.

Files=11 Cn=Disk Structure Soecification

Amdrew O, Geldstein
Advanced-ll Software Dev!ocment
M .3I~4/F8S8 Fxt. 2478

{=AoP= 1978
Document {13P=958=nT2wA]

Copyricht (C) 1978 Niaital Eauipment Corporationr, Maymard,
Mass,

The material included in this functscnal sneci*icatwcn, ine
eludimg but not limited to imstructiom times and oper¢t1na
speeds, is for inﬁormation purposes only, A1l sych ma!ariai
{s sublect to chamge without motice, Censeauently Diaita)
Eayuipment Corporation makes no claim amd shall not be liable
for its accuracv,

This scftware is furnished under a license for use only on s
sinale c¢omputer syvstem and may be conied enly with the in=
¢lusior of the abeve copvright notice, This software, _or
amy other copies thereof, may not be provided or ctherwise
made available to amy other person excent for use om sych
svstem and to onme «ho agrees to these license terms, Title
to and ownership of the software shall at all times remain
im Digital Equipment Corporation,

The {nformaticm {n this document is sublect to chanae with=
out nrotice anmd sghould not be conmstryed as a commitment by
Digital fauipment Corporation,

Diaital Fauipment Corporation assumes no ressonsibility for
the Use or re11ab11ity of its software on equipment whieh is
not supplied hy O(gita! Enuapment Corporation,

m
N

Files=11 Om=Disk Structure _ PAG

1.4 Scope ,

This aocument {s a smecificatiom of the on=media structure
that s wused by Files=11, Files=11 is a ceneral purpose
file structure which is inmtended to be the standard file
structure for all medium to large PDP=1] systems, Small

systems such as RT=11 have beem specifically excluced be=

cause the complexity cof Files=1{1 would impcse too areat a
burcen on their simplicity anmd small size,

This document describes structure leve1 2 of Files=11, also
referred te as O0DS=2 (on~disk structure 2), It contains
feature and reliability improvements over structure level |
(onsS=1),

1.1 Conventions

A11 numerical values aiven im this document are in decimal
radix, unless indicated otherwise,

Within the fi{le structure are fields containing bimary ine
tecers of various lemgths, Unless otherwise indicated, all

these fielgs are Iim the standard numerical format, which

means that the most significant bits are stored in the hi=
ghest numhered addpress, C

In the descriptions of varjous structures on the disk, there
are fields that are labeled "mot used", These fields must
be 2ero, so that thev can be made nonmezero for future use,
Simce they are reserved for future use, programs readina
these structures should not assume that these fields are {nm
fact zero,

2.7 Medium

Filea=11 is a structure which is imposed on a medium, That
medium must have certaim properties, whieh are cescribed in
the followimg section, Generally speaking, block addregse
able - storage devices such as disks and Dectace are suitable
for Files=11; hence Files=1! structured media are aqeneni=
cally referred to as disks,

2.1 Volume

The basic medium that carries a Files=11 structure i{s re=
ferred to as a volume, A volume (al'so cftem referred to as
a unit) is defimed as an ordered set of logical blecks, A

-

Files=11 Nm=Disk Structure PAGE 3

logical bloek s am arravy of 512 R=hi{t bytes, The logical
blocks imn a volumre are consecutively numbered from 4 to n=i,
where the volume contains n logical blocks, The mumber ase
sigmed te a logical block is ecalled {ts 1loaical block
number, or LABN, Fileg=1l is cacable of describing velures
up te 2**32 blocks in size, In practice, a volume shoulag be
at least 122 blocks in size to be useful,

The loaical bleecks of a volume must he ranmdomly addressable,
The volume must also allow tramsfers of any length up te 65K
bvtes, in multiplegs of four bytes, Whemn a transfer s
longer tharm 512 bytes, consecutively numbered logical bloecks
are transfered until the byte count is satisfied, In other
words, the vaolume can be viewed as a partitioned drrav of
bvtes, It muyst allow reads and wrjtes of arrays of anv

lenath less thanm 65K bytes, orovided that they start on a

loqical bleck boundary and that the lemath is a multiole of
four bvtes, “hen only part of a block is written, the con=
tents of the remainder of that logical klock will be unde=
fimed,

The logical blocks of a volyme are grouped into clusters,
The cluster is the basic umit of space allocation on the vo=
Tume, Each cluster contains ome or more Jloafcal blocks:
.the nuymber of Dblocks im a cluster g kmownm as the volume
cluster factor, or storage map cluster factor,.

4 volume is idertified as a Files=11 volume by the home
bleck, The home block is located st a defined chysical lo=
cation om the veolume, and is identified by the opresence of
checksums and oredictable values, The home block is deg=
cribed im getafl in section S,1, To f{denmtify the volume,
the heme hlock containms a volume labkel, which is a string of
ue tc 12 ASCII characters, The characters are restricted to
the orintima ASCII set (i,e,, excluding control characters
and rubout), Further, it is reccommended that volume labels
be restricted to alphanumerics conly to aveid conflicts with
the command lamguages of supporting systems, The wvolume
label of a volume may not be null,

2.2 Veolume Sets

A volume set {s a collection of related volumes that are
normallv treated as one loagical device in trhe usual operats=
ine svstem comcent, Fach volume centaing its own Filesg=ll
stryctyrey however, files on the various volumes in a vo=
luyme set may be referenced with a relative voclume nurher,
whieh unmiguely determimes which volume {ir the set the file
is lecated onm,

A volume set has associated with it a structure rame, which

Files=11 On=Disk Structure ' PAGE 4

is am strima of up te 12 ASCII eharacters which identifies
the volume set, The character set 1imitations of the volume
label also apoly ®to the structure name, The structure name
may mat be mull,

2.2.1 Tiahtly Coupled Volume Set =

A tiaghtly coupled volume set is a volume set which s cone
sistent and self {demtifying, The volume labels of the voe=
Tumes makina up the set must be umjaque withinm the set, and
myst bpe differemt from the structure name, Relative volume
ome of the set comtains a file which lists the volume lahels
of all the volumes in the sat, thus associatima volume a=
bels with relative valume numbers, Each volume s identi=
fied as beimg part of the set by carryina the structure
mame, {ts volume label, amd {ts relative volume number,

2.2.2 LlLoosely Counlad Volume Set =

A lcesely courled valume set {s a collection of volumes

whieh {3 not self j{dentifying, There is nmo file listinag tne
volume labels, 0Qnmly cne file may cross from amv one velume
in the set to arother, am” files {m the set which cross vo=
lymes mav be pracessed onrly seauentially, Correct seauenc=
ima of the volumes that hold 2 particular file is the res=
ponsinility of the system operater, There are checks that
will catch most handlimg errors, but they cannot be fool=
proct, The purpose of the loosely coupled volume set is to
emulate multievolume magtape, and allow a file to be read or
writtem sequentiallvy with only ore volume moumnted at a time,

3.2 Files

Amy data im a volume or volume set that {s of anmy inmterest
(ieear all blocks not available for allocation) {s contained
in a file, A file is an ordered set of virtual blocks,
where a virtual block is am array of 512 8 bit bytes, The
virtual blocks of a file are consecutively numbered from |
to n, where n {s the highest numbered block that khas been
allocated to the file, 'The number assigred to a virtual
block s called (obviously) its virtual klock numher, or
VBN, Virtual blocks are mapped to umique locical hloeks in
the velume set by Files=1], Virtual blocks may te creecessed
in the game manner as logical blocks, Any array of Fbtytes
less tham 65K im lenmath may he read or written, provided
that the tranmsfer starts on a virtual btloex boundary and
that its lemath is a multiple of four,

i

Files=11 OmmDisk Structure ' PAGE §

For most files, all VBN®s less than or egual to the highest
VBN allocated map to some LBN inm the volume set, Such files
are sajd to be demsa, Files which are sparse contain virtus=
al blocks which have not peen allocated logical blocks,

3.1 File ID

Each file in a volume set is uniauely idenmtified by a File
10, A File ID {s a bimary value consistima of 48 hits (3
POP=11 words), It is supplied by the file system when the
file {s <created, and muyst be sucplied by thke user whenever
he wishes to reference a particular file,

The three words of the File ID are used as follows:
verd 1 File Numberp

Locates the file within a particular volume of the
volume set, File numbers ordinarily lie inm the
range | through 65535, The set cf file numbers on
a volume {s moderately (buyt nmot totally) demseg
at ary {nstanmt {n time a file numher uniauely
identifies ome file within that volume,

sord 2 File Seauence Number

Identifies the current use of am {ndividual file
numbe» onmn a volume, File numbers are re-useds
when a file is deleted 1{ts file number becomes
avajlable for future use fopr some other file,
Each time a fi{le number {s re=usea, & different
file sequence nrumber s assigned to distinauish
the uses of that file nmumber, The file seauence
rumber 1{s essential since it {s perfectly legal
for users to remember and attempt to use a File 1ID
long after that file has beenm deleted,

Wwerd 3 Relative Velume Numher

Identifies whiech volume of a volume set the file
is located on, If the velume in auestion 1is not a
member of a volume set, them this word {s zero,
14 the volume {8 part of a volume set, thenr the
relative volyme number, o RYN, lies in the ranmge
from | to 65535, Inm amy context where a particu=
lar volume &6f a volume set cam be identijfied as
the "eurmemt volume", such as 2 file extemsion
linkage, a relative volume mumber of 2zero means
"the current volume”, 4hem a file is referrec to
in the comtext of the volume on which it lies, ¢t
should be referred to with a relative volume

e 1

Files=11 On=Digk Structure | | PAGE 6

number of zero, regardless of the RVN that may be
assigned to that volume,

File Number Extension

1f the maximum number of files permitted on the
volume (as recorded im the home block) is areater
tham 65535, thenm the higk byte of the relative vow
lyme number becomes a high order extemnsior to the
file number, The volume set size {s then limited
to 255 volumes, while the range of allowable file
numbers extends from 1 to 2xx2d=], Whem 24 bit
file nmumbers are used, the file system should mot
create files whose file number is an inteaer mule
tiple of 65536 (i.2,, whose low 16 bits are zero),
Sueh file numbers will break existinma PDP=i}
software (such as FCS=11),

3,2 File Header

Each file om a Fileg=1l volume 1is ‘described by a file
header, The file header is a block that contains all the
informatiom necessary to access the file, It {s mot cart of
the filer rather, {t s contaimed in the volume’s index
file, (The index file is described im gection 5,1), The
header block is organized imto six areas, of which the first
five are variable in size,

3.2,1 Header drea =

The information in the header area permits the
file system to verify that this block is im fact a
file header and, in particular, {s the header
beirg sought by the user, It contains the file
numher and file sequence number of the file, as
well ag {ts ownership amd protection codes, Thig
area also contains offsets to the other areas of
the file header, thus defining their size,

3.2.2 Ident Area =

The idemt area of a file header cormtains {dentifi=
cation and accoyntimg cata about the file, Stored
here are the primary name of the file, f{ts crea=
tiomn date anmnd time, revision count, date, and
time, and exoiration date,

aid

Files=11 OmmDisk Structure PAGE 7

3.2.3 Mao Apea =

The map area 'descripes the mappima of virtual
blocks of the file to the logical blocks of the
velume, The macping data consists of a list of
retrieval pointers, Each retrieval pointer des=
cribes one arcup of conmsecutively numbered logical
blocks that are allocated to the file, FRetrieval
pointers are arranged in the order of the virtual
blocks they represent,

3.2.4 Aceess Control List =

The access control 1ist is am cooticmal area that
contains a list of users that are allowed access
to the file, The access contrel list makes “f{t
vossible to describe user communities for a par=
ticular file that camnot be expressed with the
regular arctection‘ciasses.

3.2.5 Reserverd Area =
This eptiomal area is reserved for the use by CS§

or specfal applicatiens, It will mot be used by
stendend Fi1es-11 systemsg, . -

3:2.6 End CheCkSUm -
The last two bytes of the file header contain a 16
bit additive cheecksum cf the preceding 255 words

of the file heacder, The checksym is . used to help
veri{fy that the block is im fact a file header,

3.3 Myltieheader Files

Since the file header is of fixed size, it 1{s inevitable

that for some files the mapcping informaticnr will not fit inm -

the allocated space, A file with a large amoynt cf mappinag
Aata i{s therefore represented with a3 chaim of file headers,
Each header mars a3 consecutive set of virtual blocks: the
extensjon limkage {n the header area 1imks the headers to=
gether in order of ascencing virtya) block numhers, The ex=
tension ncinter im each file headar is the File ID of the
mext header in seauenmce,

Files=11 On=Disk Structure V PAGE 8

3,4 Myuttieyolume Files

Myltiple headers are also needed for files that secan volumes
in a volume set, A header may only man logical blocks lo=
cated on its volumey therefore a muyltievolume file {s rew
presented by headers on a3ll volumes that comtain portions of
that file, Im a multievolume file contained om a loocsely
counled volume set, the File ID of the first header cn each
continuation volume always has tre value 9,9,n, where n s
the B8YN of the veolume on whigh the file starts plus the

number of oreceding veolumes containing cortions of the file,

3.5 File Header = Detailed Descriotion

This sectioh describes im detajl the ftems comntaimed in the
fila header, Each item is {denmtified by a svymbol which rew
cresents the offset address of that item within {ts area fin
the file header, Any item may be located {m the file header
bv locating the area to which {t belongs and then adding the
value of 1its offset address, Users who concerrm themselves
with the comtents of file headers are strongly urgced to use
the offset symbols, The symbols may be defimed in assembly
lanquace programs by ealling and imyokimg the macro FHDLZ2S,
which may be foumd in the macro library 0f anv svstem that
supperts Files=11l, Altermatively, ore may find the macro in
the file F1IMAC,MAC, which may be obtairmed from the aythor,

3,8,1 Validity =
A valid file heacder is defined by the following rules:
1, The header checksum {s correct, unless SC,CHK s
set im H,S8CHA, im which case the checksum word con=
tains the value 128252,

2, The comtents of H,IDOF is mo less than the offset
H FOWN/2, | =

3, The four offset bytes are related {m the manner
(H,IDOF) <= (H,MPOF) <= (H.ACOF) <z (H RSOF),

4, The high byte of H,FLEY contains the value 2,

5, The low byte of H,FLEV contains a value greater orf
equal to 1,

6, The word H, FNUM contains the file number,

7. The word H,FSER contains the file seauenrce number,

Files=11

9.

On=Disk Structure : PAGE 9

-

The high byte H,FRVN contains the extended part of
the file myumber, if anv, :

The comtents of the bByte H,USE must be less tham op

eaual to (H,ACOF) = (H,MPOF),

A deleted file header conforms to the format of a valiad file
header with the following exceptions:

L
2.
3’.

SC.MDL is set im H,FCHA,
H,FNUM and H.FRYN contain zero,.

The file haadepr checksum contaims zero.

3.5,2 Header Ares Descriotion =

The header area of theA¥i]e_heade; always starts at byte 2,
It contains the basic information needed for checkinao the
valicdity of accesses to the file,

3.5.2.1

3.5.2.2

3.5.2.3

H IDOF = { Byte ° Ident Area Défset

This byte contains the nmumber af 1A bit words
cetween the start of the file header and the start
of the {dent area, It defimes the locatiom 0f the
ident area and the size of the header area,

H,MPOF = | Ryte Map Area Offset

This byte contains the nmumber of {6 bit words
between the start of the file header and the start
of the map area, It defimes the location of the
map area and, together with H,IDOF, the size of
the ident area,

H ACOF = 1 Byte Access Control List Dffset

Thmig byte contains the number of 16 bit words
between the start of the file header anmd the start
of the access control list, 1t definmes the Jocaw
tiem of the ACL and, toqgether with H ¥PNF, the
size of the map area,

T

Files=11 On=Disk Strueture " PAGE 12

2,5.2.4 H,RSOF = | Ryte Reserved Area Qffget

This bvte contains the nmumber of 16 bit words
betweem the start of the header amd the start of
the reserved area, The reserved area will nmot be
used by Files=11 itself, and may be used by CSS or
scecial applications, Together with H,ACOF, this
byte defimes the size of the access control list,
The size of the reserved area is implied by the
contents of H,RSQOF amd the end of the header
block, ' '

The presemce of the ident, map, ACL, armrd reserved
areas 18 optional, Absence of amy area {s sige=
nalled not by a zero offset, but bv the ecuality
of the two offsets that defime that area’s size,
AT five areas are variable in lenrmgth:
implementations of Files=1] must check the lenath
of a particular area before attempting te refers
ence a particular entry, ’

1.5.2.5 H FSEG « 2 Bytes . Extemsieon Segmemt Number

This word contains the value n, where this heacer
ie the n+ith neader of the file:r i,e,, headers of
a file are numbered seauentially starting with 2,

3.5.2.6 HFLEV = 2 Bytes Structure Level andg Version

The file structure level and versior {8 ysed to
idemtify gifferent versions o¢f Files=1! as they
affect the structure of the file header, This
permits upwards compatibility of #{le structures
as Files=11 evolves, in that the structure leve!
word {dentifies the version of Files=ill that cre=
ated this particular file, _This document dese
cribes structure level 2 of Files=11, The high
byte of H,FLEY must containm the value 2, The low
bvyte contains the version number, which must be
greater or equal to 1, The version mumber will be
ineremented whenever compatible additions_are made
to the Files=il structure that may be safely iq=
nered by an old versiomn of the file system, Thig
document describes version | of structure level 2,

Files=11

3.5.2.7

3-5.2.

