HEP

PRINCIPLES OF OPERATION

Denelcor, Inc.
3115 East 40th Avenue
Denver, Colorado 80205

Publication No. 9000001

This publication reflects, with
reasonable accuracy, the specifications
in effect at the time it was written.
Denel:-or, Inc. reserves the right to
changa these specifications without
notice.

Denelcor, Inc. assumes no liability for
any damage resulting from or caused by
reliance on the information presented.
This includes, but is not limited to,
typographical errors and the inadvertent
or editorial omission of any
information.

Copyright © 1981 by Denelcor, Inc.
All rights reserved
No part of this book may be reproduced

in any form or by any means without the
written permission of Denelcor, Inc.

HEP PRINCIPLES OF OPERATION
CONTENTS

SECTION TITLE ' PAGE

CHAPTER 1 - INTRODUCTION

1.1 PROCESS EXECUTION MODULE. ..ccceeeecvscesscoscasosncccennssnss 172
1.2 DATA MEMORY MODULE..:sceosossosososcsossssccsasssoenssnsssass 13
1.3 I/O CACHE MODULE...sccveasoseassonssssnnssnnsssssassnsssnss 1=3
1.4 EXTERNAL I/O MODULE...::veveeesoscscosocsssssosssansscssoses 1=d
1.5 1-4

L -

CHAPTER 2 - BASIC HEP OPERATION

HEP MEMORIES . .. tctteeovevssasocsosnsoccnassasssssossoscsses
PROGRAM MEMORY .. .iververrroresoosrsosssnesenssononsosssannons
REGISTER MEMORY ... ocvocvrsorsoasoossoessessossososssnocssas
CONSTANT MEMORY . e cevvucesossoseesssossesocenssnsscsnosses’
DATA MEMORY ..ot etvevevsrtaotoscncoroasoocssassosssonesnns
ERROR DETECTION AND CORRECTION....cveeeevcrnososcsonsssns

DATA TYPES . ittt nertoeessssossoncnnssnsssnossesssosssnesesns
FLOATING-POINT NUMBERS. ..t ecoevesossosssossconsosssocssos
INTEGERS . . tcveeeessostersssosssosansssscssssnsnssssnnsssse
BIT VECTORS . . ctuoctteveecotarsoesvossosanssnonssossnanssans

DATA QUALITY ... iervterosecoososnsesesossnoscssssomesssssonsansas

THE PROCESS STATUS WORD (PSW).ceccecerosasososcsssononssonoes

HEP INSTRUCTION FORMATS..eteeecevonrsocsonsocssnsssocnvonssss
NONSTANDARD INSTRUCTIONS..:vcevvesvossccssctssncsonoseses 2-1
DATA MEMORY INSTRUCTIONS..:eeesveevvsccssoosesssvessoess 210

TRAPS . ccvveeeeecscotossccasscssossossssoscsssssnosssssnsnsses 2-13
THE TRAP PSW..ovevuseocorocrocoossossssosssecssesvcssenss 213

.
.
Ut W N
U

NNNNNNK}JNNNNNN
OO U WWWNDNDNE

ERE Y
* e
N -

.
(=]

NNNNNODNNNNNNDNNNDNDNN
COUUUEWNNNNHKFRRME
W e

CHAPTER 3 - PARALLEL HEP OPERATION

.1 PROCESS CREATION AND TERMINATION.....occvveeoessccvecsonsss 3-1
.2 PROCESS SYNCHRONIZATION.....cveevsecnvessescsocsssnnassesss 3-2
3 3-5

« TASKS...coo.o.l00010000000000.00000000000000000000000000000

www

CHAPTER 4 - PRIVILEGED HEP OPERATION

B

N N SN
. < - - .
P WWWN R

TASK MANAGEMENT .« v oot evsevncenssancosonssoscssosnsoennonons
PROGRAM AND CONSTANT MEMORY ACCESS .. eevereeeenesoacnnnnns
DATA MEMORY ADDRESSING. .. eveeeeecesceonssasassonoassaannss
TASK ST AT E S e ¢ vt veeeseneensooesensonsacssssssassensssasesns

PROCESS SCHEDULING ..t vvueeeneesonnsenssossoasonsocnsnnnnnoses

PROCESS STATUS e ¢ vt evteeroonarencesasooesnsnsssstosnsossnsss
THE PROCESS STATUS (PS) FIELD.eeeroeooenononoannensonnnse
THE SFU STATUS WORD. .0t eeovcnoossessecossnssosneanssesnns

TRAPS......b'uovooobc.o.o'ooolnoooovovl00‘00000'o-ao'ooac' 4-1

o o
w N
11

By

-
.

N
NV WWWN

.
N -

DENELCOR, INC. i PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION
CONTENTS

SECTION : TITLE PAGE
CHAPTER 4 - PRIVILEGED HEP OPERATION (CONTINUED)
4.5 MAINTENANCE SUPPORT..cecetecesesssssossassssosnssasanessss 415
CHAPTER 5 - INSTRUCTIONS
INTEGER ABSOLUTE VALUE...csoeceeercarssnssosrsosccsonscccnns
ACTIVATE TASK (PRIVILEGED)....ccteeeesonesnsasncnnoncsacns
INTEGER ADD..veotecsososacevososcsosetosssssassssssossossnss
LOGICAL PRODUCT....ccovessossososssssncsascsssecsscssossosscs

BRANCH...coceecvsonasns T
BIT CLEAR. . vcecsococecstcososssssossnsssossssssssscsnnsecssos

BIT SET . veucoesonsesseeosoonsssaosssossossesosnsscasssonsoss

| U
AU Wl

1
= O woJd

CALL.:cveeeresvoasososoanssncancnnsscnnse B

CLEAR . cvseessvessocsoscasncssessossoesssssosssssssssnaosaosse

5-1
CLEAR ECC COUNTER (PRIVILEGED)...¢eeeevecsccossooscsnssss 571
CLEAR TASK COUNTER (PRIVILEGED) ...ceeeoseoscossossoceasses 5=12
CREATE. « o coceocnscsscsscossssssssasesssssosssnssssssssses D13
CREATE PROCESS..ccosesesssesssovssonssoosscsaassssssnasess D-14
5.14 DEACTIVATE TASK (PRIVILEGED)....ceceeecsssscossscsscnssss 5-16
5.15 INTEGER DECREMENTcvoosuessessosssesossccosssnssosasee =17
5.16 BIT ENCODE, LEFTMOST O....ccoteevroncccocaconsccnnsonsosss D18
5.17 BIT ENCODE, LEFTMOST l....cceosecsacosscscoossssssnassnss 519
5.18 LOGICAL DIFFERENCE.steeeesscscscccssosssacssscssceses 520
5.19 BQUIVALENCE. .. soeesavsosscossascscossenscsassssanseossaaas =21
5.20 FLOATING ADD...ccessessoseossoscssocasnscsessssoasecssnanss 5-22
5.21 FLOATING DIVIDE. .csceessoosssonnsoscssosesossssnssonsssss =23
5.22 FLOAT INTEGER PART...ccosvosecesscoccoosccvscasescscscess O-24
5.23 CONVERT FLOATING-POINT TO INTEGER....ccececesescescescces 525
5.24 CONVERT INTEGER TO FLOATING-POINT....cccccevscvescccsssss 526
5.25 PLOATING MAXIMUM VALUE....vecevecceescccscscssssnssonscees 5-27
5.26 FLOATING MINIMUM VALUE....ecceesevoccoscscsovscsossnnsaess D28
5.27 FLOATING MULTIPLY .etecesssocccacscoscosscsssassnascansens D29
5.28 FLOATING SUBTRACT .. cceosceosscsscnssonssccnsasssssnsssess 5-30
5.29 FLOATING COMPARE, INTEGER RESULT....cvcoccecossscacnassss 9=31
5.30 FLOATING COMPARE, FLOATING RESULT....ccccocecvecesenssoss 5=32
5.31 FLOATING COMPARE, BIT VECTOR RESULT.....ccvc0eeveeeoessoss 533
5.32 IMPLICATION . vcecsonoosassasonnsosasassosscsossssceansss 5-34
5.33 INTEGER INCREMENT...veoveceececnsecsesssosesoosssssnsasses D=35
5.34 INCREMENT ON CARRY...coecosevossnosccsscossssnsscanssoansss 5-36
5.35 JUMP . eoeerooroasonossossasenssssssssssscssssnsssssaasssse 937
5.36 KILL TASK (PRIVILEGED) .e:eeeesenosooescessssovsscnsssasse 5-38
5.37 LOAD DATA MEMORY...voveeceeressnssssocnosssssssasnassasse 539
5.38 LOAD BDDRESS::csesssescescesosssctscscossssscsscccsnsasss 540
5.39 LOAD DATA MEMORY INDIRECT.....coeeevvevosoesascsocnssasse D=4l
5.40 LOAD DATA MEMORY INDEXED....ccovesecsosnsnsssssassssssoses O—d2

o

HFEOVDOSOOUL&dWN K

.
[=]
w N

.

DENELCOR, INC. ii PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION
CONTENTS
SECTION - TITLE PAGE
CHAPTER 5 - INSTRUCTIONS (CONTINUED)

5.41 LOAD PSW. .. .ceeeeesussocoossososssesssscsossoasossssssnssoss 5—43
5.42 INTEGER MAXIMUM VALUE. . .ceoesvecsoscovessssansosnesssess 5—44
5.43 INTEGER MINIMUM VALUE...ceveeeoveessessssoessosssescsssess 5—45
5.44 MODIFY PSW. ..ttt veeeetosssosocccessooosssosssnssssssanneas D—46
5.45 REGISTER TO REGISTER MOVE.....eieereenvunnensonnsnnsasses 5—48
5.46 MASK REGISTER DESCRIPTOR...:ceecteecsocssecsssssssaseasnsss 5=49
5.47 MOVE REGISTER WITH DESCRIPTOR....vececevecansen ceesseessss 5-50
5.48 INTEGER MULTIPLY .. .civeverneecoesonosnosasosssansansssnss 5=51
5.49 NAND . i iotiieeestoneoeneosassssosessossossssseassnasonsssass 5-52
5.50 NO-OPERATION. ...t cveveoonsoeassosessosonsosssascssassssoness D53

5.51 NOR----oovt‘---ooooo.oooc.oo-oooovoooooooa.onoooo.-aoc-.. 5_54
5.52 1 - - F)
5.53 ONE ..ttt eionrensesnssoccscsssessncsosssasssasessassnsssss 5=56

5.54 LOGICAL SUM. .o eeiniieneavonssssensososssssssssssssssasss 557
5.55 PRIVILEGED CREATE (PRIVILEGED).....ccvoeeeevesesnsescssess 5-58
5.56 PRIVILEGED REGISTER TO REGISTER MOVE (PRIVILEGED)....... . 5-59
5.57 PRIVILEGED MASK REGISTER DESCRIPTOR (PRIVILEGED)......... 5-60
5.58 PRIVILEGED MOVE REGISTER WITH DESCRIPTOR (PRIVILEGED).... 5-61
5.59 PRIVILEGED STORE PSW (PRIVILEGED)eeoeeeessovscssssss 5=62
5.60 PRIVILEGED SET REGISTER DESCRIPTOR (PRIVILEGED).......... 5-63
5.61 QUIT. .. ttiiieereeeaconossesossocsssssoscssssscsassnncassss 5-64
5.62 RESET CREATE FAULT (PRIVILEGED)...:eevetseecescesccmensss 5-65
5.63 READ CFU CONTROL (PRIVILEGED) .¢cceveececscssessnsnsasssss 5-66
5.64 READ PEM CLOCK UNDER MASK....icoeeevvesceccscssssnnssaess 567
5.65 READ TASK COUNTER (PRIVILEGED) ¢cveeeessscsasessassssassss 5—68
5.66 READ ECC COUNTER (PRIVILEGED) .:.cveeesseacenassassassasss 5—69
5.67 READ FLAGS (PRIVILEGED) .c:vvcevcvoceoscossoscnscssanssass 5=70
5.68 READ ENABLE REGISTER (PRIVILEGED)cesceetescaanesessss 5-71
5.69 READ PROGRAM MEMORY (PRIVILEGED)..:.ecteeencecnsasasnnssss 5=72
5.70 READ PSW (PRIVILEGED) .:.cvseseoesosocoososososnsnsaassass 5-73
5.71 READ SSW (PRIVILEGED) ceevevevsoeresnoosssvesensecossssees 5=74
5.72 READ TSW (PRIVILEGED) ...ccceeeeceecseeceasseensssosnscnseas 5=75
5.73 SHIFT ARITHMETIC....cccteuiuveansvnncscssnossosssssassssnse 5-76
5.74 SHIFT CIRCULAR. ..o veeceooncsnsonssosnsesssecnssssssssnsnsss D=T77
5.75 SET FLAG (PRIVILEGED)ceovuteeeneosccnensucsssssaasasss 5-78
5.76 SHIFT LOGICAL ...t terveeerssssonccnosssssancnssssssaseasss 5-79
5.77 STORE PSW...ciieeueeececonsssasroosnsssassesssssssssssssss 5—80
5.78 STORE PSW AND QUIT ...vueeecesevoeccnnssononnsnnonsnosse eess 5-81
5.79 SET REGISTER DESCRIPTOR...ccttevveceersocsassososssasnsass 5-82
5.80 STORE TASK COUNTER. .. vcevveeveconostsossossssassssssnsases 5—83
5.81 STORE DATA MEMORY0cvtveenoerocenrensesssessssssasssss 5-84
5.82 STORE DATA MEMORY INDIRECT......eotoivenerennsnonsonansasnns 5-85
5.83 STORE DATA MEMORY INDEXED......... ceeenene cvectesesssssses 5—86
5.84 INTEGER SUBTRACT0eeeniorrorenncsososessssosesssocsas 5-87

DENELCOR, INC. iii PUBLICATION 9000001

SECTION

HEP PRINCIPLES OF OPERATION
CONTENTS

TITLE , PAGE

CHAPTER 5 - INSTRUCTIONS (CONTINUED)

5.85
5.86
5.87
5.88
5.89
5.90
5.91
5.92
5.93
5.94
5.95

SUPERVISOR CALL....veoseeesosssseosossscsscssassccessscose 5-88
INTEGER COMPARE, INTEGER RESULT...¢veceesesecsccasceasscocss 589
INTEGER COMPARE, FLOATING RESULT....eeveececsoscssanssase 5=90
INTEGER COMPARE, BIT VECTOR RESULT...c.ccccecvsscecevssoss 591
INTEGER MULTIPLY UPPER....eeoevsesccoossossosssanssasssass 5=92
WAIT ON FLAG (PRIVILEGED) .eeeueesosoonssosososssscsersass 5-93
'WRITE PROGRAM MEMORY (PRIVILEGED)...:cvsevecosevsesasenss 5-94
WRITE PSW (PRIVILEGED) ... :ecececssscecscosocsosssssssnass 53=95
WRITE SSW (PRIVILEGED) .:eveeenssosccsssoossssoascesssesse 5-96
WRITE TSW (PRIVILEGED)...... Ceteeeseeseesseseccesasescoss 5-97
EXCHANGE PSW..eveeeoeeoosoosncnossosscssssossssosssossses 5-98

APPENDIX A - GENERALIZED INSTRUCTIONS

e e e e e e o o e o e« o ® o
. e « e o s s e e e o s o &

B WWwwwrREdDMMNOUBTUUBT IOV &N
P& WNhDNHEFFREFNRFRFPFPFOSNSOOU WNKH K-

> e WWRDNDNDNNDNDNNDNDNDNDNDNDND
. e

DENELCOR,

GENERALIZED FLOATING ADD INSTRUCTIONS......ceeeessescccosee A-2
GENERALIZED FLOATING MULTIPLY/DIVIDE INSTRUCTIONS.......... A-5
GENERALIZED INTEGER ARITHMETIC INSTRUCTIONS.....¢cee00e0e.. A=7
GENERALIZED BIT VECTOR OPERATIONS....cccocseaovosssssssosecs A=9
GENERALIZED PROGRAM MEMORY INSTRUCTIONS...:ceecovseeesssss A=10

TYPICAL HEP SYSTEMu.ouooeesaconnsovscsssnssasonssassessonse 1-
FLOATING-POINT NUMBER FORMAT......vusnececncsnsoncoocscnces 27
PROCESS STATUS WORD FORMAT....cccovseasesossoscasacensnnsss 2-
THREE ADDRESS INSTRUCTION FORMAT.......ceveesocsnsnecosones 27
REGISTER OR CONSTANT MEMORY ADDRESS.....etcecoessnnccnsonse 2=
BRANCH INSTRUCTION FORMAT.....ccvsvocesosonsoassacsocasnss 2-1
INSTRUCTION FORMAT FOR LOD AND LODA....covsecessoncnecesss 2-11
INSTRUCTION FORMAT FOR STO...couceconsecnnsoocncencansases 2-11
DATA MEMORY ADDRESS PORMAT.....:cevesescnsossnccscnasansss 2-11
PARTIAL WORD ADDRESSING WITH B=0.....covceeenceesnenncnnss 2-12
PARTIAL WORD ADDRESSING WITH B=L.....covsevscscnsoscnsesss 2-12
TRAP PSW FORMAT . .« tcuvescacnccnsossnssasnenasacsncnssnssss 2-13
REGISTER MEMORY ADDRESS FORMAT......covouceecncnncansasness 3-3
DATA MEMORY ADDRESS FORMAT.....cuouveusncansnsoncoacnenasss 3-8
T e e e eeeoeansensascasesanconssssnsocsnsnssncsnsascasnses 81
PS FIELD OF THE PSW..eeueeuveconconsncsncncencnconsnncncnss 4=5
SFU STATUS WORD. . v suvoneeronssasossossssnssconssasnasasnss &=7
SPU STATE. .« sveeeeeconossasossessensossssnssssasssssnsssses &9
SSW REG FIELD FORMAT.....ceenovensonsncoosncsocnssnsnnsnees 4-11
TRAP PSW FORMAT . .o eueeveeconsnosnsononssasessassssnssnonss 4-12

OV~

INC. iv PUBLICATION 9000001

SECTION

TABLES

.

U b hbWWWWHWOO O & W

O o

s
* o

¢« .
e« e o o

L]
WNFREWQNFFFENRR R

Gy b D> WONDNDNDNDON

DENELCOR,

HEP PRINCIPLES OF OPERATION
CONTENTS

TITLE PAGE

FLOATING POINT REPRESENTATIONS....0vvveecveooncconnsocsanes 2=5
DATA QUALITY . evvvvvueeeannnneseosonnnseoosasnsnnsossenneeass 2=6
USER TRAP MASK BITS. .. evvuveeeaneroneoesonsocanssonssonenees 2-8
TRAP PSW PROGRAM COUNTER. .« veevveernnereonncasnnossnncesss 2-14
TRAP CODES . . s et vuvesnneoansesossssanssosnssossnsssssssasss 2=15
TRAP-HANDLING TASKS . s v e vvnerennersnsososseasssseossassanees 36
BASE AND LIMIT ADDRESS FORMATION....eveeevnenseveonnnenenss 4=2
PS FIELD CONTENTS. . vvevveeennesonnsooneesssseacsncoassneess &=6
SSW CONTENTS . v e v eevvunneesensnsnoosonssssnnocaesnscesoanss 4-8
SSW TRAP SUBFIELDS...uvueeseesonseceannscossscencnassnasees 4=10
SSW REG SUBFIELDS . . evuveesnenenneeonsoocsnncassoesneeeass &=11
TRAP PSW FIELDS . evvuuueeeeennnnoeeesssnnncenosnnsonsassnes 4=12
TRAP-HANDLING TASKSvvvuveseeonnnnosocoassnneoasnssenas 4-13
TRAP CODES . v veveeeenneesonesssssensnnsasssscssnssnaseanss 4-13
REGISTER DESCRIPTOR CONTENTSevvvveeeeecosncocnasensss 5=82

INC. v PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 1 -~ INTRODUCTION

CHAPTER 1

INTRODUCTION

The Heterogeneous Element Processor (HEP) is a large-scale, scientific
digital computer system. It can execute a number of sequential or par-
allel programs simultaneously, and can be configured to support extreme-
ly large applications. It features 64-bit, floating-point arithmetic;
up to 128 million words of physical memory; single-error correcting,
double-error detecting (SECDED) capability; a high-performance file
subsystem; and a modular design that allows for both field expansion of
the system and programmable reconfiguration to keep most of the system
available while a part of it is being maintained.

The major modules of the HEP system are listed below with some of their
specifications.

Process Execution Module
2048 64-bit general purpose registers
4096 64-bit constant registers
32K-1024K 64-bit words of program memory, SECDED
ECL MSI technology
10 million instructions per second
1-60 user processes
1-60 supervisor processes
Relocation and protection for 16 tasks
Up to 16 modules per system

Data Memory Module
32K-1024K 64-bit words, SECDED
ECL technology
20 million reads or writes per second
Byte, quarterword, halfword and fullword addressable
Up to 128 modules per system

I/0 Cache Module

1-16 million 64-bit words, SECDED
MOS technology

DENELCOR, INC. 1-1 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 1 -~ INTRODUCTION

20 million reads or writes per second

1-32 channels

Up to 2.5 million bytes per second per channel
Up to four modules per system

External 1/0 Module
32-1024 analog input channels
32-1024 analog output channels
32-1024 discrete input channels
32-1024 discrete output channels
Up to four modules per system

Figure 1.1 shows a typical medium-sized HEP system with eight million
words of program memory, 16 million words of data memory, and four mil-
lion words of 1/0 cache. This system executes 80 million instructions
per second.

| 1 I 1 i | !

