

September 1986

Copyright 1986 by Digital Equipment Corporation
All Rights Reserved

The information in this document is subject to change without no-
tice and should not be construed as a commitment by Digital Equip-
ment Corporation. Digital Equipment Corporation assumes no re-
sponsibility for any errors that may appear in this document.

Printed in U.S.A.

The manuscript for this book was prepared using Digi-
tal Standard Runoff. Book production was done by Edu-
cational Services Development and Publishing in Nashua, -
N.H.

The following are trademarks of Digital Equipment Corporation:

dlilofi]efalr i |
g DECtape Rainbow

DATATRIEVE DECUS RSTS
DEC DECwriter RSX
DECmate DIBOL UNIBUS
DECnet . MASSBUS VAX
DECset PDP VMS
DECsystem-10 P/OS vT

DECSYSTEM-20 Professional =~ Work Processor

INTERNALS OF A VAX/VMS PROCESS

A process is the environment within which programs execute
on VMS, It is made up of a hardware context (e.g. general
registers), software context (8.g. privileges, quotas), and vir-
tual address space. This seminar provides an indepth jook
at the structure and function of VMS procssses.

The discussion wiil Indudo information on how a VMS pro-
cess is implemented, scheduled and maintained. This will
assist in using VMS processes more efficiently in appiications. .

in addition, this information will give system managers a better
understanding of the resources required for ptocessu and
how to manage those resources.

The saminar will reflect the most recent version of VMS.

Too

. 1'hc major internal data structures used by VMS to dewnbo
and control a process

® Tools provided by VMS for examination of processes

* Process scheduling

* Quantum end activities

o Examination of reievant VMS source code in MACRO32
(if there is sufficient class interest)

Information on image formation and activation will be inciuded
it time permits.

Prerequisites:

Experienca with YMS at the DCL level. Fundamental
knowiedge of a procsss (received through programming,
design or system management). Experiencs with data struc-
ture, definition and manipulation.

SEMINAﬁ TOPICS
1. THE PROCESS
o Process vs System Context
o Process Data Strucgures

"o Virtual Address Space

2. PROCESS CREATION AND DELETION
o Steps in Process Creation
o Interactive vs Batch Jobs

o Process Deletion.

3. PROCESS SCHEDULING
o Process States and Data Structures
o Operating System Scheduling Code

0 Quantum End

II.

III.

Iv.

THE PROCESS

TOPICS

Process vs. System Context

Process Data Structures Overview

A. Software context information

B. Hardware context information

virtual Address Space OQOverview

A. SO space (operating system code and data)
B. P@ space (user image code and data)

c. Pl Space (command language interpreter, process data)

SYSGEN Parameters Related to Proéess Chéracteristics

$ SHOW SYSTEM

VAX/VMS V4.0 on node MUSIC 30-NOV-1984 11:04:10.58
Process Name

pid
00000080
00000081
00000085
00000088
00000089
0000008B
0000008C
0000018D
0000008F
00000090
00000091
. 00000112
00000213
00000214
00000115
00000116
00000117
00000118
0000011B
00000120
000001BE

NULL
SWAPPER
ERRFMT
OPCOM
JOB_CONTROL

SYMBIONT_0001
SYMBIONT_0002

MOZART
NETACP

EVL

REMACP
HUNT
CHOPIN
BATCH_931
STRAVINSKY
HAYDN
COPELAND
Souza
BEETHOVEN
SALIERT
MAIL 12

State Pri I/0 CPU :

CoM 0 0 0 10:53:07.27 0
HIB 16 0 0 00:03:17.21 0.
HIB 8 760 0-00:00:07.71 67
LEF 8 378 0 00:00:03.96 1184
LEF 8 2281 0 00:00:33.34 149
HIB 6 448 0 00:00:31.56 2465
HIB 6 19 0 00:00:00.66 - 235
LEF 5 190 0 00:00:10.74 6552
HIB 9 4892 0 00:01:37.36 3216
HIB 5° 32 0 00:00:00.82 253
HIB 9 71 0 00:00:00.45 72
CUR 4 3663 0 00:01:30.36 29430
LEF 6 450 0 00:00:10.12 5111
LEF 4 376 0 00:00:16.94 6077
LEF 4 2404 0 00:00:29.46 8336
LEF 5 686 0 00:00:15.19 7480
LEF 6 4121 0 00:01:08.54 17151
LEF 6 819 0 00:00:13.84 2862
LEF 6 719 0 00:00:11.59 4970
LEF 5 856 0 00:00:13.26 4855
LEF 6 380 0 1014

00:00:05.24

Uptime
‘Page flts Ph.Mem

0 13:44:50

0
0

88
135
293
44
45
150
1500
44
41
200
300

- 260

148
400
154
150
500
5060~
215

THE PROCESS

'PROCESS VS. SYSTEM CONTEXT
Process Context
e Software Context, including
« Privileges
- Quotas
- Scheduling priority
. = 1Ds (user namé, uIcC, Process 1D)
e Hardware Context, including
- General Purpose Reglisters (R@- R1l, AP, FP, PC)
- Stack pointers (4)
- Processor Status Longword (PSL)
° Vi:tual Address Space
- Ptogrém region (P@)

- Control region (Pl)

- System region (S5@)

System Context

® System virtual address space (S9)

e The interrupt stack

THE PROCESS

VIRTUAL ADDRESS SPACE OVERVIEW

PO | SEPARATE MAPPING
FOR EACH PROCESS
AN o
so - ONE MAPPING FOR
- [ALL PROCESSES
TK-8942
Figure Virtual Address Space

Process Virtual Address Space
P8 - Image, Run;Time Library, Debugger

Pl - Command Language Interpreter,
stacks, file system XQP, I/0 data areas

S@ - System services, Record Management
Services, other executive code and

data

THE PROCESS

PROCESS DATA STRUCTURES OVERVIEW

.
/
SO SPACE /
o b e e AN o -/
meindidindidie ol -
HARDWARE
° PROCESS
' . CONTROL
PO PAGE
TABLE BLOCK
JOB SOFTWARE ‘
INFORMATION PROCESS
BLOCK . CONTROL
(Ji8) BLOCK P1PAGE
| (PCB) TABLE
PROCESS
HEADER (PHD) -
Figure Process Déta Structures

e Software Process Control Block (PCB)

- Holds process-specific data that must always be
available (for example, process state, priority).
- - Contains pointers to other process data structures
- Not paged, not swapped
® Process Header (PHD)

- Contains process memory management information
- Contains hardware process control block

e Hardware Process Control Block

- Contains saved hardware context

® Job Information. Block (JIB)

- Keeps track of resources for a detached process and
all its subprocesses.

-7

THE PROCESS

Software Process Control Block (PCB)

STATE QUEUE FORWARD LINK o

P> & ~ VMS standard queue

<«—+eSTATE QUEUE BACKWARD LINK

header
® Size of nonpaged

TYPE | SIZE
T ———

pool allocation
Scheduling Information
[]

Briori
SCHEDULING] S:‘a:uﬂ:v
INFORMATION Resident/outswapped
. Swap/noswap
® State
R
RESOURCES =% 1/0 timits
e Subprocess count
Poi :
POINTERS TO e orocess header
OTHER DATA ® Hardware PCB
e JIS .
STRUCTURES ® Event flag clusters
Listheads
LISTHEADS s ST queue .

° Log:k queue

NAMES AND PRIVILEGES

Names and Privileges

® Process ID (PID)
e Login UIC

® Privilege mask

MKV84.2152

Figure /| Software Process Control Block (PCB)

PCBSL_SOFL
PCBSL_SOQBL
PCB$W_SIZE
PCB$B_TYPE
PCBSB_PRI .
PCB$B_ASTACT
PCB$B_ASTEN
PCBS$W_MTXCNT
PCBSL_ASTOFL
PCBSL_ASTOBL
PCBSL_PHYPCB
PCBSL_OWNER
PCBSL_WSSWP
PCBSL_STS
PCBSL_WTIME
PCBSW_STATE
PCBSB_WEFC
PCBSB_PRIB
PCBSW_APTCNT
PCBSW_TMBU
PCBSW_GPGCNT
PCBSW_PPGCNT
PCB$W_ASTCNT
PCBS$W_BIOCNT
PCBSW_BIOLM
PCBSW_DIOCNT
PCBSW_DIOLM

PCB$SW_PRCCNT

pommmm e c——————— +
I |
b fmmmm——— +
I |
e e S LT +
[
it s &
[
et 2 bt
-
B e ettt 2
[
$mmm———— et 2
| |
tmm————— fommmm—— +
l l
e +
l I
b ——————— +
| |
i +
l |
e +
| |
e +
| l
e T e +
l I
e fom———— +
I |
D s e L +
.
tmmm b=t
I
b=t pmm———— +
l l
b ——— tmm————— +
| |
tmm————— tom————— +
| |
o ———— tm————— +
| |
e fmm———— +
| |
Fom————— fmm———— +
| |
fm————— +
| |
Fom————— bmm———— +
I l |
fmmm———— fommm———— +
l I
bmm————— Y +
I o
pmm——— +

Q &

m o O w »

10

18
1C
20

24 -

28
2C
2E
2F
30
32
34
36
38
3A
3c
3E
40
42

0)
4)
8)
10)
11)
12)
13)
14)
16)
20)
24)
28)
32)
36) |
40) PCB$B_PRISAV ...
44)
46)
47)
48)
50)
52)
54)
56)
58)
60)
62)
64)

66)

PCB$T_IERMINAL

PCBSL_PQB
PCBSL_EFCS
PCBSL_EFCU
PCB$W_PGFLCHAR
PCBSB_PGFLINDEX
unused
PCBSL_SWAPSIZE
PCBSL_EFC2P
PCBSL_EFC3P
PCBSL_PID
PCBSL_EPID
PCBSL_EOWNER
PCBSL_PHD

PCBST_LNAME

PCBSL_JIB

PCB$Q_PRIV

PCBSL_ARB

unused

PCBSL_UIC

unused

PCBSL_ACLFL
PCBSL_ACLBL
PCBSL_LOCKOFL

PCBSL_LOCKOBL

pmmmm—— e ———— +
l l
$mmmmmm e e ———— +
| |
fom—— +
l l
+- + -—+
l |
frmmpmm =t
|
T
P
pommb e +
l I
e T +
l |
N +
l |
T +
l l
Y T -+
| I
. +
| |
frmc e e ——— +
l |
A S S +
R +
l l
S — +
e .
l
B S ———
l
P —
|
S,

44

4C
50

58
S5A
5B
5C
58
JBF
60
64

68

6C
70

80
84

8C
90

BC
- CO

FC
100
104

108

68)

76)

. 80)

84)
88)
90)
91)
92)
88)
92)
96)
100)
104)
108)
1125

128)
132)

140)
144)

188)
192)

252)
256)
260)

264)

PCBSL_EFWM

PCBSW_MEM...

