

Page 2

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Table of Contents
Porting OpenVMS to HP Integrity Servers 5

Fatal Bugchecks on OpenVMS Alpha and OpenVMS I64 Systems 35

Disk Partitioning on OpenVMS: LDdriver's Secrets 55

Threaded Tests in the OpenVMS Cluster Test Manager (CTM) 67

 Porting TDMS - The Gory Details 83

 Protecting and Monitoring OpenVMS Systems 89

 Porting RPG: Moving a Compiler to Itanium 99

 Using Python for OpenVMS Web Development 105

 Case Studies Using EMC Legato NetWorker for OpenVMS Backups 113

 Automatic Program Generation with MySQL and PHP 121

Page 3

Page 4

OpenVMS Technical Journal V6

Porting OpenVMS to HP Integrity Servers

Porting OpenVMS to HP Integrity Servers .. 2
Overview .. 2
The Early Days... 2
Research ... 3
Big Decisions ... 4
Technology Overview ... 6
The Plan .. 7
Development Begins ... 9
Boot Contest .. 14
OpenVMS V8.0 – June 30, 2003 .. 16
OpenVMS V8.1 – December 18, 2003 .. 17
OpenVMS V8.2 ... 18
Summary... 20
Acknowledgements... 20

For more information.. 21

© Copyright 2005 Hewlett-Packard Development Company, L.P. 1
Page 5

Porting OpenVMS to HP Integrity Servers - Clair Grant

© Copyright 2005 Hewlett-Packard Development Company, L.P. 2

Porting OpenVMS to HP Integrity Servers
Clair Grant, OpenVMS Base Operating System Technical Leader

Distinguished Technologist, Hewlett-Packard Company

Overview
This article describes the 3.5 years of work that went into porting OpenVMS to Integrity Servers. A
little history, the rationale behind the major decisions, and some technical details are combined to
present the engineering that resulted in OpenVMS I64 V8.2. First there is a chronology of the major
events and decisions of the project. The concluding sections provide details of some of the technology
that we found the most interesting and challenging and how they came together to produce the
preliminary and final releases.

The Early Days
Decision

During the first half of 2001, a group of senior COMPAQ engineers completed an evaluation of the
Alpha processor. Alpha had held a performance advantage over Intel processors for several years.
However, the difference was getting smaller as time progressed. The evaluation team concluded that
even if all planned Alpha projects completed on schedule the two processor families would be
performance equals in approximately 2005 and Alpha would almost certainly fall behind in the
future.

The economics of future Alpha development were simply no longer feasible. The work on the EV7
that was in progress would continue, but that would be the end of Alpha processor development and
the associated hardware platforms would be the end of the Alpha line. All EV8 processor
development was terminated.

Announcement

On Monday June 25, 2001, senior COMPAQ management publicly announced that Alpha
development would be terminated and that OpenVMS would be ported to the Intel Itanium
architecture. The message to customers was clear: in the future there will be faster systems at a lower
price than if the current Alpha plans were continued. They also said when it would happen:

“We will deliver a production quality release of OpenVMS in 2004.”

This was a shocking announcement, not only for the public but also for OpenVMS Development!

The promise to application providers was that they would “Recompile, Relink, and Go.” A popular
variation of this became, “You are a qual away” from running on HP Integrity. This was an extremely
bold message, since we had not even begun to research the details of what needed to be done.
However, it became an extremely powerful measuring stick for implementation decisions made
throughout the project.

Another aspect of this huge undertaking was that the existing Alpha OpenVMS roadmap would
remain unchanged. The importance of this should not be underestimated. It was critical to our
customers. Plus, a large number of engineering resources (engineers, build team, release team,
business management, qualification and verification, documentation) were already committed to the
next OpenVMS release and that could not change.

NOTE: Within just a few days of the announcement I received many mail messages saying, in one
form or another, “You people are crazy! VMS will never run on a processor with only two privilege
modes!” I attempted to reassure them that “Itanium is indeed a four-mode processor, just like VAX,
and VMS will be just fine.”

Page 6

Porting OpenVMS to HP Integrity Servers - Clair Grant

Research
June 25, 2001 was not only the day of ‘the announcement,” it was also the day we started working
on the project. First, it was communicated to our customers and application providers what we were
about to do and what it would mean to them. We also met with engineering and field organizations
that would be affected by this new direction. Finally, we formed the initial team of engineers to do the
research that would be the input for the plans and schedules.

Read the Manuals

The Intel websites have a great deal of relevant information: white papers, current hardware
offerings, future plans, etc. We started reading the Intel IA-64 Architecture Software Developer’s
Manual, a 4-volume set that would be, and still is, our primary source of information for the
architecture (available from http://www.csee.umbc.edu/help/architecture/). The Advanced
Configuration and Power Interface (ACPI) specification from Intel was also critical. But we knew this
would not be sufficient; we needed to talk with those who architected and implemented the system.

Question: When is a word not a word?

Answer: When you put the Intel Itanium terminology and Alpha terminology side by side.

A byte is 8 bits in both architectures, but that is where the commonality in data sizes ends. The
VAX/Alpha “word” is 16 bits long, whereas the Intel “word” is 32 bits. (See Appendix A - How to
Make Your Head Hurt for the complete comparison.) Once we got beyond the “communication gap,”
we wondered how we would document such a fundamental difference. Finally we decided that we
would continue with our long-standing tradition of documenting only OpenVMS, and ignore the
terminology difference completely. It was the easy way out, but every alternative we considered led to
an ugly documentation strategy that did not make anything clearer.

Talk with Engineers

Some members of the COMPAQ compiler group had Intel experience as a result of previous projects.
The GEM backend used by the OpenVMS compilers was already “Itanium-savvy.” We sought the
advice of the compiler developers as to how we should get started. They would soon play a critical
role, because compiling the code would be our first step in the porting process.

Just as we were starting to gain a little “knowledge momentum” and realizing where some major
decisions might be needed, the next “announcement” occurred: COMPAQ and HP were proposing to
merge. This was announced just days before the annual COMPAQ Enterprise Technology
Symposium, so the entire tenor of that event changed over night. Little did we know at the time that it
would take eight months for the merger would be completed. It was not until May 7, 2002 that
OpenVMS become part of Hewlett-Packard.

Historical Footnote: The first public engineering presentation of OpenVMS on the Intel Itanium
Processor Family was at the annual COMPAQ Enterprise Technology Symposium in Anaheim, CA.
The presentation was scheduled for Tuesday morning – September 11, 2001. However, the world
stopped that morning and watched in horror at the tragic events at New York City’s World Trade
Center, western Pennsylvania, and the Pentagon in Washington D.C. The entire COMPAQ
conference resorted to a make-shift schedule for the rest of the week.

Part of the “First Announcement” was that Tru64 UNIX would also be ported. Some of the Tru64
engineers had Intel experience from other projects. Since we were all in this together, we jointly
invited a small group of Intel architects to Nashua in mid-September of 2001 for a 3-day seminar
covering the instruction set, operating system interfaces, the boot path, and ACPI. It was a real eye-
opener! The manuals had brought us a long way with the basics but the face-to-face conversations
made it clear that we still had a long way to go. Fortunately, we now had engineers to talk to
whenever we had questions.

HP had codeveloped the Itanium architecture with Intel so all of HP’s systems were moving in that
direction and we were already porting OpenVMS to the desired platform. Immediately, on Tuesday

© Copyright 2005 Hewlett-Packard Development Company, L.P. 3

Page 7

Porting OpenVMS to HP Integrity Servers - Clair Grant

May 7th, we were called by HP firmware engineers offering to help us in any way, and we also
started conversations with the HP-UX engineers. Another May 7th event was the joining of the
COMPAQ and HP networks and e-mail. Access to documents and engineers was just a few key
strokes away. It was gratifying, as well as tremendously satisfying to realize that in a matter of hours
we had access to large development organizations who were eager to share their knowledge with us.
After all, they had already overcome many of the hurdles we were about to encounter. Their
knowledge would prove invaluable.

The book ia-64 linux kernel by David Mosberger and Stephane Eranian was extremely helpful. In the
spring of 2002, OpenVMS engineers attended a seminar in Marlboro, MA, presented by Mr.
Mosberger. An excellent reference for anyone wanting to learn about the Intel architecture, the book
is available from http://www.lia64.org/book/.

Big Decisions
Very early in the project, we had to make some big decisions that had significant technical
implications for porting the code. In some cases, these decisions would be visible to our customers.
The following sections describe many of those decisions, but always there was the overriding theme
that we stated at the beginning: this was not going to be a “bug-for-bug” compatible port of the
existing Alpha code. We would make decisions, even drastic ones, if they would make a better
OpenVMS in the future. As you will see, we pushed the limits a few times, but the quality of the
product and the needs of our customers was our paramount concern.

1. Implement the Intel Calling Standard (and More)

This was a completely unanticipated outcome. After lengthy evaluation we stunned everyone,
including ourselves, when we decided to implement a variant of the Intel Calling Standard. In
addition, we decided to use the more universally known Executable and Linking Format (ELF) and
Debugging with Attributed Record Formats (DWARF) standards rather than our unique OpenVMS
standards.

The calling standard decision was based on a combination of considerations. For the benefits of
performance and shared software technology, we tried to use the Intel conventions as much as
possible, straying from them only where necessary in order to preserve user-visible characteristics that
are essential for multilanguage compatibility and interoperability, features that came from the original
VAX design. We knew that creating such a hybrid design was a monumental decision, but over the
next couple of years we came to realize that even “monumental” was a gross understatement!

The decision to use the Intel calling standard required us to create the Calling Standard Committee,
which consisted of compiler, run-time, and OS experts. Their job was to systematically evaluate every
detail of the OpenVMS Calling Standard for VAX and Alpha systems and work out what should be
preserved, what had to change, and how best to support the "Recompile, Relink and Go" message.
This decision had to be communicated early to Intel compiler developers because the OpenVMS C++
and FORTRAN compilers would be coming from Intel.

2. ELF/DWARF File Format

Selecting the ELF/DWARF file format caused enormous shock waves. The compilers, the linker, the
librarian, the debugger, the dump analyzer, and the image activator (just to name a few) would have
completely different formats of input and/or output. But we wanted to make OpenVMS more receptive
to the world of porting applications and analysis tools. The system would be more accessible to
applications because it would have more well-known internal formats and more developers would
understand them.

One of the goals of the project was to make OpenVMS more portable. Who knows, maybe someone
will be doing this again! The calling standard, ELF, and DWARF decisions doubled the length of the
port of OpenVMS, not just in the coding time but also in the conceptualization and the debugging of
completely new implementations. It was hard work, but OpenVMS is a better system for it.

© Copyright 2005 Hewlett-Packard Development Company, L.P. 4

Page 8

Porting OpenVMS to HP Integrity Servers - Clair Grant

3. No Compiler for Alpha Assembler Code

Half of OpenVMS is written in MACRO-32, so we needed a compiler. On Alpha we have the
AMACRO compiler, so we created the IMACRO compiler on Integrity. As for Alpha assembler code,
we concluded that there isn’t much of that around, especially in the application world, and there
probably would not be any more written. We could make it easy to rewrite most Alpha assembler by
providing the right compiler built-ins for instructions and the right library routines for internal calling
standard knowledge, like stack unwinding. These seemed to be the two reasons most implementers
wrote Alpha assembler code.

The Integrity C compiler would not be supporting the asm construct. We validated our theory by
rewriting all of our existing asm code in C; that is, we never replaced a C asm that contained Alpha
assembler with Intel assembler code. This was a very good sign and, although it was not a silver
bullet for all applications, it confirmed our “no compiler” decision.

4. Binary Translator for Alpha Images

On Announcement Day we had said that there would be no binary translator, as there is for porting
from VAX to Alpha. The binary translator is a very large and difficult piece of code. This decision had
implications for numerous components of the system. Components of the base operating system, some
RTLs, and even the Alpha firmware have specific code just for the binary translator. Not creating a
translator would have saved us a lot of work, but it became clear that it was necessary for the
customer offering. We contracted this work to Software Resources International (SRI) , since they
specialize in this type of application and already worked with us on other projects.

5. Ada – Yes; PL/I —No

OpenVMS is written almost entirely in MACRO-32, BLISS, and C, and we knew that a little Intel
assembler would be necessary. We could go a long way in the port with nothing else. However, we
do have a little Ada cade, and it is popular in a few OpenVMS customer segments. We decided to
contract with Ada Core Technologies to provide an OpenVMS I64 Ada compiler.

But we decided against a PL/I compiler because there is very little PL/I in the OpenVMS application
world and PL/I-to-C translators are available. (In the end, we did rewrite the PL/I part of MONITOR in
C! The result is common code for Alpha and Integrity.)

6. Default Floating Point Format is IEEE

The Floating Point format was a gigantic decision that came with far more ramifications than we
originally anticipated. On Alpha, VAX floating point formats (commonly known as F/D/G) and IEEE
are all implemented in the hardware. In other words, there is no performance advantage to convert to
IEEE. For OpenVMS on Integrity, the VAX floating point formats are emulated in software —only IEEE
is in the hardware. Depending on the application, the performance difference can be significant.

We decided to make IEEE the OpenVMS default on Integrity. If you compile without a format qualifier
on Alpha, you get VAX floating points. On Integrity, the same compile command will produce IEEE
floating points. Although this affects some calculations in the highest degrees of precision, we could
not justify the performance hit from defaulting to emulation. For those applications where the slower
software emulation is an acceptable solution, the OpenVMS Integrity compilers support F/D/G by
using the /FLOAT switch.

7. Math Library

The math runtime library is one of the most visible performance-critical components of the system. On
Alpha, it is written in C specifically for the Alpha architecture. Recompiling it on Integrity was not
acceptable. A viable alternative appeared to be the Intel Itanium math library, which is optimized for
the Integrity architecture. We decided to get the math library from Intel. Part of the announcement
included sharing compiler technology with Intel, and this was one of the first cases where we reaped

© Copyright 2005 Hewlett-Packard Development Company, L.P. 5

Page 9

Porting OpenVMS to HP Integrity Servers - Clair Grant

the benefits of it. The drawbacks were minor, and vastly overshadowed by the performance
improvements, and we were better prepared for future changes.

8. Expanding the Kernel Process Model

On Alpha, a number of OpenVMS system components, such as RMS, the XQP, and DECnet,
managed multiple threads of execution on their own; that is, they each knew the details of a context
swap and implemented the pieces their individual environments needed in order to suspend and
resume execution contexts. Due to different “context” details, these implementations would have to be
rewritten for Integrity. We knew some customers had also made similar design decisions. These
changes are difficult on any system, but they are particularly challenging on Integrity. Considering
the number of components we would need to modify, this would be a daunting task. Likewise, it
would be a huge task for customers porting to Integrity. Therefore, we decided to enhance an internal
mechanism called “kernel processes” to be callable from any mode and modify all of the OpenVMS
components with private threading to call the enhanced routines. Writing the extremely complicated
code once and then converting the callers was a much better approach and it would increase the
maintainability of the code immensely. An additional benefit would be common code for Alpha and
Integrity. We have a paper with examples (google EXE$KP_START) about converting to the new
routines (highly recommended) rather than porting their Alpha code.

9. Licensing

We were concerned about being a new HP offering. Licensing OpenVMS was totally different from
any of the company’s existing products. This would not be necessary if we were willing to make a
rather large change. For Integrity (but not Alpha) we decided to adopt the licensing model of HP-UX,
in which you purchase a level of operating environment (OE). This would require significant work on
our part but it was the right strategy to pursue.

Technology Overview
The vast majority of code in a large and complex operating system like OpenVMS has no
dependency on the platform or CPU architectures. For example, device drivers, network protocols,
clusters, lock manager, and the file system required no recoding to run on Integrity. However, we had
some very big architectural challenges and there was a great deal of work to do in a few
concentrated areas of the system.

The next few subsections describe the components of the base operating system that made up the bulk
of our work. The components fall into one of the following categories:

1. Those that are analogous to Alpha but different in detail.

2. Those that are unique to Integrity.

No Alpha Console

On Alpha, the console is part of the firmware package. It plays an integral role in booting the system
and in device discovery for OpenVMS. The Intel Itanium architecture boot path is by necessity a
generic and minimal environment, since its goal is to accommodate the basic needs of a number of
operating systems without being specific to any. Therefore, the boot path would be completely new
code up to the point of starting SYSBOOT. On Integrity, OpenVMS itself provides many of the
runtime services that are provided by the firmware on Alpha.

No Alpha Privileged Architecture Library (PAL)

The PAL is another part of the Alpha firmware package. While the Alpha architecture is operating
system agnostic, it allows an operating system to provide its own specialized PAL. The OpenVMS PAL
contains code for the VAX queue instructions, the VAX special registers, VAX IPL and privilege mode
change management, interrupt handling, knowledge of PTE format for translation buffer misses, and
alignment faults. Thus, code written specifically to use these features on a VAX can run unchanged on
an Alpha. Again, OpenVMS itself would need to provide these functions on Integrity. Replacing the
Alpha PAL was especially challenging.

© Copyright 2005 Hewlett-Packard Development Company, L.P. 6

Page 10

Porting OpenVMS to HP Integrity Servers - Clair Grant

Different Processor Primitives

The Itanium register set is very different from Alpha, and vastly bigger. The Register Stack Engine is a
mechanism to help the operating system manage this large stack environment. It required totally new
code in OpenVMS.

The load-locked/store-conditional instruction pairs on Alpha guarantee atomic access to data in a
multiprocessor environment. Like VAX, Itanium has individual instructions that guarantee atomicity.

The new register set changes the way a process’s context is saved. Therefore, any code that did its
own ”threading” would need serious revision.

The Alpha PAL does a lot of interrupt processing before notifying the operating system of the interrupt.
One of the biggest parts of the porting project was the Software Interrupt Services (SWIS), Integrity-
specific code that completely controls interrupt processing and its associated mode checking and
management.

Calling Standard Impact

The Intel Calling Standard’s register conventions and stack usage are very different from those of the
Alpha Calling Standard. To avoid modifying many source code modules due to the register
differences, especially modules written in MACRO-32 and BLISS, we defined a mapping of Alpha’s
R0-R31 to Itanium’s R0-R31. The compilers automatically make the conversion, based on a switch.
However, programmers still need to know the register mappings when debugging. This mapping
found its way to scraps of paper taped to our workstations, from there to a PowerPoint slide, and
finally onto a mouse pad, which is still an invaluable reference. (See Appendix B - OpenVMS Alpha
to Itanium Register Mapping for the entire register set.)

Integrity exception processing uses “PC mapping” rather than the “frame pointer” scheme we are
familiar with on VAX and Alpha. Furthermore, there are two stacks to be coordinated: an integer
register stack managed by the hardware as well as the memory stack managed by the generated
code. On VAX and Alpha, programmers “walk the stack” in order to find information. The Integrity
memory stack has very little information of this type. To find a caller’s saved registers, programmers
use the current PC to index into the “unwind tables,” which point to the saved registers. The unwind
data created by the compilers is loaded into the unwind tables during image activation. Use of the
unwind tables is the foundation of exception handling.

NOTE: We made the LIBRTL calling standard routines usable from all privilege modes so there would
be a single OpenVMS source for this knowledge.

It seemed to take forever to get the base operating system and the LIBRTL unwind interfaces correct.
For months we received a steady stream of exception handling problem reports. Even after the code
functioned correctly, it was reworked a couple of times to improve its performance. As we expected,
this was a very difficult part of the project.

ELF/DWARF Impact

The decision to use the ELF/DWARF internal format resulted in a lot of new code and also made our
progress difficult to plan because the areas most impacted were our development tools. Creative
debugging ideas were at a premium, to say the least.

The Plan
During the latter months of 2001 we assembled the pieces of the development plan and plotted a
preliminary schedule. This was necessary in order to understand the early dependencies. It was not a
long-range plan, but it was just enough to get everyone moving and to determine whether we had a
grasp of reality.

© Copyright 2005 Hewlett-Packard Development Company, L.P. 7

Page 11

Porting OpenVMS to HP Integrity Servers - Clair Grant

Common Code Base for Alpha and Integrity

The first implementation decision was to have a common code base for Alpha and Integrity. (VAX and
Alpha have different code bases. We were not going to make that mistake again!) In practice, we
added Integrity support to the existing Alpha sources. There were three kinds of work:

• Creating a few Integrity-specific modules
• Conditionalizing code in existing modules
• Rewriting some existing routines so that they could be executed on both platforms

Having a common code base was going to make this a very different project from that of porting from
VAX to Alpha, as you will see.

External Help

Remember that we promised that ”the OpenVMS Alpha schedule would remain unchanged.” We
needed to do the porting work while the Alpha development work continued. Some of the new
Integrity work could only be done by a specific set of OpenVMS engineers. But a much, much larger
set of work would be closer to our “Recompile, Relink, and Go” direction.

EDS has supported many of the OpenVMS utilities for years and the engineers are familiar with a lot
of our code, build procedures, and integration testing. Therefore, we contracted EDS to port many of
the OpenVMS utilities and layered products, including some they did not already support. The EDS
engineers who ported and tested a large body of OpenVMS code were critical to our ability to meet
our schedules.

A number of contractors also played a vital role in meeting our early schedule demands. With their
prior OpenVMS internals experience, they contributed mightily right from their first day on Integrity-
specific code.

Project Dependencies and Schedule

Simply put, the direction was to write, compile, link, and execute. From the earliest stages of
planning, we knew that we would have BLISS and C compilers first, and then the Intel assembler (IAS)
and IMACRO a few months later; but the LINKER was far in the future. A lot of code was written and
compiled before we were able to link and debug any of it. This had many ramifications in the months
to follow. The LINKER would undergo as much change as any single component in OpenVMS, and
much of what we did for the next year, even after we released V8.0, was dictated by the evolving
capabilities of the LINKER.

The System Code Debugger (SCD) was also a distant promise. SCD is akin to DEBUG except that it is
used for kernel and driver debugging. Unfortunately we would have only XDELTA and print statements
for debugging for a very long time. We did not know how much this would affect our schedule. What
we did know was that, without SCD, everything would take longer.

The most difficult challenge was to make a sufficiently functioning OpenVMS available to the myriad
layered product engineering groups, such as DECthreads, JAVA, DECnet, TCP/IP, and DECwindows,
so that they could get going with their porting work.

VAX-to-Alpha as Reference

Many engineers working on the project also worked on the VAX-to-Alpha port a dozen years ago.
We tried to translate as much of that experience as we could into useful insights for the current work.
There were certainly some similarities but there were also major differences. Comparisons to the VAX-
to-Alpha port are inevitable. The striking difference at the technical level is what I call “broad and
shallow vs. narrow and deep.”

The VAX-to-Alpha port consisted of two major challenges:

1. OpenVMS had never been ported before. How would we compile all of that MACRO-32 code
and make it work in a reasonable timeframe?

© Copyright 2005 Hewlett-Packard Development Company, L.P. 8

Page 12

Porting OpenVMS to HP Integrity Servers - Clair Grant

2. OpenVMS was written specifically for the 32-bit VAX architecture. What would it take to make it
run on a 64-bit architecture? The Alpha architecture was the least of our worries, since each
Alpha system has OpenVMS-specific PALcode, which makes the system look very VAX-like. In
fact, the entire project was called EVAX, or “extended VAX.”

This was the “broad and shallow” project; tons of code needed to be changed, but for the vast
majority it wasn’t rocket science.

The Alpha-to-Integrity port had one gigantic challenge. Integrity doesn’t look anything like a VAX and
some concepts and code at the very core of the operating systems would be completely new.
Meanwhile, the vast majority of the system would require little work, if any. This was the “narrow and
deep” project — it would take far fewer engineers but the time required to get from “no bits to ship”
was about the same as the VAX-to-Alpha port.

Evaluation Releases

We decided to distribute one internal baselevel to a few select groups and then release two external
evaluation releases before the official Field Test. The internal baselevel would be provided to the
compiler groups so that they could verify that their generated code was working correctly.

The first evaluation release (E8.0) was to be a “cross tools” environment, where developers could
compile and link on Alpha and run the resulting image on Integrity. It would consist of a limited set of
compilers, and a large part of the operating system itself would be in place. There were restrictions,
but E8.0 would give our work a little exposure and would allow a few adventurous 3rd party
developers to kick the tires.

The second evaluation release (E8.1) would be released 6 months later and would provide a “native”
environment where code could compile, link, and run on the Integrity system. We would add more
partners as the system became more complete. We might even add another hardware platform at this
stage.

These two evaluation releases were for Integrity only. It was not until the official Field Test that both
Alpha and Integrity customers would see the new version of OpenVMS. (It would be the largest Field
Test in OpenVMS history, with 48 Alpha installations and 54 Integrity installations.)

Development Begins
It is impossible to pinpoint a precise day on which development began. During the next few months
bits and pieces of work were happening somewhat independently as the design team began to
understand what they needed. At the same time, procedures were established, defining the
development environment. By the end of 2001, momentum grew as a small group of engineers
became connected and started moving in unison. The first release stream code change was made on
January 15, 2002.

We were flattered by the confidence shown in us by The Inquirer when its headline of 1/2/2002
proclaimed:

Compaq boots VMS on Itanic

Cool. Even though this was still 13 days before our first code checkin, we enjoyed the publicity
anyway!

Compilers

In the beginning, we were limited to the cross tools environment. The compilers ran on Alpha and
generated code for Integrity. It would remain like that for a long time —a running OpenVMS on
Integrity was at least a year away. Once again, some creative thinking proved valuable.

We would get to a running system faster if the build compilers generated reasonable code right
away. The C compiler engineers built prototype Integrity Linux compilers to test the generated code
and ELF/DWARF generation on Integrity Linux systems. Much of the Linux work in the compilers had

© Copyright 2005 Hewlett-Packard Development Company, L.P. 9

Page 13

Porting OpenVMS to HP Integrity Servers - Clair Grant

already been developed for the Alpha Linux compilers that we were selling. Starting work on the
Integrity Linux compilers in September 2001, the compiler engineers used their existing compilers to
tested about 95% of the code generation and much of the ELF/DWARF generation that was needed
for the first system boot.

An important step in early compiler development was determining which built-ins OpenVMS would
need. The compiler teams looked at some existing Intel compilers and started with those built-ins,
adding a few more as the operating system needs became clearer. We needed far fewer built-ins for
MACRO-32 and BLISS, because new code that was specific to Integrity would be written in C.

OpenVMS has its fair share of C ASMs on Alpha. They allow:

• Referencing R26 as the caller’s return address register

• Programming atomicity with LOAD-LOCKED / STORE-CONDITIONAL instructions

Both the Alpha and Integrity C compilers defined built-ins __RETURN_ADDRESS and
__CMP_SWAP_QUAD, so we eliminated the ASMs and produced common code.

MACRO-32 code posed special challenges. It was easy in the VAX-to-Alpha port because the two
calling standards are more or less the same – we designed them that way. We were now faced with
a very different calling standard. One of the most dramatic differences is that the Intel standard
defines only four preserved general registers (R4-R7), whereas Alpha defines fourteen (R2-R15). This
meant that many assumptions in the MACRO-32 code were not valid for Integrity. IMACRO (the
MACRO-32 compiler on Integrity) recognizes this difference and, unless specifically flagged by a new
compiler directive, saves/restores registers that may be at risk. We also recoded these types of
operations when convenient, especially if they were performance sensitive.

CALLs to routines that return data in registers other than R0 or R1 must also be flagged with the new
directive so IMACRO will not overwrite the returned value. We devised a way for the LINKER to
provide diagnostic warnings when register assumptions could not be validated. This was painful in
the beginning but helped us immensely as time went on. We then defined all the linkages used by
OpenVMS in a new file $IA64_LINKAGES, which is inserted into each MACRO-32 source module
using ARCH_DEFS.MAR.

Another MACRO-32 problem was the hand coding of a CALL; that is, moving arguments into R16
through R21, putting the number of arguments in R25, and then JSBing to a standard CALL routine —
truly evil! All these occurrences had to be changed due to the different calling standard, so we
recoded them to CALLs. If the world were perfect everything would be a standard CALL, but that was
not exactly on anyone’s mind during the first 12 years of OpenVMS development. In a way, we had
made it ”too easy in VAX-to-Alpha” (a phrase we’ve uttered numerous times during the Alpha-to-
Integrity porting project).

BLISS global registers were an unexpected challenge. A BLISS global register is one defined to have a
common use for all modules in an image, such as RMS’s GLOBAL REGISTER that contains the FAB.
This doesn’t fit into any Intel register convention. BLISS code generation was enhanced to recognize
such registers with possible “live” values and protects them.

Many years ago there was a monster movie called The Thing. We encountered one of its descendents
– Not a Thing (known as NaT). NaT is the 65th bit of a register. When set, it says that the register
contents are invalid. It is used as part of speculative access. Unless you use a special instruction, you
can only save a register to memory if the NaT bit is 0 (the register is not NaT). In other words,
speculative access (no change) is allowed but a real change is not.

This was a new concept for IMACRO and it took awhile to work out the kinks. The operating system
struggled too, because correctly preserving the NaT state when switching context turned out to be
nontrivial. At last the monster was slain.

© Copyright 2005 Hewlett-Packard Development Company, L.P. 10

Page 14

Porting OpenVMS to HP Integrity Servers - Clair Grant

Learning Itanium Assembly Language

We had a goal of writing as little assembler code as possible but we knew there would be some.
How do we get started without an assembler? It would be a few months before IAS was ported to
OpenVMS; this was due to timing and schedules rather than degree of difficulty. Eventually we took
the Open Source IAS assembler and added our limited ELF extensions, a relatively small job. But in
the meantime we got an Itanium1 ProLiant DL590/64 and installed Linux. Reading the manuals is one
thing but we really learned about 3-instruction bundles, predicates, and unwind directives by writing
C code, compiling it, and studying the generated code on our Linux system.

In fact, the following were first compiled and debugged with GNU C and the assembler on Linux:

• SWIS

• EXCEPTION

• The Interruption Vector Table (IVT)

• The Translation Lookaside Buffer (TLB) miss handler

Compiling, linking, and debugging this crucial code depended on Linux tools running on Itanium
hardware for some time. This allowed basic OpenVMS functions to be ready when needed by IPB
and SYSBOOT.

When we originally made the decision to go with ELF/DWARF we didn’t realize how much it would
help us during early development. The theory of why it made sense for applications also made sense
for OpenVMS.

Replacing the Alpha PALcode

There were three primary areas of work:

• Interrupts, IPL, and privilege mode management done with little OpenVMS knowledge

• Direct PAL routine calls

• Memory management

For speed and simplicity, we defined a system service for each PAL call by creating the appropriate
header and library files for C, IMACRO, and BLISS. This got us going quickly and also made it easy
for later performance improvements.

SWIS is at the heart of what makes OpenVMS work on Integrity. Everything in the system that
requires a check for, or manipulation of, IPL and privilege mode is controlled by SWIS. The data in
the SWIS log became the mainstay of debugging the most serious problems we encountered.

Emulation of the interlocked VAX queue instructions was trouble from Day 1. There are many of them
and they are complicated. OpenVMS doesn’t work at all without many of these instructions.

The memory management changes consisted of virtual-to-physical address translation, alignment fault
handling, and PROBE emulation. We devised a scheme for maintaining Alpha virtual address
translation and address space layout with GH regions using the VHPT, a basic Itanium construct.

Porting Guidelines

We wrote a short document containing coding practices. Remember that we were adding Integrity
support to the Alpha source code while V7.3-2 for Alpha was in full development. The code itself was
not the only thing that needed work. The development environment required serious enhancement
because we would be building for Alpha and Integrity from common sources, using common building
procedures, on the same cluster. Porting guidelines were a must for all facets of the project. As this
small document matured it was used by other development groups, too.

You might expect “binary thinking” from computer programmers but we realized very early that some
of our existing code base and build environment had a very definite “it’s either VAX or Alpha”

© Copyright 2005 Hewlett-Packard Development Company, L.P. 11

Page 15

Porting OpenVMS to HP Integrity Servers - Clair Grant

approach when differences needed consideration. This was perfectly understandable given where we
were when we ported from VAX to Alpha; however, it was short-sighted and would cause much work
later. We were not going to make that mistake again.

One of our first warnings to programmers was, “watch out for those binary conditionals” and make
sure they turn into something as general as possible for the future. All conditionals had to be
meticulously checked and many of them needed modification. This was as true for DCL command
procedures as it was for C, BLISS, etc. This was so important that as each conditional was checked
the engineer added the comment “Verified for IA64 port” even if no change was needed. Here are a
few examples:

• IF VAX (…..) ELSE (…..) ENDIF

• IF ALPHA (…..) ELSE (…..) ENDIF

• IF VAX (…..) ENDIF followed by IF ALPHA (…..) ENDIF

It is easy to see that all these instructions have problems when a third alternative arrives. The first two
examples result in either the VAX or Alpha code being used on Integrity. This produces a compile or
link error on Integrity and the programmer has to figure out the necessary adjustment. But the third is
particularly troublesome because it produces, without error, no code at all on Integrity — not
desirable! We definitely underestimated the amount of work that needed to be done to our existing
conditionalized code. In order to maintain readable, common sources we frequently buried the
conditionals in a macro.

Boot Sequence Takes Shape

In the fall of 2001 we bought our first HP i2000s. We were still part of COMPAQ but the proposed
merger with HP had just recently been announced and we figured the i2000 would give us a head
start in our future company.

Very shortly we reached the point of needing regular, coordinated meetings for those designing and
writing code in the boot path. The first “Debug Meeting” was held on November 14, 2001, and this
meeting continued multiple times a week for almost two years. They were not status meetings; they
were for asking dumb questions, showing our ignorance, and especially learning from one another –
and they were usually somewhat entertaining. The Debug Meetings were for developers only —no
managers allowed, 30-45 minutes and get back to work. They were for down-in-the-trenches bits and
bytes discussion of what was and was not working and how to keep moving forward.

In the spring of 2002 we acquired some Intel “white boxes,” generic development starters,
engineering samples that are loaned to companies creating products based on Intel processors. These
white boxes nearly doubled our systems. In addition, we were learning different experimentation
techniques to assist us in our design and development.

For this discussion, the boot sequence is defined as the code needed to get from issuing the boot
command to having loaded all of the necessary execlets (the set of images that constitute the core of
OpenVMS). The code of interest is in:

• VMS_LOADER.EFI

• IPB.EXE

• SYSBOOT.EXE

• EXEC_INIT.EXE

Before describing the code we should review the generic Intel-defined boot path structure:

1. There must be a File Allocation Table (FAT) partition on the boot device. OpenVMS does not have
disk “partitions” in the PC sense. The OpenVMS FAT partition is a container file; that is, a regular
OpenVMS file with special contents and format on the system disk.