8 PROCESS EXECUTION MODULES

SWITCH
LIS L L L A AL N I O S A N B |
I1/0 CACHE
32 CHANNELS
T N O O T N B 0 B B B S S e A AR RN NN RN

Figure 1.1 - Typical HEP System

1.1 PROCESS EXECUTION MODULE

Each HEP Process Execution Module (PEM) contains its own registers and
program memory, and supports as many as 120 parallel processes executing
simultaneously. Of these 120 processes, 50 are available for executing
user programs; the rest perform operating system functions.

The 50 available processes can be distributed arbitrarily among protec-

tion domains called tasks. Each task has base and limit registers that
relocate register and memory references and protect processes in differ-

DENELCOR, INC. 1-2 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 1 - INTRODUCTION

ent tasks from interfering with one another. It is also possible to
allow processes in different tasks to communicate by establishing over-
lapping or identical .task allocations. This is normally done only in
data memory, to allow processes executing in different PEMs to share
data.

A PEM supports multiple processes by time-multiplexing its control and
execution hardware. Each process is periodically given a chance to exe-
cute an instruction; the logic of the PEM is pipelined so that several
processes are in different phases of instruction execution at any mo-
ment. A user may create and terminate processes dynamically without op-
erating system intervention. A minimum of eight processes are required
to keep the PEM execution logic fully occupied, and to achieve 10 milli-
on instructions per second.

1.2 DATA MEMORY MODULE

To the user, data memory appears as one contiguous block of memory re-
gardless of the number of modules used to implement it. The Switch con-
nects all data memory modules to each PEM of the system to allow access
by any process. A data memory module may also be connected to a single
PEM by a direct data path; when this is the case, that data memory mo-
dule is said to be "local" to the PEM.

Each data memory word has an associated access state, which may be ei-
ther "full" or "empty". Store operations set the access state full,
while load operations may set the access state empty. A store operation
can be forced to wait until the word is empty before writing it and set-
ting it full, and similarly a load can be forced to wait until the word
is full before reading it and setting it empty. Access state testing is
entirely under the control of the programmer. It synchronizes the flow
of data between cooperating parallel processes. The general-purpose re-
gisters_in each PEM also have the full-empty property to allow tightly
coupled parallel computation, especially for the evaluation of arithmet-
ic expressions.

1.3 1I/0 CACHE MODULE

The 1/0 Cache module is used as a buffer to match the 80 megabyte per
second transfer rate of the Switch to the much lower transfer rates pro-
vided by disk or tape mass storage devices. The I/0 Cache is address-
able from the Switch and from as many as 32 channels, each of which can:
support disks or tapes having data rates up to 2.5 megabytes per second.

DENELCOR, INC. 1-3 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 1 - INTRODUCTION

Given a large number of disks and a nominal physical record size of 40K
bytes, the system can achieve sustained I/0 rates approaching 32 mega-
bytes per second. The large size of the I/0 cache allows many files to
be open simultaneously; this allows a user to distribute data across
files for higher performance.

1.4 EXTERNAL 1/0 MODULE

The External I/0 (EIO) module contains analog conversion devices and
discrete analog and digital signal interfaces to allow a HEP system to
communicate with external hardware. The EIO module also contains a
flexible programmable real time clock, and a facility that allows HEP
processes to wait for external events by executing load instructions on
certain locations associated with the EIO module. The result is similar
to that obtained using vectored interrupts on nonparallel computers, but
is much faster because it is unnecessary to save and restore processor
state to handle the interrupt.

1.5 SWITCH

The modules of a HEP system are interconnected by the Switch, a
high-speed packet switching network. The Switch nominally accepts 10
million 128-bit messages per second from each module connected to it,
and distributes these messages among the other modules of the system.

Each node of the network has three full-duplex ports that connect it to
modules or to other nodes. The nodes contain routing tables that are
loaded during system initialization. These tables specify the optimal
message routing (i.e. output port) for every possible destination mo-
dule address. Message conflicts for the same output port at a node are
resolved by sending all but one of the messages nonoptimally; these
messages are incremented in priority to give them preference in subse-
quent conflicts.

The propagation delay of a switch node is 50 nanoseconds.

DENELCOR, INC. 1-4 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 2 - BASIC HEP OPERATION

CHAPTER 2

BASIC HEP OPERATION

Conventional computers execute a single instruction at a time on a sin-
gle stream of data. This architecture, called SISD (for Single Instruc-
tion Stream Single Data Stream), is a subset of the HEP architecture. A
program executing (or ready to execute) in the HEP system is called a
process. HEP can support many processes executing simultaneously, but
each process operates as if it were executing alone in an SISD computer,
except for a few process synchronization operations. This chapter des-
cribes the SISD-compatible subset of HEP operations, which includes most
instructions and capabilities.

HEP processes execute in a hardware unit called a Process Execution Mo-
dule (PEM), which consists of a control unit, function units that imple-
ment the instruction set, and several memories. Instructions may access
either these memories or a global memory accessible to all PEMs in the

HEP system. Since the global memory contains most of the data, it is
normally irrelevant which PEM contains a particular process.

2.1 HEP MEMORIES
A HEP system has four types of memory, all of which store 64-bit words:
* Program Memory
* Register Memory
* Constant Memory
* Data Memory
Program, register and constant memory are integral to each PEM; they

are accessible only to those processes executing in the PEM in which
they are installed. Data memory is global. It can be accessed from any

DENELCOR, INC. 2-1 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

 CHAPTER 2 - BASIC HEP OPERATION

PEM, and the address of a given location is the same regardless of which
PEM accesses it.

2.1.1 PROGRAM MEMORY

Program memory is execute-only to nonprivileged ("user") processes and
is used to store executable programs. It can accommodate programs up to
1 million instructions long.

Program memory space is allocated to a task by the operating system as
part of the task definition when the task is loaded. Program memory can
be read or written only by privileged insructions, which can be executed
only by privileged ("supervisor") processes.

2.1.2 REGISTER MEMORY

Register memory consists of 2048 64-bit general purpose registers that
are used to, store operands and results for computations. Space in re-
gister memory is allocated to a task by the operating system as part of
the task definition when the task is loaded. Space may be allocated to
individual processes within a task to provide for reentrant programs.

Access to individual register memory addresses can be controlled for
reading and writing by access control codes, which are described in de-
tail in Chapter 3. These codes synchronize data that flows between
processes executing parts of the same problem in parallel.

2.1.3 CONSTANT MEMORY

Constant memory contains 4096 64-bit registers that are read-only to
user processes. Space in constant memory is allocated to a task and its
processes in a manner similar to register memory. Constant memory 1is
used interchangeably with register memory for operands to be used in
computations, but can be used for storing results only by supervisor
processes executing privileged instructions. Normally, constant memory
is initialized by a supervisor process as the task is loaded.

DENELCOR, INC. 2-2 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 2 - BASIC HEP OPERATION

2.1.4 DATA MEMORY

Data memory can be read .or written by all PEMs, but is not an integral
part of any of them. It is used for storing most of the data in the
system, and for communication between processes that are executing in
parallel in different PEMs. Up to 128 million 64-bit words of this glo-
bal data memory may be installed in a HEP system.

Data memory is also byte and partial word addressable. When
partial-word or byte addressing is used, the low order three bits of the
address specify the portion of the word to be read or written. The

upper half of the data memory address identifies the I/0 space, a
256-million-word area that can be addressed by supervisor processes as
if it were data memory. This space supports I/0 devices, I/0 caches,
supervisor communications, and other privileged functions.

2.1.5 ERROR DETECTION AND CORRECTION
Program memory and data memory use. a single-error correcting,

double-error detecting (SECDED) code. Register and constant memory are
parity-checked to detect single errors.

2.2 DATA TYPES

HEP supports three types of data in constant, register and data memory.
These three types are: :

* Floating-point numbers
* Integers

* Bit vectors

DENELCOR, INC. 2-3 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 2 - BASIC HEP OPERATION

2.2.1 FLOATING-POINT NUMBERS

Floating-point numbers have the format shown in Figure 2.2.1.

1 7 56
S| EXP MANTISSA
01 8 63

Figure 2.2.1 - Floating-Point Number Format

The meanings of the fields are:
S Sign bit. Set to 'l' if the number is negative.

EXP Exponent . To obtain the proper magnitude of the
floating-point number, the mantissa must be multiplied by
the power of 16 represented by the exponent in bits 1-7.
The exponent is stored as an excess-64 number; 64
(40 hexadecimal) must be subtracted from the representation
to arrive at the true exponent. This allows representation
of exponent values in the range -64 through +63, so the
magnitudes of numbers that can be represented range from
16**-65 to (16**63)(1-16**-14), or about 10**-78 (decimal)
to 10**75 (decimal).

MANTISSA The mantissa is normally expressed in hexadecimal digits,
each represented by four binary bits. The 14 hexadecimal
digits occupy bits 8-63 of the data word. The radix point
of the mantissa is defined to be immediately to the left of
the high order digit.

The overall representation of the floating-point number is
sign-magnitude; bits 1-63 represent the magnitude of the number, and
the sign (S) bit is set to 1 if the number is negative.

Floating-point numbers are conventionally presumed to be normalized. 1In
normalizing a floating-point number, the mantissa digits of a result are
shifted left to remove leading zeroes and the exponent 1is decremented
accordingly. Table 2.2.1 contains several examples of normalized and
unnormalized floating-point representations.

DENELCOR, INC. 2-4 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 2 -~ BASIC HEP OPERATION

NUMBER FLOATING-POINT REPRESENTATION NORMALIZED ?

0 0000000000000000 YES
0 2B00000000000000 NO
0 8000000000000000 NO
1 4110000000000000 YES
1 4E00000000000001 NO
-1 C110000000000000 YES
PI : 413243F6A8885A31 YES
MAX TFFFFFFFFFFFFFFF YES
MIN 0010000000000000 YES
-MIN 8010000000000000 YES
-MAX FFFFFFFFFFFFFFFF YES

Table 2.2.1 - Floating-Point Representations

Floating-point operations in HEP include add[subtract, multiply, di-
vide, absolute value, maximum, minimum, comparison and conversion to in-
teger.

2.2.2 INTEGERS

Integers are stored in 64-bit binary, two's-complement notation. For a
positive number, the sign bit (bit 0, as for a floating-point number)
has the value '0'; for a negative number, the sign bit has the value
', The negative of any integer (except -2**63, which has no positive
counterpart) is obtained by complementing (inverting) all bits of the
number and adding one to the result.

Integer operations in HEP include add, subtract, multiply, arithmetic
shift, increment, decrement, absolute value, maximum, minimum, compari-
son and conversion to floating-point. Two separate multiply instruc-
tions give access to all 128 bits of the product of two 64-bit integers.

2.2.3 BIT VECTORS

Bit vectors are merely unsigned 64-bit strings. The instructions that
operate on this data type implement all sixteen logical functions of two
variables, logical shift, circular shift, operations that determine the
numeric bit position of the leftmost 1 or 0, and operations that set or
clear a bit at any specified numeric position.

DENELCOR, INC. 2-5 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 2 - BASIC HEP OPERATION

2.3 DATA QUALITY

The result of a HEP computation has two parts. The major part is the
data value, which is one of the data types just defined. The other part
is called the data quality.- The data quality is a three-bit tag associ-
ated with the data in a result location (in addition to the 64-bit data
value). The data quality of a result indicates how usable the associat-
ed data value is. It can be explicitly checked by the user program, or
can be used later to generate an error trap when the data in the result
is wused or stored in data memory. The possible values for data quality
and the interpretation of these values are in Table 2.3.1. Traps are
discussed later in this chapter. ' '

The only HEP memories that record data quality are register and constant
memory . When a value is stored in data memory and reloaded into regis-
ter memory, the original data quality is lost and the new one 1is zero.
If several different data gquality values might be expected to occur in
one instruction, only the highest data quality is stored. Thus, integer
overflow masks carry. Similarly, parity error masks all other results.

DATA QUALITY MEANING GENERATING OPERATIONS

000 Good Data (normal result) Any

001 Carry Integer Operations

010 ‘ Underflow Floating-Point Operations

0ll1 . Loss of Significance Floating-Point Add, Subtract
and Integer to Floating-Point
Conversion

100 Overflow Floating-Point and Integer
Operations

101 Indefinite Result Floating-Point Divide

110 Parity Error in Operand Any

111 Unused None

Table 2.3.1 - Data Quality

DENELCOR, INC. 2-6 PUBLICATION 9000001

2.4 THE

Each proc

HEP PRINCIPLES OF OPERATION

CHAPTER 2 - BASIC HEP OPERATION

PROCESS STATUS WORD (PSW)

ess in a HEP PEM is defined and controlled by a 64-bit Process

Status Word (PSW). The PSW format is shown in Figure 2.4.1.

8 12 1 11 8 4 20
PS CI 0 RI UTM 0 PC
0 8 20 21 32 40 44 63

Figure 2.4.1 - Process Status Word Format

The meanings of the fields are:

PS

CI

RI

U™

DENELCOR,

Privileged field. The PS field is accessible only to privi-
leged instructions executed by supervisor processes. If a PSW
is accessed by a user process, the PS field wvalue 1is always
zero. The PS field is described in Figure 4.3.1.

Constant Memory Index field. When indexed addressing is speci-
fied in constant memory, the address is calculated by adding
the CI value to a displacement supplied in. the instruction.
The CI field can be read and written by user processes.

Register Memory Index field. This field is similar to CI, but
applies to register memory rather than constant memory.

User Trap Mask. This field specifies which data exception
traps can occur. Each bit in the UTM field corresponds to a
particular data quality value. (Thus, bit O of the UTM corres-
ponds to data quality 000, bit 1 to 001, and so on.) A trap oc-
curs when a bit in the UTM is 'l' and an instruction operand
has the corresponding data quality value. Table 2.4.1 shows
the correspondence between PSW bits and data quality.

INC. 2-7 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 2 - BASIC HEP OPERATION

PSW BIT UTM BIT DATA QUALITY MEANING
32 0 0 Good Data (Normal)
33 1 1 " Carry
34 2 2 Underflow
35 3 3 Loss of Significance
36 4 4 Overflow
37 5 5 Indefinite Result
38 6 6 Parity Error
39 7 7 Unused

Table 2.4.1 - User Trap Mask Bits

If all bits in the UTM are set, any instruction with operands
(virtually every HEP instruction) generates a trap. The UTM
field can be read and written by user processes.

PC Program Counter. The program counter is used to address the
next instruction in program memory to be executed. The program
counter is incremented as each instruction is executed. The PC
field can be modified by PSW instructions, effectively causing
the process to jump to a different place in the program.

2.5 HEP INSTRUCTION FORMATS

All HEP instructions occupy a 64-bit word in program memory. Most of
them are three-address instructions. The format of these instructions
is shown in Figure 2.5.1.

16 16 16 16

op D Sl 52

0 16 ’ 32 48 63

Figure 2.5.1 - Three Address Instruction Format

The meanings of the fields are:

oP The 16-bit operation code field for the operation to be
performed.

DENELCOR, INC. 2-8 PUBLICATION 9000001

Sl

s2

HEP PRINCIPLES OF OPERATION

CHAPTER 2 - BASIC HEP OPERATION

Destination. The address of the location in register memo-
ry or constant memory in which the result of the instruc-
‘tion is to.be stored. If D specifies a constant memory lo-
cation, the executing process must be a supervisor process.

Source 1; the address ¢f the source location in register
of constant memory containing the first operand of the in-
struction.

Source 2; the address ¢of the source location in register
or constant memory containing the second operand of the in-
struction.

The format of the D, S1 and S2 fields of the instruction 4is shown in
Figure 2.5.2.

1 1l 1 2 11
0 I c AC DISP
0 1 2 3 5 15

Figure 2.5.2 - Register or Constant Memory Address

The meanings of the fields are:

I

AC

DENELCOR,

Indexed addressing specification bit.

1 means add the index value (CI or RI) from the PSW when cal-

culating the effective address.

means do not add the index value from the PSW when calcu-
lating the effective address.

Memory type specification bit.

1 means the address is in constant memory. (This is illegal

in the destination field for a user process.)
means the address is in register memory.

This field is concatenated with DISP for addresses in con-
stant memory, to provide a 13-bit displacement.

INC. 2-9 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION
CHAPTER 2 - BASIC HEP OPERATION
For addresses in register memory, AC is the access control
specification field. The interpretation of this field is
described in Figure 3.2.1.
The values in the locations specified by the S1 and S2 fields are never

modified by the instruction unless D=Sl or D=S2. Not all instructions
require all 3 fields; unused fields must be set to zero.

2.5.1 NONSTANDARD INSTRUCTIONS
Certain instructions deviate from the standard form. For example, the

branch instruction contains a 20-bit program memory address and has the
format shown in Figure 2.5.3.

12 20 16 16

op P sl 52

0 12 32 48 63

Figure 2.5.3 - Branch Instruction Format

The OP field is reduced to 12 bits to make room for the address P, a
20-bit field whose contents may conditionally replace the PC field of
the PSW. Sl and S2 are the same as in standard instructions.

2.5.2 DATA MEMORY INSTRUCTIONS

Some data memory instructions are also nonstandard. In these instruc-
tions, a 32-bit data memory displacement field replaces two contiguous
16-bit fields normally used to hold register or constant memory ad-
dresses. The formats for these instructions are shown in Figures 2.5.4
and 2.5.5. Figure 2.5.4 shows the format for the Load (LOD) and Load
Address (LODA) instructions; Figure 2.5.5 shows the format of the Store
(STO) instruction.

DENELCOR, INC. 2-10 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION -

CHAPTER 2 - BASIC HEP OPERATION

16 .16 | 32

Op D M

0 16 32 63

Figure 2.5.4 - Instruction Format for LOD and LODA .

16 32 ’ 16

op M » s2

0 16 48 63

Figure 2.5.5 - Instruction Format for STO

The 32-bit data memory displacement M is actually the concatenation of a
29-bit word offset W and a 3-bit partial word specifier PW. For these
instructions, The data memory displacement is combined with three other
fields obtained from the low order 5 bits of the OP field to form the
data memory address (See Figure 2.5.6).

1 2 2 29 3

B|SAC|DAC W PW|

Figure 2.5.6 - Data Memory Address Format

In Figure 2.5.6 SAC and DAC are access control specifications used for
synchronizing parallel operations and are described in Section 3.3. The
W field is the displacement of a 64-bit word in data memory, and the B
and PW fields specify the portion of the data memory word to be ad-
dressed, as described below.

If B=0 a quarter-word (16 bits), half-word (32 bits), or full-word

(64 bits) is addressed. The PW field specifies which bits are addressed
(See Figure 2.5.7).

DENELCOR, INC. 2-11 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

- CHAPTER 2 - BASIC HEP OPERATION

If B=1 an 8-bit byte of the data memory word is addressed. The specific
byte addressed is defined by the PW field (See Figure 2.5.8).

16 16 16 16
=1 =3 =5 PW=7
0 16 32 48 63
32 32
PW=2 PW=6
0 32 63
64
PW=0

Figure 2.5.7 - Partial Word Addressing with B=0

PW=0 PW=1 =2 PW=3 PW=4 PW=5 PW=6 =7

0 8 16 24 32 40 48 56 63

Figure 2.5.8 - Partial Word Adressing with B=l

The operation of the PW field allows a data memory displacement to ad-
dress successive portions of words by adding the size of the portion in
bytes. For example, successively adding 2 to a quarter-word displace-
ment addresses successively higher quarter-words, automatically incre-
menting the W (displacement) field by 1 when PW changes from 7 to 1.

The data memory displacement appears in the instruction itself for the
instructions LOD, LODA, and STO (as shown in Figures 2.5.4 and 2.5.5).
It appears in the low order 32 bits of the word addressed by S1 for the
remaining data memory reference instructions: Load Indirect (LODI),

DENELCOR, INC. 2-12 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 2 - BASIC HEP OPERATION

- Store Indirect (STOI), Load Indexed (LODX), and Store Indexed (STOX).
For these instructions, the data memory address may be formed by conca-
tenating the B, SAC and DAC subfields with the data memory displacement
(as described above), or may be contained in bits 27-31 of the word ad-
dressed by S1. The LODX and STOX instructions form an effective address
by adding the low order 32 bits of the word addressed by S2 to the dis-
placement in S1 modulo 2**32; for the other instructions, the displace-
ment itself is the effective address.

The STOX instruction is nonstandard because the left-most address field
is a source field rather than a destination field, and is referred‘to as
Source 0 (S0).

2.6 TRAPS

All error and exception conditions in HEP are handled in a uniform way.
The PSW of the process generating the exception is saved, and a new PSW
is created. Both the old and new PSW contain information about the ex-
ception condition. The new PSW corresponds to a supervisor process that
normally executes operating system code, but the information in the new
and old PSW is made available to the user for diagnostic purposes.

The old PSW has the format described in Section 2.5. If bit 20 of the
new PSW is 1, the PC field of the old PSW points to the instruction fol-

lowing the one that generated the exception. If bit 20 of the new PSW
is 0, the old PSW points to the generating instruction.

2.6.1 THE TRAP PSW

The new (trap) PSW format is shown in Figure 2.6.1.

8 4 8 12 8 4 20

PS TTID TPT TC UTM 0 PC

0 8 12 20 32 40 44 63

Figure 2.6.1 - Trap PSW Format

DENELCOR, INC. 2-13 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION
CHAPTER 2 - BASIC HEP OPERATION
The PS, TTID and TPT fields contain information that is either privi-
leged or associated with processes executing in parallel. These fields

are discussed in Chapter 4. The UTM is set to zero.

The PC field defines the type of trap. User programs can generate traps
with the PC values shown in Table 2.6.1.

