
1

2

Table of Contents

THE ORACLE RDB RUN-TIME CODE GENERATOR FOR THE OPENVMS ITANIUM
PLATFORM ... 3

OPENVMS POWER MANAGEMENT ... 18

OPENVMS – PAGED DYNAMIC MEMORY FRAGMENTATION CAUSING PERFORMANCE
PROBLEMS.. 28

SYSMON FOR OPENVMS SYSTEMS ... 37

CONFIGURING TCP/IP SERVICES.. 42

HP OPENVMS CIFS FILE SECURITY AND MANAGEMENT ... 50

MAKING THE BUSINESS CASE FOR MIGRATING VMS ORACLE APPLICATIONS TO THE
WEB... 90

SIMH SUPPORTS AVAILABILITY MANAGER DEVELOPMENT ENVIRONMENT AT HP 97

VIRTUAL ALPHA SYSTEMS: QUALITY CONTROL & TESTING .. 106

3

OpenVMS Technical Journal V14

The Oracle Rdb Run-Time Code Generator for the
OpenVMS Itanium Platform

Norman Lastovica, Senior Managing Engineer, Oracle Corporation

© Copyright 2010 Hewlett-Packard Development Company, L.P 4

Introduction

The Oracle Rdb database engine generates platform-specific executable code subroutines
at run time. On VAX systems, VAX executable instructions are generated. On Alpha
systems, Alpha executable instructions are generated. When Oracle Rdb was ported to
the HP Integrity platform, the ability to execute run-time created subroutines was
required as well. This paper discusses background of the original interpretation
implementation with a later transaction to native Itanium instruction generation.

Code Generation

When a user’s request (such as the SQL statement “SELECT * FROM CUSTOMERS
WHERE CITY = ‘ESPOO’ OR CITY = ‘SALIDA’ ORDER BY LAST_NAME”) is
passed to the database engine, a number of executable subroutines are created, at run-
time, to perform various request-specific functions. These functions may include
copying data fields, performing null-field handling, doing data field comparisons, and so
on. This run-time request-specific code is an integral part of Oracle Rdb’s database
engine and helps to provide high levels of performance.

On VAX systems, such subroutines would contain VAX instructions (such as MOVC3,
RET, MOVL and so on). When Oracle Rdb was ported to the OpenVMS and Tru64
environments for the Alpha platform, the code generation capabilities were extended to
create Alpha instructions (such as CMOV, LDA, STQ, and so on). The logic of the
subroutines, for the most part, is the same between the platforms; just the executable
instructions, the register usage, and the system calling standard are different.

The following example contains a sequence of run-time generated instructions on a VAX
system. Note the CISC architecture of the VAX computer with use of complex
instructions that contain multiple operands along several addressing modes along with
relatively high code density.

00FB1B18: .WORD ^M<R2,R3,R4,R5,R6,R7>
00FB1B1A: MOVL B^04(AP), R6
00FB1B1E: MOVAB @#00FB1B68, R7
00FB1B25: MOVC5 S^#00, (SP), (SP), S^#05, B^01(R7)
00FB1B2C: MOVL B^69(R6), R0
00FB1B30: ROTL S^#08, R0, R0
00FB1B34: BICL3 #FF00FF00, R0, R1
00FB1B3C: XORL2 R1, R0
00FB1B3F: ROTL S^#10, R0, R0
00FB1B43: XORB2 #80, R0
00FB1B47: XORL3 R1, R0, B^02(R7)
00FB1B4C: CLRB B^01(R7)
00FB1B4F: BBC S^#02, W^00EF(R6), 00FB1B5C
00FB1B55: XORB2 S^#01, B^01(R7)
00FB1B59: CLRL B^02(R7)
00FB1B5C: RET

The next example contains a sample of run-time generated code on an Alpha system.
Note that the Alpha is a more traditional “RISC”-style architecture where instructions are
simpler, fixed size, and that the memory reference instructions either read or write
memory, but do not atomically read and update memory in a single instruction.

© Copyright 2010 Hewlett-Packard Development Company, L.P 5

01A060AC A00C8138 LDL R0,#XF8138(R12)
01A060B0 A02C808C LDL R1,#XF808C(R12)
01A060B4 44010400 BIS R0,R1,R0
01A060B8 F4000004 BNE R0,#X0000004 -> 1A060CC
01A060BC A00C8064 LDL R0,#XF8064(R12)
01A060C0 A02C813C LDL R1,#XF813C(R12)
01A060C4 400105A0 CMPEQ R0,R1,R0
01A060C8 F400000D BNE R0,#X000000D -> 1A06100
01A060CC A00C8110 LDL R0,#XF8110(R12)
01A060D0 A02C8090 LDL R1,#XF8090(R12)
01A060D4 44010400 BIS R0,R1,R0
01A060D8 F400000F BNE R0,#X000000F -> 1A06118
01A060DC A36B0144 LDL R27,#X00144(R11)
01A060E0 220C8118 LDA R16,#XF8118(R12)
01A060E4 223F001F LDA R17,#X0001F(R31)
01A060E8 224C8068 LDA R18,#XF8068(R12)
01A060EC 233F0003 LDA R25,#X00003(R31)
01A060F0 A75B0050 LDQ R26,#X00050(R27)
01A060F4 A77B0058 LDQ R27,#X00058(R27)
01A060F8 6B5A4000 JSR R26,(R26) "ots$strcmp_eqls"
01A060FC E4000006 BEQ R0,#X0000006 -> 1A06118
01A06100 201F0001 LDA R0,#X00001(R31)
01A06104 A75E0008 LDQ R26,#X00008(SP)
01A06108 A7BE0010 LDQ FP,#X00010(SP)
01A0610C 23DE0020 LDA SP,#X00020(SP)
01A06110 6BFA8001 RET R31,(R26),1
01A06114 00000000 CALL_PAL HALT
01A06118 47FF0400 CLR R0
01A0611C C3FFFFF9 BR #XFFFFFF9 -> 1A06104

Interpretation engine

Oracle Rdb was ported to run on the Microsoft Windows NT environment running on
Intel x86 and Alpha processors (this product was, however, never released for production
use). At that point in time, in order to rapidly complete the porting effort for the Intel x86
platform, an interpretation engine was created that could interpret those portions of the
Alpha instruction set generated at run-time by Oracle Rdb. This approach allowed a
single piece of code (the interpretation engine) to be written and, more importantly,
debugged without having to change the instruction generation machinery within the
Oracle Rdb database engine (which continued to generate subroutines using the Alpha
instruction set).

Over time, an expanded set of “rich” instructions were added to the code generation
capabilities on the Intel x86 platform. These instructions were intended to perform more
complex actions as one “pseudo” instruction, replacing, in some cases, a large number of
Alpha instructions in the code stream. Execution of these “rich” instructions could be
more optimized as compared to individually executing long sequences of individual
instructions. Approximately 150 of these “rich” instructions were eventually
implemented.

Though not used on Alpha and VAX systems (the supported platforms for Oracle Rdb),
this interpretation engine remained part of the Oracle Rdb source code and lay “dormant”
for many years.

© Copyright 2010 Hewlett-Packard Development Company, L.P 6

Itanium Emerges

With the advent of OpenVMS for the Integrity Server platform, Oracle chose to port the
Rdb database engine to the Integrity Server for the OpenVMS operating system. Though
native language compilers were available (primarily, in the case of Oracle Rdb, BLISS,
C++, C and MACRO32), there was no immediate capability for the Oracle Rdb engine to
create executable instructions for the Itanium architecture.
At this point, the interpretation engine was pressed in to service again. Most of the code
had not even been compiled in over 10 years. But with a bit of effort (mostly correcting
issues related to improved C compilers with enhanced detection for latent bugs), it was
able to successfully execute once again. Debugging effort was required to get it working
completely properly but it did prove to be a valuable tool that allowed a significantly
more rapid production delivery and deployment of Oracle Rdb Release 7.2 on the Itanium
platform.

Performance

Overall, we anticipated that, while the performance of the interpreted code would never
be as good as a native executable code subroutine, the Integrity system, as a whole,
would perform at least comparable to “equal” Alpha systems. This was the case for the
vast majority of applications and systems that we analyzed. CPU, memory and IO
performance tended to provide a balanced system that performs very well when running
customer applications. A few applications, however, spent a significant amount of time
executing the run-time generated code and these applications were, in some cases,
significantly slower than we, and our customers, would have preferred.
In particular, one major customer application was generally as good or better performing
on Itanium systems than on Alpha systems. But several significant queries of the
application were both frequently executed and much slower once migrated from Alpha to
Itanium. Analysis revealed that most of the additional CPU time was spent in the
interpretation engine while running particular parts of the application.

A major effort was spent in analysis and tuning of the interpretation engine itself. This
tuning yielded performance improvements of over 20% in some cases. This was,
however, not nearly enough (and, regrettably, not even in the same order of magnitude
required). Further analysis indicated that there was likely no way to make the
interpretation model execute fast enough to meet our customers’ needs in all cases.

A New Direction

It was felt that the investment required to enhance the Oracle Rdb database engine to add
another set of code generation capabilities (in addition to VAX, Alpha and “rich”
instructions) for native Itanium would consume significant resources for development
and testing and likely could not be completed in time for this particular customer’s
production deployment schedule. There were too many locations in the code that would
be required to be changed to produce instructions for yet another architecture. Our
experience with the port to Alpha indicated that there would be substantial human
resources required to produce and debug the resultant code.

© Copyright 2010 Hewlett-Packard Development Company, L.P 7

Based on this analysis, the concept of “compiling”, at run time, a complete subroutine
from a mixture of Alpha and “rich” instructions in to native Itanium executable code was
born. The design that we arrived at is not dissimilar to the JAVA machinery’s “Just In
Time” (aka JIT) compiler available on many platforms: Input a stream of generic and
platform-independent instructions and create platform-specific executable code which is
expected to perform much better than interpreting the “pseudo” instructions.

Initial prototypes were developed to create and call an executable stream of Itanium
instructions. The success of these tests supported the idea that it was viable for Oracle
Rdb to be able to create native subroutines and to call such code at run time while on the
Itanium platform.

High Level Design

The basic operation for what we originally called the “interp compiler” (based on the idea
that this was a compiler to replace the interpretation engine) was to pass a pointer to a
complete subroutine of compiled Alpha and “rich” code and then attempt to compile it
completely in to a native Itanium instruction subroutine. If the compilation was
successful (all instructions were able to be compiled) then a pointer to a procedure
descriptor for the generated routine was returned with the low bit set (i.e., an odd value).
If, however, the compilation could not be complete (if instructions were found that were
not able to be compiled), the original routine address was returned (with the low bit clear
as the routine had been originally allocated on a longword boundary).
Later, when the subroutine was to be called, the low bit of the routine’s address was first
evaluated. If clear, the existing interpretation engine was called to execute the
subroutine. If the routine address was odd (indicating that the low bit was set), the
routine was called directly (after clearing the low bit) to be executed “native”.
In this way, the “interp compiler” could start small (only able to compile a few
instruction types) and then grow (by adding the ability to compile more and more
instructions and addressing modes and so on) all while the database engine continued to
operate correctly (presumably as more and more subroutines could be compiled,
execution performance would continue to improve). This made it possible to continue to
execute and test Oracle Rdb while the “interp compiler” was being actively developed.
Without this model it was have been a much slower process in that the “interp compiler”
would have had to be entirely complete before we could even begin to test it.

Itanium Architecture

Significant attributes of the Itanium architecture that pertain to the “interp compiler”
include:

 128 bit “bundle” containing 3 instructions that will all be executed
 Multiple execution unit type combination selected via a “template” within a

bundle
 Predicate registers that control if an instruction will have an effect or not

© Copyright 2010 Hewlett-Packard Development Company, L.P 8

Producing code for the Itanium architecture is a fair measure more complex than, for
example, code generation on the Alpha architecture. A significant set of rules and
requirements are imposed in terms of which instruction type may be used in which
bundle slot depending on the specified template, the use of “stops” to indicate that the
results of prior instructions are required by following instructions, and so on. A larger
number of registers provides major benefits in regards to having more scratch registers
available for intermediate results. And the use of predicates can, in some cases,
drastically reduce the number of branches taken which can, in turn, improve performance
by reducing “wasted” processor cycles due to “bubbles”.

Additional steps were required after creating code. Because the Itanium instruction cache
(I cache) and data cache (D cache) are not synchronized, after new executable code is
created, the hardware must be notified by flushing the instruction cache for the memory
addresses of the newly created code. This was accomplished most easily by calling the
SYS$PAL_IMB system service specifying the starting address and the length of the
generated code. The system service invalidates each I cache line as needed and ensures
that the data and instruction caches are correctly synchronized prior to attempting to
execute the new instructions.

Starting Simple

The Oracle Rdb “interp compiler” is implemented as a routine written in BLISS (the
primary implementation language utilized by Oracle Rdb for both ease of development
and resultant product performance). Generation of instructions is accomplished though a
set of macros that implement primitive operations that are generally produced as one or
more instructions within one or more bundles. The original project goal was to have
macros that would create one instruction per bundle. Over time, more and complex
macros were created to perform different functions and to create bundles with more
instruction sequences to help produce faster and denser code streams.

A simple macro might, for example, produce a single ld4 instruction (to fetch 4 bytes
from memory) alone in a single bundle (nop instructions would occupy the remaining
two slots). Another level of complexity might be a single macro to create a pair of
memory load and store instructions in a bundle. A more complex macro may implement
a call sequence where output parameters are created, registers are saved, a procedure
descriptor read, the routine called, and then after the call registers are restored. This
sequence would require a modest number of bundles to implement.

Branches

One area of complexity is forward and backward branches within the code. The input
subroutine may contain both “rich” and Alpha instructions that change the flow of control
via conditional and unconditional branches. Branches are self-relative within the context
of the input routine. To preserve the correct branch destination, a table is constructed that
contains the address of the bundle containing the branch along with the original branch
offset. Another table is maintained to associate the original instruction location along

© Copyright 2010 Hewlett-Packard Development Company, L.P 9

with the location of the generated code. After code generation is complete, branches are
“fixed up” to adjust the destination offset to the correct destination bundle.

For performance, the Itanium architecture includes “hints” for most types of branch
instructions. These hints allow a compiler to indicate additional information to the
hardware in regards to how branches are expected to execute. The hardware, in turn, may
use this information to predict how the flow of control is expected to operate and can
allocate resources more efficiently and, ultimately, execute the whole of the code stream
faster. For example, one such branch “hint” type would be “dynamic, predicted not
taken”. This hint implies that the compiler expects that the conditional branch will
generally not be taken but the hardware should allocate prediction resources (such a
history of branches taken or not taken at this location).

Based on both performance testing and research papers evaluated, the “interp compiler”
utilizes these branch hints in the generated instruction stream. Unconditional branches
are specified as “static, taken”, most conditional branches are specified as “dynamic,
predicted not taken”. Exceptions to these rules are backward (typically involved in a
loop) branches which likely are specified as “dynamic predicted taken”.

Exception Handling

In order to allow OpenVMS exception handling mechanisms to function properly, the
“interp compiler” must “register” each generated routine with the operating system. This
registration includes identifying any “unwind” information specifically regarding the
routine’s first and last instruction, the length of the routine’s prologue and registers and
stack usage. Because the created code will be both created and executed in the
processor’s executive mode, a kernel mode image exit handler is utilized to un-register
the generated code during image run down. Without having such unwind information
registered with the operating system, exception handling is not possible; otherwise an
exception from the generated code, or code that is called by the generated code, cannot be
handled and results in, depending on the mode and context, either process or image
termination.

The OpenVMS calling standard uses a variant of the common Itanium standard which
includes a moderately complex set of rules for representing unwind information. This
scheme includes a compressed variable-length fields and a dense structure. Within the
interp compiler, this “signature” information is produced at the end of executable code
creation for each routine.

Simple Code Sequence Examples

The following code sequence shows the original “rich” instruction (indicated by
longword address and content fields at the left part of the line) CLR_Q (clear quadword)
along with its single operand followed by the generated Itanium instructions (indicated by
quadword content and instruction addresses) created for the “rich” instruction.
The operation’s addressing mode is evaluated as an offset from the global register r2 (this
register maps to Alpha register R12 within Oracle Rdb). The offset is created by adding

© Copyright 2010 Hewlett-Packard Development Company, L.P 10

8000 to the value 0040 and then sign extending from 16 to 64 bits. Next, r0 (which is
always read as the value zero) is written to the destination address, thus clearing it.
It would obviously be possible to combine these two instructions in to a single bundle.
However, the construction of the interp compiler is such that the addressing steps are
evaluated first and then the operation steps are produced. While it would be viable to
perform a second pass to combine the instructions in to a single bundle, it has not yet
been a high priority for execution optimization.
An additional concern for such optimization is that significant amounts of time could be
spent in the interp compiler that could exceed the potential benefits for performance
improvements of the generated code. In this case, for example, the stall caused by the
memory reference will dramatically overshadow any other optimizations possible for the
two instructions which still require a stop between them (as the first updates r14 which is
used as input to the second).

s037E54B4 04000157 CLR_Q
037E54B8 D0000040 dst quad*

{ .mfi
013807E80380 0000000080366190 add r14 = 3F8040, r2
000008000000 0000000080366191 nop.f 000000
000008000000 0000000080366192 nop.i 000000 ;; }

{ .mfi
008CC0E00000 00000000803661A0 st8 [r14] = r0
000008000000 00000000803661A1 nop.f 000000
000008000000 00000000803661A2 nop.i 000000 ;; }

In the next example, the MOV_Q (move quadword) “rich” instruction has two operands
(source and destination address information). The source location is indicated as an
offset (00000050) from a register (Alpha register R16 which is translated as Itanium
register r32; the first input parameter to the routine as specified in the OpenVMS calling
standard). The destination is an offset (0040) from register r2 (strictly, the offset is
FFFF8040 from register R30). The interp compiler detects that both source and
destination addresses are likely to be at least quadword aligned and produces a single ld8
instruction to read the source quadword and a single st8 instruction to write to the
destination.

037E54C4 04000145 MOV_Q
037E54C8 00000010 src char* (R16)
037E54CC 00000050 offset long
037E54D0 D0000040 dst quad*

{ .mfi
0108020A0380 00000000803661C0 add r14 = 0050, r32
000008000000 00000000803661C1 nop.f 000000
000008000000 00000000803661C2 nop.i 000000 }

{ .mfi
013807E803C0 00000000803661D0 add r15 = 3F8040, r2
000008000000 00000000803661D1 nop.f 000000
000008000000 00000000803661D2 nop.i 000000 ;; }

{ .mmi
0080C0E00400 00000000803661E0 ld8 r16 = [r14] ;;
008CC0F20000 00000000803661E1 st8 [r15] = r16
000008000000 00000000803661E2 nop.i 000000 ;; }

More Complex Examples

In the following example generated code, the “rich” instruction MOV_NB_BR_CLR is
used to move a null bit (an indication of a database field within a row containing a value)

© Copyright 2010 Hewlett-Packard Development Company, L.P 11

to a byte and then branch if the bit was clear (indicating in this case that the field was not
null). Note that there are 4 operands to the “rich” instruction. The interp compiler turns
this “rich” instruction in to 8 Itanium instructions stored in three bundles.

The first two instructions add the offset 00CA to r32 (the first input parameter to the
subroutine) and then fetch a byte from the resultant location. The next two instructions
move the offset 3F8030 to r14 and then add r30 to r14 to result in the output address of
the null bit.

The fifth and sixth instructions first extract the bit specified in the first operand of the rich
instruction and then test the bit to determine if it is set or clear. The extr.u instruction
extracts one bit from the specified position (4 in this case) and stores the result starting at
bit 0 in the register r15. In the next instruction (tbit.z), the predicate register p6 will be
set if the null bit is equal to zero and will be cleared if the null bit is not equal to zero.

Finally the resultant null byte is stored. If the null bit is clear (indicating that the database
field has a value), a branch is to be taken. The branch displacement is a sign-extended
21-bit value indicating a number of longwords. Here, it is a forward branch of 4
longwords. In the instruction stream, if predicate p6 is true (which indicates that the null
bit was not set), a relative branch is taken. Otherwise, if predicate p6 is false, the branch
is not taken and execution continues at the first instruction of the following bundle.

037E546C 0400019E MOV_NB_BR_CLR
037E5470 00000004 bitNum ubyte
037E5474 000000CA nulByt ulong
037E5478 D0000030 res ubyte*
037E547C FFE00004 brOff ulong (037E5490)

{ .mmi
01080A0943C0 00000000803660D0 add r15 = 00CA, r32 ;;
008000F003C0 00000000803660D1 ld1 r15 = [r15]
013807C60380 00000000803660D2 mov r14 = 3F8030 ;; }

{ .mii
010001E1C380 00000000803660E0 add r14 = r14, r30
00A400F103C0 00000000803660E1 extr.u r15 = r15, 04, 01 ;;
00A038F00180 00000000803660E2 tbit.z p6, p7 = r15, 00 }

{ .mfb
008C00E1E000 00000000803660F0 st1 [r14] = r15
000008000000 00000000803660F1 nop.f 000000
008400009006 00000000803660F2 (p6) br.cond.dptk.many 0000040 ;; }

Within the database environment, string operations (moving, changing and comparing)
are common. The following example demonstrates the compiled code for the CMP_S
“rich” instruction which is used to compare two fixed the length strings. The first
operand is the number of bytes to compare. The second operand is the address of the first
string and the third operand is the address of the second string. CMP_S returns either -1,
0 or 1 to the return status register (r8 which maps to Alpha R0) depending on the
relationship (less than, equal, greater than) of the two strings.
The loop count application register ac.lc is used in conjunction with the br.cloop (branch
counted loop) instruction to implement the main loop construct. Within the body of the
loop, two bytes are fetched with a post increment of the source registers. Then the
cmp.eq instruction is used to compare the values of the bytes for equality. Predicate
register p7 is set if the comparison detects inequality. Un-equal values result in a branch
out of the loop. Otherwise (in the case of the bytes being equal to each other), a

© Copyright 2010 Hewlett-Packard Development Company, L.P 12

backwards branch is taken by the br.cloop instruction to the prior bundle to fetch the next
bytes.

When the bytes are known not equal, they are compared to each other with the cmp.lt
instructions. If the strings are equal (when the loop executes to completion and no
different bytes had been detected), r8 remains as zero. If the last bytes fetched are not
equal (indicating that the loop did not complete and a difference was found), r8 is set to
either -1 or 1. Note that within the final two bundles, the comparisons are done in
parallel (the instructions can execute simultaneously because they do not depend on each
other) and then the two moves are executed in parallel. The moves to r8 can be executed
simultaneously because at most one of them will produce a result because predicates p6
and p7 are mutually exclusive – in no case will both be set. It is possible that neither is
set (when the strings are equal) and r8 will remain 0.

037F22FC 0400013B CMP_S
037F2300 0000001F srcLen uword
037F2304 D0000288 src1 byte*
037F2308 025B5950 src2 byte*

{ .mfi
000008000000 0000000080372090 nop.m 000000
000008000000 0000000080372091 nop.f 000000
00005413C000 0000000080372092 mov.i ar.lc = 1E }

{ .mfi
01382FE10380 00000000803720A0 add r14 = 3F8288, r2
000008000000 00000000803720A1 nop.f 000000
000008000000 00000000803720A2 nop.i 000000 }

{ .mlx
000008000000 00000000803720B0 nop.m 000000
000000000009 00000000803720B1 movl r15 = 00000000025B5950 ;;
00C596CA03C0 }

{ .mmi
00A000E02400 00000000803720C0 ld1 r16 = [r14], 001
00A000F02440 00000000803720C1 ld1 r17 = [r15], 001
000008000000 00000000803720C2 nop.i 000000 ;; }

{ .mbb
01C039120180 00000000803720D0 cmp.eq p6, p7 = r16, r17
008600003007 00000000803720D1 (p7) br.cond.dpnt.many 0000010
0091FFFFE140 00000000803720D2 br.cloop.sptk.few 1FFFFF0 ;; }

{ .mii
010800000200 00000000803720E0 mov r8 = r0
018001120180 00000000803720E1 cmp.lt p6, p0 = r16, r17
0180010221C0 00000000803720E2 cmp.lt p7, p0 = r17, r16 ;; }

{ .mfi
013FFFCFE206 00000000803720F0 (p6) mov r8 = 3FFFFF
000008000000 00000000803720F1 nop.f 000000
012000002207 00000000803720F2 (p7) mov r8 = 000001 ;; }

In the case of the SET_T (set text) instruction, one or more bytes of a constant value are
written to memory starting at a specified location. The interp compiler attempts to
optimize these memory writes by performing overlapped operations and performing as
few writes as possible by promoting the size of the memory reference based on the
minimum alignment of the read and write stream pointers. Two pointers are used, offset
by 8 bytes, to allow multiple st8 instructions to be executed in parallel. Post-increment
instruction modes are used to update the output pointers in order to avoid additional
instructions that would otherwise be required in order to increment the pointers. “Tail”
writes of one, two or four bytes are used to complete the sequence.

