EY-5315E-P0-0001

VAX/VMS Troubleshooting

Ruth Goldenberg

Revision 0.C

VAX/VMS Troubleshooting

Revision 0.C

INTERNAL USE ONLY

Page ii
14 August 1985

CONTENTS
MESSAGES . + « o o o o o o o o o s o o o o s o ¢ o 21
STARTING POINTS . . ¢ ¢ ¢ o o o o o o o o @ Y
ACCESSING PROCESS CONTEXT WITH SDA o o o e o s .5
The PCBANAd JIB . . . + ¢« ¢ + o « « & B
The PHD . . & ¢ ¢ ¢ ¢ ¢ o s o o s o o o o s o+ + 6
BUGCHECKS + ¢ o « o o o o o s o o o s o « + « « - 11
CPU-SPECIFIC INTERRUPTS . . v « « o « o« o « » « o« 16
CPU-SPECIFIC INTERRUPTS - VAX-11,/780 AND VAX-11,/785 17
SBI SiloCompare . . . « « + o o « & o & A
CRD/RDS . & v ¢t ¢ o« o o o o o « o o o o o o« o« 17
SBI Alert « « . c e e e e e . . . 18
SBI Fault e e e e e .. 19
CouTimeout ¢« ¢ ¢ ¢ ¢ ¢ o o o v s« . . 19
CRASHDUMP REQUIREMENTS e e e e .. 21
Crashdump File O |
Bugcheck Mechanism + ¢ ¢ ¢« v ¢« ¢« o + & 22
SYSINIT ProcessSing . . « « ¢« v ¢« ¢« « ¢« « « « « . 24
EXCEPTIONS . . « « « .« & e s o e e o o o e e o« . 25
Software Exceptions ¢« 25
Hardware Exceptions e e e e e e e 25
Exception Dispatching 26
Some Common Exception Types 27
Access Violation Fault 28
Reserved Opcode Faults 30
Reserved Addressing Mode Fault 30
Reserved Operand Exception 31
FATALEXCPT BUGCHECK . « &« « « &+ « o o o » « o « « 33
FORCED CRASHES « v ¢ o « o o ¢ ¢ o o o o o s s o o 43
HALTS - VAX-11/780 AND VAX-11/785 46
Likely Halt Indications 47
HALTED AT XXXXXXXX o o o o o o o s o o o o o o » 47
HALT INST EXECUTED . . . « &« ¢« « ¢« « « « « «» « » 48
PCHM ERR « & « « « o o s o o s o o« o o« s o o s » 50
2CLOCK PHASE ERROR e e s e e s s« . . 51
?2CPU DBLE-ERR HALT e o s e e e 51
RILL I/EVEC &« ¢ & ¢ o o o o o o o o o o o o« o o 52
2INT-STK INVALID . . . « « « « o« « o« « o« « « o« « 53
PNOUSRWCS « & ¢ ¢ o ¢ o o o o s s o o o« o« « - 54
Pathological Halts 54
RESTAR.CMD Command Procedure 57
VAX-11/780 And VAX-11/785 Restart Mechanism . 57
Editing RESTAR.CMD . . . « « « « « « s » « s « 59
HANGS . ¢ ¢« ¢ « &+ ¢ e o o o o o o s o o« o« o+ « - 65
System Hangs . . « « « « ¢« o o o o« s = s o« o« « - 65
Process Hangs . . . « « « « ¢ ¢ « ¢« o« o o o« « « 15
INVEXCEPTN BUGCHECK . & « « « « » o « o« o « +» « » 84
KERNEL STACK LOCATIONS . + « « o « « « o o « « « «» 87
KRNLSTAKNV BUGCHECK . . ¢ + ¢« ¢« ¢ o s « » « « » « 89
LOCATING I/OREQUESTS . « « ¢« &« = « o o o « « « o 92
MACHINE CHECKS e e e s e e o e . . e e .. 97
MACHINE CHECKS - VAX-11/780 AND VAX—11/785 e) §
Read Data Substitute Error 102

VAX/VMS Troubleshooting

Revision 0.C

INTERNAL USE ONLY

Page iii
14 Auqust 1985

Translation Buffer Parity Error 104
Cache Parity EIror . + « « + o« o o o o « « « » « 105
Control Store Parity Error 106
Microcode Not Supposed To Be Here 107
Read Timeout Or Error Confirm Error 108
PGFIPLHI BUGCHECK P I
RELATED REFERENCE MATERIAL . . « + « « « « « « « o 116
Call Frame Layout ¢ ¢ &« ¢ ¢ o o « o« « & 116
PSL Layout e e e e e e e e e e e e s 116
RESOURCE WAITS . « & ¢ o ¢ o o o o o o o o « » o o 117
Mutex Wait ¢« ¢« ¢ ¢« ¢ ¢« s ¢« &« « . o 119
RWAST Resource Wait « o & o ¢ ¢ o « & & 120
RWMBX Resource Wait 123
RWNPG Resource Wait 124
RWPFF Resource Wait ¢« o v o ¢ ¢ o o & & 126
RWPAG Resource Wait c o .« o o o 126
RWBRK Resource Wait ¢« + ¢« ¢ ¢« o « & 126
RWIMG Resource Wait . . . ¢« ¢« ¢ v ¢ o o o o o & 129
RWQUO Resource Wait « « ¢ ¢« « « « « . 129
RWLCK Resource Wait . . . « ¢ ¢ ¢ ¢ o o o o o« @ 129
RWSWP Resource Wait « « + « « « . 130
RWMPE Resource Wait . .".« . . . 131
RWMPB Resource Wait « « . « . . 132
RWSCS Resource Wait « « « ¢« ¢« « + « . 132
RWCLU Resource Wait « « + « . . 133
RESTART BUGCHECKS e s e e o o s s . « .« 135
IVLISTK Bugcheck « ¢« ¢ ¢« ¢ « ¢« o o . 137
DBLERR Bugcheck e e e e e e e e e . 138
HALT Bugcheck « ¢« ¢ ¢ ¢ ¢« ¢« .« . . 139
ILLVEC BugcheCk . . . v ¢ v ¢ ¢ ¢ ¢ o o o o o & 140
NOUSRWCS Bugcheck e e e o. . 141
ERRHALT Bugcheck . . . « « « « « + & O R |
CHMONIS Bugcheck + ¢« ¢ ¢« ¢ ¢ ¢ o o ¢ « & 141
CHMVEC Bugcheck . . . + « ¢ ¢« ¢ ¢ & « o « « « o 143
SCBRDERR Bugcheck + « ¢« + & ¢« ¢ & o« o« & 144
WCSCORR Bugcheck . . . « « ¢« ¢ ¢ ¢ ¢« « o 144
CPUCEASED Bugcheck . . « « « ¢« « + .+ & e . . o 144
OUTOFSYNC Bugcheck 144
ACCVIOMCHK Bugcheck« 144
ACCVIOKSTK Bugcheck 145
SSRVEXCEPT BUGCHECK . « « « ¢ o o o « o « o« « « o 146
STACK PATTERNS . + « « o o o o o o o o o o o o o o« 149
STACK PATTERNS — EXEC MODE STACK . . . + . « . . . 152
Exec Mode Stack Patterns 152
STACK PATTERNS — INTERRUPT STACK . . « « 156
Interrupt Stack Priority Level Usage Table . . . 157
STACK PATTERNS — KERNEL MODE STACK 161
Kernel Mode Stack Patterns 162
SYSTEM SERVICE VECTORS « + ¢ + o « ¢« o o « o« + « « 166
System Service Vector Addresses 166
System Service Vector Contents 166
System Service Vector Stack Footprints 167

Resolving System Service Vector Addresses . . . 168
UNXSIGNAL BUGCHECK . + « « « o o« « o s « « « « « » 170

VAX/VMS Troubleshooting *INTERNAL USE ONLY*

Revision 0.C

VIRTUAL ADDRESSES . . .

VIRTUAL ADDRESSES - PO SPACE . . .
VIRTUAL ADDRESSES - P1 SPACE . . .
V3 Pl Space Organization
V4 Pl Space Organization

User Stack
Extra User Stack Pages

e o o o o

Page iv
14 August 1985

Image IO Segment « & & v 4 ¢ o 00 . .

Per-Process Message Section

CLI Symbol Table . . .
CLI Command Table . .
CLI Image
Files-11 XQP Regions .
Process I/O Segment .

¢ o

.
e o o
.

Process Allocation Reglon .« e e
Channel Control Block Table . .
Pl Wwindow To Process Header . .

RMS Process Context Area

oooooooo

RMS Tracepoint Page « « ¢ « ¢ « o« &

RMS Directory Cache . .

RMS IFAB/IRAB Tables .

e o o o

e o o o o

Per-Process Common Regions . . .
Compatibility Mode Data Pages

User Mode Data Page .

Security Audit Data Pages . .
Image Activator Context Page .

CLI Data Page

.

e o o o o
.

.

Image Activator Scratch Pages .

Debugger Context Pages

e e o e o

oooooooo

Dispatch Vectors For User-Written System

Services And Messages
Image Header Buffer .
KRP Lookaside List . .

Inner Access Mode Stacks . . .
System Service Vector Pages .

Pl Pointer Page . . .
Debugger Symbol Table

VIRTUAL ADDRESSES — SYSTEM SPACE
V3 System Space Organization
V4 System Space Organization

SYS.EXE . « « ¢ ¢ « &

Allocatable System Space .

Adapter I/0 Space .
CONINTERR SPTES . .
Black Hole Page . .
Mount Verify Page .
Erase Pattern Buffer
Erase Pattern Pseudo
SYSMSG.EXE
Device Driver SVPNs

MSCP.EXE . . « « « &«

Restart Parameter Block (RPB)
Page Frame Number (PFN) Data Base

* o e e o

* e o

Page T

oooag'ooono't.o

e o o o o o o o
e o e e & & ¢ o e s o o o

.
.
.
.
.
.
.
.

194
195
195
195
196
198
201
205
205
205
207
207

. 207

208
208
208
209
209
209
209

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page v

Revision 0.C _ 14 August 1985
Paged POOL . & & v ¢ v 4 ¢ ¢ ¢ ¢ o o o o o o o & 210
Nonpaged Pool Variable Length List 210

Device Driver IMages . . « « « o « o o « « « o 211
MP.EXE . . ¢ ¢ ¢ ¢ ¢ ¢ ¢« o o o o o & e o .. . 212
VAXEMUL.EXE . ¢ & & & ¢ o o o o o o o o o« « » 212
FPEMUL.EXE . . & ¢ ¢ ¢ ¢ o o ¢ ¢ o o o o o « & 212
CLUSTRLOA.EXE o e e o s e o s o o s 213
SCSIOA.EXE . &« o v « o o o o o o « o o & .. . 213
SYSLOAXXX.EXE . & & ¢ o o o o o o o o o « o« » 214
TTDRIVER.EXE . &+ ¢« v ¢ ¢ ¢« o ¢« « o« o o « « « . 214
System Disk Boot Driver 215
CI Microcode A [
Large Request Packet (LRP) Lookaside List . . . 216
I1/0 Request Packet (IRP) Lookaside List . .. 217
Small Request Packet (SRP) Lookaside List . . . 217
Interrupt Stack o000 .. 218
System Control Block 218
Balance Set Slots « . . ¢+ 219
System Header ¢ ¢ « ¢ ¢ ¢ ¢ ¢ o o o . 219
System Page Table « « ¢« « ¢ ¢« ¢« « . . . 219
Global Page Table « . . e e o . . 220

INDEX '

VAX/VMS Troubleshooting *INTERNAL USE ONLY* ' Page vi
Revision 0.C 14 August 1985

PREFACE

This document is a step by step approach to help you analyze VAX/VMS
crashdumps, processor halts, and process or system hangs.

The approach documented for analyzing crashdumps will not work for
all crashdumps, but it should be helpful for many. The sequence of
steps documented is not necessarily the only valid sequence, merely
one believed to be wuseful in many circumstances, helping you more
quickly to identify the point of failure.

The approach documented for analyzing processor halts should help you
determine whether a halt is due to hardware or software failure.

Process and system hangs may be due to user error, hardware problems,
software error, or inadequate system resources. The approach
documented for analyzing hangs should help you determine the nature
of some hangs and perhaps restore normal operations.

Please note that this document is currently FOR INTERNAL USE ONLY.

Note to Reviewers
If you are reading this, please consider yourself a reviewer.

This document is available on the following Easynet systems:
VAXWRK : : SYSSNOTES : BUGCHECK . MEM,
VMS SWE cluster DOCDS$:[V4LIBRARY.MISC]BUGCHECK.MEM,
ISOLA: : BUGCHECK.MEM

This book may also be ordered from Educational Services/Software
Services Training. See below for further information.

This is a draft of a larger undertaking. I would appreciate comments
on the format, on errors of omission or commission, on your own
favorite tricks, hints, folklore, and other useful information. This
document is the beginning of a tree-like set of procedures, and I’'m
interested in your reaction to the basic idea.

Please send review comments, suggestions, and omissions from the
Index via engineering net mail to VAXWRK::GOLDENBERG or interoffice
mail to Ruth Goldenberg PK02,/M21.

Change bars mark the changes between this version, Revision 0.C, and
the previous one. Revision 0.C renames several sections. 1In
particular, IDENTIFYING VIRTUAL ADDRESSES is now titled VIRTUAL
ADDRESSES; DECIPHERING STACKS is now STACK PATTERNS; CPU HALTS is now
HALTS. Future enhanced versions of BUGCHECK.MEM will be announced in
VAXWRK : : SYSSNOTES : VMSNOTES.NOT, in the VMS SWE cluster SYSNOTES, and
in VAXworks’ VMSnews.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page vii
Revision 0.C 14 August 1985

Intended Audience

This document is intended for Software Specialists, Field Service
engineers, and others who must troubleshoot VAX/VMS problems. You
are presumed to have knowledge of VMS internals and some familiarity
with its sources and with the System Dump Analyzer (SDA) utility.

How to Use This Document

This manual is organized into sections and is not intended to be read
straight through from the first page to the last.

Each section begins on a new page and is titled in the top left hand
corner. Except for the first two sections, the sections are in
alphabetic sequence by section title.

The first section, MESSAGES, is an index to messages described
elsewhere in the document. These include console halt messages,
fatal bugcheck messages, and SDA error messages.

The second section is STARTING POINTS. If you are trying 'to
troubleshoot a crash, halt, or hang, begin with STARTING POINTS.

If you are looking for information on a particular topic, the index
at the back of the document may be helpful.

Conventions Used in This Document

The phrase CTRL/x indicates that you must press the key labeled CTRL
while you simultaneously press another key, for example, CTRL/Z.

Command examples include underlines for all output lines or promptlng
characters that the system prints or displays.

Angle brackets ("<" and ">"), enclosing a descriptive name, are used
to indicate information which you must supply as part of a command,
and should not themselves be included in the command. For example,

SEXIT %X<exception type>

means that you supply the actual exception type value when you issue
this DCL command.

The expression A(symbol) means address of symbol. For example,
A(SRVEXIT) means the address of the symbol SRVEXIT.

For consistency with the VAX/VMS Internals and Data Structures
manual, the term "SYSBOOT parameter" is used rather than "SYSGEN
parameter", to describe any of the adjustable parameters used by the
secondary bootstrap program SYSBOOT to configure the system.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page viii
Revision 0.C 14 August 1985

All addresses in the text are hexadecimal. All other numbers in the
text are decimal unless otherwise identified.

Stack layouts show positional information, for example, which
longword in a signal array is the PC of the exception. Wwhere
appropriate, stack layouts show actual hexadecimal numeric
information, for example, 0000000C as the exception type in an access
violation signal array. Variable contents of a stack longword are
expressed as some number of unknown hexadecimal digits, such as
"xxxxxxxx" for the value of the exception PC in a signal array.

All addresses in the text are virtual unless identified as physical.
Unidentified global names are defined in SYS.EXE.

System modules are identified as [<facility name>]<module name>, for
example, [SYS]ASTDEL or [DRIVER]LPDRIVER. The source listing
microfiche is organized by facility name. The last sheet of the
source fiche contains an index to the rest of the fiche. The
facilities are ordered alphabetically in the fiche with link maps and
source listings for the components of the facility.

The term <cr> means the RETURN key. It is shown only in examples - of
relatively unfamiliar utilities, such ‘as MicroODT on the console
LSI-11 of a VAX-11,/780. Most examples in this document do not
explicitly show the RETURN key being pressed following commands.
Assume that all command lines shown end with a <cr> unless stated
otherwise.

[TBS] means "to be supplied".

VMS manuals referenced in the text are V4 manuals unless otherwise
noted.

Associated Documents

The following documents are necessary accompaniments to this
document :

0 VAX/VMS Internals and Data Structures Manual
o VAX/VMS System Dump Analyzer Reference Manual

o VAX Architecture Standard (DEC Standard 032) or VAX-11
Architecture Reference Manual

0 VAX/VMS Source List Microfiche

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page ix
Revision 0.C 14 August 1985

Ordering Information

Ordering information for employees wishing self-paced training
material and information documents produced by Educational
Services/Software Services Training appears below. Note that this is
not necessarlly the same procedure as for enrolling in lecture
courses in your particular geography.

u.s.

US Software Specialists should order from their Software Services
Training Registrar. Other US employees should order directly from
the Educational Services Bookroom in Billerica, Massachusetts.

When ordering directly from the Bookroom, specify title, order
number, quantity, full ship-to address (not just a mailstop), if
partial shipments are allowed, name, badge number, and cost center.
Send order by VAXmail to CECILE::MAILPO, by DECmail to MAILPO @BKO,
by interoffice mail to mailstop BKO, by postoffice to Digital
Equipment Corporation/12A Esquire Road/N. Billerica, MA 01862/USA,
or telephone 800-343-8321.

Europe
European Software Specialists should order from their logistics
contact. Other European employees should order from their logistics
contact, or directly from the Educational Services Bookroom in
Billerica, Massachusetts (see instructions under US, above).

GIA

All GIA employees should order from their logistic contact.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 1
MESSAGES 14 August 1985

MESSAGES

%
VAX-11/750, 66
?CHM ERR
VAX-11,780, 50
VAX-11,/785, 50
?CLOCK PHASE ERROR
VAX-11,/785, 51
?CPU DBLE-ERR HALT
VAX-11,/780, 51
VAX-11,/785, 51
?ILL I/E VEC
VAX-11,/780, 52
VAX-11,/785, 52
?INT-STK INVALID
VAX-11,/780, 53
VAX-11,/785, 53
?NO USR WCS
VAX-11/780, 54
VAX-11,/785, 54

@ console prompt
VAX-11,/780, 56
VAX-11/785, 56

ATTEMPTING WARM RESTART
VAX-11,/780, 58
VAX-11,/785, 58

FATAL BUG CHECK, VERSION = Vn.n
ASYNCWRTER, 18, 19
CHMONIS, 141
CHMVEC, 143
DBLERR, 138
FATALEXCPT, 33
HALT, 139
ILLVEC, 140
INVEXCEPIN, 84
IVLISTK, 137
KRNLSTAKNV, 89
MACHINECHK, 98
NOUSRWCS, 141
OPERATOR, 13
OUTOFSYNC, 51, 144
PGFIPLHI, 113
SCBRDERR, 144
SSRVEXCEPT, 146
STATENTSVD, 135
UNKRSTRT, 51, 59, 136
UNXINTEXC, 17
UNXSIGNAL, 170

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 2
MESSAGES 14 August 1985

FATAL BUG CHECK, VERSION = Vn.n, 11

HALT INST EXECUTED
VAX-11,/780, 48
VAX-11,/785, 48

HALTED AT 00000000
VAX-11,/780, 48
VAX-11,/785, 48

HALTED AT 200034F9
VAX-11,/780, 49

HALTED AT 2000350A
VAX-11,/780, 48, 58

HALTED AT 20003552
VAX-11,/780, 49
VAX-11,/785, 49

HALTED AT 20003563
VAX-11/780, 58
VAX-11/785, 58

HALTED AT 20003564
VAX-11/780, 48
VAX-11/785, 48

HALTED AT 8XXXXXXX
VAX-11,/780, 49
VAX-11,/785, 49

HALTED AT XXXXXXXX
VAX-11,/780, 47
VAX-11,/785, 47

OPCOM
mount verification in progress, 68

RMS-F-DME, 188

SDA
Remaining registers not available, 145
SDA-E-DUMPEMPTY, 13
SDA-W-NOREARD, 12
SDA-W-NOREQ, 12
SDA-E-NOSYMBOLS, 197
SDA-W~SHORTDUMP, 22
SYSTEM-E-SPINOTFND, 22
SYSTEM-F-VASFULL, 12
unable to access location, 5
SYSTEM SHUTDOWN COMPLETE - USE CONSOLE TO HALT THE SYSTEM, 23
SYSTEM-F-MCHECK, 98
SYSTEM-W~-PAGECRIT, 66
SYSTEM-W-PAGEFRAG, 66
SYSTEM-F-INSFMEM, 188, 210, 211
SYSTEM-W-POOLEXPF, 125

VAX-11,/750
%%, 66

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
MESSAGES

VAX-11,/780
@ console prompt, 56
?2CHM ERR, 50
?2CPU DBLE-ERR HALT, 51
?2ILL I/E VEC, 52
2INT-STK INVALID, 53
2NO USR WCS, 54
ATTEMPTING WARM RESTART, 58
HALT INST EXECUTED, 48
HALTED AT 00000000, 48
HALTED AT 200034F9, 49
HALTED AT 2000350A, 48, 58
HALTED AT 20003552, 49
HALTED AT 20003563, 48, 58
HALTED AT 8xxxxxxx, 49
HALTED AT xxxxxxxx, 47
VAX-11,/785
@ console prompt, 56
?CHM ERR, 50
2CLOCK PHASE ERROR, 51
?CPU DBLE-ERR HALT, 51
?ILL I/E VEC, 52
2INT-STK INVALID, 53
?NO USR WCS, 54
ATTEMPTING WARM RESTART, 58
HALT INST EXECUTED, 48
HALTED AT 00000000, 48
HALTED AT 20003552, 49
HALTED AT 20003563, 48, 58
HALTED AT 8xxxxxxx, 49
HALTED AT xxxxxxxx, 47

Page 3
14 August 1985

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 4
STARTING POINTS 14 August 1985

STARTING POINTS

The initial starting point for troubleshooting crashes is the section
BUGCHECKS. Follow the directions in that section and in any sections
to which the text directs you.

The initial starting point for troubleshooting processor halts is the
section HALTS - VAX-11/780 and VAX-11/785. (Other VAX processors’
halts will be documented in future revisions of this document.)
Follow the directions in that section and in any sections to which
the text directs you.

The initial starting point for troubleshooting suspected hangs,
process or system, is the section HANGS. Follow the directions in
that section and in any sections to which the text directs you.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 5
ACCESSING PROCESS CONTEXT WITH SDA ' 20 May 85

ACCESSING PROCESS CONTEXT WITH SDA

Process context means the per-process virtual address space, general
registers, processor registers, and system data structures associated
with a particular process. The major system data structures that
describe a process are the software Process Control Block (PCB), Job
Information Block (JIB), and the Process Header (PHD). Examining
these data structures, whether in a crashdump or on the running
system, is usually straightforward. Type the following SDA command

SDA> SHOW SUMMARY !to get process id and pix

Under V4, the column labeled "Indx" contains the process index, or
"pix". Under V3, the pix is the low word of the process id. Type
the following SDA commands

SDA> SET PROCESS/INDEX=<pix>

SDA> READ SYS$SYSTEM:SYSDEF.STB !if you haven’t

SDA> SHOW PROCESS/PCB !display PCB and get JIB address
SDA> FORMAT <jib _address> !format JIB

SDA> SHOW PROCESS/PHD !display PHD fixed part

SDA> SHOW PROCESS/REG !...process registers

SDA> SHOW PROCESS/WORK !...working set list

SDA> SHOW PROCESS/PROC -1...process section table

SDA> SHOW PROCESS/PAGE !...page tables

SDA> SHOW STACK/USER luser stack
SDA> SHOW STACK/SUP !sup. stack
SDA> SHOW STACK/EXEC lexec stack

SDA> SHOW STACK/KERNEL tkernel stack

Issue EXAMINE commands to examine whatever per-process addresses you
want to see.

Under some circumstances, SDA is unable to execute any of the
commands above and outputs the error

unable to access location <x>

This error means that SDA, analyzing the running system, is unable to
access the target process.

When you are analyzing the running system, SDA queues a special
kernel AST to the process of interest in order to examine its address
space, its PCB, or its PHD. The special kernel AST collects
information, running in the context of the target process, and
requeues itself to the process running SDA. SDA waits three seconds
for the special kernel AST to complete this. Even if the target
process is outswapped, the AST enqueuing makes the process computable
and usually causes it to be inswapped. If, however, the process’s
priority is very low with respect to other computable processes
and/or the system is heavily loaded, SDA’s three second timeout may
expire. Furthermore, if the process is in a lengthy wait at IPL 2,
the AST cannot be delivered, and SDA’s timeout will expire. When the
timeout expires, SDA issues the error message above.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 6
ACCESSING PROCESS CONTEXT WITH SDA 20 May 85

If you suspect that the process’s priority is the problem, first
display the system with either the SDA SHOW SUMMARY command or the
DCL SHOW SYSTEM command for confirmation. 1Increase the process’s
priority and then re-issue the SDA command. Remember to lower the
process’s priority when you are done. From an account with ALTPRI
and WORLD privileges, type the DCL command

$ SET PROCESS/PRIORITY=<new priorityd/ID=<pid>

You may still be unable to examine the process’s context after
altering its priority, particularly if the process is being waited at
IPL 2. The sections below discuss possible alternative ways to
examine the PCB, JIB, and PHD. There is no way to examine the
per-process address space of a process on the running system which is
being waited at IPL 2.

The PCB And JIB

The software PCB and JIB are in nonpaged pool and always accessible
to SDA. However, SDA’s usual method of obtaining these for a process
on the current system fails under the circumstances described above.

The alternative is the following SDA commands

SDA> READ SYSSSYSTEM:SYSDEF.STB

SDA> DEF PCB=@(@SCH$GL_PCBVEC+(4*<pix>))

SDA> FORMAT PCB !display PCB
SDA> FORMAT @(PCB + PCBSL JIB) !display JIB

The PHD

The PHD contains information which is generally not needed unless the
process is resident: the hardware PCB, the working set list, the
process section table, the per-process page tables, and accounting
and quota information. The hardware PCB is the area used to record
the process’s general registers when the process’s context is saved.
The hardware PCB may be of particular interest if you are trying to
determine why a process is in a lengthy wait. The PHD is
nonpageable, except for the per-process page tables.

The PHD is in a region of system space called the balance set slots.
When a process is inswapped a balance set slot is allocated for its
PHD. When a process is outswapped, its PHD may be outswapped also,
and the balance set slot virtual address space set to no access or
allocated to another process. When the process is inswapped again,
its PHD is likely to be in a different balance set slot. Because the
PHD is not permanently resident, SDA always accesses it from the
context of its process. However, if the process is being waited at
IPL 2, SDA’s special kernel AST is unable to run in that process’s
context.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 7
ACCESSING PROCESS CONTEXT WITH SDA 20 May 85

The program in subsection Hints and Kinks is an alternative way to
access the nonpageable part of the process header. Run it from a
process with CMKRNL privilege. Given the pix of a target process,
the program makes various checks on the validity of the process
header and displays its hardware PCB if possible. Modification of
the program to display the working set list, process section table,
or accounting and quota information is left as an exercise to the
reader.

If you are trying to learn more about a problem involving a hung
process which can be reproduced at will, you should lock the process
into the balance set before reproducing the problem so that its PHD
is always resident. The user must be granted the privilege PSWAPM
and must issue the DCL command SET PROCESS/NOSWAP before running the
program that causes the process to hang.

VAX/VMS Troubleshooting
ACCESSING PROCESS CONTEXT WITH SDA

INTERNAL USE ONLY Page 8

20 May 85

Hints And Kinks

.title READPHD

This program, run from an account with CMKRNL privilege, displays the
hardware pcb from the process header of a specified process. Its .
intended use is to display the general registers of a resident process
being waited at IPL 2 and thus inaccessible to online SDA.

Build it using the following commands:
MACRO READPHD + SYSSLIBRARY:LIB/LIB
LINK READPHD + SYS$SYSTEM:SYS.STB/SEL

When you run it, it will prompt for the process index, or "pix" of the
target process. Under V3, the pix is the low word of the process
id. Under V4, SDA SHOW SUMMARY has a column "Indx" which contains the
pix of each process. If the input pix contains any non-hex digits, the

W WE WE We W We Ve We WNe W Ne We We We W we W

program will reprompt. If the pix isn’t valid or the PHD unavailable,
the program will exit with status nonexistent process.

SIPLDEF ;define IPL symbols
SPCBDEF ;define process control block offsets
SPHDDEF ;define process header offsets
start:: word 0
; get target process index
10$: pushaw pixinput jgets input size from lib$get input
pushaq pixprompt ;jprompt arg
pushag pixinput ;input arg
calls #3,g"libSget input ;get target pix

we e weo

we we “we

“-e we we

r0,20%

convert pix to binary

;branch if error

clrl -(sp) ;zero flags arg

pushl #4 ;value-size arg = longword
pushal pixarg ;binary result arg

pushag pixinput ;input string address arg
calls #4,g"otsScvt tz 1 ;convert pix to binary
blbc r0,10$ sbranch if non-hex digit

call kernel mode procedure to copy hardware pcb of target process

$cmkrnl s getphd,arglist

blbc

format and display hardware pcb

10,208

;read hardware pcb of target
;branch if failure to access phd

$faol s faoctr,outsize,output,phdbuffer ;format hardware pcb

pushaq
calls

output

#1,9"libSput output

20$: Sexit s r0

’

;output arg
;display hardware pcb

Ss

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 9
ACCESSING PROCESS CONTEXT WITH SDA 20 May 85

; kernel mode procedure to read target'’s process header if available

.
’

.enable 1sb
getphd: .word “m<r2,r3,r4,r5>
movl 4(ap) ,r2 ;get pix of target
cmpl r2,sch$gl maxpix ;is pix too large?
bgtr 208 ;branch if yes
5$: setipl synch ;raise ipl and lock pages touched
; at high ipl
movl @sch$gl pcbvec[r2],r4 ;get pcb address of target
cmpl r4,#sch$gl nullpcb ;has target process been deleted?
beql 20% ;branch if yes

bbc #pcbsv_phdres,pcbsl sts(r4),20$
;branch if phd not resident
movl pcb$l phd(r4),r3 ;get phd address of target
bgeq 20$;additional sanity check
;branch if phd not system space addre

movc3 #24*4,phdsl ksp(r3),phdbuffer ;copy hardware pcb fields only

movzwl #ss$ normal,r0 sreturn success
10$: setipl #0 jrestore ipl
ret
20$: movzwl #ss$_nonexpr,r0 ;proc. outswapped, pix incorrect, etc
brb 108
; data
phdbuffer:
.blkl 24
synch: .long ipl$ synch
assume <.-5%$> le 512
.disable 1lsb
; end of data accessed at high ipl
érglist:.long 1 ;for getphd procedure
pixarg: blkl 1 ;process index of target phd
éixprompt:
.ascid \enter hex pix:\
pixinput:
.ascid \ \
faoctr: .ascid \KSP=!XL, ESP=!XL, SSP=!XL USP=!XL!A~

\ RO=!XL Rl=!XL R2=!XL R3=!XL!A-
\ R4=!XL RS5=!XL R6=!XL R7=!XL!A-~
\ R8=!XL R9=!XL RI10=!XL RI1l=!XL!A-
\ AP=!XI, FP=!XL PC=!XL, PSL=!XL!A~
\POBR=!XL. POLRASTL=!XL Pl1BR=!XL PIlLR=!XL\

output: .long 400

.address 10$
10$: .blkb 400 ;buffer for fao output
outsize: .blkw 1 ;length of fao output

.end start

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 10
ACCESSING PROCESS CONTEXT WITH SDA 20 May 85
Additional References

V3 VAX/VMS Internals and Data Structure Manual, Chapter 14, Memory
Management Data Structures

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 11
BUGCHECKS 10 June 85

BUGCHECKS

The main steps of initial bugcheck analysis follow.

o Find the dump file and determine the bugcheck type. If you are
uncertain about how to do this or experience problems, see the
following pages in this section for more detailed directions.

o
FOR BUGCHECK TYPE: GO TO SECTION:

ASYNCWRTER CPU-SPECIFIC INTERRUPTS
CHMONIS RESTART BUGCHECKS
CHMVEC RESTART BUGCHECKS
DBLERR RESTART BUGCHECKS
FATALEXCEPT FATALEXCEPT BUGCHECK
HALT RESTART BUGCHECKS
ILLVEC RESTART BUGCHECKS
INVEXCEPTN INVEXCEPTN BUGCHECK
IVLISTK RESTART BUGCHECKS
KRNLSTAKNV KRNLSTAKNV BUGCHECK
MACHINECHK MACHINE CHECKS
OPERATOR uninteresting dump
OUTOFSYNC RESTART BUGCHECKS
PGFIPLHI PGFIPLHI BUGCHECK
SCBRDERR RESTART BUGCHECKS
SSRVEXCEPT SSRVEXCEPT BUGCHECK
STATENTSVD RESTART BUGCHECKS
UNKRSTRT RESTART BUGCHECKS
UNXSIGNAL UNXSIGNAL BUGCHECK

o If the bugcheck type is not one of those listed above, see the
following pages in this section.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 12
BUGCHECKS 10 June 85

All crashes result from a system software decision that system
integrity is compromised. Following this decision, the system
software bugchecks by executing the code generated by the BUG CHECK
macro. An example of a system software decision to crash the system
is in the IPL 3 interrupt service routine; the code which selects a
new process to place into execution bugchecks if the data structure
it removed from a compute queue is not a software PCB.

The BUG CHECK macro has one required argument, the bugcheck name, and
an optional argument, the keyword FATAL. The macro generates the
two-byte opcode FEFF followed by an immediate operand generated from
the macro arguments. Execution of the bugcheck opcode results in an
Opcode Reserved to Digital exception. The exception service routine
special cases the bugcheck opcode by dispatching to EXESBUG CHECK.
For a fatal exec or kernel mode bugcheck, EXESBUG CHECK crashes the
system, writing a register and stack display to the console terminal
and, if conditions allow (see section CRASHDUMP REQUIREMENTS),
writing a dump of physical memory to the system dump file.

1. First, find the dump file. 1Initially, the dump should be in
SYS$SYSTEM:SYSDUMP.DMP or SYS$SYSTEM:PAGEFILE.SYS. Often the
dump will have been copied elsewhere. If it hasn’t been, do - so
before proceeding further to avoid its loss following another
crash or a normal system shutdown. Note that the dump file by
default has the NOBACKUP attribute. This means that if you copy
the dump with BACKUP, you must use the /IGNORE=NOBACKUP
qualifier.

2. Run SDA to determine whether the dump file is valid. From an
account with file access to the dump, type the DCL command

$ ANALYZE/CRASH <dump filespec>

SDA should respond with the date the dump was taken and the
bugcheck type and message text.

3. 1If SDA reports the error SDA-W-NOREQ, symbol "<x>" not found in
system symbol table, or the error SDA-W-NOREAD, unable to access
location <x>, then most likely there is an incompatibility among
the version of SDA, the version of SYS.STB SDA reads as part of
its initialization, and the version of the crashed system. In
order for you successfully to analyze a dump, the dump, SDA, and
the SYS.STB must be from the same major release of VMS.

If you don’t specify the /SYMBOL qualifier to the ANALYZE
command, SDA looks for SYS.STB first in the directory containing
the dump and then in SYS$SYSTEM.

4, If SDA reports the error SYSTEM-F-VASFULL, virtual address space
is full, then the SYSBOOT parameter VIRTUALPAGCNT is too small.
Analyzing a dump requires a SYSBOOT VIRTUALPAGCNT parameter of
some 2000 pages plus the size of the dump file, whether it is
SYSDUMP.DMP or PAGEFILE.SYS. (Actual requirements may vary as a

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 13
BUGCHECKS 10 June 85

function of SYSBOOT parameters.)

If SDA reports the error SDA-E-DUMPEMPTY, dump file contains no
valid dump, first check whether a BACKUP save and restore
performed without the /IGNORE=NOBACKUP could have restored the
size and other attributes of a NOBACKUP dump file without its
contents. If that is not the problem, see the section on
CRASHDUMP REQUIREMENTS and take appropriate action to get a valid
dump the next time the system crashes.

If you do not have a valid dump file, but do have console
bugcheck output, analysis of the crash may be possible. You
should attempt it, following the directions below to the extent
possible. The console bugcheck output is similar to the result
of issuing the SDA commands

SDA> SHOW CRASH
SDA> SHOW STACK

The console output omits the processor register contents.
However, the bugcheck errorlog entry from the time of the crash,
which may have been written to SYS$SERRORLOG:ERRLOG.SYS, would
contain the processor register contents. Under V3, run SYE and
specify S in response to the "OPTIONS" prompt and /BU in response
to the "DEVICE NAME" prompt to limit the display to bugcheck
entries. Under v4, type the DCL command
ANALYZE/ERROR/INCLUDE=BUGCHECKS <file spec>. Locate the entry
corresponding to the date and time the system crashed and read
its processor register contents.

If the bugcheck type is OPERATOR, this crashdump resulted from an
operator requested shutdown of the system. These always occur as
the last step of shutdown and are generally of no interest. 1If
you or someone else mistakenly shut down the system because you
wanted to examine a hung or slow system, next time use the CRASH
command procedure documented in Section 4.1 of the Guide to
VAX/VMS System Management and Daily Operations.

Type the SDA command
SDA> SHOW CRASH

to display the system version and register contents. The
registers displayed are the register values at the time the
BUG_CHECK was requested. Subtract 4 from the displayed PC to
determine the address of the BUG CHECK macro.

Type the SDA command SHOW STACK to display the stack current at
the time of crash. Note that for each V3 SDA COPY command used
to copy the dump, the SP will be 8 bytes greater than its actual
value; that is, SDA will show the SP pointing to a stack address
8 bytes higher than it should. This V3 bug has been corrected in
V4.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 14
BUGCHECKS 10 June 85

9.

10.

11.

If the bugcheck type is in the list below, continue with the
steps in the specified section.

FOR BUGCHECK TYPE: GO TO SECTION:
ASYNCWRTER CPU-SPECIFIC INTERRUPTS
CHMONIS RESTART BUGCHECKS
CHMVEC RESTART BUGCHECKS
DBLERR RESTART BUGCHECKS
FATALEXCEPT FATALEXCEPT BUGCHECK
HALT RESTART BUGCHECKS
ILLVEC RESTART BUGCHECKS
INVEXCEPTN INVEXCEPTN BUGCHECK
IVLISTK RESTART BUGCHECKS
KRNLSTAKNV KRNLSTAKNV BUGCHECK
MACHINECHK MACHINE CHECKS
OPERATOR uninteresting dump
OUTOFSYNC RESTART BUGCHECKS
PGFIPLHI PGFIPLHI BUGCHECK
SCBRDERR RESTART BUGCHECKS
SSRVEXCEPT SSRVEXCEPT BUGCHECK
STATENTSVD RESTART BUGCHECKS
UNKRSTRT RESTART BUGCHECKS
UNXSIGNAL UNXSIGNAL BUGCHECK

If the bugcheck type is not one of those listed above, identify
in what source module the PC is, using directions in section
VIRTUAL ADDRESSES. Locate and read the source code to determine
what anomaly the system detected and the significance of the
general registers and relevant data structure contents.

Decipher the current stack to trace control flow up to the point
of error. See the section STACK PATTERNS.

Hints And Kinks

1.

20

Although "deciphering stacks" and "identifying virtual addresses"
are listed as single and separate steps, in practice, they are
usually repetitive and intertwined. For example, that a
particular longword can be interpreted as a particular address
should be confirmed in the context of what code was executing and
manipulating that 1longword. ©Usually this requires that some
piece of the stack be deciphered. Another example is that
identifying a particular footprint on the stack may require or
result in the identification of addresses within that footprint.

When SDA examines the process current at the time of an interrupt
stack bugcheck, SDA assumes the bugcheck PC and PSL and all the
general registers are part of that process’s context and displays

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 15
BUGCHECKS 10 June 85

them in response to the SHOW PROCESS/REGISTER command.

3. Whenever you modify SYSBOOT parameters, remember to make AUTOGEN
aware of your changes so that they propagate across AUTOGENS.
Include any parameter changes you make in V3
SYS$SYSTEM:PARAMS.DAT or in V4 SYSSSYSTEM:MODPARAMS.DAT. See
Chapter 11 in the Guide to VAX/VMS System Management and Daily
Operations for further information on AUTOGEN.

Additional References

V3 VAX/VMS Internals and Data Structures Manual, Section 8.2, System
Crashes

VAX/VMS System Dump Analyzer Reference Manual, for use of SDA

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 16
CPU-SPECIFIC INTERRUPTS 20 May 85

CPU-SPECIFIC INTERRUPTS

Five vectors in the System Control Block, at hex offsets 50 through
60, are reserved for cpu-specific system bus and memory errors.
These interrupts occur at cpu-specific IPLs within the range hex 18
through 1D.

VMS services these interrupts in a cpu-specific image loaded into
nonpaged pool during system initialization. The image name is of the
form SYSLOAxxx.EXE, where xxx designates the cpu type.

CPU IMAGE NAME

MicrovaAX I SYSLOAUV1 .EXE
MicroVvaxX II SYSLOAUVZ .EXE
VAX-11,/730 SYSLOA730.EXE
VAX-11,/750 SYSLOA750.EXE
VAX-11/780 SYSLOA780.EXE
VAX-11/785 SYSLOA780.EXE
VAX 8600 SYSLOA790.EXE
VAXstation I SYSLOAWS1 .EXE
VAXstation II SYSLOAWSZ2.EXE

See the subsection SYSLOAXXX.EXE in the section VIRTUAL ADDRESSES -
SYSTEM SPACE for more information on the mechanism for dispatching
into SYSLOAxxx.EXE.

In general, VMS servicing of these interrupts is done at IPL 31 and
includes logging an error to the error log.

For more information, see the section corresponding to the cpu of
interest

CPU-SPECIFIC INTERRUPTS - VAX-11,/780 AND VAX-11/785
[others TBS]

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 17
CPU-SPECIFIC INTERRUPTS - VAX-11,/780 AND VAX-11,/785 15 May 85
CPU-SPECIFIC INTERRUPTS - VAX-11/780 AND VAX-11,/785
The VAX-11,/780 and VAX-11,/785 have five cpu-specific interrupts.

Hex SCB Offset Hex IPL Interrupt Name

50 19 SBI Silo Compare
54 : 1A CRD/RDS

58 1B SBI Alert

5C 1c SBI Fault

60 1p CPU Timeout

SBI Silo Compare

This interrupt occurs when a match is detected on particular signal
fields of the SBI bus. The signal fields being checked can be
program-selected by control bits in the SILO COMPARATOR register.
The previous sixteen cycles on the SBI bus are latched in the silo
register for interrogation by diagnostic software.

This interrupt can occur only if it is enabled in the SILO COMPARATOR
register. It is very unlikely to occur and documented here for
completeness more than anything else. VMS does not enable it and
handles this interrupt as an unexpected interrupt. That is, VMS
signals the nonfatal bugcheck UNXINTEXC. If BUGCHECKFATAL is 0, its
default value, the result is a bugcheck error log entry.

This interrupt can be used as an ad hoc troubleshooting tool for
particular kinds of hardware problems by someone who understands the
SBI protocol, who can interpret the silo contents, and who can load a
service routine for the interrupt into nonpaged pool.

CRD/RDS

The Corrected Read Data (CRD) interrupt occurs when the processor
receives read data which has been error-corrected by memory. The
Read Data Substitute (RDS) interrupt may occur when the processor
receives bad data which cannot be error-corrected. 1If the cpu
attempts to use bad data in instruction execution, a machine check
occurs. If instruction execution alters control flow so that bad

data in the instruction prefetch buffer is unused, the RDS interrupt
occurs.

This interrupt cannot be generated through software error. It can be
caused by hardware problems in the memory controllers or their memory
arrays.

VMS’s interrupt service routine logs this in the error log with type
SE (soft memory error) and increments EXESGL MEMERRS. The contents

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 18
CPU-SPECIFIC INTERRUPTS - VAX-11,/780 AND VAX-11,/785 15 May 85

of EXESGL MEMERRS are displayed in the output from the DCL command
SHOW ERROR as MEMORY errors. VMS reads the memory controller status
registers to include them in the errorlog entry. If there is a
MS780E controller indicating either SBI interface write data parity
error or microsequencer parity error, VMS signals the fatal bugcheck
ASYNCWRTER. (In contrast to the ASYNCWRTER bugcheck signaled by the
cpu write timeout interrupt service routine, this crashdump does not
have a faked machine check logout on the stack.) Otherwise, it
dismisses the interrupt.

If you think an ASYNCWRTER crash was caused by this problem, the best
way to learn more is through analyzing the error log, because the
crashdump does not contain the contents of all the interesting
processor and memory controller registers. Under V3, run SYE and
specify S in response to the "OPTIONS" prompt and /CP to the "DEVICE
NAME" prompt. Under v4, type the DCL command
ANALYZE/ERROR/INCLUDE=CPU <filespec>. The error log report displays
and interprets the contents of the SBITA and SBIER registers. The
SBITA register contains the physical SBI address (of a longword) that
timed out. The error log report shows this as the address (of a
byte) following "TIMEOUT CONSOLE ADDR =". If this address is less
than 20000000, then it is a memory address. Otherwise, it is a nexus
register address. The physical address corresponding to the start of
nexus N’'s registers is 200xx000, where xx equals 2 times N in hex.
For example, the registers for nexus 4 begin at 20008000. Compute
the nexus number. To find out what is present at that nexus, look at
the error log report. It displays the configuration/status register
for each nexus, along with the nexus number and type.

SBI Alert

This interrupt occurs when an SBI adapter or controller asserts the
SBI Alert line. Adapters or controllers which have no other means of
requesting SBI interrupts can assert this signal to request an
interrupt. Currently, only MS780C and MS780E memory controllers
without ISP ROMs assert this line to report memory power failure or
recovery. (A memory controller with an ISP ROM is considered more
critical to system functioning and is usually jumpered to assert a
different SBI signal to report power problems.)

This interrupt cannot be generated through software error. It can be
caused by hardware problems in memory controllers or their power
supplies.

VMS logs this in the error log with type SA (SBI Alert) and
increments EXESGL MEMERRS. The contents of EXESGL MEMERRS are
displayed in the output from the DCL command SHOW ERROR as MEMORY
errors. VMS reads the memory controller status registers to include
them in the errorlog entry. If there is a MS780E controller
indicating either SBI interface write data parity error or
microsequencer parity error, VMS signals the fatal bugcheck
ASYNCWRTER. (In contrast to the ASYNCWRTER bugcheck signaled by the

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 19
CPU-SPECIFIC INTERRUPTS - VAX-11,/780 AND VAX-11,/785 15 May 85

cpu write timeout interrupt service routine, this crashdump does not
have a faked machine check logout on the stack.)

If you think an ASYNCWRTER crash was caused by this problem, the best
way to learn more is through analyzing the error log, because the
crashdump does not contain the contents of all the interesting
processor and memory controller registers.

SBI Fault

This interrupt occurs if an SBI bus error was detected by any adapter
or controller on the SBI, including the cpu. Possible bus errors
include SBI parity error, write sequence fault, interlock sequence
fault, and multiple SBI transmitter fault. If the cpu detects a
fault condition preventing completion of a read cycle for the cpu,
the cpu also generates a machine check, typically a read timeout
machine check. See section MACHINE CHECKS -~ VAX-11,/780 and
VAX-11,/785.

This interrupt cannot be generated through software error. It can be
caused by hardware problems in the SBI, memory controllers, and SBI
nexus.

VMS’s interrupt service routine logs this in the error log with type
BE (bus error), increments EXESGL MCHKERRS, and dismisses the
interrupt. The contents of EXESGL MCHKERRS are displayed in the
output from the DCL command SHOW ERROR as CPU errors. If you see
errors of this sort in the error log, contact Field Service.

Cpu Timeout

This interrupt occurs if the processor receives an error confirmation
from an SBI nexus for the second longword of an extended read
operation or does not receive SBI command completion within 512 SBI
cycles.

This interrupt cannot be generated through software error. It can be
caused by hardware problems in the SBI, memory controllers, and SBI
nexus.

VMS’s interrupt service routine logs the error in the error log with
an entry type of AW (asynchronous write) and increments
EXESGL MCHKERRS. The contents of EXESGL MCHKERRS are displayed in
the output from the DCL command SHOW ERROR as CPU errors. VMS then
tests whether the address reference was made from user/supervisor
mode or from exec/kernel mode. If the reference was made from exec
or kernel mode, VMS signals the fatal bugcheck ASYNCWRTER. If the
reference was made from user or supervisor mode, VMS signals a
machine check exception to the access mode active at the time the
interrupt occurred. If you see errors of this sort in the error log,

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 20
CPU-SPECIFIC INTERRUPTS - VAX-11,/780 AND VAX-11/785 15 May 85

contact Field Service.

The error log from the time of the crash is very important in
analyzing this error, because the crashdump does not contain the
contents of all the interesting processor and memory controller
registers. The interrupt PC and PSL are possibly irrelevant to the
error, since these interrupts do not necessarily occur during the
instruction which caused them; the processor is allowed to continue
execution while an SBI write cycle is pending.

The crashdump interrupt stack contains a faked microcode machine
check error logout, beginning with a hex byte count of 28. This

error logout on the stack is present for convenience in executing a
common code path, is meaningless, and should be ignored.

Additional References

VAX-11,/780 TB/CACHE/SBI Control Technical Description

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 21
CRASHDUMP REQUIREMENTS 15 April 85

CRASHDUMP REQUIREMENTS

Following is a list of requirements that must be met for VAX/VMS to
write a complete crashdump. Most of these are discussed in more
detail below.

o There must be a crashdump file in SYSSSYSTEM named either
SYSDUMP.DMP or PAGEFILE.SYS. If the dump file is SYSDUMP.DMP, it
must be four blocks bigger than physical memory. If SYSDUMP.DMP
is not present, VMS will write crashdumps to PAGEFILE.SYS; it
must be at least 1004 blocks bigger than physical memory, and the
SYSBOOT parameter SAVEDUMP must be 1 (default is 0).

o The data fields in system space describing the dump file’s
extents must be intact when the system crashes.

o The resident part of EXESBUG CHECK must be able to read in the
non-resident code, using the boot driver.

o The SYSBOOT parameter DUMPBUG must be 1 (default is 1).

o Physical memory must contain no pages with unrecoverable parity
errors. :

o The boot driver must be able to write to the dump file.

o The user must not halt the system via the console terminal until
after the console dump messages have been printed in their
entirety and memory contents have been written to the crashdump
file.

Crashdump File

During system initialization, SYSBOOT first looks up the crashdump
file as the highest version of SYS$SYSTEM:SYSDUMP.DMP and records the
location of its extent(s) in a data structure called the Boot Control
Block. If there is no SYSDUMP.DMP, SYSBOOT maps the extent(s) of
SYS$SYSTEM:PAGEFILE.SYS instead. The contents of the Boot Control
Block are checksummed at system initialization and again during fatal
bugcheck processing. A crash dump is written only if the two
checksums are equal. When the system crashes, VMS does not do a
further lookup of the dump file. Note that you run a serious risk of
corrupting your system disk if you delete the dump file whose
extent(s) VMS mapped at system initialization.

For a complete dump to be written, the dump file must be at least as
big as local physical memory (unless the SYSBOOT parameter
PHYSICALPAGES is less than this) plus any multiport memory plus four
blocks. For example, a 2 mb VAX system requires a SYSDUMP.DMP file
of 4100 blocks; a lmb system requires 2052 blocks. If the dump is to
be written to PAGEFILE.SYS, increase these numbers by 1000 blocks.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 22
CRASHDUMP REQUIREMENTS 15 April 85

The first block of the dump file is used for a formatted error log
message with bugcheck information and the contents of the processor
registers. The second and third blocks of the file are used to save
the contents of the error log message block buffers (error log
messages not yet written to SYSSERRORLOG:ERRLOG.SYS) The fourth block
is reserved and currently unused.

Fatal bugcheck processing code writes physical memory contents to the
crashdump file following the reserved blocks of the file. If the
dump does not include all of physical memory, SDA outputs the error
SDA-W-SHORTDUMP, the dump only contains x out of y pages of phyical
memory. If you have set the SYSBOOT parameter PHYSICALPAGES so as
not to use all of physical memory, and the dump file is PHYSICALPAGES
plus 4, ignore this warning message.

If, however, the dump file is too small to include the System Page
Table (SPT), SDA cannot analyze it and outputs the error
SDA-E-SPTNOTFND, system page table not found in dump £file. The
System Page Table (SPT), the key to translating physical addresses to
virtual addresses, is usually allocated in the highest physical
memory.

You can alter the dump file size with the command procedure
SYSSUPDATE:SWAPFILES.COM. For size increases, SYSGEN (invoked by
SWAPFILES.COM) extends the current dump file by default. Use of a
new or extended dump file, whether it is SYSDUMP.DMP or PAGEFILE.SYS,
requires a system reboot. SWAPFILES.COM is documented in Section
11.7 of the Guide to VAX/VMS System Management and Daily Operations.

If you have insufficient free disk space to extend SYSDUMP.DMP large
enough, a larger PAGEFILE.SYS and no SYSDUMP.DMP may solve the
problem. First, rename SYSDUMP.DMP so that system initialization
code cannot find it. Do not delete the renamed SYSDUMP.DMP until
after you have rebooted the system, because its extents will be used
for a dump when you shut down the system. Shutdown the system and
then reboot the system. Delete the renamed SYSDUMP.DMP, and extend
PAGEFILE.SYS to the necessary size. Shutdown and reboot again in
order to use the extended portion of PAGEFILE.SYS.

Bugcheck Mechanism

When the service routine for Opcode Reserved to Digital exceptions
detects either of the two bugcheck special opcodes, “XFEFF (BUGW) or
“XFDFF (BUGL, currently unused), it transfers control to
EXESBUG CHECK. Use of the exception mechanism automatically changes
access mode to kernel and allows code running in other than kernel
mode to report bugchecks.

To determine what to do, EXESBUG CHECK looks at the PSL previous
mode, that is, the access mode in which the exception occurred; the
word or longword of bugcheck information that follows the bugcheck
opcode; and several SYSBOOT parameters.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 23
CRASHDUMP REQUIREMENTS 15 April 85

If the previous mode was kernel or exec, EXE$BUG CHECK determines
whether the bugcheck was fatal or continuable. If the bug severity
is greater or equal to ERROR, the bugcheck is considered fatal.
Also, if SYSBOOT parameter BUGCHECKFATAL is 1, all kernel and exec
mode bugchecks become fatal. BUGCHECKFATAL is 0 in the V3 and V4
default parameters.

For non-fatal exec and kernel mode bugchecks, EXE$BUG CHECK fills in
an error log entry with bugcheck information and REIs.

For fatal exec and kernel mode bugchecks, EXE$BUG CHECK creates an
error log entry with bugcheck information and displays bugcheck
information on the system console. It should write bugcheck
information, error log message block buffers, and memory contents to
the crashdump file.

The code which processes fatal bugchecks is not part of the resident
executive. EXESBUG CHECK reads it from the system image into system
space, over read-only non-paged executive, at global symbol
BUGSFATAL. EXE$BUG CHECK first initializes the system disk’s adapter
and then calls any unit initialization routine specified by the boot
driver. If the unit initialization routine fails, EXE$BUG CHECK
sends a reboot message to the console and halts. If the unit
initialization succeeds, EXE$BUG CHECK calls the bootstrap driver to
read the fatal bugcheck processing code. If the bootstrap driver
gets a fatal I/O error or exceeds its retry count for recoverable
errors, it returns an error status code.

If an error occurs, EXE$SBUG CHECK loops, re-initializing the adapter
and attempting to read the fatal bugcheck code. Eventually, its I 0
should succeed, and fatal bugcheck processing will continue.

After EXESBUG CHECK's fatal bugcheck overlay creates the bugcheck
error log entry in the page of memory preceding BUGSFATAL and
displays bugcheck information on the console, it tests the SYSBOOT
parameter BUGREBOOT. If BUGREBOOT is 0, EXESBUG CHECK dispatches to
code which causes an XDELTA breakpoint 1f XDELTA is resident. The

user then has an opportunity to examine system data structures of

interest. When the user types ";p" to terminate the breakpoint,
control returns to EXESBUG CHECK. If SYSBOOT parameter DUMPBUG is 1,
EXE$BUG_CHECK then attempts to write information to the crash dump
file. DUMPBUG is 1 in the V3 and V4 default parameters.

After fatal bugcheck processing is complete, EXE$BUG CHECK concludes
either by halting or by looping endlessly to avoid automatic restart.
If BUGREBOOT is 1, EXE$BUG CHECK sends a reboot message to the
console and halts. BUGREBOOT is 1 in the V3 and V4 default
parameters. If BUGREBOOT is 0, EXE$BUG CHECK prints the following
message on the console terminal and loops.

