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THE EVOLUTION OF A SUPERCOMPUTER

Burton J. Smith
Denelcor, Inc.
Denver, Colorado 80205

Abstract -- The HEP computer system, originally a digital
replacement for analog computers, has gradually evolved into a
high-performance scientific machine in the supercomputer class.
The problems encountered during this metamorphosis are pointed
out together with the solutions that were adopted, and conclusions
are made based upon this experience.

Initial Designs

In 1973, several of us at Denelcor, Incorporated decided
that a digital computer could be designed and built to replace
the analog machines that had been our traditional products.
Our intent was to retain the speed and parallelism of the analog
computer while improving on its programmability, flexibility,
and reliability. Our approach was straightforward: the functional
units of the analog computer would be implemented in digital form
and the patch panel would be replaced by a high-speed bus controlled
by a scheduler processor which would transfer data among the
functional units. Since some of the functions would have data
dependent execution times, it was decided that the synchronization
of the data flow in the computer would not depend on the timing of
scheduler programs; instead, every function unit would have input
and output locations accessible from the high-speed bus which
could be either full or empty. The function would be performed
when all input locations were full and all output locations were
empty, and would empty the inputs, compute the function, and
then fill the outputs with the answers., The scheduler processor
would be able to perform the opposite operations on the input
and output locations to move output values of one function unit
to the input locations of other function units. The machine was
to have 32 bit arithmetic and be capable of about ten million
floating point instructions per second.



We wrote a few programs for some typical analog computer
problems and discovered that the traffic on the high-speed
bus was limiting the performance of the system. At this point,
we decided to replace the add and multiply function units by an
algebraic module - really a simple shared resource MIMD computer[1l]
to reduce the bus load. The algebraic module was pipelined to
improve the utilization of the addition and multiplication logic,
and had several program counters so that several expressions could
be evaluated simultaneously. The registers of the algebraic module
could be filled or emptied by the scheduler via the high-speed bus
as well as by instructions within the algebraic module. . We called
this system HEP, standing for Heterogeneous Element Processor.

We built a prototype HEP based on these concepts and were
happy with the effectiveness of the architecture. The prototype
was built under contract to the U.S. Army Ballistic Research
Laboratory (BRL) in Aberdeen, Maryland, and executed their
benchmark at a quite respectable speed, expecially considering
that the implementation suffered from noise problems and did
not run at design clock rate. BRL was impressed enough with the
concept to award Denelcor a contract in 1976 to design and build
a HEP system incorporating four algebraic modules and 64 bit
arithmetic. In order to guarantee that the noise problems of
the prototype would be solved, the contract stipulated that
initially a single algebraic module was to be built and demon-
strated to BRL running benchmarks at design speed; only then
would we be allowed to complete the design and construction of
the full system. The contract also specified that a high-level
language be furnished.

Enhancements

The high-level language problem had us concerned for a
while because we could see no good way to decompose a program’
into a scheduler part and several algebraic module parts, even
if the decomposition was specified by the programmer, because
of the very special nature of the scheduler instruction set.

We decided with BRL's concurrence to eliminate the scheduler

and the high-speed bus, and to provide the communication functions
of these components with a data memory which would be accessible
by all algebraic modules via a switch. The full-empty property
would be available at every location in the shared memory to
facilitate synchronization of processes running in parallel in
different algebraic modules. This idea allowed us to implement
an extended version of FORTRAN in which a programmer can write
explicit parallel code. In particular, a subroutine in HEP
FORTRAN may be invoked by a CREATE statement rather than by a
CALL statement. This causes a process to execute the subroutine



in parallel with the creating process. In addition, variables
having the full-empty property (called asynchronous variables

in HEP FORTRAN) are identified by a "§" as the first letter of
the variable name and are used to synchronize parallel processes
in a producer-consumer fashion.

We realized that explicit parallel programming was not the
only way in which HEP could be used effectively, and that multiple
independent jobs could be run concurrently if protection were
provided by the hardware. The cost of including the necessary
protection mechanisms turned out to be just as expensive in
terms of hardware complexity, system cost, and schedule as we
all had predicted; we implemented the protection hardware
primarily because a '"single, highly opinionated, forceful
individual'™ [2], Max Gilliland, insisted on it. The ability
of HEP to use the parallelism provided by multiple jobs executing
simultaneously is certainly an important feature, and has greatly
simplified the design of the operating system. It was at about
this time that we started calling the algebraic modules '"processors"
and realized that HEP might be usable as a general-purpose computer
system.

While the processor required by our contract with BRL was
being built, our attention turned to the switch that was to
connect the four processors of the BRL system to data memory.
Our original intent was to implement a crossbar switch, but
two properties of HEP made a crossbar undesirable. First the
interconnection of large numbers of processors,and memories is
very expensive if a crossbar (or any other O(n”) switch) is
used, and second, HEP is a physically large system and the
wire lengths needed to interconnect widely separated units to
a centrally controlled switch would result in very wide data
paths to maintain the necessary throughput rates. The switch
network that we eventually came up with uses packet switching
techniques to allow the control of the switch to be distributed
among its nodes. The HEP switch also has advantages in config-
uration flexibility, versatility, and fault tolerance over our
original scheme. The major problem in designing it was making
it fast enough; how well we succeeded can perhaps be inferred
from the fact that the switch propagates messages at one-fifth
the speed of light with a bandwidth approaching 80 megabytes
per second for each processor or memory connected to it. A
succinct description of the HEP switch and HEP as a whole may
be found in [3].



Experiences

The HEP processor that we had been building for demonstration
to BRL executed its first HEP FORTRAN program successfully in June
of 1979, and we have since demonstrated that processor to BRL and
others. Most of the programs that have been written for HEP are
benchmarks that were obtained from interested parties and rewritten
in HEP FORTRAN by Robert Lord of Washington State University.

Some of this benchmarking work has led to more generally applicable
MIMD algorithm development [ 4,5 ]. '

In sharp contrast to our experience with the prototype, the
first HEP processor was extremely easy to get running. We made a
conscious decision not to use unproven technologies, and this
undoubtedly explains part of our success. The key ingredient,
however, was that we were extremely conservative in our approach
to the packaging, maintenance, and electromagnetic field theoretic
aspects of the implementation. The HEP computer system is speed
independent in design, and will run at any clock rate less than
or equal to its maximum rate of 40 MHz. This feature allows us
to test and debug any part of the system (including the system
itself) using IML, our interactive maintenance language. Our
experience with the multiplier function unit is instructive.

HEP printed circuit boards are about 45 cm wide and 35 cm long

and are populated with an average of 208 SSI and MSI circuits
apiece. After the nine boards of the multiplier had been debugged
individually and at low speed using IML, we plugged them all into
the processor and had the multiply instructions working at full
speed about ten days later, this in spite of the fact that the
~multiplier was designed by five people.

Conclusions

Several conclusions can be drawn from this history in addition
to the obvious ones about knowing when to stop designing and start
manufacturing and the like. First, it is probably better to design
a computer for a single application that you know very well than to
design a computer for a number of them hoping for a bigger market.
At least you will please a few customers in the first case, and the
compromises you make in designing a more general purpose computer
may wind up pleasing no one. In addition, you may be surprised
to find that your single-application machine can do other things
too; I think the experience of Floating Point Systems in this
regard 1is especially interesting.



Second, it is not enough to merely use the best attainable
technology when a large and innovative digital system is to be
built. It is equally as important to make the system easy to
maintain in a general sense: easy to manufacture, easy to test,
easy to repair, and perhaps even easy to understand. Innovation
in architecture can overcome problems stemming from slow parts,
insufficient connector pins, or inadequate component densities,
but cannot overcome deficiencies in implementation of that arch-
itecture. -

Finally, it is not really necessary to know the exact arch-
itecture of the computer one is building before one starts working
on it. Far more important is the maintenance of an open-minded
approach to the problems one is trying to solve with the computer
and a willingness to change the whole design if it seems approp-
riate. Most of the time that passes between the point of inception
and the point of obsolescence of a computer system passes after the
first prototype is running, and good architectures are surprisingly
long-lived and fruitful assets in the marketplace. This is espec-
ially significant when compared to the rate at which advances in
electronic technology change our implementations of those architec-
tures. \
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Abstract -- The HEP computer system currently
being implemented by Denelcor, Inc., under con-
tract to the U.S. Army Ballistics Research Lab-
oratory is an MIMD machine of the shared resource
type as defined by Flynn. In this type of or-
ganization, skeleton processors compete for
execution resources in either space or time.

In the HEP processor, spatial switching occurs
between two queues of processes; one of these
controls program memory, register memory, and
the functional units while the other controls
data memory. Multiple processors and data
memories may be interconnected via a pipelined
switch, and any register memory or data memory
location may be used to synchronize two pro-
cesses on a producer-consumer basis.

Overview

The HEP computer system currently being im-
plemented by Denelcor, Inc., under contract to
the U.S. Army Ballistics Research Laboratory is
an MIMD machine of the shared resource type as
defined by Flynn [1]. In this type of organiza-
tion, skeleton processors compete for execution
resources in either space or time. For example,
the set of peripheral processors of the CDC 6600
[5] may be viewed as an MIMD machine implemented
via the time-multiplexing of ten process states
to one functional unit.

In a HEP processor, two queues are used to
time-multiplex the process states. One of these
provides input to a pipeline which fetches a three
address instruction, decodes it, obtains the two
operands, and sends the information to one of
several pipelined function units where the opera-
tion is completed. In case the operation is a
data memory access, the process state enters a
second queue. This queue provides input to a
pipelined switch which interconnects several data
memoxry modules with several processors. When the
memory access is complete, the process state is
returned to the first queue. The processor organ-
ization is shown in Figure 1, and the over-all
system layout appears in Figure 2.

Each processor of HEP can support up to 128
processes, and nominally begins execution of a
new instruction (on behalf of some process) every
100 nanoseconds. The time required to completely
execute an instruction is 800 ns, so that if at
least eight totally independent processes, i.e.
processes that do not share data, are executing
in one processor the instruction execution rate
is 107 instructions per second per processor. The
first HEP system will have four processors and
128K words of data memory.

FROM DATA MEMORY
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TO DATA MEMORY
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Figure 1. Processor Organization
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HEP instructions and data words are 64 bits
wide. The floating point format is sign magni-
tude with a hexadecimal, seven-bit, excess-64
exponent. All functional units can support one
instruction execution every 100 nanoseconds except
the divider, which can support this rate momen-
tarily but is slower on the average.

Tasks

Since HEP attains maximum speed when all of
its processes are independent, a simple set of
protection mechanisms is incorporated to allow
potentially hostile users to execute simultane-
ously. A domain of protection in HEP is called
a task, and consists of a set of processes with
the same task identifier (TID) in their process
state. The TID specifies a task status word which
contains base and limit addresses defining the
regions within the various memories accessible
by the processes in that task. In this way, pro-
cesses within a task may cooperate but are pre-
vented from communicating with those in other
tasks. Processes in different tasks or proces-
sors may communicate via data memory if they have
an overlapping allocation there.

Processes are a scarce resource in HEP; in
addition, the synchronization primitives used in
HEP make processes difficult to virtualize. As
a result, the maximum number of processes a task
will use must Ke specified to the system when the
task is loaded. It is the job of the operating
system to insure that its total allocation of
processes to tasks does not exceed the number
available, so that a create fault (too many pro-
cesses) can only occur when one or more tasks have
created more processes than they were allocated.
In this event, the offending task or tasks {(not
necessarily the task that actually caused the
create fault) are removed from the processor.

Protection violations, create faults, and
other error conditions arising within a process
cause traps. A trap is the creation of a process
executing in a supervisor task. There are a total
of sixteen tasks available in each processor;
eight of these are user tasks and the other eight
are corresponding supervisor tasks. When any
process in it, and a process is created in the
corrxesponding supervisor task to handle the con-
dition. This scheme is not used for create fault,
however; a create fault suspends execution of all
processes (regardless of task) except those '
actually handling the fault.

Create fault occurs before all processes have
been used to allow any create instructions in
progress within the pipeline to complete normally
and to allow for the creation of the create fault
handler process. All other traps in HEP are pre-
cise in the sense that no subsequent instructions
will be executed from the offending task, a use-
ful feature when one is trying to debug a con-
current algorithm.

Synchronization

The synchronization of processes in HEP is
made simple by virtue of the fact that any regis-
ter or data memory location can be used to
synchronize two processes in a producer-consumer
fashion. This requires three states in general:
a reserved state to provide for mutual exclusion,
a full state, and an empty state. The execution
of an instruction tests the states of locations
and modifies them in an indivisible manner;
typically, an instruction tests its sources full
and its destination empty. If any of these tests
fails, the instruction is reattempted by the
process on its next turn for servicing. If all
tests succeed, the instruction is executed; the
process sets both sources empty and the destina-~
tion reserved. The operands from the sources are
sent to the function unit, and the program coun-
ter in the process state is incremented. When
the function unit eventually writes a result in
the destination location that was specified in
the instruction it sets the destination full.
Provisions are made to test a destination full
rather than empty, to preserve the state of a
source, or to totally override the state of a
source or destination with the proviso that a
reserved state may not be overridden except by
certain privileged instructions. Input-output
synchronization is handled naturally by mapping
I/0 device registers into the data memory address
space; an interrupt handler is just a process
that is attempting to read an input location ox
write an output location. I/O device addresses
are not relocated by the data memory base address
and all I/O-addressed operations are privileged.

Switch

The switch that interconnects processors and
data memories to allow memory sharing consists of
a number of nodes connected via ports. Each node
has three ports, and can simultaneously send and
receive a message on each port. The messages
contain the address of the recipient, the address
of the originator, the operation to be performed
by the recipient,.and a priority. Each switch
node receives a message on each of its three
ports every 100 nanoseconds and attempts to re-
transmit each message on a port that will reduce
the distance of that message from its recipient;
a table mapping the recipient address into the
number of a port that reduces distance is stored
in each node for this purpose. If conflict for
a port occurs, the node routes one of the con-
tending messages correctly and the rest incor-
rectly. To help insure fairness, an incorrectly
routed message has its priority incremented as it
passes through the node, and preference is given
in conflict situations to the message(s) with the
highest priority.

The time required to complete a memory oper-
ation via the switch includes two message trans-
mission times, one in each direction, since the



success or failure of the operation (based on the
state of the memory location, i.e. full or empty)
must be reported back to the processor so that it
can decide whether to reattempt the operation or
not. The propagation delay through a node and its
associated wiring is 50 nanoseconds. Since a mes-
sage is distributed among two (or three) nodes at
any instant, the switch must be two-colorable to
avoid conflicts between the beginning of some mes-
sage and the middle part of another. When the
switch fills up due to a high conflict rate, mis-
routed massages begin to "leak" from the switch.
Every originator is obliged to reinsert a leaking
message into the switch in preference to inserting
a new message. Special measures are taken when
the priority value reaches its maximum in any mes-
sage to avoid indefinite delays for such messages;
a preferable scheme would have been to let priori-
ty be established by time of message creation ex-
cept for the large number of bits required to
specify it..

FORTRAN Extensions

Two extensions have been made to FORTRAN to
allow the programmer to incorporate parallelism
into his programs. First, subroutines whose names
begin with "$" may execute in parallel with their
callers, either by being CREATEd instead of CALLed
or by executing a RESUME prior to a RETURN. Se-
cond, variables and arrays whose names begin with
"$" may be used to transmit data between two pro-
cesses via the full-empty discipline. A simple
program to add the elements of an array $A is
shown in Figure 3. The subroutines $INPUT and
$OUTPUT perform obvious functions, and the sub-
routine $ADD does the work of adding up the
elements. There are a total of 14 processes
executing as a result of running the program.

C _ADD UP THE ELEMENTS OF
c . THE ARRAY $A
REAL $A(1000),$S(10),SSUM
INTEGER I

CREATE S$INPUT ($A,1000)

Do 10 I=1,10

CREATE $ADD($A(100*I-99),$S(I),L00)
10 CONTINUE

CREATE S$ADD(SS,S$SUM,10)

CREATE $OUTPUT ($SUM,1)

END
C NOELTS ELEMENTS OF $V
C ARE ADDED AND PLACED IN $ANS

SUBROUTINE $ADD($V, $ANS,NOELTS)
REAL $V(1),$ANS,TEMP
INTEGER J, NOELTS
TEMP=0.0
DO 20 J=1,NOELTS
TEMP=TEMP+$V (J)
20 CONTINUE
$ANS=TEMP
RETURN
END

Figure 3. HEP FORTRAN Example

Applications

As a parallel computer, HEP has an advantage
over SIMD machines and more loosely coupled MIMD
machines in two application areas. The first of
these involves the solution of large systems of
ordinary differential equations in simulating con-
tinuous systems. In this application, vector op-
erations are difficult to apply because of the
precedence constraints in the. equations, and
loosely coupled MIMD organizations are hard to use
because a good partition of the problem to share

. workload and minimize communication is hard to

find. Scheduling becomes relatively easier as the
number of processes increases [3], and is quite
simple when one has one process per instruction

as in a data flow architecture [4].

A second type of application. for which HEP
seems to be well suited is the solution of partial
differential equations for which the adjacencies
of the discrete objects in the model change rapid-
ly. Free surface and particle electrodynamics
problems have this characteristic. The difficulty -
here is one of constantly having to rearrange the
model within the computer to suit the connectivity
implied by the architecture. Tightly coupled MIMD
architectures have little implied connectivity.
Associative SIMD architectures of the right kind
may perform well on these problems, however.

Conclusion

The HEP system described above represents a
compromise between the very tightly coupled data
flow architectures and more loosely coupled multi-
computer systems [2]. As a result, it has some of
the advantages of each approachf' It is relatively
easy to implement parallel algorithms because any
memory location can be used to synchronize two
processes, and yet it is relatively inexpensive
to implement large quantities of memory. In addi-
tion, the protection facilities make it possible
to utilize the machine either as a multiprogrammed
computer or as an MIMD computer.
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Abstract -- The HEP computer system developed by Denelcor, Inc.
under contract to the U.S. Army Ballistics Research Laboratory
is an MIMD machine of the shared resouce type as defined by Flynn.
In this type of organization, it is of paramount importance that
the parallelism inherent in a user program not be compromised by
serialization or deadlock in the operating system. The HEP oper-
ating system solves this problem by limiting its resource manage-
ment activities through resource preallocation and subdivision of
resources into separately managed pools.

Overview

The HEP computer system developed by Denelcor, Inc. under
contract to the U.S. Army Ballistics Research Laboratory is an
MIMD machine of the shared resource type as defined by Flynn [1].

The architecture of this machine has been covered earlier in a

paper by Smith LZ]. Briefly, processes in HEP reside within
tasks, which define both a 'Protection domain and an activitation
state (dormant/active). Tasks reside within processors, all of

which access a shared data memory. Multiple tasks may cooperate
by sharing a common region in data memory. Cells in data memory
have the property of being '"full" or "empty" and the execution of
instructions in processes may be synchronized by busy waiting (in
hardware) on the full/empty state of data memory cells. Other
than the state of data memory, processes and tasks in different
processors have no means of synchronization or communication.

High-level language (e.g. FORTRAN) programs in this machine
are explicitly parallel. Subprograms are made to run in parallel
with the main program by an explicit CREATE statement analogous
to CALL in ordinary FORTRAN. Code within a subprogram is SISD.
"The objective of the HEP operating system is to preserve the
parallelism of the user program by executing in parallel during
the performance of 1/0 and related supervisory functions. The
operating system must:



1.) Allow all user processes to execute during I/0
related supervisory computation;

2.) Allow multiple concurrent supervisory I/0 compu-
tations;

3.) Allow reentrant use of code in the supervisor and
the user program;

4.) Provide maximum user performance by consuming minimum
resource in both time and space.

In SISD computers, reentrancy is usually obtained with some form
of dynamic memory allocation. Concurrency of the operating system
and the user is not possible due to the SISD nature of the machine.

In HEP, most dynamic memory allocation would generate consider-
able serialization of code around the resource lock required to
safeguard the memory allocation data structure. In addition, HEP
cannot allow any memory used by the system to be writeable by the
user since the user is running truly in parallel with the system
and could destroy any location at any time.

User Memory Management

In the HEP operating system, the available general purpose
registers (about 2,000 of them) are divided a priori into groups
of uniform length. When a process is created, the creating process
must obtain a register environment from a table of available groups.
This operation is relatively infrequent and inexpensive. All
register environments are identical, and no state is retained in
them.

Main memory (data memory) environments are obtained at the
subprogram level by each subprogram as it is invoked. Space is
obtained from a pool of data memory environments peculiar to
that subprogram. The user must specify at 1link time how many
such environments should be allocated for each subprogram. Control
of an environment is obtained via a table of free environments, but
the table is local to the subprogram. Thus, serialization for
access to an environment is only between multiple, nearly simultan-
eous, invocations of the same subprogram, and is much less damaging
to performance.