© Copyright 2010 Hewlett-Packard Development Company, L.P 13

If the byte count for the fill was larger, a loop would have been generated to perform the
fill. In addition, the interp compiler produces, as needed, code to perform one, two or
four byte writes prior to the loop and then again after the loop in order to align the output
pointer on an 8 byte boundary so that as few memory writes as possible are created.
037E5550 04000151 SET_T
037E5554 00000020 src byte
037E5558 D0000060 dst char* #XFFFF8060(R12)
037E555C 0000001F dstLen word

{ .mfi
013807EC0380 0000000080366340 add r14 = 3F8060, r2
000008000000 0000000080366341 nop.f 000000
000008000000 0000000080366342 nop.i 000000 ;; }

{ .mlx
010800E10400 0000000080366350 add r16 = 0008, r14
008080808080 0000000080366351 movl r15 = 2020202020202020 ;;
00C2002403C0 }

{ .mmi
00ACC0E1E400 0000000080366360 st8 [r14] = r15, 010
00ACC101E400 0000000080366361 st8 [r16] = r15, 010
000008000000 0000000080366362 nop.i 000000 ;; }

{ .mmi
00ACC0E1E200 0000000080366370 st8 [r14] = r15, 008 ;;
00AC80E1E100 0000000080366371 st4 [r14] = r15, 004
000008000000 0000000080366372 nop.i 000000 ;; }

{ .mmi
00AC40E1E080 0000000080366380 st2 [r14] = r15, 002 ;;
00AC00E1E040 0000000080366381 st1 [r14] = r15, 001
000008000000 0000000080366382 nop.i 000000 ;;

Accessing Unaligned Data

Both the Alpha and Itanium systems impose a severe performance penalty when the
processor attempts to perform an unaligned memory reference. An unaligned reference,
for example, would be to attempt to fetch a longword (4 bytes) from a virtual address
where the two lowest bits are not clear (i.e. not aligned on a 4 byte boundary). And the
penalty on OpenVMS Itanium systems is significantly higher than it is on Alpha systems.
Thus, avoiding alignment faults has an even greater benefit (for all processes on the
system) on Itanium systems.

The “interp compiler” attempts to detect memory references that are not naturally aligned
and produces a longer code sequence to perform the memory read or write operation
without the overhead of an alignment fault.

For “rich” instructions, the assumption is made that register addresses are naturally
aligned on quadword (8 byte) boundaries. Offset values can be then evaluated to
determine if the resultant memory address is aligned or not. When an unaligned
reference is predicted, a sequence of instructions can be generated to avoid the fault. For
example, a load of a quadword that is located on a longword boundary an be
accomplished by fetching the two longwords and then merging them together with the
“mix4.r” instruction:

{ .mmi
013807CF8E40 000000008033E180 mov r57 = 3F807C ;;
000008000000 000000008033E181 nop.m 000000
01000393CE40 000000008033E182 add r57 = r30, r57 ;; }

{ .mmi
00A083908900 000000008033E190 ld4 r36 = [r57], 004 ;;
008083900380 000000008033E191 ld4 r14 = [r57]

© Copyright 2010 Hewlett-Packard Development Company, L.P 14

000008000000 000000008033E192 nop.i 000000 ;; }
{ .mfi

000008000000 000000008033E1A0 nop.m 000000
000008000000 000000008033E1A1 nop.f 000000
00F88241C380 000000008033E1A2 mix4.r r14 = r14, r36 ;; }

The following sequence (adapted from analysis of code generated by the HP GEM
compiler backend) is a longword store where the destination is predicted to not be
naturally aligned. The least significant bit of the address (presented in r3) is tested. If it
is set, the address is byte aligned and p7 is set; otherwise the address is word aligned and
p6 is set. In the case of byte alignment, a single byte is stored and the address is
incremented (thus aligned on a word boundary) and the output value is shifted 8 bits to
the right. A word is then stored and the output is shifted right 16 bits. Finally, if the
original address was word aligned, the final word is written, otherwise the final byte is
written. This sequence results in either two (for word alignment) or three (for byte
alignment) memory writes.

00A072000180 0611 tbit.z pr6, pr7 = r3, 0
00AC0031004E 0621 (pr7) st1 [r3] = r8, 1
00A5B882020E 0622 (pr7) shr.u r8 = r8, 8
00AC40310080 0630 st2 [r3] = r8, 2
00A578840200 0631 shr.u r8 = r8, 16
008C40310006 0640 (pr6) st2 [r3] = r8
008C0031000E 0641 (pr7) st1 [r3] = r8

Optimizations

In some situations, the generated Itanium code sequences will execute faster than
corresponding sequences on Alpha. For example, in cases of filling or comparing a
relatively few bytes of memory, the code generated for Itanium includes a sequence of
memory stores or fetches in-line while the Alpha code calls to the operating system
routines OTS$FILL or OTS$CMP variants. The overhead of the call in some instances
will be greater than the actual memory references.

In other cases, the Itanium instruction set provides instructions that perform operations
that require a sequence of instructions on the Alpha platform. For example, the
“mux1@rev” instruction can be used to reverse the order of bytes within a quadword.
Within Oracle Rdb on the Alpha platform, this operation is accomplished in a series of
independent shift and mask instructions. This byte reversal is, for example, used when
constructing index keys so performance is an important consideration as this may be a
commonly executed sequence.

Optimization does tend to be a repetitive and, at least based on our observations, a never-
ending process. Over time, code sequences are compressed and improved with a goal of
reducing latency in regards to the CPU clock rate and memory access latencies.

For example performance analysis both “by eye” and by processor cycle sampling lead to
reductions in code steams by often “combining” addressing operands in to a single
bundle as in the following example; initially the operands (moving the address values to
r14 and r15) would have required two bundles.

© Copyright 2010 Hewlett-Packard Development Company, L.P 15

06CE1B68 04000148 MOV_B
06CE1B6C D00002D0 src byte*
06CE1B70 D00010F1 dst byte*

{ .mfi
01382FEA0380 00000000805326F0 add r14 = 3F82D0, r2
000008000000 00000000805326F1 nop.f 000000
01390FEE23C0 00000000805326F2 add r15 = 3F90F1, r2 ;; }

{ .mmi
008000E00400 0000000080532700 ld1 r16 = [r14] ;;
008C00F20000 0000000080532701 st1 [r15] = r16
000008000000 0000000080532702 nop.i 000000 ;; }

Instruction Execution Frequency

As part of a performance analysis sub-project, we created an instrumented interpretation
engine that sent, via an OpenVMS mailbox, instruction execution information from all
processes on a system to a separate collector process that captured instruction execution
counts during a portion of an Oracle Rdb regression test run. The following table
includes the top 20 instructions and the number of times each instruction was executed.
In the table, the indication “RICH” indicates a “rich” instruction and “EVAX” indicates
an Alpha instruction.

Instruction Mnemonic Execution Count

RICH_MOV_B 60,974,337

RICH_MOV_NB_BR_CLR 60,537,063

RICH_MOV_L 47,099,034

RICH_MOV_Q 42,723,231

RICH_B_BR_SET 32,023,634

RICH_BRANCH 23,386,664

RICH_MOV_S 21,233,064

EVAX_LDA 21,169,625

EVAX_BIS 17,947,775

RICH_MOV_W 16,446,120

RICH_CMP_L 16,401,014

EVAX_JSR 15,925,377

RICH_MOV_B_BR_SET 14,723,867

RICH_EXE_ACTION 14,336,902

RICH_MOV_NBIT_BR_SET 14,138,224

EVAX_BR 13,827,371

RICH_OR_B_BR_SET 10,937,403

RICH_CNV_SORT_N 8,293,658

RICH_STALL 7,429,742

EVAX_LDAH 6,818,905

This data was, in turn, used as a guide for which instructions should be first considered
for increased optimization by the interp compiler. The idea is that an instruction
executed several times an hour has a marginal impact on performance as compared with
an instruction executed thousands of times per second.

© Copyright 2010 Hewlett-Packard Development Company, L.P 16

Database Performance Improvements

The creation and optimization of the Oracle Rdb “interp compiler” has been an iterative
affair. Initial performance improvements from the interp compiler allowed applications
running on Itanium systems to run at least as fast as on Alpha systems. Further
optimizations (including reducing memory references, eliminating unneeded “stops”,
avoiding alignment faults, and so on) have dramatically improved code quality and
yielded even better performance. In some cases, application performance has improved
by a factor of 3 due to the interp compiler generating native instructions.

And Oracle continues to measure and analyze performance of the Oracle Rdb database
product family on the HP OpenVMS operating system for the Integrity Server platform.
An extensive set of regression tests are continuously run in our development environment
to help ensure correctness of the generated code. We are also in constant contact with
our customer based to help understand their performance challenges. This input helps us
decide where to focus our optimization efforts to everyone’s benefit.

Models and Examples Followed

A number of different resources were referenced in regards to code generation. In
addition to the (voluminous) Intel documentation of the Itanium architecture, we also
utilized the compiler machine code listings from high level language compilers on
OpenVMS (for example, BLISS, C and MACRO32 which all use GEM code generator
and the C++ compiler which uses an Intel code generator).

Both the OpenVMS debugger and system dump analyzer include the ability to format an
instruction stream which helped significantly when we were learning the intricate details
of the Itanium architecture.

The OpenVMS listings include the MACRO2000 facility which implements the
MACRO32 compiler. This was used in many cases as a template for code generation for
complex alpha instructions (such as ZAP and MSK). The internet also proved to be an
excellent resource for example instruction streams and discussions of Itanium
performance in regards to the use of the architecture.
The Intel and OpenVMS documentation was referenced extensively while we were
creating the unwind information tables for generated code. And the OpenVMS calling
standard manual was invaluable in regards of register usage rules.

Credit and Thanks

A large number of people devoted a great many hours to this project of developing the
Oracle Rdb “Just In Time” code generator for the Itanium systems. It is not possible to
remember or credit everyone who was involved. But special thanks and recognition are
due to engineering members of both HP and Oracle including: John Reagan, Jeanie Leab,
Guenther Froehlin, Greg Jordan, Christian Moser, Burns Fisher, Ian Smith, Martin
Ramshaw, and Richard Bishop.

© Copyright 2010 Hewlett-Packard Development Company, L.P 17

For more information

The Oracle Rdb web site is accessible on the internet at www.oracle.com/rdb. For more
information about the Intel Itanium architecture and instruction set, visit www.intel.com.
For more information about the HP OpenVMS system, visit www.hp.com.

http://www.oracle.com/rdb
http://www.intel.com/
http://www.hp.com/

© Copyright 2010 Hewlett-Packard Development Company, L.P 18

OpenVMS Technical Journal V14

OpenVMS Power Management
Prithvi Srihari, Burns Fisher and K Veena

© Copyright 2010 Hewlett-Packard Development Company, L.P 19

Abstract

Power utilization of data centers is becoming a critical factor, often making a crucial
impact to the total cost of ownership. It also can make a serious impact on the
environment of our increasingly resource-conscious world. In this context, this article
focuses on the Power Management facilities provided by HP OpenVMS for Integrity
servers version 8.4. While Power Management features are not new to OpenVMS, the
strategies employed by various versions differ. This article elucidates these and helps the
administrator make a decision as to when and how to use each power setting.

Introduction

Power usage is increasingly becoming a critical issue in modern data centers. This paper
provides information on how the Power Management features on the OpenVMS
Operating System can be leveraged to reduce power consumption and informs the reader
on changes to the Power Management features for HP OpenVMS for Integrity servers
Version 8.4.

Rationale for Power Management

While Power Management for computers is not a new problem, it was for a long time
confined to computers with very limited power resources, especially those that depend on
batteries. Laptops, personal digital assistants, and networked sensors are obvious
examples. However, in today’s world, the power consumed by data centers is also
becoming a critical issue. The motivating factors for these are:

The Increasing Costs of Power Consumption of Servers: The costs of cooling
servers—which includes the power costs, the cooling costs as well as the infrastructure
costs—has gone up much higher than the costs of the servers themselves as shown in
Figure 1 [1]. Server cost has remained constant, though, if anything, they are going down.
Infrastructure costs alone already exceeded the cost of the server in 2004. The combined
cost of the Infrastructure and Energy (I&E), which includes the cooling needs, exceeded
the cost of the server in 2001.

Figure 1: Approximate Annual Amortized Costs in the Data Center for a 1U Server.

© Copyright 2010 Hewlett-Packard Development Company, L.P 20

The Regulatory Emphasis on Power Efficiency: Governments worldwide are increasingly
focusing on encouraging companies to produce energy-efficient products and servers are
no exception. Efforts are now on to bring certain classes of servers within the ambit of the
US Energy Star program [2]. In future, we may expect customers to actively choose
products with better energy efficiency over those that are less energy efficient.

HP’s Approach for Power Management—How OpenVMS fits In

HP’s Green Business Technology initiative provides leading and innovative capabilities
for the data center, across the workplace, and for green IT practices and policies. A part
of this initiative is HP’s strategy to achieve energy efficiency for the enterprise, which is
called ‘HP Thermal Logic.’ HP provides an extremely broad portfolio of energy-efficient
systems, software, and services to help customers build new next-generation data centers
or extend the capacity and life of existing ones [3]. HP Thermal Logic’s goals are to:

a) Reduce total energy use

b) Reclaim ‘trapped’ energy capacity

c) Extend the life of the data center

Insight control environment with dynamic
power capping: 3x capacity increase
OS/Application power management
Insight dynamics – VSE: Forecast future
power savings

Software

Storage thin provisioning/dynamic capacity
mgt
HP Performance Optimized Datacenter
(POD)
HP BladeSystem
Power optimized HP serversHardware
Low power options: Processors, memory,
SSD drives: up to half the power
consumption

Energy savings from the component to the data center

Figure 2: HP Thermal Logic

As illustrated in Figure 2, HP Thermal Logic encompasses both software and hardware,
since power efficiency and management span a wide spectrum. This paper focuses on the
‘OS/Application power management’ layer, specific to OpenVMS Power Management.
The power usage in a typical data center is composed primarily of the cooling load,
followed by the IT (server) load, with UPS power contributing much less, as shown in
Figure 3 [4]. Most of the power used by servers turns into heat that must be removed by
cooling. So reducing server power consumption serves to reduce cooling power.
Consequently, the first step in minimizing the power bill is to use the power management
capabilities provided by servers.

© Copyright 2010 Hewlett-Packard Development Company, L.P 21

Figure 3: This Chart shows that the Drivers of Power Usage in the Data Center are the IT Load and
the Cooling Load.

In the case of OpenVMS, these power management features primarily make use of the
power savings features provided at the processor level.

Itanium Processor Power Features

Various Intel Itanium processors implement subsets of the Advanced Configuration and
Power Interface (ACPI) Processor Power and Performance States. These are implemented
as controllable power states to facilitate power management. The most common of these
are the ‘LIGHT_HALT’ state and the ‘Power/Performance States’ [5].

The LIGHT_HALT State

This state corresponds to the ACPI C1 Processor Power State [6]. It reduces power by
stopping instruction execution, while maintaining cache and translation lookaside buffer
coherence. Effectively, the processor is ‘suspended,’ not taking part in any scheduled
activity. The processor enters this state when the firmware instruction
PAL_HALT_LIGHT is called. The processor transitions from this state to the normal
state in response to any unmasked interrupt.

C0

C1

P0

P1

P2

P3

P
A

L
_
H

A
L

T
_
L

I
G

H
T

In
te

rr
u
p
t,

R
es

et
,
In

it
,
et

c.

Processor

Power

Processor Performance Increasing

Performanc

Increasing

Power

Savings
Figure 4: A Simplified View of the Power States of an Itanium Processor with two Power and four
Performance States
© Copyright 2010 Hewlett-Packard Development Company, L.P 22

The Power/Performance States

These states correspond to the ACPI Processor Performance States. The states range from
P0 (maximum performance, least power savings) to PN (maximum power savings, least
performance). The number of performance states available, N, varies with the model of
the processor. For example, Figure 4 assumes N to be 3. As the performance state ranges
from P0, P1, P2,..., PN, the power savings increase and the performance reduces. In all
these states, however, the processor is still ‘active,’ albeit at a slower speed.

HP Integrity Platform Power Options

Processor power states enable power savings at the processor level. At the system level,
the administrator can configure any of four modes of operation, described below. These
modes are configured from the system firmware and internally control the processor
power states.

HP Static High Performance Mode

The system’s processors always operate at the highest power and performance state. In
this mode, neither the firmware nor the operating system (in our case, OpenVMS) will
ever program the processors to run in a lower power or performance state. This mode is
useful for business operations when high system computing performance is critical and
power savings is not a constraint. Effectively, running the system in this mode is as good
as running a system that does not support power management features. For this reason,
this mode may also be used as a baseline of power consumption data with power
management.

© Copyright 2010 Hewlett-Packard Development Company, L.P 23

HP Static Low Power Mode

The system’s processors operate continuously at the lowest possible power state. In this
mode, the processors run continuously in the low-power state to save the maximum
power possible, whilst maintaining system usability. This mode is useful for business
environments where power availability is constrained. It can also be used in emergency
situations when power usage has to be reduced urgently, while maintaining a reduced
level of computing operations. However, it might affect the system performance if the
workload has high processor utilization.

HP Dynamic Power Savings Mode

Processor power use is adjusted on-the-fly to match performance levels to the application
load. There is a slight performance loss when using this state, which is generally small
but may be significant with some workloads. HP OpenVMS for Integrity servers version
8.4 has a new algorithm to manage this mode. The new algorithm switches the processor
into LIGHT_HALT state when it is idle. Because there is some delay in restarting a
processor that is in the LIGHT_HALT state, the algorithm tries to reduce interrupt latency
by noting how often the processor is required to leave idle. If that frequency exceeds a
threshold, the processor will not be allowed to enter the LIGHT_HALT state until the
processor again leaves idle less often. This is to ensure that the response time of the
system is quick to a burst of interrupts. Each processor in a system is monitored and
adjusted independently. This mode allows the processors to operate responsively when
high processor performance is needed and in a low power state otherwise.

OS Control Mode

Dynamic power management for the system is managed by the Operating System through
a policy mechanism chosen at the OS level. The power management scheme may vary
depending on what the OS that is running on the system implements as its policy. For
example, currently HP-UX 11i v3 treats this mode in the same way as HP Dynamic
Power Savings Mode [7]. In our specific case of OpenVMS, OS Control Mode allows the
OS Administrator methods for configuring the three modes mentioned earlier (Static
High Performance, Static Low Power, and Dynamic Power Savings) from OpenVMS.
The three sub-modes available under OS Control with OpenVMS are:

OpenVMS Sub-Mode Corresponding Firmware-Level Mode

OpenVMS Static High Performance HP Static High Performance

OpenVMS Static Low Power HP Static Low Power

OpenVMS Dynamic Power Savings HP Dynamic Power Savings

If no mode is chosen, by default, OpenVMS Dynamic Power Savings Mode is selected.
These give the OS Administrator the flexibility to select, at run-time, a mode which suits
the particular load being run without having to seek recourse to the firmware interface.
Importantly, it allows the Administrator to easily automate mode changes using the
standard OpenVMS job automation tools such as application programs, DCL scripts, job
queues, etc. For example, it could be useful to keep a system on Dynamic Power Savings

© Copyright 2010 Hewlett-Packard Development Company, L.P 24

Mode during the day to provide reasonable system performance, but switch to Static Low
Power Mode at night, when transaction traffic is less, in order to save power. A DCL
script could easily be written to automate such a schedule.

OpenVMS Power Management Features—Power Controlling Methods

Configuring the HP Static High Performance, HP Static Low Power, and HP Dynamic
Power Savings Modes is done through the system firmware. This can be accomplished
using either the Management Processor (MP) Console or the HP Integrated Lights-Out
(iLO) Web Interface. Configuring the OpenVMS Static High Performance, OpenVMS
Static Low Power, and OpenVMS Dynamic Power Savings Modes is done using an
OpenVMS system service or through OpenVMS sysgen parameters. In either case,
viewing the resulting power consumption is done using the system firmware interfaces
(MP Console or iLO Web Interface).

MP Console

At the MP console, the PM command (Power Management) is used to switch the power
state, as shown in Figure 5. This command requires MP login access.

MP: CM> PM
Current System Power Mode: OS Control Mode
Power Regulator Menu:

D – Dynamic Power Savings Mode
L – Static Low Power Mode
H – Static High Performance Mode
O – OS Control Mode

Enter menu item or [Q] to Quit: L
Power mode will be set to Low Power.

Confirm? (Y/[N]): Y
Please wait…

 Power mode has been successfully changed.

Figure 5: Power Setting from the MP Console.

The new mode takes effect immediately, without the need to reboot the system.

iLO Web Interface

The iLO web interface provides the same functionality as the MP console. To change the
power state, the following steps have to be followed (in order):

1. From the main menu that appears at the top of the iLO web-page, ‘Virtual
Devices’ has to be selected.

2. The sub-option ‘Power Regulator’ has to be selected.
3. The four available power modes will appear, as shown in Figure 6.

Power Regulator Mode: mm Enable Dynamic Power Savings Mode

mm Enable Static Low Power Mode

mm Enable Static High Performance Mode

ll Enable OS Control Mode

Figure 6: Power Setting Menu in the iLO Web Interface.

Submit Cancel

© Copyright 2010 Hewlett-Packard Development Company, L.P 25

4. On choosing one of the options and then clicking ‘Submit,’ the change takes
effect.

Alternately, the power setting at the firmware level can also be controlled by using HP
Intelligent Power Manager (HP IPM).

OpenVMS System Service

After selecting OS Control at the firmware level, the OpenVMS system service,
sys$power_control can be used to change the power state. This allows the Administrator
to change the power state at the OpenVMS level programmatically. The syntax of the
system service is:

int sys$power_control(

unsigned __int64 request, unsigned __int64 *previous

);

…where request is used to choose the mode in the following manner:

Request Mode Chosen

POWER$C_HIGH_PERF OpenVMS Static High Performance

POWER$C_LOW_POWER OpenVMS Static Low Power

POWER$C_EFFICIENCY OpenVMS Dynamic Power Savings

…and previous is a return parameter, providing the power state that was existing before
service was called.

This system service returns SS$_NORMAL if successful and an error otherwise. It
requires WORLD privilege.

OpenVMS Sysgen Parameters

OpenVMS also provides dynamic sysgen parameters to modify the power state. These
parameters are CPU_POWER_MGMT and CPU_POWER_THRSH.
CPU_POWER_MGMT is used primarily to change the power state. Its range of values
and their meaning are:

CPU_POWER_MGMT Value Mode Chosen

0 OpenVMS Static High Performance

1 OpenVMS Static Low Power

2 OpenVMS Dynamic Power Savings

CPU_POWER_THRSH is used only in dynamic mode. It specifies the number of
interrupts per 10-millisecond interval beyond which idle power savings will be turned
off. The default value is 50. The higher this number, the more power is saved and the
higher average interrupt latency the system will experience while processors are idle.

© Copyright 2010 Hewlett-Packard Development Company, L.P 26

An Example Configuration

The system used is a HP BL870c with 4 cores, each of which is a 1.59 GHz Intel
Montvale. The blade was lightly loaded to start with. The system’s power was measured
in the Static Low Power, Static High Performance, and Dynamic Power Savings Modes
with processors being progressively loaded, the non-active cores being idle. The resulting
power consumption graph is shown in Figure 7.

One can see the change in power consumption based on the mode chosen and the number
of cores loaded. The difference between the power consumed at Low Power and High
Performance Modes when all 4 cores are idle is about 11%. This tells us that if a system
is found to be idle for long periods of time, it would be a good candidate to be switched
to Low Power Mode. On the other hand, a system in which all 4 cores are active, the
power gains between the two modes is about 4.5%. Hence, the power saving in this case
is much less compelling. Of course, if a system is heavily loaded, its performance
requirements may preclude switching it to Low Power Mode.

An interesting comparison is the Dynamic Mode. When system is lightly loaded, this
mode provides power savings comparable to Low Power Mode. When the system is in
heavy use, it provides very little power savings while giving the performance of High
Performance Mode. Dynamic Mode may well be a very good mode to use when load
characteristics vary between heavy and light usage (such a day-night scenario).
Finally, it is anticipated that future processors will be capable of more power savings.

Figure 7: An Example of the Variation of the Power Consumed for each Power Mode

© Copyright 2010 Hewlett-Packard Development Company, L.P 27

Conclusion

In this article, the need for Power Management was discussed. The various power states
provided by HP Integrity servers and HP OpenVMS for Integrity servers version 8.4 to
aid in Power Management were explored. Power savings can be controlled at the
OpenVMS level and power control can be dynamic. Administrators can configure power
management strategies in response to changing power constraints and load profiles.
Power control can be achieved using a variety of convenient interfaces. OpenVMS power
management features align with HP’s overall green initiatives and help customers save
money without sacrificing performance while helping to ensure a cleaner and greener
world.

References

[1] Belady, Christian L., ‘In the data center, power and cooling costs more than the IT
equipment it supports,’ Electronics Cooling Magazine, February 2007.

[2] United States Environmental Protection Agency, ‘ENERGY STAR Program
Requirements for Computer Servers Preliminary Draft Version 1.0 Tier 2,’
September 24th 2009.

[3] Hewlett-Packard, ‘HP Thermal Logic,’ Internet:
http://www.hp.com/go/integritythermallogic/ accessed November 16th 2009.

[4] Belady, Christian L., Wade Vinson, ‘Power-Hungry Data Centers Must Develop a
Plan for Curbing Costs, Increasing Efficiency,’ Enterprise Networks & Servers,
February 2007.

[5] Intel Corporation, ‘Intel Itanium Architecture Software Developer’s Manual
Volume 2: System Architecture Revision 2.2,’ January 2006.

[6] Hewlett-Packard, Intel Corporation, Microsoft Corporation, Phoenix
Technologies Ltd, Toshiba Corporation, ‘Advanced Configuration and Power
Interface Specification Revision 3.0b,’ October 10th 2006.

[7] Hewlett-Packard, ‘Going Green with HP-UX 11i v3–Power Management
Techniques to Reduce Costs and Environmental Impacts,’ March 2009.

http://www.hp.com/go/integritythermallogic/

© Copyright 2010 Hewlett-Packard Development Company, L.P 28

OpenVMS Technical Journal V14

OpenVMS – Paged Dynamic Memory Fragmentation
Causing Performance Problems
John Hockett, HP Services Technology Consultant

© Copyright 2010 Hewlett-Packard Development Company, L.P 29

Introduction

When customers added additional users to their environment, they started receiving
complaints related to response time performance problems. The number of complaints
increased as the time since the last reboot increased. After a reboot, the performance was
acceptable for part of a normal production day. The problems were seen only by users
who were running a large custom application. Typically, users running other applications
and DCL commands did not see any performance problems. The users were experiencing
random pauses of 3 to 5 seconds, and often multiple processes were seen in a MUTEX
wait state for short intervals as shown in Figure 1.

