i« ' ~ NOV 1 2 1984 |

. November 1984

This manual explains the installation procedure for BASEWAY
and specifies the VAX/VMS parameters that should be set or
zdjusted to optimize performance of BASEWAY. The Release
Motes pravide additional information about BASEWAY.

BASEWAY

Software Installation Guide/Relsase Notes

SUPERSESSION/UPDATE INFORMATION: This is a new document
for this releage.

. §/ TRATING SYSTEM AND .VERSION: . VAX/VMS V3.5

SOFTWARE VERSION: BASEWAY
: Version 1.0

ORDER NUMBER:

Digital Equipment Corporation
Manufacturing Field Application Center
24730 Crestview Court
Farmington Hills, Michigan 48018

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors
that may appear in this document.)

Mo rTesponsibility is assumed for the use ot reliadility of software on
equipment that is'not supplied by Digital Equipment Corporatiaon or its
affiliated companies. ')

The software described in this document is furnished under a license and
may be used or copied only in accordance with the terms of such license.
In addition, the following copyright notice must be included:

Copyright C 1984 by Digital Equipment Corporation

Tha following are trademarks of Digital Equipment Corporstiom:

ALL=IN-1 DATATRIEVE TRAX
DIGITAL , DECsystem—10 MASSBUS
DEC - DECtape OMNIBUS
PDP DIBOL : 0s/8
DECUS EDUSYSTEM PHA
UNIBUS . FLIP CHIP - RSTS
COMPUTER LAES FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-6 TYPESET-11
DECCOMM DECSYSTEM~20 ™S=-11
ASSIST-11 RTS-8 ITPS-10
vAX yMS SBI
DECnet IAS PDT

FMS

CONTENTS

1.0 Manual Objectives S
2.0 Audience . . 5
3.0 Prerequisites . S
4.0 Structure of This Documont . S
5.0 Associated Documents . .)
6.0 Disposition of Software Perﬁormanco Reports (SPRs) 7
CHAPTER 1 OVERVIEW OF BASEWAY
1.1 What Is BASEWAY?- 1=1
1.2 Hardware Requitrements 1=-3
1.3 Scftware Requirements 1-3
1.3.1 Optional Software 1=3
1.4 DATATRIEVE Access 1=4
CHAPTER 2 INSTALLING- THE SOFTWARE
2.1 Backing Up the System Disk Before Software
; Installation . . - |
£ - 2.2 Contents of the Dzstr1butzon K;t =L |
& 2.3 . Installation Procedure 2=3
ﬁ 231 Preliminary Requirements 2=-3
2.3.2 Instructions for Installation . . . 2=3
2.3. 2.1 STEP 1: Log In to the System Manager -] Account . 2=3
2.3.2. 2 STEP 2: Invoke VMSINSTAL 2-4
2.3.2. 3 STEP 3: Insert the First Installatzon Klt Volume 2=-5
2.3.3 Error Conditions . . . e e .. 2=7
2.4 Backup Procedure After Installatzon e e e .. 2=7
2.5 BASEWAY Directory Sétructures 2-8B
2.5.1 Application Directory Structure 2-8
2.6 Systemwide BASEWAY Logical Names 2=-8
2.7 Groupwide BASEWAY Logical Name 2=9
2.8 Complete List of Installed Files 2=-9
CHAPTER 3 SETTING UP USER APPLICATIONS
3.1 Defining Applications 3=
3.1.1 Invoking DEFINEAPP.COM 3=-2
3.1.2 Starting Up the Applxcat:on S 1]
3.2 Defining Accounts . . . e e v e 3-5
3.2.1 Manager Account- 3=-5
3.2 2 User Account . . N
3.2.3 Lagin Command lee e)

Cantents

bhhbUN

.

wHLLwL

CHAPTER

sapr
BWMN-

APPENDIX A

)

+

WA+~

Example Accounts . .
Startup Parameter File . . .
Madifying the Menu Facility

ALL-IN~-1 Menu Support

BASEWAY Menu Support .

Madifying Keyword Optzoﬁs and Thexr ruﬂct;ons

RELEASE NOTES

FMS Startup Requirements .
System Audit File . . .
Supporting Multiple Applxcatzons .
Using the Print Function .

SAMPLE INSTALLATION PROCEDURE

3-7
3-8
3-9

' 3-10

3-1¢C
3-10C

4-1
4-1
3-3
3-3

PREFACE

{8

P

1.0 Manual Objectives

The BASEWAY Software Installation Guide/Relesse hgtes
manvual shows how to install BASEWAY on VAX/VMS and provides

additional information about defining an application and
tailoring the product for specific user applications.

2.0 Avudience

This manval is intended for those individuals who must
set up and maintain the VAX/VMS operating system and RASEWAY
software. ,

3.0 Prerequisites

Resders of this manual should have a solid wunderstanding

VAX/VYMS operations and administration, and VYAX application
_sftware. In addition. a knowledge of the specific
requirvements of the installation site is essential.

4.0 Structure of This Document

This manval is organized as follows:
Chapter 1: @Gives an overview of the BASEWAY system.

Chapter 2: Describes the BASEWAY distribution kit,
installation prerequisites., and the actual installation
procedure.

Chapter 3: Describes the steps involved in defining an
application on BASEWAY.

Chapter 4: Contains Release Naotes which you should Ttead
before installing BASEWAY. This chapter includes information
not included elsewhere in the documentation set, changes made
late in the development cycle., software errtorTs. and
documentation omissions. '

Preface

Preface

Appendix A: Shows é sample instaliatian procedure.
5.0 Associated Documents

Further information on various topics covered in this
manual may be found in the following manuals:

o DECnet YMS System Manager's-Quide
(order number AA;HBOSB-TE),
o SHOP FLOOR GATEWAY Installation Guide/Release Notes
(order number XX-123%5-01)
o BASEWAY Systam Pfggrammgr'g Qgiig
(erder number XX-12346-01) |

o BASEWAY User's Manyal and VUEjlities Guide
(order number XX-12347-01)

o PRQGRAMMABLE DEVICE SUPPORT Installation
" @yide/Ralease Ngtes : o

(order number 12365-XX)

o VYAX ALL-IN—1 Ins+tgllation SGujde/Releases Ngtes

o vAX DATATRIEVE Installation Guide/Relesse Notes

(order number AA-L3Z1A-TE)

o VAX FMS Utilitiss Referenge Manual
(order number AA-L320A-TE)

o VYAX PL/I Installation Guide
(orderT number AA=J179A-TE)

o VAX Software ;ﬂstallggion Guide

. (order number AA-MS45A-TE) -

S s e i

‘ ﬁ N o VAX/VMS Command Landuage User'’s Quide
' 3 (order number AA-DO23B-TE)

o VAX/VMS System Manager ‘s Quide
(order number AA-MS47A-TE)

4.0 Disposition of Software Performance Reports (5PRs)

Questions, problems, and enhancements to Digital software
should be reported on a Software Performance Report (SPR) form
and mailed +¢to the appropriate Digital office. Only one
problem should be described concisely on each SPR form.
Please include all programs and data in machine-readable form
and reference the SPR form number on the materials.

Preface

Preface

SR T S R

CHAPTER 1
OVERVIEW OF BASEWAY

1.1 What Is BASEWAY?

BASEWAY is a3 tocl to define, monitor, and control programmable
devices and support various user applications. It can work together
with Digital ‘s SHOP FLOOR GATEWAY product which provides the actual
communications interface $o shop floor devices. Up to four gateways
per system are permitted. The gateways are PDP-11/24s or PDP-11/44s
irun memory—-only REX-115 operating system).

Overview of BASEWAY

! VAX/7xx | ! VAX/7xx ! ! O VAX/Tzxx | L VAX/Txx |
{ BASEWAY | i BASEWAY ! ! BASEWAY { | BASEWAY |
j H i) !)) ! o !)
1 + -+ + +
H ! . H i
{PDP-11/xx | {PDP-11/xx | IPDP-11/xx | IPDP 11/xx |
{SHOP FLOOR! {SHOP FLOOR | {SHOP FLOOR! {SHOP FLOOR!
{GATEWAY ! { GATEWAY ! {CATEWAY ! IGATEWAY !
I VAX/7xx ¢ ! VAX/7x2x | | VAX/7xx ! ! VAX/7xx :
i BASEWAY | { BASEWAY | { BASEWAY ! i BASEWAY i
] ! T) ! i . ! i i K i
! ! ' H
! max imum i configuration | supported |
IPDP-11/xx | iPDP-11/xx | 1PDP-11/xx | {(PDP-11/x2x |
|SHCGP FLGOR! {SHOP FLOGR! |SHOP FLOCOR! {SHOF FLOGR!
i GATEWAY | {GATEWAY ' | GATEWAY ! {GATEWAY i
Figure 1. Sample VAX-To-PDP System ConFigbratiqns

Overview of BASEWAY

“ 1.2 Hardware Requirements

- VAX 11/750 or 11/780 (memory size dependent upon application)
- PDP-11/24 (or PDP-11/44) S512KB minimum

- Hardware to support DECﬁet links between the VAX and PDP
- 11/24, including the automatic boot module for the 11/24.

— (Console terminal

1.3 Software Requirements

- VAX DECnet., Version 3.0
- VAX FMS, Version 2.1

L - VAX/VMS, Version 3.5

No database for wuser data or applications . other than that
necessary to define the netwark is provided.

In addition, VAX PL/I, Version 2.0, is required if any additional
programmable device types are to be added during tailoring.
1.3.1 OQOptional Software
The following are aptional software products, but are suggested
for program development:
+ VAX CDD, Version 2.2

+ VAX DATATRIEVE, Version 2.1

Overview of BASEWAY

+ VAX DBMS
+ VAX TDMS, Version 1.0
+ VAX ACMS, Version 1.0

+ VAX ALL~IN-1, Version 1.1

1.4 DATATRIEVE Access

I# DATATRIEVE is installed, DATATRIEVE definitions may be added
or altered +for BASEWAY tailoring. During installation, domain and
recaord definitions are placed in <the CDDS$TOP.BSL3LIB dictionary.
These definitions may be used as desired.

If# VAX DATATRIEVE is installed on the target system: the BASEWAY
installation procedure will place domain and record definitions for
aach of the BASEWAY database files in the CDDSTOP.BSL3LIB dictionary.
These may be used as necessary to create custom reports of the BASEWAY
definitions. Haowever, the format and contents aof 2ach of thesa
database files are subject to change in future versions of BASEWAY.

CHAPTER 2
INSTALLING THE SOFTWARE

The system manager should be familiar with the installation
process as described herein for wuse in installing wupgrades and
updates. .

Depending on the mass storage device and the system load, the
installation of BASEWAY may take from 15 to 30 minutes.

2.1 Backing Up the System Disk Defore Software Installation

'f "It is recommended that the system disk be backed up prior ¢to
fihf stallation. The procedure for doing the backup is descrzbed in the

;X Software Installation Guide

2.2 Contents of the Distribution Kit

The BASEWAY installation kit is distributed on magnetic tape.
All +files required +to install and tailor the BASEWAY system are
contained on the distribution. :

Each volume 1is 1labeled with an external serial number
corresponding to BASEWAY’s product number and @ unique volume label.

Volume Label Medium Contents
BSLO10O 1600 bpi BASEWAY installation
magnetic tape : command procedures and
software

Installing the Software

NOTE: Be sure to chack that the distribution kit you receive “
contains everything listed in the bill of materials enclosed with it. .. . s

l"J
[R]

Installing the Software

‘" 2.3 Installation Procedure
2.3.1 Preliminary Requirements

NOTE: BASEWAY requires VAX/VYMS Version 3.5 or later.

o approximately 9000 blocks (BASEWAY peak usage) during
installation

-0 approximately B000 blocks (BASEWAY net usage) after
installation

o0 previous installation of DECnet (v.3.0) and FMS (v. 2. 1).

2.3.2 Instructions for Installation

Messages are printed at your terminal during the installation
proceduTre. Most are simple "Yes" or "No" questions which require
either a Y or N response.

~ Proceed as follows at the conscle terminal (user input 1is shown
. ‘n uppercase letters):

\ 4

Z. 3. 21! B8TEF I: +tog In to the System Manager s Account -

1. Log in under a privileged system manager’s account. as shown
in the following example:

cT
Username: SYSTEM cr
Passward: . ET

n

Now set up the proper group and vser number and set the
default directory to SYSUPD as follows:

$ SET UIC [1.,41
$ SET DEFAULT SYSSUPDATE

2-3

Installing the Software

2.3.2.2 STEP 2: Invake VMSINSTAL -
When you invoke VMSINSTAL, it checks the following:
g Are you logged in to the system manager’s account?

It is recommended that you install layered scftware from
the systeam manager’s account. However, any account with the
necessary privileges is acceptable.

o Do you have adequate account quatas for installing layered
praducts?

As long as the quotas listed in. Section 2. 3.1 are met,
you can continue with the installation.

e Is DECnet up and running?

You should stop DECnet before installing BASEWAY.
Although the installation will succeed, problems can cccur if
someone tries to access any file associated with BASEWAY
(including the system HELP files) during the installation.

o Are any users logged in to the system?

Usaers should be asked to log out before BASEWAY is
installed. Although the installation may succeed, problems
can occur if someane tries to use BASEWAY while the
installation is in progress. :

I# any of these conditians are noted, VMSINSTAL will gzive you an
gpportunity to stop the installation procedure (see helaow’.

To inveke VMSINSTAL, enter the following:

3 UMSINSTAL BSLnnn ddn:

The VMSINSTAL command procedure takes two parameters:

1. product name——Ffor BASEWAY the name always begins with "BSL"
and ends with a 3-digit version number. For example, Version
1.6 would be denoted as BSLOl4. Hereinafter, this document
will refer to the version number as Vn.n. ’

”

device namé——device names have the form ddn:. where dd is the
device code and n is the unit number. For example, the first
floppy diskette drive would be called "DYO:"“.

Installing the Software

NOTE: It is not necessary to use the conscle drive for
installing BASEWAY. However, if you do use it, be sure to
replace any media you may have .found in the drive when the
installation is complete.

VAX/VMS Software Product Installation Procedure

It is dd-mmm—-1%yy at hh:mm
Entog a question mark (?) at any time for help

* Are you satisfied with the backup of your system disk [YESI?
If you feel that there are conditions which may adversely affect
the installation, enter N and the installation will stop. If you wish
to continue, enter Y (or press RETURN).
- 2.3.2.3 STEP 3: Insert the First Installation Kit VYolume -
Flease mount the first volume of the set on ddn:.
Insert the first volume of the distribution kit and type "¥Y" when
you are ready to continue.

Are you Teady? Y

The BASEWAY ihnstallation procedufe now assumes caontrol. The
procedure checks to see that there is adequate disk space to build the
product. I# not, it issues an error message and terminates.

Otherwise, the procedure processes the first volume of the backup save
set.

NOTE: If the SYSGEN parameters MOUNTMSEG or DISMOUMSE at your
site have been set to 1, you will receive a message from OPCOM each
time a disk, tape, or floppy diskette is mounted or dismounted. These
messages are normally disabled, but if they have been activated and
you are installing from a conscle terminal, they will appear from 1 to
30 seconds after esach mount or dismount.

%MOUNT-I-MOUNTED, BSLnnn mounted on ddn:
.The following products will be installed:
BSL Vn.n

Beginning 'installation of BSL Yn.n at hh:mm

Installing the Software

%VUMSINSTAL~I-RESTORE. Restoring product saveset A..
PreviduS logical name assignment replaced

At this point, i you need to exit from the installation
procedutTe, you must press CTRL/Y. '

NOTE: 1I¢ you press CTRL/Y, the installation procedure deletes
all files it has created up to that point and exits.

BSLSTART. COM, the startup command procedure, is used to sat up the
environment for the BASEWAY Application Bus. During installation,
it will be placed in the C[SYSMGRI] directory of the system raot an :
which this installation is being performed. SYS3SMANAGER: SYSTARTUP. uDM«
your system startup procedure. should be modified to invoke this :
procedure when the system boats. However, it will not be necessary
tc Treboot the system after the installation, since this procedure
is invoked as part of the installatian.

ZVMSINSTAL-I-MOQVEFILES, Files will now be moved to their target
directories... '

Next, an Installation Verification Procedure (IVP) runs- tests to
check that the installation procedure was successful.

Installation Vori#xcat1on Pracedure (IVP) start1ng

The, installation ver:Fxcatzon of BASEWAY Application Bus vn.n was- “v;
successful. |

Successful installation of BSL VYn.n at hh:mm

BASEWAY images and libraries are now successfully installed. You
may now install more products, or you can end the installation
procedure. To end the installation procedure, type "EXIT" (ot press
RETURN).

Enter the products tao be installed Fram the next distribusion
valume set.
Products CEXITI: EXIT

VMSINSTAL procedure done at hh:mm
$

*

I# you removed any media from the conscle drive befare beginning,
you can reglace it now.

Installing the Software

‘;’ WARNING: VMSINSTAL deletes or changes entries in the logical

me tables during the installation. Therefore, if you are going to -

-Jntinue using the system manager’s account, you should 1log out and
log in again to restore those tables.

2.3.3 Error Conditions
If the installation procedure or IVP fail +for any reason, the

following messages are displayed:

ZVMSINSTAL-E-BSLFAIL, The installation of BSL Vn.n has Failed;
ZVMSINSTAL-E-IVPFAIL, The IVP for BSL VYn.n has failed.

An error during the installation can be caused by one or more of
the following conditions:

¢ insufficient disk space to complete the installation
o insufficient system yirtual page count parameter
o insufﬁicieﬁt process paging file quota
o insuﬁ?i:ient process working set qucta
%hf 0 insufficient‘sgste@ maximum working set
o insufficient system global pages
When you are notified that one of these conditions exists, you
should take the appropriate action as described in the message.
To change a system parameter, or to increase an authorized quota
value, you may need to contact your installation system manager.

2.4 Backup Procedure After Installation

After installing BASEWAY you should back up the system disk and
save. the original for future Treference. See the VAX Softuare
Ingtallation Guide for information on the praoper procedure.

Installing the‘SoFtware

2.3 BASEWAY Directory Structures

The installation procedure creates VAX directory structures
the system disk. The following shows these structures:

Roet Directary
ALL=IN=1 menu forms
Standard menu forms
Source directories

Data Processor source files
Source files necessary for

adding new programmable
device type

BASEWAY system images

SYS3$SYSRQOT:
SYS$SYSROOT:
SYS$SYSROQT:
SYS$SYSROQT:
SYSs$SYSROOT:

SYSSSYSRQQT:
SYS$SYSRQQT:

CBSL1

CBSL. ALMENU]

£{BSL. MENU]

C{BSL. SOURCE]

CBSL. SOURCE. DATAPRQC1

CBSL. SOQURCE. LIBRARY1

CBSL. SYSTEM1]

2 5.1 Application Directory Structure

Root directory (user—specified

at creation)
BASEWAY data files

Cxxxxxl

C. DATA] -

(others'maq be created to suit application needs)

2.6 Systemwide BASEWAY Logical Names

BSL$A1MENU
BSL$DEVICE_FILE
BSLS$ENTITY_FILE
3SL$FORMS
BSL$HISTORY_FILE
BSLSMENU
3SL$POLLING_FILE
SSL$REGISTER_FILE
BSL$SYSDATA

" BSL$SYSTEM
BSLSSYSTEM_FILE
BSL$TERMINAL_FILE
BSLSUSER_FILE

SYSSSYSROQOT:
BSL$SYSDATA:
BSLS$SYSDATA:
SYS3SYSROQT:

(BSL.. AIMENU]
DEVDEF. DAT
ENTDEF. DAT
CBSL. SYSTEM1]

BSLSDATA: HISTORY. DAT

SYSs$SYSROOT:
BSL4SYSDATA:
BSL3$SYSDATA:
SYS3SYSRQOT:
SYS$SYSROQT:
BSLS$SYSDATA:
BSL$SYSDATA:
BSL3$SYSDATA:

(BSL. MENU1
POLDEF. DAT
REGDEF. DAT
{BSL. SYSTEM1
CBSL. SYSTEM1
SYSDEF. DAT
TERMDEF. DAT
USERDEF. DAT

an

Installing the Softuware

“ 2.7 Oroupwide BASEWAY Logical Name

"BSL$DATA" is a groupwide BASEWAY logical name which is created
by EVENT_PROC when it is initiated. Logical names that are based on
this (such as BSL$HISTORY_FILE) and which are created by the command
file SYS$MANAGER: BSLSTART. COM, may not be referenced until an
application is running.

Other group logical names which are specific to your application
may be created by editing the EVENT_PROC startup command file.

2.8 Complete List of Installed Files

Filename . Purpose

SYS$SYSROOT: LSYSMGR1]
BSLSTART. COM BASEWAY startup command file

SYS38YSROOT: [SYSLIB1I

. BSLDEF. BAS VAX BASIC definitions for BASEWAY routines

ihf ' BSLDEF. FOR VAX FORTRAN definitions for BASEWAY routines
BSLDEF. H VAX C definitions for BASEWAY routines

- BSLDEF. LIB VAX COBOL definitions for BASEWAY routines

BSLDEF. PAS VAX PASCAL definitions for BASEWAY routines
BSLDEF. PL1I VAX PLI definitions for BASEWAY routines
BSLDEF. REQ VAX BLISS~-32 definitions for BASEWAY routines
BSLLIB. OLB Object library containing BASEWAY rgoutines
BSLPLI. TLB Text library containing all BASEWAY definitions
BSLSHR. EXE Sharable image containing BASEWAY routines

BSLSHRﬁLD.COH Command file to relink BSLSHR. EXE sharable image

SYS$SYSROOT: [SYSMSG]

BSLMSG. EXE Image file containing BASEWAY messages
SFGMSG. EXE Image file containing SHOP FLDOR GATEWAY messages’

SYS$SYSROOT: [BSL. AIMENU]

AI1IMENU. FLB Standard form library for ALL-IN-1 menu support
EDTADDR. COM Command file to run EDTADDR image from ALL-IN-1
EDTAPPL. COM Command file to run EDTAPPL image from ALL-IN-1
EDTDEVICE. COM Command file to run EDTDEVICE image from ALL~-IN-1
EDTGATE. COM ~Command file to run EDTGATE image from ALL-IN-1
"EDTSET. COM Command file to run EDTSET image from ALL-IN-1

EDTTERM. COM Command file to run EDTTERM image from ALL-IN-1

Installing the Saoftware

EDTUSER.CCOM . Command file to run EDTUSER image from ALL-IN-1 = _
UTLAPPSTS. COM Command file to run UTLAPPSTS image from ALL-IN—iWﬂﬁ
UTLDISDEY. COM Command file to run UTLDISDEV image from ALL-IN-1
UTLDISPNT. COM Command file to run UTLDISPNT image from ALL-IN-1
UTLDISTRM. COM Command file to runm UTLDISTRM image from ALL-IN-1
UTLDISUSR. COM Command #file to run UTLDISUSR image from ALL-IN-1
UTLEVTHIS. COM Command file to run UTLEVTHIS image from ALL-IN-1
UTLGATSTS. COM Command file to run UTLGATSTS image from ALL-IN-i
UTLNOTYET. COM Command file to run UTLNOTYET image from ALL-IN-I

3YS$SYSRCOT: [(BSL. MENU]J

MENU. FLB - Standard form library for BASEWAY menu driver

SYS3SYSROOT: (BSL. SCURCE. DATAPROC1

DATAPRGC. BLD Coammand file to recompile and link DATAFPRGC |
DATAPROC. PLI Sample polled data sink program

SYS$SSYSROOT: CBSL. SOURCE. LIBRARY]

BSLMSG. MSG Source fila for BASEWAY messages

PARSEADDR. MAR Source f#ile for parse address state tables
PDAPCOMP. PLI Socurce file for compile address routine
PDAPDNLOD. PLI Scurce #ile for download device routine
PDAPERRQR. PLI Saurce #ile for translate gateway error routine
PDAPGDEF. PLI Source file for get device default routine

PUDAPGMFR. PLI =~ Source file for get manufacturer routine : -
PDAPGMFRL. PLI Scurce file for get manufacturer list routine T
PLAPGMOD. PLI Sagurce fil2 for get model routine

PDAPGMODL. FLI Source file for get model list routine
PDAPGNET. PLI Source file for get network Toutine
PODAPNXTAD. PLI Sqgurce file for get next address routine
PDAPSTART. PLI Source file for start device rcutine

PDARPSTOP. PLI Sourca file #or stop device routine

PDAPTMFR. FLI Saurce file for translate manufacturer Toutine
PDAPTMOD. PLI Source file for transiate model routine
PDAPTNET. PLI Sqgurce file for translate net routine

PUAPTRAN. PLI Source file for translata device address routine
PDAPUPLOD. PLI Source fiie for upload device rcoutine

SFOMSG. MSG Source file for SHOP FLOOR GATEWAY messages

SYS$8YSRCOT: C(BSL. SYSTEMI

DATAPRQOC. COM Startup file for sample DATAPRQOC (called by EVENTPRG@?
DATAPROC. EXE Sample polled data sink image 2
DEFIMEAPR. T0OM Define application command filse

DEVDEF. DAT Device definition data file
EDITOR. FLB Farm library for BASEWAY editors
EDTADDR. EXE Device address editor image
EDTAPPL. EXE Application editor image

Installing the Scftware

EDTAPPMNT. EXE Application definition utility 1mage
EDTDEVICE. EXE Device editor 1mage

EDTGATE. EXE Gateway editor image

EDTSET. EXE Device set editor image

EDTTERM. EXE Terminal editor image

EDTUBER. EXE UUser editor image

ENTDEF. DAT Point and group definition data file

EVENTLOG. COM Startup file for EVENTLOG (called by EVENTPROC)
EVENTLOG. EXE Event Logger image

EVENTPROC. EXE Event Processor image

EVTHIS. FDL File Description Language for system audit file
GATEINIT. COM Startup file for GATEINIT (called by EVENTPROC)
GATEINIT. EXE Gateway Initializer image

LOOPTEST. EXE Loopback test utility image

MENU. EXE Menu driver image

MODLDC384. EXE Modicon 184/384 Load/Dump/Compare image
MODLDC484. EXE ‘Modicon 484 Load/Dump/Compare image

MODLDCS584. EXE Modicon 584 Load/Dump/Compare image

NI. COM Startup file for NI (called by EVENTPROC)

NI. EXE Network Interface image

PHYLO. EXE Allen-Bradley PLC-3 physical to lcgical converter imags
PHYLOGMAN. EXE Baseway driver image for PHYLOD

POLDEF. DAT Polling set definition data file

REGDEF. DAT Device register definition data file

SYSDEF. DAT Application, gateway. and device set data file

TERMDEF. DAT Terminal definition data file

USERDEF. DAT -User definition data file

UTILITY. FLB . Form library for BASEWAY utilities

UTLAPPSTP. EXE Application shutdown vutility image
UTLAPPSTS. EXE Application status display image
UTLDISDEV. EXE Device display image

UTLDISPNT..EXE Pcint display image

UTLDISTRM. EXE Terminal display image

"UTLDISUSR. EXE User display image

UTLEVTHIS. EXE System audit display image

UTLGATSTS. EXE Gateway status display image
UTLINIVDR. EXE Reinitialize gateway database utility image
UTLNOTYET. EXE Missing function display image
UTLVDRDMP. EXE Gateway database display utility image

a2-11

Installing the Software

2=-12

CHAPTER 3
SETTING UP USER APPLICATIONS

After your BASEWAY system has been installed. you may define your
user applications,

2.1 Defining Applications
Figure 2 below illustrates some of the steps involved in defining

spplications. The various steps are described in %this chapter.

1 Design and code your application.

2 Run DEFINEAPP.COM to create
a user account, login command file,
and application.

3 Edit STARTUP.COM to incliude your
application.

4 Change MENU to reflect
your application.

Figure 2. Defining An Application

Setting Up User Applications
3.1.1 Invoking DEFINEAPP. CGM

To create an application, you must invoke the command file
DEFINEAPP. COM. This file defines . the parameters needed to get a new
application running on fthe system. .

DECnet must be up before you inveke DEFINEAPP and start your
application.

Fof information about defining accounts, see Section 3. 2.

The following i3 a sample definition of Agplication Numoer
*0Q03". It is @ continuation of the installation dialog which started
in Section 2.3.2.

CAUTION: Make every effort to type accurately when responding to the
prompts in this command procedurae.

$ SET DEF BSL$SYSTEM
$ QDEFINEAPP

#4# BASEWAY Applicatien Cenfiguration Procedure ##

This procedure will define the parameters needed to get a new
application running on this system.

You haq respond to any question or prompt with a "?" if help
is needed. - '

Application name ? FIELD_TEST

CONFIRMATION: Is "FIELD_TESTQ the correct name ?.YES
Creating application FIELD_TEST...

Application number G003 created...

Group number for applicaftiaon L[11-3771 ? 100

Disk for data directory (if not __DRAO:) ? c+

* Root directory (if not APPOGO3) ? TESTAPP

Créating directory __DRAQ: LTESTAPP]. ..

Creating directory __DRAQ: CTESTAPP. DATAI. ..

Creating Database files. ..

Setting Up User Applications

Creating BSL$SYSTEM: APPOOO3. COM. . .
Creating __DRAQ: [TESTAPPISTARTUP. COM. .
- Application FIELD_TEST configured.

You should invoke the procedure BSL$SYSTEM: APPOOOB COM
to start this new application.

$

Setting Up User Applications

PR

3.1.2 Starting Up the Application ' . /if
Ta start your new application, you must invoke the following

- proceduTra:

4 @BSLSSYSTEM: APPCO03

ZRUN=-S-PROC_ID, identification of created process is 00070034

You can verify that the application started by locaking for the
console message, "BASEWAY - -is Starting. "

Setfing Up User Apélications
LB.E Defining Accounts
To define accounts. thé following commands should be used:
3.:.1 Manager Account

$ SET DEF SYS$SYSTEM .
$ RUN SYSSSYSTEM: AUTHORIZE
ADD APPMGR/OWNER="BASEWAY MANAGER" -

/UIC=[377,3771 -
/DEVICE=DDCL: -
/DIRECTORY=LTESTAPP. MGR1 -
/PRCLM=5 -
/ASTLM=10 -
/BYTLM=38000 -
/BIOLM=10 -
/DI0OLM=10 -
/FILLM=60 -
/PRIV=(DETACH, TMPMBX, NETMBX, SYSPRV)

3.2.2 User Account

L ,
: $ SET DEF SYS3SYSTEM.
$ RUN SYS$SYSTEM: AUTHORIZE
ADD APPUSR/OWNER="BASEWAY USER"/UIC=[377,3771 -

/DEVICE=DDCU: - .
/DIRECTORY=LTESTAPP. USER] -
/FLAGS=(DISCTLY, DEFCLI, CAPTIVE, LOCKPWD) -
/PRCLM=S -
/ASTLM=10 -
/BYTLM=38000 -
/BIOLM=10 -
/DIOLM=10 -
/FILLM=&0 -
/PRIV=(NETMBX, TMPMBX)

Setting Up User Applications
3.2.3 Login Command File

To facilitate menu usage, the manager should set up a loegin
command file for users.

Note the flags, "DISCTLY DEFCLI CAPTIVE", shown in the example
used in Section 3.2.2. These flags insure that the user cannat log
into this account without executing the 1login command file. This
login command f#ile should invoke the BASEWAY MENU prcgram; and should
log out when MENU exits. '

The following may be used:

3!

$! Login command file

8!

IF FSMODE() .EQS. "BATCH®" THEN $EXIT
SET TERM/ING

SET TERM/NOBRO/FORM/NCWRAP

ASSIGN/USER ‘FSLOGICAL("TT")’ SYSSINPUT
ASSIGN/USER ‘F3LOGICAL("TT")’ TT

RUN BSL$SYSTEM: MENU

LOG/BRIEF

LR R X R N N J

The "SET TERM" commands will set up +the wuser’s <terminal to
support VAX FMS, and will support any local printer that might be

connected. The "ASSIGN/USER" commands allow the MENU program 5 be’

run from a command tile.

Setting Up User Applications

. 3.2 4 Example Accounts

UAF>EHOW APPUSR

Username: APPUSR - Owner: BASEWAY USER .
Account: BASEWAY UIC: £L100, 2001
CLI: DCL LGICBD:.SYS$MANAGER:SYLOGIN.CDM

Default Device: DRAL:
Default Directory: [APPUSRI]
Login Flags: DISCTLY DEFCLI LOCKFPWD CAPTIVE

Primary days: Mon Tue Wed Thu Fri

Secondary days: Sat Sun

No hourly restrictions

PRIO: 4 BYTLM: 38000 BIOLM: 10
PRCLM: S PBYTLM: 0 DIOLM: 10
ASTLM: 10 WSDEFAULT: 150 FILLM: &0
ENGLM: 60 WSQUOTA: 200 SHRFILLM: -0
TQELM: 10 WSEXTENT: 1000 CPU: no limit
MAXJOBS: O MAXACCTJOBS: 0 PQFLQUQATA: 10000

Privileges:
TMPMBX NETMBX .

UAF>EHOW APPMGR

¢ Username:. APPMGR Gwner: BASEWAY MANAGER
éhﬁ count: BASEWAY ViIcC: £100, 2001

. - DCL LGICMD: SYS$SMANAGER: SYLOGIN. COM
Default Device: DRAIL: ‘ '

Default Directory: C[APPMGR] .

i.ogin Flags:

Primary days: Mon Tue Wed Thu Fri

Secondary days: Sat Sun

No hourly restrictions .
PRIO: 4 BYTLM: 38000 BIOLM: 10
PRCLM: S PBYTLM: 0 DIOLM: 10
ASTLM: 10 WSDEFAULT: 1S0 FILLM: 60
ENGLM: &0 WSQUOTA: 200 SHRFILLM: 0 -
TQELM: 10 WSEXTENT: 1000 CPU: ne limit
MAXJOBS: © MAXACCTJOBS: 0 PGFLRUOTA: 10000

Privileges:
DETACH TMPMBX NETMEX SYSPRV

Satting Up User Applications
3.3 Startup Parameter File

During the startup process, a "Startup Parameter File" is used to
control <the startup functions of the BASEWAY system. This allows new
logical names and sudbprocesses toc be added without modifying portions
of the code itsels.

The commands in the startup command. file are organized inte
several groups, ot sets. The order in which these sets are included
is fixed since such things as logical names must be defined before
subprocesses are created, etc. -

The following example shows how commands are processed by the

Event Processor in its initialization phase:

3-8

Setting Up User Applications

‘;, BASEWAY startup parameters

SET APPLICATION ID TO 0003 :

SET LOGICAL NAME BSLS$SDATA TO DRAO: [APPQ0O03. DATAJ
CREATE MAILBOX NAME BSL$MBX_PORT_010

CREATE BASEWAY GLOBAL SECTION

DCL @BSL$SYSTEM: EVENTLOG. COM

DCL @BSLS$SYSTEM: NI. COM

DCL @BSL$SYSTEM: GATEINIT. COM

s

;

i

Insert application—specific logical names HERE

; Set application—-specific flags HERE

Run application—specific images HERE

o

o

wcL @BSLS$SYSTEM: DATAPROC. COM

2.4 Modifying the Menu Facility

BASEWAY allows the menu to be changed to reflect your
application. You may wish to modify individual screens or menu flow
within the screens.

Two versions of menu support are provided with the system:

ALL-IN-1 and MENU. Both are driven by FMS screens. To change the
menus, you can edit the forms found in the MENU form library in either
the DBSLS$SAIMENU ot BSL$SMENU directories. Refer +to the FMS User’s
Reference Manyal for more detailed information regarding editing of
forms.