(s ¢

3.5.2.9

3.5,2.17

3,5,2.11

3I5.2.12

Cr=Disk Structure . PAGE 11

H FNIM = 2 Rytes File Number ') -

This word contaims the file mumber of the file,

H,FSEQ = 2 Bytes Fi{le Seauence Number

This word contains the file secuence number of the
file, A

H,FRVN = 2 Bytes "Relative Volume Number

This word is used to hold part of the third word
of the File ID whem approoriate, This word is
ysually referred to as the relative velume number,
When ysed as such ({.e,, to indicate the volume of
a volume set), {t is not recorded in the file
header, since the RVN of a volume mav charge dure
irg a file’s 1ife, and the RVN certiem of a File
ID may be zero or monwzerc, dependinmag on the gcomw
text, However, wher the hiagh byte ef the RVN s
used as am extensior to the file number, then it
is recorded imn the high byte of this word, The
low byte of H,FRVN {3 always zero,

H EFNU = 2 Bytes Extension File Number

This word comtains the file mumber of tha rext sew
quertial extension header fopr this file, If there
i3 mo extansion header, thig word contains 2,

H EFSG = 2 Bytes Extension File Sequenece Number

This word containms the fi{le secuence number of the
mext sequential extension header for this file,
If there is no extension Header, this word . cor=
tains 3, ‘

H.ERVN = 2 Bytes Extemsion Relative Volume Na,

This word contains the relative volume numher of
the velume in the volume set that contaims the
next sequential extension header for this file,
1 there i3 mo extension header, or {f the extenw

~

Files=11 On=Disk Structure , ' PAGE 12

3.5.2.13

3.5.2.14

sion header {s located om the same volume as this
header, this word comntains @,

H,UFAT « 32 Bytes User File Attributes

This area {s used by the record marnager, or any
other higher leve]l access mechanizm, to store imm=
formation mecessary for processing the file, e,q,,
recard control data, enmnd of file mark, ete,

H,FCHA « 4 Rytes File Characteristics
H UCHA = H,FCHA+3 User Conmtrolled Char,
H,SCHA = H,FCHA+1 System Controlled Char,

The file characteristics words econtain the follows=
img flag bits:

UC.CON Set if the file is leaically contigueuss
{s@as 1f for all virtual bleccks im the
file, virtual bloek i maps to locical
bloek k+i on onre volume for some con=
stant k, This bit mavy be implicitly set
or cleared by file system operations
that allocate space to the file: the
user may only clear {t exolicitly,

uc.cne Set {f the file {s allocated eontiauous

: best efforty ie€er as contiguous as
possible,

UC L DLK Set if the file {s oaeaccess=locked.

This _bit is used as a flag warninmg that
~ the file was mot prorerly closed and may

contain {mcomsistent data. Access to

the file ig denied {f this bit is set,

UC.RCK Set {f the file is to be read=checked,

All read operations on the file, imelud=
ing reads of the file header(s), will be

verformed with a read, read=compare to

assure data imtegrity,

UL, KCK Set {f the file {8 to be write=checked,
411 write operations on the file, {n=
eluding modificationrs of the file
header(s), will be performeg with a

"writey read=compare to sssure data {ne

te@rity-

[-i

Files=11 On=Disk Structure | PAGE 13

UCLNID Set {f {imcremental dump (backup) s to
' ve disabled for this file,

uc,wac Set if the file {s to be write=back
cached? fe2ssy 1f a cache is used for
the file data, data writtem by a user {s
only writtenm back to the disk whemn ig {¢t
removed from the cache, Clear for
writemthroygh cache operation,

The second byte of the file characteristics words
is historically kmown as the system controlled
file characteristics, It contains the following
flag bits, defined as referenced withim the byte:

SC.MDL Set {f the file is marked ' for dealete,
If this bit {s set, further accesses to
the file are denied, anmd the file wil)
be physicallv deleted when mo users are
accessing it,

SC.BAD Set {f there is a bac data block in the
file, This kit is as vet umimmplemrentec,
It is intended for dynamic bad bleck

handling,

SC.DIR Set {f the ¥{le is a director?.

St.ACL Sef if an access control 1ist eiists tor
this file,

SC.CHK This Bit {s set if the file header

checksum was not comouted, If this bit
{s set, the checksum word must contain
the octal value 125252, This "feature"
ifs for small systems that canmnct afford
the milligsecond or two that it takes to
compyute the header checksumy {ts uUse {8
strongly discouraged, :

3,5.2.15 « 2 Rytes ‘ (mot used)

3,5.,2.16 M USE = | vie Map Words im Use

This bvte contains a count of the nmumber of mao
area words currently im use,

\

uhi

Files=i1] On=Disk Structure PAGE 14

3.%.2417

3.5.2.18

H PRIV =« { Ryte Accessor Privilege Leve!

This byte defimes the lowest privilege level at
which am accessor must be punning in order to ke
allowed access to the file, FEach mrivilege level
is a two bit integer; 2zero refers to the lowest
privilece and 3 ts the highest, Privilege levels
may be assigred separately to the basiec file ac=
cess modes, using the following bit assiament {n
this hytes

Read Bits @ = 1
Wpite Bits 2 = 3
Execute Bits 4 = 5
Delete Rita &6 = 7

Am cperatima system should mam its privilece level
coding onto this code in the smoothest manmner pos=
sible, For example, the four access modes of VS,
user, supervisor, exec, and kernel, are coced as @
throuah 3, respectively, A svstem gych asg RSX={|M
whieh has only two levels (privileged and
noreprivileged), should map the two onto 3 and @,
respectively, ‘

Privileae levels are meant to confine access to
the contents of files to suitably trustworthy oro=
cedures, Thus, a user might be demied the ability
to write a record structured file directly (on a
virtual bleek basis), but would be permitted to
werite the file through the record manaaer, which
would ke suitably orivileqed,

Fer 2 record structured tile, an aporopriate set
of crivilege levels would be 2,2,3,2, exoressed in
the order read = write = execute = delete,

H,FOWN = 4 Bytes * File Oumer UIC
H.PROG = H,FQWN+2 Programmer (Member) Number
H.PROJ = H, FOWN+2 Prolect (Group) Number

Thegse words comtain the bimary user idemtification
code (UIC) of the owner of the file, The file
owner {s usually (but net necessani7y) the creator
of the file,

-

Files=11 Or=Disk Structure PAGE 15

3.5.2.19

H,FPRO = 2 Rytes File Pretection Code

This word controls what access all users in the

system may have to the file, Accessors of a file
are categorized accordimg to the relatiomshio
hetween the UIC of the accessor amd the UIC of the
owner of the file, Each category is controlled bv
a four bit field {n the protection word, The ca=
tegory of the accessor {s selected as follows:

System Ritg O = 3

The accessor is subject to system rcroe=
tection {f the prolect numbep of the UIC
under which ke {s punning is 12 cectal or
less,

Qurenr Bits 4 = 7

The accessor {s sublect to ownmer orotace
tien {f the UIC under which he is run=
" ming exactly matches the file owner UIC,

Group Bits 8 = {1

The accessor is subjeect te grouo protec=
tiem {f the project number of hisg UIC
matches the prolect number of the file
owner LIIC,

World Bits 12 = 15
The accessor {s sublect to werld orotecs

tiom {f he does mot fit into any of the
above categories,

Four tvyopes of access are defirmed {n Files=i1l:

read, write, execute, and delete, Fach feur bit
field in the protection werd is bit encoded to
permit cor denmy anmy combimation of the four tyoes
of access to that categorv of accessors, Settina
a bit denies that type of access to that category.
The bits are defimed as follows (these values

_aap?v to a right=jystified protection field):

FPRDV Demy read access
FP, WPV Deny write access
FP,EXE Nemy axecute access
FP.REL Deny delete access

“hem a user attempts t0 access a file, crotection
checks are performed im all the cateacories to
which he i elicibhle, im the order system = Quwner

-

Files={1 Om=Disk Structure PAGE 16

3.5.2.2%

3.5.2.21

3.5,2,22

- group = wérIg. The user is granmted access to
the file if any of the categories to which he s
eliaible grants him access,

Recommended defaults for file protection for an
"opem shoo" svstem are [RWD,RWD,R¥W,R] (exoressed
in the order of system = owmer = group = world,
where each letter denotes the presence of that
permission), O0Observe that omly files which cone
tain executable orograms should have execute pro=
tection turmed on, Recommended defaults for a
"closed shop" system are [RWD,RWD,R,],

H,RPRO = 2 Bytes Record Protection Code

This word comtrols what access al]l wusers in the
svstem may have to the -recoras {in a file,
Accessors are categorized inte Svystem, CQuner,

_ Group, anmnd MWorld {n the same manmner as_for file

protection, The record orotectior word s likee
wise divided into four four bit fields to comtrol
each accessor category, The four bhits in the re=
cord protection field are defined as follows:?

RP ROV Deny reading records

RP,WRY Demy writing mew reccrds

RP UPD Demy writing existinag records
RPGDEL Deny deleting records

Recommended defaults for record protection for an
"epen shop" gsystem are [RWUD,RWUD,RWUD,R],
Recemmended defaults for a "closed shop" system
are [RWUD,RWUD,R,], :

= 4 Bytes (not used)

HeSEMK = 4 Bv;es Securitv Mask

The security mask is a bit encoded field that re=
presents {nformation cateqories that mav be pre=
sent {m this file, Am accessor alsoc carries a
security mask that represemts informaticn cateqgo-
riegs that he may possess, To read a file, the acw
cessor’s security mask must be a superset of the
security mask of the file: to write a file, tne
security mask of the file must be eaual to that of
the accessor, (Techmically, inm securitvy mask oro=

Files=11 On=D{sk Structure PAGE 17

tocols, the mask of the f{le must be a superset of
that of the writer, but since Files=1! systems do
not allow writipg without read cermission, both
conditions apply for a writer,)

Individual bits {m the security mask are defined
system wide by the svstem mamager, The inmngtalla=
tion manager is responsible for ensuring consis=
temcy and coherency of security masks when voluymes
are ysed on multiple operating systems,

Mote that the traditional security level system

(confidential, secret, etc,) can be achieved by a
ynary encoding in several bits of the mask,

>3.5.2.23 S.HDHD = 74 Bytes Size of Header Area

This symbel represents the total size of the

header area containming all of the above entries,

3.5.3 1ldent Area Description =

The fdent area of the file header begins at the word inmdi=
cated by H,IDOF, It conmtains identification anmd accounting
data ahout the file,

3.5.3.1 I.FNA® = 20 BRytes File Name

This area contains the mame of the file im ASCII.
A dot separates name from type, and a semicelon
separates type from versiont both are alwavs pre=
sent, If the name is shorter than 22 bvtes, it is
padded with blanksy {+ jt is longer, it is trun=
cated, '

3.5.3.2 I.,RVNO = 2 Bytes Revisiom Number

This word contains the revision count of the file
in birmarye, The revisiom count {s the mumher of
times the file has beern accessed for write,

-

Files=11 OneDisk Structure) PAGE 18

2.543.3

3.543.5

3.5.3.6

3454347

3.5.3.8

I;CRDT = 8 Bytes Creation 6ate amd Time

These eiaht bytes contain the date and time at

which the file was created, The time is exoressed’

in the standard internal time forma%t, whieh s a
64 hit {nteger representing tenths of microseconds
elarsed since midnight, 17 November 1858,

I,RVDT = 8 Bytes Revision Date amd Time

The revision time is the time at which tre file
was last deaccessed after beina accessed for
write, Tt is expressed as the same format as the
creation time above, -

I.EXDT = B Bytes Expiration Date amd Time
These efght bytes contain the date and time at
which the file becomes eligible to be deleted,

The fopmat is the same as that of the creation and
revisiom times above,

1.BKDT = 8 Rytes Backup Date and Time
These eight bytes contain the date and time at

which the file was last backed ue, The fermat g
the same as the other dates and times,

I.,ULAB = 82 Bytes User Labe!l

This optiomal area contains any label a. user mav
wish to associate with the file,

S.IDHD = 116 Bytes Size of Ident Area

This symbol represents the size of the 1dent area
containing al) of the ‘above entries,

abh

Files=1l OmmDisk Structure . PAGE 19

3,5,4 Map Area Descriotion =

The mao area of the file heacer starts at the word imdicated
by H.,HPOF, It contains the imformation mecessary tc map the
virtual blocks of the fi\e te the logical blocks of the vo=
lume, This area contaims the retrieval pointers that actu=
allv map the virtual blocks of the file to the loaieal
blocks of the volume, Each retrieval pointer describes a
corsecutively numbered qroue of logical blocks whiech is al=

locatead to the file, The coumt field containms the binmary

value n to represent a3 group of n+l logical bloeks, The
logical block number field contains the logical bleock number
of the first logical bloeck im the aroup, Thus each retrieve
al poimter mars virtual blocks | throuah J+¢m into loaical
blocks k throuah k¢n, respectively, where] {s the total
mumber nlus ome of virtual blocks representea by all preceds=
ina retrieval pointers irn this and all precedinae headers of
the file, n i3 the value contaired in the count field, and k
is the value camtained im the logical bleek number field.

Observe that.], k, and n+! must alwavs be integer multicles

of v, the volume clusgster factor,

If the LBN field of 2 retrieval pointer contaims all ones
(i.e., points to block 2*%22=1 or 2%x%x32=1), then that retri=
eval poimter represents an umallocated portion of a sparse
file, The -count field describes the number of unallocated
virtual klocks in the mormal manrer,

There are four formats of retrieval pointers, i{dentified by
escape codes, The different formats may be {ntermixedg withm
im a file header,

Format & = two byteé'

:u-’.-------.-----i-u-,

jant Placement V.

‘Retrieval pointer format @ i{s used to store placemert data
in the file heacder, It describes the placement control supe
plied with the allocation that created the followino retri=
eval! pointer, allowing the placement of a file to be repli=
cated when the file is copied or backed up and restored,
The coding of the placement date i3 at present undefined,
Format 2 is {dentified by bits 1S amd 14 of the first word
oeinc set to 20,

~.

Filesm1] Om=NDigk Structure PAGE 20

Format | = four hytes,

121! High | Count !

! Low Order LBN -

Retrieval pninter format | orovides am 8 bit count field and
a 22 bit LBN field, It is therefore cacable of reoresentinrag
a group of up to 256 blocks on a volume up to 2x*x22 "blocks
in size, Format | i3 ident{fied by bits 15 and 14 of the
first word heing set to @1,

Farmat 2 = six hytes,

,'--:---.--.'--—‘----.-l
{121 © Count !
! !
f - LBN -1
! ' .
!

'ﬂ---ﬂ-.-.-.‘---.-----

Retrieval pointer format 2 provides a 14 bit count fjeld and
a 32 bit LBN field, It {s capable of representing a groun
of up to 16384 blocks on a volume up to 2#%#x32 bloeks in
size, Format 2 is {dentified by bits 15 and {4 of tha first
word heirna get to 18, .

Format 3 « aiaht bytes,

RN High B
:.’!- - !

! Low Order Count !

\ 'g-------------------.-l
]

| :
’- LBN .!
! !
! !

Retrieval rcointer format 3 provides a 32 bit count field and
a 32 bit LBN field, It is capable of describing a group of
up to 2+*3@ blocks om a velume up to 2**32 blecks in size, .
Format 3 {3 jdentified by bits 15 amd 14 of the first word

beina set te 11,

Filesm11 Nne=Disk Structure ‘ PAGE 21

3.5.5 Access Conmtrol List =

The access control 1ist starts at the word indicated by the
bvte H,ACOF, Note that the entire ACL must be contained in
the primary header of the file, amd is thus limited to about
65 entries, Each access control list entry consists of a
control word which {demtifies the tvoe of the entry and cone
tains the access rights given by the list entry, Followina
the contro]l word is a value field whose size and {nteroreta=
tiom depends on the tvype code of the ACL entry,

! RPRO ! FPRO | AaM 10} ' Type !
! _ |
|a= Valye -
{ H

3-.ﬂ‘.--’---.-.-----ﬂ-----‘-.'.--.'-..-- t

The four bit type field controls the sjze the interpretation
of the entry’s value field, and to some extent, the in=
tercretatiom of the entry, The type field mav assume one of
the followimg values:

A UIC The value field is a 4 bvte UIC, The
ACL entpry {s appolicable to the accessor
{f the accessor UIC matches the value
f‘e1d.

A,GRP The value field is a 2 byte areoup
number, The ACL entry {s appljcable {f
the agrour mumber of the accessor UIC
matches the value field, :

A, MEM The value field {s a 2 byte member
number, The ACL entry is applicable i{f
the member number of the accessor UIC
matches the value field, :

A PSWD The value field {3 am 8 byte password,
hashed by~ some algorithm to he deter=
mimed, The ACL entry {s acolicable {f a
cassword supplied by the accessor
matches the value field (under hashirg),

A ACF The value field is the file ID (6 bvtes)
of anm access control file, whecse conw=
tents are access control list enmtrias,

The access rights aqrarmted by this ACL

entry are the {ntersection of the rights
coded in this enmtrv and .the rights
gramted hy the entries of the access
comntrol file,

i

Files=11 OnaDisk Structure | PAGE 22

The one bit 0 fig1dp when set, gramts ownership orivileges
(charnae orotection, etc,) as oart of the access rights
granted by this ACL enmtry,

The twe bit AM field specifies the least privileged access
mode permitted to access the file,

The four bit FPRO fie1d specifies the f11e protectiom granmte
ed . by the ACIL enmtry, 1f the accessor is eligible, Its con=
tents are imterpreted 1n the same way as the H,FPRO field of
tha file header.

The four bit RPRG field sgecifies the record protection
granted bty the ACL emtry, {f the accessor is eligible, Tts
contents are internreted in the same way as the H,RPRND field
of the file header,

Note that the access control list augments the npermissions
of the file: 1e€ss it aramts permission rather tham rese
tricting it, This means that {anorinc the ACL does not come
oromise file protection.

3.5.,4 Reserved Area =

The resepved area of the file header starts at the word ine
dicatea by the byte H,RSOF, This area {s not used by stan=
dard Filess1] file marmagers, but is availarle for use by CSS
and smecial applications,)

3.5.7 End Checksum Descriptionm =

The header check sum occupies the last two bytes of the file
header, It i{s verified every time a header is read, ard is
recompyted every time a header {s written, If the bit
SC.CHK is set im the system controlled characteristics word
HeSCHA, them the checksum has not been computed, and the
checksum word must contaim the octal valuye 125252,

3,5.7.1 H,CKS™ = 2 Bytes Block Checksum

This word is a simple additive checksum of all
other wordg 1in the block, It is computea by the
followinag PDP=11 routine or its eauivalent:

MOV Headerwaddress,R?
CLR R}

Filas=11 OmeDisk

1281

3.6 File Header

The followima is
file header,

Structure

ADD (R2)+,R1
SOBR R2,14%
MOV R1, (R@)

Layout

a graohfcal lavout of the

PAGE 23

fields in ‘the

My

Files=11 On=Disk Structure

Header Area

H MPOF

H.RSCOF

H.SCHA

H PRIV

et . b - — LS S S e oM b e RN s Sem e eeAm e dn e

! Map Area Offset | Idenmt Ares Offset |

| Resv, Area Nffset ! ACL Apea Offset |

! File Segment Nymber |

! File Structure Level |

File Number !