$ SHOW SYSTEM
OpenVMS V7.3-2 on node L 26-OCT-2005 13:46:02.97
Pid Process Name State Pri I/O CPU Page flts Pages
:
2892F00C _TNA6942: MUTEX 6 58122 0 00:00:31.32 36814 814
2885C06C _TNA8017: MUTEX 6 491 0 00:00:03.33 592 714
2890C9D2 146811 MUTEX 6 87 0 00:00:00.83 123 112
288F7203 _TNA8023: MUTEX 5 81 0 00:00:01.96 125 116
2890BA06 _TNA8024: MUTEX 6 87 0 00:00:00.72 129 116
2890920F RA_127 MUTEX 3 0 0 00:00:00.00 20 30 S
288F6211 MS_66 MUTEX 6 15 0 00:00:00.00 123 134 S
2891BA13 MAINT_CAR MUTEX 6 0 0 00:00:00.00 20 30 S
2891AB04 _TNA7911: MUTEX 6 10016 0 00:00:10.04 7191 1412
28932E42 _TNA8009: MUTEX 6 32810 0 00:00:14.61 1231 763
:

Figure 1: SHOW SYSTEM

© Copyright 2010 Hewlett-Packard Development Company, L.P 30

Analysis

After reviewing the collected T4 data from node L, it was determined that each time an
MWAIT spike (Blue) occurred, there was also a similar Kernel Mode spike (Red) just
before and throughout the MWAIT spike.
Note: A process in a Mutex wait state is considered an MWAIT process. See Figure 2
below.

Figure 2: KERNEL mode and processes in MUTEX WAIT

© Copyright 2010 Hewlett-Packard Development Company, L.P 31

A process running in Kernel Mode owns a MUTEX causing the number of other
processes waiting for the same MUTEX to spike. Normally, the time spent in Kernel
Mode holding a MUTEX is very short, but there is evidence to show that some Kernel
Mode operations are taking longer than expected, and thus causing the other processes,
waiting for the same MUTEX, to spike at times.

In the following example (Figure 3), process 288E3D5A ran continually from
10:11:54.174601 to 10:11:58.000763 with most PC samples in
EXE$DEALLOCATE_C+0001C or EXE$DEALLOCATE_C+00020, and an occasional
LOGICAL_NAMES+00288. During this time, other processes waiting for the same
MUTEX are placed in a MUTEX wait state.

$ ANALYZE/SYSTEM
SDA> PCS LOAD
SDA> PCS START TRACE

wait 10 minutes
SDA> PCS STOP TRACE
SDA> SET OUTPUT PC.DAT
SDA> PCS SHOW TRACE
SDA> PCS UNLOAD
SDA> EXIT
$ EDIT PC.DAT

:

Timestamp CPU PC IPL Pid Routine
Module
---------------------- --- -------- --- -------- ----------
---------------------- ------
31-OCT 10:11:54.000216 03 80124F74 3 00000000
SCH$CALC_CPU_LOAD_C+00464
PROCESS_MANAGEMENT+00000F74

:
31-OCT 10:11:54.174601 03 8003FCFC 2 288E3D5A
EXE$DEALLOCATE_C+0001C
SYSTEM_PRIMITIVES_MIN+00013CFC

: 1866 total PC samples in this collection from the
same PID

that contained:
EXE$DEALLOCATE_C 1808 samples
LOGICAL_NAMES 58 samples

31-OCT 10:11:58.000763 03 8003FD10 2 288E3D5A
EXE$DEALLOCATE_C+00030
SYSTEM_PRIMITIVES_MIN+00013D10

:
Figure 3: System PC samples summarized

© Copyright 2010 Hewlett-Packard Development Company, L.P 32

The System Dump Analyzer (SDA) MTX tool is used to determine which MUTEX has
the highest usage. In Figure 4, the MUTEX with the highest usage is the LNM MUTEX
(logical name MUTEX).

$ ANALYZE/SYSTEM
SDA> MTX LOAD
SDA> MTX START TRACE
SDA> MTX SHOW TRACE/SUMMARY

Mutex Trace Information:
--
--

Read Read Lock Write Write Lock
Locks Waits Locks Waits Wait

Unlocks
Mutex /sec /sec /sec /sec %
/sec
---------- ------ ------- ----- ------- ------ ----
--
LNM 1664.7 602.6 145.2 188.6 43.7%
1810.0
IODB 382.4 4.1 324.0 50.8 7.8%
706.4
CEB 0.0 0.0 13.6 0.0 0.0%
13.6
PGDYN 0.0 0.0 159.6 0.3 0.2%
159.5
GSD 0.0 0.0 52.4 2.2 4.2%
52.4
CIA 0.0 0.0 0.1 0.0 0.0%
0.1
ORB 0.0 0.0 0.0 0.0 0.0%
0.0
VOL 74.0 0.0 0.0 0.0 0.0%
74.0
OBJCLS 17.2 0.0 0.0 0.0 0.0%
17.2
RSDM 0.0 0.0 1.7 0.0 0.0%
1.7
??? 53.7 0.0 0.2 0.0 0.0%
53.9

------ ------- ----- ------ ------ ----
--

2192.1 606.8 696.8 241.9 29.4%
2888.8

© Copyright 2010 Hewlett-Packard Development Company, L.P 33

...
Mutex Rate/sec Operation Callers PC

Module Offset

---------- ---------- ---------------- --------------------------------------

LNM 2157.3 Lock Read 801FFFAC LOGICAL_NAMES+07FAC

LOGICAL_NAMES 00007FAC

LNM 289.9 Lock Write 801FD7BC LOGICAL_NAMES+057BC

LOGICAL_NAMES 000057BC

LNM 109.2 Lock Read 801F8FA8 LNM$SEARCH_ONE_C+00068

LOGICAL_NAMES 00000FA8

LNM 23.4 Lock Write 801F9314 LNM$LOCKW_C+00024

LOGICAL_NAMES 00001314

LNM 20.6 Lock Write 801FF284 LOGICAL_NAMES+07284

LOGICAL_NAMES 00007284

IODB 144.5 Lock Read 800F5EF8 IO_ROUTINES+23EF8

IO_ROUTINES 00023EF8

IODB 127.1 Lock Read 800F6920 EXE$DVI_FREEBLOCKS_C+00650

IO_ROUTINES 00024920

IODB 126.3 Lock Write 800ED164 IO_ROUTINES+1B164

IO_ROUTINES 0001B164

IODB 125.7 Lock Write 800EAEC8 IOC_STD$CREATE_UCB_C+00F68

IO_ROUTINES 00018EC8

IODB 111.4 Lock Read 800F5E68 IO_ROUTINES+23E68

IO_ROUTINES 00023E68

CEB 13.6 Lock Write 80156B34 EXE_STD$CHKWAIT2_C+00DF4

PROCESS_MANAGEMENT 00032B34

PGDYN 109.6 Lock Write 8003F604 EXE$ALOPAGED_C+00074

SYSTEM_PRIMITIVES_MIN 00013604

PGDYN 50.3 Lock Write 8003FB54 EXE$DEAPAGED_C+00094

SYSTEM_PRIMITIVES_MIN 00013B54

Figure 4: MUTEX usage

After observing the system following a reboot, it was evident that the Paged Dynamic
Memory (PAGEDYN) free list fragmentation increased the longer the system was up. As
the fragmentation increased, the Kernel Mode time and the number of processes in
MUTEX wait state increased. Once the PAGEDYN freelist exceeded 10,000 free blocks,
the pauses started becoming noticeable to the users.

The high LNM MUTEX utilization was presented to the customer and they were able to
identify that their applications used the Job Logical Name Tables quite extensively.
Working with the customer, we determined that their production applications frequently
execute thousands of Logical Name creations and deletions in the Job Logical Name
Table. The data structures that support the Job Logical Name Tables (LNMx) are
allocated from PAGEDYN.

PAGEDYN has always been organized as a singly linked list.

© C

Each time new LNMx structures are to be allocated from PAGEDYN, the LOGICAL_
NAMES code acquires the LNM MUTEX and also requests the memory allocation code
to traverse the PAGEDYN linked list, one data structure at a time until the proper sized
LNMx structure can be allocated from PAGEDYN. The LOGICAL_ NAMES code then
adds the LNMx to an existing Job Logical Name Table or creates a new Job Logical
Name Table.

When a LNMx is to be returned, the LOGICAL_NAMES code must also acquire the
LNM MUTEX and remove the LNMx structure from the Job Logical Name Table and
call the memory deallocation code to traverse the PAGEDYN linked list one data
structure at a time until the proper place is determined to insert the returned LNMx
structure.

If PAGEDYN has become fragmented into several pieces, this can cause users to
experience performance problems while the singly linked list is being traversed. During
the time that it takes to allocate or return a LNMx, other processes that want to allocate or
delete logical names or logical name tables go into a MUTEX wait state.

After reviewing the customer's system, it was determined that PAGEDYN was very
fragmented. In the example shown in Figure 5, there are 34,826 fragments. Most of the
fragments are less than 64 decimal bytes in length:

Th
PA
be
$ SHOW MEMORY/POOL/FULL
:

Paged Dynamic Memory
Current Size (MB) 143.04 Current Size (Pagelets)
292960
Free Space (MB) 84.24 Space in Use (MB)
58.79
Largest Var Block (MB) 81.30 Smallest Var Block
(bytes) 16.00
Number of Free Blocks 34826 Free Blocks LEQU 64
opyright 2010 Hewlett-Packard Development Company, L.P 34

Figure 5: SHOW MEMORY output

erefore, a potential allocation or deallocation of an LNMx (or some other packet from
GEDYN) could require, in a worst case scenario, "walking” a list of 34,000 packets

fore the allocation or deallocation request could be completed.

bytes 33533

© Copyright 2010 Hewlett-Packard Development Company, L.P 35

Solution

To eliminate the performance problem, OpenVMS engineering designed and provided
new versions of SYSTEM_PRIMITIVES*.EXE,*.STB

This new code implements PAGEDYN lookaside lists similar to the lookaside lists that
have been implemented in Nonpaged Dynamic Memory for years. This new code is
implemented in the MEMORYALC routine of the SYSTEM_PRIMITIVES image. The
MEMORYALC routine does the actual allocation and deallocation of Paged Dynamic
Pool from the new lookaside lists.

Like non-paged pool, the PAGEDYN lookaside lists start out empty. As packets are
deallocated, the size is checked and the packet is returned to the appropriate list. If the
packet is larger than RSVD_EXEC_1 (prior to VMS 8.4) or PAGED_LAL_SIZE (VMS
8.4 and later), the packet is returned to the variable paged pool. When an attempt is made
to allocate a packet less than or equal to RSVD_EXEC_1 or PAGED_LAL_SIZE, the
appropriate PAGEDYN lookaside list containing packets of that size is checked. If a
packet is found, it is removed and returned to the caller without having to acquire the
PGDYN MUTEX. If a packet is not found, the PGDYN MUTEX will be acquired and
the packet will be allocated from the variable free list as had been traditionally done.

When RSVD_EXEC_1 or PAGED_LAL_SIZE is non-zero, PAGEDYN lookaside lists
are enabled and the maximum packet size to use on the paged pool lookaside list is
established. It can range between 1 - 2560 decimal bytes (the packets themselves have 16
byte granularity, 16, 32, 48, 64, etc). For most systems, setting RSVD_EXEC_1 or
PAGED_LAL_SIZE to 512 bytes is more than adequate. The most utilized PAGEDYN
lookaside lists are 80 to 208 bytes. Also, as part of further performance enhancements,
the PGDYN MUTEX is not used if a packet is found on or returned to one of the
PAGEDYN lookaside lists.

If the requested PAGEDYN lookaside lists is empty or the packet request is larger than
the SYSGEN parameter setting, the PGDYN MUTEX is acquired and memory is
allocated from the PAGEDYN singly linked variable size free list as it was done in past
implementations.

If there is a PAGEDYN shortage, the new code will reclaim memory from the
PAGEDYN lookaside lists and return it to the singly linked variable size freelist.
This new code can be enabled in SYSTEM_PRIMITIVES images dated after 14-NOV-
2008 by setting the SYSGEN parameter RSVD_EXEC_1 to a nonzero value. When
RSVD_EXEC_1 is 0, the default value, this feature is disabled. When RSVD_EXEC_1
is nonzero (1 - 2650), it establishes the size of the largest paged pool lookaside list to use.
For example, setting RSVD_EXEC_1 to 512 would create multiple lookaside lists for
packets sized up to 512 decimal bytes and should be adequate for most systems.

Remedial kits for VMS 7.3-2, V8.2, V8.2-1, V8.3, and V8.3-1H1 containing a
SYSTEM_PRIMITIVES.EXE dated on or after 14-NOV-2008 will contain this new
functionality.

© Copyright 2010 Hewlett-Packard Development Company, L.P 36

The following remedial kits or a later version of these kits contain this new functionally:

 VMS831H1I_SYS-V0400
 VMS83I_SYS-V0900
 VMS821I_SYS-V0900
 VMS83A_SYS-V1100
 VMS82A_SYS-V1200
 VMS732_SYS-V1800

The Paged Dynamic Lookaside Lists are expected to be fully implemented with the 8.4
release of OpenVMS. It will be enabled by setting the SYSGEN parameter
PAGED_LAL_SIZE to a nonzero value. The default PAGED_LAL_SIZE setting of zero
sets the default behavior as it has been for decades, a singly linked variable size free list.

For more information, refer to the release notes for each of the above mentioned kits. The
kits are available at the following websites:
http://www.itrc.hp.com or ftp://ftp.itrc.hp.com/

Acknowledgement

Thanks to Mark Morris for the design, implementation, and description of the changes to
the SYSTEM_PRIMITIVES images. Thanks to Kevin Jenkins, Tom Cafarella, and Jean
Pierre Corre for their assistance with the initial problem definition. Finally, thanks to
Mark Morris, Rob Eulenstein, Ted Saul, and John Fisher for their review of this article.

http://www.itrc.hp.com/
ftp://ftp.itrc.hp.com/

© Copyright 2010 Hewlett-Packard Development Company, L.P 37

OpenVMS Technical Journal V14

SYSMON for OpenVMS Systems
Muthuvel Balasubramanian

© Copyright 2010 Hewlett-Packard Development Company, L.P 38

Introduction

One of the challenges that the customers face with the legacy OpenVMS environments is
to have their OpenVMS servers running business applications monitored real-time and
have the incidents fixed as soon as they occur. The difficulties here are to have a
monitoring system deployed at the first place or if one exists already, to have their
existing monitoring systems integrated with the up-to-date solutions to keep current with
the technology developments. The situation worsens when the customer is running very
old Versions of OpenVMS servers where in, there are no tools currently available in the
market that can be deployed because of compatibility issues.

SYSMON (System Monitor) utility is designed to address these challenges.

What is SYSMON?

SYSMON is a DCL (Digital command language) based solution that works on all
OpenVMS versions and all supported hardware architectures. Currently, this solution is
successfully deployed on three customer environments.

Features

The following are the features of SYSMON:
 Built on client server model where one server will be acting as a server while the

rest of the systems, the clients, will be reporting the incidents to the server. The
server in turn is also being monitored by another system (secondary server) to
notify in case the server itself goes down.

 Automatic failover of SYSMON primary server to the secondary server should
the primary fail.

 Highly scalable and customizable.
 Automatic status tracking of incidents and automatic closure of the incidents

when the issue is resolved.
 Can be installed and set up on the fly. This means, it does not require any down

time of the system.
 Automatic filtering of duplicate incidents.
 Real-time monitoring interface to view the list of open issues at any point of time.
 Optional feature to choose the business hours. Any monitoring can be

dynamically turned off.
 Generic alarm interface which can be used by the end users to use SYSMON to

notify the incidents from their own scripts.

Working Theory

SYSMON is a subset of OpenVMS command procedures that use the native OpenVMS
DCL commands to monitor a specific entity of an OpenVMS system. Examples of these
entities could be free space available on the disks, the availability of print/batch queues,
and so on. SYSMON consists of the following components:

a) Client

© Copyright 2010 Hewlett-Packard Development Company, L.P 39

b) Primary Server
c) Monitor Utility
d) Secondary Server

Client

The client component comprises of the monitoring routines and a scheduler that triggers
them at a predefined interval. Each monitoring script has its own data file, which contains
the specification of the entities to be monitored. The monitoring scripts looks after their
intended OpenVMS entities and reports the anomalies to the server, if any. The incidents
are notified by transferring an alarm file to a unique location on the server. Similarly,
when the incident is resolved at the client’s end, the client signals the server that the
specific incident is resolved and the same is closed at the server end.

Primary Server

The server component periodically polls each of the client locations and notifies the
reported incidents to the HP support team via an SMTP email. In addition, the status of
each of the incidents is tracked in a local database by the server. When the server finds an
issue to have been resolved (as signaled by the client), it marks the corresponding
incident in the master database as closed.

Monitor Utility

The monitor component is a menu based utility which lets the HP support person to track
the status of open incidents and to close them manually, when needed. Developments are
underway to include new scripts on the entities such as performance monitoring, security,
and so on. Presently, SYSMON can monitor the following entities:

 Node being Unreachable
 System Process Missing
 Disk Status change
 Error count increases on the devices
 Disk Space
 Highest File Version Check
 Memory Page File Utilization
 Monitor OPCOM messages
 Queue Status Monitoring
 Batch job Monitoring
 Shadow set members Decrease/ Increase
 SCS Paths between cluster systems
 Queue Managers’ status

Secondary Server

SYSMON secondary server is basically a client to the primary server. It periodically polls
the primary server to see if the server component is running fine. If the server component

© Copyright 2010 Hewlett-Packard Development Company, L.P 40

is not running properly for a period of time or if the server is down, the secondary server
migrates itself (figure b) as primary server and broadcasts the change to the rest of the
clients. Subsequently, the clients will continue to transfer the incidents to the new server.
Whenever, the original primary server is up, it downgrades itself as a client and also
assumes the role a secondary server.

SYSMON Architecture Overview

Secondary
Server &
Client4

Client2

WAN
WAN

Client3

D
EC

N
ET

TCPIP

DvIP
DECNET

Heartbea
t File
from

server

Heartbea
t File
from

server

Client1

•Scheduler
•Monitoring Scripts
•Server

•Scheduler
•Monitoring Scripts
•Server

•Scheduler
•Monitoring Scripts

•Scheduler
•Monitoring Scripts

Primary Server

SMTP Email

VMS Team

WAN
WAN

Heartbea
t Files

from
Clients

Heartbea
t Files
from

Clients

Alarm

Files

Alarm

Files

Primary
Server
(After

Migration)

WAN
WAN

Client3

DECNET

TCPIP

Client1

Primary Server
(Before

Migration)

SM
TP

Em
ail

VMS Team

NO HBT

a) SYSMON - During Normal Operation b) SYSMON – After Migration of Secondary to Primary

View of the open incidents through the MONITOR Interface

Evidence that the Solution Works

SYSMON has been successfully deployed on three customer sites successfully.

Competitive Approaches

The constraint is that the commercial monitoring tools (for e.g. HP OpenView Operations
– OVO) cannot be deployed on the older environments as the tools do not support old
OpenVMS versions. On the other hand, the tools available in the past (for e.g. Polycenter
Watchdog) are no longer developed and supported on these legacy environments. While
SYSMON is targeted for these old platforms, it can run on the latest OpenVMS versions
without requiring any modifications. This is proved from the fact that it is presently
running on three of our customer’s systems (on all three hardware architectures (VAX,
ALPHA and Itanium) and all OpenVMS versions (starting from VAX 5.5-1H3 to
Integrity servers V8.3)) successfully.

© Copyright 2010 Hewlett-Packard Development Company, L.P 41

Current Status

SYSMON has been running properly on all the customer systems since its deployment. It
has also undergone a few enhancements, where we have introduced new monitoring
entities such as monitoring the members of the mirror set, monitoring the cluster
communications, and so on.

Next Steps

The client uses either DECnet – COPY that supports Decnet proxies or through TCPIP –
FTP, to transfer the alarm files to the server. As FTP transmits passwords in clear text
mode, we are currently enhancing the tool to use secure methods for the alarm file
transfers, i.e. SFTP. We are working to integrate SYSMON with an OpenVMS based
web server so that all management tasks can be performed over the web interface.

Conclusions
Having seen the performance for more than a year, SYSMON has proved to be an opt
solution for any environment. With this innovative solution, ITO GCI RSC VMS team
achieved potential cost and time savings as it would have otherwise cost HP if we had to
go to a third-party vendor (or internal HP C&I team) to develop a new tool to suit the
customer environment.

© Copyright 2010 Hewlett-Packard Development Company, L.P 42

OpenVMS Technical Journal V14

Configuring TCP/IP Services
Bart Zorn

© Copyright 2010 Hewlett-Packard Development Company, L.P 43

Overview

A technique will be presented to configure TCP/IP Services for OpenVMS for multiple
systems in a consistent way, without having to go through all of TCPIP$CONFIG.COM
for every system. With this method, changes in the hardware configuration are also easy
to handle. No changes are made to the standard TCP/IP software; only two DCL
command procedures are added. These procedures do not use any undocumented feature
of TCP/IP Services.

Introduction

TCP/IP Services for OpenVMS is not very flexible with regards to changes in the
hardware configuration. The TCP/IP interfaces such as we0, ie0, and ie1 are based
directly on the corresponding physical devices such as EWA0, EIA0, and EIB0. There is
no way to change that relationship using logical names in a similar manner as we are
accustomed to doing for most other devices in OpenVMS.

In a real life example, I had to add one Gigabit network adapter to each of four ES47
systems. These ES47 (model 4) systems consist of two 2P boxes and an I/O drawer.
Logically, this I/O drawer appears to sit in between the two 2P boxes. (I am not a
hardware expert, so I do not know if there are ways to change that.) The new network
cards had to be placed in the I/O drawers, because there was no room in either of the two
2P boxes. The result was that the new adapters received a device name somewhere in
between the existing ones, and some of the existing ones got a new name! The result of
these changes was that I would have to reconfigure TCP/IP services quite extensively. I
had anticipated that.

Implementation

Because TCP/IP Services do not allow the use of logical names to designate physical
interfaces, a method had to be found to circumvent that.
Two DCL command procedures have been developed and both these procedures contain
relevant information for all systems. Identical copies of the procedures can be used on all
systems.
The first command procedure, TCPIP_INIT_CONFIG.COM, should be executed before
TCPIP$STARTUP.COM runs. It does the following:

 Sets up logical names to identify all LAN adapters (and their TCPIP alias names)
by their hardware MAC address. This is done using the DCL lexical functions
F$DEVICE and F$GETDVI.

 Clears out the permanent TCPIP interface database and repopulates it with a
default interface described below.

 Clears out any permanent default router information and supplies a new default
route described below.

© Copyright 2010 Hewlett-Packard Development Company, L.P 44

The logical names have the following format:

”ADAPTER_00-0F-20-2B-A1-38” = ”EWA0”,”WE0”

The default interface and default route for each system are defined in DCL symbols like
the following:

$ base_interface_<nodename> = -

”00-0F-20-2B-A1-38 10.5.50.11/24 10.5.50.3”

representing the MAC address, the IP address in Classless Inter Domain Routing (CIDR)
format and the default route for this address. This information, combined with the
corresponding logical name, is then used to assemble the “TCPIP SET
CONFIGURATION INTERFACE” command for this interface. At least one interface
needs to be defined because otherwise TCP/IP Services will not start.

Once this DCL procedure has been run, TCP/IP Services can be started and it will operate
on one interface.

The second DCL procedure, CREATE_INTERFACES.COM, is called by
TCPIP$SYSTARTUP.COM. This procedure does two things:

 Configures all interfaces and alias addresses
 Sets and resets the default route

The site where this configuration was developed makes extensive use of alias addresses.
It appears that the ifconfig utility is much more flexible and powerful than the “TCPIP
SET INTERFACE” command. Ifconfig does not create pseudo interfaces for alias
addresses. The drawback is that the “TCPIP SHOW INTERFACE” command cannot
display information about aliases which were created with ifconfig.

Another quirk is that ifconfig is supposed to create interface entities. I could not get it
working. On the other hand, “TCPIP SET INTERFACE <ifname>” without further
information creates the interface if it does not already exist. Conveniently, in that case, it
does not issue an error message.

To sum it up, for every interface, a “TCPIP SET INTERFACE” command is issued, to
make sure that it exists. All further configurations are done with ifconfig.

Next, for every interface, first the DCL symbol MAC is defined and then for each IP
address, a call to a set_interface routine is made:

$ MAC := 00-0F-20-2B-A1-38

$ call set_interface 10.5.50.11/24

$ call set_interface 192.168.35.1/24 alias

© Copyright 2010 Hewlett-Packard Development Company, L.P 45

The set_interface routine will figure out which interface is to be defined. This one gets IP
address 10.5.50.11, and 192.168.35.1 as alias address.

Of course, DCL symbols can be used instead of constants. At the beginning of this
procedure, symbols are defined for all IP addresses that are being used. Several IP
addresses are being used more than once, for IP failover or cluster alias purposes.

A side effect of setting an address for an interface is that the default route may be erased.
Therefore, once all the interfaces have been defined, the default route is set again. This
default route is not necessarily the same as the one defined in the first DCL procedure
described above.

The DCL command procedures

The first one is called TCPIP_INIT_CONFIG.COM. It must be called before
TCPIP$STARTUP.COM is invoked. I added this procedure to the CONFIG phase of
SYSMAN STARTUP, but it can be done in other ways.