WARNING: The menu forms released as part of the initial

distribution of BASEWAY are subject to change in subsequent releases.
Thus, any modifications made to these forms are liable to be lost.

A A

_Setting Up User Applicatians

For this reason, it is suggested that you create your tailored
menu in.the-application directory that was created with DEFINEAPP. COM.

3.4.1 ALL-IN-1 Menu Support

The user may want to incorporate the menu structure into his or
her own version of ALL-IN-1. The users of the BASEWAY system must be
included in the ALL-IN-1 user database and these users must have the
BSL$AIMENU: MENU form library defined in their profiles.

3.4.2 BASEWAY Manu Support

The MENU program is distributed for sysiems withﬁut ALL-IN-1
support. It is invoked by each user, and references forms in the
BELSMENU: MENU form library.

'3.4.3 Modifying Keyward Options and Their Functions

To modify a keyword option, find the keyward definition screen
which contains the keyword you wish to modify. Modify the named data
item ¥o dq the apgpropriate function:

3-10

Setting Up User Applications

‘ g Named Data Commands

. MENU ALL-IN-1

Display Screen [IMENUSFORM=frmnam { FORM frmnam H

Run Program IMENUS IMAGE=+filespec i (no equivalent) |
i or : !
{MENUSCOMMAND=filespec! COMMAND filespec |

Leave Program + - -+
IMENUSEXIT i EXIT !

The MENU flow is driven from the contents of the Named Data area
sf each menu gscreen. The named data area must use the following
syntax conventions:

MENUSFORM=<Cform> [, MENUSLIB={filespec>]
MENUSIMAGE=<filespec>
MENUSCOMMAND=<filespec’

MENUSEXIT

where:
P
%-V “form> is a valid VAX FMS form name A
-filespec> is # valid VAX/VMS file specification

3-11

Setting Up User Applications

3-12 -’

CHAPTER 4
RELEASE NOTES

This chapter contains information important to the installation
and operation of BASEWAY.

4.1 FMS Stértup RequirTements

Due to the fact that several BASEWAY and PROGRAMMABLE DEVICE
SUPPORT images are installed, the FMS shareable image (and error
message file) must also be installed. This is not automatically done

¢ during installation, and many sites may not have made this change in
ihi e FMS startup file. : -

The following change must be made:

oLD: $! :
$! MCR INSTALL SYSSLIBRARY: FDVSHR/OPEN/SHARE
$ " MCR INSTALL SYSSMESSAGE: FDVSHR/OPEN/SHARE
$!

NEW: $!
$ MCR INSTALL SYSS$LIBRARY: FDVSHR/OPEN/SHARE
4 MCR INSTALL SYS$SMESSAGE: FDVMSG/0OPEN/SHARE
$?

4.2 System Audit File

BASEWAY application events are logged in the System Audit file.
This file is a circular file containing the last 1000 events that have
been Tecorded. The advantage of a circular history file is <that it
needs no maintenance. Each application has its own System Audit file,
normally created by DEFINEAPP. COM when the application is defined.

€;/

Release Notes

Events are recorded in the System Audit file by calling the)
BSLSLOG_EVENT service, as described in Section 4.21 of the BASEWAY 3
System Programmer’s Guide. %ﬂa

Some applications may log events so rapidly that 1000 events are
only a small snapshat, and critical events are lost after only a few
hours. Installations requiring a larger event #file may create one
with the following sequence of staps:

1. Run BSL3SYSTEM: UTLAPPSTP to shut Jown the application.

2. Create a File Description Language file for the history file:
4 ANALYZE/RMS/FDL/QUT=SYSAUD. FDL ﬂSLiHISTORY_FILE

3. Edit the FDL file, and change the MAX_RECORD_NUMBER parameter
tc one more suited to your applicatian:

$ EDIT/EDT SYSAUD. FDL

1 IDENT 31-AUG-1984 17:06:28 VAX-11 FDL Editor
#F 'MAX_RECORD_NUMBER ’
#8/1000/5000/
13 MAX_RECORD_NUMBER 5600
*EXIT

DRA1: CKONKUSISYSAUD. FDL; 2 25 lines

4. Create a new Systam Audit file.. . _ Eﬂﬁ :

$ CREATE/FDL=SYSAUD. FDL
3. Restart your application.

Cf course, since a new file has been created, all of the current
audit trail has been laost.

On startup, the Event Logger process (EVENT_LDOG) checks the first
record of the System Audit file to see if it contains a valid header.
I# not, it preextends the event history file o its maximum length.
I# there are more than 10000 records, there will be a considerable
delay before the "BASEWAY is running” message appears on the console
terminal screen.

4-2 : “ﬁ~;

Release Notes
‘ 3 Supporting Multiple Applications

If more than one BASEWAY application is to communicate with a
SHOP FLOOR GATEWAY system, then it is imperative that they use a
common database. This entails changing the SYS$MANAGER:BSLSTART. COM
command +file to define the logical name BSL$SYSDATA so it points to a
common directory for all applications. For example, if the database
is to reside on node VAXA.in the directory DRAQ: [DATABASE], then all
copies of BSLSTART. COM should define BSL$SYSDATA as follows:

BSL3SYSDATA = VAXA: : DRAQO: [DATABASE]

4.4 Using the Print Function

There are two possible print functions in BASEWAY and
PROGRAMMABLE DEVICE SUPPORT: Print (Keypad 9) and Printall (PFI
(gold) Keypad 9). .

The Print function routes an image of the current FMS screen +to
the session—default printer.

& The Printall function lists all of the current]ly selected items

i., the default printer. For example, Printall used in conjunction
_.th the LLT menu option (Display, Ladder Listing) will cause ¢the
entire logic listing to be routed to the line printer.

The Print function is available for every screen in BASEWAY and
PROGRAMMABLE DEVICE SUPPORT. Many of the screens also support
Printall. The online help which is available fbr each menu option
describes the capability of the various function keys.

APPENDIX A
SAMPLE INSTALLATION PROCEDURE

$ SET UIC [1,41]
$ SET DEFAULT SYSSUPDATE
$ QYMSINSTAL BSLO10 MSAOQ:

VAX/VMS Software Product Installation Procedure
It is 1-JUN-1984 at 12:09.
Enter a question mark (?) at any time for help.

% Are you satisfied with the backup of your system disk L[YESI? YES

Please mount the first volume of the set on MSAO:.
Are yau ready? YES

%MOUNT-I-MOUNTED, BSLO10 mounted on _MSAO:
The ﬁollawing products will be installed:

BSL V1.0

Beginning installation af BéL Vi.0 at 12:07
AVUMSINSTAL-I-RESTORE, Restoring product saveset A...
Previous logical name assignment replaced
BSLSTART. COM, the startup command procedure, is used toc set up the

anvironment for the BASEWAY Application Bus. During installation
it will be placed in the C[SYSMGR] directory of the system root on

which this installation is being performed. SYSIMANAGER: SYSTARTUP. COM,

your system startup procedure, should be modified to invoke this
procedure when the system boots. However, it will not be necessary
tg reboot the system after the installation, since this procedure

€L

- SAMPLE INSTALLATION PROCEDURE

‘;"i invoked as part of the installation.
JZVYMSINSTAL-I-MOVEFILES, Files will now be moved to their target directories...
Installation Verification Procedure (IVP) starting
The installation verification of BASEWAY Application'Bus v1.0.was successful.
Successful installation of BSL V1.0 at 12:32 |
Enter the products to be installed Grom‘the next distribution volume set.
Products [EXIT1: EXIT
VMSINSTAL procedure done at 12:35

A-2

Accounts
defining manager .
defining user
Application
starting up .. .
steps in defining an .

BASEWAY
configurations of
definition of .o
optional software for
overview of
required hardware for
required sgftware far
specifying device name .
specifying product name

DATATRIEVE

access to .
DEFINEAPP. COM .
Directory structures .

application

BASEWAY .
Distribution kit .
‘Daocumentation
associated with product

Error conditions .
Event processar
order of command processing

FM8 '
use in menu support

installation
changing quotas for

changing system parameters ror :

conditions checked in
exiting from the .
failure
general reasons for
failure of . . .
inadequate disk space Por
messages during . .
preliminary requzrements
DECnet .

INDEX

3=35
3-5

3-4
3-1

1-2
i-1
1-3
1-1
1-3
1-3
2-4
2-4

1-4
3-2

2-8
2-8
2-1

2-7
3-5

2=7
<=7
2-4
2-6

2=7
2=7
2-3
2-5

Index-1

disk space .

FMS

PL/I . .

VAX/VMS .
steps to follow in .
stopping
time . .
user input xnvolved in .

- Installstion procedure

é-;

sample .

2-3
2=3
2-3
2-3
2-3
2-5
2-1
2-3

Installation Ver1$1cat1on Procedure

see IVP

Installed files

IVP .
failure of .

Keyword options
modifying

Logical name tables
see YMSINSTAL

iLogical names
groupwide
systemwide . .

iogin command file .

nu :
ALL-IN-1 .
MENU program .
modification of
support provided
MENU program
see Menu

Release notes

SHOP FLOOR GATEWAY .
Software Performance Reports
see .SPRs
SPRs
submitting .
Startup parameter #119 .
System backup
atfter installation .
before installation

VMSINSTAL °
invaoking

logical name table changes .

parameters .

2-9
2-6
2-7

3-10

2=7

2-9
2-8

3-6

'3-10
3-10
3-9 to 3-10
3-9

2-4
2=7

2-4

Index—-2

November 1984

This manual describes BASEWAY concepts and features.
Subroutine descriptions: syntax information, and other
reference material are also included.

SUPERSESSIOCN/UPDATE INFORMATION: This is 3 new document

BASEWAY

System Programmer’‘s Suide

-

for this release.

CPERATING SYSTEM AND VERSION: VAX/UMS V3.5
SOFTWARE VERSION: BASEWAY

Version 1.0
ARDER NUMBER:

Digital Equipment Corporation
Manufacturing Field Application Center
24730 Crestview Court
Farmington Hills, Michigan 48018

The information in this document is subject to change

without notice - and should nat be construed as a commitment
by Digital Equipment Corporation. Digital Equipment
CorporTation assumes no responsibility for any errors that

may appear in this document.

No responsibility fs assumed for the use or reliability
of software on equipment that is not supplied by Digitail
Equipment Corporation or its affiliated campanies.

The software described in this document is furnished

under a license and may be used or copied aonly in

accordance

with

the terms of such licensae.

copyright notice must be included:

In addition,

the following

Copyright C€ 1984 by Digital Equipment Corparation

The following are trademarks of Digital Equipment
Corpoaration:
DIGSITAL DECsystam—10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBCOL - gs/8
DECUS EDUSYSTEM PHA -
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX : INDAC TYPESET-8
pDDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM=-20 TMS-11
ASSIST-11 RT5-8 ITPS-10
vax yMs SB1I
DECnet IAS PDT
TRAX

DATATRIEVE

Contents

(o | CONTENTS

1.0 Manuval Cb jectives L4
2.0 Audience . . Q@
3.0 Prerequisites . Q
4.0 Structure of This Document . S 4
5.0 Associated Documents 10

CHAPTER 1 INTRODUCTION TO BASEWAY

1.1 Overview . 1-1
1.2 Facilities . . . i-2.
1.2.1 Programmable Dev:ce Access . . 1-2
1.2.1.1 Programmable Device Definition . 1-2
1.2.1. 2 Shop Floor Data Definition . 1i-3
1.2.1.3 Programming Interface 1-4
1.2.2 . Messaging/Networking i-4
1.2.3 Application Control 1-5
1.2.4 Session Control 1-5
1.2.4.1 User Definitian 1=3
1.2.4.2 Terminal Definition 1=-6
1.2.5 Audit Trail i-6
1.3 Functions 1-6
1.4 Applications . . 1-7

. 1.5 Access to BASEWAY Processes 1-8

é‘y 1.5.1 Interprocess Messages 1-8°

, 1.6 Data Files .o e e e e s 1-1¢
1.7 BASEWAY Processos Lo B £ -
1.8 Event Processor (EVENT PROC) e e e e 1-13
1.9 Event Logger (EVENT_LBG) e e e 1-13
1. 10 Network Interface (NET_INTER) 1-13
1.11 Gateway Initialization (GATE_INIT) 1-14
1.12 User Application Processes and Data Prscessaor
(DATA_PROC) . . . e e e i-14
1.12.1 D1spos:t1on of Polled Data e e e e 1-14
1.12.2 Polled Data 1-16
1. 13 Message Data Tgpes e e e e 1-16
1.13.1 Atomic . . . e e e 1-16
1.13. 2 String . . . e e e e e e 1-17
1.13.3 Hxscellaneous . e e e 1-17
1. 14 Message Descriptor Prototgpe .o . 1-17
1.14. 1 Scalar: String Descriptor (DSC K CLASQ MS@S) . 1-18
1.14. 2 Example. DATA_PROC e 1-1¢
CHAPTER =2 INTERPROCESS MESSAGES

2.1 Overview . . =L O |
2.1.1 Message Code .. e~
2.1.1.1 Format of Message Code 2-3

€-,

Contants

CHAPTER

CHAPTER

NNNNNNNNUNBNUNRRN

VURLULLL W W
0000000 ©

Rl B S o S ol o o

O 0 N O R N

Y RNT TR AY VPSRN

L NAR N

[y

UGN aRs,WRA

Source and Destination NAX .
Source and Destination NAU .
Message—Specific Data
Do Generic I1/0 Request .
Do Generic I/0 Respansa
Gateway Loopback
Get Gateway Status .
Get Network Status for Gatcmaq
Get Polled Device Stat1st1cs
Log Event
Relocad VDR ..

-Reset Netwark Cauﬁts .

Set Gateway Time .
Shutdown Application
Start Polling oan a Device
Stop Gateway .
Step Polling on a Dev::t

INTRODUCTION TO SUBROUTINE DESCRIPTIONS

Testing Return Status Codes in High-Level
lLanguages
Compiling and Linking
Campiling and Linking
Compiling and Linking
Compiling and Linking
Compiling-and Linking VAX € Proaogram . .
Campiling and Linking VAX COBOL Program .
Compiling and Linking a VAX PASCAL Program .
How To Use Procedure Descriptions in This Manual

VAX PL/I Program . . .
VAX BLISS-32 Proaogram .
VAX FORTRAN Program
VAX BASIC Program

.
YRR
*

SELECTED BASEWAY SUBRGUTINES

Gverview .

BSL$ACCESS DEVICE - Access a Programmable Devx:a

(PDA) . .

BSLSACCESS PGRT - Access Another Porv .
BSLSALLOCATE _DEVICE - Allocate a Programmgble
Device (PDA)

BSL$COMPARE_DEVICE - Compare Programmable Devicé
- Lagic (PDA) .o

BSLsSCOMPILE DEVICE ADDRESS - Pvecompxle an
Address (PDA) . .

BSLSCREATE_MESSAGE - Create an Interpracess
Message . .
BSLSCREATE NAHED PDRT - Create a Permanen+
Message Part .

BSLSCREATE PQRT‘- Create a Temporarg Message Port

2=3

. 2-3

2-4
2=
<-4
=7
2-8
<=7

=2=3

2-10

2-10
2=11
2-11
2-12
2-12
2-13
2-13

3-2
3-2
3-3
3-3
3-3
3-4
3-4
3-4

3-5

4-a

APPENDIX A

APPENDIX B

C

PHE bbb b b bR R kb BR A Bd bk

s

A.
A

B.
B

I

. 10
.11

.12

13
14

iS5

16

.17
. 18

.19
. 20

. &1

22

24

.29

26

.27
. 28

. 29

30

31

LS

by

Contents

BSL$CVT_MX_DX - General Data Type Convefsion

Routine . 4-18
BSL$DATA TYPE - Fxnd Data Tgpe~¢or a Programmable

Device Address (PDA) . . . 4-20
BSL$DEACCESS_DEVICE - Deaccess a Programmable . 4=-22

‘BSL$DEALLOCATE _DEVICE - Deallocate a Prcgrammable

Device (PDA) . . . 423
BSL$DELETE MESSAGE - Delotn an Intcrprncess

Message 4=25
BSLS$SDELETE PORT - Delete a Mnssage Port N)
BSL$DOWNLDAD _DEVICE - Download Logic to =

Programmable “Device (PDA) 4-27
BSL$GET_DATA_INFO - Get Data In#ormat1on .. 4-29
BSL$GET DEVI»E _ATTRIBUTES - Get Device Attr;butes
(PDA) . . . 4-31
BSLS$GET SESSION INFO - Retr;eve Current Sesszon
Information 4-=36
BBLS$GET_SYSTEM_ INFO - Get Sustem Attrxbutes .. 4-39
BSL$LOG EVENT - Log a qutem Event in h1svorg

File 4-42
BSL$READ DEVICE DATA - Read Data From a

Programmable Device (PDA) 4-44
BSL$READ_DEVICE_STATUS - Read Status In#o from a
Programmable Device (PDA) 4-47
T2SL$RECEIVE_MESSAGE - Read a Message From a Port 4-49
3SL$SEND HESSAGE - Send a Message to a Port . 4-51
BSL$SET DEVILE _ATTRIBUTES -~ Change Curvent Device
Attributes (PDA) 4-532
BSL$SLEEP - Sleep for Spec1$1ed Txme Interval . 4-57
BSL$START_DEVICE ~ Start a Programmable Dnv1ce

{PDA) 4-58B
BSL$STOP DEVICE - Stop a Programmable Devxce

(PDA) . . . e e 4-40
BSL$UPLOAD DEVIC: - Upload Lag:c from a

Programmable Device (PDA) 4-42
BSLSWRITE_DEVICE_DATA - Write Data To a

Programmable Device (PDA) . . . 4-64
BSLSWRITE_VERIFY_DEVICE_DATA - erte Data To a
Programmable e e e e e .o . 4=47

BASEWAY SUBROUTINE CALLS
BASEWAY Language—Independont Notation A=1
Procedure Parameter Notation for BASEWAY Calls .. A=2
SHOP FLOOR GATEWAY

Features . B=1
Components . B-2

Contents

B.3 Functions . . . e e e« B2 o

B. 4 Device Access Supported B-3 ﬁiﬁ

B.4.1 Direct Access S - £ P

B.4.2 Generic Access B=CG f

B. 5 Equipment Access B=3

B. & Types of Data Capabla of Bexng Polled B-3

APPENDIX C) DEVICE INTERFACE MODULES (DIMs)

c. 1 Overview . . T o

c.2 DIM - PD Access Server Data Stfuctures €C=5

c.2.1 Line Access Blocks (LABs) C=é

C.2.2 Line Control Blocks (LCBs) e o

€. 3 DIM-Server Protocol and uons1deratzons N

.31 Initialization Procedure Considerations . . . C-iZ

c.3.2 Cancellatian Procedure Considerations . . C-12

C.3.38 Direct Access Service Processing Pon51d=ra+1ans C-14

C.3.4 Generic Access Service Processxng .
‘Considerations . . e e C-17

C.4 DIM - Utility Macras and Subroutxnns e

C.4.1 Code—Generating Macroes <€=20

C.4 1.1 ASDIMS e e

C.4.1.2 DTINIS T A%

C.4.1.3 DTFNCS N 3 |

C.4.1.4 DTMDLS T o

C.4.1.3 DTMNFS e 4 y

C.4.1.5 ERTBLS ' e e e s ez N

C.4.2 DIM Subroutxnes e e e . Ll C=Z3 Tl

C.4.2.1 EGENFC L.y ... C-24

C.4.2.2 SPDDON Lo G2

C. 5 €xample DIM L L oo 0 0L =27

AFPENDIX D ADDING NEW DEVICE SUPPORT

D. 1 Overview . . . e D=t

D. 2 Usaful Read:nn Haferzal .o D=1

D. 3 Hardware / SoF*ware Env:ronment D=1

D. 4 SHCP FLODR GATEWAY Tasks D=G

D. 3 GATEWAY Initializatiaon D-4

D. 5.1 Network Interface (NET;NT) D-a

D.5 2 SATEWAY Event Processor (GATEVP) D=5

D.5. 2.1 PD Data Processing D=3

D.5.3° CATEWAY Task Watcher (TSKWCH) D-g&

D.5. 4 Device Set Watcher (BUSWCH) D=4

D.5. % Direct Access Server (DIRSRV) D=4

D.3. & Generic Access Server (GENSRV)Y D=7

D.5.7 Polling Server (POLSRV)Y o« v D=7

D. 3.8 Adding a Mew Device to - a GATEHAY . « . <« D-s

D. & Adding A New Device %o BASEWAY D=8

Contentg.

LAPP ENDIX E GLOSSARY

Contents

Preface

‘-ﬁ | PREFACE

1.0 Manual 0Objectives

The BASEWAY System Programmer ‘s Guide is intended to describe
BASEWAY procedures and includes syntax information. error messages.
and other reference information.

2.0 Auvdience

The intended audience for this manual is application programmers
who have a basic knowledge of VAX/VMS and database concaepts. ’ :

3.0 Prerequisites

The reader of this manual should have an vunderstanding of the
VAX/YME operating system and an in—-depth knowledge of at least one
high-lavel programming language. ~

gﬁf Q Structure of This Document

This manual is organized as follows:

Chapter 1: Describes the functions, applications, and
organization of the BASEWAY system.

Chapter 2: Describes the purpose and format of interprocess
messa3ges. ,

Chapter 3: Introduces the system procedure descriptions detailed
in Chapter 4. :

Chapter 4: Describes selected BASEWAY subroutines.

Appendix A: Summarizes procedure paramefter notation for BASEWAY
calls.

Appendix B: Explains the purpose, capabilities. and structure of
the SHOP FLOOR GATEWAY.

Appendix C: Provides a detailed description of the use of Device
Interface Modules (DIMs) including an example DIM.

C

Preface

Appendix D: Gives inFormation relevant to adding new device

support. | | “3j

Appendix E: Glossary.

5.0 Assaciated Documents

Further information on variocus topics covered in this manual may
be found in the following manvals:

o RSX-1i1M/M-Plus Sxecutijve References Manual
(arder number AA-LA73A-TC)
o RSX=1iM/M-Plus Guide %9 Wrjiting an I1/0 Driver
o RSX={iM/M-Plus System Management Guide
(order number AA-L&79B-TC)
o RSX—-1iM/M=-Plus Task guilggr Manual -
(order number AA-L4S8CA~-TC)
e 'VAX ALL-IN-1 Application Programmer’s Referenca Suide |
(order numbaer AA=N324A-TE) - : ' ‘J
o BASEWAY Ins;:algation Guidg.t’Rgleagg. Notas -
(order number XX-12345-01)
o -QAQEEAY Qser's Manuval and Utilities Guide
(arder number XX-12344-01)
o SHOP FLOOR GSATEWAY Installation Guide/Ralease No%nrs
(order number XX-12355-01)
o PROGRAMMABLE DEVICE SUPPORT Installation Guide/Relasse MNotas
(oarder number XX-123465-01)
o PROGRAMMABLE DEVICE SUPPORT User’s Manval and Ytilities Guide
(order number XX-123&67-01)

Preface

VAX DATATRIEVE User'’‘s Quide
(orderT number AA-KO79A-TE)

VAX EMS Form Driver Reference Manual
(ordcr number AA-L319A-TE)

VAX FMS Language Interface Manual
(order number AA-N209A-TE)

VAX EMS Uti;it;es Reference Manual
(order number AA-L320A-~TE)

VAX L;NKER.RePérgngg Manugl

(order number AA-DO19C-TE)

VAX PL/I Encyclopedic Reference
(order number AA-HP52A-TE)

YAX BL/I Yser's Guide

{order number AA-HFSIA-TE)

VAX Run-Time gib+arg User’'s Guide
{order number AA-LS24A-TE)

VAX Utilities Reference Manual

VAX/VMS Command Language User’s Guide
(orderT number AA-DO23B-TE)

VAX/VMS System Services Reference Manual
(order number AA-DO18C-TE)

:%7————*”77

Preface

CHAPTER 1
INTRODUCTION TO BASEWAY
1.1 Overview

The BASEWAY system provides tools for the development and control
of complex manufacturing applications where accurate and timely

communication with shop floor devices 1is vital. These tools can
raduce application development and maintenance time by replacing
significant amounts of application control and programmable

davice—~specific communications code.

The BASEWAY product works together with DIGITAL's ©SHOP FLGOR

SATEWAY product. While BASEWAY provides applicatien program

mmunications and control functions, the SHOP FLOOR GATEWAY provides
.ie actual communications interface to shop floor devices.

Programmable devices are discrete processors that are wused in
shop floor control and data acquisition applications. Thesa devices
include programmable controllers, numerical contrellers, rtobots, bar
code scanners, and many others. Each of the devices involved with an
application is defined toc BASEWAY and identified by a wunique device
name.

Because programmable device access subroutines allow the user to
write an application program in a device—independent fashion, the

proagram is not tied to a programmable device or vendor. . It can
therefore be wupgraded, wusually by a simple rtedefinition of the
nrogrammable device to BASEWAY. See Appendix B for a discussion of

the GATEWAY and Appendix D for information about adding new device
suppoTt. :

A wide range of manufacturing applications can be developed and
controlled with BASEWAY: including inventory controel, part tracking.
and quality control. '

Introduction to BASEWAY

BASEWAY {(max. of 4, can
support up to 4

user applications)

VAX Processoar

t -4
+ omam -

]
3
]
t

SHOP FLOOR
SATEWAY

b Bl

PDP-11 H (max. of 4)
Pro;nssor: .

¢ t
ot ¢

- W
-— e
- e
-
~ew

o -
e e
- wan

R do

iPragr. | (Pragr.
Devicei iDevice!

'

- -{r
- +

TOgT.
evice

TogT.

TagT.
evicei i

p
iDavice

.

-+

1

[

. .
H :
1

oo
oo

iDevice

.1 {Pragr.
i

+ -+
L Bl 4
+ -+
w-vnqr
|

+ -
+-~-—-+

- e
o il o L o \

—~- e
- wmw

-
- -

- @
"

Shap Floor Equipment

+-+
Tt -1
+ -~ 1 .

t+ - ¢

Shap Floar Equipment

Figure 1. Sgstem‘ﬂve+viem
1.2 Facilities
i1.2.1 Programmable Device Accass

BASEWAY data structures, when used by an application pregram to
N 3ccess devices, can determine device status and read and writz da%ta to
davices.

i.2.1.1 Programmable Device Definition -

Programmable devices atre defined interactively using the BASEWAY
configuration editor. Attributes assigned to each pragrammable device
include:

g name

“i |

Introduction to BASEWAY

0 description or tomments

¢ manufacturer name and model number
o communications network address

o memory size

o physical location

o device type and status

o date of installation

These assigned attributes are checked for validity when the
device is defined. Up to 2000 programmable devices may be defined.
1.2.1.2 Shop Floor Data Definition -

Individual pieces of data in a programmable device are defined
interactively with the BASEWAY configuration editor. Such data items
are termed "known points"”. Any address in a programmable device may
he rtead or written when referred to by address, but known points may
he referred to by point name. ‘

When known points are defined to the BASEWAY system. wvarious

«tiributes are assigned to that data. Attributes assigned to each
known programmables device address include: '

[»}

address of data

o format of data‘

o5 associated equipment name
o name of each data point

¢ minimum sample time

o unit descriptions

o0 destination application and process name

Several data formats are sbpported. These include:

o status conditions (single bit values)

Introduction to BASEWAY

o 12 bit BCD values
e 15-bit BCD values

6 146~bit signed binary values

Known points may be defined as monitored, controlled, oar both.
Monitored points are sampled at user—-specified intervals by the SHOP
FLOOR GATEWAY. Controlled points are known points that are written to
by application programs.

1.2. 1.3 Programming Intarface -

The BASEWAY pragramming interface is the means by which
applications praograms communicate with each other and with shop floor
devices. The pragramming interface permits application programs <o
interact with shaop floor devices in a3 variety of ways:

o Generic Access allows an application pragram toc perfaorm
primitive functions through device—independent routines.
These functions include reading and writing ints device
addresses, starting and stopping devices, and getting device
. attributes.

o Polled Access permits the SHOP FLOOR GATEWAY to periodically
sample device data and send a message to an application
program when data changes. . ’ ‘

1.2. 2 M™Messaging/Networking

BASEWAY software da2signers may divide complex systems into
functionally separate subsystems called "applications". Up to four of
these applications may be defined to BASEWAY. These may Teside an a
single VAX CPUNGT an separate CPUs configured in a DECnet netwstk. A
jlobal database cantains all oprogrammable device definitions, and
praogrTams in each application can access a device simultaneaqusly. The
praduct can concurrently support up ta four gateways.

Programe communicate with e2ach other through 3 messaging
facility. Through "named message ports", a pragram can communicate
with another program. aven if they are not on the same CPU.

Introduction to BASEWAY

‘: 1 2.3 Application Control

The Application - Contrel facility provides a coentrolled
environment for application startup and shutdown. During application
startup, a script file is executed. This file may create logical
names and mailboxes, start application programs, or perform DCL
commands. An application program may be monitored or unmanitored. If
a monitored application program fails, the BASEWAY Application Control
facility logs the event and begins an orderly shutdown of all other
application processes.

1.2.4 GSession Control

The BASEWAY Session Control facility allows a user at a VT10G or
VT200 series terminal to select from a menu of options and move from
one application program to another. Each menu item may invoke another
menu screen: an application program, or a command file. A sample menu
-structure is provided with the product. This siructure may be
customized on a site—specific basis by using the VAX FMS Forms £Editor.
User—written application programs may be added to the menu structure.

1.2.4. 1 User Definition -

; ‘L' Each user is defined to BASEWAY. A vuser definition contains
‘ demagraphic data, = vuser—-customization data, privileges. and

‘application—specific data. The specific attributes that may bde
defined for each user include: :

o user name
o user’‘s VMS user name
¢ nickname
¢ address
o telephone number
"o title or position
¢ department
o default line printer device

¢ password for user verification

Introduction to BASEWAY

g initial menu form and form library

¢ privilege masks

1.2.4.2 Terminal Definition -

Each terminal device is defined to BASEWAY. A tearminal
definition contains privileges and application—specific data. I# both
a terminal definition and a user definition exist for the current
session, +the terminal definition averrides the user definition. The
attributes that may be defined for each terminal include:

o terminal davice name
¢ physical lacation
¢ deéfault line printer device

o initial menu faorm and faorm library

o privilege masks

1.2.5‘ Audit Trail

The BASEWAY: Audit Trail records system events abogut usar logins,
task selection, programmable device events, and cther 2vents. An
Associated repaort facility can be used ¢to view %he informatisn,
praoviding specific infaormation abaut users and devicas.

.1.3 Functions

The BASEWAY systam consist;\nﬁ a group of detached processes that

are initially created when an application system is "started”.

The processes that are normally active and running on the system
are:

Event Processor (EVENT_PROC)
Event Logger (EVENT_LOG)
Network Interface (NET_INTER)
Cateway Initializer (GATE_INIT)
User Application Processes
(sample Data Praocessor (DATA_PROC)
included in hasic system)

C

Introduction to BASEWAY

A set of subroutines in the system library performs a1l of the
cessary overhead of sending messages. These routines assign mailbox
_aannels, format interprocess messages, and send appropriste data.

1.4 Applications

Up to four (4) applications, running on from one to four VAX
processors, are supported. Each applicatien 1is assigned a unique
VAX/VYMS group number, and 311 wuser programs running in the same
application are assigned to the same group. Applications are defined

by unique names.

Intraduction to BASEWAY
1.5 Access to BASENAY Processas

1.5.1 Interprocass Messages

Generally; the progréms running under the BASEWAY communicate
amang each other via mailboxes. Data is transmitted in data packets,
also referred ¢to as "interprocess messages." A more complete

explanation of interprocess messages, including +their formats, is
given in Chapter 2.

H sguTce procaess | ——2>{ destination process!
CALL BSLSWRITE_MAILBOX CALL BSL3READ_MAILBOX
Figure 2. Interprocess Messages Between Programs

Introduction to BASEWAY

n still use the same mechanism to communicate with each other. The

(If the programs are nof Tunning under the same application. they
- «SEWAY network interface programs handle all routing of the messages.

Application ‘A’

X Application ‘B’
x
+ -+ b 4 + -+
i Source Process i x i Destination Process!
: i x ' H
+ -+ X + ——— s o o e o e
i BSLSWRITE_MAILBOX x -~
i x '
i x i
i X i
v X BSLSREAD_MAILBOX |
b -+ b 4 + -+
i NET_INTER i=== DECnet—-—2! NET_INTER :

-+-

X

Figure 3. Interprocess Message Communication Betwesn Applications

SHOP FLOOR CATEWAY

1 BASEWAY X
’ X
. X
+ + x + ————
{ Application ‘A’ i x | Destination Task |
+ - x + +
~ BSL$SWRITE_MAILBOX x -~ $RDMB X
! BSL$READ_MAILBOX X ! $WRMBX
{ X H
\ DECnet V
+ -+ X + ———
' NET_INTER : >x NETINT H

R ——

b 4

Figure 4. Interprocess Message Communication Between
Application and Gateway

Introduction tsc BASEWAY

1.6 Data Files

VAX-RME data files are usad to maintain configuration and history Wﬂa
data for the BASEWAY. These files must be prasent at all times. They

are:

BSLSHISTORY_FILE Circular file containing a chronolagical
history of BASEWAY events.

BSL3SYSTEM_FILE Indexed f#ile containing definitions of all
applications, device sats, and gateways.

BSLSDEVICE_FILE Indexed file containing all programmable
device definitions.

BSLiPOLLING_FiLE Indexed file describing sets of registers

. on a programmable device that are to be

collacted together.

BSL3REGISTER_FILE Indexed file describing all polled registers
for each of the programmable devices.

BSL3ENTITY_FILE Indexed file containing definitions of all
of the types of data that are collected from
programmable devices.

BSLITERMINAL_FILE indexed file containing menu informaticon far

v a particular terminal. ’

BSL3SUSER_FILE Indexed file containing session zontrol

information for a particular ussar.
~

O ——

{SYSDEF |
———————t
A

!
2

A4
T —
{DEVDEF |
[O — .

-~

v
P ———p
{POLDEF |
r——————p
! \
H \
Vv v
{REGDEF |-—=2>1 ENTDEF !
pm—————— o e e e e

Introduction to BASEWAY

HISTORY!

S —

e e e e o e e

i TERMDEF !

e s o s ———

[Y

{ USERDEF !

o e e e o

Figure 5. BASEWAY Data Files

Introduction to BASEWAY

1.7 BASEWAY Processes | _

Pracesses on BASEWAY may be pictured as shown below:

! User H
{ Appl. :
{Programs!
i1 GATE_INIT !
+ + L i
i H R —-—
+— + { DATA_PROC H H {
{EVENT_PROC | ===—==== | (user appl. | H H
H i { ! procassas) | H :
o -+ 1 o - H H
' : ! !
+— ' + { ! : 4
EVENT_LOG ! +— + + +
ode []
"]

1

‘

o
™

NET_INTER

+ -+
+ -+

network protocol

/' / (DECnet). " J
L/ o .

e e -

SHOP FLOGOR GATEWAY

+ -~ -+

+ -t

Figg:: 6. Diagram of BASEWAY Processes

All application programs communicate with the SHOP FLOGR GATEWAY
via +the NET_INTER program. Any program may communicata directly with
any other program. ‘

Introduction to BASEWAY

i« 1.8 Event Processor (EVENT_PROC)

All other BASEWAY processes Trun as subprocesses to the Event

Processor. EVENT_PROC 1is driven at system startup time by a command
file which tells it how to start up the other processes, as well as
creating various group logical names, global sections, etc. It is

also responsible for reporting and handling significant external
events, such as a link failure with a GATEWAY suystem and PD timeout.