PC MEANING

00010 Memory error - ECC hardware detected an uncorrectable
error in a program memory or data memory location.

00012 Illegal Instruction - The opcode of the instruction is
not in the HEP instruction set.

00014 Protection Violation - An illegal memory access was
attempted.

00016 Privileged Instruction - A user process attempted to

execute a privileged instruction.

0001a Supervisor Call - The operating system is to perform
some function on behalf of the user.

0001C Simulated Instruction - The opcode of the instruction
is to be interpreted and carried out by software.

O001E Data Exception - A source data quality specified by the
user's UTM was encountered.

Table 2.6.1 - Trap PSW Program Counter

’

Other traps are possible, but they relate to parallel processing and
privileged operations (See Chapter 4).

The TC field is the trap code. If the trap is a data exception (with a
trap PC of OOOlE), then the trap code is interpreted as three four-bit
subfields specifying which operand data qualities caused the trap. If
the high bit of a given subfield is zero, the remaining three bits in
that subfield are undefined; if the high bit is one, the remaining
three bits specify a data quality that caused the trap. The left-most
subfield (trap PSW bits 20-23) is significant only when a data exception
occurs in Source 0 of a STOX instruction. Note that bit 20 will be set
in this case, so the PC field of the old PSW points to the instruction
following the STOX that generated the trap. The remaining two subfields

DENELCOR, INC. 2-14 PUBLICATION $000001

HEP PRINCIPLES OF OPERATION

CHAPTER 2 - BASIC HEP OPERATION

(trap PSW bits 24-27 and 28-31) are significant when a data exception
occurs in Source 1 or Source 2 of an instruction respectively.

If the trap is not a data exception, then the trap code conveys informa-
tion about the source of the error. When multiple traps are possible,
the trap with the smallest trap PC is generated. As a result, a memory
error or illegal instruction trap takes priority over a protection vio-
" lation. The trap codes that can result from these three types of trap
are described in Table 2.6.2. The trap codes for privileged instruction
and simulated instruction traps are always zero. The trap code for an
SVC instruction is obtained from the D field of the instruction.

TC BIT PSW BIT MEANING IF SET

0 20 Data memory uncorrectable error or protection
violation.

1-5 21-25 (unused)

6 26 Unimplemented data memory location.

7 27 Data memory protection violation.

8 28 D or SO protection violation.

9 29 S1 protection violation.

10 30 S2 protection violation.

11 31 Program memory protection violation.

Table 2.6.2 - Trap Codes

Protection violations can result either from an attempt to use a con-
stant memory location as the destination of an instruction executed by a
user process or from an attempt to reference a memory location not allo-
cated to the task containing the process. Tasks are described in Sec-
tion 3.3.

DENELCOR, INC. 2-15 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

‘CHAPTER 3 - PARALLEL HEP OPERATION

CHAPTER 3

PARALLEL HEP OPERATION

In a conventional "multiprocessing" computer, several independent or co-
operating processes exist simultaneously within the machine, but only
one of these processes is executing at any given time. The remaining
processes are inactive, managed by a software process scheduler that
periodically stops the executing process and starts a previously inac-
tive one. In these systems, a "process" 1is a software artifact;
creating and deleting processes is a function of the operating system.

In HEP, multiple processes exist simultaneously in hardware. A single
HEP PEM can have up to 128 simultaneously-active PSW's at any one time.
Each PSW controls a separate instruction stream, and all instruction
streams execute in parallel, multiplexed under hardware control. With
this architecture, creating and deleting processes is a hardware func-
tion implemented by nonprivileged instructions.

3.1 PROCESS CREATION‘AND TERMINATION.

Processes in the HEP are created in one of three ways. The normal meth-
od is for an existing process to execute the CREATE instruction. One of
the operands of this instruction is a register memory or constant memory
location containing a PSW. The value in the location is placed in the
hardware process queue; the instruction stream pointed to by its PC
field subsequently begins executing. The process executing the CREATE
proceeds to its next sequential instruction. Options exist in CREATE to
allow fields in the newly-created PSW to be inherited from the PSW of
the creating process instead of the instruction operand.

The other two ways of creating processes are by a trap or by performing

Initial Program Load, an external function. These are discussed in Sec-
tion 3.3.

DENELCOR, - INC. - 3-1 PUBLICATION 9000001

_ HEP PRINCIPLES OF OPERATION

CHAPTER 3 - PARALLEL HEP OPERATION

HEP processes terminate by executing a quit (QT or SQT) instruction.
After executing QT or SQT, the process executes no further instructions.
The hardware process queue location associated with the process - is
freed, and may be reused by a create in another process. There is no
way for a user process to terminate another process; to be terminated,
a process must execute a quit instruction. A privileged operation does
exist to terminate entire groups of processes. This is discussed in
Chapter 4.

3.2 PROCESS SYNCHRONIZATION

Normally, HEP processes execute independently. To allow a single com-
puting problem to be solved by several processes in parallel (thus re-
ducing the solution time), hardware mechanisms allow processes to syn-
chronize and communicate.

Register memory and data memory locations possess an attribute called
the "access state". Each register or data memory location may be "full"
or "empty". In addition, register memory locations may be "reserved".
The access state of a location is independent of the value in the loca-
tion and may be manipulated without changing the value. Constant memory
and program memory do not have access states.

The reserved state prevents any use of a location as the source or des-
tination of an instruction. This effect is automatic and not under the
programmer's control. A register memory location is set reserved when
an instruction begins executing with that location as its destination
operand. The state changes to full when the result value is stored. 1In
the meantime, no other process may access the location.

The full/empty state of operands is under the programmer's control.
Register memory address fields contain a 2-bit access control (AC) field
that controls the testing and setting of the register memory location
access state. Figure 3.2.1 shows the format of a register memory ad-
dress.

DENELCOR, INC. 3-2 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 3 - PARALLEL HEP OPERATION

1 1 1 2 11

X|1{c|Aac DISP

o 1 2 3 5 15

Figure 3.2.1 - Register Memory Address Format

For sources the AC field has the following meaning:

AC EFFECT ASSEMBLER MNEMONIC
00 read if not reserved, do not alter state none

01 read if not reserved, set state to empty U

10 read only if full, leave full W

11 read only if full, set state to empty sUW

For destinations the AC field has the following meaning:

AC EFFECT . ASSEMBLER MNEMONIC
00 write if not reserved, set full none

0l write only if empty, set full :E

10 write only if full, leave full sF

11 invalid (instruction will never execute) tE:F

Note that the destination is always set full; a source location may or
may not be emptied.

Data memory locations also possess the access state attribute, but may
only be full or empty. Data memory access control information is conta-
ined in the data memory address. Figure 3.2.2 shows the format of a
data memory address.

DENELCOR, INC. 3-3 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 3 - PARALLEL HEP OPERATION

B|SAC|DAC W PW

Figure 3.2.2 - Data Memory Address Format

The SAC (Source Access Control) field has the following meaning:

SAC EFFECT ASSEMBLER MNEMONIC
00 read, do not alter state ~ none

01 read, set state to empty :U

10 read only if full, leave full . W

11 read only if full, set state to empty cU:W

The contents of the SAC field are interpreted only by the load opera-
tions LOD, LODI and LODX.

The DAC (Destination Access Control) field has the following meaning:

DAC EFFECT ASSEMBLER MNEMONIC
00 write, set full none

01 write only if empty, set full :E

10 write only if full, leave full :F

11 invalid (instruction will never execute) sE:F

The DAC field is interpreted only by the store operations STO, STOI and
STOX. The access state of data memory applies to the entire word; if a
partial word is stored, the entire word is set full, and if a partial
word is loaded with SAC=01 or SAC=1l, the entire word is set empty.

When the operands of an instruction are in an incorrect access state
(reserved, or in a state failing a test), the instruction is not execut-
ed, none of the operands is modified in any way, and the process is
placed at the tail of the process queue. After a delay whose length de-
pends on machine loading, the process reaches the head of the process
queue and the execution of the instruction is reattempted. This se-
quence continues until the operands are in the correct access state, at
which time the instruction is executed.

DENELCOR, INC. 3-4 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 3 - PARALLEL HEP OPERATION

Processes use access control to pass data to each other. A receiving
("consumer") process can wait to read data from an initially empty loca-
tion using AC or SAC=11l: A sending ("producer") process writes the data
with AC or DAC=01. When the producer fills the location, the consumer,
whose instruction has been waiting, obtains the data and sets the loca-
tion empty again. If the consumer was not ready for the data and does
not read and empty the location before the producer attempts to write a
second time, the location is left full. Thus the producer is prevented
from placing more data in the location until the consumer empties it.

When a PEM has local data memory, the operations STO and STOI on full
words with SAC and DAC both zero do not modify the access state of a lo-
cation local to the PEM. 1In particular, the location is not set full.
The STOX operation, however, always sets full.

3.3 TASKS

Each process in a HEP PEM belongs to a set of processes called a task.
To make HEP programs relocatable, and to protect different users from .
each other, each task has base and limit addresses for each memory type.
These addresses are held in the hardware, and are used to map separate
problems into nonoverlapping partitions.

Each PEM supports 16 tasks numbered O through 15. Task 0 is not used.
Tasks 1 through 7 are called user tasks, and contain user processes.
Tasks 8 through 15 are called supervisor tasks and contain supervisor
processes. A task may contain any number of processes up to 64. No
more than 64 user processes and 64 supervisor processes can exist at any
moment.

For processes in each task, the base address for each memory type is
acdlded to each effective address to form a real memory address. Thus all
code is written as if its memory spaces begin at location =zero; the
real memory address for the task is transparent to the user. For each
access (except for constant memory), the real memory address is compared
with the 1limit address. If the real address is greater, a protection
violation trap is generated. The absence of a constant memory limit ad-
dress prevents the detection of illegal constant memory references. But
user tasks cannot modify constant memory so destructive task interaction
is impossible, though a task may read constants not part of its memory
allocation.

A task in HEP has two states: active and dormant. Processes in an ac-

tive task are scheduled for execution and make computational progress in
the normal way. Processes in a dormant task are not selected for execu-

DENELCOR, INC. 3-5 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION
CHAPTER 3 - PARALLEL HEP OPERATION
tion, and do not make progress. Tasks move from one state to the other
via certain privileged instructions and by generating traps.
When a trap occurs, the trap hardware makes the trapping task dormant
and creates a process in the task that handles the trap. The trap han-

dling task is shown in Table 3.3.1.

TRAPPING TASK TRAP HANDLING TASK

0 8
1 9
2 10
3 11
4 12
5 13
6 14
7 15
8 8
9 8

10 8

11 8

12 8

13 8

14 8

15 8

Table 3.3.1 - Trap-Handling Tasks

This relationship between trapping and trap-handling tasks is normally
used to implement a three-level operating system in which each user
task (1-7) is managed by a corresponding supervisor task (9-15). The
supervisor tasks are managed by a kernel task (8) that handles overall
resource management and communication. Task 0 is not used since its
trap structure is asymmetric (its "supervisor" is the kernel). Although
task 8 traps to task 8, this is a fatal error, since the trap leaves the
trapping task dormant, and the trap-handling process cannot progress.

DENELCOR, INC. 3-6 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 4 - PRIVILEGED HEP OPERATION

CHAPTER 4

PRIVILEGED HEP OPERATION

Instructions and facilities described in this section are available only
to supervisor processes; they control the hardware mechanisms for task
and process management, input/output, and system initialization, confi-
guration, and maintenance.

4.1 TASK MANAGEMENT

Each task in HEP is allocated regions in program, register, constant and
data memory. The regions are defined by a 128-bit Task Status Word
(TSW) associated with the task. The instructions RTSW and WTSW, which
allow supervisor processes to read and write TSWs, treat the TSW as two
independent, 64-bit words (as shown in Figure 4.1.1).

12 10 10 16 16
CB RB RL PB PL
0 12 22 32 48 63
16 24 24
0000 DB DL
0 16 40 63

Figure 4.1.1 - TSW

The fields of these two words are used to compute a base and 1limit ad-
dress for each memory type except constant memory, which has no limit
address. Base and limit addresses are formed by appending an appropri-

DENELCOR, INC. 4-1 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 4 - PRIVILEGED HEP OPERATION

ate number of zero bits to the right of the base and the same number of
one bits to the right of the limit. Table 4.1.1 shows the number of
bits appended to each field. 1In data memory, base and limit addresses
are byte addresses; in other memories they are word addresses.

TSW FIELD FIELD NO. OF BITS BIT VALUE ADDRESS
FIELD LENGTH NAME APPENDED APPENDED LENGTH
CB 12 Constant Memory Base 1l 0 v 13
RB 10 Register Memory Base 1 0 11
RL 10 Register Memory Limit 1 1 11
PB 16 Program Memory Base 4 0 20
PL 16 Program Memory Limit 4 1 20
DB 24 Data Memory Base 8 0 32
DL 24 Data Memory Limit 8 1 32

Table 4.1.1 - Base and Limit Address Formation

The base address is added to each effective address generated by a pro-
cess to yield a real (physical) memory address; if a carry occurs a
protection violation trap is generated. The real address is in turn
compared to the appropriate limit address. A real address greater than
the limit generates a protection violation trap. A base address greater
than the limit denies the task access to the associated memory type.

The exception to this scheme is constant memory. Since the constant
memory base address is 13 bits long and there is no CL field, a task can
access any constant memory location with a real address greater than or
equal to the base. (The effect of reading a location with a real ad-
dress greater than 2**12-1, however, is undefined.) In addition, when a
real constant memory address is calculated, a carry does not generate a
trap.

4.1.1 PROGRAM AND CONSTANT MEMORY ACCESS

Since user processes may not write either program memory or constant
memory, supervisor processes must perform these functions. Supervisor
processes may write constant memory via any instruction with a D field;
they may read and write program memory via the instructions RPM and WPM.
Base and limit addresses are not applied to the program memory address
arguments of RPM and WPM.

DENELCOR, INC. 4-2 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 4 - PRIVILEGED HEP OPERATION
4.1.2 DATA MEMORY ADDRESSING

Data memory effective address space is split. Effective addresses in
the lower half (byte locations 0 to 2**31-1) are based and limited by DB
and DL, but effective addresses in the upper half (byte locations 2**31
to 2**32-1) are not. Thus the upper half of the space is identical to
real address space and may only be accessed by supervisor processes. It
contains locations associated with input-output devices, the I/0O cache,
and system support processor interfaces. A user process can address
these locations only if DL is sufficiently large (greater than
800000 hexadecimal) to include some of them.

The uppermost effective addresses allow supervisor processes read-only
access to the lower 2**28 bytes of real data memory address space by
specifying effective addresses in the range 2**32-2**28 to 2**32-1.
That is, the last sixteenth of the effective address space addresses the
same locations as the first sixteenth of the real address space.

4.1.3 TASK STATES

Tasks may be live or dead, and active or dormant. A task that has no
processes associated with it is said to be dead; such a task can become
live only by having processes created in it. This can be done by anoth-
er task, via a trap, or by a supervisor process, via a Privileged Create
(PCR) instruction. A live task dies in one of two ways: either all of
its processes execute quit (QT or SQT) instructions or a supervisor pro-
cess executes a KILL instruction for the task.

Independent of whether it is live or dead, a task may also be active or

dormant. Processes in an active task are allowed to execute instruc-
tions normally, but processes in a dormant task are prevented from exe-
cuting. The instructions ACT (Activate) and DACT (Deactivate) make a

task active or dormant, respectively. 1In addition, a trap causes the
task responsible to become dormant. The states of all tasks are avail-
able through the RCTL (Read CFU Contreol) instruction.

4.2 PROCESS SCHEDULING

A HEP PEM automatically schedules processes for execution by inserting
and removing Process Tags (PTs) in one of 16 task queues. Each PT is
the address of a PSW in the "process queue" (which is not, in fact, a
queue but a 128-location memory).

DENELCOR, INC. 4-3 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 4 - PRIVILEGED HEP OPERATION

When a task is to be made dormant, it is only necessary for the hardware
to inhibit the removal of PTs from the associated queue. In creating a
process, the hardware automatically allocates a PT value not currently
in use, writes the desired PSW information at the process queue location
pointed to by that PT, and inserts the PT in the appropriate task queue.
When a process quits, the PT value is made available for the creation of
~ other processes and is not reinserted in the queue.

The PEM logic associated with the task queues selects PTs from active,
live tasks in a round-robin fashion, thereby ensuring that each task ob-
tains a fair share of the execution resources. When a PT 1is selected,
it is removed from its queue and used to select a PSW from the process
queue. The task queue that was used determines the TSW, and the PSW and
TSW together determine the next instruction to be fetched and its real
source and destination addresses.

For all but SFU and quit instructions, each PT is reinserted in its task
queue only after a fixed delay. The delay is such that a minimum of
eight active processes are required to avoid the wasted cycles that
occur when all task queues of active tasks are empty. The delay ensures
that a function unit has eight cycles to compute and store a result in
register or constant memory before the next instruction accesses the re-
sult.

Two function units, the Divider and the SFU, do not compute results in
eight cycles. The Divider needs 16 or 17 cycles to complete. If the
destination of an FDIV instruction is in register memory, the destina-
tion location remains reserved until the result is written. This pre-
vents any use of the value until it is available. In constant memory,.
however, it is possible for a supervisor process to access a location
that does not yet contain the value from a previous FDIV. For this rea-
SOn Supervisor process programs must have at least two instructions
between an FDIV with a constant-memory destination and an instruction
that uses the result of that FDIV.

The SFU instructions (LOD, LODA, LODI, LODX, RSSW, STO, STOI, STOX, and
WSSW) require an indeterminate amount of time to complete. When one of
these instructions is executed, the PT is not reinserted in its task
queue but is instead sent to the SFU. The SFU also contains 16 queues
for PTs, one for each task, and an SFU queue addressed by those PTs.
The SFU queue holds 128-bit SFU Status Words (SSWs). Each SSW contains
enough information about a pending data memory reference instruction to
allow its re-execution by the SFU when the access state of the specified

location does not satisfy the access control specified in the instruc-
tion.

DENELCOR, INC. 4-4 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 4 - PRIVILEGED HEP OPERATION

The PT associated with the process executing the SFU instruction remains
in the SFU until the instruction is successful. When this occurs, the
PT is reinserted in its. task queue, removed, and the next instruction is
fetched. By this time, the result of the SFU instruction has been writ-
ten in register or constant memory and is available to the next instruc-
tion. If the SFU generates a trap, the PT of the process generating the
trap remains in its queue in the SFU.

4.3 PROCESS STATUS

Supervisor processes can read and write the PSW or SSW corresponding to
a given PT using the instruction RPSW, WPSW, RSSW, or WSSW. Since a PSW
or SSW may be modified by instructions executed by the process it des-
cribes, care should be taken in the use of these instructions on
processes belonging to an active task. None of these instructions actu-
ally creates a PT for a process; the only mechanisms that can create a
PT are create instructions and traps.

4.3.1 THE PROCESS STATUS (PS) FIELD
Bits 0-7 of the PSW -- the "PS field" -- can be read and written only by

supervisor processes; the contents of PS are shown in Figure 4.3.1 and
described in Table 4.3.1.

1 1 1 1 4

0 CF Lv HM TID

0 1 2 3 4 7

Figure 4.3.1 - PS Field of the PSW

DENELCOR, INC. 4-5 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 4 - PRIVILEGED HEP OPERATION

BITS NAME DESCRIPTION
0 - Must be zero.

1 CF Create Fault enable. When set, allows this process to run
in create fault mode.

2 LV Live. When set, a PT has been allocated for this process.

3 HM Hardware Maintenance. When set, certain trap and wave off
conditions have no effect on this process.

4-7 TID Task Identifier. Used by PCR to specify the task into which
a process is created, and to indicate the task to which a
process belongs when the PSW is read.

Table 4.3.1 - PS Field Contents

The TID field contains the task identifier and indicates which task the
process belongs to. When a PCR instruction is executed, the TID field
of the PSW operand specifies the task queue into which the newly allo-
cated PT is to be inserted. Never change the value of TID for a live
process (a process having LV=1); the task queue to which the process
belongs would disagree with its TID.

The CF bit is set to allow the process to execute in create fault mode.
When too many processes are created, a create fault trap occurs and the
PEM enters user or supervisor create fault mode, depending on the task
that caused the problem. In create fault mode, only processes with a CF
value of 1 are allowed to execute; other processes are waved off. The
process created by a create fault trap executes in Task 8 and has the CF
bit set. The PCR instruction may also be used to create processes with
CF set (or reset) in arbitrary tasks.

Although a create fault occurs when the number of live user or supervi-
sor processes exceeds 56, there may be a greater number of live
processes of either type when the trap is complete. For this reason, a
process handling a supervisor create fault must not create other super-
visor processes until it has verified that there are less than 64 PT va-
lues in use. Note also that unlike other traps, create fault does not
make the trapping task dormant. Whether or not a PEM is in a create
fault mode can be discovered using the RCTL instruction, and either kind
of create fault mode can be reset using the RCF instruction.

The LV bit is a read-only bit that, when set, asserts that the process

DENELCOR, INC. 4-6 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 4 - PRIVILEGED HEP OPERATION

" is 1live, 4i.e., a PT has been allocated to it. If LV is zero, the PSW
does not correspond to an executing process. LV is set when a process
is created, and reset when the process quits or when the task is killed.

The HM bit is primarily used for hardware maintenance; when it is set,
the process will not trap for any reason unless a create fault trap oc-
curs, create fault mode is in effect, or the trap is due to the SFU. 1In
addition, whether a SFLG or WFLG instruction cause a wait is independent
of the state of HM. Processes created by an Initial Process Load (IPL)
trap have the HM bit set, and PCR may be used to create processes with
HM set (or reset) in arbitrary tasks.

