DECnet-VAX
User’s Guide
Order No. AA-H802B-TE

May 1982

This manual describes user-level functions including remote file access and
task-to-task communication using DECnet-VAX software running on a
VAX/VMS operating system.

REVISION/UPDATE INFORMATION: This revised document supersedes
the DECnet-VAX User’s Guide
(Order No. AA-H802A-TE).

SOFTWARE VERSION: VAX/VMS V3.0

digital equipment corporation - maynard, massachusetts

First Printing, March 1981
Revised, May 1982

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license

and may be used or copied only in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright C) 1981, 1982 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSX
DEC/CMS EduSystem UNIBUS
DECnet IAS VAX
DECsystem-10 MASSBUS VMS
DECSYSTEM~20 PDP

VT
DECUS PDT ﬂngnlan
DECwriter RSTS t

ZK2183

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710 DIRECT MAIL ORDERS (CANADA)
In New Hampshire, Alaska, and Hawaii call 603-884-6660 Digital Equipment of Canada Ltd.
940 Belfast Road
In Canada call 613-234-7726 (Ottawa-Hull) Ottawa, Ontario K1G 4C2
800-267-6146 (all other Canadian) Attn: A&SG Business Manager

DIRECT MAIL ORDERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation Digital Equipment Corporation

P.O. Box CS2008 A&SG Business Manager

Nashua, New Hampshire 03061 c/o Digital's local subsidiary or

approved distributor

*Any prepaid order from Puerto Rico must be placed
with the local Digital subsidiary (809-754-7575)

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation, Northboro, Massachusetts 01532

CONTENTS

Page
PREFACE ix
CHAPTER 1) DECNET-VAX OVERVIEW
1.1 VAX/VMS USER INTERFACE TO THE NETWORK 1-1
1.1.1 DECnet-VAX Network Operations « . 1-1
1.1.2 A Network TOpOlogy e o o e & o & e e o o o s o o 1_4
CHAPTER 2 ACCESSING THE NETWORK
2.1 FILE AND TASK SPECIFICATIONS +. &+ o « o o o o o o o« 2-1
2.2 ACCESS CONTROL & 4 o o s o o o o o o o o o o s o« o 2-5
2.3 USING LOGICAL NAMES . . & o o o o o o o o o o o o« 2-9
2.3.1 Iterative Translation . . « ¢ o« ¢ ¢ o o« « o o 2-10
2.3.2 Names Prefixed by an Underscore Character . . 2-11
2.4 NETWORK COMMAND TERMINALS . . « « & ¢« o o o« « » 2-11
CHAPTER 3 REMOTE FILE ACCESS USING DCL
3.1 ACCESSING THE NETWORK USING DCL COMMANDS . . « « . 3-2
3.2 LOGICAL NAME COMMANDS . . e o o o o o o s e o o 3-4
3.2.1 ASSIGN, DEASSIGN, and DEFINE e o o o o o o o o o 3-4
3.2.2 SHOW LOGICAL and SHOW TRANSLATION « « . 3-5
3.3 COMMANDS FOR FILE HANDLING . +« 4 o « o o o o s s » 3=5
3.3.1 ANALYZE/RMS FILE . ¢ 4 & « o « o o o o o o o o o 3=7
3.3.2 APPEND and COPY . . & & 4 & o o o o o« o« o s « o« 3-8
3.3.3 BACKUP « & o + s o o o o o o o o o o o o o o o o 3-8
3.3.4 CONVERT & & o o o o o o o o o o o o o o o « « « 3-9
3.3.5 CREATE e e o o s o e s e s s e e o o 3-10
3.3.6 DELETE and PURGE e o o s e s e s o s e & e o s 3-10
3.3.7 DIFFERENCES . ¢ & o« ¢ « o o s o s o s o o o « 3-11
3.3.8 DIRECTORY . &+ ¢ ¢ o o o o o o o o o o o o « o 3-11
3.3.9 DUMP/RECORDS . & ¢ o o o o s o o s o o « o o« « 3-12
3.3.10 PRINT/REMOTE ¢ o ¢« o o o o o o o o o o o o o o 3-12
3.3.11 SEARCH . & 4 ¢ o o o o o o o s o o s s o o o« o« 3-13
3.3.12 SORT and MERGE . +. ¢ & « o o o o o o o o« o o o 3-13
3.3.13 SUBMIT/REMOTE . . & o o« o o o o o o o o o« o o 3-14
3.3.14 TYPE v o o o ¢ o o o o o o o o o o o o o o « o 3-15
3.4 LEXICAL FUNCTIONS . & o 4 « o o o s o s o s « o 3-15
3.4.1 FSFILE ATTRIBUTES . &+ & « o o o« o o« o o « s o 3-15
3.4.2 FSPARSE . 4 & « ¢ o o o o o o o o o o « o « « 3-16
3.4.3 F$SEARCH et e e s e s e e e e o . 3-16
3.5 COMMANDS FOR ACCESSING RECORDS . « ¢ ¢ o o o o & 3-16
3.5.1 OPEN and CLOSE . &+ & & & o o o o o o o o o o o 3-17
3.5.2 READ and WRITE . « ¢ ¢ o o o o o o o o o o o« o« 3-17
3.6 COMMAND PROCEDURE EXAMPLES « o . 3-18
3.6.1 Command Procedure Using Lexical Functlons . o 3-18
3.6.2 Command Procedure Using SYSSNET 3-18

iii

CONTENTS

w
.
~

DISPLAY OF ERROR MESSAGES IN NETWORK ENVIRONMENT 3-19

CHAPTER

=9

REMOTE FILE ACCESS USING RMS

1 ACCESSING THE NETWORK AT THE RMS LEVEL .
2 VAX-11 NETWORK FILE ACCESS RESTRICTIONS
3 VAX~-11 RMS NETWORK ERROR REPORTING . . .
4 HIGHER-LEVEL LANGUAGE REMOTE FILE ACCESS
5

5

5

MACRO REMOTE FILE ACCESS . ¢ ¢ ¢ o o o o«

1 Using VAX-11 RMS Service Calls
1.1 File Access Blocks (FABs) and Record

Blocks (RABs) e o o o a o o o s e @

SOPEN and SCONNECT . & &« & o o o o &

SDISCONNECT and $CLOSE . ¢« ¢« o« o« « &
VAX-11] RMS Service Call Summary . .
VAX-11] RMS Programming Notes and Restr1
1 Name BIoCk o ¢ & o ¢ o o o o ¢ o o o
2 File Specification Processing . . .
3 FOP. File Disposition Options on Close .
4 FOP Option for Increasing File Transfer
Throughput . ¢« + & & ¢ ¢ ¢ ¢ ¢ o ¢ ¢« o« ¢« o« « -4
File Sharing . « « o« o ¢ o« o o o o o o o o o 4-13
Restriction on Access to Files on Magnetic
Tape . e e e o e o o e o o o e o o 4-14
3.7 Task-to-Task Communication « . . 4-14
4 MACRO Programming Examples « « « « . . 4-14
4.1 MACRO Remote File Transfer Example 4-14
4,2
4

[i g g
e o o o o
.

e (J o o o o o o

w N
[

L}
NN OO O WoOoOJWN -

ooOcc.o}ooo..-
Q
bbb D t?lbiblbbb

e o TS e o o e (e o o o o o

" o @

o o o o s @

00'—‘.'.
o]

|

L]

[N N
|

(R Ry

.
.

[SARCL RGO O S R, T]

WWWWWN =

Lo [i S L

0
(S8,]
* 0

ww
L
[o) WS, }

¢ o

oo,

VAX-11] MACRO Remote File Spooling
Example . o« o . e o o 4-17
.3 VAX-11 MACRO Remote F11e Random Access

Example . . . e o o o o o o o 4-18
4.5.4.4 VAX-11] MACRO Remote F11e Indexed Access
EXample =« ¢ o ¢ o o o o o o o o o o o o o o 4-20

.
.

> [

.
wm
)

CHAPTER

(52}

TASK-TO-TASK COMMUNICATION

TRANSPARENT COMMUNICATION« .« =«
NONTRANSPARENT COMMUNICATION

.
—

Mailboxes and Mailbox Messages . . .
INITIATING A LOGICAL LINK CONNECTION .
The Handshaking Sequence
COMPLETING THE LOGICAL LINK CONNECTION . .
Completing the Connection Transparently .
Completing the Connection Nontransparently
Command Procedures Used in Task-to-Task
Communication o
EXCHANGING MESSAGES
Data Messages .+ .« « o o o o o o
Mailbox MeSSages . o« o o o o o o o
TERMINATING THE COMMUNICATION PROCESS

e o o o o

e o o o o o
e o o o o o o
e o o o o o o
e o o o o o ¢

Lot
. e e & @ o L] L
B WWNDNDE
L]
=

e o o
w N+~

|
OO O\ W oo~ U -

e o o . . .

[e) WO S, 0,)

N =

« e o e
L] . L] . *
e e o e e
e e s o
auun
HDLJ‘H

.
.
.
3

oo

CHAPTER

(o))

TRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM
SERVICES

SYSTEM SERVICE CALLS FOR TRANSPARENT COMMUNICATION
REQUESTING A LOGICAL LINK &
COMPLETING THE LOGICAL LINK CONNECTION
EXCHANGING MESSAGES =« ¢ o o o o« o o
TERMINATING THE LOGICAL LINK , . . .
STATUS AND ERROR REPORTING . « ¢ + &
SYSTEM SERVICE CALL SUMMARY
SASSIGN (I/0 Channel Assignment) . . « . « « « o«

¢« o o

e o o o o o
.

e o o e o o

e o o o o o
.

e o o o 0 o

| LI |

.
.
.
.

* o o
NN Ut WD
|

AN AN O

[e) W)W Ne) o) Weo) Ne) N
|

S wwwwn N -

L]
=

.

iv

CHAPTER 7

NN NN N NN NI
. e ¢ & o e e s e s e e @ e o e s o o

~ ~ N ~
. « o . « o e
00 00 0o

O 0 o 0 0

N
.

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

GLOSSARY

BB S WWN

OO OW~JAOSH YUl

o o

o]

¢ o .

.

= O o] ~Novun

o

-

N e

[a

wWN

WN =

F o8

(==
()

N

CONTENTS

$QI0 (Sending a Message to a Target Task) .
$QI0 (Receiving a Message from a Target Task)
SDASSGN (Terminating a Logical Link)

PROGRAMMING EXAMPLE OF TRANSPARENT COMMUNICATION

¢ o o o

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM

SERVICES

SYSTEM SERVICE CALLS FOR NONTRANSPARENT
COMMUNICATION o . e . . .
ASSIGNING A CHANNEL TO NET AND CREATING A
MAILBOX & 4 o o o o o o o o o o o o o o o o @
Mailbox Message Format . . . e s e & o
REQUESTING A LOGICAL LINK CONNECTION e o e e o
Network Connect BloCk . & o ¢ o o o o o o &
COMPLETING THE LOGICAL LINK . . &« o ¢ o o o o«
Receiving a Connection Request
Receiving Single Connection Requests .
Receiving Multiple Connection Requests
(Network Tasks) e o o & o o e o o e o s o
Accepting or Rejecting a Connection Request
EXCHANGING MESSAGES =« o o o o o o o o o o o o
Interrupt Messages o o
DISCONNECTING OR ABORTING THE LOGICAL LINK o o
Synchronously Disconnecting a Logical Link .
Aborting the Logical Link ($QIO Function) .

Terminating the Logical Link ($SDASSGN Function)

STATUS AND ERROR REPORTING . + ¢ ¢ @« o o o o &

SYSTEM SERVICES CALL SUMMARY . . ¢« @« o o o o &
SASSIGN (I/O Channel Assignment)
$QI0 (Requesting a Logical Link Connection)
$QI0 (Accepting a Logical Link Connection

Request) . « &« o o o & . ¢ o o e e s o
$QI0 (Rejecting a Loglcal Llnk Connection
Request) o o . o .

$QI0 (Sending a Message to a Target Task) .
$QIO0 (Receiving a Message from a Target Task)

$QI0 (Sending an Interrupt Message to a Target

Task) e o o s o o o o e e o 8 s 8 e e s e
$QI0 (Synchronously Disconnecting a Logical
Link) L] . . L] L] L] L] . . . L] . - L] . . L3 L3 L]
$QI0 (Aborting a Logical Link) e
$QI0 (Declaring a Network Name or Object
Number) e o e s o o e o o e e o o
$DASSGN (Terminating a Loglcal Llnk) o o o e
PROGRAMMING EXAMPLE FOR NONTRANSPARENT
COMMUNICATION . & & o o o o o o o o o o o o o

OBJECT TYPE CODE VALUES

VAX-11 RMS CONTROL BLOCK USE

SUMMARY OF NETWORK SYSTEM SERVICE ERROR MESSAGES

MAILBOX MESSAGE TYPES

1
—

NN NN ~
L T B [L L I
OB DBWN

NN NN NN
|

~ ~

ro

e |

N O WOVWWYWWYWWOOWWOINIII

N~
t 1
-
> w

7-14

7-14

7-15
7-16

7-17
7-18

CONTENTS

Page
INDEX
EXAMPLES
EXAMPLE 4-1 FORTRAN Remote File Access Program . . . « « « « o 4-8
4-2 RMS File Transfer Program . . « « o o« o« o « « o« 4-15
4-3 RMS Spool File Program . . « « o o o o o« o o« « o« 4-17
4-4 RMS Random Access Program . . « o« o o« o« o o « o 4-18
4-5 RMS Indexed File Program . . « « « + « « o« o » o« 4-20
5-1 FORTRAN Task-to-~Task Communication + . « . 5-2
6-1 Transparent Task-to-Task Communication Using
System Services . . . e e« o o o s o s s o s o 6-8
7-1 Nontransparent Task-to- Task Communication Using
System Services . . ¢ 4 4 o o o o o o o s o o o 1-19
FIGURES
FIGURE 1-1 Network Access Levels and DECnet-VAX User
Interface . ¢ o o o o o o o o o o o o s o o o o o 1-3
1-2 Network Topology and Related Functions 1-4
1-3 Operational Capabilities of DECnet-VAX 1-5
2-1 Remote File Access Using Access Control String
Information 3 3 2_6
2-2 Remote File Access Using Default Access Control
Information e o o o o s o o s s e s o s o o o o 2=7
2-3 Outbound and Inbound Connect Flowcharts 2-8
4-1 Remote File Access (DCL and RMS) « « ¢ o o o o o« o 4-2
5-1 MailboX MeSSAgesS . o o o « o o o o s o o o o« o o o« 5-6
7-1 Mailbox Message Format . . ¢+ o o o ¢ « o o o o o o 71=3
7-2 Network Control Block Format .« ¢« ¢ o« ¢ o « o o« o« « 71=5
TABLES
TABLE 1-1 Network Access LevelsS . & «¢ o o ¢ o o o o o o o o 1-2
3-1 DCL Command Summary . . . e o o o 32
4-1 VAX-11] RMS File and Record Characterlstlcs for
Network Operations B e o o o o o 4-3
4-2 VAX-11 RMS Access Modes for Network Operatlons . o 4-3
4-3 Network-Specific RMS Completion Codes 4-4
4-4 VAX-11] RMS Service Calls for Run-time Remote F11e
ACCESS 4 o o o o o o o s o s o o o o o o o o« « o« 4-10
6-1 Transparent Task-to-Task Communication System
Service Summary . . . + 4 o o o o e o o o o o 6-1
7-1 Summary of System Service Calls for Nontransparent
Task-to-Task Communication . . « ¢« ¢« ¢« & o ¢« o o« o 7-2
A-1 Object Type COAES « « « o « o o « o o o o« o « o« « A-1
B-1 FAB (File Access Block) e o o o o s o o s o e o & B=2
B-2 RAB (Record Access Block) e« o o o o o+ o o o o o« o B=5
B-3 NAM (Name BloCK) o 4 o o o o o o o o o o o o o o« o B=7
B-4 XABALL (Allocation Control XAB) . « « « « « « » » B-9
B-5 XABDAT (Date and Time XAB) . « « « . e « s« « . B-10
B-6 XABFHC (File Header Characteristics XAB) e « « o B-=10
B-7 XABKEY (Key Definition XAB) e« o o o o o o s o » B-11
B-8 XABPRO (File Protection XAB) « « « o ¢ o o « « o B-12
B-9 XABRDT (Revision Date and Time XAB) . « « « « o B-13
B-10 XABSUM (Summary XAB) « « o o o o o o o o o o o« o B-13

vi

CONTENTS

System Services Error Messages Summary .
Mailbox Message Summary . « « o« o o o o

vii

PREFACE

MANUAL OBJECTIVES

The DECnet-VAX User's Guide describes VAX/VMS network operations such
as remote file access and task-to-task communication. The manual is
divided according to the types of operations you can perform and the
level at which vyou access the network. In particular, this manual
describes the DIGITAL Command Language (DCL) commands you can use to
manipulate remote files and for network command terminal use. It also
describes all the information necessary to program remote file access
and task-to-task communication applications.,

S

INTENDED AUDIENCE

This manual provides information needed by VAX/VMS users who want to
perform network operations. Interactive and batch users should be
familiar with DCL, which the VAX/VMS Command Language User's Guide
describes in detail. Programmers should use the information in this
manual as a supplement to the reference manuals and user guides
provided for higher-level languages, and to the manuals that explain
VAX-11 Record Management Services (RMS) and VAX/VMS System Services,

STRUCTURE OF THIS DOCUMENT

The DECnet-VAX User's Guide <consists of seven chapters, four
appendixes, and a glossary, which are described below:

e Chapter 1 briefly describes the ways you can access the
network and the types of network operations you can perform.
A general network topology, which serves as a common reference
for all examples, is also included.

e Chapter 2 describes general concepts that pertain to accessing
the network at the command level and through user programs.

e Chapter 3 presents the DCL commands that you can use for
network operations.

e Chapter 4 presents the VAX-11l RMS calls and procedures - that
you can use to access files on remote nodes. :

e Chapter 5 describes the concepts central to DECnet-VAX
task-to-task communication and the wuse of higher-level
languages for such communication.

e Chapter 6 summarizes the procedures for transparent
task-to-task communication using system services.

ix

PREFACE

e Chapter 7 summarizes the procedures for nontransparent
task-to-task communication using system services.

e Appendix A provides a table of object type <code wvalues and
their descriptions.

e Appendix B provides a complete table of RMS control block
fields and any related qualifications governing their use for
network operations.

e Appendix C summarizes system service error messages associated
with network-related functions.

e Appendix D summarizes mailbox messages and their meanings for
nontransparent communication.

e The Glossary defines terms used in this manual.

ASSOCIATED DOCUMENTS

For information concerning DECnet-VAX system management, refer to the
DECnet-VAX System Manager's Guide and the DECnet-VAX Network
Installation manual. The DECnet-VAX Cross-System Notes describe the
use of DECnet-VAX in a heterogeneous network environment. The VAX/VMS
Release Notes describe any constraints on using DECnet-VAX with the
current version of VAX/VMS. The VAX-11 Information Directory and
Index provides information on the entire VAX/VMS document set. The
directory briefly describes all the documents in the set and explains

the intended audience for each one. For general background
information about the VAX/VMS system, refer to the VAX/VMS Primer and
the VAX/VMS Summary Description and Glossary. Finally, the

Introduction to DECnet manual serves as a companion to the DECnet-VAX
documentation set, This manual provides a general overview of DECnet
software from a perspective independent of individual DECnet
implementations.

Because the user guides for the higher-level languages available under
VAX/VMS contain information relating to remote file access and
task-to-task communication, you should refer to them for applications
in these areas.

The following functional specifications define DIGITAL Network
Architecture (DNA) protocols to which all implementations of DECnet
adhere:

DECnet DIGITAL Network Architecture General Description

DIGITAL Data Communications Message Protocol Functional
Specification

Network Services Protocol Functional Specification

Maintenance Operation Protocol Functional Specification

Data Access Protocol Functional Specification

Transport Functional Specification

DNA Session Control Functional Specification

Network Management Functional Specification

PREFACE

Graphic Conventions

character The term characters refers to the

(or chars) set of alphanumerics that includes A
through 2z, 0 through 9, , and S.

$ COPY Command examples show all output

$ FROM: *.* lines or prompting characters that

$_TO: TRNTO: : % * the system prints or displays in

black letters.

This document uses red 1lettering to
indicate all user-entered information
and to show user-supplied call
instruction parameters.

SDASSGN S chan All calls and command example verbs
- ' are shown in a call or command line
in capital letters, and they must be
entered as shown. Arguments are
shown in a call as lowercase letters.
You substitute the argument shown in
the call format with the precise
information requested.

$ASSIGN_S devnam,chan(,acmode]} Square brackets enclose optional
keywords and arguments. Do not

include the brackets when entering
the command.

"foreign-file-spec-string" Keywords or arguments within braces
indicate that vyou must choose only
"task-spec-string" one of the keywords or arguments.

(Do not 1include the braces when
entering the command.)

$ TYPE BOSTON: :TEXT.COM The use of ellipses means that not
. all of the information that the
. system would display in response to
. the particular command is shown, or,
that not all the information a user
(or) would enter is shown.

DELETE file-spec,...

xi

CHAPTER 1

DECNET-VAX OVERVIEW

DECnet is the collective name for a set of software and hardware
products that allow DIGITAL operating systems to participate in a
cooperative environment known as a. network. DECnet-VAX 1is the
software ©package that extends the basic capabilities of the VAX/VMS
operating system on a VAX-11 computer. Beyond the normal VAX/VMS
capabilities, DECnet-VAX provides a layered structure of protocols for
network operations. These protocols allow you to use the resources on
remote DIGITAL computers, even though these systems may run under an
operating system other than VAX/VMS. This manual describes the
DECnet-VAX facilities for accessing and using these resources.

This chapter describes the DECnet-VAX user interface to the network in
terms of a hypothetical network topology. Of course, each network
will be tailored to the individual needs of 1its wusers and the
resources available, The network topology presented in this chapter
serves as a common reference for the user examples presented in this
manual and highlights the operational capability of DECnet-VAX within
a heterogeneous network environment. In this manual, however, only
the DECnet-VAX perspective on network operations is presented. For an
overview of DECnet, refer to the Introduction to DECnet manual.

1.1 VAX/VMS USER INTERFACE TO THE NETWORK

The VAX/VMS operating system and DECnet-VAX communications software
are integrated to provide a high degree of transparency for user
operations. When developing network applications, you can use
standard DCL commands, higher-level language I/0 statements, VAX-11
RMS service «calls, and system service calls to perform network
operations. For some applications, however, it is desirable (and
sometimes necessary) to have more direct access to network-specific
information and operations. For this purpose, DECnet-VAX provides
nontransparent communication. The following sections describe general
transparent and nontransparent features of DECnet-VAX in terms of the
user interface to the network.

1.1.1 DECnet-VAX Network Operations

DECnet-VAX supports a variety of network operations that employ
VAX/VMS programming languages. In addition to VAX-11] MACRO, you can
use most of the higher-level languages such as VAX-11 FORTRAN, VAX-11
BASIC, VAX-11 BLISS, VAX-11 PASCAL, VAX-11 PL/I, and VAX-11 COBOL to
develop networking applications. With any of these languages, you can
access remote files and create tasks that exchange information across
the network. You can also use DIGITAL Command Language (DCL) commands
to <create and access remote files and to perform many file management
functions on other nodes.

Note that throughout the manual, the term

task

refers to an

image

running in the context of a process, the term local refers to the node
at which you are located physically, and the term remote refers to any
node on the network other than the one at which you are located.

Table 1-1 summarizes the normal use of the programming

languages for

specific network operations that you can perform with DECnet-VAX.

Table 1-1:

Network Access Levels

User Language

Network Operation

Language Calls

Access Level

DCL

Network command
terminals

Remote file
manipulation

Task-to-task
communication

DCL commands

Transparent
network access
via DCL

Higher-level

Remote file access

Higher-level

languages (files and records) language
I/0 statements
Task-to-task
communication Transparent
network access
via RMS
MACRO or Remote file access RMS service
higher-level (files and records) calls
languages
Task-to-task
communication
MACRO or Task-to-task System service Transparent and
higher-level communication calls nontransparent
languages network access

via QIO

The way you access the network is directly related to the language you
use and the network operation you perform. ¥For example, you may want
to use standard VAX-11 RMS calls in a VAX-11 MACRO program to access

remote files, then use system service calls to communicate between
MACRO programs in a task-to-task communication application. Figure
1-1 shows three access levels and the corresponding network

operations. The various levels of network access provide a convenient
context in which to discuss typical user operations over the network.

Network User Interface Network Access Level

| VAX/VMS

| DCL Interpreter DCL
»| & RMS-usi Access
DCL Commands I |mag::mg Level

Remote
File Access
Programs
| VAX-11 RMS
RMS File Access
| DAP System Level

Transparent
Task-to-Task
Programs - |

— — — — — 1— — — e — — — — — a— —_— —
Transparent I Qlo System
Task-to-Task % System Service
Programs = l Services Access

' Level
Nontransparent DECnet-VAX
Task-to-Task | Software
Programs

- = = = — — = — —

Communications
l Device Z——

ZK-833-82

Figure 1-1: Network Access Levels and DECnet-VAX User Interface

The first two levels of access, DCL and RMS, are entirely transparent
to the network user. Because you use standard DCL commands and RMS
service calls to access remote files, no DECnet-specific calls are
required at these levels of access. You need only specify the remote
node on which the file resides in your file specification. Likewise,
higher-level 1language tasks can use a variation of the standard
VAX/VMS file specification in conjunction with standard 1/0 statements
to access remote tasks and exchange information; thus, this form of
task-to-task communication is also transparent. As with
device-independent input/output (I/0) operations, transparent network
access allows you to move data across the network with little concern
for the way this operation is performed.

The third 1level of access, system services, provides both a
transparent and a nontransparent user interface to the network.
Transparent communication at the system service level provides all the

basic functions necessary for two tasks to exchange messages over the
network. As with the higher-level 1language 1I/O interface, these
operations are transparent because they do not require DECnet-specific
calls, Rather, you use standard system service calls to implement
them. Nontransparent communication extends this basic functionality
to allow a nontransparent task to receive multiple inbound connections
and to use additional network protocol features such as optional user
data and interrupt messages. As with device-dependent 1I/0,
nontransparent communication allows you to exploit certain
network-specific characteristics to <coordinate a more controlled
communication environment for exchanging information.

1.1.2 A Network Topology

To highlight the operational capabilities of DECnet-VAX, this section
presents a hypothetical network example comprised of various DIGITAL
operating systems. Figure 1-2 illustrates a network topology (or
geometry) which includes several VAX/VMS systems. No two networks are
likely to have the same distribution of resources or the same
topology; therefore, this example serves only to illustrate the use
of DECnet-VAX functions in a heterogeneous network environment. The
examples throughout this manual refer back to the network topology
presented here.

Nodes DENVER and TRNTO Node BOSTON

o Corporate Computing Facilities e Division Host Computer
e Inventory Control & e Central Data Base
Cost Accounting Procedures e Program Development
e Production Schedules e Data Analysis
o Central Data Base e Inventory Control
o Network Management
TRNTO e Central Processing

n (VAX/VMS)

BANGOR
BOSTON
(VAX/VMS) O (RSX-118S)

DENVER
(VAX/VMS) O

KANSAS
(RSTS/E)

NYC

(RSX-11S)
Node KANSAS

Nodes NYC and BANGOR

e Order Entry ®
® Local Data Base DALLAS e Satellite Control Systems
e Marketing & Sales (RSX-11M) ® Instrumentation &

Process Control
e Data Acquisition
Node DALLAS

Research & Development
Local Program Development
Local Data Base

Data Acquisition

ZK-834-82

Figure 1-2: Network Topology and Related Functions

The computer network in Figure 1-2 has a centralized VAX/VMS host
processor (BOSTON) and remote distributed systems dedicated to
particular functions. For the purpose of discussion, this network
represents a corporate division that oversees such functions as
research and development, process control, and order entry. In this
example, the size and functions of the network are simplified.

The VAX/VMS host processor at node BOSTON performs major computation,
controls the central data base, and supervises the general operation
of the network for the division. The remote computers (nodes) perform
various network-related functions in concert with the host processor.
The VAX/VMS computers at nodes TRNTO and DENVER represent corporate
computing facilities, where the corporation generates reports,
production schedules, and inventory and cost accounting procedures.
The host computer provides information to these facilities to account
for divisional productivity.

Figure 1-3 indicates the type of typical DECnet-VAX operations that
enable the host to serve this role. Nodes NYC and BANGOR are
satellite computers involved with instrumentation and process control.
The host coordinates the manufacturing process via down-line system
and task loading and transparent task-to-task communication for data
acquisition and retrieval. (Refer to the DECnet-VAX System Manager's
Guide for more information on down-line loading.)

Node DALLAS provides computing power sufficient for conducting
experiments and collecting data; research and development involving
development of local programs replaces the need to use the resources
of the host. The host, however, has access to this remote data base,
and controls simple procedures that tasks at both NYC and DALLAS must
carry out in concert. A nontransparent task running on the host
processor controls the exchange of information between the two tasks.

Finally, marketing has direct input to the host in the form of order
entry at node KANSAS. Typically, such input might involve direct
access to files or programs that update the central data base. The
host, in turn, updates the remote data base with inventory information
and other sales-related data.

TRNTO and DENVER

® Transparent Task-to-Task Communication
(inventory control)

® File Access (file transfer & updating)

® Device Access (printing reports at
remote node)

® Remote Command Terminals

KANSAS ‘/’\BOSTON

® File Access

e N e N
(updating Local Data Base) ontransparent Task-to-Task Communication

(process control)
Remote Command Terminals

NYC and BANGOR

DALLAS
® Command File Submission ® Downline Task Loading
® File Access (updating files) ® Task-to-Task Communication
® Device Access (data acquisition & retrieval)

(printing data at remote node)
ZK-835-82

Figure 1-3: Operational Capabilities of DECnet-VAX

Such a network takes advantage of the host's resources efficiently and
effectively. The centralized location of the host computer enables it
to communicate with all remote nodes performing their individual
functions. To control and monitor the wvarious functions of the
division, the local VAX/VMS user in interactive or batch mode can use
DCL commands to access remote files and devices; the network
programmer can develop programs for <controlling the manufacturing
process and for accessing files on the remote data bases. Remote
command terminals allow network users to 1log in at remote VAX/VMS
nodes and perform operations just as they would at the local node.
Thus DECnet-VAX provides all the facilities for operating within a
network environment while distributing the processing load efficiently
among the available network resources.

CHAPTER 2

ACCESSING THE NETWORK

This chapter presents general information that you need to access the
network wvia DECnet-VAX software. This information includes the
general format for network file and task specifications, access
control parameters, the use of logical names, and the use of network
command terminals. The format for file specifications 1is applicable
to file handling operations for both the DCL and the RMS interfaces to
the network. The task specification format pertains to task-to-task
communication. The information on access control 1is significant
because it defines the way that both 1local and remote nodes grant
access to their system resources. Finally, this chapter discusses the
use of logical names, focusing on the flexibility that they provide.

2.1 FILE AND TASK SPECIFICATIONS

DECnet-VAX uses the standard VAX/VMS file specification format for
remote file handling and task-to-task communication applications. A
node specification string that includes a node name with an optional
access control string must be present. You use the optional access
control string to explicitly specify access information for both files
and tasks at the remote node (see Section 2.2). Task-to-task
communication requires the use of a task specification string enclosed
in quotation marks. This string identifies the target task to which
you want to connect on a remote node.

Network file specification strings are composed of eight major fields
(or elements), which are arranged in the following formats:

device:[directory]filename.type;version
node-spec:: "foreign-file-spec-string”
"task-spec-string"

The punctuation marks and brackets included in these formats are
required to separate the fields of the file specification. The double
colon (::) after node 1is treated as a single delimiter. Angle
brackets (<>) may be substituted for square brackets ([]) to enclose
directory, and a period (.) may be used in place of the semicolon (;)
to separate type and version. The total 1length of a full file
specification string may not exceed 252 characters.

VAX-11] RMS converts lowercase characters to uppercase and removes
space, tab, and null characters from a file specification, except for
characters within quoted strings (such as "access-control-strings",
"foreign-file-spec-strings", and "task-spec-strings").

The fields of the full file specification defined below emphasize the
fields unique to network processing.

node-spec

ACCESSING THE NETWORK

identifies the target node and specifies which
account on that node to use. If you specify the
name (or number) of the local node, the connection
is made to the local node by DECnet as if it were
a remote node.

The length of a node-spec is 3 to 61 characters,
including the required double colon delimiter.

The format of a node-spec is:

nodename
"access-control-string"::
logical-nodename

Each component of the node-spec isvdefined below:

nodename specifies a node in the network.
(1-6 char) The node name consists of
uppercase alphanumeric characters.
If the node name is all numeric,
it will be interpreted as the node
number (where 0 represents the
local node). (For compatibility
with future versions of DECnet,
you should avoid the use of node
numbers.) You may prefix the node
name with an underscore character
() to designate that it is not a
candidate for 1logical node name

translation.
logical- specifies a logical name for a
nodename node in the network. Refer to
(1-15 char) Section 2.3 for rules governing

the use of logical node names.

access- is an optional quoted character
control- string containing login
string information that is sent to the
(0-42 char) remote node. This string

designates the remote account
under which programs (or tasks)
will execute on your behalf or
remote files will be accessed to
perform the functions that you
request. If you omit the access
control string, the login
information sent to the remote
node is the default access control
string for that node as specified
by the 1local System Manager (see
Section 2.2).

