
HEP PARALLEL FORTRAN

USER'S MANUAL

DENELCOR PUBLICATION 10002-00

DENELCOR" INC.
3115 EAST 40th AVENUE

DENVER, COLORADO 80205

NOT ICE

This manual describes the facilities provided by the Heterogeneous Element

Processor FORTRAN Compiler. It reflects with reasonable accuracy specifi­

cations in effect at the time the manual was written. Users are cautioned
-

the Denelcor reserves the right to make changes to these specifications

without notice. Denelcor a~sumes no liability for any dama$e resulting

from or caused by reliance on the information presented. This includes,

but is not limited to, typographical errors and the omission of any

information.

Comments regarding this manual or its contents should be directed to:

Corporate Communication Department, Denelcor, Inc., 3115 East 40th

Avenue, Denver, Colorado 80205.

."

CONTENTS

SECTION I FORTRAN SOURCE PROGRAM FORM

1. Introduction 1

1.1 Character Set 1

1.2 Source Statements 2

1.2.1 Statement Labels 2

1.2.2 Statements 2

1.2.3 Comments 3

1.2.4 Blank Lines 3

1.2.5 Source Statement Ordering 3

1.3 D in Column 1, Conditional Compilation 6

1.4 COpy Statement 6

SECTION II DATA

2.

2.1

2.2

2.2.1.

.2.2.2

2.2.2.1

2.2.2.2

2.3

2.4

2.4.1

2.4.2

2.4.3

2.4.4

2.4.5

2.4.6

2.4.7

Introduction

Identifiers

Variables

Simple Variable

Arrays

Data Types

Constants

Array Storage Allocation

Array References

Integer Constants

Real Constants

Double Precision ~onstants

Complex Constants

Logical Constants

Hollerith Constants

Hexadecimal Constants

i

7

7

7

8

8

9

9

10

11

11

11

13

14

14

14

16

SECTION III

3.

3.1

3.1.1

3.2

3.3

3.3.1

3.3.1.1

3.3.1.2

3.3.1.3

3.3.1.4

3.3.1.5

3.3.2

3.4

3.5

3.5.1

3.6

3.7

3.7.1

3.7.2

3.7.3

SECTION

4.

4.1

4.1.1

4.1.2

4.2

4.2.1

4.2.2

4.3

IV

CONTENTS (Continued)

SPECIFICATION STATEMENTS

Introduction

Array Dec1arators

Variable Dimensions

DIMENSION Statement

Type Declarations

Explicit Type Statements

INTEGER Statements

REAL Statement

DOUBLE PRECISION Statement

COMPLEX Statement

LOGICAL Statement

IMPLICIT Statement

COMMON Statement

EQUIVALENCE Statement

EQUIVALENCE and COMMON

EXTERNAL Statement

DATA Specifications

DATA Statement

CONSTANT Statement

BLOCK DATA Statement

EXPRESSIONS

17

11

18

19

19

19

20

20

21

21

21

2'2

23

26

, 28

29

30

30

32

32

Introduction 33a

Arithmetic Expressions 33

Operator Precedence 34

Evaluation of Mixed-Mode Expressions 35

Logical Expressions 37

Relations 37

Logical Operators 38

Summary of Operator Precedence 39

ii

SECTION V

5.

5.1

5.2

5.3

SECTION VI

6.

6.1

6.2

6.2.1

6.2.2

6.2.3

6.2.4

6.3

6.4

6.5

6.6

6.7

6.8

6.9

SECTION VII

7.

7.1

7.2

7.3

7.3 .. 1

7.3.2

7.4

7.4.1

7.4.2

CONTENTS (Continued)

ASSIGNMENT STATEMENTS

Introduction

Arithmetic Assignment Statement

~xed-Type Assignment

Logical Assignment Statement

CONTROL STATEMENTS

Introduction

Statement Numbers

GO TO Statements

Unconditional GO TO Statement

Computed GO TO Statement

Assigned GO TO Statement

ASSIGN Statement

Arithmetic IF Statement

Logical IF Statement

DO Statement

CONTINUE Statement

PAUSE Statement

STOP Statement

PURGE Statement

INPUT/OUTPUT

Introduction

Input/Output Lists

Input/Output Statement Parameters

Sequential Input/Output Statements

READ Statement

WRITE Statement

FORMAT Specifications

Numeric Fields

Scale Factors

iii

41

41

-41

43

44

44

44

44

45

45

46

46

47

48

50

50

51

51

52

52

53

54

54

55

56

56

58

SECTION VII (Continued)

7.4.3

7:4.4

7.4.5

7.4.6

7.4.7

7.4.8

7.4.9

7.4.10

7.4.11

7.4.12

7.4.13

7.4.14

7.5

7.5.1

7.5.2

7.5.3

CONTENTS (Continued)

G-Fields

Logical Fields

Alphanumeric Fields

Alphanumeric Constant Fields

Mixed Fields

Blank or Skip Fields

Tabulation

Repetition of Field Specifications

Repetition of Groups

Complex Fields

Multiple Record Formats

Carriage Control for Printing

Auxiliary I/O Statements

REWIND Statement

BACKSPACE Statement

END FILE Statement

SECTI':'N VIII PROGRAM UNITS

8. Introduction

8.1 PROGRAM Statement

8.2 END Statement

8.3 RETURN Statement

8.4 RESUME Statement

8.5 Subprogram Communications

8.5.1 Actual Parameters

8.5.2 Formal Parameters

8.5.3 Correspondence Between Actual
and Formal Parameters

8.6 Statement Function Definition Statement

8.7 FUNCTION Subprograms

8.7.1 FUNCTION Statement

iv

59

60

·61

61

62

62

63

63

64

64

64

66

66

67

67

68

69

69

69

69

70

70

70

71

71

72

73

73

CONTENTS (Continued)

Page

SECTION VIII (Continued)

8.7.2 FUNCTION Type 74

8.7.3 Library Functions 75

8.8 SUBROUTINE Subprograms .75

8.8.1 SUBROUTINE Statement 75

8.8.2 CALL Statements 76

8.8.3 CREATE Statement 77

APPENDIX A LIBRARY FUNCTIONS 78

APPENDIX 13 FORTRAN LISTING FORMAT 83

APPENDIX C COMPILER OPTIONS 92

APPENDIX D FORTRAN RUNTIME LIBRARY 93

v

PREFACE

This manual contains the user's instructions for the FORTRAN compiler

associated with the Heterogeneous Element Processor (HEP). It is directed

to the FORTRAN programmer and the programming staff responsible for main­

taining the compiler. Its purpose is to explain the REP v~sion of the

FORTRAN language, the various inputs and outputs of the compiler, and to

give some examples.

SECTION I - FORTRAN SOURCE PROGRAM FORM

1. Introduction

A FORTRAN source program consists of one main program and any number of

subprograms. The main program and subprograms are made up of statements

using the FORTRAN character set.

1.1 Character Set

The character set has two subsets: alphanumeric characters and special

char.actcrs.

ALPHANUMERIC CHARACTERS:

Letters (A-Z) and

Digits (0-9)

SPECIAL CHARACTERS:

Blank

= Equals

+ Plus

Minus

* Asterisk

/ Slash

(Left parenthesis

) Right parenthesis

Comma

Decimal point

$ Dollar sign

Apostrophe (single quote)

Blanks may appear anywhere in a source program. They are significant only

in Hollerith constants and format specifications.

-1-

1.2 Source Statements

Standard FORTRAN statements are accepted as formatted lines (or records)

of eighty or fewer characters. Each line is divided into four fields:

COLUMNS

1-5

6

7-72

73-80

FIELDS

Statement label

Continuation indicator

Statement

Identification

The identification field is ignored by the FORTRAN compiler and is provided

for the convenience of the programmer.

1.2.1 Statement Labels

The statement label is made up of digits placed anywhere in columns 1-5 of

the initial line of a statement. Blanks and leading zeros are ignored.

1 .. 2.2 Statements

A statement consists of an initial line and any number of continuation

lines.

An initial line is a line that is neither a comment line nor an END line

and contains either a blank or a zero in column 6. A continuation line

is not a comment line and contains any character other than blank or zero

in column 6. An END line is a line containing an END statement, which

cannot be continued.

-2-

EXAMPLE:

1 2 3 4 5 6 7 8 9 10 11 12 •••

2 0 0 A = B +

X C

X + D

The first line of this example is an initial line._ The second and

third lines are continuation lines. The statement label is 200.

The statement is equivalent to:

A=B+C+D

1.2.3 Comments

Comment lines have the character C or an asterisk (*) in column 1. Comments

are for the convenience of the programmer and permit program descriptions

to be embedded in the code. Comments do not influence the compiler pro­

gram except that they are printed in the program listing. Columns 2-72

may be used in any desired format.

A comment line can be followed only by another comment line or the initial

line of a statement.

1.2.4 Blank Lines

Blank lines may be included in the source text. Columns 1-72 must be blank.

A blank line can be followed only by a comment line, another blank line or

the initial line of a statement.

1.2.5 Source Statement Ordering

Table 1.1 shows the sequence in which the source statement groups of each

program must be written. Within each group, the statements may be written

in any sequence.

-3-

DATA and CONST statements may appear anywhere after Group 2 and before

Group 6, but must appear after any declarations (COMMON, DIMENSION, or

type) affecting the variables to be initialized.

FORMAT statements may appear anywhere before Group 6.

-4-

SOURCE STATEMENT

PROGRAM
FUNCTION
SUBROUTINE
BLOCK DATA

IMPLICIT

COMMON
COMPLEX
DIM[ENSION]
DOUBLE [PRECISION]
EQUIV[ALENCE]
EXTERNAL
INTEGER
LOGICAL
REAL

Table 1.1

Statement Function

Assignment
ASSIGN
Assign and Unconditional GO TO
BACKSPACE
CALL
Computed GO TO
CONTINUE
CREATE
DO
END FILE
IF
PAUSE
PURGE
READ
RESUME
RETURN
REWIND
STOP
WRITE

GROUP

1

2 ...

3

4

5

END 6

-5-

1.3 D in Column 1, Conditional Compilation

All source lines with the character D in column one are compiled as ordinary

source statements when the compiler is run with the Conditional Compilation

option selected. When Conditional Compilation is not selected, these lines

are treated as comments.

1.4 COpy Statement

The copy feature enables parts of the program to be stored in more than

one file. This statement appears as follows:

COpy name

where "name" is a file-path name. The name must be completely contained

on one line (not extended across continuation lines) and must not contain

blanks.

A program may contain any number of COpy statements, but they must not

be nested deeper than three.

The contents of the named file are inserted into the source program so that

the first record of the file is the next line after the COpy statement.

Thus COpy statements may be labeled and referenced the same as CONTINUE

statements. A COpy statement must not precede Group 1 statements, and

must not follow a Group 6 statement.

-6-

SECTION II - DATA

2. Introduction

Data is represented as constants and variables. A constant is a quantity

whose value is explicitly stated; a variable is a quantity whose value

may change. Each variable is referenced by an identifier that symbolically

identifies the variable.