Data memory environments are a resource not visible to the
user, and as such can contribute to deadlock problems. Given
the user's ability to increase the amount of data memory resource
allocated to a subprogram, the deadlock problem can be circumvented
without much difficulty.

Concurrent I/0 presents its own set of problems. In FORTRAN,
a single I/0 is implemented with multiple calls to I/0 formatting
services. State must be retained by the formatter during this
process. This state is bound to the I/0 unit, not the subprogram.
Further, the amount of space required is not known until run time.
Thus, some type of run time memory management is required, and
the resource thus allocated is invisible to the user. The space
must be allocated in an area accessible to all processors in a
multi-processor job, so that all tasks may share the same I/0
units. :

The strategy employed in HEP is to allocate I/0 buffers for
a logical unit upon the first I/O to the unit. The space is then
consumed for the duration of the program, even if the I/0 unit
is closed. If the I/0 unit is re-opened for another file, the
record length of the new file must be less than or equal to that
of the old file. In this implementation, space can be allocated
from a top-of-memory pointer which moves in only one direction.
Serialization of processes occurs only on simultaneous first I/0O
operations, and only for the few microseconds required to move
the pointer. This contrasts with the substantial serialization
introduced by the normal scheme of a linked 1list of available
space with garbage collection.

Consideration is being given to allowing a user to supply
his own logical record buffer, with only the fixed portion of
the I/0 state held at the top of memory. This would allow the
user greater dynamism in the logical record size, at the expense
of managing his own resources.

Supervisor Memory Management

HEP supervisors require two types of dynamic memory: registers
to use while copying logical records to/from physical records, and
data memory to hold file parameters for open files. Of these, the
register allocation is the simplest. Since the users register
requirement can be determined from the number of processes requested
(a control card parameter), all remaining registers in the register
memory partition can be used for supervisor I/0 operations. These
registers are allocated from a bit table to active I/O operations.



Data memory allocation is more difficult. It is not known
until run time how many files will be used, or how much logical
record buffer space will be required by the user. Fortunately,
the amount of supervisor space required per open file is constant.
The operating system merely allocates supervisor space for enough
files to accomodate the larger system programs (compiler, etc.)
and leaves the remaining space for the user. The default 1limit
on open files may be overridden with a control card for users
with special requirements.

Future Directions

The present HEP system provides a high-performance low over-
head environment for parallel computational activities. Our next
activity will be to extend this capability with high-performance
parallel I/0 operation with speed comparable to our processing
speeds. The parallel file system will include such features as
record interlock within files and concurrent read/write capability
from multiple jobs to the same file.
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A COMPARISON OF HEP AND VECTOR MACHINES
BY APPLICATION AREA

1. ORDINARY DIFFERENTIAL EQUATIONS

In this area of application, the utility of vector processing
depends primarily on the similarities among the expressions
that define the derivative vector. In the linear case, the
vector machine performs very well; in the nonlinear case,
each of the derivative expressions is typically unique. HEP
was originally designed to attack this problem, and solves
it easily assuming a reasonable scheduling algorithm to
assign operations to processors. Vector machines are rela-
tively useless for this class of problem because of two
difficulties, namely a) scheduling the processor so that
vector operations (especially add and multiply) occur in

a suitable sequence, and b) addressing randomly located

vector operands.

2. LINEAR ALGEBRA

This application area is a traditional strong point for
vector architectures. If the matrices being manipulated
are dense, then a vector machine should perform well. HEP
also performs well in this case, since multiple processes
executing identical programs on different rows or columns
of an array can yield the maximum speed of which HEP is
capable, i.e. 107 operations/second per processor. In
the sparse matrix case, HEP has an advantage over vector
machines in that the search for an appropriate array
element can be done simultaneously and independently by

a set of HEP processes, irrespective of the lengths of
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the searches, whereas a vector search of a number of rows
or columns of a sparse array may result in a decrease in
vector utilization due to masking while the last few
elements are being found. The analogous problem in HEP
is easily circumvented because processes that are through

searching can acquire and search a new row or column.

3. IMPLICIT TECHNIQUES

For relatively simple classes of problems, a vector
architecture can deal with relaxation effectively. Any
of the following attributes, however, make it much more
difficult to use a vector approach for the reasons in-
dicated. First, arbitrary functions or any sort of
conditional expression evaluation at the grid points
will mask out vector elements and reduce efficiency.
Second, any variability of connectivity in the problem
such as might be caused by boundary motion will result
in an addressing problem for a vector machine. Third,
a complicated connectivity in general, irrespective of
variability, will also give rise to vector addressing
difficulties. HEP has no such problems, since each
process can independently branch to a different spot

in its program and can evaluate any address required

to deal with variable or complicated geometries.

4, HEURISTIC PROGRAMMING

Many important problems in computing have the property
that they require a prohibitively long time to solve

completely on any computer, but approximate solutions



can be discovered much more quickly using the techniques
of heuristic programming. The basic approach is to
devote the most computational effort to the most pro-
mising potential solutions. The usual implementation

of this scheme on a single—process computer, vector or
otherwise, is to remember alternatives to guesses made
by the program and to explore those alternatives only
after the current guess has been exhausted or seems
"unpromising'. HEP can be used to speed up this pro-
cedure; one can create a process to explore each
possibility and let each process decide whether its

own alternative is indeed promising or not. This ap-
proach may not be efficient on a single-process computer
because of the overhead associated with changing the
process that the processor is executing.

5. MULTIPASS ALGORITHMS

Many computations can be decomposed into several different
passes or phases, each of which performs part of the work.
Compilation and assembly, image processing, and data re-
duction are examples. Whereas vector machines are incapable
of exploiting this potential parallelism, HEP can be used

to execute all phases simultaneously by using a process to
implement each phase and transmitting data between the
phases. (This technique is sometimes called '"macropipe-
lining".) A compiler, for example, could be subdivided

into a lexical analysis process, a parsing process, a
semantics process, several optimization processes, and a
code generation process. Current compiler design methodology
often gives rise to this kind of a decomposition except that
the subroutines or coroutines used to implement the phases

do not in fact run in parallel.



6. EXISTING PROGRAMS

Much effort has been expended in attempting to detect and
exploit parallelism in existing programs. Vector processors
can be used to speed up loops of certain kinds by executing
vector instructions that have the same effect that multiple
executions of the loop would have. Unfortunately, much

of the code in existing software is not subject to this
kind of speedup, often because many kinds of loops are

not ''vectorizable'. HEP, on the other hand, can not only
exploit the vectorizable 1oops>but can also execute a
sequence of statements in parallel even when those state-
ments do not involve vectors at all, because the depen-
dencies among statements are not really very numerous.

This technique is used to some extent in computers with
"instruction lookahead'", but the potential inherent in

the HEP architecture is far greater because "lookahead"

is not limited by availability of functional units or

instruction stack size.

7. DATA BASE MANAGEMENT

Most of the operations of data base management exhibit a
high degree of potential parallelism. Sorting, searching,
and set-theoretic operations all can be sped up, but
multiple I/0 streams are required since only a small

part of a data base will fit in primary memory. More-
over, vector operations are inappropriate since the data
are variable length character strings. A number of HEP
processes can perform I/0 concurrently and search or sort
in parallel using any number of published algorithms known

to be suitable for MIMD machines such as HEP. Unlike most



vector machines, HEP can address its memory a character at
a time to facilitate string operations. The unmatched
speed of the HEP I/O system should make it exceptionally
attractive for data base applications, especially where
numeric computations are to be done on the retrieved data.

8. MULTIPROGRAMMING -

It is often useful to be able to execute many user jobs
simultaneously on a computer. Machines which execute
only one instruction at a time, vector machines included,
accomplish this by switching the processor between jobs
periodically. There is some overhead associated with
this switching operation, depending primarily on how
many registers of the processor must be saved and re-
loaded. There is no overhead whatsoever incurred by
this activity on HEP. In fact, a good way to achieve
speed via parallelism is merely to run multiple jobs.
HEP provides protection hardware to prevent interference
among the jobs, and at the same time offers all of the
flexibility and resources associated with a parallel

processor to each executing program.

9. MODULARITY

A HEP computer contains from one to fourteen processors,
each of which executes 107 instructions per second, and
has a data memory size ranging from 256K bytes up to

two billion bytes. Expansion in the field is readily
accomplished; moreover, failure of a single processor

or memory merely results in decreased capacity of the



system until repair is accomplished. This kind of
modularity is not within the capabilities of vector
machines; it is not possible to buy 1/2 of a vector
processor nor is it possible to interconnect several
such processors to obtain longer vectors. If a vector
processor fails, the entire system 1s out of commission
until the repair is accomplished. While error correction
in the memory postpones the necessity for repair in both
HEP and in vector machines, the requirement to repair a
failing memory module brings the vector machine down but
only reduces the performance of HEP temporarily.
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Standard Synchronizations in
HEP Fortran

Harry F. Jordan

The basic synchronization mechanism supplied by HEP Fortran
is that of elementary producer-consumer synchronization using
busy waiting. This mechanism is accessed via the so-called asynchronous
variables, the names of which begin with the § symbol. With each such-
variable a state of FULL or EMPTY is associated so that reading
(use in a right hand side expressioﬁ or as a subscript) may only take
place when the state is EMPTY and writing (assignment) may only take
place when the state is FULL. Writing an asynchronous variable always
sets the state to FULL and reading sets it to EMPTY with only a few
exceptions. The PURGE statement may be used to set the state of one

or more asynchronous variables to EMPTY regardless of previous state.

The elementary producer-consumer synchronization consisting of
"wait until empty and then write" and "wait until full and then read"
can be augmented by the passive logical functions FULL(a) and
EMPTY (a) which test, but do not alter, the state of an asynchronous
variable a. Furthermore, when an asynchronous variable appears inside
the logical expression controlling an IF statement a wait until the
state is FULL occurs but the state is not set to EMPTY when the
expression is evaluated. The latter behavior can also be obtained
within a right hand side expression or an index expression by use of
the built in function SAVE(a) which delivers the value of an

asynchronous variable a when it becomes full but does not set it empty.
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Several types of synchronizatioh other than single value produce
and consume are usefﬁl in programming a multiple process machine such
as HEP. Below we will treat several of the more important ones and
exhibit their implementation using HEP Fortran. In the code given,

a quoted string represents a manifest constant, usually an array
dimension, which is to be replaced by a constant in any specific

application of the code.

It is often necessary to apply producer-consumer synchroniation
to a block of information so that no part of it is used until all of it
has been written and no part of it can be written until all of it has
been read. For the simple case of one produper and one consumer a
straightforward implementation requires logical variables $EMPTY ,E,
$FULL and F and appears as follows:
Initialization

PURGE $EMPTY, $FULL
$EMPTY = .TRUE.

Producer . C@naumer
E = $EMPTY = SFULL
Write block Read block
$FULL = .TRUE. $EMPTY = .TRUE.

Note that the values of the synchronizing variables $FULL and $EMPTY
are unimportant. Only the state of the variable plays a role in

the synchronization.

By using more code it is possible to do the above synchronization
with only one asynchronous variable both the state and value of which

are used in the synchronization.



Initialization

PURGE $FULL
$FULL = .FALSE.

Producer ' Consumer
10 FP = $FULL ' 10 FC = $FULL
IF (.NOT. FP) GO TO 20 IF (FC) GO TO 20
$FULL = FP ‘ $FULL = FC
GO TO 10 : GO TO 10
20 CONTINUE 20 CONTINUE
Write block Read block
$FULL = .TRUE. $FULL = .FALSE.

The first solution is not only more straightforward but also
easily expandable to the case of several producers and several
consumers acting on a buffer with space for~N blocks of data. In
this case the synchroninzing variables become integers the values
of which give the numbers of full and empty blocks in the buffer.

Initialization

PURGE $IFULL, $IEMPTY
$IEMPTY = "N"

Each Producer Each Consumer
IE = $IEMPTY-1 IF = §IFULL-1
IF (IE .NE. 0) $IEMPTY = IE IF (IF .NE. 0) $IFULL = IF
Write block N-IE Read block IF+1
IF = $IFULL IE = $IEMPTY
$FULL = IF+1 $IEMPTY = IE+1

In this code a producer fills the first empty buffer block and a
consumer empties the last full block. We will consider the imple-
mentation of a first-in first-out strategy after treating the simpler

concept of a critical section.



Critical sections of code executed by two or more parallel
processes exclude each other in time. Processes may execute critical
sections in any order but only one process at a time may be within a
critical section. Either a single critical section of program may be
shared by several processes or processes may execute distinct code
sections. In HEP a section of code which begins by reading_a given
asynchronous variable and ends by writing it is a critical section
with respect to any other code segment beginning with a read and
ending with a write of the same asynchronous variable. Care should
be taken in coding parallel processes for HEP that no more statements
than necessary be placed between the read and subsequent write of an
asynchronous Variabie since all processes sharing this code will
run one at a time through this critical section whether or not that

is the intent.

The producer-consumer synchronization on a multiple element buffer
usually involves First In-First Out access to the individual items.
A FIFO structure is usually implemented in software as a circular
buffer. The simplest implementation uses critical sections to make
the operation of inserting a new element into the FIFO (PUT) atomic
with respect to the operation which extracts an element (GET).
The critical section may be made a side effect of access to a
variable needed to manipulate the FIFO in any case. This is the

technique used below where the only asynchronous variable is $IN.



 BLOCK DATA

C THE INITIAL STATE AND SIZE CONSTANTS FOR THE FIFO.

INTEGER $IN ,0UT, LIM

COMMON /FIFO/ $IN ,0UT, LIM, A("SIZE")
DATA $IN , OUT, LIM /1,1, "SIZE"/

END

SUBROUTINE PUT(V, FULL)

PUT THE VALUE V INTO THE FIRST FREE SPACE IN THE FIFO
RETURNING FULL AS .FALSE. IF THE FIFO IS FULL PERFORM
NO OPERATION AND RETURN FULL AS .TRUE.

LOGICAL FULL
INTEGER $IN ,0UT, LIM
COMMON /FIFO/ $IN ,OUT,LIM, A("SIZE")
I = $IN
IDIF = I-0UT
IF (IDIF .LT. 0) IDIF = IDIF+LIM
IF (IDIF .EQ. LIM-1) GO TO 10
A(I) =V '
$IN = MOD(I, LIM)+1
FULL = .FALSE.
RETURN
10  $IN = I
FULL = .TRUE.
RETURN
END

[P NP

FUNCTION GET(EMPTY)

C THE FUNCTION RETURNS THE VALUE OF THE NEXT AVAILABLE FIFO
C ELEMENT AND SETS EMPTY TO .FALSE. UNLESS THE FIFO IS EMPTY
C IN WHICH CASE THE ONLY ACTION IS TO SET EMPTY TO .TRUE.

LOGICAL EMPTY
INTEGER $IN ,0UT, LIM
COMMON /FIFO/ $IN ,OUT,LIM, A("SIZE'")

I = $IN
IF (I .EQ. OUT) GO TO 10
GET = A(OUT)
OUT = MOD(OUT, LIM)+1
$IN = 1
EMPTY = .FALSE.
RETURN
10  $IN = I
EMPTY = .TRUE.
RETURN

END



In the FIFO implementation above only one asynchronous variable
is necessary to bound the critical sections. If it is desired to
implement a FIFO the elements of which are larger than single values
then a different approach can be used to increase the potential
‘parallelism. In fhis case define integer valued functions IPUT (FULL)
and IGET(EMPTY) which return an index to the next free FIFO space-
or the next available FIFO element, respectively. These indices can
be used by the calling program to read or write elements of the FIFO
outside of the critical sections associated with testing and up- |
dating the pointers. 1In this case, however, it is possible that
parallel use of the FIFO by other processes may cause the value of
$IN (OUT) to catch up to some previous value of OUT ($IN) which has
not yet been used to access the FIFO element completely. Synchronization
can be maintained in this case by making all variables of a FIFO
element asynchronous. The time involved in accessing a FIFO element
is thus removed from the critical section, which blocks all parallel
access to the FIFO, and conflict is limited to the one other process

which actually requires the same memory cells.

Another important synchronization is that of FORK and JOIN, in
which a single instruction stream initiates the execution of
("forks into') several parallel instruction streams. After all of'the
parallel streams have reached a prescribed point at which parallel
execution is to end, all but one stream are terminated and this single
"joined" 1instruction stream is free to proceed. In HEP Fortran a
CREATE operation is used to initiat¢ a parallel instruction stream
which will terminate when a RETURN statement is encountered. A CALL

statement does a normal transfer of control to a code segment which will



return control to the calling point when a RETURN statement is en-
countered. Thus several parallel instruction streams, all but one of
which will eventually terminate (assuming no infinite loops), can

be produced by a series of CREATE operations followed by a single
CALL. The only difficulty is that the "live' code segment (the

one invoked. by a CALL) may finish before all the other instruction
streams have terminated. A counter and reporting variable are used
to determine that all parallel streams have reached the JOIN point

in the code below which forks a single stream into N parallel
executions of the subroutine PROC.

Single Stream

PURGE $IC, $FINISH

$1Cc = 1
DO 10 T = 1, N-1
CREATE PROC(-::) FORK operation

10 $1C = §1C+1
CALL PROC(--")
F = $FINISH JOIN operation

Multiply Executed
Process

SUBROUTINE PROC(.-..)

I = $IC-1
IF (I .EQ. 0) GO TO 20
$IC = I JOIN operation
RETURN
20 $FINISH = .TRUE.
RETURN
END



Another well known synchronization is that of readers and writers
'on a shared data structure. Readers are defined to be processes
which do not alter the overall structure of the dafa during their
access to it. They may perform atomic write operations which do not
alter the structure, and in HEP they may even perform reéd-modify-
write operations on asynchronous variables provided the structure
remains consistent. A writer alters the data structure during 1its
access so that the structure can only be assumed consistent at the
end of the writer access. A well known example is that of garbage
collection or compaction of a dynamic data structure. An arbitrary

number of processes may use the data structure at a time as readers,

but the compaction process must have exclusive access.

In the first version of the synchronization the first reader
locks the structure against access by the writer and the last reader
unlocks it. The writer may have to wait indefinitely for a sequence
of readers.

Initialization
PURGE $ACCESS, $NREAD
$ACCESS = .TRUE.

$NREAD = 0
Reader Writer
IR = $NREAD
IF (IR .EQ. 0) A = $ACCESS A = $ACCESS
$NREAD = IR+1 C DO THE WRITE ACCESS HERE.
C DO THE READ ACCESS HERE. ‘ $ACCESS = A
IR = $NREAD

IF (IR .EQ. 1) $ACCESS = A
$NREAD = IR-1



The second version of this synchronization ensures that no new
readers may gain access to the buffer once a writer has requested
iccess. The extra condition is handled by keeping a count of the

wumber of writers which have requested use of the data structure.

Initialization
PURGE $ACCESS ,$NREAD, $NWRITE
$ACCESS = .TRUE.

$NREAD = 0
$NWRITE = 0
Reader Writer
10 IF ($NWRITE .GT. 0) GO TO 10
: IR = $NREAD $NWRITE = $NWRITE+1
IF (IR .EQ. 0) A = $ACCESS A = $ACCESS
SNREAD = IR+1 C DO WRITE ACCESS HERE.
C DO READ ACCESS HERE , $ACCESS = A
IR = $NREAD $NWRITE = $NWRITE-1

IF (IR .EQ. 1) $ACCESS = A

$NREAD = IR-1
This solution uses the passive (wait for full but do not set empty)
access mechanism of the IF statement so that the testing of $NWRITE
by a reader cannot lock the variable against access by a writer.
A disadvantage of this solution is that if several readers are
executing statement 10 they make no progress but occupy time slots
in the process queue thus possibly reducing the overall machine
throughput. This disadvantage can be reduced by preventing more than one
reader from executing statement 10 at a time by placing it within
a critical section. If $RMECH is initially full, then the statements

R = $RMECH before line 10 and $RMECH = R after it will do the job.
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ABSTRACT: Two practical parallel algorithms for solving systems
of dense linear equations are presented. They are based on
Gaussian elimination and Givens transformations. The algorithms

are numerically stable and have been tested on a MIMD computer.
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Introduction

The problem of solving a set of linear algebraic equations
is one of the central problems in computational mathematiés
and computer science. Excellent numerical methods solving
this problem on uniprocessor systems have been developed, and
many reliable and high quaiity codes are available for different
cases of linear systems. On the other hand, the methods for
solving linear equations on parallel computers are still in
the conceptual stage, although some basic ideas have already
emerged. The current state of the art in parallel numerical
linear algebra is well described by Heller [3] aﬁd Sameh and
Kuck [5].