-/0=

PCBSL_DLCKPRI
PCBSL_IPAST

PCBSL_DEFPROT
PCBSL_WAITIME

PCBSL_PMB

B l
P mca o an - ———-- +
I l
o e e e ot e e o m am +
l l
dro - an +
| l
+ - +
| |
+-- -—as +

-/] =

10C (
110 (
114 (
118 (
11C (

268)
272)
276)
280)
284)

Srlgmn Ww ot W T ekl i dpds 2ldiont

THE PROCESS

Process Header (PHD) o A. CORLEANT [RoCRSS

® Privilege mask
® Hardware process control
block

FIXED AREA

' UST ¢ F UViRTuMt-
CATALOG WORKING SET PAGES | ® Working set list {0 o2 . USED Doudpink
SWAP A G - -

Are fPagcinss HAVE-)
SAN G Sy PRECEEN B

USED TO LOCATE IMAGE
SECTIONS IN IMAGE FILES

Mﬂl v TRAVS AT e

® Process section table

~SAALE -) -
VIRTUAL TO PHYSICAL * PO page table

ADDRESS MAPPING ® P1 page table

MKVE84.2153

Figure A Process Header (PHD) .

(odR_ ComTrui™ e =
B =y Migeo USEs o THL PES T OF THE iondwodi

Teo Grr T 9}%{5‘&.1—1, APDRES S,

fﬂjl‘f’“ =0 Micto Cedg. "DogL MoT wasT To DEAC WiTH /T .
free cAO LT otlugd . Micec Cedg yacp < 2
TR PAG@E& ‘ ’ : :
T Ree T OF THE WORD To Mhve ps YA TO
S DisFrlemT VAT Vi Uv‘Q/v\./\ > &»J Jﬁ\u
/) ' - . . .
Fogr | A Y 4\ Pu7,a A7 A M'i, J
oe b bllo X e b Lol Al flocos

-la=

THE PROCESS

Hardware Process Control Block @Q“‘JL
V2 | VoS VIV L\}V\/\ CPY .

Conndinia

<= PRS__PCBB

STACK POINTERS

® Pointers to:

: g}w’[/“t’
— oS-
- Kernel stack 3 N
— Executive stack — RM > E{WN
—~ Supervisor stack — DL - P s
- User stack VW ALE - .{:QW ’ 5{\
' TN)\/

GENERAL PURPOSE
REGISTERS

o A I AL ~
® RQ, R1, .., R11 ’

OTHER REGISTERS
STATUS INFORMATION

e Argument Pointer (AP)
Frame Pointer (FP)
Program Counter (PC)
® Processor Status Longword (PSL)

MEMORY MANAGEMENT
REGISTERS

® PO base register

P1 base register - ~
PO length register ¢ WgpipAr g un dag A
. P1 length register > A FASUEL T . -
' CAvses #Horss VoL
gfq)s{[‘ ﬁ'/\/ WK’NM Mﬂ“‘j A
mKvge-2148 C e

Figure 3 Hardware Process Control Block

e , PRS

PCBB contains the physical address of the hardware PCB

for the current process. ,‘_ ¥a
S TS 1S o o dhee @/m& Tk o @\J*WJL M"af@"”v"

Mo 1 G ey i, Voo ks awm A 5

N\

AT VS g M o/f ST

b sy bgf

~13 -

-

-1 -

THE PROCESS

Job Information Block
LIST OF
AVAILABLE
: RESOURCES
& LIMITS
DETACHED |
PCB JOB INFORMATION

BLOCK (JIB)

sus

PCB

Sus

PCB :
TK-8947

Figure 4 Job Information Block (JIB)

e Job consists of a detached process and its subprocesses.

e Job information block (JIB) keeps track of resources
. allotted to a job, such as:

- Limit on number of subprocesses (PRCLIM)
- Open File Limit (FILLM)

=15 -

S0 Virtual Address Space "

THE PROCESS

SYSTEM SERVICE VECTORS

EXECUTIVE CODE
AND DATA

FILE HANDLING
ROUTINES

ERROR MESSAGE TEXT

DESCRIPTION OF PAGES
IN PHYSICAL MEMORY

SHARED DYNAMIC
DATA STRUCTURES

Wl%m“ﬂwmwﬂg

System service code - g
Scheduier H?A{k
Report System Event

RMS.EXE

Mou s 1\/’49@1‘){;‘1
Twip Terv O YO
MG PH7 Dosnd -
_® PFN database i1 Meo AU

9 Kagts TART CF Py menofy Tl
TAN BE MvEN A, (_rwcx: RS *“",EML
Y .

SYSMSG.EXE

SHARED DYNAMIC
DATA STRUCTURES

DRIVERS

Figure 5 SO Virtual Address

9 WS ~wkewnd G Ser s

® Non-paged pool
e Software process control

blocks
e Unit control blocks —— \;Q\ML wa
. LSRN W% s
e Lookaside list A A ¥ a4 -

o 1/0 request packets
e Timer gueue elements

MKV84.2150

Space - Low Addresses

THE PROCESS

STACK USED WHEN
INTERRUPTS OCCUR

TABLE FOR VECTORING
BY HARDWARE TO
SERVICE ROUTINES

STORAGE FOR
PROCESS HEADERS

LOCATIONS OF VALID
SYSTEM VIRTUAL ADDRESSES

DATA STRUCTURES USED
TO LOCATE GLOBAL SECTIONS

LOCATION OF EACH
PAGE OF SYSTEM
VIRTUAL ADDRESS SPACE

LOCATIONS OF
GLOBAL PAGES .

e Interrupt stack

® System Control Bl (SCB)
X W O@\M 6\, W b v%
m \4, ’N"/\'M e
e
e Balance slots -

By olora. Ak Lrw

e System header
- System working set list

Global sectxon table
G—'L\a f\'ddb'\
tmeh UJ‘QN\& . S 'Cﬂ‘ J

TS BN h&\k DM o - M W 4/{
e System page table foccres "

® Global page table

MKV84.2149

Figure b S@ Virtual Address Space - High Addresses

THE PROCESS

PO Virtual Address Space

i | ARAS
(YA
Native Mode Image NOF"(OO Donl T LA <

. DAESS o O % of
B WD(/'Q/N cpecr 1 /

Q)\J\ \IOU , AT
Lo~ L A

Native Mode image

Run Time Library

Debugger
Traceback
: POLR Pages
not mapped IFFFFFFF

Figure 7 P@ virtual Address Space

-18.-

P1 Virtual Address Space | ,
Qo g whr W ondodin o

THE PROCESS

UML Sipen Ao Fo A AT M W

image-Specitic

Process Specific

Files~-11 XQP Fie of FY,

Cai Wi podd

40000000
User Stack
| Per-Process Message Section (3) |+ C -3CGL_CTLBASVA
CL! Symbol Table
* CTLSAG_CLIMAGE
CLI image 4
Testcusme , | CTLSGL_F118xQP

oS, ForTRmd D

image 1/0 Segment

< PIOSGW_PIOIMPA +

Process |/0 Segment

IMPSL_IOSEGADDR

Process Allocation Region

+ CTLSGL_ALLOCREG

Channel Control Block Table -]
P1 Window to Process Header

< b
e CP m\émtu ot OF
4= CTLSGL _CCBBASE

Process 1/0 Segment

<+ PIOSGL_FMLN

Per Process Common Ares

Per Process Common Area

Figure 3

Pl space is built from high addresses toward low addresses

&x.ﬁW& A

LIiN Dol TR A

Low)

Lpdinan

b
20 A A

?v\—(;l/v\/\ C;\/\

40 G WD C@W"‘V(-

Pl Virtual Address Space - Miglr Addresses

W'M/

Static

Figure 9

THE PROCESS

Compatibility Mode Data Page

Security Auditing
impure Data Table

lmngo Activator Context

Generic CLI Data P.g:.

image Activator Scratch Pages

Dobugg’ot Context

Vestors for Meseages and User-Written System Services

lmago Header Buffer

Kernel Stack

Executive Stack

Supervisor Stack

System Service Vectors.

