1.

EXECUTIVE..........

1.1

1.2

Rect..

1.1.1

—_—
e o
w N

File Manager....iee et eeeenenneannaanns

1.2.1

1.2.3

P N N T e = I e )

"EP OPERATING SYSTEM

e o 8 0 08 0 0 00

TABLE OF CONTENTS

® 6 0 0 0 s 0 s 0

Basic Services....

w1 7

DiSk FOrmPto......;.................

— e

2.1.1
2.1.2
2.1.3

Basic File Management Rcutines.....

* o

oD NN

o o

ANSINCINCES IRV I\ GV

e o e o o s
* o e o o

D R
O~ OVN WM —

Executiv? Interface....oivvveenennn

E

Task Management.........
Message Rcutine..

e s 0 0 0 ¢ 0 0 s

Terminal Service.........

I/0 Interrupt Services....
ﬁiscellaneous Services....

i
b

btain.bno;................

xecutiveiDebugguer..
witch Interface.....
ernel Inbound Task (KT)...
ernel Outbound Task (KO).
Request File Task (RF)....

ile Format...
irectory Format......c.v

itmap & Reserved Sectiocon

Format.

cckup...
cgon....

e e o 09 0 e 0

® ® 0 2 s 00 00 0000 s e

‘nter..... '
“Addufd....
gRelease..o.-..............

Peletefile.....

Xxecutive
xecutive
xecutive

‘Executive
Executive

Open..eieeieeenns

¢ o 5 0 0 0 s 8 v e

¢ o 8 0 e 8 8 0 0 0 0

L I R ]

Renamefile‘ioooooc..aoaoa.

Clos€e.eeeeennnn

Read/Write......

Obtain»..-....‘.
|DToR - £+ ¢ T

. .

¢« 0 0 0 8 0

LI NI I Y

® s 0 0 0

s s e 0 0 0

L A

¢ o o 0 0 0 0

LA A ]

.19

..19

.19
.19
.19
.19

.19
.20

.20

.22
.23
.24
.2
.24



1.4

1.2.4

1.2.5

PASCAL

— -3 e
Wl
o o o
W —

1.3.4

Resident

HEP OPERATING SYSTEM

Superviscor Interface..

TABLE OF

CONTENTS

The Resident OPEN......

Tape Manager.....

1.4.1
1.4.2

1.2.4.2 Resident CLOSE....... e -
1.2.4.3 Resident READ/WRITE...viieeeeeeaa?T
1.2.4.4 Resident OBTAT V.. eeereeenneeeaall
1.2.4.5 Resident LOGON......vcu... e 27
Operator Interface...vveiveerecennnseensessll
Runtime LiDrary e e eee e iieseenonenreeenens 29
PASCAL Interface....... e ceeeeeeees29
PASCAL Runtime Envircnment.....ccoeeeeneeso 32
Files and File Variables........ e et ... 30
1.3.3.17 Nen-Text Files....ovveenn. Ceee e 34
1.3.3.2 Text FilesS..ieiieeieeeoocesocoansaa 35
1.3.3.3 File Variables...covee.. cereveeeaa3b
1.3.3.4 File Descriptecr Blcek...o... ceee s .38
Miscellanecus Runtime Suppcrt
ROULINES . et i ittt it eenonneeeeneenneeesald
103.“.1 FINITQOO.C.O'!QQ..C ----- . = o o o . 038
1.3.”‘2 LOGOP’.....Q....0.".....'.0 ‘l00.39
T.3.4.3 LINLEN... ' eeeeweeooononn et 39
103.’4.)" SETID-ooooc- ® e s e 0 0 o« & o . . 00000039
T.3.U0.5 GETTSK.u v 'iieeeoeeeonns c e eeeeseessaall
1.301“06 ERR....... . . e o o 0 0 0 0 @ s o s o 0 -39
1.3.4.7 GETLOC. .. eennannas I ¢
1.3.4.8 SETLOC..v.tieeeeenons s eseenssesess O
'..0."..._0.. . o L . o * e o 0 .C.Ou1
Overview.....eeveeos e ee e Gt e et e e L4
Tape For‘mat....'.‘.'..‘. *® & & o o LI ) . @ L] '.00”1
1T.4.2.7 Reccrd MOAe..eeeeeoenesoeoennn ve ool
1.4.2.2 Dump Mode...veeiriennnnennns N

— d —d

e o e

1

<=

y
Y

-

2.2.1
2.2.2
2-2-3

® o o 0 0 0 00

Word Files.e.veeooeon
UFD Dumps.cevevcaesns
End ¢f Vclume......

43



1.5

-— b

o

HEP OPERATING SYSTEM

TABLE OF CONTENTS

1.4.3 CommandsS...eeeeeeeenneens e |
1.4.3.17 Tape Pcsiticning..eveeenneevenna. i3
1.4.3.2 Writing a Tap@.veveeeeeeassaooss. Ul
1.4.3.3 Reading a Tap@..seeeeeecesoasosss b
1.4.3.4 TIndirect Ccmmand File.....covvun... 46
1.4.3.5 Terminating Cocmmand

ProcessSing...eeeeeeeecesencesoas b

T.4.4 Functicnal Description.......c.cveiuen... U5

1.4.5 Errcr MessSagesS....eeeeeen. ceeeaees o e uy

HEP Debugger....c.iiviivieenencncens C e es et u8

1.5.17 Command Fermat....ieieeeeieneoenoooasanneens us

Maintenance Process (Nct Completed Yet)

Editer. .ot iiiineneenonannns SO 510

T.7.17 Overview.e.eeeeeoeeea. N 50

1.7.2 CommandsS..uieeeeeerececasssssocsasasassasaasadl
1.7.2.1 Log On/0ff Ccmmands....... . N

1.7.2.7.1 LOg ONuvvennnnnnnnaaasasBl
1.7'2.1.2 Log off‘.l-.t.i.‘.“."51
1.7.2.1.3 Assistance..eeerieeeee...nl
1.7.2.2 File Utility Commands.....cvvee...51
1.7.2.2.1 List Directory...... eeo51
1.7.2.2.2 Cepy a File..oveeeueo...h?
1.7.2.2.3 Delete a File...... cee.52
1.7.2.2.4 List a Fileieevevevee..B2
1.7.2.2.5 Rename a File....oo....52
1.7.2.2.6 Submit a Job...ceevie...52
1.7.2.3 Edit Commands......cccvvieneeeea.sb3
1.7.2.3.1 Edit a File............53
1.7.2.3.2 Ccpy Lines...veveeeees.53
1.7.2.3.3 Mcve LinesS.eeeeeeeeeesabl

1.7.2.3.4 1Insert a Sequence
: of Lines.....ve0eee..53

1.7.2.3.5 Replace a Text

String..-“.’........sl'
1.7.2.3.6 Delete Lines...........54
1.7.2.3.7 Direct Insert..........54



HEP OPERATING SYSTEM

TABLE OF CONTENTS

1.7.2.3.8 Direct Delete.....ov....Bl
1.7.2.3.9 Find a Text
String........ et e e 54
1.7.2.3.10 List Lines...veeeeiea..H5
1.7.2.3.11 Renumber the
Fileweeeeeeeeooeanns .55
1.7.2.2.12 Save the Changed
File..oi et oeeeeonans .55
1.7.2.3.13 End the Edlt
SeSSiCN. e et oeeenas 56
1.7.2.3.14 Cancel the Fdlt ........ 56
1.7.3 Functional Description...iceeeeeneencens ...56

1.7.4 Running a Job Frcm the Editor.....ccevve...57

Batch Meoniter....... ceecseesesenessese s e eeanee ..58
1.8.1 Overview....ee... e ee e e e et 59
1.8.2 CommMandsS. . eeeeeeeeeeesoeeeeososancsssssns ...58%

1.8.2.1 Job Related CommandS......c.......58

1.8.2.1.1 Mcve Job tc Top
' of Quaue...veeeeee...58

1.8.2.1.2 Suspend Job Execution..59
1.8.2.1.3 Resume Jcb Executicn...59
1.8.2.1.4 Cancel a Job.eveeereonans 59
1.8.2.2 B3System Related Ccmmands.......... .59

1.8.2.2.1 Set HEP Partition )
Si1ZESeieeeeeeeenneasad

1.8.2.2.2 Set Cecntrcl Card
Prccesscr.cieecese...60

1.8.2.2.3 Display the Jcb Queue..60
1.8.2.2.4 Display the Jobs in
Execution....cve0e...060
1.8.2.2.5 Quiesce the System.....61
1.8.2.2.6 Resume Ncrmal System

Operatich....cevee...01
108'3 Inter"‘TGSk Messages....................o...61
1.8.3.17 HEP MESSAEB@S.eevrereennsencns ceeasB

1.8.4 Summary cf Batch Menitor
CommMandsS..ueeenieeersasnoananeennannnnaaah3



HEP OPERATING SYSTEM

TABLE OF COHTENTS

1.9 Reader (Not Ccmpleted Yet)
1.10 Writer (Nct Ccmpleted Yet)
1.11 Disz( Builder’.....‘.....O..O......'.'..'..'.'0"... 66

T.71.7 Fermat DisK...eeeeeeoeoeoonoenooanananannns 65
1.11.2 Initialize Disk.......... e e e ceee.ahb
1.117.3 Create User File Directory.ieeeeceseen R 15
T el Tl LOBCN ettt eeeneneneennenesnosasossanessssss DO
1.11.5 Build. Bootstrap SectorsS..ieeeeceseeeeeans.. .66
1.71.6 Set Date.eeeeeineeeneeeennnes s e e e e s e e 57
1.11.7 Set Time...o.oovews. Ceer e N o 4
1.11.8 Make Distributicn Tape..eeieeeeroeeeeosoonns 57
1.1717.9 Read Absclute Sector...iveeeeeeveeroocens ..hT
1.71.10 Set Indirect File...ieeeeieieeenonnns teee...D8
T477.77 Shut DOWN . ettt eneeeeesacosensnsassnns ee...08
1.171.12 Disk Build Prccedure...vieeeeeeeeneeeeesesanHf

]



HEP OPERATING SYSTEM

TABLE OF CONTENTS

2. RESIDENT SUPERVISOR. .. .vivreeeeenesas
2.1 Kernel...ooeeoeen Cec e e e

2.1.1 Kernel Data Structures
and Initialization.....ccieeeeeess

2.1.1.1 Memcry Management Data
StructuUres. . et ereitennecnonns 3
2.1.1.2 Task Managenent Data
SErUCEUrES e i vt e tetneeaonconensasa
2.1.1.3 Ccmmunications Data

.
P

StruCtUre. . ittt eeeeeetesesancassd
2.7.7.8 InitializaticnN..ee.eeeerieeeenneeananshd
2.7.2 Inbound Kernel...eeeeeeeooereesonoonseaseensh

2.1.2.1 Examine Directive -

Type 21 (10) ie it nneeeeennannaadT
2.1.2.2 Modify Directive -

Type 1 (16) i enencenonnnensl
2.1.2.3 Cancel Directive -

Type 2 (10) it innin s innnnenasaT
2.1.2.4 Suspend Directive -

Type 3 (16) . ciiiennencecrnnnns ...8
2.1.2.5 Resume Directive -
Type 4 (16) et uieeereennncnancsans ]

2.1.2.6 Load Directive -

Type 5 (16) and

Type 7 (16) i eeereeesenosenonees 8
2.1.2.7 Miscellaneous Examine

Directive - Type 22 (16).........9
2.1.2.8 Set Partitions Directive -

Type 23 (16) e iiieiieneennnesonsesl
2.1.2.9 Set Task Directive -

Type 24 (16)......... Ceeeiaeae e 10
2.1.2.10 Create/Prccess Directive - )

Type 6 (16) .. ieereeennneenaanssll
2.17.2.11 Dump Directive -

Type 25 (16) it iiereirieanenseasall
2.1.2.12 Set Process Diresctive -

Type 26 (16) it irneereveaneneaaasll

2.7.3 Outbcund Kernel....iveeveeeennn O
2.7.3.7 SVC PrccesSiNg.eeeeeeeceseseenensnssll
2.1.3.2 Errcr Precessing.c.veieeeeceensseaal?



HEP OPERATING SYSTEM

TABLE OF COHNTENTS

2.1.4 Create Fault Handler...... eeeeees

Loader sttt e e eneeeeesonenasennsens

Initialization....eeveeeoe.e e e
Header and Chezcksum Reccrds......

s e e
s o @

DIV Wiy =

Start Reccerd........ e e e e s ee e en e

e

[AVENVEVELC R LGV
DNV NN

.

I/70 Services..i.iieeeeeereeeeeeons
2.3.1 SVC 'S . ittt nnereeeceonnseanans

Error Handler...o.oe oo eeeeeesocens

Task Record.. i eiieeeeenne s ec e e

Data Record...eee et ieeeeerocecens
Locader Terminaticn......... e et e e s et e 1h

ooooooo



3.

SYS'I‘E:‘1 SOFTWARE..C.bl.....".'......i'..

3.1

ww W
=W

W wWww
v~ v\

HEP OPERATING SYSTEM

TABLE OF CONTENTS

ontrcl Card Prccessor

Overview...... L 1
3.1.1 Control Card Command
Precessor SyntaX...iiieeeeeieeernenannaosass 2
3.17.1.17 Job Reccerd Syntax....vieeneneneeess?
3.17.1.2 Assign Command SyntaX....oveeeeen. .2
3.1.1.3 Conditional Dump Command
SyNtax...iieeeeerresrsnnnanns PPN 5
3.7.7.4 Run Command SyntaX..eeeeeeeesoesassh
3.1.1.5 End of Job Record SyntaX...........n
3.17.1.6 Comment RecCrd...ceeeeceneecnns veeD
3.1.2 Runtime Environment (Not Completed Yet)
Dump Formatter........ e e .o e e et e e e esanan 11

FORTRAN Ccmpiler (Not Completed Yot)
FORTRAN Runtime (Nct Completed Yet)
3.4.1 Math Library (Not Ccmpleted Yet)
3.4.2 I/0 Fermatter.........
Assembler (Not Ccmpleted Yet)
Linker (Not Completed Yet)
PASCAL Ccmpiler (Not Completed Yet)

PASCAL Pcode Assembler (Not Ccmpleted Yet)



EXECUTIVE

L

Root

1.1.1

—
-— )
L] .
w N

Basic S

et s o e
e o e e
JUT N Y
. e s e
[ G T
" e o
Ul &=Ly —

HEP OPERATING SYSTE™

TABLE OF CONTENTS

ervices

Task Management
Messag~ Routing
Terminal Service

I/0 Interrupt Services
Miscellaneous Services

Exrcutive Debugger
Switeh Interface

1.1.3.1
1.1.3.2
1.1.3.3

File Manager

1.2.1

1.2.2

1.2.5

Disk Fo

1
2

—_

2.1
201
2.1

[ASEAVIAV)

3
F

fus)
w
wn
i
¢

L
[ae]

« s e

[ S G Y
NNV
[AS IS I IRAC IS IR IR IS

33

—_ e s s
o« » e s e >
N0 N0 PO N D
» e O

« e e

VTN —

e o e

(S RUS RUS EWS R ]

. s

Kernel Inbound Task (KI)
Kernel Outbound Task (X0)
Request File Task (RF)

rmat

File

Directory Format
Bitmap % Reserved Section

ile Management Routines

Obtai
Looku
LLozon
Enter

Format

n
P

Addufld

Relea
Delet
Renam

Executive Open
Executive Close
Executive Road/Write
Executive Nbtain
Executive Logon

se
cefile
efile

utive Interface

Format



HEP OPERATING SYSTE™

TABLE OF COMTENTS

1.2.4 Resident Supervisor Interface

1.2.4.1 The Resident OPEN
1.2.4.2 Resident CLOSE
1.2.4.3 Resident READ/WRITE
1.2.4.4 Resident OBTAIN
1.2.4.5 Resident LOGON

1.2.5 Operator Interface
1.3 PASCAL Runtime Library

PASCAL Interface
PASCAL Runtime Environment
Files and File Variables

- 3
« o o
www
« o
w N —

1 Non-Text Files

2 Text Files

3 File Variables

4 File Descriptor Block

1.5.4 Miscellaneous Runtime Support Routines

3.4.1 FINIT
4.2 LOGON
4.3 LINLENW
4 SETID
5 GETTSK
4.6 ERR
7
8

.

o e

. .
.

. . .
~
-—

. .

GETLOC
SETLOC

.

PR W (IR |DUUEY (I QI (K I |
¢«

1.4 Tape Manager

1.4.17 Overview
1.4.2 Tape Format

1.4.2.1 Record "Mode
1.4.2.2 Dump Mode

1.0,2.2.1 Word Files
1.4,2.2.2 UFD Dumps
1.4.2.2.2 End of Volune

A



1.

—_—

-

1.4.4
1.14.5

Commands

r—

J4.3
4.3
4.3
4. 3.
4.3

.
. .
.

- o
.« o
F=JUSEIS IE

Ul

HEP OPERATING SYSTEM

TABLE OF CONTENTS

Tape Positioning

Writing a Tape

Reading a Tape .

Indirect Command File .
Terminating Command Processing

Functional Description
Error Maessages

HEP Dehunmger,

1.5.1

Comnand Format

Maintenance Process

Editor

1.7.
1.7.

N —

Overview
Commands

1.7.2.1

Log On/Dff Commands

[CEICIRVICE\CIRV)
AN -

o e

g2l

o

=

ct
[ACIRAVIRCEAG RGN\ ]
(o2 R0}

.
.
.

\,Qi\)-—*

fo
-—

*« o o

R N P R R B

. e
e & e s e e
e e e .

.

P T P G
WM VVUTUOTONI NV O N
[US RUS IS LS BUS RUS BUS RBUS RUS R UN)

.
. e

— Lo~

Log On
Log Off
Assistance

e Utility Commands

List Directory
Copy a File
Delrte a File
List a File
Rename a File
Submit a Job

Commands

Edit a File
Copy Lines
Move Lines
Insert a Sequance of Lines
Renlace a Text String
Delete Lines

Diract Insert

Direct Deletea

Find a Text “trin-z
List Lines



HEP OPERATING SYSTEH
TABLE OF CONTENTS

1.7.2.3.11 Renumber the File
1.7.2.3.12 Save the Changed File
1.7.2.3.13 End the Edit Session
1.7.2.3.14 Canc=2l the Edit

1.7.3 Functional Description
1.7.% Ruaning a Job From tha Editor

.3 Batch Monitor
9 Reader
10 Writer
11 Disk Builder

1.11.1 Format Disk

1.11.2 TInitialize Disk

1.11.3 Create User File Directory
1.11.4 Logon

1.11.5 Build Bootstrap Sectors
1.11.6 3Set Date

1.11.7 Set Time

1.11.8 Make Distribution Tape
1.171.9 Read Absolute Sector
1.11.10 3et Indirect File
1.11.11 Shut Down

1.11.12 Disk Build Procedure



HEP OPEZRATIHG SYSTEM

TABLE OF CONTENTS

2. RESIDENT SUPERVISOR

2.

N

1

Xernel

2.1.17 Xernel Data Structures and Initialization

2.1.1.1 Memory Management Data Structures
2.1.1.2 Task Management Data Structures
2.1.1.3 Communications Data Structure
2.1.1.4 Initialization
2.17.2 TInbound Kernel
2.1.2.17 Examine Directive - Type 21 (16)
2.1.2.2 Modify Directive - Type 1 (156)
2.1.2.3 Cancel Directive - Type 2 (16)
2.1.2.4 Suspend Directive - Type 3 (16)
2.1.2.5 Resume Directive - Type U4 (16)
2.1.2.5 Load Directive - Type 5 (16) and Type 7 (15)
2.1.2.7 Miscellancous Examine Directive - Type 22 (16)
2.1.2.8 Set Partitions Directive - Type 23 (16)
2.1.2.9 Set Task Directive - Type 24 (16)
2.1.2.10 Create/Process Directive - Type 5 (16)
2.1.2.11 Dump Directive - Type 25 (16)
2.1.2.12 Set Process Directive - Type 26 (16)

2.1.3 Dutbound Xernel

SVC Processing
Error Processing

NN

103,
.

Ny =

Lo

-

2.1.4 Create Fault Handler

Loader

2.2.17 Initialization

2.2.2 Header and Checksum Records
2.2.3 Task Record

2.2.4 Ztart Reacord

2.2.5 Data Record

2.2.6 Loader Termination

1/0 Services

n)
3

3.1 SVC's

rror Handler

m



HEP OPSRATING SYSTEM

TABLE OF CONTENTS

SYSTEM SOFTWARR
3.1 Zontrol Card Processor Overview

3.1.1 Control Card Command Procassor Syntax

3.7.1.1 Jobh Record 3yntax
3.1.1.2 Assign Command Syntax
3.1.1.3 Conditional Dump Command Syntax
3.1.17.4 Run Command Syntax
3.1.1.5 End of Job Record Syntax
3.1.1.6 Comment Record

3.1.2 Runtime Environment

Dump Formatter

FORTRAN Compiler
FORTRAN Runtime

3.4.1 Math Library
3.4.2 1/0 Formatter
Assembler

Linker

PASCAL Compiler

PASCAL Pcode Assambler

USRS RN
e N

20 ~3 OV

Ll o Loy
e & o e



HEP OPERATING SYSTEM

1. EXECUTIVE

Tne HEP Executive resides on a Digital Equipment Corporation
PDP-11 computer. It provides operating system services associated
witn pnysical I/0, Jjcb preparation, maintenance and debugging. In
general, any operating system function whose execution time is not
critical is provided by tne Executive.

Executive services are provided by Executive tasks, wnicn are
described in mcre detail later in tnis section. These tasks are
ccerdinated by a mini-operating system in tne PDP-11, Tnis mini-03,
called tne ROOT, wmanages memory for tne Executive tasks, protects
tnem from each other, and provides certain services to tne Executive
tasks.

1.1 Root

The Roeoct is the only Executive mcdule written directly in
assembly language. Tne Root is lcaded into low PDP-11 memocry by
tne boot-strap process. Otner Executive tasks exist as
independent disk files, and are lcaded by tne Root as part of tne
system initialization. Tnus, Executive tasks are separately
compiled, and may be changed witnhout rebuilding the entire
operating system. Initialization of tne disk for system booct is
nandled by a specialized task - tne Disk Builder (DB) and is
discussed later under tnat neading.

1.1.1 Basic Services
Once all Executive tasks are locaded, tne Rcet provides

basic operating system services to tne tasks. Tnese services
are described ocn the next page.



HEP OPERATING SYSTEM

1.1.1,1, Task Management

Eacn Executive task is allccated a certain amount
of memory for execution. Tne address space of eacn task
is allocated by the Root as follows: '

0-8K Code-Read Access

8-16K Code-Read Access

+ 16-24K Code-Read Access

24-32K Code-Read Access

32-40K Data-Read/VWrite Access
40-48K Message-Read/Write Access

(only 128 bytes used)

48-56K Message-~Read/Write Access
(only 128 bytes used)

56-6UK I/0 Page-Read/VWrite Access

Tne pnysical memory associated witn tnis 64K byte
address space 1is fixed by tne Root at IPL time, and
remains allccated forever. Task context switcning is
nandled by tne Root, and involves the manipulation of
tne PDP-11 memory management registers to protect and
isolate tasks from eacn otner.

Executive tasks are dispatcned strictly 1in
priority order. Tne priorities are determined by the
arder of tasks at Disk Build time. Root task management
rcutines always dispaten the nignest prierity ready
task. Wnile there 1is cecnsiderable latitude 1in tne
dispatcnhing order of tasks, inappropriate dispatcning
priorities can result in system failure.