Our investigation df’methods for solving systems of dense
linear equations on a MIMD computer includes Gauséian elimina-
tion with partial pivoting and Givens transformations. Thé |
first algorithﬁ is commonly used to solve square systems of
eéuations, the second produces orthogonal decompoéition used
in several problems of numerical analysis including linear
least squares problems. We focus our attention on the cases
where the number of available processors is between 2 and O(n),
n being the number of linear equations. We take the view that
is not presently realistic to assume that’O(nz) processors
will be soon available to solve sizable sets of equations. To
ver ify our analytic results we have used a parallel computer
manufactured by Denelcor Co. This computer, called HEP (Hetero-
geneous Element Processor), is a MIMD machine of the shared

resource type as defined by Flynn.
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Gaussian Elimination

If we consider a step“to be either a multiplication and a
subtraction, or a compare and multiplication then sequential
programs for producing the LU decomposition‘of an n x n non-
singular matri% requires T1 = %; + O(n2) steps. The parallel
method‘using p = (n—l)2 processors and partial pivoting requires
Tp = O(n log n) steps; Thus the efficiency of such method

for large n will be

T 1
p T =+ p = O(log n) °

Even if the cost of each processor in a parallel system is
substantially less than current processor costs, this method
will be economically unfeasible for n sufficiently large. We
further observe that parallel computers which are or soon will
be available will not proVide n2 processofs for reasonable
values of n. Thus, we restrict our attention to the case
where the number of processors is in the range from 2 to O(h).

The algorithm which we present provides the LU decomposition
of an n x n nonsingular matrix A using from 1 to fg] processors
and has an efficiency of 2/3 when P = r%]. |

Consider the sequential program for LU decomposition with
partial pivoting given in Fig. 1. In this program we shall
consider a task to be that code segment which works on a par-
ticular column j for a particular value of k. We will denote

these tasks by J = {Ti { 1sk<j<n, k<n-1}.



Program LUDECOMP (A(n,n)).

For k =+ 1 to n-1 do

Find j sdch that_

[A(3,k)| = max(|A(k,k)]|,...,]|A(n,k)])
PIV(k) + j {pivot'row}
A(PIV(k),k) < A(k,k)

For 1 « k+1 to n do

A(i,k) < A(i,k)/A(k,k) {elements of L}

For j « k+1 to n do

A(PIV(K),3J) ~rA(k,])

For i = k+1 to n do

A(i,3) <« a(i,3j) - A(i,k)*Aa(k,])

Figure 1. Program for LU decomposition with
' illustration of tasks.




‘The precedence constraints imposed by the sequential program

are
< = {(1d, Té) | §<? or k<m}.
Thus, C = (J, <) is the task system which represents the

sequential program- (Coffman, Denning [1]). The range and domain

of these tasks are:

R(Ti)

{A(i,3) | k<ign}

D(Tg) {a(i,3) | k<isn} O {A(i,k) | ksgiszn}

and from thié we can observe that, for example

k+1 k+2 n
k¢ T seee Tk}

{T
are all rmutually noninterfering tasks and could be executed
in parallel. More specifically we observe that cr = ™, <')

where <' 1is the transitive closure on the relation

x = ((of, o) | kejen) 0 t(n), 1)) | k<ign)
is a maximally parallel system equivalent to C. This system
is illustrated in Fig. 2.
Given the task system C' we now determine the execution
time of the tasks aﬁd from that determine a schedule. We
assume that one multiply and one ‘subtract, or one multiply and

one compare constitute a time step. Thus, neglecting any
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Figure 2: ‘Maxima11y Parallel Task System
' Equivalent to C



overhead for loop control, the execution time W(Tﬁ) for each

of the tasks is given by:

. n+l-k if k=j
]) =

W(Tk =

n-k k<3«

Treating the task system C' together with W(Ti) as a weighted
graph we observe that the longest path traverses the nodes:

1 2 2 3 3 n-1 n : . .

Tl, Tl' T, TZ' T3,———J Tn-l' Tn-l?‘ We will denote this path

as S; and the length of the path by L(Sl).

n-1
L(S;) = n+l + 22 1§ = n2-1
| j=2

Since the problem cannot bé solved in time shorter than this
path length we developed a schedule where the tasks consti;
tuting S, are assigned to processor 1 and the remaining tasks
are assigned to [g] - 1 additional processors. Processor 2

will execute the tasks

3 4 4 5 5 n
Ty Tl' T2, T2,

and, more generally, processor j will execute the tasks

25-1 23 23 23+1 n <
Tl 7 Tl ’ T2 ré T2 r o s o g Tn'—Z(j"ll

and we will denote this as Sj. Note that this is not a path



through the graph. For the case where n is even this schedule

is illustrated in Fig. 3. Since this schedule has length

n2—1, the length of the longest path, then this schedule is

optimal for n/2 processors. Using this schedule we note that:
lim _lim n3/3 + 0(n%)

2
S./p = =3
Dreo P N> (n2_1) n/2 3

and this efficiency is aéhieved to within 2% for relatively
small n (n>50).

We now examine the question as to whether a schedule of
length n2-1 is aéhievable with fewer than n/2 processors. From

the task system C as illustrated in Fig. 2 we note that task

1
1

n steps. Consequently, any schedule for this system will have

T, 1s a predecessor to all tasks and has an execution time of
only one processor doing work during the first n steps.

Similarly, T is the successor of all tasks and thus during

n-1
the last time step only one processor can be doing work.
Task Tg:é has all tasks except {Tg:i}[J{Tgl 1<3j<n-1} as

predecessors,task Tg:ljj;a successor task and for the tasks

1

{T? | 1<j<n-1} each is a successor or predecessor of all other
tasks in the set. Thus, for any schedule from the time that
Tg:% commences execution, no more than 2°processors can be

n-j+1

n_j commences execu-

doing work. By similar argument, once T
tion no more than j processors can be doing work. From this,
we define the "computational area" of any schedule of C to be

the product of the number of processors and the schedule length

less the area where not all the processors can be doing work.
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Specifically, for a schedule of length n2-1 using P processors

we have

CA

i

p-1
(n2—1)p - (p-1) ?Vn—ZEE:: (p-3)3 - (p-1)
j=2

(n?-1)p - (p-1) (n-1) - (p>-p)/3.

The total amount of work (sum of the task weights) for the task

system C 1is

3
= I 2n _

Thus, a lower bound on the number of prbcessors required to
achieve a schedule of length nz-l is the smallest p for which

CA>TW. For small even values of n the minimum P values are:

2<n<8 | p=n/2
10<ng14 p=n/2-1
l6<ng22 p=n/2-2
24<ng28 p=n/2-3
305n534 p=n/2-4
36<n p<n/2-5

For large values of n let P=an and determine a.such that

lim (CA/TW) = 1

n->w
Thus, an o to satisfy the above limit is a solution to:

3a - a3 =1
and an approximate solution to this is o = .34729.

~-R-



We note that this is only a iower bound and we do not know if
it is achievable in general, however for n=10 we have foqnd a
schedule of length n2—1 using n/2-1 processors and for n=1l6 a
schedule using n/2—2‘processdrs. The schedule for n=10 is
shown in Fig. 4. |

Should this lower bound be achievable then fhe efficiency

for large n and using an processors would be

3 .
lim (s_/p) =~—-§——/-§--— =-313=~= .9598,
n-o p (n“~1)an

Achievable Schedules

We now consider schedules similar to the one shown in
Fig. 3 where the number of processors p is fewer than rn/i].
The method we use is to assign to processor j the tasks com-

rising S., S.
P 9737 Zi4p
such that j+Zp§{% . The sequence of task assignments is such

) seey Sj+2p' Where 7 is the largest integer

that the precedenbe constraints of the task system C' aré
meet.,

- Consider first the case when n/4<p<n/2 so that processor
and the tasks of S‘ .

1 1+p
This schedule will thus have length L equal to:

1 processes only the tasks of path §
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Figure 4. A schedule for n=10 using %-— 1 pfocessors.



R .
= L(s;) + s W(T))

J
Tkesl+p

s
I

- n-2p

nf-1+2> @3 - 2p
5T

= 2n° ~'4p2 + 0(n).

]

Thus, for large n, p = an and 1/4<0<1/2

8. 1
-
P 3(20-407)
By similar analysis,
S 1
“E = 3 %.ﬁ o < %
P 3(3a-20a”)
S, 1 1 1
T 3, 82*=%
P 3 (4a-56a")
Be—— - Fcas}
P 3(5a-120a">)

These efficiencies are plotted as a function of a = p/n in

Fig. 5.

Actual Performance

The achieéevable schedules previously discussed were programmed
using HEP FORTRAN and were executed on the HEP parallel com~
puter. Although the program provided solutions to a set of
linear equations, we present timing for only the LU decomposi-

tion part of the solution so that it may be compared with our

-10-
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pfedicted results. Due to memory limitatiohs of the machine‘
to which we had access, we could only run programs with n<35
and 1<p<8. Table 1 gives the achieved results together with
a comparison of the predicted results. |

Although the actual results are . limited by the restriction
on the maximum value for n, we feel that the agreement between
actual and predicted performance is sufficiently good to give
credibility to our model of the algorithms performance and that
thé efficiencies are high enough to support the conclusion
that parallel methods- for solving linear equations are a>viable

alternative to sequentiél methods.

Fast Givens Transformations

To Solve the square system of equations A§=§ using the
fast Givens transformations, due to Gentleman [2], we proceed
as follows:

(1) the matrix A is kept in the factored form-

a = pt/2

B
where D is a diagonal matrix.
Initially D=Inxn’ B=A whefe n is the number of
equations.

(1i) Triangularize the matrix A by app}ying Givens rotations
to the augmented matrix [A,.P] and obtaih the factors

~

Q, D, R and b such that

~

ata, bl = o'/, b] = bY/?[R, b,
where R is upper triangular, Q is the product of the
orthogonal transformations used in the triangulariza-

tion and D is diagonal.

- 11 -



number of processors p

2 3 4 5 6 7 8
.833 .719 .642 .633
n=10
.852 .739 | .678 .685
n=15 .888 .794 .740 .651 .618 .625 .581
.900 .815 .766 .679 .652 .681 .633
1220 .921 .843 .774 .758 .670 .623 605
.931 .863 .798 .789 .703 .656 .640
n=25 .934 .878 .830 .763 .755 .692 642
.944 .896 .855 .739 .788 .726 .675
n=30 .942 .892 .844 .818 .757 .744 .710
.949 .911 .863 | .843 | .783 .777 .745
n=35 .948 .901 | .862 .819 .790 .747 .741
.956 .918 .880 .843 .827 .779 .769
Table 1. Actual and predicted efficiency.
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The algorithm proposed in Kowalik et al. {4] produces the

orthogonal matrix Q = Qon-3 Qnog ++-+ 9,0, where

Q = 17 5 | i<j =1, 2, ..., n, i+ = k+2},

k=1, 2, ..., 2n=-3 and Pi,j are applied‘in parallel..

For the purpose of this analysis and implementation we
assume that the number of available processors is p = 9%l
"where n is odd. We also assume that every Givens rotation is
performed sequentially, howevér, mdre than one rotation could
be performed in parallel.

We derive now a parallel»scheme to triangularize AAfrom

the sequential method given in algorithm 1.

Let a task T§ in algorithm 1 be defined by

Tg = GIVENS(i,j)

where GIVENS (i, j) performs the following calculations:

l. «

-B(j,i)/B(i,1)

2. B = =(D(j)/D(1))*a

il

3. vy = 1-aB

4. pfi) = (1/v)Dl)

5. D)= (1/y)D§)

6. B(i,2) = B(i,2) + B B(j,e “)

. i< 2%<n
7. B(j,4) = (B(3,L) + a B(i,?%)

Periodic rescaling of D and B to prevent underflows and over-
flows, and row interchanges for numerical stability are

included in our implementation of the Givens routine.

-12-
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The precedence constraints on -the set of these tasks
3 = {T; | 1gign-1, i<jzn}
imposed by algorithm 1 are given by

i+l
i+2

i

i . . : i . '
« = [{ (le., Tiyp) | 1gi<n=2, i<jen-1} O {(T;, Tji5)l<icn=2}]*

where * represents the transitive closure of the set. Thus -
the system C = (J,<) is a task system with a graph shown in

Fig. 6. The Range and Domain of these tasks are:

R(T;) = (D(i), D(j), B(i,7), B(3,2) | i<i<n)
D(T%) = (D(i), D(j), B(i,1), B(j,Z) | i<iz<n)

from this we can see that the tasks
{T; | i<jgn, 1<icn-1, i+j = k+2, k = 1, 2, ..., 2n-3)}

are mutually noninterferring tasks and can be executed in
parallel. Hence we obtain a maximally parailel task system

c' = (@,<'), where

i+1

" )0 (T;, 'I‘j ) |1gi<n~-2, i<j<n-1]%

<l = [(Tj’ Tj+1

equivalent to C.

This maximally parallel taék system 6’ is shown in Fig.b7,
We now assume that one arithmetic operation constitues a
time step. Thus the length of T% is L(T%) = 2(n-i+1) + 7
steps. The longest path in this maximally parallel task system

is:

-13-
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and the total length of S1 is

L(S,) = (4n+7) (n-1) + (4(n=1)+7) + (4(n=2)+7) + ... (4 2+7)

.

= 6n2 + 8n - 25 operations.

To execute our task system with p = Eél processors we have

selected a scheduling scheme called ZIGZAG, shown in Fig. 8.
According to this scheme the processors Pk’ k=1, 2, ...; 2%l

are assigned to the tasks as follows:

1 2 2 -2 -2 _n-
P1 executes: {Té, T3, T3, T4, cee, Tﬁ—l' 3 T 1}

o112 2 n-4 ,n-4 ,n-3;°
P, executes: {T4, TS’ 15, Ter oees Tn—l’ n ¢ Th }

.
.
*

1 2 2 23+,

25+17 T T

. 1
Pj executes: {sz, T 2541 T2j+2' ceer T

-
-
.

1 1

2
P__j,executes: {Tn_l, T, Tn}.

2

For this schedule the speedup and efficiency are:

4 3

2, 4 3
S = El -3 n+0(n7) = 3" - 2n
P Tp 6n2+0(n) 6n2 9
p -p_21, 2 _4.n
P P 9 n-1 9 n~1

and for sufficiently large values of n

~14-



Figure 8: Parallel Zigzag Scheme for n =15 p = Ei_]_ =7



Computational Results

The ZIGZAG scheme for ofthoéonal tringulariiation shown
in Fig. 8 was programmed and executed on the HEP parallel
computer. Due to the present memory limitations the program
was run for the values of n not exceeding n=29. Since for
this machine 1§p58,-and we assumed that p = E%l , the obtained
numerical results up to n=17 are useful ﬁo compare. The
actual and predicted speedups and efficiencies of the algorithm
for different values of n are shown in Table 2."The differences
between the predicted and actual values of Sp and Ep are due
to several factors: machine overhead, approximate count of
arithmetic operationé involved in Givens rotations and data

dependent number of scaling operations in the GIVENS routine

which are not included in the operations count.

..15..



n T T S E
1 p P p
5 0036 | .oo02s | 144 -12
1.40 .70
7 0087 | .o004s | 173 -64
1.83 .61
2. .58
9 .0168 | .0072 33 >
_ | o2.27 .57
10 0222 | .oos7 | 2°°° -51
2.50 .50
5 2.72 ;
11 .0286 | .0105 L >4
. 2.72 .54
13 0448 | .o146] 307 -31
3.16 .52
1 3.34 .47
15 .0660 | .0194
3.61 .51
3.62 ]
17 .0927 | .0256 6 45
4.01 .50
Tab}e 2. Actual and predicted speedup

and efficiency.
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ABSTRACT

The problem which is investigated is that of schedU]ing the cal-
culation of recurrénce equations as tybified by the numerical solution
of differential equations. These ca]cu1ations_are represented by means
of a cyclic precedencé graph and an algorithm is presented which deter-
mines the minimum period ddring which these calculations can be per-
formed. The algorithm then extracts an acyclic precedence graph whose
longest path has a length equé] to this minimum period. We show, by
example, that this minimum period can be ;onsiderab]y shorter thanvthe
scheduling period determined by scheduling just the calculations of the
inner loop. Next, we provide an improvement to the known lower bouhd
on schedule length given a fixed number of processors. This improvement
is also shown to-improve the effectiveness of the critical path sched-
uling method which we employ. Finally, an algorithm for the actual
scheduling is described which uses limited backtracking. On the basis
of randomly geﬁerated test cases the schedule length produced can be
expected to be no more than .4% longer than an optimal schedule. All of
the algorithms used have a time complexity which is polynomial in the

number of tasks.

INDEX TERMS
Scheduling, recurrence equations, critical path 1ist scheduling,

bounds on schedule length, limited backtracking.



1. INTRODUCTION

The general problem we are interested in is the scheduling of
computation on a péra]le] cdmputer; but more specifica]iy, the sched-
uling of repetitious calculations as is the case, for example, with
the numerical solution of différential equations. The parallel com-
puter model we consider is MIMD [15] type where we are interested in
para]ielism all the way down to a per instruction basis.

Specifically, the problem which we investigate is that of repre-
senting the computations involved in the solution of a recurrence equa-
tion by a cyclic precedence graph and of fhen determining thé minimum-  :
period during which all of the calculations could be performed once, |
while still perserving the precedehce constraints. We then extract
from the cyclic graph an.acyclic one whose longest path is equal to this
mimimum period and investigate‘methods of efficiently scheduling this
system. We consider both schedules whose length is equal to the mini-
mum period using as few identical processors as possible, as well as
schedules using a fixed numbef ofbprocessors and having as short a
length as possible.

Prior to any formal definitions, we present an exéMp]e which mo-
tivated our concern with the minimum solution period for recurrence equa-
tions. Consider the Van der Pol equationbwritten as two first order
equations:

X) = %
% o=u(1-x°

2 1
By using some suitable integration method, eg. 4-th order Runge Kutta,

) Xy = Xy



indicated by the fynction rk, the main part of a program for so]vfng
these equations is given in Figure 1. The calculation interior to the
"for" loop can be represented by the acyclic precedence graph 6] shown
in Figure 2. If we assume that each.of the binary operations can be ex-
gcuted in one time unit and that the funétion rk can be eQa]uated in four
units then the entire "for" Toop can be represented by the cyclic prece-
dence graph also shown in ngure 2, where, as is indicated, T3 represents
the calculation u*(1 - xf), T4 represents *xz - Xy and, T] and T2 fepre-
sent the calculation of the function rk. .

Given two parallel processors, then one way to schedule this solution
is to assign the tasks interior fo the "for" loop to processofs in such é
way as to preserve the precedencé réTations and yet complete all tasks as
quickly as possible. The solution to the problem is then the repeated
execution of this.schedule. Such an assignment is shown by means of a
Gantt chart in Figure 3. We note that this assignment is as good asvpos-
sible since the precedence graph has a maximum path length equal to the
assignment period.

The second Gantt chart of Figure 3 shows the assignments made if we
assume initial values for X and Xy and then assign the tasks from the
cyclic precedence graph while still maintaining all precedence constraints.
This assignment has a repetition period of 7 units as compared with the
9 units for assigning the acyclic precedence graph. This shorter sched-
ule is the motivation for examining recurrence equations to determine
their minimum solution period and then to find methods to schedule them
in that minimum period with as few processors as possible.

Recurrence equations were studied by Karp, Miller and Winograd [21]

in the form of uniform recurrence equations which modeled the numerical

-2-



while time < runtime do

for i——1 until 4 do

d —
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solution of partial differential equations. More recently, Kogge [22]

has studied them in a restricted form for solution on SIMD type computers.
Essentially following Kogge we define the solution of a j-th order recur-
ence problem of dimension m to be a sequence x(1), x(2), . .. x(t) of
vectors of dimensioh m where, we are given:

1. a set of initial values [ x(0), « « « 5 x(-j+1) 1, and

2. a recurrence function f such that, for 1 5§ St

x(i) = f(ai, x(i-1), . . ., x(i-j) ) where a; is
a constant vector of any dimension.

Kogge studied solutions of this type problem on SIMD type computers
for the case of m = 1 and with restrictions on_f.; However, by,allowing'
arbitréry values far m, the définition covers é wide class of problems
including the numerical solution of differential equations and many op-
timization problems. Our restriction on f is only that it be a computable
function. In general, we will represent this function by a directed graph
where the nodes represent functions out of which f is composed and the
edges represent that composition. We will further restrict the gfaph to
be acyclic, so that if ahy part of the representation of f is itérative,
then we will represent the entire 1odp with a single node. With each
node of the graph we will associate a weight which represents the expected
computation time of the aséociated.functiqn. We can noﬁrrepresent fhe
recurrence equations by allowing terminal nodes in the representation of
f (called recurrence'nodes) to have outgoing edges, thereby creating a
cyclic graph, Throughoﬁt we emp]oy only standard gréph terminology using
[11]‘as a reference. The cyclic precedence graphs which are used as ex-
amples are usually drawn with the width of each node broportiona] to its
ececution time. This convention was used in drawing the cyclic prece-

dence graph in Figure 2.