2.1 Identifiers

Identifiers are used to give names to:

- Variables

- Subprograms

- Common blocks

An identifier is a string of alphanumeric characters, the first of which

must be alphabetic. Any number of characters is allowed in an identifier

but only the first eight are recognized. Certain identifiers may be

preceded by a dollar sign ($) (see section 2.2). The dollar sign is not

included as one of the significant characters of an identifier.

EXAMPLES:

XIS

PERMUTATION

STRAIN

2.2 Variables

Variable names are identifiers that represent quantities which may assume

a number of different values. Each variable has an associated data type:

integer, logical, real, double precision or complex. The variable may

only assume values of that data type.

-7-

A variable may be either synchronous (the FORTRAN standard) or asynchronous.

An asynchronous variable is actually a pair: a standard variable and an

access control. Assigning a value to the variable causes a wait until

its access state is EMPTY and sets its access state to FULL with the new

value. Conversely each use of any asynchronous variable causes a wait

until the access state of the variable is FULL, and leaves the access

state EMPTY. The access state may be interrogated with an intrinsic

function (FULL or EMPTY) to determine its state. An async~onous variable

is indicated by a dollar sign ($) preceding the first character of the

identifier. Also, the same variable must not be used as both a syn­

chronous and an asynchronous variable; i.e., $A and A must not both

uppear. in the sallle progrum unit.

Variables may be simple or arrays.

2.2.1 Simple Variables

A simple variable name identifies the location in which a single variable

value can be stored.

EXAMPLES:

N

X4

$VALUE

LOOK UP

2.2.2 Arrays

An array variable name identifies an ordered set of data having one, two,

or three dimensions. Each element of an array is referenced by the array

name followed by a set of subscripts.

An array has an associated data type the same as a simple variable. An

array must be declared by an array declarator which establishes the number

-8-

of dimensions and the size of each. The data type of an array is identified

the same as for a simple variable.

The declaration of an array type may occur separately from the declaration

of its dimensions.

2.2.2.1 Array Storage Allocation

The multi-dimensional arrays declared by the programmer are assigned to the

one-dimensional computer memory in such a way that the left-most subscript

varies most rapidly and the right-most subscript least rapidly.

EXAMPLE:

Allocation of array K of three dimensions of two elements each.

Memorl Seguence Arral Element

1 K(l,l,l)

2 K(2,1,1)

3 K(1,2,1)

4 K(2,2,1)

5 K(l,1,2)

6 K(2,1,2)

7 K(l,2,2)

8 K(2,2,2)

2.2.2.2 Array" References

Most FORTRAN statements operate on only one element of an array at a

time. A member of an array is referenced in the form:

where "array" is the name of the array, and the S1 are suscript expressions.

A subscript expression may be any expression (see section 4.1). The expres­

sion is converted to type integer after evaluation.

-9-

EXAMPLES:

Y (1)

STATION (K)

Q (LINE (N,X) + RHO,N)

The value of a subscript must be within the limits specified for the array.

The number of subscripts must equal the number of dimensions specified

for the array.

2.3 Data Types

The following data types are defined:

Intege~

Logical

Real

Double precision

Complex

The name assigned to a variable is associated with a data type either

implicitly or explicitly.

The explicit type declaration statements (section 3.3.1) assign the type

explicitly.

If the data type of a variable is not declared explicitly, the compiler

types it implicitly according to the following conventions.

- If the data identifier begins with one of the letters I, J, K,

L, M, or N, the type is INTEGER.

- Any other first letter implies REAL.

The IMPLICIT statement may be used to alter the above conventions and/or

introduce similar rules for data types other than integer and real. See

section 3.3.2.

-10-

For an asynchronous identifier, the first character after the dollar sign

is used for implicit typing.

2.4 Constants

The data type of a constant is determined by its form.

2.4.1 Integer Constants

An integer constant is a signed or unsigned string of decimal digits. It

consists of up to 19 decimal digits in the range _263(~-9.2x1018) to

+2G3_l(~9.2xl018).

The internal representation of an integer is a full word (64-bit) two's

complement number. However, integer division produces a result accurate

to only 56 bits.

EXAMPLES:

-1

1234567890

o

2.4.2 Real Constants

A real constant is a signed or unsigned string of decimal digits that in­

cludes a decimal point and/or an exponent. Any number of digits may be

included, but only the first fifteen are significant. A real constant has

one of the following forms:

-11-

FORMS:

+.
-~.

±i.E+e

±.i

±.iE+e

±i.i

±iE+e

±i.iE+e

where i is a string of digits and e is a I-digit or 2-digit exponent to the

base 10. The plus (+) character is optional. The magnitude of a real con­

stant is in the approximate range of'5.4xlO- 79 to 7.2xl075
•

EXAMPLES:

3.1415

+0.03l41SE+2

.03l41SE2

3l.4lSE-l

Internally, real data is stored as follows:

o 1 78 63

c I M

where S is the sign of the mantissa (+ = 0, - = 1).

C is the base sixteen characteristic plus 64.

M is the mantissa (56 bits), represented as a sign-magnitude

number.

The mantissa is hex-normalized.

-12-

2.4.3 Double Precision Constants

A double precision constant is a signed or unsigned string of decimal digits

that includes an optional decimal point and an exponent. Any number of

digits may be included, but only the first twenty-nine are significant. A

double precision constant has one of the following forms:

FORMS:

±i.iD±e

±i.D±e

±.iD±e

±iD±e

where i is a string of digits and e is a I-digit or 2-digit exponent to

the base 10. The plus (+) character is optional. The magnitude of a

double precision constant is in the approximate range of 5.4xlO- 79 to

7.2xl0 75
•

EXAMPLES:

.3l4l5927Dl

3.l4l5DO

31415. 93D-04

Internally, a double precision constant appears as a real constant followed

by an integer extension of the mantissa:

-13-

Sl - Sign

C1 - Characteristic

M1 - Mantissal (56 bits)

Ml. - Mantissa2 (64 bits)

2.4.4 Complex Constants

A complex constant appears as an ordered pair of real constants enclosed in

parentheses:

The real part is rl and the imaginary part is r2.

EXAMPLES:

(0., -1.)

(5.2 t 2.6)

(-3.El2, .017E-16)

Internally, complex data is stored as two real constants (see 2.4.2).

2.4.5 Logical Constants

A logical constant is a truth value •

• TRUE. or .T. • FALSE. or .F •

A logical constant occupies one word which is either zero (.FALSE.) or non­

zero (.TRUE.).

2.4.5 Hollerith Constants

A Hollerith constant is a string of characters which is represented in­

ternally by 8-bit ASCII codes. A Hollerith constant may appear wherever

-14-

an expression may appear, however it must not appear within an expression.

It is treated as an integer constant. There are four forms of Hollerith

constants:

FORMS:

where n is an unsigned integer constant and Ci are characters.

Internally, the characters are packed eight per word. The two forms on

the left are equivalent and imply left justification with trailing blanks

(if necessary to pad n to a multiple of 8). The Rand L forms indicate

right and left justification respectively, however these two forms indicate

binary zero padding (if necessary) not blanks. All characters including

blanks, are significant in the string.

The apostrophe may be included in an apostrophe-delimited Hollerith con­

stant by using two consecutive apostrophes in the string.

EXAMPLES:

Storage

IHA A b b b b b I b I b

(ASCII)

2HA b A b b b b I b I b I
(ASCII)

'ABCDE' A B C D E b I b I b I
(ASCII)

-15-

Storage

'-ABC' 'DEF' A B C I I D E F b

(ASCII)

IRA 0000 0000 0000 I 0041
1

(HEX)

5LABCDE 4142 4344 4500 0000 I'
(HEX)

2.4.7 Hexadecimal Constants

Hexadecimal constants are written as follows:

where the D. collectively represent a string of up to 16 hexadecimal digits
l.

(0-9, A-F). Internally, hexadecimal constants are stored right justified

in one word. They are treated as integers within expressions.

EXAMPLES:

X'FF'

X'OOOFFOOO'

-16-

SECTION III - SPECIFICATION STATEMENTS

1. Introduction

Declarations are used to supply descriptive information about the program

other than to specify computation or other action. This descriptive

information primarily concerns the interpretation of source program

identifiers and object program storage allocation.

The following declaration statements must all appear in the program prior

to any non-declarative statements and statement function definition state­

ments.

Explicit type statements

IMPLICIT statement

DIMENSION statement

EXTERNAL statement

COMMON statement

EQUIVALENCE statement

MAXREGS statement

DATA statements are not required to appear in the program prior to any

non-declarative statements.

3.1 Array Declarators

Arrays may be defined by several statements;

Explicit type statements

COMMON statement

DIMENSION statement

-17-

Array declarators are used in these statements. Each array declarator

gives the array identifier and the maximum values each of its subscripts

may assume, thus:

identifier (maxl, max2, maxs)

The maxima must be integers. An array may have one, two, or three dimen­

sions. For example, the statement"

DIMENSION EDGE (10,8)

specifies EDGE to be a two dimensional array whose first subscript may vary

from 1 to 10 inclusive, and the second from 1 to 8 inclusive.

EXAMPLES:

DIMENSION PLACE (3,3,3), HI (2,4), K(256)

Arrays may also be declared in the COMMON and Explicit type statements in

the same way:

COMMON X C.O, 4), Y, Z

INTEGER A (7,32), B

DOUBLE PRECISION K (6,10)

3.1.1 Variable Dimensions

Within a subprogram, array declarations may use integer variables provided

that the array name and variable dimensions are formal parameters of the

subprogram. The actual array name and values for the dummy variables are

given by the calling program when the subprogram is called.

Quantities needed for reference to the array are evaluated upon entry to

the subprogram and unchanged by any subsequent modifications of the dimen­

sion variables.

-18-

EXAMPLE:

DIMENSION BETA (L,H,G)

The identifiers BETA, L, M, and G must all be formal parameters.

3.2 DIMENSION Statement

The DIMENSION statement is used to declare identifiers to be array identifiers

and to specify the number and bounds of the array subscripts. The informa­

tion supplied in a DIMENSION statment is required for the allocation of

memory for arrays. Any number of arrays may be declared in a single DIMEN­

SION statement.

FORM:

where S is an array declarator.

Each array variable appearing in the program must represent an element of

an array declared in a DIMENSION statement, unless the dimension information

is given in another statement. When the dimension information is provided

in a COMMON or Explicit type statement, it may not appear in a DIMENSION

statement. The DIMENSION keyword may be abbreviated DIM.

3.3 TYPE Declarations

The Explicit type statements INTEGER, REAL, DOUBLE PRECISION, COMPLEX, and

LOGICAL and the IMPLICIT statement are used to specify the type of the

identifiers appearing in the program.

3.3.1 Explicit Type Statements

The general form of the Explicit type statement is:

type identifierl,identifier2, ••• ,identifier
n

-19-

Type may be INTEGER, REAL, DOUBLE, DOUBLE PRECISION, COMPLEX, or LOGICAL,

and the identifier. are identifiers or array descriptors.
1.