4.3.2 THE SFU STATUS WORD

The SSW format is shown in Figure 4.3.2.

4 112 8 16 32
ST [R|M|AC| TRAP REG ADDR
0] 456 8 16 32 63
64
DATA
0 63

Figure 4.3.2 - SFU Status Word

The instructions RSSW and WSSW read and write the SSW as two independent
64-bit words. The fields of the SSW are described in Table 4.3.2.

DENELCOR, INC. 4-7 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 4 - PRIVILEGED HEP OPERATION

BITS NAME DESCRIPTION

0-3 ST State. Describes the SFU operation in progress.
If ST>=8, a trap occurs.

4 R Read. When set, a LOD, LODA, or LODX instruction was
executed.
5 M Address Mode. When set, a byte operation is to be
performed.
6-7 AC Access Control. Corresponds to SAC if R=1, DAC if R=0.

8-15 TRAP Trap information. Contains either the UTM from the PS5W
if ST<8 or information describing the trap if ST>=8.

16-31 REG Register or Constant Address. Contains the real address
. computed from the D or SO field of the SFU instruction.
The location addressed is read when ST=6 and written when
ST=2 or 5. This field also contains information about
partial word justification and access state.

32-63 ADDR Data Memory Address. The real address of the location
where the operation is to be performed.

0-63 DATA Data. The data to be moved by the operation.
Table 4.3.2 - SSW Contents

The ST field of the SSW describes the state of the SFU operation in pro-
gress. The meanings of these states are summarized in Figure 4.3.3.
The idle state (ST=0) indicates that no operation is in progress in the
SFU. When an SFU instruction other than RSSW or WSSW is executed, the
ST field changes value to 1 for LOD, LODI, and LODX, 2 for LODA, 5 for
STO and STOI, 6 for STOX, and 8 if a data memory protection violation
trap is to be generated. When ST=1, a data memory read operation is at-
tempted. If the access control requirements are not met by the access
state of the addressed location, the ST field (in fact, the entire SSW)
is 1left unchanged. If an uncorrectable error occurs in the location or
if an unimplemented address was specified, ST changes to 9. Finally, if
the data memory read succeeds, the ST value changes to 2 and the data
just read are available in the data field of the SSW so they can be
written in register or constant memory. Other state sequences perform
similar operations for the other instructions. The contents of source 0
(S0) of the STOX instruction is read into the SSW when ST is 6; a data

DENELCOR, INC. 4-8 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 4 - PRIVILEGED HEP OPERATION

quality in SO corresponding to a non-zero bit in the UTM will cause a
data exception trap.

Values of ST not described in Figure 4.3.3 generate traps if ST>=8 and
are forced to 0 if ST<8. In addition, when a task is killed, all ST va-
lues for SSWs allocated to that task are forced to 0 and the PTs are re-
inserted in the task queue so that they may be deallocated as they are
removed.

[:> 1:READ FROM DATA >|2:WRITE TO REG
MEMORY TO SSW |<— [—> FROM SSW
> 9:MEMORY ERROR > 0:IDLE STATE <

UNIMPL. ADDRESS

>14 :COMPLETE THE > | 8 ¢ PROTECTION
STORE OPERATION ’ VIOLATION

5:WRITE FROM SSW |<——

>| 6 :READ FROM

> TO DATA MEMORY |< REG TO SSW
>|D:MEMORY ERROR E:USER TRAP <
UNIMPL. ADDRESS QUALITY OF SO

Figure 4.3.3 - SFU State

The R, AM, and AC fields contain further information about the operation
to be performed by the SFU. The R (read) bit is 1 if a LOD, LODI, or
LODX is to be attempted and is 0 for LODA, STO, STOI, and STOX. M 1is
the address mode bit from the data memory address, and AC equals SAC if
R=1 and DAC if R=0, where SAC and DAC also come from the data memory ad-
dress.

The trap field contains the UTM if ST is 6, the data quality causing the
data exception trap if ST is E, and information about data memory errors
or protection violations if ST is 9 or D. For other values of ST, the
contents of the trap field are undefined. These facts are summarized in
Table 4.3.3.

DENELCOR, INC. 4-9 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 4 - PRIVILEGED HEP OPERATION

SSW BIT

ST 8 9 10 11 12 13 14 15
0 UNDEF INED

1 UNDEF INED

2 UNDEF INED

4 UNDEF INED

5 UNDEFINED

6 U™

8 UNDEF INED

9 UNDEF INED DE O SE INV
D UNDEFINED DE O SE INV
E o o o0 0 © DQ

DQ - Data quality of SO causing a data ex-
ception trap.

DE - Double error in data memory causing a
memory error trap.

SE - Single error in data memory (no trap).
INV- Invalid address causing a protection
violation (unless DE is also set).

Table 4.3.3 - SSW Trap Subfields

The REG field contains a real address in register or constant memory
which is used by STOX and by LOD, LODI, and LODX. It also contains bits
relating to partial word justification and access state. The REG field
is described in Pigure 4.3.4 and Table 4.3.4.

DENELCOR, INC. 4-10 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 4 - PRIVILEGED HEP OPERATION

1 .1 1 12 1
AC | C | LJ RADR sX
16 17 18 19 31

Figure 4.3.4 - SSW REG Field Format

AC Access Control Bit. If the instruction was
LOD, LODI, or LODX, AC is set if bits 8 and 9
of the instruction were both set. For STO,
STOI, STOX, and LODA, AC is set if the access
state of the register memory location specified
by the D (or S0) field of the instructions was
empty before the instruction set it reserved.

c Constant Bit. Agrees with bit 18 of the in-
struction.

LJ Left Justify Bit. Set if bits 8 and 9 of the
instruction contain 1 and O respectively.

RADR The real register or constant memory address.

SX Sign Extended Bit. Agrees with bit 9 of the
instruction except for LODA; for LODA, SX is
always zero.

Table 4.3.4 - SSW REG Subfields

The ADDR field of the SSW contains the real data memory address or 1I/0
address, and the DATA field contains the information to be loaded or
stored. The LODA instruction generates a DATA field that is in all res-
pects ready to write in the destination with ST=2. For LOD, LODI, and
LODX, the DATA field is correctly justified in ST=2 but has not been ex-
tended. The DATA field contents when ST is 5 or 4 is the unmodified
value from the register or constant memory location to be stored by the
STO, STOI, or STOX instruction. For other values of ST, the DATA field
is undefined.

DENELCOR, INC. 4-11 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 4 - PRIVILEGED HEP OPERATION

4.4 TRAPS

Two traps discussed in the preceding section were not described in Sec-

tion 2.7.

These traps are the initial program load trap and the create

fault trap. Figure 4.4.1 shows the format of the trap PSW, and
Table 4.4.1 describes each field.

11 11 4 4 8 12 8 4 20

OjLV|CF|{HM| TID |TTID| TPT TC UT™ 0 PC

01 2 3 ¢4 8 12 20 32 40 44 63
Figure 4.4.1 - Trap PSW Format

LV Set.

CF Set if a create fault trap occurred.’

HM Set if an IPL trap occurred.

TID Set to 8 if a create fault trap or an IPL trap occurred; set

: in accordance with Table 4.4.2 otherwise.

TTID Set to zero for an IPL trap; set to the TID of the trapping
task otherwise. Except for create fault traps, this task is
made dormant.

TPT Undefined for an IPL trap; set to the PSW and SSW address
(i.e., the PT) of the process causing the trap otherwise.

TC Set in accordance with Table 4.4.3 if a memory error, illegal
instruction, or protection violation occurred. Set in accor-
dance with Table 4.4.4 if a data exception trap occurred. Set
to the contents of the D field of the instruction if an SVC
occurred. Set to zero otherwise.

UT™ Set to zero.

PC Set in accordance with Table 4.4.5.

Table 4.4.1 - Trap PSW Fields
DENELCOR, INC. 4-12 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 4 - PRIVILEGED HEP OPERATION

TRAPPING TASK TRAP HANDLING TASK

0 8
1 9
2 10
3 11
4 12
5 13
6 14
7 15
8 8
9 8
10 8
11 8
12 8
13 8
14 8
15 8

Table 4.4.2 - Trap-Handling Tasks

TC BIT PSW BIT MEANING IF SET

o

20

=5 21-25
26
27
28
29
30
31

HEO®ONO

= O

DENELCOR, INC.

Data memory uncorrectable error or protection
violation.

(unused)

Unimplemented data memory location.

Data memory protection violation.

D or SO protection violation.

Sl protection violation.

S2 protection violation.

Program memory protection violation.

Table 4.4.3 - Trap Codes

4-13 PUBLICATION 9000001

TC BIT PSW BIT

00001

00010

00012

00014

00016

00018

0001A

0001C

0001E

20

21-23

24

25-27

28

29-31

HEP PRINCIPLES OF OPERATION

CHAPTER 4 - PRIVILEGED HEP OPERATION

MEANING IF SET

If set, trap was due to SO (STOX only)
Data quality from SO, if relevant

If set, trap was due to Sl

Data Quality from S1, if relevant

If set, trap was due to S2

Data quality from S2, if relevant

Table 4.4.4 - Data Exception Trap Codes

MEANING
IPL - An initial program load was generated externally.

Memory error - ECC hardware detected an uncorrectable
error in a program memory or data memory location.

Illegal Instruction - The opcode of the instruction is
not in the HEP instruction set.

Protection Violation - An illegal memory access was
attempted.

Privileged Instruction - A user process attempted to
execute a privilaged instruction.

Create Fault - Toc many processes were created in user
tasks or supervisor tasks.

Supervisor Call - The operating system is to perform
some function on behalf of the user.

Simulated Instruction - The opcode of the instruction
is to be interpreted and carried out by software.

Data Exception - A source data quality specified by the
user's UTM was encountered.

Table 4.4.5 - Trap PSW Program Counter

The program counter of the PSW that caused the trap is still pointing to

DENELCOR,

INC.

4-14 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 4 - PRIVILEGED HEP OPERATION

"the instruction that caused the trap unless either the most significant
bit of the TC field in the trap PSW (PSW bit 20) is set or unless a cre-
ate fault trap occurred. In these latter cases, the PC of the PSW that
caused the trap has been incremented to point to the next instruction.
If a create fault trap occurs, the PSW addressed by TPT is the PSW that
executed the create instruction or caused that trap that generated the
create fault, not the PSW created thereby.

4.5 MAINTENANCE SUPPORT

PEMs communicate with the Diagnostic and Maintenance Processor (DMP)
using program memory, since both the PEM and the DMP can read and write
data or programs there. Each PEM has 64 communications flags and 64 en-
able bits to synchronize these operations. If a flag is set and its
corresponding enable bit is also set, an interrupt is generated to the
DMP, Similarly, the WFLG instruction allows a process in the PEM to
wave off until a particular flag is cleared (irrespective of the enable
bit setting). :

The DMP can only clear flags, while the PEM can only set them (using
SFLG) . The enable bits are only modifiable from the DMP, but flags and
enable bits can be read either by the DMP or by the PEM (using RFLG and
RNABL) .

The WFLG, SFLG, RFLG, and RNABL instructions are supported by the
Hardware Access (HA) function unit, and do not require that the PEM be
connected to the rest of the system. This feature is useful when a PEM
must be isolated for preventive maintenance.

The number of single or double errors found by the program memory error
correction hardware 1is logged in a counter for each PEM. Instructions
are provided to read this counter (using RECC) and clear it (using
CLRECC). The counter helps gather information about error rates so that
timely maintenance can be performed on program memory to keep its relia-
bility high.

DENELCOR, INC. 4-15 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 5 - INSTRUCTIONS

CHAPTER 5

INSTRUCTIONS

This chapter discusses each HEP PEM instruction individually. Each in-
struction description includes the assembler statement format for the
instruction, the internal structure of the instruction, a description of
the operation formed by the instruction, a description of exception con-
ditions which may occur during execution, and the function unit used to
execute the instruction.

The instruction descriptions are presented in alphabetic sequence with
respect to the assembler mnemonic.

DENELCOR, INC. 5-1 PUBLICATION 9000001

ABS HEP PRINCIPLES OF OPERATION ABS

CHAPTER 5 - INSTRUCTIONS

5.1 INTEGER ABSOLUTE VALUE

ASSEMBLER: ABS <D>,<51> ' FUNCTION UNIT: IFU
16 16 16 16
610B B D Sl
0 16 32 48 63

DESCRIPTION: The contents of D are replaced by the integer absolute
value of the contents of Sl.

EXCEPTIONS: Overflow

Overflow is set when Sl contains -2**63. The result is
-2**63.

DENELCOR, INC. 5-2 PUBLICATION 9000001

ACT HEP PRINCIPLES OF OPERATION ACT

CHAPTER 5 - INSTRUCTIONS

5.2 ACTIVATE TASK (PRIVILEGED)

ASSEMBLER: ACT <S2> FUNCTION UNIT: CFU
16 16 16 16
9901 0000 0000 s2
0 16 32 48 . 63

DESCRIPTION: The task specified by the integer contents of S2 is acti-
vated, allowing processes in that task to execute instruc-
tions.

EXCEPTIONS: None.

DENELCOR, INC. 5-3 PUBLICATION 9000001

ADD HEP PRINCIPLES OF OPERATION ‘ ADD

CHAPTER 5 - INSTRUCTIONS

5.3 INTEGER ADD

ASSEMBLER: ADD <D>,<S1>,<S2> FUNCTION UNIT: IFU
16 . 16 16 16
7126 D Sl ‘ Ss2
0 16 32 48 63

DESCRIPTION: The contents of D are replaced by the integer sum of the
contents of S1 and S2.

EXCEPTIONS: Carry; overflow

Carry is set if there was a carry out of the most signifi-
cant bit of the result and overflow does not occur.

Overflow is set if both operands are of the same sign and
the result is of the opposite sign. The resulting integer
is too small by 2**64 if its sign is negative and too
large by 2**64 if its sign is positive.

DENELCOR, INC. 5-4 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 5 - INSTRUCTIONS

5.4 LOGICAL PRODUCT

ASSEMBLER: AND <D>,<Sl>,<S2> FUNCTION UNIT: IFU
16 16 16 16
711E D Sl S2
0 16 32 48 63
DESCRIPTION: The contents of D are replaced by the bit vector 'and' of
the contents of S1 and S2. A bit position in the result
is set to one if the corresponding bit positions of both
S1 and S2 contain a one; otherwise, the result bit is set
to zero.
EXCEPTIONS: None.
DENELCOR, INC. 5-5

PUBLICATION 9000001

B HEP PRINCIPLES OF OPERATION B
BEQ BEQ
BGE CHAPTER 5 - INSTRUCTIONS BGE
BGT BGT
BLE BLE
BLT 5.5 BRANCH BLT
BNE ' BNE
ASSEMBLER: B <ADDR>,,<Sl> FUNCTION UNIT: CFU
B<c> <ADDR>,<S2>,<S1>
4 20 16 16
38 o ADDR sl s2
0 8 12 32 48 63
DESCRIPTION: The contents of S2 are compared with zero. If the condi-
tion specified by <c> is true, the program counter of the
executing PSW is set to ADDR. Additionally, the executing
PSW is modified, field by field, by adding the correspond-
ing fields of the contents of S1 modulo the length of each
field. This is done for the CI, RI, UTM and PC fields.
The PS field is not modified. If field modification is
not desired, S1 must be the address of a constant integer
0. Note the reversal of <S52> and <Sl1>.
The possible test modes and the corresponding values for C
are:
B<c> Cc
(never) 0
BLT (less than) 1
BEQ (equal to) 2
BLE (less than or equal to) 3
BGT (greater than) 4
BNE (not equal to) 5
BGE (greater than or eqgual to) 6
B (always) 7
BE (empty) 8
BF (full) 9
(RI equal to zero) A
(RI not equal to zero) B
(CI equal to zero) C
(CI not equal to zero) D
(even parity) E
(odd parity) F
EXCEPTIONS: None.
DENELCOR, INC. 5-6 PUBLICATION 9000001

BITCLR : HEP PRINCIPLES OF OPERATION

CHAPTER 5 - INSTRUCTIONS
5.6 BIT CLEAR

ASSEMBLER: BITCLR <D>,<S1>,<S52>

16 16 16

BITCLR

FUNCTION UNIT: HA

16

7728 D Sl

S2

48 63

DESCRIPTION: The contents of D are replaced by the result obtained by
setting a zero in the contents of S1 in the bit position
specified by the low order six bits of the contents of S2,

i.e., the contents of S2 modulo 64.

EXCEPTIONS: None.

DENELCOR, INC. 5-7

PUBLICATION 9000001

BITSET HEP PRINCIPLES OF OPERATION BITSET

CHAPTER 5 - INSTRUCTIONS

5.7 BIT SET

ASSEMBLER: BITSET <D>,<Sl>,<S2> FUNCTION UNIT: HA

16 16 16 16
7720 D s1 52
0 16 32 48 63
DESCRIPTION:

The contents of D are replaced by the result obtained by
setting a one in the contents of S1 in the bit position
specified by the low order six bits of the contents of S2,
i.e., the contents of S2 modulo 64.

EXCEPTIONS: None.

DENELCOR, INC. 5-8 PUBLICATION 9000001

CALL HEP PRINCIPLES OF OPERATION CALL
CALLEQ CALLEQ
CALLGE CHAPTER 5 - INSTRUCTIONS CALLGE
CALLGT ' CALLGT
CALLLE CALLLE
" CALLLT 5.8 CALL CALLLT
CALLNE CALLNE
ASSEMBLER: CALL <D>,<Sl> FUNCTION UNIT: CFU
CALL<c> <D>,<S81>,<S2>
8 4 4 16 16 16
79 c 1 : D S1 s2
0 8 12 16 32 48 63
DESCRIPTION: The contents of D are replaced by the executing PSW, with
the PS field set to zero and the PC field incremented to
point to the next instruction. In addition, the contents
of S2 are compared with zero. If the condition specified
by <c> is true, the PSW in Sl replaces the PC field of the
executing PSW. CALL is equivalent to XPSW with an <action
code list> of RPC.
The possible test modes and the corresponding values for C
are:
CALL<c> Cc
(never) -0
CALLLT (less than) 1
CALLEQ (equal to) 2
CALLLE (less than or equal to) 3
CALLGT (greater than) 4
CALLNE (not equal to) 5
CALLGE (greater than or equal to> 6
CALL (always) 7
CALLE (empty) 8
CALLF (full) 9
(RI equal to zero) A
(RI not equal to zero) B
(CI equal to zero) c
(C1 not equal to zero) D
(even parity) E
(odd parity) F
EXCEPTIONS: None.
DENELCOR, INC. 5-9 PUBLICATION 9000001

CLR HEP PRINCIPLES OF OPERATION

CHAPTER 5 - INSTRUCTIONS

CLR

5.9 CLEAR
ASSEMBLER: CLR <D> FUNCTION UNIT: IFU
16 16 16 16
411C D 0000 0000
0 16 32 48 63

DESCRIPTION: The contents of D are replaced by all zeros.

EXCEPTIONS: None.

DENELCOR, INC. 5-10

PUBLICATION 9000001

CLRECC

HEP PRINCIPLES OF OPERATION

CHAPTER 5 - INSTRUCTIONS

CLRECC

5.10 CLEAR ECC COUNTER (PRIVILEGED)

ASSEMBLER: CLRECC

16

16

16

FUNCTION UNIT: HA

16

8701

0000

0000

0000

16

32

48 63

DESCRIPTION: This instruction clears the ECC Counter (See RECC).

EXCEPTIONS: None.

DENELCOR, INC.

5-11

PUBLICATION 9000001

CLTC

ASSEMBLER:

16

HEP PRINCIPLES OF OPERATION CLTC

CHAPTER 5 - INSTRUCTIONS

5.11 CLEAR TASK COUNTER (PRIVILEGED)

CLTC <51>,<52> ‘ FUNCTION UNIT: SPI

16 16 16

3601

0000 s1 S2

DESCRIPTION:

EXCEPTIONS:

DENELCOR,

INC.

16 32 48 63

The task counter specified by the contents of S1 for the
task number specified by the integer contents of S2 is set
to zero. The task counter determined by the contents of
S1 is given below.

S1 Task Counter

wave off counter

floating-point instruction counter
data memory instruction counter
other instruction counter

WNHO

Floating-point instructions are those whose mnemonics
begin with the letter 'F'. Data memory instructions are
LOD, LODI, LODX, STQO, STOI and STOX. The sum of counters
1, 2 and 3 is the number of instructions executed by the
task since the last time the counters were cleared. (See
RDCT, STCT.)

None.

5-12 PUBLICATION 9000001

DENELCOR, INC.

'CR HEP PRINCIPLES OF OPERATION CR
CREQ CREQ
CRGE CHAPTER 5 - INSTRUCTIONS CRGE
CRGT CRGT
CRLE CRLE
" CRLT 5.12 CREATE CRLT
CRNE CRNE
ASSEMBLER: CR <S1> FUNCTION UNIT: CFU
CR<c> <S51>,<52>
8 4 4 16 16 16
39 of 5 - 0000 Sl s2
0 8 12 16 32 48 - 63
DESCRIPTION: The contents of S2 are compared with zero. If the condi-
" tion specified by <c> is true, the PS, CI, and UTM fields
from the executing PSW are combined with the RI and PC
fields of the PSW in Sl to form a new PSW. This PSW is
placed in the first available 1location in the process
queue, creating a process with the new PSW. If the pro-
cess queue location used is the last available location,
the create fault condition is raised in the PEM and a trap
occurs. CR is equivalent to CREATE with an <action code
list> of RRI, RPC.
The test modes and the corresponding values for C are:
CR<c> Cc
(never) 0
CRLT (less than) 1
CREQ (equal to) 2
CRLE (less than or equal to) 3
CRGT (greater than) 4
CRNE (not equal to) 5
CRGE (greater than or equal to> 6
CR (always) 7
CRE (empty) 8
CRF (full) 9
(RI equal to zero) A
(RI not equal to zero) B
(CI equal to zero) C
(CI not equal to zero) D
(even parity) E
(odd parity) F
EXCEPTIONS: Create fault.