File Seaquence Nymber |

LA L L X K & & L EXE X B KK 0 L X X 2 2 § X 2 2 KX . ¥ X & B K B K N J 5

Relative Volume Number !

LA E B B A K B X B A B B & 7 B B B X N B X & X X L X L X K N X & R & A N B 2 g

Extension File Number]

Extension File Sea, Num,

Extemsion RVN

LA R B R B X & L B & 2 A L X L A & & X & X X X E X E A K& X K& 8 2 X R 2 4

User Attribute Area

- " F{le Characteristics .-

! (rot used) |
| Access Leve! | Map Words {n Use |
] |
jme File Owmer UIC we |
b ' . !
! File Protection A |
Reecord Protection , H

‘ {

- (not used) ma |

LA R K R A B L B L L E X B E & L BB & L X L X K & B B K X R N K A B N R J ’

!
1

-= Security Mask -]

— - - -

— - - - i S i e b GWE emn . ol

PAGE 24

H,IDOF

HoACOF

H,FSEG
H.FLEV

He FNUM

H,FSEQ

HoFRVYN
H,EFNU
H.EFSQ
M ERVN

H,UFAT

H,FCHA

M UCHA

H.,USE
H,FOWN
H,PROG
M. PROJ
H,FPRN

H,RPRO

HoSEMK

abd

Files=11 On=Disk Structure

!
{
; L EX R AR XS R A AR Y A 2 X RS R EE X 2] z

Ident Aprea

| |

|

:.- - -
! File Name

f-- . -w
]

Revision Number

;
!
!
!
g ----‘-—."-“-...-..---..-’-.---.-..‘-.--.
!
!
!
|
!

- Creation Date -
[m- ‘ -

!

:..'-’-'----..ﬂ-----..--...-."-.-.-‘--..

:C’ - -
|)
| mom Revisior Date -m

Expiration Date -e

!

T T R et e

- Rackup Date "

— . o i

— i . —— R e e WS mu S S A R e Sem AR e W eem EME MM MR W M A e SR R WS AR PR AR AN AR MM R MR e me S e e e e

PAGE 25

S.HDHD

I.FNAM

1.RVND

I1.CRDT

I1.RVDT

T.EXDT

I.BKDT

I.ULAR

Y

Files=i1 OneDisk Structure

) !
User File Labe! |
]
!
!
!

R

PAGE 26

S.INHD

=

Files=11 Nn=Disk Structure . PAGE 27

Map, AClL, amd Reserved Areas

P A A R L K B L A LA R A2 X L L 0 LXK XEREEE XL E RN R NEE J

Retrieval Pointers

Access comtrol List

]

H

]

]

1

]

|

!

|

|

|

'

L]

)

[]

1]

{

1]

!

|

|

[]

¥

|

H

. 1
1

Fesarved Area !
!
]
!

LA A A B R R L E L AKX A LLELE L L LA ERE R XXX XL LB X XN R J z

File Meader Checksum : I H,CKSM

LA . B B B X X & R L A B B E B B L B R K B B E X 2 KK X 2 3% N R X X N X _J ‘

}
!
|
!
|
H
|
¥
]
!
|
H
!
!
i
t
!
H
!
]
]
!
!
!
|
H
!
H
!
!
4,3 Directories

Files=11 provides directories to allow the organizatiem of

files im a meaninmgful way, While the File ID i3 sufficient
to locate a file unicuely en a veolume set, it is hardly mne=

mamic, Directories are files whose fumction is to associate

symbolic mames with File ID’s.

The directory format also contaims hooks for extensiomrs in
future systems, Ome of these {s a construct knowr as a
symbolic link, A symboli¢c 1imk allows a directory to cone
taim a pointer to a file which is mot onm the same volume
set, and can therefore mot be rempresented by a File ID, A
symboliec link therefore associates the file name with anmothe
er ASCII strimg, ' ’

b

Files=11 Om=Disk Structure ' " PAGE 28

4,1 Directory Heirarchies

Since directories are files with ne special attributes, di=
rectories may list files that are {in turn directories, Thus
the user may constryct directory heirarchies of arbitrarv
depth amd comelexity te structure his files as he pleases,

!

4.1,1 Two Level Directory Heirarchy =

Implementations of Files=11 on existing PDP«11 gsystems all
sunport a two leve] directory . heirarchy which is tied inm
with the user identificatiom mechamnism of the ocperating sys=
tem, FEach UIC kmown to the system is associated with a user
file directory (UFD), References to files that do mot smpecw
ify a directorv are generally defaulted to the UFD associat=
ed with the user’s UIC, The syntax used to refer to UIC’s
is the same as that used to {demtify the directory -im a file
name strimg, The construet "[m,m1" {s wused to refer to
group number n, member number m, All UFD’s are listed {n
the volume’s master file directory (MFD) umnder a file nmame
constructed from the directory string, (See sectior 5,2 for
a descripticn of the MFD,) A string of "[m,m]" associates
with a directory name of "nmanmmm,DIR;1", where mnn and mmm
are n and m padded out to three diaits each with leadina
2eroes, Note that all number conversiams are done im octal.

Two points should be moted here, The UFD structure cdes=
cribed here 13 nmot intrinsically part of the Files=1!
- on=disk steryctures rathepr, it is a convenient cataleainag
system applied by various operating svystems, Alsc, there is
mo hard amd fast relationship between the owrmer UIC of 2
file and the UFD in which it {s listed, Genmerally, they
will correspond, but net nmecessarily,

2

4,1,2 Multie=level NDirectory Heirapchy =

Mew implemenmtations of Files=11 use a multi=level directory
heirarchy, where the first leve] below the MFD is referred
to as the user file directory (UFD) and subseauent levels
are referred to as sub file directories (SFD’s), Ugers are

identified at the command level by ASCII] mames; the svstem

translates user names into UIC’s intermally, Thus MFD en=
tries will correspond to the ASCII uyser names, A directory
specifier will have the format "[namel,name2,nareld, ,,., 1",
Fach mame im the list tramslates to a directory file nmame cof
tha form "mame,DIR;1{" amd {s searched for im the current di=
rectory level, - :

Observe that the directory orotocel {s not tied to the

=

Files=11 NneNisk Structure , PAGE 29

structure level of the disk, Thus mew systems will always
have tc handle the "[n,m]" construct, which macss to a_ UFD
mame of YmAnammm DIR:L" and orovides omly two levels of dis=
rectory, O0ld systems will mot be able to handle volumes

4,1,3 ~yultieVolume Directory Structure =

In a volume set, the MFD for the all of the wuser files on
the volume set is the MFD of relative volume 1, Its entries
can peint to UFN’s lecated on amy _volume in the set, whose
entries cam im turn roint to files anmd sub directories on
any voluyme in the set, The MFD’s of the remaining volumes
in the set only ligt the reserved files om each volume,

The assianment of volumes to specific directcries and files
is not covered by this specification, Different systems mav
imclement different policies to trade off factors such _as
performance, reliability, and separability, Gctimizinc for
cerformance, for example, usually means scattering the files
as randomly ag possible across the volume set to make the

most use of the avaflable multiple oositiormers, Maximym -

separability . (the ability to make use of only part of the
volume set) is achieved by locating files on the same volume
ag their directories, and possibly entering the directories
in the MFD’s of the volumes on which they reside,

4,2 Directory Protection

For directory operations, the record protection fie}d is §n-
teroreted specially by the directory mamager, The four bits

(described im the section on record protection) are {nter=

oreted as follows:?

RP.RDV Neny lookups N

AP WRY Neny entering new files)

ePL.UPD Deny enterimg new versions of fi{les
B, DEL Deny removing files

By settima the accessor privilege level of a directery file
appropriately, the system (or user) may prevent users from
rummaaing through the directory using the normal fi{le access
methads,

1f record protection is not oresent for a directory file,
then the basic file access protection {s used if it exists.
lL.ookups reayire ’

=

Filesm11 NmeDisgk Structure PAGF 32

4.3 Directory Structure

,
A directory is a comtiguous file, organized as a seauentia)
file with variable lemgth records, with the attribute set
that records do mot cross block boundaries, and mo carriage
control attributes, Directory entries within each block are
racked together to conform to the wvariable lanqgth record
format: a =) bvte count siagrals the end of records for that
Block, (See section & for a discussion of record formats,)
The entries 1n a directory are sorted alphahetically, perw
mitting the use of an omtimized search, Entries which are
mylticle versions of the same mame and type are arranged {n
order ¢f decreasing version number to ocotimize version re=
lated operations, Eack directory record consists cf the
followinmg:

3------.--‘.-.-----'-.--.----.'.-.-..-’- ‘

| _ Record Byte Count |

! Version Limit !

! Name Byte Count ! . Flags)

File Name String

e o o s

!
i
|
!
!
! |
! !
P Value Field !
' '
! !
: !

LA K K B A X B E X X K L L A & & A & R B E K X B & A X N K X B E B B 2 X 2 J

Count This two byte field is the stamdare byte count
field of a variable lemath record,

Limit This word contains the maximum mumber of versions
that are to be retaimed for this mame and tvpe,
Amn attempt to enter more versioms tham the Jimit
will result imn the celetion of the least recenmt
versiemn, or am error return, at the implementing
system’s acotion, ‘

Flaas This byte contains the type gode cf the directory
entry ard assorted flag bits, The tyce code {8

Al

Files=11 On=Disk Structure _ ' PAGE 31

Name

Value

contaimed in the three Jow bits of the flags byte,
It is ome of the followimg values!

DV,.FID ~ The value field is a list of
version numbers and 48 bit File I1d°s,
Dv,.SLK The value field is a symbolie

1ink string.
The following flag bits are defired:

DF ,PRY Set {f the preceding directorv
record contairs. the same mame and tvpe
as this onme, o ,

DF 4 NXV Set if the next directory nre=
cord contains the same mame and type as
this one,

This field contains the file mame apd type f{n
ASCII,; serarated bv a a dot, The dot is present
even if either name, or tvpe, or both, are null,
Onlvy upper case alphabetic and numeric characters
may he present in the mame and tyoe, 1¢ the
lenath of the name s odd, it is padded with a

" single nmyllt,

This field contajns the "valye" of the directorv
entry: i{,e.s the information returned to the user
from a lcokus operatiom, If the directory record

is a File ID 1ist (the type field is DV,FID), the

value field ig a 1ist of version mumbers and core
responding file ID*s, appearing {n descenoina
erder by version number, The number of entries f{nr
the list i{s decuced from the reccrd byte count,

)

! , Version Number
’.-.--.------..----.-----------‘.---.-"

!

! File ID

l-= --

——— - - o e -

Version Number !

.-----.ﬂ‘---------...------.--'-----'--. t

File ID

. mam e . . - ——emp oo

il

Files=11 Nr=Disk Structure PAGE 32

»0 A0 ~am ‘w0 "BO

Version Number

File ID

! !
! !
’ !
' !
! !
o= -
! |
! !
! !
,. O NS ET AN NSNS O EEEERTR® WS !

Version This word conmtaing the version number of the di=

rectory entry in bimary, Version mumbers must lie
in the rance from | to 32767,

File ID These three words are the file ID that the direce
tory entry points to,

If the directory entpry is a symbolie limk (the
flaas byte conmtains DV.SL¥), then the value field
is variable length, Jts first byte 1{s a byte
count, and the remainder is arm ASCIT strimo which
describes the linkage, The strima 1is bpadded to
the next word boundary with a null {f necessarv,
The format igs the followinmal

} Byte Coumt |

— —— —

Symbolie Limk String |
|
|
!

A R L X K R & B X B A B A A B L K B X B X & X & B R 3 B B & & R K R R X N 3 J ’

— e . e e - e

S, Reserved Files

Clearly any file system must maintain some data structure on
the medium which {s used to control the file orgamnizationr,
In Files=11 this data is keot imn several files, These files
are created when 3 new veolume ig imitialized, They are uni=

sl

Filesm11 Om=Disk Structure PAGE 3%

aue im that their File ID’s are known constants, Note,
however, that the relative volume mumber used when accessing
one of these files depends upom the context, The exact
number of these files which is presemt om 3 particular vo=
lume mav varv: however, at least five must be presenmt, A1)
of these files are mon~deletable, These files have the fol=
lowirg uses: :

File ID 1,1 s the index file, The imdex file is the root
of the entire Files=11 structure, It comtains the volume’s
bootstrap block anmd the heme block, which is used to identi=
fy the volume anmd Jlocate the rest of the file structure,
The imdex file also contaims all of the file headers for the
volume, and a bitmap to control the allocation of file
heacders,

File ID 2,2 is the storage bitmap file, It {s used to con=
trol-the allocation of legical blocks on the volume,

File ID 3,3 is the bad block file. It is a file containina

all of the knowm bad blocks en the volume,

File I 4,4 is the volume master file directory (or MFD),
It forms the roat of the volume’s directory structure, The
MFD lists the five known files, all first level user direc=
tories, and whatever other files the user chooses to enter,

File ID 5,5 i¢ the system core {mage file, Its use is oper=
ating svstem dependent; 1{ts basiec purpose is to provide a
file of known File ID for the use of the operating system,

File IPD 4,4 is the volume’s free space file, The blocks
contained in this fi{le are available for allocatiorn by anr
alternate allocation scheme that does not drive off the sto=
rage bitmap, e

File ID 7,7 is the volume set list file, If this velume is
relative volume ome of a tightly courled volume set, this
file contaims a 1ist of the labels of all the volumes inm the
set,

File 1D 8,8 is the volume backup Jourmal file, It contains
a loa of full volume and imcremental backyos performed on
the volume,

File ID 9,9 is the standard continuation file, If this vo=
lume is part of a loosely courled volume set, this file con=
tains the first segment of the portion ¢f the multi=volume
file that resides om this volume, '

More File ID’s may be reservend in the future; users should
mot make any assumetions about the values of user created
File ID’s,

——

Files=11 Om=Disk Structure PAGF 34

5.1 Index File

The index file is File ID 1,1, It is listed in the MFD as
INDEXF,8YS;:1. The i{ndex file is the root of the Fileg=i|
structure in that it porovides the means for identification
and initial access to a Files=11 velume, and contains the
access data for all files on the volume (includinmng itself),
This file has the FCS record format of 512 byte fixed lenaoth
records, with no carriage control, (See section 6 for a

deseription of the FCS file format,)

.

Sele!l PRootstrap Block =

Virtual blegk | of the inmdex file s the volume’s koot
bleck, It is almost always mapped to logical block ? of the
volure, 1If the volume is the svystem device of am operatina
svstem, ‘the boot block comntains am opnerating system depenw
dent orogram which reads the operatimg system into memory
whem the bhoot block 1is read and executed by a machine’s
hardware bootstram, If the volume is mot a2 svstem device,
the bhecot block contaims a smal) pregram that outputs a mese
sage on the system conscle to inform the operator to that
effect, If bloeck @ of a volume {g bad, it is cermissible to
map virtual block | of the index file to some other bloek,
In this case, obviously, volume canmmot be used as a svstem
velume,

Sel1.2 Home Block =

Virtual block 2 of the {ndex file {3 the volume’s home
block, The purpose of the home block {s to {dentify the vo=
lume as Files=11, establish the specific identity of the vo=
lume, and serve as the ground zero emtry point imto the voe
lume’s file structure, The home bleck is_recoaonized as a
home bhlock by the cresemce of checksums in kmownm places and
bv the presence of nredictable values in certain locatiens,

The home hlock {s located om the first good bhlock of the

home block search sequermce, The search seauemce is of the

form
1t + n* delta, n =2 A, 1, 2, 3, 4 cannee

The home block search delta is computed from the Qeametry of
the volume suych that, {f the volume jg viewed as a three di=
mensional space, the search seayence will travel approxi=
mately down the body diagomal of the space, Since voluyme
failures tend to occurr across ome dimensicn, this minim{zes
the chance of a simgle fatlure destroving both home blocks

Files=11 Ore«Disk Structure PAGE 358

of the volume, The search delta is comouted from the volume
geometry, exoressed in sectors, tracks (surfaces), and cyl=
inders, accordina to the following rules, to handle the
cases where conre or two dimensions of the volume have a size
of 1, -

Geometry? Pelta

s x 1 x it 1

tox vt x 13 {

{1 x 1 x e3 1

s x .t x 1t s+

T x | x ¢} s+

{ x ¢t x ¢ t+1

s x t x ¢ (t+1)*s+]

In most cases, the home block is lecated om LBN 1,

S.1.3 Cluster Filler =

If v, the cluster facter of the volume, is greater tham 1,
themn the next v¥2«2 blocks of the index file are cories of
the home block used to fi11 out the first two clusters of
the imgex f{le, Note that, for cluster factors greater than
{» this results im a wasted disk cluster, The benefit of
this techniaue is a_mueh gsimpler rule for findimg the VRN of
imteresting parts of the index file, '

5.1,4 Rackup Home Rloek =

The backup home block is a secomnd copy of the home block lo=
cated farther down the home block search seauence, It perw=
mits the velume to be used evem {f the primary home bléck is
destrovyed, :

In general, the backup home block should be allocated on the
second cood bloeck of the search sequemce, If {t {s mot,
them 311 preceding blecks om the seauence must met be availe
able for alleocatiom, This is to prevent the situatiom of a
malicious user constructing a counterfeit imdex file, which
would be used if the primary home block ever wemt bad,

The cluster which contaims the backuyp home block {s manped

inte the index file as virtual blocks vx2+! thraough ve3,

where v i3 the voluyme ec¢luster factor, Cbserve that the
backye home block may be located anywhere within this clus=
ter, tecause there {3 no hard anmnd fast Pe1atichshic bPetween