TCPIP_INIT_CONFIG.COM
$ set noon
$ nodename = f$getsyi("nodename")
$ if f$trnlnm("sys$pipe") .nes. "" then goto 'p1'
$!
$ call say_msg "-I- Executing CLUSTER_COMMON:TCPIP_INIT_CONFIG.COM"
$ nodename = f$getsyi("nodename")
$ debug = p1 .nes. ""
$ icalc := systools:icalc ! freeware tool, used for mask calculation
$ saved_parse_style = f$getjpi("","parse_style_perm")
$ set process/parse=traditional ! Needed for icalc, a ^ is being used
$!
$! TCPIP_INIT_CONFIG.COM
$!
$! 31-Aug-2006, Bart Zorn
$!
$! This procedure is called before TCPIP$STARTUP.COM and does three things:
$!
$! 1. It sets up logical names to identify all lan adapters (and their TCPIP
$! alias names) by their hardware MAC address. In addition, logical names
$! that are common to all systems are defined.
$!
$! 2. It clears out the permanent tcpip interface database and repopulates
$! it with the default interface defined below.
$!
$! 3. It clears out any permanent default router information and supplies
$! a new default route defined below.
$!
$ base_interface_node01 := 00-0F-20-2B-A1-38 10.5.50.11/24 10.5.50.3
$ base_interface_node02 := 00-0B-CD-F4-E4-A8 10.5.50.12/24 10.5.50.3
$!
$! 1. Lookup all hardware MAC addresses
$!
$hw_loop:
$ device = f$device("_E*","scom") - "_" – ":"
$ if device .nes. ""
$ then
$ if f$getdvi(device,"unit") .eq. 0
$ then

© Copyright 2010 Hewlett-Packard Development Company, L.P 46

$ address = f$getdvi(device,"lan_default_mac_address")
$ interface = f$extract(1,1,device) + f$extract(0,1,device)
$ unit = %X'f$extract(2,1,device)' - 10
$ interface := 'interface''unit'
$!
$ vf = f$verify(1)
$ define/system/exec/nolog adapter_'address' 'device','interface'
$! 'f$verify(vf)'
$ endif
$ goto hw_loop
$ endif
$!
$! 2a. Delete current permanent interface configuration
$!
$ pipe tcpip show configuration interface/full –
> sys$manager:tcpip_saved_configuration.txt 2> nl:
$ pipe tcpip set configuration nointerface */noconfirm > nl: 2> nl:
$!
$! 2b. Repopulate the configuration database
$!
$ lognam = "adapter_" + f$element(0," ",base_interface_'nodename')
$ interface = f$trnlnm(lognam,,1)
$ if interface .eqs. ""
$ then
$ call say_msg –
"-F- TCP/IP default interface is not defined. TCP/IP will not startup."
$ goto exit
$ endif
$ ip_address = f$element(1," ",base_interface_'nodename')
$ mask_length = f$element(1,"/",ip_address)
$ ip_address = f$element(0,"/",ip_address)
$ call generate_mask mask_length mask_longword
$ call convert_longword_to_address mask_longword mask_address
$ vf = f$verify(1)
$ tcpip set configuration interface 'interface' –
/host='ip_address' /network_mask='mask_address'
$! 'f$verify(vf)'
$!
$! 3a. Delete current permanent routing configuration, ignoring errors.
$!
$ pipe tcpip show route/permanent > sys$manager:tcpip_saved_routing.txt 2> nl:
$ pipe tcpip set noroute/permanent/noconfirm/gate=* > nl: 2> nl:
$!
$! 3b. Define permanent default route information
$!
$ def_route = f$element(2,"
",f$edit(base_interface_'nodename',"compress,trim"))
$ vf = f$verify(1)
$ tcpip set route/gateway='def_route'/default/permanent
$
! 'f$verify(vf)'
$!
$exit:
$ set process/parse='saved_parse_style'
$ exit
$!
$say_msg: subroutine
$ msg = f$fao("!8%T !AS",0,P1)
$ write sys$output msg
$ if f$trnlnm("sys$output") .nes. f$trnlnm("sys$error") then write sys$error
msg
$ endsubroutine
$!

© Copyright 2010 Hewlett-Packard Development Company, L.P 47

$generate_mask: subroutine
$ i = 32 - 'p1'
$ pipe icalc 2^'i' > nl:
$ 'p2' == .not. ('ICALC_OUT' - 1)
$ endsubroutine
$!
$convert_longword_to_address: subroutine
$ hex_longword = f$fao("!XL",'p1')
$ a1 = %x'f$extract(0,2,hex_longword)'
$ a2 = %x'f$extract(2,2,hex_longword)'
$ a3 = %x'f$extract(4,2,hex_longword)'
$ a4 = %x'f$extract(6,2,hex_longword)'
$ 'p2' :== 'a1'.'a2'.'a3'.'a4'
$ endsubroutine

The second procedure is called CREATE_INTERFACES.COM. It is called from
TCPIP$SYSTARTUP.COM.

$!
$! CREATE_INTERFACES.COM
$!
$! 24-Mar-2003, Bart Zorn
$!
$ SET NOON
$ CALL SAY_MSG "-I- Executing CLUSTER_COMMON:CREATE_INTERFACES.COM"
$ ifconfig := $tcpip$ifconfig
$ nodename = f$getsyi("nodename")
$!
$! Define symbols to be used here
$!
$ NODE01 := 10.5.50.11/24
$!
$ GOTO SYSTEM_'NODENAME'
$ EXIT ! Do not fall through
$!
$SYSTEM_NODE01:
$!
$ MAC := 00-0F-20-2B-A1-38
$ call set_interface ‘NODE01’
$ call set_interface 192.168.35.1/24 alias
$!
$ MAC := 00-0F-20-2B-A1-37
$ call set_interface ‘NODE01’
$ call set_interface 192.168.35.1/24 alias
$!
$ goto exit
$!
$SYSTEM_NODE02:
$!
$ MAC := 00-0B-CD-F4-E4-A8
$ call set_interface 10.5.50.12/24
$ call set_interface 10.5.50.18/24 alias ! Cluster alias
$!
$ MAC := 00-0B-CD-F4-E4-A9
$ call set_interface 10.5.50.12/24
$ call set_interface 10.5.50.18/24 alias ! Cluster alias
$!
$ MAC := 00-08-02-91-88-CA
$ call set_interface 10.5.50.13/24
$ call set_interface 10.5.50.33/24 alias
$!
$ call set_interface 10.5.52.1/24 home ! Application alias

© Copyright 2010 Hewlett-Packard Development Company, L.P 48

$!
$ goto exit
$!
$EXIT:
$ gosub reset_default_route
$ EXIT
$!
$say_msg: subroutine
$ msg = f$fao("!8%T !AS",0,p1)
$ write sys$output msg
$ if f$trnlnm("sys$output") .nes. f$trnlnm("sys$error") then –
write sys$error msg
$ endsubroutine
$!
$set_interface: subroutine
$!
$! p1 - address/mask
$! p2 - optional parameters
$! p3 - additional parameters for ifconfig
$!
$ lnm = "ADAPTER_" + MAC
$ interface = f$trnlnm(lnm,,1)
$ if interface .eqs. ""
$ then
$ call say_msg "-E- ''lnm' logical name is missing"
$ exit
$ endif
$!
$! Create interface if it does not already exist
$!
$ tcpip set interface 'interface'
$!
$ if f$edit(p2,"lowercase") .eqs. "home" then p2 := home alias
$ params = f$edit(f$fao("!AS !AS
!AS",p3,interface,p2),"trim,compress,lowercase")
$ sv = f$verify(1)
$ ifconfig 'params' 'p1'
$! 'f$verify(sv)'
$ endsubroutine
$!
$reset_default_route:
$ if "''new_default_route'" .eqs. "" then return
$ if f$mode() .eqs. "INTERACTIVE"
$ then
$ if f$trnlnm("tt") .nes. "OPA0:" then return
$ else
$ if f$mode() .nes. "OTHER" then then return
$ endif
$!
$ pipe tcpip netstat -rn | search sys$pipe default | -

(read sys$pipe line ; define/job/nolog line &line)
$ line = f$edit(f$trnlnm("line"),"trim,compress")
$ deassign/job line
$ default_present = f$element(0," ",line) .eqs. "default"
$ if default_present
$ then
$ current_default_route = f$element(1," ",line)
$ if current_default_route .eqs. new_default_route then return
$ endif
$ vf = f$verify(1)
$ tcpip set route /gate='new_default_route' /default
$! 'f$verify(vf)'
$ if default_present

© Copyright 2010 Hewlett-Packard Development Company, L.P 49

$ then
$ if current_default_route .nes. new_default_route
$ then
$ vf = f$verify(1)
$ tcpip set noroute /gate='current_default_route' /noconfirm
$! 'f$verify(vf)'
$ endif
$ endif
$ return

Things yet to be done

When a new system needs to be configured, it is still necessary to run
TCPIP$CONFIG.COM once, but there is no need to configure all interfaces. I have not
yet reverse engineered what steps TCPIP$CONFIG.COM takes with regard to the host
name and domain name settings. Also, the client and server configuration needs to be
done with TCPIP$CONFIG.COM.

Summary

The techniques described here allow for a complete interface configuration for TCP/IP
Services for OpenVMS with two DCL command procedures. These procedures are
organized in such a way that they contain all relevant information for all systems to be
configured. This makes it a lot easier to configure many systems and prevent duplicate IP
addresses and other errors.

For more information

The author can be contacted at Bart.Zorn@Yahoo.com

mailto:Bart.Zorn@Yahoo.com

© Copyright 2010 Hewlett-Packard Development Company, L.P 50

OpenVMS Technical Journal V14

HP OpenVMS CIFS File Security and Management
Shilpa K, HP OpenVMS CIFS File Security and Management

© Copyright 2010 Hewlett-Packard Development Company, L.P 51

Intended Audience

This article is intended for OpenVMS administrators who are responsible for managing
HP OpenVMS CIFS product. Within the scope of HP OpenVMS CIFS as Member
Server, this article provides information about HP OpenVMS CIFS File Security. HP
OpenVMS CIFS File Security is used for managing permissions for users and groups that
are accessing files on an OpenVMS system through HP OpenVMS CIFS. This article
also explains various aspects of HP OpenVMS CIFS File Security such as user, group
and permission mapping.

Introduction to CIFS

HP OpenVMS CIFS is based on Open Source Samba. According to Samba.org, the
definition of samba is “Samba is an Open Source/Free Software suite that provides
seamless file and print services to SMB/CIFS clients. Samba is freely available, unlike
other SMB/CIFS implementations, and allows for interoperability between Linux/Unix
servers and Windows-based clients. Samba is software that can be run on a platform
other than Microsoft Windows, for example, UNIX, Linux, IBM System 390, OpenVMS,
and other operating systems. Samba uses the TCP/IP protocol that is installed on the host
server. When correctly configured, it allows that host to interact with a Microsoft
Windows client or server as if it is a Windows file and print server.”

Samba is based on Microsoft Common Internet File System (CIFS) protocol. CIFS
protocol mainly uses Server Message Block (SMB) commands for communicating with
different systems over network.

Samba being an Open Source product with a world-wide community of developers, it
keeps pace with new Microsoft Operating System releases and thus provides seamless
integration with Windows systems. To take advantage of this and thus to provide
OpenVMS customers with file and print services that keep pace with new Windows
releases, Open Source Samba has been ported onto OpenVMS. This is intended as an
alternative to the existing file and printer services product, Advanced Server for
OpenVMS. The ported version of Open Source Samba on OpenVMS is referred by the
name, HP OpenVMS CIFS. HP OpenVMS CIFS is supported on OpenVMS version 8.2
and later on Alpha platform, and OpenVMS version 8.2-1 and later on Integrity servers.

The main features of HP OpenVMS CIFS henceforth referred simply as CIFS (not to be
confused with CIFS protocol) are:

1. Domain Support
2. Authentication
3. Cluster Services
4. Browsing
5. File and Print Services
6. File and Print Security

© Copyright 2010 Hewlett-Packard Development Company, L.P 52

A brief description about each of the main features and a detailed description of File
Security are provided in the following sections.

Domain Support:
CIFS can act as a NT4-style Member Server in any domain. From CIFS version 1.2
onwards, it can participate as a member in native mode Active Directory Windows
domain that uses Kerberos authentication.
It can act as a NT4-style Primary Domain Controller (PDC), but such a domain may only
contain Backup Domain Controllers (BDCs) that run CIFS. Similarly, it can function as a
NT4-style BDC only if the PDC is also running CIFS. However, unlike HP Advanced
Server for OpenVMS and Windows domain controllers, automatic replication of the user
accounts database is not possible between CIFS PDC and BDCs. To accomplish the
automatic replication of account databases, CIFS requires the assistance of LDAP
servers. By configuring the CIFS PDC and BDCs to use the LDAP backend, replication
of the accounts database is achieved by virtue of the synchronization between LDAP
servers. CIFS can use the LDAP backend to store and obtain user and group account
information in the LDAP directory (such as HP Enterprise Directory or an OpenLDAP
server).

Though a single LDAP server can be used for both the CIFS PDC and BDCs, it is highly
recommended that separate LDAP servers be used for high availability and better
performance.

Authentication:
CIFS supports the basic and less secure share level security wherein the password is
supplied when accessing each share, and a more secure user level security where the
username and password must be supplied to successfully establish connection to CIFS
Server before accessing shares.

In user level security, CIFS supports the following authentication mechanisms:
1. LM - used by old Windows systems
2. NTLM - used by Windows NT and later systems
3. NTLMv2 - used by Windows NT and later systems
4. Kerberos authentication from CIFS version 1.2 onwards (When CIFS acts as a

Member Server in Windows Active Directory)

Additionally, CIFS provides:
1. NT LAN Manager Security Support Provider (NTLMSSP) support for securing

NTLM and NTLMv2 authentication
2. Session security by signing and sealing secure channel data between a domain

member and a domain controller. The CIFS session security can use 64-bit or128-
bit encryption key for encrypting the secure channel data.

3. SMB signing or security signatures, which is used for securing SMB protocol.

© Copyright 2010 Hewlett-Packard Development Company, L.P 53

Cluster Services:
CIFS can be installed either on a single node in an OpenVMS Cluster or, as a CIFS
Member Server, on multiple nodes that share the same CIFS installation directory.

As a single node, CIFS can be installed as a distinct entity (for any CIFS server role) on
each cluster node with separate installation and configuration and thus each node acts as
if on non-clustered OpenVMS system. In this case, each node where CIFS is installed
must not share the same installation directory and must not allow access to the same
directory or files through multiple cluster members.

As a Member server, a common cluster configuration is possible where multiple cluster
members can share the same CIFS installation and configuration directory and data files.
In such an environment, CIFS functions as though the cluster is a single domain entity. In
a cluster, the nodes that share the same CIFS installation and configuration directory must
also share the same SYSUAF and RIGHTSLIST databases.

Browsing:
CIFS supports traditional Windows Browser service functionality. Browser service
functionality is responsible for the “Network neighborhood” view provided by Windows.

File and Print Services:
CIFS allows users to share files and printers present on OpenVMS system to Windows,
Linux, and UNIX clients. These clients see the shared files and printers as being present
on a local system. Due to this, users can seamlessly work with shared files and printers
using the available interfaces on the client system.

CIFS supports files present on ODS-5 and ODS-2 volumes. It can present files with
different OpenVMS file formats and file organizations to Windows clients in a Stream
format. Thus the files with different formats are made readable to Windows clients.
Additionally, CIFS allows you to create files from clients in Stream, Stream_LF, Fixed,
or Undefined format. By default, CIFS supports ASCII character set. Additionally, it
supports Extended ASCII character set (CP850/ISO-8859-1) for some European
characters and VTF-7 support for Japanese characters.

Using CIFS printing services, you can share printers that are connected directly to an
OpenVMS system or any printers present on the network. For sharing printers using
CIFS, print queues must be setup on the OpenVMS system. These print queues can be
setup using DCPS, TELNETSYM, LAT, or LPD. CIFS supports NT-style printing
functionalities such as:

- Printer driver files can be downloaded locally on Windows clients

- Printer driver files can be uploaded onto CIFS Server from the Windows clients
using Add Printer wizard

© Copyright 2010 Hewlett-Packard Development Company, L.P 54

File and Print Security:
An important requirement for any File and Print Services is file security. Unlike
Advanced Server for OpenVMS, which provides NT ACL based file security as well as
OpenVMS based file security, CIFS provides file security to Windows clients using
OpenVMS file security alone. That is, it maps Windows security applied on the files and
directories to OpenVMS file security. File security can be set for any Windows/CIFS user
or group. File and directory access auditing is not provided by CIFS, but standard
OpenVMS auditing can be used for this purpose.

CIFS supports Access Control Lists (ACLs) on printer objects as well.

CIFS Components
The main components of CIFS that provide the above features are:

1. SMBD process
2. NMBD process
3. WINBIND

SMBD process:
SMBD process is responsible for providing domain support, cluster services,
authentication, File and Printer Services, and CIFS File Security mapping functionality.
Each client session creates a new SMBD process. Each SMBD process provides domain
support, cluster coordination services, authentication, file and print services, and File
Security mapping.

NMBD process:
NMBD process provides traditional Windows Browser service functionality apart from
handling NETBIOS name registration and resolution.

WINBIND
WINBIND is a special feature of CIFS that supports automatic mapping of Windows
domain users and groups to OpenVMS UICs and resource identifiers, nested groups (a
group with-in-a group) and trust functionality. In this article, winbind functionality and
WINBIND are used interchangeably and they mean the same. The first 2 features of
WINBIND will be covered in greater detail under the section “The Role of WINBIND in
CIFS File Security”.

On other platforms like Linux, Samba provides winbind functionality through a process
named, WINBINDD. On OpenVMS, winbind functionality is integrated into SMBD
process.

The Scope

Now that a brief summary of CIFS features and components have been provided, the
scope of this article is limited to explaining File security when CIFS is configured as
Member Server.

© Copyright 2010 Hewlett-Packard Development Company, L.P 55

This article does not explain the steps for setting share ACLs on CIFS shares using
Windows ‘Computer Management’ applet. The steps provided in this article are
applicable for setting File Security on CIFS shares apart from directories and files under
the CIFS shares.

CIFS as Member Server

As a member server, CIFS allows the following users to access CIFS shares:

1. Users belonging to the Windows domain, where CIFS is a member
2. Users belonging to the domains trusted by the Windows domain, where CIFS is a

member
3. CIFS local users

A Windows domain user can be a member of multiple domain global groups in the
Windows domain. The domain global groups can be added as members to CIFS local
groups and this is referred as nested grouping. Users and domain global groups belonging
to the domains trusted by the Windows domain, where CIFS is a member and CIFS local
users and groups can also be a part of CIFS local groups.

CIFS allows you to set permissions on files and directories for the above mentioned
users and groups.

You can also set permissions based on the mapped OpenVMS usernames and resource
identifiers. This is supported because of the user and group mapping functionality
provided by CIFS and due to the additional support it provides for OpenVMS File
Security apart from Windows File security.

As mentioned under File and Print Security feature, CIFS maps Windows File Security to
OpenVMS File Security. This raises the basic question: Why is CIFS providing this
security mapping instead of providing Advanced Server style NT ACL support?

Why is CIFS Server dependent upon OpenVMS File Security?

For those customers who are planning to use CIFS, the likely concern about File Security
is probably well expressed by the words in Samba HOW-TO collection on File Access
Controls: “Advanced MS Windows users are frequently perplexed when file, directory,
and share manipulation of resources shared via Samba do not behave in the manner they
might expect. MS Windows network administrators are often confused regarding network
access controls and how to provide users with the access they need while protecting
resources from unauthorized access.

Many UNIX administrators are unfamiliar with the MS Windows environment and in
particular have difficulty in visualizing what the MS Windows user wishes to achieve in
attempts to set file and directory access permissions.

© Copyright 2010 Hewlett-Packard Development Company, L.P 56

The problem lies in the differences in how file and directory permissions and controls
work between the two environments. This difference is one that Samba cannot completely
hide, even though it does try to bridge the chasm to a degree.”

It continues to say “This is an opportune point to mention that Samba was created to
provide a means of interoperability and interchange of data between differing operating
environments. Samba has no intent to change UNIX/Linux into a platform like MS
Windows. Instead the purpose was and is to provide a sufficient level of exchange of data
between the two environments. What is available today extends well beyond early plans
and expectations, yet the gap continues to shrink.”

As part of porting Open Source Samba on to OpenVMS, due to the way File Security is
implemented in Samba, CIFS had to map the Windows File Security to the nearest
possible or an equivalent File Security provided by OpenVMS. To understand the File
Security mapping provided by CIFS, it is necessary to know the following:

1. Windows File Security
2. OpenVMS File Security
3. The need for CIFS to map Windows domain users and groups to OpenVMS

usernames and resource identifiers
4. User and group mapping
5. The role of WINBIND in CIFS File Security
6. Windows to OpenVMS File Security mapping provided by CIFS
7. Limitations due to mapping Windows File Security to OpenVMS File Security

Once these aspects are covered, this article further explains the steps required for setting
up File Security – from a Windows system and from an OpenVMS system.

Note that the goal of this article is not to cover in detail about Windows and OpenVMS
File Security. Only a brief introduction about these topics has been provided, which
might help understand CIFS File Security better.

A brief introduction to Windows File Security

Windows File Security is mainly based on Security Principals and Discretionary Access
Control Lists. A security principal can be a user or a group. On a Windows system, each
user and group is identified by a unique Security Identifier (SID) in the domain.
Windows creates an Access Token structure for a user after successfully authenticating
the user. An Access Token structure consists of the logged in user’s SID and the SIDs for
each of the groups that the user belongs to. In Windows, a local group can contain
another group within it and this is referred as nested-grouping. Suppose if a user ANITA
belongs to group ACCOUNTS and if the group ACCOUNTS is a member of another
group FINANCE, then by virtue of nested grouping, the user ANITA is a member of both
ACCOUNTS and FINANCE groups.

© Copyright 2010 Hewlett-Packard Development Company, L.P 57

Access to each file and directory (otherwise referred to as objects) in a Windows system
can be restricted by applying permissions on them. These permissions on an object are
applied at the discretion of an owner of the object and are also called Discretionary
Access Control Lists (DACLs). The object’s security descriptor is made up of these
DACLs. The DACL is a list of Access Control Entries (ACE) on the object and each
ACE contains permission for a user or group. Within the ACE, a user or group is
represented by its SID. An ACE can be granted for users and groups in the same domain,
for users and groups in the trusted domain and for users and groups in the local Windows
system. Windows allows an explicit deny access to an object apart from allow access.
Additionally, a user or a group can be granted explicit access rights (special privileges)
by administrators that allow access to the object.

When a user tries to access an object, Windows decides access to the object based on the
SIDs in the user’s Access Token and the object’s security descriptor consisting of ACEs.
Windows grants or denies access rights by finding a match for the SIDs in the Access
Token of the user with that of the object’s ACE list. If a match is not found even after
traversing the entire ACE list on the object, then access to the object is denied. In case the
object’s DACL contains more than one ACE that matches the SIDs in the user’s Access
Token, then Windows accumulates access rights for each ACE until the accumulated
access rights exceeds the requested access rights. Thus, for a user ANITA, if the group
ACCOUNTS allowed READ access to an object, and group FINANCE allowed WRITE
access to the same object, then Windows grants READ and WRITE access to the object
for the user ANITA. From this, we can conclude that the order of ACEs in DACL of the
object is not important on a Windows system.

A brief introduction to OpenVMS File Security

The OpenVMS operating system controls access to any object that contains shareable
information. These objects are known as protected objects. Files and directories fall under
the category of protected objects. An accessing process or thread carries credentials in the
form of rights identifiers, and all protected objects list a set of access requirements
specifying who has a right to access the object in a given manner. These are respectively
known as User’s Security Profile and Object’s Security Profile.

User's Security Profile:
The types of identification the system assigns to processes to define their access rights to
objects is referred to as the User's Security Profile. When a user tries to access an object,
it is the process or thread executing on behalf of the user that uses the user’s security
profile to access the object. The User’s Security Profile is also referred to as Subject’s
Security Profile. A User’s Security Profile includes the following elements:

1. User identification code (UIC) identifying the user
2. Rights identifiers held by the process
3. Privileges, if any

© Copyright 2010 Hewlett-Packard Development Company, L.P 58

User Identification Code (UIC)
The first element of a subject's security profile is the user identification code (UIC). Your
UIC tells what system group you belong to and what your unique identification is within
that group.

Rights Identifiers
The second element of a subject's security profile is a set of rights identifiers. A rights
identifier represents an individual user or a group of users. While accessing files and
directories, the Rights Identifiers of interest are:

1. General identifiers - Defined by the security administrator.
2. UIC identifiers - Based on a user's identification code (UIC), which uniquely

identifies a user on the system and defines the group to which the user belongs.

Privileges
A third (optional) element of a subject's security profile is a set of privileges. Privileges
let you use or perform system functions that ordinarily would be denied to you. The
privileges held by the user can affect access to an object.

How Privileges Affect Protection Mechanisms
Security administrators can assign privileges to users when they create or modify user
accounts. The system privileges READALL and BYPASS affect user access, regardless
of the access dictated by an ACL for the object or by other elements in its security
profile. The privileges SYSPRV and GRPPRV are controlled through the system
category of the protection code. The privileges have the following meanings:

BYPASS A user with BYPASS privilege
receives all types of access to the
object, regardless of its protection.

GRPPRV A user with GRPPRV privilege
whose UIC group matches the
group of the owner of the object
receives the same access accorded
to users in the system category.
Thus, the user with GRPPRV
privilege is able to manage any of
the group's objects.

READALL A user with READALL privilege
receives read access to the object,
even if that access is denied by the
ACL and the protection code. In
addition, the user can receive any
other access granted through the
protection code.

SYSPRV A user with SYSPRV privilege
receives the access accorded to
users in the system category.

© Copyright 2010 Hewlett-Packard Development Company, L.P 59

When you define ACLs or protection codes for your objects, remember that users with
amplified privileges are entitled to special access to objects throughout the system. For
example, there is no way to stop a user with the BYPASS privilege from accessing your
files. Users with GRPPRV privilege have the power to perform many system
management functions for other members of their UIC group.

Object’s Security Profile:
The previous section described User’s Security Profile that is required for a user to access
the object. The security elements of any object comprise its security profile and the
object’s security profile defines a list of requirements for accessing the object. An
object's security profile contains the following types of information:

1. The owner of the object. The system uses this element in interpreting the
protection code.

2. The protection code defining access to objects based on the categories of system,
owner, group, and world. This protection code controls broad categories of users.