5-13 PUBLICATION. 9000001

CREATE HEP PRINCIPLES OF OPERATION CREATE
CREATEGE CREATEGE
CREATEGT CHAPTER 5 - INSTRUCTIONS CREATEGT
CREATELE CREATELE
CREATELT CREATELT
CREATENE 5.13 CREATE PROCESS CREATENE
ASSEMBLER: CREATE <Sl>(<action code list>) FUNCTION UNIT: CFU
CREATE<c> <Sl>(<action code list>),<S2>
8 4 4 16 16 ‘ 16
39 - C | ACT 0000 S1 S2
0 12 16 32 48 _ 63

The contents of S2 are compared with zero. If the condi-

DESCRIPTION:

DENELCOR, INC.

tion specified by <c> is true, the fields of Sl, a PSW, or
fields of the executing PSW are selected according to the
action to form a new PSW. This PSW is placed in the first
available location in the process queue, creating a pro-
cess associated with the new PSW. The PS (privileged)
field of the PSW created is the same as the currently exe-
cuting PSW. The <action code list> specifies ACT, and
consists of a sequence of <action code> items separated by
commas. The meaning of each <action code> and its corres-
ponding ACT value is given below; when more than one
<action code> 1is specified, ACT values are additive. If
the process queue location used by the create is the last
available location, the create fault condition is raised
in the PEM and a trap occurs.

<action code> ACT MODIFICATION BY S1

RCI 8 REPLACE CI
RRI 4 REPLACE RI
RUTM 2 REPLACE UTM
RPC 1 REPLACE PC

For fields other than PC, if no <action code> is specified
the PSW of the created process matches the PSW of the exe-
cuting process in that field. If RPC is not specified,
the PC of the executing process is incremented to form the
PC of the created process.

The possible test modes and the corresponding values for C
are:

5-14 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CREATE CREATE
CREATEGE CREATEGE
CREATEGT CHAPTER 5 - INSTRUCTIONS CREATEGT
CREATELE CREATELE
CREATELT CREATELT
" CREATENE CREATENE

CREATE<c> C

(never) 0

CREATELT (less than) 1

CREATEEQ (equal to) 2

CREATELE (less than or equal to) 3

CREATEGT (greater than) 4

CREATENE (not equal to) 5

CREATEGE (greater than or equal to> 6

CREATE (always) 7

CREATEE (empty) 8

CREATEF (full) 9

(RI equal to zero) A

(RI not equal to zero) B

(CI equal to zero) c

(CI not equal to zero) D

(even parity) E

(odd parity) F

EXCEPTIONS: Create fault.

DENELCOR, INC. 5-15 PUBLICATION 9000001

DACT

HEP PRINCIPLES OF OPERATION

CHAPTER 5 - INSTRUCTIONS

DACT

5.14 DEACTIVATE TASK (PRIVILEGED)

ASSEMBLER: DACT <52>

16

16

16

FUNCTION UNIT: CFU

16

9902

0000

0000

52 -

DESCRIPTION:

EXCEPTIONS:

DENELCOR, INC.

16

The task specified by the integer contents of S2 is

tivated,
instructions.

None.

32

48 63

deac-

preventing processes in that task from executing

PUBLICATION 9000001

DEC : | HEP PRINCIPLES OF OPERATION

DEC
CHAPTER 5 - INSTRUCTIONS
5.15 INTEGER DECREMENT
ASSEMBLER: DEC <D>,<S1> FUNCTION UNIT: IFU
16 16 16 16
612F D s1 0000
0 16 32 48 63

DESCRIPTION: The contents of D are replaced by the integer result obta-
ined by subtracting an integer one (1) from the contents

of Sl.

EXCEPTIONS: Carry, overflow

Carry is set if there was no borrow out of the most signi-
ficant bit of the result and overflow does not occur.

This will be the case if S1 does not contain either
(causing borrow) or -2**63 (causing overflow).
Overflow is set when Sl contains -2**63. The result

2**63-1.

zero

is

DENELCOR, INC. 5-17 PUBLICATION 9000001

ENCQDEOQ | HEP PRINCIPLES OF OPERATION ENCODEO

CHAPTER 5 - INSTRUCTIONS

5.16 BIT ENCODE, LEFTMOST 0

ASSEMBLER: ENCODEO <D>,<S1> ' FUNCTION UNIT: HA
16 16 16 16
6718 D Sl 0000
0 16 32 48 63

DESCRIPTION: The contents of D are replaced by the bit position number
(O=leftmost bit) of the leftmost zero bit in the contents
of S1. 1If there are no zeros in S1, the contents of D are
set to the negative integer -2**63.

EXCEPTIONS: None.

DENELCOR, INC. 5-18 PUBLICATION 9000001

ENCODE1 HEP PRINCIPLES OF OPERATION ENCODE1

CHAPTER 5 - INSTRUCTIONS

5.17 BIT ENCODE, LEFTMOST 1

ASSEMBLER: ENCODEl <D>;<Sl> _ FUNCTION UNIT: HA
16 16 16 16
6710 D sl 0000
0 16 32 48 63

DESCRIPTION: The contents of D are replaced by the bit position number
(O=leftmost bit) of the leftmost one bit in the contents
of S1. If there are no ones in Sl1l, the contents of D are
set to the negative integer -2**63.

EXCEPTIONS: None.

DENELCOR, INC. 5-19 PUBLICATION 9000001

ASSEMBLER: EOR

16

<D>,<S1>,<S2>

HEP PRINCIPLES OF OPERATION

CHAPTER 5 - INSTRUCTIONS

5.18 LOGICAL DIFFERENCE

16

16

EOR

FUNCTION UNIT: IFU

16

7119

D

Sl

S2

DESCRIPTION:

EXCEPTIONS:

DENELCOR,

16

32

48 63

The contents of D are replaced by the bit vector

'exclusive or' of the contents of Sl and S2. A bit posi-
tion in the result is set to one if the corresponding bit
positions of
otherwise, the result bit is set to zero.

INC.

None.

5-20

either S1 or S$2 but not both contain a one;

PUBLICATION 9000001

EQV

ASSEMBLER: EQV <D>,<S1>,<S2>

HEP PRINCIPLES OF OPERATION

CHAPTER 5 - INSTRUCTIONS

5.19 EQUIVALENCE

EQV

FUNCTION UNIT: IFU

16 16 16 16
7116 D Sl S2
0 16 48 63
DESCRIPTION: The contents of D are replaced by the bit vector
'equivalence' of the contents of S1 and S2. A bit posi-
tion in the result is set to one if the corresponding bit
positions of S1 and S2 are either both zero or both one;
otherwise, the result bit is set to zero.
EXCEPTIONS: None.

DENELCOR, INC.

5-21

PUBLICATION 9000001

FADD

ASSEMBLER:

16

HEP PRINCIPLES OF OPERATION FADD

CHAPTER 5 - INSTRUCTIONS

5.20 FLOATING ADD

FADD <D>,<S1>,<S2> ' FUNCTION UNIT: ADDER

16 .16 16

7200

D Sl 52

DESCRIPTION:

EXCEPTIONS:

DENELCOR,

INC.

16 32 48 63

The contents of D are replaced by the normalized sum of
the floating-point contents of S1 and S2. Each
l4-hexadecimal digit mantissa is expanded to 16 digits by
placing a guard digit to the right and a carry digit to
the left. The mantissa corresponding to the smaller expo-
nent is shifted right, discarding rightmost digits, by an
amount equal to the difference in exponent magnitudes.
The two mantissas are added or subtracted as required by
their signs and the 16-digit result is normalized, °~ cor-
recting the exponent as required, or clearing it if the
result is zero. Unnormalized floating-point numbers may
be normalized by adding zero to them. The 16-digit result
mantissa is shifted left by the number of leading hexade-
cimal zeros and truncated on the right to 14 hexadecimal
digits.

Overflow, underflow.

Overflow is set if the exponent of the normalized result
is greater than 63; the result is set to maximum magni-
tude ((16**63)*(1-16**-14)) with the proper sign.
Underflow is set if the exponent of the normalized result

is 1less than -64 and the result is non-zero; the result
is set to zero.

5-22 PUBLICATION 9000001

FDIV

HEP PRINCIPLES OF OPERATION FDIV

CHAPTER 5 - INSTRUCTIONS

5.21 FLOATING DIVIDE

ASSEMBLER: FDIV <D>,<S1>,<S52> FUNCTION UNIT: DIVIDER
16 16 16 16
7F00 D Sl s2
0 16 32 48 . 63
DESCRIPTION: The contents of D are replaced by the normalized

EXCEPTIONS:

DENELCOR, INC.

floating-point result obtained by dividing the contents of
S1 by the contents of S2. If Sl or S2 does not contain a
normalized floating-point number the result is undefined.
The result mantissa is the most significant 56 bits of the
quotient of the operand mantissas.

Overflow, indefinite result.

Overflow is set if the exponent of the result is greater
than 63 or if the contents of S2 but not S1 are zero; the
result is set to maximum magnitude ((16**63)*(1-16**-14))
with the proper sign.

Underflow is set if the'exponent of the result is less
than -64 and the result is non-zero; the result is set to
zero.

Indefinite result is set if both operands are zero; the
result is set to zero.

5-23 PUBLICATION 9000001

FIP HEP PRINCIPLES OF OPERATION

CHAPTER 5 - INSTRUCTIONS

5.22 FLOAT INTEGER PART

ASSEMBLER: FIP <D>,<Sl1>

16 16 16

FIP

FUNCTION UNIT: IFU

16

610A D sl

0000

48 63

DESCRIPTION: The contents of D are replaced by the floating-point re-
presentation of the . integer part of the floating-point
contents of S1. FIP is equivalent to the sequence FIX,FLT

unless FIX sets overflow.

EXCEPTIONS: None.

DENELCOR, INC. 5-24

PUBLICATION 9000001

FIX

HEP PRINCIPLES OF OPERATION

CHAPTER 5 - INSTRUCTIONS

FIX

5.23 CONVERT FLOATING-POINT TO INTEGER

ASSEMBLER: FIX <D>,<S1>

FUNCTION UNIT: IFU

16 16 16 16
6108 D sl 0000
¢ 16 32 48 . 63
DESCRIPTION: The contents of D are replaced by the integer part of the
floating-point contents of Sl.
EXCEPTIONS: Overflow

DENELCOR, INC.

Overflow is set if the value of the operand 1is greater
than or equal to 2**63 or less than -2**63. The result is

undefined if overflow is set.

5-25

PUBLICATION 9000001

FLT

HEP PRINCIPLES OF OPERATION

CHAPTER 5 - INSTRUCTIONS

FLT

5.24 CONVERT INTEGER TO FLOATING-POINT

ASSEMBLER: FLT <D>,<S51>

FUNCTION UNIT: IFU

16 16 16 16
6109 D S1 0000
0 16 32 48 63
DESCRIPTION: The contents of D are replaced by the floating-point re-
presentation of the integer contents of Sl.
EXCEPTIONS: Loss of siénificance.

DENELCOR, INC.

Loss of significance is set if the absolute value of the
contents of S1 is greater than or equal to 2**56. The re-
sult mantissa is the most significant bits of the integer

operand.

5-26

PUBLICATION 9000001~

<D>,<51>,<52>

HEP PRINCIPLES OF OPERATION

CHAPTER 5 - INSTRUCTIONS

5.25 FLOATING MAXIMUM VALUE

ASSEMBLER: FMAX FUNCTION UNIT: IFU
16 16 16 16
7179 D Sl 52
0 16 32 48 63

DESCRIPTION: The contents of D are replaced by the larger of the two

floating-point contents of S1 and S2.

Since this instruc-

tion does not normalize either operand and merely performs
a 64-bit sign-magnitude comparison, the result may be in-

correct for unnormalized operands.

EXCEPTIONS: None.

DENELCOR, INC.

5-27

PUBLICATION 9000001

FMIN

ASSEMBLER: FMIN <D>,<S1>,<52>

HEP PRINCIPLES OF OPERATION

CHAPTER 5 - INSTRUCTIONS

5.26 FLOATING MINIMUM VALUE

FMIN

FUNCTION UNIT: IFU

16 16 16 16
717¢C D s1 52
0 16 32 48 63
DESCRIPTION: The contents of D are replaced by the smaller of the two
floating-point contents of S1 and S2. Since this instruc-
tion does not normalize either operand and merely performs
a 64-bit sign-magnitude comparison, the result may be in-
correct for unnormalized operands.
EXCEPTIONS: None.

DENELCOR, INC.

5-28

PUBLICATION 9000001 |,

FMUL

HEP PRINCIPLES OF OPERATION FMUL

CHAPTER 5 - INSTRUCTIONS

5.27 FLOATING MULTIPLY

ASSEMBLER: FMUL <D>,<S1>,<S2> FUNCTION UNIT: MULTIPLIER
16 16 16 16
7300 D s1 s2
0 16 32 48 63
DESCRIPTION: The contents of D are replaced by the normalized
floating-point product of the contents of S1 and S2. If
either operand does not contain a normalized
floating-point number the result is undefined. The result
mantissa is the most significant 56 bits of the product of
the operand mantissas.
EXCEPTIONS: Overflow, underflow.
Overflow is set if the exponent of the result is greater
than 63; the result is set to maximum magnitude
((16**63)*(1-16**14)) with the proper sign.
Underflow is set if the exponent of the result is less
than -64 and the result is non-zero; the result is set to
zero.
DENELCOR, INC. 5-29 PUBLICATION 9000001

FSUB

HEP PRINCIPLES OF OPERATION FSUB

CHAPTER 5 - INSTRUCTIONS

5.28 FLOATING SUBTRACT

ASSEMBLER: FSUB <D>,<S1>,<S52> FUNCTION UNIT: ADDER
16 16 16 16
7201 D S1 s2
0 16 32 48 63
DESCRIPTION: The contents of D are replaced by the normalized

EXCEPTIONS:

floating-point result obtained by subtracting the contents
of 52 from the contents of S1. The contents of S2 are ne-
gated and a floating-point add is performed. Each
l4-hexadecimal digit mantissa is expanded to 16 digits by
placing a guard digit to the right and a carry digit to
the left. The mantissa corresponding to the smaller expo-
nent is shifted right, discarding rightmost digits, by an
amount equal to the difference in exponent magnitudes.
The two mantissas are added or subtracted as required by
their signs and the 16-digit result is normalized, cor-
recting the exponent as required, or clearing it if the
result is zero. Unnormalized floating-point numbers may
be normalized by adding zero to them. The 16-digit result
mantissa is shifted left by the number of leading hexade-
cimal zeros and truncated on the right to 14 hexadecimal
digits.

Overflow, underflow.

Overflow is set if the exponent of the normalized result
is greater than 63; the result is set to maximum magni-
tude ((16**63)*(1~16**-14)) with the proper sign.

Underflow is set if the exponent of the normalized result
is 1less than -64 and the result is non-zero; the result
is set to zero.

DENELCOR, INC. 5-30 PUBLICATION 9000001

" FTEQ HEP PRINCIPLES OF OPERATION FTEQ

FIGE " FTGE
FIGT CHAPTER 5 - INSTRUCTIONS FTGT
FTLE ' FTLE
FTLT FTLT
FTNE 5.29 FLOATING COMPARE, INTEGER RESULT FTNE
ASSEMBLER: FT<C> <D>,<Sl1>,<S82> FUNCTION UNIT: IFU
8 4 4 16 16 16
71 4 C D Sl : S2
o 8 12 16 32 48 . 63

DESCRIPTION: The floating-point contents of Sl and S2 are compared ac-
cording to <c>; if the condition is true the contents of
D are replaced by positive integer one; if the condition
is false the contents of D are replaced by zero.

The possible test modes and the corresponding values for C
are:

FT<c>

0

(never)

FTGT (greater than)

FTEQ (equal to)

FIGE (greater than or equal to)

FTLT (less than)

FINE (not equal to)

FTLE (less than or equal to)
(always)

MMEMUOUOQW>» oo

EXCEPTIONS: None.

DENELCOR, INC. 5-31 PUBLICATION 9000001

FTFEQ HEP PRINCIPLES OF OPERATION FTFEQ

FTFGE FTFGE
FTFGT CHAPTER 5 - INSTRUCTIONS FTFGT
FTFLE FTFLE
FTFLT FTFLT
FTFNE '5.30 FLOATING COMPARE, FLOATING RESULT FTFNE
ASSEMBLER: FTF<c> <D>,<Sl>,<S2> FUNCTION UNIT: IFU
8 ¢ 4 16 | 16 16
71 6| C D s1 | s2
0 8 12 16 32 48 - 63

DESCRIPTION: The floating-point contents of S1 and S2 are compared ac-
cording to <c>; 1if the condition is true the contents of
D are replaced by positive floating-point one; if the
condition is false the contents of D are replaced by zero.

The possible test modes and the corresponding values for C
are:

FTF<c>

@]

(never)

FTFGT (greater than)

FTFEQ (equal to)

FTFGE (greater than or equal tc

FTFLT (less than)

FTFNE (not equal to)

FTFLE (less than or equal to)
(always)

RO Ow P o

EXCEPTIONS: None.

DENELCOR, INC. 5-32 PUBLICATION 9000001

FTLEQ HEP PRINCIPLES OF OPERATION FTLEQ

FTLGE FTLGE
FTLGT CHAPTER 5 - INSTRUCTIONS FTLGT
FTLLE FTLLE
FTLLT FTLLT
FTLNE 5.31 FLOATING COMPARE, BIT VECTOR RESULT FTLNE
ASSEMBLER: FTL<c> <D>,<S1>,<52> FUNCTION UNIT: IFU
8 4 4 16 16 16
71 5 c D s1 s2
0 8 12 16 32 48 ’ 63

DESCRIPTION: The floating-point contents of S1 and 52 are compared ac-
cording to <c>; 1if the condition is true the contents of
D are replaced by the bit vector having all bits set; if
the condition is false the contents of D are replaced by
the bit vector with all bits zero.

The possible test modes and the corresponding values for C
are:

FTL<c>

(@

(never)

FTLGT (greater than)

FTLEQ (egual to)

FTLGE (greater than or equal to)

FTLLT (less than)

FTILNE (not equal to)

FTLLE (less than or equal to)
(always)

MEHOOW > O

EXCEPTIONS: None.

DENELCOR, INC. 5-33 PUBLICATION 9000001

IMPL

HEP PRINCIPLES OF OPERATION IMPL

CHAPTER 5 - INSTRUCTIONS

5.32 IMPLICATION

ASSEMBLER: IMPL <D>,<S1>,<52> FUNCTION UNIT: IFU
16 16 16 16
7112 D S1 s2
0 16 32 48 63
DESCRIPTION: The contents of D are replaced by the bit vector

EXCEPTIONS:

DENELCOR, INC.

‘implication’ of the contents of S1 and S2. A bit posi-
tion in the result is set to one if the corresponding bit
position of Sl is zero or the ccrresponding bit position

in S2 is one or both; otherwise, the result bit is set to
zero.

None.

5-34 PUBLICATION 9000001

INC

ASSEMBLER:

16

HEP PRINCIPLES OF OPERATION | INC

CHAPTER 5 - INSTRUCTIONS

5.33 INTEGER INCREMENT

INC <D>,<S1> FUNCTION UNIT: IFU

16 16 16

6130

D Sl s2

DESCRIPTION:

EXCEPTIONS:

DENELCOR,

INC.

16 32 48 63

The contents of D are replaced by the integer sum of the
contents of S1 and the integer one (1l).

Carry, overflow

Carry is set if there was a carry out of the most signifi-
cant bit of the result. This will occur when S1 contains
-lo

Overflow is set when S1 contains 2**63-1. The result is
-2**g3.

5-35 PUBLICATION 9000001

I0C HEP PRINCIPLES OF OPERATION I0C
CHAPTER 5 - INSTRUCTIONS
5.34 INCREMENT ON CARRY
ASSEMBLER: IOC <D>,<S1>,<52> FUNCTION UNIT: IFU
16 16 16 16
710F D Sl S2
0 16 32 48 63
DESCRIPTION: The contents of D are replaced by the integer sum of the
contents of Sl and the carry bit from the data quality of
S2.
EXCEPTIONS: Carry, overflow
Carry is set if there was a carry out of the most signifi-
cant bit of the result and overflow does not occur. :
Overflow is set when the contents of S1 is 2**63-1 and S2
has carry data quality. The result is -2**63.
DENELCOR, INC. 5-36 PUBLICATION 9000001

JUMP HEP PRINCIPLES OF OPERATION JumMpP
JUMPEQ JUMPEQ
JUMPGE CHAPTER 5 - INSTRUCTIONS JUMPGE
JUMPGT JUMPGT
JUMPLE JUMPLE
JUMPLT 5.35 JUMP JUMPLT
JUMPNE JUMPNE
ASSEMBLER: JUMP <S1> FUNCTION UNIT: CFU
JUMP<c> <S51>,<S2>
8 4 4 16 16 16
B8 c 0 000F Sl s2
0 8 12 16 32 48 63
DESCRIPTION: The contents of S2 are compared with zero. If the condi-
tion specified by <c> is true, the PC field of the execut-
ing PSW is replaced by the PC of the PSW in S1. Jump is
equivalent to MOD with an <action code list> of RPC.
The possible test modes and the corresponding values for C
are:
JUMP<C> C
(never) 0
JUMPLT (less than) 1
JUMPEQ (equal to) 2
JUMPLE (less than or equal to) 3
JUMPGT (greater than) 4
JUMPNE (not equal to) 5
JUMPGE (greater than or egual to> 6
JUMP (always) 7
JUMPE (empty) 8
JUMPF (full) 9
(RI equal to zero) A
(RI not equal to zero) B
(CI equal to zero) C
(CI not equal to zero) D
(even parity) E
(odd parity) F
EXCEPTIONS: None.
DENELCOR, INC. 5-37 PUBLICATION 9000001

KILL HEP PRINCIPLES OF OPERATION

CHAPTER 5 - INSTRUCTIONS

5.36 KILL TASK (PRIVILEGED)

ASSEMBLER: KILL <S2>

16 16 16

KILL

FUNCTION UNIT: CFU

16

9900 0000 0000

s2

0 16 32

DESCRIPTION: The task specified by the integer

48 63

contents of S2 is

killed. When the task is active, this results in the des-
truction of every process which attempts to begin execu-

tion of an instruction in the task.