SYSTEM SHUTDOWN COMPLETE — USE CONSOLE TO HALT THE SYSTEM

VMS V3 systems loop at PC 80007D3C. VMS V4 systems loop at PC
80008D7E.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 24
CRASHDUMP REQUIREMENTS 15 April 85

SYSINIT Processing

when the system is first rebooted after a crash, SYSINIT uses the
second and third blocks of the dump file to restore the error log
message block buffers, so that error messages from the time of the
crash will be written to the error log file by ERRFMT’S normal
processing.

By default SYSINIT enables the use of PAGEFILE.SYS (other than the
first four blocks) as pagefile. As modified pages are written to
PAGEFILE.SYS, any dump in it is overwritten. To prevent this when
PAGEFILE.SYS is used as a dump file, set parameter SAVEDUMP to 1 and
ensure that PAGEFILE.SYS is as big as physical memory (including any
MA780 memory) plus 4 blocks plus at least 1000 blocks. SAVEDUMP is 0
in the V3 and V4 default parameters. After a crash run SDA from an
account with CMKRNL privilege and access to the dump. Use SDA to
copy the dump elsewhere to enable the pages of PAGEFILE.SYS occupied
by the dump to be used as normal pagefile.

Hints And Kinks

1. whenever you modify SYSBOOT parameters, remember to make AUTOGEN
aware of your changes so that they propagate across AUTOGENS.
Include any parameter changes you make in V3
SYSSSYSTEM:PARAMS.DAT or in V4 SYS$SYSTEM:MODPARAMS.DAT. See
Chapter 11 in the Guide to VAX/VMS System Management and Daily
Operations for further information on AUTOGEN.

Additional References

V3 VAX/VMS Internals and Data Structures Manual, Section 8.2, System
Crashes

Guide to VAX/VMS System Management and Daily Operations, Section
3.4.3, on dumps in PAGEFILE.SYS

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 25
EXCEPTIONS 12 August 85

EXCEPTIONS

An exception is an unusual event encountered in the flow of
instruction execution that alters that normal flow. Many exceptions
are detected by the hardware (including microcode), but some types of
exceptions are detected by software. Most exceptions that cause
system crashes are detected by the hardware.

An exception may simply mean, for example, that an arithmetic
operation overflowed, that a programming error resulted in an attempt
to execute an illegal or invalid instruction, that a wvirtual page
referenced needs to be read into memory, or that a program is
requesting a system service. :

Exceptions do not directly cause crashes. However, VMS assumes that
certain kinds of exceptions in inner access modes (kernel and exec)
mean that system integrity is compromised, that the system should be
crashed or the current process deleted. A fairly large percentage of
system crashes occur as the result of inner access mode exceptions.
Most often the exception indicates that an earlier corruption or
error has occurred.

In order to analyze these crashes, you must examine the stack
footprints left by the exception to learn what exception occurred,
and then examine the relevant code and data structures to infer what
error(s) led up to the exception.

Software Exceptions

Software-detected exceptions are errors detected by software and
signaled in such a way that they can be processed analogously to
hardware exceptions. An example of a software exception is the
condition AST fault. An AST fault means that an AST could not be
delivered to a particular access mode in a particular process because
its stack was invalid. Another example is the condition system
service failure, which means that a system or RMS service completed
with an error or a severe error.

In general, software exceptions are implemented to allow application
level software to signal errors, although VMS makes some use of the
mechanism. Most software exceptions occur in outer access modes and
do not result in system crashes.

Hardware Exceptions

A hardware exception is synchronous with and caused by the execution
of an instruction. Hardware exceptions include arithmetic overflow,
access violation, translation not valid (known as pagefault), trace
fault, and change mode traps.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 26
EXCEPTIONS 12 August 85

When the processor detects an exception, it pushes on the stack the
PC and PSL at which the exception occurred. It also pushes on the
stack any exception dependent information, for example, the address
whose attempted reference caused an access violation.

A hardware exception is either a fault, a trap, or an abort. The
exception type depends on the individual exception; for example, an
access violation exception is a fault. The distinction among these
that is key to troubleshooting is the significance of the exception
PC saved on the stack.

A trap is an exception that occurs at the end of the instruction that
caused the exception. The PC saved on the stack is the address of
the next instruction that would have been executed had the exception
not occurred. This means that you must examine the instruction
before the exception PC to analyze the exception.

A fault is an exception that occurs during an instruction. The
microcode leaves the registers and memory in a consistent state such
that elimination of the fault condition and restart of the
instruction will give correct results. The PC saved on the stack is
the address of the faulting instruction. This means that you must
examine the instruction at the exception PC to analyze the exception.

An abort is an exception that occurs during an instruction, leaving
the registers and memory unpredictable, such that the instruction
cannot necessarily be correctly restarted, completed, simulated, or
undone. After an abort, the PC saved on the stack is the address of
the aborted instruction. This means that you must examine the
instruction at the exception PC to analyze the exception.

Exception Dispatching

After saving on the stack the PC, PSL, and any exception dependent
information, the processor transfers control to the service routine
specified in the System Control Block vector for that particular
exception. Most of these exception service routines run in kernel
mode. '

Exceptions can be divided into two categories: ones which VMS will
pass on to process-declared condition handlers and ones which VMS
uses to perform its normal work (such as CHME and CHMK traps,
pagefault).

The service routines for exceptions that are passed on to condition
handlers are very simple and very similar. The service routines push
more information on the stack: a system status code indicating what
type of exception occurred (for example, SS$ ACCVIO) and a count of
how many longwords of exception information are now on the stack.
The exception information on the stack now comprises a signal
arqument list (also called a signal array). The exception service
routines all converge to a common dispatching routine called

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 27
EXCEPTIONS 12 August 85

EXESEXCEPTION.

EXESEXCEPTION builds another arqument list on the stack called a
mechanism argument list (or mechanism array) and then checks whether
this exception has occurred in a legal context; that is, it checks
that the processor is currently not running on the interrupt stack
and is running at an IPL no higher than two. If either of these
checks fails, EXESEXCEPTION signals the fatal bugcheck INVEXCEPTN.
See section INVEXCEPTN BUGCHECK for a detailed stack layout.

If the checks pass, EXESEXCEPTION builds one more argument 1list on
the stack, the condition handler argument list, which contains the
addresses of the signal and mechanism arrays. It then makes several
more checks to prevent possible loops in exception servicing; for
example, it checks whether the exception occurred calling a last
chance handler or an AST procedure. If either of these checks fails,
EXESEXCEPTION signals a FATALEXCEPT bugcheck. See section
FATALEXCEPT BUGCHECK for a detailed stack layout.

If the checks pass, EXESEXCEPTION moves the three argument lists to
the stack of the access mode that incurred the exception and REIs to
that mode.

Executing in the access mode of the exception, EXESEXCEPTION searches
for a process-declared condition handler to handle the exception. 1It
checks the primary and secondary exception vectors for that access
mode. The primary and secondary exception vectors are in the first
and second longword of CTLSAQ EXCVEC, postindexed by access mode.
EXESEXCEPTION then traverses the the current stack, following nested
call frames, looking for a call frame condition handler. The Ilast
place EXESEXCEPTION looks is the last chance vector, CTLSAL FINALEXC
postindexed by access mode. -

EXESEXCEPTION calls any condition handler it finds with the condition
handler argument 1list. A condition handler typically examines the
signal array to decide whether it can handle that exception type.

If a condition handler returns a status indicating it cannot handle
that particular exception type, EXESEXCEPTION continues its search
for a condition handler.

There are two common bugcheck types that are signaled by condition
handlers: SSRVEXCEPT and UNXSIGNAL. SSRVEXCEPT is signaled by the
default last chance handlers for kernel and exec mode. See section
SSRVEXCEPT BUGCHECK for a detailed stack layout. UNXSIGNAL is
signaled by call frame condition handlers used by several ACPs and
the Files-11 XQP. See section UNXSIGNAL BUGCHECK for a detailed
stack layout.

Some Common Exception Types

Some of the more common hardware exceptions that cause INVEXCEPTN,

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 28
EXCEPTIONS 12 August 85

SSRVEXCEPT, and UNXSIGNAL bugchecks are access violation fault,
opcode reserved to customers and opcode reserved to Digital faults,
reserved addressing mode fault, and reserved operand fault.

The subsections below describe each of these exceptions in slightly
more detail with a layout of its signal array. The intent is to to
show how the information in the documentation listed below can be
applied to analyze these and other hardware exceptions which cause
system crashes.

Access Violation Fault

An access violation fault means that an instruction has tried to
reference a virtual address whose page table entry protection field
prohibits that reference from that access mode. An access violation
can also result from attempting access to an address beyond the range
mapped by its respective page table; this is called a 1length
violation. :

The microcode pushes two longwords of exception dependent information
on the stack: the address whose attempted reference caused the fault
and a reason mask. The VAX architectures specifies that the faulting
virtual address may be some other address in the same virtual page as
the actual faulting operand address, but this rarely happens.

The signal array for this exception follows.

00000005 argument count
0000000C SS$_ACCVIO signal type
0000000x reason mask

XXXXXXXX exception PC

|
|
xxxxxxxx | faulting virtual address
|
XXxxxxxx | exception PSL

‘+ ——e— ¢+

The reason mask longword contains 3 bits of information.
1. Bit 0 - the type of access violation

0 means the PTE protection code prohibits the intended access
1 means the reference was a length violation

2. Bit 1 - page table entry reference

0 means the virtual address itself was not accessible
1 means the PTE mapping the virtual address was not accessible

3. Bit 2 - intended access

0 means the intended access was a read
1 means the intended access was a write

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 29
EXCEPTIONS 12 August 85

First, examine the reason mask to determine whether this is a length
violation, whether the PTE mapping the virtual address was not
accessible, or whether the PTE’s protection simply prohibited the
intended access. A length violation occurs when the virtual page
number of a PQ or System virtual address is greater than the contents
of the P0 or System length register; a Pl space length violation
occurs when the virtual page number is less than the contents of the
Pl length register. Length violations are among the more common
kinds of access violation and often easy to spot because the faulting
virtual address looks "strange". Incorrect references to location 0,
or any address in virtual page 0, are another common cause of access
violations. Inaccessible PTEs are less common.

Examine the instruction that incurred the fault and its operands to
determine which operand reference caused the fault.

Many crash-causing access violations result from software errors.
Software errors that can cause access violations include:

1. wuse of a corrupted pointer in one data structure to reference
another data structure

2. use of a corrupted register as a pointer to a data structure

3. use of an invalid input argument, such as size, in an address
computation

4. corruption of code in memory (or code on disk)

5. erroneous transfer of control into the middle of random data or
code

6. corruption in a page table resulting in incorrect protection
information.

An access violation can also be signaled by VMS memory management
code; that is, this exception is not always detected by hardware.
The pagefault exception service routine, MMG$SPAGEFAULT, may signal an
access violation if a process incurs a pagefault for a page in
another process’s process header. Although a process header is in
system space, not per-process space, it is paged in the working set
list of the process whose header it is. The system cannot allow one
process to fault a page which belongs to another process.

You can check whether the access violation might be an attempt to
touch another process’s process header by comparing the faulting
virtual address to the address range reserved for the balance set
slots. Type the following SDA commands.

SDA> DEF BALBASE = @SWP$GL BALBASE !define symbol

SDA> EVAL BALBASE Istart address
SDA> EVAL BALBASE + (@SGN$GL BALSETCT*@SWPSGL BSLOTSZ*200)
SDA> lend address

If the address is not within that range, then it is a hardware
detected access violation. If the address is within that range, then
see whether the address is within the process’s own header by typing
the following SDA commands.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 30
EXCEPTIONS 12 August 85

SDA> SHOW PROCESS !PHD start address
SDA> EVAL <phd> + (@SWPSGL_BSLOTSZ*200)
SDA> tend address

If the address is within the process’s own header, then most likely
this is a hardware detected access violation.

Reserved Opcode Faults

An opcode reserved to Digital fault (SS$ OPCDEC) means that an
attempt was made to execute an undefined opcode or, from an outer
mode, an instruction which requires the process to be in kernel mode.
Examples of instructions that may only be executed in kernel mode are
SVPCTX and MTPR.

An opcode reserved to customer fault (SS$ OPCCUS) means that an
attempt was made to execute an instruction starting with the hex
opcode FC.

For either of these faults, no extra exception information is pushed
on the stack. :

The signal array for these exceptions follows.

o

i 00000003 i argument count

| 0000043C/00000434 | sS$_OPCDEC/SS$_OPCCUS signal
|

I

XXXxxxxx | exception PC
XXXXXXXxX | exception PSL

-+

Many crash-causing reserved operand faults result from software
errors. Software errors that can cause reserved opcode faults
include corruption of code in memory (or code on disk) and erroneous
transfer of control into the middle of random data or code.

Reserved Addressing Mode Fault

A reserved addressing mode fault means that an instruction contains
an operand specifier for an addressing mode that is not allowed in
the context in which it occurs. No extra exception information is
pushed on the stack. An example of a reserved addressing mode is the
use of a short literal as a destination operand. See the VAX-11
Architecture Reference Manual or System Reference Manual, section
6.4.3, for a list of illegal addressing modes.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 31
EXCEPTIONS 12 August 85

The signal array for this exception follows.

| 00000003 | argument count

| 0000044C | SS$_RADRMOD signal type
| XXXXXXXX | exception PC

| XXXXXXXX | exception PSL

Many crash-causing reserved operand faults result from software
errors. Software errors that can cause reserved addressing mode
faults include corruption of code in memory (or code on disk) and
erroneous transfer of control into the middle of random data or code.

Reserved Operand Exception

A reserved operand exception means that an attempt was made to
execute an instruction with an operand that has an invalid format.
One example of a reserved operand fault is a CALLS/G to a procedure
with an invalid entry mask. Another example is an attempt to REI
with an invalid saved PSL. Whether the exception is an abort or a
fault depends upon the cause. See the VAX-11 Architecture Reference
Manual or System Reference Manual, section 6.4.3, for a 1list of
causes of reserved operand exceptions and their exception types. No
extra exception information is pushed on the stack.

The signal array for this exception follows.

| 00000003 | argument count

| 00000454 | ss$_ROPRAND, signal type
| Xxxxxxxx | exception PC

| xxxxxxxx | exception PSL

T

Examine the instruction that incurred the fault and its operands to
determine which operand reference caused the fault.

If the exception PC is the address of an REI instruction, then the
two longwords on the stack at higher addresses than the signal array
should be a PC-PSL pair to be restored with the REI. The REI
microcode makes numerous integrity checks on the saved PSL before
restoring it. (See the VAX-1l Architecture Reference Manal or System
Reference Manual, section 6.9, for a list of these checks.) Examine
the PSL to see which test failed and to evaluate whether the PSL has
been corrupted.

Many crash-causing reserved operand faults result from software
errors. Possible software errors that result in reserved operand
faults include corruption of code in memory (or code on disk) and
erroneous transfer of control into the middle of random data or code.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 32
EXCEPTIONS 12 August 85

For REI reserved operand faults some more specific possibilities are:

1. stack corruption overwriting the PSL

2. incorrect stack usage popping too many or too few longwords prior
to an REI

3. attempts to run a compatibility mode image on a MicroVAX

4. incorrect lowering of IPL in an interrupt service routine or
system service.

Additional References

V3 VAX/VMS Internals and Data Structure Manual, Chapter 4, Condition
Handling, for details of VMS exception dispatching

VAX/VMS Run-Time Library Routines Reference Manual, Chapter 7,
Condition Handling Procedures, for information on writing condition
handlers and using related RTL routines and condition handlers

VAX/VMS System Services Reference Manual, Chapter 10,
Condition-Handling Services, for a list of hardware detected and
VMS-signaled software exceptions and their exception-dependent
information and use of system services related to condition
handling

VAX-11 Architecture Reference Manual or System Reference Manual,
Chapter 6, Exceptions and Interrupts, for the architectural
definition of hardware detected exceptions and the details of
interrupt/exception initiation and the REI instruction

Introduction to VAX/VMS System Routines, Chapter 2, VAX Procedure
Calling and Condition Handling Standard, for background on the
goals of the condition handling design

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 33
FATALEXCPT BUGCHECK 12 July 85

FATALEXCPT BUGCHECK

The FATALEXCPT bugcheck is signaled by the common exception
dispatching code when it is unable to dispatch to a condition handler
for a kernel or exec mode exception. In kernel mode, this bugcheck
is fatal. 1In exec mode, this bugcheck is fatal only if the SYSBOOT
parameter BUGCHECKFATAL is 1; by default, BUGCHECKFATAL is 0.

There are several sets of circumstances under which the common
exception dispatching code signals this bugcheck.

1. EXESASTDEL, the AST delivery code, incurs an exception trying to
call a kernel or exec mode AST procedure, and there is no last
chance handler declared for that access mode.

2. The common exception dispatching code incurs an exception trying
to call the kernel or exec mode last chance handler.

3. The common exception dispatching code is wunable to copy the
condition handler argument list, signal and mechanism arrays to
the exec mode stack using the current exec mode stack pointer,
and there is no exec mode last chance handler.

4. A kernel or exec mode exception occurs, and no condition handler
for that access mode handles that conditon.

In practice, these circumstances are rare. VMS always declares last
chance condition handlers for kernel and exec mode. Only inner
access mode code can override those declarations or overwrite the Pl
space locations which contain the last chance handler addresses. The
address of the kernel mode last chance handler is stored in
CTLSAL FINALEXC; the address of the exec mode handler, in
CTLSAL FINALEXC+4.

The stack layout varies, depending on which set of circumstances
triggered the FATALEXCPT bugcheck, although, in all cases, there
should be at least one signal and mechanism array on the current
stack visible among the newer stack longwords (i.e., lower
addresses).

Select the stack layout that matches your crash from among the
following ones. The EXCEPTION PC in the (newer) signal array on your
stack is a good clue for most of them. Follow the directions in the
text associated with the appropriate stack layout.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 34
FATALEXCPT BUGCHECK 12 July 85

1. EXESASTDEL Exception

s

3
T

/ 00000002 | argument count
cond. handler xxxxxxxx | mechanism array address
arglist \ | xxxxxxxx | signal array address
/ 00000004 | argument count
/ xxxxxxxx | saved FP
mechanism array FFFFFFFD | depth of scan
\ xxxxxxxx | RO at exception
\| xxxxxxxx | Rl at exception - a(AST proc.
| xxxxxxxx | flags
/ 0000000x | argument count
XXXXXXXX | exception type
signal array .o exception parameters
A(EXESASTDEL) | exception PC
xxxxxxxx | exception PSL

+

\
stack growth +
/ 00000005 | argument count

/ XxXxxxxxx | AST proc. argument
xxxxxxxx | saved RO
AST proc. arglist xxxxxxxx | saved Rl
xxxxxxxx | AST interrupt PC
\ | xxxxxxxx | AST interrupt PSL

If the exception PC is the address EXESASTDEL, then an exception
occurred at the call to a kernel or exec mode AST procedure, and
there was no last chance handler for that mode. This means that
there are at least two anomalies to be explained:

o the exception calling the AST procedure;
o zero contents in CTLSAL FINALEXC (kernel mode) or
CTLSAL FINALEXC+4 (exec mode).

a. Locate the mechanism array. Saved RO and saved Rl are the
registers’ values at the time the exception occurred. Saved
Rl is the address of the AST procedure EXESASTDEL tried to
call.

b. Skip 1 longword, the flags longword.

c. The next 1longword, the beginning of the signal array,
contains an argument count, the number of longwords that
follow. Use the count to identify all entries in the signal
array. The number of exception parameters present is a
function of exception type and can be 0, 1, or 2 longwords.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 35
FATALEXCPT BUGCHECK 12 July 85

d.

The exception type is a status value, e.g., C (hex) or
SS$_ACCVIO. The DCL command

$ EXIT %X<exception type>

writes the message text associated with the exception type
status value. The V4 SDA command

SDA> EVAL/CONDITION <exception type>

writes the message text associated with the exception type
status value.

Typically, the exception is one generated by "hardware" (or
microcode), for example, access violation. "Hardware"
generated exceptions are listed with a description of their
associated exception parameters in Section 10.1 of the
VAX/VMS System Services Reference Manual. See section
EXCEPTIONS for information about the more common hardware
exceptions.

The exception PC in the signal array is the instruction whose
[attempted] execution resulted in the wunexpected exec or
kernel mode exception. In this case, the instruction at .
EXESASTDEL is a CALLG (SP),(Rl).

Figure out why the CALLG generated an exception. Use saved
Rl in the mechanism array: determine whether it points to a
valid AST procedure, whether that address exists and has
suitable protection, etc.

The argqument list built by AST delivery code contains the PC
and PSL that describe the thread of execution interrupted by
AST delivery and the contents of RO and Rl at the time of the
interrupt. These may be important in explaining both
anomalies, the exception at EXESASTDEL and the clearing of
the last chance handler address.

Examine Pl space around CTLSAL FINALEXC, comparing it to that
of other processes, to determine if there is any other
corruption. If not, it is more likely that the current image
issued a $SETEXV system service request from an inner mode to
clear the handler address.

Decipher anything earlier on the current stack to trace
control flow, in case there are clues about what led to the
current situation. See section STACK PATTERNS.

VAX/VMS Troubleshooting
FATALEXCPT BUGCHECK

INTERNAL USE ONLY

2. SYSSCALL HANDL Exception

<+

I |
/| 00000004 |
call except./ | XXXXXXXX |
mechanism array| FFFFFFFD |
\ | XXXXXXXX |
) \I XXXXXXXX |
} | XXXXXXXX |
| /I 0000000x |
call except./ | XXXXXXXX |
signal array | cee |
| 80000010 |
= | XXXXXXXX |
stack growth ' - . . '
| + +
| / 00000002 |
cond. handler XXXXXXXX
arglist \ | XXXXXXXX
/| 00000004 |
/ XXXXXXXX
mechanism array FFFFFFFD
\ XXXXXXXX
\ XXXXXXXX
| XXAAKKXX |
/| 0000000x |
/ XXXXXXXX
signal array cee
\ XXXKXXXKXX
\ XXXXXXXX

2o
T

If the exception PC is the addresss
exception occurred at the call to
chance handler. This means that there
to be explained:

o

o the original exception.

Locate the newer mechanism array.
the registers’
Saved R1
SYSSCALL HANDL tried to call.

SYSS$SCALL HANDL,

Page 36
12 July 85

argument count
saved FP

depth of scan
saved RO

saved Rl a(handler)

flags

argument count

exception type

exception parameters
exception PC - SYSSCALL HANDL
exception PSL

argument count
mechanism array address
signal array address

argument count
saved FP

depth of scan
RO at exception
Rl at exception

flags

arqument count
exception type
exception parameters
exception PC
exception PSL

then an

a kernel or exec mode last
are at least two anomalies

the exception calling the last chance handler;

Saved RO and saved Rl are

is the address of the last

values at the time the exception occurred.

chance handler

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 37
FATALEXCPT BUGCHECK 12 July 85

b.

c.

Skip 1 longword, the flags longword.

The next longword, the beginning of the signal array,
contains an argument count, the number of longwords that
follow. Use the count to identify all entries in the signal
array. The number of exception parameters present is a
function of exception type and can be 0, 1, or 2 longwords.

The exception type is a status value, e.g., C (hex) or
SS$_ACCVIO. The DCL command

$ EXIT %X<exception type>

writes the message text associated with the exception type
status value. The V4 SDA command

SDA> EVAL/CONDITION <exception type>

writes the message text associated with the exception type
status value.

Typically, the exception is one generated by "hardware" (or
microcode), for example, access violation. "Hardware"
generated exceptions are listed with a description of their
associated exception parameters in Section 10.1 of the
VAX/VMS System Services Reference Manual. See section
EXCEPTIONS for information about the more common hardware
exceptions.

The exception PC in the signal array is the instruction whose
[attempted] execution resulted in the unexpected exec or
kernel mode exception. In this case, the instruction at
SYS$CALL HANDL is a CALLG 4(SP),(R1).

Figure out why the CALLG generated an exception. Use saved
Rl in the mechanism array: determine whether it points to a
valid last chance procedure, whether that address exists and
has suitable protection, etc. Compare saved R1 to the
contents of CTLSAL FINALEXC (kernel mode) or CTL$AL FINALEXC
+ 4 (exec mode); they should be the same.

Examine Pl space around CTLSAL FINALEXC, comparing it to that
of other processes, to determine if there is any other
corruption. If not, it is more likely that the current image
issued a S$SETEXV system service request from an inner mode
with an invalid handler address.

The older signal and mechanism arrays describe the original
exception, for which the common exception dispatching code
was trying to locate a handler. Analyze that exception to
see whether there might be a common cause for both
exceptions.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 38
FATALEXCPT BUGCHECK ’ 12 July 85

h. Decipher anything earlier on the current stack to trace
control flow, in case there are clues about what led to the
current situation. See section STACK PATTERNS.

3. Stack Problem

e N
+

00000002 | argument count
cond. handler xxxxxxxx | mechanism array address
arglist \ xxxxxxxx | signal array address
/| 00000004 | argument count
xxxxxxxx | saved FP
mechanism array FFFFFFFD | depth of scan
\ xxxxxxxx | RO at exception
\ xxxxxxxx | Rl at exception

000002B0 | flags - SS$_BADSTACK

I | |
stack growth + }
| /| 0000000x | argument count
/| XXXxxxxx | exception type
signal array | | exception parameters
N\ | exception PC
\| | exception PSL

+

If the exception PC is neither EXESASTDEL nor SYS$SCALL HANDL and
the bugcheck stack is the exec stack, then the common exception
dispatching code was unable to copy information to the exec stack
to dispatch to a condition handler. It therefore reset the exec
mode stack pointer, recreated the stack address space if
necessary, and copied the exception information to the stack,
before it signaled the FATALEXCPT bugcheck.

a. The PC displayed by the SDA SHOW CRASH command reflects the
- common exception dispatching code rather than the location of
the exception(s). RO and Rl in the SHOW CRASH display have
been altered by the exception dispatching code. The PC, RO,
and Rl at the time of the exception(s) can be obtained as
described below.

b. Locate the mechanism array. Saved RO and saved Rl are the
registers’ values at the time the exception occurred.

c. Skip 1 longword, the flags longword, which should contain
SS$_BADSTACK.

d. The next longword, the beginning of the signal array,
contains an argument count, the number of longwords that
follow. Use the count to identify all entries in the signal
array. The number of exception parameters present is a
function of exception type and can be 0, 1, or 2 longwords.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 39
FATALEXCPT BUGCHECK 12 July 85

e'

The exception type is a status value, e.g., C (hex) or
SS$_ACCVIO. The DCL command

$ EXIT %¥X<exception type>

writes the message text associated with the exception type
status value. The V4 SDA command

SDA> EVAL/CONDITION <exception type>

writes the message text associated with the exception type
status value.

Typically, the exception is one generated by "hardware" (or
microcode), for example, access violation. "Hardware"
generated exceptions are listed with a description of their
associated exception parameters in Section 10.1 of the
VAX/VMS System Services Reference Manual. See section
EXCEPTIONS for information about the more common hardware
exceptions.

The PC in the signal array is the instruction whose
[attempted] execution resulted in the unexpected exec or
kernel mode exception. Whether the PC points to the
beginning of the instruction or the end depends on whether
the exception was a trap (end), fault (beginning), or abort
(beginning). The reference above specifies whether each
exception is a trap, fault, or abort. 1Identify in what
source module the PC is. See section VIRTUAL ADDRESSES.
Often examining instructions around the PC is helpful enough
to eliminate a microfiche search. Try the SDA command

SDA> EXAMINE/INSTRUCTION <exception pc>-20;30

Figure out why the instruction generated an exception. For
example, if an access violation occurred, look at the
operands to see which access was in error.

In this particular case, all stack footprints are gone. The
exception PC and other register and data structure contents
are the only clues you have as to what the thread of
execution was doing.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 40
FATALEXCPT BUGCHECK 12 July 85

4. No Condition Handler

-

00000002 | argument count

cond. handler xxxxxxxx | mechanism array address
arglist \ xxxxxxxx | signal array address
/| 00000004 | argument count
/ XXxXxxxxx | saved FP
mechanism array FFFFFFFD | depth of scan
\ xxxxxxxx | RO at exception
\ xxxxxxxx | Rl at exception - a(AST proc.
xxxxxxxx | flags

| |
/| 0000000x | argument count
| /| Xxxxxxxx | exception type
signal array | | exception parameters
\ | | exception PC
| | exception PSL

\
stack growth +

If none of the previous cases applies, then the common
dispatching code signaled this bugcheck because it was unable to
find any condition handler to dispatch. This means that there
are at least two anomlies to be explained:

o the exception;

o zero contents, for kernel mode, in the longwords at
CTL$AQ EXCVEC and CTL$AL FINALEXC or, for exec mode, in the
longwords at CTLSAQ EXCVEC+8 and CTLSAL FINALEXC+4.

a. The PC displayed by the SDA SHOW CRASH command reflects the
common exception dispatching code rather than the location of
the exception(s). RO and Rl in the SHOW CRASH display have
been altered by the exception dispatching code. The PC, RO,
and Rl at the time of the exception(s) can be obtained as
described below.

b. Locate the mechanism array. Saved RO and Saved Rl are the
registers’ values at the time the exception occurred.

c. Skip 1 longword, the flags longword.

d. The next longword, the beginning of the signal array,
contains an argument count, the number of longwords that
follow. Use the count to identify all entries in the signal
array. The number of exception parameters present is a
function of exception type and can be 0, 1, or 2 longwords.

e. The exception type is a status value, e.g., C (hex) or
SS$_ACCVIO. The DCL command

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 41
FATALEXCPT BUGCHECK 12 July 85

$ EXIT %¥X<exception type>

writes the message text associated with the exception type
status value. The V4 SDA command

SDA> EVAL/CONDITION <exception type>

writes the message text associated with the exception type
status value.

Typically, the exception is one generated by "hardware" (or
microcode), for example, access violation. "Hardware"
generated exceptions are listed with a description of their
associated exception parameters in Section 10.1 of the
VAX/VMS System Services Reference Manual. See section
EXCEPTIONS for information about the more common hardware
exceptions.

f. The PC in the signal array is the instruction whose
[attempted] execution resulted in the unexpected exec or
kernel mode exception. Whether the PC points to the
beginning of the instruction or the end depends on whether
the exception was a trap (end), fault (beginning), or abort
(beginning). The reference above specifies whether each
exception is a trap, fault, or abort. 1Identify in what
source module the PC is. See section VIRTUAL ADDRESSES.
Often examining instructions around the PC is helpful enough
to eliminate a microfiche search. Try the SDA command

SDA> EXAMINE/INSTRUCTION <exception pc>-20;30
Figure out why the instruction generated an exception. For

example, if an access violation occurred, look at the
operands to see which access was in error.

Hints And Kinks

1.

The FATALEXCPT bugcheck may also be signaled by software other
than the VMS exec. In particular, the REMACP signals this
bugcheck fatally from its kernel-mode condition handler if any
unexpected exceptions occur. Under those circumstances the AP
register should point to a condition handler argument list
containing the addresses of the signal and mechanism arrays, and
the newer stack should resemble that in section SSRVEXCEPT
BUGCHECK.

Not all access violations are signaled by microcode. The
pagefault exception service routine, MMG$SPAGEFAULT, may signal an
access violation if a process incurs a pagefault for a page in

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 42
FATALEXCPT BUGCHECK 12 July 85

another process’s process header.

3. Note that for each V3 SDA COPY command used to copy the dump, the
SP will be 8 bytes greater than its actual value; that is, SDA
will show the SP pointing to a stack address 8 bytes higher than
it should. This V3 bug has been corrected in V4.

4. The VAX instruction set is sufficiently rich that most random
data can be interpreted as instructions. Most system code deals
with binary integer and character data. This means that if an
EXAMINE/INSTRUCTION display includes many packed decimal and/or
floating point instructions, you are probably examining a data
area or using a start address which is not an instruction
boundary.

One common error that results in a nonsensical display is to
examine instructions in the bugcheck overlay area. During a
crash, fatal bugcheck code and message text overlay resident
system image code, beginning one page before label BUGSFATAL, for
a length of about 12000 decimal or 3000 hex bytes.

Additional References

V3 VAXVVMS Internals and Data Structure Manual, Chapter 4, for
general exception dispatching and details of exceptions signaled by
VMS system software

VAX Architure Standard (DEC Standard 032) or VAX-11 Architecture
Reference Manual, Chapter 6, Exceptions and Interrupts

VAX/VMS System Services Reference Manual, Chapter 10,
Condition-Handling Services

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 43
FORCED CRASHES 12 July 85

FORCED CRASHES

Forced crashes cause INVEXCEPIN bugchecks. If the signal array shows
the PC as approximately FFFFFFFF and the PSL as kernel mode and IPL
31, the system was probably crashed through the console CRASH
procedure, as documented in the Guide to VAX/VMS System Management
and Daily Operations Section 4.1. On a VAX-11,/780, VAX-11,/785, and
MicrovAX 1II, the faulting virtual address from a forced crash is
FFFFFFFC; on a VAX-11/730, VAX-11,/750, MicroVAX I, and VAX 8600, the
faulting virtual address from a forced crash is FFFFFFFF. This
sequence of commands writes to the console terminal the PC, PSL, and
the 5 stack pointer registers and then deposits into the PC and PSL
to cause a crash. The PC is loaded with FFFFFFFF, a nonexistent
address, and the PSL is set to IPL 31 and kernel mode. Wwhen the
processor is continued, attempted execution at location FFFFFFFF
causes an access violation. With the processor running at IPL 31,
the access violation causes an INVEXCEPTIN bugcheck.

There are two important differences between forced crashes and other
crashes. The first difference is that some human decided to crash
the system. Thus, it is important to find out why s/he crashed the
system, what s/he thought was wrong. The second difference is that
the CRASH procedure alters control flow and possibly access mode and
stack. Thus, the values of the processor registers written to the
console terminal are critical in determining what the system was
doing prior to the crash.

Whether or not it is important to know what the system was doing
prior to the crash depends on why the system was crashed. For
example, some crashes are forced to record a scheduler data base or
memory management data base believed to be corrupted. In such a
case, you should ignore the directions below, since examining the
stack may not be very useful; instead, examine the data structures
having to do with the reason for the forced crash. If the system was
crashed because it was hung, see sections HANGS and RESOURCE WAITS
for hints on what to look for in the dump. Some crashes are forced
because the system is believed to be looping at high IPL. In such a
case, examining the stack is important.

1. Read the PSL in the console terminal output from the CRASH
procedure (written by one of the following console commands:
VAX-11/780 and VAX-11,/785 EXAMINE PSL; VAX-11/750 and MicrovAX I
E P; VAX-11/730 and MicroVAX II E PSL). It specifies what IPL
and what access mode the processor was in prior to the crash, and
whether the system was running on the interrupt stack. Decode
the PSL using the layout in the section RELATED REFERENCE
MATERIAL or with the V4 SDA command EXAMINE/PSL.

2. Select a number between 0 and 4 using the decoded PSL access mode
and interrupt stack (IS) fields as follows

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 44
FORCED CRASHES 12 July 85

o if IS is 1, the number is 4
o if IS is 0, the number is the access mode (e.g., kernel is 0,
exec is 1, etc.).

This is the number of the processor register which records the
stack pointer current at the time of the console halt.

Read the console terminal output from the CRASH procedure and
locate the display of the processor register whose number you
selected in the previous step. Read its wvalue. These process
registers are written to the console terminal by one of the
following console commands depending on cpu type.

o VAX-11/780, VAX-11/785 - EXAMINE/INTERN/NEXT:4 0

o VAX-11/750, MicrovAX I, MicrovAX 11 - E/1 0, E/I 1, E/I 2,
E/I 3, E/I 4

o VAX-11/725, VAX-11,/730 - E/I/N:4 0

The value displayed is the lowest end of that stack, the address
of the newest valid stack contents.

Invoke SDA and determine the high erid of that stack. If the
stack was the interrupt stack, type the following command to
determine its high end (that is, the initial address loaded into
the stack pointer register)

SDA> EXAMINE EXE$SGL INTSTK

If the stack was not the interrupt or kernel stack, then type the
following command to determine its high end

SDA> EXAMINE (4 * <access mode number>) + CTL$AL STACK

If the access mode at the time the crash was forced was kernel,
see the section KERNEL STACK LOCATIONS to determine the high
(oldest) limit of the kernel stack.

Display the stack just prior to the crash by using the values you
determined above. SDA writes this range in "stack" format, with
attempted symbolic interpretation, in response to the command

SDA> SHOW STACK <low address>:<high address>

Read the PC in the console terminal output from the CRASH
procedure (written in response to HALTing a 780 and 785, typing
CTRL/P on a 750 and 730, or depressing the halt button on a
MicrovAX I and II). value is the address of the instruction that
was about to be executed. If appropriate, identify in what
source module the PC is. See the section VIRTUAL ADDRESSES.
Often examining instructions around the PC is helpful enough to
eliminate a microfiche search. Try the SDA command

SDA> EXAMINE/INSTRUCTION <halt pc>-20;30

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 45
FORCED CRASHES 12 July 85

7.

If appropriate, decipher the stack to trace control flow. See
the section STACK PATTERNS. If the access mode just prior to the
execution of the crash procedure was kernel, you can ignore the
signal and mechanism arrays from the access violation and any
stack contents newer than they are, that is, at lower addresses.

Hints And Kinks

1.

The VAX instruction set is sufficiently rich that most random
data can be interpreted as instructions. Most system code deals
with binary integer and character data. This means that if an
EXAMINE/INSTRUCTION display includes many packed decimal and/or
floating point instructions, you are probably examining a data
area or using a start address which is not an instruction
boundary.

One common error that results in a nonsensical display is to
examine instructions in the bugcheck overlay area. During a
crash, fatal bugcheck code and message text overlay resident
system image code, beginning one page before label BUGSFATAL, for

a length of about 12000 decimal or 3000 hex bytes.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 46
HALTS - VAX-11,/780 AND VAX-11,/785 15 July 85

HALTS - VAX-11,/780 AND VAX-11/785

VAX-11/780s and VAX-11/785s halt in response to halt instructions,
console HALT commands, and various error conditions. The VAX-11,/780
and VAX-11/785 halt behaviors are identical, except that the
VAX-11/785 has one unique error halt, clock phase error.

The error conditions that cause halts are severe enough to interfere
with the normal exception/interrupt mechanism; for example, if the
interrupt stack is invalid, the cpu cannot write a microcode machine
check error logout on the stack. The LSI-11 console software
periodically polls the state of the VAX cpu, testing to see if the
cpu has halted, and has access to information about the halt PC, PSL,
reason for the halt, and the setting of the auto restart switch.

If auto restart is disabled, the console prompts, leaving the VAX cpu
halted, and accepts commands if the cpu key is in the LOCAL ENABLE
position. If auto restart is enabled, the console restarts VMS,
using the floppy command procedure RESTAR.CMD. Following a powerfail
recovery, the console reloads writable control store on the VAX cpu
and, if auto restart is enabled, executes RESTAR.CMD, which passes
control to the instruction-level ROM (ISP ROM) in the memory
controller. The ISP ROM passes control to a restart routine in VMS.

Restarting VMS for any reason other than power fail recovery causes a
crash. The system is crashed to preserve pending error log messages
and to provide information that might be useful in troubleshooting
the halt. As a result of the VAX-11,/780 and VAX-11/785 restart
mechanism, these crashdumps do not contain the contents of R0 - RS,
R10, R11l, AP, FP, and SP at the time of the halt. See below the
subsection VAX-11/780 and VAX-11,/785 Restart Mechanism for further
details. 1If analyzing a particular halt’s dump is recommended in the
subsections below, see section RESTART BUGCHECKS for any additional
crashdump analysis suggestions.

Many of these halts are caused by hardware problems. Unfortunately,
the default restart mechanism sometimes provides insufficient
hardware status. The subsection Editing RESTAR.CMD recommends
editing RESTAR.CMD to display various internal registers at the time
of a halt. Each of the subsections below describing a particular
halt indicates which internal registers are of interest and how to
display them. If you have edited RESTAR.CMD on the halting system,
the information will be displayed automatically. Otherwise, if the
system is still halted, enter the recommended commands to display
that information. If the system has already restarted, it is too
late to obtain any desirable additional information.

For all of these halt conditions, carefully examine the system
errorlog file, SYS$ERRORLOG:ERRLOG.SYS for any errors or anomalies
that occurred before or at the time of the halt that might be
associated with the halt or provide a clue about possible hardware
problems.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 47
HALTS - VAX-11/780 AND VAX-11,/785 15 July 85

Likely Halt Indications

The console control panel is at the top right of the CPU cabinet.
When the VAX cpu is halted, normally the red leftmost light, labeled
ATTN, is lit; the green RUN light is not lit; and the green POWER
light is 1lit. See below subsection Pathological Halts for other
possibilities.

Normally the LSI-11 console software prints a message on the console
terminal indicating the nature of the halt and the PC at the halt.
In the case of a power failure, the message is printed after power is
restored.

Console Halt Message Meaning

HALTED AT xxXXXXXxX xxxxxxxx is updated PC at halt; see below

HALT INST EXECUTED Halt instruction executed in kernel mode

?CHM ERR CHMx instruction executed on the interrupt
stack

?CLOCK PHASE ERROR VAX-11/785 cpu and SBI clocks out of phase

?CPU DBLE-ERR HLT Machine check occurred during machine check

servicing
?ILL I/E VEC Illegal value in low 2 bits of SCB vector
?INT-STK INVALID ISP points to invalid page or one without
write access
ZNO USR WCS Attempt to jump to nonexistent user WCS

If there are unexpected (i.e., not the result of someone’s typing
CTRL/P) LSI-11 console software prompts (>>>) without any halt
messages, then there may be a problem in the console interface board,
cpu power supplies, or the LSI-11. Contact Field Service.

If you see an LSI-11 MicroODT prompt (@), see below the subsection
Pathological Halts.

If the system seems to be halted but there is no message, see below
the subsection Pathological Halts.

The subsections below contain more information about each halt
message listed above.

HALTED AT XXXXXXXX

Normally this message follows a message describing the reason for the
halt. If a user types CTRL/P and HALT on the console terminal, this
message is printed with no other message. xxxxxxxx is normally the
PC at which the cpu was halted. For example, xxxxxxxx is the address
of a halt instruction plus 1; xxxxxxxx is the address of a CHMx
opcode the system tried to execute while on the interrupt stack;
xxxxxxxx is the offset of an SCB vector containing illegal values for
the low two bits.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 48
HALTS - VAX-11,/780 AND VAX-11/785 15 July 85

When xxxxxxxx is an address (rather than an SCB vector offset), the
address is a physical address if memory management is disabled or a
virtual address if memory management is enabled.

Conceivably, this message may appear without any other message and
any user intervention. This could be due to intermittent very brief
power problems that don’t cause a power fail sequence or due to
problems in the console interface board (CIB).

After a power fail and recovery, the cpu is halted at physical
location 0. This halt can usually be ignored. This message is
printed along with other text

CPU HALTED,SOMM CLEAR,....
RAD=HEX ,ADD=PHYS, ...

INIT SEQ DONE

HALTED AT 00000000

(RELOADING WCS)

A power failure recovery on a system without battery backup and with
auto restart enabled should result in another halt from the ISP ROM
and a reboot from the default system disk. The ISP ROM checks
whether memory contents are valid. Without battery backup, the
memory contents are not valid after a power failure. The ISP ROM for
the MS780-C memory controllers halts at 2000350A if memory is
invalid. The newer ISP ROM for the MS780-E memory controllers halts
at 20003563 if memory is invalid. These ISP ROM addresses are
physical addresses. The system also exhibits that behavior if the
battery backup is faulty or doesn’t have enough charge to power the
memory for the duration of the power failure.

If you see these messages without a true electrical failure (e.g.,
the room lights are still on), then there may be a problem in the VAX
or LSI-11 power supplies.

HALT INST EXECUTED

This halt usually means that some kernel mode code halted. (The HALT
instruction can only be executed from kernel mode.) The PC following
the HALT instruction is displayed in the console’s "HALTED AT
xxxxxxxx" message. If memory management is enabled (normal state
while VMS is running), xxxxxxxx is a virtual address; if memory
management is disabled, xxxxxxxx is a physical address. The cpu may
execute a byte of 0 as a HALT instruction following corruption of
code or erroneous dispatch into random code or data. VMS contains
various HALTs that are executed in extreme circumstances where no
recovery is possible.

One such extreme circumstance is a failure in fatal bugcheck
processing. If EXE$BUG CHECK cannot initialize the system disk or

VAX/VMS Troubleshooting *INTERNAL USE ©NLY* ’ Page 49
HALTS - VAX-11,/780 AND VAX-11/785 15 July 85

finds the boot control block corrupted, EXE$BUG CHECK writes a reboot
message to the console and halts. When the console sees a reboot
message and a halt, it reboots VMS using DEFBOO.CMD, regardless of
the setting of the auto restart switch. The following console
nessages are printed. 8xxxxxxx is an address within the console
terminal driver in SYSLOA780.EXE.

HALT INST EXECUTED

HALTED AT 8xXXXXXXX

(BOOTING)
CPU HALTED
INIT SEQUENCE DONE

Note that this message is also printed as the result of bootstrap
operations (the ISP ROM for the MS780-C memory controllers halts at
physical 200034F9; the ISP ROM for the newer MS780-E memory
controllers halts at physical 20003552), normal VMS shutdown
operations with reboot requested, and, if SYSBOOT parameter BUGREBOOT
is 1, fatal bugcheck processing. You should ignore it under those
circumstances. .

If this halt is the result of a software error or a deliberately
executed HALT instruction, analyzing the dump is the best way to
troubleshoot the problem. You should analyze the dump to rule ocut a
software caused problem before contacting Field Service.

Possible hardware causes of this halt include problems in the memory
controller(s), instruction buffer, datapath, adapters (particularly
in their map registers), and, less frequently, cache.

If you have already edited RESTAR.CMD, look at the output in response
to the examine commands below. If you have not edited RESTAR.CMD,
but the system is still halted, type the following commands.

>>E IR lexamine opcode just executed
>>>E/N:E RO lexamine RO - SP
>>>E/ID/N:3F 0 !dump the ID registers

>>>E PC !PC points 1 byte past opcode
>>>E/N @ lexamine @PC

I>EN - !re—examine previous longword
>>>D/ID 1D 18000 tturn off cache

333E BC

2>>E/NV @ lexamine €PC again

2IEN - !examine previous longword
>>>DEP AP 6 !set code for halt executed
>>>@RESTAR.CMD linvoke normal restart command procedure

If the displayed contents of the memory at PC-1 change after you
turned off cache, then probably cache is at fault. If the byte at
PC-1 is not a 0 (halt opcode), then you may have a problem in either
the IDP or the IRC board. Examining IR results in a display of three
numbers, the first of which is the opcode just executed. If this is
a 0, but the byte at PC-1 is not a 0, there may be faulty shifting in

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 50
HALTS - VAX-11,/780 AND VAX-11,/785 15 July 85

the instruction buffer or an intermittent addressing problem during
instruction decode. 1In any of these cases, contact Field Service.

?CHM ERR

This halt means that while the system was running on the interrupt
stack, an attempt was made to execute one of the change mode
instructions (CHMU, CHMS, CHME, or CHMK). The PC of the CHMx
instruction is displayed in the console’s "HALTED AT XXXXXXXX"
message.

This halt might occur as the result of software error; for example,
some process context code’s executing in system context, a
user-written driver’s erroneously requesting system services while
executing on the interrupt stack, erroneous transfer of control to
data or the middle of an instruction, etc.

If this halt is the result of a software error, analyzing the dump is
the best way to troubleshoot the problem. You should analyze the
dump to rule out a software caused problem before contacting Field
Service. :

This halt has rarely, if ever, been seen as a result of hardware
error. Conceivable hardware causes of this halt include problems in
the datapath boards or the interrupt and exception logic (CEH and ICL
boards).

If you have already edited RESTAR.CMD, look at the output in response
to the examine commands below. If you have not edited RESTAR.CMD,
but the system is still halted, type the following commands.

>>>E IR texamine opcode just executed

>>>E/N:E RO lexamine RO - SP

>>>E/ID/N:3F 0 !dump the ID registers

>>E PC IPC points at opcode

2>>EN @ lexamine @PC

>>>D/ID 1D 18000 lturn off cache

>>3E BC

M>EN @ !examine @PC again

>>>DEP AP 6 !set code for halt executed
>>>@RESTAR.CMD linvoke normal restart command procedure

If the displayed contents of the memory at PC change after you turned
off cache, then probably cache is at fault. If the byte at PC is not
a hex BC, BD, BE, or BF (CHMx opcode), then you may have a problem in
either the 1IDP or the IRC board. Examining IR results in a display
of three numbers, the first of which is the opcode just executed. 1If
this is a hex BC, BD, BE, or BF, but the byte at PC is not the same,
there may be faulty shifting in the instruction buffer or an
intermittent addressing problem during instruction decode. In any of
these cases, contact Field Service.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 51
HALTS - VAX-11,/780 AND VAX-11,/785 15 July 85

?CLOCK PHASE ERROR

This error is unique to the VAX-11,/785. When the LSI-11 console
software detects this error during its periodic polling of the
VAX-11/785 state, the console initializes the VAX cpu to reset it to
a known state. This is a serious error that cannot be caused by
software problems. Under VMS V3, if auto restart is enabled, this
halt results in the fatal bugcheck UNKRSTRT. Under VMS V4, if auto
restart is enabled, this halt results in the fatal bugcheck
OUTOFSYNC. Analyzing the resulting crashdump is not recommended.
There is no useful state saved in the crashdump. Contact Field
Service.

The VAX-11/785 cpu runs at 133 nanoseconds per cycle, and the SBI at
200 nanoseconds per cycle. The cpu and SBI are in synch in a 3:2
ratio. If either clock shifts with respect to the other or if the
SBI clock stops, the clocks become out of phase, and the SBI freezes
to prevent corruption of data on mass storage devices. Since the SBI
is therefore inaccessible, the cpu stalls the next time it sends out
an SBI command, for example, to fetch data from memory.

?CPU DBLE-ERR HALT

This halt usually means that while the cpu was trying to write the
microcode machine check logout onto the stack, another machine check
occurred. Actually, the microcode sets a flag called EFP at entry to
its error handling routine and clears it at exit. If the flag is
already set, the microcode halts with a double error halt. Hardware
problems are usually responsible for this halt. One of the few ways
software can cause a double error halt is a corrupted interrupt stack
pointer that points to UNIBUS I/0 space or nonexistent memory or
nonexistent I/0 space.

This problem can occur during the boot or warm restart sequences if
the boot or restart command procedure deposits an incorrect value
into R1. The ISP ROM in the memory controller uses the map registers
of the adapter whose nexus number is in Rl as a stack. If Rl points
to a non-existent nexus or one without map registers, the ISP ROM'’s
stack manipulations cause a double error halt.

For this halt, the auto restart actions destroy critical information
in internal processor registers. If you have already edited
RESTAR.CMD, look at the output in response to the examine commands
below. If you have not edited RESTAR.CMD, but the system is still
halted, type the following commands.

>>>! display information about lst machine check
>>>E/ID/N:9 30 !ID 30 = SUMMARY PARAMETER
!ID 31 = CES
!ID 32
!ID 33
{ID 34

TRAPPED UPC

VA/VIBA
D-REG

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 52
HALTS - VAX-11,/780 AND VAX-11,/785 15 July 85

!ID 35 = TB REG 0
!ID 36 = TB REG 1
{ID 37 = TIMEOUT ADDR
{ID 38 = PARITY
!ID 39 = SBI ERROR
>>>! display information about 2nd machine check

>>>E/ID C !display CES

>>>E/ID 20 !display TRAPPED UPC

2>>E/ID 8 !display D-REG

__ZE/ID !display TB REG 0

722 >E/ID 13 !display TB REG 1

>>>E/ID 1A !display TIMEOUT ADDR

>>>E/ID 1E !display PARITY

Z__ E/ID 19 !display SBI ERROR

___ >E/N:D RO lexamine general registers
> E/I/N:4 0 lexamine stack pointer registers

>>>DEP AP 5 !set DBL-ERR halt code

>>>@RESTAR.CMD !invoke usual restart

Use the references listed in ADDITIONAL REFERENCES to decode the
processor register contents in an attempt to identify what kinds of
machine checks occurred to rule out a software caused problem before
contacting Field Service.

See section MACHINE CHECKS - VAX-11,/780 AND VAX-11,/785 for further
information on specific types of machine checks.

Note that occasionally system software, such as the ISP ROM or VMS
system initialization code, executes instructions anticipated to
cause cpu timeout machine checks in an attempt to determine what
hardware is present on the system. If there is a problem such as a
control store parity error while the microcode is processing the
initial cpu timeout, a double error halt results. Therefore, it is
recommended that you be somewhat cautious in drawing conclusions from
any first machine check which is a cpu timeout; try to correct the
cause of the second machine check so that system software can service
the initial cpu timeout.

?ILL I/E VEC

This halt means that an interrupt or exception dispatch was attempted
through a System Control Block (SCB) vector whose low two bits
contained an illegal value; that is, the low two bits were either
binary 10 on a machine without user optional Writable Control Store
(WCS) or binary 11. The offset from the beginning of the SCB of the
vector containing the illegal value is displayed in the console’s
"HALTED AT xxxxxxxx" message and is passed in R10 to VMS restart code
when auto restart is enabled. The PSL contains an accurate IPL and
is passed to VMS restart code in R1l when auto restart is enabled.

This halt can be caused by software corruption of a System Control
Block vector or of the PR$ SCBB register.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 53
HALTS - VAX-11/780 AND VAX-11/785 15 July 85

Troubleshooters sometimes alter an SCB vector as a "trap catcher" so
that an interrupt or exception through a particular vector causes a
halt rather than execution of the usual service routine. Therefore,
when you see this halt, check to see whether it might have been
caused deliberately by human intervention.

Possible hardware causes of this halt include problems in the
datapath boards, ICL or CEH boards, or vector PROM. This halt can
also be caused by hardware corruption of an SCB vector resulting from
memory problems or adapter map register problems. Analyze the dump,
checking the relevant vector and surrounding vectors to rule out a
software caused problem before contacting Field Service.

?2INT-STK INVALID

This halt means that an attempted cpu read or write reference to the
interrupt stack during interrupt or exception processing would have
resulted in a translation not valid or access violation.

This halt can be caused by stack overflow, stack underflow,
corruption of the interrupt SP, or corruption in the System Page
Table Entries (SPTEs) that map the interrupt stack. SPTE corruption
can be due to software problems or hardware problems. A frequent
hardware cause is corruption in the memory array containing the SPT.

If this halt is the result of a software error or an insufficiently
large interrupt stack, analyzing the dump is the best way to
troubleshoot the problem. You should analyze the dump to rule out a
software problem before contacting Field Service. Check for
user-written drivers or other kernel-mode code that may have
corrupted the interrupt stack pointer or the SPTEs that map it.

If the stack pointer at the time of the halt contains a valid
interrupt stack address (the interrupt stack pointer low and high
boundaries are stored in EXESGL INTSTKLM and EXESGL INTSTK), there
may be a hardware problem In the translation buffer or cache or
corruption in the interrupt stack’s SPTEs.

If the stack pointer at the time of the halt contains an address
below the low boundary of the interrupt stack, the stack is likely to
have overflowed. Look for recurring machine check frames or other
recurring exceptions on the stack that may have caused it to
overflow.

If the SP contains a random address, there may be a memory problem or
a bad instruction decode. If you have already edited RESTAR.CMD,
look at the output in response to the examine commands below. If you
haven’t edited RESTAR.CMD, but the system is still halted, type the
following commands.

>>>E SP lexamine stack pointer register
S>>E/I 4 !examine PR$_ISP

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 54

HALTS - VAX-11,/780 AND VAX-11/785 15 July 85
>>>E/N:D RO lexamine R0 - FP
S>>DEP AP 4 1load inv. int. stk. halt code

>>>@RESTAR.CMD !invoke usual restart

The contents of SP and PR$ ISP should be the same. If they are not,
there may be a hardware problem in one of the datapath boards.

ZNO USR WCS

Although this halt code is defined, the microcode on a VAX-11,/780 cpu
revision level 7 or later never generates it. If you see this
message on a rev 7 or later VAX-11/780, you may have hardware
problems in the console interface board.

Pathological Halts

If the system seems to be halted, but there are no console halt
messages, first look at the cpu front panel lights. There are four
indicators; from left to right they are ATIN, RUN, POWER, and REMOTE.

When the red ATTN light is 1lit, the VAX cpu is halted; that is, it is
executing the console wait loop microcode, waiting for a command from
the console. When the green RUN indicator is 1lit, the cpu is
strobing for hardware interrupts regularly. Wwhen the green POWER
indicator is 1lit, the +5 volt power supply is on. When the red
REMOTE indicator is lit, remote console access is enabled through the
cpu key rotary switch. WwWhen the cpu is operating normally, running
VMS, for example, the ATIN light is off, and the RUN and POWER lights
on.

Find the subsection below corresponding to the state of the 1lights
you see.

If the console terminal has a @ prompt, also see the subsection below
@ Prompt on Console Terminal.

ATTN Lit, POWER Lit, RUN Off

The cpu is halted. If there are no console messages, there may be a
simple console terminal problem preventing output, such as a blown
fuse, paper fault, or terminal left in local mode. If none of these
is the case, then, in all likelihood, there is a hardware problem.
Contact Field Service.