3. The access control list (ACL) controlling access to objects by individual users or
groups of users.

A brief overview of security elements in Object Security Profile:

Owner
The first element of an object's security profile is the UIC of its owner. In most cases, if
you create an object, you are its owner. As the owner, you can modify its security profile.
The system automatically assigns your UIC to the object and uses it in making access
decisions. There are some exceptions to the ownership rule. Files owned by resource
identifiers do not have a UIC. When a user creates a file in the directory of a resource
identifier, the file may be owned by the resource identifier and not the user who created
the file.

Protection Code
The second element of an object's security profile is the object's protection code. The
protection code associated with an object determines the type of access allowed to a user,
based on the relationship between the user UIC and the owner UIC. A protection code
defines the access rights for four categories of users: (a) the owner, (b) the users who
share the same group UIC as the owner (the group category), (c) all users on the system
(the world category), and (d) those with system privileges or rights (the system category).
OpenVMS code lists access rights in a fixed order: the
system category (S), then owner (O), then group (G), and then world (W). It has the
following syntax:
[user category: access allowed (,user category: access allowed,...)]

Access Control List (ACL)
The third (optional) element of an object's security profile is the object's access control
list. An access control list (ACL) is a collection of Access Control Entries (ACEs) that

© Copyright 2010 Hewlett-Packard Development Company, L.P 60

define the access rights a user or group of users has to a particular protected object, such
as a file, directory, or a device.

With this background information on User’s Security Profile and Object’s Security
Profiles, the next section describes how the OpenVMS system determines a user’s access
to a protected object.

How the System Determines If a User Can Access a Protected Object

When a user tries to access a protected object, the operating system calls the Check
Protection ($CHKPRO) system service to compare the security profile of the user process
or thread with the security profile of the object. In the protection check, $CHKPRO
compares the user's security profile against the protected object's profile using the
following sequence:

1. Evaluate the access control list (ACL).
If the object has an ACL, the system scans it, looking for an entry that matches any of the
user's rights identifiers. If a matching access control entry (ACE) is found, the system
either grants or denies access, and further checking of the ACL stops.

When the matching ACE denies access, a user can still gain access either through the
system and owner fields of the protection code or through privilege. When an ACL has
no matching ACE, the system checks all fields of the protection code.

2. Evaluate the protection code.
If the ACL did not grant access and the object's owner UIC is not zero (refer NOTE), the
operating system evaluates the protection code. The operating system grants or denies
access based on the relationship between the user's identification code (UIC) and the
object's protection code.
For cases where an ACL has denied access, the system examines two fields in the
protection code---the system and owner fields---to determine if the user is allowed
access. The user can still acquire access by being a member of the system or owner
categories or by possessing privileges. A user holding GRPPRV (with a matching group
UIC) or SYSPRV is granted the access specified for the system category of the protection
code.

NOTE: When an object has an owner UIC of zero, the protection code is not checked.
Users have all but control access to the object, provided the ACL has no Identifier ACEs.
If Identifier ACEs are present, then access has to be granted explicitly through the ACL
or through privilege.

3. Look for special privileges.
If access was not granted by the ACL or the protection code, privileges are evaluated.
Users with certain system privileges may be entitled to access regardless of the protection
offered by the ACLs or the protection code. The bypass privilege (BYPASS), group

© Copyright 2010 Hewlett-Packard Development Company, L.P 61

privilege (GRPPRV), read all privilege (READALL), or system privilege (SYSPRV)
amplifies the holder's access to objects.

The above three steps explains the fact that unless the user’s security profile has special
privileges, and if the object has ACLs set on it, the order of the ACLs on the object’s
security profile is very important in granting access to a user.

NOTE: For providing a brief description about OpenVMS File Security, almost all the
information mentioned above has been directly obtained from the HP OpenVMS Guide
to System Security. Minor modifications have been done to keep the security description
to files and directories.

The need for user, group and permission mapping by CIFS

With the above information about Windows and OpenVMS File Security, it can be
observed that there is no one-to-one mapping of Windows users and groups with
OpenVMS usernames (UICs) and resource identifiers. As a File Server that uses CIFS or
SMB protocol, CIFS is required to provide Windows-like File Security based on
Windows users and groups. As CIFS is dependent upon host system File Security, it has
to use OpenVMS File Security that is based on UICs and resource identifiers. The only
way for CIFS to bridge the File Security on these two different Operating Systems is by
mapping:

1. Windows users and groups to OpenVMS usernames (UICs) and resource
identifiers

2. Windows permissions to OpenVMS permissions.

The following sections describe the Windows to OpenVMS user and group mapping and
the permission mapping provided by CIFS.

User and Group mapping

Using the user and group mapping mechanism, CIFS maps domain users to OpenVMS
usernames and domain groups to OpenVMS resource identifiers. Internally, the mapping
is done between domain user SIDs and OpenVMS UICs and, domain group SIDs and
OpenVMS resource identifier values. For easy readability, it is referred to as mapping of
domain users and groups to OpenVMS usernames (UICs) and resource identifiers. The
following topics in this section briefly describe the user and group mapping mechanism.

User Mapping
User mapping involves mapping users belonging to the Windows domain where CIFS is
a member, the domains trusted by it and the CIFS server, to OpenVMS usernames
(UICs). There are three ways using which CIFS maps these users to OpenVMS
usernames:

1. Automatic user mapping provided by WINBIND.

© Copyright 2010 Hewlett-Packard Development Company, L.P 62

2. Implicit user mapping – A domain user with the same username in SYSUAF on
OpenVMS is implicitly mapped. CIFS local users are also mapped using this
mechanism.

3. Explicit user mapping - Using username map file, domain users can be explicitly
mapped to any OpenVMS username.

Automatic User Mapping
Users belonging to the Windows domain where CIFS is a member or the domains trusted
by it can be automatically mapped to OpenVMS usernames provided that WINBIND is
enabled and a valid idmap UID range is available in the Samba Configuration File. This
will be explained in detailed under the topic ‘The role of WINBIND in CIFS File
Security’.

Implicit User Mapping
A user belonging to the Windows domain where CIFS is a member or the domains
trusted by it can be implicitly mapped to an OpenVMS username provided the names are
same. For example, when a user ANITA belonging to the Windows domain connects to
CIFS Server, the user ANITA is implicitly mapped an OpenVMS username ANITA, if it
exists.

By default, CIFS local users are implicitly mapped to OpenVMS usernames. This is
because, a CIFS local user can be created using pdbedit utility, only if a matching
OpenVMS username exists in SYSUAF on OpenVMS. For example, to create a CIFS
local user STEFFI, you must first create or ensure that an OpenVMS username STEFFI
exists in SYSUAF database. The CIFS user accounts database file,
SAMBA$ROOT:[PRIVATE]PASSDB.TDB maintains records related to CIFS local
users.

Explicit User Mapping - Mapping domain users using username map file
Explicit user mapping allows you to map users in the Windows domain where CIFS is a
member and the domains trusted by it to any OpenVMS username using a username map
file.

CIFS supports mapping of multiple domain users to a single OpenVMS username. In this
case, the domain users that have been mapped to a single OpenVMS username share the
File Security that has been specified for that mapped OpenVMS username. For example,
if a directory and the sub directories and files under it are owned by a mapped OpenVMS
username ASVUSER, then all the domain users that are mapped to OpenVMS username
ASVUSER have access to this directory and the sub directories and files under it. The
same is applicable if the mapped OpenVMS username ASVUSER has been explicitly
granted resource identifiers in the SYSUAF database, and File Security on any object in a
CIFS share contains security for these resource identifiers. In this case, all the domain
users that have been mapped to the OpenVMS username ASVUSER will also be able to
access objects based on the resource identifiers that have been granted to the user
ASVUSER in SYSUAF.

© Copyright 2010 Hewlett-Packard Development Company, L.P 63

The following examples provide information on how to setup explicit user mapping:

Edit the username map file, SAMBA$ROOT:[LIB]USERNAME.MAP and add the user
mappings in any of the following ways based on your CIFS setup requirements:

The text following a hash (#) or a semi-colon (;) indicate comment lines.
You can add your own comment lines by prefixing the text with a hash or a semi-colon

; Example for mapping a user in Windows domain (CIFSDOM) to OpenVMS username
SYSTEM=CIFSDOM\administrator

; Example for mapping multiple Windows domain users to a single OpenVMS username
ASVUSER=CIFSDOM\tunga CIFSDOM\kaveri

; Example for mapping a user in trusted domain (TRUSTDOM) to an OpenVMS
username
CIFSUSER=TRUSTEDOM\neela

; An example of username map search stopping after encountering the required mapping
!GANGA=CIFSDOM\GANGES

; An example for mapping all the users connecting to CIFS to a single OpenVMS
username
cifs$default=*

NOTE:
1. By default, the Samba configuration file parameter “username map” points to the

CIFS supplied username map file, SAMBA$ROOT:[LIB]USERNAME.MAP
2. If you create your own “username map” file, ensure that it is in Stream or

Stream_LF record format. Then you must update the Samba Configuration file
parameter “username map” to point to your own username map file.

3. Do not use “cifs$default=*” unless you want to grant same File Security
permissions to all the users connecting to CIFS.

Group Mapping

Group mapping in CIFS involves mapping domain global groups belonging to the
domain where CIFS is a member, the domains trusted by the domain and the CIFS server,
to OpenVMS resource identifiers.

The only supported mechanism for mapping global groups belonging to the domain
where CIFS is a member and the domains trusted by it, to OpenVMS resource identifiers
is the automatic mapping provided by WINBIND. This will be explained in detail under
the section ‘The role of WINBIND in CIFS File Security’.

© Copyright 2010 Hewlett-Packard Development Company, L.P 64

A CIFS local group can be explicitly mapped to an OpenVMS resource identifier using
the command “NET GROUPMAP ADD”. This command automatically creates the CIFS
local group as well as the required mapping with the OpenVMS resource identifier. The
CIFS group mapping database file,
SAMBA$ROOT:[VAR.LOCKS]GROUP_MAPPING.TDB stores the information about
CIFS local groups, members of CIFS local groups and the mapping between CIFS local
groups and OpenVMS resource identifiers.

Summary

To summarize, CIFS local users and groups cannot be automatically mapped by
WINBIND. Automatic mapping of users and groups by WINBIND is applicable only to
users and groups in the Windows domain (where CIFS is a member) and the domains
trusted by it.

The role of WINBIND in CIFS File Security

As mentioned earlier, WINBIND is a special feature of CIFS that provides the following
functionalities:

1. Automatic Mapping - For domain users and groups, WINBIND automatically
creates the corresponding OpenVMS users and groups (resource identifier) if a
mapping for the same does not exist.

2. Nested Group Support – Using nested groups, domain global groups can be added
to CIFS local groups (thus, a group-within-a-group, or "nested" groups). Nested
groups are defined locally on any machine and can contain users and global
groups from the domain (where CIFS is a member) and the domains trusted by it.

3. Trusts - WINBIND is required for all Trust functionality when CIFS is a PDC.

The winbind functionality provided by CIFS is controlled though the logical,
WINBINDD_DONT_ENV. If it is disabled or not defined on a CIFS node, CIFS
provides WINBIND support and if it is enabled by defining it to 1, CIFS turns off the
WINBIND support. As this logical is not defined by default, CIFS provides WINBIND
support by default. When CIFS is a Member Server, automatic mapping and nested group
support provided by WINBIND play an important role in CIFS File Security. Due to this,
it is recommended not to disable WINBIND support on a CIFS Member Server by
defining the logical WINBINDD_DONT_ENV.

Though CIFS provides WINBIND support by default, the automatic mapping feature
provided by WINBIND is enabled, only if you have specified a valid “idmap UID” and
“idmap GID” range in the Samba Configuration File. The next topic ‘Automatic
Mapping’ describes this in detail and the importance of automatic mapping in CIFS File
Security.

© Copyright 2010 Hewlett-Packard Development Company, L.P 65

Automatic mapping:

One of the purposes of WINBIND is to automate the creation of OpenVMS UICs and
resource identifiers (in POSIX GID format) and maintain their correspondence to the
appropriate Windows SIDs to minimize identity management efforts. The WINBIND
identity mapping database file,
SAMBA$ROOT:[VAR.LOCKS]WINBINDD_IDMAP.TDB maintains the mapping
between Windows SIDs and OpenVMS UICs and resource identifiers. The mapping
between a Windows SID and an OpenVMS username or a resource identifier is created
only if there is no existing mapping entry in this database file. If the required mapping is
missing, the automatic creation and mapping of OpenVMS usernames and groups
(resource identifiers) occurs under the following two circumstances:

1. After the user is successfully authenticated, CIFS tries to map the authenticated
user and all the groups that the user belongs, to an OpenVMS username (UIC)
and groups (resource identifiers). The domain or CIFS groups can be either nested
groups or the groups that the authenticated user directly belongs. If a mapping is
found missing for an authenticated user and if this user is also a domain user,
WINBIND can automatically create the required OpenVMS username and then
map this OpenVMS username to the authenticated user. Similarly, if the mapping
is found missing for any of the domain global groups that the user belongs;
WINBIND can create the required OpenVMS group (resource identifier) and map
it to the domain group.

2. When setting security on files and directories in CIFS shares, if the security
principal (subject) to whom you are granting the permission is a user or global
group in the Windows domain (where CIFS is a member) or the domains trusted
by it, WINBIND can create and map the required OpenVMS username (UIC) or
resource identifier to a domain user or group SID.

When an OpenVMS username is created by WINBIND, it specifies a UIC for that
username. Similarly, when it creates an OpenVMS resource identifier, it creates the
identifier in POSIX group identifier format by supplying a GID value. In order for
WINBIND to use the UIC and GID values specified by you while creating OpenVMS
usernames and resource identifiers, WINBIND provides a mechanism, which allows you
to explicitly specify a set of values for UICs and GIDs that are allocated solely to
WINBIND. WINBIND obtains the user IDs (UIDs) used to assign a UIC value to an
OpenVMS username, and group IDs (GIDs) used to assign a value to the POSIX group
identifier (resource identifier) from the Samba configuration file global parameters
"idmap UID" and "idmap GID". These parameters must be set to a range of values
allocated solely to WINBIND. The next two sections explain the steps used by CIFS to
create OpenVMS usernames and resource identifiers using “idmap UID” and “idmap
GID” range of values.

© Copyright 2010 Hewlett-Packard Development Company, L.P 66

How does WINBIND map domain users to OpenVMS users?

WINBIND uses the chosen integer "idmap UID" value, to derive both the OpenVMS
username and the UIC. The UID value is converted to a hexadecimal value and appended
to the string "CIFS$" to derive the OpenVMS username. The UID value is converted to
octal and the octal value is used as the UIC group and member number.

NOTE: Since UIC group numbers are limited to a maximum value of Octal 37776
(decimal 16382), the upper range limit on the "idmap UID value is 16382. Similarly,
because UIC group numbers below Octal 376 are reserved for use by HP, it is
recommended not to specify a value below 255 as the lower range of "idmap UID".

For example, if the Samba configuration file contains:
idmap uid = 1000-2000

WINBIND will initially allocate UID 1000 and create an OpenVMS user named
CIFS$3E8 with a UIC of [1750,1750]. The username CIFS$3E8 is created with
interactive login disabled, nodisuser flag enabled and with NETMBX and TMPMBX
privileges only. After the user CIFS$3E8 is successfully created in SYSUAF, the
mapping of UID 1000 (for user CIFS$3E8) to a corresponding domain user SID is then
stored in the file, SAMBA$ROOT:[VAR.LOCKS]WINBINDD_IDMAP.TDB. This file
must be backed up regularly to avoid the loss of the required mappings necessary to
maintain file security.

How does WINBIND map domain groups to OpenVMS resource identifiers?

WINBIND uses the chosen integer "idmap GID" value, to derive both the OpenVMS
resource identifier (group) name and group identifier (GID) value. The GID value is
converted to a hexadecimal value and appended to the string "CIFS$GRP" to derive the
OpenVMS resource identifier name.

NOTE: Because WINBIND creates POSIX Group Resource Identifiers (POSIX GID),
the maximum value is limited to %xFFFFFF or %d16777215. The lower limit is 1.
OpenVMS automatically adds %xA4000000 to the value chosen. When CIFS is installed
on an OpenVMS system, by default it automatically uses the GID values %xFFFFF0 thru
%xFFFFFF and thus the highest GID value that can be specified is limited to
%xFFFFFEF or %d16777199.

For example, if the SMB.CONF file contains:
idmap gid = 5000-10000

WINBIND will initially allocate GID 5000 and create an OpenVMS resource identifier
named CIFS$GRP1388. After the resource identifier CIFS$GRP1388 is successfully
created in the RIGHTSLIST database on OpenVMS, the mapping of GID 5000 (for
group CIFS$GRP1388) to a corresponding domain group SID is then stored in the file,
SAMBA$ROOT:[VAR.LOCKS]WINBINDD_IDMAP.TDB. It is critical that this file is

© Copyright 2010 Hewlett-Packard Development Company, L.P 67

backed up regularly as its loss will result in loss of the required mappings necessary to
maintain security.

NOTE:
1. In an existing CIFS configuration, if you have to increase the “idmap uid” or

“idmap gid” range values, retain the lower value of the range as it is while
increasing only the higher value in the range. For example, in the “idmap uid”
range specified above, to increase “idmap uid” range, specify the new range as
“1000-3000”. WINBIND will automatically adjust the existing “idmap uid” range
while retaining the current mapping entries in the WINBINDD identity mapping
database file. This guarantees that the existing security on files and directories
that might have been set based on the existing mapping entries are still valid.

2. HP OpenVMS CIFS Administrator’s Guide contains the flow charts on how the
user and group mapping occurs in CIFS.

3. WINBIND automatic mapping feature is disabled by default as CIFS does not
provide default values for “idmap uid” and “idmap gid” parameters. If WINBIND
is enabled, automatic mapping feature is enabled once the valid “idmap uid” and
“idmap gid” range values are specified in the Samba configuration file.

4. From CIFS V1.2 onwards, “idmap uid” and “idmap gid” ranges can be specified
through Samba configuration utility.

Domain users and groups mapped by WINBIND:

WINBIND does not map all the users and global groups in the domain (where CIFS is a
member) or in the domains trusted by it, even if automatic mapping is enabled. Instead it
maps only the following domain users and groups:

1. Users belonging to the Windows domain (where CIFS is a member) or the
domains trusted by it, who successfully established connection to CIFS Server at
least once.

2. The domain global groups in the Windows domain where CIFS is a member or
the domains trusted by it that contain the successfully authenticated users as
members.

3. Users and groups belonging to the Windows domain where CIFS is a member and
the domains trusted by it, to whom the CIFS administrator explicitly granted
permissions for any Share, File or directory on CIFS.

Tracking and managing users and groups created by WINBIND

As explained above, WINBIND uses the range of values specified for “idmap uid” and
“idmap gid” parameters in the Samba configuration file while creating OpenVMS
usernames and resource identifiers. When WINBIND runs out of either of these idmap
ranges that are specified in the Samba configuration file, it will report errors in the CIFS
client log files. The client’s log files will be created in the directory
SAMBA$ROOT:[VAR].

© Copyright 2010 Hewlett-Packard Development Company, L.P 68

CIFS provides a utility called WBINFO that can be used for viewing the OpenVMS
usernames and resource identifiers created by WINBIND and the corresponding mapping
to domain users and groups. You can execute the WBINFO utility as:

$ @SAMBA$ROOT:[BIN]SAMBA$DEFINE_COMMANDS.COM
$ WBINFO --hostusers-to-domainusers
$ WBINFO --hostgroups-to-domaingroups

The option “--hostusers-to-domainusers”, displays the domain/CIFS users along with the
mapped OpenVMS usernames. The option “--hostgroups-to-domaingroups”, displays the
domain/CIFS groups alongside the mapped OpenVMS resource identifiers. These two
options are meant only for viewing the mapped users and groups and it cannot be used for
enumerating the users and groups either in SYSUAF database on OpenVMS or in the
domain/CIFS databases.

To check for the mapping between a single OpenVMS username or resource identifier
(group) and a domain user or group, execute the command:

$ WBINFO --hostname-to-domainname=<OpenVMS username or resource
identifier name>

When is automatic mapping provided by WINBIND required?

CIFS supports domain group to OpenVMS resource identifier mapping only through
WINBIND. If you plan to set permissions on files and directories based on domain
groups, automatic mapping provided by WINBIND is a must. Additionally, because
WINBIND automates the OpenVMS username and resource identifier creation and the
corresponding mapping with Windows SIDs, it can be used to avoid the manual
administrative work related to identity management.

When is automatic mapping provided by WINBIND not required?

Automatic mapping provided by WINBIND need not be used if the following two
conditions are satisfied:

1. All the domain users connecting to CIFS Server are either explicitly or implicitly
mapped to the OpenVMS usernames.

2. Security Permissions on CIFS shares/files/directories are not based on domain
global groups.

In this case, if you want to set permissions for domain global groups, then you must add
them as members to CIFS local groups. Then, security on Files/Folders/Shares in CIFS
can be set based on CIFS local groups. By virtue of nested group support provided by
WINBIND, the security specified on an object for CIFS local groups that contain the
domain global groups is automatically applicable to these domain global groups and the
users belonging to them. The topic ‘Managing CIFS local groups’ provides examples on
how to add domain users and domain global groups as members to CIFS local groups.

© Copyright 2010 Hewlett-Packard Development Company, L.P 69

Nested group support:

As already mentioned, group within a group is referred to as nested grouping. Using the
nested group support provided by WINBIND, you can add the following users and
groups as members to CIFS local groups:

1. Users and domain global groups that belong to the Windows domain where CIFS
is a member.

2. Users and domain global groups that belong to the domains trusted by the
Windows domain where CIFS is a member.

3. Users and local groups in CIFS server database

As explained under “When is automatic mapping provided by WINBIND not required?”
topic, Nested group functionality allows you to setup File Security based on CIFS local
groups. WINBIND supports nested groups even when automatic mapping feature
provided by it is disabled.

User Persona Creation

The mapping of domain/CIFS user and group names to OpenVMS UICs and resource
identifiers occurs after the user connecting from a client system to CIFS server is
successfully authenticated. After the user is authenticated, CIFS creates a persona for the
user (User’s Security Profile) that will be used by the SMBD process to access any object
in CIFS server on behalf of the user. The persona for the authenticated user is internally
created for the mapped OpenVMS username by the SMBD process.

The persona for the mapped OpenVMS user is made up of the following:
1. Mapped OpenVMS user’s UIC and resource identifiers. These resource identifiers

are the successfully mapped identifiers for the domain/CIFS groups that the
authenticated user belongs.

2. Default privileges of the mapped OpenVMS username in SYSUAF.
3. Any general identifiers that were explicitly granted by the OpenVMS

administrator for the mapped OpenVMS username in SYSUAF.

When an authenticated domain/CIFS user tries to access an object in CIFS share,
OpenVMS grants access to the object based on the persona of the mapped OpenVMS
user mentioned earlier. The only exception to this is, when the authenticated user is part
of “admin users” in CIFS. When a user belongs to “admin users” in CIFS, the
authenticated user’s persona is same as that of the fully privileged user’s persona that was
originally created by the SMBD process for authenticating the domain/CIFS user. By
default, the SMBD process authenticates the domain/CIFS users using the persona of
SAMBA$SMBD account.

NOTE:
1. CIFS mandatorily requires that an identifier with the same UIC value as the UIC

of the mapped OpenVMS username is present in the RIGHTSLIST database. For
example, for a mapped OpenVMS user named, STEFFI with a UIC of [600,600],
there must be a corresponding identifier with a UIC of [600,600].

© Copyright 2010 Hewlett-Packard Development Company, L.P 70

2. Even though CIFS provides user mapping, a user connecting to the CIFS Server
cannot be authenticated based on the credentials of the mapped OpenVMS
username in SYSUAF.

3. SAMBA$SMBD account is created by CIFS as part of CIFS installation.

Windows to OpenVMS Permission Mapping provided by CIFS

The earlier sections explained the first part of CIFS File Security “User and Group
Mapping”. The following sections explain the Windows permissions to OpenVMS
permissions mapping provided by CIFS.

Windows to OpenVMS Permission Mapping

OpenVMS allows you to specify READ (R), WRITE (W), EXECUTE (E), DELETE (D)
or CONTROL (C) access permission on an object or a combination of RWEDC
permissions (Refer note). On Windows, you can specify ‘Full Control, Modify, Read and
Execute, List Folders Contents (for directories only), Read, Write’ standard permissions
on an object using the ‘Security’ dialog box. Using the ‘Advanced Security Setting’
dialog box, Windows provides special permission setting. “Table 1 - Windows
Permissions to OpenVMS permissions mapping” gives the list of Windows permissions
that are mapped to corresponding OpenVMS permissions by CIFS. The “Advanced” in
brackets indicates that this permission is available on Windows, only under the
‘Advanced Security Setting’ dialog box. ‘Full Control’ and ‘Read’ permissions are part
of standard as well as special permissions.

Table 1 – Windows Permissions to OpenVMS Permission Mapping

Windows Permissions OpenVMS Permissions

Full Control RWEDC

Modify RWED

Read and Execute RE

Read R

Write W

Full Control (Advanced) RWEDC

Traverse Folder / Execute File
(Advanced)

E

List Folder / Read Data (Advanced) R

Read Attributes (Advanced) R

Read Extended Attributes (Advanced) R

Create Files / Write Data (Advanced) W

Create Folder / Append Data (Advanced) W

Write Attributes (Advanced) W

Write Extended Attributes (Advanced) W

Delete Subfolders and Files (Advanced) Not supported

Delete (Advanced) D

© Copyright 2010 Hewlett-Packard Development Company, L.P 71

Read Permissions (Advanced) R

Change Permissions (Advanced) C

Take Ownership (Advanced) C

NOTE: Though the access permission, ACCESS=NONE specified on an object on
OpenVMS is honoured by CIFS as it depends on OpenVMS to grant access, CIFS does
not support setting this access permission on an object from a Windows system.

