
!)1.

.
i "á

} '
S'tf

ELEMENTS OF DeltaBASIC SYSTEMS SUPPORTED* 1,:· g'

Visual screen attributes, function keys, arrow keys,
i ,,.'i

and diskette formats for the following are supported }] 'H

COMMANDS
by DeltaBASIC. !Í.,,,,.

Com,ute,s,
d "\,. 0

sr OAUTO LIST Kaypro 'y' ",i
!'

D

. .
;

"
CLEAR LISTP Epson QX-1O " "
DEL LOAD Radio Shack Model lV

m mFILES OFF (CP/M Plus, [v. 3.0])
FREE RENAME Xerox 820-11
GO RUN Televideo (CP/M orTurboDOS)
HELP SAVE A variety of disk formats, including IBM 3740 stan- " -
STATEMENTS dard 8" diskette (SS/SD), is available.

0 D

mCHAIN ON GOTO Terminals:
CLOSE ON RESTORE ADM-3A

,
DATA OPEN (diskfile, Televideo 900 Series
DEF FN data entry screen) Qume QVT-102 -'

DIM OPTION Wyse 100

END PRINT (formatted, *NOTE: New implementations are regularly added to 0 0 (
EXIT unformatted) this list. Please contact DeltaSoft, Inc., for further in-

FOR/NEXT READ (internal data, formation on computer systems and terminals not
FORM diskfile, data listed.
GOSUB entry screen) About DeltaSoft, Inc.

D " Q
GOTO REM

. , ,IF/THEN/ELSE RESET DeltaSoft, Inc., was established by professional pro-

INPUT RESTORE grammers to develop improved software for business
LET RETURN applications. DeltaBASIC, based on a powerful sub- i

LINPUT REWRITE(disk file, set of IBM System/34 BASIC, is ciesigneci to provide
ON ATTN data entry screen) the programmer with the most effective utilization of
ON (Error STOP the rapidly developing capabilitites of microcom-

O O
J'

Condition) WRITE(disk file, puters. The present release is in 8080 Assembly '

ON GOSUB data entry screen) Language and runs on CP/M, MP/M-80, and Turbo-

FUNCTIONS
DOS. An 8086/8088 version is under development.
Call or Write for More Information:

Numeric: Character: A DeltaSoft technical representative will be happy to 1> "

ABS CHR$ discuss your specific applications. Please call us at
ATN CNVRT$ (214) 581-1425.

CMDKEY DATE$

ERR STR$ Trademarks:
EXP TIME$ CP/M and MP/M are trademarks of Digital Research. TurboOOS is a trademark of

INT
Software 2000, Inc. IBM System/34 is a trademark of IBM Corporation. !'t

t¶
LEN Substring function:
LINE (a: b) replaces
LOG string functions
POS LEFTS, MID$
RND and RIGHT$

,. S ' '

ROUND of other BASICS,

SGN allows insertion ' , .
l

\\,SIN and deletion '
SQR

STATUS DeltaSoft, Inc. ·

VAL
' " 7524 S. Broadway

P. O. Box 7082
Tyler, TX 75711 A Buslness·Orlenteg
(214)581-1425

BASIC Language

©1984· DeltaSoft, Inc.

DeltaRA@IC
A Business-Oriented
BASIC Language

Designed to fill the gap in business proAramming Powerful Substring Function SPECIFICATIONS

languages for microcomputers, DeltaBASL provides One simple, versatile substring function (a: b) allows
the multi-user support and other programming great flexibility in string hand|ing. It not only replaces
features essential to the development of efficient, the MID$, LEFT$, and RIGHT$ in other BASICS, but
smoothly-functioning and well documented soft- also allows both insertion and deletion of characters Source Language: 8080 Assembly
ware. within strings. (8086/8088 under development)
Keyed files, decimal arithmetic, formatted data entry Powerful FORM Statement Provides Versatility in Operating Systems Supported:
screens, and other amenities familiar to users of PRINT, READ, WRITE, and REWRITE CP/M-80, MP/M-80, TurboDOS
main-frame languages have been incorporated. With A comprehensive forms specification list allows Recommended Memory Size:
DeltaBASIC, the business programmer is now able to precise positioning of decimals, dollar signs, leading 48K minimum
achieve maximum effective use of the rapidly devel- or trailing pluses and minuses, and DR and CR

Essential Terminal Capabilities:oping capabilities of microcomputers. codes; definition of character and numeric fields; Clear Screen
and packed or zoned decimal fields where appli- Cursor Positioning
cable.

Supported Terminal Capabilities'
FEATURES Run-Time Module Low Intensity
Interactive Design of Run-time modules are available from DeltaSoft as Blink
Formatted Data Entry Screens: needed forthe distribution of applications programs. Non-Display
A menu-driven utility allows you to design screens in- Plus Other Useful Features Reverse Image
teractively, using a full complement of visual and Many other time-saving and convenient features are Underline
data entry attributes, including reverse video, blink- built into DeltaBASIC including program chaining, Function Keys
ing, and field protection. HELP messages may be in- on-screen program editing, a HELP facility for identi- Arrow Keys
corporated to speed operator learning and data entry. fying errors, long variable names, support of function Field Color
Once designed, a screen may be accessed by simple and arrow keys, and an extensive error-trapping Attributes Available to
READ/WRITE statements. capability. Formatted Data Entry Screens:

Keyed Data Files for Controlled Field Exit

Fast Indexed Access Adjust/Fill

DeltaBASIC provides fast access to files, using rapid UTILITY PROGRAMS INCLUDED
Mandatory Field Entry/Fill

sequential or random access by key in addition to ac- Field Type
· · · P · · (Alphanumeric or Numeric)

cess by record number. SDU: Screen Design Utihty for Interactlve design of
Auto Screen Entry

For Single- or formatted data entry screens. Position Cursor
Multi·User Systems KEYSORT: Sorts data files by key (predefined) to Field Protection
DeltaBASIC's file- and record-locking capabilities allow keyed sequential access. Data File Access Methods:
allow programming for multi-user environments. GENMSG: A "message generator" which works with Sequential
Decimal Precision your text editor to create HELP messages to be used Relative by Record Number
The precise calculations required by business math

with data entry screens. Sequential by Key

are achieved with DeltaBASIC's decimal arithmetic. ORGANIZE: Provides conversion of ASCII text files Random by Key

The errors inherent in other BASIC'S binary-to- to DeltaBASIC and the reverse; conversion of unkey- Data Formats:
decimal conversions have been eliminated. Precision ed files to keyed; or the removal of previously marked Character
is selectable to eight or sixteen digits. records (e.g., Inactive) from data files. Numeric

Binary-Tree Data Management
RENUM: Renumbers a DeltaBASIC program. Zoned or Packed Decimal

DeltaBASIC uses internal binary-tree data manage-
ment for faster program execution and file access.

DeltaSoft,lnc.

A

RELEASE DOCUMENTATION (May 1, 1985)

DeltaRASIC Version 3.0 (T)

I. Configuration:

A. Operating System
--

TurboDOS 1.3

B. MP/M Compatibility -- Full

C. Diskette Format
-- IBM 8" SS/SD standard

D. Terminal --
Wyse 100

l. Keyboard Assignment

attention (ATTN) key
--

ESC ("I)
begin/end toggle --

"B

cursor left —— left arrow ("FI)

cursor right -- right arrow ("L)
cursor down —- down arrow ("V)
cursor up -- up arrow ("K)
delete right --

^G

field exit -- line feed ("J)
HELP key

--
"Z

insert toggle --
"O

next line --
"X

previous line —— "E

rub out --
RUB OUT

tab next field --
TAB ("I)

Note: " means hold down CONTROL key and press letter key.

2. Function Keys

Function keys FI through F8 are implemented.

3. Visual Attributes

low intensity --
implemented

blink --
implemented

non-display --
implemented

reverse --
implemented

underline --
implemented

1

E. Printer -- system list device

Defaults: auto form feed on -- on
page overflow

line length --
132

page length --
66

page overflow --
64

II. Files included on diskette no. 1

A. DeltaBASIC system files
DBASIC.CCM --

DeltaBASIC command file
DBERR.MSG

-- Error message file for HELP facility
DBREF.MSG

--
Command, statement,and function reference message file
for HELP facility

SDU.COM
--

Screen Design Utility command file
KEYSORT.COM

-- Keysort Utility command file
ORGANIZE.COM

-- Organize Utility command file
GENMSG.COM

--
Help message generation command file

RENUM.COM
--

Renumber Utility command file
B. DeltaBASIC demonstration programs

CUSMAN.BAS
--

Customer Master Maintenance program

CUSXAN.FRM
--

Format file containing data entry screens 'CMM-OO1' and
'C!YM-002' used by CUSMAN.BAS

CUSMAS.DTA
--

Customer master file (data) used by CUSXAN.BAS

CUSMAS.KEY
--

Customer master file (key) used with CUSMAN.DTA

CUSMAS.DEF
--

Customer master file definition
CMM-OOI.LIB

-- Library (ASCII text) file of HELP messages for screen
'CMM-OQ1'

CMM-OO1.MSG
--

HELP message file for screen 'CPM-OOl' (Created from
'CMM-OO1.LIB' using the GENMSG Utility)

CMM-002.LIB
-- Library (ASCII text) file of HELP messages for screen

'CMM-002'

CPM-002.MSG
--

HELP message file for screen 'CMM-OO1' (Created from
'CMM-OC)2.LIB' using the GENMSG Utility)

2

CUSREP.BAS
--

Customer master file report program: reports menu

CUSREP.FRM -- Format file containing data entryscreen 'CMR-OO1',

'CMR-002', and 'CMR-003' used by CUSREP.BAS

CUSREP1.BAS
--

Customer master file report program: sequential access

CUSREP2.BAS
--

Customer master file report program: access by selected
record number range

CUSREP3.BAS
--

Customer master file report program: sequential access
by key

CUSREP4.BAS
--

Customer master file report program: sequential access
by selected key range

DES.BAS
--

Data entry screen demonstration program

DES.FRM --
Format file containing data entry screens 'DES-OO1',

'DES-002', and 'DES-003' used by DES.BAS

KED.BAS --
Keyed data file demonstration program

C. Miscellaneous Files

CUSDEL.DO
--

TurboOOS 'DO' file used to remove records marked for
deletion in CUSMAS.DTA

RENUY.DO
--

TurboDClS 'DC)' file used with RENUM utility to renumber

DeltaBASIC programs

MENU.COM
--

Menu utility provided with De1taBASIC system

MENUCll
-- Demonstration menu text file interpreted by MENU.COM

HELP.COM
-- DeltaSoft interactive TurboDOS utility HELP facility

III. Special files on diskette no. 2 (if included)

Auxiliary Demonstration Data Files

K500O.DTA
--

Data file used by KED.BAS above

K500O.KEY
--

Key file used with K500O.DTA

IV. Features Highlighted by Demonstration Programs

A. CUSMAN.BAS
--

Customer Master File Maintenance

1. Formatted Data Entry Screens with Help Messages

2. Random Access of a Keyed File

3

3. Multi-User Support (Shared File Access)

4. Substring Function

5. OFF statement with "Command line"

6. Error Trapping

7. Use of Function and Arrow Keys

B. CUSREP.BAS, CUSREP1.BAS, etc. --
Customer Master File Reports

1. Formatted Data Entry Screens

2. Sequential, Relative, and Keyed-Sequential File Access

3. FORM specifications including "PIC" for formatted output

4. Program chaining

5. Forms control utilizing internal page length and overflow

C. DES.BAS
-- ñata Entry Screen Demonstrator

I. Explicit demonstration of visual attributes

2. Explicit demonstration of data entry attributes

3. Use of substring function to build "INDIC" string

4. Use of Function keys

D. KED.BAS
--

Keyed File Demonstrator (if included)

1. Access of relatively large (5000 records) data file by key

2. Random number generator

V. Sample Terminal/Computer Interface Module

The following listing may be helpful for basic reconfiguring of your version
of De1taBASIC. Either DDT.COM (CP/M or MP/M) or MOR'ITOR.COM can be used to
load, modify, and resave DBASIC.COM. Care must be execised to prevent
changes in code other than those provided for below. DeltaSoft, Inc.
assumes no responsibility for the modification of DBASIC.COM by the user.
Please see the license agreement for more information.

NOTE: The configuration below is a sample only and does not correspond with
your implementation of De1taBASIC.

% d 4 ? @ b te L~j Lpt µxt~jµzL.t4b-4@ !> 9>t but d LpQpjpj f Lpb<b L. f Y LJp%bbj· ? >L.f f f d f f Y P L t. r Jp C >"7 Ur r , T r b r h r r r r"r"r"rTT"rT r r ó r i r r t r t ó r r r ó t i l r r r l R r r Ó Ó·T' r Ó h rn T r i b Óg
Jp xC

""r T
g

;* DeltaBASIC *
·* *g

4

;* (C) COPYRIGHT 1984 BY DeltaSoft, Inc. *
.* *
g

;* Version: 1.3 *
.* *
g

;* Rev. Date: 23 May 1984 *
.* *
g

;* Rev. Time: 3: 00 PM >;<

L *0 q>
g

;* Terminal: SAMPLE *
·* *
g

{ b++ tp¿twwjp 1~&^ b Ct 4 @ l l Ctr td p bj~j M? W t~j C C C? CWíd e t~&p+bgp%LpMLpU C Ct¶ L) d +i "r r r r ím r r rm rt ri "Ti t rm b r r r rt t rn á r r i "i ri rm n t t ¶ ó b "r"r"r"r rá >ri n n t ó b 4 r?
*
g

; MISC. EQUATES

0
g

; OFFH IS USED TO INDICATE A NULL CHARACTER STRING

g
DOFF

=
N EQU OFFH
0
?

; THE HIGH BIT IS SET TO MARK THE END OF CHARACTER

; STRINGS. FOR CONVENIENCE, THE VALUE P CAN BE ADDED

; TO THE LAST CHARACTER OF A STRING.
e
?

0080 =
P EQU 128
*
?
0
g

0103 ORG 103H

0
g

; THE XFER SUBROUTINES ARE USER MODIFIABLE SO LONG AS

; THE ADDRESSES IN THE TABLE BELOW ARE UPDATED. THE
; ADDRESS SPACE FOR THESE SUBROUTINES IS 03A2H TO 053FF!.

; TWO SIJBROUTINES THAT COULD PROVE USEFUL ARE (I) DIRIO

; (AT 3C30H WHICH OUTPUTS THE ASCII CHARACTER IN THE 'A'
; REG TO THE TERMINAL AND (2) CURSO AT O1F6H WHICH

; POSITIONS AT THE CURSOR AT THE ROW GIVEN IN THE H REG

; AND COLUMN IN THE L REG.

0
:

; THE GENERAL SPECS FOR THE XFER SUBRC)UTTNES ARE GIVEN
; BELOW.

:

; NOTE: NO ADDRESSES ARE SHOWN IN THE TABLE BECAUSE THEY

; DIFFER DEPENDING ON THE SPECIFIC COMPUTER/TERMINAL

; IMPLEMENTATION.
e
g

0103 C30000 TTNIT: JMP
.....

;TERMINAL INITIALIZATION
0106 C30000 AWRSET: JMP

.....
;VISUAL ATTRIBUTE WRITE SET

0109 C30000 AWRRST: JMP
.....

;VISUAL ATTRIBUTE WRITE RESET
OlOC C30000 ARDSET: JMP

.....
;VISUAL ATTRIBUTE READ SET

O1OF C30000 ARDRST: JMP
.....

;VISUAL ATTRIBUTE READ RESET
0112 C30000 CLRATR: JMP

.....
;CLEAR VISUAL ATTRIBUTES

0115 C30ClOO SETTMO: JMP
.....

;GET TIME INTO [HL]
0118 C30000 SETDTO: MP

;GET DATE INTO [HL]

0
7

; CONFIGURATION DATA
r
g

; 1. OPERATING SYSTEM FLAG

5

0
g

; 0=CP/M 1=MP/M 2=TURBODOS

0
:

0118 00 OPSYS: DB O ;CP/M

0
7

; 2. ANSI FLAG

*
g

; 0=NC) 1=Y

O
:

OllC 00 ANSI: DB O ;NO

0
?

; 3. COMPATIBILITY FLAG (TURBODOS ONLY)

0
g

; BIT 7
= PERMISSIVE FLAG

; 6 =
SUSPEND FLAG

; 5
= GLOBAL-WRITE FLAG

; 4 = MIXED-XODE FLAG

; 3 = LOGICAL FLAG

; (BITS 2-O NOT DEFINED)

0
g

0110 00 COMPAT: DB O ;FULL MP/M

0
g

; 4. TERMINAL INITIALIZATION DATA
©
g

O11E FF00000OOOINIT: DB N,0,O,O,O ;N=N0NE
0123 0000000000 DB 0,0,0,0,0 ;

0128 0000000000 DB 0,0,0,0,0 ;

012D 0000000000 DB 0,0,0,0,0 ;

W
g

; 5. MOVE CURSOR LEFT DATA

0
y

0132 880000OOOOCURLFT: DB 08H+P,O,O,O,O ;"H

0
?

; 6. MOVE CURSOR RIGHT DATA

9
?

0137 8C00OOO0OOCURRGT: DB OCH+P,0,O,O,O ;"L
0
:

; 7. CURSOR POSITIONING DATA

O
g

; SEE BELOW

O
g

013C 1BBDOOOO0OCURPS1: DB 1BH,'='+P,O,O,O ;CUR POS PREAMBLE: 'ESC='
0141 IF CURPS2: DB 31 ;LINE NUMBER BIAS: 31
0142 FF CURPS3: DB N ;SEPARATOR CHAR: N=N0NE
0143 IF CURPS4: DB 31 ;COL NUMBER BIAS: 31
0144 FF0O000OO0CURPS5: DB N,0,O,O,O ;CUR POS TRAILER: N=NONE

0
:

; 8. ROW/COL ORDER

0
g

; OOH
= ROW/COL OFFH

= COL/ROW

*
7

0149 00 RCORD: DB OOH ;R0W/COL

O
g

; 9. ATTN CHARACTER DATA
0
g

6

014A IB ATNCHR: DB 1BH ;ESC

e
g

; 10. KEY DATA TABLE

0
g

0148 FFOOOO LICHR: DB N,0,O ;LEAD-IN CHARACTER: N=N0NE

014E 870000 DB 07H+P,O,O ;DELETE RIGHT: "G

0151 FFOOOO DB 7FH+P,O,O ;RUB OUT: RUB OUT

0154 880000 DB 08FI+P,O,O ;CURS0R LEFT: "FI

0157 8COOOO DB 0CH+P,O,O ;CURS0R RIGHT: "L

015A 8AOOOO DB 0AH+P,O,O ;CURS0R DOWN: "J
015D 880000 DB OBH+P,0,O ;CURS0R UP: "K

0160 8FOOOO DB OFH+P,0,O ;INSERT TOGGLE: "O

0163 820000 DB 02H+P,O,O ;BEGIN/END TOGGLE: "B

0166 8AOOOO DB 0AH+P,O,O ;FIELD EXIT: "J
0169 890000 DB 09H+P,O,O ;TAB NEXT FIELD: "I
016C 850000 DB 05fl+P,O,O ;PREVI0US LINE: "E
016F 980000 DB 18H+P,O,O ;NEXT LINE: "X

0172 9AOOOO DB 1AH+P,O,O ;FIELD MESSAGE HELP: "Z

?
; 11. FUNCTION KEY TABLE

P
g

0175 810000 FICHR: DB O1FI+P,O,O ;LEAD-IN CHARACTER: soFt ("A)
0178 810000 DB 31H+P,O,O ;FUNCTI0N KEY 1

017B B20000 DB 32H+P,O,O ;FUNCTI0N KEY 2

017E 830000 DB 33H+P,O,O ;FUNCTI0N KEY 3

0181 840000 DB 34R+P,O,O ;FUNCTI0¥ KEY 4

0184 850000 DB 35H+P,O,O ;FUNCTI0N KEY 5

0187 860000 DB 36H+P,O,O ;FUNCTION KEY 6

018A 870000 DB 37H+P,O,O ;FUNCTI0N KEY 7

018D 880000 DB 38H+P,O,O ;FUNCTI0N KEY 8

0190 800000 DB N,O,0 ;NOT IMPLEMENTED
0193 800000 DB N,0,O ;NOT IMPLEMENTED
0196 800000 DB N,0,O ;NOT IMPLEMENTED
0199 800000 DB N,0,O ;NOT IMPLEMENTED

019C 800000 DB N,0,O ;NOT IMPLEMENTED
019F 800000 DB N,0,O ;NOT IMPLEMENTED
O1A2 800000 DB N,O,0 ;NOT IMPLEMENTED
O1A5 800000 DB N,0,O ;NOT IMPLEMENTED

0
:

; 12. HOME CURSOR DATA
*
:

O1A8 8000000O0OHOME: DB N,0,O,O,O ;NONE
*
3

; 13. CLEAR SCREEN DATA
O
9

O1AD 9A0O00OO00CLR: DB 0IAH+P,0,O,O,O ;"Z
0
9

; 14. PRINTER SKIP PERF
P
g

; 0=OFF 1=ON

*
g

0182 01 PINIT: DB 1 ;ON

0
:

; 15. PRINTER LINE LENGTH
0
:

7

0183 50 DB 80 ;80

0
:

; 16. PRINTER LINES PER PAGE

*
g

0184 42 DB 66 ;66

0
g

; 17. PRINTER OVERFLOW LINE

*
7

0185 40 DB 64 ;64

*
g

; 18. MISC TURBODOS PATCHES

W
g

; SEE BELOW

0
g

; TurboOOS Ver. 1.22 1.3
V
g

0186 5000 TDOSA: DB 50H,O ;FUNCTI0N CALL ADDRESS 05H,O 50H,O

0188 OD DB 13 ;SET COMPATIBILITY FLAG 120 13

0189 12 DB 18 ;SEND COMMAND LINE 108 18

O1BA IB DB 27 ;PRINT MODE SET 76 27

O1BB 00000000 DB 0,0,0,0 ;LEAVE ROOM FOR MORE

P
g

; 19. ATTRIBUTE TABLE

e
g

; ORDER: DIM,BLINK,BLANK,REV,UND

O1BF
4002010408ÁTTBL:

DB 40H,02H,O1H,04H,08H

*
}

; 20. TERMINAL SIGN-ON MESSAGE

0
g

; MUST INCLUDE 32 POSITIONS

*
g

O1C5 5465726D69ATRMSG: DB 'Terminal: ADM-3A ',' '+P

0

©
g

; DATA END

0
g

0
3 * 0 0

*
?
*Y*k*T*7k**kTk>77M: "r\kl**>k>k:P***TkT*k7***gr**>:<**t"r\>m****lT::*P**7kg

, *
y
; MISC. SUBROUTINES

--
USER MODIFIABLE *

. *g
·**>P**>k****a*: k*M::k*>k****"r***y**k***kq"r*7*q"T*kP****7Y*t***:k*******>Ég

0
g

; XFER SUBROUTINES ARE USER MODIFIABLE. THE ENTRY

; POINT JUMP TABLE AT 0103H MUST BE MODIFIED TO

; REFLECT ADDRESS CHANGES. ALL REGISTERS CAN BE MODIFIED

; BUT TFIE STACK MUST BE PRESERVED.