Filese!l OneDisk Structure o N PAGE 36

the clystepr factor and the vaolume’s track and cylinder bouns=
daries. The entire cluster is therefore filled out with co=
pies of the home bloeck, :

S.1.5 Backup Index File Header =

The next cluster of the index fi{le contains a backuo cooy of
the index _ file header, so that data on the volume can be re=
covered {f the index file header ccoces bad, The cluster oc=
cupies virtual blocks v*3+1 through v*4, where v is the vo=
tume cluster factor, The LBN of the backup index file
header {s stored in location H,IHLB im the home block, The
backup imdex file header occupies the first block of this
cluster: the remaimina blocks are not used armd their conw=
temts are undefined,

S.1,6 Index File Bitmap =

The imdex fi{le bitmap is used tc control the allocation of
file numbars (amd hence file headers), It is simplv a bit
string cf lamath n, where n {3 the maximum number of files
cermitted on the volume (comtained in offset H,FMAX inm the
home block), The kitmap spams over as many blocks as is new=

cessary to hald it, {.e., max numbher of files divided by’

4796 and rounded up, The number of Blocks in the bitman s
contained in offset H,IBSZ of the home block,

The bits in the index file bitmap are numbered seauentially
from 2 to n=1 in the obvious manmer, {,e.s from right to
left im each byte, ard im order of increasing byte address,
Bit] is used to reoresent f{le number J+1: {if the bit {s
"1, then that file nymber i8 in usey {f the bit is €, then
that file number {8 mot in use and may be assigmed to a
newly created file, '

The imgex file bitmao starts at virtual bleck vxd+l of the
index file amd comtinues throuoh VBN yxd+m, where m is the
numher of blecks in the bitmap, and v 1{s the storage map
cluster factomr, It i3 located at the logical block i{ndicate
ed by offset H,IBLB in the home bloek,

517 File Headeprs =

The rest of the {ndex file centains all the file heacers for
the wvolume, The first 16 file headers (for file numbers !
to 16) are loaically contiguous with the index file bitmae
to facilitate their locatiom: the rest may re allocated

Files=11 Dm=Disk Structure ' PAGE 37

wherever the file system sees fit, Thus the first 16 file
headers may bhe located from data in the home block (H,IBSZ
and H,IBLR) while the rest must be located through the map=
eing data {n the i{ndex file header, The file heacer for
file murper n is located at virtyal block vxd+m+n (where m
is the numper of blocks in the index file bitmap, and v is
the storace map cluster factor),

The FCS end of #ile mark for the index file {8 located at
the last f{le header ever used,. Al)l header blocks located
before the ENF are subjeect to valjdation when used te create
a new file, If the block contains garbage, the new header
is assigned a file seayence numbher of 1, being the first yse
of thig header block, If the bleck contains a deleted file
header, the mew header i3 assigned a seauence number one
higher tham the onre contained in the block, 4 block cone
tajning a valid file header must nmever be used to create a
new file, even {f it {s marked free im the imndex file bit=
map, This mprevents files from being lost {f bits are
dropoed im the bitmap, Index file blocks bevyomd the EOF are
assumed to conmtain aarkage for the purpose of creatimg mew
file headers, ' '

S.1.82 Index File Lavout =

The follewima is a sketch of the blocks im the index file,

‘Observe that this {llustration assumes a storace map cluster

facter greater than 2,

L X K & K X X X K N X 3 B B B B K 3 J '.-.
| \
Root
Bloek

Home

Bloeck Cluster 1

More
Home
Blocks
H
H
H

More
Home

|
:
:
|
|
z
|
|
!
:
:
!
|
!
!
|
1
|
:
:

. — - — M - — S SdD E E — n —— nte e

—

TS

Files=11 Om=Disk Structure

Blocks

LU T Y

Rackup
Home
Bleek

LALE R R B K B X X % 2 X 2 2 & % 32 & J
Mopre
. Home
Blocks
:
Backup
Index
File
Header

{not)
(used)

Index
File
Ritmap

16
File
Headers

Lots

More

File
Headers

r—— - W e e e e i e D S S S v - ———— et AR R A A - — - S " o A, e M e M S Wi N e A e eae i e et e e e b

. — . ——— - ——. — - o — S NS e e M W A WA S M A A TR . S N D M M - . S W S M A M ey e A e

/
\

!
!
!

——— . e —— e —— —— -

— b e s e i eew e mem n

Cluster 2

Cluster 3

Cluster 4

Contiquous

PAGE 38

st

Files=11 Nn=Nisk Structure | : _ PAGE 39

! !
)
1

L A A B A & & L. 2 X L R K L L 2 K K B J ‘

S.1.9 Home Block Details =

The following is a detailed description of the home block,
Note that all copies of the volume’s home block contair the
same data, with the exception of the cells containing the
block®s VBN amd [BN, ‘

Items contained {m the home bleck are fdentified by symbelic
offsets in the same manner as items {n the file header, The
symbols may he defimed in assembly languace orcoaoramsg by cal=
lina and irvokine the macreo HMBLZ23, wkich may be found in
the racra library of any system that supperts Files=i1,
Altermatively, one may find the macro in the file
Fi{4AC ,MAC, which is available from the auther,

5.1.9.,1 HHBLR = 4 Rytes Home BRlock LBN

This double word containms _the locgical bloek number
of this particular copy of the home block,

5.1.9.2 H.AHLB = 4 Bytes Altermate Home Alock LBV

This double word contaimns the LBN of the volume’s
secondary home block, Ome may determire, when
scarning the home block SsSequermce, whaetker the
block read is the primary or secongary hore bdlock
by comparing H,HBLB and H,AKLB, This wvalua must
be mom=zero for a valid home block,

$5,1,9.3 H,IHLB = 4 Bytes Rackup Imdex File Header LRN

This double word contains the logical bkleck eon
which the ©backup i{ndex fi{le header is located,
This value mugt be nonwzero for 2 valid home
block,

i

Files=11 On=Disk Structure . | PAGE 40t

Sele9.4 H,VLEV = 2 Bytes Structure Level and Version
The velume structure level and versjon is used to
identify different versionmns of Files=11 as they
affect the structure of all parts of the volume
excent the fi!e header, This permits upwards come
patibility of file structures as Files=i11 avelves,
in that the structure level word identifies the
version of Files=11 that created this particular
volume, This document describes structure level 2
of Files=11, The high byte of H,VLEV must contain
the wvalue 2, The low byte contains the version
number, which must be greater or eaual to 1, The
version number will he incremented whenever compa=
tible additions are made to the Files=l1 structure
that may bhe safely ignorea by anr old version of
the file svstem, This document describes version
1 of structure level 2,

S.1.9.5 H,SBCL = 2 Bytes Storace Bitmae Cluster Factor

This word contains the cluster factor used im the
storage bitmap file, Thwe eluster factor §s the
number cf blecks represemted by each bit in the
storage bitmap, This value is also referred to as
the volume cluster factor, N

5,1,9.6 M, HBVR = 2 Rytes Home Bleck VBN

This word cortains the virtual block that this
particular copy of the home block occupies in the
index file, This valuye must be non=2ero for a
valid home bleck, ‘

5.1.9.7 H,AHVE = 2 Bytes Backup Home Block VBN

This word conteins the virtual block nmumber that
the cluster contaimima the secondary home block
occupies in the index file, The comtents of this
word is v+2+1, where v is the storage map cluster
factor,

Filesmil

S.l'qﬂe

S.1.9.9

5.1.9.12

S.1.9.11

OneNisk Structure PAGE 41

H,IHVB = 2 Bytes Backup Index File Header VBN

This word contains the virtual bleck numher that
the backup index file header occupies in the index
file., The contents of this ward {s v*3+{, where v
i{s the storage map cluster factor,

H,IBVB = 2 Bytes Index File Bitmap VBN

This word contaims . the starting virtual bleck

numher of the index file bitmac, The contenmts of
this word is the value v*d+l, where v is the sto=
rage map cluster factor, :

H,IRLLR = 4 Rytes Index File Bitman LBN

This double word contains the startinag logical

~block address of the index file bitmap, Once the

home block of a volume has been found, it is _this
value that provides access to, the rest of the
index file and to the volume, This value must be
mon=2ero for 2 valid home block,

H FMAX = 4 Bytes Maximum Number of Files

This double word contains the maximum number of
files that may be presemt or the volume at any
time, This value must be greater than the conw=
tents of H,RSVF for the home block to be valid,
If the maximum number of files {s less thanm 65536,
then the third word of File ID’s referencing files
on this velume s simply the relative volume
number, and the volume set of which this volume is
a member may conmtainm up to 65535 volumes, If the
maximum number of files is qreater tham or ecual
to 65536, however, then the high byte of the third
word of File 1ID’s s the hiagh byte of the file
Aumber, and the volume set mav consist of ue to
255 volumes, Under no circumstances may the maxi=
mum number of files be greater tham 2%%24=1,

a d

Files=11 On=Disk Structure ' ' PAGE 42

S.1.9.12

5-119-13

S5.1.9.14

S.i.qils

S.1e9.16

Sala9.17

H,IBRSZ = 2 Bytes Index File Bitmac Size

This 16 bit word contains the number of blocks

that make up the index fi1e bitmap, This value
must be mon=zero for a valid home block,

H,RSVF = 2 Rytes Number of Reserved Files

This word comtaims the number cf of raserved file
on the volume, The file seauence number of each
reserved f{le is always ecqual to its file number,
Reserved f{les may not be deleted, This word must
contain a mimimum value of S5 to be valid, '

H,DVTY = 2 Bvtes Disk Device Type

This word {s anm index idemtifyimg the tyme of disk
that contains this volume, It is curremtly not
used and always contains @,

H,RVN « 2 Bytes Relative Velume Number

This word contains the re1at1ve volume number that
this volume has beem assigned im a velume set, If
the volume {s mot part of a volume sat. then this
word contasns zero,

HeNVAL = 2 Bytes Number df Velumes

This word contains the total number of volumes 1in
this volume set {f ¢the comtents of H,PVMN jg |
(i,e¢ 1f this volume is the first volume of the
volume set), Otherwigse, this word contaims zero,

H,VCHA = 2 Rytes Volume Characteristics

This word contains bits which provide additional
control over access to the volume, The following
bits are definmed: '

CH NDC Set if device control fumctions are not
permitted on thisvvolume.A Device con=
trel fumcticns are those which can thre=

f

Files=11 Om=Disk Structure ‘ PAGE 43

5,1,9.18

5.1.9.19

aten the {rmtegrity of the volume, such
as direct reading amd weritina of loaical
hlocks, etc,

CH NAT Set {f the vclume may .mot be attached,
f{e@er :Peserved for the sole use by one
task or yser,

CH.RCK Set if the volume {s to pe read checked.
_ " A1l bleoek reads dome on this volume,
both fcr data and for file structure,

will be rerformed with a read,
readecompare seaquence to imsure data ine

“tearity,
CH,WCK Set {f the velume {s to bpe wpite

checked, A1l bloek writes dore on this
volume, boeth for data _and for file
structure, will be performed with a
write, readecompare sequence to insure
data integrity,

H,VOWN « 4 Bytes Velume Owper UIC

Thig double word econtaims the bimary UIC of the
owner of the volume, The format igs the same as
that of the file owner UIC stored {in the file
header,

H.VSMX = 4 Bytes Volume Security Mask

These four bytes containm the security mask for the
volume, In the same manner as the security mask
of a file, the volume security mask controls the
information categories that may be stored on the
volume, - Only files whose secuprity mask {s a sub=
set of the volume security mask may be wprittemn on
the velume, Note, howeyer, that the security mask
of a wuser accessing files omn the volume does not
have to he a suyperset of the volume mask, since he
must stil]l pass the security mask check on the in=
dividyal files, Further, if such a check were
made, the security masks of all files written on
the volume would have to be egual to the volume
mask, which is not very useful,

T

Files=11 Om=Disk Structure - : PAGE 44

5.1.9.20

5.1.9.21

5.1.9.22

S5.1.9.23

H,YPRO = 2 Rytes Volume Protectienm Code

This word conmtains the nrotection code for the en=
tire volume, A1l operations or all fi1es on the
volume myust pass hoth the volume and the file pro=
tection check. to be permijtted, Accessors to the
volume are categorized {into system, ownmer, Qroup,
and world with respect to the vo!ume owmer UIC inm
the same manmer as for file orotection, FEFach ca=
tegery (s conmtrolled bhv the familiar four bit
field, The four access modes are bBit encoded as
followss :

VP ,RDV Deny reading files

VP, WRY Denvy writing existinc files

VP CRE Deny creating files

VP, DEL Deny de?etinc files

H.DFPR = 2 Rytes Default File Protection

This word contains the file protection that will
be assigned to all files created on this volume if
mo file protection is specified by the user,

H.DRPR = 2 Bytes Default Record Protection

This word contains the record protection that will
be assicmned te all files created on this volume {f
ne file protection is specified by the user,

H,CHK] = 2 Bytes First Checksum

This word is am additive checksum ef all entries
preceding {n the hame block ({1,400 all those liste
ed above), It is _computed by the same sort of ale
gorithm as the file header echecksum (sSee section
3.5.7.1),

K,VDAT = 8 Bytes Volume Creation Date

This area cgntains the date angd time that the vo=
lume was {nmitialized,_ It is inm the same bimary

format used in the file header (see ssction3.5.3d

3.“.2).

s

Files=11 On=Disk Structure : PAGE 45

S5.1.9.25

5.1.9.26

Sela9.27

5.1.9.29

S.1.9.32

H WISZ « | Byte Default Window Size

This byte contains the number of retrieval po=
inters that will be used for the "window" (in core
file access aata) whenm files are accessed onmn the
volume, i{f not otherwise specified by the acces=

SOPf,

H.LRUC = 1| Byte Directoary Preeaccess Limit

This byte contains a count of the mumber of direc=
tories to be stored in the file system’s direg¢tory

access cache, More generally, it is am estimate
of the number of concurrent users of the volume

amd its use may be gemeralized im the future,

@

HeFIEX = 2 Bytes Default File Extend

This word conmntains the number of blocks that wil)
be allocated to a file whem_2a user extends the
file and asks for the system default value for ale
location,

- =« 388 Bytes Mot Used

P
[T
jo

H,SNAM = 12 Bytes Structure Name

This area contains the ASCII name of the volume
set to which this volume belomas, padded out to 12
bytes with spaces, If this volume is not a member
of a volume set, ¢then this area {3 filled with
nulls, :

MJINDN = 12 Bytes Velume Name

This area cortaims the volume labtel! {nm ASCIT, It
is padded out to 12 bytes with smaces, It i{s
olaced here in accordance with the praoposed velume
idemntification standard,

A

Files=11 OmeDisk Structure - PAGE 4éb

Se1e9.31

Se1.9.32

S.1.9.33

S.1.9.34

HeINRQ = 12 Bvtes Velyme Dwner'

This area contains an ASCII string identifying the

owner of the volume,. The area is padded out to 12
bytes with trajling spaces, It {s placed here in
accorcdance with the proposed volume identification
stanmdard,

H,INDF = 12 Bytes Format Type

This ftield contaims the ASCII strima "DECFILEL{R"
padded out to 12 bytes with spaces, It {denmtifies
the volume as being of Files=11 format, struetupre
level 2, It is placed here in accordamce with:the
oroposed volume identificatiom standard,

e = 2 Bvtes Mot Used
HCHKZ2 = 2 Bytes Second Checksum
This word is the last word of the home block, It

contains an additive echecksum of the erecedinmg 2SS
words of the heme bloek, computed accordinc to the
alagorithm listed in sectien 3,5,7.1.

o

Files=11 On=Disk Structure

5.1.9.35

! Index File Header

Home Block Lavout =

‘ LA R L A L X K X E F E A B & X A E L EE X & R 2 & 2 X KN B 8 A E K & X R X J ’

| : . ’
= LBN of This Bloek ==
!

1
i

! ' -
o= LBN of Secondary Home Block e |
! , v]

! LBN of Secomdary

- e e w— w— w-

| Velume Structure Level

z LA R A L A K B A B R X A A L A A 2 B A K S L B L & L L L 2 B 2 B A K B K 2 2

! Storage Bitmap Cluster Factor !

g LA B R R K E L EX AL ERL A LR L ELLLELEREXEE S X 2 J :

! VBN of This Block ’ !

H . Backup Home Bloek VEN !

l LA A A L L 2 X X 2 X L X 2 & E & & A 0 K L & £ X L L K R K X &L A A B A B R K J i

A Raeckup Imdex Header VBN |

g LA E X L XX 2 X L A KR L8 X 2 X 8 2 & L X B & 2 K B B B R L K. J g

| Index File Ritmap VBN |

! Index File

'

: i

! Bitmap LBN !
!

:

} L X X 2 N XKL EXEJX XX 8 8 2 X K F B N & K XL K B R & B K B B R R N J
! .
{m- Mayx{mum Number of Files -
| !

! Index File Bitmap Size !

! Number of Regerved Files B

’ EL L X A 2 A X ERE XXX KL & K L E L 0 X F X K X 0 2 A &J =

3 Disk Device Tvpe !
T T R Tative volume Nomper Ty
;"""'QZEQZI';?ET;;;;'?;'EZ""""§
T T e tame tharscteriscies T

{
y

|ow Velume Owmer UIC .-
’ .

‘ !