The Event Processor is responsible for the following functions:
o0 subprocess termination notice |
o gatlwag-Failure Teporting
s gat;waq event reporting

c establishing group logical names for applicasfion-specific
databases

g establishing group—-accessible global sections for
application-specific databases.

“ © & Event Logger (EVENT_LO®)

The EVENT_LDOG process Teceives system events messagés from other
processes through its process mailbox and logs them to various
cperator terminals. the system event 1log file, the WVAX operator’s
console, or the console of the SHOP FLOOR GATEWAY.

This process is always running on BASEWAY. begs b 1K pocod. cotuler file;

can ch(mdc;z this =ze

1. 10 Network Interface (NET_INTER)

The primary function of this process is the routing and delivery
of interprocess mail messages. The process receives messages from its

mailbox or over a laogical link from a gateway. It then sends the
messdges to another process’s mailbox or to the Network Interface via
a gateway. - | '

- This s fm*‘ Hot lgas node nounes .

(Hher P‘WB D MOT ChEE Mfff;/ s dppl bus.
vigwies _

NIW]I'; fends il.s‘~r3r 4@ iﬁiicuer (ot yc"ff’ a?méx;w?ég

C

$

Introduction to BASEWAY
1.11 Gateway Initialization (GATE_INIT)

This process cantinuously monitors the activity of the SHOP FLOOR
GATEWAY systams and responds to significant gateway events.

This pracess controls the saeaquence of svents which cccur when a
gateway i3 baogted (downline system 1loaded). It exchanges various
messages with the TSKWCH and GATEVP tasks in the SF3 to start various
gateway tasks running and load the polling database.

1. 12 Uéa% Applicaéion Processes and Data Processor (DATA_PROC)

These processaes receive most of the data that is sent from <the
gateway as a result of device polling. They are responsible for
formatting the data and notifying an application data »processor when
the data arrives. An example DATA_PROC is included with the basic

sustem. Nead one pec apphicerhion 5 Needed gﬂy for appl. ushj acfomatic
PC polling.
i.12.1 Dispesition of Poiled Data

DATA_PROC acts rather like a "sink" for poiled datka. In fact,
wany different polled data receivers may be tTun as part of an
3pplication. For a2xample, o9ne process could tTeceive quality data.
anather aquipment fault data, eotec. ‘ '

Introdpction to BASEWAY

‘” ‘ {(data analyzed., archived, oT
-y otherwise handled)
~Application to—— + + + + +
i DATA_PRCC | | DATA_PROC | | DATA_PROC |
- -~ c -~ "'rA_ -
A\ / /
\ / /
+==\ / /——+
i NET_INTER :
1
+ ! +
SHOP FLOOR GATEWAY ! NETINT :

Shop Floor Equipment

~
| (mmm———— qualified data for

+ -+
(2]
>
z
o
+ -+

{===—=—=—=raw data polled from
programmable device

POLSRYV H

(95

+ -+

. Figure 7., Polled Data Receivers for One Application

1-15

Introduction to BASEWAY

1.12.2 Polled Data

Applicatiaon programs running an BASEWAY normally sand
interprocess messages to the SHOP FLOOR GATEWAY. although these
messages may originate from a task in the gateway itself. ~ (See

Chapter 2 for additional information on interprocess messages.)
1.13 Message Data ques.

Data types (dtype) Fail into three categories: atomic, string.
and miscellaneaus. '

1.13.1 Atomic

Atomic data types vused in BASEWAY messages are defined and
encoded as follows:

DSC_k_DTYPE_Z 0 ' Unspecified.

The calling program has specified no dat
type. The receiving procedure shaould .
.assume that the data is of the corre “i

'~tgpe.
.DSC_K_DTYPE_B | 5 Byte Integer.

8=bit signed 2s complement intager.

DEC_K_DTYPE_W 7 -Word Integer.

16-bit signed Zs complement integer.

TSC_K_DTYPE_L 8 . Longword Intagar.

32-bit signed 2s complement integer.

DSC_K~-DTYPE_F 10 F_Flaating.

32-bit F_floating quantity representing |

a single-precisisn number.

DSC_K_DTYPE_D 11 D_Floating.

b4-bit D_floating quantity representing

a double—precisien number.

‘;'

.

Introduction to BASEWAY

13.2 8String

String data types wused in BASEWAY messages are defined and
encoded as follows:

DSC_K_DTYPE_T 14 Character—~Coded Text.
A single 8~bit character (atomic data
type) or a sequence of O to 65536 8-bit
characters (string data type).

DSC_K_DTYPE_V i Bit.

An aligned bit string. A string of
O to 4853536 contiguous bits. The first
bit is bit O of the first byte and the
last bit is any bit in the last byte

" Remaining bits in the last byts must

. be zero on read and sre clsared con
write. :

1.12. 2 Miscellaneous

Miscellaneous data types used in BASEWAY messagess are defined an
.icoded as follows: :

DSC_K_DTYPE_DSC 24 Descriptor.
' This data type allows a descriptor

to be a data type:; thus, levels
of descriptors are allowed.

1. 14 Message Descriptor Prototype

Each class of descriptors consists of at least one longword in
the following format: .

31 . ' c

e D e e o e e e e o e
H CLASS | DTYPE ! LENGTH !
Symbol _ ' Description

C

Introductiaon to BASEWAY

DSC_W_LENGTH A one—word field specific to the L
<0, 15: 0> descriptor class, typically a 1é&- . i
: bit (unsigned) length. \

DSC_B8_DTYPE A one—-byte data typae code.
<0, 23: 16> .

DSC_B_CLASS A one-byte descriptor class code.
<0, 31: 24> :

1.14.1 Scalar, String Descriptor (DSC_K_CLASS_MSGS)

A single descriptor form is used for scalar data and fixed—-length

strings.

31 } o}

e o e e s <l e e < s o o <o oo cfass foens ot s e s o o fp e efpees o e s o e o o
H CLASS : DTYPE : LENGTH : '

! ’ Data Identifiar H
T B S R S S S e S S Vi SO ST S SO VU S W ——

1 One or more bytes of information i

+-+—+—+—+-+-+-+—+—+-+—+—+—+—+—+—+—¢-+—+—+—+—+—+—+-+—+—+—+—+—+—+ jin
Symbaol _ Dbscriptxon l
DSC_W_LENGTH Length of data in buftes, unlass

the DSC_B_DTYPE field contains

the value 1 (bit). Length of
data item is in bits for bit.

DSC_B_DTYPE A one—-hbyte data type code.
DSC_B_CLASS 192 = DSC_K_CLASS_MSGS l N
DSC_L_DATAID A longword containing the data

identifier value. This value
uniquely names th2 dascribed
data field.

DSC_R_DATA o Start of the data field.

Introduction to BASEWAY
‘ 4. 14.2 Example DATA_PROC

An example DATA_PROC is included in Version 1.0 cf BASEWAY and is
started by a default startup file. It logs an event through the Event
Logger each time a polled data message is received. If polliedg datg is
to be used as part of the application, this example msy bz useful as a

"starting point for creating your own polled data TrTeceiyer process.
The source for this example is in BSL$ROOT: [SCURCE. CATAPROC].

Introduction to BASEWAY

1-20

CHAPTER 2
INTERPROCESS MESSAGES

2.1 Overvieuw

All BASEWAY programs communicate via Interprocess Messages.
These messages are vused to exchange data and request command
functiaons. .

Interprocess messages consist of two distinct areas: a fixed
message header and an optional, variable-length data area. The header
contains rtouting information for the message and a message

~ identification code. The size and format of the optional dats 3rea is
‘ “ependent on the hessagg identification cdde. o

The generic format of an interprocess message is diagrémmed

Up to 512 bytes of
message—specific data

message—specific
data -————3

below:
/i Message Code H
/ + -+
/| Destination NAX H
header / + : : +
\ ! Source " NAX !
\ + -+
\ iSocurce NAU | Destination NAU |
\+ -+
H H

Figure 8. ©Generic Interprocess Message Format

Interprocess Messages

i header '

! equipment ID !

!date and time !

idata descriptioni

i blocks

' / \

{ length {
! class | dtype |
idata identifier:
ivariable length!
| identifier !

Figure 9. Enceding of an Interprocess Message

L}
|
P

Interprocess Messages

‘ 2.1.1 Message Code

A message code is @ word which indicates consent or action to be
taken as a result of the message. Message codes |1--32767 are reserved
for Digital Equipment Corporation.

2.1.1.1 Format of Message Code -

1 14 13 12 11 10 8 7 - S 4

& - e
Ll i ad -+ e -

-+
+w
+m

| e
+---+0

+----+

Bits 0--14 identify message code
Bit 1S 0, if Digital Equipment message
’ 1, if user message

2.1.2 Source and Destination NAX

, Each application, device set, and gateway is assigned a wunique
‘ '4—bit integer number at definition time. This number is used to
ute messages and transactions between systems.

2.1.3 Source and Destination NAU

Each program in an application can have a Network Addressable
Unit (NAU) associated with it. An NAU, along with a8 NAX, indicates a
unique process in a network. :

There are two types of NAUs: . temporary and permanent. Temporary
NAUs are in the range -1 to -127, and are assigned by calling the
BSL$CREATE_PORT routine. Permanent NAUs are created by assigning
logical names and creating mailboxes in the EVENT_PROC startup file.
Permanent NAUs are in the range 1 to 127:

1--43 Reserved for Digital Equipment
64--127 Available to user

Interprocess Messages

2.1.4 Message-Specific Data

The message—specific data contains information relatad to the
individual message. The following sections willi dafine the
message—specific data formats for each message code.

. Interprocess Messages

Do Generic I/0 Request

[n
'Y

Message format:

Standard Message Header
(4 words)

Sequence Number

Device logical ID

Status Return

Data Address (15 words)

ettt

Data Coﬁnt

Device Data Buffer
{Opticnal, 254 bytes max)

R N e e !

t -t

Massage Codes: MSG_GENERIC_READ
MSG_GENERIC_WRITE
MSG_GENERIC_WRITEVFY
MSG_GENERIC_STARTDEV
MSG_GENERIC_STOPDEV
MSG_GENERIC_READDEVSTAT
MSC_GENERIC_LOGONDEV
MSG_GENERIC_LOGOFFDEV
MSG_GENERIC_STARTUPLOAD
MSG_GENERIC_ENDUPLOAD
MSG_GENERIC_STARTDOWNLOAD
MSG_GENER IC_ENDDOWNLOAD

Sent to: This kind of message is routed to GENSRYV. It causes
SENSRV to format and execute the request.

Sequence Number - may be set by the requesting program. The
GENSRV device regquest always Teturns a response message. The response
will contain the sequence number of its command. making +this field
usable as a synchronization aid or "sanity check. "

Device Logical ID - an wunsigned word value that is uniquely
associated with each programmable device defined. '

Intarprocess Messages

Status Return - not usad.

Data Address - the starting memory address in the programmadle “i
device.

- Data Count - the number of memory lacations +that are *to be
transferred.

Device Data Buffer (optional) - variable length.

Device Data Buffer (cptional) - variable length.

2.3 Do Generic I/0 Response

Message format:

Standard Message Header
(4 words)

Sequence Number

Device logicél'ID

Status Return

Data Address (15 werds!

Data Count

Device Data Buffer
(Qptional, 255 bytas max)

I R kel Rl Rl ahatE &
1

R ok Bk ek R JCSIE SESP &

Sant toe: This is sent toc GENSRV and contains a status <code and any
data that was requestad.

Sequence Number — the sequenca number of ifs command message.
Device Laogizcal ID - unchangad.

Status Return - the status of the transaction. A value gaof 1
indicates success.

Interprocess Messages
‘ Data Address — unchanged.

Data Count - unchanged. .

Device Data Buffer {optiomal) - variable length.

2.4 Gateway Loopback

ffessage format:

Standard Message Header
(4 words)

any data

SRR SR |

R R

Sent to:

E This message is sent to NETINT. on the gateway.

LX)
I
~4

Interprocess Massages.

2.9 Gat Gateway Status

Message format:

b

'

=

iStandard Message Header (4 words)!

Status flags

Task flags

Error flags

Boot time

VDBR Load time

- Gateway Counts Reset time

Net messages sent

Net messages received

Net mességes queued

Net messages lost

Net fatal arrors

VDR Blacks used

VDR size

VDR map count

Current gateway ID

SO NN N NS SN NN N N R R S QU QU R

Curreont Device Sets

Potential Device Sets

Gateway Node name

BASEWAY Naode name

BASEWAY ID

Message buffer block allacated

+ -4 --¢--%-+% -~ L T R R e Tl Sl R R A e Bl Il it L U T $ == - ¢

Message buffer block usad

| RO S AR U S S

Interprocess Messages
" Sent to:

This is sent to GATEVP.

2.5 Get Network Status for Gateway

Message format:
! §Standard Message Header]
H (4 words) H
Sent to:

This messags is sent to NETINT on the SHOP FLOOR SATEWAY.
7 2.7 Gat Polled Device Statistics

.ssage format:

Standard Message Header
(4 words)

+ -4

+---— ¢

Sent to:

This message is Touted to POLSRYV

Interprocess Messages-

2.8 Lai Event

Messaga format:

Standard Message Header
(4 words)

b

event flag event code

+ - 4

variable—~length text string

§ oomemme o oem o oom

SR

This is sent to EVEMNT_LEG %o initiate evemt logging.

2.9 Ralsad VDR

Massage faormat:

Standard Message Header
(4 words)

+ -~ %

§ -

Sant to:

This is sent to GATEVP.

2-10

Interprocess Messages

(2.1b Reset Network Counts

Héssagé format:

Standard Message Header
(4 words)

t---- 4

R JEEPE

Sent to:

This message is sent to NETINT.

11 FSet Gateway Time

Maessage format:

C

Standard Message Header
(4 words)

Year (sjnce 1900)

Month

Day

Hout

Minute

Second

SRR SR SRR SR A S S

R St dhalh Shad SRl Sl SEChll ¢

Sent to:

This message is sent to TSKWCH and causes it to set

cystem time to the time specified by the message.

€

2-11

the

RSX-11S

A

Interprocess Messages

2. 12 Shutdown Agplication

Massage format:

.8tandard Messadge Header
(4 words)

4 - - 4

+ -3

Sent ta:
This is normally sent to EVENT_PROC

2. 13 Start Polling on a Device

=

—

iizssage format:

toc effect system shutdouwn.

Standard Message Header
{4 words)

davice 1id

R i

Sa2nt to:

This message ggaes $oc PCLSRV.

2-12

. I AT |

Interprocess Messages
(‘ 2.14 Stop Gateway »

Message format:

Standard Message Header
{4 words)

+ - - ¢

+ - ¢

Sent to:

This is sent toc TSKWCH.

Z. 15 Stop Polling on a Device

format:

to—————— - :
‘ Standard Message Header
: (4 words!}

device id’

!
1
]
]
-+
1
t
!
'
-
-+

R

Sent to:

This message is Touted to POLSRV.

2-13

Interprocess .Messages

2-14

C

e

CHAPTER 3
INTRODUCTION TO SUBROUTINE DESCRIPTIONS

Each high—-ievel 1language supported by VAX/VME provides some
machanism for calling an external procedure and passing arguments to
that procedure. The actual mechanism and terminology wsed. however,
vary from one language to another. Since it is not possible to
describe the ways in which each high-level 1language calls system
szrvices: for specific information:, it is recommended that you refer
tas the appropriate high—level language user ‘s guide.

VAX/YMS system setrvices are external procedurses that accept
arguments. There are thTee ways to pass arguments to system services:

¢ by immediate value. The argument is the actual value & be
passed (a number ot a symbolic representaticn of a numeric

value).
o by address (alsoc called "by reference”). The argument iz the
address of an area or field that contains the value. An

argument passed by address is wususlly expressed as a
reference name or label associated with an area or field.
{In fact, one common error is to pass a numeric value without
indicating that it 1is passed by value; if the compiler
assumes the numeric value is an address, a run—time "access
violation” ertor occurs when, for example, the image tries to
access virtual address Q or 1.)

6 by descriptor. This argument is alsoc an address. but of s
special data structure called a character string descriptor.

A description of each service is given in Part II of the VYAX/YMS

Services Reference Manval and indicates how each argument is to be

passed. Phrases such as "an address"” and ‘"address of a character
string descriptor” identify address and descriptor arguments.
respectively. Words like "indicator.," "number." ‘“value." or ‘"mask"

indicate an argument passed by immediate value.

Introduction to Subroutine Descriptions

Some services also require service-specific data structures that
indicate functions toc bhe performad or hold information toc be r2turned.
You can use this information and information from your programming
ianguage manuals to define such an item list.

3.0.1 Testing Return Status Codes in High—-Level Languages

When a service Teturns control %0 your program it places a
retyrn status value in the general register RO. The value in the
low=order word indicates either that the service completed
syccessfully or that some specific error prevented the service from
perfaorming some ot all of its functions. After each call ta a system
service, you must chack tc see whether it completad successrullq You
can also test for specific earror conditions.

Each language provides some mochanism for testing +the return
status. Often you need only check the low—order bit, for example,
with a test for TRUE (success or informational return} sr FALSE (errtor
~orT warning return).

To check the antire value for a specific return condifion, each
language provides a way for yYyour program to determine the values
assgciated with specific symboelically defined codes. You should
always use these symbalic names when you write tests for specific
canditions.

The following chapter describes selected BASEWAY proceduTres.
These procedures are presented by category and in aiphabetical order
By entrTy name.

BASEWAY subroutines may be included in a user progrsm by LINKing
with the library, BSL$LIBRARY.

3.0.2 Compiling and Linking a VAX PL/l Program

The text library BSLDEF.PLI contains a variety of cades and
routine definitions for BASEWAY. It includes most aof the definitigns
that you will need for writing your own PL/I applicaticn oprograms.
BSLDEF. PLI can be found in the directory BSL3LIBRARY.

The following commands will compile and link a VAX PL/I program:

3 PLI MYTEST
3 LINK MYTEST, SYS3LIBRARY: BSLLIB/LIB

Introduction to Subroutine Descriptions

‘ 3.0.3 Compiling and Linking a VAX BLISS-32 Program

The include file BRSLDEF.REQ contains a variety of codes and
routine definitions for BASEWAY. It includes most of the definitions
that uwou will need +for ‘writing your own application programs.
BSLDEF. REQ can be found in the directory BSLSLIBRARY.

The following commands will compile and 1link a VAX BLISS-32
program:

% BLISE MYTEST
$ LINK MYTEST, SYS$SLIBRARY: BSLLIB/LIB

W

.0.4 Compiling and Linking a VAX FORTRAN Program

The text library BSLDEF. FOR <contains a variety of <codes and
routine definitions for BASEWAY. It includes most of the definitions
that you will need for writing your own FORTRAN applicaticn programs.
BSLDEF. FOR can be found in the directory BSLSLIERARY.

The following commands will compile and link a VAX FORTRAN
progvam. i

‘£ FORTRAN MYTEST .
LINK MYTEST. SYS$SLIBRARY: BSLLIB/LIB

2.0.5 Compiling and Linking a VAX BASIC Program

The include file BSLDEF. BAS contains a variety of codes and
routine definitions for BASEWAY. It includes most of the definitions
that you will need for writing your own BASIC application programs.
ESLDEF. BAS can be found in the directory BSL3LIBRARY.

The following commands will compile and link a VAX BASIC program:

$ BASIC MYTEST
% LINK MYTEST, SYS$LIBRARY: BSLLIB/LIB

Introduction. to Subroutina Descriptions
3.0.6 Compiling and Linking a VAX C Program

The include file BSLDEF.H contains a variety of codes and vToutine
definitions for BASEWAY. It includes most of the definitions that you
will need for writing your own C application programs. BSLDEF.H can
be found in the directory BSL3LIBRARY.

The following commands will compile and link a VAX C program:

3 CC MYTEST :
$ LINK MYTEST, SYSSLIBRARY: BSLLIB/LIB

3.0.7 Campiling and Linkipg a YAX COBOL Proagram

The copy file BSLDEF.LIB contains a variety of codes and rtoutine
definitions for BASEWAY. It includes most of the definitions that you
will need for writing your own COBOL application programs. BSLDEF.LIB
can be faund in the directory BSL$LIBRARY.

The following commands will compile and link a ¥AX COBGL program:

$ COBOL MYTEST
$ LINK MYTEST, SYSSLIBRARY: BSLLIB/LIB

3.0.8 Compiling and Linking a VAX PASCAL Program

The definition file SSLDEF. PAS contains a variety of ccdes and
routine definitions for BASEWAY. It 'includes most of the definitions
that you will need for writing your own Pascal application programs.
BSLDEF. PAS can be found in the directory BSL3SLIBRARY.

The following commands will compile and link a3 VAX PASCAL
program:

3 PASCAL BSLDEF/ENVIRONMENT
$ PASCAL MYTEST
$ LINK MYTEST, BSL.DEF: SYS3SLIBRARY: BSLLIB/LIB

Introduction tc Subroutine Descriptions

[3.1 How To Use Procedure Descriptions in This Manual
Each procedure description consists of the following categories.
Certain procedures have an additional "Notes" section. ‘

NOTE: All of the procedures described in this document return a
completion status condition code as & function return valve.

Calling Format:

This section shows the emtry name and & generalizzd foTmat Fot
calling ¢the procedure #from a high-level language, with all

arguments listed in positional order. Spaces between arguments
are present for readability and are not part of the statement
syntax.

Arguments:

This section describes each of the arguments in detail, along
with any speciasl argument—-passing requirements.

Raturn Status:

This section lists the possible error Teturn status codes From

the procedures, with an explanation of the return condition. The
4 returns are listed in alphabetical order. All status codes sTe
‘NV severe errTorTs. unless otherwise indicated.

iizage Restrictions:

This section notes any user privileges that are regquired. and any
special conditions that must be established prior to calling *his

procedure.
Motes:

This optional section contains a detailed wusage description of
he procedure, as well as references to related information.

Introduction to Subroutine Descriptions

CHAPTER 4
SELECTED BASEWAY SUBROUTINES

4.1 Overview

This chapter contains descriptions of varicus SASEWAY
that are2 wuseful in supporting interprocess messages ang
and writing of r2coTds.

NOTE: Subroutines specific to pregrammable devize
deneted by the lattzrs PDA. :

subrcocutine
the rveadin

i1
¥
N
D]
1]
in
h
a—j

0w m

0}

Selected BASEWAY Subroutines

4.2 BSLSACCESS_DEVICE - Access a Programmable Device (FDA)

3SLSACCESS_DEVICE

The Access Programmable Device procedure provides a means of
gstablishing an access path to a specifisd programmable device and
setting a default programmable device name. No data is returned by
this call.

If a programmable device name is not spacified, then +the last
- used programmable device name is uysed. If a handle is not specifiad,
a default handle is used. :

Note that an implicit BSLS$ACCESS call is performed by all of the
other BSL routines.

Calling Format:

BSL$ACCESS_DEVICE (thandlel, [devicel)

Arguments: ' =

handle.
Optional address of a longword to .be used as an intarnal context
idensifier. A programmer may choose to kaep 3=2veral handles,
each with a diffarent context. This parametar must be
initializad +to0 O b2fore being specified for the fivst fime in a
call, and not modified thereafter. I# *his parameter 1is not

specified, %the system will supply a default context identifier.
davica

Cptional addrass of a character string descripter pointing to %the
text string naming the programmable device. This programmable
davice name string must correspond exactly to the name of the
device Tequested. I# this parametsr is not specifiad. the last
refarenced programmable device is used.

Selected BASEWAY Subroutines

Return Status:

‘-r L3$_NORMAL

Service successfully completed.
BSL$_NOSYSTEM

The programmable device does not have a valid device set
associated with it. :

BSL$_PDEVDEFLT

The caller did not specify a programmable device name. and dig
not have a default name set.

5SL$_NOFDEV

The programmable device that was specified does not 2xist.

Selected BASEWAY Subroutines

4.3 BSL$ACCESS_PORT - Access Another Port.

GSL$ACCESS_PORT

The Access Port procedure will find the Port value for a.
particular named port currently running on an application, device set,
or gateway. : '

This port value directly and uniquely identifies a message port
somewhare in the system.

Calling Format:

BSLSACCESS_PORT (port, L[system], port_name,)
Arguments: |
ﬁort

Address of a longword to Teceive the port value., Fort values are
32-bit values that uniquely identify the message port.

system

Optional address of a descriptor pointing to a <character string
that contains the name of the application. device s2%, ot
gateway. I# this parameter is not specified, the name a# the
current application is used.

poTt_name
Address of a character string descriptor poin¥ing ¢ the ta2x%

>}
string containing a valid message port name. Thase names are
unique to an application or gataway.

Selected BASEWAY Subroutines

Return Status:

‘;w L$_NOBSL

C

A BASEWAY application is not currentlg running in this UIC group.
BSL$_NORMAL

Service successfully completed.
5S3$_INSFARG

Not enough arguments were passed to the routine. ¢
BSL$_NOBSL

No BASEWAY application is running.
BSL$_NOPORT

I# the port i1is local to the current application, <¢hen the
specified port name does not exist. I+ the port is remcte. then
the problem may be with the Network Interface port.

55L$_NOSYSTEM

The application:_&evice set. or gateway does not exist.

Selected BASEWAY Subroutines

4.4 BSLSALLOCATE_DEVICE - Allacate a Programmable Device‘(FDA) -
BSL$ALLOCATE_DEVICE

The Allocata Programmable Device procedure pravides a means of
requesting exclusive access %o a programmable device. This call is
often used prior to downline load a device and during complicated
diagnastic functions, where it is imperative that nc cther process
access the device. I# @ programmable device name is specified, <then
the current default programmable device name is set to tha specified
name on completion of this call.

Calling Format:

ESL$ALLOCATE_DEVICE (Chandlel, ([devicel, (flagsl !

Arguments:

handle .
Optional address of a longword to be used as an internal <contexst
identifier.’ A programmer may choose to keep several handles,
each with a different context. This = parameter must be
initialized %o O Before being specified for the Ffirst time in 2 ~‘3 :
call, and not modified theresafter. I# +this parametar is no% i

b *

specified, %the system will supply a default context identifiszr.
davice

Optional address of a character string descriptor pointing fo the
text string naming +the programmable device. This programmable
device name s%trTing must correspond exactly to the name of %she
device . requestad. If this parameter is not specified, the last
referenced programmable device is used.

rlags

Optional address of a word con%taining flags. I# the first bit is
set in ¢this flag word, then any automatic data collection
(polling)- of +this device is stopped while <the device is
allocated. If clear. then data <collection continues but all
cther access is deniad.

Selected BASEWAY Subroutines

. ‘ Return Status:

JL$_NOBSL
A BASEWAY application is not currently running in this UIC group.
BSL$_NORMAL
Service successfully completed.
GSL$_NOSYSTEM

The programmable davice does not have a valid device set
associated with it.

RELS$_OWNATTACHED
The programmable device that was specified is currently a3llocated

by this process’s parent process, and <therefore: can be
considered allocated to this process. :

GSL$_PDEVDEFLT

The caller did not specify a programmable device name. and did
not have a default name set.

‘ 3SL$_NOPDEV
.The.programmable device that was specified does not exist.

BSL$_ATTACHED

The programmable device 1is currently allocated .to ancther
process.

Selected BASEWAY Subroutines

4.5 BSL$COMPARE_DEVICE - Compare Programmable Device Logic (PDA)

BSL$COMPARE_DEVICE

The Compare Device Logic procedure will compare twas programmable
device logic files and rTeport any differences to the caller.

Not all programmable devices support the compare function.
Calling Format:

BSLSCOMPARE__DEVICE (Chandlel, Cdevicel, filename)
Arguments:
handle

Optional address of a longword to be usaed as an internal contaxt
identifier. A programmer may choose to keaep several handlas,
each with a different context. This parameter must ba
initialized to O before being specified for the first time in a
call, and not modified thereafter. I# this parameter is not
specified, the system will supply a default context iden¥ifier.

davice

Opftional address of 3 character string descriptor pointing to the
text string naming the programmable device. This programmable
device name string must correspond exactly to the name of the
device Tequestad. I# this parameter is not specified, the last
referenced programmable device is used. ’

#ilename
Address of a character string descriptor pointing fa a VAX/UMS

file containing a programmable device logic dump for a similar
programmable device.

Selected BASEWAY Subroutines

Return Status:

‘;V Ls_COMPFAIL

The compare failed due to one or more differences in the logic
file and the programmable device’s memoTy. ’

BSL$_NGBSL

A BASEWAY aﬁplication is not‘currentlu running in this UIC group.
BSL3%_MKORMAL

Service successfully completed.
BSL$_NOSYSTEM

The programmable device does not have a valid device se%
associated with it

ESL$_NOTSUPPORTED
The programmable device does no¥ support this function.
ESL$_PDEVDEFLT
3 The caller did not specify a programmable device ‘' name, and did
‘L’ not have a default name set.
ESL$_NOPDEV
The programmable device that was specified does not exist.
ESLs_ATTACHED

The programmable device is currently allocated to ancther
pTocess.

Selectad BASEWAY Subroutines

4. & BSL$COMPILE_DEVICE_ADDRESS - Precompile an Address (FDA)

5EL3COMP ILE_DEVICE_ADDRESS

The Compile Address procedure allows a caller +to <translate a
character string containing a valid programmable device address into
an internal format. This internal format may be substituted for the
zharacter string davice addra2ss in othar BSL calls.

Precompiling addresses that are to be used over and over can save

5 substantial amagunt of averhead, as the address string does not have
toc be parsed each time.

Calling Format:

BSL3COMPILE_DEVICE_ADDRESS ([handlel, [devicel. addresé,
compiled)

Arguments:
nandle

Optional addra2ss of a iongword %o be used as an internal context
identifier. =~ A programmer may choose toc keen several handles,
each .with a. different .contewrt.. This parameter pust he
initialized +¢ao O before being specified for the first fime in a
call, and not modified theresafter. I+ <this parameter is nof
specified, the sysftem will supply a default contaxt identifier.

javice

Jptional address of a character shring descriptor pointing to the

t2xt string naming the programmable device. This programmable
device name string must correspond exactly te tha name of the
device Ta2questad. I# this parametar is not spscifiad, the last

referanced programmable davice is used.
gidress

Address af a charactar string descriptor pointing +s the text
string containing a vaiid programmable device address.

4-10

vy

Selected BASEWAY Subroutines

E compiled

’ Address of a descriptor pointing to a character string to receive
the compiled address. The character string must be at least 33
bytes long.

Raturn Status:

BSL$_NORMAL

| Service'successfullg completed.
BSL$_NOSYSTEM

The programmable device does not have a wvalid device set
associated with it.

BESL$_NOTSUPPORTED
The programmable device does not support this function.
BEL$_PDEVDEFLT

The caller did not specify a programmable device name. and did
not have a default name set.

‘;;ESL$;NQFDEV
' The programmable device that was specified does not exist.
BESL$_BADADDR
The address specifiad in the "ADDRESS" parameter has an illegal

syntax or 1is ou¥tside of the range of valid addresses for this
programmable device.

4-11

Salectad BASEWAY Subroutines

4.7 DBSL3CREATE_MESSAGE - Creats an Interprocess Message

ESL8CREATE_MESSAGE

The Create Message procedure allocates space for an interprocess
message, optionally sets some default message atinibutes, and refurns
3 pointer to the message.

Messages that are created using this procadure should only be
daleted with the BSLSDELETE_MESSAGE procedure.

Calling Format:

BSLSCREATE_MESSAGE (pointer, [sizel, [cadel.
Ldest_portl, [saurce_portl)

Arguments:
painter

Address of a longword to Teceive the address of the data partion
of the message.

size
Optional address nf a word containing the size af %the dzta
portion of the allocated message. Valid values are in the range
2f O to 8GC0 bytes. I# no size parameter i3 specifizd, then the
default maximum size of 8000 bytes is usad.

cade
Ontional addre2ss of s waord containing +the message code tz he
3s3signed %o %his message. If no code is specifiad. then a code
must be sgecified in the BSLISEND_MESSASE procedura2 call.

i2st_port
Opticnal raddress nf a longword containing the port value of the
part that this message 1is to be sent to. I# nc dest_port is
specified, than a destination paort must be spscified in the

BSL4SEND_MESSAGE pgracaedure call.

L

4=12

Selected BASEWAY Subroutines

" scurce_poart

Optional address of a longword containing the port value of the
port that this message is to be sent from.

Rzturn Status:
BSL$_NORMAL
Service successfully completed.
SS$_INSFARG
Not enough arguments were passed to the routine.
5Si$_BADMSGSIZE

The interprocess message siz2 that was specifisd iz outside of
the range of O to 8000 bytes.

4-13

Selected BASEWAY Subroutines

4.8 BSLSCREATE_NAMED_PORT - Create a Permanent Message Psri

3SLS$CREATE_NAMED_PORT

The Create Named Port procedure allocates a permanent message
port, associates an applicationwide name with it, and assigns it to
the calling procaess. Interprocess messages may then be read frem and
written to this port.

. Message ports created with this procedure should be deletaed via
the BSLSDELETE_PORT procedure.

Calling Format:

BSL$SCREATE_NAMED_PORT (port, name, [sizel, [queuadi.
Cid1,)

Arguments:
sort

Address of a longword to receive the port vaiue. Fort values are
32-bit values that uniquely identify the message port. ' '

mame

Address of a character string descripter pointing %o a text
stTing containing +the name to associate with *this poré: Names
must be alphanumeric symbols, and can be ns more than 32
characters in length.

size
Jptional address of a werd containing the maximum size of a3
message that can be received through this port. Valid values are

in the range of 0 to 8000 hytes. I# no size paramefter 1is
specified, then the default maximum size of 8000 bytas is used.

4-14

Selected BASEWAY Subroutines

‘ yueved

messages that can be queved to this port at any one time.

maximum is specified, then a default value of 10 is assumed.

id

Optional address of a word containing a numeric identifier

Optional address of a word containing the mazximum number
If no

of

for

this port. Ports that are to receive polled dats messages from a

gateway must be assigned & wunique ID number by the

systvem

manager, and use this number each time this port name is crested.

Return Status:

BSL$_NOBSL

A BASEWAY application is not currently running in this UIC group.

BSL$_NORMAL
Service successfully completed.

83 INSFARG

in

Mot enough arcuments were passed to the routine.

L L$_BADMEGSIZE

The interprocess message size that was specified iz outsia
the range of O tc 5000 buytes.

BSL$_NOBSL
No BASEWAY application is running.

35L¢$_PORTEXISTS

A port with this name or ID slready exists.
BEL$_TOOMANYPORTS

More than 127 named ports are currently in use by
appiication. ’

4-195

this

Selected BASEWAY Subroutines

4.5 BSLS$SCREATE_PGRT - Create a Temporary Message Port | i-‘

BSL$CREATE_PORT

The Create Port procedure allocates a temporary message port and
assigns it to the calling process. Interprocess messages may then be
read from and written to this port.

Message ports created with this procedure should be deletad via
the BSLSDELETE_PORT procedure.

Calling Format:

BSLSCREATE_PORT (por%, [sizel, [queuedl,)
Arguments: |
port

AddTess aof a lengword to Teceive the port value. Port values ars
32=-bit values that uniquely identify the message port.