There may be a VAX power supply problem, console interface board
problem, or LSI-11 problem that prevents a halt message from being
output.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 55
HALTS - VAX-11,/780 AND VAX-11,/785 15 July 85

ATIN Off, POWER Lit, RUN Off

If the POWER light is lit, but RUN and ATTN are off, either the cpu
clock is stopped or the cpu is hung in a microcode loop. You can
determine which it is by opening the cpu cabinet and looking at the
leds on the microsequencer (USC) and clock (CLK) boards.

These boards are on the left side of the cabinet. Each board has a
small tab in the middle with its module number. On the VAX-11/780
the USC board is M8235, and the CLK board is M8232. On the
VAX-11/785, the USC board is M7476, and the CLK board is M7474. 1In
addition, most cpu cabinets have stickers to the left of the door
showing what modules are in what slots. Look for a sticker titled
KA780 Module Utilization on the VAX-11/780 or KA785 Module
Utilization on the VAX-11,/785. The sticker lists the cpu modules and
their board slot numbers (for example, 21). The board slots are
identified by stickers that run horizontally beneath the boards and
that have a number under each board slot.

If the clock is running, four leds on the VAX-11/780 clock board
(M8232) or eight leds on the VAX-11/785 clock board (M7474) are
solidly lit. If they are dimly lit or if only one is 1lit, the cpu
clock 1is stopped. Sometimes in response to console commands, the
LSI-11 console software stops the clock, but this is generally a .
temporary state which you should not see under normal circumstances.

The microsequencer board has fourteen leds: one halfway up the
board, and thirteen leds below that one and separate from it. The
lower thirteen leds on the microsequencer board display the micropc
and, thus, normally flash on and off. If the system is very busy,
the flashes may be quick enough to make the leds glow dimly. If the
microsequencer is caught in a loop, the leds glow more brightly and
appear solidly lit.

You can determine the micropc by reading the 1leds on the
microsequencer board or by using the console commands below

CTRL/P
>>> H
"~ NO CPU RESPONSE !if cpu really hung
>>> SET STEP STATE
CLK STOPPED
CPT0 UPC <XXXX>
2> N
CPT1 <space bar>
CPT2 <space bar>
CPT3__ APC <yyyy> <space bar>
UPC <xxxx> <CR>

In the console output at CTPO, <xxxx> is the micropc. If the output
at both times is the same, then there may be a clock problem or the
microcode may be branching back to itself waiting for some condition
to be completed. If the output is different, the microcode is caught
in a loop. ’

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 56
HALTS - VAX-11,/780 AND VAX-11/785 15 July 85

Read the micropc from the top of the thirteen leds to the bottom. A
lit led indicates a 1 and an unlit led a 0. The most significant bit
is the top led. The micropc is read as 4 hexadecimal digits, with
the most significant digit either a 1 or 0 depending on the top led.

I1f the VAX-11/780 or VAX-11/785 micropc is at 0100, the cpu is
executing its INIT sequence. This indicates a likely power problem.
If the VAX-11,/780 micropc is at OOFF, the cpu is executing its
console wait loop, and the ATTN light would normally be lit. If the
VAX-11/785 micropc is at OE13, the cpu is executing its console wait
loop. (The VAX-11,/785 init micropc is [TBS].)

The top led on the microsequencer board lights when the cpu is in a
"cache stall", typically performing a read from memory of data not in
cache. This led should normally flash on and off. 1If it is solidly
lit, that indicates a problem in the SBI or one of its nexus.

One possibility is a power problem locking up the SBI. The voltages
and connectors on the power supplies and backplanes should be
checked.

In any of these cases, contact Field Service.

ATTN Off, POWER Lit, RUN Lit

If the RUN and POWER lights are lit and ATIN is off, that means that
the cpu has power and is strobing interrupts. If the leds on the USC
board and the CLK board are flashing, then the cpu is indeed running
and not hung in a microloop. See the subsection above, ATIN Off,
POWER Lit, RUN Off, for information on how to find these boards.

If the system is in this state and you thought it was halted because
of abnormal or nonexistent response to users, see section HANGS.

@ Prompt On Console Terminal

If the console terminal has a @ prompt, that means the LSI-11 is
executing MicroODT, rather than the console software.

On some systems, when the console terminal sends a <BREAK>, the
LSI-11 executes MicroODT. This means that an interactive user on
that terminal can accidentally hit the <BREAK> key and invoke
MicroODT. If this has happened, type P to the @ prompt to resume
execution of the console software.

This behavior can be disabled through the FEH jumper on the DLV-11
that interfaces the console terminal to the LSI-11. Contact Field
Service to change the jumper.

Additionally, if the console terminal is an LA120, it may have been

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 57
HALTS - VAX-11,/780 AND VAX-11,/785 : 15 July 85

set up to generate a break signal in response to paper out, head jam,
or cover open. Put the terminal into SET-UP mode and then type U to
see the current setting of the LA120 break action. A 1 means that
the LA120 automatically sends a break signal in response to paper
out, head jam, or cover open. If 1 is the current setting, type U
again to disable the sending of the break.

If no one typed <BREAK> and if nothing is wrong with the console
terminal, then the @ prompt may be caused by a problem in the LSI-11
or its power supplies. Type the following commands (without the
comments following the exclamation points) on the console terminal to
gather information about the state of the LSI-11 console software and
to restart it.

@Mxxxxxn !M must be typed uppercase

@RO/XXXXXX<LF> texam RO

Rl /%xxxxx<LF> lexam R1

R2/XXXXxX<LF> lexam R2

R3/XXXXXX<LF> !{exam R3

R4 /XxXXXxXX<LF> !exam R4

RS /XXXXXX<LF> !exam R5

R6 /xxxXxxX<LF> lexam R6, the SP

R7/XXXXXX<CR> !PC at halt

@R6/xxxxXXX@ !examine SP
xxxxxxfgyxyzyﬁLF> texamine (SP) old PC
XXXXXX+2/222222<CR> lexamine (SP)+2 old PSW

@R7/xxxxxx 141330<CR> 1load PC :

@pP lrestart console software

>>>SET TERMINAL PROGRAM

This should restart either a VAX-11/780 or VAX-11,/785 console without
rebooting the VAX cpu. Save the console printout, and contact Field
Service. The VAX Maintenance Handbook VAX-11,/780 (August 1982
edition) pages 97-98 describe the LSI-11 MicroODT commands and the
meanings of the value displayed in response to the M command.

RESTAR.CMD Command Procedure

The console floppy contains a file called RESTAR.CMD. This command
procedure is used when the LSI-11 restarts a VAX-11/780 or VAX-11,/785
following a power failure recovery or cpu halt. The subsections
below describe the VAX-11/780 and VAX-11/785 restart mechanism and
discuss editing RESTAR.CMD to gather more information about a cpu
halt.

VAX~-11/780 And VAX~-11/785 Restart Mechanism

The auto restart toggle switch at the left of the console control
panel determines the system’s response to a power failure recovery or
cpu halt. The usual recommendation is that the switch be set to ON.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 58
HALTS - VAX-11,/780 AND VAX-11/785 15 July 85

This means that after a power fail recovery or halt, the LSI-11
console subsystem attempts a warm restart by copying the halt PC,
halt PSL, and reason for the halt to R10, R1l, and AP, and by
executing the command procedure RESTAR.CMD from the console floppy.

The distributed RESTAR.CMD procedure initializes the cpu and nexus
adapters and controllers, deposits into RO - RS and FP, and passes
control to the restart entry point of the VAX instruction-level ROM
(ISP ROM) present as part of the (first) local memory controller.
The combination of console actions and execution of RESTAR.CMD
initializes many processor registers and overwrites most of the
general registers.

The ISP ROM tests that memory contents are wvalid (that is, that
battery backup during a power failure was sufficient), that local
memory (MS780) is configured correctly, and tries to 1locate the
Restart Parameter Block (RPB) built during system initialization.

The ISP ROM reports errors on the console terminal. Fatal errors
result in a loop in the ISP ROM to prevent infinite attempts at warm
restart. Following are the possible messages from the ISP ROM. For
further information on the error messages, see the [TBS] section BOOT
FAILURES — VAX-11,/780 AND VAX-11/785.

ATTEMPTING WARM RESTART

FATAL ERROR— CPU ERROR, R7 INDICATES FAILING SUBTEST
FATAL ERROR— MEMORY ADDRESS SPACE OVERLAPS

FATAL ERROR-— MEMORY(IES) IMPROPERLY INTERLEAVED
FATAL ERROR— MEMORY NOT INITIALIZED

FATAL ERROR— MIX OF 64K AND 256K ARRAY CARDS

FATAL ERROR-— NEXUS HAS BAD MAPS

FATAL ERROR— NO WORKING MEMORY

FATAL ERROR— UNEXPECTED MACHINE CHECK

WARNING—— FAULT DETECTED ON SBI, CONTINUING

If the ISP ROM locates the RPB and validates its contents, the ISP
ROM types the message "ATTEMPTING WARM RESTART" on the console
terminal and jumps to the address contained in RPB offset
RPBSL RESTART. This longword should contain the physical address of
the VMS routine EXE$RESTART.

If the ISP ROM finds that memory contents are not valid, if it is
unable to locate the RPB, or if the RPB has been corrupted, the ISP
ROM sends a reboot message to the console and halts. The console
reboots the system from the default system disk. The MS780-C ISP ROM
halts at physical 2000350A; the newer MS780-E ISP ROM halts at
physical 20003563.

EXESRESTART's responsibility is either to restart the system
following a power fail or to crash the system following a halt. The
system is crashed to preserve error log messages that have not yet
been written to SYS$SERRORLOG:ERRLOG.SYS and to provide information
useful for troubleshooting the halt. (SYSINIT locates the error 1log
messages in the dump during the next reboot and causes them to be

VAX/VMS Troubleshooting *INTERNAL USE QONLY* Page 59
HALTS - VAX-11/780 AND VAX-11,/785 15 July 85

written to the error log file.) EXESRESTART crashes the system with a
bugcheck whose type is a function of the halt code passed in AP. The
halt PC and halt PSL are in R10 and Rl1l when EXESRESTART bugchecks.
See the section RESTART BUGCHECKS for more information on
EXESRESTART.

For certain kinds of processor halts, the auto restart actions above
destroy information likely to be needed in troubleshooting the
problem. In such cases, there are two possibilities: set the auto
restart toggle switch OFF, use the console to display what
information you need, deposit a halt code into AP, and manually
invoke RESTAR.CMD; or alter the RESTAR.CMD procedure to display
needed information automatically. See below the subsection Editing
RESTAR.CMD for further details.

If the auto restart toggle switch is off, the cpu remains halted
until some human intervenes. If the cpu key is in local enable, the
console accepts commands in response to its >>> prompt. You may
enter commands to display various registers. Afterwards, you should
manually invoke RESTAR.CMD by typing @RESTAR.CMD. Unless you load AP
with a halt code before you invoke RESTAR.CMD, EXESRESTART will
signal the bugcheck UNKRSTRT. See the section RESTART BUGCHECKS for
a table of possible halt codes and their meaning.

The advantage to disabling auto restart and invoking RESTAR.CMD
manually is that you can obtain the contents of R10, R1l, and AP at
the time of the halt. Occasionally, these may be important in
troubleshooting a problem. The disadvantage is the required human
intervention. For this reason, ed1t1ng RESTAR.CMD is preferred and
is recommended for any systems experiencing intermittent problems or
frequent halts.

Editing RESTAR.CMD
The basic sequence is to
1. copy the console floppy
2. determine adapters and controllers present on the system
3. create a console command file named DISPLA.CMD that examines
various internal, processor, and nexus registers and includes
the commands from RESTAR.CMD
4. create a new RESTAR.CMD that only invokes DISPLA.CMD
5. copy the new and altered files to the new console floppy
When auto restart is enabled, the console automatically invokes

RESTAR.CMD after a halt (unless it has received a reboot message).
RESTAR.CMD invokes DISPLA.CMD, which displays various registers and

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 60
HALTS - VAX-11/780 AND VAX-11,/785 15 July 85

restarts the system.

The reason for not placing the contents of DISPLA.CMD into RESTAR.CMD
is that invoking DISPLA.CMD explicitly as a command procedure (rather
than the console’s invoking it automatically as RESTAR.CMD) results
in the echoing of the commands in the procedure. This makes the
output somewhat easier to interpret. If you are indifferent to the
echoing of the DISPLA.CMD commands, then simply edit RESTAR.CMD to
include the commands shown below as the contents of DISPLA.CMD.

First, log into the SYSTEM account or one with CMKRNL, SYSPRV, and
SYSNAM privileges. Make a copy of the console floppy using CONSCOPY,
as documented in section 2.81 of the Guide to VAX/VMS System
Management and Daily Operations. Ensure that the original copy of
the console floppy is in the drive whenever VMS maintenance updates
are installed to prevent failure of any updates to the floppy as a
result of insufficient free space on it. Ensure that your altered
console floppy reflects any console floppy changes made by VMS
maintenance updates, VAX FCO installations, or system management
actions.

Next, determine the adapters and controllers present at each nexus,
using the following commands

$ MC SYSGEN
SYSGEN> SHOW /ADAPTER
SYSGEN> EXIT

Note that SYSGEN displays decimal nexus numbers.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 61
HALTS - VAX-11/780 AND VAX-11,/785 15 July 85

Next, using your favorite editor, create a file called DISPLA.CMD
containing the commands below.

HALT thalt cpu

E/ID/N:17 0 texamine ID 0 - 17

E/ID 18 , lexamine 16 entries in SBI silo
E/ID 18

E/ID 18

E/ID 18

E/ID 18

E/ID 18

E/ID 18

E/ID 18

E/ID 18

E/ID 18

E/ID 18

E/ID 18

E/ID 18

E/ID 18

E/ID 18

E/ID 18

E/ID/N:6 19 lexamine ID 19 - 1F

E/ID 20 !pop microstack

E/ID 20

E/ID 20

E/ID 20

E/ID/N:1E 21 texamine ID 21 - 3F

E/N:D RO texamine RO-FP

E PSL

E SP

E/V/N:10 @ 111 longwords of current stack
E/I 4 !lexamine PR$ ISP

E/V/N:10 @ 111 longwords of interrupt stack
E/I/N:3 0 IPR$_KSP - PR$_USP

E IR !examine instruction register
E PC !examine PC

E/V @ !examine (PC)

E/NV - !examine (PC)-4

D/ID 1D 18000 tturn off cache

E PC

E/N @ lexamine (PC)

E/N - t{examine (PC)-4

! THE ADDRESSES IN THE FOLLOWING COMMANDS DISPLAY NEXUS REGISTERS FOR A
POSSIBLE CONFIGURATION. THEY SHOULD BE ALTERED AND/OR COMMANDS ADDED
TO REFLECT THE ACTUAL HARDWARE CONFIGURATION.

20002000/N:3 !MS780E MEMORY TRl

20004000/N:2 !MS780C MEMORY TR2

20006000/N:7 !UNIBUS ADAPTER TR3

20010000/N:7 !MASSBUS ADAPTER TR8

20012000/N:7 !MASSBUS ADAPTER TR9

20004000/N:9 !MA780 MEMORY TR 2

20014000/N:1 !DR780 TR10

2001C000N:1 (CI780 TR14

(ool o oo o IR e s I o I o B

VAX/VMS‘&roubleshooting *fﬁ%ﬁiﬁgL USE ONLY* Page 62
HALTS - VAX-11,/780 AND VAX-11,/785) 15 July 85

Tailor the command procedure to reflect the hardware configuration
you determined with SYSGEN. Tailor it by deleting, adding, or
modifying the commands that examine the nexus registers. The
physical address corresponding to nexus N’s registers is 200xx000,
where xx equals 2 times N in hex. For example, the registers for
nexus 4 begin at 20008000.

You might also want to include commands to examine the registers of
the system disk drive, if it is not a DSA-style disk.

Then, enable access to the console floppy with the following commands

S ! load the console driver if it hasn’t been
$ MC SYSGEN

SYSGEN> CONNECT CONSOLE

SYSGEN> EXIT

Under V3, type the following commands

$! mount the console floppy if it hasn’t been
S MOUNT/FOR/SYS/PROT=(SY:RWLP) CSAl: CONSOLE
|
! copy restar.cmd to your default disk, directory
MC FLX
FLX> /RS=CS1:RESTAR.CMD/RT

CTRL/Z

1t

R

include restart procedure in DISPLA.CMD
PEND RESTAR.CMD DISPLA.CMD

here use EDT to create a new RESTAR.CMD
to contain only the command @DISPLA.CMD

replace console RESTAR.CMD with edited version and
copy DISPLA.CMD to console floppy

C FLX

FLX> CSl:/RT=DISPLA.CMD/RS

FLX> CS1:RESTAR.CMD/DE/RT

FLX> CSl:/RT=RESTAR.CMD/RS

FLX> CTRL/Z

$ | clean up default directory

$ DELETE RESTAR.CMD;*,DISPLA.CMD; *

e 0= = o o 0 % -

1< U L - - nf
=

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 63
HALTS - VAX-11,/780 AND VAX-11,/785 15 July 85

Under V4, type the following commands

! copy original RESTAR.CMD
EXCHANGE COPY CS1:RESTAR.CMD RESTAR.CMD

include RESTAR.CMD in DISPLA.CMD
END RESTAR.CMD DISPLA.CMD

%

here use EDT to create RESTAR.CMD
to contain only the command @DISPLA.CMD

VA - -l nfr

! copy DISPLA.CMD and RESTAR.CMD to console floppy
$ EXCHANGE

EXCHANGE> COPY RESTAR.CMD CS1:RESTAR.CMD

EXCHANGE> COPY DISPLA.CMD CS1:DISPLA.CMD

EXCHANGE> EXIT

$ 1 clean up default directory

E DELETE RESTAR.CMD;*,DISPLA.CMD;*

Hints Ahd Kinks

10

If you have auto restart enabled and set the VAX cpu into single
instruction step mode and erroneously continue it via the console
commands

>>>SET STEP INSTRUCTION
>>>CONTINUE

when the cpu halts after executing the next instruction, the
console restarts the VAX, probably resulting in a crash.

If you are trying to single step the VAX through the console, use
the following commands instead.

>>>SET STEP INSTRUCTION
>>>NEXT
<space>

Each time you depress the space bar, the cpu will execute one
instruction, and the console will not auto restart the VAX cpu.

The LSI-11 console software is case-sensitive. Ensure that all
invocations of chained command procedures are upper case.

The console block storage medium has an RT-11 file structure.
The RT-11 file structure implements three different record
formats: stream ASCII, formatted binary, and fixed-length
record. Under VMS you use the V3 FLX utility or the V4 EXCHANGE
utility to transfer files to and from the console.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 64
HALTS - VAX-11,/780 AND VAX-11,/785 15 July 85

Both FLX and EXCHANGE select a default record transfer mode based
on file extension type. For example, extensions of OBJ and BIN
default as EXCHANGE /RECORD=BINARY and FLX /FB transfer modes.

Occasionally the default based on file extension type is
inconsistent with the file’s record format. 1In particular,
C1780.BIN, the CI microcode; WCSxxx.PAT, the VvAx-11,/780
microcode; and PCS750.BIN, the VAX-11/750 microcode, will not be
copied correctly unless you override the default transfer mode.

If you are not sure what the transfer mode should be, you can use
the EXCHANGE qualifier ,RECORD FORMAT=STREAM or the FLX switch
/FA for all text files (e.g. command files). Use the EXCHANGE
qualifier /RECORD FORMAT=FIXED (or /TRANSFER MODE=BLOCK) or the
FLX switch /IM for all other files (binary files such as images,
microcode files, patch files). The VMS console contains no
formatted binary files, so you will never want
/RECORD FORMAT=BINARY or FLX's /FB.

Additional References

VAX Architecture Standard (DEC Standard 032), Section 12.7 Halts
VAX-11/780 Console Interface Board Technical Description
VAX-11,/780 Datapath Description, Section 5.3 Machine Halts

VAX-11,/780 Hardware User’s Guide, Chapter 3 Console Operator/Program
Communication

VAX-11,/780 VAX Maintenance Handbook for .processor register layouts
(pp. 133-154 of the 8/82 edition)

VAX-11,/780 VAX Maintenance Handbook for additional information on
interpreting the contents of the SBI silo (pp. 156-158 and pp.
185-188 of the 8/82 edition)

VAX-11,/780 VAX Maintenance Handbook for the location of the DLV-11
FEH jumper (p. 103 of the 8/82 edition)

Sheet ESOAD-1, VAX Hardware Documentation Microfiche Library, MS780-C
ISP ROM listing

VAX/VMS Error Log Utility Reference Manual

Microcomputers and Memories (EB-20912-20) for more information on
LSI-11 MicroODT

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 65
HANGS 1 August 85

HANGS

There are many possible reasons for lack of system response to users,
ranging from a blown fuse on a terminal to a compute-bound user
program to a halted processor. This section describes procedures and
suggestions to help you determine why the system is not interacting
with one or more users after it has been running normally. If the
system has only just been booted and seems not to have completed
system initialization successfully, see [TBS] section BOOT FAILURES.

First, find out whether or not the whole system seems hung. Ask the
users. Try a terminal other than the one(s) in use by the affected
user(s) to issue the DCL command SHOW SYSTEM. If the system seems
not to be responding to any users, follow the directions in
subsection System Hangs. Otherwise, follow the directions in Process
Hangs.

System Hangs

1. First, look at the console terminal for any messages.

2. If there are no messages, put the cpu key in the 1local enable
position and type CTRL/P on the console terminal. If the console
terminal and its cpu connection are working, you should get a
console subsystem prompt >>>. On a VAX-11/780 or VAX-11/785,
type SET TERMINAL PROGRAM in response to the prompt to continue.
On other processors, type a C in response to the console prompt
to continue. Then go on to item 8.

If you don’t get the prompt, put the terminal into local mode and
check for problems such as a blown fuse or paper out. If the
terminal works in local mode, but you are unable to communicate
with the console subsystem, then the system may have some sort of
hardware hang. Additionally, you may have missed an important
message concerning a software problem. See the section HALTS -
<cpu_type> for information about processor specific hardware
hangs and halts.

On a VAX-11/750 without remote diagnosis, cpu microcode
implements the console interface. If the UNIBUS is hung in such
a way as to hang the cpu microsequencer, the console subsystem is
uncommunicative. This is a known symptom, in response to which
you should probably power sequence the processor, by pushing the
white RESET button on the front of the machine. This may clear
the UNIBUS hang. (If you don’t have memory battery backup, this
causes a reboot.) If this doesn’t clear the hang, call Field
Service.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 66
HANGS 1 Augqust 85

3. 1If there is a halt code or other console software message on the
console terminal and/or you think the system may be halted, see
section HALTS - <cpu type>.

One possibility on a VAX-11/750 is a reboot following a halt
restart. After a processor halt, the console checks the auto
restart switch to determine whether to leave the processor
halted, to reboot it, or to restart it. If a VAX-11/750 auto
restart switch is in the reboot position, the console reboots the
system. For example, if a power fail recovery occurs and the
auto restart switch is in the reboot position, the system will
reboot. The only console message printed is %%, followed by the
VMS announcement message. If you suspect that is happening, put
the auto-restart switch into the halt position, so that the
system will halt instead. This will enable you to distinguish
between power recovery restarts and software initiated reboots.

4. 1If there is a fatal bugcheck message on the console terminal, the
system is crashing or has crashed. If SYSBOOT parameter
BUGREBOOT is 0, the fatal bugcheck code prints the following
message on the console terminal and loops.

SYSTEM SHUTDOWN COMPLETE - USE CONSOLE TO HALT THE SYSTEM -

If parameter BUGREBOOT is 1, the fatal bugcheck code reboots the
system from the default system disk. After the system reboots,
analyze the crashdump, following the directions in section
BUGCHECKS.

5. Under V3 there are two possible messages about the page file you
may see

SYSTEM-W-PAGEFRAG, Pagefile 65% full, system continuing
SYSTEM-W-PAGECRIT, Pagefile 90% full, system trying to continue

Under V4, the text of these messages is changed to

SYSTEM-W-PAGEFRAG, Pagefile badly fragmented,system continuing
SYSTEM-W-PAGECRIT, Pagefile space critical, system trying to conti
nue _

These messages are each issued only once during a boot of the
system, no matter how many page files you have installed. Wwhen
one page file becomes badly fragmented or fairly full, the first
message is output; when this or another page file becomes very
full, the second message is output. These messages may be an
indication that the system requires an(other) alternate page
file, although they may also merely mean that one particular file
has become full. Furthermore, because of the nature of the
system checks, it is possible for the system to run out of page
file space without any message’s having been printed.

When the page file(s) become full, the SWAPPER process may be
unable to write the modified page list. As the modified page
list grows and reaches the size of the SYSBOOT parameter

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 67

HANGS

1 August 85

MPW WAITLIM, processes faulting modified pages out of their
working sets are placed into resource wait RSN$ MPWBUSY. If your
system is swapping to page file(s) that have become full,
processes whose working sets are being expanded may be placed
into resource wait RSN$ SWPFILE. See section RESOURCE WAITS for
more information on these wait states.

To find out which file(s) are becoming full, you may be able to
issue the DCL command SHOW MEMORY/FILES/FULL. If a heavily used
page file is full or almost full, you may be able to install
another one in an attempt to prevent a system hang. Because a
process is assigned for its lifetime to a particular page file,
installing a new page file will not necessarily clear up the
problem. It may be necessary to remove user processes, whether
through LOGOUT, explicit STOP/ID commands, or a system shutdown.

While you are trying to take these steps, temporarily raise the
parameter MPW WAITLIMIT so that your own process is not placed.
into resource wait. Raising MPW WAITLIMIT is a temporary
workaround that works until the system runs out of free pages.

From an account with CMKRNL privilege, type the following DCL
commands. :

$ SHOW MEMORY/FILES/FULL

$ MC SYSGEN

SYSGEN> SHOW MW_W\ITLIMIT
Parameter Name Current

MPW WALTLIMIT XXXX

SYSGEN> SET MPW WAITLIMIT 16384
SYSGEN>» WRITE ACTIVE

SYSGEN> SHOW PAGFILCNT

SYSGEN> EXIT

If the setting of parameter PAGFILCNT is too low to allow
installation of another page file, have users log out, alter the
parameter, and shut down the system. After it reboots, create
and install another page file.

If the setting of PAGFILCNT permits installation of another page
file, from the SYSTEM account or one set to a SYSTEM UIC, type
the following DCL commands to install another page file and reset
MPW WAITLIMIT.

$ SET PROT=(SY:RWED,OW:RWED)/DEFAULT

$ MC SYSGEN

! specify a unique page file name

SYSGEN> CREATE <file spec>/SIZE=<size>

SYSGEN> INSTALL <file spec>/PAGEFILE

SYSGEN> SET MPW WAITLIMIT <xxxx> !previous value
SYSGEN> WRITE ACTIVE

SYSGEN> EXIT

If your own process goes into RSN$ MPWBUSY wait and you are

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 68

HANGS

6.

1 August 85

unable to issue any DCL commands, then you must alter
MPW WAITLIMIT from the console terminal. With the key in local
enable, type the following commands, filling in the global values
from the table below. On a MicroVAX I, depress the HALT button
on the front panel instead of typing CTRL/P.

CTRL/P

>»H

2! examine MPW WAITLIMIT

>>>E/V/L <A(MPWSGL WTLIM))

5! read number of pages on modified list

>>>E/V/L <A(SCH$GL MFYCNT)>

2! examine PSL

>33E P

XXXXXXXX

P22 put processor into kernel mode

X PO

3! raise MPW WAITLIMIT

>>>D/V/L <A(MPWSGL | WAITLIM)> 3FFF

M1 trigger modified page writer

>>>D/V/L <A(SCH$GL MFYLIM)> 0

2! restore previous PSL

225D P <XXXXXXXX>

2! continue processor

>55¢
GLOBAL NAME V3 VALUE V4 VALUE
MPWSGL WAITLIM 8000328C 80003C90
SCHS$GL_MFYCNT 80001DF4 80001EF0
SCHSGL_MFYLIM 80001E04 80001F00

The following message on the console terminal indicates that
nonpaged pool could not be expanded.

%SYSTEM-W-POOLEXPF, Pool expansion failure
The system may hang as a result, if it runs out of nonpaged pool.
See section RESOURCE WAITS, subsection FRWNPG for more
information.

If you see messages indicating that a disk is undergoing mount
verification, then user, system, and Files-11l I/O requests to
that disk are being stalled. Users may be able to type CTRL/Y
and STOP to abort their images and thus cancel their outstanding
I/0 requests. Files-11 I/0, however, cannot be canceled. Under
V3, Files-11 is implemented as a separate process, an "ACP",
which does one I/O request at a time. While the ACP is
processing one request, other I/O requests queued to it must
wait. This means that if a Files-11 ACP I/0 request is queued to
a disk in mount verification, the ACP’s I/0 request is stalled,
the ACP itself is stalled, and all I/O requests queued to the ACP
are stalled. How noticeable this effect might be is partially a
function of how many disk volumes this ACP is managing. If the
system is set up with very few ACPs and lots of caching, then the
effect is likely to be quite noticeable. See the Guide to

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 69

HANGS

10.

11.

1 August 85

VAX/VMS System Management and Daily Operations Guide, section
7.6, for more information on the possible causes of a disk’s
going into mount verification and actions to take.

Under V4, Files-11 ODS-2, the default file structure, is
implemented with procedure-based routines, the Files-11 XQP, that
run in process context. If a process’s XQP I/O request is
stalled, then any further Files-11 I/0 requests (for example,
I0$_ACCESS, IO$ DEACCESS, window turns) from that process are
also stalled. Files-11 ODS-1, the RSX-11 file structure, is
still implemented with a separate ACP.

If you see messages on a V4 member of a cluster indicating that
connections have been lost or timed out and that quorum has been
lost, see below item 11.

If there are no messages and the cpu does not appear to be
halted, try to log in on the console terminal. If you are able
to, then possibly there is a hardware problem preventing access
to all the other terminals, such as no power to the UNIBUS or
UNIBUS adapter or perhaps the termipal controller is not working.
(Note that on a VAX-11,/750, if the UNIBUS has no power or is
broken, you will probably not be able to use the console terminal
in any way, other than terminal local mode.)

If you are unable to login on the console terminal, the system
may be rebooting without having been shutdown. This can happen
following an aborted fatal bugcheck. Fatal bugcheck processing
may be aborted due to corruption in the boot control block that
maps the extents of the system dump file or a failure to
initialize the system disk. Depending on cpu type, you may see
console messages indicating a halt instruction excecuted and a
reboot initiated.

These conditions are rare, but if you hear a 1lot of console
medium and/or system disk activity, wait for several minutes to
see whether the system is booting before continuing with these
directions. If the system doesn’t reboot, continue with the next
item.

If the system does reboot following an aborted bugcheck, there is
no way to find out why it crashed; the only thing you can do is
prevent the immediate reboot next time by booting the system with
XDELTA. If XDELTA is present, the bugcheck routine breakpoints
before rebooting, allowing you to examine the general registers
and current stack from the console terminal.

If you are unable to login on the console terminal and the system
is not rebooting, it may be hung in a high IPL loop, it may be
continually servicing interrupts from a malfunctioning device, or
there may be a compute bound realtime process preventing any
normal processes from being scheduled.

You should single step the system through enough instructions to

VAX/VMS Troubleshooting

HANGS

INTERNAL USE ONLY Page 70

1 August 85

capture the addresses of any loop it may be caught in. In fact,
it’s generally a good idea to go through the loop, continue the
processor, and then single step it at least once more through the
loop to be certain that the addresses you obtained are
representative of any loop causing the hang. Afterwards, if
appropriate, crash the system and examine the dump. First make
sure that the cpu key is in the local enable position. Then type
CTRL/P and the console commands below applicable to the cpu type.
On a MicroVAX I and MicroVAX II, depress the HALT button on the
front panel instead of typing CTRL/P.

o For a VAX 8600
CPU HALT, csm code: 11
PC: XXXXXXXX Ixxxxxxxx is PC

>>>D/I 18 0 !disable timer
>>>E PSL !examine PSL
>>>NEXT

_U PSL XXXXXXXX

PC: XXXXXXXX>>><{space bar)> !xxxxxxxx is PC

EC: XXXXXXXX>>><Space bar> leach space is 1 step
PC: xxxxxxxx>>><CR> texit step mode

lexam PSL every several steps

>>>E PSL
U PSL XXXXXXXX

>>>NEXT .
PC: xxxxxxxx>>><space_bar> leach space is 1 step -
PC: xxXxxxxxx>>><CR> lexit step mode

>>>D/T 18 80000051
>>>E/N:E RO
>>3¢

!re-enable timer
lexamine registers
!continue the cpu

o For a VAX-11,/780 or VAX-11,/785

>>H thalt cpu

HALTED AT XXXXXXXX Ixxxxxxxx is PC

>>>D/I 18 0 !disable timer

>>>E PSL !examine PSL
XXXXXXXX

>>>N

HALTED AT XXXXXXXX

>>><space bar>
HALTED AT XXXXXXXX

<{space bar>

<cr>

>>>E PSL

>>ON

>>><space _bar>
<cr>

>>>D/I 18 80000051
>S>E/N:E RO

222C

Ixxxxxxxx is PC

leach space is 1 step
Ixxxxxxxx is PC

leach space is 1 step

texit space bar step mode
lexam PSL every several steps

teach space is 1 step

lexit space bar step mode
!re-enable timer

lexamine registers
!continue the cpu

VAX/VMS Troubleshooting *INTERNAL USE ONLY*

HANGS

o For a VAX-11/750

o For a vax-11/730

xxxxxxxx 02
>>D/T 180
>3E P

XXAXXKXX
>>>N
xxxxxxxx 02
S>E P
222N

>>>D/I 18 8000005
S>5E/G 0

S55E/G 1

>SSE/G 2

>>>E/G E

22C

(it

interrupts)

o For

202 PC=XXXXXXXX
>>>E PSL

M 00000000 XXXXXXXX
>>ON

202 PC=XXXXXXXX
>>><space_bar>

202 PC=XXXXXXXX
>>>E PSL

>N
>>><space_bar>

>>>E/G/N:E RO
>>>C

a MicroVax I
xxxxxxxx 02
>>>D/1 18 0

>>3E P

P XXXXXXXX

I2XON XXXXXXXX/YYYYYVYY
3>

>SN

33E P

33N

>>>D/I 18 80000040
>53E/G 0

2EMG 1

2>>E/G 2

3>>E/G E

3>3¢

Page 71
1 August 85

Ixxxxxxxx is PC
!disable timer
{examine PSL

leach N is 1 step

!exam PSL every several steps
leach N is 1 step

!{re-enable timer
texamine RO
texamine R1
lexamine R2

!examine SP
tcontinue the cpu

is not necessary to disable timer

1XxXxxXxxxx is PC
lexamine PSL

Ixxxxxxxx is PC

teach space is 1 step
Ixxxxxxxx is PC

lexam PSL every several steps

leach space is 1 step

!examine registers
!continue the cpu

Ixxxxxxxx is PC
!disable timer
lexamine PSL

Ixxxxxxxx is PC, and yyyyyvyy
! 1is contents

leach N is 1 step

lexam PSL every several steps
leach N is 1 step

!re-enable timer
texamine RO
texamine R1
lexamine R2

lexamine SP
!continue the cpu

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 72

HANGS

1 Auqust 85
o0 For a MicroVAX II

202 EXT HLT

PC = XXXXXXXX Ixxxxxxxx is PC
>>>D/TI 18 0 !{disable timer
>>>E PSL !examine PSL

M 00000000 yyyyyyyy lyyyyyy is PSL

>>>8 teach S is one step
202 EXT HLT

PC = XXXXXXXX Ixxxxxxxx is PC
>>>8 leach S is one step
202 EXT HLT

PC = XXXXXXXX IXxXxXxxxxx is PC
>>>E PSL lexamine PSL
2>>8 leach S is one step
>>>E/G/N:E RO lexamine registers
>>>D/I 18 80000040 !re-enable timer
2>>C !continue the cpu

a.

If the halt PC and the single step PC are the address
EXESNULLPROC, that means the system is running the null job.
The V3 address of EXESNULLPROC is 80007B06. The V4 address
of EXESNULLPROC is 80008B1F. The null job is scheduled when
there are no other resident computable processes. This
happens frequently during normal system operation for
relatively brief intervals, but should not persist. One
possible cause of this is a modified page list larger than
the SYSBOOT parameter MPW WAITLIMIT. You can confirm this by
using the console to examine MPWSGL WAITLIM and
SCH$GL MFYCNT. See item 5 above for directions and more
information. If too large a modified page list is not the
problem, crash the system and look at the scheduling state of
processes to try to determine why they were not computable.
Follow the directions in subsection Process Hangs to learn
more about various scheduling states.

If the system is not looping at EXE$NULLPROC, then decode the
PSL. using the 1layout in the section RELATED REFERENCE
MATERIAL. If it shows interrupt stack execution at device
IPLs (hex 14 to 17), then the system may be continuously
executing a device interrupt service routine because of some
hardware problem. Once you have the loop addresses, crash
the system. If you are sufficiently familiar with the
hardware configuration, also examine device registers before
crashing the system. See section HALTS - <cpu type> for
typical console commands used to do this. Follow the
directions in section FORCED CRASH to examine the interrupt
stack and determine in what code the system was looping.
Read the code to figure out which general registers point to
data structures that identify which device or controller is
causing the interrupts.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 73

HANGS

c.

1 August 85

Under V4, a system which is a member of a cluster that has
just lost quorum loops until quorum is regained. The other
members of the cluster are hung in similar loops. There
should be console messages indicating that connections have
been lost or timed out and that quorum has been lost. The
PSL should show interrupt stack execution at IPL 8 and,
occasionally, IPL 4. The 1loop includes addresses within
CLUSTRLOA.EXE and in the vicinity of IOC$SIOPOST. The V4
value of IOC$SIOPOST is 80004910. CLUSTRLOA.EXE is loaded
during system initialization; the address at which it is
loaded is recorded in system global CLUSGL LOA ADDR. The
console messages and interrupt stack execution at IPLs 8 and
4 should be sufficient to identify this loop.

If a member of the cluster has crashed and cannot be
rebooted, it is possible that there may not be enough votes
among the remaining nodes to make up a quorum. You can force
quorum to be recalculated as a function of the votes of only
the remaining members by typing the following console
commands on one of the remaining cluster nodes.

CTRL/P

>>>H thalt cpu

>>>D/I 14 C !request IPL C interrupt
22>C !continue cpu

IPC> Q !request quorum calculation

IPC> CTRL/Z !exit IPL C service routine

! type the following commands for VMS V4.0 only
CTRL/P

2>H thalt cpu

2>>>D/I 20 40 !enable console receive interrupts
>>>D/I 22 40 !enable console transmit interrupts

The V4.0 IPL C interrupt service routine leaves console
interrupts disabled, preventing further VMS use of the
console terminal. This has been corrected in V4.1.

If IPL is 1F, the system may be looping trying to bugcheck
fatally. The system may or may not be running on the
interrupt stack, depending on what code signaled the fatal
bugcheck. The general sequence for a fatal bugcheck is to
initialize the adapter, controller, and unit of the system
disk and use the minimal boot driver to read in the fatal
bugcheck overlay. If there are hardware errors, the system
generally repeats this sequence. This loop is near the
global MPHSBUGCHKHK and includes subroutine calls to a
routine in SYSLOAxxx.EXE and to routines in the system disk
boot driver. (See the section VIRTUAL ADDRESSES - SYSTEM
SPACE for information on locating SYSLOAxxx.EXE and the
system disk boot driver.) The V3 value of MPHSBUGCHKHK is
8000397A. The V4 value of MPHSBUGCHKHK is 8000436A.

If the system is hung in this loop, try to spin down the
system disk, power it off and on, and spin it up again. This

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 74

HANGS

1 August 85

may clear the problem. If the system remains hung in this
loop, call Field Service.

If the PSL interrupt stack bit is clear and IPL is 0, the
system may be executing some compute bound process whose base
priority is higher than that of the other processes on the
system. This is particularly likely if many of the PCs are
in process space (although note that the image may request
system services that cause execution of system space code and
a non-user mode PSL). You can confirm this by examining the
global SCHSGL CURPCB, which contains the address of the
software PCB of the current process. If the contents seem to
remain the same for several minutes, then the system may be
running the same compute bound process. The V3 address of
SCHSGL CURPCB 1is 8000210C. The V4 address of SCHS$GL CURPCB
is 800021F8. Type the following console command,
periodically halting the processor and then continuing it.

>>>E/V/L <A(SCH$GL CURPCB)>

If a compute bound process is the problem, you can lower its
priority and thus allow other processes to be scheduled by
altering SCHSGB PRI and the priority fields in the process’s
software PCB. Type the following commands, replacing the
expressions in angle brackets with the actual values in the
table below.

EP !examine PSL

XXXXXXXX
D PO Iput processor into kernel mode
>>>E/V/L <A(SCH$GL_CURPCB)> ,
>>>D/V/B <A(SCH$GB PRI)> 1D !priority 2
>>>D/V/B <<contents of SCHSGL CURPCB> + <PCB$B PRIB>> 1D
>>>D/V/B <<contents of SCH$GL CURPCB> + <PCBSB PRI>> 1D

555D P <XXXXXXXXD> lrestore previous PSL
22>C
GLOBAL NAME V3 VALUE V4 VALUE
SCH$GB_PRI 80002158 80002244
SCHSGL_CURPCB 8000210C 800021F8
PCB$B_PRI B B
PCBSB_PRIB 2F 2F

Once you’ve issued these commands, the process should be
running at external priority 2, and the system should be
scheduling other processes. You might suspend the process
for later examination with the DCL command SET
PROCESS/SUSPEND. If the problem is an intermittent one and
likely to occur again, create an interactive, nonswappable,
realtime process with a higher priority in order to stop the
runaway realtime process without having to repeat the above
or crash the system.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 75

HANGS

1 August 85

f. If none of the above possibilities applies, once you have the
loop addresses and general register contents, crash the
system. Follow the directions in section FORCED CRASH to
examine the stack current at the time of the loop and to
determine in what code the system was looping.

Process Hangs

1.

2.

First, look at the SHOW SYSTEM output to see if the process(es)
of interest still exist(s).

If the process does not exist, then it was unexpectedly deleted.
This could occur as the result of a nonfatal bugcheck from kernel
or exec mode, a malicious or mistaken user with enough privilege
to delete the affected process, or some problem that occurred in
the process in an inner mode. If process accounting is enabled
for the system and was not disabled for the deleted process,
there should be an entry written in the accounting log at the
time the process was deleted. It may contain an informative
final status. From an account with access to
SYSSMANAGER:ACCOUNTNG.DAT, type the following DCL command to see
the accounting entries for that user.

$ ACCOUNTING/ SINCE: TODAY/FULL/USER=<username

Also, check the error log to see if the process was deleted after
a nonfatal bugcheck. From an account with SYSPRV privilege or
access to SYSSERRORLOG:ERRLOG.SYS, type the following V4 DCL
command to see any bugcheck entries made today.

$ ANALYZE/ERROR/INCLUDE=BUGCHECKS/SINCE:TODAY

Under V3, run SYE and specify S in response to the "OPTIONS"
prompt, /BU in response to the "DEVICE NAME" prompt, and
"— 08:00" in response to the "AFTER DATE" prompt to limit the
display to bugcheck entries made since 8 a.m. today.

If the process was deleted after a nonfatal bugcheck, the
bugcheck errorlog entry may have enough information to identify a
known problem but probably not have enough to troubleshoot an
unknown problem. You may want to set the SYSBOOT parameter
BUGCHECKFATAL to 1 and try to reproduce the problem to cause a
system crash so a full crashdump is available for analysis.

If the process does exist, and under V3, its scheduling state is
MWAIT, see the section RESOURCE WAITS; under V4, if its
scheduling state is displayed as a resource wait (e.g., RWAST),
see the section RESOURCE WAITS.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* : Page 76

HANGS

4.

1 August 85

If the process’s scheduling state is COMO (computable and
outswapped), perhaps the system has no more balance set slots to
inswap the process. Issue the DCL command SHOW MEMORY/SLOTS to
see if there are free balance set slots. If there are no free
balance set slots, probably the SYSBOOT parameter BALSETCNT is
too small. Try increasing it, shutting down the system, and
rebooting.

If the process’s scheduling state is COM (computable) or COMO
(computable and outswapped) and you suspect that process priority
is the problem, first look at the SHOW SYSTEM output. Compare
the process’s priority to that of other computable processes. It
may be that the system is heavily loaded and/or that this process
is very low priority with respect to other computable processes.
To alter the process’s priority, type the following DCL command
from an account with ALTPRI and WORLD privileges.

$ SET PROCESS/PRIORITY<new priority> /ID=<pid>

If the process is COM and its priority is not the reason for lack
of system response, it is possible that the process is in an
infinite loop. Issue the DCL command SHOW SYSTEM or MONITOR
PROCESSES to see if the process’s cpu time increases. (If its
cpu time doesn’t increase, there may be a higher priority compute
bound job.)If this is an interactive process and the user has
enabled CTRL/T, have the user type CTRL/T several times to see
whether his cpu time increases. (This will work only if the
process is looping in user or supervisor mode.) If the process is
looping in user mode, the user may be able to type CTRL/C DEBUG
and use the Debugger to trace the loop. (This will not work if
the image has been linked /NOTRACE or installed with privilege.)

If the process is looping below IPL 2, you should be able to
obtain some information through the DCL command SHOW
PROCESS/CONTINUOUS. Write down PC and PSL values as possible
clues to its loop. You may suspend the process for later
examination with the DCL command SET PROCESS/SUSPEND. You may
want to attempt further investigation through SDA, either on the
current system or a crashdump.

If the process is looping at IPL 2, you may be able to read its
registers (including PC and PSL) by running the program GETPHD,
listed in section ACCESSING PROCESS CONTEXT WITH SDA.

If the process does exist and is in LEF or LEFO, it is possible,
though quite difficult in many cases, to determine what the
process is waiting for; it may not be possible to take the
process out of its wait, although in many cases you should be
able to abort the image or delete the process.

A process in LEF or LEFO may be waiting for any number of
different things; I/O completion, a 1lock grant, or timer
expiration are the likeliest. Failure of an I/O request to
complete can be due to a lost device interrupt, device failure,

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 77

HANGS

1 August 85

disk undergoing mount verification, software error, etc. A
process waiting for a lock grant may be blocked by another
process which has taken out an incompatible lock. A process
waiting a long time for timer expiration may have specified an
incorrect expiration time.

a. If the process is an interactive process, first type CTRL/Q
on the wuser’s terminal in case the problem is merely that
terminal output is blocked by a previous CTRL/S. Also, check
the console terminal or any disk operator terminals for a
mount verification message concerning a disk to which the
process is doing I/0. If the process is doing I/O to a disk
in mount verification, its I/O requests to the disk are
stalled. See subsection System Hangs, item 7, for more
information.

b. 1If you can examine the process’s registers, see if the wait
PC is informative. It should fall within the system service
vector area. Follow the directions in the section SYSTEM
SERVICE VECTORS to determine whether the process is waiting
after having issued a compound system service request. If it
is, determine which service and, if possible, examine the
argument list and read the code of that service to determine
the exact nature of the process’s request. If the service
was a $QIOW or SENCW, see below for information on locating
I/0 requests and lock blocks.

c. If the wait PC is within SYS$WAITFR, SYSSWFLAND, SYSSWFLOR,
or, under V4, SYS$SYNCH, then determining what the process is
waiting for is much more difficult. Basically, you must
determine which flag(s) the process is waiting for; try to
locate all the process’s outstanding I/0 requests, lock
requests, and timer requests; identify the request associated
with this flag; and determine why the request has not
completed. Note that under V4, there are several other
asynchronous system services whose completion is signaled by
the setting of an event flag. A V4 process in LEF or LEFO
could be waiting for any of these.

Several fields in the PCB specify which event flag(s) the
process is waiting for: PCBSL _EFWM, PCBSB WEFC, and the wait
all bit PCBSV WALL in PCBSL | STS. In SDA’s SHON PROCESS
output, these are called "Event flag wait mask", "Waiting EF
cluster", and "WALL" in "Process status". PCBSL EFWM is the
one’s complement of the flags in a particular cluster, with a
0 bit indicating a flag being waited for. PCB$B WEFC
specifies whether the mask applies to event flag cluster 0 or
1. (Clusters 2 and 3 are common event £flag clusters; a
process waiting on common event flags would be in state CEF.)
PCBS$V WALL, when set, indicates that the process is waiting
for all the flags described by PCBSL EFWM; a zero PCBS$V _WALL
indicates that the process issued a $WFLOR system service.

Determine the flag number(s) by first writing the contents of

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 78

HANGS

1 August 85

PCBSL EFWM in binary to determine the position of each zero
bit (bit 0 means flag 0; bit 1, flag 1; etc.) Then, if
PCB$B WEFC is a 1, add 20 hex or 32 decimal to each flag
number. For example, if PCB$SB WEFC contains 0, PCBSL EFWM
contains F7FFFFFF, then the zero bit and the flag being
waited for is decimal number 27. If this flag is associated
with an I/O request, for example, then you should be able to
find an IRP for this process with IRP$B EFN equal to hex 1B,
or decimal 27.

Determine whether the process has any outstanding I/O
requests by examining the output of the SDA command SHOW
PROCESS. 1If the displays for Buffered I/O count/limit and
Direct I/O count/limit show the same numbers (e.g., 6/6),
then the process has no outstanding I/0. Go to the next item
to determine whether the process has outstanding 1lock
requests or timer queue requests.

If the count/limit numbers are different, then the process
does have outstanding I/O requests, approximately the
difference between the numbers in each of the two displays.
(The number may not be precise because certain ACP requests

~are charged as both buffered and direct 1,/0.)

If the process has outstanding I/0 requests, then you must
locate them to see which, if any, are associated with the
event flag(s) being waited for. Follow the directions in
section LOCATING I/0 REQUESTS to 1locate the request(s)
associated with a particular event flag number. Note that
when SDA displays a request (IRP or CDRP) as part of the SHOW
DEVICE display, it converts the flag number to decimal; if
you format an IRP or CDRP, all numbers are displayed in hex.

For an IRP that specifies a flag for which the process is
waiting, read the driver code and try to figure out the
device state in order to determine why the request has not
completed.

If the I/0 request is for a terminal, see item 9 below for
hints specific to terminals.

If the flag is one for which the process is waiting and the
request is queued to an ACP or, under V4, Files-11 XQP, then
you must determine what is blocking the ACP or XQP.

An ACP may be too low a priority to get enough cpu time; it
may be in LEF/O waiting for an I/0 request of its own to
complete; etc. You may have to look through the ACP’s CCBs
to locate its IRP and determine why that request hasn’t
completed.

One way to find out whether a process has outstanding locks
or timer requests is to examine the JIB. (Under V4, the
easier way to find out if the process has outstanding locks

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 79

HANGS

1 August 85

is the SDA command SHOW PROCESS/LOCKS.) The JIB contains the
count/limit information for timer queue requests and lock
requests. The names of these fields are JIBSW TQCNT,
JIBSW TQLM, JIB$W ENQCNT, and JIBSW ENQIM. The number of
outstanding timer requests 1is the difference between
JIBSW TQLM and JIBSW TQCNT. The number of outstanding locks
is the difference between JIB$SW ENQLM and JIB$W _ENQCNT. To
display the JIB, type the following SDA commands.

SDA> SHOW PROCESS !read address of JIB
SDA> READ SYS$SYSTEM:SYSDEF.STB!if you haven’t already
SDA> FORMAT <jib_address>

Remember, though, that the JIB describes the job as a whole,
the main process and any of its subprocesses. If this
process is the only one in the job, then JIB$SW PRCCNT will be
zero, and any outstanding locks or timer requests belong to
this process. If there are multiple processes in the job and
outstanding timer requests or lock requests, then you must
further examine the LEF/O process to determine whether it
really has outstanding timer requests or locks.

If you think a V4 process is waiting for a lock request - to
complete, type the following SDA commands to display those
locks and, possibly, get information about the process
blocking the ungranted lock request.

SDA> ! under V4

SDA> SHOW PROCESS/LOCK !display all locks

SDA> ! For each lock displayed as "Waiting for..."
SDA> ! get Lock ID and LKB address

SDA> DEF LKB=<lkb address>

SDA> EXAM LKB+LKBSB EFN lexamine associated EFN
SDA> ! If EFN is the one in question, then display RSB
SDA> SHOW RESOURCE/LOCK=<lock id>

SDA> ! If CSID is 0, then issue following commands;

SDA> ! else, resource is mastered on other node

SDA> ! Examine the Grant Queue to get the Lock Id of the
SDA> ! granted lock blocking this one

SDA> ! Display that lock to get PID of owner

SDA> SHOW LOCK <blocking lock id>
SDA> SHOW PROCESS/INDEX=<pix>

If the process is waiting for a blocked lock request, examine
the process(es) with incompatible granted locks and try to
determine if they themselves are blocked for some reason.
See the Lock Management System Services chapter in the
VAX/VMS System Services Reference Manual for a table showing
compatibility among the various lock modes.

When RSBSL CSID is nonzero, the resource is being mastered on
another node of the cluster. [more information TBS]

V3 VMS’s use of locks is minimal; it uses them only for RMS

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 80

HANGS

1 August 85

shared files. There are no SDA commands to make finding lock
requests easy. If you find a V3 process in LEF/0 that you
think is waiting for a blocked lock request, read Chapter 10
in the v3 VAX/VMS Internals and Data Structures Manual to see
how PCBs, LBKs, and RSBs are connected and then issue
appropriate SDA EXAMINE and FORMAT commands.

If the process has outstanding timer request(s), locate them
and compare their expiration times to the system time by
typing the following SDA commands.

SDA> EVAL EXESGL TQFL 'timer queue listhead
SDA> EXAM EXE$GL_TQFL laddress 1st TQE
SDA> ! Repeat next command til back at EXESGL TQFL or

SDA> ! you have located the TQE(s)

SDA> FORMAT @. t{display one TQE

! If matching TQESL PID, then check RQTYPE and EFN

! if TQESB RQTYPE = 1

SDA> ! and TQE$B EFN matches, you’ve found the request
! TQESQ TIME is expiration time

SDA> EXAM EXE$GQ SYSTIME ‘read system time

SDA> EXAM EXE$GQ_SYSTIME+4

If the process is waiting for terminal I/O to complete and the -
user has not disabled all broadcasts, then, under v4, from a
process with SHARE privilege, first try the DCL command

$ SET TERM/XON <terminal>

If that doesn’t work, try doing a broadcast to the wuser’s
terminal to see if the problem lies in his terminal
connection. Although V4 broadcast is done with a $QIO, it
may work in some cases even though the terminal seems hung.
From an account with OPER privilege, type one of the
following DCL commands.

$ REPL/URGENT/TERM=<term> <some message> !V4
$ REPL/TERM=<term> <some message> w3

If you see the broadcast message on the user’s terminal, then
his physical terminal connection is fine.

If the user hasn’t disabled broadcasts and the broadcast
message does not appear, then there may be a problem in the
user’s terminal connection. You might try any or all of the
following:

o Type the DCL command SHOW ERROR to see if the terminal is
listed in the display. Terminal hardware errors are not
logged; however, that hardware errors have occurred is
recorded. Any errors indicate some sort of hardware
problem.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 81

HANGS

9.

c.

1 August 85

o Check whether a keyboard locked light is on. The
terminal could have been put into a strange state as a
result of random binary data output interpreted as escape
sequence(s). If the 1light is on, press the SETUP key
twice to see if that fixes the problem. If the light is
still lit, press SETUP and then RESET.

o Put the terminal in local mode and try typing to
determine whether the terminal works at all. Check for a
blown fuse, paper out, etc.

o If the terminal works, check that its baud rate, type,
and other changeable characteristics are consistent with
what the system believes them to be.

o If the terminal is connected through a patch panel or
switch, check that its connections are intact.

o If all else fails, try a SETUP/RESET if the terminal
supports that feature.

o Replace the terminal with one known to work to see if
that makes a difference. ~

If you suspect a software problem, type the following DCL
commands. Under V4, your process needs SHARE, PHY IO, and
SYSPRV or READALL. Under V3, your process needs PHY IO and
SYSPRV.

$ SHO TERM <terminal>
§ SHO TERM/PERM <terminal>

Save the output, along with a display of the IRP that
describes the uncompleted I/0 request. Delete the process
and try to reproduce the problem in the simplest way
possible. If you can reproduce the problem, get the SHOW
TERM output and IRP display again. If you can’t reproduce
the problem in a simpler way, try to find out what kinds of
I/0 requests were made to the terminal with what modifiers.
Report the problem with that information, the SHOW TERM
output, and the IRP display.

For a process in any other wait state, read Chapter 12 of the V3

VAX/VMS System Management and Operations Guide and/or the

Internals and Data Structures Manual to learn more about the wait
state and possible reasons for its length.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 82

HANGS

1 August 85

Hints And Kinks

1.

Under V4, you must be careful about single stepping with the
console or XDELTA on a system which is a member of a cluster.
The CI port has a 99 second sanity timer which, if enabled, must
be reset by software every 99 seconds. Whenever the CI driver
initializes the CI port, the driver uses the value of the dynamic
SYSBOOT parameter PASANITY to determine whether or not to enable
the sanity timer. The default value of PASANITY, which is 1,
causes the sanity timer to be enabled.

If the timer is enabled and not reset by software every 99
seconds, the CI port places itself into maintenance mode,
breaking SCS connections to other nodes on the cluster. The
other nodes, as a result, reconfigure the cluster to exclude this
node.

