: DataGeneral

How To Use The
Nova
Computers

015-000009-09

How To Use The
Nova
Computers

015-000009-09

A System Reference Manual for the computers

Nova

Supernova

Nova 1200 Series
Nova 800 Series
Supernova SC

PRICE $10.00

DIRECT COMMENTS CONCERNING THIS MANUAL TO

DATA GENERAL CORPORATION e SOUTHBORO, MASSACHUSETTS

NOTICE

Data General Corporation (DGC) has prepared this manual
for use by DGC personnel, Licensee's, and customers.
The information contained herein is the property of DGC
and shall not be reproduced in whole or in part without
DGC's prior written approval.

Users are cautioned that DGC reserves the right to make
changes without notice in the specifications and materials
contained herein and shall not be responsible for any
damages (including consequential) caused by reliance on
the materials presented, including, but not limited to
typographical, arithmetic, or listing errors.

NOVA, SUPERNOVA and NOVADISC are registered trade-
marks of Data General Corporation, Southboro, Mass.

ECLIPSE is a trademark of Data General Corporation,
Southboro, Mass.

Written for Data General Corporation by William English

Printed in the United States of America

Ordering No. 015-000009

©Data General Corporation 1970, 1971, 1972, 1974
All Rights Reserved.

Printed in the United States of America

Rev. 09, October 1974

Preface

This manual explains the programming and operation of the Nova line computers: the Nova 1200 series,
the Nova 800 series, the Supernova computer, and the Nova computer. Chapter I discusses the general charac-
teristics of these computers, the formats of the instructions they use, and the peripherals and software available
with them. Chapter II describes the central processor in detail, and the remaining chapters describe the various
types of peripheral in-out equipment. The appendices provide information on interfacing and installation and
contain a number of reference tables.

Basically this reference manual defines in detail how the central processor or a peripheral device functions,
exactly what its instructions do, how it handles data, and what its control and status information means. The
programming is given in machine language. Although the basic instruction and device mnemonics defined by
the assembler are used, the manual is completely self-contained—no knowledge of the assembler or any other
Data General Corporation software is required. The first three sections of Chapter II, which treat the three classes of
Nova line instructions, also give the conventions needed to program the computers and understand the examples given
in the text.

-

N
(9}

w

e

INTRODUCTION & it titettnennernnsenneneeconeneennnnnns
The Nova line Computers . vurer s et eesoneneennnnnnnn,
Peripherals. . .ot it it i it ittt e e
I StrUCHIONS vttt iie ettt eeenresennsnennnnnnnens

CENTRAL PROCESSOR « vt tttettennrernnreenesnnnnnnens

Memory Reference Instructions
Move data instructions 2-5
Modify memory instructions 2-6
Jump instructions 2-7

Arithmetic and Logical InStructionsuoeeeeenn..

Carry, shift, and skip functions 2-12

Arithmetic and logical functions 2-14

Programming examples 2-17
Input-Output

Special code-77 functions 2-26

Programming Interrupt. ...t ettenneneeennnnneeeennnnnnasennnnsns
Data Channel........oiiiiiiiiiiiiiiinerenennennnnnn.

Real time clock 2-39

Power monitor and autorestart 2-40
Multiply-divide 2-40

Nova multiply-divide 2-41

Memory allocation and protection 2-42

Operation.....oeeveeeenennn.. teeeieeitieietiaesaaans
Program Loadingoviineiineininnennenennnnnnnns

Automatic loading 2-52
Manual program loading 2-55
Binary loader 2-56

BASICI/OEQUIPMENTcvivrinnennnnnn. ces
Teletypewriter . o.vueeeeneinnennrnnnnnnns teeeseceaessieanatatanna.

Teletype output 3-2
Teletype input 3-3
Programming examples 3-3
Operation 3-5

Paper Tape Reader e teseeasassannas ceenens

Contents

ooooooooooooo

ooooooooooooo

2-10

2-48

3-6

N O

J

OJOJOJOJEJJ

[N N N NN
B GO DN

~N Oy U1 W

w

Paper Tape Punch...... ..o iiiiiiiiiiniineennnnnn. Ceceesaaaas ceenen 3-7

Line Printer.......... N P ¥
Plotterovevieencnnnnnnnns Ceseeeesieansannan Ceseceasiansiacnnos 3-10
Card Reader v vvveriverrinnnennnenneccnnnss Ceesaeesassann seeseenana 3-12
DGC CasSSette v iutiittinrerionsnseesecoonseosssennsnnnns . . 3-14
MAGNETIC TAPE . ittt iiiititittntneenenrensasannanes Ceteeiteseeaaan 4-1
Tape Format. v e iniii ittt iiittteeteronenasnesacesenenenenans 4-1
i o o 50+ B 4-3
Tape Commands....eiereieenenncesnenenaoeens Ceseenenans ceesees ee. 4-6
Tape Transports - Models 4030A through 4030Hc.ccvuvn. ceeans 4-11

transports 4-11, 4030A,4030B, 4030C and 4030D
transports 4-13, 4030G, 4030H
transports 4-14, 4030E, 4030F

Tape Transport - Models 4030I and 4030] . ..cvieetiiieenneennennnnns 4-16
) L 5-1
Fixed Head DiSC SySteIM . vuee e i reintervossasoensnsenensasaannnens 5-2

Data format 5-2
Programming considerations 5-5
Disc Cartridge System 4047 . ..utieiriinieneernoneerosaroeocoanneans 5-6
Data format 5-6
Instructions 5-7
Programming considerations 5-10
Operation 5-12
Disc PaCK SyStemS s eeeeenireneeeeeseseessessosasessnsscsnaceancnans 5-12
Data format 5-12
Instructions 5-12
Programming considerations 5-17
Operation 5-18

ANALOG CONVERSION EQUIPMENT .. uuiuinteeneseseonosensanoconannns 6-1
A-D, D-A System ConfigurationsS....oeeeeeeeeerreeeroeeeroscennnenns 6-1
A-D Conversion «oveveveeeneneesersrossoosossasasannns Ceerietseeans 6-3

Interface with channel scanner 6-6
Wiring considerations 6-8
D-A ConvVerSiOn & vvueeeietienenesetsestosensnsesssssanasensns ceseees 6-9
SPECI ICAtIONS + 4t etereneeeeeneeeaerenseseeenanssoennenns Ceceeneaan 6-9
A-D operating specifications 6-10
D-A operating specifications 6-12
Oscilloscope Control 4053 vv v it it rirseeeeoesaneonenenssneeesanenns 6-13

DATA COMMUNICATIONS . .ititereinrneeerncnsanannns Ceeeneesacenene 7-1

Synchronous Communications Controller 4015)

with Clock Option 4020 and Parity Option 4021.....vveieenennrnnennenns 7-1
Receiver 7-1 '
Transmitter 7-3

Automatic answering 7-5

7.2 Asynchronous Data Communications Multiplexor 4026veeveeennnnn.. 7-5
7.3 Modem Controls 4023 and 4029......... ceeeratanaens Ceeeeieaaas ceeeeens 7-7
7.4 Multiprocessor Communications Adapter 40380..... ceveresaaas . 7-10

Receiver 7-11
Transmitter 7-13
Installation 7-14

7.5 Asynchronous Data Communications Multiplexor 4060 eee. 7-15
Instructions 7-16
Modem control 7-18

7.6 IBM System 360/370 Interface 4025 .. v oveneereenennennnnnnens ceerennan 7-18
Instructions 7-19

APPENDICES
A Interfacing «.oovvriiniiiiiinennenrenennennns Ceenseanssensas cersseens Al
I In~out Bus.....ovvivivnnnnnnnnn. feteienaasecesiensasetsaenanns Al

Bus signals A3
External signal connections AlQ
Bus circuits A1l0
In~-out bus signal connections All
il Interface Timing.....coviviieninnenennnnnnns, ceteieenne ceeenas Al3
Programmed transfers Al4
Program interrupt Al4
Standard data channel transfers Al6
High speed data channel transfers A19
II1 Design of Interface EQUIPMENt. c oottt ieenernnienrrneeennnnesennns A22
Basic interface networks A22
Design examples A24

v Construction of Interface EQUIPIMENt. « vvveeereneneeerensennannnns A28
General purpose interface A31
Socket pin configuration A38 l

Table I basic interface 4040 A39
Table II data register 4041 A40
Table III data channel logic 4042 A4l
Connectors and connector parts A42

B INStallation . uuiiieiiiiiiittniennenrneneenesuessneenasnnnens cevsss.s Bl
Peripheral equipment B3

C Floating Point Arithmeticovuuutruneiiiiiiieeeeeeeennnennnnn, Cl

D Instruction Mnemonics and Timingeeeeeneeeeeneeenunernnneeenaeeeenns D1}

Numeric listing D2
Alphabetic listing D5
Instruction execution times D12
E In-out Codes Gt et et eecetess et otsasattaceneossenan seecessess El
In-out devices E2
Teletype code E4

Chapter I
Introduction

The Nova line computers are general purpose computer systems with a 16-bit word length. All machines
are organized around four accumulators, two of which can be used as index registers. This accumulator/index
register organization provides ease in programming and great efficiency both in time and memory use. The various
machines differ from one another in features and speed, but all use the same instruction set, and the programming
for all is completely compatible (except of course for programs that are time dependent).

Any Nova line computer can have both alterable memory and read-only memory. Any machine may have
either a programmer’s console or a turnkey console that has a minimum of controls and is used in dedicated
applications with well-defined, debugged software. With the console removed entirely, a system can be operated
as a hardwired controller, whose functions can be altered simply by substituting different read-only memories.

Although the computer main frames vary in size, and therefore in the amount of memory and the number
of IO interfaces they can contain, nonetheless they all mount in a standard 19-inch rack. Processor options include
real time clock, power monitor and auto restart, multiply-divide, automatic program load, and memory alloca-
tion and protection. Available peripheral equipment includes Teletype®*, high speed paper tape reader and
punch, card reader, line printer, incremental plotter, display, magnetic tape, cassette tape, magnetic disc, A-D
and D-A conversion equipment, and data communications equipment. There are also interfaces for interconnect-
ing a number of Nova line computers and connecting a Nova line computer to an IBM 360/370 system.

The central processor is the control unit for the entire system: it governs all peripheral in-out equipment,
performs all arithmetic, logical, and data handling operations, and sequences the program. It is connected to the
memory by a memory bus and to the peripheral equipment by an in-out bus. The processor handles words of
sixteen bits, which are stored in a memory with a maximum capacity of 32,768 words. The bits of a word are
numbered O to 15, left to right, as are the bits in the registers that handle the words. Registers that hold
addresses are fifteen bits, numbered according to the position of the address in a word, ie 1 to 15. Words are
used either as computer instructions in a program, as addresses, or as operands, ie data for the program. The
program can interpret an operand as a logical word, an address, a pair of 8-bit bytes, or a 16-digit signed or
unsigned binary number. The arithmetic instructions operate on fixed point binary numbers, cither unsigned or

" the equivalent signed numbers using twos complement conventions.

'I'he processor performs a program by execuung instructions retrieved from consecutive memory locations
as counted by the 15-bit program counter PC. At the end of each instruction PC is incremented by one so that
the next instruction is normally taken from the next consecutive location. Sequential program flow is altered by
changing the contents of PC, either by incrementing it an extra time in a test skip instruction or by replacing its
contents with the value specified by a jump instruction. The other internal registers of importance to the pro-
grammer are four 16-bit accumulators, ACO to AC3. Data can be moved in either direction between any mem-
ory location and any accumulator. Although a word in memory can be incremented or decremented, all other
arithmetic and logical operations are performed on operands in the accumulators, with the result appearing in
an accumulator. Associated with the accumulators is the Carry flag, which indicates when a carry occurs out of
bit 0 in an arithmetic instruction. The left and right halves of any accumulator can be swapped, the contents of
any accumulator can be tested for a skip, and the 17-bit word contained in any accumulator combined with
*Teletype® is a registered trademark of Teletype Corporation, Skokie, 1ll. All references to teletypes in this manual shall apply to

this mark.

1-1

INSTRUCTION

FETEM EXEOUTE
ADDRESS

OKFER
BaTA

w

num w0

FETCR BEFER sxgouTe

(v DATA cENERAL coRPORATION

Nova 800 Series and Nova 1200 Series Operator’s Console

Carry can be rotated right or left. An instruction that references memory can address AC2 or AC3 as an index
register, and transfers to and from peripheral devices are also made through the accumulators.

On the programmer’s console is a set of data switches through which the operator can supply words and
addresses to the program. The console also has control switches that allow the operator to start and stop the
program, to deposit the contents of the data switches in any memory location or accumulator, and to display
the contents of any location or accumulator in the data lights. An optional console feature on the Nova 800
series and 1200 series provides automatic loading when there is no program in memory (this feature is standard
on the Supernova computer). The address lights display the contents of PC; the remaining lights display the
Carry flag and a number of internal control conditions that are useful in program debugging.

Any instruction that references memory may address AC2 or AC3 as an index register. Instructions that

move data to and from memory or the peripherals address a single accumulator as a source or destination of data
1-2

while addressing a memory location or an in-out device. But the arithmetic and logical instructions do not have
to reference memory; they simply address two accumulators, either or both of which may supply operands, and
one of which may receive the result. Thus memory is used for storage of the program and permanent data, but
all calculations are carried out in the accumulators and intermediate results are held right in them. This
reduces considerably the amount of data movement as compared with a single accumulator system, and thus
saves instructions. For example, in as trivial an operation as exchanging the contents of two memory locations
A and B, the multi-accumulator organization reduces the time by one third.

Exchange with Exchange with
one accumulator two accumulators
A->AC A—~>AC1

AC->TEMP B—>AC2
B—>AC AC1—->B
AC—>A AC2—A

TEMP->AC
AC—>B

Since an arithmetic or logical instruction does not contain a memory address, there are many bits that
can be used for functions other than specifying the basic operation and the operands: the same instruction that
adds or subtracts can also shift the result or swap its halves, test the result and/or carry for a skip, and specify
whether or not the result shall actually be retained. Hence the percentage of time saved increases with the com-
plexity of the program.

And there are advantages other than speed. The system is much more convenient to use, programming is
much easier because the data being processed is much handier. The accumulators and their associated logic are
essentially like the pad one uses at one’s desk, whereas the memory fulfills the function of a set of reference
books and a notebook kept on one’s side. The results of address calculations are immediately available for index
purposes to the memory reference instructions. One accumulator can be used for in-out data transmission with-
out disturbing others being used continually for computations. Complex software routines such as multiplica-
tion, division and floating point can be performed without constantly referencing memory.

The input-output hardware allows the program to address up to sixty-two devices. A single instruction can
transfer a word between an accumulator and a device and at the same time control the device operation.
Included in the in-out system are facilities for program interrupts and high speed data transfers. The interrupt
system facilitates processor control of the peripheral equipment by allowing any device to interrupt the normal
program flow on a priority basis. The processor acknowledges an interrupt request by storing PC in location 0
and executing the instruction addressed by the contents of location 1. A high speed device, such as magnetic
tape or disc, can gain direct access to memory through a data channel without requiring the execution of any
instructions; the program simply pauses while access is made. The data channel logic allows the transfer of
data to or from memory, incrementing of a memory word, and (in some machines) adding external data
to a word already in memory. The latter two features allow such functions as pulse height analysis and
signal averaging.

Processor options available on all Nova line computers are the power monitor and auto restart, hardware
multiply-divide, and real time clock. The first of these has a flag that can interrupt when power failure is imminent,
so the program can provide for an orderly shutdown; the program restarts automatically when power is restored.
The other two options are handled by the program as though they were in-out interfaces. The multiply-divide

1-3

tures, but are equal in size and slot capacity to the 800 and 800 Jumbo. However, the 1200 series computers re-
quire only one slot for the central processor, so the 1200 and 1200 Jumbo respectively have six and sixteen slots
available for memory and IO interfaces.

The core memory of the Supernova computer has an 800 nanosecond cycle, but this computer can also
operate with semiconductor memory, which has a 300 nanosecond cycle (the two memory types can be mixed).
With semiconductor memory, overlapping allows the Supernova computer to execute arithmetic and logical
instructions in a single 300 nanosecond memory cycle. Automatic program load is standard equipment on the
Supernova computer; memory allocation and protection is available as an option, and the hardware multiply-
divide can be mounted on one of the central processor boards. The main frame is 5! inches high and has seven
slots, of which three are for the central processor. An expansion chassis of the same size and capacity and
containing its own power supply is available for this computer.

The basic processor cycle time of the Nova computer is 2.6 microseconds with core memory, 2.4 micro-
seconds with read-only memory. The Nova computer chassis is 514 inches high with seven slots, of which two are
for the central processor. An expansion chassis can be added for additional memory and I/ O devices. The hard-
ware multiple-divide option for this computer functions in the manner of an in-out interface and must be
mounted on a separate board.

1.2 PERIPHERALS

A variety of peripheral equipment is available with all of the Nova line computers. The basic in-out devices
are the teletypewriter and high speed paper tape reader and punch. Teletype models available are the ASR33,
KSR33 and KSR35, all of which operate at ten characters per second, and the KSR37 and ASR37, which oper-
ate at fifteen characters per second. The reader handles 8-channel, fanfold perforated paper or Mylar tape
photoelectrically at 400 characters per second. The punch can output 63.3 characters per second on 8-channel
fanfold paper tape.

To simplify customer design of interfaces for Nova line computers, Data General has available a general
purpose wiring frame with standard connector and space for mounting small wiring boards, which are available
with or without wire-wrap pins and sockets; a general purpose printed circuit board with hole pattern for inte-
grated circuits as well as discrete components (also available with wire-wrap pins or pins and sockets); and a
general purpose interface that has the standard logic for several types of interfacing to the 10 bus, plus room for
the customer’s own interface circuits.

Card Readers. Punched card and Mark Sense card readers are available at speeds ranging from 150 to
1,000 cards per minute.

Incremental Plotters. Both drum and flatbed plotters are available; model 4017E uses Z-fold paper.

Fixed Head Disc Drives. Head-per-track discs have storage capacities of 64K, 128K, 256K, 512K and 768K
16-bit words. Data transfer is through the data channel. Discs are rack-mountable. As many as eight logical
units may use the same control.

Cartridge Disc Drives. Two compact cartridge disc drives are available, one with a single removable
cartridge (capacity 1.247 million 16-bit words) and one with both a removable cartridge and a fixed disc (total
capacity 2.494 million 16-bit words). Data is transferred at the rate of one word every 11.5 microseconds. The
disc drive has two moving heads per disc. The drive mounts in a standard computer cabinet and the cartridge
is IBM compatible.

Disc Pack Drives. The disc pack drives use IBM-compatible 6- or 11-disc packs with 10 or 20 read/write
surfaces and 10 or 20 moving read/write heads. Capacity is 3.072 or 12.288 million 16-bit words. Data is trans-
ferred at the rate of one word every 12.8 microseconds.

Magnetic Tape Transports. Synchronous read/write 7- or 9-track, 12.5, 45 or 75 ips, industry-compatible
tape transports.

DGC Cassette. Input/output to single channel magnetic tapes housed in portable interchangeable cassettes.
Up to eight transports may use the same control. 1-5

)

Line Printers. Line printers are either 356 Ipm, 80 columns, 64 characters or 245 Ipm, 132 columns, 64
characters. Full ASCII interface with paper-advance characters is included.

High Speed Communications Controller. Used with high speed full-duplex or half-duplex synchronous
data sets (Bell 201, Bell 301, or equivalent), the controller allows automatic line synchronization, word assembly,
and end-of-transmission recognition.

Data Communications Interface. Input-output interface for Bell System 202 data set or equivalent for
operation at 1200 bits/second.

16-Line Teletype Multiplexor. Controls up to 16 Teletypes or Bell 103 modems. Allows for programmed
bit assembly/disassembly of characters.

Asynchronous Multiplexor. Enables any Nova line computer to communicate with and control terminal
devices over a variety of communication facilities. The modularity of the hardware permits simply system ex-
pansion and the addition of new features or special purpose equipment.

Multiprocessor Communications Adapter. Connects up to fifteen Nova line computers into a multiprocessor
system by permitting blocks of data to be transferred from one computer to another through their data channels.

360 Interface. A very flexible, generalized interface that makes it possible for any Nova line computer
with appropriate software to emulate all standard IBM peripheral controllers. Communication takes place via
the System 360 selector or multiplexor channel.

Analog-to-Digital Converters. Analog-to-digital converters are available having 1 to 256 channels and
word length of 8 to 15 bits. The analog-to-digital interface also runs 3 Y;-digit panel meters.

Digital-to-Analog Converters. Digital-to-analog converters are available having 1 to 24 channels and word
lengths of 8 to 14 bits.

CRT Display Terminals. Terminals display 20 lines, 80 characters long. Code structure and baud rate are

variable.

1.3 INSTRUCTIONS

The types of functions performed by instructions in most computers are the following.

Move data between memory and the operating registers.

Modify memory, usually in conjunction with a test to determine whether to alter the program sequence.
Alter the program sequence by jumping to a new location.

Perform an arithmetic or logical operation.

Test the value of aword or flag, or one word against another, to determine whether toalter the program sequence.

AR S e

Transfer data to or from the peripheral equipment.

In many computers the first and fourth and the third and fifth groups overlap. In the Nova computer groups
1 and 3 are unique. But groups 4 and 5 coincide: every arithmetic and logical instruction can test the result for a
skip. .
The following lists the registers that must be specified and the functions performed by the various instruc-
tion classes in the Nova line computers.

Move data One memory location, one accumulator. Either may be the source of the operand,
the other is the destination.

Modify memory One memory location. Increment or decrement contents; skip if result is zero.

Jump One memory location from which the next instruction is taken. A return address
can be saved in AC3.

Arithmetic and logic Two accumulators. One or both may be source of operand(s). Perform arithmetic

or logical function, with a bit-0 carry affecting the Carry flag as indicated. If desired,
swap halves of answer or rotate it with Carry one place right or left, load result into
either accumulator, and skip on condition specified for result and/or Carry.

Input-output One accumulator, one IO device. Transfer word in either direction between any
accumulator and one of up to three registers in up to sixty-two devices. Also oper-
ate-device as specified.

Note: A subclass of these instructions executes no transfer and specifies only a
device. The instruction either operates the device or skips on a selected condition
init.

Addressing. Instructions in the first three classes must address a memory location. Each instruction word
contains information for determining the effective address, which is the actual address used to fetch or store the
operand or alter program flow. The instruction specifies an 8-bit displacement which can directly address any
location in four groups of 256 locations each. The displacement can be an absolute address, ie it may be used
simply to address a location in page zero, the first 256 locations in memory. But it can also be taken as a signed
number that is used to compute an absolute address by adding it to a 15-bit base address supplied by an index
register. The instruction can select AC2 or AC3 as the index register; either of these accumulators can thus
be used as an ordinary index register to vary the address computed from a constant displacement, or as a base
register for a set of different displacements. The program can also select PC as the index register, so any instruc-
tion can address 256 words in its own vicinity (relative addressing).

Now the computed absolute (15-bit) address can be the effective address. However, the instruction can use
it as an indirect address, ie it can specify a location to be used to retrieve another address. Bits 1-15 of the word
read from an indirectly addressed location can be the effective address or they can be another indirect address.

Automatic Incrementing and Decrementing. The program can make use of an automatic indexing feature
by indirectly addressing any memory location from 00020 to 00037 (addresses are always octal numbers).
Whenever one of these locations is specified by an indirect address, the processor retrieves its contents, incre-
ments or decrements the word retrieved, writes the altered word back into memory, and uses the altered word
as the new address, direct or indirect. If the word is taken from locations 00020-00027, it is incremented by
one; if taken from locations 00030-00037, it is decremented by one.

Instruction Format

There are four basic formats for instruction words. In all but the arithmetic and logical instructions, bit 0
is 0. If bits 1 and 2 are also 0, bits 3 and 4 specify the function (jump or modify memory) and the rest of the
word supplies information for calculating the effective address. Bits 8~15 are the displacement, bits 6 and 7 spec-
ify the index register if any, and bit 5 indicates the type of addressing, direct or indirect.

ADDRESS TYPE

[0 0 0 I FUNCTION | ' | INDEX DISPLACEMENT 1
0 23 4 5 6 _ 78 15

JUMP AND MODIFY MEMORY FORMAT

If bits 1 and 2 differ they specify a move data function. Bits 3 and 4 address an accumulator, the rest of
the word is as above,

ADDRESS TYPE

0 FUNCTION AC |
01 OR 10 ADDRESS

0 1 23 4 5 6 78 15

INDEX DISPLACEMENT

MOVE DATA FORMAT 1-7

Bits 1 and 2 both being 1 indicate an in-out instruction. In this case the function is specified by bits 5-9,
of which bits 5-7 indicate the direction of transfer and select one of three registers in the device. The transfer
takes place between the accumulator addressed by bits 3 and 4 and the device selected by bits 10-15. Bits 8

AC FUNCTION
0 1 1 ADDRESS TRANSFER | CONTROL DEVICE CODE

0 23 45 78 910 15

IN-OUT FORMAT

and 9 of the function part specify an action to be performed, such as starting the device. If bits 5-7 are all
0 or all 1, there is no transfer and bits 8 and 9 specify a control or skip function respectively.

If bit 0 is 1, bits 5--7 specify an arithmetic or logical function. One operand is taken from the accumulator
addressed by bits 1 and 2; a second operand, if any, from that addressed by bits 3 and 4. The rest of the word
specifies the other functions that can be performed, including whether or not the result is to be loaded into the
destination accumulator.

AC AC
SECONDARY FUNCTIONS
1 :‘SgggSES DE:;})N&TSISON FUNCTION ROTATE, SWAP, CARRY, NO LOAD, SKIP
0o 1 23 4s 78 15

ARITHMETIC AND LOGIC FORMAT

The Nova computer assembly programs recognize a number of mnemonics and other initial symbols that
facilitate constructing complete instruction words and organizing them into a program [Appendix D]. In par-
ticular there are three-letter mnemonics for the 2- and 3-bit functions; these mnemonics also represent whatever
bits are constant for the class the instruction is in. Eg the modify memory mnemonic

ISZ
assembles as 010000, the arithmetic mnemonic
SUB

assembles as 102400.
NoTE

Throughout this manual all numbers representing instruction words, register contents, codes and
addresses are always octal, and any numbers appearing in program examples are octal unless other-
wise specified. Computer words are represented by six octal digits wherein the left one is always 0 or 1
representing the value of bit 0. The ordinary use of numbers in the text to specify quantities of
objects, such as words or locations, to count steps in an operation, or to specify word or byte
lengths, bit positions, etc. employs standard decimal notation.

Characters are suffixed to the basic mnemonic to specify the control part of an IO function and most of the
secondary functions in the arithmetic and logical class. The displacement and addresses of accumulators and

1-8 ‘

index registers are separated from the mnemonic by a space and from each other by commas. Anything written
at the right of a semicolon in a program listing is commentary that explains the program but is not part of it.

1.4 MEMORY

From the addressing point of view, the entire memory is a set of contiguous locations whose addresses
range from zero to a maximum dependent upon the capacity of the particular installation. In a system with the
greatest possible capacity, the largest address is octal 77777, decimal 32,767. But the memory is actually made
up of a number of core memory modules, each having a capacity of 1024, 2048, 4096 or 8192 words, and can also
contain read-only memory modules. The latter may be used for storage of pure (unalterable) programs and con-
stants; they contain 256, 512 or 1024 words. The Supernova computer may also operate with semiconductor ran-
dom access memory modules; these are available in units of 256, 512 and 1024 words. An address supplied by
the program is actually decoded in two parts, the more significant to select a memory module and the less sig-
nificant to select a location within that module, but this need not concern the programmer. From the point of
view of the programmer, memory module size is irrelevant, and read-only memory differs from the others only
in that its contents cannot be altered electrically. Common arithmetic and in-out routines are available in
standard read-only memory modules; others are available on a custom basis.

Memory Restrictions. The use of certain locations is defined by the hardware.

0-1 Program interrupt locations
20-27 Autoincrementing locations
30-37 Autodecrementing locations

L5 SOFTWARE

To support the Nova line computer, Data General supplies a very extensive software package. This package
includes assemblers, editors, compilers, and operating systems, as well as numerous utility programs for various
devices, debugging programs, data conversion, mathematical and interpretive routines, and a complete set of
hardware diagnostics. Some of the major software items are the following.

The Absolute Assembler is a two-pass system that produces absolute binary and an assembly listing. The
program accepts pseudo commands, and the source input is form free.

The Extended Assembler includes all features of the absolute assembler, and it also provides relocation,
interprogram communication, conditional assembly, and more powerful number definition facilities.

The Cross Assemblers for IBM 360, CDC 6600, Univac 1108, all written in FORTRAN IV, assemble
symbolic source code into machine object code for the Nova line computers, using card input to the IBM 360,
CDC 6600, or Univac 1108. Output can be in absolute or relocatable binary suitable as input for the Data General
binary or relocatable loader.

The Relocatable Binary Loader loads relocatable binary tapes produced by the Extended Assembler. It
accepts any number of tapes as input, resolves external displacements and normal externals, and maintains an
entry symbol table that can be printed on demand.

The Macro Editor edits paper tape input to produce updated paper tape output. It is used most commonly
to modify program source tapes in preparation for a new assembly. The editor executes simple command-string
input using the Teletype to modify text on a character-string basis or a line basis. The user can define command

19

strings in a special macro register; a string can then be executed repeatedly by specifying the macro register name
in other command strings.

Time Sharing BASIC is a dedicated interpretive system that allows conversational entry and execution of
programs written in the BASIC language. It includes use of all elementary and advanced BASIC statements
including matrix and string extensions. The system supports sixteen Teletype terminals and includes a compre-
hensive list of error messages.

Single User BASIC has all the features of Time Sharing BASIC, with the exception of matrix and string
manipulation functions.

Extended BASIC has all the features of Time Sharing BASIC, plus extended features which allow access
to IO peripherals for both data and program files. Supported devices include high speed reader and punch, line
printer, fixed head disc, and moving head disc pack and disc cartridge. Disc files can be protected from unautho-
rized access or can be placed in a system disc library, which is available to all users. Disc versions of Extended
BASIC will timeshare core memory among users, allowing each user access to all memory.

Extended FORTRANTY is an implementation of the ANSI FORTRAN 1V, with provisions for reentrant
object code and many language extensions. The latter include generalized subscript expressions, mixed-mode
arithmetic, double precision complex arithmetic, abnormal returns from subroutines via a dummy variable,
arrays with 128 dimensions, and array declarations in which the lower bound need not be 1. The code generated
provides optimized register and storage allocation and reentrant machine language code, which can be interfaced
with assembly language code.

Extended ALGOL is a superset of ALGOL 60 with extensions that allow simplified free-form IO or formatted
output, bit manipulation, easy manipulation of character-string data, recursive and reentrant procedures, dy-
namic storage allocation, n-dimensional arrays, multiprecision arithmetic, dynamic conversion for full mixed-
mode capability, and explicit diagnostics.

The Real Time Disc Operating System. (RDOS) is a modular, multitask disc based real time operating
system. It can be used in both the development and implementation of programs to be run in a real time environ-
ment. RDOS allows user programs to be loaded into fixed partitions within the user address space, thus allowing
programs larger than available memory to be executed. RDOS provides a facility for buffered 1/0 transfers or
unbuflered block transfers from the user’s area for faster real time applications. Output device spooling maxi-
mizes system usage by releasing memory from usages other than message buffering.

The Real Time Operating System. (RTOS) provides a flexible, modular interface to user programs operat-
ing in a real time environment. Multitasking, time-slicing, and 1/O transfers are handled by simple task calls
to the system. All standard peripheral devices are supported. RTOS is a compatible subset of the Real Time
Disc Operating System.

The Disc Operating System. (DOS) provides a comprehensive file system capability, buffered management
of all I/O peripherals on a device independent basis, and program execution facilities using disc file overlays.
The system operates with both fixed-head and moving-head discs. It supports an extensive library of system
software, all executable by means of simple Teletype commands.

The Stand-Alone Operating System. (SOS) provides buffered service of 1/O peripherals on a device indepen-
dent basis. It interprets a subset of the system calls of the Disc Operating System to provide stand-alone com-
patible facilities. Programs may be structured to run under either operating system without modification. SOS
provides a magnetic tape or cassette tape operating system allowing users to edit, assemble, or execute programs
stored on the tapes.

1-10

Chapter 11
Central Processor

This chapter describes all computer instructions but does not discuss the special effects of the in-out
instructions when they address specific peripheral devices. The chapter treats the memory reference instructions
and the arithmetic and logical instructions in detail, presents a general discussion of input-output, and
describes the effects of the in-out instructions on processor elements, including the program interrupt, the real
time clock, multiply-divide, and the memory allocation and protection option. Effects of in-out instructions on
particular peripheral devices are discussed with the devices in the remaining chapters.

In the description of each instruction, the mnemonic and name are at the top, the format is in a box below
them. The mnemonic assembles to the word in the box, where bits in those parts of the word represented by
letters assemble as Os. The letters indicate portions that must be added to the mnemonic to produce a
complete instruction word.

Instruction execution times depend both on the processor and the type of memory; they are therefore given
in a table at the end of Appendix D.

Twos Complement Conventions. The signed numbers used as displacements in referencing memory and as
operands for the arithmetic instructions utilize the twos complement representation for negatives. In a word or
byte used as a signed number, the leftmost bit represents the sign, 0 for positive, 1 for negative. In a positive
number the remaining bits are the magnitude in ordinary binary notation. The negative of a number is obtained
by taking its twos complement, with the sign bit included in the operation as though it were a more significant
magnitude bit. If x is an n-digit binary number, its twos complement is 2"—x, and its ones complement is
(2n—1)-x, or equivalently (2"—x)—1. Subtracting a number from 27-1 (e, from all 1s) is equivalent to perform-
ing the logical complement, /e changing all Os to 1s and all 1s to Os. Therefore, to form the twos complement
one takes the logical complement — usually referred to merely as the complement — of the entire word includ-
ing the sign, and adds 1 to the result. A displacement of 89 and its negative would look like this in bits 8—15 of
an instruction word where bit 8 is the sign.

+89,, = +131y = | 01 011 001
8 15
-89, = 131, = | 10 100 111|
8 15

The same numbers used as operands in the accumulators would look like this.

+89,, = +131; = [0000000001 011 001]
0

15

—8910 = ——1318

[1 111111110100 111|
0o 15

Bit 0 is now the sign and bits 1-8 are not significant. It is thus evident that expanding an integer into a full
word is accomplished simply by filling out the word to the left with the sign.

Zero is represented by a number containing all Os; complementing this number produces all 1s, and add-
ing 1 to that produces all Os again. So there is only one zero representation and its sign is positive. Moreover
there is one more negative number than there are nonzero positive numbers. Hence there are 256 displace-
ments in an octal range —200 to + 177. (The most negative number has a 1 in only the sign position.)

2.1 MEMORY REFERENCE INSTRUCTIONS

Bits 5-15 have the same format in every memory reference instruction whether the effective address is
used for storage or retrieval of an operand or to alter program flow. Bit 5 is the indirect bit, bits 6 and 7 are the

I X D
| 1 | 1 | | I |
6 ' 7 8 9 T 10 11 12 T 13 14 15

index bits, and bits 8 — 15 are the displacement. The effective address F of the instruction depends on the values
of I, X, and D. If X is 00, D addresses one of the first 2561 memory locations, ie D is a memory address in the l
range 00000-00377s . This group of locations is referrred to as page zero.

If X is nonzero, D is a displacement that is used to produce a memory address by adding it to the contents
of the register specified by X. The displacement is a signed binary integer in twos complement notation. Bit 8
is the sign (0 positive, 1 negative), and the integer is in the octal range —200 to +177 (decimal — 128 to
+127). If X is 01, the instruction addresses a location relative to its own pdsition, ie D is added to the address
in PC, which is the address of the instruction being executed. This is referred to as relative addressing. If X is
10 or 11 respectively, it selects AC2 or AC3 as a base register to which D is added.

X Derivation of address

00 Page zero addressing. D is an address in
the range 00000-00377.

01 Relative addressing. D is a signed displace-
ment (— 200 to + 177) that is added to the
address in PC.

10 Base register addressing. D is a signed dis-
placement (—200 to + 177) that is added
to the address in AC2.

11 Base register addressing. D is a signed dis-
placement (—200 to + 177) that is added
to the address in AC3.

If I is O, addressing is direct, and the address already determined from X and D is the effective address
used in the execution of the instruction. Thus a memory reference instruction can directly address 1024 loca-
tions: 256 in page zero, and three sets of 256 in the octal range 200 less than to 177 greater than the address in
PC, AC2 and AC3. If] is 1, addressing is indirect, and the processor retrieves another address from the location

2-2

L7 | 4
0 1 15

specified by the address already determined. In this new word bit 0 is the indirect bit: bits1—15 are the effec-
tive address if bit 0 is 0; otherwise they specify a location for yet another level of address retrieval. This
process continues until some referenced location is found with a O in bit 0; bits 1-15 of this location are the

effective address E.
Specific examples illustrating the various addressing methods are given on the next two pages.

The set of all addresses is cyclic with respect to the operations performed in an effective address calcula-
tion; regardless of the true sum or difference in any step, only the low order fifteen bits are used as an address.
Hence the next address beyond 77777 is 00000, the next below 00000 is 77777.

Automatic Incrementing and Decrementing Locations. If at any level in the effective address calculation
an address word is fetched from locations 00020-00037, it is automatically incremented or decremented by one,
and the new value is written back in memory. Addresses taken from locations 00020-00027 are incremented,
those from locations 00030-00037 are decremented. The next step of the effective address calculation depends
on bits 1-15 of the new address word and the former value of bit 0 of the address word. If bit 0 of the word
originally fetched was 0, the new 15-bit address value is used as the effective address. If bit 0 of the former
address word was 1, the new 15-bit address value is used to fetch the next address word in the effective address
calculation.

In an auto-increment or auto-decrement address computation, the new value for bit 0 will differ from the
former value of the bit only when the address 77777 is incremented or the address 00000 is decremented (in
other words, when one of the locations 00020-00027 contains 077777 or 177777 and is addressed indirectly, or
when one of the locations 00030-00037 contains 000000 or 100000 and is addressed indirectly). In these cases
it is important to remember that it is the former value of bit O of the auto-increment or auto-decrement loca-
tion which determines whether the new 15-bit address value will be treated as the effective address or as
another indirect address in the addressing chain. The new value for bit 0 is written back into memory as al-
ways, along with the incremented or decremented address value, but it does not participate in an effective
address calculation until the next time the auto-increment or auto-decrement location is addressed indirectly.

Programming Conventions. All memory reference functions are represented by three-letter mnemonics; eg

ISZ
assembles as 010000. For addressing page zero the displacement is simply an address. Thus

ISZ 344

assembles as 010344. When this word is executed as an instruction it increments the word in location 00344 and
skips the next instruction if the incremented word is zero. For relative or base register addressing the displace-
ment is a twos complement integer.

ISZ —342
assembles as 011344 (0 001 001 011 100 100), in which bits 8—15 have the same configuration as in the pre-
vious example, but this time the instruction specifies a location whose address is 344 less than the address in
AC2,
The initial symbol @ preceding the displacement places a 1 in bit 5 to produce indirect addressing. The
examples given above use direct addressing, but

ISZ @—34,2
assembles as 013344 (0 001 011 011 100 100), and produces indirect addressing.
2-3

For memory reference with an accumulator, the AC address precedes the memory address information and
is terminated by a comma. Eg N
LDA 3,—342
assembles as 035344 (0 011 101 011 100 100).
The assembler also allows the following addressing conventions. A period represents the current address,
ie the address of the location containing the instruction being executed. Thus

LDA 3,.,+6
is equivalent to
LDA 3,6,1

A colon following a symbol indicates that it is a symbolic location name..,

A: ADD 2,3

indicates that the location that contains ADD 2,3 may be addressed symbolically as A. The assembler assigns
a 15-bit value to the label A. When A is used in a statement such as

LDA 2,A+6
the treatment depends on the value of the expression in which A appears. In this case if A+ 6<00400 its low
order eight bits are simply placed in the displacement part of the instruction word and X is set to 00. If A+ 6 is
within range of PC, the indicated location is represented as a displacement relative to PC. Otherwise the assem-
bler indicates an error as location A + 6 cannot be directly addressed by the instruction. . i
Addressing Examples. Suppose the following registers contain the numbers listedf-: . -

Register Contents’
6 100015
12 000035
15 000017
17 000023
23 000011
AC3 000015

Now if the program executes the instruction
LDA 1,6

which loads AC1 from location 6, AC1 receives the number 100015. AC1 holds the same number after
LDA 1,—73

is executed (effective address =C(AC3)—7=15—7=6). But
LDA 1,@6

which indirectly addresses location 6, which in turn indirectly addresses location 15, which directly addresses
location 17, loads 23 into the accumulator. AC1 also contains 23 following execution of

LDA 1,@15
On the other hand, AC1 contains 17 after

LDA 1,15
24

or
LDA 1,0,3
is executed. Now
LDA 1,6,3

does not address location 6; it addresses 23 (C(AC3)+6=15+6=23) and thus loads 11 into AC1. Note
that addressing an autoincrementing location directly does not alter its contents; AC1 simply receives its con-
tents as an operand. ACI also receives 11 from

LDA 1,23
or

LDA @17
But giving

LDA 1,@23
or

LDA 1,@6,3

replaces the contents of location 23 with the number 12 and loads 35 (the contents of location 12) into AC1.

Move Data Instructions

These two instructions move data between memory and the accumulators. In the descriptions of all
memory reference instructions, E represents the effective address.

o0
LDA Load Accumulator
0 0 1 A I X D
1 1 | l | l I 1 | 1 1
o ' 1 2 3 T 4 5 6 ' 1 8 9 ' 10 11 12 713 14 15

Load the contents of location E into accumulator 4. The contents of E are unaffected, the original contents
of A are lost.

STA Store Accumulator | 5
b ,
0 1 0 A I X D
1 I ! i | i { | | | i
o 1 2 3 T g 5 6 | 7 8 9 T 10 11 12 ' 13 14 15

Store the contents of accumulator A4 in location E. The contents of 4 are unaffected, the original contents
of E are lost.
2-5

Modify Memory Instructions

These two instructions alter a memory location and test the result for a skip. They are used to count
loop iterations or successively modify a word for a series of operations.

iISZ Increment and Skip if Zero
0 0 0 0 I X D
{ ! | | | { | I |] |
o T 1 2 LI 5 6 ' 7 8 9 T 10 11 12 a3 14 15

Add 1 to the contents of location E and place the result back in E. Skip the next instruction in sequence if

the result is zero.

DSz Decrement and Skip if Zero
0 | 0 l 0 | 1 I X D
o 1 2 L) 5 6 ! 7 8 : 9 ! 10 11 : 12 l 13 : 14 : 15

Subtract 1 from the conten

if the result is zero.

ts of location E and place the result back in E. Skip the next instruction in sequence

Consider a block of thirty words in locations 2000-2035 that we wish to move to locations 5150-5205
but in reverse order. We could autoincrement through one set, autodecrement through the other, and decre-
ment a control count to determine when the block transfer is complete.

LDA
STA
LDA
STA

LOOP: LDA
STA
DSZ
IMP

2-6

0,CNT ;Set up autoincrement location
0,21

0,CNT+1 ;Set up autodecrement location
0,35

0,@21 ;Get a word

0,@35 ;Store it

CNT+2 ;Count down word count
LOOP ;Jump back for next word"

;Skip to here when count is Zero

CNT: 001777 ;1 before source block 4
005206 ;1 after destination block
000036 ;Word count: 30,,=36g

Of course we could just as well put 177742 (—36) in CNT + 2 and replace the DSZ with an ISZ.

Jump Instructions

These two instructions allow the programmer to alter the normal program sequence by jumping to an
arbitrary location. They are especially useful for calling and returning from subroutines.

JMP Jump
0 0 0 0 0 !)nf 1 | \ 11) | | |
) I 1 : 2 I 3 I 4 6 ' 7 8 9 ' 10 11 12 13 14 15

Load E into PC. Take the next instruction from location E and continue sequential operation from there.

JSR Jump to Subroutine
0 I 0 1 0 1 0 L 1 I XI 1 i 1 p i 1]
o ' 1 2 3 1 4 5 6 | 17 8 9 | 10 11 12 ' 13 - 14 15

Lcad an address one greater than that in PC into AC3 (hence AC3 receives the address of the location fol-
lowing the JSR instruction). Load E into PC. Take the next instruction from location E and continue sequen-
tial operation from there. The original contents of AC3 are lost.

Note: The effective address calculation is completed before PC+1 is loaded into AC3. Thus a JSR

that specifies AC3 as a base register does execute properly; ie the previous contents of AC3 are used in the
address calculation.

The usual procedure for calling a subroutine is to give a JSR whose effective address is the starting loca-
tion of the routine. Since PC + 1 is saved in AC3, a subsequent return can be made to the location following the
JSR simply by giving a JMP O 3 Note also that PC+1 is saved in an accumulator. Hence the subroutine can
be reentrant (pure), ie memory is not modified by the act of calling it. If we wish to use AC3 in the subrou-
tine, we can store the return address in a convenient place in page zero, say location B, with an STA 3,B
and then return with a JMP @B

A convenient way to handle a number of subroutines that are called frequently is to store their starting
addresses in page zero. Suppose we have subroutines starting at locations U, V, W, X, If we store these
15-bit addresses at locations UC, VC, WC, XC, . .

tine, say the one beginning at X, simply by giving a JSR @XC.

. respectively in page zero, then we can call a given rou-

27

4

x

Consider a print subroutine that we wish to use to output fifty words beginning at TAB. The routine
begins at PRT, which address is stored in PRTC in page zero. Our main program would contain this.

JSR @PRTC
;Return here

We use AC2 as a base register for counting through the table and ACO to output the data. The starting
address of the table is in TABI, which is in the vicinity of PRT. The subroutine might look something like this.

PRT: LDA 2,TAB1 ;Set up AC?2 as base for table
LDA 0,0,2 ;Load word for output into ACO
;10 part of routine here

ISZ PRT+1 ;Increment displacement in load instruction
DSZ CNT ;Done yet?
JMP PRT+1 ;No, get next word
JMP 0,3 ; Yes, return by AC3
TABI: TAB
CNT: 62 ;625=50,

This routine is incomplete as it destroys itself; to be used again the displacement in location PRT 4 1 must
be changed back to zero. If we replaced the ISZ with an arithmetic instruction that increments AC2, thus using
AC2 as an index register and leaving the LDA displacement alone, the routine would be complete, as AC2 is
set up every time it is called, and except in the Nova, it would be faster. It would be even faster if we deleted
the ISZ, stored the address TAB-1 in an autoincrementing location, say 23, and loaded ACO with

LDA 0,@23

Argument Passing. Suppose we have an arithmetic subroutine that operates on arguments in ACO and
ACl1, leaving the result in AC1. The subroutine call looks like this:

JSR VS1 ;Call with arguments in ACO, AC1
;Return here with result in AC1

and the subroutine looks like this:

VS1: . ;Arithmetic operations

JMP 0,3 ;Return to call + 1

In the above the program would have to load the accumulators before calling the routine. Now it is
often convenient for the program simply to supply the arguments (or the addresses of the locations that con-
tain them) along with the call and have the subroutine take care of the data transfers. With this version the
program gives the arguments in the two memory locations immediately following the JSR,

JSR VS2
;Argument 1
;Argument 2
;Return here with result in AC1

2-8

and the return is made to the location following the second argument with the result in AC1.

VS2: LDA 0,0,3 ;Pick up argument 1
LDA 1,1,3 ;Pick up argument 2
JMP 23 ;Return to call + 3

This version is called with the addresses of the arguments following the JSR; otherwise it is the same as
version 2.

JSR Vs3
;Address of argument 1
;Address of argument 2
VS3: LDA 0,@0,3 ;Pick up argument 1
LDA 1,@1,3 ;Pick up argument 2
JMP 23 ;Return to call + 3

The next version is the same as version 3 except that the result replaces the second argument in memory.

JSR VsS4
;Address of argument 1
;Address of argument 2 and result
VS4: LDA 0,@0,3 ;Pick up arguments
LDA 1,213
STA 1,@1,3 ;Store result
JMP 2,3

The final version is the same as the fourth but ACO and ACI1 are not disturbed by its execution. The
call is exactly the same as for VS4.

VSs5: STA 0,T™M0 ;Save ACs
STA 1,T™M1
LDA 0,@0,3 ;Pick up arguments
LDA 1,213

29

STA 1,@1,3 ;Store result

LDA 0,TM0 ;Restore ACs

LDA 1,TM1

JMP 2,3
T™MO: 0 ;Temporary storage for ACs
T™1: 0

2.2 ARITHMETIC AND LOGICAL INSTRUCTIONS

To perform logical operations the hardware interprets operands as logical words. For arithmetic opera-
tions, operands are treated as 16-bit unsigned numbers, with a range of O to 216—1. The program however
can interpret them as signed numbers in twos complement notation as described at the beginning of this chap-
ter. It is a property of twos complement arithmetic that operations on signed numbers using twos comple-
ment conventions are identical to operations on unsigned numbers; in other words the hardware simply treats
the sign as a more significant magnitude bit. Suppose an accumulator contains this binary configuration:

[1 000 000 001 011 001]
0

15

As an unsigned number this would be equivalent to

100131y = 328579
whereas interpreted as a signed number using twos complement notation it would be

Insofar as processor operations are concerned, it makes no difference which way the programmer interprets
the contents of the accumulators provided only that he is consistent.

Numbers in twos complement notation are symmetrical in magnitude about a single zero representation
so all even numbers both positive and negative end in 0, all odd numbers in 1 (a number all 1s represents — 1).
If ones complements were used for negatives, one could read a negative number by attaching significance to
the Os instead of the 1s..In twos complement notation each negative number is one greater than the comple-
ment of the positive number of the same magnitude, so one can read a negative number by attaching signi-
ficance to the rightmost 1 and attaching significance to the Os at the left of it (the negative number of largest
magnitude has a 1 in only the sign position). Assuming the binary point to be stationary, 1s may be discarded
at the left in a negative integer, just as leading Os may be dropped in a positive integer; equivalently an
integer can be extended to the left by prefixing 1s or Os respectively (ie by prefixing the sign). In a negative
(proper) fraction, Os may be discarded at the right; as long as only Os are discarded, the number remains in
twos complement form because it still has a 1 that possesses significance; but if a portion including the right-
most 1 is discarded, the remaining part of the fraction is now a ones complement. Truncation of a negative
number thus increases its absolute value.