0
g
; NOTE: NO CODE IS GIVEN--ONLY SUBROUTINE DEFINTIONS.
0
g

; TERMINAL INITIALIZE SUBROUTINE: CALLED ONCE BEFORE
; SIGN-ON.
P
g

8

;XFER0:

*
:

0
?

; VISUAL ATTRIBUTE CONTROL

0
g

*
?

; VISUAL ATTRIBUTE WRITE SET SUBROUTINE: SETS SPECIFIED

; VISUAL ATTRIBUTES AND POSITIONS CURSOR AT ROW/COL IN

; HL BEFORE WRITE.

0
g

; H=ROW L=C0L B=FLD LEN C=ATTR BYTE

g
g

; ATTR BYTE
-

TRUE=1

*
g
; (AS DEFINED ABOVE)

9
y
; BIT 7 6 5 4 3 2 1 O

; O DIM O O UNO REV BLINK BLANK

0
?
; NOTE: MUST RETURN WITH CURSOR AT P0S(H,L)

0
?
;XFER1:

*
?

; ATTRIBUTE WRITE RESET SUBROUTINE: RESETS VISUAL

; ATTRIBUTES AFTER WRITE IF NECESSARY.

*
?
;XFER2:

e
7

; VISUAL ATTRIBUTE READ SET SUBROUTINE: SETS SPECIFIED

; VISUAL ATTRIBUTES AND POSITIONS CURSOR AT ROW/COL IN

; FIL BEFORE READ IF NECESSARY.

0
g

; H=R0W L=C0L !3=FLD LEN C=ATTR BYTE

0
:

; ATTR BYTE
-

TRUE=1

0
g

; BITS 7 6 5 4 3 2 1 O

; O DIM O O UNO REV BLINK BLANK

0
g

0
g

; NOTE: MUST RETURN WITH CURSOR AT P0S(H,L)

0
g
;XFER3:
*
g

; ATTRIBUTE READ RESET SUBROUTINE: RESETS VISUAL

; ATTRIBUTES AFTER READ IF NECESSARY.

0
y
;XFER4:

0
:

; CLEAR RESIDUAL ATTRIBUTES: CLEARS VISUAL ATTRIBUTES

; AFTER INTERRUPTION.

0
?
;XFER5:

0
g

; GET TIME SUBROUTINE: STORE HH:MM:SS AT ADDRESS

9

; POINTED TO BY REG HL. USE 99: 99:99 IF TIME NOT

; AVAILABLE.
0
?
;XFER6:

0
g

; GET DATE SUBROUTINE: STORE YYYYMMDD AT ADDRESS

; POINTED TO BY REG HL. USE 00000000 IF DATE NOT

; AVAILABLE.
0
}
;XFER7:

W
g

10

,~ a

g.

\

DéltaBASTC LiK=&e

MTRñWk Read this license C.&.l=f!=é.P¿ carefully opening this packíge. If you do not agree
with the terns and conditions ccntained herein, return the unoµ'ned package to DéltaSoft, Inc., 7524

S. Broadway Suite 119, Tyler, Texas 7SU3.

I . License
MtaSoft, Inc. agrees to grant to the Licmsee, upon tjE Licensee's acceptance of the terms and

conditions of this agreerent, a rmtransferable and ncnexclusive license to use the DeltaSoft, Inc.

software enclosed in the accQmnying µEkage·

2. Restrictions on Use
The

Li agrees to use the enclosed software only cm the ccimµiter sc) deságnated on the licmse
registration form. Neither this license nor the encksed software tray be asiñgned, sublicensed, or
otherwise transferred by the Liumsee without written permission of IkltaSoft, Inc.

3. 'Back-up Copies of Program
The Lícmsee my náke up to twD copies of tiie enclosed software provided it is for the Liamsee's

.
4. Copies of Documentation
The

Li my not copy in whcñe or in part the enc1Q8ed dttaticn or related mteria1s.
Addition copies of the d«trrmtation can te obtained fran DeltaSoft, Inc., 7425 S. Bruadway Suite
119, Tyler, Texas 75703.

5. Modif ication
The Licensee tray nrdify the prc)gr= only to Üe! extent to adapt it to a terminal or

printer. No other rtrxlificatícns my be wade.

6. Copyrig?n" Notice
The SO: ÉF 7rq, CiCf" tmmtation, and related mterials contained herein are copyrighted by Ik1taSoft,
Inc. The ¡jL¿jeiIsee agrees not to rgIr)ve any copyright notices. Fírrther, tN Licmsee agrees to
reprMuce such notices on any copies of the software mde by the Licensee.

7. NcyÉFdigtlosttre

M úcEm!e agrrm not to provide, disclose, or otherwise make available any lkltaSoft, Inc.
softmre, dcrmmtátion or related mteria1s to any Ferson other than errployees of the Licensee and

then only to tjiz extmt to conduct business of Ü1e Licensee.

8. TetiM of License
The 1ica1g? sMll remain in effect for such perícxj as Úe! Licmsee ccrrplíes vith the

t
and

tmditions a the

li.
The License is subject to cancellation by IELtaSoft, Inc. for faihre of

LioeEsee to tmp1y with tie t«irg and conditions of this li.9. EMmncelmmts and Updates
Re! verskm of sdímre, dttation, and related mteria1s was currmt at the time this µíckage

~mmfa±ured.
si±scri! to the DékaSoft, Inc. Soft\Ñare Uµjate Prcgram.

10. Limited Warrmty

,
mftware, d(mn=athm, and related mrpri·l1q enclcsed in this Facikage. DéltaSoft, Inc.
d'q"1'Af'!'q all hiplied warranties of mercMntabi1ity or for a µírticular FurpKjge. IkltzGoft,
Inc. diá11 mt te liable for ccnsequaitial damges or related expenses evm if mtified oF the

p~intyofsiKhda=. TheIÁceEEEm]sttl~ltjlmuu~ingthisprum.
.

DeltaBASIC Registration Form

This form inust be fi.l-led out and returned to DeltaSoft, Inc., 742-5 S. Broadway

Suite 1!9, Tyler, Texas 75703 within 30 days after purchase to ensure proper
registration.

Serial number:

Computer system on which the software will be used:

Serial number of computer system:

T
, (Licensee") , agree to the terms and

conditions of the DeltaSoft, Inc. DeltaBASÍC License Agreement enclosed. If
the software package was not purchased by an individual, T represent that I am

the authorized agent of the company named below.

signature of individual or agent representing company date

Address

City/State Zip Code

Phone No. ()

I am lam not enclosiñf' $75.00 for a one-year subscription to the
DeltaSoft, Inc. Software Update Program. T understand that by subscribing, I
will receive all software and publication updates for the above named software
package for a period of one year.

DeltaBASIC Reference Manual NOTICES

COPYRIGHT NOTIICE

Copyright (C) 1984 by DeltaSoft, Inc.

All Rights Reserved

All material in this publication is copyrighted. No part may be

reproduced in any form whatsoever without written permission of
DeltaSoft, Inc., 7524 S. Broadway, Suite 119, Tyler, Texas, 75703.

TRADEMARK NOTICE

CP/M and MP/M are trademarks of Digital Research. TurboDOS is a

trademark of Software 2000, Inc. IBM System/34 is a trademark of
IBM Corporation.

DISCLAIMER OF WARRANTY

DeltaSoft, Inc. makes no express or implied warranty of any kind
with respect to the use of the contents of this publication.
DeltaSoft, Inc. expressly disclaims all implied warranties of
merchantability or fitness for a particular purpose. DeltaSoft,
Inc. shall under no circumstances be liable for consequential
damages or related expenses even if notified of the possibility
of such damages. The user must assume the entire risk of using
the contents of this publication.

DeltaBASIC Reference Manual TABLE OF CONTENTS

TABLE OF CONTENTS

Section I Introduction

Features of DeltaBASIC 1-l
Organization of the Reference Manual

l—1

Section 2 Definitions

Constants 2-l
Variables .,

2-l
Numeric Expressions 2-l
Character Expressions

2-2

Relational Expressions
2-2

Logical Expressions
2-2

Section 3 Abbreviations 3-l

Section 4 Basic Operation

The Command/Prograin Edit Mode

.................. 4-l
Editing Keys 4-l
The Program Execution Node

..................... 4-l
Section 5 Commands

Description 5-l
AUTO

....
5-2

CLEAR

...............................
5-3

DEL

...
5-4

FILES
...............

5-5
FREE

...
5-6

GO
. . 5-7

HELP

... . . 5-B
LIST

5-lO
LISTP

...... 5-ll
LOAD 5-12
OFF

.................................
5-13

RENAME
. 5-14

RUN

.............. 5-lS
SAVE

...................
5-16

Section 6 Statements

Description 6-l
CHAIN

..
6-2

CLOSE

....
6-3

DeltaBASIC Reference Manual TABLE OF CONTENTS

DATA

...............
6-4

DEF FN
.

6-5
DIM

.....................
6-7

END

....................
6-B

EXIT
...

6-9
FOR/NEXT

. 6-lO
FORM

... 6-ll
GOSUB

.................
6-15

GOTO

...
6-16

IF/THEN/ELSE........... 6-17
INPUT

..
6-18

LET

...........
6-19

LIXPUT
...

6-20
ON ATTN

..........
6-21

ON Error Condition
6-22

ON GOSUB

......... ...
6-23

ON GOTO

..
6-24

ON RESTORE

..............
6-25

OPEN (disk file)
6-26

OPEN (work station file)
6-28

OPTION

...
6-29

PRINT (unformatted)
6-30

PRINT (formatted)
6-31

READ (internal data)............................ 6-32
READ (disk file)

6-33
READ (work station file)

6-34
REM

..
6-35

RESET
...

6-36
RESTORE

..
6-37

RETURN
.

6-38
REWRITE (disk file)

6-39
REWRITE (workstation file)

6-40
STOP

......................
6-42

WRITE (disk file)
6-43

WRITE (workstation file)
6-44

Section 7 Intrinsic Functions

Description ...,..,.................. 7-l .

Intrinsic Numeric Functions
7—l

ABS
. 7-2

ATN

.. 7-2
CMDKEY

... 7-2
ERR

.. 7-2
EXP

...................... 7-2
INT

......................... 7-2
LEX

................ 7-2
LINE

........................ 7-2
LOG

........................ 7-2
POS

.. 7-2
RND

......................... 7-3
ROUND

....................... 7-3
SGN

............................ 7-3

DeltaBASIC Reference Manual TABLE OF CONTENTS

SIN
7-3

SQR
' 7-3

$

STATUS

.......
7-3

VAL

..........
.

7-3

Intrinsic Character Functions ..
7-4

CF1R$

.... .
7-4

CNVRT$

.....................................
7-4

DÁTE$

..
7-4

STR$

.......................................
7-4

TTME$

......................................
7-4

(Special character substring function)
7-4

Section 8 Utility Programs

Description 8-I

GENMSG

...
8-2

KEYSORT

..
8-5

ORGANIZE

.......................................
8-6

RENUM

..................... 8-ll
SOU

.....
B-12

Appendix A Error Codes

Format
... A-l

List of Error Codes A-l

Appendix B Reserved Words
.................................

B-1

Appendix C Disk File I/O

Description C-l

Sequential Access
..............................

C-2

Output Mode

.............
C-2

Input Mode

...................................
C-4

Update Mode

............
C-5

Relative Access
................................

C-6

Output Mode

...............
C-6

Input Mode

.....
C-6

Update Mode

...........
C-7

Keyed Access
...................................

C-9

Random by Key/Output Mode

....................
C-lO

Random by Key/lnput Mode

..................... C-ll
Random by Key/Update Mode C-12

Sequential by Key/lnput Mode

.................
C-13

Sequential by Key/Update Mode

................
C-14

DeltaBASIC Reference Manual TABLE OF CONTENTS

Appendix D Formatted Data Entry Screens

Description,..................... D-l
Data Entry Attributes D-l
Visual Attributes

D-2

Appendix E Multi-User Information E-l

Appendix F Language Compatibility F-l

Appendix G Index
..

G-1

DeltaBASIC Reference Manual INTRODUCTION

Section 1. INTRODUCTION

DeltaBASIC was designed to meet your needs for a versatile but easy-to-use
business programming language. Its most important features include:

l. Versatile disk file access for Unproved data management

2. Formatted data entry screens for better user interfacing and more
complete utilization of computer system capability

3. Decimal arithmetic (8 or 16 digits) for improved accuracy.

To take full advantage of these and other features of DeltaBASIC, you should
become familiar with the commands and statements described in this manual.

The reference manual is organized as follows:

Sections 2 and 3 define the terms and abbreviations used in this manual.

Section 4 describes the basic operating modes of DeltaBASIC.

Sections 5 through 7 describe the commands, statements, and functions
available for use in DeltaBASIC.

Section 8 describes various utility programs that provide support functions
to programs written in DeltaBASIC.

Appendix A lists error codes and their meanings.

Appendix B lists the reserved words that have restricted use in DeltaBASIC

programs.

Appendix C describes DeltaBASIC's disk file I/O features.

Appendix D describes the powerful formatted data entry screen features of
DeltaBASIC.

Appendix E provides information concerning multi-user capabilities.
Appendix F discusses DeltaBASIC's compatibility with other BASIC
implementations.

Page l-1

DeltaBASIC Reference Manual DEFINITIONS

Section 2. DEFINITIONS

Constants

Values that remain the same during program execution are called constants.
Numeric constants are accepted within the range 1.OE-62 to 9.99...E+62 and

have a selectable precision of 8 or 16 significant digits (see the OPTION

statement). Character constants are formed by enclosing alphanumeric
characters in quotation marks. Character constants can be from O to 255

characters in length.

Examples: 2.45
1.3E-20
"JAMES SMITH"

Variables

Values that can change during program execution are called variables.
Variables take two possible forms: numeric or character. Numeric variables
have the same size restraints as constants (above). Character variables can
have any length from 1 to 255 characters, with the length assigned using the
DIM statement. (If no length is assigned, it is automatically set at 18

characters.) Either numeric or character variables can be used in arrays.

Each variable must be given a name consisting of l to 8 alphanumeric
characters (A-Z, 0-9). The first character of the name must be alphabetic.
The name of a character variable must end with a dollar sign ($)·

Examples: RATE
CUSTOMER$

CNST(I0,5)
TABLE$(I)

Numeric and character variables cannot have the same name; le., DAY and DAY$

cannot be used in the same program. Certain words are reserved for use by
DeltaBASIC and may not be used as variable names. For a list of these
reserved words, see Appendix B.

Numeric Expressions

Numeric expressions are composed of numeric variables and constants, intrinsic
numeric functions, arithmetic operators (+, ,*,/,"), and parentheses.
Algebraic rules are used to establish precedence for evaluating a numeric
expression:

Page 2-l

DeltaBASIC Reference Manual DEFINITIONS

First: l. Expressions within parentheses
2. Exponentiation (^)
3. Negation (-)
4. Multiplication (*), Division (l)

Last: 5. Addition (+), Subtraction (-)

When equal precedence is encountered, evaluation proceeds from left to right.
Examples: -35/2

2*SQRT(X"2+Y"2)+180

Character Expressions

Character expressions are composed of character variables and constants,
concatenation operators (&), and intrinsic character functions.

Examples: A$&" DB"

STR$(65)

Relational Expressions

Relational expressions are composed of two numeric expressions or two

character expressions separated by a relational operator. The valid
relational operators are <,>,=, or a combination of two of these. The

combination <> means "not equal to". Relational expressions are evaluated by

the program as either true or false.

Examples: HOURS<=12
FIRST$>LAST$&"A"

Logical Expressions

Logical expressions are composed of relational expressions, logical operators
(NOT, AND, and OR), and parentheses. Logical expressions are evaluated by the
program as either true or false. Evaluation precedence is as follows:

First: 1. Expressions within parentheses
2. NOT

3. AND

Last: 4. OR

When equal precedence is encountered, evaluation proceeds from left to right.
Examples: NOT(A<B)

(C$<>TEUP$) AND A<l

Page 2-2

DeltaBASIC Reference Manual ABBREVIATIONS

Section 3. ABBREVIATIONS

The following abbreviations are used to simplify the commands, statements, and

functions described in this manual.

num—cnst numeric constant
char-cnst character constant

cnst constant——either numeric or character
cnst-list constant list (comma used as separator)

num-var numeric variable or numeric array element
char-var character variable or character array element

var variable——either numeric, character, or array element
var-list variable list (comma used as separator)

num-expr numeric expression
char-expr character expression

expr-list expression list (comma used as separator)

num—fnc numeric function
char-fnc character function

rel—expr relational expression
rel-optr relational operator

log-expr logical expression
log-optr logical operator

char-str character string--not enclosed in quotes

line-num. line number (1—65534)

file-ref file reference (1-254)

drv: name.typ disk file drive, name, and type.

RETURN the RETURN key

(return key) press the RETURN key

ATTN the attention key (usually the ESCAPE key)

I/O input/output

Throughout the remainder of the manual, braces (l)) indicate optional
parameters. The braces themselves are not part of the format.

Page 3-1

De1taBASIC Reference Manual BASIC OPERATION

Section 4. BASIC OPERATION

As with most BASIC interpreters, DeltaBASIC has two operational modes: the
comrnand/program edit mode and the program execution mode.

To bring up the command/program edit niode from the operating system, enter

DBASIC (return key)

Then, after sign-on, you can either load an existing program from disk or
enter the lines of a new program. The command/program mode allows you to
enter commands, add lines to the current program, or change or remove existing
lines.

Certain special keys that can be used when in the command/program edit mode

are listed below. The caret (") means the control key is held down while the
key is pressed.

"H Moves the cursor to the left one character.
"l. Moves the cursor to the right one character.
"J Moves the cursor up one line (rnultiline statements).
"K Moves the cursor down one line (multiline statements).
^B Moves the cursor to the beginning of the line.
"O Turns the insert capability on/off.
^G Deletes one character to the right.

RUB OUT Deletes one character to the left.
RETURN Enters the cominand or line.

These key choices may vary, depending on computer system and terminal used.

To enter the program execution mode from the command/program edit mode, enter

RUN (return key)

Execution will begin with the first line of the current program and continue
until a STOP, END, or OFF statement is executed or an untrapped error occurs.
The program can also be interrupted by pressing the ATTN key.

To enter the program execution mode directly frorn the operating system, enter

DBASIC jdrv: }name{.BAS} (return key)

where the file narne refers to a DeltaBASIC program saved in non-source form.
After DeltaBASIC loads, the program will load and begin execution.

Page 4-l

DeltaBASIC Reference Manual COMMANDS

Section 5. COMMANDS

The following DeltaBASÍC commands are used to control such tasks as clearing a
program froin memory or loading a program frorn disk. Commands are not usually
found in programs but are executed directly from the keyboard while De1taBASIC

is in the command/program edit mode. To enter a command, type the command

name and any appropriate parameters, then press the RETURN key.

Page 5-l

DeltaBASIC Reference Manual COMMANDS

.

AUTO {line--num,mm—cnst)

The AUTO command automatically generates line numbers, freeing you frorn the
task of typing a line number before entering each step of your program.
Numbering begins with line-num and is incremented by num-cnst. If line-num
and num-cnst are not specified, numbering will begin with 10 and increment by

5. If a duplicate line number occurs, the old line is displayed instead of a
blank line. To end the AUTO mode and return to the command/prograrn edit mode,

press the ATTN key.

Example:

AUTO (return key)

A blank line with line number 10 appears at the bottom of the screen with the
cursor positioned for editing. When the line is completed, pressing the
RETURN key enters it. The line number is then incremented by 5 and a blank
line 15 is displayed ready for editing.
AUTO 100,10 (return key)

Same as above, except the first line number is 100 and the increment will be
10.

Page 5-2

DeltaBASIC Reference Manual COMMANDS

CLEAR

The CLEAR command closes any open files, then clears the program and data
areas of memory.