P1 Pointer Pago

Debugger Symbol Table

Image-Specific - Deleted on image exit
Process-Specific - Changes according to SYSGEN parameters.

and CLI used

Static - Does not change

%M\,

*CTLSGL_CMCNTX
+NSAST_IOT

= CTLSGL_IAFLINK
= CTLSAL_CLICALBK

«CTLSA_DISPVEC
<« MMGSGL_IMGHDRBUF
«CTLSAL_STACKLIM

+P1SYSVECTORS
+CTLSGL_VECTORS

. 7FFFFFFF

Pl virtual Address Space - Low Addresses

A chege A

P oo pele mptin 0 gtk fre g

LY

THE PROCESS

Table 1 Punction of Pl Space

Punction

Pl Area

Images
Symbol tables

Pointers

Stacks
RMS data

File system code
Error message text

Storage area’

e Data stays around

between images
e Logical names

~ Other data areas

Command Language Interpreter
(DCL, MCR, user-written)

Symbolic Debugger

Command Language Interpreter

System service vectors
User-written system service
vectors

Pl window to process header:
(maps to PHD in S0 space)

Pl pointer page (i.e., .
CTLSGL_CTLBASVA; addresses
of exception vectors)

Perprocess message vectors

Kernel, executive, supervisor,
user

Image I/O segment
Process I/0 segment

Files-11 XQP

Perprocess message section

Perprocess Common Area
(LIBSGET_COMMON)

Process allocation region

- Generic CLI data pages

Image activator scratch pages
Image header buffer
Compatibility mode data page
(used by AME)

Channel control block table
(links process to device)

al

THE PROCESS

Table 2 SYSGEN Parameters Relevant to Process Structure

Punction

Parameter

Size of the CLI symbol table

Limit on use of process allocation region by
images

Number of pages in the process allocation
region

Default number of - pages created by the image
activator for the image I/0 segment

Number of pages for the process 1/0 segment
mapped by PROCSTRT

CLISYMTBL
CTLIMGLIM (*)

CTLPAGES (*)

IMGIOCNT (*)

PIOPAGES (*)

(*) = séecial SYSGEN parameter

PROCESS CREATION AND DELETION

TOPICS

I. Process Creation

A. Roles of operating system p:oq:ams

B. Creation of process data structures
II. Types of Processes

III. Initiating Jobs

A. Interactive

B. Batch

IV. Process Deletion

V. SYSGEN Parameters Relating to Process Creation and Deletion

a3

PROCESS CREATION AND DELETION

- TYPES OF PROCESSES

Table 3 Types of Processes

Created Creating Special
By Code Propeczties
Batch Job Controller SUBMIT, - Deleted upon logout,
$SNDJBC, or at end of command
SCREPRC stream
- No password check
Detached Another RUN, $CREPRC - Survives deletion of
process ' its creator
- May be interactive
or not
Network Network ACP S$SCREPRC - Deléted when no more

(result of DCL
command with
node name)

Subprocess Another : RUN, SPAWN,

process (the LIBSSPAWN,
owner) SCREPRC

"logical links to -

service

Cannot survive
deletion of owner
Quotas are pooled
with owner _
May be interactive
or not

e RUN and SPAWN call SCREPRC

e After system initialization

- A process is created by another process

- Process creation is done by SCREPRC

e An interactive process has:

- PCBSV_INTER bit set in PCBSL_STS field

- Non-file-oriented SYSSINPUT

a4

PROCESS CREATION AND DELETION

Table { PCB Pields Defining Process Types

PCBSV BATCH PCBSV_NETWRK PCBSV_INTER PCBSL_OWNER

| Network @ 1) g
Batch 1 g g 9
Detached g " g o; 1 g
Subprocess g g g or 1 non-zero

e PCB$V_xxx symbols represent biia in PCBSL_STS longword
e These bits in the status longword -
- Are intended ONLY for use by the system (for example, the
job controller or SPAWN) :
- Can be set using STSFLG argument to $CREPRC

‘e Interactive processes have the PCB$V_INTER bit set

Table 5 Restrictions on Process Creation

Quota/Limit, Meaning

MAXJOBS Maximum number of interactive, detached, and batch
processes a user may create :

MAXDETKCH,7. Maximum number of detached processes a piccess
may create

PRCLM Limit on number of subprocesses a process may

' create :
Privilege’ - Required for
DETACH or Creation of a detéched process with a different

CMKRNL UIC than the creator

ad

SCREPRC

The Create Process service creates a subprocess or detached. process
on behalf of.the calling process.

Format:

 SYSSCREPRC [pidadr] ,image [,input] [,output] [,error]
{,prvadr] [,quota]l [,prcnam] [,baspri] (,uic]
{,mbxunt] [,stsflg]

Arguments:.
pidadr

Process identification (PID) of the newly created process. The
pidadr argument is the address of a longword into which $CREPRC
writes the PID.

image

Name of the image to be activated in the newly created process. The
image argument 1is the address of a character .string descriptor
pointing to the file specification of the image.

input

Equivalence name to be associated with the logical name SYSSINPUT in
the 1logical name table of the created process. The input argument
is the address of a character string descriptor pointing to the
equivalence name string.

output

Equivalence name to be associated with the logical name SYSSOUTPUT
in the 1logical name table of the <created process. . The output
argument is the address of a character string descriptor pointing to
the equivalence name string.

error

Equivalence name to be associated with the logical name SYSSERROR in
the logical name table of the created process. The error argument
is the address of a character string descriptor pointing to the
equivalence name string. '

prvadr

Privileges to be given to the created process, The-prbadr argument

is the address of a quadword bit vector wherein each bit corresponds
to a privilege; setting a bit gives the privilege.

(s

quota

'Process quotas to be established for the created process; these

guotas limit the created process's use of system resources. The
quota argument is the address of a list of quota descriptors, where
each quota descriptor consists of a l-byte quota name followed by a
longword that specifies the desired value for that quota. The 1list
of quota descriptors is terminated by the symbolic name

PQLS_LISTEND.
prcnam

Process name to be assigned to the created process. The prcnam is
the address of a character string descriptor pointing to a 1- to
15-character process name string. ’

baspri

Base priority to be assigned to the created process.. The baspri
argument is a longword value in the range 0 to 31, where 31 is the.
highest possible priority and 0 is the lowest. Normal priorities
are in the range 0 through 15, and real-time priorities are in the
range 16 through 31.

uic)

User identification code (UIC) to be assigned to the created
process. The uic argument is a longword value containing the UIC. -

mbxunt

Unit number of a mailbox to receive a. termination message when the
created process is deleted. The mbxunt argument is a longword

.containing this number.

stsflg

Options selected for the created process. The stsflg argument is a
longword bit vector wherein a bit corresponds to an option. Only
bits 0 to 10 are used; bits 11 to 31 are reserved and must be 0.

11

PROCESS CREATION AND DELETION

PROCESS CREATION

Table Steps in Process Creation and Deletion

Action

Code

Creating process

Inswap a process

Process startup

Process deletion

SYSSCREPRC
SWAPPER

PROCSTRT
SYSSDELPRC

Table 7 Three Contexts Used in Process Creation

Creator's

Swapper's

New Process's -

COutext. Context . Context

SCREPRC From SHELL PC= EXESPROCSTRT

e PCB PHD filled in PSL= K mode, IPL=2

e JIB COMO =-=> COM . Sets up: |

® PQB (temp) -'logiéal'names (sysSinput...)

SW priority
boost

Process re=

turned COMO

Catch-all cond. handler

RMS dispatcher

XQP merged in

Image name moved to PHD
Image activated

a4

PROCESS CREATION AND DELETION

__ Creation of PCB, JIB, and PQB

l.

Creator

PCB

————" 1

SCREPRC
arguments

Control
Region

)

Header

Process

Jg |€—

(Pooled:
Quotas)

ew Process

PCB

Process
-Quota

Block

(PQB)

Figure !0 creation of PCB, JIB and PQB

SCREPRC allocates new data structures

- JIB (if new process is detached)

(temporary)

These new data structures. are filled from:

- PCB
- PQB
2.
- Crea
- Crea
- Crea
- Syst
*SYSGEN -

SCREPRC arguments

tor's PCB

tor's control region
tor's process header
em defaults »

PQL_xxxx parameters

a9

PROCESS CREATION AND DELETION

_. Relstionships Between PCBs and JIB

) w
(] Q01AS

Figure | Relationships Between PCBs and JIB

1. All PCBs point to JIB.
W created X and Y

2. W's PRCCNT is 2
3. X and Y owner PID is w'PID

Y created Z.

No pointers from creator to subprocess

o)

PROCESS CREATION AND DELETION

Figure A PCB Vector

e On process creation, search for unused vector

e Unused vectors point to Null's PCB

e Table of pointers to all PCBs

e Index into table is contained in PID

° SCH$CL_PCBVEC points to start of table

*SYSGEN -

MAXPROCESSCNT

31

PROCESS CREATION AND DELETION

- PID and PC8, Sequence Vectors

P .
a
M“q'nn« ne.

Figure i3 PID and PCB, Sequence Vectors

e Extended PID contains four parts:

- 'Process index into PCB and sequence vectors
‘= Process sequence number

- Cluster node index
- Node sequence number

e PID formed at process creation

® Sequence number incremented each time vector slot

e SCHSGL_SEQVEC points to start of sequence vector

32

re-used

PROCESS CREATION AND DELETION

- Process IDs

e There are ;éﬁhiiif'ﬁworétbsffét a process
e Extended PID

- Visible at the user level

- Uniquely .identifies a process on a single system, and
on a VAXcluster

- Displayed by'VMs utilities and system services

- Stored in PCB at offset PCBSL_EPID

- Eo:maf is very subject to change

e Internal PID
- Only visible through SDA, and in VMS source code
- Stored in PCB at offset PCBSL_PID

- Only contains process index and sequence_ number
(original pre-v4 PID) ‘

- Used by most kernel-mode code

- Some privileged data structures contain internal PIDs
(for example TQESL_PID, ACBSL_PID, and LKBSL_PID)

e Several routines available for manipulating PIDs

Table § Routines for Manipulating PIDs

- Operation _ Mechanism

‘Convert an extended PID to an internal PID EXESEPID_TO_IPID

‘Convert an internal PID to an extended PID EXESIPID_TO_EPID

' Return the PCB address given an . EXESEPID_TO_PCB
extended PID .