An access control string is
expressed in either of the
following formats:

"username password"

"username password account"

device,
directory,
filename,
type, and
version

foreign-file-
spec-string
(1-127 char)

ACCESSING THE NETWORK

For a VAX/VMS node, either format
is acceptable, but the shorter
form is generally used because
VAX/VMS 1ignores the account name
subfield when you 1log in. You
should refer to the appropriate
DECnet documentation for the
access control string format for
nodes other than VAX/VMS.

Space and tab characters (or
multiples thereof) delimit
username, password, and account.
Therefore, each substring within
the access-control-string may
contain any characters except the
quote, space, and tab characters.

are five optional fields that collectively
identify the file to be accessed on a remote node.
The definitions and syntax rules for these fields
are the same for network use as for 1local file
access, 1including the specification of seven
levels of subdirectories and the use of wild card
characters where valid. If the syntax of the file
specification differs from that of VAX/VMS, use
the foreign-file-spec-string format.

If a device or directory is not specified in the
file specification string, default values are
supplied by the target node, which uses the
conventions of its operating system. If the
target node is VAX/VMS, all defaults apply as
though the wuser had logged in at the remote node
using the access control information implicitly or
explicitly supplied.

The VAX-11 Record Management Services Reference

Manual contains a detailed explanation of the

syntax for VAX/VMS file specifications.

is a dquoted character string that identifies the
file to be accessed on a remote node. The syntax
of the file specification must be in the format
recognized by the operating system of the remote
node.

When you put a file specification between
quotation marks, the VAX-11 RMS facility at the
local node performs no syntax checking or 1logical
name translation. Rather, the local node passes
the file specification intact to the remote node
where it 1s interpreted. Use the quoted string
format when the file specification syntax of the
remote node differs from that of VAX/VMS. For
example, a RSTS file specification may contain a
dollar sign ($):

$ TYPE KANSAS::"SSTART.CTL"

task-spec-
string
(2-32 char)

ACCESSING THE NETWORK

is a quoted string that identifies the remote task
to which you attempt the logical link connection.
You identify the task by object type. An object
type is a discrete identifier for either a user
task or a known object on a remote node. Object
types have two forms:

e Zero (0) plus a name or TASK plus a name (for
example, "O=TEST2" or "TASK=TEST2")

e Nonzero without a name (for example, "17=" or
"FAL=", where FAL in this case is the name
specified for object 17 by the NCP command
DEFINE OBJECT)

Nonzero network objects (known objects) are
intended for generic process addressing over the
network. For example, a program written to
establish a 1logical link with the FAL object may
send a request by addressing object type 17.
User-written tasks are usually addressed as object
type 0 plus a name, but they may also be addressed
with a nonzero object type alone. (Refer to the
Introduction to DECnet manual for a complete
discussion of object types and their |use.)
Appendix A lists the object type numbers reserved
for standard DECnet services and those available
for user-written programs.

To establish a 1logical 1link connection with a
remote task addressed as object type 0, use either
of the following forms of task specification
string, where taskname is one to nine characters
in length:

{ "TASK=taskname" }
"O=taskname"

If the remote node is a VAX/VMS system, the
taskname string represents the file name of a DCL
command procedure to be executed at the remote
node. (If the remote node 1is not a VAX/VMS
system, the maximum length of the task name that
it accepts may be different.) The command
procedure can complete the logical link itself or
it can include a DCL RUN command to execute a
program that completes the logical link.

To address the remote task by a nonzero object
type, use the following form as the task
specification string, where n is an object type
number (in the range of 1 to 255) and xyz is an
object name equated to a number via the NCP
command DEFINE OBJECT:

ey

ACCESSING THE NETWORK

Examples of network file specifications
1. DALLAS::TEST.DAT

Use this file specification to access the file TEST.DAT on
node DALLAS.

2. TRNTO::DMA2: [INVENTORY]TEST.DAT; 3
TRNTO"KC JONES"::DBAl1:TEST.DAT;3

The first of these two file specifications provides no
explicit access control information but the second one does.

3. KANSAS::"$START.CTL"
TOPS20"KC JONES APOLLO"::"A-VERY-LONG-FILE-NAME.TEST.5"

These examples illustrate the use of quotation marks when the
remote node's file specification syntax differs from that of

VAX/VMS.

Examples of network task specifications
1. BOSTON::"TASK=TEST2"

This specification identifies the task TEST2 by using the
TASK= form for specifying remote tasks.

2. BOSTON"JOHN SMITH"::"0=TEST2"

This example is the same as the one above, except that access
control information is provided and the alternative 0= form
for specifying a task is used.

3. DALLAS::"150="

This specification identifies the user-defined network object
by object type (150).

2.2 ACCESS CONTROL

Access control is the control that a node exercises over inbound
logical 1link connections. The terms inbound and outbound refer to the
direction of the logical link connection request. A node receives and
processes inbound requests; it processes and sends outbound requests.
This distinction is useful for discussing access control as it relates
to VAX/VMS nodes in a network. Refer to appropriate DECnet
documentation if the node to which you want to connect is other than
VAX/VMS.

When DECnet-VAX software sends an outbound connection request in
response to either a remote file access or a task-to-task
communication operation, certain access control information may be
necessary to connect successfully to the remote node and log in. As
in logging in at your local VAX/VMS node, you can supply specific
access control information in the form of a user name and password
that the remote node recognizes. The remote node processes inbound
connection requests containing this information to verify that you are
a valid user of the system.

Upon receiving an inbound connection request, DECnet-VAX software at
the remote node creates a process and starts the LOGINOUT image, which
verifies your access rights by checking the User Authorization File

ACCESSING THE NETWORK

(UAF). A user account record is set up for you beforehand within this
file by the System Manager. Generally, every time you access a
network node, your status as a valid user of that node will be
verified against the information contained 1in the UAF. 1In this
instance, access control provides one form of network security. One
exception to this form of access control checking is in nontransparent
task-to-task communication wherein a task can receive multiple inbound
connection requests (see Chapter 7).

There are two ways to supply access control information for network
access:

® You can explicitly specify an access control string as part of
a file or task specification in the node field.

e You can have the local node forward default or null access
control information to the remote node.

In either case, DECnet software sends this information to the remote
node which 1in turn processes the inbound connection request and, if
this information is valid, grants access. If you include an access
control string as part of a node specification, this information is
always sent directly to the remote node. The privileges associated
with either the local account under which your process is running or
the specified remote account are of no concern to the local DECnet-VAX
implementation. Figure 2-1 illustrates the access control processing
that takes place for a simple DCL command.

$ COPY TEXT.NEW TRNTO "WHITE XYZ"::DBA1:TEXT.TXT
~ -

1

RMS
Processing
Remote
Local Node + Node TRNTO::
BOSTON::
DECnet-VAX DECnet-VAX |- LOGINOUT.EXE
Software Software Runs

(If Access
Information
Checks Out)

Access r- j— FATPro;sing— _I
Validity
Checking | Command Procedure | |

Key: SYS$SYSTEM: FAL.COM
. WHITE XYZ "

is executed

| I

| ¥ I

| FAL.EXE I

Runs

A |
I

|

TEXT.TXT l FAL.LOG
is produced

I I
|

ZK-836-82

Figure 2-1: Remote File Access Using Access
Control String Information

ACCESSING THE NETWORK

When explicit access control information 1is not provided 1in the
connection request, DECnet-VAX software uses the remote node name
specified in the connection request as a key to locate the appropriate
record in the 1local Configuration Data Base. This record contains
default access control information applicable to the remote node.
Your System Manager creates this entry when establishing the
Configuration Data Base. (Refer to the DECnhet-VAX System Manager's
Guide for additional information on the Configuration Data Base.)
Depending on the privileges required by the object with which you want
to connect and those of the user process (see Figure 2-3), one of
three possible sets of default access control information is sent to
the remote node: default privileged, default nonprivileged, or null.
Because these defaults are node parameters, all privileged operations
requested with default access control for a given node run under the
same default account. The same is true for nonprivileged operations
requested with default -access control. Fiqure 2-2 illustrates the
access control processing that takes place for the same DCL command as
in the example 1in Figure 2-1, except that the DCL command does not
specify an access control string.

$ COPY TEXT.NEW TRNTO::DBAT:TEXT.TXT
~ /

[]

RMS
Processing
Remote
Local Node T Node TRNTO::
BOSTON:: '
Key: TRNTO:: DECnet-VAX DECnet-VAX |~ LOGINOUT.EXE
Software — = Software Runs
(if Access
Information
Checks Out)
¥ Configuration, Access r i FATPro;;;;ing -I
Data Validity
Base Checking l Command Procedure I
SYS$SYSTEM: FAL.COM
Key: l is executed I
“DECNET NONPRIV”
E""ENE ONPRIV" FAL.EXE |
DE TN Runs
Default]
Access
Control ' |
Info.
TEXT.TXT | FAL.LOG |
| is produced |
I |

ZK-837-82

Figure 2-2: Remote File Access Using Default
Access Control Information

Note that, in DECnet-VAX wusage, nonprivileged means no privileges
other than TMPMBX and NETMBX. Privileged means any privileges in
addition to TMPMBX and NETMBX. The context for network-related
privileges is the NCP command DEFINE OBJECT. Normally, task-to-task
communication and remote file access are nonprivileged operations.

ACCESSING THE NETWORK

The Configuration Data Base may also define privileges associated with
network operations such as task-to-task communication. The System
Manager may create object entries with associated privileges. There
must be a separate entry for every numbered object that might be
requested ("n=").

If, on an outbound connect to an object,
connection and you do not have sufficient
access control. On an inbound connection to a nonzero object, any
access control information you specify is used. If you do not specify
access control information, then one of the following will occur:

you attempt a privileged
privilege, then you get null

e If access control information is associated with the object in
the Configuration Data Base, then it is used.

e If no access control information 1is associated with the
object, then the access control for the local nonprivileged
network account (if any) is used; otherwise, no information
is used.

Access control is not checked for connections to running tasks that
have declared names or object numbers (see Section 7.4.1). Figure 2-3
illustrates the process used to determine what access control
information (if any) is used for outbound and inbound connections to
objects. (Note that in order to use default access control for a
privileged account, the process that makes the request must have at
least the same local privileges.) Local privileges are completely
independent of remote privileges. The DECnet-VAX System Manager's
Guide provides a more detailed discussion of access control, network
— 3 .
privileges, and the Configuration Data Base.
Outbound Connection Inbound Connection
(from local node) (to local node)
from remote
node
Explicit DECnet-VAX Explicit LOGINOUT
Access Control Yes Sends it Access Control Yes Uses it
Information Inform.atlon
Used Received
DECnet-VAX
Sends Object’
of the Connection Default Data Base LOGINOUT
Requires Privileges No Nonprivileged Defiﬁﬁ?\lgcs)un d Yes Uses it >
other than TMPMBX Information Access Control
and NETMBX nformation,
DECnet-VAX
Sends
User P Default Nonprivileged LoGinout
ser Frocess Yes Privileged Account Information Yes Uses it »
has the Required 3 > . .
Privil Information Associated with
rivileges from node Local Node
data base
No No
DECnet-Vax Sends Null Information LOGINOUT Uses No Access Control
Y %

Figure 2-3:

to remote
node

Outbound and Inbound Connect Flowcharts

2-8

ZK-838-82

ACCESSING THE NETWORK

2.3 USING LOGICAL NAMES

The use of logical names for network operations allows you to refer to
network file and task specifications without using actual names that
you give these elements. Logical names serve as a kind of shorthand
for specifying all or a portion of a full file specification. The
inherent flexibility in using logical names allows you to pass file
specifications defined at the DCL level to an executing image at run
time., For example, logical names allow a program to access local or
remote files without changing the program. You can also use logical
names to conceal access control information from other users by
embedding it in a 1logical name defined in the process logical name
table. Logical names provide convenient and powerful multilevel
access control specification.

The rules that govern the use of logical names for network operations
are as follows:

e Both the device name and node name elements of a full file
specification string can be logical names. However, once a
node specification is encountered during file parsing, the
device name that follows will be treated as a logical name
only if it translates to an equivalence string that was
entered in user mode in the ©process 1logical name table.
Otherwise, the device name is passed unaltered to the remote
node, where it is subject to logical name translation.

e A logical name appearing in the device name position can
supply any file specification string elements when translated.

e A logical name appearing in the node name position can supply
only a node-spec when translated. Therefore, its equivalence
string must end with a double colon.

® An access control string associated with a logical node name
becomes the new access control string for the node-spec of the
equivalence string, even if the node-spec contained an access
control string. Thus, vyou can easily specify a default (or
override any) access control string defined for the node-spec
resulting from logical name translation.

e After a logical node name is translated, the new node name
becomes a candidate for logical node name translation.

e A maximum of ten logical device name translations and ten
logical node name translations is permitted. If you exceed
these limits, an RMS error (RMS$_LNE) is returned.

Examples of Logical Names

1. $ DEFINE NEW_YORK NYC::

$ DEFINE TORONTO TRNTO::

$ DEFINE FILE TORONTO::DBAl: [INVENTORY.COM]COPYTEST.COM
$ TYPE FILE

This command displays (at the local node) file COPYTEST.COM
in directory [INVENTORY.COM] on remote node TRNTO.

2. $ DEFINE A TRNTO::DBAl: [INVENTORY.COM]
$ TYPE A:COPYTEST.COM

This command displays file COPYTEST.COM in an alternate
manner.,

2-9

ACCESSING THE NETWORK

3. $ DEFINE B TRNTO:: ’
$ TYPE B::DBAl: [INVENTORY.COM]COPYTEST.COM

This command displays file COPYTEST.COM in still another
manner.

$ DEFINE TORONTO TRNTO::

$ DEFINE NODE "TORONTO""TEST RESULTS""::"
$ DEFINE DEVICE NODE::DBAl:

$ DEFINE REMOTE DEVICE: [FINAL.RESULTS]

$ TYPE REMOTE:TEST.DAT

This command displays file TEST.DAT in directory
[FINAL.RESULTS] on node TRNTO. The file specification was
expanded as follows:

$ TYPE REMOTE:TEST.DAT

DEVICE: [FINAL.RESULTS]TEST.DAT

NODE: :DBAl: [FINAL.RESULTS]TEST.DAT

TORONTO"TEST RESULTS"::DBAl: [FINAL,RESULTS]TEST.DAT

TRNTO"TEST RESULTS"::DBAl: [FINAL.RESULTS]TEST.DAT

2.3.1 1Iterative Translation

The node name portion of a node specification is translated
recursively. For example:

$ DEFINE ALPHA BOSTON::

$ DEFINE BETA ALPHA::

$ DEFINE C "BETA""FRED XJ5""::DMl: [TEMP]"
$ TYPE C:FILE.DAT

This command displays file FILE.DAT in directory [TEMP] on node
BOSTON. The file specification was expanded as follows:

$ TYPE C:FILE.DAT

BETA"FRED XJ5"::DM1: [TEMP]FILE.DAT
ALPHA"FRED XJ5"::DM1: [TEMP]FILE.DAT
BOSTON"FRED XJ5"::DM1: [TEMP]FILE.DAT

When logical node names are translated iteratively, the access control
information first translated overrides subsequent access control
information. For example,

$ DEFINE TORONTO "TRNTO""TEST RESULTS""::"

$ DEFINE TEST1 "TORONTO""TEST 1001""::DBAl:"
$ DEFINE TEST2 TORONTO::DBA2:
$

TYPE TEST1:PROC.001,TEST2:PROC.002

In the above example, TEST1 translates to TRNTO"TEST 1001"::DBAl: and
TEST2 translates to TRNTO"TEST RESULTS"::DBA2:. Note that TORONTO
would be an invalid node name were it not a logical name that
translated to a node specification containing a node name of one to
six characters.

ACCESSING THE NETWORK

2.3.2 Names Prefixed by an Underscore Character

Device names and node names that are prefixed by an underscore
character () are not candidates for 1logical name translation.
However, if you prefix the underscore character to a name, it 1is not
considered part of the name (for example, BOSTON is a valid node name
in this respect). For example:

DEFINE BOSTON TRNTO:: :

TYPE BOSTON::A.DAT, BOSTON::B.DAT
DEFINE/USER DBAO DBA2:

TYPE BOSTON::DBA0:C.DAT, BOSTON:: DBAQ:D.DAT

wVnrvr

In the example above, A.DAT comes from node TRNTO, B.DAT comes from
node BOSTON, C.DAT comes from DBA2 on node TRNTO, and D.DAT comes from
DBAO on node BOSTON. Note that if the 1logical name DBAO were not
placed in the process table in wuser mode, it would not have been
translated at the local node for the file specification containing
C.DAT.

2.4 NETWORK COMMAND TERMINALS

DECnet-VAX network command terminals are implemented via the VAX/VMS
remote command terminal facility. This facility permits a single user
to establish communication with a remote VAX/VMS node and to use the
facilities of that system while physically connected to the local
node. By means of this link, you can temporarily become a local user
of the remote node and thereby perform functions that the remote node
allows its local users to perform.

To establish communication with a remote VAX/VMS node, use the DCL
command SET HOST. The format for this command is as follows:

SET HOST nodename
In this command, nodename is defined as follows:

nodename is a 1- to 6-character name (or number) specifying
the remote node at which you want to log in.

The remote system will prompt for a user name and password, and, if
this information is wvalid, it will cause you to be logged in at the
remote node. There is no special control character handling (other
than CTRL/Y) for remote command terminal operations. To return
control to your local node, type LOGOUT; the following message will
appear, indicating that <control has been transferred to your local
node: ‘

$REM-S5-END, control returned to node _nodename::

NOTE

Repeated pressing of CTRL/Y rapidly will
generate a prompt asking if the remote
connection should be broken. If you
answer "Yes" to the prompt, control will
return to the 1local node. This is
useful if for some reason you cannot
return to the local node properly.

ACCESSING THE NETWORK

The following command sequence illustrates the operation of remote
command terminals for our network example (the name of the local node
is BOSTON):

% SET HOST TRNTO
Username: SMITH
Fassword?

Welcome to VAX/UME Version V3,0 on node _TRNTO:?

¢ LOGOUT
SMITH logded out at B-MAY-82 12131:155.49

AREM~8-ENDs control returned to node .BOSTON?:

+

t

Once logged in at a remote node, you can use the SET HOST command to
establish communication with another node. In the above example,
after logging in at node TRNTO, you could type SET HOST DENVER, which
would cause you to be logged in at node DENVER. Note that when you
are logged out at node DENVER, control returns to node TRNTO. Refer
to the VAX/VMS Command Language User's Guide for a complete discussion
of the SET HOST command.

CHAPTER 3

REMOTE FILE ACCESS USING DCL

Most VAX/VMS DCL commands allow you to perform file operations at a
remote node. These commands enable you to obtain directory listings,
manipulate files, and execute command procedures over the network.
The DCL commands described in this chapter use VAX-11l RMS to perform
the following network file operations:

e List directories located on a remote node

@ Copy files to and from remote nodes and between remote nodes
e Append files to a file

e Delete and purge files from a remote node

® Open, read, write, and close files at a remote node from a
command procedure

® Submit command procedure files for execution at the remote
nodes where they reside

e Print files at the remote nodes where they reside
e Type files located on a remote node

® Sort and merge remote files

e Search remote files

e Obtain file specification or attribute information about
remote files

® Compare two files for differences

e Analyze the structure of remote VAX-~11l RMS files

e Convert files from one format to another while copying the
result to or from a remote node

® Dump the contents of remote files for inspection
e Perform backup operations on remote VAX/VMS disk files

Many VAX/VMS DCL commands permit access to remote files. These
commands fall into the following categories: 1logical name operations,
file operations, lexical functions, and record access operations.
This chapter defines the commands (and relevant command and file
qualifiers) that you can use over the network. The descriptions of
the commands include restrictions on the use of certain commands in a

REMOTE FILE ACCESS USING DCL

heterogeneous network environment (because of features not available
on remote systems). For complete descriptions of these commands,
consult the VAX/VMS Command Language User's Guide.

3.1 ACCESSING THE NETWORK USING DCL COMMANDS

A VAX/VMS interactive or batch user is able to perform a variety of
network file operations through DCL commands. Conceptually, accessing
the network at this level is the same as using DCL directly for 1local
operations. For most DCL commands, you need only include a node name
as part of the standard VAX/VMS file specification to denote a remote
file. In addition, NETMBX and TMPMBX privileges are required to
execute most of the commands described in this chapter.

Table 3-1 summarizes the functions of DCL commands that are commonly
used to access remote files in a network environment.

Table 3-1: DCL Command Summary

Type of Operation and ' Function
Command Statement

Logical Name Operations

ASSIGN Associates a file specification,
node name, or device name with a
logical name for subsequent use
in commands and programs at the
local node

DEASSIGN . Cancels a logical name
assignment made with the ASSIGN
or DEFINE command

DEFINE Creates a logical name for use
at the local node with an
equivalence name string that 1is
a partial or full file
specification (similar to the
ASSIGN command)

SHOW LOGICAL Displays the current assignments
for logical names and
equivalence names made by the
ASSIGN or DEFINE command

SHOW TRANSLATION Searches logical name tables for
a specific 1logical name and
displays the equivalence name of
the first match found

File Operations

ANALYZE/RMS FILE Analyzes the internal structure
of a VAX~11 RMS file, optionally
generating an FDL (File

Definition Language) file

(continued on next page)

REMOTE FILE ACCESS USING DCL

Table 3-1 (Cont.):

DCL Command Summary

Type of Operation and
Command Statement

Function

APPEND

BACKUP

CONVERT

CorPY

CREATE

DELETE

DIFFERENCES

DIRECTORY

DUMP/RECORDS

MERGE

PRINT/REMOTE

PURGE

SEARCH

Adds the contents of one or more
files to the end of another file

Performs save and - restore
operations on local files using
a saveset residing on a remote
VAX/VMS node.

Copies records from one file to
another file, changing the
organization and record format
to that of the second file (if
it exists) or <creating a new
file wusing the file attributes
specified in an FDL file

Copies one or more files to or
from a remote node into one or
more additional files

Creates a sequential disk file
from records that follow the
command in the input stream

Deletes one or more remote files

Compares the contents of two
files and produces an output
file that lists any differences
found

Displays the file name and
optional file attribute
information about a remote file
or group of remote files

Displays the contents of a
remote file 1in the data format
specified

Combines two or more similarly
sorted remote files into one new
file

Queues for printing one or more
files at the nodes where they
reside

Purges one or more remote files
Searches one or more files and

lists all occurrences of one or
more specified strings

(continued on next page)

REMOTE FILE ACCESS USING DCL

Table 3-1 (Cont.): DCL Command Summary

Type of Operation and Function
Command Statement

SORT Reorders records in a remote
file and creates a new output
file (or an address file to
access the records)

SUBMIT/REMOTE Queues for execution one or more
command procedures at the nodes
where they reside

TYPE Displays the contents of a
remote file or files

Lexical Functions

F$FILE ATTRIBUTES Returns attribute information
about a remote file

FSPARSE Returns a partial or full file
specification for a remote file

FSSEARCH Returns the full file
specification for the next
remote file that matches the

given wild card file
specification

Record Access Operations

CLOSE Closes a remote file previously

opened by the OPEN command

OPEN Opens a remote file for reading
or writing at the command level

READ Reads a single record from a
remote input file

WRITE Writes a single record to a
remote output file

3.2 LOGICAL NAME COMMANDS

Several DCL commands permit you to create, delete, and display logical
names. Although logical name manipulation is performed locally by the
commands described in this chapter, use of 1logical names in file
specifications in other DCL commands does affect the network.
Consequently, the logical name support commands are described below.

3.2.1 ASSIGN, DEASSIGN, and DEFINE

The ASSIGN, DEASSIGN, and DEFINE commands allow you to generate
logical names for nodes and devices for use in file specifications.

REMOTE FILE ACCESS USING DCL

These commands provide a convenient way to use logical file
specifications without - having to define physical device
specifications. When used for network operations, these commands
support all command and file qualifiers that you would normally use
locally.

Examples
1. $ DEFINE TORONTO TRNTO::DBAQO: [DECNET.DEMO.COM]

This DEFINE command places the logical name TORONTO in the
process logical name table with an equivalence name of
TRNTO: : DBAQ: [DECNET.DEMO.COM] .

2. §$ DEFINE LOCAL "BOSTON""JOHN SMITH JKS""::"

This DEFINE command places the 1logical name LOCAL 1in the
process 1logical name table with a remote node equivalence
name of BOSTON"JOHN SMITH JKS"::. To satisfy conventions for
local DCL command string processing, you must use three sets
of quotation marks, so that access control information will
be enclosed in one set of quotation marks in the equivalence
name.

3. §$ ASSIGN DALLAS::DB0O: DATA

This ASSIGN command associates the logical name DATA with the
device specification DBO on remote node DALLAS. Subsequent
references to the logical name DATA result in references to
the disk on the remote node.

4. $ DEASSIGN DATA

This DEASSIGN command cancels the logical name assignment
made in the above example.

3.2.2 SHOW LOGICAL and SHOW TRANSLATION

The SHOW LOGICAL command displays current logical name assignments and
the SHOW TRANSLATION command displays the result of translating a
logical name. For a discussion of the use of logical names for
network operations, see Chapter 2.

Examples
1. $ SHOW LOGICAL

This SHOW LOGICAL command displays the current contents of
the process, group, and system logical name tables.

2. $ SHOW TRANSLATION MASTER
This command causes the logical name tables to be searched

for the 1logical name MASTER, and displays its current
equivalence name.

3.3 COMMANDS FOR FILE HANDLING

Many DCL commands that contain file specifications can be used to
access files stored on remote nodes. The following is a list of DCL
commands that are useful in a network context and are supported in
part or in full in that environment. This list notes restrictions on

3-5

REMOTE FILE ACCESS USING DCL

using certain command qualifiers and file qualifiers when entering
particular commands in a network context. Complete descriptions of
the file-handling commands appear in the VAX/VMS Command Language
User's Guide.

ANALYZE/RMS_FILE file-specl,...]
This command is supported only for the examination of files
generated by VAX-11 RMS or RMS-1l.

APPEND input-file-spec[,...] output-file-spec

BACKUP input-specifier output-specifier
This command is supported only to access savesets located on
remote VAX/VMS nodes. An input or output specifier that
includes a remote node name must also include the file
qualifier /SAVE_SET.

The copy, compare, and journal operations are not supported.
CONVERT input-file-spec[,...] output-file-spec

COPY input-file-spec[,...] output-file-spec
The following file qualifiers are not supported if the
output file is on a remote node:

/[NO]OVERLAY
/ [NOJREPLACE

CREATE file-spec

The /DIRECTORY qualifier is not supported.
DELETE file-spec[,...]
DIFFERENCES master-file-spec [revision-file-spec]

DIRECTORY [file-spec[,...]]

T@e command qualifier /FULL is supported except for the
file identification number which is displayed as <unknownd>.

MERGE input-file-gpecl,input-file-spec2{,...] output-file-spec

DUMP/RECORDS [= (option[,...])] file-spec
The following command qualifiers are not supported:
/ALLOCATED
/BLOCKS
PRINT/REMOTE file-spec[,...]

No other qualifiers may be used with /REMOTE.

REMOTE FILE ACCESS USING DCL
PURGE file-spec[,...]
SEARCH file-spec(,...] search-string[,...]

SORT input-file-spec[,...] output-file-spec

The /RSX11l qualifier is not supported.

SUBMIT/REMOTE file-spec[,...]

No other qualifiers may be used with /REMOTE.
TYPE file-specl,...]

The DCL commands listed below are not supported for access to files on
remote nodes:

e

RENAME

RUN

SET DEFAULT
UNLOCK

The following subsections describe in more detail the use of DCL
commands for handling files over the network. Note that if you do not
specify an access control string in the file specification in a DCL
command, the default DECnet account at that node is accessed if it
exists.

3.3.1 ANALYZE/RMS FILE

Use the ANALYZE/RMS FILE command to analyze the internal structure of
a remote VAX-11] RMS or RMS-11 file. You can specify the command
qualifier /FDL to generate an FDL (File Definition Language) file from
the data file. Using other command qualifiers, you can check the file
structure for errors, generate a statistical report on the file's
structure and use, or enter interactive mode to explore the structure
of the file. You can specify only one of these command qualifiers in
each command.

Examples

1. $ ANALYZE/RMS FILE DENVER::DBl: [PROD]RUN.DAT

This ANALYZE/RMS_EILE command analyzes thé structure of the
file RUN,DAT residing at remote node DENVER,

2. $ ANALYZE/RMS FILE/FDL/OUTPUT=TEST.FDL
$ File(s): DENVER::DB1:[PROD]RUN.DAT

This ANALYZE/RMS FILE command analyzes the structure of the
file RUN.DAT at remote node DENVER and generates the FDL file
TEST.FDL at the local node.

REMOTE FILE ACCESS USING DCL

3.3.2 APPEND and COPY

Use the APPEND command to add the contents of one or more specified
input files to the end of a specified output file. Use the COPY
command to create a new file from one or more existing files.

Examples

1. ¢ COPY BOSTON::DMA2:TEST.DAT;5
$ To: TRNTO::DBAl:[MODEL,TEST]TEST.DAT/ALLOCATION=50

This COPY command copies the file TEST.DAT;5 on device DMA2
at node BOSTON to a new file named TEST.DAT at remote node
TRNTO. The /ALLOCATE qualifier initially allocates 50 blocks
for the new file TEST.DAT at node TRNTO.

2. $ APPEND/LOG BOSTON"JOHN SMITH JKS"::DEMOl.DAT,DEMO2.DAT
$ To: TRNTO::DBAl:[MODEL.TEST]TEST.DAT

This APPEND command adds the contents of the files DEMOl.DAT
and DEMO2.DAT at remote node BOSTON to the end of file
TEST.DAT at remote node TRNTO. The /LOG dqualifier displays
the fully expanded names of the files used.

3. § COPY SAMPLE.EXE DALLAS::DB0:[117,10]SAMPLE.EXE/CONTIGUOUS

This COPY command copies the file SAMPLE.EXE on the 1local
node to a file with the same name at remote node DALLAS. The
/CONTIGUOUS qualifier indicates that the output £file 1is to
occupy consecutive physical disk blocks.

4, $ COPY DALLAS::T1.DAT,T2.DAT,T3.DAT *.*
$ COPY *_,* TRNTO::* *

The first COPY command copies the three files T1.DAT, T2.DAT,
and T3.DAT on remote node DALLAS to the local node while
preserving the names of the files. The second example is a
more generalized form of the COPY command. All files within
the user directory at the local node are copied to the remote
node TRNTO. The new files will have the same names as the
input files.

3.3.3 BACKUP

You can use the BACKUP command to save local files in a BACKUP saveset
residing on a remote VAX/VMS node. You can also use this command to
restore at the local node files that were previously saved in a
saveset on a remote VAX/VMS node. Use BACKUP/LIST to display the
names and attributes of files cataloged in a remote saveset. The
remote BACKUP saveset cannot be on magnetic tape; it must reside on
disk.

Examples

1. $ BACKUP
$ From: DBl:[SCHED]*.*
$ To: DENVER::DBA2: [SAVE]SCH.BCK/SAVE_SET

This BACKUP command saves the files in the directory SCHED on
disk DBl at the local node in the BACKUP saveset SCH.BCK at
remote node DENVER. The /SAVE SET qualifier is required to
identify the output specifier as a saveset on a Files-11
medium.

3-8

2.

REMOTE FILE ACCESS USING DCL

$ BACKUP/LIST DENVER: :DBA2: [SAVE]SCH.BCK/SAVE_SET

This BACKUP command lists the BACKUP summary information, the
original BACKUP command used, and the file name, size and
creation date for each file in the saveset created in example
1. The /SAVE_SET qualifier is required to identify the input
specifier as a saveset on a Files-11 medium.

3.3.4 CONVERT

Use the CONVERT command to transfer records from a source data file to
a second data file, which can differ in file organization and format
from the first. You can use this command to transfer files to or from

a remote

node while altering file attributes. If the output file

exists, the Convert Utility (CONVERT) changes the organization and
format of the data from the input file to that of the output file. If
the output file does not exist, the Convert Utility creates it from

the file
You can also use the CONVERT command to copy files to a remote

file.

attributes specified in an FDL (File Definition Language)

node or to retrieve them without modifying file attributes. However,
CONVERT transfers the file record by record and thus does not use
block 1/0.

The Convert Utility is described in the VAX-11 Record Management
Services Utilities Reference Manual.

Examples

1.

$ CONVERT/FDL=TEST.FDL TRNTO::DBAl:[EXP]SUB.DAT CUM.DAT

This CONVERT command creates a new sequential file CUM.DAT
with stream record format at the local node, according to the
specification in the previously created FDL file, TEST.FDL.
The 1input file SUB.DAT at remote node TRNTO is sequential
with variable-length record format. The Convert Utility
copies records from SUB.DAT to CUM.DAT, changing the format
of the records.