1.1.1,.2 Message Routing

Terminal and inter-task cemmunicaticns are nandled
by messages passed frem task te task by tne Root. In
order te¢ aveid copying of message text, memory mapping
registers 5(40 -~ 4BK) and O6(U48K ~ 56K) are used. A task
wisning to send a message executes Trap 0, and upon
return, tne Rsot nas s=t up mapping register 5 te point



HEP OPERATING SYSTEM

to an available message buffer and general register O
te address tne buffer. Tne message buffer is a 128 byte
area witn tne following format:

Byte O Link

Byte 2 Scurce Destinaticn
Byte 4 Pricrity

Byte 6 Lengthn

Byte 8 " Type

10-127 Data

Tne message is transmitted by placing word 0 c¢f
tne message in general register 0 and issuing Trap 1.
Tne Root 1locates tne destination task using the DEST
field of tne message.

Tasks 0 - 31 are dummy terminal tasks.
Transmitting tc tnese tasks causes the message to enter
tne terminral service routines, Tnese are described in
the next section. Tasks 32 and greater and are actual
tasks. Task numbers for tnese tasks are determined by
Disk Build. All real taske nave an input queue inte
wnicn all messages sent to tnem are placed. Messages in
tne queue are maintained in priority order using tne
pricrity field of tne message buffer. Wnen a task
wisnes to precess a message, it issues Trap 2. If a
message is waiting, mapping register 6 and general
register 0 are set up to point teo the message and tne
task continues. If nec message is waiting, the task
enters  Message Wait state and tne Roct dispatcnes tne
next ready task. After a task processes a message, it
places tne 1link field of tne message in general
register 0 and executes Trap 4. Tnis releases tne
mesgssage and places it in a list of available message
buffers maintained by tne Roct.

All message buffers are in the first 56K of real
memcry. Tnhe 1link field of a message 13 tne actual
memory address of tne message and Is used by the Reot
te manipulate it. No error cnecking is performed by thne
Rcct in message nandling. If Executive task viclates
tne message protccol, a ccmplete system crasn will
eventually result. Mecst message nandling is perfcormed
by Executive task runtime library recutines, but scme
tasks manipulate messages direatly. Tnis is acceptable,
but requires extreme care,

)



HEP OPERATING SYSTEM

1.1.1.3 Terminal Service

ASCII terminals connected to the Executive
computer are nandled by terminal service routines in
tne Rcot. Input to these terminals is assembled into
messages and sent to appropriate tasks. Input messages
are type 1t (Command). Output messages from Executive
tasks wnich address tasks less tnan 32 are routed to
the terminal service routines., Output messages snould
be type 3 (Display Text). The associaticn between task
numbers and terminals is <compiled into tne Root. By
convention, task 0 is tne console terminal,

Tc¢ a task, terminals 1leek just like any otner
task, ncwever, terminal service routines nandle
messages differently than regular tasks. VWnen a message
is input te a terminal, tne destination of tnat message
is taken as the first task wnicn sent a message to tnat
terminal. Thus tasks must cutput at at least ene
message to a terminal before expecting input. An
exception to tnis 1is tne <console terminal. On the
console terminal, input may be preceded by a two
cnaracter task ID and one or two cclons. Every task nas
a task ID assigned by tne Disk Builder and console
messages are routed using thne task ID. If tne task ID
is followed by a single colon, only tne current input.
is reuted to the specified task. If twe colons are
used, all subsequent input with ne¢ specified task is
sent to the named task, until a new task ID and two
colons is entered.

Since a task <can generate lines of output mucn
faster tnan a terminal «can print tnem, tne terminal
output recutines maintain a count of messages queued for
printing by eacn task. Wnen a task nas more tnan two
messages wWaiting for printing, it is placed in Output
Wait state. This 1is required tc prevent a task doing
multi-line output from censuming all the message
buffers {in tne system. AS messages are printed, tne
sending tasks are re-activated to generate furtner
output.

Certain terminal interfaces (D7-11) are capable of
prcgrammed baud rate selection. Tnis is contrelled by
the use of Control-S and Control-Q cnaracters in ocutput
messages, If a task sends Control-3S te a terminal, tne
next c¢naracter {8 used to set the baud rate, and tne
terminal is placed in single-cnaracter input mode. Eacn
cnaracter typed 13 sent directly tn tne contrelling



HEP OPERATING SYSTEM
task as a separate message. Normal mcde is entered when
a Control-Q character is sent to the terminal.

Tne " terminal service input rogutines 1interpret
several characters for control functions. These are:

Control-H - Delete Last Cnaracter Typed
Tab - Insert Spaces to Next Multiple
of 8 Columns
Backslasn ~ Delete Last Line Typed

Control-S - Suspend Output
Control-Q - Resume Output

Carriage Return Terminate Input Message

All other control characters are ignored.
1.1.1,4 I/0 Interrupt Services

Non-terminal I/0 is performed directly by each
Executive task. Wnen device 1latency is snort, tasks
normally 'busy wait' cn I/0 completion. Wnere latency
is 1long, tne Root provides I/0 interrupt support to
enable a task to relinquisn tne precessor until I/0 is
complete. A task waits for I/0 by placing tne CSR
address of tne device being used in general register O
and executing Trap 6. This causes tne task te enter I/0
Wait state until I/0 is complete.

The Root supports a specific set of I/0 devices
for interrupt. Tnese are:

Disk (CSR 176700)
Tape (CSR 172522)
Line Printer (CSR 177514)

Otner devices must be wused witnout interrupts,
except as described in Section 1.1,3 - Switen
Interface.

Tne interrupt service mecnanism in tne Root
racerds tne occurence of interrupts on tne supported
devices, even if noe task is in I/0 wait for tnem. Thus

a task may start I/0 on a device, enabling its



HEP OPERATING SYSTEM

interrupt, and subsequently issue Trap 6. If the device
nas already interrupted, tnhe task will immediately
continue, otnerwise it will wait. Tnere is no timing
requirement on the task's issuance of Trap 56 in order
to detect tne I/0 cocmplete. :

1.1.1.5 Miscellaneous Services

Ine Roct supports several otner Trap ccdes and
features associated witn inter-task communication.
Tnese are:

Irap 3 - Send and get buffer,
(Trap 2 follewed by Trap 0).

Trap 5 =~ Free a buffer and wait for next buffer,
(Trap 4 followed by Trap 2).

Trap 7 = Test for input buffer waiting.
General register 0 set to 0 if no buffer
set to non-zerc if buffer waiting.

Trap 8 - Wait fer next tick of the 60 cycle clock
(0-16 ms).

Trap 9 -~ Get task number of task wnose two cnaracter
ID is in general register 0. Task ID is
returned in the low byte of register 0. Tne
nigh byte contains tne task issuing Trap 9.

In order to allow tasks to coerdinate, if tne nighn
byte of tne message type of a message is neon-zero, the
sending task is placed in Reply Wait status, instead cf
continuing execution. In order tc resume tne task, tne
receiving task must load register 0 witn tne link field
¢cf the received message and issue Trap 10. Tnis will
make tne criginal sender ready. Tne two tasks may pass

information back and fortn tnrougn tne message.
Finally, one of the tasks must release thne message
using Trap 4, If a task issing Trap 10 wisnes te
cantinue, it must clear tne nign byte of tne message

bafore issuing Trap 10, otnerwise it will itself enter
Reply Wait state.



HEP OPERATING SYSTEM

1.1.2 Executive Debugger

Tne Executive Debugger 18 a standard Executive task
written in PASCAL. It differs from otner tasks only in tnat
it 1is 1linked as part of the Root, ratner tnan being loaded
from disk like normal tasks. Tne task ID for tne Executive
Debugger is 'XD',

Tne Executive Debugger may be used to examine and modify
the memory of otner tasks and may set breakpoints in otner
tasks., It 1is also used by the Rcot to print error messages
caused by Executive task malfunctions. The Executive Debugger
is accessed from the operator's consocle using a standardized
command sequence. Command line syntax is as follows:

{TYPE ID} {RANGE} . {TASK ID} <=VALUE>

If tne "=VALUE" suffix is omitted, the specified item is
printed, otnerwise it is set tec tne entered value.

Type ID is a single cnaracter describing the item to be
examined or modified. Valid types are snown below.

TYPE RANGE MEANTNG

Blank or omitted 0-177776 Computer Memory Address

A 0-6 Memocry Address Mapping
Registers

B 0-7 Breakpoint Locations

c - Count of Waiting Output
Terminal Messages

F ‘ - Flag Snowing Dispatcning
State

P - Examine only, Continues

From ’

Breakpoint

Q - Head of Input Message Queue
R 0-7 General Purpcse Registers
S - Pracessor Status Word



HEP OPERATING SYSTEM

Range is entered as a single octal integer or pair of
integers separated by a comma. Fer modify operations only thne
irst range value 1is wused; fer examine operations, all
locations between tne two values are displayed.

Task ID selects the task wncse data is referred to.
Task ID may be omitted when examining ccmputer memery, and
absclute locations are wnen referred teo. Only locations in
tne first 40K of real memecry may be accessed tnis way, and
enly for examine.

Tne Executive Debugger is also used to print messages
generated by errer traps frem ctner Executive tasks. These
messages include the trap type, task ID, PC and status word
of tne trapping task. Trap types are:

RS - Privileged Instruction (usually HALT)

IL - Illegal Instruction eor Nonexistent Memory
OD - 0dd Address

MM - Memocry Management Viclatlion

BP -~ Breakpoint

EM - Emulator Trap (not used by tnis system)
FP -~ Floating Point

I0 - IOT Trap (not used by tnis system)

PF - Page Fault - Memory Management Error

1.1.3 Switen Interface

A major cemmunications patn between the HEP and
Executive tasks i{s tne switen interface. Tnis interface
appcars to tne HEP as a set of 16 memory locations, of wnicn
tnree are presently used. A HEP memory access is broken into
two parts - a3 request and a response. Tn=2 switcn interface
generates a Reot interrupt wnen a request is received, but
does not generate a response. Responses are generated under
software control of the responsible Executive task.

In aorder to Tfacilitate wuse of tne switch interface,
taree small Executive tasks are incerporated inte tne Root.
Tnese tasks are activated by Rcot interrupt code wnen a
switen request is received. Tney read tne contents of the
switch request and send it tc tne apprecpriate Executive task.
Tnese Root tasks are described on tne next page.



HEP OPERATING SYSTEM

1.1.3.1. Kernel Inbound Task (KI)

Tne Kernel Inbound Task i3 used by all Executive
tasks wisning to send messages to tnhe HEP Kernel.
During HEP IPL, eacn PEM sends to KI the address of its
communications area. Tnis information is saved by KI.
After saving its address, the PEM tnen attempts to read
a ward from tne switcn interface. KI nolds tnis request
and 1issues no respecnse. After receiving the read
request, KI enters Message Wait state via Trap 2. Wnen
an Executive Task wisnes tc send a message to a HEP
processgor, it begins by sending a Seize witn Reply
message (Type 13) to KI. KI places tne communications
area address fer tnat proccesser in the message and
issues Trap 10 (Reply). Tnis places KI in Reply Wait
and activates tne original sender. Tne sender writes
data to tne communications area and sends an
Activate-Witnh-Reply (message type 14) to KI via Trap
10. Tnis causes KI to respond to tne outstanding read
from tne PEM, using tne contents of tne message as the .
response data. Tne PEM process receiving tne data uses
it tec control message processing. After processing, tne
PEM 1issues anoetner read request. This causes a Root
interrupt wnicn activates KT, KI generates anotner
Reply message to tne original sender and enters Reply
Wait. Tnis process continues until tne transaction is
completed. At tnis point, thne sender generates a
Release (message type 15) witn no reply and sends it to
KI via Trap 10, KI frees tne message witn Trap 4 and
issues Trap 2 to get {1ts next input message, Tne reply
mecnanism causes KI and a HEP Executive task to run as
co-rcutines during HEP message transmission, and
prcevides an interlock alleowing snaring of tne switcn
interface witnout conflict between multiple senders.

1.1.3.2 Kernel Outbound Task (KO)

Tne Kernel OQutbgund Task nandles unsalicited
messages from tne Kernel to tne Baten Monitor Executive
Task., During initialization, it enables interrupts on
tne switcen location wused for tnis purpose. Wnen an
interrupt is vreceived, it assembles tne switcnh data
into a message and forwards it as a Switeh Message with
Reply (message type 12) to tne Baten Meonitor. Wnen tne
Batcn Monitor completes message proacessing, it replies
to KO, and KO generates a swltcn re=sponse, frees tne
buffer and reenables interrupts for the next
unsnlicited message.



HEP OPERATING SYSTEM

1.1.3.3 Request File Task (RF)

Tne Request File Task is similar to tne KO task
(in fact, most of thne code is common) except tnat a
different switcn location is used and messages are sent
to the File Manager ratner tnan tne Batech Monitor. Thne
RF task is used for communications between HEP

supervisgsor tasks and tne file system.

10



HEP OPERATING SYSTEM

1.2 File Manager
All disk I/0 in tne HEP System (except during IPL) is
performed by the File Manager. Operations supported by tne File
Manager are: : ’
Logon - Validate User ID
File Open - Locate an 0ld File or Create a New One
Read a:*Pnysical Reccrd
Write a Pnysical Record
Obtain tne Address of an Unused Pnysical Reccrd
File Close - Close, Delete or Rename a File
In addition, operator cecmmands exist to:
Enter Debug Mecde
Leave Debug Mode
Add a User ID
Snut Down tne File Manager
Fer read/write operations, the File Manager merely performs
disk control functions and data transfer on benalf of requesting
Executive Tasks or HEP superviser processes. For otner
c¢peraticns, thne File Manager performs directory searecn/update
functicns and searcn/update of tne disk free section tables.
t.2.1 Disk Format
Tne system disk i3 a fixed sectored 300Mb moving nead
disk witn a 1,2 Mbyte/second transfer rate., Sectors are 512
bytes (64 HEP words) long.
1.2.1.1 File Fcrmat
Files in tne HEP system are a doubly-linked list
cf pnysical records. Eacn record cecntains two HEP words

of 1linkage information, fellcwed by 62 words of data.
ITne linkage information is part of tne record and is

11



HEP OPERATING SYSTEM

made available to and supplied by éll scftware
interfacing te the File Manager. The format of a
pnysical record is snown in Figure A.

THIS THIS THIS NEXT NEXT NEXT
WORD O ‘
CYLINDER| TRACK| SECTOR CYLINDER TRACK | SECTOR
FILE
_ RELATIVE
LAST LAST LAST USER NO.
WORD 1 ° RECORD NO,
CYLINDER § TRMCK| SECTOR NO. | WITHIN
IN FILE
USER
WORD 2-63 ' DATA

Figure A - DISK RECORD FORMAT

Tne cylinder, track and sector informaticn is used
to cnain records togetner. Maintenance of tnis
information 18 the responsibility of Executive and
superviser tasks calling the File Manager - it is not
cnecked or medified by tne File Manager except during
file accesses for internal File Manager purposes.

Tne "next® fields of tne last record in a file
contain all zerces; similarly, tne "last" fields aof the
first recerd of a file contain all zerces.

Tne user number, file number and record number
fields are used for file consistency cnecking and
system debug. They snould be maintained by all
Executive tasks and HEP supervisors,

Ine format of tne "tnis", "next" and "last" fields
is referred to as a "diskaddress" and is tne standard
format for representing isk lccations. Eacn
diskaddress occupies 32 bits (1/2 HEP word).

12



HEP OPERATING SYSTEM

1.2.1.2 Directory Format

In tne HEP system, files are accessed via a
tree-structured directory system. At the leaves of tne
tree are disk file neaders. Eacn file neader occupies
one rececrd, and contains complete information abcut a
single file. Tne format of a file neader is shown in
Figure B.

WORD
0 THIS ADR. PREV. ADR.
USER FILE| RECORD
1 NEXT ADR.
NO. NO. NO.
2 LEN CKSUM OCOUNT MOD. -
3 DATE DATE
y ‘ AC DATE
5 FREC LREC
6 UFD FHP
7 RECSIZE | ACPRIV EOFW FLEN
FILENAME

Figure B - FILE HEADER FORMAT

Tne format of word 0 and word 1 of a file neader
is standard. Tnese words are used to link all file
neaders for a particular wuser intoe a file named
'HEADER', Tnis file is autcmatically maintained by tne
File Manager. By reading tnis file, a user pregram may
c¢btain tne name and all pertinent cnaracteristics of
all ef its files. Tne remaining fields in the file
neader pertain to the specific file and are discussed
below,



HEP OPERATING SYSTEM

LEN -~ Tne lengtn of tne file name in bytes.

CKSUM - The exclusive OR of all tne character pairs
in the file name.

OCOUNT - Tne number of useré wne nave this file cpen.
If negative, one user nas tne file cpen, and
additional opens are not allewed.

MODDATE ~ A 48 bit field containing tne date and time
this file was last closed by a user witn
write access. Tne date is in standard system
date format, described in Section 1,11 -
Disk Builder.

CRDATE - Date this file was <c¢reated, in standard
format.

ACDATE - Date this file was last accessed.

FREC - Tne diskaddress of tne first record in tne

file. All files hnhave at least one record,
wnien may contain no data.

LRELC -~ Tne diskaddress of tne last record of tne
file.
UFD - Thne diskaddress of tne UFD record pointing

to tnis file. UFD records are discussed on
tne next page, Tnis pointer is used during
file delete/rename operations.

FNP -~ Tne diskaddress of tne file 'HEADER' for
tnis user. Used for file delete/rename
operations,

RESSIZE - Tne record size in HEP words of the records
in tnis file. Thnis informaton i3 not used by
tne File Manager, wno deals in pnysical
records only.



ACPRIV

EOFW

FLEN

FILENAME

HEP OPERATING SYSTEM

Access privileges for this file. The nigh
byte of tne field controls public access
privileges, while tne low byte controls thne
users own access privileges. Bits in each
byte are defined as fellows:

ceesaesl Read Access

ceeeaadl Write Access

O Extend Access

I Exclusive Access

I Semapnored Access (not used)
el Delete/Rename Access

B Execute Access (net used)
Teeoannn Access Cnange Access

End of file word. - Tne word number c¢f the
first free word in tne last record of tne
file. All files must be an integral number
of words 1long. All files must contain at
least one word; for an empty file,
FREC = LREC and EOFW = 0. If a file is an
integral number of pnysical records long, an
extra record 1is present at tne end of tne
file, and EQFW =x 0.

Tne record number of tne last record in tne
file (zerc relative).

The 1 to 448 cnaracter name of the file. Thne
filename 1s stc¢red in a byte-swapped format
witnin eacn word. Cnaracters are in tne
order snoswn below:

1ol 3lals|ufr]e

Tnis is a ccnsequence of tne Qay tne
Executive computer (a PDP-11) addresses
bytes.

15



HEP OPERATING SYSTEM

In crder te speed up searcning the file
directories, an indexing file, called the User File
Directory, o¢r UFD, is maintained for eacn user. Tnis
file resides in the directery of tne distinguisned user
wncse ID is '000000000000'. The name of this file is
UFD. XXXXXX, wnere XXXXXX is the ID of tne user in
question. Tne format of the records in tne UFD file is
snown in Figure £(a) and Figure C(b).

WORD O THIS NEXT
WORD 1 LAST COUNTS
WORD 2 LEN CKSUM . FHA
WORD 3 LEN CKS UM FHA
WORD 63 LEN CKSUM FHA

Figure C(a) - UFD ENTRY FORMAT.

TRACK
LEN CKSUM CYLINDER SECTOR
FHA

Figure C(b) - UFD ENTRY FORMAT

Ine LEN and CKSUM fields in a UFD entry are
duplicates of tne corresponding fields in tne file
neader te wnien it refers. The FHA field is thne
diskaddress of tne fileneader for tne file. Wnen
searcning for a file, tne File Manager need cnly read
tne file neaders of files witn corresponding lengtn and
cnecksum  fields. Since 62 files may be 'referred te per
UFD record, a considerable saving in open time results.
Tne UFD is autecmatically maintained by tne File
Marager, and i3 nct visible ¢r accessible to tne user.

16



HEP OPERATING SYSTEM

In oerder to permit access to files from multiple
users, tne User File Directories are pointed te by a
nigner level directory called the Master File Directory
or MFD. Tnis file is alssc neld under thne distinguished
ID '000000000000'. Tne format of an MFD recerd and MFD
entry is snown in Figure D(a) and Figure D(b).

WORD 0 THIS NEXT
WORD 1 LAST COUNTS
WORD 2 USER
WORD 3 ID UF DA
' .
'
'
WORD 62 USER
WORD 63 ID UF DA

Figure D(a) - MFD RECORD FORMAT

USER ID

TRACK
CYLINDER UFDA SECTOR

Figure D(b) - MFD ENTRY FORMAT

Tne user ID is a 12 cnaracter (padded witn blanks)
cnaracter string in byte-swapped format as described
for file names. Tne diskaddress points te tne first
data rececrd of tne corresponding UFD, Eacn user in tne
3ystem nas a single MFD entry.

17



HEP OPERATING SYSTEM

Tne UFD's and MFD are maintained as files by tne
File Manager., Access to their data is not made by
nermal file access mecnanisms. Tne File Manager
searcnes and updates tnese files using internal
rcutines not available to octher tasks. Tne MFD, the UFD
fer tne distinguisned user, and cther files are built
by Disk Build during disk initialization.

1.2.1.3 Bitmap and Resgerved Sector Format

Wnen additional sectors are required for a file on
tne disk, an unused sectcr is allocated using the disk
bitmap. The bitmap is a file consisting of one record
on eacn disk cylinder. Bits in the data portion &f thne
reccrd correspond te sectors on tne cylinder. Since
tnere are 32 sectors on a track, and 19 tracks per
¢cylinder, 19 twe-word pairs are used to represent tne
cylinder, Bits correspondiing to allocated sectors are
zero. wnile unallccated secters nave 1's in tneir bit
position. The bitmap record is on a fixed track and
sector on all cylinders. Its lcocation is determined by

isk Build. Fer convenience, a standard file neader is
built for the bitmap, under the distinguishned user ID
'000000000000', Tne name of tne file iz BITMAP.

Tne File Manager maintains tne bitmap record for
ene cylinder in core at all times. All requests for
records are alloccated froem tnis cylinder until it is
full., At tnis peint, tne File Manager moves to tne next
nignest cylinder (mcduls tne maximum valid cylinder)
until available sectors are found. Tnus bitmap I/0 is
minimized, and all files being extended at the same
time will go on the same cylinder 1f possible. Tnis
reduces disk latency and imprcves performance.

Cylinder 0, track 0, sectors 0 and 1 are unique in
that tney are marked allocated in tne bitmap, but are
net part of any file. Sector 0 is the nardware
bootstrap, and 1is described in conjunction witn tne
Disk Builder. Sector 1 1is the File Manager and IPL
pointer sector.

Tne THIS field of secter 1 points te tne first
data record of tne MFD. Tne LAST field of ssctor 1
peints to tne bitmap. Tne data pertion of sector 1
contains pointers to IPL files and i3 described witn
Disk Build.

18



1.2.2

HEP OPERATING SYSTEM

Basic File Management Routines

1.2.2.1 OBTAIN

OBTAIN is wused to get an unallocated sector in
wnicn to write data. Tne sector is marked allocated by
OBTAIN.

1.2.2.2 LOOKUP

LOOKUP is used to searcn a user file directory for
a specified file. If tne loockup is successful, the file
neader of tne file is made available to the caller.

1.2.2.3 LOGON

LOGON is wused to locate a specific user file
directory. If tne logon is successful, tne diskaddress
of the UFD i3 made available tc the caller.