An identifier may appear in only one Explicit type statement. Explicit

type statements may be used to declare arrays that are not dimensioned

in DIMENSION or COMMON statements.

3.3.1.1 INTEGER Statement

FORM:

INTEGER identifier,identifier, •••

This statement declares the listed identifiers to be integer type with

each datum occupying one word.

EXAMPLES:

INTEGER ALPHA, $PVAL

INTEGER TABLESIZE (10)

3.3.1.2 REAL Statement

FORM:

REAL identifier,identifier, •••

This statement declares the listed identifiers to be real type with each

datum occupying one word in floating-point format.

EXAMPLES:

REAL $LOGX, MASS (10,4)

REAL I, J, K

.... 20-

3.3.1.3 DOUBLE PRECISION Statement

FORM:

DOUBLE PRECISION identifier,identifier, •••

This statement declares the listed identifiers to be of double precision

type. Each datum occupies two words in floating-point format. The key­

word PRECISION may be omitted.

EXAMPLES:

DOUBLE PRECISION RATE, Y, FLOW

DOUBLE $TIME (27,9)

3.3.1.4 COMPLEX Statement

FORM:

COMPLEX identifier,identifier, •••

This statement declares the identifiers to be of complex type. Each datum

occupies two words, two floating-point numbers representing the real and

imaginary parts.

EXAMPLE:

COMPLEX ZETA, W, ROOT

3.3.1.5 LOGICAL Statement

FORM:

LOGICAL identifier,identifier, •••

This statement declares the listed identifiers to be of logical type. Each

datum occupies one word where zero represents false and non-zero represents

true.

-21-

EXAMPLE:

LOGICAL BOOL, $P, $Q, ANSWER

3.3.2 IMPLICIT Statement

The IMPLICIT statement defines the data identifier first-letter parameters

for implicitly specifying data types should the programmer desire para­

meters different from the compiler defaults, which are:

DEFAULTS:

Identifiers beginning with the letters I, J, K, L, M

and N imply INTEGER data.

Identifiers beginning with all other letters imply REAL data.

The format of the IMPLICIT statement is:

FORM:

where:,

type. is the data type (INTEGER, REAL, DOUBLE, DOUBLE PRECISION,
1

COMPLEX, LOGICAL) implied by data identifiers beginning with

the letters listed subsequently.

(Al,A2, •••) or (A 3-A4 , •••) are lists or ranges of alphabetic

characters for the preceding data type. Lists of single

characters are separated by commas; ranges of characters

are denoted by the first and last character or the range

(in alphabetic sequence) separated by a minus sign (e.g.,

A-D).

-22-

This statement causes any variable not mentioned in an Explicit type state­

ment and whose first character is one of those listed to be typed according

to the type appearing before the list in which the character appears. For

an asynchronous identifier, the first character after the dollar sign is

used.

EXAMPLE:

IMPLICIT INTEGER (A-C,X), DOUBLE PRECISION (D), LOGICAL (L)

This statement would cause the following implicit declarations to be in

effect:

1. Identifiers beginning with A, B, C, I, J, K, M, N, X are integer.

2. Identifiers beginning with D are double precision.

3. Identifiers beginning with L are logical.

4. Identifiers beginning with E, F, G, H, 0, P, Q, R, S, T, U, V,

W, Y, Z are real.

3.4 COMMON Statement

FORM:

COMMON block-list

The COMMON statement specifies that certain variables or arrays are to be

stored in an area also available to other programs. By means of COM}10N

statements, a program and its subprograms may share a common storage area.

This area is located in Data memory.

-23-

The common area may be divided into separate blocks identified by block

names. A block is specified thus:

/identifier/identifier,identifier, ••• ,identifie~

The identifier enclosed in slashes is the block name. The identifiers

which follow are the names of the variables or arrays assigned to the

block. These elements are placed in the block in the ordev in which

they appear in the block specification.

The block list of the COMMON statement consists of a sequence of one or

more block specifications. For example the statement

COMMON/R/X,Y,T/C/U,V,W,Z

indicates that the el~ments X, Y, and T, in that order, are to be placed

in block R and that U, V, W, Z are to be placed in block C.

Block entries concatenate throughout the program, beginning with the first

COMMON statement. For example the statements

COMMON/D/ALPHA/R/A,B/C/S

COMMON/C/X,Y/R/U,V,W

have the same effect as the statement

COMMON/D/ALPHA/R/A,B,U,V,W/~/S,X,Y

One block of common storage may be left unlabeled and is called blank

common. Blank common is indicated by two consecutive slashes. For

instance

COMMON/R/X,Y//B,C,D

indicates that B, C, and D are placed in blank common.

-24-

The slashes may be omitted when blank common is the first block of the

statement.

COMMON B,C,D

Storage allocation for blocks with the same name begins at the same loca­

tion for all programs executed together. For example if a program contains

COMMON A,B/R/X,Y,Z

as its first COMMON statement, and a subprogram has

COMMON/R/U,V,W//D,E,F

as its first COMMON statement, then the quantities represented by X and U

are stored in the same location. A similar correspondence holds for A and

D in blank common.

Labeled blocks of a given name must have the same length in all programs

executed together.

Blank common may be any length in any program.

Array names appearing in COMMON statements may have dimension information

appended, as in a DIMENSION statement. For example

COMMON ALPHA,T(15,lO,5),GAMMA

specifies the dimensions of the array T while entering T in blank common.

-25-

3.5 EQUIVALENCE Statement

The EQUIVALENCE statement allows more than one identifier to represent the

same quantity.

FORM:

where R. is a reference. (EQUIVALENCE may be abbreviated EQUIV)
l.

The references of an EQUIVALENCE statement may be simple variables or array

identifiers or array element references. The subscripts of an array element

must be integer constants. The number of subscripts must be equal to the

array dimension or must be one. Synchronous and asynchronous variables

may not be made equivalent to each other.

EXA11PLE:

EQUIVALENCE "(A,B,C(3», (T(4),S(1,1,2»

The inclusion of two or more references in a parenthesis pair indicates

that the quantities referenced are to share same memory locations. For

example:

EQUIVALENCE (RED, BLUE)

specifies that the quantities RED and BLUE are stored in the same place.

When no array subscript is given, it is taken to be 1, thus

EQUIVALENCE (X,Y)

is the same as

EQUIVALENCE (X,Y(l»

-26-

Elements of multiple dimensioned arrays may be referenced with a single

subscript by use of the element successor function. For example in the

three-dimensional array specified by

the position of element ALPHA (Kl,K2,K3) is given by element position

= (Ka-I)*Nl *N2+(K2-1)*Nl+Kl

Thus the sequence

DIMENSION BETA(4),ALPHA(2,3,4)

EQUIVALENCE(BETA(2),ALPHA(8»

specifies that BETA(2) and ALPHA (2 , I, 2) are stored in the same plac.e.

Since the entire arrays are shifted to satisfy the equivalence only the

relative positions of the references are important. In the examples below

EQUIVALENCE(BETA(I),ALPHA(7»

or

EQUIVALENCE(BETA,ALPHA(7»

will do as well.

Note that the relation of equivalence is transitive, e.g., the two statements.

EQUIVALENCE(A,B),(B,C)

EQUIVALENCE(A,B,C)

have the same effect.

-27-

3.5.1 EQUIVALENCE and COMMON

Identifiers may appear in both COMMON and EQUIVALENCE statements provided

the following rules are observed.

No two quantities in common may be set equivalent to one another.

Quantities placed in a common block by means of equivalences may cause the

end of the common block to be extended. For example, the statements

COMMON/R/X,Y,Z

DIMENSION A(4)

EQUIVALENCE (A,Y)

causes the common block R to extend from X to A(4), arranged as follows:

x
Y A(l)

Z A(2)

A(3)

A(4)

Equivalence statements which cause extension of the start of a common block

are not allowed. For example the sequence

COMMON/R/X,Y,Z

DIMENSION A(4)

EQUIVALENCE (X,A(3»

-28-

is not permitted since it required block R to be arranged

A(l)

A(2)

X A(3)

Y A(4)

X

A(l) and A(2) extend the start of block R.

3.6 EXTERNAL Statement

FORM:

EXTERNAL identifier, identifier, ••• _ :!.~entifier

This statement declares the listed identifiers to be subprogram names. Any

subprogram name given as an argument to another subprogram must appear in

an EXTERNAL declaration in the calling program.

EXAMPLE:

EXTERNAL SIN, COS

CALL TRIGF(SIN,l.5,ANSWER)

CALL TRIGF(COS,.87,ANSWER)

END

SUBROUTINE TRIGF(FUNC,ARG,ANSWER)

ANS\4}'ER=FUNC (ARG)

RETURN

END
-29-

3.7 DATA Specification

The data specification statements DATA, CONST, and BLOCK DATA are used to

declare constants and specify initial values for variables. These values

are compiled into the object program. They become the values assumed by

the variables when execution begins.

3.7.1 DATA Statement

The data to be compiled into the object program is specified in a DATA

statement.

FORM:

DATA v/d/,v/d/, •••

where v is a variable list and d is a data list.

The variable lists in a DATA statement consist of simple variable, array

names, or array elements separated by commas.

Variables in common may appear on the lists only if the DATA statement

occurs in a BLOCK DATA subprogram. Asynchronous variables may appear in

a DATA statement.

The data items of each data list correspond one-to-one with the variables

of each variable list. Each data item specifies the value given to its

corresponding variable.

Data items may be numerical constants or alphanumeric strings. For example

DATA ALPHA,BETA/5,l6.E-2/

specifies the value 5 for ALPHA and the value .16 for BETA.

-30-

Any data item may be preceded by an integer followed by an asterisk. The

integer indicates the number of times the item is to be repeated. For

example

DATA A(l),A(2),A(3),A(4),A(5)/6lE2,4*32Ell

specifies 5 values for the array A; the value 6100 for A(l) and the value

320 for A(2) through A(5).

When an unsubscripted array name is included in the variable list it implies

that all elements of the array are to be initialized. It is equivalent to

writing out all elements of the array in sequence.

EXAMPLE:

The above example could be written:

DIMENSION A(5)

DATA A/6IE2,4*32EII

The form of the constant, rather than the type of the variable, determines

the data type of the stored constant.

Hollerith constants, or alphanumeric strings, are treated specially in the

DATA statement. A single Hollerith constant may initialize more than one

variable element, whereas any other type of'constant corresponds to a

single element. A Hollerith constant may not contain excess characters,

but it will be extended with blanks so as to fill an integral number of

elements.