The computer does not keep track of a binary point; the programmer must adopt a point convention
and shift the magnitude of the result to conform to the convention used. Two common conventions are to

regard a number as an integer (binary point at the right) or as a proper fraction (binary point at the left);
2-10

in these two cases the range of signed numbers represented by a single word is —2'5 to 2!5—1 or —1 to
1—2-15

Since each bit position represents a binary order of magnitude, shifting a number is equivalent to mul-
tiplication by a power of 2, provided of course that the binary point is assumed stationary. Shifting one place
to the left multiplies the number by 2. A O should be entered at the right, and no information is lost if the
sign bit remains the same — a change in the sign indicates that a bit of significance has been shifted out.
Shifting one place to the right divides by 2. Truncation occurs at the right, and a bit equal to the sign must

be entered at the left.
Associated with the accumulators is the Carry flag, which is used to detect a carry out of bit 0 in an

arithmetic operation. The circumstances that generate a carry out of the most significant bit are obvious
when dealing with unsigned numbers. If addition or incrementing increases a number beyond 26— 1, a carry
is produced. In subtraction the condition is the same if instead of subtracting we add the complement of
the subtrahend and add 1 to the result (subtraction is performed by adding the twos complement). In terms
of the original operands the subtraction A—B produces a carry if AZ>B. Forming the twos complement of
zero generates a carry, for complementing zero produces a word containing all 1s, and adding 1 to that pro-
duces all Os again plus a carry. The statement of the carry conditions in terms of signed numbers is more
complex, but they are always exactly equivalent to the conditions given above if the numbers are simply inter-
preted as unsigned. In any event the complete conditions that produce a carry for numbers signed or unsigned
are given in the instruction descriptions.

Arithmetic and Logical Processing. The logical organization of the arithmetic unit is illustrated below.
Each instruction specifies one or two accumulators to supply operands to the function generator, which per-
forms the function specified by the instruction. The function generator also produces a carry bit whose value
depends upon three quantities: a base value specified by the instruction, the function performed, and the
result obtained. The base value may be derived from the Carry flag, or the instruction may specify an inde-
pendent value.

I 17 BITS .
GENERATOR SHIFTER
1 BIT 16 BITS | 16 BITS 17 BITS
CARFZ] ACCUMULATORS SKIP SENSOR
1 BIT 16 BITS
¥ _I7BITS

LOAD/NO LOAD

ORGANIZATION OF ARITHMETIC UNIT |

The 17-bit output of the function generator, comprising the carry bit and the 16-bit function result, then
goes to the shifter. Here the 17-bit result can be rotated one place right or left, or the two 8-bit halves of
the 16-bit function result can be swapped without affecting the carry bit. The 17-bit shifter output can then
be tested for a skip; the skip sensor can test whether the carry bit or the rest of the 17-bit word is or is not
equal to zero. Finally the 17-bit shifted word can be loaded into Carry and one of the accumulators selected
by the instruction. Note however that loading is not necessary: an instruction can perform a complicated
arithmetic and shifting operation and test the result for a skip without affecting Carry or any accumulator.

2-11

Carry, Shift and Skip Functions

An instruction that has a 1 in bit O performs one of eight arithmetic and logical functions as specified
by bits 5-7 of the instruction word. The function, which may be anything from a simple move to a subtrac-
tion, always uses the contents of the accumulator specified by bits 1 and 2; and if a second operand is required,
it comes from the accumulator addressed by bits 3 and 4.

AC AC NO
1 SOURCE DESTINATION FUNCTION SHIFT CARRY LOAD SKIP
ADDRESS ADDRESS
1 | i } 1 1 1 1 .
0 1 2 3 ! 4 5 6 ' 7 8 9 10 11 12 13 14 15

The instruction also supplies a carry bit to the shifter with the result. Bits 10 and 11 specify a base
value to be used in determining the carry bit. The instruction supplies either this value or its complement
depending upon both the function being performed and the result it generates. The mnemonics and bit con-
figurations and the base values they select are as follows.

Mnemonic Bits 10-11 Base value for carry bit
00 Current state of Carry
V4 01 Zero
0] 10 One
C 11 Complement of current state of Carry

The three logical functions simply supply the listed values as the carry bit to the shifter. The five arithme-
tic functions supply the complement of the base value if the operation produces a carry out of bit 0; other-
wise they supply the value given. The carry bit can be used in conjunction with the sign of the result to
detect overflow in operations on signed numbers. But its primary use is as a carry out of the most signifi-
cant bit in operations on unsigned numbers, such as the lower order parts in multiple precision arithmetic.

The 17-bit word consisting of the carry bit and the 16-bit result is operated on by the shifter as speci-
fied by bits 8 and 9.

Mnemonic Bits 8-9 Shift operation
00 None
L 01 Left rotate one place. Bit 0 is rotated into the carry position, the

carry bit into bit 15,
L-[Cl— 0-15 I-J

R 10 Right rotate one place. Bit 15 is rotated into the carry position,
the carry bit into bit O.

I——l CrH—= 0-15 |-—]

2-12

Swap the halves of the 16-bit result. The carry bit is not affected.

C 0-7 8-15

result of the function and Carry the carry bit only if bits 8 and 9 are 0.

The shifter output is also tested for a skip according to the condition specified by bits 13-15. The proc-
essor skips the next instruction if the specified condition is satisfied.

Bit Effect of a 1 in the bit

13 Selects the condition that the low order 16 bits of the
shifter output are all 0.

14 Selects the condition that the bit in the carry position
of the shifter output is 0.

15 Inverts the conditions selected by bits 13 and 14. In

other words a 1 in bit 15 causes 1s in the other bits
to select nonzero conditions.

The combined effects of bits 13—15 taken together and the mnemonics for the various bit configurations are
as follows.

Mnemonic Bits 13-15 Skip function
0 Never Skip
SKP 1 Always Skip
SZC 2 Skip on Zero Carry
SNC 3 Skip on Nonzero Carry
SZR 4 Skip on Zero Result
SNR 5 Skip on Nonzero Result
SEZ 6 Skip if Either Carry or Result is Zero
SBN 7 Skip if Both Carry and Result are Nonzero

Remember that the test is made on the shifter output. Thus if the result of an addition is shifted left, SZC
and SNC actually test the sign of the sum. Note also that the test is made whether or not the shifter output
is loaded. The program can therefore test the result of an arithmetic function without disturbing the orig-
inal operands or Carry.

Programming Conventions. The instruction

ADD 1,2 [1/01]1 o]t 1 djoofocfo]ooo]

2-13

which assembles as 133000, adds the numbers in AC1 and AC2, loads the unshifted result in AC2, and com-
plements Carry if there is a carry out of bit 0. Other carry and shift operations are selected simply by append-
ing the appropriate letters to the function mnemonic, but the carry letter (if any) must appear first. Thus to
generate a carry bit of 1 on a carry (0 otherwise) and load Carry and AC2 with the 17-bit result shifted
left we give

ADDZL 1,2 11/01]1 011 0jo1{01/0/000

which assembles as 133120. This instruction places the sign of the sum in Carry, the rest of the sum in bits
0-14 of AC2, and 2 1 or a 0 in bit 15 depending on whether or not there is a carry out of the sign bit. To use
the present state of Carry instead of 0 as the basis for adjusting bit 15, but otherwise produce the same effect, give

ADDL 1,2 [1]o1]1 o[t 1 dlo1]odlo]ooo]

which assembles as 133100. The instruction

ADDL 1,2,8ZC l1]o11 oft 1 djo1{oco[o10]

assembles as 133102, and affects Carry and AC2 in the same manner as the preceding instruction, but also
causes the processor to skip the next instruction if the sign of the sum is positive.

The initial symbol # following the expanded function mnemonic places a 1 in bit 12 to prevent the loading
of the shifter output. Hence we can skip the next instruction on a positive sum without affecting AC2 or Carry by
giving

ADDL# 1,2,SZC lt]o1]1 ofi1 do1joofijo10]

which assembles as 133112,

Arithmetic and Logical Functions

The eight functions are selected by bits 5-7 of the instruction word. For convenience the source and des-
tination accumulators addressed by the S and D parts of the instruction are referred to as ACS and ACD.

CoMm Complement
1 S D 0 0 0 SIH ? N | SK [
0 1 I 2 3 % 4 5 I 6 i 7 8 9 10 11 12 13 14 15

Place the (logical) complement of the word from ACS and place the carry bit specified by C in the shifter. Perform the
shift operation specified by SH. Load the shifter output in Carry and ACD unless MV is 1. Skip the next instruction if the
shifter output satisfies the condition specified by SK.

ExaMPpLE. Suppose we wish to test AC1 for the unsigned integer 216—1 (177777, signed —1). The
instruction

COM# 1,1,SZR
2-14

skips the next instruction if AC1 contains all 1s. The result is not loaded so we could specify any accumulator
as the destination, eg

COM# 1,3,SZR

NEG Negate
1 ?‘ ll) 0 | 0 ’ 1 SH C N SK
0 1 2 3 Ta 5 6 ! 7 8 ' 9 10 : i1 12 13 : 14 l 15

Place the twos complement of the number from ACS into the shifter. If ACS contains zero, supply the complement of
the value specified by C as the carry bit; otherwise supply the specified value. Perform the shift operation specified by
SH. Load the shifter output in Carry and ACD unless V is 1. Skip the next instruction if the shifter output satisfies the
condition specified by SK.

MOV Move
| §]'|) 0 ' 1 | 0 SH C N I SK 1
0 1 2 3 T 4 5 6 T 7 8 I 9 10 I 11 12 13 14 15

Place the contents of ACS and the carry bit specified by C in the shifter. Perform the shift operation specified by
SH. Load the shifter output in Carry and ACD unless N is 1. Skip the next instruction if the shifter output sat-
isfies the condition specified by SK.

ExaMPLES.The test for a zero word in AC1 is any of these:
MOV 1,1,SZR MOV 1,1,SNR MOV# 1,1,SZR MOV# 1,1,SNR

Suppose we wish to divide the number in AC2 by 2.

MOVL# 22S7ZC ;Is it positive?
MOVOR 2,2 SKP ;No, put in a 1 and skip
MOVZR 22 ;Yes,putina 0
INC Increment
1 ?‘ l? 0 1 1 [1 SH C N SK
I |
) 1 2 3 1 a3 5 6 I 7 8 9 10 11 12 13 I 14 I 15

Add 1 to the number from ACS and place the result in the shifter. If ACS contains 216— 1 (signed —1) sup-
ply the complement of the value specified by C as the carry bit; otherwise supply the specified value. Per-
form the shift operation specified by SH. Load the shifter output in Carry and ACD unless N is 1. Skip the

next instruction if the shifter output satisfies the condition specified by SK.
2-15

ADC Add Complement

1 ?’ ll) l|O|0 SIH C N SK
0 1 2 3 T 4 5 6 ' 7 8 9 10111 12 13|14|15

Add the (logical) complement of the number from ACS to the number from ACD, and place the result in the shifter.
If ACD > ACS (unsigned), supply the complement of the value specified by C as the carry bit; otherwise supply
the specified value. Perform the shift operation specified by SH. Load the shifter output in Carry and ACD unless
N is 1. Skip the next instruction if the shifter output satisfies the condition specified by SK.

NoTtE: For signed numbers the carry condition is that the signs of the operands are the same and ACD is
the greater, or the signs differ and ACD is negative.

This instruction is often used to process high order words in multiple precision subtraction, wherein a neg-
ative is usually a ones complement instead of a twos complement. The overflow condition for signed numbers
using ones complement conventions is the same as that given for SUB below.

SUB Subtract
L] ¢ P o] o¢ [~] sk
!
0 1 2 3 T 3 5 6 7 8 9 10 11 12 13 14 15

Subtract by adding the twos complement of the number from ACS to the number from ACD, and place
the result in the shifter. If ACD>>ACS (unsigned), supply the complement of the value specified by C as the
carry bit; otherwise supply the specified value. Perform the shift operation specified by SH. Load the shifter
output in Carry and ACD unless N is 1. Skip the next instruction if the shifter output satisfies the condition
specified by SK.

Note: For signed numbers the carry condition is that the signs of the operands are the same and ACD>
ACS, or the signs differ and ACD is negative.

EXAMPLEs. This instruction can be used to clear an accumulator by subtracting it from itself.
SUB 2,2
clears AC2 and complements Carry,
SUBO 2,2

clears both AC2 and Carry.

SUB is also useful for comparing quantities, eg
SUB# 2,3,SNR

skips if AC2 and AC3 are unequal but does not affect either accumulator.
2-16

ADD Add

1 S D 1 1 0 SH C N SK

I | | | I |] {

0 1 2 3 T 4 5 6 7 8 9 10 11 12 13 14 15

Add the number from ACS to the number from ACD, and place the result in the shifter. If the unsigned
sum is >216, supply the complement of the value specified by C as the cafry bit; otherwise supply the specified
value. Perform the shift operation specified by SH. Load the shifter output in Carry and ACD unless N is 1.
Skip the next instruction if the shifter output satisfies the condition specified by SK.

Norte: For signed numbers the carry condition is that both summands are negative, or their signs differ and
their magnitudes are equal or the pdsitive one is the greater in magnitude.

AND And
s T e [v s [e [N sk

0 1 2 3 T 4 5 6 1 7 ' 8 9 10 11 12 13 14 15

Place the logical aND function of the word from ACS and the word from ACD in the shifter. Supply the
value specified by C as the carry bit. Perform the shift operation specified by SH. Load the shifter output in
Carry and ACD unless N is 1. Skip the next instruction if the shifter output satisfies the condition specified
by SK.

This instruction operates bitwise on a pair of words, so it actually performs sixteen logical operations
simultaneously. A given bit of the result is 1 if the corresponding bits of both operands are 1; otherwise the
resulting bit is 0.

ACS; ACD; Result;
0 0 0
0 1 0
1 0 0
1 1 1

Programming Examples

Together ADC and SUB allow the program to compare the magnitudes of unsigned numbers in every
way. Eg

SUBZ# 1,0,SZC
skips if ACO<<ACI1, whereas,
ADCZ# 1,0,SZC

skips if ACO<CACI,

It is well known that the nth perfect square is the sum of the first n odd numbers. We can therefore find
the largest integer contained in the square root of an integer held in ACO by successively subtracting odd num-
bers in order from ACO until overflow occurs, ie until ACO becomes negative. The desired answer is the number

of odd numbers successfully subtracted before a carry occurs. The routine is called by a JSR with effective

address SQRT.
2-17

SQRT: SUBO 1,1 ;Clear AC1 and Carry

MOVOL 1,2 ;AC2 gets 1 + twice AC1 (2n + 1)

SUBZ 2,0,SNC ;Subtract next odd number; still positive?

IMP 0,3 ;No, exit with n one less than number of odd numbers tried
INC 1,1 ;Yes, increment n

JMP SQRT+1 ;and try next odd number

The instruction set has only one logical function of two variables, but the inclusive and exclusive OR func-
tions can be performed by very simple routines. In an inclusive OR a bit of the result is 1 if either of the cor-
responding operand bits is 1, otherwise it is 0. The algorithm for full words is

A~An~B+B=AVvB

Taking the arguments as single bits, if Bis 1, 4 A ~ B is 0 regardless of the state of A4, and the expres-
sion on the right is 1. If B is O, the expression is 1 or 0 as 4 is 1 or 0. In no case are A A~ ~ B and B both 1,
so the full word addition generates no carries. This sequence places the inclusive oR of ACO and AC1 in AC1
(ACO = B, AC1 = A).

COM 0,0 :~B
AND 0,1 ;~B A 4in AC1
ADC 01 i~~B+ ~BAA=B+~Bn AinACl

In an exclusive OR a bit of the result is 1 if the corresponding operand bits are different, otherwise it is O.
This is equivalent to the sum if carries from one bit position to the next are ignored. Now a carry out of the ith
position is equ‘al to twice the value of a 1 in the ith position, and a carry is generated only if the ith bits of both
summands are 1, provided we compensate for any carry into the ith position. The algorithm is therefore.

A~B=A+ B —2(4 AB)

This sequence places the exclusive or of ACO and AC1 in AC1, destroying the contents of AC2 and Carry
in the process (ACO = B,AC1 = 4).

MOV 1,2 ;Move A to AC2
ANDZL 0,2 ;32(A ~ B) in AC2
ADD 01 ‘A + B

SUB 2,1 ;A + B —2(A AB)

Double Precision Arithmetic. A double length number consists of two words concatenated into a 32-bit
string wherein bit 0 is the sign and bits 1-31 are the magnitude in twos complement notation. The high order
part of a negative number is therefore in ones complement form unless the low order part is null (at the right

+262,146,, = +2000002; = @000 000 000 001 OOOIO 000 000 000 000 010}
° 15 16 31
—262,146,, = —2000002; = Ulll111lllllOllllllll111111111110]

0 15 16 31
2-18

only Os are null regardless of sign). Hence in processing double length numbers, twos complement operations
are usually confined to the low order parts, whereas ones complement operations are generally required for the
high order parts.

Suppose we wish to negate the double length number whose high and low order words respectively are in
ACO and AC1. We negate the low order part, but we simply complement the high order part unless the low
order part is zero. Hence

NEG 1,1,SNR
NEG 0,0,SKP ;Low order zero
COM 0,0 ;Low order nonzero

Note that the magnitude parts of the sequence of negative numbers from the most negative toward zero are
the positive numbers from zero upward. In other words the negative representation —x is the sum of x and the
most negative number. Hence in multiple precision arithmetic, low order words can be treated simply as posi-
tive numbers. In unsigned addition a carry indicates that the low order result is just too large and the high
order part must be increased. We add the number in AC2 and AC3 to the number in ACO and AC1.

ADDZ 3,1SZC
INC 2,2
ADD 2,0

In twos complement subtraction a carry should occur unless the subtrahend is too large. We could incre-
ment as in addition, but since incrementing in the high order part is precisely the difference between a ones
complement and a twos complement, we can always manage with only two instructions. We subtract the num-
ber in AC2 and AC3 from that in ACO and ACI.

SUBZ 3,18ZC
SUB 2,0,SKP
ADC 2,0

Multiply and Divide Subroutines. In pencil and paper decimal multiplication, one multiplies the multipli-
cand by each multiplier digit separately to form a set of partial products. Successive partial products are shifted
one place to the left (they are multiplied by successive powers of 10) and summed. In the computer it is easier
to add each partial product as it is formed and shift the result one place to the right so the running sum is in
the correct position to receive the next one. Since the numbers are binary, each partial product is either the
multiplicand or zero. Hence at each step we either add the multiplicand and shift or simply shift depending
on whether the next bit of the multiplier is 1 or 0.

The multiply subroutine operates on unsigned integers in AC1 and AC2 to generate a double length product
whose high and low order parts are left in ACO and AC1 respectively. If entry is made at MPYA, the product is
added to the number originally in ACO (the result is ACO+ AC1 X AC2). Carry is left unchanged.

MPYU: SUBC 0,0 ;Clear ACO, don’t disturb Carry
MPYA: STA 3,.CB0O3 ;Save return
LDA 3,.CB20 ;Get step count
.CB99: MOVR 1,1,SNC ;Check next multiplier bit
MOVR 0,0,SKP ;0 — shift

2-19

ADDZR 2,0 ;1 — add multiplicand and shift

INC 3,3,SZR ;Count step, complementing Carry on final count
'JMP .CB99 ;Iterate ioop
MOVCR 1,1 ;Shift in last low bit (which was complemented by final count) and
JMP @.CB03 ;restore Carry
- .CB03: 0
.CB20: —20 ;16,0 steps

The divide subroutine also operates on unsigned integers, using a double length dividend and a single
length divisor to produce 2 single length quotient and remainder. The routine starts by comparing the divisor
with the high order half of the dividend: if the divisor is less than or equal to the latter quantity, the division is
not performed as the result would be greater than 216-1, the largest integer than can be held in an accumula-
tor. (The result would be greater than or equal to 1 if the operands are interpreted as proper fractions.) It is
not a sensible procedure simply to compute the first sixteen bits of the quotieat as it would be impossible to
determine the order of magnitude. So it is up to the programmer to shift the dividend to the correct position
beforehand. For operations limited to single length integers (referred to as “integer division”) the one-word
dividend is treated as the low order half of a double length number whose high order part is null, and the
routine fails to perform the division only when the divisor is zero. The worst possible case is the division
of 216-1 by 1, whose integral result can be accommodated.

In division on paper, one subtracts out the divisor the number of times it goes into the dividend, then
shifts the dividend one place to the left (or the divisor to the right) and again subtracts out. In binary com-
putations the divisor goes into the dividend either once or not at all. Each comparison thus generates a single
bit of the quotient. If the divisor does go in, it is subtracted and a 1 is entered into the quotient; if not, a O is
entered. The test conditior. is reversed if the dividend shift puts a 1 in Carry; this way Carry is used effectively
as an extra magnitude bit and no information is lost in the shift.

The high and low parts of the dividend are in ACO and AC1, the divisor is in AC2. At completion the
remainder is in ACO, the quotient is in AC1, AC2 is unchanged, and Carry is left clear. For integer division
entry is at .DIVI with the dividend in ACI. If the division is not performed, Carry is set and the three
accumulators are unchanged except that calling .DIVI clears ACO. Note that the result is such that if .MPYA
is called, ACO and ACI are restored, ie divisor times quotient plus remainder equals original dividend. For
further information see the subroutine writeup, 093-000016.

.DIVI: SUB 0,0 ;Integer divide — clear high part
.DIVU: STA 3,.CC03 ;Save return
SUBZ# 2,0,SZC :Test for overflow
JMP .CC99 ;Yes, exit (ACO > AC2)
LDA 3,.CC20 ;Get step count
MOVZL 1,1 ;Shift dividend low part
.CC98: MOVL 0,0 ;Shift dividend high part
SUB# 2,0,S2C ;Does divisor go in?
SUB 2,0 ;Yes
MOVL 1,1 ;Shift dividend low part
INC 3,3,SZR ;Count step
JMP CC98 ;Iterate loop

2-20

SUBO 3,3,SKP ;Done, clear Carry

.CC99: SUBZ 3,3 ;Set Carry
JMP @.CC03 ;:Return

.CC03: 0

.CC20: -20 ;1640 steps

Byte Manipulation. For prdcessing 8-bit bytes it is convenient to use a byte pointer in which bits 0-14 are
the address of the memory location that contains or will receive the byte, and bit 15 specifies which half (1 left,

MEMORY ADDRESS

1 =L
0=R

0 14 15

0 right). Incrementing a pointer with this format changes bit 15 every count to specify the next byte, but changes
the address part only every other count.

The following subroutine picks up a byte, places it in the right half of ACO, and increments the byte
pointer in memory. The calling sequence is

JSR PICK
;Address of pointer
;Return here if byte is zero
;Normal return

The calling sequence supplies the address of the location containing the pointer. A separate return for a zero
byte allows the program to process a sequence of bytes whose length is unspecified, but which terminates with
a zero byte.

PICK: LDA 2,@0,3 ;Get byte pointer
ISZ @0,3 ;Increment pointer
MOVZR 2.2 ;Put address in right place (left/right bit to Carry)
LDA 0,0,2 ;Bring memory word to ACO
LDA 2,C377 ;Get 8-bit mask
MOV 0,0,SZC ;Test Carry for which half
MOVS 0,0 ;Swap byte from left to right
AND 2,0,SNR ;Mask out unwanted byte and test for zero
JMP 1,3 ;Zero, return to call + 2 ‘
JMP 2,3 ;Nonzero, return to call +3
C377: 377 ;8-bit mask (1s in right half)

2.3 INPUT-OUTPUT

Instructions in the in-out class govern all transfers of data to and from the peripheral equipment, and also
perform various operations within the processor. An instruction in this class is designated by 011 in bits 0-2.
Bits 10-15 sclect the device that is to respond to the instruction. The format thus allows for 64 codes of which
62 can be used to address devices (octal 01-76). The code 00 is not used, and 77 is used for a number of spe-

cial functions including reading the console data switches and controlling the program interrupt. A table in
221

Appendix E lists all devices for which codes have been assigned, and gives their mnemonics and DGC option
numbers.

Every device has a 6-bit device selection network, an Interrupt Disable flag, and Busy and Done flags. The
selection network decodes bits 10-15 of the instruction so that only the addressed device responds to signals
sent by the processor over the in-out bus. The Busy and Done flags together dengtellze_llzisnc state of the device.
When both are clear the device is idle. To place the device in operatlon the program sets ‘Busy. If the device
will be used for output, the program must glve a data-out instruction that sends the first unit of data — a word
or character depending on how the device handles information. (The word “output” used without qualification
always refers to the transfer of data from the processor to the peripheral equipment; “input” refers to the trans-
fer in the opposite direction.) When the device has processed a unit of data, it clears Busy and sets Done to in-
dicate that it is ready to receive new data for output, or that it has data ready for input. wmer case the

program would respond with a data-out instruction to send more data _in the latter with a data-in instruction

to brrng in the data that is ready If the] Interrupt Disable flag is clear, the settlng of Done signals the program
by requesting an 1nterrupt t; if the program has set Interrupt Disable, then it must keep testing Done or Busy to
determine when the dev1ce is ready

bits 8 and 9 specrfy a control function, the mnemonics and bit configurations and the functions they select are
as follows.

Mnemonic Bits §-9 Control function
00 None
S 01 Start the device by clearing Done and setting Busy
c 10 Clear both Busy and Done, idling the device
P 11 Pulse the special in-out bus control line — the effect, if

any, depends on the device

The overall sequence of Busy and Done states is determined by both the program and the internal operation
of the device.

Busy Done
0 0
START (// CLEAR
1 0 .
DEVICE START
COMPLETION 0 1 AGAIN

The data-in or data-out instruction that the program gives in response to the setting of Done can also restart
the device. When all the data has been transferred the program generally clears Done so the device neither re-
quests further interrupts nor appears to be in use, but this is not necessary. Busy and Done both set is a mean-
ingless situation. :

Bits 5-9 specify the complete function to be performed. If there is no transfer (bits 5-7 all alike), bits 3
and 4 are ignored and bits 8 and 9 may specify a control function or a skip condition.
222

NIO No 10 Transfer

Perform the control function specified by F in device D.

SKPBN Skip if Busy is Nonzero
0 1 1 0 0 1 1 1 0 0 D
| 1 | | | | | 1 { | | l
o " 2 3 ' a s 6 ' 1 8 9 10 11 12 7 13 14 15

Skip the next instruction in sequence if the Busy flag in device D is 1.

SKPBZ Skip if Busy is Zero
0 1 1 0 0 1 1 1 0 1 D
| 1] !] i 1 1 ! | 1 I
o ' 1 2 3 ' a4 5 6 ' 7 8 9 10 11 12 ' 13 14 15

Skip the next instruction in sequence if the Busy flag in device D is 0.

SKPDN Skip if Done is Nonzero
0 1 1 0 0 1 1 1 1 0 D
| L] |]] | 1 1 ! 1 1
o ' 1 2 3 ' a 5 6 ' 7 8 9 10 11 12 ' 13 14 15

Skip the next instruction in sequence if the Done flag in device D is 1.

SKPD2 Skip if Done is Zero
0 | 1 0 0 1 1 1 1 1 D
| 1 { i | | | | | | | |
0o 1 2 3 T2 s 6 | 7 8 9 10 11 12 T 13 14 15

Skip the next instruction in sequence if the Done flag in device D is 0.

The letter for the control function is appended to the basic mnemonic; NIO alone with any device code
is a no-op. To place éay the high speed tape reader in operation we could give

N1OS 12

which assembles as 060112 (0 110 000 001 001 010) and causes the reader to read one lineAfrom tape into
its buffer. There are mnemonics for the device codes so we could also give the equivalent

NIOS PTR
223

To determine when the character is in the buffer without using the program interrupt we can wait for either Busy
to clear or Done to set, eg by giving

SKPDN PTR
JMP ~1

If bits 5-7 are not all alike the instruction calls for an in-out transfer. Bits 3 and 4 specify the accumula-
tor that supplies or receives the data, bits 8 and 9 specify a coritrol function (if any) as listed above.

DIA Dataln A
0 I | ! AxC 0 I 0 | ! 1|: I I ? 1 |
0 ! 1 2 3 T g 5 6 ' 7 8 9 10 11 12 ' 13 14 15

Move the contents of the A buffer in device D to accumulator AC, and perform the function specified by F in
device D.

The number of data bits moved depends on the size of the device buffer, its mode of operation, etc. Bits
in AC that do not receive data are cleared.

DOA Data Qut A
0 1 1 AC 0 1 | 0 1[‘7 1 1 Il) 1 |
0 I 1 l 2 3 I 4 5 I 6 ' 7 8 9 10 11 12 7 13 14 15

Send the contents of accumulator AC to the A buffer in device D, and perform the function specified by F in
device D.

The amount of data actually accepted by the device depends on the size of its buffer, its mode of opera-
tion, etc. The original contents of 4C are unaffected.

DIB Datain B
0 | 1 1 AIC 0 1 1 F | 1 ll) 1]
0 1 : 2 3 g 5 I 6 { 7 8 I 9 10 11 12 V13 14 15

Move the contents of the B buffer in device D to accumulator AC, and perform the function specified by F in
device D. :

The number of data bits moved depends on the size of the device buffer, its mode of operation, etc. Bits
in AC that do not receive data are cleared.
224

poB Data Out B
0 l | 1 AIC Il:‘ ? | 1
{
1 2 3 i 8 9 10 I 11 12 T 13 14 15

Send the contents of accumulator AC to the B buffer in device D, and perform the function specified by F in
device D.

The amount of data actually accepted by the device depends on the size its buffer, its mode of operation,
etc. The original contents of AC are unaffected.

DIC DatainC
0 | 1 i 1 AIC 1 | 0 i 1 II:I | | ? | |
o T 2 3 ' 4 5 6 ' 7 8 9 10 11 12 713 14 15

Move the contents of the C buffer in device D to accumulator AC, and perform the function specified by F in
device D.

The number of data bits moved depends on the size of the device buffer, its mode of operation, etc. Bits
in AC that do not receive data are cleared.

poc Data Out C
0 1 1 AC 1 1 0 117 | | ? l |
) % 1 I 2 3 { 4 5 I 6 I 7 8 9 10 11 12 Va3 14 15

Send the contents of accumulator AC to the C buffer in device D, and perform the function specified by F in
device D.

The amount of data actually accepted by the device depends on the size of its buffer, its mode of opera-
tion, etc. The original contents of AC are unaffected.

A device may require no IO transfers, such as the real time clock, which uses only NIOS and NIOC to
turn it on and off. All of the simpler data handling devices have only an A buffer, eg to hold a single charac-
ter in the teletypewriter, tape reader and tape punch, or to receive incremental plotting data for a single point
in the plotter. Suppose the reader has read a line from tape into its buffer. We can bring the character into the
right half of AC2 by giving

DIA 2,PTR
If we want to read another line we can make the transfer with a
DIAS 2,PTR

which brings the character into AC2, clears Done and sets Busy causing the reader to read‘the next line. If the

buffer contains the final character to be read from tape we might give
DIAC 2,PTR

which retrieves the character and clears Done. Data is moved in and out in characters of various sizes or in
2-25

full 16-bit words. Generally a device uses only DIA and/or DOA for data but it may use other 1O transfer in-
structions to handle status and control information. A high speed device, such as magnetic tape or disk, may
require TO transfer instructions only for status and control information with data moving directly between the
device and memory via the data channel.

Most peripheral devices involve motion of some sort, usually mechanical. In this respect there are two
types of devices, those that stay in motion and those that do not. Magnetic tape is an example of the former
type. Here the device executes a command (such as read, write, space forward) and Done sets when the entire
operation Is finished. A separate flag requests a data channel transfer each time the device is ready for direct
data access to memory, but the tape keeps moving until an entire record or file has been processed. Paper tape,
on the other hand, stops after each line is read, but if the program gives another DIAS within a critical time
the tape moves continuously.

Other devices operate in one or the other of these two ways but differ in various respects. The tape punch
and teletype output are like the reader. Teletype input is initiated by the operator striking a key rather than by
the program. Once started the card reader reads an entire card, with a DIA required for each column.

In the remainder of this manual the discussion of each device treats only the control functions and the
applicable 10 transfer instructions. The skips apply to all and are the same in all cases. Giving a data-in in-
struction that does not apply to a device (either because the device is output only or does not have the buffer
specified) clears the addressed accumulator but does do the specified control function. Similarly a data-out that
does not apply is a no-op except for control functions. When the device code is undefined or the addressed de-
vice is not in the system, any data-out, an SKPBN or an SKPDN is a no-op, an SKPBZ or SKPDZ is an ab-
solute skip, and any data-in simply clears the addressed AC.

All instructions discussed in the rest of this manual are in-out instructions with various device codes. For
the transfer instructions the mnemonics are given with a dash in the position occupied by an accumulator ad-
dress, as the assembler indicates an error if the programmer fails to specify an accumulator. The programmer
must substitute a valid address for the dash. In the format box for each instruction the accumulator address part
is represented by AC. In the instruction description, “AC” refers to the accumulator specified by the AC part
of the instruction word,

Special Code-77 Functions

In-out instructions with the code 77 in bits 10~15 perform a number of special functions rather than con-
trolling a specific device. In all but the skip instructions bits 8 and 9 are used to turn the interrupt on and off.
The mnemonics are the same as those for controlling Busy and Done in 1O devices, but with code 77 they se-
lect the following special functions.

Mnemonic Function
S Set the Interrupt On flag to enable the processor
to respond to interrupt requests.
C Clear the Interrupt On flag to prevent the processor
from responding to interrupt requests.
P None

Most of these instructions perform functions associated with processor elements so the mnemonic for 77
is CPU. For the transfer type instructions that use no accumulator, the mnemonics are given with an accumu-
lator address included, as the assembler indicates an error if the programmer fails to specify an accumulator

226

even when none is used. A zero address is given, but any valid address would suffice. Instructions for the pro-
gram interrupt and power failure detection are treated in greater detail in later sections.

NIOS CPU interrupt Enable
0 1 | 1 1 0 0 0) 0 0 0 | 1 1 1 1 1 1 1
0 { 1 2 3 { 4 5 6 I 7 8 9 10 l 11 l 12 g 13 I 14 l 15

Set the Interrupt On flag to allow the processor to respond to interrupt requests.

Note: The assembler recognizes the mnemonic INTEN as equivalent to NIOS CPU.

NiOC CPU Interrupt Disable

1 1 0 0 0 0 0 1 0 1 1 1 1 1 1

| 1 1 Il | | |] i | | i
o 1 2 3 172 5 6 T 7 8 9 10 11 12 T 13 14 15

Clear the Interrupt On flag to prevent the processor from responding to interrupt requests.

NotE: The assembler recognizes the mnemonic INTDS as equivalent to NIOC CPU.

DIA -,CPU Read Switches
0 1 | 1 A’C 0 0 | 1 F 1 | 1 | 1 1 1 : 1 ‘ 1
0 ’ 1 2 3 T 4 5 l‘ 6 ' 7 8 : 9 10 11 12 ' 13 14 15

Read the contents of the console data switches into AC, and perfofm the function specified by F.

NoTE: The assembler recognizes the mnemonic READS as equivalent to DIA —,CPU.

DiB —,CPU Interrupt Acknowledge
0 1 1 AC 0 1 1 II*" 1 ’ 1 | 1 I 1 [1 1 1
0 s 1 : 2 : 3 l 4 S ! 6 ; 7 8 9 10 11 12 ' 13 14 15

Place in AC bits 10-15 the device code of the first device on the bus that is requesting an interrupt (“first”
means the one that is physically closest to the processor on the bus). Perform the function specified by F.

Note: The assembler recognizes the mnemonic INTA as equivalent to DIB — CPU. :
2-27

D08 -,CPU Mask Qut
0 1 1 ; 1 A‘C 1 1 0 | 0 I:" 1 1 1 1 1 1 1
0 1 2 3 I 4 5 6 | 7 8 9 10 I ! 12 i 13 l 14 I 15

Set up the Interrupt Disable flags in the devices according to the mask in AC. For this purpose each device is

connected to a given data line, and its flag is set or cleared as the corresponding bit in the mask is 1 or 0. Per-
form the function specified by F.

NoTe: The assembler recognizes the mnemonic MSKO as equivalent to DOB —,CPU.

DIC 0,CPU Clear 10 Devices
0 | 1 1 0 ‘ 0 1 | 0 Il? 1 1 | 1 1 I 1 1 1
o ' 1 3 T g 5 6 9 10 11 12 13 14 15

Clear the control flipflops, including Busy, Done and Interrupt Disable, in all devices connected to the bus. Per-
form the function specified by F.

NotEe: The assembler recognizes the mnemonic IORST as equivalent to DICC 0,CPU — ie as the in-
struction defined here with F set to 10.

DOC o,crU Halt
0 1 1 0 0 1 1 0 F 1 1 1 1 1 1
| i | | [| | | | | ! |
0o T 1 2 3 ' 4 5 6 | 7

8 9 10 11 12 7 13 14 15
Perform the function specified by F and then halt the processor. When the processor stops, the instruction

and data lights display the halt instruction, the address lights point to the location following the halt instruc-
tion. :

NoTE: The assembler recognizes the mnemonic HALT as equivalent to DOC 0,CPU.

SKPBN CPU Skip if Interrupt On is Nonzero
l 1 l 1 . 0 1 0 1 | 1 : 1 0 l 0 1 | 1 ' 1 . 1 | 1 . 1
0 1 2 3 1774 5 6 ' 7] 9 10 11 12 ' 13 14 15

Skip the next instruction in sequence if the Interrupt On flag is 1.

2-28

SKPBZ CPU Skip if Interrupt On is Zero

1] 0 0 1 1 1 0 1 1 1 1 1 1 1

| 1 ! { l] 1 i 1 | { I
o 1 2 3 T 4 N 6 T 17 8 9 10 11 12 T 13 14 15

Skip the next instruction in sequence if the Interrupt On flag is 0.

SKPDN CTPU Skip if Power Failure is Nonzero

1 1 0 0 1 1 1 1 0 1 1 1 1 1 1
| 1 | | | | | 1 { | 1 J
0 1 1 2 3 1 a 5 6 1 7 8 9 10 11 12 T 13 14 15

Skip the next instruction in sequence if the Power Failure flag is 1.

SKPDZ CPU Skip if Power Failure is Zero

0 1 1 0 0 1 1 1 1 1 1 l 1 1 1 1

Il 1] | 1 i 1 i i] { 1
[1 2 3 T 4 K] 6 I 7 8 9 10 11 12 T a3 14 1§

Skip the next instruction in sequence if the Power Failure flag is 0.

The assembler recognizes a number of convenient mnemonics for instructions with device code 77.

Mnemonic Octal
Mnemonic Meaning Equivalent Equivalent
READS Read Switches DIA —,CPU 060477
IORST IO Reset DICC 0,CPU 062677
HALT Halt DOC 0,CPU 063077
INTEN Interrupt Enable NIOS CPU 060177
INTDS Interrupt Disable NIOC CPU 060277
INTA Interrupt Acknowledge DIB —,CPU 061477
MSKO Mask Out DOB —,CPU 062077

Eg to read the switches into AC3 we could simply give
READS 3

instead of
DIA 3,CPU

However, there is one important difference between these special mnemonics and the standard ones: mnemonics

for turning the interrupt on and off cannot be appended to them! Thus to set Interrupt On while reading the
switches we must give

DIAS 3,CPU
2-29

Note that IORST clears Interrupt On along with the devices on the bus. We can set it while clearing the de-
vices by giving

DICS 0,CPU

2.4 PROGRAM INTERRUPT

Many in-out devices must be serviced infrequently relative to the processor speed and only a small amount
of processor time is required to service them, but they must be serviced within a short time after they request it.
Failure to service within the specified time (which varies among devices) can often result in loss of informa-
tion and certainly results in operating the device below its maximum speed. The program interrupt is designed
with these considerations in mind, /e the use of interruptions in the current program sequence facilitates con-
current operation of the main program and a number of peripheral devices. The hardware also allows condi-
tions internal to the processor to signal the program by requesting an interrupt.

Interrupt Requests. Interrupt requests by a device are governed by its Done and Interrupt Disable flags.

Disable is clear — if Interrupt Disable has been set by the program the device cannot request an interrupt. At
the beginning of every memory cycle the processor synchronizes any requests that are then being made. Once
a request has been synchronized the device that made it must wait for an interrupt to start. The request signal
is a level so once synchronized it remains on the bus until the program clears Done or sets Interrupt Disable.
If the program does set the Interrupt Disable flag in a device, that device not only cannot request an interrupt
when its Done flag sets, but any request it has already made and had synchronized is disabled, so it is no
longer waiting for an interrupt. However, if Done is left set, clearing Interrupt Disable restores the request.

Starting an Interrupt. The processor starts an interrupt if all four of the following conditions hold:
® The processor had just completed an instruction or a data channel transfer [see §2.5].
® Atleast one device is waiting for an interrupt to start (ie it was requesting an interrupt at the beginning of
the last memory cycle).
® Interrupts are enabled, /e Interrupt On is set.
® No device is waiting for a data channel transfer, ie there are no data channel requests that the processor

has synchronized but not yet fulfilled. The data channel has priority over program interrupts.
When the processor finishes an instruction it takes care of all data channel requests before it starts an in-

terrupt; this includes any additional data channel requests that are synchronized while data channel transfers
are being made. When no more devices are waiting for data channel transfers, the processor starts an interrupt
if Interrupt On is set and a device was requesting an interrupt at the beginning of the last data channel transfer.

The processor starts an interrupt by clearing Interrupt On so no further interrupts can be started, saving
PC (which points to the next instruction) in location 0, and simulating a JMP @1 to jump to the interrupt
service routine. Location 1 should contain the address of the routine or an indirect address that will get there.

Servicing an Interrupt. The interrupt service routine should determine which device requires service, save
the contents of any accumulators that will be used in the routine, save Carry if it will be used, and service the
device. The routine can identify the device by testing with 10 skips or by giving an interrupt acknowledge
instruction (INTA). This instruction determines which is the first device on the bus that is waiting for service
by reading its device code into an accumulator. The program can simply leave the interrupt off while servicing
the device (by leaving Interrupt On clear), or it can enable interrupts and establish a priority structure that
allows higher priority devices to interru;.)t the current device service routine. This priority is determined by a
mask that controls the states of the Interrupt Disable flags in the various devices. If this final course is taken
2-30

the routine must save location 0, so the return address to the interrupted program will not be lost should an-
other interrupt occur.

Device Priority. There are several ways in which priorities are determined for or assigned to devices on
the bus. An elementary priority is established by the hardware for devices that are requesting interrupts si-
multaneously in that the interrupt acknowledge instruction reads the code of one and only one device: among
those that are waiting it reads the code of that one which is physically closest to the processor on the bus. This
however applies only to those devices that are waiting at the time the acknowledgement is given. Using 10
skips to determine which device to service establishes a priority by the order in which the devices are tested,
but again this applies only to those that are waiting at the time.

The most significant method is by specifying which devices can interrupt a service routine currently in
progress. This is done through the use of a mask that sets up the Interrupt Disable flags. Every device is wired
to a particular data line on the bus and hence to a particular bit of the mask. Although slower devices are as-
signed to the higher numbered bits in the mask, there is no established priority as the program can use any
mask configuration. All devices whose Interrupt Disable flags are set cannot cause an interrupt to start (setting
Interrupt Disable causes the withdrawal of any request that has already been made and prevents the setting of
Done from making a request) and are therefore regarded by the program as being of lower priority. Those
devices in which Interrupt Disable is left clear can interrupt the current routine and therefore are regarded by
the program as being of higher priority.

By means of the mask the program can establish any priority structure with one limitation: in some cases
two or more devices are assigned to the same bit in the mask and are thus all at the same priority level. When
an interrupt is in progress for a device, the rest of the devices assigned to the same mask bit must be regarded
as all of lower priority or all of higher priority depending upon whether they are disabled or not.

Dismissing an Interrupt. After servicing a device the routine should restore the pre-interrupt states of the
accumulators and Carry, turn on the interrupt, and jump to the interrupted program. The instruction that
enables the interrupt sets Interrupt On, but the flag has no effect until the next instruction begins. Thus after
the instruction that turns the interrupt back on, the processor always executes one more instruction (assumed
to be the return to the interrupted program) before another interrupt can start. ‘

If the service routine allows interrupts by higher priority devices, then before dismissing as indicated
above, the routine should turn off the interrupt to prevent further interrupts during dismissal. In dismissing,
the routine should reenable lower priority devices that were not allowed to interrupt the current routine but
will be allowed to interrupt the program to which the processor is returning.

Instructions. The instructions for the program interrupt use special device code 77. Bits 8 and 9 of the
skip instructions sense whether the interrupt is on or off; in the other instructions these bits turn the interrupt
on or off by setting or clearing the Interrupt On flag (these are respectively the start and clear IO control
functions).

NIOS CPU Interrupt Enable

01|1|010000011;l|111|1|1
Il 2 3 " g slsl7 819 10 11 " 12 Va3 14 15

Set Interrupt On to allow the processor to respond to interrupt requests. If Interrupt On actually changes state
(0 = 1) the processor will execute one more instruction before it can start an interrupt.

NoTEe: The assembler recognizes the mnemonic INTEN as equivalent to NIOS CPU.
231

NIOC CPU

Interrupt Disable

1

1

8

9

10

11

Clear Interrupt On to prevent the processor from responding to interrupt requests.
NoTE: The assembler recognizes the mnemonic INTDS as equivalent to NIOC CPU.

SKPBN CPU Skip if Interrupt On is Nonzero

0 1 1 0 0 1 1 1 0 0 I- 1 1 1 1 1

o ' 1 2 3 T 4 5 6 | 7 8 9 10 11 12 T a3 14 15

Skip the next instruction in sequence if Interrupt On is 1.

SKPBZ CPU Skip if Interrupt On is Zero
0 1 1 | 1 | 0 | 0 0 | 1 1 ‘ 1 1 | 1 | 1 1 1
o ' 1 2 3 T a 8 9 10 11 12 7 13 14 15
Skip the next instruction in sequence if Interrupt On is 0.
DIB -,CPU Interrupt Acknowledge
| 1 | 1 A IC’ Il*" 1 ‘ 1 1 ‘ 1 l 1 1 1
0 ! 1 2 3 I 4 8 9 10 11 12 ' 13 14 15

Place in AC bits 10-15 the device code of the first device on the bus that is requesting an interrupt, and per-

form the function specified by F.

NoTE: The assembler recognizes the mnemonic INTA as equivalent to DIB —,CPU.

DOB -,CPU Mask Out
0 : 1 | 1 AlC 1:7 1 . 1 1 | 1 1 1 | 1
o ' 1 2 3 T g 8 9 10 11 12 T a3 14 15

Set up the Interrupt Disable flags in the devices according to the mask in AC (a 1 in a mask bit sets the flags
in all devices assigned to that bit; a O clears them). Perform the function specified by F.

The following lists the devices assigned to the bits in the mask, and for each bit gives the mask for dis-
abling all devices assigned to that and all higher numbered bits. [Complete information on all devices is given

in Appendix E.]
2-32

AC Bit Devices Mask

0 Data communications multiplexor 177777
1 771777
2 37777
3 17777
4 7777
5 3777
6 1777
7 777
8 A-D converter, high speed communications controller 377
9 Disc 177
10 Card reader, magnetic tape 77
11 Paper tape reader 37
12 Plotter, line printer, multiprocessor communications adapter 17
13 Real time clock, paper tape punch, display, IBM 360 interface =
14 Teletype in — 3
15 Teletype out — 1

A zero mask clears all Interrupt Disable flags. In general the devices are in order by speed, with the fastest
ones (those requiring the quickest service) assigned to the lower numbered bits.

Note: The assembler recognizes the mnemonic MSKO as equivalent to DOB —,CPU.

The assembler recognizes special mnemonics for some of the above instructions.

INTEN NIOS CPU Interrupt Enable 060177
INTDS NIOC CPU Interrupt Disable 060277
INTA DIB —,CPU Interrupt Acknowledge 061477
MSKO DOB —,CPU Mask Out 062077

To turn the interrupt on or oft while acknowledging or masking, the programmer must use the DIB and DOB
forms — the S and C mnemonics cannot be appended to INTA and MSKO.

Timing. The time a device must wait for an interrupt to start depends on how many devices are using
interrupts, how long the service routines are for devices of higher priority, and whether the data channel is
in use. A single device will shut out all others of lower priority if every time its service routine dismisses the
interrupt, it is already waiting with another request; and the data channel shuts out all interrupts when it op-
erates at the maximum rate. If the data channel is not in use and only one device is using interrupts, it need
never wait longer than the time required for the processor to finish the instruction that is being performed when
the request is synchronized. Without delays caused by indirect addressing, the maximum interrupt waiting time
is the latency given in the table at the end of Appendix D.

To start an interrupt the processor uses two cycles to store PC in location 0 and retrieve the address from
location 1. The time given in Appendix D assumes location 1 contains a direct address.

Sample Master Interrupt Routine. Suppose we are using only the teletype and the high speed reader and
punch. We shall allow higher priority devices to interrupt a lower priority service routine; but since the reader

2-33

is the highest priority device, we shall simply leave the interrupt off while servicing it. Because of the small
number of devices we can use flag testing to identify the one that is requesting service and we can treat the
teletype input and output as the same priority. For illustration let us assume that the reader and punch rou-
tines use all the accumulators but the teletype routines use only ACO.

.LOC 0 ;This pseudoinstruction causes the assembler to put the next statement in
; the location specified
0 ;Clear location O — will be used for saving PC
INTRP ;Put address of master interrupt processor routine in location 1
CMASK: 0 ;Will save current mask here (initially zero)

;When the processor is interrupted the interrupt is disabled and there is an automatic jump to INTRP.

;First find source of interrupt.