{

w
-
"~
(]

Optional address of a wonrd containing the maximum size aof a
message that can be ra2ceived through this paort. Valid values are
in the range of O <5 8GO0 bytes. If noe s3i:s2 nparamefer is
specified, then tha defauylt maximum size of S0Q00 bytes is uvsad.

quauved
Cptisnal address of a3 word containing the ms:imum number of

messages that can b2 gqueued tg this port at any one time. i# no
maximum 13 specified, then a default value of 1§ iz assumed.

4-15

Selected BASEWAY Subroutines

" Raturn Status: ' ‘

-L$_NOBSL
A BASEWAY application is not ;urrentlg running in this UIC group.
BSL$_NORMAL | .
Service successfully completed.
SS3$_INSFARG
Not enough arguments were passed to the routine.
BSL$_BADMSESIZE

The interprocess message size that was specified is outside of
the range of J to S000 bdytes.

ESL$_NOEBSL
No BASEWAY application is running.
BEL$_NONAU

More than 127 temporary ports are currently in wuse by this

‘ o application.

417

Selectad BASEWAY Subroutines

4. 10 BSL$CVYT_MX_DX - General Data Type Conversion Routine

"BEL3CVT_MX_DX

The Convert Message Descripter %o Data Descriptor procadure
canverts a data item described by a BASEWAY message dnscr1ptar to a
VAX standard data descriptor.

Calling Format:
BSLSCVT_MX_DX (src desc, dest_desc, dest_len
Arguments:

src_desc

Address of a BASEWAY message descriptor. These descriptors are

usad to identify piecas oaf data being sent in interpraczss

messages.
dast_desc

Address of a VAX descriptor pointing to a piece. of data. Any
data conversiogns necessary to convert the sgurce data into &he
destination data are berﬁorm-d,-aﬁd the resulting data is <copied
to the memory pointed %o by 'the destination descrigtor '

-

Address of a word %o receive the length of the data item.
raturned from the dest_desc parameter for conveniencs.

4-18

Selected BASEWAY Subroutines

" Return Status:

- ~$_NORMAL

Service successfully completed.

4-19

Selected BASEWAY Subroutines

4. 11 BéLSDATA_TYPE - Find Data Type for a Programmable Device Address
{PDA)

BSLSDATA_TYPE .

Programmable devices contain a wide variety of data formats and
data sizes. The Data Type procedure checks ¢the wvalidity of a
programmable device address and returns the physical data +type found
at this address. .

Calling Format:

BSLSDATA_TYPE (fhandlel, {devicel, addres§, type
Arguments:
handle

Optional address of a longword to be used as an internal contaxt
identifier. A progTammer may choose to keep. several handlas,
each with a different context. This parameter must be
initialized %o O before being specified for the First time in a
call, and not modified thereafter. I# this oparameter i3 not
spacified, the system will supply a default context identifier

isvice

Jptional address of a character string descriptor sointing to %
tex%t s%tring naming the programmable device2. This programmab
device name string must correspond exactly to the name of %
davice requestad. If this parameter is not specified, the 1ia
raefarancad programmable devizae is usad.

address

Address of a character sitring descriptor peinting
string containing & valid programmable device addr

2e

Selected BASEWAY Subroutines

(*ype

Address of a word to receive the type of data referred to by the
specified address:

BEL$K_TYPE_BIT Bit data

BSLsK_TYPE_BYTE . Byte data
BSL$K_TYPE_WORD Word data
BSLs$K_TYPE_LONG Longword data

BESL%_NORMAL
Service successfully completed.
BEL$_NOSYSTEM

he programmable device does not have & valid device sef '
zsociated with it.

T

2
fEL3_NOTSUPPORTED

The programmable device does not support this function.

‘., SL¢_PDEVDEFLT

The caller did not specify a programmable device name: and did
not have a default name set.

BSL$_NOPDEV

The programmable device that was specified does not sxist.
BRSL$_BADADDR
The address specified in the "ADDRESS" parameter has an illegal

syntax or 1is outside of the tange of valid addressses for this
programmable device.

Selected BASEWAY Subroutines
4.1: BSLSDEACCESS_DEVICE - Deaccess a Programmable
Device (PDA)

BSLSDEACCESS_DEVICE

The Deaccass Programmable Device procedure provides a means of
disassociating an access path with a specified programmadle device.
and clearing +the default programmable device name. Na data is
raturned by this call. :

{alling Farmat:

BSLQDEACCESS__DEVICE (Chandlel)
Ao gowaTed 8
nandie

Optional address of a longword to be used as an infternal contaxt:
identifier. A programmer may choosa to keep several handles.,
gach with a different ‘contexst. This parame®ar must bhe
initialized %o O before being specified for the first time in a.
call, and nat modifiad thereafter. -J# +this parameter i3 mok
sprcifivd: the systam will svpply a defavit comiead idemtifier.

Saturn Status:

[#Y]
[X)}

SL$_NGRMAL :

Service succazssfully completad.
2SL$_PDEVODEFLT

The cailef did not specify a proegrammable device nam2, and did
nct have a3 dafault name set.

nSL$_NOFDEV

.

The programmablze davice that was specifisd doses not =xist.

4-22

Selected BASEWAY Subroutines

‘ 4. 13 ESL$DEALLOCATE_DEVICE - Deallocate s Programmacie Device (FDA)
SEL3DEALLOCATE _DEVICE

. 0 r)
“w l.1 l")

-

3

i

The Deallcca*e Programmable Device procedure
r2leasing an allocated 3rogrammable device so
Jsres

ss 1t, and so that avtomatic data collection

rammable device mame 1z specified,

24

ing Furmat:

REL_SUEALLOCATE { Lhandlel., [devicel)

]
identifier. A ‘prcgrammer may choose teo keagp
=acbh with a different context.

inieislized +to U vafore be:

call, and v modifiad therwatter.

specified. the systam will su

S0 ok 0O

(YU R}) I 1) T7
o~ e
[D ST b—'

-
Y

1
i

then

This €
ng specified for the ¥
If thiz vpara

ext

pply 'a default cont

provides a means of
that aother users can
£an Ta2sume. I+ a
ths -urTent default

rammable device name is set to the specified names on completion of
C

prional addre:zs of a lormrgwsrd to be used as an internal context

SEVET ral handles.
parameter must be
2 first time in a
meter 1& not
identi

onal address of a character string descrlptur pointing to the
string naming the programmable devi
e nam2 string must correspond exactly to the name of the
2 Trequested. I+ this parameter is not spec
nced sTogrammable devize 1is usad.

This programmable

ified, the last

Selected BASEWAY Subreutinas

Return Status:

3SL$_NOBSL

A BASEHAY.application is not currently running in this UIC group.
BSL$_NORMAL | | | |
Service successfully completed.
BSL3$_NOSYSTEM

The programmable device does not have a valid device set
associated with it.

GSL$_OWNATTACHED

The programmable device that was specified is currently allocated
by this process’s parent process: and therefore, is not
deallocated. : '

55L3_NOTATTACHED

The programmable device that was specified ‘in thes deallccate
operation is not currently allocated by the calling process.

3SL$_PDEVDEFLT

The caller did not specify a programmable device name,. and did “9 ;
net have a default name set. '

w

v

SL$_NGFDEV

D

The programmable devica that was specified does naot exist

Selected BASEWAY Subroutines

, 4 14 BSL$DELETE_MESSAGE — Delete an Interprocess Message

RSL$DELETE_MESSAGE
The Delete Message procedure deallocates space that an
interprocess message occupies. ‘
Calling Format:
BSLS$DELETE _MESSAGE (pointer)
AT guments:

pointer

of a longword to receive the address of the data portion
message.

& " Service successfully completed.

Selected BASEWAY Subroutines

4. 15 BSLSDELETE_FORT - Delete a Message Port

SSL$DELETE;FDRT
The Deleta Eoré procedure frees up a message port that was
assigned to the calling process.
Calling Farmat:
BSLSDELETE_PORT (patt)
Arguments:

poTt

Address of a longword to receive the port value. Port values are
32-bit values that uniquely identify the message port.

Raturn Status:.
3SL$_NOBSL ; ” e,

é A BASEWAY application is naot currently running in %his WIC group. -
v y

TSL3_NORMAL
Service successfully complated.

33 _INEFARG

it
[17]

Not enough arguments were passad to the routine.

\ CEL3_NCFORT

The specified port does not axist, or is net assigned
calling process.

of
3
[3 g
3
]

4=-25

Selected BASEWAY Subroutines

& A4 16 BSLSDOWNLOAD_DEVISE - Download Logic to a Programmable Device
\ (PDA) '

SSL$DOWNLOAD_DEVICE

The Download Programmable Device procedure provides a means of
locading a VAX/VMS +file containing device logic into a programmable
davice. :

Mot all programmable devices support this function.

Calling Format:

BESL$DOWNLOAD___ DEVICE ([handlel, [devicel, filename)
Arguments:
handle

Optional address of a longwerd to be used as an internal context

identifier. A programmer may choose to keep several handles,

each with a different context. This -parameter must be

initialized %o O before being specified for the first time in-a

call, and not modified thereafter. If this parameter 1&g not

specified, the system will supply a default context . identifier.
gevice

Optional address of a character string descriptor pointing to the

text string naming the programmable device. This programmable

device name string must correspond exactly to the name of the
device TrTequested. If this parameter is not specified, the last

referenced programmable device is used.

filename

Address of a charactar string descriptor centaining a VAXSVMES.

filename of a file that contains programmable device logic for a
similar device.

$
J

")

Ny

o

Salactad BASEWAY Subroutinas

Return Status:

ESLS_NGBSL

A BASEWAY application is not currently running in %his UIC group.

GSL3_NORMaL

Service successfully completed.

GSL$_NOSYSTEM

The programmable device

associated with it.

55L8_NOTSUPPORTED

does not have a valid device set

The programmable device does not support this function.

f5Ls$_PREVDEFLT

The caller did not spacify a programmable device name, and did
not hava a def2ult name set.

35L$_NGFDEV

The pragrammable device that was specifiad does no% =2xist.

15L8_ATTACHED

Q
"w

Tha nrogrammablia 7
pTcCcass. '

.
[0

(1]

w

is currtentiy alliocatesd T3 ansthar

Selected BASEWAY Subroutines

Fa

ﬁ +. 17 DBSLS$GET_DATA_INFO - $2t Data Information

DSL$CET_DATA_INFO

The Get Data Information procedure provides information about a
ece of data known to BASEWAY. Information available includes
2ata type, name, internal identifier, etc.

falling Format:
BSL$GET_DATA_INFO ([idl. C[namel, item_list)

Arguments:

P

Optional address of a longwaord containing the dats
identifier value.

nEme
Optional address of a character string descripgtar painting
to the name of this piece of data. Either the ID or the
NAME parameter must be specified. :
mm_list

Address oFf a3 list of item descriptors that describe specific
attributes that are requested, and point to the buffers to
receive the information.

f=turn Status:

BSL$_NORMAL
Service successfulily completed.

ESL$_NODATA
The data peoint specified by either a name or an ID does not exist.

SEL$_INVCALL
Neither the name ot ID was specified

BEL$_TRUNC

User—specified buffer to receive the data was teocc small.

€;/

Selected BASEWAY Subroutines

Notas:

The item descriptors in the item list have the faollowing format:

16 15 0

W
[y

item code buffer length

4+ -- 4

buffer address

return length address

t -4t --4+--4
+—-4+--~-4-4

The format of the item list is described in Section 2.3.3 of the
YAX/VME Sgstem GSxrvizes Rezfersnecs Manual. The 1tem coudes PoT the
pracedure call are described in the table below.

3

3
+*

‘!{tem Identifier { Data Type i Information Specified H
{GELSK_DI_DID i wvalue { Data point internal identifier i
iBSLIK_DI_NAME i string { Data point name ;
{BEL3K_DI_FLAGS i value { data point status flags
! : - : + . ——— ——————- .
: ! iSymbol - Meaning o
: ' {BSLSM_DI_STATUS i status soint

H {BSL$M_DI_VALUE ! value point ;

H "{BSL3M_DI_STRUCTURE! structura of !

H ' i points {

! {BSL.sM_DI_GROUP i point group '

o
-

- 4=30

Selected BASEWAY Subroutines

‘4 18 BSL$CET_DEVICE_ATTRIBUTES - Get Device Attributes (FDA)

~

]

[]

SL$GET_

EVICE_ATTRIBUTES

I3

The Get Attributes procedure provides allocation., definition, and
status information about a programmable device. This call may be used
ta determine whether a device is in a proper state +For downline
igading and to write device status Teportsz and wuktilities. I+ a
programmable device name is specified, then the <current default
programmable device name is set to the specified name on completion of
this call.

Cxiling Format:

BSL$GET_DEVICE_ATTRIBUTES ([handlel, [devicel, item _list)
Arguments:
randle

Optional addreses of a longwoerd %o be used as an internal context
identifier. A programmer mey choose to keep s2va2val nandles,
- each with a different contaxt. This parameter must be

initiglized %tz O before being specified for the first time in &

c3ll, and not medified thereafter. I+ *his gafametér is not-

specified, the system will supply a default conftext identifier.
davice

"Optional address of a character string descriptor puint
text string naming +the programmable device. This pr
device name string must correspond exactliy to th
device requested. If this parameter is not spe
Teferenced programmable device is used.

item_list
Address of a list of item descriptors that describa specific

attributes +that are requested, and point %o tThe buffers to
receive the information.

£
!
[A]
par

Salactad BASEWAY Subrcubtines

Raturn Status:

A BASEWAY application is not currently running in this UIC group.
BSL$_NORMAL

Sarvice successfully campletad.
SEL%_NQéYST:N |

The programmasla "device does not have a valid device set
assgciated with i%.

2TL$_PDEVDEFLT

The caller did not specify a programmable device name and did not
. have a default name set.

TEL$_NCPDEY

- The programmable devic2 that was specified does nat axist.

ket

4-3z o &

Selectéd BASEWAY Subroutine;

Lﬂgtes:

The item descriptors in the item list have the following format:

31 16 15 0

+ + -+

i item code ! buffer length H

H buffer address '

+ ——

H return length address H

+ -
The format of the item list is described in Section Z. 3. 3 of the
YAX/YME System Services Reference Manual. The item codes for the

srocedure call are described in the table below.

4-33

Selected BASEWAY Subroutines

H Item ! Data | . i
' Identifier ! Type | Information Specified :
{BSLSK_DA_ID t value | Programmable device internal ID number i
IRSLSK_Da _NAME } string ! Pregrammable device name. H
) [} [.]
{BSL3K_DA_FLAGS { value | Programmable device status #flags. :
H v ! Symbol H Meaning !
' ! {BSL$M_DA_WRITEPROT | Write protectad H
! H {BSL$M_DA_ATTACHED { Allaocated to procass !
! ' {BSLsM_DA_REACHABLE | Device is reachable |
! ! {BSLsM_DA_DISABLED ! Device is disabled |
! i {BSLsM_DA_QOFFLINE { Device is offline :
: . : i BSLsM_DA_POLLED | Polled device !
i ! i BSL$M_DA_ADDRESSABLE! Has addressable !
! H ' { memary locations :
: ' {BSL3M_DA_INTERFACE | Interface device i
i v {BSLSM_DA_READ_ONLY | Data is read=-only :
! i iBSL.sM_DA_PRODUCTION | Production device H
' ! {BSL3M_DA_BAR_CCODE | Bar code device ;
; : ot | R '
'3SL3K_DA_INTERFACE ! string | SHOP FLOOR GATEWAY device specification i
H H ! for communications interface to this i
' i ! device ’ :
iBSL3K_DA_STATION i value | Station number feor this device (if i% é
; H ! is a multidrop communications gsrotsceol! ;
'Z38L$A_DA_MFR_NAME | string | Manufacturer of this devica d
iBSL$K_DA_MODEL _NAME! string | Model number of this device :
IGSLSK_DA_MEMSIZE ! value | Memory size of this device N :
iBSL3K_DA_DELAY { value | Timeout delay factor {(in seccnds: H

o

{

4-34

Selected BASEWAY Subroutines

t
1

this device

o ' :

G5L$_K_DA_LOCATION string Location description siring
§ESL$K_DA_DESCRIPTIDN§ string E Device description string
EBSLsk_DA_CONTRACTOR E string E Conttactor description string
%BSLiK_DA_NET_NAME g stringvé Communications Network name
%BSLiK_DA_DEVICE_SET g string E Device set associated with this device
;BSLiiK_DA_GATEwAY E string % Gateway currently communicating with

—

+

F o mm e e me mw em e e e e ey =

Seleacted BASEWAY Subroutines

4. 19 BSL3GET_SESSION_INFO - Retriaeve Current Session informatiaon

BELSCET_SESSION_INFT

The Gat Session Information procedure provides informatien about
the current terminal session. Information available includes current
Tivileges, default menu forms, default printers, etc.

This procedure may. only be called in the context of an
interactive procass. :

Calling Farmat:

| BSLSGET_SESSION_INFO (item_list)

Arguments: | “

item_list .
Address of a list of item descriptors that describe specific
attributes that are requested, and point to the bhuffers to
receive the infarmation.

Ra2turn Status:

ESL$_NGES |
A BASEWAY application is not currently rumning in this UIC group.

BSL3_NORMAL

" Service successfully caompletad.

4-35

Selected BASEWAY Subroutines

bﬂqtes:

The item descriptors in the item list have the following format:

31 16 15 0
+=- -+ +
! item code i buffer length !
! buffer address H
i return length address H
+— +

The format of the item list is described in Section 2. 3. 3 of the

VAX/YME Suystem Services Reference Manual. The item codes for the
procedure call are described in the table below. ,

Selectad BASEWAY Subroutinas

'BSL3K_SI_PRINTER string Default printer for this session

iESLsk_SI_FRIVS string Privilege mask for this session

IBSLSK_SI_CUST_PRIVS! string Customer—defined privilages

ESL3$K_SI_LOCATION string | Terminal location dezcristion

d o e e cn A ve e e we

i
!
t
t
'
-
-

H Item } .Data ! H
! Identifier ! Type | Information Specifiead H
‘ ! :)
{GSLSK_SIS_TERMINAL | string ! Terminal device name H
' i ! !
{BSLSK_SI_USERNAME | string | VAX/VMS user name :
- ! : !
IBSL3K_SI_NAME ! string | User’s name 1
iBSLSK_SI_NICKNAME | string ! User’s nickname H
! [] [}]
{BSL3SK _SI_ADDR i string | User‘’s address :
] 1] [}
H 1 ' i
!3SL3K_SI_PHONE { string | User’s phone number !
1] 1 (] [}
4 L} L] .]
{BSLSK_SI_TITLE ~V string | User’s title or position H
i 1] [)
'3SLSK_SI_DEPARTMENT! string ! User’s department name !
3 i :

| ;

! !

! '

[}]

’ !

.".. - seem

Selected BASEWAY Subroutines

%-ii.io BSLsGET_SYSfEM_INFD ~ Get System Attributes

\ 4

RELSGET_SYSTEM_INFO

The Get System Information procedure provides definition and
status information about an application, device set, or a gateuway.

The system may be seiected by specifying either a NAX or 3 system
ame. I+ neither are specified, then the current application’s
attributes are returned. If @ system name of '#’ is specified, then a
wildcard lookup is performed:. and each successive call returns another
system until the status code BSL$_NOSYSTEM is returned.

Calling Format:
BSL$SGET_SYSTEM_INFO { [naxl, [namel, item_list)
Arquments:

-
LR

X

[17]

Optional address of & word that contains a system internal
identifier. ’

name

Optional address of a character string descriptor pointing to the
text string naming the application, device set. or gateway.

S item_list

Address of a list of item descriptors +that desscribe specific
attributes that are requested, and point to the buffers to
receive the infaormation. :

- 4-39

Selacted BASEWAY Subroutines

Return Status:
3SL$_NOBSL
A BASEWAY applicaticn is not currently running.in this UIC group.
5SL3_NORMAL
Service successfully completad.
3SL$_NOSYSTEM |

The specifiad system does not axist, or there are nc mare systems
if this was a wildcard lookup.

Ngtes:

The item descriptors in the item list have the follcwing format:

o

16 15

W
-

item code buffer length

+ -+

buffer address

¥ RN R R

=111

return length address

The format of the itam list is described in Sectionm 2.3.3 of the
YAX/VME System Services Referencs Manual. The item codes for %the
srocadure call are described in the table below.

4-49

Selected BASEWAY Subroutines

{BSL$K_AI_DESCRIPTION

system description

]
1

iif Item '] :
' Identifier H i Information Specifiad H
+— —— + -
; ! ! H
iBSL3K_AI_ID - : i System internal identifier number i
t I] 1

T IBSL$K_AI_NAME] {| System name d
iBSLSK_AI_FLAGS i ! System status flags H
! H + o ———————————
H ! H : Meaning i
i] pre -do g

; H {BSL$M_AI_APPLICATION | Application :

H : 1ESLSM_Al1_DEVICESET ! Device Set !
H : {BSL3SM_AI_GATEWAY ! SHGCFP FLOOR !
! H ! SATEWAY suystem |
' ! BSL$M_AI_REACHABLE i Reachabls]
: ! e ——————————————

— —— e s e it e

o

Saelected BASEWAY Subroutines

4. 21 BSL3LOG_EVENT - Log 3 System Event in History File

3GLSLOG_EVENT

The Leg Event procedure is & uvser—cazllable rouvtine o write an entry
o the system audit facility. This procedure accepts a formatited
ASCII text string from the caller and sends a message to the EVENT_LOG
process. Depending on specified flags, the text string may be logged
in the System Audit file, written to OPER terminals, or boath.

Calling Format:
BSL3LOG_EVENT (code, flags, text)

Arguments:

zode

Address of a longword containing a bit mask of event codes for
this event, The following event codes may be present in any
combination:

..

. BSL$M_ET_SYSTEM
BSLSM_ET_CCNFIC

System—related avent
fomifiguration zvent

BSLSM_ET_NETWORK MNetwark avent
‘BSL$M_ET_GATEWAY SHOP- FLOOR GATEWAY event
4 BSL$M_ET_PC Prezgrammable Davice esvent
| ‘ .GSL$M_ET_USER = Usar—related event
g BSLSM_ET_DATA - Data 2xception event .

BELSM_ET_APFL - Application—specific event

#lags

Address of a longword containing flags for this event. The ~
folloawing flags may be present:

BESL$M_EF_FILE - Audit event in file
BSL$M_EF_OPER - Print evant on OPER terminals

4-42

Selected BASEWAY Subroutines

text
Address of a descriptor pointing to a character string containing
an event description. This character string may be up to 120
bytes in length, and may contain any printable characters. I¢
multiple lines are desired, embedded carriage return/linefeeds
may be included.

Return Status:

BSL$_NCBSL
A BASEWAY application is not currently running in this UIC group.

BSL$_NORMAL
Nermal successful completion.

5SL$_NOPORT

The Event Logger message port (EVENT_LOG) does not exist in the
current application.

4-43

Selected BASEWAY Subroutines

4. 22 BSLSREAD_DEVICE_DATA - Read Data from a Programmable Device
(PDA) .

BSL3READ_DEVICE_DATA

The Read Data procedure allows a caller to perform a logical data
read from any address of a programmable device. I# a programmaale
devicw mame is specifiwd, then the current defavlt prugrammable davice
name is set ta the specified name on completion of this call.

Calling Format:

BSLSREAD_DEVICE_DATA ([handlel, Cdevicel. address, count,
buffer)

Arguments:
‘handle

Optional address of a longword ts be used as an inta2rnal contazxt
identifier. A programmer may choose to keep several handles,
@ach with a different context. This parameter must be
initialized +to O beforsz heing specified for %£he first time in a
call, and not modified thereafter. I# .this parameter iz nat
specified, the system will supply a default context identifier.

device
Gptional address of a character sitring descripior pointing %o %he
text string naming the programmable device. This programmable
device name siring must correspond exactly to the name of the
device Toquestad. If this parameter is not specified, the last
ra2farencad programmable device is usad.

3ddress

Addrass aof a charactar string descriptoer pointing %o +the tex%
s¥ting containing a valid programmable device address.

4-44

Selected BASEWAY Subroutines

L aunt

Address of a word that contains the amount of data +to be tead.
For example, if the address specified refers to individual bits,
or coils, then the count is the number of bits. If +the address
specified refers to a 1é-bit word, then the count is the number
of words. Upon completion of ¢this call, +this parameter is
updated to rTeflect the amount of data that is actually returned
in the buffer. '

puffer
Address of a buffer where the programmable device data should be
stored. It dis up to the caller to insure that this buffer is
large enough to contain the resuvlting data.
Return Status:
BSLs_NGBSL
| A LDASEWAY applicatibn is not currently running in *this UIC group.
BSL$_NORMAL
Service successfully completed
“L$_NOSYSTEM

. \ .
The programmable device does not have a valid device set

associated with it.
BSL$_NOTSUPPORTED

The programmable device does not support this function.
BEL$_PDEVDEFLT

The caller did not specify .a programmable device name and did not
have a default name §et.

BSL$_NOPDEV
The programmable device that was specified does not exist.
GEL$_ATTACHED

The programmable device 1is ¢éurrently allecated teo ancther
process.

. BSL$_BADADDR

C

4-35

Salectad BASEWAY Subroutines

The address specified in the "ADDRESS" parameter has an illegal :
syntax, or is gutside of the range of valid addresses for this w
programmable device.

4-34 | -

Selected BASEWAY Subroutines

" 4.23 BSL$SREAD_DEVICE_STATUS - Read Status Info from a Programmable
' Device (PDA)

BEL$SREAD_DEVICE_STATUS

The Read Status procedure allows a caller to get the status
infermatien frem 2 psregremmable device. The fermat of the statue
buffer is device specific. and may contain memory sizes. key switch
incations, etc.

If a programmable device name is specified, +then the current
ault programmable device name 1is set to the specified name on
pletion of this call. ‘

.

[I
3 b

Calling Format:

BSLS$READ_STATUS ([handlel, [devicel, count, buffer.

Arguments:
handle
fihf: . Optional address of a longwerd to be useﬁ a8s an internal context
: identifier. A programmer may choose to keep several handles,
each with a different context. This parameter must be
initiglized to O before being specified for the first time in a
call, and not modified thereafter. I+ +this parameter 1is not

specified. the system will supply a default context identifier.
device

Optional addréss of a character string degscriptor peinting to the

text string naming the programmable device. This programmable

device name string must correspond exactly to *the name of the

device Trequested. If this parameter is not specified, the last
referenced programmable device is used.

count

Address of a word to receive the number of bytes of status
information read.

4-47

Selected BASEWAY Subroutines

buffer
Address of a buffer where the prdgrammable device status data
should be stored. It is up to the caller to insure that this
buffer is large enocugh to contain the resulting data.
Return Status:
BSL$_NCBSL
A BASENAY application is not currently running in this UIC group.
BSL3$_NORMAL '
Service successfully completed.

BSL$_NOSYSTEM

The programmable device does not have a valid davice set
asscciated with it.

3SL$_NOTSUPPORTED
The programmable device doces noet support this'Functicn.
3SL$_PDEVDEFLT

The caller did not spec1Fg a programmable device name, and did
not have a derault name set.

BESL$_NOPDEV
The programmable device that was specified does naot =2xist.
BSLS_ATTACHED

The programmable device i3 currently allocated o ancther
process. ’

4-48

w

Selected BASEHA? Subroutines

i‘,d 24 BSLsRECEIVE_MESSAGE ~ Read a Message from a Port

SLSRECEIVE_MESSAGE

I

The Receive Message procedure will read an interprocess . message
from any sender. The calling process must have already established
cwnership of the port (via BSLICREATE_PORT or BSL$CREATE_NAMED_PORT).

If no messages are currently queued, this routine will wait until
gne is received or until the timeout value (if specified) expires.

Calling Format:
BELSRECEIVE_MESESAGE (¢ port. [pointerl, [hufferl,

Lsrc_portl, [codel, [sizel.
[timeogutd)

Avrguments:
port

Address of a longword to containing the port value of the port to
receive the message. ' : '

painter

Optional address of a longword to receive +the address of the
message Tteceived, This parameter may not be specified if the
buffer parameter is specified.

buffer

Optional address of a buffer to receive the message data. I¢
this parameter 1is specified, then the pointer parameter may not
be specified.

source_port

Optional address of a3 longword to receive the port value for the
port that sent this message.

4-49

Selected ﬁASENAY Subroutines

code
Optional address of & word to receive the message code ‘$or this
message.

size -
Optioﬁal address of a word to receive the size of this message.

timecut |

Optional address af a quadword containing a YMS systam delta time
to wait before Teturning if noc messages are outstanding.

faturn Status:
BSL$_NOBSL

A BASEWAY application is ﬁot currently running in this UIC group.
S5L$_NORMAL

Sarvice successtully completed.

Not enough arguments ware passed to the Toutine.
BSL$_BADMSGSIZE

The interprccess message size tnat was specified is outside of
the range af O to 8CQ0 bytas.

35L$_NGBSL

No BASEWAY application is running.

4-59

' Selected BASEWAY Subroutines

é 4. 28 BSL$SEND_MESEAGE - Send a Message to a Port

BELSSEND_MESSAGE

The Send Message procedure will send an interprocess message +to
any port in the system. The destination port value must have already
hzen found by calling the BSL$ACCESS_PORT procedure.

The Send Ma2ssage procedure may be passed either a pointer $o. a
mzssage {(created with BSLSCREATE MESSAGE or BSL3$RECEIVE HESSAGE), oT a
puffer containing data to be sent.

Lalling Farmat:
BSL$SEND_MESSAGE ([source_portl, [dest_portl,
Lpointerl, [bufferl, [codel,
[sizel)}
Aarguments:
5aurce_port‘
Optional address of a3 longword to containing a port vélﬁe fFor a

| port that a 'response should be returned to. If no response is
' requested, then no scurce port parameter need be supplied.

dest_port

Optional address of a longword to containing the port value of
the port that this message is to be sent to. This parameter is
required unless a pointer to a message that already contains a
destination port is passed. ’

painter
OCptional address of a lengword that contains the address of a
message to be sent. This parameter may not be specified i¥ the
buffer parameter is specified. .
tuffer
J . .
Optional address of a buffer of data to be sent. I+ +this

parameter is specified. then the code, dest_port, and size
parameters are mandatory.

Selectad BASEWAY Subroutines

code

Optional address of a word that contains the message code for
this messaga.

size

Optional address of a word cantaiﬁing the size of this message.
Return Status:
BSL$_NOBSL

A BASEWAY application is not currently running in this UIC groug.
5SL3_NCRMAL

Service successfully completed.
SS3_INSFARG

Naot enough arguments were passed to the routing.
35L3_BADMSGSIZE

The interprocass message size that was specified is outside of

the range of O to SCO0 bytes.
$EL3_NCBSL

No BASEWAY application is running.

4-52

Selected BASEWAY Subroutines

é‘ 4. 26 BSL$SET_DEVICE_ATTRIBUTES - Change Current Device Attributes

(PDA)

BSL$SET_DEVICE_ATTRIBUTES

The Set Attributes procedure provides a method of setting
definition and status information for a specified programmable device.
This call may be used in writing system status wusilities. I+ a
programmable device name is specified, then +the current defavlt
arogrammable device name is set to the specified name on completion of
this call.

Lalling Format:
BSL$SET_DEVICE_ATTRIBUTES ([handlel, [devicel], item_lis%

Arguments:

handle
Optional address of a longword to be used as an internal caontext
identifier. A programmer may choose to keep several handles.
each with a different context. This parameter must be
initialized to O before being specified for the first time in a
call, and not modified thereafter. I+ +this parameter is not
specified, the system will supply a default context identifier.

gevice

Optional address of a character string descriptor pointing to the
text string naming the programmable device. This programmable
device name string must correspond exactly to the name of the
device Trequested. If this parameter is not specified, the last
‘referenced programmable device is used.

item_list
Address of a list of item descriptors <that describe specific

attributes that are requested. and point to the buffers to
receive the information. :

Salected BASEWAY Subroutinaes

Return Status:

3SL3_NCBSL

A BASEWAY application is net currently running in this UIC group.

BSL$_NCRMAL ,

Service successfully completed.

BSL3_NOSYSTEM

The programmable device does not have a valid device set
assaociated with it. :

3SL$_PDEVDEFLT

The caller did not specify a programmable device name, and did
not have a default name set.

5SL$_NCPDEV

The programmable device that was specified does not exist.

4-54

Selected BASEWAY Subroutines

f) Notes:

Thé item descriptors in the item list have the following format:

31 16 15 0

item code ! buffer length

-

buffer address

return length address

SR I R

IR e SRt
3

. The format of the item list is described in Section 2.3.3 ocf the
YAX/YME System Services Reference Manual. The item codes for the
arocadure call are described in the table below.

Selected BASEWAY Subroutines

+

! Item ! Data ! !
' Identifier i Type | Information Specified i
{BSLSK_DA_NAME. ! string! Programmable device name. i
] []]
1]] .]
{BSL3K_DA_FLAGS { value | Programmable device status flags. i
! H H Symbal ! Meaning '
! ! + -+ +
! i {BSLeM_DA_WRITEPROT! Writa protected H
; ! {BSL.$M_DA_DISABLED | Device is disabled |
: ! {BSL3M_DA_OFFLINE | Device is offline |
1 1 o e -
: , , * ;
iBSLSK_DA_LOCATION { string! Locatian description string H
' { ! H
{BSL3K_DA_DESCRIPTION! string! Device description string '
i i !

BSL$K_DA_CONTRACTOR istring | Contractor description string |
' [[]

F e = ee

4=-56

Selected BASEWAY Subroutines

é;,F 27 BSL$SLEEP - Sleep for Specified Time Interval

BSL$SLEEP

This procedure will suspend the process execution for the
specified amount of time. This procedure may be useful for dynamic
terminal displays, where the program must pause for n seconds between
refreshes.

The specified time interval is expected to be a valid ASCII delta
time: as specified in the description of the SYSSBINTIM system service

call.
Calling Format:
BSLS$SLEEP (ascii_time)
Arguments:
ascii_time

Address of a descriptaor pointing to a characuer string containing
a valid VAA!VHS delta t1me

Retuyrn Status:
REL$_MNORMAL

Service successfully completed.

Selected BASEﬁAY Sybrautines

4. 28 BSLSSTART_DEVICE - Start a Programmable Device (PDA)

ZSL$START_DEVICE

The Start Device procedure provides & means of starting a
programmable device that is currently stopped. This may be necessary
after downline loading a new programmable device program, performing
maintanance, etc.

Some programmable devices, such as bar code readers, may not
perform this function. In those cases, an error status return of
BSL$_NOTSUPPORTED is returned. '

Calling Format: -

BSL$START_DEVICE (Chandlel, [devicel)

Arguments:

handle
Optional address aof a longword to be used as an internal context
identifier. A programmer - may choosa to keep saveral handles.
each with a different context. This parameter must be
initialized ¢ta O before being specifiad for the first $ime in a
call, and not modified thereafter. I# <+this parameter is not

specified, the system will supply a default context identifier.
davice‘ ‘

Optional address of a character string descriptor pointing to the
text string naming the pragrammable davice. This programmanle
device name stting must correspond exactly te tha name of the
device Trequestad. I# this parameter is not specified, the last
referenced programmable device is used.

4-38

Selected BASEWAY Subroutines

¢ Return Status:
, L 5L$_NCBSL

A BASEWAY application is not currently running in %this UIC group.
BSL$_NGRMAL

Service successfully completed.
BELS_MNOSYSTEM

The programmable device does not have a valid device set
associated with it.