Be careful—-this command permanently erases all the program and data
information currently in memory. It is not possible to recover this
information.

Example:

CLEAR (return key)

Open files are closed and the current program and data areas are cleared from
memory. DeltaBASIC then returns to the command/program edit mode.

Page 5—3

DeltaBASIC Reference Manual COMMANDS

DEL line—mm I {,líne—num 2)

The DEL command removes line-num 1 or, when a second line number is entered,
all lines from line-num 1 through line-num 2. DEL does close all open files.
Examples:

DEL 35 (return key)

Line 35 is removed from the program.

DEL 100,200 (return key)

Lines lOó through 200 inclusive are removed.

Page 5-4

DeltaBASIC Reference Manual COMMANDS

FILES {drv: }
The FII.FS command displays a directory of the files on the specified drive or,

if no drive is specified, on the default drive.

Examples:

FILES (return key)

A directory of files on the default disk drive is displayed.

FILES C: (return key)

The directory for disk drive C is displayed.

Page 5-5

DeltaBASIC Reference Manual COMMANDS

FREE {drv: }name.typ

The FREE command erases the named file from the disk. The file name and file
type are both required. If the disk drive is not specified, the default disk
drive is assumed.

FREE can also be used as a statement in a program.

Examples:

FREE PAYMÁS.BAS (return key)

The PAYMÁS.BAS file is removed from the default drive.

FREE C: PAYTRN.DTA (return key)

The PAYTRN.DTA file is removed from disk drive C.

Page 5-6

DeltaBASIC Reference Manual COMMANDS

GO {line—mm}
{END)

The GO command starts the program running again after a non-error
interruption. (Non-error interruptions include pressing the ATTN key and

execution of a STOP statement.) If lines are not added or removed during the
interruption, variables are preserved and disk files are left open.

The primary use of GO is in debugging a program. STOP lines are placed at
various points in the program so that program and variable status can be

checked. GO then permits execution to resume at the specified line number
or——if no line number is specified--at the next line. If lines are added,
removed, or changed, execution will start at the first line of the program.

If after interrupting a program, it is decided that resumption of the program

is not needed, the GO END command closes all open files to prevent loss of
data and ends the program.

Example:

20 A=16*B+C
21 STOP

30 IF A<30 THEN 40
35 B=A+C
40 A=A+1

* * 0

Line 21 has been inserted so that the values of A, B, and C can be printed and

checked. After this has been done, entering GO causes execution to resume at
line 30.

If the ATTN key is pressed just just as line 35 is to be executed, GO will
continue execution at line 35. GO 40 would cause program execution to start
at line 40.

Page 5-7

DeltaBASIC Reference Manual COMMANDS

HELP {parameter)

The HELP command causes the computer to display an explanatory message. The

message displayed depends on the parameter specified, as follows:

HELP

Displays a message to explain the last error. To conserve memory, error codes

are abbreviated. Because you may have trouble interpreting these codes at
first, the HELP command provides the additional information needed to
understand them. As you learn the meaning of the abbreviated error codes, the
HELP facility will become less important.

HELP mm—cnst

Displays a message to explain the error whose number is given by the numeric
constant. Error numbers are given in Appendix A.

HELP command name

statement name
function name

Displays a brief explanation of the command, statement, or function.

Examples:

20 IF COUNT>3 THAN A=lO

Line 20 contains a syntax error: THAN should be THEN. When line 20 is
executed, an error is detected and this message displayed:

(I) SYNTAX Error in Line 20

While the meaning of this error is probably clear enough, entering HELP will
provide this additional information:

SYNTAX ERROR: an unrecognizable cotnmand/statement was encountered.

Suppose you correct the THEN error and try again to execute. This time a

different error message appears.

(2) SYN EDS Error in Line 20

Although the abbreviation SYN clearly points to a syntax error, the EDS may be

a little mysterious. Entering HELP gives this additional information:

SYNTAX ERROR AT END OF STATEMENT: colon or line end expected.

EDS is short for "END OF STATEMENT". Looking at the end of line 20, you see
that the letter O was used instead of the number O. Changing this makes line
20 correct.

HELP 10 (return key)

The HELP message for error number 10 is displayed.

Page 5—8

DeltaBASIC Reference Manual COMMANDS

LIST {line—mm}

The LIST command lists the program currently in memory. If the optional line
number is not specified, the entire program is listed. If the optional line
number is used, then the program line with a line number greater than or equal
to the one specified will be the last line listed. In this case, the last
line will be positioned near the bottom of the screen with the cursor located
at the first character of the line. At this point, you can change the line
and place it back in memory by pressing the RETURN key. In addition to the
command/program edit mode cursor control keys (see BASIC OPERATION, Section
4), the following special keys are activated at this time:

"E Move to the previous line in the program.
"X Move to the next line in the program.

Example:

LIST 120 (return key)

The program is listed with line 120 near the bottom of the screen. The cursor
appears at the beginning of line 120 so that the line can be changed.

Pressing the RETURN key replaces the line in the program.

Page 5-lO

DeltaBASIC Reference Manual COMMANDS

LISTE' (line—mm l,line—num 2)

The LISTP command lists the current program to the printer (the list device)
either in its entirety or over the optional line number range (1ine-num 1

through líne-num 2).

Examples:

LISTP (return key)

The entire program is listed to the printer.

LISTP 100,300 (return key)

Program lines IDO through 300 are listed to the printer.

Page 5-11

DeltaBASIC Reference Manual COMMANDS

LOAD {drv: }name{.typ){,S}

The LOAD command loads the named DeltaBASIC program frorn disk. The file name

can include a disk drive reference and file type. The S option is used to
load a source (ASCII) file. The defaults file types are BAS for non-source
files and SRC for source files.
Open files are closed before loading begins. Loading a non-source file clears
the data area of memory, thus destroying all previously defined variables.

Loading a source program also clears the data area, but the program area is
left intact, with the new program merged into the current program. In case
of duplicate line numbers, the old line is replaced by the new line.
Examples:

LOAD PAYMAIN (return key)

The program PAYMAIN.BAS (BAS is the default file type) is loaded into memory.

LOAD C: PAYMAIN,S (return key)

The source (ASCII) program PAYMAIN.SRC is loaded from drive C, merging with
the current program.

Pmze S-12

De1taBASIC Reference Manual COMMANDS

OFF {char-expr}

The OFF command returns control to the operating system after first closing
any open files. For computer systems using TurboDOS and CP/M 3.0, the
optional character expression specifies a command line to be executed upon

return to the operating system.

OFF can be used as program statement to terminate program execution. Unlike
the END statement, which returns to the command/program edit mode, OFF returns
to the operating system.

Example:

OFF (return key)

Operation returns to the operating system after closing any open files.
999 OFF "KEYSORT CUSMAS"

In CP/M 2.2 systems, the program terminates and returns control to the
operating system. In TurboDOS and CP/M 3.0 systems, the program terminates,
returns control to the operating system, and then begins execution of the
specified command line.

Page S-13

DeltaBASIC Reference Manual COMMANDS

RENAME (drv:)name l{.typ},name 2{.typ)

The RENAME command changes the name of the file specified by name 1 to the new
name specified by name 2. The file to be renamed must already exist and the
new name must not be the same as that of an existing file.
Example:

RENAME PAYNAS.BAS,PAYMAS.BAK (return key)

The file PAYMAS.BAS is renamed PAYMAS.BAK.

Page 5-14

DeltaBASIC Reference Manual COMMANDS

RUN

The RUN command executes the DeltaBASIC program currently in memory. Before
execution begins, the data area of memory is cleared and any open files are
closed.

Example:

RUN (return key)

Program execution begins at the first line of the current program.

Page 5-lS

DeltaBASIC Reference Manual COMMANDS

SAVE {drv: }name{.typ}{,S}

The SAVE command saves the DeltaBASIC program currently in memory storing it
on the disk in the specified drive and in a file of the specified name and

type. Certain words are reserved for use by DeltaBASIC and may not be used as
disk file names. For a list of these reserved words, see Appendix B. With
the S option, the program is saved in source (ASCII) form. The defaults file
types are BAS for non-source files and SRC for source files.
Examples:

SAVE D: PAYMAS (return key)

The program in memory is saved using the file name PAYMAS and type BAS on the
disk in D drive. Non-source form is used.

SAVE H0URS,S (return key)

The program in memory is saved on the default drive using the file name HOURS

and type SRC. Source (ASCII) form is used.

Page 5-16

DeltaBASIC Reference Manual STATEMENTS

Section 6. STATEMENTS

DeltaBASIC statements are the instructions used in a program to accomplish
such tasks as reading data, performing computations, or printing results. In
the command/program edit mode, a statement preceded by a line number becomes

part of the current program. Most statements can be executed directly by

entering the statement without a line number and pressing the RETURN key.

You can put more than one statement on a line, but such multiple statements
must be separated by a colon. The maximum line length is 240 characters.

Page 6-l

DeltaBASIC Reference Manual STATEMENTS

CHAIN {drv:)name{.BAS) {,FILES}{,var-list}

The CHAIN statement provides a way to pass execution from the program in
memory to a program on disk. It replaces the current program with the program

specified, then continues execution. The chained program must be in non-
source form (type BAS).

Files will be closed unless the FILES option is taken. All variables except
those in the variable list will be removed from the data area. When an array
name appears in the variable list, the entire array remains after chaining to
the new program.

Examples:

100 CHAIN ACTPAY.BAS,PAYDATE,CLIENT

The current program is replaced with the program ACTPAY.BAS from the default
drive. All open files are closed, and the variables PAYDATE and CLIENT are
preserved.

10 CHAIN E: ACTPAY,FILES

The current program is replaced with the program ACTPAY.BAS from drive E.
Open files are left open, but all variables are cleared.

Page 6—2

DeltaBASIC Reference Manual STATEMENTS

CLASE # file-ref: {IOERR line-mm)

or {EXIT line—num)

The CLOSE statement closes the file previously opened under the file reference
given. IOERR or EXIT provides a branch line number should an error occur.

It is very important to close files that are no longer in use. The CLOSE

statement provides this capability for individual files during program
execution. To close all open files at program termination, use the END or OFF

statement. GO END will take care of closing all open files after an

interruption. Remember, STOP does not close files.
Example:

20 CLOSE #1: IOERR lOó

P 0 0
lOó REM I/O ERROR PROCESSING

0 0 0

The file with file reference number l is closed. Should an I/O error occur,
execution will continue at line 100.

Page 6-3

DeltaBASIC Reference Manual STATEMENTS

DATA cnst-list

The DATA statement is used to create a data list within a program. This
internal data list is then used in conjunction with the READ statement to
assign data values to program variables.

After entering RUN or executing RESTORE, an internal data pointer is set to
the first constant of the first DATA statement. As READs are executed, the
data pointer will move through the constants in that line and to other DATA

statements as necessary, always keeping track of the next constant to be read.

The internal data pointer can be positioned at any DATA statement in the
program using the ON...RESTORE statement. (See ON...RESTORE, below.)

A DATA statement must be the first statement on a line and cannot be followed
by any executable statement on the same line. Remarks are permitted at the
end of a DATA line. (See REM, below.)

A null data entry leaves the corresponding variable unchanged. (See the
example below.)

Example:

10 READ NÁME$,RATE,TIME

0 D 0
20 READ NAME$,RATE,TIME

* O 0
30 DATA "sMITH,jIM",4.50,6.25,"mE,jANE",,12.00

When line 10 is executed, variable assignments are made as follows:

NAME$: SMITH,JIM
RATE : 4.50
TIME : 6.25

The data pointer will then point to D0E,JANE. When line 20 is executed, these
additional assignments will be made:

NAME$: D0E,JANE
TIME : 12.00

RATE remains 4.50 since a null entry appears in the DATA statement.

Page 6-4

DeltaBASIC Reference Manual STATEMENTS

DEF FNname{$}{(var-1íst))=expr

The DEF statement defines a user function that can be referenced by name in
the program, as follows:

FNnarne{$){(expr-1ist))

During execution, each expression in the optional expression List is evaluated
and its value passed to the corresponding variable in the DEF statement. The

expression in the DEF statement is then evaluated and the result is passed

back.

Expression list items must agree in number and type (numeric or character)
with the items in the DEF variable list. Functions can be either numeric or
character, but character functions must be indicated by the dollar sign (S) in
the function name. The function name contains from l to 8 alphanumeric
characters, the first character of which must be alphabetic. Certain words

are reserved for use by DeltaBASIC and may not be used as function names. For
a list of these reserved words, see Appendix B. Variables used in a function
are local to that function; i.e., are used only within that function.

A DEF statement must be executed before the user function is referenced in the
program. Once it is defined, it cannot be redefined by second DEF statement.
A function statement cannot include a reference to itself or refer to a
function that includes a reference to itself.
Examples:

10 DEF FND(S,D)=S*D

0 * »
30 DISTANCE=2*FND(SPEED,DURATION)

Assume SPEED is 30 and DURATION is 10. When line 30 is executed, the
following assignments are made:

S: 30
D: 10

FND is evaluated as 300 and passed back to the expression of line 30.

Evaluation is completed and the assignment made:

DISTANCE: 600

l0 DEF FNCI.ASS$(P$,N$)=P$&" "&N$

* * ¥
30 CLASS$=FNCLASS$(PREFIX$,NUHBER$)

Assume PREFIX$ is ART and NUMBER$ is 124A. When line 30 is executed, the
following assignments are made:

P$: ART
N$: 124A

Using these values, the user-defined function of line 10 is evaluated to ART
124A. This result is passed back to the character expression of Line 30,

Page 6—S

DeltaBASIC Reference Manual STATEMENTS

DIM var(m{,n,·..)) {,var(m(,n,.··})) {g·-·}
var$(m{,n,...)){*L) {,var$(rn{,n,...}){*L))
var$*L {,var$*L}

The DIM statement is used to assign space for numeric and character arrays in
the data area of memory, and to fix the maximum length of character variables.

The constants m,n,... are maximum dimension sizes and L is the maximum

character string length for a character array element.

Array subscripts begin with 1. Array variables can be dimensioned only once

in a program.

Example:

10 DIM SALES(10,1O),SAf.EM$(10)*30,TEMP$*lO

When executed, the following allocations are made:

SALES : two-dimensional numeric array of size 10 by 10
SALEM$: one-dimensional character array of size 10 by I;

each character element with length 30
TE!'ÍP$: single character variable with length 10

Page 6-7

DeltaBASIC Reference Manual STATEMENTS

END

The END statement is used to terminate a DeltaBASIC program. It closes all
files and returns DeltaBASIC to the command/program edit rnode.

Program exit should be through the END statement if you want to remain in
DeltaBASIC command/program edit mode afterwards. Terminating a program with
END (or OFF) is especially important to ensure that files otherwise left open

are properly closed.

Example:

9999 END

When program termination is required, statement 9999 is executed. All open

files are closed and DeltaBASIC enters the command/program edit mode.

Page 6-8

DeltaBASIC Reference Manual STATEMENTS

EXIT {IOERR line-mm} {,IOERR line—mm) (9···)
{DUPKEY line-num) {,DUPKEY line-num}
{NOKEY line-mm) {,NOKEY line-mm)
{EOF line-mm) {,E0F line-num)

The EXIT statement can be used with OPEN, READ, WRITE, REWRITE, and CLOSE

statements to provide branching when the specified errors occur. (See the
appropriate statements for more information concerning these errors.) The

EXIT statement can be accessed only by way of one of these I/O statements;
when otherwise encountered during execution, EXIT is ignored much as a REM

statement would be.

EXIT is especially useful when a number of I/O operations have the saíne error
processing lines. Each I/O statement would contain an EXIT line number

referring to the EXIT statement, which would in turn contain the line numbers

for the various error traps.

Examples:

10 READ #1,USING II: A,B EOF 100 IOERR 130

II FORM

...
0 0 0

lOó REM END-OF-FILE ERROR PROCESSING

105
...

0 0 O
130 REM I/O ERROR PROCESSING
135

...
EXIT is not used in this program segment. If an end-of-file error occurs
while file #1 is being read, the program branches to line 100 for recovery
processing. If an I/O error occurs, the program branches to line 130.

Yow consider an equivalent method using the EXIT statement.

10 READ #I,USING II: A,B EXIT 20
11 FORM

...20 EXIT EOF 1OO,IOERR 130

0 9 0

lOó REM END-OF-FILE ERROR PROCESSING
105

...
0 0 0

130 REM l/O ERROR PROCESSING
135

...
An error in the READ statement of line 10 causes execution to divert to the
EXIT statement of line 20. Here the various error conditions are handled.
Besides making the READ statement simpler, the EXIT statement can be used by

other I/O statements for error branching to line 20.

Page 6-9

DeltaBASIC Reference Manual STATEMENTS

FUR var=num-expr I TO nuin-expr 2 {STEP num-expr 3}

0 e D

included DeltaBASIC staternents
e e *

NEXT var

The FOR/NEXT statements set up a loop that performs the included DeltaBASIC

statements one or more times, depending on the beginning value of the index
variable (num-expr I), ending value (num-expr 2), and the step size (nurn-expr
3). If not specified, the step size is l.
The included DeltaBASIC statements will be executed at least one time before
termination conditions are checked. The "exit" value of the index variable
will be the first value that meets or exceeds num-expr2.

FOR/NEXT loops can be nested to a level of 8 deep.

Exiting a FOR/NEXT loop before normal termination is allowed but not
recommended. Repeated exits of this type will cause the maximum FOR/NEXT

level to be exceeded.

Examples:

10 FOR INDEX=1 to 20 STEP 2

20 PRINT INDEX
30 NEXT INDEX

These FOR/NEXT statements cause line 20 to be executed 10 times, printing the
values from 1 to 19 in steps of 2. The "exit" value of INDEX is 21.

Page 6-10

DeltaBASIC Reference Manual STATEMENTS

FORM specification list
The FORM statement gives the format specification for PRINT, READ, WRITE, and

REWRITE statements. The specification list can consist of any combination of
the following specifications, separated by commas:

"char-cnst"

Character constant: the character string between the quotation marks is
output at the current position. Allowed in PRINT and WRITE only.

C w

Character field: the matching character value is treated as a character
string that is left-justified in a blank field of width w.

CUR(m,n)

Cursor: the next value will be output at line m and position n. Allowed in
PRINT only.

N w{.d)

Numeric field: the matching numeric value is treated as a character string of
width w, including d decimal positions. For output, the width must include
both a sign and decimal point position. For input, an explicit decimal
overrides the implicit decimal position d.

PI) w.d

Packed decimal: the matching numeric value is given in packed decimal format.
For output, the value is rounded to d decimal places, then packed two binary
coded decimal digits per position and written right-justified into a field of
width w. Only the low nibble of the leftmost position contains a digit. The

high nibble is 0000 binary for a positive value and 1000 binary for a
negative. As with zone decimal, no explicit decimal is written. For input,
the value is read from a field w wide and then given d decimal positions.
Packed decimal is not allowed in the PRINT statement.

PIC(char-str)

Picture: the matching numeric value is written into a field with width and

composition given by the character string. Valid characters are described
below:

#

Number digit: always replaced by a digit.
Z

Leading zero: any leading zero replaced by a blank.

Page 6-11

De1taBASIC Reference Manual STATEMENTS

$

Leading dollar sign: dollar sign placed to the left of the first nonzero
digit.

+

Leading plus sign: plus sign placed to the left of the first nonzero
digit for a positive value, or a minus sign placed to the left of the
first nonzero digit for a negative value.

Leading negative sign: blank placed to the left of the first nonzero
digit for a positive value, or minus sign placed to the left of the first
nonzero digit for a negative value.

Blank (ASCII space)

A blank is placed in the field.

?

Comma: a comma is inserted in the field if a nonzero digit precedes it;otherwise, the comma is replaced with a blank.

0

Decimal point: a decimal point is placed in the field. Only one decimal
point can appear in the character string.

+

Trailing plus sign: a plus sign is placed to the right of the last digit
for a positive value, or a minus sign is placed to the right of the last
digit for a negative value.

Trailing minus sign: a blank is placed to the right of the last digit
for a positive value, or a minus sign is placed to the right of the last
digit for a negative value.

CR or
DB

Credit or debit code: CR or DB is placed to the right of the last
nonzero digit for a negative value, or two blanks are placed to the right
of the last digit for a positive value.

POS n

Position: the next value will be input or output at position n.

Page 6-12

DeltaBASIC Reference Manual STATEMENTS

SKIP n

Skip lines: the next n lines are skipped. Allowed in PRINT only.

X n

Skip positions: the next n positions are skipped.

ZD w.d

Zone decimal: the matching numeric value is given in zoned decimal format.
For output, the value is rounded to d decimal positions and written in ASCII

without a decimal point, right-justified into a field of width w. For a

negative output value, the high bit of the leftmost position is set to 1. For

input, the value is read from a field w wide and then given d decimal
positions. Zone decima1 is not allowed in the PRINT statement.

Note: Specifications N, C, ZD, and PO can be preceded by a constant
replication factor and an asterisk (*); for example, 2*N 6.2 will set up two

contiguous numeric fields of width 6 with 2 decimal positions.

A FORM statement must be the first statement on a line and cannot be followed
by any executable statement on the same line. Remarks are permitted at the
end of a FORM line.
A dollar sign ($), leading plus (+), or leading minus (-) character cannot
follow a #.