© Copyright 2005 Hewlett-Packard Development Company, L.P. 12

Page 16

Porting OpenVMS to HP Integrity Servers - Clair Grant

2. One of the files in the partition is the operating system’s loader. This file is created by each
operating system development group wanting to boot on an Intel Itanium architecture system.

As you can tell from the .EFI extension, the first code to execute is not an OpenVMS image. It is an
Extensible Firmware Interface (EFI) application written by OpenVMS Engineering that prepares the
system and then loads and starts IPB.EXE. IPB is the Itanium Primary Bootstrap, which is analogous to
APB.EXE on Alpha and VMB.EXE on VAX. In addition to the boot sequence logic, the loader contains
a primitive file system so that it can find, load, and start an OpenVMS image before the normal
mechanisms are available. Thus, even the very first piece of code executed has to know about the
inner construction of an ELF image.

The loader is completely new code for Integrity. One way to look at its function is that it gets things in
place so that IPB.EXE can function much the same as its counterpart on Alpha. VMS_LOADER.EFI does
many of the same things that the firmware does on Alpha, such as creating the configuration tree and
the HWRPB. In turn, IPB does as much as possible to make things the same on Integrity as on Alpha
for SYSBOOT.EXE. Once SYSBOOT.EXE starts, things look nearly identical to Alpha in terms of any
external interfaces (for example, stopping to examine or change system parameters). SYSBOOT.EXE
creates a number of data structures, loads a few execlets, and finally transfers control to
EXEC_INIT.EXE.

At this point, most of the platform-specific code in the boot sequence is complete. EXEC_INIT.EXE
loads the rest of the execlets (typically a couple of dozen), executes their initialization routines, and
transfers control to the SWAPPER process.

Another project theme was “don’t be different” without a very compelling reason. This challenged us
in a number of areas but none more so than ACPI with its relationship to the boot path. One
manifestation of “don’t be different” was if other HP Integrity operating systems did something strictly
by the Intel specifications, then OpenVMS should too. We went out of our way not to require special
treatment from the architecture or the firmware designers or implementers. Booting the system is one
of those areas where operating systems can vary greatly. Specifically, most operating systems consist
of one monolithic file that gets loaded. Knowing that any relevant code is already running, ACPI then
provides all the configuration data. This is clearly not the OpenVMS model you have seen in the
previous paragraphs.

Primitive Debugging

Before we had the luxury of a debugger or the ability to take a crash dump, various forms of print
statements were the only means of tracking down problems. We suffered with print statements for
awhile, still making progress. Then one of those silver bullets materialized – the instruction decoder.
The callable instruction decoder and instruction format structure definitions are the foundation for all
of the debugging tools, like DELTA, XDELTA, DEBUG, SDA, SCD, and PCA. In addition, the format
definitions are used by the base operating system during alignment fault handling. When XDELTA
became functional, breakpoints and single stepping instructions emerged to increase our productivity.
While most of the underlying debugging code was completely new for Integrity, there was one thing
that was “old.” Setting the PSR.ss bit is just like the Tbit on VAX, and much simpler than the way it’s
done on Alpha.

Being able to take a crash dump is a momentous event in a project like this and our first one
happened quite unintentionally. While stepping through some code, a breakpoint was incorrectly
positioned. A “;P” caused an ACCVIO and, lo and behold, a crash dump was executed perfectly!
The code had been recently compiled and linked and was just waiting to be exercised. It was one of
unusual moments where seeing a crash happen is a joyous occasion.

Early “Builds”

During the first half of 2002 a significant amount of code was written and the compilers began to
take shape. A few OpenVMS source code facilities were in the early stages of building for Integrity. It
was way too soon to think about doing a full Integrity build, so we concentrated on the few pieces we

© Copyright 2005 Hewlett-Packard Development Company, L.P. 13

Page 17

Porting OpenVMS to HP Integrity Servers - Clair Grant

needed to continue making progress. In the early days we built only those few images and then
copied them to an OpenVMS Alpha system disk, using that to test the early stages of booting. This
was a little cumbersome but it required only a few engineers and it moved us along quite well. One of
the nice things about using industry standard components was that whenever we needed a few new
disks we just went over to CompUSA and picked up a few — a very new concept for OpenVMS
development.

At this point in the project we did not yet have the LIBRARIAN, which is at the heart of how we build
most of OpenVMS. We changed the build process so that it does not create the big object library and
delete the .OBJs, and then we changed all of the link procedures to include the .OBJs directly rather
extracting them from the library.

Our LINKER capabilities were so limited at the time that OpenVMS was forced to run in a
dramatically unusual way. The LINKER could link a single image, but it could not yet link execlets that
call from one to another through the base image. Everyone who was around OpenVMS 20 years
ago (prior to V5.0) will remember the monolithic SYS.EXE. That was not quite what we needed now
but a very, very large SYSBOOT.EXE did fill the bill. During the very early days of debugging the
growing boot path, all the code that we needed that normally resides in the execlets was linked into
SYSBOOT.EXE. We didn’t need this throwback solution for very long, but every single day counted
and it kept us moving.

The first general Integrity build was announced on June 3, 2002. It was really the starting point for
everyone who was not working on the boot path to see the result of compiling their code. (Loosely
translated, this meant discovering just how well MACRO-32 code survived the new IMACRO
compiler.)

Now part of HP, we received our first internal shipment of rx2600s in July of 2002. The project was
starting to look almost normal ― regular builds, regular meetings, a growing number of development
systems, and some code that worked. With the i2000s, the white boxes, and now the rx2600s, every
developer doing significant work had a system for exclusive use. As the number of implementers
grew, so did our need for more and better procedures.

Since we had no networking capability on Integrity yet, we needed a way to quickly and easily move
files from our development cluster to the Integrity systems. We took an HP disk system 2100 (a “pizza
box” or “pancake”) and connected it to a small OpenVMS Alpha system and six Integrity systems,
replicating this setup numerous times. This is a completely unsupported configuration, of course, but
with careful mounting and dismounting it works. We would build on the development cluster and
copy the resulting kit to the ”server” Alphas. Individual developers did system disk builds on their
designated disk, dismounted it, and booted their Integrity system.

It was about this time that we were starting to realize how much larger the image size on Integrity
was, due to relocation data, unwind data, and the number of instructions. Added to that was the
traceback information that we had decided to create, to help with debugging in the field. The result is
that OpenVMS images on Integrity (application software as well as the operating system images) are
on the order of three times larger than the corresponding image on Alpha.

Boot Contest
The “First Boot” is always a milestone in a project like this. From the technology standpoint, however,
it is only a minor proof point that the final goal might be attainable. So much under-the-hood cheating
is going on that it borders on fantasy. For the most part, people understand this. Nevertheless, given
the building anticipation, it is still extremely exciting.

The first boot of OpenVMS on Integrity became a public contest. Predict exactly when it would
happen, and win a prize! (This just added to the pressure when we were struggling to get anything at
all to work, let alone do something as identifiable as a system boot.)

Every contest must have rules. Here was the official definition of “first boot:”

© Copyright 2005 Hewlett-Packard Development Company, L.P. 14

Page 18

Porting OpenVMS to HP Integrity Servers - Clair Grant

1. System must boot “MIN.”

2. Must be able to login as SYSTEM.

3. $ DIRECTORY returns the correct list of files.

There was no requirement for security, network, clustering, SMP, batch, editor, or anything else not
absolutely necessary.

In estimating the expected date for the project plan, we looked back to the VAX-to-Alpha port, when
we booted OpenVMS six months after we had reasonably reliable, linked images. Back then we were
working on hardware that was in development. For the Alpha-to-Integrity first boot, given that we
were using Integrity systems that were shipping HP products, we reasoned that it might take half as
long, so we established the goal of three months, which translated into February 13, 2003. Diligent
engineering plans notwithstanding, someone announced to the world that we were trying to boot by
the end of 2002!

Not All Fantasy

Many fundamental pieces of the system must be working in order to achieve even a minimalist first
boot. Here are some:

• IMACRO-32, BLISS, and C compilers

• LINKER

• Device discovery

• Memory layout

• Device driver

• Platform support

• Interrupts

• Clock ticks

• Memory management

• Lowering/raising IPL

• AST delivery

• MOUNT

• File system

• RMS

• DCL

• Image activator

Within these parameters, cheating was allowed, even encouraged. Exception handling, error returns,
security, accounting – who cares, as long as the DIRECTORY listing is correct.

The official time of the first boot of OpenVMS on Integrity was January 31, 2003 at 3:31 PM EST on
an HP i2000 (Itanium1) system. This prompted hugs, handshakes, and congratulatory words. It was a
huge boost to our confidence and a gigantic sense of relief! The verified Boot Contest directory output
and the winners of the contest are in Appendix D – Boot Contest is Official: January 31, 2003 at
3:31 PM EST.

NOTE: After listing the files we didn’t return to the $ prompt. The rules of the contest specifically left
that out (in case anyone is getting picky). Why? The last event in processing the DIRECTORY

© Copyright 2005 Hewlett-Packard Development Company, L.P. 15

Page 19

Porting OpenVMS to HP Integrity Servers - Clair Grant

command is to return “file not found.” Since the system was not even close to handling signals or
errors, it stopped at a breakpoint after printing out the last file specification!

The complete list of files used in the first boot is in Appendix E - Boot Contest Code.

Internal Baselevel – March 28, 2003

OpenVMS booted on an HP rx2600 (Itanium2) system on March 17, 2003; this was the platform that
most of our early users would have. Less than two weeks later on March 28, 2003 we released our
first internal baselevel to the compiler groups. We were definitely rolling. Having a system we were
confident enough to give to other groups expecting to do their own development and testing was a
gigantic step. Soon we had DECnet and TCP/IP, making it easier to share development systems.

We first booted an Integrity system into a cluster with Alpha and VAX systems on May 15, 2003. The
first public clustered demo was May 19, 2003 at the HP-Interex Conference in Amsterdam. See
Appendix F - The Cluster T-Shirt for the $SHOW CLUSTER command output from our development lab
cluster. (The cluster contained a VAX but it was edited out of the picture due to early uncertainty
concerning our support statement for VAX and Integrity in the same cluster.)

There was still a long way to go, but booting networked, clustered systems confirmed our feeling that
a completely functioning OpenVMS on Integrity was possible. When we started, many people were
extremely skeptical that we would ever match the quality and performance of OpenVMS on Alpha.
Others said it would be impossible to make it work at all. It should be noted that, 12 years earlier,
there was the same skepticism (05%) about porting from VAX to Alpha. The 1990 nay-sayers had
more credibility, since it was the very first attempt at porting OpenVMS and yes, it was indeed
questionable as to whether it could be done. This time we never had any question about being able
to do the port. The only question was how well the system would perform.

OpenVMS V8.0 – June 30, 2003
The internal code name for V8.0 was MAKO. The development environment used cross tools. We
compiled and linked on Alpha and moved the images to an Integrity system. The goal of this first
evaluation release was to give some of our 3rd party providers the opportunity to get an early start.
We hoped that they would be ready when our first general release shipped. Also, it would give us
some limited exposure in an environment other than our own. Things were starting to get serious.

The cross tools were:

• Compilers – BLISS32, BLISS64, C, IMACRO, FORTRAN

• IAS assembler

• LINKER

• CRFSHR

• LIBRARIAN

• CHECKSUM

• CDU

• ANALYZE_OBJ

OpenVMS Engineering created a special program called Fast Track and provided dedicated support
for 20 selected partners, albeit with a very limited OpenVMS environment, while we learned just how
things were starting to shape up.

A Technical Exchange in Nashua on July 8-9, 2003 with engineers from HP firmware and operating
system groups, in particular one of the HP team members who co-developed the Itanium architecture
with Intel, was enlightening. Although we had a functioning system, it was still one of those ”the more
you know, the more you realize you don’t know” experiences.

© Copyright 2005 Hewlett-Packard Development Company, L.P. 16

Page 20

Porting OpenVMS to HP Integrity Servers - Clair Grant

Now more OpenVMS engineers began to get involved with the compiling and linking of various
components of the system. We held a series of lunch-time seminars open to the entire engineering
community. The engineers who had been doing the initial development work presented details of the
new Integrity-specific areas of the system.

What’s in a Name?

In 1998 at a very public forum in Los Angeles, OpenVMS Business Management said, ”There will
never be a V8.0 of OpenVMS.” It would be V7.x forever, implying that we would be causing as little
perturbation as possible in the system for the rest of its lifetime. At the time, there was a different
mindset regarding the future of OpenVMS.

Times had changed. In 2003 there was widespread debate within OpenVMS as to which OpenVMS
Integrity release would be dubbed V8.0. “V8” became the local catch-phrase, and large quantities of
a certain juice maker’s product mysteriously appeared in conspicuous places.

OpenVMS V8.1 – December 18, 2003
The internal code name for V8.1 was JAWS and it came from a native development environment.
We compiled and linked on the Integrity system. The goal of this second evaluation release was
twofold:

• Increase the number of partners.

• Establish a complete Integrity environment.

Compiling and linking was now supported on the Integrity systems – no more cross tools and
transferring files. In fact, one of the early tests of this environment was building the tools themselves
natively (for example, a compiler compiling itself).

Whole Program Floating Point Mode

Floating Point...floating point...floating point! Floating point works very differently on Alpha and
Itanium. Source code modules that have been compiled with different floating point qualifiers (control,
rounding, and precision), as well as the objects, get linked into a single image. On Alpha, floating
point preferences are part of the instruction stream generated by the compilers. On Integrity, they are
defined by the contents of the Floating Point Status Register (FPSR) at the time of instruction execution.

On Alpha, you get exactly what you declared for each module with no decisions or assumptions
needed along the way. On Integrity, the floating point preferences are noted in each object file and
the LINKER stores in the image the floating point preferences of the module with the MAIN entry point.
After an image is loaded into memory but before any instructions are executed, the FPSR is set with
the values established by the LINKER. As you can see, there is no way for OpenVMS to magically
reproduce the exact Alpha behavior for this mixed-mode case. For an application that is sensitive to
the individual module declarations, there are system services, namely SYS$IEEE_SET_*, for dynamic
changes as the program executes.

Converting from VAX F/D/G to IEEE

We had to add more library routines to help applications convert from VAX floating point types to
IEEE. Many routines already existed but now we were actively encouraging application writers to
convert and we discovered that there were missing functions. Who would do this unplanned work at
this very late date? We enlisted some engineers at the Customer Support Center and they ably
produced the desired results.

Locking the Working Set in Memory

Privileged processes, which enter kernel mode and raise IPL, lock their code and data in the working
set so that the pagefault handler doesn‘t get invoked at too high an IPL for I/O. The system service
SYS$LKWSET accepts a range of addresses and locks the appropriate pages in memory. For

© Copyright 2005 Hewlett-Packard Development Company, L.P. 17

Page 21

Porting OpenVMS to HP Integrity Servers - Clair Grant

compatibility, we changed SYS$LKWSET to lock the entire image in memory when an address in the
input range is found to be in the code image section.

Only the code and data need to be locked on VAX, but Alpha locks code, data, and linkage data – a
little messier but doable. Because of the new ELF image format on Integrity, programmers have to
lock code, data, short data, and linkage data, which is nearly impossible to figure out at the
application level. We highly recommend that applications use LIB$LOCK_IMAGE to lock the entire
image in memory; it is easier to use than multiple calls to SYS$LKWSET. This new $LIB routine is
available on both Alpha and Integrity, so you can maintain common code. The entire image is
locked, so the process may require larger working set quotas. In OpenVMS, we switched many of our
privileged processes to use LIB$LOCK_IMAGE and increased the SYSTEM account‘s working set
quota.

OpenVMS V8.2

Superdome Demo

There is nothing like a little publicity. The Superdome 4-OS (HP-UX, Linux, OpenVMS, Windows)
demo at the HP Analysts Meeting in Westboro, MA. on February 13, 2004 drew lots of attention.
The 4-cell system was configured as 4 nPars (hard partitions), each running a different operating
system.

V8.2 does not support cell-based systems, which presented some new problems to overcome. Since
this was a demo (some cheating allowed) we hard-coded a few I/O-related addresses in the drivers
rather than devise a complete solution. We even had to boot OpenVMS in cell 0, but these quick,
temporary measures brought a high payback.

50-bit Physical Addressing

A lightening bolt struck at the wrong time. Everything was in place for the first official Integrity Field
Test in mid-summer 2004, but when we started testing with the mx2 CPUs for the rx4640 we had a
revelation: the mx2 cache brought with it the need to use addresses beyond the OpenVMS-supported
43-bit maximum. One option was to not support the 8-CPU version of the rx4640 and postpone the
necessary memory management work until the next release, but we decided to do the work in V8.2
because additional new platforms might come along before then. The data structure changes and
source code changes would affect any privileged code that worked directly with PFNs, for example
DECnet and TCP/IP, and we wanted to get all known, mandatory privileged code changes into the
first Integrity release.

A design was created, a project plan written, and five engineers were drafted on very short notice to
make the OpenVMS changes:

1. Expand the PFN field in the PTE from 32 bits to 40 bits.

2. Expand all other PFN fields in data structures, global cells, and routine interfaces to 64 bits.

These changes were extensive and for Integrity only; however, common source code was maintained
using macros in which the platform differences were buried. This work disrupted the weekly builds for
awhile and the affected layered products (who had thought they were already done) now had difficult
work to do – not a lot, but in sensitive areas. As the base operating system work concluded, the 50-Bit
Physical Addressing Programming Cookbook helped developers complete the extra work we had
foisted on them at the last minute and everyone survived.

Rewriting the VAX Queue Instruction Emulation

Replacing the Alpha PAL calls with OpenVMS system services worked well in most cases. Early in the
project we created the "promote page" as our mechanism for employing Integrity's Execute
Privileged Code (EPC) instruction. We used this mechanism for entering kernel mode before
transferring to SWIS to switch stacks, save registers, and call the system service dispatcher.

© Copyright 2005 Hewlett-Packard Development Company, L.P. 18

Page 22

Porting OpenVMS to HP Integrity Servers - Clair Grant

EPC, without SWIS, switches privilege modes without switching stacks, saving registers, or dealing
with IPLs, ASTs, etc. This is exactly what we needed for the performance-critical queue instruction
emulation. However, without SWIS to set up stacks, there are many restrictions. The code had to be
written carefully in assembly language, but we were able, after a few misadventures, to create exactly
the code we needed.

Checking access to possibly misaligned queue elements in threaded process environments was
difficult. We programmed exception handlers to catch queue elements that the caller’s privilege mode
cannot access. We also designed a clever use of the TAK, PROBER, and PROBEW instructions with
interrupts disabled to quickly determine if the code could proceed to atomically execute the queue
instruction. After a few false starts, we finally had a good solution. EPC gave us just what we needed.
A few other PAL calls have been changed to use this method.

The Final V8.2 Changes

Just before Christmas 2004 the irrepressible NaT consumption fault made another appearance. It
was found and fixed and we went home for the holidays thinking that we were done. The test clusters
would run over the holiday break and we would claim victory when we returned. Unfortunately, the
results were not satisfactory. In fact, during the holidays a few of the engineers noticed a couple of
problems.

Floating Point...Floating Point...Floating Point!

There are 128 floating point registers on Integrity systems. It would be desirable to not save/restore
all these registers unnecessarily when context is changed. To that end they are architecturally treated
as two sets, F0-F31 (low) and F32-F127 (high). Status bits, maintained by the processor for each set,
indicate whether a change has been made to a register in the set. In many cases, the high floating
point register set is not used and OpenVMS takes advantage of the “modified” bit indicators to
eliminate unnecessary saves/restores. There was a case involving AST delivery where we didn’t have
it quite right and it took us a very long time to find it.

Then we encountered another floating point problem! Floating point register corruption was
happening when correctable memory errors were reported. Not only was this problem difficult to
find, but it was involved with our internal OpenVMS fiat about floating point usage. OpenVMS and
HP-UX have an agreement with the compiler writers that if code is compiled using
/INSTRUCTION_SET=NOFLOAT, only registers F6-F11 can be used in the generated code. The
operating system is compiled this way in order to limit the saves and restores at interrupt level. The
register corruption happened at the same time as the memory errors. Firmware test engineering
provided a test program that inserts correctable memory errors. We quickly ported it to OpenVMS,
increased the error polling rate, then diagnosed and fixed the problem. The OpenVMS error logger
was calling firmware, and not appropriately preserving the floating point registers.

The last code change in the V8.2 release was made on January 10, 2005 and the final test runs were
started. They ran with no problems. We had finally made it! The OpenVMS Engineering Readiness
Review was held on January 13, 2005 and it was official – the final DVD was sent to manufacturing.

© Copyright 2005 Hewlett-Packard Development Company, L.P. 19

Page 23

Porting OpenVMS to HP Integrity Servers - Clair Grant

Performance Evaluation

Now that we had a production-quality system, how well did it perform? That is a very open-ended
question so we decided to concentrate on how comparable Alpha and Integrity hardware platforms
performed with a selected set of CPU, memory, and I/O tests. For example, we compared an Alpha
DS25 with an Integrity rx2600 and an Alpha ES45 with an Integrity rx4640.

In general, these Alpha and Integrity systems perform about the same. In some tests, one is slightly
better than the other, and different tests produce results that are reversed, but in most cases the
differences are small. When ”the announcement” occurred way back in 2001 it was stated that the
performance leadership crossover from Alpha leadership to Integrity would be roughly 2005. That
turned out to be a very accurate prediction.

Integrity systems have a wealth of performance counters accessible from software. OpenVMS tools
have incorporated the ability to gather the data and relate appropriate information to instruction
pointers in routines. This helped in tracking down and improving some initially poorly performing
areas, for example needless stack unwinding (very expensive) during certain calling sequences of an
RTL. Another example was an inefficient OTS data-moving routine.

One universal finding was that everyone had to eliminate unaligned data. An unaligned data
reference on Alpha is expensive, but it can be two orders of magnitude worse on Integrity. So be sure
to naturally align those data cells!

As we gain more experience on these new platforms there will certainly be on-going operating system
and compiler performance improvements, as well as CPU and platform speed-ups. This will be true for
the rx1600, rx2600, and rx4640 (supported by V8.2), and even more so for the larger systems
supported by future releases of OpenVMS.

Summary
Three and a half years of work resulted in OpenVMS I64 on Integrity servers. We tried to make
moving from Alpha to Integrity as easy as possible for the application providers. We know there will
be an occasional exception but for the vast majority of applications we achieved our goal. We may
have caused minor inconveniences when it was not strictly necessary for Integrity, but part of the goal
was to make OpenVMS a better system in 2005 than it was in 2001, and that’s what we did.

A project of this magnitude happens only a few times during the life of a product. This is the second
time for OpenVMS and it is still moving forward.

Acknowledgements
Porting OpenVMS encompassed the work of more people and groups than can be adequately
recognized here. The entire OpenVMS community participated in this enormous undertaking.

© Copyright 2005 Hewlett-Packard Development Company, L.P. 20

Page 24

Porting OpenVMS to HP Integrity Servers - Clair Grant

Everyone was dedicated to the highest standards in producing a quality product worthy of our
customers.

This port to Integrity was the result of the efforts of many very talented people, but the work done by
those who contributed to OpenVMS in previous years, even previous decades, also contributed
greatly. OpenVMS is a great system to work with in terms of concept and implementation, and we
are indebted to all of those who came before us.

A special ”thank you” goes to the reviewers of this article – Burns Fisher, Karen Noel, John Reagan,
Ron Brender, Jeff Nelson, Josh Cope, Gaitan D’Antoni, Sue Lewis, Ken Moreau, and Randy Barth.

For more information
Send questions and comments about this article to clair.grant@hp.com.

© Copyright 2005 Hewlett-Packard Development Company, L.P. 21

Page 25

Porting OpenVMS to HP Integrity Servers - Clair Grant

Appendix A - How to Make Your Head Hurt

page 1hp enterprise technical symposium© 2002 hp

Bytes Intel® Alpha

1 byte byte

2 halfword word

4 word longword

8 doubleword quadword

16 quadword octaword

How to Make Your Head Hurt!

© Copyright 2005 Hewlett-Packard Development Company, L.P. 22

Page 26

Porting OpenVMS to HP Integrity Servers - Clair Grant

Appendix B - OpenVMS Alpha to Itanium Register Mapping

page 1March 21, 2005

Register Mapping
Alpha : IPF

0 = 8
1 = 9
2 = 28
3 = 3
4 = 4
5 = 5
6 = 6
7 = 7
8 = 26
9 = 27

10 = 10
11 = 11
12 = 30
13 = 31
14 = 20
15 = 21

Alpha : IPF
16 = 14
17 = 15
18 = 16
19 = 17
20 = 18
21 = 19
22 = 22
23 = 23
24 = 24

(AI) 25 = 25 (AI)
(RA) 26 = .. no mapping
(PV) 27 = .. no mapping

28 = .. no mapping
(FP) 29 = 29
(SP) 30 = 12 (SP)

(RZ/sink) 31 = 0 (RZ)

args

preserved

return info

preserved

return info

© Copyright 2005 Hewlett-Packard Development Company, L.P. 23

Page 27

Porting OpenVMS to HP Integrity Servers - Clair Grant

Appendix C - First Boot on HP i2000

© Copyright 2005 Hewlett-Packard Development Company, L.P. 24

Page 28

Porting OpenVMS to HP Integrity Servers - Clair Grant

Appendix D – Boot Contest is Official: January 31, 2003 at 3:31 PM EST

Winners of the Boot Contest shirts were:

• Luciana Silva

• Gabriel Sterk

• Randy Loch

• Geoff Bryant

• Kurt Huddleston

• James Wilkinson

• Lee Mah

• Alan Frisbie

• Hans Vlems

© Copyright 2005 Hewlett-Packard Development Company, L.P. 25

Page 29

Porting OpenVMS to HP Integrity Servers - Clair Grant

Appendix E - Boot Contest Code

These files contain the 1361 modules that completed the first boot of OpenVMS on Integrity.

vms_loader.efi
ipb.exe
sysboot.exe
sys$public_vectors.exe
sys$base_image.exe
sys$cpu_routines_4001.exe
sys$srbtdriver.exe
sys$opdriver.exe

sys$dqbtdriver.exe
system_primitives_min.exe
system_synchronization_uni.exe
errorlog.exe
exec_init.exe
system_debug.exe
ia64vmssys.par

exception.exe
io_routines.exe
sysdevice.exe
process_management.exe
sys$vm.exe
shell8k.exe

logical_names.exe
sys$ttdriver.exe
sys$srdriver.exe
sys$dqdriver.exe
vms$system_images.dat
sys$config.dat

sysinit.exe
libots.exe
librtl.exe
decc$shr.exe
cma$tis_shr.exe
image_management.exe
locking.exe
sysldr_dyn.exe
security.exe
vms_extension.exe
f11bxqp.exe
rms.exe
loginout.exe

© Copyright 2005 Hewlett-Packard Development Company, L.P. 26

Page 30

Porting OpenVMS to HP Integrity Servers - Clair Grant

dcl.exe
dcltables.exe
directory.exe
util$share.exe
directmsg
sysmsg

© Copyright 2005 Hewlett-Packard Development Company, L.P. 27
Page 31

Porting OpenVMS to HP Integrity Servers - Clair Grant

Appendix F - The Cluster T-Shirt

page 1

View of Cluster from system ID 20458 node: CONMAN 6-JUN-2003 09:44:15

+————————+————————————————+————————————+

| NODE | HW_TYPE | SOFTWARE | STATUS |

+————————+————————————————+————————————+

| CONMAN | HP rx2600 | VMS X9TQ | MEMBER |

| IAVMS3 | HP zx2000 | VMS X9TQ | MEMBER |

| CLU24 | COMPAQ Professional Workstatio | VMS V7.3 | MEMBER |

| KNOTS | AlphaServer 1000A 5/300 | VMS V7.3 | MEMBER |

| TONYL | Intel W460GXBS | VMS X9TQ | MEMBER |

+————————+————————————————+————————————+

$ SHOW CLUSTER

© Copyright 2005 Hewlett-Packard Development Company, L.P. 28
Page 32

Porting OpenVMS to HP Integrity Servers - Clair Grant

© Copyright 2005 Hewlett-Packard Development Company, L.P. 29

Appendix G - Evaluation Release V8.0

page 1March 22, 2005

June 25, 2003

© 2005 Hewlett-Packard Development Company, L..P. The information
contained herein is subject to change without notice. The only warranties for
HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed
as constituting an additional warranty. HP shall not be liable for technical or
editorial errors or omissions contained herein.

Page 33

Page 34

OpenVMS Technical Journal V6

Fatal Bugchecks on OpenVMS Alpha and
OpenVMS I64 Systems

Fatal Bugchecks on OpenVMS Alpha and OpenVMS I64 Systems... 2
Overview .. 2
Initial Bugcheck Handling.. 2
Bugchecks from User and Supervisor Modes.. 3
Bugchecks from Executive and Kernel Modes... 4
Fatal Bugcheck Processing on a Uniprocessor System ... 4
Fatal Bugcheck Processing on a Symmetric Multiprocessing (SMP) System... 8
The System Dump File ... 11
Physical Dumps .. 13
Selective Dumps ... 14
Key Processes .. 15

For more information.. 20

© Copyright 2005 Hewlett-Packard Development Company, L.P. 1
Page 35

Fatal Bugchecks on OpenVMS Alpha and OpenVMS I64 Systems - Ruth Goldenberg, Richard Bishop

© Copyright 2005 Hewlett-Packard Development Company, L.P. 2

Fatal Bugchecks on OpenVMS Alpha and OpenVMS I64 Systems
Ruth Goldenberg and Richard Bishop, OpenVMS Engineering

Overview

When OpenVMS code detects an internal inconsistency, such as a corrupted data structure or an
unexpected exception, it generates a bugcheck. If the inconsistency is not severe enough to prevent
continued system operation, the bugcheck generated is nonfatal and merely results in an error log
entry.

If the error is serious enough to jeopardize system operation and data integrity, OpenVMS code
generates a fatal bugcheck. This generally results in aborting normal system operation, recording the
contents of memory to a dump file for later analysis, and rebooting the system.

This article describes how fatal bugchecks are handled on OpenVMS Alpha and OpenVMS I64, how
the dump file is found, how memory is written to the dump file, and how the dump file is organized.

Initial Bugcheck Handling

On Alpha, a bugcheck is generated by placing a bugcheck value in R16 and executing a
CALL_PAL BUGCHK instruction. On I64 a bugcheck is generated by placing a value in R17 and
executing a BREAK BREAK$C_SYS_BUGCHECK instruction. This article refers to these simply as the
BUGCHECK instruction. In both cases, the bugcheck value identifies the type and severity of the
bugcheck and determines whether a crash should be followed by a cold or warm reboot. If the
bugcheck is fatal, bit 2 of the value is 1; otherwise it is 0. If the bugcheck is fatal and a cold reboot is
requested, bit 0 of the value is 1; otherwise, it is 0. Bit 1 is not used and is always 0.

Regardless of the type of bugcheck, executing the instruction causes an exception. The BUGCHECK
instruction results in changing access mode to kernel mode and passing control to code that services
the exception. In this article, this service routine and the routines it calls are referred to as BUGCHECK
code.

OpenVMS BUGCHECK code is implemented in several parts. Initially, the exception is dispatched to
platform-specific code. On I64 platforms, BUGCHECK code flushes all stacked registers to their
memory backing store. On both platforms, BUGCHECK code ensures that interrupt priority level (IPL)
is at least 3. This prevents rescheduling and resumption on a different CPU.

BUGCHECK code tests whether this is a recursive bugcheck, that is, whether it has already saved
bugcheck context in a nonpaged pool per-CPU structure called the per-CPU database. If so, it refrains
from overwriting the description of the original bugcheck. If this is not a recursive bugcheck,
BUGCHECK code records information such as the following in the per-CPU database:

• Access mode stack pointers and, on I64 platforms, access mode register stack pointers
• Page table base registers
• Address space numbers
• AST summary and enable information
• Software interrupt summary information
• Process unique value, which identifies a user thread
• Processor status at bugcheck, including IPL and access mode
• Number identifying the specific bugcheck
• Process and system cycle counters

Page 36

Fatal Bugchecks on OpenVMS Alpha and OpenVMS I64 Systems - Ruth Goldenberg, Richard Bishop

© Copyright 2005 Hewlett-Packard Development Company, L.P. 3

• Address of the stack structure describing the BUGCHECK exception: on Alpha, the exception
stack frame, or, on I64, the INTSTK structure built by software interrupt services (SWIS) code

BUGCHECK code decides whether subsequent processing can occur in the current hardware context
or whether it needs to switch contexts. If this is an outer mode bugcheck (user or supervisor), no switch
is necessary. If this is an inner mode fatal bugcheck, BUGCHECK code switches to its own context,
which has a larger kernel mode stack.

On Alpha platforms, BUGCHECK code saves on the current stack the integer registers not already
saved in the exception frame. If the process is performing floating-point calculations, it saves all the
floating-point registers on the stack. On certain Alpha platforms, it also triggers the on-chip logic
analyzer to dump any program counter (PC) data and to stop logging more.

On I64 platforms, the general registers, branch registers, predicate registers, application registers,
and minimal floating point registers (F6 through F11) have already been saved in the INTSTK
structure. BUGCHECK code saves the rest of the low bank of floating point registers (F0 through F31)
and, if the process is using the high bank, saves F32 through F127.

BUGCHECK code’s subsequent actions vary, depending on the access mode in which the bugcheck
occurred and the severity of the bugcheck. The following sections describe the BUGCHECK code
actions.

Bugchecks from User and Supervisor Modes

The OpenVMS operating system itself generates few bugchecks from user or supervisor mode. It
provides the mechanism for use by other software. When a bugcheck is generated from user or
supervisor mode code running in a process with BUGCHK privilege, BUGCHECK code writes an
error log message.

The SYSGEN parameter BUGCHECKFATAL has no effect on bugchecks generated from user or
supervisor mode. Only bit 2 of the bugcheck value determines whether a given bugcheck is fatal.
Fatal user and supervisor mode bugchecks affect only the current process.

If the bugcheck is fatal, BUGCHECK code returns to the access mode of the bugcheck and requests
the Exit ($EXIT) system service. It specifies the value SS$_BUGCHECK as the final image status. What
happens as a result of this service request depends on whether the process is executing a single
image (without a command language interpreter, CLI, to establish a supervisor mode exit handler) or
is an interactive or batch job.