EXAMPLES:

DIMENSION 1(2)

DATA II'A','B'I

implies 1(1) = 'A~~~~~~~'
1(2) = 'B~~~~~~~'

-31-

DIMENSION 1(2)

DATA I/'ABCDEFGHIJK'/

implies 1(1) = 'ABCDEFGH'

1(2) = 'IJK~~~~»'

DATA J/'ABCDEFGHIJK'/

is an error

DIMENSION R(2)

DATA R/2",e' A' /

implies R(l) = 'A»»~~~~~'
R(2) = 'A~~~~~~~'

3.7.2 CONST Statement

The CONST statement has the same form and general meaning as the DATA state-

mente

FORM:

CONST v/d/,v/d/, •••

where v is a variable list and d is a data ljt-li.. The syntax and semantics

of these lists are identical with those of the DATA statement with one

exception: The CONST statement causes the variables to be allocated in

constant memory. This implies that they are not variables but symbolic

constants. Constants may not appear in I/O statements, be passed as

parameters, be assigned to, or be asynchronous.

3.7.3 BLOCK DATA Statement

FORM:

BLOCK DATA

-32-

This statement declares the program which follows to be a data specification

subprogram. Data specification for variables in common blocks requires the

use of a BLOCK DATA subprogram.

The first statement of the subprogram must be the BLOCK DATA statement.

The subprogram may contain only declarative statements associated with

the data being defined.

EXAMPLE:

BLOCK DATA

COMMON/R/X,y/C/Z,W,V

DIMENSION Y(3)

COMPLEX Z

DOUBLE PRECISION X

DATA Y(l),Y(2),Y(3),/lE-l,2*3E2/

DATA X,Z/ll,877DO,(-l.4l42l,l.4l42l)/

END

Data may be entered int9 more than one block of common in one subprogram,

'however, any common block mentioned must be listed in full. In the example

above, Wand V are listed in block C although no data values are defined

for them.

-33-

SECTION IV - EXPRESSIONS

4. Introduction

Expressions are strings of operands separated by operators.

There are two types of FORTRAN expressions: arithmetic

and logical.

4.1 Arithmetic Expressions

An arithmetic expression is a sequence of basic elements

separated by arithmetic operators and parentheses in

accordance with mathematical convention and the rules

given below. An arithmetic expression has a single nume­

rical value, which is the result of the calculations speci­

fied by the quantities and operators comprising the

expression.

The arithmetic operators are:

SYMBOL OPERATION

+ Addition

Subtraction

* Multiplication

/ Division

** Exponentiation

variable, or function reference):

2.71828

Z(N)

TAN (THETA)

Compound expressions may be formed by using operators to

combine basic elements:

-33a -

X+3

TOTAL/POINTS

TAN(PI*M)

Any expression may be enclosed in parentheses and treated

as a basic'element:

(X+Y)/2

(ZETA)

COS (SIN(PI:lcM)+X)

Any expression may be preceded by a + or - sign.

For example:

+x
-(ALPHA BETA)

-SQRT(-GAMMA)

However, note that two operators must not occur consecutively.

The expression below is improper:

X*-Y

Use of parentheses yields the correct form:

X*(-y)

By applying the rules above, all permissable arithmetic

expressions may be formed:

4.1.1 Operator Precedence

If the precedence of operations is not given explicitly

by parentheses, it is understood to be the following

(in order of decreasing precedence):

-34-

OPERATOR

*and/

+and-

OPERATION

Exponentiation

Multiplication and division

Addition and subtraction or negation

For example, the expression

A*B+C/D**E

is executed as

Sequences of operations of equal precedence are performed

left to right except for exponentiation which is performed

right to left.

EXAMPLES

W*X/Y/7 is evaluated as «W*X)/Y)/7

is _evaluated as A** (B**C)

4.1.2 Evaluation of Mixed-Type Expr!~~ions

The value of an arithmetic expression may be of integer, real,

double precision, or complex type. The type of the expression

is determined by the types of its elements according to the

rules which follow.

The arithmetic types are ranked as follows:

RANK

1

2

3

4

TYPE

Integer

Real

Double

Complex

--35-

The type of an expression is the type of the highest

ranking element in the expression.

Each operation within an expression is evaluated in the

type of the highest rankin~ operand. Thus the evaluation

of an expression is not changed to a higher rank until

necessary.

EXAMPLE

I/J+R*DP*C

is evaluated as

CMPLX(FLOAT(I/J),O.)+CMPLX(REAL(DBLE(R)*DP),O.)*C

Integer expressions are evaluated using binary integer

arithmetic throughout. In integer arithmetic, fractional

parts arising in division are truncated, not rounded .. For

example:

7/3 yields 2

3/7 yields 0

All other calculations use binary floating-point arithmetic.

Conversions to higher rank are performed as follows:

1. An integer quantity becomes the integer part of a real

quantity. The fractional part is zero.

2. A real quantity becomes the· most significant part of a

double precision real quantity. The least significant

part is zero.

3. A real quantity becomes the real part of a complex

quantity. The imaginary part is zero.

4. A double precision quantity is converted to single

precision and becomes the real part of a complex

quantity. The imaginary part is zero.

-36-

4.2. Logical Expressions

There are four basic ~lements used FORTRAN logical expres­

sions: logical constants, logical-type variables, logical­

type functiona~ references, and relations. All of these

basic elements represent logical quantities.

A logical quantity may have either of two value~: true

or false. Logical quantities occupy one word of memory.

4.2.1 Relations

Relations are constructed from numerical expressions of

intetger, re~l, or' double p~ecls10n' type thtough the use

of relational operators. The relational operators are:

OPERATOR RELATION

.GT. greater than

.GE. greater than or equal to

.LT. less than

.LE. less than or equal to

.EQ. equal to

.NE. not equal to

The enclosing periods are part of the operator and must

be present.

Two expressions of integer, real, or double precision type

separated by a relational operator form a relation. For example:-.,

X+2.LE.3*Y

is a relation. The entire relation constitutes a basic

logical element.

The value of such an element is true if the 'relation ex­

pressed is true and false otherwise. In the example above

-37-

the element has the value true if X is 2 and Y is 2, and

the value false if X is 2 and Y is 1.

Complex operands are allowed for the opertors

.EQ. and .NE. ~nly.

Relational operators have lower precedence than arithmetic

operators.

4.2.2. Logical Operators

The logical operators are .NOT.,.AND. and .OR.,denoting,

respectively, logical negation, logical multiplication

and logical addition. The enclosing periods are part

of the operators and must be present. The logical

operators are defined as follows (where P and Q are

logical expressions);

.NOT.P

P.AND.Q

P.OR.Q

true if P is false,

false if P is true

true if P and Q are both true,

otherwise false

false if P and Q are both

false, otherwise true

A logical expression may consist of a single logical element.

For example:

.TRUE.

BOOL(N)

X.GE.3.14159

Single elements may be combined through use of the logical

operators .AND.and.OR.to form compound expressions, such as:

TVAL.AND.INDEX

BOOL(M).OR.K.EQ.LIMIT

-38-

Any logical expression may be preceded by the operator .

. NOT.as in:

.NOT.T

.NOT.X+7.GT.Y+Z

BOOL(K).AND .. NOT.(TVAL.OR.R)

By repeated use of these rules all permissible logical

expressions may be formed.

When the precedence of operation is not given by parentheses,

it is understood to be the following (in decreasing order

of precedence):

OPERATOR

• NOT •.

.AND.

.OR.

OPERATION

logical negation

logical multiplication

logical addition

Thus the expression

T.AND .. NOT.S.OR .. NOT.P.AND.R

is interpreted

(T.AND.(.NOT.S».OR.«.NOT.P).AND.R)

4.3. Summary of Operator Precedence

When the precedence of operators is not given explicitly

by parentheses, it is understood to be as follows (in order

of decreasing precedence):

-39-

OPERATOR OPERATION

**

*,/
+,-

exponential

multiply,' divide

add, subtract, negate

. GT . , . GE. , . LT. ,

.LE.;.EQ.,.NE. relational

.NOT. logical negation

.AND. logical multiply

.OR. logical add

For example, the logical expression

• NOT. ZETA*"c2+Y*MASS. GT. K-i. OR. PARITY .AND. X. EQ. Y is interpreted

(.NOT.«(ZETA**2)+(Y*MASS».GT.(K-2»).OR.(PARITY.AND.(X.EQ.Y»

-40-

SECTION V - ASSIGNMENT STATEMENTS

5. Introduction

Assignment statements are the basic executable statements

of the FORTRAN language. Two types of assignment sta~e­

ments are available: arithmetic and 1~gical.

5.1. Arithmetic Assignment Statement

The arithmetic assignment statement specifies an arithmetic

expression to be evaluated and a variable to which the

expression value is to be assigned.

FORM:

variable = expression

The character If=" is an operational symbol signifying

replacement, not equality. Thus the first example below

means "take the current value of Y, double it, and assign

"the result to Y."

EXAMPLES:

Y=2*Y

A= -A

~(N)=N*ZETA(ALPHA)*(M/PI)+(l.O,-l.O)

Type conversion is provided if the variable is of a type

different from the expression.

5.2 Mixed-Type Assignment

Mixed-type assignment involves arithmetic assignment state­

ments in which the type of the expression on the right differs

-41-

from the type of the variable on the left. The evaluated

expression is converted to the type of the variable. Table

5.1 gives the conversions for all combinations of expressions

and variables.

Type of Variable

INTEGER

INTEGER

INTEGER

INTEGER

REAL

REAL

REAL

REAL

DOUBLE PRECISION

DOUBLE PRECISION

COMPLEX

COMPLEX

(continued)

.Type of Expression

INTEGER

REAL

DOUBLE PRECISION

COMPLEX

INTEGER

REAL

DOUBLE PRECISION

COMPLEX

INTEGER

COMPLEX

INTEGER

REAL

Table 5.1

-42-

Conversion

None.

Truncate fractional

part, convert to integer

form.

Truncate fractional

part, convert to integer

form.

Truncate fractional part

of real part, convert to

integer form.

Convert to floating-point

form.

None.

Take first word of ex­

tended floating-point.

Take real part.

Convert to extended

floating~point form.

Extend real part to

extended floating-point

form.

Convert to real form,

assign to real part,

assign zero imaginary.

Assign to real part,

assign zero imaginary.

Type of Expresslon

COMPLEX DOUBLE PRECISION

COMPLEX COMPLEX

Conversion

Take first word of

extended floating-point,

assign to real part,

assign zero imaginary.

None.

Table 5.1 (continued)

Assignment Statements of the form

variable = Hollerith constant

are special cases. The character string represented by

the Hollerith constant is transferred to the variable without

type conversion. The string is stored as indicated in sec­

tion 2.4.6. The number of characters cannot be greater than

the number of bytes in the variable.

EXAMPLE:

X='AB'

implies the eight bytes and represented by X will appear as

plan~ blank blank blank .blank

5.3 Logical Assignment Statement

The logical assignment statement specifies a logical expres­

sion to be evaluated and a logical variable to which

the expression value is to be assigned.

FORM:

variable=expression

Both the variable and expression must have logical type.