Examples:

20 Print #255,USING 21: A,B$
21 FORM "A=",N 9.2,X 2,C 4

Assume A is 12.258 and B$ is BAJ.. When line 20 is executed, the printed line
would appear as follows:

A= 12.26 BAL

·...)....1....)....2
O O

Now consider the effect of using a PIC specifier in place of N 9.2 in the
above example:

PIC specification Value of A Printed Result

######.## 12.258 000012.26
ZZZZZ#.## 12.258 12.26
ZZZZZ#.## -12.258 -

12.26
+++++#.## 12.258 +12.26
+++++#.## -12.258 -12.26
-----#.#// 12.258 12.26
-----it## -12.258 -12.26
$$$$$#.#//CR 12.258 $12.26
$$$$$#.##CR -12.258 $12.26CR

Page 6-13

,
DeltaBASIC Reference Manual STATEMENTS

Here is an example using zoned decimal format:

30 WRITE #3,USING 31: A,B$

31 FORM ZD 5.2,POS 9,C 10

Assume A is 2.528 and B$ is ABCD. When line 30 is executed, the written
record would appear in hexadecimal as follows:

VALUE +0 O 2 5 3 A B C D

HEX 30 30 32 35 33 20 20 20 41 42 43 44 20 20 20 20 20 20...
POS

—- -- -- --
5 — -- -- — 10 —— — -- --

15 —- -- --
SPEC ! ZD 5.2) POS 9 —>) C 10

To see how packed decimal format works, consider the following data record and

program segment:

VALUE +0 02 58 -O 02 58 +0 O 2 5 8 -O O 2 5 8

HEX 00 02 58 80 02 58 30 30 32 35 38 bo 30 32 35 38
pos

-- -- -- --
5

-- -- -- --
10

-- -- -- --
15

-- -- --
spec pd 3.lj)pd 3j l zd 5.1 !) zd 5.1 !

40 read #6,using 41: a,b,c,d
41 form 2*pd 3.1,2*zd 5.1

When line 40 is executed, the values assigned are as follows:

A: 25.8
B: -25.8
c: 25.8

"

D: -25.8

Page 6—14

DeltaBASIC Reference Manual STATEMENTS

GOSUB line—mm

The GOSUB statement branches to a subroutine at the specified line number. A

RETURN in the subroutine branches back to the statement immediately following
the GOSUB.

GOSUBs can be nested up to 20 deep.

Exiting a subroutine without using RETURN is allowed but is not considered
good practice since it leaves the nested level incorrect. Repeated exits of
this type will cause the maximum GOSUB level to be exceeded.

Example:

10 GOSUB 50
20

...
O e 0

50 REM SUBROUTINE

e 0 0
60 RETURN

When line 10 is executed, the program branches to the subroutine at line 50.
The RETURN at line 60 branches back to line 20.

Page 6-lS

DeltaBASIC Reference Manual STATEMENTS

t

G(YID líne—num

The GOTO statement branches to the specified line number.

Example:

10 GOTO 50

0 e 0
50

...
When statement 10 is executed, the prograrÍí branches to line 50.

Page 6-16

DeltaBASIC Reference Manual STATEMENTS

IF log—expr THEN line—mm or statement {ELSE line—mm or statement}

The IF statement branches or executes a statement depending on whether the
logical expression evaluates to true or false. If true, execution continues
at the line number or statement following THEN. If false, execution continues
at the next statement in the program or, if the ELSE option is used, at the
line number or statement following the ELSE.

Examples:

10 IF A>=B+C THEN B=Á
20

..
When line 10 is executed, A>=B+C is evaluated. If A is greater than or equal
to the sum of B and C (making the the expression true), then B is assigned the
value of A. If A is not greater than or equal to the sum of B and C (making

the expression false), then the value of B is not changed. In both cases,
execution continues at line 20.

10 IF NAME$<>TEMP$ AND A<B THEN A=B-C ELSE 100
20

...
0 0 0

100
...

If NAME$ is not equal to TEMP$ and A is less than B, then the program assigns
the value of expression B-C to A and continues at line 20; otherwise, itbranches to line 100.

Page 6-17

DeltaBASIC Reference Manual STATEMENTS

INPUT {"char—str": } var—list

The INPUT statement allows the operator to enter data values from the keyboard
during program execution. When the INPUT statement is executed, a question
mark (?) is displayed as a prompt unless the optional character string
(message prompt) is included. The user then enters the data values (separated
by commas) that are to be assigned to each variable in the variable list, and

presses the RETURN key to continue program execution.

If the correct number of data values is not entered, a question mark (?) is
displayed and INPUT continues. If a variable/data type mismatch occurs, a
REDO message is displayed and INPUT must be redone from start.
To enter leading blanks with a character string, enclose them within the
quotation marks.

Example:

10 INPUT "ENTER NAME, AMOUNT: ": NAME$,AM0UNT

When line 10 is executed, the message is displayed and execution pauses while
the name and amount are entered, separated by a comma:

ENTER NAME, AMOUNT: JOE SMITH,1200 (return key)

The following assigments are made:

NA9IE$: JOE SMITH
AMOUNT : 1200

Page 6-18

DeltaBASIC Reference Manual STATEMENTS

{LET) num—var=num—expr
{LET) char—var {(num—expr l:num—expr 2))=char-expr

The LET stateinent assigns the value of an arithinetic or character expression
to the specified variable.

For the character LET, the optional substring specification can be used to
delete, replace, or insert characters in the character variable, depending on

the optional parameters, as follows:

nurn-expr 1'<= num-expr'2

Character positions from nurn-expr 1 through nurn-expr 2 are replaced by the
character expression. The number of replacement characters can be less than,
equal to, or greater than the number being replaced.

num-expr1 > num—expr 2

The character expression is inserted before the character position given by

num-expr l. In this case, num-expr 2 is ignored.

Examples:

10 A=2*B
20 C$=ADRS$&" "&ZIP$

Assume B is 6, ADRS$ is "lOó MAIN sr', and ZIP$ is "29012". When lines 10 and
20 are executed, the following assignments are made:

A : 12
C$: 100 MAIN ST 29012

To see how LET can delete characters, asswne A$ in the following statements is
ABCD.

10 A$(2:2)=""

When executed, line 10 will delete the letter B (the second character
position) from A$, so that A$ becomes ACD.

Characters can be substituted in a similar manner:

ID A$(2:3)="123"

This statement replaces BC with 123, so that A$ becomes A123D.

Now consider a substring assignment to insert characters.

10 A$(2:!)="XY"

Since nurn-expr 2 is less than nurn-expr l, num-expr 2 is ignored and the
characters XV are inserted before B. A$ becomes AXYBCD.

Page 6-19

DeltaBASIC Reference Manual STATEMENTS

LINPUT {"char-str": } char-var

The LINPUT statement assigns an entire line eritered from the keyboard to the
specified character variable. Unlike the regular INPUT statement, LINPUT

reads a comma as part of the data entered rather than as a data separator. A

question mark (?) is displayed as a prompt unless the optional character
string (message prompt) is included.

Example:

10 LINPUT NAME$

This statement assigns keyboard-entered characters to NAME$ until the RETURN
key is pressed. If the line entered is

SMITH,J0E Q. (return key)

then the following assignment is made:

NAME$: SMITH,J0E Q.

Page 6-20

DeltaBASIC Reference Manual STATEMENTS

ON ATTN GOTO line-mm
IGNORE

The ON ATTN statement selects alternate ways of handling program interruptions
caused by pressing the ATTN key. Normally the program is terminated and the
command/program edit mode is entered. Using ON ATTN GOTO will instead cause
branching to the specified line number should the ATTN key be pressed. The ON

ATTN IGNORE form will result in the ATTN key being ignored altogether.

The ON ATTN selection can be turned off by using:

ON ATTN GOTO O

Example:

10 ON ATTN GOTO IDO
20

...
0 0 e

lOó) ATTN RECOVERY PROCESSING

If the operator presses the ATTN key at any time after line 10 is executed,
the program braches to line lOó for recovery processing.

10 ot: ATTN IGNORE

* P 0

Following execution of line 10, pressing the ATTN key will have no effect on
program operation.

Page 6-21

DeltaBASIC Reference Manual STATEMENTS

ON Error Condition GOTO líne-num

where Error Condition can be CONY, ERROR, OFLOW, UFLOW, SOFLOW, or ZDIV.

The ON Error Condition statement sets the line number for an error trap. If
that error occurs, the program branches to the specified line number for
recovery processing. Error conditions result from a variety of causes. See

Appendix A for more information.

The error trap can be removed by using:

ON error condition GOTO O

Example:

10 ON ZDIV GOTO lOó

0 0 0
30 B=12/A

35 A=A+1

0 0 D

lOó B=1E+60
105 GOTO 35

Assume A is O. When line 10 is executed, the division-by-zero error trap line
is set to lOó. When a zero division error occurs in line 30, the program
branches to line 100, where a recovery procedure is executed.

Pzaoe 6—22

DeltaBASIC Reference Manual STATEMENTS

ON num—expr GOSUB line—mm 1{,line—num 2,...}

The ON..,,G0SUB statement causes a branch to one of several lines, depending on

the valué of the numeric expression. The value is first rounded to an
integer, then if it is 1, the program branches to line-mm I; if 2, to line-
num 2; etc. An invalid expression value causes execution to continue at the
statement following the ON...GOSUB.

After branching to a subroutine, subsequent execution of a RETURN branches
back to the first statement following the ON...GOSUB. As with a standard
GOSUB, leaving the subroutine other than by a normal RETURN statement should
be avoided.

Example:

10 ON 2*A-l GOSUB 20,30,40
15 A=A+1

2¿)'ij$=HI$

25 RETURN
30 B$=MED$
35 RETURN

40 B$=LOW$

45 RETURN

?

Assume A i's 2. When line 10 is executed, the numeric expression 2*A-l
evaluates to 3 and the program branches to line 40. At line 45, the program
branches back to line 15.

Page 6-23

DeltaBASIC Reference Manual STATEMENTS

ON num—expr GOTO line—mm l{,line—num 2,...}
The ON...GOTO statement causes a branch to one of several lines, depending on
the value of the numeric expression. The value is first rounded to an
integer, then if it is 1, the program branches to line-num l; if 2, to line-
num 2; etc. An invalid expression value causes execution to continue at the
statement following the ON...GOTO.

Example:

10 ON 3*(A+l)/5 GOTO 20,30,40
15 A=A+1

2á'á$=HI$
25 GOTO 50
30 B$=MED$

35 GOTO 50
40 B$=LOW$
50

...
Assume A is 2. When line 10 is executed, the numeric expression 3*(A+l)/5
evaluates to 1.8, which is rounded to 2. The program therefore branches to
line 30.

Page 6-24

DeltaBASIC Reference Manual STATEMENTS

ON num—expr RESTORE line-mm l{,line-num 2,...)

The ON...RFSTORE statement sets the internal data pointer to one of several
lines, depending on the value of the numeric expression. The value is first
rounded to an integer, then if it is I, the internal data pointer is restored
to line—num l; if 2, to Line-num 2; etc. An invalid expression value results
in no RESTORE being executed.

Example:

ID ON 3*(A+I)/5 RESTORE 20,30,40
15 A=A+1

0 O ¥
20 DATA 7,8,9,0
30 DATA 4,5,6,0
40 DATA 1,2,3,0

Assume A is 2. When line 10 is executed, the numeric expression 3*(A+l)/5
evaluates to 1.8, which is rounded to 2. The data pointer is set to the firstdata value on line 30.

Page 6-25

DeltaBASIC Reference Manual STATEMENTS

OPEN #fiíe—ref: char-expr,fi1e attributes {IOERR line-mm}

or {EXIT line-mm)

(Open a disk file)
The OPEN statement opens a disk file for input, output, or update access. The

file reference number can be any integer from l through 254. (File #0 is
reserved for regular display terminal operation and #255 is reserved for
printer operation. These special file references do not require OPEN statements.)"

The disk file ID is specified by char-expr and includes the following
parameters (separated by commas):

(i) NAME={drv: }name{.typ} -- required data file name.

(ii) NEW
-— used only if a new file is being created.

(iii) RECL=record length (1-2048 bytes) -- required if NEW specified..

(iv) KEYL=key length (1-32) -- required if NEW specified and the new

file is to be keyed.

(V) KEYP=key position -- required if NEW specified and the new file
is to be keyed.

(vi) RANDOM

--
used if a keyed file is to be accessed randomly by key

or if records are to be added to a keyed file.
(vii) SHR

—— required if the file is to have a shared status in a
multi—user environment.

The file attributes include the following parameters (each preceded by a
comma):

(i) KEYED if the file is to be accessed by key or RELATIVE if the
file is to be accessed by record number. If neither KEYED nor
RELATIVE is specified, then sequential access is selected by

default.

(ii) INPUT if the file mode is input (reads only allowed) or OUTPUT

if the file mode is output (writes only allowed). If neither
INPUT nor OUTPUT is specified, then update mode is selected
(both reads and writes allowed).

(iii) BEGIN if sequential/output access is to begin at record one
rather than at the end of the file.

If an I/O error occurs and IOERR line-num is specified, then execution
continues at the line number given. If EXIT line-num is given instead, the
EXIT statement at the specified line is used. If neither IOERR nor EXIT line-
num is specified, an error interruption results.

For more information about disk file I/O, see Appendix C.

Page 6-26

I)e1taBASIC Reference Manual STATEMENTS

Examples of disk file openings:

LO OPEN #1: "NAM=PAYTRN.DAT,NEW,RECL=200",OUTPUT ÍOERR 200

Line 10 creates the new file PAYTRN.DAT with a record length of 200. Since
neither KEYED nor RELATIVE access is specified, records will be arranged
sequentially, in the order they are written. The first record written will be

record I. The OUTPUT attribute prescribes that file reads are prohibited. If
an I/O error occurs, execution will continue at line 200.

10 OPEN #1: "NAME=PAYTRN.DAT",0UTPUT

Since neither I"EYED nor RELATIVE is specified, access will be sequential.
With the OUTPUT attribute, file reads are prohibited. Since BEGIN is not
specified, new records will be added to the end of the file. This file
opening would be used to add records to an existing file.
10 OPEN #1: "NAMF.=PAYTRN.DAT" EXIT lOó

Since neither KEYED nor RELATIVE is specified, access will be sequential.
Without INPUT or OUTPUT specified, both file reads and rewrites are permitted
(update mode). The first read will access record I. Subsequent reads will
access the remainder of the file in a sequential manner (record 2, record 3,

etc., to the end-of-file). If an error occurs, the EXIT statement at line 100

is referenced for error recovery processing. This file opening would be used

to update records in the file PAYTRN.DAT.

10 OPEN #1: "NAM=PAYTRN.DAT",RELATIVE,INPUT

Record file PAYTRN.DAT is opened for read-only access by relative record
number. Requesting a record beyond the current end of file results in an
error.

10 OPEN Ill: "NAME=pAMAs.DAT,NEw,REcL=3Q0,KEYL=l0,KEYp=1,RAND0M",KEyED,0UTpUT

This file opening would be used to build a new keyed file. File PAYPIAS.DAT is
created with record length 300. Key length is 10 and the key begins in
position I. Since OUTPUT and RANDOM

are specified, only new records can be
added to the file.
lCl OPEN #1: "NAME=pAmAs.DAT,RANDo}í",KEYED,INpUT

Keyed file PAYMAS.DAT is opened for random access by key. Since INPUT is
specified, only reads are permitted. This file opening would be used to
obtain data randomly by key.

10 OPEN #1: "!iAM=pAYMAs.DTA",KEYED

Keyed file PAYMAS.DAT is opened for sequential access by key. Since neither
INPUT nor OUTPUT is specified, both reads and rewrites are permitted (update
mode). This file opening could be used to update records in order by key.

Page 6—27

DeltaBASIC Reference Manual STATEMENTS

OPEN Kile-ref: char-expr {IOERR Iíne-num)

or {EXIT line-mm}

(Open a vork station file)
The OPEN statement opens a work station file for update access. The file
reference number can be any integer from 1 through 254. (File #0 is reserved
for regular display terminal operation and #255 is reserved for printer
operation. These special file references do not require OPEN statements.)

The file ID is specified by char-expr and includes the following parameters
(separated by commas):

(i) WS

-- required.

(ii) NAME={drv:)name.FRM
-- required screen format file name.

(iii) RECL=constant -- required.

The file specified must be of type FRM and created by the screen design
utility program SDU.COM. The record length must be greater than or equal to
the length of the longest screen input or output buffer in the screen format
file.
If an I/O error occurs and IOERR 1ine-num is specified, then execution
continues at the line number given. If EXIT line-num is given instead, the
EXIT statement at the specified line is used. If neither IOERR nor EXIT line-
num is specified, an error interruption results.
When a work station file is opened, the display file (#0) automatically
closes. The INPUT and PRINT statements cannot be used with the display
terminal until the work station file is closed.

For more information about work station files, see Appendix D.

Examples:

10 OPEN #1: "WS,NAME=PÁY.FRM,RECL=200"

This statement closes the display station file (#0) and opens work station
file #1. PAY.FRM contains the screen formats to be used. The maximum input
or output buffer length is 200, which requires the record length to be set to
200. Screen output and keyboard input are performed using READ #1.../WRITE
#1... statements. If work station file #1 is later closed, the display
station file #0 will automatically reopen.

Page 6-28

DeltaBASIC Reference Manual STATEMENTS

OPTION {PRTZO II}, (,SPREC or LPREC), {,PTRSET s,l,n,o), {,PTRSK1 s,char-

expr 1, char—expr 2)

The OPTION statement provides the user the choice of certain options:

(i) PRTZO n: print zone width of n (l to BO) characters (default width is
16)

(ii) SPREC: short precision in ca1culation--8 digits (default is SPREC)

LPREC: long precision in ca1culation--16 digits.

(iii) PRTSET s,l,n,o: Printer forms control, where:

s=0N: automatic form feed on page overflow
s=OFF: automatic form feed suppressed

1=line length: O indicates no change from the previous setting (default
value is 132)

n=1ines per page: O indicates no change (default value is 66)

o=page overflow line: O indicates no change (default value is 64).

(iv) PRTSET s,char-expr l,char-expr 2: Printer mode control for TurboOOS

operating system only, where:

s=D
... printing is direct

s=S
... printing is to spooler

s=C
... printing is to console

s=U
...

unchanged

char-expr 1=Printer or Spooler assignment (A-F',U)

char-expr 2=Spool drive (A-P,U)

Options do not take effect until the statement is executed.

Example:

10 OPTION PRTZO 20,LPREC,PTRSET ON,0,58,52,PRTSET S,"A","E"

When line 10 is executed, the following options are selected:

Print zone width is set to 20.
Long precision arithmetic is selected.
Printer will automatically form feed on page overflow, line length is

unchanged, lines per page is set to 58, and page overflow point is
set at line 52.

Output to printer is routed to spooler A on drive E (TurboDOS only).

Page 6-29

DeltaBASIC Reference Manual STATEMENTS

PRINT {#255:) list {; or .)

(Unformatted PRINT)

The unformatted PRINT statement outputs the specified list to the display
terminal or, if #255 is used, to the printer. The list can consist of any
combination of the following data items:

arithmetic expressions
character expressions
TAB({1,)p) -- moves to position p or, optionally, to line 1 position p

NEWPAGE

--
sends clear screen command to display or new page command

to printer
The items must be separated by a comma to left-justify data items into columns

or zones (see OPTION, above) or by a semicolon if data items are to be

adjacent on the line. Ending the list with a comma or semicolon inhibits a

final carriage and line feed.

Examples:

10 PRINT "TODAY ";8$;" IS";A;" YEARS OLD."

Assume A is 10 and B$ is ROBERT. When line 10 is executed, the following line
is output to the display terminal:

TODAY ROBERT IS 10 YEARS OLD.

·...!....1....)....2....)....3
O O O

Note that spaces between words must be supplied in the character expressions.

10 FOR I=l TO 4

20 PRINT E255: I,I1*I
30 NEXT I

This short program outputs the following multiplication table (arranged in 16-
position columns) to the printer:

1 l
2 4

3 9
4 16

....!....1....)....2
O O

Page 6-30

DeltaBASIC Reference Manual STATEMENTS

PRINT {f255,)USING line-mm: expr-list

(Formatted PRINT)

The formatted PRINT statement outputs the expression list to the display
terminal, or if //255 is specified, to the printer, using format specifications
given by the FORM statement at the USING line number. (Sec the explanation of
FORM statements above.) The expression list consists of numeric or character
expressions separated by commas.

Example:

10 PRINT USING li: B$,2*A

II FORM "SERIAL NO. ",C lO,X 2,"WEIGHT: ",N 8.2

Assume A is 12.347 and B$ is A1O-1897. When line 10 is executed, the
following is output to the display terminal:

SERIAL NO. A1O-1897 WEIGHT: 24.69
·...)....1....|....2....)....3....)....4

O O O O

Modifying line 10 as shown below will direct output to the printer instead.

10 PRINT #255,USING li: B$,2"A

Page 6-31

DeltaBASIC Reference Manual STATEMENTS

READ var—list

(Read internal data)

This READ statement assigns the named variable a data value from the current
position of the internal data pointer. The data pointer is then advanced to
the next data value. (See the DATA statement above.)

Example:

10 READ NAME$,A?40UNT

* 0 P
50 DATA JOHN JONES,I0.50,JANE SMITH,8.40

Assume the data pointer is set to JOHN JONES. Line ID makes the following
assignments:

NAME$: JOHN JONES
AMOUNT: 10.50

The data pointer then advances to JANE SMITH.

Page 6-32

DeltaBASIC Reference Manual STATEMENTS

READ #file—ref,USING Iíne—num {,KEY=char—expr) : var-list {IOERR line-mm}
{,KEY>=char-expr) {NOKEY line-mm)
{,REC=num-expr) {EOF line—mm)

or {EXIT line-mm)
(Read a disk file)
This READ statement reads data from the disk file specified by the file
reference number. Variables separated by commas in the variable list are
assigned values from the current record of the file, using the specifications
in the FORM statement given by the USING line number.