The process qQueue lo-

cations used by these processes are available for reuse.

EXCEPTIONS: None.

DENELCOR, INC. 5-38

PUBLICATION 9000001

LOD

HEP PRINCIPLES OF OPERATION LOD

CHAPTER 5 - INSTRUCTIONS

5.37 LOAD DATA MEMORY

ASSEMBLER: LOD <atlist> <D>,<d> FUNCTION UNIT: SFU
8 1111 2 2 16 32
4C C|N|R|B|SAC|DAC D M
0 8 12 14 16 32 | 63
DESCRIPTION: The contents of D are replaced by the contents of the ad-

BIT OF

dressed data memory location. The displacement part of
the address M and the B, SAC, and DAC parts are obtained
from the instruction. The instruction bits C, N, and R
are specified by <atlist>, a sequence of <attributes>.
Instruction bits are set when their corresponding
<attribute> is present, with the following meanings:

CORRESPONDING

INSTRUCTION ATTRIBUTE MEANING:

8

10

EXCEPTIONS:

DENELCOR, INC.

:C Copy access state. If present and :N
is absent, set the access state of D to
agree with the access state of the data
memory location before the load took
place; otherwise set the access state
to D to full.

:N Numeric. If present and :C is absent,
right Jjustify and sign fill partial
words loaded into D; if present and :C
is present, left justify and zero £fill
partial words loaded into D; if ab-
sent, right justify and zero fill par-
tial words loaded into D.

‘R Register address. Must be absent.

None.

5-39 PUBLICATION 9000001

LODA

HEP PRINCIPLES OF OPERATION LODA

CHAPTER 5 - INSTRUCTIONS

5.38 LOAD ADDRESS

ASSEMBLER: LODA <atlist> <D>,<> FUNCTION UNIT: SFU
8 1111 2 2 16 32
cC C|N|R|B|SAC|DAC D M
0 8 12 14 16 32 . 63
DESCRIPTION: The contents of D are feplaced by the right justified data

BIT OF
INSTRUCTION

8

9

10

EXCEPTIONS:

DENELCOR, INC.

memory address. The displacement part of the address M
and the B, SAC, and DAC parts are obtained from the in-
struction. The instruction bits C, N, and R are specified
by <atlist>, a sequence of <attributes>. Instruction bits
are set when their corresponding <attribute> is present,
with the following meanings:

CORRESPONDING
ATTRIBUTE MEANING:
:C Copy access state. Must be absent.
tN Numeric. If present, the most significant

bit of the displacement, M, i.e., the sign
of the displacement treated as a 32-bit
integer, is extended to the left to £ill
64 bits, logically oring with B, SAC, and
DAC; if absent, no sign extension occurs.

:R Register address. Must be absent.

None .

5-40 PUBLICATION 9000001

‘LODI HEP PRINCIPLES OF OPERATION LODI

CHAPTER 5 - INSTRUCTIONS
5.39 LOAD DATA MEMORY INDIRECT

ASSEMBLER: LODI <atlisf> <D>,<S1> FUNCTION UNIT: SFU

8 1111 2 2 16 16 16
6C C|N|R|B|SAC|DAC D Sl . 0000
(VI 8 12 14 16 32 48 63

DESCRIPTION: The contents of D are replaced by the contents of the ad-
dressed data memory 1location. The displacement part of
the address is the contents of S1 modulo 2**32. The B,
SAC, and DAC parts are obtained from the instruction or
from the contents of S1, depending on instruction bit R.
Instruction bits C, N, and R are specified by <atlist>, a
sequence of <attributes>. Instruction bits are set when
their corresponding <attribute> is present, as follows:

BIT OF CORRESPONDING
INSTRUCTION ATTRIBUTE MEANING:

8 :C Copy access state. If present and :N is
absent, set the access state of D to agree
with the access state of the data memory
location before the 1load took place;
otherwise set D full.

9 :N Numeric. If present and :C is absent,
right justify and sign fill partial words
loaded into D; if present and :C is pre-
sent, left justify and zero fill partial
words loaded into D; if absent, right
justify and zero fill partial words loaded
into D.

10 ‘R Register address. If present, the B, SAC,
and DAC subfields are obtained from bits
27 through 31 of the contents of S1; if
absent, they are obtained from instruction
bits 11 through 15.

EXCEPTIONS: None.

DENELCOR, INC. 5-~41 PUBLICATION 9000001

LODX HEP PRINCIPLES OF OPERATION LODX
CHAPTER 5 - INSTRUCTIONS
5.40 LOAD DATA MEMORY INDEXED
ASSEMBLER: LODX <atlist> <D>,<S1>,<52> FUNCTION UNIT: SFU
8 1111 2 2 16 16 16
C C|N|R|B|SAC|DAC D Sl s2
0 8 12 14 16 32 48 63
DESCRIPTION: The contents of D are replaced by the contents of the ad-
dressed data memory location. The displacement part of
the address is the sum of the contents of Sl and the con-
tents of S2 modulo 2**32. The B, SAC, and DAC parts are
obtained from the instruction or from the contents of 51,
depending on instruction bit R. Instruction bits C, N,
and R are specified by <atlist>, a sequence of
<attributes>. Instruction bits are set when their corres-
ponding <attribute> is present, as follows:
BIT OF CORRESPONDING
INSTRUCTION ATTRIBUTE MEANING:

8 :C Copy access state. If present and :N 1is
absent, set the access state of D to agree
with the access state of the data memory
location before the 1load took place;
otherwise set D full.

9 :tN Numeric. If present and :C is absent,
right Jjustify and sign fill partial words
loaded into D; if present and :C is pre-
sent, left justify and zero fill partial
words loaded into Dj; if absent, right
justify and zero f£ill partial words loaded
into D.

10 :R Register address. If present, the B, SAC,
and DAC subfields are obtained from bits
27 through 31 of the contents of S1; if
absent, they are obtained from instruction
bits 11 through 15.
EXCEPTIONS: None.

DENELCOR, INC. 5-42 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION LPSW

LPSW
LPSWEQ LPSWEQ
LPSWGE CHAPTER 5 - INSTRUCTIONS , LPSWGE
LPSWGT LPSWGT
LPSWLE LPSWLE
LPSWLT 5.41 LOAD PSW LPSWLT
LPSWNE LPSWNE
ASSEMBLER: LPSW <S1> FUNCTION UNIT: CFU
LPSW<c> <S1>,<S52>
8 4 4 16 16 16
B8 o 0 - O3FF sl s2
0 8 12 16 32 48 63
DESCRIPTION: The contents of S2 are compared with zero. If the condi-
tion specified by <c> is true, the executing PSW is re-
placed by the PSW contained in S1 with the exception of
the PS field, which is left unmodified. LPSW*fs equiva-
lent to MOD with an <action code list> of RCI, RPI, RUTM,
RPC.
The possible test modes and the corresponding values for C
are:
LPSW<c> C
(never) 0
LPSWLT (less than) 1
LPSWEQ (equal to) 2
LPSWLE (less than or equal to) 3
LPSWGT (greater than) 4
LPSWNE (not equal to) 5
LPSWGE (greater than or equal to> 6
LPSW (always) 7
LPSWE (empty) 8
LPSWF (£full) 9
(RI equal to zero) A
(RI not equal to zero) B
(CI equal to zero) ol
(CI not egqual to zero) D
(even parity) E
(odd parity) F
EXCEPTIONS: None.
DENELCOR, INC. 5-43 PUBLICATION 9000001

MAX ‘ HEP PRINCIPLES OF OPERATION MAX

CHAPTER 5 - INSTRUCTIONS

5.42 INTEGER MAXIMUM VALUE

ASSEMBLER: MAX <D>,<S1>,<52> FUNCTION UNIT: IFU
16 16 16 16
7171 D Sl s2
0 16 32 48 63

DESCRIPTION: The contents of D are replaced by the larger of the two
integer contents of S1 or Ss2.

EXCEPTIONS: None.

DENELCOR, INC. 5-44 PUBLICATION 9000001

MIN : HEP PRINCIPLES OF OPERATION

CHAPTER 5 - INSTRUCTIONS

5.43 INTEGER MINIMUM VALUE

ASSEMBLER: MIN <D>,<S1>,<S2>

16 16 16

MIN

FUNCTION UNIT: IFU

16

7174 D Sl

S2

48 63

DESCRIPTION: The contents of D are replaced by the smaller of the two

integer contents of S1 or S2.

EXCEPTIONS: None.

DENELCOR, INC. 5-45

PUBLICATION 9000001

MOD HEP PRINCIPLES OF OPERATION MOD
MODEQ MODEQ
MODGE CHAPTER 5 - INSTRUCTIONS MODGE
MODGT MODGT
MODLE MODLE
MODLT 5.44 MODIFY PSW MODLT
MODNE MODNE
ASSEMBLER: MOD <Sl>(<action code list>) _ FUNCTION UNIT: CFU
MOD<c> <Sl>(<action code list>),<S2>
8 4 4 16 16 16
B8 Cc 0 ACT sl s2
0 8 12 16 ‘ 32 48 63

DESCRIPTION: The contents of S2 are compared with zero. If the condi-

tion specified by <c> is true, the executing PSW is modi-
fied, field by field, by the contents of S1 according to
the operations specified by ACT. The contents of Sl are
in PSW format. The <action code list> specifies ACT and
consists of a sequence of <action code> items separated by
commas; each <action code> has a prefix (A, E or R) spec-
ifying an action and a suffix (CI, RI, UTM or PC) specify-
ing the affected field. The PS field is not modified. At

.most one <action code> of a given suffix can appear in

DENELCOR, INC.

<action code list>. The meaning of each <action code> and
its corresponding ACT value is given below; when more
than one <action code> is specified, ACT values are addi-
tive.

<action code> ACT MODIFICATION BY Sl

ACI 0100 ADD TO CI

ECI 0200 EXCLUSIVE OR TO CI
RCI 0300 REPLACE C1I

ARI 0040 ADD TO RI

ERI 0800 EXCLUSIVE OR TO RI
RRI 00CO REPLACE RI

AUTM 0010 ADD TO UTM

EUTM 0020 EXCLUSIVE OR TO UTM
RUTM 0030 REPLACE UTM

APC 0005 ADD TO PC

EPC 000A EXCLUSIVE OR TO PC
RPC 000F REPLACE PC

For fields other than PC, if no <action code> is specified
the PSW of the executing process is left unmodified in

5-46 PUBLICATION 9000001

MOD HEP PRiNCIPhﬂs OF OPERATION MOD

MODEQ MODEQ
MODGE CHAPTER 5 - INSTRUCTIONS MODGE
MODGT ' : MODGT
MODLE MODLE
MODLT MODLT
MODNE ' MODNE

modifies the PC, the PC field is incremented.

The possible test modes and the corresponding values for C

are:
MOD<c> o
(never) 0
MODLT (less than) 1
MODEQ (equal to) 2
MODLE (less than or equal to) 3
MODGT (greater than) 4
MODNE (not equal to) 5
MODGE (greater than or equal to> 6
MOD (always) 7
MODE (empty) 8
MODF (full) 9
(RI equal to zero) A
(RI not equal to zero) B
(CI equal to zero) c
(CI not equal to zero) D
(even parity) E
(odd parity) F

EXCEPTIONS: None.

DENELCOR, INC. 5-47 PUBLICATION 9000001

MOV HEP PRINCIPLES OF OPERATION MOV

CHAPTER 5 - INSTRUCTIONS

5.45 REGISTER TO REGISTER MOVE

ASSEMBLER: MOV <D>,<S1> FUNCTION UNIT: IFU
16 16 16 16
611F D s1 | 0000

0 16 32 48 63

DESCRIPTION: The contents of D are replaced by the contents of Sl.

EXCEPTIONS: None.

DENELCOR, INC. 5-48 PUBLICATION 9000001

MRD HEP PRINCIPLES OF OPERATION MRD

CHAPTER 5 - INSTRUCTIONS
5.46 MASK REGISTER DESCRIPTOR

ASSEMBLER: MRD <D>,<S1>,<S2> FUNCTION UNIT: IFU

16 16 16 16
710C D S1 s2
0 16 32 48 63

DESCRIPTION: The contents of D are replaced by the logical 'and' of a
register descriptor derived from S2 and the contents of Sl
(the mask). The format of the register descriptor is as
follows:

DESCRIPTOR MEANING

BITS
0-55 0
56 Access state: empty if 1, full if O
57-58 0 |
59 Parity check bit: contents have even pari-
ty if 1, odd parity if 0
60 0

61-63 Data quality

EXCEPTIONS: None.

DENELCOR, INC. 5-49 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION'

CHAPTER 5 - INSTRUCTIONS

MRG

5.47 MOVE REGISTER WITH DESCRIPTOR

ASSEMBLER: MRG <D>,<S1> FUNCTION UNIT: IFU
16 16 16 16
610E D Sl 0000
-0 16 32

48 63

DESCRIPTION: The contents of D are repiaced by the contents of Sl1.

access

EXCEPTIONS: None.

DENELCOR, INC.

state, parity check bit, and data quality of D are
set equal to those of Sl.

5--50

PUBLICATION 9000001

- MUL HEP PRINCIPLES OF OPERATION MUL
CHAPTER 5 ~ INSTRUCTIONS -

5.48 INTEGER MULTIPLY

ASSEMBLER: MUL <D>,<S1>,<S2> FUNCTION UNIT: Multiplier

16 16 16 16
7320 D s1 52
0 16 32 48 63

DESCRIPTION: The contents of D are reéplaced by the least sigrnificant
half of the 128-bit integer produtt of the contents of S1
and S2. (See UMUL.)

EXCEPTIONS: Overflow
Overflow is set if the most significant 65 bits of the
128-bit product are not all identical. The resulting in-

teger is the least significant half of the 128-bit pro-
duct.

DENELCOR, INC. 5-51 PUBLICATION 9000001

NAND HEP PRINCIPLES OF OPERATION

CHAPTER 5 - INSTRUCTIONS

NAND

5.49 NAND
ASSEMBLER: NAND <D>,<S1>,<S2> FUNCTION UNIT: IFU
16 16 16 16
7111 D Sl S2
0 16 32 48 63

DESCRIPTION: ‘The contents of D are replaced by the bit vector 'nand' of
the contents of S1 and S2. A bit position in the result
is set to one if the corresponding bit positions of either

S1 or 82 or both contain a zero;
bi: is set to zero.

EXCEPTIONS: None,

DENELCOR, INC. 5-52

otherwise, the result

PUBLICATION 9000001

NOP

ASSEMBLER: NOP

16

HEP PRINCIPLES OF OPERATION

CHAPTER 5 - INSTRUCTIONS

5.50 NO-OPERATION

16

16

NOP

FUNCTION UNIT: CFU

16

0000

0000

0000

0000

DESCRIPTION: No operation takes place.

EXCEPTIONS: None.

DENELCOR, INC.

32

5-53

48 ' 63

PUBLICATION 9000001

NOR ' HEP PRINCIPLES OF OPERATION NOR

CHAPTER 5 - INSTRUCTIONS

5.61 NOR
ASSEMBLER: NOR <D>,<S1>,<52> FUNCTION UNIT: IFU
16 16 16 16
7114 D Sl 52
0 16 32 48 63

DESCRIPTION: The contents of D are replaced by the bit vector 'nor' of

the contents of S1 and S2. A bit position in the result
is set to one if the corresponding bit positions of both

S1 and S2 contain a zero; otherwise, the result bit is
set to zero.

EXCEPTIONS: None.

DENELCOR, INC. 5-54 PUBLICATION 9000001

NOT : HEP PRINCIPLES OF OPERATIOQN

CHAPTER & - INSTRUCTIONS

NOT

5.52 NOT
ASSEMBLER: NOT <D>,<Sl> FUNCTION UNIT: IFU
16 16 16 16
6110 D s1 0000
0 16 32 48 63

DESCRIPTION: The contents of D are replaced by the bit vector 'not' of
the contents of S1. A bit position in the result is set
to one if the corresponding bit position of Sl is zero;
otherwise, the result bit is set to zero.

EXCEPTIONS: None.

DENELCOR, INC. 5-55

PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 5 - INSTRUCTIONS

ONE

5.53 ONE
ASSEMBLER: ONE <D> FUNCTION UNIT: IFU
16 16 16 16
4113 D 0000 0000
0 16 32 48 63

DESCRIPTION: The contents of D are replaced by all ones.

EXCEPTIONS: None.

DENELCOR, INC.

5-56

PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 5 - INSTRUCTIONS

5.54 LOGICAL SUM

ASSEMBLER: OR <D>,<Sl$,<52> FUNCTION UNIT: IFU
16 16 16 16
711B D Sl S2
0 16 32 48 63

DESCRIPTION: The contents of D are replaced by the bit vector ‘'or' of

the contents

of S1 and S2.

A bit position in the result

is set to one if the corresponding bit positions of either
S1 or S2 contain a one;
to zero.

EXCEPTIONS: None.

DENELCOR, INC.

5-57

otherwise, the result bit is set

PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION PCR

CHAPTER 5 - INSTRUCTIONS

5.55 PRIVILEGED CREATE (PRIVILEGED)

ASSEMBLER: PCR <D>,<S1> FUNCTION UNIT: CFU
16 16 16 16
E97F D sl , 0000
0] 16 32 48 63
DESCRIPTION: The contents of S1, a PSW, are placed in the first avail-

EXCEPTIONS:

DENELCOR, INC.

able location in the process queue, which activates a pro-
cess associated with the new PSW. The PS field of the new
PSW is not inherited from the executing PSW, but is obta-
ined from the corresponding bits of the contents of Sl.
The contents of D are replaced by the address (PT) of the
new PSW. If the gueue location used by the create is the
last available location, the create fault condition is ra-
ised in the PEM and a trap occurs.

Create fault.

5-58 ’ PUBLICATION 9000001

PMOV HEP PRINCIPLES OF OPERATION PMOV

CHAPTER 5 - INSTRUCTIONS

5.56 PRIVILEGED REGISTER TO REGISTER MOVE (PRIVILEGED)

ASSEMBLER: PMOV <D>,<S1> FUNCTION UNIT: IFU
16 16 16 16
E11F D s1 NOT USED
0 16 32 48 63

DESCRIPTION: The contents of D are replaced by the contents Sl. The
instruction ignores reserved state on D and S1 unless the
access state is specifically tested using :W, :F, or :E.
The access state of D is set full.

EXCEPTIONS: None.

DENELCOR, INC. 5-59 PUBLICATION 9000001

PMRD HEP PRINCIPLES OF OPERATION PMRD

CHAPTER 5 - INSTRUCTIONS

5.57 PRIVILEGED MASK REGISTER DESCRIPTOR (PRIVILEGED)

ASSEMBLER: PMRD <D>,<S1>,<S52> FUNCTION UNIT: IFU
16 16 16 16
F101 D S1 ' s2
0 16 32 48 63

DESCRIPTION: The contents of D are replaced by the logical 'and’' of a
register descriptor derived from S2 and the contents of Sl
(the mask). The instruction ignores reserved state on D,
Sl, and S2 unless the access state is specifically tested
using :W, :F, or :E. The access state of D is set full.
The format of the register descriptor is as follows:

DESCRIPTOR MEANING

BITS
0-55 0
56-57 Access state: empty if 10, full if 00,
reserved if 1l or Ol
58 0
59 Parity check bit: contents have even pari-
ty if 1, odd parity if O
60 0
61-63 Data quality

EXCEPTIONS: None.

DENELCOR, INC. 5-60 PUBLICATION 9000001

'PMRG HEP PRINCIPLES OF OPERATION PMRG

CHAPTER 5 - INSTRUCTIONS
5.58 PRIVIﬂEGH! MOVE REGISTER WITH DESCRIPTOR (PRIVILEGED)

ASSEMBLER: PMRG <D>,<§l> FUNCTION UNIT: IFU

16 16 16 16
E10E D S1 _ NOT USED
0 16 32 48 63

DESCRIPTION: The contents of D are replaced by the contents of Sl. The
instruction ignores reserved state on D and S1 unless the
access state is specifically tested using :W, :F, or
:E.The access state, parity check bit, and data quality of
D are set equal to those of Sl.

EXCEPTIONS: Any data quality may be set.