BSL$_NOTSUPPORTED
The programmable device does not support this function.
8L $_PDEVDEFLT

The caller did not specify a programmable device name. and did
nct have a default name set.

BSL$_NCPDEV e
The p%ogrammablevdevice that was épeciﬁiad does no%t axist
»SL$_NOTSUPPORTED

The programmable device that was specified does not suppert this
operation.

BSL$_ATTACHED

The programmable device 1is currently allocated <to another
.process.

~

4-59

..

Selectad BASEWAY Subroutinas

1. 29 BSLiSfOP_DEVICE ~ Stgp a Programmable Device (PDA)

SSL$STOP _DEVICE

The Stop Device procedure provides a means of stopping &
srogrammable controller. This may be necessary for downline loading a
new programmable device pTogram, maintenance. etc.

Some programmable devices, such as bar code Teaders, may not
gcarform this function. In those cases, an aerror status reiurn of
3SLL$_NOTSUPPORTED is raturned. :

Calling Fermat:

BSL3STOP_DEVICE (Chandlel, (devicel),
arguments:
handle

Optional~address. of 3 loangword to be used as an internal context
identifiar. A programmer may choosa to keep saveral handles,
aach with a different contexs. This - paramaeter must be
initialized .to> O ba2fore being_specified for %the Ffirst time in a ﬂﬁf'
call, and not madified thereafter. I# <this parameter i3 not
specified, &the system will supply a default comtext identifier.

Opticonal address af a characher string descriptor pointing to the
tax% s¥ring naming %the programmable device. This programmable
vice name string must corTespand exactly te +the name of the
vice Taquestad. I# this parameter is noet specified, Tthe last
farenced programmablz device i3 usad.

N oW

4-&0

C

Return Status:
sL$_NOBSL
A BASEWAY application is not

BSL$_NORMAL

Select.d BASEWAY Subroutines

currently running in this UIC group.

Service successfully completed.

BSL$_NOSYSTEM

The programmable device

associated with it.
3SL$_NCTSUPPORTED

The programmable device.does
GSL$_PDEVDEFLT

The caller did not specify a
have a default name set.

5SL$_NOPDEV

The‘pfogrammable device that

o3L$_NOTSUPPORTED

The programmable device that
operation.

BEL$_ATTACHED

device

N

The praogrammable
process.

does

is

not have a wvalid device set

not support this function.

programmable device name and did not

was specified does not exist.

was specified does not suppoert this

currently allocated to another"

4=-61

Selected BASEWAY Subroutinas

4. 30 BSLSUPLDAD_DEVICE - Upload Logic #from a Programmable Device Wﬂﬂg
(PDA) '

BSLSUPLOAD_DEVICE

The Upload Programmable Device procedure provides a means of
loading programmable device logic from a device into a VAX/VMS fila.

Not all programmable devices suppaort this functioan.
Calling Format:
BSLSUPLOAD__DEVICE (Lhandlel, (devicel, filename)

Arguments:

nandle - : .

Optional address of a longword to be used as an internal contaxt
identifiaer. A progTammer may choose to kaep several nandles,
-each with a different context. This parameter mus® be
initialized to O before being specified for the first time in a
call, and not magdified thereafter. I# +his parameter i3 not \ﬂﬁ{
specified, the system will supply a default context identifier. e

davice

Optional address of a character string descriptor pointing ta the
text string naming *the programmable device. This praogrammable
device name string must corrTespond exactly ta the name of the
device TtTequestad. If this parameter is not specified, the last
referenced pragrammable device is used.

filename
Address of a charactar string descriptar conftaining a VAX/VMS

filename of a +#ile that is to contain the programmable device
lagic for this devicae,

4-62

Selected BASEWAY Subroutines

. Return Status:

¢

sL$_NOBSL : :

A BASEWAY application is not currently running in this UIC group.

BSL$_NORMAL

Service successfully completed.

BSL$_NOSYSTEM

The prog%ammable "device does not have a valid device set
assaociated with it.

BSL$_NOTSUPPORTED

The programmable device does not support this function.

BSL$_PDEVDEFLT

The caller did not specify a programmable device name and did not
have a default name set.

BEL$_NOPDEV

éyy

The programmable device that was specified does not exist.

_SL$_ATTACHED

The programmable device is currently allocated +to another
process.

4-463

Selected BASEWAY Subroutines

4.31 BSLSWRITE_DEVICE_DATA - Write Data To a Programmable Device
(PDA)

BSL$WRITE_DEVICE_DATA

The Write Data procedure allows a caller to write data ta any
address of a programmable device. I# a programmable device name is
specified, then the current default programmable device name is set to
the specified name on completion of this call.

Calling Format:

BSLSWRITE_DEVICE_DATA (Chandlel, Cdevicel., address. count.
buffer)

Arquments:
nandle

QOptional address of a longword %o be used as an internal context
identifier. A pragrammer may chocose to keep several handles.
each with a different context. This parameter must be
initialized ¢to O before being specified for the first time in a
call, and not modified thereafter. I#f ¢this parameter is not
specified, the system will supply a default context identifier.

davice
Optional address of & character string descriptoer pointing to %the
text string naming the programmable device. This programmable
device name. string must correspond exactly to the name of the
device Traquestad. If this parameter is not specified. the last
referenced programmable device is used.

sddress

Address of a character siring descripter pointing to +the texst
string containing a valid programmable device address.

4-54

s

C

Selected BASENAY Subroutines

count

Address of a word that contains the amount of data to be written.
For example, if the address specified refers to individual bits.

or coils, then count is the number of bits ¢to write. If the
address specified refers ¢o 16-bit words, then count is the
number of words to write. >

buffer

Address o# a4 buffer where the programmable device data is stored.
It is up to the caller to insure that this buffer contains encugh
data to fulfill the write request.
Return Status:
BESL$_NOBSL
A BASEWAY application is not currently running in this UIC group.
BSL$_NORMAL
Service successfully completéd.
3SL$_NOSYSTEM

The .programmable device does not have a valid device set
associated with it.

BSEL$_NOTSUPPORTED
The programmable device does not support this function.
BSL$_PDEVDEFLT

The caller did not specify a programmable device name and did not
have a default name set.

BEL$_NOPDEV N
The programmable device that was specified does not exist.
BESL$_ATTACHED

The programmable device 1is currently allocated to another
process. .

BEL$_BADADDR

The address specified in the "ADDRESS" parameter has an illegal
syntax, or is outside of the range of valid addresses for this

4-63

Selectad BASEWAY Subrautines

programmable device. ' : a

4-56

Selected BASEWAY Subroutiqes
fiBQ BSLSWRITE_VERIFY_DEVICE_DATA - Write Data To a Programmable
'ﬁévice and Verify (PDA)

BSsté1TE_VERIFY_DgVICE_pATA

The Write Verify Data procedure allows a caller to perform write
data to any address of a programmable device. I# a programmable
device name is specified., then the current default programmable device
name is set to the specified name on completion of this call.

Calling Format:

-BELSWRITE_VERIFY_DATA ([handlel. [devicel, address,
count, buffer)

Arguments:
handle

Optional address of a longword to be used as an internal céontext
identifier. A programmer may choose to keep several handlies.
each with a different context. This parameter must . be
. initialized to C before being specified for the first time in‘a
ihi call, and not modified thereafter. I# ¢this parameter is not
specified, the system will supply @ default context identifier.

device

Optional address of a cnaracter string descriptor pointing to tne
text string naming the programmable device. This programmable
device name string must correspond exactly to the name of the
device Trtequested. I# this parameter is not specified, the last
referenced programmable device is used.

address

Address of a character string descriptor pointing to the text
string containing a valid programmable device address.

4=-57

Selactad éASENAY Subroutinas

ccunt‘

Address of a word that contains the ameunt of data ta be written.
For example, if the address specified refers £o individual bits,
er coils, then count is the number of bits to write. I+ +the
address specified refers ¢to 1é6~bit woerds, +then count is the
number 0f wards %o write.

buffer
Address of a buffer where the programmable device data is stored.
It is up %o the caller to insure that this bu#?er contains engugh
data ta fulfilli the write Tequesst. :

faturn Status:

BSL$_NOBSL
A BASEWAYIappliéation is naot cqrrenth Trynning in %his UIC group.

BSLS_NCRMAL

~ Service sqccesé#ullg completad.
GELS_NGCSYSTEM

The programmable device does not have a valid device set
associated with it.) :

SLs_NOTSUPPCRTED

l:i 1

Tha nragrammabla device does not support this functicn.
3;5 _PDEVDEFLT

The caller did not spacify a programmable devicz name and did no®
have a default name sat.

BSL$_NCPDEY
Tha programmable device that was specified does not exist
3SLS_ATTACHED

The programmable device is currently allocated to ancther
pTOCRSS.

3SL$_BADADDR

The address specifiad in the "ADDRESS" parameter has an illegal
syntax, or is outside of the range of valid addresses for this

4-&8

v

Selected BASEWAY Subroutines

c_ programmable device.

4-49

g—'————r—" a 3
: . i

Selectad BASEWAY Subroutines

4-790

APPENDIX A
BASEWAY SUBROUTINE CALLS

A. 1 BASEWAY Language~Independent Notétibn

BASEWAY routines are invoked according to rules specified in the
VAX Procedure Calling and Condition Handling Standard (Appendix C of

the VAX Run—Time Library Reference Manual). The compiete notation for
describing VAX calls is documented in Appendix C of the VAX Guide to
Creating Modular Library Proceduyres.

BASEWAY routines can be invoked as subroutines or as functions:

As 'a subroutine:

CALL BSL$xxx (parameterl, parameter2,...)

As a function:

VMS_stat. wic. v = BSL$xxx (parameteri.parameterae...)

The access type, data type, passing mechanism. and parameter form
are described in the following prescribed order: :

<{parameter—-name>. {access type><{data type>. <passing mechanismi<parameter form>

BASEWAY Subroutine Calls
A.2 Procedure Parameter Notation for BASEWAY Calls ‘@‘ﬁ

BASEWAY uses a subset of the VAX proceduré parameter notation.
The following table explains the notatian used for access type, data
Type: passing mechanism. and parameter fornm.

MNotation : Caccess type> Comments

~m . Modify access Parameters for both input and
sutpud
T Read-gnly access Parameters for input
w Write—-only access Parameters for cutput
Notation _ <data type>
- a Virtual addfess
1 . Langword integer (sighed)
lz ’ Longword return status
q ‘@uadword integer (unsigned)
] Character-:ﬁded text string
v Aligned bit string
w Word integer (signed)
X Any data tupe
Notation <passing mechanism> Comments
d By descriptor BASEWAY passing mechanism for
charactar strings and integer
arrays
T By reference BASEWAY psssing'mechanism faor
' intagers '

BASEWAY Subroutine Calls

L tation

<parameter form>

x1

Array Teference or descriptor

Fixed-leﬁgth or dynamic
string descriptor

BASEWAY Subroutine Calls

Procedure Parametaer Naotation

BSL$ACCESS_DEVICE

BEL$ACCESS_PORT

(Chandle.ma.rl, Cname.rt.dxll)

handle context identifier
name programmable device name

Places the current context pointer to a specific
programmable device, and returns the access status.

(port.wl.r, [system. v%.dx1l, name.rvr%. dxl,)

potrt port value
systam application, device set or gateway name
name port name

Returns the port value for a particular named
port curtently active on an applicaftion, devicea
set, or gateway.

BSLsALLCCATE_DEVICE (Chandle.ma. 1, [name. % dx1], [flags.Tv.r])

handle context identifier
name) programmable device name
flags allecation £flags

Marks a pragrammaale device for exclusive use by the
calling process. Causes any autamatic data gathering
{(polling) to cease. Usually used when performing a
diagnostic function or when downline loading a
programmable device. :

IEL$COMPARE_DEVICE ([handle. ma.r3], [name.rt.dx13, file.vt.dxl }

handle context identifier
name programmable device name
file VAXL/VMS file name)

Compares ftwoc programmable device logic filee and
TetuT™ns a summary of differences.

BASEWAY Subroutine Calls

Procedure Parameter Notation

R R S R R R R e S R R N S R N R R R R R I N N R S T NS TSR EETERSEESS SRR IR =SS

BSL$COMPILE_DEVICE_ADDRESS ([handle. ma.tl, [name.rt.dx1], address.rtt.dxi,
compiled. rt.dx1)

handle context identifier

name programmable device name

address address in programmable device

campiled precompiled address string

Parses an address for this programmable device. angd

returns the precompiled address string. This string .dm#“a

is nonprintable, but may be used in other Jrlor® mh%w

calls in place of the address string. "Lﬁﬂo 74W¢

. i€ o
Je

BSL$CREATE_MESSAGE (pointer.wa.r, [size.rw.], [code. rw. ™1, fake S 4ZJ@

[dest_port.rl.], [source_port.rtl. Tl) (U@@ Hﬁnx

fﬁs
pointer address of message e ”
size size of data buffer in bytes
caode : message code
dest_port port value

source_port port value

Allocates space for an interprocess message, and
returns a8 pointer to the data area QF this message.

SL$CREATE, _NAMED PDRT (port. wl. r, ﬁame rt. dx1, [size. rw. t1,
Lqueved. rw. 731, [id.Tw. 71,)

port port value
name name given to this port
size maximum buffer that can be received
queved . maximum number of messages .that
can be queued to this port

id identification number (&64-127)

Allocates a permanent message port, asscciates
the given name with it. and assigns it to the
calling process.

BASEWAY Subroutine Calls

Procedure Parameter Notation] .
SBCRINIBIEAIEIE IS SIE RN ERIEE IR R R ESESIIEEE N EERERERIESEESIERESESNSESER N NN I T IR IR SIS SR IR R IR I SN .

GSLSCREATE_PORT (port.wl.r, [size.Tw. rl, [queved.rw.tI,

port : port value
size maximum buffer that can be received
queued maximum number of messages that

can be quevued %o this port

Allocates a temporary message port and assigns
it to the calling process.

BOLSCVYT_MX_DX (src_desc.rx. dx1l, dest_desc.wx. dxl, dest_len.ww. T }

src_desc . address of message descriptor
dest_desc address of VAX data descripior
dest_len size of resulting value

Converts data described by src_descriptor ints the
data type described by dest_desc., and caopies the
resulting value to the space described by dest_desc.

BSL3DATA_TYPE (Chandle.ma. ™1, Cname.rv+t.dx131, addﬁ!ss.rt.&xi, type)

handle . zontext identifier

name pragrammable device name

address starting memory location address
type : data type at this address

Parses an address for this programmable device, and
raturns the type code for the data at this address:

BSLSK_DT_BIT = 1-bit or caeil address

BSLSKR_DT_BYTE - Byte data at this address
BSL3K_DT_WORD - 1é-bit word data
BSL$K_DT_LONG - 32-bit longword data

BESL$DEACCESS_DEVICE ([handle.ma.r])

handle coantext identifier

Clears éng programmable device context previously
associated with this handla.

A=4

BASEWAY Subroutine Calls

Procedure Parameter Notation .
%’S:SSﬂ“““ L £+ + =+ + 32 2+ F 3+ 3 3+ 3+ 33—+ 3+ P+ 3 F 3 3+ + 3+ 3+ 2311

SSLSDEALLOCATE_DEVICE (Lhandle.ma.r], [(name.rt.dx13)

handle context identifier
name programmable device name

Frees a previously allocated programmable device, and
causes normal data—-gathering functions to resume if

possible. '

BSL$DELETE_MESSAGE (pointer.ma.r)
pointer . address of message

Releases space occupied by this message.

BEL$DELETE_PORT (port.ml. Tt)

port port value

Releases a message port that was assigned to the
calling process. .

% ‘LSDUNNLOAD_DEQICE { Lhandle. ma. T3, [name:rt.dxll; File.rt.dxi)

handle context identifier
name programmable device name
file VAX/VMS file name

lLoads a VAX/YMS file containing device logic into a
. programmable device.

BASEWAY Subroutine Calls

Prgcedure Parameter Notation o

BSLSGET_DATA_INFQ ([Lid.tT1.r] Cname.rTt.dx1], item_list.ra.T)

id data identifier code
name data point name .
item_list pointer to array of item descriptaors

Returns selected information about the data point to
the calling program.

GSLS$GET_DEVICE_ATTRIBUTES (Chandle.ma.r]l, CLname.rt. dx11, item_list ra.r)

handle context identifier
name programmable device name
item_list = pointer ta array of item descriptors

Returns selected generic attributes of the programmable
device ta the caller.

3SLS$GET_SESSION_INFC (item_list.ra. ™)

item_list pointer to array of item descriptors
‘ Returns information about the current terminal , Y
:g‘(/ 1@‘ session to the caller. , v‘j
“‘0\(? én . ° . 3
yx\)
TR
Fl
§

C

¢

BASEWAY Subroutine Calls

Procedure Parameter Notation

R R S R R R s e R I S R R R S A S S S R R I N I TS TEEEEEEEEEEEES==

BSL$GET_SYSTEM_INFQ ([id.rw.t1, (name.rvt. dx1], item_list.ra. 7T)

ESL$LOG_EVENT

(

-id system internal identifier
name application, device set or gateway name
item_list pointer to array of item descriptors

Returns information about an applxcatzan, dévice
set, or gateway to the caller

code.Tv. T, flag.rTv.r, text.rt.dxl)

code avent type mask
flag event flag mask
text text string to loag

Enters a user—defined text strzng in the System
Audit file.

BSL$READ_DEVICE_DATA ([handle.ma.r], [name.rt.dx11, Eaddfess.rtudxil,

H
5
i

p

count. rw. ., buffer.ra.r)

handle context identifier

name programmable device name

address starting memory location address

count number of pieces of data to read.
Teturns number actually read.

buffer pointer to a buffer to receive the

data read

Reads a buffer of data from the address in the device
specified. Data will be returned in the same format
as contained in the programmable device.

BSLS$READ_DEVICE_STATUS ([handle.ma.], [name.r%t. dx11, éount.ww;r,

buffer. ra.r,)

handle context identifier

name programmable device name

count number of bytes of data read

buffer pointer to a buffer to receive data

Reads a buffer of programmable device specific status
infermation.

.

BASEWAY Subroutine Calls

Procedure Parameter Notation ‘ %‘i.

WIWMIBIM IV IWIND AR IMER BN RN DRI DR DD RN EEN B R RNV B DRI DR DN DR DN DMIBPIDIE DI DM

BSLSRECEIVE_MESSAGE (port.rl.r, [pointer.ra.vl, L[buffer. vz 71,
Csrc_port.wl. r], [code. ww.], (size. ww. rI1.
Ltimeagut. rq. T3)

pert port value

paginter dddress of message

buffer data buffer

sre_port port value

code message code

size size of data buffer in bytas

timeout VAX/VMS binary delta time

Reads an intarprocess message sent to the specifiad
port. If no messages are pending, will wait until
timeogut value expires. Maessage may ba rTaferred to by
pointer or data buffer.

JSL$SEND_MESSAGE ((src_port.rl.r1, Cdast_port.rl.rl, L[pointer,ra.tl,
Cbuffer. rx.r1, [code.rtw.rl, [size. tw.T])

src_part part value

dest_port paort value

pointer address of message . :
buffer data buffer ' o
‘cade message code \ﬂ?a
size siz2 of data buffer in hytes A -

Sends an interprocess message ta the specified port.
Message may be referred to by pointer or data buffer.

BSL$SET_DEVICE_ATTRIBUTES ([handle. ma.], Cname. rt. dx11]. item_list. ra. v)

handle contaxt identifier
name programmable device name
item_lis® peinter to array of item descriptors

Allows the calling process to set a3 genaetTic attributae,
such as the station number, of a programmable device.

AflO

BASEWAY Subroutine Calls

Procedure Parameter Notation

R R R R R R R R T s N SRR SEEE AR IR NSNS TN RN ROMMI|IZISS

BSL$SLEEP (string.rt. dxli)
string VAX/VMS time formatted string

Causes the calling process to enter a LEF state until
the specified time.

BSL$START_DEVICE ([handle.ma.r]l, [name. r$%.dx1])

ﬂ handle context identifier
J& / name programmable device name
v
70
yfé Starts the programmable device if the device was
g previously halted.
BSL$STOP_DEVICE (Ehandle.ma.rl; [name. rt. dx1])
handle Context identifier
name programmable device name

Stops the programmable device if the davice was
previously running.

% “L$UPLOAD_DEVICE (Chandle.ma.rd, Cname. rt. dx131, file.Tt. dx1)

handle context identifier
name programmable device name
file VAX/VMS file name

Uploads logic from a programmable device into
a VAX/VMS file.

BSLSWRITE_DEVICE_DATA (Chandle.ma.r3. C[name.rt.dx1], [address. ™t dxil,
count. Trw. v, buffer.ra.r)

W handle context identifier
@Q) name programmable device name
[¥ address starting memory location address
count number of pieces of data toc write
buffer pointer to a buffer containing dats

Writes a buffer of data to the programmable device
starting at the address specified. Data will be
written in the same format as it appears in the
caller’s buffer.

BASEWAY Subroutine Calls

Procedure Parametar Notation
2T MATSRIN STER TN N SRR INIE SHER SR IR SN SEIE SR IR SETE IR AN SRS ISR IR SN IR S SR SR SRS 2B TN SRS S SR SR SR AR ST SR IR SR IR S T S S ST SR SR SR Rn ST SR s TN R

BSLSWRITE_VERIFY_DEVICE_DATA (Chandle. ma.r], I[name.rt.dx1l,
Laddress. vt. dx11, count.rw. ™ buffer.ra.r)

handle context identifier

name praogrammable device name

address starting memory location address
count number of pieces aof data tao write
buffer pointer to a buffer caontaining data

N Writes a buffer of data to the programmable device
§ starting at the address specified and verifies that
it was written correctly. Data will be written in
ﬁ? the same format as it appears in the caller’s buffer.

A=-12

APPENDIX B
SHOP FLOOR GATEWAY

SHOP FLLOOR GATEWAY allows a PDP-11 processor to act as a
#ront—-end processor for communicating with shop floor programmable
javices. A manufacturing application built on BASEWAY can wuse SHOP
FLOOR GATEWAY to read and write to programmable devices aon the shop
floor. ‘

The GATEWAY provides the actual communications interface to shop
floor devices; BASEWAY provides application program communications
and c¢ontrol functions. The GATEWAY offloads the automatic
dsata-gathering and qualification processing from the YAX processor.
#11 necessary protocol and data conversion are also perfarmed by the
SAHATEWAY. : :

GATEWAY software is downline loaded into a PDP-11 processor at
szartup using the VAX DECnet downline system load facility.

Information pertinent to adding new device support is given in
Appendix D of this manual.

Z.1 Features

The GATEWAY supports the BASEWAY programmable device access
routines. These allow application programs +to interact with shop
ripor devices in a variety of ways:

o Generic Access allows an application program to perform
primitive functions through device—independent rtoutines.
These functions include reading and writing into device
addresses, starting and stopping devices, and getting device
attributes.

o0 Polled Access permits the GATEWAY to sample device data
periodically and send & message to an applicstion program
when data changes.

SHOP FLOOR GATEWAY
B.2 Companents

The Network Interface component allows the GSATEWAY to participate
in the BASEWAY messaging architecture. i

The Event Processor perfarms data conversions to convert
pragrammable device data into a format easily useable by an
application pragram.)

The Ganeric Server responds to generic device access and helps
provide a3 generic interface to programmable controllers.

The Palled Server scans the programmable device point definitions
and perisdically collects data #rom programmable devices.

8.3 Functions

The SFG perfarms the fallowing functions:

e TrTeceives device—specific commands, acts upén fhem. and
returns data and/oer status.

o0 polls programmable devices as specified in a palling
‘ database, performs certain preprocessing manipulation of the
palled data, and transmits the polled data to BASEWAY. .

o detects PD communication faults and notifies BASEWAY of their
QccurTence. :

o performs self—diagnostic checks as well as diagnestic checks.
of programmable devices.

g self-initiaglizes following a bootstrap aperaticn and runs
without direct osperator intarvention.

g accep®s poelling configuration data from BASEWAY an starisup
and keeps a copy of the "last polled"” data in the palling
d?tabasa

SHOP FLOOR GATEWAY

. B.4 Device Access Supported
Several different methods of communicating with a programmable
device are supported.

B.4.1 Direct Access

Direct access allows an application program anywhere in the
network to perform logical “QID" functions directly +to the
communications port. {(NOTE: "QI0" functions are the RSX-118
executive directives for performing i/o to a device driver or device
interface software. This permits application programs +to perform
device—specific +functions that are not supported by other access
meathods. '

B.4.2 Generic Access

Generic access allows applications programs to read registers,
write status bits: and perform other control functions. No knowledge
¥ the protocols is required.

éhi S5 Equipment Access

Equipment access allows the automatic gathering of predefined
data. This data is collected in either @ polled or unpolled manner.
Once collected, the data is relayed to an application program.

B. 5 Types of Data Capable of Being Polled

o Coils, or .bits

o Registers, containing
- bits
- words
- BCD
- ASCII strings

APPENDIX C
DEVICE INTERFACE MODULES (DIMs)

C.1 Overview

Device Interface Modules (DIMs) contain the device—-specific
routines to handle the actual programmable device communications. The
four main routines in a DIM and the tasks which <c¢call them are
summarized in the table below:

+ - + —_
i ROUTINE { CALLED BY i
-+ —— S sk -+
! i/0 cancellation ! DIRSRV: GENSRYV:. POLSRV !
— -+ -
i access / i/o { DIRSRY. GENSRY, POLSRV !
{ initialization i H
! direct access request! DIRSRV H
i processing : H
i generic access { GENSRV, POLSRV H
| request processing i !
—— —— +

The servers call the desired DIM routines by inveking <the macro
DIMDO%. This macro searches the Device Vector Table, D3VECT far the
DIM entry table address associated with the interface device type.
The server then uses the address contained in that DIM entry table at
‘the offset of the routine. The DIM sets up and executes the necessary
functions required to perform the desired request.

The PD access servers and the DIMs pass information through two

data structures: the Line Access Block (LAB) and the Line Control
Block (LCB). The LABs are used to maintain information related to the
interface lines. The LCBs contain the context of service request to

and from the DIM. These structures are described in more detail in a
later section. :

.

Device Interface Modules

Each PD server task has an active LAB for each defined PD

interface. When service requests are Treceived the LCBs are queued to
the corresponding LAB. The LCBs are dequeuved as the requests are
precassed. The following figures illustrate this interaction between

the servers and the DIMs.

SERVER

Receive a service
Tequest

ek
SR §

v

Set up the LCB of
the request and
find and queue the

LCB to the LAB

. !

R el

}

v

— -+
1
1
]
]
]
L}

Call the DIM using
DIMDOS% i+ this is
the only LCB on

the LABs queue i

prey
“*

4 o e e e

- e wm mn - mw
.

Y

Exit AST. Wait
for next request

4o

-t

Figure 10A. PD

-~

\

Device Interface Modules

DIM

\i Use information H
i from the LAB and |
{ LCB to set up and !
i perform a QIO with!
/.1 an AST. RETURN i

continued
next page

Access Server - DIM Interaction

Device

Intarface Madules

SERVER DIM

! AST completas. Set!
{ up parameters and !
/! call to $PDDCN i

S
-

sarver’s 3PDDON

4+ -

Format and send a
Tesponse message

+ -t~

Y

Daqueue the LCB
from the LAB queu

+---+

R ;

Y

T |

DIMDOS and next
LCB i# there are
still LCBs on the!
LABs queue ;

Call the DIM using!

e
-fo

! N+ +
H A\l Use informatian H
! i\ from the LAB and |
H ! LCB tos set up and |
! ! perform a QIO withi
! /% an AST. RETURN :
Y / ; -+

+ - - %

Exit AST. Done with
service.

+--- 4

Figure 10OB. PD Access Server - DIM Intaraction
{(Continued)

O
|
S

Device Interface Modules
£.2 DIM - PD Access Server Data Structures

The PD Access Servers use two data structures to pass information
to and from the DIMs. They are the Line Access Block (LAB) and the
i.ine Control Block (LCB). These structures are passed toc the DIMs in
the +following manner. The address of the LCB is passed to the DIM in
RS5; the address of the LAB associated with this LCB is contained in
that LLB.

In the description of the data structure layouts that follow, the
locations in the data structure are referred to by their symbolic
offsets as defined in the corresponding macro as shown. Then. the
usage of the location is given below using a special notation:

symbol (n) : ff Descriptioan...
symbol - symbolic offset from macro definition
n - length of field in bytes
#+# - data format, "BU" - binary unsigned value
"BS" - binary {(signed) value
"BM" - bit mapped (i.e. . flags)

= "gv = coded
"At® - ASCII

Devife Interface Modules
C.2.1 Line Access Blocks (LABs}

The Line Access Bloecks contain PD interface line~related
information required by the Access servers and the DIMs. Most of this
information is copied from the Interface Definiftion -Blsecks (IBs) in
VDR as the servers are started. The LAB offsets are defined in the
macro LABS of MACROLIB and defined as follows:

L. LUN

L. FLAG

L. LCBH

L. LCBT

L. IBVP

L. DEV

L. UNIT

L. POLL ! unused

L. NREQ

L. NERR

L. TERR -

L. ERRL

N T TR o T S S G P SRR SRS Y
L IELIE SECIR IELIR Rtk SO B '1" - Ji‘ -t - 1}- Ll ZECIE SELEK

L. LUN(2) : BU The logical unit assigned to this 11“
by the server
L. FLAG(2) + BM The status flag for the LAB‘s usage
Bit O = LF. USD This block is used
for an interface line
Bit 1 - LF.ONL This block is
associated with an
accessible line/port
th 2 - LF.PND An operation is
pendxng on this line (i e .
there is an LCB queved %o it)
Bit 3 - LF.POL A pelling cycle is in
progress for this operation
Bit 4 - LF.DED Dead poll flag
L. LCGH((2) : BU The queue head pointer of the pending
LCB list

)
}
1

L. LCBT(2)
IBVP(2)

L. DEV(2)

L.UNIT(2)
. POLL(L)
Unused (1)
L. NREQ{(4)

. NERR (4)

-

L. TERR(4)

L. ERRL{(4)

BU
BU

Device Interface Modules

The queuve tail pointer of the pending
LCB list

The virtual pointer of the associated
IB in VDR

A The device name of this port

BU
BU

BS
BS
BS
BU

The device unit number of this port
The poll counter., poll if O

The count of requests serviced for
this port

The count of service error for this
port

The count of service timegut error
for this port

The I0OSB of the last failed QIO

Jevice Interface Modulei
‘©.2.2 Line Control Blocks (LCBs)

The context of the access service request is passed to the DIMs
through +the Line Control Blocks. The Line Access Blocks are defined
in the macro LCBS af the library MACROLIB and defined as follows:

C. IOSB

. LCBP

. LAB

. PBVP

. SBVP

Ojlaolaiaolo

. DBVP

. DBCS

(¢

FLAG

oo

. 8TN

. SLAV

[¢]

LR ek R R N PR IR IR P EIE SR SR

R It IoiE JESIE SETRE TSR SELIE S A f=t-+t—-t

. EXTN
wards)

wao

. MNFR

(¢]

O

MODL

. TRY

. SAVE N
woeTds

(¢

t =% -4 -+ -

~t -4 -4 -+

G-

(o]

. 8RVS

. MADR

(%)

(¢

. MPNT

C. MLEN

LR F R T

f-t-t-1¢

9

Device Interface Modules

’ A DIM has four functions:
é ‘L/. ‘ ¢ cancellation / deaccess
: ¢ initialization
-0 direct access
o generic accass
All four routines need to return the following to the requesting
saTVver:

- complation service status code, offset C.SRYS of +the LCB.
The following status codes are defined:

8S.8UC = saervice completed successfully
SE. CAN = access service was cancellad
SE. TMO = access service timed out
SE.FNR = function rejected by service
SE.OFL = interface was offline
SE.PRO = protocol error
SE. INT = interface error
SE.DEVY = invalid device type error
‘ SE.RSC = resource access errar
. SE. YFY = verification error ,
,V‘;V SE.CNT = invalid count (bit, byte, or word)
: ’ : for szpecific dewice RIO o
SE. ADR = address was invalid as determined by

the DIM or device error rteturn
- S remains poin¥ting %o the current Line Contrsl Block

- Rl contains the number of bytes returned from the DIM
completicn:

- The status and byte count.returned from the <completed GIO
needs %o be placed in the C. I0OSB and C. IOSB+2 offset of the

LCB.

The four routines also receive and Treturn aperation—-specific
information (described in Sections B.4.1--B.4. 4 below) fraem the
requesting server. These fields are offsets of the LCB data structure
and in the service specific message buffer. They are described in
detail under the appropriata DIM routine.

The last three 'words of the Line Control Block contain the
information: required <to access +the service request message. All
mailbox messages are contained in a common region GLECOM. (See the

C

Device Interface Modules

<. I08B(4) : BU i/0 status block
C. LCBP(2) : -BU The pointer to the next LCB of a
) LAB request queue)
C. LAB(2) : BU The paointer to the LAB that this
' LCB is to service
C. FLAG(2) : BM The block usage and status flag
C. PBVP(2) : BU The programmable device block VP
C. SBVP(2) : BU The polling set block VP
C. DBVP(2) : BU The data definitien black VP
C. STN(2) : BU The device station address
C. SLAV(2) : BU The device slave station address
4. EXTNC(1&) : BU The extended address
C. MNFR(2) : BU The manufacturer code
C. MODL.(2) : BU The model code
C. TRY(2) ' : BU The number of attempts to try the
) sarvice before rejecting
<. SAVE(32) : BU A user area to save i/o context for
- ASTs
C. SRVS(2) : BU The generic service status code of
the result of the service
£ MADR(2) _ : BU The mapped address of the message buffer.

This werd is used for storing the
address of the message buffer. This
buffer corresponds. tc the mapping
parameters in C.BPNT and C.BLEN. This
address is only valid if the Buffer is
currTently mapped.

. MPNT (2) . : B8 The block offset into the glcbal buffer

' : region of the message buffer. This is

gne of the parameters required +tc map
the message buffer.

~MLEN(2) : BS The length of the message buffer in 32 word
blocks. This is one of the parmeters
required to map the mailbox message buffer.

)

)

The actual format of the request messages depend on the server
and the Tequest.

2.3 DIM=Server Protocol and Considerations

The device ac&ess servers DIRSRV, GENSRV, and POLSRY pass
information +¢o and receive information from the DIMs through two data
structuTes. These data structures are the Line Control Block {L.CB)

and the Line Access Block (LAB) described above. Before a server

eanters the device interface module, it places the address of <the LCEB
in RS. The address of the LAB associated with the requast is stored
at location C. LAB(RS).

Davice Interﬁace Modules

. £.3.1 Initialization Procedure Considerations
' This module performs any operations that may be necessary %o
initialize access to a device’s interface software. An initialization

request is performed by the servers before any device Tequests .are
acepted. These routines should be synchronous and use GIOWs where

necessary.

The LCB asscciated with this request does not have a globail
message buffer associated with it. The initialization routine should
pass the following to the routine $PDDON: ‘

1. R5 = address of the LCB passed to the DIM with the follawing
fields containing:

o C.SRVYS = Generic status of the initialization routine

o C.IOSB = I/0 status block of any GIO0 +function +that may
have been per+formed.

2. R1 = Oyaince there is no data to be returned.

. £.3.2 Cancellation Procedure Considerations

LS

The cancellation service routine allows the access servers to
deaccess the communication software of the initialized interfaces.
This is necessary if the servers need to update or Trteconfigure the

device network. The servers perform a I10.KILL QIO function on each
interface prior to calling the associated DIM cancellation service
routine. The cancellation routine perorms all device specific

operations required to deacess the interface.