Windows Inheritance Value to OpenVMS inheritance mapping

On a Windows system, when setting permissions on a directory, you can specify if the
access is applicable only to that directory or to the subfolders and files that will be
created under it or to a combination of these.

Similarly, OpenVMS provides DEFAULT ACLs for the directories that are applicable
only to the files and directories created under it while the access to the directory is
controlled by the access ACE on the directory. “Table 2 – Windows inheritance value to
OpenVMS inheritance mapping” provides information about Windows to OpenVMS
inheritance mapping provided by CIFS.

Table 2 - Windows inheritance value to OpenVMS inheritance mapping

Windows Inheritance Value VMS Inheritance mapping

This Folder only Maps to access ACE

This Folder, Subfolders and Files An ACE of this type is mapped to
both access and default ACE.

This Folder and Subfolders Maps only to access ACE for this
directory.

This Folder and Files Maps only to access ACE for this
directory.

Subfolders and Files only Maps to default ACE for this
directory.

Subfolders only This type is not supported and any
ACE with this type is ignored by the
CIFS.

Files only This type is not supported and any
ACE with this type is ignored by the
CIFS.

Mapping OpenVMS RMS protection code to Windows Permissions

By default, OpenVMS automatically sets the protection code (RMS protection code) on
each object when it is created. Though the ACLs on an object are optional, the protection
code is a must. The syntax of the protection code consists of permissions for SYSTEM,

© Copyright 2010 Hewlett-Packard Development Company, L.P 72

OWNER, GROUP, and WORLD categories. Optionally, OpenVMS lets you specify
inheritable DEFAULT_PROTECTION ACE on the directories that consists of protection
code for these categories. The protection code specified in this ACE will be applied to the
newly created files within the directory and the newly created directories within the
parent directory will inherit this ACE.

On a Windows system, it has OWNER category to indicate the owner of the object and
Everyone group that contains all the users on the Windows system. CREATOR OWNER
and CREATOR GROUP present on the parent directory specify the permissions that will
be inherited by the child objects for OWNER and the primary group of the owner
respectively.

“Table 3 – OpenVMS RMS protection code category mapping to Windows mapping”
shows the mapping provided by CIFS for OpenVMS protection code category to
corresponding Windows mapping.

Table 3 - OpenVMS RMS protection code category mapping to Windows mapping

RMS Protection code category Windows mapping

Owner/SYSTEM Owner

Group (displayed as) Unix Group

World Everyone

Owner of default protection ACE CREATOR OWNER on the
directory

Group of default protection ACE CREATOR GROUP on the
directory

World of default protection ACE Everyone for Subfolder and Files

Controlling OpenVMS Protection code using SMB.CONF parameters

CIFS provides various Samba Configuration File (SMB.CONF) parameters that allow
you to control OpenVMS RMS protection code setting when:

1. The directories and files are newly created
2. Security permissions are explicitly set on the directories.

From CIFS patch set PS009 for CIFS V1.1 ECO1 onwards, the way these SMB.CONF
parameters control OpenVMS RMS protection code have been simplified. Due to this,
the implementation of many SMB.CONF parameters related to File Security is quite
different on CIFS for OpenVMS when compared to Open Source versions of Samba
(which are primarily based on the UNIX security model).

With this simplification, CIFS now allows OpenVMS to determine security using
standard security rules when new files and directories are created. CIFS then adjusts the
RMS protection code and owner based on various SMB.CONF parameters; however, the

© Copyright 2010 Hewlett-Packard Development Company, L.P 73

defaults for these parameters are such that they will not modify the security that
OpenVMS would apply (with exceptions noted).

The following SMB.CONF parameters can be used to modify security applied by
OpenVMS:

1. inherit owner - The default value is "no". If set to "yes", causes CIFS to set the
RMS owner of new objects to that of the parent directory.

NOTE: If "inherit owner = no" and a parent directory is owned by a Resource
Identifier, when a non-privileged user who has WRITE access to this directory, creates a
new file, CIFS sets the Owner to the UIC of the user creating the file, rather than the
Resource Identifier. Thus, in order to retain the OpenVMS behavior (i.e., to set the
resource identifier as owner), add "inherit owner = yes" to the applicable [share] sections
of the SMB.CONF file. This will be addressed in a future release.

2. inherit vms rms protections - This is a new parameter with a default value of "no".
If set to "yes", causes CIFS to:

a. Set the RMS protection code to that of parent directory.
b. Ignore a DEFAULT_PROTECTION ACE, if present.
c. Ignore the RMS protection mask specified by the SYSGEN parameter

RMS_FILEPROT.
d. Ignore the mask and mode parameter values specified in the SMB.CONF

file.

3. “Table 4 – mask and mode parameters” provides the list of mask and mode
parameters supported by CIFS. The value of the appropriate "mask" parameter is
AND'd with the result of the RMS protection code that OpenVMS would apply.
This result is then OR'd with the value of the appropriate mode parameter:

Table 4 – mask and mode parameters

Parameter Name Affects RMS protection code when

create mask Creating new files

force create mode Creating new files

directory mask Creating new directories

force directory mode Creating new directories

directory security mask Windows users modify security on the
directory

force directory security
mode

Windows users modify security on the
directory

© Copyright 2010 Hewlett-Packard Development Company, L.P 74

NOTE:
i. CIFS for OpenVMS does not use the SMB.CONF parameters "security mask"

and "force security mode" when a Windows user modifies the security of a
file.

ii. As "create mode" parameter is same as "create mask" parameter, if required,
use "create mask" parameter instead of "create mode".

iii. The following mask and mode parameter are related for doing AND & OR
operation to generate a resultant RMS protection code:
a. "create mask" and "force create mode"
b. "directory mask" and "force directory mode"
c. "directory security mask" and "force directory security mode"

iv. By default, the value of the mask parameters is 07777 and that of mode
parameters is 00000 with the only exception of “force directory mode”. From
CIFS version 1.2 onwards, the default value for “force directory mode” is
04000. This is to allow DELETE permission for OWNER category of the
protection code when a new directory is created.

SMB.CONF parameters that cannot be modified

The following SMB.CONF parameters must not be modified from their default values
and if you modify the value to a non-default value, it is not supported by CIFS:

1. inherit acls - Default is "yes"; you cannot disable inheritance of ACLs
2. inherit permissions - Replaced by the "inherit vms rms protections" parameter
3. security mask - Not supported
4. force security mode - Not supported

Delete access support for RMS protection code when using mask and mode
parameters

One of the significant changes introduced with the release of patch set PS006 for CIFS
V1.1 ECO1 concerns granting DELETE access in the RMS protection code on new
objects. Previously, the various mask and mode parameters tied DELETE access to the
WRITE bit; i.e. if you enabled WRITE access you also enabled DELETE access.
However, with the release of PS006, DELETE and WRITE protections have been
separated as documented below.

In addition, with the release of patch set PS009 for CIFS V1.1 ECO1, the default values
for the mask and mode parameters have been changed such that they will not adjust the
security that OpenVMS would itself apply (except where noted).

© Copyright 2010 Hewlett-Packard Development Company, L.P 75

The values for the mask and mode parameters now have this significance:

<mask or mode parameter name> = 0dogw

Where:
'0' = Indicates the value is Octal
'd' = Controls granting DELETE access across all categories of the RMS
protection code (see below)
'o' = Controls granting READ, WRITE, and EXECUTE access for the Owner
category of the RMS protection code
'g' = Controls granting READ, WRITE, and EXECUTE access for the Group
category of the RMS protection code
'w' = Controls granting READ, WRITE, and EXECUTE access for the World

category of the
RMS protection code

NOTE: The System category of the RMS protection code receives the same
permission as the Owner category; there is no option to modify this behavior.

DELETE access is signified using a bitmask with the following values:

4 = Grant DELETE access to Owner category of RMS protection code
2 = Grant DELETE access to Group category of RMS protection code
1 = Grant DELETE access to World category of RMS protection code

The Owner, Group, and World access values are also bitmasks which signify the
following access:

4 = Grant READ access
2 = Grant WRITE access
1 = Grant EXECUTE access

ACL order while applying CIFS File Security

In OpenVMS File Security section, it showed that the order in which the ACLs are
applied on the files and directories is very important on an OpenVMS system while the
same does not hold for Windows systems.

Due to the contrasting nature of Windows and OpenVMS systems’ ACL processing, it is
important to understand the order in which the ACLs are applied by CIFS when setting
security on an object. When a CIFS administrator sets security permission on an object
present in the CIFS share from a Windows system, CIFS first converts these Windows
permissions to OpenVMS permissions. If the security was applied for users and groups,
the converted OpenVMS permissions will contain OpenVMS ACLs for the mapped
OpenVMS usernames and resource identifiers. After this conversion, CIFS applies the
OpenVMS ACLs on the object. While applying OpenVMS ACLs on an object, CIFS
must preserve the existing OpenVMS specific ACLs that would have been added by an

© Copyright 2010 Hewlett-Packard Development Company, L.P 76

OpenVMS administrator and these ACLs should ideally be retained in their original order
(Refer note for information about OpenVMS specific ACEs). For example, on an
OpenVMS system, users who fail to have access to a file based on any of the top order
ACEs could be granted READ access by using an ACE,
(IDENTIFIER=*,ACCESS=READ). Typically, an ACE similar to this would be present
at the bottom of ACLs. CIFS, when setting permission, needs to ensure that this ACE is
almost always present at the bottom of the ACLs on an object. Due to this reason,
following design is implemented in CIFS when applying security on an object from a
Windows system:

1. When a new ACE for a user or group is applied on an object in a CIFS share from
a Windows system, after converting the Windows ACE to OpenVMS ACE
format, CIFS applies this ACE at the top of the OpenVMS ACL order on an
object.

2. While modifying an existing ACE for a user or group on an object in a CIFS share
from a Windows system, after converting the Windows ACE to OpenVMS ACE
format, CIFS finds out the location of the existing ACE that is getting modified.
Then, it replaces the existing ACE with a modified ACE entry at the same
location.

3. All the OpenVMS specific ACEs like AUDIT, ALARM, IDENTIFIER=*,
PROTECTED and HIDDEN are retained in their existing locations.

NOTE: OpenVMS specific ACEs like AUDIT, ALARM, IDENTIFIER=*,
PROTECTED, and HIDDEN that exist on an object in a CIFS share cannot be viewed or
modified from a Windows system.

Limitations due to File Security Mapping

Until now, the article explained how the Windows File Security is mapped to OpenVMS
File Security. This mapping mechanism is not without its limitations as Windows and
OpenVMS systems vastly differ in the way they process ACLs on an object to grant
access to the object. The limitations due to File Security mapping provided by CIFS are
in the following areas:

1. Object access
2. File permission setting
3. Built-in Administrators group
4. Windows inheritance value mapping
5. Windows permission mapping
6. Viewing permissions on a directory from Windows

Object access limitation:

As mentioned in Windows File Security, Windows systems allow access to an object
based on the accumulated access permissions for an object unless the user has special
rights. Refer section ‘Windows File Security’ to understand how Windows derives
accumulated access permissions for an object. Thus the order in which the ACLs appear
on an object has no importance on Windows systems.

© Copyright 2010 Hewlett-Packard Development Company, L.P 77

On OpenVMS systems, the order in which the ACLs appear on an object is very
important. This is because OpenVMS grants access to an object based on the first
matching ACE that it encounters from the top of ACE list unless the user has special
privileges or is an owner of the file.

When a user tries to access an object in a CIFS share from a client system, CIFS lets the
OpenVMS system to decide access to the user based on the persona of the mapped
OpenVMS user that was created by CIFS. According to the OpenVMS security rules, if
the user is not an owner of the object and has no special privileges, user connecting to
CIFS would be granted access to an object based on the first matching ACE encountered
by OpenVMS system on that object. This can lead to access permission limitation in the
following scenario:
A user ANITA belongs to two domain global groups FINANCE and ACCOUNTS. On an
object, an ACE corresponding to one of the domain global groups FINANCE is granted
READ access and is above the ACE corresponding to another domain global group
ACCOUNTS which has full permissions (RWEDC). When a user ANITA that belongs
to these 2 domain global groups access this object on a CIFS share, OpenVMS grants
read only access to this user for the object based on the first matching ACE. On this
object, the first matching ACE for the user ANITA is for the domain global group
FINANCE. Thus, the ACE corresponding to the domain global group ACCOUNTS
which has higher access permissions is not exercised for the user ANITA when the object
is accessed by this user. This is an architectural limitation.

The workaround to this problem is to set security on an object in a CIFS share path from
an OpenVMS system. While doing so, it must be ensured that the ACEs with highest
access permissions are at the top of ACL order and the ACEs with lowest access
permissions are at the bottom of ACL order.

File Permission setting limitation:

CIFS does not support exclusive permission setting on a file, though the same is
supported for directories/folders. For example, in a directory with 100 files and folders
under it, one user may have READ access to this directory and the files and folders under
it. Just for a single file in this directory, you may want to grant modify (RWED) access
for this user. This is not supported by CIFS with one exception. The exception to this
problem is, either you make this user as OWNER of the file or grant ‘Change Permission’
(CONTROL) access to the file for this user. You may want to use this workaround only if
you want this user to have control access to this file and not otherwise.

CIFS does not support exclusively specified OpenVMS specific ACEs (like
PROTECTED, HIDDEN etc) on a file though the same is supported for directories. For
example, in a directory with 100 files and folders, you might have exclusively set an
AUDIT ACE on a particular file in this directory. A user with modify (RWED) access to
this file, opens it, then saves the modified file and closes it. The AUDIT ACE that was
exclusively set on this file might have been lost after the file was closed. This is

© Copyright 2010 Hewlett-Packard Development Company, L.P 78

particularly applicable for Microsoft office application files. The only workaround to this
problem is to apply an inheritable default ACEs on the parent directory. This will lead to
all the files and sub directories under the parent directory inheriting the ACE.

Built-in Administrators group limitation:

Prior to CIFS patch set PS005 for CIFS V1.1 ECO1, all the members of CIFS built-in
(local) Administrators group were granted the two special OpenVMS privileges,
BYPASS and SYSPRV. This allowed full administrative privileges to users belonging to
built-in ‘Administrators’ group. By virtue of nested grouping, if the built-in
‘Administrators’ contained any other CIFS local groups or domain global groups (like
‘Domain Admins’), the users belonging to these nested groups were also granted the
BYPASS and SYSPRV privileges. Due to this, these users were automatically entitled to
perform CIFS Administrative work like File Security setting, user and group management
and so on. From CIFS patch set PS005 for CIFS V1.1 ECO1 onwards, members of built-
in Administrators group are no longer granted BYPASS and SYSPRV privilege. As a
result, though the members of built-in ‘Administrators’ group can perform rest of the
administrative work, they cannot set security on files and folders. Next section describes
how the members belonging to built-in ‘Administrators’ group can be granted permission
on files and directories for managing security on the same.

Windows inheritance value mapping limitation

When setting permissions on a directory in CIFS share from a Windows system,
Windows provides multiple options on how the permissions can be applied on a
directory. CIFS does not support ‘Subfolder only’ and ‘Files only’ Windows inheritance
value options. Refer to “Table 2 - Windows inheritance value to OpenVMS inheritance
mapping” for interpretation of rest of the Windows inheritance value options and their
mapping to OpenVMS ACEs.

Windows permissions mapping limitation

CIFS does not support the special permission ‘Delete Subfolder and Files’ options that is
available from the permissions list in the ‘Advanced Security Setting’ dialog box. If you
try to set permission for this option, you are likely to encounter “Access denied” error.

Limitation in viewing permissions on a directory from Windows

From Windows, when viewing permissions on a CIFS directory or share using the
‘Security’ dialog box, you will see empty permissions for users and groups. This does not
correctly reflect the permissions existing for the users and groups on that directory or
share. In order to correctly view permissions on a CIFS directory or share, always use
‘Advanced Security Setting’ dialog box. In the ‘Security’ dialog box, click on
‘Advanced’ tab to go to ‘Advanced Security Setting’ dialog box.

© Copyright 2010 Hewlett-Packard Development Company, L.P 79

On the other hand, you can correctly view permissions on files in a CIFS folder using the
‘Security’ dialog box itself.

Permissions and Privileges required by a user for setting up CIFS File

Security

A user who tries to setup File Security on an object in a CIFS share must have certain
privileges or permissions to successfully set up File Security. This section describes the
permissions and privileges that allow a user to set up CIFS File Security.

Permissions for users belonging to built-in Administrators group:

The topic ‘Built-in Administrators group limitation’ mentioned the reasons why a user
who belongs to built-in Administrators either directly or through nested grouping, can no
longer set File Security or access files and directories in CIFS shares. CIFS provides an
alternative option such that all the users belonging to the built-in Administrators group
either directly or through nested grouping, can still manage File Security on files and
directories in a CIFS share. To use this option, you should grant READ access to the files
and directories in CIFS shares for the OpenVMS resource identifier,
CIFS$ADMINISTRATORS. You can apply this identifier either for all the files and
directories under all the CIFS share paths or only to a selected files and directories under
certain share paths. Once the resource identifier CIFS$ADMINISTRATORS is applied
on an object with READ access, while setting permissions from a Windows system, a
user belonging to built-in Administrators group (either directly or through nested
grouping) can take ownership of the object. After the user becomes an owner of the
object, the user is allowed to set required permissions for other users and groups on that
object.

The READ access to the OpenVMS resource identifier, CIFS$ADMINISTRATORS can
be granted by executing the commands similar to the following on an OpenVMS system:

$ SET DEFAULT [CIFSSHARE]

To apply inheritable default ACE to directories under CIFSSHARE.DIR, execute:

$ SET SECURITY/ACL=
(IDENTIFIER=CIFS$ADMINISTRATORS,OPTIONS=DEFAULT,ACCESS=READ) –

_$ [...]*.DIR

To apply access ACE for files and directories under CIFSSHARE.DIR, execute:

$ SET SECURITY/ACL= (IDENTIFIER=CIFS$ADMINISTRATORS,ACCESS=READ) [...]*.*;*

If you would like to grant CIFS$ADMINISTRATORS resource identifier to the parent
directory CIFSSHARE.DIR, execute:

© Copyright 2010 Hewlett-Packard Development Company, L.P 80

Applying default ACE for inheritance:
$ SET SECURITY/ACL=
(IDENTIFIER=CIFS$ADMINISTRATORS,OPTIONS=DEFAULT,ACCESS=READ) –
_$ [-]CIFSSHARE.DIR

Applying access ACE:
$ SET SECURITY/ACL= (IDENTIFIER=CIFS$ADMINISTRATORS,ACCESS=READ) [-

]CIFSSHARE.DIR

NOTE:
1. CIFS, by default creates CIFS$ADMINISTRATORS OpenVMS resource

identifier after CIFS has been successfully configured and connection was
established to it at least once.

2. You can grant any other access permission to CIFS$ADMINISTRATORS in
addition to READ depending upon the security setup in your CIFS environment.

Full privileges to selected domain users and CIFS local users:

For granting full administrative privileges to a selected list of domain users and CIFS
local users, you can use the SMB.CONF parameter, “admin users”. By administrative
privilege, it is meant full privileges that can be granted to a user on an OpenVMS system.
You can follow the steps mentioned below for granting administrative privilege to a
selected list of users.

On a CIFS member server, to grant an administrative privilege to a user belonging to the
Windows domain (where CIFS is a member) or the domains trusted by it, the format of
the “admin users” parameter in the Samba configuration file is:

admin users = <DOMAINNAME\domain-user>

On CIFS a member server, to grant an administrative privilege to a CIFS local user, the
format of the “admin users” parameter in the Samba configuration file is:

admin users = <CIFS local username>

NOTE:
1. You can specify multiple usernames in the same line. When specifying multiple

usernames, separate each username by a comma.
2. Domain usernames and CIFS local usernames can be specified in the same line.

For example, domain users and CIFS local users can be specified in the same line
as:

admin users = <DOMAINNAME\domain-user>, <CIFS local username>

3. Prior to CIFS version 1.2, the “admin users” parameter can be added in the
[global] section of the Samba configuration file
SAMBA$ROOT:[LIB]SMB.CONF. From CIFS version 1.2 onwards, you can

© Copyright 2010 Hewlett-Packard Development Company, L.P 81

update the “admin users” parameter in the Samba configuration include file,
SAMBA$ROOT:[LIB]ADMIN_USERS_SMB.CONF.

4. “admin users” parameter, if specified under the [global] section of Samba
configuration file grants full privileges to all the CIFS shares and files and folders
under these shares in addition to allowing these admin users the right to do other
administrative operations

5. “admin users” parameter, if specified under the share section of the Samba
configuration file, grants administrative privileges to the specified admin users
only for that share.

Granting privileges to a mapped OpenVMS username

A domain or a CIFS local user whose account is mapped to an OpenVMS username will
derive the same privileges as the mapped OpenVMS username. Due to this, a domain or a
CIFS local user can become a privileged administrative user, provided you have granted
the necessary privileges (like BYPASS, SYSPRV, GRPPRV) for the mapped OpenVMS
username. The privileges mentioned here are the default privileges of a mapped
OpenVMS username in SYSUAF database. CIFS does not honor authorized privileges of
a mapped OpenVMS username.

You can use the following DCL command to grant privileges for a mapped OpenVMS
user:

$ MCR AUTHORIZE MODIFY <OpenVMS-username>/DEFPRIVILEGES =
(<privileges>)

Privileges can be BYPASS, SYSPRV, and GRPPRV etc. Multiple privileges can be
specified by separating them using a comma.

NOTE: Some of the utilities provided by CIFS honor current privileges of the terminal
process that is executing the utilities on behalf of the user.

Special permission – ‘Change Permission’ or CONTROL access

A user, who has ‘Change Permission’ or CONTROL access to an object, can modify
permissions on that object for other users and groups. The same is possible, if any of the
groups that the user belongs to (either directly or through nested grouping), has ‘Change
Permission’ or CONTROL access to an object. Again, this is subject to OpenVMS
security rules and depends on the ACE location in the ACLs on the object unless the user
is an owner of the object or has special privileges.

By granting a ‘Change Permission’ (CONTROL access) on an object for a user or to any
of the groups that the user belongs to, you allow the user to set permissions on this object
for any other users and groups.

© Copyright 2010 Hewlett-Packard Development Company, L.P 82

Privileges/Permissions for a user when setting CIFS File Security from an
OpenVMS system

A user who tries to set up CIFS File Security on an object in a CIFS share path from an
OpenVMS system must have full privileges (BYPASS privilege is a must) to set security.

Steps for setting up CIFS File Security

This section describes the steps that are required for setting up File Security on CIFS
shares and directories. For setting File Security on a share using the steps provided
below, the share is treated as a directory. This section includes the following topics:

1. Managing CIFS local groups – Describes how to add users and groups to CIFS
local groups

2. Setting up File Security from a Windows system – Describes how to set up File
Security from a Windows system.

3. Setting up File Security from an OpenVMS system - Describes how to set up File
Security from an OpenVMS system.

NOTE: Before you follow rest of the topics, you must ensure that you have successfully
added CIFS as member server to a Windows domain as rest of the topics assume that a
working CIFS configuration is already in place.

As the above mentioned topics will be based on practical examples in most cases, sample
configuration information used in these examples is as follows:

Windows Domain name (where CIFS is a Member Server): CIFSDOM
CIFS Member Server name (OpenVMS system name): PIANO
Windows PDC emulator name for the domain CIFSDOM: ROX3

Managing CIFS local groups

This section describes the steps and commands that can be executed for managing CIFS
local groups. Following users and groups can be added as members to a CIFS local
group:

1. Users and global groups of the domain where CIFS is a member
2. Users and global groups of the domains trusted by the domain where CIFS is a

member
3. CIFS local users and groups

NOTE: In an OpenVMS cluster, if multiple nodes in a cluster share the same samba$root
installation directory where CIFS is configured as Member Server, use the CIFS cluster
alias name for the “-W” option of NET RPC GROUP command instead of OpenVMS
system name.

The steps for managing CIFS local groups are as follows:

© Copyright 2010 Hewlett-Packard Development Company, L.P 83

Step 1: Login to an OpenVMS system and define Samba commands

1. Login to an OpenVMS system (PIANO) where CIFS is configured, using a fully
privileged OpenVMS user account (say, SYSTEM).

2. Define Samba commands by executing:

$ @SAMBA$ROOT:[BIN]SAMBA$DEFINE_COMMANDS.COM

Step 2: Creating a privileged CIFS user
To execute the commands mentioned in ‘Step 3’ that let you manage CIFS local

groups, you must first create a CIFS local user with an administrative privilege if no such
user exists. To do this, execute the following commands:

1. Create an OpenVMS username say, CIFSADMIN:

$ SHOW LOGICAL SYSUAF

If it is not defined, execute:
$ DEFINE SYSUAF SYS$SYSTEM:SYSUAF

$ MCR AUTHORIZE COPY SAMBA$TMPLT CIFSADMIN/UIC=[600,600]/FLAG=NODISUSER

NOTE: From CIFS version 1.2 onwards, CIFS by default creates CIFSADMIN account in SYSUAF.