2. CYCLIC PRECEDENCE GRAPHS

As we showed in the introduction, a simultaneous set of m recurrence
equationsAcan be represented by a cyclic precedence graph of n weighted
nodes. For convenience the ffrst m nodes will be labeled wfth'the recur-
rence variables and all of the nodes simply represent functions, the
number of whose parameters matches the number of incoming edges. The
outgoing edge represents the functiona] value which is an argument fof
another function. The cyclic graph becomes acyclic if we remove all
edges going out of the recurrencé nodes for, in dur model, all computa-
tions which are interative are represented by a single node'whose»weighi
is the expected execution time of the loop. For all nodes, the weight of
the node is assumed to be non-negative. Since there are no cycles except
those that pass through recurrence nodes, we may define the m x m path

matrix P where p. . is the length of the longest path from recurrence

1,3
node i to recurrence node j which does not pass through any recurrence node.
For this case, we define ihe ]ehgth of a path from i to j to be the sum‘

of the weights of all the intervening nodes including node j but not
including the weight of node i. In the event that fhere is no path be-
tween them, then define pi,j to be zero. Ve may interpret pi’j as the
minimum execution time between completing the calculation of the t-th
vé]ue for X; and completing the calculation on the t+1-th value for X5
Thus, if we let maxp denote the largest Pi.; for all i and j, then we
know that if, at some point we had the t-th values for all x then by

maxp units later we could complete calculating the t+1-th values for all

x. This, of course, assumes a sufficient number of processing units.

—4-



However, from the example given in the introduction we have seen that in
some cases, the calculation can be performed with a period shorter than
the length of the longest path. We will now define the procedures for
determining this minimum period. _

Two assumptioné are made regarding the form of the minimum length
solution. First, we assume that no task is assigned>tormore than one
processor and secondly, that the time between ca]cu}ating the t-th and
the t+1-th value is the same.for all recurrence variables and no 1éss
than the minimum solution period. If wé denote thé execution time for
the i-th task Ti by tleni and the minimum solution period by minsol, then
on the basis of the fikst'assumption we have

(1) minsol 2 max { tlen. l j = n}-
and on the basis of the second assumption |

(2) minsol 2 max {:pi,i'l is Hl}

As a further bound on the minimum solution period consider any pair of

recurrence nodes i and j with P; ; # 0 and pj .

3 # 0. Now by our assumption

the calculation of the t-th value of X, will preceed the calculation of the

t+1-th value by exactly minsol and similarly for xj. Thus, we have

. > . '
(3) ‘minsol 2 py 5 - minsol + pj 4
[p. .+ p. 'l
2 RN
2

By similar reasoning, given k ordered recurrence nodes il, iz, c e e ik

with Pi . # 0 for 0 < j < k, then
3’ gtl +
Pi i, TP i, T TP
. > 1°°2 2’3 k1
(4) minsol = s
k

and this bound contains bounds (2) and (3). Thus, minsol is the maximum

of (1) and the maximum of (4) over all ordered sets of nodes that satisfy

-5-




the condition of non-zero path lengths between them.

If we view P as representing the weights of an edge weighted di-
rected graph of m vertices and m2 edges, then the bound on minsol given
by (4) is the per edge cost of a cycle having maximum per edge cost.
Since the number ofvcycles in a digraph of m vertices is exponential
in m, then any computational procedure based upon exhaustively examining
the per edge cost of all cycles can be'expected to have a very large
execution time as m increases.

The computational procedure that we employ is to first estimate
minsol by bounds (1) and (2) and then use fhis estimate as a parameter
to the procedure shown in rigure 4. The cpmputatfon is based upon the
following: 1if we were té subtract the minimum solution period from
each of the edge.weights and then determine the maximum path length bet-
ween all vertex pairs, then the maximum length path from any vertex to
itself would be zéro or negative. Thus, the algorithm is iterative in
that we call it with an estimate of minsol, subtract this estimate from
all the Pi.j entries and then apply the Floyd-Warshal longest path
algorithm [14]. If, after this calculation, all the diagonal elements
of the longest péth matrix are zero or negative then the estimate sat-
isfies (4) for all cycles, and since it was initially chosen to satisfy
(1), it:is a correct bound. In the event that any diagonal element is
positive, there is some cycle in P which has a per edge length greater
than our current estimate of minsol, and hence, we must increase our
estimate. The;]ongest patn algorithm proceeds by determining for each
edge ( i,k ) wﬁether the path length from j to k would be increased by
substituting the path from j to i and thence to k. if so, the substi-

tution is made, and the ehtry mpj K represents a path which consists of
b
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ans —false

while ans = false do

for i—1 until m do .

for j=—I until m do

if Pij # 0
then ! else
mp; =P~ minsol mpi,j*—-———m
%! 16O

for i=—I until m do

for j—1 until m do

for k—1I until m do

if mpj,i + mpl,k > mpj,k then

TP, kMR T MP

Cj,k.—_cj,i + Ci,k
ans —rtrue
minold —minsol
fori—1 until m do
if mp; . >0 then
. | . . mp; .
minsol-—max | minsol, minold + _6._'_1_'_.
i
ons-—-fclse




the number of edges in the path from j-to i plus the number of edges in
the path from i to k. Since, at the start of the calculation, all paths
consist of a single edge, we can initialize an edge count matrix C to

ones and zeros, and then, as we substitute paths, we accumulate the

number of edges thaf,make up those paths. At the completion of the
calculation, if any diagonal element is positive, we increase our estimate

of minsol by

and then repeat the calculation. We hote that this iterative precedure
finishes after a finite amount of time since, on each iteration, we have
either found a solution or we increése the estimate of minsol by an in-
tegral amount. Since minsol is bounded above by maxp, we are certain of
reaching a solution. That this resultant value is the least value that
satisfies the conditions can be seen.by the fact that if, after a longest

path calculation, there is a diagonal element mp. . which is positive then

1,1
we have discovered a cyclic path of length mp; 4 + minso]*ci i ~This path
has a per edge length of (mpi it minsol*ci i)/ Ci > and thus, '
: . MR 5
minsolnext = minsol + 2
c

i,1

is the Teast integral estjmate which will cause that cycle to be non-
positive. As we previods1y mentioned, the number of iterations is no more
than the length of the 1Qngest path, which, if we assume a fixed upper
limit on task execution time, is of order n. Since m s n then the com-

plexity of the longest path calculation is 0f n3

4).

) and hence the complexity
of the entire procedure is 0( n

- Having determined the minimum solution period, it still remains to

-
{



determine the relative timing of the recurrence nodes. For example, if
Py > minsol and p; 5 + Pj .1 = 2*minsol, then the calculation of the t-th
value for X; must preceed the t-th calculation of X3 by pi,j - minso]l
units. On the other hand, if Pi,j and Pj,i are poth less than minsol,

then the t-th ca1cu]atfon'of4xi can preceed that of xj by as much as minsol

or follow it by-as much as minsol Hence, not all of the

" Py " PiLg
relative timing is unique. The procedure which we use to determine this
relative location is shown in Figtre 5 and is based upon the longest path
matrix mp which was produced as a result of determining the minimum sol-

ution period. Now is mp. . > 0 for some i # j, then this means that the

1,3
t-th calculation of Xi must preceed the fjth palcu]ation of X3 by this |
amount. The values that the procedure determines are named Imaxp and de-
note the amount of time the calculation represented by this node must be
started prior to the last recurrence variable being updated to its t-th
value. The procedure is based upon finding the vertex J for which, for
some i, mpi;j is maximum. We then determine the 1maprva1ues for all nodes
that have a path to node j, but in no event do we set lmaxp to a value Tess
than the corresponding value of tlen. For those vértiées having no path fo
vertex j then the -vertex amongst them is chosen which has the longest path
into it and the above process for determining Imaxp is repeatedlfor this
set of vértices. We note that this "while" Toop will be exécuted no more
than once for each strongly connected subgraph and hence is limited to m
executions. Further; the complexity of the procedure interiqr to the "while"
loop is O(mz); and hence, the complexity of the entire pfocedure is 0(m3).
Prior to actual schedu]ing; it is necessary to trénsfo}m the cyclic
precedence graph into_an acyclic one to which we cén apb]y standard methods
to determine either a schedule which solves the problem in the minimum

solution period with a minimum number of processors or a schedule which

-8-



used —O
getmax (col)
while col #0 do

for i-—1 until m. do

’kif' usedi’= 0 & mP; col # - then

if mp, < 0

| max p; —tlen; lmoxpi—-—mpi’Coﬁﬂeni

getmax (col)

for i—1 until'm do

if USedi= O then

lmoxpi-—-ﬂeni

procedure getmax(col)

col=—0; maxv-—0

for i—1 wuntil m do

for j=——I until m do

if USedi= O & mp, j > maxv then

3 col—j

max v-—mp; |
?




solves the problem as quickly as possible with a fixed number of processors.
This transformation is accomplished by both deleting some edges apd by split-
ting some of the tasks into two separate tasks with no edge§ between them.

This method is best explained with the aid of an example. Consider the

cyclic precedence graph shown in Figure 6 which consists of eight nodes,'

the first four of which represent recurrence vafiab]es. The diagram rep-
resenting.ihe gréph is drawn relative to a time scale with the ieft part of
each node placed in proportion to its Imaxp value and with the width-deeach
node proportional to its tlen value. By examining the pathé, we can see that |
the minimum solution period of seven units is determined by both the path from
4 to 4 and by the two.pathg p3,4 = 2 and Pg.3 ='11. Now, the first order re- v'
currence eduations, the edges coming into a recurrence node rebresent infor-
mation to be used in computing the tth value for the node while the edges
going out of the recurrence node represents the t-th value whichAfs to be
used in computing the t+1-th values. Thus, in the actual scheduling oper--
ation, the edges out of thé recurrence nodes are really directed to another
replica of the graph. In the examble,'the longest path is 18 units long and
the minimum so]utfon perfod is 7 unitsi Thus, three copies of the graph
are.required to i]iustraie the sevén ﬁnit slice that is to be scheduled.

This is shown in Figure 7 with the edges out of the recurrence nodes dir-
ected to the next copy of the precedencé graph. We can now choose any time
slice that is seven units wide and that contains all of the tasks. In our
cdmputatidna] procedufe, we choosé.that period which ends with the recurrence
nodes hdving Tmaxp values equal tb‘theif f]en values. ANOQ,iWe are inter-
ested fn scheduling the tasks within the scheduling boundaries so that re-

peated execution of this schedule will result in solving the recurrence
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equations. Thus, the edges that cross the scheduling boundaries can be
deleted in producing the acyclic graph. In this ex;mp]e, the deleted
edgés are (1,2),(2,3),(7,3) and (7}6). In the general case, given an
edge in a cyclic precedence graph which goes from vertex i to vertex j
then that edge is td»be de]efed if

1. vertex i is not a recurrence node and

llmaxp.- tlen, Tmaxp, - 1
i i i
?é USSR N
minsol minso]

2. or vertex i is a recurrence node and

Tmaxp; - tleng + minso]J l]maxpi -1

- "minsol minsol
These relations simp]y formalize the conditions under which an edge cfosses‘
a scheduling boundary.

In addition to deleting edges,.one can see that, for the example, T8
must be split into ﬁwo tasks, TL8 which is two tfme un%ts long and TR8 which

is three time units long. There is no edge between these two tasks and the

edges that previousfy went to T8 now go to TL In the general case, task

g
i must be split if

[ ]maxpi - t]enij ] l-1maxpi -1
minsbl minsol

We also use this example to illustrate that splitting tasks may be ne-

cessary for any chojce of the scheduling period. Since T7,and T8 are part
of the path p4’3 Which; with p3,4, require the minimum éo1utfon period,
then T, must start immediately after T8 completes, or at most one time unit
later. Thus, ény seven unit scheduling period Wil split either T7vor T8'

The resultant acyclic graph-is shown in Figure 8.
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3. BOUNDS ON SCHEDULE LENGTH
The determination.of a good lower bound on the numbér of proéessors
required to schedule an acyclic precedence graph in a period equal to its
longest path or, a]fernate]y, a lower b&und on the *schedule length given
"~ a fixed number of«prOCessors is valuable for two reasons.  First, the
scheduling method employed is goal oriented, and hence, a good estimate
of the goal decreases the number of séhedu]ing attempts with an unreal-
izable goal. Secondly, it is desirable to have a measure of how well the
scheduling aTgorifhm performs as compared with the best possible sched-
ules. In this regaré, Kohler [23] reporté one graph of only thirty nodes
that required 6ver three minutes»of';omputation time to detérmine an optiQ‘
mum schedule using a good brahch aﬁé bound a]gorithm. Since we are inter-
ested in some graphs of more fhan one hundred nodes, the computational
requirements of detekmining optimal schedu]es'for all test cases is pro-
hibitive, and thus,'the measures of performanée of our algorithm will have
to be with compérison to good'lower bounds.
The simplest bound.on the number of processors required to schedule
a graph in a fixed amount of time t was first defined by McNaughton [24]
and is given by |
. Zt]eni‘l
~kmin = ———
t
Several refinements of this bound have been proposed, fhe most com-
plete being the one given by Fernandez and Bussel in E13].' Their bound is
determined byAconsidering all sub-intervals (t],té):in the schedu]iﬁg in-

terval (0,t) and determining the minimum number of processors to complete
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the amount of work required in that interval. To make this definition
more precise, given a schedule length t, then for each task define te to
be the earliest that the task could be started and define t1 to be the
latest that the task could be started while still making a schedule df
length t. Ne note that if i is an initial task, -then téi = 0, and if i
is a final task, Fhén»t11 =t - t]eni. Given an interval (tl’tZ)’ where
0= tl < t2 s t, then for a tésk i, if it were started at its earliest
time, | |

we, = min(max(tei + t}eni,tl),tz)

- min(max(tei,tl),tz)

is, for this task, fhe number of time units that lie within the interval
(tl’tz)' Similarly, one may define W]i as‘the number‘of.units that this
task would use in the interval if it were started as late as possible.
Then w, = min(wei,w]i).is the minimum number of execution time units that
will lie in the interval, and consequently, for this interva1
|2

oty

kg

1
is the minimum number of processors required. Hence for the entire interval

the minimum number of processors required is given by

kmin = max {ktl’tz (tl’tZ) € (O,t)>

The major drawback to the above bound is its complexity which is O(n*tz)'
where n is the total number of tasks. Fernandez and Bussel recognized

this drawback and suggested as an alternate the bound given by

| (0,8)) (0,t)>,

kmin = mgx(max{%o’tl

max<ktl,t l (t),t) e (O,t)>5.
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By use of two data structures of‘size n, these calculations have a com-
p]exity‘of O(max(t,n)). 1In [26], Ramamoorthy et al defined essential
tasks for the interval (tl,t1+1) as those tasks that must be in process
during the interval. Since the essential tasks must be processed, then
the number of essential tasks is a bound on the number of processors re-
quired, and |

kess = max {ktl’t1+1 ' (t,t+1) e (O,t.)}

could be combined with kmin to produce a bound whfch, although not as sharp
as the Fernandez - Bussel bound, has a complexity of only O(méx(n,t)).

An improvement in the bounds discussed absve can be made by considering
what we define as essential task interference. As an example, consider the
graph of Figure 9 which consists of eight tasks. Application of any of the
previously discussed bounds determines that, for a schedule length of
twelve, the minimum humber of processors is two, Héwever, if we look at
the number of essentia] tasks at each interval, we see that at period five
and period six th processors are required for essentia] tasks and thus
none are available %or other tasks. As a result of this, task eight cannot
start as late asitime six as we determined from the precedence relations
but must, instead, be started by time one so that it won't interfere with
the essential tasks. If we now apply either the Fernandez - Bussel bound
or the alternate, we find that three processors-are required. We note that
if task eight were only three units long and task seven were also three
units, then a]thbugh the graph would schedule in twelve units with two
processors, the earliest that task eight could start would be timé seven,
and thus, rather than decreasing tl we would increase te. Now sincé
changing either te or t]vcou]d'add to the essential tasks at some interval,

then whenever te or t1 is changes, the essential tasks should be recomputed
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and any new interferences dealt with. A program for computing essential
tasks and removing task‘interferences is shown in Figure 10. The proce-
dures changete and{changet] are resursive routines that chénge the te
or t1 value for that node and all of its sucessors or predecessors. The
worst case comp1exfty of the.prOCedures for determining essential task

interferences is Q(n*tz).
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procedure esstinf (k,t)

done — false

while done = false do

| esswork~—0

donef—tfue
fori-—1 until n do

forjo——tli until te; + Heni do

essworkj ~— esSworkj + ]

fo’ri~——’r-l step — luntil O do -

I f essworki >k then

| write "Essential tasks - exceed
Processors

else if esswork;= k then

for j=——I until n do~

if _Hj>i & ’fejgi & tej +Henj > i

then

changete (j,i +1)

done —false

iij-Hlenj > & TeJ + ﬂenj < [

& 'rlj“s i then:

changet! (j,i) - -
done -—7false -




4, SCHEDULING

In the previous sections, we have reduced the problem of so]Ving
recurrence equationsvin a minimum amount of time with fixed resources
to thevfamiliar schéduling problem. This problem 6f scheduling proc-
essors so as to ﬁinimize the total execution time of a set of tasks has
received considerable attention and is the subject of at ieast three
recent books [3,4,9]. The most recent of these [4] provides a thorough
discussion of the problem together with notatidn and terminology for its
representation. We depart from this notation on]y‘in.that‘we consider
the restriction to k identical processors'amongst which data transfef
imposes no penalty. Also, we do not consider deferral costs. Thus,
we define.a task system to be a three-tuple (S,{,w) where

1. S ={ Tl,Tz, e oo sT Y s a set of n taské,

‘2. { 1is an irreflexive partial order defined on S which

specifies the precedence constraints;.and
3. WS~ N is a map whfch associates with each task 2
‘non-negative integer representing its execution time.

We ﬁote that as in previous sections we represent the tasks as nodes
in a directed graph where an edge goes from Ti to Tj iff.Ti'ﬂTj and we
will write the value w ( T, ) as tlen..

Given k identica]vpfocessors,'a schedule of a task system has a
schedule length of t is a total function f: S ~> { 0,1, . . . ,t-11}

subject to the conditions:

!
-
L)
—
Nt
-

. . <
1. if Ti<,Tj then f( T, ) + t]eni

I
—+
-
2%}
=
Qo

2. forall i =m, f( T;) + tlen, z
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3. for each i, O i< t, there are at most k elements
T, for which f( T ) S < f( T ) + t]enj.

Since the processors are identical, the definition of a schedule
does not distinquish to which processor a partlcular task is assigned.
In presenting schedu1es, we W11] often make th1s assignment explicit
by show1ng the schedule as a Gantt chart.

S1nce vie des1re eff1c1ent a]gor1thms for schedu]1ng, we turn to
methods which, although not optimal, will produce "good" schedules.
The most common method is termed list scheduling. In this type of
scheduling we assume an ordered list of all of the tasks which is called
thé priority list. The sequence by which tasks are.assigned to proceséors
is then determined by scanning this 1ist each fime a processor is available
and assigning to that processor the first unexecuted task all of whose
’predecessors have completed. This method of 1list schedu]ino forms the
basis of many approximate methods as well as the algorithms that effi-
ciently produce optimal schedules for some re;tricted‘cases. We use a
special form of 1ist scheduling termed critical path scheduling. In
critical path sthedu]ing the order of a task in tﬁe Tist is based opon
the ]ength of the 1ongeét path from that task to any final task. The
further a task is from any final task, the earlier it appears in the list.
Since cfitical path'schedu]ing produces optimal schedules under suitable
restrictions, it has been an attractive'candidate for many scheduling
problems where eff1c1ent methods are des1rab1e in [1] Adams et al.
compared the performance of several ]1st schedu11ng methods including
critical path and found that cr1t1ca1 path scheduling was significantly
better than the,othervmethods tested. Kohler [23j has also examined

critical path scheduling and found that in randomly generated tests it
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produces optimal schedules in 5p§roximate1y 75% of the casés. In spite
of this good expected performance, Graham [4, p 1907] has shown that crit-
ical path scheduling can be as bad as the worst 1list. Thus, our choice
of critical path as the basic scheduling method is based solely on the
expectation that the schedules produced wi]] be near optimal.