EXAMPLES:

LOGICAL LA,LB,LC,LD

tA=LB.AND.LC.AND.LD

LB=.NOT.LA

LC=A.GT.B.OR.C.EQ.D

-43-

SECTION VI - CONTROL STATEMENTS

6. Introduction

The normal flow of a FORTRAN program is sequentially through

the statements in th~ order in which they are given t~ the

compiler. By means of control statements, the programmer

may specify the flow of the program.

6.1 Statement Numbers

FORTRAN statements may be given numbers to be referenced

by control statements. A statement number is written as an

unsigned integer of five digits or less. Leading zeros and

embedded blanks are ignored.

Although statement numbers are written as integers, they do

not represent numerical quantities. Statement numbers repre­

sent statement labels, a distinct basic quantity. Statement

numbers are used for program control, not numerical calculation.

Statement numbers must be unique, i.e., no two statements may

have the same number.

6.2 GO TO Statements

GO TO statements unconditionally transfer control from one

part of the program to another. There are three forms of the

GO TO statement: unconditional, computed, and assigned.

6.2.1 Unconditional GO TO Statement

FORM:

GO TO n

where n is a statement number.

-44-

This statement transfers control to the statement num­

bered n.

EXAMPLE:

GO TO 345

6.2.2 Computed GO TO Statement

FORM:

GO TO (nl,n2, ••• ,nK),vari~ble

where nr,n~, ••• ,n~ are statemen~ number.

The variable must be of integer type.

The statement transfer~ control to the statement numbered

n i ' n 2 ' • • • < I)" if the va ria b 1 e has the val u e 1, 2, • . • k, r e -

spectively. Values outside the range 1 through k cause

transfer of control to the following statement. The comma

preceding the variable may be omitted.

EXAMPLES:

GO TO (22,3,7),SWITCH

GO TO (l,2,62,78)Y

6.2.3 Assigned GO TO Statements

FORMS:

GO TO variable

GO TO variable,(ni,n2, ••. ,n~)

. where ni,nz, •.. n~ are statement numbers.

The second form is allowed for compatibility only; the labels

n1, ... nK 'are not used. The comma following the variable may

be omitted.

The variable must be a scalar of integer type and must not be

-45-

an asynchronous variable. This st2~c~ent transfers control

to the statement whose number was last assigned to the

variable. The assignment must take place in a previously

executed ASSIGN statement.

The variable is a control variable, having a label as a

value, not a numerical quantity.

EXAMPLES:

GO TO ERROR

GO TO X(lOO.200)

6.2.4 ASSIGN Stat~ment

FORM:

ASSIGN statement number TO variable

The variable must be a scalar of integer type and must

be an asynchronous variable. This statement assigns the

value of the variable for a subsequent assigned GO TO

·statement. The statement number represents the statement

to which the assigned GO TO will transfer control.

EXAMPLES:

ASSIGN 7 TO LABEL

ASSIGN 13 TO ERROR

6.3 Arithmetic IF Statement

FORM:

IF (expression)~ ,na,n a
where nl,n2,na are statement numbers.

This statement transfers control to the statement numbered

-46-

n1 n2 or n3 if the value of the expression is less than,

equal to, or greater than zero, respectively. The expres­

sion must be of integer, real, or double precision type.

EXAMPLES:

IF (ETA)4,7,l2

IF (KAPPA-L(lO»20,l4,l4

6.4. Logical Statement

FORM:

IF (expression)S

where· S is a complete statement.

The expression must be a logical expression. S may be any

imperative (executable) statement other than a DO statement

or another logical IF statement.

If the value of the expression is false, then control passes

to the next sequential statement.

If the value of the expression is true, statement S is executed.

After execution of S, control passes to the next sequential

statement unless S is an arithmetic iff statement or GO TO type

statement in which case control is transferred as indicated.

As an example, consider the statements

IF(B)Y=X*SIN(Z)

W=Y**2

If the value of B is true the statements Y=X*SIN(Z) and

W=Y**2 are executed in that order.

If the value of B is false, the statement Y=X*SIN(Z)

is not executed.

-47-

EXAMPLES:

IF(T.OR.S)~=Y+l

IF(Z.GT.X(K»CALL SWITCH(X,Y)

IF(K.EQ.INDEX)GO TO 15

6.5 DO Statement

FORMS:

DO n index =initial, limit

DO n index =initial, limit, step

where n is a statement number.

The index must be a simple integer variable, and must not

be an asynchronous variable. The initial and limit may

be integer simple variables, signed integer constants, or

integer expressions. The step must be an integer simple

variable, an integer constant or an integer expression.

If the step is not given, it is understood to be one.

The DO statement causes the statements which follow, up

to and including the statement numbered n, to be executed

repeatedly. This ·group of statements is called the range

of the DO statement. Initially, the initial value is

assigned to the index. Thereafter, after each execution

of the range, the step value is added to the index value

and the result assigned to the index.

Prior to each execution of the range, the index value is

compared to the limit value. If the index value does

not exceed the limit value, the range is executed. This

differs from Standard FORTRAN in which the range is always

executed once before the first test.

After the last execution of the range, control passes

to the statement immediately following the range. The

exit from the range is called the normal exit.

-48-

Exit may also be accomplished by a transfer from within

the range.

The range of a DO statement may include other DO state­

ment provided that the range of each contained DO state­

maent is entirely within the range of the containing

DO statement.

Within the range of a DO statement, the index is available

for use as an ordinary variable. After a transfer exit

from the range, the index retains its current value

and is available for use as an ordinary variable. After

a normal exit from the range, the index retains the value

which caused the exit.

The values of the index, limit, and step may be altered

within the range of the DO statement. Altering the value

of limit or step does not affect the loop.

~he range of a DO statement must not end with a GO TO

type statement or an arithmetic IF statement. A logical

IF statement is aliowed as the last statement of the range,

provided the logical IF does not contain a GO TO type

statement or an arithmetic IF.

transferred thus:

In this case, control is

The range is considered ended when and if control

would normally pass to the statement following the

logical IF statement.

As an example, consider the sequence:

DO 5K = 1,4

5 IF (X(K). GT. Y (K»Y(K)=(K)

6 •••

-49-

Statement 5 is executed four times, whether the state­

ment Y(K) = X(K) is executed or not.

Statement 6 is not executed until statement 5 has been

executed four t.imes.

EXAMPLES:

DO 22 L = 1,30

DO 45K = 2,LIMIT,3

6.6. CONTINUE Statement

This statement is a dummy statement, used primarily as

a target point for transfers, particualrly as the last

statement in the range of a DO statement. For example

in the sequence

FQR:t1:
CONT:rNUE

DO 7K = START,END

IF(X(K»22,13,7
7 CONTINUE

~ ·positive value X(K) begins another execution of the range.

The CONTINUE provides a target address for the IF statement

and ends the rangt of the

6.7 PAUSE Statement

FORMS:

PAUSE

PAUSE n
PAUSE character string

where n is an integer constant.

~5Q-,

This statement causes the operand to be displayed on the system

output device. If no operand is given, zero is displayed.

EXAMPLE:

PAUSE 167

6.8 STOP Statement

FORMS:

STOP

STOP n

STOP 'character string'

where n is an integer constant.

This statement terminates the program. It does not stop the

system and may be used to transfer control to the operating

system.

6.9 PURGE Statement

FORM:

PURG E N 1 N'2' •••• Nn
where the Ni are asynchronous variabl Z~.

The statement causes the access state of all the named

variables to be set empty~ regardless of their existing state.

-·51-

SECTION VII - INPUT/OUTPUT

7. Introduction

Input/output statements specify the transfer of information between com­

puter memory and input/output devices, or between one part of computer

memory and another. These statements also allow the program to mani­

pulate I/O devices.

Information may be transferred in two different forms: formatted and

unformatted. The unformatted form involves no data conversion, data

is transferred in its internal format. Formatted data is converted

from internal to external form, or vice versa, under control of a

FORMAT specification in the program.

7.1 Input/Output Lists

Input/output statements may contain a list of variables which are to

receive values on input or are to provide values for output. The list

of a transmission statement specifies the order of transmission of the

variable values. During input, the new values of listed variables may

be used in subscript o~ control expressions for variables appearing later

in the list. For example

READ (l,3)L,A(L),B(L+l)

reads a new value of L and uses this value in the subscripts of A and B.

The transmission of array variables may be controlled by indexing similar

to the indexing in the DO statement. The list of controlled variables,

followed by the index control, is enclosed in parentheses and the whole

acts as a single element of the list. For example

READ (7,23)(X(K),K=l,4)

is equivalent to

READ (7,23)X(l),X(2),X(3),X(4)

The initial, limit,. and step values are given as in the DO statement:

READ (4, 2)N, (GAIN(K) , K= 1 ,M, N)

The indexing may be compounded as in the following:

READ (l,l3)«MASS(K,L)K=l,5),L=l,4)

This statement reads the elements of array MASS in the order

MASS(l,1),MASS(2,1), ••• ,MASS(5.l),MASS(l.2), ••• ,MASS(5,4)

If an entire array is to be transmitted, the indexing may be omitted and

only the array identifier written. The array is transmitteq in order of

increasing subscripts with the first subscript varying most rapidly.

Thus the example above can be written

READ(l,l3)MASS

7.2 Input/Output Statement Parameters

Many input/output statements have similar formats. The following defini­

tions apply to all input/output statements in which they may appear:

u logical I/O unit number which may be an unsigned integer

constant or an integer simple variable and may not be an

asynchronous variable. The correspondence between unit

number and actual I/O device is determined by the system

configuration and the operating system •

... 53-

f format declaration identifier which is the statement number

of a FORMAT statement in the program.

list I/O list as defined in section 7.1.

S1 statement number to which program control is transferr~d in

the event an end-of-file indication is detected on the I/O

unit while processing the statement. ..

S2 statement number to which program control is transferred if

any error is detected while processing the statement.

7.3 Sequential Input/Output Statements

These statements treat input and output to and from I/O units as if the

units contained sequential files, each composed of an ordered set of

records. Each time a READ or WRITE statement is executed, at least one

record is processed. As each record is processed, the file is positioned

to read or write the next sequential record.

7;3.1 READ Statement

FORMS:

READ (u,f,END=Sl,ERR=S2) list

READ (u,END=Sl,ERR=S2) list

where u is an I/O unit designation and f is a format reference.

The parameters END=Sl and ERR=S2 are optional. and their order may be reversed.

The READ statement causes information to be r~~1 from the I/O unit designated

and stored in memory as values of the variables in the list.

-54-

In transmitting formatted data, the conversion from external to internal

form is specified by the format referenced (first form).

When binary data is transmitted the format reference is omitted (second

form).

EXAMPLES:

READ (1,15 END=lOO)ETA,PI

READ (K+L,lO)GSIN,ZAI

READ (M,FMT,ERR=999,END=lOO)(TABL(K),K=l,M)

READ (TAPE)(TEMP(L),L=l,lOO)

7.3.2 WRITE Statement

FORMS:

WRITE (u,f,END=Sl,ERR=S2) list

WRITE (u,END=Sl,ERR=S2) list

where u is an I/O unit designation and f is a format reference.