The contents of the FDL file TEST.FDL are as follows:

SYSTEM
SOURCE vax/vms
FILE
ORGANIZATION sequential
RECORD
BLOCK_SPAN yes
CARRIAGE_CONTROL carriage return
FORMAT stream
SIZE 0

$ CONVERT MASTER.DAT DENVER::DBl: [PROD]MASTER.SAV

This CONVERT command creates a new file called MASTER.SAV at
remote node DENVER from the file MASTER.DAT at the local
node. Because the /FDL qualifier is not used, the new file
has the same file organization and record format as the
original file. The action of this CONVERT command is similar
to the function performed by the COPY command. However,
CONVERT transfers the file record by record and thus does not
use block I/O.

REMOTE FILE ACCESS USING DCL

3. $ CONVERT/APPEND SALES.TMP KANSAS::[200,2]SALES.CMD

This CONVERT command causes records from the file ' SALES,TMP
at the local node to be added sequentially to the end of the
output file SALES.CMD at remote node KANSAS. The file
SALES.TMP is sequential with variable-length record format,
and the file SALES.CMD 1is sequential with stream record
format. When the Convert Utility 1loads records from the
input file to the output file, it changes the record format.

3.3.5 CREATE

Use the CREATE command to create sequential disk files on a remote
node.

Example

$ CREATE TRNTO::DBAl: [MODEL.TEST]TEST.DAT
1

22

333

4444

~z

$

The CREATE command creates a sequential file named TEST.DAT
that consists of the characters entered on the 1lines
following the CREATE command. The CTRL/Z entry indicates the
end of the file.

3.3.6 DELETE and PURGE

Use the DELETE command to delete one or more files from a mass storage
volume on a remote node. The DELETE command requires that an explicit
version number be included in a file specification wunless the file
specification 1is delimited by quotation marks. A null version number
(;) or a version number of zero (;0) implies the highest version of
the file. Use the PURGE command to delete all but the
highest-numbered version or versions of one or more files residing at
remote nodes.)

Examples

1. $ DELETE/LOG
$ File: TORONTO::DBAQ:[100,5JWORKORDER.DAT;3,0UTPUT.FIL;2

This DELETE command deletes the files WORKORDER.DAT;3 and
OUTPUT.FIL;2 from device DBAO at remote node TORONTO. The
/LOG qualifier displays the file specification of each file
deleted. Note that TORONTO is a logical name.

2. $ DELETE DALLAS"FRED R2D2"::DKO0:[305,321]DECODE.LIS;1

This DELETE command deletes the file DECODE.LIS;1 in
directory [305,321] on device DKO at remote node DALLAS,

3. $ DELETE/CONFIRM
$ File: TRNTO::[SAM.OBJ]A.OBJ;,A.EXE;, [SAM.LIS]A.LIS;

This DELETE command queries the user whether or not each of
the successive files on remote node TRNTO should be deleted.

REMOTE FILE ACCESS USING DCL

4. $ DELETE QUEBEC::"DX1:DEAL.BIG"
$ DELETE QUEBEC::DX1:DEAL.BIG;

Both of these DELETE commands delete the file DEAL.BIG on
device DX1 at remote node QUEBEC. Note that the DELETE
command requires an explicit version number in a file
specification. The file to be deleted is on a remote node
whose file syntax does not recognize version numbers.
(QUEBEC 1is an RT-11 node.) Therefore, the file specification
should be enclosed in quotation marks or entered with a null
version number (that is, a trailing semicolon).

5. $ PURGE TRNTO::DBAl: [EXAMPLE]*.LIS/KEEP=2

This PURGE command deletes all but the two highest-numbered
versions of each file of the +type LIS in the directory
EXAMPLE on remote node TRNTO.,

3.3.7 DIFFERENCES

Use the DIFFERENCE command to compare the contents of two files
(either of which can be local or remote) on a record-by-record basis.
The command produces an output file listing any differences.

Examples
1. $ DIFFERENCES BOSTON::DBA2:TEST.DAT TRNTO::DBAl: [PGM]TEST.DAT

This command compares two remote files and displays any
differences found. The first file is TEST.DAT on remote node
BOSTON and the second file is TEST.DAT on remote node TRNTO.

2. $ DIFFERENCES BOSTON::TEST.DAT

This command compares the two highest versions of the file
TEST.DAT in the nonprivileged default DECnet account on
remote node BOSTON,

3.3.8 DIRECTORY

Use the DIRECTORY command to list files and their attributes in a
directory on a remote node.

Examples
1. $ DIRECTORY TRNTO::DBAl: [DOE]LOGIN.COM

This DIRECTORY command 1lists all wversions of the file
LOGIN.COM under directory DOE at remote node TRNTO.

2. S DIRECTORY/DATE/SIZE=ALL TRNTO::DBAl:[DOE...]*.COM

This DIRECTORY command lists all versions of all files with a
file type of COM in all subdirectories of [DOE] on remote
node TRNTO. The listing includes the creation date with each
file, and the file size both in blocks used and in blocks
allocated for each file.

REMOTE FILE ACCESS USING DCL

3. $ DIRECTORY/FULL BOSTON::*VAX* . *

This DIRECTORY command displays full directory information
for each file whose file name contains the string "VAX" in
the nonprivileged default DECnet account on node BOSTON.

4. $ DIRECTORY/SINCE=TODAY BOSTON"JOHN SMITH JKS"::[.MEMO]W%%

This DIRECTORY command lists each file created today in the
user's subdirectory MEMO whose file name begins with "W" and
contains three characters (for example, W03.DOC, WWW.TMP).

5. $§ DIRECTORY TORONTO::

This DIRECTORY command lists‘all the files cataloged in the
directory associated with the default account being accessed
at remote node TORONTO. Note that TORONTO is a logical name.

3.3.9 DUMP/RECORDS

Use the DUMP/RECORDS command to display the contents of remote files
in ASCII, hexadecimal, decimal, or octal representation. The DUMP
command qualifiers /ALLOCATED and /BLOCKS are not supported 1in the
network context.

Example

$ DUMP/RECORDS/OCTAL/WORD
$ File: DALLAS::DB0:[117,10]CALC.DAT/PRINTER

This DUMP/RECORDS command dumps the contents of the file
CALC.DAT, which resides at remote node DALLAS; formats the
output both in octal words and in character strings; and
queues the output to the system printer at the local node.

3.3.10 PRINT/REMOTE

Use the PRINT/REMOTE command to queue files for printing at the remote
nodes on which they exist. One copy of each file specified is
printed. You can specify on the same command line files that exist at
different nodes. If you specify in a PRINT/REMOTE command two or more
files that reside on the same remote VAX/VMS node, each file |is
entered in the SYS$PRINT queue as a separate print job. (Note that
the PRINT/REMOTE command does not copy the files to the remote node;
a separate COPY command must be issued if the file does not reside at
the remote node on which it is to be printed.)

The /REMOTE qualifier is required in the PRINT command whenever a file
specification contains a node name. When you specify /REMOTE, you
cannot specify any other qualifiers for the command. The /REMOTE
qualifier can appear with the command or after a file specification.
The PRINT command supplies a default file type of LIS if you omit the
file type from the file specification.

3-12

REMOTE FILE ACCESS USING DCL

Examples

1. $ PRINT/REMOTE BOSTON: :WORK$: [DECNET.V3]USRGUIDE.MEM, EXP1l.FOR
$ PRINT BOSTON::WORKS$: [DECNET.V3]USRGUIDE.MEM,EXP1l.FOR/REMOTE

Either of the two commands shown above can be entered at node
TRNTO to gqueue for printing at node BOSTON the files
USRGUIDE.MEM and EXP1.FOR which reside at node BOSTON. The
files are entered 1in the SYSSPRINT queue as separate print

jobs.

2., § COPY REPORT.MEM BOSTON::* *
$ PRINT/REMOTE BOSTON: :REPORT.MEM

The two commands shown above are entered at node TRNTO to
cause the file REPORT.MEM located at node TRNTO to be printed
at remote node BOSTON. The file is copied into the default
DECnet directory at the remote node and is not deleted after
printing.

3. §$ COPY REPORT.MEM BOSTON: :LPAO:

An alternative way of performing the same operation as in
example 2 above is to copy the file REPORT.MEM at node TRNTO

* to the printing device on the remote system. If the printing
device 1is spooled (as is usually the case for line printers
on a VAX/VMS system), then the file will not be sent directly
to the device, but rather will be temporarily stored on disk,
entered into the print queue for the device, and deleted
after it is printed.

3.3.11 SEARCH

Use the SEARCH command to search one or more remote files for a
specified string or strings.

Example

$ SEARCH TRNTO::DBAl: [EXP]SUB.DAT,DATA.LIS
$ String(s): NAME

The SEARCH command causes the files SUB.DAT and DATA.LIS at
remote node TRNTO to be searched for all occurrences of the
character string NAME. The list of all occurrences of NAME
is printed at the local terminal.

3.3.12 SORT and MERGE

Use the SORT command to invoke the VAX-11 Sort Utility. This program
reorders records in the input file as directed and creates a new
output file or, optionally, an address file that you can use to access
the reordered records.

Use the MERGE command to invoke the VAX-11] Merge Utility, which
combines two or more sorted files into a single output file that the
utility program creates. The files to be combined must be similarly
sorted, but can reside at different VMS nodes.

3-13

REMOTE FILE ACCESS USING DCL

Examples

l. $ SORT/KEY=(POSITION:1,SIZE:7) -
$_DENVER::DB1l: [RECS]RNDM.FIL ALPHANM.SRT/KEY=(1,7)

This SORT command requests a default alphanumeric sort of the
records in the file RNDM.FIL at remote node DENVER. The SORT
program sorts the records on the basis of the contents of the
first seven characters in each record and writes the sorted
list into the output file ALPHANM.SRT created in the default
directory at the local node.

2. $ MERGE/KEY=(POSITION:1,SIZE:30) -
$_TRNTO: [PGM]FILEl.SRT,FILE2.SRT/CHECK SEQUENCE -
$ MERGEFILE.DAT

This MERGE command causes two 1identically sorted files,
FILE1l.SRT and FILE2.SRT, on the directory PGM at remote node
TRNTO to be merged into another file, MERGEFILE.DAT, created
in the current default directory at the local node. The
input file qualifier /CHECK_SEQUENCE is specified to -ensure
that the input files are sorted in the correct order.

3.3.13 SUBMIT/REMOTE

Use the SUBMIT/REMOTE command to enter command procedure files
residing on a remote node into the batch job queue for execution at
the remote node. You can specify on the same command line command
procedure files located at different remote nodes. If you specify in
a SUBMIT/REMOTE command two or more files located at the same remote
VAX/VMS node, each file 1is entered in the SYSS$BATCH queue as a
separate batch job. (Note that the SUBMIT/REMOTE command does not
copy the £files to the remote node: a separate COPY command must be
issued if the file does not reside at the remote node where it 1is to
be executed.)

The /REMOTE qualifier is required in the SUBMIT command whenever a
file specification contains a node name. When you specify /REMOTE,
you cannot specify any other qualifiers for the command. The /REMOTE
qualifier can appear with the command or after a file specification.
If you omit the file type from the .file specification, the SUBMIT
command supplies a default file type of COM.

Examples

1. $ SUBMIT/REMOTE BOSTON::DMA3: [BROWN]JOBS.COM,LISTALL.COM
$ SUBMIT BOSTON: :DMA3: [BROWN]JOBS.COM,LISTALL.COM/REMOTE

This SUBMIT/REMOTE command entered at node TRNTO submits the
files JOBS.COM and LISTALL.COM on device DMA3 at remote node
BOSTON for execution as separate batch jobs.

2. $ COPY ANALYSIS.COM BOSTON::*,*
$ SUBMIT/REMOTE BOSTON: :ANALYSIS.COM

The two commands shown above are entered at node TRNTO to
cause the file ANALYSIS.COM residing at node TRNTO to be
executed at remote node BOSTON. The file is copied into the
default DECnet directory at the remote node, and is not
deleted after execution.

REMOTE FILE ACCESS USING DCL

3.3.14 TYPE

Use the TYPE command to display the contents of one or more remote
files on the current output device. If you omit the file type in the
file specification, the TYPE command supplies a default of LIS.

Examples

1. $ TYPE TRNTO::DBAl: [DOE]LOGIN.COM

The TYPE command requests that the file LOGIN.COM in
directory DOE at remote node TRNTO be displayed at the local
terminal.

2. §$ TYPE KANSAS::"STEXT.CMD"

The TYPE command requests that the file TEXT.CMD on remote
RSTS/E node KANSAS be displayed at the local terminal. Note
that you use quotation marks when the file specification
syntax of the remote node differs from that of VAX/VMS.

3. $ TYPE TORONTO::NOTICE.TXT/OUTPUT=TEMP.TXT
The TYPE command requests that the file NOTICE.TXT at the
remote node designated by the logical name TORONTO be written

to the specified output file, TEMP.TXT, on the 1local node
rather than to SYS$OUTPUT.

3.4 LEXICAL FUNCTIONS
DCL command procedure files can include lexical functions that return
information about remote files. The lexical functions that can be
used in a network environment are:
FSFILE ATTRIBUTES (file-spec,item)
F$PARSE(file—spec[,default—spec][,related-spec][,field])
FSSEARCH(file-spec[,stream-id}])
Descriptions of the wuse of these 1lexical functions 1in returning
information on remote files is given below. Complete descriptions of

these lexical functions appear in the VAX/VMS Guide to Using Command
Procedures.

An example of a command procedure that includes all three lexical
functions appears in Section 3.6.1.

3.4.1 FS$FILE ATTRIBUTES

Use the F$FILE ATTRIBUTES lexical function in a command procedure to
return a particular item of attribute information about a specified
local or remote file. Listed under the description of
F$FILE ATTRIBUTES in the VAX/VMS Guide to Using Command Procedures are
the items you can specify in the function (for example, ORG for file
organization). The file-spec is specified as a string expression, or
a symbol equated to a string expression; no wild card characters are
allowed.

REMOTE FILE ACCESS USING DCL

Example

$ RFM = FS$FILE ("KANSAS::SY:[200,2]SALES.CMD","RFM")

$ SHOW SYMBOL RFM
RFM = "gTM"

This example returns the record format string of STM (stream)
for the file SALES.CMD at remote RSTS/E node KANSAS.

3.4.2 F$PARSE

Use the FSPARSE lexical function to return a full file specification,
or a particular field of that specification, for a local or remote
file. To identify the file 1in the 1lexical function, specify a
file-spec and, optionally, a default-spec and related-spec. These
arguments are string expressions or symbols equated to string
expressions.

To obtain a portion of a file specification, specify a field name in
the 1lexical function. The field names can be any of the following:
DEVICE, DIRECTORY, NAME, NODE, QUOTED, TYPE, or VERSION,

Example

$ SPEC = FSPARSE ("DENVER::DBl: [PROD]RUN.DAT",,,"TYPE")

$ SHOW SYMBOL SPEC
SPEC = " . DAT"

In this example, the F$PARSE 1lexical function returns the
file type DAT for the file RUN.DAT at remote node DENVER.

3.4.3 FS$SEARCH

Use the FS$SEARCH lexical function to obtain full file specifications
for 1local or remote files that match the file-spec given in the
lexical function. The file-spec, a string expression or symbol
equated to a string expression, can be any wvalid VAX/VMS file
specification, and can include null or wild card fields. Each
consecutive search function returns the next matching file
specification in sequence. When there are no more resultant strings,
the null string is returned.

Example
SLOOP:
$ FILESPEC = F$SEARCH("TRNTO: :DBAl: [PROD] *.DAT")
$ IF FILESPEC .EQS. "" THEN EXIT

$ GOTO LOOP

This example causes the directory [PROD] at remote node TRNTO
to be searched for all files of the type DAT.

3.5 COMMANDS FOR ACCESSING RECORDS

You can use DCL commands within command procedures to open and close
files that reside on remote nodes and to read and write records in
these files. 1In command procedure files to be executed during network

REMOTE FILE ACCESS USING DCL

operations, you can specify all command and file qualifiers for OPEN,
CLOSE, READ, and WRITE that you would normally use in command
procedures to access local files.

3.5.1 OPEN and CLOSE

Use the OPEN command to open a file for reading or writing at the
command level. The CLOSE command closes a file that was opened for
input or output with the OPEN command and deassigns the 1logical name
specified when the file was opened.

The DCL statement OPEN/WRITE creates a file in VFC (variable with
fixed control) format. If the remote node does not support VFC
format, an RMSS_SUPPORT error will be returned.

Example

$ OPEN/READ INPUT FILE TRNTO::DBAO: [COST]INVENTORY.DAT
SREAD LOOP: -

$ READ/END OF FILE=ENDIT INPUT FILE NUM

$ FIRST CHAR=FSEXTRACT(0,1,NUM) -

$ WRITE SYS$SOUTPUT FIRST CHAR

$ GOTO READ LOOP

SENDIT:

$ CLOSE INPUT FILE

This command procedure opens the file INVENTORY.DAT located
at remote node TRNTO as an input file and assigns it the
logical name INPUT FILE. The READ command reads a record
from the 1logical file INPUT FILE into the symbol named NUM.
The next two commands extract the first character from the
record and write the record to the SYSSOUTPUT device. These
two steps occur for all records of the £file wuntil the
procedure reaches the end-of-file. At this point, the CLOSE
command closes the file and deassigns the logical name
INPUT_FILE.

3.5.2 READ and WRITE

Use the READ command to read a single record from a specified remote
input file. Use the WRITE command to write a record to a specified

output file.
Example

1. $ OPEN/WRITE OUTPUT FILE TRNTO: : DBAl: [PGM] PLAN.DAT
$ WRITE OUTPUT_FILE "BEGINNING PHASE 3"

This WRITE command writes a single line of text to the file
PLAN.DAT at remote node TRNTO. '

2. $§ OPEN/READ INPUT FILE TRNTO: : INVENTORY.DAT
$ OPEN/WRITE OUTPUT_FILE RECEIVE.DAT

$ READ INPUT FILE DATA LINE
$ WRITE OUTPUT_FILE DATA_LINE

The READ command requests data from the file INVENTORY.DAT at

remote node TRNTO. The WRITE command writes the value of the
symbol DATA_LINE to the local file RECEIVE.DAT.

3-17

REMOTE FILE ACCESS USING DCL

3.6 COMMAND PROCEDURE EXAMPLES

The following examples illustrate DCL command procedure files you can
use in a network environment. '

3.6.1 Command Procedure Using Lexical Functions
The command procedure shown below, called LISTIDX.COM, employs the

lexical functions FS$PARSE, F$SEARCH, and FSFILE ATTRIBUTES to locate
indexed files in a directory at a local or remote node.

LISTIDX.COM

$!

$! This command rrocedure disrlaus the names of zll indexed
$! files found in the srecified directoryr excluding files
$ 1 with & file ture of TMF, Fl is 3 file-srec that can

$ ortionally be used to indicate the directorwy to be

¢ ! searched.,

$!

% FILE = F¢FARSE(F1s"X.%X")

$ WRITE SYS40UTFUT *A list of indexed files follows ...°

$ WRITE SYS$OUTFUT "*

$L.O0F

$ NEXT = F$SEARCH(FILE)

$ IF NEXT JEQS. "' THEN GOTO LDONE

% IF FEFARSE(NEXTr»»s "*TYFE") JEQS., *.TMF®" THEN GOTO LOOF

$ IF F$FILE.ATTRIRUTES(NEXT:*0ORG") NES. *IDX* THEN GOTO LOOF
% WRITE SYS$OQUTFUT NEXT

$ GOTO LOOF

$TIONE ¢

% EXIT

3.6.2 Command Procedure Using SYS$NET

The example below illustrates a command procedure, called SHOWBQ.COM,
that returns batch job status information to its requestor. Note that
you can use SHOWBQ.COM for task-to-task communication by entering a
task-spec-string in a TYPE command. For example:

$ TYPE TRNTO"BROWN JUNE"::"TASK=SHOWBQ"

In this command procedure, SYSS$SOUTPUT is equated to SYSSNET in user
mode to allow the SHOW QUEUE image to communicate over the logical
link by opening SYS$OUTPUT. When the SHOW QUEUE image exits, the
temporary definition of SYS$SOUTPUT is deleted. In other words, only
one DCL image can use the logical link as the communication path to
the requestor at the other node.

3-18

S B H R W R SRR P R

REMOTE FILE ACCESS USING DCL

SHOWRA, COM

This command srocedure returns stastus information asbout
Jobs entered in bateh cueuwes on the sestem where it
executes., It msw be run interactivelw s & command

rrocedurey subpmitted 35 2 local or remote betenh Jobs o
invoked 2s a3 ‘"remote task® to disrlaw informztion sbout
another sustem, For exameled

$ ESHOWERQ

$ SUBMIT SHOWEQ

$ SUBMIT/REMOTE nodel1SHOWRA
$ TYPE node?:*TASK=8HOWRQ"®

IF F$MODE() LEQS. "NETWORK® THEN GOTO NET
SHOW QUEUE/BATCH/BRIEF/ALL

EXIT
$NET

% DEFINE/USER SYS$OUTFUT SYSENET

$ SHOW QUEUE/EBATCH/BRRIEF/ALL

$ PURGE/KEEP=1 SYS¢LOGIN!SHOWERQ.LOG
$ EXIT

3.7 DISPLAY OF ERROR MESSAGES IN NETWORK ENVIRONMENT -

When you enter a DCL command to perform a network file operation that
does not complete successfully, one or more error messages are written
to SYSSERROR. The following sequence of error messages is typical:

An error message generated by the DCL command interpreter

A primary error message dgenerated by the VAX-11l Record
Management Facility (RMS)

An optional secondary error message associated with the
primary RMS error (from a facility involved in the network
file operation)

Network-specific RMS completion codes and their corresponding message
text are described in Section 4.3.

Examples

1.

$ COPY BOSTON: :DBB2: [TEST]RSLT.DAT *,*

$COPY-E-CLOSEIN, error closing BOSTON::DBB2: [TEST]RSLT.DAT;1
as input -

-RMS-E-CRC, network DAP level CRC check failed

A file-level CRC checksum error was detected when the input
file RSLT.DAT was closed. Error messages generated by the
DCL command interpreter and the RMS facility are displayed on
the terminal.

$ COPY INDEX.DAT BANGOR: :TEMP.DAT

$COPY-E-OPENOUT, error opening _BANGOR: : TEMP.DAT; as output
-RMS~-F-SUPPORT, network operation not supported

-FAL-F-ORG, file organization field rejected

An attempt to copy the file INDEX.DAT to TEMP.DAT at remote
node BANGOR failed because the latter does not support
indexed files., The following generated error messages: the
DCL command interpreter, the RMS facility, and the remote
File Access Listener (FAL) file server utility.

CHAPTER 4

REMOTE FILE ACCESS USING RMS

VAX/VMS provides an efficient and flexible means for accessing remote
files 1in a network environment. Using VAX-11] RMS facilities, you can
perform file-handling operations on entire files or individual records
via programmed calls in VAX-11] MACRO or in one of the higher-level
languages supported over the network. The programming procedures
described in this chapter use standard VAX-11] RMS and higher-level
language I/0 calls to:

@ Create and delete remote files
@ Process existing remote files

e Read, write, update, or delete 1individual records within
remote files

e Perform miscellaneous operations on a file such as rewinding a
record stream, displaying or modifying file attributes, or
extending the size of a file

This chapter describes the general procedures for accessing remote
files wusing VAX-11] MACRO. Specifically, it discusses network access
at the RMS level, network restrictions on file access, network error
reporting, and the wuse of higher-level and MACRO languages in
accessing remote files. The information and examples presented herein
also provide the necessary framework for the discussion of remote file
access found in each higher-level language user guide. You should
also be familiar with the VAX-11 Record Management Services Reference
Manual.

4.1 ACCESSING THE NETWORK AT THE RMS LEVEL

Conceptually, accessing the network at the RMS level is the same as
accessing RMS directly for local file-handling operations. To access
remote files on a VAX/VMS node, use either DCL commands or VAX-11 RMS
service calls along with a standard VAX/VMS file specification that
includes a node name.

Because higher-level language I/0 calls are translated into VAX-11 RMS
calls, the term "RMS service calls" in this chapter includes these
lanqguage-specific calls.

For remote file processing, VAX-11] RMS integrates the network software
necessary to translate standard RMS service calls into the appropriate
system service calls, thereby providing a transparent user interface
to the network.

When you issue an RMS service call with a file specification that

specifies a remote node, VAX-1ll RMS communicates the access request
via the Data Access Protocol (DAP) to the File Access Listener (FAL)

4-1

REMOTE FILE ACCESS USING RMS

task at the remote node. Each DECnet node that supports remote file
access has a FAL task that receives and processes remote file access
requests. FAL translates the calls of the accessing process into
system-specific file-handling calls to perform the desired operations
on files at that node. Figure 4-~1 illustrates this entire process as
it relates to file access processing in both DCL and VAX-11 RMS.

The way you access individual files on a remote system depends on the
source language of the accessing program and on the file system that
resides on the remote node. The next section of this chapter
discusses these considerations as they pertain to programming remote
file~handling applications.

Local Node TRNTO::

COPY*.* BOSTON::*.*
{DCL Command)

Remote Node
I + ' BOSTON::
Process I s I o
Usi
Re:l’:)gte > Processing I . lAX_/_/—MS — - |
File Access | I I] Dg Cfnet-V AX
oftware
|) | |
| l
| DECnet:-VAX I } [. Fitle
Software l DAP] l FAL] ystem
I I] i | l
File | I I |
System -_— — — — l I .
|

ZK-839-82

Figure 4-1: Remote File Access (DCL and RMS)

4.2 VAX-11 NETWORK FILE ACCESS RESTRICTIONS

VAX/VMS supports transparent remote file and record access at the
programming level, including the use of most VAX-11 RMS file and
record operations normally available to the VAX/VMS programmer.
Within the context of these operations, however, certain restrictions
apply to the method of file and record access you can use.
Specifically, each programming language specifies the way you can
access individual files. 1In addition, the way you access a file may
be restricted further by the type of file operations supported by the
remote file system. The user guide for each higher-level language
describes those restrictions that apply for file access operations
performed in that language. VAX-11l RMS restrictions are listed below
and in Section 4.5.3. '

Table 4-1 summarizes the file organizations and record formats that
VAX-11 RMS defines for network operations on remote files from a local
VAX/VMS node. Table 4-2 shows the RMS record access methods and block
I/0 modes for such network operations.

4-2

REMOTE FILE ACCESS USING RMS

Table 4-1: VAX-1ll RMS File and Record Characteristics
for Network Operations
File Record Format

Organization

FIX1 VAR?Z VvFc3 sTM4 STMCR 3 STMLF 6
Sequential Yes Yes Yes Yes No No
Relative Yes Yes Yes NA7 NA NA
Indexed Yes Yes NA NA NA NA
1l - FIX: Fixed-length record format
2 - VAR: Variable-length record format
3 - VFC: Variable-length with fixed-length control record format
4 - STM: Stream format with record terminator set of

LF, FF, VT, and CRLF

5 - STMCR: Stream format with record terminator set of CR
6 - STMLF: Stream format with record terminator set of LF
7 - NA: Not applicable

Table 4-2: VAX-11 RMS Access Modes for Network Operations

File Record Access Mode Block I/0 Mode
Organization
Sequen- Random by: Sequen- | Random by
tial Relative Key | Record tial Virtual
Record Value File Block
Number Address Number
Sequential Yes Yesl NA Yes Yes Yes
Relative Yes Yes NA Yes Yes Yes
Indexed Yes NA Yes Yes Yes Yes
l. For fixed-length records only
4.3 VAX-11l RMS NETWORK ERROR REPORTING
For both local and remote file operations, VAX-11 RMS reports the
success or failure of an operation by returning an RMS completion
code. This primary status code is returned in both Register 0 (RO)
and the completion status code field (STS) of the file access block
(FAB) or record access block (RAB) specified in the original RMS

service call. In addition, some RMS completion codes have secondary
status information associated with them. This information is returned
in the status wvalue field (STV) of the FAB or RAB in the form of

either another status code (usually from a different facility) or a
value that qualifies the primary status code (such as a count). The
RMS completion codes are 1listed in the VAX-11 Record Management
Services Reference Manual.

When an RMS service call is issued for a network file operation, RMS
enters into a dialog with the FAL server at the destination node, in
order to perform the desired operation through the file system in use
at that node. These cooperating processes communicate using the Data
Access Protocol (DAP) to transfer data and to pass control and status

4-3

REMOTE FILE ACCESS USING RMS

information to each other. (The DECnet DIGITAL Network Architecture
Data Access Protocol Functional Specification describes the DAP status
codes.)

To promote network transparency, VAX-11l RMS attempts to map the status
information returned by FAL into the RMS completion code that would be
returned if the file had been accessed locally. It is not possible,
however, to map every DAP status code directly into an RMS code
applicable to local file access, particularly if the remote system
does not use VAX-11 RMS to manage its files. Moreover, certain error
conditions occur only in a network context. To handle these cases,
several network-specific completion codes have been defined. These
codes are summarized in Table 4-3.

Table 4-3: Network-~Specific RMS Completion Codes

Status Code Description

RMS$_ACS error in access control string

Indicates that the format of the access control
string used in the file specification 1is
invalid.

RMS$_BUG_DAP Data Access Protocol error detected; DAP code =
"XXXXXXXX'

Indicates that the operation failed because of a
protocol error detected by either RMS or FAL.
VAX~-11 RMS returns this code in the STS field
and a companion DAP code in the STV field. Note
that a reproducible RMS$ BUG DAP error indicates
a DECnet software error condition that should be
reported to DIGITAL in a Software Performance
Report. However, a nonreproducible RMS$ BUG_DAP
error, especially one that occurs on a
communications line that has had RMS$_CRC errors
reported, normally indicates a hardware
mal function.

RMS$_CRC network DAP level CRC check failed

Signals that file-level cyclic redundancy check
(CRC) checksums computed by RMS and FAL did not
match when compared at file close, thus
indicating that the file is corrupted in some
manner. This condition is caused usually by a
hardware problem; if it occurs repeatedly,
check the communications hardware. You should
retry the file access. If DECnet event logging
is enabled, you can set the Event Logger (EVL)
to count CRC errors and display CRC error
messages. For a connection between two VAX/VMS
nodes, both RMS and FAL will independently log
the event on their systems. (Event 1logging is
déscribed in the DECnet-VAX System Manager's
Guide.)

(continued on next page)

REMOTE FILE ACCESS USING RMS

Table 4-3 (Cont.): Network-Specific RMS Completion Codes

Status Code

Description

RMS$ CRE_STM

RMS$_FTM

RMS$ NETFAIL

RMS$_NET

RMS$_NOD

RMS$_QUO

file was created in stream format

Indicates that RMS has created the file in
stream format with embedded carriage control
because the format and carriage control
specified in the RMS S$CREATE call 1is not
supported by the remote node.

network file transfer mode precludes operation
(SQ0 set)

Indicates that RMS could not perform the
requested operation because DAP file transfer
mode was in effect. For network file access,
setting the SQO bit in the FOP field of the FAB
selects DAP file transfer mode. 1In this mode,
the software blocks data records together for
transmission over the network. This blocking
increases data throughput and reduces CPU
overhead. However, selection of this mode
limits data transfers to one direction: either
transmits using $PUT or SWRITE or receives using
SGET or SREAD. It also disallows other
VAX-11 RMS record operations for the logical
link until the record stream is terminated, via
either $DISCONNECT or $CLOSE. Refer to Section
4.5.3 for additional information.

network operation failed at remote node

Indicates that the requested operation could not
be performed by the file system at the remote
node. The STV field contains a FAL status code
that describes the failure in the context of the
remote system.

network operation failed at remote node; DAP
code = 'XXXXXXXX'

Indicates the same condition as the RMS$ NETFAIL
code (see above) except that the accompanying
DAP status code cannot be translated into a FAL
status code. RMSS$S NET 1is returned in the STS
field and the DAP code in the STV field.

error in node name

Indicates that the node name portion of the file
specification string has incorrect syntax.

error in quoted string
Indicates that the quoted string portion of the

file specification (either the foreign-file-spec
or task-spec string) has incorrect syntax.

(continued on next page)

REMOTE FILE ACCESS USING RMS

Table 4-3 (Cont.): Network-Specific RMS Completion Codes

Status Code Description

RMS$_SUPPORT network operation not supported

RMS$_SUP network operation not supported; DAP code =

Indicates that VAX-11] RMS rejected the request
because the operation requested is not supported
over the network. The STV field contains either
another RMS completion code or a FAL status
code, depending on whether VAX-11] RMS at the
local node or FAL at the remote node could not
support the request.

TXXXXXXXX'

Indicates the same condition as the RMS$_SUPPORT
code except that the accompanying DAP status
code cannot be translated into a FAL status
code. RMSS$ SUP is returned in the STS field and
the DAP code in the STV field.

In general, RMS completion codes returned in response to network
operations fall into one of the following categories:

The operation was successful.
The operation was not supported by the network.
The operation was attempted but failed.

An end-to-end file-level <cyclic redundancy check (CRC)
failed.

A DAP error was detected.

VAX~11l RMS reports status for each of these categories as follows:

1.

Successful completion of a network operation 1is reported
using the same RMS completion codes as those used to report
the status of a 1local file operation. The RMS success
completion code RMSS NORMAL or an alternate success
completion code (for example, RMS$ CRE STM) is returned in
the STS field. Depending on which RMS code is used, the STV
field may or may not contain auxiliary information.