1.2.2.4 ENTER

ENTER 1is used to add a file neader to a specified
user file directory. An initial data record is
allecated and initial values in tne file header are
supplied. No duplicate file cnecking is performed.

t.2.2.5 ADDUFD

ADDUFD 1is wused te create a UFD and enter it into
the MFD. It i3 only activated under operator command.
No duplicate UFD cnecking is performed.

1.2.2.6 RELEASE

RELEASE 'is tnhe opposite of OBTAIN, and is used to
free sectors in tne bitmap wnen files are deleted.

1.2.2.7 DELETEFILE

DELETEFILE 1s used to remove a file header from a
UFD, delete tne file header record, and queue tne file
data recerds for deletion. Since tnis prccess may be
lengtny, it is hnandled as a 'demon' during otherwise
idle File Manager time.

10



HEP OPERATING SYSTEM

1.2.2.8 RENAMEFILE

RENAMEFILE wupdates a UFD and file neader to
contain a new name. Note that only tne name of a file
can be changed, not its owning UFD,

1.2.3 Executive Interface

Executive tasks communicate witn tne File Manager using

tne standard system message mecnanism. Several message types
are processed: !

TYPE MEANING

6 File Open

7 File Close

8 Recc;d Read

9 Record Write

10 Obtain a Sector
11 Lagon

A common message format is used fer open, close,
read and write. Tnis format {s shown in Figure E.

16 Bit

Word UID

- O

2 RQ TYPE

3 BUFAD
4 BASE
5 OPLEN
6 STATUS
7 ACRESS
8 OPTION

231 CHARACTERS

Figure E - OPEN/CLOSE MESSAGE FORMAT



HEP OPERATING 3YSTEH

Tnase {lelds are used as follows:

UID - Diskaddress of user's UFD (cpen,
close).

Supplied by caller,.

RQ TYPE - If 0, open for cutput. :
If ‘nonzero, open for input (c¢pen,
close).

Supplied by caller.

BUF AD - Address in <caller's space of disk
: : record (open, clecse, read, write).
Supplied by caller.

BASE - Base of - user stack div 64, (open,
close, read, write).
Supplied by caller.

OPTLEN - Lengtn of cption characters (open).
Supplied by caller.

STATUS - Result ¢f operation (cpen, close,
read, write).
Set by File Manager.

ACCESS ~ Requested access ccdes
(cpen, clase)
for tnis open - set by File
Marnager. Based on option string on
open,
Supplied by caller on close.

CPTION CHARACTERS - ASCII characters specifying
(cpen, close).
Open cr close options
Valid optiens are:

/¥ = Write Access

/R = Read Access

/A = Append Access (extend plus
position to end of file)

/T = Tempecrary File

/N x New File (delete ocld if
present)

21



HEP OPERATING SYSTEM

Optien prccessing is provided as a service to,
Executive Tasks, Not all option bits are used by the
File Manager. Positioning to end of file (/A) and file
deletion ¢n clocse (/T) are tne responsibility of the
caller. Bits are set in ACCESS ¢to indicate these
cptions were specified, but action in thnese cptions
must be taken by tne caller. Tne locw byte of ACCESS nas
tne format described fer ACPRIV in tne file neader. Tne
nign byte is as follows:

ceeveaal Temporary (/T)
R I Append (/A)
I New (/N)

All message communication witn tne File Manager
uses tne Reot reply mechanism, and tne File Manager
rasponds to Executive requests via Trap 10 (Reply).

1.2.3.1 Executive Open

An Executive task opens a file by 1issuing
message 6. The BUFAD field of tne message points to a
disk record. In tnis record, tne FILENAME, LEN, and
RECSIZE fields are supplied by tne user (RECSIZE is
only wused if tne file is to be created). Tne FILENAME
may contain a user ID in square brackets at the start,
and may contain access options in parentnesis at tne
end. Access options are only used if the file 1s to be
created. Tne open routine USEROPEN strips tne user ID
and options. If the user ID was present, tne File
Manager uszes LOGON to locate tne UFD, otnerwise tne UFD
diskaddress in tne oepen message is used. The access
options are processed into tne ACPRIV field of tne user
is file neader, and LOOKUP and ENTER are used to locate
and/or create tne file. Access privileges resulting
from tne processing of tne message cption string are
stored in tne message ACCESS field and cnecked against
ACPRIV in tne file neader. If valid privileges are
requested tne actual disk file neader (s written to tne
callers disk record, and tne message status is set to
0. If not, tne message status is nen-zero and tne file
neader 1s not supplied.

Tne format of tne access code string following tne
file name is; (PRWEXD, URWEXD) wnere the string
beginning witn '"P' denctes public access privileges and
tne string Dbeginnirng witn 'U' denctes wuser access



HEP OPERATING SYSTEM

privileges. Any or all of tne access cnaracters may be
supplied:

=
4

Read Access

W

Write Access

(o]
1

Extend

X Exclusive

D Delete/Rename
Tnese <cnaracters determine tne permanent access
attributes of tne file if it is created by open.

-

Error returns from open are given in Table F.

STATUS ERROR

-64 Nonexistent User ID

-65 Bad Message Options

-66 File Existence Conflict

(duplicate file or necnexistent file)

-69 Requested Access Denied

-70 Exclusive Access File Already in Use

~-T71 Disk I/O Error

-68 Attempt to <Create File in Anasther UFD or

ctner Enter Failure.

Table F - OPEN ERROR CODES

t.2.3.2 Executive Clogse

An Executive task <c¢loses a file by issuing
message 7. Tne format of tne message is as indicated
previously., Tne file neader pointed toc by BUFAD must
contain trne diskaddress of tne file neader to be clesed
i tne 'THIS' field., If tne first cnaracter of tne
option field in tne message i3 'D' tne file will be
deleted. . If tne first cnaracter is 'R', tne file will



HEP OPERATING SYSTEM
be renamed and tne LEN and FILENAME portions of tne
file neader must contain tne new name and its length.

Error codes from CLOSE are given in Table G,

STATUS ERROR

-18 Delete or Rename Not Done -
Access Violaticn or File Open by Otner Users
(delete only) by Otner Users (delete only).

-19 . New Name is Duplicate (rename only).

-17 I/0 Error
Table G - CLOSE ERROR CODES

1.2.3.3 Executive Read/Write

Executive tasks read and write records via
message 8 (read) and message 9 (write). Only tne BUFAD
and BASE fields are used in tnese messages. Data iIs
read frcm or written to the diskaddress specified by
tne 'THIS' field of tne record pointed to by BUFAD. No
cnecking is done on tne validity of tne address or
anytning else. This 18 the responsibility of tne
calling task.

1.2.3.4 Executive Obtain

If, wnile extending a file, an Executive task
requires an additional disk record, it issues message
10, Tne File Manager uses tne OBTAIN routine to
allccate a sectar, and tne diskaddress of tne sector is
returned tc tne caller in the first 32 bits of the data
portion of tne message.

1.2.3.5 Executive Logon

Several File Manager calls require tne caller to
specify tne diskaddress of a UFD, Tnis address is
cbtained via message 11, A calling task places tne
twelve cnaracter user ID of a user in the first twelve
bytes of tne data porticn of tn2 message. Tne File
Manager uses tne LOGON routine toc reacn the MFD for tne
UFD address, If successful, tne diskaddress of tnhe UFD
is returned in tne first 32 bits of tne message,



HEP OPERATING SYSTEM

replacing tne first 4 chnaracters of tne user ID. Logcn
error codes are:

STATUS MEANING
-19 No Sucn User 1ID

1.2.4 Resident Supervisor Interface

Tne File Manager provides I/0 services tc HEP prcocesses
in mucn the. same way as it dees for Executive Tasks. For
Executive tasks, I/0 is performed directly into tne caller's
buffer. Since HEP data memory is not part cf tne Executive
computer's address space, HEP I/0 is handled differently.

HEP requests arrive via tne Unibus-to-Switen Interface
and tne File Manager's nelper task RF. Tne message received
by tne File Manager is a switcn message (message 12) and
contains one HEP word of data. Tne nign 16 bits of the data
werd are a request code type witn the follewing values:

0 - Lcgen
1 - Open
2 - Close

3 - Read Reccrd
4 - Write Record
5 - Obtain Receord
Tne low 32 bits of tne word peint to a 66 word I/O
block., Tne last 64 words of tnis block are a disk record in

tne format previously discussed. Tne first two words contain
I1/0 parameters and cpticens. Tnese words are described below.

CODE | STAT ' UIb

E D A

64 WORD DISK RELORD

Figure H - HEP I/O REQUEST FORMAT

25



HEP OPERATING SYSTEM

CODE

Request code, as enumerated above

STAT - Result status supplied by File Manager. Values as
indicated for Executive Requests.

UID - Diskaddress of user file directory (open, close).

A - Requested access privileges, format as snown in
Table € (open, close).

D - File. nistory (open,clecse). Possible values are:

0 - Use 0Old File if Present,
Else Create New File

1 - Delete 0Old File if Present,
Create New File

2 - Use 0ld File

3 - Create New File
Fail if 0Old File is Present

E - File Disposition (close). Possible values are:
1 - Delete File
2 - Keep File

5 - Rename File

Tne File Manager reads tne I/O0 block into a local buffer
using the low speed bus (LSB) Interface to HEP data memecry. The
amount of data read depends aon tne request code in tne switen
message. After performing tne request, all or part of tne I/0
blececk is written back to data memory witn tne LSB. Since tne
LSB is snhared with other Executive tasks, tne File Manager
becomes uninterruptable during this transfer.

26



"HEP OPERATING SYSTEM

1.2.4.1 Tne Resident OPEN

A HEP supervisor opening a file doces 80 by building
a dummy file neader in tne I/0 block. For old files, the
file name and name lengtn are required. Tne file name
must be stored in byte swapped format as previously
described. For newly created files, tne RECSIZE and
ACPRIV fields must be supplied. Unlike Executive opens,
no cption processing is provided. The only epticnal
function is tne provision of a user ID in square brackets
at tne start of of tne File name.

If tne open is successful, the File Manager copies
tne file neader into thne I/0 block.

1.2.4.2 Resident CLOSE

Resident CLOSE is tne same as Executive CLOSE except
tnat the file disposition field is used to determine
close action.

1.2.4.3 Resident READ/WRITE

Resident I/0 18 the same as Executive I/0. Tne
'THIS! ield of thne disk record in tne I/0 block is used
to determine tne diskaddress.

1.2.4.4 Resident OBTAIN

Resident OBTAIN uses tne standard OBTAIN routine to
allccate a disk record. Tne address of tne record is

returned in tne 'NEXT' field of tne disk record in tne
I1/0 block. '

1.2.4.5 Resident LOGON

Resident LOGON obtains tne 12 cnaracter user ID from
tne first 12 bytes of tne disk record in tne I/0 block
(word 2 and tne nigh nalf of word 3). The user ID must be
byte swapped. Tne diskaddress of tne UFD 18 returned in
tne UID field ¢f tne I/0 blcck (second nalf of word 0).

1.2.5 Operator Interface
Tne operator may send messages to tne File Manager from

tne console terminal. Tne supported messages begin witn a
single c¢cnaracter, as snown on tne next page:

27



HEP OPERATING SYSTEM

D - Toggle tne debug switch. Wnen debug is on, all received

messages are listed ocn tne conscle in actal.

Snut down. Tne bitmap is written to disk and thne File
Manager executes a hnalt. No files are cloesed, and tne

File Manager may be restarted witn the Executive
Debugger (XD). If a file 1is being deleted wnen Z is
entered, the message 'BUSY' will result and tne File

Manager will not snut down.



HEP OPERATING SYSTEM

1.3 PASCAL Runtime Library

Tne PASCAL Runtime Library provides the interface between
PASCAL READ, WRITE and associated I/0 statements and thne file
manager. Components &f the PASCAL runtime are linked intec all
Executive tasks. In addition te I/0, the PASCAL runtime provides
tne basic runtime environment and service subroutines for PASCAL
tasks.

1.3.1 PASCAL Interface

Tne PASCAL runtime supports a set of I/O0 calls similar
te tnat provided by standard PASCAL. Certain unneeded
capabilities are nect suppecrted, and several extensions nave
been made.

Supported text output procedures are:

WRITE(CHAR:N) Write tne cnaracter CHAR to tne file F or to
WRITE(F,CHAR:N) OUTPUT, followed by N-~1 blanks.

WRITE(I:N) WUrite integer I as a decimal string tc tne

WRITE(F,I:N) file F or to OUTPUT, follcwed by blanks to a
total widtn of N. If N is negative, write I
as an octal string.

WRITE(S:N) Write the <c¢haracter string S to F or teo
WRITE(F,S:N) OUTPUT " followed by blanks to a widtn of N
cnaracters, If N is less tnan tne lengtn of
S, S is truncated. S may be a literal string.

WRITELN
URITELN(F) Terminate a line,
BREAK(F) Terminates a line but dces not advance

carriage to a new line.
Multiple I/0 items may be combined in a WRITE request.
If WRITELN is wused with ocutput arguments, tne line is
terminated after tne last item.

Real and beoolean cutput are not supported.

29



HEP OPERATING SYSTEM

Supported text input procedures and functicns are:

READ(CHAR) Read one input character intoe CHAR from F c¢r
READ(F,CHAR) input.

READ(S) Read a string of input characters inte S from
READ(F,S) F or INPUT. If the current line is exnausted

before filling S, pad witn blanks.

EOLN(F) A boolean function whicn is true if thne next
cnaracter to Dbe read 1is the end-cf-line
cnaracter.

EOF (F) A becolean whnicn 1is true when tnere are no
mcre cnaracters to be read.

READLN Discard remaining cnaracters in tne current
READLN (F) line (if any) and point te first character of
next line.

Miltiple I/0 items may be combined in a READ request. If
READLN is wused with input arguments, tnhe rest of tne line is
discarded after thne items are filled.

Integer, real and boolean input are not suppcecrted.

Tne standard preocedures GET and PUT may be used witn text
and necn-text files. Wnen wused witn a file connected tec a
conscle, GET exnibits non-standard benavior. Tne PASCAL
standard requires tnat tne first cnaracter of input be present
immediately after a READLN. In tnis implementation, tne first
cnaracter 1s not present until a GET or READ operation is
perfcocrmed. Tne first GET consumes a dummy blank character, Tnis
cnaracter {3 not provided by READ; character strings consumed
by READ contain enly actual input text,

Wner used witn non-text files, the record definitions
acceptable to GET and PUT are restricted. Tne following record
sizeg are accepted:

<z136 Bytes

248 Bytes
496 Bytes

30



HEP OPERATING SYSTEM

Otner sizes would require data blccking facilities not
present in tne runtime rcutines.

Tne standard prccedures RESET and REWRITE hnave been
extended te allow opening specific dicsk files by name. Tne
syntax of tnese prccedures is as follows: '

RESET(F,NAME,OPTIONS,V)
REWRITE(F,NAME,OPTIONS,V)

RESET is wused to refer t¢ a pre-existing file, wnile
REWRITE causes the creation of a new file. Tne parameters are:

F Name of the PASCTAL file variable controlling thnis
file.
NAME A cnaracter array or literal string centaining

the file name. If omitted en a RESET, the file
presently open is rewcund. If name is a cnaracter
array, tne file name must be nen-blank and padded
to tne rignt witn blanks.

OPTIONS A character array or literal string containing

cpticn cnaracters, Eacn option is a slasn
followed by a single cnaracter. Available options
are:

R ~ Read Access

W - Write Access

A - Append Access

T - Temporary File

N - Force New File

If OPTIONS is omitted, default optibns are
supplied. Feor RESET, /R is the default. For

REWRITE, /W and extend permissions are tne
defaults.
v Integer wvariable., On entry, contains tne record

lengtn to be associated with tne file if tne file
is created., Tnis may differ from tne recerd size
of tne file variable. Tne file is precessed based
cn tne file variable if non-text, but tne line
lengtn is is taken from V if the file is text. V
i3 in HEP words (multiples of 8 bytes). On return
frcm  RESET/REWRITE, V  contains open status, If
V<O, tne apen failed and tne value i{s tne errer
code., If V>=0, it is tne record size of tne file,
in HEP words.

31



HEP OPERATING SYSTEM

Files may be <c¢lcsed, renamed or deleted by calls to thne
PASCAL pracedures.

CLOSE(F)
RENAME(F,NAME,LEN)
DELETE(F)

CLOSE(F) is a standard procedure and may be used to close
any file. RENAME and DELETE are ncnstandard external procedures
and must be declared witn external declarations ¢f tne form:

PROCEDURE RENAME(VAR F:TEXT;VAR NAME:<CHARACTER ARRAY TYPE>;
LEN; INTEGER).
EXTERNAL;

PROCEDURE DELETE(VAR F:TEXT);
EXTERNAL

F may be declared to be anotner type tnan TEXT, but thne
declaraticn must agree witn the file type to be renamed or
deleted. '

Files will also be closed if a RESET or REWRITE is issued
fer tneir file variable specifying a new file name.

1.3.2 PASCAL Runtime Environment

A PASCAL Executive Task is 1lcaded by tnhe ROOT in a
standard fasnien. Of tne 8 memcry pages, tne first four are
reserved fer code. Page 7 is mapped to I/0 space. All PASCAL
variables and working space i3 lccated in page 4. Tne first
locaticns in tnis page, starting witn leccaticn 100000 (octal)
are used fcr control informatien. Tnis information is snewn in
Figure 1,3.1,

32



HEP OPERATING SYSTEM

MNEMONIC

LOCATION . MEANTING

$KORE=100000 ; Top of Heap Space, Base ¢f Stack Space

SFREE=100002 s Start of Linked List of Free.Blocks of Length
SNEWLN

$RESR5=100004 INITIAL R5, SAVED BY MAIN

$RESR6x100006 INITIAL R6

we

SNEWLN=100010 ‘; Lengtn of Storage Manipulated by New and
Dispase '

$FILBF=100012 Start of Linked List ¢f Free File Buffers

.o

$FILTB=100014 ; Start of Linked List ¢f Free File Variables
$LOGCY=100016 ; Users UFD Location (CYL)

$LOGDA=100020 ; Users UFD Lo¢ation (Track, Sector)
$FILE=100022 7 File Variable Address Address

$SPACE=100024 + Dummy Blanks for Get Procesgsing
$FMTISK=100026 ; Task ID of File Manager

$MLEN=100030 s Lengtn of Last Queue Message

$SINP=100032 i Standard Input File Variable Address
$SOUTP=100034 ; Standard Output File Variable Address

SHEAP=100036 7 Start of Heap Space

Figure 1,3,1 - PASCAL WORK AREA BASE

In a running PASCAL task, tne register SP points te local
variables, and register R5 points to the global variables,
During initialization, file wvariables are alloccated in thne
locationes follcwing SHEAP., Tne number of file variables is a
ccmpile~time parameter, normally 6. $KORE is set to peint
inmmediately after tne file variables, and SP is set t¢ point to
location 120000, tne top of page U4, Tne file variables for

33



HEP OPERATING SYSTEM

INPUT and CUTPUT are initialized, and tne main program is
started, Tne main program immediately calls tne NEW procedure
to get space for glcbal variables. Tnis causes R5 to be set to
tne value of $KORE, and $KORE is incremented by tne size of thne
glcbals. Immediately after this call, a task wnich uses disk
files cr tne NEW/DISPOSE mecnanism must call the FINIT
procedure. This preocedure allccates space for the requested
number of file description blccks immediately above the global
variables. Since FDB are more tnan 600 bytes long, only thne
number absolutely required snculd be requested. Tne otner
effect cf FINIT is to define tne block size used by
NEW/DISPOSE. This size overrides tne size specified in tne
NEW/DISPOSE call ton prevent storage fragmentatocn.

In operation, lecal variables of procedures use the stack,
wnien grows dewnward from lecation 120000, Calls to NEW use tne
Heap, wnicn grcws wupwards from the top of tne FDBs. If tnese
two areas collide, unpredictable runtime errors will cccur, and
tne program must be recoded to use less storage.

1.3.3 Files and File Variables

Several types of files are supported by tne PASCAL
runtime. Tnese are divided into text and non-text files.

1.3.3.1 Non-Text Files

Nen-text files are accessed via GET and PUT, and must
reside cn disk. Tnese files may be word or recerd files, as
described below. For these files, tne amount of data
transferred by a GET er PUT is strictly determined by tne
file wvariable record size. Tne runtime is only capable of
nandling spanned recerds if tne record size is less tnan
17 HEP words, wnicn is wny the record sizes are restricted.

Record files <consist of a sequence of fixed length
records, eacn an integral number of HEP words long. Word
files nave nc external record structure and are normally
processed a word at a time. Tne PASCAL Runtime ignores word
cr record structure for non-text files, treating tnem as
record files with tne record lengtn determined by tne file
variable. A permanent record lengtn may be specified by
REWRITE wnicn need nct agree witn tne file variable size.

3y



HEP OPERATING SYSTEM

1.3.2.2 Text Files

Text files are of tnree types: consocle or queue files,
word files on disk and record files ¢n disk.

Console files interact witn tne system queue mecnanism
and are wused tc pass data between tasks or to and from
terminals. An input line in the queue can contain a maximum
cf 118 cnaracters of input. On output, data is broken inte
multiple messages if tnhe data coentent exceeds 118
cnaracters. The files INPUT and OUTPUT are ccnsele files by
default. Otner files may be declared as cecnscle files by
using the distinguisned file name 'TI:'. Since tnere is
only one input queue and one output queue, naving multiple
files as «c¢onsole files yields wunusual results. Output
characters will Dbe merged on a c¢naracter by c¢cnaracter
basis, wnile input will appear at wnicnever file variable
was most recently accessed.

Word text files <contain variable lengtn ASCII text
lines. All 1lines centain a multiple of 8 cnaracters, and
are padded witn blanks if necessary to beceme a multiple of
8. Since ASCII characters contain only 7 bits of data, the
sign bit ¢f tne first <character of a line is used to
delimit  lines. Lines span pnysical rececrd boundaries.
Manipulation of the sign bit is an autcematic function of
tne runtime library, and data visible to tne using prcegram
never contains a set =ign bit. Since the Executive computer
packs bytes rignt te left, wnile tne HEP packs left to
rignt, tne runtime 1library performs a byte swapping
cperation on every pnysical record of word text files. Tnis
is done on botn input and ocutput so that disk data is
always in HEP (left-tec-right) order. Tne runtime pads lines
witn trailing blanks on read string operations, but does
not strip trailing blanks on write string cperaticns. Tnere
is nc restriction on line lengtns in word text files.

Record text files cecntain fixed lengtn ASCII text
lines. All lines ccontain tne same number of characters,
wnicn must be a multiple of 8. Lines may span pnysical
record boundaries. All 256 possible cnaracters may osccur in
a record text file. Record lengtns may nect exceed
488 bytes. Output to a record text file will be truncated
¢r padded witn blanks as required tc fit tne record size.
Input will be padded with blanks as truncated en read
string woperatiocns. Bytn swapping on input and cutput i3
perfecrmed to ferce disk data to be in HEP fcrmat.

35



HEP OPERATING SYSTEM

BIT VALUE
NAME (OCTAL) MEANING
S.EQF 100000 File nas reacned EOF,
S.EOLN 40000 Text file is at EOLN on input.
S.LAST 20000 Disk file is in the 1last pnysical
record. '
S.TXT 10000 File is a text file.
S.ERR 4000 N Error encountered wnile prccessing
file.
S.WAIT 2000 Queue or conscle file requires a
‘ pnysical read before supplying data.
S.END 1000 OQutput disk file has terminated a line,

but not started a new line.
Table 1.3.3 - FILE VARIABLE STATUS BITS

Tne saved pointer field (V.SVP) is used if V.PTR is
pointing to a space at end of line in order to locate tne
next actual data cnaracter.

