
C V A X I R I G E L M E M 0 R Y I N T E R C 0 N N E C T

COMPANY CONFIDENTIAL

f
The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may occur in this document. rhis specification does not describe any
program or product which is currently available from Digital Equipment
Corporation. Nor does Digital Equipment Corporation commit to implement
this specification in any product or program. Digital Equipment
Cor.(>Of'at~on makes no commitment that this document accurately describes any
product jt mi~nt ever make. Copyright (c) 1985 by Digital Equipment
Corporation

REVISION HISTORY

REVISION DATE AUTHOR
-------- ------

o.o 10-MAY-85 Williams/Ives
0.1 17-MAY-85
0.2 21-MAY-85
0.3 31-MAY-85

0.9 7-JUNE-85

.
CHAPTER 1

1.1
1. 2
1. 3
1.4
1. 5
1. 6
1. 7
1. 7 .1
1. 7. 2
1. 7. 3

CHAPTER 2

2.1
2 .1.1
2 .1. 2
2.2
2.2.1
2.2.2
2. 2. 3
2.2.4
2. 2. 5
2.2.6
2.2.7
2.2.8
2.2.9
2.2.10
2.2.11
2.2.12
2.2.13
2. 3
2. 3. 1
2.3.2
2.3.2.1
2.3.2.2
2.3.2.3
2.3.2.4
2.3.3
2.3.4
2.3.5
2.4
2. 4. 1

2.4.2

2.4.3

2.4.4

2.4.5
2.4.6
2.4.7

TABLE OF CONTENTS

INTRODUCTION

OVERVIEW
TERMS
FIELDS
DATA TRANSACTION TYPES
INTERRUPT TRANSACTION TYPES
ARBITRATION
OTHER NODE RESPONSIBILITIES

Timeout/Interlock
Automatic Retry .. .
Parity

FUNCTIONALITY

. 1

. . • • • • • 3
• . • • • 6

• • • 6
. • 8

. 8
11

. 11
11

. . . . 12

TIM I NG 13
Clock System 14
Bus Cycle 14

PINS AND FIELD DEFINITION 14
XMI FUNCTION<2:0> 14
XM I DAT A< 6 3 : 0 0 > 15
XM I I D < 4 : 0 > • • • • • • • • • • • • • • 1 5
XMI HI/LO ARB, BUS GRANT, HOLD 16
XMI PARITY 17
XMI CONFIRMATION<4: O>L 17
XMI PARITY ERROR L . . . 18
XMI RESET 18
XMI AC LOW 19
XMI DC LOW 19
XMI BAD 19
XMI CLOCKS . . . 19
XMI NODE ID<3:0> 19

XMI CYCLE FORMAT 19
No-Op Cycle 20
Command Cycle Format 20

Command Field 20
Mask Field 21
Length Field 23
Address Field 23

Write Data Cycle 25
Good Data And Corrected Read Data Response Cycles 25
Non-Data Response Cycle 26

TRANSACTION TYPES 26
Longword, Quadword, Octaword And Hexaword Read
Transactions 27
Longword, Quadword, Octaword And Hexaword
Interlock Read Transactions 27
Longword, Quadword And Octaword Write Masked
Transactions 28
Longword, Quadword And Octaword Unlock Write
Masked Transact ions 29
Invalidate Transactions 30
Quadword And Octaword Tag Bad Data Transactions 30
INTR And IDENT Transactions 31

Page 2

IPINTR Transactions
Timing Diagrams
Single Quadword Reads
Multiple Quadword Reads
Masked Longword And Quadword Writes
Masked Octaword Writes
Timeout -
Timeout Mechanism

2.4.8
2.4.9
2.4.10
2.4.11
2.4.12
2.4.13
2.4.14
2.4.15
2.5 XMI ERROR HANDLING
2.5.1 Error Recovery .
2.6 ADDRESSING

XMI Addressing
XMI Node Space

Error Register
XMI Private Space
XBI Window Space

2.6.1
2.6.1.1
2.6.1.1.l
2.6.1.2
2.6.1.3
2.7 DC LOW AND RESET

CHAPTER 3 ELECTRICAL DESCRIPTION

CHAPTER 4 ISSUES TO BE RESOLVED

33
33
34
35
36
37
37
38
38
38
40
41
42
43
44
44
44

CHAPTER 1

INTRODUCTION

The XMI is the primary interconnect medium in the CVAX/Rigel
family of computer systems. It consists of the protocol observed
by a node on the bus, the electrical environment of the bus, the
backplane, and the logic used to implement the protocol. The XMI
can support four or more processors, eight or more memory
subsystems, and up to 4 I/0 adapters.

1.1 OVERVIEW

The XMI is a limited length, pended, synchronous bus with
centralized arbitration. Several transfers can be in progress at
a given time, allowing highly efficient use of bus bandwidth.

Arbitration and data transfers occur simultaneously, with
multiplexed data and address lines. The bus supports reads and
writes to memory of quadword, octaword, and hexaword (reads only)
length. In addition, the bus supports longword length read and
write operations to I/0 space. These longword operations
implement byte and word modes required by certain I/0 devices.

The available bus bandwidth of the XMI for each type of
transfer is listed below:

Operation Bandwidth
--------- ---------

Longword Read 25.0 Mbytes/sec
Quadword Read 50.0 Mbytes/sec
Octaword Read 66.6 Mbytes/sec
Hexaword Read 80.0 Mbytes/sec

Longword Write 25.0 Mbytes/sec
Quadword Write 50.0 Mbytes/sec
Octaword Write 66.6 Mbytes/sec

- 1 -

INTRODUCTION
OVERVIEW 07 Jun 85

XMI nodes monitor bus activity and check for various conditions.
Parity is maintained over the Command/Address/Data field in
addition to parity over the control fields.

The hardware implementation of the XMI protocol is based on
CMOS gate arrays or standard cells, with separate bus
transceivers providing single ended interface to the backplane.
Clocks, due to their more critical distribution requirements, may
be driven on the backplane differentially and converted to single
ended signals on the modules.

The XMI interface hardware is latch-based. The clock system
is two-phase, non-overlapping, with clock pulses as wide as
possible. Transfers over the backplane begin with the occurrence
of a "Phasel" Clock (conceptually the first phase). It is during
this phase that new data is initially enabled onto the bus. Data
must be at the latch input at about the worst case late leading
edge of Phasel and must be routed from the latch to the actual
XMI etch on the backplane quickly so that the XMI is actually
driven soon after the worst case late leading edge of Phasel.
Receiving latches at a node are opened with an "Phase2" Clock.
In the worst case, data will stabilize at the inputs of all
receiving latches a bit before the worst case early trailing edge
of Phase2. There is a brief time available between the worst
case signal receive time near the trailing edge of Phase2 and the
time when a signal would be required near the leading edge of the
next Phasel for transmission in the next XMI cycle.

A simple block diagram of a four processor Rigel system is shown
below.

----- ----- ----- -----.
I Rigel I I Rigel I I Rigel I I Rigel I
I 0 I I 1 I I 2 I I 3 I
--+-- ' --+-- ' --+-- ' --+-- r

XMI
<----+---+-------+-----+----+---------+---+-------+------+---->

• -+-.
lmeml
I o I

.-+- •
II/OI
I o I
-+-'

• -+-.

lrneml
I 1 I

• -+- •
II/01
I 1 I
-+-'

.-+- •
lmeml
12-71

I/0 1
----------------->

I/0 0
-------------------------------------->

- 2 -

INTRODUCTION
TERMS

1.2 TERMS

07 Jun 85

In order to clearly describe the transactions which occur on the
XMI the following terms are used:

Node - A node is a hardware device which resides physically
on the XMI backplane. There are a maximum of 16 nodes in a
CVAX/Rigel system.

Transfer - A transfer is the smallest quantum of work which
occurs on the XMI. Typical examples of transfers are the
command cycle of a read, and the command and following data
cycles of a write.

Transaction - A transaction is composed of one or more
transfers. Transaction is the name given to the logical task
being performed (e.g. read); in the case of the read
specifically, the transaction consists of a command transfer
followed some time later by a return data transfer. See
Commander, Responder, Transmitter and Receiver below.

Commander - The commander is the node that initiated the
transaction in progress. In any write transaction, the
commander is the node that requested the write; for reads,
the commander is the one who requested the data. The
distinction of being the commander in a transaction holds for
the duration of the transaction in spite of the fact that in
some cases it might appear that the commander changes. A
case in point is where the commander initiates a read
transaction. It is the responder (data source) that
initiates the return data transfer, but the node that
requested the data is still the commander.

Responder - The responder is the complement to the commander
in a transaction.