If an operation is not supported in a network context, the
failure of the request is reported as either an RMS$_SUPPORT
or an RMS$ SUP error. Most frequently returned is the
RMS$ SUPPORT error, which has an associated secondary status
code in the STV field. This secondary code is either another
RMS completion code or a FAL status code, depending on
whether RMS at the local node or FAL at the remote node could
not support the request. The RMS$_SUP completion code is
used only when RMS cannot map the DAP status code returned by
FAL into a meaningful FAL status code. For RMS$ SUP, the
uninterpreted DAP status code is returned in the STV field.

An operation supported over the network may fail while being
processed by either the local or the remote file system. If
the failure occurs at the 1local node, an appropriate RMS
completion code is returned. (Examples of codes returned

4-6

REMOTE FILE ACCESS USING RMS

when errors are detected 1locally by RMS are RMSS$ ACS,
RMS$ FTM, RMS$ NOD, and RMS$ QUO.) On the other hand, when a
file operatlon fails while being processed by the file system
at the remote node, RMS attempts to map the DAP status code
generated by FAL into a corresponding RMS completion code.
This mapping normally succeeds, but if an appropriate match
cannot be found (because the error is specific to the remote
file system), one of the following is returned to the user:
RMS$ NETFAIL or RMS$ NET. Both of these codes indicate that
the “failure occurred at the remote system, but differ in the
format of the contents of the STV field. If the DAP status
code can be transformed into a FAL status code, RMS$ NETFAIL
is returned with the FAL status code that describes the
failure in terms of the remote file system. Otherwise,
RMS$ NET is returned with the uninterpreted DAP status code
in the STV field.

4. 1If a file-level CRC check failure occurs, the failure is
signaled by means of the RMSS$ CRC completion code for the
SCLOSE service call. There is no secondary status
information associated with this error condition. When a
remote file is opened (or created) through VAX-11 RMS on a
VAX/VMS node, RMS determines whether the remote FAL supports
the DAP option of performing an end-to-end CRC check on the
data accessed in the file. If FAL supports this option, then
RMS and FAL agree to compute independently a cumulative CRC
checksum based on the records (or blocks) each sends and/or
receives. As part of the close operation, FAL compares the
two checksums and reports status back to RMS. Thus an
RMS$ CRC error alerts the wuser that the £file has been
corrupted during transfer. Repeated reports of this error
for the same line indicate the possibility of a hardware
failure.

5. During the exchange of DAP messages, should either node
detect a protocol violation, RMS aborts the operation and
returns the RMS$ BUG DAP error code with a corresponding DAP
status code in the STV field. A protocol violation is
detected, for example, when a syntax check of a DAP message
fails or RMS and FAL get out of synchronization (that is, a
DAP message is received that is inappropriate for the current
state) .

4.4 HIGHER-LEVEL LANGUAGE REMOTE FILE ACCESS

Regardless of the programming language used, you access remote files
in exactly the same way that vyou would access local files. To
illustrate the way you access remote files, Example 4-1 provides a
simple FORTRAN program to transfer a remote file on node TRNTO to the
line printer on node BOSTON.

REMOTE FILE ACCESS USING RMS

Example 4-~1: FORTRAN Remote File Access Program

FROGRAM TRANSFER.FOR

[
C This rrogram crestes a seauentizl file with varizsble lensth
C records from & seauentizl insut file. The insut and outrut
C fileg are identified bw the losgicsl names SRC znd DET,
» resrectivels., For exsmeles to rrint & file on & remotes sustem
¢ thiat resides on srnother gusten?
C
C $ DEFINE SRC TRNTOI!JUSERICSTOCKROOM.FAFERJIINVENTORY.,DAT
C % DEFINE D3T ROSTONIILPAOQL
C ¢ RUN TRANSFER
C
CHAFRACTER BUFFERX132
o
100 FORMAT (QsA)
200 FORMAT (A
"
(W Oren the inrut and outrut files.
OFEN (UNIT=1sNAME=/SRC «TYFE=/0LL »ACCESS="SEQUENTIAL »
1 FORM='FORMATTED)
OFEN (UNIT=2,MNAME="D0ST ' »TYPE='NEW’ yACCESS="SEQUENTIAL
1 FORM='FORMATTED ' y CARRIAGECONTROL="LISET " »
2 RECORDTYFE="VARIAELE ")
C
C Tranefer records until end-of-file or other error condition.
[
10 READ (1100sEND=20ERR=20) NCHAREUFFER(INCHAR)
WRITE (2,200) BUFFERCINCHAR)
GoTn 10
C
C Close the ineut snd outrut files.
C
20 CLOSE (UNIT=2)
CLOSE (UNIT=L)
END

The program in Example 4-1 uses standard I/O calls to transfer the
file from one device to another. 1Initially, two DCL commands are used
to define logical names for the files involved in the transfer. Note
that you use the standard VAX/VMS file specification with a remote
node name to specify the source and destination files. (If the remote
node 1is other than VAX/VMS, the format of the file specification may
differ.) The FORTRAN program must open the files. When opening a
file, you must specify a unit over which the operation is to be
performed. 1In this example, the access mode is sequential. Standard
read and write calls serve to move the data from the source to the
destination file. After all the records have been transferred, the
program closes the channels, thereby terminating network operations.
These operations are similar for applications in the other
higher-level languages supported under VAX/VMS.

4.5 MACRO REMOTE FILE ACCESS

VAX/VMS provides a transparent programming interface for remote file
access using VAX-11 MACRO. The following sections describe the use of
VAX-11 RMS calls for VAX-11] MACRO remote file access, discuss network
error mapping considerations, and present several examples of programs
written in VAX-11 MACRO tpat illustrate the use of these calls.

REMOTE FILE ACCESS USING RMS

4.5.1 Using VAX-11] RMS Service Calls

In general, you follow four steps when developing a MACRO remote file
access application: :

1. 1Initialize a set of data structures that VAX-11 RMS uses for
processing RMS service requests (in the same way as for local
MACRO program development)

2. Open the files for processing and establish a record stream
for each file

3. 1Issue the appropriate RMS service calls to perform the actual
file-handling operations

4., Disconnect the record streams and close the files after file
processing has been completed

4.5.1.1 File Access Blocks (FABs) and Record Access Blocks (RABs) -
These serve as the discrete data structures that VAX-11] RMS uses to
process service requests. In general, you should allocate one FAB for
every file your program will open and one RAB per file to establish a
record stream. The parameters associated with these control blocks
define the exact characteristics of the files designated for
processing. One of these parameters is the network file
specification., Through the use of either a logical name or a complete
file specification string, you designate the file that you want to
access.

4.5.1.2 $OPEN and $CONNECT - Once you have defined the wuser control
blocks, you can then open the files and establish a record stream to
each one. Use the RMS service calls $SOPEN and $SCONNECT in conjunction
with the FAB and RAB to prepare for file processing. When you issue
the $SOPEN call, you effectively establish a 1logical 1link connection
with the remote FAL.

When the file is open, you can perform file and record operations
through the use of standard RMS service calls such as $GET, $PUT, and
SUPDATE. For added flexibility, VAX/VMS supports block I/0 RMS calls
for writing and reading blocks of data to and from remote files.

4.5.1.3 $DISCONNECT and $CLOSE - Finally, after processing completes,
you should disconnect all record streams and close all files. First,
use the S$SDISCONNECT call to disconnect the RAB, and then use the
SCLOSE call to close the FAB, thereby signaling the completion of
network operations. This procedure terminates the logical link in an
orderly fashion. Note that the $CLOSE macroinstruction will
automatically disconnect the record stream for the RAB associated with
the specified FAB.

4.5.2 VAX-11 RMS Service Call Summary

Table 4-4 summarizes the VAX-11 RMS service calls you can use for
MACRO remote access operations: file processing, record processing,
block I/0 processing, and file specification processing. This table
lists calls supported for file operations between two VAX/VMS nodes

4-9

REMOTE FILE ACCESS USING RMS

over the network. The following operations are not supported in this
environment: $ENTER, SNXTVOL, SREMOVE, and $RENAME. (If one of these
operations is requested by a VAX/VMS node communicating via DECnet
with another VAX/VMS node, the RMS$ SUPPORT (network operation not
supported) error message is returned.)

Appendix B describes network considerations relating to the wuse of
VAX-11 RMS control blocks associated with the calls listed in Table
4-4. For a complete explanation of the syntax and parameters for each
call, refer to the VAX-11l Record Management Services Reference Manual.

Table 4-4: VAX-11 RMS Service Calls for Run-time
Remote File Access

Name of MACRO Description of Service

File Processing

$CLOSE Closes an open file, optionally
providing for file disposition,
and terminates file processing

SCREATE Creates a new file with the
attributes specified, opens it,
and initiates file processing

$DISPLAY Returns the attributes of a file
to the user program

SERASE Deletes a closed file and
removes its directory entry

$EXTEND Increases space allocated to an
open disk file

SOPEN Opens an existing file,
optionally returns its file
attributes, and initiates file

processing

Record Processing

SCONNECT Establishes a record stream by
associating a RAB with an open
file

SDELETE Deletes a record from a relative

or indexed file

$DISCONNECT Terminates a record stream by
disconnecting a RAB from an open
file

$FIND Locates and positions to the

specified record in the file

$FLUSH Forces buffered records and
modified file attributes to be
written to a file

(continued on next page)

REMOTE FILE ACCESS USING RMS

Table 4-4 (Cont.): VAX-11l RMS Service Calls for Run-time
Remote File Access

Name of MACRO Description of Service

SFREE Unlocks all records previously
locked by the record stream

$GET Retrieves a record from a file

$PUT Writes a record to a file

SRELEASE Unlocks a record specified by
its record file address

SREWIND Positions to the first record or
block of a file

STRUNCATE Truncates a sequential file

SUPDATE Modifies a record in a file

SWAIT Awaits the completion of an

asynchronous record operation

Block I/0 Processing
SREAD Reads data in block I/O mode

$SPACE Positions forward or backward in-
a file to a block boundary

SWRITE Writes data in block I/0 mode

File Specification Processing

SPARSE Parses a file specification

$SEARCH Searches a directory for the
next file name that matches the
file specification template
provided

4.5.3 VAX-11] RMS Programming Notes and Restrictions

This section discusses programming topics related to the network of
interest primarily to the MACRO programmer. Restrictions on the use
of the VAX-11 RMS interface 1in a network environment are also
presented. Refer to Appendix B for additional information on the use
of RMS control blocks.

4.5.3.1 Name Block - The DID, DVI, and FID fields of the ©Name Block
(SNAM) are not supported for remote file access; these fields are not
used as input and are zeroed on output. If you set the NAM bit in the
file-processing options (FOP) field of the FAB to request "open by NAM
block," this option will be ignored and the open will proceed based on
the other fields of the $SFAB and $NAM blocks.

REMOTE FILE ACCESS USING RMS

4.5.3.2 File Specification Processing - Using the RMS $PARSE service
call to parse a file specification that contains a node name does not
incur any additional overhead in a network context. VAX-11 RMS
parses/merges the primary, default, and related file specification
strings into an expanded name string without invoking a remote FAL
server. Because the file parse is performed locally, the following
control block fields are affected on output:

e In the expanded name string (ESA/ESL) of the Name Block, a
logical device name is returned without being translated if it
was encountered after a node name was found during the file
parse operation, and process default device and directory name
strings are not applied.

e In the file name status field (FNB) of the Name Block, status
bits are not wvalid 1if the quoted string format of a file
specification is used.

e The device characteristics fields (DEV and SDC) of the FAB are
not updated to reflect the actual characteristics of the
remote device.

In contrast to $SPARSE, execution of the RMS service call $SEARCH will
cause a logical 1link to be created to communicate with a remote FAL
server to perform the directory search function. Repeated calls to
$SEARCH using the same FAB, however, will cause RMS to use the same
logical 1link to FAL until the search sequence is complete.
Furthermore, execution of an SOPEN, S$CREATE, or SERASE call following
a $SEARCH call will cause VAX-1l RMS to establish a new logical 1link
with FAL to perform the file access operation.

4.5.3.3 FOP File Disposition Options on Close - Three options of the
FOP field of the FAB that affect the disposition of the remote file on
close require that you supply a resultant name string via the Name
Block (SNAM) as input to the SCLOSE service. The options are:

® DLT to delete the file at the remote node.

® SCF to submit the command file for execution at the remote
node. You may also specify that the file be deleted after
execution by setting both the SCF and DLT bits.

e SPL to print one copy of the file at the remote node. You may
also specify that the file be deleted after it is printed by
setting both the SPL and DLT bits.

These options may be requested at either open or close time, but they
are performed as part of the close operation. The resultant string
must be the same one received by specifying the Name Block as input to
the SCREATE or $OPEN calls. If you specified one or more of the FOP
options previously discussed and you receive a VAX-11 RMS completion
code of RMS$ SUPPORT (network operation not supported) on $CLOSE, it
means that the file was closed at the (non—VAX/VMS) target node, but
none of the options were performed.

4.5.3.4 FOP Option for Increasing File Transfer Throughput - The Data
Access Protocol used by VAX-11] RMS and its partner FAL defines two
major file access modes: DAP file transfer mode (FTM) and DAP record
access mode (RAM). VAX-11 RMS must translate each user-specified
access method (for example, sequential, random, block I/O) into one of
these DAP access modes in order to perform remote file access

4-12

REMOTE FILE ACCESS USING RMS

operations. VAX/VMS supports both DAP file access modes, whereas most
DECnet implementations other than VAX/VMS support only FTM.

FTM is designed to speed up the most common network operation:
copying files. FTM allows VAX-11l RMS to exchange fewer DAP messages
with the remote FAL than does RAM when transferring a file. FTM also
permits data records to be blocked together for transmission, thereby
potentially reducing the number of QIO system service calls required
to move the data. The combined effect 1is that data throughput
increases as the average record size of the file decreases. A side
benefit is that this 1lessens operating system overhead as compared
with RAM,

Although FTM offers efficiency, it is restrictive. It requires that
the file be accessed sequentially (by records or blocks) and that the
data be moved in one direction (either sent to or retrieved from the
file). Thus once the record stream is established via a $CONNECT
call, only $GET/SREAD or S$PUT/SWRITE requests are permitted until the
record stream 1is terminated via a $DISCONNECT or a $CLOSE call. 1If
you attempt to mix $GET/$PUT or S$READ/SWRITE requests or to 1issue
other RMS service calls (such as $DISPLAY, S$EXTEND, S$FIND, or
SUPDATE), VAX-1l1l RMS will return an RMS$ FTM error.

In contrast, RAM is designed to provide a wide range of functions.
RAM supports both sequential and random access (by records or blocks),
numerous record operations such as SFREE and $UPDATE, and dynamic
switching of access modes. RAM is also wuseful for performing
intermixed SGET/SPUT operations to a bidirectional unit record device
such as a remote terminal or a remote task. However, RAM offers
flexibility at the expense of efficiency. Each VAX-11 RMS service
call results in an exchange of DAP messages with the remote FAL. Data
messages cannot be blocked with each other (even when the file |is
accessed sequentially) because RAM requires that FAL acknowledge the
completion of each file operation before the next one can be
requested.

When you open or create a remote file, VAX-1ll RMS examines the SQO
(sequential-only) bit in the FOP field of the FAB to determine whether
to enter FTM or RAM. If the SQO0 bit is set, VAX-1l1l] RMS selects FTM,
and you are limited to reading or writing data in a sequential manner.
If the SQ0 bit is not set, RMS selects RAM unless the remote FAL
supports only FTM. 1If this is the case, then RMS overrides your SQO
request and enters FTM. Consequently, if you write a program in
VAX-11 MACRO either to open a remote file and sequentially read data
or to create a remote file and sequentially write data, it is
recommended that vyou select the sequential-only FOP option. This
option will improve data throughput for transfers between VAX/VMS
nodes. Where the remote partner is other than VAX/VMS, the SQO option
will have an effect only if the remote node supports both FTM and RAM.

4,5.3.5 File Sharing - File sharing between VAX/VMS nodes is
supported over the network. Different programs can open the same
remote file for shared access through use of the file sharing
(FABSB_SHR) field of the FAB. Within a single program, however, only
one record stream can be active for each open remote file. You cannot
set the FABSV MSE (multistream access enabled) bit of the FABSB SHR
field and then Issue multiple $CONNECT calls for the same file. ~ You
may, however, reestablish a record stream by issuing a $CONNECT after
a disconnect operation has been performed without <closing and
reopening the file.

REMOTE FILE ACCESS USING RMS

4.5.3.6 Restriction on Access to Files on Magnetic Tape - DECnet-VAX
does not support access to magnetic tape files located on a remote
VAX/VMS system. This restriction exists because FAL is not able to
mount a magnetic tape volume in order to gain access to it.

4.5.3.7 Task-to-Task Communication - When writing a program to
communicate with 'a remote task, you may treat that remote task as
though it were a unit record device, having characteristics similar to
those of a VAX/VMS mailbox. The information returned in the device
characteristics field (DEV) of the FAB block reflects this
orientation. As a result, sequential $GET/$PUT requests are
appropriate for exchanging data with a remote task, whereas random
access requests are not.

The Data Access Protocol is not used for task-~to-task communication.
Consequently, the sequential-only (SQ0) option in the FOP field of the
FAB has no effect on data throughput. Each $GET/SPUT request results
in a QIO system service request to receive or transmit data.
Furthermore, if one task breaks the logical 1link, 1its partner task
will receive an RMS$_EOF (end-of-file) error in response to an
outstanding S$GET request. Breaking the link is analogous to pressing
CTRL/Z on a terminal to indicate an end-of-file <condition. 1In
response to an outstanding $PUT request, the partner task will receive
an RMS$ _SYS (system QIO directive) error.

4.5.4 MACRO Programming Examples

The following examples illustrate the use of VAX-1ll RMS service calls
in MACRO programs that process files on remote nodes. For a general
discussion of the use of VAX-11 RMS at the local node, refer to the
VAX-11 Record Management Services Reference Manual.

4.5.4.1 MACRO Remote File Transfer Example - Example 4-2 illustrates
the VAX-11 MACRO counterpart to the VAX-1ll FORTRAN remote file
transfer program in Example 4-1.

4-14

+TITLE
+ IDENT

This rrodgram

wr wr e > W wr WS @ ser

3 sequential inrut file.
logical names
one node from

REMOTE FILE ACCESS USING RMS

Example 4-2:

RMS File Transfer Program

CREATESEQ - CREATE SEQUENTIAL FILE

V0017

ERC and DST»
a file residing on

creates 2 secuentisl file with
The ineut and outrut files
resrectivelu,
another node!

varisble lensth records from
are identified bae the
For exzmrley to creste a file on

¢ DEFINE SRC TRNTO!:USERILSTOCUKROOM,FAFERIINVENTORY.DAT
$ DEFINE DST BOSTON:ITEMFICARCHIVEIINVENTORY.DAT
$ RUN CREATESEQ

RS2 2332022320232 2 2022332202230 S0 2020003230 0000320 0332200 23322200 222820032

+8RTTL
+FSECT

¥
¥
;
SRC.FAER!?
: $FAR

SRC_.RAR?
$RAR

¥
i Define the destination
H

IST_FAR!?
$FAR

IST.RAR!
$RAR

UFFER? JELKE

Control block and buffer
NOEXE» LONG

DATA

FAC=<BET >y~
FOF=<8Q0% s~
FNM=<SRC

FAER=BRC_FARs -
RAC=SEQy -
URF=RUFFER Yy~
USZ=RUFFER.SIZE

FAC=<PUT>y~
FOF=<SQ0%F s~
FNM=<DGTry -
ORG=SEQ, -
RF M=VARy -
RAT=<CR>

FAB=DST_FAR, -
RAC=SEQy-
REF=BUFFER

Allocate buffer to be the size of the

132

BUFFER.SIZE=,~BUFFER

- wr

- wr wr ms

file FAR znd RAR

- wr wr e W e

- . e

largest record that will be

N
’
»
¥

storage

lefine the source file FAR and RAE control blocks.

File sccess for GET only
Reauest [DAF file trensfer mode
Name of inrut file

Addrese of asssocisted FAER
Seauentiazl record 3ccess
Buffer address

RBuffer size

control blocks.

File asccess for PUT only
Reauest [DAF file transfer mode
Name of outrut file

Seauential file organization
Variasble record format

Imrlied carriadge control

Address of associated FAR
Seauential record access
Buffer address

read.

Buffer for inmrut and outrut
Buffer size

§ K KKK KK KK 30K KK KK 30K 0K ok K 0K Kok 0K 30K KK 0K 0K KK K0k KKK KOK ROK KRk Kok ko ok ok ko ok kR kR kR ko X

+SBTTL
+FSECT

Start

- e

+ENTRY
MOVAER
MOVAE
MOVAR
MOVAR

of rrOograms

Mainline
CORE

CREATESEQ» "M-{x
WTSRC.FAEYRé
W"SRC.RAEYR?7
W DST_FAEsR8
W IST_RAEIR?

NOWRT»EBYTE

rut FAR and RAR addresses in

LR LR A T

registers for efficiencw.

Entry roint

Get addiess of
Get address of
Get address of
Get address of

inrut FAR
inrut RAR
outsut FAE
outrut RAR

REMOTE FILE ACCESS USING RMS

Oren the source and destinastion files.

- e

Qren inrut file

Branch on feilure

Connect inrut record stream
Eranch on failure

Create outrut file

Branch on failure

Connect outrut record stream

$0FEN FAE=Ré

BLEC ROSEXIT
$CONNECT RAE=R7
EBLEC ROSEXIT
$CREATE FAR=RS

ELEC ROSEXIT
$CONNECT RAR=R9

we wr wr s wr ar car e

ELEC ROSEXIT Brarnch on failure
H
i Transfer records until end-of-file is encountered,
H
LOOF? $6ET RAR=R7 i Read mext record from inrut file
ELEC ROsERROR i Brarnch on failure
MOVW RABSW_RSZ(R7)y~ i Cory lensth of record Just
RAB$W_RSZ(R9) # read to outrut RAR
$FUT RAR=R9 i Write record to outrut file
BLEC RO ERROR i Branch on failure
RRE LOOF i Frocess next record
ERROR?: CMFL ROy #RMS$ _EOQF i Was it an end-of-file?
EHEQ EXIT i Branch if not
H
3 Close the source and destination files.
¥
3 Note that & $DISCONNECT c2ll is mot reauired srior to closing s file
3 because the $CLOSE call rerforms an imrlied disconnect of the record stream.
H
$CLOSE FAB=RS3 i Close outrut file
BLEC ROSEXIT # Branch on feilure
$CLOSE FAR=Ré i Close inrput file
H
i Exit to UMS with RMS comrletion code in RO to sisgmel success or
3 failure of rprodram execution.
H
EXIT? $EXIT.S RO Exit with RMS comrletion code in RO

- -

+END CREATESER Srecify starting sddress of mrodrem

REMOTE FILE ACCESS USING RMS

4.5.4.2 VAX-11 MACRO Remote File Spooling Example - Example
spools a sequential file to the printer on the remote node.

Example 4-3: RMS Spool File Program

+TITLE SFOOL - PRINT AND DELETE FILE
+TITLE /7V001/

This rFrodram srools one corw of & file crecified by the lodiczal name
OST to the srinter a3t the remote node where it resides. After nDeing
rrintedy, the file is deleted. For examrle?

¢ DEFINE DST "EBOSTOM®*DEMOD NETWORK®**!3L.TESTIPRINTME .DAT®
$ RUN SFOOL

LT O T R L T

5 KKK KK 0K OK KK KR KK 0K 0K SR sk skok ok Kok kK Kok ok ok ok kok skok kol ok koo ook ok ek

+SRTTL Control block and pouffer ctoresge
+FEECT DATA NOEXE» LONG

Iefine the destination file FABR anrnd NAM control blocks,

“r ar -

DST.FARS

Frint and delete file
Hame of file

Name Dlock zddress

$FAR FOF=<8FLyDLTEy-
FNM=<DOETHy~
NAM=DST_NAMELK »

- s e

DST_.NAMBLK?
HNAM REA=DST_RSy~ i Resultant name string buffer
RSS=NAM$C _MAXRSES Resultant name string buffer

-r

H

i Allocate buffer for resultant name string.

§

DST_RS: +BLKE NAMSC_MAXRES 5 Lardest resultant name string
FREREEKEEERKEKEKKE KKK KKK KK KKK KKK KKK KKK KKK KKK KEF KKK KK H KKK RFR KK XK KRRk K

SBETTL Mainline
+FSECT COLRE NOWRT»RYTE

Start of rrogram

- ar

JENTRY SFOOL s "M i Entry roint

Oren 2nd close the file with the FOF =rint and delete ortions srecifi

L I T

Qren the file
Branch on failure

$OFEN FAER=DST.FAR
ELEBC ROYEXIT
$CLOSE FAR=DST_FAR

- ar er e

to be erinted and deleted

Exit to VUMS with RMS comrletion code in RO to signzl success or
failure of srogram execution,.

M owr o a e

XIT? $EXIT_S RO i Exit with RMS comrletion code
+END SFOOL Srecify starting address of &

-

address
size

ed,

Close the file which will cause it

in RO
rogram

REMOTE FILE ACCESS USING RMS

4.5.4.3 VAX-11 MACRO Remote File Random Access Example - Example 4-4
accesses a relative file randomly and transfers selected records from
one device to another.

Example 4-4: RMS Random Access Program

+TITLE RANDOM -~ RANDOM ACCESS EXAMFLE
+IDENT /V001/

This rrogram sccesses a3 relative file randomly bw relative record
number., It creates a secuential outrut file from selected records
from the inrut file, The inrut and ocutrut files are srecified by
the lodical names SRC and STy resrectivelz. For examrle!

$ DEFINE SRC TRNTO!IUSERILF3I602.DATIEVENTLOG.DAT
$ DEFINE DST EBOSTONI!ITEMP.LIS
$ RUN RANDOM

P I R . L LB LI T

§ 30KOKOKKORORK KR OK 30K KR 0K 0K K0k KR KKK KR K KK KK KK 0K 30K KR 0K koK sk K kok kol sk kiR kR OROR NOR KK

+SETTL Control tlock 2nd puffer storade
+FSECT DATA NOEXE» LONG

lefine the source file FAR and RAR control blocks.

() s w> as

UBF=RUFFER, -~
USZ=RUFFER.SIZE

Buffer address
Buffer size

RC_.FAR?
$FAR iy - $ File access for GET onlw
2 # Name of inrFut file
SRC.RAR?
$RAR FAB=SRC_FAR,- i Address of sssocisted FAR
RAC=KEY s~ # Access by relative record number
KEF=REY_RBUFFER» - i Kew buffer sddress
KSZ=4,y~- i RKey cize
§
§

¥
i Define the destimation file FAER and RAB control blocks.
§

DST_FAER?
SF AR FAC=<FUT>y - i File access for FUT onlws
FOF=<8Q0% - i Reauest DAP file transfer mode
FNM=<DETxy - i Name of outrut file
QRG=SEQy~ i Seaquential file ordgsnization
RAT=<CR> i Imrlied carrisdge control
DST_.RAE!
$RAER FAE=DST_ FAR,- ¥ Address of associated FAR
RAC=8EQy - i Secuential record sccess
REF=RBUFFER i Buffer address

¥
i Allocate buffer to be the size of the lardgest record that will be read.
H

BUFFER! JEBLKE S12
RUFFER_SIZE=,~BUFFER

Buffer for inrut and outrut
Buffer size

- -

H
3 Srecify record number list and z3llocate kew buffer.
H
RECORD_LIST?
+LONG 4,1210+0 i Record selection list terminazted bw O
KEY_RUFFER?: .
+LONG Q + Buffer to store relative record numbe

50K KKK KR KKK KK KKK RO KOK KK KK K K00k K KKKk ko kok Kok ok ok Rk ok ks okkok ko k ok Kk k kR k kX

REMOTE FILE ACCESS USING RMS

+8SBTTL Mainline
+FSECT COIE NOWRT»RYTE

Start of rrodrami rut FAER and RAEB addresses in registers for efficiency.

- W w

+ENTRY RANDOMy "M<>

MOVAR W"SRC.FAEsRS
MOVAE WTSRC.RARIR7
MOVAR W DST_.FAR,»R8
MOVAR WTDST.RARsRY?

Entry roint

Get address of input FAR
Get address of inrut RAR
Get address of outrut FAR
Get address of outrut RAR

ws W wr e e

Oren the source and destination files.

- wr e

$OFEN FAR=R6

BLEC ROSEXIT

MOVE FAEB$EB_RFM(R&) s~
FARBSB_RFM(RS8)

MOVY FAEBSW. MRS (R&) 9~
FAB$W_MRS(R8)

$CONNECT RAE=R7

Oren inrut file

Branch on failure

Cory record format attribute
to outrut FAR

Cory maximum record size
attribute to outrut FAR
Connect inrut record streasm

P er W s ws M WE B WE W W Eb

BLERC ROYEXIT Eranch on failure

$CREATE FAE=RE Create cutrut file

BLERC ROSEXIT Branch on failure R
$CONNECT RAER=R? Connect outrut record stream
RLEC ROSEXIT Branch on failure

Read each record srecified in list and write it to the destination file,

- s g

MOVAER WTRECORD_LISTsRS Get record number vector

’
LOOF: MOVL (RESY+ W KEY_RUFFER # Get next record number
REQL CLOSE. i All done if list terminator found
$GET RARB=R7 i Read srecified record from inrut file
ELEC ROSEXIT 3 Braznch on failure
MOVUW RABRSUW_RSZ(R7) s~ i Cory lendth of record Just
RAESW._RSZ(R9) i read to outrut RAR
$PUT RAEB=R? i Write record to outrut file
ELRC ROSEXIT i Eranch on failure
ERE LOOF i Frocess next record

Close the source and destination files.

(Y er e e

LOSE? $CLOSE FAE=R8
ELEC ROSEXIT
$CLOSE FAER=Ré6

Close outrut file
Rranch on failure
Close inrut file

- wsr ae

Exit to VUMS with RMS comrletion code in RO to signal success or
failure of srodram execution.

T oer e s e

XIT: $EXIT.S RO
+END RANDONM

Exit with RMS comrletion code in RO
Srecify starting address of srodram

-, .

REMOTE FILE ACCESS USING RMS

4.5.4.4 VAX-11 MACRO Remote File Indexed Access Example - Example 4-5
creates an indexed file with three keys from a sequential file on the
local node.

Example 4-5: RMS Indexed File Program

+TITLE CREATEIDX - CREATE INDEXED FILE

WME WE TP WP SG> CF SER NP P MEE WP MWD WP R R I R WP W ST W

+IDENT /V001/

This rrodgram creates an

format of the inrut file is shown below!
First Nazme Column 01-10
Middle Imitial Column 11-11
Last Name Column 12-26
Street Column 27-446
Citw Column 47-58
State Column 59-~60
Zir Code Column 61-65

indexed file with three keds from a
seauential file containing 3 name and address list.

The record

The inrut and outrut files are srecified bw the logiczl names SRC

and DST, resrectivelw.

For examrle!l

$ DEFINE SRC BOSTON!DEE1:CTESTIINFUT.DAT
$ DEFINE DST TRNTO:!!DRA4ICRMS.FILESIOUTFUT.DAT

$ RUN CREATEIDX

KOROK K K KOKOK KR SEOK ORS00k KK KKK KKKk oK koK Rk oK oK R KRR KK Kok KRR IORIOoROK Rk ok

+SBTTL Control block and buffer ctorzsde
+PSECT DATA NOEXE » LONG
$
3 Define the source file FAR and RAR comtrol blocks.
$
SRC.FAER?
$FAR FAC=<BET>y~- i File zccess for GET only
FOP=<8Q0&>, - i Reauest DAF file transfer mode
FNM=<8RC> i Neme of inrut file
SRC_RAR:
$RAER FAE=SRC_FAER,»~- Address of ascocizted FAR

-r

- e

RAC=8SEQy -
UBF=BUFFERy -
USZ=RUFFER_SIZE

Iefine the destination

ar > e e

file FAR and RAR

Sequential record sccess
Buffer zddress
Buffer size

control blocks,

DST.FAR?
FAR FAC=<FUT>y - i File access for FUT onlw
FNM=<D8THys~- 5 Neme of outrut file
ORG=INXy~ i Indexed file organization
RFM=FIXs - i Fixed length records
RAT=<CRx>»~ i Imrlied carriage control
MRS=BUFFER_SIZE,~- 3 Record size
ERKS=1,- # Bucket size
XAR=INST_KEYO 3 Address of start of XAR chain
DST.RAE?
$RAER FAE=DST_FARy - Address of asssocizted FAR

- W >

RAC=SEQ,-
REF=BUFFER, -
RSZ=BUFFER.SIZE

W e cer W

Seauential record 3access
Ruffer address
Buffer size

Define Kew Definition XABs to describe the three lkeus.

REMOTE FILE ACCESS USING RMS

DST.KEYQ!

$XAEREY REF=0»s~-
FOS=58s-
SIZ=2y~
FLG=<DUF >, ~
NXT=DST_KEY1

DST._KEY1:

$XABRKEY REF=1,-
FOS=46y -
S1Z=12»-
FLG=<DUP sy~
NXT=DST_KEY2

DST.KEY2!

.
H
.
¥
.
i

R

UFFER?