DENELCOR, INC. 5-61 PUBLICATION 9000001

PSPSW HEP PRINCIPLES OF OPERATION ' PSPSW

CHAPTER 5 - INSTRUCTIONS

5.59 PRIVILEGED STORE PSW (PRIVILEGED)

ASSEMBLER: PSPSW <D> FUNCTION UNIT: CFU
16 16 16 16
C900 D 0000 0000
0 16 32 48 63

DESCRIPTION: The contents of D are replaced by the executing PSW. All
fields, including the privileged (PS) field, are stored.
The PSW that is stored contains a Program Counter (PC)
field that has been incremented to point to the next in-
struction. The executing PSW is not affected.

EXCEPTIONS: None.

DENELCOR, INC. ‘ 5-62 PUBLICATION 9000001

PSRD HEP PRINCIPLBS‘OF OPERATION _ PSRD

CHAPTER 5 - INSTRUCTIONS

5.60 PRIVILEGED SET REGISTER DESCRIPTOR (PRIVILEGED)

ASSEMBLER: PSRD <D>,<S1>,<S2> FUNCTION UNIT: IFU
16 16 16 16
F10D D sl S2
0 16 32 48 63

DESCRIPTION: The contents of D are replaced by the contents of S1 with
the access state, parity check bit, and data quality
formed from a register descriptor in S2. The format of
the register descriptor is as follows:

DESCRIPTOR MEANING

BITS
0-55 0
56-57 Access state: empty if 10, full if 00,
reserved if 1l or 0Ol
58 0
59 Parity check bit: contents have even pari-
ty if 1, odd parity if O
60 0
61-63 Data quality -

EXCEPTIONS: Any data quality may be set.

In addition, the parity check bit of D may not agree with
its contents. :

DENELCOR, INC. 5-63 PUBLICATION 9000001

QT HEP PRINCIPLES OF OPERATION QT

QTEQ QTEQ
QTGE . CHAPTER 5 - INSTRUCTIONS QTGE
QTGT QTGT
QTLE QTLE
QTLT 5.61 QUIT QTLT
QTNE ‘ QTNE
ASSEMBLER: QT FUNCTION UNIT: CFU
QT<c> <S2>
8 4 4 16 16 16
19 o 0 0000 0000 S2
0 8 12 16 32 48 63

DESCRIPTION: The contents of S2 are compared with zero. If the condi-
tion specified by <c> is true, the executing PSW is re-
moved from the process queue and the associated process
stops executing. The queue location then becomes avail-
able.

The possible test modes and the corresponding values for C
are:

QT<c>

n

(never)
QTLT (less than)
QTEQ (equal to)
QTLE (less than or equal to)
QTGT (greater than)
QTNE (not equal to)
QTGE (greater than or equal to>
QT (always)
QTE (empty)
QTF (full)
(RI equal to zero)
(RI not equal to zero)
(CI equal to zero)
(CI not equal to zero)
(even parity)
(odd parity)

HMEHOAOADPPOOSNNAaAUEeE WNEHO

Exceptions: None.

DENELCOR, INC. 5-64 PUBLICATION 9000001

RCF

HEP PRINCIPLES OF OPERATION

CHAPTER 5 - INSTRUCTIONS

RCF

5.62 RESET CREATE FAULT (PRIVILEGED)

ASSEMBLER: RCF <52>

16

16

16

FUNCTION UNIT: CFU

16

9903

0000

0000

s2

DESCRIPTION:

EXCEPTIONS:

DENELCOR, INC.

16

The user create fault condition is reset if

the integer

None.

32

48 63

S2 contains

zero, and the supervisor create fault condi-
tion is reset if 52 contains the integer 1.

5-65

PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 5 - INSTRUCTIONS

5.63 READ CFU CONTROL (PRIVILEGED)

ASSEMBLER: RCTL <D>

16

16

16

RCTL

FUNCTION UNIT: CFU

16

4A00

0000

0000

32

48 63

DESCRIPTION: The contents of D are replaced by the contents of the CFU
Task Control Register, which has the format:

30 1 1l 16 16
00000000 S u Live Dormant
0 30 31 32 48 63
where:

S = SCF If set to 1 means supervisor create fault condition

exists.

U = UCF If set to 1 means user create fault condition exists.

Live Contains

a bit corresponding to each task with the

leftmost

most bit
task has

Dormant Contains

corresponding to Task 15;

bit corresponding to Task 0 and the right-

a one means the

processes associated with it.

a bit corresponding to each task with the

leftmost

most bit

corresponding to Task 15;

task is

EXCEPTIONS: None.

DENELCOR, INC.

bit corresponding to Task 0 and the right-

dormant

5-66

a one means the

(e.g., a trap has occurred), and a
zero means the task is active.

PUBLICATION 9000001

RDCLK

HEP PRINCIPLES OF OPERATION RDCLK

CHAPTER 5 - INSTRUCTIONS

5.64 READ PEM CLOCK UNDER MASK

ASSEMBLER: RDCLK <D>,<Sl> FUNCTION UNIT: HA
16 16 16 16
6704 D Sl 0000
0 16 32 48 63
DESCRIPTION: The contents of D are replaced by the bit vector 'and' of
the contents of S1 (the mask) and the present value of the
PEM's hardware clock. The clock 1is 64 bits; the
low-order 48 bits comprise a cycle counter whose value is
incremented every 100 nanosecond cycle; the high-order
16 bits uniquely identify the PEM in a multi-PEM system.
EXCEPTIONS: None.
DENELCOR, INC. 5-67 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION RDTC

CHAPTER 5 - INSTRUCTIONS

5.65 READ TASK COUNTER (PRIVILEGED)

>

ASSEMBLER: RDTC <D>,<S1>,<52> FUNCTION UNIT: SPI
16 16 16 16
7600 D S1 S2
0 16 32 48 63
DESCRIPTION: The contents of D are replaced by the Task Counter speci-

EXCEPTIONS:

DENELCOR, INC.

fied by the contents of S1 for the task specified by the
integer contents of S2. The task counter determined by
the contents of S1 is given below.

Sl Task Counter
0 wave off counter
1 floating-pdint instruction counter
2 data memory instruction counter
3 other instruction counter

Floating-point instructions are those whose mnemonics
begin with the letter 'F'. Data memory instructions are
LOD, LODI, LODX, STO, STOI and STOX. The sum of counters
l, 2 and 3 is the number of instructions executed by the
task since the last time the counters were cleared. (See
STCT, CLCT.)

None.

5-68 PUBLICATION 9000001

RECC HEP PRINCIPLES OF OPERATION RECC

CHAPTER 5 - INSTRUCTIONS

5.66 READ ECC COUNTER (PRIVILEGED)

ASSEMBLER: RECC <D>,<Si> FUNCTION UNIT: HA
16 16 16 16
E705 D Sl 0000
0 16 | 32 48 63

DECCRIPTION: The contents of D are replaced by the logical 'AND' of the
contents of S1 (the mask) and the current integer value of
the 17-bit ECC Counter.

The ECC Counter counts the number of errors (corrected or
uncorrected) detected in program memory; if the counter
reaches 2**17-1, the high order bit remains a one while
the rest of the counter starts over at zero. As a result
of this, an ECC counter value 1lying between 2**16 and
2**17-1, inclusive, is only accurate modulo 2**16.

EXCEPTIONS: None.

DENELCOR, INC. - . 5-69 - PUBLICATION 9000001

RFLG

HEP PRINCIPLES OF OPERATION

CHAPTER 5 - INSTRUCTIONS

5.67 READ FLAGS (PRIVILEGED)

ASSEMBLER: RFLG <D>,<S1>

16

16 16

RFLG

FUNCTION UNIT: HA

16

E706

0000

DESCRIPTION:

EXCEPTIONS:

DENELCOR, INC.

16 32

48 - 63

The contents of D are replaced by the logical 'and' of the
Communication Flags Register and the contents of S1 (the
mask). The Communication Flags Register contains 64 flags
which are used for synchronization between the PEM which
contains them and the Diagnostic and Maintenance Proces-
sor. When a flag and its corresponding enable bit are
both set, an interrupt occurs on the Diagnostic and Ma-
intenance Processor. (See RNABL, SFLG, WFLG.)

None.

5-70

PUBLICATION 9000001

RNABL

HEP PRINCIPLES OF OPERATION RMABL

CHAPTER 5 ~ INSTRUCTIONS

5.68 READ ENABLE REGISTER (PRIVILEGED)

ASSEMBLER: RNABL <D>,<S1> FUNCTION UNIT: HA

16

16 16 : le

E707

D Sl : 0000

DESCRIPTION:

EXCEPTIONS:

16 32 48 . 63

The contents of D are replaced by the logical 'and' of the
Enable Register and the contents of S1 (the mask). The
Enable Register is 64 bits wide and is used to enable in-
terrupts on the Diagnostic and Maintenance Processor by
communication flags. When a communication flag is set, if
the corresponding enable bit is set an interrupt occurs on
the Diagnostic and Maintenance Processor via the Low Speed
Bus. The Enable Register can be modified only by the Di-
agnostic and Maintenance Processor. (See RFLG, SFLG,
WFLG.)

None.

DENELCOR, INC. 5-71 PUBLICATION 9000001

RPM HEP PRINCIPLES OF OPERATION RPM

CHAPTER 5 - INSTRUCTIONS

5.69 READ PROGRAM MEMORY (PRIVILEGED)

ASSEMBLER: RPM <D>,<S52> FUNCTION UNIT: HA
16 16 16 16
D700 D 0000 s2
0 16 32 48 | 63

DESCRIPTION: The contents of D are replaced by the contents of the real
program memory location addressed by the contents of S2.
The program base and program limit values from the TSW are
not used to relocate or check the program memory address.
(See WPM.)

EXCEPTIONS: None.

DENELCOR, INC. 5-72 PUBLICATION 9000001

RPSW HEP PRINCIPLES OF OPERATION

CHAPTER 5 - INSTRUCTIONS
5.70 READ PSW (PRIVILEGED)

ASSEMBLER: RPSW <D>,<S2>

16 16 16

RPSW

FUNCTION UNIT: CFU

16

5800 D 0000

S2

48 4 63

DESCRIPTION: S2 contains the PT of the PSW to be read. The contents of
D are replaced by the PSW contained in the Process Queue

location addressed by the PT.

EXCEPTIONS: This instruction generates a wave-off during the next

cycle in the PEM.

PUBLICATION 9000001

RSSW HEP PRINCIPLES OF OPERATION

CHA?TER 5 - INSTRUCTIONS
5.71 READ SSW (PRIVILEGED)

ASSEMBLER: RSSW <D>,<51>

16 16 16

FUNCTION UNIT: SFU

16

ECO00 D sl

NOT USED

48 63

DESCRIPTION: The SSW half specified by the contents of S1 replaces the
contents of D. Bits 56 through 62 from Sl contain the PT
and bit 63 specifies whether D is to be read from the con-

trol half of the SSW (bit 63=0)

(bit 63=1).

EXCEPTIONS: None.

DENELCOR, INC. 5-74

or the data half

PUBLICATION 9000001

RTSW | HEP PRINCIPLES OF OPERATION

CHAPTER 5 - INSTRUCTIONS

5.72 READ TSW (PRIVILEGED)

FUNCTION UNIT:

ASSEMBLER: RTSW <D>,<S2> HA
16 16 16 16
5700 D 0000 52
0 16 32 48 63

DESCRIPTION: The contents of D are replaced by the contents of the TSW
The contents of S2
are divided by two; the gquotient determines the task and
the remainder (the least significant bit in S2) the TSW

half specified by the contents of S2.

half as shown below. (See WTSW.)

REMAINDER TSW HALF
12 10 10 16 16
0 CB RB RL PB PL
0 12 22 32 48 63
16 24 24
1 0000 DB DL
0 16 _ 40 63

EXCEPTIONS: None.

DENELCOR, INC. 5-75

PUBLICATION 9000001

sC

ASSEMBLER:

16

sC

HEP PRINCIPLES OF OPERATION sC

CHAPTER 5 - INSTRUCTIONS

5.74 SHIFT CIRCULAR

<D>,<S1>,<S2> FUNCTION UNIT: 1IFU

16 16 16

7106

D

Sl s2

DESCRIPTION:

EXCEPTIONS:

DENELCOR, INC.

16 32 48 63

The contents of D are replaced by the result obtained by
shifting the contents of S1 the number of bit positions
specified by the contents of S2. A positive shift count
indicates a left shift and a negative shift count indi-
cates a right shift. 1In either case, bits shifted off the
end f£fill the bit positions vacated at the opposite end.

None.

5-717 PUBLICATION 9000001

SFLG

HEP PRINCIPLES OF OPERATION SFLG

CHAPTER 5 - INSTRUCTIONS

5.75 SET FLAG (PRIVILEGED)

ASSEMBLER: SFLG <flag> FUNCTION UNIT: HA
16 16 16 16
0700 0000 flag) 0000
0 16 32 48 63
DESCRIPTION: The instruction waits until the communication flag regis-

EXCEPTIONS:

DENELCOR, INC.

ter bit position specified by flag contains a zero; then
a one is set into the bit position. The value of flag is
taken to be modulo 64, but the high order bit of flag (in-
struction bit 32) must be set.

If the corresponding enable bit is set when the instruc-
tion completes, an interrupt occurs on the Diagnostic and
Maintenance Processor. A flag can be cleared only by the
Diagnostic and Maintenance Processor. (See RNABL, RFLG,
WFLG.)

None.

5-78 PUBLICATION 9000001 -

SL

HEP PRINCIPLES OF OPERATION SL

CHAPTER 5 - INSTRUCTIONS

5.76 SHIFT LOGICAL

ASSEMBLER: SL <D>,<S1>,<S2> FUNCTION UNIT: IFU

16

16 16 16

7104

D Sl 52

DESCRIPTION:

EXCEPTIONS:

16 32 48 63

The contents of D are replaced by the result obtained by
shifting the contents of S1 the number of bit positions
specified by the contents of S2. A positive shift count
indicates a 1left shift and a negative shift count indi-
cates a right shift. 1In either case, bits shifted off the
end are lost and bit positions vacated at the opposite end
are zero-filled.

None.

DENELCOR, INC. ‘ 5-79 PUBLICATION 9000001

SPSW HEP PRINCIPLES OF OPERATION

CHAPTER 5 - INSTRUCTIONS

5.77 STORE PSW

ASSEMBLER: SPSW <D>

i6 16 16

SPSW

FUNCTION UNIT: CFU

16

5900 D 0000

0000

48 ' 63

DESCRIPTION: The contents of D are replaced by the executing PSW, with
the PS field set to zero and the PC field incremented to
point to the next instruction. SPSW is the same as a con-
ditional SQT with an always failing condition.

EXCEPTIONS: None.

DENELCOR, INC. 5-80

PUBLICATION 9000001

SQT

HEP PRINCIPLES OF OPERATION SQT

SQTEQ SQTEQ
SQTGE . CHAPTER 5 - INSTRUCTIONS SQTGE
SQTGT SQTGT
SQTLE , SQTLE
- SQTLT 5.78 STORE PSW AND QUIT SQTLT
SQTNE SQTNE
ASSEMBLER: SQT <D> ' FUNCTION UNIT: CFU
SQT<c> <D>,<S82>
8 4 4 16 16 16
59 Cc 0 : D 0000 S2
0] 8 12 16 32 48 - 63
DESCRIPTION: The contents of D are replaced by the executing PSW, with
the PS field set to zero and the PC field incremented to
point to the next instruction. In addition, the contents
of S2 are compared with zero. If the condition specified
by <c> is true, the executing PSW is removed from the Pro-
cess Queue and the associated process stops executing.
The queue location then becomes available. Note that
storing of the PSW always takes place, whether or not the
process quits.
The possible test modes and the corresponding values for C
are:
SQT<c> (o
SPSW (never) 0
SQTLT (less than) 1
SQT (equal to) 2
SQTLE (less than or equal to) 3
SQTGT (greater than) 4
SQTNE (not equal to) 5
SQTGE (greater than or equal to> 6
SQT (always) 7
SQTE (empty) 8
SQTF (full) , 9
(RI equal to zero) A
"(RI not equal to zero) B
(CI equal to zero). - c
(CI not equal to zero) D
(even parity) E
(odd parity) F
EXCEPTIONS: None.
DENELCOR, INC. 5-81 PUBLICATION 9000001

SRD » HEP PRINCIPLES OF OPERATION ' SRD

CHAPTER 5 - INSTRUCTIONS
5.79 SET REGISTER DESCRIPTOR

ASSEMBLER: SRD <D>,<S1>,<S52> FUNCTION UNIT: IFU

16 16 16 16
710D D Sl 52
0 16 32 48 63

DESCRIPTION: The contents of D are replaced by the contents of S1 with
the access state, parity check bit, and data quality
formed from a register descriptor in S2. The format of
the register descriptor is as follows:

DESCRIPTOR MEANING

BITS
0--55 0
56 Access state: empty if 1, full if O
57-58 0
59 Parity check bit: contents have even pari-
ty if 1, odd parity if O
60 0
61-63 Data quality

Table 5.79 - Register Descriptor Contents
EXCEPTIONS: Any data quality may be set.

In addition, the parity check bit of D may not agree with
its contents.

DENELCOR, INC. 5-82 PUBLICATION 9000001

STTC

ASSEMBLER:

16

HEP PRINCIPLES OF OPERATION STTC

CHAPTER 5 - INSTRUCTIONS

5.80 STORE TASK COUNTER

STTC <D>,<S1> FUNCTION UNIT: SPI

16 16 16

6600

D S1 0000

DESCRIPTION:

EXCEPTIONS:

DENELCOR,

INC.

16 32 48 63

The contents of D are replaced by the contents of the task
counter specified by the contents of S1 for the currently
executing task. The task counter determined by the con-
tents of S1 is given below.

Sl Task counter

wave off counter

floating-point instruction counter
Data memory instruction counter
other instruction counter

WM+ O

Floating-point instructions are those whose mnemonics
begin with the letter 'F'. Data memory instructions are
LOD, LODI, LODX, STO, STOI and STOX. The sum of counters
1, 2 and 3 is the number of instructions executed by the
task since the last time the counters were cleared. (See
RDCT, CLCT.)

None.

5-83 PUBLICATION 9000001

5TO

HEP PRINCIPLES OF OPERATION STO

CHAPTER 5 - INSTRUCTIONS

5.81 STORE DATA MEMORY

ASSEMBLER: STO <atlist> <S2>,<M> | FUNCTION UNIT: SFU
8 1111 2 2 32 16
9c |c|N|R|B|SAC|DAC M s2

0 8 12 14 16 48 63

Note the reversal of assembler operands.

DESCRIPTION: The contents of the addressed data memory location are re-
placed by the contents of S2. The displacement part of
the address M and the B, SAC, and DAC parts are obtained
from the instruction or from the contents of S1, depending
on instruction bit R. Instruction bits C, N, and R are
specified by <atlist>, a sequence of <attributes>.
Instruction bits are set when their corresponding
<attribute> is present, with the following meanings:

BIT OF CORRESPONDING
INSTRUCTION ATTRIBUTE MEANING:

8 :C Copy access state. See :N.

9 ‘N Numeric. If present and :C is present,
store left justified partial words from
S2; otherwise, store right justified
partial words from S2.

10 :R Register address. Must be absent.
EXCEPTIONS: None.

DENELCOR, INC.

5-84 PUBLICATION 9000001

STOI | HEP PRINCIPLES OF OPERATION STOI

CHAPTER 5 - INSTRUCTIONS

5.82 STORE DATA MEMORY INDIRECT

ASSEMBLER: STOI <atlist> <§2>,<Sl> FUNCTION UNIT: SFU
8 1111 2 2 16 16 16
Bc |c|N|R|B|sac|pac 0000 51 52
0 8 16 32 48 63

Note the reversal of assembler operands.

DESCRIPTION: The contents of the addressed data memory location are re-
placed by the contents of S2. The displacement part of
the address is the contents of S1 modulo 2**32. The B,
SAC, and DAC parts are obtained from the instruction or
from the contents of Sl1, depending on instruction bit R.
Instruction bits C, N, and R are specified by <atlist>, a
sequence of <attributes>. Instruction bits are set when
their corresponding <attribute> is present, with the fol-
lowing meanings:

BIT OF CORRESPONDING
INSTRUCTION ATTRIBUTE MEANING:

8 :C Copy access state. See :N.

9 :tN Numeric. If present and :C is present,
store left justified partial words from
S2; otherwise, store right justified
partial words from S2.

10 :R Register address. If present, the B,
SAC, and DAC subfields of the data mem-
ory address are obtained from bits 27
through 31 of the contents of S1; if
absent, they are obtained from instruc-
tion bits 11 through 15.

EXCEPTIONS: None.

DENELCOR; INC. 5-85 PUBLICATION 9000001

STOX

HEP PRINCIPLES OF OPERATION STOX

CHAPTER 5 - INSTRUCTIONS

5.83 STORE DATA MEMORY INDEXED

ASSEMBLER: STOX <atlist> <S0>,<S1>,<S2) FUNCTION UNIT: SFU
8 1111 2 2 16 16 16
FC |C|N|R|B|SAC{DAC S0 Sl S2
0 8 12 14 16 32 48 63
DESCRIPTION: The contents of the addressed data memory location are re-
placed by the contents of SO. The displacement part of
the address is the sum of the contents of S1 and the con-
tents of S2 modulo 2**32, The B, SAC, and DAC parts are
obtained from the instruction or from the contents of S1,
depending on instruction bit R. Instruction bits C, N,
and R are specified by <atlist>, a sequence of
<attributes>. Instruction bits are set when their corres-
ponding <attribute> is present, with the following mean-
ings:
BIT OF CORRESPONDING
INSTRUCTION ATTRIBUTE MEANING:
8 :C Copy access state. See :N.
9 :N Numeric. If present and :C is present,
store left justified partial words from
S2; otherwise, store right justified
partial words from S2.
10 :R Register address. If present, the B,
SAC, and DAC subfields of the data mem-
ory address are obtained from bits 27
through 31 .of the contents of Sl; if
absent, they are obtained from instruc-
tion bits 11 through 15.
EXCEPTIONS: None.