INTRP: SKPDZ PTR ;Try reader first
JMP PTRIN ;Yes, service it
SKPDZ PTP ;No, try punch
JMP PTPIN ;Jump to punch service
STA 0,TTSAV ;Neither, must be teletype; save ACO
LDA 0,0 ;Save return address from location O
STA 0,TTSAV+1
LDA 0,CMASK ;Save current mask
STA 0,TTSAV+2
LDA 0,CN3 ;Set mask bits 14, 15 (disable teletype interrupts)
STA 0,CMASK ;:Set new current mask
DOBS 0,CPU ;MSKO and enable interrupts
SKPDZ TTO ;Test teletype output
JMP TTOIN ;Jump to output service
SKPDN TTI ;Test input
JMP ERROR ;Something wrong — nobody wants service
;Service teletype in
IMP TTDSM ;Must dismiss
TTOIN: Service teletype out
TTDSM: INTDS ;To dismiss, first disable interrupts
LDA O0,TTSAV+2 ;Restore previous mask
STA 0,CMASK
MSKO 0
LDA 0,TTSAV ;Restore ACO
INTEN ;Enable interrupts
JMP @TTSAV+1 ;Return to interrupted program
TTSAV: 0 ;Save ACO here
0 ;Save PC (from location 0) here

2-34

S

CN3:

;Punch routine

PTPIN:

PPSAV:
.LOC
CN7:

STA
STA
STA
STA
MOVL
STA
LDA
STA
LDA
STA
LDA
STA
DOBS

INTDS
LDA
STA
MSKO
LDA
MOVR
LDA
LDA

LDA
INTEN
JMP

+7
7

;Reader routine

PTRIN:

STA
STA
STA
STA
MOVL
STA

0,PPSAV
1,PPSAV+1
2, PPSAV+2
3, PPSAV+3
0,0
0,PPSAV+4
0,0
0,PPSAV+5
0,CMASK
0,PPSAV+6
0,CN7
0,CMASK
0,CPU

0,PPSAV+6
0,CMASK
0
0,PPSAV+4
0,0
0,PPSAV
1,PPSAV+1
2,PPSAV+2
3,PPSAV+3

@PPSAV+5

0,PRSAV
1,PRSAV+1
2,PRSAV+2

3 PRSAV+3

0,0
0,PRSAV+4

0,PRSAV+4

i
|
|
i

;Save current mask here

;Save accumulators

;Save Carry

;Save location O

;Save current mask

;Set mask bits 13,14,15 (punch, teletype in and out)

;Set new current mask
;MSKO and turn on interrupt

;Service punch

;Turn off interrupt
;Restore previous mask
;Restore Carry

;Restore ACs

;Turn on interrupt
Restore PC

;Reserve 7 locations

;Save ACs and Carry, but don’t bother with PC or mask, and leave inter-

;Tupt off

;Service reader

;Restore Carry and ACs

2-35

MOVR 0,0
LDA 0,PRSAV

LDA 1,PRSAV+1
LDA 2,PRSAV+2
LDA 3,PRSAV+3
INTEN ;Turn on interrupt
JMP @0 ;Restore PC
PRSAV:
.LOC +5 ;Reserve 5 locations

When to Use the Interrupt. If the program has little computing to do and is using only one or two fast in-
out devices or several slow ones, it may not be necessary to use the interrupt at all. On the other hand, if there
are many calculations to perform and the program is using a fast device or is processing data using several
slower devices, then the interrupt is necessary. The critical factors in determining whether to use the interrupt,
and beyond that its priority structure, are what the program is doing besides in-out and the time required by
the service routines. Suppose the program is doing nothing but processing data using reader, punch and tele-
type, and further suppose that no service routine requires more than say half a millisecond. In these circum-
stances the program could dispense with the interrupt and test all the devices with the following loop:

TEST: SKPDZ PTR
JMP PTRSER
SKPDZ PTP
JMP PTPSER
SKPDZ TTO
JMP TTOSER
SKPDZ TTI
MP TTISER
;Fast test that determines whether 1O is finished
JMP TEST ;Do this if more 10

;Skip to here and continue if IO done

where the reader service routine returns to TEST +2 and all others return to TEST. The fastest device, the
reader, will never be delayed too much. But suppose the program has a significant amount of computing to do.
Then we must use the interrupt, but what about the priority structure? If input-output service for the teletype
(as in the sample master routine above) requires 1 ms and punch service requires .8 ms, then reader service
will never be delayed more than 1 ms if we simply turn the interrupt off while servicing each device. But if
teletype service requires 30 ms per character, then neither reader nor punch will be able to run at full speed
unless we use the priority structure as illustrated in the sample routine.

Programming Suggestions. A convenient method for handling a large number of priority levels is to use
a pushdown list for saving the machine state. This obviates setting aside so many specific locations for saving
accumulators and the like, and makes it very easy for a routine at any level in a sequence of nested routines to
restore the state for the interrupted program. If many devices are in use it may frequently happen that when
one routine is dismissing an interrupt, a device of lower priority is already waiting. Thus much time might be
wasted in restoring the machine state only to have to save it again as soon as the interrupt is turned back on.
2-36

The devices of concern in this situation are those with priority less than or equal to the device presently being
serviced, but of priority greater than that of the device whose routine is about to be resumed (to which the
current dismissal will return). The usual dismissal procedure (as illustrated in the sample master routine given
above) begins by disabling the interrupt and restoring the previous mask. If the program then gives an

INTA AC

a device code will be read into AC if any device of priority higher than that of the interrupted routine has
requested service. Since this means that the device will interrupt before the interrupted program can restart,
the current program can save a great deal of time by servicing the higher priority device without bothering to
restore and resave the machine state. If AC is clear after the INTA is given, no device of appropriate priority
has requested service, and the current routine can proceed with the usual dismissal.

Remember the following when programming an interrupt routine:
® An interrupt cannot be started until the current instruction is finished. Therefore do not use lengthy indirect
address chains if devices that require very fast service can request an interrupt.
® The routine must save the accumulators and the Carry flag if these will be used by it.

® If this interrupt routine can itself be interrupted, then it must save location 0 so PC can later be restored
properly.

® The principal function of an interrupt routine is to respond to the situation that caused the interrupt. Eg com-
putations that can be performed outside the routine should not be included within it.

® The routine should restore the accumulators and Carry when returning to the interrupted program.

2.5 DATA CHANNEL

Handling data transfers between external devices and memory under program control requires an inter-
rupt plus the execution of several instructions for each word transferred. To allow greater transfer rates the
processor contains a data channel through which a device, at its own request, can gain direct access to
memory using a minimum of processor time. At rates lower than the maximum the channel frees processor
time to allow execution of a program concurrently with data transfers for a device. The channel is multiplexed
— many devices may be active at the same time.

Besides the straightforward transfer of a word between memory and a device in either direction, the data
channel also allows a device to increment by one a word already in memory and, in the Nova or Supernova com-
puters, to add a word to the contents of a memory location. In these two cases involving an arithmetic operation,

the processor sends the result back to the device; and if the operation should increase the contents of the
memory location above 216-1, it also sends an overflow signal to the device. The data channel is used by de-
vices requiring very high data transfer rates, such as magnetic tape or disc, and by devices requiring the
specialized transfer functions. Eg the memory increment feature would be used for pulse height analysis, the
add-to-memory feature for signal averaging.

The program cannot affect the data channel directly because there are no instructions for it; instead the
program sets up the device to use it. When the device requires data service, it requests access to memory
via the channel. At the beginning of every memory cycle the processor synchronizes any requests that are
then being made. Except in the Nova 800 series, the processor completes the current instruction and then takes
care of all requests that have been synchronized or are synchronized while it is handling transfers. In the 800
series the data channel is capable of operating at two different speeds (standard and high speed) and does not
require that a device wait until the completion of an instruction — the processor can pause to handle transfers

2-37

at certain points within an instruction. If several devices are waiting for service simultaneously, the first to re-
ceive it is the one that is physically closest to the processor on the bus. When an 800 series processor pauses
within an instruction, it handles all data channel requests of either speed (handling high speed requests first)
and then continues with the interrupted instruction. Following completion of an instruction, any processor
handles all data channel requests, and then starts a program interrupt if a device is waiting for one, or otherwise
resumes the execution of instructions. The two-speed channel is available as an option on the Supernova
computer, which can pause within an instruction to handle a high speed transfer, but waits until the end of the
instruction for transfers at the standard speed.

Operating the 800 data channel at standard speed allows data transfer rates of half a million words per
second, but at this rate all other processing activity is suspended. Use of the high speed capability not only allows
data transfer rates at essentially the full memory speed (in excess of a million words per second), but at speeds
in the standard range its use allows considerable processing activity unrelated to the channel (each transfer
takes less time). Hence choice of the standard or high speed depends on the degree of interference with the pro-
gram caused by channel operations and the maximum time within which the device must make the transfer. When
a rate of 100,000 or more words per second is required, both the device and the program will benefit noticeably
through use of the high speed capability. To use the high speed the interface for a device must be mounted inside
the main frame and must be designed so that it can both respond to the shorter control signals presented to it
and operate within the extremely limited time available [timing specifications for all data channel operations are
given in Appendix A, Part II]. Moreover all high speed interfaces must be grouped at the beginning of the bus:
all interfaces closer to the processor than the last high speed one automatically operate at high speed, whereas
all devices farther out on the bus operate at standard speed. The processor examines the priority determining
signal on the IO bus to determine which way to handle each transfer. A computer that has the two-speed capa-
bility is shipped with the high speed enabled for all interfaces mounted inside the main frame (interfaces on an
external bus are always limited to standard speed).

Timing. The time a device must wait for data channel access depends on when its request is made within
an instruction and how many devices of higher priority are also requesting access. Once the processor reaches
a point at which it can pause to handle transfers, a given device must wait until all devices closer than it on the bus
have been serviced (hence all devices connected for the high speed are serviced first). The highest priority
device can preempt all processor time if it requests access at the maximum rate. At less than the maximum
rate the closest device need never wait longer than the time required for the processor to finish the instruction
that is being performed when the request is synchronized, but indirect addressing can extend this beyond the
normal instruction execution time. The latency given in the timing table at the end of Appendix D is the maxi-
mum data channel waiting time for the highest priority device exclusive of any delay caused by indirect address-
ing. With an 800 series channel or a Supernova computer high speed channel, the closest device, once syn-
chronized, need never wait beyond the next point at which the processor can pause within the instruction, but
the maximum that this can be depends on whether the program includes 10 instructions ie the device may have
to wait longer when the program is also using the bus). In some cases the time taken for a single isolated trans-
fer is less than the minimum time between transfers.

CaurioN

Devices that use the data channel often require service very quickly. In those cases
where a device must wait for the current instruction to end, do not use lengthy indirect
addressing chains when the data channel is in use.

2-38

Maximum rates in transfers per second are as follows.

800 Series Supernova
Function High Speed Standard 1200 Series High Speed Standard Nova
Data In 1,250,000 500,000 833,333 1,250,000 434,700 285,500
Data Out 1,000,000 500,000 555,555 1,000,000 357,100 227,500
Increment memory 833,333 454,545 416,666 833,333 357,100 227,500
Add to memory 833,333 357,100 187,500

2.6 PROCESSOR OPTIONS

Optional equipment for the processor includes a real time clock, a power monitor with facility for auto-
matic restart after power failure, multiply-divide, and memory allocation and protection (the last is available
only on the 800 series and the Supernova computer). The program load option for the 1200 series and 800
series is discussed in § 2.8.

Real Time Clock

The clock generates a sequence of pulses that is independent of processor timing. It uses only one 10
transfer instruction to set the clock frequency. Busy and Done are controlled or sensed by bits 8 and 9 in
all 1O instructions with device code 14, mnemonic RTC. Interrupt Disable is controlled by interrupt priority
mask bit 13.

DOA - RTC Data Qut A, Real Time Clock
0 | 1 x 1 A|C 0 1 | 0 II7 0 | 0 | 1 1 1 | 0 1 0
o ' 1 2 3 T a4 S l 6 ' 1 8 9 10 11 12 T 13 14 15

Perform the function specified by F and select the clock frequency by AC bits 14 and 15 as follows.

AC bits 14-15 Frequency
00 Ac line frequency
01 10 Hz
10 100 Hz

11 1000 Hz

Setting Busy allows the next pulse from the clock to set Done, requesting an interrupt if Interrupt Disable

is clear. A DOA to select the frequency need be given only once; follg\iigwch interrupt an NIOS sets up the |

clock for the next pulse.

When Busy is first set the first interrupt can come at any time up to the clock period. But once one
interrupt has occurred, further interrupts are at the clock frequency provided that the program always sets
Busy before the next period expires.

The clock is used primérily for low resolution timing (compared to processor speed) but it has high
long-term accuracy. Power up and the I/O reset function generated by the program or from the console
reset the clock to line frequency. Following power turnon the line frequency pulses are available immediately,
but 5 seconds must elapse before a steady pulse train is available from the crystal for other frequencies.

2-39

Power Monitor and Auto Restart

When ac power is applied to the central processor, core memory is unaltered, the initial states of PC,
the accumulators and flags are indeterminate, and the processor is halted. If ac power in the chassis should
fail there is a minimum delay of 1 to 2 milliseconds after the power fail interrupt before the processor shuts
down. In so doing, the processor always completes a memory cycle and sequences power off so the con-
tents of memory are unaffected. The optional power monitor warns the program when dc power in the
chassis is failing by setting the Power Failure flag. This action automatically requests an interrupt—there is
no interrupt disable flag for the power monitor. Of course the interrupt must be on if a power failure is to
produce an interrupt.

The power monitor does not respond to the INTA instruction. Thus when an interrupt occurs in a
machine equipped with the power monitor, the program should test the Power Failure flag before giving
INTA or testing other devices. The flag corresponds to the Done flag and is tested by either of these instructions.

SKPDN CPU Skip if Power Failure is Nonzero

Skip the next instruction in sequence if Power Failure is 1.

SKPDZ CPU Skip if Power Failure is Zero

Skip the next instruction in sequence if Power Failure is 0.

If the power does fail the program should save the accumulators and Carry in memory, save location
0 (for restoring PC in the interrupted program), put a JMP to the desired restart location in location 0, and
then HALT. '

The action taken by the processor when an adequate power level is restored depends on the power switch
on the operator console. If the switch is on, power comes back on with the machine stopped. If the switch
is in the lock position, then 50 ms after power comes back on the processor executes a JMP 0, which causes
it to begin executing instructions in normal sequence at location 0.

Multiply-Divide
Multiplication and division can be performed by the subroutines given on pages 2-19 and 2-20, but in all
machines except the Nova computer, an option that is added right into the processor hardware is also available l
for these operations. This option provides two pseudo-IO instructions that duplicate exactly the effects of the
subroutines (the writeups of the multiply and divide subroutines and 093-000015 and 093-000016 respectively).
2-40

MUL Multiply

0 1 o2 T3 T a4 5 6 | 7 8 9 10 11 12 ' 13 ' 14 15

Multiply the unsigned integers in AC1 and AC2 to generate a double length product; add the product to
the unsigned integer in ACO, and place the high and low order parts of the result respectively in ACO and
ACI (in other words the result left in ACO and ACl is ACO + AC1 X AC2). AC2 is unaffected, the original
contents of ACO and ACI1 are lost.

Note that the mnemonic MUL is equivalent to DOCP 2, 1. The AC field must be 10. (The hardware requires
this, but it is done to be compatible with the Nova computer.)

DIv Divide

0 1 1 1 0 1 1 0 0 1 0 0 0 0 0 1

| | 1 1 | f ! I I } 1 1
0 1 2 3 4 S 6 7 8 9 10 11 12 . 13 14 15

If the unsigned integer in ACO is greater than or equal to the unsigned integer in AC2, set Carry and go im-
mediately to the next instruction without affecting the original contents of the accumulators. Otherwise clear
Carry and divide the double length unsigned integer in ACO and AC1 by the unsigned integer in AC2,
producing a single length quotient including leading zeros, and then clear Carry. Place the quotient in AC1
and the remainder in ACO. AC2 is unaffected, the original contents of ACO and AC1 are lost.

Note that the mnemonic DIV is equivalent to DOCS 2, 1. The AC field must be 10. (The hardware requires
this, but it is done to be compatible with the Nova computer.)

Nova Computer Multiply-Divide
The hardware multiply-divide option for the Nova computer is actually a peripheral device connected to the
in-out bus, although it has no flags or interrupt capability. It contains A, B and C registers, which are loaded
and read by the standard IO transfer instructions, and which correspond in use respectively to accumulators
0, 1 and 2 with respect to the multiply and divide software routines and the processor hardware option in the
other computers. Bits 8 and 9 in a transfer instruction or an NIO perform control functions as follows.

Mnemonic Bits 8-9 Function
00 None
S 01 Divide the double length unsigned integer in A and B by the unsigned

integer in C, producing a single length quotient including leading zeros.
Place the quotient in B and the remainder in A. C is unaffected.

C 10 Clear the A register.

P 11 Multiply the unsigned integers in B and C to generate a double length
product; add the product to the unsigned integer in A and place the

high and low order parts of the result respectively in A and B (in other
words the result left in A and B is A + B X C). C is unaffected.

The multiply-divide device code is 01, mnemonic MDYV. With this device code the instructions are those given
on pages 2-23 to 2-25, with the exception that the skips are meaningless since the device has no flags.

2-4]

Following the 10 instruction that starts the multiply or divide, the program must wait until the result is
available in the A and B registers. Multiplication takes 6.4 us, division takes either 6.8 or 7.2 us depending on
the operands. Of course the program can do something useful with the time (such as loading an accumulator
for the next operation), but usually one simply gives a couple of no-ops to pass the time.

Generally it is best to set up the accumulators just as one would for the software or the processor option.
If they are set up for multiplication, we could give this sequence to multiply and place the result in the same
place the subroutine would.

DOA 0,MDV :ACO to A (AC)

DOB 1,MDV ;ACI to B (MQ)

MUL ;= DOCP 2,MDV = AC2 to C, multiply
NIO 0 ;Wait for result (6.8 us)

IMP 41

DIA 0,MDV ;Put double length product in ACO
DIB 1,MDV ;and AC1

With this procedure, programming for all the computers is compatible. If a program containing the above
sequence is run on a Supernova computer, the first two instructions are ignored, the MUL is executed, the two
no-ops result in a small amount of lost time, and the DIA and DIB are ignored as the hardware is gated so that
calling for input from device 01 cannot affect the accumulators.

Similarly, if the accumulators are set up for software division we would give this sequence to divide.

DOA 0,MDV

DOB 1,MDV

prv ;= DOCS 2,MDV but no overflow check
MOV# 0,0 ;Wait for result (7.2 us)

JMP +1

DIA 0,MDV

DIB 1,MDV

Here the AC configuration is the same but there is no check to determine whether division is possible—the
program must do that first and properly adjust the operands. (Carry has no connection with the operation of
the device and is unaffected.) For integer division the program need not clear ACO: instead the first two
instructions can be replaced by

DOBC 1,MDV

but compatibility with the other machines is then lost.

Memory Allocation and Protection

Without memory allocation and protection the system executes a single program that has no restrictions
except those inherent in the hardware: the programmer must stay within the memory capacity, and observe
the restrictions placed on the use of certain memory locations by the hardware [§ 1.4]. Optional hardware
for the 800 series and the Supernova computer can restrict processor operation to permit time sharing by a |
number of programs. Each user program is run with the processor in user mode, in which the program must

2-42

operate within an assigned area in memory and certain operations are illegal. A program that runs
unrestricted — the executive — is responsible for scheduling user programs, servicing interrupts, handling input-
output needs, and taking action when control is returned to it from a user program.

Every user has @ memory area allocated to him and he cannot gain access to the rest of memory for either
storage or retrieval of information. Moreover part of his allocated area may be protected from him, ie the
executive may set aside part of his allocated area so that he can access it but cannot alter its contents, ie he
cannot write anything in it, The executive would do this when part of the allocated area contains a pure
procedure to be used reentrantly by several users. While the processor is in user mode, the program is further
restricted in that it is illegal to issue any 10 instruction (except MUL and DIV) or to use more than two levels
of indirect addressing. The violation of any restriction by a user program causes the processor to terminate the
instruction immediately and return control to the executive (by requesting an interrupt, which returns the
processor to the supervisor mode).

For allocation purposes the entire memory is divided into blocks of 4096 words each, defined by the three
high order address bits. For each user the executive establishes a map of the logical blocks (those defined by
the addresses given in the user program) into the physical blocks of memory, and validates those logical blocks
that are available to the given user. The most convenient procedure is for the executive to allow all users to
write programs beginning at location 0. Thus one user may be limited to a single block, and the executive
would validate logical block 0 and assign it to say physical block 4; for another user allowed two blocks, the
executive would validate blocks 0 and 1 and assign them to say physical blocks 5 and 6. The first user would
use addresses 0-7777 and these would be mapped into addresses 40000-47777; the second would use addresses
0-1777 and these would be mapped into 50000-67777. The programmed addresses are retained in the object
program but are mapped by the hardware igto the physical area assigned to the user as each access is made
while the program is running.

For protection purposes memory is divided into pages of 256 words each. The executive establishes a
protection scheme for all of the physical memory, and although a given user can access any location in his
allocated blocks, he simply cannot write in any page that is protected. To save swapping time, a Page Written
flag is associated with each page. When setting up a user program, the executive should clear all the flags. When-
ever the user writes in a given page, its associated Page Written flag is set. Then when that user goes on the
inactive list, the executive need rewrite on the swapping disk or drum only those pages that have actually changed.

Note that the restrictions apply only to the user program. Data channel transfers can occur while the
processor is in user mode, and access is made to the physical locations addressed. An interrupt always returns
the processor to supervisor mode—the executive handles all interrupts.

User Programming. The user must observe the following rules when programming on a time shared basis.
e Use addresses only within the allocated logical blocks for all purposes—retrieval of instructions, retrieval
of addresses, storage or retrieval of operands. The method of allocating blocks will depend of course on the
executive program used at a particular installation, but usually the executive will be set up so that the user be-
gins at location 0 and can write any size program, ie the executive will assign enough memory for his needs.
Basically the user must write a sensible program; if he uses absolute addresses scattered all over memory his
program cannot be run on a time shared basis with others.
¢ Do not attempt to store anything in pages that are protected.
¢ Do not execute a JMP or JSR outside of the logical blocks assigned in any allocation procedure.
Use 10 instructions only for communication with the executive in the manner prescribed for the installation.

Do not use more than two levels of indirect addressing.

2-43

Executive Programming. The executive program uses the following instructions to supervise time shared
operation.

DOB -,MAPO Assign Lower Logical Memory Map
0) 1 ; 1 A‘C 1 ‘ 0 ' 0 0 . 0 0 | 0 | 0 . 0 . 1 | 0
o ' 1 2 3 ' a 5 6 | 7 8 9 10 11 12 713 14 15

Assign logical memory blocks 0-3 to the physical blocks selected by the contents of AC and establish the
validity of user addressing in these logical blocks as shown.

LOGICAL LOGICAL BLOCK 2 LOGICAL BLOCK 1
I 1 1 1 1 1

BLOCK 3
1

LOGICAL BLOCK 0
1 1 1

0 1 2 3 4 5 6 7 8 9 ' 10 11 12 ' 13 14 15

In each set of four bits, a 1 in the left bit validates user addresses within the corresponding logical block (a 0
makes such addresses invalid); the right three bits specify the physical block to which user addresses in the
corresponding logical block will be mapped.

DOC — MAPO Assign Upper Logical Memory Map
0 . 1 1 1 A.C 1 . 1 1 0 0 1 0 0 . 0 . 0 . 0 - 1 . 0
o ' 1 2 3 T a 5 6 | 7 8 9 10 11 12 13 14 15

Assign logical memory blocks 4-7 to the physical blocks selected by the contents of AC and establish the
validity of user addressing in these logical blocks as shown.

LOGICAL BLOCK 7 LOGICAL BLOCK 6 LOGICAL BLOCK 5
I L 1 1 1 1 ! ! 1

o | 1 2 3 ' a4 5 6 | 7 8 9 ' 10 11 12

LOGICAL BLOCK 4
1 x |

13 14 15

In each set of four bits, a 1 in the left bit validates user addresses within the corresponding logical block (a 0
makes such addresses invalid); the right three bits specify the physical block to which user addresses in the
corresponding logical block will be mapped.

DOA — MAPQ Write Protect
0 1 1 AC 0 1 l 0 0 l 0 0 l 0 l 0 | 0 | 1 | 0
0 { 1 l 2 3 ! 4 5 I 6 g 8 9 10 11 12 ' 13 14 15

Set up the protection scheme for a half block according to the contents of AC as shown.

PROTECT PAGES
4 3 2 1 0
1 I 1 1 I

PHYSICAL HALF BLOCK

3 ' a4 s e ' 7

10

11 12 ' 13 14

15

Bits 12-15 specify the physical half block, ie bits 12-14 specify the physical block and a 0 or 1 in bit 15
selects the half containing the lower or upper addresses in that block. A 1 in any bit from 0-7 protects the

2-44

corresponding 256-word page from writing by the user (a 0 allows the user to write in the page if it is in one of
his allocated blocks). Page 0 contains the lowest addresses in the half block.

DOA 0, MAP 2 Clear Page Written Flags

Clear all Page Written flags and select physical block O for page-written checking.

DIA —MAP1 Read Violation Status
0 . 1 . 1 A.C 0 . 0 . 1 II7 0 . 0 | 0 . 0 ' 1 | 1
o | 1 2 3 ' a4 5 6 | 7 8 9 10 11 12 | 13 14 15

Read the status of the allocation and protection option into AC as shown.

USER - IDIRECT | 10 ERROR | VALIDITY |PROTECTION| pyyygicAL BLOCK ADDRESSED
0 9 10 11 12 13 14 15
Bit Meaning of a 1 in the Bit
0 The processor was in user mode when the last interrupt occurred.
9 The last user instruction attempted more than two levels of indirect addressing.
10 The last user instruction was an 10 instruction (not MUL or DIV).
11 The last address mapped was invalid.
12 The last valid address mapped was for a reference that attempted to write ina protected page.

The setting of bit 9, 10, 11 or 12 requests an interrupt which has priority over all other devices connected to
the bus and which cannot be disabled (but these bits cannot cause an interrupt when the processor is in

supervisor mode). Bits 13-15 specify the physical block addressed by the last address mapped.
(Perform the function specified by F.)

DOA —MAP1 Select Mode
0 . 1 1 1 A‘C 0 : 1 . 0 I|7 0 | 0 | 0 . 0 : 1 1 1
o | 1 2 3 | a4 5 6 | 7 8 9 10 11 12 ' 13 14 15

Load AC bit 0 into bit O of the status register and clear the rest of the register.

If Fis 01 (S), turn on the interrupt and place the processor in the mode specified by bit 0 of the status
register. If bit 0 is 1 the processor will execute one more instruction before entering user mode. If Interrupt On
actually changes state (0 —> 1) the processor will execute one more instruction before an interrupt can start.

2-45

NIOS MAP1 Enter User Mode

0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1

] | |] | | | 1 L] | 1

1 2 3 ' 4 5 6 7 8 9 10 11 12 13 14 15

Turn on the interrupt and place the processor in the mode specified by bit 0 of the status register. If bit 0 is 1
the processor will execute one more instruction before entering user mode. If Interrupt On actually changes
state (0 —> 1) the processor will execute one more instruction before an interrupt can start,

DOB —MAP1 Map an Address

0 1 1 AC 1 0 0 F 0 0 0 0 1 1

{ | l | | I 1 | | { 1

[} i 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Map the address contained in AC bits 1-15, interpreting it as a user address for a write reference (in other
words, indicate any violations in the status register).
(Perform the function specified by F.)

DIB — MAP1 Read Mapped Address
0 1 1 A1C 0 o1 1 117 0 1 0 | 0 ' 0 ' 1 l 1
o 1 2 3 4 5 6 ' 7 8 9 10 11 12 ' 13 14 15

Read the mapped address derived from the address supplied by the last DOB —,MAPI into AC bits 1-15.
(Perform the function specified by F.)

DOB —, MAP 2 Select Page Written Check

0 1 1 AC 1 0 0 0 0 0 0 0 1 0 0

] 1 1]] 1 1 1 l i 1
o 1 2 3 4 5 6 ! 7 8 9 10 11 12 ' 13 14 15

Select, for page-written checking, the pair of contiguous physical half blocks consisting of the half block specified
by AC bits 12-15 and the next higher-numbered half block. (If AC bit 15 is 0, this instruction selects the
physical block specified by bits 12-14.)

DIA — Map 2 Read Page Written Status

0 1 1 AC 0 0 1 F 0 0 0 1 0 0

i 1 A 1] 1 1 1

!
0 ' 1 2 3 4 5 6 T 7 8 9 10 11 12 " 13 14 15

Read the Page Written flags associated with the currently selected pair of contiguous physical half blocks into
AC as shown (a 1 in an AC bit indicates the user wrote in the corresponding page).

PAGES WRITTEN IN NEXT HALF BLOCK PAGES WRITTEN IN SPECIFIED HALF BLOCK
7 ; 6) 5 , 4 } 3 2 1 : 0 7 , 6 = 5 | 4 , 3 ; 2 1 o
0 1 2 3 4 5 6 7 8 9 i0 11 12 13 14 15

If Fis 11 (P), select the next pair of contiguous half blocks following this pair for page-written checking,
2-46

Note: If the user allocation being checked is larger than one block, the executive should use this instruction
in the form DIAP so that a string of them can check all user blocks. A single block can of course be checked
by a DIA. But if the first in a series of blocks were checked by a DIA, and there were no intervening DOB
—MAP2 or NIOP MAP2, a subsequent DIA would check the status of the higher half block already checked
and the next half block after that (ie the sixteen flags checked would overlap the previous set by eight).

SKPDN MAPO Skip if Any Violation
0) 1 ' 1 | 0 | 0 0] 0 0 0 1 0
o ' 1 2 3 4 10 11 12 13 14 15
Skip the next instruction in sequence if any of bits 9-12 of the violation status register is 1.
SKPDZ MAPO Skip if No Violation
0 . 1 . 1 1 0 1 0 0 . 0 0 0 1 0
o ' 1 2 3 4 10 11 12 13 14 15
Skip the next instruction in sequence if bits 9-12 of the violation status register are all 0.
SKPBN MAPO Skip if 10 Violation
0 1 1 1 . 0 . 0 0 ’ 0 0 0 1 0
o ' 1 2 3 4 10 11 12 13 14 15
Skip the next instruction in sequence if bit 10 of the violation status register is 1.
SKPBZ MAPO Skip if No 10 Violation
0 1 1 : 1 . 0 . 0 0 . 0 0 0 1 0
o 1 2 3 ' 4 10 11 12 13 14 15
Skip the next instruction in sequence if bit 10 of the violation status register is 0.
SKPDN MAP1 Skip if Validity Violation
0 1 | 1 1 0 . 0 0 ' 0 0 0 1 1
1
o ' 1 2 3 ' 4 10 11 12 13 14 15

Skip the next instruction in sequence if bit 11 of the violation status register is 1.

2-47

SKPDZ MAP1 Skip if No Validity Violation

0 1 1 0 0 1 1 1 1 1 0 0 0 0 1 1

4 5 6 7 8 9 10 11 12 13 14 15

Skip the next instruction in sequence if bit 11 of the violation status regiéter is 0.

SKPBN MAP1 Skip if Protection Violation

0 1 1 0 0 1 1 1 0 0 0 0 0 0 1 1

4 S 6 7 8 9 10 11 12 13 14 15

Skip the next instruction in sequence if bit 12 of the violation status register is 1.

SKPBZ MAP1 Skip if No Protection Violation

0 1 1 0 0 1 1 1 0 1 0 0 0 0 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Skip the next instruction in sequence if bit 12 of the violation status register is 0.

At power turnon the processor is in supervisor mode and the mapping and protection data are indeter-
minate. The IO reset switch places the processor in supervisor mode but does not affect the mapping and
protection data. To run a user program without write-protection, the executive must put Os in the protection
bits for the pages in the user blocks. -

" Note that the executive may not be able to trace a violation to its source. Eg, a JMP to an invalid address
is not detected until the next instruction is fetched, and by then the location of the JMP cannot be determined.

2.7 OPERATION

The various consoles are illustrated on page 1-2. The lights in the upper right on the programmer’s console
display control conditions, the rows of lights in the upper center display the processor registers. Below the latter
is a register of toggle switches through which the operator can supply addresses and data to the processor (the
up position of a switch representa a 1). The register can be used in conjunction with some of the operating switches,
and its contents are read by the READS instruction.

In the row at the bottom of the panel are the operating switches. Each switch lever is actually ‘two
momentary-contact logical switches with a common off position in the center. Lifting the lever up turns on
the switch whose name is printed above it; pressing it down turns on the switch whose name is written below.

At the upper left is a 3-position key-operated rotary switch that controls power and locks the console.
Turning it to ON simply turns on power. Turning it to LOCK keeps power on and disables the operating
switches so no one can interfere with the operation of the processor (the operator can still use the data switches
to supply information to the program).

248

The turnkey console has the key switch described above, a RUN light, and four operating switches, PRO-
GRAM LOAD, CONTINUE, START, and RESET, which have exactly the same effect as they do on the pro-
grammer’s console. The remainder of this section describes all of the indicators and switches on the various
programmer’s consoles (an asterisk indicates a light or switch that is also on the turnkey console).

Indicators. When any indicator is lit the associated flipflop is in the 1 state or the associated function
is true. A few indicators display useful information while the processor is running, but most change too
frequently and are therefore discussed in terms of the information they display when the processor has stopped.

The address lights display the contents of PC. The numbered data lights display the data written in the last
memory reference, except following a Supernova computer memory step when they display the address for the
next reference. The instruction lights (Nova and Supernova computers only) display the left eight bits of the
instruction being executed or just completed; these lights are all off if the processor stops following a program
interrupt (in the Nova computer they are also off following a data channel cycle).

RUN* The processor is in normal operation with one instruction following another. When

the computer stops, the light goes off.

ION The program interrupt is enabled (this is the Interrupt On flag).
FETCH The next processor cycle will be used to fetch an instruction from memory.
DEFER The next processor cycle will be used to fetch an address word in an indirectly

addressed memory reference instruction.

EXECUTE The next processor cycle will be used to reference memory for an operand in a move
data or modify memory instruction.

DCH (Nova and Supernova computers only.) The next processor cycle will be used by the
data channel for direct access to memory by an in-out device.

PI (Nova and Supernova computers only.) The next processor cycle will be used to
start an interrupt by storing PC in location 0.

OVERLAP (Supernova computer only.) Arithmetic and logical class instructions are being
executed out of read-only memory and the processor is overlapping the execution of
one with the fetching of the next. (This light is always off when the computer stops.)

PROTECT (Supernova computer only.) The processor is in user mode. An 800 series computer
that has the memory allocation and protection option can generally be assumed to
be in user mode when ION is lit.

FETCH, DEFER, EXECUTE, DCH and PI are the state indicators: they specify the state (the type of
cycle) the processor will enter if operations are continued by pressing the CONTINUE or MEMORY STEP
switch (see below). At most one light is lit; no light lit on the Supernova computer panel is equivalent to FETCH;
on the Nova computer panel one and only one light must be lit. Unless otherwise indicated, use of any operating
switch leaves the processor ready to enter the fetch state.

Operating Switches. All of the switches in the bottom row except STOP and RESET are interlocked
so that they have no effect if RUN is lit. The four pairs of switches at the left are for depositing data in the
accumulators and examining their contents. Lifting a switch lever up loads the contents of the data switches
into the specified accumulator; pressing it down displays the contents of the accumulator in the data lights.
At completion the instruction lights are off.

*Indicates a light or switch that is also on the Turnkey Console. 2-49

The switches at the right perform the following functions when turned on.

EXAMINE

DEPOSIT

EXAMINE NEXT

DEPOSIT NEXT

Load the address contained in the data switches into PC (which is displayed in the
address lights) and display the contents of the addressed location in the data lights.

Deposit the contents of the data switches in the memory location specified by
the address lights. At completion the data lights display the word deposited.

Add 1 to the PC address displayed in the address lights and display the contents
of the location specified by the incremented address in the data lights.

Add 1 to the PC address displayed in the address lights and deposit the contents of
the data switches in the memory location specified by the incremented address. At
completion the data lights display the word deposited.

The above four switches can be used for a sequence of operations on consecutive memory locations.
The sequence must begin with EXAMINE to supply the initial address unless PC already points to the right
location. Suppose we set the data switches to octal 100 initially. Then the following sequence of switch settings

produces the effects listed.

START*

STOP

EXAMINE
EXAMINE NEXT
EXAMINE NEXT

Display location 100.
Display location 101.
Display location 102.

DEPOSIT Load data switches into 102.
EXAMINE NEXT Display location 103.
DEPOSIT Load data switches into 103.

DEPOSIT NEXT Load data switches into 104,

EXAMINE NEXT Display location 105.

Load the address contained in the data switches into PC, light FETCH and RUN,
and begin normal operation by executing the instruction at the location specified
by PC.

Stop before fetching the next instruction. Thus the processor finishes the current
instruction, and then stops with the instruction lights displaying the instruction,
unless a device is waiting for data channel access or a program interrupt, in which
case it performs all such operations before stopping with the instruction lights off.
The address lights point to the next instruction.

CAUTION

If the current instruction contains an infinitely long indirect addressing chain or
there are continuous data channel requests, pressing STOP will not stop the com-
puter (see RESET, below).

2-50

CONTINUE* Turn on RUN and begin normal operation in the state indicated by the lights.

INST STEP Begin operation in the state indicated by the lights but then stop as though STOP
had been pressed at the same time. If the stop occurs at the end of an instruction,
the data displayed by the data lights depends on the instruction as follows.

LDA, STA Operand

ISZ, DSZ Operand

JMP 1200 series and 800 series, direct: instruction
Otherwise: effective address

JSR Nova 1200 series and 800 series, direct: instruction
Nova 1200 series and 800 series, indirect: effective
address

Otherwise: address loaded into AC3 (old PC + 1)

Arithmetic and logical Except Supernova computer: instruction
Supernova computer: unshifted result

In-out 1200 series, 800 series: data
Supernova computer: zero;
Nova computer: instruction

Note that the AC switches can be used between instruction steps without
requiring any readjustment.

MEMORY STEP Perform a single processor cycle in the state indicated by the lights and then stop.
At completion the lights indicate the next state to be executed. The address lights
display PC; the data lights on the Nova computer display the data for the last mem-
ory step, on the Supernova computer they display the address for the next memory
step.

Caurion

Using the AC switches between memory steps within an instruction usually destroys
information necessary for the execution of the rest of the instruction.

RESET* Stop at the end of the current processor cycle. Clear the flags in all 10 devices, clear

Interrupt On, place the processor in supervisor mode, and set the clock to line
frequency.

CAUTION
Information deposited in an accumulator from the console is displayed in the lights
but is not actually entered into the accumulator until the processor performs some
other operation. Hence pressing RESET after an AC deposit prevents the data from
actually reaching AC.

PROGRAM LOAD* Nova 1200 series, 800 series: If the processor has the program load option, deposit
the contents of the bootstrap read-only memory into locations 0-37, then light RUN

2-51

and begin normal operation at location 0. The bootstrap program allows the use of
this switch for either program load or channel start; for complete details refer to §2.8.

Supernova computer: Read 33 words from the device selected by data switches
10-15 into locations 0-40, then light RUN and begin normal operation at location 40

[§2.8].
CHANNEL START (Supernova computer only.) Issue a DIAS to the device selected by data switches

10-15, store JMP 377 in location 377, then light RUN and begin normal operation
by executing the instruction at location 377 [§ 2.8].

Note: On the 800 series the function of this switch can be duplicated by PROGRAM
LOAD as described in §2.8.

EXAMINE can be used to load PC for beginning any single step procedure. Instruction stepping can
also be begun by pressing START while holding STOP on.

To use the various examine and deposit switches between instruction steps, simply remember what PC
is and restore it before continuing.

2.8 PROGRAM LOADING

Before a program can be executed it must be brought into memory. This requires that a loading program
already reside in memory. If the memory is empty, the operator can use the automatic loading switches on a
computer that is so equipped; otherwise he must use the data switches to deposit a bootstrap loader. Automatic
loading is available as an option on the Nova 800 series and 1200 series and is standard on the Supernova
computer.

Automatic Loading

There are two types of automatic loading. The “program load” procedure uses programmed transfers for
a low speed device such as teletype or paper tape reader. The “channel start™ procedure uses the data channel
for a high speed device such as magnetic tape or disc. Options 8108 and 8208 for the Nova 1200 series and 800
series respectively provide both of these procedures even though there is only one console switch. For this option
the processor has two LSI chips that contain thirty-two words of read-only memory. Pressing the program load
switch on the console starts the processor in a special sequence that deposits the read-only words into locations
0-37 and then begins normal program execution at location 0. The bootstrap loader generally supplied in these
chips is capable of operating either with programmed transfers or the data channel. In the Supernova
computer, these procedures are built in and are initiated by separate console switches. The channel start
procedure can read an extensive loading program, but the program load procedure is ordinarily used to read
in a short loader program that is then used for loading other information.

Below is the standard version of the bootstrap associated with the program load switch on the Nova 1200
series and 800 series computers. This program is capable of executing both the program load and channel start
procedures. To load information, first set up the device that is to be used and set its code into data switches 10-15.
For a high speed device such as magnetic tape or disc (which use the data channel), turn on data switch 0 (up);
for a low speed device such as teletype or paper tape reader, turn off switch 0. Then press program load. The
processor will automatically deposit the contents of the read-only LSI chips into locations 0-37 and then begin
normal operation at location 0,

The bootstrap reads the data switches, sets up its own IO instructions with the specified device code, and
then performs the program load or channel start type of operation as indicated by data switch 0. If the switch is
2-52

on, the bootstrap performs the channel start procedure: it starts the device for data channel storage beginning
at location 0 and then sits at location 377 executing a JMP 377 until a data word loaded into 377 causes it to do
something else. In other words location 377 eventually receives a data word, which the processor then executes
as an instruction; this is typically a jump into the data just read or a halt.

Norte

For proper channel operation, the device selected by the data switches must be
initiated for reading by the combination of the IO reset and the START issued by the
processor. Moreover it is up to the device to stop the transfer after 256 words have
been read. The 10 reset clears the location and word counters in the channel inter-
face of the device so the transfer begins at location 0, but since the word counter
is also zero the transfer will continue and fill all of memory unless the device stops
it. The fixed-head disc is designed to read exactly 256 words; the magnetic tape stops
at the end of the record and it is therefore up to the programmer to write a record
of the proper length in the first place.

If switch O is off, the bootstrap reads low speed input in the program load manner. The device must supply
8-bit data bytes, and each pair of bytes is stored as a single word in memory, wherein the first and second bytes
read become the left and right halves of the word. To simplify the positioning of the tape in the reader, the pro-
gram ignores tape leader, /e it does not begin storing any words until it reads a nonzero synchronization byte.
The first word following the sync byte must be the negative of the total number of words to be read (including the
first word), for a maximum of 192 words. The program stores the words beginning at location 100; after reading
all the data, it jumps to the last word stored.

Some of the techniques used here result from the fundamental restriction that the program be no longer
than thirty-two words. Time, on the other hand, is not at all critical, as it is assumed that program load will
be used only when some catastrophe wipes out the binary loader at the top of memory.

00000 062677 BEG: 10RST ;Reset all 10

00001 060477 READS 0 ;Read switches into ACO

00002 024026 LDA 1,C77 ;:Get device mask (000077)
00003 107400 AND 0,1 ;Isolate device code

00004 124000 COM 1,1 ;—device code — 1

00005 010014 LOOP: 1SZ OP1 ;Count device code into all

00006 010030 1SZ OP2 ;1O instructions

00007 010032 ISZ OP3

00010 125404 INC 1,1,SZR ;Done?

00011 000005 JMP LOOP ;No, increment again

00012 030016 LDA 2,C377 ;Yes, put JMP 377 into location 377
00013 050377 STA 2,377

00014 060077 OP1: 060077 ;Start device; (NIOS 0) — 1
00015 101102 MOVL 0,0,SZC ;Low speed device? (test switch 0)
00016 000377 C377: IMP 3717 ;No, go to 377 and wait for channel
00017 004030 LOOP2: JSR GET+1 ;Get a frame

00020 101065 MOVC 0,0,SNR ;Is it nonzero?

2-53

00021 000017 JMP LOOP2 ;No, ignore and get another

00022 004027 LOOP4: JSR GET ;Yes, get full word
00023 046026 STA 1,@C77 ;Store starting at 100 (autoincrement)
00024 010100 1SZ 100 ;Count word — done?
00025 000022 IMP LOOP4 ;No, get another
00026 000077 C77: JMP 77 ;Yes — location counter and jump to last
;word
00027 126420 GET: SUBZ 1,1 ;Clear AC1, set Carry
OP2:
00030 063577 LOOP3: 063577 ;Done?: (SKPDN 0) — 1
00031 000030 JMP LOOP3 ;No, wait
00032 060477 OP3: 060477 ;Yes, read in ACO: (DIAS 0,0) — 1
00033 107363 ADDCS 0,1,SNC ;Add 2 frames swapped — got second?
00034 000030 JMP LOOP3 ;No, go back after it
00035 125300 MOVS 1,1 ;Yes, swap them
00036 001400 JMP 0,3 ;Return with full word
00037 000000 0 ;Padding

The usual procedure is to use the above bootstrap to bring in a larger program that sizes memory and
then reads in the binary loader, storing it at the top.

Pressing the channel start switch on the Supernova computer console starts the processor in a special
hardware sequence that simulates a DIAS that addresses the device whose code is selected by data switches
10-15, and then marks time while the channel is reading data. To start the channel, the operator must set
up the device he is using, set its code into data switches 10-15, press the 10 reset switch to clear the IO system,
and press the channel start switch. The processor places the device in operation, then stores the instruction
JMP 377 in location 377 and begins normal program execution at that location. Hence the processor keeps re-
peating the instruction in 377 while the channel stores data beginning at location 0. Eventually location 377
receives a data word, which is then executed by the processor as an instruction this is typically a jump into the
data just read or a halt. ,

Pressing the program load switch on the Supernova computer console starts the processor in a special
hardware sequence that simulates a series of sixty-six DIAS instructions, all of which address the device whose
code is selected by data switches 10-15. The device must supply 8-bit data bytes, right justified. Each pair of
bytes is stored as a single word in memory wherein the first and second bytes read become the left and right
halves of the word. To simplify positioning of the tape in the reader, the processor ignores the tape loader, ie it
does not begin counting the instructions it issues until the first nonzero byte is read.

To load a program automatically, the operator must set up the device he is using, set its code into data
switches 10—15, press the 10 reset switch to clear the IO system, and press the program load switch. The pro-
cessor places the device in operation and upon encountering the first nonzero byte reads thirty-three pairs of
bytes and stores the resulting words in memory beginning at location 0. Upon storing the thirty-third word in
location 40, the processor executes the contents of that location; the last word in the block is thus normally
a jump instruction into the body of code just read (or a halt to stop the processor). If the block contains fewer
than thirty-three words the processor simply reads the trailing blank tape as zeros. In this case the word stored
in location 40 is also zero and is executed as JMP 0. Typically the program is the same one used with the
800 and 1200 program load with the addition of a zero word (JMP 0) in location 40.

2-54

Manual Program Loading

If an 800 series or 1200 series computer does not have the program load option, then to place information in
memory without relying on a program already in memory, the operator must use the data switches to load one
word at a time manually. The same procedure must be used for the Nova computer. The information loaded
manually is usually a bootstrap loader, which is ordinarily used only to bring in a more extensive binary loader.
This latter program is then used to read the object tapes of all other programs. The binary loader usually resides
in high core where it is not disturbed by any of the standard software. But if an undebugged user routine inad-
vertently destroys the binary loader, it can be restored by first reloading the bootstrap marlually.

Below are two versions of the standard bootstrap loader, one for the teletype reader, the other for the high
speed reader (the programming for these devices is discussed in §§3.1 and 3.2). This program loads data rela-
tively to its own position in memory. Although the bootstrap can be placed anywhere, the usual procedure is
to place it in high core, beginning at the seventeenth (twenty-first octal) location from the top, so that the binary
loader also resides in high core. The program is shown here for placement at the top of a 4K memory.

The bootstrap loader reads a tape in a special format in which each word is divided into four 4-bit
characters. Each character occupies channels 1-4 (the right half) of a line on the tape. The first character
of a word, containing bits 0-3, is indicated by alin ch charmel ﬁve The tape can begin mr
of blank lines. The first two words are STA 1 +1 Tand IMP .~ 4 which are stored in the final two
loader locations as indicated in the listing. The third, fifth, . . . words are STA instructions that address
ACl, the fourth, sixth .. words are data The bootstrap executes each odd-numbered word to store the

In the followmg listings the first two columns at the left give each memory location and its contents
for a 4K memory. The remaining columns are a standard program listing. To load the program simply
use the switches to place the octal numbers in the locations specified. For a memory of any other size,
load the bootstrap beginning at a location whose address is 205 less than the largest address.

;BOOTSTRAP LOADER, TELETYPE VERSION

07757 126440 GET: SUBO 1,1 iClear AC1, Carry

07760 063610 SKPDN TTI

07761 000777 JMP ~1 ;Wait for Done

07762 060510 DIAS 0,TTI ;Read into ACO and restart reader

07763 127100 ADDL 1,1 Shift AC1 left 4 places

07764 127100 ADDL 1,1

07765 107003 ADD 0,1, SNC ;Add in new word

07766 000772 IMP GET+1 ;Full word not assembled yet

07767 001400 ’ IMP 0,3 ;Got full word, exit

07770 060110 BSTRP: NIOS TTI ;Enter here, start reader

07771 004766 JSR GET Get a word

07772 044402 STA 1,.+_—2 ;Store it to execute it

07773 004764 JSR GET :Get another word
i e ... This will contain an STA (first STA 1,.+1)
i3 A i e :This will contain JMP .—4

& ceet 255

BOOTSTRAP LOADER, HIGH SPEED READER VERSION

07757 126440 GET: : SUBO 1,1 Clear AC1, Carry

07760 063612 SKPDN PTR

07761 000777 IMP —1 :\Wait for Done

07762 060512 DIAS 0,PTR ;Read into ACO and restart reader
07763 127100 ADDL 1,1 ;Shift AC1 left 4 places

07764 127100 ADDL 1,1

07765 107003 ADD 0,1,SNC ;Add in new word |
‘07766 000772 JMP GET+1 ;Full word not assembled yet
07767 001400 JMP 0,3 ;Got full word, exit

07770 060112 BSTRP: NIOS PTR ;Enter here, start reader

07771 004766 JSR GET ;Get a word

07772 044402 STA 1,42 Store it to execute it

07773 004764 JSR GET ;Get another word

;This will contain an STA (first STA 1,.+1)
;This will contain JMP .—4

To use the bootstrap to load the binary loader or any other program in the special format, follow
these steps:)
1. Put the special format tape in the reader and turn it on.

2. Press RESET.
3. For a 4K system set the data switches to 007770 (7 less than the largest address).
4

Press START.

Binary Loader

A standard loader for loading program tapes in the type of object tape format generated by the assembler
[refer to the assembler manual] is available in several forms. Program tape number 091-000036 (write-up
093-000055) is the binary loader prefaced by the sizing and loading program for use with the Nova 800 series
and 1200 series program load; 091-000041 (writeup 093-000055) is the binary loader prefaced by both the equiva-
lent Supernova computer bootstrap and sizing and loading program; 091-000004 (writeup 093-000003) is the
binary loader for use with the manually loaded bootstrap given above. Following an automatic load, the
operator can read an object tape on the same device simply by pressing CONTINUE. To load an object tape in
any other circumstances, follow this procedure.

1. Put the object tape in the paper tape reader or teletype.

2. Set the data switches to x7777.

3. If you are using the paper tape reader, turn on data switch 0; otherwise turn it off.
4. Press START.

If a starting address is given on the object tape, control will be transferred to that location when loading is
complete. Otherwise, the loader will halt with the address lights displaying x7740, and the user must start the
program from the console. '

The binary loader computes a checksum over every data block and start block read. ‘If a checksum
failure occurs over a block, the loader halts with x7726 displayed in the address lights. Reposition the tape
to the beginning of the last block read and press CONTINUE. If the checksum failure again occurs, the
object tape is probably in error. Generate a new tape before attempting to load the program again.

2-56

Chapter II1
Basic I/O Equipment

This chapter discusses the simpler peripheral devices: teletypewriter, tape reader, tape punch, card reader,
card punch, plotter, line printer, and DGC Cassette. These devices are used primarily for communication l
between computer and operator using either a paper medium: tape, cards, form paper, or graph paper, or a
magnetic tape cassette. All transfers for them are made by the program through accumulators, except with the
DGC Cassette, which uses the data channel. l

The program can type out characters on the teletypewriter and can read characters that have been typed
in at the keyboard. This device has the slowest transfer rate of any, but it provides a convenient means of man-
machine interaction. The KSR teletypewriters comprise only a keyboard and printer; the ASR models also have
a slow tape reader and punch. This punch and tt/le separate high speed punch supply output in the form of 8-
channel perforated paper tape. The information punched in the tape can be brought into the processor by the
high speed tape reader or the one mounted in the teletypewriter.