Transmitter - A transmitter is the node that is sourcing the
information on the bus. Using the read transaction as an
example, the commander is the transmitter during the command
transfer, and the receiver during the return data transfer.

Receiver - The analog to the transmitter, the receiver is the
sink of the data being moved during a transfer.

Naturally Aligned - Refers to a data quantity whose address
could be specified as an offset, from the beginning of
memory, of an integral number of data elements of the same
size. Characteristic of naturally aligned data items is the
fact that the lower bits of their address are zero. All XMI
reads and writes transfer a naturally aligned block of data.

- 3 -

INTRODUCTION
TERMS 07 Jun 85

Wraparound Read - Defined to be a octaword or hexaword read
operation where read data is returned in a specific pattern
in which the specifically addressed quadword is returned
first, independent of alignment. The remaining data in the
the naturally aligned block of data containing the addressed
quadword is returned in subsequent transfers. Below is an
example of a octaword wraparound read:

Example:

Read Octaword, VAX byte address 00000018 (hex).

00000018
00000010

First Quadword
Second Quadword

For purposes of defining the wrapping order for hexaword
reads, a hexaword read is decomposed into two octaword reads,
with the addressed octaword read data returned first. Within
each of the octawords the wrapping order is the same as
described above for octawords. Return data for the second
octaword maintains the same wrapping order used in the first
octaword.

Example:

Read Hexaword, VAX byte address 00000018 (hex).

00000018
00000010
00000008
00000000

First Quadword
Second Quadword
Third Quadword
Fourth Quadword

\ First Octaword
I
\ Second Octaword
I

The XMI protocol requires that all octaword and hexaword
reads, both normal and interlocked, are wrapped.

Throughout this document the following numbering conventions will
hold. Bits will be numbered from right to left with the leftmost
bit the most significant, i.e.

- 4 -

INTRODUCTION
TERMS

A Quadword is a single 64 bit entity

63 56 55 48 47 40 39 32 31

07 Jun 85

24 23 16 15 8 7 0
+-------+-------+-------+-------+-------+-------+-------+-------+

+-------+-------+-------+-------+-------+-------+-------+-------+

and in a similar fashion, Longwords

63 32 31 0
+---------------+---------------+---------------+---------------+

longword 1 longword 0
+---------------+---------------+---------------+---------------+

and Words

63 48 47 32 31 16 15 0
+---------------+-----------~---+---------------+---------------+

word 3 word 2 word 1 word 0
+---------------+---------------+---------------+---------------+

and Bytes.

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0
+-------+-------+-------+-------+-------+-------+-------+-------+
I byte7 I byte6 I byte5 I byte4 I byte3 I byte2 I bytel I byteO I

+-------+-------+-------+-------+-------+-------+-------+-------+

- 5 -

INTRODUCTION
FIELDS

1.3 FIELDS

The fields of information represented on the XMI are:

Arbitration:

XMI HI ARB
XMI LO ARB
XMI HOLD
XMI BUS GRANT

Information Transfer:

XMI FUNCTION L
XMI DATA
XMI ID
XMI PARITY

Response:

XMI CONFIRMATION L
XMI PARITY ERROR L

Control:

XMI RESET
XMI AC LOW
XMI DC LOW
XMI BAD
XMI CLOCKS

Miscellaneous:

XMI NODE ID

Bus

(16)
(16)

(1)
(16)

(3)
(64)

(5)
(1)

(5)
(1)

(1)
(1)
(1)
(1)
(4)

(4 per slot)

Node

1
2
3
4

7
71
76
77

82
83

84
85
86
87
91

(running

95 = Total

07 Jun 85

total)

For specific details of the signals in the XMI, see Section 2.2.
Further information about the clocks can be found in section 2.1.

1.4 DATA TRANSACTION TYPES

The XMI supports the following types of data transactions:

- 6 -

INTRODUCTION
DATA TRANSACTION TYPES 07 Jun 85

Longword Read (I/0 space only)

Quadword Read

Octaword Read

Hexaword Read

Longword Interlock Read (I/0 space only)

Quadword Interlock Read

Octaword Interlock Read

Hexaword Interlock Read

Longword Write Masked (I/0 space only)

Quadword Write Masked

Octaword Write Masked

Longword Unlock Write Masked (I/0 space only)

Quadword Unlock Write Masked

Octaword Unlock Write Masked

Quadword Tag Bad Data

Octaword Tag Bad Data

Reads cause the transfer of data from the responder to the
commander. Writes cause the transfer of data from the commander
to the responder. Longword commands transfer 4 Bytes and
likewise quadword, octaword and hexaword commands transfer 8, 16,
and 32 Bytes. Interlocked variations of read commands are
intended to do the same thing as the regular reads, but they also
invoke a mutual exclusion mechanism. Interlock reads cause the
setting of a lock bit associated with the location; whereas
unlock writes cause the clearing of the lock bit. During periods
wi1ell a location is locked, subsequent interlock read operations
to that location will result in the responder returning a
"Locked" non-data response instead of read data. All writes are
masked and are accompanied by a set of mask bits that specifies
which bytes out of the data transfer unit are to be written. Any
arbitrary pattern of bytes can be written with the masked writes.

- 7 -

INTRODUCTION
DATA TRANSACTION TYPES

The Tag Bad Data command can be used by a commander
memory location as containing incorrect data. A
location which is marked bad results in the return of
Data, Tagged" non-data response instead of read data.

1.5 INTERRUPT TRANSACTION TYPES

07 Jun 85

to mark a
read to a
the "Bad

The XMI supports the following types of interrupt transactions:

Interrupt Request (INTR)

Interrupt Acknowledge (IDENT)

Interprocessor Interrupt (IPINTR)

The INTR and IDENT transactions are used to implement device
interrupts. An I/0 node will issue an INTR transaction to a
processor(s) in order to interrupt the processor at a specified
IPL. In response to the INTR a processor node will issue an
IDENT transaction directed to the interrupting I/0 node
soliciting an interrupt vector. An INTR transaction can be
broadcast to multiple processor nodes. In this case the first
processor responding with IDENT receives the interrupt vector;
all other processors, upon seeing an IDENT directed to the
interrupting device, should clear the interrupt pending
condition. If IDENTs are issued simultaneously by two or more
processors, the first to gain the bus will service the interrupt
while the other(s) will perceive a passive release.

The IPINTR transaction is used to implement VAX interprocessor
interrupts. An IPINTR directed to a processor(s) results in the
processor(s) being interrupted at IPL 14 with a vector of 80H, as
required by the VAX SRM. Since the value of the interrupt vector
is fixed, IPINTR transactions do not require a corresponding
interrupt acknowledge cycle.

1.6 ARBITRATION

The XMI protocol as implemented in CVAX/Rigel, will support at
most 16 nodes. Of these, all may desire the use of the bus at
any given time. Arbitration cycles occur simultaneously with
data transfer cycles using a set of lines dedicated specifically
to this purpose.

- 8 -

INTRODUCTION
ARBITRATION 07 Jun 85

When a node desires ownership of the bus, it asserts either its
Low (Commander) or High (Responder) Arbitration line. During any
given cycle, all nodes have the opportunity to request the bus.
The arbiter receives all the requests and decides which node
shall get the bus. In the next cycle, the selected node begins
its transfer.

The XMI has an additional arbitration line, HOLD, which is a
WIRE-OR'ed signal shared by all nodes. Assertion of HOLD
guarantees that the current XMI transmitter will be granted
ownership of the bus in the next cycle, independent of the values
of HI ARB and LOW ARB. The primary use of HOLD is for
multi-cycle transfers, allowing the current transmitter to
acquire consecutive cycles. HOLD has an additional purpose in
controlling XMI traffic. Should a node have difficulties in
keeping up with bus traffic, such as a CPU backing-up on cache
invalidate operations due to XMI write traffic, it may assert
HOLD to temporarily suppress the start of additional XMI
transfers.

- 9 -

INTRODUCTION
ARBITRATION

CENTRALIZED ARBITRATION

.------. Hi Arb
I I Node !---------------------.
l<---1 I Grant #1 I
I I #1 I<------------------. I
I ------- I I
I I I
I . ------. Low Arb I I
I I Node 1-----------------. I I
l<---1 I Grant #2 I I I
I I #2 !<--------------. I I I .---------
1 ------ I I I '---->!
I I I '-------1

• I --------->! Central
I Hold '-----------1
+------------------------------------>!
I I .---------->! Arbiter

. I .---------1
I I I .------>I
I . ------. Low Arb I I I . -----I
I I Node 1---------------' I I I
l<---1 I Grant #13 I I I
I I #13 I<----------------' I I
I '______ I I
I I I
I .------. Hi Arb I I
I I Node 1-------------------' I
l<---1 I Grant #14 I
I I #14 !<--------------------'

07 Jun 85

The XMI arbitration scheme consists of three priority classes:
HOLD, HI ARB and LOW ARB. HOLD has highest priority and, as
mentioned above, guarantees that the current transmitter will be
granted the bus in the next cycle. The next priority class is
the collection of HI ARB requests. Within this class priority is
distributed in a round-robin manner. The lowest priority class
is the collection of LOW ARB requests. Within this class
priority is distributed in a round-robin manner. If no node
requests the bus during a certain cycle, the bus will default to
a NoOp function code and correct parity.