As with the initialization routine, the LCB associated with the -
request does not have a message buffer. The carnceliation rcoutine
should pass the following to the Toutine $PDDON:

1. W5 = address of the LCB passed to the DIM with *he follicocwing
fialds comntaining: '

g C.8RYS = Generic status of the initializatisn routine

o C.I0OSB = I/0 status bleck of any QIO function +that may
have been performed or filled with zeros.

Device Interface Madules

RSX-11M/M=-PLUS Executive Reference Manual for more information on
virtual addressing and mapping) Inorder to address a message it must
be first be mapped. The message buffer associated with the LCB can be
mapped using the block offset pointer C. MPNT(RS) and the block 1length
af the buffer C.MLEN(RS). It may be assumed that the servers have
established the mapping context of the message buffer prior to calling
the DIM.

The mapping context of the message buffer is not guaranteed when
entering a completion AST. The SFG macro MPLCBS may be used to map
the message buffer and store the Tresulting address in the word

C. MADR(R3). The macre ASDIMS envokes MPLCBS helping to reestablish

the context of the request.

To prevent the 1loss of +the message context and possible
cerruption of the Shop Floer Gatsway system, DIM code should not
modify the offsets C. MPNT and C. MLEN. :

From time to time it may be necessary to allocats a buffer from
memoTy. The servers are installed with extra free memory in their
task partitions. Use the free memory head pointer FSREHD and the RSX
System library routines $RGCEB and SRLCB to allocate and deallocate the
r2quired huffers. Since the number of bytes returned by 3SRACE may not
match what was requested, be sure to store the address and actual
iength returned and use them to dealocate the buffer with SRLCE.
These value can be stored in offsets tec C. SAVE in the current LCB.

Refer to IAS/RSX-11 Suy<tem Library Routines Refsrence Manual for

details on these Toutines.

c-11

Device Interface Maodules

E £.3.3 Direct Access Service Processing Considerations

VWOV DODD

b i

C

Direct access rtoutines provide applications the ability ¢to
perform remote GIOs +to programmable devices. The direct access
message contains the informatian required by the DIM to set up the GIC
directly. This message is described below.

QI0s performed by a direct access DIM routine should be
asynchronous. That 1is, set up and issue the QIO specifying the next
step in the legic az the AST entry socint garameter and return. When
the i/a0 completes continue processing the request as an AST routine.

M. DATA
R. DSEQ

R. DDEV

R. DUNT

R. DDSW

R. DIGS

R. DIOC

R. DFNC

R. DPRM
(& Words)

S —

Y
S N U AR R QU PV G g

! R. DDAT
(Optional, 255 bytes max)

!
]
]
3
-
o

I e

. DBEQ@{(2) . BU The sequence number of the request

. DDEV(2) : BU The intarface name

. DUNT(2) : BU The interface unit number

. DDSW(2) : BU The ditective status word of the 3IC

. DIGS(2) : BUY The i/0 Status return of the QIQ

DIOC(2) : BU The i/oc Byte count

DFNC (2) : BU The i/0 function code for the QIO

. DPRM{12) : BU The 6-word device—-specific QIO
parameters

. DDAT(254) : BU The PD data buffer

Direct Access Service Message Format

Device Interface Modules

2. R1 = QO since ther§ is no data to be Teturned. i

N

C-13 d

Device Intarface Modules

o

¢

- Set up LCB, request message buffer and registers and call
$PDDON to complete the request :

- Exit the AST routine.

Device Interface Modules

The direct access sarvice message contains the following fields
for the DIM’s usa:

- R.DFNC., the QIO function to be performed
- R.DPRM, an array of six words providing <the necessary

device-specific QI0 parameter requirements for the DIM to
issue a QIO to that device.

The following offsets in the ditrect access +Format Line Control
Block need to be updatad.

‘- C.SRYS, DIM completion service status code
.DDSW., the directive status word of the QIC invecation

R

= R.DIOS:, the status return of the QIO
R. DIOC., byte count returned from the QIO campletion
R

.DDAT, buffer area holding data from a read QID function

The following steps may be used as a guide to coding the direct
service rToutines:

follows:
- WValidate function code and evaluate device degpendent
parameters in the R. DPRM offset of the LLCB. 'Some parameters
may need to be provided at +the DIM level. These would

include addresses of data buffers, DIM overwritten timeouts.
6T size parameters.

-~ Format and invoke the GIO0 specifying a completion AST
Toutine. '

= Test the directive status word of the QIO invocation, if
syccessful, return +¢0 server, if wunsuccessful, set the
offsets necessary for the calling server, CALL $PDDON, and
return to the server.

~ Restore stack, set RS as LCB pointer (AST parameter), and
remap the message buffer. '

= Evaluate the i/o0 status block of the resulting RI0 functiocn.

. and deterimine the corresponding generic status value. Retry
i# the function if was a timeout. -

C-15

The logic flow of a typical direct service foutineg‘mould be as

4

(e

Device Interface Modules

R.GBOF(1) : BU Bit off set field (device specific in its
) usage and interpretation
GCNT(2) : BU The data count
.. GDAT(234) : BU The PD data buffer

Generic Access Service Message Format

R.GSEQ is not currently beeing usad and should not bhe moedified by
the DIM. R.GDID is wused by the server to determine which LAB it
shaould queue the request to, it too should not be modified by the DIM.
R.GSTS is the generic complation code of the request. The sever’s
3PDDON copies the value that the DIM places in C.SRVS{(RZ) in R.GDID of
the message.

The values in the #fields M CODE, R.GCNT and bhuffers R.GADR,
R.GDAT are wused by the DIM to perform the function. The value af
M. CODE defines the function to be performed. Valid codes are defined
in the macroe MXCOD$ of MACROLIB. The are:

MG. RED Perform generic read from the device

MG. WRT Perform generic write to the device

MG. WTV Perfarm generic write to the device and verify
MG. RDS *Perform read of device status =

MG. SRD Start the device '

MG. SPD Stop the device

MG. LON Log on to the desvice

MG. LOF Log off the device

MG. SUL Start the aperation of uploading of devize

memoTy .
MG. EUL End the operation of uploading of davizs ‘ memoTy
MG. SDL Start the operatiocn of down lasding of device
memoTy
MG. EDL End the operation of down loading of device

memoTy

If the function raquires an address in the device, it 1is passed
in the buffer starting at offset R. GADR. The contents of this buffer
is an internal BASEWAY address, that is, it was created by the BASEWAY
device address ‘translator. Both the +translator and DIM cade must
interperate this buffer in the same way.

The R.GATY offset in the message determines the tyse of address
contained in the buffer. Current address tupes are bit, physical, and
logical. R.GBOF is usad for device specific bit offsat determination.

The R.GCNT field contains the number of data tﬁpes to operate on.
If R.GADR <contains a bit address, R.GCNT is interms of bits. if
R.GADR is a word Tegister address, R.GOCNT is the number of words to

C

Device Interface Modules
C.3.4 Generic Access Service Processing Cansiderations

Generic access routine provide applications with a method of
accessing devices generically. That is, an application may request to
issue a read from a device and not need to provide the device specific
information required to do +the QIO. This implies that the generic
access module of a DIM has the logic to translate a generic request
code in to @ series of steps required to set up, execute, and evaiuate
completion status in device—specific terms. ’

As with the other servers, the context of the request is passed
0 the DIM with RS containing the address of a line control block.
The LCB points to a generic request message. The information that is
provided by a generic request message is shown in the figure below.
These offsets are defined in the macro GENMSS of MACROLIB.

M. CODE

+ -+
+ -4

Standard message header

: M. DATA
R. GSEG

R. GDID

R. 887S

R. GADR
words)

R.GBOF ! R.GATY

R. GCNT

R. DDAT
(Optisnal, 255 bytes max)

R il el el B It Sl Jatr
sy
m .

L LRI IR 2l AR SRR LSRR SRR

4

. CODE(2) i BU The generic function code of the reguest
GSEQ(2) : BU The sequence number of the request
.@DID21Y : Bl The device logical identification
. 88TS(2) . BU The generic service status return code
. GADR (30) : BU The PD data address in internal BASEWAY
format
The address type:
0 = Bit address
& = Physical address
4 = Logical address

U v

. GATY (1)

(¢]

Devicae Interﬁéce Hodules‘

C

. -. 4.1

The following macros are de?ined.in the DIM library

and co

Interface yodules.

c.4.1.1
Farm:

€.4 DIM - Utility Macros and Subroutines

Code—Generating Macros

ding clarity. They are quite helpful in

ASDIMs

DTINIS
DTFNCs
DTMDLs
DTMFRS

ERTBLS

MPLCB3

ASDIMS -

ASDIMS

for

writing

The following is a list of these macros.

Pop AST parameter (address of LCB into RS,

save registers RO-RS, restore mappin
context of message buffer associated
the LCB.

Initialize device/function tables.
Create a function branch table entry
Create a device model table entry.
Create a device manufacturer table
entry.

Creata a device-specific status $o gensTic

statu return translation table entry
Map the message buffer associated wi
the current LCB.

9
with

th

utility

Device

~ ‘hf vokes the macrTos ASTSV$S and MPLCB$. ASTSVS saves registers RO-RS

wnile i% paps the AST parameter off the stack and puts

the AST parameter, the address of the LCB associated
MPLCB$ This macro pops an AST parameter off the stack

RS, saves the original contents of RO-R3 on the stack.

C.4.1.2
Form:

Initializas the PSECTS for the manufacture,

. . MDL,

DTINIS -

DTINI$ <manufacturer table labell

and function branch. ..FNC tables.

with

it 'in RS.

the

pops
AST.

and stores it in

. MFRS

the

remaps the cont

modeal,

Device Interface Modules

usa.

The actual processing of the generic request is accomplished by
traversing through function branch tables. These tables are made up
of entry points of routines, when called in the sequence of the table,
will perform the function associated with that table. The function
branch table tablie 1is determined by Manufacturer/model/function
tables. .

For each ‘manufacturer supported by the DIM, there is a table of
models associated with it. Each model is associated with a table
which pairs the generic -function and addressing type (R.GATY in the
generic message) with the beginning address of the praoper function
branch table. The macros DTINIs. DTFNCS, DTMDLS, and DTMFRS$ described
in section C.4.1 are wused ¢to build these tables. The subroutine
SGENFC may be used to determine the function branch table for the
current request.

The following steps should prove to be useful in designing and
writing a generic access routine for a device intarface module. The
first step should be to aralyze what steps are required to perform all
the supported function for devices that are to use the DIM. Keeping
in mind the following items.

~ DBecause the service must support multiple interfaces at the
same time, DIM code must be reentrans.

- Use the C.SAVE buffer in the LCB to maintain the context of
‘the current GID. These parameters may be needed if a rTetry
for a timeout condition is desired.

- QI0s should be done with a completion AST routine.

- Translate dévice specific i/o0 status «codes <(success and

error) into generic service status values. This is the anly
way that the servers will be able to determine succes or
falivre.

- Deallocata any free memory buffers ¢that mau have been
allocate during the processing of the function. .

- Call SPDDON with the tequired parameters when <tarminating a
function. $PDDON must be <called whether the function was
properly performed or not.

Refer to the sample DIM for a more detailed example of how to
construct the generic routine.

L_

Davice Interface Madules

consists

Il
.

4.

1.5

oTm:

DTMNFS -
DTMFRS mfgr

mfgr = BASEWAY manufacturer code or O

Creates an entry into the manufacturer table. The table eniry

of the manufacturer code in the first word and the current

address of the PESECT ..MDL in the second word. This will become tha
first address of the next maodel table built using the DTMDLS macro. A
null parameter will generate a z2ro word and ferminata the current

manufacturer table. The manufacturer tadle is built in %he PSECT
. MFR.

£.4. 1.5 ERTBLS -

Form: ERTBLS daverr, generr

deverr = The device spe2cific error code raturned
by the drivar or ACP.

generr = The ganeric status code tha® the device
arror i3 to be translated to ’

nto the genmeric error messag

Creates an antrTy is 2 table transiation
sable The entry 1is in the foarm of the device-specific i/0c status
zde i3 in the first word and the generic status message 1s 1in the

:zend woard.

Device Interface Modules

C.4.1.2 DTFNCS -
Form: DTFNC$ +nccad:. L[bitfncl., L[phyfncl, [logfncl
fnccod = genetic function code

bitfnec = address of the bit aoperation
function branch table. Zero if
undefined.

phyfnc = address of physical operation
function branch %table. Zero if
undefined.

logfnc - = address of logical operations
function branch table. Zero if
undefined.

Creates an entry intoc the +function branch <{acle. The entry
cansists of the generic code in the first word. The address of an
agpropriate bit function branch table is in the second word. The

third wsnd is %the appropriate physical operation 2niruy peint to its
function branch table. The fourth word contains the entry point o
the appropriate logical Function branch. A null parameser for the
macTs will generate a zerc werd. This zero word wilil terminate thse
table. The function branch table is built in the PSECT . FNC

Ny

4 1.4 DTMDLS -
™m: DTMDLS madel

o

model = DBASEWAY modal code or ©

Creates an entry into the model table. This tabie entry consists
cf the model <code in the first word and the current address of the
FESECT ..FNC in the second word. This will become the first address
of the nmext function branch table to be built using the DTFNCY macro.
A null parameter for the macro will generate a zero word and terminate
the current model table. The model table is built in the PSECT .. MDL.

O
|
[3]
[oe

”

Device Interface Modules

. C.4.2.1 S$GENFC -
L " Subroutine $GENFC - GENERIC FUNCTION TABLE LOOKUP MODULE

The purponse of this module is to perform table loaokup
aperations determining the proper function branch table
used to execute the generic function i/o request. The
address of the function branch table is then passed
back to the calling routine.

The associated tables are defined in the following
manmier: ‘

Manufacturer table

Manufacturer code

Address of first entry
entry in the associated
model table

§oamemmemm d
R e

o
o
Q

0

+ - +
-+ -+

Model table

H Model Number H
] I3
! Address of first function |
! in the associated !
! generic function table H
o -
Q
o
o
fm—— —— —————
Q

+ -~

c-24

Device Interface Modules

.. 4.2 DIM Subroutines : ‘ﬁa
. \

The following are utility subroutines that are used by DIMs.
$GENFC - Find function branch table
SPDDON - Server DIM completion routine

The following pages describe these Toutines in detaii.

C-23

Device Interface Modules

C.4.2.2 $PDDON -

‘Lﬁ The subroutine $PDDON is called by the DIM when it has completed
wie PD access service request, successfully or unsuccessfully. The
primary functions of $PDDON are: -

o vupdate service error statistics

o return the service request Tresponse message toc the requesting
party .

0 clean up and dispose of the current LCB

o reenter the DIM if there are any more LCBs queued to the
current LAB. ~ ‘

' Because each server has different requirements and message
formats, there is a $PDDON routine for each of them. in general the
DIM needs to pass the following information to the $PDDCN.

Cailing Sequence:

CALL $PDDON

Input Parameters:

£ Ri = The number of data bytes that are to be
‘hV returned to the requestor as a rTesult of the
service. 'Zero if there are none.
RS = Address of the current LCB with the follcwing
fields modified

" C.I0SB = i/o0 status block of the service i/o
(should be zeroed by the DIM if no
i/o0 was performed)

C.SRVS = Generic service status code of the
service request
Jutput Parameters:

None Since the purpose of $PDDON is to clean up the
currant request context and establish the next:
a DIM routine should clean up the stack and
return or perform an AST exit.

C-25

Device Interface Modules

9

generic function table

Generic function #1

Address of associated bit
function branch table

Address of associated physical
function branch table

Address of associated logical
function branch table

d e e an re mm an wn e e e 4
. Ty

Q
-]
Q

0

+ -+
+ -+

The last entry in the manufacturer, model, and function
table is a O. .

Library: DIMLIB. OLB o - B

Calliﬁg Séquence:

CALL S$GENFC

Input Parameters:

RO Address of first entry in the Manufacturer
function tables

RS Address of current Line Control Bloeck (LCB).
It is assumed that the. generic access message

has bheen mapped and the address is stored in
C. MADR(RS).

OQutput Parameters:

RO Address of first function entry point in %the
resulting function branch table

R1 Address of first GIO function code to be issuved.

RS Preserved

[e

N O S

er ter fer s s ver me cas vms

L

Device Interface Modules

C.9 Example DIM -

Copyright (L) 1984 .
Digital Equipment Corp., Maynard, Mass.

This software is furnished under 3 license and mauy be used and copied
only in accordance with the terms of such 1license and with the
inclusion of the above copyright notice. This software or any other
copies thereof may not be provided or otherwise made available to any
other person. No title to and ownership of the software 1is hereby
transferred.

The information in this software is subject to change without notice
and should not be <construed as a commitment by Digital Equipment
Corporation. : _ , .

DIGITAL assumes nb responsibility for the use or rteliability of its
software on equipment which is not supplied by DIGITAL.

Subroutine $xxDIM - SAMPLE DEVICE INTERFACE HObULE

The xx Device Interface Module (DIM) is provided as 3
template for users who wish to write their own DIM to support
programmable devices other than those already supported by
the SHOP FLOOR GATEWAY.

This templiate shows simple and concrete examp;es for writing
DIMs. Explanations and code comments
guide the novice through the concepts and features of DIMs.
For the novice. the template builds a simple terminal server which
performs familiar TTy Teads and writes, For the more advanced
coder, examples are given for actual PLC servers. Additionally.
coding features and important points are highlighted for added
and improved functionality.

Generally, the template consists of descriptor tables
and four functional modules.

The descriptor tables define parameters like the manufacturer
of the device accessed by the DIM, the model number of the device,
the functions performed by the device, and the possible functions
for gemeric service.

The first module is the i/o cancellation module. This module
is responsible for performing a disconnect operation from the
DIM-supported programmable device. This operation may not be necessary
for a particular device type such as a terminal server.

Device Intgr#ace Modules

Thi second module is the i/o initialization module. This
moduie contains The code Tequired to connect o the appTopriate Jevice :
driver and/or ACP before accessing the communications interface(s). i

The third module is the Direct Access Service module. This
maodule contains the code required to perform remote QAI0s to the xx
interface.

The fourth madule is the Generic Access Service module. This
module contains the code required to perform generic aperations to
xx devices.

NOTE: DBefore 3 Device access server can access a DIM, the
following must be done:

2) Assemble the module DIM source and insert ints the
object library SFOSLIBRARY: DIMLIB.

e %e Mo fer e e e we r e %e % N % es es we s s s

3) Make an entry for this module in %hz device vector
table DSVECT (DEVVEC.MAC) by adding the fsllowing
line:

DEFDIM XX ; Add xx support

4) Reassemble and insert DSVECT into the abJec* lxbrarg
- SFGSLIBRARY:DIMLIB.

€<

es e mp e s e s tee fes tee

5) Relink the Device access servers and move tha
resulting images to SFGSSYSTEM with the folz:w1ng
VUMS DCL commands:

SET DEFAULT SFG$ROOT: [SQURCE. POLSRVI
TKB @PQOLSRY. TKB

COPY POLSRV. TSK SFG3SYSTEM:

SET DEFAULT SFG3RO0T: [SOURCE. GENSRV]
TKB @GENSRV. TKB

COPY GENSRV. TSK SFGSSYSTEM:

SET DEFAULT SFG$ROOT: [SOURCE. DIRSRV1
TKB R@DIRSRV. TKB

COPY DIRSRY. TSK SFGSSYSTEM:

UR'E R'RE NN RN

Library: DIMLIB. OLB

;anguage: PDP-11 Hacro'

Creation date:

Modification history:

Device Interface Modules

Device Interface Modules 2
; . PAGE o
i .SBTTL Macro declarations and definitions ;
; . MCALL LABS, LCBS, GENMSS, DIRMSS, ASDIMS. SAVRGS
; . MCALL . RESRGS, DTMDL$ QIOSS, GATEPS: ASTX$S, SRVECS '
g .MCALL DEVCDS, MXCODs$, TBSIZ$, DTMFRS, DTFNC3, DTINIs |
; . MCALL ERTBLS, GIDOWSS - :
; GATEPS ; Gataway parameters ;
; SENMSS i Define Generic Access message cffsets ;
; DEVCDs ; Device names and model codes :
; SRVSCs ; Generic service status cades {
: DIRMSS ;i Define Direct Access message offsets :
; MXCODs i Define mailbox message codes :
; LABS ; Define Line Access Block (LAB) offsets .
LCBs ; Define Line Control Block (LCGE) offsets L

-

Device Interface Modules

‘ . . PAGE
.SBTTL Data definitions

R R R R R R R R R R R S S S R I R N RSN e Ea I R RIS I ST I T

; Device—specific i\o function table’
3 RBEEMIZEEEIEESIRESEEBIINEENIEIRIEIE IR SIS IBER aa_—.===s=aau=aa===azaa=========== =

i Valid direct service QIO functions for the DIM-supported devices.

i Xx.WRT, etc. are previously defined symbols.

;i The following table is defined for validating QIO functions sent
for direct servicing.

xxVQIQ0: .

. WORD I0. WLB ; Logical write function

. WORD I0. WRT i Write function

. WORD I0. BWT ; Bit write function

. WORD I0. RLB i Read function

. WORD IG. RED i Read function

. WORD I0. BRD i Bit read function

. WORD I0. DAG ; Diagnostic read

. WORD I0. STP : stop device

. WORD I0. 8TR ; start device : e
x«NBRQ = -, -xxVGID\/Q 5 Number of entries in table

) Generic erTor message. code table

I 3+ 3+ + -+t £+ + + 3+ 2+ 3 4+ 3+ + 4+ £+ 3+t 31+ 1+ +

; Creation of the error table associating IOSB error with generic
i erTor : ’

Entry i/c status error

$oon -

¢

]

numhg: o
ane 4+ generic error code

-

I0ERR: | |
1/0 successfully completed
Successful, but timeout

ERTBL$ IS. SUC, SS. SUC
ERTBLS$ 1IS.TMO,SE. TMO

ERTBLS 1IE. TMO,SE. TMO Timeout

ERTBL$ IE. SRE, SE. PRO Send reply message errorT
ERTBLS IE. OFL, SE. OFL Off line

ERTBL$ IE. DNR,SE. TMO DZ timeout

4
L R S . T

ERTBL$ 1IE. ABO, SE. CAN Function canceled
ERTBL$S IE.BCC.SE. TMO i Block check. error

Device Interface Modulaes

.TBS1Z% IDERR, IOERCT ;i End of I/0 error table

Device Interface Modules

. PAGE

.SBTTL Manufacturer/model function tables

e e s e el

~ The manufacturer. model, and function tables are defined
here and used to process generic functions requested by the
user to the supported equipment. Each manufacturer may have
saveral models; each model may support several generic
functions. Those models which use identical functions tables
may share the same table.

Manufacturer/model names and codes are defined in the

" macro DEVCD$.. For this example the manufacturer will have the

code MF. xxx and will have 3 models, MD. xxA, MD. xxB, and
MD. xxD. Assume that MD. xxA and MD. xxB are similar devices and
use the same logic to perform their functions.

DTINI$ xxTBL ;i Initialize manufacturer table
DTMFRS MF. xxx ; Start table for manf. XXX
bTHDLs MD. x xA i Make entries for modules MD. xxA
DTMDL$ M™MD. xxB ; and MD. xxB. Note that they

; share the same function table

DTFNC$ M™MG. RED, BITRD, PHYRD. LGCRD ; Read routines

DTFNC$ MG. WRT,BITWR, PHYWR, LOGCWR ; Write routines

DTFNC$ MG. WTV, BITWV. PHYWV, LGCWY ; Write verify routines
DTFNC$ MG. RDS.RDSTA ; Status

DTFNC$ MG. SRD, START Start device

DTFNC$ MG. SPD, STCOP Stop device

DTFNC$ MG. SUL., UPREQ Upline load Tequest

DTFNC$ MG. EUL. UPEND End uvpline load

DTFNC$ MG. SDL, DNREQ Downline load request

DTFNC$ MG. EDL., DNEND End downline load

Ny we e % e s

DTMDL$ MD. xxC \5 ;i Define the functions for the
i model MD. XXC

DTFNC$ M™MG. RED, CBITRD, PHYRD, CLGCRD ; Read routines

DTFNC$ MG. WRT.CBITWR, PHYWR, CLGCWR ;i Write routines

DTFNCS MG. WTV, CBITWY, PHYWY, CLGCWY ; Write verifu routines
DTFNC$ MG. RDS,RDSTA i Status

DTFNCs$ MG. SRD, START Start device

DTFNC$ MG&. SPD, STGP Stop device

DTFNC$ MG. SUL. UFREQ Upline load request

DTFNC$ MG. EUL, UPEND End upline load

DTFNC$ MG. SDL. DNREQ Downline load request

DTFNCS MG, EDL. DNEND End downline load

e % e e e e

Device Interface Modules

DTFNCS o | \ i

DTMDLS + Terminate the model %a3ble
DTMFRS ; Terminate manufacturer table

Doviée Interface Modules

. PAGE

+
L R Em R R T R R R S I T R T T R SRR TN =SSR

" $ x xDIM =-- ENTRY POINT TABLE

This is the entry point table for the routines of this
Device interface module. The Device Access Service Tasks use
this table to determine the entry points for appropriate DIM
routine. The order of the entry points is important since the
Device Access servers reference them by their offset from $xxDIM.
The order is:

T S O N Y

. xXxCAN Cancel routine transfer address

; . xxINI Initialization routine transfer address

i .xxDIR Direct access service routine transfer asddress
; . xXGEN Ganeric access service routine transfer address
$xxDIM: : ;- MUST BE GLOBAL

Cancel service transfer address
Initialization service transfer address
Direct access service transfer addrass
Seneric access service transfer address

. WORD . xxCAN
. WORD . xxINI
. WORD . xxDIR
. WORD . xxGEN

e Wi we e

~ ' C-35

Device Intarface Mndu;és

. PAGE .

.SBTTL . xxCAN - cancellation service rautine
P .
3 R R TR S N R R S N N RN RN EEASS NN NEmMEEmEERgEmIIEERERIIERRERERS ’

i . x x CAN =-— SERVICE CANCELLATION SERVICE ROUTINE

P SN SESEEETERESEaEISEEaEaIESIIISEINSISasmaaanoSREaauasSIas

i This module performs the necessary actions required to
; deaccess the device’s netwoarking interface.

i The following QIC function code is device specific. Depending
i on the type of davice, a different type of QIO function may

; need to be used, or the deaccess QIO #unction or QIO

i invocation may not be needed at all far yaur particular device.

i Input:

RS = Address of Line Control Block (LCB)
containing the context of the cancel
Tequest. Offsets are:

C. LAB = Address of the Line Accass Black (LAB)
of the interface to parform the cancel
; Tequast on

e %er tes ‘es s as

; Input to $PDDON:

; Rl = 0 since there is not data to be returned to any
; ocne

; RS = Address of the current LCB -with offsets:

C.IOSBE = 1/0 status block af the i/o0 deaccass

i gperation(s)

; C.SRVS = Service status code sent back to servers
; SS. SUC for successful completion other
; codes the sarver may expect are locatad
; in the macro SRVSCS.

, EFFECT:

‘ x xCAN:

. ENABL
SAVRCGS
MOV

QI0WsS
BCC

MOV

BR

Device Interface Modules
LSB

<R4Zz
C.LAB(RS5), R4 ;i R4 points to LAB this block 1is queved

#10. DAC, L. LUN(R4), #EF. PD,, RS ; Deaccess LUN
20% ; BR if directive successful

. 8DSW, C.SRVS(RS) ; use DSW$ error for generic

;i code
40% ;i and return.

; Determine what what generic'status value to return from the
;i IOSB and the IO error table.

208%;

25%:

MoV #I0OERR.R1 ; Rl points to i/o0 status error table
MOV #IDERCT, R2 i R2 points to Size of ervor table
CMPB C. IOSB(RS), (R1) ; Determine i/o status
BEQ 30% "; go to insert generic functien
- ADD #2, R1 i Try next entry
SOB RZ. 25% i Do until end of table
MoV #SE. FNR, C. SRVYS(RS) ; Function error
BR 40% : '
MOVB 1(R1),R1 ;i Move in error
MoV R1.C. SRVS(RS) i Insert generic status
CLR R1 ' ;i Error = zero byte cnt
CALL $PDDON i clean up operations
RETURN
. DSABL LSB

Device Interface Modules

. PAGE .
.SBTTL . xxINI - initialization service routine

s

H
+
;R R R R T R S N A RSN NS SEEIENR NSRBI

x x I NI == SERVICE INITIALIZATION RQUTINE

This module performs the necessary actions requxrﬂd to
initialize access $o an xx intarface line

as Cme we s s tes

Inpus: _)

; RS = Address of Line Cantrol Block (LCB) containing

; initializaton request parameters:

C. LAB = Address Line Access Block (LAB) to perform
initialization

Qutput to PDDONS:

R1 = O since theTe is no data to be returned

RS = Address of LCB used in this operation passing back
the offsets containing following informatian:

s e et tes e %ei es es s twme

. C.10SB = I/0 status block of the i/o deaccess

. . . operation(s) ;
C.SRVS = GService status code sen%t back ta servers yia .
~ S8.8UC for successful completion other V
; codes the server may expect are lgcated
; : in the macro SRVSCS.

C-38

<

H

. xxINI:

Issue

. ENABL. LSB
MOV C.LAB(RS),R4- i

access QIO

QIOWSS
BCC
MOV

BR

#I0. ACW, L. LUN(R4},
20% ;
$DSW, C. SRVS(RS)

40% i

Device Interface Modules

save and restore registers
get LAB for this block’

#EF. PD, ., RS

BR if directive successful
use DSW$ error for generic
code '

and return.

Determine what what generic status value to return #rom the
I0SB and the IO error table.

MoV #I0ERR. R1 ;
MoV #I0ERCT, R2 i
CMPB C. IOSB(RS5), (R1)
BEQ 30% ;
S0B R2,25% | ;
MOV #SE. FNR, . BRVS(RS)
BR 40% 4

- MOVB 1(R1),RI H
MoV R1,C. SRVS(RS) i
CLR R1 ' 5
CALL $PDDON i
RESRGS$ <R4,Ra,R1> i
RETURN

.. DSABL LSB

N

R1 points to i/0 status error table
R2 points to Size of error table

Determine i/oc status
go to insert generic function
Try next entry
Do until end of table
i Function error

Move in erTor
Insert generic status

Error - zero byte count
clean up operations
save and restore registers

C-39

Device Interface Modules

HE 2

. PAGE
.SBTTL . xxDIR - direct access saerTvice routine

; SEEREIEEEEESnSIEITaSSISESSIEOaIaIaSaSsSnSIIngmaRlaaIaamasEsaIsosnssSsts

H

;=

e e fmr %ee %t e % ter we %o o we

X XDIR =-- DIRECT ACCESS SERVICE PROCESSING ROUTINES

This module provides the actions required to perform a
direct access QID as defined in the direct asccess service
request messagae.

This direct access service routine performs the following:

1) Validates the QI0 function cade sent with %he &IE.
function code table (xxV¥QIO)

2) VYalidates the device dependent parameters sent in the
service requast message starting at R. DPRM

3) Sats up the directive QIC function with the GIC
completion AST paramatar set to #xxDAST

4) Detarmines if QIO was invoked successfully, I+ &he GIO
was unsuccessfully dispatched, sets proper status codes
and calls 3PDDON %o clean up before returning to server.

S) Saves registers and restaores mapping context of the
mailbox message with the ASDIMS macreo

&) Depending on the type of device supported, checks for fime

outs ar black check arreors, *then retries the GI0 the number

of times indicated inm the C. TRY offset of the LCB.

Determines success or failure of the i/o0 completion, sets
the following offsets in the LCB and Tequest message.

- = C.SRVS - generic status message code d2tarmined

fram i/0 error™ to the generic status Toutine

- R.DICS - i/o status from C. I10SB
- R.DIDC - i/0 byta count from C. INSB+2

Treg
o
m

8) Determines if a r2ad was inveked, if sg, s2nds
count in R1 t%ts PDDON. R3 still mus%t peoing
beginning af the current LIB. '

[S o
xr

ot B

'

[)

b

?) Calls SPDDON

10) Restores registers in the following order with the RESRGS
mactTao: <R0Q, R1,R2. R3, R4.R5>

es tes s tes we o

ar e s s % tee tme tas tms

Device Interface Modules

Input:

Address of Line Control Block (LCB)
containing the context of the cancel
request. Offsets are:

RS

C.LAB = Address of the Line Access Block (LAB)
of the interface to perform the cancel
request on. The primary field that is
used from this block is the logical unit
number at L. LUN.

C. MPNT Block pointer to the direct service
request message. This value is usad in
mapping the message in the servers task

space.

C.MLﬁN

Length of direct service request message
in number of blocks. This is alsoc used in
the mapping of the message.

C. MADR Mapped address of the direct service
request message. This address is only
valid if the message has been mapped. It
is mapped when the server calis this
module at the entry point xxDIR. It mus%t

“be remapped when the executing compietion
‘AST or if anything else destroys the
mapping context. The format and values
of the message follow (offsets defined
in macro DIRMSS).

. DSEQ Request se2quence number.

.DDEV = 2xx (Interface name in ASCII).

. DUNT Interface unit number.

.DFNC = QIO functionﬁiode to use for the request.

U v U 0

.DPRM = Array of & words containing the
device—-specific optional parameters for
the GIOQ.

R. DDAT Beginning of the request data buffer.

CC-41

Device Interface Maodules

Me s We e %es %e Ne s tes e ws %ee

s e s e wr we tee

Output to PDDONS:

R1

RS

O

O

OO0

Number of data bytes to return to requestsr
starting at ocffset R.DDAT in the direct

Address of LCB used in this operation passing
back the offsets containimg following

I1/0 status block of the i/0 deaccess

Service status code sent back to servaers
5S6. SUC for successful completion) other

codes the server may expact are located

in the macro SRVSCS.

Block length of the message buffer.
Block pointer of the message buffer.
Mapped address of the direct service
the following offsets updated:

Directive status word of QIO
invecation.

I/0 count in bytes that resulted
from the QIQ. '

sarvice message.
information:
.I0SB =
speration(s).
.SRVE =
.MLEN =
.MPNT =
.MADR =
with
R.DDSW =
R.DIDC =
R.DDAT =

Beginning of data data to be
returned buffer.

) . ENABL LSB
i'/ xDIR::
SAVRGS <R4, R3,R2>
MOV C. MADR(RS),R3
MOV |
MOV R3, R. DPRM{(R3)
ADD
MOV R3, C. SAVE+2(RS)
ADD
Determine
MoV #x xNBRQ, R2
MoV #xxv¥QI0, R4
5%: CMP
BEQ 108
S0B R2, 5%

i

i

Device Interface Modules

Save registers
R3 points to Beginning of direct data

R. DFNC(R3),C. SAVE(RS) ; Direct GIO function code

i

Beginning of data message

#R. DDAT, R..DPRM(R3}) ; Address of data buffer

i

Beginning of data message

#R. DPRM, C. SAVE+2(RS5) ;i Address of parameter block

it QIO function code is valid

H

i

R2 points to Number of xx QIOs
R4 points to Beginning of xx QIO functions

R.DFNC(R3)., (R4)+ ; Find match in table

i

No match - try next entry

Bad QI8 function from direct access servér mailbox

MOV
CLR
CLR
BR

‘hﬂ Test size
‘ 10%:

T8T
BLE
CMP
BLE

#SE. FNR, R. DDSW(R3) ; Simulate bad ditrective

C. IOSB(R3)
C. IOSB+2(R5)
DIRERR ‘

of message buffer

R. DPRM+2(R3)
20%

i

i

i

i

Clear 1st word IDSH
Clear I0OSB byte count

Test for neg or zero count

R. DPRM+2(R3), #R. DLDT ; Test greater than max size

DIRQIQ

; Invalid length of buffer

=0%:
MOV
MoV
CLR
CLR
BR

i Issue QIO
i parameters

DIRGIO:
MoV
MOV
MOV

C

R2

.
’

Perform QID

#IE. IBS. R. DDSW(R3) ; Move inv baff count message
#SE. CNT, C.SRYS(R5) ; Bad count status code

C. IOSB(RS)
C. I0SB+2(RS3)
UIRERRK

i

.
!