• If the process is executing a single image, a fatal bugcheck from user or supervisor mode
typically results in process deletion.

• If the process has a CLI, a fatal bugcheck generated from an interactive or batch job typically

causes the currently executing image to exit and control to be passed to the CLI through its
supervisor mode exit handler. The CLI prompts for the next command.

In either case, the only difference between fatal user and supervisor mode bugchecks is that user
mode exit handlers are not called when a fatal bugcheck is generated from supervisor mode.

If the bugcheck is not fatal, BUGCHECK code restarts Alpha on-chip logic analyzer data collection (if
it was active), restores saved registers, and dismisses the exception. Execution continues with the
instruction following the BUGCHECK instruction.

Page 37

Fatal Bugchecks on OpenVMS Alpha and OpenVMS I64 Systems - Ruth Goldenberg, Richard Bishop

© Copyright 2005 Hewlett-Packard Development Company, L.P. 4

Bugchecks from Executive and Kernel Modes

Various OpenVMS components generate bugchecks from executive and kernel modes. If an executive
or kernel mode bugcheck value is not fatal and the SYSGEN parameters BUGCHECKFATAL and
SYSTEM_CHECK are both zero, BUGCHECK code proceeds as it does for nonfatal bugchecks for the
outer two access modes. It writes an error log message, restores the saved registers, and dismisses the
exception, passing control back to the instruction following the BUGCHECK instruction.

Typically, execution continues with no further effects. However, the routine that detected the error and
generated the bugcheck can take further action. One example of such a routine is the last chance
handler for executive mode exceptions. It generates the nonfatal bugcheck SSRVEXCEPT (unexpected
system service exception). On the presumption that process data structures are inconsistent, it then
requests the $EXIT system service. Exiting from executive mode results in process deletion. Another
example is the Record Management Services (RMS) routine that generates the nonfatal bugcheck
RMSBUG. On the presumption that process RMS data structures are inconsistent, it deletes the process
by requesting the Delete Process ($DELPRC) system service.

If BUGCHECKFATAL is 1 or SYSTEM_CHECK is nonzero, any executive or kernel mode bugcheck is
treated as fatal, independent of bit 2 of the bugcheck value. By default, BUGCHECKFATAL and
SYSTEM_CHECK are 0, which means that a nonfatal inner access mode bugcheck does not cause the
system to crash. BUGCHECK performs fatal bugcheck processing under any of the following
circumstances:

• BUGCHECKFATAL = 1
• SYSTEM_CHECK ≠ 0
• The bugcheck is fatal.

In the case of a fatal bugcheck, the most important function of BUGCHECK code is to record the
contents of memory and of the error log buffers. BUGCHECK code does not use standard I/O
mechanisms to write this data because they may be affected by the system inconsistency that
triggered the fatal bugcheck. Instead, it performs I/O through the bootstrap system device driver, the
one used during system initialization. After recording memory contents, BUGCHECK halts the system
to prevent any further system operations in case they might lead to data corruption.

After the system reboots, during system initialization, the error log buffers are copied to nonpaged
pool for processing by the ERRFMT process. The dump file can be examined with the System Dump
Analyzer (SDA) to determine the cause of the crash.

Fatal Bugcheck Processing on a Uniprocessor System

In processing a fatal bugcheck, BUGCHECK code takes the following steps:

1. On an I64 system, BUGCHECK turns off SWIS tracing and disables virtual hash page table

walking (a hardware mechanism to improve performance of handling translation buffer misses).
On an Alpha system, BUGCHECK turns off performance monitoring. On both platform types,
BUGCHECK raises IPL to 31 to disable all interrupts.

2. BUGCHECK tests whether there have been four or more recursive bugchecks. If so, it displays on
the console an error message, information about the most recent exception, and the stack. It then

Page 38

Fatal Bugchecks on OpenVMS Alpha and OpenVMS I64 Systems - Ruth Goldenberg, Richard Bishop

© Copyright 2005 Hewlett-Packard Development Company, L.P. 5

reboots or shuts the system down, depending on the value of SYSGEN parameter BUGREBOOT.

3. If all of the following conditions are met, BUGCHECK displays on the console the location of
crash-related information and enters XDELTA:

• There have been no recursive bugchecks.
• BUGREBOOT is zero.
• The bugcheck has not been triggered by shutting the system down or running OPCCRASH.
• The system has been booted with XDELTA or the remote debugger.

Entering XDELTA enables a human operator to examine the state of the operating system through
XDELTA commands and request a crash dump at will.

4. Based on the value of the BUGREBOOT parameter and bit 0 of the bugcheck value, BUGCHECK
selects one of the following halt action values: perform a cold bootstrap, perform a warm
bootstrap, or remain halted. It stores the value in the hardware restart parameter block (HWRPB)
per-CPU slot.

5. If this system is a Galaxy node, BUGCHECK notifies other sharing set members that this node is
going down unless there have been three or more recursive bugchecks. This test allows for the
possibility that attempting to notify the other members caused some of the bugchecks.

6. BUGCHECK shuts down any system communication services (SCS) circuits unless there have been
three or more recursive bugchecks. This test allows for the possibility that attempting to shut down
SCS circuits caused some of the bugchecks.

7. BUGCHECK shuts down all adapters and initializes the adapter that connects the system device
circuits unless there have been three or more recursive bugchecks. This test allows for the
possibility that attempting to shut down adapters caused some of the bugchecks.

8. BUGCHECK stores the value of the bugcheck code in the per-CPU database.

9. If there have been no recursive bugchecks, BUGCHECK begins to write information about the
bugcheck to the console terminal: it announces that the system is crashing. If this is the second
nested bugcheck, BUGCHECK writes a message saying that this is a recursive bugcheck and
displays information about the most recent exception.

10. BUGCHECK validates the checksum of the boot control block, the data structure containing the
locations of the error log and dump files. If the checksum is bad, no dump can be written.

11. If the checksum is good and the system disk is shadowed, BUGCHECK determines the unit
number of the master disk in the shadow set. If bit 2 in DUMPSTYLE is set, BUGCHECK also
selects the first valid dump device from the DUMP_DEV environment variable, as described later
in this article.

12. BUGCHECK writes information about the bugcheck to the console terminal. This information can
include the bugcheck message, addresses of loaded executive images, current process name,
current image name, privileges of the current security persona, contents of registers, and contents
of stacks relevant to the crash.

How much information is written depends on the value of bit 1 in SYSGEN parameter
DUMPSTYLE. The default value of 0 inhibits most output. The console output is written before the

Page 39

Fatal Bugchecks on OpenVMS Alpha and OpenVMS I64 Systems - Ruth Goldenberg, Richard Bishop

© Copyright 2005 Hewlett-Packard Development Company, L.P. 6

dump file and should not be interrupted by halting the processor from the console terminal. Such
an interruption prevents the dump file from being written.

13. BUGCHECK writes the dump header, trap information blocks, the bugcheck error log entry, and
the error log buffers to SYS$SPECIFIC:[SYSEXE]SYS$ERRLOG.DMP. For simplicity, the layout
within SYS$ERRLOG.DMP matches the layout within the dump file. After writing the error log
buffers, BUGCHECK rewrites the dump header to indicate that the error log buffers have been
written.

If the system disk is a member of a shadow set, BUGCHECK writes the same set of information to
every member of the shadow set. This ensures that regardless of which member is master when
the system reboots, system initialization code can process the error log buffers from the system
disk before the complete shadow set is mounted and made consistent.

14. BUGCHECK determines whether a dump is to be written and, if so, what kind of dump, based on
the following criteria:

• If the SYSGEN parameter DUMPBUG is 0, no dump is written. Its default value is 1.

• If neither SYS$SPECIFIC:[SYSEXE]SYSDUMP.DMP nor PAGEFILE.SYS exists on the system disk

or a disk specified by the DUMP_DEV environmental parameter, no dump is written.

• If, during system initialization, resources cannot be allocated for BUGCHECK's use, no dump
can be written. BUGCHECK initialization code attempts to allocate system page table entries
to map I/O requests, its memory stack, and, on an I64 platform, its register stack. It needs
additional page table entries if the dump is to be compressed.

• If this is an operator-requested shutdown generated through the system shutdown command

procedure, no dump is written.

• If bit 0 in DUMPSTYLE is set, memory is dumped selectively; otherwise, a physical memory
dump (also known as a full dump) is written. The default value of this parameter specifies a
selective dump.

• If bit 3 in DUMPSTYLE is set, the memory contents in the dump will be compressed.

BUGCHECK needs physical memory to serve as compression buffers. It borrows memory from
the resident code granularity section after copying the pages’ current contents to a temporary
location in the dump file. If insufficient pages are available, an uncompressed dump is
written. The default value of this parameter specifies a compressed dump.

15. If no dump is to be written, BUGCHECK continues with step 23.

16. If any type of dump is to be written, BUGCHECK switches, if necessary, to the disk containing the

dump file. This could be needed if BUGCHECK had been writing to shadow set members’
SYS$ERRLOG.DMP or if it is writing a “dump off system disk” (DOSD). It then writes the dump
header, trap information blocks, bugcheck error log entry, and the error log buffers to the dump
file. Then it rewrites the dump header with a status indicating that the dump contains the error log
allocation buffers.

17. If the system disk is shadowed, BUGCHECK outputs a message to the console terminal indicating
which member it is dumping to and whether that member is the master unit.

Page 40

Fatal Bugchecks on OpenVMS Alpha and OpenVMS I64 Systems - Ruth Goldenberg, Richard Bishop

© Copyright 2005 Hewlett-Packard Development Company, L.P. 7

18. BUGCHECK outputs a message saying that it is starting to dump memory and specifying whether
the dump is physical or selective and whether it is compressed.

19. If the dump is compressed, BUGCHECK zeroes the blocks in the dump that will contain the
compression map.

20. If the dump is physical, BUGCHECK writes a map of memory to the dump file so that SDA can
associate blocks of the file with physical pages. (Memory is likely to be discontiguous and may
not start at page 0.) It then writes physical memory to the dump file, starting with the lowest page
and, if requested, compressing as it goes. A later section in this article describes in detail the
layout of a physical memory dump and the compression algorithm.

21. If the dump is selective, BUGCHECK writes selected virtual address spaces to the dump,
compressing as it goes if compression was requested. Each selected virtual address space is
represented by a logical memory block (LMB).

Not all virtual addresses in the range spanned by an LMB are necessarily included in it. Because
a virtual page not in memory cannot be written to the dump file, it represents a hole in the virtual
address space. An LMB with holes in its address space contains a hole table, which lists the
pages of address space not present in the dump.

The general sequence in writing an LMB is as follows:

a. BUGCHECK writes an LMB header in the next block of the dump.

b. BUGCHECK scans the page tables that describe the address space to be dumped, looking

for invalid pages that are not transition pages. It writes an entry in a hole table for each such
sequence of pages found. It writes the hole table to the next block (or blocks) of the dump. It
rewrites the LMB header and the dump header to reflect the presence of the hole table in the
dump.

c. BUGCHECK scans the hole table, filling in its allocated system page table entries with

information from each valid or transition page table entry that it found. That is, it double-maps
those pages so that it can write virtually noncontiguous pages in one I/O request.

d. When BUGCHECK has written all the valid and transition pages in a particular LMB to the

dump file, it rewrites the block containing the LMB header with correct information about the
number of holes in the address space and the number of data blocks (valid and transition
pages) in the LMB.

e. It rewrites the dump header to increase the chances that the dump can be analyzed even if

the dump is incomplete.

If BUGCHECK reaches the end of a file sized for selective dumps before it reaches the end of the
LMB list, it rewrites the descriptor of the current LMB with the hole count and actual number of
data blocks written. It then rewrites the dump header, filling in status information such as the
number of I/O errors encountered while writing the dump file, the number of process LMBs
written, and so on.

In writing a selective dump, BUGCHECK must defend against the possibility that whatever error
led to the bugcheck might also have corrupted the data structures necessary to write virtual
address space. BUGCHECK replaces the page fault and access violation exception service

Page 41

Fatal Bugchecks on OpenVMS Alpha and OpenVMS I64 Systems - Ruth Goldenberg, Richard Bishop

© Copyright 2005 Hewlett-Packard Development Company, L.P. 8

routines with its own routines to prevent recursive bugchecks if either of those errors occurs. It also
performs consistency checks on certain key data structures. For example, it checks whether an
address presumed to be that of a process header is syntactically correct; that is, the address must
be within known address boundaries and at an integral number of process headers from the
beginning of the address range.

22. If a dump was written, BUGCHECK rewrites the dump header so that information such as the

error count and number of blocks of memory in the dump reflects what was actually written to the
dump file.

23. If SYSGEN parameter BUGREBOOT is 0, BUGCHECK writes a message on the console terminal.

As a last step, it halts the system. In response, the console subsystem gains control and acts on
the halt action value stored in the per-CPU slot of the hardware restart parameter block (HWRPB)
during step 4. Typically, BUGCHECK performs a warm bootstrap.

Fatal Bugcheck Processing on a Symmetric Multiprocessing (SMP) System

When one CPU member of an SMP system incurs a fatal bugcheck, all members crash; the executive
takes the conservative approach that an inconsistency severe enough for operations on one CPU to
cease is likely to be systemwide. All members of the active set participate in fatal bugcheck
processing.

The CPU that first incurs a fatal bugcheck (known as the CRASH CPU) drives the crash. It informs the
other active CPUs that a bugcheck sequence has been initiated and takes a number of steps to ensure
that a consistent system state can be saved. In response, the other active CPUs crash with the fatal
bugcheck CPUEXIT. The primary CPU performs most of the remaining fatal bugcheck processing.

The following figure shows the sequence of some of the steps in fatal bugcheck processing as they
might occur concurrently on the CRASH CPU (which is not pictured as the primary processor), the
primary processor, and the other active set members. Steps shown in different columns but on the
same line do not necessarily execute at the same time on all CPUs. The numbers in the figure
correspond to the steps described after the figure, not all of which are represented in the figure.

Page 42

Fatal Bugchecks on OpenVMS Alpha and OpenVMS I64 Systems - Ruth Goldenberg, Richard Bishop

© Copyright 2005 Hewlett-Packard Development Company, L.P. 9

Figure 1 Steps in Fatal Bugcheck Processing on an SMP System

The following steps, which correlate to numbers in the figure, focus on SMP-specific processing and
omit most steps common to uniprocessor processing.

1. BUGCHECK initially runs on the CRASH CPU and subsequently on the other SMP members. It

records information in the per-CPU database.

2. The primary processor switches to BUGCHECK’s hardware context; the secondary processors
switch to the system hardware context.

3. BUGCHECK saves registers in the per-CPU database.

Page 43

Fatal Bugchecks on OpenVMS Alpha and OpenVMS I64 Systems - Ruth Goldenberg, Richard Bishop

© Copyright 2005 Hewlett-Packard Development Company, L.P. 10

4. BUGCHECK tests whether it is running on a member of the active set. If not (a pathological and
unlikely case), it proceeds to step 9 rather than taking any steps that might interfere with SMP
operations.

5. If BUGCHECK is running on a member of the active set, it tests and sets the bit

SMP$V_CRASH_CPU in SMP$GL_FLAGS. Only the first CPU to crash sets this bit and thus
becomes the CRASH CPU.

If the bit is already set, BUGCHECK continues with step 9. Use of the bit prevents confusion
during concurrent independent crashes.

6. BUGCHECK records the ID of the CPU on which it is running in SMP$GL_BUGCHKCP as the

CRASH CPU.

7. BUGCHECK acquires the CPU mutex to prevent any other processors from joining the active set.

8. BUGCHECK requests an interprocessor interrupt of every other member of the active set,
specifying bugcheck as the work request type. The interprocessor interrupt service routine (ISR)
generates the fatal bugcheck CPUEXIT.

9. BUGCHECK then sets its CPU ID bit in SMP$GL_BUG_DONE to indicate that it has saved its

context.

10. BUGCHECK compares its CPU ID to that in SMP$GL_PRIMID to determine whether it is executing
on the primary processor. If it is not, it halts. If it is in the failover set in a Galaxy system, it will be
reassigned to another partition.

11. This and the following steps execute only on the primary processor because it is the only member
guaranteed access to the console terminal.

BUGCHECK sets its CPU ID in SMP$GL_OVERRIDE, adding itself to the override set. As a
member of the override set, its spinlock acquisitions and releases are not subject to the usual
checks.

12. BUGCHECK turns off the sanity timer to prevent sanity timer timeouts during the bugcheck.

13. On a Galaxy system, BUGCHECK reassigns any CPUs that were already stopped at the time of

the bugcheck.

14. BUGCHECK waits up to a maximum of 10 seconds plus the value of SYSGEN parameter
SMP_SPINWAIT (whose default value is 10 seconds) for all active members to save their context.
Under normal circumstances, much of this wait does not occur. However, if one member restarts
following a halt, it can take the member a significant time to complete that process and respond
to the interprocessor interrupt requesting bugcheck processing. If 10 seconds passes before all
members are done, BUGCHECK proceeds.

15. On a Galaxy system, BUGCHECK reassigns previously active secondary CPUs that have already

saved their context.

16. BUGCHECK again waits, up to a maximum of 10 seconds plus SMP_SPINWAIT, for all active
members to save their context. This wait ensures that the CRASH CPU has saved its context.

Page 44

Fatal Bugchecks on OpenVMS Alpha and OpenVMS I64 Systems - Ruth Goldenberg, Richard Bishop

© Copyright 2005 Hewlett-Packard Development Company, L.P. 11

17. Still running on the primary CPU, BUGCHECK tests whether the CRASH CPU has saved its
register context. If not, it uses its own per-CPU database in the following steps.

18. BUGCHECK uses the bugcheck code in the CRASH CPU's per-CPU database to select the

bugcheck message text. This field is initialized to BUG$_CPUCEASED in case a problem on the
CRASH CPU prevents it from recording the real bugcheck code.

19. BUGCHECK writes bugcheck information from the CRASH CPU's per-CPU database to the

console terminal.

20. Running on the primary CPU, BUGCHECK then continues execution at step 13 in the earlier
section titled “Fatal Bugcheck Processing on a Uniprocessor System”.

The System Dump File

System initialization code locates and opens the error log dump file
SYS$SPECIFIC:[SYSEXE]SYS$ERRLOG.DMP and the system dump file
SYS$SPECIFIC:[SYSEXE]SYSDUMP.DMP. If the error log dump file is not found, the error log buffers
are not dumped when the system crashes or shuts down, and therefore cannot be recovered by
system initialization code during the subsequent reboot.

Absence of a system dump file on the system disk does not necessarily mean a system dump cannot
be written. If SYS$SPECIFIC:[SYSEXE]PAGEFILE.SYS exists, the executive writes the system dump there
instead. Subsequent analysis of a dump written to the page file requires that the SYSGEN parameter
SAVEDUMP be 1.

If the “dump off system disk” (DOSD) bit of the SYSGEN parameter DUMPSTYLE is set, BUGCHECK
locates and opens SYSDUMP.DMP on an alternate disk. If such a dump file is found, it is used instead
of a file on the system disk (SYSDUMP.DMP or PAGEFILE.SYS). If such a file is not found, the system
disk dump file is used. If no dump file is found on either disk, then no dump is written. DOSD is
discussed in more detail at the end of this article.

There are two types of dump:

• A full or physical dump is a dump of physical memory from the lowest numbered physical
page to the highest.

• A selective dump is a dump of the virtual memory in use at the time of the system crash.

Both physical and selective dumps are divided into several sections, as shown in the following figure
and descriptive text.

Page 45

Fatal Bugchecks on OpenVMS Alpha and OpenVMS I64 Systems - Ruth Goldenberg, Richard Bishop

© Copyright 2005 Hewlett-Packard Development Company, L.P. 12

Dump Header

Trap Information

Crash Error Log Entry

Error Log

Buffers

Compression

Map

Figure 2 Layout of Physical and Selective Dumps

• Dump Header. This consists of two blocks of information describing the dump, including data

such as the date and time of the system crash, the bugcheck type, the size of the dump, and so
on.

• Trap Information. In case the BUGCHECK code itself incurs a trap such as an ACCVIO while it is

writing the dump, blocks are set aside for the data from the trap to be saved. The saved data
consists of the exception frame plus some additional fields. Currently, one block is required on
Alpha, and two blocks on I64.

File and Unwind Data

Memory Map

Memory
Fragment #1

Memory
Fragment #2

Memory
Fragment #n

…

Logical
Memory
Block #2

...

LMB
Body

Hole Table

LMB Header

Logical
Memory
Block #n

Memory
Contents

for
Selective
Dumps

Memory
Contents

for
Physical
Dumps

Page 46

Fatal Bugchecks on OpenVMS Alpha and OpenVMS I64 Systems - Ruth Goldenberg, Richard Bishop

© Copyright 2005 Hewlett-Packard Development Company, L.P. 13

• Crash Error Log Entry. This is the error log entry that describes the system crash. Two blocks are
used on both Alpha and I64.

• Error Log Buffers. These are the error log entries that were recorded during the period

immediately preceding the system crash and have not yet been written to the error log file
ERRLOG.SYS. The number of blocks required for these buffers is calculated by multiplying the
SYSGEN parameters ERRORLOGBUFF_S2 and ERLBUFFERPAG_S2. (When the system reboots
after a crash, SYSINIT copies the Error Log Buffers and the Crash Error Log Entry into nonpaged
pool. Later, the ERRFMT process records them in ERRLOG.SYS).

• Compression Map. If a compressed dump is being written, space is allocated in the dump for the

compression map. The format of this map is discussed later in this article. The BUGCHECK code
calculates the worst-case size for the map – the number of blocks that would be needed if no
compression were possible and if the dump file were completely filled.

• Memory Contents. The actual contents of memory is dumped next. The layout of this section

depends on the type of dump (physical or selective) being written. The two layouts are described
in more detail later in this article.

• File and Unwind Data. Starting in the OpenVMS release that follows Version 8.2, additional data

is appended to the dump after the system reboots. This data is appended when the dump is
copied by SDA during system startup. The appended data comprises:

• Data to translate file identification numbers (FIDs) to file names
• Unwind tables for images activated by any processes (OpenVMS I64 only)

 The file and unwind data section is described in more detail later in this article.

Physical Dumps

In a physical dump, all the memory in the system is written to the dump file, with two exceptions:

• If the SYSGEN parameter PHYSICAL_MEMORY has been set to less than the size of the
system’s memory, any ranges of pages marked “Available” are not dumped.

• In the case of a system crash following a MACHINECHECK due to a double-bit error in

memory, the page with the error is not dumped.

In a physical dump, memory is handled in fragments. A fragment is a contiguous range of pages
with common attributes (for example, console-owned, OpenVMS-owned, or Galaxy shared memory).
In an OpenVMS Galaxy system, usually the only fragments dumped are those owned by the member
that has crashed, plus shared memory. The one exception to this is the page range containing the
Galaxy Configuration Tree (GCT). The GCT, which needs to be included in the dump, is normally
located in the local memory of member zero. If a system crash occurs in another member, an
additional fragment must be created by BUGCHECK code to describe the page range of the GCT.

The memory portion of a physical dump begins with the memory map. The memory map
describes the memory fragments (physically contiguous ranges of pages) in the system. Up to 16
memory fragments are described by each block of the memory map. The remainder of the dump has
the following contents, in this order:

• A memory fragment for the GCT (if BUGCHECK code created such a fragment)

Page 47

Fatal Bugchecks on OpenVMS Alpha and OpenVMS I64 Systems - Ruth Goldenberg, Richard Bishop

© Copyright 2005 Hewlett-Packard Development Company, L.P. 14

• All console-owned pages
• All OpenVMS-owned pages
• Any Galaxy shared memory pages

Console-owned pages are written before OpenVMS-owned pages to ensure that the level 1 page
table page created by the console is written early. On many Alpha platforms, this page table is in a
high-numbered page, and if pages were written in ascending order, the page would often fail to be
written if the dump file was even slightly too small.

An uncompressed or raw physical dump requires a dump file large enough for all of memory,
plus space for the headers, error log buffers, memory map, and so on. If the dump file is too small, it
is quite likely that no analysis will be possible. A compressed physical dump requires a dump file
about half this size, but the exact size depends on the contents of memory. The memory map is not
compressed. Dump compression is described later in this article.

Selective Dumps

In a selective dump, only memory in use at the time of the system crash is written to the dump file, and
it is ordered by its virtual memory address. System memory is dumped first, followed by the memory
of processes and global sections, in units called Logical Memory Blocks (LMBs). An LMB consists
of a 1-block header, followed by a hole table (one or more blocks in length), followed by the actual
memory contents. The hole table describes the ranges of virtual addresses not written for the section
within the LMB.

The complete set of possible LMB types, and their order in a selective dump, is as follows:

1. PT Space (the page table for all of system space (S0/S1 and S2)).

2. S0/S1 space (32-bit system space)

3. S2 space (64-bit system space)

4. RAD-specific data (virtual pages in S0/S1 and S2 space that map to different physical pages in

systems that support Resource Affinity Domains). There can be multiple RAD-specific LMBs in a
dump.

5. Key Process page tables (one for each key process). An explanation of key processes follows

later in this article.

6. Key Process memory (one for each key process). For each process, the page table LMB and
memory LMB are written together as a pair.

7. Key Global pages (any global pages in the working set of at least one key process at the time of

the system crash).

8. Non-key Process page tables (one for each non-key process)

9. Non-key Process memory (one for each non-key process)

10. Remaining Global pages (any global pages in the working set of a process at the time of the
system crash that were not included in the “Key Global pages” LMB).

Page 48

Fatal Bugchecks on OpenVMS Alpha and OpenVMS I64 Systems - Ruth Goldenberg, Richard Bishop

© Copyright 2005 Hewlett-Packard Development Company, L.P. 15

In contrast to physical dumps, it is impossible to determine exactly the size needed for an
uncompressed or raw selective dump. For analysis to be possible, the dump file must be large enough
to contain all system space plus the current process on the crash CPU. Best results are obtained if the
dump file is large enough to accommodate all key processes and key global pages, as discussed in
the next section. A compressed selective dump requires a dump file about half this size, but, as with
physical dumps, the exact size depends on the contents of memory. The LMB headers and hole table
blocks are not compressed. Dump compression is described later in this article.

Incidentally, process dumps use a format similar to selective dumps. Process dumps contain two
LMBs – one for all process address space (both page tables and memory), and one for all system
space memory that is pertinent to the process being dumped. Process dumps do not contain error logs
or space reserved for trap information. Instead, process dumps include blocks following the dump
header that contain an invocation context block and other data. This information provides a snapshot
of the processor registers at the time of the failure.

Key Processes

When a dump is analyzed, the necessary information is usually found in the address space of the
process that was current at the time of the system crash, or in the address space of a process that
contains important system data structures. For this reason, certain processes, known as key
processes, are dumped first in a dump. These processes, and the order in which they are dumped,
are as follows:

• The current process on the CPU where the system crash was initiated
• The SWAPPER process
• Current processes on any CPUs that did not respond to the request from the crash CPU to

perform a CPUEXIT BUGCHECK instruction
• Current processes on any other CPUs
• Processes registered as priority processes by the SYSMAN DUMP_PRIORITY ADD command
• Processes designated by Hewlett-Packard to be key processes. This list of processes is built

into the BUGCHECK code and comprises the following:
MSCPmount
AUDIT_SERVER
NETACP
NET$ACP
REMACP
LES$ACP
SHADOW_SERVER

• Processes in any miscellaneous wait state: for example, RWAST, MUTEX, WTBYT, and so on.

SYSMAN DUMP_PRIORITY ADD commands can be entered directly by the system manager or can be
included in the installation procedures of layered products and third-party products. Careful use of
SYSMAN DUMP_PRIORITY ADD commands to include all key processes ensures that a selective dump
includes useful data first. This prevents the dump file being filled with the memory contents of
processes that have no relevance to the system crash.

Dump Compression

Dump compression was introduced in OpenVMS Alpha Version 7.0 and has been enhanced since
then, most recently in Version 7.3-1. It does not use an established compression algorithm, but one
designed to be most effective with common OpenVMS memory patterns, and which can be used by
the BUGCHECK code.

Page 49

Fatal Bugchecks on OpenVMS Alpha and OpenVMS I64 Systems - Ruth Goldenberg, Richard Bishop

© Copyright 2005 Hewlett-Packard Development Company, L.P. 16

Following the dump header and error logs, a compressed dump contains a compression map. This is
a sequence of quadwords, each describing up to 128 blocks of the compressed dump. (In a selective
dump, additional quadwords describe the LMB headers and the hole tables for each LMB. These
quadwords can easily be identified because bit 63, DMP$V_NOCOMP, is set).

The data in each quadword includes the final raw VBN represented by this compression map entry,
the number of compressed blocks written for this entry, and flags such as DMP$V_NOCOMP. When
SDA is reading the dump file, it scans the compression map looking for the entry containing the raw
VBN it wants. Having counted the compressed blocks written for preceding entries, SDA can then
read the exact set of blocks containing the raw VBN of interest and decompress just those blocks to
get to the raw data.

The BUGCHECK code attempts to compress four blocks of raw data at a time using the algorithms
described below. The compressed data is appended to a buffer until the maximum size of a
compressed section (127 blocks) is reached.

The BUGCHECK code looks for the following byte patterns:

• Repeated sequences of a single value (DMP$K_REPEAT)
• An ascending sequence of values (DMP$K_INCREMENT)
• A descending sequence of values (DMP$K_DECREMENT)
• A sequence containing a limited set of values (up to 2, 4, 8, 16, 32, or 64)

(DMP$K_REENCODE_n, n=1-6)
• A sequence where a small number of values (1-7) is dominant (DMP$K_BITMAP_n, n=1,3,7)
• A sequence where no compression is possible (DMP$K_NOCOMP)

For each byte pattern, the compressed data has a fixed header of three bytes. The first byte contains
the pattern type (DMP$K_xxx) and some flag bits (to be described later). The second and third bytes
contain a word count of the number of raw bytes represented in the compressed section.

For DMPK_REPEAT, DMPK_INCREMENT, and DMP$K_DECREMENT, a fourth byte contains the
first character of the sequence. A minimum sequence of 16 bytes is required for the pattern to be
recognized. If successive complete DMP$K_REPEAT sections are found for the same byte value, these
are merged to a maximum raw size of 64 blocks.

For DMP$K_NOCOMP, the sequence of raw byte values follows the header. If successive complete
DMP$K_NOCOMP sections are found, these are merged, also to a maximum raw size of 64 blocks.
If two successive 64-block DMP$K_NOCOMP sections occur, the 3-byte headers are dropped, the
entire 128 blocks are written to the dump file, and the DMP$V_UNCOMP bit is set in the compression
map entry. Without this optimization, the compressed dump would end up being larger than the raw
dump if memory patterns are such that little or no compression is possible.

DMP$K_REENCODE_n sections contain the same 3-byte header, followed by bytes containing the
values that occur in the sequence (from 2**(n-1)+1 to 2**n such values). So that SDA can determine
the end of the set of values, if the full set (2**n) is not used, the last value is always hex FF, even if it
does not occur in the sequence. To understand how re-encode compression works, consider a
sequence of bytes that contains only the hex values 17, 31, 65, A4, and E9. This can be compressed
as a DMP$K_REENCODE_3 section, using binary 000 for every 17, binary 001 for every 31, 010
for 65, 011 for A4, and 100 for E9. The five raw values, followed by hex FF, are written to the
dump, followed by as many 3-bit groups as there were bytes in the raw data. If a sequence of 100
bytes containing just these five values was found, its compressed size would be 3+6+(100*3+7)/8 =

Page 50

Fatal Bugchecks on OpenVMS Alpha and OpenVMS I64 Systems - Ruth Goldenberg, Richard Bishop

© Copyright 2005 Hewlett-Packard Development Company, L.P. 17

47 bytes. (That’s three bytes of fixed header, six bytes of raw values including the hex FF terminator,
and 100 3-bit groups for the actual re-encoded values, rounded up to the next complete byte.)

DMP$K_BITMAP_n sections contain the 3-byte header, followed by bytes containing the dominant
values that occur in the sequence (exactly n such values). There is no need to have a filler value, as
do DMP$K_REENCODE_n sections, because any sequence of bytes that contains fewer than seven
distinct values is more efficiently compressed using re-encoding. Following the set of dominant values
is a set of 1-bit, 2-bit, or 3-bit groups, with one group for each byte in the raw data. The value in
each group is the offset in the set of dominant bytes unless it is the maximum value for the bit group
(1, 3, or 7). In that case, the value indicates that some other less common (latent) value occurs in the
raw data. These latent values follow the bit groups in the same order they occur in the raw data. The
number of bytes required to contain the compressed data using bitmap compression depends on the
repeat counts for each dominant value.

The BUGCHECK code looks first for repeat, increment, or decrement sequences, temporarily ignoring
intervening bytes. Having identified such a sequence, it then scans the ignored bytes, counting
occurrences of all possible values. Using the collected statistics, it decides if a re-encoded
compression is possible or if a bitmap compression would produce a better result. If no approach will
compress the data, it becomes a DMP$K_NOCOMP section. The result is written to the dump,
followed by any previously-identified repeat, increment, or decrement section.

But compression does not end here. In many situations, the compressed data is itself compressible, so
the BUGCHECK code attempts further compression, up to four times. While it is rare to perform the
maximum number of compression passes, two or three passes are common, especially with certain
patterns that occur in page tables and the PFN database. Flag bits in the first byte of the
3-byte header indicate to SDA when it has completely decompressed a section.

File and Unwind Data

Beginning with the OpenVMS release that follows Version 8.2, additional data is appended to the
dump after the system reboots. However, the actual dump file cannot be modified. For example, when
a dump is written to a page file, any unused space in the dump file is made available for paging as
soon as the system reboots. Therefore, the additional data is appended to the copy when the dump is
copied by SDA. The appended data comprises the following:

1. File identification to file name translation data. Collection of this data allows SDA to display file

names when analyzing dumps for the following commands:
SHOW PROCESS /CHANNELS
SHOW GLOBAL_SECTION_TABLE
SHOW MEMORY /FILES

2. Unwind tables for images activated by any processes. OpenVMS I64 uses unwind tables to

describe when and where registers have been saved during the execution of a procedure. The
unwind tables for an activated image are in pageable sections. As a result, the tables and the
data structures that describe them have often been unavailable in system dumps. Their absence
affects the SHOW CALL command, preventing a complete analysis of all call frames if any frame
is for a PC in an activated image. Collection of this data allows SDA to access the data it needs
to display such call frames.