- 10 -

INTRODUCTION
OTHER NODE RESPONSIBILITIES 07 Jun 85

1.7 OTHER NODE RESPONSIBILITIES

In addition to the interactions required to transfer data on the
XMI, nodes are also responsible for more general operations which
can be best described as housekeeping functions, as listed below.

1.7.1 Timeout/Interlock

In an effort to detect the failure of a module or transfer as
early as possible, XMI transactions will be subject to a timeout.
The timeout period will be <tbs> us and will be monitored by the
commander in all cases. When a node begins arbitrating for the
bus to issue a command, it will begin incrementing a timeout
counter, which, when it reaches the extreme of its counting
range, will cause an error response. An I/0 adapter will send an
interrupt to the CPU. A timeout error on a CPU node will cause
the CPU to initiate some form of error recovery or machine check.
Completion of the transaction before the timeout period has
expired, will result in the interface clearing the timeout
counter and continuing.

Another form of timeout mechanism will be used in the case of
interlocked transactions. The Commander may issue a interlock
read command to a memory or I/0 location which is already locked.
When this occurs the Commander should either monitor the XMI for
a subsequent unlock write or implement some form of backoff
algorithm before retrying the interlock read. If the location
remains locked after <tbs> attempts, the node should abort the
operation and report an error.

1.7.2 Automatic Retry

XMI transactions involve the possibility that a node can get
access to the bus, only to find that the resource it wanted was
unavailable. This results in the issuance of a 'busy'
confirmation to a Command cycle by the responding node.
Transfers in this category will be retried by the Commander. If
the resource remains busy after <tbs> attempts, the node should
abort the operation and report an error.

- 11 -

INTRODUCTION
OTHER NODE RESPONSIBILITIES 07 Jun 85

1.7.3 Parity

All nodes will monitor parity of the bus. If bad parity is
detected during a bus cycle, the devices detecting the error will
assert XMI PARITY ERROR L during confirmation cycle and ignore
the cycle. The specific error recovery performed by the
commander in response to XMI PARITY ERROR L assertion depends on
the command and XMI CONFIRMATION code received. If bad parity is
detected during the second or later cycles of multi-cycle
transfer, such as write data following a write command, the
transaction will be aborted.

- 12 -

CHAPTER 2

FUNCTIONALITY

2.1 TIMING

Transactions on the XMI take place in discrete cycles delineated
by the clock. The XMI uses a 2 phase clock system with the two
phases called "Phasel" and "Phase2". The asserted states of the
two clock phases do not overlap in time. Within this limitation,
including worst case skew across the entire system, the asserted
states of the two clock phases are essentially equal and as wide
as possible. The period of the clock is normally 80ns. For
purposes of testing and debug, the XMI clock system can be set to
produce a longer period as well. The system and all XMI devices
do not need to be designed to operate correctly with a clock
period shorter than 80ns but they shall be designed to operate
correctly with periods of up to 320ns. The XMI clock will not be
stopped for any reason.

All XMI signals shall be driven onto the XMI from Phasel latches
and shall be received from the XMI into Phase2 latches. The bus
usage diagrams in this section will represent data transfers as a
sequence specifying the contents of the different fields of the
XMI as a function of bus cycle, assuming that data is driven onto
the bus enabled by a "Phasel" and received into a latch enabled
by an "Phase2".

----- ----- -----. . .
I I I

PHASEl I I I
\ \ \

----\ /-------------\ /-------------\ 1------
DATA x x x

----/ \-------------/ \-------------/ \------

PHASE2

- 13 -

FUNCTIONALITY
TIMING

2.1.1 Clock System

07 Jun 85

The clock system in the XMI will provide the CPU, memory and I/0
nodes with a 2 phase non-overlapping clock that will not stop as
long as power is supplied to the system.

2 .1. 2 Bus Cycle

A Bus Cycle is equal to the time between normal "Phasel" clocks
provided by the system timing.

PHASEl

PHASE2

I<- Bus cycle ->I<- Bus cycle ->I<- Bus cycle ->I

2.2 PINS AND FIELD DEFINITION

2.2.1 XMI FUNCTION<2:0>

The Function field encodes the function being performed on the
bus this cycle. All possible functions and their encodings are
shown below:

- 14 -

FUNCTIONALITY
PINS AND FIELD DEFINITION

FUNCTION
XMI FUNCTION FIELD

I 2 I 1 I o I

No-op Cycle (NOOP)

Read Response Cycle

Good Data (GRDn)
Corrected Read Data (CRDn)
Non-Data Response (NDR)

Write Data Cycle (WDAT)

Command Cycle (CMD)

0

1
1
0

0

0

0

0
1
1

1

0

n = sequence identification
0 -> Data cycles 0 & 2
1 -> Data cycles 1 & 3

2.2.2 XMI DATA<63:00>

0

n
n
1

0

1

07 Jun 85

The use of this field is multiplexed between command and data
information. On data cycles the lines represent 64 bits of
information; on Command cycles the lines represent command code,
address and mask information.

2.2.3 XMI ID <4:0>

During the Command cycle and return data cycles, the ID field
contains the commander's ID. This ID is used to identify the
source of the request on the Command cycle and to associate
returning data with the commander who issued the request on
return data cycles.

An XMI Commander can have only one outstanding transaction at any
time. An XMI node is allocated two Commander IDs, enabling each
node to have two commanders and up to two transactions in
progress at any given time.

- 15 -

FUNCTIONALITY
PINS AND FIELD DEFINITION 07 Jun 85

The ID codes used by a node are assigned as follows:

Node Name IDs
----------- -------
I/0 Node 0 (XBIO) oooox
I/0 Node 1 (XBI 1) OOOlX
I/0 Node 2 (XBI2) OOlOX
I/0 Node 3 (XBI3) OOllX

<tbs>

Fixed ID codes are required for the identification of interrupt
sources and to provide for XMI to BI address translation. I/0
devices can only reside in slots 0 - 3. When less that four I/O
devices are used, the remaining slots may be used for CPUs or
Memory.

2.2.4 XMI HI/LO ARB, BUS GRANT, HOLD

Each node on the XMI has 3 dedicated arbitration lines that
connect it with the centralized arbiter. These are HI
(responder) ARB, LO (commander) ARB, and BUS GRANT. In addition,
there is a shared HOLD line. The actual signal names are these
prefixed by XMI and the node name. All 3 arbitration lines are
available in each XMI slot to allow either a CPU, memory or I/0
Adapter to reside there.

The CPU asserts LO ARB if it wishes to gain the use of the XMI to
begin a new transfer. If the arbiter decides to give a node the
bus, the arbiter will assert (specific node) BUS GRANT during the
same XMI cycle. BUS GRANT should be received by the requesting
device at the end of the bus cycle and used to enable the node's
drivers onto the XMI.

A memory asserts HI ARB if it wishes to use the XMI to complete a
transfer, such as returning read data to the CPU. If the memory
has the XMI for the current cycle, then it may reserve the XMI
+"-...... ~1--,,'°' T"\r'"\.V'~ ,..,"f:7',-.1 I'""'\. h'TT ""';\C""'le-.1"""\."'4'.+- ~ Y"\,,,.-Y t.J'f"'\T 'r\ ,..::J.,.,,..._,; """",...,, ..&-k- -··----.a... ----1 -
.LV.L l...L.1'::;; JlC.L\.l.. '-.1'-..LC J..J.1 U.;:>.;;:>C..L l...1.ll':::j J.J.V.UJ...I U.UJ. .1.ll':::j L..111:: 1..-U.L .Ll::lll.. 1....Jl....J..t::e

HOLD is used to acquire additional cycles in a multi-cycle
transfer, and is used by a commander for write transfers and by
responders for contiguous data cycles for octaword and hexaword
transfers. If the node asserts HOLD during the current cycle
then the arbiter will certainly assert (specific node) BUS GRANT
for the next cycle.