2. Create a CIFS user account with the same name as the OpenVMS username
created in previous step:

$ PDBEDIT “-a” CIFSADMIN

new password: any1willdo
retype new password: any1willdo

3. Update “admin users” parameter
a. For versions prior to CIFS V1.2, edit the Samba configuration file,

SAMBA$ROOT:[LIB]SMB.CONF and add or update (append) the
following parameter in the [global] section:

admin users = cifsadmin
b. From CIFS version 1.2 onwards, edit the Samba configuration include file,

SAMBA$ROOT:[LIB]ADMIN_USERS_SMB.CONF and update
(append) the following parameter:

admin users = cifsadmin

© Copyright 2010 Hewlett-Packard Development Company, L.P 84

Step 3: Executing commands to add/modify/delete CIFS local groups

1. Adding or Creating a CIFS local group:

a. Add a resource identifier say, CIFSUSERS in the RIGHTSLIST database by
executing the following command:

$ MCR AUTHORIZE ADD/IDENTIFIER/ATTRIBUTE=RESOURCE CIFSUSERS

b. To add/create a CIFS local group by mapping it to the resource identifier,
CIFSUSER, execute:

$ NET GROUPMAP ADD NTGROUP=CIFSUSERS UNIXGROUP=CIFSUSERS TYPE="L"

2. To list the groups in CIFS local database, enter one of the following commands:

$ NET GROUPMAP LIST
OR

$ NET RPC GROUP LIST "-W" PIANO "-S" PIANO "-U" CIFSADMIN%"Pwd of CIFSADMIN"

3. To add an already existing CIFS local user (STEFFI) or a local group (PLAYERS)
to a CIFS local group (CIFSUSERS), enter the following commands:

$ NET RPC GROUP ADDMEM CIFSUSERS STEFFI "-W" PIANO "-S" PIANO -
_$ "-U" CIFSADMIN%"Pwd of CIFSADMIN"

$ NET RPC GROUP ADDMEM CIFSUSERS PLAYERS "-W" PIANO "-S" PIANO -
_$ "-U" CIFSADMIN%"Pwd of CIFSADMIN"

4. To a CIFS local group (CIFSUSERS), to add a domain user (ANITA) or a domain
global group (ACCOUNTS) that belong to the domain CIFSDOM, enter the
following commands:

$ NET RPC GROUP ADDMEM CIFSUSERS CIFSDOM\ANITA "-W" PIANO –
_$ "-S" PIANO "-U" CIFSADMIN%"Pwd of CIFSADMIN"

$ NET RPC GROUP ADDMEM CIFSUSERS CIFSDOM\ACCOUNTS "-W" PIANO –
_$ "-S" PIANO "-U" CIFSADMIN%"Pwd of CIFSADMIN"

5. To list members of a CIFS local group (CIFSUSERS), enter the following
command:

$ NET RPC GROUP MEMBERS CIFSUSERS "-W" PIANO "-S" PIANO –
_$ "-U" CIFSADMIN%"Pwd of CIFSADMIN"

6. To delete a group from a CIFS local group (CIFSUSERS), enter the following
command:

$ NET RPC GROUP DELMEM CIFSUSERS CIFSDOM\ACCOUNTS "-W" PIANO –
_$ "-S" PIANO "-U" CIFSADMIN%"Pwd of CIFSADMIN"

© Copyright 2010 Hewlett-Packard Development Company, L.P 85

NOTE: The same command can be used to delete a CIFS local user or a group OR
a domain user or a domain global group. To delete a CIFS local user or a group,
specify only the name, i.e., without the ‘DOMAINNAME\’

7. To delete a CIFS local group (CIFSUSERS), enter the following command:

$ NET RPC GROUP DELETE CIFSUSERS "-W" PIANO "-S" PIANO –
_$ "-U" CIFSADMIN%"Pwd of CIFSADMIN"

NOTE: You must first delete all the members from CIFS local group
(CIFSUSERS) before deleting the group itself.

Additional Note:

In the above examples, to add/remove users and groups that belong to domains trusted by
a Windows domain (CIFSDOM) to a CIFS local group, use the member name as
‘TRUSTEDDOMAIN\<USERNAME or GROUPNAME>

Setting up File Security from a Windows system

This section describes the steps that should be followed for setting up File Security on
shares/folders from a Windows system. It is assumed that you will be using a user
account that has the required permissions or privileges (described in earlier sections) to
execute the following steps.

Step 1: Login to CIFS Server

From the Windows system, connect to CIFS server (PIANO) by specifying \\<CIFS
server name or IP address> at the prompt, “Start->Run” or map the required CIFS share
by right-clicking on the ‘My Computer’ icon on the desktop and then select ‘Map
Network drive’ in the menu. This will take you to ‘Map Network drive’ dialog box. In the
‘Map Network Drive’ dialog box, enter shared folder name under ‘Folder’ drop–down
and then click ‘Finish’. If prompted for credentials, connect using a user account (say,
ANITA) that has the required privileges/permissions to manage the security on the shared
folder.

Step 2: Setting security
a. Select the shared folder or any folder within the shared folder that you would

like to manage and right-click on it and select Properties->security-
>Advanced.

b. If the user account (ANITA) that you used for connecting to CIFS Server in
step 1 (under this topic) is a member of built-in Administrators group (either
directly or because of nested grouping) and you are managing the share/folder
only because of the permissions that have been granted for the OpenVMS
resource identifier CIFS$ADMINISTRATORS, then follow rest of the steps
under ‘b’, otherwise go to step ‘c’.

i. Select ‘Owner’ tab in the ‘Advanced Security Setting’ dialog box.

© Copyright 2010 Hewlett-Packard Development Company, L.P 86

ii. When the ‘Owner’ dialog box is displayed, check if you are the owner
of this object. If so, proceed to step ‘c’.

iii. When the ‘Owner’ dialog box is displayed, if the connected user
account name is not displayed in ‘Change owner to’ list, click on
‘Other Users or Groups’. This will take you to ‘Select User, Computer,
or Group’ dialog box.

iv. In the ‘Select User, Computer, or Group’ dialog box, if connected user
(ANITA) does not belong to the location (domain) displayed, click on
‘Locations’ tab. In the ‘Locations’ list box, select the appropriate
location where the connected user account (ANITA) is present and
click ‘OK’.

v. In ‘Select User, Computer, or Group’ dialog box, enter the connected
user name (ANITA) under the ‘Enter the object name to select
(examples):’ and click on ‘Check Names’. If Windows finds multiple
names for the name that you have entered, it will display ‘Multiple
Names Found’ list box. In this box, select the appropriate name (RDN)
and click ‘OK’. If ‘Multiple Names Found’ box is not displayed or
once you return from the ‘Multiple Names Found’ box, click ‘OK’ in
the ‘Select User, Computer, or Group’ dialog box.

vi. After returning to ‘Owner’ dialog box, select the connected user name
(ANITA) under ‘Change owner to’ list box and click ‘Apply’ button.
Once the owner name is set to connect user name (ANITA), select
‘Permissions’ tab. As you are now an owner of this object, proceed to
step ‘c’ for setting permissions to other users and groups.

c. In the ‘Advanced Security Setting’ box, choose permissions tab (by default
permissions tab is chosen). Click on “Add” tab if you would like add a new
permission entry for a user or group, or to modify/remove an existing
permission entry, select the user or group under the ‘Permission entries’.

d. If you want to remove the selected ‘Permission entry’, click on ‘Remove’ tab
and then click on ‘Apply’ button. Now, go to step ‘i’.

e. If you want to modify the selected ‘Permission entry’, skip this step and go to
step ‘f’. If you want add a new ‘Permission entry’, follow rest of the steps
under this step.

i. If you want to add a new permission entry, click on the ‘Add’ tab.
Windows now displays ‘Select User, Computer, or Group’ dialog box.

ii. In the ‘Select User, Computer, or Group’ dialog box, if a user or group
name to whom you want to grant permissions belongs to the displayed
location (domain), proceed to next step ‘iii’. If a user or group belongs
to any other location (domain), click on ‘Locations’ tab; Select the
appropriate ‘Location’ in the ‘Locations’ list box and click ‘OK’.

iii. In ‘Select User, Computer, or Group’ dialog box, under ‘Enter the
object name to select (examples)’, type the user or group name to
whom you want to grant permission, Then, click on ‘Check Names’
tab. If Windows finds multiple names for the name that you have
entered, it will display ‘Multiple Names Found’ list box. In this box,
select the appropriate name (RDN) and click ‘OK’. If ‘Multiple Names

© Copyright 2010 Hewlett-Packard Development Company, L.P 87

Found’ box is not displayed or once you return from ‘Multiple Names
Found’ box, click ‘OK’ in the ‘Select User, Computer, or Group’
dialog box. From this step onwards, follow instructions from step ‘f’.

f. Windows will now display ‘Object’ dialog box. Select the permissions that
you would like to grant for the selected ‘Name’ from the ‘Permissions’ list. If
you are setting permissions for a directory or a shared folder object, select the
appropriate inheritance value from the ‘Apply onto’ drop-down. Next, click
‘OK’.

g. Once you return to ‘Permissions’ dialog box in ‘Advanced Security Setting’,
click on ‘Apply’ button.

h. Next, you can either repeat steps ‘b’ to ‘g’ or click on ‘OK’ to exit the
‘Advanced Security Setting’ dialog box. Once you return to ‘Security’ dialog
box, click ‘OK’ to exit the ‘Security’ dialog box.

Setting up File Security from an OpenVMS system:

This section describes the steps/commands that should be followed for setting File
Security from an OpenVMS system for users and groups belonging to the Windows
domain, where CIFS is a member (CIFSDOM), the domains trusted by it and the CIFS
Server. This method is limited to a user who has a fully privileged user account on the
OpenVMS system. The steps to be followed are:

1. Login to an OpenVMS system using a fully privileged OpenVMS account, say
“SYSTEM”.

2. Define Samba commands by executing:

$ @SAMBA$ROOT:[BIN]SAMBA$DEFINE_COMMANDS.COM

3. Find out the mapped OpenVMS identifier of a domain/CIFS user or group to
whom you are trying to grant permissions by executing the following command
and note down the identifier name (VMSIDENTIFIER-NAME) displayed:

$ WBINFO --domainname-to-hostname=<DOMAINNAME\USERNAME OR
GROUPNAME>
VMSIDENTIFIER-NAME

NOTE:
a. If it is a user or a group belonging to Windows domain (CIFSDOM),

where CIFS is a member, replace DOMAINNAME with the Windows
domain name (CIFSDOM).

b. If it is a user or a group belonging to a domain trusted by Windows
domain (CIFSDOM), replace DOMAINNAME with the trusted domain
name.

c. If it is a user or a group that exists on the CIFS local database, replace
DOMAINNAME with CIFS server name (PIANO).

© Copyright 2010 Hewlett-Packard Development Company, L.P 88

4. Execute the following command to set required permission for the identifier
(VMSIDENTIFIER-NAME) noted down in step ‘3’. For example,

a. if you want to grant READ and EXECUTE access permissions to a
directory DIRECTORY_NAME.DIR that is under a CIFS share path, you can execute:

$ SET SECURITY/ACL=(IDENTIFIER=VMSIDENTIFIER-NAME,ACCESS=READ+EXECUTE) –
_$ DEVICENAME:[PARENT_DIR_PATH]DIRECTORY_NAME.DIR

b. If you would like to apply the inheritable DEFAULT ACE on this
directory, you can set DEFAULT ACE by executing:

$ SET SECURITY/ACL=(IDENTIFIER=VMSIDENTIFIER-NAME,OPTIONS=DEFAULT, -
_$ ACCESS=READ+EXECUTE) DEVICENAME:[PARENT_DIR_PATH]DIRECTORY_NAME.DIR

5. To modify permissions for an existing ACE and to replace the modified ACE at
the existing ACE location, you can execute:

$ SET SECURITY/ACL=(IDENTIFIER=VMSIDENTIFIER-NAME,ACCESS=READ+EXECUTE) –
_$ /REPLACE= (IDENTIFIER=VMSIDENTIFIER-NAME,ACCESS=READ+WRITE+EXECUTE) -
_$ DEVICENAME:[PARENT_DIR_PATH]DIRECTORY_NAME.DIR

6. To insert an ACE after another ACE, you can execute:

$ SET SECURITY/ACL=(IDENTIFIER=VMSIDENTIFIER-
NAME,ACCESS=READ+WRITE+EXECUTE) –
_$ /AFTER=(IDENTIFIER=EXISTING-VMSID-NAME,ACCESS=READ+WRITE+EXECUTE+DELETE)
-
_$ DEVICENAME:[PARENT_DIR_PATH]DIRECTORY_NAME.DIR

NOTE: The ACE specified for /AFTER must exactly match the existing ACE on
the directory.

NOTE: This step can be used as a workaround for the “File access limitation”.
The ACE with higher permission can be place before the ACE with lower
permission.

7. To remove an ACE for a user or a group whose identifier was obtained in ‘3’,
execute the following command:

$ SET SECURITY/ACL=(IDENTIFIER=VMSIDENTIFIER-NAME, -

_$ ACCESS=READ+WRITE+EXECUTE)/DELETE –
_$ DEVICENAME:[PARENT_DIR_PATH]DIRECTORY_NAME.DIR

NOTE: Execute $ HELP SHOW SECURITY to obtain more help.

Backing up CIFS DATABASE files

The previous sections covered user and group mapping, permission mapping, and the
steps that can be used for setting permissions. It can be noted that the permission on the
objects in a CIFS share is applied based on the mapped OpenVMS usernames and

© Copyright 2010 Hewlett-Packard Development Company, L.P 89

resource identifiers (groups) and not based on the domain/CIFS users and groups that
they are mapped to. From this, it should be noted as to how important it is to maintain
this user and group mapping information for retaining security on the objects. As already
mentioned in previous sections, few of the CIFS databases maintain this mapping
information. The following databases in CIFS are crucial and they must be backed up
regularly in order to avoid any loss of data due to avoidable or unavoidable reasons:

winbindd_idmap.tdb - Stores records for WINBIND created mapping between domain
SIDs and idmap UID/GID values (or OpenVMS UICs and
resource identifiers).

group_mapping.tdb - Stores records for CIFS local groups and the members of these
groups
passdb.tdb - Stores records for CIFS local users when passdb backend =

tdbsam
secrets.tdb - Stores private information like workstation passwords, the ldap

admin dn and trust account information
account_policy.tdb - Stores NT account policy settings such as pw expiration
share_info.tdb - Stores information about share ACLs
ntdrivers.tdb - Stores information about installed Printer drivers
ntforms.tdb - Stores information about installed Printer forms
ntprinters.tdb - Stores information about installed printers

The passdb.tdb and secrets.tdb database files will be present in the directory,
SAMBA$ROOT:[PRIVATE]. Rest of the database files will be present in the directory,
SAMBA$ROOT:[VAR.LOCKS].

For more information

The information present in this article has the following sources:
 SAMBA Official HOW-TO
 HP OpenVMS CIFS Administrator’s Guide
 HP OpenVMS Guide to System Security
 Microsoft Authentication and Access Control Technologies
 Release notes for CIFS Patch set for CIFS V1.1 ECO1

© Copyright 2010 Hewlett-Packard Development Company, L.P 90

OpenVMS Technical Journal V14

Making the Business Case for Migrating VMS Oracle
Applications to the Web
Jennifer McNeill
Vice President, Oracle Practice
Unify/CipherSoft Corporation

© Copyright 2010 Hewlett-Packard Development Company, L.P 91

Introduction

Many companies have millions of dollars invested in existing Oracle VMS application
systems, with most of these mission critical systems that run their business. Application
software and its associated databases are valuable corporate assets. Companies now want
to leverage their current investment in data, products and applications with new Web-
enabled applications. It is generally not practical to spend countless dollars replacing
existing, functional systems with new technology or a new programming paradigm. It
makes far more business sense to implement new technology (such as Oracle 10g, 11g and
Java) where the impact will be the greatest (such as in the front-end of the application) and
the relative cost will be the most reasonable. The goal is to leverage existing application
systems and data while providing new Web based functionality.

Many organizations are contemplating utilizing the new capabilities that are being provided
with Web technology. While past versions of Oracle Forms have enabled companies to
access the Web, 10g and 11g are providing one of the most robust environments thus far.
However, the move to the Web is not always as easy as it seems. It is important that
organizations understand the business reasons to move their applications and determine if
the effort and dollars spent will justify the migration costs. Understanding the risks of
migration, the options available and the benefits of Java is imperative to ensure an
organization is not spending precious IT dollars on an alternative that does not make
business sense.

While migrating VMS Oracle applications to the Web seems challenging, the ability to
maintain the years of application development with proven automated tools provides
tremendous benefits to organizations. By utilizing an automated migration tool,
organizations can save costs as well as time over rewriting an application.

As companies review the differences between migrating to Java and performing
development in 10g and 11g there are some key components that assist in the decision for
the future development environment.

Migration to Forms 10g and 11g is beneficial if:

 The organization has very few Java resources and retains a skill set in Forms and
PL/SQL development

 The application doesn’t require changes to the look and feel of the application
 Skill sets in Forms and PL/SQL are readily available to the organization long-term

(stability in resource retention)
 The Forms being used presently are character based versions of Forms (this is due to

the learning curve involved in migrating from a client-server technology to multi-
tiered Java)

 Java plug-ins (downloads) are acceptable to clients using the application

Migration to Java is beneficial if:

 Java has been chosen as the future development environment for the organization
 Application development costs require reduction (Java development provides much

lower development costs)
 The legacy Forms application requires integration with other applications developed

in other environments

© Copyright 2010 Hewlett-Packard Development Company, L.P 92

 Other applications within the organization are utilizing Java technology
 The use of open source technology is beneficial to the organization
 Provision of choices within the client’s environment is required (such as HTML,

DHTML, use of browers, etc.)
 The use of SOA architecture is beneficial to the organization
 The organization has determined that the use of proprietary technology is no longer

beneficial

The Benefits of Java

Java offers clients a robust, interactive environment. It is one of the most powerful Object
Oriented Programming languages available and one of the most “open” technologies
available. Java conforms both to its own standardized (and published) specifications as well
as to other industry standards such as CORBA. JDBC (Java Database Connectivity)
provides a standardized interface for relational databases that can interface, providing a
greater level of database independence and portability. It also provides platform
independence allowing an organization to utilize the most efficient and effective hardware
available. Having choices for hardware and database software can be very liberating for an
organization, deterring vendors from holding companies hostage to their proprietary
environments.

Why is Java Superior?

Java is currently the only technology that provides a fully interactive GUI interface for the
Web. The Java architecture was designed with security in mind and not as an afterthought.
This provides a simplified and consistent means of protecting IT assets. Java also provides
features that allow programming to become easier and more powerful. These include:
Multi-threading capabilities:

1. Automatic “garbage collection” (for efficient use of memory)
2. Standardized error trapping and detection
3. Distributed processing capabilities

Java’s Capabilities for Web Development

One of the benefits of utilizing Java as a development environment is the ability to create a
user interface in several different ways:

1. HTML using JSF or JSP
2. Java Plug-in running in a browser
3. Java plug-in running outside of a browser

When utilizing Oracle Forms, the User Interface is provided as part of Form and is an
applet running in a browser window. While this may be a good choice for the present, in
order to move forward with development technology such as Oracle’s WebCenter, ADF,
struts, spring and the Web development capabilities Java provides many more choices and
capabilities.
Java provides well-known standards that provide developers with full control of their
application environment and integration. This enables Web development of applications to
be much more flexible.

© Copyright 2010 Hewlett-Packard Development Company, L.P 93

Migration Process

Exodus - The Steps of the Automated Conversion process

1. Oracle Forms
The Oracle Forms .fmb module, library and PL/SQL procedures are used as source
files. All of this source programming is utilized by Exodus which creates a readable
version of the Forms application in Java.

2. Exodus Migration
Once the key structures and functions have been organized, Exodus translates the
original application's components into the corresponding Java plug-in or JSF (ADF)
components as required. In doing so, the migrated application maintains the same
business logic and can optionally either show the same look and feel as the original
application, or convert to a specific user defined screen.

3. Compilation
The compilation process can be performed in any IDE, such as JDeveloper,
VisualAge and NetBeans to compile, maintain, and upgrade the migrated
application. The Application is now 100% J2EE compliant Java code and as such
can be integrated into ANY Java supporting environment or development tool.

4. Deployment
The generated Java Code is object oriented, readable and fully maintainable, ready
to be deployed on any J2EE compliant application server and environment. It can
now be free of and dependency on proprietary environments and tools. The entire
application can now be maintained by any Java proficient developer.

5. Maintaining the Converted Application
Exodus-VE is a visual editor that provides drag and drop capabilities to the
maintenance and enhancement of the converted application. This enables clients to
start maintaining and enhancing their application immediately after conversion with
relative ease.

Oracle's Strategic Direction?

Oracle has been straightforward with their approach as they move towards new technology.
Their goals include:

1. Pooling server-side Java virtual machines to reduce the memory footprint of
applications that call middle-tier Java
2. Reduced application pre-starting
3. Performance and scalability on the Web
4. Expanding the scope and depth of the Forms management tuning and problem
diagnosis facilities within Enterprise Manager
5. Extensible client and middle-tier Java integration (Java Importer and Pluggable
Java Component Interface)
6. Development of their own Enterprise applications with technology such as ADF
and JDeveloper

© Copyright 2010 Hewlett-Packard Development Company, L.P 94

Oracle cites research from IDC to make the case that the enterprise market is headed in the
J2EE direction:

The Options for Migration
There are several options available for migration of Oracle Forms or PL/SQL into the new
Java environment. Conversions and migrations have been performed over the past 25 years
as organizations move from older technology to the newest. Many lessons have been
learned through these conversions. With the options available, an organization can
determine the methodology that suits their requirements based on the time available before
the migrated application is required to be in production. This review should include their
financial restraints as well as their internal capabilities. The following outlines options for
migrating the applications.

Rewrite the Application
There's a subtle reason that programmers always want to throw away code and start over.
The reason is that they think the old code is a mess. And here is the interesting observation:
they are probably wrong. The reason that they think the old code has problems is because of
a cardinal, fundamental law of programming: “It's harder to read code than to write it”. This
is why code reuse is so hard. Programmers tend to write their own function because it's
easier and more fun than figuring out how the old function works.

In other words, rewriting applications from scratch is the most expensive and time-
consuming option. Many organizations believe that rewriting will solve their problems.
They choose to rewrite because they need additional functionality, or because they believe
it will save them time and money. One of the obstacles with rewriting applications is the
enormous amount of testing that has to be performed to ensure business logic is handled
properly, users understand the application, and the application is applicable for the
business.

Web-enable Forms
This option seems to be simple. Utilize the capabilities of Forms and become Web-enabled.
However, as an organization moves towards 10g, this option becomes less feasible. Some
sort of migration effort is required to fully take advantage of the capabilities of 10g. There
are companies who are just not ready to migrate their development to Java. This may be
due to resource restraints or knowledge level, or simply because they prefer to continue to
develop their applications in Oracle Forms. In this case, utilizing migration services or tools
to migrate to 10g makes sense. This will provide an organization the benefits of the 10g
technology as well as prepare them for a future move to Java.

Manual Conversion
This alternative is by far one of the highest risks. It is not only time consuming, but also
shares the negatives that rewriting the application presents. This includes human error
issues, lack of resources or skill set and disruptions to the business operations. In addition,
escalating costs usually coincide with manual conversions. Many organizations have started
their Forms to Java conversions manually only to determine that the time difference
between manual and automatic is significant.

Automatic Conversion
Automatic conversion is one of the best alternatives to migrating applications. With an
effective migration tool, the conversion can be performed quickly and effectively with

© Copyright 2010 Hewlett-Packard Development Company, L.P 95

tremendous cost savings. Some conversion tools have benchmarked to be 90% faster than
manual migration and 80% less expensive. In addition, automatic conversion reduces the
risks for the organization. Functionality is maintained and users do not require retraining.
There are several options for automatic conversion that enable an organization to move
quickly into the new environment. It is important to note, however, that all automatic
conversion alternatives are not the same.

There are presently very few tools available in the market with some venders offering a
service to perform a Forms to Java conversion. In some cases, these vendors require that the
client send their code “offshore” to have the conversion performed. In addition, there are
questions that should be asked of the vendor to ensure that the migration is being converted
to a true Java or J2EE environment. These include:

1. Is my application being converted to truly compliant J2EE code?
2. Are we able to purchase the tools, or is this a service offering only?
3. Where is my conversion to be performed (on-site or at the client's site)?
4. Are we able to discontinue licensing of Oracle Forms and PL/SQL or do I still
have to license these products?
5. Is the vendor available to assist with any issues and training once we migrate to
Java?
6. What percentage of conversion is automatic or how much manual work is
involved once it is converted?
7. Is the J2EE code “clean”, i.e., is it easily maintainable once I get into the Java
environment?
8. Does the converted code integrate with JDeveloper and utilize the ADF and BC4J
environment from Oracle?

It is important that as a company asks these questions, they actually work with the vendor
to provide a “sample” of the converted Java code. An organization should have the option
to send in a small sample of an application to see the resulting converted code. This will
ensure that the code is easily maintainable and functional as soon as it is migrated.
Functionality can be added or changed during an automatic migration, as it can be more
closely controlled than with other migration alternatives.

Summary

It is sometimes difficult to determine the best solution for migrating applications to new
technology. The conversion of applications should not be a painful exercise, but one that
provides efficient alternatives to the organization enabling the most cost efficient option.

Making the business decision to determine how to move into new environments is not
always easy. Weighing the benefits to the business of becoming Web-enabled against the
time and effort required for a migration process is an important part of this decision.
Keeping costs and risks to a minimum, as well as causing little business interruption will
ensure that the organization continues to benefit from the project.

© Copyright 2010 Hewlett-Packard Development Company, L.P 96

For more information

Jennifer McNeill
Vice President, Oracle Practice
CipherSoft (A wholly owned subsidiary of Unify Corporation)

Jennifer.mcneill@ciphersoftinc.com

www.ciphersoftinc.com

mailto:Jennifer.mcneill@ciphersoftinc.com
http://www.ciphersoftinc.com/

© Copyright 2010 Hewlett-Packard Development Company, L.P 97

OpenVMS Technical Journal V14

SimH Supports Availability Manager Development
Environment at HP
Barry Kierstein, Software Engineer

© Copyright 2010 Hewlett-Packard Development Company, L.P 98

Introduction

During my tenure at Hewlett-Packard, I served as the project leader for Availability
Manager on OpenVMS. As such, I was responsible for its development and testing on the
VAX, Alpha, and Integrity platforms. This article describes the deployment of the open
source SimH VAX emulator to replace aged VAX hardware while maintaining the
Availability Manager test environment. This article was sponsored by Migration
Specialties.