The END=Sl and ERR=S2 parameters are optional and their order may be

reversed.

The WRITE statement causes the values of the variables in the list to be

transmitted from memory to the designated I/O unit.

In transmitting formatted data, the conversion from internal to external

form is specified by the format reference (first form).

-55-

When binary data is transmitted to the format reference is omitted (second

form).

EXAMPLES:

WRITE (2,15)ZILCH

WRITE (K3,4,)(A(K),K=2,20),ICHI

WRITE (4)NUMB,(SYMB(J),J=l,NUMB)

7.4 FORMAT specifications

The format designator f appearing in formatted I/O statements is the

statement label of a FORMAT statement.

FORM:

where S is a data field specification.

7~4.l Numeric Fields

Conversion of numerical data may be one of six types.

1. type - E

internal form - binary floating-point

external form - decimal floating-point

2. type - F

internal form - binary floating-point

external form - decimal fixed-point

3. type - G

internal form - binary floating-point

external form - decimal fixed-point or floating-point

-56-

4. type - I

internal form - binary integer

external form - decimal integer

5. type - Z

internal form - binary integer

external form - hexadecimal integer

These types of conversion are specified by the forms

1. Ew.d

2. Fw.d

3. Gw.d

4. Iw

5. Zw

respectively. The letter E, F, G, I, or Z designates the conversion type;

w is an integer specifying the field width; d is in integer specifying the

number of decimal places to the right of the decimal point. As an aid in

conversion, the letter 0 is allowed and treated as a Z. For example, the

statement

FORMAT (I5,FlO.2,E25.l5)

could be used to output the line

32 -17.60 5.962547877754lE03

on the output listing.

The type of conversion used should correspond to the type of the variable

in the input/output list. I conversion is used for integer type variables

and E, F, or G conversion is used for real type variables. There is no

format conversion for double precision variables.

-57-

The decimal fixed-point number (type F) has a decimal point but no exponent,

whereas the decimal floating-point (type E) has an exponent. On output,

the exponent always has the form shown, i.e., an "E" followed by a signed,

two digit integer. On input, however the "E" or the "+" sign, or the

entire exponent may be omitted on the external form. For example, the

following are all valid E15.6 fields:

.317250+2

.317250E2

.042739-45

31064

The field width w includes all of the characters (decimal point, signs,

blanks, etc.) which comprise the number. If a number is too long for

its specified field, the excess characters are lost. Since numbers are

right justified in their fields, the loss is from the most significant

part of the number.

During input, the appearance of a decimal point (.) in an E, or F type

number overr~des the d specification of the field. In the absence of

an explicit decimal point, the point is positioned d places from the

right of the field, not counting the exponent, if present. For example,

a number with external appearance 27l828E-1 and specification E12.5

is interpreted as 2.71828E-l.

7.4.2 Scale Factors

Scale factors may be specified for E, and F type conversions. A scale

factor is written nP where P is the identifying character and n is a

signed or unsigned integer specifying the scale factor.

For F type conversion the scale factor specil~es a power of ten such that

external number = (internal number)*(power of ten)

-58-

For E type conversions, the scale factor multiplies the number by a power

of ten but the exponent is changed accordingly, leaving the number un­

changed except in form. For example if the statement

FORMAT (F8.3,El6.5)

corresponds to the line

26.451 -4.l32lE-02

the the statement

FORMAT (-lPF8.3,lPEl6.5)

corresponds to the line

2.645 -41. 32l00E-03

The default s~ale factor is O. However, once a scale factor is given, it

holds for all following E.and F type conversions within the same format.

The scale factor is reset to zero by giving a scale factor of zero.

Scale factors have no effect on I conversions.

7.4.3 G-Fields

Output under control of a G-field is dependent on the magnitude of the

floating-point number being converted. Where m represents the magnitude

of the number, the following table shows the relationship between m and

the conversion field to be used.

-59-

Magnitude

O.l,::m<l

l<m~lO

Conversion Field

F(w-4).d,4X

F(w-4).(d-l),4X

F(w-4).l,4X

F(w-4).O,4X

sEw.d

s is the current scale factor and applies only when the E conversion field

is used, 4X denotes a field of four spaces.

Input under control of a G-field is the same as for the F-field.

7.4.4 Logical Fields

Logical data can be transmitted in a manner similar to numeric data by use

of the form:

Lw

where L is the control· character and w is an integer specifying the field

width.

Data is transmitted as the value of a logical variable in the input/output

list.

On input, the data field is inspected for a T or F. If one is found the

value of the logical variable is stored as true or false, respectively.

If the data field contains no T or F, a value of false is stored.

On output, w-l blanks followed by T or F is output if the value of the

logical variable is true or false, respectively.

-60-

7.4.5 Alphanumeric Fields

Alphanumeric data can be transmitted in a manner similar to numeric data

by use of the form Aw or Rw; A and R are the control characters and w

is the number of characters in the field. The alphanumeric characters

are transmitted as the value of a variable in an input/output list. The

variable may be of any type. For example, the sequence

READ (2,5)V

5 FORMAT (A4)

causes four characters to be read and placed in memory as the value of the

variable V.

The character information is transferred as 8-bit ASCII characters, stored

8 characters per 64-bit word.

Although w may have any value, the number of characters transmitted is

limited by the maximum number of characters which can be stored in the

space allotted for the variable. This maximum depends on the variable

type. If w exceeds the maximum, leading characters are lost on input

and replaced with blanks on output. When w is less than the maximum,

the A format causes left justification with blanks filled on input.

Only the left-most w characters are used for output. The R format

causes right justification with binary zeros filled on input. Only

the right-most w characters are used for output.

7.4.6 Alphanumeric Constant Fields

An alphanumeric constant may be specified within a format by preceding

the alphanumeric string by the form nH. H is the control character and

n is the number of characters in the string, counting blanks. For example,

the statement

FORMAT (l7H PROGRAM COMPLETE)

-61-

can be used to output

PROGRAM COMPLETE

on the output listing.

Alphanumeric strings delimited by single quotes may be used in the same

manner.

7.4.7 Mixed Fields

An alphanumeric format field may be placed among other fields of the format.

For example, the statement

FORMAT (I5,8H FORCE=FlO.5)

can be used to output the line

22 FORCE=l7.6890l

Note that the separating comma may be omitted after an alphanumeric format

field.

7.4.8 Blank or Skip Fields

Blanks may be introduced into an output record or characters skipped on an

input record by use of the specification nX. The control character is X

and n is the number of blanks or characters skipped. n must be greater

than zero. For example, the statement

FORMAT (5H STEPI5,lOX,3HY=F7.3)

-62-

may be used to output the line

STEP 28~~~~~~~~~~Y=-3.872

where ten blanks separate the two quantities.

7.4.9 Tabulation

The position in the record where the transfer of data is to begin can be

specified by T format conversion. The specification is Tn where n is the

character position. For printed output, the first.character is for carriage

control and should not be counted.

EXAMPLE:

FORMAT (T20,'NAME',T40,'AGE',Tl,6H GRADE)

would print a line:

Position 1

of

GRADE

Position 19

"-
NAME

7.4.10 Repetition of Field Specifications

Position 39

"-
AGE

Repetition of a field specification may be specified by preceding the control

character E, F, G, I by an unsigned integer giving the number of repetitions

desired. For example

FORMAT (2El2.4,315)

is equivalent to

FORMAT (E12.4,El2.4,I5,I5,I5)

-63-

7.4.11 Repetition of Groups

A group of field specifications may be repeated by enclosing the group in

parentheses and preceding the whole with the repetition number. For example

FORMAT (2I8,2(EI5.5,2(F8.3»)

is equivalent to

FORMAT (2I8,El5.5,2F8.3,El5.5,2F8.3)

7.4.12 Complex Fields

Complex quantities are transmitted as two independent real quantities. The

format specification is given as two successive real specifications or one

repeated real specification. For instance, t~1 statement

FORMAT (2E15.4,2(F8.3,F8.5»

could be used in the transmission of three complex quantities.

7.4.13 Multiple-Record Formats

To handle a group of input/output records where different records have

different field specifications, a slash (/) is used to indicate a new

record. For example, the statement

FORMAT (3I8/15,2F8.4)

is equivalent to

FORMAT (3I8)

-64-

for the first record and

FORMAT (I5,2F8.4)

for the second reco~d.

The separating comma may be omitted when a slash is used.

Blank records may be written on output or records skipped on input by using

consecutive slashes.

Both the slash and the closing parenthesis at the end of the format indicate

the termination of a record. If the list of an input/output statement

dictates that transmission of data is to continue after the closing paren­

thesis of the format is reached, the format is repeated from the last open

parenthesis level of one or zero. If this parenthesis is preceded by a

repeat specification, the repeat specification is reused. Thus the statement

FORMAT (F7.2,2(El5.5,El5.4),I7)

causes the format

F7.2,2(El5.5,ElS.4),I7

to be used on the first record and the format

2(l5.5,ElS.4),I7

on succeeding records.

As a further example, consider the following statement.

FORMAT (F7.2/(2(ElS.S,El5.4),I7»

-65-

The first record has the format below.

F7.2

Successive records have the following format.

2(E15.5,E15.4),I7

7.4.14 Carriage Control for Printing

Every record that is transmitted to a listing device for printing is assumed

to have a carriage control character as the first character of the record.

The carriage control character itself is not printed. The carriage control

characters are:

Character

blank

o
1

Function Before Printing

Space one line

Space two lines

Skip to first line of next page

any other character is treated as a blank.

EXAMPLE:

10 FORMAT(9Hl PAGE ,I3/1HO)

7.5 Auxiliary I/O Statements

These statements are used to control the positioning and file marking of

sequential files.

-66-

7.5.1 REWIND Statement

FORM:

REWIND u

where u is an I/O unit designation.

This statement directs the I/O unit designated to reposition to the first

record. u must not be an asynchronous variable.

EXAMPLES:

REWIND 2

REWIND K

7.5.2 BACKSPACE Statement

FORM:

BACKSPACE u

where u is an I/O unit designation.

This statement directs the I/O unit designated to backspace one record. u

must not be an ansynchronous variable.

EXAMPLES:

BACKSPACE 5

BACKSPACE N

-67-

7.5.3 END FILE Statement

FORM:

END FILE u

where u is an I/O designation.

The statement directs the I/O unit designated to write an end-file mark.

u must not be an asynchronous variable.

EXAMPLE:

END FILE 4

END FILE T

-68-

SECTION VIII - PROGRAM UNITS

8. Introduction

A FORTRAN program consists of one main program and, optionally, SUBROUTINE

subprograms, FUNCTION subprograms, and BLOCK DATA subprograms. Each of

these is termed a "program unit".

8.1 PROGRAM Statement

FORM:

PROGRAM identifier

The PROGRAM statement defines the program name that is used as the entry­

point name for the object module. The identifier must not appear any­

where else in the program unit. This statement, if present, must be the

first statement of a main program. If not present, the main program name

defaults fo F%MAIN.