The SHOW UNWIND address command also uses the collected data if the given address is for a
PC in an activated image. However, the SHOW PROCESS /UNWIND [=ALL] command can still

Page 51

Fatal Bugchecks on OpenVMS Alpha and OpenVMS I64 Systems - Ruth Goldenberg, Richard Bishop

© Copyright 2005 Hewlett-Packard Development Company, L.P. 18

fail because it also relies on the data structures that describe the in-memory unwind tables; those
cannot be reconstructed after the crash.

It is worth noting that because the unwind tables for loaded executive images are always
resident, the SHOW UNWIND [/ALL] command is never affected. Likewise, SHOW CALL can
always display call frames whose PC is in a loaded executive image.

By default, a copy of an original dump, as written at the time of the system crash, includes collection
data. You can execute COPY /NOCOLLECT to override this. Conversely, a copy of a dump
previously copied by SDA without collection (COPY /NOCOLLECT) does not include collection data,
but COPY /COLLECT can be used to override this. Copying a dump that already contains an
appended collection will always include that collection.

For all file and unwind data to be collected successfully, all disks that were mounted at the time of the
system crash should be remounted and accessible to the process running SDA. SDA is usually invoked
early during startup to save the contents of the dump, for example by defining the logical name
CLUE$SITE_PROC to point to an SDA command procedure that includes a COPY command. If some
disks are not mounted until a batch job is run, some file or unwind data might not be collected
successfully. To avoid this, use the COPY/NOCOLLECT command in the CLUE$SITE_PROC command
procedure; then, once all disks have been mounted, execute an additional COPY/COLLECT
command to save file and/or unwind data.

Dump Off System Disk (DOSD)

On many systems, disk space can be at a premium, especially on a cluster-common system disk. For
this reason, OpenVMS on both Alpha and I64 provides the ability to write system dumps to a dump
file on a disk other than the system disk. To use this feature, the system manager must perform the
following setup steps:

1. Set the “dump off system disk” (DOSD) bit in the SYSGEN parameter DUMPSTYLE. This is bit 2

(value 4).

2. Put the name of the disk to be used in the DUMP_DEV environment variable. On Alpha, this is
done with a SET DUMP_DEV command at the console prompt. On I64, it is done using the
command procedure SYS$MANAGER:BOOT_OPTIONS.COM. If there are multiple paths to the
dump disk, all paths should be included in DUMP_DEV. The disk cannot be a member of a
shadow set or part of a volume set.

3. On the desired dump disk, create the file [SYSn.SYSEXE]SYSDUMP.DMP using the SYSGEN

CREATE /SIZE=size command. The file must be in the same system root that is used to boot the
system. Using SYSGEN to create the dump file ensures that, even if the file is not contiguous, it
will not be so badly fragmented that an extension header is required to record its location on the
disk.

When the system crashes, if the BUGCHECK code finds the DOSD bit set in DUMPSTYLE, it attempts
to access each entry in DUMP_DEV in turn and tries to locate the dump file, using the same primitive
file system that is available to SYSBOOT when the system is booted. Once the BUGCHECK code finds
the dump file, it writes the dump in exactly the same way as it does for a system disk dump file.

The error log dump file is always located on the system disk because SYSINIT must access it when the
system reboots. The BUGCHECK code uses DUMP_DEV to locate alternate paths to the system disk if

Page 52

Fatal Bugchecks on OpenVMS Alpha and OpenVMS I64 Systems - Ruth Goldenberg, Richard Bishop

© Copyright 2005 Hewlett-Packard Development Company, L.P. 19

it failed over to a different path while OpenVMS was running. For this reason, if there is more than
one path to the system disk, DUMP_DEV should include all paths. If the system disk is a shadow set,
the BUGCHECK code attempts to write the contents of the error log buffers to all members of the
shadow set. Therefore, DUMP_DEV should include all paths to all members of the system disk shadow
set.

Unfortunately, on Alpha there is a limit to the number of paths that can be included in DUMP_DEV
because the console provides only a single fixed-length buffer for the list. On some Alpha platforms,
only a single device can be specified; on others, there is room for 4 to10 devices, depending on their
type. As a result, the system manager must determine which devices to include. At a minimum, all
paths to the dump device should be included if DOSD is being used. As many paths to the system
disk as possible should then be added; in the case of a shadow set, start with the member that is
usually the master – the member used in BOOTDEF_DEV.

On I64, the limit on the number of paths is 99, so there should be no difficulty in defining all paths to
the dump disk and all paths to all members of the system disk shadow set.

Page 53

Fatal Bugchecks on OpenVMS Alpha and OpenVMS I64 Systems - Ruth Goldenberg, Richard Bishop

© Copyright 2005 Hewlett-Packard Development Company, L.P. 20

For more information
For more information about the creation and analysis of system crash dumps, refer to the following
OpenVMS manuals:

HP OpenVMS System Analysis Tools Manual
http://h71000.www7.hp.com/doc/82FINAL/6549/6549PRO.HTML

HP OpenVMS System Manager’s Manual, Volume 2: Tuning, Monitoring, and Complex Systems
Refer to the chapter titled “Managing Page, Swap, and Dump Files.”
http://h71000.www7.hp.com/doc/82FINAL/aa-pv5nj-tk/aa-pv5nj-tk.HTMl

© 2005 Hewlett-Packard Development Company, L..P. The information
contained herein is subject to change without notice. The only warranties for
HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed
as constituting an additional warranty. HP shall not be liable for technical or
editorial errors or omissions contained herein.

Page 54

OpenVMS Technical Journal V6

Disk Partitioning on OpenVMS: LDdriver's Secrets

Disk Partitioning on OpenVMS: LDdriver's Secrets.. 2
Overview .. 2
History .. 2
What is LDdriver?... 2
Watchpoints .. 7
Callable Interface ... 10
Internals .. 10
Conclusion .. 11

For more information .. 11

© Copyright 2005 Hewlett-Packard Development Company, L.P. 1
Page 55

Disk Partitioning on OpenVMS: LDdriver's Secrets - Jur van der Burg

© Copyright 2005 Hewlett-Packard Development Company, L.P. 2

Disk Partitioning on OpenVMS: LDdriver's Secrets
Jur van der Burg, HP OpenVMS Sustaining Engineering

Overview
LDdriver is a device driver that runs under the OpenVMS operating system to allow creation of virtual
disks. This article describes many ways to use this driver that are not widely known.

LDdriver was developed a long time ago (around 1985) and has been improved and extended many
times since then. It started as freeware (it still is) and was integrated into OpenVMS in V7.3-1.

History
LDdriver was originally written for VAX/VMS around 1985 by Adrie Sweep, a software engineer in
the Netherlands. The initial version worked well, but it was not flexible in configuration and usability.
Some time later the driver was changed to use so-called cloned devices to provide a more flexible
way to manage the virtual disks. Over the years a number of functions have been added, increasing
LDdriver’s versatility, and LD has been ported to Alpha. LD has been a part of OpenVMS since VMS
V7.3-1, and it is used by CDRECORD. Beginning in V8.2, LD is fully integrated. The procedures
described in this article are valid for the latest version of LD (V8.0), which will be available as a
separate kit and will also be integrated into the next major OpenVMS release (V8.2-1).

What is LDdriver?
As its name implies, LDdriver is a logical disk driver that allows you to use a file on any type of hard
disk as a disk. For example, if you have a file called LDDISK:[VMS]DISK.DAT, you can use that file as
a disk by entering the command LD CONNECT LDDISK:[VMS]DISK.DAT LDA1:. After that you have a
device LDA1: on the system which you can use as a disk.

The LD system startup procedure is SYS$STARTUP:LD$STARTUP. You can put the startup command
the SYS$SYSTEM:SYSTARTUP_VMS.COM file. An optional startup parameter allows you to increase
the number of LD devices by specifying the controller letter to use for LD. If the controller letter is not
specified, then LDA will be used (allowing up to 9999 LD devices), but if you would like an additional
controller, specify B as the first parameter to get LDB.

LDdriver operates in three different modes:

• FILE mode, which allows any arbitrary file to be used as disk.

• LBN mode, which allows you to specify blocks on a disk.

• REPLACE mode, which allows access to the disk.

These modes are explained in the following subsections. If you need any help, just remember the
command LD HELP. Every command is described in detail, and a couple of examples are provided as
well.

FILE Mode

The most widely-used mode of operation is FILE mode. It allows an arbitrary file to be used as a disk.
The only restriction on the file itself is that it must fit on a real disk; the size may be as big as the
physical disk can handle. In the past, the file needed to be contiguous, but that restriction has been
removed.

The setup is very simple:

1. Create a file on a physical disk.

2. Connect the file to a logical disk.

3. Use it!

4. After use, disconnect it.

For example:

Page 56

Disk Partitioning on OpenVMS: LDdriver's Secrets - Jur van der Burg

© Copyright 2005 Hewlett-Packard Development Company, L.P. 3

$ ld create lddisk:[vms]disk.dsk/size=10000
$ ld connect lddisk:[vms]disk.dsk lda1:
$ ld show lda1:
%LD-I-CONNECTED, Connected 7LDA1: to 7DRA6:[VMS]DISK.DSK;1

This creates a new disk on the system (LDA1:), which can do anything a normal disk can do:

$ initialize lda1: lddisk
$ mount/system lda1: lddisk
%MOUNT-I-MOUNTED, LDDISK mounted on _7LDA1: (LDDRVR)
$ dismount lda1:
$ ld disconnect lda1:

This setup allows for very flexible use of disk space. Suppose you want to create an OpenVMS disk
that you want to burn on a CD. All you need to do is mount the LD device, copy any files on it the
way you want, dismount the disk, disconnect the file from the LD device and burn the file on a CD in
any way you like. This can also be done on a PC with a variety of PC software.

Another use of LD is sharing the LD devices across different nodes in a cluster. Notice that LD devices
are not MSCP-served (for a number of reasons). If sharing is to be used, the physical disk where LD’s
container file resides needs to be visible on other cluster members. For example:

$ ld connect lddisk:[vms]disk.dsk lda1:/share/log
%LD-I-CONNECTED, Connected 7LDA1: to 7DRA6:[VMS]DISK.DSK;1 (Shared)

If the same command is given on another node in the cluster, the resulting LD device can be mounted
on that node as well. For this to work, the driver imposes several checks.

First, the device name has to match, as well as the allocation class, unit number, and controller letter.
The device must also connect to exactly the same file, and with the same sharing options. The
maximum disk size and the device geometry must be the same as well.

If one of these prerequisites is not met, a specific message will follow. Suppose a device is connected
on one node, and when you try to connect it on a second node you see the following error:

$ ld connect lddisk:[vms]disk.dsk lda1:
%LD-F-FILEINUSE, File incompatible connected to other LD disk in cluster
-LD-F-ALLOCLASS, Allocation class mismatch

This means that you have an allocation class mismatch. This occurs when two nodes in a cluster have
a different allocation class. Remember, the default allocation class of an LD device will be the
allocation class of the node. You can change this at connect time by specifying the correct allocation
class. However, you can only do this if no other LD devices for the same controller are connected.

If you look at the other node where the file was first connected, you see this:

$ ld show/all
%LD-I-CONNECTED, Connected _12LDA1: to 7DRA6:[VMS]DISK.DSK;1 (Shared)

By specifying the correct allocation class, you can do what you want:

$ ld connect lddisk:[vms]disk.dsk lda1:/alloclass=12
%LD-F-DEVICEINUSE, Device incompatible connected to other LD disk in
cluster
-LD-F-NOSHARE, No sharing specified for file on this node

Oops! That does not work, either! Remember that everything has to be the same. You have to specify
that you want to share the file, or the driver will reject our request. The following command will work:

$ ld connect lddisk:[vms]disk.dsk lda1:/alloclass=12/share/log
%LD-I-CONNECTED, Connected 12LDA1: to 7DRA6:[VMS]DISK.DSK;1 (Shared)

You can use different LD devices with different allocation classes on one node. In this case, you need
a new controller letter, which can be created by invoking LD’s startup procedure and specifying the
controller letter as the command parameter, as follows:

Page 57

Disk Partitioning on OpenVMS: LDdriver's Secrets - Jur van der Burg

© Copyright 2005 Hewlett-Packard Development Company, L.P. 4

$ @sys$startup:ld$startup b
$ ld create disk2
$ ld connect disk2 ldb5
$ ld show/all
%LD-I-CONNECTED, Connected _12LDA1: to 7DRA6:[VMS]DISK.DSK;1 (Shared)
%LD-I-CONNECTED, Connected _7LDB5: to 7DRA6:[VMS]DISK2.DSK;1

Connect, Create and Other Options

Several options can be specified at connect time to influence the appearance of the logical disk. For
example, if a file was created with a size of 10000 blocks and you only want to use the first 5000,
you can do so by specifying /MAXBLOCK=5000 at connect time. You can also influence the
geometry by specifying /CYLINDERS, /TRACKS, and /SECTORS. Although of limited use with
modern disks, these qualifiers allow you to configure a disk to exactly mimic another disk. The
geometry can be copied from an already mounted disk with /CLONE, which can also be used to
create a container file that mimics a real disk, as follows:

$ ld create/clone=8dua14: lddisk:[vms]cloned.dsk
$ ld connect cloned lda2/log
%LD-I-CONNECTED, Connected 12LDA2: to 7DRA6:[VMS]CLONED.DSK;1

This procedure will create a logical disk LDA2 with exactly the same properties as device
8DUA14:. Notice that the geometry information is stored in the container file, so a subsequent
disconnect/connect will restore the same disk parameters. The geometry information can be
overridden by specifying /NOAUTOGEOMETRY, in which case the geometry will be calculated by
the driver.

The geometry information will also be saved in the container file if /SAVE was specified during
connect.

LD devices can be write-protected using the LD PROTECT command. You can make this protection
permanent by adding /PERMANENT, which will store the write-protect status in the container file. This
way it will be possible, for example, to emulate a CDROM; on a subsequent CONNECT command,
the write-protect status will be restored.

Normally, a file is connected to an LD device by explicitly specifying which device you want to get. If
you don’t do this, the driver will assign a unit number and inform you about it. If you specify
/SYMBOL as well, you will get the assigned unit number in a DCL symbol:

$ ld connect disk.dsk/symbol
%LD-I-UNIT, Allocated device is 12LDA22:
$ show symbol ld_unit
 LD_UNIT = "22"

This procedure is useful in command procedures, where the actual device name is unimportant. The
symbol makes it easy to reference such a device.

LBN Mode

In LBN (Logical Block Number) mode, a physical disk can be accessed in several parts, as specified
by a LBN range. Look at it as partitioning a disk without any file structure on it. For example:

$ ld connect 1dga1: lda1:/lbn=(start=0,count=1000)/log
%LD-I-CONNECTED, Connected 7LDA1: to _1DGA1: (LBN Mapping: Start=0
End=999)
$ ld connect 1dga1: lda2:/lbn=(start=1000,end=2000)/log
%LD-I-CONNECTED, Connected 7LDA2: to _1DGA1: (LBN Mapping: Start=1000
End=2000)

This procedure uses two fragments of device 1DGA1 for devices 7LDA1 and 7LDA2. The
range of LBNs can be specified in either of the following ways:

• A starting LBN with a block count

• A starting LBN and an ending LBN

Page 58

Disk Partitioning on OpenVMS: LDdriver's Secrets - Jur van der Burg

© Copyright 2005 Hewlett-Packard Development Company, L.P. 5

The driver will check for an overlap of LBNs, so any attempt to use a range already in use will result
in the following error:

$ ld connect 1dga1: lda3:/lbn=(start=600,end=2000)/log
%LD-F-DEVICEINUSE, Device incompatible connected to other LD disk in
cluster
-LD-F-RANGEINUSE, LBN range already in use

This way of partitioning a disk is the most efficient way to use the physical device, since the overhead
of unused blocks is zero. The physical device can be divided in as many parts as you need, as long
as the system’s resources will allow them.

Another way to use this is to map a range of blocks from a foreign volume, for example a UNIX file
system. Use your imagination!

As with FILE mode, these LD devices can be shared in a cluster:

$ ld connect 1dga1: lda3:/lbn=(start=5000,count=5000)/log/share
%LD-I-CONNECTED, Connected 7LDA3: to _1DGA1: (LBN Mapping: Start=5000
End=9999) (Shared)

The same restrictions apply as with FILE sharing: the device name, unit number, controller letter, and
allocation class must match the remote node. The range and physical device have to match as well, of
course. Notice that the range of LBNs in use is checked on all the nodes in the cluster that have an
interest in the physical device, so if any block in the specified range is already in use, an error will be
generated. This is really a tricky thing to check; for more information about this check, see Internals.

To be able to use LBN connect, the physical device must not be in use anywhere in the cluster. The
driver will enforce a check on this, and if the check fails an error will follow. After the first LD device is
connected with LBN, the physical device will not be available for any other use in the cluster; that is,
a mount on any node will fail until the last LD device disconnects. For example:

$ mount/over=id 1dga1:
%MOUNT-I-OPRQST, device already allocated to another user
%MOUNT-I-OPRQST, device _1DGA1: (LDDRVR) is not available for mounting.

If any failure to use the physical device occurs on any node, make sure that all LD devices are
disconnected from this device. The driver will go to great lengths to protect the user against any
errors.

REPLACE Mode

REPLACE mode is not a form of partitioning, but a way to create access to the physical device using
LDdriver. You will understand how to use this when you read about I/O Tracing and Watchpoints,
which describe how to perform a real-time trace of all I/O requests.

The following example creates a device (7LDA1) that will direct all I/O to the physical device
1DGA1:

$ ld connect 1dga1: lda1:/replace/log
%LD-I-CONNECTED, Connected 7LDA1: to _1DGA1: (Replaced)

Replaced devices can also be shared:

$ ld connect 1dga1: lda1:/replace/log/share
%LD-I-CONNECTED, Connected 7LDA1: to _1DGA1: (Replaced) (Shared)

The same restrictions apply for sharing as with FILE and LBN mode: the device name, unit number,
controller letter, and allocation class must match. The physical device will be made unavailable by
means of a lock.

I/O Tracing

One of the most powerful and little known features of LDdriver is I/O tracing. For any mode that an
LD device operates, a real-time trace of all I/O activity can be created. This is a simple example:

Page 59

Disk Partitioning on OpenVMS: LDdriver's Secrets - Jur van der Burg

© Copyright 2005 Hewlett-Packard Development Company, L.P. 6

$ ld connect disk.dsk lda1
$ ld trace lda1
$ mount lda1: testdisk
%MOUNT-I-MOUNTED, TESTDISK mounted on _7LDA1: (LDDRVR)
$ ld show/trace lda1
 I/O trace for device 7LDA1:
 26-APR-2005 22:18:36.28 on node LDDRVR::

Start Time Elaps Pid Lbn Bytes Iosb Function
--
22:18:32.65 00.00 09C00227 0 0 NORMAL PACKACK|INHERLOG
22:18:32.65 00.01 09C00227 1 512 NORMAL READPBLK
22:18:32.66 00.00 09C00227 1034 512 NORMAL READPBLK
22:18:32.67 00.00 09C00227 5007 512 NORMAL READPBLK
22:18:32.67 00.00 09C00227 5008 512 NORMAL READPBLK
22:18:32.67 00.00 09C00227 5002 512 NORMAL READPBLK
22:18:32.67 00.00 09C00227 5002 512 NORMAL WRITEPBLK
22:18:32.68 00.00 09C00227 5002 512 NORMAL WRITEPBLK
22:18:32.69 00.00 09C00227 5003 1536 NORMAL READPBLK
22:18:32.69 00.00 09C00227 5006 512 NORMAL READPBLK
22:18:32.69 00.00 09C00227 5010 512 NORMAL READPBLK|EXFUNC
22:18:32.69 00.00 09C00227 5000 512 NORMAL READPBLK|EXFUNC
22:18:32.69 00.00 09C00227 0 0 NORMAL
PACKACK|BYPASS_VALID_CHK
22:18:32.69 00.00 09C00227 5002 512 NORMAL READPBLK|EXFUNC
22:18:32.70 00.00 09C00227 5016 512 NORMAL READPBLK|EXFUNC
22:18:32.70 00.00 09C00227 5023 1024 NORMAL READPBLK
22:18:32.70 00.00 09C00227 5016 512 NORMAL
WRITEPBLK|EXFUNC|DATACHECK

The default display shows a timestamp, the elapsed time of the request, and so forth. Various
qualifiers allow you to modify the display, such as /IOSB=LONGHEX to show the real contents of the
IOSB, and /FUNCTION=HEX to show the function code without any translation.

Another powerful function is to trace FDT (Function Decision Table) calls to the driver. These always
happen but are not easy to see. These requests happen in the first part of calling a driver and are
used, for example, to validate parameters. But the I/O completion can occur directly from these FDT
routines, so that the I/O request is normally not noticed. FDT tracing is not implemented on the VAX
version of LDdriver.

The timing can be measured not only by the normal timestamps, but also by means of the SCC
(System Cycle Counter), which is a hardware register in the processor architecture that can be used
for accurate timing measurements. This counter is only available on Alpha and IA64, so accurate
tracing is not implemented on the VAX version of LDdriver. Accurate tracing must be enabled at the
time that the trace buffer is activated (using the LD TRACE command); it is not the default because
activating this option may impose a small performance hit. The SCC counter is specific for each
processor; therefore, in a multiprocessor system, the driver may need to reschedule the completion of
an I/O request to the same processor where the request was initiated to get an accurate
measurement.

If you enable FDT and accurate tracing, you get this:

$ ld notrace lda1
$ ld trace/fdt/accurate lda1
$ dir lda1:[000000]/out=nl:
$ ld show/trace/fdt/accurate lda1
 I/O trace for device 7LDA1:
 26-APR-2005 22:36:35.69 on node LDDRVR::

Start Time Elaps uSecs Pid Lbn Bytes Iosb Function

Page 60

Disk Partitioning on OpenVMS: LDdriver's Secrets - Jur van der Burg

© Copyright 2005 Hewlett-Packard Development Company, L.P. 7

22:36:29.10 00.00 0 09C00227 0 0 FDT ACCESS
22:36:29.10 00.00 0 09C00227 0 0 FDT
ACCESS|ACCESS|EXFUNC
22:36:29.10 00.00 0 09C00227 0 0 FDT
READVBLK|EXFUNC
22:36:29.10 00.00 422 00000000 5000 512 NORMAL
READPBLK|EXFUNC
22:36:29.10 00.00 0 09C00227 0 0 FDT
DEACCESS|EXFUNC

Notice that the driver is called more times to do the FDT work. The real I/O request had an elapsed
time of 422 microseconds; you can measure the timing with much finer granularity this way.

Of course, all trace data can be saved to disk, either as ASCII or as binary data. You need binary
data to process the trace data later. You can specify a block size, which will force LD to create a new
version of the output file once the number of blocks have been reached. Together with a version limit,
this provides continuous tracing without having to worry about filling up a disk, while still capturing a
predictable amount of data.

The trace data can also be viewed in real time with LD SHOW/TRACE/CONTINUOUS. This
command reads the trace data from the driver and resets the trace buffer after reading it. As soon as
there is new data available, the driver notifies LD driver so that you can get it. The viewer can be
stopped either by Control-C or by the LD TRACE/STOP LDA1 command issued from another terminal.

The default size of the trace buffer is 512 entries, but this can be as big as non-paged pool allows.
The amount of bytes taken for the buffer is charged against the byte count quota of the process issuing
the command.

Watchpoints
Watchpoints provide another tool that can help you debug various pieces of software. A watchpoint
is a logical block on disk that will generate a special action as soon as it is hit by an I/O request.
Another form of watchpoints is VIRTUAL watchpoints - virtual block numbers inside a file on disk.
You can choose any of the following actions to occur when a watchpoint is hit:

• Error

A watchpoint with the Error characteristic will return a predetermined error (specified by the user).
If you want to simulate an error on a disk, you can do this:

$ ld watch lda1 123/action=error
$ ld show/watch lda1
Index LBN Action Function Error return code
--
 1 123 Error READPBLK 02A4 (BUGCHECK)

As soon as logical block 123 is hit by an IO$_READPBLK request, the I/O will be terminated with
an SS$_BUGCHECK error:

$ dump lda1:/block=start=123
%DUMP-E-READERR, error reading LDA1:
-SYSTEM-F-BUGCHECK, internal consistency failure

The function code to trigger the watchpoint is by default an IO$_READPBLK. You can specify any
function with /FUNCTION=ALL, or for a unique function by specifying, for example,
/FUNCTION=CODE=13.

• Suspend

The SUSPEND action means that a request will be suspended until it is released by an LD
command. If you ever wonder where a request came from, you can let it run into a watchpoint,
and use SDA to see what is going on. Multiple suspends will be queued, and can be released by
a simple command.

Page 61

Disk Partitioning on OpenVMS: LDdriver's Secrets - Jur van der Burg

© Copyright 2005 Hewlett-Packard Development Company, L.P. 8

$ ld watch lda1 10/action=suspend
$ ld show/watch lda1
Index LBN Action Function Error return code
--
 1 10 Suspend READPBLK

$ spawn/nowait/input=nl: dump lda1:/block=(count=1,start=10)
%DCL-S-SPAWNED, process SYSTEM_50 spawned
$ spawn/nowait/input=nl: dump lda1:/block=(count=1,start=10)
%DCL-S-SPAWNED, process SYSTEM_9 spawned
$ ld show/watch lda1
Index LBN Action Function Error return code
--
 1 10 Suspend READPBLK
 Suspended process: 09C00247
 Suspended process: 09C00248

The I/O requests are suspended by the driver and the processes are simply waiting for them to be
completed. This can be done with one command:

$ ld watch/resume lda1

These I/Os will then complete, and the processes will finish.

• OPCOM

The OPCOM action allows an OPCOM message to be created when a watchpoint is hit. The
message includes the image name, process id, device name, I/O function code, and logical
block number:

$ reply/enable
$ ld watch lda1 1/action=opcom
$ ld show/watch lda1
Index LBN Action Function Error return code
--
 1 1 Opcom READPBLK
$ dump lda1:/block=(count=1,start=1)
%%%%%%%%%%% OPCOM 26-APR-2005 23:15:30.23 %%%%%%%%%%%
Message from user SYSTEM on LDDRVR
***** LDdriver detected LBN watchpoint access *****
PID: 09C00227
Image: DCL
Device: 7LDA1: (LDDRVR)
Function: 000C
LBN: 1

The OPCOM type may be combined with any other type of watchpoint.

• Crash

As its name implies, this action will cause the system to crash when the selected watchpoint is hit.
It is a “big hammer” approach for troubleshooting, but it can be handy at times. For example:

$ ld watch lda1 1/action=crash
%LD-F-DETECTEDERR, Detected fatal error
-SYSTEM-F-NOCMKRNL, operation requires CMKRNL privilege

This example shows what happens when you do not have the CMKRNL privilege. As crashing a
multiuser system is very serious business, a high privilege level is required for this operation to
succeed. The driver checks the issuing process for this privilege, and if it is not there, the above
error will result.

$ set proc/privilege=cmkrnl
$ ld watch lda1 1/action=crash

Page 62

Disk Partitioning on OpenVMS: LDdriver's Secrets - Jur van der Burg

© Copyright 2005 Hewlett-Packard Development Company, L.P. 9

$ ld show/watch lda1
Index LBN Action Function Error return code
--
 1 1 Crash READPBLK
$ dump lda1:/block=start=1

The privilege is enabled, but there is no response here. Fortunately, you can see something on
the console:

**** OpenVMS Alpha Operating System V8.2 - BUGCHECK ****
** Bugcheck code = 000008F4: RSVD_LP, Reserved for layered product use
** Crash CPU: 00 Primary CPU: 00 Active CPUs: 00000001
** Current Process = SysDamager
** Current PSB ID = 00000001
** Image Name = 10DKA600:[SYS0.SYSCOMMON.][SYSEXE]DUMP.EXE;1

**** Starting selective memory dump at 26-APR-2005 23:29...

Note that multiple watchpoints can be created using one command:

$ ld watch/action=error=%x84/function=write lda1 1,2,3,4,5
$ ld show/watch lda1
Index LBN Action Function Error return code
--
 1 1 Error WRITEPBLK 0084 (DEVOFFLINE)
 2 2 Error WRITEPBLK 0084 (DEVOFFLINE)
 3 3 Error WRITEPBLK 0084 (DEVOFFLINE)
 4 4 Error WRITEPBLK 0084 (DEVOFFLINE)
 5 5 Error WRITEPBLK 0084 (DEVOFFLINE)

A useful watchpoints is when a device is put into mount verification:

$ ld watch lda1 1/action=error=%x84/function=code=%x0808
$ ld watch lda1 10/action=error=%x84/function=read
$ ld show/watch lda1
Index LBN Action Function Error return code
--
 1 Error PACKACK|INHERLOG 0084 (DEVOFFLINE)
 2 10 Error READPBLK 0084 (DEVOFFLINE)
$ spawn/nowait/input=nl: dump lda1:/block=(count=1,start=10)
%DCL-S-SPAWNED, process SYSTEM_253 spawned
$
%%%%%%%%%%% OPCOM 26-APR-2005 23:44:41.37 %%%%%%%%%%%
Device 7LDA1: (LDDRVR) is offline.
Mount verification is in progress.

$ ld nowatch lda1
$
%%%%%%%%%%% OPCOM 26-APR-2005 23:44:50.62 %%%%%%%%%%%
Mount verification has completed for device 7LDA1: (LDDRVR)

VIRTUAL watchpoints are watchpoints for a given virtual block in a file:

$ copy sys$system:copy.exe lda1:[000000]
$ ld watch/file=lda1:[000000]copy.exe lda1: 10
$ ld show/watch lda1
Index LBN Action Function Error return code
--
 7LDA1:[000000]COPY.EXE;1

Page 63

Disk Partitioning on OpenVMS: LDdriver's Secrets - Jur van der Burg

© Copyright 2005 Hewlett-Packard Development Company, L.P. 10

 1 10 Error READPBLK 02A4 (BUGCHECK)
$ dump lda1:[000000]copy.exe/block=(count=1,st=10)
%DUMP-E-READERR, error reading LDA1:[000000]COPY.EXE;1
-SYSTEM-F-BUGCHECK, internal consistency failure

As long as a virtual watchpoint is set, it will be impossible to dismount the disk containing the
watchpoint:

$ dismount lda1:
%DISM-W-CANNOTDMT, LDA1: cannot be dismounted
%DISM-W-USERFILES, 1 user file open on volume
$ ld nowatch lda1/index=1
$ dismount lda1

Callable Interface
All the LD commands are also available from a user application program by issuing QIO requests to
LDdriver. To make this possible, a C header file (LDDEF.H) that contains all the necessary definitions
is included in the LD driver kit. As of OpenVMS version V8.2-1, this definition file will be included in
the system library, so an external file is not needed anymore.

The command LD HELP Driver_functions provides the details you need to implement the callable
interface.

Internals
At first sight, operation of the driver seems quite straightforward, and in fact, it is. Once a drive is
connected to a file there is not much more to do than getting the request and passing it in a modified
form to the physical disk driver. Of course, getting the mapping right and splitting the request into
multiple segments if the container file is not contiguous is some extra work, but it’s not that difficult.
For LBN mode we simply needed to add an offset to the block in question, and make sure we didn’t
step outside the capacity of the disk.

The tricky part is to protect innocent users from shooting themselves in the foot. For example, on one
node in a cluster you connect file FILE.DSK to device LDA1 with the intent to share it. Then on another
node you connect the same file to LDA2. If the driver allowed this, it could be a recipe for a disaster,
so strict rules are in place for sharing container files. This is all coordinated by using the fork level
interface of the distributed lock manager.

For every connected file, two locks are taken: one for the file (which includes the volume lock name
and the file identification) and one for the LD device itself. This makes it possible to verify all possible
combinations for the correct behavior. The lock value blocks of the involved locks are used extensively
to pass parameters between the various nodes to check everything.

One extreme case was found during development of LBN mode, where we needed to determine
whether a given range of LBNs was already in use. How could we do this using locks? We needed to
be able to ask another node if it is using a range, but there may be dozens of ranges already there,
and that will not fit in a lock value block that is used for the communication. A way around it might
have been to create a server process that could do the check, but it we knew it would be nicer if we
could do this without it. Such a process would mean more things to check for, the error handling
would be more complicated, and it would take additional resources as well.

Our solution still uses locks. By using one lock and putting the range of blocks we intend to use in the
lock value block we can trigger a blocking AST routine on any node that is already using the
proposed device. This blocking AST routine can then do the check, and set a go/nogo bit in the lock
value block as a return signal. If even just one node objects to the range that we proposed,
connecting a drive will fail. Very careful design was required in order to use the right lock modes to
prevent loops by repeating blocking AST routine calls. Finally a working model was created that is
efficient, does not need an external process and is contained completely within the driver.

For LBN and REPLACE mode, a lock is used to prevent the physical device from being used by
anything other than LDdriver. Since connects and disconnects may occur in any order and on multiple
nodes, the driver will attempt to take out the lock itself. If that fails, it will queue the lock so that if
another user disconnects, any LD device that was connected to this physical device will still maintain a

Page 64

Disk Partitioning on OpenVMS: LDdriver's Secrets - Jur van der Burg

© Copyright 2005 Hewlett-Packard Development Company, L.P. 11

lock somewhere in the cluster. For example, if we are connecting on one node and we are the first
one, we will get the lock. Then when we connect to the same device on another node the lock will not
be granted, and the request will be stalled. If we then disconnect on the first node the lock will be
granted, so that we continue to be protected against other uses than LDdriver.

Conclusion
LDdriver has come a long way. After many hours of midnight puzzling and thinking, a lot of functions
have been added, thanks to a number of people in the outside world who have given us great
suggestions.

As development continued we have been able to keep the VAX version of the driver pretty much in
synch with the Alpha/IA64 version. It only lacks accurate- and FDT tracing.

By allowing a great deal of source code transparency between Alpha and I64, there was no need for
a special port to IA64. In fact, there is not even one conditional in the driver to make a distinction
between the architectures. This shows what a marvelous job the people in OpenVMS engineering
have done with the I64 port.

For more information
If you have questions after reading this article, or if you have any suggestions, we are always
interested in possible improvements. If you happen to find a bug, just let us know and we will do just
about anything to fix it.

When the V8.0 LD kit is released, it will include examples as well as source code and will be posted
to the OpenVMS freeware archive at http://www.hp.com/go/openvms/freeware.

The author can be contacted at lddriver@hp.com.

© 2005 Hewlett-Packard Development Company, L..P. The information
contained herein is subject to change without notice. The only warranties for
HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed
as constituting an additional warranty. HP shall not be liable for technical or
editorial errors or omissions contained herein.