KEY=char-expr specifies that the record with the given key be read. If the
record is not found and NOKEY is specified, execution continues at the NOKEY

line number; otherwise, an error is reported. The file must be open for
keyed-random/input or keyed-random/update access.

KEY>=char-expr specifies that the first record with a key greater than or
equal to the given key be read. The file must be open for keyed-
sequential/input or keyed-sequentia1/update access.

REC=num-expr specifies that the record with the given record number be read.
The file must be open for relative/input or reiative/update access.

Reading a non-keyed file sequentially results in the next record being read
until an end of file indication is encountered. If a keyed file is read

sequentially, the records are taken in order by key until all sorted keys are
read (see KEYSORT utility, Section 8). In either case, if an EOF line number

is given, the program will then branch to that line; otherwise, an error
results. IOERR, NOKEY, and EOF errors can be trapped at the specified line
numbers, or an EXIT statement can be used.

Examples:

10 READ #1,USING 15,KEY="PENCIJ.": COST NOKEY 100 IOERR 200
15 FORM POS 1O,ZD 7.2

0 0 e
100 REM NOKEY ERROR PROCESSING

e 0 0

200 REM I/O ERROR PROCESSING

Assume file #1 is open for keyed/random access. When line 10 is executed,
file #1 is read using the key PENCIL. If the record is found, the stored
value is assigned to COST. If no key is found, the program branches to line
100. Should an I/O error occur, execution will continue at line 200.

10 READ #15,USING IS: KIND$,SIZE EOF 100
15 FORM X 2,C lO,X 6,PD 4

0 * *
lOó REM END-OF-FILE ERROR PROCESSIXG

Assume file #15 is open for non-keyed sequential access. When line 10 is
executed, the next record of file #15 is read and the stored values are
assigned to variables KIND$ and SIZE. If the end-of-file is encountered,
execution continues at line 100.

Page 6-33

DeltaBASIC Reference Manual STATEMENTS

READ #file—ref,USING line—mm: var—list

(Read a work station file)
This READ statement reads data from a work station file. In this case, the
only data record is the screen input buffer. The USING line number gives the
F0R7'Í statement that describes how the variables are read. When a work

station read is executed, the user enters data into the fields displayed on
the screen. Pressing the return key or a special function key enters the
screen data into the appropriate variables, and execution continues at the
next statement.

Whenever a work station file is open, INPUT and PRINT cannot be used with the
display terminal.

The following special keys are activated while the work station file is open:

"L Moves the cursor one character to the right.
"H Moves the cursor one character to the Left.
^G Deletes one character to the right.

DEL Deletes one character to the left.
"I Moves the cursor to the next field.
^Z Display field help message if defined. See Note I below.

LINE FEED Moves the cursor to the next field with blank or zero fill.RETURN Enters the screen data.
FI,F2,... (Function keys) Enters the screen data. See Note 2 below.

Note I: The field message facility requires that a message file of the same

name as the screen and type of MSG be present on the default disk drive.
Pressing the "Z key displays the corresponding field message in the message

file. Pressing "Z a second time displays the global message for the same

file. At either point, pressing the space bar returns to the data entry
screen. The field message file is created with the GENMSG utility. (See

UTILITY PROGRAMS, Section 8.)

Note 2: After returning to DeltaBASIC, the numeric function CMDKEY can be

used to determine the last key pressed. (See INTRINSIC FUNCTIONS, CMDKEY, in
Section 7.)

Examples:

30 READ #3,USING 31: NAME$,ADRS$,CITY$,ZIP$,BAT.ANCE

31 FORM 3*C 30,C 5,N 8.2

Assume file #3 is open as a work station fil-e. After line 30 is executed, the
user makes changes to the data items on the screen. The work station input
buffer is updated to reflect this data entry. After the RETURN key is
pressed, the work station input buffer is read and assignments are made to the
four variables according to the FORY specification in line 31.

Page 6-34

DeltaBASIC Reference Manual STATEMENTS

REM

REM is a non—executing statement that is used to include remarks or other
documentation in a program. The length of a remark is limited by the total
length of the line on which it is found. The REM statement must be the last
statement on a line.
The special character can also be used for including comments in a program.

It is not actually treated as a DeltaBASIC statement but rather as an end-of-
line blanking character--anything entered beyond the will be ignored by the
statement processor. While can appear at the beginning of a line, it cannot
appear following a colon used as a multi—statement separater.

Example:

10 REM THIS IS A CONÍENT

* e 0
20) THIS IS ALSO A COMENT

0 P 0
30 C0UNT=COUNT+I) A COPMENT CAN BE HERE, TOO.

Page 6-35

DeltaBASIC Reference Manual STATEMENTS

RESET

The RESET statement performs a disk reset to allow diskettes to be changed.

Open files are not closed.

Example:

10 RESET

Nhen line 10 is executed, the disk system is reset.

PaRe 6-36

DeltaBASIC Reference Manual STATEMENTS

RFSTURE

The RESTORE statement moves the internal data pointer to the first data value
of the first DATA statement in the program.

Example:

10 RESTORE

0 0 $
20 READ A,B

0 0 4

lOó DATA 12,14
200 DATA 14,16

Line 10 sets the data pointer to 12 in line lOó. The READ statement of line
20 will then make the following assignments:

A : 12
B : 14

Page 6-37

De1taBASIC Reference Manual STATEMENTS

RETURN

The RETURN statement branches back from a subroutine to the main program
Execution continues at the next statement after the GOSUB that called the
subroutine.

Example:

10 GOSUB 50
20

...
0 0 *

50 REM SUBROUTINE

e 0 *
60 RETURN

When line 10 is executed, the program branches to the subroutine at line 50.
The RETURN at line 60 branches back to line 20.

Page 6-38

DeltaBASIC Reference Manual STATEMENTS

REm:TE #file—ref,USING line-mm: expr-líst {IOERR line-mm)

or {EXIT line-num)
(Rewrite a disk file)
This REWRITE statement rewrites a disk record that has previously been read.
Expressions are evaluated then rewritten into the disk record using the format
given by the FOR9! statement at the specified USING line number. IOERR or
EXIT provides a branch line number should an error occur.

REWRITE is useful for updating records in a disk file. All or part of the
last record read can be rewritten.

The file must be open in update mode; otherwise an error occurs. In addition,
the last operation to the file must have been a read.

When rewriting a keyed file, an error occurs if the key field is changed.

Example:

30 READ #3,USING 35: A,B,C
35 FORM 3*PD 4.1
40 C=A+B+C
50 REWRITE #3,USING 55: C EXIT lOó
55 FORM POS 9,PD 4.1

0 0 e

lOó EXIT IOERR 200

0 0 $
200 REM I/O ERROR PROCESSING

Assume disk file #3 is open for keyed-sequentia1/update access. When line 30

is executed, data values A, B, and C are read from the record of the next key

in the disk file. C is then re-computed (line 40) and rewritten to the
original record (line 50). Fields for values A and B on the record are not
changed. The EXIT line number (lOó) will be used if an error occurs. If an
I/O error has occured, the program will then branch to line 200.

Page 6-39

DeltaBASIC Reference Manual STATEMENTS

REWRITE #file-ref,US1NG 1ine-num{,INDIC char-expr): expr-líst {IOERR line-mm)

or {EXIT line-num)

(Rewrite for a work station file)
This REWRITE statement rewrites data and attributes to a work station record
that has previously been read. It is useful for updating a screen when only
certain fields need changing. Expressions are evaluated then rewritten into
the work station output buffer using the format given by the FORM statement at
the specified USING line number.

The optional INDÍC parameter is used to control visual and data entry
indicators specified when the work station file is created. Characters in the
INDIC character expression correspond positionally to indicators 01 to 99.
The first character of the expression controls indicator 01. A character I
sets indicator Dl to on while a character O sets it to off. The second

character controls indicator 02 and so forth to 99. Indicators are
initialized to off when the work station file is opened and remain off unless
set on with INDIC. When INDIC is not used, indicators remained unchanged.

For REWRITE, only fields with the output attribute conditioned by an indicator
will be rewritten and then only if that particular indicator is turned on.
Also, no screen clear is issued before the screen is rewritten.

IOERR or EXIT provides a branch line number should an error occur. An error
occurs if the last operation to the work station file was not a READ.

Example:

20 WRITE #I,USING 25,FORMAT "CMM-OO1",INDIC "IQ": CNAME$,CZIP$,STAT$

25 FORM C 30,C 5,C I
30 READ #1,USING 35: CNAl'tF.$,ZIP$,STAT$

35 FORI'Í C 30,C 5,C l
40 IF STAT$="A" OR STAT$="I" OR STAT$="D" THEN 70
50 REWRITE #1,USING 55,INDIC "11": " "
55 FOR9Í POS 36,C 1

60 GOTO 30
70

...
Assume work station file Ill is open and screen CM-OOl consists of three
update fields: CNAXE$, CZIP$, AND STAT$. Further, assume only the following
attributes are conditioned by indicators:

FIELD ATTRIBUTE INDICATOR

STAT$ Output 01
STAT$ Position 02

When line 20 is executed, the screen is cleared and the screen format C6M-OOl

is displayed. Since attribute OI is set on, the STAT$ field will be output.
When line 30 is executed, screen input is accepted. Note that since indicator
02 is off, the cursor will appear at field CNAME$, the first field on the

screen. When data entry is complete, the operator presses the RETURN key and

execution continues at line 40. If STAT$ is a valid character (A, I, or D),
the program continues at lirie 70. Otherwise, line 50 causes a rewrite and

PaRe 6-40

DeltaBASIC Reference Manual STATEMENTS

sets indicators DI and 02 on. Since only the STAT$ output field is
conditioned by an indicator, it is rewritten while all other fields will
remain unchanged. Because indicator 02 is turned on, the cursor will be

positioned on the STAT$ field for the next read.

Page 6-41

DeltaBASIC Reference Manual STATEMENTS

STOP

The STOP statement stops the program. All files remain open and a stop
message is printed. To continue the program, a GO command must be entered
frorn the keyboard. (See the explanation of the (jO command in Section 5.)

Example:

100 STOP

When line lOó is executed, program execution is interrupted until a GO

command is entered. Files open at this point are left open.

Page 6-42

DeltaBASIC Reference Manual STATEMENTS

WRITE #fil-ref,USING line-mm {,RFC=num-expr}: expr-list {IOERR line-mm}
{DUPKEY line-num)

(Write to a disk file)
or {EXIT line-mm)

The WRITE statement writes data to a disk file specified by file reference
number. Expressions are evaluated then written to the current record of the
disk file using the specifications given in the FORM statement at the
specified USING line number.

REC=num-expr specifies the record with the given record number be written.
The file must be open for RELATIVE access.

Keyed files must be open for keyed-random access when writing new records.
The key for the new record is taken from the key position and length as

defined for the file. Before the record is added to the file, the key is
checked against the key list. If a duplicate is found and DUPKEY is
specified, then execution continues at the DUPKEY line number; otherwise, an

error results.
When a non-keyed sequential file is written, new records are added to the end

of file unless the BEGIN parameter was specified when opening the file. See

the OPEN statement above for more information.

An I/O error can be trapped at the specified line by IOERR or an EXIT

statement can be used.

Examples:

10 WRITE #1,USING IS: PART$,QTY DUPKEY lOó IOERR 200
15 FORM C 7,X 30,ZD 6

* * 0

lOó REM DUPKEY ERROR PROCESSING

e 0 0
200 REM I/O ERROR PROCESSING

Assume file #1 is open for keyed-random access, and that the key position of
the record begins in position I and has length of 7. Further, assume PART$ is
10-1054 and QTY is lOó. When line 10 is executed, 10-1054 (PART$) is checked

against both the sorted and unsorted key lists. If a duplicate is found,
execution continues at line lOó; otherwise, a new record is written to file #1
and 10-1054 is added to the unsorted key List. Should an I/O error occur,
execution will continue at line 200.

IQ WRITE #15,USING 15: A+B,C EXIT lOó
15 FORM POS 30,ZD 7.l,X 2,PD 4

0 * P
lOó EXIT IOERR 200

0 0 0
200 REM I/O ERROR PROCESSING

Assume file #15 is open for non-keyed sequential access. Since BEGIN is not
specified, the new record containing the values of A+B and C is added to the
end of the file. If an error occurs during the write, execution continues at
line lOó.

Page 6-43

DeltaBASIC Reference Manual STATEMENTS

WRITE #fil-ref,USING 1ine-num,FORMAT char-expr {,INDIC char-expr): expr-list

(Write to a work station file)
The file reference must refer to a file opened as a work station. The screen
is cleared, then the expression list values are displayed on the screen and

written into the work station output buffer using the format given by the FORM

statement at the specified USING line number.

FORMAT specifies which screen in the format file is to be used.

The optional INDIC parameter is used to control visual and data entry
attribute indicators specified when the work station file is created.
Characters in the INDIC character expression correspond positionally to
indicators 01 to 99. The first character of the expression controls indicator
DI. A character ! sets indicator 01 to on while a zero sets it to off. The
second character controls indicator 02 and so forth to 99. Indicators are
initialized to off when the work station file is opened and remain off unless
set on with INDIC. When INDIC is not used, indicators remained unchanged.

Example:

30 WRITE #3,USING 31,FORMAT "CMM-OO1",INDIC "1010": NAME$,ADRS$,CITY$

31 FORM 3*C 30

Assume file #3 is open as a work station file. When line 30 is executed,
format CMN-OOI is written to the display terminal along with the character
values NAME$, ADRS$, and C1TY$. Fields and attributes conditioned by

indicators Dl and 04 are turned on; attributes conditioned by indicators 02

and 03 are turned off. This data is also written to the work station input
buffer so that it can be changed during subsequent READ operations.

Page 6-44

DeltaBASIC Reference Manual INTRINSIC FUNCTIONS

Section 7. INTRINSIC FUNCTIONS

DeltaBASIC provides a number of intrinsic functions that can be used in
numeric and character expressions. Those that produce numerical results are
classified as numerical functions, while those that produce character results
are classif led as character functions. The first list below contains
numerical functions and the second, character functions.

-r

Page 7-1

DeltaBASIC Reference Manual INTRINSIC FUNCTIONS

.

INTRINSIC NUMERICAL FUNCTIONS

A8S(num—expr)

Gives the absolute value of the numeric expression.

ATN(mm-expr)

Gives the angle (in radians) whose tangent is given by the numeric expression.

(MDKEY

Gives one of the following values, depending on which key was pressed to leave
a work station screen read:

Key pressed Value

RETURN O

function key. FI 1

function key F2 2

. 0 0 0

ERR

Gives the error number of the last error. See Appendix A for a list of error
numbers ,and messages.

EXP(nuin—expr)

Gives the value of constant e raised to the power of the numeric expression.

INT(ním-expr)

Gives the largest integer less than or equal to the numeric expression.

LEN(char-expr)

Gives the number of characters in the string currently assigned to the
character expression.

LINE

Gives the line number of the last error.

I1AG(num—expr)

Gives the natural logarithm (base e) of the numeric expression.

FOS(char—expr l,char—expr 2 {,nim-expr))

Gives the position of the first occurrence of char-expr 2 within char-expr 1.

The search begins with position 1 unless num-expr is specified in which case

the search begins with the position given by num-expr.

Page 7-2

DeltaBASIC Reference Manual INTRINSIC FUNCTIONS

RND(num—expr)

Gives a pseudo-random number between O and l, with the followinp variations:

num-expr < O then the pseudo-random number generator is reseeded.
num-expr =

O then previous pseudo-random number is given.
num-expr > O then a new pseudo-random number is generated.

ROUND(num-expr 1,num-expr 2)

Rounds the value given by num-expr l to the number of decimal places given by

the value of num-expr 2. If num-expr 2 is zero, num-expr I will be rounded to
a whole number. A negative value for num-expr 2 will cause rounding to that
many positions left of the decimal point.

SGN(nurn-expr)

Gives the value:

I if num-expr > O.
O if num-expr = O.

-l if num—expr < O.

S1N(num—expr)

Gives the sine of the angle (in radians) specified in the expression.

SQR(num-expr)

Gives the square root of the numeric expression.

STATUS(num—cnst I {,num—cnst 2))

Gives the status of certain system parameters, depending on num-cnst I:

num-cnst l STATUS

O Last keyboard key pressed
1-254 File information--see below

255 Current printer line
256 Number of bytes of unused memory
257 Current user number

If num—cnst I is a file reference number of an open file, then num-cnst 2

determines which additional file parameters are given.

num-cnst 2 STATUS

O Record length--all DeltaBASÍC files
I End-of-file record number--all DeltaBASIC files
2 Number of sorted keys--keyed files only
3 Number of unsorted keys--keyed files only

VAL(char—expr)

Page 7-3

DeltaBASIC Reference Manual INTRINSIC FUNCTIONS

Gives the numeric value of the character expression.
INTRINSIC CHARACTER FUNCTIONS

CHR$(num-expr l{,num-expr 2})

Gives the ASCII character with value of num-expr I. When num-expr 2 is
specified, the ASCII character is repeated the number of times given by num-

expr 2.

CNVRT$(char-expr,num-expr)

Converts the value of the numeric expression to a character string, using the
format specified by the character expression. The N, ZD, PO, and PIC format
specifications can be used (see the FORM statement in Section 6 above).

DATE$

Gives the date in character string representation YYYYMDD. For example, the
value of DATE$ for March 16, 1945 is 19450316.

STR$(num-expr) '

Converts the value of the numeric expression to a character string.
TIME$)

Gives the time in character string representation (HH: M:SS). l

l

Character substring function '

{

(num—expr l:num—expr 2)

Creates a substring beginning with the position given by num-expr 1 and ending
with the position given by num-expr 2. If the substring specifications are
beyond the last character of the string, a null character string is returned.
The substring function can follow character variables and character functions.

Examples:

If A$ is ABCD, then A$(2: 3) will be BC.

If TINE$ is 02: 30:15, then TIME$(4: 5) will be 30.

Pciqe! 7—4

DeltaBASIC Reference Manual UTILITY PROGRAMS

Section 8. UTILITY PROGRAMS

In addition to DeltaBASIC itself there are several utility prof'rams provided
by Deltasoft, Inc. to assist you in program development and file maintenance.
The utility programs discussed in this section are:

PROGRAM DESCRIPTION

GEIYMSG Used to create field message files
KEYSORT Used to keysort a DeltaBASIC keyed data file
ORGANIZE Used to perform certain file maintenance operations

RENUM Used to renumber DeltaBASÍC programs

SOU Used to design formatted data entry screens

Page 8-l

DeltaBASIC Reference Manual UTILITY PROGRAMS

GENMSG

CÉ)ÑS(j is a utility for generating field message (HELP) files used with
formatted data entry screens. GENMSG is invoked from the operating system by

using:

GENMSG {drv:)filename (return key)

The filename refers to an existing ASCII text file that contains a list of the
messages intended to accompany a formatted data entry screen. The filename
must be the same as the screen name and be of file type LIB. Each field
message in the LIB file consists of a comment line beginning with a pound sign
(#) followed by one or more message lines, the last of which is terminated
with a vertical bar symbol ().

The LIB file can be created with any standard text editor. Each line should
be terminated by a carriage return and line feed. The order of the message
corresponds to the order of the fields on the formatted data entry screen,
except that the first message block is reserved as a global message for the
entire screen. The second message is associated with the data entry field
nearest the upper left corner of the screen. The remaining messages are
associated with the remaining data entry fields, proceding from left to right
and top to bottom down the screen.

GENMSG uses the LIB file to create a second file with the same name but of
type MSG. This file, not the LIB file, is accessed by DeltaBASIC to display
field messages.

To illustrate the use of screen messages, consider the simple formatted data
entry screen below:

HELP MESSAGE EXAMPLE SCREEN

Data Output Field 0OOO00OO

Data Input Field l: ********
Data Input Field 2: ********

Assume the screen name is HPIE-OO1 and is contained in format file HELPEX.FRM.

The screen consists of four constant or label fields, one output only field
(designated by 00000000), and two data entry fields (designated by ********).

The first step is to create a HELP message (LIB) file with the name !lúíE-O0I

using a standard text editor. The result appears below:

Page 8-2

DeltaBASIC Reference Manual UTILITY PROGRAMS

The following is a global HELP message for screen INE-OO1:

Screen HME-OO1 is used to illustrate HELP messages for DeltaBASIC.

The following is a HELP message for data entry field l:

This is the HELP messa3e for data entry field 1.

The following is a HELP message for data entry field 2:

This is the HELP message for data entry field 2.

(end-of-file mark: IA hex)

Next the LIB message file must be converted to a MSG file for use by

DeltaBASIC. This is accomplished by using the GEXl'lSG utility as follows:

GENMSG HME-OOI (return key)

When the GENMSG utility finishes, the file FNE-OOIMSG will exist on the
default drive.

The screen HELP messages are now ready to access from DeltaBASIC. Assume the
HELPEX.FRM is open as a work station file and screen EME-OOI has been

displayed with a WRITE statement. After executing a work station read, the
screen looks like this:

HELP MESSAGE EXAMPLE SCREEN

Data Output Field HELPTEST

Data Input Field I: //

Data Input Field 2:

The string "IIELPTEST" occupies the output field and blanks occupy the two data
entry fields. The pound symbol (#) indicates the location of the cursor.
Pressing the HELP key ("Z) displays the HELP message for the first data entry
field. (The second HELP message is selected--the first is the screen global
message.) The screen then looks like this:

Page 8-3

DeltaBASIC Reference Manual UTILITY PROGRAMS

This is a help message for data entry field l.