Clear 1st word of IGSE
Clear byte count in IOSB

holds address to the six device-specific

#SE. FNR. C. SRVS(RS) ; Assume eTrToT code

€. SAVE(RS), R2
C. LAB(R5), R4

}

i

R2 points to Device param block
Get LAB for this block

C-43

]

Device Intarface Modulas

MoV L. LUN(R4),R4 ; Need space on QIO line ‘ia

MOV $DSW, R. DDSW(R3) ; Save directive status word
BPL DIREND

;i Set up status codes before returning with QIO failure
i R3 points to start of data area

DIRERR:
MOV C. IOSB(RS),R. DIOS(R3) ; Save i/o status
CLR R. DIOC(R3) i Zera i/o0.byte count
CLR R1 ; R1 points %o number of bytes rTaad
Call $PDDON i Clean up

; End of Direct access service processing

DIREND: :
RESRG3S <R2,R3,R4> ; Restore registers
RETURN

. DSABL LSB

Device Interface Modules

. ENABL LSB
xxDAST:
; This is the i/0 completion AST €outino for @ Direct service
i request. It is responsible for evaluating the completion of the

i i/0c operation,

+ next request.

i Inputs:

setting up the parameters required by $PDDON,
; and calling $PDDON to return the request and clean up for the

(SP) = AST parameter,
This address also points to the offsat C. IOSB
of the LCB associated with the QIO

the I0SB of the QIO function.

AST parameter is popped from stack and all registers

are preserved

Determine if there .has been a

10%:

; Determine generic message/error

=20%:

C

ASDIMS

CMPB
BEQ
CMPB
BNE
DEC
BLE
CALL
BR

MoV
MOV
MoV

e e e e e e N e e e

Pop AST parameter {(address
of Trequest’s LAB) and put
into RS .and save registers
RO-RS on the stack.

Remap the message buffer
referenced by the LCB (map
C. MLEN(RS) blocks starting
at block C.MPNT(RS)) and
store the resulting address
in C. MADR(RS).

time out or block check

. IOSB(RS5), #IE. TMO ; Test for time out condition

10%

i

Yes, decrement count and retr

C. IOSB(RS). #IE.BCC ; Test block check condition

20%

C. TRY(RS)
20%
DIRGQIO
100%

C. MADR(RS), R3
#I0ERR, R1
#IDERCT, R2

?

e we W e

% we e %

Nao. determine status and condition
Number of retries :

Done trying = continue

Retry direct service GIO

Go to end of AST

Tesponse
R3 points to Beginning of data
Rl points to Error table entry point

R2 points to Number of entries in
error table

€-45

- Device Interface Maodules

- 303: CMPB C. IOSB{RS), (R1) ; Determine i/o0 status :
BNE 403 ;i Didn’t match, go ;et up next

i Found i/o status return code, send equivalent generic erTor message

MOVE 1{RlJ), RL ;i Byte generic error
MGV R1,C. SRVS(RS) i Insert generic status
BR 503 ; G0 to determine bykte count

; Point to next entry in error table and try again
; If at end of table use default errTor message and continue

40%: ADD #2.R1 i Try next entry
SOB R2, 303 ; End of table?
MoV #SE. FNR: C. SRVS(R5) ; Defavlt generic error message

; Set up number of bytes to return, send to SPDDON

50%: CLR R1 i Zero for aother than road
MQV C. MADR(RS),R3 ; R3 points to Beginning aof data
cCMP R. DFNC(R3), #xx. RUP ;i Test for rtead fungtion
BEQ 553 ;i Read, move number of bytes read
CMP R. DFNC(R3). #xx. RPR ; Test for read function
BEG 553 ;i Read, move number of bytes rTead
CMP R. DFNC(R3), #xx. DAG i Diagnaestic raad
BNE 503
5% MoV C.SAVE#E(RS).RI i R1 points to Number of data bytas
Save status and byte count then return) . _] i
a3
MoV C. IOSB(R3).R. DIOS(R3) ; Save i/no status
Mav C. I0SB+2(R3), R. DIOC(R3) ; Save i/o byte count
CALL $FDDON i Perform direct 4ccess cleanup
Exit direct servica AST
1208%: RESRG$ <RO, R1.,R2Z,R3, R4,R5> ; Restore registers
ASTXSS ; Exit AST (param already popped:’
RETURN
. DSABL LSB

Device Interface Modules

) . PAGE
6 .SBTTL . xxGEN - generic access service routine

x x @ EN -—— GENERIC ACCESS SERVICE PROCESSING ROUTINES

This module accepts a generic access request, determines
and executes the device specific steps required to perform the
request.

er e % e e e twe e ca

; The generic functions are defined and specified at %the.

;. beginning of the DIM in the manufacturer/model tables (xxTAB!:.
These functions are composed of a sequence of subfuncticns
defined below.

The generic processing Toutine executes in the following arder:
; 1) Set up entry point to manufacturer/model table in RO

i 2) Call $GENFC - finds associated function branch table for
; the generic service requested.

3) Determine if $GENFC returned with an error (RO is negative)
- errorT will be due to a model number or manufacturer
requested in the QI0 was not found in the manufacturer/

(‘ model table.

4) If no error occurred, begin pracessing the generic request
by executing the code pointed to by each entry point
listed in the appropriate function branch table
(determined by S$GENFC). RO contains the address of the
first function entry point. R1 contains the address of
the first QIO function code.

€-47

Device Interface Modules

O

INPUT:

RS = Address of the Line Control Block (LCB)
containing the context of a generic access
service request. Applicable offsaets are:

C.LAB = Address Line Access Black (LAB) of the
. interface that the device is located on.
C.8TN = Station address of the device
C. SLAV = Slave station address of device
C.EXTN = Extended addrTess
C. MNFR = Manutacture code of the device
C.MCDL = Model code of the device
C.MLEN = Block length of the message buffer.
C. MPNT = Block ‘pointer of the message buffer.
C.MADR = Address of the beginning of the mailbox

message containing ¥he vTaquesi. Alss
the address for the responsa.. The incoming
messaga is formatted as follows:

R.GADR = Data Address of the programmable
device

R.GCNT = Count ot data tg use in i‘c

R. GDAT = Optional device data buffer of up

to 296 bytes. Use of buffer is
dependent on the ra2ques® (read or
write)

Information passed through the associated LAB is:

L. LUN = lLogical Unit Number (LUN) to use in performing
i/o0 on the device interface.

C-48

‘V - Qutput

to PDDONS:

R1

RS

0O "0

OO0

Device Intev#acelﬂcdules

Number of data butes to return to requestor
starting at offset R. GDAT in the direct
service message.

Address of LCB used in this operation passing

back

the offsets comtaining following

information:

.I0SB =

. SRVS

. MLEN
. MPNT
. MADR

- |

1/0 status block of the i/o deacczces
operation(s].

Service status code sent back to servers
SS. SUC for successful completion) other
codes the server may expect are located
in the macro SRVSCS.

Block length of the message bhuffer.
Block pointer of the message buffer.
Mapped address of the direct service
with the following offsets updated:

. GDAT = Beginning of data data %toc be

"returnad buffer.
-

Device Interface Modules
; C.SAVE will be used in the following way. The programmer ‘iQQ'
; may use them in any way that makes life easy.
; C. SAVE = Address of current QIO function
H C. SAVE+2 = Address of data buffer
i C. SAVE+4 = Count (bits,bytes or words) requestad
; C. SAVE+4 = Address of PD address buffer (allocated)
3 C. SAVE+8. = Subfunction code
; C. SAVE+10., = Current completion AST address
; C. SAVE+12. = Assigned when new buffer allocatad
; (previous buffer addr)
; C. SAVE+14. = Temporary storage for computed byte count
; {bit functions)
; C. SAVE+14. = Actual length of address bduffer
; C. SAVE+18. = Actual length of buffer 1 £21
i C. SAVE+20. = Actual length aof buffer 2 £121 .
; C. SAVE+30. = Error exit branch
; _ Function branch tables
Read register function entry points . _ “4 :
LGCRD: L i l.ogical Read of Register 1
.WORD 1 ;i Issue one QIC functian
. WORD IC. RLE i Logical read
. WAORD LCBINI ;i Initial register sa2%tup
. WORD CNVBYT i Convert registars to butes
. WORD BYTCHK ; Validate byte couns
. WORD GENQIQ i Issue requested QIJ function
. WORD GENEND ; End generic function %hs next
i word contains the nex:t ump
i after entering the AST
. WORD QIDEXM i Test for successful QI0
. WORD CLNUP ; Success clean up, cal! FDDON
. WORD ASTEXT ;i Exit AST
CLECRD: i lkogical Read of Registsr For
i XXC devices
. WORD 1 i Issue one QIO function

.WORD I0.RL3B
_WORD LCBINI
.WORD ALABUF
.WORD CNVBYT
.WORD BYTCHK
.WORD GENQIO

logical read

Initial register setup
-Allocate address buffar
Canvert registars to buytes
Validate byte count

Issue requested QIO function

s e %o e Nl tes

‘h/ GCWR :

<

i

. WORD GENEND i
. WORD QIOEXM ;
. WORD CLNUP ;
. WORD ASTEXT i

Write register generic function

LGCWR:

. WORD 1 i
. WORD I0. WLB ;
. WORD LCBINI ;
. WORD CNYBYT i
. WORD BYTCHK H
. WORD GENQIO ;
. WORD GENEND i
. WORD QIDEXM i
. WORD CLNUP ;
. WORD ASTEXT ;
. WORD 1 i
. WORD 10. WLB ;
. WORD LCBINI ;
. WORD ALABUF ;
.. WORD CNVBYT 1
. WORD BYTCHK ;
. WORD GENGIO ;
. WORD SENEND H

i
. WORD QIDEXM H
. WORD CLNUP ;
. WORD ASTEXT ;

LGCWV:

C

Write/verify register generic

. WORD 2 ;
. WORD I0. WLB H
. WORD I0. RLB ;
. WORD LCBINI i

" One

‘Convert

Device Interface Modules

End generic function the next
word contains the next jump
after entering the AST

Test for successful QIO
Success clean up, call PDDON
Exit AST

entry points

QID
Logical
Initial

operation
write
register setup
register cnt %0 bytes
Validate byte count

Issue requested QID function
End generic function i
word contains the next
after entering the AST
Test for successful QIO
Success clean up, call PDDON
Exit AST .

jump

One QIO operation

Logical write

Initial register setup
Allocate address buffer
Convert register cnt fo bytes
Validate byte count

Issue requested QID function
End generic funciion

word contains the next jump
after entering the AST

Test for successful QIO
Success clean up, call FDDON
Exit AST

function entry points

Write/verify Tegister gen fnc
Two functions performed
Logical write

Logical read

Initial register setup

Davice Intarface Modules

CLICWV:

PHYRD:

. WORD
. WORD
. WORD
. WORD

. WORD
. WORD
. WORD
. WORD

. WORD
. WORD
. WORD
. WORD
. WORD

. WORD
. WORD

. WORD
. WORD

. WORD
. WORD
. WORD

. WORD
. WORD
. WORD
. WORD

. WORD
. WORD
. WORD
. WORD
. WORD

. WORD
. WORD
. WORD
. WORD
. WORD
. WORD

CNVBYT
BYTCHK
GENQIO
GENEND

QIDEXM
ALVBUF
GENGIO
ASTEXT

QIDEXM
CMPBUF
DALBUF
CLNUP

ASTEXT

=

L 9

10. WLB
IC. RLB
LCBINI
ALABUF
CNVBYT
BYTCHK
CENGIC
GENEND

QIOEXM
ALYBUF
GENGIQ
ASTEXT

QIOEXM
CMPBUF
DALBUF
CLNUP

ASTEXT

1

IA. RED
LCBINI
CVTBYT
YLDBYT
GENGQIO

Mo ®e N %o we W Wma Wwe We e P e N Wi we we e

M M %s e e % e e we Wl e e e s Y e e e s %e

Convert count to bytes
Validate byte count

Issyue write function

End write processing next
ward contains address of the
next Jjump returning from AST
Test for successful QIO
Allocate verify buffer

Issue the Read QIO

Exit this level of AST next
ward contains address of next
Jump returning from 3ddress
Test for successful QIO
Compare two buffers
Deallocate dynamic buffer
Success! Clean up and call FDDON
Exit AST done with function

Writa/verify register gen fnc
Twa functions perfaormed
Logical write

Logical read.

Initial register setup
Allocate address buffer
Caonvert count to butes
Validate hy%te count

Issue write function

End write processing next
waerd contains addrezs of the
next jump returning from AST
Test faor successfyl QI
Allocate verify buffer

Issue the Read GIO

Exit this level af AST next
ward contains address of next
Jump returning from address
Test for successful QIO
Compare two buffers
Deallocate dynamic puffer
Success! Clean up and call PDDONM
Exit AST done with Ffunciien

Physical Read Ragister
Issue one QAID function
Physical read
Initial register sotu
Convert registar coun
Validate byte count
Issue QIC requested function

2%

to bytas

Device Interface Modules

. WORD GENEND End generic function, next
word contains the next jump
after entering the AST

Test for successful GIO
Success clean up, call PDDON

Exit AST

. WORD QIOEXM
. WORD CLNUP
. WORD ASTEXT

C

e e %e fme e e

i Physical writes for ‘download operations
PHYWR: Physical Write Register

One QIO for physical writes
Physical write

Initial register setup
Convert register cnt to bytes
Check byte count

Issue requested GID

End generic function

word contains the next jump
atter entering the AST

Test for successful QIO
Success clean up, call FDDON
Exit AST

.- WORD 1

. WORD IA. WRT
. WORD LCBINI
. WORD CNVBYT
. WORD BYTCHK
. WORD GENGIO
. WORD GENEND

.WORD QIDEXM
.WORD CLNUP
.WORD ASTEXT

e e ws far e W % we %r e e W s

;i Write/verify register generic function entry points

PHYWV: Write/verify. register gen fnc
o . WORD 2 Two functions performed
‘;& o . WORD - IA. WRT Privileged write functicn
. WORD IA. RED Privileged read function

. WORD LCBBINI
. WORD CNVBYT
.. WORD BYTCHK
. WORD GENQIO
. WORD GENEND

Initial register setup
Convert register count to butes
Validate byte count

Issue write function

End write processing next
word contains the address of
next Jjump after AST return
Test for successful QIO
Allocate verify buffer

Issue the Read GIC

Exit AST

Test for successful QIO
Compare two buffers
Deallocate dynamic buffer
Success! Clean up, call PDDON
Exit AST

. WORD QIDEXM
. WORD ALVBUF
. WORD GENQIO
. WORD ASTEXT
. WORD QIOEXM
. WORD CMPBUF
. WORD DALBUF
. WORD CLNUP

. WORD ASTEXT

e W fer e e We s s e s e S %me W s e W Nes fes %

; Bit functions

BITRD:

Bit read operation
Unprotected read functieon
Initial tegister setup

. WORD 1
. WORD I0. BRD
. WORD LCBINI

"’ A ¢c-53

w e

hd Y

Device Interface Modulas

Validate/byte align bit pointer , .
Calculate number of bytes to read “ﬂﬁ i
Set computed byte count in GIC i
Allocate dynamic buffer
Issue QIO rTead

End issuing QIO read
Determine successful GIO
Move bits to buffer
Deallocate dynamic buffer
Success—cleanup, call PODDCN
End of generic function

. WORD VALBIT
. WORD CALCBY
. WORD ' RSRBYT
. WORD ALCBUF
. WORD GENQID
. WORD GENEND
. WORD QICEXM
. WORD RDMVBT
. WORD DALBUF
". WORD CLNUP
. WORD ASTEXT

e We W Wi Me e Wi Wi %er Wi we

BITWR: :
. WORD 1 i Bit write entry table 5
. WORD I0. BWT i Bit uwrite function :
. WORD LCBINI ; Initial register setup :
.WORD VALBIT i Validate/byte align bit pointer .
. WORD ALCBUF i Allocate dynamic bu#ffer {
.WORD CALCBY ;i Calc number of bytas to write i
. WORD INIBIT i Bit write initialization :
. WORD ALGNBT ;i Align bits for PC buffer address ;
. WORD ACNBYT i Convert registar cnt £o bytes {
.WORD GENGIOD ;i Issue QIO write ' .
. WORD SENEND ' ' .
- . WORD QICEXM ; Detsrmine succassful QIO o
. WCRD DALBUF ~+ Deallocate dynamic buffer “a
. WORD CLNUP i Success-cleanup, cail FDDON 7
.WORD ASTEXT ;i End of generic function o
BITWV: .
- . WORD 2 i Bit write verify entry %able
. WORD I0. BWT 5 Bit write function
. WORD I0. BRD i Unprotected read function

.WORD LCBINI
.WORD VALBIT
.WORD ALCBUF
.WORD CALCBY
.WORD INIBIT
.WORD ALGNBT
.WORD ACNBYT
.WORD GENGIO
.WORD GENEND

Initial register setup
Validate/byte align bit pointaer
Allncate dynamic buffer

Calc number of bytas to write
Bit write initialization

Align bits for PD buffer address
Convert registar count to bytas
Issue QIO write

Leave generic routine

. WORD QICEXM Test for successful GIO

. WORD ALVBUF Allocate dynamic buffer

. WAQRD RSRBYT ;i Set computed byte zoumt in GIO
. WORD SENIQ Issue QIO read

. WORD ASTEXT Exit first AST

. WORD GIBEXM Teast for svuccessful QIO

. WORD RUMVET Move Bi¥s to buffer

ter e e wr me W e e N % e

e we ves te.

¢

6-,

CBITRD:

CEITWR:

4]

]

. WORD
. WORD
. WORD
. WORD
. WORD

. WORD
. WORD
. WORD
. WORD
. WORD
. WORD
. WORD
. WORD
. WORD
. WORD
. . WORD
. WORD
. WORD
. WORD

. WORD
. WORD
. WORD
. WORD
. WORD
. WORD
. WORD
. WORD
. WORD
. WORD
. WORD
. WORD
. WORD
. WORD
. WORD

. WORD
. WORD
. WORD
. WORD
. WORD
. WORD
. WORD
. WORD
. WORD

BITCMP
DALBUF
DALBUF
CLNUP

ASTEXT

1

10. BRD
LCBINI
VALBIT
CALCBY
RSRBYT
ALCBUF
GENQID
GENEND
QIOEXM
RDMVBT
DALBUF
CLRNUP

ASTEXT

1

I10. BWT
LCBINI
VALBIT
ALCBUF
CALCBY
INIBIT
ALGNWD
ACNBYT
GENQIO
GENEND
QIOEXM
DALBUF
CLNUP

ASTEXT

-~

I0. BWT
I0. BRD
LCBINI
VALBIT
ALCBUF
CALCBY
INIBIT
ALGNWD

e % e e ey

e Me e fme e % e Ter e e e e fee e

% W ter e e e e W % e

e % e e

L L T R

Device Interface Modules

Compare written with read bits
Deallocate dynamic huffer
Deallocate 2nd buffer

Success — Clean up, <call PDDON
End of generic function

Bit read aperation

Unprotected read function

Initial register setup
Validate/byte align bit pointer
Calculate number of bytes to read
Set computed byte count in QIO

‘Allocate dynamic buffer

Issue QIO read

End issuing QIO read
Determine successful QIO
Move bits to buffer
Deallocate dynamic buffer
Success—cleanup, cail PDDGN
End of generic funcition

Bit write entry tabile

Bit write function

Initial register setup
Validate/byte align bit pointer
Allocate dynamic buffer '

Calc number of bytes tc write
Bit write initialization

Align bits for PD buffer address
Convert register count to bytes
Issue QIO write

Determine successful GIC
Deallocate dynamic buffer

Buccess—cleanup, call PLDON

(g

End of gemeric function

Bit write verify entry table

Bit write function

Unprotected read function
Initial register setup
Validate/byte align bit pointer
Allocate dynamic buffer

Calc number of bytes to write
Bit write initialization

Align bits for PD buffer address

Device Interface Modules

" . WORD ACNBYT
. WORD GENQIQ
. WORD GENEND
. WORD GICEXM
. WORD ALVBUF
. WORD RSRBYT
‘. WORD GENIO
L MOPD - ASTEXT
. WORD QIOEXM
. WORD RDMVBT
. WORD BITCMP
. WORD DALBUF
. WORD DALBUF
. WORD CLNUP
. WORD ASTEXT

Issue QID write

Leave generic routine

Test for successful QIO
Allocate dynamic buffer

Set computed byte coumnt in GEIT
Issue QID read

Exit Sives AST

Test for successful QIO

Move bits ta buffer '
Compare written with read bits
Deallocate dynamic buffer
Deallocate 2nd buffer

Success! Clean up.call SPDDGON
End of generic function

Caoanvert register count to bytes i‘

e e W N W e M Yo W Gl e fer e e e

Raad status af PD

RDSTA:
. WORD 1 ; One status GIO function
. WORD 10. DAG "~ ; Diagnostic read
. WORD LCBINT i Initial setup entry
. WORD SETSTS) Set vup status QIO stuf+f
. WORD GENQIO ;i Issue QIO requested function
. WCRD GENEND i End generic function. nesxt
: i word contains the next jump
i after entering the AST
. WCRD QICEXM i Test for successful QIO ,
" . WORD CLNUP i Success clean up, call PDDON
.WORD ASTEXT i Exit AST)
START:
. WORD 1 i One status QIC function
. WORD IQ. 8TR i Start the device ‘
. WGRD LCBINI i Initial setup entry
. WORD STRSTP i Set up a start/stop aperation
. WORD GENGIO ; Issue QID requested function
. WORD GENEND i End generic function. next
; word contains the next jump
i after entering the AST
. WORD QICEXM i Test for successful GID
. WCRD CLNUP i Success clean up. call FDDON
. WORD ASTEXT] i Exit AST
STOP:
. WORD - 1 ; One status QIO function
. WORD I0. STP ; Stop the device
. WORD LCBINI i Initial setup entry
. WORD STRSTP ; Set up a start/stop operTation
. WORD GENGIO i Issue QIO requested functicn
oss v

[e

. WORD

. WORD
. WORD
. WORD

Device Interface Modules

GENEND ; End generic function. next

. : i word contains the next jump
; after entering the AST

GIOEXM i Test for successful QIO

CLNUP i BSuccess clean up, csll PDDON

ASTEXT i Exit AST

;i Fill in necessary entry points'to perform the requestad
; generic functions for the particular devicas you're

supporting.

870P:

UPREQ:
UPEND:
DNREQ:
DNEND:
ASTOF:

" NOGPEX: -

. WORD
. WORD
. WORD

LCBINI
NOFUNC .
GENEND i End generic function

. x *GEN:

Device Interface Modules

; Input:

Output{

sGENFC uses the entry point in manufaciturer/model tables %o
datermine the generic function to be processed and ra2%furns the
antry point function branch table

RO points to entry in manufacturer table
RS points to LCB

i RO points to function branch table for requesised funchicn
i R1 points to QIO function %o be used nexst. (R1 < RO}
RS points to LCB

$GENFC uses the 2ntry point in manufacturer/madel to determine
: the generic function to be processed and returns the enirty point
i function branch table

s

SAVRGS <R5,R4,RJ3,Ra,R1,R0> ; Save rTegistars
Mav #xxTBL. RO i RO Points to Manf/model table
CALL SGENFC i Determine function &ranch
;i table
CMP #=-1, RO i Funmction error?
BEQ 10s ; Yes, end generic Tequ=2s%
TST RO i If zera, ne—cp functisn
BNE 53 ; Process specified function
MOV #NOPEX, RO i NO-QP function for device
5% '
JMP 2(RO)+ i Jump to first sub funciion
igos ;
MOV #SE. FNR, C. SRVS(R5) ; Generic function error code
JMP GENERR ; End generic processing for
Generic Function Entry Points
LCBINI:
; Initialize the fields in the LCB and others so that the
proccessing may begin. .
MOV #GENERR, C. SAVE+30. (R5) ; GENERR is the dafault
; erTor Toutine for now '
c-58

Device Interface Modules

r CLR . C. BAVE+146. (R5) ; Clear allocate buffer lengths
‘;, CLR C. SAVE+18. (RS) ; to indicate that nothing -has
CLR C. SAVE+20. (R5) ; been allocated yet
MQV C. MADR(R5), R3 i R3 points to Start generic request
" i message
MOV R1., €. SAVE(RS) Address of current GIO func
MoV R. GCNT(R3), C. SAVE+4(R5) i Save Count of data
i requested
CLR €. SAVE+8. (RS) i Clear subfunction
Moy R3.C. SAVE+2(RS) : Lopy beginning of message data
ADD #R. GDAT, . SAVE+2(R5} ;i Address of dats buffer

JMP 2{RO)+ i @oto next entry in table

;-

ALABUF:

For model MD. XXC, allocate memory within task image for
; extended address. This is necessary since the driver assumes
; that the address buffer is in the task space. Since it is in
; the mapped message buffer it is not available to the driver.
SAVRG$ <RO> Save registers, 3RQACH destroys
RO, R1, & Rz2

Mav #XTL. ADR: R1 i Set buffer size
MOV #FSREHD, RO i RC points to free memoTy iisthead
CALL $RQACB ; Allocate new block
BCC is i Clear? - it made it
; Error allocating buffer
MOV #SE. RSC. C. SRVS(RS) ; Resource error
CLR C.IDSB(R5) ;i Clear 1st word of IOSE
CLR C. IOSB+2(R5) ; Clear byte count in IOSE
RESRGS <RO> i Restore registers
“MP @C. SAVE+30. (RS) ; So to errTor routine
1€
MOV RQ. C. SAVE+5(RS) ; Address of address pbuffer
MoV R1.,C. SAVE+14. (RS) : Save length for deallsccation
MOV C. MADR(RS):R1 i R1 points %o Start of Generic data
ADD #R. GADR: R1 ; Address of extended address
. REPT ZXTLADR/Z2Z ;i to move
MOV (R1)+, (RO + ; Move the extended address into
. ENDR ; task image space
RESRG$ <RO> ; Restore registers
JMP 2(RO)+ _ ; Gato next entry in table
CNVBYT:

‘.‘;/.

J

Device Interface Modules

; Switch register count to byte count far R/W register

ASL
JMP

C. SAVE+4(R3)
2(R0O)+

H

.
?

Shift # words to bytes of data
Go to next entry in table

BYTCHK:

i

; Compare byte count requested with current byte count for

message buffer.

MOV C. MADR(RS),R1 ; R1 points to Start af Seneric data
MoV M. DLEN(R1).R1 i R1 paints to previous returned byte
; count
SUB #R. GDAT, R1 i Actual data bytas
BLE S0s i Need more than zero
cMP R1, #R.GLDT 7 is it bigger than the max i/ s
BLE 203 ;i transaction for this device?
MoV #R. GLDT., R1 i Use the smaller of the jwo.
=03%:
cMP R1,C. SAVE+4(RS) ; Compare toc requestad
BLT 30% i Need 2= 0
<JMP 2(RQ)+ i Ga to next table entry
303 . :
MoV #SE. CNT, C. SRVS{(RS) ; Bad count requestad.
MP 2C. SAVE+30Q. (R3) ; G0 %o .error roufine
ALCBUF:
i Allocatz dynamic buffer area
SAYRGS <RO i Save registers
MOV Gs3CBYN, Ri
SUB #R. GDAT, R1 i make actual
CMP R1. #R.KsSLDT ; Compare bufFer 51 e with
i allowed far QI0 mazimum
BLE i0% : Take the smaller ¢ the itws
MOV #R. KGLDT. R1 ; Set buffer si:ze)
10%:
MOV #FSREHD, RO i RO poin%ts to free memory listhead
CALL SRQCB Allocate new block
BCS 30% ; Set? = it didn‘t aliccate
MOV C. SAVE+2. (RS), C.SAVE+12. (RS) ; Save 2ld

i

buffer address

Device Interface Modules

¢ MOV C. SAVE+18. (R5),C. SAVE+20. (R5) ; Save old
"h, i buffer length

MOV RO, C. SAVE+2(R5) ; Move in new buffer address
MoV R1,C. SAVE+18. (R5) ; Set actual length
RESRGS RO ; Restore registers
JMP @(RO)+ ; B0 to next entry

30%: ; Error allocating bhuffer
MoV #SE. RSC, C. SRVS(RS) i Resource erToT
RESRG$ <RO> i Restore registers
JMP @C. SAVE+30(RS) ; Nested AST level error

VALBIT:

Validation and possible word points to byte ad justment of bit pointer
Device XXC needs to be word al1gned others byte

MOV C.MADR(R5),R2 3 R2 points to Start generic data
CMPB #16. ,R. GBOF(R2) i Check for valid bit offset
BGT iCs ; Less than ockay
MOV #SE. ADR, C. SRVS(RS); Generic error, reject
; function because of address
JMP @C. SAVE+3C. (RS) ; Flag error and return
10% _
g ‘h’ CMP €. MODL{RS), #MD. XXC i lIs. this a XXC function?

BEQ 20% i Yes, leave as word alignred

CMPB #8. . (R2} ;i Pointing to second byte
BGT 20% i Fits in first byte

sUB #8., (R2) Point to bit within byte
INC C. SAVE+&6(RS) Move addr up 1 byte
20%
JMP @(RO)+ i Go ta next entry in table
INIBIT:

Initial register zetup for bit alignment cperations
i When exiting, R2 = bit offset negated for right shift

MOV C. MADR(R3),R3 i R3 points to Start gszneric data
MOV R. 8BOF(R3).,R2 i Minus bit offset

NEG R2 ; Shift to the right

ADD R. GBOF(R3),C. SAVE+4(RS) ; Add due to bit offset
MOV — C. SAVE+2(R5), R4 ; Address of buffer

MOV #—-164. ,C. SAVE+28. (RS) ; Possible shifts plus one
ADD R. 3ADR+30. (R3), C. SAVE+2B. (RS) ; Setup alignment

C-61

Device Interface Modules

i number : L
JMP @(RO)+ i G0 to next ftable entry ‘ﬁﬁ

ALGNBT: .

Bit alignmant for bit write oparations
i R2 = bit offset into word (negated for right shift ocperation)

SAVRGS <RO> i Save rTegistars
CLR R1 ; Clear low ord2r sacond ragister

MOV C. MADR(RS3).,R3 R3 points to Beginning of message data

: ADD #R. GDAT. R3 Beginning of message data

10%:
MoV C. SAVE+5(R3), (R4)+ ; Move PC address s buffer
INC C. SAVE+&(RT) i Point %o next word in PC
MoV (R3)+, RO i Rl points to Bit data
SAVRGS <RI ; Save pointa2r to data
MOV C. MADR(RS).,R3 ; R3 paoints to Beginning of message data
ASHC C. SAVE+28. {R3),R0 ; Shift double word neesded bifs
MaQv © R1, (R4) ; Store sat bits in out buffer
May (R4)+, 2(R4) = ; Set up clear word 2 words away
MOV C. SAVE+4(R5), (R4)+ ; Move next PC address in buffer
INC C. SAVE+4(RS5) i Ready for next PC address
COM (R4) i Reset mask for hifts cleared
cMP C. SAVE+4(R5),R. GCNT(R3) ; Shifting firs% word o
BLT 30% i Ne, into bit operatisn wr

W2 are on first word: save the bits not requesting change ’

SAVRGS <RUO , i Save for naxt shifd
MoV #=-1, RO i Set mask to all onas
ASH R.GBOF(RG). RO ; Shift it pointer amount
CoM RO ; Save mask bits sat %tz 1s

ZIC RQ. (R4)
RESRG$ <RO>

Save low order bi%s
Restaore for next shifs

[

203 .
ASHC R2. RO ;i Setup for next shift
MOVE (R4}, RO i Swap low with high aorder next word :
MOVB =3(R4), (R3) ; Move high order tg nex% word i
MOVB RQ. =3(R4) i Move low clear to high prev. byt2 .
ADD #2. R4 ; Point to next address
SUB #15. . C. SAVE+4(RS) : Decrease number of 5:%is ilaft
RESRGS <R3 i Restore pointer +tg data
BGT 10%) i not dane yet

We are on last word .
i Save bits in high order that did not request updating

MOV #-1, RO i Set up save mask

Device Interface Mocdules

¢ MOV #156. ,R1 Number of possible shifts +1
L ADD = . SAVE+4(R5).R1 Subtract number shifted
: ASH R1.RO Shift mask for low order byte
MOV RO, R1 R1 for high order
SWAB R1 Save mask for high byte
SUB #46, R4 Peint back to set word

BICB RO, (R4)
BICB RO, 1 (R4)
BICB R1i, 4(R4)
BICB R1, 5(R4)

Save clear bits

Save set bits

Save high order set bits
Save high order clear bits

e We Wi W e e wme e W S

MoV C. SAVE+14. (R5),C. SAVE+4(RS) ; Store number of
bytes to write
MOV C. MADR(RS),R3 i R3 poeints to Beginning of message data
MOV R. GADR(R3}!, . SAVE+4(RS) ;i Resa2t PC address
RESRG$ <RO> ; Restore register
JMP 2(RO)+ i 30 to next entry in %able

3
. - e e ——— e o

AL GNWD:

i Bit alignment within word for XXC write bit operations
R2 = bit offset into word (negated for right shift operation)

SAVRG$ RO Save registers

’ CLR R1 i Clear low order second register
‘L’ MoV C. MADR(R3),R3 i R3 points to Beginning of message data
‘ ADD #R. 6DAT, R3 i Beginning of message date
CMF #15. ,C. BAVE+4(RS) ; Test for one word byte count
BGE 10% ; If within one word okay
MOV #SE. CNT, C. BRVYS(RS) ; Move in invaiid count error
: . i to srvec sts
RESRG$ <RO> i Restore registers
JMP 2C. SAVE+3C(R5) ; ErTter toute out
10%:

MOV {R3)+, RO i R1 points to Bit data
MoV C. MADR(RS), R3 i R3 points to Beginning of message date
ASHC C. SAVE+28. (R5), RO ;S8hift double word needed bits
MaV R1, (R4) ;i Store set bits in ocut buffer
MoV (R4)+, (R4) i Set up clear word
COM (R4)+ ; Reset mask for bits cleared

i We are on first word, save the bits not requesting change
i First and only for now

MOV . #=-1,R0O ; Set mask to all ones
ASH R. GBOF(R3),RO ; Shift bit pointer amount
COM RO ; Saved mask bits zeroced
BIC RO, -(R4) ; Save low order bits

C

Devi:e'InearFace Modules

30$: ‘ 1A‘*-
; We are aon last word .dfj
; Save bits in high order that did not request updating

MOV #-1,R0O ; Set up save mask
ASH C. SAVE+4(R5),R0O ; Shift mask

BIC RO, (R4) ; Save clear bits
BIC RO, -(R4) ; Save set bits

i Force a one word entry(ACP accepts only ane word 3I0)

MoV #4, C. SAVE+4(RS3) ; Store number bytes to write
40%: RESRGS <RO> i Restore register
JMme 2(RQ)+ ;i 8a to next entry in table

CALCBY:
;i Calculate numbar of bytes from bits sent down for (IO operation

MoV C. MADR(RS),R3 R3 points to Beginning of message data

i
MQvV R. GBOF(R3).R1 + Bit painter into byta
ADD C. SAVE+4(R5),R1 ; Number of bits working with
ADD #7, RY ;i Ferce a raound up toc the next byte
ASH #-3, R1 ; Divide by 8 :
108: , ‘J
CMP M. CODE(R3), #MG. RED ; Bit read? L
BEQ 203 : i Y2s, no addr in dats .
ASL rR1 ; Double, due to masking space
Z0s$:
cMP C. MODL(R3!), #MD. XXC ; Is this XXC functign?
BNE 30s. i Go on
ADD #1,R1 i Inc to next byte
BIC #1.R1 i Farce even
30s: MoV R1,C. SAVE+14 (RS) ; Number of bytes to write
- JMP 2(RO)+ ; Go to next table entry
RSREBYT:

Place the calculated byte count inte QIO parameters

MOV C. SAVE+14. (R5),C. SAVE+4(RS) ; Calculated number of
' i parameters sent
“MP 2(RO)+ i Go to next table entry

SETSTS:

Set up device status operation

Device Interface Mcdules

MoV #10. ,C. SAVE+4(RS) ; 1C bytes expected
CMP C. MODIL(R3), #MD. XXC ; Is this a XXC request
BNE 103 ; Bypass byte count change
MOV #18. . C. SAVE+4(RS) ; 18 bytes for XXC
MoV c. SAVE+8 (R3), C. SAVE(RS) ; Move in status
; function
BR 20% i Need subfunction yet
103
MOV C. SAVE(RS), C. SAVE+8. (R5) ; Get address of
i functions
20%:
ADD #2, C. SAVE+B. (RS); Point to subfunction
“MP 2(RO)+ ;i o toa next table entry

STRSTP:

Set up start stop operation

o
o hem.