Page 65

Page 66

OpenVMS Technical Journal V6

Threaded Tests in the OpenVMS
Cluster Test Manager (CTM)

Threaded Tests in the OpenVMS Cluster Test Manager (CTM) ... 2
Overview .. 2
Introduction ... 2
General Methodology... 3
Existing Threaded Tests in CTM.. 4
CTM_BYTEM (Byte Mode Memory Coherency Exerciser)... 5
CTM_BOZO .. 6
CTM_YOYO .. 7
CTM_LKNLD .. 11
CTM_FAST_IO ... 14
Conclusion .. 15

© Copyright 2005 Hewlett-Packard Development Company, L.P. 1
Page 67

Threaded Tests in the OpenVMS Cluster Test Manager (CTM) - Richard Stammers

© Copyright 2005 Hewlett-Packard Development Company, L.P. 2

Threaded Tests in the OpenVMS Cluster Test Manager (CTM)
Richard Stammers

Overview
Testing extremely complex systems, such as large OpenVMS clusters involving SMP systems, is a race
against time. It is daunting, in fact, when you view this testing as a "combination search" of all the
various states that the cluster and the systems can be in. Moreover many of the hardware and
software components of such systems are, by their nature, autonomous; they work together and co-
operate heterarchically rather than having some "super system" or "super process" that controls their
operations. As a result, most combinations of states are theoretically possible and hence must be
tested. As Murphy would have it, "Anything that can go wrong will!" In practice, we have to cheat
and connive to accomplish all the required testing in a reasonable time. We have to force the
systems into all the nasty conditions that otherwise occur so infrequently that otherwise would be
missed in the finite amount of time available for testing. There are limits to the extent that we can
"cheat and connive." The components under test cannot be changed, and the tests have to be valid in
the context of OpenVMS. Threads provide an effective way to contrive tests that explore various
combinations of system states, and are essential to properly testing SMP systems. This article discusses
in general terms how threaded tests are designed and used, showing specific examples of threaded
tests that are employed in CTM, the OpenVMS Cluster Test Manager.
Introduction
Threaded tests in CTM are organized and designed so that multiple instances of routines used in the
test can operate concurrently. During testing, it is important that we do as much as possible with the
time that is available. As with all types of applications, threads can be used to provide a significant
improvement in performance, especially on multiprocessor systems, where threads can run
concurrently on separate processors. This parallelism also allows multiple execution threads to run
concurrently in the context of the test, thus allowing us to verify that execution threads running on
different processors are synchronized and maintain coherency.

Writing a test is a little different from writing other types of application programs. A good application
programmer uses his knowledge of the system to make the application run as quickly and efficiently
as possible. Tests are often written with exactly the opposite intention. Problems or defects show up
much more quickly when the system is deliberately stressed and forced into difficult situations, so
while application programmers use their knowledge of a system to avoid these situations, a person
writing a test must approach things with exactly the opposite intention, designing the test so that nasty
situations occur as frequently as possible.

CTM tests the OpenVMS operating system, including hardware and software components, at the
application level. And because the threaded tests in CTM use it, they also test the multithreading
runtime library. This is an important consideration.

No matter how zealous the tester is to try and break the system, the tests always have to abide by the
rules! Moreover there are human factors to be considered. Tests are written and performed to ensure
the quality of the final product; finding a problem or a defect is only the first step towards fixing it.

In some ways, the multithreaded runtime library is like a “mini operating system;” the results, logs,
and traces from a threaded test are often complex and voluminous. The person writing the tests must
guard against undue complexity and zeal must be tempered with the practical consideration of how
the test will be used to pin-point and remedy any problems and defects that are found.

One final point to be considered when designing any test, particularly tests that make use of threads,
is that a test that fails to find a problem or a defect, or that detects spurious problems that do not in
fact exist, is worse than useless. On the one hand, time and effort is expended in writing and running
the test, only to provide a false sense of security that everything is alright. On the other hand, that

Page 68

Threaded Tests in the OpenVMS Cluster Test Manager (CTM) - Richard Stammers

© Copyright 2005 Hewlett-Packard Development Company, L.P. 3

time and effort would be wasted in tracking down a “problem” that doesn’t exist. The design of any
test should verify beyond any reasonable doubt that the test itself is working properly.

General Methodology
As described in an earlier OpenVMS Technical Journal article, CTM is not a test, but rather it is a
framework which permits the control and running of multiple different tests in an OpenVMS cluster
environment. To clarify this distinction, we refer to the framework in which the tests are run as the “test
harness,” as distinct from the actual tests that are run by the harness under the direction of the test
engineer.

The threaded tests in CTM run under a “gang scheduling” architecture (see Figure 1). Central to each
of the tests is the main thread, which communicates with and is controlled by the test harness. It
receives from the harness any parameters that control the test, validates them, and uses them to
perform as much of the test initialization as possible prior to the start of the test. In fact, as much of the
work inside CTM is done in the initialization stage as is possible (for example, setting up all the data
buffers and data patterns the test will use, using alternating data patterns instead of poisoning buffers
between data cycles, and so forth). When the actual test runs, it can run as quickly as possible. The
main thread is also responsible for logging performance information and key events to the CTM TEL
(Cluster Test Manager Test Event Log).

Having completed the initialization, the main thread then creates a number of client threads
according to a parameter passed to it from the harness. The main thread controls each of the client
threads using a “gang scheduling” method. Prior to each phase of the test, each of the client threads
reports to the main thread that it is ready. When all the client threads have reported that they are
ready, they are told at the same time to start that phase of the test. The main thread then waits for
each client thread to report back that it has completed that phase of the test. When all of the client
threads have reported that they completed a phase of the test, the main thread examines the results
from each of the client threads. If there are any errors or inconsistencies, the test is stopped. If there
are no problems, the main thread gang schedules all the client threads through the next phase of the
test, and this process continues until either an error is detected or the main thread is told to stop the
test by the CTM test harness.

Page 69

Threaded Tests in the OpenVMS Cluster Test Manager (CTM) - Richard Stammers

© Copyright 2005 Hewlett-Packard Development Company, L.P. 4

MAIN Signals All Threads
“Get ready phase 1 “

MAIN PROCESSTHREAD 1

Each Thread signals
“ready phase 1”

THREAD N

MAIN Signals All Threads
“Start Phase 2”

THREAD DOES
PHASE 2

THREAD DOES
PHASE 2

Each Thread signals
“Done phase 2”

MAIN Signals All Threads
“Start Phase 1”

THREAD DOES
PHASE 1 THREAD DOES

PHASE 1

Each Thread signals
“Done phase 1”

If any Thread
Detected an error:
Generate report

IF ALL OK:
Continue

Figure 1 - Gang Scheduling

All of the threaded tests in CTM have only two phases, Phase I and Phase II, which are repeated
indefinitely. The operations that are performed by each of the threads are the same, subject to
specific differences, such as addresses of memory areas or names of files, which are set up for them
and passed to them by the main thread. That is, in Phase 1 all the client threads do something, and in
Phase II all the client threads check the results of what they did. Subject to the limitations of
scheduling by the multithreaded runtime library, all the client threads do Phase 1 at the same time,
and all the client threads do Phase II at the same time.

From a practical programming standpoint, this general methodology for the CTM threaded tests
confers several benefits. Because the “gang scheduling – Phase 1 – Phase 2 methodology” is common
to all the CTM threaded tests, a huge amount of code concerned with initializing and synchronizing
the tests through these phases is common to all the tests. And because all the client threads are doing
their work at the same time, we can contrive tests to make sure that memory coherency is maintained
when multiple different threads are accessing the same areas of memory. In fact, all of the CTM
threaded tests are designed like a framework within a framework. The tests themselves exist inside the
framework of the CTM harness, and all the threaded tests are constructed inside a common “gang
scheduling – Phase 1 – Phase II” methodology. In principle, a new test can be written by just
changing the functionality performed in Phase 1 and Phase II. Of course, not all tests or ideas for
testing lend themselves to this approach. This article only explains why and how this is done with
CTM.

Existing Threaded Tests in CTM
The threaded tests in CTM were all designed and written for a particular purpose, but there is a
considerable amount of commonality and even overlap between them because they were developed
over time to meet testing needs as they arose. As the tests developed, we began to see how to write

Page 70

Threaded Tests in the OpenVMS Cluster Test Manager (CTM) - Richard Stammers

© Copyright 2005 Hewlett-Packard Development Company, L.P. 5

better, more generalized, and more powerful tests. Commonality and overlap is not a bad thing
where testing is concerned. Despite all efforts to approach testing from a logical and analytical point
of view, testing in such a complex environment can never be a totally exact science. Sometimes one
test will find something that might be missed or might take much longer to find with another similar
test. By far, the best general testing strategy is to employ as many and as varied a repertoire of tests
as possible.

The strange names for some of the tests warrant some explanation. The names do in general convey
something of what the test is doing, and are certainly easier to remember than for example
CTM_T001, CTM_T002 etc. etc. would be. Also, because of their common framework a lot of cutting
and pasting and text substitutions were used to write them and in this context it is useful to have
names that don’t frequently occur in code. If nothing else then names like BOZO and YOYO definitely
meet these criteria.

CTM_BYTEM (Byte Mode Memory Coherency Exerciser)
CTM_BYTEM was an early test designed to test native byte mode access on Ev6 machines, and by
implication to test emulation of byte mode access on machines that do not provide native byte mode
access. The test is extremely simple but serves to illustrate how the CTM threaded test structure
operates.

In this test, multiple client threads target a contiguous area of memory. The principle parameters for
the test are the size of the memory area and the number of threads. If there are N such client threads (
thread0, thread1,…threadN), then thread 0 operates on bytes at offsets 0, N, 2N, etc., inside the
memory area. Thread1 operates on bytes at offsets 1, N+1, 2N+1, etc., inside the memory area, and
so on for each thread. This way, each client thread targets a unique set of bytes within the memory
area.

Each thread has a unique 8-bit pattern assigned to it, which is the ones complement of its thread
number. (For example, the bit pattern for thread 1 is “11111110”.) Prior to Phase 1, the main thread
zeros the memory area. Then, in Phase 1, each of the client threads iterates through the memory area
writing the bytes it operates on to its own specific bit pattern.

In Phase II, each of the client threads reads the bit patterns in the entire memory region to ensure that
they are set to the value corresponding to the client thread which operates on them

This makes sure that native byte-mode operations work OK, but a simpler test would suffice for this.
The use of threads expands the nature of the test to ensuring that, in the process of modifying only a
byte, the other bytes in the quad word containing the byte are not affected, and also, in a
multiprocessor system, coherency is maintained when one or more threads is attempting to modify a
byte in the same quad word.

Under OpenVMS Version 7.0 and later, a two-level scheduling model is employed. Threads are
scheduled to run on virtual processors the same way that OpenVMS schedules virtual processors to
run on physical processors. Most thread scheduling takes place in user mode, which is much more
efficient than switching contexts, which involves the operating system. The OpenVMS scheduler can
schedule virtual processes onto separate processors of a multiprocessor machine. An upcall
mechanism handles the cases where OpenVMS detects an event that affects the scheduling of a
thread, calling up to the threads scheduler to notify it of the change in the status of a thread.

In the case of this test, if the system under test has N processors, then the recommended value of the
parameter for the number of client threads is also N. If only the client threads are running, very
simple arithmetic is required to figure out how often, on average, they try to modify a byte in the
same quad word. Considering the number of processors, then adjusting the size of the memory area
and the number of client threads provides a powerful test mechanism that we can use to force this
situation to occur frequently.

This test structure also allows us to verify that the test is working as expected and that clients threads
are in fact trying to access the same quad word with the expected frequency. The tests are written in
C. Normally, the memory area being accessed by the threads would be compiled with the volatile
qualifier to ensure that the memory was protected between the client threads. If the volatile qualifier is

Page 71

Threaded Tests in the OpenVMS Cluster Test Manager (CTM) - Richard Stammers

©

removed, then a number of corruptions should correspond to the number of times that two client
threads were accessing a byte in the same quad word.

CTM_BOZO
CTM_BOZO uses threads to get as much testing work done as possible on a multiprocessor system.
The purpose of the test is to have many threads performing memory tests (allocating and deallocating
memory) and/or performing file I/O operations. Because the threads work in the context of a single
process, they work more quickly than the corresponding number of processes; this allows them to test
more allocation/deallocation sequences in the same amount of time.

As with the other threaded tests, the main thread communicates with the test harness, logs
performance information, initializes data buffers and patterns, creates the client threads, and controls
them using gang scheduling.

In Phase I, when the main thread instructs the client threads to start, they optionally allocate memory,
write a data pattern to the memory and/or open a data file and write a data pattern to the file.

In Phase II, each of the client threads tests the results of the operations it performed in Phase I, either
by verifying the data pattern in memory, and/or reading and verifying the data that was written to
file. In Phase II, the client threads release the resources they were using in Phase I, thus assuring that
resources are allocated and deallocated with each test iteration.

Structure of “BOZO” - a Multi threaded test MAIN PROCESS

F

 Copyright 2005 Hewlett-Packard Development Company, L.P. 6

THREAD
VERIFIES &
“UNDOES”

“SOMETHING

THREAD
DOES

“SOMETHING”

SIGNAL THREADS
TO START

END

CHECK
RESULTS

and
REPORT

THREAD
VERIFIES &
“UNDOES”

“SOMETHING

THREAD
DOES

“SOMETHING”

THREAD
VERIFIES &
“UNDOES”

“SOMETHING

THREAD
DOES

“SOMETHING”

N THREADS

- - - -

Each thread signals when completed

WAITS ON
ALL THREADS
COMPLETED

blah
blah
blah

Threads perform
required number

of loops

igure 2 - Structure of a Multithreaded Test

Page 72

Threaded Tests in the OpenVMS Cluster Test Manager (CTM) - Richard Stammers

©

BOZO

F

T
c
t

T
m
o
n

C
C
s

T
a
c
o
s
n

A
p
b
o

T
c
a
o

 Copyright 2005 Hewlett-Packard Development Company, L.P. 7

UNDO
“SOMETHING”

DO
“SOMETHING”

(parameter
selectable)

Disk in cluster

Local Memory

Disk in cluster

Local Memory

“SOMETHING” In a BOZO threads the loop looks like this:The “SOMETHING” In a BOZO threads the loop looks like this:The

OPEN FILE

DO
“SOMETHING”

(parameter
selectable)

READ FILE

WRITE DATA TO FILE

VERIFY FILE DATA

CLOSE FILE

DEALLOCATE MEMORY

WRITE DATA TO MEMORY

ALLOCATE MEMORY

VERIFY DATA IN MEMORY

Thread starts loop

Thread starts loop

Thread starts loop

Thread starts loop

UNDO
“SOMETHING”

igure 3 – The Loop

o permit the maximum utilization of the system, the SYNCH parameter specifies how many times the
lient thread should repeat the operations of Phase I and Phase II before it reports to the main thread
hat has completed.

he test parameters can specify any permutation of memory task to be performed (such as I/O only,
emory only, I/O and memory, or neither I/O nor memory). The case where neither I/O nor memory
perations are performed effectively tests the multithreading runtime library by causing a very large
umber of thread creates, joins, and terminations.

TM_YOYO
TM_YOYO is a threaded tool that was designed to stress threaded sequences and, in particular, to

tress the thread creation, thread joins, thread termination, and upcall functionality.

he basic architecture of the test is the same as described under the General Methodology section
bove, except that the main thread, instead of just controlling a vector of client threads, actually
ontrols a matrix of client threads. The main thread creates and synchronizes with the top level thread
f what can be visualized as a series of columns of threads. The test uses recursive logic to test thread
equences. The top-level thread causes a series of threads to be created recursively underneath it. The
umber of columns of threads and the depth of recursion are specified by parameters.

s with the other threaded tests, the main thread communicates with the test harness, logs
erformance information, initializes data buffer and patterns, creates client threads, and controls them
y gang scheduling. For speed and efficiency, the main thread creates all the data patterns for each
f the client threads and the threads that they create, before the test starts.

he basic test unit in CTM_YOYO is a thread, and other than the top level thread (which
ommunicates with the harness and reports back the results of all the threads created underneath it)
nd the lowest level thread which does not create a thread underneath it, the threads in CTM_YOYO
perate as follows:

1. Thread starts a task that involves allocating resources.

2. Thread then recursively calls down to a copy of itself.

3. Thread waits for the completion of the recursive call.

4.

Page 73

Threaded Tests in the OpenVMS Cluster Test Manager (CTM) - Richard Stammers

© Copyright 2005 Hewlett-Packard Development Company, L.P. 8

5. Recursive call completes.

6. Thread finishes the task it was doing.

7. Thread checks the results of what it did.

8. Thread releases the resources it was using.

9. Thread completes.

The name CTM_YOYO derives from the fact that the threads “yoyo” up and down through recursive
calls. This is a very stressful on the mechanisms that are used to schedule the threads. It tests the up-
calls and causes rapid context switching on the processors on which the threads are executing.

As mentioned above, a CTM_YOYO test is characterized by “WIDTH” and “DEPTH,” which are test
parameters. The depth is the level that the threads go down to recursively. The width is the number of
sequences of threads that are simultaneously yoyoing up and down. Effectively, a matrix of thread
execution sequences is involved in a test, each characterized by (X,Y), where X is the width position
of the thread within the matrix, and Y is the depth position of the thread within the matrix. The matrix
of threads is controlled by a main program, which interfaces to CTM, schedules and synchronizes the
threads within the matrix, tests the results they report back, and does the TEL logging of performance
information.

Again, the tasks that the thread sequences perform are related to allocating and testing memory
regions, and to simple I/O operations, and again any permutation of memory task and I/O task may
be specified (such as I/O only, memory only, I/O and memory, or neither I/O nor memory). The
case where no memory testing and no I/O testing is specified is not only valid but particularly useful
for this test as it causes rapid and stressful sequence of thread creation, termination, and
synchronization to occur.

Specifically, if memory is to be tested by CTM_YOYO then each thread will do the following:-

1. Allocate a memory region of the specified number of pages (8192 bytes).

2. Write a data pattern into this memory region.

3. Call down recursively and wait for completion on the recursive call.

4.

5. Read back and verify the data pattern from the memory region.

6. De-allocate the memory region.

Page 74

Threaded Tests in the OpenVMS Cluster Test Manager (CTM) - Richard Stammers

© Copyright 2005 Hewlett-Packard Development Company, L.P. 9

Start Iteration

Thread starts doing “something”

Recursive call down (create identical
thread - then do a join waiting on its

completion)

Thread starts doing “something”

Recursive call down (create identical
thread - then do a join waiting on its

completion)

Thread starts doing “something”

Recursive call down (create identical
thread - then do a join waiting on its

completion)

Thread starts doing “something”

Recursive call down (create identical
thread - then do a join waiting on its

completion)

Thread starts doing “something”

Recursive call down (create identical
thread - then do a join waiting on its

completion)

Thread starts doing “something”

Recursive call down (create identical
thread - then do a join waiting on its

completion)

Thread starts doing “something”

Recursive call down (create identical
thread - then do a join waiting on its

completion)

Thread starts doing “something”

Recursive call down (create identical
thread - then do a join waiting on its

completion)

CTM_YOYO recursive structure (1)

Etc.etc.

down to specified

depth

Etc.etc.

down to specified

depth

Figure 4 – The Recursive Structure (1)

If I/O is to be tested by CTM_YOYO each thread will do the following:-

1. Create and open a data file.

2. Write a data pattern of the specified number of blocks (512 bytes) to this data file.

3. Call down recursively and wait for completion on the recursive call.

4.

5. Read back and verify the data pattern from the data file.

6. Delete the data file.

For a large test, there may be 16 or more columns of threads, each recursing down to a depth of 16,
which potentially generates a huge amount of data. Tracing, logging, and generally interpreting this
amount of data when a problem is detected poses quite a challenge. When a thread detects a
problem or a corruption, it generates its own corruption report, numbered and identified according to
its position in the matrix, before it terminates. In this case, it does not call down to the client thread
below it but sets a status to indicate to the thread that created it that it failed. All failures are bubbled
up to the top level thread, which reports the failure to the main thread. The main thread puts a
summary of the failure into the test log and then terminates the test.

Page 75

Threaded Tests in the OpenVMS Cluster Test Manager (CTM) - Richard Stammers

©

End iteration

CTM_YOYO recursive structure (2) Etc.etc

back from specified

depth
Thread completes the “something”
started on the way down. Verifies
results and de-allocates resources

Completes and terminates

Thread completes the “something”
started on the way down. Verifies
results and de-allocates resources

Completes and terminates

Thread completes the “something”
started on the way down. Verifies
results and de-allocates resources

Completes and terminates

Thread completes the “something”
started on the way down. Verifies
results and de-allocates resources

Completes and terminates

Thread completes the “something”
started on the way down. Verifies
results and de-allocates resources

Completes and terminates

Thread completes the “something”
started on the way down. Verifies
results and de-allocates resources

Completes and terminates

Thread completes the “something”
started on the way down. Verifies
results and de-allocates resources

Completes and terminates

Figure 5 –The Recursive Structure (2)

CTM_YOYO recursive structure (3)

F

 Copyright 2005 Hewlett-Packard Development Company, L.P. 10

Start -call down

Start -call down

Start -call down

Start -call down

Start -call down

Start -call down

Start -call down

Start -call down

Start -call down

Start -call down

Start -call down

Start -call down

Complete-terminate

Complete-terminate

Complete

Complete-terminate

Complete-terminate

Complete

Complete-terminate

Complete-terminate

Complete

Complete-terminate

Complete-terminate

Complete

Complete-terminate

Complete-terminate

Complete

Complete-terminate

Complete-terminate

Complete

Down to specified depth Down to specified depth Down to specified depthDown to specified depth Down to specified depth Down to specified depth

Start -call down

Start -call down

Start -call down

Start -call down

Start -call down

Start -call down

Start -call down

Start -call down

Start -call down

Complete-terminate

Complete-terminate

Complete

Complete-terminate

Complete-terminate

Complete

Complete-terminate

Complete-terminate

Complete

MAIN PROCESS

CONTROLS

ITERATIONS

AND

VERIFIES

OVERALL

RESULTS

<---User specified number of thread “columns”--->

Start
iteration

Start
iteration

Start
iteration

<---User specified number of thread “columns”--->

Start
iteration

Start
iteration

Start
iteration

End
iteration

End
iteration

End
iteration

End
iteration

End
iteration

End
iteration

igure 6 – The Recursive Structure (3)

Page 76

Threaded Tests in the OpenVMS Cluster Test Manager (CTM) - Richard Stammers

©

CTM_LKNLD
The CTM_LKNLD test was specifically designed to test the load_lock/store_conditional sequence on
multiprocessor Alpha systems. The test is designed for that Alpha architectures. This sequence was
chosen for testing because of its importance for maintaining memory coherency on a multiprocessor
system, and because rigorous testing in this area by implication tests other mechanisms that are
involved in maintaining coherency on Alpha architectures.

To provide some context, a processor modifies the contents of physical memory by means of a
LOAD/modify/STORE sequence. However in an SMP environment, where more than one processor
has access to the memory location, this simple sequence will not suffice. For example, if there are two
processors (A and B,) if A LOADS the memory location B LOADS the memory location, then B
modifies the memory location and does a STORE, then A modifies the memory location and does a
STORE, B’s view of memory is now incorrect and something is going to get broken. The load
locked/store conditional sequence provides a method whereby multiple CPUs can synchronize
access.

The load locked/store conditional logic is the same for whatever granularity of memory is being
accessed. CTM_LKNLD is based on quad word access (LDQ_L/STQ_C sequences). Roughly
speaking, when a processor loads the memory with an LDQ_L instruction, it records the target address
in a per-processor locked physical address register and sets a per-processor lock flag. If the per-
processor lock flag is still set when it gets around to doing the store with a STQ_C instruction, then the
store occurs; otherwise, the store does not occur. Whenever a processor successfully completes a
store to within the locked address range of another processor, it clears the lock flag for that processor,
causing that processor’s subsequent store conditional to fail.

F

T

 Copyright 2005 Hewlett-Packard Development Company, L.P. 11

CTM-LCKNLD - Design 1

An area of memory is allocated and divided into zones.

Zone size is the range of memory that the implementation specific
lock flag relates to.

(For the purpose of this example suppose that this zone size is a
page - 8K bytes, and a multiple of 1000 pages are allocated)

Each of the threads has a designated bit position in each quadword

of the allocated memory. (obviously max 64 threads)

For each iteration a thread “HOPS” thru memory.

That is to say first pass it modifies its thread specific bit the first
quadword in each zone,

2nd pass it modifies thread specific bit in 2nd quadword in each
zone ….and so forth.

Thread Ends iteration

Thread Starts iteration
Pass 1: touch 1st quadwordPass 1: touch 1st quadword

Pass 2: touch 2nd quadwordPass 2: touch 2nd quadword
Etc. etc. for each passEtc. etc. for each pass

Each pass “hops” the memory
zones

igure 7 – CTM_LKNLD (1)

o use the example of processors A and B above:-

Page 77

Threaded Tests in the OpenVMS Cluster Test Manager (CTM) - Richard Stammers

©

1. A does LDQ_L on address pa succeeds

2. B does LDQ_L on address pa succeeds.

3. A does STQ_C on address pa succeeds - clears B’s lock flag.

4. B does STQ_C on address pa fails because B’s lock flag is cleared.

5. B should now re-load pa and retry the sequence.

The basis of the test performed by CTM_LKNLD is similar to that used by CTM_BYTEM. The basic
architecture is the same, with a main thread controlling a number of client threads by gang
scheduling them through Phase 1 and Phase II. The result is a user-specified number of client threads
concurrently looping through the same regions of memory. Each thread tries to modify a byte in a
quad word with a data pattern specific to the thread. The threads access the quad words using
LDQ_L/STQ_C sequences to access and store the modified quad words.

The data pattern that a thread writes to a byte within the quad word is the ones complement of the
thread number. Hence, thread 0 writes binary 11111111, thread 1 writes binary 11111110, and so
forth. All the memory regions are set to zero before a test iteration, so if a value of 0 is subsequently
detected, it indicates that a thread did not write the pattern correctly.

F

O
t
w
w
c
a

 Copyright 2005 Hewlett-Packard Development Company, L.P. 12

CTM-LCKNLD - Design 2

Pass :1 touch1st quadword

Thread ends iteration

Thread starts iteration

Pass 2: touch 2nd quadword
Etc. etc. for each pass

Thread ends iteration

Thread starts iteration

Pass 2: touch 2nd quadword
Etc. etc. for each pass

Thread ends iteration

Thread starts iteration

Pass 2: touch 2nd quadword
Etc. etc. for each pass

Thread ends iteration

Thread starts iteration

Pass 2: touch 2nd quadword
Etc. etc. for each pass

Thread ends iteration

Thread starts iteration

Pass 2: touch 2nd quadword
Etc. etc. for each pass

Thread ends iteration

Thread starts iteration

Pass 2: touch 2nd quadword
Etc. etc. for each pass

MAIN PROCES

CONTROLS

ITERATIONS

AND

VERIFIES

OVERALL

RESULTS

Pass :1 touch1st quadword Pass :1 touch1st quadword

igure 8 – CTM-LCKNLD (2)

f course, the limits imposed by OpenVMS and the multithreaded runtime library make it impossible
o control which thread will run on which CPU directly; however, it is a statistical certainty that there
ill be many times when different threads are simultaneously trying to access bytes in the same quad
ord, hence the LDQ_L /STQ_C sequence has to work correctly for the data patterns to be set
orrectly. By deliberately building the test to use LDQ_L/STQ_C sequences instead of regular Load
nd Store sequence, the test verifies that the number of reported corruptions corresponds to the

Page 78

Threaded Tests in the OpenVMS Cluster Test Manager (CTM) - Richard Stammers

©

approximate number of times two client threads try to access the same quad word. In the case of this
test, which is significantly more complex, this technique was invaluable for ensuring the test was
doing what was intended.

For historical reasons, the CTM_LKNLD test was extended beyond the basic test described above, by
varying the conditions when the STQ_C occurs. For each thread a varying number of memory
accesses are interposed between the LDQ_L and the STQ_C, so that when the STQ_C occurs, the test
causes the TB (Translation Buffer) entry to correspond to the target address in different positions in the
TB. This is achieved by having the threads hop through memory as follows:

1. First memory location in first memory region

2. First memory location in second memory region

3. ...

4. First memory location in last memory region

5. Second memory location in first memory region

6. Second memory location in first memory region

7. ...

8. Second memory location in last memory region

9. ...

10. ...

11. Last memory location in last memory region

F

T
r
E

 Copyright 2005 Hewlett-Packard Development Company, L.P. 13

CTM-LCKNLD - Design

The situation where more than one
thread is trying to access a quadword in
the same zone at the same time requires
that the Load_lock/Store conditional
provides protection – otherwise the test
will see a “corruption”

Iterating thread Iterating thread

igure 9 – CTM LCKNLD (3)

wo sets of memory regions are accessed alternately by the threads. For convenience, these are
eferred to as U regions and V regions. There are 128 U regions and the same number of V regions.
ach memory region is the system-specific page size (currently set to 8192 bytes).

Page 79

Threaded Tests in the OpenVMS Cluster Test Manager (CTM) - Richard Stammers

©

Each hop accesses a new page and results in a new entry in the TB. Having initiated an
LDQ_L/STQ_C sequence with an LDQ_L, the thread then is then forced to access a varying number of
memory locations in other memory regions before it completes the STQ_C. These are accessed with
regular LDQ instructions; we consider them “noise,” interposed between the LDQ_L and the STQ_C.

Because these noise memory accesses are to different pages, they have the effect of causing a new
entry into the TB, and hence cause the TB entry for the target to be in a varying position in the TB
when the STQ_C occurs. The number of noise accesses that are forced in this way varies from 0 to
128 entries plus one, with each iteration, so that eventually the thread completes the STQ_C with the
target address entry in a variety of different positions within the TB.

On alternate iterations, each thread alternates as follows:

1. Uses U regions for LDQ_L/STQ_C (target) access.

2. Uses V regions for LDQ (noise) access to vary the position of the focus access in the TB.

3. Uses V regions for LDQ_L/STQ_C (target) access.

4. Uses U regions for LDQ (noise) access to vary the position of the focus access in the TB.

F

C
C
a

F
a
Q
p
b
F

 Copyright 2005 Hewlett-Packard Development Company, L.P. 14

Load quadword
using LDQ_L

CTM-LCKNLD - Modify position in TB

Etc. etc…..

Thread iteration

Allocate at least as many zones of memory
as there

are D-Stream entries in the TB

Interpose a varying
number of LDQ
instructions to

bubble position in
TB

Store quadword
using STQ_C

igure 10 – CTM_LCKNLD (4)

TM_FAST_IO
TM_FAST_IO was written to test FAST_IO functionality, a new feature in OpenVMS Version 7.0
imed at dramatically improving I/O performance.

ast I/O is for systems and applications that require highly optimized paths for high volume I/O, such
s large database systems. Fast I/O comprises a set of system services that provide an alternative to
IOs. The greatest benefit of Fast I/O is that it locks and maps user buffers and user I/O status areas
ermanently in system space. For direct I/O, this avoids per-I/O buffer lockdown and unlocking; for
uffered I/O, it avoids allocation and deallocation of separate system buffers, permitting complete
ast I/O operations at IPL 8 and reducing spinlock acquisitions.

Page 80

Threaded Tests in the OpenVMS Cluster Test Manager (CTM) - Richard Stammers

© Copyright 2005 Hewlett-Packard Development Company, L.P. 15

Threads are not a particularly important aspect of the FAST_IO test, other than providing the
capability for improved performance on multiprocessor systems. A description of the CTM_FAST_IO
test is provided here for completeness.

As with the other CTM threaded tests, the CTM_FAST_IO test comprises a main thread, which
controls a user-specified number of client threads Two write buffers are used by each client thread: a
pattern0 buffer and a pattern1 buffer. In addition to all the usual work, the main thread presets data
patterns into the write buffers. Data pattern1 is the ones complement of the pattern0 buffer. Pattern0
and Pattern1 are alternately written to and read from a data file by the threads, using Fast I/O
operations. Because the patterns are complements, the data integrity of the I/O operations can be
checked without the need to poison buffers between reads and writes. The main process allocates
read and write buffers for each of the threads. The size of these data buffers is the size of the actual
data files that will be used by the threads, and is determined by the BLOCKS parameter (expressed in
512-byte blocks). Prior to starting the threads, the main process locks down all the read and write
buffers that the threads will use in buffer objects, using the SYC$CREATE_BUFOBJ_64 system service
call. The buffer objects remain locked down for use by the threads for the entire duration of the test.

Having prepared and locked down the buffers that the threads will use, the main process then creates
and synchronizes the client threads through the actual test, which conforms to the Phase I/Phase II
structure of all the CTM threaded tests.

A thread performs each test iteration as follows.

In Phase I, the thread:

1. Deletes any previous versions of its data file.

2. Creates and opens a new data file using RMS.

3. Performs the setup for each of the subsequent file operations using the SYS$IO_SETUP system
service.

4. Loops a user-specified number of times (specified in the SYNCH parameter), by doing the
following Fast I/O operations on the data file.

5. Writes pattern0 data to the data file using the SYS$IO_PERFORMW system service.

6. Reads the data back from the data file using the SYS$IO_PERFORMW system service.

7. Verifies the data read back against the data written.

In Phase II, the thread:

1. Writes pattern1 data to the data file using the SYS$IO_PERFORMW system service.

2. Reads the data back from the data file using the SYS$IO_PERFORMW system service.

3. Verifies the data read back against the data written.

4. Closes its data file, and cleans up the Fast I/O operations using the SYS$IO_CLEANUP
system service.

5. Reports the results (success or failure of the data verification) back to the main process, and
waits to be started again by the main process.

Conclusion
This article presents only one basic design for threaded tests, namely multiple client threads gang
scheduled by a main thread, with the actual test functionality performed by the client threads and
formally divided into two separate phases (usually the test operation phase and the verification
phase). Of course, such tests can be organized in many ways, and there is no intent to suggest this is
the best way to do it. However, this approach has worked well for us in terms of reducing the effort
required to write such tests and so far has not presented any limitations for the tests we have needed
to write. To be of use, tests for the operating system need to be very solid and reliable, and the
results of the testing must be readily understandable so that problems can be debugged. Writing tests
inside this framework has definitely helped us meet these objectives.