- 16 -

FUNCTIONALITY
PINS AND FIELD DEFINITION 07 Jun 85

2.2.5 XMI PARITY

Parity on the XMI is computed over three fields; DATA <63:00>,
FUNCTION <2:0>, and ID <4:0>. Even parity is used, where the
"exclusive OR" of all bits including the parity bit is a "O".
With an idle bus all fields will be "O", with the correct parity
being a "O", there is no need for a node to explicitly drive it.

2.2.6 XMI CONFIRMATION<4:0>L

The confirmation lines are a five bit ECC protected field used by
the receiver to notify the transmitter of the status of the data
transfer. Valid responses and their respective encodings are
shown below:

Confirmation

No Response (NACK)
Receiver Accepts Data (ACK)
Responder Busy (BUSY)
Deferred Response (DEF)

CNF<4:0>L

0 0 0 0 0
1 0 1 0 1
1 1 0 1 0
0 1 1 1 1

No Response -- Indicates that no receiver has accepted a
command cycle or that a data cycle contained a parity error.

Receiver Accepts Data Indicates that a responder has
accepted a command cycle or that a receiver has accepted a
data cycle. ACK'ed read command cycles indicate that the
responder will return a read response cycle at a later time.
ACK'ed write command cycles are assumed successful.

Responder Busy -- Indicates that the responder is temporarily
unable to accept the command cycle. The commander should
re-issue the command at a later time.

Deferred Response Indicates that the responder has
accepted the command, but is unable to verify completion
status at this time. The responder will return a non-data
response cycle indicating completion status at a later time.
The deferred response in intended to be used only for I/O
Space write transactions.

- 17 -

FUNCTIONALITY
PINS AND FIELD DEFINITION

Cycle 0
I

Function!Cmd
I

Conf I
I

Confirmation timing

1
I
ICmd
I
I
I

2 3 4
I I I
IWdatlWdatlCmd
I I I
I o I 1 I 2
I I I

07 Jun 85

5 6
I I
INooplCmd
I I
I 3 I 4
I I

As mentioned above, XMI CONFIRMATION<4:0>L is an ECC protected
field. It is vital to bus integrity that a commander knows

·exactly what the responder has done. This is particularly
important in the case of an interlocked command or a write to an
I/0 register. The data and command field are adequately
protected by parity from one bit errors. The implications of a
corrupted CNF response justify the additional bits required to
provide single bit error correction of the CNF code.

The ECC field consists of two data bits, CNF<l:O> and three check
bits, CNF<4:2>. XMI CNF<3:2> is a duplication of XMI CNF<l:O>
and XMI CNF<4> is computed as XMI CNF<l> xor XMI CNF<O>. Devices
will check a received CNF code by verifying:

Test 1
Test 2
Test 3

0
0
0

CNF<2> xor CNF<O>
CNF<3> xor CNF<l>
CNF<4> xor CNF<l> xor CNF<O>

If all tests pass, the CNF data is error free. If tests 1 and 2
fail, the CNF data contains a double bit error which is
uncorrectable. Otherwise the data contains a correctable single
bit error. If test 3 passes then CNF<l:O> contains valid data,
otherwise the duplicate copy located in CNF<3:2> should be used.

2.2.7 XMI PARITY ERROR L

The signal XMI PARITY ERROR L is used to signal to a commander
that a parity error has occurred. The signal obeys the same
timing as XMI CONFIRMATION<4:0>L.

2.2.8 XMI RESET

The signal XMI RESET is used by the system to clear all XMI nodes
and to initiate self test, as defined in the BI SRM. It provides
a system wide mechanism for initiating an XMI power-up and
initialization sequence.

- 18 -

FUNCTIONALITY
PINS AND FIELD DEFINITION 07 Jun 85

2.2.9 XMI AC LOW

The AC LOW signal indicates that AC power is below the level
specified for correct operation of the power supply, as defined
in the BI SRM. XMI AC LOW comes onto the backplane from the
power system.

2.2.10 XMI DC LOW

The DC LOW signal indicates that the system DC power is out of
spec and acts as a reset to system devices. It also exhibits
additional funtionality as defined in the BI SRM. XMI DC LOW
comes onto the backplane from the power system.

2.2.11 XMI BAD

The XMI BAD line is identical to the BI BAD signal and, in fact,
may be electrically connected to the BI BAD line of the I/0
subsystem.

2.2.12 XMI CLOCKS

There are two basic clocks used for system timing on the XMI.
The asserted states of the two clocks, called Phasel and Phase2,
do not overlap in time. Phasel is essentially used to transmit
data on the XMI and Phase2 is used to receive data.

2.2.13 XMI NODE ID<3:0>

Each slot on the XMI backplane will be wired with a unique 4 bit
ID code. This code will be used by each node to define their
Commander IDs and CSR addresses. XMI NODE ID<3:0> corresponds to
bits XMI ID<4:1> of a node's Commander IDs.

2.3 XMI CYCLE FORMAT

- 19 -

FUNCTIONALITY
XMI CYCLE FORMAT 07 Jun 85

2.3.1 No-Op Cycle

A function code of 000, the bus default value, indicates an
unused XMI cycle and should be ignored by all XMI Responders.
During this cycle the values of DATA<63:00> and XMI ID<4:0> are
unspecified. However, the value of XMI PARITY should be
consistent with the values of DATA and ID to to avoid unnecessary
logging of bus errors. The default value of XMI PARITY will
produce correct parity when DATA and ID are not driven.

2.3.2 Command Cycle Format

A function code of 001 identifies an XMI Command cycle. The XMI
Command cycle is used by a Commander to initiate a XMI
transaction. During this cycle the Commander drives its Command
ID on XMI ID<4:0> and drives command information on DATA<63:00>.
Below is a definition of the various field in DATA<63:00> during
the command cycle.

6
3

6
0

4
7

3 3 3 2
2 1 0 9 0

+-----+---------+---------------+---+---------------------------+
I CMD I MASK ILENI ADDRESS
+-----+---------+---------------+---+---------------------------+

2.3.2.1 Command Field - The command field, located in
DATA<63:60>, defines the specific transaction being initiated by
the Command cycle.

- 20 -

FUNCTIONALITY
XMI CYCLE FORMAT ,

The XMI command field
decoding as follows:

DATA<63:60>

63 62 61 60

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

2.3.2.2 Mask Field -

is

07 Jun 85

patterned after the BI I<3:0> field with similar

Command

Reserved
Read
Interlock Read
Reserved
Reserved
Tag Bad Data
Unlock Write
Write Masked
Interrupt
Ident
Reserved
Reserved
Reserved
Reserved
Reserved
IP Intr

- 21 -

,
FUNCTIONALITY
XMI CYCLE FORMAT 07 Jun 85

The mask field is located in DATA<47:32> during the Command
cycle. It is used to supply write mask information for write
transactions and to specify destination mask for INTR and IPINTR
interrupt transactions. The correspondence between bits in the
mask and bytes of the data quadword during a write transaction is
shown below:

DATA<47:32>

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ Mask
I 15 I 14 I 13 I 12 I 11 I 10 I 9 I 8 I 7 I 6 I 5 I 4 I 3 I 2 I 1 I o I Field
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

v v v v v v v v

v v v v v v v

I
I
I
I
v

+---+---+---+---+---+---+---+---+ First
lb7 lb6 lb5 lb4 lb3 lb2 lbl lbO I QW
+---+---+---+---+---+---+---+---+
63 0

+---+---+---+---+---+---+---+---+
lb7 lb6 lb5 lb4 lb3 lb2 lbl lbO I Second QW (if Octaword transaction)
+---+---+---+---+---+---+---+---+
63 0

The maximum masked write transaction is an octaword, which
requires 16 mask bits in the upper longword of the command. Mask
bits which are ones specify that the corresponding bytes of the
following quadwords are to be replaced with the analogous byte of
the data. Mask bits which are zero disable modification of the
corresponding bytes in memory.

The relationship between bits in the mask and the destination of
an interrupt transaction is shown below:

- 22 -

FUNCTIONALITY
XMI CYCLE FORMAT

DATA<47:32>

4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3
7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Mask
Field I I I I I I I I I I

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

I I I
Node 15 --' I I

Node 14 --' I
Node 13 -- ' I

Node 12 --' I
Node 11 --' I

Node 10 --' I
Node 9 ' I

Node 8 --'

I I I
I I ' -- Node 0
I ' -- Node 1
' __ Node 2

-- Node 3
-- Node 4

I -- Node 5
' __ Node 6

-- Node 7

07 Jun 85

2.3.2.3 Length Field - The length field, located in DATA<31:30>,
is used to define the number of words in the XMI data transfer.
It is patterned after the BI Size field, except for hexaword
which was not supported by the BI. The length field is decoded
as follows:

DATA<31:30>

31

0
0
1
1

30

0
1
0
1

Size

Hexaword (BI unused code)
Longword
Quadword
Octaword

2.3.2.4 Address Field - The lower 30 bits of the command cycle,
DATA<29:00>, define the address of an XMI read or write
transaction. The number of significant bits in the address
depends on the transaction type and length, as shown below.