- —

PAGE 47

H HBLR

TH,AHLB

He IHLR

HeVLEV

H.S8CL

H,HBVRB

He AHVE

He IHVR

H,IBVB

H.IBLS

- H,FMAX

Ho VEMX

ad

Files=11 Om=Disk Structure

HaLRUC

- . i ——— - e e MR O S S MNP SN WAER i RN SME ABMAS WDl B SEY WA AR e e e

|ww Volume Seeurity Limit we |

! , : !
! Voluyme Protection |
| Default File Protection !
!--—-.---.---".-‘---.-..-.------..-.---‘

! Default Record Protection [

!-‘--.---.Q'--..-----..-'-------‘--.'..-. :

! : First Checksum 1

1-..-.-----‘...ﬂ‘-.--..----.-.-.-Q.--Q-- '

' : !

g-.ﬂ‘ . --!
! . !
|m- Volume Creation Date |
! '
| o *) .-’

|

| Directory Limit | Def, window Size |

! Default File Extend SN

(mot usedi

- . -
- Structure Name -
- - [X]

Velume Name -

e - - —— WA W S . - WS MM e MW ewR RN SN AN B W e s et e e e

PAGE 48

H.VPRO
H,DFFR
H.DRPR
‘H.CHK1

HeVDAT

MoW1SZ
H FIEX

My, SNAM

Ho INDN

whi

Files=11 Nm=Disk Structure . PAGE 49

P]
lmew -

[]
!
i
}
{ ! He INDO
,.- .'=
| |
:-o .-'
| _ : !
{m= Volume QOwner --
! !
l-. --_!
! |
|m- . - |
! |
! . | He INDF
|- : - |
| |
’-- --!
! !
I Format Tvee -
| !
;-. -.,
] |
low ' : LLE]
| !
g----.--...--.-------..--------.---.-.-ﬂ!
{ (mot used) !
;--------—-‘--..------------...------.--’
| Second Checksum H H,CHK?
|

z------.---.--.-.-------.---------.-----

S.2 Storage Bitmap File

The storage bitmap file {s File ID 2,2, It is listed {m the
MFD as BITMAP,SYS31, The storage bitmap {s used to control
the available space on a volume, It comsists of a storage
control block whieh contains summary imformation about the
volume, and the bitmap {tself which 1{sts the availablilty

cf 1imdividual bloeks, This file has the FCS record format -

of 512 byte fixed lenmgth Precords, with mno carriage conrtrol.
The end of file mark s positiomed to rcoimt tc the last
block used, The storage bitmap file must he contiouous,

i

Files=11 On=Disk Structure . PAGE 58

5.2.1 Storage Comtrol Rlock =

Virtual block 1 of the storage bitmap {s the storage control
block, It contaims summary imformation about the volume,
Note that {mplementation of some of the features in the sto=
rage contro! bloek may require it to be written at mount and
dismount, ,

5.2.1e1 C.VLEV = 2 Bytes Storage Map Structure lLeve]

This word contajns the astructyure level of the sto=
rage control bloeck, The high byte contains the
value 2 to {ndicate Files=11 structure level 2,
The low byte contains the version number, which
must be eaual to or greater thenm 1,

Se2ele2 CoS5BCL = 2 Bytes Storage Map Cluster Factor
Th%s werd contains the storage map cluster factor
of ¢the volume, 1Its contents are {dentical to the

contenmts of H,SBCL {im the home Dbleeck, It s
nlaced here for converfence,

S.2.1.3 C,VSIZ = 4 Bytes Volume Size

These four bytes contain the volume size expressed
in loaical bloeks,

S5.2.1.4 C,BLKF = 4 Bytes Bloekimag Factor
These words contain the block%ng factor of the vo=

lume: 1i.,e,, the number of phvsical blocks or sece=
tors that make up onme logical block,

Se2e1s5 CLSECT = 4 Bytes Sectors Per Track

These words contain the number of logical bloecks
im each track of the volume,

—=

Files=1l On=Disk Structure 4 PAGE 51

-

Se2.1e6 Co,TRAK = 4 Bytes Tracks Per Cylinder

These words_contain the number of tracks contairmed
in each cylinder of the volume,

S.2¢1.7 CLCYLN = 4 Bytes Numher of Cylinmders

These wonrds contain the total number of cylinders
on the volyme, The above three auantities are
nresent to assi{st ontimized allocation of space on
physical bourdaries in the volume,

Se2e1s8 C,STAT = 2 Bytes Status Wword
This word contains the following status bits:

CS.TRN Volume {m transition, This bit i{s set
{f the volume may be {m an inconsistent
state because it was not dismoynted
proverly, A system which does write on
replace caching of the storage map, for
example, should set this bit om mount
amd clear it on dismount,

5.2.1.9 = w U8R Rytes {mot used)

$.2.1.18 C.CKSM = 2 Rytes Bleeck Checksum

This word contains the ubfauitous block checksum,
It is computed using the same algorithm as the
file header checksum (section 3,5.,7.1), :

S.2.1.11 Storage Control Bloeck Layout =

! Structure Leve) ! C.VLEV
! Storage Map Cluster Factor H C.SBCL
| ' H C.VS81Z

o Volume S{ze im RBlocks el

-3

——

Files=11 Om=Disk Struecture PAGE 52

| | x

' | C.BLKF
o Blocking Factor . me|
! |
| . C.SECT
|mw- Sectors Per Track ==
|
‘-.‘..U---------.--...-----....-.-'----- .
‘ . C.TRAK
|me Tracks Per Cylinden -
! .
’---‘.---.---...-.-.-,----‘-----‘--“-.'.
CeCYLN

- Cvlimders on Volume - :

Volume Status C.STAT

.‘-------‘---.-..-.--‘..-..-.-‘-----.....

(mot used)

— e e AR LN W e S e W W AR e W S e e e W e e e e

Block Checksum , ! C.CKSM

LR R R L X E XA R A E XL K L X4 X LB LKL L KR E B L LZJ g

i
!
!
!
'
'
!
f
!
!
!
!
!
!
'
!
!
'
!
!

5,2.2 Storage Bitmap =

Virtual blocks 2 through n+l ape the storage bitmap itself,
It is best viewed as a bit string of lemgth m, numbered from
? to m=1, where m ig the total number of allocatable_clus~
ters on the volume rounded up to the next multiple of 4296,
Each cluster contains v Jogical blocksg, where v {8 the sto=
race map cluster factor (also referred to as the volume
cluster factor) contained im location H.SBCL in the home
Block, The bits are addressed in the usual manner (packed
right to left in seauentially numbered bytes). Since each
virtual block holdsg 4996 bits, n blocks, where n = m/UB96,
are ysed to hold the bitmap, Bit | of the bitmap recresents
loaical bloecks Jxv thprouah jrxv+vel of the volume: {f the
bit is set, the blocks are frees {f clear, the blocks are
allocated, (Clearly the last k bits of the bitmap are always

-

Files=11 Onm=Disk Structure PAGE 53

-

clear, where k is the difference betweenm the true size of
the volume and m, the lemath of the bitmap,

Roundirg the storage map file up to the next multiole of the
volume <cluster factor may result in some unused blocks at

the end of the file, The FCS end of fi{le mark poimts to the

last bleck used,

5.3 Bad Bleeck File

The bad block file is File ID 3,3, It {s listed im_the MFD
as BADBLK,SYS:1i, The bad bloeck file is simely a file con=
taining all of the known bad blocks on the volume, This
file hnag the FCS record format of 512 byte fixed lemath re=
cords, with no carriage control, The end of fi{le mark may
be placed as the operating system’s bad bleck handling strae
tegy fimds useful, Velume inftialization should nlace the
ECF at the end of the bad blocks found durimg fnitfaliza=
tiom, At all times, the EQF should at least coimt cast the
bad bloek descriptor data, described below, This ensyures
that the bad bloek data i{s .preserved for future
re=initialization of the volume, ‘

'5.3.1 Factory Bad Block Descriptor =

On disks which have factory generated last track bad block
data, such as the RK@s, RKQ7, amd RMA3, the firsgt several
clusters of the bad block file should inmclude the last track

of the volume, This track contains redundantly recorded
~degeriptions of the bad blocks on the volume, as described

in DEC STC, 144, "Disk Stamdard for Recording and Handlina
Mamufacturimrg Detected Bag Sectors”,

5.3,2 Software Bad Block Descriptor =

On disks that do mot have factory last track bad block data,
the first cluster of ¢the bad block file contains the bad
plock descriptor for the volume, It {s always located on
the last good bloek of the velume, This block may contain a
listing of the bad blocks on the volume produyced bv a bad
bloek scam program or diagmostic. The software bad block
descriptor {s most of a Files={] Structure Level | header
map area, The first two bytes contaim the conmstanmts | and

3, respectively, The third byvyte contains the number of"

words that c¢amtaim data, -The fourth bvte conmtains the
number of words available for had block data, The last word
of the bloek coentalins the usual additive echecksum, The rew

i

Files=11 OnrD§sk Structure ' ‘. o PAGE 54

trieval pointers are structure level | format | poinmters, as
described below,

Rad Rlpck Deseriptor Laveut

’

! 3 ! { !
| Map Words Avail, | Mae Words in Use |

Retrieval Pointers

BRleeck Checksum

14
_ !
! !
' d
! |
! !
: !
! !
! I
!]
! !

Each retrieva} peinter is_foui_bvtes in Yenath, Byte 1 con=

tajns the high order bits of the 24 bit LBN, Byte 2 con=
tains the count field, and bytes 3 amd 4 contain the low 16
Pits of the LBN,

! Ccount | High |
!n-n---o-c.g- . .'
! Low Order LBN |

S,4 Master File Directopy

The master file directory {s File ID 4,4, It {s listed f{n
the MFD (itself) as 222222,DIR31, The MFD s the rcot of
the velume’s directory structure, It lists the reserved
files, elus whatever the user chooses to enter, The format
of the MFD {is the same as all directory files, and s des=
cribed {in section 4,3, In the UFD structures degeribed in
sections d,1,1 and 4,1,2, the MFD contains entries for all
user file directories,

——

Files=11 OmeDisk Structure _ PAGE 55

5.5 Core Image File

The core image file is File ID 5,5, It is listed {n the MFD
as CORIMG,SYSsl., 1Its use is operating system dependent, In
9eneral, it provides a file of known File ID for the use of
the orerating system, for use as a swap area, for example,
or as a monitor overlay area, etc, This file has tha FCS
record format ef S12 byte fixed lemath records, with no care
rface contrel, The end of file mark is positioned to point
to the physical end of file,

5.6 Free Space File

The free space file is File ID 6,6, It is listed im the MFD
as FREFIL.3YS:1. Thre space it econmtaimns is available for al=
locatien to other files, The presence of this file allows
imdividyal immlementations of Files=1! tec use an alternate
scheme of space allocation which is more complex than using
the storage bitmap alone, but hes potentjally mych better
performance, Svstems which do mot support. this method of
allocation should trumcate this file to zero and returm the
space {t maps to the storage bitmap before usimg the volume,
This file has the FCS record fermat of 512 byte fixed length
records, Wwith nro carriage control, Its end of file mark s
undefined, :

5,7 VYolume Set List

The velume set list {s File ID 7,7, It {s listed in the MFD
as VOLSET,.SYS3:l, It is used omly on relative volume one of
a tightly coupled volume set, There, {t contains a list of
the volume labels of the volumes contaimed in this volume
set, The format of this file {38 FCS 64 byte fixed lenath
records with {mplied carriage control, The first 12 bytes
of record | comtainm the structure mame of the volume set,
The first {2 bytes of record n contain the volume label of
relative velume nei, The remaimning S2 bytes of each record
are reserved for future use,

5.8 Baekup Leg File

The bpackup log file is File Id 8,8,@2, It is listed {m the
MFD as RACKUP,S5YS:1, This file contaims a history of volume
and inmcremental backups performed on the volume, Its format
¢s'at presert undefined,

Files=11 Nn=Disk Structure ” RPAGE Sé

5.9 Contimuationm File

The standard continuation file is File ID 9,9, It is listed
in the MFD as EXTFIL,SYS21, It is used as the extension
File ID when a file crosses from one volume of a loosely
counledg velume set to amother, The purpose of this reserved
File ID is allow a multi=volume file to be writtem seauen=
tially with only ome volume mounted at a time, Qrdimarily,
when a file is extended onto another volume, the new header
must ke created first to obtain the mew File ID hefore the
extensjon linkage in the current header can be written, The
use of this reserved File ID allows _the extensfon linkaqge to
be writtem with a known constant before the mext volume s
even ¢n line,

6.4 FCS File Structure

File Control Services (FCS) {s a user level interface to
Files=11 implemented {n the RSX=11{ systems, Its orincipal
feature is a record control facility that allows sequential
processing of variable lemgth records and seauential and
random access to fixed length record files, FCS i{nterfaces
to the virtual block facility provided by the basic Files=11
structure, , .

6.1 FCS File Attributes

FCS stores attribute information about the file inm the
file’s user attribute area (H,UFAT - = see sectien 3,5,2.13).
It uses only the first 7 words; the rest are {grored by
FCS. The following i{tems are contained in the attribute
area; they are identified by the usual symbolic offsets
(relative_ to the start of the attribute area), The offsets
may be defined in assembly languaqe proarams by callimg and
fnvoking the macro FDOFFS DEF$SL. Flaa values and bits may
be defimed by callins anmd imyokirg the macro FCSRBTS, These
macros are in the system macro library of army operating svse
tem that supports Files={i, Altermatively, all these values
are defimed in the system obJect library of any svstem that
supports Files=11, and may be obtaimed at link time,

6.1.1 F,RTYP 1 Byte Record Type =

This byte identifies which tyoe of records are
contained {in this file, The following three vae
lyes are legal: "

Files=11 On=Disk Structure | _ PAGE 57
R.FIX Fixed lemgth records,
R VAR Variable length records,
R,SEQ Seayenced variable lemgth records

F,RATT | Ryte Record Attributes =

This byte contaims record attribute bits that cone
trol the handling of records under various cone
texts, The following flag bits are defined:

FDL.FTN l!'se Fortran carriage contrel 1{f set.
The first byte of each record is to be
interpreted as a standard Fortran car=
riage conrtrol character whem the record
is copied to a carriage conmtrol! device,

FBL.CR Use implied_carriage contro!l 1{f sat,
vhem the file 1{s cocied to a carriage
contro! device, each record {8 to be
preceded by a line feed and followed by
a carriage return, Note that the FD,FTN
and FD,CR bits are mytually exclusive,

FDL.BLK Records do mot cross bleck boundaries {f

set, Genmerally, there will be dead
space at the end of each bloek:s how
this {s handled {s explaimed in the des=
cription of record formats {in section
6-2-) '

FDLPRN - Use print file carriage control, Leaal
only {f ¢the record type is R,S5EQ, The
leading two byte field of each record is
used as carriage control fnmstead of as a
sequence number, The first and second
bytes apre used as leading and trailing
carriage formatting, respectively, The
interpretation of the carriage contprol
bytes 1{s described below 1{n section
6-2.3‘

F.RSIZ 2 Bytes Record S{ze =

Irn a fixed length record file, this word containg
the size of the records im bvytes, Inm a variable
lerath record file, this word conrtains the size in
bytes of the longest record inm the file,

i

Files=11 On=Disk Structure PAGE SA

b.1.6

6.1.4

F.HIRK 4 Bytes Highest VRN Allocated =

This 32 kit number is a coumt 0% "the number of
virtual blocks allecated to the file, Simce this
value {s maintaired by FCS, {t is usually correct,
but it is not guaranteed simce FCS is a user leve)
cackaage, . :

F EFRK 4 Bytes FEmd of File Block'=

This 32 bit number ig the VAN im which the end of
file i{s Jlocatred, Both F,HIRK amd F,EFRK are
storad with the high order half {n the first two
bytes, follewed by the low order half,

F.FFRY, 2 Bytes First Free Ryte =

This word is a count of the mumber of bytes in use
in the virtual block containing the end of file:
iseer it i3 the offgset to the first byte of . the
file available for arpending, MNote that an emnd of
file that falls on a block boundary may be repre-
sented {m either of twa wavs. If the file con=
tains preciselv n blocks, F,EFBK may contaim n and
F.FFBY will comtain 512, or F,EFBK may contain m+!
ard F,FFBY will contain €,

S FATT 14 Bytes Size of Attribute Rlock =

This symbol remresents the total number of bytes
in the FCS file attribute block,

6.2 FCS File Attributes Lavout

F.RATT

z-.‘---.-‘-‘-‘-----.‘ ’.-.--'--.----ﬂ-.--- s

‘ Record Attr,] Record Tvpe E "F.RTYP
e Pt
e
;-- ~ Allocated --g |
TR fees

’-- L]

A

Files=11 One=Disk Structure ' , PAGE S9
! vegN o !
I First Free Byte ~ : F.FFRY
g-----------------------.,--.-.---------! S.FATT

6.3 Atteribute Standardization

To assure_a certain consistency of file record structures,
certain fields in the record attributes area are standardw
fzed, and must contain well defimed values regardless of the
record structure or file organizatiom in use,

1, The record type byte (F,RTYPE) must contaim a code
that identifies the file orgamization and record
structure, All codes must be reaistered with this
specification,

2. The record attribute bits should be wused as dese
cribed apove when applicable, New attributes
ahould be reaistered with this specification,

'3, The high VBN field (F HIBK) must contain the number
of blecks allecated to the file, File managers may
modify this field during some operations on the
file, .