Page 81

Threaded Tests in the OpenVMS Cluster Test Manager (CTM) - Richard Stammers

© Copyright 2005 Hewlett-Packard Development Company, L.P. 16

Threaded tests provide an invaluable means for testing on multiprocessor systems, not only in so far
as they improve the performance of the test and permit more work to be done in a given time, but,
more importantly, they provide the means to directly test that the required functionality works properly
when functionality is distributed across multiple threads running concurrently on separate processors.
Properly constructed, such tests also provide the means to subject the systems under test to extreme
stress and to manipulate the systems so that situations that could potentially cause problems are
created much more frequently than would otherwise be the case. There is no doubt that such tests will
become increasingly important in ensuring that the very high level of reliability that OpenVMS is
famous for will continue into the future.

© 2005 Hewlett-Packard Development Company, L..P. The information
contained herein is subject to change without notice. The only warranties for
HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed
as constituting an additional warranty. HP shall not be liable for technical or
editorial errors or omissions contained herein.

Page 82

OpenVMS Technical Journal V6

Porting TDMS - The Gory Details

Porting TDMS - The Gory Details .. 2
Overview .. 2
Summary... 4
For more information .. 5

© Copyright 2005 Hewlett-Packard Development Company, L.P. 1
Page 83

Porting TDMS - The Gory Details - Bob Sampson

© Copyright 2005 Hewlett-Packard Development Company, L.P. 2

Porting TDMS - The Gory Details
Bob Sampson, Consulting Associate

Overview
Porting any application from OpenVMS VAX; first to OpenVMS Alpha, and then to OpenVMS I64 is
a challenging project. As we ported TDMS, we encountered four tricky details that we have
described here to help you in your own porting efforts.

Origin of TDMS Software

VAX TDMS is an older generation character-cell terminal forms package for transaction processing
environments. It is a mature product that is available for OpenVMS VAX only.

The TDMS (Terminal Data Management System) for OpenVMS VAX software product (VAX TDMS)
was designed for the implementation of interactive, forms-intensive applications.

Long ago, VAX TDMS was officially superseded by DECforms, which is recommended for any and all
new character-cell terminal applications that require a forms-based user interface on OpenVMS.

The VAX TDMS Software Product Description (SPD) can be viewed at:
http://h18000.www1.hp.com/info/SP2571/sp2571pf.pdf. Please note that any support or
availability commitments in that document (whether expressed or implied) do not apply to ported
TDMS software.

As a terminal subsystem, TDMS can reduce the application development and maintenance effort by
replacing application program logic specific to terminal interactions with definitions that are external
to the program.

Ported TDMS Software Services

My team offers ported TDMS software, in the form of licensing and support services, for the purpose
of providing a simple migration path for TDMS applications (especially those running under the
ACMS environment) from OpenVMS VAX to OpenVMS Alpha (and now to OpenVMS I64 as well).

The TDMS software was ported to OpenVMS Alpha in late 2001, and field tested in mid-2002. The
TDMS software was further ported to OpenVMS I64 in late 2004.

As a part of the original Alpha TDMS porting effort, the hardcopy VAX TDMS documents (Forms
Manual, Installation Guide, Pocket Guide, Reference Manual, and Request & Programming Manual)
were converted to HTML, and are provided with every Alpha TDMS and I64 TDMS kit, along with the
current release notes.

An evaluation license, a software kit, and limited remedial support are available to customers for sixty
days at no charge.

Alpha TDMS licensing and support services have been offered for sale worldwide since early 2003.
As of this writing, I64 TDMS is available only for evaluation.

Further information about the ported TDMS software (Alpha TDMS and I64 TDMS) is available at:
http://h71000.www7.hp.com/commercial/tdms/tdms_services.html.

Porting Challenges

Four major porting challenges were encountered. Architectural differences among OpenVMS VAX,
Alpha, and I64 were the leading cause, followed by limitations of the Bliss-32 language dialect.
Mistakes were made on several occasions, introducing both subtle and not-so-subtle bugs, not all of
which were immediately detected during regression testing.

• Differences in the calling standards were especially problematic, and accounted for two of the
four challenges; see the first and third items below.

Using a transfer vector and fetching data from a known stack layout for VAX had to be replaced by
using a bound procedure descriptor and specially-written Macro-64 transfer routine for Alpha, and by

Page 84

Porting TDMS - The Gory Details - Bob Sampson

© Copyright 2005 Hewlett-Packard Development Company, L.P. 3

using a bound function descriptor, a new OpenVMS-provided transfer routine, and special linkage for
I64.

An internal context-switching package had to be changed out to match the one used by ACMS on
each of the architectures. On VAX and Alpha, this package had to be implemented in low-level
assembly language, using detailed knowledge of the respective calling standards and stack layouts.
On I64, the implementation was greatly simplified by making use of the new OpenVMS-provided
user-mode KPS routines.

• Differences in the object file formats accounted for another of the four challenges; see the second
item below.

The Alpha object file format is somewhat different from, yet almost completely analogous to, the VAX
object file format. The I64 ELF object file format is driven by a cross-platform industry standard, so it
is very different from its predecessors. However, the addition of OpenVMS-specific extensions makes
the new format completely suitable for building ported software.

• Differences in 64-bit integer math implementations, combined with a lack of Bliss-32 language
support for these multiply and divide operations, accounted for the last challenge; see the fourth
item below.

The solution ultimately chosen was to provide these operations using routines written in a language
that fully supports them; in this case, HP C.

1. Context Passing: Application Function Key (AFK) Asynchronous System Traps (ASTs)

VAX TDMS implements context passing for AFK ASTs by providing a transfer vector consisting of an
entry register save mask and a jump instruction with address fix-up at the start of each context data
structure. The AST routine then fetches the context from a known relative offset on the stack.

Over several months in late 2001, with some guidance from OpenVMS Engineering and the Calling
Standard documentation, this context passing mechanism was ported to Alpha TDMS. The VAX
transfer vector was replaced with an Alpha bound procedure descriptor at the start of each context
data structure. A short Macro-64 transfer routine provides the context address (bound procedure
descriptor address from R27) to the AST routine as the sixth actual argument in R21. The argument
count (low byte of AI/R25) is also filled in with the value six. Names and attributes of code program
sections are specified so that the linker places the transfer routine code immediately before the AST
code, eliminating two instructions (load and jump). This results in an efficient implementation of AFK
ASTs that is compatible with the Alpha calling standard. Please refer to section 2.2.2 of the release
notes for further details.

Over about ten days in early 2003, with further guidance from OpenVMS Engineering, a similar
mechanism was used for I64 TDMS, which was actually simpler to implement. The Alpha bound
procedure descriptor was replaced by the I64 bound function descriptor. A transfer routine called
OTS$JUMP_TO_BPV is already provided by OpenVMS I64, specifically for use with bound function
descriptors. The context is passed to the AST in R9 by specifying special linkage.

Over a few days in late 2004, regression testing uncovered a problem with the bound function
descriptor, which was corrected. Please refer to section 2.6.3 of the release notes for further details.

2. Object File Generation: Form Development Utility (FDU) Form Editor (FED) Memory-Resident Forms

VAX TDMS implements memory-resident forms for the FDU form editor. A utility program called
FDVCDDOBJ is used to package each TDMS form from the Common Data Dictionary (CDD) into an
OpenVMS VAX object file. The linker then arranges the forms into a linked list in the FDU program.

Over about one week in May 2001, FDVCDDOBJ was easily converted to generate object files in the
OpenVMS Alpha format. The VAX and Alpha object formats are very similar.

Over about one month in April and May 2003, with some guidance from OpenVMS Engineering,
FDVCDDOBJ was converted to generate object files in the OpenVMS I64 (ELF) format, which is very
different, and considerably more complex. Also, ELF initially did not provide support for Link-Time
Complex Expressions (LTCEs), and this support was not added until after the porting work on
FDVCDDOBJ was completed.

Page 85

Porting TDMS - The Gory Details - Bob Sampson

© Copyright 2005 Hewlett-Packard Development Company, L.P. 4

The TDMS source code now compiles correctly for any of the three recognized target platforms: VAX,
ALPHA, or IA64.

3. THD Component

VAX TDMS implements a simple form of "threading" (actually more like context switching using co-
routines) with its THD component, which is very similar to (and very compatible with) the ACMS
product's THD component on OpenVMS VAX.

From late May through late November 2001, an attempt was made (with reasonable success) to re-
implement TDMS THD using POSIX threads, a.k.a. pthreads, formerly DECthreads. This also required
extensive changes for thread-awareness. Not much effort was expended to investigate or test for
potential thread-safety issues.

Very early during initial field test, this implementation had to be abandoned (or at least set aside), in
order to provide interoperability with the ACMS product on OpenVMS Alpha. Please refer to section
3.23 of the release notes for further details.

Fortunately, ACMS Engineering kindly provided its ACMS THD OpenVMS Alpha source code. Over
about one week in November 2001, this was incorporated into Alpha TDMS.

From mid-May through mid-November 2003, possible strategies were discussed with the ACMS and
OpenVMS Engineering groups, for porting the THD component to OpenVMS I64. On a few
occasions, attempts were made to perform some of this porting work.

As OpenVMS Engineering had advised, ACMS Engineering ported its ACMS THD to OpenVMS I64,
using the newly-enhanced OpenVMS KPS routines, and again kindly provided the source code for
I64 TDMS THD. Very little low-level machine language was required for this new implementation,
aside from the OpenVMS KPS routines themselves.

This improves on the VAX and Alpha THD implementations, which require much more of their own
Macro-32 and Macro-64 source code.

The I64 THD also appears to be highly portable to OpenVMS Alpha V8.2 or higher. In the event of
any compelling need, it could most likely replace the existing Alpha THD.

Within one day in June 2004, the ACMS I64 THD was easily "dropped" into I64 TDMS.

4. 64-Bit Integer Math

The VAX TDMS source code was written almost entirely in Bliss-32, a language dialect that has no
direct support for multiply and divide operations on 64-bit integers. OpenVMS date conversions make
use of 64-bit integers. VAX TDMS performs divide and multiply operations on these by calling the
undocumented COB$DIVQ_R8 and COB$MULQ_R8 COBOL language support run-time library
routines with special JSB linkage.

These routines are not available for the use of native OpenVMS Alpha applications. The initial
attempt during April 2001 to replace them with in-line Bliss-32 code did not work properly. Please
refer to section 2.2.10 of the release notes for further details.

One day in January 2002, the DIVQ and MULQ replacement routines were implemented in C for
Alpha, but unfortunately with coding errors that went undiscovered for about a year, even during
intensive field testing.

One day in January 2003, in response to a problem report from a very alert HP employee and
OpenVMS Ambassador (now an alumnus) in Ireland, these coding errors were finally corrected,
along with two other software problems that had interfered with some of the date conversions. Please
see section 2.2.14 of the release notes for further details.

Porting to I64 did not require any further changes to these routines.

Summary
We hope that that lessons we learned from porting TDMS software will save others some time and
effort in the future.

Page 86

Porting TDMS - The Gory Details - Bob Sampson

© Copyright 2005 Hewlett-Packard Development Company, L.P. 5

For more information
Contact the author by e-mail: Robert.Sampson@hp.com.

© 2005 Hewlett-Packard Development Company, L..P. The information
contained herein is subject to change without notice. The only warranties for
HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed
as constituting an additional warranty. HP shall not be liable for technical or
editorial errors or omissions contained herein.

Page 87

Page 88

OpenVMS Technical Journal V6

Protecting and Monitoring OpenVMS Systems

Protecting and Monitoring OpenVMS Systems... 2
Overview .. 2
User Access Security Issues in OpenVMS Environments .. 2
Using Auditing to Monitor Access to Critical Files .. 2
Sample Auditing Outputs of Logins and Logfailures .. 3
Using Access Control Entries to Limit Access to Files ... 4
Using Auditing to Monitor Queues and Logical Name Tables.. 5
Using an Alarm ACE on Files .. 7
Enabling OPCOM Terminals to Monitor Security Alarms... 8
Removing ACEs, Audits, and Alarms from Objects ... 9
Summary .. 10

For more information.. 10

© Copyright 2005 Hewlett-Packard Development Company, L.P. 1
Page 89

Protecting and Monitoring OpenVMS Systems - Michael Grinnell, Gina Jones

© Copyright 2005 Hewlett-Packard Development Company, L.P. 2

Protecting and Monitoring OpenVMS Systems
Michael Grinnell – Off-site Software Support Engineer

Gina Jones – Off-site Software Support Engineer

Overview
In the work environments of today, the risk of computer breaches from outside corporate or private
firewalls are a constant threat. However, the threat to OpenVMS system security can also come from
inside of these same firewalls - threats that can allow unwanted access to OpenVMS systems. Even
though OpenVMS was named "Cool and Virtually Unhackable" at the 2001 DEFcon9 convention, lax
security methods and irresponsible users can leave OpenVMS systems to become vulnerable to
unauthorized access.

Fortunately, system administrators can enhance OpenVMS security by monitoring the integrity of
critical system files, applications, and utilities without incurring costs for 3rd party products.

This article discusses two mechanisms that OpenVMS provides which can help administrators monitor
file and utility access and prevent unauthorized access. OpenVMS Auditing and Access Control
Entries (ACEs) are standard with OpenVMS installations. Using these utilities, system administrators
can monitor and secure critical system files and resources, operations that are vital to maintaining a
secure OpenVMS operating system.

User Access Security Issues in OpenVMS Environments
On computer systems there are basically two types of users: authorized and unauthorized. Authorized
persons are given certain access to perform their jobs/tasks and with that access a certain amount of
responsibility. On the other hand, unauthorized users are not intentionally given access to system
resources and in general take no responsibility for their actions while accessing the system. Security
breaches usually result from one of four types of user actions:

• User irresponsibility refers to situations where a user purposely or accidentally causes
noticeable damage. A user accessing or copying a file or key to sell is an example of this
type of irresponsibility.

• User probing refers to users who are authorized to access computer resources and exploit
insufficiently protected parts of the system. Although some user’s intentions may not be
malicious in nature, theft of services is a crime. Users with more serious intent may seek
confidential information, attempt embezzlement, or even destroy data by probing.

• User penetration refers to a situation where a user breaches the security controls to gain
access to a system. Although OpenVMS is virtually "hack proof," inadequate security
procedures can allow this most serious type of breach.

• Social engineering refers to intruders gaining access by deceiving legitimate users of the
system. They may impersonate users by gaining access to their unsecured system/terminal
passwords or by having a user perform actions that may compromise the security of the
system.

Using Auditing to Monitor Access to Critical Files
Auditing can be described as recording security-relevant activities as they occur on the system and the
review/analysis of the auditing log containing those activities.
Both successful and unsuccessful events can be recorded in the audit log file,
SYS$COMMON:[SYSMGR]SECURITY.AUDIT$JOURNAL. In addition, a terminal can be designated
as a security operator terminal where those same events can be displayed. Often, unsuccessful events
are more useful in revealing possible security concerns than monitoring successful access.

Page 90

Protecting and Monitoring OpenVMS Systems - Michael Grinnell, Gina Jones

© Copyright 2005 Hewlett-Packard Development Company, L.P. 3

The operating system audits the following security events by default and displays those events to the
SECURITY.AUDIT$JOURNAL file or to an operator enabled terminal:

• Authorization database changes
• Intrusion attempts
• Login failures
• Use of DCL command SET AUDIT
• Events triggered by Audit or Alarm ACEs

Example of Audit Settings
The following command displays the security events currently enabled on an OpenVMS system.

$ show audit
System security alarms currently enabled for:
 ACL
 Authorization
 Audit: illformed
 Breakin: dialup,local,remote,network,detached
 Logfailure: batch,dialup,local,remote,network,subprocess,detached

System security audits currently enabled for:
 ACL
 Authorization
 Audit: illformed
 Breakin: dialup,local,remote,network,detached
 Logfailure: batch,dialup,local,remote,network,subprocess,detached

Additional events can be selected for auditing, such as volume mounts, elevated privilege use, and
successfully logins, by using the SET AUDIT command.

Example of SET AUDIT Command
The SET AUDIT command enables auditing to capture unsuccessful and successful login information in
audit file and on an OPCOM enabled terminal:
$ set audit/audit/alarm/enable=login=all
$ show audit
System security alarms currently enabled for:
 ACL
 Authorization
 Audit: illformed
 Breakin: dialup,local,remote,network,detached
 Login: batch,dialup,local,remote,network,subprocess,detached
 Logfailure: batch,dialup,local,remote,network,subprocess,detached

System security audits currently enabled for:
 ACL
 Authorization
 Audit: illformed
 Breakin: dialup,local,remote,network,detached
 Login: batch,dialup,local,remote,network,subprocess,detached
 Logfailure: batch,dialup,local,remote,network,subprocess,detached

Sample Auditing Outputs of Logins and Logfailures
Example of Unsuccessful Login

%%%%%%%%%%% OPCOM 8-SEP-2004 12:38:16.07 %%%%%%%%%%%
Message from user AUDIT$SERVER on TIGRES

Page 91

Protecting and Monitoring OpenVMS Systems - Michael Grinnell, Gina Jones

© Copyright 2005 Hewlett-Packard Development Company, L.P. 4

Security alarm (SECURITY) and security audit (SECURITY) on TIGRES, system
id: 1025
Auditable event: Remote interactive login failure
Event time: 8-SEP-2004 12:38:16.06
PID: 000000E0
Process name: _TNA7:
Username: SYSTEM
Terminal name: TNA7:, _TNA7:, Host: 192.168.1.100
Port: 3191
Remote node id: 1677830336
Remote node fullname: 192.168.1.100
Remote username: TELNET_C0A80164
Status: %LOGIN-F-INVPWD, invalid password

Example of Successful Login

%%%%%%%%%%% OPCOM 8-SEP-2004 12:39:50.52 %%%%%%%%%%%
Message from user AUDIT$SERVER on TIGRES
Security alarm (SECURITY) and security audit (SECURITY) on TIGRES, system
id: 1025
Auditable event: Remote interactive login
Event time: 8-SEP-2004 12:39:50.52
PID: 000000E1
Process name: _TNA8:
Username: SYSTEM
Process owner: [SYSTEM]
Terminal name: _TNA8:, Host: 192.168.1.100 Port: 3192
Image name: TIGRES$DKA0:[SYS0.SYSCOMMON.][SYSEXE]LOGINOUT.EXE
Remote node id: 1677830336
Remote node fullname: 192.168.1.100
Remote username: TELNET_C0A80164

Using Access Control Entries to Limit Access to Files
UIC (User Identification Code) protection of files is often sufficient to deter users from accessing areas
of the system they should not be accessing. However, there are times when UIC protection is not
adequate. To provide individual customized access protection to files and objects, Access Control
Entries (ACE) may be needed.

In addition to monitoring system events, such as login failures, administrators can use an ACE to
monitor individual objects, such as files and print queues.

When users attempt to access a protected object, the OpenVMS operating system compares the user
profile of the user process with the security profile of the object. The sequence of those checks is as
follows:

1. Evaluate the Access Control List (ACL).
If the object has an ACL (Access Control List) the system attempts to match an ACE entry from that ACL
list with the user's rights identifiers. If a match is found, the user is granted or denied access and
further checking of the ACL ceases.
In the following example, the user TEST holds the identifier named LARRY, which is also present on the
PROJECT.TXT file. In this example, the user TEST would be allowed full access to the file:

$ set default sys$system
$ run authorize
UAF> show test
Username: TEST

Page 92

Protecting and Monitoring OpenVMS Systems - Michael Grinnell, Gina Jones

© Copyright 2005 Hewlett-Packard Development Company, L.P. 5

Identifier Value Attributes
 LARRY %X8001003C

File with Identifier:
PROJECT.TXT;1 [SYSTEM] (RWED,RWED,,)
(IDENTIFIER=LARRY,ACCESS=READ+WRITE+EXECUTE+DELETE)

Note: When you provide an ACE, do not forget to deny access via UIC protection; otherwise, you
are defeating the purpose of the ACE.

2. Evaluate the protection code.
If the ACE does not grant access, the operating system then evaluates the protection code. The user is
granted or denied access based on the UIC protection mask. The protection mask consists of the
following categories: SYSTEM, OWNER, GROUP and WORLD. Within those categories, the granted
access can be RWED (READ, WRITE, EXECUTE and DELETE) or any combination.

In the following example note the access on the following file:

LOGIN.COM;4 [SMITH] (RWED,RWED,RE,)

The SMITH account is the owner of the file. SYSTEM has RWED. The Owner of the file is SMITH, who
also has RWED. The group has RE. The world has no access. Each access field is separated by a
comma.

3. Checking for special privileges.
If access was not granted by an ACE or the UIC protection mask, privileges are then evaluated.
Users with elevated system privileges may have the ability to access objects regardless of protection
offered by an ACE or the UIC protection. The bypass privilege (BYPASS), group privilege (GRPPRV),
read all privilege (READALL), or system privilege (SYSPRV) amplifies the holder’s access to objects.

Note: Administrators must be careful when granting elevated privileges that may allow users access
to critical objects. This can compromise system integrity.

Using Auditing to Monitor Queues and Logical Name Tables
For some object classes, such as queues and logical name tables, a user may gain access based on
alternate privileges. For example, the queue object allows full access to all queues for users with the
operator privilege (OPER), and the logical name table object allows access to the system table for
users with the system name privilege (SYSNAM).
To monitor queues and logical name tables, you can set an alarm ACE on those objects.

Example of Queue Security Auditing

$ set audit/audit/alarm/enable=access=(success,failure)/class=queue
$ show audit
System security alarms currently enabled for:
 ACL
 Authorization
 Audit: illformed
 Breakin: dialup,local,remote,network,detached
 Logfailure: batch,dialup,local,remote,network,subprocess,detached
 QUEUE access:
 Failure: read,submit,manage,delete,control
 Success: read,submit,manage,delete,control

System security audits currently enabled for:

Page 93

Protecting and Monitoring OpenVMS Systems - Michael Grinnell, Gina Jones

© Copyright 2005 Hewlett-Packard Development Company, L.P. 6

 ACL
 Authorization
 Audit: illformed
 Breakin: dialup,local,remote,network,detached
 Logfailure: batch,dialup,local,remote,network,subprocess,detached

QUEUE access:
 Failure: read,submit,manage,delete,control
 Success: read,submit,manage,delete,control

$ reply/enable=security
$ initialize/queue/batch test_queue
$ submit/noprint sys$login:login.com

%%%%%%%%%%% OPCOM 23-NOV-2004 13:19:01.05 %%%%%%%%%%%
Message from user AUDIT$SERVER on TIGRES
Security alarm (SECURITY) and security audit (SECURITY) on TIGRES, system
id: 10
25
Auditable event: Object access
Event time: 23-NOV-2004 13:19:01.05
PID: 0000008D
Source PID: 000000D8
Username: SYSTEM
Process owner: [SYSTEM]
Object class name: QUEUE
Object name: SYS$BATCH
Access requested: READ
Status: %SYSTEM-S-NORMAL, normal successful completion

%%%%%%%%%%% OPCOM 23-NOV-2004 13:19:01.09 %%%%%%%%%%%
Message from user AUDIT$SERVER on TIGRES
Security alarm (SECURITY) and security audit (SECURITY) on TIGRES, system
id: 1025
Auditable event: Object access
Event time: 23-NOV-2004 13:19:01.08
PID: 0000008D
Source PID: 000000D8
Username: SYSTEM
Process owner: [SYSTEM]
Object class name: QUEUE
Object name: SYS$BATCH
Access requested: SUBMIT
Status: %SYSTEM-S-NORMAL, normal successful completion

Job LOGIN (queue SYS$BATCH, entry 634) started on SYS$BATCH

%%%%%%%%%%% OPCOM 23-NOV-2004 13:23:52.86 %%%%%%%%%%%
Message from user AUDIT$SERVER on TIGRES
Security alarm (SECURITY) on TIGRES, system id: 1025
Auditable event: Detached process login
Event time: 23-NOV-2004 13:23:52.85
PID: 000000E0
Username: SYSTEM
Process owner: [SYSTEM]
Image name: TIGRES$DKA0:[SYS0.SYSCOMMON.][SYSEXE]LOGINOUT.EXE

Example of Logical Name Table Security Auditing
$ set audit/audit/alarm/enable=access=(success,failure)-
/class=logical_name_table

Page 94

Protecting and Monitoring OpenVMS Systems - Michael Grinnell, Gina Jones

© Copyright 2005 Hewlett-Packard Development Company, L.P. 7

$ show audit
System security alarms currently enabled for:
 ACL
 Authorization
 Audit: illformed
 Breakin: dialup,local,remote,network,detached
 Logfailure: batch,dialup,local,remote,network,subprocess,detached
 LOGICAL_NAME_TABLE access:
 Failure: read,write,create,delete,control
 Success: read,write,create,delete,control

System security audits currently enabled for:
 ACL
 Authorization
 Audit: illformed
 Breakin: dialup,local,remote,network,detached
 Logfailure: batch,dialup,local,remote,network,subprocess,detached
 LOGICAL_NAME_TABLE access:
 Failure: read,write,create,delete,control

 Success: read,write,create,delete,control

$ show log/table=lnm$system_table

%%%%%%%%%%% OPCOM 15-DEC-2004 08:54:25.55 %%%%%%%%%%%
Message from user AUDIT$SERVER on TIGRES
Security alarm (SECURITY) and security audit (SECURITY) on TIGRES, system
id: 10
25
Auditable event: Object access
Event time: 15-DEC-2004 08:54:25.53
PID: 0000000C4
Process name: SYSTEM
Username: SYSTEM
Process owner: [SYSTEM]
Terminal name: TNA3:
Object class name: LOGICAL_NAME_TABLE
Object name: LNM$SYSTEM_TABLE
Access requested: READ
Status: %SYSTEM-S-NORMAL, normal successful completion

%%%%%%%%%%% OPCOM 15-DEC-2004 08:54:25.55 %%%%%%%%%%%
Message from user AUDIT$SERVER on TIGRES
Security alarm (SECURITY) and security audit (SECURITY) on TIGRES, system
id: 10
25
Auditable event: Object access
Event time: 15-DEC-2004 08:54:25.53
PID: 000000C4
Process name: SYSTEM
Username: SYSTEM
Process owner: [SYSTEM]
Terminal name: TNA3:
Object class name: LOGICAL_NAME_TABLE
Object name: LNM$SYSTEM_TABLE
Access requested: READ
Status: %SYSTEM-S-NORMAL, normal successful completion

Using an Alarm ACE on Files
An alarm ACE can be used to monitor access to files and other objects.

Page 95

Protecting and Monitoring OpenVMS Systems - Michael Grinnell, Gina Jones

© Copyright 2005 Hewlett-Packard Development Company, L.P. 8

In the following example, an ACE on the project.txt file will display the access output to the enabled
OPCOM terminal and will write that same information to the SECURITY.AUDIT$JOURNAL file.

Note: You must include success or failure or both (s+f) on the alarm ACE.

$ set security/acl=(alarm=security,access=r+w+e+d+s+f) project.txt
$ set security/acl=(audit=security,access=r+w+e+d+s+f) project.txt
$ directory/security project.txt
Directory DKA0:[000000.USERS]
PROJECT.TXT;1 [TEST] (RWED,RWED,RE,)
(ALARM=SECURITY,ACCESS=READ+WRITE+EXECUTE+DELETE+SUCCESS+FAILURE)
(AUDIT=SECURITY,ACCESS=READ+WRITE+EXECUTE+DELETE+SUCCESS+FAILURE)

Enabling OPCOM Terminals to Monitor Security Alarms
From a privileged account, you can enable OPCOM to receive security messages using the following
command:

$ reply/enable=security

The following is the output of an OPCOM enabled terminal display when an authorized user accesses
the project.txt file.

$ type dka0:[users]project.txt
Security alarm (SECURITY) and security audit (SECURITY) on TIGRES, system
id: 1025
Auditable event: Object access
Event time: 14-SEP-2004 11:15:47.24
PID: 000000DF
Process name: TEST
Username: TEST
Process owner: [TEST]
Terminal name: TNA8:
Image name: TIGRES$DKA0:[SYS0.SYSCOMMON.][SYSEXE]TYPE.EXE
Object class name: FILE
File name: TIGRES$DKA0:[USERS]PROJECT.TXT;1
File ID: (8550,27,0)
Access requested: READ
Sequence key: 0000C2CC
Status: %SYSTEM-S-NORMAL, normal successful completion

Example of OPCOM Display
The following is the output of an OPCOM enabled terminal display when an unauthorized attempts to
access the project.txt file.

$ type dka0:[users]project.txt
%TYPE-W-OPENIN, error opening DKA0:[USERS]PROJECT.TXT;1 as input -RMS-E-
PRV, insufficient privilege or file protection violation
Security alarm (SECURITY) and security audit (SECURITY) on TIGRES, system
id: 1025
Auditable event: Object access
Event information: file access request (IO$_ACCESS or IO$_CREATE)
Event time: 14-SEP-2004 11:17:17.74
PID: 000000E0
Process name: _TNA9:
Username: GUEST
Process owner: [GUEST]
Terminal name: TNA9:

Page 96

Protecting and Monitoring OpenVMS Systems - Michael Grinnell, Gina Jones

© Copyright 2005 Hewlett-Packard Development Company, L.P. 9

Image name: TIGRES$DKA0:[SYS0.SYSCOMMON.][SYSEXE]TYPE.EXE
Object class name: FILE
Object owner: [TEST]
Object protection: SYSTEM:RWED, OWNER:RWED, GROUP:RE, WORLD:
File name: _TIGRES$DKA0:[USERS]PROJECT.TXT;1
File ID: (8550,27,0)
Access requested: READ
Sequence key: 0000C4EA
Status: %SYSTEM-F-NOPRIV, insufficient privilege or
object protection violation

Because AUDIT=SECURITY is enabled, you can also review the same information as above by
analyzing the SECURITY.AUDIT$JOURNAL file from a privileged account.

Example of SECURITY.AUDIT$JOURNAL File
The following is an abbreviated display of the above alarms as they appear in the
SECURITY.AUDIT$JOURNAL file.

$ set def sys$manager
$ analyze/audit/since=14-sep-2004:11:14
Date / Time Type Subtype Node Username ID Term

14-SEP-2004 11:15:47.24 ACCESS OBJ_ACCESS TIGRES TEST 000000DF TNA8:
14-SEP-2004 11:17:17.74 ACCESS OBJ_ACCESS TIGRES GUEST 000000E0 TNA9:

Note: Adding the /full qualifier to the above command provides the same output as seen in the
OPCOM display above.

Removing ACEs, Audits, and Alarms from Objects
Use one of the following commands to remove the ACE from a file. The first command removes a
single ACE. The second command removes both the audit ACE and the alarm ACE.

$ dir/sec project.txt
PROJECT.TXT;1 [TEST] (RWED,RWED,RE,)
(AUDIT=SECURITY,ACCESS=READ+WRITE+EXECUTE+DELETE+SUCCESS+FAILURE)
(ALARM=SECURITY,ACCESS=READ+WRITE+EXECUTE+DELETE+SUCCESS+FAILUR)
$ set security/acl=(alarm=security,access=r+w+e+d+s+f)/delete project.txt

$ dir/sec project.txt
PROJECT.TXT;1 [TEST] (RWED,RWED,RE,)
(AUDIT=SECURITY,ACCESS=READ+WRITE+EXECUTE+DELETE+SUCCESS+FAILURE)
$ set security/acl/delete=all project.txt

$ dir/sec project.txt
Directory DKA0:[000000.USERS]
PROJECT.TXT;1 [TEST] (RWED,RWED,RE,)

Example of Removing Security Alarm and Audit from Queue Object:

$ set audit/audit/alarm/disable=access=(success,failure)/class=queue

Example of Removing Security Alarm and Audit from Logical Name Table Object:

$ set audit/audit/alarm/disable=access=(success,failure)-
/class=logical_name_table

Page 97

Protecting and Monitoring OpenVMS Systems - Michael Grinnell, Gina Jones

© Copyright 2005 Hewlett-Packard Development Company, L.P. 10

Summary
You can use the OpenVMS Auditing Utility and using Access Control Entries to monitor access to files
and objects. There are other objects and system resources that can be monitored and restricted by
using these two utilities. Please reference the OpenVMS Guide to System Security for additional
information on using OpenVMS auditing and Access Control Lists (ACL) to help ensure the security of
your OpenVMS system.

For more information
For more information about using these security methods, refer to the HP OpenVMS Guide to System
Security.

© 2005 Hewlett-Packard Development Company, L..P. The information
contained herein is subject to change without notice. The only warranties for
HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed
as constituting an additional warranty. HP shall not be liable for technical or
editorial errors or omissions contained herein.

Page 98

OpenVMS Technical Journal V6

Porting RPG: Moving a Compiler to the HP Integrity Server

Porting RPG: Moving a Compiler to the HP Integrity Server ... 2
Overview .. 2
Introduction ... 2
Software Development Methodology .. 2
Porting Plan ... 3
The Porting Process... 3
Q/A Testing .. 5
Summary... 5
Recommendations .. 5
For more Information .. 6

© Copyright 2005 Hewlett-Packard Development Company, L.P. 1
Page 99

Porting RPG: Moving a Compiler to the HP Integrity Server - Bruce Claremont

© Copyright 2005 Hewlett-Packard Development Company, L.P. 2

Porting RPG: Moving a Compiler to the HP Integrity Server
Bruce Claremont, Software Migration and OpenVMS Consultant

Overview
This article covers MSI's experience in porting its Migration RPG compiler to the HP Integrity server,
based on the industry-standard Intel® Itanium® 2 processor. The article covers the following subjects:

- Our software development methodology

- Our porting plan

- The porting process

- Product Q/A testing after the port was completed

- Summary and recommendations to others planning to port applications

Introduction
MSI is a small, privately held corporation that specializes in software migration and HP OpenVMS
services. We also have a unique niche in the industry in that we provide the only RPG compiler
available under OpenVMS, Migration RPG. This article covers our port of the compiler to OpenVMS
running on the HP Integrity server line.

Software Development Methodology
This section briefly describes MSI’s software development methodology. It’s relevant to the porting
process because our methodology greatly simplifies software porting.

MSI’s software is developed using structured programming techniques. We stick to the rule of one
entry and exit point for each routine, the only exception being routines that handle fatal errors. We
strive to make routines as small and concise as possible and to reuse routines whenever possible.

Our code is well documented. In the case of Migration RPG, most of the documentation is embedded
within the source code, with a summary document that describes the overall structure of the compiler
and defines key internal layouts. Our standard for source code documentation is to provide enough
descriptive text to allow a programmer unfamiliar with the programming language in use to
understand the purpose and structure of each module.