V.BUF points to tne start of the current legical
record fer a nen-text file, or tec tne start of tne buffer
foar a text file. If a lecgical recerd is spanned, V.,BUF
points to tne psuedo-start of the logical recerd preceding
tne actual I/0 buffer. V.BUF i3 advanced by eacn PUT ¢r GET
cperation. For console files, V.BUF points to tne first
cnaracter of data.

V.LEN <conatains tne record length te be used for tnis
OPEN of tne file. For text files, tnis number is -1. V,LEN
is determined by tne s8ize of tne recoerd declared in tne
user's PASCAL program.

V.FDB points to tne file descriptor block for tnis
For a ceonscle file, V.FDB i{s 0. Tne I/O contrcl block

file.
described in tne next section.

-
i8S

1

V.EOB peints to tne end of valid data in tne I/0
contrel block. Normally, tnis is tne and of tne paysical
record, but on tne last recerd of tne file, V.ECB points to
tne anrd of tne data. For cocnsole files, V.EOB points to tne
end ¢f tne message.

37



HEP OPERATING SYSTEM

1.3.3.3 File Variables

A file wvariable woccupies 7 16 bit words in thne
Executive Computer. File variables are compiled inte the
runtime library. Tne number of file variables wniecn may be
simultaneously active i3 a compile time parameter in tne
runtime. An Executive task may nave many files declared,
but only a limited number of these may be simultaneously
opern. Tne RESET/REWRITE procedure establisnes a pointer in
tne user's variables tn tne actual file variable. Tne
fermat of tne file variable is snown in Figure 1.3.2.

ADDRESS
0 V.PTR Pointer to Current Character or Record
2 V.STAT| Status Bits
y V.SVP Saved Pointer
6 V.BUF Start of I/0 Reccrd
10 V.LEN Record Lengtn (-1 if Text File)
12 V.FDB Pointer to File Description
(0 for Console File)
14 V.EOB Pcinter to End of File I/0 Buffer

Figure 1,3.,2 FILE VARIABLE

V.PTR always pcints to the current chnaracter in a text
file, or to a reserved location containing a blank, if tne
text file is at EOLN. For non-text files V.PTIR points to
tne =start ¢f the record, eitner in the current I/0 blecck,
or te a work area usged tc collect spanned records.

Tne 1lcw Dbyte of V.STAT contains tne destination task
number {f the file i3 a queue cr conscle file, and is
unused otnerwise. Tne nign byte of V.STAT ccntains status
bits, defined in Table 1.3.3.

36



HEP OPERATING SYSTEM

1.3.3.4 File Descriptor Blaock

All disk files require a file descriptecr blaock. A
fixed pocl of FDBs is created during PASCAL initialization,
and disk file OPEN's in excess of the poacl size cannct be
accemmcdated. Tne fermat of an FDB is shown in Figure 1.4,

WORD
0 PHYSICAL
RECORD BUFFER
/‘l

512, DISKADDRESS OF
FILE HEADER

516. ACCESS

PRIV

518. EOF WORD IN
LAST RECORD

520.- SPANNED RECORD

655. WORK AREA

Fipure 1.3.4 - FILE DESCRIPTOR BLOCK
1.3,4 Miscellaneous Runtime Support Routines

Several utility routines are included in the runtime
package. Tnese are described below.

1.3.4,1 FINIT

Declaration:
PROCEDURE FINIT(NFDB,NEWSIZE:INTEGER)

FINIT is <called once by every main pregram
to define tne number of FDBs and tne size &f tne
area returned by NEW,

38



HEP OPERATING SYSTEM

1.3.4,2 LOGON

Declaraticn:
FUNCTION LOGON(VAR UID:ARRAY[O..11]
OF CHAR)

LOGON invokes the file manager to logon as
the user UID. If successful, tne locaticns USERDA
and USERCY in tne runtime base are set up to
point to the UFD. If legen i8 successful, LOGON
returns TRUE, else FALSE.

1.3.4.3 LINLEN

Declaraticen:
FUNCTION LINLEN:INTEGER

LINLEN returns the lengtn of the last
console input line.

1.3.4,4 SETID

Declaration:
PROZEDURE SETID(F:TEXT;TSK:INTEGER)

SETID sets the destinaticn of the console
file F to T3K. .

1.3.4.5 GETTSK

Declaratian:
PROCEDURE GETTSK(VAR N:INTEGER):

GETTSK obtains tne task number of tne task
wnose two-cnaracter ID is placed in N. Tne value
is returned in N as two bytes. The low byte of N
is tne task number ¢f tne requested task. Tne

nign byte is tne task number of tne task calling
GETTSK.

1.3.4.6 ERR

Declaratiocon:
FUNCTION ERR(F:¥ILE OF...):BOOLEAN

ERR tests tne S.ERR bit in V.STAT of tne

file and returns TRUE {f an errar nas occured,
ctnerwise FALSE.

39



HEP OPERATING SYSTEM

1.3.4.7 GETLOC

De2claration:
PROCEDURE GETLOC(VAR F:TEXT;VAR L:
ARRAY[O..4]JOF INTEGER):

GETLOC returns the present file positicn in
tne file F. Tnis information may be used in a
subsequent call to SETLOC.

1.3.4.8 SETLOC

Declaration:
PROCEDURE SETLOC(VAR F:TEXT;VAR L:
ARRAY[O..U4]JOF INTEGER);

SETLOC sets tne file position of F to the
information c¢ontained in L. SETLOC may only be
used for word files witn read accesgs only. Tne
information in L must correspond te tne file
presently open as F. Alteraticn of tne
information in L between the call to GETLOC and
tne call te SETLOC will probably result in system
failure.

490



1.4

HEP OPERATING SYSTEM

Tape Manager
1.4.1 Overview

ITne Tape Manager runs as a task under tne Executive and
performs all tape nandling functions. The . task may be
accessed only from tne operater's conscle. Commands te¢
rewind, space over files, and position tc end of volume (end
of the last file) are supported. Individual files may be
copied to or from tape, and entire UFDs may be dumped to cor
restored from tape. The Tape Manager reads and writes tne
tape unit directly by manipulating the appropriate 1I/0
lccations in the PDP-11 memory.

1.4.2 Tape Foermat

Two format modes are supported for data on tape: record
mode and dump mode.

1.4,2.1 Recaord Mode

In record mode ¢éach pnysical tape record contains
one logical record as defined wnen tne disk file was
created. Tre file is terminated on tape by a file mark.
Record mode format is created only wnen an explicit file
name is specified tn be copied and tne file is defined to
be of record type. Reccrd mode foermat may be read only by
explicitly specifying a file name, and results in thne
creation of a record type disk file wnose logical record
size is defined to be the lengtn of the tape reccrd read.
Therefore it i3 not necessary (or possible) to supply a
record size in tne command to tne Tape Manager.

1.4,2.2 Dump Mode

Dump mcde format is used for ccpying werd type files
and for dumping and restoring UFDs, In dump mocde each
pnysical tape record is 514 bytes long, except for tne
last record in a file, wnicn is a snort record. Dump mode
fermat 1is created eitner by explicitly specifying a file
wnicn was c¢reated as a word file (legical record
lengtn = 0) o¢r by requesting a UFD dump (dump all files
in tne specified User File Directory).

41



HEP OPERATING SYSTEM

1. 4.2.2.1 Word Files

In the <case of copying a specific werd
file, eacn StllU-byte tape record contains a
pnysical dis record, 1including the 16-byte
block neader and followed by 2 bytes wnose
content is8 undefined. Tne last, short record
contains the last pnysical disk record
including header, truncated to 2 bytes past thne
end of the actual file data. Tnerefore tne
length of tne short recerd is always 2 bytes
mere than a multiple of HEP words. In tne case
.wnere the actual file data exactly fills a
pnysical disk record, tne snort tape record
following tne last bleck will be 18 bytes leng
(16-byte neader plus 2 trailing bytes). Tne
file is terminated on tape by a file mark.

1.4,2.2.2 UFD Dumps

The first record of a UFD dump is an
identifying record centaining the ASCII
UID (User Identificaticn) in the first 12
bytes. Tne hnign byte of the UID nas its sign
bit set to mark tnis file as a UFD dump. The
remainder of tne record is undefined. Following
tne UFD identifying record are all thne neader
records (frem file HEADER for tnis UID) except
the neader reccrd fcer file HEADER. Tnese
records are used te 1identify tne files
contained in tne dump. Eacn neader record is a
pnysical disk record, including tne 16~byte
block neader, followed by 2 undefined bytes.
Follewing tne 1last neader record is a snort
record, 18 bytes long, wnicn indicates the end
¢f neader recaords. Tne content of eacn file in
tne UFD fcllows, in the same order as thne
neader reccrds. Regardless of defined lcgical
record lengtn, eacn file in the dump nas tne
same format on tape as a word file. Eaan tape
recerd cantains a pnysical disk record,
including the 16-byte blcocck neader and followed
by 2 bytes wniecn in tnis c¢ase contain tne
defined leogical recerd lengtn. Tne last record
in eagcn file i= a snort record, indicating tne
end of tne file. Tne last file in tne dump is
fcllewed by a file mark wnicn indicates tne end
¢f tne dump fer tnis UFD, If multiple UFD's

b2



HEP OPERATING SYSTEM

were specified, tne next UID follows tne file
mark.,

1.4,2.2.3 End of Volume

Following the last file on a tape (eitner
single file or UFD dump) 1is an additional file

mark, resulting in two consecutive file marks.
Tnis indicates tne end of data cn the tape. Tne
Tape Manager will not allow reading or

positioning past tne double file marks. More
files may be written to tape, resulting in
MWriting over tne second file mark, The new last
file is tnen terminated by two ceonsecutive file
marks.

1.4.3 Commands

Tne Tape Manager is accessible only from tne cperator's
consocle, directed by commands in the form of messages
prefaced by 'MT:' (the task ID for tne Tape Manager). A
command may 3pecify tape poesitioning only, may direct tnat
the tape be eitner read or written witn a string of one or
more file names or UIDs, or may direct tne Tape Manager to
read commands from a file.

1.4,3.1 Tape Pesitioning

Eacn tape positicning c¢ommand is prefaced by a
slasn ('/') to distinguisn it froem a file name. Thne
command mnemocnics and corresponding operations supported
are as follows:

'/RW' - Rewind; positions tne tape at load point,

'/AP' - Append; positions the tape at the second of thne
two consecutive file marks wnicn indicate end
cf wveolume; at tnis point, more files may be
written to tne tape, overwriting the secand
file mark and resulting in a new end of vclume.

'/FFn' - Forward file; positicns tne tape immediately
past tne ntn file mark ferward from tne tape's
current positicn; if n is not specified, 1 is
assumed; if end of volume s enccuntered, tne
ccmmand is terminated leaving tne tape
pcsitioned tne same as for '/AP!',

43



HEP OPERATING SYSTEM

Multiple tape positiocning directives may appear in a
single command line; eacnh 1leading slasn serves as a
delimiter., Eacn directive is perfcrmed in order, left to
rignt.

Examples:
'‘MT:/AP! - Positicns tne tape at end bf volume,

'MT:/RW/FF2' - Positicns the tape at tne start of the
third file or dump on tne tape.

1.4.3.2 Writing a Tape

Writing to tape is indicated in a cocmmand line by an
equal sign (=) preceding the list of files or UIDs to be
copied tec tape. Tape positioning commands may precede tne
equal sign; tnese will be perfcrmed before writing thne
tape. A UID specification must be enclosed in square
brackets ('[]'). A file specification may include its UID
(in square brackets), othnerwise tne last UID appearing in
a file sgpecification (in the same or a previscus command
line) i3 assumed. Multiple file or UID specifications in
a command line must be separated by commas.

Tape positioning commands may be interspersed in thne
list of file or UID specifications and will be performed
in tne order enccocuntered. Wnen a tape positioning
directive follows a file 6r UID specification, the slasn
may serve as the delimiter, 2¢ that the comma following
tne file or UID specification may be omitted.

Examples:
'"MT:/AP=[300302]"' -

Writes +the UFD dump for 300302 at tne
end of existing data on tne tape.

'"MT:=[001001]JHEPOS,CONTROL/RYW' -

Copies tne twn named files from UID
001001 to tape, tnen rewinds tne tape.

4y



HEP OPERATING SYSTEM

1.4.3.3 Reading a Tape

Reading from tape is indicated by an equal
sign ('s') as tne last cnaracter in tne command line.
Preceding tne equal sign is a list of ocne or mere file or
UID specifications, separated by .commas. A UID
specification must be enclosed in square brackets ('[]').
A file specification may include its UID (in square
brackets), otnerwise tne 1last UID appearing in a file
specification (in the same or previous command line) 1is
assumed.

Tape positioning «cemmands may be interspersed in a
list of file specifications and are performed in tane
order specified. In tne case of restoring UFD dumps, tne
specified UID: are restored in the order in wnich they
gccur c¢cn tne tape regardless of tneir order in tne
command 1line; tnerefore tape positioning directiveg are
not useful except at tne end of tne UID list. Wnen a tape
pesitioning directive follows a file or UIiD
specification, tne =lasn may serve as tne delimiter, so
tnat tne comma following tne file or UID specification
may be cmitted.

Examples:
'MT:/FF,[300302]ABC/FF2,XYZ=' -

Copies tne second and fiftn files from
tape inte UID 300302.

'"MT:[001001],03003200),[300302]/RW="' -
Restores the files for UIDs 001001,

300300, and 300302, tnen rewinds the
tape.

45



HEP OPERATING SYSTEM

1.4.3.4 Indirect Command File

An  indirect command file is a text file, eacn line
(lcgical record) of wnien is a cocmmand line as described
in the preceding sections on reading, writing, and
poesitioning tapes. Tne 1leading 'MT:' found in console
commands is ommitted from commands in an indirect command
file. Tne Tape Manager is directed to process thne
commands in a c¢ommand file by a message from thne
cperator's ccnscle of tne form:

"MT:8[UID]file name'.

Tne " Tape Manager tnen opens tne specified file and
reades and perferms eacn command until end cof file is
reacned. A cecmmand file may contain any 1legal Tape
Manager command except '@...'; that is, indirect command
files may not be nested.

1.4,3.5 Terminating Command Processing

Wnen the: Tape Manager is finished processing a
command 1line &4r an indirect command file, the message
'MT:' is displayed on the operator's console. If tne Tape
Manager encounters an error wnile processing a command,
an error message is displayed c¢cn tne operator's console
and processing of tne command line cr indirect command
file i= terminated.

If it 1is desirable to prematurely terminate tne
processing of a command line or indirect command file,
tnis may be accomplisned by sending any message to the
Tape Manager. Processing of tne current command or file
of commands will hnalt and tne new message will be
prccessed as a command.

1.4,4 Functional Description

In recerd mode, disk files are read cr written witn
standard calls to tne runtime I/0 rcutines. In dump mode,
nowever, since tape racerds are equivalent to pnysical disk
recerds, tne cvernead of unblocking, reblececking, and moving
data is avcided by transmitting eacn record between tne I/0
buffer and tne tape directly. Tnis is accomplished by
manipulating the disk file variable (in assembly language) tc
point to tne end of tne Dblcek after eacn tape transfer,
fercing tne next call to tne apprepriate 1/0 routine to do a
pnysical read or write of tne disk file.

he



HEP OPERATING SYSTEM

1.4,5 Error Messages
MESSAGE

Unknewn Account - UID

Command Error
Parameter Error
Illegal Function

Bad Tape Fecrmat

End of Volume on Tape

Tape I/0 Error:nnannn

Tape on Write Lock

ULD Table Overflow

Bad Directeory

Command Abcrted

Tape Unit Not Ready

MEANTING

Tne UID in a command is ngt knecwn to
the system,.

Cocmmand not recognized.

Invalid parameter in command.

The tape format does net match tne
command being processed.

Premature end of voclume reacned wnile
processing a command.

Bad status after a tape operation;
nnnn is the status,.

Attempt to write on a tape wnicn hnas
no write ring in.

Tne 1list of UIDs to be dumped or
restored is longer tnan tne program
can accomcdate; remaining UIDs will
net be processed.,

An error was encountered in
processing a file header.

Tne current command line or indirect
command file nas been prematurely
terminated due to error or sperater
intervention. :

Tape unit is off-line.

u7



HEP OPERATING SYSTEM

For .R, c, P and D requests, if =<value> is specified,
tne contents of the location specified by <Starting Address>'
are replaced by <Value>.

For all requests, the proccessor tc be accessed is
specified Dby tne 9prccessor parameter. If this parameter is
cmitted, processcr 0O is assumed. .

In tne event tnat tne <Filename> parameter is prcvided,
tne HEP Debugger will s8end the input message back to tne
originating task wnen the operaticn is complete. This allows
tne Baten Monitor to determine wnen a dump is ccmplete and
tne HEP resourgces may be freed.



1.5

and
Moni
cper

HEP
Debu
inte
may

N

~

K

\

' HEP OPERATING SYSTEM

HEP Debugger

Tne HEP Debugger is used tc examine and modify HEP memory
examine tne PSW queue. It is normally used by the Batcn

tor fer taking wuser dumps, but can alsc be used frem thne
ator's ccnsole.

All HEP Debugger functions use tne KI task and cocde in tne

Kernel tc¢ obtain HEP related informaticn. Tnhus tne HEP
gger cannct be used if tne Kernel or tne UNIBUS tec switen
rface i2 not working. In these cases, program and data memcry
be examined using tne IML maintenance task (MP).

1.5.1 Command Format

Tne HEP Debugger responds to single line text commands
witn tne following syntax:

[<Request Type>]<Starting Address>(,Ending Address][.P<Processor>]

- ~
1[-£Filename>])

} (Brackets derote optional parameters)
{=z<value] 3

\
-~

Valid request types are a single alpna digit drauwn from:

- Register Memcry

- Constant Memcry
Prcgram Memcry

- Data Memory

- Preogram Status Words

oo
!

If <Request Type> is omitted, and the leading character
cf tne stafting addresgs is numeric, data memory is assumed.
If <Ending Address> is cmitted, it ~ defaults te
{Starting Address>, If tne /<Filename>- qualifier and tne
=<{value> qualifier are absent, for R, C, P, and D request
types, all memory locaticne between <Starting Address> and
<Eriding Address> are displayed. For S request types,
{Starting Address> is taken as a task number, and all PSW's
witn tnat task number are displayed.

If /<Filename> is specified, tne requested data is

written in binary format te tne file specified. For S
requests to a file, all PSW'smare dumped.

48



1.7

HEP OPERATING SYSTEM

Editer
1.7.1 Overview

ITne HEP System Editor is a line-oriented text editor
wnicn operates on sequence numbered word type or cn sequenced
or non-sequenced vrecord type files of text. Tne Editor alsc
performs file wutility functions sucn as listing, ccpying,
renaming, or deleting files, listing tne user's directory,
and submitting a file as a job.

Options . for terminating an edit session include
canceling tne edit (preserving tne criginal file), saving the
updated file under a new name (preserving tne original file),
and replacing tne original file witnh the updated file. In the
latter two cases, the updated file may be saved as a recerd
file, witn or without sequence numbers, or as a sequence
numbered word file. The Editor supports the inclusion of
lines of text from an auxilliary input file, wnicn may be the
file being editted.

A separate Editor task services eacn terminal or port in
tne HEP system; all the Editcr tasks snare the same program
code but eacn nas its own data space.

1.7.2 Cecmmands

Tne Editor is tne «c¢nly task wnicen communicates witn
terminals ctner than tne c¢perator consocle, thnerefore messages
(cemmands) to a terminal Editor are nct prefaced by any task
identifier. However, tne cperator ccnsole is also serviced by
an Editcr task, and its identifier 'ED:' must preface Editer
messages. Commands to tne Editor fall inte tnree categcecries:
lcg cn/c¢ff commands, file wutility ccmmands, and edit
commands. Any ccommand wnicn results in substantial output to
tne terminal may be prematurely terminated by typing a
carriage return. '

In tne fcllewing command descriptions tne syntax of each
command is given. Capital letters in command mnemonics
represent tne minimum pertion ¢f tne word to be supplied for
command recogniticn.

50



HEP OPERATING SYSTEM

1.7.2.1 Log On/0ff Commands

Wnen ne¢ user iz logged ¢n to an Editoer task, tnat
task monitors any signal on tne line 1lecoking fer a
carriage return at various line speeds to determine tne
speed at wnicn the terminal is operating. Therefore
before lcgging on, it is necessary to type carriage
return until the system responds witn a greeting.

1.7.2.1,1 Log On
Hells [uid]

" Ine user wnose identification number appears in
the Dbackets 1is 1lcgged onto tne system, Tne Editor
respcends by displaying a greeting witn tne current
date and time.
1.7.2.1.2 Leg Off

Bye

Tne wuser is-lcgged off the system. If an edit
was in procgress, it is aberted. Tne Editor responds
by displaying the date and time.
1.7.2.1,3 Assistance

A user wno is logged on may obtain a display of
all tne Editcr commands and syntax by typing '?'.

1.7.2.2 File Utility Commands
1.7.2.2.1 List Directory
LD
Tne name of eacn file in tne lcgged-cn user's
file directory is displayed, including tne logical

recerd lengtn, tne file size in blocks, and tne
creation, last mcdificaticn, and last access dates.

51



HEP OPERATING SYSTEM

1.7.2.2.2 Copy a File

CF file specification, file name

A file, named by tne second parameter, is
allocated in the user's UFD and tne contents of the
file represented by the first parameter (wnicn may
include a UID) are ccpied into it. Tne cutput file
must not already exist.
1.7.2.2.3 Delete a File

.DF file name

Tne named file is deleted frem the user's UFD
and the space allocated tc the file is freed.

1.7.2.2.4 List a File
LF file specification

Tne contents of tne file (wnich may be in
anotner UFD) are listed cn tne terminal.

1.7.2.2.5 Rename a File
RF file name, file name

Tne file in tne user's UFD named by tne first
parameter 1is renamed to the seccnd parameter. Tne
seccnd file name must not already exist.

1.7.2.2.6 Submit a Job
SUbmit file specification

The Editer builds and sends to the Reader task
a message containing the UID and file .name
specified, te¢ be submitted as a job stream. If tne
file specification dces not contain a UID, tne
logged on  user's UID is used., If the parameter is
not previded, tne updated versicon of tne file being
editted i3 submitted.

52



HEP OPERATING SYSTEM

1.7.2.3 Edit Commands

In the fcllecwing syntax descriptions, parameters
appearing in square brackets are optional. Tne letters N,
M, L, and I represent numbers. '

t.7.2.3.1 Edit a File
Edit file name

Tne Editer initiates an edit session for thne
specified file. Tnis includes copying the file to a
woerd file if it is a record file and assigning
sequence numbers if it is not sequenced.

1.7.2.3.2 Copy Lines
Copy N[-MI[/file specification],L[,I]

Tne Editcer copies line numbers N tnrougn M from
tne specified file, inserting tnem in tne file being
editted, starting at line number L and incrementing
by I. If M is omitted, only line N is copied frcm
tne file. If tne file specification is cmitted, tne
lines are copied (replicated) from the file being
editted. If I is omitted, tne last increment
specified in any command is used.

1.7.2.3.3 Move Lines
Move N[-M].L[.I]

Lines N tnreough M are inserted starting withn
line number L, incrementing by I, and tne lines are
deleted from tneir former position., If M is omitted,
only 1line N i8 meoved. If I is omitted, the last
increment specified in a command 18 used.