The card equipment processes standard 12-row 80-column cards. Many programmers find cards a con-
venient medium for source program input and for supplying data that varies from one program run to another.
Cards and paper tape are both convenient to prepare manually, but card input is much faster than tape, and
simple changes are easier to make: individual cards can be repunched, and cards can be added or removed
from the deck. A possible consideration in using cards is that many installations do not include an online
card punch. _

The line printer provides text output at a relatively high rate. The program must effectively typeset each
line; upon command the printer then prints the entire line. With the plotter, the program can produce ink
drawings by controlling the incremental motion of pen on paper in a cartesian coordinate system. Curves and
figures of any shape can be generated by proper combinations of motion in x and y.

The DGC Cassette provides input and output to single channel magnetic tapes which are housed in handy,
portable, interchangeable cassettes.

3.1 TELETYPEWRITER

Five teletypewriter models are regularly available: the ASR33, KSR33 and KSR35, all of which are
capable of speeds up to ten characters per second, and the KSR37 and ASR37, which can handle up to fifteen
characters per second. The program can type out characters and can read in the characters produced when
keys are struck at the keyboard. With an ASR the program can also punch characters in a tape and read

characters from a tape.
The teletype separates its input and output functions and is really two distinct devices. Each has its own

device code, its own Busy, Done and Interrupt Disable flags, and its own interrupt priority mask assignment.
Placing a code for a character in the output buffer and setting Output Busy causes the teletype to print the
character or perform the designated control function. Striking a key places the code for the associated char-

3-1

acter in the input buffer where it can be retrieved by the program, but it does nothing at the teletype unless the
program sends the code back as output.

Character codes received from the keyboard have eight bits wherein the most significant is an even parity
bit. The Model 33 and 35 printers ignore the parity bit in characters transmitted to them. The model 37
ignores the parity bit in a code for a printable character, but it performs no function when it receives a control
code with incorrect parity.

The Model 37 has the entire character set listed in the table in Appendix E. Lower case characters are
not available on the Model 33 or 35, but transmitting a lower case code to the teletype causes it to print the
corresponding upper case character. (There are, of course, no restrictions on the codes that can be punched
in or read from tape.) To go to the beginning of a new line the program must send both a carriage return,
which moves the type block or box to the left margin, and a line feed, which spaces the paper. The horizontal
and vertical tabs and form feed have no effect on the Model 33 printer.

Teletype Output

The teletype output uses only one IO transfer instruction. Output Busy and Output Done are controlled
or sensed by bits 8 and 9 in all IO instructions with device code 11, mnemonic TTO.Output Interrupt Disable
is controlled by interrupt priority mask bit 15.

DOA - TT0 Data Qut A, Teletype Output

0 1 1 AC 0 1 0 F 0 0 1 0 0 1

U 2 3 T 4 5 6 | 7 8 9 10 11 12 ' 13 14 15

Load the contents of AC bits 815 into the teletype output buffer, and perform the function specified by F.

Setting Output Busy turns on the transmitter, causing it to send the contents of the output buffer serially
to the teletype (the buffer is cleared during transmission). The printer prints the character or performs the
indicated control function. If the punch is on, the character is also punched in the tape, with AC bit 15 cor-
responding to channel 1(a 1 in AC produces a hole in the tape). Completion of transmission clears Output
Busy and sets Output Done, requesting an interrupt if Output Interrupt Disable is clear.

NoTE

Although the buffer clears during transmission, giving an NIOS without loading
it again does not transmit a zero character. So do not give an NIOS without first
loading the buffer. To transmit any character including null, either give a DOAS or
give a DOA followed by an NIOS.

Caution

Clearing Output Busy while the transmitter is running (as with an NIOC)
terminates the transmission. But the printer still prints whatever character is repre-
sented by the indeterminate code it receives.

Timing. Models 33 and 35 can type or punch up to ten characters per second. After Output Done is set,
the program has 4.55 ms to give a DOAS to keep typing or punching at the maximum rate. The 37 can
handle fifteen characters per second, 66.7 ms per character. After Qutput Done is set, the program has 3.33
ms to send a new character to maintain the maximum typing rate. ‘

32

The sequence carriage return-line feed, when given in that order, allows sufficient time for the type block
to get to the beginning of a new line. After tabbing, the program must wait for completion of the mechanical
function by sending one or two rubouts. If the time is critical, the programmer should measure the time
required for his tabs. Tabs are normally set every eight spaces (columns 9, 17, . . .) and require one rubout.

Teletype Input

The teletype input uses only one IO transfer instruction. Input Busy and Input Done are controlled or
sensed by bits 8 and 9 in all 1O instructions with device code 10, mnemonic TTI. Input Interrupt Disable is con-
trolled by interrupt priority mask bit 14,

DIA —TTI Data In A, Teletype Input
0 . | . 1 AIC 0 . 0 . | II*" 0 l 0 1 1 1 0 1 0 1 0
o T 1 2 3 ' g 5 6 | 7 8 9 10 1 12 | 13 13 15

Transfer the contents of the input buffer into AC bits 8-15, and perform the function specified by F. Clear AC
bits 0-7.

Reception from the keyboard requires no initiating action by the program; striking a key transmits the code
for the character serially to the input buffer. However, if the reader is under program control, giving the start
function (NIOS or DIAS) sets Busy and causes the reader to read all eight channels from the next line on tape
and transmit the line serially into the buffer (the presence of a hole produces a 1 in the buffer). In either case
completion of reception clears Input Busy and sets Input Done, requesting an interrupt if Input Interrupt Dis-
able is clear. When the character is brought into AC, tape channel 1 corresponds to AC bit 15.

Timing. After Input Done is set by a Model 33 or 35, the character is available for retrieval by a DIA for
21.59 ms before another key strike can destroy it. If the reader is in use, the program has 3.41 ms to give a

DIAS (or DIA and NIOS) and keep the tape in continuous motion. With the 37, the character is available for
9.17 ms after Input Done is set.

Programming Examples

There are basically two procedures for using the skip instructions in a loop to process a series of characters.
Consider this loop for typing out (we assume the printer is not in use).

OUT: DOAS AC,TTO ;Type out
SKPDN TTO ;Wait till transmission done
IMP —1

;Get next character, compute, etc

IMP ouT ;Go back

This procedure is very poor as most of the time is spent waiting during the transmission, and there is very little
time to do anything afterwards if we are to go back to type out the next character at full speed. But with

this arrangement:
33

OUT: SKPBZ TTO ;Wait till printer free

IMP |

DOAS ACTTO ;Type out character
;Compute, etc

. ;Get next character

JMP ouT ;Go back

we have almost all of the time for worthwhile program and we can run at full speed provided only that we jump
back to OUT before the entire teletype cycle time is over. Also, the first time into the loop we wait until any
previous (perhaps unknown to us) teletype output operation is finished.

The same dichotomy exists for input operations. This is bad:

IN: NIOS TTI ;Read character
SKPDN TTI ;Wait till reception done
JMP —1
DIA AC,TT1 ;Bring in character

;Decide whether to read another character, etc

IMP IN ;Go back

but this is good:
NIOS TTI ;Read first character
IN: SKPDN TTI ;Wait till reception done
JMP —1
DIAS AC,TTI ; Bring in character and read another

;Compute, etc
IMP IN ;Go back

Of course the last program does not allow us to inspect a character to determine whether to get another one.
So for the best of all possible worlds we combine the procedures.

IN: NIOS TTI ;Read character
;Lots of time to compute
SKPDN TTI ;Wait till reception done
JMP —1
DIA AC,TTI ;Bring in character

;Decide whether to get another

JMP IN ;Do this if want another
;Skip to here if not

34

Operation

A KSR is actually two independent devices, keyboard and printer, which can be operated simultaneously.
An ASR is really four devices, keyboard, printer, reader and punch, which can be operated in various combi-
nations. Power must be turned on by the operator. On the 33 and 35 the switch is beside the keyboard and
is labeled LINE/OFF/LOCAL or ON/OFF and has an unmarked third position opposite ON. A similar
~ switch is located beneath the stand on the 37. When this switch is set to LOCAL or the unmarked position,
power is on but the machine is off line and can be used like a typewriter. Moreover, in an ASR, turning on
the punch allows the operator to punch a tape from the keyboard, and running the reader allows a tape to
control the printer (if the punch is also on, it duplicates the tape).

Turning the switch to LINE or ON connects the unit to the computer and separates its input and out-
put functions. Thus any information transmitted to the computer from the keyboard affects the printer only in-
sofar as the computer sends it back. Turning on the reader places it under program control, and turning on the
punch causes it to punch whatever is sent to the printer by the computer.

The only control on the reader is a 3-position switch. When the switch is in the FREE position, the tape
can be moved by hand freely through the reader mechanism. The STOP position engages the reader clutch so
the tape is stationary but the reader is still off. Turning the switch to START causes the reader to read the tape
if the unit is in local, but places it under program control if on line.

The operator controls the punch by means of four pushbuttons. The two on the right turn the punch on
and off. Pressing the REL. button releases the tape so it can be moved by hand through the punch mechanism.
Pressing B. SP. moves the tape backward one frame so the operator can delete a frame that is incorrect by
striking the rubout key. Pressing HERE IS with the keyboard in local punches twenty lines of blank tape (lines
with only a feed hole punched).

The keyboard resembles that of a standard typewriter. Codes for printable characters on the upper parts
of the key tops on the 33 and 35 are transmitted by using the shift key; most control codes require use of the
control key. Those familiar with the 33 or 35 who are using the 37 for the first time should take a close look
at the keyboard. On the 37 the shift is used for real upper case characters. The control key is used for some
control characters, but many have separate keys. Note also that both the keyboard arrangement and the labels
differ somewhat. On all models the line feed (labeled “new line” on the 37) spaces the paper vertically at six
lines to the inch, and must be combined with a return to start a new line. The local advance (feed) and return
keys affect the printer directly and do not transmit codes. Appendix E lists the complete teletype code, ASCII
characters, key combinations, and differences among the several models.

On the 33 and 35 is a repeat button REPT. Pressing this button and striking any character key causes
transmission of the corresponding code so long as REPT is held down. Characters that require the shift key
may also be repeated in this manner, but there is no repetition of control characters.

Teletype manuals supplied with the equipment give complete, illustrated descriptions of the procedures
for loading paper and tape, changing the ribbon, and setting horizontal and vertical tabs. Setting tabs is usually
left for maintenance personnel; in any event, the best and easiest way to learn how to do any of these things
is to have someone who knows show you how. However, as a precautionary measure we describe here the
things you may have to do yourself.

Tape. The tape moves in the reader from back to front with the feed holes closer to the left edge. To load
tape, set the switch to FREE, release the cover guard by opening the latch at the right, place the tape so that
the sprocket wheel teeth engage the feed holes, close the cover guard, and set the switch to STOP.

To load tape in the punch, raise the cover, feed the tape manually from the top of the roll into the guide
at the back, move the tape through the punch by turning the friction wheel, then close the cover. Turn on the
punch with the unit in local and punch about two feet of leader by pressing HERE IS or the control, shift and

P keys to generate null codes.
35

Paper. The 33 printer has an 8Y2-inch roll of paper at the back. Printed sections can be torn off against
the edge of the glass window in front of the platen. To replenish the paper, snap open the cover, remove the old
roll and slip a new one in its place. Draw the paper from the roll around the platen as in an ordinary typewriter.

The 35 and 37 printers have a sprocket feed and use 8%2 X 11 fanfold form paper. The supply is held in
a tray at the back. To replenish it, first remove the upper cover by pressing the cover release button on the
right side. To free the remaining old paper for removal, lift the paper guides by pushing the handle marked
PUSH at the right of the platen. To insert new paper from the tray, bring it up below the platen at the rear,
line up the holes at the edges of the paper with the sprockets, and press line feed (in local) to draw the paper
under the platen.

Ribbon. Replace the ribbon whenever it becomes worn or frayed or the printing becomes too light. Dis-
engage the old ribbon from the ribbon guides on either side of the type block, and remove the reels by lifting
the spring clips on the reel spindles and pulling the reels off. Remove the old ribbon from one of the reels and
replace the empty reel on one side of the machine; install a new reel on the other side. Push down both reel
spindle spring clips to secure the reels. Unwind the fresh ribbon from the inside of the supply reel, over the
guide 'roller, through the two guides on either side of the type block, out around the other guide roller, and
back onto the inside of the takeup reel. Engage the hook on the end of the ribbon over the point of the arrow
in the hub. Wind a few turns of the ribbon to make sure that the reversing eyelet has been wound onto the
spool. Make sure the ribbon is seated properly and feeds correctly in operation.

3.2 PAPER TAPE READER

The high speed reader processes 8-channel perforated paper or mylar tape photoelectrically at speeds up to
400 lines per second. It uses only one IO transfer instruction to retrieve data from an 8-bit buffer in the interface.
Busy and Done are controlled or sensed by bits 8 and 9 in all IO instructions with device code 12, mnemonic
PTR. Interrupt Disable is controlled by interrupt priority mask bit 11.

DIA —PTR Data In A, Paper Tape Reader
0 . 1 . 1 A'C 0 . 0 . 1 1.: 0 . 0 . 1 . 0 . 1 . 0
L 2 3 I a4 5 6 | 17 8 9 10 11 12 ' 13 14 15

Transfer the contents of the reader buffer into AC bits 8-15, and perform the function specified by F. Clear AC
bits 0-7.

Setting Busy causes the reader to read all eight channels from the next line on tape into the buffer (the presence
of a hole produces a 1 in the buffer). When the operation is complete the reader clears Busy and sets Done, re-
questing an interrupt if Interrupt Disable is clear. When the character is brought into AC, tape channel 1 cor-
responds to AC bit 15.

Clearing Busy stops the reader.

Timing. At 400 lines per second the reader takes 2.5 ms per character. After Done is set, the program
has 100 us to retrieve the character and set Busy to keep the tape in continuous motion. Waiting longer forces

3-6

the reader to stop and restart, and the program should not attempt to operate the reader in this manner at rates
above 150 lines per second. Faster start-stop rates produce reader chatter, which is not only rather annoying but
also conducive to less reliable reader operation.

Operation. An OFF/RUN/FEED switch is located in the center of the front of the paper tape reader. On
either side of the front are bins to hold fanfold paper or mylar tape. To load the reader, press the switch to its
OFF position and raise the brake keeper lever to its upper position. Place the perforated tape vertically in
the right-hand tape bin so that the sprocket holes are to the rear and the beginning of the tape is on the top.
Remove three or four folds of tape from the bin and place them in the left-hand bin, slipping the portion
between the bins into the horizontal slit and under the brake keeper. Lower the brake keeper and press the
switch to RUN. After the tape has been read, press and hold the switch in the FEED position until all of the
tape has been fed into the left-hand bin. Press the switch to OFF and remove the tape.

3.3 PAPER TAPE PUNCH
The punch perforates 8-channel paper tape at speeds up to 63.3 lines per second. It uses one IO
transfer instruction to load data into an 8-bit buffer in the interface. Busy and Done are controlled or
sensed by bits 8 and 9 in all IO instructions with device code 13, mnemonic PTP. Interrupt Disable
is controlled by interrupt priority mask bit 13.

DOA —PTP Data Out A, Paper Tape Punch
0 1 1 AC 0 ‘ 1 ‘ 0 1'-7 0 ' 0 ' 1 . 0 | | | 1
o I 1 2 3 1 4 s 6 1 74 8 | 9 10 1 T T3 T g T ogs

Load the contents of AC bits 8-15 into the punch buffer, and perform the function specified by F.

Setting Busy causes the punch to punch the contents of the buffer in the tape with AC bit 15 corre-
sponding to channel 1 (a 1 in AC produces a hole in the tape). After punching is complete, the device clears Busy
sets Done, requesting an interrupt if Interrupt Disable is clear.

Timing. While the punch motor is on, punching is synchronized to a punch cycle of 15.8 ms. After
Done sets, the program has 11.3 ms to give a new DOAS to keep punching at the maximum rate; after 11.3
ms punching is delayed until the next cycle.

The standard punch must be left on all the time that it might be used as it otherwise will not respond
to the program. With the power option the punch can be left off. Then if Busy is set when the motor is off,
punching is automatically delayed 1 second while the motor gets up to speed. While the motor is on, timing
is as given above. It can be assumed that the motor will remain on throughout any normal punching run.
But if Busy remains clear for 5 seconds the motor turns off.

Operation. Fanfold tape is fed from a box behind the punch inside its enclosure. After it is punched, the
tape moves into a storage bin from which the operator may remove it through a slot in the front. Pushing the
feed button beside the slot clears the buffer and punches blank tape (tape with only feed holes punched) as long
as it is held in, provided either the power toggle switch is on or the punch has the power option. The power switch
overrides the logic and keeps the motor on continuously.

To load tape, first empty the chad box. Then tear off the top of a box of fanfold tape (the top has a
single flap; the bottom of the box has a small flap in the center as well as the flap that extends the full length
of the box). Set the box in the frame and thread the tape through the punch mechanism. The arrows on the
tape should be on top and should point in the direction of tape motion. If they are underneath, turn the box

37

around. If they point in the opposite direction, the box was opened at the wrong end; remove the box, seal up
the bottom, open the top, and thread the tape correctly.

To facilitate loading, tear or cut the end of the tape diagonally. Thread the tape under the out-of-tape
plate, open the guide plate (over the sprocket wheel), push the tape beyond the sprocket wheel, and close
the guide plate. Press the feed button long enough to punch about a foot and a half of leader. Make sure
the tape is feeding and folding properly in the storage bin.

To remove a length of perforated tape from the bin, first press the feed button long enough to provide
an adequate trailer at the end of the tape (and also leader at the beginning of the next length of tape). Remove the
tape from the bin and tear it off at a fold within the area in which only feed holes are punched. Make sure that
the tape left in the bin is stacked to correspond to the folds; otherwise, it will not stack properly as it is being
punched. After removal, turn the tape stack over so the beginning of the tape is on top, and label it with name,
date, and other appropriate information.

3.4 LINE PRINTER

Two line printers are regularly available; these are Models 4034A and 4034B, which output hardcopy
composed of lines 80 and 132 characters long respectively. The printing speed in lines per minute is a function
of the number of columns printed from the left edge of the paper as follows.

Model 4034A Model 4034B
Columns Lines per minute Columns Lines per minute

20 1110 24 1110
40 650 48 650
60 460 72 460
80 356 96 356

120 290

132 245

There are sixty-four printing characters available to the program. The characters and codes are the figure and
upper case sets, codes 040—137, in the teletype code [4ppendix E] with the exception that codes 134,136 and
137 respectively are an open diamond, the AND symbol (A) and an open heart. Besides accepting printing
characters, the printer responds to three control characters, CR, LF and FF. All other codes are interpreted as
space characters,

Each line is printed from left to right in zones, and the printer has a buffer that holds the image of a
single zone. The 4034A has a 20-character buffer and printing is in four zones of twenty columns each; the
4034B has a 24-character buffer and printing is in six zones, where the first five are twenty-four columns each,
the sixth is twelve columns. To print a line, the program must first load the buffer one character at a time for
zone 1 even if all the characters are spaces. Once the buffer is full, the characters are printed automatically
and at the completion of the print cycle, the program can fill the buffer for zone 2. However, for each full line
the program need send out characters, including spaces, only as far as the rightmost nonspace character;
givingacontrol character at this point prints the current zone with only the filled portion of the buffer producing a
printout. When printing is caused by a control character or the filling of the buffer in the rightmost zone (in
zone 6 on the 4034B the buffer is “full” when twelve characters are loaded), the printer then returns to zone 1;
in other words, in the next print cycle the contents of the buffer will be printed at the left edge of the paper.

The standard paper has 11-inch pages. Spacing is six lines per inch and the image area is sixty-three lines
(there is automatically a half-inch space across the perforation between pages). Paper spacing is produced by
the control characters. An LF spaces the paper one line after the zone is printed; an FF spaces the paper to the
top line of the next page. If the program prints a whole line without spacing (either by giving a CR or filling
38

the buffer in the final zone), subsequent print cycles can overprint, ie print other characters in column posi-
tions already printed. With this technique the program can produce a character such as “s~” by overprinting a
slash on an equal sign (or vice versa). Programmers commonly use the combination CR plus LF to print and
space for compatibility with the teletype. Just as horizontal tabbing is accomplished by giving strings of spaces,
vertical tabbing is produced by strings of line feeds.

In a print cycle the characters are printed in the order that they pass the print hammers, and a given
character is printed simultaneously in all positions that require it. In other words the drum has a row of 80 or
132 Ms, a row of Ns, etc; all Ms are printed together, all Ns together, and so forth. The first character printed
depends only upon the position of the drum when the print cycle begins. The drum has sixty-four rows of
characters of which only sixty-three are used; the printer produces spaces in a zone by not printing anything
in the columns corresponding to the buffer positions that hold space characters.

Instructions. The printer uses two of the IO transfer instructions, one to load a single character into a
7-bit buffer in the interface, the other to read a single status bit. Busy and Done are controlled or sensed by
bits 8 and 9 in all IO instructions with device code 17, mnemonic LPT, Interrupt Disable is controlled by
interrupt priority mask bit 12.

DOA -,LPT Data Qut A, Line Printer
0 1 i 1 AlC 0 10 F o, 0 1 1 L1
L 2 3 a 5 6 | 7 8 9 10 11 12 "3 14 15
Load AC bits 9-15 into the character buffer and perform the function specified by F.
DIA - LPT Data In A, Line Printer
0 . 1 , 1 A|C 0 . 0 . 1 117 0 . 0 . 1 R
0o ' 1 2 3 4 5 6 | 7 8 9 10 11 12 ' 13 14 15

Read the Ready status into AC bit 15, clear AC bits 0-14, and perform the function specified by F. A 1 read
into AC bit 15 indicates that the printer is available to the program (eg it is on line, with power on and paper
loaded).

At the beginning of a print run the program should check Ready and send a form feed to get rid of
anything that may have been left in the zone buffer and start on a new page. The program can then set each
zone and print by giving DOASs that send the appropriate characters. Start sets Busy and sends the contents
of the character buffer to the printer. If the character sent neither fills the buffer nor is a valid control character,
the printer clears Busy after 6 us without setting Done; the prograni can then supply another character to the
printer (the contents of the character buffer remain until a new DOA is given). If the character sent fills the
zone buffer or is a valid control character, Busy remains set while the printer prints the contents of the buffer.
When the buffer again becomes available, Busy clears and Done sets, requesting an interrupt if Interrupt
Disable is clear, and subsequent characters will be loaded starting in the first buffer position. At the completion
of the print cycle, the printer either advances to the next zone or returns to zone 1 with or without spacing
the paper depending upon the condition that initiated the print cycle as explained above. If printing is caused
by a CR or a full buffer in the final zone, the next line will overprint unless the paper is advanced before any
nonspace characters are loaded into the zone buffer.

39

Timing. The program can load the buffer and print by giving DOASs separated by at least 6 us. The most
convenient way to produce this delay is simply to give the necessary number of no-ops to wait and then check
Busy to determine whether the printer can accept another character or has entered a print cycle. The program
must load the zone buffer within 200 ;s to keep the printer going at the maximum rate. The overall time
required for.a print run is the total printing and spacing time for all lines. Buffer loading time is generally not
a factor in total printer operating time because the buffer becomes available in time for the program to load it
before the next print cycle can start or the paper stops.

Each print cycle takes 34 ms, spacing one line requires 20 ms. If before the paper stops, the program
gives another spacing character without first loading any printing characters in the buffer, the paper will move
at the slew rate of 13 ms per line (13 inches per second). The paper also moves at the slew rate when it is
spacing to a top of form.

Operation. On the top of the cabinet are three toggle switches and three indicators, including a red power
light. The right toggle has a center null position and two momentary-contact positions. Pushing the switch
toward the back of the printer places it on line, lighting the ON LINE indicator, provided the READY light
is on. This last light indicates that power is on, paper is loaded, the drum gate is closed, and the drive motor
is not overheated. The Ready status flag is set when both READY and ON LINE are lit. When the unit is off
line, the operator can use the other two toggles to step the paper a single line or run it to the top of the next
page. The main power circuit breaker is at the lower left behind the front panel, which can be opened by
pushing the button at the right.

The printer uses 11-inch fanfold form paper with edge holes a half-inch apart. The minimum single copy
weight is 15 pound bond, but the printer can also handle multiple copies of up to six parts of 12 pound bond
with carbons. Paper width can be 4 to 9% inches on the 4034A, 4 to 14% inches on the 4034B.To load paper,
open the front of the printer. At the left edge inside the printer is a lever with a black knob: push this lever to
the left and up, and swing the drum gate out to the right. Press TOP OF FORM to position the tractors and
form cam. Open the tractor guides, and place the paper on the tractor teeth with a perforation aligned with
the red arrow on the left just above the hammer bank. Close the tractor guides, and if necessary, adjust the
perforation to the arrow by means of the black vernier knob in the upper left (moving the knob left and right
moves the paper up and down). Close the drum gate, push the gate latch down and to the right, close the front
panel, and place the printer on line.

For information on ribbon changing, maintenance controls, test operation, and paper position and ten-
sion adjustments, refer to the printer manual.

CAUTION
On models 4034A and 4034B, when changing the
ribbon, make sure to put the fat roll at the top.

3.5 PLOTTER

The plotter control interfaces the processor to various plotters that use cartesian coordinates. The
following lists the type and paper size of the most commonly supplied models.

Model Type Paper size in inches
4017D Bed ' 31 X 34
4017C Drum 2915 X 1440
4017E Bed 11 x 1734

These are high accuracy, incremental digital plotters that produce fine quality ink plots of computer-generated
data. Bidirectional stepping motors provide individual increments of motion in either coordinate or both at
once. The program draws a continuous sequence of line segments by controlling the relative motion of pen
and paper with the pen lowered, and it can raise the pen for repositioning. The 4017E uses fanfold paper per-
forated for 11 X 8% or 17.

Motion in y is movement of the pen carriage along a rod or pair of rods. Motion in x is movement of the
entire carriage-and-rod mechanism on the 4017D bed plotter, movement of the paper underneath the carriage
on the drum type or the 4017E. On a bed plotter the coordinate directions are the standard ones when viewing
the device from the front: positive x to the right, positive y to the back. The coordjnate system on a drum is in
the standard orientation when the viewer is standing at the right side, unrolling the paper from the drum with
his left hand. In other words positive y is movement of the pen from right to left across the drum, positive x is
drum rotation downward at the front (drawing a line toward the paper supply roll at the back).

The step sizes and plotting speeds available with the various models are the following.

Plotting speed in Time per
Model Step size steps per second step in ms
.01 inch
.005 inch
4017D .002 inch 300 3.3
.1 mm
.05 mm
.01 inch 200 5
4017C .005 inch 300 33
I mm 300 33
.01 inch
4017E 005 inch 300 3.3
.25 mm
.1 mm

The plotter uses only one IO transfer instruction, and the program can draw any complete figure by giving
a string of them, with each supplying the information for one step. Busy and Done are controlled or sensed by
bits 8 and 9 in all IO instructions with device code 15, mnemonic PLT. Interrupt Disable is controlled by
interrupt priority mask bit 12.

DOA -PLT Data Out A, Plotter
0, 1 1 AC 0.1 0 F 0,0 1 .1 0 1
o ' 1 2 3 4 s 6 | 7 8 9 10 11 12 | 13 14 15

Load plotting information from AC bits 10-15 into the plotter command register as shown, and perform the
function specified by F.

RAISE [LOWER] _ _
PEN | PEN | TAY | HAY | -AX | +AX

o 1 2 3 " 4 5 6 ' 7 8 9 10 11 12 13 14 15

3-11

Setting Busy causes the plotter to execute the plotting command given by the last DOA. After sufficient
time has elapsed for the device to carry out the specified action, the control clears Busy and sets Done, requesting
an interrupt if Interrupt Disable is clear.

To avoid drawing line segments shorter than one step, do not raise or lower the pen in the same DOA that
calls for xy motion. Specifying contradictory movements results in no motion in the given dimension.

Timing. Raising or lowering the pen takes 100 ms. The time required to move one step in either or both
coordinates depends on the plotting speed as given in the above table.

Operation. On a drum plotter the supply roll is behind the drum. Bring the paper over the drum, down in
front, and above and behind the pickup roll underneath the drum (use a piece of masking tape to attach the
paper, or roll some onto the tube).

To put the plotter on line simply turn on the power and the chart drive. The remaining controls are for
manual operation: raising and lowering the pen, moving the carriage and drum in either direction, rapidly or
single step. The 4017D bed plotter has similar controls.

To load paper in the 4017E plotter, lift open the cover by lifting the lid knob while pressing its center.
At the right rear is a support that can be snapped into place to hold the lid open. Pull the paper over the
plotter bed from a supply pile at the right, making sure that the sprocket teeth engage the holes in all four
corners (the round holes should be at the back), and snap the lid shut. Photographs and drawings of the plot-
ter and information on the types of pens and how to change them are given in the plotter instruction manual.

To put the plotter on line simply press the poWer button, turn the pen switch to REMOTE, and turn the
chart and pen axis switches to PLOT. The POWER and READY lights should be lit. For manual operation
the pen switch can be used to move the pen up and down, the other two switches can be used to enable the
motion pushbuttons at the left of each switch. Pressing a button produces motion of the pen or chart in the
direction of the arrow. Note that chart motion is diametrically opposed to motion in the x coordinate: moving
the chart to the right plots a line toward the left, ie in the —x direction. The movement produced by a button
depends on the position of the associated axis switch: with the switch set to JOG each button push produces a
motion of one step in the corresponding coordinate; the SLEW position produces motion at full plotting speed
as long as the button is held down.

3.6 CARD READER

The card readers handle standard 12-row 80-column punched or Mark Sense cards at speeds up to 1,000
cards per minute. Once started, an entire card is read column by column. The reader supplies each column
to the processor as twelve bits, and the program can translate in any way it wishes; the standard DGC character
representations and the translation to ASCII made by the software are given in Appendix E. Of course the
data can simply be in binary (a 7 and 9 punch in the first column is the standard indication that the rest of the
card contains binary data).

The card reader has device code 16, mnemonic CDR, and uses two IO transfer instructions, one to retrieve
each column from a 12-bit buffer in the interface, the other to read status. Busy and Done are sensed by bits 8
and 9 in the IO skip instructions and are controlled in the usual fashion by the Clear and Start functions, but the
10 Pulse function (F = 11) is also used to clear Done without affecting Busy. Interrupt Disable is controlled by
interrupt priority mask bit 10.

3-12

DIA —CDR

DataIn A, Card Reader

F

0

1

1

1

0

8

9

10

11

12

13

14

15

Transfer the contents of the column buffer into AC bits 4-15 where the correspondence of card rows to bit
positions is as shown, and perform the function specified by F. Clear AC bits 0-3.

ROW 12[ROW 11f ROW 0 |ROW 1 { ROW 2 [ROW 3 |ROW 4 | ROW 5|ROW 6| ROW 7| ROW 8 |ROW 9
L [1
0o 1 3 4 5 6 7 8 9 10 11 12 13 14 15
DIB —,CDR Data In B, Card Reader
0o 1 AC 0 . 1 F 0 o0 1 1 1.0
o ' 3 ' 4 s 6 7 8 9 10 11 12 13 14 15

Read the status of the reader into AC bits 11-15 as shown, and perform the function specified by F. Clear AC
bits 0-10.

H
STACKER FULL | FATLURE TROUBLE READY READER
10 11 12 13 14 15

12 The reader has received a read command but has failed to bring in a card from the hopper.

13 A card has failed to move properly through the reader (it has probably slipped) or an error has been
detected in the photoelectric circuitry. When Trouble sets the reader stops at the end of the current card,
and the program should be dubious of any data taken from it.

14 The reader is ready to accept a read command (all other status bits are 0).

15 The reader has brought a card in from the hopper and has not yet finished reading it.

Before trying to read a deck the program should check Ready. To start every card the program must give
Start, either in an NIOS or while checking status with a DIBS. Setting Busy causes the reader to pick a card;
movement of the card in from the hopper sets Card in Reader. As each column is loaded into the buffer (the
presence of a hole produces a 1 in the buffer), Done sets, requesting an interrupt if Interrupt Disable is clear.
The program must respond with a DIAP to bring in the column and clear Done.

After all eighty columns have been read, the card moves out to the stacker, and Card in Reader goes off,
clearing Busy and setting Done, again requesting an interrupt.

Note that Done does double duty as both a column ready flag and a card done flag, and thus sets eighty-one
times per card. In this case Busy and Done both set is legitimate: Busy remains set throughout the card even
though Done sets on each column and the program must respond to each column with IO Pulse to clear Done
without affecting Busy.

Timing. The timing of the sequence of operations that process a card depends upon whether the reader
handles 225 or 400 cards per minute (figures for the latter are given in parentheses). After Busy sets, 65 (37)

~ms elapse before Card in Reader goes on. The first column Done occurs 7.5 (4.2) ms later. Subsequent
columns are ready every 2.4 (1.35) ms — the program must give a DIAP within 2.175 (1.25) ms after each
Done or data will be missed. Total time from first to last column Done is 189.6 (107) ms. After Done sets for

3-13

the eightieth column, 7.2 (4.05) ms elapse before Card in Reader clears, clearing Busy and again setting Done.
The program then has 150 (84) s within which to give a new Start to keep the reader going at the maximum
rate. These times are determined by mechanical operations and may therefore vary by as much as 20 percent.

Operation. The reader has a hopper and stacker capacity of 500 cards. To load a deck, first fan and flex
the cards and jog them on top of the reader. Turn the deck over and put the first hundred cards (about an inch
of the deck) into the hopper (at the right) with the 9 edge against the back so column 1 is read first. Place the
rest of the deck on top of the first part and put the card weight on top of the deck. Cards can be added to the
hopper while the reader is running provided at least a half-inch of the deck is left, but always stop the reader
before removing cards from the stacker.

The reader is operated by the buttons in front of the hopper. The two at the left turn onbpower and the
reader motor. Pushing START places the reader on line so the program can read cards. Pushing STOP turns
off the reader, taking it off line. An empty hopper, a full stacker, or any error condition indicated by the lights
in front of the buttons also stops the reader, but it always finishes the current card before stopping.

The four error lights indicate a pick failure, a card motion error, and a photocell output that is too weak or
that exists when there should be none (a photocell error may be caused by a hardware malfunction but can also
be caused by an obstruction in the read station or a damaged card). The last three error conditions set Trouble.
Do not attempt to reread a worn or damaged card that has caused an error — duplicate it first. After correcting
the trouble, press START to allow the program to continue reading the deck.

3.7 DGC CASSETTE

The DGC Cassette system is a computer peripheral which stores digital information on a single track of
.15 inch magnetic tape. The DGC Cassette consists of a control and up to eight cassette transports. The trans-
ports, their drive electronics and power supply are housed in a 19 inch chassis in banks of up to three; the
control is housed in the computer’s chassis or its extension.

The computer governs the control and the control governs all transports. The transports are numbered
from 0 to 7 and identified visually by the operator and logically by the control by thumb wheels mounted on the
chassis PC board, and available through the front panel. Data is transferred at 800 words per second between
the transports and the computer through the control via the computer’s data channel; the data channel has 28usec
to respond to a data channel request. Each transport reads and writes at 800 sixteen bit words a second; spaces
(counts records) forward or reverse at 30 inches per second ; rewinds completely in 85 seconds, and writes an End
of File (EOF) mark on command. Writing is done through a Write Head and reading through a Read Head which
sees data on the tape shortly after it has been written (Read After Write). Only one transport can be reading or
writing at any time, and a transport can only read or write data when the tape is moving forward (from supply
reel to takeup reel). A cassette can be rewound manually by the operator with a switch on the transport, or
automatically under computer control.

Each transport drives one magnetic tape cassette. The magnetic tape cassettes store an average of
50,000 sixteen bit words in blocks of 2 to 4096 on 200 feet of .15 inch magnetic tape. The magnetic tape in the
cassette begins and ends with 22 inch reflective leader/trailers which stop the transport when they pass over a
photodiode mounted near the heads. Two holes molded into the top of each cassette determine the state of the
transport’s Write Enable switch. The control cannot write on a cassette unless the left hand hole (facing the
cassette when it is in the transport) is covered to depress the Write Enable switch. When the cassette is
properly mounted in its transport, it depresses the transport’s “Cassette-in-Position” switch. A control cannot

use the transport unless this switch is depressed.
Each chassis has a three-position power-on switch: REMOTE puts the power supply under computer con-

trol so that the chassis turns on or off with the computer; OFF turns off the chassis’s power supply and LOCAL
turns on the chassis’s power supply without regard to the computer.

3-14

THUMB WHEELS

"CASSETTE
IN POSITION"
SWITCH

MOLDED "WRITE
ENABLE" HOLES
WITH PLASTIC
FLAPS

0600138

"WRITE ENABLE" MAGNETIC TAPE
SWITCH CASSETTE
TYPE 4084

The DGC Cassette Chassis

Tape Format

The control writes serially onto the tape in groups of bits called words, groups of words called records
and groups of records called files. The words are always 16 bits long, the records are 2 to 4096 words long (deter-
mined by the program), and the files are 2 to 4096 blocks long (usually limited by the length of tape). Words
need no terminators; records are terminated automatically by a 16 bit cyclical checkword and a 114" gap; files
are terminated by two 14’ gaps and an End of File (EOF) marker. The tape itself begins and terminates with 22"/
reflective leader/trailer. The control automatically detects and responds to these markers and the checkword.

The cyclical checkword is calculated and tested during both write and read operations. During a write
operation, it is calculated from the data stream that is input from the control through the Write Head to the
magnetic tape, and then re-calculated from the (same) data stream that is input (ms later) from the magnetic
tape to the Read Head. If the checkword that is finally written at the end of the record is not the same as the
checkword calculated through the Read Head, an error flag called PARITY ERROR is posted. During a read
operation, the checkword is calculated from the data stream that is entering the Read Head and then compared
to the version that was written at the end of the record. If the cyclical checkword written is not the same as that
calculated, the PARITY ERROR flag is posted.

3-15

1.34ms / word

84usec [bit
=~ 22"
LEADER / TRAILER DATA RECORD
CYCLICAL
/— CHECKWORD
? DATA RECORD % ' DATA RECORD
INTER-RECORD GAP
p-——— =) 127 ———1
(50ms)
CYCLICAL END OF FILE MARK
/ CHECKWORD / (8 FLUX REVERSALS)
LAST DATA RECORD FIRST RECORD OF
IN THE FILE THE NEXT FILE
INTER-RECORD GAP
= 1an T —e— END OF FILE GAP —af
=~ 3"
~22"
i LAST RECORD OF THE FILE LEADER / TRAILER

1. The leader/trailer is the End of Tape mark. If the computer writes into the leader then the record and possibly
its file must be erased and started on another cassette.

2. A cassette will record approximately two-hundred, 256-word blocks or twelve 4096 word-blocks.

The DGC Cassette Magnetic Tape Format
3-16

Instructions

To run the tape, the program must select a transport and a command. A command usually requires an
initial address (to the 15-bit address counter) for data channel access, and the (two’s complement) negative of a
word count. Space commands use the 12-bit word counter for counting records.

The tape system uses five of the IO transfer instructions. Busy and Done are controlled or sensed by bits
8 and 9 in all IO instructions, with device code 34, mnemonic CAS. Interrupt Disable is controlled by interrupt
priority mask bit 10. A second tape system connected to the bus would have device code 74. The Clear function
(F = 10) clears Busy and Done and also clears the command register and the status flags in the control. Start
(F = 01) clears Done, sets Busy, and places the control and the selected transport in operation.

DOA —,CAS Data Out A, Cassette Tape
‘ 1 1 1 A1C 0 1 1 ' 0 Fl’ 0 1 1 ; 1 , 1 | 0 1 0
0 1 2 3 1 3 5 6 | 7 8 9 10 11 12 ' 13 14 15

Load the contents of AC bits 10-15 into the command register as shown, and perform the function specified by F.

The contents of the AC remain unchanged and must be in the following format.

COMMAND UNIT
01112131415|6|7181910111112 13114‘15
10-12 These bits select the command as follows
0 Read
1 Rewind
2 No Effect
3 Space Forward
4 Space Reverse
5 Write
6 Write End ot File
7 Erase
13-15 Numbers 0-7 address transports 0-7.
DOB —,CAS Data Out B, Cassette Tape
0 1 1 AC 1 0 0 F 0 1 1 1 0 0
R R 332 s T 819loill|l2%l3ll4lls

Load the contents of AC bits 1-15 into the address counter (AC bit 0 should be 0), and perform the function
specified by F.
3-17

DOC —,CAS

Data Out C, Cassette Tape

F 0 1 1 1 0 0

1 | 1 | I | 1 | | 1

1 2 3 I 3 3 6 | 7 8 9 10 11 12 7 13 14 15

Load the contents of AC bits 4-15 into the word counter, and perform the function specified by F. The maximum

block size is 4096 words and the minimum block size is 2 words. The word counter becomes the block counter
during spacing. Minimum count is 1.

DIA —,CAS Data In A, Cassette Tape
0 1 . 1 A!C 0 | 0 1 1 1?‘ 0 1 1 1 0 0
[1] 1 2 3 I 4 5 6 1 7 8 9 10 ! 11 I 12 i 13 l 14 I 15

Read the status of the tape system into AC as shown, and perform the function specified by F.

Upon completion the contents of the AC are formatted as follows:

CAs-
ERROR DATA | winp.| ILLE-| ; PaRriTy| ENP | END |BEGIN 1 [write| o 0 |WRITE| () [SETTE
LATE | YD GaL ERROR| 1955 | rire | 195g FAIL LOCK LONIT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Start clears Error, Data Late, Parity Error, End of File, and Write Fail; Clear, clears these, plus Illegal; the re-

maining flags are supplied by the addressed transport (which is automatically unit O after Clear is given).

0
1

3-18

Bit1,3,56,7,80r 101is 1.

The data channel has failed to respond in time to a request for access (e.g., because of a long indirect
addressing chain or pre-emption of the channel by faster devices).

The addressed transport is now rewinding.

This bit sets if the program gives Start when any of the following conditions holds:

— the command is Write, Erase or Write End of File, and Write Lock (bit 13) is 1.

— the command is Space Reverse and Begin of Tape (bit 8) is 1.

— Busy is 0 but Unit Ready (bit 15) is also 0, which means that the cassette is not in place or is rewinding.
The setting of Illegal prevents the tape control from going into operation and sets Done, requesting an
interrupt if Interrupt Disable is clear. The program must give Clear before proceeding (Start does not
clear Illegal).

Always in the 1 state.
During Write, this bit is set if the cyclical checkword written at the end of the record differs from the

cyclical checkword calculated by the read logic, indicating that a Write or Read error has occurred.

During Read this bit sets if the cyclical checkword calculated by the Read logic differed from the cyclical
checkword read at the end of the record, indicating that a Write or Read error occurred.

During Read or Write this bit sets if the correct number of flux reversals was not detected after the block
has been completed.

The addressed tape has moved into the leader/trailer at the end of the tape. (Reverse motion clears
this bit.)

7 The control has written a file mark or has encountered one in reading or spacing. If there is an error
in a file mark it is not recognized as such, i.e., the control interprets it as very short data record.

8 The addressed tape has moved into the leader at the beginning of tape.
9 Alwaysin the 1 state.

10 The write current has ended in the wrong state due to a catastrophic failure.
11,12 Not Used. }
13 The selected transport’s Write Enable switch is disabled.

14 Not Used.

15 The addressed transport is ready for operation by the program.
DiB -,CAS Data In B, Cassette Tape
| 1 | 1 A IC 0 | 1 | 1 117' 0 1 1 . 1 | 1 | 0 1 0
o 1 1 2 3 I a4 5 6 | 7 8 9 10 11 12 1 13 14 15

Read the present contents of the address counter into AC bits 1-15, and perform the function specified by F.

Clear AC bit 0.

During Spacing, the address counter increments at the end of each block. It therefore holds the file end block
count when Spacing terminates.

Automatic Loading

Should the core image loader which programs the computer to accept data from the DGC Cassette be des-
troyed by program debugging, it can easily be restored from the cassette.

The core image loader is two blocks long, each block having 257 words. The first block starting at location
zero, is used to read in the second block. Only the second block of 257 words, however, stays in core,.at the
highest memory location. The core image loader should be the first file on a tape cassette mounted on trans-
port zero.

In a Supernova computer the core image loader is brought in from tape simply by pressing RESET, setting
000034 in the switches and then CHANNEL START at the computer console. In a Nova 1200, 1230, 800, 1210,
1220 or 820 computer with the PROGRAM LOAD option switch press RESET, setting 100034 in the switches,
then press PROGRAM LOAD. To bring the core image loader into memory without automatic loading, the
operator must use the following procedure:

1. Press RESET.

2. Set 376 into the data switches and press EXAMINE.

3. Set the instruction NIOS CAS (060134) into the data switches and press DEPOSIT.

4 Set 000377 into the data switches (JMP 377) and press DEPOSIT NEXT.

5 Set 376 into the data switches and press START.

|
[

Tape commands

To perform any operation, the program must select the unit while giving a command, and all commands
are initiated by giving Start. The Rewind command does not actually place the control in operation; but, for all
other commands, Start clears Done and sets Busy. At the termination of the command, the control clears Busy
and sets Done, requesting an interrupt if Interrupt Disable is clear. Before any instruction is given read Status
to see if the given command is valid. No forward command should be given after reaching the End Of Tape
leader. Following this section are flow charts that show the actual procedures for programming the tape com-
mands properly.

Write. The program must specify a (negative) word count, and an initial address. If Write Lock is 1, Start
sets Illegal and Done, and the control does not go into operation. Otherwise, the control makes an immediate
data request for the first word, and writes the words it receives via the data channel from the locations specified
by the address counter. When the word counter overflows Data Late or EOT sets, the control terminates the
record and sets Done.

Write End of File. If Write Lock is 1, Start sets Illegal and Done, and the control does not go into opera-
tion. Otherwise, the control writes a file mark and then sets Done.

Erase. If Write Lock is 1, Start sets Illegal and Done, and the control does not go into operation. Other-
wise, the control erases 2 inches of tape and then sets Done.

This command is used primarily to skip sections of tape on which the program has found it impossible to
write data without parity errors.

Read. The program must specify a (negative) word count, and an initial address. The control reads a single
record from tape, and sends the data via the data channel to the locations specified by the address counter until
it encounters the EOR gap or the word counter overflows, whichever occurs first. Giving a large word count
(eg giving zero) ensures that the entire record will be read even if its length is unknown. The setting of Data Late
during the record indicates that information has been lost, but data transfers continue until overflow or the record
ends. After completing the record, the control sets Done.,

The length of a record of unknown size can be determined after it is read by giving a DIB to check the con-
tents of the address counter, which will be one greater than the address to which the last word in the record was
sent (provided, of course, the word count was large enough).

Space Forward. The program should give a (negative) word count equal to the number of records to be
spaced. The control spaces forward over the given number of records unless it encounters a file mark or the
end of tape, in which case it stops at the mark or at the end of the record in which the EOT marker is encountered.
To space a file of up to 4096 blocks the program can simply give a zero word count.

Space Reverse. The program should give a (negative) word count equal to the number of records to be spaced.
If Begin of Tape is 1, Start sets Illegal and Done, and the control does not go into operation. Otherwise, the
control spaces reverse over the given number of records, but stops the tape automatically upon encountering a
file mark or the beginning of tape. To space a file, (up to 4096 blocks) the program can simply give a zero word
count. It is not advisable to Space Reverse at the beginning of the tape leader.

Rewind. A Rewind command causes the transport to space forward the length of the leader/trailer (22
inches), space backward until it encounters the beginning of tape leader/trailer, and then forward again the
length of the leader/trailer. During this last spacing from the beginning of tape, the transport erases the tape.
Once a Rewind command is issued to a transport, it carries on automatically, so that any number of transports
can be rewinding at once.

320

CLEAR
READ
RETRY
COUNTER

YES

BUSY

NO

SELECT
UNIT

SEND READ
& UNIT

SEND INITIAL
ADDRESS, WORD
COUNT & START

+ 1 ERROR
COUNTER
FOR READ

+ 1 READ
RETRY
COUNTER

SPACE
REVERSE

DG-00/46

DGC Cassette READ Flowchart

X = INITIAL
ADDRESS +
WORD COUNT

X =
DIB ADDRESS
READ

321

ENTER

CLEAR WRITE
RETRY
COUNTER
YES
BUSY + 1 ERROR
COUNTER
FOR WRITE
NO
NO
SELECT
UNIT
SPACE
REVERSE
+ 1 WRITE
RETRY
COUNTER

RIT
RETRY
COUNTER

NO

SEND WRITE
& UNIT

SEND INITIAL
ADDRESS,
WORD COUNT
& START

L0_<0NE/YES

DG-00/47

DGC Cassette WRITE Flowchart

322

ENTER

YES

BUSY

NO

SELECT
UNIT

SEND WRITE
EOF, UNIT
& START

DATA LATE
REWIND ILLEGAL
WRITE FAIL

DG-00/48

DGC Cassette WRITE END OF FILE Flowchart | 323

o

YES BUSY
NO

SELECT
UNIT

YES

SELECT
UNIT

SEND SPACE
COMMAND &
UNIT

SECOND RECORD
COUNT & START

06-00152

SPACE FORWARD/REVERSE

324

EXIT

NO

UNIT
READY

YES

c

SELECT
UNIT

SEND SPACE
COMMAND &
UNIT

SEND 0

RECORD COUNT
& START

FORWARD/REVERSE

DGC Cassette Flowcharts

EXIT

SPACE FILE

NO UNIT
READY
YES

SEND REWIND
COMMAND &
UNIT

EXIT

REWIND

Chapter IV
Magnetic Tape

The magnetic tape equipment handles the large reels of half-inch tape that are standard throughout the
industry. A tape system consists of a control and up to eight tape transports. The control is connected to the data
channel, so the program need only set up the tape for a particular operation and all transfers to and from memory
are then handled automatically. To operate with the data channel the control has an address counter and a word
counter as well as data buffers. Data General supplies several types of transports that differ in tape speed and
tape handling characteristics. Each type is available in two versions, for recording information in nine tracks
and seven tracks. Thus data transfer rates and timing depend on the transport, but each transport supplies
information to the control such that transports of different speeds and recording formats can be operated by a
single control. Every transport accommodates two reels (one for supply, one for takeup) and can record infor-
mation in both low and high densities, 556 and 800 bytes per inch. A full 10%2-inch reel has 2400 feet of half-
inch tape and at high density can store over 180 million bits of data in the 9-track format, over 135 million bits
in the 7-track format.