If you know you're going to be single stepping a system, boot
interactively and use SYSBOOT to change PASANITY to 0. If the
system is already running when you decide to single step, run
SYSGEN first to alter PASANITY. When you’re done using the
console or XDELTA, reset PASANITY. :

Use the following commands from an account with CMKRNL privilege

$ MC SYSGEN
SYSGEN> SHOW PASANITY !display current setting
SYSGEN> SET PASANITY 0 lto disable timer
or
SYSGEN>» SET PASANITY 1 {to enable timer
SYSGEN> WRITE ACTIVE
SYSGEN> EXIT

Then, if you’re disabling the sanity timer, halt the cpu for 100
seconds and continue it. The CI port will reinit due to sanity
timer expiration. When the CI port reinitializes, it does so
with the sanity timer disabled.

Whenever you modify SYSBOOT parameters, remember to make AUTOGEN
aware of your changes so that they propagate across AUTOGENS.
Include any parameter changes you make in V3
SYSSSYSTEM:PARAMS.DAT or in V4 SYSSSYSTEM:MODPARAMS.DAT. See
Chapter 11 in the Guide to VAX/VMS System Management and Daily
Operations for further information on AUTOGEN.,

Additional References

V3

VAX/VMS Internals and Data Structures Manual, Chapter 10,

Scheduling; Chapter 12, Process Control and Communication; Chapter
13, VAX/VMS Lock Manager; Section 14.5, Data Structures that

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 83
HANGS 1 August 85

Describe the Page and Swap Files; Section 15.5.2, Modified Page
Writing; Chapter 18, I/O System Services

Guide to VAX/VMS System Management and Daily Operations, Section 4.1,
Shutting Down the Operating System

Guide to VAX/VMS Performance Management

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 84
INVEXCEPTN BUGCHECK 10 June 85

INVEXCEPTN BUGCHECK

The INVEXCEPIN bugcheck is signaled by the common exception
dispatching code when it detects that an exception occurred above IPL
2 or on the interrupt stack. Somewhat simplistically, this bugcheck
means that while the processor was running in system context, an
exception occurred which VMS would normally handle by dispatching to
a condition handler established by a process.

This bugcheck is also signaled if the common dispatching code
determines that the current process’s CTLSAL STACK array is
inaccessible. This is taken to imply that the current process has no
Pl space and is thus either the SWAPPER or the NULL process, neither
of which should incur exceptions of this sort.

The PC displayed by the SDA SHOW CRASH command reflects the exception
dispatching code rather than the location of the exception. R0 and
Rl in the SHOW CRASH display have been altered by the exception
dispatching code. The PC, RO, and Rl at the time of the exception
can be obtained as described below.

When this bugcheck is signaled, signal' and mechanism arrays have
already been built on the current stack and should be visible among
the newest (i.e., lowest addresses) entries on the stack.

/| 00000004 | argument count
/| xxxxxxxx | saved FP
mechanism array| FFFFFFFD | depth of scan
AN xxxxxxxx | RO at exception
° \| xxxxxxxx | Rl at exception
| t +
| | xxxxxxxx | flags
stack growth + +
/| 0000000x | argument count
/| Xxxxxxxx | exception type
signal array | ces | exception parameters
N\ | xxxxxxxx | exception PC
\| XXxXxxxxx | exception PSL

1. Locate the mechanism array and identify all its entries. Saved
RO and saved Rl are the registers’ values at the time the
exception occurred.

2. Skip 1 longword, the flags longword.

3. The next longword, the beginning of the signal array, contains an
argument count, the number of longwords that follow. Use the
count to identify all entries in the signal array. The number of
exception parameters present is a function of exception type and
can be 0, 1, or 2 longwords.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 85
INVEXCEPTN BUGCHECK : 10 June 85

4.

The exception type is a status value, e.g., C (hex) or
SS$ ACCVIO. The DCL command

$ EXIT %X<exception type>

writes the message text associated with the exception type status
value. The V4 SDA command

SDA> EVAL/CONDITION <exception type>

writes the message text associated with the exception type status
value.

Typically, the exception is one generated by "hardware" (or
microcode), for example, access violation. "Hardware" generated
exceptions are listed with a description of their associated
exception parameters in Section 10.1 of the VAX/VMS System
Services Reference Manual. See section EXCEPTIONS for
information about the more common hardware exceptions.

Forced crashes cause INVEXCEPTN bugchecks. If the signal array
shows the exception type as SS$ ACCVIO, the PC as approximately
FFFFFFFF, the faulting virtual address as approximately FFFFFFFF,
and the PSL as kernel mode and IPL 31, the system was crashed
using the console CRASH procedure. Continue with the section -
FORCED CRASHES.

The exception PC in the signal array is the instruction whose
[attempted] execution resulted in the unexpected exec or kernel
mode exception. Whether the PC points to the beginning of the
instruction or the end depends on whether the exception was a
trap (end), fault (beginning), or abort (beginning). The
reference above specifies whether each exception is a trap,
fault, or abort. Identify in what source module the PC is. See
the section VIRTUAL ADDRESSES. Often examining instructions
around the PC is helpful enough to eliminate a microfiche search.
Try the SDA command

SDA> EXAMINE,/INSTRUCTION <exception pc>-20;30

Figure out why the instruction generated an exception. For
example, if an access violation occurred, look at the operands to
see which access was in error.

Look at the IPL and IS values in the exception PSL to determine
if the IPL was above 2 and/or the exception occurred on the
interrupt stack. Decode the PSL using the PSL layout in the
section RELATED REFERENCE MATERIAL or with the V4 SDA command
EXAMINE/PSL.

If the exception occurred on the interrupt stack, the saved FP in
the mechanism array is probably from the current process and not
that relevant in analyzing the crash. If the exception occurred
on the kernel stack, the saved FP is likely to be the address of

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 86
INVEXCEPTN BUGCHECK 10 June 85

9.

the previous call frame, which contains the previous saved FP.
If the stack is intact, these saved FPs can be used to trace the
sequence of calls that occurred prior to the crash.

Decipher the current stack to trace control flow. See the
section STACK PATTERNS.

Hints And Kinks

1.

Note that for each V3 SDA COPY command used to copy the dump, the
SP will be 8 bytes greater than its actual value; that is, SDA
will show the SP pointing to a stack address 8 bytes higher than
it should. This V3 bug has been corrected in V4.

When SDA examines the process current at the time of an interrupt
stack bugcheck, SDA assumes the bugcheck PC and PSL and all the
general registers are part of that process’s context and displays
them in response to the SHOW PROCESS/REGISTER command.

The VAX instruction set is sufficiently rich that most random
data can be interpreted as instructions. Most system code deals
with binary integer and character data. This means that if an
EXAMINE/INSTRUCTION display includes many packed decimal and/or
floating point instructions, you are probably examining a data
area or using a start address which is not an instruction
boundary.

One common error that results in a nonsensical display is to
examine instructions in the bugcheck overlay area. During a
crash, fatal bugcheck code and message text overlay resident
system image code, beginning one page before label BUGSFATAL, for
a length of about 12000 decimal or 3000 hex bytes.

“Additional References

V3 VAX/VMS Internals and Data Structure Manual, Chapter 4, for

general exception dispatching and details of exceptions signaled by
VMS system software

VAX Architure Standard (DEC Standard 032) or VAX-1ll Architecture

Reference Manual, Chapter 6, Exceptions and Interrupts

VAX/VMS System Services Reference Manual, Chapter 10,

Condition-Handling Services

VAX/VMS Troubleshooting *INTERNAL USE (I\ILY* Page 87
KERNEL STACK LOCATIONS 15 April 85

KERNEL STACK LOCATIONS

1.

If the process is the Swapper, determine the high and low ends of
its stack by typing the SDA commands

SDA> EVAL SWPSA KSTK—(4*SWPSK KSTKSZ)!low end
SDA> EVAL SWP$A KSTK 'high end

If the process is the Null Job, determine the high and low ends
of its stack by typing the SDA commands

SDA> EVAL SWPSA KSTK-(4*SWPSK KSTKSZ)-80 !low end
SDA> EVAL SWPSA KSTK-(4*SWPSK KSTKSZ) thigh end

If the process is not the Null Job or the Swapper, determine the

current high and low ends of its kernel stack by typing the SDA
commands

SDA> EXAM CTLS$AL STACKLIM !low end
SDA> EXAM CTLSAL STACK thigh end

The usual kernel mode stack is in a fixed position in Pl space.
Its size and location varies from major release to major release.

For V3, the high and low ends are 7FFEAEOQ and 7FFEA800. These

"~ are the values stored at CTL$AL STACK and CTLSAL STACKLIM. No

distributed VMS code moves the kernel mode stack.

With V4, the usual hlgh and low ends are 7FFE7EQO0 and 7FFE7800.
If the kernel stack is expanded, CTLSAL STACKLIM is altered. If
CTLSAL STACK contains 7FFE7E00, then the process is running on
the usual kernel stack, and you have determined its limits.

If CTL$AL STACK and CTL$AL STACKLIM do not contain the limits of
the wusual kernel stack, then the process may be executing
Files-11 XQP code, which runs on a private kernel stack. To
locate the high and low ends of this stack, type the following
SDA commands

SDA> DEF XQP = @CTLSGL_F11BXQP!Pl space location of XQP
SDA> EXAM XQP + 2C !read XQP_STKLIM+4 = low end
SDA> EXAM XQP + 28 !read XQP STKLIM = high end

If CTLSAL STACK and CTLSAL STACKLIM contain these values, then
the process is executing XQP code on the XQP stack, and you have
determined its limits.

When the XQP is started up via a call from kernel mode, it saves
the contents of CTL$AL STACK, CTL$AL STACKLIM, and the FP before
switching to its private stack. You can determine the saved
values and display the process’s usual kernel stack contents by
typing the following SDA commands.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 88
KERNEL STACK LOCATIONS * 15 April 85

SDA> DEF XQP = @CTLSGL F11BXQP !Pl space location of XQP
SDA> EXAM XQP + 24 !read PREV STKLIM+4=0ld CTLSAL STACKLIM
SDA> EXAM XQP + 20 !read PREV STKLIM = old CTL$AL STACK
SDA> EXAM XQP + 1C !read PREV FP = former FP, on KSP

SDA> SHO STACK @(XQP+1C):@(XQP+20) !display krnl stack

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 89
KRNLSTAKNV BUGCHECK 26 June 85

KRNLSTAKNV BUGCHECK

The KRNLSTAKNV bugcheck is signaled by the service routine for the
exception kernel stack not valid. The microcode generates this
exception when it is unable to push information onto the kernel stack
during the initiation of an exception or interrupt. This exception
is serviced on the interrupt stack at IPL 31. The service routine
immediately signals a fatal bugcheck. The bugcheck means that while
the processor was running in process context, the current process’s
kernel mode stack was found invalid by the microcode.

An invalid kernel stack can result from stack overflow, stack
underflow, corruption in the Pl page table entries that map the
kernel stack, some other kind of software error, or an obscure
hardware problem.

V3 VMS defines the kernel stack to be three pages which are locked
into the process’s working set and which should thus always be valid.
V4 VMS defines the process’s usual kernel stack to be four pages
which are locked into the process’s working set and which should thus
always be valid.

The PC and PSL displayed by the SDA SHOW CRASH command reflect the
exception service routine rather than the location of the exception.
The PC and PSL at the time of the exception can be obtained as
described below.

1. To display the interrupt stack, type the SDA command SHOW STACK.
Its format follows

4
4

| | xxxxxxxx | exception PC
| | XXXXxxxx | exception PSL
stack growth + +

T

2. The KSP value displayed by SDA in response to SHOW CRASH is the
address at which the microcode tried to write, after
autodecrementing the stack.

3. See the section KERNEL STACK LOCATIONS to determine its high and
low limits.

4. Display the pages allocated for the process’s kernel stack by
using the stack limits you determined. SDA writes this range in
"stack" format, with attempted symbolic interpretation, in
response to the command

SDA> SHOW STACK <low address>:<high address>

If the KSP value is at or just above its expected high end, then
it 1is possible that some kernel mode code popped more off the
stack than it should have. One way this might occur is a RET
back to the change mode dispatcher from a kernel mode system
service with a corrupted FP. A value of KSP lower than its
expected low end generally indicates an overflowed kernel stack.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 90
KRNLSTAKNV BUGCHECK 26 June 85

5.

If the KSP is within the limits you determined above, check to
see if the page table entries that map it have been corrupted.
The page table entries that map it should include the valid bit,
the protection as SRKW, and the owner access mode as kernel

V3 SDA displays only entire process page tables. First convert
the low limit virtual address to a virtual page number by issuing
the following DCL commands.

$ VPN = (%X<faulting address> .AND. $X3FFFFE00) / 512

$ SHOW SYMBOL VPN
To see 10 P1PTEs (10*4 bytes per PTE = 28 hex bytes), issue the
SDA command

SDA> EXAM @P1BR + (4*<virtual page number>);28

See the Internals and Data Structure Manual reference below for
information to enable you to decode the PTE.

V4 SDA can display a range of process PTEs. Type the command
SDA> SHOW PROC/PAGE <low limit>:<high limit>

Identify in what source module the EXCEPTION PC is. See the
section VIRTUAL ADDRESSES.

Start at the highest end of the kernel stack and decipher as much
of the stack pages as seems to make sense. Without knowing the
lowest valid address, this may be difficult since many previous
kernel mode threads of execution have used the stack. See the
section STACK PATTERNS.

Hints And Kinks

1.

When SDA examines the process current at the time of a KRNLSTKNV
bugcheck, SDA displays the bugcheck PC and PSL as part of that
process’s context in response to the SHOW PROCESS/REGISTER
command. The process’s most recent PC and PSL are those pushed
on the interrupt stack as the exception PC and PSL.

Note that for each V3 SDA COPY command used to copy the dump, the
SP will be 8 bytes greater than its actual value; that is, SDA
will show the SP pointing to a stack address 8 bytes higher than
it should. This V3 bug has been corrected in V4.

The VAX instruction set is sufficiently rich that most random
data can be interpreted as instructions. Most system code deals
with binary integer and character data. This means that if an
EXAMINE/INSTRUCTION display includes many packed decimal and/or

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 91
KRNLSTAKNV BUGCHECK 26 June 85

floating point instructions, you are probably examining a data
area or using a start address which is not an instruction

boundary.

One common error that results in a nonsensical display is to
examine instructions in the bugcheck overlay area. During a
crash, fatal bugcheck code and message text overlay resident
system image code, beginning one page before label BUGSFATAL, for
a length of about 12000 decimal or 3000 hex bytes.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 92
LOCATING I/O REQUESTS 1 August 85

LOCATING I/0 REQUESTS

Locating a process’s outstanding I/0 requests is difficult, although
the process’s Channel Control Blocks (CCBs) include a count of
outstanding I/0O requests on the channel and the address of the Unit
Control Block (UCB) to which the channel has been assigned. This,
however, is just the beginning; I/0 requests may be queued to a
number of different places. Possibilities include (but are
absolutely NOT limited to) the following:

1. An I/O request is generally described by an I/0 Request Packet
(IRP). IRPs may be queued to a 1list of pending IRPs for a
particular unit. For a conventional device, this queue is at
UCB$L_IOQFL and UCB$L_IOQBL .

2, If the IRP is the current request of a conventional device, its
address is in UCBSL_IRP.

3. The IRP may be queued to the ACP or, under V4, the Files-11 XQP
servicing a volume mounted on the unit.

4. The IRP may be the current request of the ACP or, under V4, the
Files-11 XQP servicing a volume mounted on the unit. :

5. An IRP for a file that spans a multi-volume set may be queued to
a UCB describing another disk in the multi-volume set.

6. An I/0 request to an SCS device (e..g, UDA disk, HSC disk,
MSCP-served disk, etc.) is described by a Class Driver Request
Packet (CDRP). A CDRP includes an IRP, a fork block, and space
for SCS parameters. The driver is multi-threaded and handles
multiple requests concurrently. Requests do not necessarily
complete in the order they were queued. CDRPs in progress are
queued to a Class Driver Data Block (CDDB).

7. CDRPs waiting for an unavailable resource may be in any number of
different wait queues.

8. A write request to a full duplex terminal is described by a
Terminal Write Packet (TWP) and queued to a different UCB queue
than UCBSL IOQFL.

9. An IRP for a V4 virtual terminal is queued to the UCB describing
the physical terminal to which the virtual terminal is connected.

The directions that follow address some, but not all of the
possibilities listed above. 1In order to locate other I/0 request
queues, you may have to read the relevant driver, ACP, SCS code, etc.
[(More information TBS]

1. First, look through the process’s CCBs for any with non-zero I,/0
count. CCB$W IOC is incremented by EXESQIO and decremented by
the IOC$IOPOST special kernel AST that completes post-processing

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 93
LOCATING I/O REQUESTS 1 Augqust 85

of the request. Note that CCB$W IOC is incremented whether the
request has been queued to the driver, to the ACP servicing the
volume mounted on that unit, or to the Files-11 XQP servicing a
V4 Files-11 ODS-2 volume mounted on that unit.

For each CCB with non-zero CCB$W IOC, determine to which device.
and unit the channel is assigned. To look through the CCBs,
follow the directions in subsection Channel Control Block Table
in section VIRTUAL ADDRESSES - P1 SPACE.

Using the results from these commands, issue the SDA command SHOW
DEVICE, specifying the device name and the unit number converted
to decimal.

For some devices, SDA’'s SHOW DEVICE output device will be
sufficient to locate the process’s request. That is, the request
may be the unit’s current request, it may be queued to the unit’s
pending request list, or it may be queued to the ACP Queue Block
(AQB) for the ACP servicing the volume mounted on that unit.

Under V4, Files-11 ODS-2 is implemented by procedure-based
routines called the Files-11 XQP that run in the context of the
process issuing the Files-11 request. The XQP services one
request at a time. Pending IRPs are generally queued to its
queue in Pl space. To determine whether the XQP is active, to
format its pending I/O request queue and its current request,
type the following SDA commands.

SDA> SHOW PROCESS !get PCB address

SDA> READ SYS$SYSTEM:SYSDEF.STB

SDA> EXAM <PCB_address>+PCB$B_DPC

SDA> ! zero PCB$B DPC implies no XQP activity

SDA> EXAM CTLSGL F11BXQP laddress of XQP QUEUE

SDA> EXAM @. !contents of XQP QUEUE

SDA> ! if XQP QUEUE doesn’t contain its own address,

SDA> ! then repeat next command til back at list head
- SDA> FORMAT @. !format each pending IRP

SDA> FORMAT @(@CTLSGL F11BXQP+50) !format current IRP

For relatively short periods of time during the XQP’s processing
of a request, the IRP is queued on the AQB queue. At that point,
the process is the only process allowed to deal with the file
system cache. This is done to interlock searching the cache for
a given buffer, to modify the description of what a buffer
contains, etc. This interlock is only held while the buffer
descriptors are modified, not while the buffer is read/written to
disk, or while any of the rest of the file system manipulates the
contents of the buffer.

The IRP in duestion may be the current request of an ACP
servicing the volume. In both the Files-11 ODS-1 and ODS-2 ACPs
there is a global IO PACKET which contains the address of the
current IRP. Look at the maps ([Fl1A]F11AACP.MAP and
[F11B]F11BACP.MAP) in the source fiche to determine the value of

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 94

LOCATING I/O REQUESTS 1 August 85
this symbol.
4. Por SCS devices, such as units of a disk class driver, you will

have to look further. A single device-unit may be servicing many
CDRPs concurrently, which do not necessarily complete in order.
CDRPs in progress are queued to the Class Driver Data Block
(CDDB). A CDRP that requires an unavailable SCS resource before
it can be serviced may be queued to any number of places: the
Response Descriptor Table (RDT), if a response ID is needed; the
Connection Descriptor Table, if a send credit or message buffer
is needed; the Port Descriptor Table, if nonpaged pool is needed.
[others TBS]

To try to locate a process’s CDRPs, type one of the following
sets of SDA commands.

SDA> ! Under V3

SDA> READ SYSS$SSYSTEM:SYSDEF.STB

SDA> READ SYSSSYSTEM:SCSDEF.STB

SDA> SHOW DEVICE <device name>

SDA> DEFINE UCB = <UCB_address>.

SDA> DEFINE CDDBa@(<CRB_address>+CRB$LLAUXSTRUC)

SDA> EXAM CDDB+CDDB$L_CDRPQFL‘

SDA> ! Repeat next command til back at listhead

SDA> FORMAT @./TYP=CDRP

SDA> ! Examine RDT queue, at beginning of RDT

SDA> EXAM (@SCSSGL_RDT)—IB

! If this doesn’t contain its own address,

SDA> ! then repeat next command til back at listhead
SDA> FORMAT @./TYP=CDRP

SDA> ! Examine PDT queue

SDA> DEF PDT= @(UCB+UCBSL PDT)

SDA> EXAM PDT+PDT$L WAITQFL

SDA> ! If this doesn’t contain its own address,

SDa> ! then repeat next command til back at listhead
SDA> FORMAT @./TYP=CDRP

SDA> ! Examine CDT queues

SDA> DEF UCBSL CDT=B8

SDA> DEF CDT=@{UCB+UCBS$L CDT)

SDA> EXAM CD‘I'+CDT$L_WTQFL

SDA> ! If this doesn’t contain its own address,

SDA> ! then repeat next command til back at listhead
SDA> FORMAT @./TYP=CDRP

SDA> EXAM CDT+CDT$L_CRWAITQFL

SDA> ! If this doesn’t contain its own address,

SDA> ! then repeat next command til back at listhead
SDA> FORMAT @./TYP=CDRP

SDA> ! Under V4

SDA> READ SYSS$SYSTEM:SYSDEF.STB

SDA> READ SYS$SYSTEM:SCSDEF.STB

SDA> ! SHOW DEVICE displays CDDB CDRP queue
SDA> SHOW DEVICE <device name>

VAX/VMS Troubleshooting *INTERNAL USE ONLY* ‘Page 95
LOCATING I,/0 REQUESTS 1 August 85

SDA> DEFINE UCB = <UCB_address>

SDA> !

SDA> ! Examine RDT queue, at beginning of RDT

SDA> EXAM @SCSSGL_RDT ,

SDA> ! If this doesn’t contain its own address,

SDA> ! then repeat next command til back at listhead
SDA> FORMAT @./TYP=CDRP

SDA> ! Examine PDT queue

SDA) DEF PDT= @(UCB+UCBSL PDT)

SDA> EXAM PDT+PDTSL WAITQFL

SDA> ! If this doesn’t contain its own address,

SDA> ! then repeat next command til back at listhead
SDA> FORMAT @./TYP=CDRP

SDA> ! Examine CDT queues

SDA> DEF CDTE@(UCB+UCB$L_CDT)

SDA> EXAM CDT+CDT$L WAITQFL

SDA> ! If this doesn’t contain its own address,

SDA> ! then repeat next command til back at listhead
SDA> FORMAT @./TYP=CDRP

SDA> EXAM CDT+CDT$L__CRWAITQFL

SDA> ! If this doesn’t contain its own address,

SDA> ! then repeat next command til back at listhead
SDA> FORMAT @./TYP=CDRP

If you find CDRPs queued to the RDT, this may mean that SYSBOOT
parameter SCSRESPCNT is set too low. It could also mean that,
because of some other problem, previously issued SCS requests are
not completing. You may want to alter SCSRESPCNT and reboot the
system. If you find CDRPs queued to PDTSL WAITQFL, this means
that there isn’t enough nonpaged pool. Check with the DCL
command SHOW MEMORY, alter parameters as necessary, and reboot.
[more information TBS]

If the device is a V4 virtual terminal, VIA, look at the SHOW
DEVICE display to see whether it is connected. The second line
of the characteristics will include "det" if the virtual terminal
is disconnected from a physical terminal. Any pending IRPs to a
disconnected virtual terminal are queued to the virtual terminal
pending I/0 queue, at UCBSL IOQFL. If the virtual terminal is
connected to a physical terminal, UCBSL TL PHYUCB contains its
address, and I/0 requests are queued to the physical UCB.

If the device is a terminal device set to full duplex, the IRP
will not be queued to the usual UCB I/O pending queue. Instead,
the IRP will be pointed to by a terminal write packet (TWP). The
current write request is pointed to by UCBSL_TT WRTBUF; pending
write requests are queued to the UCB at UCBSL TT WFLINK.
UCBSL_TT WRTBUF is not cleared at I/O completion; it may,
therefore, contain a stale TWP address. If the write state
(TTYSV_ST WRITE) is set in the terminal state quadword
(UCBSQ TTSTATE), then the contents of UCB$L_TT WRTBUF are valid.
Type the following commands to examine these fields.

SDA> CTRL/Y

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
LOCATING I/O REQUESTS 1 Au

$ SPAWN

$ MACRO/OBJ=SYSSLOGIN:TTYDEF SYS$INPUT: -
§ + SYSSLIBRARY:LIB/LIB

~ S$TTYDEF GLOBAL

CTRL,Z

$ LO

END

$ CONT

SDa>
SDA>
SDA>
SDA>
SDA>
SDA>
SDA>
SDA>
SDA>

READ SYSSLOGIN:TTYDEF.OBJ

!If device is a V4 connected VTA, then

DEF UCB=@(<ucb_address>+UCBSL_TL PHYUCB)

! else, do next command

DEF UCB=<ucb address>

EXAM UCB+UCBSQ TT STATE

EVAL TTY$V_ST WRITE

!If TTY$V ST WRITE bit clear in UCB$Q TT STATE,
! then there are no write commands queued to

! the terminal, and you’re done

DEF TWP= @(<ucb_address> + UCBSL_TT WRTBUF)
!1See if this TWP is a broadcast or normal write
EXAM TWP+TTYSL WB IRP !if zero, then ignore
FORMAT @. ! else, format IRP
DEF TWP=@(<ucb address>+UCBSL_TT WFLINK)

EXAM TWP+TTYSL WB. IRP !if zero, then ignore
FORMAT @. ! else, format IRP
DEF TWP=Q@TWP 1flink to next TWP...

! Continue til back at listhead

Page 96
gust 85

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 97
MACHINE CHECKS 21 May 85

MACHINE CHECKS

A machine check is an exception reported when the cpu microcode
detects an internal error. Machine check errors are cpu-specific;
possible machine check errors include cache parity error, translation
buffer parity error, and cpu timeout. Almost all machine checks
represent potentially serious problems. Many machine checks are
caused by some type of hardware problem; some can be caused by errors
in user-written software or VMS.

The following external symptoms indicate that a system is incurring
machine checks

0 the error message SYSTEM-F-MCHECK

o the fatal bugcheck MACHINECHK

o a console halt code of 5, double error halt (or equivalent
message, depending on cpu type) '

o machine check entries in the error log

o non-zero CPU errors as displayed by the DCL command SHOW ERROR.

During machine check exceptions, the microcode logs information,
called the microcode machine check logout, on the interrupt stack.
The machine check logout identifies the type of machine check and
includes the contents of relevant cpu registers. The exact layout
and contents of the logout are cpu-specific. The generic microcode
machine check error logout is shown below. The byte count describes
the size of the cpu-specific information and does not include the PC,
the PSL, and the longword containing the byte count.

| 000000xx | byte count
/i XXXXXXXX | cpu-specific
000000xx bytes | . . . | machine check
\| xxxxxxxx | information
| i XKXXXXKXX i machine check PC
| xxxxxxxx | machine check PSL
stack growth + +

The microcode then vectors through the System Control Block (SCB)
vector at offset 4 to a VMS machine check exception service routine.
VMS sets the low order bit in the SCB vector, specifying that the
exception be serviced on the interrupt stack and at IPL 31. The VMS
machine check exception service routine is in the cpu-specific module
[SYSLOA]MCHECKxxx, which is loaded into nonpaged pool as part of a
cpu-specific image named SYSLOAxxx.EXE

See the subsection SYSLOAXXX.EXE in the section VIRTUAL ADDRESSES -
SYSTEM SPACE for more information on the mechanism for dispatching
into SYSLOAxxx.EXE and on the names of the SYSLOAxxx.EXE images.

VvMS first determines which type of machine check occurred from the

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 98
MACHINE CHECKS 21 May 85

machine check logout. Although VMS treats each type of machine check
somewhat differently, its general response is to log a machine check
error and increment EXESGL MCHKERRS. The DCL command SHOW ERROR
displays the contents of EXESGL MCHKERRS as CPU errors.

VMS then determines whether the error is recoverable or not.
Recoverability is minimally a function of two things: whether the
machine check exception was a fault or an abort and whether the
instruction is resumable. Whether an instruction is resumable or not
is a function of the microcode that implements it.

If the machine check is recoverable, VMS dismisses the exception,
resuming the thread of execution that incurred the machine check.

If the machine check is nonrecoverable and occurred in either of the
outer modes, VMS signals a machine check exception to that mode. 1If
the process has declared no condition handler for machine checks, the
last chance handler generates the following error message

SYSTEM-F-MCHECK, detected hardware error, PC=xxxXxXxXxxx, PSL=XXXXXXXX

If the machine check is nonrecoverable and occurred in kernel or exec
mode, VMS signals a fatal MACHINECHK bugcheck.

Typically, machine checks are caused by hardware faults, but they may
also occur as the result of software error. Follow the directions
below to analyze a MACHINECHK bugcheck. '

1. If you have the ERRORLOG.SYS file in use at the time of the
crash, use SYE to decode the machine check information. With V3,
specify S in response to SYE’s "OPTIONS" prompt and ,/CP in
response to the "DEVICE NAME" prompt. With V4, type the DCL
command ANALYZE/ERROR/INCL=MACHINE CHECK <file spec>.

2. If you don’t have ERRORLOG.SYS, you must decode the machine check
information yourself. 1If you don’t know the cpu type, type the
SDA command EXAMINE EXE$SGB CPUDATA to display the contents of the
processor ID register.” The high-order byte displayed is
processor type. If the high-order byte is a 1, the processor may
be a VAX-11/780 or a VAX-11/785. Bit 23 (decimal) of the
displayed longword specifies which processor type it is: for a
VAX-11/780 bit 23 is 0; for a VAX-11/785 bit 23 is 1. The
VAX-11/785 machine check logout is identical to that of the
VAX-11/780. See the table below to interpret the other processor
type values and to determine the corresponding machine check
error logout size. Note that a "VAX-11/725" is really a
VAX-11/730 cpu and that a VAX-11,/782 is two VAX-11,/780s.

EXE$GB_CPUDATA CPU TYPE HEX BYTE COUNT
1 VAX-11/780 & VAX-11,/785 28
2 VAX-11,/750 28
3 VAX-11,/730 c
4 VAX 8600 58

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 99

MACHINE CHECKS 21 May 85
7 MicroVAX I c
8 MicrovAxX II C
3. The summary parameter, the first longword of cpu-specific

information, is the key to an intelligent guess about whether the
problem is hardware related. Likely hardware problems are values
such as "translation buffer parity error fault", "cache parity
error fault", "control store parity fault", "read data substitute
fault", "microcode not supposed to get here abort". "Read
timeouts" are sometimes caused by software specifying erroneous
I/0 space addresses.

See section MACHINE CHECKS - <cpu type> for further information
on specific types of machine checks, or see below Additional
References for documentation on the cpu-specific microcode
machine check logout. Using the machine check logout
documentation and processor register layouts, decode the machine
check logout.

The PC displayed by the SDA SHOW CRASH command reflects machine
check exception processing rather than the location of the
machine check, and the PSL displayed has been altered by the
machine check exception. '

In the stack layout above, the machine check PC is the address of
the instruction whose [attempted] execution resulted in the
machine check exception. This is of particular interest if you
suspect a software-induced machine check. Identify in what
source module the PC is. See section VIRTUAL ADDRESSES. Often
examining instructions around the PC is helpful enough to
eliminate a microfiche search. Try the SDA command

SDA> EXAMINE/INSTRUCTION <machine check pc>-20;30

If you suspect a software problem, decipher the stack of the
access mode that incurred the machine check to trace control
flow. Decode the machine check PSL to get the current mode
field. Use the layout in the section RELATED REFERENCE MATERIAL
or the V4 SDA command EXAMINE/PSL. Then, enter the SDA command
SHOW STACK/<current mode>. See the section STACK PATTERNS.

Call Field Service about machine checks which seem to be hardware
related.

Hints And Kinks

1.

Note that for each V3 SDA COPY command used to copy the dump, the
SP will be 8 bytes greater than its actual value; that is, SDA
will show the SP pointing to a stack address 8 bytes higher than
it should. This V3 bug has been corrected in V4.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 100
MACHINE CHECKS 21 May 85

2. The VAX instruction set is sufficiently rich that most random
data can be interpreted as instructions. Most system code deals
with binary integer and character data. This means that if an
EXAMINE/INSTRUCTION display includes many packed decimal and/or
floating point instructions, you are probably examining a data
area or using a start address which is not an instruction
boundary.

One common error that results in a nonsensical display is to
examine instructions in the bugcheck overlay area. During a
crash, fatal bugcheck code and message text overlay resident
system image code, beginning one page before label BUGSFATAL, for
a length of about 12000 decimal or 3000 hex bytes.

3. When SDA examines the process current at the time of an interrupt
stack bugcheck, SDA assumes the bugcheck PC and PSL and all the
general registers are part of that process’s context and displays
them in response to the SHOW PROCESS/REGISTER command.

4. 1If you’re looking at a dump with more than one machine check
logout on the stack and the newest one doesn’t make sense,
examine the earlier ones for a clue about what the problem is.

Additional References

V3 VAX/VMS Internals and Data Structure Manual, Section 8.3, Machine
Check Mechanism

VAX/VMS Error Log Utility Reference Manual

VAX-11/750 Self Maintenance Diagnostic Guide booklet, for VAX-11/750
microcode machine check error logout and processor register layout.
Also, VAX-11/750 VAX Maintenance Handbook (pp. 267-269 of the 3,83
edition) for microcode machine check logout and processor registers
and (pp. 239 - 242 of the 3/83 edition) for a discussion of
evalutating the microcode logout. Also, see VMS module
[SYSLOA JMCHECK750.

VAX Architecture Standard, Rev. 7 (DEC Standard 032) p. 12-26, for
VAX-11/730 microcode machine check error logout. Also, see VMS
module [SYSLOA]MCHECK730.

MicroVAX I CPU Technical Description (pp. 2-62 through 2-66 of the
8/84 edition). Also, see VMS module [SYSLOA]JMCHECKUV1.

KA630-A CPU Module User’s Guide (pages 5-11 through 5-12 of the 4/53
edition). Also, see VMS module [SYSLOA]MCHECKUV2.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 101
MACHINE CHECKS -~ VAX-11/780 AND VAX-11,/785 11 June 85

MACHINE CHECKS - VAX-11,/780 AND VAX-11,/785

During machine check exceptions, the microcode 1logs information,
called the microcode machine check logout, on the interrupt stack.
The machine check logout identifies the type of machine check and
includes the contents of relevant cpu registers.

If another machine check occurs before the microcode has serviced the
first, the cpu is halted with a double error halt. You should see
the following halt message printed on the console terminal

?CPU DBLE-ERR HALT

The second error may occur before or during the time when the
microcode writes the machine check logout on the stack; therefore,
you must obtain the type of machine check and register contents from
ID bus temporaries and various internal registers rather than from
the stack. See section CPU HALTS - VAX-11/780 AND VAX-11,785 for
more information.

The microcode machine check logout follows

SUMMARY PARAMETER
CPU ERROR STATUS \
TRAPPED MICROPC \
VA/VIBA \
D REGISTER 28 hex bytes
TB ERR 0 /
TB ERR 1 /
SBI TIMEOUT ADDRESS /
PARITY /
SBI ERROR |/

00000028 |
I

— e 4

stack
growth MACHINE CHECK PC
MACHINE CHECK PSL

-+

+
T

N
T

The summary parameter, the first 1longword of cpu-specific
information, describes the type of machine check. Bytes 0 and 1 of
the summary parameter are stored by the machine check microcode. VMS
stores information into bytes 2 and 3 on certain kinds of errors.
The summary parameter layout follows

Byte 0 Error code (See the table below)

Byte 1 A non-zero value means there was a cpu timeout or cpu
error confirm pending at the time of the machine check

Byte 2 During control store parity errors and "microcode not
supposed to be here" errors, this contains the opcode
of the instruction executing at the time of error

Byte 3 During cache parity errors, this contains the cache
disable flag (l=group 0, 2=group 1)

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 102
MACHINE CHECKS - VAX-11,/780 AND VAX-11/785 11 June 85

Examine the summary parameter on the stack or in the error log entry,
locate its low order byte in the table below, and read the subsection
below on that error for more information. For a description of
general VMS machine check servicing, see section MACHINE CHECKS if
you haven’t already. See the VAX-11/780 Maintenance Handbook
reference listed in subsection Additional References for information
on decoding the rest of the microcode machine check logout.

In the table below "CP" refers to memory references explicitly
requested by microcode, and "IB" refers to memory reads generated by
the instruction buffer in the process of prefetching the instruction
stream. In the table below, a "fault" is an error that may be
retriable; an "abort" is an error that is not retriable.

Summary Parameter Error Code Values

Byte 0 Error Name
00 CP Read Timeout/Error Confirm Fault
02 CP Translation Buffer Parity Error Fault
03 CP Cache Parity Error Fault
05 CP Read Data Substitute Fault
0A IB Translation Buffer Parity Error Fault
oc IB Read Data Substitute Fault
0D IB Read Timeout/Error Confirm Fault
OF IB Cache Parity Error Fault
FO CP Read Timeout/Error Confirm Abort
Fl Control Store Parity Error Abort
F2 CP Translation Buffer Parity Error Abort
F3 CP Cache Parity Error Abort
F5 CP Read Data Substitute Abort
F6 Microcode not Supposed to Be Here Abort

Read Data Substitute Error

A read data substitute (RDS) error occurs when the processor is
performing a read or an interlocked read on the SBI and the memory
controller returns uncorrected read data. That is, a multiple-bit
error in memory contents occurs which cannot be corrected by the
memory controller’s error checking and correction logic. These
errors are never the result of software problems (except for the rare
possibility that a privileged user forces them through manipulation
of the memory controller registers). These errors can be caused by
hardware problems in memory array boards or in the memory controller.

A read data substitute error can be reported through either a machine
check or an interrupt. If the cpu attempts to use uncorrected read
data in instruction execution, a machine check occurs. If
instruction execution alters control flow so that uncorrected read
data in the instruction buffer is unused, an RDS interrupt occurs.
(See section CPU-SPECIFIC INTERRUPTS - VAX-11/780 AND VAX-11,/785 for
information on RDS and other cpu-specific interrupts.)

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 103
MACHINE CHECKS - VAX-11,/780 AND VAX-11,/785 11 June 85

In response to an RDS machine check, VMS increments EXESGL MEMERRS
and logs the read data substitute error in the error log. The DCL
command SHOW ERROR displays the contents of EXESGL MEMERRS as MEMORY
errors. The error log entry includes the memory controller
registers, one of which contains the physical address in error. The
error log entry is type HE, hard memory error. These error log entry.
types are in the V3 SYE display from the /ME qualifier or in the V4
display from ANALYZE/ERRORLOG/INCLUDE=MEMORY. The error log entry
also includes any previously unrecorded errors from all the other
memory controllers on the system.

Whenever VMS discovers an error on a particular memory controller, it
increments a counter, local to SYSLOA780, for that controller. The
counter records the number of corrected read data (CRD) and RDS
errors on that controller during the current fifteen-minute period.
When a particular controller has more than 3 CRD and RDS errors
within a fifteen-minute period, VMS disables CRD interrupts for that
controller for the remainder of the fifteen-minute period.

Once a minute, VMS scans all memory controllers for unreported CRD
errors so that (some) errors on controllers with disabled CRD
interrupts can still be logged. If, however, a particular controller
has more than than 6 CRD and RDS errors within fifteen-minute period,
any CRD errors it has during the remainder of the fifteen-minute
period are not logged. This prevents filling the error log with CRD
error entries. Every fifteen minutes all the counters are reset to
zero. :

To examine the array of these counters (which is post-indexed by
memory controller nexus number), type the following SDA commands
under VMS V4

SDA> EXAM EXESMCHK_ERRCNT
SDA> EXAM @.+10;10

After logging the memory error, VMS also logs a machine check,
increments EXESGL _MCHKERRS, and determines whether the read data
substitute error is recoverable. Because recovery from a read data
substitute error requires paging in a fresh copy of the virtual page,
recoverability is based on a number of factors: at what IPL the
memory reference was made, whether the error was a fault or an abort,
whether the page has a PFN database entry, whether the page had been
modified, whether the page is global, whether there was I/0 in
progress to the page, and whether the instruction is resumable.

If the RDS machine check is recoverable, VMS removes the page from
whatever working set 1list it is in and places it on the bad page
list. when VMS REIs from the machine check exception, the process
pagefaults attempting to execute the instruction that incurred the
RDS error. Pagefault servicing reads in a fresh copy of the virtual
page.

If the machine check is nonrecoverable and occurred in either of the
outer modes, VMS signals a machine check exception to that mode. If

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 104
MACHINE CHECKS - VAX-11,/780 AND VAX-11/785 11 June 85

the machine check is nonrecoverable and occurred in kernel or exec
mode, VMS signals a fatal MACHINECHK bugcheck. In all cases, the
microcode machine check logout is recorded in the error log entry.

To learn more about the read data substitute error, examine ' the
memory error log entry. Also, if you’re looking at a dump, you can
examine the contents of the VA/VIBA register in the stack to get the
approximate virtual address of the memory error. Then follow the
directions below in subsection Read Timeout or Error Confirm Error to
translate that virtual address into a physical address.

In the case of a double error halt, a second machine check occurs
before the first is serviced. Thus, there will be no error log
entries for the two errors. However, if one of the machine checks is
a read data substitute error, the physical address in error may still
be in the memory controller register (Configuration Register C for a
MS780C controller, Configuration Register C or D for a MS780E
controller) at the time of the halt.

Translation Buffer Parity Error

The translation buffer is a two-way set associative cache of page
table entries. The translation buffer on a VAX-11/780 contains 128
entries, half of which are reserved for system space page table
entries and half for process space page table entries. A VAX-11/785
translation buffer has 512 entries. Each of the entries contains a
tag field with address, parity, protection, modify status, and
validity information, and a data field with a page frame number and
parity information.

When a virtual address reference from a VAX-11/780 is translated to a
physical address, bits 9-13 of the virtual address are used to index
entries in the two groups of the translation buffer. Bit 31 selects
for system space page table entry or process space. Bits 14-30 (the
"tag field") of the page table entries whose contents are stored at
those entries are compared to those of the virtual address being
translated to determine if there is a translation buffer "hit" or
"miss". On a VAX-11,/785, bits 9-15 of the virtual address are index
field, and bits 16-30 of the address are tag field.

On a hit, the page frame number and protection information are
retrieved from the cache; on a miss, the microcode performs the
address translation and replaces one of the two entries with the
contents of the page table entry it accessed from memory. The system
cannot run with both groups of translation buffer disabled. Although
it is possible to disable a translation buffer group through console
commands, it is not possible to disable it from software running on
the VAX. Since translation buffer parity failures are generally
random, disabling half of the cache from the console is not a useful
workaround.

A translation buffer parity error occurs when the processor is

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 105
MACHINE CHECKS - VAX-11,780 AND VAX-11/785 11 June 85

translating a virtual address to resolve a virtual memory reference
and a parity error occurs on data read out of the translation buffer
or on the tag field. These errors are never the result of software
problems and can only be caused by hardware problems.

When this type of machine check occurs, VMS invalidates all entries
in the translation buffer, logs the translation buffer parity error
in the error log (with type MC, machine check), and increments
EXESGL_MCHKERRS. VMS then determines whether the error is
recoverable. Recoverability is based on whether the error is an
abort or a fault, and, if a fault, whether the instruction is
resumable.

If the machine check is nonrecoverable and occurred in either of the
outer modes, VMS signals a machine check exception to that mode. 1If
the machine check is nonrecoverable and occured in kernel or exec
mode, VMS signals a fatal MACHINECHK bugcheck. On a MACHINECHK
bugcheck, the microcode machine check 1logout is visible on the
interrupt stack. In all cases, the microcode machine check logout is
recorded in the error log entry.

Examine the contents of the TB ERR1 register on the stack or in the
error log entry. Bit 8 set means that there has been a parity error.
If any of bits 9-14 are set, there has been a tag parity error. Most .
of the tag parity logic is in the CAM board (M8220 on a VAX-11,/780,
M7462 on a VAX-11/785). 1If any of bits 15-20 are set, there has been
a data parity error. Most of the data parity logic is in the TBM
board (M8222 on a VAX-11/780, M7464 on a VAX-11/785).

Cache Parity Error

Cache is a two-way set associative buffer for the storage of memory
contents most likely to be accessed next. 1Its access time is
considerably shorter than that of main memory. Each of the two
groups of <cache memory locations contains 512 entries on a
VAX-11,/780. On a VAX-11/785, each group contains 2048 entries. Each
of the entries contains a tag field with address, parity, and
validity information and a data field with eight bytes of data and
eight bits of parity.

When a VAX-11,780 cpu references memory, bits 3-11 (the "index
field") of the 30-bit physical address are used to index entries in
the two groups of cache. Bits 12-29 (the "tag field") of the
physical addresses whose contents are stored at those entries are
compared to those of the address being referenced to determine
whether this is a cache "hit" or a cache "miss". On a VAX-11/785,
bits 3-13 of the physical address are index field, and bits 14-29 of
the address are tag field.

On a hit, the contents of the physical address are retrieved £from
cache; on a miss, one of the two entries is replaced with the
contents of the quadword containing the physical address being

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 106
MACHINE CHECKS - VAX-11/780 AND VAX-11,/785 11 June 85

referenced by the cpu. Each group of cache can be disabled
independently, and the system can run with both groups of cache
disabled.

A cache parity error occurs when the processor is performing a read
memory reference and a parity error is detected on either data read
out of the cache or on the tag field. These errors are never the
result of software problems (except for the rare possibility that a
privileged user forces them through manipulation of processor
registers). These errors can be caused by hardware problems.

When this type of machine check occurs, VMS determines whether there
have been three cache parity errors within the last 100 milleseconds.
If not, VMS restores the cache to its previous state of enables, logs
the cache parity error in the error 1log (with type MC, machine
check), increments EXESGL MCHKERRS, and determines whether the error
is recoverable. Recoverability is based on whether the error is an
abort or a fault and, if a fault, whether the instruction is
resumable. If there have been three cache parity errors within the
last 100 milleseconds, VMS determines which cache group is currently
in error, forces misses in both groups to cause replacement of all
entries, and enables replacements only in the cache group which
didn’t have the last error. This means that the last cache group to
have an error is disabled, even if previous errors occurred in the
other cache group. VMS records in byte 3 of the machine check
summary longword which group of cache, if either, it disabled.

Examine the contents of the PARITY register on the stack or in the
error log entry. Bit 15 set means that there has been a parity
error. If any of bits 6-13 is clear (note clear, not set!), there
has been a data parity error. Most of the cache parity logic is in
the CDM board (M8221 on a VAX-11,/780, M7463 on a VAX-11,/785). If any
of bits 0-5 is clear (!), there has been a tag parity error. Most of
the tag parity logic is in the CAM board (M8220 on a VAX-11,/780,
M7462 on a VAX-11,/785).

Control Store Parity Error

The basic microprogram of the VAX-11/780 is contained in a 4k 99-bit
PROM control store (PCS). The 99-bit control word contains 96 data
bits and 3 parity bits. The system also contains a 2K 99-bit
writable diagnostic control store (WCS) used for microdiagnostics and
updates to the microprogram in PCS and, optionally, another 2K 99-bit
writable control store for G and H floating point support and/or
customer-written microcode. When the system is powered up, the
console subsystem loads the writable control store from a file on the
console floppy. Micropc addresses between 0 and FFF select
microwords in PCS; micropc addresses between 1000 and 17FF select
microwords in WCS, and addresses 1800-1FFF select the optional
writable control store. G and H floating point support is between
1800 and 1BFF, if it is present.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 107
MACHINE CHECKS - VAX-11,/780 AND VAX-11,/785 11 June 85

The basic microprogram of the VAX-11,/785 is contained in a 512
microword PROM control store (PCS) and a 7.5K microword writable
control store (WCS).

Parity is checked on each microword read from PCS or WCS. A control
store parity error occurs when a parity error is detected on a
microword from PCS or WCS. These errors are never the result of
software problems and can only be caused by hardware problems in the
microstore boards.

When this type of machine check occurs, VMS records the opcode of the
instruction being executed in byte 2 of the machine check summary
longword.

VMS logs the control store parity error in the error log (with type
MC, machine check), increments EXE$GL MCHKERRS, and determines
whether to bugcheck based on the access mode in which the error
occurred. If the control store parity error machine check occurred
in either of the outer modes, VMS signals a machine check exception
to that mode. If the control store parity error machine check
occurred in kernel or exec mode, VMS signals a fatal MACHINECHK
bugcheck. On a MACHINECHK bugcheck, the microcode machine check
logout is visible on the stack. 1In all cases, the microcode machine
check logout is recorded in the error log entry.

Examine the TRAPPED MICROPC and CPU ERROR STATUS registers on the
stack or in the error log entry. Bit 15 in the CPU Error Status
register indicates that there has been a control store parity error.
Bits 12-14 indicate which group is in error. The parity checking
logic is part of the PCS board; this means that WCS parity errors can
result from hardware problems on the PCS board.

If you see this error, you might power down the LSI to cause the WCS
to be reloaded. Open the cpu cabinet and locate the LSI in the lower
left hand corner. Its leftmost switch, labeled DC ON/OFF is the
power switch. Toggling the switch will powerfail the LSI and the
VAX~-11/780 or VAX-11,785. If the system still incurs control store
parity errors after WCS has been reloaded, you might try replacing
the console floppy and reloading WCS from the new floppy in case a
floppy disk error has resulted in alterations to WCSxxx.PAT.

Microcode Not Supposed To Be Here

A microcode not supposed to be here error occurs when microcode
detects that it has arrived at an illegal microaddress. These errors
are never the result of software problems. These errors can be
caused by various hardware problems as well as simply a bad copy of
WCS from the floppy.

When this type of machine check occurs, VMS records the opcode of the
instruction being executed in byte 2 of the machine check summary
longword. The opcode might be useful information if it is the same

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 108
MACHINE CHECKS - VAX-11,/780 AND VAX-11,/785 11 June 85

opcode in most or all of these exceptions on a system incurring many
microcode not supposed to be here machine checks.

VMS then logs the microcode not supposed to be here error in the
error log (with type MC, machine check), increments EXE$GL MCHKERRS,
and determines whether to bugcheck based on the access mode in which
the error occurred. If the machine check is nonrecoverable and
occurred in either of the outer modes, VMS signals a machine check
exception to that mode. If the machine check is nonrecoverable and
occured in kernel or exec mode, VMS signals a fatal MACHINECHK
bugcheck. On a MACHINECHK bugcheck, the microcode machine check
logout is visible on the stack. In all cases, the microcode machine
check logout is recorded in the error log entry.

If you see this error, you might power down the LSI to cause the WCS
to be reloaded. Open the cpu cabinet and locate the LSI is on the
lower left hand corner. 1Its leftmost switch, labeled DC ON/OFF is
the power switch. Toggling the switch will powerfail the LSI and the
VAX-11,/780 or VAX-11/785. See if the system will run without machine
checks for a while before reloading any customer-written microcode.
If the the system still incurs these errors after WCS has been
reloaded, you might try replacing the console floppy and reloading
WCS in case a floppy disk error has resulted in alterations 'to
WCSxxx.PAT. Locate a known good console floppy, copy its WCSxxx.PAT
file to the console floppy, shut down the system, power it off, and
power it back on.

If the problem persists, there may be problems in the PCS or WCS
boards, the microsequencer logic, the clock board, the CIB board, or
the LSI subsystem.

Read Timeout Or Error Confirm Error

A read timeout error occurs when the cpu is performing a read or
interlocked read on the SBI and either there is no response to the
cpu’s command within 512 SBI cycles, the cpu bus control logic could
not gain access to the SBI, or the addressed nexus responded with
BUSY for 512 cycles. An SBI error confirm occurs when the cpu is
performing a read or interlocked read on the SBI, and the target
nexus responds with an error confirm because the command is in error.
Both read timeouts and error confirms can occur as the result of data

path action or instruction buffer prefetch.

These errors can be caused by software problems, for example, word
references to MASSBUS adapter or UNIBUS adapter registers, longword
references to UNIBUS address space, references to nonexistent
physical memory, refences to nonexistent adapter register space, or
page table corruption. A read timeout can also be caused by a
program which issues an incorrect $CRMPSC system service that does
PFN-mapping to a nonexistent PFN and which then references the
section. Hardware problems that can cause these errors include
problems in nexus, memory controllers, and the translation buffer.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 109
MACHINE CHECKS - VAX-11,/780 AND VAX-11/785 11 June 85

When this type of machine check occurs, VMS logs the error in the
error log (with type MC, machine check) and increments
EXESGL MCHKERRS. It then tests whether the PC of the machine check
and virtual address referenced match particular instructions in the
UBA interrupt service routines that access the BRRVR registers.
These instructions generate UNIBUS bus grants and obtain the vector
of the device making the bus request. A timeout on one of these
instructions is dismissed, to minimize the possibility that a device
hunghin interrupt sequence or a lost UNIBUS bus grant causes a system
crash.

If the machine check does not match the UBA interrupt service routine
test, VMS determines whether this is the second timeout or error
confirm within 10 milliseconds. If there have been two timeouts or
error confirms within 10 milliseconds, if the error is an abort, or
if the instruction is not resumable, VMS determines whether to
bugcheck based on the access mode in which the error occurred. If
the error occurred in supervisor or user mode, VMS signals a machine
check exception to that access mode. If the error occurred in kernel
or exec mode, VMS signals a fatal MACHINECHK bugcheck.

Examine the SBI Error Register on the stack or in the error log entry
to distinguish between read timeout and error confirm errors. Bit 6
is set if an instruction buffer requested cycle timed out. Bit 12 is
set if a cpu requested cycle timed out. Bit 3 of the SBI Error
Register is set if an instruction buffer requested cycle received an
error confirm to a command. Bit 8 of the register is set if a cpu
requested cycle received an error confirm to a command.

Read Timeout Error

If a timeout occurred, examine the contents of the SBI Timeout
Address (SBITA) on the stack or in the error log entry to determine
the address which caused the timeout. This address may give some
indication of the cause of the problem. The SBITA contents are a
physical SBI address, the address of a longword, and must be shifted
two bits to the left to get the physical address in byte form. Bits
31 and 30 of the SBITA indicate the access mode of the request. Bit
29 is the protection check bit. Bit 27 of the SBITA set to 1
indicates an I/0 space address. ’

Physical addresses below 20000000 (byte address) are memory
addresses. The address range above that is reserved for nexus
register space and UNIBUS space. If the converted SBITA address is
in I/O space, converting it to a particular nexus address may be
helpful.

The space for nexus 1 registers begins at 20002000; the space for
nexus 2, at 20004000; the space for nexus 3, 20006000; etc. There
are four address ranges reserved for UNIBUS space: the first UNIBUS
space begins at 20100000; the second, at 20140000; the third, at
20180000; and the fourth, at 201C0000.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 110
MACHINE CHECKS - VAX-11,/780 AND VAX-11/785 11 June 85

To determine what nexus are present on the running system, type the
following commands.

$ MC SYSGEN
SYSGEN> SHOW /ADAPTER
SYSGEN> EXIT

SYSGEN displays nexus numbers as decimal numbers.

To determine what nexus are present on a system represented by a
crash dump, examine and interpret the contents of the byte array
whose address is in EXESGL CONFREG. This array contains one byte of
adapter type code, indexed by nexus number. The adapter type codes
are defined by the SYSSLIBRARY:LIB.MLB macro S$NDTDEF. Display the
adapter type codes and the array contents with the following
commands .

SDA> CTRL/Y

S SPAWN

S LIBR/OUT=TT:/EXTRACT=$NDTDEF SYS$LIBRARY:LIB/MACRO
S LOGOUT

3 CONTINUE

SDA> EXAM @EXESGL CONFREG;@EXE$SGL NUMNEXUS

Error Confirm Error

If an error confirm occurred, examine the longword VA/VIBA on the
stack or in the error 1log entry to determine the virtual address
reference which caused the error confirm.

The VA, the Virtual Address register, contains the address of the
memory data referenced by the cpu which is to be read or written into
the cpu. The VA generally contains a virtual address which must be
translated to physical.

The VIBA, Virtual Instruction Buffer Address, contains the address of
the instruction stream data which is to be loaded into the
instruction buffer.

If you are analyzing a crash dump, you can translate the VA/VIBA
contents on the stack to a physical address. If the VA/VIBA contents
are a system space address, type the following SDA command to display
and format the PTE corresponding to that address

SDA> SHOW PAGE/SYSTEM <virtual address>;200

V3 SDA displays only entire process page tables. If the faulting
virtual address is in process space, first convert the faulting
virtual address to a virtual page number by issuing the following DCL
commands>

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 111
MACHINE CHECKS - VAX-11,/780 AND VAX-11/785 11 June 85

$ VPN = (%X<virtual address> .AND. $X3FFFFE00) / 512
$ SHOW SYMBOL VPN

Then select the SDA symbol POBR or P1BR, based on whether the address
is in PO or Pl space. Issue the SDA command

SDA> EXAM @<PxBR> + (4*<VEN>)
V4 SDA can display a range of process PTEs. Type the command
SDA> SHOW PROC/PAGE <virtual address>;200.