Return the PCB address given an EXESIPID_TO_PCB
internal PID :

33

PROCESS CREATION AND DELETION

_ Swapper's Role in Process Creation
WSSWP +|Slot # VBN
WSSWP
PCB

Figure |4 Swapper's Role in Process Creation

e For new process, WSSWP is less than or equal to zero

® WSSWP less than or equal to zero causes SHELL to be copied

e Swapper

- . _Stores SYSGEN parameters in PHD

- 1Initializes pointers, counters in PHD
- Initializes system page table entries

34

PROCESS CREATION AND DELETION

PROCSTRT's Role in Process Creation

New Process

PC8

——1
[— , '
v

Control
Region
Process
- Quota A)
Block ¥ ¥
(PQB) ~=>»| Process
Header

Figure 15 PROCSTRT's Role in Process Creation

e Hardware PCB defined in SHELL
e PC and IPL invoke PROCSTRT at IPL 2

e Code located in SYS.EXE

e Functions

PQB information moved to PHD and Pl
Create logical name tables

Change to user mode, IPL @

Map in Fl1BXQP

Call SYSSIMGACT. .
Call image at transfer vector

35

PROCESS CREATION AND DELETION

INITIATING JOBS _)
Initiating an InteractiveJob - - . \W : “33 v

Terminal
had = gﬁyr
. W}Q
Job
Controller
Creates
rocece amuug:;‘
Cantest of Newly
Created Precoce
sevawm LOGINOUT.EXE

o not subpracans ' | .
| If::"i".:::........'......,....‘m’ o
: %‘ o Set up mn”:.p:::l::':lu) .‘ . ‘
@ o Pase contrel te CLI |
| =

Figure |l 1Initiating an Interactive Job

e Initiated by unsolicited input at a free terminal

- Job controller notified by driver
Creates process with user name equal to terminal name

e LOGINOUT runs
e ODCL mapped (or alternate CLI)

SPAWN creates an interactive or non-interactive subprocess
(no need to verify user name, etc.)

3

PROCESS CREATION AND DELETION

Initiating Jols Using $SUBMIT

SYSSOUTPUT
SYSSERROA

LOGINOUT.EXS
L J

1) No veerneme/password
veritication

2) SYSSINPUT snd SYSSOUTPUT
are diffecont .

=)

Figure

Initiating Job Using $SSUBMIT

o Similar to interactive process, except

- Job controller notified by DCL ($SSUBMIT)

- User already validated

- Files ére assigned:

SYSSINPUT to batch stream

SYSSOUTPUT to log file

37

PROCESS CREATION AND DELETION

Initiating JobThrough Card Reader

Conwlcr
l
Rodlr
Driver

INPSMB.EXE

$SUBMIT X.COM | sugmMIT utility Job
. * notifies Job JBCSYSQUE.DA
CLI activates Controlter Controlier P‘

SUBMIT utility

Creates
process

SYSSINPUT
SYSSCOMMAND

LOGINOUT.EXE
1) No username/password
verification
2) SYSSINPUT and SYSSOUTPUT
are ditferent

BATCH.LOG

MKV34.3777

Figure Initiating Job Through Card Reader

l. Job controller notified by card reader driver
2. Job controller creates input symbiont process
"~ User authorization
- Read cards into command file
- Submit as batch job

3. Same as for SSUBMIT

38

PROCESS CREATION AND DELETION

PROCESS DELETION

‘e After image runs and exits, process deleted
- Unless running with a CLI
All traces of process removed from system

e All system‘résou:ces returned

e Accounting information passed to job controller

For subprocess, all quotas and limits returned to creator

@ Creator notified of deletion

39

i

PROCESS CREATION AND DELETION

Process Deietion Sequence .
‘name } OTG :
“PID___ OO3AE
PRCCNT 2
OWNER 0
name BERT name ERNIE
PID 00423 PiD 00818
PRCCNT O - ‘ PRCCNT 0
OWNER GOSAE | - | OWNER GOSAE
~ Figure Process Deletion

o Deleted by kernel AST while CURRENT

0 Sequence

Delete any subprocesses
Accounting information to job controller
Call SYSSRUNDOWN

Delete Pl space
Free PCBVEC and SWAP slots, page file space

Decrement counts

Balance set
Total processes

- Jump to SCHSSCHED

B2}

' SUMMARY

" rable

PROCESS CREATION AND DELETION

" gteps in Process Creation and Deletion

Action

Code

Creating process

Inswap a process

Process startup

Process deletion

SYSSCREPRC -— Uhrgo {aaun Ao

SWAPPER
PROCSTRT

SYSSDELPRC

WS IVEOIS TON oy o
orbly Jle=

SYSGEN Parameters Relating to Process c:eatxon

Table
. and Doletion

Punction Parameter 3
Maximum number of p:ocesses allowed on the MAXPROCESSCNf
system ‘
5ystem default values for some process limits PQL Dxxx
and quotas -
System minimum values for some process limits PQL_Mxxx

and quotas

"y

- Yy -

I.

II.

III.

Iv.

VI.

VII. Software Priority Levels of System Processes

SCHEDULING

. TOPICS

Process States
A. What they are (current, computable, wait)
B. How they are defined '

C. How they are reladted

How Process States are Implemented in Data Structures
A. Queues

B. Process data structures

The Scheduler (SCHED.MAR)

Boosting Software Priority of Normal Processes

VOpezating System'Codé that Implements Process State Changes

A. Context switch (SCHED.MAR)
B. Result §f system event (RSE.MAR)

Steps at Quantum End

A. Automatic working set adjustment

%

43

THE PROCESS STATES

[-L{% 3¢

1.

3.
4.

SCHEDULING

2

i como | apmcaEare

cun = com [
(SCHEDULER) (SWAPPER)
Figure Process States
CURRENT - executing ') '5.'

WAIT - removed from execution to wait for event completion

COMPUTABLE - ready to execute
WAIT OUTSWAPPED

COMPUTABLE OUTSWAPPED

Yy

v 'Figure Process Wait States

45

SCHEDULING

HOW PROCESS STATES ARE IMPLEMENTED

CNNNUGS’
Pointer =P [saFL_} —_—‘5—*
—SSE T —
state
“listhead"

PCB PCB PCB

Figure A State Implemented by a Queue

e The state of a process is defined by:

- The value in the PCBSW_STATE field
- The PCB being in the corresponding state queue

® State queues are circular

e The current state is not implemented as a gqueue

- Just a longword pointer (SCHSGL_CURPCB)

- Queue structure not necessary because only one process
" in the current state

e VAX instructions for manipulating queues:

- INSQUE new_entry, predecessor
- REMQUE out_entry, return_ address

A

SCHEDULING

implementation of COM and COMO States

BITMAP (1 EACH FOR COM, COMO)

FOR STATE COM
BITS 31 00
LONGWORD QUEUE BIT MAP
::SCHSGL.COMQS
PRIORITIES O 31
LISTHEADS (32 EACH FOR COM, COMO)
QUEUE HEADERS
~ QUEUE 0 e | ::SCHSAQ_COMH

TX-8974

Figure Implementation of COM and COMO States

e COM state impleménted as a collection of gqueues

e Designed to speed scheduler's search for highest-priority

computable process

- a queue for each software priority
- Summary longword records nonempty COM queues :
- Internally, software priority stored as inverted value

(as 31 minus priority)

e COMO state is implemented like COM state

- 32 more Qqueues
- Another summary longword

47

SCHEDULING

Example of Computable Queues
BITS 31 0
i
PRIORITIES O 3
\-r' [
QUEUE 25 —— ————
PRIORITY 6 IORITY 8 '\.-‘ \.‘ .
— PRIORITY § — pca PCB
[
—_— PRIORITY 4 -——332:::::::
g ’ *
.
Figure Example of Computable Queues

e COM processes at priorities 4 and 6

- Bit 25 in summary longword is set

- Queue for priority 6 has entries

-~ Bit 27 in summary longword is set

- Queue for priority 4 has an entry

7

SCHEDULING

—.- Implementation of Wait States

(o

h

Stafa Count

Figure Wait State Listhead

— L -

. = \5
Imasnl -2 | '
[heer | | [Higer |

HIBERNATE PCB . pCB

LISTHEAD
TX-3952
~ Figure Implementation of Wait States

79

SCHEDULING

implementation of CEF State

ces

Wait Queue |[gue- PCEB |€¢ PCB |« pCB8

CEB Name

CEB

1!

CEB

Wait Queue |¢—— PCB |e— PCB

CEB
Wait Queue
Figure Implementation of CEF State

~® CEB created when event flag cluster created _

® CEB contains the cluster, CEF state queue listhead, and
other information about the cluster

e One CEF state queue for each CEF cluster

SCHEDULING

— Sumﬁm_'y of Scqudullng States

e Current
- Implemented with one longword pointer

- Contains at most one process

e Computable and computable-ocutswapped

- Each consists of a summary longword, and 32 queues

e VOluntaty wait (LEF, LEFO, SUSP, SUSPO, HIB, HIBO)

- One queue for each state

e Involutary wait (PFW, PFWO, FPG, FPGO, COLPG, COLPGO,
MWAIT, MWAITO) i .