$XARKEY REF=2,-

FOS=<1190,102y~

S1Z=<15s1 919~
NXT=0

Allocate pbuffer to be the size of the

+BLKE 65
RUFFER.SIZE=,-BUFFER

NP OWE WP P W WP WP MR R We tes R e WS s wr e

Frimare kew is State

Kew reference number
Starting kew rosition

Kew size

Durlicate kews are s3llouwed
Address of next XAR in chain
1st slternaste kew is City
Kew reference number
Starting kew rosition

Kewy size

Durlicate kews are allowed
Address of next XAR in chain
2nd alternate kev is Name
Kew reference number

Sedmented kew consisting of Last Namey

First Initialsy and Middle Initial
Desigdnate end of XAR chain

lardest record that will be read.

a
¥
s
1

Buffer for inrut and outrut
Buffer size

7 0K ROKR KKK 30Kk K KK K HOK K K0k KKKk oK KKk KO0k Rk Kok koK ok sokok ok korok ok Kokkok ok ok kR ko

- wr s

| @ e

s
H
i
.
;

L

00F 3 $GET RAEB=SRC_RAR
BRLEC ROyERROR
$FUT RAEB=[ST_RAER
RLEC ROsERROR
BRE LOOFP

ERROR: CMPL RO» #RMSS _EOF
ENEQ EXIT

y

i Close the source and destination

y
$CLOSE FAR=IST_FAE
RLEC ROSEXIT
$CLOSE FAR=SRC_FAER

M e o e -

XITt

+SRBRTTL
+FSECT

Mainline
CODE

Start of rrogram

+ENTRY CREATEIDX, "M<>

Oren the source and destinastion

$0FEN FAE=8RC.FAE
BLEC ROSEXIT
$CONNECT RAB=SRC_RAR
ELEBC ROSEXIT
$CREATE FAB=DST_FAR
RLEC ROSEXIT
$CONNECT RAB=DST_RAR
BLEC ROYEXIT

Transfer records

Exit to VMS
failure of rFrodgram execution.

$EXIT_.S RO
+END CREATEIDX

with RMS comrletion

files.

until end-of-file is

NOWRTRBYTE

R R L. L)

Entry roint

Oren inrFut file

EBranch on failure

Connect inrut record stream
Branch on failure

Create outrut file

Branch on failure

Connect outrut record stream
Branch on failure

reached.

R . L L

files.

- e

code in

- ar

Read next record from inrut file
Branch on failure

Write record to outrut file
Branch on failure

Frocess next record

Wae it an end-of~-file?

Branch if not

Close outrut file
Branch on failure
Close inrut file

RO to signal success or

Exit with RMS comrletion code in RO
Srecifw startindg address of rrodgram

CHAPTER 5

TASK-TO-TASK COMMUNICATION

Task-to-task communication 1is a feature common to all DECnet
implementations that allows two programs, running under the same or
different operating systems, to communicate with each other regardless
of the programming languages used. For example, a FORTRAN program
running on the VAX/VMS system at node BOSTON of our network example
could exchange messages with a MACRO program running on the RSX-11M
system at node DALLAS. The fact that these programs use different
programming languages and run under different operating systems is of
no concern to the DECnet software, which translates system-dependent
language calls into a common set of network protocol messages. (Note
that in the context of task~-to-task communication, the terms "task"
and "program" are used synonymously.)

DECnet-VAX supports two forms of task-to-task communication:
transparent and nontransparent. Transparent communication provides
all the basic functions necessary for a program in VAX-11 MACRO or a
higher-level 1language to communicate with other programs over the
network. Nontransparent communication allows the programmer to use
more network specific functions.

A simple analogy differentiates these two forms of communication.
Transparent communication is analogous to device-independent I/0 under
VAX/VMS. This form of I/0 lets you move data with little concern for
the way this 1is accomplished. Likewise, transparent communication
allows you to simply move data across the network without necessarily
knowing that you are using DECnet software. Nontransparent
communication, on the other hand, is analogous to device-dependent 1I/0
wherein you are interested in specific characteristics of the device
that you want to access. A nontransparent task, in turn, can use
network-specific features to monitor the communication process.

This chapter defines the forms of DECnet-VAX intertask communication
and the general procedures necessary to implement them. Particular
attention is paid to the DECnet interface with higher-level languages.
The information and examples presented herein provide the necessary
framework for the discussion of task-to-task communication in each
higher-level 1language user gquide. The programmer should also be
familiar with this material before reading Chapters 6 and 7, which
provide examples of transparent and nontransparent communication using
system services.)

5.1 TRANSPARENT COMMUNICATION

Transparent communication provides the basic functions necessary for a
task to communicate with another task over the network. These
functions include the initiation and completion of a 1logical 1link
connection, the orderly exchange of messages between both tasks, and
the controlled termination of the communication process. To implement
these functions, you can program your transparent task in any of the

5-1

TASK-TO-TASK COMMUNICATION

higher-level languages supported over the network or in VAX-11 MACRO,
using RMS service calls or system service calls.

One way to view transparent communication 1is to 1look at the
programming required to develop such an application. Transparent
access provides the minimum functions necessary to communicate over
the network using standard I/0 operations. When accessing the network
transparently, you use no DECnet-specific calls to perform these
functions; rather, you use standard RMS I/0 service calls or the
normal I/0 statements provided by the applicable higher-level language
to access a sequential record-oriented device. (The remote task is
modeled as a VAX/VMS mailbox to which you can perform read and write
operations.) You can also use $QIO0 system service calls to perform
transparent communication, as described in Chapter 6.

Example 5-1 illustrates a simple example of VAX-11 FORTRAN transparent
communication. In the source FORTRAN task that initiates the logical
link request, you use a standard open call to specify the remote task
to which you want to connect. 1In turn, the remote task issues an open
call to complete the logical 1link connection. A coordinated set of
read and write operations enable the exchange of information over the
link. To terminate the connection, the source task executes a close
call to break the logical link. When the remote task receives this
close call, it 1issues a close call which completes the link
termination process. The remaining sections of this chapter discuss
the calls that you would use to develop such an application.

Example 5-1: FORTRAN Task-to-Task Communication

FROGRAM TEST3.FOR

C
C This rrogram rromrts the user for the =art number of an item
C in inventory and resronds with the rnumber of units in stock.
C The information is obtained by communicating with a3 srogram
C (TEST4) on another node that has sccess to the invemtory dats.
C
C Before running this rrodgramy the lodical name TASK must be
C defined to refer to the tazrzet Frogram. For 2xsmrle?
G
G % DEFINE TASK "TRNTO:!:"*TASK=TEST4"*"
(e $ RUN TEST3
¢
CHARACTER FARTNOXS
INTEGER PARTCOUNT

¢
100 FORMAT (/s '$Enter rart numbert 7))
200 FORMAT (A) :
200 FORMAT (14)
400 FORMAT (‘0Olnventore for rart number ‘A’ is! “+14)
C
C Establish a3 logical link with the tardet task.
C

(' OFEN (UNIT=1sNAME='TASK’'yACCESS="SEQUENTIAL >

1 FORM="FORMATTED’ y CARRIAGECONTROL="NONE' s TYFE="NEW"?
C
Cc Fromrt the uwser for 2 rart numbers send it to the target tasky
C read rerly of auantitwe om handy and finzally dis=law the answer
G for the user, Rereat the cucle until the user enters ‘EXIT’ for
C a rart number.
G

10

KO0

WA W PR R P RS RS

coooaaooooOon

OO0 0O0n0n

TASK-TO-TASK COMMUNICATION

TYFE 100
ACCEFT 200, FARTNO
IF (PARTNO .EQ. ‘EXIT’) GOTO 20
O WRITE (1,200) FARTNO
READ (1+300) PARTCOUNT
TYFE 400y FARTNO» FARTCOUNT
GOTO 10

Iisconnect the logical link.

© CLOSE (UNIT=1)
END

TEST4.COM

This command rrocedure executes the rrogram TEST4 after
being started bw a8 task-to-task connection reacuest issued

1
! by TEST3.
1

RUN SYS$LOGINITESTA.EXE

I

! Furge old lod files denerated bw this command rrocedure.
1

éURGE/KEEF=2 SYS$LOGINITESTA.LOG
EXIT

FROGRAM TEST4.FOR

This is the tardet rrodram that communicates with TEST3.
For each rart number received from the source tasks the
number of units in stock is determinedy and this value is
returned.

To comrlete the logical link with its initiastors this rrogram
uses the lodical name SYS$NET as the file srecification in an
oren statement.

CHARACTER FARTNOXS
INTEGER PARTCOUNT

0 FORMAT (A)
0 FORMAT (I4)

Comrlete the lodical link connection.

© OFEN (UNIT=1sNAME='SYS4NET’»ACCESS='SEQUENTIAL’»
1 FORM='FORMATTED' s CARRIAGECONTROL="NONE'sTYPE="0LD’)

Frocess requests until end-of-file is reached., (This is the
error condition returned when the source task bresks the
lodical link connection.)

(1 ’ t=2 AR
READ 15100,END=20) FARTNO

Ferform arrrorriate mrocessing to obtain the rart count value
and transmit this back to the source task.

CALL INSTOCK (PARTNOyFARTCOUNT)
O URITE (1,200) PARTCOUNT
GOTO 10

TASK-TO-TASK COMMUNICATION

el

Ilisconnect the logical link.

S I)
<

© cLose (UMIT=1)
END

Notes on Example 5-1:

The source task, TEST3, requests a logical link connection to
the target task, TESTA4. :

When the remote node receives a connection request, the
command procedure TEST4.COM is executed. This command
procedure must reside under the default directory associated
with the account being accessed. TEST4.COM contains a RUN
statement that causes the program TEST4.EXE to be executed.

© TEST4 completes the 1logical 1link connection via SYS$NET.
Note that the unit numbers in the source and target programs
need not be the same.

@ TEST3 and TEST4 send and receive data messages.

@ TEST3 disconnects the logical link and thereby terminates the
communication process.,

Because DECnet-VAX translates system-dependent language calls into the
same set of messages that permit task-to-task communication, any task
programmed in VAX-11 MACRO or one of the higher-level 1languages can
communicate with a remote task programmed in the same or a different
language. More specifically, for communication between tasks that run
on VAX/VMS nodes, the language in which you access the network has no
effect on the communication process. The VAX-11] FORTRAN source task
in Example 5-1 could just as easily communicate with a MACRO task on
node TRNTO,

5.2 NONTRANSPARENT COMMUNICATION

Nontransparent communication provides the same basic functions as
transparent communication plus additional system service and I/0
functions supported by DECnet-VAX (as described in Chapter 7.) 1In
particular, a nontransparent task can create and use a VAX/VMS mailbox
to receive information that would otherwise remain inaccessible to a
transparent task. Thus you can use optional network protocol features
such as optional user data on connects and disconnects, and interrupt
messages. Also, certain nontransparent tasks that have a mailbox can
receive and process nmultiple inbound connection requests. The
discussion that follows highlights the distinctions between the two
types of access to emphasize the additional capabilities that
nontransparent access provides.

Transparent communication offers the minimum functions necessary for
initiating and completing a logical 1link connection, exchanging
messages, and terminating the logical link. 1In fact, these functions
are actually a subset of a larger group of functions defined for
nontransparent communication. The entire set of functions are as
follows:

5-4

TASK-TO-TASK COMMUNICATION

e Initiating a logical link connection
- Requesting a logical link to a remote taskl

- Declaring a network name and processing multiple connection
requests

e Completing a logical 1link connection
- Rejecting a logical link connection request
- Accepting a logical link connection request?l
e Exchanging messages
- Sending and receiving data messagesl
- Sending and receiving interrupt messages
e Terminating a logical link
- Synchronously disconnecting the logical 1link

- Aborting the logical link!

Nontransparent tasks can use any or all of these functions to extend
the basic capabilities offered under transparent communication.

5.2.1 Mailboxes and Mailbox Messages

In general, nontransparent tasks can use a mailbox to receive
information about particular network operations. Mailbox messages are
of three types:

® Messages that result from the use of certain system service
calls (including optional user data)

e Interrupt messages
® Network status messages

Nontransparent functions that indirectly cause mailbox messages to be
placed in the receiver's mailbox 1include calls for initiating and
completing logical links, and calls for terminating links. Figure 5-1
illustrates the use of mailboxes by nontransparent tasks.

1. Minimum subset for transparent task-to-task communication.

5-5

TASK-TO-TASK COMMUNICATION

Transparent
Task
Connect
Initiate
(Network Task)
Nontransparent Nontransparent
Task Task
MSGS$_CONNECT
| | |
| Mailbox 1 | Mailbox |
— — — _— 1 ¢ n _

—_ onnect Initiate (opt. user data) _—— -
MSG$_.CONNECT

MSG$_CONFIRM

MSG$_REJECT Connect Accept (opt. user data)
Connect Reject (opt. user data)
. Interrupt Messages)
MSGS$_INTMSG MSG$.INTMSG
N Synchronous Disconnect (opt. user data) MSG$_DISCON
MSG$_ABORT

Disconnect Abort (opt. user data)

A)

X

DECnet-VAX Software

Network Status Notifications:

MSGS_EXIT
MSG$_PATHLOST
MSG$_PROTOCOL
MSG$-TIMEQUT
MSG$_THIRDPARTY
MSG$_NETSHUT

ZK-840-82

Figure 5-1: Mailbox Messages

A nontransparent task can also receive network status notifications
via the mailbox. These notifications apply to physical and logical
link conditions over the network. For example, DECnet-VAX software
can notify a nontransparent task of the following conditions:

e Third-party disconnections (see the DECnet-VAX System
Manager's Guide)

® Network software- and hardware-related problems
® Processes exiting before I/0 completion

e Connection request timeouts

TASK-TO-TASK COMMUNICATION

5.3 INITIATING A LOGICAL LINK CONNECTION

Regardless of whether you access the network transparently or
nontransparently, you must establish a communication 1link to the
remote node on which the target task runs before any message exchange
can take place. You establish the link by issuing a source task call
that requests a logical link connection. (To clarify, the term source
task refers to the task that initiates a logical link connection
request., The term target task refers to the task with which you want
to communicate. The interaction that takes place prior to
establishing a logical link is termed a handshaking sequence.)

5.3.1 The Handshaking Sequence

Upon receiving a call that requests a 1logical 1link connection, the
local DECnet-VAX initiates a handshaking sequence with the target
task. The following information is supplied in a connection request:

e An I/0 channel: The I/0 channel serves as the path over which
messages are sent and received by the source program.

e The identification of the target node: Every node in a network
has an identifier that distinguishes it from all other nodes
in the network. Transparent communication wuses a task
specification string to indicate the name of the target node
(see Chapter 2). Nontransparent communication requires a
user-generated data structure called the Network Connect
Block (NCB) which includes a task specification string (see
Chapter 7).

e An object type descriptor (see Chapter 2).
® Access control information (optional; see Chapter 2).

e Optional user data: Nontransparent tasks have the option of.
sending up to 16 bytes of data to the target program. (See
the information on NCBs in Chapter 7.)

Higher-level language tasks can use standard file opening statements
to request a logical link connection to a remote task. The following
examples in VAX-11 FORTRAN, VAX-11] BASIC, VAX-11 PL/I, VAX-11] PASCAL,
and VAX-11 COBOL show how to specify a target task, TEST4, running on
node TRNTO:

FORTRAN OPEN (UNIT=7,NAME='TRNTO: :" TASK=TEST4"',TYPE="NEW')
BASIC OPEN 'TRNTO::"TASK=TEST4"' AS FILE #7

PL/I OPEN FILE(OUTPUT) TITLE ('TRNTO::"TASK=TEST4"');
PASCAL OPEN (PARTNER,'TRNTO: :"TASK=TEST4"' ,NEW);

COBOL SELECT PARTNER ASSIGN TO "TRNTO::""TEST=TASK4""".

OPEN OUTPUT PARTNER.

The RMS service <call equivalent to these higher-level 1language
statements is the S$OPEN call. System service calls used to request
logical 1link connection are described in Chapters 6 and 7.

It is important to note that once you issue a call that uses either a
task specification string or an NCB, you access the network and, by

definition, DECnet-VAX software.

TASK-TO-TASK COMMUNICATION

5.4 COMPLETING THE LOGICAL LINK CONNECTION

As part of the handshaking sequence that takes place between the
source and target tasks, the target task completes the logical 1link
connection in two steps. First, the DECnet software at the remote
node processes the inbound logical link connection request and then
the target task either accepts or rejects the link. These steps are
performed differently, depending on whether the target task uses
transparent or nontransparent I/0. 1In the following discussion, it is
assumed that the remote node is VAX/VMS. 1If the remote node on which
your target task runs is not a VAX/VMS system, you should refer to the
DECnet documentation for that system.

5.4.1 Completing the Connection Transparently

If the target task is transparent, the software at the remote node
checks the access control information supplied 1in the connection
request call. DECnet-VAX software creates a process in which the
LOGINOUT image runs. The name of this process is a concatenation of
the name of the object connected to and the logical link number (for
example, MAIL 65218). The LOGINOUT image verifies the access control
information against the user name and password contained in the User
Authorization File (UAF) at the remote node.

If the access control information 1is wvalid, LOGINOUT creates the
logical name SYSSNET in the process logical name table for subsequent
use by the target task. The equivalence string for SYSSNET 1is a
special form of file specification string that contains information
identifying the source task which initiated the logical link
connection. The LOGIN.COM file associated with the access control
string 1is then run. Finally, the ‘command procedure file
(taskname,.COM) for starting the remote task is executed.

Prior to your accessing the remote node, the System Manager must have
created the appropriate account in the UAF (refer to the information
on access control in Chapter 2.) In addition, the command procedure
file (taskname.COM) for starting the remote task must exist in the
directory associated with the account identified by the access control
information. For a description of the command procedure taskname.COM,
see Section 5.4.3. Command procedures for objects existing in the
OBJECT data base (which is created using NCP commands). are located in
the SYSS$SSYSTEM directory.

To complete the logical link, the target task performs a file opening
operation using the logical name SYS$NET to establish a communications
path back to the source task. The following examples in VAX-11
FORTRAN, VAX-11] BASIC, VAX-1ll PL/I, VAX-11 PASCAL, and VAX-11 COBOL
show how to specify SYSSNET:

FORTRAN OPEN (UNIT=2,NAME='SYS$NET',TYPE='0OLD"))

BASIC OPEN "SYSSNET" AS FILE #2

PL/I OPEN FILE(INPUT) TITLE ('SYSSNET');
PASCAL OPEN (PARTNER,'SYS$NET',OLD);
COBOL SELECT PARTNER ASSIGN TO "SYS$NET".

OPEN INPUT PARTNER.

The RMS service <call equivalent to these higher-level 1language
statements is the $OPEN call. System service calls for accepting the
logical 1link are described in Chapters 6 and 7.

TASK-TO-TASK COMMUNICATION

5.4.2 Completing the Connection Nontransparently

If the target task is nontransparent, then one of several things may
occur. If the task has not declared itself a network task (and is
therefore eligible to accept only one connection request at a time),
then the DECnet software at the remote node performs the access
checking procedure described in Section 5.4.1. After it starts, the
target task retrieves the connection information by translating the
logical name SYSSNET using the STRNLOG system service call (see
Chapter 7).

If the target task declares itself as an active network task, then
DECnet-VAX software places all connection requests addressed to the
task in the mailbox associated with the channel being used. The first
message in the mailbox 1is the Network Connect Block (NCB) from the
original connection request that started the task. This message
appears in the mailbox after channel assignment and name declaration
occur. Once the task declares a network name, subsequent inbound
connection requests are not checked by the remote node to verify
access control. (Note that if the task is started without being part
of a DECnet operation, access control is never checked.) Chapter 7
describes in more detail the nontransparent process of completing the
logical 1link connection.

After examining the incoming connection request, the target task
either accepts or rejects the request, and optionally it can send 1 to
16 bytes of data back to the source task at the same time that it
responds to the 1logical 1link connection request. Furthermore, a
library routine, LIBS$ASN WTH MBX, that assigns a channel and
associates a unique mailboX, can be used when accepting the connection
if no optional data is returned (see Section 7.2).

5.4.3 Command Procedures Used in Task-to-Task Communication

As described above, once the access control information 1is verified,
both the LOGIN.COM command procedure for the accessed account and the
taskname.COM command procedure in the default directory under that
account are executed. '

On a VAX/VMS system, jobs are classified as interactive, batch, or
network. Inclusion of the following command in the LOGIN.COM file
avoids the execution of DCL commands applicable to the interactive
mode that are not required for task-to-task communication.

$ IF FSMODE() .NES. "INTERACTIVE" THEN EXIT.

The command procedure file taskname.COM must contain at minimum a RUN
command to cause the target task image to be executed. It may also
contain terminal assignments for debugging purposes (for example,
DBGSINPUT and DBGSOUTPUT). There are no restrictions on the type of
commands that you can have in this file. A sample command procedure
DEMO.COM to run the target task TASK20.EXE might contain the following
commands:

$ RUN USER: [DEMO.TEMP]TASK20.EXE
$ PURGE/KEEP=2 SYS$SLOGIN:DEMO.LOG
$ LOGOUT/BRIEF

5-9

TASK-TO-TASK COMMUNICATION

A sample command procedure TEST.COM used to debug the target task
TEXT.EXE might contain the following commands:

$ ASSIGN _TTA7: DBGSINPUT

$ ASSIGN TTA7: DBGSOUTPUT

$ RUN/DEBUG SYSSLOGIN:TEST.EXE

$ PURGE/KEEP=2 SYSS$LOGIN:TEST.LOG

The debug terminal must not currently be assigned to any process.
Otherwise, the command procedure will exit with an error that causes
the logical link connection to the object to be rejected.

5.5 EXCHANGING MESSAGES

After DECnet-VAX creates a logical link, the two tasks are ready to
exchange messages. The exchange of messages can take place only if
the two tasks cooperate with each other. In other words, for each
message sent by a task, the receiving task must issue a corresponding
call to receive the message. Also, you must decide which task will
disconnect the 1link. In addition, if the tasks are nontransparent,
they must agree on the optional data to be passed. Because either
task can now send and receive messages, the distinction between source
and target must be redefined. In the context of an established
logical 1ink, the task sending a message is the source and the task
receiving it is the target.

DECnet-VAX distinguishes between two types of messages: data messages

and mailbox messages. For both transparent and nontransparent
communication, data messages are the normal mode of information
exchange. Nontransparent communication gives you the additional

capability of receiving mailbox messages, such as interrupt messages,
messages resulting from some DECnet operation (including optional user
data), and network status notifications.

5.5.1 Data Messages

Whether you access the network transparently or nontransparently,
DECnet-VAX sends data messages over a logical link in response to a
set of send and receive calls issued by the source and target tasks.
For higher-level language tasks, use standard read and write calls to
send and receive data messages. In Example 5-1, the two FORTRAN tasks
use read and write calls to exchange information. The equivalent RMS
service calls are S$GET and $PUT. System service calls to send and
receive data messages are described in Chapters 6 and 7.

5.5.2 Mailbox Messages

Nontransparent communication frequently involves using a mailbox to
obtain network-specific information. A task may receive the following
types of messages in its mailbox:

® Messages that DECnet generates when a task initiates any of
the network operations 1listed below (a VAX/VMS task issues
system service calls to initiate these operations; these
calls also permit it to place optional user data in the
mailbox of the other task):

5-10

TASK-TO-TASK COMMUNICATION

- When one task requests a logical 1ink connection, a
notification message (and optional user data) may be placed
in the mailbox of the target task.

- When a target task accepts or rejects the 1logical 1link
connection request, a notification message (and optional
user data) is placed in the mailbox of the source task.

- When one task synchronously disconnects or aborts a logical
link, a notification message (and optional user data) is
placed in the mailbox of the task from which it is
disconnecting.

e Network status notification messages that inform a task of
some unusual network occurrence (such as a third-party

disconnect).

e Interrupt messages sent by the other task.

5.6 TERMINATING THE COMMUNICATION PROCESS

The termination of a logical 1link signals the end of the communication
process between two tasks. In transparent task-to-task communication
using higher-level language statements or RMS service calls, either
task can issue a file <c¢losing statement to break the link., To
terminate the link properly, it is recommended that the receiver, and
not the transmitter, of the final message issue the close call to
disconnect the link. The link termination process 1is complete when
the other task issues a file closing call. In transparent
communication using system service calls, the $DASSGN system service
call causes the link to be terminated (see Chapter 6).

If you are using system service calls in nontransparent task-to-task
communication, you can terminate I/0 operations over a channel in one
of three ways (as described in detail in Chapter 7):

e Synchronous Disconnect ($QI0) - This form of disconnection
indicates to the remote receiver that all messages sent by the
local transmitter have been acknowledged at the Network
Services Protocol (NSP) level. This does not guarantee that
the user of NSP received the data.

e Disconnect Abort ($QI10) - This form of disconnection
indicates to the remote receiver that all messages sent have
not necessarily been received. To ensure that all messages
are received before the link is disconnected, the sender must
cancel I/0 on the channel before issuing the abort call.

o Deassign Channel and Terminate Link ($DASSGN) - This form of
disconnection deassigns the channel and immediately
disconnects the link.

Note that after either a synchronous disconnect or a disconnect abort,
you can issue a new connection request since you did not deassign the
I/0 channel but merely deaccessed the link.

When a nontransparent task terminates the communication process, a
notification message indicating that the 1link is disconnected is
placed in mailbox of the task affected. In addition, a nontransparent
task can send up to 16 bytes of optional user data which is also
placed in the mailbox.

5-11

TASK-TO-TASK COMMUNICATION

Note that by their nature, disconnect operations are of 1little value
in guaranteeing to both partners that communication is complete.
Therefore, it is recommended that the communicating tasks agree on a
protocol for terminating communication. In general, the receiver and
not the transmitter of the final message should disconnect the logical
link.

5-12

CHAPTER 6

TRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

This chapter describes the system service calls and functions that you
can use to perform transparent task-to-task communication over the
network. In general, transparent communication allows you to:

e Create a logical link between tasks

e Send and recelive data messages

o Terminate the logical link at the end of the message dialog

This chapter defines the system service calls for these functions and
develops an example to illustrate their use.

The general concepts implicit in DECnet-VAX task-to-task communication
are covered in . Chapter 5. You should also be familiar with the
QIO-related material in the VAX/VMS System Services Reference Manual.
The use of higher-level language statements and RMS service calls in
transparent task-to-task communication is described in Chapter 5.

6.1 SYSTEM SERVICE CALLS FOR TRANSPARENT COMMUNICATION

Transparent task-to-task communication uses a set of system service
calls available with the VAX/VMS operating system. Table 6-1
summarizes these calls and their specific network-related functions.
The $QIO0 calls are distinguished by function code. Section 6.7
presents the format of these calls in more detail.

Table 6-1: Transparent Task-to-Task Communication System
Service Summary

Call Function
SASSIGN Request a logical link connection
$DASSGN Terminate a logical 1link
$QI0 (IOS$_READVBLK) Receive a message
$Q10 (IO$_WRITEVBLK) Send a message

The system service calls summarized in Table 6-1 allow you to perform
task-to-task communication in much the same way as you would perform
normal I/O operations. Use the $ASSIGN call to assign a logical 1link
I/0 channel to a "device," which in this case is a task that behaves
like a full-duplex record-oriented device. You can perform read and

6-1

TRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

write operations with this task 1in either a synchronous or
asynchronous manner. To exchange messages, use the Queue I/O0 (QIO)
Requests supported by DECnet-VAX. When all communication completes,
use the $DASSGN system service call to deassign the channel and
thereby disconnect the logical link.

6.2 REQUESTING A LOGICAL LINK

To request a logical link and assign an I/O channel, use the $ASSIGN
system service, When you issue this call, you must include a task
specifier for the remote node on which the cooperating task runs. The
task specifier identifies the remote node and the target task to which
you want to establish a logical link. (Refer to Chapter 2 for the
format of the task specification string.)

For example, for the network model described in Chapter 1, you could
establish a logical 1link to target task TEST2 on node TRNTO to perform
task-to-task communication. To create this link, code the following
VAX~-11 MACRO statements in your source program:

TARGET: +ASCID /TRNTO: :"TASK=TEST2"/
NETCHAN: «BLKW 1 ; channel number returned here
$ASSIGN_S DEVNAM=TARGET, CHAN=NETCHAN

For debugging or for symmetry, you can develop and run the target task
on the 1local node. Use the local node name plus two colons (::) to
connect to the local node. Alternatively, you can use node number 0
plus double colons (::) to connect to the local node.

Once you establish a logical link, you refer to the assigned channel
in any succeeding call in the MACRO program, either to send or receive
messages, or to deassign the channel and terminate the logical link.

Until the connection operation completes, the process 1is in Local
Event Flag Wait (LEF) state in KERNEL mode. Therefore, pressing
CTRL/Y will not return the process to DCL status. The maximum amount
of time that the process will wait in this state is specified by the
NCP command SET EXECUTOR with the INCOMING TIMER parameter. If this
timer cannot be set to an acceptable value, tasks that accept commands
from the terminal should use $QIO (IO$_ACCESS) instead of the
transparent $ASSIGN call to initiate 1logical 1links (see Section
7.8.2).

6.3 COMPLETING THE LOGICAL LINK CONNECTION

The target task completes the logical link by specifying the 1logical
name SYSSNET as the devnam argument for the S$ASSIGN system service.
For example:

LOGNAM: .ASCID /SYSSNET/
NETCHAN: -BLKW 1 ; channel number returned here
$ASSIGN_S DEVNAM=LOGNAM, CHAN=NETCHAN

Issue these calls in the target task to «complete the 1logical 1ink
connection, The target task also specifies a channel to be used in
subsequent system service calls.

TRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

In this chapter, it is assumed that the remote node 1is a VAX/VMS
system. If the remote node on which the target task runs is other
than VAX/VMS, you should refer to the related DECnet documentation.

6.4 EXCHANGING MESSAGES

After DECnet-VAX software establishes a logical 1link with the target
task, either task can then send or receive messages. However, they
must cooperate with each other: for each message sent with the
$QI0 (I0$ WRITEVBLK), the other task must issue a corresponding $QI0
(I0OS_READVBLK) to receive the message.

You must ensure that the tasks allocate enough buffer space for
receiving the nmessages; if they do not, a DATAOVERUN error will
occur. You must also ensure that the end of the dialog can be
determined. Finally, one of the two tasks must disconnect the logical
link. To terminate a logical link properly, the receiver, and not the
transmitter, of the final message should break the link.

6.5 TERMINATING THE LOGICAL LINK

For transparent task-to-task communication, use the $DASSGN system
service call to deassign the channel and break off the logical 1link
with the cooperating task. This call terminates all pending calls for
sending and receiving messages, aborts the link immediately, and frees
the channel associated with that logical link.

6.6 STATUS AND ERROR REPORTING

When a system service completes execution, a status value 1is always
returned. The $ASSIGN, $DASSGN, and $QIO0 system services place the -
return status information in register 0 (RO). For the $QI0O system
service, "a successful status return indicates only that the request
was successfully queued. All I/O completion status information is
placed in the 1I/0 status block (I0OSB). For example, a $QIO0 system
service read request to a task might be successful (status return is
SSS_NORMAL) yet fail because the link was disconnected (I/0 status
return is SS$ LINKABORT). The return status codes shown in the
following sections may be returned both in RO and in the IOSB.

The VAX/VMS System Services Reference Manual and the VAX/VMS 1/0
User's Guide both describe the use of asynchronous system
traps (ASTs), I0SBs, and event flags.

6.7 SYSTEM SERVICE CALL SUMMARY

The following subsections describe the VAX/VMS system services you can
use for transparent intertask communication. Each subsection
describes the use of the call, its format, the arguments associated
with the <call, and the return status information. Appendix C lists
the entire set of network system service error messages.

TRANSPAREN

.6.7.1 $ASSIGN
The SASSIGN sys
link. You ca
any succeeding
channel and the
Format

$ASSIGN de

Arguments

devnam

~chan

acmode

Return Status

SS$_REMOTE
SS$_CONNEC

SS$_DEVOFF
Ss$ FILALR

SS$_INSFME
SS$_INVLOG
SS$_IVDEVN

SS$_LINKEX

SS$_NOLINK

T TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

(I/0 Channel Assignment)

tem service assigns a channel to refer to the 1logical
n then use the channel returned in the chan argument in
call to send or receive a message, or to deassign the
reby terminate the logical 1link.

vnam ,chan ,[acmode]

address of a quadword descriptor of a character string
that identifies the remote task. The string will
contain either:

o A task specification string if the call 1is by the
source task. (Refer to Chapter 2 for the task
specification string format.) Both the string and
its descriptor must be in read/write storage.

e SYSSNET if the call is by the target task. (SYSSNET
is a logical name.)

address of a word that will receive the assigned
channel number. You use this channel number to send a
message to a remote task, receive a message from a
remote task, or to abort the logical link.

access mode to be associated with this channel. The
most privileged access mode used is the access mode of
the caller. You can perform I/O operations on the
channel only from equal or more privileged access
modes.,

The service completed successfully. (A 1logical
link was established with the target task.)

FAIL The connection to a network object timed out or
failed.

LINE The physical link is shutting down.

ACC A logical link already exists on the channel.

M There is not enough system dynamic memory to
complete the request.

IN The access control information was found to be
invalid at the remote node.

AM The task specifier has an 1invalid format or
content.

IT The network partner task was started, but exited
before confirming the 1logical 1link (that is,
SASSIGN to SYSSNET).

S No logical 1links are available. The maximum

number of 1logical 1links as set for the NCP
executor MAXIMUM LINKS parameter was exceeded.

TRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

SS$_NOPRIV The issuing task does not have the required
privilege to perform network operations or to
confirm the specified logical link.

SS$_NOSUCHNODE The specified node is unknown.

SS$_NOSUCHOBJ The network object number 1is unknown at the
remote node; or for a TASK= connect, the named
DCL command procedure file cannot be found at the
remote node.

SS$ NOSUCHUSER The remote node could not recognize the 1login
information supplied with the connection request.

SS$ PROTOCOL A network protocol error occurred, most 1likely
because of a network software error.

SS$_REJECT The network object rejected the connection.

SS5S_REMRSRC The link could not be established because system
resources at the remote node were insufficient.

SSS$_SHUT The local or remote node is no 1longer accepting
connections.

SS$ THIRDPARTY The logical link connection was terminated by a
third party (for example, the System Manager).

SS$ TOOMUCHDATA The task specified too much optional or interrupt
data.

SS$_UNREACHABLE The remote node is currently unreachable.

6.7.2 $0QI0 (Sending a Message to a Target Task)

The $QI0 system service with a function code of I0$ WRITEVBLK sends a
message to a target task. The $QIO call initiates an output operation
by queuing a request to the channel associated with the logical 1link.
(Alternatively, vyou could use the $QIOW system service to perform the
same operation.)

Format

{SQIO }[efn] ,chan ,func ,[iosb] ,[astadr] ,[astprm] ,pl ,p2

SQIOW
Arguments

efn number of the event flag to be set at request
completion.

chan a word containing the channel number associated with
the logical link. Use the same channel number returned
previously in the $ASSIGN call.

func I10$_WRITEVBLK

iosb address of a quadword 1I/0 status block that 1is to

receive the completion status.

TRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

astadr entry point address of an AST routine that executes
when the I/0 operation completes. If specified, the
AST routine executes at the access mode from which the
$0I0 service was requested.

astprm AST parameter to be passed to the AST completion
routine.

pl buffer address.

p2 buffer length in bytes.

Return Status

SS$_NORMAL The service completed successfully.

SS$ ABORT The I/0 request has been aborted by a $DASSGN or
- $CANCEL.

SSS_CANCEL The I/0 on this channel has been cancelled.

SS$_FILNOTACC No logical link is associated with the channel.

SS$_INSFMEM Enough memory to buffer the message could not be
allocated.

SS$_LINKABORT The network partner task aborted the logical

link.

SS$_LINKDISCON The network partner task disconnected the logical
link.

5S$_LINKEXIT The network partner task exited.

5_PATHLOST The path to the network partner task node was
lost.

SS$_PROTOCOL A network protocol error occurred. This is most

likely due to a network software error,

SSS$_THIRDPARTY The logical 1link connection was terminated by a
third party (for example, the System Manager).

6.7.3 $SQIO (Receiving a Message from a Target Task)

The $QIO system service with a function code of I0$_READVBLK receives
a message from a target task. The $QIO call initiates an input
operation by queuing a request to the channel associated with the
logical 1link. (Alternatively, you could use the $QIOW system service
to perform the same operation.)

Format

% $QIO0 }[efn] ,chan ,func ,[iosb] ,[astadr] ,[astprm] ,pl ,p2

SQIOW
Arguments
efn number of the event flag to be set at request
completion,
chan a word containing the channel number associated with

the logical link. Use the same channel number returned
previously in the $ASSIGN call.

6-6

TRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

func I10$_READVBLK

iosb address of a quadword I/0O status block that 1is to
receive the completion status.

astadr entry point address of an AST routine that executes
when the I/0 operation completes. If specified, the
AST routine executes at the access mode from which the
$QI0 service was requested.

astprm AST parameter to be passed to the AST completion
routine.

pl buffer address.

p2 buffer length in bytes.

Return Status

The service completed successfully.

SS$_NORMAL

SS$_ABORT

SS$_CANCEL

SS$_DATAOVERUN

SS$_FILNOTACC

SS$_INSFMEM

The I/0 request has been aborted by a $SDASSGN or
$CANCEL.

The I/0 on this channel has been cancelled.

More bytes were sent than could be received in

the supplied buffer.
No logical 1link is associated with the channel.

Enough memory to buffer the message could not be

S_LINKABORT
SS$ LINKDISCON

SS$_LINKEXIT

allocated.

The network task aborted the 1logical

link.

partner

The network partner task disconnected the logical
link.

The network partner task exited.

SS$ PATHLOST The path to the network partner task node was
lost.
SS$S_PROTOCOL A network protocol error occurred. This is most
likely due to a network software error.
SS8$ THIRDPARTY The logical link connection was terminated by a
third party (for example, the System Manager).
6.7.4 SDASSGN (Terminating a Logical Link)
The $DASSGN system service terminates all pending operations to send

and

the channel associated with that link.

receive data, disconnects the logical link immediately, and frees

Either task can terminate the

logical link by calling $DASSGN.

6-7

TRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

Format
$DASSGN chan
Arguments
chan a word containing the channel number to the 1logical
link you want disconnected. Use the same channel

number returned previously in the $ASSIGN call.

Return Status

SS$_NORMAL The service completed successfully.
5S$_IVCHAN An invalid channel number was specified.
SS$_NOPRIV The specified channel is not assigned; or it was

assigned from a more privileged access mode.

6.8 PROGRAMMING EXAMPLE OF TRANSPARENT COMMUNICATION

Example 6-1 illustrates the use of these system service calls for
transparent task-to-task communication. TRANA is a MACRO source task
on the local node that communicates with a target task, TRANB, on node
TRNTO. The source task sends a connection request to the remote node
whereupon the target task is started by the command £file TRANB.COM.
Once the 1logical 1link connection 1is made, the source task sends a
message to the target task, which in turn responds with a message and
then waits for additional message traffic. The source task drives the
communication process. Once the source task receives a response from
the target task, it disconnects the link and exits, which causes the
target task to exit also, thereby terminating the communication
process.

Example 6-1: Transparent Task-to-Task Communication
Using System Services '

TRANA

+TITLE TRANA - SOURCE TASK USING TRANSFARENT I/0
+IDENT /V1.0/

+SETTL WRITABLE.DATA

+FSECT TRANASDATA SHRYNOEXEsKD»WRT» RYTE

NETCHAN?: . BLKW 1 . i Network channel
IQSEUF: BLKQ 1 $ I/0 stastus block
TARGET: ASCID /TRNTO*MALIK KARL':!:'TASK=TRANE"'/ i Task srec (& descrirtor)

SENDMSG!.ASCII /SEND THIE STRING TO TRANE/
SENDMSG_SIZ=.-SENDMSG

RECVMEG: . ELRE 512

RECVUMSG..SIZ=,-RECVNSG

Outrut buffer
Outrut buffer size
InrFput buffer
InrFut buffer size

- e e e

+SRETTL MAIN
+FSECT TRANA$CODE NOSHRsEXE s RIy NOWRT s RYTE
+ENTRY START "M iEntry roint from exec

TRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

- s

$ASSIGN_8 -

BLEC

s er ar

$QI0W.8 -

ELEC
MOVZUWL
ELEC

wr v e

$QRIOW.S -

BLEC
MOVZWL
BLEC

- e e

$DASSGN.S -

17w -

+END

TRANB

+TITLE
+ IDENT
+SERTTL
+FSECT

NETCHAN?! . BELKW
IOSEUF?! JRLKQ
RECVUMSG ¢+ BLKE

RECVMSG.SIZ=,-RECVMSG

LOGNAM! ASCID
SENDMSG: . ASCII

SENDMSG.SIZ=,~SENDMSG

+SETTL
+FEECT
+ENTRY

Reauest 3 logical link

XIT: $EXIT.S RO

DEVNAM=W"TARGET -
CHAN=W"NETCHAN
ROSEXIT

. e W e

Send 2 messade to the tardet task.

EFN=%1,-
CHAN=W"NETCHAN: -
FUNC=ST#I0$_WRITEVEBLK,-
I0SE=W"I0OSBUF, -
P1=W"SENDMSG»~-
F2=8"$#SENDIMEG_81Z
ROSEXIT

W™ I0SEUF RO

ROSEXIT

Wb e car we wE ws er e e e

Receive 2 messade from the tardet tashk,.

EFN=#%1,-
CHAN=W"NETCHAN»~
FUNC=85"#I0¢_READVELK,~—
I0SE=W"IOSEUF -
F1=W"RECVUMSG,-
F2=$RECVYMSG.SIZ
ROSEXIT

W™ IOSRUF RO

ROSEXIT

W W W W WR s wr W e s

Abort the lodgical link.

T

CHAN=W"NETCHAN

Exit with status (in RO).,

- .

START §

TRANE - TARGET TASK USING
/V1.0/

WRITARBLE.DATA

TRANRSDATA SHR» NOEXE

1
1
512

/SYSSNET/
/REFLY TO TRANA/

e s er e S er

to the target task and azssign an I/0 channel.,

Assidgn a3 channel to tardet task
Address of device name descrirtor
Adr to receive channel ¥

Branch on failure

Izsue transmit request

Use local event flag #1

Use asssidned channel

Write virtuzl block

Address of 1/0 status block
Address of outrput buffer

.Bize of outrut buffer

Branch on failure
Get comrletion status
Eranch on failure

Issue receive recuest

Use local event flag #1

Use asssidned channel

Read virtual block

Address of 1/0 status block
Address of inrut buffer
Size of inrut buffer

Branch on failure

Get comrletion status
Branch on failure

lleassign the channel
Adr of word containing channel #

Exit with status to be disrlawed
on error condition

Imade transfer address

TRANSPARENT 1/0

sRIUWRTRYTE

Network channel

I/0 stztus block

InFut buffer

InFut buffer size

Logical name & descrirtor
Qutrut buffer

Outrut buffer size

MAINLINE
TRANEB$CODE NOSHREXE s RIyNOWRT»RYTE
START » "M« tEntry roint from exec

. er W

00F:

- e

- @ wr

. e e

=

IONE ¢

- > wr

EXIT?

TRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

Comrlete the lodical link connection

$ASSIGN_S -

RLEC

Receive messade from

DEUNAM=W"LOGNAM -
CHAN=W"NETCHAN
ROYEXIT

source task.

$QI0OW_S -

ELEC
HOVZUWL
CHFUW
REQL
RLEC

EFN=#1y~
CHAN=W"NETCHAN, -
FUNC=S"#I10%_READVELKy~
10SE=W"IDSEUF -
F1=W"RECVMSGs~-
FR2=#RECYMSG_51Z
ROSEXIT

W~ IOSEUF y RO

S~ #55$_ABORT yRO
DONE

ROYEXIT

Send messade to source taskhk.

$QI0W.E -

ELEC
MOVZUWL
ELEC
ERE

EFN=#%#1,-
CHAN=W"NETCHAN, -
FUNC=5"#I0$¢_WRITEVELK,~
I0SE=W"I0OSEUF -
F1=W"SENOMSGy~
P2=S"#SENDMSG._EIZ
ROSEXIT

W™TIOSEUFsRO

ROJEXIT

LOoF

Logical link was aborted.

$DASSGN_.S -

CHAN=W"NETCHAN

Exit with status (in RO).

$EXIT.S RO

+ENI

START

(that TRANA recuested).

. e s e

wr wr s T e e W S e ab ey eP

wr wr b e W ser N W er e ter

- e

- .

¥

Assign channmel to SYS$NET
Descrirtor of SYS$NET
Store channel #

Eranch on failure

Issue receive recuest

Use local event flag #1
Use assisned channel

Read virtual blochk
Address of I/0 status block
Address of inrut buffer
Size of inrut buffer
Branch on failure

Get comrletion status

Was lodicel link sborted?
Eranch if ues

Branch on failure

Issue tramsmit recuest
Use local event flag #1
Use sssigned channel
Write virtual block
Address of I/0 status block
Address of outrut buffer
Size of outrut buffer
Eranch on failure

Get comrletion status
Branch on failure
Reissue the read

lleassign the channel
Address of channel #

Exit with status to be disrlauved

on error condition

Imase transfer address

CHAPTER 7

NONTRANSPARENT TASK-TO~-TASK COMMUNICATION USING SYSTEM SERVICES

This chapter describes the system service calls and functions that you
use to perform nontransparent task-to-task communication. In general,
the underlying principles of nontransparent task-to-task communication
are similar to those of transparent communication. However, several
extensions to the system services described in Chapter 6 allow you to
use network-specific features for network operations, These

extensions allow you to do the following:

e Create and use mailboxes for receiving messages, including
network status notifications

e Declare a task as a network task, thus enabling it to process
multiple inbound logical 1link connection requests

® Send connection requests, optionally with user data

® Accept or reject a connection request, optionally with user
data

e Communicate between a transparent and a nontransparent task
e Send or receive an interrupt message

e Synchronously disconnect or disconnect abort a 1logical 1link,
optionally with user data

This chapter defines the system service calls for these functions and
presents an example to illustrate their use.

The general concepts implicit in DECnet-VAX task-to-task communication
are covered in Chapter 5. You should also be familiar with the
material contained in the VAX/VMS System Services Reference Manual and
the VAX/VMS I/0 User's Guide.

7.1 SYSTEM SERVICE CALLS FOR NONTRANSPARENT COMMUNICATION

Nontransparent task-to-task communication over the network uses a set
of system service calls available under the VAX/VMS operating system.
Table 7-1 summarizes these calls and their network-related Ffunctions.
The $QIO calls are distinguished by function code. (Section 7.8
presents the format of these calls in more detail.)

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

Table 7-1: Summary of System Service Calls for Nontransparent
Task-to-Task Communication

Call Function
SASSIGN Assign an I/O channel
$CANCEL Cancel I/0 on a channel
SCREMBX Create a mailbox
SDASSGN Abort the logical link

connection (deassigning an
I/0 channel)

$GETDVI Get information on device
or volume

$QI0 (I0$ ACCESS) Request a logical 1link
connection
$QI0 (IO$_ACCESS) Accept a logical link

connection request

$QIO0 (IO$_ACCESS!IO$M_ABORT) Reject a logical link
connection request

$QI0 (I0$_ACPCONTROL) Assign a network name to a
task eligible to accept
multiple inbound connection

requests

$QIO (IOS_DEACCESS!IO$M_ABORT) Abort Fhe logical link
connection

$QI0 (IO$_DEACCESS!IOSM SYNCH) Synchronously disconnect a

- logical 1link

$QI0 (I0$_READVBLK) Receive a message

$QI0 (IO0$_WRITEVBLK) Send a message

$Q1I0 (I0O$_WRITEVBLK!IOSM INTERRUPT) Send an interrupt message

$TRNLOG Translate logical names

7.2 ASSIGNING A CHANNEL TO _NET: AND CREATING A MAILBOX

To prepare for nontransparent task-to-task communication, you need to
assign a channel just as you would for transparent communication. 1In
addition, to take advantage of optional network protocol features, you
can create a mailbox.

For task-to-task communication, you must assign a channel to a
pseudo-device called NET:. Use the $ASSIGN system sService call for
this purpose. This call normally contains a reference to a mailbox,
thereby associating it with the channel assigned to NET:. 1If you use
a mailbox, you must create the mailbox before assigning a channel to
_NET:. It 1is 1important to note that this use of the $ASSIGN system
service differs from its use for transparent communication. Assigning
a channel to NET: does not transmit a logical link connection
request to the remote node. 1Instead, the channel to _NET: provides a

7-2

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

communication path to DECnet software. A separate $QI0 call
(I0S ACCESS function using the same channel) must be used to request a
logical link to the remote task.

To take advantage of optional network protocol features, vyou can
create a mailbox to receive messages on behalf of logical link
operations. For example, the mailbox receives a message indicating
whether the cooperating task accepted or rejected a connection request
issued by the source task. Use the $CREMBX system service to create a
mailbox for these purposes. In the event that your application does
not use mailbox messages, you need not create a mailbox.

For convenience, the run-time library routine LIB$ASN WTH MBX can be
used to create a temporary mailbox, assign a channel to it, and assign
a channel to NET:. This routine creates a unique mailbox such that
multiple copies of the task wusing it will in effect use different
mailboxes. If you were to create a mailbox with a logical name, all
tasks would use the same mailbox and thereby interfere with each
other's mailbox messages. The program example in Section 7.9
illustrates a wuse of this routine. Refer to the VAX-11] Run-Time.
Library Reference Manual for a complete description of this routine.

7.2.1 Mailbox Message Format

The mailbox receives information specific to nontransparent
communication with a remote task. Figure 7-1 illustrates the general
format of the mailbox message.

31 1615 817 0
UNIT MSGTYPE
COUNT
NAME
COUNT
INFO

ZK-841-82

Figure 7-1: Mailbox Message Format

Notes to Figure 7-1:
MSGTYPE Contains a code that identifies the message type.

UNIT Contains the binary unit number of the device for which
the message applies. '

COUNT Contain a counted ASCII string that gives the name of
NAME the device for which the message applies. The $ASSIGN

system service creates devices having names of "NET".
COUNT Contain a counted ASCII string of information which
INFO depends on the message type.

Appendix D summarizes the mailbox messages that pertain to
nontransparent task-to-task communication.

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

7.3 REQUESTING A LOGICAL LINK CONNECTION

Once you assign the I/0 channel, you can then request a 1logical 1link
connection. To request a logical 1link connection to the target task,
use the $QI0 system service with a function code of IO$_ACCESS. You
must identify the target task in the $QIO call. Use a Network Connect
Block (NCB) to specify the target task identification string. In
addition, you <can optionally send 1 to 16 bytes of data in the NCB.
The NCB must be in read/write storage. The format of the NCB is
discussed in Section 7.3.1.

Once the source task issues the connection request, it can then issue
a $QI0 call with a function code of I0$_READVBLK to read its mailbox.
Checking the contents of the mailbox is one way to determine whether
the target task accepted or rejected the connection request. The
mailbox will contain either MSG$ CONFIRM or MSG$ REJECT, possibly with
optional data in the mailbox buffer. -

If specified, the IOSB argument of the $QIO (IO$ ACCESS) call will
also contain the result of the connection request operation. Section
7.8.2 provides a complete list of I/0 status messages for this call.

Note that you must read the mailbox to inspect any optional data sent
from the target task upon accepting or rejecting the connection
request.

7.3.1 Network Connect Block

The Network Connect Block (NCB) is a user-generated data structure
that contains the information necessary to request a logical 1link
connection, or to accept or reject a logical link connection request.

Figure 7-2 is an example of an NCB you could use when issuing a
connection request call.

The significance of the information contained in the NCB block varies,
depending on the type of call in which it is used. If the call is an
outbound connection request with no optional data, items 2, 3, 4, and
5 of the block are not required. If the call is a connect accept
operation and no optional data is sent, then items 4 and 5 are not
required. Item 5 is meaningful only to the receiver of a connection
request.

The example in Figure 7-2 illustrates an NCB that you could use when
issuing a connection request call.

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

1. With optional data (outbound connect):

NCB: .ASCII ?TRNTO::"TASK=TEST2/?
WORD 00
OPTDATA:
.ASCIC /USERINFO/ o
.BLKB 17-<.-OPTDATA>
.ASC 8 /"/

2. Without optional data (outbound connect):

NCB: .ASCII ?TRNTO: : "TASK=TEST2"?

Item Function

© 2 valid task specification string. (Refer to Chapter 2 for
the task specification format.) For an inbound call with an
NCB, the task name portion of the task specification string is
a process ID if the remote node is a VAX/VMS system; if not,
then the task name portion is a system-specific string that
identifies an executable unit (for example, job or task). The
task specification string must be a quoted string. Note that
the final quotation mark of the task specification string
follows the last item within the NCB.

@® The slash character (/). .

© One word. This word must be 0 for a connection request
operation. For a connect accept or reject operation, this

word contains an internal DECnet link identifier.

® Up to 16 bytes of optional data sent as a counted string.
This string is stored in a fixed length field that is 17 bytes
long. DECnet-VAX software ignores unused bytes.

© 2 destination descriptor. (This indicates how the connection
was issued and 1is meaningful only to the task or object to
which the connection is made. This information is wuseful
where one program serves many functions and needs to know how
it was invoked.) The maximum 1length for the destination
descriptor is 19 bytes. The format is as follows:

a. If byte 0 contains 0, then byte 1 is the binary wvalue of
the object number.

b. If byte 0 contains 1, then byte 1 is the binary object
number, and bytes 2 through 18 contain a counted task
name.

c. If byte 0 contains 2, then byte 1 1is the binary object
number, bytes 2 through 5 contain a UIC, the first two
bytes of which contain a binary group code and the second
two bytes contain a binary user code, and bytes 6 through
18 contain a counted task name.

Figure 7-2: Network Control Block Format

7.4 COMPLETING THE LOGICAL LINK

A nontransparent target task completes the logical 1link connection
in one of several ways, depending upon whether the task can process
multiple inbound connection requests or just a single request.

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

Furthermore, a nontransparent target task has the option of either
accepting or explicitly rejecting a logical link request.

In the discussion that follows, it is assumed that the remote node
is VAX/VMS. If the remote node on which your target task runs is
other than VAX/VMS, vyou should refer to the related DECnet

documentation.

7.4.1 Receiving a Connection Request

When a remote node receives a call requesting a 1logical 1link, the
DECnet-VAX software constructs an NCB from the information contained
in the call. At this point, one of two things occurs. 1If a process
already running on the remote node has declared a network name or
object number the same as the one identified in the WNCB, then the
software puts the NCB into its mailbox. 1If not, DECnet-VAX software
creates a process that runs the LOGINOUT image. The LOGINOUT image
verifies the access control information and, 1if it checks out,
LOGINOUT equates SYSSNET to the NCB, invokes LOGIN.COM (if it
exists), and starts the taskname.COM command file. The name of this
command file is determined as follows:

e If the connection request identifies a numbered (nonzero)
object, then the appropriate record 1is 1located in the
Configuration Data Base and the name of the file is found in
this record. (The file 1is assumed to be found 1in
SYSS$SYSTEM.)

e If the connection request identifies a named object with
type 0 (TASK), then the file name is assumed to be the name
of the task connected to (with a file type of .COM) and is
assumed to be found in the default directory associated with
the access control information.

Once executing, the target task can then determine whether to accept
or explicitly reject the connection request. You can program the
target task to base this assessment on the information contained in
the NCB.

7.4.1.1 Receiving Single Connection Requests - A nontransparent
target task can accept only one connection request at a time, unless
it declares itself as a network task. The target task may retrieve
the connection information by translating the logical name SYSSNET
using the $TRNLOG system service call. Once the task retrieves the
logical name, it may then decide whether to accept or explicitly
reject the connection request.

Note that you need not translate SYSSNET if the following
information is not required:

e The optional data in the Network Connect Block
e The identity of the connector

® The descriptor by which the connection was made

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

7.4.1.2 Receiving Multiple Connection Requests (Network Tasks) - A
target task can accept multiple inbound connection requests only if
it declares itself a known network task. To make this declaration,
you must first use the $ASSIGN call to assign an I/0 channel to
NET:. Then, use the $QIO0 system service with a function code of
TO$ ACPCONTROL to assign a network name or object number to the
task, making it eligible to process multiple inbound connection
requests. This system service requires SYSNAM privilege. You must
associate a mailbox with the channel if a name or number 1is to be
declared.

Programs that have declared names or object numbers should be
programmed to terminate when their mailboxes receive a MSG$S_NETSHUT
message. Such programs must be restarted when the network comes
back up.

Once you declare the target task as an active network task, DECnet
places all connection requests addressed to the task in the mailbox
associated with the channel over which the ACP control function was
issued. The target task retrieves connection requests from the
mailbox by issuing the $QI0 system service call with a function code
of TI0$ READVBLK. Note that the first message in the mailbox is the
NCB from the original connection request that put the task into a
state of execution. Once the task declares a network name or object
number, subsequent inbound connection requests are not checked for
their access control information. (However, if the network task is
started separately from a DECnet operation, access control is never
checked.)

Note that you can start programs that declare names or object
numbers apart from the first inbound connection (that is, by a RUN
command) .

7.4.2 Accepting or Rejecting a Connection Request

As mentioned previously, the target task can either accept or
explicitly reject a connection request. To accept a connection
request, thus completing the logical link connection, use the $QIO
system service with a function code of I0$ ACCESS. To reject the
connection request, use the $QI0 system service with the function code
I0$_ACCESS!IO$M ABORT. When it either accepts or rejects the
connection request, the target task can also send 1 to 16 bytes of
optional data within a modified NCB back to the source task.

7.5 EXCHANGING MESSAGES

Exchange of data messages between the two cooperating tasks is
performed in the same way for both nontransparent and transparent
communication. (Refer to Section 6.4 for information on wusing the
system service calls $QI0 (IO$_WRITEVBLK) and $QIO (I0$_READVBLK) to
send and receive messages.) In addition, the following information on
interrupt messages is particular to nontransparent communication.

7.5.1 Interrupt Messages

Either task can send a 1- to l6-byte interrupt message. You can use
this method to send a message to a target task outside the normal flow
of data messages. DECnet-VAX places the received interrupt message in
the target task's mailbox. Use the $QI0 system service with a
function code of 1IO0O$_WRITEVBLK!IOSM INTERRUPT to send the interrupt

7-7

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

message. In order for the target task to be notified that an
interrupt message has been placed in its mailbox, the task should
issue a $QIO system service call with a function code of I0$ READVBLK
to the mailbox. Specifying an AST routine in the $QIO system service
call will cause the routine to be executed on receiving the interrupt
message. (AST routines are described in the VAX/VMS System Services
Reference Manual.)

7.6 DISCONNECTING OR ABORTING THE LOGICAL LINK

A nontransparent task can terminate communication with a remote task
in one of two ways: either by disconnecting the link (synchronous
disconnect or disconnect abort) or by deassigning the channel. In the
first instance, you can issue a new connection request on the same
channel since you do not deassign it. Regardless of the method you
choose, you can send an optional message of 1 to 16 bytes of data with
the $QIO call.

7.6.1 Synchronously Disconnecting a Logical Link

To synchronously disconnect a logical 1link, issue the $QIO0O system
service with a function code of IO$ DEACCESS!IOSM SYNCH. The channel
is then free for subsequent communication with eltﬁer the same or a
different remote task.

A synchronous disconnection is useful for master/slave communication
in which one task always sends data and its partner task always
receives that data. If the receiver sees a synchronous disconnection
notification, it knows that it received all the data that was sent.
(The sender on the other hand is not guaranteed that its partner
received the data.) Because this is the only guarantee provided by
this operation, using this operation is discouraged in favor of a
user-defined protocol to ensure completion of communication. 1In
general, the receiver of the final message should break the 1logical
link.

7.6.2 Aborting the Logical Link ($QIO Function)

To abort the logical 1link, issue the $QIO0O system service with a
function code of I0$ DEACCESS!IO$M ABORT. This form of disconnection
indicates to the receiver that not all messages sent have necessarily
been received. To ensure that all transmitted messages have been
received, the task itself must terminate I/0 operations on the 1link
before instituting the DEACCESS function because this function never
completes before all pending I/0 operations complete. To do so, first
issue the S$CANCEL system service to terminate I/0 operations over the
link; then, issue the $QI0 system service to terminate the link.

Note that after either a synchronous disconnect or a disconnect abort,
you can issue a new connection request if you did not deassign the I/O
channel.

If you issue the $CANCEL system service to a channel over which a
network name or object has been declared, the declaration will be
removed from the network data base.

NONTRANSPARENT TASK-TO~TASK COMMUNICATION USING SYSTEM SERVICES

7.6.3 Terminating the Logical Link ($SDASSGN Function)

You can issue the $DASSGN system service call to deassign the channel
and terminate the 1logical 1link immediately. You issue the $DASSGN
call only after all communication between the tasks is complete. The
call releases the 1I/0 channel, disassociates the mailbox from the
channel, and terminates the logical link immediately. This operation
is equivalent to using $SCANCEL followed by $QIO0
IO$_DEACCESS!IO$M_ABORT.

7.7 STATUS AND ERROR REPORTING

The same status and error reporting considerations apply to
nontransparent as to transparent task-to-task communication. Refer to
Section 6.6 for information on status and error reporting.

7.8 SYSTEM SERVICES CALL SUMMARY

The following subsections describe the VAX/VMS system services you can
use for nontransparent intertask communication over the network. Each
subsection describes the use of the call, its format, the arguments
associated with the call, and the return status information. Appendix
C lists the entire set of network system service error messages.

The following system services are not described in detail below,
because their usage is the same whether or not they are used in a
networking context. For a description of these system services, see
the VAX/VMS System Services Reference Manual. :

SCANCEL Cancel I/0 on Channel
SCREMBX Create Mailbox and Assign Channel
SGETDVI Get Device/Volume Information

Note that $GETDVI performs the same function as the Get 1I/0 Channel
Information ($GETCHN) system service. However, DIGITAL recommends
that you use the $GETDVI system service.

7.8.1 $SASSIGN (I/0 Channel Assignment)
The $ASSIGN system service assigns a channel to refer to a logical
link. You use this channel in all $QIO calls that communicate with a

remote task. In addition, you can use the $ASSIGN system service call
to associate a mailbox with the channel.

Format

SASSIGN devnam ,chan ,[acmode] , [mbxnam]

Arguments
devnam address of a quadword descriptor of a character string
containing the string NET: or a logical name for
_NET:. N
chan address of a word that will receive the assigned
channel number.
acmode access mode to be associated with this channel. The

most privileged access mode used is the access mode of
the caller. You can perform I/0 operations on the

7-9

NONTRANSPARE

mbxnam

Return Status

NT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

channel only from equal or more privileged access
modes.

address of a character string descriptor £for the
physical name of the mailbox to be associated with the
channel. This mailbox remains associated with the
channel until the channel is deassigned ($SDASSGN).

S55S$_NORMAL The service completed successfully.

SS$_INSFMEM There is not enough system dynamic memory to
complete the request.

5S$_NOPRIV The issuing task does not have the required
privileges to <create a logical link to the
designated target.

55$_NOSUCHDEV The network device driver is not loaded (for

7.8.2 $QIO (Re
The $QIO system
logical 1link c
of optional dat
the $QIO0 system
Format

$QI0 [efn]

Arguments

efn

chan

func

iosb

astadr

astprm

pl

p2

example, the DECnet-VAX software 1is not
running currently on the local node).

questing a Logical Link Connection)

service with a function code of I0$ ACCESS requests a
onnection to a target task. You can send 1 to 16 bytes
a to the target task at the same time that you issue

service.

,chan ,func ,[iosb] ,[astadr] ,[lastprm] ,{pl] ,p2

number of the event flag to be set at request
completion.

address of a word containing the channel number
associated with the logical 1link. Use the same channel
number returned previously in the $ASSIGN call.

10$_ACCESS

address of a quadword I/0O status block that 1is to
receive the completion status.

entry point address of an AST routine that executes
when the 1I/0 operation completes. If specified, the
AST routine executes at the access mode from which the
$0I0 service was requested.

AST parameter to be passed to the AST completion
routine.

not used (omit the argument).
address of a quadword descriptor of the NCB (see

Section 7.3.1). Both the descriptor and the NCB must .
be in read/write storage.

Return Status

SS$_NORMAL

SS$_CONNECFAIL
SS$_DEVOFFLINE
SS$_FILALRACC
SS$_INSFMEM
S_INVLOGIN
SS$_IVDEVNAM

SS$ LINKEXIT

S5S$_NOLINKS

SS$_NOPRIV

SS$_NOSUCHNODE

SS$_NOSUCHOBJ

SS$_NOSUCHUSER
SS$_PROTOCOL

SS$_REJECT
SS$_REMRSRC
SS$_SHUT
SS$_THIRDPARTY
S_TOOMUCHDATA

SS$_UNREACHABLE

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

The service completed successfully.

The connection to a network object timed out
or failed.

The physical link is shutting down.

A logical 1ink is already accessed on the
channel (that 1is, a previous connect on the
channel) .

There is not enough system dynamic memory to
complete the request.

The access control information was found to
be invalid at the remote node.

The NCB has an invalid format or content.

The network partner task was started, but
exited before confirming the 1logical link
(that is, SASSIGN to SYSSNET).

No logical links are available. The maximum
number of 1logical 1links as set for the
executor MAXIMUM LINKS parameter was
exceeded.

The issuing task does not have the required
privileges to <create a logical link to the
designated target.

The specified node is unknown.

The network object number is unknown at the
remote node; or for a TASK= connect, the
named DCL command procedure file cannot be
found at the remote node.

The remote node could not recognize the login

information supplied with the connection
redquest.
A network ©protocol error occurred. This

error is most 1likely due to a network
software error.

The network object rejected the connection.
The link could not be established because
system resources at the remote node were

insufficient.

The 1local or remote node 1is no
accepting connections.

longer
The logical link was terminated by a third
party (for example, the System Manager).

The task specified too much optional or
interrupt data.

The remote node is currently unreachable.

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

7.8.3 $0I0 (Accepting a Logical Link Connection Request)

The $QI0 system service with a function code of IO$_ACCESS accepts a
logical link connection request from a source task. You can send 1 to
16 bytes of optional data to the source task at the same time that you
issue the $QIO0 system service.

Format

$QI0 [efn] ,chan ,func ,[iosb] ,[astadr] ,[astprm] ,[pl] ,p2

Arguments

efn

chan

func

iosb

astadr

astprm

Pl
P2

Return Status

number of the event flag to - be set at request
completion.

address of a word containing the channel number
associated with the logical link. Use the same channel
number returned previously in the $ASSIGN call.