The low 21 bits of the page table entry are the page frame number
(PFN). Multiply the PFN by 200 hex (bytes per page) and add the low
order 9 bits of the virtual address. Type the following commands.

SDA> CTRL/Y

$ SPAWN

$ BOFF = (3%X<virtual address> .AND. $X000001FF)
$ LOGOUT

$ CONTINUE

SDA) DEF PHYS ADDRESS = <pfn>*200 + <BOFF>
SDA) EVAL PHYS ADDRESS

Hints And Kinks

1. If you are looking at a dump with more than one machine check
logout on the stack and the newest one makes no sense, examine
the earlier ones for a clue about what the problem is.

2. If a machine check occurs during the execution of kernel mode
code which has protected itself by declaring a "machine check
recovery block", VMS dismisses the exception without logging an
error or incrementing any counters. See the VAX/VMS Internals
and Data Structures reference below for more information.

3. The console block storage medium has an RT-11 file structure.
The RT-11 file structure implements three different record
formats: stream ASCII, formatted binary, and fixed-length
record. Under VMS you use the V3 FLX utility or the V4 EXCHANGE
utility to transfer files to and from the console.

Both FLX and EXCHANGE select a default record transfer mode based
on file extension type. For example, extensions of OBJ and BIN
default as EXCHANGE /RECORD=BINARY and FLX /FB transfer modes.

Occasionally the default based on file extension type is
inconsistent with the file’s record format. In particular,
CI780.BIN, the CI microcode; WCSxxx.PAT, the VAX-11/780
microcode; and PCS750.BIN, the VAX-11/750 microcode, will not be
copied correctly unless you override the default transfer mode.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 112
MACHINE CHECKS - VAX-11/780 AND VAX-11,/785 11 June 85

If you are not sure what the transfer mode should be, you can use
the EXCHANGE qualifier /RECORD FORMAT=STREAM or the FLX switch
/FA for all text files (e.g. command files). Use the EXCHANGE
qualifier /RECORD FORMAT=FIXED (or /TRANSFER MODE=BLOCK) or the
FLX switch /IM for all other files (binary files such as images,
microcode files, patch files). The VMS console contains no
formatted binary files, so you will never want
/RECORD_FORMAT=BINARY or FLX's /FB.

Additional References

VAX-11/780 VAX Maintenance Handbook (pp. 6-27 through 6-30 of the
12/78 edition, pp. 159-160 of the 8/82 edition), for VAX-11,/780
microcode machine check error logout. The processor registers
displayed as part of the stack are also documented there (pp. 3-26
through 3-48 in 12/78 edition, pp. 133-154 of the 8/82 edition).

VAX-11/780 VAX Maintenance Handbook (pp. 197-199 of the 8,82
edition) for a description of MS780C memory controller registers

VAX-11,780 Data Path Manual, Chapter 6, Machine Check
Abort /Fault/Halt.

VAX—ll/?SO TB/Cache/SBI Control Technical Description

V3 VAX/VMS Internals and Data Structures, Section 8.3.4, Machine
Check Recovery Blocks

VMS module [SYSLOA]MCHECK780.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 113
PGFIPLHI BUGCHECK 26 June 85

PGFIPLHI BUGCHECK

The PGFIPLHI bugcheck is signaled by MMGSPAGEFAULT, the exception
service routine for translation not valid faults (pagefaults). After
saving R5 and R4 on the stack, MMGSPAGEFAULT tests whether the
pagefault occurred either on the interrupt stack or at an IPL above
2, If either is true, MMGSPAGEFAULT signals this fatal bugcheck.

The PC displayed by the SDA SHOW CRASH command reflects the location
of the bugcheck rather than the location of the pagefault. The
location of the the pagefault can be obtained as described below.

When this bugcheck is signaled, the translation not wvalid exception
microcode has recorded on the stack the exception PC and PSL, the
faulting virtual address, and a longword with more information about
the pagefault.

Sometimes this bugcheck is due to a software fault in a rarely-taken
error path which erroneously touches nonvalid pages at high ipl.
Sometimes this bugcheck occurs when system software uses a data
structure field containing an address which has been corrupted by
some earlier problem.

SP: xxxxxxxx | saved R4

xxxxxxxx | saved RS

0000000x | exception parameter
xxxxxxxx | faulting address

| XXxxxxxx | exception PC
xxxxxxxx | exception PSL

stack growth + +
XxXxxxxxx | older ...
XXXxxxxx | ...stack contents

-~

1. Using the SP, locate the pagefault exception information.

2. The exception parameter contains 2 bits with additional
information about the pagefault. Bit 1 set to 1 means that the
fault occurred during the reference to the process page table
associated with the faulting virtual address. Bit 2 set to 1
means that the intended access was a modify or write. Bit 2
equal to 0 means the program’s intended access was a read.

3. The faulting address is a location in the page whose access
caused the pagefault. 1Identify in what source module it is or
what data structure. See section VIRTUAL ADDRESSES. Use bit 1
of the exception parameter to determine whether the PTE for this
address is invalid or whether the page that maps the page table
containing the PTE is invalid.

VAX/UMS Troubleshooting *INTERNAL USE ONLY* Page 114
PGFIPLHI BUGCHECK 26 June 85

4.

Sometimes additional useful information can be obtained by
examining the invalid PTE. If the faulting virtual address is in
system space, SDA formats the PTE if you issue the command

SDA> SHOW PAGE/SYSTEM <faulting address>;200

V3 SDA displays only entire process page tables. If the faulting
virtual address is in process space, first convert the faulting
virtual address to a virtual page number by issuing the following
DCL commands

$ VPN = (%X<faulting address> .AND. %¥X3FFFFE00) / 512
S SHOW SYMBOL VPN

Then select the SDA symbol POBR or P1BR, based on whether the
address is in PO or Pl space. Issue the SDA command

SDA> EXAM @<PxBR> + (4*<VPN>)

See the Internals and Data Structure Manual reference below for
information to enable you to decode .the PTE.

V4 SDA can display a range of process PTEs. Type the command -
SDA> SHOW PROC/PAGE <faulting address>;200.
The exception pc is the instruction whose attempted execution
resulted in the pagefault. Identify in what source module the PC
is. See section VIRTUAL ADDRESSES. Often examining instructions
around the PC is helpful enough to eliminate a microfiche search.
Try the SDA command
SDA> EXAMINE/INSTRUCTION <exception pc>-20;30

Decipher the current stack to trace control flow. See section
STACK PATTERNS.

Hints And Kinks

1.

Note that for each V3 SDA COPY command used to copy the dump, the
SP will be 8 bytes greater than its actual value; that is, SDA
will show the SP pointing to a stack address 8 bytes higher than
it should. This V3 bug has been corrected in V4.

The VAX instruction set is sufficiently rich that most random
data can be interpreted as instructions. Most system code deals
with binary integer and character data. This means that if an
EXAMINE/INSTRUCTION display includes many packed decimal and/or
floating point instructions, you are probably examining a data
area or using a start address which is not an instruction

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 115
PGFIPLHI BUGCHECK 26 June 85

boundary.

One common error that results in a nonsensical display is to
examine instructions in the bugcheck overlay area. During a
crash, fatal bugcheck code and message text overlay resident
system image code, beginning one page before label BUGSFATAL, for
a length of about 12000 decimal or 3000 hex bytes.

Additidnal References

V3 VAX/VMS Internals and Data Structure Manual, Section 15.1.2,

Initial Pager Action, and Chapter 14, Memory Management Data
Structures.

VAX Architure Standard (DEC sStandard 032) or VAX-11 Architecture
Reference Manual, Chapter 5, Memory Management

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 116
RELATED REFERENCE MATERIAL 7 May 84

RELATED REFERENCE MATERIAL

Call Frame Layout

b

+

CONDITION HANDLER ADDRESS

REGISTER MASK/CONTROL | SAVED PSW

| SAVED AP
SAVED FP
SAVED PC

SAVED REGISTERS SPECIFIED BY MASK...LOW NUMBERS
TO HIGHER REGISTER NUMBERS |

(0 TO 3 BYTES AS SPECIFIED BY SPA VALUE)

The register mask/control field is broken down as follows
33222 1
10987 6

|SPA|S|0| REGISTER MASK <11:05|

T
~ -

| SET IF CALLS; CLEARED IF CALLG
| 0-3 BYTES REQUIRED FOR LONGWORD STACK ALIGNMENT

PSL Layout

2 11
2 0 65

| 1 1Mz | | | | |/| IPL | PSW I

| | | |___ PREVIOUS ACCESS MODE

N CURRENT ACCESS MODE

|| —_____INTERRUPT STACK

[FIRST PART DONE
TRACE FAULT PENDING
COMPATIBILITY MODE

Additional References

VAX Architure Standard (DEC Standard 032) or VAX-11 Architecture
Reference Manual, Section 4.6 Procedure Call Instructions and
Section 6.2 Processor Status

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 117
RESOURCE WAITS 12 August 85

RESOURCE WAITS

A process in a resource wait is waiting to allocate some unavailable
resource or to acquire ownership of a mutex. 1In theory, a process is
placed in this scheduling state for a short time, until the resource
becomes available. Occasionally, however, because of some system
problem, a process remains in this state for a long enough time that
the user notices the lack of system response.

When a process is placed into any wait state, its context is saved
such that when it is placed back into execution, it repeats the code
thread which resulted in its wait. The PC and PSL saved in its
process header determine what code runs, at what access mode, and at
what IPL. For example, the saved PC for a process in PFW (pagefault
wait) is the address of the beginning of the instruction that
incurred the pagefault. Wwhen the process is placed back into
execution, the instruction is repeated. If all pages referenced by
the instruction are now valid, the instruction completes. If a page
referenced by the instruction is not valid, the process is placed
back into PFW with the same saved PC.

A process placed into resource wait becomes computable (or computable
outswapped) whenever an AST is queued to it and/or whenever system
code reports as available the resource the process is waiting for.
An enqueued AST cannot be delivered if the process is waiting at IPL
2 or if the process is waiting in a more privileged access mode than
that of the AST. (Also, an enqueued normal AST cannot be delivered
if AST delivery to that mode has been disabled or if there is already
an AST active in that mode.)

Careful specification of the wait PC and PSL simplifies delivery of
ASTs to a process whose main thread of execution has just placed it
into a wait: after the AST is delivered (if the wait access mode and
IPL permit), the REI that dismisses the AST interrupt results in
execution at the wait PC with the wait PSL. If the process should
still wait, it will, by executing the same code which caused it to
wait previously.

Because processes are frequently placed into resource wait in kernel
mode, sometimes at IPL 0 and sometimes at IPL 2, user attempts to
type CTRL/C, CTRL/Y, or CTRL/T often are in vain. CTRL/C, CTRL/Y,
and CTRL/T are implemented with supervisor or user mode ASTs; an
outer mode AST cannot be delivered to a process waiting in kernel
mode. Since SDA uses special kernel ASTs to examine the context of a
process on the running system, you cannot learn much with SDA about a
process waiting at IPL 2. (This is not an issue with a crashdump,
only the running system.) Furthermore, since process deletion is
implemented with ASTs, it is impossible to delete a process waiting
at IPL 2,

If you are dealing with a resource wait process on a running system,
ideally you would like to learn enough about the problem to take
whatever action might be possible to satisfy the process’s resource
wait. However, you might have to force a crash to learn the reason

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 118
RESOURCE WAITS 12 August 85

for the resource wait. Even if you can identify the reason for the
wait, you may be unable to do anything to satisfy it without shutting
down and rebooting the system.

There should be fewer IPL 2 MWAITS under V4 than under V3. If you
encounter one, you should determine whether it is a known problem
before trying to take the process out of its wait using any methods
indicated below. If the problem is not a known one, it might be
better to crash the system so that the problem can be investigated.

For a process in MWAIT, or resource wait, the software PCB field
PCBSL_EFWM contains either the system space address of a mutex or a
small positive integer which is a system resource . number.
Occasionally, this piece of information is sufficient for you to make
an intelligent guess about the problem; however, you often must also
know the process’s wait PC and other general registers, and you may
need to examine its kernel stack.

1. First, if you're 1looking at the running system, follow the
directions in section ACCESSING PROCESS CONTEXT WITH SDA to
examine the process’s PCB and, possibly, process header and
kernel stack. If you’re looking at a dump, use the SDA comman:
SHOW PROCESS/INDEX=<n>. :

2. If PCBSL EFWM contains a system space address, follow the
directions in subsection Mutex Wait below.

3. If PCBSL EFWM contains a small integer, use the table below to
translate that integer to a resource name and follow the
directions in the appropriate subsection below. Under V4, the
largest resource number defined is hex E. Under V3, it is hex C.
If PCBSL EFWM contains a number larger than the largest defined
resource number, then it has been corrupted. The Displayed Name
column indicates the process state name used by V4 SHOW SYSTEM
and SDA SHOW SUMMARY to describe that particular MWAIT state.

RESOURCE NAME DISPLAYED NAME HEX VALUE
SUBSECTION NAME
RSN$_ASTWAIT RWAST 1
RSN$ MAILBOX RWMBX 2
RSN$ NPDYNMEM RANPG 3
RSN$_PGFILE RWPFF 4
RSN$_PGDYNMEM RWPAG 5
RSN$_BRKTHRU ‘ RWBRK 6
RSN$_IACLOCK RWING 7
RSN$™ JQUOTA RWQUO 8
RSN$_LOCKID RWLCK 9
RSN$ SWPFILE RWSWP A
RSN$_MPLEMPTY RWMPE B
RSN$_MPWBUSY RWMPB c
RSN$_SCS RWSCS D
RSN$_CLUSTRAN RWCLU E

VAX/VMS Troubleshooting *INTERNAL USE ONLY*

RESOURCE WAITS

Page 119
12 August 85

Mutex Wait

If the process is waiting to acquire a mutex and continues to be in
that state for more than ten minutes, it is quite possible that the
process’s state will not change, that something is wrong with the
system. In such a case, probably the best thing to do is force a
system crash in order to find out what process(es) own(s) the mutex
and why it has not been released. See section 7.2.3 in the V3
Systems and Operations Guide for instructions on forcing a crash.

There is no simple way to determine which process(es) currently
own(s) the mutex. The mutex data structure specifies only how many
owner processes there are, and PCB$W MTXCNT specifies only how many

mutexes that particular process owns.
can only be inferred from following the thread of execution on

kernel stack. A well-behaved process does not leave kernel mode or

Which mutexes a process owns
its

lower IPL below 2 until it releases all mutexes it owns.

1.

First, examine the address pointed to by PCBSL EFWM, and confirm

that
one owner.

it is a mutex and that its owner count indicates at least
The SDA EXAMINE command , displays any known symbol
name associated with that address.

If SDA does not display a

symbol name, the address may be that of the mutex associated with

each line printer UCB.
addresses of the line printer UCBs.

Use the SHOW DEVICE LP command to get the
See the V3 VAX/VMS Internals

and Data Structure Manual, Section 2.3, for a list of V3 mutexes.
A list of V4 mutex names follows:

MUTEX NAME DATA . STRUCTURE(S)
LNMSAL MUTEX Logical Name Tables
IOC$SGL MUTEX 1/0 Data Base

EXE$GL_CEBMTX
EXE$GL_PGDYNMTX
EXE$GL_GSDMTX
EXE$GL_SHMGSMTX
EXE$GL_SHMMBMTX

Common Event Block List

Paged Dynamic Memory

Global Section Descriptor List

Shared Memory Global Section Descriptor List
Shared Memory Mailbox Descriptor Table

EXESGL_ENQMTX Enqueue/Dequeue Tables (unused)
EXESGL_ACLMTX Access Control Lists
CIASGL MUTEX CIA Queues of Suspected and Known Intruders

EXESGL_KFIMTX
UCBSL_LP_MUTEX

Known File Table (unused)
Line Printer Unit Control Block, 1 per UCB

A mutex data structure is one longword, with the owner count in
the low order word. A count of -1 (FFFF) indicates no owners; a
count of 0, one owner; etc. The high word has 1 bit defined,
MTXSV WRT, which indicates that some process has requested write
ownership of the mutex. If PCBSL EFWM is not the address of a
mutex, it has been corrupted. If you are looking at the running
system and you find that the owner count of the mutex is FFFF,
see if the MWAIT process is still in MWAIT. The process should
not remain in MWAIT once all owners release the mutex.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 120
RESOURCE WAITS 12 August 85

2. If the mutex is still owned, look through all the processes on
the system, setting SDA process index to each in turn, checking
for PCB$W_MTXCNT non-zero.

3. Each process you find that owns a mutex should still be in kernel
mode at IPL 2. If you are looking at a dump, you should be able
to decipher the process’s kernel stack, wusing sections STACK
PATTERNS - KERNEL MODE STACK and VIRTUAL ADDRESSES wherever
necessary. Following the kernel thread of execution, determine
whether the process owns the mutex for which the MWAIT process is
waiting. When you find the mutex owner, try to determine why it
hasn’t released the mutex and what’s happening in its process
context.

A process with PCBSW_MTXCNT non-zero which is not in kernel mode
indicates a problem, generally software. Try to find out from
the user what image(s) the process was running, whether there
were error messages, and any other background information that
might be helpful. 1In such a case, try to reproduce the problem
in the simplest way, crash the system, and report the problem
with background information, the dump, and the console output.

RWAST Resource Wait

RSN$_ASTWAIT is a general purpose resource wait used primarily when
the wait is expected to be satisfied by the delivery and/or
enqueueing of an AST to the process. That is, there is no "real"
system wide resource ASTWAIT, although there are places in the system
where RSN$ ASTWAIT is reported available.

One use of ASTWAIT is in EXESQIO and the routines it calls to do
quota checking, EXE$SNGLEQUOTA, EXESBUFQUOPRC, etc. EXESQIO uses
these routines to check whether a process is allowed any more
outstanding direct or buffered I/0 requests; driver-specified FDT
routines may also use these routines to see if a process has
sufficient byte count quota for a buffered I/O request. When the
process can have, for example, no more outstanding direct I/0
requests, EXESSNGLEQUOTA puts the process into RSN$ ASTWAIT wait
state. The process leaves the wait state whenever an AST is queued
to it. The process is placed back into execution again at
EXE$SNGLEQUOTA, which repeats its test for whether the process can
issue another direct I/0 request. In this particular ASTWAIT case,
when IOC$IOPOST post-processes a direct I/0 request for this process,
IOC$IOPOST increments the count of direct I/0 requests that the
process can issue and queues a special kernel AST to the process to
do process context post-processing. The AST enqueueing results in
making the process computable; EXESSNGLEQUOTA repeats the test for
whether the process can issue another direct I/0 request, and this
time the process can.

Similarly, FDT routines call EXE$BUFFRQUOTA to test for sufficient

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 121
RESOURCE WAITS 12 August 85

buffered I/0 byte count quota. If the process has insufficient
buffered I/O byte count quota, it may wait in RSN$ ASTWAIT wait state
(depending on the state of the process resource wait flag). When
IOCS$IOPOST post-processes a buffered I/0 request for the process, it
returns buffered I/0O byte count quota and queues a special kernel AST
to the process to do process context post-processing. The AST
enqueueing results in making the process computable; EXES$SBUFFRQUOTA
repeats the test for whether the process has sufficient buffered 1I,0
byte count, and this time the process may.

The byte count example above, though, is somewhat misleading in that
buffered I/0 byte count quota is a quota pooled among all the
processes in a job tree. The enqueueing of an AST to one subprocess
does not cause another subprocess in that job to become computable.
Hence, approximately once a second, RSN$ ASTWAIT is declared
available for all processes in the system waiting on it.

RSN$ ASTWAIT is also used by EXESDASSGN to wait for all the process’s
outstanding I/0 on a channel to complete. It is p0551b1e for a
process to be hung in RSN$ ASTWAIT when an I/O request is lost, when
a driver fails to complete an I/0 request.

Another V4 use of RSN$ ASTWAIT is forcing a . process about to be
deleted or suspended to wait until outstanding Files-11 XQP activity
completes.

In order to find out what a process in ASTWAIT is really waiting for,
you need to know the PC at which the process is waiting and possibly
the contents of other general registers and the process’s kernel
stack.

1. One common RSN$ ASTWAIT occurs in the quota checking routines
used by driver FDT routines, EXE$SNGLEQUOTA, EXESBUFFRQUOTA,
EXESBUFQUOPRC, and EXESMULTIQUOTA. First, check whether the
process is waiting in that code by comparing its PC to the result
of the following SDA command.

SDA> EVAL EXESMULTIQUOTA+32

2. If the process’s wait PC is the address of EXESMULTIQUOTA + 32,
then R2 contains the address of an insufficient process quota.
This quota field could be in the PCB or the JIB. If necessary,
re-format the PCB and JIB using the method in ACCESSING PROCESS
CONTEXT WITH ONLINE SDA to determine what resource the process is
waiting for. In many cases the process is waiting at IPL 2 and
thus cannot be deleted. If the process is part of a
multi-process job and the resource is one pooled among the job’s
processes (that is, a quota described by the JIB), you may be
able to take the process out of its wait by deleting another
process in the job.

If the process cannot be deleted and deleting other processes in
the job doesn’t work or is not possible, another possibility is
to alter the field containing the quota with DELTA and then issue

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 122
RESOURCE WAITS 12 August 85

the DCL command STOP/ID. The desired effect is to increase the
quota so that the process can complete whatever service it is
requesting, queue an AST to the process to change its state to
COM(0), and delete it before it goes into MWAIT again. This
risks crashing the system and should be done only as a last
resort. First, issue a SHOW SUMMARY SDA command to get the PID
(Internal PID, under V4) of your own process for use in the DELTA
deposit command below. Then, from an account with CMKRNL and
WORLD privileges, type the following commands.

$! The combination of 1;M and a pid in the deposit command
$! "enables" kernel mode operation and deposits.

$ RUN SYS$LIBRARY:DELTA.EXE

DELTA VX.y

1;M<c>

00000001

] tissue this if quota field is word
<pid>:<A(quota field)>/XxxXxXXX YYyyyyyy<cr>

EXIT<cr>

$ STOP /ID=<n>

Longer term solutions might include altering the |user’s
authorization file record to increase his quota, or perhaps
recoding the user’s application to use less of the resource.

If the process’s wait PC is not EXESMULTIQUOTA + 32, then see if
it is waiting in EXESDASSGN. Compare its PC to the result of the
following SDA command.

SDA> EVAL EXESDASSGN + 6D tfor V4
SDA> EVAL EXESDASSGN + 67 tfor V3

If the process is being waited by EXESDASSGN, then R6 contains
the address of the channel control block with outstanding I/O
request(s). Type the following SDA commands to determine to
which device-unit this channel is assigned.

SDA> READ SYS$SYSTEM:SYSDEF.STB !if you haven’t already

SDA> EXAM @R6+CCBSW_IOC !4 outstanding requests
SDA> DEF UCB=@(@R6+CCBSL_UCB) !UCB address
SDA> EXAM UCB + UCBSW UNIT !low word is unit #

SDA> EXAM @(UCB+UCBSL DDB)+DDBST NAME;8 !device name

See section LOCATING IRPS for information on 1locating the
outstanding IRP(s).

Under V4, if the process’s wait PC is not within EXESMULTIQUOTA
or EXESDASSGN, then see if delete or suspend code is forcing the
process to wait until Files-11 XQP activity completes. If the
process is being forced to wait under these circumstances, the
SDA SHOW PROCESS command displays the Process status as "DELPEN"
or "SUSPEN", and PCB$B DPC is greater than zero. To check for
this possibility and to format the XQP’s current and pending
requests, type the following SDA commands.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 123
RESOURCE WAITS 12 August 85

SDA> READ SYSSSYSTEM:SYSDEF.STB !if you haven’t already
SDA> SHOW PROCESS !get PCB address and see
SDA> | whether DELPEN or SUSPEN is set in PCBSL STS
SDA> EXAM <PCB_address>+PCB$B_DPC -

SDA> ! zero PCB$B DPC implies no XQP activity

SDA> EXAM CTL$GL_FllBXQP laddress of XQP QUEUE

SDA> EXAM @. !contents of XQP QUEUE
SDA> ! if XQP QUEUE doesn’t contain its own address,
SDAY ! then repeat next command til back at list head
SDA> FORMAT @. !format each pending IRP
SDA> FORMAT @(@CTLSGL F11BXQP+50) !format current IRP

5. If the process’s wait PC is not one of the possibilities listed
above, then determine at what offset in what module the wait PC
is, using the section VIRTUAL ADDRESSES.

Read the source code of that module, beginning at the wait PC.
The wait PC is always set up to repeat the attempted resource
allocation that placed the process into the resource wait. You
may need to examine the process’s general registers and/or kernel
mode stack to follow the code path that would occur were the
process to be placed into execution.

RWMBX Resource Wait

This resource wait means that a process is trying to write to a
mailbox that is full or has insufficient buffering space. A mailbox
is created with some amount of "space" for buffering messages that
have been written to the mailbox and not yet read. This quota is
specified as the BUFQUO argqument to $CREMBX system service. If that
argqument is omitted, its value defaults to the SYSBOOT parameter
DEFMBXBUFQUO.

If process resource wait mode is enabled, a process trying to write
to a full mailbox waits transparently at IPL 0 in the access mode
which issued the $QIO request until its write can complete. If wait
mode is disabled, the I/0 is completed immediately with the error
SS$_MBFULL. The resource wait mode flag can be toggled through DCL
command SET PROCESS/RESOURCE or system service $SETRWM. By default,
resource wait mode is enabled. Under V4, there is a new I/0 function
modifier, IO$M NORSWAIT, that allows a user to specify that a
particular write attempt should not wait, independent of the setting
of the process resource wait mode flag.

Resource wait RSN$ MAILBOX is usually caused by application error.
One possible error is that the reader process’s priority is lower
than that of the writers. Another possibility is that the reader
process does not read the mailbox often enough or completely enough.
One more possibility is that a single reader process also writes to

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 124
RESOURCE WAITS 12 August 85

the mailbox and is put into MWAIT when the mailbox is full, thus
deadlocking the application system.

A simple possible workaround is to specify a larger BUFQUO argument
to S$CREMBX or increase SYSBOOT parameter DEFMBXBUFQUO, although this
may just delay the onset of the problem. Another way to avoid the
problem is that the reader process always have an outstanding read on
the mailbox (without the modifier IO$M NOW). Another workaround is
that the reader process issue a setmode QIO request to ask for AST
notification of unsolicited messages placed into the mailbox and read
the mailbox whenever the AST is delivered. Another possibility is
that the writers (and perhaps the reader) disable resource wait mode.

If you want to determine which mailbox the process is trying to
write, type the following SDA commands.

SDA> SET PROCESS/INDEX=<pix>

SDA> ! get mailbox channel number

SDA> DEF MBCHAN = @(@AP+8) !read QIO channel number
SDA> READ SYS$SYSTEM:SYSDEF.STB !if you haven’t already
SDA> ! get mailbox UCB address

SDA> DEF MBUCB = @(@CTLS$GL_CCBBASE-MBCHAN+CCB$L UCB)
SDA> ! display unit

SDA> EVAL (@(MBUCB+UCBSW UNIT)@10)@-10

SDA> ! display device name

SDA> EXAM @(MBUCB+UCB$L_DDB)+DDBST NAME

If the process is waiting in user mode, the user can simply type the
DCL commands CTRL/Y and STOP. If, however, the user’s program has
disabled CTRL/Y recognition or is waiting in exec mode (as the result
of an RMS write to the mailbox), you must either delete the process
with the DCL. command STOP/ID or read messages from the mailbox to
unblock the process.

To read messages from the mailbox, first display the protection and
owner of the mailbox with the DCL command SHOW DEVICE/FULL. From an
account with CMKRNL privilege, set your UIC appropriately. Read a
message from the mailbox by issuing a DCL COPY command, specifying
the input file as the mailbox and the output file as TT:, SYS$SOUTPUT,
NLAO:, or a file. Convert the unit number of the mailbox to decimal
for the DCL commands.

FWNPG Resource Wait

This resource wait means that a process is waiting to acquire
nonpaged pool. This resource wait should be rare under normal
circumstances, since nonpaged pool is expanded upon demand up to a
SYSBOOT parameter specified limit.

On the running system, type the following DCL commands to find out
whether any of the nonpaged pool lists has approached its limit. If
so, consider altering your parameters and rebooting.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 125
RESOURCE WAITS 12 August 85

$ MC SYSGEN

SYSGEN> USE ACTIVE

SYSGEN> SHOW NPAGEVIR !expanded limit variable list
SYSGEN> SHOW LRPCOUNTV !expanded limit LRP list
SYSGEN> SHOW IRPCOUNTV !expanded limit IRP list
SYSGEN> SHOW SRPCOUNTV !expanded limit SPR list
SYSGEN> SHOW WSMAX !largest working set size
SYSGEN> SHOW FREELIM !minimum free list size
SYSGEN> SHOW MPW LOWLIMIT !minimum mod. list size
SYSGEN> EXIT

_§ SHOW MEMORY/POOL/PHYSICAL

If the lists have not expanded to their limits (if the Total column
is 1less than the relevant parameter value), one possible reason is
that there is not enough free physical memory left in the system.
Before expanding nonpaged pool, the system checks to see that there
will be enough pages left on the free list for the sum of the largest
working set (parameter WSMAX), the free list low limit (parameter
FREELIM), and the modified page low limit (parameter MPW LOLIMIT).
SHOW MEMORY displays the number of pages currently on the free list
as Physical Memory Usage (Free column). If the free 1list is not
sufficiently large, VMS does not expand nonpaged pool and prints the
following message on the console terminal.
SYSTEM-W-POOLEXPF, Pool expansion failure

It is also possible that a process is in resource wait because it is
asking for a piece of pool larger than the largest piece available.
SHOW MEMORY displays the largest piece free in the Largest column.
The process’s Rl may contain the number of bytes of pool requested,
depending on which system code tried to allocate pool.

Under V3, a process waits for this resource in kernel mode. Under
V4, a process may wait for RSN$ NPDYNMEM in kernel mode or in the
access mode from which it called a system service that tried to
allocate pool. The process may or may not be deletable, depending on
the IPL at which it waits.

If you’re looking at a crashdump, type the following SDA commands.
to compute and display the number of free pages that must be
available for VMS to expand pool

SDA> !compute # bytes variable list can be expanded

SDA) EVAL @MMGSGL_NPAGEDYN+@SGN$GL NPAGEVIR-@MMGSGL NPAGNEXT
SDA> !compute # bytes LRP list can be expanded

SDA) DEF LRPV=@QIOCSGL LRPSPLIT+(@SGN$GL LRPCNTV*@IOCSGL , LRPSIZE)
SDA> EVAL LRPV-@MMGSGL LRPNEXT

SDA> !compute # bytes IRP list can be expanded

SDA) DEF IRPV=@EXESGL SPLITADR+(@SGN$GL IRPCNTV*AQ)

SDA) EVAL IRPV—@MMG$GL IRPNEXT

SDA> !compute # bytes SRP list can be expanded

SDA) DEF SRPV=QIOCSGL SRPSPLIT*(@SGN$GL SRPCNTV*@SGNSGL , SRPSIZE)
SDA) EVAL SRPV-@MMG$GL SRPNEXT

SDA> !evaluate whether expansion is possible

SDA> DEF MEM_NEEDR@SGNSGL_MAXWSCNT+@SGN$GL_FREELIM

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 126
RESOURCE WAITS 12 August 85

SDA> DEF MEM NEED=MEM NEED+((@MPW$W LOLIM@10)e-10)

SDA> EVAL MEM NEED Tdisplay pages of memory required

SDA> EXAM SCHSGL FREECNT !number of pages on free list
SBA> ! MEM NEED must be less than SCH$GL FREECNT for expansion

FWPFF Resource Wait

Although this resource name is defined, it is not used by any code in
V3 or V4. If a process is waiting for this resource, its PCBSL_EFWM
has been corrupted.

RWPAG Resource Wait

Although this resource name is defined in V3, no system code waits a
process on this resource. V4 does place processes into wait on this
resource.

This resource wait means that a process is waiting to acquire paged
pool. Under some circumstances the process waits in kernel mode;
under others it waits in the access mode from which it made a system
service request that resulted in a failure to allocate paged pool.
The allocation failure can happen because there is not enough paged
pool 1left or because there is not a large enough piece left. The.
process’s Rl may contain the number of bytes of pool requested,
depending on which system code tried to allocate pool. The process
may or may not be deletable, depending on the IPL at which it waits.

If you're examining the running system, type the DCL command SHOW
MEMORY/POOL to see the amount of unallocated paged pool (the Free
column) and the largest piece available (the Largest column).

If you’re looking at a crash dump, type the following SDA commands to
locate the free paged pool blocks.

SDA> EXAM EXESGL PAGED laddress of lst block

SDA> EXAM @.;8 isize of this block & address of next
SDA> EXAM @.;8 isize of this block & address of next
EXAM @.;8 i1size of this block & address of next

lcontinue til address of next is 0

' to be running out of paged pool, alter the
wmter ‘PAGEDYN and reboot.

FWBRK Resource Wait

This particular resource wait should never occur under V4. The
broadcast mechanism is rewritten and uses normal $QIOs, with an
optional timeout. If the timeout period expires before the I/0

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 127
RESOURCE WAITS 12 Auqust 85

request completes, a S$CANCEL is done. If you find a V4 process in
MWAIT on this resource, its PCBSL EFWM has been corrupted.

Under V3, this resource wait means that the process is waiting for a
broadcast to complete. Typically, this wait occurs because the user
has issued the DCL command REPLY/ALL and there is a bad terminal or
an unterminated EIA line. It can also happen if a terminal
controller has an input-only device which has not been set
nobroadcast.

A process waiting on RSN$ BRKTHRU waits in kernel mode at IPL 2.
This means that the process cannot be deleted and cannot be easily
examined through SDA.

It is possible, although awkward, to determine which terminal line(s)
is (are) at fault. It is possible, although risky, to end the
process’s wait.

A broadcast request is described by a broadcast data block (BRD),
which includes the pid of the requesting process, the broadcast
message, and a count of how many terminals have yet to write the
broadcast message. A terminal write request is described by a
terminal write packet (TWP). TWPs for broadcast writes have offset
TTYSL WB IRP equal to 0 and offset TTY$L WB RETADDR equal to the
address of EXESBRDCSTCOM. A TWP corresponding to a partlcular
broadcast request contains the address of the broadcast message in
the BRD (that is, offset TTYSL WB NEXT points into the BRD).

In order to determine the terminal(s) at fault, first locate the BRD
and then examine each terminal UCB to see whether this terminal has a
corresponding write request queued to it. In order to end the wait,
you must also locate the BRD.

Type the following commands.

SDA> CTRL/Y
S SPAWN
$ MACRO/OBJ=SYSSLOGIN:DEFS SYSSINPUT: -
$ + SYSSLIBRARY:LIB/LIB
“SBRDDEF GLOBAL
$TTYDEF GLOBAL

SbA> READ SYSSLOGIN:DEFS.OBJ

SDA> ! do following if you can read the process’s R7
SDAS DEF BRD = @R7 !define symbol

SDAS> FORMAT BRD/TYP=BRD !display BRD

SDA)

SDA> ! do following if you can’t read the process’s R7
SDA) DEF BRD = @IOC$GQ BRDCST !define symbol

SDA> !do til BRDSL PID matches that of mwait process
SDA> FORMAT BRD/TYP=BRD !display broadcast queue entry

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 128
RESOURCE WAITS 12 august 85

SDA> DEF BRD = @BRD!follow forward link to next BRD
SDA> land format it, til matching PID
SDA> !

SDR> !for BRD with matching pid...

SDA> ! BRDSL DATA is start of broadcast msg.

SDA> ! BRDSW REFC is # of terminals waited for
SDA> DEF BRDMSG = BRD + BRDSL DATA

SDA> !

SDA> !search the terminal database, looking at each UCB,
SDA> SHOW DEVICE !to see list of terminal names,
SDA> ! usually tta, ttb, txa, etc.
SDA> SHOW DEVICE <terminal name> l!e.g., tta

SDA> !for each UCB, e.g., tta0, ttal, etc.

SDA> DEF TWP= @(<ucb_address> + UCBSL_TT WRTBUF)

SDA> !see if this TWP is a broadcast

SDA> EXAM TWP+TTYSL WB_IRP !if zero, then a broadcast
SDA> !you might also look at queued TWPs

SDA> DEF TWP=@(<ucb address>+UCBSL_TT WFLINK)

SDA> EXAM TWP+TTYSL WB IRP !if zero, then a broadcast
SDA) DEF TWP=@TWP {flink to next TWP...
SDA) !

SDA> !for each TWP, compare TTYSL WB NEXT to BRDMSG
SDA) EXAM 'IWP+'1'I'Y$L WB_NEXT

SDA> !if equal, this is a terminal which hasn’t completed
SDA> ! the broadcast message

If you have a process stuck in RSN$ BRKTHRU that you want to unwait,
at the risk of crashing the system, use DELTA to clear the BRDSW REFC
field, and then issue a successful broadcast to several working
terminals so that RSN$ BRKTHRU is declared available for any
processes waiting for that resource. This should be sufficient to
make the MWAIT process computable again at a time when its BRDSW REFC
is zero. If the problem terminal(s) complete the broadcast at a
later time, there will be a nonfatal BRDMSGLOST bugcheck entry
written to the error log. First, issue a SHOW SUMMARY SDA command to
get the PID of your own process for use in the DELTA deposit command
below. Type the following commands from an account with CMKRNL and
OPER privileges. Replace A(BRDSW REFC) with the address you
determined using SDA.

$ MC SYSGEN 1so that nonfatal bugchecks don’t crash
SYSGEN> SET BUGCHECKFATAL 0
ACTIVE

ion of 1;M and a pid in the deposit command
" kernel mode operation and deposits.
BRARY : DELTA . EXE

’
<pid>:<A(BRDSW_REFC)>/xxxxyyyy xxxx0000<cr>
EXIT<Ccr>
$! pick 3 terminals known to work
$ REPL/TERM=(<terml>,<term2>,<term3>) "<some message>"

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 129
RESOURCE WAITS 12 August 85

RWIMG Resource Wait

This particular resource wait should never occur under V4. The
interlocking between the image activator and the INSTALL utility is
rewritten and uses the lock management system services. If a process
is waiting for this resource, its PCBSL_EFWM has been corrupted.

A V3 mechanism called the image activator lock synchronizes access to
the data structures involved in the activation of images made known
to the system through the INSTALL utility. The lock synchronizes the
activities of the INSTALL utility and its use of the image activator
system service with other processes’ image activations.

The image activator lock is similar to a mutex in that it allows one
and only one writer or multiple readers. Unlike a mutex, the image
activator lock can be used by the image activator system service,
which runs mostly in exec mode.

If a process is waiting for this resource, then examine the image
activator lock

v

SDA> EXAM MMG$GL_IACLOCK

1f the image activator lock is owned by a writer, MMGSGL IACLOCK
contains the address of the writing process’s software PCB. A
positive integer in MMGSGL_IACLOCK indicates how many reading
processes own the lock. A value of 0 indicates no readers and no
writer. A process which has locked MMGSGL IACLOCK has the flag bit
RND$V_IACLOCK set in CTL$GL_RUNDNFLG.

A process deadlocked in this resource wait has never been seen. This
information is included for completeness. If you find a V3 process
in this resource wait, crash the system and report the problem.

RWQUO Resource Wait

Although this resource name is defined, it is not used by any code in
V3 or v4. 1If you find a process in MWAIT on this resource, its
PCBSL_EFWM has been corrupted.

RWLCK Resource Wait

Although this resource name is defined, it is not used by any code in
V3 or V4. If a process is waiting for this resource, its PCBSL_EFWM
has been corrupted.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 130
RESOURCE WAITS ‘ 12 August 85

RWSWP Resource Wait

When a process is first created, a minimal swap file slot is
allocated for it. The system has a table of installed page and swap
files. It looks first in the swap files to allocate swap slots; if
there is not enough room, the system allocates a swap slot from a
page file with room. As the process pagefaults and its working set
grows, a larger swap slot is allocated. The process’s maximum swap
slot is limited by its working set quota. If a larger slot is not
available when the process’s working set size is being increased, the
process is waited on RSN$ SWPFILE in the access mode that incurred
the pagefault. The RSN$ SWPFILE wait state can mean that the system
is running out of swap space or that there is too much fragmentation
to allocate a swap slot.

If you see processes in this wait state, issue the DCL command SHOW
MEMORY/FILES/FULL to determine the state of your page and swap files.
The SHOW MEMORY/FILES/FULL output identifies swap files as "used
exclusively for swapping". You may be able to create and install an
additional swap file to remove the process(es) from this wait.

The SYSBOOT parameter SWPFILCNT is the maximum number of swap £files
you can install; the parameter PAGFILCNT, the maximum number of page
files. If you have fewer swap files than the value of SWPFILCNT, you
may install a new one. (Enlarging an existing one would solve your -
problem but not without a reboot of the system.) If you can’t install.

more swap files, then you may be able to install an additional page
file as a temporary measure rather than rebooting the system
immediately. Installation of either a page or swap file causes the
resource RSN$ SWPFILE to be declared available. From the SYSTEM
account or one set to a SYSTEM UIC, type the following DCL commands.

$ SHOW MEMORY/FILES/FULL
$ SET PROT=(SY:RWED,OW:RWED)/DEFAULT
$ MC SYSGEN
SYSGEN> USE ACTIVE
SHOW SWPFILCNT
m SHOW PAGFILCNT
1 specify a unique swap or page file name
SYSGEN> CREATE <file spec>/SIZE=<size>
SYSGEN> INSTALL <file specd>/SWAPFILE .
Tissue command below Instead for page file
NSTALL <file spec>/PAGEFILE

into this wait state in the access mode at which
In theory, therefore, a user could type CTRL/C or
STOP, to have his process become computable
aga: " any subsequent pagefault (except for pages paged
through the system working set 1list) causes the process to wait
again, from a different thread of execution. You should be able to
delete or suspend the process through DCL command. Suspending the
process may be a good alternative if there is only one very large
process that is in this state because the swap file is fragmented

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 131
RESOURCE WAITS 12 August 85

rather than almost full. When the system runs low on memory, the
process’s working set may be shrunk enough that it will fit its
allocated swap slot. If this happens, you can resume it and have the
user decrease his working set list size.

If you’re looking at a crash dump, type the following SDA commands to
see the state of the swap files.

SDA> READ SYS$SYSTEM:SYSDEF.STB

SDA> DEF ARRAY = @MMGSGL PAGSWPVC

SDA> EXAM SGN$GW_SWPFILCT !max # swap files

SDA> EXAM SGN$GW_PAGFILCT max # page files

SDA> ! repeat commands for sum of swap & page files

SDA> FORMAT @ARRAY {format 1 page/swap file block
SDA> DEF ARRAY=ARRAY+4

SDA> ! ignore block if its address is MMGSGL NULLPFL
SDA> ! PFLSL FREPAGCNT is # of free pages

RWMPE Resource Wait

When a process faults a page, the pagefault service routine,
MMGSPAGEFAULT, calls MMGSFREWSLE to find a working set list entry to
describe the page to be added to the process’s working set list. One
possible working set list entry is a process page table page that is
now inactive; that is, the page table page maps no valid pages. Such
a working list entry can be re-used. If, however, the page table
page still describes a page on the modified list, the modified page
must be written to its backing store before the working set list
entry used by the page table page can be released.

In such a case, the modified list high limit is temporarily set to
zero to force a flush, and the process is placed into resource wait
on RSN$ MPLEMPTY until its modified page has been written to its
backing store. The modified page writer (part of the Swapper)
declares RSN$ MPLEMPTY available when the modified page 1list is
emptied.

The modified page writer can fail to write the entire list if there
is insufficient page file or if a disk goes off line which contains a
file (page, swap, or section file) to which modified pages are being
written. If the modified page list grows above the SYSBOOT parameter
MPW WAITLIMIT, other processes may go into RSN$ MPWBUSY waits.

A process is placed into this wait state in the access mode at which
it pagefaulted. 1In theory, therefore, a user could type CTRL/C or
CTRL/Y, followed by STOP, to have his process become computable
again. If the process pagefaults again, the process may be waited
again, from a different thread of execution. However, if the
process’s modified page has already been written to its backing store
or if the process faults a page which is paged through the system
working set 1list, the process won’t go into this wait again. You
should be able to delete the process through DCL command.

[—

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 132
RESOURCE WAITS 12 August 85

FKWMPB Resource Wait

A process which faults a modified page out of its working set is
placed into this wait if the modified page list contains more pages
than the SYSBOOT parameter MPW WAITLIMIT. Typically, this resource
wait is noticeable only on systems with insufficient page file space
or incorrect parameter settings. That is, if the Swapper process
cannot write the modified page list because there is insufficient
space in the page file(s), the list continues to grow. When it
reaches MPW WAITLIMIT, processes are placed into RSN MPWBUSY
resource wait. Modified page writing is triggered when the modified

" page list reaches the size of MPW HILIMIT. Therefore, MPW WAITLIMIT
should never be less than the parameter MPW HILIMIT. If it is, the
system is likely to deadlock. This resource wait may also be
noticeable on systems with compute bound realtime processes which
block the Swapper process.

A process is placed into this wait state in the access mode at which
it pagefaulted. In theory, therefore, a user could type CTRL/C or
CTRL/Y, followed by STOP, to have his process become computable
again. However, any subsequent pagefault (except for pages paged
through the system working set 1list) causes the process to wait
again, from a different thread of execution.

You are very unlikely to see processes in this wait state on a
running system; that is, your own process is likely to be in the same
state. However, if you do, see section HANGS, subsection System
Hangs, the paragraph following the console message SYSTEM-W-PAGEFRAG,
for directions on creating and installing a new page file and
altering parameter MPW WAITLIMIT.

If you are looking at a crash dump, type the following SDA commands
to determine why processes were placed into RSN$ MPWBUSY wait.

SDA> EXAM SCH$GL MFYCNT !4 pages on mfy. list
SDA> EXAM MPWSGL WAITLIM IMPW WAITLIMIT
SDA> READ SYS$SYSTEM:SYSDEF.STB
SDA> DEF ARRAY=@MMGSGL PAGSWEVC+(4*(@SGNSGW_SWPFILCTE10)e-10)
SDA> EXAM SGNSGW PAGFILCT !max # page files
SDA> | repeat commands below for number of page files
SDA> FORMAT €ARRAY tformat 1 page file block
W DEF may-amw«t
,, sore block if its address is MMGSGL NULLPFL
FREPAGCNT is # of free pages

The V4 lock manager places a process into this wait when the lock
manager must communicate with its counterparts on other VAXcluster
nodes to obtain information about a particular lock resource.
Typically, the process has requested the SENQ[W] system service to
enqueue a new lock or convert an existing lock on a resource

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 133
RESOURCE WAITS 12 Auqust 85

"mastered” on another node. A resource that is mastered on a remote
node can be identified by the non-zero cluster system ID (CSID) in
its resource block. A process requesting the $GETLKI system service
to obtain lock information about a remote resource is also placed
into this wait.

The first node in a cluster to take out a lock on a resource and
create the resource is always master of the resource. For example,
the first node to open a file becomes the master of the resource that
represents that file. All other nodes in the cluster that want to
open the file or lock records in the file must communicate with the
master node.

When a process queues a lock at the root level of a resource, the
local lock manager must first determine if a master already exists
for the resource by sending a message to the resource "directory”
node, which is determined by a hash algorithm. While the process
waits for a reply from the directory node, it waits on resource
RSN$ SCS. If that resource has been mastered on another node, the
local lock manager must communicate with the master node and places
the process into a resource wait on RSN$ SCS until the master node
replies.

This wait happens frequently during normal system operation for
relatively brief intervals, most often as the result of a S$SENQ[W]
request for a lock conversion and occasionally as the result of a
SGETLKI request.

If you are looking at a dump and happen to see one or more processes
in this state, most 1likely the state is merely an indication that
there is remote lock activity at the time the system crashed.

If a process has been in this wait state for more than a few
milliseconds, it may be an indiation of CI problems, an unstable
cluster, or loss of quorum. Check the consoles for messages that
might indicate cluster status and check the error logs and consoles
for information about possible CI problems.

A process waits on this resource in kernel mode at IPL 2. This means
that the process cannot be deleted, suspended, or easily examined
with SDA and that the user cannot CTRL/Y out of the wait.

RWCLU Resource Wait

A V4 process which issues any lock requests on any node of a cluster
in transition (that is, while a node is being added or removed) is
placed into this wait state while the cluster membership stabilizes.
This can be a relatively lengthy wait if node(s) are being removed
and locks must be remastered.

A process waits on this resource in kernel mode at IPL 2. This means
that the process cannot be deleted, suspended, or easily examined

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 134
RESOURCE WAITS 12 August 85

with SDA and that the user cannot CTRL/Y out of the wait.

[more information TBS]

Hints And Kinks

1.

Whenever you modify SYSBOOT parameters, remember to make AUTOGEN
aware of your changes so that they propagate across AUTOGENS.
Include any parameter changes you make in V3
SYS$SYSTEM:PARAMS.DAT or in V4 SYS$SYSTEM:MODPARAMS.DAT. See
Chapter 11 in the Guide to VAX/VMS System Management and Daily
Operations for further information on AUTOGEN.

Additional References

V3 VAX/VMS Internals and Data Structures Manual, Chapter 3, Dynamic

Memory Allocation; Chapter 10, Scheduling; Section 14.5, Data
Structures that Describe the Page and Swap Files; Section 15.5.2,
Modified Page Writing; Section 19.5.4, Mailbox Driver

Guide to VAX/VMS Performance

VAX/VMS System Generation Utility Reference Manual

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 135
RESTART BUGCHECKS 27 June 85

RESTART BUGCHECKS

VAX cpus halt in response to various severe error conditions, halt
instructions, and console halt commands. The console (whether it is
implemented as a separate processor or as cpu microcode) prints an
error message and/or halt code on the console terminal. In the case
of a powerfail recovery, the message and/or halt code is printed
after power is restored.

The console’s actions following a halt generally depend on cpu type
and front panel switch settings. 1In no case will there be much, if
any, information about the error causing the halt in the errorlog
written by VAX/VMS. The console tests the auto restart switch. See
the section HALTS <cpu_type> for cpu-specific details on the restart
mechanism.

If auto restart is not enabled, the console prompts or reboots,
depending on the switch setting. If auto restart is enabled, the
console tests whether memory contents are valid. If they are, the
console attempts to locate the Restart Parameter Block (RPB). If the
console locates a valid RPB, it passes control to EXESRESTART (whose
physical address is contained in RPBSL RESTART) with information in
several general registers ~

R10 - PC at the time of the halt

Rll - PSL at the time of the halt

AP - code indicating reason for halt

SP - address of the end of the RPB page.

EXESRESTART is entered in kernel mode, at IPL 31, with the PSI<IS>
bit set, and with memory management disabled. It uses a temporary
stack at the end of the RPB. EXESRESTART turns on memory management,
using information saved in the RPB.

EXESRESTART's subsequent actions depend upon what kind of halt
occurred. If a powerfail recovery occurred and if system state was
saved completely prior to the powerfail, EXESRESTART resumes system
operations using information saved in the RPB.

If a powerfail recovery has occurred and system state was not saved
completely, EXESRESTART signals the fatal bugcheck STATENTSVD. This
bugcheck generally means that there was not enough time between the
powerfail interrupt grant and the total loss of power to the CPU for
the volatile processor and general registers to be saved. It can
also mean that through some hardware error, the system entered
powerfail recovery without having taken a powerfail interrupt.

There is another possible cause of the STATENTSVD bugcheck on a
VAX-11/780 or VAX-11/785. These systems have UNIBUS adapters which
can interrupt at decimal IPL 20, as the result of failing power on
the UNIBUS. VMS’s response to this interrupt is to remap the SPTEs
that mapped UNIBUS address space to prevent UNIBUS device drivers
from getting machine checks when they access UNIBUS address space.
If the UNIBUS adapter detects a pending powerfail before the cpu does

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 136
RESTART BUGCHECKS 27 June 85

AND if a UNIBUS device driver is currently running at or above IPL
20, then the UNIBUS adapter interrupt is not granted until the driver
lowers IPL or is done. If the driver remains at high IPL for too
long, there may be no power on the UNIBUS when the driver tries to
reference an address on the UNIBUS. This will result in a machine
check exception. The machine check exception service routine runs at
IPL 31 and thus blocks the cpu powerfail interrupt. This can result
in a failure to enter the cpu powerfail interrupt service routine
with sufficient time to save volatile system state. The subsequent
restart results in the bugcheck STATENTSVD.

" After any kind of halt other than powerfail recovery, EXESRESTART
crashes the system to provide information that might be useful in
troubleshooting the halt and to preserve pending error log messages.
(when the system is rebooted, SYSINIT will cause them to be written
to the error log.) EXESRESTART signals a bugcheck specific to the
type of halt. If the code in AP is unknown, EXESRESTART signals the
fatal bugcheck UNKRSTRT.

Under V3, the VAX-11,785 halt ?2CLOCK PHASE ERROR results in a
UNKRSTRT crash if auto-restart is enabled. If the AP contains hex F
(decimal 15) and this crash is from a VAX-11/785, see subsection
?CLOCK PHASE ERROR in the section HALTS - VAX-11/780 AND VAX-11,/78S.

The table below lists the various bugcheck names, the corresponding
decimal halt codes, and to which VAX cpus they apply. A "Y" in the
colum under a cpu type means that halt and bugcheck type are
possible on that cpu type; a blank means that the halt and bugcheck
type are not applicable. Note that a VAX-11/725 is really a
VAX-11/730 and that a VAX-11/782 is two VAX-11/780s connected through
shared MA780 memory. Cpu types UVl and UV2 in the table refer to
MicroVAX I and MicroVAX II.

The subsections below describe each halt further and suggest
approaches to analyzing the crashdump, if applicable. Read the
section HALTS <cpu type> for information on related hardware
problens.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 137

RESTART BUGCHECKS 27 June 85
8
Uu77776
, HEX vv3i5880
BUGCHECK NAME AP DESCRIPTION 1200050
UNKRSTRT 0,1, Unknown restart code YYYYYYY
2,511
IVLISTK 4 Invalid interrupt stack YYYYYYY
DBLERR 5 Double error halt YYYYYYY
HALT 6 Halt instruction YYYYYYY
ILLVEC 7 Illegal Vector code YYYYYY
NOUSRWCS 8 No user WCS for vector YYYY
ERRHALT 9 Error pending on halt YYY
CHMONIS A CHM on interrupt stack YYYYYYY
CHMVEC B CHM vector <1:0> .NE. 0 YYYY Y
SCBRDERR c SCB physical read error YYY
WCSCORR D WCS error correction failed Y
CPUCEASED E CPU ceased execution Y
OUTOFSYNC F Processor clocks out of synch Y
ACCVIOMCHK 10 Machine check accvio Y
ACCVIOKSTK 11 KSP accvio Y

IVLISTK Bugcheck

This halt means that an attempted cpu write reference to the
interrupt stack during interrupt or exception processing would have
resulted in a translation not valid or access violation exception.
There is no way to determine the SP value at the time of halt from
looking at the crashdump. The PC at the time of the halt is in RI10;
the PSL at the time of the halt is in R11l.

An IVLISTK bugcheck can result from software problems that corrupt
the stack pointer, overflow or underflow the interrupt stack, or
corrupt the System Page Table Entries (SPTEs) that map the interrupt
stack. This bugcheck can also occur simply because the interrupt
stack is too small.

1. Examine the pages allocated to the interrupt stack through the
SDA command

SDA> SHOW STACK @EXESGL_INTSTKLM H @EXE$GL_INTSTK
If the low address end of the interrupt stack contains several or
more longwords of zero, there is a high probability that the
stack did not overflow.

2. Examine the SPTEs that map the interrupt stack. Type the SDA
command

SDA> SHOW PAGE/SYSTEM @EXESGL INTSTKLIM : @EXESGL_INTSTK

SDA should display the page type as VALID and the protection as

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 138
RESTART BUGCHECKS 27 June 85

ERKW. If the page has been modified, there will be an M by the
protection. If the display of the lower SPTEs does not include
the M bit, those pages have not been modified, and, therefore,
the stack did not become invalid as the result of an overflow.

3. If you suspect an overflow, look for any repeated patterns that
might be footprints of nested or recurring exceptions,
particularly machine checks. Such repeating patterns generally
indicate hardware problems.

4. Try to decipher the interrupt stack using section STACK PATTERNS
’ — INTERRUPT STACK.

5. Determine the IPL at time of halt by examining Rll. Decode it as
a PSL using the layout in the section RELATED REFERENCE MATERIAL
or the V4 SDA command EXAMINE/PSL.

6. Locate the PC at the time of halt (RI0 contents) using section
VIRTUAL ADDRESSES. Try to determine what code was running, using
the PC and IPL. Check whether some thread might have been
running at too low an IPL to block interrupts it was causing if
you suspect an overflow. If you can identify the most recent
thread that ran on the interrupt stack, read its code carefully
looking for errors that may have resulted in stack pointer
corruption or stack underflow.