- 23 -

FUNCTIONALITY
XMI CYCLE FORMAT

2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4

+-+

+-+

Read Longword

Read Quadword

Read Octaword

Read Hexaword

Write Longword

Write Quadword

Write Octaword

3 2 1 0
+-+-+-+-+
lslslslsl
+-+-+-+-+
lsldldldl
+-+-+-+-+
lsldldldl
+-+-+-+-+
lsldldldl
+-+-+-+-+
lslslslsl
+-+-+-+-+

lsldldldl
+-+-+-+-+

ldldldldl
+-+-+-+-+

s significant
d don't care

07 Jun 85

From the above figures, it can be seen that the lower four bits
are significant address bits or don't care, depending on the
function being requested. For longword length transactions,
A<l:O> are only significant when dealing with a word-mode and
byte-mode transaction in I/0 space. A<l> is required for word
mode and A<l:O> is required for byte mode. Octaword write
transfers are assumed to be naturally aligned, allowing the lower
bits of the address to be don't care status. In the case of
reads, however, the situation is different because the memory
does wraparound reads. Even though the operand size would
indicate that some number of lower bits can be don't care, they
are significant since all wrapped reads need to identify the
quadword to be transferred first. This is reflected in the table
above. On longword reads to I/0 space, address bit<l> is listed
as significant. This is due to the fact that there is no
explicit READ WORD function on the XMI. When a read is directed
toward a word oriented device (a BUA on the BI for instance) A<l>
becomes significant in that it specifies which word is to be read
from that device. The relationship between the high and low
words, the state of A<l> and the data bits is:

A<l> = 1 => high word => Data<31:16>
A<l> = 0 => low word => Data<l5:00>

- 24 -

FUNCTIONALITY
XMI CYCLE FORMAT 07 Jun 85

The data returned on the opposite word of the one specified will
still have correct parity, however its data is unspecified.

In the case of a longword oriented device A<l> is ignored as an
address bit, and a full longword of data is returned for a read
operation.

2.3.3 Write Data Cycle

A function code of 010 identifies an XMI Write Data Cycle. Write
Data Cycles follow the XMI Command cycle during an XMI write
transfer. During this cycle the Commander drives its Command ID
on XMI ID<4:0> and drives write data on DATA<63:00>. The full 64
bits of data are used during quadword and octaword length writes.
For longword length writes, only the lower longword, DATA<31:00>,
is used. In this case the value of the upper longword is
unspecified. In either case the full 64 bits of data are used
when checking XMI PARITY.

2.3.4 Good Data And Corrected Read Data Response Cycles

A function code of 100 - 111 are used to identify return data in
response to a READ, INTERLOCK READ or IDENT transaction. Codes
100 and 101 indicates that a read completes without error. Codes
110 and 111 indicates that a read operation encountered an error
which was successfully corrected using ECC. The read data
response code contains a sequence ID used to identify when a read
data cycle has been lost due to an XMI parity error. Function
codes 100 and 110 are used to return even data cycles (cycles 0
and 2), while codes 101 and 111 are used to return odd data
cycles (cycles 1 and 3).

During a read data response cycle, the Responder drives the
Commander's ID on XMI ID<4:0> and read data on DATA<63:00>. The
full 64 bits of data are used during quadword and octaword length
reads. For longword length reads, only the lower longword,
DATA<31:00>, is used. In this case the value of the upper
longword is unspecified. In either case the full 64 bits of data
are used when checking XMI PARITY.

- 25 -

FUNCTIONALITY
XMI CYCLE FORMAT

2.3~5 Non-Data Response Cycle

07 Jun 85

A function code of 011 defines a Non-Data Response Cycle. This
transfer is used to signal the unsuccessful completion of a read
transaction, as well as the completion status of an I/0 Space
write transaction whose command cycle received a "deferred"
confirmation. During this cycle the Responder drives the
Commander's ID on XMI ID<4:0> and the response code on XMI
DATA<63:62>. The value of the remaining data bits, DATA<61:00>,
are unspecified; however, they must contain a value consistent
with XMI PARITY. The Non-Data Response Code is decoded as
follows:

DATA<63:62>
63 62

0
0
1
1

0
1
0
1

Non-Data Response

Successful
Locked
Bad Data
Bad Data

Tagged
Uncorrectable Memory Error

Successful -- The "Successful" response is used to indicate
that a transaction whose command cycle was confirmed as
"deferred" has completed successfully.

Locked -- The "Locked" response is used to indicate that the
location specified in an interlock read transaction is
already locked.

Bad Data, Tagged -- This response is used to
the location specified in a read or
transaction was marked bad by a previous
transaction.

indicate
interlock
Tag Bad

that
read
Data

Bad Data, Uncorrectable Memory Error -- This response is used
to indicate that the location specified in a read or
interlock read transaction contained a multiple bit error
that could not be corrected.

2.4 TRANSACTION TYPES

The XMI supports the following basic types of data transactions:

- 26 -

FUNCTIONALITY
TRANSACTION TYPES 07 Jun 85

2.4.1 Longword, Quadword,
Transactions

Octaword And Hexaword Read

These transactions are used to move a longword, quadword,
octaword, or hexaword of data from the responder to the
commander. The data is naturally aligned and wrapped. A read
transaction is initiated by the commander driving the XMI address
and function lines to represent a Read Long, Read Quadword, Read
Octaword, or Read Hexaword. The read command cycle is decoded by
the interfaces in the system, and the one which recognizes its
address latches that address and command. This device is the
responder. Some time later, when the responder has the requested
data, it initiates a return data transfer. Multiple transfers
may be necessary to transfer all of the quadwords in a given
octaword or hexaword transaction. The commander, which has been
monitoring the bus traffic waiting for its return data, latches
the information. The commander issues its own ID in the ID field
during the command cycle. The responder returns this same ID
with the return read data and this is the way the commander
recognizes the return read data it requested.

Read Command

6 6
3 0

I CMD I

4
7

I MASK

3 3 3 2
2 1 0 9

ILENI ADDRESS
0

I
+------+------~--+---------------+---+---------------------------+

I 0001 I Unused Read Address
+------+---------+---------------+-+-+---------------------------+

00 Hexaword
01 = Longword
10 Quadword
11 Octaword

2.4.2 Longword, Quadword, Octaword And Hexaword Interlock Read
Transactions

These interactions work just like the non interlocked versions
described above but there is a bit more functionality. The exact
effect of an interlocked transaction depends on the state of the
interlock bit in the memory. If the memory is already locked, it
responds to this read request with a "locked" non-data response
and no data is returned. This signifies to the commander that
the shared memory structure is not available; if, however, the
memory is not locked, receipt of this request locks the memory to
further interlocked read requests and provides the data contained

- 27 -

FUNCTIONALITY
TRANSACTION TYPES 07 Jun 85

in the addressed location(s) to the commander. The corresponding
transaction 'Unlock Write' is required to undo the memory lock.
See below. The interlocked read transaction is used to gain
access to a shared object in memory.

Interlock Read Command

6 6
3 0

I CMD I

4
7

I MASK

3 3 3 2
2 1 0 9

ILENI ADDRESS
0

I
+------+---------+---------------+---+---------------------------+
I 0010 I Unused Read Address
+------+---------+---------------+-+-+---------------------------+

00
01 =
10
11

Hexaword
Longword
Quadword
Octaword

2.4.3 Longword, Quadword And Octaword Write Masked Transactions

These transactions are used to move a pattern of bytes that fits
in a longword, quadword, or octaword from the commander to the
responder. The longword, quadword, or octaword block is
naturally aligned. The commander gains the XMI and sends a
command cycle specifying a Write Long Masked, Write Quadword
Masked or a Write Octaword Masked, a byte mask, and the desired
address. It follows this with one or two cycles of write data.
All interfaces on the XMI decode the address and the one that
recognizes the address becomes the responder. The responder
accepts the command, address and data and performs the requested
write. The mask field that accompanies each command and address
is completely unrestricted. Each bit in the 16 bit mask field
corresponds to a byte of data in the associated one or two
quadwords. If the bit is 0 that byte is not written; if the bit
is 1 that byte is written. The price that is paid for this
flexibility is that the memory (if memory is the responder) must
perform a read/modify write for a partially masked quadword,
whereas it can perform a full write if all the mask bits are
asserted for a given quadword.