DENELCOR, INC.

5-86 PUBLICATION 9000001

SuB

HEP PRINCIPLES OF OPERATION SuB

CHAPTER 5 - INSTRUCTIONS

5.84 INTEGER SUBTRACT

ASSEMBLER: SUB <n>,<51$,<sz> _ FUNCTION UNIT: IFU
16 16 16 16
7139 D sl s2
0 16 32 48 63
DESCRIPTION: The contents of D are replaced by the integer result obta-

EXCEPTIONS:

DENELCOR, INC.

ined by subtracting the contents of S2 from the contents
of S1.

Carry, overflow

Carry is set if there was no borrow out of the most signi-
ficant bit of the result and overflow does not occur.

Overflow is set if both operands are of opposite signs,
and the sign of the result is the same as the sign of S2.
The resulting integer is too small by 2**64 if its sign is
negative and too large by 2**64 if its sign is positive.

5-87 PUBLICATION 9000001

SvC HEP PRINCIPLES OF OPERATION

CHAPTER 5 - INSTRUCTIONS
5.85 SUPERVISOR CALL

ASSEMBLER: SVC <code>

16 16 16

svC

FUNCTION UNIT: IFU

16

0900 code 0000

0000

48 .63

DESCRIPTION: The task to which the executing process belongs is made
dormant. A process is created in the corresponding super-
visor task; the code field of the instruction replaces
the RI field of the supervisor PSW and indicates the type

of supervisor function requested.

The PC field of the su-

pervisory PSW is set to 000lA, and the UTM is zero.

EXCEPTIONS: None.

DENELCOR, INC. ' 5-88

PUBLICATION 9000001 -

TEQ HEP PRINCIPLES OF OPERATION TEQ

TGE | TGE
TGT CHAPTER 5 - INSTRUCTIONS TGT
TLE TLE
TLT TLT
TNE 5.86 INTEGER COMPARE, INTEGER RESULT TNE
ASSEMBLER: T<c> <D>,<S1>,<S2> FUNCTION UNIT: IFU
8 ¢ ¢ 16 16 16
71 | ¢ ¢ D s1 - s2
0 8 12 16 32 48 63

DESCRIPTION: The integer contents of S1 and S2 are compared according
to <c>; if the condition is true the contents of D are
replaced by positive integer one; if the condition is
false the contents of D are replaced by zero.

The possible test modes and the corresponding values for C
are:

T<c>

O

(never)

TGT (greater than)

TEQ (equal to)

TGE (greater than or equal to)

TLT (less than)

TNE (not equal to)

TLE (less than or equal to>
(always)

Noue WNKHO

EXCEPTIONS: None.

DENELCOR, INC. . . 5-89 PUBLICATION 9000001

TFEQ HEP PRINCIPLES OF OPERATION TFEQ

TFGE TFGE
TFGT CHAPTER 5 - INSTRUCTIONS TFGT
TFLE TFLE
TFLT ' TFLT
TFNE 5.87 INTEGER COMPARE, FLOATING RESULT TFNE
ASSEMBLER: TF<c> <D>,<S1>,<52> FUNCTION UNIT: IFU
8 ¢ 4 16 16 16
71 6| c D S1 52
0 8 12 16 32 48 63

DESCRIPTION: The integer contents of S1 and S2 are compared according
to <c>; if the condition is true the contents of D are
replaced by positive floating-point one; if the condition
is false the contents of D are replaced by zero.

The possible test modes and the corresponding values for C
are:

TF<c> Cc

(always) 0
TFGT (greater than) 1l
TFEQ (equal to) 2
TFGE (greater than or equal to) 3
TFLT (less than) 4
TFNE (not equal to) 5
TFLE (less than or equal to> 6

(never) 7

EXCEPTIONS: None.

DENELCOR, INC. 5-90 PUBLICATION 9000001

.TLEQ

HEP PRINCIPLES OF OPERATION TLEQ

TLGE TLGE
TLGT CHAPTER 5 - INSTRUCTIONS TLGT
TLLE TLLE
TLLT TLLT
TLNE 5.88 INTEGER COMPARE, BIT VECTOR RESULT TLNE
ASSEMBLER: TL<c> <D>,<Sl>,<52> FUNCTION UNIT: IFU
8 4 4 16 16 16
71 5 C D S1 ' s2
0 8 12 16 32 48 . 63
DESCRIPTION: The integer contents of S1 and S2 are compared according
to <c>; if the condition is true the contents of D are
replaced by the bit vector having all bits set; if the
condition 1is false the contents of D are replaced by the
bit vector with all bits zero.
The possible test modes and the eerresponding values for C
are:
TL<c> (o
(never) 0
TLGT (greater than) 1l
TLEQ (equal to) 2
TLGE (greater than or equal to) 3
TLLT (less than) 4
TLNE (not equal to) 5
TLLE (less than or equal to> 6
(always) 7
EXCEPTIONS: None.

DENELCOR, INC.

5-91 PUBLICATION 9000001

UMUL

HEP PRINCIPLES OF OPERATION = UMUL

CHAPTER 5 - INSTRUCTIONS

5.89 INTEGER MULTIPLY UPPER

ASSEMBLER: UMUL <D>,<S1l>,<S2>

FUNCTION UNIT: Multiplier

16 16 16 16
7310 D Sl S2
0 16 32 48 63
DESCRIPTION: The contents of D are replaced by the most significant
half of the 128-bit integer product of the contents of Sl
and S2. (See MUL.)
EXCEPTIONS: None.

DENELCOR, INC.

5-92

PUBLICATION 9000001

WFLG HEP PRINCIPLES OF OPERATION

CHAPTER 5 - INSTRUCTIONS

5.90 WAIT ON FLAG (PRIVILEGED)

ASSEMBLER: WFLG <flag>

16 16 16

WFLG

FUNCTION UNIT: HA

16

8700 0000 flag

0000

48 63

DESCRIPTION: The instruction waits until the communication flags regis-
ter bit position specified by flag contains a zero. The
value of the flag is taken modulo 64, but the high order
bit of flag (instruction bit 32) must be set. A flag can
be set only by the Diagnostic and Maintenance Processor.

(See RNABL, RFLG, SFLG.)

EXCEPTIONS: None.

DENELCOR, INC. -~ = 5-93

PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

CHAPTER 5 - INSTRUCTIONS

5.91 WRITE PROGRAM MEMORY (PRIVILEGED)

ASSEMBLER: WPM <Sl1>,<S2>

FUNCTION UNIT: HA

16 l6 16 16
B700 0000 Sl S2
0 16 32 48 63
DESCRIPTION: The contents of the real program memory location addressed
by the contents of S2 are replaced by the contents of Sl1.
The program base and program limit values from the TSW are
not used to relocate or check the program memory address.
(See RPM.)
EXCEPTIONS: None.

DENELCOR, INC,

5-94

PUBLICATION 9000001

WPSW . HEP PRINCIPLES OF OPERATION WPSW

CHAPTER 5 - INSTRUCTIONS
5.92 WRITE PSW (PRIVILEGED)

ASSEMBLER: WPSW <S1>,<S2> FUNCTION UNIT: CFU

16 16 16 16
3B7F 0000 S1 s2
0 16 32 48 63

DESCRIPTION: S2 contains the PT of the Process Queue location where the
PSW in Sl is to be written. The contents of the Process
Queue location are replaced by the contents of Sl.

EXCEPTIONS: None.

DERELCOR, INC. 5-95 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION WSSW

CHAPTER 5 - INSTRUCTIONS

5.93 WRITE SSW (PRIVILEGED)

ASSEMBLER: WSSW <S1>,<S2> FUNCTION UNIT: SFU

16 16 16 16
3C00 0000 Sl . 82
0 16 32 48 63
DESCRIPTION:

The éontents of S2 are stored in the SSW half specified by
the contents of S1. Bits 56 through 62 from S1 contain
the PT and bit 63 specifies whether S2 is to be stored in

the control half of the SSW (bit 63=0) or the data half
(bit 63=l1).

EXCEPTIONS: None.

DENELCOR, INC. 5-96 - PUBLICATION 9000001

WTSW HEP PRINCIPLES OF OPERATION

CHAPTER 5 - INSTRUCTIONS
5.94 WRITE TSW (PRIVILEGED)

ASSEMBLER: WISW <S1>,<52>

16 16 16

FUNCTION UNIT: HA

16

3700 0000 Sl

s2

48 63

DESCRIPTION: The contents of the TSW half specified by the integer con-
tents of S2 are replaced by the contents of S1. The con-
tents of S2 are divided by two; the quotient determines
the task and the remainder (the least significant bit in
§2) the TSW half as shown below. (See RTSW.)

REMAINDER TSW HALF
12 10 10 16 16
0 CB RB RL PB PL
0 12 22 32 48 63
16 24 24
1 0000 DB DL
0 16 40 63

EXCEPTIONS: None.

DENELCOR, INC. 5-97

PUBLICATION 900000

HEP PRINCIPLES OF OPERATION XPSW

XPSWEQ XPSWEQ
XPSNGE CHAPTER 5 - INSTRUCTIONS XPSWGE
XPSWGT EPSNGY
XPSWHLE KPSWLE
XPSWLT 5.95 EXCHANGE PSW XPSWLT
XPSWNE XPSWNE
ASSEMBLER: XPSW <D>,<Sl>(<action code list>) FUNCTION UNIT: CFU
XPSW<c> <D>,<Sl>(<action code list>),<S82>
8 é 4 16 16 16
79 c | acT D s1 52
0 8 12 16 32 48 63

DESCRIPTION: The contents of D are replaced by the executing PSW with

DENELCOR, INC.

the PS field set to zero and the PC field incremented to
point to the next instruction. 1In addition, the contents
of 52 are compared with zero. If the condition specified
by <c> is true, the Process Queue location containing the
executing PSW is modified by the fields of S1, a PSW, ac-
cording to the action specified by ACT. Therefore the
process associated with the old PSW stops executing and a
hew process starts executing associated with the new PSW.
The PS field of the new PSW is the same as the old PSW.
The <action code list> specifies ACT, and consists of a
sequence of <action code> items separated by commas. The
meaning of each <action code> and its corresponding ACT
value is given below; when more than one <action code> is
specified, ACT values are additive.

<action code> ACT MODIFICATION BY Sl

RCI 8 REPLACE CI
RRI 4 REPLACE RI
RUTM 2 REPLACE UTM
RPC 1 REPLACE PC

For fields other than PC, if no <action code> is specified
the PSW of the created process matches the PSW of the exe-
cuting process in that field. If RPC is not specified,
the PC of the executing process is incremented to form the
PC of the created process.

The possible test modes and the corresponding values for C
are:

5-98 PUBLICATION 9000001

XPEW

XPSWEQ
XPSWGE
XPSWGT
XPSWLE
- XPSWLT
XPSWNE

EXCEPTIONS:

DENELCOR, INC.

None.

HEP PRINCIPLES OF OPERATION

CHAPTER 5 - INSTRUCTIONS

XPSW<c>

XPSWLT
XPSWEQ
XPSWLE
XPSWGT
XPSWNE
XPSWGE
XPSW
XPSWE
XPSWF

5-99

{never)

(less than)

(equal to)

(less than or equal to)
(greater than)

(not equal to)

(greater than or equal to>
(always)

(empty)

(full)

(Rl equal to zero)

(RI not equal to zero)
(CI equal to zero)

(CI not equal to zero)
(even parity)

(odd parity)

XPSH
XPSWEQ
XPSHGE
XPSWGT
XPSWLE
XPSWLT

(9}

MU OAPOOIONUIEWNEFO

PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

APPEMDIX A - GENERALIZED INSTRUCTIONS

APPENDIX A

GENERALIZED INSTRUCTIONS

The instructions described in this appendix are primarily of interest to
numerical analysts, compiler writers and systems programmers.

The generalized floating-point instructions give the programmer the
ability to manipulate signs of floating-point operands and to control
significance in floating-point addition. Generalized integer and bit
vector instructions are useful to compiler writers and systems pro-
grammers. The generalized program memory instructions are used to write
program memory error diagnostics. Important special cases of these in-
structions are discussed separately in Chapter 5. -

DENELCOR, INC. V A-1 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

APPENDIX A - GENERALIZED INSTRUCTIONS

A.l GENERALIZED FLOATING ADD INSTRUCTIONS

(No Mnemonic) ADDER
4 4 4 4 16 16 16
n 2 los|sign D S1 S2
(o} 4 8 12 16 32 48 - 63
DESCRIPTION: The contents of D are replaced by the floating-point sign

DENELCOR, INC.

of the contents of S1 and S2 modified by sign control as
described below. Both normalized and unnormalized opera-
tion with significance control are supported. An unnor-
malized quantity may be normalized by performing a normal-
ized add with zero. A normalized quantity may be unnor-
malized by performing an unnormalized add with unnormal-
ized zero (i.e., zero mantissa, non-zero exponent). For a
further discussion, see FADD or FSUB. The operation of
each field of the instruction is as follows:

n =7 Normalized
= F Unnormalized

los = Significance limit. A normalization shift greater
than 15-1os causes loss of significance to be set
in the result. A normalization shift of zero means
a carry has occurred in the addition of the aligned
mantissas; a normalization shift of 15 is the
largest possible.

sign = Sign control, as shown in the following table:

SIGN RESULT
0 (0000) (S1) + (S2)
1 (0001) (s1) - (s2)
2 (0010) (s1) - |(s2)]
3 (0011) (s1) + |[(s2)]
¢ (0100) [(s1)| + (52)
A-2 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION
APPENDIX A - GENERALIZED INSTRUCTIONS
los = F will always cause 1loss of significance unless a
carry occurred in adding the mantissas.

A prenormalized mantissa of zero never causes loss of
significance.

In unnormalized arithmetic, loss of significance occurs
only if los is F (hexadecimal) and no carry occurred in
adding the aligned mantissas.

Members of this set of instructions described separately are FADD (7200)

and FSUB (7201).

DENELCOR, INC.

A-4 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

APPENDIX A - GENERALIZED INSTRUCTIONS

A.2 GEI!RALIiED‘FLOATING MULTIPLY/DIVIDE INSTRUCTIONS

(No Mnemonic) MULTIPLIER/DIVIDER
4 4 4 4 16 16 16
7 |unit| O |sign D S1 S2
o ¢ 8 12 16 32 TR 63
DESCRIPTION: The contents of D are replaced by the result of the opera-

DENELCOR, INC.

tion

specified by unit;

mined by sign control.
of each field in these instructions is as follows:

unit

sign

3 Multiply
F Divide

See FMUL or FDIV.

the sign of the result is deter-

The 'opara;ion

Sign control, as follows:

‘SIGN
(0000)
(0001)
(0010)
(0011)
(0100)
(0101)
(0110)
(0111)
(1000)
(1001)

(1010)

RESULT

(S81)
(S1)
(sl)
(S1)
| (s1)]
| (s1)|
l(s1)|
| (s1) |
| (s1)
| (s1)

| (1)

or

or

or

or

or

or

or

or

or

or

or

(s2)
[- (s2)]
[-]1(s2)]1]
| (s2) |
(S2)
[- (s2)]
[-]1(s2)}]
|(s2)]
(s2) |
[- (s2)]]
[-]1¢s2)]]]

PUBLICATION 5000001

HEP PRINCIPLES OF OPERATION

APPENDIX A - GENERALIZED INSTRUCTIONS

B (1011) |(s1) *or / |(s2)]
C (11000 ||(s1)| * or / (52) |
D (1101) ||(s1)| *or / [- (s2)]]
E (1110) ||(s1)| *or / [-]|(s2)|]]
F (1111) ||(s1)| * or / | (s2)]|

EXCEPTIONS: See FMUL or FDIV.

Members of this set of instructions described separately are FMUL (7300)
and FDIV (7F00).

DENELCOR, INC. A-6 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

APPENDIX A - GENERALIZED INSTRUCTIONS

A.3 G!N!RAiIZ!D‘INTEGER ARITHMETIC INSTRUCTIONS

(No Mnemonic) IFU

4 4 4 4 16 16 16

op 1l cry|func D Sl S2
o 4 8 12 16 32 48

63

DESCRIPTION: The contents of D are replaced by the result of the in-
teger operation described by func on the operands conta-

ined in S1 and S2. The value of op depends on func.
cry = 2, carry-in is zero; if cry = 3, carry-in is 1.

The table below summarizes the operation of this group

instructions.
FUNC RESULT
(0000) (S1) + carry-in

(0010) (Sl1) + [(S1) .AND. (S2)] + carry-in
(0011) 2 * (S1) + carry-in
(0100) [(S1) .OR. (S2)] + carry-in

(0110) (S1l) + (S2) + carry-in

(0111) (S1) + [(S1l) .OR. (S2)] + carry-in
(1000) [(S1) .OR..NOT. (S1)] + carry-in
(1001) (S1) - (82) - 1 + carry-in

(1011) (S1) + [(S1l) .OR..NOT. (S1l)] + carry-in
(1100) -1 + carry-in)
(1101) [(S1) .AND..NOT. (S1)] -1 + carry-in
(1110) [(S1) .AND. (S2)] -1 + carry-in

(1111) (S1) -1 + carry-in

HEHUOUOABPOONAULEWNEFO

EXCEPTIONS: Carry, Overflow

Carry is set if there was a carry out of the most
nificant bit of the result and overflow is not set.

Overflow is set according to the following table:

DENELCOR, INC: A-7

(0001) (S1) + [(Sl) .AND..NOT. (S1)] + carry-in

(0101) [(S1) .OR. (S1)] + [(S1) .AND..NOT. (S2)] + carry-in

(1010) ([(S1l) .OR..NOT. (S1)] + [(S1) .AND. (S2)] + carry-in

If

of

O
-]

A NN NNNNNNNYOANNdO

sig-

PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

APPENDIX A - GENERALIZED INSTRUCTIONS

Sign of S1 Sign of 52 Sign of D FUNC VALUES

+ + - 0,1,2,3,4,5,6,7 (OXXX)
+ - - 0,1,2,3,8,9,2,B (XOXX)
- - + 2,3,6,7,A,B,E,F (XX1X)
- + + 1,3,5,7,9,B,D,F (XXX1)

If one of the four sign combinations above occurs on an
operation which has a corresponding func value, over-
flow is set. ‘

Members of this set of instructions described separately are:

DEC 612F
INC 6130
ADD 7126
SUB 7139

DENELCOR, INC. A-8 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

APPENDIX A - GENERALIZED INSTRUCTIONS

- A.4 GENERALIZED BIT VECTOR OPERATIONS

IFU

& 4 4 4 16 16 16

op 1 1l func D Sl S2
0 4 8 12 16 32 48 63

DESCRIPTION: The contents of D are replaced by the result of the bit
vector operation described by func on the operands conta-
ined in S1 and S2. The value of op depends on func. The
table below summarizes the operation of this group of in-

structions.

FUNC RESULT op
0 (0000) .NOT. (Sl) 6
1 (0001) .NOT. (S1) .OR..NOT. (S1) 7
2 (0010) .NOT. (S1) .OR. (S52) 7
3 (001l1) -1 4
4 (0100) .NOT. (S1) .AND.NOT. (S2) 7
5 (0101) .NOT. (S2) 5
6 (0110) .NOT. [(S1) .XOR. (S2)] 7
7 (011ll1) (81) .OR..NOT. (S1l) 7
8 (1000) .NOT. (S1) .AND. (S2) 7
9 (100l1) (S1) .XOR. (S2) 7
A (1010) (S2) 5
B (1011) (S1) .OR. (S52) 7
Cc (1100) 0 4
D (1101) (S1) .AND..NOT. (S1l) 7
E (11l10) (51) .AND. (S2) 7
F (11l1ll) (51) 6

EXCEPTIONS: None.

Members of this set of instructions described separately are:

AND 711E EOR 7119 NAND 7111 ONE 4113
~ CLR 411C IMPL 7112 NOR 7114 OR 711B
EQV 7116 MOV 611F NOT 7110

DENELCOR, INC. A-9 PUBLICATION 9000001

HEP PRINCIPLES OF OPERATION

APPENDIX A - GENERALIZED INSTRUCTIONS

A.5 GENERALIZED PROGRAM MEMORY INSTRUCTIONS

(No Mnemonic) HA

4 16 16 16

op | 7 |tunc| 0 | D s1 s2

DESCRIPTION:

EXCEPTIONS:

12 16 32 48 63

If op = B, the contents of the real program memory ad-
dressed by the contents of S2 are replaced by the contents
of S1. The parity check bits are not written if func = 4,
and are written as computed from the contents of Sl if
func = 0. If op = D, the contents of D are replaced by
the contents of the real program memory location addressed
by the contents of S2. 1If func = C, the parity check bits
of the program memory location replace the contents of D.
If func = 4, no error correction is performed on the value
replacing the contents of D; 4if func = 0, error correc-
tion is performed on the value replacing the contents of
D.

None.

Members of this set of instructions described separately are:

DENELCOR, INC.

RPM D700
WPM B700

A-10 PUBLICATION 9000001

	0001
	0002
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	5-71
	5-72
	5-73
	5-74
	5-75
	5-77
	5-78
	5-79
	5-80
	5-81
	5-82
	5-83
	5-84
	5-85
	5-86
	5-87
	5-88
	5-89
	5-90
	5-91
	5-92
	5-93
	5-94
	5-95
	5-96
	5-97
	5-98
	5-99
	A-01
	A-02
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10