7. If you suspect that the interrupt stack did overflow, a
[temporary] workaround may be to reboot VMS with an increased
SYSBOOT parameter INTSTKPAGES. You may wish to check the SPTE of
the 1lowest interrupt stack page during system operation, to see
whether the page has been modified, as in item 2 above. If the
lowest stack page remains unmodified during heavy operations, it
is likely that INTSTKPAGES is large enough

8. Read the section HALTS - <cpu_type> for information on disabling
auto-restart and/or examining the SP and any other destroyed
registers from the time of the halt in case this halt occurs
again and for information on possible hardware problems.

that while the cpu was trying to write the microcode
logout onto the stack, another machine check occurred.
sh< is an indication of hardware problems.

ng & crashdump from a double error halt is unlikely to be
useful. The needed information is in processor registers which have
been overwritten. See the section HALTS - <cpu_type> for information
on disabling auto-restart and/or examining the processor registers at
the time of halt in case this halt occurs again and for information
on possible hardware problems.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 139
RESTART BUGCHECKS 27 June 85

Look carefully at any error log entries from before and at the time
of halt to see whether there are any related unexpected errors, for
example, machine checks, bus errors, memory errors.

HALT Bugcheck

This halt may mean that some kernel mode code halted. (The HALT
instruction can only be executed from kernel mode.) The various HALTS
throughout VMS code are executed under extreme circumstances where no

" recovery is possible. Also, sometimes erroneous transfers of control
or overwriting of code can cause the cpu to execute a byte of zero as
a HALT instruction.

If this halt is the result of a software error, the crashdump
contains useful information.

1. Determine the address of the HALT instruction and examine that
code with the following SDA commands

SDA> EVAL @R10-1

SDA> EVAL BUGSFATAL
SDA> EVAL BUGS$FATAL+2D50
SDA> EXAM/INST (@R10-1)

2. If the PC falls within the fatal bugcheck overlay (if it is
within the approximate range BUGSFATAL - hex 200 : BUGSFATAL +
hex 2D50), then the previous contents of that location have been
overwritten. Locate the PC in source code using section VIRTUAL
ADDRESSES to see whether there is a halt instruction in the
sources. If there is a halt in the source code, read it to
determine what anomaly caused the halt. If there is not a halt
in the source code, there may have been a hardware error or there
may have been a software problem that corrupted the code over
which the fatal bugcheck overlay was written.

3. If the PC does not fall within the fatal bugcheck overlay, and
the instruction you examined is not a halt, then possibly a
hardware error (cache or instruction decode, for example) caused
this problem. See the section HALTS - <cpu_type> for information
on disabling auto-restart and/or examining the SP and any other
destroyed. registers and for information on possible hardware

X &n not fall within the fatal bugcheck overlay, and
nstruction you examined is a halt, locate the PC using
on VIRTUAL ADDRESSES and try to determine whether code
deliberately halted or whether a previous error (such as software
corruption at that virtual address) caused this halt. Look at
the contents around the halt and try to determine whether they
make sense.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 140
RESTART BUGCHECKS 27 June 85

5. Decode the PSL at the time of the halt in Rll to determine
whether the system was running on a process kernel stack or the
interrupt stack. There is no way to determine from the crashdump
what the SP contained at the time of halt. Use the PSL layout in
the section RELATED REFERENCE MATERIAL or the V4 SDA command
EXAMINE/PSL.

6. If the system was running on the interrupt stack, examine the
stack with the SDA command

SDA> SHOW STACK @EXESGL INTSTK : @EXES$GL INTSTKLIM

Try to determine what was happening based on the PC at time of
halt and stack footprints. See section STACK PATTERNS -
INTERRUPT STACK.

7. 1If the system was running on a process’s kernel stack, use the
section KERNEL STACK LOCATIONS to determine the limits of the
stack. Then display it with SDA.

ILLVEC Bugcheck

This halt means that an interrupt or exception dispatch was attempted
through a System Control Block vector whose low two bits contain an-
illegal value, for example, binary 11. On some cpus, this halt can
occur if the vector’s low two bits are binary 10.

VMS software never deliberately sets the low two bits to binary 11 or
10. This halt might occur as the result of a previous software
error’s overwriting the System Control Block or memory errors. These
bits may have been set deliberately by a user through the console or
XDELTA or kernel mode code, in an attempt to determine through which
vector an unexpected interrupt or exception is occurring.

Examine the SCB in the crashdump to see if there is a vector with the
low two bits set. 1In an ILLVEC crashdump from a VAX-11/780 or
VAX-11/785, R10 should contain the offset into the SCB of the vector
that caused the problem. You can examine only this vector through
the SDA coemand

, SCB) + €R10

& not from a VAX-11/780 or VAX-11/785, type one of
_commands

\y ' EXAMINE @EXESGL_SCB : @SWPSGL BALBASE
SDAS SHOW STACK @EXESGL SCB : @SWPSGL BALBASE

If there is no vector with the low two bits containing binary 11 or
10, there may be a hardware problem. See the section HALTS -
<cpu_type> for information on disabling auto-restart and/or examining

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 141
RESTART BUGCHECKS 27 June 85

the SP and any other destroyed registers from the time of the halt
and for information on possible hardware problems.

NOUSRWCS Bugcheck

This halt means that an interrupt or exception dispatch was attempted
through a System Control Block vector whose low two bits were binary

- 10 and that no user writable control store (WCS) exists on the cpu.
Note that wuser WCS is only supported on the VAX-11,/780, VAX-11,/750,
and VAX-11/785.

VMS software never deliberately encodes the low two bits as binary
10. This halt might occur as the result of a previous software
error’s overwriting the System Control Block or memory errors.

Examine the SCB in the crashdump to see if you can locate a vector
with the low two bits equal to binary 10. Type one of the following
SDA commands.

SDA> EXAMINE @EXE$GL SCB : @SWPSGL BALBASE
SDA> SHOW STACK @EXESGL | SCB : @SWPSGL_BALBASE

If there is no such vector, hardware problems may be responsible.
See the section HALTS - <cpu type> for information: on possible
hardware problems. One very unlikely way that software error could
cause this problem is corruption of the register PR$ SCBB. To
confirm that PR$ SCBB contains its original value, examine “the SPTE
mapping the virtual address stored in EXE$GL SCB, and compare its PFN
to the contents of PR$ SCBB as displayed in the Process Registers
screen from SHOW CRASH. Type the following SDA commands

SDA> SHOW CRASH Ito see processor register display
SDA> EVAL <scbb>/200 !convert contents of SCBB to PFN
SDA> SHOW PAGE/SYSTEM @EXESGL_SCB;200 !to see PTE contents

CHMONIS Bugcheck

This halt means that while the system was running on the interrupt

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 142
RESTART BUGCHECKS 27 June 85

stack, an attempt was made to execute one of the change mode
instructions (CHMU, CHMS, CHME, or CHMK).

This halt might occur as the result of software error; for example,
some process context «code’s executing in system context, a
user-written driver’s erroneously requesting system services while
executing on the interrupt stack, erroneous transfer of control to
data or the middle of an instruction, etc.

The PC of the CHMx instruction is in the crashdump R10; the PSL at

~the time of halt is in the crashdump Rll. There is no way to
determine the SP value at the time of the crash from the dump. See
the section HALTS - <cpu type> for information on disabling
auto-restart and/or examining the SP and any other destroyed
registers from the time of the halt and for information on possible
hardware problems.

1. Determine the address of the CHMx instruction and examine that
code with the following SDA commands

SDA> EVAL @R10

SDA> EVAL BUGSFATAL - 200
SDA> EVAL BUGSFATAL+2DS0
SDA> EXAM/INST €R10-20;30

Most CHMK and CHME instructions are in the system service
vectors. See section SYSTEM SERVICE VECTORS for more information
on these vectors and their addresses.

2, If the PC falls within the fatal bugcheck overlay (if it is
within the approximate range BUGSFATAL - hex 200 : BUGSFATAL +
hex 2D50), then the previous contents of that location have been
overwritten, and the SDA commands above will not display the
contents at the time of the halt. Locate the PC in source code
using section VIRTUAL ADDRESSES to see whether there is a CHMx
instruction in the sources.

3. If there is not a CHMx in the source code, there may have been a
hardware error or there may have been a software problem that
corrupted the code over which the fatal bugcheck overlay was
written.

not fall within the fatal bugcheck overlay, and
n you examined is not a CHMx then possibly a
(cache or instruction decode, for example) caused
See the section HALTS - <cpu type> for information
o-restart and/or examining the SP and any other
registers and for information on possible hardware

errors.

5. If there is a CHMx in the source code, try to determine whether
this code was indeed intended to run on the interrupt stack. If
it is intended to run on the interrupt stack in system context,

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 143
RESTART BUGCHECKS 27 June 85

" the CHMx instruction is definitely in error.

6. If the code appears to be process context code, then try to
figure out why it is running on the interrupt stack. Examine the
pages allocated to the interrupt stack through the SDA command

SDA> SHOW STACK @EXESGL INTSTKLM : @EXESGL INTSTK

Try to decipher the interrupt stack using section STACK PATTERNS
-~ INTERRUPT STACK.

CHMVEC Bugcheck

This halt means that one of the four CHMx vectors in the System
Control Block (SCB) has the low order two bits set to something other
than binary 00.

VMS always encodes these bits as 00. This halt might occur as the
result of a previous software error’s overwriting the SCB or memory
errors.

The PC at the time of halt is in the crashdump R10; the PSL at the
time of the halt is in the crashdump Rll. There is no way to
determine the SP value at the time of the halt from the crashdump.
See the section HALTS - <cpu type> for information on disabling
auto-restart and/or examining the SP and other registers at the time
of the halt and for information on possible hardware problems.

Examine the SCB in the crashdump to see which, if any, CHMx vector
has non-zero low bits. Type the following SDA commands

SDA> SHOW STACK @EXESGL _SCB + 40 ;10

Under. normal circumstances, if no vector has been altered, SDA’s
symbolic display for those vectors should be EXESCMODKRNL,

EXE$CMODEXEC, EXESCMODSUPR, and EXESCMODUSER. (It is remotely
possible that on some systems the exception service routines for CHMK
and CHME are, respectively, EXE$SCMODKRNLX and EXE$CMODEXECX.) Any
other values, including values such as EXESCMODKRNL+1, indicate some

ikely way that software error could cause this problem is
of the register PR$ SCBB. To confirm that PR$ SCEB
ts oxfi inal value, examine the SPTE mapping the virtual

: n EXESGL SCB, and compare its PFN to the contents of
PR$SCEB as d:isplayed in the Process Registers screen from SHOW CRASH.
Type the following SDA commands

SDA> SHOW CRASH {to see processor register display
SDA> EVAL <scbb>/200 lconvert contents of SCBB to PFN
SDA> SHOW PAGE/SYSTEM @EXESGL SCB;200 !to see PTE contents

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 144
RESTART BUGCHECKS 27 June 85

SCBRDERR Bugcheck

This halt means that the cpu got an uncorrectable memory error trying
to read an SCB vector. Generally this halt is an indication of a
memory error or other hardware problem.

One very unlikely way that software error could cause this problem is

corruption of the register PR$ SCBB. To confirm that PR$ SCBB

contains its original value, examine the SPTE mapping the virtual

address stored in EXESGL SCB, and compare its PFN to the contents of

PR$SCBB as displayed in the Process Registers screen from SHOW CRASH.
" Type the following SDA commands

SDA> SHOW CRASH !to see processor register display
SDA> EVAL <scbb>/200 lconvert contents of SCBB to PFN
SDA) SHOW PAGE @EXE$GL SCB;200 !to see PTE contents
Look carefully at any error log entries from before and at the time

of halt to see whether there are any related unexpected errors, for
example, machine checks, bus errors, memory errors.

WCSCORR Bugcheck
(TBS]

CPUCEASED Bugcheck
(TBS]

mbsection 2CLOCK PHASE ERROR in section HAL'I‘S -
-11/785.

ACCVIOMCHK Bugcheck
(TBS]

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 145
RESTART BUGCHECKS 27 June 85

ACCVIOKSTK Bugcheck

[TBS]

Hints And Kinks

T 1.

For halts other than power failures, EXESRESTART uses a temporary
stack at the end of the page containing the Restart Parameter
Block when it bugchecks. As a result, SDA’s display in response
to SHOW STACK is not very informative about the state of the
stack at the time of the halt.

If the halt occurred on the kernel stack, see the section
LOCATING THE KERNEL STACK to determine the possibilities for its
low and high limits.

The interrupt stack high end is contained in EXESGL_INTSTK; its
low end in M$GL_INTS‘I'KLM. , :

When SDA processes the SHOW CRASH command, SDA outputs the PC and
PSL and the message "Remaining registers not available — wiped
out by console." Despite this, it is possible and useful to
examine the general registers. You can do this with the SDA
command

SDA> EXAM R<number>

See section HALTS - <cpu_type>, subsection Restart Mechanism, for
information on which general register contents are lost through
the restart mechanism.

Note that for each V3 SDA COPY command used to copy the dump, the
SP will be 8 bytes greater than its actual value; that is, SDA
will show the SP pointing to a stack address 8 bytes higher than
it should. This V3 bug has been corrected in V4.

'ecture Standard (DEC Standard 032), Section 12.7 Halts,
£ 11 System Bootstrapping and Console

MicroVAX I CPU Technical Description, Chapter 2, Programming

Interface.

[MicroVAX II] KA630-A CPU Module User’s Guide, Chapter 3, Booting and

Console Program Interface

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 146
SSRVEXCEPT BUGCHECK 10 July 85

SSRVEXCEPT BUGCHECK

The SSRVEXCEPT bugcheck is signaled by the default last chance
condition handlers for kernel mode and exec mode. That is, if
process—~context code has declared no other primary, secondary, or
call frame condition handler to deal with a particular exception
type, the last chance handler is invoked to bugcheck. In kernel
mode, this bugcheck is always fatal. In exec mode, this bugcheck is
fatal only if the SYSBOOT parameter BUGCHECKFATAL is 1; by default,
BUGCHECKFATAL is 0. '

" The PC displayed by the SDA SHOW CRASH command reflects the last
chance handler rather than the location of the exception. RO, R1,
AP, and FP in the SHOW CRASH display have been altered by the
exception dispatching code. The PC, RO, Rl, AP, and FP at the time
of the exception can be obtained as described below.

when this bugcheck is signaled, signal and mechanism arrays have
already been built on the current stack and are pointed to by the
condition handler argument list, also on the stack. The condition
handler argument list is pointed to by AP. The newest information on
the stack is a frame generated by the call to the last chance
handler.

| 00000000 | null condition handler
/ | xxxxxxxx | register save mask/PSW
SYSSCALL HANDL / | xxxxxxxx | saved AP
call frame AN xxxxxxxx | saved FP
\ | 80000014 | saved PC ~ SYS$SCALL HANDL+4
I I
AP: / 00000002 | argument count
cond. handler xxxxxxxx | mechanism array address
arglist \ xxxxxxxx | signal array address
/ 00000004 | argument count
/ xxxxxxxx | saved FP
mechanism array FFFFFFFD | depth of scan
\ xxxxxxxx | RO at exception
xxxxxxxx | Rl at exception

XXXRXXXX | flags

0000000x | argument count
XXXXXXXX | exception type

ces | exception parameters
xxxxxxxx | exception PC
xxxxxxxx | exception PSL

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 147
SSRVEXCEPT BUGCHECK 10 July 85

1. The FP register displayed by SHOW CRASH points to the frame
generated by SYSSCALL HANDL's call to the last chance handler.
The saved AP and saved FP in this call frame are the AP and FP at
the time the exception occurred. Typically, the saved AP
contains the address of the argument list with which the most
recent procedure was called. This saved FP usually points to a
frame which contains the address of the previous saved FP. 1If
the stack is intact, these saved FPs can be used to trace back
the sequence of calls that occurred in this process.

~ 2. Use the AP displayed by SHOW CRASH to obtain the addresses of the
signal and mechanism arrays.

3. Locate the mechanism array. Saved RO and saved Rl are the
registers’ values at the time the exception occurred.

4. skip 1 longword, the flags longword.

5. The next longword, the beginning of the signal array, contains an
arqument count, the number of longwords that follow. Use the
count to identify all entries in the signal array. The number of
exception parameters present is a function of exception type and
can be 0, 1, or 2 longwords.

6. The exception type is a status value, e.g., C (hex) or
SS$_ACCVIO. The DCL command '

$ EXIT %X<exception type>

writes the message text associated with the EXCEPTION TYPE status
value. The V4 SDA command

SDA> EVAL/CONDITION <exception type>

writes the message text associated with the exception type status
value.

Typically, the exception is one generated by "hardware" (or

microcode), for example, access violation. "Hardware" generated

exceptions are listed with a description of their associated

exception parameters in Section 10.1 of the VAX/VMS System

Services Reference Manual. See section EXCEPTIONS for
on. about the more common hardware exceptions.

PC in the signal array is the instruction whose
execution resulted in the unexpected exec or kernel
tion. Whether the PC points to the beginning of the
. or the end depends on whether the exception was a
‘end),” fault (beginning), or abort (beginning). The
reference above specifies whether each exception is a trap,
fault, or abort. Identify in what source module the PC is. See
section VIRTUAL ADDRESSES. Often examining instructions around
the PC is helpful enough to eliminate a microfiche search. Try
the SDA command

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 148
SSRVEXCEPT BUGCHECK 10 July 85

SDA> EXAMINE/INSTRUCTION <exception pc>-20;30

Figure out why the instruction generated an exception. For
example, if an access violation occurred, look at the operands to
see which access was in error.

8. Decipher the current stack to trace control flow. See section
STACK PATTERNS.

Hints And Kinks

1. Not all access violations are signaled by microcode. The
pagefault exception service routine, MMGSPAGEFAULT, may signal an
access violation if a process incurs a pagefault for a page in
another process’s process header.

2. Note that for each V3 SDA COPY command used to copy the dump, the
SP will be 8 bytes greater than its actual value; that is, SDA
will show the SP pointing to a stack address 8 bytes higher than
it should. This V3 bug has been corrected in V4.

3. The VAX instruction set is sufficiently rich that most random
data can be interpreted as instructions. Most system code deals
with binary integer and character data. This means that if an
EXAMINE/INSTRUCTION display includes many packed decimal and/or
floating point instructions, you are probably examining a data
area or using a start address which is not an instruction
boundary.

One common error that results in a nonsensical display is to
examine instructions in the bugcheck overlay area. During a
crash, fatal bugcheck code and message text overlay resident
system image code, beginning one page before label BUGS$FATAL, for
a length of about 12000 decimal or 3000 hex bytes.

f s and Data Structure Manual, Chapter 4, for
exception dispatching and details of exceéptions signaled by
t@ttware

VAX Architire Standard (DEC Standard 032) or VAX-11 Architecture
Reference Manual, Chapter 6, Exceptions and Interrupts

VAX/VMS System Services Reference Manual, Chapter 10,
Condition-Handling Services

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 149
STACK PATTERNS - 20 August 84

STACK PATTERNS

Tracing flow of control is often necessary to determine the history
of unexpected or erroneous system behavior. Whether the problem is a
crash or a hung process, you need to determine the sequence of events
that led to the current state. Normally, the best way to attempt
that is to examine the contents of the appropriate stack and identify
the "footprints" left on it by the thread(s) of execution which used
that stack. You identify the footpnnts to trace what code
routine(s) ran in that access mode.

" Some examples of footprints are the return PC following a JSB or
BSBB/W instruction, stack frames built by a CALLS/G instruction, and
information pushed on the stack for temporary storage. Some
footprints are easily identifiable patterns unique to particular
access modes; these are described in the following sections on
deciphering particular stacks. Other possible footprints are simple
patterns common to all access modes, such as the return PC resulting
from execution of a JSB or BSBB/W instruction. Patterns that simple
are not unique enough to identify easily other than through reading
the code which made them.

In general, you should start at the highest addresses, or oldest
information on the stack. This is not the only approach; sometimes
it is more expeditious to work backwards, from newer information to
older, particularly when there are nested call frames on the stack.
However, it is usually more reliable to trace a thread of execution
from its start than to infer earlier events.

A useful approximation is that once VMS is running, the processor
will be running in process context in user mode until some interrupt
occurs or until execution of an instruction results in an exception.
So, the question "how did the process or system change to this
stack?" is a good place to start when you’re examining inner access
mode stacks. You should usually be able to answer this question,
perhaps drawing inferences from the older stack contents and the PSL
and perhaps the PC at the time of crash. The next question is "what
happened in this access mode?". You should usually be able to answer
this by drawing inferences from the footprirnits on the stack.

On a well-behaved system, that the current mode in a process is exec
implies that tha kernel stack is empty; that the system is running in
lies that the interrupt stack is empty. There are
o this you may encounter: when you examine the
{ ‘the time of a fatal bugcheck from exec mode, its
;,vek ~contains footprints left by execution of the fatal
code; a process running in an outer mode may have Files-11
¢ saved on the XQP’s private kernel stack.

1. If you have already identified in which stack you are interested,
go on to item 4.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 150
STACK PATTERNS 20 August 84

2. If you are looking at a crashdump, determine what stack was
current at the time of the crash. The SDA command SHOW CRASH
displays the contents of the PSL from the crash. This indicates
the system-wide interrupt stack or the kernel or exec stack of
the current process. (The system cannot be crashed from a
process running in user or supervisor mode.) Decode the PSL using
the layout in the section RELATED REFERENCE MATERIAL or with the
V4 SDA command EXAMINE/PSL. If the system crashes on the
interrupt stack, the current process is frequently (but not
always) irrelevant to the crash.

- 3. If you are looking at a hung process on the current system, the
appropriate stack is usually the one for the process’s current
access mode, as determined from the saved PSL displayed by the
SDA command

SDA> SHOW PROCESS/INDEX=<x>/REGISTER

Decode the PSL using the layout in the section RELATED REFERENCE
MATERIAL or with the V4 SDA command EXAMINE/PSL.

4. See the section corresponding to the stack of interest:
STACK PATTERNS - EXEC MODE STACK .
STACK PATTERNS —~ INTERRUPT STACK
STACK PATTERNS - KERNEL MODE STACK

Hints And Kinks

1. Although "deciphering stacks" and "identifying virtual addresses"
are listed as single and separate steps, in practice, they are
usually repetitive and intertwined. For example, that a
particular longword can be interpreted as a particular address
should be confirmed in the context of what code was executing and
manipulating that longword. Usually this requires that some
piece of the stack be deciphered. Another example is that
identifying a particular footprint on the stack may require or
result in the identification of addresses within that footprint.

2. gach V3 SDA COPY command used to copy the dump, the
' bytes greater than its actual value; that is, sSDA
P pointing to a stack address 8 bytes higher than

8 V3 bug has been corrected in V4.

lky: you may find a stack whose contents make 1little or
G sense. Although VMS keeps the stacks longword aligned almost
all the time, you may be trying to examine an unaligned stack.
Try one or more of the following SDA commands to see if any
recognizable footprints or patterns emerge.

SDA> SHOW STACK <low_address-1>:<high address-1>

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 151
STACK PATTERNS 20 August 84

SDA> SHOW STACK <low_address-2>:<high address-2>
SDA> SHOW STACK <low_address-3>:<high address-3>

Additional References

VAX Architecture Standard (DEC Standard 032) or VAX-1l1l Architecture
Reference Manual, Chapter 6, Exceptions and Interrupts; Chapter 7,
Process Structure

V3 VAX/VMS Internals and Data Structures Manual, Section 1.3,
Hardware Implementation of Operating System Kernel

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 152
STACK PATTERNS ~ EXEC MODE STACK 6 July 85

STACK PATTERNS - EXEC MODE STACK

The system runs on the exec mode stack of the current process to
service CHME exceptions and to deliver exec mode ASTs. In practice,
most of the processes you see in exec mode are executing exec-mode
system services or RMS services.

Possible patterns that you may see on a exec stack are described

below. You may see these patterns more than once on the same stack,

and you may see more than one of them. Some patterns should not be

followed by other described patterns. Each pattern description
" includes any such restrictions.

1. Identify the initial reason for the exec mode switch wusing the
patterns below.

2. Account for as much of the stack as possible, using the patterns
below.

3. Read the relevant code and try to determine what happened based
on stack footprints, register contents, and data structure
alterations made by the code. Use the section VIRTUAL ADDRESSES
wherever appropriate.

Exec Mode Stack Patterns

1. One common pattern, most likely to be the highest (oldest) two
longwords on the stack, is an exception PSL and PC from the
system service vector area.

l
stack growth

xxxxxxxx | CHME exception PC
xxxxxxxx | CHME exception PSL

L
L

¢ ——

1f SDA’s symbolic interpretation of the hypothetical exception PC
is of the form Sys§<service name> + 6, then these two longwords
are a CHME exception PC and PSL, and the symbolic name shown is

: SDA’s symbolic interpretation is an offset other
stem service vector name, subtract 6 from the
termine to which system service vector, if any,
.tesponds, following the steps in the section

- :pﬁ'mtl is already executing in exec mode and an exec
mode system service is requested, you should see the frame from
the CALL to the system service vector at stack addresses higher
(older) than the CHME exception PC and PSL.

When you see a CHME exception PC and PSL on the exec stack, there

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 153
STACK PATTERNS - EXEC MODE STACK 6 July 85

will wusually be a change mode dispatcher call frame (described
below) at the next lower (newer) stack addresses. The change
mode dispatcher simulates a CALL to the real system service
procedure, which is usually a global EXE$<service name>, where
<service name> is from the SYS$<service name> global.

2. The change mode dispatcher builds "by hand" a 5 longword call
frame prior to entering a system service procedure. This call
frame should never be the oldest information on the exec stack.

| 00000000 | null condition handler
" | 00000000 | reg. save mask/PSW
| | xxxxxxxx | saved AP
| | xxxxxxxx | saved FP
| | A(SRVEXIT)| saved PC (in CMODSSDSP)

stack growth

The V3 address of SRVEXIT is 8000CFE6. The V4 address of SRVEXIT
is 8000FDCE. The saved AP is the address of the argument list
with which the system service was called. The saved FP,
typically a Pl address, is the address of the previous call
frame. ‘ :

3. In the case of change mode dispatching to a loadable exec mode
system service, whether user added or VMS supplied, there are two
extra longwords on the stack at addresses lower (newer) than the
change mode dispatcher call frame.

| XXXHARRK | address in Pl sys. ser. vecto
r page

| xxxxxxxx | return address in CMODSSDSP

|
| 00000000 | null condition handler
- | 00000000 | reg. save mask/PSW

| | xxxxxxxx | saved AP

| | xxxxxxxx | saved FP

| (A(SRVEXIT) | saved PC (in CMODSSDSP)
stack growth + + ~

The V3 address of SRVEXIT is 8000CFE6. The V3 return address in

is. 8000CEBA. The V3 address in Pl sys. ser. page
ithin the range CTL$A DISPVEC + 100 to CTLSA DISPVEC
‘7rmaoo to 7FFEALFF.

, ress: of SRVEXIT is 8000FDCE. The V4 return address in

M) 8P is 8000FCC7. The V4 address in Pl sys. ser. page
shwld tan within the range CTLSA DISPVEC + 100 to CTL$SA DISPVEC
+ 1FF or 7FFE6100 to 7FFE61FF.

4. One possible pattern results from an IPL 2 AST delivery interrupt
and dispatch to an exec mode AST procedure. The IPL 2 AST
delivery interrupt service routine REI’s to exec mode to deliver
the AST. This pattern is possible as the oldest exec stack

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 154
STACK PATTERNS - EXEC MODE STACK 6 July 85

contents and as intermediate exec stack contents. That is,
delivery of an exec mode AST is a reason for an access mode
switch to exec, and delivery of an exec mode AST is possible to a
process running in exec mode. This pattern includes the argument
list with which the AST is entered and the frame built by CALLing
the AST procedure. '

+
+

xxxxxxxx | 0 or a{condition handler)
XXXXXXXX | register save mask/PSW
xxxxxxxx | saved AP

XXxXxxxxx | saved FP

“‘ A(EXESASTRET) | saved PC
| xxxxxxxx | saved registers
stack growth + +
. / 00000005 | argument count
/ xxXxxxxxx | AST proc. argument
/ xxxxxxxx | saved RO
AST proc. arglist xxxxxxxx | saved Rl
\ xxxxxxxx | AST interrupt PC
\ xxxxxxxx | AST interrupt PSL

The V3 address of EXESASTRET is 80008AFA. The V4 address of
EXESASTRET is 80009ESE.

An exec mode AST should not be interrupted for delivery of
another exec mode AST. That is, you should not see this pattern
on an exec mode stack more than once.

Hints And Kinks

1. Occasionally you may find a stack whose contents make little or
no sense. Although VMS keeps the stacks longword aligned almost
all the time, you may be trying to examine an unaligned stack.
Try one or more of the following SDA commands to see if any

footprints or patterns emerge.

STACK <low_address-1>:<high address-1>
f STACK <low address-2>:<high address-2>
STACK <low address-3>:<high address-3>

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 155
STACK PATTERNS - EXEC MODE STACK 6 July 85
Additional References

V3 VAX/VMS Internals and Data Structures Manual, Chapter 9, System
Service Dispatching; Chapter 7, AST Delivery

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 156
STACK PATTERNS — INTERRUPT STACK 1 August 85

STACK PATTERNS - INTERRUPT STACK

The system switches to the interrupt stack to service all hardware
interrupts, to service all software interrupts above IPL 3, and to
service some serious exceptions such as machine check. In addition,
the system runs on the interrupt stack in the IPL 3 interrupt service
routine after it has taken the current process out of execution and
before it has placed a new process into execution.

Note that one interrupt stack thread of execution may be interrupted
~ by another higher priority interrupt. Because of this, you usually
should begin with the newer stack contents rather than older.

Because interrupts are asynchronous, because one interrupt may
interrupt another interrupt service routine, and because many System
Control Block vectors point to instructions that jump elsewhere in
the system, deciphering the interrupt stack is more difficult than
the kernel or exec stack.

1. 1If the stack contains more than just a PC and PSL, try to

- associate system space addresses it contains with a particular

exception or interrupt service routine (E/ISR). Look

particularly at contents newer than the interrupt PC and PSL, and

keep in mind that most E/ISRs begin by saving registers (commonly

RO through RS) on the stack prior to using them. You might try

to find the newest PC-PSL pair on the stack, then skip four to.
six longwords (saved registers), and then look for footprints.

The general idea is to try to find a footprint (for example, a
return PC following a JSB instruction) from the E/ISR on the
stack, rather than beginning with the bugcheck PC, which may be
in a routine called by another routine called by the E/ISR.
See the IPL Usage table below and the notes following it for
hints on determining E/ISR addresses. Use the section VIRTUAL
ADDRESSES to translate any addresses of interest to source module
names and offsets.

2. If you were unable to find a footprint from an E/ISR, try to
associate the bugcheck PC with a particular E/ISR. Use the
section VIRTUAL ADDRESSES to translate any addresses of interest
to source module names and offsets.

sociate an address with a particular interrupt or
ce routine, the PSL<IPL> may be helpful. Try to
with a particular E/ISR using the IPL USAGE
otes below. This may be difficult since many service
; IPL. Some service routines save the previous IPL
BC| ior to raising it. 1If all else fails, look for a
(a hex number between 4 and 1D) on the stack as a clue
to what interrupt may have occurred.

4. If you have identified the E/ISR, or if you have a candidate
E/ISR, read the E/ISR code and that of any routines it calls,
checking for footprints on the stack, data structure changes,

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 157

STACK PATTERNS - INTERRUPT STACK

1 August 85

register contents, etc. to corroborate or disprove your
hypothesis. Use the section VIRTUAL ADDRESSES
appropriate.

Interrupt Stack Priority Level Usage Table

HEX
IPL

ol
NFEFOTEEHUDAQAWPOWONO UVId WHFO

=
S w

=
oW

TYPE E/ISR SOURCE MODULE
illegal
unexp. interrupt
rescheduling SCHS$SRESCHED [SYS]SCHED
782 rescheduling MPSSRESCHED [MP JMPSCHED
IOPOST IOCSIOPOST [SYS]IOCIPOST
XDELTA request INISMASTERWAKE [SYS]INIT
782 rescheduling MPSSRESCHEDS [MP]MPSCHED
fork dispatch EXESFRKIPL6DSP ([SYS]FORKCNTRL
software timer EXESSWTIMINT [SYS] TIMESCHDL
fork dispatch EXESFRKIPLSDSP [SYS]FORKCNTRL
fork dispatch EXESFRKIPLIDSP [SYS]FORKCNTRL
fork dispatch EXESFRKIPL10DSP [SYS]FORKCNTRL
fork dispatch EXESFRKIPL11DSP [SYS]FORKCNTRL
console request EXESIPCONTROL [SYS]IPCONTROL
‘unused
unused

782 XDELTA request INISMASTERWAKE [SYS]INIT
unused

unused

unused

unused

device interrupts (BR4/SBIREQ4)

780, 785, 730 console devices

750, 8600, MicroVAX I, MicroVAX II console terminals
device interrupts (BR5/SBIREQS)

device interrupts (BR6/SBIREQ6)

uVAX interval timer EXESHWCKLINT [SYS] TIMESCHDL
device interrupts (BR7/SBIREQ7)

750, 8600 console block storage

interval timer EXESHWCKLINT [SYS] TIMESCHDL

fie interrupt
¢ interrupt
aj i EXESPOWERFAIL [SYS]POWERFAIL
ne check exc. EXESMCHK [SYSLOA | MCHECKxxx
invalid ksp exc. EXESKERSTKNV [SYS JEXCEPTION

wherever

NOTE(S)

-
o

PO =
-
r=y

WO & w
- % s~
O OO~

11

11
11

11

12
12
12
12
12

12,13

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 158
STACK PATTERNS - INTERRUPT STACK 1 Auqust 85

1.

NOTES on INTERRUPT PRIORITY LEVEL USAGE TABLE

Being on the interrupt stack at IPL 0 is an inconsistent state
that should be very short-lived. That is, if any interrupt or
exception occurs while the processor is in this state, the REI
from its service routine should result in a reserved operand
exception (on the interrupt stack) to which VMS’s normal reaction
is a fatal bugcheck.

The IPL 1 interrupt is currently unused. Any IPL 1 interrupt is
due to an error, most likely a hardware error. IPL can also be
raised to 1 as the result of executing a SVPCTX instruction from
IPL 0, as could happen through hardware or software error; the
microcode raises IPL to 1 because being on the interrupt stack at
IPL 0 is an inconsistent and illegal state.

These interrupt are requested only by a human at the console
terminal depositing into the software interrupt request register.
The interrupts at IPL 5 and IPL hex F are used to awaken XDELTA,
if present, through a BPT instruction at a location known to
XDELTA. The interrupt at IPL hex C is used primarily to cancel
mount verification or force recomputation of cluster quorum
instead of crashing the system and may also be used to awaken
XDELTA. If someone was using XDELTA prior to a crash, you should
consider the possibility that user corruption of data structures
or interference with normal system operation contributed to the
crash.

IPL 6 fork dispatching is used primarily by V3 drivers which run
at higher fork IPLs and which need to create a thread to execute
some code which would affect a system wide data base synchronized
at IPL$ SYNCH. Many fork IPL 8 drivers which created IPL 6 forks
for this reason still do under V4, although IPL$ SYNCH is now 8.
IPL 6 is also the fork IPL of the connect to interrupt driver.

Under V3, IPL 7 is the value of IPL$ SYNCH, the IPL used to
serialize access to system databases such as the scheduler and
memory management databases. It is also the IPL of the software
timer interrupt. Under V4, the software timer interrupt is
requested at IPL 7, but EXESSWTIMINT runs primarily at IPL 8, the
V4 value of IPLS SYNCH.

used by most device drivers. It is the IPL
rith System Communication Services. It is also the
ciated with distributed lock management and cluster

9\ is ‘unused by any known VMS drivers.

Fork IPL A hex is unused by any known VMS drivers.

Fork IPL B hex is used by the mailbox driver ([SYS]MBDRIVER) and
shared memory mailbox driver ([DRIVER]MBXDRIVER). This IPL is
also used for synchronizing nonpaged pool variable list

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 159
STACK PATTERNS - INTERRUPT STACK 1 August 85

10.

11.

12.

allocation and deallocation.

A fork process is entered with RS pointing to the fork block,
which is frequently part of some other data structure, such as a
UCB or CDRP. If the system crashes at a fork IPL, formatting the
fork block may be helpful; in particular, the offset FKBSL FPC
usually contains the address to which the fork dispatching code
passed control. Type the following SDA commands to format the
data structure.

SDA> READ SYS$SYSTEM:SYSDEF.STB !read symbol definitions
SDA> FORMAT €R5/TYP=FKB {format fork block portion
SDA> FORMAT €R5 lformat anything else

Device ISRs are entered at hex IPLs 14 through 17. Also driver
fork processes sometimes raise IPL to that associated with their
devices to block interrupts during a critical section of code.

To find out what devices are present on a system and their
associated device IPLs, display the I/0 database with the SDA
command SHOW DEVICE. The device IPL is displayed as part of the
UCB information.

To get a list of many ISR addresses and global names, type the
following SDA command.

SDA> SHOW STACK (@EXESGL SCB+F0):(@SWPSGL BALBAS -4)

The low order two bits of the vector do not contain address
information. In practice, this means that you must subtract one
from each of the contents displayed. This display includes the
addresses of the console ISRs, unexpected interrupt service
routines, nexus ISRs, and any directly vectored UNIBUS ISRs.

In most cases, there is an extra level of indirection in that the
SCB contents are the addresses of dispatch instructions. Under
V4, the real console interrupt routines are within SYSLOAxxx.EXE
images. For many nexus ISRs and any directly vectored UNIBUS
ISRs, the addresses point to a Controller Request Block (CRB) JMP
to the appropriate ISR (generally within a driver image).

If you suspect an address to be within a device driver ISR, first
determine. which driver using the section VIRTUAL ADDRESSES -
The driver name should be of the form
SORIVER. Then examine any Controller Request Block
ted with that driver to see the addresses of 1ISRs
iver. Type the following SDA command.

SDA> SHOW DEVICE <device name>.

The cpu-specific ISRs and the machine check ESR are part of code
loaded during system initialization. The SCB vectors point to
instructions which dispatch into the loaded code. The sources
are in [SYSLOA]MCHECKxxx, where xxx designates a cpu. "xxx" in

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 160
STACK PATTERNS - INTERRUPT STACK 1 August 85

13.

the MCHECKxxx names is the same as in the SYSLOAxxx.EXE names.

Por further information on the SYSLOAxxx names and on the
mechanisms for dispatching into SYSLOA, see subsection
SYSLOAXXX.EXE in the section VIRTUAL ADDRESSES. For information
on cpu-specific interrupts, see section CPU-SPECIFIC INTERRUPTS.
For information on machine checks, see section MACHINE CHECKS.
Although these interrupts occur at IPLs in the hex range 19 to
1D, their ISRs immediately raise IPL to 1F.

Microcode initiation of a machine check exception or invalid
kernel stack exception causes an IPL raise to hex 1F. Drivers
and other system code occasionally raise IPL to 1F to block all
interrupts. Also, the system runs at this IPL during system
initialization and restart following a halt.

Hints And Kinks

1.

Occasionally you may find a stack whose contents make little 'or
no sense. Although VMS keeps the stacks longword aligned almost
all the time, you may be trying to examine an unaligned stack. -
Try one or more of the following SDA commands to see if any
recognizable footprints or patterns emerge.

SDA> SHOW STACK <low_address-1>:<high address-1>
SDA> SHOW STACK <low_address-2>:<high address-2>
SDA> SHOW STACK <low address-3>:<high address-3>

Additional References

V3 VAX/VMS Internals and Data Structures Manual, Chapter 5, Hardware

Interrupts; Chapter 6, Software Interrupts; Section 8.3, Machine
Check Mechanism

. Standard (DEC Standard 032) or VAX-ll Architecture
al, Section 6.6, System Control Block

ture: Standard (DEC Standard 032) Section 12.4, Format and
c}. Contents of the System Control Block

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 161
STACK PATTERNS - KERNEL MODE STACK 6 July 85

STACK PATTERNS -~ KERNEL MODE STACK

The system runs on the kernel mode stack of the current process to
service IPL 2 AST delivery interrupts, to deliver kernel mode ASTs,
to service most exceptions, and to execute kernel mode system
services (a special case of exception servicing). In practice, many
exceptions are ultimately serviced by process-declared condition
handlers in the access mode that incurred the exception, and most of
the processes you will see in kernel mode are executing kernel mode
system services.

" In addition, the SWAPPER process and NULL process execute only in
kernel mode, and newly created processes execute EXESPROCSTRT and any
code it invokes in kernel mode.

Possible patterns that you may see on a kernel stack are described
below. You may see these patterns more than once on the same stack,
and you may see more than one of them. Some patterns should not be
followed by other described patterns. Each pattern description
includes any such restrictions.

1. First, see the section KERNEL STACK LOCATIONS to identify its
high and low 1limits and to determine whether the process' of
interest is running on its usual kernel stack.

2. If the process of interest is NOT the SWAPPER or NULL job,
identify the initial reason for the kernel mode switch, using the
patterns below. Account for as much of the stack as possible,
using the patterns below. Read the relevant code and try to
determine what happened based on stack footprints, register
contents, and data structure alterations made by the code. Use
the section VIRTUAL ADDRESSES wherever appropriate.

3. If the process of interest is the SWAPPER, read its code
([SYS]SWAPPER) following the path from label LOOP. (Whenever the
SWAPPER is awakened, it resumes at a location near label LOOP, a
local symbol.) Try to determine what it did based on stack
footprints, register contents, and data structure alterations
made by the code.

4. The NULL job consists of 1 instruction at location EXESNULLPROC
10$: BRB 10%
_Undex circumstances the NULL job should incur no
' should not receive ASTs. It may, however, be
spurious AST interrupt intended for the previous

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 162
STACK PATTERNS - KERNEL MODE STACK 6 July 85

Kernel Mode Stack Patterns

1.

One common pattern, most likely to be the highest (oldest) two
longwords on the stack, is an exception PSL and PC from the
system service vector area.

I N
™ -+

| | xxxxxxxx | CHMK exception PC
| | xxxxxxxx | CHMK exception PSL

stack growth

If SDA’s symbolic interpretation of the hypothetical exception PC
is of the form SYS$<service name> + 6, then these two longwords
are a CHMK exception PC and PSL, and the symbolic name shown is
accurate. If SDA’s symbolic interpretation is an offset other
than 6 from a system service vector name, subtract 6 from the
address, and determine to which system service vector, if any,
the address corresponds, following the steps in the section
SYSTEM SERVICE VECTORS.

When the process is already executing in kernel mode and a kernel
mode system service is requested, you should see the frame from
the CALL to the system service vector at stack addresses higher .
(older) than the CHME exception PC and PSL.

When you see a CHMK exception PC and PSL on the exec stack, there
will wusually be a change mode dispatcher call frame (described
below) at the next lower (newer) stack addresses. The change
mode dispatcher simulates a CALL to the real system service
procedure, which is usually a global EXES<service name>, where
<service_name> is from the SYS$<service name> global.

The change mode dispatcher builds "by hand" a 5 longword call
frame prior to entering a system service procedure. This call
frame should never be the oldest information on the kernel stack.

00000000
00000000

| null condition handler
| reg. save mask/PSW

| saved AP ~

| saved FP

| saved PC (in CMODSSDSP)

t—_—

address of SRVEXIT is 8000CFE6. The V4 address of SRVEXIT
~ DCE, The saved AP is the address of the argument list
vhidw the system service was called. The saved FP,
typically 'a Pl address, is the address of the previous call
frame.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 163
STACK PATTERNS ~ KERNEL MODE STACK 6 July 85

3. In the case of change mode dispatching to a loadable kernel mode
system service, whether user added or VMS supplied there are two
extra longwords on the stack at addresses lower (newer) than the
change mode dispatcher call frame.

xxxxxxxx | address in Pl sys. ser. vecto

r page
| Xxxxxxxx | return address in CMODSSDSP
| 00000000 | null condition handler
° | 00000000 | reg. save mask/PSW
| | xxxxxxxx | saved AP
| | xxxxxxxx | saved FP
| | A(SRVEXIT)| saved PC (in CMODSSDSP)

stack growth

The V3 address of SRVEXIT is 8000CFE6. The V3 return address in
CMODSSDSP is 8000D11E. The V3 address in Pl sys. ser. page
should fall within the range CTL$A DISPVEC to CTLSA DISPVEC + FF
or 7FFEAQ00 to 7FFEAQFF.

The V4 address of SRVEXIT is 8000FDCE. The V4 return address in
CMODSSDSP is 8000FFOD. The V4 address in Pl sys. ser. page
should fall within the range CTLSA DISPVEC to CTLSA DISPVEC + FF
or 7FFE6000 to 7FFE60FF.

4. One possible pattern results from an IPL 2 AST delivery interrupt
and dispatch to a special kernel mode AST. This pattern is
possible as the oldest kernel stack contents and as intermediate
kernel stack contents. That is, delivery of an AST is a reason
for an access mode switch to kernel, and delivery of a kernel
mode AST is possible to a process running in kernel mode at an
IPL below 2. During execution of the special kernel AST, the
process’s current IPL should be no lower than 2, and the stack
should contain the following pattern.

4 3
L n

s A(SCHSASTDEL+C)
xxxxxxxx | saved RO
xxxxxxxx | saved Rl
xxxxxxxx | saved R2
xxxxxxxx | saved R3
xxxxxxxx | saved R4
xxxxxxxx | saved RS
xxxxxxxx | interrupt PC
xxxxxxxx | interrupt PSL

stack growth +

The V3 address of SCHSASTDEL + C is 80008A38. The V4 address of
| SCHSASTDEL + C is 80009D9C. SCHSASTDEL is within the module
| [SYS)ASTDEL.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 164
STACK PATTERNS - KERNEL MODE STACK 6 July 85

During the execution of most special kernel ASTs, RS contains the
address of the AST Control Block (ACB). Well behaved special
kernel AST routines do not invoke system services; therefore, you
should not expect to see the pattern above followed (i.e., at
lower addresses) by a system service vector CHMK exception PC and
PSL and change mode dispatcher call frame. While IPL is at 2 or
higher, any other AST delivery interrupts are blocked, so you
should not expect to see this pattern followed by the pattern for
delivery of another special kernel AST or the pattern for
delivery of a normal kernel AST.

The exception to both those restrictions occurs in V3 process
deletion. The special kernel AST routine DELETE lowers IPL to 0
to allow delivery of other kernel ASTs, from subprocesses of the
process being deleted. In addition, DELETE requests various
system services.

5. One possible pattern results from an IPL 2 AST delivery interrupt
and dispatch to a normal kernel mode AST. This pattern is
possible as the oldest kernel stack contents and as intermediate
kernel stack contents. That is, delivery of an AST is a reason
for an access mode switch to kernel, and delivery of a kernel
mode AST is possible to a process running in kernel mode at' an
IPL below 2. This pattern includes the argument list with which
the AST is entered and the frame built by CALLing the AST

procedure.
xxxxxxxx | 0 or a(condition handler)
xxxxxxxx | register save mask/PSW
xxxxxxxx | saved AP
Xxxxxxxx | saved FP
~ A(EXESASTRET)| saved PC
| . o .
| xxxxxxxx | saved registers
stack growth + +
/ 00000005 | argument count
/ xxxxxxxx | AST proc. argument
xxxxxxxx | saved RO
AST proc. arglist - Xxxxxxxx | saved Rl
: xxxxxxxx | AST interrupt PC
\ xxxxxxxx | AST interrupt PSL

e 3
v v

of EXESASTRET is 80008AFA. The V4 address of
is '80009ESE.

normal ‘kernel AST procedure may be interrupted for delivery of
a special kernel AST but not for delivery of another kernel mode
AST,

The exceptions to that restriction occur in V4 process deletion
and suspension. The Lkernel AST procedure DELETE clears the

VAX/VMS Troubleshooting *INTERNAL USE QONLY* Page 165
STACK PATTERNS - KERNEL MODE STACK 6 July 85

PCBSB_ASTACT bit to enable further normal kernel mode ASTs to be
delivered to the process. The normal kernel AST procedure
SUSPEND also clears the PCB$B ASTACT bit to enable further normal
kernel mode ASTs to be delivered to a process with outstanding
Files-11 XQP activity.

If the process of interest is running on the Files-11l XQP stack,
the oldest (highest) information on the stack will be a call
frame from routine DISPATCH in [Fl11X]DISPATCH (entered on the
previous kernel stack via normal kernel AST) to routine
DISPATCHER in [F11X]DISPAT (which runs on the XQP’s private
kernel stack).

Another event that can leave kernel stack footprints is an
exception. For most exceptions, VMS dispatches to a condition
handler declared by the process; that is, VMS locates the
condition handler, cleans up the kernel stack, REIs to the access
mode that incurred the exception, and CALLs the condition
handler. Conceivably, a bugcheck could occur somewhere in this
sequence prior to the kernel stack cleanup and REI. In this
case, the older stack contents should contain (partxal) signal
and mechanism arrays and resemble the stacks pictured in sections
INVEXCEPIN BUGCHECK and SSRVEXCEPT BUGCHECK.

Another possibility is that an exception occurred which VMS
handles itself in kernel mode, for example, translation not
valid. In this case, there may be a footprint on the stack which
is an address within an exception service routine.

Hints And Kinks

1.

Occasionally you may find a stack whose contents make little or
no sense. Although VMS keeps the stacks longword aligned almost
all the time, you may be trying to examine an unaligned stack.
Try one or more of the following SDA commands to see if any
recognizable footprints or patterns emerge.

SDA> SHOW STACK <low_address-1>:<high address-1>
SDA> SHOW STACK <low_address-25:<high_address-2>
STACK <low_address-3>:<high address-3>

Additional References

V3 VAX/VMS Internals and Data Structures Manual, Chapter 4, Condition

Handling; Chapter 9, System Service Dispatching; Chapter 7, AST
Delivery

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 166
SYSTEM SERVICE VECTORS 15 January 85

SYSTEM SERVICE VECTORS

System service vectors are system global procedure names CALL’ed to
invoke a particular service. They contain small procedures which
execute in the mode of the caller and which serve as a bridge between
the caller and the actual procedure(s) which implement the service
request. The actual procedures may be part of SYS.EXE or some other
loaded image such as RMS.EXE and may execute in an inner access mode.

" System Service Vector Addresses

The values of system service vectors are fixed across all VMS
releases, so that wuser programs need not be relinked for a new VMS
version. System service vectors are located in the lowest pages of
system space. They are also located (doubly-mapped) in Pl space.
The Pl definitions were added in V3 to allow per-process redirection
of selected system services. Per-process redirection of selected
system services is currently unused.

As of V3, the Linker uses by default the module SYS$P1 VECTOR in
SYSSLIBRARY:STARLET.OLB to resolve system service vector globals to
Pl space addresses. Earlier Linkers resolved system service vector
globals to system space addresses. These system space addresses are
defined by the module SYSSVECTOR in SYSSLIBRARY:STARLET.OLB.

The only system service global names known to SDA by default are
those referenced within SYS.EXE, a small subset of the total system
service and RMS service globals. This means that SDA can make valid
symbolic interpretations of only those system service vector
addresses.

System Service Vector Contents

System service vectors begin with a register save mask. What follows
the save mask varies, in part as a function of the access mode in
which the actual procedure executes. For the very few system
services that execute in the access mode of the caller, the save mask
is followed only by a JMP to the actual procedure, which is most
often. part . of SYS.EXE. For services that execute in an inner mode,

ifyying the service request and, usually, by a RET to
' "tnvoket. However, some system service vectors,
site vectors", contain lengthier procedures;

4;,;imtmction is followed by something other than a RET.

One exanple of a composite system service vector is SYS$QIOW, which
includes a CHMK #QIO and a CHMK #WAITFR request. The RMS system
service vectors are composite vectors that branch to RMS
synchronization code which conditionally stalls the process until all
I,/0 associated with its request is complete. The RMS synchronization

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 167
SYSTEM SERVICE VECTORS 15 January 85

code uses the status in the FAB or RAB associated with the request to
determine whether the I/0 is complete and executes a CHMK #WAITFR if
it is not.

V4 contains a number of additional composite system service vectors;
all the services which guarantee not to return to the invoker until
all I/0 associated with the request is complete have composite
vectors. These V4 system services, called "synchronous services",
use a combination of status block (for example, IOSB or lock status
block) contents and event flag to test for I/O completion. Examples
of synchronous services are $QIOW, SUPDSECW, and $GETJPIW.

The V4 composite system service vectors for these synchronous
services contain a CHMx instruction that dispatches in the usual way
to the actual procedure, whose responsibilities include clearing the
associated event flag and zeroing the contents of the status block if
one was specified. The CHMx instruction is followed by a branch to
common synchronization code.

The synchronization code first tests the status block, if one was
specified. If its status word is zero, the synchronization code
waits on the event flag. Whenever the flag is set and the process
placed into execution, the synchronization code tests the status word
and, if it is zero, clears the flag and waits for it again. If the
user specifies a status block with the system service request, this
mechanism eliminates the traditional problem of returning before 1I/0
is complete as a result of concurrent multiple uses of the same flag.

System Service Vector Stack Footprints

Executing the CALLS/G to a system service vector always generates a
call frame on the current access mode stack.

For system services that execute in the mode of the caller (for
example, S$FAO), the actual procedure executes on this stack and
RETurns to the instruction following the call to the system service
vector.

For inner access mode system services, executing the CHME/K
instruction causes an exception. When such a system service request
is mad outer mode, the CHMx exception results in a stack
: access mode change to the mode in which the system
ally be performed. The address following the CHMx
& . the exception PC saved on the target access mode
the access mode in which the CHMx is executed is outer
g as the target access mode.

These exception PCs are commonly found as the oldest contents on a
kernel or exec mode stack. Resolving such an address to its system
service name is an important step in tracing what happened in exec or
kernel mode in a process which is hung or a process in whose context
the system crashed. Note that these addresses within system service

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 168
SYSTEM SERVICE VECTORS : 15 January 85

vectors may also appear in the middle of an exec or kernel mode
stack, as the result of one system service’s requesting another or as
the result of an AST procedure’s requesting a system service.

The exception PC following a CHME/K instruction is frequently the
address corresponding to SYS$<serv1ce name> + 6 and, thus, relatively
easy to resolve as a system service global name. (6 = 2 bytes of
register save mask + 1 byte of CHMx opcode + 1 byte of operand
specifier + 2 bytes of immediate operand) However, the composite
system service vectors contain or branch to synchronization code
which issues other CHME/K instructions. As a result, identifying the
- original system service global name is more difficult in these cases.

Resolving System Service Vector Addresses

To determine whether a particular address is within the system
service vectors and which system service it 1s, follow the directions
below.

1. The Pl vectors begin at the symbol P1SYSVECTORS. The V3 value of
P1SYSVECTORS is 7FFEDEO0. The end of the V3 Pl vectors is
TFFEESFF. The V4 value of P1SYSVECTORS is 7FFEDEOO. The end of
the V4 Pl vectors is 7FFEER7FP.

To create a list of Pl space system service vector addresses and
their global names, use the following commands.

S Lrawmplvzmoa/mmw-safsspl VECTOR -
S SYSSLIBRARY:STARLET.OLB

$ LINK/NOEXE/MAP/FULL P1VECTOR

2. If the address is between 80000000 and the symbol MMGSA ENDVEC,
it is within the system space system service vectors. The V3
value of MMGSA ENDVEC is 80000800. The V4 value of MMGSA ENDVEC
is 80000A00.

To create a list of system space system service vector addresses
and their global names, use the following commands.

. LIBR/OUT=SYSVECTOR/EXTRACT=SYSSVECTOR -
MLIBRARY STARLET.OLB
, /FULL SYSVECTOR

‘address is not within either of the ranges above, it is
. & system service vector.

4. If the address is within one of the ranges above, search the
relevant map by eye, with the SEARCH utility, or with your
favorite editor to locate the address of interest and obtain its
corresponding global name.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 169
SYSTEM SERVICE VECTORS 15 January 85

5.

I1f your address is within the system service vector range but you
camnot find a corresponding global name of the form
SYS$<service name>, then the address is likely to follow an
aditional CHMx instruction within a composite system service
vector. To identify the original system service, locate the
original call instruction using the directions below.

o If the stack contains a change mode dispatcher call frame,
then use its SAVED FP value as the address of the frame built
by the original call. (See the section STACK PATTERNS -
KERNEL. MODE for a layout of the change mode dispatcher call
frame.)

o If there is no change mode dispatcher call frame, then use
the contents of the FP register.

o In the frame pointed to by the SAVED FP value or FP register,
locate the SAVED PC. (See the section RELATED REFERENCE
MATERIAL for the layout of a call frame.) This should be the
address of the instruction following the call to the system
service vector.

o Issue the following SDA command to see the original CALLS/G
instruction

SDA> EXAM/INST <saved pc>-10;10

o The target of the CALLS/G is the address of the original
system service vector and should be the value of a
SYs$<service name>. Search the relevant map to locate the
corresponding global name if SDA is unable to resolve it.

Additional References

V3 VAX/VMS Internals and Data Structure Manual, Chapter 9, for more

information on system service vector contents and dispatching to
system service procedures

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 170
UNXSIGNAL BUGCHECK : 12 August 85

UNXSIGNAL BUGCHECK

The UNXSIGNAL bugcheck is signaled by a V4 Files-11 XQP (ODS-2), V3
Files-11 ACP (ODS-2), a magtape ACP, or Files-11 ODS-1 ACP condition
handler. In all cases, the bugcheck indicates that some unexpected
exception has occurred. In all cases, the stack patterns are
similar, with condition handler argument list, signal and mechanism
arrays, and a call frame to the condition handler as newest stack
contents.