The scheduling hethod that we employ is a goal oriented critical
path method with iwolfurther»réfinements. By goal oriented we:mean that
the scheduling a]gorithm,iwhen presented with a task system, is also
given a goal of the number of processors and the schedule length. The
algorithm either produces a schedule wfth those constraints or it reports
that it is unable to do so, in which ﬁase another request can be made with
either a longer schedule length or more pfoceséors. -

The refinements to the basic sthedu1ing method are_fn two forms.
First, the priority Tist may be modified as a result of esséntia} task
interference and second, as the scheduling progresses, limited back- ;
tracking may be_emp1oyed whenever continuance of a given assignment could
not meet the scheduling goal. We will discuss the modifications to the
priority list ffrst. " Recall fhat, in Section 3, t]i was defined for task
i as the latest time that task i could be started and still meet the sched-
uling goé]s. Now if these values are not modified by the algorithm that
computes -essential task iﬁterference, then a 1list arrahgéd in increasing
order of t1 would be exactly a critical path list. Instead of using only
a critical path list, wé.use a list ordered on the value tl even if that
value was éhahgea due fq.essential task'interference. Thié‘is justified
in that the value t1 can only be decreased if the oriéina]iva]ue was not
conéistent with any possible schedule. Thus, the resultant values for t1

reflect the latest time the tasks can be started both because of prece-
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dence constraints and because of later interference with essential tasks.
Also, the assignment of a task to a processor is never made prior to its

te value. Initially, te represents the earliest that a task could be
available for scheduling simply because of the time required for its
predecessor tasks fo finish. Following the determination of essential

task interference, the va]ues‘te also reflect the additional time, if any,
that the task initiation must be de}ayed to avoid interference'with essential
» tasks;

To illustrate the ber:zfits of not scheduling a task prior to its te
va]ug, coﬁsider the task system shown fn Figure 11. This system was given
by Kohler [23] as an example of a system which no list schedy]ing method
could schedule optimé]]&. The task systém has a 1ongest path of length
eight and the sum of the length of all tasks is twé]ve, thus a schedu]ing‘ ”
goal of eight time units and two processors appearé reasonable. If we use
the critical path method then the priority 1ist is T,2T, 7576, TgsT, and
the partial Gantt chart shows the assignmenﬁs.made until time three where
jt is determined that T4 mustvbe schedu]ed,,i% the goa1 is to be met, and
yet no processor is avéi]able. However, if we exémihe te6; we find that’
it was initially -1 but that, because'of two essential tasks at time three,
the original value would cause interference with these essential tasks, and
teg was;changed to 4. Thé second Gantt chart in Figuré-1] shows the com-
plete schedule generated by not schedu]ihg T6 prior to its te value. This
example has shown how consideration of essential task interference amounts
to adding'a nonp}oductfve task to the list of tasks to Sé séhedu]ed. The
next example shows how consideration of‘essehtial task 1ntérferenceAcan
generate a better scheduling list than the criticdl‘path list. Consider

the task system shown in Figure 12 where we depart from our normal method
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of showing the execution time of the tasks. Here the execufion time of
the task is shown interior to the node and its label is adjacent to it.
This task system is an instance of the system which Graham [ 4,p 193]
cites as an example of a system for which critical path'produces a.sched~
uling list which is as bad as any list cén be. The critical path 1ist is
T]O,T]]—T]S,T]-Tg.which will produce a schedule of length 43 using five
processors. However, if we apbly essential task interference methods with
a goal of five processors and a schedule 1engfh of125; we find that tasks
Tll'TIS aré essential during time period one through five, and since there
are five of them, then te for tasks T2-T5 must be-increased from 0 to 6 so
that they do not interfere. Recomputing the essential tasks, we now find
that fhere are five ;ésentia1 tasks from fime period 1 through 24, and
hence, t1 for tasks T6-T9 must be decreased from 24 to 0. The resultant
list, ordered on non~décreasing values ti1, is T6-T16,T]]-T15,f1-T5 which
will ﬁroduce an optimal schedule shown in Figure 13. As a final example,
we remark without shdwing the details thaf the task system attributed to
G. S. Graham and given in [4,p 190] can be schédu]ed optimally if we re-
move essential tésk_interferenée prior td determining the scheduling list.
This system is given as an examp]eAto show that even if the pértia] order
is a tree, the ratio oflcritica1 path schedule length to an optimal sched-
ule can still be very close to 2.

The removal of essential task interference, aé we have’used it here,
applies only to thevcase‘where there are exact]y'k essential tasks during
soﬁe time peribd.' If there are k-1 essential tésks, then:oﬁe.other task
can be processed concurrently but not two. Some instances of thié case
can be hand]ed.by using a limited backtracking a]gdfithm. Consider fhe

task system shown in Figure 14 which has a maximum path length of eight.
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With a scheduling goal of three processors and length eight, it has only
two essentiai tasks at time three and four. The critical path schedule il1-
lustrates the problem with assigning all of the tasks that éan be assigned.

At time zero we assign tasks T,,Tg and T, but then at time three, when two

4’
essential tasks should be assigned, only one processor is available. By
backtracking at this point we can rescind the assignment of T6 to processor
P3 since its start time can be delayed as 1ate-as time four. Wé can now
assign T3 and continue deve]oping the schedule. In terms of 1ist scheduling,
this example of limited backtracking is another case of creating a nonpro-
ductive task N] which consﬁmes a part of the resources. In @his caée, the
original critical path 1is£ was T4,T2,T3,T5,T6,T], and N], which is of

length 3, inserted between T5 anle6. . The part of the algorithm that

inserts these extra tasks chooses the'sma11¢st one possible, in that, al-
though the backtrack does not start until it is determined that a task

must be scheduled and'no.processor is available, if a task can‘be rescinded
then the critical task is assigned as early as possible. Further, in the
event that there are more than one task currenf]y assigned whose assignment
cculd be rescinded, then we choose that one which results in the smallest
nonproductive task. Additional refinehent in the choice is made, when ne-
cessary, by rescinding the task which is rightmost in the_lisf.

Anothef form of limited backtracking involves exchanging the position
of two tasks in the list. This is illustrated by the task'syStem shown in
Figure 15. The task system consists of eight tasks with the sum of the task
lengths equal to 42. A critical path schédu]e with three'processors is
shown and has a length of 15. However, if we épp1y any of the boﬁnds of
Section 3 we finq that a schedule length of 14 is a reasonable goal. Using

the critical path list, we find at time ten that T, must be assigned but

4
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that there is no processor available. In this case we note that had we
interchanged the position of T2 and T, in the Tist then T7 would be assigned
to P2 at time 7 and would have completed at time 10 so that-T4 could be
assigned. The search for tasks whose interchange would allow the §chedu1ing
goals to be met is initiated only when a task must be assigned and no pro-
cessor is available. At that time, a search is made of all currently as-
signed tasks that have not completed to determine if interchanging any two
of them would allow scheduling to continue. The interchange of two tasks
may also be accompanied by the creation of‘another nonproductive task. -In
the event that there are more than one pair of tasks that'tould be inter-
changed, we choose that pair which results in the sma]]estAnonproductive
task being created. If further refinement of the éhoice is'ﬁecessary, we
choose that pair with’a task which is rightmost in the list.

The inclusion of the limited backtracking which we describe makes the
worst case complexity of the scheduling procedure O(n3), however, in

actual test cases run, the expected complexity was less than O(nz).
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5. PERFORMANCE
In order to determine the effectiveness of the algorithms preﬁiously
described, they were programmed using PL/I Level F, and test cases were
run using an IBM_Sysfem 360 Model 67.

Generation ef Test Cases

The majority of the teets were made using randomly generated cyclic
precedence graphs. Input to the program was the number of recurrence nodes
and the tofa] number of.nodes. Based ubon these numbers, the program then
generated the cyclic precedence graphs where the nodes predominantly repre-
sented binary functions although unary fuections were present. Since these
nodes may represent a sequence of calculations with the edges representing'
only precedenee constraint and not data flow, the task execution times were
chosen from a uniform distribution over a fixed interval. The algorithms
described in Section 2 were then applied, 'and an acyclic precedence graph
hav1ng a maximum path length equa] to the minimum solution period was

extracted. Next the scheduling goal for the number of processors is de-

{E:tlen.l
k= !
minsol

This choice represents the best bound available on the number of processors

termined based upon

required for any acyclic precedence graph extracted from the cyc]e one. Re-
call that the acyc]1c graph Wthh we extract from the cyclic one is not the
only one possible. It is easy to generate examples where the graph which
we eXtract wi]i not schedule with the goal of k prdeessors.and 1engtﬁ minsol
and yet, another acyclic graph can be extracted which will schedule with

these goals. We next apply the algorithm for determining essential task

-29-



interference and the alternate Fernandez - Bussel bound to determine the
shortest scheduling period possible given k processors. The scheduling
is then performed using the methods described in Section 4.

Test Results

Two series of 50 cases each were run with m, the number of recurrence
nodes, in the range from 4 to 12 and n, the number of tasks, in the range B
from 16 to 144. The résu]t; of.these two test series are shown in Table 1
and Table 2. The entry P-time is the lower bound on échedu]e ]ength'and
S-time is the actual scheduling time. No entry is made in eithef of these
columns if these numbers are the same as minsol. The column labeled ratio
is the ratio of minsol to the ]ength'of fhe 1ongest path from any recurrence
node to any other. Density represents the utilfzation of the processors
for this schedule. Finally, whenever fhe schedule produced was not possible
with critical path scheduling alone, a "no" is placed in the column headed
CP.

To summarize the test results with regard‘to'scheduling, 24 cases out
of 100 would not schedule optimally using only critical path»schedu]ing
which is consistent with the figures reported by th]er (23] where he
found 9 cases out of 40. We note however, that of these 24 cases, 17
(71%) of them were optimally scheduled using the one Tevel of backtracking
provided:in our algorithm. By examining the ratio of the schedule length
produced to the shortest bound we find that we can expect to schedule a’
task system with a schedﬁ]e length which is no more than .15 % longer
than an optimal length. This figure is.éombarable to the{122% reported
by Adams et a?.; [1] for similar size graphs.. Certajn différences however,
make a close comparison difficult in that a) we have the additional sched-

uling problem of split tasks where the task must be scheduled both at the
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TABLE 1.--Performance Figures for Test A

n k minsol P-time S-time Ratio Density CP
16 .3 30 - - .968 .922 -
‘ 3 30 - - 1.000 .867 -
3 43 - - 1.000 .767 -
3 37 - - .925 .685 -
3 42 - - .955 .683 -
3 - 29 - - .569 .920 -
3 34 - - .829 912 -
3 39 41 .41 .765 .951 no
2 53 - - 1.000 .925 -
3 33 33 34 .750 .951 -
36 5 39 - - .750 .872 - no
5 42 - - .778 .933 -
5 56 - - .651 .832 -
4 59 - - 1.000 .784 -
4 50 52 52 1.000 .851 -
4 68 - - 1.000 .754 -
4 58 - - .935 .961 no
6 41 - - - .683 .850 -
4 54 - - .818 .917 no
4 56 - - .903 .875 -
64 6 56 57 57 1.000 .980 no
4 94 - - 1.000 .886 -
5 78 78 79 .929 965 . -
7 59 - - .908 .869 -
6 66 - - .943 .894 -
6 62 64 64 .849 .951 -
6 62 - - .705 .944 no
6 63 - - .875 .934 no
7 50 - - 714 .874 -
5 66 - - 2930 .945 -



TABLE 1.--Continued

m n k minsol P-time S-time Ratio Density CP
10 100 7 93 - - 1.000 .929 -
6 108 . - - 1.000 .855 -
9 59 - - .797 .962 -
9 58 - - .906 .987 no
7 85 - - .977 .909 -
7 81 - - .976 .975 no
7 77 77 79 .928 - .975 -
8 76 - - 1.000 .896 -
9 69 - - .945 .992 no
8 70 - - .933 .984 -
12 144 10 82 - - 1.000 .946 -
12 64 65 66 o .842  .944 -
7 128 - - .985 917 -
9 90 - - .938 917 -
9 99 - - 1.000 .919
9 101 - - .990 .922 no
10 84 - - 1.000 .904 -
7 119 - - 1.000 .959 -
13 72 - - 911 .931 no
7 119 - - -.960 .962 no
Average .904

.904




TABLE 2.--Performance Figures for Test B

n k minsol P-time S-time Ratio Density
16 3 30 - - 1.000 767 -
3 34 - - - 971 .853 -
3 35 - - .795 .914 -
3 33 - 34 34 .708 .951 -
2 60 - - . 1.000 .842 -
4 27 - - .900 .907 no
3 41 - - 1.000 .740 -
4 25 - - .806  .880 -
3 30 - - 1.000 .867 -
3 29 .- - - .935 .816 -
36 6 37 - - .881 .869 -
5 53 - - .803 .830 -
4 68 - - 1.000 .816 -
-5 50 - - .893 .832 -
5 49 - - .961 .894 -
5 49 - - .907 .802 -
5 41 - - .953 .863 -
3 89 - - 1.000 .83 -
4 70 - - 1.000 .843 -
4 53 - - .828 .892 -
64 5 82 - - .932 .910 no
5 85 - - .810 .915 no
9 48 - - .814  .896 -
6 79 - - 1.000 .844 -
5 70 - - .921 .891 -
6 72 - - 1.000 .847 -
6 63 - - .926 .865 -
5 87 - - 1.000 .860 -
6 53 53 55 - .902 .912 no
4 90 - - 1.000 .950 -



TABLE 2.--Continued

n k minsol P-time S-time Ratio Density
100 g 73 - - - .912 .957
7 ' 8 - - .966 .952
7 87 - - - .897 .869
10 53 55 - 56 .812 .927
7 83 - - .883 .935
8 76 - 1.000 .885
8 76 - - .884 .380
9 64 - - .928 .950
8 83 - - .912 .973
8 72 - - .960 .976
144 9 95 - - .969 .904
9 85 - .944 .950
8 103 - - .981 .984
9 92 - - 911 .940
9 89 - - .864 .961
8 112 - - .836 .926
9 85 - - 876 .946
9 104 - - 912 .909
10 82 - - 9501 .916
11 80 = -

1.000  .914

Average .920 .891




beginning and at the end of the same processor, and b) we choose the
number of processors such that no fewer number could still produce a
schedule of the same length. This later condition may not have been
met by all the schedules reported in [1];

With regard toAthe ratid of the schedule ]ength'to minsol, which
is the best ratio.we can claim for recurrence equations, we note that
89 out of 100 test cases were séheauled dptimal]y and the expecied'

schedule ]ength'is no more than .366% longer than an optimal schedule.
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6. CONCLUSIONS

From a pract@ca] standpoint, one-of the more important areas of
future research is to éxamine various changes to our assuhption thét data
transfer between procés;ors is withouf penalty. One such change could
be that at each interval of time only some fixed number of data transfers
could occur corresponding to some fixed number of data channels. Another
change to this assumption would be to define a distance between processors,
and to impose a time penalty on data transfers as a function of the dis- |
tance between the two processors. |

Another area for future research would be to examine various heuris-
tics for extrécting the acyclic precedence graph from the.cyélic one. This’
extraction is not unique and we can show examples where one method of ex-
traction will result in a task system that car be scheduled with a fewer
number of processors_than one extracted by'some other method. One reason
for this is that one method of extraction may résu]t ih more split tasks
than some other méthpa and by eXamining some of the test cases we have
found that the split tasks can cause scheduling problems which will rgsu]t
in a longér schedule,

In terms of the benefits of using the algorithms presented, further
study would be required to determine the exact characteristicé of repre-
sentative recurrence equations.

As compared with simply scheduling the acyclic inner loop, the random
test cases of Section 5 sﬁows that our method can be expected to prbduce
schedules near1y 10% shorter. In many instances the savings can be cbn-

siderably more. In one such case, ve examined the scheduling of the solu-
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tion to a set of eleven first ofder differential equations whiéh reﬁre—
sent the equations of motion of a ground launched missile. By consid-
ering just the inner loop, we found a minimum schedule period of 80.
units and this was realized with 8 processors. However, by using the
methods presented, a minimum éolution period of 44 units was found and
this was schedulable using 16 processors. The execution time verses the

number of processors is-shown in Figure 16.
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ABSTRACT

After examining sevéra] dozen serial algorithms and their variations
for various shortest-path problems, two algorithms were selected as good
candidates for parallelization on an MIMD-type processor. These are:
(1) Pape-D'Esopo version of the Moore's algorithm for finding shortest paths
from one node to all others, and‘(2) Warshall-Floyd é]gorithm forbfinding
shortest paths between all pairs of nodes. The techniques used in designing
the two parallel algorithms are fundamentally different--one involves parallel
processing with a queue and is suited for sparse networks while the other
employs matrix methods and is suited for dense networks. The correctness of
these algorithms is proved. Execution times are analyzed and compared with

actual execution times on the HEP computer (an MIMD machine).



1. INTRODUCTION

Shortest—péth problems are by far the most fundamental and also the most
commonly encountered problems in the study of transportation and communication
networks. Often the repeated determination of shortest paths and distances
form the core (inner loop) in many transportation planning and utilization
packages. Therefore, the search for faster and faster shortest-path procedures
continues. After reviewing over 200 papers on shortest-path algorithms and
after classifying and analyzing several dozen existing algorithms [5], two
points became evident to us (among other things): (1) the shortest-path
problems have almost reached their theoretical bounds of speed if conventional
serial computers are to be used; and (2) certain algorithms (which‘May be
most suited for serial mode) cannot be "parallelized" as readily as others.
For example, Dijkstra's algorithm [4, 7, 18] for finding a shortest path
between two nodes is not as well suited for parallelization as the Bellman-
Moore [5, 14, 21] algorithm is.

We have selected two a]gorithhs (for solving two different shortest-path
problems), which appear to us as the best candidétes for parallelization,
for a detailed presentation in this paper. These are: (1) Pape-D'Esopo
version of the Moore's algorithm for finding shortest paths from one node
to all others [14, 15] and (2) Warshall-Floyd [4, 10, 18] algorithm for
finding shortest paths between all pairs of nodes. The techniques used in
designing the two parallel algorithms are fundamentally different--one
involves parallel processing with a queue and is suited for sparse neiworks

while the other employs matrix methods and is suited for dense networks.



We designed parallel versions of these two algorithms, suited for an
MIMD (multiple instruction multiple data stream) [11] machine--keeping an
eye, in fact, on the characteristics of the specific MIMD machine on which
the designed parallel programs were actually to be executed. For example, on
this machine the time required in creating a process is greater than the time
needed to lock or unlock a resource.

In recent years, MIMD machines are not only being built experimentally
in university laboratories, but they are being built in private industries.
The Heterogeneous Element Processor (HEP) of DENELCOR Inc. [20], and the
SMS 201 of Siemens AG [12] are two examples of commercial MIMD machines.
Since the HEP was available to us, we coded and executed our programs on the
HEP and performed the timing study on it.

Although a number of theoretical studies have been reported on parallel
processing of graphs [1, 8, 9, 13, 17, 191, very few of them have considered
the specific problems of shortest pafh prob]ems'and none have actually designed,
coded and executed a parallel shortest-path algorithm on a real parallel com-
puter (particularly on an MIMD computer) to the best of our knowledge. This
study considers many of the real nuts-and-bolts issues of parallelization of
existing algorithms, data structures, efficiencies and speed-gains over the |
serial implementations.

In Section 2, we will give definitions relevant to shortest paths on a
network. In Section 3, we design a parallel algorithm for finding shortest
paths from one specified node to all other.nodes in a given network. The proof
of correctness of the algorithm and the details of our model of computation
are also given in Section 3. In Section‘4, we present the second algorithm--
for finding shortest paths between all pairs of nodes in a.given network.

The proof of its correctness and some empirical résu]ts on execution time are

also presented in Section 4.



2. SOME DEFINITIONS
The following are the definitions of some of the important graph-theoretic
terms used in this paper. Definitions for the rest of the terms can be founq

in any textbook on graph algorithms or networks [4, 18]. A directed graph

G = (V, E) is an ordered pair of finite sets: V of nodes, and E of arcs. We
will use NODES to denote the number of nodes in V. We will also use

{1, 2, ..., NODES} to denote the elements of V. An arc a in E is an ordered
pair, (u, v), of nodes. An arc a = (u, v) is said to start at u and end at
v. A network is a directed graph, G, together with a real valued function,
2, on the set of arcs. For any arc a, #(a) is the arc length of a. An arc

)th

length matrix has its (u, v entry as 2(u, v) if the arc (u, v) exists. The

entry is © if (u, v) does not exist. A gafh P is a finite sequence of arcs
P = (ajs a5, ..., ), such that a, starts where a,_; ends, for i =2, ..., k.

k)' If

a; = (ui_], ui), we will, in addition, use (uO, Ups = uk) to denote P,

The Tength .d(P) of a path P is defined to be d(P) = R(a]) + ... + %(a

and P is called a path from Ug to u- A path that starts and ends at the same
node is called a cycle. A cycle with negative path length is called a

negative cycle. P is a shortest path from u to v if d(P) is minimum over the

length of all paths from u to v; the shortest distance from u to v is then

d(P). The one-to-all shortest path problem is the problem of finding the
shortest paths from a given node, called the source, to all the other nodes,

the destinations. The all-to-all shortest path problem is the prob]em of

finding a shortest path for every pair of nodes in the network.