- In four gqueues

- Resident and outswapped in same -queue (diffe:enfiate
with resident bit in PCB$L_STS) :

- Usually not in these states very often

S/

HES

who o

SCHEDULING

Process Data su'uéturos Related to Scheduling

SQFL
sasL
PRI
PHYPCB
STS
PRIB STATE
Figure S&heduling Fields in Software PCB

SQFL, SQBL - state queue forward, backward links, Llink
PCBs in a given state

STATE - process state

PRI - current software priority

PRIB - base software priority

PHYPCB - physical address of hardware PCB

STS - process status

52

SCHEDULING

. Saving and Restoring CPU Registers

pns_PCBB - | | STACK POINTERS

KESU

General Purpose
Registers RO-R11

AP

FP

PC .

PSL

POBR

AST LVL POLR

"P1BR

P1LR

Figure Saving and Restoring CPU Registers

Process-specific CPU registers saved/restored
context switch

SVPCTX instruction

- Copies registers to hardware PCB

- Switches to Interrupt Stack
- Does not save P@BR, POLR, P1BR, PLlLR, ASTLVL

FLDPCTx instruction

- Restores registers (except PC, PSL)

53

during

from hardware PCB
Pushes PC, PSL on kernel stack (REI removes them)

SCHEDULING

THE SCHEDULER (SCHED MAR)
1 5 SCHSRESCHED - RESCHEDULING xnr:aaurr naunusn
‘ .
2 THIS ROUTINE IS ENTERED VIa THE IPL 3 RESCHEDULING INTERRUPT.
4 + THE VECTOR FOR THIS INTERRUPT IS CODED TO CAUSE EXECUTION
S § ON THE KERNEL STACK.
6
7 ENVIRONMENTS IPL=3 WODE=KERNEL 1$=0
@) INPUT: 00(SP)sPC AT RESCHEDULE INTERRUPT
9 4 04(SP)=PSL AT INTERRUPT.
10 j=-
11 +ALIGN LONG
12 MPHSRESCHED:: JMULTI-PROCESSING CODE HOOKS IN HERE
13 SCHSRESCHED!: /RESCHEDULE INTERRUPT HANDLER
14 SETIPL SIPLS.SYNCH }SYNCHRONIZE SCHEDULER WITH EVENT REPORTING
15 SVPCTX }SAVE CONTEXT OF PROCESS
16 MOVL L"SCH$GL.CURPCB,R1 JGET ADDRESS OF CURRENT PCB
17 MQUZBL PCB$B_PRI(R1)sR2 _ $CURRENT PRIORITY
18 BBSS R2,L"SCHSGL.COMGS,10% - IMARK QUEUE NON-EMPTY
19 10¢: MOVW #SCHSC.COMsPCBSW.STATE(R1) JSET STATE TO RES COMPUTE
20 MOVAQ SCH$AG_COMTCR21,R3 iCOMPUTE ADDRESS OF QUEUE -
21 INSGUE (R1)s@(R3)+ JINSERT AT TAIL OF QUEUE .
22 i+ :
23 ; SCHSSCMED - SCHEDULE NEW PROCESS FOR EXECUTION
24
25 5 THIS ROUTINE SELECTS THE HIGHEST PRIORITY EXECUTABLE PROCESS
26 + AND PLACES IT IN EXECUTION.
27 4=
28 MPHSSCHEDS: JMULTI-PROCESSING CODE HOOKS IN HERE
29 SCH$SCHEDS: : »SCHEDULE FOR EXECUTION
30 SETIPL #IPLS_SYNCH iSYNCHRONIZE SCHEDULER WITH EVENT REPORTING
31 FFS #0/#32,L "SCHSGL_COMASsR2 iFIND FIRST FULL STATE
32 BEOL SCHS$IDLE . iNO EXECUTABLE PROCESS??
33 MOVAQ SCH$AQ_COMHCR21,R3 iCOMPUTE QUEUE HEAD ADDRESS
34 REMGUE @(R3)+sR4 JGET HEAD OF QUEUE -
35 BVS QEMPTY iBR IF QUEUE WAS EMPTY (BUG CHECK)
34 BNEQ 20% JQUEUE NOT EMPTY
37 BBCC R2,L"SCH$GL.COMGS,»20% /SET QUEUE EMPTY
38 208:
39 CMPB - ~ #DYNSC_PCB/PCBSB.TYPE(R4) ;MUST BE A PROCESS CONTROL BLOCK
40 BNEQ' QEMPTY JOTHERWISE FATAL ERROR
a1 MOUM $SCHSC_CUR,PCBSW.STATE(R4) JSET STATE TO CURRENT
a2 'MOUL R4sL"SCH$GL_CURPCB JNOTE CURRENT PCB LOC
43 CMPB PCBSB.PRIB(R4),PCBSB_PRI(R4) JCHECK FOR BASE
a4 iPRIORITYsCURRENT
4s BEOL 30% JYESs DONT FLOAT PRIORITY
46 BBC $4,PCB$B_PRI(R4)»308 iDONT FLOAT REAL TIME PRIORITY
47 INCB. . PCBSB_PRI(R4) JNOVE TOWARD BASE PRIO
48 308: MOVS PCBS$B_PRI(R4)/L~SCHS$GB_PRI }SET GLOBAL PRIORITY
49 MTPR PCBSL_PHYPCB(RA),#PR$_PCBB JSET PCB BASE PHYS ADDR -
50 LDPCTX JRESTORE CONTEXT
gl REL $ NORMAL RETURN
2.
S3 SCHSIDLE: . }NO ACTIVEs, EXECUTABLE PROCESS
S4 ° SETIPL #IPLS$_SCHED JDROP IPL TO SCHEDULING LEVEL
L MOVB #32,L"SCH$GB.PRI $SET PRIORITY TO -1(32) TO SIGNAL IDLE
36 BRB SCH$SCHED JAND TRY AGAIN
39 QEMPTY: BUG.CHECK QUEUEMPTY,FATAL $SCHEDULING QUEUE EMPTY
60 +END

Example The Scheduler (SCHED.MAR)

54

SCHEDULING

BOOSTING SOFTWARE PRIORITY OF NORMAL PROCESSES

"o Usually normal inteiaciive<pzoc§ss has base priority 4

e To help interactive p:ocesses compete with compute-bound
processes

Boosts applied upon certain events (I/0O completion,
resource available)

Different boosts for different events

Current priority equals greater of:

e Current priority
e Base priority plus boost

Lowering of priority)
e Each time process scheduled, decrement priority

(until reach base priority) .
e Return to base priority at quantum end if - COMO

process exists

?gtl§§lowed to boost above normal priority range

S5

SCHEDULING

Example of Process Scheduling
| Table 1 Initial Conditions for Schodullinqw Example

Process TYpe Base Priozity Priority State
Swapper = System - 16 16 HIB
Null Compute Bound g . g CoM
A Compute Bound - 4 9 CUR
B I/0 Bound 4 19 coMo
.C Real-Time 18 18 HIB

Symbol Event

@l {/0 Request
@ Preemption -
@ Quantum End

MKVY84-2181

-Figure 15 Scheduling Example Symbols

56

SOFTWARE

LEVELS

SCHEDULING

e ——
o 3
1‘——&———_——-———
14_
12 .
10
A | (Q) E
[Iﬂi
]
4
0 -
00 O .
g ——p
Figure Example of Process Scheduling - Part 1
Process C becomes computable. Process A is preempted.

C hibernates. A executes again, one priority level lower.

A experiences quantum end and is rescheduled at 1its base
priority. B is computable outswapped.

The swapper process executes to inswap B. B is scheduled

for execution.

57

M TS M WP WSROy

i TR]

COEN 4

B .
vdnoon

SOFTWARE

SCHEDULING

QUANTUN

o @ =1
o o B o e e ——

p == R
1 9
: 9

g ——p

-

" Figure Example of Process Scheduling - Part 2

9.

B is preempted by C.

B executes again, one priority level lower.

B requests an I/0 operation (not terminal 1/0). A
executes at its base priority. '

A requests a terminal output operation. The null process
executes.

A executes following I/0 completion at its base priority
plus 3. (The applied boost was 4.) :

SOFTWARE

LEVELS

14.
11.

12.

13.

14.

SCHEDULING

QuanTuN

. e)
20

o =3 (I |
1._-&—;—.———————
16

12

i == =0 of

@ Cﬁ) -
(] (&] Ezé? E:f?
] a
[

J ok |

2 |) ' '
_of 'ﬂui B

00 0 0000000 00 OO
Mg —>

Figure - Example of Process Scheduling - Part 3
A is preempted by C.

A executes again, one priority level lower.

A experiences quantum end and is rescheduled at one
priority level lower.

A is preempted by B. A priority boost of 2 is not applied
to B because the result would be less than the current
priority. '

B is preempted by C.

59

SCHEDULING

ouANTUN
. (em—f
20 '
w|]) | | 3
‘.——ﬁ—-—————_——
14
SOFTWARE
pmoRITY 12
LEVELS
10 (J E?)
A ®
: g 9
‘ | o a
A Q @
‘ o '
z .
o wui))
00 006000000000000
NME —> .
Figure Example of Process Scheduling - Part 4

15. B executes again, one priority level lower.

l6. B requests an I/0 operation. A executes at 1its Dbase
priority.