Pressing the HELP key another time displays the global HELP message:

Screen HME-OO1 is used to illustrate HELP messages for DeltaBASIC.

Pressing any other key returns the original work station screen with
everything exactly as it was before.

fiad the cursor been positioned at the second data entry field, pressing the
HELP key would have displayed the third HELP message:

This is a help message for data entry field 2.

Otherwise, operation would be exactly as in the case above.

^ g

DeltaBASIC Reference Manual UTILITY PROGRAMS

KEYSORT

The KEYSORT utility reorders the key file of a DeltaBASIC keyed data file.
The key file (type KEY) is actually composed of two lists. The first list
contains sorted keys with pointers to records in the data file. The second

list contains unsorted keys and pointers associated with data that has been

added to the file since the last KEYSORT was performed. When the file is
accessed randomly, the sorted and unsorted lists are both checked using a
binary tree search algorithm. If the requested key is found, the pointer is
used to gain access to the corresponding data record. Keyed sequential access

is managed differently. Pointers from the sorted key portion of the key file
are accessed sequentially, resulting in key-order processing of the
corresponding data records. In this case, keys in the unsorted part of the
key file are not accessed.

The KEYSORT utility sorts the unsorted keys and merges them into the sorted
list ensuring that all data records will be accessed during keyed sequential
processing. For more information, see Appendix C, Disk File 1/0.

The KEYSORT utility is invoked from the operating system using the following
command:

KEYSORT {drv:)name (return key)

The filename must refer to a keyed data file. No file type is needed.

Page 8-5

DeltaBASIC Reference Manual UTILITY PROGRAMS

ORGANIZE

The ORGANIZE utility is used to perform certain data file management

operations. These include:

(i) Convert an ASCII text file to a DeltaBASIC data file.
(ii) Convert a DeltaBASIC data file to an ASCII text file.

(iii) Remove marked records from a De1taBASIC data file.
(iv) Convert a DeltaBASIC data file to a keyed file.

ORGANIZE is an interactive program that is invoked from the operating system
by entering:

ORGANÍZE (return key)

You are then presented with a series of questions that, when answered,

determine the specific operation that is to take place. The remainder of this
section describes the dialog for each of the four operations listed above.

Page 8-6

DeltaBASIC Reference Manual UTILITY PROGRAMS

(i) Converting an ASCII text file to a DeltaBASIC data file.
Occasionally it is necessary to convert data from an incompatible format for
use with DeltaBASIC. The first step involves building an ASCII text file with
the data written on each line exactly in the position it will occupy in the
DeZtaBASIC data file. Each text line should be terminated by a carriage
return and line feed. ORGANIZE is then used to copy each line of ASCII text
into a separate record in the DeltaBASIC data file, preserving the data's
positional relationship. If the text line is shorter than the DeltaBASIC data
file record, the remainder of the DeltaBASIC data record will be filled with
blanks. If the text line is longer than the DeltaBASIC data file record, the
text beyond the end of the record will be ignored. The interactive steps for
this operation are as follows:

ORGANIZE Question Your Reply Explanation

INPUT FILE

File name? {drv: }name{.typj Enter the name of the ASCII text file
File type? A Enter A for ASCII

OUTPUT FILE

File name? {drv: }name{.typ) Enter the name of the new DeltaBASIC

data file
Record length? num-cnst Enter the record length of the

DeltaBASIC data file
Continue? Y

or N Enter y to complete the operation or N

to restart

Page 8-7

DeltaBASIC Reference Manual UTILITY PROGRAMS

(ii) Converting a DeltaBASIC data file into an ASCII text file
You can use ORGANIZE to prepare an ASCII text file that can be used by another
program such as a text editor. This is in effect the reverse of operation (i)
above, The resulting ASCII text file will have line lengths exactly equal to
the record length of the DeltaBASIC data file. Follow these steps to complete
this operation:

ORGANIZE Question Your Reply Explanation

INPUT FILE

File name? {drv: }name{.typ} Enter the name of the DeltaBASIC data
file

File type? D Enter D for data

Key position? (return key) Press the RETURN key

Delete position? (return key) Press the RETURN key

OUTPUT FILE

File name? {drv: }name{.typ} Enter the name of the ASCII text file
File type? A Enter A for ASCII

Continue? Y or N Enter y to complete the operation or N

to restart

Page 8-8

DeltaBASIC Reference Manual UTILITY PROGRAMS

(iii) Removing marked records from a DeltaBASIC data file
Deleting a record from a DeltaBASIC data file (keyed or not) is done by

marking the record in some way, then copying all unmarked records to a new

file. In defining the fields of a data file, it is useful to include a one
character status field for this purpose. To eliminate marked data records
using ORGANIZE, follow these steps:

ORGANIZE Question Your Reply Explanation

INPUT FILE

File name? {drv: jname{.typj Enter the name of the DeltaBASIC data
file

File type? D Enter D for data

Key position? (return key) Press the RETURN key

Delete position? num-cnst Enter the position of the delete field

Delete character? num-cnst Enter the numeric value of the ASCII

or delete character or the character
"character" itself enclosed in quotes.

OUTPUT FILE

File name? {drv:)name{.typ) Enter the name of the new DeltaBASIC

data file
File type? D Enter D for data

Record length? nurn-cnst Enter the record length of the new
DeltaBASIC data file

Continue? y or N Enter Y to complete the operation or N

to restart
Note: If the new data file is to be keyed, use the procedure of (iv) below to
rebuild the keyfile.

Page 8-9

DeltaBASIC Reference Manual UTILITY PROGRAMS

(iv) Converting a DeltaBASIC data file to a keyed file
Several situations may arise that call for the conversion of a DeltaBASIC data

file into a keyed file. The list below contains a few examples:

1. A new DeltaBASÍC data file was built from an ASCIT text file or by

deleting records from an old data file (see above) and it needs to be

converted to a keyed file.
2. A DeltaBASIC data file was built or extended using sequential processing
to save time and now must be converted to keyed format for further work.

3. An existing DeltaBASIC keyed data file needs rekeying, possibly with a new
key position and/or length.

Follow these steps to convert a DeltaBASIC data file to a keyed file:
ORGANIZE Question Your Reply Explanation

INPUT FILE

File name? {drv: }narne{.typ} Enter the name of the DeltaBASIC data
file

File type? D Enter I) for data

Key position? num-cnst Enter the position of the key

Key length? nim-cnst Enter the length of the key

OUTPUT FILE

File name? {drv: }narne.KEY Enter the name of the DeltaBASIC key

file
Continue? y or N Enter Y to complete the operation or N

to restart

Page 8-lO

DeltaBASIC Reference Manual UTILITY PROGRAMS

RENUM

The RENUM utility program is used to renumber lines of a non-source DeltaBASIC

program. RENUM is invoked from the operating system using the following
command:

RENLM {drv: }name.BAS {;nurn-cnst 1,nurn-cnst 2,num-cnst 3,num-cnst 4) (return key)

The parameters are defined as follows:

{drv: }name.BAS The non-source DeltaBASIC program to be renumbered.

num-cnst l New beginning line number (default 10)

num-cnst 2 Increment lines by this value (default 5)

num—cnst 3 Begin renumber at this line number (default I)

num-cnst 4 End renumber at this line number (default 65534)

After successful completion, the newly renumbered version will have the same
name as the original but with type REN. The original program is unchanged.

Page 8-ll

DeltaBASIC Reference Manual UTILITY PROGRAMS

SOU

SOU (Screen Design Utility) is used to create and modify formatted data entry
screens in a screen format file. SOU is a menu driven, interactive program
with full screen editing capabilities. For a given formatted data entry
screen, constant and data fields can be visually arranged in any way desired
so long as a blank space precedes and follows each field. Data entry and

visual attributes can be selected for each field.
The Screen Design Utility is invoked by entering:

SOU {{drv: }name) (return key)

where name refers to a screen format file of type FRN.

SOU then displays a menu of eight options along with the name of the currently
selected format file and a directory of associated screens. The menu options
are listed below with a detailed description of each. To select an option,
simply press the key shown in parenthesis.

(A)dd a new screen to a format file.
The add facility will first prompt you to specify a screen name of eight
characters or less. After the screen name has been entered you will be

given the opportunity to enter the new screen from the (K)eyboard or
retrieve it frorn the (D)isk. If you press the D key you will be prompted

for the format file and name of the screen to be added, after which SOU

will automatically enter the (U)pdate option of the menu for the new

screen. If you press the K or RETURN key (K is the default), the display
will be cleared, after which you may place constant and data fields on
the screen as they will be viewed. SOU requires that the first and last
column of the display not be used and that there be a minimum of two

spaces horizontally between any two fields.
The text editing capablities of SOU can be reviewed by pressing the help
key (^1) or by referring to the table below. Note that sorne of the
editing features are not allowed when adding a screen.

After all fields have been placed satisfactorily, a specification
character should be placed before each field and a terminator character
after each field.

Specification characters determine the default data entry and visual
attributes for a field. The basic specification characters are:

c -- low intensity, constant field
d

-- low intensity, input/output data field
C

-- normal intensity, constant field
D

--
normal intensity, input/output data field

Page B-12

DeltaBASIC Reference Manual UTILITY PROGRAMS

In addition, four other specification characters are user definable with
similar default values:

a --
low intensity, constant field

b

-- low intensity, input/output data field
A

--
normal intensity, constant field

B

--
normal intensity, input/output data field

These defaults can be changed by entering "X while adding or updating a

screen.

A terminator character () must be placed to mark the end of each field.
When all fields, specification characters, and terminator characters have

been properly placed, "enter" the screen by pressing the ATTN key.
Control is automatically passed to the (U)pdate option of the menu so

that changes can be made to the attributes of each field. If no changes

are necessary, press the ATTN key again to return to the menu; otherwise,
refer to the (U)pdate option for detailed instructions (ignore the part
requesting a screen name to update).

(U)pdate an existing screen in a format file.
The update facility will ask you to specify the name of a screen in the
currently selected format file. After the screen name has been entered,
the previously defined constant and data fields will be displayed and you

can then add, change, or remove fields as desired. SOU requires that the
first and last column of the display not be used and that there be a
minimum of two spaces horizontally between any two fields.
The text editing capablities of SOU can be reviewed by pressing the help
key ("I) or by referring to the table below. Note that some of the
editing features are not allowed when updating a screen.

To add a field, enter the field on the screen with specification and

terminator characters as described in the (A)dd a Screen menu option
above. Next move the cursor to the beginning of the field (adjacent to
the specification character) and press "A. The field will then be added
and the attribute screen displayed to give you the option to modify the
defaults given by the specification character. To change the attributes
of a previously created field, move the cursor to the beginning of the
field and press "C after which the list of attributes will be displayed
for modification. To remove a field, move the cursor to the beginning of
the field and press ^R. Note that, once removed, a field cannot be

recovered.

When finished, press the ATTN key to "enter" the screen. For
convenience, you will be offered the option of viewing or printing the
row and column positions, lengths, buffer positions, and attributes of
the screen fields. This information is very useful when writing the FORM

specification using the screen in DeltaBASIC.

Page B-13

DeltaBASIC Reference Manual UTILITY PROGRAMS

(D)elete a screen from a format file.
The delete facility will prompt you to specify the name of a screen
in the currently selected format file. The screen will be permanently
deleted (erased) from the format file. Once deleted a screen cannot be

recovered.

(C)hange the name of an existing screen.

The change facility will prompt you to specify the name of a screen
in the currently selected format file. If the screen exists you can
optionally change the name or press the RETURN key to leave it unchanged.

(V)iew screen attributes.
The view facility"wi1! prompt you to specify the name of a screen
in the currently selected format file. After the screen name has been

entered you can choose to list on the (S)creen or (P)rinter the row and
column positions, lengths, buffer positions, and attributes of all fields
in the specified screen.

(R)emove a format file.
The remove facility will remove (erase) the currently selected format
file from memory and the disk. Note that removing a format file is
final—-once removed it cannot be recovered.

(S)e1ect a new format file.
The select facility will prompt you to specify the name of a format file.
After the name has been entered, the format file, if found, will become

the currently selected format file and its associated screens will be

displayed under the menu.

(E)xit to System.

This option will ensure that all changes to the currently selected format

file and associated screens are placed on the disk and return control to
the operating system.

Page B-14

DeltaBASIC Reference Manual UTILITY PROGRAMS

Editing Key Table

When you are adding and updatiñf' screens, a versatile set of editing keys is
available for your use. In the table below, the keys are arranged into four
groups: cursor movement, insert/delete, field, and miscellaneous. To use an

editing key, hold the CONTROL key down and press the specified key. Note the
exceptions for commonly used keys such as RETURN or ATTN. A list of the
editing keys and their definitions follow:

Editing Key Function

(Cursor Movement) "K Cursor up
"J <LTNE FEED> Cursor down
"FI Cursor left
"L Cursor right
"" <!!0ME> Cursor to home position
"B Cursor to bottom line
"T Cursor to top line
"W Cursor word left
"I <TAB> Cursor word right
"Pi <RETURN> Cursor to new line
^S Cursor to screen left
"D Cursor to screen right

(Insert/Oelete) "F Insert mode ON/OFF toggle
"V Same as above
"N Insert blank line
" Delete character left
"G Delete character right
"Y Delete line
"U Delete Line left"P Delete line right

(Field) "A Add a field
"C Change a field
"R Remove a field
"X Change default attributes

(Miscellaneous) "O Abort add or update
"Q Reprint screen
"Z Clear screen
"[<ESCAPE> Enter screen
"] <!IELP> Display help screen

Note: 'Ahen in the (A)dd mode, the Field keys may not be used. When in the
(U)pdate mode, the Insertion/Deletion and Clear Screen keys may not be used.

Page 8-lS

DeltaBASIC Reference Manual UTILITY PROGRAMS

SOU Errors

Errors can occasionally occur when using SOU. A list of SOU error messages
with explanations follow:

Directory full: The disk directory is full. See your operating
system manual for explanation and corrective
measures.

Field overlap: An attempt has been made to force two fields to use
overlapping character positions on the screen. The
second field has been removed before the screen was
saved (this error occurs when ATTN key is pressed and

the screen is entered).

File not found: An attempt has been made to select a format file that
was not present on the disk.

Format file full: An attempt has been made to place more than the
maximum number of twelve screens in a format file.

Read: Disk read error. See your operating system manual

for explanation and corrective measures.

Screen duplication: An attempt has been made to add a screen that has the
same name as a previously entered screen.

Screen not in format
file: An attempt has been rnade to update, delete, or view a

screen that does not exist in a format file.

Page B-16

DeltaBASIC Reference Manual ERROR MESSAGES

Appendix A. ERROR MESSAGES

When an error occurs and no error trap is in effect, a short error message is
displayed on the terminal. The message has the following form:

(error number) error code Error in Line line number

The HELP command can be used to call up an explanation of the last error
identified. The table below lists the error codes with corresponding error
numbers and explanations. If the error can be trapped, the trap condition to
use is given. (See ON...ERROR in Section 6.)

CODE NUMBER TRAP EXPLANATION

SYNTAX C)l SYNTAX ERROR: an unrecognizable command or statement
"was encountered.

SYN EDS 02 SYNTAX ERROR AT END OF STATEMENT: colon or line end

expected.

CHV EXP 03 CHARACTER VARIABLE EXPECTED: type mismatch.

NUM EXP 04 NUMERIC VARIABLE EXPECTED: type mismatch.

ARV EXP 05 ARRAY VARIABLE EXPECTED: type mismatch.

INV VAR 06 INVALID VARIABLE: an array variable was expected.

UDF VAR 07 UNDEFINED VARIABLE: the variable referenced does not
exist.

PAR MIS 08 PARENTHESIS HISSING: an open or close parenthesis is
missing.

REL EXP 09 RELATIONAL OPERATOR EXPECTED: a relational operator
(< > =) was expected.

INV CFN 10 INVALID CHARACTER FUNCTION: a character function was
expected.

CFN NAM li CHARACTER FUNCTION NANI': the $ is missing from the
function name.

INV NFN 12 INVALID NUMERIC FUNCTION: a numeric function was
expected.

VAR EXP 13 VARIABLE EXPFCTED: a variable was expected.

Page A-l

DeltaBASIC Reference Manual ERROR MESSAGES

CODE NUXBER TRAP EXPLANATION

SYN EOL !4 SYNTAX ERROR AT END OF LTNE: line end expected.

I)UP VAR IS DUPLICATE VARIABLE: variable already defined.

DIül SZE 16 DIMENSION SIZE: array dimension exceeds maximum.

ON RNGE 17 ERROR ON RANGE: range of ON value exceeds maximum.

NUM DTA 18 NUMERIC DATA: numeric data was expected.

FOR LEV 19 FOR LEVEL: exceeds maximum allowed nesting (8 max).

FOR RlCG 20 FOR RANGE: limits and step incompatible.

OUT DTA 21 ERROR OUT OF DATA: attempt was made to READ past last data
value.

NLN RNG 22 NUMERIC RANGE: integer value maximum exceeded (255
max).

OUT MEM 23 OUT OF XEMORY: program needs more memory to execute.

lXV SIM 24 INVALID STATEMENT: statement not recognizable.

STK OVF 25 STACK OVERFLOW: expression too complex.

STK UNF 26 STACK UNDERFLOW: (System error)

ATTN 27

LNE RNG 28 LINE RANGE: beginning line number exceeds ending line
number.

UN!' LNE 29 UNKNOWN LINE: line referenced does not exist.
SUB STR 30 ERROR SUBSTRING: cannot be formed as specified.

IXV ARG 31 INVALID ARGU1'IENT: type mismatch or value excessive.

DIR STM 32 DIRECT STATEMENT: not allowed in direct execution.

IXV UFN 33 I.YVAI.IID USER-DEFINED FUNCTION: not a valid user
defined function.

SUB LVL 34 SUBROUTINE LEVEL: exceedes maximum (20 max).

INV RET 35 INVALID RETURN: encountered without a corresponding
GOSIJB.

Page A-2

DeltaBASIC Reference Manual ERROR MESSAGES

CODE NUMBER TRAP EXPLANATION

NIS FOR 36 MISSING FOR: a NEXT was encountered without a

corresponding FOR.

TAB 37 CONY TAB: argument is invalid.

INV IFN 38 INVALID INTRINSIC FUNCTION: not a vaZid intrinsic
function.

UNK UFX 39 UNKNOWX USER DEFINED FUNCTION: was encountered.

40 Not used.

NUM OVR 41 OFLOW NUMERIC OVERFLOW: floating point value exceeds

maximum

NLM UNO 42 UFLOW NUMERIC UNDERFLOW: floating point value smaller than
minimum.

DIV ZER 43 ZDíV DIVISION BY ZERO: expression contains a division by

zero.

STR LEN 44 SOFLOW STRING LENGTH: character string length exceeds
maximum for variable.

DUP KEY 45 DUPKEY DUPLICATE KEY: key file already contains this key.

NO KEY 46 NOKEY NO KEY: key specified not in key file.
EOF 47 EOF END OF FILE: cannot READ/INPUT past end of file.

48 Not used.

49 Not used.

50 Not used

PER I/O 51 IOERR PERMANENT 1/0: error encountered in disk input/output
operation.

CHG KEY 52 IOERR CHANGE KEY: attempt was made to change the key

portion of the record.

INC KEY 53 ÍOERR INCORRECT KEY:

INC DTA 54 IOERR INCORRECT DATA:

NO DTA 55 IOERR MO DATA:

Page A-3

DeltaBASIC Reference Manual ERROR MESSAGES

CODE NUMBER TRAP EXPLANATION

DSK FUL 56 IOERR DISK FULL: the disk is full.
FLE EXS 57 IOERR FILE EXISTS: attempt was made to create a file that

already exists.

NO FILE 58 IOERR NO FILE: attempt was made to access a file that does

not exist.
KEY L/P 59 IOERR KEY I.ENGTH/POSITION: specified incorrectly.
DIR FUL 60 IOERR DIRECTORY FULL: disk directory is full.
NO PRGM 61 IOERR NO PROGRAM: program file specified does not exist.
FLE TYP 62 IOERR FILE TYPE: mismatch.

PRG!Y1 LO 63 IOERR PROGRAM LOAD: an error was detected during program
load.

REC LEN 64 IOERR RECORD LENGTH: is O or exceeds 2048.

65 Not used.

66 Not used.

FRM BUF 67 CONY FORMAT BUFFER: workstation format buffer length
exceeds record length specified in OPEN statement.

INV PRT 68 CONY INVALID PRINT: operation CUR, TAB, or SKIP not
allowed in disk or workstation files.

CHR I/O 69 CONY CHARACTER VARIABLE INPUT/OUTPUT: character variable
expected in I/O operation.

NUPI I/O 70 CONY NUMERIC VARIABLE INPUT/OUTPUT: numeric variable
expected in I/O operation.

FLO LEN 71 CONY FIELD LENGTH: attempt was made to write data into a

field that is too small.

FRPÍ PRT 72 CONY FORM PRINT: wrong FORM specification for PRINT

statement.

FRPI SPC 73 CONY FORM SPECIFICATION: incorrect FOR9Í specification.

INV FR?4 74 CONY INVALID FORMAT: invalid workstation format.

Page A-4

DeltaBASIC Reference Manual ERROR MESSAGES

CODE NUMBER TRAP EXPLANATION

FRPÍ PIDE 75 CONY FORMAT MODE: format mode error.

76 Not used.

FIJE REN 77 IOERR FILE RENAME: file must exist and not be in use by

another process.

FLE NAM 78 FILE NAME: must be 8 characters or less plus optional
type.