The program communicates with the tape control, which in turn governs all tape transports but operates
only one at a time. Reading and writing (recording) can occur only when tape is moving forward (from supply
reel to takeup reel), but the control can space the tape (ie move it to a new position) in either direction.
Although only one transport can be reading, writing or spacing at a time, rewinding the entire tape onto the
supply reel at high speed requires only initiation by the control, and the transport then proceeds automatically
while the control can operate another.

4.1 TAPE FORMAT

The control writes lateral characters, ie it writes transverse lines on tape with nine or seven bits of infor-
mation per line, one bit in each track. The density of the information written is determined by a switch at the
transport. Every character is in either a data record or a file mark. A data record contains both data characters
and error-checking characters; every data character consists of a data byte and a parity bit, which the control
generates so that the number of 1s in the line is odd or even as specified by the program. The data bytes in a
record taken together correspond to a block of words sent from memory to the control. To separate adjacent
records the control automatically erases a segment of tape, a record gap, between them. The control always
stops tape in a gap.

Transfers between memory and control are of full words even though the tape charhcters may contain 8-bit
or 6-bit data bytes. The minimum length of a record is two words (four data characters), the maximum length
is 4096 words. To write, the control divides the words into data bytes, and when reading, it reassembles them.
There are two ways in which this is done. For 9-track format the control writes each word as two characters,
each containing an 8-bit data byte. After the control writes the last data line for a record, it writes three blank

4-1

FIRST CHARACTER SECOND CHARACTER

i 1 Il 3 | i i i Il 1 i i 1 1

0o ' 1 2 3 ' a4 s 6 @ 1 8 9 ' 10 11 12 13 14 15

3 BLANKLINES, CRC
__—FOR GAP (3 LINES)
LPCC._
N\

§ DATA 6" l DATA

AN

e W
FORWARD 9 — — RECORD GAP ONE RECORD

9-TRACK FORMAT

lines, a cyclic redundancy character (CRC), three more blank lines, and a longitudinal parity check character
(LPCC). The first three zero characters constitute the end-of-record gap (EOR), so called because the control
uses it to detect the end of record; this is so even in writing, as the tape encounters the write head first, and the
control detects everything shortly after writing it. The control generates the CRC as described in §6 of USAS
X3.22-1967, USA Standard, Recorded Magnetic Tape for Information Interchange. Taking the CRC bits as
numbered in that document, CRC bit 1 corresponds to the parity track, bits 2-9 correspond to the tracks that
receive the bits from left to right in each data byte. The LPCC (which may be zero) produces even longitudinal
parity in each of the tracks along the length of the record. The minimum record gap is .6 inch. For compatibility
with IBM format, a record must be written in high density and odd parity. 7

Whenever the control reads or writes a data record, it checks that the lateral parity of every data line agrees
with the parity specified by the program and checks that every track has even longitudinal parity.

For 7-track format the control writes bits 2-7 and bits 10-15 of each word in two characters, ignoring bits
0, 1, 8 and 9 altogether. After writing the last data line, the control writes an EOR gap and an LPCC. The

FIRST CHARACTER SECOND CHARACTER
} L L

i
1 2 3 4 5 6 | 7 8 9 10 11 12 ' 13 ' 14 15

LPCC\ _— EORGAP (3 LINES)
b

< Y

§ DATA 75" DATA

\

FORWARD — —— RECORD GAP ONE RECORD

7-TRACK FORMAT

minimum record gap is .75 inch. When reading 7-track tape, the control assembles pairs of bytes into words in
the positions shown above, with Os in the unused bits.

When writing in even parity, the program must take care not to supply a word containing a zero data byte
in the recording format selected, as this would result in a missing character (a blank line), and no words beyond

4-2

that point would reassemble correctly. The control does not check for missing characters when reading, but two
or more contiguous missing characters would be interpreted as an EOR gap, so the command would terminate
with the Bad Tape flag set.

To facilitate tape processing the program can group sets of data records into files. The end of a file is
indicated by a 3-inch gap followed by a file mark, which is a special record containing a single, special data
character and its (equivalent) LPCC. A space command automatically terminates when a file mark is encountered.

Every tape has two physical markers to indicate its extremities. These markers are reflective strips that are
sensed by photoelectric cells in the transport. At least ten feet in from the beginning of the reel is the loadpoint
marker, which is the logical beginning of tape (BOT). Reverse commands stop automatically at this marker. A
loadpoint gap of at least three inches precedes the first record on the tape. The end-of-tape marker (EOT) is at
least fourteen feet from the physical end of the tape; the final ten feet of tape should be left for trailer, ie the
program should not record more than a few feet beyond the EOT (this is more than enough for a record of
maximum length at low density). A status bit indicates when the tape is beyond the EOT, but this condition
stops the tape automatically only when it is spacing forward.

An annular groove is molded into the back of every reel. The control cannot write on the tape unless the
supply reel has a plastic (write enable) ring in this groove. By leaving the ring out, the operator can protect the
data on the tape from accidental destruction (overwriting or erasure).

While the control is actually processing the data part of a record, the data transfer rate is fixed. But in a
lengthy tape run the effective (average) transfer rate depends on record length, which determines the percentage
of tape taken up by gaps (at the higher density each record gap could hold an additional 240 words). The
effective transfer rate is therefore a function of record length as well as tape speed and density.

4.2 INSTRUCTIONS

The tape control has two 16-bit buffer registers to provide double buffering of data between tape and data
channel; hence the channel has almost three character times in which to respond to requests by the tape control.

To run the tape, the program must select a transport and a command; most of the latter also require speci-
fication of parity, an initial address (to the 15-bit address counter) for data channel access, and the (twos
complement) negative of a word count. Space commands use the 12-bit word counter for counting records.

The tape system has device code 22, mnemonic MTA, and uses five of the IO transfer instructions. Busy
and Done are sensed by bits 8 and 9 in the IO skip instructions. The Clear function (F = 10) clears Busy and Done
and also clears the command register and the status flags in the control. Start (F = 01) clears Done, sets Busy,
clears many of the flags, and places the control and the selected transport in operation. Interrupt Disable is con-
trolled by interrupt priority mask bit 10. A second tape system connected to the bus would have device code 62.

DOA —MTA Data Out A, Magnetic Tape

0 1 1 AC 0 1 0 F 0 1 0 0 1 0

| 1 § 1 | i 1 1 i 1 i
o | 1 2 3 ' 4 5 6 I 7 8 9 10 11 12 ' 13 14 15

Load the contents of AC bits 9-15 into the tape command register as shown, and perform the function specified
by F.
4-3

PAR- COMMAND UNIT
| | L | { f | ITY] | |
0 I 1 2 3 1 a 5 6 | 7 8 9 10 11 12 13 14 15
9 0 selects odd parity, 1 selects even.
10-12 These bits select the command as follows.
0 Read
1 Rewind
2 No Effect
3 Space Forward
4 Space Reverse
5 Write
6 Write End of File
7 Erase
13-15 Numbers 0-7 address transports 0-7.
DOB — MTA Data Out B, Magnetic Tape
0 1 1 AC 1 0 0 F 0 1 0 0 1 0
I s S— R 516}7 81910111112 13 14‘15

Load the contents of AC bits 1-15 into the address counter (AC bit 0 should be 0), and perform the function

specified by F.

Note: If this instruction is given with a 1 in AC bit 0 and if the control then executes a Read command in
which the word counter does not overflow, the control reads the CRC at the end of the record and sends it to

the next memory location specified by the address counter. This is primarily for maintenance, for the program

to check whether the CRC is being generated properly.

DOC —MTA Data Qut C, Magnetic Tape
0 1 X 1 AC 1 | 1 1 0 117 0 1 0 0 1 0
| | | 1
o ¢ 1 2 713 5 6 | 7 8 9 10 11 12 13 14 15
Load the contents of AC bits 4-15 into the word counter, and perform the function specified by F.
DIA —MTA Data In A, Magnetic Tape
0 1 1 AC 0 0 1 F 0 1 0 0 1 0
S 5t s T3 T TR TR 13 TR

Read the status of the tape system into AC as shown, and perform the function specified by F.

4-4

RE- HIGH | PAR- | END | END
DATA ILLE- LOAD 9 BAD | SEND | FIRST [WRITE| ODD | UNIT
ERROR WIND- DEN- | ITY OF OF
LATE ING GAL SITY |[ERROR| TAPE | FILE POINT [TRACK| TAPE {CLOCK/ CHAR [LOCK | CHAR [READY]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bits 11 and 12 are for maintenance only and are not discussed further here. Start clears Error, Data Late,
Parity Error, End of File, and Bad Tape; Clear clears these plus Illegal; the remaining flags are supplied
by the addressed transport (which is automatically unit O after Clear is given).

0 Bit 1,3,5,6,7,8,10 or 14 is 1.
1 The data channel has failed to respond in time to a request for access (eg because of a long indirect
addressing chain or preemption of the channel by faster devices).
2 The addressed transport is now rewinding.
This bit sets if the program gives Start when any of the following conditions holds:
® The command is Write, Erase or Write End of File, and Write Lock (bit 13) is 1.
® The command is Space Reverse and Loadpoint (bit 8) is 1.
® Busy is 0 but Unit Ready (bit 15) is also 0.

The setting of Illegal prevents the tape control from going into operation and sets Done, requesting
an interrupt if Interrupt Disable is clear. The program must give Clear before proceeding (Start does
not clear Illegal).

4 The addressed transport is set to high density (0 indicates low density).
In Read or Write the control has encountered a data character whose lateral parity differs from that
specified with the command or has discovered a track with odd parity the length of a record. Incorrect
parity in a CRC or LPCC does not set this bit, but specifying the wrong parity when reading a file
mark does.
6 The addressed tape is beyond the EOT marker. (Reverse motion clears this bit.)
7 The control has written a file mark or has encountered one in reading or spacing. If there is an error in
a file mark it is not recognized as such, ie the control interprets it as a very short data record.
8 The addressed tape is at loadpoint.
9 The addressed transport handles 9-track tape (O indicates 7-track).
10 The control has encountered either data in a record gap or a false end of record (two or more contiguous
blank characters). Spacing reverse over an unrecognized file mark also sets Bad Tape.
13 The write enable ring is not in the supply reel on the addressed transport.
14 An odd number of characters were detected while reading or writing.
15 The addressed transport is ready for operation by the program.
DIB — MTA Data In B, Magnetic Tape
0 1 1 AC 0 a 1 1 F 0 1 0 0 1 0
! i i 1 | i 1
0 T Tt 5 6 | 7 8 9 I 10 11 12 T 13 14 15

Read the present contents of the address counter into AC bits 1-15, and perform the function specified by F.
Clear AC bit 0.

4-5

43 TAPE COMMANDS

To perform any operation the program must select the unit while giving a command, and all commands
are initiated by giving Start. The rewind commands do not actually place the control in operation, but for all
other commands Start clears Done and sets Busy, and at the termination of the command the control clears Busy
and sets Done, requesting an interrupt if Interrupt Disable is clear. Following this section are flow charts that
show the actual procedures for programming the tape commands properly. The timing in all cases is dependent
upon the transport speed, tape handling characteristics and density, and is therefore treated in the discussion
of each transport.

Write. The program must specify parity, a (negative) word count, and an initial address. If Write Lock is
1, Start sets Illegal and Done, and the control does not go into operation. Otherwise the control makes an
immediate data request for the first word, and it writes the words it receives via the data channel from the
locations specified by the address counter until either the word counter overflows or Data Late sets, at which
time the control terminates the record and sets Done.

Write End of File. The program must specify even parity for a 7-track tape, odd parity for a 9-track tape,
or the control will not write a file mark properly. If Write Lock is 1, Start sets Illegal and Done, and the control
does not go into operation. Otherwise the control erases 25 inches of tape (ie it extends the present record
gap to three inches, writes a file mark and then sets Done.

Erase. If Write Lock is 1, Start sets Illegal and Done, and the control does not go into operation. Otherwise
the control erases 214 inches of tape and then sets Done.

This command is used primarily to skip sections of tape on which the program has found it impossible to
write data correctly, ie without parity errors or a bad tape indication.

Read. The program must specify parity, a (negative) word count, and an initial address. The control reads
a single record from tape, and sends the data via the data channel to the locations specified by the address
counter until it encounters the EOR gap or the word counter overflows, whichever occurs first. Giving a large
word count (eg giving zero) ensures that the entire record will be read even if its length is unknown. If the
record contains an odd number of data characters, the final one is sent to memory in the left half of a separate
word. The setting of Data Late during the record indicates that information has been lost, but data transfers
continue until overflow or the record ends. After completing the record, the control sets Done.

If 'the record read is a file mark, its single “data” character is sent to memory via the data channel. The
length of a record of unknown size can be determined after it is read by giving a DIB to check the contents of
the address counter, which will be one greater than the address to which the last word in the record was
sent (provided of course the word count was large enough).

Space Forward. The program should give a (negative) word count equal to the number of records to be
spaced. The control spaces forward over the given number of records unless it encounters a file mark or the end
of tape, in which case it stops at the mark or at the end of the record in which the EOT marker is encountered.
To space a file of up to 4096 records, the program can simply give a zero word count.

Space Reverse. The program should give a (negative) word count equal to the number of records to be
spaced. If Loadpoint is 1, Start sets Illegal and Done, and the control does not go into operation. Otherwise
the control spaces reverse over the given number of records, but it stops the tape automatically upon encoun-
tering a file mark or the loadpoint. To space a file of up to 4096 records, the program can simply give a zero
word count. ‘

Rewind. Start does not affect the control but simply initiates the rewind in the addressed transport and the
control is free for further use by the program. The addressed transport rewinds the tape at high speed onto
the supply reel and stops at loadpoint.

4-6

ENTER

CLEAR WRITE
RETRY
COUNTER

YES

BUSY

NO

SELECT
UNIT

SEND WRITE,
UNIT &
PARITY

SEND INITIAL
ADDRESS,
WORD COUNT
& START

NO

DONE

YES

REWIND
ILLEGA

PARITY
BAD TAPE

NO

+1 ERROR
COUNTER
FOR WRITE

SPACE
REVERSE

+1 WRITE
RETRY
COUNTER

Magnetic Tape WRITE Flowchart

4-7

YES

SELECT
UNIT

SEND WRITE
EOF, EVEN
PARITY, UNIT
& START

SEND WRITE
EOF, ODD
PARITY, UNIT

& START

OF FILE
STATUS

FATAL
ERROR

48 Magnetic Tape WRITE END OF FILE Flowchart

CLEAR
READ
RETRY
COUNTER

YES

BUSY

NO

SELECT
UNIT

SEND READ,
UNIT &
PARITY

SEND INITIAL
ADDRESS, WORD
COUNT & START

NO

PARITY
BAD TAPE

READ
RETRY
COUNTER
=0

YES

X=INITIAL
ADDRESS +
WORD COUNT

+1 ERROR
COUNTER
FOR READ

+1 READ
RETRY
COUNTER

READ
RETRY

COUNTER
=7

SPACE
REVERSE

Magnetic Tape READ Flowchart

X =
DiB ADDRESS
READ

49

4-10

YES

SELECT
UNIT

SEND SPACE
COMMAND &
UNIT

SEND RECORD
COUNT &
START

YES

NO

'

SELECT
UNIT

NO

SELECT
UNIT

SEND SPACE
COMMAND
& UNIT

UNIT
READY

YES

SEND REWIND
COMMAND,
UNIT & START

SEND @
RECORD
COUNT

& START

SPACE FORWARD/REVERSE

FORWARD/REVERSE

SPACE FILE

Magnetic Tape Flowcharts

(£)—

REWIND

Automatic Loading

Should the binary loader in core be destroyed by program debugging it can easily be restored from tape.
The loader should be in 9-track format, odd parity, in the first record on a reel mounted on transport O (the record
must be at least 256 words long). To bring the loader into memory automatically, set device code 22 into data
switches 10-15 at the computer console. Then in a Nova 1200 series or 800 series computer with the program load
option, press RESET, turn on data switch 0, then press PROGRAM LOAD; in a Supernova computer press
RESET and then CHANNEL START. To bring the loader into memory without automatic loading, the operator
must use the following procedure:

Press RESET.,

Set 376 into the data switches and press EXAMINE.

Set the instruction NIOS MTA (060122) into the data switches and press DEPOSIT.
Set 000377 into the data switches (JMP 377) and press DEPOSIT NEXT.

T N

Set 376 into the data switches and press START.

4.4 TAPE TRANSPORTS —Models 4030A through 4030H

Several types of transports are available for use with the Nova line computers. Each discussion below
gives the speed and word processing time, but because of double buffering in the control, the data channel has
almost 50 percent more than the word time to respond to a request (ie three character times). Since all trans-
fers are made through the channel, transfer timing is not usually critical to the program; however, in order to
determine memory buffer size in real time applications, the programmer must know the total time between
records in reading and writing (in the latter, Start triggers an immediate request to load the buffers). In each
case all relevant times are given.

Operating information for each transport is given in Section 1II of the appropriate manual; said section
contains illustrations of the panels and controls, a photograph of a tape reel showing the write enable ring,
and a drawing showing the location of the tape markers. Every transport requires a Data General adapter,
which is mounted below the transport in all models except models 4030E and 4030F, which require mounting

in a separate rack. On the adapter are a power button and a thumbwheel switch for selecting the unit address.
The most important consideration in tape operations is cleanliness. Nothing can ruin a tape run more

easily than ash, dust or a piece of dirt. The tape path should be cleaned at least once every eight hours.
Cleaning instructions are given in the manual.

Models 4030A, 4030B, 4030C, 4030D

This transport accommodates 10%%-inch reels and may have a tape processing speed of either 37.5 or 24
inches per second. At the faster speed, the time required to process each word at high density is 67 us, at low
density 96 us; equivalent times at the slower speed are 104 and 149 us respectively. Interrecord times for
9-track tape are as follows,

Write interrecord times in ms Read interrecord times in ms
24 ips 37.5 ips 24 ips 37.5 ips
Start 19 12 Start 29 18
Last character to stop 6.2 4.2 Stop 3.2 2

4-11

Stop 6.4 4 Settle down 20 10
Settle down 20 10 Total 52.2 30
Total 51.6 30.2

For 7-track add 10 6
For 7-track add 6.3 4.2

The rewind and fast forward speed is 150 inches per second; rewinding an entire reel takes about three minutes,

Controls for the transport are located on the adapter and at the upper left on the transport. The file-protect
light at the top indicates when the data on the supply reel is protected from action by the program (the write
enable ring is not in place). The remaining three controls at the top and bottom of the panel are alternate-action
buttons which illuminate when on: POWER allows the operator to control transport power independently of
the adapter; pressing REMOTE places the unit on line if the door is closed and tape is properly loaded; pressing
STOP-RESET stops the tape and takes the unit off line. With the transport off line, holding down one of the
four buttons in the center moves the tape at the speed and in the direction indicated; forward motion auto-
matically terminates at the EOT marker, reverse motion at loadpoint. At the lower left corner inside the door
are the density switch, an interlock, and a LOAD/UNLOAD button. When loading a tape, the operator must
set the first switch to the density at which the tape will be processed; the program has no control over the
density. Should the door be opened while the unit is running, the interlock stops the tape and takes it off line.
Pulling the switch out overrides the interlock, allowing operation with the door open. The LOAD/UNLOAD
button is alternate-action and moves the tension arms to the loading or operating position. Cleaning instructions
are given in §3.5.1 of the manual.

The illustrations below show the loading and operating tape configurations (supply reel at the top). Before
loading a reel make sure it has no write enable ring if the data on the tape is not to be changed by the program;

LOADING CONFIGURATION OPERATING CONFIGURATION

4-12

otherwise place a ring in the reel so the transport can respond to write commands. To load a reel, turn the
retainer knob on the reel hub to its counterclockwise limit, slip a reel onto the hub with the groove toward the
tape deck, and holding the reel firmly, turn the retainer knob to its clockwise limit. Unwind about a foot of
tape from the supply reel, thread it (as shown in the illustration) under the first edge guide, the tape cleaner
head and the read-write head, and over the second edge guide. Bring the tape down and around the capstan and
over the third edge guide. Pull the tape to unwind another foot, and wind about three turns around the takeup
reel. Press LOAD/UNLOAD to generate tape tension, shut the door, and press FORWARD to locate the
loadpoint; press REMOTE to put the unit on line. To unload the tape press STOP-RESET, rewind the tape
to loadpoint, open the door, press LOAD/UNLOAD to release the tension arms, and turn the supply reel by
hand counterclockwise to unwind the rest of the tape. Turn the supply reel retainer knob counterclockwise and
remove the reel from the hub.

Models 4030G and 4030H

This transport accommodates 82-inch reels containing 1600 feet of tape (7-inch reels can be used, but
they have only half the capacity). The tape processing speed is 12.5 inches per second; the time required to
process each word at high density is 200 us, at low density 288 us. Interrecord times for 9-track tape are as
follows.

Write interrecord times in ms Read interrecord times in ms
Start 37 Start 60
Last character to stop 12.5 Stop 5.7
Stop 12 Settle down 30
Settle down 30 Total 95.7
Total 91.5 For 7-track add 19
For 7-track add 12.5

The rewind speed is 75 inches per second; rewinding an entire reel takes about four minutes.

Controls for the transport are located on the adapter and on the left and right at the bottom of the trans-
port front panel. When loading a tape, the operator must set the left toggle switch to the density at which the
tape will be processed; the program has no control over the density. The tape can be threaded when the three-
position toggle on the right is latched into the DISABLE position; pressing the toggle to LOAD generates tape
tension; it must be latched into RUN for normal transport operation. On the left panel are three lights that
indicate when power is on, when the transport is ready for operation, and when the data on the supply reel is
protected from action by the program (the write enable ring is not in place). The remaining controls are
momentary-contact buttons. Pressing REMOTE places the unit on line if READY is lit; pressing STOP stops
the tape and takes the unit off line (in either case the appropriate button is illuminated to indicate the transport
condition). With the transport off line, holding down one of the remaining three buttons (on the right) moves
the tape at the speed and in the direction indicated; forward motion automatically terminates at the EOT
marker, reverse motion at loadpoint. Cleaning instructions are given in paragraph 3.5.1 of the manual.

The illustrations below show the loading and operating tape configurations (supply reel at the left).
Before loading tape make sure there is no write enable ring in the reel if the data on it is not to be changed by
the program; otherwise install a write enable ring so the transport can respond to write commands. To load a
reel, set the right toggle switch to DISABLE, turn the retainer knob on the reel hub counterclockwise several
turns, slip a reel onto the hub with the groove toward the tape deck, and holding the reel firmly, turn the re-
tainer knob to its clockwise limit. Push the tape tension arms as far as they will go toward the center of the
tape deck. Unwind about a foot of tape from the supply reel, thread it (as shown in the illustration) by the

4-13

first two tape guides (between them and the supply reel tension arm guide), around the left capstan, over the
third guide, between the tape cleaner and photosense heads, over the read-write head and the fourth guide,
around the right capstan and by guides 5 and 6 (between them and the takeup reel tension arm guide). Pull
the tape to unwind about another foot, and wind about three turns around the takeup reel, making sure the
tape is taut against the guides. Hold the right toggle switch to LOAD until tension arm motion ceases, and
then set the switch to RUN. Shut the door and press FORWARD to locate the loadpoint; press REMOTE to
put the unit on line. To unload the tape press STOP, rewind the tape to loadpoint, and press REVERSE to
wind all the tape onto the supply reel. Open the door, turn the supply reel retainer knob counterclockwise
several turns, and remove the reel from the hub.

LOADING CONFiIGURATION OPERATING CONFIGURATION

Models 4030E and 4030F

This transport uses 10%2-inch reels and has a tape processing speed of 120 inches per second. The time
required to process each word at high density is 21 ps, at low density 30 us. Interrecord times for 9-track tape
are as follows.

Write interrecord times in ms Read interrecord times in ms
Start 4 Start 6.5
Last character to stop 1.2 Stop .6
Stop 1.2 Settle down 5
Settle down 5 Total 12.1
Total 114 For 7-track add 2
For 7-track add 1.2

Rewinding an entire reel takes about 90 seconds.

The entire front of the cabinet is a door that covers the tape deck and vacuum columns, but the operator
can gain access to the deck by lowering the window in the door. Controls for the transport are located on the
adapter and on a panel at the top of the transport. The upper row on the panel contains three iHuminated
buttons and the file-protect light, which indicates when the data on the supply reel is protected from action by
the program (the write enable ring is not in place). DENSITY is an alternate-action button containing two
lights that indicate the density selected by the operator; when loading a tape, the operator must specify the
density at which the tape will be processed, as the program has no control over it. The alternate-action POWER
button allows the operator to control transport power independently on the adapter. The remaining buttons are
all momentary-contact. Pressing REMOTE places the unit on line (lighting the button) if the window is closed
4-14

and tape is properly loaded. Pressing RESET stops the tape and takes the unit off line, enabling the remaining
buttons in the bottom row and allowing RESET to be used to raise (close) the window. After a tape has been
threaded and attached to the takeup reel, pressing LOAD/REWIND loads it into the vacuum columns and
moves it forward to loadpoint; if the tape is already loaded, this button rewinds it to loadpoint. Pressing
UNLOAD rewinds the tape, pulls it out of the vacuum columns, winds it entirely on the supply reel, and
lowers the window. Holding down either of the remaining buttons moves the tape at normal processing speed
in the direction indicated; forward motion automatically terminates at the EOT marker, reverse motion at
loadpoint. Cleaning instructions are given in §2.5.1 of the manual.

The illustration below shows the loading tape configuration (supply reel at the right). Before loading a
reel make sure it has no write enable ring if the data on the tape is not to be changed by the program; other-
wise place a ring in the reel so the transport can respond to write commands. To load a reel, press UNLOAD
to lower the window, press the narrow part of the hub operating lever to release the hub lock, press a reel onto
the hub with the groove toward the tape deck, and holding the reel firmly, press the wide part of the lever to
lock the hub. Unwind several feet of tape from the supply reel, thread it outside the tape guides as shown in
the illustration, and wind about three turns around the takeup reel. Press LOAD/REWIND to load the tape
and press RESET to raise the window. Once the tape is in the vacuum columns and positioned properly, press
REMOTE to put the unit on line. To unload a tape press RESET, press UNLOAD to lower the window and
rewind the tape entirely on the supply reel, press the narrow part of the hub operating lever to release the lock,
and remove the reel from the hub.

.
O

©)
)

/”‘ -\\

DO,

\ TAPE LOADING
GUIDE

LOADING CONFIGURATION

4-15

4.5 TAPE TRANSPORTS —Models 40301 and 4030)

This transport accommodates 10 %-inch reels and has a tape processing speed of 45 inches per second. The
time required to process each word at high density is 56 us; at low density, which is available only on a 7-track
transport, the time is 80 us. Interrecord times for 9-track tape are as follows.

Write interrecord times in ms Read interrecord times in ms
Start 10 Start 15
Last character to stop 3.5 Stop 1.7
Stop 33 Settle down 8.3
Settle down 8.3 T
" Total 25.0
Total : 25.1
For 7-track add 5
For 7-track add 3.5

The rewind speed is 150 inches per second ; rewinding an entire reel takes about three minutes.

Because of double buffering in the control, the data channel has almost 50 percent more than the word
time to respond to a request (ie three character times). Since all transfers are made through the channel, transfer
timing is not usually critical to the program; however, in order to determine memory buffer size in real time appli-
cations, the programmer must know the total time between records in reading and writing (in the latter, Start
triggers an immediate request to load the buffers).

Operating information for the transport, including illustrations of the transport and its controls, is given
in Sections I and I of the manual. The required Data General adapter is mounted below the transport; on the
adapter are a power button and a thumbwheel switch for selecting the unit address. The remaining controls
are located at the right on the transport front panel. The file-protect light indicates when the data on the
supply reel is protected from action by the program (the write enable ring is not in place). The remaining
controls are alternate-action buttons, all of which, except for REWIND and RESET, illuminate when on:
POWER allows the operator to control transport power independently of the adapter; pressing ON LINE places
the unit on line if the door is closed and tape is properly loaded; pressing RESET stops the tape and takes
the unit off line. The remaining buttons are enabled only when the transport is off line. With the tape threaded
pressing LOAD advances the tape to loadpoint and places the transport on line. At the completion of this
operation LOAD and ON LINE will both be lit; moving the tape turns off the LOAD light, but even though
the switch is disabled the light goes on again whenever the tape is positioned at loadpoint. Pressing REWIND
moves the tape at high speed to loadpoint; pressing REWIND again unthreads the tape and winds it entirely
onto the supply reel. Pressing FORWARD or REVERSE moves the tape in the indicated direction at normal
speed; forward motion automatically terminates at the EOT marker, reverse motion at loadpoint. On a 7-track
transport there is no reverse button: it is replaced by a DENSITY button, which selects the high density when on.

The most important consideration in tape operations is cleanliness. Nothing can ruin a tape run more eas-
ily than ash, dust or a piece of dirt. The tape path should be cleaned at least once every eight hours. Cleaning
instructions are given in Section III of the manual.

The illustration below shows the loading tape configuration (supply reel at the top). Before loading a reel
make sure it has no write enable ring if the data on the tape is not to be changed by the program; otherwise
place a ring in the reel so that the transport can respond to write commands. In the reel hub is a tab, one end of
which is marked PRESS. To load a reel, press in the marked end of the tab, slip a reel onto the hub with the
groove toward the tape deck, press the reel firmly against the hub (touch only the center part of the reel — never
press the reel flanges against the tape pack), and press the protruding end of the tab back down so it is flush with
the face of the hub. Unwind about a foot of tape from the supply reel, thread it (as shown in the illustration)

4-16

JU00000;

LOADING CONFIGURATION

over the top buffer arm guides, down through the slot guide in the head assembly cover, under and around the
capstan, and over the lower buffer arm guides. Pull the tape to unwind another foot, and wind about three turns
around the takeup reel. Close the door and press LOAD; the transport will generate the proper tape tension,
move the tape to loadpoint, and go on line. For a 7-track transport select the density at which the tape will be
processed as the program has no control over this. To unload tape, press RESET, rewind the tape to loadpoint,
press REWIND again to unload the tape, and open the door. Press in the marked end of the tab on the reel hub
and remove the reel.

417

Chapter V
Discs

A disc is generally the largest random-access storage device in a computer system (a single disc usually
holds more bits than all of core), and it also provides the fastest storage outside of core. This makes the disc
exceptionally desirable for backup storage for memory generally, and in particular, for swapping in time-sharing
systems: while the currently active user programs are in core, inactive programs are stored on the disc. Unlike
magnetic tape, a disc is constantly in motion and has a predetermined format with data blocks of fixed length
(256 16-bit words). Hence individual data blocks are addressable, and at the simplest level reading and writing
may be the only functions the system need perform.

As a storage medium a disc is similar to a phonograph record. Data is stored in tracks that are concentric
circles on the disc surface (there may be tracks on both surfaces or on only one). The disc is further divided into
sectors, Ze pie-shaped sections. Hence the tracks are divided into arcs, each arc being the intersection of a track
with a sector (referred to as a “track-sector””). Besides data, a track-sector may contain information for syn-
chronization, error checking, and addressing. The disc also may have extra tracks for timing and addressing
information. .

Disc systems are of two basic types: those with fixed heads and those with movable heads. In a fixed-head
disc system there is a separate read/write head for each track. Since the storage medium is continuous, has a
fixed format, and is in constant motion (both in speed and direction), functions are limited to read and write,
with an automatic search for an initially specified track-sector; the average search time for a random sector (the
“latency” time) is slightly over half a revolution. If the heads are movable, then the drive is usually constructed
so that the discs themselves are removable. Since additional time is required for head positioning, a drive usually
has a number of surfaces with one head per surface, where all heads are positioned simultaneously. In a disc
pack drive the storage medium is a removable stack of discs; this allows greater storage capacity and the data
can literally be stored on the shelf like magnetic tape while the drive is being used with another pack. Each disc
surface has tracks and sectors. However there are many surfaces and the set of identically numbered tracks on
the various surfaces constitutes a cylinder. The basic data block is a track-sector, and the track is addressed as
the intersection of a cylinder and a surface. In terms of the addressing scheme used in continuous data processing,
the disc pack is treated as though it were a pack of cylinders; the hardware counts through the tracks (surfaces)
in one cylinder at a time. (A cylinder consists of all the tracks that can be processed without repositioning the
heads.)

A single removable disc is a disc cartridge; it has movable heads and is treated like a disc pack, ie the pairs
of tracks on opposite surfaces are treated as cylinders. A fixed-head disc drive may use both surfaces of a disc,
and may have more than one disc, but no cylinder addressing scheme is used; since there is a separate head for
every track, the ordering of the tracks can be arbitrary, as switching from one track to another simply requires
switching from one head to another.

A disc system consists of a control and a number of disc drives; each drive is a separate unit, and the control
is contained on one standard circuit board that can be mounted in the computer chassis. The program communi-

5-1

cates with the control, which in turn governs all discs over a disc bus but communicates with only one at a time.
The control is connected to the data channel, so the program need only set up the disc system for reading or
writing, and all transfers to and from memory are then handled automatically. To operate with the data channel
the control has an address counter as well as data buffers (since all transfers are of fixed-length blocks, no word
counting is necessary). A bank of drives can also be connected to a second control, which in turn is connected
to the 10 bus and data channel of another computer, thus allowing communication between the two computers
through disc storage.

S5.1 FIXED HEAD DISC SYSTEM

The fixed-head system consists of a 4019 control and up to eight logical units, each of which can store |}
262,144 words. Drives available for this system include the 6002, 6003 and 6004 which have respectively one,
two and three logical units each (256K, 512K and 768K words). The same series includes a half-unit disc, the |
6001 (128K words), and the control can also handle the 4019A, B and C drives, which contain respectively
quarter-unit, half-unit and single discs (64K, 128K and 256K words).

All fixed-head drives run at 3600 rpm, giving an average latency time of 8.4 ms. While a block is being pro-
cessed, data transfers are at the rate of one word every 8us; once an initial block is found, the average transfer
rate over a number of blocks is 57,835 words per second.

Data Format

Each disc has 128 circular data tracks numbered from the outside in (actually both surfaces are used but
tracks on alternate surfaces are numbered consecutively). A quarter- or half-unit disc has fewer heads and hence
a smaller number of tracks. Every track is divided into eight sectors, each of which contains 256 words of data.
Each track-sector also contains a cyclic check word, which is generated and checked automatically by the control,
as well as other information for the internal use of the control. At 3600 rpm a given sector passes the read-write
heads in 2.085 ms, of which 2.05 ms are used for processing data.

TRACK 177 TRACK 0

ONE
<] SECTOR

DISC CONFIGURATION

The control cannot process physically adjacent sectors consecutively; in other words after processing a
given track-sector, the control can process another removed from it as soon as the other is encountered, but
can process the next adjacent sector only after waiting for a complete disc revolution. To simplify program-
ming and to minimize waiting time, the sectors are numbered alternately and the numbering scheme changes
from one track to the next as shown here. Hence the program can process consecutively numbered sectors in a
given track, and upon processing the last sector in a track, can switch to the first sector of the next track, all
with minimum waiting time. Time between sectors is thus 2.085 ms except when switching from sector 3 to
sector 4, for which the waiting time is 4.17 ms.

5-2

TRACK XX0

TRACK XX1 TRACK XX2 TRACK XX3
145
4 2
0 6
713
TRACK XX4 TRACK XX5 TRACK XX6 TRACK XX7

TRACK-SECTOR CONFIGURATION

To provide protection for data on a disc, sets of tracks can be locked against writing. For this purpose the
128 tracks ona disc aredivided into eight sets of sixteen each. Located on the rear of the disc cabinet is a three-
position switch which allows the operator to lock out none of the tracks, all of the tracks, or only those sets of
tracks selected by jumpers located in the disc logic.

To use a fixed-head disc the program must select the disc, track and sector, specify whether data is to be
read or written, and supply an initial address (to the 15-bit address counter) for data channel access. The disc
system has device code 20, mnemonic DSK, and uses five of the 10 transfer instructions, one of which is strictly
for maintenance and can be used only when the disc control is in special diagnostic mode. Busy and Done are
sensed by bits 8 and 9 in the IO skip instructions; these flags are controlled in the usual way by Clear and Start,
but the IO Pulse function (F = 11) is also used. Interrupt Disable is controlled by interrupt priority mask bit 9.
A second system connected to the bus would have device code 60.

The Clear function clears Busy and Done, and thus terminates data transfers if a track-sector is currently
being processed. Start and Pulse both clear Done and set Busy, but these functions also specify the disc operation:
Start selects Read, Pulse selects Write. All three functions clear the status flags.

DOA —DSK Data OutA, Disc
0 1 1 AC T 0o 1 o0 F 0o 1 0 0 0 o
0 = 1 I 2 3 { 4 5 : 6 i 7 8 : 9 10 I 11 I 12 { 13 l 14 I 15

Select the disc, track and sector according to the contents of AC bits 3-15 as shown, and perform the function
specified by F.

SECTOR
1 i

13

14

15

5-3

DOB -,DSK

Data Out B, Disc

F

0

1

1

0

1

0

0

8

9

10

11

12 !

13

14

15

Load the contents of AC bits 1-15 into the address counter (AC bit 0 should be 0), and perform the function
specified by F. If F is 01 (S), select Read; if F is 11 (P), select Write. If F is nonzero, clear the status flags.
Note: Giving this instruction with a 1 in AC bit 0 places the control in diagnostic mode.

DIA -, DSK

DataIn A, Disc

F

1

0

|

1

0

8

9

10

11

14

15

Read the status of the disc system into AC bits 7-15 as shown, and clear AC bits 0-6. (Perform the function

specified by F.)

SHIFT |FIRST | SEC-
REGI- | BUF- | OND \WRITE WRITE |DATA | NO |DATA |opron
STER | FER | ¥R |DATA ERROR|LATE |SUCH ERROR
| | | |) BIT 0 | FULL | pyLL DISC
0 ' 1 2 3 " a 5 6 7 8 9 10 11 12 13 14 15

Bits 7-10 are for maintenance only and are not discussed further here. “Clear, Start and Pulse clear all of
these flags except for bits 12 & 13 which are valid only after a Start or Pulse operation is initiated to the de-

sired logical unit.”

11 The program has specified Write and the selected track-sector is write-protected. The setting of this bit
clears Busy and sets Done, requesting an interrupt if Interrupt Disable is clear.
12 The data channel has failed to respond in time to a request for access (eg because of a long instruction or
preemption of the channel by faster devices).
13 The disc selected by the program is not connected to the bus. The setting of this bit clears Busy and sets
Done, requesting an interrupt if Interrupt Disable is clear.
14 In Read, the cyclic check word read from the disc differed from that computed by the control for the data
in the block.
15 Bit11,12,13 or 14is 1,
DIB —,DSK DataIn B, Disc
0 1 AC 0 1 F 0 1 0 0 0 0
| |
o T3 T3 5 6 7 8|910 11)12'13 14 15

Read the present contents of the address counter into AC bits 1-15, and clear AC bit 0. (Perform the function
specified by F.)

This instruction can be used to determine how many words have been transferred, but it is ordinarily used
only for diagnostic purposes.

DIC 0, DSK Data In C, Disc Maintenance
0 1 1 0 0 1 0 1 F 0 1 0 0 0 0
0 = 1 : 2 3 I 4 5 : 6 } 7 8 : 9 10 I 11 I 12 } 13 I 14 I 15

If the disc control is in diagnostic mode, supply a single clock pulse to the control logic. Perform the function
specified by F.

Setting Busy places the disc control in operation to read or write depending upon whether the program
gave Start or Pulse; in Write, the control immediately makes three data channel requests to fill the two buffers
and the shift register before writing begins. If the disk selected by the DOA is not connected to the bus, or
the program specified Write and the selected track-sector is write-protected, the control sets the appropriate
status flag, clears Busy, and sets Done, requesting an interrupt if Interrupt Disable is clear.

If there is no error the control waits until the selected track-sector is encountered; it then processes the
block, making data channel requests whenever it has a word ready for memory in reading or one of the buffers
is free in writing. The setting of Data Late during a block indicates that information has been lost, but data
transfers continue until the control processes the entire block. At the completion of the data block in Write,
the control writes a computed check word at the end of the track-sector; in Read, the control compares the
check word read from the disc with one it has computed from the data read, and sets Data Error if they differ.
At completion the control clears Busy and sets Done, requesting an interrupt if Interrupt Disable is clear.

Timing. After Start or Pulse is given for the first operation with a given disc, the control may wait up
to 16.7 ms before the selected track-sector is encountered; moreover, no operation can be performed until 1 ms
after DOA is given. While processing the block, the control makes data requests every 8 ps, but because of
double buffering in the control the processor may take up to 14 ps to respond in an isolated case without being
late. Once an operation has been performed with a given disc, the program then knows the disc orientation
and thus knows exactly the waiting time required to reach any desired track-sector. The time required to traverse
any sector is 2.085 ms, which is also the time taken between consecutively numbered sectors except between
sectors 3 and 4, which are separated by 4.17 ms,

Programming Considerations

After one Read, no further DOBs need be given if subsequent operations are also Read and are to access
consecutive pages in memory.
CAUTION

For Write, always give both a DOA and a DOB. The address counter does not
count properly from one block to the next in writing.

At the completion of each operation the program should check status, and if data was late or in error,
the operation should be repeated. Do not check status before starting an operation with a disc — the status
is not valid until an operation has been performed.

The word sent by a DOA is set up so that the program can process consecutive sectors and tracks (and
even discs) ‘simply by incrementing. Suppose we wish to process tracks 10-13, all sectors, on disc 1. We
load 002100 into AC2 and give a DOA 2,DSK for the first track-sector. For subsequent track-sectors we
simply increment AC2 before giving the DOA.

Automatic Loading. Ordinarily sector 0, track 0 of disc O is reserved for a binary loader. Should the loader
in core be destroyed by program debugging, it can easily be restored from the disc. To bring the loader into mem-
ory automatically, set device code 20 into data switches 10-15 at the computer console. Then in a Nova 1200

series or 800 series computer with the program load option, press RESET, turn on data switch 0, then press PRO-
GRAM LOAD; in a Supernova computer press RESET and then CHANNEL START. To bring the loader into
memory without automatic loading, the operator must use the following procedure:

Press RESET.

Set 376 into the data switches and press EXAMINE.

Set the instruction NIOS DSK (060120) into the data switches and press DEPOSIT.
Set 000377 into the data switches (JMP 377) and press DEPOSIT NEXT.

Set 376 into the data switches and press START.

Multiprocessor Operation. When two controls from different computers are connected to the same disc
bus, access is alternated between them whenever there is a conflict. When one control finishes a track-sector,
access is automatically given to the other control if it is making a request. If not, the first control can continue.

The restriction on processing adjacent sectors still applies: if both processors are doing disc runs simul-
taneously, each can process at most one track-sector every half revolution (8.35 ms).

M

5.2 DISC CARTRIDGE SYSTEM 4047

The movable-head disc cartridge system is based on the 4046 control, which can handle four drives via a
4047 adapter. The adapter can also be connected to a second control so that its bank of drives can be made avail-
able to another computer. The 4047A drive has a single removable 4047C cartridge, and there is also a 4047B
double drive, which is two drives in a single package. One drive in the package has a removable cartridge and the
other has a fixed disc (albeit with movable heads).

The system stores data in blocks of 256 words, and all discs (whether fixed or removable) rotate at 1500
rpm. The capacity of each disc is 1,247,232 words. In the data part of a block, words are processed at the rate of
one every 11.1 us. The control can process up to sixteen consecutive sectors at a time within a single cylinder, and
can therefore process 4096 words in 53.3 ms.

Data Format

Each disc has two surfaces divided into twelve sectors addressed as octal 0-13. Each surface has 203 tracks,
addressed as 0-312 octal. Each track-sector contains a data block and a cyclic check word, which is generated
and checked automatically by the control. Since a block contains 256 words, each disc with twelve sectors and
two surfaces has 3072 words per track, 6144 words per cylinder; 203 cylinders gives a total capacity of 1,247,232
words. Often data operations are limited to 200 tracks per surface with the other three kept as spares.

The drive has one head per disc surface, with both heads mounted in a single carriage so that they are posi-
tioned simultaneously. The maximum time required to move the heads from one cylinder to the next is 20 ms,
5-6

and at most 135 ms are required for motion from one extremity to the other. Once the positioning operation is
complete, the control must wait for the specified sector to reach the heads; this requires about half a revolution
on average (20 ms).

Instructions

Before reading or writing, the program must give a Seek command to position the heads at the desired
cylinder ; once the Seek is done the program can then giveA a Read or Write command. Information the program
must supply for a disc operation is the drive, cylinder, surface and sector, the (twos complement) negative of the
number of sectors to be processed, and an initial address (to the 16-bit address counter) for data channel access.
In a single Read or Write, the hardware automatically counts from one sector to the next and from the first
surface to the second until the sector count is zero. However data operations always stop at the end of a cylinder,
and the program must reposition the heads to go on to the next cylinder. Throughout this discussion it is assumed
that the system is operating from a single processor; multiprocessor operation is treated at the end of the section
on programming considerations.

The disc cartridge system has device code 33, mnemonic DKP, and uses all six of the 10 transfer instruc-
tions. Busy and Done are sensed by bits 8 and 9 in the IO skip instructions. The Clear and Start functions control
these flags in the usual fashion, but the IO Pulse function (F = 11) is also used. Interrupt Disable is controlled
by interrupt priority mask bit 7. A second system connected to the bus would have device code 73.

The Clear function clears Busy, Done and the other flags in the control, and terminates operations if the
control is currently processing data. Start and Pulse are both used to start disc commands, but the command is
determined by the mode of the control; in other words the program specifies a command by placing the control
in the appropriate mode and actually begins the command by giving Start or Pulse. When the Seek or Recali*rate
mode is sclected, the program starts the command by giving Pulse, as this function does not set Busy (although
it does clear Done); hence while the heads are being positioned on one drive the control is free for a command
on another. For Read or Write mode, the program gives Start to set Busy, and thus prevents the control from
beginning any other command while processing data. An interrupt is requested as usual by the setting of Done,
but there are also separate done flags that indicate the completion of a Seek command in any drive or the com-
pletion of a Read or Write command in the drive currently selected by the control. The setting of any Seek Done
flag or the Read/Write Done flag requests an interrupt, and Read/Write Done also clears Busy and sets Done
in the control.

DOA - DKP Data Out A, Disc Pack

1 1 AC 0 1 0 F 0 1 1 0 1 1

| 1 { l | i | 1 i 1 |

o 1 2 3 T 34 5 6 | 7 8 9 10 11 12 T 13 14 15

Clear the Done flags selected by 1s in AC bits 0-4 and select the mode and cylinder according to the contents of
AC bits 6-15 as shown. Perform the function specified by F as explained above.

CLEAR DONE FLAGS MODE CYLINDER
READ/, SEEK , SEEK , SEEK SEEK
WRITE| o | 1 |2 | 3 |) | | | | A A
0o I 1 2 3 1 4 5 s | 7 8 9 | 10 11 12 | 13 14 15

5-7

67 These bits select the mode:
00 Read
01 Write
10 Seek — position the heads to the cylinder specified by bits 8-15

1 Recalibrate — force the heads to cylinder 0 independently of the head-position-
ing circuits

8-15 Numbers 0-312 octal address the cylinder.

DOB — DKP Data Qut B, Disc Pack

Illl A|C llOIO }l7 01111101111
0 I 1 2 3 I 4 5 6 | 7 8 9 1 10 11 12 T 13 14 15

Load the contents of AC into the address counter (AC bit O should be 0), and perform the function specified
by F as explained above.

DOC -,DKP Data Qut C, Disc Pack
0 | 1 | 1 A;C 1 | 1 ‘ 0 }17 0 | 1 1 1 1 0 ; 1 | 1
0 I 1 2 37 4 5 6 ! 7 8 9 10 11 12 13 14 15

Select the drive, surface and sector, and the number of sectors to be processed, according to the contents of AC
as shown; perform the function specified by F as explained above.

DRIVE SUR- SECTOR — SECTOR COUNT
i 1 | | ! FACE |) I | i !
o ' 1 2 3 14 5 6 7 8 9 T 10 11 12 7 13 14 15

Bits 2-6 must be all zeroes.

0-1 Numbers 0-3 select the drive.

7 Numbers 0 and 1 select the surface.
&-11 Numbers 0-13 select the sector.

12-15 The twos complement negative of the number of sectors to be processed by Read or Write (maximum:

sixteen).
DIA —,DKP Data in A, Disc Pack
0 1 1 AC 0 | 0 | 1 117 0 1 1 0 1 1
R e a— 313 5 6 | 7 8 9 TS TR TR Ta 15

Read the status of the disc system into AC as shown. (Perform the function specified by F.)
5-8

WRITE

READ/, SEEK | SEEK ; SEEK | SEEK
[To |77 175

COMMAND DONE SEEKING ON DRIVE DISC | SEEK | END UN- |CHECK|DATA

READY|[ERRORERROR| SAFE [ERROR| LATE ERROR

3 0] 1 L2 1 3

o |

1 2 3 Vo a 5 6 | 7 8 9 10 11 12 13 14 15

The Clear function clears all of the done and error flags; Start and Pulse clear the error flags.

04 A drive has completed a command as indicated by 1s in these bits; a Seek Done flag can be set from
any drive, Read/Write Done can be set only from the drive currently selected. The setting of any of
these flags requests an interrupt.

5-8 Is in these bits indicate drives on which the heads are presently being positioned.

9 The selected drive is available to the program.

10 The selected drive failed to position its heads as requested.

11 The control has reached the end of a cylinder but the sector counter is not zero, and the data operation
has terminated anyway. N

12 There is a malfunction in the drive.

13 In Read, the cyclic check word read from the disc differed from that computed by the control for the
data in the block.

14 The data channel has failed to respond in time to a request for access.

15 Any of bits 10-14 is 1.

DIB —,DKP Data in B, Disc Pack

0|1|1 A;C 011:1 If’ 0]1,1101111
0 T 1 2 3 | a 5 6 | 7 8 9 10 11 12 T 13 14 15

Read the present contents of the address counter into AC. (Perform the function specified by F.)
At the end of a Write command, the address counter is 2 greater than the address of the last word written.

DIC -,DKP Data in C, Disc Pack
0 i 1 A;C 1 | 0 | 1 I:" 01 . 1 . 1 | 0 1 1 | 1
0 { 1 : 2 3 T 4 S 6 I 7 8 9 10 11 12 7 13 14 15

DRIVE SUR- SECTOR — SECTOR COUNT
I 1 | i] FACE | | 1] | I
o I 2 3 T4 s 6 7 8 9 T 10 11 12 T 13 14 15

59

The normal programming procedure for operating a single drive is to give a DOC to select the drive, sur-
face, sector and sector count, and then give a DIA to check whether the disc is ready (status bit 9). If it is, the
program should give a DOAP to select the cylinder, and to select and initiate the Seek command. When the heads
are properly positioned the drive sets its Seek Done flag requesting an interrupt. The program should respond
with a DIA to check status bit 10, Seek Error, to ensure that the heads have positioned properly. A DOA is then
given to clear Seek Done and select the Read or Write mode as desired. Finally a DOBS specifies the initial ad-
dress and starts the Read or Write. For Write the control immediately makes two data channel requests to fill
two buffers before writing begins.