3. A PARALLEL ALGORITHM FOR THE ONE-TO-ALL
SHORTEST-PATH PROBLEM

A modification of Moore's algorithm [14] by D'Esopo as reported in [16]
was further developed by Pape [15] into two very efficient codes for finding
shortest paths from a specified source node to all other nodes in the given
network. This Pape-D'Esopo-Moore algorithm, which we will refer to as PDM

algorithm, may be described in an Algol-1like language as follows:

Algorithm PDM

1 for all u # SOURCE do

2 Dlu] := o

3 DI[SOURCE] := 03

4 initialize Q to contain SOURCE only;

5 while Q is not empty do

6 begin

7 delete Q's head node u;

8 for each arc (u, v) that starts at u do
9 T if D{vl>D[u]l + &(u, v) then

10 begin

11 Plv] :=

12 D{v] := D[u] + z(u, v)s

13 if v was never in Q then

14 " insert v at the tail of Q;

15 if v was in Q, but is not current]y in Q then
16 " insert v at the head of Q

17 end

18 end

During the execution of Algorithm PDM, the label D[u] is always updated
to be the currently known shortest distance from SOURCE to u, and P[u] is
always updated to be the predecessor node of u on the currently known shortest
path from SOURCE to u. Since each insertion of a node u into Q is preceded
by a decrement of D[u], this algorithm is guaranteed to terminate provided
the input network has no negative cycles.

To see that the D[u]'s do indeed converge to the shortest distances,
we first note that at termination D[v] s D[u] + %(u, v) holds for every arc
(u, v). Suppose the node sequence (SOURCE = Ugs Ups -ons Uy Z u) is a path
from SOURCE to u, then its path length is given by

—6-



z(uO, u]) + ... 4 Q(uk_], uk)

v

('D[uo] + D[u]]) ..t ('D[uk_]] + D[uk])

i

-D[SOURCE] + D[u] = D[u].

Thus, D[u] is the shortest distance from SOURCE to u, and the node
sequence,

A (SOURCE = P[...P[ul...], ..., P[P[ull, P[ul, u),

is the shortest path from SOURCE touse as obtained by Algorithm PDM.

The experiments of Denardo and Fox [2], Dial, Glover, Karney and
Klingman [3], Pape [8], and Vliet [11] show that on the average A]gorithm PDM
is faster than almost every other shortest-path algorithm, if the input network
has a Tow arcs to nodes ratio. We will, therefore, base our parallel algorithm
on Algorithm PDM.

Let us fix our model of parallel computation before deve]oping parallel
algorithms. We will assume that our computer can simultaneously execute
up to K processes. The communication between the processes is done via a

common memory. The computer supports the operations: create, lock, and

unlock [pp. 77-78 of Ref. 2]. When a process P] exécutes the statement
“create process P2,“ P, will start execution and P, will continue. For a
memory X, after process P] executes "lock X," any other process that attempté
to read, write, or lock X will have to wait until P, executes an "unlock X."
Our model of computation is a realistic one; for the HEP computer can simul-

taneously execute processes, it has a common memory for all the processes, and

it supports the operations create, lock, and unlock efficiently.

For practical reasons, we will assume that create, lock, and unlock take

non-zero units of time to execute. In designing our algorithm, we also assume

that create requires a longer execution time than lock and unlock. This

assumption is also realistic, because create in the HEP machine using the



FORTRAN language is implemented with four instructions, whereas only one

machine instruction is required for implementing lock or unlock.

An obvious way to utilize the concurrent processing in Algorithm PDM
would be to execute the inner for loop (statements 8 to 17) simultaneously.

But this approach is unprofitable because the overhead for a create is high
compared to the execution of one pass of the loop. Moreover, in this

approach the maximum number of concurrent processes utilized would be about

four, if the input is a typical road nerprk (with outdegree* =4). Therefore,

we will avoid breaking the inner for loop into different processes; instead

we will distribute the passes of the while loop (statements 5 to 18) to different
processes. This will avoid excessive use of create's.

We will use only K-1 create's to obtain a total of K concurrent processes
at the beginning of the algorithm, and use lock's and unlock's to take care of
the rest of the synchronization. During the execution of the algorithm, the
K processes--one called MASTER and the others called WORKERs--share the computa-
tion load, as long as there are known tasks to be performed. Each process takes
approximately %— of the work load in the initialization step. In the path-
finding step, each process repeatedly deletes a node, u, from Q, and updates
P{vl's and D[v]l's for the successors, v's, of u. In addition to a WORKER's |
tasks, the MASTER 1is responsible for finishing the initialization step, and
for synchronizing the initiation and termination of the path-finding step. Our

parallel algorithm, which we will refer to as PPDM, is as follows:

*
The outdegree of a node is the number of arcs coming out from that node.



Algorithm PPDM (Parallel Pape-D'Esopo-Moore)

Process MASTER

MSYN := "yes"; WAIT := 0; DONE := 0
for i := 2 step 1 unt11 K do
~ create process WORKER(i);
for u := 1 step K until NODES do
T D[u] := oo
L1: if WAIT < K - 1 then goto L1;
DISOURCE] := 0;
initialize Q to contain SOURCE only;
L2: lock Q,
10 if Q is empty then goto L3;
11 delete Q's head node u;
12 unlock Q,
13 MSYN := "no";

WoONOTOT P W —

14 reach successor nodes of u (Block B)
15 MSYN := "yes";
16 goto L2'

17 L3: 1f WAIT = K - 1 then goto L4

19 goto L2;
20 L4: DONE := 1;
21 unlock Q;

22 L5: if DONE < K then goto L5

Process WORKER(i)

1 for u := 1 step K until NODES do
2 Dlu]l := =

3 L1: if MSYN := "yes" then goto L3;

4 lock Q, :

5 if Q is empty then goto L2;

6 delete Q's head node u,

7 unlock Q;

8 reach successor nodes of u (Block B);
9 goto L1;

10 L2: unlock Q,

11 goto L1;

12

L3: Tock WAIT WAIT := WAIT + 13 unlock WAIT;
13 L4: 1f DONE > O then goto L5;

14 7f MSYN = "yes™ - then goto L4:

15 Tock WAIT; WAIT == WAIT - 1; unlock WAIT;

16 goto L1;
17 L5: lock DONE DONE := DONE + 15 unlock DONE




Block B

1 for each arc (u, v) that starts at u do
2 begin

3 newdv := Df{u] +2(u, v);

4 lock D[v];

5 1f D[v] < newdv then .

6 unlock D[v]

7 else begin

8 PIv] := u;

9 D[v] := newdv;

10 - unlock D[v]s

11 lock Q;

12 if v was never in Q then

13 insert v at the tail of Q;

14 if v was in Q, but is not currently in Q then
15 insert v at the head of Q;

16 - unlock Q '

17 end

18 end

Note: For Block B of the MASTER process, Statement 11 should be changéd to:
mn MSYN := "yes"; lock Q; MSYN := "no";u .

In Algorithm PPDM, the local variables are written in lower case letters,
they are i, u, v, and newdv. The variables MSYN, WAIT, and DONE are the communi-
cation links between the MASTER and the WORKERs. MSYN = "yes" signals the
WORKERs to let the MASTER check the Q first. WAIT is the number of WORKERs
waiting for further command from the MASTER (i.e. WAIT is the number of WORKER
processes which are executing statements 13 and 14). DONE is used by the
MASTER to broadcase the termination signal. This algorithm requires the
processes to keep on processing Block B until Q is empty. Block B is equivalent
to statements 8 to 17 of Algorithm PDM. The locking and unlocking of D[v]

and Q are added in Block B to ensure that Algorithm PPDM computes correctly.

Proof of correctness
We will now informally prove the correctness of this algorithm. It is

easy to see that the initialization step is correct. For the path-finding step,

-10-



we Wwill first state and prove six remarks to show that the algorithm terminates

for all networks which have no negative cycles.

Remark 1: For any node v, D[v] is nondecreasing with time.

Remark 2: Each finite D[v] represents the length pf a path from SOURCE to v.

Remark 3: Only a finite.number of insertions are madé into Q.

Remark 4: Every execution of Block B always terminates.

Remark 5: There exists a time, t], éuch that the MASTER process will not
execute Block B and MSYN = "yes" for all time after t].

Remark 6: Algorithm PPDM terminates.

To see that D[v] is nondecreasing, one simply observes that D[v] only
changes when it is locked, and the changes are always decrements. To see that
each finite entry D[v] represents a path 1ength; we use induction on the time
sequence of the change on the array D[*]. Let t] be the time immediate]y
after D[SOURCE] is initialized to zero, and let ti+] be the time immediately
after the first change (or changes) in D[+] after ti’ for i=1,2, ... . At
time t], D[SOURCE] = 0 is the only entry of D[+] with a finite Va1ue, and 0 is
the path length of the null path from SOURCE to SOURCE. Suppose for all time
ts ti’ each finite D[v] represents a path length from source to v, and suppose
D[v] is changed immediate]y before ti+1’ Assume that the change in D[v] is
caused as we fan out from u, and that the value of D[u], at the time of its
reading statement 3 in Block B, is the path length of (SOURCE = Ugs Ups +-es

’ U-, V )-

u, = u)5 At time ti4y» DIV 1 is the path length of (uo, Ups oo Uy

J
Thus, Remark 2 follows by induction.
To see that Remark 3 holds, we first notice that each D[v] is bounded
from below, because the D[v]'s represent path lengths and the input network

has no negative cycles. Secondly, we notice that there are only finitely many

decrements to the D[v]'s, because each decrement decreases a D[v] by at least

-11-



the minimum length difference between two loopless paths. Thus Remark 3
follows, since each insertion into Q implies a previous decrement of a D[v].

We will pfove Remarks 4 and 5 together. To prove Remark 4, it suffices to
show that no indefinite waits occur at Block B's statements 3, 4, and 11.
By Remark 3, we see thatlB]ock B can be executed for only finitely many times.
Thus every waiting at statements 3 and 4 takes a finite time. Because Q
can be locked outside Block B, more érguments are needed to show that no
indefinite wait occurs at Block B's "lock Q" statement (statement 11). We
will prove a stronger result that no indefinite wait can occur at any "lock Q"
statement in Algorithm PPDM. The MASTER always sets MSYN to "yes" before it
executes "lock Q", and when MSYN is "yes" all WORKERs will be blocked from
entering statements 4 to 11 and Block B. Thus fhe MASTER has no indefinite
wait at "Tock Q", and that its executions of Block B take finite time. Before
we prove similar results for the WORKERs, we first prove Remark 5. It is easy
to see that the loop of the MASTER's statements 9 to 16 has no indefinite wait.
We claim that the loop of statements 9, 10, 17, 18, and 19 has no indefinite
wait also, for if the MASTER is waiting at statement 17, then MSYN would have
the value "yes", and consequently, only finitely many short lockings of WAIT
can occur at the WORKERs' statement 12. Since indefinite wait does not occur
at the MASTER process, and there are only finitely many insertions into Q,
we conclude that eventually the MASTER will never enter Block B. We have just
proved Remark 5. To finish the proof of Remark 4, we assert that the WORKERs
have finite waiting time for executing the "lock Q" statements. Suppose the
converse is true, and j WORKERs are waiting indefinitely at the "lock Q"
statements (i.e. WORKER's statement 4 or Block B's statement 11). By Remark 5,
the MASTER will eventually be looping at statements 9, 10, 17, 18, and 19.
Each time the MASTER executes "unlock Q", statement 18, one of the j waiting

WORKERs is allowed to finish executing "lock Q", which is a contradiction.
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To prove Remark 6, we first recall that every execution of "lock Q" takes
a finite waiting time. From Remark 3, we see that Q will eventually be empty
‘and WORKER will not execute statements 6 to 9. By Remark 5, MSYN eventually
has the value "yeé", therefore all WORKERs are directed to the loop of state-
ments 14 and 15. Consequently, Algorithm PPDM terminates.

Now we prove the correctness of the outputs, D[+], and P[-]. We use
Dt[u] and Pt[u] to denote the values of D[u] and P[u] at time t, and use z to
denote the termination time. We first claim that D_[v] s Dz[u] + 2(u, v),
for each arc (u, v). Suppose (u], v]) is an arc of the input network. Let
a be the time of the last deletion of u from Q. Consequently, Block B is
executed for Uy after time a. The processing of the arc (u], v]) includes
the execution of either statemehts 5 and 6, or statements'S, 8, 9, and 10.
Let b be the time of the'execution of'“gglggﬁ_D[v]]“, at statement 6 or 10.
Since the last deletion of Uy occurs at a, it is easy to see that D[u]] stays
constant after time a. Consequently, D, [vq] = Db[v]] < Dz[u]] + z(u], v1).
Having proved D[v] < D[u] + 2(u, v) for all arcs (u, v), we conclude that
the D[u]'s are the shortest distances by the same argument that was used for
the proof of correctness of Algorithm PDM.

To prove that for each u,

(SOURCE = PZ[... Pz[u]...], cens Pz[u], u)
is a shortest path, it suffices to show that for each Vys if up = Pz[v]] then
Dz[v]] = Dz[u]] + Q(U], v]), for it says that a shortest path from SOURCE to
Uy concatenated with (u1, v]) forms a shortest path from SOURCE to vy Let
time a and time b be defined as before. It is easy to see that D[v] is
decreased in that execution of Block B, and so Db[V]] = Dz[u]] + Q(U], v]).
Finally, we see that Dz[v]] = Db[v]], because anylchange of D[v]] after time
b implies a change in Pb[V1] = Uy- This comp]e?es the proof of correctness of

Algorithm PPDM.
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Algorithm PDM and Algorithm PPDM were coded to run on the HEP computer.
The programs use linked queue, which is used in Pape [15], and Dial, Glover,
Karner, and Klingman [6]. The input network is stored in a linked list
structure called the forward star form, used also in [6]. Timing experiments
were performed with randomly generated connected networks. Following the
characteristics of the Eastern Washington Highway Network, the generated net-
works were assigned exponentially distributed arc lengths‘and have approxi-
mately 35% of nodes outdegree of one, 9% of nodes outdegree of two, 40% of
nodes outdegree of three, and 16% of nodes an outdegree of four. Highway
networks usually have all two-way roads, and so do generated networks.* For
each NODES = 10, 25, 50, 75, 100, we generated two networks. For each network,
we picked five source nodes. Each of these 100 problems are solved with the
sequential Algorithm PDM, and the péra]]e] version, Algorithm PPDM, with the
number of processors K =1 to 8. Let T. denote the solution time for the

S

sequential algorithm, and T, denote the solution time with the K-processor,

K
parallel algorithm. "For each problem, the speed-up, SK =7 and the
. K
SK '
efficiencies, EK = » are computed. For fixed NODES and K, the averages

of SK's and EK's are b]otted in Figure 1 and Figure 2, respectively. For
NODES = 75 and 100, we see that a speed-up of approximately three is achieved
with five processors, and thus an approximate efficiency of 60%. However,
regardless of the number of processors used, we expect that Algorithm PPDM
has a constant upper bound on its speed-up, because every process demands

priVate use of the Q.

*
A two-way road is represented by a pair of arcs, (u, v) and (v, u),
such that 2(u, v) = (v, u). '
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4. A PARALLEL ALGORITHM FOR THE ALL-TO-ALL
SHORTEST PATH PROBLEM

The best known algorithm for determining shortest paths between all pairs
of nodes is due to Floyd [10], which in turn is based on an earlier algorithm
for transitive closure proposed by Warshall [4].

The basic idea of the a1gorithm may be expressed as follows*:

Algorithm F

1 for k := 1 step 1 until NODES do

2 for i := 1 step 1 until NDOES do

3 “for j :=T step T until NODES do

4 T if D[i, j1 > D[i, , k1 + D[k, 31 then
*5 “D[i, j1 := D[i, k]l + D[k, JI

The matrix, D[], is initialized to be the arc length matrix. If the input
network contains no negative cycle element D[i,.j] at the termination is the
shortest distance from u to v; because at the end of the kth iteration, D[i, j]
is updated to be the shortest distance from i to j via paths that have inter-
mediate nodes which are contained in {1, 2, ..., k}. We will show that the
inner loops of Floyd's algorithm may be compufed in parallel as follows:

Algorithm PF (Parallel Floyd)

1 for k :=1 step 1 until NODES do

2 fgg_] < i, J s NODES do s1mu]taneous]y
3 if D[i, j1 > D[i, k] + D[k, j] then
4 Dli, J1 : Dh,k]+D[,j]

It v A

To prove that Algorithm PF is correct, we use the theory developed for
controlling concurrent processes in operating systems. In particular, we

use the definition and results in Chapter 2 of [2].

*

If the actual shortest paths are desired (in addition to the shortest
distances), then statement 5 should be replaced by "begin P[i, j] := P[k, jl;
D[i, J] := D[i, k] + D[k, j) end." P[i, j] should be initialized to i if the
arc (k, j) exists, and P[i, j] need not be initialized if arc (i, j) does not
exist.
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We first informally review some definitions. A task system C = (t, <)
is a set of tasks, 1 = {T], T2’ cees Tn}, together wﬁth a precedence relation,
<, where T < T' means that T must be completed before T' begins. Any execution
sequence of C must obey the precedence relation. Each task T is associated
with two subsets, the domain D; and the range Ry, of the memory cells. When
T starts it reads values from its domain, and when T terminates it writes

values into its range.‘ T and T' are noninterfering if either T < T', or

T' «T,orR.nRy, =R.n Dy =D Ry = . Tasks {Ty, ..., T } are

T T T T T
mutually noninterfering if every pair of tasks Ti and Tj (i # j) are non-

interfering. We will use the following theorem which is stated and proved in

(2}, pp. 39-40.

Theorem: Task systems consisting of mutually noninterfering tasks are determinate.
The definition of determinacy of task systems requires a long development,

[2], pp. 35-38, which we will ndt review here. For the purpose of proving the

correctness of the Algorithm PF, it suffices to note that determinacy of a

task system implies that for the same initial memory state, any execution

sequence of the task system will end up with the same final memory state. We

will define a set of task systems, and prove that each of them contains mutually

noninterfering tasks. Then, we will use the above theorem to conclude that

Algorithm F and Algorithm PF compute identical results.

For each 1 < i, j, k < NODES, Tet T j denote the task

ki
"for D[i, j] = D[1, k] + D[k, j] then D[i, j] :

D(i, k] + D[k, J1".

For each k = 1, ..., NODES, define task system C, = (ty» P), where task set

= {T | 1 < i, j < NODES} and @ is the null precedence relation, i.e. no

Tk kij
task needs to precede any other task. We will now show that each Ck contains

mutually noninterfering tasks, and thus conclude that every execution sequence
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of Ck produces the same result as Algorithm F's execution sequence does. We
will use Mij to denote the memory cell for the variable D[i, j]. Mij = Mab
if and only if i = a and j = b. We will use Dkij and Rkij to denote the

domain and range of task Tkij’

Remark 7: (a) Dkij = {Mij’ Mik’ Mkj}
(b) Rkij c {Mij}
(c) If the input network has no negative cycle, then Rkkj =‘Rkik
Parts (a) and (b) follow immediately from the definitions of domain and
range of a task. For part (c), Tkkj contains the test "D[k, jl > D[k, k] +
D[k, j1". Since the network has no negative cycle, D[k, k] is nonnegative.*

Thus the test result is always fa]se, and the content of Mkj will not be

changed. Rkkj = @ follows. Similarly, Rkik = @ also fo]]ows.

:_ﬂ.

Remark 8: If the input network has no negative cycle, then Ty contains mutually

noninterfering tasks.

Because there are no precedence constraints between tasks in T) > We

need to prove that Rk . N Rkab Rk1J n Dkab = Dki' k b = @, for all
(i, j) # (a, b). Reij 0 Reap < Mz n {My 3 = B, because (i, j) # (a, b).
Rkij N Dkab c {Mij} n {Mabs aka Mkb} = Qs for (i’ j) # (as b), j # ka and

i# k. Similarly D n Rkab = 0. It follows that Ty contains mutually

kij
noninterfering tasks, for k = 1, ..., NODES. As noted before, this implies
that Algorithm PF is correct.