- 28 -

FUNCTIONALITY
TRANSACTION TYPES 07 Jun 85

Write Masked Command

6 6
3 0

I CMD I

4
7

I MASK

3 3 3 2
2 1 0 9

ILENI ADDRESS
0

I
+------+---------+---------------+---+---------------------------+
I 0111 I Write Mask Write Address
+------+---------+---------------+-+-+---------------------------+

01 = Longword
10 = Quadword
11 = Octaword

2.4.4 Longword, Quadword And Octaword Unlock Write
Transactions

Masked

The Unlock Write transaction is the complement to the Interlock
Read. When a node successfully gains the lock in the memory, and
performs the required access to the shared structure, it must
then relinquish the lock when it is finished. It accomplishes
this by performing a Write Unlock to the memory with whatever
data is appropriate. The memory, which has been monitoring the
bus traffic, notices that the transaction requested is a Write
Unlock. This condition allows it to unlock the memory and to
write the data as requested. All unlock writes are masked.

Unlock Write Masked Command

6 6
3 0

I CMD I

4
7

I MASK

3 3 3 2
2 1 0 9

ILENI ADDRESS
0

I
+------+---------+---------------+---+---------------------------+
I 0110 I Write Mask Write Address
+------+---------+---------------+-+-+---------------------------+

- 29 -

01 Longword
10 Quadword
11 Octaword

FUNCTIONALITY
TRANSACTION TYPES 07 Jun 85

2.4.5 Invalidate Transactions

A commander can perform an invalidate transaction by issuing a
Write Quadword Masked or Write Octaword Masked command with the
mask field equal to all zeros. The commander gains the XMI and
sends a command cycle specifying a Write Quadword Masked or Write
Octaword Masked, a byte mask of all zeros, and the invalidate
address. It follows this with one dead cycle, in place of write
data, to maintain a minimum transaction time. Each invalidate
responder accepts the command and address and performs the
requested address comparison. The invalidate block size (QW, OW)
is specified in the A<31:30> length field.

Confirmation of an invalidate command is provided by the memory
whose address space contains the invalidate address. This is
consistant with memory acknowledgement of normal masked writes,
even though an invalidate will otherwise be ignored by a memory
node.

Invalidate Command

6 6
3 0

I CMD I

4
7

I MASK

3 3 3 2
2 1 0 9

ILENI ADDRESS
0

I
+------+---------+---------------+---+---------------------------+
I 0111 I !Must be all O'sl Invalidate Address
+------+---------+---------------+-+-+---------------------------+

10 = Quadword
11 = Octaword

2.4.6 Quadword And Octaword Tag Bad Data Transactions

The Tag Bad Data transactions are used to mark locations in
memory as containing incorrect data. Subsequent reads to a
location marked bad should return the Bad Data - Tagged non-data
response in place of read data. A write transaction with all
mask bits asserted can be directed to the marked location to
clear the bad data status. The Tag Bad Data consists of a single
cycle command transfer.

- 30 -

FUNCTIONALITY
TRANSACTION TYPES 07 Jun 85

Tag Bad Data Command

6 6
3 0

I CMD I

4
7

I MASK

3 3 3 2
2 1 0 9

ILENI ADDRESS
0

I
+------+---------+---------------+---+---------------------------+
I 0101 I Unused Tag Address
+------+---------+---------------+-+-+---------------------------+

2.4.7 INTR And !DENT Transactions

10 = Quadword
11 Octaword

The XMI will have an INTR and !DENT command, much the same as the
BI. Any of the four (max) I/0 devices can send out an INTR to
one or more CPU nodes, as designated by a destination mask. Each
CPU XMI interface will have a set of 16 interrupt pending flops,
4 wide for BR<7:4 and 4 deep for each of the 4 I/0 devices. A
composite interrupt will issued to the CPU at each BR level.

CPU #1 Intr7 Intr6 Intr5 Intr4

I I I I
.--------------1-----1-----1-----+

.-----1--------------1-----1-----+ I
.-----1-----1--------------1-----+ I I

.-----1-----1-----1--------------+ I I I
I I I I I I I I

+-----+-----+-----+-----+ +-----+-----+-----+-----+
I/0 1 1Intr71Intr61Intr51Intr41 I/0 2 1Intr71Intr61Intr51Intr41 etc.

+-----+-----+-----+-----+ +-----+-----+-----+-----+

I I I I I
+-----1-----1-----1--------------' I
I +-----1-----1--------------------' I
I I +-----!--------------------------'
I I I +--------------------------------'
I I I
I I I

XMI Intr7 Intr6 Intr5 Intr4

One of the processors will eventually issue an IDENT at a
selected level <7:4> and its XMI interface will choose one
interrupting node to send it to. The same XMI interface will
then clear that I/0 interrupt pending flop to the CPU, but others

- 31 -

FUNCTIONALITY
TRANSACTION TYPES 07 Jun 85

(if any) will remain in parallel to maintain the CPU interrupt
request. An interrupt vector will eventually be sent to the CPU,
which will perform the necessary service routine and then send
out another IDENT, etc.

Interrupting nodes do not have to reissue their interrupts after
one node/level is serviced. Each CPU bus interface will monitor
the XMI for IDENTs issued by another. An IDENT issued by one CPU
node to an interrupting device will cause the other interrupted
nodes to clear their corresponding interrupt pending flop to the
CPU, if it had been previously set. An interrupting node is not
be allowed to send more than one interrupt at the same level to
one or more CPUs.

It is possible that more than one CPU will issue an IDENT to its
XMI interface for the same interrupt. The first CPU node to win
the XMI will process the interrupt and the bus interfaces at the
other processor nodes will clear their corresponding interrupt
pending flops. However, the processors of the losing nodes will
still have an IDENT outstanding which has to be resolved. This
will be handled in the same manner as a passive release, in which
the interrupting device never responds with a vector.

INTR Command

6 6
3 0

I CMD I

4
7

I MASK

3 3 3 2
2 1 0 9

I I

1 l
9 6

I IPL I
0

I
+------+---------+---------------+---+-------+----+--------------+
I 1000 I Dest Mask Unused Unused
+------+---------+---------------+---+-------++++++--------------+

IDENT Command

6 6
3 0

I CMD I

4
7

I MASK

3 3 3 2
2 1 0 9

I I

I I I I
I I I , --
I I, ---
I , ----

1 1
9 6

I IPL I

IPL
IPL
IPL
IPL

14 (BR4)
15 (BR5)
16 (BR6)
17 (BR7)

0
I

+------+---------+---------------+---+-------+----+--------------+
I 1001 I Dest Mask Unused Unused
+------+---------+---------------+---+-------++++++--------------+

I I I I
I I I , -- IPL 14 (BR4)
I I, --- IPL 15 (BR5)
I , --- - IPL 16 (BR6)
----- IPL 17 (BR7)

- 32 -

FUNCTIONALITY
TRANSACTION TYPES 07 Jun 85

IDENT Response (Good Data Read Response -- Function Code = 100)

6
3

3 3
2 1

1
3 2 0

+--------------------------------+-----------------+----------+--+
Unused Unused Vector IOOI

+--------------------------------+-----------------+----------+--+

2.4.8 IPINTR Transactions

Interprocessor Interrupt is a single cycle transfer used for
interprocessor communications. The IP INTR transaction contains
a 16-bit destination field (1 bit per node) indicating which
nodes are to be interrupted. Each processor node maintains a set
of 16 IP INTR pending flops, one per node, readable by software.
Processors targetted by an IP INTR transaction are interrupted at
IPL 14 (BR4) with an interrupt vector of 80H, as specified by the
VAX SRM, and additionally set the IP INTR pending bit
corresponding to the commander of the IP INTR transaction. The
pending bit may be cleared by a subsequent write to the IP INTR
pending register by software.

IPINTR Command

6 6
3 0

I CMD I

4
7

I MASK

3 3 3 2
2 1 0 9

I I
0

I
+------+---------+---------------+---+---------------------------+
I 1111 I Dest Mask Unused
+------+---------+---------------+---+---------------------------+

2.4.9 Timing Diagrams

The following sections will show the different types of bus
transactions on a cycle by cycle basis.