In the case of the Files-11 XQP, the bugcheck text "unexpected signal
" in ACP", is historically true but somewhat misleading in that v4

Files-11 ODS-2 support is procedure-based code that runs in the

context of the process requesting the I/O rather than as an ACP.

The PC displayed by the SDA SHOW CRASH command reflects the condition
handler signaling the bugcheck rather than the 1location of the
exception. RO, Rl, AP, and FP in the SHOW CRASH display have been
altered by the exception dispatching code. The PC, RO, Rl, AP, and
FP at the time of the exception can be obtained as described below.
The stack pattern follows.

+

FP: /| 00000000 | null condition handler
/| xxxxxxxx | register save mask/PSW
SYSSCALL HANDL / | xxxxxxxx | saved AP
call frame AN xxxxxxxx | saved FP
\ | SYSSCALL HANDL+4 | saved PC
! !
AP: /' 00000002 ' arqument count
cond. handler xxxxxxxx | mechanism array address
arglist \ xxxxxxxx | signal array address
/| 00000004 | argument count
/ xxxxxxxx | saved FP
mechanism array 0000000x | depth of scan
\ xxxxxxxx | RO at exception
\ xxxxxxxx | Rl at exception
| XXRXXKXX | flags
0000000x |r argument count
xxxxxxxx | exception type
. | exception parameters
xxxxxxxx | exception PC
xxxxxxxx | exception PSL

1. The SHOW CRASH output includes the name of the current process
and its image. This indicates whether the bugcheck was signaled
from code within a Files-11 ODS~1 process, a magtape ACP, a V3

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 171
UNXSIGNAL BUGCHECK 12 August 85

Files-11 ODS-2 process, Files~1l XQP procedures running in some
process’s context.

The process names of ACPs are constructed from the mounted device
name, an ACP type letter, and "ACP". For Files-11 ODS-1, the
type letter is A; for Files-11 ODS-2, the letter is B. For
magtape ACPs, the type letter is A. For example, DUAOBACP is an
V3 Files-11 ODS-2 ACP.

The FP register displayed by SHOW CRASH points to the frame
generated by SYSSCALL HANDL’s call to the condition handler. The
saved AP and saved FP in this call frame are the AP and FP at the
time the exception occurred. Typically, the saved AP contains
the address of the arqument 1list with which the most recent
procedure was called. This saved FP usually points to a frame
which contains the address of the previous saved FP. 1If the
stack is intact, these saved FPs can be used to trace back the
sequence of calls that occurred in this thread of execution.

Use the AP displayed by SHOW CRASH to obtain the addresses of the
signal and mechanism arrays.

Locate the mechanism array. Saved RO and saved Rl are the
registers’ values at the time the exception occurred.

The depth value specifies how many nested procedures there are on
the current stack between the exception and the procedure that
declared the condition handler.

Skip 1 longword, the flags longword.

The next longword, the beginning of the signal array, contains an
argument count, the number of longwords that follow. Use the
count to identify all entries in the signal array. The number of
exception parameters present is a function of exception type and
can be 0, 1, or 2 longwords.

The exception type is a status value, e.g., C (hex) or
SS$ ACCVIO. The DCL command

$ EXIT $X<exception type>

wrim the message text associated with the exception type status

> MWDITIN <exception type>

wr m m message text associated with the exception type status

value.

Typically, the exception is one generated by "hardware" (or
microcode), for example, access violation. "Hardware" generated
exceptions are listed with a description of their associated
exception parameters in Section 10.1 of the VAX/VMS System

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 172
UNXSIGNAL BUGCHECK . 12 August 85

9.

"10.

Services Reference Manual. See section EXCEPTIONS for
information about the more common hardware exceptions.

The exception PC in the signal array is the instruction whose
[attempted] execution resulted in the unexpected exec or kernel
mode exception. Whether the PC points to the beginning of the
ingtruction or the end depends on whether the exception was a
trap (end), fault (beginning), or abort (beginning). The
reference above specifies whether each exception is a trap,
fault, or abort. :

Identify in what module the exception PC is. Figure out why the
instruction generated an exception. For example, if an access
violation occurred, look at the operands to see which access was
in error.

If the current image is a Files-11 ODS-1 ACP, then the bugcheck
has been signaled by its exec mode condition handler MAIN HANDLER
and is always fatal. The exception PC is most 1likely within
F11AACP.EXE, described by [F11A]F11AACP.MAP.

1f the current process is a magtape ACP, then the bugcheck has
been signaled by the exec mode condition handler EXCEPT HANDLER
and is fatal only if the SYSBOOT parameter BUGCHECKFATAL is 1.
By default, BUGCHECKFATAL is 0. The exception PC is most likely
within MTAAACP.EXE, described by [MTAACPJMTAAACP.MAP.

If the current process is not an ACP, then the bugcheck has been’
signaled by one of several Files-11 XQP kernel mode condition
handler. It is always fatal. The initial Files-11 XQP procedure
declares MAIN HANDER as a call frame condition handler. Other
Files-11 XQP procedures declare call frame condition handlers
that issue this bugcheck: ACL-related code declares the handler
BUILD HANDLER; the procedure READ ATTRIB declares the handler
READ HANDLER. The exception PC is most likely within
F11BXQP.EXE, which is loaded into the process’s Pl space. For
the location of the Files-11 XQP and its stack, see subsection
Files-11 XQP Regions in section VIRTUAL ADDRESSES - P1 SPACE.

If the PC is not within one of those images, see section VIRTUAL
ADDRESSES for information on identifying its source.

prrent stack to trace control flow. See section

Not all access violations are signaled by microcode. The
pagefault exception service routine, MMGSPAGEFAULT, may signal an
access violation if a process incurs a pagefault for a page in

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 173
UNXSIGNAL BUGCHECK 12 August 85

another process’s process header.

Note that for each V3 SDA COPY command used to copy the dump, the
SP will be 8 bytes greater than its actual value; that is, SDA
will show the SP pointing to a stack address 8 bytes higher than
it should. This V3 bug has been corrected in V4.

The VAX instruction set is sufficiently rich that most random
data can be interpreted as instructions. Most system code deals
with binary integer and character data. This means that if an
EXAMINE/INSTRUCTION display includes many packed decimal and/or
floating point instructions, you are probably examining a data
area or using a start address which is not an instruction
boundary.

One common error that results in a nonsensical display is to
examine instructions in the bugcheck overlay area. During a
crash, fatal bugcheck code and message text overlay resident
system image code, beginning one page before label BUGSFATAL, for
a length of about 12000 decimal or 3000 hex bytes.

Additional References

V3 VAX/VMS Internals and Data Structure Manual, Chapter 4, for

general exception dispatching and details of exceptions signaled by
VMS system software

VAX Architure Standard (DEC Standard 032) or VAX-11 Architecture

Reference Manual, Chapter 6, Exceptions and Interrupts

VAX/VMS System Services Reference Manual, Chapter 10,

Condition-Handling Services

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 174
VIRTUAL ADDRESSES 22 April 85

VIRTUAL ADDRESSES

when you are looking at a crashdump and trying to determine the
sequence of events that led to a problem, it is necessary to identify
what code executed and what data structures were referenced. This
means that you must associate virtual addresses with the code or data
structures they contain. You must associate code or data with source
modules; you must identify type and format of dynamically created
data structures.

All executable code, both in system space and process space, consists

- of source modules compiled and 1linked into images. Images that
execute in PO space are loaded by the image activator. Pl space
images are limited to command language interpreters and, under V4,
the Files-11 XQP. The Files-11 XQP is mapped as a global section.
Command language interpreters are mapped into Pl space by merged
image activation. Images that execute in system space are loaded by
system code. Many system space images, including SYS.EXE, are loaded
during system initialization. Other images are loaded later. For
example, SYSGEN loads driver 1mages in response to CONNECT and/or
LOAD commands; 782 support (MP.E) is loaded in response to the DCL
command START/CPU.

By default, SDA knows about symbols defined in SYS.STB, the sys.m
symbol table, and some other self-defined symbols. (See section
6.2.4 of the VAX/VMS System Dump Analyzer Reference Manual.) SDA will
attempt symbolic interpretation of virtual addresses based on the
symbols it knows. That is, SDA will interpret an address as a
positive offset less than hex 1000 from the closest symbol with a
smaller value. This means that spurious labels may be attached to
displayed data and addresses; for example, SDA will interpret the hex
value 00002336 as SS$ NOSHRIMG + 17A. (SS$_NOSHRIMG, a status value
unrelated to any PO address, coincidentally has the hex value 2336 -
17a.)

1. If your hypothetical address is between 0 and 3FFFFFFF, follow
the directions in section VIRTUAL ADDRESSES - PO SPACE.

2. If your hypothetical address is between 40000000 and 7FFFFFFF,
follow the directions in section VIRTUAL ADDRESSES - Pl SPACE.

.15' hetical address is between 80000000 and BFFFFFFF,

hypothetical address is C0000000 or above, it is not a
address. Go back to the path of investigation that led you
here and develop another hypothesis.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 175
VIRTUAL ADDRESSES 22 April 85

Hints And Kinks

1. Although "deciphering stacks" and "identifying virtual addresses"
are listed as single and separate steps, in practice, they are
usually repetitive and intertwined. For example, that a
particular longword can be interpreted as a particular address
should be confirmed in the context of what code was executing and
manipulating that longword. ©Usually this requires that some
piece of the stack be deciphered. Another example is that
identifying a particular footprint on the stack may require or
result in the identification of addresses within that footprint.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 176
VIRTUAL ADDRESSES -~ PO SPACE 10 July 85

VIRTUAL ADDRESSES — PO SPACE

PO space is defined dynamically at image activation by the image a
user runs and its referenced shareable images and their referenced
shareable images, and so on. Also, a running image may create PO
address space for its own use through system services such as
SCRETVA, $CRMPSC, or $MGBLSC.

In addition, if the process runs out of storage in the Pl process
allocation region, the process allocation region may be increased to

~include a segment of PO space if the image has not explicitly
prohibited this through the Linker option NOPOBUFS.

As the V4 image activator processes an image and its references to
other images, the image activator builds a list in Pl space of work
items for itself. Each work item is an image described by an Image
Control Block (ICB). As an image is activated, the ICB describing it -
is moved to a list of completed ICBs. You may be able to examine
this 1list of ICBs to determine what images are mapped into PO space.
(The Debugger traverses this list to define its SHARES symbols.)

The directions below will not work for V3. The V3 analogue is to
examine the shareable image list in the fixup vector section. See
Additional References below for a pointer to more information.

1. Pirst, confirm that your hypothetical PO space address falls
within the range of PO space for this process. Find the high end
of its defined PO space by typing the following SDA commands.

SDA> SET PROCESS/INDEX=<n>
SDA> EVAL 200 * @POLR

If your address is larger than that, it is not a legal PO space
address for this process. Go back to the path of investigation
that led you here and develop another hypothesis.

2. If the address is legal, examine the image activator ICB list to
find out whether the address is within an activated image. Try
the following SDA commands.

SDA> EVAL IACSGL IMAGE LIST !get address listhead
SDA) DEF ICB IAC$GL TMAGE LIST

= @ICB !get address next ICB

CB address is not equal to listhead, continue
5 EXAM ICB + 48 !start address of image

. SDA> EXAM ICB + 4C !end address of image

"SBA> EXAM ICB + 15 ;((@(ICB+14)@18)@-18) !image name
SDA> ! go to beginning of repeat loop

You may not be successful with these, because the listhead and
ICBs are pageable.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 177
VIRTUAL ADDRESSES - PO SPACE 10 July 85

3. The low end of the process’s defined PO space varies with the

image it is running. An image is linked to a default base of 200
hex, unless another base address is specified through the Linker
BASE option.

To determine whether location x is valid for this process, type
the following SDA command to display the page table entry that
maps that location.

SDA> SHOW PROCESS/PAGE <x>;200

Hints And Kinks

1'

Any SDA commands to examine PO or Pl space assume that you have
already established the process to be examined by issuing one of
the following commands.

SDA> SET PROCESS/INDEX=<n>
SDA> SET PROCESS <processname>

SDA uses special kernel ASTs to access the PO or Pl space of
another process on the current system. The special kernel AST,
running in the context of the target process, examines its
address space and sends the information back to the process
running SDA. Delivery of the special kernel AST cannot happen if
the target process is being waited at IPL 2. This means that you
;:amot examine that process’s context until the process lowers
ts IPL.

Additional References

V3 VAX/VMS Internals and Data Structures Manual, Section 21.1.2, The
Address Relocation Fixup System Service

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 178
VIRTUAL ADDRESSES - Pl SPACE 12 June 85

VIRTUAL ADDRESSES - Pl SPACE

Pl space is primarily defined by the prototype page table and other
assembly-time information in [SYS]SHELL. Some pieces of Pl space are
created dynamically at process creation, others at image activation,
and others by images that run in Pl space.

Pl space is divided into a permanent portion and a nonpermanent
portion. The global CTL$GL CTLBASVA contains the current boundary
between the two portion; the address range below its contents is
deleted at image exit. This nonpermanent portion of Pl space
" includes the user stack and the extra pages of image I/O segment. If
the user creates a per-process message section through the SET
MESSAGE command, the boundary moves to include the newly mapped
message section.

1. Determine whether your hypothetical P1 space address falls within
the range of Pl space for the relevant process. Find the low end
of its defined Pl space by typing the following SDA commands.

SDA> SET PROCESS/INDEX=<n>
SDA> EVAL 40000000+(200*@P1LR)

if f(our address is smaller than that, it is not a legal P1 space
address for this process. Go back to the path of investigation
that led you here and develop another hypothesis.

2. Using the table below, determine into which region of Pl space
the address falls. If the address does not fall within an image
identified in the table below, go to item 7.

3. Subtract the starting address of the loaded image from your
virtual address to determine the offset of the address into the
loaded image.

4. Reading the subsections below the table, identify to what VMS
facility the loaded image belongs and where in the linked image
the loaded code begins.

5. Locate the facility in the source fiche. The last sheet of the
source fiche contains an index to the rest of the fiche.
Maintemnce update additions to the source fiche contain an

%. as the last sheet. The facilities are ordered
in the fiche. Each facility includes link maps
1ngs for the components of the facility.

g the uup for that module, determine the relevant source
and ‘offset within the source module. Then return to the
path” investigation that led you here.

7. If the virtual address does not fall within the boundaries of a
loaded image, but is in the process allocation region, then it
may be the address of a data structure. The following SDA

commands should identify a data structure with a standard dynamic

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 179
VIRTUAL ADDRESSES ~ Pl SPACE 12 June 85
data structure header.

SDA> READ SYS$SYSTEM:SYSDEF.STB !if you haven’t already
SDA> FORMAT <address>

SDA may report that there are no symbols to format a block of
type <xxx>. Most likely this means that the block has a standard
dynamic data structure header, but that neither SYS.STB nor
SYSDEF.STB contains symbolic definitions for its fields. If this
happens, you might try to generate the symbols yourself by typing
the following sequence.

SDA>CTRL/Y
S SPAWN
$ MACRO/OBJ=SYSSLOGIN:<xxx>DEF SYSSINPUT: -
$ + SYSSLIBRARY:LIB/LIB
$<xxx>DEF GLOBAL

SDAYREAD SYSSLOGIN:<xxx>DEF.OBJ
SDA>FORMAT <address)>

8. If the address is not within the process allocation region or a
loaded image, determine into which other regions it falls. Read
the subsection under the table that discusses that region for
further information, and return to the path of investigation that
led you here.

The following table describes the various "regions" of Pl space. 1In
this context, region means a distinct area, with defined boundaries
and characteristics. One example region of P1 space is the pages
that the CLI image occupies. The table is ordered by increasing
virtual address. Each region is described briefly in each table by
its contents and protection and the SDA commands to determine its
boundaries. More detailed descriptions of each region follow the
table. Use the first table for V3 systems and the second for V4
systems.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 180
VIRTUAL ADDRESSES - Pl SPACE V3 12 June 85

V3 Pl Space Organization

REGION SDA COMMANDS
PROTECTION
User Stack UW READ SYS$SYSTEM:SYSDEF.STB !if you haven’t already

Extra User Stack

EXAM @CTLSGL PCB + PCBSL PHD laddress of PHD
EVAL @(@.+PHDSL_FREP1VA) + 200 !low address of stack
EVAL @(CTLSAL_ STACK+C)-@SGN$GL EXUSRSTK lhigh address

EVAL @(CTLSAL STACK+C)-@SGNSGL_EXUSRSTK !low address

UW EXAM C’I’L$AL STACK + C thigh address
Image I/0 Segment READ SYS$SYSTEM:RMSDEF.STB !if you haven’t already
UREW EXAM CTLSAL STACK + C Istart address

EXAM PIOSGW IIOIMPA + IMPSL IOSEGADDR
EVAL @. + €(PIOSGWN IIOIMPA + IMPSL IOSEGLEN) lend address

Per-Process UR EXAM CTLSGL PPMSG Istart address - O=none
Message Section EXAM . + 4 lend address
CLI Symbol Table EXAM CTL$AG CLIDATA+10 - Istart address
SW EVAL €.+ @(.-4) lend address
CLI Image URSW/UR EXAM CTLS$AG CLIMAGE Istart address
EXAM . + 4 lend address
Channel Table EVAL @CTLSGL_CCBBASE-(10*((@SGN$GW_PCHANCNTE10)e-10))
UREW 1low address
EXAM CTL$GL__CCBBASE thigh address
Pl Window to PHD EXAM CTLSGL PHD Istart address
URKW EVAL PIOSGL_FMLH lend address
RMS Process URKW EVAL PIOSGL_FMLH !start address
Context Area EVAL PIOSGL FMLH + 200 lend address
Process I,/0 EVAL PIOSGL FMLH + 200 lstart address

Segment UREW

EVAL PIOSGL FMLH + PIOSC SEGSIZ lend address

- EVAL CTLSA COMMON-@CTLSGQ COMMON!start address

) C'I'LSA_CGM lend address

W EVAL cn.sA_comoN Istart address
1 EVAL CTLSA COMMON+ECTLSGQ COMMON!end address

- EVAL CTLSAL CMCNTX Istart address
EVAL CTLSAL CMCNTX+200 lend address

EVAL CTL$GL DCLPRSOWN Istart address
EVAL CTLSGL DCLPRSOWN+200 lend address

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 181

VIRTUAL ADDRESSES ~ Pl SPACE V3 12 June 85
Unused Pages 2 pages
Image Activator EVAL CTLSGL_IAFLINK !start address
Context UREW EVAL CTLSGL IAFLINK+200 lend address
Process Allocation EVAL CTL$A PRCALLREG !start address
Region UREW EVAL CTLSA PRCALLREG+(CTL$C_PRCALLSIZ*200) !end address
CLI Data Pages EVAL CTL$AL CLICALBK !start address
URSW EVAL CTL$AG_CLIDATA+CTL$C_CLIDATASZ lend address
Image Activator EVAL MMGSIMGACTBUF . Istart address
Scratch UREW EVAL MMGSIMGACTBUF + 1000 !end address
Debugger Context EVAL MMGSIMGACTBUF + 1000 Istart address
Pages UR EVAL CTLSA DISPVEC !end address
Dispatch Vectors EVAL CTL$A DISPVEC Istart address
UREW EVAL MMG$IMGHDRBUF lend address
Image Header EVAL MMGSIMGHDRBUF istart address
Buffer UN EVAL MMG$IMGHDRBUF+200 lend address
Guard Page 1 page |
Kernel Stack SRKW EXAM CTLSAL STACKLIM !low address
EXAM CTLSAL STACK thigh address
Exec Stack SREW EXAM CTLSAL STACKLIM+4 !low address
EXAM CTLSAL STACK+4 thigh address
Sup. Stack URSW EXAM CTLSAL STACKLIM+8 !low address
EXAM CTLSAL STACK+8 thigh address
System Service EVAL P1SYSVECTORS Istart address

Vector Pages URKW EVAL PlSYSVECTORS+(SGNSC_SYSVECPGS*200) !end address

Spare Pages for System 12 (decimal) pages
Service Vectors

Pl Pointer Page EVAL CTL$GL_VECTORS Istart address
URKW EVAL CTLSGL VECTORS+200 lend address

M CTLSGQ DBGAREA+4 Istart address
e. + @(.-4) tend address

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
VIRTUAL ADDRESSES - P1 SPACE V4

V4 P1 Space Organization

REGION SDA COMMANDS
PROTECTION
User Stack UW READ SYS$SSYSTEM:SYSDEF.STB

EXAM @CTLSGL PCB + PCBSL PHD

EVAL @(@.+PHDSL FREPIVA) + 200

Page 182
12 June 85

!if you haven’t already
taddress of PHD
!low address of stack

EVAL @(C'I'L$AL_STACK+C)-@SGN$GL_EXUSRSTK thigh address

Extra User Stack
UN EXAM CTL$AL__STACK+C

Extra Image I/0
Segment UREW (see subsection below)
EXAM CTL$GL PPMSG
EXAM . + 4

Per-Process UR
Message Section

EXAM CTLSAG CLIDATA+10

CLI Symbol Table X
EVAL €.+ @(.-4)

UR/SW

CLI Command
Tables UR

EXAM CTL$AG CLITABLE
EXAM . + 4
CLI Image UR EXAM CTL$AG CLIMAGE
EXAM . + 4

Files-11 XQP
Data KW

CTRL/Y
SPAWN

EVAL @(CTLSAL STACK+C)-@SGN$GL EXUSRSTK !low address

thigh address

Istart address - O=none
lend address

Ilstart address
lend address

Istart address
tend address

Istart address
lend address

lleave SDA to get symbols
lcreate subprocess

MACRO/OBJ=SYSSLOGIN:F11BDEF SYS$SINPUT:+SYSSLIBRARY:LIB/LIB

SF11BDEF
.END

GLOBAL

CTRL/Z

LOGOUT

CONTINUE

READ SYS$LOGIN:F11BDEF.OBJ
DEF XQP=@CTLS$GL F11BXQP

EXAM XQP+F11BSL IMPBASE

EVAL @.+@(XQP+FI1B$L IMPSIZE)

EXAM XQP+F11B$L CODEBASE
AL @.+@(XQP+FI1B$L CODESIZE)

lattach main process
ireturn to SDA
iread few XQP symbols

ldata start address
t{data end address

lcode start address
lcode end address

Image ment EXAM PIOSGQ IIODEFAULT+4 Istart address

. EVAL €. + @(.-4) lend address
Process 1/0 READ SYS$SYSTEM:RMSDEF.STB {read symbols
Segment UREW EXAM PIOSGW PIOIMPA + IMPSL IOSEGADDR

DEF PIOEND=@.+@(PIOSGN PIOIMPA+IMPSL IOSEGLEN)
EVAL PIOEND-(200%*((@SGN$SGW PIOPAGESEI0)e-10))

istart address

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 183

VIRTUAL ADDRESSES - Pl SPACE V4 12 June 85
EVAL» PIOEND fend address
Process UREW EVAL PIOEND Istart address

Allocation Region EVAL PIOEND + (200*((@SGN$GN_CTLPAGES@10)e-10))
lend address

Channel Table EVAL @CTLSGL CCBBASE-(10*((@SGN$SGW_PCHANCNT@10)@-10))

UREW !low address
EVAL @CTLSGL_CCBBASE+10 thigh address
Pl Window to PHD EXAM CTLSGL_ PHD Istart address
' URKW EVAL PIOSGL FMLH lend address
RMS Process UREW EVAL PIOSGL FMLH Istart address
Context Area EVAL PIOSA TRACE lend address
RMS Tracepoint EVAL PIOSA TRACE Istart address
Page UREN EVAL PIOSA DIRCACHE lend address
RMS Directory EVAL PIOSA DIRCACHE Istart address
Cache UREW EVAL PIOSA DIRCACHE+400 lend address
RMS IFAB/IRAB READ SYS$SYSTEM:RMSDEF.STB !if you haven’t already
Table UREW EXAM PIOSGN PIOIMPA+IMPSL IFABTBL!start address
EVAL @. + 200 lend address
Per-Process UW EVAL CTLSA COMMON-@CTLSGQ COMMON!start address
Common for Users EVAL CTLSA COMMON lend address
Per-Process UW EVAL CTLSA COMMON Istart address
Common Digital EVAL CTL$A COMMON+@CTLSGQ COMMON!end address
Compatibility Mode EVAL CTLSAL CMCNTX !start address
Data Pages UW EVAL CTLS$AL CMCNTX+400 lend address
User Mode Data EVAL CTLSGL DCLPRSOWN Istart address
Page - UW EVAL CTLS$GL_DCLPRSOWN+200 lend address

Unused Pages NA 2 pages

Security Audit EVAL NSAST IDT Istart address
Data Pages KW EVAL NSAST IDT+600 lend address

' r EVAL CTLS$GL_IAFLINK Istart address
- EVAL CTLSGL IAFLINK+200 lend address

EVAL CTLSAL CLICALBK {start address

. URSW. EVAL CTLSAG CLIDATA+CTLSC CLIDATASZ !end address

Image Act Scratch EVAL IACSAL_IMGACTBUF Istart address
Pages UREW EVAL IACSAL IMGACTBUF+1000 lend address

Debugger Context EVAL IACSAL IMGACTBUF+1000 Istart address

Pages UW EVAL CTL$A DISPVEC lend address

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 184

VIRTUAL ADDRESSES - P1 SPACE V4 12 June 85
Dispatch Vectors EVAL CTLSA DISPVEC Istart address
UREW EVAL MMGSIMGHDRBUF lend address
Image Header EVAL MMG$IMGHDRBUF Istart address
Buffer URSW EVAL MMGSIMGHDRBUF+200 lend address
KRP Lookaside EVAL CTLSGL KRP Istart address
List URKW EVAL CTLSGL KRP+(CTLS$C_KRP_COUNT*CTLSC KRP_SIZE)
lend address

Guard Page NA 1 page

Kernel Stack NA EVAL CTLSGL KSTKBASEXP !low address
Expansion Pages EVAL CTLSGL KSTKBAS thigh address
Kernel Stack SRKW EVAL CTLSGL KSTKBAS !low address
. EVAL CTLSGL_KSPINI thigh address
Exec Stack SREW EXAM CTLSAL STACKLIM+4 !low address
EXAM CTLSAL STACK+4 . thigh address
Sup. Stack URSW EXAM CTLSAL STACKLIM+8 !low address
EXAM CTLSAL STACK+8 thigh address
System Service UR EVAL P1SYSVECTORS !start address

Vector Pages EVAL P1SYSVECTORS+(SGN$C_SYSVECPGS*200) !end address

Spare Pages for System 11 (decimal) pages
Service Vectors NA

Pl Pointer Page EVAL CTL$GL VECTORS !start address
URKW EVAL CTLSGL VECTORS+200 {end address
Debugger Symbol EXAM CTL$SGQ DBGAREA+4 {start address

Table oW EVAL @. + @(.-4) lend address

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 185
VIRTUAL ADDRESSES - Pl SPACE 12 June 85

User Stack

The pageable user stack is normally allocated at the lowest defined
end of Pl space to enable its automatic expansion on demand. To
examine the current contents of this stack, type the following SDA
command.

SDA> SHOW STACK @USP:(@(CTLSAL STACK+C)-@SGN$GL EXUSRSTK)

" Extra User Stack Pages~

Extra pages are allocated at the high end of the user stack for use
by the system during exception processing if the user stack is
corrupted. The size of this region is defined by SYSBOOT parameter
EXUSRSTK, with a default value of 2 pages. Usually, these pages show
up as extra zeros at the end of what SDA displays in response to the
command SHOW STACK/USER.

Image I/0 Segment

The pageable image I/O segment contains RMS data structures for files
which can be open only during the life of an image. Under V4,
EXESPROCSTRT allocates a default image I/O segment that is SYSBOOT
parameter PIOPAGES pages long. An image needing more space than this
should be linked with the IOSEGMENT option. When an image which
specified an IOSEGMENT bigger than the default is activated, the
image activator allocates virtual address space equal in size to the
difference between the default segment size and the size specified at
link time. This additional portion of image I/O segment lies in
virtual addresses just higher than the end of the user stack. RMS
data structures allocated from the Image I/O Segment include Internal
File Access Blocks (IFABs), Internal Record Access Blocks (IRABs),
Buffer Descriptor Blocks (BDBs), I/O buffers, etc.

To display the data structures allocated from this region, type the
SDA command SHOW PROCESS/RMS.

Pieces of the image I/O segment that have been used and then
re linked together at the listhead PIOSGW_IIOIMPA +

The IMP$ symbols are defined by SYSSLIBRARY:LIB.MLB
also in SYS$SYSTEM:RMSDEF.STB.) Any additional I,/0
by the V4 image activator is inserted on this list

¢ portion of the image I/0 segment that has never been

.defined in the image I/0 segment context area. Its
address is in PIOSGW _IIOIMPA + IMPSL IOSEGADDR; its size is
in PIO$GV IIOIMPA + IMP$L IOSEGLEN

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 186
VIRTUAL ADDRESSES - Pl SPACE 12 June 85

Per-Process Message Section

A message section is mapped into a process’s Pl space as the result
of the DCL command S$SET MESSAGE <filenamed>. The $GETMSG system
service uses this message section in addition to the system message
section to translate status codes into message text.

CLI Symbol Table

" LOGINOUT.EXE creates this pageable virtual address space with a
SEXPREG of SYSBOOT parameter CLISYMTBL pages. The CLI uses this to
store the definitions of process global and local symbols, labels,
and scratch storage. DCL manages this area using EXESALLOCATE and
EXESDEALLOCATE.

CLI Command Table

LOGINOUT.EXE maps the command table for the process’s CLI. A wuser
can override the default tables with the SPAWN and login qualifier
/TABLES. The usual tables for DCL and MCR are
SYSSSHARE :DCLTABLES.EXE and SYS$SHARE:MCRTABLES.EXE. These tables
contain all the command definitions for the CLI. They can be
replaced or altered with the SET COMMAND utility. Under V4, the
filename of the mapped command tables is in CTLSGT TABLENAME.

CLI Image

LOGINOUT.EXE, using the authorization file record and/or command used
to create the process, determines which command language interpreter
the process will use. It maps the CLI into pageable Pl space.

Under V4, to find out which CLI a process has mapped, type the
following SDA command.

SDA> EXAMINE CTLSGT CLINAME;S8

e. loaded starting at offset 0. That is, the
G CLIMAGE correspond to offset 0 in the linked
£ Is in facility [DCL]. The V3 MCR CLI is in
~The V4 MCR CLI is a layered product, shipped

Files-11 XQP Regions

Under V4 the Files-11 XQP runs in process context and is mapped into
Pl space by EXESPROCSTRT. The location in Fl1BXQP.EXE that

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 188
VIRTUAL ADDRESSES - Pl SPACE 12 June 85

concurrently or if you have too many concurrent F$SEARCH contexts,
you may run out of space in this region and receive the error
RMS-F-DME, dynamic memory exhausted. In extreme cases, there may not
k$>ew an error message, merely that status value set in the DCL symbol
STATUS.

Process Allocation Region

This region is a pageable pool for process-specific data structures.
" Mounted volume 1list entries for privately mounted volumes and the
process logical name table are allocated from it. Under V4, this
address space is sized by SYSBOOT parameter CTLPAGES and created by
EXE$PROCSTRT and is also used for the allocation of process logical
name directories and image control blocks, among other things. Under
V4, the process allocation region can be increased to include a
segment of PO space, if it becomes full and if the image has not
explicitly prohibited this through the Linker option NOPOBUFS.

Blocks not in use are linked in a singly linked list whose head is at
CTL$GQ ALLOCREG. Each block contains the pointer to the next free
block at offset 0 and its own size at offset 4.

There is no useful way to display this region other than through
repeated EXAMINE commands. The DCL command SHOW PROCESS/MEMORY
displays information about this region, its size, number of bytes
free, etc.

Insufficient process allocation region is one possible cause of the
error SYSTEM-F-INSFMEM.

Channel Control Block Table

The pageable Channel Control Block (CCB) Table has room for SYSBOOT
parameter CHANNELCNT CCBs. Whenever a process issues the SASSIGN
system service, a CCB is allocated to describe the state of the
process’s connection to the assigned device unit. The "channel
number" returned from the system service is the positive byte index
which is subtracted from the base of the table to form the address of
h CR:.. Channel 0 is left unassigned for error detection.
ins the positive byte index of the highest channel
in the life of this process.

CCBSB_AMOD equal to 0. An assigned CCB has
-1 plus the access mode from which the channel was

The CCB table is the key to determining what I/O is or has been going
on in the process. An assigned CCB contains the Unit Control Block
(UCB) address of the assigned device unit and an indirect pointer to
any file opened on that channel. CCBSW IOC is the number of I/0

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 187
VIRTUAL ADDRESSES - Pl SPACE 12 June 85

corresponds to the contents of CTL$GL F11XQP is global symbol
XQP QUEUE. Files-1l XQP sources are in facility [F11X].

" EXESPROCSTRT calls the Files-11 XQP’s initialization routine. This
routine creates an impure area and private kernel stack on which the
XQP keeps the context of an I/0 request in progress, and locks the
private kernel stack and some of the Files-11 image pages into the
process working set, making it nonpageable. To determine the
boundaries of the XQP stack, type the following SDA commands.

SDA> EXAM @CTLSGL F11BXQP+2C !low end
SDA> EXAM @CTLSGL F11BXQP+28 thigh end

The SYSSLIBRARY:LIB.MLB macro S$F11BDEF defines symbols for several
variables at the beginning of the data area. A layout of the entire
impure area is in [F11X]FCPDEF, in the macro GLOBAL STORAGE. The
contents of CTL$GL F11BXQP correspond to the location XQP QUEUE in
that layout.

Process I/0 Segment

The pageable process I/0 segment contains RMS data structures
describing "process permanent" files, those which can, and usually
do, remain open across image activations. SYSSINPUT, SYSSOUTPUT, and
files opened through the DCL command OPEN are examples of process
permanent files. These data structures include Internal File Access
Blocks (IFABs), Internal Record Access Blocks (IRABs), Buffer
Descriptor Blocks (BDBs), I/O buffers, etc.

To display the data structures allocated from this region, type the
following SDA commands.

SDA> ! save value of image I/O segment context
DEF SAVE=PIOSGW IIOIMPA

! set symbol to process I/0 segment context
DEF PIOSGN_IIOIMPA=PIOSGW PIOIMPA

! display process I/0 data structures

SHOW PROCESS/RMS

! restore value of image I/O segment context
SDA> DEF PIOSGN_IIOIMPA = SAVE

§I§|§1§|§|§|§l

Pieces of the pracoss I/0 segment that have been used and then
1located are linked together at the listhead PIOSGW PIOIMPA +
PREEPGLH. The portion of the process I/0 segment that has
never been allocated is defined in the process I/0O segment context
area.- Its starting address is in PIO$GW PIOIMPA + IMPSL IOSEGADDR;
its size is in PIO$GW PIOIMPA + IMPSL IOSEGLEN (The IMPS symbols are
defined by SYSSLIBRARY:LIB.MLB macro S$IMPDEF and also in
SYS$SYSTEM: RMSDEF . STB.)

This size of this region is determined by the SYSBOOT parameter
PIOPAGES. If you have too many process permanent files open

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 189
VIRTUAL ADDRESSES — Pl SPACE 12 June 85

requests outstanding on this channel. The outstanding I/O requests
are described by I/0 Request Packets (IRPs) that contain the process
ID of this process in IRPSL PID, the contents of CCBSL UCB in
IRPSL UCB, and the negative "channel number" in IRP$W CHAN.

If a file is open on the channel, CCBSL WIND contains its Window
Control Block (WCB) address. If a section has been mapped on the
channel, CCBSL WIND contains the section table index.

Under V4, a negative value in CCB$B AMOD identifies the single
channel control block reserved for the use of Files-11 XQP.
" (Files-11 XQP alters CCBSL UCB dynamically in order to issue an I/0
request to a particular disk.) Files-11 XQP zeroes CCB$B AMOD to
issue an I/0 request through that CCB; when the request completes,
Files-11 XQP stores a negative value in that field to prevent the

channel from being deassigned by image rundown.

To display the region under V3, select one of the following sets of
SDA commands.

222

tuse this method to scan through CCBs quickly
Sba> ! to locate a particular CCB
READ SYS$SYSTEM:SYSDEF.STB !if you haven’t already
SDA) EXAM @CTLS$GL CCBBASE
SDA> !repeat next command til CCB is all zeroes
SDA> FORMAT .-10/TYP=CCB
SDA> !or use this method to scan through CCBs determining
SDA> ! assigned device for each
SDA> READ SYS$SYSTEM:SYSDEF.STB !if you haven’t already
SDA> DEF X = @CTLSGL_CCBBASE tbase address of CCB table
sm> {next CCB
SDAS> DEF X = X-10 laddress of next CCB
1if X < @CTL$GL CCBBASE- (@CTL$CM CHINDX*10)
SDA> ! then you’re done
FORMAT X/TYP=CCB {display CCB
1if CCBSB_AMOD=0, go to next CCB
DEF UCB=@(X+CCBSL_UCB) laddress of UCB
EXAM @(UCB-I-UCB$L__DDB)+DDB$T_M;8 ldevice name
EXAM UCB + UCBSW UNIT lunit number in low word
!{go to next CCB

84

A28

[EeBE8e

To display this region under V4, type the following SDA command.

F1 findow: To Process Header

All of the process’s header, except for the page table pages, is
double-mapped in Pl space so that kernel mode code can access it
using Pl addresses which are invariant across process outswaps and
inswaps (which can result in allocation of a different system space
balance set slot for the process’s header). This region is not

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 190
VIRTUAL ADDRESSES - Pl SPACE 12 June 85

pageable.
To display these pages, type the following SDA commands.

SDA> FORMAT @CTLSGL_PHD/TYP=PHD!display fixed part of PHD
SDA> SHOW PROCESS/REGISTER tdisplay hardware PCB
SDA> SHOW PROCESS/WORK !display working set list

SDA> SHOW PROCESS/PROC !display section table

" RMS Process Context Aréa

RMS uses this page to locate and control per-process RMS-32 resources
and data structures. It is divided into several areas: an overall
area that includes globals that define process RMS defaults and
listheads for directory caches and free memory; a process I/0 segment
context area; and an image I/0 segment context area. This page is

pageable.

The best way to look at the overall area is by repeated SDA EXAMINE
commands, reading [SYS]SHELL, since the globals are not all
longwords. The globals are defined beginning in the source module- at
subtitle PROCESS I/0 SEGMENT and continue up to PIO$GW_PIOIMPA.

The process and image I/0 segment context areas contain pointers to
some of the data structures in their respective segments that
describe RMS operations.

To display the process and image I/0 segment context areas, type the
following SDA commands.

SDA> READ SYS$SYSTEM:RMSDEF.STB
SDA> FORMAT PIOSGW | PIOIMPA/TYPE=IMP !process I/0 context
§ DA> FORMAT PIOSGW | | IIOIMPA/TYPE=IMP !image I/0 context

RMS Tracepoint Page

This pageable page contains RMS per-process statistics, counters for
the various RMS operations. The symbolic offsets in this page are

als. of the form TPTSL <name> defined in SYS$SYSTEM:RMS.STB. Look
iche at module [RMS]RMODUMMY for the values of these
comments that explain them.

lewlng SDA commands to display this page.

: "RERD srsssysm:ms.sm
SDA> FORMAT PIO$A TRACE/TYP=TPT

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 191
VIRTUAL ADDRESSES - Pl SPACE * 12 June 85

RMS Directory Cache

These pageable pages are used to cache the mappings between a
directory name and the file id of the file that contains that
directory. This caching minimizes Files-11 directory file lookups
for heavily used directory paths.

The format of the cache elements is defined by the macro $DRCDEF,
whose symbols are also in SYS$SYSTEM:RMSDEF.STB. The cache elements
are linked together in a tree structured list whose head is at
PIOSGL DIRCACHE and the next longword. PIOSGL DIRCACHE heads a queue
" of cache elements, each describing a volume, linked together through
DRCSL NXTFLNK and DRCSL NXTBINK. Each of these volume elements
contains a list head (DRCSL_LVLFLNK and DRCSL LVLBLNK) for top level
directories contained on that volume. The cache elements for top
level directories on a particular volume are themselves linked
together through DRCSL NXTFLNK and DRCSL_NXTBLNK, with the element at
the end of the list pointing back to its upper level cache element.
A cache element for a top level directory contains a list head for
the next lower level subdirectory (DRCSL LVLFLNK and DRCSL_LVLBLNK),
and so on.

Unused cache elements are singly linked at PIOSGL DIRCFRLH.

RMS IFAB/IRAB Tables

This page contains the process I/0 Internal File Access Block (IFAB)
and Internal Record Access Block (IRAB) tables. The IFAB/IRAB Table
page is pageable. Whenever the process opens a process permanent
file, an 1IFAB is allocated and an Internal File Identifier (IFI) is
associated with that file. The address of the IFAB is stored in the
IFAB table at the longword entry indexed by the IFI. whenever a
record stream is connected to such a file, an IRAB is allocated and
an Internal Stream Identifier (ISI) is associated with the file. The
address of the IRAB is stored in the IRAB table at the longword entry
indexed by the ISI.

Under V4, these tables each have room for 64 (decimal) entries.
Under V3, these tables each have room for 12 (decimal) entries. An
entry containing a zero indicates that its corresponding identifier
is not in use. This page is displayed as part of the process I/0

g th the SDA commands in the subsection above on Process I/0
RMS ' finds these tables by following the pointers from the
/0 segment context area, PIOSGN PIOIMPA + IMPSL IFABTBL and

Per-Process Common Regions

The four pages beginning at CTL$SA COMMON are for use by VAX-1l BRASIC
to provide "core common" required to pass data when one image chains

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 192
VIRTUAL ADDRESSES - Pl SPACE : 12 June 85

to another. An identical area, negatively displaced, is allocated
for use by customers and CSS. These are pageable.

Compatibility Mode Data Pages

One use of these pageable pages is communication between the initial
service routine for compatibility mode exceptions, EXESCOMPAT, and
any compatibility mode handler declared through $DCLCMH. In most
cases, the declared compatibility mode handler is part of the RSX-11
"AME. EXESCOMPAT saves RO-R5, the compatibility mode exception
parameter, and the faulting PC and PSL in this page.

User Mode Data Page

This page is writable from user mode and pageable. It is wused by
user-mode VMS components. It contains two globals used as pointers
for CLI context and work area.

Security Audit Data Pages

These pages are used by routines in V4 module [SYS]SECAUDIT to
construct security audit journal records and/or OPCOM messages. The
SYSSLIBRARY:LIB.MLB macro $NSAIDTDEF defines the layout of this
region.

Image Activator Context Page
This page contains image activator context that remains after an

image is activated, for use by the SIMGFIX system service and image
rundown. It is pageable.

CLI Data Page .

s CLI data common to both MCR and DCL. It contains,
- name of the CLI image used by the process and the
which the CLI and its conmand tables have been

"at CTLSAG CLIDATA is an area used for communication between
LOGINOUT and the CLI it maps. It contains, for example, information
about the size and location of the CLI symbol table; the file ids,
IFls, ISIs, and channel numbers of SYS$INPUT and SYS$SOUTPUT. It also
contains a pointer to the data structure DCLL uses to describe its
current state. This data structure includes the listheads for local

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 193
VIRTUAL ADDRESSES - Pl SPACE 12 June 85

and global symbols, labels, and available space in the CLI symbol
table pages.

To examine these areas, type the following SDA commands.

SDA> READ SYS$SYSTEM:DCLDEF . STB

SDR> !display CLI-LOGINOUT communication area

smo FORMAT CTLSAG CLIDATA/TYPE=PPD

SDA> !get address of DCL per-process area

SDA) EXAM CTL$AG CLIDATA+PPD$L PRC

SDA> FORMAT @./TYPE=PRC !display DCL per-process area

To see the definitions of these data structures, look at the source
fiche

PPD$ symbols [LOGIN)PPDDEF .MDL
PRCS symbols {DCL]DCLDEF .MDL

Image Activator Scratch Pages

This pageable region is used as local storage by the = SIMGACT system
service. It is used to store the image header of the image being
activated and various RMS data structures for files opened by the
Image Activator.

Debugger Context Pages
[TBS]

Dispatch Vectors For User-Written System Services And Messages

These pages contain the linkages for dispatching into privileged
shareable libraries (user-written system services and rundown
routines) and the linkages for per-process message sections. The
pages are initialized by EXESPROCSTRT. Actual linkages are
established by the image activator and cleared at image rundown. The
. mode dispatchers (EXESCMODKRNL and EXESCMODEXEC) use these
spatch to user-written system services, and EXESRUNDWN to
u«t—-written inner access mode rundown routines.

If an image is currently active in the process, CTL$GL IMGHDRBUF
containg the address of this pageable region. When CTL$GL IMGHDRBUF
is nonzero, this region’s contents are valid. Image rundown clears
CTLSGL IMGHDRBUF. The page contains part of the image header from

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 194
VIRTUAL ADDRESSES - P1 SPACE : 12 June 85

the image and the image file descriptor block (IFD).
To display this region, type the following SDA commands.

SDA> READ SYS$SYSTEM:IMGDEF.STB

SDA> FORMAT @MMGSIMGHDRBUF/TYPE=IHD !display image header
SDA> DEFINE IFD = @(MMGSIMGHDRBUF+4)!address of IFD

SDA> FORMAT IFD/TYPE=IFD tdisplay image file desc.
SDA> !display filename of image being run

SDA> EXAMINE @(IFD+IFD$Q CURPROG+4);@(IFD+IFD$SQ CURPROG)

KRP Lookaside List

Under V4, there is a lookaside list of buffers used by kernel-mode
code. The most common use of these buffers is to hold equivalence
names returned from logical name translations. Formerly, space was
allocated on the kernel stack for this purpose. EXESPROCSTRT
initializes the list. Available blocks are queued to the listhead at
CTL$GL KRPFL and CTLSGL KRPBL. Allocation and deallocation from the
list is done via REMQUE and INSQUE. .

Inner Access Mode Stacks

The supervisor, exec, and kernel mode stack sizes and locations are
fixed for a given release of VMS. Their highest addresses are
recorded in CTLSAL STACK, a longword array indexed by access mode.
Their lowest addresses are recorded in CTLSAL STACKLIM, a similar
array. The hardware PCB of a process whose context has been saved
contains the values of the current pointers into each of these stacks
(PHDSL USP, PHDSL SSP, PHDSL ESP, and PHDSL KSP) The kernel stack is
nonpageable; the others are pageable.

Under V4, the kernel stack can be expanded into several pages of
address space reserved for this purpose. When the kernel stack is
expanded, the low limit stored in CTLSAL STACKLIM is also altered.

Under V4, the Files-11 XQP runs on its own private kernel stack. See
subsection FILES-11 XQP Regions.

To eusmine: thé‘current contents of these stacks in a dump, type the

See the section STACK PATTERNS for hints on interpreting the contents
of the stacks.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 195
VIRTUAL ADDRESSES - P1 SPACE 12 June 85

System Service Vector Pages

Several pages of Pl space double-map the system service vectors. See
the section SYSTEM SERVICE VECTORS for a description of this region.

Pl Pointer Page

This page is defined in ([SYS]SHELL and contains much of the
process-specific data. used by the exec. The page is a permanent
" member of the process working set and thus nonpageable. See section
A.3.1 in the V3 VAX/VMS Internals and Data Structure Manual for a
list of its global variables and their contents.

The best way to look at the Pl pointer page is by repeated SDA
EXAMINE commands, reading [SYS]SHELL, since the globals are not all
longwords. The globals are defined beginning in the source module at
subtitle BODY OF SHELL PROCESS.

Debugger Symbol Table
(TBS]

Hints And Kinks

1. All of the above SDA commands to examine Pl space assume that you
have already established the process to be examined by issuing
one of the following commands.

SDA> SET PROCESS/INDEX=<n>
SDA> SET PROCESS <processname>

2. SDA uses special kernel ASTs to access the P1 space of another
process on the current system. The special kernel AST, running
in the context of the target process, examines its address space
and sends the information back to the process running SDA.

ive the special kernel AST cannot happen if the target

' eing waited at IPL 2. This means that you cannot

process’s context until the process lowers its IPL.

Additional References

V3 VAX/VMS Internals and Data Structures Manual, Section 1.5.2, The
Control Region (Pl Space); Section 26.4, Sizes of Pl Space; Section
A.3, Process Specific Executive Data

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 196
VIRTUAL ADDRESSES - SYSTEM SPACE 9 July 85

VIRTUAL ADDRESSES - SYSTEM SPACE

Since much of system space is variable length, sized by SYSBOOT, and
since many images other than SYS.EXE reside in system space, decoding
a system space address is not trivial.

1.

Determine whether your hypothetical system space address falls
within the range of system space defined in the system under
examination. Find the end of defined system space by typing the
following SDA command.

SDA>EXAM MMGSGL_MAXGPTE

If your hypothetical address is larger than that, it is not a
legal address for this system. Go back to the path of
investigation that led you here and develop another hypothesis.

Using the tables below, determine into which [sub~]region of
system space the address falls. The first table is for V3
systems; the second is for V4 systems. The most likely
possibilities are SYS.EXE, RMS.EXE, nonpaged pool, and the
lookaside lists. If the address does not fall within an image
identified in the table below, go to item 7.

Subtract the starting address of the 1loaded image from your
virtual address to determine the offset of the address into the
loaded image.

Reading the subsections below the table, identify to what VMS
facility the loaded image belongs and where in the linked image
the loaded code begins.

Locate the facility in the source fiche. The last sheet of the
source fiche contains an index to the rest of the fiche.
Maintenance update additions to the source fiche contain an
updated index as the last sheet. The facilities are ordered
alphabetically in the fiche. The fiche for each facility
includes link maps and source listings of its components.

Reading the map for that module, determine the relevant source
module and offset within the source module. Then return to the
path of investigation that led you here.

rtusl address does not fall within the boundaries of a
but is in paged pool, nonpaged pool, or one of the
, then most likely it is the address of a data
~If the virtual address does not fall within pool,
g@ to item 9. The following SDA commands should identify a
- gstructure with a standard dynamic data structure header.

SDA> READ SYS$SYSTEM:SYSDEF.STB !if you haven’t already
SDA> FORMAT <address>

SDA may issue the error

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 197
VIRTUAL ADDRESSES - SYSTEM SPACE 9 July 85

SDA-E-NOSYMBOLS, no "<xxx>" symbols found to format this block

Most likely this means that the block has a standard dynamic data
structure header, but that neither SYS.STB nor SYSDEF.STB
contains symbolic definitions for its fields. If this happens,
you might try to generate the symbols yourself by typing the
following sequence.

SDA>CTRL/Y
S SPAWN
$ MACRO/OBJ=SYSSLOGIN:<xxx>DEF SYS$INPUT: -
'§_ + SYSSLIBRARY:LIB/LIB
$<xxx>DEF GLOBRAL
.END
CTRL/Z
$ LO
$ conT
SDA>READ SYSSLOGIN:<xxx>DEF.OBJ
SDA>FORMAT <address>

8. If the pool virtual address is still not identified, try
examining memory on either side of it. If it appears to be
instructions in nonpaged pool, rather than data, possibily it is
part of an extended AST Control Block allocated for use by
SGETJPI system service, on-line SDA, or DELTA. Return. to the
path of investigation that led you here.

9. 1If the address is not within pool or a loaded image, determine in
which other regions or sub-regions it falls. Read the subsection
under the table that discusses that [sub-]region for further
;nformatlon, and return to the path of investigation that led you

ere.