4, The end ot file mark (F,EFBK and F,FFBY) should
descrihe the emd of data 1n the fi{le when aoplica=
ble,

6,4 Record Structure '

This sectiom describes how records are packed in the virtual
Plocks of a disk file, In gemeral, FCS treats a disk file
as a seauentially numbered array of bytes, Records are num=
bered comsecutively startimg with |,

’

6,4,1 Fixed Length Records =

In a file comsistinag of fixed lemgth records, the records
are simply packed end to end with mo additional control ine
formation, If the record lemath is odd, each record {8 pade
ded with a simale null, For direct access, the address of a
record is computed as follows:

Let: n = record number

K1) ai

Files=11 On=Disk Structure , PAGE 60

record size (in bytes)

byte address of record in file

number of records cer block

VBN c0ﬂta1nino the start of the record
byte offset withim VRN]

-0 dx
o nn

((k+1)/2)%2 (rounded up record length)
(nei)*h

m/512+1 (truncated)

m mod 512,

Then

- s

The previous discussiom assumes that records cross block
boumadaries (that is, FD,BLK is not set), If records do not
cross plock boundaries, they are limited to 512 bytes, and
the followima eauations apoly (the variables are defined as
abovel:

(Ck+1)/72)%2 (roumded up record lemgth)
S12/h (truncated)

(nei)/a+l (trumcated)

((n=1) mod @)*h

o n

6.4,2 Variable Length Records =

In a file consisting of varjable lemngth records, records may
‘be up to 32767 pytes in length, Each precord {s preceded by
a two bvte Bimary count of the bytes 1{m the record (the
count does not include jtself), For example, a null record
is recresented by a simgle zero word, The bvte counrt is alw
ways word alianed: {.2.s 1f 2 record ends on am odd byte
boundary, 1t is padded with a simgle nyll,

If records do mot cross bleck boundaries (FD,BLK s set), .

they are limited to a size of 512 bytes, A byte count of =1
is used as a flag to sigral that there are mc more records

in a particular block, ‘The remainder of that block is then .

dead space anrd the mext record inm the fi{le starts at the be=
ginmning of the next bleck,

b.U,3 Seauenced Variable Lemgth Records =

The format of a sequenced file {s identical to a var{able
length record file excemt that a two byte seauemce nmumber
field is located {mmediately aftep the byte count field of
each record, This field contaims a binary value which s
usually jnterporeted as the lime number of that record (see
Section b,1,2 FD,PRN and Sectiom 6,2,3,1). The senuence
number is mot returned as part of the data whem a record s
read, byt 1{s availahle gecarately, Note that the record

e

Files=11 Dn=Disk Structure , . PAGE &1

oyte count field counts the sequence number field as well as
the data of the record,

6;0.3;1 Format of Two Byte Erint Contre) Field in R,SEG Re=
cords = '

If the FDLPRN bit {s set in the record attribute then the
two byte "sequence number" field is ugsed to containm carriaqge
control data for the precord, Hyte ? is primt control infors
mation to act wupon btefore the record data {3 output to a
unit record devices byte | is orint control information to
act ucen after the record data has beem output to a unrit rew
cord device,

The format of each byte is as follows?:

Bit 7 Bits 6=0 Meaning
) 2 . N& carriage contro!
? count(i1=127) "count" mew limes (CR/LF)
Bit 7 Rit 6 Bit S Bits u=2 Meaning
{ 4 2 ASCII C2 set ASCII char to
, output (CR,FF etc,)
1 ? 1 ASCII C1 set ASCII char (B kit code)
to output L
1 1 2 code (2=63) Device specific code
{ 1 1 - Reserved
NOTE

The print comtrol field {s mot currenmt]ly supported
by FCS or RMS=11, ’

Y

Files=11 On=Disk Structure : . PAGE 62

7.6 Record Mamagement Services (RMS)

Record Mamagement Services (RMS) }s a user level {nterface -

to Filesell, It provides a flexible meanms of data storage.
retrieval, amd modification through a combinaticn of file
oraanizatiorn ard recoprd access modes, File organizationr is
the structure of data withim the virtual bhlocks of a
Files=1] file, and record access mode {s the mammer in which
storimg amd retrievina the data im the file occurs, '

RMS suoports/defines three file organizatioms which are:

. Seauential = compatible with FCS fixed, variable,
and seauenced variable record files (see Section 4)

., Relative = RM§ only
. Imgexed = RMS enly

RMS imterfaces to the virtual block facility erovided by the
Files=11 structure, ‘

7.1 Uata Formats anmd Represahtation

RMS suoports file organizations which recuire a more complex
degree of structuring tham that required by FCS. PRM§S also
stores bimary values in a different mamner in genmeral thanr
Files=11 defines, For these reasons the data format and re=
presentations used by RMS are givem in the following sec-
tioms,

7.1.1 String Storage =
Al striﬁqs are stored left Justi?ied; The left most chare

acter {8 1in byte N and the right most cheractOr igs im byte
NeMw] whepre M {g the 1ength of the string, :

7.1,2 String Character Code Set =

A1l strimg values are assumed to be im the 7=bit ASCII coade
set,

=

Files=11 On=Disk Structure | PAGE 63

7.1.3 Sterimng Collatimg Sequence =

The collating seauenee used is the 7=bit ASCII code set
where NUL is the lowest valued character anmd DEL is the hie
ahest valued character, ’ ’ '

NQOTE

The intermal representation of ASCII characters on
PPP=11 systems 1{s 7=bft ASCII, The strimg compare
routinre of RMS8=11 however, performs a full B8=bit un=~
sioned compare mer character, RM8 does not perform
any "eclear bit 7" code on i{nmnput or outout onera=
tions, This allows the syeport of user bimary bvte
strinqs, the KANA character set used in Japan, and
in the future B=bit ASCII when defimed, without AMS
medifications since the true colating seauence s
lowest character = ? and highest character = 255,

'

7.1.4 Unsiqred Bimarv Value Storage =

A1) unsianed bimary values are stored with the Least Sianie

ficant PRits (LSB) 1{n byte N and the Most Sigrmificant Bits

(MSB) im byte N+Mwl uWhere M i3 the lemgth of the binary

valuye,)
EXAMPLE: 2 byte unsigned kinary value

1 LSB | N
:-.-.-ﬂ.l
I M8R | N+t

7.1.5 Siamed Binmary Value Storage =

A1) sigred birary values are stored as unsigned bimary va=
lues except that most sigmi{ficant bit (bit 7 of byte NiM=l)
of the value is {nterpreted as the sian of the value,
Negative numbers are stored as the two's complement of the
cositive valye,

Files={] Om=Disk Structure ‘ ~ PAGE 64

EXAMPLE: 2 byte siamed bimary value ;

i LsB N

g----..-.--- =

is1 MsB i N+t

Toeleb Pointer Values =

All cojnters are stored as unsiqgred bimary values, Poinmtars
are stored variable lemnath, The length of a cointer value
ts specified by the control bits _associated with the oo=
inter, The length requirement for a pointer is determined
by the range of VBN values it falls im as follews!

2 bytes start VBN | = 65,535
3 bvtes start VBN 65,536 = 16,777,215

4 bytes start VBN 16,777,216 = 4,294,967,295

7.1.7 Sucket Pointers =

A bucket pointer ig a pointer value which specifies the
start VBN of the bucket, The lemagth of the bucket (number
5f VEN’g in bucket) {s imteroreted im the context of 1its
usage withim the file, and {s specified in the file’s erolog
data, -

EXAMPLE: 2 byte bucket pointer

! LS8 | N
g.----.. ’
I MSB | N+i

7.1.8 Record Poimters =

Record pointers are composed of two fields, a one byte re=
corcd ID field followed by a buycket poinmter, The ID is used
as a urmiasue record {centifier for records within a3 bhucket,
The records are tagged with their ID’S whem storecd {nm the
bucket,

EXAMPLE: 3 byte reecord peinter

'
whal

Files=11 Onm=Disk Structure : PAGE 65

! I | N RECORD ID

:ﬂ-.-.’- !

! LSB | N+{ PRUCKET POINTER
]

| MSB | N+2

7.1.9 Packed Decimal Str%ngs -

Packed decimal strings are from | to 16 bytes im length,

The format

ig as follows: .

7 43 @

todr L 42 1 A

1 d3 | dd | Asd

®
LA R X 2 2 K L K 2 K B E X 2 2 J

I di | sian | A+Nei

whare!

d = digit in the range of 2 thpu 9 (birmary
value) :

sign is plus if value is 12, 12, 14, or 15
sign {s minus 1f value is 11 or 13 |
N is‘!enéth of strings {n bytes

i = (N=1)#%2+1 and is am odd number in the ramge
of 1 they 31 A

dl is most significamt diait (may be a leading
2ero)

di is least sianificant digit

e

Files=i1 On=Disk Structure PAGE b6

7.2 RMS File Attributes

RMS stores attribute information about the file 1inm the
file’s wuser attribute area (H,UFAT = see Section 3,4,1,9).
It uses the first ten (10) words: the rest are reserved by
RMS, The following items are contairmed in the attribute
areas they are identified by symbolic offsets into an RM§
intermal structure, The relative offset intc the attribute
area may be calculated by subtractima FEFORG from the aivenm
offset name/valuye, The offset definitions may be definea in
~assembly lamaguage programs by calling and {nvoking the macro
IFAQFS RMSSL, Flag values and bits may he defimed by cal=
lima and invoking the FABSBT DFINSL macro., These macros can
be found in the RMSMAC,MLB macrc library on all PDP=11 sys=
tems suoportima RMS,

<

7.2,1 FSFORG | Byte = Record Format anmd File Orcamization

This byte idemtifies the file’s organjzation and
which tyoe of record format {t contains, The rew=
cord format is contaimed {n bits @ = 3, and the
file’s organization {s contained in bBits 4 -~ 7,
The symbolic values are defimed such that they may
be OR’ED to vield the contents of the FSFORG
field, ~ ‘ '

Record Formats:

FRSDF Undefined record format (Rlock 1/0 enly
file)

FRSFIX Fixed lemgth records
FBSVAR Variable length records

FBSVFC Variable with Fixed Control (VFC) records
(the FCS R,SEQ {is a sepecial case form of
- the record format {,e., the fixed control
"apea 1s two hytes long amd contains the
records seauence number) :

FB$STM ASCII stream records, RMSell used only
as a 'means for RSTS/E ASCII data inter=
chamnge, Records are delimited by verti=

"cal form effecter characters (LF, VT, FF
and CR/LF pairs),

File Orqanizationrs:

FRSSER Sequential File crganization (FRSSEQ = @
to maintain compatibility with FCS)

I

 Files=11 On=Disk Structure . PAGE &7

FRSREL Relative File orcanization
FRSINX Index Fite organ}zatiah

FBSHSH Hashed File Organmizatien (not implemented)

7.2.2 FSRATT | Byte = Record Attributes

. This byte comtains record attributes bits that
control the handiing of records under various conw
texts, The followira flag bits are defined:

FREFTN See Section 6,1,2 FD,FTN
FRECR See Seetion 6,1.2 FD.CR
FREPRN See Section 612 FD,PRN anma 6.2.3;L

FRSBLK Reecord do not ecross block boundaries for
the Seayential file argarization {f set,
See Section 6,1,2 FD.81LK for more deta=
ile

7e243 FHRSIZ 2 Bytes = Record Size

In file containing fixed lemgth format records
this word cortains the size of the records in
bvtes, In Sequential files containimg variable er
variable with fixed comtrol formattecd records this
field contains the size in bytes of the_ longest
record inm the file, This field {is undefimed for
Relative and Imdexed files containimg variable or
variable with fixed control format records,

7.2.4 F3HVEN 4 Bytes = Highest VBN Allocated

RMS updates this field whenever the file is opened
for write access, For details om this field see
Section 6,1,4 FQHIBKI .

7.2.5 F3IHENF 4 Rytes = Emd of File Block

This 32 bit number is the VBN im which the end of
file s lecated for the Seauential file oraaniza=
tion, Both FSHVRN and FENHENF are stored with the

) J

Files=11 On=Disk Strueture PAGE 68

high order Palf in the first two bytes, followed
by the low order half, The low order half {s syme
polically referenced by FSLVBN and FSLEQF respec=
tively, These are the only two -places that RMS
stores block numbers in this manmer (see Section
7.1), and is done so to maintaim ‘comeatibility
with FCS. The Relative anmd Imdex file does mot
use this field and {ts value s usually (but not
quaranteed) ejther the contents of FEHVBN or the
contents of FSHVBN plus onme,

7.2.6 FSFFRY 2 Bytes = First Free Ryte

This field is used for the Seauential file organi=
zation as a count cf the number of bytes in use in
the virtual block contaiming the ena of file, The
Relative and Indexed file organization do mot use
this field anmd jts value will be either 2 or 512.
Foer more details on this field see Section 6,1,.,6
F.FFRY, '

Te2aT F$BK32 1 Byte = Bucket Size

This field contains the bycket size or maximum
bucket size for the Relative and Indexed file or=
ganizatiom respectively, The bucket sfze 1{is nre=
nresented as the mumber of virtual blecks {t con=
tains, Legal values are from { = 32, For compa=
tibility with FCS a value of @ is {ntermreted as
le

7.2.8 FSHDSZ { Byte = Fixed Header §ize

This field contains the number of bvtes (1 = 255)
in the fixed control area wher the file contains
Variable with Fixed Control format records, A
valyue of @ {s interpreted as 2 so that compatibil=
ity with FCS*S Seauenced Varjable length record
format file (R,SER) is mainmtaiped,

7.2.9 FIMRS 2 Bytes = Maximum Record Size

This field contaims a user specified maximum re=
cord size 1imit im bvtes, to be enforced om outout
operations, Files contaiming Fixed length format

Files=11 Om=D{sk Strueture v PAGE 69

records have FSMRS set eaual to FSRSIZ, For all

other record formats FEMRS {3 set to the wuser

specified value given when the file was created, .

A value of ? {s {interpreted as no maximum record
size limit specified,

FSDEQ 2 Bvtes = default Extend Guantity

This field contains a user specified default file

extend aquantity to be used whemever RMS needs to
extend the file, A value of @ §s interpreted as
use the yvoalumes defaylt extend,

-

Files=11! On=Nisk Structure ' ' PAGE 72

7.2.11 RMS File Attributes Layout =

!-.--'------..-.'Q--.---.----...-'---’-. g

{ Reecord Attr, | File Org./rec fmt | FSFORG
R e
T et AT s
i-- ' Allocated --:
TSI e
v VBN -.i
|ememmeacsesemcsemesonensesanneanenanens |
o First Free Byte .} F3FFBY
coost | i Ser e 1 husken me | paees
T e inen Recora ire Lintt L Fas
S T T

To calculate the offset into the User Attributes area in the
file header subtract F3FORG from all symbolic offsets,

7.3 Prologue Rloeks

The RMS Relative and Indexed file ormanizatioms wuse the
first several virtual blocks of the file to contain addi=
tional file degeription data, This area of the file s
called the file prologue, In the Relative file organiza=
tiom, the prologue is exactly ome block lonrna: in _the Ine
dexed oraanization {ts lemgth varies, The symbolic offset
names, and flag values and bits used in the file proloque
blocks and record formats may be obtained by calling and ine
voking the follewing macros from the RMSMAC,MLB macro libra=
ry on all PDP=11 systems supporting RMS,

ARDOFS RMSE|
BKTOFS RMSSL
KDXOFR RMS S
KDXBRT DFINSL
XARSRT DFINSL
BKT2BT DFINEL

The last word of every orologue block contains the stamdard
Files=11 check sum (see Secticn 3,4,4,1),

o

LT

Files=11 On=Disk Structure PAGE 71

7.3.! Prologue Block { (VBN 1) =

Prologue Black | contaims common data for both the Indexed
and Relative files, and file organizatior dependent data.
The major Indexed file dependent data is the ocrimary key dee
finition (the K3XXXX symbols), The malJor Relative file de=
pendent data are the maximum record number, ‘the address of

the first data bucket, and the "real!" End of File 8lock’

(last {nitialized, zeroed, V3N), The orimary key definition
offsets (K3XXXX) are used for all key definitions within the

oroloque of the imdex file and are relative to the start of

each key descriptor,

The key definitions supply all the {nformation needed by RMS
to rerprive, insert, update, and delate records for the Ine
dexes file organization, The basic data which are centained
in a key defimition are as follows:

. “here the assoeciated key %{eld is positiomed in the
record, and how long it is,

. The VBN address of the assceifated Root bucket,
. Various key field ootions

The key definitions are linked into a chainm by the VBN ad=
dress and byte cffset withim the prelogue block for the next
cey definitjom, The Indexed fi{le organization can be viewed
as a mylti=cartitioned fi{le, The first partition is the
oreclogue, the second partition is the index associated with
the orimarv key definition, and the thirg partition is the
user data associated with the primary imdex, Every indexed
oraanized tile contains these three partitions, Inm additionm
wher altermate keys are adefined them twe additional oparti=
tions per alternate key are created, The first partition is
the imdex associated with the alternate key definition, and
the secomnd rpartition 18 the RMS data associated with the
index, The RMS data contain pointers inmte the user data
partition for the records meeting the various kev values,
The index is structured as an n’ary tree where the nodes _of
the index are buckets, ~The {ndex structure {s the same for
all key definitions, ‘

7.3.1.1 KBNLVR 4 Rytes = VAN for Next Key Descriptor

This field contains the virtual hlock address in
which the rext key descriptor may be found, This
field is only looked at when the KIBNYT field con=
tains a 3, Ahem KENLVR and KSNBYT = 2 the last
key descriptor has beerm found, The least signifie
cant 16 bits of the YBMN are stored inm KEMNLVR and

Y]

Files=11 Om=Disk Structure - PAGE 72

7.3.1.2

7e3a143

7e3.1.4

" 743.1.5

7.3.1.6

the most siamificant 16 bits are stored in
KENLVB+2 (KSENKVB),

KENBYT 2 Bvtes = Byte Offset for Next Key Descrice
tor '

This word field comtains the byte offset relative
to the beaginmnning of the VBN contaimed im KENLVB
for the next key descriptor in the chain of key
deseriptors, The first key descriptor cemtained
im a VBN starts at byte offset @, and the eahain
will thread through the current VBN before goina
to the mext VBN, This meams that the VBN wil]
only change when K3INRYT contains a 2,

K$IAN | Byte = Index Area Number

This byte contaims the mumber of the Allccation

Area to use for the index huckets associated with
this key startimg at level 2 qoimg up to and in=
cluding the Root bucket, - :

KSLAN 1 Byte = Lowest Level Index Area Number

This byte contains the number of the Allocation
Area to use for Level 1 of the {mndex buckets assow
ciated with this key (a valuye of 2 means use the
contents of KETAN), '

K$DAN | Byte = Data Level Area Number

This field contaims the number of the Allocation
Area to use for the data level (level #) of the
index buckets associated with this key deseriotor.