- 33 -

FUNCTIONALITY
TRANSACTION TYPES

2.4.10 Single Quadword Reads

07 Jun 85

Included in this category of transactions are four types, 1) Read
Longword, 2) Read Longword Interlocked, 3) Read Quadword, and 4)
Read Quadword Interlocked. These reads consist of a command
transfer followed by a return data transfer as shown below:

0 1 2 3 4 5 6 7

Funct lcmd I I lgrdOI I
Data I read I I I data I I
ID lcmdrl I lcmdrl I
Conf I I lack I I lack
Arb lo I I I hi I I I

The two transfers are the command (funct = 'cmd') and the read
data response (funct = 'grdO'). The commander arbitrates for the
bus in cycle 0, and wins. In cycle 1 it drives the function,
command, address of the read, and its own ID (for use later to
identify the returning data). In cycle 3, the responder confirms
receipt of the information.

Sometime later (call it Cycle 4) the return data transfer begins
with the responder arbitrating for the bus. Having won it, in
cycle 5 it drives the function, the data, and and the commander's
ID. The status of the returning data is specified in the read
response function code, either 'good read data' or 'corrected
read data'. The commander, having been monitoring the bus for
its returning data, sees the ID match, and the fact that the
transfer contains returning data and latches the information.

If the particular transaction requested had been an interlocked
read and if the memory was interlocked, it would have provided a
"locked" non-data response in place of the returned data. No
further action on the request by the memory would take place.

0 1 2 3 4 5 6 7

Funct lcmd I I lndr I I
Data I read I I I lock I I

ID lcmdrl I lcmdrl I

Conf I I lack I I lack
Arb lo I I I hi I I I

- 34 -

•

FUNCTIONALITY
TRANSACTION TYPES

2.4.11 Multiple Quadword Reads

07 Jun 85

The transactions included in this category are: 1) Read
Octaword, 2) Read Octaword Interlocked 3) Read Hexaword, and 4)
Read Hexaword Interlocked. These read transactions move multiple
quadwords of data from the responder to the commander. The
lengths of the data are 16, 16, 32, and 32 bytes respectively.
Shown below is the command transfer of the transaction. As in
the case of the single quadword transactions above, the
interlocked read would merely involve checking the state of the
interlocked bit in the memory an~ qualifying the request based on
its state.

0 1 2 3

Fun ct icmd I I
Data I read I I
ID lcmdrl I
Conf I I lack
Arb lo I I I

The transfer diagrammed above is the command cycle for either of
the multiple quadword reads - octaword or hexaword. Below is a
diagram of the return data transfer applicable to octaword reads.
Bus usage during hexaword reads is shown later. The case shown
is a set of read response cycles for an octaword read.

0 1 2 3 4 5 6

Funct lgrdOI I lgrdll I
Data ldatOI I ldatll I
ID lcmdrl I lcmdrl I
Conf I I lack I I lack
Arb hi I I I hi I I I

The transfer above moves four longwords of data. The function
field of the bus in cycle 1 says 'good read data O' with the ID
field identifying the intended receiver (the transaction
commander). Cycle 4 is identified as a 'good read data l' cycle.
Each cycle provides a new quadword of read data, the ID remains
unchanged. Read data may be returned in continuous cycles, if
desired, through the use of HOLD (see example below). The
transmitter asserts HOLD in the first cycle to insure that it
maintains use of the bus long enough to complete the transfer.
HOLD is considered to be the highest priority arbitration line,
and thus guarantees use. Interfaces are constrained to a maximum
number of consecutive cycles in which they can assert HOLD. The
confirmation is returned to the commander, as always, two cycles
after the command cycle.

- 35 -

•

•

FUNCTIONALITY
TRANSACTION TYPES

0

Funct
Data
ID
Conf
Arb hi

07 Jun 85

1 2 3 4

lgrdOlgrdll I
ldatOldatll I
lcmdrlcmdrl I
I I lack lack
I hold I I I

The following sequence illustrates the series of events during a
return data of hexaword length.

0 1 2 3 4 5 6 7

Funct lgrdOlgrdllgrdOI lgrdll I
Data ldatOldatlldat21 ldat31 I
ID lcmdrlcmdrlcrndrl lcmdrl I
Conf I I lack lack lack I lack
Arb hi lholdlholdl I hi I I I

2.4.12 Masked Longword And Quadword Writes

There are four types of writes that can occur. These are 1)
Longword Write Masked, 2) Longword Unlock Write Masked, 3)
Quadword Write Masked, and 4) Quadword Unlock Write Unlock
Masked. These transactions move some number of bytes as
specified by the mask field. All combinations of the eight mask
bits are valid as far as the protocol is concerned, however, not
all combinations are implemented by all nodes. See the spec for
the particular node in question for further details.

0 1 2 3 4

Funct lcmd lwdatl I
Data lwrtmldatal I
ID lcmdrl I I

• Conf I I lack lack
Arb lo I hold I I I

The commander arbitrates as usual and upon winning the bus,
drives the appropriate write command, the intended address, the
data mask, and its own ID and asserts HOLD to signal that it will
need the next cycle also. In cycle two, it identifies the cycle
as a 'write data' type and provides the write data, but no ID
field (it identified itself in the command cycle). Cycles 3 and
4 show the confirmation from the responder.

- 36 -

•

•

FUNCTIONALITY
TRANSACTION TYPES

2.4.13 Masked Octaword Writes

07 Jun 85

There are two other types of writes that can occur in addition to
the ones already considered. These are 1) Octaword Write Masked,
and 2) Octaword Unlock Write Masked. In much the same way as the
several multiple quadword reads, the multiple quadword writes
differ in the length of the data moved, with all else remaining
the same. An additional consideration in the case of multiple
writes is that they can be masked, whereas, the multiple quadword
reads cannot. An octaword write is shown below.

0 1 2 3

Fun ct lcmd lwdatlwdatl I
Data lwrtmldatOldatll I
ID lcmdrl I I I
Conf I I lack lack lack
Arb lo lholdlholdl I I

The multiple quadword writes like their read counterparts
identify the first cycle of the transfer as a read or write with
the length desired; successive cycles are identified as write
data cycles. After providing the command information, successive
cycles provide new data. HOLD remains asserted, maintaining use
of the bus for the commander.

2.4.14 Timeout

The XMI protocol specifies two basic types of timeouts. The
first concerns time limits on the length of a transaction, from
initial attempts to issue the command to completion of the
transaction. This time constraint will identify problems which
fall into one of three general classes; 1) no return read data,
i.e. you asked for it and you never got it, 2) no access to the
bus (can never win an arb cycle), and 3) no access to a device
(receiver busy or no response).

Another form of timeout mechanism will be used in the case of the
memory subsystem during interlocked transactions. The CPU may
issue a read lock command to a memory which is already locked.
In this case, the memory will return an ACK confirmation to
verify that the command was received, and will then place the
read lock in its command queue. If the memory is still locked
when the command is processed, the memory will return a LOCKED
"non-data" response to the CPU. It is the responsibility of the
CPU at that point to monitor the XMI for a subsequent unlock
write before retrying the read lock. An alternative to this is
for the CPU to implement some form of backoff algorithm before
retrying the read lock. In either case, a timeout counter will

- 37 -

FUNCTIONALITY
TRANSACTION TYPES

be required to resolve a lockup condition.

2.4.15 Timeout Mechanism

Bus
Cycles

+-------+-------+-------+

Increment timeout counter

07 Jun 85

Timeout

Start timeout counter (This is an arbitrary placement)

Once a timeout occurs, the timed out operation should be halted,
since it was not able to complete in the timeout period. This
will allow servicing of the resulting interrupt in most cases.

2.5 XMI ERROR HANDLING

The XMI bus protocol has been designed to support recovery from
all single bit errors involving transactions directed to memory
space. On every XMI cycle, all receivers check parity; any
receiver detecting a parity error will assert XMI BAD PARITY,
suppress ACK CNF and ignore the cycle. Memory responders will
abort a write or unlock write transaction if valid write data
cycles do not occur during the timeslots indicated by the
transaction length. In the case of interlock read, the memory
responder will permanently set the lock bit only when the
commander confirms (with ACK) all data cycles in the interlock
read transaction.

• 2.5.1 Error Recovery

Error recovery is the responsibility of the commander; the table
below shows the error recovery procedure as a function of XMI
command, cycle and error indication. In many cases the XMI error
recovery procedure involves re-issuing the failing transaction.
Should the transaction fail again on the second attempt, the
commander logs a hard error. Error recovery for certain write
transactions results in the generation of a invalidate
transaction (write mask transaction with all mask bits

- 38 -

FUNCTIONALITY
XMI ERROR HANDLING 07 Jun 85

deasserted) following the write transaction; this is used to
guarantee that all caches remain coherent when one detects a
parity error during a write command cycle. Since I/0 space
references may have side effects, the table below does not cover
I/0 space error recovery. Also, since a 'deferred' confirmation
is only used in I/0 space, it is not included in the table.