17. A experiences quantum end and is rescheduled at the same
priority (its base pr1o:1ty)

18. A is preempted by cC.

A

SCHEDULING

IMPLEMENTATION OF PROCESS STATE CHANGES

Table Operating System Code for Scheduling Functions

Function Module ‘ Routines
Change between CUR and COM SCHED.MAR SCHSRESCHED
~ SCHSSCHED

Move between resident and SWAPPER.MAR SWAPSCHED

ocutswapped ‘ . INSWAP
OUTSWAP

Move in and out of wait RSB.MAQV SCHSRSE

- states ! , SCHSUNWAIT

(and others)

Quantum end processing RSE .MAR SCHSQEND

o

Per Process

SCHEDULING

Process A Process B Process C

Space
Process
Context
.
System
ySpat.:o SWAPPER
Process
. Context
CONTEXT
System SWITCH
Space) ,
System T Timem ‘ SCHEDULER £
T
Comext — it D B o B
WAXE EVENT ROUTINE

RESUME

Figure Interaction of Scheduling Components

SCHEDULING

Ropon Sysum Event Component (RSE.MAR)

1. 5ystem events cause transitions between process states.

2. These transitions are accomplished by the code in RSE.MAR.

3. Inputs to RSE
a. PCB address

b. Event number (number for WAKE, CEF SET, and so on)

4, RSE flow

a. Event checked for significance (for example, WAKE only
if in HIBER state).

b. PCB removed from wait queue and wait = queue _header .
count decremented.) . e

c. PCB inserted on COM or COMO state queue after pzxo:1ty
adjustment, and summary bit set.

d. Swapper process can be awakened (if PCB was inserted
on COMO queue) .

e. Scheduler interrupt at IPL 3 requested if the new

computable process has software priority greater than
that of current process.

63

SCHEDULING

STEPS AT QUANTUM END
Real-Time Proeoss

1.

2.

Reset PHDSB_QUANT to full quantum value.
Clear initial quantum bit PCBSV_INQUAN in PCBSL_STS.

Normal Process

6.
7'

Reset PHDSB_QUANT to full quantum value.

Clear initial quantum bit PCBSV_INQUAN in PCBSL_STS.

If any outswapped process computable, set current software
priority PCBSB_PRI to base priority PCBSB_PRIB.

If SWAPPER needed, wake SWAPPER.

.If CPU limit imposed, and limit has expired, queue AST to

process for process deletion.

If not, then calculate automatxc workzng set adjustment.

Request scheduling 1nterrupt at IPL 3.

SCHEDULING

Automatic Working Set Adjustment
| e Goal: optimal working set size
- Large enough to‘allow good program pe:fo:ménce
- Small enough to optimize overall memory usage
® Adjustment calculated at quantum end o
- 1If high pagihg rate, want to increase wo?king set size

- If low paging rate, may want to decrease working set
size (take back some physical memory)

e Usually gives large increases, small decreases

e Only affects the list size, not the number of entries in
use)

® No adjustment done for ;eél-time processés.

e Can disable adjustment for normal ptoégsses
- Perprocess: $ SET WORKING_SET/NOADJUST
- System-wide: SYSGEN> SET WSINC 0 |

6S

SCHEDULING

Automatic Working Set Adjustment

PAGE
FAULT
RATE

PFRATH -

PFRATL —

WSDEC

. - T -
- l L—AWSWN LWSMAX

MINWSCNT
- WORKING SET SIZE

TX4Q08

Figure Automatic Working Set Adjustment.

6o

SCHEDULING

- Rules for Working Set Adjustment
1. If PFRATL < PFRate < PFRATH, no adjustment is nec#ssa:y.

2. If PFRate > PFRATH then perhaps WSSIZE = WSSIZE + WSINC.
- WSSIZE can grow to WSQUOTA anytime

- WSSIZE can grow to WSEXTENT if free pages > BORROWLIM

3. If PFRate < PFRATL then perhaps WSSIZE = WSSIZE - WSDEC.
- WSSIZE can shrink to AWSMIN (no‘smgller)

Example 2 Working Set Adjustment Algorithm

¢7

SCHEDULING
. Exampile of Working th Size Variation

WSMAX -

WSEXTENT @ _ @ @ @

WSQUOTA— " c————

WSSIZE —meeipy

- AWSMIN =
MINWSCNT —
| | o | I
TIME el
. TK.9012
Figure WSSIZE Variation Over Time
Table- Reasons for Working Set Size Variations
Time Reason for WSSIZE Change
a Page faults > PFRATH
Free page count > BORROWLIM
b ?age faults < PFRATL
c Page faults < PFRATL
d Page faults > PFRATH
Free page count < BORROWLIM
e Page faults > PFRATH

Free page count > BORROWLIM

68

SCHEDULING

Forcing Processes to Quantum End

- wa» e o o ’
l
- !
Program B salo "'39’ SWAITFR :
|
|
- e o T J
= IOTA
I
i
1
Context
I Switch
I
Program A
Figure Use of the IOTA System Parameter -

e IOTA - special system parameter (in 1@ ms units)

e Deduct IOTA units from time quantum when process enters
wait state

® Used to force processes to quantum end

e Not charged to process CPU limit

017

SCHEDULING

SOFTWARE PRIORITY LEVELS OF PROCESSES

Table Software Priority Levels of Processes on VMS

Base

onco;s Priority Pu:poin

NULL a. Consume idle CPU time
default user 4 User activities

SYMBIONT_n - 4 Input/output symbiont

OPCOM 6 Operator communications
0DS-1 disk ACPs 8 ODS-1 disk file structure
Tape ACPS 8 Tape file stiucture

ERRFMT s Write error log buffers
JOB:éON?ROL 8 Queue and accounting manégéi
NETACP 8 DECnet ACP)
REMACP 8 Remote ACP

SWAPPER 16 System-wide memory manager

e Base priority of process determined by argument to $CREPRC
system service

e 'Base priority of system processes
- Most are established during system initialization

- - Base priority of ACPs is controlled by ACP_BASEPRIC
system parameter

e Normal pzocesses‘receive.prio:ity boosts

70

SCHEDULING

Table SYSGEN Parameters Relevant to Scheduling

Punction

Parameter

Base priority for Ancillary Control Processes

Minimum number of working set pages

Minimum amount of time that must elapse for
significant sample of a process page fault rate

Minimum number of pages required on free page

list before working sets are allowed to grow
beyond WSQUOTA (checked at quantum end)

Base default priority for processes

Time alloted to each of a process's exit

" handlers after CPU limit expjres

Amount of time to deduct from process quantum
for each voluntary wait ‘

Minimum number of fluid working set pages

Page fault rate above which VMS attempts
to increase the process working set size

Page fault rate below which VMS attempts
to decrease the process working set size

Maximum amount of CPU_time a normal process can
receive before control passes to a computable
process of equal priority

Number of pages for working set size decrease
Number of pages for working set size increase

Maximum number of pages for any working set

ACP_BASEPRIO
AWSMIN

AWSTIME

BORROWLIM

DEFPRI
EXTRACPU

IOTA (*)

MINWSCNT
PFRATH

PFRATL

QUANTUM

WSDEC

WSINC
WSMAX

(*) = special SYSGEN parameter

7/

72

APPENDIX

73

$ SHOW MEMORY

System Memory Resources on 20-JUL-1986 15:47:08.74

Physical Memory Usage (pages): Total
Main Memory (4.00Mb) 8192
Slot Usage (slots): Total
Process Entry Slots 19
Balance Set Slots 17
Fixed-Size Pool Areas (packets): Total
Small Packet (SRP) List 133
I/0 Request Packet (IRP) List 81
Large Packet (LRP) List 14
Dynamic Memory Usage (bytes): @“ﬁq%tal

Nonpaged Dynamic Memory w*”;ﬂvr 222208

Paged Dynamic Memoryx»w;gﬁﬂ 105472
Paging File Usage (pages):

DISKSVMS: [SYS0O.SYSEXE]SWAPFILE.SYS

DISKSVMS:[SYS0.SYSEXE]JPAGEFILE.SYS

Free
5852

Free
12
12

Free
le

8

S

Free
54880
36560

Free
4752
6662

In Use
2278

Resident -

7
5

In Use
117

73

9

In Use
167328
68912

In Use
1248
338

Modified
62

Swapped
0
0

Size
96
208
1584

Largest
50624
35632

Total
6000
7000

Of the physical pages in use, 1416 pages are permanently allocated to VMS.

74

$ SHOW MEMORY/POOL/FULL

System Memory Resources on 20-JUL-1986 16:13:10.81

Small Packet (SRP) Lookaside List Packets Bytes Pages
Current Total Size c s 133 12768 25
Initial Size (SRPCOUNT) ~° (i® 60 5760 12
Maximum Size (SRPCOUNTV) 3000 288000 563
Free Space 17 1632
Space in Use 116 11136
Packet Size/Upper Bound (SRPSIZE) 96
Lower Bound on Allocation 32

1/0 Request Packet (IRP) Lookaside List Packets Bytes Pages

" Current Total Size 83 - 17264 34
Initial Size (IRPCOUNT) 30 6240 13
Maximum Size (IRPCOUNTV) 2000 416000 813
Free Space 10 2080

- Space in Use 73 15184
Packet Size/Upper Bound (fixed) 208
Lower Bound on Allocation 97

Large Packet (LRP) Lookaside List Packets Bytes Pages
Current Total Size 14 22176 44
Initial Size (LRPCOUNT) 8. 12672 25
Maximum Size (LRPCOUNTV) : 60 95040 186
Free Space . 5 7920
Space in Use A S 14256
Packet Size/Upper Bound (LRPSIZE + 80) 1584
Lower Bound on Allocation : ' 1088

Nonpaged Dynamic Memory
Current Size (bytes) 222208 Current Total Size (pages) 434
‘Initial Size (NPAGEDYN) 222208 1Initial Size (pages) 434
Maximum Size (NPAGEVIR) 667648 Maximum Size (pages) 1304
Free Space (bytes) 54880 - Space in Use (bytes) 167328
Size of Largest Block 50624 Size of Smallest Block 48
Number of Free Blocks 7 Free Blocks LEQU 32 Bytes 0