The control waits until the drive encounters the selected sector on the selected surface; it then processes
the block, making a pair of data channel requests whenever it has two words ready for memory in reading or
both buffers are free in writing. As each sector is completed, the sector counter is incremented by one; and upon
completing the final sector in the track, the surface counter is incremented by one while the sector counter is
returned to zero, so the operation continues from surface 0 to surface 1 in the cylinder. For each sector, the
control also increments the sector count (ie the negative count of the number of sectors still to be processed).
When the sector count reaches zero, the control terminates the command (with the counters pointing to the last
block processed) and sets Read/Write Done, which in turn clears Busy and sets Done requesting an interrupt.

The setting of Data Late during a block indicates that infomation has been lost, but data transfers continue
until the control processes the entire block, at which time it terminates the command. At the completion of a data
block in Write, the control writes a computed check word at the end of the sector; in Read, the control compares
the check word read from the disc with one it has computed from the data read, and if they differ, sets Check
Error and terminates the command. If the control reaches the end of the cylinder (ie the end of the last sector on
surface 1) and the sector count is not zero, the control sets End Error and terminates the command.

Although the program can process data with only one drive at a time, it can position the heads on several
drives simultaneously. After giving a Seek for one drive, the program can select another and give a Seek for it.
This means that the surface, sector and sector count information cannot be given when the drive is selected
initially for seeking, and each time the program wishes to handle a particular drive it must reselect that drive.
Eg if several drives are seeking simultaneously and there is an interrupt, the prdgrafn should give a DIA to deter-
mine which drive interrupted, then give a DOC to select that drive, and give another DIA to check Seek Error
for that drive. To read or write, the program must give all three output commands, DOA, DOB, and DOC, to
supply all the necessary information (the order of the instructions is not important, but Start should be given with
the last of the three in order for the command to start properly).

Timing. The maximum time required to move the heads from one cylinder to the next is 20 ms, and at most
135 ms are required for motion from one extremity to the other; average random positioning time is therefore
at most 70 ms. These times are of course for the drive; a command that moves the heads takes about 50 us of
control time (the program must wait 50 us before giving any other disc instruction).

At 1500 rpm the cartridge takes 40 ms per revolution. Although the time to traverse one complete sector
is 3.33 ms, traversing the data block within a sector takes only 2.84 ms. Search time for a random data block
is 40.5 ms maximum, 20.5 ms average. During processing, data channel requests for pairs of words occur every
22.2 ps, and the processor has almost this much time to supply both words.

Programming Considerations

If a Seek Error is indicated, give the Recalibrate command and do the Seek over again. Be careful not to give
an address for a cylinder or sector that does not exist (in other words a number too large for the system). Select-
ing a nonexistent cylinder causes a Seek Error. The drive searches forever for a sector that does not exist (the
system can be freed by giving the 10 reset function).

In Write the address counter is always two words ahead of the disc as the control always asks for two words
to have ready when the previous two are shifted to the drive. Hence at the end of a Write, the address counter
5-10

points to the location two beyond the last word that was actually written in the final sector. To start a new Write
for consecutive operation from memory, the program must give a new initial address for the correct location in
memory (two less than the address read by a DIB). In Read the control requests access only for words actually
read, so the program can give a new Read without supplying a new initial address.

On a Data Late or Check Error the program should reprocess the sector in which the error occurred. If
information cannot be read correctly after several tries, rewrite the bad block. If this fails to correct the error,
the sector can no longer be used.

When processing to the end of a cylinder, the program should give the correct sector count, as a nonzero
count at the end of a cylinder is regarded as an error. The nonzero count causes the control to act as though the
command were continuing, so it returns the sector address to zero, increments the surface counter to 2, and
increments the sector count by one. Should the program inadvertently cause and End Error by attempting
continuous processing across the boundary between cylinders, it can continue the operation by positioning the
heads to the next cylinder, adjusting the initial address (as explained above) if the command is Write, and giving
a DOB that selects the same drive, surface 0, sector 0, and specifies the negative of a sector count one greater
than that indicated by the status read by a DIC.

Within a given cylinder, the control can process sixteen consecutive sectors (4096 words). Upon completion
of a data command however the control cannot process the next consecutive sector; if the program immediately
gives a new command for the next sector, the control will wait for a complete disc revolution. The fastest way
to process an entire cylinder is to use three commands this way: the first command processes thirteen sectors,
the entire track on surface 0 and sector 0 of surface 1; the second command skips to sector 2 on surface 1 to
process the ten remaining sectors in the track; and finally the third command processes sector 1 of surface 1.
This does not mean that the program need jump around in memory, as there is no need to have consecutive
memory blocks correspond to physically consecutive sectors; in other words the program can write consecutive
memory blocks using this technique, and reading by the same procedure brings the data back into memory in the
original order.

Automatic Loading. Ordinarily sector 0, surface 0, cylinder 0 of drive 0 is reserved for a binary loader.
Should the loader in core be destroyed by program debugging, it can easily be restored from the disc. To position
the heads at cylinder 0, the operator should first turn the drive power off and then back on again. To bring the
loader into memory automatically, set device code 33 into data switches 10-15 at the computer console. Then in
a Nova 1200 series or 800 series computer with the program load option, press RESET, turn on data switch 0,
then press PROGRAM LOAD; in a Supernova computer press RESET and then CHANNEL START. To bring
the loader into memory without automatic loading, the operator must use the following procedure:

. Press RESET.

Set 376 into the data switches and press EXAMINE.

Set the instruction NIOS DKP (060133) into the data switches and press DEPOSIT.
Set 000377 into the data switches (JMP 377) and press DEPOSIT NEXT.

Set 376 into the data switches and press START.

The disc control will read sixteen consecutive sectors unless the loader stops it.

Multiprocessor Operation. When two controls from different computers are connected to the same disc
adapter, access is alternated between them whenever there is a conflict. When one control finishes a data command,
access is automatically given to the other control if it is making a request. If not, the first control can continue.

The program must give a Seek for every data command, as the other processor might have changed the head
position. If the adapter is being used by the other processor when a Seek is given, the control waits until
the adapter is free to start it; in the meantime the Seeking flag will be on, and the program must not give another
command (with multiprocessor operation, seeking on more than one drive at a time is ineffective). Once the
adapter starts the Seek, it is unavailable to the other control until either Read/Write Done is set or six seconds
have elapsed.

Gk =

5-11

If a disc is known to be available, loss of Disc Ready can be taken to mean that the other control is using
the drive. The programs in both computers should allow for operator intervention.

Operation

On the adapter is a 3-position key-operated rotary switch, which controls power for both the adapter and
the drives. With the switch in the LOCK position the key can be removed with the power on.

To load a cartridge set the rocker switch on the front of the drive to LOAD and lift the drive door. Hold
the cartridge with its door toward the drive and slide it into the slot. Close the drive door and set the switch to
RUN. To remove a cartridge set the switch to LOAD and wait about 15 seconds. Then open the drive door
and pull the cartridge out.

The lights at the right on the drive indicate when it is in the load state, when it is ready for use by the pro-
gram, and when a check error has occurred (the protect light is not used). The number of a drive (for calling by
the program) is determined by the drive’s two internal jumpers.

5.3 DISC PACK SYSTEMS

Data General has equipment for handling two sizes of movable-head disc packs. Both systems use the 4046
control, which can handle four drives via an adapter. The adapter can also be connected to a second control so
that its bank of drives can be made available to another computer. The 4048 adapter utilizes the 4048A drive,
and the 4057 adapter utilizes the larger 4057A drive.

Both drives store data in blocks of 256 words and operate at the same rotational speed, 2400 rpm. The
4057A has four times the storage capacity and processes data at twice the speed of the 4048A. The capacity of
the 4048A is 3,118,080 words. Within a data block words are processed at the rate of one every 12.8 us, and the
entire cylinder of 15,360 words can be processed in 250 ms. The 4057A stores 12,472,320 words, processed at
the rate of one every 6.4 us; a single cylinder containing 61,440 words can be processed in 500 ms.

Data Format

The 4048A disc pack has ten surfaces divided into six sectors, addressed as octal O~11 and 0-5 respectively;
the 4057A has twenty surfaces divided into twelve sectors, numbered 0-23 and 0-13 octal. Each surface in either
pack has 203 tracks, addressed as 0-312 octal. Each track-sector contains a data block and a cyclic check word,
which is generated and checked automatically by the control. As each block contains 256 data words, the 4048A
with ten surfaces and six sectors has 1536 words per track, 15,360 words per cylinder; 200 cylinders gives a total
capacity of 3,118,080 words. The 4057A with twenty surfaces and twelve sectors, has 3,072 words per track,
61,440 words per cylinder, and a total capacity of 12,472,320 words. Often data operations are limited to 200
tracks per surface with the other three kept as spares.

Both drives have one head per pack surface, with all heads mounted in a single carriage so that they are
positioned simultaneously. The maximum time required to move the heads from one cylinder to the next is 10 ms,
and at most 60 ms are required for motion from one extremity to the other. Once the positioning operation is
complete, the control must wait for the beginning of the specified track for an address check; on average this
requires half a revolution (12.5 ms). Then the control must wait for the specified sector to reach the heads; since
the address check is at the beginning of the track, the waiting time depends entirely on which sector is selected
by the program.

Instructions

Before reading or writing, the program must give a Seek command to position the heads at the desired
5-12

cylinder; once the Seek is done the program can then give a Read or Write command. Information the program
must supply for a disc operation is the drive, cylinder, surface and sector, the (twos complement) negative of the
number of sectors to be processed, and an initial address (to the 16-bit address counter) for data channel access.
In a single Read or Write, the hardware automatically counts from one sector to the next and from one surface
to the next until the sector count is zero. However data operations always stop at the end of a cylinder, and the
program must reposition the heads to go on to the next cylinder. Throughout this discussion it is assumed that
the system is operating from a single processor; multiprocessor operation is treated at the end of the section on
programming considerations.

A disc pack system has device code 33, mnemonic DKP, and uses all six of the 1O transfer instructions. Busy
and Done are sensed by bits 8 and 9 in the IO skip instructions. The Clear and Start functions control these
flags in the usual fashion, but the IO Pulse function (F = 11) is also used. Interrupt Disable is controlled by inter-
rupt priority mask bit 7. A second system connected to the bus would have device code 73.

The Clear function clears Busy, Done and the other flags in the control, and terminates operations if the
control is currently processing data. Start and Pulse are both used to start disc commands, but the command
is determined by the mode of the control; in other words the program specifies a command by placing the control
in the appropriate mode and actually begins the command by giving Start or Pulse. When the Seek or Recalibrate
mode is selected, the program starts the command by giving Pulse, as this function does not set Busy (although
it does clear Done); hence while the heads are being positioned on one drive the control is free for a command
on another. For Read or Write mode, the program gives Start to set Busy, and thus prevents the control from
beginning any other command while processing data. An interrupt is requested as usual by the setting of Done,
but there are also separate done flags that indicate the completion of a Seek command in any drive or the comple-
tion of a Read or Write command in the drive currently selected by the control. The setting of any Seek Done flag
or the Read/Write Done flag requests an interrupt, and Read/Write Done also clears Busy and sets Done in
the control.

DOA -,DKP Data Out A, Disc Pack

0 1 1 AC 0 1 0 F 0 1 1 0 1 1

1 | Il | | 1 1 Il | i 1
[1 2 3 1T 4 5 6 I 7 8 9 10 11 12 T a3 14 15

Clear the Done flags selected by 1Is in AC bits 0-4 and select the mode and cylinder according to the contents of
AC bits 6-15 as shown. Perform the function specified by F as explained above.

CLEAR DONE FLAGS MODE CYLINDER
READ/ SEEK SEEK SEEK SEEK ,
WRITE| o | 1 | 2 | 3 |] I]]] i i
o | 1 2 3 T a 5 6 | 7 8 9 T 10 11 12 T 13 14 15
6-7 These bits select the mode:;
00 Read
01 Write

10 Seek — position the heads to the cylinder specified by bits 8-15
5-13

11 Recalibrate-position heads at cylinder 0 independently of the head-position-

ing circuits

8-15 Numbers 0-312 octal address the cylinder.

DOB -,DKP Data Out B, Disc Pack
0 ' 1 1 AC 1 | 0 0 F 0 1 1 0 1 1
0 T 1 2 3 T3 5 et 8|910111I12}13‘14 15

Load the contents of AC into the address counter (AC bit 0 should be 0), and perform the function specified
by F as explained above.

DOC - DKP Data Out C, Disc Pack
0 1 1 1 A.C 1 1 1 1 0 117 0 l 1 . 1 0 1 1
[2 3 T 4 5 6 | 7 8 9 10 11 12 # 13 I 14 15

Select the drive, surface and sector, and the number of sectors to be processed, according to the contents of AC

as shown; perform the function specified by F as explained above.

DRIVE SURFACE SECTOR — SECTOR COUNT
| | |] | ! | ! | |

o ' 2 3 ' 4 5 6 ' 7 8 9 T 10 11 12 '3 14 15
0-1 Numbers 0-3 select the drive.
3-7 Numbers 0-11 select the surface in the 4048 ; numbers 0-23 select the surface in the 4057,
8-11 Numbers 0-5 select the sector in the 4048 ; numbers 0-13 select the sector in the 4057.
12-15 The twos complement negative of the number of sectors to be processed by Read or Write (maximum:

sixteen).

BDIA —,DKP Data in A, Disc Pack

0 1 1 AC 0 | 0 1 1 }17 0 . 1 1 1 1 0 ‘ 1 1

o1 2 713 5 6 | 7 8 9 10 11 12 ! 13 14 15
Read the status of the disc ‘system into AC as shown. (Perform the function specified by F.)

COMMAND DONE SEEKING ON DRIVE pisc | seek | END | APP- |check|pAaTA

READ/ SEEK SEEK SEEK SEEK READY[ERRORERROR| RESS [ERROR| LATE [ERROR
WRITE| o 1 | 2 3 L1 | 2 | 3 ERROR

o ' 1 2 3 1 4 5 6 | 7 8 9 10 11 12 13 14 15

5-14

The Clear function clears all of the done and error flags; Start and Pulse clear the error flags.

0-4 A drive has completed a command as indicated by Is in these bits; a Seek Done flag can be set from
any drive, Read/Write Done can be set only from the drive currently selected. The setting of any of
these flags requests an interrupt.

5-8 Is in these bits indicate drives on which the heads are presently being positioned.

9 The selected drive is available to the program.

10 The selected drive failed to position its heads as requested.

11 The control has reached the end of a cylinder but the sector counter is not zero, and the data opsration
has terminated anyway.

12 Address information read from the disc did not agree with that specified by the control, or there is a
malfunction in the drive.

13 In Read, the cyclic check word read from the disc differed from that computed by the control for the
data in the block.

14 The data channel has failed to respond in time to a request for access.

15 Any of bits 10-14 is 1.

DIB —, DKP Data in B, Disc Pack

Olll AIC 01111 I;“ 01111|0|1|1
0 1 2 3 1 a 5 6 | 7 8 9 10 11 12 a3 14 15

Read the present contents of the address counter into AC. (Perform the function specified by F.)

DIC —,DKP

At the end of a Write command, the address counter is 2 greater than the address of the last word written.

Data in C, Disc Pack

1 1 AC 1 0 1 F 0 1 1 0 1 1

! | | | I ! i | { l

1 2 371 4 5 6 | 7 8 9 10 11 12 ' 13 14 15

Read the address status of the presently selected drive into AC as shown. (Perform the function specified by F.)

DRIVE SURFACE

SECTOR — SECTOR COUNT
I | i | | | i | { I

0

3 I 4 5 6 | 7 8 9 1 10 11 12 ' 13 14 15

The normal programming procedure for operating a single drive is to give a DOC to select the drive, sur-

face, sector and sector count, and then give a DIA to check whether the disc is ready (status bit 9). If it is, the

program should give a DOAP to select the cylinder, and to select and initiate the Seek command. When the heads

are properly positioned the drive sets its Seek Done flag requesting an interrupt. The program should respond

5-15

with a DIA to check status bit 10, Seek Error, to ensure that the heads have positioned properly. A DOA is then
given to clear Seek Done, select the desired cylinder again, and select the Read or Write mode as desired. Finally
a DOBS specifies the initial address and starts the Read or Write. For Write the control immediately makes two
data channel requests to fill two buffers before writing begins.

The control waits for the drive to do an address check and search for the selected sector. When the disc
reaches the index point — the end of the final sector — the drive reads the address information written at the
beginning of the track that is at the head corresponding to the surface selected by the control. If the cylinder
and surface addresses written in the track do not match the cylinder and surface addresses supplied by the last
DOA and DOC respectively, Address Error sets and the command terminates. If the address information is cor-
rect, the control waits until the drive encounters the selected sector; it then processes the block, making a pair
of data channel requests whenever it has two words ready for memory in reading or both buffers are free in writ-
ing. As each sector is completed the sector counter is incremented by one; and upon completing the final sector
(fe upon reaching the index point) the surface counter is incremented by one while the sector counter is returned
to zero, so the operation continues from one surface to the next in the cylinder. For each sector, the control also
increments the sector count (ie the negative count of the number of sectors still to be processed). When the sector
count reaches zero, the control terminates the command (with the counters pointing to the last block processed)
and sets Read/Write Done, which in turn clears Busy and sets Done requesting an interrupt.

The drive always does an address check before starting a command, and since the address check is at the
index point, the control cannot end one command and start another within a track. However if the program
always gives a sector count such that every command terminates at the end of a track, then the disc can be pro-
cessed continuously. As each command ends, the program can give another that begins processing at sector 0

since the address check is made immediately.
The setting of Data Late during a block indicates that information has been lost, but data transfers con-

tinue until the control processes the entire block, at which time it terminates the command. At the comple-
tion of a data block in Write, the control writes a computed checkword at the end of the sector. In Read, the
control compares the checkword read from the disc with one it has computed from the data read, and if they
differ, sets Check Error and terminates the command. If the control reaches the end of the cylinder (i.e., the
end of the last sector on the last surface) and the sector count is not zero, the control sets End Error and

terminates the command.
Although the program can process data with only one drive at a time, it can position the heads on several

drives simultaneously. After giving a Seek for one drive, the program can select another and give a Seek for it.
This means that the surface, sector and sector count information cannot be given when the drive is selected ini-
tially for seeking, and each time the program wishes to handle a particular drive it must reselect that drive. Egif
several drives are seeking simultaneously and there is an interrupt, the program should give a DIA to determine
which drive interrupted, then give a DOC to sclect that drive, and give another DIA to check Seek Error for that
drive. To read or write, the program must give all three output commands, DOA, DOB, and DOC, to supply
all the necessary information (the order of the instructions is not important, but Start should be given with the
last of the three in order for the command to start properly).

Timing. The maximum time required to move the heads from one cylinder to the next is 10 ms, and at
most 60 ms are required for motion from one extremity to the other; average random positioning time is there-
fore at most 35 ms. These times are of course for the drive; a command that moves the heads takes about 10
us of control time (the program must wait 10 us before giving any other disc instruction).

At 2400 rpm the pack takes 25 ms per revolution. Since the drive must check the address at the index point
before searching for a specified sector, the search time for a random sector can be as much as 50 ms; specifically,
the total wait is the time to reach the index point (maximum 25 ms, average 12.5 ms) plus the known time re-
quired from the index to the desired sector. In continuous processing, waiting time can be reduced to a minimum
by judicious ordering of sectors to be processed.

5-16

On the 4048, the time to traverse one complete sector is 4.17 ms, and to traverse the data block within a
sector takes 3.28 ms. During processing, data channel requests for pairs of words occur every 25.6 us, and the
processor has almost this much time to supply both words. If a command terminates following the final sector
in a track, the program has approximately .5 ms to give a new command to process the first sector without waiting
for a complete disc revolution.

On the 4057 the time to traverse one complete sector is 2.08 ms, and to traverse the data block within a sector
takes 1.64 ms. During processing, data channel requests for pairs of words occur every 12.8 s, and the processor
has almost this much time to supply both words. If a command terminates following the final sector in a track,
the program has approximately .2 ms to start a new command to process the first sector without waiting for a
complete disc revolution,

Programming Considerations

If a Seek Error is indicated, give the Recalibrate command and do the Seek over again. Be careful not to
give an address for a cylinder, surface or sector that does not exist (in other words a number too large for the
system). Giving a Seck for a nonexistent cylinder causes a Seek Error. With a data command, selecting a non-
existent cylinder or surface, or specifying a cylinder different from the one at which the heads are positioned,
sets Address Error and terminates the command. The drive searches forever for a sector that does not exist (the
system can be freed by giving the 1O reset function).

Within a given cylinder, the control can process sixteen consecutive sectors (4096 words). Since the drive
must go to the index point between commands, to process an entire cylinder it is best for each command to handle
one or two tracks (six or twelve sectors) on the 4048, a single track (twelve sectors) on the 4057.

In Write the address counter is always two words ahead of the disc as the control always asks for two words
to have ready when the previous two are shifted to the drive. Hence at the end of a Write, the address counter
points to the location two beyond the last word that was actually written in the final sector. To start a new Write
for consecutive operation from memory, the program must give a new initial address for the correct location
in memory (two less than the address read by a DIB). In Read the control requests access only for words actually
read, so the program can give a new Read without supplying a new initial address.

On a Data Late or Check Error the program should reprocess the sector in which the error occurred. If
information cannot be read correctly after several tries, rewrite the bad block. If this fails to correct the error,
the sector can no longer be used. A Check Error may also occur in the address field at the beginning of each

track.
When processing to the end of a cylinder, the program should give the correct sector count, as a nonzero

count at the end of a cylinder is regarded as an error. The nonzero count causes the control to act as though
the command were continuing, so it returns the sector address to zero, increments the surface counter to one
beyond the final surface in the pack, and increments the sector count by one. Should the program inad-
vertently cause an End Error by attempting continuous processing across the boundary between cylinders, it
can continue the operation by positioning the heads to the next cylinder, adjusting the initial address as ex-
plained above if the command is Write, and giving a DOB that selects the same drive, surface 0, sector 0, and
specifies the negative of a sector count one greater than that indicated by the status read by a DIC.

Automatic Loading. Ordinarily sector 0, surface 0, cylinder 0 of drive 0 is reserved for a binary loader. Should
the loader in core be destroyed by program debugging, it can easily be restored from the disc. To position the
heads at cylinder 0, the operator should first turn the drive power off and then back on again. To bring the loader
into memory automatically, set device code 33 into data switches 10-15 at the computer console. Then in a Nova
1200 series or 800 series computer with the program load option, press RESET, turn on data switch 0, then press
PROGRAM LOAD; in a Supernova press RESET and then CHANNEL START. To bring the loader into
memory without automatic loading, the operator must use the following procedure:

1. Press RESET.

5-17

2. Set 376 into the data switches and press EXAMINE. _

3. Set the instruction NIOS DKP (060133) into the data switches and press DEPOSIT.
4. Set 000377 into the data switches (JMP 377) and press DEPOSIT NEXT.

5. Set 376 into the data switches and press START.

The disc control will read sixteen consecutive sectors unless the loader stops it.

Multiprocessor Operation. When two controls from different computers are connected to the same disc
adapter, access is alternated between them whenever there is a conflict. When one control finishes a data command,
access is automatically given to the other control if it is making a request. If not, the first control can continue.

The program must give a Seek for every data command, as the other processor might have changed the head
position. If the adapter is being used by the other processor when a Seek is given, the control waits until the
adapter is free to start it; in the meantime the Seek flag will be on and the program must not give another com-
mand (with multiprocessor operation, seeking on more than one drive at a time is ineffective). Once the adapter
starts the Seek, it is unavailable to the other control until either Read/Write Done is set or six seconds has elapsed.

If a disc is known to be available, loss of Disc Ready can be taken to mean that the other control is using
the drive. The programs in both computers should allow for operator intervention,

Operation

A three-position, OFF/LOCK/ON, key-operated switch is provided on the front panel of the adapter cabi-
net; this switch controls power to the drive and may be locked in the ON state by removal of the key in the
LOCK position.

At the left of the access door on the drive are three alternate-action pushbutton switch/indicators and one
indicator. With the adapter power on, a disc pack loaded and the access door closed, depressing the POWER
ON pushbutton switch applies power to the drive and initiates the power-up sequence; when power is applied
to the unit, the white POWER ON indicator lamp is illuminated. Depressing the green pushbutton switch (En-
able On) places the disc drive on-line at the completion of the power-up sequence; the green indicator lamp will
illuminate when the disc drive is ready to accept and execute the commands of the program. After initially de-
pressing this pushbutton switch to place the disc drive on-line, it is unnecessary to activate this switch each time
power is applied to the unit. If the disc drive is placed off-line by depressing the green pushbutton switch, caus-
ing the indicator lamp toextinguish, the on-line mode is restored by again depressing the green pushbutton switch.
To power down the disc drive, depress the POWER ON pushbutton switch; the indicator lamp will extinguish.
Note: the access door contains a window for visual inspection of the disc drive; allow the disc pack to stop re-
volving before opening this door.

Depressing the READ ONLY pushbutton switch until the yellow indicator lamp illuminates causes a write-
lock condition. To restore the write mode, depress the pushbutton switch until the indicator lamp extinguishes.

The red SELECT LOCK indicator, when illuminated, indicates an unsafe drive condition exists.

To load a pack, hold it by its handle and unscrew the bottom of the container. Open the drive door, set the
pack down over the spindle, and turn it clockwise until it stops. Lift off the cover and close the door. To keep
dust out of the empty-case screw the bottom back into the cover. To remove a pack turn off the drive and wait
about twelve seconds. Then open the door, place the cover over the pack, and turn it counterclockwise until a
click is heard; the pack is now free of the spindle and is held tightly inside the cover, so it can be lifted out. Screw
the bottom back onto the case.

5-18

Chapter VI
Analog Conversion Equipment

Equipment is available with the Nova line computers for both analog-to-digital (A-D) and digital-to-analog
(D-A) signal conversion. The user has great latitude in configuring the system to meet his needs by selecting from
among a large number of modular building blocks. The first four sections of this chapter describe these systems.
The first section treats the overall configuration of the combined system. The second and third sections describe
the organization and programming of the A-D and D-A equipment respectively, whereas §6.4 discusses the con-
version scale and gives the complete physical, electrical and environmental specifications for the equipment. One
device that requires a D-A converter is the 4053 oscilloscope control, which is treated in §6.5.

6.1 A-D,D-A SYSTEM CONFIGURATIONS

Data General supplies A-D converters with resolutions of 8, 10, 12, 13, 14 and 15 bits and D—A converters
with resolutions of 8, 10, 12, 13 and 14 bits. To provide a number of analog outputs from the computer, a separate
D-A converter is required for each channel. Multiplexing however allows the computer to handle up to 256
analog input channels through a single A-D converter. The conversion equipment is contained entirely in chassis
that are 3% inches high, 17 inches deep, and can be mounted on slides in a standard 19-inch rack. The main
chassis is a 4055A or 4055B, which contains a power supply and a large printed circuit mother board at the
bottom. Individual pc boards are plugged directly into the mother board, which has four edge connectors that
are available at the back of the chassis. Two of the connectors are for the analog channels in and out and for
connecting to expansion chassis; the other two connect the basic chassis to the computer interfaces.

The two main chassis differ in the capacity of their power supplies and therefore in the amount of equipment
they can handle. The 4055A low capacity chassis can contain an A-D converter with sample and hold and a
multiplexor with thirty-two single-ended or sixteen differential channels; or eight D-A convertérs; or an A-D
converter with sample and hold and a multiplexor with sixteen single-ended or eight differential channels and
two D-A converters. The 4055B high capacity chassis can contain a sample and hold, multiplexed A-D converter
with sixty-four single-ended or thirty-two differential channels and eight D-A converters. In all cases the con-
verters can be any size. The A-D system can be expanded to 256 channels; this maximum system may have sample
and hold for each channel separately just prior to conversion, or sample and hold for all channels simultaneously
followed by a string of conversions. The multiplexor expander and multichannel sample and hold are housed
in chassis separate from the 4055B. The D-A part of the combined system is limited to eight channels, but Data
General also has available a separate 24-channel unit, the 4056H, which contains its own power supply and
control and is completely independent of the combined system.

A-D conversion requires a 4014 interface subassembly and an A-D interface 4032, with or without a channel
scanner 4033; D-A conversion requires a 4036 interface subassembly and a D-A interface 4037. These units are
connected to the 10 bus and can be installed in the computer chassis. The basic 4032 interface allows the sampling
of one channel at a time by 10 instructions; the 4033 scanner (which is mounted on the same board as the 4032)
allows automatic sampling of all channels sequentially with the digital results going directly to memory via the
data channel. For a combined system, the interfaces are connected to the 4055A or B; for the larger D-A configu-
ration, the 4056H is connected directly to a 4037 interface.

A complete system for either or both types of conversion is built up from among the following items.

6-1

Unit Prerequisite

4055A Basic enclosure, low capacity 4032 or 4037
4055B Basic enclosure, high capacity 4032 or 4037
4055C A-D converter, 8 bits 4055A or B
4055D A-D converter, 10 bits 4055A or B
4055E A-D converter, 12 bits 4055A or B
4055F A-D converter, 13 bits 4055A or B
4055G A-D converter, 14 bits 4055A or B
4055H A-D converter, 15 bits 4055A or B
40551 Buffer amplifier, single ended Any of 4055C-H
4055J Buffer amplifier, differential Any of 4055C-H
4055K Control for multiplexor and sample and hold Any of 4055C-H
4055L Sample and hold 4055K
4055M Multiplexor, 8 single-ended channels 40551 and K
4055N Multiplexor, 16 single-ended or 8 differential channels 40551 or J and K
40550 Enclosure, power supply and control for multiplexor with 128 single- 4055M or N
ended or 64 differential channels
4055P Enclosure, power supply and control for 32 single-ended or 16 4055M or N
differential simultaneous sample and hold channels.
4055Q Dual simultaneous sample and hold 4055P
4056A D-A converter control 4055A or B
4056B D-A converter, 8 bits 4056A or H
4056C D-A converter, 10 bits 4056A or H
4056D D-A converter, 12 bits 4056A or H
4056E D-A converter, 13 bits 4056A or H
4056F D-A converter, 14 bits 4056A or H
4056H Enclosure, power supply and control for 24 D-A converters 4037

The standard analog voltage ranges available are 2.5, +5, %10, 0 to 5 and 0 to +10 volts, which must be l
specified at the time of order. The 15 bit converter (A-D) only is available only in the 0 to 10 and =10 volt
range. Each D-A channel supplies 10 ma of output current. Accuracy and settling time depend upon the type
of converter; for these and other D-A specifications refer to paragraph 6.4.

The A~-D equipment can withstand analog input voltages within the range of +15 volts without damage.
Warmup time for a 15 or 14-bit converter is 25 minutes; for other converters, 15 minutes. A sample and hold I
amplifier (with a maximum decay rate of 15uv/ms) may be used to hold the acquired analog signal constant
during the conversion and thus reduce errors due to variations in the applied input voltage. Using the sample
and hold, the aperture (measurement time) uncertainty is 50 ns maximum. Both the converter and the single-
channel sample and hold have low input impedance. For an application requiring high input impedance, the
converter should be preceded by a buffer amplifier, which is required in any multiplexed system in order to main-
tain high input impedance and ensure proper operation of the multiplexer. Channel to channel crosstalk is 74 db
(typical) rejection at 1 KHz on selected channel with 15 adjacent unselected channels connected to 20V p-p sine-
wave source. 1 kilohm source resistance on selected channel.

The analog input channels may be single-ended or differential. The maximum number of channels is the
same — 256 — but more equipment is required for differential channels. With differential channels the signal
plus common mode voltage is + 10 volts maximum,and common mode rejection is 86 db typical at 60 Hz and

6-2

with 1 kilohm source imbalance. Accuracy, stability and various other characteristics of the system depend upon
the type of converter used; complete A-D speciﬁcations are given in §6.4. System accuracy is given as a percent
error in excess of the inherent resolution error of Y% LSB. Such inaccuracy can be caused by noise, variation
dependent upon temperature, static errors caused by slight inaccuracies in calibration, and dynamic errors caused
by the processing of moving waveforms.

The illustrations on the following two pages show the types of A-D configurations. The simplest possible
system is a single analog channel fed directly into an A-D converter whose output is available to the interface.
If needed, the setup may also include a buffer amplifier and/or a sample and hold (which is optional in any
configuration). Even in this case the interface can use the channel scanner, for a time scan of the single input signal.

Any configuration for handling more than one channel requires a multiplexor, whose output is fed to the
converter through a buffer amplifier. The main chassis can accommodate sixty-four single-ended channels using
six address bits from the interface or thirty-two differential channels using five address bits. Note that a multi-
plexor of any size is always made up of the basic 16-channel 4055N multiplexors, with at most one 4055M for the
eight (or fewer) highest numbered channels. To increase the capacity of the system beyond sixty-four single-ended
or thirty-two differential channels requires that all channels input to multiplexors external to the main chassis,
and their outputs in turn undergo higher level multiplexing through an 8-channel multiplexor (single-ended or
differential) in the main chassis. The high level multiplexing uses the three high order address bits, and the five
low order bits are supplied to the expansion enclosures for the low order multiplexing. This allows a maximum of
256 channels, utilizing two 40550 enclosures for single-ended channels, four for differential channels.

The multiplexed configurations may have simultaneous sample and hold. This setup differs in that a single
sample and hold at the converter is not used, and each set of thirty-two single-ended or sixteen differential |
analog inputs is fed to the multiplexer through a 4055P enclosure containing one 4055Q dual simultaneous sample
and hold for each pair of single-ended channels or two 4055Qs for each pair of differential channels (where one
4055Q handles the low sides of both channels and the other handles the high sides). Although this configuration
requires more equipment, it allows simultaneous sampling on all channels, so that a subsequent string of conver-
sions can provide digital data reflecting the state of all analog channels at the same point in time. It is also faster
since there is only one sample and hold for an entire set of conversions, which are then executed at the same rate
as in a multiplexed system without sample and hold (the interface must include the 4033 scanner).

6.2 A-D CONVERSION

The 4032 A-D interface without the 4033 channel scanner allows the program to select a single channel,
trigger a conversion on it, and read the digital result. To implement this the interface contains an 8-bit channel
select register and a 16-bit data buffer that receives the output of the converter whenever a conversion is completed.

The program produces each conversion by giving the Start function, but operation can be synchronized to
a clock. Without the clock, each Start triggers a conversion, but with it each Start allows the next clock pulse
to trigger a conversion. The user can supply an external clock, but mounted on the interface board is an internal
clock that can be set to any pulse interval from 10 us to 100 us. '

The basic interface uses three of the IO transfer instructions with device code 21, mnemonic ADCV. Busy
and Done are sensed by bits 8 and 9 in IO skip instructions; Clear and Start control these flags in the usual fashion.
Interrupt Disable is controlled by interrupt priority mask bit 8. Start (F = 01) clears Done, sets Busy, and triggers
a conversion or primes the clock to do so.

For a single conversion the program should give a DOAS to specify the channel and trigger the conversion
(an NIOS is sufficient if there is only one channel) either directly or at the next clock pulse. At completion, the
converter loads the digital result into the data buffer, and sends an end of conversion pulse that clears Busy and
sets Done, requesting an interrupt if Interrupt Disable is clear. The program can then give a DIC to read the

buffer into AC.
6-3

10 BUS

'f_—_ T U MAINCHASSIS T T T T T —— ﬁl
ANALOG | | 'BUFFER *SAMPLE AD ! AD
T AMPLIFIER & HOLD CONVERTER || INTERFACE
i 40551 40551 40556-H | 4032
!
{ f | *CHANNEL
| *CONTROL 4055A IF <2 ||
| A055K DACS; OTHERWISE | 4033
| 40558 {
- -
SINGLE CHANNEL CONFIGURATION
lr— MAINCHassis | T T T T T 7,
< MULTIPLEXOR
ANA6L40G } b <s':z 0 BUFFER *SAMPLE AD : AD
TNPUTs T cHANNELs [*| AMPLIFIER |ef{ & HOLD |e{ CONVERTER T INTERFACE
: (SEE NOTE) 4055/ 4055L 40556-H | 4032
| : *CHANNEL
| CONTROL 4055A IF <320R | SCANNER
| 4055K <16 AND <2 DACS:; | 4033
L OTHERWISE 40558_}
T T T TBASIC MULTIPLEXED CONFIGURATION — — — — —
128 C T T MaNchassis T T T T T T—— 3
ANALOG MULTIPLEXOR | I
— 40550 L MULTIPLEXOR BUFFER *SAMPLE A-D | A-D
INPUTS & 4055N's | 4055M e~ AMPLIFIER lew] & HOLD |e={ CONVERTER i INTERFACE
40551 4055L 40556-H | 4032
!
128 MULTIPLEXOR l : "CHANNEL
ANALOG [| SCANNER
——— | 40550 CONTROL 65 4033
INPUTS & 4055N"s | 4055K 40558 :
|
- J
MAXIMUM MULTIPLEXED CONFIGURATION
I’___—_TAXmTcﬁ;GsTs _________________ 7|
<32 | TIPLEXOR !
ANALOG :A:gt; | MuL <or BUFFER A-D | AD
AMPLIFIER CONVERTER [— INTERFACE
INPUTS 4055P 1" CHANNELS 40551 40556H | | 4032
& 4055Q's | | (SEE NOTE) |
| | CHANNEL
I f I SCANNER
| 4055A IF <320R | 4033
| CONTROL <16 AND <2 DACS; |
| 4055K OTHERWISE 40558 |
- J
BASIC MULTIPLEXED CONFIGURATION WITH SIMULTANEOUS SAMPLE AND HOLD
32 SAMPLE 32 SAMPLE
ANALOG & HOLD ANALOG & HOLD
INPUTS 4055 INPUTS 4055P
& 40550’ & 4055Q's
MULTIPLEXOR
40550
& 4056N's
32 SAMPLE 32 SamPLE ot V)
ANALOG & HOLD ANALOG & HOLD - MAIN CHASSIS 1{
INPUTS 4055 INPUTS 4055P L | AD | A-D
& 4055Q's & 40550 | [MULTIPLEXOR|_] Az‘;trszn CONVERTER | INTERFACE
4055M 40856H | | 4032
| ! CHANNEL
| {
32 SAMPLE 32 SAMPLE | | SCANNER
ANALOG & HOLD ANALOG & HOLD | | CONTROL 40558 | 4033
INPUTS 4055P INPUTS 4055 | 4055K !
& 4055Q's & 4055Q's s 1
MULTIPLEXOR
40550
& 4055N's
32 SAMPLE 32 SAMPLE j
A::LOSG &43505;0 AN:LOG &4(’)‘505;'3 MAXIMUM MULTIPLEXED CONFIGURATION WITH SIMULTANEOUS SAMPLE AND HOLD
INPUT: INPUTS
8 4055Q's & 4055Q's

4055M FOR HIGHEST NUMBERED CHANNELS

SINGLE-ENDED A-D CONFIGURATIONS

TOPTIONAL

6-4

NOTE: 4055M IF <8 CHANNELS; OTHERWISE 4055N’s WITH AT MOST ONE

| MAIN CHASSIS , 10 BUS
. |
ANALOG BUFFER SAMPLE A-D | A-D
e AMPLIFIER & HOLD CONVERTER INTERFACE
i 4055J 4055L 40556 H | | 4032
|
| ' | *CHANNEL
<CONTR 4033A IF <2 | SCANNER
| °°05 oL DACS; OTHERWISE | 4033
| 4055K 40558 |
(o . ___ T __ J
SINGLE CHANNEL CONFIGURATION
IF» T Wmaiwceassis T T T T T T _ll
<32 MULTIPLEXOR
ANALOG <32 BUFFER “SAMPLE AD | AD
CHANNELs [*] AMPLIFIER [={ & HOLD |e CONVERTER = INTERFACE
INPUTS | 055N’ 40554 4055L 40556-H | 4032
|
I | *CHANNEL
| 4055A IF <16 OR SCANNER
CONTROL <8 AND <2DACs; | 4033
I 4055K
L OTHERWISE 40558 |
BASIC MULTIPLEXED CONFIGURATION
64
ANALOG MULTIPLEXOR
F—-. 40550
INPUTS & 4055N's
64 MULTIP OR
LTIPLEXOR |y | ——— - ——
ANALOG | P es0. 1 Il_ MAIN CHASSIS 1
INPUTS & 4055N's | |
BUFFER *SAMPLE AD | A-D
MULTIPLEXOR
4056N [AMPLIFIER fe-{ &HOLD |eml CONVERTER {—t—a= INTERFACE
64 4055 4055L 40556-H | 4032
MULTIPLEXOR
ANALOG 20550 2| ! { *CHANNEL
INPUTS & 4055N‘s | CONTROL I SCANNER
40558 4033
: 4056K l
64 b T _
ANALOG | MULTIPLEXOR MAXIMUM MULTIPLEXED CONFIGURATION
INPUTS 40550 2
& 4055N’s
I’_ B MAIN CHASSIS —‘]l
<16 SAMPLE |} MULTIPLEXOR
ANALOG & HOLD | <32 BUFFER A-D | A-D
—| 40559 T AMPLIFIER CONVERTER = INTERFACE
INPUTS ' CHANNELS 4055 aoss6H | | 4032
& 4055Q's | 4055N’s |
: ’ | CHANNEL
l 4055A IF <16 OR ! scaAga';ER
| | CONTROL <8 AND <2 DACS; |
| 4055K OTHERWISE 40558 |
. _
BASIC MULTIPLEXED CONFIGURATION WITH SIMULTANEQUS SAMPLE AND HOLD
*OPTIONAL

DIFFERENTIAL A-D CONFIGURATIONS

6-5

DOA - ,ADCV Data Out A, A/D ConVerter

0 1 1 AC 0 1 0 F 0 1 0 0 0 1

| 1 i 1 ! 1 i H] i 1

0o 1 2 3 4 5 6 | 7 8 9 10 11 12 ' 13 14 15

Load the contents of AC bits 8-15 into the channel select register, and perform the function specified by F.

DIA —,ADCV Data In A,A/D ConVerter

0 1 1 AC 0 0 1 F 0 1 0 0 0 1

[l 1] 1 | 1 1 1 } 1 1

0 U 2 3 4 5 6 | 7 8 9 10 11 12 13 14 15

Read the contents of the channel select register into AC bits 815, and perform the function specified by F. Clear
AC bits 0-7.

DIC —,ADCV Data In C, A/D ConVerter

0 1 1 AC 1 0 1 F 0 1 0 0 0 1

Il 1 1 1] 1 1 L (| 1 1

[2 3 4 5 6 1 7 8 9 10 11 12 1 13 .14 15

Transfer the contents of the data buffer into AC, and perform the function specified by F. The digital value, of
whatever number of bits supplied by the converter, is right justified in the buffer and the sign is extended to the
left. .

For a sequence of readings from sequential channels, the program can give a DOAS to select the first
channel and start the first conversion, and then respond to each completion with a DICS that reads the con-
verted data, increments the channel select register, and triggers the next conversion.

To sample a number of random channels, the program must give both a DIC and 2 DOAS following
each conversion. (A multiplexed system with simultaneous sample and hold cannot be used with the 4032 alone.)

Interface with Channel Scanner

The combined 4032-4033 interface acts in exactly the manner described above when the Start function is
used to convert. But if the special IO Pulse function is used instead, the interface begins automatic operation,
synchronized to the clock, in which it samples the channels sequentially and sends the results directly to memory
via the data channel. To implement this feature the combined interface has a channel counter (in place of the
channel select register), an 8-bit final channel register, a 15-bit address counter and a 12-bit word counter. To
run a sequence of conversions automatically, the program must specify the number of the starting channel to
the channel counter, the number of the final channel in the sequence to the final channel register, an initial ad-
dress to the address counter for data channel access, and the (twos complement) negative of a word count.

The combined interface uses all six 10 transfer instructions, but only five are relevant to the scanning pro-
cedure (DIC is only for reading the result of a single conversion using Start). Both Start and Pulse (F = 11)
clear Done, set Busy and start a conversion, but Pulse places the system in the scanning mode.

6-6 ‘ '

DOA —,ADCV Data Qut A, A/D ConVerter
0 l 1 : 1 A‘C 0 . 1 l 0 IF 0 ‘ 1 . 0 ' 0 . 0 , 1
0o ' 1 2 3 4 5 6 ' 1 8 9 10 11 12 ' 13 14 15

Load the contents of AC bits 0-7 into the final channel register and the contents of AC bits 8-15 into the channel
counter. Perform the function specified by F.

DOB -,ADCV Data Out B, A/D ConVerter
0 . 1 . 1 AC 1] 0 I:“ 0 . 1 . 0 . 0 0 1
0 ' 1 2 3 4 5 6 ' 1 8 9 10 11 12 713 14 15
Load the contents of AC bits 1-15 into the address counter, and perform the function specified by F.
DOC —,ADCV Data Out C, A/D ConVerter
0 1 . 1 AC 1 . F o 1 0 0 O L1
o ' 1 2 3 4 B 6 ' 7 8 9 10 11 12 713 14 15
Load the contents of AC bits 4-15 into the word counter, and perform the function specified by F.
DIA -,ADCV Data in A,A/D ConVerter
0 . 1 . 1 A.C 0 0 . 1 If‘ 0 L, 10 .0 0 .
0o ' 1 2 3 4 5 6 ' 7 8 9 10 11 12 ' 13 14 15

Read the contents of the final channel register into AC bits 0~7 and the channel counter into AC bits 8-15. Perform
the function specified by F.

DIB -,ADCV Data In B, A/D ConVerter
0 ‘ 1 1 1 A.C 0 1 1 ‘ i Fl’ 0 , 1 ' 0 . 0 0 . 1
0o 1 2 3 4 5 6 ! 7 8 9 10 11 12 ' 13 14 15

Read the contents of the address counter into AC bits 1—15, and perform the function specified by F. Clear

ACbit 0.

6-7

DIC -,ADCV Data In C, A/D ConVerter

0 1 1 AC 1 0 1 F 0 1 0 0 0 1

|] 1 1 1] 1] 1 1

1
0o ' 1 2 3 4 5 6 | 7 8 9 10 11 12 ' 13 14 15

Read the contents of the data buffer into AC, and perform the function specified by F. The digital value, of
whatever number of bits supplied by the converter, is right justified in the buffer and the sign is extended to
the left.

When Busy is set by the Pulse function, the interface begins the scé{nning procédﬁre synchronized to the
clock. The first conversion is on the channel selected by the DOA, ie the channel initially selected by the channel
counter. Followmg each conversion, the result is sent to the location currently addressed by the address counter,
and the address, word and channel counters are all incremented by one. When a conversion occurs on the channel
specified by the final channel register, the address and word counters are incremented, but the channel counter
is reset to zero to begin a new cycle. Cyles from channel 0 to the final channel are repeated until the word counter
overflows, which clears Busy and sets Done, requesting an interrupt if Interrupt Disable is clear. If the system is
multichannel with simultaneous sample and hold, Pulse triggers the sample and hold and the word count must
limit the scan to one cycle.

The combined interface can be used like the basic interface simply by using DOA and DIC and giving Start.
The conversion is on the channel selected by the DOA, ie the channel currently selected by the channel counter.
However when the DOA is given, AC bits 0-7 should be all Is to ensure that the number of the selected channel
cannot be greater than the number specified for the final channel (this would inhibit the conversion).

Wiring Considerations

To select a synchronizing clock for the interface, insert jumper J1 (located in the vicinity of ICs E44-46 on
the circuit board) and input the clock pulse train at connector pin A63. To use the internal clock, jumper A47-
A63; the clock frequency is selected by installing an appropriate capacitor and adjusting the trimpot on the clock
package located at E43.

Differential analog inputs should be shielded twisted pairs, but if noise is serious, single-ended inputs should
be shielded as well. All shields should be terminated at the source ground rather than the data acquisition ground.
This is especially important for differential systems, as the difference between source ground and data acquisition
ground is considered to be the source of the common mode. The twisted-pair shields should be connected to this
common mode source to reduce the effects of cable capacitance, which can in turn affect the CMR characteristics.

Data acquisition signal return ground is available at both analog connectors (J1~A17, BI17 and J2-A6, B6)
as well as at an insulated stud located on the rear panel. A solid ground wire should be connected between the
signal return ground and the signal source ground or grounds in all systems. Without this ground, common mode
voltages are undefined and could exceed the + 10 volt maximum.

Any unused analog mputs for which mult1plexer channels are installed should be grounded to minimize
stray pickup.

When expansion chassis are used, the five low-order channel address bits must be wired to them, and the
multiplexor outputs should be connected to the pins for channels 0-7 at the back of the main chassis (all signals
are on connector J2).

6-8

6.3 D-A CONVERSION

The 4037 D-A interface contains no flags and uses no control functions of the 10 instructions, The interface
uses only two IO output instructions, one to select the converter (channel), the other to supply the data for conver-
sion. Each converter contains its own data buffer; conversion begins as soon as the buffer contents change, and
the analog output is held constant until new digital data is supplied to the buffer. The interface has an 8-bit
channel selection register, but only the low order three bits are used with a 4055A or 4055B, and only the low
order five are used with a 4056H (in the latter case, specifying a channel number greater than 27 (decimal 23)
selects no channel). The device code is 23, mnemonic DACV (which is also used for the 4053 oscilloscope control).

DOA —-DACV Data Qut A, D/A ConVerter

0 1 1 AC 0 1 0 F 0 1 0 0 1 1

1 1 1 1 i 1 1 | 1 1

{
0 ' 1 2 3 4 5 6 | 1 8 9 10 11 12 ' 13 14 15

Convert the right » bits of AC into an analog voltage on the selected channel, where 7 is the number of bits resolu-
tion of the converter.

DOB - DACV Data Out B, D/A ConVerter

0 1 1 AC 1 0 0 F 0 1 0 0 1 1

{ 1 L 1 1 i 1 1 i
) 1 2 3 P 5 6 ' 7 8 9 10 11 12 ' 13 14 15

Select the D~A channel addressed by AC bits 13-15 (4055A or 4055B) or bits 11-15 (4056H).

D-A outputs are on connector J1. All D-A returns should be connected to the D-A return grounds at
J1-A20,B20 or the insulated stud on the rear panel. To minimize interaction between a multiplexed A-D and
the D-A, the analog outputs should be bundled separately and perhaps shielded from the analog inputs.

6.4 SPECIFICATIONS

For a converter with n bits resolution, the bipolar analog signal is converted to or derived from signed
numbers with n — 1 magnitude bits using twos complement convention for negatives; the unipolar analog range
corresponds to the set of positive #-bit numbers. There are 2» numbers containing » bits. This set of numbers
defines only 27 — 1 intervals, but the analog range is divided into 2= increments, where each corresponds to an
LSB of the digital resolution. The minimum analog value corresponds to the minimum digital value, but the
actual maximum analog voltage is one LSB less than the nominal maximum (LSB used in this sense means the
voltage increment corresponding to the digital LSB). Eg for a 12-bit converter with a +5 volt range, LSB = 10
volts/4096 = 2.4 mv. Hence the plus full scale voltage (+FS) is 5.000 — .0024 = 4.9976 volts. (—FSis —5.000
volts. The term “full scale™ (FS) usually means the nominal 5 volts, “full scale range” (FSR) refers to the 10 volts.)