10$_ACCESS

address of a quadword I/O status block that is to
receive the completion status.

entry point address of an AST routine that executes
when the I/O operation completes. If specified, the
AST routine executes at the access mode from which the
$QI0 service was requested.

AST parameter to be passed to the AST completion
routine.

not used (omit the argument).
address of a quadword descriptor of the NCB (see

Section 7.3.1). Both the descriptor and the NCB must
be in read/write storage.

SS$_NORMAL The service completed successfully.

SS$_DEVALLOC The process cannot access the 1logical 1link
specified in the NCB because that link is
intended for another process.

SS$_EXQUOTA The process does not have sufficient quota to
complete the request.

SS$ INSFMEM There is not enough system dynamic memory to
complete the request.

55$_IVDEVNAM The NCB has an invalid format or content.

SS$_LINKABORT The network partner task aborted the 1logical
link.

SS$_LINKDISCON The network partner task disconnected the
logical 1link.

SS$_LINKEXIT The network partner task exited.

SS$_NOSUCHNODE The specified node is unknown.

7-12

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

SS$_PATHLOST The path to the network partner task node was
lost.

SS$_PROTOCOL A network protocol error occurred. This
error is most 1likely due to a network
software error.

5SS THIRDPARTY The logical link connection was terminated by
a third party (for example, the System
Manager) .

SS$_TIMEOUT The connection request did not complete
within the required time.

SS$_UNREACHABLE The remote node is currently unreachable.

7.8.4 $QIO (Re
The $QI0 system
rejects a logic
of optional dat
the $QIO0 system
Format

$010 [efn]

Arguments

efn

chan
func
iosb

astadr

astprm

pl
p2

Return Status

SS$_NORMAL

SS$_DEVALL

jecting a Logical Link Connection Request)

service with a function code of I0$_ACCESS!IOSM_ABORT
al link connection request. You can send 1 to 16 bytes
a to the target task at the same time that you issue

service.

(chan ,func ,{iosb] ,[astadr] ,[astprm] ,[pl] ,p2

number of the event flag ,to be set at request
completion.

address of a word containing the channel number
associated with the logical link. Use the same channel
number returned previously in the $ASSIGN call.

I0$ _ACCESS!IOS$M ABORT

address of a quadword I/O status block that 1is to
receive the completion status.

entry point address of an AST routine that executes
when the 1I/O0 operation completes. If specified, the
AST routine executes at the access mode from which the
$QI0 service was requested.

AST parameter to be passed to the AST completion
routine.

not used (omit the argument).
address of a quadword descriptor of the NCB (see

Section 7.3.1). Both the descriptor and the NCB must
be in read/write storage.

The service completed successfully.
ocC The process cannot access the 1logical 1link

specified in the NCB because that link is
intended for another process.

7-13

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

S8$_EXQUOTA The process does not have sufficient quota to
complete the request.

SS$_IVDEVNAM The NCB has an invalid format or content.

5S5$_LINKABORT The network partner task aborted the 1logical
link.

SS$_LINKDISCON The network partner task disconnected the
logical 1link.

SS$_LINKEXIT The network partner task exited.

SS$_NOSUCHNODE The specified node is unknown.

S§SS_TIMEOUT The connection request did not complete
within the required time.

SS5$_PATHLOST The path to the network partner task node was
lost.

SS$_PROTOCOL A network protocol error occurred. This

error is most 1likely due to a network
software error.

SSS$_THIRDPARTY The logical link connection was terminated by
a third party (for example, the System
Manager) .

SS$_UNREACHABLE The remote node is currently unreachable.

7.8.5 $QI0 (Sending a Message to a Target Task)
The $QIO0 system service with a function code of I0$ WRITEVBLK sends a

message to a target task. Refer to Section 6.7.2 for the format of
this call, its arguments, and possible return status codes.

7.8.6 $QI0O (Receiving a Message from a Target Task)
The $QI0 system service with a function code of I0$ READVBLK receives

a message from a target task. Refer to Section 6.7.3 for the format
of this call, its arguments, and possible return status codes.

7.8.7 $QIO (Sending an Interrupt Message to a Target Task)
The $QIO0 system service with a function code of
I0$ WRITEVBLK!IO$M INTERRUPT sends a 1- to l6-byte interrupt message
to a target task. 1If the remote node is a VAX/VMS system, the message
is placed in the mailbox associated with the target task.
Format

$0I0 [efn] ,chan ,func ,[iosb] ,[astadr] ,[astprm] ,pl ,p2

Arguments

efn number of the event flag to be set at event completion,

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

chan

func

iosb

astadr

astprm

pl

p2

Return Status

address of a word containing the channel number
associated with the logical link. Use the same channel
number returned previously in the $ASSIGN call.

I0$_WRITEVBLK!IOS$SM INTERRUPT

address of a quadword 1I/0 status block that will
receive the completion status.

entry point address of the AST routine that executes
when the I/0 operation completes. If specified, the
AST routine executes at the access mode from which the
$QI0 service was requested.

the AST parameter to be passed to the AST completion
routine.

buffer address.

buffer length (1 to 16 bytes).

555 _NORMAL The service completed successfully.

SSS_ABORT The I/0 request has been aborted by a $DASSGN
or SCANCEL.

SS$_FILNOTACC No 1logical 1link 1is associated with the
channel.

5SS _INSFMEM Enough memory to buffer the message could not
be allocated.

SS$_LINKABORT The network partner task aborted the 1logical
link.

SS$_LINKDISCON The network partner task disconnected the
logical link.

SS$_LINKEXIT The network partner task exited.

S5$_NOSOLICIT DECnet could not accept an interrupt message
at this time.

S5$_TOOMUCHDATA The task specified too much interrupt data.

SS$_PATHLOST The path to the network partner task node was
lost.

SS5$_PROTOCOL A network protocol error occurred. This
error is most 1likely due to a network
software error.

S5$_THIRDPARTY The logical link connection was terminated by

a third .party (for example, the System
Manager) .

7.8.8 $0Q0I0 (Synchronously Disconnecting a Logical Link)

The $QIO0 system service with a function code of I0$_DEACCESS!IO$_SYNCH
synchronously disconnects the logical link. All pending messages are
transmitted to the remote node before the link is disconnected.

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES
You can send 1 to 16 bytes of optional data to the task from which you
are disconnecting at the same time you issue this $QIO system service.
Format

SQIO [efn] ,chan ,func ,[iosb] ,[astadr] ,[astprm] ,[pl] [P2]

Arguments

efn number of the event flag to be set at event completion.

chan address of a word containing the channel number
associated with the logical link. Use the same channel
number returned previously in the $ASSIGN call.

func I0$_DEACCESS!IO$M_SYNCH

iosb address of a quadword I/O status block that will
receive the completion status.

astadr entry point address of the AST routine that executes
when the 1I/0 operation completes. If specified, the
AST routine executes at the access mode from which the
$QI0 service was requested.

astprm the AST parameter to be passed to the AST completion
routine,

pl not used (omit the argument).

p2 address of a descriptor of a counted ASCII 'string of

optional user data. Both the string and its descriptor
must be in read/write storage.

Return Status

SSS_NORMAL The service completed successfully.
SS$_FILNOTACC No 1logical 1link 1is associated with the
channel,

7.8.9 $0QI0 (Aborting a Logical Link)

The $Q0I0 system service with a function code of IO$_DEACCESS!IO$_ ABORT
terminates the 1logical 1link. Note, however, that the DEACCESS
function completes only after all pending I/0 operations complete,
even though vyou specify I0$ ABORT. First, issue the SCANCEL system
service call to cancel I/0 operations on the logical 1link and then
issue this call to terminate the logical link.

You can send 1 to 16 bytes of optional data to the task from which you
are disconnecting at the same time that you issue this $QIO system
service call.
Format

$QI0 [efn] ,chan ,func ,[iosb] ,[astadr] ,[astprm] ,[pl] ,[p2]

Arguments

efn number of the event flag to be set at event completion.

NONTRANSPARENT TASK~TO-TASK COMMUNICATION USING SYSTEM SERVICES

chan address of a word containing the channel number
associated with the logical link. Use the same channel
number returned previously in the $ASSIGN call.

func IO$_DEACCESS!IO$M_ABORT

iosb address of a quadword I/0 status block that will
receive the completion status.

astadr entry point address of the AST routine that executes
when the 1I/0 operation completes. If specified, the
AST routine executes at the access mode from which the
$0I0 service was requested.

astprm the AST parameter to be passed to the AST completion
routine.

pl not used (omit the argument).

P2 address of a quadword descriptor of a counted string of

optional user data. Both the string and its descriptor
must be in read/write storage.

Return Status

SS5$_NORMAL The service completed successfully.
Ss$ FILNOTACC No logical 1link is associated with the
channel.

7.8.10 $QI0 (Declaring a Network Name or Object Number)

The $QIO system service with a function code of I0$ ACPCONTROL assigns
a network name or object number to the task, thereby making it
eligible to process multiple inbound connection requests. You must
associate a mailbox with the 1I/0 channel. All inbound connection
requests are placed in the mailbox associated with the channel over
which this 1I/0 function is issued. The SYSNAM privilege is required
to declare a name or object number.

MACRO programmers should be aware that whenever a 1logical 1link is
established, its device unit number (for example, 18 from NET18:)
should be obtained by using the $GETDVI system service, because unit
numbers and not channel numbers appear in mailbox messages. Use this
system service call where a single mailbox 1is being used for many
logical 1links. The wunit number could be used as a key into a data
base which keeps track of multiple links.

Format

$QI10 [efn] ,chan ,func ,[iosb] ,[astadr] ,[astprm] ,pl ,p2

Arguments
efn number of the event flag to be set at event completion.
chan a word containing the channel number associated with
the logical 1link. Use the same channel number assigned
previously in the $ASSIGN call.
func IO$;ACPCONTROL
iosb address of a quadword I/0 status block that will

receive the completion status.

7-17

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

astadr entry point address of the AST routine that executes
' when the 1I/0 operation completes. If specified, the
AST routine executes at the access mode from which the

$0I0 service was requested.

astprm the AST parameter to be passed to the AST completion
routine.
pl address of a quadword descriptor of a 5-byte Dblock

consisting of a function type (one byte) and a longword
parameter. The function type is a symbol defined by
-the S$NFBDEF macro in SYSSLIBRARY:LIB.MLB. The format
of the 5-byte block for declaring a name is:

+.BYTE NFBSC_DECLNAME
.LONG 0

The format of the 5-byte block for declaring an object
~number is: ‘

.BYTE NFBSC DECLOBJ
«LONG object-number

where the object number is a number reserved for
customer use in the range of 128 to 255. This 5-byte
buffer and its descriptor should be 1in read/write
storage.

p2 address of a quadword descriptor of the network name
(maximum of 12 characters). This is ignored for the
DECLOBJ function. Both the name and its descriptor
must be in read/write storage.

Return Status

SS$_NORMAL The service completed successfully.

SS$_BADPARAM One of the QIO parameters has an invalid
value.

SS$_ILLCNTRFUNC The control function is invalid.

SS$_NOMBX A name or object number is being declared
using a channel without an associated
mailbox.

SS$_NOPRIV The issuing process does not have the SYSNAM

privilege.

7.8.11 $DASSGN (Terminating a Logical Link)

The $DASSGN system service terminates all pending operations to send
and receive data, aborts the logical link immediately, and frees the
channel associated with that 1link. Refer to Section 6.7.6 for the
format of this call, it arguments, and possible return status codes.

7.9 PROGRAMMING EXAMPLE FOR NONTRANSPARENT COMMUNICATION

Example 7-1 illustrates the use of several of these system service
calls for nontransparent task-to-task communication. CONNECT is a
nontransparent MACRO source task on the local node that communicates
with a nontransparent target task, DECLARNAM, on node DENVER. This

7-18

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

example is similar to Example 6-1, except that here the source task
uses an NCB and performs a nontransparent assign operation to
. establish communication with the target task. DECLARNAM is a
nontransparent target task that has declared a name (that is, it is
eligible to receive multiple 1inbound connection requests). In
addition, it also uses a mailbox to receive network status
notifications. Neither task performs useful functions. They are
presented here only to illustrate various nontransparent functions.

Example 7-1: Nontransparent Task-to-Task Communication
Using System Services

DECLARNAM

+TITLE DECLARNAM- NONTRANSFARENT EXAMFLE (WITH DECLARED NAME)
+IDENT /V1.0/

+SETTL READONLY_DATA

+FSECT DECLARNAMERDDATA SHRyNOEXE s RI's NOWRT s BYTE

SNFBRDEF
$DIRDEF

DEVIDESC!.ASCIDIN /_NET!/
MAXMSG?: JLONG 128

RUFQUO: JLONG 128
MEXDESC: .ASCII! /DECLARMEX/
MAXLINKS=128

BUFFER.SIZE=64

Fseudo-device & descrirtor
Maximum messade size
Buffer quots
Mailbox lognam & descrirtor
Maximum # of lodicsl links allowed
Size of inrFput buffer to asccert

3 messages

- we W e e e

+SBTTL READWRITE.DATA

+FSECT DECLARNAMSRWIATA SHRyNOEXEsRIWRT»BYTE
NAMEDESC! i leclared name & descrirtor

+ASCID /DECLAR/
DCL_CHAN?

+BLKYW 1 i Word to receive declared name chan #
DEV_CHAN:

+BLKW 1 i Word to receive device channel #
MEX_CHAN!

+BLKW 1 i Word to receive mzilbox channel ¥
MEXMSG: .BLKE 128 3 Mailbox buffer
I0SE? +EBLKQ 1 i 1I/0 status block
AST._IOSE: § 1/0 status block for AST

+ELK®Q 1

NCEDESC: . LONG 100
+LONG NCE

Metwork control block descrirtor

-

NCE? +BLKE 100 i Network control block

NFEDESC: .LONG S # Network function block descrirtor
+LONG NF R

NFE? +BYTE NFE$C_DECLNAME i Network function block
+LONG 0

FRILEN! ,WORD 0
FRIBUF! (LONG 128
+LONG FRUF

Length of buffer for $GETCHAN info
Descrirtor of #GETCHAN buffer

- -

FEUF?$ +BLKR 128 i Buffer to receive $GETCHAN info
COUNT +BLKL 1 # Count of ¥ of table entries
CHAN_LIST? # Charmnel ¥ list

+BLKY MAXLINKS
UNIT_LIST? i Unit # list

+BLKW MAXLINKS
IOSE_LIST: 5 Read messsde I/0 status block list

+ELKQ MAXLINKS

BUFFERS: .EBELKE MAXLINKS % BUFFER.SIZE Inrut buffers to rut messades

-

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

EUF_ADR.LIST!
QFFSET = 0
+REPT MAXLINKS
«ANIRESE BUFFERS + OFFSET

GFFSET = OFFSET + BUFFER.SIZE
CENDR
SEETTL HAIN

Trys srodgram demonstrates the
intound connection reauests,

znd iz not intended to rerform
code iz kert to @ minimum (

anw

Wh e gy e mrocap er b W

srogram terminstion - an
+FSECT DECLARNAM$COLNE
+ENTRY STARTs "M

Create 8 temrorary mailbox with

[

$CREMEBX.S -
CHAN=W"MEX_CHAN,~-
MAXMEG=W"MAXHEG -
EUFQUO=W"BUFQUOy -
LOGNAM=W"MEXDESC

ELERC ROYEXITE

channel to a2 NET device and

fissisdn &

s ar car

$ASESIGN.E -
DEVNAM=W"DEVDESC: -~
CHAN=W"DCL .CHAN, -
HEXNAM=W"MBXDESC

RLEC ROSEXITS

Declare s nebtwork name.

s e e

$QI0W..E -
CHAN=W"DOCL _CHANy-
FUNC=4#10%_ACFCONTROL, -
I0SR=W"I0CR,-
F1=W"NFEIESC, -
F2=#NAMEDESC

s

y

note for exsmrler
inarprorriate srocedure for most arrlications).

List of rointers to inrut buffers

use of & declared name to 2llow multirle
It is included for illustrative rurroses
useful work.

In
that

nonnetworkh
result in

rarticulary
all errors

NOSHRYEXEsRINy NOWRT s RYTE

3

’

the logical

. e e

-

Main entry roint

name DNECLARMEX.

Adr
Adr
Adr
Adr

of word to rut mailbox channel

of londword with max messadge size
of longword with buffer cuota

of descrirtor of mbx lodgnasm

Evror if LEC

gssociate the mailbox with it.

. s wr

. W e e

Tesue $ASSIGN sustem service recuest
Adr of descrirtor of NET device

Adr of word to rut channel #

Adr of descrirtor of mbx lognam

Error if LEC

Issue declare name recuest

Use assidned channel
ACF QIO
Adr of 1I/0 status block

Adr
Adr

of NFE descrirtor
of declared name descrirtor

Error if LEC

Get the I/0 status
Ervror if LEC

Set ur mailbox read AST
our mailbox.
EIZITTTIZ e 0000

Exit with status

BLEC ROEXITS i
HOVZWL WTIOSESRO i
ELEC ROSEXITS H

% Issue an asunchronous read to the mailbox,

i BERW READN_MEX §

% Nowr dgo to sleer until someone writes to

' $HIRER.S i

EXITS! $EXIT.S RO H
+SETTL MAILROX_AST

+ENTRY MAILBOX_AST, "M

Entry roint for AST routine

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

+ .
AST routine to examine the mailbhox messade code
and determine the arrrorriate action.

e > e

H

MOVZUWL WTAET_IOSEsRO i get asunc I/0 comrletion status
ELEC ROJEXITS i Branch on failure

CASER WoMEBXMSG, $MSGE _AKRORT s #MSGE _NETSHUT~-MSG$. ARORT
DISF._TAER!

+WORD ARORT-DISF_TAER

LWORD CONFIRM~DISF_TAR

JHORD CONNECT-DISF_TAR

SWORD DHISCON-DISF_TAR

<WORD EXIT-DRISP_.TAR

CWORD INTMSG-DISF_TAR

CWORD FATHLOST-DISF_ TAE

JWORD FROTOCOL-DISF_TAE

<WORD REJECT-DISF_TAR

JWORD THIRUFARTY-DISF_TAR

CWORD TIHEQUT--DISF_TAR

JHORD NETSHUT-DISF._TAR
3 Fall through on mbxmssg out of rande
iu

ERER EXITS nkrown mailbox messade encountered
CONNECT?
REERW CONNECT_.ACCEFT i Go sccert the connect request
CHFW #I10¢$_ACCESS!'IO$M_ABORT,R4F UWas tne connect reauest reJected?
REQL 10% 5 If redected then do not issue the
i read
BSRW READ_CHAN 3 Issue & read on the channel we
i Just confirmed
10¢: BSEE READ_MEX i Reaueur the mailbox read AST
RET i Return control to mainm rrodram
DISCONE
AROQRT:
EXIT?
FATHLOST
FROTOCOL ¢
THIRDFARTY !
TIMEQUT?S
BSEW DISCONNECT 5 Go disconnect the link
RSEE READ_MEBX i Requeue the mailbox read AST
RET i Return control to main
NETSHUT?
FWARE_S i The network is shutting down
RET i Wake the main rrodram so that
§ it will exit
INTMSG? # Idrniore interrurt messades for
3 this examrle
REJECT:
CONFIRM?
ESEER READI_MEX i Reaueue the mailbox read AST
RET i Return control to main
+SRTTL READ_AST
+ENTRY READ_ASTs "M i Entry roint for AST routine
+

he messadge received,

e e car

AST routine to check the comrletion status of the read and to rrocess
t

MOVL 4{AF)+R8 i Get the index to the lists
MovQ WIOSE_LISTLR8JI:RO i Get the I/0 comrletion status
CHFW $S8$_LINKABORT RO 3 Did the link dgo0 awaus?

BEQL 10% s If EGL thern idnore

BLERC ROSEXITS 3 If LEC then error

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

0OK: we have received 3 messadge and written it into the buffer rointed
to by RUF_ADR_LISTLR11, Useful code could be inserted here to rrocess
the messadge, When comrletes we reissue the read on the channel and
then g0 back to where we were interrurted.

“r wr cer wr ar W

MOV WTCHAN_LISTCRB81:R3 i Get the channel number
RSEER READ_CHAN i Reissue the read
10%3 RET i Return from AST routine

+S8RTTL SUBROUTINES

Fa

LI

3 Subroutine to issue an asugnchronous read to the mailbox with an AST.
§

READ_MEXS

$QI0.8 - i Issue read with AST
CHAN=W"MEX_CHAN - i Use sssidgned msilbox channel
FUNC=¥#I0$_REATWELKy - i Read virtual blochk
I0SE=W"AST_I08E,- i Addrese of I/0 status block
ASTADR=W "MAILBOX_ASTs~ i Address of AST routine
F1=W "MEXM5G,~ i Address of ineut buffer
F2=W"HAXNSE i Lendth of inrut buffer

RLES ROy 10% # Error if LEC

BRW EXITE i Branch (failure)

10¢3 RSE i Return from subroutine

Pt
i Subroutine to issue an aswunchronous vresd to the channel with an AST.
§

READ_CHAN?

$0I0_8 - i Issue read with AST
CHAN=R3 - i Use channel we Just confirmed
FUNC=%#I0$_ READVELKy - 3 Read virtuzl block
I0SE=W"IDSB_LISTLREBIs~ § Address of 1/0 status block
ASTADR=W "READ_AST s~ i Address of AST routine
AETPRM=R8»~ i Btore index as AST rarameter
1=W BUF LADR_LISTCR81y~ § Address of inrut buffer
2=¥BUFFER.SIZE i Length of inrut buffer
BL.ES RO»10% i Error if LEC
BRYW EXITS i Branch (failure)
10¢13 RER i Return from subroutine
+FAGE

it

i Subroutine to accert the connect recuest and add the channel and unit

i numpers to the lists

5 -

CONNECT _ACCEFT!?
MOYVAE W MEXMEG+4, RS
MOVZRL (R?)++R8
ADDL2 R8sR?
MOVZBL (R9?)+sR8
MOvCc2 R8s (R?)s W"NCE
MOVL REsW"NCRDESC

Get adr of device name count

Get byte count of device name string
Skir over the string

Get bzte count of info string

Fut the NCRB in adr NCE

Urdate the NCR descrirtor

wr ws W ar wr

Make sure we haven’t reached maximum links.

- er e

CMFL FMAXLINKS» W COUNT i Have we reached max ¥ of links?
BGTR 5% i No? ther do assign a8 channel to NET
MoV W OCL..CHANYRZ i Use the oridinal channel

MOVZUWL #I0%$_ACCESS!IO$M_ABRORTsR4iSetur with connect redect func code
ERE 25% i Go make the redect

&
-

Nows

S m e e

03

i lesue
i

2543

30%1

A40% ¢

it
i Bubro
;_.

LUISCONN

n
L3
..

10%3

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

$ASSIGN.

BLERS
ERW

s..
DREVNAM=W"DEVIDESC, -
CHAN=W"DIEV_CHANy -
MEXNAM=W "MEXDRESC
ROs»10%

EXITE

get the chanmel and unit numbers

$GETCHNL

ELES
ERW

CLRL
T5TW
REQL
ADELEQ
ERW

MOVY
HovY
INCL

S..
CHAN=W"DEV. . CHAN, -
FRILEN=W"FRILENy -
FRIEUF=W"FRIBUF
RO»194

EXITS

RS
WTCHAN_LISTLRS8]
22¢
WTCOUNTsR2520%
EXITE

wr W wr s e er

Assidn a channel to the task

Adr of NET descrirtor

Channel #

Associate the mailbox with new net dev
If LBC then error

Branch (failure)

and rut them in their resrective lists,

. wr W s es cer

- e s s s

Issue get chan sustem service

Adr of word containing channel #
fdr of word to rut lensgth returned
Adr of descrirtor of buffer

If LBC ther error

Erench (failure)

Initizlize the index

Ts 1t emstu?

Branch if we found an emrtw slot
Inc the index and trw adain

No emrte slots?

WTDEV_CHAN W CHAN_LISTCR213Fut the chan # in the chan list
WOFRUF+OIBSW UNITH W UNITOLISTLR83F Fut unit # in unit list

WTCOUNT

the connect confirm QRIO.

MOV
MOVZWL
$QI0W.C

ELEE
ERW
MOVZUWL
ELEBE
ERYW
REE

utine to

ECT:
MOVZWL
CLRL
CHFUW
BEQL
AQRLEQ
MOVZUWL

FOASEGN.

ELES
BRW

WTOEV_CHANSRZ
57#I0%_ACCESSsR4
CHAN=R3y~
FUNC=R4»s~
I0SE=W"IO0CE,-
F2=$NCERDEGC

RO 30%
EXITS
WTIOSE,RO
ROs40¢
EXITS

disconnect 3 channel and

WoMBXMEGY2RO

[53:]
WTUNIT_LISTLR81sRO
104

WTCOUNTsRE,5%

W CHAN_LISTLCR81/R?
S -

CHAN=R9

RO,203%

EXITS

i

- ws s cer ar we we

- e wr wr e s

ws wr s ar e W s W e b

Increment the # of entries

Set ur with adr of assidgned chan

Set uwp with connect accert func code
Issue connect confirm/redect reauest
Use assigned channel

Reauest a8 lodgical link

Address of I/0 status block

Address of NCPE descrirtor

If LRC then error

Branch (failure)

Get 1I/0 comrletion status
If LEC then error

Branch (failure)

Return from subroutine

remove its entry from the lists.

Get the unit #

Initislize the index

Locate the unit # in the list
If EQL then success

Inc the index and try adain
OKs we’‘ve dot the channel #
lleassign the channel

Channel *

If LRC then error

Branch (failure)

NONTRANSPARENT TASK-TO-TASK COMMUNICATION USING SYSTEM SERVICES

OK» the channel has been dezssigned. Remove the entries from the unit and
channel lists.

> b er

20%8
nECL WoCOUNT i D[ecrement the ¥ of entries
CLRW W CHAN_LISTCR8] i Clear the chan list entry
CLRW WUNIT.LISTLRB] § Clear the wunit list entry
RSE # Return from subroutine
END START i Imade transfer address
CONNECT

JTITLE CONNECT - ISSUE A CONNECT REQUEST TO DECLAR (DECLARED NAME)
+SRTTL READONLY_DATA
+FEECT CONNECTERDDATA SHRYNOEXEsRDyNOWRT»BYTE

DEVDESC: ,ASCID /_NET!/ i Peseudo~device & descrirtor
MAXMEG! JLONG 654 i Lardest size mailbox messade allowed
RUFQUO! JLONG 64 i Mailbox quots

+SBTTL READWRITE_DATA
JBECT CONNECT$RWDATA SHRsNOEXEsRIOYWRTsSRYTE

NEV._CHAN?

SBLKW 1 i Word to receive device channel #
MEX_CHAN?
+BLKW 1 Word to receive mailbox channel #

MEXMSG: JEBLKE 54
I0SE: +ELKQ 1

Mailbox buffer
170 status block

- e e

NCEDESC:.LONG NCE_SIZE
LONG NCE

Network connect block & descrirtor

-

NCER? +ASCII 7TDENVERIIT Node-srec string
+ASCII T "TASK=DECLAR/? Task-srec string (declared name)
+WORD o Must be zero’

+ASCII /*/
NCE.SIZE=.-NCR

End of NCE
Size of NCER

ws s car s ws

+SETTL MAIN

+

This rrodram demonstrates how to make a3 connection recuest to a3 task
which has declared & network name., It does not rerform any useful work
but does serve to illustrete DECnet rnontransrarent 1/0.

| e e wr W

+FSECT CONNECT$COLE NOSHRYEXEsRIy NOWRT s RYTE
JENTRY START» "M<x

+

Use the run—-time library routines LIB$ASN_WTH_MEBX to estasblish .
3 communication rath to DECnet software inm rreraration for
nontrensrarent I/0 orerations.

This routine will?
1, Create & temrorary meilbox and assidn & channel to it.

2., Assign 3 channel to _NET! and associate the temrorary
mailbosx with it,

The mezilbox can be used to obtsin surrlementary information from
DECret software about lodical link orerations.

W ws NP Cr MR M WS v sER S N er R @ wr

NONTRANSPARENT TASK-TO-TASK

FUSHAW W MBX_CHAN i
PFUSHAW WTDEV_CHAN i
FUSHAL WTRUFQUO §
FUSHAL WTMAXMSG i
FUSHAR WTDEVDESC i
CALLS $0LIEBSASN_WTH.MEX i
BLES ROy10% ¥
BRY EXITS i

e e

$QI0W. S -
CHAN=WTDEV_CHAN/,~
FUNC=#I0%_ACCESS, -
IDER=W"I08E~
“2=¥NCRDESC

0%

- e ws e es

BLEC ROYEXITS ¥
MOVZUL WTIOSEsRO i
ELEC ROSEXITS i

nEnosen s e

-

$LDASEGN.S ~
CHAN=W"DEV._.CHAN
ROYEXITS

- s e

BLEC
EXITS: $EXIT_8 RO H

+END START

COMMUNICATION USING SYSTEM SERVICES

Adr to receive mailbox channel ¥

Adr to receive device channel ¥
Mailbox cuota

Largest size mailbox messade allowed
Adr of device name descrirtor

Assign channel % associate masilbox
If LEC tnen error

Eranch (failure)

Reauest & lodicasl link to the remote task.

Issue connect initiste recuest
Use assidned channel

Feauest s lodicsl link

Address of I/0 status bloch
Address of NCE descrirtor

If LRC then error
Get I1/0 comrletion
If LEC then error

status

We now have 3 lodgical link with DECLARNAM., Useful code could be inserted
here before continuing with the disconnect.

¢ OKs now disconnect the leogical link bw deassidning the channel.

Issue the deassign recuest
Adr of word containing channel #
If LRC then error

#it with status to be disrlaved

i on error condition

Table A-1 defines valid object type code values and describes their

APPENDIX A

OBJECT TYPE CODE VALUES

use for task-to-task communication. All wvalues are expressed in
decimal.
Table A-1: Object Type Codes
Code Object Type Description
Mnemonic
0 TASK User program
1-16 Reserved for DIGITAL use
17 FAL File Access Listener for remote file
and record access
18 HLD Host loader for RSX-11S down-1line
task loading requests
19 NML Network Management Listener object
20-22 Reserved for DIGITAL use
23 REMACP Network terminal handler (host side)
24 Reserved for DIGITAL use
25 MIRROR Loopback mirror
26 EVL Event receiver
27 MAIL VAX/VMS mail facility
28 Reserved for DIGITAL use
29 PHONE VAX/VMS phone facility
30-62 Reserved for DIGITAL use
63 DTR DECnet Test Receiver object
64-127 Reserved for DIGITAL use
128-255 Reserved for customer use.

APPENDIX B

VAX-11 RMS CONTROL BLOCK USE

This appendix identifies which RMS control block fields are used by
the network routines embedded in VAX-11 RMS when performing network
file access and task-to-task operations. When both the source and
target nodes are running VAX/VMS Version 3.0, most of the RMS control
block fields are supported. The fields that are not used £fall into
two general categories: - those that are ignored and those that are
treated ‘as an error condition if an unsupported value or bit option is
specified. When the source node is running VAX/VMS in a heterogeneous
network, certain fields of the FAB and RAB control blocks, and even
entire XAB control blocks, may be ignored if they are not supported by
the target node.

The general level of support provided by VAX-11 RMS and FAL for a
given pair of nodes 1is determined dynamically by an exchange of
information between them during a DAP setup sequence. The exact level
of support, however, sometimes cannot be determined until the function
is requested, as the remote FAL may return an error in response to a
value or option it does not recognize or cannot process.

Tables B-1 through B-10 describe the support status of the fields in
the FAB, RAB, NAM, and XAB blocks. The following key explains the
support categories indicated in the tables:

KEY Support Category For Field Value Or Bit Option

Yes Supported; RMS at the source node will request that
FAL at the target node ©perform the operation as
specified.

RMS Supported if the target node .uses VAX-11l RMS or RMS-11

to perform its file operations; 1if not, the field is
ignored (not used as an input or output).

VAX Supported if the target node uses VAX-~1ll RMS to perform
its file operations; if not, the field is ignored (not
used as an input or output).

No Not supported; +the field is ignored (not used as an
input or output). :

Err Not supported; ~an RMSS$_SUPPORT error is returned.

NA Not applicabley the field 1is. not a wuser input or
output.

Note that the comment "used locally" means that the bit option is
input to VAX-11 RMS processing:at the source node, but is not sent to
FAL at the target node.

VAX-11 RMS CONTROL BLOCK USE

Table B-1: FAB (File Access Block)
Field Name Support Comments
FABSL_ALQ Allocation quantity Yes
FABSB BID Block identifier NA Static field
FAB$B_BKS Bucket size Yes
FABSB_ BLN Block length NA Static field
FABSB BLS Block size Yes
FABSL CTX User context Yes For user
FABSW_DEQ Default file extension Yes
quantity
FABSL DEV Device characteristics Yes Output only field*
FABSL_DNA Default file specification Yes
string address
FABSB_DNS Default file specification Yes
string size
FAB$B_FAC File access options - Listed by subfield
FABSV BIO Block I/0 operations Yes
FABSV_BRO Record I/0 operations VAX Used with RABSV_BIO
FABSV_DEL SDELETE operations RMS
FABSV_GET SGET and $FIND operations Yes
FABSV_PUT SPUT operations Yes
FABSV_TRN STRUNCATE operations RMS
FABSV_UPD SUPDATE operations RMS
FABSL_FNA File specification string Yes
‘ address
FABSB_FNS File specification string Yes
size
FABSL_FOP File processing options —-—— Listed by subfield
FAB$V_CBT Contiquous best try VAX
FABSV_CIF Create if nonexistent Yes
FABSV_CTG Contiguous allocation Yes

*This reflects the actual characteristics of the target device, if the
remote node uses VAX/VMS and the RMS operation is $CREATE or $OPEN. It is
not valid for a $PARSE call.