8.2 END Statement

FORM:

END

The END statement must be the last physical statement of each program unit.

It informs the compiler of the end of the program unit. The END statement

must be on a single source line; continuation lines are not allowed.

8.3 RETURN Statement

FORM:

RETURN

-69-

This statement returns control from a FUNCTIa~ or SUBROUTINE subprogram

to the calling program unit. Normally, the last statement executed in a

subprogram is a RETURN statement. It need not be the last statement of

the program. Any number of RETURN statements may be used.

8.4 RESUME Statement

FORM:

RESUME

This statement is used to place a function or subroutine in the asynchronous

or parallel mode. It allows the calling program unit to continue execution;

however, the function or subroutine continues to execute as well until a

RETURN statement is executed.

8.5 Subprogram Communications

The main program and subprograms communicate with each other by means of

COMMON variables and parameters. If the means of communication is by

p~rameters, the arguments of the subroutine or function call are known as

actual parameters. Corresponding arguments in the subrou~ine or function

argument list are known as formal parameters.

8.5.1 Actual Parameters

The actual parameters which appear in a subroutine call or a function

reference may be any of the following:

An arithmetic expression

A logical expression

A constant

A simple variable

An array element reference

An array name

A FUNCTION name

A SUBROUTINE name

-70-

8.5.2 Formal Parameters

The formal parameters appearing in the parenthetical list of a FUNCTION

or SUBROUTINE statement may be any of the following:

An array name

A simple variable

A subprogram name

(either function or subroutine)

The formal parameters are replaced at each execution of the subprogram by

the actual parameters supplied in the CALL statement or function reference.

Formal parameters representing array names must appear within the sub­

program in type or DIMENSION statements giving dimension. information. In

a type or DIMENSION statement, formal parameters may be used to specify

variable dimensions for array name formal parameters. Variable dimensions

may be given only for arrays which are formal parameters.

Within a subprogram~ the use of formal parameters is restricted as follows:

1. Formal parameters must not appear in COMMON statements.

2. Formal parameters must not appear in EQUIVALENCE statements.

3. Formal parameters must not appear in DATA statements.

8.5.3 Correspondence Between Actual and Formal Parameters

When a subprogram is called, the formal parameters must agree with the

actual parameters as to number, order, type, and length. For example, if

an actual parameter is an integer constant, then the corresponding formal

parameter must be of INTEGER type.

Also, the formal and actual parameters must be either both synchronous or

both asynchronous, they must not be mixed.

-71-

If a formal parameter is an array name, the corresponding actual parameter

may be either an array name or an array element.

If a formal parameter is assigned a value in the subprogram, the corres­

ponding actual parameter must be a simple variable array element, or

array name. A constant or expression should not be used as an actual

parameter if the corresponding formal parameter may be assigned a value.

8.6 Statement Function Definition Statement

FORM:

identifier(identifier,identifier, •••)=expression

This statement defines an internal subprogram. The entire definition is

contained in a single statement. The first identifier is the name of the

subprogram being defined.

Statement function subprograms are functions; they are single-value and

must have at least one argument. The type of the function is determined

by the type of the function identifier.

The identifiers enclosed in parentheses represent the arguments of the

function. These are formal parameters which have meaning and must be

unique only within the statement. They may be identical to identifiers

of the same type appearing elsewhere in the program. These identifiers

must agree in order, number, type, and length with the actual parameters

given at execution time.

~he use of a parameter in the defining expression is specified by the use

of its paramete~ identifier~ Expressions are the only permissible arguments

of internal functions; hence the parameter identifiers may appear only as

simple variables in the defining expression. They may not appear as array

identifier.

Identifiers appearing in the defining expression which do not represent

parameters are treated as ordinary variables.

The defining expression may include references to external functions or

other previously defined internal functions.

All statement function definition statements must precede the first exe­

cutable statement of the program.

EXAMPLES:

SSQR(K)=K*(K+l)*(2K+l)/6
NOR(T,S)=.NOT.(T.OR.S)

ACOSH(X)=(EXP(X/A)+EXP(-X/A»/2

In the last example above, X is a parameter identifier and A is an ordinary

identifier. At execution, the function is evaluated using the current

value of the quantity represented by A.

8.7 FUNCTION Subprograms

A FUNCTION subprogram is' a function; it returns a single value and is

referenced as a basic element in an expression. A FUNCTION subprogram

begins with a FUNCTION declaration and returns control to the calling

program by means of a RETURN or RESUME statement. It is a program unit

and, consequently, must terminate with an END statement.

8.7.1 FUNCTION Statement

FORM:

FUNCTION identifier(identifier,identifier, •••)

This statement declares the program which follows to be a function subpro­

gram. The first identifier is the name of the function being defined. This

-73-

identifier must appear as a simple variable ~~1 be assigned a value during

execution of the subprogram. This value is the function value.

Identifiers appearing in the list enclosed in parentheses are formal

parmeters represent~ng the function arguments.

EXAMPLE:

FUNCTION FLOAT (I)

FLOAT=I

RETURN

END

8.7.2 FUNCTION Type

The type of the function is the type of identifier used to name the function.

This identifier may be typed implicitly or explicitly in the same way as

any other identifier. Alternately, the function may be explicitly typed

in the FUNCTION statement itself by replacing the word FUNCTION with one

of the following:

INTEr:;~ER FUNCTION

REAL FUNCTION

DOUBLE FUNCTION

DOUBLE PRECISION FUNCTION

COMPLEX FUNCTION

LOGICAL FUNCTION

for example, the statement

COMPLEX FUNCTION HPRlME(S,N)

is equivalent to the statements

FUNCTION HPRlME(S,N)

COMPLEX HPRIME

-74-

EXAMPLES:

FUNCTION MAY(RANG~XP,yp,ZP)

REAL FUNCTION COT (ARG)

8.7.3 Library Functions

The FORTRAN system supplies a library of standard functions which may be

referenced from any program. Appendix A lists these library functions.

These are divided into two sets: basic external functions and intrinsic

functions. The basic external functions are called by the object program

in the same manner as normal, user-supplied functions. Intrinsic func­

tion names are known to the compiler and intrinsic function references

may be treated in non-standard ways (such as expanding the function

in-line). The programmer can supply his own function in place of an

intrinsic function by including the name in EXTERNAL statements in all

calling programs.

8.8 SUBROUTINE Subprograms

A SUBROUTINE subprogram is not a function; it can be referred to only

by a CALL or CREATE statement. A SUBROUTINE subprogram begins with a

SUBROUTINE declaration' and returns control to the calling program by

means of a RETURN or RESUME statement.

8.8.1 SUBROUTINE Statement

FORMS:

SUBROUTINE identifier

SUBROUTINE identifier(identifier,identifier, •••)

This statement declares the program which follows to be a SUBROUTINE sub­

program. The first identifier is the subroutine name. The identifiers

in the list enclosed in parentheses are formal parameters.

-75-

A SUBROUTINE subprogram may use one or more of its formal parameters to

represent results. The subprogram name is not used for return of results.

A SUBROUTINE subprogram need not have any parameters at all.

EXAMPLES:

SUBROUTINE EXIT

SUBROUTINE FACTOR (CEF,N,ROOT$)

SUBROUTINE RESIDUE .(NUM.D,DE~,M,RES)

8.8.2 CALL Statement

FORMS:

CALL identifier

CALL identifier(argument,argument, ••• ,argument)

The CALL statement is used to transfer contro.L to a subroutine subprogram.

The identifier is the subprogram name.

The parameters may be expressions, array identifiers, alphanumeric strings,

or subprogram identifiers, as in the case of a function reference. Unlike

a function, however, a subroutine cannot be referenced as a basic element

in an expression. A subroutine may use one or more of its arguments to

return results to the calling program. If no arguments at all are required,

the first form is used.

EXAMPLES:

CALL EXIT

CALL SWITCH (SIN,2.LE.BETA,X**4,Y)

CALL MULT (A,B,C)

The identifier used to name the subroutine is not assigned a type and has

no relation to the types of the arguments.

-76-

8.8.3 CREATE Statement

FORMS:

CREATE identifier

CREATE identifier(argument,argument, ••• ,argument)

The CREATE statement is used to execute a subroutine as a parallel pro­

cess. The identifier is the subroutine name.

The CREATE statement is the only way to directly initiate execution of

an asynchronous subroutine. Note, however, that parallel execution is

also obtained through the use of the RESUME statement.

EXAMPLES:

CREATE GRAPH ($IN,X)

CREATE PROC

-77-

A.I Intrinsic Functions

Type of
FUNCTION Parameter

ABS(a) Real

lABS (a) Integer

DABS (a) Double

AINT(a) Real

INT(a) Real

IDINT(a) Double

AMODea l,a2) Real

MOD(al,a2) Integer

AMAXO(al,a2, •••) Integer

~1(al,a2"") Real

MAXO(al,a2, •••) Integer

MAXI (a 1 , a 2 , • • •) Real

DMAXI(al,a2, •••) Double

AMINO(al,a2, •..) Integer

AMINI(al,a2, •••) Real

MINO(al ,a2, •..) Integer

MINl(al,a2, .••) Real

DMINl(al,a2,.") Double

FLOAT (a) Integer

FULL(a) Any

APPENDIX A

LIBRARY FUNCTIONS

Type of
Result

Real

Integer

Double

Real

Integer

Integer

Real

Integer

Real

Real

Integer

Integer

Double

Read

Real

Integer

Integer

Double

Real

Logical
asynchronous
type

-78-

Definition

lal

Truncation

al (mod a2)

Max (a 1 ,a2 , •••)

Min (a 1 , a 2 , • • •)

Conversion from integer
to real

Test FULL access state

Type of Type of
Function Parameter Result Definition

EMPTY (a) Any Logical Test EMPTY access state
asynchronous
type

IFIX(a) Real Integer Conversion from real to
integer

SIGN(al,a2) Real Real Sign of a2 times I all

ISIGN(al,a2) Integer Integer

DSIGN(al,a2) Double Double

DIM(al ,a2) Real Real al-Min(al,a2)

IDIM(a 1 ,a2) Integer Integer

SNGL(a) Double Real Conversion from double
to real

REAL (a) Complex Real Obtain real part of complex

AIMAG(a) Complex Real Obtain imaginary part of
complex

DBLE(a) Real Double Conversion from real to
double

CMPLX(al,a2) Real Complex al + a2r-Y

CONJG(a) Complex Complex Obtain conjugate of
complex

IOR(al,a2) Integer Integer Inclusive OR

LAND(al,a2) Integer Integer Logical AND

-79-

Type of Type of
Function Parameter Result Definition

NOT(al) Integer Integer Logical negation

IEOR(al,a2) Integer Integer Exclusive OR

ISHFT(al,a2) Integer Integer Shift al by a2 bits

-80-

A.2 Basic External Functions

Type of Type of
Function Parameter Result Definition

EXP(a) Real Real a
e

DEXP(a) Double Double

CEXP(a) Complex Complex

ALOG(a) Real Real In(a)

DLOG(a) Double Double

CLOG(a) Complex Complex

ALOGlO(a) Real Real logl() (8.)