Paged Dynamic Memory
Current Size (PAGEDYN) 105472 Current Total Size (pages) 206
Free Space (bytes) 36560 Space in Use (bytes) 68912
Size of Largest Block 35632 Size of Smallest Block 48

Number of Free Blocks 6 Free Blocks LEQU 32 Bytes 0

7a

S ANALYZE/SYSTEM

VAX/VMS System analyzer

SDA> SHOW

SUMMARY

Current process summary

Extended
-- PID
00000020
00000021
00000024
00000026
00000027
00000028
0000002B

SDA> SHOW

NULL
SWAPPER
JOB_CONTROL
NETACP

EVL

REMACP
SYSTEM

SUMMARY/ IMAGE

Current process summary

Extended
-- PID
00000020
00000021
00000024
00000026
00000027
00000028

00000028

0000 NULL
0001 SWAPPER
0004 JOB_CONTROL

DUAO:[SYS0.][SYSEXE]JOBCTL.EXE; 2

0006 NETACP

DUAO:[SYS0.][SYSEXEINETACP.EXE; 6

0007 EVL

Username

SYSTEM
DECNET

. DECNET

SYSTEM
SYSTEM

Username

SYSTEM
DECNET

DECNET

DUAO:[SYS0.][SYSEXE]EVL.EXE

0008 REMACP

DUAO:[SYS0.][SYSEXE]REMACP.EXE; 3

000B SYSTEM

SYSTEM

SYSTEM

DUAO:[SYS0.][SYSEXE]SDA.EXE; 2

State Pri
COM 0
HIB 16
HIB 8
HIB 10
HIB 5
HIB . 13
CUR 5

State Pri
COM 0
HIB 16
HIB 8
HIB 10
HIB 6
HIB 13
CUR 4

800024A8
80002748
801093C0
80112A50
801130QF0
8011A020
8010E3DQ

800024A8
80002748
801093C0

"80112A50

801130F0
8011A020
8010E3DO

80002328
800025C8
8026C000
8027BAC0O
8029AEQOQ
802AA800
80288400

80002328
800025C8
8026C000

8027BA00

8029AEQ0
802AA800
8028B400

665

SDA> SHOW PROCESS/PCB

Process index: 000B Name: SYSTEM Extended PID: 0000002B

Process status: 02040001 RES, PHDRES
PCB address 8010E3DO JIB address 801C2320
PHD address 8028B400 Swapfile disk address 01000361

Master internal PID 0001000B Subprocess count 0
Internal PID 0001000B Creator internal PID 00000000
Extended PID 0000002B Creator extended PID 00000000
State CUR Termination mailbox 0000
Current priority 4 AST's enabled KESU
Base priority _ 4 AST's active NONE
uIC (00001,000004] AST's remaining 21
Mutex count 0 Buffered I/0 count/limit 18/18
Waiting EF cluster : 1 Direct I/0 count/limit 18/18
Starting wait time 1B001B1A BUFIO byte count/limit 20128/20128
Event flag wait mask TJFFFFFFF~ # open files allowed left 15
Local EF cluster 0 E0000003 Timer entries allowed left 20
Local EF cluster 1 C0000000 Active page table count 0
Global cluster 2 pointer 00000000 Process WS page count 668

Global cluster 3 pointer 00000000 Global WS page count Eso 0 aLE Wit

-— -~ 7 - L WANTIA R i@' E5s Wil K EED
: LOOR AT Teis $i- Yoo wme WAL Fenlis " W
S Aopag C SRR Sjuwd PieAE ((MuTER) Y
D AOpAess of & SRk St (

SDA> SHOW PROCESS/PHD TS warTan e iﬂ?f%-;g' ﬂ&\m bWy e

77

\E NUMBELR QN AN ‘)&)

Process index: 000B Name: SYSTEM Extended PID: 0000002B ("tmét vt 9 s L
————————— ——— e e e — e e —— e —— S e e ———— T IVINUING VRS P '“’/(” i
Process header Y Aok i
______________ AN DI i..,us) -

First free PO address 000AS5800 Accumulated CPU time 00000ESA

.Free PTEs between PQ/Pl 10699 CPU since last quantum FFF9

- First free Pl address 7FFS5EEQQ Subprocess quota 10
Free page file pages 8896 AST limit 24

Page fault cluster size 16 Process header index 0002

Page table cluster size 2 Backup address vector 00C009BF
Flags 0002 WSL index save area 00000380
Direct I/0 count 156 PTs having locked WSLs 5
Buffered I/0 count 845 PTs having valid WSLs 18
Limit on CPU time 00000000 Active page tables 21
Maximum page file count 10000 Maximum active PTs 21

Total page faults 3628 Guaranteed fluid WS pages 20
File limit 20 Extra dynamic WS entries 282

Timer queue limit 20 Locked WSLE counts array 28F0
Paging file index 03000000 Valid WSLE counts array 2958

SDA> SET PROCESS/INDEX=28
SDA> SHOW PROCESS/PCB

Process index: 0008 Name:

Process status: 00148001
PCB address 8011a020
PHD address 802AA800

Master internal PID 00010008
Internal PID 00010008
Extended PID 00000028
State HIB
Current priority 13
Base priority 8
uIcC [00001,000003]
Mutex count _ 0
Waiting EF cluster 0
Starting wait time 17001717
Event flag wait mask TFFFFFFF
Local EF cluster 0 E0000000
Local EF cluster 1 00000000

Global cluster 2 pointer 00000000
Global cluster 3 pointer 00000000

SDAa> snow PROCESS/PHD
0008 Name:

Process index: REMACP

REMACP Extended PID:

RES ,NOACNT , PHDRES, LOGIN

00000028

—— - ————— ——— ———— —— - —— —— - — - ——— —— — - — - ——— — — ———— ——————— - ———— — -

First free PO address 000082
Free PTEs between P0O/Pl 124
First free Pl address 7FF9DO
Free page file pages 15
Page fault cluster size

Page table cluster size

Flags 00
Direct I/0 count

Buffered I/0 count

Limit on CPU time 000000
Maximum page file count 20
Total page faults

File limit

Timer queue limit

Paging file index 030000

JIB address 801C2730
Swapfile disk address 010004E1
Subprocess count 0
Creator internal PID 00000000
Creator extended PID 00000000
Termination mailbox 0Q00
AST's enabled KESU
AST's active NONE
AST's remaining 99
Buffered I/0 count/limit 65534/65535
Direct I/0 count/limit 18/18
BUFIO byte count/limit 62783/62783
open files allowed left 69
Timer entries allowed left 8
Active page table count 0
Process WS page count 30
Global WS page count 0
Extended PID: 00000028
00 Accumulated CPU time 0000000F
55 CPU since last quantum 0005
00 Subprocess quota 8
94 AST limit 100
16 Process header index 0004
2 Backup address vector 000009BF
06 WSL index save area 00000980
2 PTs having locked WSLs 6
5 PTs having valid WSLs 6
00 Active page tables 8
48 Maximum active PTs 8
64 Guaranteed fluid WS pages 20
70 Extra dynamic WS entries 149
8 Locked WSLE counts array 28F0
00 Valid WSLE counts array 2958

7R

SDA> SHOW POOL/SUMMARY

Summary of IRP lookaside list

53 FCB = 11024 (68%)
10 IRP = 2080 (13%)
1 NET . 208 (1%)
2 CXB = 416 (2%)
5 JIB = 1040 (6%)
5 RSB = 1040 (6%)
1 INIT = 208 (1%)

Total space used 16016 out of 17264 total bytes, 1248 bytes left

Total space utilization = 92%

Summary of LRP lookaside list

12672 (89%)
1584 (11%)

8 CXB
‘1 CDB

14256 out of 22176 total bytes, 7920 bytes left

Total space used

Total space utilization = 64%

Summary of SRP lookaside list

2 AQB = 192 (1%)
8 CRB = 768 (6%)
7 DDB = 672 (5%)
8 1IDB = 768 (6%)
4 TQE = 384 (3%)
50 WCB = 4800 (41%)
5 BUFIO = 480 (4%)
1 NET = 96 (0%)
1 PTR = 96 (0%)
17 LKB = 1632 (14%)
12 RSB = 1152 (9%)
3 S8CSs = 288 (2%)
3 INIT = 288 (2%)

Total space used = 11616 out of 12768 total bytes, 1152 bytes left

Total space utilization = 90%

Ja

Summary of non-paged pool contents

37 UNKNOWN = 19600 (11%)
2 ADP = 1792 (1%)
1 AQB = 32 (0%)
1 LOG = 32 (0%)
5 PCB = 1440 (0%)

24 UCB = 11584 (6%)
2 VCB = 480 (0%)
1 TYPAHD = 368 (0%)
2 NET = 13152 (7%)
9 DPT = 93488 (55%)
3 RBM = 3728 (2%)
1 VvCa = 864 (0%)
2 CDB = 736 (0%)
1 LKID = 400 (0%)

1 RSHT = 272 (0%)
7 SCS = 5904 (3%)
1 LOADCODE = 2752 (1%)
3 INIT = 9840 (5%)
1 CLASSDRV = 512 (0%)
1l UIS = 352 (0%)

Total space used 167328 out of 222208 total bytes, 54880 bytes left

Total space utilization = 75%

Summary of paged pool contents

5 UNKNOWN = 23232 (33%)
1 PQB = 12256 (3%)
11 GSD = 528 (0%)
19 KFE = 1232 (1%)
1 MTL = 32 (0%)
1 NDB = 2544 (3%)
14 KFRH = 4160 (6%)
1 TwP = 12336 (17%)
1 RSHT = 528 (0%)
1 XWB = 16384 (23%)
40 LNM = 3104 (4%)
1 KFPB = 16 (0%)
1 Cla = 2560 (3%)