(continued on next page)

Table B-1 (Cont.):

VAX-11 RMS CONTROL BLOCK USE

FAB (File Access Block)

Field Name Support Comments
FABSV_DFW Deferred write No
FABSV_DLT Delete file on close Yes
FABSV_MXV Maximize version number RMS
FABSV_NAM Use name block Yes
FABSV_NEF Do not position at VAX
end-of-file
FABSV_NFS Non file structured Err
FABSV_OFP Output file parse Yes Used locally
FABSV_POS Current position VAX k
FABSV_RCK Read check Yes
FABSV_RWC Rewind file on close VAX
FAB$V_RWO Rewind file on open VAX
FABSV_SCF Submit command file Yes
FABSV_SPL Spool file to printer Yes
FABSV_SQ0 Sequential only (enter Yes See Section 4.5.3
DAP file transfer mode)
FABSV_SUP Supersede existing file Yes
FABSV_TEF Truncate at end~-of-file VAX
FABSV_TMD Temporary marked for Yes
delete
FABSV_TMP Temporary file Yes
FABSV_UFO User file open Err
FABSV_WCK Write check Yes
FABSB FSZ Fixed control area size Yes
FABSW_GBC Global Buffer Count No
FABSW_IFI Internal file identifier NA For internal use
FABSL_MRN Maximum record number Yes
FABSL MRS Maximum record size Yes
FABSL_NAM Name block address Yes Most fields of NAM

block are used-

(continued on next page)

Table B-1 {Cont.):

VAX-11 RMS CONTROL BLOCK USE

FAB (File Access Block)

Field Name Support Comments .
FABSB_ORG File organization —-— Listed by value
FAB$C_IDX Indexed Yes
FABSC_REL Relative Yes
FABSC_SEQ Sequential Yes
FABSB_RAT Record attributes —-—— Listed by subfield
FABSV_BLK Records do not cross Yes
block boundaries
FABSV_CR Implied carriage control Yes
(LF <record> CR)
FABSV_FTN FORTRAN carriage control Yes
FABSV_PRN Print file format Yes
FAésB_RFM Record format —— Listed by value
FABSC_FIX Fixed length Yes
FABSC_STM Stream with LF, FF, VT Yes
and CRLF terminator set
FABSC_STMCR Stream with CR record Err
terminator
FAB$C_STMLF Stream with LF record Err
terminator
FABSC_VAR Variable length Yes
FABSC_VFC Variable length with Yes
fixed control
FABSC_UDF Undefined Yes
FABSB_RTV 7 Retrieval window size No
FABSL_SDC Spooling device Yes Same as DEV field
characteristics
FABSB_SHR File sharing options -— Listed by subfield
FAB$V_DEL Allow other DELETEs VAX
FAB$V GET Allow other GETS Yes
FABSV_MSE Multistream access No
enabled
FABSV_NIL Prohibit file sharing VAX
FABSV_PUT Allow other PUTs Yes

(continued on next page)

Table B-1 (Cont.):

VAX~11 RMS CONTROL BLOCK USE

FAB (File Access Block)

Field Name Support Comments
FABSV_UPD Allow other UPDATEs VAX
FABSV_UPI User-provided VAX For block I/0
interlocking
FABSL_STS Completion status code Yes Also returned in RO
FABSL STV Status value Yes Has DAP code when
- STS=RMS$_SUP,
STS=RMS$_NET, or
STS=RMS$_BUG_DAP
FABSL_ XAB Extended attribute block Yes *%

address

**In general, if the remote FAL does not support an extended attribute
block, the XAB is not used as input or output for the operation.

Table B-2: RAB (Record Access Bleock)

Field Name Support Comments
RABS$B_BID Block identifier NA Static field
RABSL_ BKT Bucket code Yes
RABSB BLN Block length NA Static field
RABSL_CTX User context Yes For user
RABSL_FAB File access block address Yes
RABSW_ISI Internal stream identifier NA For internal use
RABSL_ KBF Key buffer address Yes
RABSB_KRF Key of reference Yes
RABSB KSZ Key size Yes
RABSB MBC Multiblock count No
RABSB_MBF Multibuffer count No
RABSL_PBF Prompt buffer address No
RABSB_PSZ Prompt buffer size No
RABSB_RAC Record access mode - Listed by value

RABSC_KEY Random access by key Yes

value

(continued on next page)

VAX-11 RMS CONTROL BLOCK USE

Table B-2 (Cont.):

RAB (Record Access Block)

Field Name Support Comments
RABSC_RFA Random access by file Yes
address of record
RAB$C_SEQ Sequential access Yes
RABSL_RBF Record buffer address Yes
RABSW_RFA Record's file address Yes
RABSL_RHB Record header buffer Yes
RABSL_ ROP Record processing options - Listed by subfield
RAst_ASY Asynchronous I/0 Yes Used locally
RABSV_BIO Change to block 1/0 VAX Used with FABSV _BRO
RABSV_CCO Cancel control O No
RABSV_CVT Convert to uppercase No
RABSV_EOF Position at end-of-file Yes
RABSV_FDL Fast record delete Yes
RABSV_LOC Locate mode No
RABSV_KGE Key is greater than or Yes
equal to
RABSV_KGT Key is greater than Yes
RABSV_LIM Test for key limit Yes
RABSV_LOA Load buckets via fill Yes
size
RABSV_NLK Do not lock record VAX
RABSV_NXR Nonexistent record VAX
processing
RABSV_PMT Prompt on read No
RABSV_PTA Purge type-ahead buffer No
RABSV_RAH Read ahead No
RABSV_REA Lock record for read, VAX
allowing other readers
RAB$SV_RLK Lock record for write, VAX
allowing other readers
RABSV_RNE Read no echo No
RABSV_RNF Read no filter No

(continued on next page)

VAX-11 RMS CONTROL BLOCK USE

Table B-2 {(Cont.): RAB (Record Access Block)

Field Name Support Comments

RABSV_RRL Read regardless of lock VAX

RABS$V_TMO Enable timeout No

RABSV_TPT Truncate put VAX

RAB$V_UIF Update if RMS

RABSV_ULK Enable manual record VAX

: unlocking
RABSV_WAT Wait until record VAX
unlocked

RABSV_WBH Write behind No

RABSW RSZ Record size Yes

RABSL STS Completion status code Yes Also returned in RO

RABSL STV Status value Yes Has DAP code when
STS=RMS$_SUP,
STS=RMS$ NET, or
STS=RMS$_BUG_DAP

RABSB_TMO Timeout period No

RABSL_UBF User record area address Yes

RAB$W_USZ User record area size Yes

Table B-3: NAM (Name Block)

Field Name Support Comments
NAM$B_BID Block identifier NA Static field
NAMSB_BLN Block length NA Static field
NAMS$B_DEV Device string length Yes
NAMSL_DEV Device string address Yes
NAMSW_DID Directory identification No Zeroed on output
NAM$B_DIR Directory string length Yes
NAMSL DIR Directory string address Yes
NAM$T DVI Device identification No Zeroed on output

(continued on next page)

VAX-11 RMS CONTROL BLOCK USE

Table B-3 (Cont.): NAM (Name Block)

Field Name Support Comments
NAMSL ESA Expanded string area Yes
address
NAMSB_ESL Expanded string length Yes Output only field
NAMSB_ESS Expanded string area size Yes
NAMSW FID File identification No Zeroed on output
NAMSL FNB File name status bits Yes Except for

NAMSV_HIGHVER and
NAMSV_LOWVER

NAMSB NAME File name string length Yes
NAMSL NAME File name string address Yes
NAMSB_NODE Node name string length Yes
NAMSL NODE Node name string address Yes
NAMSL_RLF Related file NAM block Yes
address
NAMSL RSA Resultant string area Yes *
address
NAMSB_RSL Resultant string length Yes Output only field*
NAMSB RSS Resultant string area size Yes
NAMSB TYPE File type string length Yes
NAMSL_TYPE File type string address Yes
NAMSB_VER File version string length Yes
NAMSL_VER File version string Yes
address
NAMSL_WCC Wild card context NA For internal use

*If the remote FAL does not support the return of a resultant name string,
then a copy of the expanded name string is returned in this field.

VAX-11 RMS CONTROL BLOCK USE

Table B-4: XABALL (Allocation Control XAB)
Field Name Support Comments
XABSB_AID Area identification number Yes
XABSB_ALN Alignment boundary type - Listed by value
XABSC_CYL Cylinder VAX
XABSC_LBN Logical block number VAX
XABSC _RFI Related file No
XABS$C_VBN Virtual block number VAX
XABSL _ALQ Allocation quantity Yes
XAB$B_AOP Allocation options -— Listed by subfield
XABSV_CBT Contiguous best try VAX
XABSV_CTG Contiguous allocation Yes
XABSV_HRD Hard error VAX
XABSV_ONC On cylinder boundary VAX
XAB$B_BKZ Bucket size Yes
XABSB BLN Block length NA Static field
XABSB_COD Type code NA Static field
XABSW _DEQ Default extension quantity Yes
XABSL_LOC Location VAX
XABSL_NXT Next XAB address Yes
XABSW _VOL Relative volume number Yes

VAX-11 RMS CONTROL BLOCK USE

Table B-5: XABDAT (Date and Time XAB)

Field Name Support Comments
XABSB_BLN Block length NA Static field
XAB$Q BDT Backup date and time Yes
XAB$Q CDT Creation date and time Yes
XAB$B_COD Type code NA Static field
XABSQ EDT Expiration date and time Yes
XABSL NXT Next XAB address Yes
XAB$Q RDT Revision date and time Yes
XABSW_RVN Revision number Yes

Table B-6: XABFHC (File Header Characteristics XAB)

Field Name Support Comments
XABSB_ATR Record attributes Yes Output only field
XABSB BKZ Bucket size Yes Output only field
XAB$B_BLN Block length NA Static field
XAB$B_COD Type code NA Static field
XABSW_DXQ Default file extension Yes Output only field

quantity
XABSL_EBK End-of-file block Yes Output only field
XABSW_FFB First free byte in Yes Output only field
end-of-file block
XAB$W_GBC Global buffer count No Output only field
XABSL_HBK Highest virtual block Yes Output only field
in file
XABSB_HSZ Fixed length control Yes Output only field
header size
XABSW_LRL Longest record length Yes Input for SCREATE
XABSW_MRZ Maximum record size Yes Output only field
XABSL_NXT Next XAB address Yes
XAB$B_RFO File organization and Yes Output only field
record format
XABSL_SBN Starting logical block Yes
number (if contiguous)
XABSW VERLIMIT Version limit for file No Output only field

VAX-11 RMS CONTROL BLOCK USE

Table B-7: XABREY (Key Definition XAB)

Field Name Support Comments
XAB$B_BLN Block length NA Static field
XAB$B_COD Type code NA Static field
XAB$B_DAN Data bucket area number Yes
XABSB_DBS Data bucket size Yes Output only field
XABSW_DFL Data bucket £fill size Yes
XABSB_DTP Data type of the key —-—— Listed by value

XABSC_BN2 Unsigned 2-byte binary Yes

XABSC BN4 Unsigned 4-byte binary Yes

XABSC_IN2 Signed 2-byte integer Yes

XABSC_IN4 Signed 4-byte integer Yes

XABS$C_PAC Packed decimal Yes

XABSC STG String Yes
XABSL_DVB First data bucket start Yes Output only field

virtual block number
XABSB_FLG Key options flag - Listed by subfield

XABSV_CHG Can be changed Yes Alternate key only

XABSV_DAT_NCMPR Do not compress data No

XABSV_DUP Can be duplicate Yes

XABSV_IDX NCMPR Do not compress index No

XABSV_KEY NCMPR Do not compress key No

XABSV_NUL Null key value Yes Alternate key only
XAB$B_IAN Index bucket area number Yes
XAB$B_IBS Index bucket size Yes Output only field
XABSW_IFL Index bucket file size Yes
XABSL_KNM Key name address Yes
XABSB LAN Lowest level of index area Yes

number
XAB$B_LVL Level of root buckets Yes Output only field
XABSW_MRL Minimum record length Yes Output only field
XAB$B_NSG Number of key segments Yes Output only field

(continued on next page)

VAX-11 RMS CONTROL BLOCK USE

Table B-7 (Cont.): XABKEY (Key Definition XAB)

Field Name Support Comments
XABSB_NUL Null key value Yes
XABSL_NXT Next XAB address Yes
XABSW_POSO Key position Yes
through
XABSW_POS7
XABSB_PROLOG Prolog level No Primary key only
XABSB_REF Key of reference Yes
XABSL_RVB Root index bucket start Yes Output only field
virtual block number
XABSB_SIZ0 Key size Yes
through
XAB$B_SIz7
XABS$SB_TKS Total key size Yes Output only field

Table B-8: XABPRO (File Protection XAB)

Field Name Support Comments
XABSB_BLN Block length NA Static field
XAB$B_COD Type code NA Static field
XABSW_GRP Group number of file owner Yes See XABSL_UIC*
XABSW_MBM Member number of file Yes See XABSL_UIC*

owner

"XABSB_MTACC Magnetic tape accessibility No

XABSL_NXT Next XAB address Yes
XABSW_PRO File protection Yes
XABSL _UIC User identification code Yes *

(contains group and member
number subfields)

*Zero is returned if the target node uses a non-VAX/VMS syntax to express
the group and member UIC fields.

" Table B-9:

VAX-11 RMS CONTROL BLOCK USE

XABRDT (Revision Date and Time XAB)

Fielad Name Support Comments
XABSB_BLN Block length NA Static field
XAB$B_COD Type code . NA Static field
XABSL_NXT Next XAB address Yes
XAB$Q RDT Revision date and time Yes
XABSW_RVN Revision number Yes

Table B-10: XABSUM (Summary XAB)
Field Name Support Comments
XAB$B_BLN- Block length NA Static field
XABSB_COD Type code NA Static field
XABSB_NOA - Number of allocation areas Yes Output only field
defined for file

XAB$B NOK Number of keys defined Yes Output only field
for file

XABSL NXT Next XAB address Yes

XABSW_PVN' Prologue version number Yes Output only field

APPENDIX C

SUMMARY OF NETWORK SYSTEM SERVICE ERROR MESSAGES

Table C-1 describes the system service error messages for task-to-task
communications.

Table C-1: System Services Error Message Summary

Message Meaning
SS$_ABORT The I/0 request has been aborted by a $DASSGN
or S$SCANCEL.
S5$ BADPARAM One of the QIO parameters has an invalid
value.
SS$_CANCEL The I/0 on this channel has been cancelled.
58S _CONNECFAIL The connection to a network object timed out

or failed.

SS$_DATAOVERUN More bytes were sent than could be received
in the supplied buffer.

SS$_DEVALLOC The process cannot access the 1logical 1link
specified in the NCB because that 1link is
intended for another process.

SS$ DEVOFFLINE The physical 1link is shutting down.

SS$_EXQUOTA The process does not have sufficient quota to
complete the request, Sufficient FILLM and
BYTLM quotas are required to regquest or
confirm a logical 1link.

58S _FILALRACC A logical 1link is already accessed on the
channel (that 1is, a previous connect on the
channel) .

S§8$_FILNOTACC No 1logical 1link 1is associated with the
channel.

S8$_ILLCNTRFUNC The control function is invalid.

S5$_INSFMEM There is not enough system dynamic memory to

complete the request.

SS$_IVCHAN An invalid channel number was specified.

(continued on next page)

SUMMARY OF NETWORK SYSTEM SERVICE ERROR MESSAGES

Table C~1 (Cont.): System Services Error Message Summary

Message

Meaning

SS$_INVLOGIN
SS$_IVDEVNAM
SS$_LINKABORT
SS$_LINKDISCON
SS$_LINKEXIT

SS$_NOLINKS

SS$_NOMBX

SS$_NOPRIV

55$_NORMAL

SS$_NOSOLICIT

SS$_NOSUCHDEV

§S$_NOSUCHNODE

SS$_NOSUCHOBJ

SS$_NOSUCHUSER

SS$_PATHLOST

SS$_PROTOCOL

The access control information was found to
be invalid at the remote node.

The NCB or task specifier has an invalid
format or content.

The network partner task aborted the 1logical
link.

The network partner task disconnected the
logical 1link.

The network partner task exited before
confirming the logical link.

No logical links are available. The maximum
number of logical 1links as set for the
executor MAXIMUM LINKS parameter was
exceeded.

A name or object number is being declared
using a channel without an associated
mailbox.

The issuing task does not have the required
privileges to <create a logical link to the
designated target; or it does not have
NETMBX and 'is assigning NET:; or it does
not have SYSNAM and is declaring a name or
object number.

The service completed successfully.

DECnet could not accept an interrupt message
at this time.

The network device 1is not loaded (for
example, the DECnet-VAX software 1is not
running currently on the local node).

The specified node is unknown.

The network object number is unknown at the
remote node; or for a TASK= connect, the
named DCL command procedure file cannot be
found at the remote node.

The remote node could not recognize the login
information supplied with the connection
request.

The path to the network partner task node was
lost.

A network ©protocol error occurred. ‘This
error is most 1likely due to a network
software error.

(continued on next page)

SUMMARY OF NETWORK SYSTEM SERVICE ERROR MESSAGES

Table C-1 (Cont.): System Services Error Message Summary

Message Meaning
SS$_REJECT The network object rejected the connection.
5SS _REMOTE The service successfully completed. (A

'SS$_REMRSRC

SS$_SHUT

SS$_THIRDPARTY

SS$_TIMEOUT

SS$_TOOMUCHDATA

S5$ UNREACHABLE

logical 1link was established with the target
task.) This status applies only to an $ASSIGN
call for a transparent link.

The link could not be established due to
insufficient system resources at the remote
node.

The local or remote node 1is no longer
accepting connections.

The logical link connection was terminated by
a third party (for example, the System
Manager) .

The task did not respond to the connection
request within the required time.

The task specified too much optional or
interrupt data.

The remote node is currently unreachable.

APPENDIX D

MAILBOX MESSAGE TYPES

The $MSGDEF macro defines the mailbox messages described in Table D-1.
This table defines the message type, its meaning, and any information
that may accompany the message.

Table D-1: Mailbox Message Summary

Type Meaning Information

MSG$ ABORT The logical link was aborted. Optional data

MSG$_CONFIRM The logical link was confirmed. Optional data

MSG$_CONNECT The task received an initial NCB
connection request.

MSGS_DISCON The logical link was Optional data
disconnected.

MSG$_EXIT The partner task exited None

without completing
outstanding I/0 operations.

MSG$_INTMSG Interrupt message Message
MSG$ NETSHUT The network node is going into None
the "Shut" or "Off" state.
MSG$_PATHLOST The partner is no longer None
accessible.
MSG$_PROTOCOL There is a general NSP problem. None
MSG$_REJECT The logical link was rejected. Optional data
MSGS_THIRDPARTY A third party disconnected None

the logical link.

MSG$_TIMEOUT The connection request None
timed out.

GLOSSARY

access control

The login control that a node exercises over inbound logical link
connection requests to determine whether or not the link can be
accepted.

cooperating tasks

Two tasks that communicate with each other in a task-to-task
communication environment. In particular, cooperating tasks must
agree on optional user data to be passed, how they will send and
receive messages to -ensure that there is one transmit for each
receive, and which task will disconnect the link.

disconnect abort
Nontransparent tasks can deaccess a logical 1link via a disconnect
abort operation without deassigning the channel. This form of

disconnection indicates to the receiver that not all messages
sent have necessarily been received.

handshaking sequence
The exchange of logical link connection information between two
tasks. This exchange takes place to enable the successful
completion of a logical link connection.

inbound connection

The term refers to the fact that a task receives 1logical 1link
connection requests.

interrupt message
A user-generated message sent "outside" the normal exchange of
data messages during nontransparent task-to-task communication.
This usage of the term "interrupt"™ 1is contrary to the normal

usage, which means to designate a software or hardware interrupt
mechanism.

local node
The node at which you are located physically.
network connect block

A user-generated data structure used in a nontransparent task to
identify a remote task and optionally send user data in calls to
request, accept, or reject a logical link connection.

network object
The term refers to any task with a nonzero object type (for

example, those programs such as FAL and NML that provide generic
services across a network).

Gloss-1

GLOSSARY

network status notifications
Notifications that provide information about the state of both
logical and physical links over which two tasks communicate. A
nontransparent task can use this information to take appropriate
action under conditions such as third party disconnections and a
partner's exiting before I/0 completion.

network task
A nontransparent task that is able to process multiple inbound
connection requests: that is, it has declared a network name or
object number.

nonprivileged

In DECnet-VAX terminology, this term means no privileges other
than NETMBX and TMPMBX, which are the minimum requirements for
any network activity.

object type
A discrete identifier for either a task or DEChet service on a
remote node. Object type identifiers can either be 0 plus a name
(alternatively, TASK=name), or nonzero without a name (for
example, 17= or FAL=).

outbound connection

The term refers to the fact that a task sends 1logical 1link
connection requests.

privileged

In DECnet-VAX terminology, this term means any user privileges in
addition to NETMBX and TMPMBX.

remote node
Any node other than the one at which vyou are 1located 1in the
network. (When debugging programs or for operational symmetry,
however, you can treat the local node like a remote node.)

source task

The task that initiates a logical link connection request in a
task~to-task communication environment.

synchronous disconnect
The disconnect that occurs when a nontransparent task can issue a
call to terminate I/O operations over a logical 1link without
deassigning the channel. Thus, the task can use the channel for
subsequent I/O operations with the same or a different remote
task.

target task

The task that receives and processes a logical 1link connection
request in a task-to-task communication environment.

task

In this manual, the term refers to an image running in the
context of a process.

Gloss-2

GLOSSARY

task specifier

Information provided to DECnet-VAX software so that it can
complete a 1logical 1link connection to a remote task. This
information includes the name of the remote node on which the
target task runs and the name of the task itself.

Gloss-3

INDEX

Access control, 2-1, 2-5,
5-7 to 5-8
Configuration Data Base, 2-7
defaulting to, 2-2, 2-6
delimiters, 2-3
explicit definition of, 2-2,
2—-6
for inbound connection
requests, 2-5, 2-8
for outbound connection
requests, 2-5, 2-8
implicit definition of, 2-2,
2-7
logical-nodename, 2-2
LOGINOUT image, 2-5, 5-8
node name, 2-2
null information, 2-6
privileges, 2-6
string format, 2-2
User Authorization File
(uaF), 2-5, 5-8
Account,
nonprivileged, 2-7
privileged, 2-7
ANALYZE/RMS FILE command, 3-7
APPEND command, 3-8
ASSIGN command, 3-4 to 3-5
SASSIGN system service, 6-2,
6—-4 ;
format, 6-4, 7-9
_NET:, 7-9
nontransparent use of, 7-2
transparent use of, 6-2

BACKUP command, 3-8

$CANCEL system service, 7-8
Channel, 5-7
assigning for logical 1link,
5-7, 6-4, 7-9
deassigning, 5-11, 6-3
_NET:, 7-2
$CLOSE call, 4-9, 4-12
CLOSE command, 3-17
Code,
object type, A-1
system service status
return, 6-3, 7-9
VAX-11 RMS completion, 4-3
Command procedure file,
See DCL command procedure
Configuration Data Base, 2-7

Index-1

SCONNECT call, 4-9

CONVERT command, 3-9

COPY command, 3-8, 3-13 to
3-14

$CREATE call, 4-12

CREATE command, 3-10

SCREMBX system service, 7-3

DAP (Data Access Protocol),
4-1
$DASSGN system service, 5-11,
6-3, 6-7, 7-18
format, 6-8
DCL command procedure, 2-4,
3-14, 3-18, 5-9
example using SYSSNET, 3-18
examples using lexical
functions, 3-18
for starting object, 2-4,
5-9
lexical functions in, 3-15
submitting remote, 3-14
DCL (DIGITAL Command Language)
command, 1-1, 3-1
command and file qualifiers,
3-1
for accessing records, 3-16
for command procedure
submission, 3-14
for file handling, 3-5
for file operations, 3-2
for lexical functions, 3-4
for logical name operations,
3-2, 3-4
for record access
operations, 3-4
summary, 3-2, 3-6
DEASSIGN command, 3-4 to 3-5
Declared name,
See Task
Declared number,
See Task
DEFINE command, 3-4 to 3-5
DELETE command, 3-10
Destination descriptor,
See NCB (Network Connect
Block)
DIFFERENCES command, 3-11
DIRECTORY command, 3-11
Disconnect, 5-11
abort, 5-11, 7-8
synchronous, 5-11
SDISCONNECT call, 4-9
Double colon delimiter, 2-1

INDEX

DTR object code, A-1
DUMP/RECORDS command, 3-12

SERASE call, 4-12

Error message,
See Message

Error reporting, 4-3, 6-3, 7-9
RMS completion codes, 4-3
system service status, 6-3,

7-9
EVL object code, A-1

F$SFILE ATTRIBUTES lexical
function, 3-15 to 3-16
FSPARSE lexical function, 3-16

F$SEARCH lexical function,
3-16
FAB (File Access Block), 4-9,
B-2
FAL (File Access Listener),
4-1
object code, A-1
File sharing over network,
4-13
File specification, 2-1
angle brackets, 2-1
examples, 2-5
foreign-file-spec, 2-1, 2-3
full file specification,
2-1, 2-3
node name, 2-1
node-spec, 2-1
null character, 2-1
quoted string, 2-1, 2-3
restrictions on processing,
4-12
space character, 2-1
square brackets, 2-1
subdirectories, 2-3
tab character, 2-1
task-spec-string, 2-1, 2-4
wild card character, 2-3
File transfer throughput, 4-12
DAP file transfer mode
(FTM), 4-12
DAP record access mode
(RAM) , 4-12
FOP option, 4-12
FOP disposition options, 4-12
Foreign-file-spec,
See File specification
Full file specification,
See File specification

Index-2

$GETDVI system service, 7-9

Handshaking sequence,
See Logical link
HLD object code, A-1

Interrupt messadge,
See Message

LEF (Local Event Flag Wait)
state, 6-2
Lexical functions, 3-15
use in command procedure
files, 3-15
LIBSASN WTH MBX library
routine, 5-9, 7-3
Logical link, 2-4, 5-4 to 5-5,
5-7, 5-11, 6-2
aborting, 5-5, 7-8
assigning channel for, 6-2,
7-9
completing connection of,
5-8, 6-2, 7-5, 7-12
disconnecting, 5-5, 5-11,
7-8, 7-15
handshaking sequence, 5-7
rejecting a request, 7-13
requests, 2-5, 5-4, 5-7 to
5-8, 6-2, 7-4 to 7-5,
- 7-10
SYSSNET, 5-8
terminating, 5-5, 5-11, 6-3,
6-7, 7-9 ;
Logical name, 2-1, 2-3, 2-9
as device name, 2-9
as node name, 2-9
DCL commands for, 3-4
equivalence string, 2-9
examples, 2-9 to 2-10
in process logical name
table, 2-9
iterative translation, 2-10
translation, 2-3, 2-9
use of, 2-9
use of underscore (_), 2-2,
2-11
Logical node name,
See File specification
LOGINOUT image, 2-5, 5-8, 7-6

INDEX

Magnetic tape file Object (Cont.)
restriction, 4-14 type, 2-4, 5-7, A-1
MAIL object code, A-1 zero object, 2-4
Mailbox, 5-5, 7-2 to 7-3, D-1 SOPEN call, 4-9, 4-12
creating ($CREMBX), 7-3 OPEN command, 3-17
message format, 7-3 "Optional user data, -
message types, D-1 See Message

MERGE command, 3-13
Message, 5-4 to 5-5, 5-10,

6-5 to 6-6

data, 5-10 SPARSE call, 4-12

error, 3-19, C-1 PHONE object code, A-1

exchanging, 5-10, 6-3, 7-7 PRINT/REMOTE command, 3-12 to

interrupt, 5-4 to 5-5, 7-7 3-13

mailbox, 5-5, 5-10, D-1 Privilege, :

network status, 5-5 associated with objects, 2-8

optional user data, 5-4 to Privileged,

5-5, 5-7, 7-1 account, 2-7 ’

MIRROR object code, A-1 network operations, 2-7
SMSGDEF macro, D-1 PURGE command, 3-10

Multiple inbound connects,
5-4, 7-7, 7-17

$0I0(10$_ACCESS!IO$M_ABORT)
system service, 7-7

NAM (Name Block), B-7 format, 7-13
restrictions, 4-11 $QIO0(I0S ACCESS) system
NCB (Network Connect Block), service, 7-4, 7-7
5-7, 7-4 format, 7-10, 7-12
destination descriptor, 7-5 $QIO(I0S_ACPCONTROL) system
NET:, 7-2, 7-9 service, 7-7
Network command terminal, 1-6, format, 7-17
2-11 $QIO(IO$_DEACCESS!IO$M_ABORT)

SET HOST command, 2-11 system service, 7-8 to 7-9
Network example, 1-4 format, 7-16
Network name, 2-4 SQIO(IOS_DEACCESS!I0$M_SYNCH)

declaring, 2-4, 7-6, 7-17 system service,
Network task, format, 7-15

declaring, 5-4, 5-9, 7-6 $QI0(I0$ READVBLK) system
Node name, ‘ service, 6-6, 7-14

See File specification format, 6-6
Node-spec, $QI0(IOS_WRITEVBLK!

See File specification - IOSM_INTERRUPT) system
Nonprivileged account, 2-7 service, 7-7
Nonprivileged network format, 7-14

operations, 2-7 $0I0(I0S_WRITEVBLK) system
Nonzero object, service, 6-5, 7-14

See Object format, 6-5
Numbered object, Quotation marks, 3-5

See Nonzero object triple set of, 3-5

Quoted string,
See File specification

Object, 2-4, A-1
examples, 2-5

known, 2-4 RAB (Record Access Block),
nonzero object, 2-4 4-9, B-5

number, 7-6, 7-17 READ command, 3-17

task, 2-4 REMACP object code, A-1

Index-3

INDEX

Remote command terminal,
See SET HOST and Network
command terminal
Remote file access, 1-1
FORTRAN program example, 4-8
MACRO programming interface,
4-1, 4-8
using DCL, 3-1
using vAX-11 RMS, 4-1
RMS control block field, B-1
FAB, B-2
NAM, B-7
RAB, B-5
XABALL,
XABDAT,
XABFHC,
XABKEY,
XABPRO,
XABRDT, B-13
XABSUM, B-13
RMS (Record Management
Services), 1-2, 4-1
calls for block I/0
processing, 4-11
calls for file processing,
4-10
calls for file specification
processing, 4-11
calls for record processing,
4-10
completion codes, 4-3
control blocks, B-1
file system characteristics,
4-3
MACRO programming examples,
4-14
programming notes, 4-8, 4-11
restrictions on use of, 4-2,
4-11
service call summary, 4-9
service calls, 4-1, 4-8

B-9

B-10
B-10
B-11
B-12

$SEARCH call, 4-12
SEARCH command, 3-13
SET HOST command, 2-11
SHOW LOGICAL command, 3-5
SHOW TRANSLATION command,
SORT command, 3-13
Source task, 5-7
SUBMIT/REMOTE command, 3-14
Synchronous disconnect, 5-5,
5-11, 7-8, 7-15

SYS$NET, 5-8, 6-2, 7-6

use in command procedures,

3-18 "

SYSNAM privilege, 7-=7

3-5

Index-4

System service call, 1-2,
5-11, 6-1, 7-1
error messages, C-1
. summary for nontransparent
use, 7-1, 7-9
summary for transparent use,
6’1' 6_3

Target task, 5-7
Task, 1-2
declaring for network, 5-4
object, 2-4
source, 5-10
specification examples, 2-5
specification string, 2-1,
2-4
target, 5-10,
taskname, 2-4
Task-to-task communication,
1-1, 2-1, 4-14, 5-1, 6-1,
7-1
nontransparent,
5-4, 7-1
nontransparent MACRO
example, 7-18
transparent, 1-1, 5-1, 6-1
transparent FORTRAN example,

6-5

1—1' 5—1,

5-2
transparent MACRO example,
6-8
$TRNLOG system service call,
5-9

TYPE command, 3-15

UAF (User Authorization File),
2-5, 5-8
Underscore character (_), 2-2
User Authorization File,
See UAF

VAX-11 RMS,
see RMS (Record Management
Services),

Wild card character (*), 2-3
WRITE command, 3-17

INDEX

XABALL (Allocation Control XABRDT (Revision Date and Time
XAB), B-9 XAB), B-13

XABDAT (Date and Time XAB), XABSUM (Summary XAB), B-13
B-10

‘XABFHC (File Header
Characteristics XAB), B-10

'XABKEY (Key Definition XAB), ~Zero object,
B-11 See Object
XABPRO (File Protection XAB),
B-12

Index-5