1.7.2.3.4 1Insert a Sequence of Lines
Sequence L[,I]

Sequence insert mcde is establisned, starting
witn line number L and incrementing by I. Tne user
is prompted for eacn line of text by a displey of
tne next line number in sequence. Ine prccess is
terminated by typing a carriage return as tne only
¢naracter c¢n a line, or by cverlapping an existing
lire number in tne fille,

53



HEP OPERATING SYSTEM

1.7.2.3.5 Replace a Text String

Replace /string 1/string 2/[(N[-M]1]

ITne first o6ccurence of string 1 is replaced
witn string 2 in every line in the range. If M is
omitted, the range is the entire file. The slasn
delimiter may be any chnaracter.
1.7.2.3.6 Delete Lines

Delete N[-M]

Ine specified line ¢r range of lines is deleted.
1.7.2.3.7 Direct Insert

N text

Line N is placed in tne file, containing thne
text following tne line number N, If line N already
exists, its cocntents are replaced by tne new text.
1.7.2.3.8 Direct Delete

N

Line number N is deleted from tne file,
1.7.2.3.9 Find a Text String )

Find /string/[N[(-M]]

Tne Editor searcnes tne specified range of
lines for weccurences of tne string and displays on
the terminal all 1lines containing tne string. Tne
8lasn delimiter may be any c¢naracter. If Mis

cmitted, only 1line N {s searcned; {if N {s also
cmitted, tne entire file is searcned.

54



HEP OPERATING SYSTEM

1.7.2.3.10 List Lines
List [N[-M]]

All 1lires in the file in tne specified range
are displayed on tne terminal. If M is omitted, only
line N is displayed; if N is alsc cmitted, the
entire file is displayed. '

1.7.2.3.11 Renumber tne File
Number N[-MJ],L[,I]

The Editor renumbers the specified range of
lines, assigning new sequence numbers starting witn
L and incrementing by I. If M is omitted, only line
number N is renumbered. If I is omitted, thne last
increment specified In a command is used. If thne
renumbering of tne range would cause tne file to be
out of sequesnce (i.e. lines following the range nave
léwer numbers, or lines preceding tne range nave
nigner numbers), tnen no renumbering is done.

1.7.2.3.12 Save tne Cnanged File

SAve [file namel[,Rn][/S]
or
SAve [file namel[,W]

The updated versicn ¢f tne file being editted
ig saved. If file name is specified, tne file is
saved under tnat name, and the original file is
retained, otnerwise tne updated file replaces thne
original file. If Rn is specified, tne file is saved
as a record file witn a logical record lengtn of n/8
HEP words; if /W is specified, tne file is saved as
a word file; octnerwicse the file is saved as the same
file type as tne original file. If /S is specified
ecn a record file, the sequence numbers are saved as
part of tne file and tne logical record lengtn must
allow fer tne 1-HEP-word sequernce number per recerd.
If /S is not specified, tnen tne sequence numbers
are saved wonly if tne criginal file was sequenced.
Tne save command does not take the user cut of edit
mcde; updating may continue from tne pcint of saving
tne intermediate file.

55



HEP OPERATING SYSTEM

1.7.2.3.13 End tne Edit Session
of f

Tne Editor terminates an edit and closes all
files. If the edit file nas been modified, a save
ccmmand must be performed befcocre tne ¢ff command is
accepted. '

1.7.2.3.14 Cancel tne Edit
ABort

Tne current edit is terminated and thne updated
file is deleted. Tne o¢riginal file is retained.

1.7.3 Functional Descripticn

The Editor applies wupdates to a temposrary cepy of tune
file; tne actual file is not affected until the user issues
tne save command. It is always possible to cancel an edit
session, leaving tne file as it was before tne edit started.

During weditting, an input and an output file are open.
Tne input file is initially tne original file unless tne
original file 1is a record file; the ocutput file 1is a
temporary file. Ncne <¢f the file being editted is kept in
memory; tne first time tne input file is read, a table of
disk addresses 18 built, evenly distributed ocver tne file.
Tnen fecr eacn command, tne disk addrecss frcm thne table wnose
gequence number i3 nearest tc but less than the line number
referenced is used to pecsiticn tne file. From that point tne
file is read sequentially to process tne command. Updated
lines are kept in a table in memory and cverride tne
corresponding lines in tne file. Inserted lines are also kept
in tne table. Wnen tne table becemes full, a pertion of tne
input file is written to tne output file, incorporating the
cnanges in tne table, wuntil tne change table is partially
empty. Frem tnis point on, tne osutput file is alsec accessed
far input, and tne ccrresponding portion of the input file is
ignered. Tne renumber command, nowever, results in tne entire
updated file being written to cutput witn tne new sequernce
numbers, Any .time tne 1last cf the updated file is written
sut, tnz old input file is closed, tne cutput file becomes
input, and a new c¢utput file 1is allccated. A1l files
allccated by tne Editecr are allecated as temporary files sc
tnat tn2y are deleted wnen clecsed.

56



HEP OPERATING SYSTEM

Wnen tne wuser saves an edit, tne original file is
deleted if necessary and tne final cutput file is renamed to
the desired name, making it a permanent ratner tnan a -
tempcrary file.

Wnen a recocrd file is editted, it is initially copied to
a tempcrary word file. Line numbers are assigned unless tne
record file contains embedded sequence numbers at tne end of
eacn logical record., Embedded sequence numbers are identified
by tne nign-crder bit being on in the first byte of thne
8-byte nrumber. If present, tne embedded sequence numbers are
extracted and used as tne line numbers as the file is ccpied
to a word file. The sequence numbers in tne text are replaced
by blanks in the word file.

1.7.4 Running a Job From tne Editor.

Wnen tne submit command is used to cause a file wnien is
a job stream to-be submitted as a job, tne Editor builds and
sends a c¢ommand to tne Reader task. Tne Editor uses the
message buffer for terminal cutput and builds all fields of
tne message directly. Tne message text ccnsists of a UID
(eitner supplied in the .submit command or taken from tne
user's locg-cn) and a file name. Tne Editcer does tne trap te
send tne message, tnen dces a trap to obtain a new message
buffer. This new message buffer becomes tne terminal output
buffer,

Wnen a Jjeb submitted by an Editor has completed
execution, a completiocn message is received by the same
Editor from the Batcn Menitor task. Informative messages of
tnis sort are distingulisned frem user commands by tne
presence of a backslasn (line cancel cnaracter) as tne first
cnaracter of tne message. Tnese messages are simply displayed
cn tne terminal.

57



1.8

HEP OPERATING 3YSTEM

Batch Monitor
1.8.1 OQverview

The Batch Monitor runs as a task under the Executive. It
is responsible for job scheduling, resource management, and
processing status changes for jobs in execution., The Batceh
Monitor receives job descriptor messages from the Reader task
and maintains a queus of jobs to be run. As resocurces are
available, the Batch Mcnitor remcves jobs from the queue and
initiates execution; a queue of jobs in execution is also
maintained. At Jjob step termination, the Batch Monitor
initiates the dump functicn if requested. The Batch Monitor
sends completed Jjobs to the Writer task for printing.
Operator commands are available to examine the queues,
re-order the ~job queue, suspend or cancel jobs, and change
HEP partition sizes. The cperatcor can also instruct the Batch
Mocnitor to quiesce the system by shutting down the Reader
task and noct starting any new jobs.

1.9.2 Cocmmands

The Batch Mgnitor is accessible cnly from the operator's
console, directed by commands in the form of messages
prefaced by 'BM:' (the task ID for the Batch Monitor). There
are twe categories of commands: job-related and
system-related.

In the follcwing command descriptions tha syntax of each
command is given. Capital letters 1in command mnemcnics
represent the minimum pcrtion of the word to be supplied for
cemmand reccocgnition.,

1.8.2.1 Job-Related Commands
In the following syntax descriptions 'nnnn'
represents a four-digit system-assigned job number which
uniquely identifies the job.
1.8.2.1.1 Move Job to Top of Queue

Next nnnn

Job number nnnn is moved to the top of the
job  quz2ue sc that it will be the next job
started.

58



HEP OPERATING 3YSTEM

1.8.2.1.2 Suspend Jocb Execution
SUspend nnnn

If Jjob number nnnn 1is in executicn, the
Batch Monitor sends a suspend message to each
task in the job which is currently active.

1.8.2.1.3 Resume Job Execution

Resuma nnnn

) If Jjob number nnnn 1is in execution, the
Batch Monitor sends a resume message to each
task which is currently paused.

1.8.2.1.4 Cancel a Job

CAncel nnnn

If Jjob nnnn 1is in execution, the Batch
Monitor sends a cancel message to each task in
the job. If job nnnun is in the job queue, it is
remcved s that it will ncoct be executed.

1.8.2.2 System-Related Cocmmands
1.89.2.2.1 Set HEP Partition Sizes
Partiticn p,m,s1,s2,s3...

The Batch Moniter sends a message to the
Kernel in PEM number p requesting that memory
typa m be partitioned according tc the sizes
s1, s2, etc. The number of sizes specified must
be 1less than or equal tc the maximum number of
partiticns allowed in the memory type. The sum
of all the sizes must be less than or equal to
the physical amcunt of the specified memcry on
the specified PEM. Partitions may be
reconfigured while jobs are running as long as
the bcoundaries of the active partiticons are not
affected, 1If the requested partitioning cannct
be perfoermed bacause of viclation of any of the
above criteria, the partitions message |is
modified to reflect the actual current
partiticn sizes. ITn  any case, the message 1is
returned  to  the Batch Monitcor and  is then
displayed in tabular format.

59



HEP OPERATING SYSTEM

If the operator simply wants to know what
the current partition sizes are, an easy method
is to type a set partitions ccmmand with a
single size field which 1is 1larger than the
total amount of memcry of that type.

1.8.2.2.2 Set Control Card Processor
CC [uid]lfile name

The Control Card Processor 1is always
lcaded from a file. If the wuser wishes to
specify scme file other than the system default
(i.e. to try cut a new Control Card Prccessor
prcgram), this command must be used to direct
the Batch Monitor tc use thz desired file for
lcading the Control Card Processor task. The
named file remains the Contrcl Card Processor
file until the Batch Monitor receives another
CC command.

1.8.2.2.3 Display the Job Queue
Display Queue

The Batch Monitor lists on the coperator's
console all jobs waiting tc be run, showing the
job number, name, memcry requirements, and
process coun%t requirements.

1.8.2.2.4 Display the Jobs in Execution
Display Active

The Batch Mcnitor lists on the coperator's
console all jobs in executicon, showing the job
number, name, data memcry partition number,- and
the PEM number, task number, partition numbers,
process count, and task status for each task in
the Jjob. Task status can be 'L' for lcading,
'"A'  for active (running), 'P' for paused, or
'D' for dormant (nc code in this task).

60



HEP OPERATING 3YSTEM

1.8.2.2.5 Quiesce the System
STOp

The Batch Monitor does nct start any more
jobs from the job queue, and sends a message to
the Reader to stop reading job streams. Other
Batch Monitor activities proceed normally.

1.8.2.2.6 Resume Normal System Operaticn
STArt

This command 1is the reverse of STOP; the
Batch Mcnitor sends a message to the Reader to
continue reading Jjobs, and the Batch Monitor
resumes initiation of jobs frcocm the job quaue.’

.3 Inter-task Messages

In addition to commands from the cperator's conscle, the

Batch Monitor receives (and sends) cther types of messages.
These messages support three basic Batch Monitor activities:

sending and receiving HEP messages, sending and receiving
jobs, and taking dumps of jobs.

1.8.3.1 HEP Messages

When the HEP sends a status change message on behalf

of some Jjob, the Batch Monitor receives a '"switch
message”" from the interface task., A switch message
consists  of one HIEP word of data, followed by 32 bits of

control informaticn. In this case, the HEP word contains
the data memcry address of the HEP message header. The
Batch Monitor then rzads the HEP message header via the
low speed bus, sets gcod status in the header, and writes
the header back to data memcry via the low speed bus. The
seccnd word of the HEP message header contains the length
and start address of the message data, if any. If there
is data, the Batch Monitor reads it via th2 lcw speed
bus, then releases the c¢riginal switch message by sending
it back to the interface task as a reply.

The Bateh Monitor then processes the HEP message
acccrding tc its type. The types of messages that might
be received frcm the HEP are pause, ncrmal termination,
abncrmal terminaticn, and system errcr. The message
neader contains, in additicn to message type, tha PEM

61



HEP OPERATING SYSTEM

number and task number.  from which it came. Except in the
case o¢f a system errcor message, the PEM and task number
are us2d to identify the job assocciated with the message,
by searching the execution queue. Since HEP messages come
frcm the superviscr task, 8 is subtracted from the header
task number to get the corresponding user task number. If
there is any message data it is displayed on the operator
conscle and written to the job's log. file. If the message
was a normal or abnormal termination, the Batch Monitor
sends a cancel tc any other tasks in the job toc force
them tc terminate.

In the <case of a system error message, the Batch
Yonitor displays the message data on the coperator's
conscle and halts.

Wnen the Batch Monitor wants to send a message to
the HEP, it must first seize control ¢f the interface.
This 1is done by sending a a switch message to the
apprcopriate interface task (KI) with the target PEM
number in the first 16 bits of the data word. The
interface task replies with the data memory address of
the 1interface area in-the switch message data wocrd. The
third and fourth words of the interface area are where
HEP-bound message headers are written. The Batch Monitor
writes 1its message hecader into this area and sends an
activate type switch message.

62



HEP OPERATING SYSTEM

SUMMARY OF BATCH MONITOR CONSOLE COMMANDS

Job Related Commands

Next nnnn - Move job number nnnn to top of Jjocb queue.

SUspend nann - If nnnn is in executicn, suspend all tasks in
the job.

REsume nnnn - If nnnn is suspended, resume execution of its
tasks.

CAncel nnun - IF nnnn is in execution, cancel all of its
tasks.

System Related Commands
Partition p,m,S51,382,S3...S7 -

Set partitions 1in processor p, memory type m
t¢ the values in 31...87. '

CCluidlFilename

Set the name of the CONTROL CARD PROCESSOR
locad module equal to [uid] filename.

Display Qu~ue

Display the contents of the Job Queue (jobs
waiting tc be run).

Display Active - Display the status of all active jobs.
3TOp - Do not process any more new jobs.
3TArt - Reverse of STOP, allcw Batch Monitocr and

Reader to continue processing new jobs.

Other Conscle Commands

RD:{uidlFilename

Read the Jjobfile specified and submit it for
execution.

PR:[uid]Filename Enter the file spacified in the print queue.

PR:CAncel nnnn

Remove job nnnn from the print queue.

PR:CAncel - Stop printing conly ¢of file currently being
printed.
PR:COntinue - - Resume printing (after printer has gone

off-line for some reascon).

63



HEP OPERATING SYSTEM

HEP DEBUGGER - HD:
Examine/Mcdify Memory -

[<Mamtype>]<Start Addr.>[,Endaddr.][,Pn] [/<Filename>]

[=Valuz]
Memtype = R, C, P, Dor S - Default = ﬁ
Pn = Processor Number - Default = PO
/<Filename> = Opticnal OQutput tc <Filename>
'z Value! = Modify Word tc Value Specified

TAPE MANAGER - MT:

/ RW - Rewind tape.

/AP - Append.

/FFn - Forward file, n file marks . 'n' default = 1.

= <[uid]Filename> - Write <[uid]Filename> to tape.
Defanlt [uid] = last [uid] enccuntered or
[001001].

<[uid]Filenamé>= - Copy <[uidlFilename> from tape.
Default [uid] = last (uid] encocuntered or
[001001].

= [uid] - Write UFD dump for [uid] tc tape.

fuid] = - Copy UFD dump from tape to [uid].

Tape Manager directives may appear in any order in a ccmmand
linz, except that only one '=' may appear. This must be either at
the front of the command line (for writing to a tape) cor at the
end ¢f the command line (fcr reading from a tape).

(o))
=



EDTITOR - ED:

HEP OPERATING SYSTEM

Editor commands related to file manipulation and batch
processing of jobs. Operator must be logged on to the Editor.

BYE
CF F1,F2

DF F1,<F2,...Fn>

HEL N1
LD

LF F1

RF F1,F2

SUbmit F1

?

Log off the Editor.
Copy file F1 to file F2.

Delete files specified. More than one file
may be named con a command line.

Log on the Editcer with usefcode NT.

List file directory for your usercocde.

List the ccntents of File F1.

Change the name of File F1 to F2.

Submit the (Controcl Card) File F1 as a job.

Print complete summary of Editor commands.

65 .



HEP OPERATING SY3TEM

NOTE: Cut cut this '15' and tape it as a subscript on page 2
under HEP DEBUGGER secticn, the line "'z Value' = Modify word
to value xx specified" where thz xx's are.

ALSO, draw a bracket cn the left hand side batween ,Pn] and
[/<Filename>] in the third line under HEP DEBUGGER and on the
right hand side after [/<Filename>].



HEP OPERATING SYSTEM

1.11 Disk Builder

The Disk Builder is a utility task used to initialize and
reconfigure the disk file system. It is not normally part of an
ocperational system system, but 1is always part.cf the bootable
system ¢on a distributicn tape. The Disk Builder is unique in that
it accesses the disk directly, rather than through the File
Manager. The Disk Builder contains noc command error checking of
any descripticon, and errors or misuse of its commands may destroy
the file system. The File Manager in a system must be shut down
while the Disk Builder is wused. Disk Builder commands are
described belcocw. All commands are single letters.

1.11.1 Format Disk

The F command causes the disk to be formatted and
verified. Sectors with read errors are flagged.

1.11.2 1Initialize Disk

The I command causes. the disk allocation bitmap, the
master file directory and the user file directory for user
000 9200 000 000 to be built. This readies the disk for use by
the File Manager

1.171.3 Create User File Directory

The U command prompts for a user ID, and creates a UFD
fcr this user. No check is made for duplicate UFD's.

1.11.4 Logon

The L command prcocmpts for a user ID, and uses that ID
for all subsequent file references.

1.11.5 Build Bootstrap Sectors

Tha B ecmmand builds the bootstrap sactors (cylinder 0,
track 0, sectors O and 1). Sector 0 contains a hardware
becotstrap for  tha ROOT, while sector 1 contains pointers to
the MFD, thz bitmap and the disk addresses and boot
parameters fcr the separately ccmpiled Executive tasks.
Snreter 1 is used by Root initializaticn te load the Execcutive
tasks. Tha2 B command cbtains the Sector 0 becotstrap frem the
file "HYWRODT.TSK" in the current user ID, The command prompts
for a series of task ID's and boot parameters. For each task,
the fcollowing boot parameters must be supplied:



HEP OPERATING SYSTEM

Filename - Th2 name of an existing file in thes current
UFD ¢r © taskid, where taskid is a previously
defined task. If ~ taskid 1is entered, the
bcotstrap entry is flagged so that the code
for taskid will be shared with this task and
not loaded again. : '

Debug Mode - If debug mode is Y, the initial flags of the
task  will offset so that the task will not
automatically start when the system 1is
bocted.

If the . bootstrap sector already contains  boot
information, the user is prompted for each existing entry to
determine whether to change that entry. After all existing
entries are processed, new entries may be added. Note that
since the boot sectors contain absolute disk addresses rather
than file names, it is necessary to rebuild the boct sectors
whenever an Executive task or the Root is changed.

1.11.56 Set Date

The D command prints' the current date (MM/DD/YY) from
the calendar clcck and accepts a new date. Typing an invalid
date will hang the task and require a relcad.

1.11.7 Set Time

Thn T command displays the current time from the
calendar clcek (HHMM:SS) and accepts a new time (HYMM). If an
invalid time is is entered, th=2 task will hang and the system
must be relcaded.

1.11.3 Make Distribution Tape

The M command will write a magnetic tape ccnsisting of
the tape bootstrap contained 1in the file "MTBOOT.TSK",
focllcwed by a core image of the current incore system. This
tape may be hardware bocted. For the tape to be useful, the
system must be inactive while the tape is being made, and the
File Manager must be shut dcwn.

1.11.9 Read Absclute Sector
The R ccmmand allows the cperatcr to read disk sactors.
The ccocmmand  prompts for the cylinder head, and sectcr to be

raad. After the sector is read, the command prcempts for an
cutput mcde, starting data word and werd ccunt te print.

67



HEP OPERATING SYSTEM
Legal mcdes are A (ASCII), D (Decimal), H (Hexadecimal) and
0 (Dctal).
1.11.10 Set Indirect File

The @ ccommand prcmpts for a file name and cbtains
subsequent commands frcm that file until EOF or error.

1.11.11 Shut Down

The Z command writes out the current Dbitmap in
preparaticn for activation of the File Manager.

1.11.12 Disk Build Prccedure

This section describes the sequence of operations required to
build a disk from the distribution tap=.

a) Boot the distribution system from tape;
b) Set the date and time;

c) Format ths disk (if required);

d) Initialize the disk;

e) Define required UFD's, including 001001;

f) Using the Executive Debugger, set the flags of the
task FM and MT tc zerc, allowing them to run;

g) Using the Tape Manager, copy the contents of UFD
001901 frcom the distributicon tape;

h) Shut dcwn the File Manager;

i Logon as 001 001;
j) Use the Boct command to initialize the bcotstrap
sectors;

k) Shut dcwn the Disk Builder;

1) Halt and reboot the system frcm disk.

63



HEP OPERATING SYSTEM

1.11% Disk Builder

Tne Disk Builder is a utility task used to initialize and
reconfigure tne disk file system. It is nct nermally part of an
cperational system system, but 1is always part of tne becotable
system cn a distributicn tape. Tne Disk Builder is unique in tnat
it accesses tne disk directly, ratner tnan througn tne File
Manager. Tne Disk Builder contains no command error checking of
any description, and errors or misuse of its commands may destroy
tne file =system. Tne File Manager in a system must be snut dewn
wnile tne Disk Builder is wused. Disk Builder commands are
described belcocw. All cemmands are single letters.

1.11.1 Format Disk

Tne F ccmmand causes tne disk te be feormatted and
verified. Sectors witnh read errcrs are flagged.

1.11,.2 Initialize Disk

Tne I command causes. tne disk allecation bitmap, tne
master file directory and tne user file directory for user
000 000 CO0O 000 to be built, Tnis readies tne disk for use by
tne File Manager

1.11.3 <Create User File Directory

Tne U command prempts for a user ID, and creates a UFD
for tnis user., Ne cneck is made for duplicate UFD's.

1.11.4 Logon

Tne L command prompts fer a user ID, and uses tnat ID
for all subsequent file references.

1.11.5 Build Booctstrap Sectors

Tne B command builds tne booctstrap sectors (cylinder 0,
track 0, sectors 0 and 1). Sector 0 contains a nardware
boeststrap for the ROOT, wnile sector 1 centains pointers tas
tne MFD, tne Dbitmap and the disk addresses and boot
parameters for the separately ccmpiled Executive tasks.
Secter 1 isg used by Reot initializatien te lcad tne Executive
tasks. Tne B command obtains tne Sectsr O bectstrap from the
file "HUBOQOT.TSK" in tne current user ID. Tne ccmmand proemptbts
for a saries of task ID's and bcot parameters. Far eacn task,
tne following boct parameters must be supplied:

58



HEP OPERATING SYSTEM

Filename - Tne name of an existing file in the current
UFD or "~ taskid, where taskid is a previously
defined task. If " taskid 1is entered, tne
bcotstrap entry 1s flagged so that tne code
for taskid will be shared with this task and
net lcaded again. :

Debug Mode - If debug mode is Y, the initial flags . of thne
task will ¢ffset 380 tnat the task will not

autcmatically start- wnen tne system is
booted.
If tne - bootstrap sector already contains becot

informaticn, the user is prompted for each existing entry to
determine wnether ts change thnat entry. After all existing
entries are processed, new entries may be added. Note tnat
since tne boot =zectors contain absolute disk addresses ratner
than file names, it is necessary to rebuild the becct sectors
wnenever an Executive task or tne Rceot is changed.