DRY SEl. 79 DRIVE SELECT: cannot select specified disk drive.

UNKNOWN 80 UNKNOWN: system error.

HLP FLE 81 HELP FILE: DBXERR.MSG and DBXREF.MSG must be on
default disk drive.

FLE (JPN 82 FILE OPEN: file specified already open.

FIJE MOD 83 FILE MODE: open mode (or parameter) incorrect for
access attempted.

INV FI.E 84 INVALID FILE: file specified not open.

FLE NAY 86 FILE NOT AVAILABLE: in use by a NOSFIR process.

FLE CLS 87 IOERR FILE CLOSE: cannot close file.
INV REC 88 INVALID RECORD NUMBER: zero not allowed.

PR WRT 89 PREVIOUS WRITE: last access must have been a write.

MIS REC 90 MISSING RECORD NUMBER: record number must be

specified.

MIS USI 91 MISSING USING: USING statement missing.

PR READ 92 PREVIOUS READ: last access must have been a read.

INV DEV 93 IXVALID DEVICE: not a valid device.

PR LIN 94 PREVIOUS LIKE: previous Line error.

95-100 Not used.

Page A-5

DeltaBASIC Reference Manual RESERVED WORDS

Appendix B. RESERVED WORDS

The following words are reserved for use by DeltaBASIC and cannot be used as

variable names, function names, or disk file names.

ABS AND ASC ATN ATTN
AUTO BEGIN CHAIN CHR CLEAR

CLOSE CXDKEY CNVRT CONY CUR

DATA DATE DEF DEL DIM
DUPKEY ELSE END EOF ERR

ERROR EXIT EXP FILES FN

FOR FORM FORMAT FREE CO

GOSUB GOTO HELP IF IGNORE
ÍNDIC INPUT IKT IOERR KEY

KEYED KEYL KEYP LEN LINE

LINPUT LIST LISTP LOAD LOG

LPREC NAME NEWPAGE XEXT XOKEY

NOT OFF OFLOW ON OPEN

OPTION OR OUTÍX OUTPUT PIC
POS PRINT PRTZO RANDOM READ

REC RECL RELATIVE REX RENAME

RESET RESTORE RETURN REWRITE RND

ROUND SAVE SGN SIN SKIP
SOFLOW SPREC SQR STATUS STEP
STR TAB THEM TINE TO

UFLOW USING VAL WRITE WS

ZDÍV

Page B-1

DeltaBASIC Reference Manual DISK FILE I/O

Appendix C. Disk File I/O

DeltaBASIC provides a number of different techniques for data file management.

Each involves a different combination of file access method (sequential,
relative, keyed-random, and keyed-sequential) and mode (output, input, and

update). To help you compare these techniques, the descriptions that follow
include examples based on the sample data file given below:

File Name: INVMAS.DAT Record Length: 40

Field Description Variable FORM Start End

Name Spec Size Pos Pos

Part number PART$ C 5 l 5

Description DESC$ C 30 6 35

Quantity on hand QUAN N 4.0 36 39

Status (D=de1ete) STAT$ C I 40 40

l 2 3 4
Rec#!....o....)....o....|....o....l....o
l 8120ISOCKET WRENCH 10
2 10202BALL PEEN HAMMER 5

3 64394PHILLIPS SCREW DRIVER 15
4 40121HAND SAW 8
5 (end-of-file record)

Page C—l

DeltaBASIC Reference Manual DISK FILE 1/0

Sequential Access

With sequential access, records in the file are processed in order by record
number. Sequential access is selected by default when neither the RELATIVE

nor the KEYED attribute is used in the OPEN statement.

Sequential Access in Output Mode

For sequential/output access, records are added at the current end-of-file
record or--if the BEGIN parameter is used--beginning at record l. File reads
are not allowed. Sequential/output access is selected in the OPEN statement
when OUTPUT is used without either RELATIVE or KEYED as a file attribute.

If a new file is created, records are added beginning with record I, then
record 2, and so forth. For example, the sample data file above could be

created using the program below:

I
2 A PROGRAM ILLUSTRATING SEQUENTIAL/OUTPUT ACCESS

3
10 DIM DESC$*30

15 OPEN #1: "NA±=INVMAS.DAT,NEW,RECL=40",OUTPUT

20 STAT$=" "
25 READ N) THE NUMBER OF DATA SETS
30 FOR 1=1 TO N

35 READ PART$,DESC$,QUAN
40 WRITE #1,USING 45: PART$,DESC$,QUAN,STAT$
45 FORM C 5,C 30,N 4,C I
50 NEXT I
55 CLOSE ill:
60 STOP

65 DATA 4

70) DATá SETS

75 DATA 81201,SOCKET WRENCH,1O
80 DATA 10202,BALL PEEN HAMMER,5
85 DATA 64394,PIIILLIPS SCREW DRIVER,15
90 DATA 40121,HAND SAW,8

The program creates a new file, INVMAS.DAT, with record length 40 (line 1-5).
The access method is sequential and the mode is output. The number of data
records to be added is read from internal data (line 25), then a FOR/NEXT Loop

is used to read the data sets and write new records to the data file (lines
30-50). Note that the records are added to the file in order, beginning with
record l and continuing through record 4. The data order within the file is
determined by the order in which the records are written.

If a file already exists when sequential/output is selected, the absence or
presence of the BEGIN attribute determines where the new records are added.

These situations are illustrated by two program examples below:

In the first program, the BEGIN attribute is absent resulting in new data
being added at the current end-of-file.

Page C-2

DeltaBASIC Reference Manual DISK FILE I/O

l
2 A PROGRAM ILLUSTRATING SEQUEXTIAL/OUTPUT ACCESS WITHOUT BEGIN
3

10 DIM DESC$*30
15 OPEN Ill: "NAME=INVMAS.DAT",0UTPUT

20 STAT$=" "
25 READ N : THE NUMBER OF DATA SETS TO BE ADDED

30 FOR 1=1 TO N

35 READ PART$,DESC$,QUAN
40 WRITE #1,USING 45: PART$,DESC$,QUAN,STAT$

45 FORM C 5,C 30,N 4,C I
50 XEXT I
55 CLOSE #1:
60 STOP
65) DATA SETS
70 DATA 2

75 DATA 91324,WRENCFI,5

80 DATA 68923,PLIERS,12

Line IS opens file INVMAS.DAT for sequential/output access. Since the BEGIN

attribute is absent, new data records are added at the current end-of-file.
The number of data sets to add is read from internal data (line 25), and a
FOR/NEXT loop appends the new records to the file (lines 30-50). The program

arranges the sample data file as shown below:

I 2 3 4
Rec#|....0....)....0....)....0....|....0

1 81201SOCKET WRENCH 10
2 10202BALT. PEEN HAPNER 5
3 64394PHILLIPS SCREW DRIVER 15
4 40121HAND SAW 8
5 91324WRENCFI 5

6 68923PL1IERS
,

12
7 (end-of-file record)

The first four records are the same as before. The new data has been added in
records 5 and 6, moving the end-of-file to record 7.

In the second program, the BEGIN attribute is present resulting in new data
being written beginning at record 1 of the file. Data currently in the file
is lost.

1

2 A PROGRAM ILLUSTRATING SEQUENTIAL/OUTPUT ACCESS W1ITFI BEGIN
3

10 DIM DESC$*30
IS OPEN #1: "NAW.=INVP1AS.DAT",OUTPUT,BEGIN
20 STAT.$=" "
25 READ M ! THE NUMBER OF DATA SETS TO BE ADDED

30 FOR 1=1 TO N

35 READ PART$,DESC$,QUAN
40 WRITE #1,USING 45: PART$,DESC$,QUAN,STAT$
45 F0R)'J C 5,C 30,Y 4,C l
50 NEXT I

Page C-3

DeltaBASIC Reference Manual DISK FILE I/O

55 CLOSE Él:
60 STOP

65) DATA SETS
70 DATA 2

75 DATA 9I324,WRENCH,5

80 DATA 68923,PLIERS,12

The program is identical to one immediately above except for the addition of
the BEGIN attribute (line IS). After the program is executed, the sample data
file looks like this:

I 2 3 4
Rec#)....0....)....0....)....0....)....0
l 91324WRENCH 5

2 68923PLIERS 12
3 (end-of-file record)

Note that all the original data in the file is gone and only the new data
remains.

Sequential Access in Input Mode

For sequential/input access, records are read from the file in order by record
number beginning with record l. No file writes are allowed. Sequential/input
access is selected in the OPEN statement when INPUT is used without either
RELATIVE or KEYED as a file attribute.
The program below uses this processing technique with the original sample data
file.

I
2 A PROGRAM ILLUSTRATING SEQUENTIAL/INPUT ACCESS

3
10 DIM DESC$*30
15 OPEN #1: "NAM=INVMAS.DAT",INPUT

20 READ #1,USING 25: PART$,DESC$,QUAN,STAT$ EOF 40

25 FORM C 5,C 30,N 4,C I
30 PRINT PART$,DESC$,QUAN,STAT$

35 GOTO 20
40 CLOSE #1:
45 STOP

Line 15 opens the file INVMAS.DAT for sequential/input access. The program

then reads data records in record number order beginning with record I, and

prints them on successive lines (lines 20-30). When the end-of-file record is
reached (line 20), the file is closed and execution ends (lines 40-45). The

resulting printout appears below:

81201 SOCKET WRENClil 10

10202 BALL PEEN HARIER 5

64394 PHILLIPS SCREW DRIVER 15

40121 HAND SAW 8

Page C-4

DeltaBASIC Reference Manual DISK FILE I/O

Note that the file data is accessed and printed in exactly the order it
appears in the file.

Sequential Access in Update Mode

For sequential/update access, records are read and ,if desired, rewritten
(with the REWRITE statement) in record number order beginning with record I.
Existing records can be changed but new records cannot be added (the WRITE

statement is not allowed). Sequential/update access is selected in the OPEN

statement when no file attributes are used.

The program below illustrates how to update the original sample data file.
l
2 A PROGRAM ILLUSTRATING SEQUENTIAL/UPDATE ACCESS

3
10 DIM DESC$*30

15 OPEN #1: "NAME=INVMAS.DAT"
20 READ #1,USING 25: PART$,DESC$,QUAN,STAT$ EOF 50
25 FORM C 5,C 30,N 4,C 1

30 IF PART$>"50000" THEN 20
35 REWRITE #1,USING 40: "D"

40 FORM POS 40,C I
45 GOTO 20
50 CLOSE Ill:
55 STOP

The program opens file INVXAS.DAT for sequential/update access (line 15).
Records are then read in order as they appear in the file (line 20), and those
with part numbers less than or equal to 50000 are rewritten with the status
field changed to D (lines 30-45). When the end-of-file is reached (line 20),
the file is closed and execution ends (lines 50-55). The sample data file now
looks like this:

I 2 3 4
Rec#:O...J....O....)....0...J....O

I 8120ISC)CKET WRENCH IQ
2 10202BALL PEEN HAMMER 5D
3 64394PHILLTPS SCREW DRIVER 15
4 40121HAND SAW BD

5 (end-of-file record)

Records 2 and 4 are marked with a D. No other file changes are made.

Page C-5

DeltaBASIC Reference Manual DISK FILE I/O

Relative Access

When RELATIVF is used in the file ID of the OPEN statement, records in the
file are accessed by specifying a record number in the REC parameter of READ

and WRITE statements. Relative access differs from sequential in that records
can be accessed in any order simply by specifying their record numbers.

Relative Access in Output Mode

For relative/output access, records are replaced or added to the file by

specifying the record number using the REC parameter in a WRÍTE statement.
File reads are not allowed. Relative/output access is selected in the OPEY

statement when both RELATIVE and OUTPUT are used as file attributes.
The program below illustrates how to replace a record in the original sample

data file.
I ·

2 A PROGRAM ILLUSTRATING RELATIVE/OUTPUT ACCESS

3

10 DIM DESC$*30

IS OPEN #1: "NA9fE=INVXASj)AT",RELATIVE,OUTPUT

20 READ R,PART$,DESC$,QUAN

25 WRITE #1,USING 30,REC=R: PART$,DESC$,QUAN," "
30 FORX C 5,C 30,X 4,C 1

35 CLOSE #1:

40 STOP

45 DATA 2,20013,CARRIAGE BOLT
- !/2 INCH,50

The program opens the file INVMAS.DAT for relative/output access (line IS).
New data is then written to record 2 (lines 20-30), replacing the existing
record. The sample data file now appears as appears as shown below:

l 2 3 4

Rec#!....o....l....o...j....o....!....o
l 8120ISOCKET WRENCH IQ
2 20013CARRTAGE BOLT - 1/2 INCH 50

3 64394P!IILLTPS SCREW DRIVER 15

4 4012I!IAND SAW 8
5 (end-of-file record)

Record 2, which originally contained the BALL PEEN HAMMER record, now contains
the CARRIAGE BOLT record.

Relative Access in Input Mode

For relative/input access, records are read from the file by specifying the
record number in the REC parameter of the READ statement. File writes are not
allowed. Relative/input access is selected in the OPEN statement when

both RELATIVE and INPUT are used as file attributes.

Page C-6

DeltaBASIC Reference Manual DISK FILE I/O

The program below illustrates how to read a record in the original sample data

file.
l
2 A PROGRAM ILLUSTRATING RFJ.ATIVE/INPUT ACCESS

3
10 DIM DESC$*30
15 OPEN #1: "NAME=INVMAS.DAT",RELATIVE,INPUT

20 READ #1,USING 25,REC=3: PART$,DESC$,QUAN

25 FORM C 5,C 30,N 4

30 PRINT PART$,DESC$,QUAN

35 CLOSE #1:
40 STOP

The program opens file INVNAS.DAT for relative access in the input mode (line
15). Record 3 is specified in the REC parameter of the READ statement,
indicating that record is to be read (line 20). The following line is then
printed (line 30):

64394 PHILLIPS SCREW DRIVER 15

Relative Access in Update Mode

For relative/update access, a record is read by specifying the record number

using the REC parameter in a READ statement and then, if desired, all or part
of the record can rewritten (with the REWRITE statement). Existing records
can be changed and new records can be added using the WRITE statement. Rela-
tive/update access is selected in the OPEN statement when RELATIVE is used

without either INPUT or OUTPUT as a file attribute.
The program below illustrates this type of access with the original sample

data file.
1

2 A PROGRAM ILLUSTRATING RELATIVE/UPDATE ACCESS

3
10 DIM DESC$*30

15 OPEN #1: "NAME=INVMAS.DAT",REI.ATIVE

20 R=l
25 READ #1,USING 30,REC=R: PART$ EOF 55
30 FORM C 5

35 IF PART$<"50000" THEN 50
40 REWRITE #I,USING 45: "D"
45 FORM POS 40,C I
50 R=R+1: GOTO 25
55 CLOSE #1:
60 STOP

File INVMAS.DAT is opened for relative/update access in line 15, then records
are read in the order specified by the value of variable R in line 25. R is
initially I and then is incremented by I to access all records in the file
(line SO). Records with part numbers less than or equal to 50000 are
rewritten with the status field changed to D (lines 35-45). The end-of-file
error address in the READ statement ends execution after the last record is

Page C-7

DeltaBASIC Reference Manual DISK FILE I/O

read
.

The sample data file would then appear as follows:

I 2 3 4
Rec//

. . ..
I

.. .
.O.

. ..
)

. . .
.O.

.. .
)

. ..
.O.

. ..
)

.. .
.C)

1 81201SOCKET WRENCH 100
2 10202BAI.L PEFN HAMMER 5

3 64394PFIILLIPS SCREW DRIVER 15D
4 40121HAND SAW 8
5 (end-of-file record)

Records l and 3
are marked with a D. No other file changes are made.

Page C-8

DeltaBASIC Reference Manual DISK FILE I/O

Keyed Access

A "key" is part of a record—-a word, a number, or some other label in
character string form--used to identify that record for later retrieval
through keyed access. Keyed access is specified by using KEYED as a file
attribute in the OPEN statement. The position of the key within the record
and its length are specified at the time the keyed file is created. Each time
a new record is added to a keyed data file, key information is extracted and
added with the corresponding record number to a separate KEY file. The KEY

file consists keys and pointers organized into two distinct lists. The first
list contains keys that have been sorted into alphanumeric order using the
KEYSORT utility. The second list contains keys added since the last use of
the KEYSORT utility in the order which they were added to the file.
The choice of the key field within the data record is application dependent.
If the sample data file above is to be keyed, it is reasonable to use the part
number as the key. In this case, the OPEN statement creating the file would

include (in the file ID) a key position (KEYP) of I and a key length (KEYL) of
5. For example, the sample data file above could be created as a keyed file
using the program below:

l
2 A PROGRAM ILLUSTRATING KEYED-RANDOM/OUTPUT ACCESS

3
10 DIM DESC$*30
15 OPEN #1: "NAm=INmAs.DAT,NEw,RAND0M,KEYp=l,KEYL=5,REcL=40",KEYED,0UTpUT

20 STAT$=" "
25 READ N) THE NUMBER OF DATA SETS
30 FOR 1=1 TO X

35 READ PART$,DESC$,QUAN
40 WRITE #1,USING 45: PART$,DESC$,QUAN,STAT$
45 FORM C 5,C 30,N 4,C 1

50 NEXT I
55 CLOSE #1:
60 STOP
65 DATA 4
70) DATA SETS
75 DATA 81201,SOCKET WRENCH,1O
80 DATA 10202,BALL PEEN HAMMER,5
85 DATA 64394,PFIILLIPS SCREW DRIVER,15
90 DATA 40121,HAND SAW,8

The example is identical to the program presented earlier to create a
sequential file with the exception of the OPEN statement (line 15).

The sample data file (INVMAS.DAT) and its companion KEY file (INVMAS.KEY)--

after keysorting-- appear as given below:

Page C-9

DeltaBASIC Reference Manual DISK FILE I/O

1 2 3 4 Key Record
Rec#1....0....|....0....0....|....0 Pointer

1 8120isocket WRENCil 10 10202 2 (sorted)
2 10202ba!j. peen hamer 5 40121 4
3 64394phili.ips scrfw driver 15 64394 3
4 4ói21hani) saw 8 81201 i
5 (end—of-file record)

(unsorted)

Note that the data file is in the order it was written; only the key entries
have been sorted.

With keyed files, two basic access methods are available: random by key and

sequential by key.

The first, random by key--activated by specifying the RANDOM parameter in the
file IO--lets you add a new record to the data file and key to the KEY file or
search for a existing data record using the KEY file. With this access
method, new keys are added to the unsorted list in the KEY file. It should be

noted that random key searches check both the sorted and unsorted lists in the
KEY file, thus making the newly added key immediately available.

The second, sequential by key--activated by not specifying RANDOM in the file
IO--lets you process records from the data file in the order of the keys in
the sorted KEy file list. The keys in the unsorted list and their
corresponding data records are not accessed. New records cannot be added to
the file using keyed-sequential access.

These two access methods in combination with various modes are discussed
below.

Random by Key Access in Output Mode

For keyed-random/output access, new records are added to the data file using
the WRITE statement with new keys and record pointers automatically added to
the unsorted list in the KEY file. File reads are not allowed. Keyed-
random/output access is selected in the OPEN statement when RANDOM is used in
the file ID and both KEYED and OUTPUT are used as file attributes.
The program below adds two records to the original sample data file.
i
2 a program illustrating keyed-random/output access
3

10 dim desc$*i0
15 open Él: "NAME=INV!4AS.DAT,RAND0pí",KEYED,OUTPUT

20 stat$=" "
25 read n l the number of data sets to be added

30 for I=l to n
35 read part$,de3c$,quax
40 write #!,using 45: part$,desc$,quan,stat$
45 foru c 5,c 30,n 4,c i
50 next i

Page C-lO

DeltaBASIC Reference Manual DISK FILE I/O

55 CLOSE #1:
60 STOP
65 I DATA SETS
70 DATA 2

75 DATA 91324,WRENCH,5

80 DATA 68923,PLIERS,12

In line 15, the file INVMAS.DAT is opened for keyed-randorn/output access. The

number of data sets to be added is then read from internal data (line 25).
The new records are added to INVMAS.DAT, and the part number keys and record
pointers are automatically added to the unsorted list in INVMAS.KEY (lines 30-
50). Following execution of the program, the sample data file and

corresponding KEY file look like this:

l 2 3 4 Key Record

Rec#)....0....)....0....|....0....)....0 Pointer

1 81201SOCKET WRENCH 10 10202 2 (sorted)
2 10202BALL PEEN HA6C4ER 5 40121 4

3 64394PHILLIPS SCREW DRIVER 15 64394 3

4 40121HAND SAW 8 81201 1

5 91324NRENCH 5
6 68923PLIERS 12 91324 5 (unsorted)
7 (end-of-file record) 68923 6

Note that the KEY file now has two distinct key lists, the sorted list and the
unsorted list. As has been mentioned before, random accesses by key will
check both lists for the presence of a certain key. Sequential accesses by
key will not access the keys in the unsorted list. To ensure access to all
data, use the KEYSORT utility to sort the unsorted list and merge it into the
sorted list. After keysorting, the sample data file and KEY file would look
like this:

l 2 3 4 Key Record
Rec#!....O....)....O....!....O....)....O Pointer

1 8120ISOCKET WRENCH IQ 10202 2 (sorted)
2 10202BALL PEEN HAI'MER 5 40121 4
3 64394PHILLIPS SCREW DRIVER 15 64394 3
4 40121F!AND SAW 8 68923 6
5 91324WRENCH 5 81201 I
6 68923PLIERS 12 91324 5
7 (end-of-file record)

(unsorted)

Note that the two originally unsorted keys now occupy their proper place in
the sorted list.
Random by Key Access in Input Mode

For keyed-random/input access, a record in the data file is read by giving the
desired key in the KEY parameter of the READ statement. File writes are not
allowed. Keyed-random/input access is selected in the OPEN statement when
RANDOM is used in the file ID and both KEYED and INPUT are used as file
attributes.