Command Cycle

No XMI Bad Parity:

ACK

NACK

BUSY

XMI Bad Parity:

ACK

NACK

BUSY

Data Cycle .. - - - - - - - - - - - -

ACK

NACK

Read Sequence

Timeout

XMI Error Recovery

R
e
a
d

OK

NXM Error

Re-issue

OK

Re-issue

Re-issue

w
r
1

t
e

OK

NXM Error

Re-issue

issue Inval
after write

Re-issue

Re-issue

(not app) OK

Re-issue

Re-issue

Re-Issue Re-Issue

- 39 -

I
n
1
k

R
e
a
d

OK

NXM Error

Re-issue

OK

Re-issue

Re-issue

Re-issue

Re-Issue

u
n
1
k

w
r
1

t
e

OK

NXM Error

Re-issue

issue Inval
after unlkwt

Re-issue

Re-issue

OK

Re-issue

Re-Issue

FUNCTIONALITY
XMI ERROR HANDLING 07 Jun 85

I
p

I
I d I
n e n
t n t
r t r

Command Cycle

No XMI Bad Parity:

ACK OK OK OK

NACK Error Passive Error

BUSY Re-issue Re-issue Re-issue

XMI Bad Parity:

ACK OK OK (a) Re-issue(b)

NACK Re-issue Re-issue Re-issue

BUSY Re-issue Re-issue Re-issue

Data Cycle

ACK

NACK Error (c)

Sequence

Timeout Error (c)

.Notes: (a)
(b)
(c)

May result in passive release (NXM) in certain situations.
May result in extra IP INTR in certain situations.
Even if re-issued, interrupting condition is probably lost.

2.6 ADDRESSING

The XMI supports a 1 gigabyte (2**30 byte) address space. As in
the 780, this address space is divided into two equal areas. In
the low (lower numbered addresses) half resides physical memory;
the high half contains the machine's I/0 space.

- 40 -

•

FUNCTIONALITY
ADDRESSING 07 Jun 85

The following description concerns only the addressing
methodology used on the XMI and the XBI/BI. Neither the UNIBUS
nor the QBUS will be supported on the XMI. Addresses are in hex
unless otherwise noted.

2.6.1 XMI Addressing

The figure below illustrates the division of the address space:

Byte Address
============

0000 0000

lFFF FFFF
2000 0000

3FFF FFFF

+------------------------------+

512 Megabyte Physical
Memory Space

+------------------------------+
+------------------------------+

512 Megabyte I/0 Space

+------------------------------+

The division of the CVAX/Rigel address space in the I/0 region is
further defined to accommodate XMI nodes' and BI nodes' needs for
address space. Shown below is a diagram of the hierarchy of
busses supported in CVAX/Rigel systems.

.
ICPUI IMEMI ICPUI
-+-' -+-' -+-'

<-----+-----+-----+-----+-----+------>
XMI

• -+-. .-+- •
I XBI I IXBI I
'-+-' ' I -+-

I BI I BI
<---+---> <---+--->

As previously mentioned, the upper two bits of an XMI address are
used to define transfer size. A/D<29> selects between the memory
and I/0 spaces. A/D<29> = 0 selects physical memory space, and
A/D<29> = 1 selects I/O. Addresses in memory space merely
reference a particular location within the memory subsystem
(assuming that the location exists). References to locations in
the physical memory space which do not exist in the current

- 41 -

FUNCTIONALITY
ADDRESSING 07 Jun 85

"

configuration will receive the 'no response' confirmation.
Further decoding of the address in this case is done in a manner
which is transparent to the programmer.
Within I/0 space addresses locations are allocated as follows:

Byte Address
============

2000 0000 +------------------------------+
XMI Node Space 16 x 8Kbytes

2002 0000 +------------------------------+
XMI Private Space 1.8 Mbytes

2010 0000 +------------------------------+
Reserved

2400 0000 +------------------------------+
XBIO Window Space 32 Mbytes

2600 0000 +------------------------------+
XBil Window Space 32 Mbytes

2800 0000 +------------------------------+
XBI2 Window Space 32 Mbytes

2AOO 0000 +------------------------------+
XBI3 Window Space 32 Mbytes

2COO 0000 +------------------------------+

Reserved

3FFF FFFF +------------------------------+

2.6.1.1 XMI Node Space - XMI Node Space is a collection of 16
8Kbyte regions located from 2000 0000 - 2001 FFFF. Each XMI node
is allocated an BK byte region for node control/status registers.
The starting address of the BK region associated with a given
node is computed as 2000 0000 + NodeID * 2000.

Byte Address
============

2000 0000 +------------------------------+
XMI Node 0 CSRs

2000 2000 +------------------------------+
XMI Node 1 CSRs

2000 4000 +------------------------------+
I I

2001 EOOO +------------------------------+
XMI Node 15 CSRs

2002 0000 +------------------------------+

- 42 -

FUNCTIONALITY
ADDRESSING 07 Jun 85

•

•

2.6.1.1.1 Error Register - XMI nodes will be expected to
implement an error register which will be used to store the type
of error detected so that it can be read by software. Included
in the error register will be identification of the node device
type and revision level. Format of the XMI error register is as
follows:

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

+-+
lxl lxlxlxlxlxlxl Rev level Device Type

+-+

I
I
I
I
I
I
I
I
I
I I , ______ _

Stop (Unjam)
Node Specific Reset

Corrected CNF
Error Recovery Performed

Sequence Error
Responder Busy Timeout
Transaction Timeout
Node detected Bad Parity
Bad Parity reported during Command

Stop -- Stop corresponds the BI STOP function. When the Stop bit
is set by writing a 1 to this location, it causes the receiving node
to halt its internal sequencers and return to an unjammed state.

Node Specific Reset -- When written to a 1, causes the receiving node
to reset all internal states.

Corrected CNF -- A single bit error was corrected in the CNF code.

Error Recovery Performed -- System was able to recover from transient
error .

Sequence Error -- Missing quadword(s) in returned read data.

Responder Busy Timeout Responder unable to accept command cycle .

Transaction Timeout -- Responder does not complete transaction.

Node detected Bad Parity -- Parity error observed locally by XMI node.

Bad Parity reported during Command -- Commander detects parity error
during command cycle.

- 43 -

FUNCTIONALITY
ADDRESSING 07 Jun 85

~ 2.6.1.2 XMI Private Space - XMI Private Space is a 1.8 MByte
• address region containing the reset address as required by the

uVAX architectural subset. References to XMI private space will
be serviced by resources local to a node, such as local device
CSRs and boot ROM, and will not be broadcast on the XMI.

•

•

2.6.1.3 XBI Window Space - XBI Window Space consists of four 32
MByte address regions used for XMI to BI transaction windowing.
Longword length references directed to an XBI Window Space will
be re-issued on the appropriate BI. XMI transactions are
translated into the corresponding BI transaction. The BI address
for the transaction is computed as 2000 0000 + Offset, where
Offset is the difference between the XMI Address and the start of
the appropriate XBI Window Space.

2~7 DC LOW AND RESET

DC LOW and RESET function together in exactly the same manner as
defined in the BI SRM. Basically, DC LOW indicates that the
system DC power is out of spec or that an XMI reset operation has
been initiated. DC LOW can be used in combination with XMI RESET
to clear all XMI nodes and to initiate self test. It provides a
system wide mechanism for initiating an XMI power-up and
initialization sequence.

On the trailing edge of DC LOW (deassertion), each node will
observe the status of the RESET line. If RESET is not asserted,
then DC LOW is being used to clear the control logic of each
node, if so allowed. For example, memory would reset all control
logic, but the data in each memory location would be preserved.
If RESET is asserted, then a power-up condition is recognized and
each node will perform its own initialization and self test
sequence .

- 44 -

•

•

•

CHAPTER 3

ELECTRICAL DESCRIPTION

The electrical environment of the backplane is as much a part of the
XMI as the protocol and hardware. This chapter will define the
electrical parameters of the backplane, its physical and transmission
characteristics as well as giving information about XMI drivers and
receivers .

- 45 -

'

•

CHAPTER 4

ISSUES TO BE RESOLVED

1. How do we handle wrapped hexaword reads?

2. Do we need TAG BAD DATA to resolve undetected write errors?

3. Do we need to implement longword writes to memory space?

4. Should we extend the IPINTR and INTR mechanism to support 2 CPUs
per node?

5. Should the XMI support greater than 2**30 address space?

6. How do we handle arbiter failures?

7. Should we provide ECC on DATA<63:00>?

8. Is deferred response needed?

9. How many parity bits are needed?

10. Does lack of "don't cache me" preclude some important PMI
configurations?

- 46 -