Migration RPG is primarily written in HP Macro-32. It also contains a few modules developed in HP
Fortran and HP C. The entire product comprises 120 source files containing about 320,000 lines of
code.

I became lead software engineer on the product 20 years ago when its native environment was
VAX/VMS. At that time, the product was both poorly documented and structured. It took about
seven years to standardize and document the code while simultaneously adding new features and
improving overall product quality. When MSI acquired the product in 1996, it was pretty much in full
compliance with the standards described above. Because I am the founder of MSI, these standards
continue to be enforced.

It is important to note that as Migration RPG was standardized and enhanced, a quality assurance
suite of test programs was developed to test all aspects and features of the product suite. The basic
rules of test suite development were:

- Every product feature has one or more test programs.

- Every bug fix generates one or more test programs.

- Every new feature generates one or more test programs.

The test suite is maintained under DEC Test Manager (DTM). It is highly structured and fully
automated. It is critical to maintaining the quality of Migration RPG. I cannot overemphasize how
important having the test suite was to a quick and successful port.

Page 100

Porting RPG: Moving a Compiler to the HP Integrity Server - Bruce Claremont

© Copyright 2005 Hewlett-Packard Development Company, L.P. 3

Porting Plan
MSI had two advantages as it prepared to port Migration RPG to the HP Integrity server:

- We specialize in software migrations so we have a great deal of experience in porting
software applications.

- We had successfully ported Migration RPG from the VAX processor to the Alpha processor
back in 1996.

We use the following steps to plan and implement a software port:

1. Inventory the application and remove any modules that are no longer in use. It makes no
sense to port unused modules.

2. Develop test scripts, data, reports, and an acceptance test plan. Our existing DTM test suite
took care of this requirement.

3. Develop a schedule and identify resources for the port. Because we were stepping into
somewhat uncharted waters by being an early Integrity server adopter, setting a schedule
was difficult. Our past software porting experience, specific experience porting Migration
RPG to Alpha, and research into the tools available under Intel Itanium-based OpenVMS led
us to estimate a 2- 3 week porting effort.

4. Train the personnel. In this instance, being an OpenVMS shop was advantageous.
OpenVMS is OpenVMS, regardless of the underlying platform. Likewise, Fortran, C and
DTM changed very little in moving to the Integrity server. Much to our surprise and pleasure,
Macro-32 was ported to the Integrity server as well. Thus, personnel training requirements
were minimal.

5. Walk before you run. When ever possible, we always port a small, self-contained
application before moving on to a large one. This allows us to test our porting plan, the
porting tools, and the target environment without a large investment or risk. We chose our
EBCDIC to ASCII conversion product, CVTFILE, to conduct the initial test port.

Critical to the success of our port was the HP implementation of the following products on the HP
Integrity server:

- OpenVMS operating system

- Macro-32 compiler

- DTM

C and Fortran are not listed as critical because the modules they support could have been re-written,
if necessary. Thus, failure of the port of those components would have been an inconvenience, not a
show stopper.

The Porting Process
I initiated the porting process by attending an HP/Intel Porting Forum. This gave me access to
Integrity server equipment and HP engineers. It also had me working among my peers, which proved
to be a rewarding experience in its own right.

My first step was to recreate our development environment on the Integrity server. I had brought
along all of the setup procedures used on our Alpha development system to accomplish this.
Configuring the Integrity server was no more difficult that configuring a new AlphaServer.

CVTFILE Test Case
I began with the test port of the CVTFILE utility. The utility is a straight-forward program written in
Macro-32 that can convert data between ASCII and EBCDIC representation. It contained no compiler
directives. It compiled and linked cleanly using its build procedure and passed the conversion tests
associated with the product. It required no code modification to port successfully. From start to finish,
the CVTFILE port was completed within an hour.

Page 101

Porting RPG: Moving a Compiler to the HP Integrity Server - Bruce Claremont

© Copyright 2005 Hewlett-Packard Development Company, L.P. 4

Encouraged by the ease of the CVTFILE port and the apparent maturity of the late beta releases of
OpenVMS and its layered products, I was ready to tackle porting Migration RPG.

Migration RPG Port
Before discussing the Integrity server port of Migration RPG, a little background on the VAX to Alpha
port is necessary. This information is especially pertinent if you are planning to port directly from a
VAX system to the Integrity server.

Prior to being ported to the Integrity server, Migration RPG ran on both VAX and Alpha processors
and was maintained via a common code base. In porting from the VAX to the Alpha, the only
changes we needed to make to the Macro source code involved formatting of the external routine
calls of modules in the shareable runtime image. We used compiler directives to accomplish this, as
illustrated in Figures 1 and 2.

Figure 1: Original VAX Call

.ENTRY S3X_ACCEPT, ^M<R2,R3,R4,R5,R6,R7>

Figure 2: VAX/Alpha Common Code Call

.IF DEFINED VAX
 .ENTRY S3X_ACCEPT, ^M<R2,R3,R4,R5,R6,R7>
.ENDC

.IF DEFINED ALPHA
S3X$ACCEPT:: .CALL_ENTRY -
 MAX_ARGS=4, -
 HOME_ARGS=TRUE, -
 PRESERVE=<R2,R3,R4,R5,R6,R7>
.ENDC

Because of the changes in external call structures and link vectors, the VAX to Alpha port necessitated
creation of an Alpha-specific linker option file for the shareable image. This is one of only two places
where our VAX and Alpha code sets are not identical. The other is the compile and link qualifiers
used on the VAX and Alpha systems.

Obviously, being able to maintain a common code set across multiple platforms is desirable, so we
hoped to accomplish this with the port to the Integrity server. Much to my relief, I found the Macro-32
compiler for the Integrity server to be fully compatible with the Alpha version of our Macro-32 code.
Other than modifying the compiler directives to accommodate the Intel Itanium architecture, as shown
in Figure 3, no code changes were needed to achieve clean compiles on all of our Macro modules.
Likewise, our C modules only needed compiler directive modifications. Our Fortran modules
compiled without modification.

Figure 3: VAX/Alpha/Integrity Common Code Call

.IF DEFINED VAX
 .ENTRY S3X_ACCEPT, ^M<R2,R3,R4,R5,R6,R7>
.ENDC

.IF NDF VAX
S3X$ACCEPT:: .CALL_ENTRY -
 MAX_ARGS=4, -
 HOME_ARGS=TRUE, -
 PRESERVE=<R2,R3,R4,R5,R6,R7>
.ENDC

Because our code is standardized, modifying the compiler directives was a matter of running a
couple of global find and replace operations via TPU. Likewise, our build procedures were equally
easy to update. The Macro-32 compiler and linker on the Integrity server accept the same qualifiers
as the Alpha. Modification to our build procedures involved changing a few IF statements to
recognize the Intel Itanium architecture and default to the Alpha compile and link directives. Once

Page 102

Porting RPG: Moving a Compiler to the HP Integrity Server - Bruce Claremont

© Copyright 2005 Hewlett-Packard Development Company, L.P. 5

the compiler directives and build procedures were updated, Migration RPG compiled and linked
successfully.

From start to finish, achieving clean compiles and links of Migration RPG on the Integrity servers was
accomplished in under 4 hours. This includes the time spent modifying source code and procedures
to work correctly under the new architecture.

Q/A Testing
Testing began with a few manual tests conducted during the Porting Forum. Initial testing quickly
revealed a problem with floating point numbers. Had I reviewed Porting Applications from HP
OpenVMS Alpha to HP OpenVMS Industry Standard 64 for Integrity Servers porting guide more
carefully, this would not have been an issue. The C compiler on Alpha systems defaults to G_FLOAT
representation. C on Integrity server systems defaults to IEEE_FLOAT. The addition of the /G_FLOAT
qualifier to our C compile command line resolved the issue.

After returning to the home office and taking delivery of our own Integrity server, serious testing using
the DTM test suite was initiated. Initial testing revealed a couple of minor coding errors in our own
code. These problems had never been detected by the VAX and Alpha-based test suites, but showed
up when run on the Integrity server. Hence, the porting process served to improve our product.

Several tests failed during the initial pass because they report back file sizes in blocks. The same file
on VAX, Alpha, and Integrity server will vary in size due to the difference in underlying architecture,
so the DTM tests were catching the differences between files sizing on the Alpha and Integrity server
system. Updating the DTM benchmark files on the Integrity server eliminated this issue.

Having addressed the minor issues, we ran the test suite again. Out of several hundred tests, we had
only two failures. The errors proved to be a fault in the Macro-32 compiler. We conducted our port
under a field test version of OpenVMS, so this was not unexpected. HP has addressed the issue and
our Q/A test suite now runs cleanly.

During the testing phase, we also encountered problems with the symbolic debugger. The problems
were encountered during the porting forum and workarounds were quickly provided by HP
engineering. The problems have been addressed in the production release of OpenVMS Version 8.2.

During the Q/A test phase, we had no problems with the DTM software. This was a tremendous
relief and had a significant impact on the speed of our port.

Summary
Our entire port of Migration RPG was completed with about 60 man-hours of effort. Preparation and
planning consumed another 20 man-hours. Credit for the ease and speed of our port is twofold:

1. HP did their job well. The smoothness of the port speaks well to the care HP has taken in
moving OpenVMS and its layered products to the Integrity server.

2. MSI did its job well. Being specialists in software migrations, we have developed our
products with an eye towards portability and ease of maintenance. While Migration RPG is
a sophisticated, complex application, its individual modules are very structured and as
simplistic as possible. Our code is highly standardized, making changes that impact several
modules easy to accomplish. Our build procedures are automated, allowing ease of
execution and quick resolution of compile and link problems. Our test suite is large,
comprehensive, and automated, permitting thorough and efficient testing. Finally, we
documented our code well, greatly simplifying code review and error resolution.

Recommendations
The steps needed to prepare for a port are pretty simple:

1. Prepare: Clean up source code, resolve known problems, and eliminate obsolete modules.
In short, clean house.

Page 103

Porting RPG: Moving a Compiler to the HP Integrity Server - Bruce Claremont

© Copyright 2005 Hewlett-Packard Development Company, L.P. 6

2. Plan: Schedule the process; allocate human, software, and hardware resources; define and
prepare test material; and test it. Be realistic with the schedule and be prepared to be
flexible should your port have difficulties.

3. Port: Conduct the port. Review HP porting guides and modify code as required. Update
build procedures and source code to accommodate the new architecture. Compile and fix
problems. Link and fix problems. Conduct initial tests.

4. Test: Execute the acceptance test plan. Fix problems and run the tests again. Repeat until
all problems are resolved.

5. Celebrate: Once you’ve ported and successfully tested your code, throw a party. You’ll
deserve it.

Depending upon the state of your code, documentation, and application knowledge, the porting
process can run the gauntlet from simple to arduous. Clean code, careful planning, and quality
testing will go a long way towards making the process simple and successful. Good luck!

For more Information
More information about MSI products and services can be found at
http://www.MigrationSpecialties.com.

© 2005 Hewlett-Packard Development Company, L..P. The information
contained herein is subject to change without notice. The only warranties for
HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed
as constituting an additional warranty. HP shall not be liable for technical or
editorial errors or omissions contained herein.

Page 104

http://www.migrationspecialties.com/

OpenVMS Technical Journal V6

Using Python for OpenVMS Web Development

Using Python for OpenVMS Web Development ... 2
The Python Language ... 2

Porting Python.. 3
The Challenge.. 3

The Choices We Made... 4
Some Examples of Integration with OpenVMS... 4

Example 1... 4
Example 2... 5
Example 3... 6

Applications, Libraries, and Tools .. 6
For More Information.. 7

© Copyright 2005 Hewlett-Packard Development Company, L.P. 1
Page 105

Using Python for OpenVMS Web Development - Jean-Francois Pieronne

© Copyright 2005 Hewlett-Packard Development Company, L.P. 2

Using Python for OpenVMS Web Development
Author: Jean-Francois Pieronne

A few years ago, a large company whose data-processing architecture is built around OpenVMS
were seeking a “Webification” solution for its applications. This company naturally wished to deploy
this solution on OpenVMS.

A major criteria criterion was to offer the level of security and audit trail auditing equivalent to that
offered by the classic character-cell based applications on OpenVMS using a VT terminal. It was
therefore imperative to keep the authentication and security of OpenVMS.

Each user must run his applications in his own process just as in the case of a VT terminal session,
only the interface has changed.

A system was needed that was sufficiently light in resource consumption so as to be able to instantiate
each user, without an excessive consumption merely supporting such an infrastructure, and providing
the required security, identification, and traceability.

Usually application servers like Tomcat or equivalent commercial offerings do not have this level of
granularity because of their heavy resource usage.

For reasons of functionality, integration with OpenVMS, and performance, the WASD server package
was selected.

Other criteria for the choice of the language for development included:

• Productivity in the creation and maintenance of the programs
• Wealth of libraries, existing tools
• Size of the installed base and the reputation of the language

A scripting language was preferable, due to the much higher productivity of developers in these types
of languages than in other more traditional environments.

Finally, Python was selected as the principal language of development because, in conjunction with
the WASD web server, it gave the best possibility of successfully deploying the required environment.

The Python Language
Python is a portable, interpreted, interactive, object-oriented programming language.

Python combines remarkable power with very clear syntax. It has modules, classes, exceptions, very
high level dynamic data types, and strong dynamic typing. New built-in modules are easily written in
C or C++. Python is also usable as an extension language for applications that need a programmable
interface.

Python runs on most operating systems and for each has interfaces to many system calls and libraries.

The first public version was released in 1991. In 2001, Guido van Rossum, who is the author of
Python, started a foundation named "Python Software Foundation," devoted to advancing open
source technology related to the Python programming language.

Page 106

Using Python for OpenVMS Web Development - Jean-Francois Pieronne

© Copyright 2005 Hewlett-Packard Development Company, L.P. 3

The Python implementation is copyrighted but freely usable and distributable, even for commercial use.

Since its origin this language has met a growing success, its user-base doubling each year. Many
books, articles and Internet sites are regularly devoted to it. Python is currently used by many
companies such as Google, Yahoo, Redhat, Microsoft, Nokia, and others.

In the OpenVMS world, several companies use Python intensively; some of them have based their
whole Web architecture on the WASD/Python combination.

One company that deploys a software system on hundreds of systems also uses Python intensively,
including critical applications.

Here is an example of a script used to replace all the events of a character string in a whole series of
HTML files contained in a directory:

import glob
for fn in glob.glob('./*.html'):
 res = open(fn).read().replace('old string', 'the new string')
 open(fn, 'w').write(res)
For more information and other demonstrations to refer to the site http://www.python.org.

Porting Python
A first port of Python 1.5.2 had been carried out, but for technical reasons and to ensure easier
development in the future, it was decided to set out again from scratch.

Currently, this port is the result of collaborative work among several people, with the occasional
participation of HP employees.

The current version of Python for OpenVMS is 2.3.5. New kits are periodically released, including
bug fixes, or updates of the libraries contained in this port.

Since version 2.3.5, as the kits are now versioned, it is possible to have several versions of Python
installed on the same system.

The Challenge
We had to ensure a port that is perennial and evolutionary, that facilitates the port of future versions,
and is not a one-shot port.

This includes submission of the patches carried out specifically for OpenVMS for inclusion into the
main stream Python codebase. This has been partially accomplished. However, there still exist some
patches that are not included. Indeed, this is sometimes difficult. For example, it was necessary to
explain how a file system like RMS works, because most people think that a file is limited to a flow of
bytes.

We also had to ntegrate specific OpenVMS features, for example:

• Allow the calling of system services or various runtime library routines (SYSxxx, LIBxxx etc)
• Offer access to RMS files and not be limited to sequential files with organisation type of

STREAMLF
• Utilize environments specific to OpenVMS such SGBD Oracle/Rdb or the WASD web server
• Allow the addition of modules or the evolution of existing modules without having to rebuild the

whole interpreter.

Page 107

Using Python for OpenVMS Web Development - Jean-Francois Pieronne

© Copyright 2005 Hewlett-Packard Development Company, L.P. 4

• Allow the simplest possible port, under OpenVMS, of Python applications initially developed for
other OS. For example, it was decided that for Python OpenVMS is seen as a posix system and
that the routines for access to the file-system followed posix naming rules and not those of
OpenVMS naming rules.

• Provide a form of installation integrated into OpenVMS.

The Choices We Made
The Python interpreter is built as a shareable image. The Python program itself is only one small
program of 24 lines.

The extensions for OpenVMS are also built in the form of shareable images. Therefore, it is simple to
upgrade a module or add new ones.

Moreover, as these libraries are dynamically activated, it is possible to deploy Python with all of the
modules provided, on systems that do not have the specific environments installed (for example
Oracle/Rdb or the Web server WASD).

When the modules use libraries that can also be used outside of Python, this functionality is provided
in the form of separate kits.

Here is the list of the libraries for which there is a PCSI kit and a Python interface:

• Zlib
• LibBZ2
• LibJPEG
• LibPNG
• Freetype
• LibImaging
• LibGD
• GDChart
• LibXML2 Libxslt/Libexslt
• OPENSSL
• Swish-E

The OpenVMS Python kit and all the separate libraries are distributed in the form of PCSI kits and are
therefore easily installable and upgradable.

It was also decided that the minimum supported version of OpenVMS would be V7.3 with the latest
version of the CRTL. (There is a partial version for OpenVMS V7.2, but it is not maintained.)

It is strongly advisable to install Python on a ODS-5 disk. However, in the absence of a physical disk
of this type, it is possible to use a virtual disk in a container file with LDdriver, the latter being
included with OpenVMS starting from the V7.3-1. LDdriver for older versions of OpenVMS is
available on the Freeware CD. (Editor’s Note: Look for the article about the LDdriver in this issue of
the OpenVMS Technical Journal.)

Some Examples of Integration with OpenVMS
Example 1
Display users whose accounts are not disusered and who have not logged on for 31 days or more:

Page 108

Using Python for OpenVMS Web Development - Jean-Francois Pieronne

© Copyright 2005 Hewlett-Packard Development Company, L.P. 5

import vms.user, vms.starlet, vms.uaidef
def fcmp(u1, u2):
 return cmp(u2.lastlogin_i, u1.lastlogin_i)
users = vms.user.all_users()
users = users.values()
descending sort on last login interactive
users.sort(fcmp)
s,delta = vms.starlet.bintim('31 0:0:0.00')
s,curtim = vms.starlet.asctim()
s,minlogin = vms.starlet.bintim(curtim)
minlogin += delta
for user in users:
 if (not (user.flags & vms.uaidef.UAI_M_DISACNT) and
 0 < user.lastlogin_i < minlogin):
 print "%-33s %s" % (user.username,
 vms.starlet.asctim(user.lastlogin_i)[1])
This gives the following result:

USER1 8-APR-2005 13:38:43.51
FIELD 8-APR-2005 13:16:48.21
DEMO 27-SEP-2002 12:49:57.24

Example 2
Sample code to fetch information from queues, display all queue names and descriptions and for
each queue all jobs name and id:

from vms.rtl.lib import getqui
from vms.quidef import *
from vms.jbcmsgdef import JBC__NOMOREQUE, JBC__NOSUCHJOB,\
 JBC__NOMOREJOB
getqui(QUI__CANCEL_OPERATION)
while True:
 queue_name = ''
 try:
 s, v, queue_name = getqui(QUI__DISPLAY_QUEUE, QUI__QUEUE_NAME,
 None, '*')
 except VMSError, e:
 if e.errno == JBC__NOMOREQUE:
 break
 else:
 raise
 s, v, queue_desc = getqui(QUI__DISPLAY_QUEUE,QUI__QUEUE_DESCRIPTION,
 None, '*', QUI_M_SEARCH_FREEZE_CONTEXT)
 print 'Queue:', queue_name, '<', queue_desc, '>'
 while True:
 try:
 s, v, js = getqui(QUI__DISPLAY_JOB, QUI__JOB_STATUS,-1,None,
 QUI_M_SEARCH_ALL_JOBS)
 except VMSError, e:
 if e.errno in (JBC__NOMOREJOB, JBC__NOSUCHJOB):
 break
 else:
 raise
 s, v, jn = getqui(QUI__DISPLAY_JOB, QUI__JOB_NAME, -1, None,
 QUI_M_SEARCH_ALL_JOBS |
 QUI_M_SEARCH_FREEZE_CONTEXT)
 s, v, en = getqui(QUI__DISPLAY_JOB, QUI__ENTRY_NUMBER, -1, None,
 QUI_M_SEARCH_ALL_JOBS |

Page 109

Using Python for OpenVMS Web Development - Jean-Francois Pieronne

© Copyright 2005 Hewlett-Packard Development Company, L.P. 6

 QUI_M_SEARCH_FREEZE_CONTEXT)
 print ' Job: %s (%s)' % (jn, en)
This gives the following result:

Queue: ASSP_QUEUE < queue for Anti-Spam SMTP Proxy Server >
 Job: LOGIN_ASSP (6)
Queue: LASER1 < >
Queue: SCHEDULER < >
 Job: IPCHECK (562)
 Job: CHECKAUDIT (292)
 Job: update_spamdb (530)
Queue: SETI$BATCH < >
Queue: SYS$BATCH_NODE1 < Queue batch NODE1 >
Queue: SYS$BATCH_GENERIC < Queue batch generic >
Queue: TCPIP$SMTP_NODE1_00 < >

Example 3
A small Rdb example which displays the user tables and views from the famous "mf_personnel"
demonstration database. An iterator is used to read the lines.
import rdb
attach = rdb.statement("attach 'filename mf_personnel'")
commit = rdb.statement("commit work")
readonly = rdb.statement("set transaction read only")
curs = rdb.statement("""select rdb$relation_name from rdb$relations
where rdb$system_flag = ? order by rdb$relation_name""")
attach.execute()
print "users relations name:"
readonly.execute()
curs.execute(0)
for line in curs:
 print line[0]
commit.execute()

Which gives the following results:

users relations name:
CANDIDATES
COLLEGES
CURRENT_INFO
CURRENT_JOB
CURRENT_SALARY
DEGREES
DEPARTMENTS
EMPLOYEES
JOBS
JOB_HISTORY
RESUMES
SALARY_HISTORY
WORK_STATUS
For more information and other examples, refer to the site Python for OpenVMS.

Applications, Libraries, and Tools
It is generally easy to port a Python application to OpenVMS provided that it doesn’t use platform
specific libraries. For example, the porting of the application server Webware which represents
around 40,000 lines of code required only the modification of a single line in the installation script. A
PCSI installation kit for Webware will be shortly available.

Page 110

Using Python for OpenVMS Web Development - Jean-Francois Pieronne

© Copyright 2005 Hewlett-Packard Development Company, L.P. 7

Many other tools & libraries are installed and use the standard installation procedure without any
modification for example the the Cheetah templating system which comprises around 12,000 lines of
Python code or the PyChecker tool which is a Python source code checking tool and comprises
approximately 5,000 lines of Python code.

A Web T4 viewer has been developed in a few days and comprises about only 900 lines of Python
code. A demonstration is available from http://vmspython.dyndns.org/.

For More Information
Some interesting reading may be:

• The article from John K. Ousterhout creator of the TCL language: Scripting: Higher Level
Programming for the 21st Century

• The article from Ill Venners: Use the Best Tool for the Job
• The comparative study written by Lutz Prechelt: An Empirical Comparaison of C, C++, Java, Perl,

Python, Rexx, and Tcl.
• Artima.com's six-part interview with Python creator Guido van Rossum:

http://www.artima.com/intv/guido.html
• The following presentations from Stefen Ferg:

- The Business Case for Agile Languages
- Python:a Powerful, Easy-to-Use, Open-Source Scripting Language
- Python & Java: a Side-by-Side Comparison
- More material can be accessed from http://www.ferg.org/python_presentations/index.html.

For more information about T4, read the following article by Steve Lieman a previous OpenVMS
Technical Journal:

TimeLine-Driven Collaboration with "T4 & Friends": A Time-saving Approach to OpenVMS Performance

© 2005 Hewlett-Packard Development Company, L..P. The information
contained herein is subject to change without notice. The only warranties for
HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed
as constituting an additional warranty. HP shall not be liable for technical or
editorial errors or omissions contained herein.

Page 111

Page 112

OpenVMS Technical Journal V6

Case Studies Using EMC Legato NetWorker
for OpenVMS Backups

Case Studies Using EMC Legato NetWorker for OpenVMS Backups.. 2
Overview .. 2
Introduction ... 2
Case Study 1: Backup of Data at Two Sites ... 2
Case Study 2: Backup of a Cache Database as Part of a Heterogeneous Medical Information System.... 5
Summary... 6

For more information .. 6

© Copyright 2005 Hewlett-Packard Development Company, L.P. 1
Page 113

Case Studies Using EMC Legato NetWorker for OpenVMS Backups - Siobhán Ellis

© Copyright 2005 Hewlett-Packard Development Company, L.P. 2

Case Studies Using EMC Legato NetWorker for OpenVMS Backups
Siobhán Ellis, Senior Technical Consultant, ENSTOR, Sydney, Australia

Overview
EMC Legato NetWorker is the only product that incorporates OpenVMS into an enterprise-wide data
protection solution providing direct backup to tape or disk as well as support for Oracle and Oracle
Rdb. This article covers two real solutions that were delivered – one using EMC Symmetrix and
CLARiiON Disk Libraries, and the other using host-based OpenVMS volume shadowing, HP storage,
and an MSL5000 tape library.

Introduction
Backups are critical for any operating system and OpenVMS is no exception. There have been many
solutions on the market, including offerings such as SLS and ABS from HP. Until recently, nearly all of
these solutions concentrated on using BACKUP as the data mover. One of the products to break that
paradigm is EMC Legato NetWorker.

By using its own data mover, NetWorker can write multiple streams of data in parallel to a single
backup device. NetWorker also writes that data in a format that is operating system independent,
which means that a tape written on an OpenVMS system can be read by a Windows system.
NetWorker can often back up an entire OpenVMS system much faster than the traditional single
stream method because the bottleneck often is not the tape device itself, but the process of getting the
data off the disk fast enough to keep the tape device spooling. In one such case, NetWorker cut
backup times in half without changing the hardware.

NetWorker is also extremely flexible. It provides the ability to share tape devices, tapes, and libraries
among systems – even among operating systems – to maximize the use of resources.

This article describes two real backup solutions using EMC Legato NetWorker on OpenVMS.

Case Study 1: Backup of Data at Two Sites

The Scenario

The customer has two datacenters some distance apart. One site is the production site and the other is
the disaster recovery site, which also houses development systems. The two sites are connected using
TCP/IP and DECnet. There are about 90 OpenVMS servers spread across the two datacenters.

Data is stored on EMC Symmetrix disk arrays. Production data is replicated from Site 1 to Site 2 using
EMC SRDF, an array-based duplication, over FCIP (fibre channel over IP) using CISCO MDS. All
data, production, and development is in a RAID 1 set; this is locally copied using EMC TimeFinder to
create BCVs (business continuation volumes), which is essentially a third copy of the data.

All OpenVMS systems have two fibre channel host bus adapters (HBAs) to provide dual paths to the
data, and they are all in clusters. They were currently being backed up using a mixture of manual
procedures and TAPESYS.

The Requirements

The customer wanted a solution for their OpenVMS systems only. Their UNIX and Windows systems
were already covered by another backup solution from another vendor. Because of stability issues
with the other backup product, they were not considering using it for their OpenVMS solution.

The customer needs were:

• A modern backup solution with the following features:

Page 114

Case Studies Using EMC Legato NetWorker for OpenVMS Backups - Siobhán Ellis

© Copyright 2005 Hewlett-Packard Development Company, L.P. 3

o Extensive reporting

o Administrative graphical user interface (GUI)

o Security

• Reduced backup times

• Ability to keep all backups for two months and occasionally keep a backup for 10 years

• High availability

• No operational impact on the clusters being backed up

• Multiple copies of the data without moving data over the corporate IP data network

The Solution

Figure 1 shows the solution that was designed for this customer’s needs. The solutions chosen to
address individual needs are discussed in the sections following the figure.

Site 1 Site 2
Cloning

Figure 1 Production Cluster and Development Cluster Connections to SANs and CDLs

A Modern Backup Solution

EMC Legato NetWorker V7 was chosen because of its flexibility to deliver a solution that meets all the
basic requirements. In conjunction with NetWorker Management Console (NMC), this solution
provides a secure environment where the operations staff can be limited to performing only certain
functions using a Java-based, web-start application. NMC also provides sophisticated and extensive
reporting, and all actions taken on NetWorker are recorded.

Reduced Backup Times and Storage Capacity

Production
cluster

FCIP

CDL
CDL

Production data
replication

Development
cluster

Page 115

Case Studies Using EMC Legato NetWorker for OpenVMS Backups - Siobhán Ellis

© Copyright 2005 Hewlett-Packard Development Company, L.P. 4

It was determined that a disk-to-disk solution would provide the highest possible throughput for both
restores and backups. However, with the amount of data required to be stored, EMC Symmetrix disk
was too expensive to use as a backup device. The solution required lower cost disks such as serial
ATA disks. EMC’s mid-range disk solution is CLARiiON, which, in the spring of 2005, does not
support OpenVMS. However, EMC had just launched the CLARiiON Disk Library (CDL), which was a
perfect solution.

The CDL is a virtual tape library. It is essentially a collection of fibre-attached, serial ATA disks in a
cabinet fronted by a high-availability pair of Linux servers that emulate a tape library using FalconStor
VirtualTape Library (VTL) software. HP has just launched its equivalent, the StorageWorks 6000
Virtual Library System.

A CDL was implemented at each site with enough space to keep all data for two months. To ensure
that the CDL is always available using fibre channel, two ports were dedicated to local data backup.

Each CDL was set up to emulate an ATL P3000 tape library, which is physically the same as an HP
ESL9000, with 8 SDLT 320 drives. Site 1 also had a smaller library set up and was connected to the
local MDS, which is described later.

High Availability

The NetWorker server, which holds the media database and client file indexes and controls the
execution of backups, was installed on a Sun Solaris server at Site 1. To comply with the customer’s
standards, high availability was achieved by having a second server available at Site 1 and having
the metadata stored on a partition on the Symmetrix; this data was then duplicated to the remote site
where a third server was set up and ready to take over from Site 1 if necessary.

As already noted, the CDLs contain a pair of high availability Linux systems. All the disks are
configured in RAID 5 sets, giving the CDLs a much better MTBF (mean time between failures) than can
be provided by a real tape library.

No Operational Impact on the Clusters Being Backed Up

The customer had recently consolidated their OpenVMS systems, moving many servers onto fewer GS
Series servers. This move had freed up a number of smaller AlphaServers, which could now be used
as backup appliances in each cluster and as NetWorker storage nodes. An AlphaServer 4000 could
push four data streams at once before saturating the CPU, at which point any more streams would
degrade overall performance. Each storage node was connected to the local CDL using two fibre
channel host-based adapters. At Site 2, one storage node was also connected to the local MDS so it
could see the small virtual tape library at Site 1.

Multiple Copies of the Data Without Moving Data Over the Corporate IP Data Network

Because the production data is replicated at both sites, all that was required was to split the business
continuation volumes (BCVs) simultaneously at both sites and back up the data locally. This was done
using the preprocessing and postprocessing capabilities of NetWorker, which allow you to run
command procedures before and after the backup on a particular client. The steps are as follows:

1. Preprocessing:

a. Breaks each disk in the backup saveset out from the BCVs.

b. Mounts each disk locally with the correct logical name, so it supersedes the SYSTEM
logical.

2. The backup runs and backs up the mounted BCV disk.

3. When the backup is complete, postprocessing does the following:

Page 116

Case Studies Using EMC Legato NetWorker for OpenVMS Backups - Siobhán Ellis

© Copyright 2005 Hewlett-Packard Development Company, L.P. 5

a. Dismounts the disks.

b. Puts the disks back into the BCVs.

Because clients at both sites can split BCVs at the same time, duplicate backups are achieved, but are
backed up directly to local CDLs.

The development data was a different matter because it is not replicated from Site 2 to Site 1. Again,
the preprocessing and postprocessing capabilities were used to split the BCVs just as with the
production data. However, after the backups are finished, NetWorker initiates an automatic clone
operation to perform a copy of all the development savesets from the CDL in Site 2 to the small CDL in
Site 1.

It took about three weeks to develop and test the preprocessing and postprocessing command
procedures.

The Result

All the customer requirements were met, and the solution went into production. With no special
tuning, one product system was backed up and cloned in the time it used to take to perform just the
backup. This was done with a single clone stream running. It is possible to initiate multiple clone
streams and cut cloning time by two thirds.

Case Study 2: Backup of a Cache Database as Part of a Heterogeneous Medical Information System

The Scenario

The customer has a number of healthcare information systems based on the Caché database on
OpenVMS, and a number of web, file, and SQL servers running on Microsoft Windows. Storage for
OpenVMS is connected using HSG80 controllers, and all disks are shadowed using host-based
volume shadowing. Windows systems have direct-attached SCSI disks. OpenVMS was being backed
up using scripts based on BACKUP, and Windows was backed up using a workgroup class backup
tool.

The Requirements

Customer wanted a solution with the following capabilities:

• Works for both Windows and OpenVMS

• Does not require applications to stop running.

• Runs automatically so support staff can go home at a reasonable hour.

The Solution

A NetWorker server running on Windows with OpenVMS storage nodes filled the bill. Windows web
servers, file servers, and SQL servers all are covered by the standard NetWorker and associated
modules. Backup is done to an MSL5000 series library, which is shared between Windows and
OpenVMS.

The only issue concerned the database because, unlike Oracle or Oracle Rdb, Caché does not have
an API with which a backup tool can interface. However, Caché does have a command line that
allows you to put the database into a suspend mode, and then later into a resume mode.

The new backup flow is as follows:

Page 117

Case Studies Using EMC Legato NetWorker for OpenVMS Backups - Siobhán Ellis

© Copyright 2005 Hewlett-Packard Development Company, L.P. 6

1. Start the Backup.

2. Use NetWorker preprocessing to do the following:

a. Suspend the Caché database.

b. Drop disks from the shadow sets.

c. Mount the disks in the group with their correct logical names, thus overriding the
system logicals.

d. Resume the database.

3. Back up the disks on the system.

4. Use NetWorker postprocessing to minimerge the disks back into the shadow sets.

5. Automatically clone the data to ensure there are two copies, one for offsite and one for
onsite.

The command procedures took about one week to write and test.

The Result

Backups across Windows and OpenVMS are running reliably and consistently. The applications do
not shut down and support staff no longer needs to worry whether the data is being backed up.