JMP

C. SAVE+4(RD)
@(RO)+

: There is no data to be2transferred
G0 to next table entry

C

GENGIC:

i QI0‘'s parameters were initially set up in the LCBINI function

MoV
MoV
MoV
ADD
MoV
MoV

ADD
.QI0$S @(R3),R4,
MOV

MoV
BMI

C

easy tetrieval

The QIO parameters for

routine parameters are stored in C. SAVE(1l) thru C. SAVE(S) for

in case of timeouts or block check retries.

C. LAB(RS). R4
L. LUN(R4): R4
RS, R3

#C. SAVE, RC

the QIO are

R4 points to LAB for this device

R4 points to Logical unit number
Copy LCB beginning

i R3 points to Beginning of saved data

e e S

#GENAST, R2 ; Get address of completion AST
RO. C. SAVE+10. (R5) ; Save next entry of function

i br tbl

#23C.$AUE+10.(R5) i Point to next entry beyond..

,,RS;R2,€2(R3);4(R3):C.STN(RS):&(RS):@B.(RS),TMDUT}

C. MADR(RTS).R3
$DSW, €. SRYS(RE)
S0%

i R3 points to Beginning of generic datsa
i Generic status message
i Take 2rror route if directive

C=-65

Device Interface Modules

i error
- JMP 2(RO)+ ; G0 to next table entry point
503 :
JMp @C. SAVE+30. (RS) ; Send error and exit
SENAST:

;i @eneric service AST reentry point and recovery routine
ASDIMS Save registers R35-RO.

RS points to LAB of gperation, and

message buffer pointed to

by C. MPNT(RS) and C. MLEN(RS)

is remapped and the address of

message header is placed in

€. MADR (R3)

s me We s Wi %o W

MQy #ASTERR, C. SAVE+3C. (RS) ; Default error rToutine
;i is now AST %ype

; Determine if there has been a time out or hlock chack

CMPB C. IOSB(RS5), #IE. TMO i Test for time out condition

BEQ 108 3 Yes, dec count and retrTy .

-CMPB - C. IOSB{(RS)., ¥IE. BCC ; Tast black cnack zondition

BNE . 15% . i Noy determine sftatus and condifion
103: - . .

DEC C. TRY(RS: ;i Number of retries

BLE 15% " 3 Deone %rying - csniinue

Re = issue GIOD

MgV C. LAB(RS). R4 i R4 points to LAB for this davice

Mav L. LUN(R4), R4 ; R4 points to Logical unit number

MOV RS, R3 i Copy LCB beginning

ADD #C. SAVE., R3 i R3 points to Beginning of saved data
MOV #GENAST, R2)

QI0%S @(R3).R4.,.,,RI. R, <2(R3); 4(R3), C. STN(RS), 6(R3). &8. (R3), TMCUT>

MOV C. MADR(RS5),R3 R3 points to Beginning of generic data
Mav $DSW. C. SRVS(RS) : Return $DSW error cade
BMI 20% i Finished generic raquest
193)
MOV C. SAVE+10. (RS),R0O ; Restore pointer to function
. . 3 branch table
JMP 2(RO)+ i G0 to next function branch entmy

C-&4

Device Interface Modules

%’ ; DSW error

%
CLR R1 i For other than read functions
JMP 2C. SAVE+30. (RS) ; take exit Toute

GIOEXM:

i Determine RSX i/o error then send the generic error code, if
successful then continue with next step in function branch

table
20%:
CLR C. SRVS(R3) ; Generic errToTr message ares
MOV #I0ERR.R1 i Rl points to i/o status error table
MOV #IDERCT, R2 ; R2 points to Size of error table
29%:

CMPB C. IGSB(RS), (R1) Determine i/o status

?
BEG 308 i go to insert generic function
ADD “#2,R1 i Try next entry
S0B Ra., 29% i Do until end of table
MoV #SE. INT, C. SRVS(RS) ; Function error returned
BR 35% i
30%:
ﬁ;’ MOVB 1(R1),R1 i Byte status error
: MOV R1,C. SRVS(RS) i Insert generic status
CMP R1i, SE. SUC i Was it successful?
BNE 35% '
JMP @(RO)+
35%:
CLR R1 i Error = clear byte cnt
“JMP @C. SAVE+30. (RS) ; End generic function
RDMVBT:

Align bits to send back upstairs for requested read bit
; operation. Send bit string format of only bits request
i beginning with bit offset into word

SAVRGS <RO> i Save registers
MoV C. MADR(RS5),R3 i R3 points to Beginning of message data
MOVB R. GBOF (R3), R2 ; Bit pointer within word

NEG R2 i For right shifts

MOV C. SAVE+4(R5), C. SAVE+14, (R3) ; Copy bytes read in
Moy C. SAVE+2(R35),R3 ;i Allocated buffer read into

MOV C. SAVE+12. (R5),R4; Return buffer

10%:

C-&67

Device Interface Modules

MOV

(R3)+, R1 .

First word in low order register

MOV (R3}: RO ; Maove into high arder register
ASHC 2, RO ; Shift to the right
MoV 1, (R4)+ ; Move low order to message buffer
sUB #2.C. SAVE+14. (RS) Decrease bytes left to shift
BGT 10% ; Ngt done, shift again
MOV #-C0, RO ; Set up mask
MoV C. MADR(R3),R3 ; R3 points to Beginning of message data
MOV R. 8CNT(R3),R2 ;i Save bit count
BIC #-C15. ;R2Z i Mask out all but word
BEGQ 203
ASH Ra. RO ; Shift masked bits
BIC RO, =(R4) ; Save bits not requested
20%;
RESRG3 <RO> i Restore registers
JMP 2{R0C)+
BITCMP

; it comparison for write/verify

SAVRGS
oY
Moy
ADD
: MCY
tOS: SUB
BEE

We are on tha

MOV
ASH
3ICB
3ICB
203%: CMPB
BNE
TST
8GT

RESRGS$
JMP

30%: MoV
JMP

*'RS.« i

. MADR(RS5).R3 H
R GCNT(R3), RZ
#R. GDAT, R3 ;
C. SAVE+12. (R3), R4
3., R; i

-

=J3 i

bit operation

Save registers

R3 points tg Beginning of message data
Number of bits written

R3 points to Start of input bits

;i R4 points. tgo Bits read in #from PC
Decrease number of bits left

More bytes to go

last byte to compare

R2: RO

RO, (RS
RO, (R4)
(R3}, (R4} ;
303 H
RZ i

1Gs ;

R

<RO>» ;
Q(RO)+ ;

#SE. VFY. S. SRVS(RS)
. @C. SAVE+2Q. (RS) ;

Sat up mask

To the lett

Clear input

Clear read in
Compare current byta
Bits not the same?
Daone?)

No, go %o next byie

Restore register
o to next table entry

Yerification error
End of generic function

(¢}

‘ CMPBUF:

Device Interface Modules

" Routine to compare buffer written and buffer read back

MoV C.SAVE+4(R3),R1 ; Rl points to Number of bytes to compare
Moy C. MADR(R3),R3 i R3 points to Start generic dats
ADD #R. GDAT, R3 3 Write buffer N
MoV C. SAVE+2(R5),R2 ; R2 points to Beginning of read buffer
10%: o
CMPB (R2)+, (R3})+ i Test current byte and inc
BNE 30% i Error in data
S0B R1,10% i Move thru buffer areas
JMP @(RO)+ i Go to next table entry
30%: MoV #SE. VFY, C. BRVS(RS) i Verification error
' MoV C. MADR(RS5),R3 i R3 points to Start generic data
MOV #SE. VFY, R. GSTS(R3) ; Generic errtor
JMP @C. SAVE+30. (RS) ; End generic function
DALBUF:

Deallocate temporary work buffer

ﬁa TST
. BEG

C. SBAVE+18. (R5) ; Get length of deallcc buffer

10% ; Nothing to dealloca,e
SAVRG$S «<RO,R1Z ; Save registers
MoV #F SREHD, RO ; Address of free memoTy
; listhead
MOV C. 5AVE+18. (RS),R1 ; Size of block to be released
MOV C. SAVE+2. (RS3), R2 i Address of block released
CALL SRLCB Release it
MOV . SAVE+12. (R5), C SAVE+2. (R5) ; Restore cld
; buffer area
MoV C. SAVE+20. (R5),C. SAVE+18. (RS5) ; Restore old
i huffer length
CLR C. SAVE+20. (RS) ; Mark second buffer deallocated
RESRG$ <R1,ROX i Restore registers
10%:
JMP @(RO)+ ;i Go to next entry
DALXTA:

;i Deallocate memory used for storing address buffers within

%

task image space.

C=69

Device Interface Modules.

TST C.S5AVE+14. (RS) ; Was memory allocated for a

BEQ 20% ; extended address function ? ‘ﬁﬁi
SAVRGS <RO, R1> i Save registers |
MoV #FSREHD, RO ; Address of free memotTy
: i listhead
MQV C. SAVE+146. (R5),R1 ; Size of block to be rTeleased
MOV C. SAVE+&4., (RS),R2; Address of block released
CALL SRLCE i Release i%
CLR C. SAVE+14. (R5) i Mark it deallocatad
RESRG$ <R1,R0O2> i Restore registers
20%:
JMP 2(RO)+ i @0 to next entry
CLNUP:

; Successfully completed requested generic function
; Set up status returns and registers then call PUDON

MOV C. MADR(RS).R3 ; R3 points to Beginning of generic data

© MY €. LAB(RS3), R4 i R4 points to Associated LAB

MOV #SS. SUC, €. SRVS(RS) ; Gaeneric status

MoV C. SAVE+4(RS),R1 ; Save byte count

" CALL $PDDON i Perform cleanup operations o
JMP - 2(RO)+ ; Finish exit AST q

MNOFUNC:

;. MOR fynction routine for devices net supporting all gemeric
functions

CLR R1 ;i Zero number of byteas

MoV #85. SUC, C. SRVYS(RS) ; Generic success message
CALL SPDDON

+JMP 28(RO)+ ;i Generic operation doesn’t

i for current device

SENERR:
' MoV #1, RO
BR 5 .,
ASTERR:
CLR RO

Device Interface Modules

data being sent back and either return or exit AST depending

f ; Error, clean up rToutine. Clean up any allocate buffers -Clear any

e

on which entry point taken

S%:

MOV C. MADR(RS),R3 i R3 points to Beginning of generic data
ADD #R. GDAT, R3 i Point to address of datsa
SAVRGS <RO>
MoV #F$SREHD, RO

Deallocate primary bhuffer
TST C. SAVE+18. (R3) ; Was memory alliocated for the
BEQ 108 i primary buffer ?
MOV C. 5AVE+18. (R5),R1 ; Size of block to e Teleased
MoV C. SAVE+2. (R3),R2 i Address of block relizased
CALL $RLCB i Release it

Deallocate secondary buffer

10%: .

TST C. SAVE+20. (RS} ;i Was memory allocated for the
BEQ 20% ; secondary buffer ?
MOV C. SAVE+20. (R5),R1 ; Size of block to be released
MoV C. 8AVE+12. (R51,RZ ; Address of block rzieased
CALL $RLCB ; Release it

Deallocate extended address buffer

20%
TST C. SAVE+15. (R8) ; Was memory allocated for a
BEG 30% ; PLCS extended address functicn 7
MOV C. SAVE+15. (RG),R1 ; Size of block to e rTeleased
MOV C. SAVE+4. (RS),R2 ; Address of blork Telesased
Cabtl $RLCB - ; Release it
30%: i
RESRG$ <RO>
CLR Rl i Zero byte count
CALL $PDDON ; = so function is bypassed
TST " RO i Determine how we get out of here
BEQ 50%
“MP SENEND i Return to calier
0%
JMP ASTEXT i RKeturn from AST

Device Interface Modulas

GENEND:
i Exit at non—completion AST level

RESRGS$ <RO,R1,R2,R3,R4,RS> ; Restore Tegisters
RETURN i Return to caller

ASTEXT:

; Exit intermodiaéa AST

RESRGS <RO,R1,R2,R3,R4,RS> i Restore registers
ASTX3S ; Exit AST

. DSABL LSB

APPENDIX D
ADDING NEw DEVICE SUPPORT
D.1 Overview

The information presented in this Appendix is wuseful to those
individvuals who are adding new device support.

D.2 Useful Reading Material
‘ Tha following publication -may be wuseful when planning the
ﬁ ‘addition of new device suppoTt:

¢ SHOP FLOOR GATEWAY Installation Guide/Release Noctes

5 User’s Guide i he Allen-Bradley Data Highwsu RNeftwstTk
Communication Software (13/NET)

(1770-843, available from Allen-Bradiey; wuseful if the wuser
is writing & DUIM for unsupported Allen-Bradley devices, oT
another utility’

[]
(Y]

Hardware / Software Environment

"The GATEWAY system is implemented on PDP-11 series praocessors,
each containing a minimum of 512K bytes of memary. A4 maximum of four
gateways are supported.. The processors are connected to a YAX wvia a

DECnet 1link and to programmable device networks via asynchronous
serial lines.

The GATEWAY sustem wuses the RSX-115 operating system. This
operating system features minimal overhead while providing a real-time
multitasking. envircenment. ‘

Adding New Device

Support

DECnet from
BASEWAY
1]

v

DMR-11
device

11

+ -+

2 Data

1 Modbus TM is a registered trademark of Gould

Division.

-Carporation.

Highway

+

PDP - 11

$ = mn ce v e

/

512 KB mematy

24

-

™ 1is a

registered

Medbus 1
Highway 2

Network

_ trademark

and/aer Data

Incoarporated..

cf

lines

Modicon

Allen—Bradley

Adding New Device Support

SHOP FLOOR SATEWAY Tasks

H APPLICATION i

i /1 i

{SHOP FLOOR GATEWAY TASBKS | H
] 1]
, ; ;
!+ + + + !
11 TSKWCH] ! NETINT | !
. Task H i Network H i
i I Watcher ! ! Interface | |
13 -l . - [
H ! H !
N + '
! H ! H H H :
] - -+ + - ! + + —— + !
H iBUSWCH | | SATEVP | H ! SENSRY ! H CIRSRY ; H
4 iDevice | | GSatewau | ! ! Generic | ! Direct H H
! Sat HE Event H H i Access H : Access H i
i iWwatcher! | Processor | H ! Server : H Server ; i
H o e -'r_—-—————————-i- { L - s - - :
! : : ! B !
| H e " !
; + - + + . -+ " !
' i POLSRV ' { DIM Device H " :
H H Polling === | Interface | smmammmm——— !
! : Server H i Module H H
H + + + + H
: e i
H i !
! + + + -+ H
2 i Driver |szs=xszz==! ACP ! !
! + = -+ + - H
: : :
] ! '
- : o

A
{
: Procgrammable Devices !
r———— -+

Figure 12.

SHOP FLOOR GATEWAY Tasks

Adding Mew Device Suppoft
D.5 GATEWAY Initialization

A System Startup is performed when the GATEWAY system is first
powered on, and thareafter whenever a complete GATEWAY restart is
requestad. ~ Initially, DECnet downline locads the GATEWAY system and
programs.) .

After the operating system is initialized and certain tasks that
paTform system and application initialization have been downloaded and
completed, a copy of the Task Watcher task is downline task—-loaded
from BASEWAY. The Task Watcher task then requesis the nmetwork
interface, creates the intertask mailboxes, and starts the other *tasks
running.

) Initialization of the GATEWAY tables is performed after
everything is in readiness. The GATEWAY Initializer on the
application ¢raverses the required databases and sends messages
containing the polling parameters +to the GATEWAY Event Processar.
GATEVP builds the memory-resident poalling tables from these messages
and enables the Polling Interface. '

D.5.1 Network Interface {(NETINT)

The Network Interface task allows tasks to communicate rTegardliess
of DECnet limitations or functionality. In addition: it performs %he
following actions: "’

.

o except for cartain control messages. raoutes incoming
interprocess maessages to the praper destination
transparently;

¢ maintains queues for outgocing messages:

s optimizes message traffic aver DéCnet;
o communicates directly with other Network Intarface tasks oan
other processors as required.

Adding New Device Support
[4
 D.5.2 GATEWAY Event Processor (GATEVP)

~ The GATEWAY Event Processor subsystem is responsible for
contraolling ¢the oaperatian of the GATEWAY system. The GATEVP task
resides in every GATEWAY sustem, and is controlled and monitored by
the TSKWCH task.

On GATEWAY initialization, the SATEWAY Event Processor TrTeceives
configuration messages from BASEWAY which are usad %o set up VDR
database. This database is used by the Polling Interface to determine
the polling requirements and status of the system.

Its activities include:

o sending raw PD data +to BASEWAY after qualiification and
preprocessing. depending on Tegister definitian;

o accepting messages from BASEWAY to load PD definitions in
VDR; '

o returning a status repert to BASEWAY on command:

6 interacting with the Network Interface and wvarious system
management functions on the SFG;

k®

5 2.1 PD Data Processing -

The GATEVP task performs PD register qualiFicatiaﬁ and any .
preprocessing of data before the message Teaches BASEWAY. This
includes:

o analgzing whether a3 status bit or data chanéed before sending
it to DASEWAY.

o determining whether to process trigger buffers.

o converting PD register data from BCD to binary numbers;

Data to be sent is first formatted into polled data messages:
Next, depending on the type of register being processad. one or more
data packets are packed into the message for transmission. The
process which GATEVP sends a data message to is part of that data’s
definition (the default.is DATA_PROC). One data packet i3 defined for
gach e2ach status or maintenance bit., trigger buffer, or data count
rezgister. Each polled data message has a header <containing the
sgquipment logical ID and a time—-date stamp. Each dsta packet is
identified with data identifier code.

Adding New Devica Support
D.5. 3 GATEWAY Task Wascher (TSKWCH)

The Task Wahcher task:

‘s monitaors the status of each task in tha GATEWAY system, and
informs the application when problems occur;

o handles system startup and shutdoun.
The Task Watcher task runs cantinuaously an the GATEWAY.
D.5. 4 Device Set Watcher (BUSWCH)

The Device Set Watcher fask monitors and caniTaols the
accessibility of device sets for the GATEWAY. I% is responsible for
initially determining wha®t device sets are currently attached to the
SATEWAY. I¢ is also respansible for synchronizing the access server
activity with these avents.]

D.5.5 Direct Access Server (DIRSRV)

The Direct Access Sarver task provides a direct driver interface
ta2 a pregrammable device, bypassing the protacol-handling features of

ihe PD support Ancillary Conttol Processes (ACPs). In addition: tha
task
o does not 3dd davice—specific protocol %o messzages sent o
programmable davices (allowing user application programs on
BEASEWAY to do protacol for special situations);

¢ performs simple transactions on the device networks.

The Direct Access Sarver is vuseful when a vandor—supplied
software program exists tc do downline loads, upline dumps., 2%c. For
axample:, in Modbus TM applications the standard Modicon software on
SASEWAY does ail of the protocol and rTetry processing and uses tha
Tirect Access Server to grocess one Modbus TM packet at a time.

D-&

Adding New Device Support
L.5. & Generic Access Server (GENSRV)

The programmasble device Generic Access Server is responsible for
serforming any generic i/ec to a programmable device. It performs
raegister read/write functions, «¢oil read/write, unprotected memory
access. etc. Thus, application programs tunning on BASEWAY may read
and write to programmable devices without regard to protocols., unigque
device architectures, addressing schemes: and other such matters. The
“zneric Access Server task:

o Aaccesses devices via simple requests such as "read register.”
"write coils, " etc.: ‘

o handles protocol, retries, etc., in conjunction with the
device support ACPs.

The request and teply messages have the same general format
regardless of the make or model of device.

2.5.7 Polling Server (POLSRV)

Tha Programmable Device Polling subsystem is implemented by <the
STLSRV task. It is responsible for systematically “poalling" each PD
d informing the rest of the system whenever polled data changes.
e Polling Server task is driven by tables which are initially built
nw the application and .are loaded into tables in the GATEWAY by the
£vent Processor task. Polling is done for each device specified in
the table, with a given set or sets of data definitione heing pollied
3% specified intervals. In general, data from the scans is sent back
z2 BASEWAY only if a point value changes.

e}

The POLSRY task is also a highly data—=driven program. it scans
the data structures in the Virtual Data Region, pausing at specific PD
colling set blocks to poll selected PD data. Whether a FD 1is palled
iepends on a number of flags and status bits in the VDR data
structures, and whether polling a PD generates any further processing
iepends on the previous contents of the registers and the data type.

Adding New Device Support
D.5.8 Adding a New Device to a GATEWAY -

The Followiﬁg steps may be used as a guide to adding a new device
to the SHOP FLOOR GATEWAY:

1. Decide if a terminal driver can be used. I# it cannot, you
must writa @ device driver and ACP (optional) ta communicate
with the new programmable devi;n.

2. Edit SFGSROOT: C(SOURCE. DIMIDEVCOD. MAC, and add the new device
manufacturer and model codes.

3. Create a new Device Interface Module (DIM) for the new device
(see Appendix C).

4. Edit SFG$ROOT: (SOURCE. DIMIDEVVEC. MAC to include the new DIM.

S. Relink DIRSRY, GENSRV, and POLSRV to incorporate the new DIM.

6. Copy DIRSRV. TSK,. GENSRY. TSK, and POLSRV. TSK to SFG$SYSTEM.

~

Modify SFGSSYSTEM: SFGVMR. CMD to load the driver and install
the ACP. o :

8. Invaoke SFESSYSTEM: GATEWAY. COM. : lf
See the SHOP FLOOR GATEWAY Software Installation Guide and !

Raleasa Maotes for help with system tailoring.

D.& Adding A New Device to BASEWAY

The follaowing steps can be used to add a new device to BASEWAY:

1. Update the madule BASE_DEVICE_TYPE_DEFS in BSLS$DEFS library
ta reflect the new manufacturer, device, network, a2tc.

2. Recompile . BSL$ROOT: [SOURCE. LIBRARYIFDAPGMFR. PLI,
PDAPGMOD. PLI, PDAPTMFR. PLI, PDAPTMOD.PLI, UARBFMFR.PLI. and
UARBFMOD. PLI and insert the resulting obyect files in

BSLSLIBRARY.

3. I# the device will support vuploading: downloading. and
comparing, then create subroutines for each function and add
refeTences to these subroutines in

BSL$ROOT: [SQURCE. LIBRARYIPDAPDNLCD. PLI, PDAPUPLOD. PLI, and
PDAPCOMP. PLI. ’

Adding Mew Device Support

If the device will not support these functions, <then
modify PDAPDNLOD, PDAPUPLOD, and PDAPCOMP to return a
PDAP$_NOTSUPPORTED status condition.

If the device will support start and step functions, then
modify PDAPSTART and PDAPSTOP to send appropriate requests to
the SHOP FLOOR GATEWAY. If the device will not support these
functions, then modify PDAPSTART and PDAPSTOP to return a
PDAP_$SNOTSUPPORTED status condition. :

If any device—specific errors need to be parsed, moedify
PDAPERROR to parse it.

Add commands ta PDAPTRAN t¢to translate ASCII addresses to
"internal addresses" that the GATEWAY DIM recognizes.

Add code to PDA?NXTAD to find the next valid internal address
for ¢this device.

Modify BSL$ROOT: LSOURCE. UTILITY. EDTBASLINIEDTDEVDEF. PLI to
reflect new device parameters and network. Relink EDTBASLIN.

Adding New Device Suppoart

APPENDIX E

SLOSSARY

The +following termindlogg is intended to aid the user in
undersztanding various concepts and terminclogy used in the BASEUWAY
system.

sddress — address in a programmable device (device—dependent).

ipplication = set -of programs performing & 'single funciion. An
plication may be defined to Tun on up to 4 VAX processors, but can
.1y be active on a single processzorT. processors via DECnet. ’

£ASEHAY node = VAX/YMS processor which loads and initializes the
Y and receives data from the SHOP FLOOR GATEWAY.

compiled address - an internal representation of a programmable
izvice

nt1$1er - a unique internal identifier that is assigned to a
m at definition time.

2ta i1tem - Tepresents & unique piece of data associated wit! a shaop
loer device. Data items may be gathered automatically from a SHOP
LOCR GATEWAY, or may be updated via a callable subroutine interface.
ach data item has a value associated with it.

lﬂru

fdata nafme - a unique name assigned by a user to a data item.

clossary

device - See Pfogfammsble Device. device set - a <collection of
programmable devices that are connected to a SHOP FLOOR GATEWAY. Up
%o four device sets may be attached tc a single gateway. Although a

devica set can be defined for up to 4 gateways, it can only be active
an a single gateusay.

equipment - a polling unit, nat necessarilq physical equipment.

gateway (data collector, SHOP FLOOR GATEWAY. or SFG) - a FOP-11
processor dedicated +o the task of communicating with shop #floor
devices. Acts as a "gateway" between the shop floor davices and- an
applicatian. May be up tao 4 per BASEWAY.

host node - a VAX/VMS pracessor which loads, initializes, and recaives
data from the SHOP FLOOR GATEWAY.

interprocess communication - message—passing tacilitiesz wnich alliow
zwe processes to communicate. A message is created and then the data
t2 be sent is stored in it The message 1is %then sent %3 *the
destination by calling +the SEMD procedure., specifying 3 destination
sart.

intarproca2ss message - a message sen#'ﬁrom one proecass s aneihar.
g ‘- o le

hesa massages have a standard header associated with

iine = sne of the three sets of § lines on a single callecior. :
it of § lines cannects tc § Allen-8radley Data Highway Tt ., & Modi
“todbus T™ networks, or tarminal support drivers:, for bar—-code scanner
s=2vices.

mussage code = a unique message identifier in the ran

wy

[Y]
-

|

|
[ll
[
~
o
~

sage part = a value af type PORT represents a szyscem—-maintained
val

nas
mz2ssage queue. PORT wvalues are unigque in that they are id anywhere

:n the network (including in other applications’. Thusg. transmizsion
2f messages betwee2n ftwa processes is complefely tranmsparent. Cnce
writ¥ten. programs can bte dis®ributed and redistributsd ameng the
natwcTk nodes with no changes.

named messsage ports = names can be ‘given %tz massage gporits t2
facilitate communication betwesn jobs. Names exis®t as systemwide or
grougwide logical names 2quating %the port name wi%th a part identifisr

Glossary

. NAU (network addressable wunit) - an internal numeric identifier
%hﬁ ssociated with a particular data stream within a system. Normally, a
ocess has a single NAU allocated to it, but may have more. Up <¢o

127 permanently assigned NAUs and 127 temporary NAUs are available.

NAX - an internal numeric idéntifier associated with a system.
Acsigned at system definitien time.

netwerk - a series of systems im a DECnet environment.
node — a3 processor. that is connected to other processors via DECnet.

polling set — each machine may have an vunlimited number of polling
sets: each characterized by a polling +frequency (.1 seconds—=30
minutes), a starting register address, and the number of consecutive
registers to be polled.

process — a single program running on an application. Equivalent to
VAX/VMS processes and RSX-115 tasks.

< programmable devices = up to 32 or &4 stationms on each Medicon Modbus
i&, 1 or Allen=Bradley Data nghwag TM line, or terminal suppert driver
) 27 bar code scanners.

register — data register or status register. May be bit (or coil).
byte, word, longword, or string.

shop floor entity — physical or logical entity in the shop floor that
is referenced by a unique name. Each has a unique number assigned to
it at definition time. Examples are machines, conveyors, departments,
work cells, maintenance cribs, and stations.

system - an application, device set, or gateway. ' Referenced by a
unique name. '

adding new device support

‘Address

definition aof
Application

definition of .
Anplication control Pac;lztg
Applications . .

and interprocess messages

limit
Audit trail

purpose of .

report .

" BASEWAY

‘-i

active processes . . .
and SHOP FLOOR GATEUAY .
and VAX FMS ..
audit trail in .
compiling and lxnxxng

VAX BASIC . .

VAX BLISS-22 .

val ¢ . .

¥YAX COBOL .

VAX FORTRAN

VAX PASCAL .

VAX PL/I
date files .
defining term:na1= to
defining users %o
editors

configuration
facilities of
mailboxes in .

manufacturing appl1cations Fof .

menu . .
customzzzng
cverview of . .
procedure parameter notatzon .
programming interface for
Shutdown .
Startup
subroutine descr;ptzons
subroutines
including in user program
cverview of
programmable d=»1ce

INDEX

1-4, 1-7
1-16

4-1
4-1 to 4-2,

Index-1

4"6' ’

4-8. 4-10,

4-201

4-22 to 4-23, 4-27. 4-31, 4-344,
4-47, 4-53, 4-58. 4-&0, 4-62.

4-44, 4-57
rulaes for inveking A=1

system functions 1-4

tasks s 1-12
Compiled address

definition of¢ E=1
Data formats

message specific 2-4
Data identifier

definition of E-1
Cata item

deafinition of E-{
Data name

definitiom af E=1i-
Data types 1-14

atomic . . e e e e e 1-16

mxscellaneous e e e e 1-14

string 1-1%
BAaTA_PROC 1-14

example af . . coe e 1-19

salled data haﬂdlzng mz*h e i-14
Davice Interface Modulaes

sae DIMs c-1
Davice set .
definifisn of o . . . E-2
Davice Set Watcher D=4
Seavice support ’

svarview af D-1
.JI‘YS C"I

cancalla+1an runct1an o C-12

code-generating macros- C-20

direct access Ffuncition . . c-14

direct ac;ess garvice nassage +ormat C-14

exampl e e C=-27

Functions e C=-3

generic access C=17

generic access service message format C-17

initializatioen function c-12

main raukines in C-1

savver interacHion with Cc-1
Cirect access . . e B-3, C-9. C-14. D-&

service message Forma+ o C-14
Zq Generic I/0 Request 2=3
Documentation

associated with product . 1¢

for addivional device =uapart . -1

index=-2

P Equi#ment

Message descriptors

éﬁf definition of E-2
uipment access . B-3
zvent Processor . . B-2,
see also EVENT PRGC B-2
EVENT_LGG . 1-13
EVENT_PROC . 1-13
Functions A-1
SATE_INIT i1-14
Fateway :
definition of E-2
Gateway Loopback 2-7
Generic Access D-7
Zeneric access . . 1-4,
service message Format . C-17
Generic Server B-2
see alsoc Generic a:cess B-2
Get Gateway Status . 2-8
Z2t Network Status for eatewag 2-9
Set Polled Dev1ce Statistics . 2-9
Hast node E-2
Intarprocess communication . E-2
g InteTpTTo¥SE MEBSIGES i-8,
ib/ and data formats 2=4
' between applications 1-9
between gateway and appllcatzon 1-9
message codes in . 2=-3
NAU . 2=-3
permanent 2-3
temporary 2-3
NAX . 2-3
purpose cf . 2-1
structure of . 2-1
L.“%BS . C—ll
LCBs . C-8
Line E-2
Line Acress Block
see LABs C-1
iine Contreal Block
see LCBs C-1
Locg Event 2-10
Massage code
definition of E-2
Message codes 2=-3

Index-3

prototype for
scalar .
stTing
Magssage part
definition of
Massagas
routing of .
Messaging Faczlz*g

Named message parts
definition of
May
definition of
MNAX
dafinition of
NET_INTER
MatwoTk
datiniticon of
N2twerk Interface .
see also NET_INTER
Mada
BASEWAY
definition of

Fassing arguments
by address

by descriptor
by raference

by valua

s1lad access
Fazllad Satver

e
-
-~

lad access

i
[]
[
[]
x]
LK
[¥]
—

0
o

D 3

et data

Server

32t

initicgn of .
dure descriptions

o
)

[0 L I A]

o

D e oeall e D
p |
M:ZIQ u

[V I PR T T & B
[|

'U

DO an

3
inition aof
rammabls devices
2ss %9

i

ns

,,
[T TR+ By~ Wy v }
anua

BAUENAY .
jgarteway
Tolled

& processing
rinition of
imi

d'Ol’J

aan
mmo

1-17
i1-18
1-18

E-2
1=3
1-9
1-4

E-2
E-3

E-3
1-12 to 1-13

E-3
' 3—2; D=4
B=2

E-1
g-3

3-1
3-1
3=1
3=1
3-1
1-4. B=-1. £-%
3-2
B=-2
B-3
B-3
D=7

E-3
3-5

E-3

E-3

B-3

B-1. D-1
D-1

D-8

D-8

1-4

D-5

1-1 %o 1-2
1-3

Index—-4

r

')

direct access to
generic access to
known points in
data formats
monitored .
programmable devxces
known points in

Register
definition of
Feload VDR
Rzset Network Count=
Ra2turn status codes
testing

sion control fac111tq
watewaq Time .

N m 1(]
G <t m

Mo

see SHOFP FLOOR GATEWAY .

S0P FLOOR GATEWAY .
and PDP-11 processor
components of
definition of
features of

- functions of .
initialization of,
limit

sampling datu bg
-tutdown Application

-*art Polling on a Device

Stop Gateway

-*‘p Pelling on a Devzce
sproutine calls

System

definition of

If] lal l

Task Watcher .
Tzrminals
definition of

effect on vuser aeF:nztlon

=
s

ers
definition of

%’”S"R NS
files

2-10
2=-11

] |
e R

XY

ﬁlm-rraCIm

PRON
N I |
[T

[(ANA

o m
| U
o W

[Sare
[|
o O

Index-5

to B-2

0
a
o

[

1
k]