The following table describes the various "regions" of system space.
In this context, region means a distinct area, with defined
boundaries and characteristics. One example region of system space
is the system image itself. It has "sub-regions", that is, pieces
with defined boundaries and possibly different characteristics,
permamntly resident and pageable, for example. The table is ordered

increasing virtual address of the regions; to the extent possible,
also ordered by increasing virtual address. Each
ribed briefly in the table by its contents and
- SDA commands to determine its boundaries. Use the
systems and the second for V4 systems.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 198
VIRTUAL ADDRESSES - SYSTEM SPACE V3 * 9 July 85

V3 System Space Organization

REGION SDA COMMANDS
PROTECTION
SYS.EXE EVAL G !start address
EVAL MMGSA SYS_END lend of system image
system service EVAL G !start address
vectors URKW EVAL MMGSA ENDVEC lend address
nonpaged exec EVAL MMGSA ENDVEC !start address
data URKW EVAL MMGSFRSTRONLY lend address
nonpaged exec EVAL MMGSFRSTRONLY Istart address
code UR EXAM MMGSGL PGDCOD lend address
pageable exec EXAM MMGSGL_PGDCOD Istart address
UR EVAL MMGSAL PGDCODEN lend address
allocatable system EVAL MMGSA SYS_END linital start address
space EVAL G + @BOOSGL SPTFREL*200 lcurrent low address
EVAL G200 + @BOOSGL SPTFREH*200 !end address
adapter DEF IOSPACE =@(@MMGSGL SBICONF) !define symbol
1/0 space EVAL IOSPACE Istart address

KW EVAL @(QM%L_SBICWFH(@MGL_MWS-MM))+200
lapprox. end address

coninterr sptes EXAM EXESGL RTIMESPT 1if 0, none allocated
KR or KW DEF RTSPTE = G+@(@EXESGL RTBITMAP)*200 !define symbol
EVAL RTSPTE Istart address

EVAL RTSPTE + 200*(@EXE$GL_RTIMESPT)
!end address

system disk READ SYS$SYSTEM:SYSDEF.STB tdefine UCB symbols
SVEN EVAL G+(@(SYSSGL BOOTUCB+UCBSL SVPN)*200) !start address
KW EVAL G200+(@(SYSSGL_BOOTUCB+UCBSL_SVPN)*200) lend address
black hole EVAL G+((@EXESGL SVAPTE-@MMGSGL SPTBASE)*80) !start address
KW EVAL G200+((@EXESGL_SVAPTE-@MMGSGL_SPTBASE)*80) lend addres

' EVAL RMS Istart address

EXAM EXESGL SYSMSG lend address
DEF SYSMSG = @EXESGL_SYSMSG !define symbol
EVAL SYSMSG Istart address
t[{TBS] lend address
device driver SVPNs isee subsection below

KW

VAX/VMS Troubleshooting *INTERNAL USE @E; -

VIRTUAL ADDRESSES - SYSTEM SPACE V3

~ Page 199
9 July 85

RPB DEF RPB = @EXESGL RPB
URKW EVAL RPB
EVAL RPB+200
PFN database DEF PFNDATA = @PFNSA BASE

URKW EVAL PFNDATA

!define symbol
{start address
lend address

!define symbol
{start address

EVAL @PFN$SAB_TYPE+(@MMGSGL MAXPFN-@MMGSGL_MINPFN)

tend address

paged pool DEF PAGEDYN = @MMGSGL PAGEDYN !define symbol

‘ URKW EVAL PAGEDYN Istart address
EVAL PAGEDYN + @SGN$GL_PAGEDYN tend address

nonpaged pool DEF NPAGEDYN = @MMGS$GL NPAGEDYN !define symbol

variable EVAL NPAGEDYN
ERKW EXAM MMGSGL NPAGNEXT

{start address
tactual end address

_ EVAL NPAGEDYN + @SGNS$SGL NPAGEVIR !"virtual" end address

device driver SHOW DEVICE

IDPT is start address

images IDPT plus DPT size is end address

MP.EXE EXAM EXESGL MP

DEF MP = @EXE$GL MP
EVAL MP + (@(MP+8)€10)e-10

SCSLOA. EXAM/INST SCSSACCEPT

DEF SCSLOA = @(SCS$ACCEPT+2)-C
EVAL SCSLOA

1if 0, then not loaded
! else start address
!define symbol

lend address

1if JMP @4EXESLOAD ERROR,
! then SCS is not loaded
!define symbol
Istart address

EVAL SCSLOA + (@(SCSLOA+8)€10)e-10 !end address

SYSLOAxxx .EXE
EXAM M$GB__CHJTYPE
DEF SYSLOA = MCHK-2BC
DEF SYSLOA = MCHK-2C8
DEF SYSLOA = MCHK-DO
EVAL SYSLOA
EVAL SYSLOA + @SYSLOA

TTDRIVER.EXE EVAL TTDRIVER

SYS$SYSTEM: SYSDEF .STB
EVAL IOVEC

CI microcode EXAM SCS$SGL MCADR
EVAL @. + (200*12)

tread cpu type low byte
'if cpu = 3 = 730/725

1if cpu = 2 = 750

{if cpu = 1 = 780,/785/782
Istart address

lend address

Istart address

EVAL TTDRIVER+(@(TTDRIVER+8)€10)@-10 !end address

lget RPB symbols

'DEF IOVEC = @(@EXESGL RPB +RPBSL IOVEC) !define symbol

Istart address

EVAL IOVEC + @(@EXESGL RPB+RPBSL IOVECSZ)
Tend address

t{start address
tend address

LRP list DEF LRPLIST = @IOCSGL LRPSPLIT

!define symbol

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 200

VIRTUAL ADDRESSES

ERKW

IRP list
ERKW

SRP list
' ERKW

null access page

— SYSTEM SPACE V3 9 July 85
EVAL LRPLIST Istart address
EXAM MMGSGL LRPNEXT lapprox. end address

EVAL LRPLIST + (@SGNSGL_LRPCNTV*@IOCSGL LRPSIZE)
{"virtual" end address

DEF IRPLIST = @EXESGL SPLITADR !define symbol

EVAL IRPLIST Istart address

EXAM MMGSGL_IRPNEXT lapprox. end address

EVAL IRPLIST + (@SGNSGL_IRPCNTV*AQ0) !"virtual" end address

DEF SRPLIST = @IOCSGL_SRPSPLIT !define symbol

EVAL SRPLIST Istart address

EXAM MMGSGL_SRPNEXT lapprox. end address

EVAL SRPLIST + (@SGNSGL_SRPCNTV*@SGNSGL SRPSIZE)
!"virtual" end address

EVAL QEXESGL INTSTKIM - 200 {start address

NA EXAM EXE$GL INTSTKLM lend address
interrupt stack EXAM E)(E$GL_INTSTKIM !low address (newest stack)
ERKW EXAM EXESGL_INTSTK thigh address (oldest stack
null access page EXAM EXESGL INTSTK o !start address
EVAL @EXESGL INTSTK+200 lend address
System Control DEF SCB = @EXESGL_SCB !define symbol
Block ERRW EVAL SCB Istart address
EXAM SWP$GL_BALBASE lend address
balance set slots DEF BALBASE = @SWPSGL BALBASE !define symbol
ERKW EVAL BALBASE Istart address
EVAL BALBASE + (@SGN$GL_BALSETCT*@SWP$GL_BSLOTSZ*200)
lend address
system header DEF SYSPHD = @MMGSGL SYSPHD !define symbol
ERKW EVAL SYSPHD Istart address
EVAL SYSPHD + @MMGSGL_SYSPHDLN !end address
system page table DEF SPT = @MMGSGL_SPTBASE tdefine symbol
ERKW EVAL SPT Istart address
EXAM MMGSGL_GPTE lend address
global p able DEF GPT = @MMGSGL GPTE tdefine symbol
| EVAL GPT Istart address

EXAM MMG$GL_MAXGPTE lend address

VAX/VMS Troubleshooting

INTERNAL USE ONLY

VIRTUAL ADDRESSES - SYSTEM SPACE V4

V4 System Space Organization

REGION SDA COMMANDS
PROTECTION
SYS.EXE EVAL G

EVAL MMGSA SYS END

system service EVAL G

vectors UR

EVAL MMGSA_ENDVEC

nonpaged exec EVAL MMG$SA ENDVEC
data URKW/UREW EVAL MMGSFRSTRONLY

" nonpaged UR EVAL MMG$FRSTRONLY

exec code

EXAM MMGSGL_PGDCOD

Istart address
lend of system image

tstart address
tend address

{start address
lend address

!start address
tend address

pageable EXAM MMGSGL PGDCOD {start address
exec UR EVAL MMGSAL PGDCODEN lend address
allocatable EVAL MMGSA SYS END linital start address
system space EVAL G + @BOOSGL SPTFREL*200 tcurrent low address
EVAL G200 + @BOOSGL_SPTFREH*200- !end address
adapter DEF IOSPACE =@€MMGSGL SBICONF !define symbol
I/0 space EVAL IOSPACE Istart address
Kw EVAL @(@WGL_SBICGWH(@MGL_N(MS—I)*U)+200

coninterr sptes EXAM EXESGL RTIMESPT
KR or KW DEF RTSPTE = G+@(@EXESGL_RTBITMAP)*200 !define symbol

system disk
SVPN
Kw

mount verify
page KW

EVAL RTSPTE

lapprox. end address
1if 0, none allocated

{start address

EVAL RTSPTE + 200*(@EXESGL_RTIMESPT)

READ SYS$SYSTEM:SYSDEF.STB

tend address

{define UCB symbols

EVAL G+(@(SYS$GL BOOTUCB+UCBSL_SVPN)*200) !start address
EVAL G200+(@(SYSSGL_BOOTUCB+UCBSL SVPN)*200) tend address

EVAL G+((@EXESGL SVAPTE-E@MMGSGL SPTBASE)*80) !start address

EVAL G200+((@EXESGL SVAPTE~E@MMGS(

EXAM EXESGL ERASEPB
EVAL @EXESGL ERASEPB+200

EXAM EXESGL_ERASEPPT
EVAL @EXESGL ERASEPPT+200

EVAL RMS
EXAM EXESGL_SYSMSG

DEF SYSMSG = @EXESGL SYSMSG
EVAL SYSMSG

-!['IBS]

GL_SPTBASE)*80) !end addres

Istart address
lend address

!start address
lend address

tstart address
lend address

!define symbol

Istart address
lend address

VAX/VMS Troubleshooting *INTERNAL USE ONLY*
VIRTUAL ADDRESSES - SYSTEM SPACE V4

MSCP . EXE EVAL MSCP
EVAL MSCP + @MSCP

device driver SVPNs

Page 202
9 July 85

tif 0, then not loaded
! else, start address
lend address

!see subsection below

KW
RPB DEF RPB = @EXESGL_RPB !define symbol
URKW EVAL RPB Istart address
EVAL RPB+200 tend address
PFN database DEF PFNDATA = @PFNSA BASE !define symbol
ERKW EVAL PFNDATA Istart address
EVAL @PFNSAB TYPE+(@MMGSGL MAXPFN-@MMGSGL MINPFN)
lend address
paged pool DEF PAGEDYN = @MMGSGL PAGEDYN !define symbol
EVAL PAGEDYN Istart address
EVAL PAGEDYN + @SGNSGL_PAGEDYN !end address
nonpaged pool DEF NPAGEDYN = @MMGSGL NPAGEDYN !define symbol
variable EVAL NPAGEDYN Istart address :

ERKW EXAM MMGSGL NPAGNEXT

factual end address

EVAL NPAGEDYN + @SGNS$GL NPAGEVIR !"virtual" end address

device driver SHOW DEVICE

images
MP.EXE EVAL MP
EVAL MP + @(MP+4)
VAXEMUL.EXE EXAM MMGS$GL VAXEMUL BASE
EVAL €.+ @(e.)
FPEMUL.EXE EXAM MMG$GL FPEMUL BASE

EVAL €.+ @(e.)

= EVAL CLUSTRLOA+380

IDPT is start address

IDPT plus DPT size is end address

1if 0, then not loaded
! else, start address
lend address

1if 0, then not loaded
! else, start address
lend address

1if 0, then not loaded
lelse, start address
lend address

1if 0, then not loaded
! else, load address
Istart address ; V4.0

EVAL CLUSTRLOA+380+@(CLUSTRLOA+380)!end address

SYSLOAxxx .EXE EXAM EXESGB CPUTYPE
EXAM MMGSGL SYSLOA BASE
DEF SYSLOA = MCHK-18
DEF SYSLOA = MCHK-CEQ
DEF SYSLOA = MCHK-A74
DEF SYSLOA = MCHK-18
DEF SYSLOA = MCHK-A6C

{read cpu type low byte
{load address
lcpu=1=780,/2/5 V4.0-V4.2
lcpu=2=750 V4.0~V4.2
{cpu=3=730 v4.0-V4.2
lcpu=4=VAX 8600 V4.1-v4.2
{cpu=7=uVAX I V4.1-V4.2

VAX/VMS Troubleshooting *INTERNAL USE ONLY* ‘ Page 203

VIRTUAL ADDRESSES - SYSTEM SPACE V4 9 July 85
DEF SYSLOA = MCHK-AEC lcpu=T=WS I V4.1-V4.2
DEF SYSLOA = MCHK-C44 lcpu=8=uVAX II V4.2
DEF SYSLOA = MCHK-CC4 lcpu=8=WS II V4.2
EVAL SYSLOA !start address
EVAL SYSLOA + (@(SYSLOA+8)€10)e-10
lend address
SCSLOA.EXE EVAL SCSLOA tif 0, not loaded
! else, load address
EVAL SCSLOA+2B0 {start address; V4.0
EVAL SCSLOA+2B0+@(SCSLOA+2B0) lend address; v4.0
TTDRIVER.EXE EVAL TTDRIVER Istart address
EVAL TTDRIVER+(@(TTDRIVER+8)@10)€@-10 !end address
system disk READ SYS$SYSTEM:SYSDEF.STB !get RPB symbols
boot driver DEF IOVEC = @(@EXESGL RPB +RPBSL_IOVEC) !define symbol
EVAL IOVEC Tstart address
EVAL IOVEC+@(@EXE$GL RPB+RPB$L IOVECSZ)
lend address
CI microcode EXAM SCS$SGL_MCADR 1if 0, not loaded
) ! else, load address
EVAL @. + (200*12) lend address
LRP list DEF LRPLIST = @IOC$GL_LRPSPLIT !define synbol
ERKW EVAL LRPLIST Istart address
EXAM MMGSGL_LRPNEXT lapprox. end address

EVAL LRPLIST + (@SG‘I$GL LRPCNTV*@IOCSGL LRPSIZE)
{"virtual" end address

IRP list DEF IRPLIST = @EXE$GL__SPLI‘1‘ADR !define symbol
ERKW EVAL IRPLIST !start address
'EXAM MMGSGL_IRPNEXT lapprox. end address
EVAL IRPLIST + (@SGNSGL_IRPCNTV*D0) !"virtual" end address
SRP list DEF SRPLIST = @IOC$GL__SRPS?LIT {define symbol
ERKW EVAL SRPLIST Istart address
EXAM MMGSGL_SRPNEXT lapprox. end address

EVAL SRPLIST + (@SCN$GL SRPCNTV*@SGNSGL SRPSIZE)
. I"virtual" end address

" EVAL @EXESGL INTSTKLM - 200 istart address

| f EXAM EXESGL _INTSTKLM tend address
interrupt stack EXAM EXESGL INTSTKLM tlow address (newest stack)
ERKW EXAM EXESGL_INTSTK thigh address (oldest stack
null access page EXAM EXESGL INTSTK Istart address
NA EVAL @EXESGL INTSTK+200 . lend address
System Control EXAM EXESGL SCB Istart address

Block ERKW EXAM SWP$GL:BALBASE lend address

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 204
VIRTUAL ADDRESSES - SYSTEM SPACE V4 9 July 85

balance set slots DEF BALBASE = @SWPSGL_BALBASE !define symbol
ERKW EVAL BALBASE {start address
EVAL BALBASE + (@SGN$GL BALSETCT*@SWP$GL BSLOTSZ*200)
lend address

system header EXAM MMGSGL _SYSPHD !start address

ERKW EVAL @MMGSGL SYSPHD + @MMGSGL SYSPHDLN !end address
system page table EXAM MMGSGL SPTBASE Istart address

ERKW EXAM MMGSGL GPTE lend address
global page table EXAM MMGSGL GPTE !start address

URKW EXAM MMG$GL MAXGPTE tend address

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 205
VIRTUAL ADDRESSES - SYSTEM SPACE 9 July 85

SYS .EXE

SYS.EXE is, of course, the system image. It contains most of the
system services, the software interrupt service routines, scheduling
and memory management code, etc. Its first several pages contain the
system service vectors. For more information on them, see the
section SYSTEM SERVICE VECTORS.

The nonpaged exec code sub-region has different protections at
different times. Initially, its protection prohibits any write.
-However, when a fatal bugcheck occurs, nonpaged exec code is made
writable so that the fatal bugcheck overlay can overwrite it. Thus,
if you look at the System Page Table in a crash dump, the protection
in the SPTEs that map the nonpageable exec code is URKW. Also, the
protection of this sub~region is changed temporarily by XDELTA so
that breakpoints can be set and other modifications made.

Between the end of the pageable exec and MMGSA SYS END is virtual
address space used by the INIT module and XDELTA. INIT executes
during system initialization. At its completion, it releases the
physical pages it occupied (and those of XDELTA, if XDELTA is not to
remain resident) to the free list. The SPTEs which mapped it have no
further use and are left invalid. : :

SYS.EXE modules are in the facility [SYS]. The location in SYS.EXE
that corresponds to the start of the loaded image is 80000000.

Allocatable System Space

During system initialization, a number of system page table entries
(SPTEs) are reserved for variable allocation of system address space.
These allocatable SPTEs begin at the end of the address space used to
map SYS.EXE. RMS, connect to interrupt driver SPTEs, and I/0
adapters’ physical register spaces are among the things mapped in
this region.

The start and end sytem virtual page numbers (SVPN) available for

allocation are recorded in BOOSGL_SPTFREL and BOOSGL_SPTFREH. As

SPTEs are allocated from the low end, BOOSGL SPTFREL is updated to

reflect the new low SVPN. Allocation is no longer possible when

BOOSGL: SPTREL and BOOSGL_SPTFREH are equal. Allocation from these

SPTES . 'aiqemrally permanent and is usually done through invoking the
OC$ALOSPT

Adapter I/O Space

During system initialization VAX/VMS determines what kind of adapter
or controller, if any, is present at each backplane interface, or
nexus. A nexus is a physical connection to the backplane which
transmits and responds to commands. Each nexus has a unique numbet

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 206
VIRTUAL ADDRESSES - SYSTEM SPACE 9 July 85

used for identification and for priority arbitration. Each nexus
also is assigned a range of physical address space for device control
registers. See the VAX Hardware Handbook for a brief description of
the physical address space layouts for each processor. Additionally,
VAX I/0 space includes an assignment of 128K words for the entire
UNIBUS address space of each UNIBUS the processor supports. After
system initialization code turns on memory management, access to
nexus registers and UNIBUS address space requires that page table
entries contain page frame numbers (PFN) corresponding to these
physical VAX I1/0 addresses.

VAX/VMS allocates system virtual address space for each nexus present
in the hardware configuration to allow virtual access to the nexus’s
registers. The physical address range reserved for each nexus is
considerably larger than current nexus use. VMS maps only the
portion of the range that corresponds to actual adapter registers.
VMS maps only the I1/0 portion of the UNIBUS address range to enable
access to UNIBUS peripherals’ registers. The table below 1lists how
many pages are allocated for each adapter type.

ADAPTER TYPE NUMBER OF PAGES (DECIMAL)

local memory controller 1
multiport memory controller 1
MASSBUS adapter 8
UNIBUS adapter 24
Adapter registers (8)
UNIBUS I/0 space (16)
DR780 or DR750 4
C1780 or CI750 8

In addition, one page of system address space is allocated for each
nexus without a controller or adapter to allow for an adapter’s being
brought on line subsequent to system initialization. Currently, this
mechanism is used only for MA780s.

Two arrays are allocated from nonpaged pool and filled in to record
the nexus present on the system and the starting system virtual
address space for the nexus registers. The global symbol
EXESGL NUMNEXUS contains the number of entries in each of the two
arrays. The global symbol MMGSGL SBICONF contains the address of a
longword array of starting system virtual addresses.

Although only VAX-11,/780s have SBIs, all VAXen have nexus and
adapters whose registers must be accessed virtually during VMS’s
operations. The name is historical, reflecting hardware on the first
VAX, the VAX-11,/780.

The global symbol EXESGL CONFREG contains the address of a byte array
of nexus device types. The values for the different nexus device
types are defined by the macro $NDTDEF in SYSSLIBRARY:LIB.MLB. To
obtain the adapter type and starting virtual address of a particular
nexus, use the nexus number as a subscript or index into these two
arrays.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 207
VIRTUAL ADDRESSES -~ SYSTEM SPACE 9 July 85

CONINTERR SPTEsS

If the SYSBOOT parameter REALTIME SP'rEs is nonzero, SPTEs are
allocated for the Connect to Interrupt driver’s use in double-mapping
user supplied code and buffers into system space. The protection on
the pages is either KW or KR, depending on whether or not the user’s
QIO request is IO$ CONINTREAD. A data structure is allocated in
nonpaged pool to describe which SPTEs are available and which are in
use. The data structure offsets are defined with SYSSLIBRARY:LIB.MLB
macro SRBMDEF. EXESGL RTBITMAP contains the starting address of the
-data structure.

4 N
T st

RBMSL_STARTVEN

RBMSL_FREECOUNT
|RBMSB_TYPE| RBMSW SIZE
RBMSL BITMAP

+

RBM$L STARTVEN contams the starting SPTE number. RBMSL FREECOUNT
contains the number of CONINTERR SPTEs still available for
allocation. The bitmap has 1 bit for each SPTE, with the bit clear
to indicate that the SPTE is in use. If you suspect a problem
related to the Connect to Interrupt driver or user supplied code
mapped into this virtual address range, read the driver module
[DRIVER JCONINTERR, the user program that issues $QIOs to this driver,
and the V3 VAX/VMS Real-Time User’s Guide, Chapter 4.

Black Hole Page

The black hole page consists of a physical page of memory (whose PFN
is recorded in EXESGL BLAKHOLE). Under V3, an SPTE is also allocated
to map the black hole page. When a UNIBUS adapter powers down, all
SPTEs that mapped adapter register and UNIBUS I/O space are modified
to point to the black hole page in order to prevent drivers’ causing
machine checks by referencing the no-longer accessible adapter I/0
space. The power failure of a MASSBUS adapter results in similar
use. Under V3, the black hole page is also used as a one page buffer
for mount verification’s use in reading a disk’s home block. With
v4, mr&u pimical page is used for this purpose.

cos for the black hole page are six thousand light years
away the direction of Cygnus X-1.

Mount Verify Page

This page is a buffer for mount verification’s use in reading a
disk’s home block.

VAX/VMS Troubleshooting *INTERNAL USE QNLY* Page 208
VIRTUAL ADDRESSES - SYSTEM SPACE 9 July 85

Erase Pattern Buffer

During system initialization, the erase pattern buffer is allocated
and initialized as a page of binary zeros. The contents of the
buffer are the default source for overwriting the contents of files
marked "erase on delete".

Erase Pattern Pseudo Page Table

During system initialization, the erase pattern pseudo page table is
allocated and initialized as 128 page table entries, each of which
maps to the physical page containing the erase pattern buffer. The
page table is used to enable DMA transfer of potentially 128 copies
of the erase pattern buffer to overwrite a large piece of a file in
one I/0 request.

RMS.EXE

The RMS image contains the procedures that make up the Record
Management Services. During system initialization, system address
space is allocated to map RMS.EXE as a pageable section. Its
starting address is stored in MMGSGL RMSBASE and in CTL$GL RMSBASE.
SDA automatically defines the symbol "RMS to be the contents of
MMGSGL _RMSBASE. Since the system message file is mapped immediately
above RMS, the simplest way to determine RMS'’s end boundary is as the
start of the message file.

Most RMS modules are in the facility [RMS]; the exceptions are
[INSTAL] INSKFSCAN, [VMSLIB JMATCHNAME, and [SYS JRMSVECTOR. The
location in RMS.EXE that corresponds to the start of the loaded image
and to SDA symbol RMS is local symbol RMSSDISPATCH in module
[SYS]RMSVECTOR. For debugging RMS problems there is a symbol table,
SYS$SYSTEM:RMSDEF.STB, which contains symbol definitions for user RMS
data structures (e.g., FAB) and RMS status codes.

If you are debugging a problem involving RMS, type the following SDA
command to get addresses in the loaded image resolved to RMS.EXE

symbols.
SDA> READ /RELOCATE = @MMGSGL RMSBASE SYS$SYSTEM:RMS.STB

SYSMSG.EXE -

During system initialization, system address space is allocated to
map SYSMSG.EXE as a pageable section. Its starting address is stored
in EXESGL _SYSMSG. SYSMSG.EXE is a shareable image consisting
entirely of data, the standard system message text. The $GETMSG

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 209
VIRTUAL ADDRESSES - SYSTEM SPACE 9 July 85

system service uses this section to translate message identification
codes to message text.

Device Driver SVPNs

SPTEs needed by VMS direct I/0 device drivers are also allocated from
this region. Typically, a disk driver uses its SPTE to make a
virtual mapping to a process buffer page to which ECC correction must
-be applied. Determining all the SPTEs allocated to DMA device
drivers requires looking through the I/O data space for DMA device
units and examining UCBSL _SVPN for each one. UCBSL SVPN records the
system virtual page number allocated to that device unit.

MSCP.EXE

MSCP.EXE, the MSCP server for local disks, is loaded into this region
as a result of issuing the MSCP command to the SYSGEN image. It
accepts as input MSCP command packets received from other cluster
nodes and translates them into the corresponding QIO requests' to
local disks. MSCP.EXE returns MSCP status and data to the requesting
node.

MSCP modules are in facility [MSCP]. The location in MSCP.EXE that
corresponds to the start of the loaded image is offset 0 in the
image. Its starting address is stored in SCS$GL MSCP. V4 SDA
automatically defines the symbol MSCP to be the contents of
SCS$GL_MSCP.

Restart Parameter Block (RPB)

The RPB is a data structure that is physically and virtually based;
it is not pageable. CPU console restart code locates it in order to
restart a system following a powerfail or other halt. The RPB also
communicates information between the various steps in system
initialization. To display it, type the following SDA commands.

A> FORMAT @EXESGL_RPB/TYPE=RPB !necessary to specify type

Page Frame Number (PFN) Data Base

The PFN data base, which is nonpageable, is used to record the
current state of any pages of physical memory whose virtual state can
change. It is actually eight different arrays, each of which is
indexed by page frame number. The highest valid subscript into those
arrays is the contents of MMGSGL MAXPFN. If MMGSGL MINPFN is

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 210
VIRTUAL ADDRESSES - SYSTEM SPACE 9 July 85

nonzero, its contents are the lowest valid subscript; otherwise, the
lowest valid subscript is 1.

The 8 longwords begmnmg at PFNSA BASE contain the starting
addresses of the various PFN arrays. You can use the first SDA
command shown below to obtain the information for a specific physical
page; the second command displays the entire data base; and the
others display pages on the selected list

SDA> SHOW PFN DATA <pfn> !show data for page <pfn>

SDA> SHOW PFN DATA/SYSTEM !show entire PFN data base

SDA> SHOW PFN DATA/FREE !show PFN data for free list pages
SDA> SHOW PFN_DATA/MODIFY !show PFN data for mod. list pages

SDA> SHOW PFN_DATA/BAD !show PFN data for bad list pages

Paged Pool

Paged pool is pageable dynamic data storage. It is typically used
for logical name blocks (LOGs), mount list entries (MTLs), global
section descriptors (GSDs), known file headers (KFHs), known file
entries (KFIs), and, under V4, process quota blocks (PQBS).

To display allocation from this region, type either of the following
SDA commands.

SDA> SHOW POOL/PAGED !display data structure contents
SDA> SHOW POOL/PAGED/HEADER !display only structure headers

Blocks not in use are linked in a singly linked list whose head is at
EXESGL PAGED. Each block contains the pointer to the next free block
at offset 0 and its own size at offset 4.

Under V4, PQBs, initially allocated from paged pool, are deallocated
to a lookaside list whose head is at GL_PQBFL. Process creation
code attempts to allocate a PQB through removing an entry from this
list, as a faster alternative to general pool allocation.

To see the state of paged pool on a running system, type the DCL
command SHOW MEMORY.

Insuff client pagnd pool is one possible cause of the error

ool Variable Length List

The nonpaged pool variable length 1list is used for allocating
nonpaged pool that doesn’t fit the allocation constraints of any of
the lookaside lists. Typically, the larger unit control blocks
(UCBs) and loaded images such as device drivers are allocated here.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 211
VIRTUAL ADDRESSES - SYSTEM SPACE 9 July 85

. Nonpaged pool is extended dynamically as needed, up to a total of
SYSBOOT parameter SGNSGL NPAGEVIR bytes. MMGSGL NPAGNEXT contains
the start address of the extensible area. That is, pool addresses
lower than this are valid.

To display the allocation from this region, type either of the
following SDA commands. ‘

SDA> SHOW POOL/NONPAGED !display data structure contents
SDA> SHOW POOL/NONPAGED/HEADER !display structure headers

Blocks not in use are linked in a singly linked list whose head is at
EXESGL NONPAGED + 4. Each block contains the pointer to the next
free block at offset 0 and its own size at offset 4.

To see the state of nonpaged pool on a running system, type the DCL
command SHOW MEMORY.

Insufficient nonpaged pool is one possible cause of the error
SYSTEM-F-INSFMEM. Dynamically loaded images are usually placed in
the nonpaged pool variable list, although if they are smaller than an
LRP, they may be 1loaded into an allocated LRP. The following
subsections describe the various images that are loaded dynamically
into nonpaged pool.

Device Driver Images

Most VMS device drivers are loaded dynamically into nonpaged pool.
The initial output (titled DDB list) of the SDA SHOW DEVICE command
shows the starting address (DPT) and size (DPT size) of most loaded
drivers. SDA omits the terminal class driver, TTDRIVER, from its
display, unless virtual terminals are enabled, but does define a
symbol TTDRIVER as equal to the contents of 'I'I‘Y$GL DPT. VMS driver
images have the same filenames as those displayed in SDA’s SHOW
DEVICE output. Most driver modules are part of facility [DRIVER].
The exceptions are

[TTDRVR]DZDRIVER, TTDRIVER, YCDRIVER
[TMDRVR]TMDRIVER (V3 only)

[NETACP NDDRIVER, NETDRIVER
[SYSIMBDRIVER, NLDRIVER
tm]omrvm

Driver images are linked to a base of 0 with $$$105 PROLOGUE as the
first PSECT. This PSECT is defined through the invocation of the
DPTAB macro which also names the driver and builds a header for the
Driver Prologue Table (DPT) dynamic data structure. The loaded
driver image begins with PSECT $$5105 PROLOGUE and its DPT header.
All loaded drivers are queued together through the DPT header’s first
two longwords. The listhead for the queue of loaded drivers is at
I0CSGL_DPTLIST and the following longword. SDA defines a symbol for
each loaded driver it finds, using the name in the DPT. For example,

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 212
VIRTUAL ADDRESSES - SYSTEM SPACE 9 July 85

SDA’s symbol LPDRIVER would correspond to offset 0 in PSECT
$$$105_PROL%UE in [DRIVER]LPDRIVER.

MP.EXE

VAX-11/782 support is loaded into nonpaged pool on a suitable
configuration in response to the START/CPU DCL command. The nonpaged
pool area includes data storage, the attached processor’s interrupt
.stack, code executed by the attached processor, and code executed by
the primary processor. If you are debugging a 782 crash, read the MP
symbol table with the following SDA command to get addresses in the
loaded image resolved to MP.EXE symbols.

SDA> READ /RELOCATE = @EXESGL MP SYS$SYSTEM:MP.STB

MP modules are in facility ([MP]. The location in MP.EXE that
corresponds to the start of the loaded image is global symbol
MPS$BEGIN. Its starting address is stored in EXESGL MP. V4 SDA
automatically defines the symbol MP to be the contents of EXE$GL MP.

VAXEMUL . EXE

VAXEMUL.EXE is loaded into nonpaged pool during system initialization
on MicrovAX CPUs to emulate VAX instructions not supported by
MicroVAX microcode, such as the character istructions, decimal
instructions, and EDITPC. Two vectors in the System Control Block,
hex offsets C8 and CC, point to exception service routines within the
loaded code. The protection on the pages containing this code is
altered to be URKW, to allow execution of the code from all access
modes.

The VAXEMUL.EXE image is built as part of the [EMULAT] facility. The
location in VAXEMUL.EXE that corresponds to the start of the loaded
image is global symbol VAX$BEGIN.

FPEMUL . EXE

FPM EXE is loaded into nonpaged pool during system initialization
on - VAX CPU that doesn’t have microcode support for any class of
floating point instructions. The Opcode Reserved to Digital vector
in the System Control Block, hex offset 10, points to an exception
service routine within the loaded code. FPEMUL’S service routine
transfers back to EXESOPCDEC any opcode reserved to Digital
exceptions with opcodes other than the floating point ones it
emulates. The protection on the pages containing this code is
altered to be URKW, to allow execution of the code from all access
modes.

VAX,VMS Troubleshooting *INTERNAL USE ONLY* Page 213
VIRTUAL ADDRESSES - SYSTEM SPACE 9 July 85

The FPEMUL.EXE image is built as part of the [EMULAT] facility. The
location in FPEMUL.EXE that corresponds to the start of the loaded
image is global symbol FPSSBEGIN.

CLUSTRLOA . EXE

CLUSTRLOA.EXE, a module containing cluster connection management and
distributed lock management code, is loaded into nonpaged pool on all
_the nodes of a VMS cluster. That CLUSTRLOA.EXE is loaded implies
that SCSLOA.EXE is, as well. The array beginning at system global
CLUSAL LOAVEC defines CLUSTRLOA globals to the rest of SYS.EXE and to
other modules linked against SYS.STB. Most of these CLUSTRLOA
globals are the addresses of JMP instructions. Before CLUSTRLOA.EXE
is loaded, the target of the JMP instructions is EXESLOAD ERROR.
After CLUSTRLOA.EXE is loaded, the JMP destinations are altered to
cause dispatch into the loaded code, and CLUSGL LOA ADDR contains the
address at which CLUSTRLOA is loaded. After CLUSTRLOA'S
initialization is complete, CLUSTRLOA deallocates its initialization
code. Thus, the contents of CLUSGL LOA ADDR no longer point to the
beginning of the loaded code.

The CLUSTRLOA.EXE image is built as part of the [SYSLOA] facility.
The location in CLUSTRLOA.EXE that corresponds to the contents of
CLUSGL_LOA ADDR is offset 0. V4 SDA automatically defines the symbol
CLUSTRLOA to be the contents of CLUSGL LOA ADDR.

SCSLOA.EXE

SCSLOA.EXE, a module containing port-independent System Communication
Services (SCS) routines, is loaded into nonpaged pool on systems
which use the disk class, tape class, or DECnet class drivers. The
array beginning at system global SCSSAL LOAVEC defines SCS globals to
the rest of SYS.EXE and to other modules linked against SYS.STB.
Most of these SCS globals are the addresses of JMP instructions.
Before SCSLOA.EXE is loaded, the target of the JMP instructions is
EXESLOAD ERROR. After SCSLOA.EXE is loaded, the JMP destinations are
altered to cause dispatch into the loaded code. SCS$GA EXISTS
contains the address at which SCSLOA is loaded. V4 SDA automatically
defines the 1 SCSLOA to be the contents of SCS$GA EXISTS. After
SCSLOA'S8 ~ initialization is complete, SCSLOA deallocates its
initialization code. Thus, SCS$SGA EXISTS no longer points to the
beginning of the loaded code.

The SCSLOA.EXE image is built as part of the [SYSLOA] facility. The
location in SCSLOA.EXE that corresponds to the contents of
SCSSGA_EXISTS is offset 0. For debugging, there is a symbol table,
SYS$SYSTEM:SCSDEF.STB, which contains symbol definitions for all the
SCS data structures.

VAX/VMS Troubleshooting *INTERNAL USE QNLY* Page 214
VIRTUAL ADDRESSES - SYSTEM SPACE 9 July 85

SYSLOAXxX .EXE

Cpu-specific support is loaded into nonpaged pool during system
initialization. Cpu-specific support consists of routines such as
the machine check exception service routine, the service routines for
the cpu-specific interrupts, and a routine to purge UNIBUS adapter
buffered datapaths. [SYSLOA], the facility for these modules,
contains sources for one image for each cpu type. The image name is
of the form SYSLOAxxx.EXE, where xxx designates the cpu type.

CpPU IMAGE NAME

MicroVax I SYSLOAUV] .EXE
MicroVaAX I SYSLOAUV?2 .EXE
VAX-11/730 SYSLOA730.EXE
VAX-11,/750 SYSLOA750.EXE
VAX-11,/780 SYSLOA780.EXE
VAX-11,/785 SYSLOA780.EXE
VAX 8600 SYSLOA790 .EXE
VAXstation I SYSLOAWS1.EXE
VAXstation II SYSLOAWSZ2.EXE

The array beginning at SYS.EXE global EXESAL LOAVEC defines SYSLOA
globals to the rest of SYS.EXE and to other modules linked against
SYS.STB. Most of these SYSLOA globals are the addresses of JMP
instructions. Before SYSLOAxxx.EXE is loaded, the target of the JMP
instructions is EXESLOAD ERROR. After SYSLOAxxx.EXE is loaded, the
JMP destinations are altered to cause dispatch into the loaded code.
Under V4 MMGSGL_SYSLOA BASE contains the address at which the SYSLOA
image is loaded. Offset 0 in the SYSLOAxxx.EXE images corresponds to
the contents of MMGSGL SYSLOA BASE. After SYSLOA’'s initialization is
complete, SYSLOA deallocates its initialization code. Thus,
MMGSGL_SYSLOA BASE no longer points to the beginning of the loaded
code.

Global symbol EXESLOAD SIZE in the V3 SYSLOAxxx.EXE images
corresponds to the start of the loaded images.

TTDRIVER.EXE

TTIDRIVER.EXE, the terminal class driver, does device-independent
processing of terminal I/0. SYSBOOT builds the name of the terminal
class driver image using the parameter TTY CLASSNAME, the default
contents of which are "TT". SYSBOOT then locates the class driver
and loads it into nonpaged pool. Under V4, the SYSINIT process loads
OPDRIVER, the operator console port driver, and invokes routines
which establish connections between OPDRIVER and the terminal class
driver. SYSGEN builds the I/O data base for a terminal controller,
loads its terminal port driver, and invokes driver initialization
routines which establish connections between the terminal port and
class drivers.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 215
VIRTUAL ADDRESSES - SYSTEM SPACE 9 July 85

TTDRIVER.EXE modules are in facility [TIDRVR]. The location in
TTDRIVER.EXE that corresponds to the start of the loaded image and to
SDA symbol TTDRIVER is global symbol TTSDPT.

System Disk Boot Driver

The system disk boot driver is a minimal driver used during system
initialization to read images off the system disk and during fatal
-bugcheck processing to write the contents of physical memory to the
crashdump file. It consists of some device-independent code that
interprets $QIO requests ([BOOTS]BOOTDRIVER) and some code which is
specific to the boot device.

There are a number of different device-specific modules linked with
VMB.EXE, the primary bootstrap. Using register arguments that
describe the type and location of the system disk, VMB selects the
appropriate device-specific module. During a later step in system
initialization psect BOOTDRIVR 1 from. the BOOTDRIVER module and psect
BOOTDRIVR 4 from the appropriate device-specific module are moved to
nonpaged pool for use during a system crash. Offset RPBSL IOVEC in
the RPB contains the starting address of the combined modules and
offset RPBSL_IOVECSZ their size.

The simplest way to determine the boundary between the two pieces in
nonpaged pool is to read the size of psect BOOTDRIVR 1 in the VMB.MAP
corresponding to the VMB that booted the system.

The begmmng of psect BOOTDRIVR 1 is a table, defined by macro
$BQODEF in SYSSLIBRARY:LIB.MLB, BQOSL SELECT contains the offset
from the beginning of the boot driver to the device-specific qio code
in the BOOTDRIVR 4 portion. In the device-specific boot driver
module, this offset corresponds to the value of the ADDR argument in
the $BOOT DRIVER macro.

The device-specific modules are in facility [BOOTS]. Following is a
list of these modules and their corresponding devices:

FILENAME DEVICE
CVBTDRIVR VAX 8600 console RLO02
. DDBTDRIVR VAX-11,/730, VAX-11/750 console TUS8
DLBTDRIVR RLO1/RL02
DMBTDRIVR RK06,/RK07
" DQBTDRIVR VAX-11,/730 RB730 RB02/RBS0
DXBTDRIVR VAX-11/780 console RX01l
MBBTDRIVR MASSBUS disks
PABTDRIVR CI MSCP device

PUBTDRIVR UDA

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 216
VIRTUAL ADDRESSES - SYSTEM SPACE 9 July 85

CI Microcode

During system initialization, CI microcode is loaded into nonpaged
pool from a file called CI780.BIN on the console block storage
medium. This filename is used regardless of processor type, since
the microcode is the same for all current implementations of the CI.
PADRIVER port initialization loads the microcode from pool into the
CI at startup, following a powerfail, and after certain serious CI
errors, such as CI local store parity error.

When you copy CI780.BIN, you must override the default copy modes
that FLX and EXCHANGE use. See subsection Hints and Kinks for more
information.

This area of pool has a secondary use as storage for contents of the
CI port local store (device registers, virtual circuit descriptor
table, translation cache, etc.) during crashes initiated by the
PADRIVER. If the PADRIVER detects a serious inconsistency, it copies
1000 hex longwords from the CI port into this area so that the
information is available in the crashdump and usable to someone
familiar with the CI.

Large Request Packet (LRP) Lookaside List

This region is typically used for the allocation of DECnet receive
buffers (NETs). Note that on systems with a large value for LRPSIZE
parameter, many loaded images, such as device drivers or SCSLOA.EXE,
may be allocated off the LRP lookaside list rather than the variable
length list.

The LRP lookaside list is extended dynamically as needed, up to a
total of SYSBOOT parameter SGNSGL LRPCNTV packets. MMGSGL LRPNEXT
contains the start address of the extensible area. That 1s, LRP
addresses lower than this are valid.

To display allocation from this region, type either of the following
SDA commands.

SDA> SHOW POOL/LRP !display data structure contents
SO SHOW POOL,/LRP/HEADER tdisplay only structure headers

Packets not in use are inserted onto the lookaside list through their
first. two longwords. The queue header is at IOC$GL LRPFL and
IOCSGL LRPBL. No longer needed LRPs are deallocated by inserting
them at the back of the queue, and LRPs are allocated by removing
them from the front of the queue. Thus it is sometimes possible to
find an intact LRP which has been deallocated but whose contents are
of interest, by starting at IOCSGL LRPBL and following the back links
in the queued LRPs.

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 217
VIRTUAL ADDRESSES -~ SYSTEM SPACE 9 July 85

I/0 Request Packet (IRP) Lookaside List

This region is typically used for the allocation of I/0 request
packets (IRPs), process control blocks (PCBs), job information blocks
(JIBs), volume control blocks (VCBs), unit control blocks (UCBs),
class driver request packets (CRDPs), and larger buffered I/0
buffers.

The IRP lookaside list is extended dynamically as needed, up to a
total of SYSBOOT parameter SGN$GL IRPCNTV packets. MMGSGL IRPNEXT
.contains the start address of the extensible area. That 1s, IRP
addresses lower than this are valid.

To display allocation from this region, type either of the following
SDA commands.

SDA> SHOW POOL/IRP !display data structure contents
SDA> SHOW POOL/IRP/HEADER !display only structure headers

Packets not in use are inserted onto the lookaside list through their
first two longwords. The queue header is at IOC$GL_IRPFL and
IOCSGL_IRPBL. No longer needed IRPs are deallocated by msertmg
them at the back of the queue, and IRPs are allocated by removing
them from the front of the queue. Thus it is sometimes possible to
find an intact IRP which has been deallocated but whose contents are
of interest, by starting at IOC$GL IRPBL and following the back links
in the queued IRPs.

Small Request Packet (SRP) Lookaside List

This region is typically used for the allocation of file control
blocks (FCBs) and window control blocks (WCBs). Other data
structures commonly found here are ACP queue blocks (AQBs), timer
queue elements (TQEs), interrupt dispatch blocks (IDBs), channel
(controller) request blocks (CRBs), typeahead buffers (TYPAHDS),
device data blocks (DDBs), and smaller nonpaged pool buffers
(BUFIOS) .

The SRP lookaside list is extended dynamically as needed, up to a
total of SYSBOOT parameter SGNSGL SRPCNTV packets. MMGSGL SRPNEXT
contains the start address of the extensible area. That 1s, SRP
addresses lower than this are valid.

To display allocation from this region, type either of the following
SDA commands .

SDA> SHOW POOL/SRP !display data structure contents
SDA> SHOW POOL/SRP/HEADER !display only structure headers

Packets not in use are inserted onto the lookaside list through their
first two longwords. The queue header is at IOC$GL SRPFL and
IOCSGL_SRPBL. No longer needed SRPs are deallocated by inserting

VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page 218
VIRTUAL ADDRESSES - SYSTEM SPACE 9 July 85

them at the back of the queue, and SRPs are allocated by removing
them from the front of the queue. Thus it is sometimes possible to
find an intact SRP which has been deallocated but whose contents are
of interest, by starting at IOCSGL SRPBL and following the back links
in the queued SRPs.

Interrupt Stack

The system switches to the interrupt stack to service all hardware
interrupts, all software interrupts above IPL 3, and some serious
exceptions such as machine check. In addition, the system runs on
the interrupt stack in the IPL 3 interrupt service routine after it
has taken the current process out of execution and before it has
placed a new process into execution. It is not pageable. To display
this region, type one of the following SDA commands.

SDA> SHOW STACK/INTERRUPT
SDA> SHOW STACK @EXESGL INTSTKLM:@EXESGL INTSTK

If the interrupt stack is empty, and its stack pointer points to the
high end of the stack, the first command displays nothing. The
second command displays the current contents of all pages allocated
to the stack. The second display is difficult, perhaps impossible,
to interpret since, as events occur and the stack expands and
contracts, one usage [partially] overwrites previous usages.

An invalid page with no access to any access mode is allocated on
both sides of the interrupt stack so that underflow and overflow of
the interrupt stack cause a system halt.

System Control Block

The System Control Block (SCB) contains the interrupt and exception
vectors for the system. 1Its size is a function of cpu type and
number of UNIBUSes: a VAX 8600 SCB is four pages long; a VAX-11,/780
SCB is one page long; the SCB for a VAX-11/750 with 1 UBI is two
pages; the SCB for a VAX-11/750 with 2 UBIs is three pages; the SCB

| for a VAX-11/730 is two pages. A MicroVAX I SCB is two pages. A

| MicroVAX II SCB is two pages. A vector contains the system virtual
address of the service routine for its interrupt or exception, plus
information in the low order two bits specifying whether the service
routine should run on the interrupt stack or the current process’s
kernel stack. The SCB is built by SYSBOOT and filled in by various
system initialization steps. It is also modified as a result of
SYSGEN AUTOCONFIGURE and CONNECT commands. The SCB is not pageable.
To display it with the names of many interrupt and exception service
routines, type the following SDA command.

SDA> SHOW STACK @EXESGL SCB : (@SWPSGL BALBASE - 4)

" VAX/VMS Troubleshooting *INTERNAL:USE ONLY* Page 219
VIRTUAL ADDRESSES - SYSTEM SPACE 9 July 85

Balance Set Slots

The balance set slot region isa table containing resident process
headers. Each process header is SWPSGL BSLOTSZ pages large, some of
it pageable and some of it nonpageable. If one process faults a page
in another process’s header, as could happen with careless use of
on-line SDA, MMGSPAGEFAULT signals an access violation.

PHVSGL_PIXBAS contains the address of a word array that identifies
the owner process of each header slot. The array has SGN$GL BALSETCT
.elements. An element in the array contains either a zero or the
index part of the PID to which the corresponding header belongs. To
examine this array, type the following SDA command.

SDA> EXAMINE @PHVSGL PIXBAS ; (2 * @SGNSGL_BALSETCT)
To display an entire process header, type the following SDA commands.

SDA> SET PROCESS/INDEX=<n> {replace <n> with pix

SDA> SHOW PROCESS/PHD !display fixed portion of phd

SDA> SHOW PROCESS/REGISTER !display hardware pcb

SDA> SHOW PROCESS/PAGE !display PO and Pl page tables

SDA> SHOW PROCESS/WORK !display working set list

SDA> SHOW PROCESS/PROC - !display process section table
System Header

The system header is structured somewhat like a process header. It
contains the system working set list and global section table and
basically enables system code to be pageable. It is not pageable.
To dxsplay it, type the following SDA commands.

SBA‘> "SHOW PROCESS/SYSTEM/PHD
SDA) "SHOW PROCESS/SYSTEM/WORK !display working set list
SDAS> SHCM PROCESS/SYSTEM/PROC !display global section table

System Page Table

The system page table is used to translate system virtual addresses
to phy L_?c&l addresses. It is not pageable, is typically placed in
the h: t physical memory, and must be physically contiguous. On a
VAX-H/‘I&Z system, the primary processor and the attached processor
share one system page table. To display the system page table, type
the following SDA command.

SDA> SHOW PAGE TABLE/SYSTEM

VAX/VMS Troubleshooting *INTERNAL USE ONLY* ‘Page: 220
VIRTUAL ADDRESSES - SYSTEM SPACE 9 July 85

Global Page Table

The global page table is unlike other page tables in that it is not
used by cpu memory management microcode for address translation. VMS
memory management code uses the global page table to keep track of
the state and location of global pages. The global page table is
pageable. To display it, type the following SDA command.

SDA> SHOW PAGE TABLE/GLOBAL

Hints And Kinks

1. The console block storage medium has an RT-11 file structure.
The RT-11 file structure implements three different record
formats: stream ASCII, formatted binary, and fixed-length
record. Under VMS you use the V3 FLX utility or the V4 EXCHANGE
utility to transfer files to and from the console.

Both FLX and EXCHANGE select a default record transfer mode based
on file extension type. For example, extensions of OBJ and BIN
default as EXCHANGE /RECORD=BINARY and FLX /FB transfer modes.

Occasionally the default based on file extension type is
inconsistent with the file’s record format. 1In particular,
C1780.BIN, the CI microcode; WCSxxx.PAT, the VAX-11,/780
microcode; and PCS750.BIN, the VAX-11/750 microcode, will not be
copied correctly unless you override the default transfer mode.

If you are not sure what the transfer mode should.be, you can use
the EXCHANGE qualifier /RECORD FORMAT=STREAM oy, the FLX switch
/FA for all text files (e.g. command files). Use the EXCHANGE
qualifier /RECORD FORMAT=FIXED (or /TRANSFER MODE=BEOCK) or the
FLX switch /IM for all other files (binary files such as images,
microcode files, patch files). The VMS copsole contains no
formatted binary files, 50 you will never want
/RECORD FORMAT=BINARY or FLX'’'s /FB.

Additional References

V3 VAX/VMS Internals and Data Structures Manual, Section 31.2, Use of
Map Files; Appendix A, Executive Data Areas; Chapter 26, Size of
Virtual Address Space.

. VAX/VMS Troubleshooting Page Index-1
Bl 14 August 1985

~A-

Access violation exception
software induced, 29
Access violation fault, 28
Adapter I/0 space, 205
ASYNCWRTER bugcheck, 18, 19

-B-

Bad page list, 103
Balance set slot, 219
Black hole page, 207
Boot driver, 215
BRDMSGLOST bugcheck, 128
Bugcheck
analysis, 11
ASYNCWRTER, 18, 19
BRDMSGLOST, ;128
BUG_CHECK macro, 12
CHMONIS, 141
CHMVEC, 143

ILLVEC, 140
INVEXCEPTN, 84
IVLISTK, 137
KRNLSTA¥NV, 89
MACHINECHK, 98
mechanism, 22
NOUSFRWCS, 141
OPERATCR, 13
OUTOFSYNC, 51, 144
overlay, 23
PGFIPLHI, 113
Restamg 135

ums:mf 170

-C-

Cache parity error
VAX-11/780 and VAX-11,/785, 105
- to 106

Call frame
change Mode dispatcher, 162
layout, 116
Channel control block, 188
CHMONIS bugcheck, 141
CHMVEC bugcheck, 143
CI microcode, 216
CI780.BIN
See CI microcode
CLI
command table, 186
data page, 192
image, 186
image name, 186
symbol table, 186
Cluster Connection Management
See CLUSTRLOA.EXE
CLUSTRLOA. EXE, 213
Common
per-process, 191
Compatibility mode
data page, 192
CONINTERR SPTEs, 207
Control store parity error
VAX-11,/780 and VAX-11/78S, 106
to 107
Corrected read data
See CRD error
Cpu timeout
VAX-11/780 and VAX-11,/785, 19
Cpu type
identification, 98
Cpu-specific interrupt
VAX-11,/780 and VAX-11,785, 17
to 20
Cpu-specific support
See SYSLOAxxX.EXE
interrupt, 16
Crashdump file, 12
backup of, 12
deletion, 21, 22
PAGEFILE.SYS, 21, 22, 24
size, 21
size affected by PHYSICALPAGES,
21
size alteration, 22
Crashdump requirements, 21
CRD error
VAX-11,/780 and VAX-11,785, 17,
102

VAX/VMS Troubleshooting

-D-

DBLERR bugcheck, 138
Debugger
symbol table, 195
DELTA
kernel mode deposit, 122
Device driver SVPNs, 209
Dispatch vector
user-written system service,
. 193
Dump file
see Crashdump file

-E-

Emulation
VAX character instructions
See VAXEMUL.EXE
VAX decimal instructions
See VAXEMUL.EXE
VAX floating point instructions
See FPEMUL.EXE
Erase pattern
buffer, 208
pseudo page table, 208
Error confirm error .
VAX-11/780 and VvAX-11/785, 108
to 111
Error log entry
AW

VAX-11,/780 and VAX-11,/785, 19
BE

VAX-11/780 and VAX-11/785, 19
bugcheck, 13, 23
HE

VAX-11/780 and VAX-11/785,
103
MC, 98
pending, 22, 24
SA

VAX-11/780 and VAX-11,/785, 18
SE -
VAX~-11,/780 and VAX-11,/785, 18
Exception, 25
access violation
see Access violation fault
dispatching, 26
hardware, 25
reserved addressing mode
see Reserved addressing mode
fault
reserved opcode
see Reserved opcode fault

INTERNALAUSE ONLY

¥'Paige Tndek-2
14 August 1985

Exception (Cont.)
reserved operand
see Reserved operand
exception
software, 25
EXES$GL_MCHKERRS
asynchronous write timeout
VAX-11,780 and VAX-11,785, 19
machine check, 98
SBI fault
VAX-11,/780 and VAX-11,/785, 19
EXES$GL_MEMERRS
corrected read data
VAX-11,/780 and VAX-11/785, 18
RDS error
VAX-11,/780 and VAX-11/785,
103 :
SBI alert
VAX-11,/780 and VAX-11/785, 18

FATALEXCEPT bugcheck,xaim
Fiche organization &% %J¥
See Microfiche organization
Files-11 XQP, 186 :
current IRP, 93
location, 186
pending IRP, 93

stack, 87 o
Forced crash, 43 -iT =
FPEMUL.EXE, 212 Liowr

LV

Global page table, 220;

~H-. IE"

Halt e e kS LA s
CHMx on mtermpt séaaﬁ e R
VAX-11/780 and vax-ff??’@g 50
clock phase error - -
VAX-11,785, 51 T'<
double error
VAX-11,/780 and VAX-11,/785, 51
halt instruction
VAX-11/780 and VAX-11,/785, 48
illegal vector
VAX-11,/780 and VAX-11,/785, 52
invalid interrupt stack
VAX-11,/780 and VAX-11,/785, 53
no user WCS
VAX-11/780 and VAX-11,/785, 54

: VAX/VMS 7' _‘I’égubleshooting

Halt (Cont,)

pathological
VAX-11,/780 and VAX-11/785, 54
VAX-11,/780, 46 .
VAX-11,/780 and VAX-11,/785
console message, 47

VAX-11/785, 46~

HALT bugcheck, 139

Hang, 65
process, 75
system, 65

-I-

I/0 request _
location, 92

I/0 request packet lookaside list
See IRP lookaside list

ILVISTK bugcheck, 137

Image activator =~ -
context page, 192
scratch page, 193

Image header buffer, 193

Image I/0 segment, 185

INVEXCEPTN bugcheck, 84

IPL usage, 157

IRP lookaside list, 217

1 K-

Kernel request packet lookaside
list .
See KRP 'Iookaside list
Kernel stack .
see ‘Stack, kernel)
KRNLSTAKNV bugcheck, 89 . .
K334loqu§id%,;ist, 19¢

i -
Large request packet lookabide
list ,

dgglggﬁﬁﬁ,

kasme* list

: ‘kaside list
Lookaside list

IRP
| See IRP lpokaside -list

"KRP

- See KRP lookaislde list
LRP lookaside list, 216

" Page Index-3
14 August 1985

-M-

Machine check
VAX-11,/780, 101
VAX-11,/785, 101
MACHINECHK bugcheck, 98
Message section
per-process, 186
system
See SYSMSG.EXE
Microcode not supposed to be here
VAX-11/780 and VAX-11,/785, 107
to 108
Microfiche organization, 196
Microvax 1
console single step, 71
Microvax II
console single step, 72
MP.EXE, 212
MSCP server
See MSCP.EXE
MSCP.EXE, 209
Mutex
global name, 119
MWAIT state, 117

N~
Nonpaged pool variable list, 210
NOUSRWCS bugcheck, 141
Null Job
kernel stack, 87
-0-

OPERATOR bugcheck, 13
OUTOFSYNC. bugcheck, 51, 144

~p-

Pl pointer page, 195

.PADRIVER bugcheck

CI port local store, 216
Paged pool, 210
PFN data base, 209
PGFIPLHI hugcheck, 113
Process

MWAIT, 117

resource wait, 117
Process allocation region, 188
Process header

access with online SDA, 6

location, 219

Pl window, 189

VAX/VMS Troubleshooting : _Page Index-—4

m USE. ONLY*
R 1% August 1985

Process I/0 segment, 187
Processor status longword
layout, 116
PSL
See Processor status longword

-R—

RDS error
VAX-11/780 and VAX-11/785, 17,
102 to 104
Read data substitute
See RDS error
Read timeout error
VAX-11/780 and VAX-11/785, 108
to 111 '
Reserved addressing mode fault,
30
Reserved opcode fault, 30
Reserved operand exception, 31
Resource wait, 117
RWAST, 120
RWBRK, 126
RWCLU, 133
RWIMG, 129
RWLCK, 129
FWMBX, 123
RWMPB, 132
RWMPE, 131 -
RWNPG, 124
RWPAG, 126
RWPFF, 126
RWQUO, 129
RWSCS, 132
RWSWP, 130
RESTAR.CMD
editing, 59
Restart parameter block
contents, 209)
use during restart, 135
use cslurmg VAX-11/780 restart,
8
use during VAX—11/785 restart,
58

virtual location, 2;99

directory cache, 191

image I/0 segment, 185

location, 208

per—process statistics, 190

process context area, 190

process 1/0 segment, 187

process permanent IFAB/IRAB
table, 191

10 v“u

RMS (Cont.)
tracepoint page, 190
RNS$_IACLOCK, 129 et
RPB ’
See Restart parameter block
RSN$ ASTWAIT, 120“
RSNS BRKTHRU, 126 .,
RSNS$™ ¢ CLUSTRAN, 133 j‘
RSN$_JQUOTA, 129
RSN$_LOCKID, 129
RSN$ MAILBOX, 123
RSN$ MPLEMPTY, 131
RSN$ MPWBUSY, 132 .
RSNS NPDYNMEM, 124°
RSN PGDYNMEM, 126
RSN$ PGFILE, 126 =%

RSN$_SCS, 132 "';
RSNS$_SWPFILE, 130 ’*“,, Ak
RW**¥ code v %

- 1..5(3
see Resource wa:.t .

SBI alert ‘

VAX-11,/780 “iid vm?-ﬂ?ns, 18
SBI fault

VAX-11,/780 and v&-ﬁﬂas, 19
SBI silo compare

VAX-11,/780 and VAX-11/785, 17
SCB s

See System contrGIbfock
SCBRDERR bugcheck, 14[4 -
SCs e
See System aomnﬁ'! ition ’.

services” " By :

SCSLOA.EXE, 213" Zgud v
Security allzdit daita‘paég,? 192 “

cpu,
i BE-11/780 and_!, X 11/785, 19

vax-iglso and vax-uﬂas, 18,
Single step gl
CI sanity timer, 83
MicroVvAX I console dbmands, 71
m::ro\zmx II console conmands,
7

VAX 8600 console commands, -70

- VAX-11/730 console, commands, 71
VAX-117750 constie’ commands, 70
VAX-11/780 console commands, 70
VAX-11/785 honsole comands 70

'VAX/VMS Troubleshooting *INTERNAL USE ONLY* Page Index-5
14 August 1985

Small request packet lookaside " U~

list
See. SRP lookaside list UNKRSTRT bugcheck, 51, 59, 136
SRP lookaside list, 217 UNXINTEXC bugcheck, 17
‘SSRVEXCEPT bugcheck, 146 UNXSIGNAL bugcheck, 170
Stack , User mode data page, 192
exec, 152 to 155, 194
Files-11 XQP, 87 -V-
interrupt, 156 to 160, 218
kernel, 87, 161 to 165, 194 VAX 8600
- invalid, 89 console single step, 70
location, 87 VAX-11,/730
Null Job, 87 console single step, 71
supervisor, 194 VAX-11/750
Swapper, 87 %%, 66
user, 185 console single step, 70
extra pages, 185 VAX-11,/780
STATENTSVD bugcheck, 135 auto restart, 57
Swapper console halt message, 47
kernel stack, 87 console single step, 70
SYS.EXE, 205 Cpu-specific interrupt, 17 to
SYSLOAxxx.EXE, 214 20
SYSMSG.EXE, 208 Halt, 46
System communication services machine check, 101
See SCSLOA.EXE VAX-11,/782 support
System control block, 218 See MP.EXE
System header, 219 VAX-11/785
System image auto restart, 57
See SYS.EXE console halt message, 47
System message file console single step, 70
See SYSMSG.EXE Cpu-specific interrupt, 17 to
System page table, 219 20
System service Halt, 46
name, 166 machine check, 101
vector, 166 to 169 VAXEMUL.EXE, 212
' Virtual address, 174
-T- PO space, 176 to 177
Pl Space, 178 to 196
Terminal class driver system space, 196 to 220
See TTDRIVER.EXE
Translation buffer parity error X~
VAX-11/780 and VAX-11,/785, 104

mevmi =, 214 see Files-11 XQP

