 6-3
assignment statement, 6-1 Wild card character, 3-4 to 3-5

Index-3

VAX/VMS Primer
AA-D030C-TE

READER’S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company’s discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

[J Assembly language programmer
[0 Higher-level language programmer
[0 Occasional programmer (experienced)
[0 User with little programming experience
[0 Student programmer
(] Other (please specify)
Name Date
Organization
Street
City State Zip Code

or Country

— — Do Not Tear - Fold Here and Tape

— — Do Not Tear - Fold Here

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS ZK1-3/J35
DIGITAL EQUIPMENT CORPORATION
110 SPIT BROOK ROAD

NASHUA, NEW HAMPSHIRE 03061

No Postage
Necessary
if Mailed in the
United States

Cut Along Dotted Line

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	Glossary-1
	Glossary-2
	Glossary-3
	Glossary-4
	Glossary-5
	Glossary-6
	Glossary-7
	Index-1
	Index-2
	Index-3
	replyA
	replyB