KELVL | Bvte = Level of Root

This field contains the leve! number of the Root
bucket associated with this kev descriptor. This
field is not supported by RMS=1!{ release one,

=

Filase11

7.3.1.7

7.3.1.8

734149

Te3a1.12

T7.3.1.11

OneDisk Structure PAGE 73

KSIRXS | Byte = Imdex Buecket Size

This field comtains the bucket sjze im VBN’S for
all i{ndex. level (level 1| through the roct level)
buckets (1 = 32) for this key descriptor,

KSDBKS | Ryte = Data Buecket Size

This field centains the bucket size {mn VBN’S for
all data level (level @) buckets (1 = 32) for this
key descriptor, -

PINBEKS | Rvte = Data Rucket Size

This is a symbolic redefimition of K3DRKS for use
by the Relative f{le orgamnization,

KSLVBN 4 Bytes = Address of Root Bucket
This field contains the bucket address of the Roct
bucket for the index asso¢iated with this key des=

criptor, The 32 bit VBN'is stored in the manner
cescribed in Section 7.2.141, ,

KSFLGS | Byte = Key Descr%nfor Flaas

This field contains a tit vector for the various

- key optioms supported by RMS as follows:

XREDUP Dupiiéate key values allowed

XB$CHGA‘ Key value may chamge on 3SUPDATE opera=
tion

XBENUL Null key character emabled (KSNULL)

XBBINT Index must be inmitialized

dhen the XBSINI hit is set the KELVBN field cone
taims the following?

KELVBN = C(KSDAN)
KSLVRN®Y = C(KSTAN)
KELVBNs2 = C(KILAN)

KRLVENSZ 2 mnot used

——

Files=11 On=Disk Structure ‘ PAGE 74

T.3.1.12

7.3.1.13

7.3.1.14

Thias informatien is ugsed once only when the {ndex
for this key definition 1is created, Simce the
area number informatiorn {s not mormally stored in
the {n memory data base for am open indexed file
the reauired area numbers to create the index are
stored in the root bucket field for this cnece only
operation, The area numbers are nmot needed inm the
in memcory data base simece on future bucket allcca=
tion the area number stored in the bucket which f{s

"gplittima" {s used as the area muymber to allocate

the new bucket from (see section 7.5.,1,1e2)

PRFLGS | Byte = Prologue Flags

Thig field 1{s a symbolic redefinition of the
K$FLGS field for use by the Relative file oroani=
zation, BRits defimed for this field are:!

PRENEX Error encounted extending Relative file
no further extendina {s possible,

KS$DTP { Byte = Data Type for Key

This field contains the data type of the key field
withim the wuser data records, The only leaal
value currently for RMS={{ {s XB3STG, The fcllow=
{na data types are defined,

XB3STG String data tvype (umsigned B=bit bytes)
XBREIN2 " Signed 15 bit_integer (Z=bytes)

XBERN2 Unsigned 16 bit bimary (2 bytes)

XBSING Siamed 31 bit imteger (d=bvtes)

XB$8NY Unsigned 32 bit binary (L=bytes)

XBRPAC Packed decimal (1=16 bytes)

KENSEG | Ryte = Number of Seaments in Key

This field contains the_mrumber of seaments (1 = B8)
that make up the defimition of the logical key
field, The XRSIN2, XBS$BN2, XBSIN4, XBERN4, and
XBSPAC key field data tyoces may only contain one
(1) seament,

Files=11 Dn=Disk Structure : PAGE 7S

“7.3’1.15

73,1416

7.3.1.17

7.3.1.18

Te3.1.19

7.3.1.29

KENULL 1| Syte = "NULL" Character

This field econtains a user specified character,

1f the key field within the data record associated
with this kev descrictor contaims only "null™
characters the record will not be inserted {nto
the associated Index, The "nmull" value for the
XR$IN2, XBEBNZ2, XBRIN4, XBEBN4, and XBFPAC kev
field data tyces is defimed as 2zero (2}, This
field s enabled by the XBSNUL bit in the KSFLGS
and {s only valid for alternate kevs, '

KEKYSZ | Byte = Total key Size

This field contains the sumooé all the key secment

sfzes to vield the total size of the key field in
bytes (1 = 259), .

KSKEY | Byte = Key of Refererce

This field contains the key of reference number (2

= 2854) for this key descripter, Primary key = @3
alternate keys = | = 254,

KEMINL 2 Bytes = M{mimum Record Lenath

This field contains the minimum lenath record in
bytes to contain the complete key fiald,

KSIFIL 2 Bytes = Imdex Fill Quanmtity

This field contains the number of bvtes to use for
index level buckets (levels | = m) before a bucket

split is considered when the user reauests RMS to
follew fill quantities,

KFDFIL 2 Bytes = Data Fill Quantity

This field contains the number of bytes to use for
user level buckets (level @) before a bucket split
is considered whem the user reauests RMS to follow
fi11 aquantities,

T

Files=11 On=Disk Structure : ‘ PAGE 76

7.3.1.21

7.3.1.22

7a3.1.23

Te3.1.24

743,1.25

7.3.1.26

Te341.27

KSPOS 16 Bytes = Key Segment Offset Positions
This is a set of eight (8) 2 byte fields

(KSPOS#=KSPOS7) - which contain the relative offset
(2 = n) into the data record for each kev segment,

K$SIZ 8 Bytes = Key Segment Size
This is a set of B 1 byte fields (K$SIZ@A=KS$SIZ7)

which contaim the gize im bytes for the key sege
ment,

KEKNM 32 %ytes = Key Name
This is a 32 byte string supplied by the user when

the key was defimed, If rmot supplied will comtain
NULLS,

KSLDVR 4 BRytes = Firgt Data Bucket
This field contains the bucket address eof the
first bycket at the data level (level @) associate

ed with this key descriptor, This field 1is not
supported by RMS=11 release | and comtains a zero,

14 Spare Bytes =

PSAVBN { Byte = VBN of First Area Descriptor

This field contaims the VBN (2 = 255) of the first

Allocation Area descriptor block, Allocatiom Area
deserintor blocks are virtually contiguous and are
directly accessed by area number, See Section
Te2.3

PSAMAX | Byte = Maximum Number of Areas

This field contains the maximum number of defimed
Allecation Area descriptors (1 = 255) for this
file, Eight (B) Allocatiom Area descrintor can
fit im a virtual block since each area descriptor

A d

Files=11 OnmDisk Structure . PAGE 77

7.3.1.28

Te3.1.29

T.3.1.32

"Te341.31

Te3e1.32

C7.341.33

is &4 bytes loma, The file address of aﬁv Area

descriotoh may be caleulated as follows!

Lett a = area number (@ ~ 254)
v = VBN address for a
o = offset into v for a

Thenm? v = a/8 (truncated) + c¢(FSAVEBN)
¢ = (a mod R)xé64

P3DVEN 4 Rytes = Address of First Data Bucket

This field contains the 32 hit VBN of the first
data bucket im a3 Relative file,

PELMRN 4 Bytes = Maximum Record Numbern

This field contains the user specified maximum re=
cord number .which will be allowed on SPUT orerae
tions to the Relative file organization, If the
user specifies @ them this field will contain the
maximum pecord number possible (2%*x3i=1),

PSLEQF 4 Bytes = EQF VBN
This field contains the last {initialized (i,e.s

zeroced) VBN (i.e,s the EQF VBN) feor the Relative
tile organzation, '

PSVERN 2 Bytes = Prologue Version Number

This field containg a prologue version nyubmer,
The omly legal value at thig time is ome (1),

292 Rytes = Regerved fop Fyuture Use

2 Rytes = Ppologye Checksum (see 7,2)

=

Files=11 On=Disk Structure

743,134

KSLVL

KEDRKS
P3DRBKS

KEDTP
KINULL

KRKEY

Prologue Block | Layout =

| VBN For Next Key !

(I Deseriptor ‘ |

i Ntfset To Next Key Desen, !

! , S !

1

l LA A A LKL X L2 8RR X222 ERRREXELHNEEZSNLREX] H

! Root Level ! Data Area ¢ !

Data Bkts ' Imdex Rkts
- Size | Size

!
}
'
Root Bucket |
!
|

Peinter .
l'.---..--..--'--..--.--.-.ﬂ.--.--.-.--.‘

Data Tyre | Flags !
! "NULL" Character | # of kev segments |

! Key 0f Ref, - -} Total Key Size |

{---.-D.’---..-'.‘..-”'.---.ﬂﬁﬂ---ﬂ---.' !

i Mimimum Record Length

’,.l"‘..--"------.---.-...---’-.-.-ﬂ-....

! Index Fil] Buantity

! Data Fill Quantity

—— e e e e . e e

—— .

Key Field Seament
Offset Positions

(K$POSB=KSPOST)

) i .o
Key Field Segment Sizes
(KSSIZ7@=KS8SIZ7)

L E S L X R EEEE R LA EZ XN ZEREY RERXERE SR XK XX K B K J_J
“ey Name String

H
!
!
|
H
!
]
|
|
!
H
!
!
H
!
! (22 Bytes)

|
!
!
'
!
|
!
|
!
|
|
!
|
'
|
|
|
!
!
|
!

First Data Bucket

—— e — -

]
-~

PAGE 78

KENLYR

KINBYT
K$IaN
KEDAN

K$IEBKS

KELVEN

KEFLGS

PSFLGS

KSNSEG

‘KSKYSZ

K3MINL
KSIFIL

K3OFIL

K308

K$S1Z

KEKNM

K3LOVR

i

Files=11 Cm=Disk Structure ' PAGF 79

Pointer o
Spare (14 Bytes) /
|

L AR A R L X E R B R L R B B A B B E &L R R & K B2 & E B N & N R N B E & K A & J ‘

Max Aprea # ! VBN 0f 1st Area IPSAVEN

Stamst VEN of {st Data Bucket | PSDVRN

.-!

(relative file only) !

PRAMAY

P I NN\ p—

! Maximum Pecord | PSLMRN

b Number , !

! Relatjve File EOF VEN { PSLEOF
- --I

(Last Initialized VBN = Zersed) 1

LA A R L K A & K A 2 K B 2 K B B B N R R B 2 B R B R B B B B R B K B R B R J ‘

Prologue Version Number ! PEVERN

|
|
!
|
|
!
/ Spare (392 Bytes)
[
]

|
|
H
{

‘Rloek Checksum
Bvte Qffset S17

————— N\ —

7.3.2 Altermate Key Prologue Rlocks =

Alternate key proloaue blocks are chained toaether through
the KINLVB field of the key descriptors (see Section

7.2.1.1). Five alternate key descriptors canm fit in a VBN,

7.3.3 ‘Area Deseriptor ?rplogue Rlocks =

The Indexed file orgamizatiem reauijres a methoa of allocat=
ing the virtual blocks of the file to the various usaaes
within the file (e,g9.,» Index buckets and Data buckets), The
structure which allows this virtual bloek allocaticn manmage=
ment {s the Area Descriptor, The Indexed file supports myle
tiople allocatiom areas to achieve the fellowing user file
design capabilities: ’

1, Different buckat sizes between the {rdex Gtuckets

Y

Files=11

2

OmmDisk Structure FPAGE 87

and associated data buckets,

Different index and data bucket s{zes on a per kay
basiS.

Allocation placement control for the var{ous elew=
ments of the file,

Eiaht area descriptor cam be contaimed in a virtual bloek,

anmd al)

the area deseriotor prologue bloecks are virtually

contiauous (see Sections 7.2,1.26 and 7.,2,1.27 for more de=

tajls),

7.3.3.1

Te3.3.4

7.3.3.5

Spare | Byte =
ASFLG | bvte = Flags (nof‘usedi

ASAID 1| Byte = Area Number (2 = 254)

This byte contains the Area’s number and is_ used

as 2 redunmdancy check since all area descrictors
are located at 2 fixed relative position to the
start of the Area Descriptor oroloque blocks,

ASBKZ | Ryte = Rycket Size for Area

This field econtains the areas’s bucket size {n
blocks (1 = 32) which is the granularity of allo=
cation,

ASVOL 2 Byte = Relative Volume Number

This field contains the relative volume number for
the lagt file extend for this area when placement
ecantrol was reauested,

i

‘F§1es-11 OneDisk Structure | PAGE 81

7e3.3.6 ASALN | Byte = Extend A11ocation Alignment

This field comntaimg the a!)ocatian alignment used
for the last file extemd for this area,

Legal values for this field are!

2 placemant comntrol not recuested
XBECYL cylinder alignment (not imolemented)
XBSLBN loaical bloek alignment

XREVEN virtual block aligmment .

XBERFI alloccate close to related file

by FID (mot implemented)

7.3.3.7 A3AOP { Byte = Aligmmenmt Qptions

This field contains oBtion bits to aualify the
ARALN field, Legal values are as follows?

XBSHRD Aligmment {s absolute and fail {f not
available (rote: 1{l1legal for XB3IVBN or
XBSRFI alignment),

XBSCTG Allocation is to be contiguous,

7.3.3.8 ASAVL 4 Bytes = Available (Returnmad) Buckets

This field contains the 32 bit VBN of the finrst
available bucker im a chainm (linked through the
first 4 bytes of the Dbucket) of buckets, This
chain of buckets would be the result of returning
buckets back to the area, The returning of buck=

- ats {8 not ecurrently Supoorted by RMS so that the
omly legal value for this field {s zero (@),

Te3.3,9 A3CVB 4 Bytes = Start VBN ?dr Current Extent

This field contains the-32 bit start VBN for the
current extent, The current extent {s the extent
from which buckets will he allocated,

,
sl

Files=1] On=Disk Stpucture PAGE 82

7.3.3.1a

7.3.3,12

7.3.3.13

7.3.3.14

7.3.3.15

ASCNB 4 Bytes = Number of blocks im Current Extent

This field contains the numher of blocks that were
allocated to this currenmt extent, The combination
of ASCVB and ASCNB describes im virtual block
terms the result of the file extend operation for
the current extent,

ASNUS 4 Bytes = Number of hlocks used

This field contains the mumher of blocks that have
been alleccated from the current extent,

ASNVR 4 Bytes = Next VBN to Use
This field contains the 32 bit VAN to use for the

start VBN of the mext bucket allocated from the
current extent,

AZNXT 4 Sytas = Start VBN for Next Extent

‘This field contaims the 32 bit start VBN for the

next extent, When the current extent {s used up
the next extent is made the current -extent and the
rext extent description {s zeroced, The area ¢can
only be extended whem the mext extent description
is zero,

/

ASXRY 4 Rytes = Number of bloeks im Next Extenmt

This field contains the number of blocks that were
allocated to this next extent, Thie combimation
of ASNXT and ASXARY describes {n wvirtual bleck
terms the resylt of the file extend operatiom for

the'next extent,

ASDEN 2 Bytes = Default Extend Quantity

This field contaims the wuser soecified default
file extemd auantity to be used whemever the area
is to be extenmded by RM3, A value of 2 means use
the file’s DREG, However, f{m mo case will less
thamn one bucket size fer this area be reauested,

LY

Filas=1! NnwDisk Structure ‘ PAGE 83

Te3e3416

Te3434.17

7.3.3.,18

7e343419

7e3.3.22

Reserved 2 Rytes =

ARLOC 4 Bytes = Start LBN eom Velyme

This field contains the start logical bloek number
for the last extent performed for this area,.

ASRFI & Bytes = Related File ID
This field contain the FID of a related file for

the XEB3RFI allecatiorm aliamment (ASALN) (mot ime
plemented)

Spares 12 Byteg =

ASCRC 2 Bytes = Checksum

This field {s a durmy field to pad out the area

“deeriptor to b4 bytes, This also allows the stanme

dard Files=1] checksum to be stored in the last
word of the Area Descriptor Prologue block,

e

Files=11 Om=Disk Structure

7.3.3.21

ASFLG

ABBKZ

A3ADP

Area Descriptor Layout =

! Flaas I Spare I

e ner s rrr T TR, ...
i Bucket Size | Area Number ‘
{ Relative Volume Number
T R Tan betions 1. alvec. Alieme
T e bt Bueker
| List

Start VBN For !
Current Extent |

- e e men

H

H

' Number 0f VBN’s In]
H Current Extent {
! Number 0Ff VBN’a lised |
! In Current Extent '
! Next VBN To Use For !
} Current Extent i
’.-'-.'-.--.‘--‘.--.--..-.-.‘---..---’--,
| Start VBN Far]
! Next Extenmt |
! Number Of VBN’s In |
! Next Extend !
! Nefaylt Extend Quantity !
!...----'-.'.-"--..-------..-------’...l
! v Smare !
'--.-'----.---'---..--.--‘-.------‘-----'
! Start LBN For Last !
| Extend For This Area H
| File ID For !
| Related File For |
! File Extends !
! |
! |
! !
| !
! !
! !
! !
| !
' :
’ !