The following table gives the minimum, mid range and maximum analog and digital values for all converter
resolutions for both the unipolar case and the bipolar case where ¥ = 5.000 or 10.000. The digital values are
given as the 16-bit words received from the A-D; on D-A the unused bits at the left are ignored and may have
any value.

Analog 15 Bits 14 Bits 13 Bits 12 Bits 10 Bits 8 Bits
+V — LSB 037777 017777 007777 003777 000777 000177
.0.000 000000 000000 000000 000000 000000 000000
-V 140000 160000 170000 174000 177000 177600
+10.000 — LSB 037777 017777 007777 001777 000377
+5.000 020000 010000 004000 001000 000200

0.000 000000 000000 000000 000000 000000

Any analog input signal greater than +FS converts to the maximum digital value; any less than —FS converts
to the minimum. k : ;

The outputs of the D-A are actually 2~ discrete voltage levels corresponding to the digital values, whereas
the A-D input is a continuum throughout the input voltage range. Hence except for errors introduced into the
D-A by actual circuit characteristics, noise, etc., the analog value corresponding to a particular number is exact,
whereas there is an inherent limitation on the accuracy of the A-D equal to + ¥ LSB, ie the actual input can
be anywhere within one half LSB of the value specified for the digital output. However in spite of appearances,
the same error is inherent in the D-A but does not appear in the converter — it occurs in the computer when the

program rounds or truncates the digital quantities to z bits.

A-D Operating Specifications

Channels 256 single-ended or differential

Resolution 8, 10, 12, 13, 14 or 15 bits
Warmup time
14, 15 bits 25 minutes
8,10, 12, 13 bits ‘ 15 minutes
Input voltage rarige
Standard, except 15 bits +5V,0to 5V
+10V, 0 to 10V
15 bits +10V, 0 to 10V
Differential input voltage + 10V maximum, signal plus common mode
Input overvoltage range ' + 15V maximum without damage
Sample and hold
Aperture uncertainty 50 ns maximum
Settling time
Single channel S us
Simultaneous ’ 10 us (7 us typical)

6-10

Input impedance
Converter
Sample and hold

Single channel

Simultaneous
Buffer amplifier
Multiplexor channel

Channel-to-channel crosstalk

Maximum source resistance on selected channel
Channel-to-channel short circuit protection

Differential common mode rejection

Line voltage

Dissipation
4055A
4055B

40550
4055P

> 1250 ohms

2000 pf input capacitance in series with 100 ohms
(switch)

10,000 megohms in parallel with 10 pf

10,000 megohms

2000 megohms

74 db (typical) rejection at 1 KHz on selected channel
with 15 adjacent unselected channels connected to 20V
p-p sinewave source.

1 kilohm
2 kilohms

86 db typical at 60 Hz and 66 db typical at | KHz
with 1 kilohm source imbalance

117/234 vac +10%, 47-420 Hz; 3AG 1 amp fuse

20 watts
40 watts
25 watts
50 watts

A-D Converter Alone

15 Bits

Conversion time in us 16.5

Conversions per second 60.6K

Accuracy: ¢ FSR + 1 LSB @ 20°C +.01

Offset stability: 97 FSR
24 hours +.001
30 days +.002

Temperature coefficients

Offset: 97 FSR/°C +.001
Gain: ppm FSR/°C +7
Noise (30): 97 FSR .001

14 Bits 13 Bits 12 Bits 10 Bits 8 Bits

84 78 24 10 8
11.9K 12.8K 41K 100K 125K
£.01 +.01 +.02 +.05 +.1

+.005 +.005 +.005 +.005 *.005
+.01 +.01 +.01 +.01 +.01

+.0015 £.0015 +.0015 +.0015 +.0015
110 +10 +10 +10 +10

005 .005 .005 01 .01

6-11

Multiplexed A-D Converter with Sample and Hold
15 Bits 14 Bits 13 Bits 12 Bits 10 Bits 8 Bits

Minimum conversion time in us 21.5 89 83 29 15 13
Maximum A-D conversions per second* 40K 10.5K 11.5K 32K 43K 62K
Accuracy: 9 FSR + 1% LSB @ 20°C +.02 +.02 +.02 +.025 +.06 +.1
Linearity: 97 FSR .006 .01 01 .02 05 1
Offset stability: &7 FSR

24 hours +.003 +.006 +.006 +.006 +.006 +.006

6 months +.01 +.012 +.012 +.012 +.012 +.012

Temperature coefficients
Offset: 97 FSR/°C

Single-ended 7 +.001 +.0015 +.0015 +.0015 +.0015 +.0015

Differential N +.0012 +.0017 +.0017 +.0017 +.0017 +.0017
Gain: ppm FSR/°C -

Single-ended +10 +13 +13 +13 +13 +13

Differential +12 +15 +15 +15 115 +15

*Every A-D converter has a potentiometer for adjusting the bit rate to trade off linearity vs speed. The conversion
rates given satisfy the listed linearity specification. o

D-A Operating Specifications
Channels ' 8 with A-D, 24 in 4056H
Resolution 8, 10, 12, 13 or 14 bits

Output voltage range _
+5V,0to 5V
+10V, 0 to 10V

Output current . 10 ma

Settling time to ¥ LSB

8, 13, 14 bits 5 us

10 bits 7 us

12 bits) ‘ 10 us
Accuracy

8 bits +.19 FSR

10 bits +.04% FSR

12 bits +.02%, FSR

13, 14 bits +.01% FSR

.6-12

Offset stability

24 hours +.002%; FSR
30 days +.019 FSR
Temperature coefficients
Offset
8, 10 bits 0029, FSR/°C
12, 13, 14 bits 0019 FSR/°C
Range
8 bits 40 ppm/°C
10 bits 17 ppm/°C
12, 13, 14 bits 10 ppm/°C
Recalibration interval Six months recommended .
Line voltage 117/234 vac +10%;, 47-420 Hz; 3AG 1 amp fuse
Dissipation
4055A 20 watts (8 D-A converters)
4055B 40 watts
4056H 55 watts -

Physical and Environmental Specifications
All units are 315" X 17’;H§< 17" and mount on slides in a standard 19’ rack.
Weight: 4055A, 16 pounds; all other units, 20 pounds
Operating temperature 0 to 55°C

Storage temperature —25 t0 80°C

6.5 OSCILLOSCOPE CONTROL 4053

This interface allows the program to display information by plotting points on any typical storing or
nonstoring oscilloscope. The control not only requires a dual D-A converter but is mounted on the converter
board and shares its device code. To display each point, the computer must supply two words for the x and y
coordinates to the converter and give the signal to intensify the beam. The program can also erase all the
information that has been stored on the scope face, select nonstorage mode in a storage scope, and display
information that is not stored but does not affect information previously stored. Timing and signal characteristics
can be adjusted to satisfy the requirements of the scope.

The scope control uses two IO transfer instructions, one to select the scope operating mode, the other
to read a single status bit. The control has no busy and done flags or interrupt capability, but Start in any 10
instruction with device code 23, mnemonic DACV, intensifies the scope beam. Hence the program need not
give a separate instruction to start the scope — the same instruction that supplies the second coordinate to
the converter can also intensify the beam. Programming the 10 Pulse function (F = 11) erases the scope
(erasing can also be done by means of a switch at the scope).

6-13

DOC -,DACV Data Out C, Scope Control

0 1 1 AC 1 1 0 F 0 1 0 0 1 1

: 1 i 1] 1 | I l L A
0 1 2 3 4 S 6 | 7 8 9 10 11 12 ' 13 14 15

Select the scope mode according to AC bits 14 and 15, and perform the function specified by F. The meaning
of the mode bits is as follows.

Bits 14— 15 Meaning
00 Standard operation— store or nonstore depending on scope A
0t Write through— points may be displayed without storing but without affecting
previously stored information
10 Nonstore mode
11 This combination gives conflicting mode information

DIA —,DACV Data in A, Scope Control

0 1 1 AC 0 0 1 F 0 1 0 0 1 1

} 1). 1 } 1 1 [l Il 1
0 L 2 3 4 5 6 ' 7 8 9 10 11 12 13 14 15

Read the erase status into AC bit 15 and clear AC bits 0-14. A 1 in AC bit 15 indicates the scope is presently
erasing (if the jumper W2 is installed.) (Perform the function specified by F.) Erase time is typically in the
range one-tenth to one-half second.

Scope Parameters. To display each point the program must supply two coordinates and a Start pulse to
intensify the beam. Both the time from Start to the beginning of the intensification signal and the duration of
that signal can be adjusted to a value in the range 1.4 to 6 us by means of screwdriver pots located beside
packages U37 and U38 respectively on the converter board. The user can substitute other time ranges by
changing the resistance and/or capacitance associated with the pots. The polarity of the intensification signal
is controlled by placing an appropriate jumper at the outputs of U38: with a jumber in position W3 the output
of the intensification circuit is normally at a low level and becomes high during the time period defined by the
pot; installing a jumper at W4 reverses this polarity. The circuit is set up for high and low levels of +5 volts
and ground. The high level can be changed to +15 volts by deleting diode CR2, and the low level can be
dropped to —5 volts by cutting out CR1. The output is ac coupled, but dc coupling can be substituted by
installing a jumper to bypass the capacitors connected to pin B48.

6-14

Connectors

J1 44-pin Viking 2VH22/1IN3

A-D channel numbers are given for single-ended and low and high differential (numbers in parentheses
are decimal).

Al
A2
A3
A4
AS
A6
A7
A8
A9
Al10
All
Al2
Al3
Al4
AlS
Alé
Al7
Al8
Al9
A20
A2l
A22

decimal).

Al
A2
A3
A4
A5
A6
A7
A8
A9
Al0
All
Al2
Al3
Al4

A-D 40, 20H (32, 16H)
A-D 41, 21H (33, 17H)
A-D 42, 22H (34, 18H)
A-D 43, 23H (35, 19H)
A-D 44, 24H (36, 20H)
A-D 45, 25H (37, 21H)
A-D 46, 26H (38, 22H)
A-D 47, 27H (39, 23H)
A-D 60, 30H (48, 24H)
A-D 61, 31H (49, 25H)
A-D 62, 32H (50, 26H)
A-D 63, 33H (51, 27H)
A-D 64, 34H (52, 28H)
A-D 65, 35H (53, 29H)
A-D 66, 36H (54, 30H)
A-D 67, 37H (55, 31H)
A-D signal return
D-A 1

D-A3

D-A return

D-AS5

D-A 7

A-D address bit 15
A-D address bit 14
A-D address bit 13
A-D address bit 12
A-D address bit 11
A-D signal return
A-D 0, OH (0, OH)
A-D 1, 1H (1, 1H)
A-D 2, 2H (2, 2H)
A-D 3, 3H (3, 3H)
A-D 4, 4H (4, 4H)
A-D 5, 5H (5, 5H)
A-D 6, 6H (6, 6H)
A-D 7, 7H (7, TH)

Bl
B2
B3
B4
B5
B6
B7
B8
B9
BI10
B11
B12
B13
Bl4
B15
B16
B17
BI8
BI19
B20
B21
B22

A-D 50, 20L (40, 16L)
A-D 51, 21L (41, 17L)
A-D 52, 221 (42, 18L)
A-D 53, 23L (43, 19L)
A-D 54, 24L (44, 20L)
A-D 55, 251 (45, 21L)
A-D 56, 26L (46, 22L)
A-D 57, 27L (47, 23L)
A-D 70, 30L (56, 24L)
A-D 71, 31L (57, 25L)
A-D 72, 32L (58, 26L)
A-D 73, 33L (59, 27L)
A-D 74, 34L (60, 28L)
A-D 75, 35L (61, 29L)
A-D 76, 36L (62, 30L)
A-D 77, 37L (63, 31L)
A-D signal return
D-A0

D-A2

D-A return

D-A 4

D-A6

J2 44-pin Viking 2VH22/1JN3

A-D channel numbers are given for single-ended and low and high differential (numbers in parentheses are

Bl
B2
B3
B4
B5
B6
B7
B3
B9
B10
Bi1
Bi2
B13
B14

Simultaneous sample & hold

A-D signal return
A-D 10, OL (8, OL)
A-D 11, 1L (9, 1L)
A-D 12, 2L (10, 2L)
A-D 13, 3L (11, 3L)
A-D 14, 4L (12, 4L)
A-D 15, 5L (13, 5L)
A-D 16, 6L (14, 6L)
A-D 17, 7L (15, 7L)

6-15

Al5
Al6
Al17
Al8
Al9
A20
A2l
A22

A-D 20, 10H (16, 8H)

A-D 21, 11H (17, 9H)

A-D 22, 12H (I8, 10H)
A-D 23, 13H (19, 11H)
A-D 24, 14H (20, 12H)
A-D 25, 15H (21, 13H)
A-D 26, 16H (22, 14H)
A-D 27, 17H (23, 15H)

B15
B16
B17
BIg
B19
B20
B21
B22

Signals on A1-AS5 are for multiplexer expansion.

Al

A2

A3

Ad

AS

A6

A7

A8

A9

Al0
All
Al2
Al3
Al4
AlS
Al6
Al17
Al8
Al9
A20
A21
A22
A23
A24
A25
A26
A27
A28
A29
A30

A-D data bit 0
A-D data bit 1
A-D data bit 2
A-D data bit 3
A-D data bit 4
A-D data bit 5
A-D data bit 6
A-D data bit 7
A-D data bit 8
A-D data bit 9
A-D data bit 10
A-D data bit 11
A-D data bit 12
A-D data bit 13
A-D data bit 14
A-D data bit 15
End of conversion
Convert

A-D address transfer

Simultaneous sample & hold

A-D address bit 11
A-D address bit 12
A-D address bit 13
A-D address bit 14
A-D address bit 15

A-D 30, 10L (24, 8L)
A-D 31, 11L (25, 9L)

A-D 32, 12L (26, 10L)
A-D 33, 13L (27, 11L)
A-D 34, 14L (28, 12L)
A-D 35, I5L (29, 13L)
A-D 36, 16L (30, 14L)
A-D 37, 17L (31, 15L)

13 60-pin DGC#111000172

BI

B2

B3

B4

BS

B6

B7

B8

B9

B10
Bl1
B12
B13
B14
B15
Bil6
B17
B18
BI19
B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30

D-A data bit 0

D-A data bit]

D-A data bit 2

D-A data bit 3

D-A data bit 4

D-A data bit 5

D-A data bit 6

D-A data bit 7

D-A data bit 8

D-A data bit 9

D-A data bit 10

D-A data bit 11

D-A data bit 12

D-A data bit 13

D-A address bit 13
D-A address bit 14
D-A address bit 15
External/internal

D-A address transfer
[Multiplexer sequence advance]
[Delayed trigger]

A-D address bit 15 (10)
A-D address bit 14 (9)
A-D address bit 13 (8)
A-D address bit 12
A-D address bit 11
A-D address bit 10
[A-D serial data]
[A-D clock out]
Digital ground

Brackets indicate unused signals. Signals on A26-A30 are for multiplexer expansion; when the multiplexer is
expanded, B22-B24 carry the address bits given in parentheses.

6-16

A29
A30

J4 60-pin DGC#111000172

Bl

B2

B3

B4

B5

B6

B7

B8

B9

BI10
Bl11
B12
BI3
BI4
B15
B16
B17
BI8
B19
B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30

Digital ground

D-A address transfer
External/internal
D-A address bit 13
D-A address bit 14
D-A address bit 15

D-A data bit 15
D-A data bit 14
D-A data bit 13
D-A data bit 12
D-A data bit 11
D-A data bit 10
D-A data bit 9
D-A data bit 8
D-A data bit 7
D-A data bit 6
D-A data bit 5
D-A data bit 4
D-A data bit 3
D-A data bit 2
D-A data bit 1
D-A data bit 0

6-17

Chapter VII
Data Communications

The devices in this category are for transferring data between the computer and a remote station or
another computer, as against production of hardcopy locally or storage of information at the periphery of the
computer for later retrieval.

7.1 SYNCHRONOUS COMMUNICATIONS CONTROLLER 4015
WITH CLOCK OPTION 4020 AND PARITY OPTION 4021

This controller provides complete bidirectional interfacing between a Nova line computer and a Bell 201,
Bell 301 or equivalent synchronous data set at speeds up to 50,000 bits per second. Although mounted on a single
circuit board, the controller is actually two independent interfaces, allowing full duplex operation (simultaneous
reception and transmission of data). Each interface is connected separately to the data channel, so the program
need only set up an interface for receiving or sending and all transfers to and from memory are then handled auto-
matically. To operate with the data channel, each interface has an address counter and a word counter as well
as a data shift register for handling serial character transfers. The controller also contains equipment for auto-
matic answering of incoming calls. Device codes for the receiver and transmitter are 40 and 41 respectively.
Additional controllers connected use device code pairs 42-43, 44-45, . . ., 74-75, where in each case the receiver
uses the even code, the transmitter the odd code.

The controller is available in a number of configurations. Characters may contain six, seven or eight
data bits; parity option 4021 enables the transmitter to generate and send a parity bit with each character (thus
allowing transmission of characters as long as nine bits including parity) and enables the receiver to check
parity. The various characteristics are all selectable separately for the two interfaces by means of jumpers on
the board. Transmission and reception can be timed by a clock in the local data set or by an internal clock in
the controller (option 4020) for use with an externally clocked modem or a data link that is operated without
a modem.

All transfers between controller and memory are in full words containing two characters right-justified in
each half word; eg 6-bit characters would be in bits 27 and 10-15 of a memory word. The transmitter takes
two characters from the appropriate bits of each word from memory and transmits them, first the right and
then the left. The receiver assembles each pair of characters into the appropriate bits of a word, right to left,
for storage in memory. Characters are transmitted and received serially with the least significant bit first
(ie bit 15 and bit 7).

Receiver

To set up the receiver to handle incoming data, the program must specify a sync character, supply an
initial address to the 15-bit address counter, and either supply a specific (twos complement) negative word
count to the 12-bit word counter or specify an end-of-transmission (EOT) character and a word count large
enough (eg zero) to receive the entire message.

7-1

The receiver uses five 10 transfer instructions, one of which includes the status bits for the automatic
answering feature. The instructions are given here with device code 40 although a receiver can be set up with any
even device code 40 or above. Busy and Done are sensed by bits 8 and 9 in the IO skip instructions and are con-
trolled in the usual fashion by Clear and Start. Interrupt Disable is controlled by interrupt priority mask bit 8.
For convenience, the mnemonic REC is used in representing the instructions, but it is not recognized by the
assembler; the programmer must define his own mnemonics.

DOA - REC Data Out A, Receiver
0 1 1 AC 0 1 0 F 1 0 0 0 0 0
0 } 1 : 2 3 : 4 5 : 6 } 7 8 t 9 10 : 11 : 12 : 13 L 14 : 15

Define the sync character as equal to the contents of AC bits 0 -7 and the EOT character as equal to the contents
of AC bits 8-15. Perform the function specified by F.

DOB —,REC Data Out B, Receiver
o 1 1 AC 1 0 0 F 1 0 o0 0 o0 o
0 : 1 ! 2 3 : 4 S * 6 } 7 8 + 9 10 ! 11 : 12 = 13 : 14 - 15

Load the contents of AC bits 1-15 into the receiver address counter, and perform the function specified by F.

DOC -,REC Data Out C, Receiver
0 1 1 AC 1 1 0 F 1 0 0 0 0 0
O S E— — I 59 0 11 2t T13 s 15

Load the contents of AC bits 4-15 into the receiver word counter, and perform the function specified by F.

DIA -,REC Data In A, Receiver
0 . 1 . i ‘ A.C 0 1 0 l 1 1*: 1 1 0 . 0 . 0 1 0 ‘ 0
0o ' 1 2 3 4 5 6 ' 7 8 9 10 11 12 ' 13 14 15

Read the status of the receiver AC bits 11-15 as shown, and perform the function specified by F. Clear AC
bits 0-10.

CARRIER DATA SET RING RECEIVER RECEIVER
ON READY INDICATOR PARITY ERROR TIMING ERROR
10 11 12 13 14 15

Bits 11-13 are for the automatic answering feature described at the end of this section.

7-2

11 A carrier is being received from a remote station.

12 The local data set is connected and is capable of handling data.

13 A ringing signal is being received from a remote station.

14 The parity option is installed and a character with incorrect parity has been received.

15 The data channel has failed to respond in time to a request for access by the receiver and incoming data
has been lost.

DIB —,REC Data In B, Receiver
0 1 . 1 AC 0 1 ’ 1 F 1 . 0 . 0 . 0 ' 0 . 0
0 LR 2 3 4 5 6 L 8 9 10 11 12 ' 13 14 15

Read the present contents of the receiver address counter into AC bits 1-15, clear AC bit 0, and perform the
function specified by F.

Setting Busy causes the receiver to monitor the incoming bit stream continuously until it successively
receives two of the sync characters defined by the program. This synchronizes the receiver to the bit stream.
It then ignores additional sync characters until some other character is received, at which time it begins assem-
bling pairs of characters into words for transmission to the memory locations specified by the address counter.
Since reception is serial the data channel has one-half bit time in which to respond to a request before information
is lost; if the channel is late, Timing Error is set but reception continues. If the receiver is so configured,
Parity Error sets if a character with incorrect parity is received.

When the EOT character defined by the program appears in the input, the receiver accepts one more char-
acter, stores the final word (one or two characters) in memory, and terminates reception. In a message containing
an odd number of characters, the final word has the last character on the right (the left half is undefined). If the
termination character does not appear, reception ends automatically when the word counter overflows. In either
case, at termination the receiver clears Busy and sets Done, requesting an interrupt if Interrupt Disable is clear.

Transmitter

To set up the transmitter to send data, the program must supply an initial address to the 15-bit address
counter and a (twos complement) negative word count to the 12-bit word counter.

The transmitter uses four IO transfer instructions, one of which reads a single status bit. The instructions are
given here with device code 41 although a transmitter can be set up with any odd device code 41 or above. Busy
and Done are sensed by bits 8 and 9 in the IO skip instructions and are controlled in the usual fashion by Clear
and Start. Interrupt Disable is controlled by interrupt priority mask bit 8. For convenience, the mnemonic XMT
is used in representing the instructions, but it is not recognized by the assembler; the programmer must define
his own mnemonics.

DOB - XMT

Data OQut B, Transmitter

1 1 A.C 1

1

F

o ' 1 2 3 4 5 6 ' 7 8 9 10 11 12 T 13 14 15

Load the contents of AC bits 1-15 into the transmitter address counter, and perform the function specified
by F.

DOC - XMT Data Out C, Transmitter
0 1 1 AC 1 1 0 F 1 0 0 0 0 1
0 f 1 ‘ 2 3 * 4 5) 6 : 7 8 ; 9 10 : 11 ! 12 t 13 ! 14 ! 15

Load the contents of AC bits 4-15 into the transmitter word counter, and perform the function specified by F.

DIA — XMT Data In A, Transmitter
1 1 . 1 AIC 0) 0 . 1 If 1 ' 0 . 0 . 0 . 0 1 1
o 1 2 3 4 5 6 ! 7 8 9 10 i1 12 13 14 15

Read the Data Late status into AC bit 15, clear AC bits 0-14, and perform the function specified by F. A 1
read into AC bit 15 indicates that the data channel has failed to respond in time to a request for access, and
sync has been lost.

DIB — XMT Data In B, Transmitter
0 1 . 1 AC 0 1 . 1 F 1 0 0 0 0 1
0 L 2 3 l 4 5 I 6 L] 8 ' 9 10 : 11 ' 12 t 13 ! 14 : 15

Read the present contents of the transmitter address counter into AC bits 1-15, clear AC bit 0, and perform the
function specified by F.

Setting Busy causes the transmitter to request data channel access for the first word and raise the Request
to Send signal. When the local data set returns the Clear to Send signal, the transmitter begins sending the
pairs of characters taken from the membry locations specified by the address counter. Since transmission
is serial, the data channel has one bit time in which to respond to a request before sync is lost; if the channel
is late, Date Late sets and a garbled character pair may be sent, but transmission continues to complete the block.

7-4

If all is well, the word counter overflows as the last word is received from the channel; overflow clears
Busy and sets Done, requesting an interrupt if Interrupt Disable is clear, even though the transmitter has one
more word to send. This provides two character times for the program to supply a new initial address
and word count and restart the transmitter without losing sync. If the transmitter is not restarted within this
time, the Request to Send signal to the data set is dropped, and sync must be reestablished before further
data transmission can take place.

Automatic Answering

The controller includes equipment that allows the computer to answer incoming calls if the local data
set is so configured and operates with EIA standard levels. For this the program makes use of bits 11-13 of the
status word read by the DIA for the receiver. Bits 11 and 12 give the status of the communications circuit and
the local data set: bit 11 indicates that a carrier is being received from the remote station; bit 12 indicates that
the local data set is connected and is capable of handling data. The program detects a ringing signal from a
remote station by periodically examining bit 13, the Ring Indicator. The program answers a call by sending a
Data Terminal Ready signal to the local data set; the program must also dismiss the call when completed. The
program answers and dismisses a call with the following instruction, which uses the transmitter device code.

DOA — XMT Data Qut A, Transmitter

1 1 A‘C 0 1 0 F 1 0 0 0 0 1

} 1 1 i 1 1 ! 1 1
0 1 2 3 4 5 6 ' 7 8 9 10 11 12 T 13 14 15

If AC bit 15 is 1, send a Data Terminal Ready signal; if AC bit 15 is 0, terminate the Data Terminal Ready
signal. (Perform the function specified by F.)

7.2 ASYNCHRONOUS DATA COMMUNICATIONS MULTIPLEXOR 4026

By means of this device the program can control the transmission of asynchronous serial data on sixteen
output lines and can receive asynchronous serial data simultaneously over sixteen input lines. The communication
frequency is determined by a clock, but the customer can select several clocks to operate the lines at different
speeds up to a maximum of 600 baud. For each transmission line the software not only handles the actual move-
ment of serial data, but selects the character length and selects the speed from among those available. Although
the speed of a given input line must be known, the software can recognize the character length while sainpling
the data. The entire operation is under software control with a minimum of hardware (the device with all line
interface modules is contained on a single board). Hence the allocation of a small percentage of processor time
results in considerable saving in peripheral hardware. However the standard handler supplied by DGC operates
at a single line frequency and character length.

The customer can select the number of communication channels in multiples of four, input and output
together, and for each four-line group can select the signal type: line interface module 4027 handles EIA standard
levels for a Teletype Model 37 or a Bell 103 Data Set, and line interface module 4028 handles 20 ma signals for
a Model 33 or 35 (located within 100 feet).

7-5

The program handles output by periodically changing the contents of a 16-bit output register in which each
bit is connected to a separate output channel; successive changes in the register contents produce bit-by-bit serial
transmission over the channels. Data is received simply by sampling the sixteen input lines periodically to pick
up the bit-by-bit serial input. In both input and output, 1 is a mark, 0 a space. The channels begin at the most
significant end of the bus (in the minimum configuration the four input lines and four output lines are both con-
nected to IO bus data lines 0-3). With each 4027 four-line group (EIA standard levels), a second set of input
lines allows the program to sample the control signals for the channels, such as Ring Indicator, Clear to Send,
or Data Set Ready.

A single multiplexor has device code 24, but the board actually contains jumpers for selecting any code
from 24 to 27. Other multiplexor boards can be used for handling more communication channels, or a second
board can be used (say with device code 25) for handling more modem control signals for the communication
channels already in use. A second board supplies two sets of inputs, so that altogether the program can sakmple
all three of the control signals listed above, and one set of outputs, either Request to Send or Data Terminal
Ready. The ability to sample Ring Indicator and control Data Terminal Ready allows automatic answering of
incoming calls (as explained at the end of the preceding section).

If the input were sampled at the bit rate, a bit could easily be missed and a transient could easily be mistaken
for a start level (the space that begins a character). Hence each clock has a frequency five times the baud rate
for which it will be used. By sampling the input five times per bit time, no bits are missed, and an initial space
that lasts less than three sample times is properly recognized as a transient. '

The multiplexor uses three IO transfer instructions, two for input and one for output, with device code 24,
mnemonic DCM. Busy and Done are sensed by bits 8 and 9 in [O skip instructions and are controlled in the usual
fashion by Clear and Start. Interrupt Disable is controlled by interrupt priority mask bit 0. Other multiplexors
for data or additional control signals use the same instructions with the appropriate device codes.

DOA —,DCM Data Qut A, Data Communications Multiplexor
1 1 AC 0 1 0 F 0 1 0 1 0 0
L — 3 R B 55 T S S W ¥ R B T R VR

Load the contents of AC into the data output register, and perform the function specified by F.

DIA —,DCM Data In A, Data Communications Multiplexor
0 ' 1 . 1 AIC 0 | 0 . 1 F o 1 0 1 0 O
o 1 2 3 4 S 6 ! 7 8 9 10 11 12 712 14 15

Transfer the contents of the data input lines into AC, and perform the function specified by F.

DIB —,DCM Data In B, Data Communications Multiplexor
0 1 ‘ 1 AIC 0 . 1 . 1 F 0 . 1 . 0 ' 1 . 0 . 0
o ' 1 2 3 4 5 6 ' 7 8 9 10 11 12 7 13 14 15

Read the signals on the control input lines into AC, and perform the function specified by F.
7-6

Setting Busy turns on the clock so that the next pulse clears Busy and sets Done, requesting an interrupt
if Interrupt Disable is clear. Before beginning any operations, the program should give Start and wait for the
first interrupt. Then at each interrupt, the program can update the output, sample the input, and restart the
clock. Between interrupts the program should process the input and set up the next output. Output lines that
are not in use should be left marking (ie unused bits in the output register should be loaded with 1s).

Timing. A Model 33 or 35 has a transmission rate of ten characters per second, 110 bits per second. For
these devices the clock runs at 550 Hz, so the program can sample the input five times per bit. Clocks are
available for channels that operate at frequencies up to 600 baud (3,000 Hz).

Consider a system with sixteen lines, all of which operate at 110 baud with 550 interrupts per second. Sup-
pose that all lines are inactive and then at an interrupt a DIA 1,DCM reads this word into AC1:

I110111111111111

The O in bit 3 may be a space indicating that information is coming in on line 3. The relationship between the
interrupts and the line signal timing is something like this:

l SPACLE 9 ms I 8LA&LéEVEL
—l s fo= | |

I |
T T, T

7 8

INTERRUPT CLOCK

I I
LT TTT
The program has discovered the possible space at T;; if a 0 is still read at T, and T; it can be assumed that the
line has a true space rather than a transient and that transmission has started. The program should then sample
the line at every fifth interrupt (T, Ty, Tus, - - .) so that sampling is centered within each bit time. If a number of
lines are operating, the program must keep track of them separately, je different lines should be sampled at
different interrupts to keep the sampling times centered.

For output the program decides when to transmit, and different lines can be changed at different times;
but if DOAs are given more frequently than the transmission speed, information given previously for a line must
be repeated so that it is held on the line for a full bit time (five interrupts). To save time it is usually preferable
to run all of the output lines together, so the output word need be recomputed and the output register reloaded
at only every fifth interrupt.

7.3 MODEM CONTROL 4023 AND 4029

The 4023 is an option that can be added to the 4010 teletypewriter interface to supply EIA standard levels
and 150 baud operation for a Model 37, Bell 103 Data Set, or equivalent; and in fact the 4023 is installed for
use with the console teletypewriter if that is a Model 37. The instructions and all of the information given for the
Model 37 in §3.1 apply to the 4023 whether used for the console or with a modem for remote communication.
Of course in the latter case, device codes and mnemonics different from those for the console teletypewriter must
be used; the code pairs generally assigned to receiver and transmitter respectively are 40-41 or 50-51.

The 4029 operates with the 4010 interface and the 4023 option to implement use of the Bell Data Set 202C,
202D, or equivalent for communication over telephone lines. The 202C, which is used for dial-up operations,
generally operates at 1200 bits per second and has a telephone hand set contained within the unit, allowing

7-7

alternate voice/data operation. The 202D is used for permanently connected private lines and generally oper-
ates at 1800 bits per second; alternate voice operation requires addition of an optional auxiliary hand set Type
804A. Reverse channel capabulity, which is optional on the 202, is not available in the 4029.

Although mounted on a single circuit board, the 4010 with the 4023 and 4029 features is actually two in-
dependent interfaces, allowing full duplex reception and transmission of dz}ta. Besides a pair of IO instructions
like those of the teletype to handle character transfers, the interface has two 10 transfer instructions for checking
status and handling the automatic answering of incoming calls. The board has jumpers for the selection of device
code pair 40-41 or 50-51 for the receiver and transmitter respectively. Busy and Done for the receiver and trans-
mitter are sensed by bits 8 and 9 in IO skip instructions with the assigned code, and these flags are controlled
in the usual fashion by Clear and Start. Receiver Interrupt Disable is controlled by interrupt priority mask bit 14,
Transmitter Interrupt Disable by mask bit 15. The special IO Pulse function (F = 11) given with the receiver
code clears the Break Indicator (status bit 15). For convenience the instructions are given with device codes 40
and 41, and the mnemonics REC and XMT are used in representing the instructions, but they are not recognized
by the assembler; the programmer must define his own mnemonics.

DIA —,REC DataIn A, Receiver
0 | 1 | 1 AF 0 | 0 | 1 Pl’ 1 | 0 | 0 . 0 | 0 | 0
o 1 2 3 ' 4 5 6 | 7 8 9 10 11 12 13 14 15

Transfer the contents of the receiver buffer into AC bits 8-15, and perform the function specified by F. Clear
AC bits 0-7.

DOA - XMT Data Out A, Transmitter
0 1 I | 1 AIC 0 | 1 n 0 }f 1 ’ 0 1 0 | 0 1 0 | 1
o ' 1 2 3 4 5 6 | 7 8 9 10 11 12 ' 13 14 15

Load the contents of AC bits 8~15 into the transmitter buffer, and perform the function specified by F.

DIB —,REC Data In B, Receiver
0, 1 1 AC 0 1 1 F 1 0 0 0 0 0
! ! I L | ! ! ! | l 1
o ' 1 2 3 4 5 6 | 7 8 9 10 1 12 " 13 14 1S

Read the status of the receiver into AC bits 12-15 as shown, and perform the function speciﬁed by F. Clear
AC bits 0-11.

CARRIER DATA SET RING BREAK
ON READY INDICATOR INDICATOR
10 11 12 13 14 15

Bits 12-14 are for the automatic answering feature described below. Bit 15 is cleared by P.

7-8

12 A carrier is being received from a remote station.

13 The local data set is connected and is capable of handling data.

14 A ringing signal is being received from a remote station.

15 The line has been opened or a break key struck.

DOB -,REC Data Out B, Receiver
o 1 1 AC 1 06 O F lIOIOIOIOIO
o ' 1 2 3 T 4 5 6 ' 1 8 9 10 11 12 ' 13 14 15

If AC bit 15 is 1, send a Data Terminal Ready signal; if AC bit 15 is 0, terminate the Data Terminal Ready
signal. (Perform the function specified by F.) This instruction is used to answer incoming calls (see below).

Reception from the line requires no initiating action by the program; any character that appears on the line
is automatically loaded serially into the buffer (the Reader Busy flag of the 4023 is set by giving Start, but it
serves no function here). Completion of reception clears Reader Busy and sets Receiver Done, requesting an
interrupt if Receiver Interrupt Disable is clear. Programming the Pulse function (F = 11) with device code 40
clears Break Indicator.

When the transmitter is off, setting Transmitter Busy turns it on and generates the Request To Send signal.
Once the local modem generates the Clear To Send signal, the contents of the transmitter buffer are sent out
serially over the line (the buffer is cleared during transmission). Completion of transmission clears Transmitter
Busy and sets Transmitter Done, requesting an interrupt if Transmitter Interrupt Disable is clear. Once the trans-
mitter is on, setting Transmitter Busy sends out the contents of the buffer — the transmitter remains on so long
as either Busy or Done is set. Giving Clear (F = 10) clears both Busy and Done, terminating the Request To Send
signal and turning off the transmitter.

NoOTE

Although the buffer clears during transmission, giving an NIOS without loading
it again does not transmit a zero character. So do not give an NIOS without first
loading the buffer. To transmit any character including null, either give a DOAS
or give a DOA followed by an NIOS.

The 4029 can handle either 10-unit or 11-unit codes. In the transmitter the code type is selected by means
of a jumper; the receiver can handle either type arbitrarily with no change needed in the logic.

Timing. The 4029 is normally set to operate at 1200 bits per second, but other speeds are available. To fully
utilize the 1200 baud rate, the program must be prepared to handle a 10-unit character every 8.3 ms, an 11-
unit character every 9.2 ms. Since the rate of incoming data cannot be known a p;iori, the maximum must be
assumed. Hence to avoid the possibility of data loss, the program must retrieve a 10-unit character within 1.25
ms after Receiver Done sets, an 11-unit character within 2.1 ms. After Transmitter Done sets, the program must
supply another character within .83 ms to keep the transmitter going at the maximum rate.

The corresponding times for 1800 baud operation are 10-unit characters every 5.55 ms, 11-unit characters
every 6.1 ms. The program has .83 ms to retrieve a 10-unit character from the receiver, 1.4 ms to retrieve an
11-unit character. To maintain the maximum transmission rate, the program must respond to Transmitter Done
within .55 ms,

79

Automatic Answering. If the local data set is so configured, the computer can answer incoming calls by
making use of bits 12-14 of the status word read by the DIB. Bits 12 and 13 give the status of the communica-
tions circuit and the local data set: bit 12 indicates that a carrier is being received from the remote station; bit 13
indicates that the local data set is connected and is capable of handling data. The program detects a ringing signal
from a remote station by periodically examining bit 14, the Ring Indicator. The program answers a call by
sending a Data Terminal Ready signal to the local data set; the program must also dismiss the call when com-
pleted. Answering and dismissing a call are effected by using the DOB to control Data Terminal Ready.

7.4 MULTIPROCESSOR COMMUNICATIONS ADAPTER 4038

This option makes it possible to connect up to fifteen Nova line computers into a multiprocessdr system
by permitting the transfer of blocks of data from one computer to another through their data channels. One
adapter is attached to the 10 bus of each computer in the system, and the adapters are connected together by
a common communication bus. Although mounted on a single circuit board, an adapter (MCA) is actually
two independent interfaces, allowing simultaneous reception and transmission of data. Each interface is con-
nected separately to the data channel, so the program need only set up an interface for receiving or sending and
all transfers to and from memory are then handled automatically. To operate with the data channel, the receiver
and transmitter each have an address counter and a word counter as well as data and status registers.

By means of jumpers on the board, each adapter is assigned a code in the range 1-17 octal, which code is
shared by the transmitter and receiver and is used for creating communication links. A processor with an adapter
can establish a link between its transmitter and any receiver it designates provided that receiver has been set
up for reception. In other words the transmission of a data block between any pair of computers requires program
activity at both ends of the link. Once a processor sets up its receiver, that receiver locks onto any transmitter
that sends it a word and then accepts data from only that transmitter until the receiver is unlocked by the pro-
gram. A given block transfer is complete when one of the word counts, in either receiver or transmitter, goes
to zero, but the receiver does not unlock from the transmitter without specific action by the program. This way
the program can set up the receiver for another block from the same transmitter without worrying that some
other transmitter will interfere.

The characteristics of data transmission must be established by convention in the software for the multi-
processor system. At the simplest level all transmission can be in standardized blocks with every receiver simply
left enabled to lock onto any transmitter that calls it. A much more flexible system can be achieved by the use
of control blocks to specify the characteristics of subsequent data operations. Then whenever a receiver is not
engaged in a data transfer, it can simply be left free to receive a control block in some standard format. Upon
receipt of a control block, the processor can inspect its contents to determine how to respond: this may involve
setting up the receiver for a specific data operation, setting up the transmitter to send a block to another computer,
or both.

Each adapter has multiplexer circuitry built into it so that any number of communication links can be held
concurrently on the bus, with each receiving an equal share, if needed, of the available time. Links can be added
or dropped at any time without affecting the system except in terms of individual transfer rates; even turning
off power at one computer does not affect the other computers or the communication network.

Timing. The maximum overall transfer rate through the communication bus is half a million words per
second. The rate for a single link however is at most 250,000 words per second regardless of the speed capability
of the data channel when connected to a single device. A typical data rate for a single link ranges from 70,000
words per second for a pair of Nova computers to 140,000 for Nova 800s or Supernova computers with high
speed data channels. The basic cycle time of the network is 2 4 s, and all transmitters currently executing a block
transfer are allowed access to it in round robin fashion. If a given transmitter is not ready when its turn comes, it
must wait until the next time around. Whether or not a transmitter is always ready in time for its turn depends

7-10

somewhat on the speed of the channel, but primarily on any delay caused by the program or other devices before
the transmitter can gain direct access to memory for another word. If a receiver does not accept a word trans-
mitted to it, the sending transmitter must simply try again with the same word the next time around.,

Receiver

To set up the receiver to accept a block of data, the program must supply an initial address to the 15-bit
address counter and supply either a specific (twos complement) negative word count to the 16-bit word counter
or a word count large enough (eg zero) to receive the entire block regardless of size.

The receiver uses five IO transfer instructions, with device code 7, mnemonic MCAR, for loading and read- —
ing the address and word counters and reading status. Busy and Done are sensed by bits 8 and 9 in IO skip instruc-
tions and controlled in the usual fashion by Clear and Start. Interrupt Disable is controlled by interrupt priority
mask bit 12. A second receiver connected to the 10 bus as part of a second independent MCA system would
have device code 47.

DOA - MCAR Data Qut A, MCA Receiver

0 | 1 | 1 AIC 0 | 1 | 0 1?7 0 | 0 l 0 | 1 | 1 | 1
o ! 1 2 3 1 a 5 6 | 7 8 9 10 11 12 ' 13 14 15
Load the contents of AC bits 1-15 into the address counter, and perform the function specified by F. /

DOB - MCAR Data Out B, MCA Receiver

| | | | | | | | | | |
1 2 3 | a 5 6 | 7 8 9 10 11 12 | 13 14 15

0 1 1 AC 1 0 0 F 0 0 0 1 1 1
0

Load the contents of AC into the word counter, and perform the function specified by F.

DIC — MCAR Data In C, MCA: Receiver

| j | | i 1 | | :]
™ 2 3 I 4 5 6 | 7 8 9 10 11 12 ' 13 14 15

0 1 1 AC 1 0 1 F 0 0 0, 1 1 1
0

Read the status of the receiver into AC as shown, and perform the function specified by F.

XMTR | RCVR
RECEIVER CODE TRANSMITTER LINK ’Iglhj/l'll:: ngK COUNT |COUNT

| | | | | | | | | DONE | DONE
o I 1 2 3 a 5 6 | 7 8 9 1 10 11 12 13 14 15

Start clears Time Out, XMTR Count Done and RCVR Count Done; Clear clears these plus Lock On. The
setting of Time Out, XMTR Count Done or RCVR Count Done clears Busy, sets Done, and disables (but does
not unlock) the receiver.

7-11

0-3 The code of this receiver as determined by its jumpers.
4-7 The code of the transmitter to which this receiver is or was connected.
12 A block transfer is in progress but no data has been received for 10 ms.
Norte: This bit indicates suspicious behavior — 1t cannot be set by normal termination, ie transmitter
word count overflow.

13 The receiver is locked on the transmitter specified by bits 4-7.
14 The transmitter has completed the block transfer as determined by its word counter.
15 This receiver has completed its reception as determined by its word counter.

DIA —MCAR DataIn A, MCA Receiver

11 AC 0,0 1 F 0

1 {
o ' 1 2 3 Vo4 5 6 | 7 8 9 10 11 12 113 14 15

Read the present contents of the address counter into AC bits 1-15, and perform the function specified by F.
Clear AC bit 0. ‘ o

DIB — MCAR Data In B, MCA Receiver

0, 1 1 AIC 011]1 II" OIO|O'1|111

o ' 2 3 T 4 5 6 | 7 8 9 10 11 12 1 13 14 15

Read the present contents of the word counter into AC, and perform the function specified by F.

Besides clearing Done and setting Busy, Start (F = 01) clears Time Out, XMTR Count Done and RCVR
Count Done (status bits 12, 14 and 15). Setting Busy enables the receiver so that it can accept data. If Lock On
is set, the receiver is already locked to the transmitter whose code appears in status bits 4-7 and will accept data
from only that transmitter. If Lock On is clear, then as soon as some transmitter sends a word to the receiver,
it locks on that transmitter (Lock On sets and the transmitter code appears in status bits 4-7) and will accept
data from only that transmitter until it is unlocked. As each word is received it is sent to the memory location
specified by the address counter, and both counters are incremented. The receiver does not accept another word
until the previous one is stored. Word count overflow at either end of the link or failure of the transmitter to
send data for 10 ms sets the appropriate status flag, clears Busy (disabling the receiver without unlocking it),
and sets Done, requesting an interrupt if Interrupt Disable is clear. Ordinarily the setting of Time Out indicates
program or operator intervention or equipment malfunction at the transmitting processor.

Besides clearing Busy and Done, Clear (F = 10) clears status flags 12-15; hence it both disables and unlocks
the receiver. This terminates a transfer if one is in progress, and frees the receiver to accept data from any trans-
mitter once the program sets Busy again.

Automatic Loading. MCA receivers of revision 03 and later can be used with the channel start procedure
for automatic program loading. The initiation of this procedure with device code 7 in data switches 10-15 enables
the receiver to accept data into memory locations 0-377 from any transmitter that calls it. The procedure works
just as it would were the data taken from a disc or magnetic tape, except that the procedure places the latter
devices in operation but with the MCA must wait until some other computer starts transmitting.

7-12

Transmitter

To set up the transmitter to send a block of data, the program must supply an initial address to the 15-bit
address counter and supply a specific (twos complement) negative word count to the 16-bit word counter. The
transmitter uses all six 10 transfer instructions, for loading and reading the address and word counters, for read-
ing status, and for specifying the receiver to which a communication link is desired. These instructions use device
code 6, mnemonic MCAT. Busy and Done are sensed by bits 8 and 9 in IC skip instructions and controlled in
the usual fashion by Clear and Start. Interrupt Disable is controlled by interrupt priority mask bit 12. A second
transmitter connected to the IO bus as part of a second independent MCA system would have device code 46.

DOA - MCAT Data Out A, MCA Trausmitter
0 | 1 | 1 AlC 0 l 1 | 0 Ii 0 l 0 | 0 I 1 : 1 I 0
o T 1 2 3 [a 5 6 | 7 8 9 10 11 12 13 14 15

Load the contents of AC bits 1-15 into the address counter, and perform the function specified by F.

DOB — MCAT Data Out B, MCA Transmitter
0 | 1 | 1 AIC 1 | 0 | 0 Ilf‘ 0 | 0 l 0 | 1 : 1 1 0
o | 1 2 3 | 4 5 6 | 7 8 9 10 11 12 | 13 14 15

Load the contents of AC into the word counter, and perform the function specified by F.

DOC - MCAT Data Out C, MCA Transmitter
0 1 1 | 1 AF 1 | 1 | 0 157 0 | 0 | 0 | 1 . 1 | 0
o ' 1 2 3 1 4 5 6 | 7 8 9 10 1. 12 | 13 14 15

Select the receiver specified by AC bits 0-3 for establishing a communication link, and perform the function
specified by F. (A 1 in AC bit 11 places the system in diagnostic mode, wherein the instruction NIOP — MCAT
can be used to step the system through its clock phases.)

DIC - MCAT Data In C, MCA Transmitter
0 | 1 | 1 AIC 1 | 0 | 1 I*I“ 0 | 0 [0 | 1 | 1 | 0
o T 1 2 3 1 4 5 6 | 8 9 10 11 12 1 13 14 15

Read the status of the transmitter into AC as shown, and perform the function specified by F.

RECEIVER LINK TRANSMITTER CODE TEST |PHASE COUNT| COUNT
ouT | ouT
| | | | | { | DONE | DONE
o I 1 2 3 4 5 6 -1 7 8 9 10 11 12 13 14 15

Clear and Start both clear Time Out and XMTR Count Done. The setting of Time Out, XMTR Count Done
or RCVR Count Done clears Busy, sets Done, and disables the transmitter. Lock Out and RCVR Count Done

are meaningless unless Done is set. (Bits 10 and 11 are for maintenance only.)
7-13

0-3 The code of the receiver specified for a link by the last DOC.

4-7 The code of this transmitter as determined by its jumpers.

12 The transmitter has attempted to begin a block transfer or one is in progress, but the receiver specified
by bits 0-3 has accepted no data for 10 ms.

Norte: At the initiation of a block transfer this bit indicates the processor at the other end of the
attempted link has not set up its receiver, or the receiver is locked to some other transmitter for an
abnormally long time; if a transfer is already in progress, a 1 in bit 12 indicates suspicious behavior —
it cannot be set by normal termination, e receiver word count overflow.

13 The receiver specified by bits 0-3 is locked to some other transmitter.
14 This transmitter has completed the block transfer as determined by its word counter.
15 The receiver has completed 1ts reception as determined by its word counter.

DIA - MCAT Data In A, MCA Transmitter

0111 AF‘ o 0 1 If 0O 0 0 1 1
(U | 3 T4

2 5 6 7 8 9 10 11 12 T 13 i4 15

|
-

Read the present contents of the address counter into AC bits 1-15, and perform the function specified by F.
Clear AC bit 0. ‘

DIB — MCAT Data In B, MCA Transmitter

| | | | | | I |
4 5 6 | 7 8 9 10 11 12 1 13 14 15

0 1 1 AC 0 1 1 F 0 0 0 1 1 0
T

o ' 1 2 3

Read the present contents of the word counter into AC, and perform the function specified by F.

Besides clearing Done and setting Busy, Start (F = 10) clears Time Out and XMTR Count Done (status bits
12 and 14). Setting Busy turns on the transmitter, which in turn retrieves a word from the memory location
specified by the address counter and attempts to send this word to the receiver specified by the last DOC. If the
receiver is locked to some other transmitter, Lock Out sets, but the transmitter kee'ps trying and sets Time Out
only if the receiver refuses to accept the word within 10 ms. If the receiver does accept the word, Lock Out clears
and the receiver locks on this transmitter, which then sends the block of words retrieved from the locations
specified by the address counter and increments both counters on each transfer. Word count overflow at either
end of the link or failure of the receiver to accept data for 10 ms sets the appropriate status flag. The sétting of
Time Out, XMTR Count Done or RCVR Count Done clears Busy, turning off the transmitter, and sets Done,
requesting an interrupt if Interrupt Disable is clear. Ordinarily the setting of Time Out once a block transfer
is in progress indicates program or operator intervention or equipment malfunction at the receiving processor.

Besides clearing Busy and Done, Clear (F = 10) clears Time Out and XMTR Count Done. Giving Clear,
and thus turning off the transmitter, during a block transfer can cause data loss.

Installation

The adapter is mounted on a single 15-inch square printed circuit board that plugs directly into one of the
slots in the computer. Each adapter is assigned a 4-bit code by means of jumpers on the board; the adapter is
shipped with the jumpers in place (code 17), but the user can change this to any desired code by cutting out
jumpers for Os.