Total space used 68912 out of 105472 total bytes, 36560 bytes left

Total space utilization = 65%

RO

DATA STRUCTURE TYPE DEFINITIONS

ACB AST CONTROL BLOCK

ACL ACCESS CONTROL LIST QUEUE ENTRY

ADP UNIBUS ADAPTER CONTROL BLOCK

AQB ACP QUEUE BLOCK

BRDCST BROADCAST MESSAGE BLOCK

BUFIO BUFFERED I/0 BLOCK

CDB X25 LES CHANNEL DATA BLOCK

CDRP CLASS DRIVER REQUEST PACKET

CEB COMMON EVENT BLOCK

CHIP Internal CHKPRO block

CI CI PORT SPECIFIC (*** See Subtypes Below ***)
CIA Compound Intrusion Analysis block

CIDG DATAGRAM BUFFER FOR CI PORT

CIMSG MESSAGE BUFFER FOR CI PORT

CLASSDRV CLASS DRIVER MAJOR STRUCTURE (*** See Subtypes Below ***)
CLU CLUSTER MAJOR STRUCTURE (*** See Subtypes Below **%*)
CRB CHANNEL REQUEST BLOCK

CXB COMPLEX CHAINED BUFFER

DCCB Data Cache Control Block

DDB DEVICE DESCRIPTOR BLOCK

DPT DRIVER PROLOGUE TABLE

DSRV Disk Server structure type (*** See Subtypes Below ***)
ERP ERRORLOG PACKET

EXTGSD EXTENDED GLOBAL SECTION DESCRIPTOR

FCB : FILE CONTROL BLOCK

FLK Fork Lock Request Block

FRK FORK BLOCK

GSD GLOBAL SECTION DESCRIPTOR BLOCK

1DB INTERRUPT DISPATCH BLOCK

INIT STRUCTURES .SET UP BY INIT (*** See Subtypes Below **%*)
*IRPE I/0 REQUEST PACKET EXTENSION

IRP I1/0 REQUEST PACKET

JIB JOB INFORMATION BLOCK

JPB JOB PARAMETER BLOCK

KFD Known File Device Directory block

KFE KNOWN FILE ENTRY

KFPB Known File list Pointer Block

KFRH KNOWN FILE IMAGE HEADER

LKB LOCK BLOCK

LKID LOCK ID TABLE

LNM LOGICAL NAME BLOCK

LOADCODE LOADABLE CODE (*** See Subtypes Below **x)
LOG LOGICAL NAME BLOCK

LPD X25 LES PROCESS DESCRIPTOR

MBX : MAILBOX CONTRCOL BLOCK

MP ASMP related structure (*** See Subtypes Below ***)
MTL MOUNTED VOLUME LIST ENTRY .

MVL MAGNETIC TAPE VOLUME LIST

NDB NETWORK NODE DESCRIPTOR BLOCK

NET NETWORK MESSAGE BLOCK .

ORB Objects Rights Block

PBH PERFORMANCE BUFFER HEADER

PCB PROCESS CONTROL BLOCK

PDB PERFORMANCE DATA BLOCK

PFB Page Fault Monitor Buffer

PFL PAGE FILE CONTROL BLOCK

PGD PAGED DYNAMIC MEMORY (*** See Subtypes Below **x)

R4

PIB : PERFORMANCE INFORMATION BLOCK

PMB Page Fault Monitor Control Block

PQOB PROCESS QUOTA BLOCK

PTR POINTER CONTROL BLOCK

QVAST QVSS AST block

RBM : Realtime SPT bit map

RIGHTSLIST RIGHTS LIST

RSB RESOURCE BLOCK

RSHT RESOURCE HASH TABLE

RVT RELATIVE VOLUME TABLE

SCs SYSTEM COMMUNICATION SERVICES(*** See Subtypes Below **x)
SHB SHARED MEMORY CONTROL BLOCK

SHMCEB SHARED MEMORY MASTER COMMON EVENT BLOCK
SHMGSD SHARED MEMORY GLOBAL SECTION DESCRIPTOR
SLAVCEB SLAVE COMMON EVENT BLOCK

SSB LOGICAL LINK SUBCHANNEL STATUS BLOCK
TQE TIMER QUEUE ENTRY

TWP Terminal driver write packet

TYPAHD TERMINAL TYPEAHEAD BUFFER

UcCB : UNIT CONTROL BLOCK

uls UIS Structure (*** See Subtypes Below ***)
VCA Disk volume cache block

VCB VOLUME CONTROL BLOCK

WCB WINDOW CONTROL BLOCK

WQE DECNET WORK QUEUE BLOCK

XWB DECNET LOGICAL LINK CONTEXT BLOCK

SUBTYPE CODES - : . .

- —— — o ————————— ——— |~ D —— — - —— — Y - ——— - ———————— — ——— —— ——— ————— ———— —————— - — -

CODES THAT ARE SUBTYPABLE REFER TO A GENERIC FUNCTION AND WITHIN THAT
FUNCTION THERE MAY BE MANY DIFFERENT SUB-TYPES OF BLOCKS.

THE SUB-TYPE IS IN THE 12TH BYTE.

SCS
SCS_CDL CONNECT DISPATCH LIST
SCS_CDT CONNECT DISPATCH TABLE
SCS_DIR DIRECTORY BLOCK
SCS_PB PATH BLOCK
SCS_PDT PORT DESCRIPTOR TABLE
SCS_RDT REQUEST DESCRIPTOR TABLE
SCS_SB SYSTEM BLOCK
SCS_SPPB ' SCA POLLER PROCESS BLOCK
SCS_SPNB SCA POLLER NAME BLOCK

CI CI PORT SPECIFIC
CI_BDT BUFFER DESCRIPTOR TABLE
CI_FQDT FREE QUE DESCRIPTOR TABLE

Q2

LOADCODE LOADABLE CODE
NON_PAGED NON PAGED CODE
PAGED PAGED CODE
LC_MP MULTIPROCESSOR CODE
LC_SCS SCS CODE
LC_CLS CLUSTER CODE
LC_CHREML CHAR/DECIMAL INS EMUL
LC_FPEMUL FLOAT PNT EMULATOR
.LC_MSCP .MSCP SERVER
' LC_SYSL SYSLOA
INIT STRUCTURES SET UP BY INIT
PCBVEC PROCESS CONTROL BLOCK VECTOR
PHVEC PROCESS HEADER VECTOR
SWPMAP SWAPPER MAP
MPWMAP. MODIFIED PAGE WRITER MAP
PRCMAP PROCESS BITMAP
BOOTCB BOOT CONTROL BLOCK
CONF CONFIGURATION ARRAYS
CST CLUSTER SYSTEM TABLE
CLASSDRV CLASS DRIVER MAJOR STRUCTURE TYPE CODE
CD_CDDB CLASS DRIVER DATA BLOCK
CD_BBRPG BAD BLOCK REPLACEMENT PAGE

CD_SHDW_WRK

CLUSTER MAJOR STRUCTURE TYPE CODE

CONNECTION STATUS BLOCK .

CLUSTER SYSTEM VECTOR

CLUSTER BLOCK

CLUSTER BLOCK TRANSFER EXTENSION

CLUSTER DISK QUORUM CONTROL BLOCK

"CLUSTER OPTIMAL RECONFIGURATION CONTEXT BLOCK

CLU_CSB
CLU_CLUVEC
CLU_CLUB
CLU_BTX
CLU_CLUDCB
CLU_CLUOPT.
CLU_LCKDIR

PGD_F11BC

UIS Structure

o o — — — — ————— — —— ————— — A ——— —— T — — —— — ———— T — " ——— —— o

SHADOW SET WORK BUFFER

LOCK MANAGER DISTRIBUTED DIRECTORY VECTOR

PAGED DYNAMIC MEMORY

F11BXQP BUFFER CACHE.

DSRV Disk Server structure type

DSRV_DSRV Disk server structure
DSRV_HQB Host Queue Block
DSRV_HRB Host Request Block
DSRV_IOBUF Server local I/0 Buffer
DSRV_UQB Unit Queue Block.

MP ASMP related structure

MP_CONSARRY Logical Console Array
MP_CONSBFCTL Logical Console Buffer

Extracting the Structure Code Values

$ LIBRARY/MACRQO/EXTRACT=$DYNDEF/OUTPUT=DYNDEF.MAR SYS$LIBRARY:LIB.MLB

$DYNDEF

$SEQU DYNSC_ADP 1
SEQU DYNSC_ACB 2
SEQU DYNSC_AQB 3
SEQU DYNSC_CEB 4
SEQU DYNSC_CRB 5
SEQU DYNSC_DDB 6
SEQU ~ DYNSC_FCB 7
SEQU DYNSC_FRK 8
SEQU DYNSC_IDB 9
SEQU DYNSC_IRP 10
SEQU DYNSC_LOG 11
SEQU DYNSC_RIGHTSLIST 66
SEQU DYNSC_LOADCODE 98
SEQU DYNSC_NON PAGED 1
SEQU DYNSC_PAGED 2
SEQU DYNSC_LC_MP 3
SEQU DYNSC_LC_SCS 4
SEQU DYNSC_LC_CLS 5
SEQU DYNSC_LC_CHREML 6
SEQU DYNSC_LC_FPEMUL 7
$SEQU DYNSC_LC_MSCP 8
SEQU DYNSC_LC_SYSL 9

$DEFEND DYN, $SGBL,DEF
. ENDM

%4