SQaFes
(12 Rytes)

Gummy Field To Allew Bloek Checksum

%

PAGE 84

ASATID
ASVOL
ASALN

ARAVL
AECVSB
ASCNR

ASNUS

ABSNVB

ASNXT
ASXBY

ASDEQ

asLOC

ASRFI

ASCRC

Filese11 OmmDisk Structure - PAGE 85

7.4 Seaquential File Format

The RMS Seauential file is compatible with the FCS Fixed and

Variable lemath record files, Please refer to Sectionm 6,2
throuah 6.2.3, The RMS variable with Fix Comtrel record
format 1{s a cemeralization of the Seauenced Varialbe Lenmgth
Records of FCS (Section 6.2.3) im that the fixed control
area (alwavs 2 bvtes for FCS) can be varied betweer 1 to 2585
bvtes,

7.5 Palative File Format

The Selative file currently uses virtual block ome (1) for

its orologue, amd starts j{ts data buckets at virtual block
2. FRecords are stored in fixed length cells within uynmfore
mated buckets (nmo overhead bytes inm bucket) starting at bvyte
¢ and packeg end to end Ci.e.a byte aligred), The wvirtual
hlocks within the relative file must be 1nitiaiized (zeroed)
when they are allocated to the file to suoocrt deleted rew
cord control,

7.5.1 Relative File Record Formats =

Records are stored {n fixed lemath cells, The first byte of

each cell 1{is a record control byte used to provide deleted

record control, The following bits are defined:

DCENEL recorg hag hbeen deleted

NCEREC record exists
A value of 2 indicates the cell has mever contajned a re=
conrd,

The relative file suppcrts variable amd variable wvth fixed
corntrol lemgth record uo to the reauired user specified Maxe
imym Record Size (MRS), 1In these cases the record contrel
bvte {s fellowed with a two byte bimary count of the bytes
im the record (the count does nmret include {tself), If ¢the
cell size does not evenly divide the bucket size them the
remairing space im the bucket is dead space and the next re=
cord im the file will be stored {m the first cell of the
next bycket, Im other words records mever smanm bucket boun=
daries,

wil

Filesw=11 Om=lisk Structure

7.5.1s41 Fixed Lenqgth Records =

! ctrl | data (mrs bytes) |

cell size = MRS+

7.5.1.2 Variable Length Reconrds =

' PAGE 86

AR K A A X A R X & R 2 B R B K L K B B B L R F KR L B L X A R R L B A & X J

I ctrl | size | data (size bytes) |

cel]l size = HMRS+3

7.5.1.3 Variable with Fixed Control Records =

LA KR R 2 E 2 E L L E X L & X F LB L E A XA X X K 8 R 2 K 2 B X 2 X R § 8 E & B R N A B N & B K X K R J

! ctrl | size | fixed | data (size=fixed ctr] bytes) ! '

LA A X E X 2 F X E X8 X 2 A R XX K 2 K A A E B X X & B B X X &L R B B B X L K K B A XK R K & R K K J

cell size = MRS+f{xed ctrl size+3

7.6 lndexed File Format

The Imdexed File uses virtual blocks 1, 2 and

{f mecessary

ue to and {mcluding B84 as a maximum for its prolosue, The
current implemenrtation on the PDP=ii will result im a prolo=-

que of the following forms:

1

I

Single Key

! ~ Primary Key
VBN ! " Descrintion
|
i PRAMAX | PSAVRBM
x--.---"-‘-----.-----.--.‘---

!-.-‘-.---'--“ﬂ'--..-H-.--.'Oﬂ

!
!
!
!
!
!
!
!
i

’ LA K K K B K B B B K L A E & K B B R X L K E X B N B R R J !

VBN 2 | | : : s

|
!
!
:

Cmmm

=

Filesw=il On=Digk Structure

VYBN3=N

| Area Descriptors |
! (Up To 8) Fer !
! simgle key 4 is all that !
| carn be used |
! |

| !
! Index and Data |
|) Buckets !
! !
! |

Multiple Kev

¥YBN 2

1f more than S

VBN 3

VBN PRAVEBN

! Ppimary Key e
| . Descrintor o
| . |

!'..---.---'.-.--.-.’.-'--‘-..“:

!

!

!

I PBAMAX P PSAVEN ! |
I - _ !]
!

!

]

g LA A LB R K R A X B B L 0 KL 2 & L K R _E L & R R 2 X B J ,

t(---
) ‘ i
Up To. S5 Key !
Descrictors |
-

------n.-----------.--.------‘
Key S Descriotor |mem
|

3
!
!
!
!
!
!
!
!
|

altermate keys

’ . . '(--n
} Key Descriptors !
| ete, ' H
! {
! !

! |
! Area Desecrintors !
] 8 Perm Rlock |
H !
! !

PAGE 87

Files=11 On=Disk Structure - ~ PAGE 88

index and data bucket spmace starts at!
((P3AMAX/B(trumcated))+PSAVEN)

Records are stored {n formatted buckets (buckets have cverhm
ead bytes) and are packed end to end (i,e., byte aligned),
The bucket format and the various record formats are given
in the followimg sections,

T.6.1 Index Structure =

The Index {s structured as a balanced tree, The nedes 1in
the tree are buckets, and the nocdes are serially searched,
The Index nede contains inmdex records as specified im Sec=
tiom 7.5.2.1

The bucket size {s ecomstant for index modes, but may be dife
ferent than the Data buckets, The Data buckets are all the
same size,

Each level of the index {s horizontaly limked via the Next
bucket pointers, The horizomtal linkimg i3 circular with
the last bucket (noted by BCSLRK) poimtina back to the first
bucket, ‘The Data _huckets for an Imdex mav be viewed as the
data level (set) of the index and are limked im the same
mammer as buckets in any other level of the Index. Figure
7=2 shows the structure of the Index,

The key value associated with 1{ndex records (see Section
7.5.2.1) is the highest or highest possible key value im the
hucket poinmted to by the bucket poinmter im the record,

The tasiec search rule for an {mdex search is to follow the
first path for which the search key is ecual to or less than
the key valye stored in the {ndex record,

7ebslal Primary Key Imdex Structure =

The primary key {ndex for a file {ig structured as stated 1{n
Section 7,5,2 above where the data level is coemposed of
buckets which contaim the User’s data records, The data
buckets may also eontain RRV records, See Sectiom 7,5,3 and
7.5.2.3 for details on RRV records,

Files=11 NneNisk Structunre : PAGE 89

Te@oele2 Altermate Key Imdex Stryucture =

An altermate key imdex for a file is structured 2s stated in
Sectior 7,5.,2 above where the data level is composed of
buckets which contain pointer array records as specified in
Section 7,5.2,4. Therefore the {ndices within the Indexed
File'quani;ation_have the same structure, where only the
intercretation of the records within the data level of am
imdex is different, -

7.6,2 Record Referance Veetor (RRV) =

“hem a record {8 {mgserted in am Indexed file the record {9
assigned a reference vector address and this address is
stored in the data record in the record pointer field (see
Section 7,%5.2.2). This address {3 the {nitial address-of
the record i{tselé, "~ wWhemever the record {8 moved the
record’s reference vector record {s updated with {ts new ad=
dress, The record, im turm, points back to its reference
vector so that it can be yodated if the record {3 moved
acaim, The reference vector record {s created when the re=
cord s moved for the first time, Using this technifaue the
worst case jndirection for a record i3 kepot at one, and we
can always find the record via its reference vector address,

The record pointers used withim the Indexed file organizae
tioms and the RFA (Record’s File Address) returned to the
user im the RFA field of the RAB are always the record’s
reference vector address,

The space reguired for RRV pointers in the data records of a
file 1is reauired ¢to i{msure RFA addressing amd alternmate
keys, The RRV records are stored at the end of the data rew=
cords in the user data buckets, The use of RRV’s and secon=
dary indices is graohica!?v shown {m Figure 7+3,

7.6.3 PBucket Format =

The Indexed organizatiom uses a formatted bucket as {ts priw
mary unit of seondary storage, A bucket is composed of some
number of virtual blocks in the ramge of =32 and has a
header starting at byte one of the bucket,

The Bucket is composed of three Jleogical areas, a Header.
area, a Record storage area and a Free space area,

Fach of these areas wi{]] be described im the sections that

follow,
!

Files=11

Teboeldal

7a643.1a1

7.bl3'l1.2

Teba3.1a4

Tebe3a1.5

Om=Disk Structure ‘ PAGE 9@

Headepr Area =

The bucket heacder area is composed of a RAS data
section, a bucket storage control section, amd a
structure l1ink section, The size of the bucket
header {s 14 bytes (S$BHD),

BSCHK | Ryte = Check Bvte

This is a ome byte check character, Khemever a
bucket {s wpitten the value im the check byte is
changed and copied intc the last byte of the bucke=
et, Yhenever a bucket is read the check byte {s
compared to the cecpy for eauality, By this tech=
micue hardware fafjlures durimg transfer are de=
tectable ({.e,, the BUS breaks etec,),

R$STAA | Byte = This Allecation Area

This field contains the allocation area number
that this bucket was allocated from,

RSADR 2 Bytes = Buecket Address Samole

Thris is a sample of the bucket’s start VBN ade
dress, and {s composed of the low order 16 bits of
that address, This field is writtem upem bucket
formattina, and is checked whenever the bucket is
read into main memory,

BSNBY 2 Bytes = Next Available Byte
This field contains the byte address relative to

the start of the bucket of the first free byte {nm
the Free Storage Area of the bucket,

RENID | Byte = MNext Available ID

Thigs field econtaims the ID mumber to use for the
next record placed inm the bucket,

Y

Files=11 On=Disk Structure ’ PAGE 91

7.6.3.1,6

7‘.6|3.1.7

7l6|3Il.e

7.é.3ll.q

BSLID | Ryte = Last Available 1D

This field contains the ID mumber of the last 1ID
in the contiguous rarnge of ID’s specified by the
contents of BINID and R3LID, Whem the contents of
BENID are greater than the contents of B3LID or is
zero then there {8 no "mext" available 1D, When
this condition occurs the bucket {s scanned to
fimd thée laraest contiguous ramae of unused 1ID’s
and BENID and BSLID are updated to describe that
Pa.ﬂqe.'

RINBK 4 Bytes = Next Rucket Poinmter

This field containms the start VBN of the nrext
bucket at this level of the index or data carti=
tion for the Indexed file organization, This oo=
inter always points to a bucket of the same size,

R$LEV | Byte = Level Number for Bucket

This field contains the level murber relative to
the data level for this hucket, im the index, The
Data level buckets containm a @, the lowest Tevel
buckets of the imdex comtain a 1, the mext leve!
buckets goimg towards the root containm a 2 ete,

NOTE

"Data buckets" refer to the buckets which
contaim the data records associated with
the index. For the orimary {ndex these
are the yser data records, and for the al=
.ternate imdex these are system data re=
cords which contaimn am array of pointers
to user data records,

v

RSRCR | Ryte = Control Rits

This {s a bit emncoded bvte field and s wused 1{n
the processimg of a bucket, The followimg bits
are definmed for the {mdexed file organization?

ubt

Files=11 Om=Digsk Structure ' PAGE 92

7.6‘3.2

716.3.3

Teba3.4

7464345

BSTAAv

BsLID

38RCR

RCSLRBK = last bucket ir leve)
BCSROT = root bucket of inmdex

Record Sterage Area =

The recerd storage area starts at the first byte
after the bucket header area, and ends at the bvte
address stored im BSNBY minus one, The record
structures {m buckets vary with the use of the
bucket, Seectigm 7.,5,2 specifies the various pres
cord structures used,

Free Storage Area =

The free storage area starts at the byte address
stored {m BSNBY and up to the check byte coov in
the bucket, Anmy and all free storage statistics
refer to this contiguous free storage area,

However {t is possible due to "fast" record dele=

tiemns to have "free" space within the record sto=
race area of the bucket, The reclaimina of this
space is dome on an as needed basis,

S$BHD 14 Bytes = Size of Header Area

This symbol represents the sgize of the bucket
header area, ‘

Bucket Format Layout =

|l This Area | Check Byte | BSCHK
T e aaarens samaTe 1 saans
N
S I

Mext Bycket Poimter |
: (Start VBN) !

]
!
]
]
!-o--.--------------.---.---.----..-----’
1
1
!

RENBK

RCA | Level I RSLEV

P R T P T T Y SERMD

Files=11 Om=Disk Structure

!
!
i
|
!
!
!
!
!

Record Storage
Area

Free Space
Area

Check Byte Copy |

PAGE 93

c(RENBY)

v n man . - e - - —

7.6.,4 Record Structures =

The following record structures apply to the Indexed file

oraanization,

7.6.4.,1 Index bucket record =

8---..--_-.---

IRCB | PS
!

!
| !
| !
! !
H |
] |
! Rucket |
! Pointer |
| !
! !
!]
H !
| !
! |

Key Valuye

1 Byte

n Bvtes

m Bytes

IRCR contains Imdex Record Comtrol Bits

The following bits are defimed in the IRCR byte:

ICSKCP

TCSEMP

Compressed key value (not currently de=

fimed),

Poimter to emoty bucket,

PS {s the pointer size as *ollows?

[\ L]
W uu

2 byte bucket pointer
2 byte bucket poimter
4 hyte bucket pointer

Y

Filesw11l Om=Disk Structure

7.6.“.2

Gemeral

PAGE 94

2 = ymdefimed

DRCB |

ID

Record

Data Buecket Record =
PS | 1 Byte
| 1 Byte
| N Bvtes Optiomal

locuungnnnqnugf

Si{ize

Data

|
LA R & A & A K K & B & 2 J ;

DRCB contaims Data Record Contral

!
!
{
|
!
H
H Poimter H
(]
! H
!
| ,
|
!
|

No Size If Fixed Lemath Data

!
‘I M Bytes
M = S{ze or Fixed Length

Rits

The follewing bits are defimed in the DRCB bytel

DCSDEL

DCSBRY

DCENPS

DCsKDL

DCSNCP

PS is the
follows?

. Reeord deleted, onr

"cord exists:

poimter to adeleted

record,
Record reference vector record,

No pointer size field nresent (qualifies
PS)

Poeimter to record for this key mo lonqger
applies SUPDATE chanmged the key, hyut re=
note ID will be zerced on
all systems starting with Release | onm

RSX=1{M V3,

Do nmot compress this deleted record,
peinter size for the Record pointer as
3 byte record pointer

4 byte record pointer

S byte record pointer
undefined

NPy~

Filea=11 On=Disk Structure PAGE 95

7.6.4,3 PRRV Records =

. Record Re?enemce Veetor (RRV) records are records whieh

noint to the record associfated with the reference vector,
They function as "forwardinc addresses”" for the actual re=
cords whem thevy are moved,

The format is as follows!:

|mememeancen]
! DRCB |} PS |
|meemmeeneea
! 10
|
|
:
|

Pointer

!
]
1
Record !
!
)
where the DCSRRYV bit is set im the DRCR field,

Toboeldod Deleted RRV ?ecords -

The RRV record for a deleted record can be as small as the
first two bytes of the RRY record. In this case the follow=
ing DRCB bkits are set:

DCERRY
. DCENPS
DCEDEL

Tet,4,5 Secondary (or altermate) Imdex Data . Record (SIDR)
for which durlicate keys are allowed =

The data records associated with an alternate index are_ now=
imter arrays to the users data records, The format of the
record is as follows:

.. - - - - .'-.-----------,----'

!
! DRCBH P PS | 1 Byte
g.----.--..---.-.--.-g

Data Record 1D {1 Byte

4 Bytes (DCINPS=R)

Overhead

)

Key Valuye M Bytes

!
|
!
!
S{ze | 2 Bytes
]
|
{

Files=11 Om=Disk Structure , " PAGE 96

X Byte Poimter
Arpay

Data ! SIDR Record
on ! Pointer #1
Reco‘f‘d !--------—-.--------.

SIDR Record
Paimter #2

Y Bytes record

t
LA A R B 2 X B B K B B B L R B L B & 3 J

[]
SIDR Record Z Bytes
Poimter #K

'
'
!
!
!
g
!
'
'
!
!

!
'
!
' .
'
'
!
!
'

Fields within the pointer array record:

PS This field comtains the size of the duclicate
- ecount field as follows

3 bvytes :

4 bytes **THIS IS THE ONLY VALUE USEDx=
S bvtes

yndefined

W e
W

DRCH Bits used for pointer array récords .
MCSNFS 1f this bit {s set then there is no du=
. plicate count field, This is used for
all array contimuatioms records; since

the count applies to the total arravy,

7.6,4,6 Secomdary (altermate) Index Data Record = No Dupli=
cates = ‘

The data records associated with an altermate index for
which duplicate key values are rot allowed {s shown in Sec=
tien 7,5,2.4 exceot that the duplicate count field {s omit=
ted (DCINPS=1) armd there is only onrme SIDF Record Pointer,

NOTE
vhem a pecard is deleted the No Duclicates SIDR re=

cord is compressed out of the secondary index’s data
Pucket at the time of the delete,

Files=11 OmePigk Structure : PAGE 97

Tebeldy7 SINR Record Pointers =

The format of the record pointers used i{n Secondary
Data Records is as follows:

Nverhead | DPRCR | PS | | Byte
Record | Regord | N Bytes
Pointer ! Pointer | .
IS bytes | |

DRCR hits used for SIDR recerd bointers§

DC3IKOL Poimter has beem deleted due to
change on a 3UPDATE ogperaticn, Inm
case the ID portion of the record
{mter will be zero, '

NCSDEL Record associated with this pointarp
been deleted, '

Index

key
this
po=

has

Hhy

i

Files=11 Om=Disk Structure

Fiqure T=2

Index Structure

Root

LA L K A K K B R A R J J

ok,
I

-
U
f
'

!
1

!
{

Kx |
HH

!

]-------n--

IR
v

o o

|

[R : ’

Vv

i _ i

I olKab .0 Xi !yoee! | P

b o

- ' !

(. '

!

, LA A R N K & E X K E X K X X B] ‘

LR L R B B B B K B X R E_J

i
!
v
: i
!
'

!
’..-----‘-’

}

v

[IKap V.|
leseidatal |
1 1 : !

] 1

»
.

NOTE

w»

AV] buyckets in a leve!

b Vo

e Kab !...! : 'R K] !Kig

b b

!

L X B K N N N K N N B K]
| HE &
leasaslidatal
} | |

!
;
!
v
'
'

PAGE

are linked horizontally from left
richt via mext bucket ocoimters (see Sectiom 7.5.1.1.7).

98

to

b

——

Files=11

CASE 1

n
m

n

Om=Disk Structure ' PAGE 99

Record Has Never Moved

w=== Pointer [m Secomdary Index
! Poirter Array

V

LA R B L B R R & & § ¥ N X R R R 8 }

! DRCR ! PS | <owm
L2 2 B K N E X & K X X ¥ R ¥ N R N J :
1 D ! !
| Record Pointer |eweam
! (RRVP) !

! Cata ! RRVP = Records Reference
n---u.---u-‘q------ Vectop Poiﬁtep

User Data Record

Reecord Has Moved

emme Po{mter In Secondary Index
! Pointer Arpay

i
L]

v
' DRCA | PS |Cme=w=== Record Reference
LER YT R R YL Y T Vector
! 10 '
| Record Pointer |mee=
T Y R R N SN AR W W !

1

!
!
[]
T
LY TR E R L ERER L R L F X] =
1 ']
1 i
]
]
]
L]
]
i
]
i
]
1
!
L

v
V. oRcs 1 ks
v
| Record Pointer lmemm=mns
! (RRVP) !

! Data [

User Nata Record

Fiqure T=3

RRV Usaae

wi

Files=11 On=Disk Structure

[Fmdd of 0DS2,RNO0]

PAGE 122

i N