DLOGlO(a) Double Double

SIN (a) Real Real sin(a)

DSIN(a) Double Double

CSIN(a) Complex Complex

COS (a) Real Real cos (a)

DCOS(a) Double Double

CCOS(a) COlJlplex Complex

TANH (a) Real Real tanh (a)

SQRT(a) Real Real (a)1/2

DSQRT(a) Double Double

CSQRT(a) Complex Complex

ATAN(a) Real Real arctan(a)

DATAN(a) Double Double

ATAN2(al,a2) Real Real arctan(al/a2)

DATAN2(al,a2) Double Double

-81-

Function

CABS (a)

Type of
Parameter

Double

Complex

-82-

Type of
Result

Double

Complex

Definition

Absolute value of Complex

B.l Introduction

APPENDIX B

FORTRAN LISTING FORMAT

The printed output from the FORTRAN compiler is organized as follows for

each program or subprogram in a compilation:

1. Program listing.

2. Allocation of variables for each COMMON block and for non-COMMON

variables - gives location within the block, variable name, data

type, size, and whether scalar or array.

3. Cross-reference (optional)- lists each symbol followed by the line

number of each statement in which the symbol appears. A line

number surrounded by slashes indicates appearance in a speci­

fication statement. A line number surrounded by asterisks

. indicates assignment of a value to the variable.

4. Object code listing (optional) - lists the program again with the

generated machine language code following each statement. The

generated code portion shows the memory type, location, hexa­

decimal contents, and dis-assembly (assembly language equivalent)

of each instruction generated.

5. Subprograms called - lists name, type, and number of arguments.

6. Statement labels - lists memory location, label name, and how

used.

7. Statement locations - gives source line number and memory loca­

tion (within a block) of each non-comment and non-continuation

line in the program.

-83-

8. Number of warnings and errors.

B.2 Statement Error Diagnostics

Duringoompilation, statements which violate the syntactic or semantic

rules of the language are recognized and error indications are printed.

There are two levels of statement diagnostics: warnings and errors.

Warnings are issued for minor infractions where the compiler can still

, determine what is to be done and compile the statement. Errors are

severe violations of the language. In the case of errors, compilation

proceeds as if the statement was never encountered. The statement label,

if any, remains defined. If the error statement is ever executed, it

will cause a link to a system routine which will terminate execution

of the program and notify the user that an attempt has been made to

execute an erroneous statement. The name of the program and the line

number of the statement will be displayed.

One character of the statement is marked with an up-arrow symbol (A)

output directly beneath the erroneous character, for example:

ZATA = X + y* A.
A

The character If_If is marked as an error.

In the case of a syntax error, the marked character itself was unacceptable,

as in the example above. In the case of a semantic error, an identifier

or other construct is in error. The mark indicates the last character of

the construct in error. For example, in the line:

COMMON ALPHA, BETA, ALPHA, GAMMA
A

the mark indicates that the identifier ALPHA is misused.

-84-

The compiler attempts all interpretations of statement type before dis­

carding a statement. The marked position indicates the greatest amount

of correct information found under the most logical assumption of

statement type.

A comment specifying the reason for the failure is output directly after

the marked line. There may be more than one diagnostic per line. The

diagnostics are listed left-to-right. Each diagnostic is f~llowed by a

sequence of characters: "E*E"cE ••• E" or "W*W*W ••• WIt indicating "error"

or "warning", respectively.

An alphabetic list of possible statement diagnostics follows:

ARGUMENT CONVERTED (Warning)

The type of the indicated parameter for an intrinsic function was

converted to agree with the type required by the function.

ARGUMENT COUNT (Warning)

The number of parameters to a subprogram is wrong either because

it is an intrinsic function which the compiler knows about or

because the same subprogram was called previously with a different

number of parameters.

BLOCK DATA ONLY

A DATA statement not in a BLOCK DATA subprogram attempted to

initialize a variable in COMMON.

An executable statement has been included in a BLOCK DATA

subprogram.

-85-

CONSTANT SIZE

The size of the indicated constant is outside the allowable

range.

DATA TYPE

The type of a constant in a DATA statement does not agree with

the type of the variables it- is to initialize.

DATA COUNT

The number of variables in a DATA statement does not agree

with the number of constants.

DECLARATION CONFLICT

An attempt has been made to declare an identifier as a FORTRAN

entity (simple variable, array, subprogram, statement function

name) which has already been used otherwise.

DUPLICATE DUMMY

A formal parameter has been declared twice in a statement func­

tion definition, FUNCTION, or SUBROUTINE statement.

EXTRA COMMA (Warning)

More than one comma has been encountered at a point where a

single comma was expected.

-86-

FORMAT LABEL

The indicated statement number was declared in the label field

of a FORMAT statement and is being used in some manner other

than as a format reference.

ILLEGAL DO CLOSE (Warning)

A DO loop was closed with an illegal statement.

ILLEGAL LABEL

1. Statement number is less than 1 or greater than 99999.

2. A DO statement references a previously defined label or

a label previously referenced as a FORMAT.

ILLEGAL NUMBER

1. FORMAT, DATA or CONST repeat count not greater than zero.

2. Unary minus of Hollerith or Hexadecimal constant.

3. Illegal complex number format.

JUMP LABEL

1. Statement number which is not a FORMAT label has been used.

as if it were.

2. A FORMAT label has been previously referenced by an IF or

GO TO statement.

-87-

LABEL MISSING (Warning)

1. Indicated statement cannot be executed because it has no

statement number.

2. The indicated FORMAT cannot be used because it has no

statement number.

MISSING COMMA (Warning)

A comma was missing at a point where one was expected but com­

pilation could continue.

MISUSED NAME

An identifier has been used in the wrong contex, such as:

- A formal parameter in a DA1A or EQUIVALENCE statement.

A variable dimension which is not a simple formal

parameter.

- A subprogram name used without parameters in an ex­

pression.

MULTI DEFINED

A statement number is defined more than once.

NOT ARRAY

An identifier which is not an array name has been used where

an array name should have appeared.

-88-

NOT INTEGER

A variable or expression of type other than integer has been

used where only integer type is allowed.

NUMBER OF SUBSCRIPTS

RANGE

The number of subscripts in an array reference is incorrect.

1. The second character in the declaration of an IMPLICIT range

does not alphabetically follow the first character.

2. A constant subscript array reference has a subscript which

falls outside the size of the array.

STATEMENT NOT ALLOWED

1. A statement has been used in an illegal context.

2. An illegal logical IF secondary statement or the statement

is in the wrong order, such as a statement function defini-·

tion not preceding executable statements.

SYNTAX

1. Usually erroneous punctuation or an illegally constructed

expression.

2. The character marked shows how much of the statement was

scanned before it ceased to make sense.

-89-

TYPE CONFLICT

1. The same first character has been declared two different

types in an IMPLICIT statement.

2. The types of the operands of an arithmetic or logic~l

operator are illegal.

3. The types of the right- and left-hand sides of an assign­

ment are improper.

UNDIMENSIONED

A simple variable is followed by a left parenthesis.

UNRECOGNIZABLE

The entire statement was unrecognizable.

UNSUCCESSFUL COPY

A COpy statment could not be performed.

B.3 Program Error Diagnostics

After the source program has been listed, summary error messages pertaining

to the program as a whole are listed.

The following describes each of these messages or set of messages.

FUNCTION NAME NOT REFERENCED

This message appears at the end of any FUNCTION subprogram in

which the function name does not appear on the left-hand side

of an assignment statement.

-90-

OPEN DO LOOPS

Following this heading, all DO loops which were not closed are

listed in the form:

"statement-number OPENED AT LINE line-number"

UNDEFINED LABELS

All undefined statement numbers are listed after this heading.

Each undefined statement number appears as:

statement-number FIRST REFERENCED AT LINE line-number

ALLOCATION ERRORS

This heading is followed by a list of identifiers that were

incorrectly assigned memory locations by the program. .These

errors are caused by COMMON and/or EQUIVALENCE statements.

Such errore as:

- EQUIV~LENCE statement references variables for different

COMMON blocks.

- Extending a COMMON block backward.

- Specifying an impossible equivalence group.

-91-

C.l Introduction

APPENDIX C

COMPILER OPTIONS

The following compiler options are placed in parenthepes on the compiler

invocation control card.

Conditional Compilation - CO

This option causes lines containing a D'in column one to be compiled.

Statements with a D in column one are treated as comments if this option

is not selected.

Cross Reference - XR

This option causes the compiler to print an alphabetic listing of each

identifier and where it was defined, altered, or referenced.

List Object - LO

This option causes the compiler to print pse~~~-assembly language state­

ments corresponding to the object code generated.

-92-

D.l Introduction

APPENDIX D

FORTAN RUNTIME LIBRARY

The programs involved with the process of executing a FORTRAN program may

be divided into two categories:

Funtion Library

Arithmetic Larbrary

D.2 Function Library

The Function Library consists of the basic (~~t~rnal functions and non­

inline intrinsic functions. These are all referenced directly by the

FORTRAN program, therefore, the module name is the same as the FORTRAN

function name.

The Function Library contains the following modules:

ALOG CLOG DCOS EXP

ALOGlO COS' DEXP IDINT

ATAN COSH DLOG SIN

ATAN2 CSIN DLOGlO SINH

CABS CSQRT DMOD SQRT

CCOS DATAN DSIN TANH

CEXP DATAN2 DSQRT

D.3 Arithmetic Librarl

The Arithmetic Library consists of the functions indirectly referenced by

the FORTRAN program. These modules all have the prefix F% to identify

them as part of the FORTRAN run-time library and to limit conflicts with

user names.

-93-

Name

F%CVDI

F%CVID

F%DADD

F%DSUB

F%DMUL

F%DDIV

F%CMUL

F%CDIV

F%DTNE

F%DTEQ

F%DTLE

F%DTLT

F%DTGE

F%DTGT

F%CTNE

F%CTEQ

F%PW11

F%PW1R

F%PWID

F%PW1C

F%PWRI

F%PWRR

F%PWRD

F%PWRC

F%PWDI

F%PWDR

F%PWDD

F%PWDC

F%PWCI

F%PWCR

F%PWCD

F%PWCC

Function

Convert double precision to integer.

Convert integer to double precision

Double precision add

Double precision subtract

Double precision multiply

Double precision divide

Complex multiply

Complex divide

Double precision test .NE.

Double precision Test .EQ.

Double precision test .LE.

Double precision test .LT.

Double precision test .GE.

Double precision test .GT.

Complex test .NE.

Complex test .EQ.

1**1 power routine

I**R power routine

I**D power routine

I**C power routine

R**I power routine

R**R power routine

R**D power routine

R**C power routine

D**I power routine

D**R power routine

D**D power routine

D**C power routine

C**I power routine

C**R power routine

C**D power routine

C**C power routine

-94-