1.11,6 Set Date

Tne D ccmmand prints' tne current date (MM/DD/YY) from
tne calendar clcck and accepts a new date. Typing an invalid
date will nang tne task and require a reload.

1.11.7 Set Time

Tne T command displays the current time frem the
calendar clock (HHMM:S3) and accepts a new time (HHMM). If an
invalid time is is entered, tne task will nhang and tne systen
must be reloaded.

F.11,8 Make Distribution Tape

Tne M command will write a magnetic tape consisting of
tne tape becotstrap ccntained in the file "MTBOOT.TSK",
fellowed by a core image cf tne current incore system. Tnis
tapa may be nardware bocted. For tne tape t¢e be useful, tne
system must be inactive wnile tne tape is being made, and tne
File Manager must be snut down.

1.11.9 Read Absclute Sector

Tne R command allows thne operator to read disk sectors,
Ine command prompts for tne cylinder nead, and secctor tec be
read. After tne sector is read, tne command prompts for an
cutput mode, starting data word and word count tec print,



HEP OPERATING SYSTEM
Legal mocdes are A (ASCII), D (Decimal), H (Hexadecimal) and
O (Octal).
1.11,10 Set Indirect File

Tna & command prompts foer a file name and obtains
subsequent commands from that file until EOF or error.

1. 11,11 Snut Dcwn

Tne Z command writes ocut tne current bitmap in
preparation for activaticn of tne File Manager.

1.11,12 Disk Build Proccedure

Tnis section describes tne sequence of operations required to
build a disk from tne distributicn tape.

a) Beot tne distribution system from tape;
b) Set the date and time;

¢) Format tne disk (if.required):

d) Initialize tne disk;

¢) Define required UFD's, including 001001;

f) Using tne Executive Debugger, set tne flags of tne
task FM and MT te zersc, allowing tnem to run;

g) Using tnhe Tape Manager, copy tne contents of UFD
001001 from the distribution tape;

n) Snut down tne File HManager;
i) Logon as 001 001;

j)Y Use tne Bect command to initialize tne beoctstrap
sectors;

k) Snut down tne Disk Builder;

1) Halt and rebeot tne system from disk.

60



HEP OPERATING SYSTEM

2. RESIDENT OPERATING SYSTEM

Ine HEP <c¢cemputer centains four different types o¢f memcry:
prcgram, register, <c¢enstant, and data. Prcgrams executing on tne
macnine are allccated a "task" in wnieh te run. Each "task defines 2
contigucus regiecn of eacn type of memory. Thne nardware -restricts eacn
user to nis cwn region of memory, and restricts tne type of access ne
may make to eacn memory type. Program memory {8 execute-cnly;

constant memory is read-only; and register and data memory are
read/write.

A task may contain c¢cne or several processes, wnich are
executable <code sSequences. Several processes may be simultaneocusly
executing in tne HEP, unlike conventional computers. Processes are
implemented by a set of nardware registers, of wnhnich there is a fixed
number; tnus an error condition (create fault) exists wnen too many
processes come into existence in tne processor. Since existing
prccesses can create new processes at will, processes must be
allocated to tasks and managed just as memcry must be allocated and
managed.

A1l of tne sixteen nardware implemented tasks in tne HEP are not
equivalent. Tasks 0-7 are user tasks. In tnese tasks, privileged
instructicns are ferbidden. In tasks 8-15, privileged instructions
are allowed. ITnese tasks, <called "supervisars", perferm system
cervices for tne user tasks. User tasks request tnese services witn
"superviscr call"™ (SVZ) ingtructions. These instructions generate a
"trap", creating a precess in  a supervisor task and suspending
execution of tne user. The hardware forces user traps to a particular
supervisnar task, for example, task 2 traps to task 10, In general,
task k(k<8) traps to task k+8.

Supervisors may also generate trapse. All traps from a supervisor
dreate a preocess in task 8. A supervisor trap suspends tne supervisor
in tne same way a user trap suspends tne user. Note tnat a trap

susperds ALL processes in a task, nect just the prccess causing tne
trap. .

Ine HEP ccmputer is8 interfaced to I/0 devices and the user via
tne Executive computer. In nardware, tne Executive can read and write
HEP preogram and data memory and certain ccntrol registers via a low
speed (actually quite nign speed) bus (LSB) interface. Privileged
instructicns on tne HEP c¢an also manipulate certain o¢f tnese
registers, In addition, tne Executive and tne Resident Operating
System are interfaced via tne passive [nterface, wnicn allows
supervisory preocesses to interact witn tne Executive. One of tne main
supervisory functions of tne HEP 0/8 is ta cantrel tne flow of data
tarougn tn=23e interfaces.



HEP OPERATING SYSTEM

Tne . Resident Operating System is organized into two main
cecmponents: tne Kernel and tne Superviscrs. Tne users (in tasks 1-7)
make service requests (via SVC) ¢f tneir corresponding Superviscrs.
In tne event of user errcors, tne Supervisors contain errcr nandling
recutines. Tne Supervisors run in tasks 9-15, and execute privileged
instructions tc carry out user requests. Wnen a user request requires
I/0 with tne Executive computer, the Supervisors communicate with tne
Executive File Manager via tne passive interface. Tne Kernel nandles
errer conditions arising in tne Supervisor ccde, and nandles tne
majority of <c¢perator interface functicns. In addition, since tne
nardware traps all create fault conditions to task 8, tne Kernel
nandles tnese alsc. Note tnat since tne task using tne last proccess
(and getting c¢create fault) may not be the one using teo many, tne
Kernel must find the offender witn software and take appropriate
action. Tnis is the reasen tnat create faults come te the Kernel
ratner tnan the Supervisers. Supervisors nave control ONLY over tneir
asscciated wuser. All supervisor code is rentrant, so tnat only one
ccpy is present in eacn PEM.

2.1 Kernel

Tne Kernel of tne resident operating system occupies task 8
in every PEM. Tne base and limit registers of tne Kernel are set
te allow it to address all of memcry. Tne Kernel is logically
divided intoc tnree parts - the Inbound Kernel, wnicn responds teo
diractives from the Executive; tne Outbound Kernel, wnich
responde to traps frem Supervisors; and tne €Create Fault Handler,
wnicn responds to create fault traps. Eacn of these Kernel
secticns 13 described below. Data structures used by tne Kernel
are described in Section 2.1.1, alecng witn Kernel initialization.

2.1.1 Kernel Data Structures and Initialization

Eacn Kernel accesses two types of data structures:
private data structure unique to eacn PEM, and snared data
structure accessed by all PEM's in a system. Tne snared data
structures are leocated at tne base of data memory, and relate
to  tne control and status of data memcry. Tne private data
structures follcw tne snared data structure. During
initialization, eacn Kernel wuses tne RCLK instruction to
ocbtain its ocwn unique processor number. Tnis number is used
Lo nffset its private data structure area intoe a unique
regicn ¢f data memory. In addition, each processor examines
and updates a snared cell defining tne base c¢f user data
memery. Zacn Kernel sets thnis ¢ell to tne end of its cwn
private area, if tne previous <content of tne cell i3 not
already nigner tnan tnat. Tnus, after all processsrs are



HEP OPERATING SYSTEM

initialized
memeory,
initialized.

thne

2. 101,11

Memcry
memcry type.
parameter
memory is
register,
area.

of
in

cell contains tne correct base of user
regardless of tne order in wnicn tne preocesscrs

s managed using a partitien table for
The length of each table is an assembly
Kernel.

snared
cecnstant and program memery are in the

tne
tne

area,

data
were

Memory Management Data Structures

eachn
time

Tne partitiocn table fecr data
wnile

tne tables for
private

A pa}tition table consists of a number of partition

descriptors,

followed by a terminateor werd.

tne table is snown in Figure 2.1.

Tne format of

8 28 28 (Preceding word must
be negative)
USE LENGTH BASE
ADDRESS
COUNT | (WORDS)| (WORDS)
PARTITION :
DESCRIPTORS
/"l
/
/K’I
TOTAL BASE
TERMINATOR oF
WORD -1 LENGTH UNUSED
Figure 2.1 - PARTITION TABLE FORMAT
Tne base

address or lengtn of a partiticn descripter
may anly be cnanged wnen

its

use cocunt is zero.



HEP OPERATING SYSTEM

2.1.1,2 Task Management Data Structures

Tasks are managed with a task table, process table
and task status words. Since tasks are local to PEMs,
tnese structures reside in private areas or in Kernel
registers. ’

Tne task table is an array of seven task
descriptors, eacn corresponding te a user/supervisor task
pair. Tne format of a task descriptor 1is given in
Figure 2.2.

WORD
POINTER TO PROGRAM MEMORY
0 PARTITION DESCRIPTOR OR O
POINTER TO REGISTER MEMORY
1 PARTITION DESCRIPTOR OR O
POINTER TO CONSTANT MEMORY
2 PARTITION DESCRIPTOR OR O
POINTER TO DATA MEMORY
3 PARTITION DESCRIPTOR OR O

Figure 2.2 - TASK DESCRIPTOR

Eacn element o¢f the task descriptor ccntains the
byte address of the partition descriptar for tne memory
used by tne task. Tne use <c¢count in tne partition
description is tne number of task descriptors, system
wide, wnicn refer to tne partition. For all but data
memcry, tne use count cannot exceed 1,

Tne prccess table is an array of seven elements
follocwed by a termination word. Eacn element contains the
number of processes allccated by software to tne
corresponding task. Tne termination word contains tne
maximum total number c¢f prccesses allcowed by scftware.

Task status is contained in several registers. Eacn
register uses one bit per task toc record status. Tne
tnree task states are VALID, ACTIVE and LOADED. A task
beccmes VALID wnen a pregram loading is2 begun in tne
task, and becomes not VALID wnen tne program terminates
normally or abrnioermally. A task becnmes ACTIVE wnen it is



HEP OPERATING SYSTEM

started (after 1loading) or resumed (after a pause). Tne
task i3 nct ACTIVE during program loading and after a
pause. A task becomes LOADED upon completion of program
lead, and becomes not LOADED wupon normal or abnormal
termination. Tnese states affect tne type of directive
wniecn tne Kernel will accept for tasks.

2.1.1,3 Communications Data Structure

Communications between tne Executive and the Kernel
accomplisned wusing a pair of message neaders located
tne Kernel private data structures. One message neader

used ., exclusively by tne Inbcund Kernel for
communication witn tne Executive task KI. Tne ctner is
used exclusively by tne Outbound Kernel for communication
witn tne  Executive task KO0, A message neader is a
two-word block wnose format Is given in Figure 3.3.

(.}

FooFa b
w3

8 8 8 8 8 8 8 8 WORD
PROC .| SOURCE/ MESSAGEMESSAGE
DEST. - - - STATUS | DATA 1
HTUMBER TASK EXT. IYPE
MESSAGE LENGTH MESSAGE ADDRESS
(Words) (Byte Address in 2
HEP Data Memoryv)

Figure 3.3 - MESSAGE HEADER FORMAT

For the Inbsund Kernel, message lengtn and all tne
fields in word 0 are supplied by KI, after wnicn the
Karnel fills tne address nalfword witn the address of the
Kernel data buffer, located in tne pivate data area. If
tne message 18 invalid, tne status field is set to a
ncn-zerc value and tne buffer address is not supplied. It
is tnen tne responsibility of tne Executive to not
transmit any data. Tne destination o¢f all ocutbound
messages is the Kernel (task 8).

For tne Outbsund Kernel, all fields are supplied by
tne Kernel. Tne data 1lengtn and message address are
cbtained from tne supervisor wnicn trapped to request tne
messgsage be sent. Tne message address is relocated by tne
Kernel to an absnlute data memory address. Since no
raccvery [s pogsible, tne status field e nct cnecked by



HEP OPERATING SYSTEM

tne OUTBOUND Kernel. Tne socurce task field is the task
number ¢of the user task (1-7) whose supervisor trapped.

2.1.1.4 Initialization

Wnen tne Resident Operating System is first lcaded,
the Executive <causes an IPL trap wnich begins execution
¢f tne Kernel initializatiocn code. Tnis ccde identifies
tne prccessor number and sets up the private data
structures. Partiticn, task and prccess tables are
initialized teo the inactive and unassigned states. All
tasks are marked not VALID, not ACTIVE and nect LOADED.

Initialization communicates with the Executive by
sending the base address of tne private data area, wnich
is alss the Executive cocmmunications area, to tne first
Unibus~-ta-Switch Interface location with a STO
instruction. Tnis address is received by the Executive KI
task and is maintained by tnat task for the duration of
system operation. After the Executive hnandshake, the
initialization 'code ©branches to tne directive reception
cecde ¢f tne inbocund Kernel.

2.1.2 Inbcund Kernel

Ine Inbound Kernel processes directives received from
tne Executive KI task. These directives originate witn eithner
the Executive Batcn Msnitor or the HEP Debugger. Tne Inbcund
Kernel {3 a single proccess in task 8 wnich normally waits in
tne Unibus-to-Switen interface for the result of a memory
read instruction., Wnen a directive is to be processed, tne
Executive KI task prevides eitner a "O" or a "1" as tne
result ¢f tne read. Tnis relinks tne Inbound Kernel in tne
PEM process queue and execution beging (resumes).

Ine message type in the inbound message neader is
cnecked for reasonability and tne destination task is cnecked
te verify tnat it is task 8. If tnese conditions are met, tne
data value returned by tne Executive 13 used t¢c enter pnase 1
cr pnase 2 directive processing.

If tne data value was 0, pnase 1 processing is entered.
During pnase 1, tne specific message o¢ode is wvalidity
cnacked, tne message lengtn is cnecked and message specific
cnecking is performed on the neader, If pnase 1 i3 successful
tne message status is zerced, tne Kernel buffer address is
supplied and tne read ts tne Unibus-to-Switcon interface i8
reissued,



HEP OPERATING SYSTEM

Wnen the read is again satisfied, the data value is
again c¢necked. If the value is net zero, phase 2 processing
is entered. Pnase 2 processing recnecks tne message type and
status. If satisfactory, tne contents of tne Kernel buffer
are used for message specific precessing, and may be altered
to display results., After Pnase 2 processing is cemplete, the
read against tne Unibus-ta-Switcn interface is reissued to
await a new directive.

A total oeof 13 directives, some witn varients, are
accepted. Tnese are briefly described below.

2.1.2.1 Examine Directive - Type 21 (16)

Tne Examine Directive causes tne Kernel t¢ read the
contents of a single word of memory and place its value
in tne Kernel buffer. Tne message data extension in tne
neader specifies tne memory type, as snown in Table 2.4

VALUE MEMORY TYPE
0 - - PROGRAM
1 - REGISTER
2 - CONSTANT
3 - DATA

Table 2,4 - MEMORY TYPE CODES IN DIRECTIVES

Tne first word of tne Kernel buffer csontains tne
addresgses to be examined. Upsn completion, tne next word
will contain tne register descriptor c¢r 0, and tne
following word will contain the value.

2.1.2.2 Modify Directive - Type 1 (16)

Tne Modify Directive causes tne Kernel to replace
tne contents of a single word of memory with a new value.
Ine format o¢f the directive is thne same as tne examine
directive, except that all fields are supplied by tne
Executive.

2.1.2.3 f<Cancel Directive - Type 2 (16)
Tne Cancel Directive specifies a user task number

(1-7) in tne message data oxtensicn, Tnis task must be
VALID. Tne message causes tnz Koernel to create a process



HEP OPERATING SYSTEM

in tne task witn an all-ones PC and UTM., Wnen the task
next becomes active, tne process will trap to its
supervisor, wnien will recognize tne unusual P3W and
terminate tne task.

2.1,2.4 Suspend Directive - Type 3 (16)

Tne Suspend Directive specifies a user task number
in tne message data extension. Tne task must be VALID and
ACTIVE. Tne message causes tne Kernel to create a process
in tne task witn a PC of 0 and an all-ones UTM. Wnen tnis
prccess traps to its superviser, the supervisor will
leave tne "~ task dormant and send a PAUSE message tnrcugn
tne Kernel. Tnis will mark tne task not ACTIVE.

2.1.2.5 Resume Directive - Type 4 (16)

Tn2 Resume Directive specifies a user task number in
the message data extension. If tnhe data length of the
message is non-zerc, tne message data is placed in tne
data memory of tne task starting at user lecation 0, Tne
task is tnen activated. Resume requires tnat the task be
VALID and not ACTIVE. Tne task is set ACTIVE by Resume.

2.1.2.6 Load Directive - Type 5 (16) and Type 7 (16)

Tne Luoad Directive specifies a user task number in
tne message data extensien. Tne task must be not VALID,
Tne task descriptor for the task is checked te ensure
tnat memory of all types is assigned. If thnese conditions
are met, tne TSW registers for tne task are initialized
using tne partiticn descriptors. If tne Load Directive is
type 7 (system locad), tne task memory 1is cleared and
initialized, and tne contents of tne load data buffer are
copied into low task data memory. Tnis data nsrmally
contains tne file name of the system centrol card
precessor used to set up files for tne user task.

For all 1lcad directives, runtime c¢onstants are
initialized in tne supervisor space aof tne user task, tne
task i3 marked VALID and nect ACIIVE, PSW's naving tne
tasks' task number are erased from tne nardware PSW
queue, and tne lcader process is created in tne
appropriate supervisor. .



HEP OPERATING SYSTEM

2.1.2.7 Miscellaneous Examine Directive = Type 22 (16)

Tne miscellaneous examine directive c¢opies varicus
informaticn into tne Kernel data buffer. Tne message data
extension =specifies wnat data te copy; as shown on the
next page.

MDE
VALUE ACTION
0 Read PSW queue into buffer.
1 _Read all TSW's inte buffer.
2 Read CFU control into buffer.
3 Read ECC register and clock inteo buffer.
4 Read partition descripteors and précess count

for all tasks intc buffer, in order by task,
and memory type, 5 words per task.

2.1.2.8 3Set Partitions Directive - Type 23 (16)

Tne Set Partitions Directive resets the partition
descriptors in a partition table to reflect new partition
sizes. Tne message data extension field contains thne
memory type of tne table to be medified, as described in
Table 2.4, Tne Kernel buffer is set by tne Executive to
contailn an Image of tne partition table, in wnicn only
tne lengtn fields of tne partitiocon descriptors is
significant, Tne directive builds an updated table in tne
Kernel buffer, filling in the correct base addresses and
usr counts. Tne updated table i3 then compared teo thne
previcus table to make sure that total memory is not
excerded, and tnat no descripter with a non-zero use
ccunt nas been cnanged. If tnese conditicns are met, thne
updated table replaces tne previous table.

At tne conclusion ¢f tne directive, tne tnen current
partition table (previcus or updated) is copied to tne
Kernel buffer for possible examination by tne Executive,



HEP OPERATING SYSTEHM

2.1.2.9 Set Task Directive - Type 24 (16)

Tne Set Task Directive selects partitions
descriptors from eacn memocry type and places pointers to
tnem in tne task descripter for the user task wnose
rumber is in tne message data extensien, Tne task must be
nct VALID. Tne first four words in tne Kernel buffer
gspecify tne partition descriptar index (1 relative) in
precgram, register, constant and data memory partition
tables, respectively. If an index is zer¢, no memory is
assigned of tne corresponding type. If a task desecriptor
pecinter was previsusly non-zero, tne use ccunt of tune
referenced partitiocn descriptor is decremented befcre thne
peinter is moved. Wnen tne pointer i3 set to a new
partition descriptor, tne descriptor's use c¢count is
incremented. '

If tne reassignment was successful, tne first word
of tne Kernel buffer is set to zerc, otnerwise it is set
to -1,

2.1.2.10 <Create Process Directive - Type 6 (16)

Tne Create Procesgss Directive uncenditicnally creates
tne process wnoase PSW is in tne first word of tne Kernel
buffer.

2.1,2.11 Dump Directive - Type 25 (16)

Tne Dump Directive s identical to the Examine
Directive, except tnat tne Kernel buffer 1s filled witn
63 register descriptoer/value pairs starting at tne
address contained in the first word ¢f tne Kernel buffer.
Tn2 data begins at tne second word of tne buffer, and tne
last word of tne buffer is not used.

2.1.2.12 Set Process Directive - Type 26 (16)

Tne Rot Process Directive specifies the new contents
of tn2 processz table. Tne new process ccunts are2 summed,
ard Iif the sum does not exceed the software process count
limit, tne process table (s cecpied from the Kernel
buffer. If tne limit is exceeded, the first woerd cf tne
Kernel buffer 1is set te¢ -1 and the prccess table is not
cnanged.,

10



HEP OPERATING SYST:tM

2. 1.3 Outbcund Kernel

Outbcund Kernel processes are produced by error and SVC
traps frcm supervisors, Wnile multiple cutbound processes may
exist =imultaneously only one sucn process per PEM makes
pregress at a given time, since all Outbound Kernel processes
interleck on a single Kernel register.Tnis requirement is
imposed because Outbsund Kernel code is not re-entrant.

2.1.3.1 SVZ Processing
Nermal entries inte thne Outbound Kernel are produced

by SVZ calls from supervisors. Four sucn SVC's are
recognized as 3nown in Table 2.5.

MESSAGE
SV NAME CODE~-HEX ACTTON

0 STOP C2 Task set not VALID, not
LOADED, not ACTIVE

1 PAUSE C6 Task set not. ACTIVE

2 CROAK c3 Task set not VALID, nct
LOADED, not ACTIVE

3 LOAD COMPLETE ce Task set LOADED, nct

ACTIVE

Table 2.5 - Kernel SV Codes

For all SVC entries, tne data parameter descriptor;
centained in tne repgister 0 is relccated to 2n absolute
memory address and is placed in the second word cof tne
cutbound message hneader. Tne first word of the cutbound
message neader is set to the message type indicated in
Table 2.5, and the scurce task is set to the user task
number of tne requesting task. Tne proccessor number is
placed in the processor field.

Tne Executive is notified by storing tne address of
tne Kernel private data structures inte tn=2 second
Unibus-to-Switen interface locatien. Tnis precduces an
interrupt nandled by tne Executive X0 task and results in
tne Baten Monitar reading tne message neader and data.
After tne Executive nas read tne data, tne store {s

"



HEP OPERATING SYSTEM

respoanded to, and tne Outbound Kernel resumes execution,
unlocks tne syncnronization register and quite.

As part of all SV prezamble processing, tne trapping
process is vectored to a quit instruction and tne task is
reactivated. Thus tne supervisser issuing the SVC
continues witn other processing in progress, but thne
prccess issuing SVC dces not continue after the SVC,

2.1.,3.2 Error Preccessing

Normal system c¢peration does nct generate erreor
traps from tne supervisors. If any oeccur, or if an
illegal SVC is issued by a supervisor, it is a fatal
system error. Tne trapping PSW, tne Kernel PSW of tne
trap nandling proecess, and the instruction causing tne
trap are captured and stored in a fixed 3-word puffer in
the Kernel. A type {7 message is generated by the Kernel,
pointing to tne 3 word buffer. Tne trapping supervisor is
left dormant. Occurence of tnis erroer will probably
result in corruption of «c¢pen disk files and snould be
fcllowed by an immediate system snutdewn and reload.

2.1.4 Create Fault Handler

If tne total number of prccesses in all supervisor or
all user tasks exceeds a nardware limit, a create fault trap
seccurs, All user or supervisor processes are placed in a
quasi-dcrmant state. Tne create fault process determines if
tne fault was a supervisor or user cverflow. If the fault was
a supervisor aoverflow, tne create fault conditicn is reset
and c¢peration <continues. Tnis snsuld not occur, and is a
potentially fatal system error., However, since superviser
proccesses cannnt be abnecrmally terminated witnout. causing
system damage, tnere i3 nc corrective action possible.