Algorithm PF is programmed to run on the HEP computer. The number of

processes created is minimized in order to reduce the overhead (of the

create operation). The logic of our program referred to as Algorithm HEPPF

(HEP parallel Floyd) is as follows:

*
This fact can be proved by an induction argument on k.
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Algorithm HEPPF

Process MASTER

SYN := 0;

for & := 1 step 1 until K-1 do
create WORKER(L):

execute WORKER(K)

£HWN —

Process WORKER(%)

for k := 1 step 1 until NODES do
begin :
for i := step K until NODES do

~if D[i, k] < = then
for j := 1 step T until NODES do
execute Tkij;

Tock SYN; SYN := SYN + 1; unlock SYN;
L1: -3f SYN < K * k then goto LT
end

W oo~ NP W -

Algorithm HEPPF was coded and rﬁn for the experimental timing study.
Experiments used randomly generated 20-, 30-, and 40-node networks. NODES x NODES
arc length matrices with different densities of non-infinity entries distributed
uniformly from 0 to 99 were generated. The results of our timing study are
shown in Table 1. Let TK denote the experimental running time of the algorithm
with K processors. Let SK and EK denote the speed-up, T]/fK, and efficiency,
SK/K, respectively. The efficiency of this algorithm for networks with 40,

30 and 20 nodes is plotted in Figures 3, 4 and 5, It is evident that the
efficiency tends to be high when the number of nodes in the network is a
multiple of K, the number of processors. For in such a case, each WORKER
process does exactly the same amount of work,* but in the case where K does
not divide NODES exactly, all WORKERs do not do the same amount of processing.

For example, for each K, WORKER(1) performs (NO

EEST executions of statements

*
We assume that the infinity entries are uniformly distributed in the
arc length matrix.
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Table 1. Running time of Algorithm HEPPF (in secs).

| Density
NODES = 40 100% 50% 25% 12.5%
(%]
5 1 1.30478 1.24866 1.13903 0.88217
v 2 0.65522 0.63133 0.58283 0.46305
g 3 0.45726 0.44399 0.40812 0.32185
ol 4 0.32989 0.32097 0.29727 0.25366
a- 5 0.26484 0.25992 0.24512 0.21071
S 6 0.23169 0.22906 0.21123 0.17719
. 7 0.19889 .0.19627 0.18433 0.15915
2 8 0.16693 0.16594 0.15423 0.13571
NODES = 30 100% 75% 50% 25%
w .
5 1 0.55024 0.53037 0.49828 0.45644
b 2 0.27684 0.27116 0.25537 0.23737
3 3 0.18544 0.18088 0.17221 0.15966
4 4 0.14774 0.14519 0.13785 0.12816
e- 5 0.11213 0.11039 0.10760 0.09756
5 6 0.09417 0.09429 0.08958 0.08582
. 7 0.09294 0.08973 0.08699 0.08280
2 8 0.07550 0.07559 0.07361 0.06762
NODES = 20 100% 75% 50% 25%
S 1 0.16299 0.15615 0.14249 0.11844
a 2 0.08213 0.08028 0.07291 0.06457
3 3 0.05753 0.05683 0.05195 0.04626
e 4 0.04165 0.04086 0.03888 0.03528
a- 5 0.03348 0.03304 0.03118 0.02770
S 6 0.03317 0.03287 0.03016 0.02767
. 7 0.02533 0.02541 0.02503 0.02292
2 8 0.02513 0.02479 0.02401 0.02166
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4 to 6, but WORKER(K) performs {?OEESJ executions of statements 4 to 6. The
WORKERs which finish their work earlier must wait for all others, before :
starting on the next iteration. Thus the theoretical speed-up should be
approximately NODES/ [NODES/K]. More precisely, if we let t] denote the time
for executing one iteration of the for loop in statement 3 of procedure of
WORKER, and t2 denote the time for executing statements 1, 8, 9, and 10 once,

then the theoretical speed-up is

t
2
T, (NODES ty + t2) NODES  NODES + E]'
TS = e = _ = =
K™ T NODES] t, + t,\NODES ODEST, t
K —'—K—' 1 2 K + -2
2

For our compiled code of Algorithm HEPPF, t2/t] is estimated to be approximately
1/(2NODES+1). Using this estimate, the ratio

observed efficiency - EK

theoretical efficiency TS, /K

is calculated and plotted in Figure 6. From this plot we observe that the
overhead for the create and the synchronization is relatively small when the

input network is dense.

5. CONCLUSION

Two parallel shortest-path algorithms are designed and proved correct in
this paper. They were both programmed'to run on the HEP computer. For the
first algorithm, i.e. Algorithm PPDM, random highway-1like sparse networks were
generated and used as inputs. We observed empirically a speed-up of three
when five processors were employed, for networks with 75 or more nodes. For
the second algorithm, i.e. Algorithm HEPPF, random arc-length matrices of
order up to 40 were generated and used as inputs. We found that the efficiency
is higher for larger and denser networks. Thus we have clearly demonstrated

theoretically as well as empirically that parallel processing techniques can
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be used profitably to speed up determination of shortest paths in large net-

works. We have also shown how this can be accomplished.
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1. INTRODUCTION

In recent years, the increasing availability of multi-processor Computer
Systems has motivated many Computer Scientists to develop methods to
perform computations in paraliel. The development of multi-processor
computer architecture has been led by the performance, reliability, and the
low cost of the digital devices such as microprocessors. One of the several
applications of parallel computing is the development of parallel algorithms
for continuous system simulation. Frequently a continuous system is described
by a set of ordinary differential equations (ODE'S) and simulation consists of
numerical integration of these equationss Enough concern has been shown for
parallel methods to solve an ODE system by researchers in this field.
Nievergelt [1] proposed a method in which parallelism is introduced at the
expense of redundancy of computation. An introduction to parallel methods
for the numerical solution of ODE systems is given by Miranker and Liniger-
[2] and Worland [3]. A single bus multi-processor architecture as well as time
and speed up ratios between sequential and parailel algorithms, are given in
a paper by Franklin [4]. '

In this paper we present an actual implementation of some of the
parallel methods of integration, which individually and in combination were
. used to solve a set of ordinary differential equations describing the flight

-characteristics of a ground-launched™ miissile on an MIMD Computer namely
HEP (Hetrogeneous Element Processor). The HEP Computer implemented by
DENELCOR, INC. is a MIMD machine of shared-resource type as described by
Fiynn [5]. . ’

The rest of this presentation is divided into five sections. A model of an
MIMD Computer, specifically the HEP architecture is shown in section 2. In
section 3 we discuss some of the integration techniques for which parallel
versions have been developed, and also the methods used in our
implementation. This presents the idea of algorithm decomposition in parallel
computing. The method of problem decomposition applied in our program by
equation segmentation is given in section 4. Section 5 contains the actual
performance achieved by these programs on HEP, and an analysis of efficiency
loss. Section 6 concludes this presentation by describing how the methods used
in our programs can be used to design an automatic language translator based
upon a continous system simulation language (CSSL [6]), which translates high
level language representation of the solution of sets of differential equations
into efficient parallel code.

2. MODEL OF MIMD COMPUTER

The HEP computer [7] manufactured by DENELCOR, Inc. was used to
verify our algorithms and methodology for solving flight simulation equations.
Although this MIMD computer has many interesting architectural features, it
is beyond the scope of this paper to present them and instead we present an
abstract model which contains the features which we used. A block diagram
of how the computer may be viewed by a user is presented in Figure 1. We
used the HEP FORTRAN language for programing. This FORTRAN is slightly
extended to allow the programmer access to some of the unique features of
an MIMD machine and we will describe the model of the computer in terms
of these language extensions. Upon commencing execution of a FORTRAN
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program, our MIMD computer model behaves exactly like an SISD computer.
That is, a single instruction stream is sequentially executed by one of the
processors (CPU) shown in the block diagram. The method of achieving
parallel execution is to write a subroutine which can be executed in parallel
with the calling program and to then CREATE that subroutine rather than
calling it« At that point the instruction stream of the CREATEd subroutine
is executing on another processor (CPU) in parallel with the program segment
which invoked it. The HEP FORTRAN language has the extension CREATE
which may be used at any point where a call statement could be used.

Another extension of the HEP FORTRAN language is in the area of
synchronization. Since subroutines may be executing in parallel, they may
produce or consume data elements in conjunction with one another. To
facilitate this, HEP FORTRAN allows an extension for what is termed
asynchronous variables. These variables are distinguished by a naming
convention in which the first character of the name is '$'. An integral part
of each asynchronous variable, in addition to its data value, is a full-empty
semaphore. The appearance of an asynchronous variable on the left-hand side
of an assignment statement causes that assignment to be executed only when
the associated semaphore is in the empty state and when the assignment is
made, the semaphore is set full. Similarly, the appearance of an asynchronous
variable within an  éxpression on the right-hand side of an assignment
statement causes the expression evaluation to continue only if the associated
semaphore is full, and when the expression evaluation continues, the
semaphore is set empty. Since these semaphores are supported in hardware,
if the required conditions are met, no additional execution time penalties are
imposed.

3. INTEGRATION TECHNIQUES

In this section we will be concerned with the parallel methods for the
solution of a set of n ODE's denoted by

yrt) = £t v(D) . y(ty) =y (M

where

to,tcR-,yoe R, y: R=>R", f: R x R =» RP,

Most of the methods to solve (1) generate approximations Y, to y(tn)

on a mesh a = tO <t < t2 <oeoee < tN = b. These are called step-by-step

1

difference methods. An r-step difference method is one which computes Yn+1

using r earlier values Yoo Ypoqr o0 Y This numerical integration of

n-r+1°
(1) by finite differences is a sequential calculation. Lately, the question of
using some of these formulas simultaneously on a set of arithmetic processors
to increase the integration speed has been addressed by many authors.

(i) Interpolation A’&ethod

Nievergelt [1] proposed a parallel form of a serial integration method



to solve a differential equation, in which the algorithm is divided into several
subtasks which can be computed independently. The idea is to divide the
integration interval [a,b] into N equal subintervals [t -1/ ti] P tg =23, ty =

b,i=12,3 ..., N, to make a rough prediction y? of the solution y(ti),
to select a certain number M of values y rj=1, 600, Mi in the vicinity
of y and then to integrate snmultaneously wnth an accurate integration method

M all the systems

y' f(tl Y),'_' Y(to) = YO, tO € 't £ t.l .

I

yh=EL oY), () =y

£ <
i 5T T b

i=1o"lMiti=1t_“lN-1'_

The integration interval [a,b] will be covered with lines of length
(b-a)/N, which are solutions of (1) but do not join at their ends. The
connection between these branches is brought by interpolating at t1' ty, oo

NI the previously found solution over the next mterval to the nght. The

time of this computatlon can be represented by

TPI = 1/N (time for serial integration)
0

+ time to predict Y;

+ interpolation time + bookkeeping time

Interpolation can be done in paraliel [f we assume that the time
consuming part is really the evaluation of f(t, y), the other contributions to
the total time of computation become negligible, so that the speed up is
roughly 1/N. But to compare this method with serial integration from a to
b using method M, the error introduced by interpolation is important. This
error depends on the problem, not on the method. For linear problems the
error is proved to be bounded but for nonlinear problems it may not be. Thus,
the usefulness of this method is restricted to a specific class of problems,

and depends on the choice of many parameters like y?, Mi' and the method M.

(ii) Runge-Kutta (RK) Methods

The general form of an r-step RK method, the integration step leading
from Yn to Yn+1 consists of computing

Ky = hy f(ty vy,)

i-1
K, = |
i hn f(tn * aihn' Yn +,zbij Kj )
r =1
yn+1 = n +z$ K,
'-

with appropriate values of a's, b's, and R's. A classical 4-step serial RK



method is

_
]

hy flt v

N
]

hi(t, + h/2, v, + (1/2)K))

ey
it

hi(t, + b2, v, ¢ (VK)o '(RK4)

_
]

hf(tn'+ h, y‘.1 + K3)

Yy =y, * 1/6(K1-‘+ .2K2 + 2K3 + K4.)

Miranker and Liniger [2] considered Runge-Kutta formulas which can be
used in a parallel mode. They introduced the concept of computational front
for allowing parallelisme Their parallel second and third order RK formulas
are derived by a modification of Kopal's {8] results, and the parallel schemes
have the structure

. - " s o .
first order: K1 —.hn f(tn, yn) : | : (RK?)

1 2,1
Yne1 = Yo * K

second order: K% =K, =h_ f(t,y 1)

1 n n n
K, = h_f(t_ + ah 91 + bk?) (RK2)
2 n n n 'n 1
2 _ 2 2
Yase1 = RIKT + R Ky
third order: K3 = K
: 1 1
3 _
KZ - KZ

K = 2 3 3
h f(tn + ahn, Yo * bK 1t cKz) (RK3)

3 _ r3k3 . r3k3 4+ r3
Yoo = RIKT + ROKG + R3K5

The parallel character of the above formulas is based on the tact that
RKi is independent of RKj if and only if i < j, i ,j=1, 2, 3. This implies
that if RKY runs one step ahead of RK2 and RK2 runs one step ahead of RK3.

Then using Kopal's values of R's, the parallel third order RK formula is given
by:

K neg = DECE

1
n+2’ yn#Z)
1 2o

Yae3 = Vne2 * K1,n+2



1 _
K2'n*1 = hf(tn+1 + ah, yn*-' + aK.‘,n*") (PRK3)
vZ = y2 4 (1-1/23)K + (1/22)K
n+2 = Yn+1 1,n+1 2,n+1
- 2 _
K3,n = hf(tn + a.1h, Yo * (a1 '1/63)K1,n + (1/6a)l<2'n )
v =yd . (a, - D2a)K, - K, )+ K
n+1 n 1 1n "2,n 3,n
where

a = 2(1-3a3)/(3(1=2a,)).

One value of a suggested by Kopal is a = 1. This gives a;g =1/2 + 1/2J3. The

above 3rd order RK formula requires 3 processors to compute the three
function evaluations in parallel.

The main drawback of the (PRK3) scheme mentioned above is that it is
weakly stable. It is shown in [2] that the scheme leads to an error that grows
linearly with n as n =& and h —» 0 for t = nh = constant. This problem is

due to the basic nature of the one step formulas with respect to their
y-entries which are the only ones that contrlbute to the discussion of stability

for h = 0.
(iii) Predictor-Corrector (PC) methods

The serial one-step methods of Runge-Kutta type are conceptually
simple, easy to code, self starting, and numerically stable for a large class of
problems. On the other hand, they are inefficient in that they do not make
full use of the available information due to their one-step nature, which, also
does not extend the numerical stability property to their parallel mode., It
seems plausible that more accuracy can be obtained if the value of Y e is

made to depend not only Yo but also, say, on Ypn-1r Yp-2r ¢ * * ¢ and fn-1 ’
fn—z’ . o0

high accuracy they usually require less work than one-step methods. Thus, the
desire of obtaining parallel schemes for such methods is reasonable.

For this reason multi-step methods have become very popular. For

A standard fourth order serial predictor-corrector (SPC) given by Adams
- Moulton is:

yP

C C _ eq¢C c _ q¢€
Py = ¥ * h/24(55f° = 59 o+ 37f , - 9fr 3) (SPC)

c . ¢ p C _ r¢C c
Yie= Yi* h/24(9fi+1 + 19fi Sfi~ + f.

i+1 2)

The following computation scheme of one PC step to calculate yi” called

PECE is:

1. Use the predictor equation to calculate an initial approximation to Yieqe
i



set i = 0.
2. Evaluate the derivative function f'i)ﬂ'
3. Use the corrector equation to calculate a better approximation to yi+1'

4. Evaluate the derivative function ffﬂ.

Se Check the termination rule. If it is not time to stop, increment i, set

— o€
Yie1 =.Yi+1 and return to 1.
Let Tf = total time taken by function evaluations done for one step of
PC. ' .
T = time taken to compute predictor (corrector) equation for a

'single equation.
Then the time taken by one step of SPC is

T, =
1 2(nT

pce ¥ T¢)

Miranker and Liniger developed>formulas for PC method in which the
corrector does not depend serially upon the predictor, to that the predictor
and the corrector calculations can be performed simultaneously. The Parallel
Predictor-Corrector (PPC) operates also in a PECE mode, and the calculation
advances s steps at a time. There are 2s processors and each processor
performs either a predictor or a corrector calculation. This scheme is shown
in Figure 2. A fourth order PPC is given by:

p . € P_ g¢C ¢ . fC .

C _ c p C - C C
Vi = vt h/24(9f7 + 19fi__1 Sfi__2 + fil3)

Thus the parallel time for a single step of (PPC4) is given by

Tppc = nTpcg * Ty + 3nTpe + 2T

Where
TPCE = Tf as defined before and
TDC = time taken for data communication
T = time taken for synchronization.

S

Generally the high accuracy, less function evaluations of PC methods as
compared to RK methods is obtained at the cost of increase in complexity and
some times numerical instability. The Parallel RK methods given in [2] do
not inherit the stability of their serial counterpartss On the other hand PPC



i i+l

Compute - Update
Predictor ‘ State
Derivatives Variables
V- A
A4
Compute Update
Corrector State
: Derivatives Variables
i-1 i
Figure 2. Parallel PC Scheme
Proce ' b P ¢ c
ssor 1) Vi Fi+1 Yi+ep  Tien
p P c c
Processo? 2 Yie9 fi+2 Vieo fi+2

Figure 3. Parallel Scheme for BPC



methods in [2] as described above are as stable as their serial formulas. This
is proved by Katz et al. [7]

(iv) Block-Implicit methods

Sequential block implicit methods as described by Andria et al. [8] and
Shampine and Watts [9] produce more than one approximation of y at each
step of integration. Shampine and Watts and Rosser [10] discuss block
implicit methods for RK type and PC type schemes. A 2 point fourth order
PC given in [9] is

P = c c c _ a4C

YPg = V30, * Yy YD+ WEGHL, - 4+ 13f§)

P _ c c c . c

Yiez = 1/3(Yip * Viq * y;:) + h/12029f7 ) - 7260+ 79fic)

C _JC.n c . _ P |
Yieq = Yi * b/12(56F + 86D - D ) (BPC)

c c c ‘ p
Yi+2 T h/3(fi + 4f?+1 + fi+2)

Worland in {3] describes the natural way to parallelize (BPC) using the
number of processors = number of block points by the schemes shown in Figure
3. The parallel time for one Block calculation given by Franklin [4] is

+ 2T, + 6nT . 4TS)/2"

Tepc = (2nTpcg

f

a performance comparison of (PPC) and parallel (BPC) methods is given by
Franklin in [2] in case of two processors.

4 METHODOLOGY

The methodology which we employed in programming the flight
simulation equations for solution on an MIMD computer can be divided into
several catagoriess These include equation segmentation, scheduling and
synchronization. These categories will be discussed individually.