Page C-ll

DeltaBASIC Reference Manual DISK FILE I/O

The program below accesses and prints record 6 (the PLTERS) by specifying the
corresponding part number as key.

l
2 A PROGRAM ILLUSTRATING KEYED-RANDCM/INPUT ACCESS

3

10 DIM DESC$*30

15 OPEN #1: "NAME=INVMAS.DAT,RAND0M",KEYED,INPUT

20 READ #1,USING 25,KEY="68923": PART$,DESC$,QUAN,STAT$ NOKEY 50
25 FORM C 5,C 30,N 4,C l
30 PRINT PART$,DESC$,QUAN,STAT$

35 CLOSE #1:

40 STOP

50 PRINT "KEY NOT FOUND"

55 CLOSE #1:
60 STOP

The file INVMAS.DAT is opened for keyed-random/input access in line 15. Lines
20-30 then read and print the record with the specified key.

68923 PLIERS 12

If the key is not found, the program branches to line 50 for error processing.

Random by Key Access in Update Mode

For keyed-random/update access, a record in the keyed data file can be
accessed by giving the desired key in the KEY parameter of the READ statement
and, if desired, the REWRITE statement then used to update the record. The
key portion of the data record must not be changed during updating, or an

error will occur. New records can be added to the file using the WRITE

statement. Keyed-random/update access is selected in the OPEN statement when
RANDOM is used in the file ID and KEYED is used without either INPUT or OUTPUT

as a file attribute.

In the example program below, record 6 (the PLIERS) is read and rewritten with
the status changed.

I
2 A PROGRAM ILLUSTRATING KEYED-RANDOX/UPDATE ACCESS

3

10 DIM DESC$*30

15 OPEN #1: "NAm=INvMAs.DAT,RAKD0}f",KEYED

20 READ #1,USING 25,KEY="68923": PART$,DESC$,QUAN,STAT$ NOKEY 50
25 FORM C 5,C 3C),N 4,C l
30 REWRITE #1,USING 40: "D"
35 FORM POS 40,C I
40 CLOSE Él:
45 STOP
50 PRINT "KEY NOT FOUND"

55 CLOSED #1:

60 STOP

Page C-12

DeltaBASIC Reference Manual DISK FILE I/O

The program opens file TNVMAS.DAT for keyed-random/update access (line IS),
then reads the record with the specified key and rewrites with the status
field changed to D (lines 20-40). After the program is executed, the sample

data file would appear as ['iven below:

l 2 3 4 Key Record

Rec#)....0....)....0....)....0....)....0 Pointer

I 81201SOCKET WRENCH 10 10202 2 (sorted)
2 10202BAI.L PEEN HAMMER 5 40121 4
3 64394PHTLLTPS SCREW DRIVER 15 64394 3

4 40121HAND SAW 8 68923 6
5 91324WRENCII 5 81201 1

6 68923PLTERS 12D 91324 5

7 (end-of-file record)
(unsorted)

Record 6 has been marked with a D.

Sequential Access by Key in Input Mode

For keyed-sequential/input access, records are read in the order of the keys

in the sorted list of the KEY file. File writes are not allowed. Processing
begins with the first key in the KEY file unless the KEY>= parameter appears
in the READ statement. In that case the first record processed is that of the
first key alphanumerically greater than or equal to the KEY>= parameter.
Keyed-sequential/input access is selected in the OPEN statement when RANDOM

is not used in the file ID and both KEYED and INPUT are used as file
attributes.
The program below prints a list of all parts in the original sample data file.
l
2 A PROGRAl'l ILLUSTRATING KEYED-SEQUENTÍAI./INPUT ACCESS

3
10 DIM DESC.$*30
13 OPEN #1: "NAHE=INVNAS.DAT",KF.YED,INPUT

20 READ É1,USIKG 25: PART$,DESC$,QUAN,STAT$ EOF 40
25 FORM C 5,C 30,N 4,C I
3C) PRINT PART$,DESC$,QUAN,STAT
35 GOTO 20
40 CLOSE #1:
50 STOP

Suppose the expanded sample data file has not been keysorted and appears as
given below:

Page C-13

DeltaBASIC Reference Manual DISK FILE I/O

1 2 3 4 Key Record
Rec#)....0....)....0....)....0....O Pointer

l M201SOCKET WRENCH 10 10202 2 (sorted)
2 10202BALL PFEN HAMMER 5 40121 4
3 64394PHU.LIPS SCREW DRIVER 15 64394 3

4 40121HAND SAW 8 81201 1

5 91324WREXCH 5

6 68923PLIERS 12 91324 5 (unsorted)
7 (end-of-file record) 68923 6

Executing the program would produce this printout.
10202 BALL PEEN HAMMER 10

40121 HAND SAW 8
64394 PHILLIPS SCREW DRIVER 15
81201 SOCKET WRENCH 10

Note in particular two things: first, the data is accessed in the order of the
keys, not in the order the data appears in the file. Second, the unsorted
data is not accessed at all. To ensure that all data is read, the file must
be keysorted using the KEYSORT utility.
Shown below is the same program, changed slightly by including the KEY>=

parameter in the original READ statement and adding a second READ without
KEY>=. The technique allows keyed-sequential/input access to begin with a key

other than the first.
I
2 A PROGRAM ILLUSTRATING KEYED-SF,QUENTIAL/INPUT ACCESS WITH KEY>=
3

10 DIM DESC$*30

15 OPEN #1: "|qAw=ÍNvxAs.DAT",KEYED,IxpUT

20 READ #1,USING 25,KEY>="50000": PART$,DESC$,QUAN,STAT$ EOF 45

25 FORM C 5,C 30,N 4,C l
30 PRINT PART$,DESC$,QUAN,STAT

35 READ #1,USING 25: PART$,DESC$,QUAN,STAT$ EC)F 45

40 GOTO 30
45 CLOSE i91:

55 STOP

After program execution, the printout would appear as shown below:

64394 PHILLIPS SCREW DRIVER 15

81201 SOCKET WRENCH 10

Processing began with the first key greater than 50000. Thus, only records
with keys greater than 50000 are printed. Note that the READ with KEY>= is
only used once. As in the previous case, the unsorted keys are not accessed.

Sequential Access by Key in Update Mode

For keyed-sequential/update access, records are read in the order of the keys

in the sorted list of the KEY file and, if desired, the REWRITE statement then

Page C-14

De1taBASIC Reference Manual DISK FILE I/O

used to update a record. (The WRITE statement cannot be used, which means

that new records cannot be added to the file.) Processing begins with the

first key in the KEY file unless the KEY>= parameter appears in the READ

statement. In that case, the first record processed is that of the first key

alphanumerically greater than or equal to the KEY>= parameter. Keyed-

sequential/update access is selected in the OPEN statement when RANDOM is not
used in the file ID and KEYED is used without either INPUT or OUTPUT as a file
attribute.
The program below illustrates this access technique with the expanded sample

data file (after being keysorted).

1

2 A PROGRAM ILLUSTRATING KEYED-SEQUENTIAL/UPDATE ACCESS

3
10 DIM DESC$*30

15 OPEN #1: "NAw.=INvms.DAT",KEYED

20 READ #1,USING 25: PART$,DESC$,QUAN,STAT$ EOF 50

25 FORM C 5,C 30,N 4,C l
30 IF QUAN>1O THEN 20

35 REWRITE #1,USING 40: "I"
40 FORM POS 40,C 1

45 GOTO 20

50 CLOSE #1:

55 STOP

The program opens the file INVMAS.DAT for sequential access by key, in update
mode (line 15). The records are then processed in key order, with those
records having a quantity less than or equal to 10 changed to the r status
(lines 20-45). After the program is executed, the sample data file appears as
shown below:

1 2 3 4 Key Record

Rec#)....O....!....O....)....O....|....O Pointer

l 81201SOCKET WRENCH 10 10202 2 (sorted)
2 10202BALL PEEN HAMMER 51 40121 4

3 64394PHILLIPS SCREW DRIVER 15 64394 3
4 40121FIAND SAW 81 68923 6
5 91324WRENCH 51 81201 l
6 68923PLIERS 12 91324 5

7 (end-of-file record)
(unsorted)

Records with quantities less than 10 reflect an I status.

This completes the description of the various file processing techniques
available to the DeltaBASIC user. A word of caution is in order. While the
data file is identical for all file access techniques, a problem can arise if
you add records to a keyed file not opened as a keyed file. In this case, the
record is added to the data file but the key and pointer are not added to the
KEY file. The resulting discrepancy causes this record data to become

inaccessable later when the file is used again as a keyed file. To correct
this situation, you can use the ORGANIZE utility to rebuild the KEY file.

Page C-15

DeltaBASIC Referenece Manual FORMATTED DATA ENTRY SCREENS

Appendix D. FORMATTED DATA ENTRY SCREENS

DeltaBASIC uses formatted data entry screens created by the utility program
SOU. To access a formatted data entry screen, first a work station (WS) file
must be opened specifying the format file that contains the screen; then the
screen can be displayed and data entered using WRITE and READ statements.

Data is passed between the keyboard/screen and DeltaBASIC using an input
buffer and an output buffer. All screen fields that accept input are
associated with contiguous data fields in the input buffer. Similarly, all
non-constant output fields are associated with contiguous data fields in the
output buffer. The arrangement of the buffer data fields is in the order
left-to-right, top-to-bottom on the screen. Thus, the screen field nearest
the top left corner of the screen would appear as the first data field in the
appropriate buffer. Since output-only fields do not appear in the input

' buffer, screen fields do not necessarily occupy the same position in both
buffers. SOU provides a detailed listing of the field positions in both
buffers which can be used to develop the FORM specification needed with the
READ or WRITE statements.

.

De1taBASIC supports a number of data entry and visual attributes. Attributes
for a field can be selected using the attribute screen of SOU. Most

attributes can be set on by choosing the Y option or off by choosing the N

option. In some cases, other options are provided. For instance, some

. attributes can be conditionally set from DeltaBASIC using indicators. There

are 99 indicators, each of which may be set on or off using the INDIC option
in the WRITE or REWRITE statments. An attribute is set on only if its
associated indicator is on.

The available attributes are listed below. The indicator option is denoted by

xx.

(Data Entry Attributes)

Controlled Field Exit {Y,N)
— When set on forces the user to press a key such

as RETURN or FIELD EXIT to exit an input/output field. When set off the field
is exited when the field length is exceeded by the operator.

Adjust/Fill {N,B,Z) --
When set off no special action is taken. When set to

B, the data in the field is right justified and filled with blanks to the
left upon exit. When set to Z, the data in the field is right justified and

filled with zeros to the left upon exit.

Mandatory Entry {Y,N)
— When set on forces the operator to enter at least one

non-blank character before exiting the field.

Mandatory Fill {Y,N)
— When set on forces the operator to enter non-blank

characters throughout the field.

Field Type {N,A} — When set to N, any data entered into the field must be

numeric; i.e., O through 9, +, -, E, or the decimal point. When set to A, all
alphanumeric characters are allowed into the field.

Input Allowed {Y,N)
--

When set on allows input from the field. When set off

Page D-1

DeltaBASIC Referenece Manual FORMATTED DATA ENTRY SCREENS

input is NOT allowed--setting this attribute off creates an OUTPUT ONLY field.

Constant Output {Y,N)
— When set on causes a specified constant to be output

to the screen as the screen is initially written.
Auto RETURN {Y,N}

— When set on indicates that the entire screen is to be

"entered" when the field is exited; i.e., the contents of all the input fields
are returned to the program. When set off the cursor will procede to the next
field unless the RETURN or a function key is pressed.

Position Cursor {Y,N,xx) —- When set on, unconditionally or with a specified
indicator, causes the cursor to be positioned to this field when the screen is
initially written. When more than one field on the screen has this attribute
set on, the cursor will move to the first such field. If no field is found
with the position indicator set on, the cursor defaults to the first data
entry field.

Protect {Y,N,xx} — When set on, unconditionally or with a specified
indicator, causes input to be disallowed from the field. When set off input
is allowed from the field.

.

(Visual Attributes)

Low Intensity {Y,N,xx} —- When set on, unconditionally or with a specified
indicator, causes the data in the field to be displayed in low intensity

.
(dim).

Blink {y,N,xx) — When set on, unconditionally or with a specified indicator,
causes the data in the field to be displayed blinking.

Non-Oisp1ay {Y,N,xx) — When set on, unconditionally or with a specified
indicator, causes the data in the field to NOT be displayed.

Reverse Image {Y,N,xx) — When set on, unconditionally or with a specified
indicator, causes the data in the field to be displayed in reverse video.

Underline {Y,N,xx) — When set on, unconditionally or with a specified
indicator, causes the data in the field to be displayed underlined.

Output {Y,xx) — When set on, unconditionally or with a specified indicator,
allows output to the field. This attribute is the equivalent of the Protect
Attribute for output. Note that this may not be set unconditionally off.

NOTE: The implementation of visual attributes can vary depending on the
capabilites of the computer system and/or terminal on which they are being
used.

Page D-2

DeltaBASIC Reference Manual MULTI-USER INFORMATION

Appendix E. MULTI-USER INFORMATION

DeltaBasic supports multi-user file and record locking in both the PíP/X and

TurboDOS operating environments. If a file is to be shared by several
programs at the same time, then the SHR parameter must appear in the OPEN

statement of each program To gain exclusive use of a file, it is necessary
to OPEN it without the SUR parameter at a time when the file is not in use by

any other program. Once exclusive use of the file is obtained, no other
program can gain access to the file.
Record locking occurs whenever a program has accessed a record and the file is
open in either the output or update mode. The program retains exclusive use
of the record during the write operation (output mode) or between the read

and rewrite operations (update mode). In standard implementations of MP/M and
TurboDOS, a second program attemptiñf' to gain access to a locked record is
suspended until the other program releases the record. It is important to
note that all physical disk records that contain the data record accessed are
locked. The possibility therefore exists that more than one data record can
be locked when only one record is accessed. Record locking does not occur
when a program accesses the record in the input mode. Thus, two or more
programs can access the sanie record at the same time if all have the file open

in the input mode.

Page E-1

DeltaBASIC Reference Manual LANGUAGE COMPATIBILITY

Appendix F. LANGUAGE COMPATIBILITY

DeltaBASIC is based on a subset of IBl'l System/34 BASIC but is not directly
compatible with this or any other BASIC language implementation. At the same
time, most of the commands, statements, and functions are similar to those
generally considered traditional to the BASIC language. The greatest
differences will be encountered in these areas:

l) Formatted READ and WRITE
2) Disk I/O and file handling
3) Substring operations

Page F-1

L)eÁLaL)LiD-LL keLU[ejlcc í1¿ínuaí INDEX

Appendix G. INDEX

Abbreviations, 3-l DUPKEY, 6-9, 6-43, A-3
ABS, 7-2

Adjust, D-1

ASCII, 5-12, S-16 Edi-ting Keys, 4-l
ATN, 7-2 Editing Key Table, 8-lS
ATTN, 3-l, 4-l END, 4-l, 6-3, 6-8
AUTO, 5-2 EOF, 6-9, 6-33, A-3

Auto RETURX, D-2 ERR, 7-2
ERROR, 6-22, A-2

Error Codes, A-l
BEGIN, 6-26, 6-43, C-2, C-3 EXIT, 6-3, 6-9, 6-26, 6-28, 6-33,
Blink, D-2 6-39, 6-40, 6-43

EXP, 7-2

Expressions
C, 6-11, 6-29 Character, 2-2
CHAIN, 6-2 Logical, 2-2

Character expressions, 2-2 Numeric, 2-l
Character functions, 7-4 Relational, 2-2
CHR$, 7-4
CLEAR, 5-3
CLOSE, 6-3, 6-9 Features of DeltaBASIC, l-lCMDKEY, 6-34, 7-2 Field Type, D-l
CNVRT$, 7-4 FILES, 5-5, 6-2
Command/Program edit mode, 4-l Fill, D-l
Commands, 5-l FOR/NEXT, 6-lO
Constant Output, D-2 FORM, 6-11, 6-31, 6-33, 6-34, 6-39,
Constants, 2-l 6-43, 6-44, D-l
Controlled Field Exit, D-l FORMAT, 6-44
CONY, 6-22, A-3, A-4, A-5 Format of error codes, A-l
CR, 6-12 Formatted Data Entry Screens, D-l
CUR, 6-ll FREE, 5-6

FRM, 6-28, B-12

D, 6-29
DATA, 6-4, 6-37 GENNSG, 6-34, 8-l, 8-2
Data Entry Attributes, D-l GO, 5-7, 6-42
DATE$, 7-4 GO END, 5-7, 6-3
DB, 6-12 GOSUB, 6-15, 6-38
DEF FN, 6-S GOTO, 6-16
DEL, 5-4, 6-34
Descriptions

Commands, 5-l !IFJ.P, 5-8, B-17
Disk File 1/0, C-l
Formatted Data Entry

Screens, D-l TF/THEN/ELSE, 6-17

Intrinsic Functions, 7-l INDIC, 6-40, 6-44, D-l
Statements, 6-l INPUT, 6-18, 6-26, 6-34
Utility Programs, 8-l Input Allowed, D-l

DIM, 2-l, 6-7
Disk File T/O, C-l

Page G-l

DeltaBÁSIC Reference Manual INDEX

Input Mode ON ATTN GOTO, 6-21

Keyed access-Random, C-ll ON ATTN IGNORE, 6-21

-Sequential, C-13 ON Error Condition, 6-22

Relative access, C-6 ON GOSUB, 6-23

Sequential access, C-4 OK GOTO, 6-24
INT, 7-2 ON RESTORE, 6-25

Intrinsic Functions OPEN-disk file, 6-9, 6-26, 6-43,
Character, 7-4 C-2, E-l
Numeric, 7-1 -work station file, 6-28

Introduction, 1-l OPTION, 6-29
I/O, 3-l ORGANIZE, 8-6
IOERR, 6-3, 6-9, 6-26, 6-28, 6-33, Output, D-2

6-39, 6-40, 6-43, A-3, A-4, A-5 Output Mode

Keyed access-Random, C-lO
Relative access, C-6

KEY, 6-33 Sequential access, C-2
KEYED, 6-26
Keyed Access, C-9
KEYL, 6-26 PO, 6-11, 7-4
KEYP, 6-26 PIC, 6-11, 7-4
KEYSORT, 8-l, 8-5 POS, 7-2

Position Cursor, D-2

PRINT-forrnatted, 6-11, 6-30, 6-34
Language Compatibility, F-l -unformatted, 6-31
LEN, 7-2 Printer Mode Control, 6-29
LET, 6-19 Program Execution Mode, 4-l
LIB, 8-2 Protect, D-2
LINE, 7-2 PRTSET, 6-29
LINPUT, 6-20 PRTZO, 6-29

LIST, 5-lO
LISTP, 5-ll
LOAD, 5-12 RANDOM, 6-26
LOG, 7-2 READ-internal data, 6-32
Logical Expressions, 2-2 -disk file, 6-11, 6-33, D-I
Low Intensity, D-2 -work station file, 6-34, 6-40,
LPREC, 6-29 6-44

REC, 6-33, 6-43
RECL, 6-26, 6-28

Mandatory Entry, D-l REDO, 6-18
Mandatory Fill, D-l Relational Expression, 2-2
Multi-User Information, E-1 Relative Access, 6-43, C-6

REM, 6-35
RENAME, 5-14

X, 6-11, 7-4 RENIM, 8-l, 8-ll
NAME, 6-26, 6-28 RESET, 6-36
NEW, 6-26 Reserved Words, B-l
NEWPAGE, 6-30 RESTORE, 6-37
NOKEY, 6-9, 6-33, A-3 RETURN, 3-l, 4-l, 6-38
Yon-Display, D-2 Reverse Image, D-2
Numeric Expressions, 2-l REWRTTE-disk file, 6-9, 6-11, 6-39

-work station file, 6-40
ROUND, 7-3

OFF, 4-l, 5-13, 6-3, 6-29 RND, 7-3
OFLOW, 6-22, A-3 RUN, 4-l
ON, 6-29

Page G-2

UeÁLaDADLg ReLeLellLe nanüdj- -liyl/lji\

SAVE, S-16

Screen Design Utility, B-12

SOU, 8-l, 8-12, D-l
"-"" Sequential Access, C-2

SGN, 7-3
SHR, 6-26, E-l
SIN, 7-3
SKIP, 6-13
SOFLOW, 6-22, A-3

Spooler, 6-29

SPREC, 6-29
SQR, 7-3
Statements, 6-l
STATUS, 7-3
STOP, 4-1, 5-7, 6-3, 6-42

STR$, 7-4

TAB, 6-30
TIME$, 7-4

U, 6-29
UFLOW, 6-22, A-3

Underline, D-2
Update Mode

Keyed access-Random, C-12

-Sequential, C-14

Relative access,
C—7

Sequential access,
C—5

User number, 7-3
USING, 6-31, 6-33, 6-34, 6-39, 6-40

6-43, 6-44

VAL, 7-3
Variables, 2-l
Visual Attributes, D-2

WRITE-disk file, 6-9, 6-11, 6-43, D-l
-work station file, 6-44

WS, 6-28

X, 6-13

ZD, 6-13
ZDIV, 6-22, A-3

Page G-3