If thne fault was a user ocverflecw, the create fault
nandler examines tne PSW queue tc count tne number of
processes used by eacn user task. Tnis count is compared to
tne limit specified in the proccess table. For all tasks whose
actual prccees count exceeds tne 1imit, all sucn preccesses
are vectered to a quit. After tnese prccesses terminate, a
prccess witn a cancel PSW is created in tne offending tasks.
Tne c¢reate fault ccndition is cleared and normal processing
resumes.

12



HEP OPERATING SYSTEM

2.2 Loader

Tne proegram lcader's function 1is to read a disk file
containing tne load module for an executable program and place
the centents of thne locad module into pregram, register, ccnstant
and data memcry. The loader runs as a supervisor task (9-15). As
witn all supervisor code, the lcader's constant and prcgram base
are 0, allowing <¢ode and constants to be snared by all
superviscrs. Register and data base and limit restrict tne loader
te tne memory allocated for tne task to be loaded. Tne first
10 registers and 64 data memory words are reserved for tne loader
and I/0 supesrvisor, as is tne memcry left above a lcaded program.
During Kernel initialization for a load, certain lcader registers
are lcaded witn contrcl values for the lcad. In addition, certain
lew data memory 1lccatioens witnin tne supervisor task space are
preinitialized.

2.2.1 Initialization

Upan startup, the lcader determines if tnis is a "systenm
lcad" or a "user load". For.a system locad, the lcader takes a
filename passed in tne base of its data memery as the name of
tne file tc load., It issues an cpen request to tne Executive
File Manager using tne tnird Unibus-to-Switcn location. Tnis
file is opened as lecgical unit 0, using standard I/0
supervisor protocel. If tne 1lcad is a "user load" logical
unit 0 is presumed already apen.

Wign logical unit 0 cpen, the loader begins to process
lcad module recocrds. Tnis process continues until the end of
file, tne end of module record is enceocuntered, or tne
relative task number field in tne 1load module record
descriptor cnanges. Wnile preccessing load mcdule reccrds,
several reccrd types may be encountered. Processing of each

type is described belcw.
2.2.2 Header and Cnecksum Records

Header records and cnecksum records are ignored,
2.2.3 Task Reccrd

Tne task recerd contains tne program size In proegram,
register, constant and data memsory. Only tne register
requirement field i¢ wused, Tnis field, togetner witn tne

precess count for thne task supplied by tne Kernel, determine
tne number of uger registers required. Tne fixed register

13



HEP OPERATING SYSTEM

requirement in tne task record determines tne base of tne
register envircnment pool. Tnis pocl is =et up during task
recard preoccessing and is intended to allow 40 registers per
prccess. Tne top of the environment pool becomes tne user
register limit, and tne TSW is updated to reflect tnat fact.
Remaining registers are formed inte a pool of & register
bleccks for wuse in concurrent 1/0 processing. These register
environments are also set up by task processing. Tne task
record must precede the start record.

2.2.4 Start Record

Tne start record contains a PC value at wnich to begin
execution. Start record processing combines tnis PC into a
PSY witn thne register index of tne irst register
envircnment. Tne resultant PSW is created, nowever since thne
user task is doermant, executien does not start until tne
Kernel subsequently activates tne task.

2.2.5 Data Record

Data records consist of a memory type, word count,
memory address and a blecck of data words te be loaded. All
werds in a3 blecck go inte the same memory. Tne memcry address
in tne data record is a user relative address, and must be
relocated before 1loading. For program memory and constant
memcry, tne lcader base i3 zerc, S0 the total offset of tne
base of tne task must be added to tne address. For register
and data memory, tne lcader base 1s the bottom of tne
partition, 80 only tne lengtn of the suparvisor reserved
saction at tne partitien base must be added. In all cases,
tne address to be loaded is checked against the limit for
tnat memory. If fthe limit is exceeded tne loader enters errecr
termination prccessing. ’

2.2.6 Lkoader Termination

Tne lcader terminates upon encecuntering an error,
encountering a cnange of task or end of module record or upon
reacning EOF. '

If thne loader encounters a chnange of task, tne load file
is left open and positiconed to the first record cf the new
task. Tne lcader terminates with a return code ¢f 0 in tne
data blocck passed tec tne Kernel via SVZ3., Key supervisor
lccks are reset te allew nermal oparation of tna 1/0
suparvisor,

14



HEP OPERATING SYSTEM

In all oether cases, tne file is closed, and a ncn-zere
return code is supplied. Table 2.6 describes these ccdes.

CODE MEANING

Xrio! I/0 error, reading past EOF or‘file not found.
X'20! Unrecognized reccrd type.

X'30° End of module record reachned.

Xruo! Program memory overflow,

Xty Register memcry overflow,

Xry2t Censtant memory overflow.

Xrys3e Data memory overflow,.

Table 2.6 - LOADER ERROR CODES

15



HEP OPERATING SYSTEM

2.3 1/0 3Services

User 1/0 requests are handled by the corresponding
supervisor process via SVC calls. When a user process executes an
SVC instruction the task 1is made dormant, and a supervisor
process 1is activated. In general, the supervisor will reactivate
the wuser immediately after validating and copying the user's
parameter block. This allows all of the processes in that task to
proceed except for the process which actually issued the SVC
instruction. When the supervisor has finished processing the SVC
it will re-create the user process at the instruction location
following the SVC, and it will proceed from that point. The
exceptions to this are SVC 7 (Stop 3SVC) and 8 (Pause SVC), which
are not reactivated. In the case of Stop the task will not be
activated wuntil after a KILL instruction has been issued by the
Supervisor, and in the case of Pause, the activate will be issued
by the Kernel when, and if the operator sends a Resume message
from the system console.

2.3.1 SVC's

The services which the I/0 Supervisor can perform for
the user are the following:

SVC 0 - OPENLU -~ Allocate and open a disk file at a
specified logical unit.

SVC 1 - CLOSELU - Close, rename or delete a disk file on
a sprecified logical unit.

100}
<
O

n
i

BUFFERIN - Read a record.
SVC 3 -~ BUFFEROUT - Write a record.
SVC 4 - BACKSPACE - Backspace one record.

SVC 5 - REWIND - Reposition a disk file to the first
record,

SVC 6 - ENDFILE - Write END OF FILE, close a file.

SVC 7 - STOP - Cancel the usor task and print a message
on the system console.

SVC 8 - PAUSE - Suspend the user task, and print a
message on tha system console.

16



*SvC 10

SVC 11

SVC 12

Refer
Formats.

HEP OPERATING SYSTEM

INQUIRE - Inquire regarding the OPEN/CLOSE status
of an LU. If open, return the record length and
options word.

GETENV - Acquire a supervisor LU buffer. *May be
executed by CONTROL CARD PROCESSOR only.

LOGON - Logon to FILE MANAGER using the user ID
supplied.

GETCORE - Returns the address of the first word
above thes user's Data Memory.

to Figure A (next page) for Parameter Block

17

T



HEP OPERATING SYSTEM

- Requested Access Privilege
- Public Access Privilege

- Owners Access Privilege
History

- Disposition

- I/0 Direction

- Buffers

QTII@mMoOOIT =
|

OPENLU SVC 0/CLONSELY SVC 1
STATUS [ LUND RECLEN _(WARDSY
A~ VOLUME 1D £ FILENAME
~_ G | F | E D | ¢ | B | A

BUFFERTIY SVC 2/BUFFERNAUT SVC 3

STATUS | LUNO 0
LENGTH (WORDS) 4 BUFFER START
0

BACKSPACE SVC 4/REWIND SVC 5/ENDFILE SVC 6

STATUS | LUNO 0
0
n
STOP SVC 7/PAUSE SVC 8
STATUS | 0 0
TEXT LENGTY (WORDS) T TEXT
0

o INQUIRE SVC 9

STATOUS | LUNO_ T RECLEM (RETURNED) |
. D

< UG T T Ty Ty T3y [ay

RECLEMT and A-G fields interprated as with OPEN and CLOSE,

returned 1f LUJ is OPEN.

GETENV SVC 10%

4]

STATYS

. |

-
USE:

bt e e e o ———. —

L ARTCORE SYC 2

[ RS ——
et e e eme ks ey gt m——

¢~ _(I5ERNTAP RETUR'IED)

N U UG . ———ar (_)

st g

igure A - HEP 3VC Parameter Block Formats

1R



HEP OPERATING SYSTEM

In the case of all SVC's , the user's indexed register
number one (R1:I) is assumed to be a pointer to the parameter
block. If R1 does not point to a valid user Data Memory.
address the result will be an abnormal termination (ABTERM)
(see Section 2.4 - ERROR HANDLER for a description of
ABTERM). Other errors associated with SVC's which will result
in Abnormal Termination are issuing an illegal SVC number,
and invalid text pointer in a STOP SVC. All other errors will
be reflected in the status field of the SVC parameter block.
Normal return status 1is zero, anything else indicates some
abnormal condition.

Traps which result in the <creation of a Supervisor
process can be caused by a user process issuing a supervisor
call (SVC) or by the detection of an error condition. These
traps are received by the Kernel, which examines the PSW to
determine which type of trap it is. It then creates a process
in the appropriate supervisor task to process the trap. Error
traps are processed by the User Error Handler, and SVC traps
are processed by the I/0 Supervisor.

When a supervisor process 1is created it will have
control of a set of ten global registers which are shared by
the Xernel and all suparvisors in that task. In order to
avoid conflicts only one supervisor at a time is allowed
access to these registers. No other supervisor processes will
be created until these registers have been released, and once
they have been released a supervisor may not attempt to seize
them again.

There also exists a similar job-wide set of common Data
Memory which is similarly seized and freed by the supervisors
in 2ach task.

When the 1/0 supervisor is awakened it will already have
control of the global registers. Its first act is to seize
the global Data Memory for that job. It will not proceed
until it has sugcessfully acquired this Data Memory. Having
acquired an operating cenvironment it will than copy the SVC
parameter block from user space and examine it. After
verifying that the wuser has 1issued a wvalid SVC and the
parameter block which 1is pointed to by the user's indexed
register one (R1:I) 1is correct, the I/0 supervisor will
ra-activate the user task, for all but STOP and PAUSE SVC's.
This allows the wuser task to proceed with as short an
interruption as possible. For those 3VC's which require 1/0
Buffers the supervisor will then acquire one, and then will
acquire a set of temporary local registers. Having acquired a

19



HEP OPERATING SYSTEM

working environment where necessary thes supervisor can now
release the locks on the global Data Memory and registers and
proceed with the processing of the SVC. From this point on
tha supervisor is completely re-entrant and, with the
exception of multiple concurrent I/0 to the same logical
unit, «can operate completely in parallel with any number of
I/0 supervisor processes, in any number of tasks. The local
register environment consists of a set of four registers
obtained from a pool. The Data Memory environment (LU
environment) 1is 96 words in length. Figure B is a diagram of
an LU environment.

OPENLU - SVC O

OPEN SVC acquires an LU environment. If no buffer is
available it will return an error status to the user. An
LU environment 1is made available by the issuing of a
GETENV SVC (SVC 10) by the Control Card Processor. Once
an LU e2nvironment is seized its location is recorded in
the2 LUTABLE, a job-wide table of open LU's. Entries in
this table indicate that the LU in question is either
1) not open, 2) in wuse, or 3) available for use. The
LUTABLE entry 1is marked in use. OPEN LU builds an open
message from the information in the SVC parameter block,
whicn it sends to the file manager. If the open is
unsuccessful thz LU environment is returned, the LUTABLE
entry marked not open, and an error status is returned to
the user. If the open succeeds, OPENLU will check the I/0
direction field of the options word. If the direction
specified 1is forward, the first record of the file will
be read. If append is specified the last record will be
read from the file and the position pointer set to the
end of the last logical record. Even if a file is empty
(i.», contains no records as yet) there will always be
one physical record in it, and the end of file pointer
will point to the beginning of that record.

The contents of the options word will be saved in
the LU environment to be referred to by successive I/0
requests. The LUTABLE entry will be marked available, and
the user process will be created at one past the PC of
the SVC instruction. If at any time during the processing
of this SVC an error condition 1is detected, the LU
environment will be returned, the LUTABLE marked
unopen=2d, and an error status recturnad to thes user.
Figure C shows the format of the open message to the file
manager, '

20



Nord

Word 54
65
65
67
63
69

Aord 95

HEP OPERATING SYSTEM

0 63
FILE SYSTEM .
MESSAGE HEADER
RECORD
HEADER

DATA BUFFER

/\/

62 WORDS IN LENGTH

COPY OF
SVC PARAMETER BLOCK

" TO PARAMETER BLOCK IN USER DATA MEMORY

USER P34

I/0 SUPERVISOR

TEMPORARY STORAGE

/\/

27 WORDS IN LENGTH

Figure B - HEP T/0 SUPERVISOR LU ENVIRONMENT

FILE MANAGER MS3GCODE = - LOGON
- OPEN
- CLOSJE
READ
~ WRITE

- OBTATIN

NE=ZWwhN = O
!

21



Word

‘dord

Hord

—

QWO L - Q

why - O

o Jl IO

Zw N — O

HEP OPERATING SYSTEM

n b2 _
MSG
CODE ISTATUS UID MESSAGE
5 F | E D | ¢ B | A HEADER
THIS ADR PREYV ADR RECORD
NEXT ADR UFD1 | UFD2 HEADER
LEN.FILENAME]
DATA
BUFFER
RECSIZE | ACPRIV | EOF WORD |FILE LENGTH
‘FILENAME (BYTE SWAPPED)
Figure C - OPEN/CLOSE FILE SYSTEM MESSAGE BLOCK
0 63
NSG ‘ - 1
CODE_ ISTATUS uID MESSAGE
5 F|_E D [ C [ B T A HEADER
THIS ADR PREV ADR RECORD
TEXT ADR UFD1 | UFD2 HEADER
DATA ?
DATA
) , BUFFER

Figure D - READ/WRITE/OBTAIN FILE SYSTEM MESSAGE BLOCK

N 53
156
~ODE ISTATUS UID (RETURNED) . MESSAGE
. { HEADER
___________ USER ID (12 BYTES) RECORD
— HEADER

Figur2 E - LOGOH FILE SYSTEYM YMESSAGE

22



HEP OPERATING SYSTEM

CLOSELU - SVC 1

CLOSE SVC acquires an LU environment from the-
LUTABLE. 1If the entry in the LUTABLE indicates that the
file 1is not open error status will be returned to the
user. After it determines that the LU is open, CLOSE SVC
will compare the options word which has been saved from
the open with the options word sent in the CLOSE SVC
parameter block. Changes indicated will be copied into
the close message. If the file has been opened with write
access the current record will be written and the EOF
pointer will be updated. If the rename bit in the ACCPRIV
field 1is on, and a file name is provided, this name will
be copied' (byte swapped for the PDP-11) into the message
block. Finally a CLOSE message will be sent to the file
manager. The LU environment 1is then returned and the
LUTABLE entry marked not open. Status returned by the
file system 1s returned in the SVC parameter block. The
user process 1s re-created and the local registers are
returned by the supervisor. Figure C shows the format of
the close message to the file manager.

BUFFERIN - SVC 2/BUFFEROUT - SVC 3

BUFFERIN and BUFFEROUT perform the read and write
operations respectively to disk files. Except for the
direction of the 1I/0 they are essentially identical.
BUFFERIN/OUT acquires an LU environment from the LUTABLE.
If the LUTABLE indicates the LU is not open an error
status 1is returned to the user. EOF condition is checked
for both operations, and if true, EOF status is returned,
except where extend and write access has been granted on
the open of tha file. Data 1is copiecd to/from the LU
Buffer and user Data Memory, one word at a time until the
logical record length specified has been consumed. When a
logical record crosses thes boundary of a physical record
a physical I1/0 is performed. In the case of BUFFERIN this
is Jjust a read. In the case of BUFFEROUT, if the current
physical record 1is not the last record of the file the
current record is written and the next record read into
the buffer. If the current record is the last record in
the file an OBTAIN message is sent to the file system
processor to acquire the address of the next record, and
have it assigned to this file. This address is copied
into the next address field of the current record header,
and the record is written.

23



HEP OPERATING SYSTEM

Upon completion of the I/0 the LUTABLE entry is
marked available, status 1is placed in the parameter
block, the user process is recreated, and the supervisor
returns the local registers. Figure D shows the format of
the Read, Write and Obtain messages to the file manager.

BACKSPACE - SVC 4/REWIND - SVC 5

BACKSPACE and REWIND each acquire an LU Buffer. As
with BUFFERIN and BUFFEROUT, if the LUTABLE indicates the
LU is not open error status is returned.

BACKSPACE/REWIND must check the current access
privileges. If write access 1is 1included, the current
record must be written, in case it has been modified. For
BACKSPACE the current position pointer is decremented by
the 1logical record 1length. If it is decremented beyond
the Dbeginning of the current 1logical record, as many
reads in reverse direction as necessary are performed
until the position pointer is in the current buffer.

For REWIND the operation consists of simply reading
the first record of .the file and setting the position
pointer at the beginning.

Error status could be returned if an I/0 error were
to occur of if an attempt is made to BACKSPACE beyond the
beginning of the file.

Status is returned in the SVC parameter block. The
LU Buffer is returned, the LUTABLE entry marked
available, the user process recreated and the supervisor
local registers returned,

ENDFILE - SVC 6

ENDFILE, in this implementation, has the effect of a
call to CLOSELU with the default options specified.

STOP - SVC 7

STOP does not acquire an LU Buffer, it does not
obtain a 1local register environment and the user is not
immediately re-activated. When the I/0 supervisor is
enteread for a STOP SVC the user has alrecady been
de-activated as a result of 1issuing the SVC. The
supervisor verifies the address of the message Lext in
the parameter block. It issuzs a KILL followad by an

24



HEP OPERATING SYSTEM

ACTivate instruction against the wuser task to make
certain that the wuser task has no outstanding SFU
requasts. Tt then issues a call to CLOSEALL, which closes
all open LU's. Finally, the supervisor issuess a STOP SVC
to the Kernel with a pointer to the message passed by the
User. The STOP SVC to the Kernel is not the same as a
user STOP SVC, a supervisor STCP request is SVC O.

PAUSE - SVC 8

As with STOP, PAUSE does not acquire an LU Buffer,
nor a local register environment, and the user is not
re-activated. The wuser 1is already dormant, therefore
PAUSE simply verifies the address of the text passed by
the wuser in the parameter block, and issuss a PAUSE SVC
to the Kernel with a pointer to the same text string. A
supervisor PAUSE request is SVC 1.

INQUIRE - SVC 9

INQUIRE acquires an LU Buffer. If it is found to be
a new buffer, 1i.e. the LU in question is not open, the
supervisor returns a  non-zero status. If the buffer is
not a new buffer then the LU has already been opened, and
the supervisor returns zero status, and the record length
and options word in the parameter block. The purpose of
INQUIRE is to allow a user to ask the supervisor if an LU
is open before attempting to do I/0, open or close it.
The LU could have been opened by the Control Card
Processor, or by another task within its own job (in a
multi-PEM environment).

GETENV - SVC 10

4 GETENVIRONMENT call 1is executable only by the
Control Card Processor. For any other user an illegal SVC
ABTERM will reswlt. GET ENV does not require a local
register environment, and does not obtain an LU Buffer,
The supervisor simply decrements the user's Data Memory

limit by the length of an LU environment and rewrites its
TSW.

LOGON - 3VC 11

LOGON acquires an LUBUFFER and a set of local
registers. Even though it is not associated with an LU,
LOGON requires a Data Memory work area. Tn order to
maintain the re-entrant nature of tha I/0 supervisor it



HEP OPERATING SYSTEM

must acquire this environment for the LUTABLE. For this
reason there must be at 1least one LU environment
available at the time a LOGON SVC is issued. The Control
Card Processor 1issues a GETENV SVC (SVC 10) before it
issues a LOGON. If a user finds it necessary to LOGON
using a wuser ID other than the one used to open the
jobfile, he must ensure that a buffer is available.

LOGON copies the twelve character user ID specified
in the SVC parameter block, and issuss a LOGON message to
the file manager. If the file manager accepts this ID it
will return the UIC code. This code will be used for all
successive opens from this task until a new user ID is
supplied.. Files already opened under another UIC will
remain under that UIC. If the LOGON is rejected by the
file manager the error status will be copied into the SVC
parameter block. The LU Buffer and 1local register
environment are returned, and the user re-created.
Figure E shows the format for a LOGON message to the file
manager.,

GETCORE - 3SVC 12

GETCORE does not require a local register
environment or LU Buffer. It does not return status. If
the pointer to the SVC parameter block contained in the
user's indexed register one (R1:I) is not a valid address
th2 supervisor will issue -an ABTERYM., Otherwise, the
address of one greater than the last word of user Data
Memory will be returnad in the SVC parameter block.

26



HEP OPERATING SYSTEM

2.4 EZrror Handler

Hardware~-detected error conditions resulft in traps to a
set of low-core addresses. All such errors in user tasks are
processed by the User Error Handler, which is a Supervisor
process running in the corresponding task (User Task Number
+8). When the hardware detects an error condition the task is
made dormant. The first act of the supervisor is to issus a
KILL instruction followed by an ACTivate on the user task.
This will insure that all processes 1in the task are
terminatad. Then the supervisor will call an I/0 Supervisor
CLOSEALL to insure tha%t all o¢penad files are closed. The
Superviscr then builds an abnormal termination (ABTERY)
message which consists of three words containing:

a) Trap P3W;
b) User PSW at time of error;
¢) Instruection generating the trap.

This message 1is sent to the Kernel, and is normally printed
on the System Console by the Batch Monitor.

When a Cancel Task message is sent from the Host, the
Kern=2l creates a process in the user task with all bits on
except the PS field. It is then treated as any other ABTERM.

Wnhnen the Kernel raceives a Suspend Task message from the
Host, it creates a process in the user task at location zero,
with all UTM bits on. This is a spzcial case in which the
Supervisor simply vectors the PSW which trapped to the quit
at instruection zeroc, and issues a Pause request maessage with
no text to the Kernel. '

The User Error Handler shares the global supervisor
registers and data memory with the I/0 Supervisor. It must
therefore observe the same semaphoring conventions on those
resources in order to avoid conflicts.

27



HEP OPERATING SYSTEM

SYSTEM SOFTWARE
3.1 Control Card Processor Overview

HEP Control Card Processor (CCP) is a system program which
processes certain records in the wuser job file. CCP is
responsible for allocating and opening all disk files for the
user Partition as a result of submitting a job. After processing
the records in the Job File, CCP terminates, leaving all files
open, with the user load file assigned to LU zero.

If CCP encounters an error in the Job File, such as an
illegal command or not being able to open a file with the
requaested privileges, all open files will be closed, and the Job
will be terminated.

A1l CCP commands must begin in column one and unless
otherwise stated, must be followed by at 1least one blank.
Commands recognized by CCP are:-

JOB Job Specification Record
ASN - File Allocation and Assignment Record

DYP - Conditional Dump Record

RUH - Run Record - Specifies Load File and and End of Job
Step

// - End of Job Record - Terminates All Job Steps.

'¥' - Comment - Any Record Beginning With an '¥*' is

Treated as a Comment



HEP OPERATING SYSTE!

.1 Control Card Processor Command Syntax

The following commands are accepted by CCP. Even though

othar commands may be recognized by the READER, by the time

receives access to the Job File they should be commented

3.1.1.1 Job Record Syntax
JOB<Jobname Followed by Job Environment Requirements?
This record 1is copied into Logfile with no further

processing required by CCP. The first record in a Jobfile

must be a Job Record.