(i) Segmentation

Equation Segmentation is to take some representation of the problem, in
our case a sequential FORTRAN Program, and identify the tasks [13]. These
tasks are considered to be individual computational activities and could range
from individual machine instruction to individual FORTRAN statements. Qur
choice was individual statements or small groups of statements where any
branching took place entirely within the group of statements that was
identified as a task. An example of this task selection is shown in Figure 4
where a portion of the sequential code is shown together with an indication
of some specific tasks. In this specific case a total of 40 tasks were
identified, 10 of them being the update of the state variables by means of the
chosen integration method, one being the update of the independent variable
time and the remaining 29 tasks associated with the evaluation of the



0117 C*x, TASK 16 COMPUTE RHO

o118 IF(Z «LT. RHOALT(IRHO)) GO TO 161
0119 NDX=IRHO

0120 IF (IRHO ,LT. LRHO) IRHO=IRHO+1

0121 GO TO 163

0122 167 IF (2 ,GE. RHOALT(IRHO-1)) GO TO 162
0123 IF (IRHO +6T+ 2)IRHO=IRHO=1

0124 163 NDX=IRHO.1
0125 163 RHO= RHOTAB(NDX)+(Z‘RH0ALT(NDX))

0126 H *RHOSL (NDX)
0127 C
0128 C*=»y, TASK 17 COMPUTE ACOO
0129 NGX=IACDO=1
0130 IF(TIME LT« ACDOTM(IACDO)) GO TO 171
0131 NDX=IACDO
0132 IF{IACDO +LT., LACDO) IACDo=IACDO+1
0133 171 ACDO=ACDOTB(NDX)+(TIME-ACDOTM(NDX))
0134 : *ACDOOSL (NOX)
0135 ¢

il 6136 C**xx TASK 18 COMPUTE UDOT

‘““l0137 UDOT=RS*VS~WS*QS~32¢17%xSTHETA+MASS*
0133 ${ THRUST=RHO/2% (US+WX) * (US+WX) *ACDO)

C**x TASK 19 COMPUTE FTY FTZ
GAMTHE={ THETA=THETAZ) *COSPHI+(PSI-PSIZ)*SINPHI
GAMPSI=(PSI-PSIZ)%COSPHI~(THETA~THETAZ/*SINPHI
FY=8441*GAMPST .
IF (ABS(FY),LE.380):G0O TO 35
FY=SIGN(3804¢FY)

35 FZ=8441%GANTHE
IF (ABS(FZ).LE.380) GO T0 36
F2=SIGN(380.+F2)

36 CONTINUE
FTY=FY*COSPHI+FZ*SINPHI
FTZ=FZ*COSPHI~FY*SINPHT

0151 Cx*, TASK 20 COMPUTE ACNAPH

0152 IF (MACH .LT. ACNMH(IACN)) GO TO 201

0153 NDX=IACN

0154 IF(IACN ,LT. LACN) IACN=IACN+1

0155 Go To 203

0156 203 IF (MACH .GE. ACNMH(IACN~1)) GO TD 202
T 0157 IF (IACN «6T. 2) IACN=IACN-1

0158 202 NDX=IACN=1

0159 203 ACNAPH=ACNTAB(NDX)+(MACH~ACNMH(NDX))

0160 : *ACNSL (NOX)
T 0161 C

0162 Cx*y TASK 21 COMPUTE VOOT

0163 VDOT=MASS* (FTY~RHO/2%US*ACNAPH* (VS-WY))~RS*xUS

0164 C

0165 C**, TASK 22 COMPUTE WDOT

6166 WDOT=0S*US+32,17*CTHETA+MASS*(RHO/ (~2) *US*ACNAPH=*

0167 $(WS+WZ)I=FT2)

0168 Cx*4 TASK 23 COMPUTE LT

0169 " NOX=ILT=-1

0170 IF(TIME oJLT. LTIMEC(ILT)) GO TO 231

0171 NOX=ILT

0172 IF (ILT LT, LLT) ILT=ILT+1

0173 237 LY=LTAB(NDX)+(TIME=LTIME(NOX))*LTSLINDX)

0174 C

Figure 4. Example of Task Selection



derivatives. The next step was to estimate the execution time of each of these
tasks. Since the HEP computer executes all instructions in the same amount
of time, this involved compiling the program and counting the number of
machine instructions generated by each of the tasks. For our task selection
the number of instructions per task ranged from 2 to 88 with an average of
34.6. We next determine a maximally parallel task system equivalent to the
set of tasks selected and the sequential program for those tasks. The details
of this construction are contained in chapter 2 of [13] but the essential
features are presented here. Consider a numbering of the tasks in the
sequential program such that for Ti and Ti then the execution of Ti occured

prior to the execution of Ti only if i < jo We then ask for each pair of task
Ti and Ti a) if the output. variables for each of the tasks (variable names on

the left side of the assignment statement) are distinct and b) if the variables
used as input to each of the tasks is distinct from the output variables of the
other task. If the answer to both a and b are true, then Ti and Ti may be

executed in parallele The resultant task system may be represented by a
directed graph where the nodes represent the tasks and the arcs the
precedence constraints where, if there is an arc from Ti to Ti then task Ti

must complete execution prior to commencing execution of task Tj' Figure

~ 5 shows the resultant task system for the 40 tasks comprising the probiem

.solution. Our convention is to show the task number and execution time in
machine instructions within the node and all arcs go from left to right. One
can observe that the three tasks (18, 19, 20) highlighted in Figure 4 can all
be executed in parallel.

(ii) Scheduling

Prior to actually scheduling, we make a transformation on the maximally
parallel task system which may allow a shorter overall solution time. If one
examines the graph of Figure 5 we see that the maximum length path
traverses nodes 7, 39, 19, 31 and has a length of 212 units. However, there
is no path from node 31 to node 7 and consequently, this path of length 212
times the number of iterations (time steps) does not determine the maximum
execution time to solve the problem. This minimum execution time is instead
determined by the cycle traversing 7, 39, 19, 32, 6, 3 length 252 which yields
a minimum execution time for n iterations of n ®* 126 + constant. The details
of the algorithims for determining the minimum execution time for n
interations of a task system such as is shown in Figure 5, together with
algorithims for transforming the task system are given in [14]

Scheduling the transformed task system for execution on p processors is
the next step in our methodology. Ullman {[15] has shown that the
computation of an optimal schedule involving multiple processors and a task
system such as ours is an NP-complete problem. Hence, they can be regarded
as computationally intractable. However, polynomialy bound algorithms do
exist which produce good schedules. An example of one such algorithm is the
critical path list scheduling algorithm. Basically we define this algorithm by:

Def. 1: Given a task system and a list which orders the tasks, then a
scheduling strategy which assigns to a free processor the first unassigned task
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in the list whose precedence constraints have been met is called demand list
scheduling.

Def. 2: The critical time of a task is the execution time of that task plus
the maximum of the critical time of any of its successor tasks.

Def. 3: If the tasks are ordered in a list on non-increasing critical time, then
a resultant list schedule is called critical path list scheduling.

Kohler [16] reported a preliminary evaluation in which 20 task systems
were scheduled using critical path list scheduling which produced 17 optimal
schedules. The worst case schedule was only 3.4% longer than an optimal
schedule. Using only limited back-tracking with a critical path list scheduler,
Lord [14] found in 100 randomly generated cases 89 were scheduled optimally.
He further found that for all cases that schedules had an expected time of
only .36% longer than optimal. The worst case time was 5.6% longer than
optimal. Thus, we conclude that critical path list scheduling is an acceptable
technique for practical applications. :

Applying a limited backtrack critical path list scheduling algorithm to
the task system representing the missile simulation resulted in a schedule for
8 processors as shown in Figure 6. An optimal schedule was not calculated,
but this schedule is known to be no more than 9.1% longer. ;

(iii) Synchronization

Having determined a schedule for computing the tasks, it now remains
to find means of -implementing it. Much of the work on scheduling assures,
at least implicitly, that some mechanism external to the processors assigns the
tasks to the procssors. But since our execution times are estimates'only, the
scheduling mechanism would have to monitor the progress of all of the
processors. lInstead, we use a mechanism whereby all of the tasks to be
executed by a single processor are presented as a sequential program. The
coordination of those tasks is accomplished by means of synchronization using
the full/empty semaphores associated with each data location in the HEP
computer. Specifically, we note from Figure 6 that task 35, the computation
of PSIDOT, is executed by processor 5, whereas task 9, the update of the state
variable PSI, is executed by processor 8. To insure that processor 8 does not
commence executing the code of task 9 prior to task 35 having been
completed by processor 5 we use an asynchronous variable common to both
processors which is initially set empty and is set full upon completion of task
35. Prior to starting execution of task 9, the value of PSIDOT is read from
this cell. Specifically, the code sequences would appear as: '

Processor 5 Processor 8
code for task 35 PSICOT = $T
$T = PSIDOT code for task 9

Had PSIDOT been required by another task executing is yet another processor
then a second asynchronous variable would have been required to synchronize
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those calculations. For the 8 processor schedule, a total of 78 asynchronous
variables were required to synchronize the calculations.

5. ACHIEVED PERFORMANCE

v

The schedules for the flight simulation problem discussed in Section 4
were programmed using HEP FORTRAN and were executed on the HEP
parallel computer. The computational results are shown in Table 1. The

sequential times T1 and the parallel times Tp with p processors are given in

terms of seconds.

The method of equation segmentation in conjunction with 4th order
Runge-Kutta formula given by (RK4) was used for the eight-processor
schedule shown in Figure 6. The computations of the integration formula were
also done as parallel taskse This scheme was also programmed using six

processors and the speed up in this case was 56 = 3,98. The speed up and

efficiency of the 8 processors program is given by Table 1. Subsequent
analysis has shown that the speed up Sashown in Table 1 can be increased to

7.0.

The four-processor schedule was run in combination with the parallel
predictor-corrector formula given by (PPC). The program created eight
instruction streams in parallel, four for predictor and four for corrector
iteration. The achieved speed up and efficiency in this case, as compared to
the serial program is shown in Table 1. Since the Serial PC methods are
expected to be more efficient than the Serial RK methods, the difference in
speed up of their-parallel mode is also to be expected. On the other hand,
the data communication and synchronization in parallel predictor-corrector is
more than the method using RK formula. These calculations are done in the
following analysis of the loss of the efficiencies in both the programs.

let

number of cycles required by actual computation,
number of cycles required by the best schedule,

A
B
C number of cycles required by synchronization.

non oy

For the eight-processor scheme with RK method the values of A, B, C are A
= 1384/8 = 173 cycles; B = 192 cycles = 10.9% of A; C = (78 + 2)/8 = 19.5
average and C = 23 for worst case = 11.9% of B. The total number of cycles
is then given by

A+ (B-A)+C

Cycles =
= 173 + 19 + 23 = 215,

and the predicted solution time is given by
PST = Cycles x 28,000 x .8 x 10°% = 4.816 seconds
where the actual solution time given by Table 1 is 4.87 seconds.

For the four-processor PC method the values of A, B, C are A = 1384/4 = 346;
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PROGRAM | P T T s E
Al 1 P P P

RK 8 | 28.18 h.87 | 5.78 |72.3%
PC 8 | 21.59 3.33 |s6.u8 | 81 %

TABLE 1. Actual Speedup & Efficiency .




B = 363 = 4.9% of A; C = (86 x 2)/4 + 50/8 = 55.5 average and C =58 in worst
case = 15.9% of B. This gives the total number of cycles required by the

program

Cycles = A + (B - A) + C
= 356 + 17 + 58 = 421 cycles,

which gives the predicted efficiency for PC method
= 356/421 = 82%

where the actual efficiency given by Table 1 is 81%.

6. AUTOMATIC TRANSLATI_ON |

Based upon our experience with parallel solution of flight simulation
equations, we conclude that, given some suitable representation of the
problem, the entire procedure for generating the parallel program could be
automated. We feel that a suitable representation of the problem is a
CSSL-type language where our predominant focus is that the derivatives are
clearly defined and the integration technique is specified but not explicitly
programmed by the user. The specific steps for producing a parallel program
are listed below and will be mdwndually discussed from the standpoint of
automation of translation.

1. Select tasks.

2. Determine execution time of each task.

3. Determine precedence constraints amongst tasks.

4. Transform the task system into one with minimum path length.

5. Schedule the transformed task system for execution using p
processors. )

6. Synchronize the resultant schedule by use of asynchronous variables.

To perform task selection we first require that the representation of the
problem provides names for each of state variables and the associated name
for the derivative. In our resultant translation, the specific code to update
each of the state variables, based upon the integration technique specified,
will each be a separate task. For the representation of the derivatives we
require that there be no conditional or unconditional branches. We envision
that this presents no problem to the user by postulating a library of functions
which might include arbitrary function generation, limit function, switces, etc.
Then in addition to the tasks for updating the state variables, we will define
further tasks by isolating all function evaluation (library and user defined) as
separate tasks and all assignment statements (less function evaluation) as
separate tasks. Although the mechanism of doing this is an implementation
detail, we will describe it as if it were performed by actual text substltutlon.
For example if we were given:

-11-



XDOT = X + ARBFUN (1)
X = INT (XDOT)

we would translate this as :

C TASK 1
TEMP = ARBFUN (Z)
C TASK 2 -
XDOT = X + TEMP
C TASK 3
X = INT (XDOT)

Given the selection of tasks we next need to determine the execution
time of each of the tasks. .Again assuming we have text for the individual
tasks we could now compile this text using the HEP FORTRAN compiler. As
an output of the compiler, the number of instructions for each of the tasks
is available and this together with the known execution time of the library
functions together with the user supplied estimates for user functions would
determine the estimates of execution time for each of the tasks.

The precedence constraints for each of the tasks can be determined by
-computing for each task the variables which are in the tasks domain (input
variables) and the variables which are in the tasks range (output variables).
‘Based upon this and the ‘sequential ordering given by the derivative
statements, a maximally parallel system can be determined. This data
together with the execution time estimates should now be available in a data
structure representing a directed, weighted graph. Programs to determine the
ranges and domains and produce the precedence constraints have been
developed in PASCAL at Washington State University.

The next two steps, that of transforming the graph of the preceeding
paragraph and producing a schedule using p processors is described in [14].
Programs to accomplish this transformation and to produce a schedule were
developed at Washington State University using the PL/l language. Given this
schedule we next produce p subroutines where each subroutine consists of the
code for the tasks which were scheduled for that processor. Each subroutine
will also contain code to determine whether the end condition of the
simulation has been satisfied and if not to branch back and execute another
iteration.

The final step in the translation is to add the code for Eynchronizing the
p subroutines. This is accomplished by, for each task in the system, asking
if the variables in its range are in the domain of any task assigned to another
processor. For each such variable an asynchronous variable (e.g. $T(J)) is put
in COMMON and assigned a value by the task which contains that variable in
its domain. For the task which uses that variable, an assignment from the
asynchronous variable is made prior to the code for that task. Programs to
perform this synchronization do not presently exist but thier design does not
seem to present any difficulty.

CONCLUSIONS

We conclude from our experience in solving flight simulation equations
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on the HEP parallel computer that these techniques offer a viable alternative
to normal sequential computing and that the HEP computer is sufficiently fast
to provide at least real time support for many cases. Further, should this type
of computer become generally accepted for solving differential equations, then
support in the form of high level programming languages is feasible.
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CCHMPUTER IMAGE GEMERATICN USING MIMD COWMPUTERES

I. BACKGROUND

Computer 1image generation (CIG) is a technique used to
synthesize television 1images of scenes. Its primary use is
in very reealistic vehicle simulators. The viewable region is
stored a&s a thrce-dimensionzl model in a computer datez bese,
and @a combinaticn of computers and special-purpese heardware
is wused to select +the portion of the izta base to be
displecyed, convert it to a twe-dimensionel perspective view,
and build reaster scen lines for~a TV menitor. In order te
provide sufficient realism in a flight simulation, @&
complcte freame of imegery must be celculated in rcughly 1/60
sccond. The data base may contain several hundred objects,
of which several dczen mey be in view a2t any given time.

_ Conventicnal SISC computers cannct process data fast
erough to perform the CIG function. In present systems,
several SISD computers are used in e distributed-computation
configurzstion toc perform the acquisition of view angle deta
and the selection cf viewable objects. The transformetion of
objecis to two dimcensicnal represcrntetion, the simulaticn of
neze, end the conversioa to scan lines are handled by
hardware, In addition, present systems &essume that the
vicwable background 1s stoetic, anc cll  scene motion is
procucced ty mobticn of the simuloted venicle.

vultiploe-instructlion multipie-duta strecm (MINMD)
computers exccuting 10%*7 to 10**E instructicns/second offer
the opportunity to perform complex scene generation using
fgeneral-purpose (e.g. FORTRAN) computer 1languages with =z
minimum of special purpose hardwere. By performing 2 greater
portion of the CIG task in softwire, MIMLD imepe generation
vould permit greeter flexibility and greater complexity of
scenes. The ability to incorporate heuristic techniques deep
in the imege transformaztion preocess could allow the optimel
use c¢f computing resource agoinst the most visible pertions
of & scene, while minimizing computatiorn on minor =sccne
elements.,

II. TECHNICAL DISCUSSICN CF MINMD CCMPUTERS
“THD is 2 form of parallel computation in whicn

multiple instructicns execute simuvltancously in a single
computer  system. It differs from distributed processing in



thet the multiple instructior streams may be tightly coupled
and ccopercte on & word-by-word bssis in the solution of 2
single problem with very low overhead. Where in &
distributcd processing system, interprocess communicetion 1is
¢ software function of the operating system, in MIMD such
cecmmurication is implemented by hardware synchronization
mecehanisms.  MIMD  parellelism differs from array processors
in that multiple instruction streams exist, and may be as
tightly or loosely coupled a&s the epplication demands.

At the present time, the only commerciclly avzilable
MIMD cemputer is menufactured by Denelcor, Inc. of Denver,
Coloreado. The Denelcor processor, cslled HEP (for
Heterogenecous Element  Processor) contains four different
types of memory: program, register, ccnstant, and deate.
Programs exccuting or the machine are allccated & "task" in
vhich to run. Eech '"task" defines a contiguous region of
each type of memory. The herdware restricts each user to his
oun region of memory, and restricts the type of access he
mey meke to each memory type. Program memory 1is
execute-cnly; constant memcry is read-only; and register and
date memeory are read/write.

A task may contein one or severel processes, which are
executatle coce sSequences, Severzl processes may be
simultaneously executing in the HEP, unlike conventicral
computers. Proccsses are implemented by a set of herdwere
registers, of which there is a fixed numter; thus an error
corncition (create fault) exists when too many processes come
into existence in the processcr. Since existing proccsses
cen creste new processes at will, processes must be
egllcceted to tasks and managed Jjust as memory must be
2llocated and menrnaged.

All of the sixteen hardware implemented tasks in the
P are not equivalent. Tasks C-7 arc user tasks. In these
sks, privileged instructions are forbidden. In tasks £-1%,
ileped instructions are allcwed. These tesks, czlled
upcrvisors", perform system services for the user tasks.
User tasks recquest these services with "supervisor call"
(SVC) instructions. These instructions generotec a "trap",
creating @ process in  a supervisor fask and suspending
¢xccution of ll processes in the user, The hardwarc forces
user treps to a particular supervisor task, for example,
tesk 2 traps to task 1C. In general, task k(k<®) traps to
toask k+f, :
Supervisors may ealso generate traps. A1l treps from a
superviscr creote & prceess  in task €. A superviscer trap
csuspends the supervisor in the same wey 2 user trap susponds

“

The user.



The HEP cperating system is orgenized into two main
components: the FKernel and the Supervisores. The users (in
tasks 1-7) make service requests (via SVC) of their
corresponding supervisors. Ir the event of user errors, the
supervisors contain error handling routines. The supecrvisors
run in tasks 9-15, and execute privileged instructicns to
cerry out wuser requests. When a user request requires I1/0
with the host computer, the Supervisors communicate with the
Kernel (via S&VC) &and provide the Kernel with I/C messages
for transmissicn to the file system or en attached host

computer. The Kerrel, rurning 1in task &, controls the
communications path and routes messages to the correct
supecrvisors. The Kernel also handles error conditions
arising 1in the supervisor code, a2nd handles the mejority of
operator interface functions. In addition, since the

hardware traps all «crezste fault conditions to task &, the
Kernel haendles these also. Since the taslt using the last
process (and getting creatce fault) may not be the onc using
tco meany, the Kernel must find the offender with softwere
end take =zppropriate a2cticon. This is the reason the create
faults come to the Kernel rather than the supervisors.
Supervisors have control ONLY over their essociated user.

In order to support high speed MIMD computetion,
Cenelcor 1is developing & high speed filec storage system
using & ccmbinstion of I/0 cache memory and commercially
avalleble disk drives to provide file I/0 at sustained rates
approximeting one million tytes/second. The totsl functicnal
capability of this file system is still under definition at
this time.

ITI. APPLICATICH CF MIMD CCMPUTERS TO CIG

In order to determine the optimum application of MIMD
cemputers to CIG, several Arees should be investigated.
These include the following:

a) File S3ystem Performance. Using a rezslistic
demonstration scenario, it should be verified
that the CIG data boase can be accessed

sufficiently rapidly to meet CIG requircments.
If this is a function of data base complexity,
the complexity/speed/cost tradeoffs should be
identified.

b) Parallelizing of Scene Element Trensfcrmztion.
Techniques for parellelizing the
trensformztion of scene elements from the dote
bzse into the twe-dimensional CIG scene should



be evaluated. For scenes of consideresble
complexity, transforming each scene objcct
with & single process may yield sufficient

* paercllclism, whereas for scenes with only a
few relativecly complex elements, parallelism
mecy be required within element prccessing.

¢) Evezluation of Hardware Facilities. The present
Cenelcor MIMD computer performs high speed

~high precision (61 bit) arithmetic. CIG
zpplications do not require such high
precision, and often require other operctions

(e.g. veector dot product) which are not in the
instruction set of the present machine. An
anzlysis should be performed to determine
hardware opereations which 1if implemented e&s
instructions on an MIMD machine would
significantly improve cost and performance.

d) Software Facilities. Tn order to rezlize the
benefits of the MIMD machine as a
general-purpcse solution to the CIG problem,
extensions to a general purpose language such
zs FCRTRAN shculd be investigaeted. These would
allow converient wuse of hardware operators
such as dot product frcm high level languzges.

e) Demonstration. In order to gein confidence in
the performance of MIMD on the CIG problem, a
demonstration system should be built using an
MIMD computer. The demonstration system, when
coupled with the anolysis suggested earlier,
viould wverify that & production CIG system
could be built wusing MIMD technology on o
cost-effective baesis and &t low risk.

IV, SUMMARY

When epplying conventional computers to CIG,
limitations c¢f computing speed znd I/0 rates force the use
of distributed computation ard special purpose hardware to
mecet performance requirements. The wuse of MIMD computers
cffers & significant reduction in the amcunt of specicl
purpose &nd interconrection hardware required. In crder tc
better quantify these benefits, severel creas related to the
use of MIMD in CIG should be studied. These areas include
software crganization and extensicns to hardware
cepebilities teo improve performence. The resulfting enelysis
should be valideted by & demenstraticn. '