Summary
OpenVMS is an excellent operating system for many reasons, some of which are its robustness and
reliability. Consequently, system managers are often reluctant to use a backup utility that is not native
to OpenVMS. While NetWorker performs no magic tricks, it does use the RMS APIs for OpenVMS,
thus guaranteeing correct backup and restoration of data because it is using basic and legal
OpenVMS system calls. Indeed, in tuning NetWorker to work best with OpenVMS, the NetWorker for
OpenVMS engineering team worked closely with the RMS engineering team.

In these two scenarios, one using EMC storage and the other using HP storage and OpenVMS volume
shadowing, NetWorker on OpenVMS was easily customized to meet the particular requirements of
each customer to deliver a reliable data protection solution. These solutions were chosen as examples
because of their complexity and the author’s intimate involvement with the service delivery. There are
many standard installations of NetWorker on OpenVMS where no customizations are performed at
all. There are also other variants, particularly with the Caché database, where HP’s EVA storage is
used and snapshots are performed rather than splitting shadow sets.

With the addition of NetWorker support for Oracle and Oracle Rdb databases, the possibilities of
using NetWorker on OpenVMS are boundless with minimal customization. Using NetWorker on
OpenVMS, you can help to bring OpenVMS operations into the enterprise, reducing the total cost of
ownership by sharing backup resources with other operating systems and reducing training needs
because NetWorker works across many operating systems.

NetWorker is the most mature and best heterogeneous data protection tool available. Now that these
capabilities are available on OpenVMS, the best operating system, the combination of NetWorker
and OpenVMS makes an unbeatable backup solution.

For more information
See the ENSTOR web site at www.enstor.com.au.
Find out more about the EMC Legato NetWorker on the NetWorker product page.
Find out more about NetWorker on OpenVMS in the OpenVMS Journal V4 and OpenVMS Journal V1.

Page 118

Case Studies Using EMC Legato NetWorker for OpenVMS Backups - Siobhán Ellis

© Copyright 2005 Hewlett-Packard Development Company, L.P. 7

© 2005 Hewlett-Packard Development Company, L..P. The information
contained herein is subject to change without notice. The only warranties for
HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed
as constituting an additional warranty. HP shall not be liable for technical or
editorial errors or omissions contained herein.

© 2005 Hewlett-Packard Development Company, L..P. The information
contained herein is subject to change without notice. The only warranties for
HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed
as constituting an additional warranty. HP shall not be liable for technical or
editorial errors or omissions contained herein.

Page 119

Page 120

OpenVMS Technical Journal V6

Automatic Program Generation with MySQL and PHP

Automatic Program Generation with MySQL and PHP .. 2
Overview .. 2
The Computing Environment .. 2
Accepting Donations... 3
User Interface... 10
Syntactic Validation .. 12
Semantic Validation.. 13
The Complete Process ... 13
Conclusion .. 14
Acknowledgements... 14
For more information .. 14

© Copyright 2005 Hewlett-Packard Development Company, L.P. 1
Page 121

Automatic Program Generation with MySQL and PHP - Dick Munroe

© Copyright 2005 Hewlett-Packard Development Company, L.P. 2

Automatic Program Generation with MySQL and PHP
Dick Munroe

Overview
It's all about leverage. During the heat of the last presidential election, I found myself between
engagements and decided to go to Florida and work for the presidential campaign. After spending 3
days with another volunteer building PCs and installing networks for the Florida Democratic Party (FDP)
headquarters and the north Florida offices, I found myself behind the keyboard building web
applications with the rest of the IT department. I should qualify that. I was the IT department – at
least the technical staff part of it. My responsibilities including designing, implementing, and
deploying new web applications for everything from eCommerce (donations, and so forth) to
volunteer and candidate management to results reporting to statistical analysis, whatever was
needed; even better, it was all needed today (or tomorrow at the latest) and as inexpensively as
possible.

This article is one part praise for the free software community; another part discussion of one of the
techniques I used to get applications out the door fast enough to be useful in the time we had before
the election.

The Computing Environment
What I did for the Florida Democratic Party was grind out web applications. At the state and local level
of political parties, cost is everything and in the UNIX environment, the free software movement
provides most generously. When I arrived, the principal web development tools were MySQL and
PHP, which were used to deploy content from an Apache web server running on FreeBSD.

MySQL is an SQL compliant database that is capable of scaling smoothly from very small to very
large data stores, and that supports transactions, queries over the net, and so forth. It's free, very well
supported, and performs well. We used it in every web application deployed during my time with
the FDP.

PHP (Personal Home Page) is yet another "swiss army knife" language for developing web pages.
PHP version 4 is a 3rd generation programming language with object oriented extensions allowing
inheritance, polymorphism, and introspection. PHP also has an extension interface and extensions
(dynamically linked libraries) to the language have been written for everything from graphics to data
base interfaces. The FDP used PHP 4. Since the election, PHP 5 has been released with significantly
improved object-oriented capabilities. All the work discussed here is implemented in PHP 4 and
easily ported to PHP 5.

A full discussion of Apache and FreeBSD is beyond the scope of this article. However nothing done
by the FDP was specific to either Apache or FreeBSD. All that was needed was a server capable of
running PHP and a platform that allowed integration of PHP with a web server and communication
with a MySQL server. Technically speaking, the server running Apache didn't have to be capable of
running MySQL but it was convenient that it did.

Each application at the FDP required the design of one or more tables in the FDP primary database.
Database design wasn't all that difficult for the vast majority of applications that were on the table,
but any tool is better than no tool. MySQL is not difficult to deal with when doing rapid, interactive
database design, so initially that's what we did. Eventually we found and started using a terrific
MySQL specific database design and maintenance tool called phpMyAdmin. All the database table
examples and figures for this article were created using phpMyAdmin. If you're going to be
responsible for any aspect of MySQL database administration, phpMyAdmin is a must.

The development workstations were all Windows boxes running Windows 2000. It is not my favorite
platform but the FDP couldn't argue with the price of the hardware (all hardware was donated and

Page 122

Automatic Program Generation with MySQL and PHP - Dick Munroe

© Copyright 2005 Hewlett-Packard Development Company, L.P. 3

working workstations were constructed from whatever parts could be salvaged) and had a site license
for W2K. Fortunately there are free (or at least inexpensive) editors with language specific extensions
for the Windows environment. I downloaded Cygwin (a UNIX CLI layer for Windows) and started
using EMACS and other standard UNIX tools for development on the Windows PC I was using.

Application Development at the FDP

The first job I tackled was fixing up an application written by a couple of college student volunteers
that did volunteer management.

[Present data to the user]

Get data from the user

Validate user data

Store/Update using MySQL

Table 1 - Structure of Volunteer Management Application

The structure of the volunteer management application is shown in Table 1. Each "layer" of the
application was done in an ad hoc manner. Each page of the application basically duplicated
whatever code was needed to interact with the user and the database, perform data validation, and
so forth. An enormous amount of the code written for this application dealt with the interface to the
MySQL database. Starting sessions, validating data, storing or or updating data, and closing
sessions were all coded explicitly. No attempt had been made to factor out the database access
details into a separate function library or class and the quantity of the code dedicated to dealing with
the database obscured the details of the application under development, making it a lot harder to
extend. Eventually I finished this job and moved on to the next.

Accepting Donations
The next application was for accepting donations. The details of the application aren't important;
what is important is that it would be another web-enabled database application similar in kind, if not
in detail, with the volunteer management application.

Given what I had seen in the volunteer management application, I wanted to come up with a more
general view of the FDP's web-enabled applications and then use that view to drive the creation of
tools that would make it easy to implement those applications. After some thought I realized that most
of the applications used regularly by the FDP could be modeled as shown in Table 2.

[Query MySQL Database]

Display data to the user

Collect data from the user

Organize collected data

Validate collected data

Store/Update data in MySQL

Table 2 - FDP Application Architecture

Overall, an application should do the following:

• If data were being changed, one or more queries would be made to the appropriate database.
• Data (if any) would be displayed to the user.
• Data would be collected from the user.

Page 123

Automatic Program Generation with MySQL and PHP - Dick Munroe

© Copyright 2005 Hewlett-Packard Development Company, L.P. 4

• Data would be organized in structures, making it simple for validation and eventual storing into
the appropriate database tables.

• Data would be validated and any additional interactions with the user would be done to
correct any errors.

• Data would be stored or updated in the MySQL database.
Given that data was being stored in a MySQL database, I felt that the underlying data abstractions
should closely model the relational storage model (tables), making the usual sorts of queries done by
the applications easy, while not prohibiting the writing of substantially more complex queries. Ideally,
most of the "what data needs to be read/written" from the database would be "automagically"
figured out so that the applications could say things like "update the data" and the right things would
happen.

Clearly the place to start was was with a decent data base abstraction layer – one that hid most of
the tedious details of dealing with MySQL while not overly restricting access to MySQL’s lower level
features. This problem has been solved many times in the past and a quick session with Google
turned up www.phpclasses.org, an enormously useful site if you're into PHP programming.
www.phpclasses.org is dedicated solely to the collection and distribution of PHP class libraries. The
code distributed by www.phpclasses.org comes from all over the world and varies in purpose from the
sublime to the ridiculous and in quality from completely professional to totally amateur. I've saved
myself a lot of time and my clients a lot of money by using things I've found from www.phpclasses.org
either in whole or in part. If you're doing any serious PHP software development, you owe it to
yourself to join www.phpclasses.org. (Yes, it is free, but donations are accepted.)

On www.phpclasses.org, I found the DB class. DB provided an object-oriented interface to MySQL.
This solved my initial requirement for something a little higher level than the PHP interface to MySQL.
It did not matter that the only database supported was MySQL. The FDP had standardized on a
Linux, Apache, MySQL, PHP (aka "LAMP" – or LAMP-like, since the platform was actually FreeBSD)
environment, so portability was not of immediate concern. One of the reasons that I chose the DB
class was that, if necessary, the DB could easily be ported to support other or additional databases.

This solved the problem of the tedium of accessing the database but it didn't address the problem of a
general database table-oriented data collection that could easily interact with any database.

To solve this problem, I designed and wrote the SQLData class. This class evolved over time, but it
was designed to:

• Associate an instance of the class with a specific table in a database.
• Be organized so that data to be stored to or fetched from the database can be manipulated by the

name of the field.
• Keep track of the state of data in the instance so that minimal updates can be automatically

performed.
• Provide iterators so that loops processing entire tables can be easily written.
• Provide hooks for structuring data as arrays or objects, and potentially arrays or objects stored in

other tables
After we did the design of the table for the donations application, I dove into the coding process. The
table design for the donations application is shown in Figure 1. As you can see, it is straightforward,
with much of the complexity resulting from the eCommerce interface rather than anything fundamental
in the nature of the problem of donating money.

Obviously enough, for every field defined in the table, you need a way to access, modify, and store
the field’s data. Even using SQLData, I had a lot of work to do. Each field needed a read/modify
interface (plus additional ones that came in handy once I got into the details of actually doing the
work, like controlling the "dirty" state of fields). This was a lot of typing, and it was error-prone too.

Page 124

Automatic Program Generation with MySQL and PHP - Dick Munroe

© Copyright 2005 Hewlett-Packard Development Company, L.P. 5

Much of the work was largely "cut and paste," but if that's all a human is doing, then maybe it is
possible to get a computer to do it.

Figure 1 - Donations Table Design

One of the greatest things about the architecture of SQL databases is that the metadata (the data
describing the database and its content), is stored in an SQL database. Simple queries with results
like those shown in Figure 2 make it easy to introspect (literally “look at oneself”) the tables in the
database and the contents of those tables. Given that the metadata is available to programs in
general and to PHP in particular, it is relatively easy to write programs to process database table
structures in a very general fashion. Table names, fields within tables, data types of fields, use of
fields as keys, and so forth are all available for processing.

Page 125

Automatic Program Generation with MySQL and PHP - Dick Munroe

© Copyright 2005 Hewlett-Packard Development Company, L.P. 6

Figure 2 - Table Description Query

Once I realized that this data was available, I quickly designed and wrote a simple PHP program to
generate classes from the metadata of a MySQL table. A day later, I had a program, buildClass.php,
which reads the metadata of a MySQL table in a database and emits a class derived from SQLData
that provides the framework for manipulating data within a single table of a database. Example 1 is
a partial listing of the generated class included here for discussion of the generated classes.

<?php

//
// Class: Example
// Table: example
// Database: APG
//
// Generated by buildClass.php, written by Dick Munroe
(munroe@csworks.com)
//

include_once("SQLData/class.SQLData.php") ; // (1)
include_once("SDD/class.SDD.php") ;

class Example extends SQLData // (2)
{

 //
 // Private (or constant) varibles.
 //

 var $m__tableName = 'example' ; // (3)

 //
 // Constructor
 //

 function Example($_dataBase, //(4)

Page 126

Automatic Program Generation with MySQL and PHP - Dick Munroe

© Copyright 2005 Hewlett-Packard Development Company, L.P. 7

 $_host="localhost",
 $_login="",
 $_password="")
 {
 $this->SQLData($this->m__tableName, $_dataBase, $_host,
$_login, $_password) ;
 }

 //
 // Accessor Functions
 //

 function setId($theValue) // (5)
 {
 $this->set('id', $theValue) ;
 }

 function getId() // (6)
 {
 return $this->get('id') ;
 }

 function initId($theValue) // (7)
 {
 $this->init('id', $theValue) ;
 }

 function un_setId() // (8)
 {
 $this->un_set('id') ;
 }

 function is_setId() // (9)
 {
 return $this->is_set('id') ;
 }

 //
 // Default update selector
 //

 function needUpdateSelector() // (10)
 {
 if (($this->is_setId()))
 return "where `id` = '" . $this->escape_string($this-
>getId()) .
 "'" ;

 trigger_error("Internal Logic Error: No key data present",
 E_USER_ERROR) ;

 }

 //
 // Insert function
 //

 function insert() // (11)
 {
 $theReturnValue = parent::insert() ;
 if ($theReturnValue)
 {

Page 127

Automatic Program Generation with MySQL and PHP - Dick Munroe

© Copyright 2005 Hewlett-Packard Development Company, L.P. 8

 $this->initId($this->fetchLastInsertId()) ;
 }
 return $theReturnValue ;
 }

 //
 // Debugging Functions
 //

 function print_r() // (12)
 {
 $sdd = new SDD() ;
 print($sdd->dump($this)) ;
 }
}

?>

Example 1- Automatically Generated Example Class

1. The various underlying components of the application generation, in particular the SQLData
class from which all specific table classes are derived and the Structured Data Dumper class
which is used. To make the code generated by the programs referred to here, SQLData and
SDD must be installed in your PHP include path. See the PHP documentation for details.

2. Every table specific class is derived from SQLData, a class supporting generic table data
storage and updating. Essentially, the table specific classes are convenience classes to make
dealing with specific tables easier. Note that the first character of the table name is upper
cased to make the class name.

3. This provides the binding between this class and the underlying MySQL table.

4. The constructor for the table-specific class. Since the table name is wired into the class, the
remainder of the MySQL database access information must be provided when the class is
instantiated. No data oriented constructors are provided, as most of the table-specific class
data initialization occurs either as a side effect of accessing the table through the underlying
SQLData interfaces or from interactions with a user through web forms.

5. set* member functions set the named field to a value and note that the value is now "dirty" and
should be flushed to the database when the next update or insert operation is issued. A set*
member function will be created for each field in the table metadata.

6. get* member functions get the named field value and return it to the caller. A get* member
function will be created for each field in the table metadata.

7. init* member functions are the same as set* functions but the data is not set as "dirty" and will
not be flushed to the database when the next update or insert operation is issued. An init*
member function will be created for each field in the table metadata.

8. un_set* member functions delete data for a field from the underlying SQLData class. Once
deleted, the field data is no longer considered in insert or update operations. An un_set*
member function will be created for each field in the table metadata.

9. is_set* member functions are predicates returning true if the field has data in the underlying
SQLData class. Data is stored for a field using either the set* or init* member functions. An
is_set* member function will be created for each field in the table metadata.

10. The insert and update member functions (available using SQLData) both take an optional
selector to indicate which record in the table should be modified. For properly designed tables
with keys, it is generally possible to provide a set of default selectors, depending on which keys
in the table currently have data associated with them, to be used when a selector is not

Page 128

Automatic Program Generation with MySQL and PHP - Dick Munroe

© Copyright 2005 Hewlett-Packard Development Company, L.P. 9

provided. The needUpdateSelector member function is overridden when possible to provide
the default selectors.

11. For tables with indices that are auto_increment fields (see Figure 2), after an insert operation
has succeeded the auto_increment fields are updated automatically by MySQL. The insert
member function is overridden as necessary to make sure that the value of the auto_increment
index is maintained when a new row is inserted into the table.

12. Last, but not least, debugging. The print_r member function dumps the content of the object
(and its base objects) in a structured format that makes it easy (or at least possible) to see
what's happening within the table specific object. If the execution environment is a web server,
then the data is dumped in HTML format.

This simplified the job of developing the donations application enormously, and I began putting
together the user interface that would use the mechanically generated table class.

Data Collection and Validation

Very shortly, it became clear that the user interface had a problem similar to that of the table classes;
that is, there were one (or more) tables for which forms had to be generated. Furthermore, the data
had to be syntactically and semantically verified, any errors correct by further interactions with the
user, and the data stored in the appropriate tables in the MySQL database. Since I had a pattern for
generating executable "stuff" from MySQL metadata, I decided to see what, if anything could be
done to generate rough drafts of the forms necessary to collect data to be stored in the necessary
table.

To keep the collected data from corrupting the tables (“garbage-in, garbage-out” applies here) the
collected data would have to be verified. I partitioned the data verification into two distinct types:

• Syntactic
• Semantic
Verification could be done in two places, the client or the server. To improve responsiveness,
syntactic validation using JavaScript (now ECMAScript) is done at the client (the web browser) and
semantic validation at the server.

Examples of syntactic validation are:

• Zip codes must contain only digits and "-"s and can be either of Zip (01234) or Zip+4 (01234-
5678) format.

• Telephone numbers have to be digits and must be 10 digits long.
• Required files must be non-blank.
Occasionally there would be one field that implied that others would no longer be optional and this
sort of thing I defined to belong to syntactic verification.

I defined semantic validation to be “checking that data is meaningful in a given context.” Examples
are:

• Is the county or state name real?
• Does the city exist?
• Is the credit card number valid?
Basically, semantic verification answers the question "does the data represent reality" in the context of
the application. In many cases, semantic validation can be built in by restricting the input values to a
particular range, such as forcing the user to select from a list of values like country or state names.

There were three additional pieces to be examined for automation opportunities:

• User Interface

Page 129

Automatic Program Generation with MySQL and PHP - Dick Munroe

© Copyright 2005 Hewlett-Packard Development Company, L.P. 10

• Syntactic Validation
• Semantic Validation
User Interface
As shown in Figure 2, the table metadata has the basics, field name, data type, size of data and
whether data is required (not null). Given this information, it was easy to write another program
much like the buildClass.php program to construct a simple user interface using HTML forms to display
and capture data and to link that interface to the client-side syntactic validation framework and to the
server-side semantic validation.

Figure 3 - Generated User Interface

Figure 3 has been edited for space reasons and shows part of the user interface generated for the
Example table.

It is important to remember that my goal for the FDP was not to produce a completely polished and
fully functional web application solely from MySQL metadata. It was only to produce something that,
with not much effort, could be turned into a "completely polished" and fully functional web
application.

<link rel="stylesheet" type="text/css"
href="syntacticValidationFramework.css" /> (1)
<script type="text/javascript"
src="syntacticValidationFramework.js"></script> (1)
<script type="text/javascript"
 src="form.Example.js"></script> (1)

<form name=data method=post action="process.Example.php"
 onSubmit="return validate(this) ;"> (2)
<table name=dataTable id=dataTable border=1 cols=2>
 <tr>
 <td colspan=2>
 * Required Field
 </td>
 </tr>

 <tr id=errorRow> (3)
 </tr>
 <tr>
 <td>*
 first_name</td>
 <td>
<input name="first_name" id="first_name" type=text size=40
maxlength=50 required="first_name is required" validate="return

Page 130

Automatic Program Generation with MySQL and PHP - Dick Munroe

© Copyright 2005 Hewlett-Packard Development Company, L.P. 11

validateFirst_name(what)" value=""> </td>
 (4)
 </tr>
<tr>
 <td><span id="spanTrans_time"
 class="inline">trans_time</td>
 <td>
<input name="trans_time" id="trans_time" type=text size=10
maxlength=10 required="" validate="return validateTrans_time(what)"
value=""> </td>
 (5)

 </tr>
<tr>
 <td align=center colspan=2> (6)
 <button name=save id=save type=submit>Save</button>
 <button name=new id=new type=button
onClick="window.location.search='?action=new'">New</button>
 <button name=reload id=reload type=button
onClick="window.location.search='?action=reload'">Reload</button>

 </td>
 </tr
 </table>
</form>

Example 2 - Generated HTML

A quick look at the HTML generated by buildForm.php (Example 2) is instructive.

1. These are the hooks to the "syntactic validation framework" discussed more fully in the next
section. Unless buildSyntacticValidation.php has been run before buildForm.php the
JavaScript components of the syntactic validation will not be included.

2. This is where the syntactic validation framework is actually invoked. When a Submit button is
clicked, the onSubmit code is called. The form is not actually submitted unless or until all
syntactic errors have been corrected. If buildSyntacticValidation.php has not been run, the
onSubmit code is omitted and no syntactic validation will be done.

3. Another hook for the syntactic validation framework. This row is where the error information
(if any) will be displayed by the framework.

4. This is a typical required form field. Validation for the field is provided by the validation
attribute. Note the required attribute for required fields is non-null.

5. This is a typical optional form field. Validation is still required (the validation may always
succeed, of course) and is done for consistency. Note that the required attribute is the null
string for optional fields.

6. The action portion of the user interface. Save causes the captured data to be (optionally)
syntactically validated and sent to the server for further processing. New clears the form and
starts the data capture process over. Reload discards any data changes and starts the data
capture process over.

Page 131

Automatic Program Generation with MySQL and PHP - Dick Munroe

© Copyright 2005 Hewlett-Packard Development Company, L.P. 12

Syntactic Validation
The syntactic validation requires JavaScript (now known as ECMAScript). Most modern browsers
support JavaScript so this requirement isn't all that restrictive, only leaving out text-only browsers such
as lynx or links. It relies on the Document Object Model (DOM), defined by the World Wide Web
Consortium. Unfortunately, Microsoft's Internet Explorer is not particularly compliant with the DOM.
It was possible to design an adequate web-browser independent framework providing primitives to
handle collection and displaying of error data, validation of required fields, and a driver to validate a
form upon submission.

Since my goal was to generate most, but not all, of a web-enabled application automatically, the
validation hooks had to be associated with the individual fields rather than generated monolithically.
Further, not every form would necessarily need syntactic validation.

This is handled by running (or not running) buildSyntacticValidation.php. This program generates the
JavaScript routines to do the syntactic validation for each field in the form. If
buildSyntacticValidation.php is not run, when the form is generated by buildForm.php no syntactic
validation will occur at the time the form is submitted.

The syntactic validation framework is provided in a separate JavaScript file,
syntacticValidationFramework.js. Understanding the details of the DOM that allow the framework to
work is left as an exercise to the reader.

<form name=data method=post action="process.Example.php"
 onSubmit="return validate(this) ;">

Example 3 - Syntactic Validation Hook

Example 3 shows the hook between the user interface (form) and the syntactic validation framework.
The onSubmit action is taken when a submit button is clicked. A pointer to the form object requiring
validation is passed to the framework, along with the contents of the form used to actually determine
what validation needs to be done. If the validation framework returns false, the form's data is not sent
to the server.

<input
 name="first_name" (1)
 id="first_name" (2)
 type=text
 size=40
 maxlength=50
 required="first_name is required" (3)
 validate="return validateFirst_name(what)" (4)
 value="">

Example 4 - Field Validation Details

The Document Object Model requires all attributes of a tag to be represented. This means that the
page designer can put anything into an arbitrarily named attribute. Each field to be validated must
have an unique id, an indication if the field is required, and a pointer to the routine to be used to
validate the field's contents.

Example 4 shows a typical input tag with the hooks for the syntactic validation framework.

1. The name of the field received by the server during semantic validation and processing.
2. The unique id of the field. By convention it is always the same as the name field. The DOM

interface is most easily used if each tag has an id by which the field can be found.
3. If the field in the database must have a value, the required field must be non-null and must

contain the message to be presented to the user should the contents of the field be omitted.
4. Invocation of the validation framework routine for the field.

Page 132

Automatic Program Generation with MySQL and PHP - Dick Munroe

© Copyright 2005 Hewlett-Packard Development Company, L.P. 13

function validateFirst_name(what)
{
 //
 // Validate first_name field value
 //

 if (!isRequired(what))
 {
 return false ;
 }

 return true ;
}

Example 5 - Template Validation Routine

BuildSyntacticValidation.php generates a JavaScript routine identical in all but name for each field in
the user interface. The validation framework calls the validation routines with a pointer to the field to
be validated. Each validation routine must return either false (validation failed) or true (validation
succeeded) and prepare any error text to be displayed at the end of validation.

The current syntactic validation framework can easily be modified to fit a variety of error reporting
and interaction styles without modification to any of the generation code. Or something completely
different can be written to meet site-specific requirements. After all, the generating code is in the
public domain.

Semantic Validation
The data hits the database in semantic validation. Assuming that the form passes syntactic validation
when the user presses the Save (Submit) button, the contents of the form are sent in HTTP format to the
server. For the purposes of the FDP, semantic validation basically took the data from the form and put
it in the databases.

The semantic validation code is generated by buildProcessForm.php. The semantic validation does
not happen by default. As generated by buildProcessForm.php data was either inserted into or
updated in the database and then control returned to the user for further work. Any semantic
validation was considered to be custom code and to be written by hand. This is consistent with my
goal of generating most but not all of the application.

The Complete Process
At this point, we had a set of tools that allowed the FDP applications to follow a very well defined
data driven software development process. All of these tools were either free software, shareware, or
easily developed in-house. The tools and process were:

1. phpMyAdmin Design the database schema for the application.
Database design was frequently a group interactive event,
starting on a blackboard and quickly moving to a web
browser or terminal. Only one database design only took
more than an hour from discussion to completed design.

2. buildDatabaseConf.php Generate the configuration file containing the information
necessary to access the MySQL database.

3. buildClass.php Create the PHP class to make it easier to manipulate the
data. All the PHP code generated by the build* programs
use the generated class.

4. buildSyntacticValidation Create the individual field validation routines for the
syntactic validation framework.

5. buildForm Create the user interface.
6. buildProcessForm Create the PHP code to store/update data in the

Page 133

Automatic Program Generation with MySQL and PHP - Dick Munroe

© Copyright 2005 Hewlett-Packard Development Company, L.P. 14

database.
7. Apache, FreeBSD Install the generated application on the development

webserver.
8. Netscape, Internet Explorer, MySQL Test the user interface/database interaction.
9. emacs, UltraEdit, Putty, WinSCP Modify the generated application to full function and

integrate with the production FDP web site.

Using this process, you can go from the completion of a database design to a prototype application
in a matter of minutes.

Conclusion
The techniques associated with automatic program generation are well understood and widely used
in many application generators on any number of platforms. By spending a few days writing tools, I
made it much faster and easier to turn out finished applications. Experience showed that about 80%
of the finished application can be automatically generated. Finished applications, fully integrated
with the production FDP web site, are frequently produced in a day, with the vast majority completed
in less than two days.

In all likelihood, similar productivity levels can be achieved elsewhere with site-specific versions of the
tools described here.

All code developed for the FDP discussed in this paper is available from www.phpclasses.org. You will
have to join www.phpclasses.org in order to download the code, but the membership is free. PHP is
available from www.php.net and MySQL from www.mysql.com. These can be built and run on UNIX,
Linux, and Windows platforms. Cygwin is available from www.cygwin.com if you want a UNIX-like
environment for your Windows PC. If you're going to do any serious MySQL database development
phpMyAdmin is a must and can be downloaded from www.phpMyAdmin.net. All are free software.

Acknowledgements
I'd like to thank Chris Sands, the director of IT for the Florida Democratic Party, for permission to
publish this work. Many thanks to all the folks who supported the FDP during the 2004 campaign,
lots of nights wouldn't have been possible without the free Diet Coke and junk food. I'd also like to
thank Manuel Lemos, the creator of www.phpclasses.org. My job at the FDP would have been
substantially more difficult if his site didn't exist. Last, but definitely not least, thanks to the many
unnamed developers who have put together so much fine software and put it into the public domain
and in particular to those folks who have contributed to PHP, MySQL, Apache, Cygwin, and FreeBSD.
Without it the work we did in Florida during the last presidential campaign would have been
impossible.

For more information
If you need more information about the work described here, contact Dick Munroe at
munroe@csworks.com

© 2005 Hewlett-Packard Development Company, L..P. The information
contained herein is subject to change without notice. The only warranties for
HP products and services are set forth in the express warranty statements
accompanying such products and services. Nothing herein should be construed
as constituting an additional warranty. HP shall not be liable for technical or
editorial errors or omissions contained herein.

Page 133

	OpenVMS Technical Journal V6 - June 2005
	Table of Contents
	Porting OpenVMS to HP Integrity Servers
	Overview
	The Early Days
	Decision
	Announcement

	Research
	Read the Manuals
	Talk with Engineers

	Big Decisions
	Implement the Intel Calling Standard (and More)
	ELF/DWARF File Format
	No Compiler for Alpha Assembler Code
	Binary Translator for Alpha Images
	Ada – Yes; PL/I —No
	Default Floating Point Format is IEEE
	Math Library
	Expanding the Kernel Process Model
	Licensing

	Technology Overview
	No Alpha Console
	No Alpha Privileged Architecture Library (PAL)
	Different Processor Primitives
	Calling Standard Impact
	ELF/DWARF Impact
	The decision to use the ELF/DWARF internal format resulted i

	The Plan
	Common Code Base for Alpha and Integrity
	External Help
	Project Dependencies and Schedule
	VAX-to-Alpha as Reference
	Evaluation Releases

	Development Begins
	Compilers
	Learning Itanium Assembly Language
	Replacing the Alpha PALcode
	Porting Guidelines
	Boot Sequence Takes Shape
	Primitive Debugging
	Early “Builds”

	Boot Contest
	Not All Fantasy
	Internal Baselevel – March 28, 2003

	OpenVMS V8.0 – June 30, 2003
	OpenVMS V8.1 – December 18, 2003
	Whole Program Floating Point Mode
	Converting from VAX F/D/G to IEEE
	Locking the Working Set in Memory

	OpenVMS V8.2
	Superdome Demo
	50-bit Physical Addressing
	Rewriting the VAX Queue Instruction Emulation
	The Final V8.2 Changes
	Floating Point...Floating Point...Floating Point!
	Performance Evaluation

	Summary
	Acknowledgements
	For more information

	Fatal Bugchecks on OpenVMS Alpha and OpenVMS I64 Systems
	Overview
	Initial Bugcheck Handling
	Bugchecks from User and Supervisor Modes
	Bugchecks from Executive and Kernel Modes
	Fatal Bugcheck Processing on a Uniprocessor System
	Fatal Bugcheck Processing on a Symmetric Multiprocessing (SM
	The System Dump File
	Physical Dumps
	Selective Dumps
	Key Processes
	Dump Compression
	File and Unwind Data
	Dump Off System Disk (DOSD)

	For more information

	Disk Partitioning on OpenVMS: LDdriver's Secrets
	Overview
	History
	What is LDdriver?
	FILE Mode
	Connect, Create and Other Options
	LBN Mode
	REPLACE Mode
	The same restrictions apply for sharing as with FILE and LBN
	I/O Tracing

	Watchpoints
	Callable Interface
	Internals
	Conclusion
	For more information

	Threaded Tests in the OpenVMS Cluster Test Manager (CTM)
	Overview
	Introduction
	General Methodology
	Existing Threaded Tests in CTM
	CTM_BYTEM (Byte Mode Memory Coherency Exerciser)
	CTM_BOZO
	CTM_YOYO
	CTM_LKNLD
	CTM_FAST_IO
	Conclusion

	Porting TDMS - The Gory Details
	Overview
	Context Passing: Application Function Key (AFK) Asynchronous
	Object File Generation: Form Development Utility (FDU) Form
	THD Component
	64-Bit Integer Math

	Summary
	For more information

	Protecting and Monitoring OpenVMS Systems
	Overview
	User Access Security Issues in OpenVMS Environments
	Using Auditing to Monitor Access to Critical Files
	Sample Auditing Outputs of Logins and Logfailures
	Using Access Control Entries to Limit Access to Files
	Using Auditing to Monitor Queues and Logical Name Tables
	Using an Alarm ACE on Files
	Enabling OPCOM Terminals to Monitor Security Alarms
	Removing ACEs, Audits, and Alarms from Objects
	Summary
	For more information

	Porting RPG: Moving a Compiler to the HP Integrity Server
	Overview
	Introduction
	Software Development Methodology
	Porting Plan
	The Porting Process
	CVTFILE Test Case
	Migration RPG Port
	Q/A Testing
	Summary
	Recommendations
	For more Information

	Using Python for OpenVMS Web Development
	The Python Language
	Porting Python
	The Challenge

	The Choices We Made
	Some Examples of Integration with OpenVMS
	Example 1
	Example 2
	Example 3

	Applications, Libraries, and Tools
	For More Information

	Case Studies Using EMC Legato NetWorker for OpenVMS Backups
	Overview
	Introduction
	Case Study 1: Backup of Data at Two Sites
	The Scenario
	All OpenVMS systems have two fibre channel host bus adapters
	The Requirements
	The Solution
	A Modern Backup Solution
	Reduced Backup Times and Storage Capacity
	High Availability
	No Operational Impact on the Clusters Being Backed Up
	Multiple Copies of the Data Without Moving Data Over the Cor

	The Result

	Case Study 2: Backup of a Cache Database as Part of a Hetero
	The Scenario
	The Requirements
	The Solution
	The Result

	Summary
	For more information

	Automatic Program Generation with MySQL and PHP
	Overview
	The Computing Environment
	Application Development at the FDP

	Accepting Donations
	After we did the design of the table for the donations appli
	Once I realized that this data was available, I quickly desi
	Data Collection and Validation

	User Interface
	Syntactic Validation
	The syntactic validation requires JavaScript (now known as E

	Semantic Validation
	The Complete Process
	Conclusion
	Acknowledgements
	For more information