The article is in two main sections. The first section tells the story of why SimH VAX was
selected and how it was utilized to solve legacy hardware and testing issues. The second
section, Configuration and Implementation, provides details on how the SimH VAX
environment was created.

The Problem: Legacy VAX Test Hardware

Over time, the primary development and test cluster for Availability Manager evolved to
consist of a number of VAX, Alpha, and Integrity systems. These machines were good
solid machines, but some were getting to be pretty old, especially the VAX systems. By
2007, I was concerned that the VAX systems would eventually fail. Since I had a limited
hardware budget, this would leave me in the difficult position of supporting VAX systems
in the field without any VAX hardware in the lab. Much of the Availability Manager
development work involved device drivers, with the associated potential of crashing
systems during development and testing. Hence, using machines outside the Availability
Manager development cluster was not an option.

The Virtual Option

In the summer of 2007, VAX hardware reliability concerns prompted me to research
replacement options. I needed four VAX systems to replace the VAX workstations that I
possessed at that time – one for each version of OpenVMS supported by Availability
Manager (OpenVMS V6.3, V7.1, V7.2, and V7.3). I was looking for something that would
fit my budget and work on the available Windows PC systems.

Virtual machines were becoming common place and the idea of a virtual VAX was
intriguing. Virtual machines are on ongoing interest for me. I had studied the Virtual
Machine (VM/CMS) operating system by IBM in college, seen commercial VAX emulators
demonstrated at various forums, attended VMware sessions at the HP Technology Forum,
and used the Microsoft Virtual PC software.

© Copyright 2010 Hewlett-Packard Development Company, L.P 99

Virtual VAX Advantages

A virtual VAX offered the following advantages for Availability Manager development and
testing:

 Easy to backup and restore a virtual machine

o Allowed for quicker recovery from development bugs

o Allowed a quick system restore to a known state for repeated tests

 Easy system reconfiguration of memory, disk drives, and network adapters

o Allowed quick move of a disk drive from one system to another

o Allowed development and test system configurations that I could not
previously afford using physical hardware, such as 512MB of memory,
many disk drives, and multiple network adapters

Evaluating SimH

After investigating alternatives, the free, open source SimH VAX emulator looked
promising. The SimH website, http://simh.trailing-edge.com/, provided the then current
installation kit, version 3.7-0. I downloaded the software and started reading the
documentation. I also subscribed to the SimH mailing list (the address is under “Help With
SimH” on the SimH homepage). Between the documentation and some postings from the
SimH website, I was able to get my first virtual VAX up and running.

Working with this simulation, I learned a number of things:

 The Availability Manager successfully installed and ran in the virtual environment.

 The ability to backup and restore virtual machines was as easy as expected, opening
up possibilities of repeated testing of a system starting from a known state.

 The ability to reconfigure the virtual machines by changing the amount of memory,
changing the number of disk devices, etc. was as easy as expected, enhancing
configuration testing capabilities.

 The ability to transfer a disk from one virtual machine to another was as easy as
expected, which improved operationally efficiency and flexibility.

 Each virtual machine needed its own network adapter and MAC address.

Handling Multiple Network Adapters

The need for separate network adapters was based on a subtle, but important behavior. This
involves how applications sharing an Ethernet-based network adapter are able to view
traffic from each other. The adapter, by default, does not send the outbound traffic from
one application to the other applications on a shared adapter. In my case, if two virtual
machines shared the same adapter, outbound traffic from one of them was not seen by the
other. So, if the two virtual machines were part of the same cluster, they wouldn’t see the
cluster traffic from each other. As a result, the two virtual machines cannot form a cluster
connection between them.

This network adapter behavior is well known and can be addressed in a couple of ways.
One solution is using one network adapter per virtual machine. This is the simplest setup
and the one with better performance. The other is to install additional software that allows

http://simh.trailing-edge.com/

© Copyright 2010 Hewlett-Packard Development Company, L.P 100

applications sharing a network adapter to see the outbound traffic from each other. This
solution allows one to use fewer physical network adapters.

In my case, I wanted to keep the software setup as simple as possible so I obtained enough
network adapters to have one per virtual machine.

SimH Implementation

Evaluation of the initial SimH virtual VAX established that the emulator would support the
OpenVMS VAX environment required for Availability Manager development and testing.
I had a single dual-CPU PC available to host four instances of the VAX emulator. The
limited host hardware impacted performance of each virtual VAX, but since I didn’t need
great performance, this was acceptable. I used the following steps to generate the initial
virtual VAX configurations:

 Installed the additional network adapters into the host system.

 Built the configuration files for each virtual VAX system.

 Assigned a unique MAC addresses to each system.

 Created virtual disk drives for each VAX system. The virtual drives appear as large
files on the host system and are referred to as container files. Virtual drives can be
created using the SimH ATTACH command.

 Test booted each virtual VAX to the boot prompt and verified the configuration via
console commands.

The next step was to migrate the drive contents from the four legacy VAX systems to the
virtual VAXen. I accomplished this by installing OpenVMS on one virtual VAX. I then
configured this virtual machine to use all of the virtual machine disk drives, booted the
system into the cluster, and used $ BACKUP/IMAGE to move the drive contents from the
physical VAX systems to the virtual VAX disk drives. Using image backups on live disks
does entail the risk of not picking up all the contents of open files. However, the open files
on my systems were mostly log files so this was not an issue.

Once I had migrated the drive contents, I set the four virtual VAX to their final
configuration and booted them. They joined the Availability Manager development cluster
and acted like their VAX hardware counterparts!

After finishing the initial conversion of the four VAX systems, I created four more virtual
systems. These had the same configuration as the first four systems, but with a fresh install
of OpenVMS. These virtual machines were for testing initial installations of Availability
Manager kits. I had arranged for some disk space from the main OpenVMS cluster for the
virtual machine backups. I copied the virtual machine container files to the OpenVMS
cluster to establish a base copy of the virtual machines before installing Availability
Manager. With this backup, I could install on these systems and then simply copy the
container files from the OpenVMS cluster to restore the systems to their initial state. Much
faster than using tapes, etc. on physical systems!

Configuration and implementation details are in the section “Configuration and
Implementation” at the end of this article.

© Copyright 2010 Hewlett-Packard Development Company, L.P 101

Putting SimH to Work

Development and testing of each version of Availability Manager requires a fair number of
test installations. A great bonus of the virtual VAX setup was the ease in which a virtual
machine could be restored to a known state after a test. By copying the disk container files
from the OpenVMS cluster to the PC, I didn’t have to fiddle with standalone backups,
tapes, etc. I was able to do a thorough job of testing than before. Part of this expanded
testing involved changing the amount of memory each virtual machine had, the numbers of
disk drives available, etc. This type of testing had been limited in the past by physical
hardware availability.

Another virtualization benefit was that I could do more radical testing since I didn’t have to
be as careful with the virtual machines as I did with the original VAX hardware. Unlike
physical hardware, recovery from a bad software install or test could be achieved by simply
restoring copies of the base system disk container files from the main OpenVMS cluster.

While performance of each virtual VAX was a bit slow due to the limitations of the host
system, it was acceptable. Idle mode detection was available in the version of SimH I
deployed which helped alleviate performance issues.

As it turns out, my premonition about the physical VAX hardware came to pass. In the
winter of 2008, there were a number of power interruptions and outages that did in the
VAX hardware. It was sad to see the old hardware go, but fortunately, the applications they
supported lived on in their new virtual home.

Conclusion

The time taken to evaluation and implement the SimH VAX emulators proved to be a good
investment. System reliability, test efficiency, test flexibility, and overall productivity
improved after installing the SimH VAX systems. This in turn allowed me to do additional
development and testing. Availability Manager is a better product as a result.

Configuration and Implementation

This section covers the configuration and implementation details of the Availability
Manager SimH test environment I created.

Configuration for SimH is not complex. The main areas of focus are disk volumes,
network adapters and the console for the virtual machine.

A SimH virtual machine consists of the disk volume container files, a file to contain the
non-volatile RAM and an editable text file with the configuration details. I created the
following directory structure to contain the files for all the virtual machines.

Directories Amds5 through Amds8 were
named after the OpenVMS VAX systems
being emulated. These directories housed
the configuration and virtual disk files
unique to each emulated VAX system.
The configuration file for each system
specified the non-volatile RAM and disk
container files with relative path names
from the base directory. This made
moving the virtual machines from one
place to another easier.

(Base directory)
Z:\Virtual OpenVMS machines\VAX

Amds5 Amds6 Amds7 Amds8

© Copyright 2010 Hewlett-Packard Development Company, L.P 102

Specifying a configuration file for SimH VAX is fairly simple – simply specify the path
and file name as the first parameter. Running SimH on Windows, I created a shortcut and
set the Target field to the following:

"Z:\Virtual OpenVMS machines\VAX\vax.exe" amds8\simh_amds8_config.txt

Figure 5: SimH shortcut.

I also set the Start in field to “Z:\Virtual OpenVMS machines\VAX”, the base directory, for
the relative path references in the configuration file.

This is the configuration file for one of the virtual machines – AMDS8. The configuration
defines two disk volumes and one network adapter. It also has a number of commented-out
commands as a reminder of how to configure various items. Note that this configuration
file was used with SimH V3.7-0.

; Load CPU microcode
;
load -r ka655x.bin
;
; Attach non-volatile RAM to a file (default boot device settings,
etc.)
;
attach NVR amds8\ka655.nvr
;
; Set the memory to 128MB
;
set cpu 128m
;
; Set the CPU to allow the emulator to idle when OpenVMS is idle.
;
set cpu idle
d idle_ipl 8
d idle_wait 1000
;
; Set the halt to return to the ROM console
;
set cpu conhalt
;
; Set the localhost TELNET port for the console
;
set TELNET 5308
;
; Enable and disable various devices
;
set RL disable
set LPT disable
set TQ disable
set TS disable
set rq0 ra92
attach rq0 amds8\amds8_sys.dsk
set rq1 ra92
attach rq1 amds8\amds8_user.dsk
set rq2 disable
set rq3 disable
;
; Set MAC address and adapter

© Copyright 2010 Hewlett-Packard Development Company, L.P 103

;
set xq mac=00-08-C8-08-CE-DE
attach xq eth4
;b cpu

Figure 6: Sample SimH VAX Configuration File.

I put a number of comments in this file as well as various commands that are commented
out. I left these in as a reminder of what possible. Here are some highlighted sections:

; Set the memory to 128MB
;
set cpu 128m

Figure 7: Setting emulator memory parameter.

This command sets the physical memory for the virtual machine. For the MicroVAX 3900
emulator, this has been extended so that it can emulate up to 512MB from the usual
maximum of 64MB.

; Set the localhost TELNET port for the console
;
set TELNET 5308

Figure 8: Setting the console port.

This command defines the console input/output to port 5308. Note that the equivalent
command for SimH 3.8-1 is “set CONSOLE TELNET=5308”. Since I was running a
number of the emulators at the same time, I had a system of starting the port numbers at
5300 and then appending the node ID number (8 for Amds8, etc.).

Using the telnet port, the virtual machine console can be connected to the terminal emulator
of your choice. I decided to use the freeware PuTTY emulator1 since I was familiar with it
and satisfied with its VT emulation.

I created a PuTTY session – AMDS8 Console – that specified the Telnet port. Then, I
created a shortcut for the Amds8 console that started PuTTY and specified the PuTTY
session. The Target field of the shortcut is as follows:

"R:\Program Files\PuTTY\putty.exe" -load "AMDS8 console"

Figure 9: PuTTY shortcut.

To start Amds8, I would first double-click on the Amds8 SimH shortcut to start the
emulator. The emulator would start to execute in a Windows console window and then
prompt for input with a sim> prompt. At this point I would double-click on the Amds8
console shortcut and PuTTY would connect to the emulator console. I would then enter the
B CPU command at the sim> prompt to start the virtual machine. The console displayed
the normal output for a MicroVAX 3900, and I interacted with this console as if it were the
real thing!

set rq0 ra92
attach rq0 amds8\amds8_sys.dsk
set rq1 ra92
attach rq1 amds8\amds8_user.dsk

1 PuTTY is available at http://www.chiark.greenend.org.uk/~sgtatham/putty/.

© Copyright 2010 Hewlett-Packard Development Company, L.P 104

set rq2 disable
set rq3 disable

Figure 10: Virtual disk setup.

These are the commands used to set up the two virtual disk drives for the virtual VAX. By
default, there are four RQ devices per controller. I needed only two RQ devices so, I
explicitly disabled the other two. If these devices aren’t explicitly disabled, they show up
under OpenVMS as two online disk drives. However, when you try to mount them,
OPCOM complains that the medium is offline and that you must mount a device for the
drive – confusion that is easily avoided by taking advantage of the disable feature.

If a virtual disk needs to be moved from another machine to this one, all that is needed is to
set RQ2 or RQ3 to specify the location of the container file, and the disk is available to the
virtual machine!

There are a number of other disk controllers that can be enabled, allowing a virtual machine
to emulate a fairly large number of disk drives. In SimH version 3.8-1, the VAX 11/780
emulator can emulate up to eight RP04/05/06/07 or RM02/03/05/08 disks, four
RL11/RL01/02 disks, and 16 UDA50 MSCP disks on four controllers, as well as TS11,
TUK50, and TM03 tape drives and two DEUNA/DELUA Ethernet controllers. The
MicroVAX 3900 can emulate up to 512MB of memory and has a similar number of disk,
tape, and Ethernet controllers as the VAX 780 emulator.

set xq mac=00-08-C8-08-CE-DE
attach xq eth4

Figure 11: Setting up a network adapter.

These are the commands used to set up the network adapter. I set the MAC address to what
I found was a unique address in the network segment. Setting the MAC address is an
option; it is not required. Since I was hosting four SimH VAX emulators on one physical
system, I wanted to ensure each emulated VAX had a unique MAC. Note that eth4 is the
mnemonic for the fourth adapter on the host machine (Amds5 took the first one adapter on
my system, Amds6 the second, etc.).

Eth1 is bound to the first adapter, Eth2 is bound to the second adapter (if it exists), etc. If
you type in the “attach” command interactively at the SimH prompt, SimH displays which
network adapter is bound to Eth1, Eth2, etc. If a binding doesn’t exist for a particular
mnemonic, an error message is displayed.

Once this configuration was done, the virtual machines were ready to run.

Installing OpenVMS

Installing OpenVMS onto a newly created virtual machine can be done through a CDROM
device on the virtual machine. An example of configuration for the CDROM drive is
shown below:

set rq2 cdrom
attach –r rq2 VAXVMS073.ISO

Figure 8: Setting up a CDROM drive.

Note that the contents of the OpenVMS installation CD have been transferred to an ISO file
on the host system. There are a number of Windows applications that can create an ISO file
from a CD, and many Windows systems have an application that does this already installed.

© Copyright 2010 Hewlett-Packard Development Company, L.P 105

Once the ISO file has been created, then it can be used by the virtual machine for the
OpenVMS installation.

About the Author

Barry Kierstein has worked with OpenVMS since 1981, and worked for Hewlett-Packard
for almost fourteen years. His work at Hewlett-Packard was with the System Management
group within the OpenVMS organization and is most known for his project leadership work
and advocacy of the Availability Manager product. He is also known for various
presentations and hands-on workshops at the OpenVMS Bootcamp, DECUS, CETS, HP
Tech Forum, European Technical Update Days, and various webinars dealing with
OpenVMS performance, Availability Manager, HP Virtualization strategy around HP
SIM/VSE, Blades, and virtual machines. Barry is under exclusive contract to Migration
Specialties for emulator and Availability Manager services.
The SimH VAX development and test environment was transferred to the Indian
development and support group and continues to be utilized.
This article was sponsored by Migration Specialties. Information about Migration
Specialties emulator products and OpenVMS services can be found at
www.MigrationSpecialties.com

http://www.migrationspecialties.com/

© Copyright 2010 Hewlett-Packard Development Company, L.P 106

OpenVMS Technical Journal V14

Virtual Alpha Systems: Quality Control & Testing
Dr. Robert Boers, CEO & Founder Stromasys SA.
(For bio see http://www.stromasys.ch/about-us/board-of-directors)

http://www.stromasys.ch/about-us/board-of-directors

© Copyright 2010 Hewlett-Packard Development Company, L.P 107

Introduction

Since 1994, Stromasys has been developing system emulators, starting with PDP-11
emulation. Now known as “cross-platform virtualization,” these system emulators provide a
complete software model of a legacy hardware system, running on a modern server. This
technology allows the users to keep their original operating system and applications running
in an unmodified form, while gaining performance improvements, increased storage
capacity, and increased reliability.

When we built the first system emulators, we had no idea that the market would demand for
these solutions. Nor, did we realize the efforts required to develop commercial quality
emulator products, particularly the importance of a comprehensive product testing strategy.
This article gives an insight to the development of testing technologies and procedures that
we created to ensure reliable replacement products with superior performance.

Designing and Testing Virtual Systems

In principle, creating a software abstraction layer of a hardware computer component is
straightforward. A subsystem, for instance a CPU, is an implementation of sequential logic.
The functionality is well defined and can be described in a high-level programming
language. In modern CPU design, creating a software model before creating the desired
hardware is a common practice, and we repeat this process for all the relevant subsystems.

If the emulator architecture follows the hardware architecture closely, the result is a library
of emulated subsystem components, each representing a hardware subsystem in the form of
a code module. In the case of the first generation PDP-11 emulator, we designed
approximately 130 modules written in C++, representing the various CPU modes, memory
management, disk and tape controllers, various serial and parallel I/O options, Ethernet
controllers, and so on.

Given the resemblance between the original hardware and the emulated components, the
obvious choice for testing the emulator was using the original hardware diagnostics. Having
few other tools at our disposal at that time, we pushed the component emulation to a level
where the original hardware diagnostics would even show the revision numbers of the
hardware components that were emulated. This unnecessary complexity resulted in a slow
implementation compounded by running with the virtual system modules in synchronous
mode to avoid timing problems. However, in dealing with PDP-11 and slow VAX models,
this got us a correctly working emulator with the existing diagnostics.

However, we cannot always use the existing hardware diagnostics. An emulated tape drive,
for instance, has a tape positioning time that is close to zero. The hardware diagnostics find
that hard to accept, and even on a correct implementation, software might malfunction.
Putting NOOP’s in drivers to make them work correctly will create havoc in a faster virtual
interface, as it would with faster hardware.

In the development cycle of a virtual system, booting an operating system on it is a
milestone that indicates that a minimum of virtual hardware is working correctly.
Interestingly, most operating systems are not very useful by themselves to debug a virtual
system. When we could boot VMS on our MicroVAX emulator, later tests revealed that
about 85% of the emulated VAX instructions had errors in some modes. A surprise was that
without floating point instructions VMS would not boot. Unfortunately, floating point

© Copyright 2010 Hewlett-Packard Development Company, L.P 108

instructions for VAX are complex to implement correctly on an x86 architecture.
Nevertheless, the ability to run the original OS is an important step, since it greatly
facilitates the development and execution of custom diagnostic tools.

Before the complexity of our virtual system products drove us to the development of
custom diagnostic tools, and from there to a formal test process. We found that
implementation of an emulator on more than one host platform helps error discovery. From
the same source code, errors typically appear in different places, or only in one
implementation, and are easier to track down. For example, in an industrial application on a
virtual PDP-11 hosted on Windows NT, using Alpha hardware the menu items were
correctly displayed in white text. On an x86 platform, some menu items appeared in red,
because the x 86 C++ compilers generated an error that propagated in a rarely used
FORTRAN call.

Introduction of Formal Tools

In the development of our CHARON-VAX emulators, we used a tool called AXE, which
we obtained from Compaq. AXE was the verification tool for the VAX hardware
development groups in Digital. AXE had two purposes at Digital:

- Locate bugs in the hardware during development
- Verify that we meet the requirements of DEC STD 032, the functional requirements

for a VAX hardware system.

AXE creates test cases composed of a VAX CPU instruction with operand specifiers
appropriate for that instruction. After execution, AXE compares the relevant state with a
“known good” result and reports the differences to the user. The individual test cases are
generated on the fly, creating billions of unique sequences. These variations cover
essentially all aspects of a VAX CPU and memory management unit: opcode, opcode or
operand placement with respect to page boundaries, (stack) page protection, translation
buffer validity, overlap of string operands, page faulting, etc. AXE also covers testing of
exception handling like reserved opcodes, arithmetic traps addressing modes, and invalid
translations.

The final AXE test before Digital released VAX hardware was a comparison against a
reference database. The green light was given if a test of ten million cases of each user
mode instruction (in all access modes), and 5000 cases of each privileged instruction mode
were passed without a single error. AXE has been valuable in the development of our
virtual VAX systems, and we base the first phase of our virtual Alpha product readiness
tests on a similar concept, using proprietary tools. Such testing is very time-consuming. We
passed our virtual VAX 3100 AXE readiness test in the year 2002 in a certification
sequence that lasted more than three weeks on a 500 MHz Celeron processor.

Both for “hardware” and “virtual hardware” developers, a good working CPU is only one
of the many components to integrate and test. An advantage is that many hardware
components have standard functions such as SCSI controllers, UARTS, disk drives,
Ethernet controllers, and so on. These components are either fully tested by the supplier or
can be tested individually while connected to a good system. Virtual system developers do
not have that luxury. To create a complete hardware abstraction layer of a new system, we
must emulate such components as well, in order to create a portable product. As we learned
over the years, this makes the reuse of known good virtual components extremely
important. If we make the elements of a virtual component library usable on different

© Copyright 2010 Hewlett-Packard Development Company, L.P 109

virtual systems, saving development time is far from the most important benefit. The
repeated integration testing of such components in multiple designs leads to a significant
increase in reliability. Provided, that strict code management, re-utilization, and
maintenance is enforced. After 10 years, and more than 40 PDP-11, VAX, and Alpha
models, the investment pays off in the form of a rich set of reliable virtual components. As
an example, a virtual Sparc Workstation prototype reuses 70% of the existing virtual VAX
components, allowing fast development and less testing effort.

The Current Virtual Alpha System Test Process

As we pushed the technology further, in particular to develop fast, virtual SMP systems (for
instance a virtual 16-CPU CHARON-AXP system), the processes we used to ensure the
reliability of a single CPU virtual VAX were insufficient. We had to change the
virtualization technology in several fundamental ways:

 High speed virtual CPUs require complex virtualization algorithms to obtain the
desired performance, typically involving more than one host CPU per virtual CPU.
Just the drive for performance required years of research, as we wanted to reach two
goals at the same time: achieve portability of the acceleration code (for reuse with
other architectures) and match the clock rate with more modern CPUs.

 It is no longer feasible to run the components of a virtual system in synchronous
mode when virtual systems get more complex. The interrupt latency suffers badly
and interferes with proper operation. It also prevents effective use of multi-core host
systems.

 An important constraint for virtual SMP systems is that their CPUs must clock at
exactly the same frequency. This is easy to implement in a hardware system, but
requires a very sophisticated synchronization mechanism in the virtual environment.
Testing this is implicit, as an operating system like Tru64 shuts down any CPU that
has a perceived clock rate that is even slightly different from the primary one.

An advanced virtual SMP system design requires three kinds of tests:

 Functionality tests to ensure that the binary compatibility with its hardware CPU
equivalent is uncompromised. In particular, we must test mathematical operations
extensively to assure correct overflow and underflow in floating point formats. For
virtual Alpha systems, we developed a suite of proprietary tests (similar to AXE)
that we calibrated on a hardware Alpha of the same generation as the virtual
implementation. These tests include verification that self-modifying code works
correctly (there is a myth that emulators would not be able to handle such code).
We, typically, run such tests every night when we are working on code optimization
of the virtual CPU implementation.

 Performance tests to ensure that the ongoing CPU optimizations have the desired
effect. The optimization algorithms are dependent on binary code structures; an
automated test procedure submits 100’s of binary Alpha code segments representing
many different types of user applications. A weighted average is calculated with a
check that no type of use is significantly degraded. We aim at a small but overall
improvement with every release.

 System integration and Quality control tests, which have become the predominant
tests in terms of calendar time before every product release. As we extend our
virtual products with new components, for instance, FDDI or Fibre channel support,
we must scrutinize the impact on the rest of the system in even more depth than for

© Copyright 2010 Hewlett-Packard Development Company, L.P 110

the original hardware, where the influence between the individual components was
limited. Furthermore, our products can run on many different host systems. Proper
operation on a representative set of host systems is an essential factor in quality
verification.

Organizational Impact

During the development of larger VAX systems in 2004-2005, the time needed to test our
virtual systems started to limit our product release throughput, in spite of having a
dedicated full-time test engineer in addition to the usual testing process in engineering.
Splitting the testing formally in subsets (used during development) and creating a formal
“product readiness test” (PRT) improved the situation somewhat. Products that pass a PRT
are initially coded in their license as Field test capable. The field test program aims at
collecting 20 user months of field test experience, for instance, five users during 4 months,
but commercial pressure can reduce this. Field tests are a great way to verify the quality of
the documentation. During the field test period, minor product problems are fixed and
documentation is updated. This process is iterative, and a typical product release goes
through a PRT three times before its official release as a product. The PRT for the Alpha
platform contains more than 200 individual tests, and takes about 2 to 3 weeks. The number
of tests is rising as we add functionality to our products.

Engineering groups tend not to be the best judges of the readiness of their products. In light
of this, the solution was to create a separate Quality Control group in our organization, also
responsible for measuring and publishing formal performance numbers and reviewing
product documentation.

Conclusion

We aimed at giving some insight into the process of creating and testing a reliable virtual
computer system. Successful hardware emulation depends not only on good design, but also
on rigorous testing and quality control procedures. The technologies we have developed
and the understanding we have built of the testing processes to create a reliable virtual
system are universal, making development of other virtual legacy systems easier. Our
newest development center in Shenzhen, China, is now expanding to take these testing
technologies outside of our historic focus on DECs PDP-11, VAX, and Alpha systems.

For More Information

To find out more about Stromasys and our CHARON-VAX and CHARON-AXP
virtualization software products, please visit www.stromasys.com.

http://www.stromasys.com/