3.1.1.2 Assign Command Syntax

ASH LU,FILENAME[,Logical Reclen, Accpriv, Owners Accpriv,
Public Accpriv, I/0 Direction, File
History, File Disposition, Buffer Count]

[1 - Indicates optional parameters, not
order dependent.

Example: ASN 5,CARDFILE,REC:80,ER,F,OLD,
KEEP:DELETE

Accpriv - A single letter for each access privilege, may
be specified in any order.

Prefix 0 -~ Indicates Owners Privileges
Prefix P - Indicates Public Privilges

No Prefix - Privileges For This Open

R - Read Accass

W - Write Access

X - Extend Access

E - Exclusive Access

S - Semaphoraed Access -
(Implemented in HSFS Oaly)

D - Delete/Rename Access



HEP OPERATING SYSTEM

If file 1is being newly created, O and P Accprivs become
the permanent attributes of the file.

If file already exists, O and P Accprivs are ignored.

DEFAULT -

(No Accpriv Specified)
For this open - R - read access
For owner if creating file - WXED
Write, Extend, Exclusive, Delete/Rename
For public if creating file - No privileges

I/0 Direction - A Single Letter

F - Forward

B - Backward

A - Append

DEFAULT is F

File History

USE

NEW

OLD
CREATE
DEFAULT

- Open at beginning of file, do I/0 in
forward direction

Open at end of file, do 1/0 in forward
direction (implemented in HSFS only).

1

Open at end of file, do I/0 in forward
direction (X - Extend Access must be
allowed for appending).

Forward I/O..

Use old file if present, else areate new
file.

Create new file, delete old file |if
present.

Use old file, fail if not present.
Cr=ate new file, fail if old file present.

(Mo history specified at all) is USE.



HEP OPERATING SYSTE™

File Disposition

DELETE - Delete on any close.
KEEP - Keep on any close.
DELETE:KEEP - Delete on normal (user) close -

Retain on abnormal (system) close.

KEEP:DELETE - Xeep on normal (user) close -
Delete on abnormal (system) close
DEFAULT - (No disposition specified) is:

If old file used, KEEP on any close -
If newly created file, DELETE on any
close,

Logical Reclen -

REC:n or n

Where n = Desired 1logical record 1length in HEP
words. :

If file 1is being created, n becomes the default
RECLEN for the file and if n = 0, or is not
specified, a word file is assumed.

If file already exists -
If n = 0 it is treated as a word file for this open.

If n 1is not specified the default RECLEN for the
file is used.



HEZP OPERATING SYSTEM

Buffer Count -

Number of buffers allocated in HEP Data Memory for
this open of this file (implemented in HSFS only).

BUF:m

‘Where m - Number of Buffers Desired.

DEFAULT is 2 Buffers.

(NOTE: 1In standard file systém implementations

Buffer Count defaults to one, even if BUF is
specified in a Control Card.)

3.17.1.3 Conditional Dump Command Syntax
DMP[ALWAYSI[ (MEMORY TYPES)]
ALWAYS - Specifies dump after any termination.

Default is dump after abnormal
termination.

(MEMORY TYPES) - P -~ Program
R - Register
C - Constant
D - Data

Memory types to be dumped, enclosed in
parenthesis.

Default 1is (RD) Register and Data
Memory dump.

Memory Lype characters may be in any
order, and should not be separated by
any other characters.

Example:

No DMP Record

i

No dump will be taken.

DMP ALWAYS (P) After any termination, Program

Memory is dumped.

DMP (CRD) - After abterm, Constant, Register
and Data Mamory are dumped.
DP - After abterm, Registaer and Data

Memory are dumpad.



HEZP OPERATING SYSTEM

3.17.17.4 Run Command Syntax
RUNKLOAD FILENAME>[OPTIONAL RUN PARAMETERS]
<LOAD FILENAME> - Name of user task to be run.

[OPTIONAL RUN PARAMETERS] - Copied as ASCII text, 1left
justified into user Data
Memory, beginning at word 0
relative to user Data Memory
base.

If optional run parameters are
included, the first ten words
of wuser Data Memory will be
initialized to zero. Then the
text string will be copied,
beginning at byta 0, and
running to the end of the
input line.

Example:

RUMN MYFILE.TSK - Load and run MYFILE,TSK, no
run parameters,

RUN HEPTASK A B C D E F - Copy the string 'A BCDE F!
into user Data Memory
beginning at wori zero and
blank filled to the tha end of

the input 1lin=s. Load and run
HEPTASK.

3.1.1.5 End of Job Record Syntax
// -or- End of File on Jobfile.
Causes termination of a HEP job. Any open files are
closed.,
3.1.1.6 Comment Record

Any ‘string beginning with an asterisk ('*¥') in column -
aon-.,



HEP OPERATING SYSTEM

Tne HEP Cc¢ntrcl Card Proccessor (CCP) is implemented in suech a way
as te make It very easy fer a user to add features te it, or if
desired, write a new one, Tne following describes tne Runtime
tnvirvcenment expected by tne CCP,

3.1.2 Runtime Envircnment

CCP runs in tne User Partition just prior to tne executicn
of a User Task. In tne case ¢f a multi-task jeb, CCP is lcaded
in tne first partition large enougn t¢ nold it.

CCP Run Parameters

In User Data Memcry beginning with word 0 is tne
follewing informaticn:

User ID Code - 12 Bytes, ASCII
Job Number - 2 Bytes, Binary

Jobfile Rezcerd Number - 2 Bytes, Binary

Jaon REC #

REC #<0 indicates a dump nas been taken.
Tne following filenaming cenventicne apply to CCP:

Jnnnn . HEP

Jobfile Name

Lnnnn . HEP

Logfile Name

Dannn ,HEP

H

Dumpfile Name

Prinnn.HEP Dump Fermatter Print Filename

"

Vinere '"nnnn' = Job Number

All cf tne ahcve filernames c¢an be
fabricated using tne Job Numher pagsed to CCP as a
run parameter.



HEP OPERATING SYSTEM

Jobfile Rececrd Number (word 1, 4th quarter).
iz tne number of tne last reccrd cf tne Jobfile
read by CCP fer the current jcb.

IF REC #=z0 tnen tnis is the first step of
tnis jeb. Begin processing from
the first record of Jobfile.

IF REC #>0 then this is not tne first step of
tnis job. Begin processing from
REC # + 1 of Jobfile.

IF REC #<0 i.e. the nigh bit of tnis field is

set, then tnis is not tne first
step ¢f tnis job, and furtnermcre,
a dump nas been taken of tne HEP
memgry.
CCP must Open tne Dumpfile at LU1,
Open the Dump print file at LUZ,
and Open ¢tne Dump Formatter Locad
Module (DMFMT.HLL) at LUO.

Wnen CCP terminates normally, it passed a
binary stop c¢cde via SVC 7 to tne Baten Monitor,
cf tne form;

0 7 8 63
[ pec ] REC # |
DeC = Dump Ccde - Applies only to tnis Job Step.
Dump Ccde Conditions - Bits, 2, 3
No Dump 0 0 0
16
Dump or. Abterm 0 1 1
16
Dump on Hermal Term 1 0 2
16
Dump Always 1 1 3
16




HEP OPERATING SYSTEM

Memory Type to be Dumped - Bits 4,5,6,7

Program Memory 1000 3
: 16

Register Memory ' 0100 Y
16

Constant Memory 0010 2
16

Data Memory 00921 1
16

Memory Dumped will be the inclusive Or of these
bits, e.g.:

X'"MF' - Dump all memory on abterm.

X'35' -~ Dump Register and Data Memory on
any termination.

X'00'" -~ No dump.
REC # = Number of jobfile record last processed.

If end of file on the jobfile has been
encountered the numbar returned is a zero.



HEP OPERATING SYSTEM

In processing LU assignment records the CCP must perform the
following sequence of Supervisor Calls: '

1) LOGON SVC 11 - Log on wusing the usar ID in Data Memory bytes 0 -
11.
This must be done once at the beginning of
execution, before any files, including the Jobfile
are opened,

2) INQUIRE SVC 9 - Inquire regarding the status of an LU. If LU is
already opened, SVC 9 will return 1its current
default record 1length, and options. If an LU is
open’ an attempt to open it again, whether for the
same file or not, will result in an error.

3) GETENV 3VC 10 - Get an LU buffer environment. This must be done
prior to opening a file. SVC 10 is allowed only to
CCP. Once gotten, an LU buffer will not be
returned. If files are opened, and subsequently
closed before ancther is opened, an extra SVC 10 is
not required. The number of SVC 10's issued must be
greater than or equal to the number of LU's open at
any time. SVC 10 will not return a status, if it
fails, the next open will be unsuccessful.

4) DPENLU SVC O - Open a file at the specified logical unit.

If the program to be run is a FORTRAN program, or an Assembly
Lanzuage program which uses the FORTRAN 1/0 Formatter, it is necessary
Ehat the OPEN and any Tnput or Output be donz via calls to the I/0
Formatter, as it maintains internal buffars for the opened Logical

Units. Refer to HEPFMT documentation for a complete description of 1/0
Formatter routines. :

10



HEP OPERATING SYSTEM

3.2 HEP Dump Formatter

The HEP Dump Formatter is a system prcgram which runs in a
user partition immediately follcwing the execution of a job for
which a memcry dump is taken. Thz purpose of the Dump Formatter
is tc translate the binary dump file into a printable and more
legible format. The Dump Formatter is lcaded by the Contrcl Card
Prccesscr at ths instruction of the Batch Monitor, immediately
after the dump 1is taken. In the case of a multi-step job, if a
dump is taken it will be formatted before the next step in the
job is executed.

A typical dump will contain the UIC (User ID Code), jcb
number, jobfile reccrd number, Jjob name, processor and task
nunbers for each task in the user job, user and supervisor TSW's
fcr each task, system table entries, user and supervisor PSW's
and the contents ¢f the entire partition for each memory type
specified.

A user may request that a dump be taken either after an
Abncrmal Termination (ABTERM), or after any termination of his
jeb. He may alsc specify which memcry types are to be dumped.
This is acccmplished by the DMP command in the jobfile. Depending
cn the infcrmation in the DMP command, the Batch Monitor
initiates a dump upon receiving a jcb complete message from the
Kernsl. This binary dump will be cutput tc a newly created file
with a name of 'Dnnnn.HEP', where 'nnnn' is the job number. This
is a vrecord file with a logical record length of 129 words. It
will ccntain one header record follocwnrd by one task record and
cne PSW record fcr each task. Then will ccme the memory dump
reccrds for the memcry types specified, in the following order:
Data Memcry, then Register Memcry, Cocnstant Memory and Program
Memcory for the first task, follcwed by the Register, Constant and
Prcgram Memcry for the second task, and so on. Figure A contains
a diagram cf the dump file record formats.

11



Nord 0
1

2

3

Word 0
1

2

3

4

5

6

7

8

9

10

11

Adord N
1

o)

65

123

Word ]
1

2

127

123

HEP OPERATING SYSTEM

UIC (12 BYTES)

-—— — = — == |JoR NUMBER|RECORD NUMBER
108 NAME
\—%

1 3449
5 T
USER TSW
SUPERVISOR TSW
TASK'S SYSTEM
TABLE ENTRIES
, 0 l 3ulO

ALL USER
PSW'S

ALL SUPERVISOR

31

ME} 10

TYPE

BLOCK START ADDRESS

63 DQ/DATA FAIRS

/\/

UHYSED

Figure A - DUMPFILE RECORD FOQRMATS
Logical Record Length = 129 Words

12

HEADER
RECORD

TASK

RECORD
(1 PER
TASK)

PSW

RECORD
(1 PER
TASK)

DATA
RECORDS



HEP OPERATING SYSTEM

Figure A - DUMPFILE RECORD FORMATS
Logical Record Length = 129 Words
The follcwing describes the processing necessary fer each record

type.

Header Record - Contains UIC, job number, jcb: file record

Task Records

P3N Records

Data Reccrds

number and job name.

(1 per task) - Contain processor number, task
number, wuser TSW, supervisor TSW and system
table entries. The system table entries give
the starting address and length ¢f the Data,
Register, Constant and Prcgram Memory
partiticns, and the maximum number o¢f prccesses
allowed for the task. The user TSW contains the
base and limit addresses for the user's memory
partiticns. Using this information a table of
superviscr base, wuser base, user 1limit and
supervisor 1limit 1is set wup for each memcry
type. This table will be referred to in
processing the Data Reccrds.

(1 per task) - Contain all of the PS%W's in the
PEM at the time of the dump. The first 64 are
user PSW's; the 1last 54 are supervisors. The
Dump Formatter scans thrcugh this record
comparing the PT field with the PT specified in
the Task Record. Thcocse PSW's which belong to
the task in question are ocutput tc the
printfile.

Using the information in the first two words,
the absclute address of each word in the record
is calculated. This address is compared with
ths base and 1limit Table entries for the
appropriate memcry type to determine whether it
is a superviscr or user, and within the
partiticn. If th=2 end ¢f tha memcry partition
falls within a record buffer, the buffer is
filled with as many words as necassary beyond
th2 end of thes partiticn.

In a Data Record the word immediately
prcceeding a memcry is its register descriptor.
Th=2 follcwing prceessing is necassary for each
memcry type: (see Figure B)

13



HEP OPERATING SYSTEM

Register : Empty/full bit and reserved bits are
checked, and ‘ET/FY and 'R' are
printed,. The number representing data
quality is printed, and parity is
calculated. If the parity bit in the DQ
is not correct an '¥' is printed.

Data : Empty/full bit 1is checked, and 'E'/'F'
is printed. The data quality number is
printed and parity is checked. If parity
is incorrect an '¥' is printed. ‘

Constant : Parity 'is calculated. If the parity bit
is incorrect an '¥' is printed.

Program : The Register Descriptor field is ignored
for Program Memory.,

[ ]

Finally, the address, memcry type, supervisor/user's status,
register descriptor field and memcry ccontents are printed, four
words to a line. If the superviscr/user's status or memory type
is different from the previgus word, the current 1line 1is
terminated, and several lines skipped to dilineate the change. If
mcre than twe 1lines in a row would be identical except for the
address, the message '¥¥¥% THROUGH ¥*¥¥¥' is printed, and all but
tha first and last lines are left unprinted.

59 60 H1 62 H3

J TPTEIR T 1 1}
=
P = Parity Bit
E = Empty Bit = 1 - Empty, = 0 - Full
R = Reserved Bit = 1 - Reserved

DQ

Bits 61=63 Represent Data Quality

Register Descriptor Word Format
Figure B

14



HEP OPERATING SYSTEM

3.4.2 HEP I/0 Formatter

The HEP TI/0 Formatter 1is a set of system subroutines
which is included in the user Load Module. It provides an
interface between the FORTRAN program and the I/0 Supervisor.
The I/0 Formatter is responsible for performing formatted and
unformatted /0, opening and closing logical wunits,
backspace, rewind and endfile, and issuing STOP and PAUSE
requests. It is primarily record and logical unit oriented.
If a user wishes to write an Assembly Language program which
utilizes the 1I/0 Formatter, it must be done in the same
manner as a FORTRAN program. The following describes the
interface between the user program (FORTRAN or Assembler) and
the I/0 Formatter.

OPEN and CLO3E are called using the standard HEP FORTRAN
calling sequence, with parameters as follows:

CALL OPEN (LU #, Filename, Logical Record Length,
Options Word)

CALL CLOSE (LU #, filename, Logical Record Length,
Options Word)

Parameter blocks for all oth=2r I/0 Formatter routines
nave spacial formats (Sese Figure B). In all cases, as with
any FORTRAN subroutine, indexed register zero (R0O:T) contains
a pointer to the user's Data Memory Base, indexed register
one (R1:I), a pointer to the parameter block, and the low 32
bits of indexed register two (R2:1) contain the return PC.
The word immediately following the parameter block must
contain a -1, This is beeausez OPEN and CLOSE may be called
with a variable number of parameters, and the end of a
parameter block is designated by a -1. '



HEP OPERATING

FAREAD/FAWRITE

SYSTEM

4 _FORMAT

LU NUMBER

END=RETURN PC

ERR=RETURN PC

0

FSIOLST

0 LU NUMBER
LENGTH -1(ARRAY ELEMENTS) 1 1/0 ITEM
0

F4STOPI -
0 i Ll NUMBER
0
)

FIBSPAC/FSRWIND/FIWEOR

0 LU NUMBER
Q
0
FASTOP/FHPAUSE
TEXT LENGTH (HEP WORDS)| 0

TEXT

FABUFTN/FABUFQU

0 LY MUMBER
“NDzRETURN PC ERR=RETURM PC
T ARRAY LENGTH (HEP {ORDS)
Upon CALL
RO = T User's Data Memory Base
R1 = A Parameter Block
R2 = Raturn P3Y

Figure B
HEP FORTRAN -~ 1/0 Formatter Interface
Parameter Block Formats

Revision

N

3/30/81

1




HEP OPERATING SYSTEM

I/0 Formatter Entry Points
(Refer to Figure B for parameter block formats.)

OPEN/CLOSE

OPEN acquires an LU Buffer, -and 1issues an
SvVC 0, to open the file specified, at the LU
specified. If a record length is not specified (i.e.
the third parameter negative) the default record
length for the file 1is used. If record length is
zero the file is treated as a word file. Any other
record length supplied 1is considered the record
length for this open. WARNING: Attempts at formatted
I/0 on a word file may have unpredictable side
effects. The I/0 Formatter is record oriented.

CLOSE frees the LU Buffer, and issues an SVC 1
to close the file specified. If a filename parameter
is specified it will attempt to rename the file, and
if record 1length or options word parameters are
included, these will also be copied into the SVC
parameter block. Close may be called with only an LU
number parameter if desired. '

A user may open and/or allocate a file by name,
and close or delete or rename a file using the= OPEN
andi CLOSE subroutines 1in the I1/0 Formatter. These
activities are accomplishad by means of the Options
Word parameter. This word is copied directly into
tha SVC parameter block by the subroutine. It is
divided 1into several one byte fields which have the
following meanings:

A - Requested Access Privileges For This Open
B - Public Access Privileges

C - Owners Access Privileges

D - History

E - Disposition

F'- T/0 Direction

G - Buffer Count



HEP OPERATING SYSTEM

Access Privileges - Fields A, B, and C

If the file 1is being created (open) the
privileges requested in these fields become part of
the permanent attributes of the file. On a close, if
the high bit of each field is set, these become the
new attributes of the file.

Bit Definitions

eeses..1 Read Access.

cessesl. Write Access - Update Records.
eeesste. Extend Access - Add Records. .
veesle.. Exclusive Access - No Other Concurrent

Opens Allowed.

eeset.... Semaphored Access - May Consume and
Fill Records,

veleese.. Rename/Delete Access.

T . Undafined.
1eveeee. Change Privileges.

¥ Semaphored access 1is unimplemented in the
standard file system. :

-

For field A, current access privileges, the
default privilege is read access only.

For field B, public access, the default is
no public access.

For field C, owner's access, the default is
read, write, axtend, eoxclusive and vrename
(02191111 ) access.



HEP OPERATING SYSTEM

File History - Field D

Determine whether to use an old file or create
a new file.

Values:

0-Use old file 1if present, else create new
file - this is the default.

1-Create new file, delete old file if present.
2-Use old file, fail if not present.

3-Crzate new file, fail if old file is present.

File Disposition - Field E

Specifies the disposition of the file upon
close. Entries in this field on open are kept until
the <close. If no entries are specified on close
those specified with the open will be used.

0-Keep old file, delete new file - default.
1-Delete file on close.
2-Retain file on close.

¥3-Retain file on system close (i.e. ABTERM),
delete on user close (normal termination).

¥4-Retain on user close, delete on system close.

¥%¥5_Ratain and rename file.
¥ These have meaning only on open.
¥%¥  vValid for close only.

In the case of a file opened several times the
last disposition specified (open or close) in
chronological order deotermines the file disposition
wihich will be usad,



"HEP OPERATING SYSTEM

I/0 Direction -~ Field F

Controls the initial positioning of the file,

and the direction for sequential accoss. This field
is ignored by close.

0-Forward - Open file positioned at  the
beginning of the first record, do 1I/0 in
forward direction - default.

1-Backward - Open file positioned at the
beginning of the last logical record, do T1/0
in reverse direction - this is unimplemented
in the standard file system.

2-Anpend - Open file positioned at the end of
the 1last 1logical record, do I/0 in forward
direction - (appending to a- file requires
extend privilege).

Buffer Count - Field G

Number of physical records to be held in I/0
Cache at any time. this feature is unimplemented in
the standard file system. All entries in this field
will be ignored by the I/0 supervisor.

RAREAD/FHWRITE

READ and WRITE seize the LU Buftfer for the LU
specified, and prepare it for I/0, marking it busy,
and setting wup the ERR=z and END= return addresses,
and the format pointer, if they are specified.,

FRTIOLST

IOLISTITE™ performs whatever processing 1is
necessary for the 1I/9 TItem (Scalar or Array)
specified. When the buffer is full (in the case of
WRITE) or empty (in the case of READ) it issues the
appropriate SVC,



HEP OPERATING SYSTEM

F3ISTNPI

STOPIO finishss processing of the format
statement if necessary, and marks the LU Buffer
available for another I1/0,.

FZBUFIN/F%BUFOU

BUFFERIN and BUFFEROQUT combine the actions of
READ/WRITE, IOLIST and STOPIO for unformatted I/0 to
(from) a single IO item (Scalar or Array). They
acquire an LU Buffer, marking it busy, issue the
SVC's required for the 1I/0 requested, and upon
completion return the LU Buffer and mark it
available.

FASTOP/F%PAUSE

STOP and PAUSE issue the appropriate SVC (7 for
Stop, 8 for Pause) with a pointer to the text
supplied in the parameter block.

FZBSPAC/FEZRWIND/FRWEQOF

BACKSPACE, REWIND and ENDFILE each acquire the
LU Buffer specified, and issue the appropriate SVC
(4, 5, or 5 respectively).

A typical call sequencs for a formatted Read cor Write
would consist of 1) a call to FBREAD (/F%WRITE), followed by
2) ocne or more calls to F%RIOLST, one call for each T/0 list
iten, and terminated with 3) a call to F%STOPT (se=
Example 1). An unformatted 1/0 operation could be
accomplished 1in the same manner, omitting the format pointer
in the parameter block for the FAREAD/FZWRITE call. A more
efficient method however is to issuz a single call to FABUFIN
or FARUFOU  (see Example 2). Thase result in a single
Call/Return sequence, 1instead of a minimum of three which
would be required if I/9 is done as with formatted 1/0,



HEP OPERATING SYSTEM

Exampla 1: The EORTRAN Statements
DIMENSION A(2), B(10)
READ (6, 1000, END=2000, ERR=3009) A,B,C
would generate the following series of subroutine calls:

1) A call to F%READ with a parameter block of

2 _LABEL 1000 A
A LABEL 2000 4 LABEL 3009
0 0

2) A call to F3IOLST for the Array A.

9) )
1 T A
0 0

A second call to F%IOLST for the Array B.

5

0o
2 A8
0 0

A final call to FAIOLST for the Scalar C.

0 6
0 rC
0 N

3) A call to F3STOPI to finish the READ and mark th= LU
available.

0
0
1

DO

Zxample 2:  The FORTRAN Statements
DIMENSTION A(S)
BUFFERIN (5, END=z2009, ERR=31009) A

would generate a  subroutine c¢all to FIEBUFTY with a
naramater block of:

v
[a} a

LABEL 20017 | LAREL 2070
A A