7-14

The standard communication network has a bus 40 feet long, allowing a data transfer rate of 500 KHz.
Reducing this rate to 300 KHz by installing jumper W5 in every adapter allows lengthenin g the bus to a maximum
of 90 feet. The in connector of each adapter is bussed to the out connector of the next in a chain.

The communication bus requires a terminator network at each end, but a network is included in every
adapter. In a system that combines more than two processors, the terminators must be removed from all adapters
except those at the ends of the bus. To do this, remove all 270 ohm terminating resistors from the middle adapters,
and replace all 180 and 220 ohm resistors with 10K resistors. If an additional adapter is added at either end of
an installed system, the terminating configuration must be revised accordingly.

To change the device codes for a second MCA system connected among the same processors, remove jumper
W6 and install W7 on all adapters in the second system.

7.5 ASYNCHRONOUS DATA COMMUNICATIONS MULTIPLEXOR 4060

This device handles up to sixty-four full duplex communication channels for the simultaneous serial trans-
mission and reception of data at various speeds and character configurations. All of the serial operations are
done by the device, so the program is involved only in the movement of data characters to and from the device
via the IO bus. For transmission the program outputs a word that specifies the channel and supplies the data;
the transmitter for that channel adds the necessary start and stop bits and sends the complete character out on
the line serially. For reception a receiver responds to the appearance of a start bit on its associated channel and
assembles the character that comes in serially over the line. To retrieve the data the program reads a word that
contains both the data part of the character and the number of the channel on which it was received.

The customer can select the number of communication channels in multiples of four, input and output
together, and for each four-line group can select the type of signal, the character configuration, the speed, and
the channel numbers as a consecutive set of four (0-3, 4-7, etc). Interface cards 4060 and 4061 handle 20 ma
signals for a Teletype Model 33 or 35; cards 4062 and 4063 handle EIA standard levels for a Model 37, a Bell
103 Data Set, or other modem. A system with only four channels and with data sets limited to manual answer
generally uses the 4060 or 4062, which has individual connectors for the channels. In a system with a larger number
of lines or data sets equipped for automatic answering, 4061s or 4063s are used in conjunction respectively with
a 4050 or 4051 junction panel for each four interface cards (a mixed system requires use of the 4051 panel with
adapters for the local dc terminals).

Other device characteristics are selected for each four-line group by means of jumpers on the interface card.
Transmission and reception can be in characters of from five to eight data bits with one or two stop bits (for
characters with five data bits the user can also select a stop code of 1 units). Available clock frequencies are
75, 110, 134.5, 150, 300, 600, 1200, 2400, 4800 and 9600 Hz, with accuracy better than .6%7. Other frequencies

or more precise frequency control can be had by adding clock option 4064.
Four lines are mounted on a single board occupying one subassembly slot. The entire system, which can |

fill as many as 16 slots, consisting of up to 64 lines appears to the program as a single device with a Done flag

(but no Busy). Internally however the system is actually 128 devices, as the transmitter and the receiver for each
channel can operate independently of and simultaneously with the others. At this level each device has a Ready
flag which indicates, in the case of a receiver, that it has an assembled character ready for the program, or in
the case of a transmitter, that its buffer is free to accept a character from the program. In terms of interrupt
priority, the system acts partly like a single device but partly like sixty-four devices, each of which is the receiver-
transmitter pair for a single channel. The boards for the system must be mounted in adjacent slots, and the entire
system responds as a single unit to the INTA instruction according to the position of the system on the bus
(INTA reads the device code of the closest device that is requesting an interrupt). But analogous to INTA, this
system itself has an instruction that reads the number of the highest priority channel that has a Ready flag set.
The priority is determined by the position of the board on the bus and the position of the channel on the board.

7-15

Hence the jumpers in any interface card should be configured so that lines 0-15 are on the first board, lines 20-37

on the second, etc., and on a given board the numbers are assigned in order from highest priority to lowest.
E 3

Instructions

The program executes no initiating operations for the receiver as reception is initiated externally and the
program simply responds when data is ready. The program turns on a transmitter simply by supplying a data
character to it for transmission. Done is set by the setting of any Ready flag for the transmitter or receiver for
any channel. The program has no direct control over Done except by giving at IO reset to clear the entire in-out
system. Once Done is set, it remains set so long as any Ready is set, and it clears automatically whenever all
Ready flags are clear — in other words the program clearing a particular Ready does not affect Done unless there
are no other Ready flags set. Each receiver and transmitter has an 8-bit buffer for handling data via the IO bus
as well as a shift register for connection to the line.

The multiplexer uses three 1O transfer instructions, one for input and two for output, with device code 30,
mnemonic AHM. The single input instruction handles both character input and the determination of the highest
priority channel that interrupted. One output instruction handles character output, and the other is used simply
to clear transmitter flags. Done is sensed by bit 9 in the two IO skip instructions that have a 1 in bit 8, but the
other two skips are not used as there is no Busy. The Clear function is used only to clear receiver flags with the
input instruction, and Start is not used at all. Interrupt Disable is controlled by interrupt priority mask bit 14.
A second multiplexor connected to the 10 bus would have device code 70.

DIAC - AHM Data In A, Asynchronous Multiplexor

Read the interrupt information from the multiplexer into AC as shown.

RCVR | XMTR CHANNEL CHARACTER
READYREADY ! | ! ! [l | I I | ! !
0 1 2 3 1 4 5 6 ' 7 8 9 | 10 11 12 ' 13 14 15
0 The receiver for the channel specified by bits 2—7 has assembled a character from the line and the data
part of that character is right-justified in bits 8-15. This instruction clears RCVR Ready for the specified
channel.
1 The transmitter for the channel specified by bits 2-7 has moved a character from its buffer to its shift

register and is free to receive another data character from the program.
2-7 The number of the highest priority channel which has either Ready flag set.

8-15 If bit 0 is 1, these bits contain the right-justified data part of the character just received on the channel
specified by bits 2-7.
7-16

DOA —,AHM

Data Qut A, Asynchronous Multiplexor

A|C 0 1 0

0

1 1

0

0

0

o 1 2 3 T 4 5 6 | 7 8 9 ! 10 11 12 V13 14 15

Load the contents of AC bits 8-15 into the transmitter buffer and clear the XMTR Ready flag for the channel
specified by AC bits 2-7.

CHANNEL CHARACTER
! 1 1 | 1 | I | 1 1 |] |

0 I 1 2 3 I 4 5 6 | 17 8 9 T 10 i1 12 ' 13 14 15

The data bits for the character length handled by the specified channel must be right-justified in the right half of
AC.

DOB — AHM Data Out B, Asynchronous Multiplexor
0 | !] I AIC I | 0 [0 L 0 | 0 0 | 1 | 1 | 0] 0 | 0
o ' 1 2 3 I 4 5 6 | 7 3 10 11 12 | 13 14 15

Clear XMTR Ready for the channel specified by AC bits 2-7.

Reception is initiated at the other end of the line, but the processor begins transmission on an idle line by
giving a DOA that specifies the desired channel and loads the data for a character into the transmitter buffer for
that channel. The transmitter assembles a complete character of the appropriate configuration (as determined
by the jumpers on the interface card) taking the correct number of data bits from the right of the buffer; hence
the program must supply the data for each character right-justified in AC. As soon as the transmitter takes the
character into the shift register making the buffer free, it sets XMTR Ready and starts serial transmission of the
character over the line. Note however that in an EIA interface the transmitter does not start sending until Clear
to Send (circuit CB) is true. (Many typical modems, such as the 103, have the CB-CF common configuration,
ie Clear to Send and Carrier Detected are equivalent signals.)

Except when initiating transmission on an idle line, the program simply responds to a running system at
each interrupt. When a receiver assembles a complete character from the line it moves the data bits of the char-
acter right-justified into its buffer and sets RCVR Ready. When a transmitter finishes sending a character it
takes the data bits (if any) for the next character from its buffer and sets XM TR Ready. The setting of either type
of Ready flag sets Done, requesting an interrupt if Interrupt Disable is clear. Upon recognizing that the multi-
plexer is the source of the interrupt, the program gives a DIAC that reads the number of the highest priority
channel for which either Ready flag is set. If RCVR Ready is set, it is automatically cleared and the right half of
the word read contains the right-justified data bits of the character received, so no further action by the program
is necessary. If XMTR Ready is set, the program gives a DOA that selects the interrupting transmitter, supplies
the data bits for the next character, and clears its Ready flag. Should the program fail to respond before the
transmitter finishes sending the character in its shift register, the transmitter simply marks the line until a new
character is supplied. Should no further transmission be desired on the interrupting channel, the program should
give a DOB for that channel to clear XMTR Ready without supplying a new character.

7-17

The program has no control over the character length or bit rate for any channel as these are jumper selected.
However the program should be aware of these characteristics for every channel. Supplying an incorrect number
of data bits means that the transmitter will either throw away the extras or will fill missing bit positions with Os.

Timing Since both receiver and transmitter have a bufler, the program has an entire character time in which
to retrieve a character before data can be lost or to send a character and keep the transmitter operating at maxi-
mum rate. The character time for any channel depends upon both the frequency and the character configuration
selected for that channel. In a system with mixed bit rates, the lower numbers should be assigned to the faster
lines so that they will have higher priority. The receiver is set up to begin character assembly only when it re-
ceives a start level (space) of duration longer than one-half bit time; a shorter start level is regarded as a transient.

Modem Control

Other than the transmitter sensing of Clear to Send, the 4060 series multiplexor contains no facilities for
handling control signals (no control is necessary for a dc channel). To handle control signals for each set of four
4-line ETA interface cards (sixteen lines) requires one 4026 programmed asynchronous multiplexer with a 4027
for each 4-line group. The 4027 allows the program to sense two input signals and control one output signal for
each of four communication channels. The manner in which the program senses input signals and turns output
signals on and off is treated in the description of the 4026 multiplexer in §7.2.

Suppose the 4060 system has eight channels operating with Bell 103 Data Sets equipped for automatic an-
swering. To allow the program to answer incoming calls on these data sets requires the addition of one 4026
with two 4027s. For these channels the 4027s should be connected to monitor Ring Indicator and Data Set Ready
and to control Data Terminal Ready. The program can detect a ringing signal from a remote station by periodic-
ally examining Ring Indicator; the program answers the call by sending Data Terminal Ready to the local data
set, and when the call is completed the program must dismiss it by turning off that signal.

To use Bell 202 Data Set sequipped with automatic answer on a two-wire (half-duplex) channel or in a multi-
point network requires the addition of a second 4027 for each 4-line group (in other words each 4026 can handle
the modem control for only eight channels). The second 4027 would be used to monitor Data Carrier and Clear
to Send and to control Request to Send.

7.6 1IBM SYSTEM 360/370 INTERFACE 4025

This device allows a Nova line computer to simulate any peripheral device or group of peripheral devices
that can operate through a selector or multiplexor channel on an IBM System 360 or 370 computer. To program
the system at the machine level requires not only a knowledge of the IBM part of the system including the periph-
erals to be simulated, but also a detailed knowledge of the timing and hardware operation of the interface itself.
Such a treatment is beyond the scope of this manual. This section is therefore limited to an overall description
of the interface and the definition of the IO instructions for it. For the complete information required to program
the system effectively, refer to Technical Reference : 4025 IBM System 360/370 Interface, Data General document
014-000001.

The 4025 consists of two standard logic boards that mount in the Nova line main frame and a separate
power control adapter that requires 5 inches of space in a standard 19-inch rack. Connection to the IBM com-
puter is made at any position on either the selector channel for high speed block transfers for one device at a
time, the byte multiplexor channel for single bytes interleaved among many devices, or the 370 block multi-
plexor channel, which is like the byte multiplexor channel except that it handles fast blocks instead of single
bytes. The 4025 acts like any standard IBM device in that it is capable of recognizing all IBM bus/ tag sequences,
making all of the necessary requests, etc. Although all information transfers through the 4025 are in the 8-bit
bytes basic to the 360/370 system, this description is from the point of view of the Nova line computer, wherein
the program is the Nova computer program, data in is the movement of data into the Nova computer (hence

out of the IBM computer), and so forth.
7-18

Jumpers in the equipment determine which IBM device addresses the 4025 can recognize; this may be all
256 addresses, only a single address, or any subset of the possible addresses that is selectable by means of jumpers
for the address bits with some bits indeterminate. For a recognized device address, the program uses the 4025
to simulate the device by responding to command bytes received from the channel, executing data transfers in
either direction, and supplying status bytes to the channel. The IO instructions handle only control information
for the interface itself; all information going to or from the IBM channel via the interface is handled by the Nova
line data channel, so the program need only set up the 4025 for a particular operation and all transfers to and from
memory are then handled automatically.

Command bytes received from the IBM channel are stored along with their associated device addresses in
a 256-word circular buffer in memory for subsequent processing by the program. Storage is under the control
of a command address counter, which is incremented just before each command byte and device address are
stored in the left and right halves of the location specified by the counter. Counting is limited however to the
right half of the counter (bits 8-15), so that the circular buffer always begins at a location whose address has
Os in bits 8-15; cach time a command-address word is stored in the final location in the buffer, the counter recycles
so the next storage is in the first location.

Upon indication by the program that a status byte should be supplied to the IBM channel for a particular
device, the 4025 retrieves the status information from the left half of a location in the status table. This table is
also exactly 256 words in memory, and begins at a location whose address has Os in bits 8-15. The program initially
locates the table by specifying bits 0—7 of a memory address. Then for a given status transfer the interface accesses
that location in the table corresponding to the address of the device it is simulating — in other words the device
address is used as bits 8-15 of the memory address for retrieving the status byte.

Data transfers are handled like those for tape or disc except that transfers are in bytes instead of words.
Hence the 4025 has a 16-bit byte counter and a 16-bit byte address counter. In the latter counter the high order
fifteen bits (1-15) specify the address for the memory location while the counter LSB (bit O as supplied by the
load instruction) specifies which half of the location, 0 for left, 1 for right. A transfer may begin with either half
of a location (as per the initial state of the counter LSB), but bytes are otherwise handled first left then right in
each location consistent with standard counting. Data for output is always supplied two bytes per word as just
described. Input data is packed two bytes per word under control of the byte address counter only if the Pack
Data flag is set. Otherwise counter bits 1-15 function as a word address counter to supply addresses for storage
of one byte in each location; which half receives each byte is determined by the now stable state of bit O as initially
specified by the program.

On the adapter are lights that indicate when the unit is off line and when ac power is on at the Nova line
computer. The online/offline state of the 4025 is controlled by a pair of switches, manual and request; the former
overrides the latter, which is functional only when the former is in its center null position. Setting either switch
to the online position places the unit on line, but the request switch also signals the program by setting Done
to produce an interrupt. Setting the manual switch to off line takes the unit off line, but setting the request switch
to this position has no effect on the unit — it simply produces an interrupt so that the program can take the unit
off line at the appropriate time. When the request switch is used, status flags indicate the state requested. Other
switches allow the operator to indicate the type of IBM channel to which the unit is connected, to reset the inter-
face logic when it is off line, and to determine whether control of ac power to the Nova line computer shall be
local or remote, ie shall be controlled by a power switch on the adapter or by the IBM computer.

Instructions

To set up the IBM interface for operation the program must supply an initial command address (to the
16-bit command address counter) and eight bits for the left half of a status table base address. For each transfer
operation the program must supply a command word, and for a data operation it must also supply an initial byte

7-19

address (to the 16-bit byte address counter) for data channel access and the 16-bit (twos complement) negative
of a byte count.

The interface uses twelve IO transfer instructions with device codes 31 and 32, mnemonics IBMI and
IBM2, and has two busy flags. Associated with code 31 are the standard flags that indicate the state of the devce
with respect to the Nova line computer; hence these flags are named “Done” and “Busy to Nova computer”.
They are sensed in the standard fashion by bits 8 and 9 in IO skip instructions with device code 31. The Start
function, which can be given only with the DOA, sets Busy to Nova computer but does not affect Done. Asso-
ciated with code 32 is the Busy to Channel flag, which indicates that the 4025 is occupied with the Nova line
computer and is therefore busy to the IBM channel. Busy to Channel sets automatically when Done is set
(requesting an interrupt) and can be set by the Nova computer program to make the 4025 busy to the channel
while the program is loading registers or reading status; in the latter case, the flag is set by the 10 Pulse function
(F = 11) with device code 31. With code 32, Start and Pulse have no effect at all. The code-32 skip instructions
however use both bits 8 and 9: Busy to Channel is tested in the standard fashion, and the instructions that would
ordinarily skip on a done flag test the suppress-out condition on the IBM channel. The Clear function with either
code clears Done and both busy flags. Interrupt Disable is controlled by interrupt priority mask bit 13. A second
360/370 interface connected to the 10 bus would have device codes 71 and 72. In an interrupt the code returned
by INTA is the lower one of the pair (31 or 71).

Note: There are conditions vis-a-vis the relationship between the 4025 and the IBM channel that can pre-
vent the Clear, Start or Pulse function from actually affecting the interface flags. Therefore after giving a func-
tion, the program should use an IO skip to determine that the desired flag state has been produced, and repeat
the function if it has not. Eg to start a transfer give

DOAS 0,IBM1 ;Start

SKPBN IBMI ;Busy to Channel set?
IMP -2 ;:No, try again

: ;Yes, go ahead

To clear Busy to Channel give

NIOC. IBMI
SKPBZ IMB2

IMP -2

DOA -, IBM1 Data Out A, IBM Interface 1

1 1 A|C 0 1 0 F 0 1 1 0 0 1

o I 1 2 3 T 4 N 6 | 7 8 9 10 11 12 T a3 14 15

Load the contents of AC into the 4025 command register as shown, and perform the function specified by F.

MOVE | SEND |MOVE Ny [MOVE
DATE| STA- | DATA | PACK EIEB ONE IBM DEVICE ADDRESS
ouT | TUS | IN |DATA STA- gﬁg
TUS] | { i] ! i
0 1 2 3 4 5 6 7 8 9 | 10 11 12 1 13 14 15

7-20

e

0 Perform a data transfer to the IBM channel for the device specified by bits 8-15.

1 Send a status byte to the IBM channel from the left half of the memory location for the device specified
by bits 8-15 and then clear that location.

2 Perform a data transfer from the IBM channel for the device specified by bits 8-15.

3 If bit 2 is 1, pack the input data two bytes per word under control of the 16-bit byte address counter;

otherwise place one byte in each location addressed by bits 1-15 of the counter in the half specified by
bit 16, which is held fixed.

5 If bit 1 is 1, the byte sent is ending status.

6 If bit 0 or 2 is 1, the data transferred shall consist of a single byte. If this bit is not set in a data transfer,
the 4025 assumes burst mode, and a channel malfunction may result is only one byte is transferred.

8-15 Operations selected by bits 0-2 shall be performed for the device specified by these bits.

DOB -,IBM1 Data Out B, 1BM Interface 1

0 1 1 A|C 1 0 0 F 0 1 1 0 0 1

[V 1 2 3 T2 5 6 I 7 8 9 10 11 12 T 13 14 15

Load the contents of AC into the byte address counter as shown. Perform the function speciffied by F (Clear
or Pulse only).

BYTE | WORD ADDl}ESS
|

0 1 2 3 7 a 5 6 | 7 8 9 | 10 11 12 ' 13 14 15

DOC —,IBM1 Data Out C, IBM Interface 1

0 1 1 1|4C 1 1 0 F 0 1 1 0 0 1

|
o 1 2 3 T a 5 6 | 7 8 9 10 11 12 T 13 14 15

Load the contents of AC into the byte counter, and perform the function specified by F (Clear or Pulse only).
If only one byte is to be transferred, bit 6 of the command word (sent by DOA — ,IMBI) must be set.

DOA —,IBM2 Data Out A, 1BM Interface 2

0 1 1 AC 0 1 0 F 0 1 1 0 1 0

| l Il 1 { i 1 1 1 | I}

o T 1 2 3 T 4 5 6 1 1 8 9 10 11 12 T 13 14 15

Load the contents of AC into the command address counter (AC bit 0 should be 0), and perform the function
specified by F (Clear only).
7-21

DOB —,IBM2 Data Out B, IBM Interface 2
0 | | 1 AiC 1 | 0 1 0 [;‘ 0 | 1 . 1 . 0 . 1 1 0
0 1 2 3 I a3 5 6 | 7 8 9 10 11 12 7 13 14 15

Select the set of 256 locations for the status table according to AC bits 0-7 (AC bit 0 should be 0), and perform
the function specified by F (Clear only).

DIC -,1BM2 Data In C, IBM Interface 2
0 1 1 : 1 A|C 1 | 0 1 1 ll7' 0] 1 1 1 | 0 . 1 | 0
0 1 2 3 | 3 5 6 | 7 8 9 10 11 12 T 13 14 15

Read the status of the 4025 into AC as shown, and perform the function specified by F (Clear only).

STATUS CODE IBM DEVICE ADDRESS
| | I | | | |] | | | |

[

LT

2

3 7 4 S 6 ' 7 8 9 10 i1 12 T a3 14 15

The following lists the bits in the left half that are set to indicate a particular event and the corresponding status

code. Note however that events can occur simultaneously, and the codes are then superimposed. Bits 8-15 indi-

cate the device address active or specified by the channel at the time the condition indicated by bits 0~7 occurred.

0,7 10000001 Halt 10 — the channel has issued a Halt IO to this device.

1 01000000 Command Parity Error — a byte placed in the command table had incorrect parity.

2 00100000 Off Line Request — the operator has requested that the program take the 4025 off line.

2,7 00100001 Selective Reset — the channel has issued a selective reset to this device.

3 00010000 Data Parity Error — a data byte placed in Nova memory had incorrect parity.

4 00001000 Initial Status — an initial status byte sent to the channel was not zero.

5 00000100 Stop — the IBM computer halted a data transfer before th¢ byte count overflowed.

5,6 00000110 On Line Request — the operator has used the request switch to plaée the 4025 on line.

6 00000010 Request Not Acknowledged — the channel issuéd a command to the recognized device
indicated by bits 8-15 while the 4025 was initiating a transfer requested by the Nova pro-
gram, and the transfer initiation was terminated.

7 00000001 System Reset — the chgnnel has issued a system reset to all devices.

DOC —,IBM2 Data Out C, IBM Interface 2

O|Ill AIC IIIIO }17' 011|1|011|0
o I 1 2 3 1 a4 5 6 1 7 8 9 10 11 12 T 13 14 15

If AC bit 15 is 1, take the 4025 off line. Perform the function specified by F (Clear only).

7-22

DIA —,IBM1

F

Data In A, 1BM Interface 1
AC 0 | 0
3 } 4 s 6

Read the address of the device the 4025 is presently simulating into AC bits 8-15 (Clear AC bits 0~7), and per-

form the function specified by F (Clear or Pulse only).

DIB —,IBM1 Data In B, IBM Interface 1
0 | 1 A|C 0 | 1 f' 1
0 I 1 3 | & 5 6 15

Read the present contents of the byte address counter into AC as shown, and perform the function specified by
F (Clear or Pulse only).

WORD ADDRESS

Data In C, IBM Interface 1

15

BYTE
0 1
DIC —IBM1
0 1
0 I 1

F

t

1

i5

Read the present contents of the byte counter into AC, and perform the function specified by F (Clear or Pulse

F

only).

DIA —IBM2
0 1
R

Data In A, IBM Interface 2
AC 0 | 0
3 = 4 H 6

Read the present contents of the command address counter into AC, and perform the function specified by F

{Clear only).

DIB —,I1BM2

F

Data In B, IBM Interface 2
AC 0 |
3 { 4 5 6

15

Read the nonzero (left) half of the status table base address into AC bits 0-7 (clear AC bits 8-15), and perform

7-23

the function specified by F (Clear only).

SKPBN IBM1

SKPBZ 1BM1

SKPDN IBM1

SKPDZ IBM1

SKPBN iBM2

SKPBZ 1BM2

SKPDN 1BM2

SKPDZ 1BM2

7-24

Skip if Busy to Nova is Nonzero

Skip if Busy to Nova is Zero

Skip if Done is Nonzero

Skip if Done is Zero

Skip if Busy to Channel is Nonzero

Skip if Busy to Channel is Zero

Skip if Chanyel Suppress Qut Condition is True

Skip if Channel Suppress Out Condition is False

Appendices

APPENDIX A
INTERFACING

§82.3, 2.4 and 2.5 contain a general description of the entire in-out system including the
program interrupt and the data channel. These sections explain in-out programming in general terms
and indicate the way in which in-out instructions control the various functions involved in moving
information between the accumulators and the devices. The reader should be very familiar with the
contents of these three sections before he attempts to interface any equipment of his own design.

There are two types of in-out data transfer: the movement of words or characters by the program
and the automatic transfer of data via the data channel. The program can handle in-out by sensing
Busy or Done or by allowing the device to interrupt when it requires service. If the device is
automatic, it can use data channel cycles for the transfer of data and require response by the program
only for control purposes (eg when a block transfer is complete or there is some special situation, such
as an error, which the program must handle).

CORE

READ-ONLY

MEMORY

1024, 2048, 4096 OR
8192 16-BIT WORDS

MEMORY

256, 512 OR 1024
16-BIT WORDS

SEMICONDUCTOR
MEMORY
256, 512 OR 1024
16-BIT WORDS

(SUPERNOVA
COMPUTER ONLY)

I MEMORY BUS l

I

CORE
MEMORY

BASIC

CENTRAL
PROCESSOR U N |T
IN-OUT BUS
- IA
TELETYPE READER PUNCH DISPLAY S'LESCERL
CONTROL| |CONTROL| [cONTROL| |CONTROL} |conTROL
SPECIAL | EXTERNAL
TELETYPE READER PUNCH DISPLAY USE'gE BUS
DEV

TYPICAL NOVA COMPUTER SYSTEM CONFIGURATION

Al

To connect to the in-out bus, every device must have certain fundamental circuit networks. Fach
device must have a selection net to guarantee that the device will respond when and only when its
device code is given by the program, a Busy-Done net to specify the device state and request
interrupts, a net to determine the interrupt priority in terms of the device position on the bus, and a
net to supply the device code when an interrupt is acknowledged (INTA). If the device is connected to
the data channel it must also have a circuit to request access, one to determine priority (identical to
the program interrupt priority net), and one to specify the type of data channel cycle required. The
standard configurations for these circuits are described in Part II1.

The physical layout of the computer allows many standard and customer-designed [O interfaces
to be mounted inside the basic unit, which has slots (numbered from the bottom up) for 15 X 15-inch
printed circuit boards. The bottom slots are used for the central processor, and the others are wired to
the memory and IO buses, except that in the larger units the top slots are wired only to the IO bus.
Clearance between slots is 3/8 inch, but the clearance at the top slot is 5/8 inch to accommodate a
board using oversized components. A single memory module of any size requires an entire board, but
one slot may be used for several interfaces; eg the interfaces for the teletypewriter, real time clock,
and high speed paper tape reader and punch are all on one board, which must be mounted in slot 3
(Supernova computer slot 4). The following gives the total number of slots, the slots required for the processor,
and the slots wired for memories in the various Nova line computers and expansion chassis available for them.
Memories must be mounted in the slots specified; interfaces can be mounted in any slots not used by the pro-
cessor, except that slot 2 in the 1200 series can be used only for a memory or a 1200 processor option board (eg
multiply-divide). Lines connect to the devices via connectors at the back of the unit. If large scale equipment
requires too many external lines, the bus itself can go out through one of these connectors.

Total Slots Processor Slots ‘ Memory Slots

1210 4 1 24
1220 10 1 2-8
820 10 1,2 3-8
1200 7 1 , 2-7
1200 Jumbo 17 i 2-12
800 7 1,2 3-7
800 Jumbo 17 1,2 3-12
Nova computer 7 1,2 3-7
Supernova computer 7 1-3 4-7
Expansion chassis

1220, 820 10 — —

Others] 7 - 1-7

I IN-OUT BUS

The bus consists of sixteen bidirectional data lines, six device selection lines and nineteen control
lines from processor to devices, and six control lines from devices to processor. Signals on the control
lines from the processor synchronize all transfers on the data lines, start and stop device operations,
and control the program interrupt and data channel. Over the control lines to the processor a device
can indicate the states of its Busy and Done flags and request a program interrupt or data channel

access.
A2

A signal on a control line from the processor not only specifies a particular function but also
supplies all timing information needed for the execution of that function. A device control unit
usually requires timing circuits for its own internal operations, but no timing functions need be
performed by the circuits that connect to the bus — all such timing is supplied by the processor in the
signals sent over the bus control lines. Moreover the control lines are set up so that a given device need
connect only to those that correspond to the functions the device requires.

Within the basic enclosure the bus is simply printed connections from one subassembly slot to
another. If the bus must run out of the basic enclosure, the external bus is in the form of a cable
composed of fifty twisted pairs in a single black covering. External bus wires must be terminated at
the far end to match the characteristic impedance of the cable; this allows the transmission of high
speed digital pulses without reflections or ringing. The cable has very low interpair crosstalk and high
surge impedance so individual twisted pairs do not require separate shields. With this system a number
of bus drivers can be connected to a single data line, and data may be transmitted and received directly
with ICs at distances up to 50 feet (including internal wiring) with good noise margins and low signal
delays.

Bus Signals

The binary signals on the bus have two states, low and high, which correspond respectively to
nominal voltage levels of 0 and +2.7 volts. Any level between ground and .4 volt is interpreted as low
any level more positive than 2.2 volts is interpreted as high. The level listed for a signal in the
following table is the voltage level on the line when the signal represents a 1 or produces the indicated
function. A low signal is indicated in the prints by a bar over its name.

Signal Direction Level (‘
DSO To device Low Device Selection. The processor places the device code (bits
to 10—-15 of the instruction word) on these lines during the
DS5 execution of an in-out instruction. The lines select one of 62
devices (codes 01—76) that may be connected to the bus.
Only the selected device responds to control signals generated
during the instruction.
DATAOQ Bidirectional Low Data. All data and addresses are transferred between the
to processor and the devices attached to the bus via these
DATA1S sixteen lines.

For programmed output the processor places the AC
specified by the instruction on the data lines and then
generates DATOA, DATOB or DATOC to load the data from
the lines into the corresponding buffer in the device selected
by DSO-5, or generates MSKO to set up the Interrupt
Disable flags in all of the devices according to the mask on
the data lines. For data channel output the processor places
the memory buffer on the data lines and generates DCHO to
load the contents of the lines into the data buffer in the
device that is being serviced.

A3

DATOA

DATIA

DATOB
DATIB

DATOC
DATIC

STRT

CLR

IOPLS

SELB

SELD

A4

To device

To device

To device

To device

To device

To device

To device

To device

To device

To processor

To processor

High

High

High

High

High
High

High

High

High

Low

Low

For programmed input the processor generates DATIA,
DATIB or DATIC to place information from the corres-
ponding buffer in the device selected by DSO—5 on the data
lines, or generates INTA to place the code of the nearest
device that is requesting an interrupt on lines 10—15. The
processor then loads the data from the lines into the AC
selected by the instruction. To get an address for data
channel access the processor generates DCHA to place a
memory address from the nearest device that is requesting
access on lines 1—-15 and then loads the address into the
memory address register. For data channel input the pro-
cessor generates DCHI to place the data buffer of the device
being serviced on the data lines and then loads the contents
of the lines into the memory buffer.

Data Oﬁt A. Generated by the processor after AC has been
placed on the data lines in a DOA to load the data into the A
buffer in the device selected by DS0—5.

Data In A. Generated by the processor during a DIA to place
the A buffer in the device selected by DSO—5 on the data
lines.

Data Out B. Equivalent to DATOA but loads the B buffer.

Data In B. Equivalent to DATIA but places the B buffer on
the data lines.

Data Out C. Equivalent to DATOA but loads the C buffer.

Data In C. Equivalent to DATIA but places the C buffer on
the data lines. '

Start. Generated by the processor in any nonskip IO
instruction with an S control function (bits 8—9 = 01) to

‘clear Done, set Busy, and clear the INT REQ flipflop in the

device selected by DS0-5.

Clear. Generated by the processor in any nonskip 10
instruction with a C control function (bits 8—9 = 10) to clear
Busy, Done and the INT REQ flipflop in the device selected
by DSO-5.

IO Pulse. Generated by the processor in any nonskip IO
instruction with a P control function (bits 8—9 = 11) to
perform some special function in the device selected by
DSO-5 (this signal is for custom applications).

Selected Busy. Generated by the device selected by DS0—S5 if
its Busy flag is set.

Selected Done. Generated by the device selected by DS0-5 if
its Done flag is set.

RQENB

INTR

INTP

INTA

MSKO

DCHR

DCHP

DCHA

DCHMO
DCHM1

To device

To processor

To device

To device

To device

To processor

To device

To device

To processor

Low

Low

Low

High

Low

Low

Low

Low

Low

Request Enable. Generated at the beginning of every memory
cycle to allow all devices on the bus to request program
interrupts or data channel access.

In any device RQENB sets the INT REQ flipflop if
Done is set and Interrupt Disable is clear. Otherwise it clears
INT REQ.

In any device connected to the data channel RQENB
sets the DCH REQ flipflop if the DCH SYNC flipflop is set.
Otherwise it clears DCH REQ.

Interrupt Request. Generated by any device when its INT
REQ flipflop is set. This informs the processor that the
device is waiting for an interrupt to start.

Interrupt Priority. Generated by the processor for trans-
mission serially to the devices on the bus. If the INT REQ
flipflop in a device is clear when the device receives INTP, the
signal is transmitted to the next device.

Interrupt Acknowledge. Generated by the processor during
the INTA instruction. If a device receives INTA while it is
also receiving INTP and its INT REQ flipflop is set, it places
its device code on data lines 10—135.

Mask Out. Generated by the processor during the MSKO
instruction after AC has been placed on the data lines to set
up the Interrupt Disable flags in all devices according to the
mask on the lines.

Data Channel Request. Generated by any device when its
DCH REQ flipflop is set. This informs the processor that the
device is waiting for data channel access.

Data Channel Priority. Generated by the processor and
transmitted serially to the devices on the bus. If the DCH
REQ flipflop in a device is clear when the device receives
DCHP, the signal is transmitted to the next device.

Data Channel Acknowledge. Generated by the processor at
the beginning of a data channel cycle. If a device receives
DCHA while it is also receiving DCHP and its DCH REQ
flipflop is set, it places the memory address to be used for
data channel access on data lines 1—15 and sets its DCH SEL
flipflop.

Data Channel Mode. Generated by a device when its DCH

SEL flipflop is set to inform the processor of the type of data
channel cycle desired as follows:

DCHMO DCHM1
0 (H) 0(H) Data out
0(H) 1 (L) Increment memory
AS

DCHI To device

DCHO To device

OVFLO To device

IORST To device

High

High

High

High

1 (L) 0(H) Data in

1 (L) 1 (L) Add to memory
In addition to performing the necessary functions internally,
the processor generates DCHI and/or DCHO for the required
in-out transfers.

Data Channel In. Generated by the processor for data
channel input (DCHMO = 1) to place the data register of the
device selected by DCHA on the data lines.

Data Channel Out. Generated by the processor for data
channel output (DCHMO-1 # 10) after the word from
memory or the arithmetic result has been placed on the data
lines to load the contents of the lines into the data register of
the device selected by DCHA.

Overflow. Generated by the processor during a data channel
cycle that increments memory or adds to memory (DCHM1 =
1) when the result exceeds 216 — |,

IO Reset. Generated by the processor in the IORST
instruction or when the console reset switch is pressed to
clear the control flipflops in all interfaces connected to the
bus. This signal is also generated during power turnon.

Interface Connectors

The back panel of the frame that holds the printed circuit boards has two 100-pin connectors for
each slot. The bottom slots are wired for the central processor. The back panel connectors of the slots
that can be used for memories (as indicated in the table on page A2) are identical and are wired to the

oDD

EVEN

1 35 7 8111 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 5 53'5_5 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99
=)
log
2> %&>0
g% HEHE
=z
o al« Z |z
<} —12]olo|i< 1 » alo o ||=
ols ’-tru:’—'—l—‘Iva-—q—_c: l_l—l ZlE(=]2
3|2 SEEEEBE A EE RS R L iz |23

ODD

EVEN

63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99
~ o
~le = < o|—
EOIGY INS RS IS IS
I I8 1 e I | > a
< [| e [l || o z
aflotlallalin]lo [o
< |~ Y Lo b
—“l=lLcholi= i~ o~
|| || |l |} |- <C
=== == - T — o
<< 1< [|2 < Z
ollolla|io]lofla}: [a) [C]

A6

BACK PANEL CONNECTOR LAYOUT

*Memory pins on original Nova computer, but ground on all subsequent Nova line computers.
**Ground on Nova 2 computer.

memory and in-out buses as shown here (viewed from the back the A connector is on the left). The
named unshaded positions carry the in-out bus signals; shaded positions are used by the memory bus;
blank positions indicate pins available for connections from interface to device. At slots above those
for memories the shaded unlabeled positions are available for customer use, but any interface that uses
them is incompatible with the standard back panel configuration and cannot be plugged into one of
the slots in which those pins are not free.

Cabling from the back panel to external equipment (other than the console teletypewriter) is made
via connectors at the back of the unit. The drawings on the next two pages show the external connec-
tor layouts of the Nova 1210, 1220 and 820 computers. In these computers the teletypewriter cable is
plugged directly into the back panel, and all other external cables use edge connectors. The male
connectors shown as part of the back panel are wired to the slot connectors by etched tracks on the
panel; additional external cables as needed match to paddle boards that are mounted parallel to the
back panel at the rear and are wired to the slot connectors by internal cables. Only the connectors for
teletypewriter, in-out bus, reader, punch, and EIA option 4023 are unique. All other connections from
interfaces to devices are made by dual 50-pin paddle boards that are wired to the standard free con-
nector positions at the appropriate back panel slot and have the common option number 4192. In the
1210 the rear end of the back panel is the IO bus connector (item 1); item 5 is added for connection to
a reader, EIA option and/or punch (with the top and bottom groups of pins wired to slot 3); and a
single 4192 (item 6) can be added as well. Built into the rear of the 1220 and 820 back panels are the
connectors for the IO bus, reader, EIA option and punch. The connector on the left side of the panel
(item 1) is a 4192 that is etch wired to slot 9. Up to five other 4192s can be added at the rear as shown.

The external connector layout for the Nova 1200 and 800 computers is illustrated below. The
second, third and fourth holes from the left at the bottom are assigned respectively to teletypewriter,
punch and reader. The teletypewriter socket is prewired to the back panel; internal cables for the

Typical 1200 and 800 External Connector Layout

reader, punch and IO bus can be connected from the external sockets to sockets mounted at the
bottom of the back panel (there are three sockets for the bus, one each for the devices). To connect
any other interface, run the wires from a slot connector across the back panel to the appropriate
output connector (in a Jumbo chassis, sockets for fixed head disc and magnetic tape are mounted on

the back panel and are etch wired respectively to slots 15 and 16).
A7

/

\
g : /
s

MRTRAR TR

AL

5
L

) HURANY

R

3

TELETYPEWRITER
CABLE

DESCRIPTION

P4 BACKPANEL SLOT 9

PS5 PAPER TAPE READER OPTION 401IB

[P6 E1a OPTION 4023

| P7 PAPER TAPE PUNCH OPTION 40I12A

STRAIN

P8

RELIEF

iP9

CLAMP

PtO
Pt

Pi2

P3 IN-OUT BUS

D6-00002

POB CUSTOMER CONSOLE

POA CONSOLE

P2 TELETYPEWRITER INTERFACE CONNECTOR

TELETYPEWRITER CABLE CLAMP

10308 CABLE

NOVA 1220 AND 820 EXTERNAL CONNECTOR LAYOUT

A8

3T0SNOD vOd

HOLO3INNOD
3OV4H3INI HILMMIdALITTL 2d

Gd

bd

NOILdO HONNd 3dVYl 43dvd O-bd

NOILdO VI3 8-td

NOILdO ¥3Qv3y 3dVL Y¥3dvd v-td

NI |O|~]|®

sNg LNO-NI €d

NOILdi¥2S3a

378avd
Y3LIYM3IdAL3T3L

LNOAVYT HOLO3INNOD TVYNYI1LX3 0LZlL VAON

318v9
TYNY3LNI

RN

.
\
N

RN

dAVTD
~. 43113y

/ NIVYLS

A9

External sockets on the Nova and Supernova computers are at the rear (the teletypewriter uses
the 9-pin socket in the middle). To connect the 10 bus externally or to connect an interface to a device,
run the wires from a slot connector down the back panel, underneath the chassis, and through the
power supply to the socket at the back (wires going through the power supply must be shielded).

Order numbers and part numbers for connectors, connector parts and associated tools for all
computers are listed in the table at the end of this appendix.

External Signal Connections

On the next page is a complete 10 bus signal summary. For each signal the table lists the level,
direction, back panel pin and external bus connector pin. In a 1210, 1220 or 820 the signals are at
pins on the lettered side, and the other wires in the twisted pairs are connected to ground on the
numbered side. In all other computers this arrangement is reversed: the signals are on the numbered
side, ground wires are on the lettered side.

The correspondence of free back panel pins to the pins in the standard device connector 4192
(1210, 1220 and 820 only) is as follows.

1 Gnd 11 A67 21 A84 31 B13 41 B40
2 A92 12 A65 22 A83 32 B15 42 B48
3 A91 13 A63 23 A86 33 B19 43 B49
4 A78 14 A6l 24 A85 34 B23 44 B51
5 ATT 15 A59 25 A88 35 B25 45 B52
6 A76 16 AS7 26 A87 36 B27 46 B53
7 A7S 17 A47 27 A89 37 B31 47 B54
8 A73 18 A49 28 A90 38 B34 48 B67
9 A71 19 AT9 29 B6 39 B36 49 B69
10 A69 20 A81 30 Bl1 40 B38 50 *

*Pin 50 is connected to + 5V thru a fuse.

Bus Circuits

Signal levels on the bus are nominally 0 and +2.7 volts. Every line that a device must drive should be

driven toward ground by an NPN transistor collector that is capable of sinking 90 mA and maintaining a '
maximum saturated output voltage of .4 volt. The DGC#100-000117 integrated circuit is especially suited
to these requirements.

Al0Q

IN-OUT BUS SIGNAL CONNECTIONS

H High B Bidirectional P From device to processor
L Low D From processor to device

Panel External Panel External
Signal - Level Direction Pin Bus Pin Signal Level Direction Pin Bus Pin
CLRt H D A50 K 2 DCHMO L P B17 d 27
DATAO L B B62 w 3 DCHMI L P B21 e 28
DATALI L B B65 z 4 DCHOt H D B33 h 29
DATA2 L B B82 AD 5 DCHPIN L D* A94} b 30
DATA3 L B B73 AB 6 DCHPOUT L D* A93
DATA4 L B B61 v 7 DCHR L P B35 j 31
DATAS L B B57 r 8 DSO L D A72 X 32
DATAS6 L B B95 AE 9 DSI1 L D A68 V 33
DATA7 L B B55 n 10 DS2 L D A66 U 34
DATAS L B B60 u 11 DS3 L D Ad6 H 35
DATA9 L B B63 x 12 DS4 L D A62 S 36
DATAI10 L B B75 AC 13 DS5 L D A64 T 37
DATA11 L B B58 s 14 INTA% H D A40 D 38
DATAI12 L B B59 t 15 INTPIN L D* A96} . 39
DATAI13 L B B64 y 16 INTPOUT L D* A95
DATA14 L B B56 p 17 INTR L P B29 f 40
DATAI15 L B B66 AA 18 [IOPLSY H D A74 Y 41
DATIAY H D A44 F 19 IORSTY H D A70 W 42
DATIBYt H D A42 E 20 MSKO L D A38 C 43
DATICY H D A54 M 21 OVFLOf H D B39 1 44
DATOAY} H D A58 P 22 RQENBY} L D B4 m 45
DATOBT H D A56 N 23 SELB L P A82 a 46
DATOCY H D A48] 24 SELD L P A0 Z 47
DCHAY L D A60 R 25 STRTY H D AS2 L 48
DCHI H D B37 k 26 Poweron +5 D B 49

*For the two pairs of priority-determining signals, the in signal comes from the processor or the
preceding device, the out signal goes to the next device. If the computer is operated with an interface
board removed (or a slot is not used), jumper pin A93 to A94 and A95 to A96 to maintain bus
continuity.

tUse filters as described in text [page A-13].

On the external bus for a 1210, 1220 or 820, pins A and AF are grounded, and the ground wires of all
twisted pairs on the numbered side are connected to them. With the other computers, pins 1 thru 50 are grounded
because the power on +5V is fused, it cannot be used to supply power to any external device; it is available
only for picking up relays for remote power turn-on.

All

It is DGC practice to draw only one load from any signal on a single board regardless of the number
of interfaces or options on that board, ie all interfaces on a board share a common set of receivers. It is
strongly recommended that the customer designing his own interface equipment use the DGC#100-000117 IC
for drivers and follow the DGC practice of using only one receiver for any signal on a single board.

The maximum current draw of the receivers on each line should not exceed 16 mA.
When an external bus is connected, signals that originate in the processor and drive devices must be
terminated in this manner.

+5Vv

2000

2400

Al12

Bidirectional signals and signals from device to processor must be terminated this way.

PROCESSOR] +5v
+5Vv | ‘——{:>O
3300 } 33300

1 - ——=—- NN o Lo —-——— NN
[~ UL 1) +7v
3900 || —:.‘__ : $390n
| o—oI 3
|

L
I

The +5 volts supplied to the external terminators should be decoupled to pins 1 and 50 and should be
capable of supplying 900 ma. Use of the power-on line (pin 49) for this purpose is prohibited.

Proper termination for all forty-seven bus signals is available in DGC 1013. This part has an IO
cable plug for plugging into the last device on the bus in place of the cable to another device.

The bus system is designed for a maximum length of 50 feet including signal path length within
devices and inside the processor. A bus line within a device may be a single wire if it runs less than 9
inches trom the IO connector. For greater distances it is good practice to run twisted pairs from the
input connector to the receiver circuits and from there to the output connector.

For interfaces for any computer except the original Nova, noise margins can be improved substantially by I
using this filter circuit at the input to the board on the control signals indicated by a dagger (1) in the table
on page All.

CONTROL SIGNAL J
IK CONTROL SIGNAL

100PF

The bus will drive ten of these circuits if the gate input current is 1.6 ma. Such filters are used in DGC
4040 series options [see Part IV].

II INTERFACE TIMING

Three classes of operations take place over the in-out bus: programmed transfers (or more
generally the execution of in-out instructions), events associated with requesting and acknowledging a
program interrupt, and data channel transfers. Detailed relationships among the various bus signals
involved in these operations are shown in a series of timing diagrams accompanying this section. In the
diagrams each signal or group of signals is represented by a horizontal line with a raised section. In the
case of a control signal that is generated at a specific time to control some particular function, the
raised section represents the time that the function is true. For signals that carry binary information,
such as the data and device selection signals, the raised section indicates the time during which that
information is held on the bus. The level of a line in the diagram has no connection with the voltage
level of the signal: the time that a control signal is true is represented by the raised part of the line no

matter whether the signal is true when high or low. All times are in nanoseconds.
Al3

Programmed Transfers

Throughout the duration of any in-out instruction, the processor holds the device code on the
device selection lines (DS0—5) for decoding by the device.

Data In. The processof generates DATIA, DATIB or DATIC to place the corresponding buffer on
the data lines in the device selected by DSO—5. At the end of the DATI level the processor strobes the
data into the AC selected by the instruction. Following the transfer the processor generates the pulse
for an S, C or P control function if called for by the instruction. In an NIO the timing of the control
pulse is the same but there is no data transfer.

The acknowledgement of an interrupt is the same as data input except that INTA (which replaces
the DATI level) places on the data lines the device code of the nearest device that is requesting an
interrupt. - .

Data Out. While the processor places the AC selected by the instruction on. the data lines, it
generates DATOA, DATOB or DATOC to load the data from the lines into the corresponding buffer
in the device selected 'be DS0—5. When the data is dropped, the processor generates the pulse for an S,
C or P control function if called for by the instruction.

When using a mask to set device priorities for the program interrupt, the processor executes the
same sequence as for data output but generates MSKO (in place of a DATO pulse) to set up the
Interrupt Disable flags in all devices according to the information on the data lines.

Skip. To allow the processor to sense the state of a device, every device places its Busy and Done
flags on the SELB and SELD lines whenever it recognizes its code on the device selection lines.

Program Interrupt

Of the events associated with a program interrupt, many are internal to the processor and hence
do not affect the bus; and others are simply straightforward applications of operations already
discussed, such as sensing Busy or Done or masking out lower priority devices. There are however
three sequences that must be discussed here: the interrupt request, interrupt acknowledgement (device
recognition), and flag clearing.

When a device completes an operation it seéts Done. In every cycle the processor generates
RQENB, which places the interrupt request signal INTR on the bus from a given device (ie sets its INT
REQ flipflop) if its D(Sne tlag is set and its Interrupt Disable flag is clear. (In a complef(device there
may be other flags besides Done that can request an interrupt.) The leading edge of RQENB must be
used to set INT REQ to ensure sufficient time for the serial INTP function to settle down before the
processor attempts to discover which device has priority. A given device receives INTP IN only if there
is no INT REQ flipflop set in a device closer to the processor on the bus; the INTP signal terminates at
the first device whose INT REQ flipflop is set.

After an interrupt has started, the program can determine who needs service by simply sensing
Busy or Done, or it may give an INTA to read the code of the nearest device that is requesting service.
For the latter procedure the processor generates INTA, which places the device code on data lines
10-15 in that device that is both receiving INTP IN"and generating INTR. As discussed previously, the
processor strobes the data into the specified AC at the end of the INTA level.

If the program is to use the same device again, it must clear Done so the device will not
immediately request an interrupt when the interrupt system is turned back on and interrupt Disable is
cleared. Clearing Done also clears INT REQ, disabling INTR.

Al4

(Dsg-5] L

DATIA, DATIB, .
OR DATIC 208‘%_?“ oL TIMING FOR INTA
ouT S DATAG-15 DATI GATES DATA | ‘S‘Z‘a EMIS\QOF'OSRTHE
ONTO BUS
STROBE DATA f INPUT AND QUTPUT
INTO AC RESPECTIVELY

1,150

JIF PRESENT)

(oso—s] 1 MAXIMUM TIME

1100 FROM LEADING EDGE
DATAG - 15 N L OF STRT, CLR AND

j | 150 150 | I0PLS TO STATE
DATOA, DATOS,

OUTPUT OR DATOC [MIN 350 MIN MIN ' CHANGE IN SELB,
STRT, CLR, SELD AND INTR 1S
OR I0PLS [ssown] 250N8

(IF PRESENT)
-

08-S 150 MAX [
SKIP
SELB, SELD DS@-5 GATE BUSY, DONE ONTO SELB, SELD LINES |

PROGRAMMED TRANSFERS {IN-OUT INSTRUCTIONS)

150 MIN————]

RQENB |
Q 350 MIN N Y e Mo e e e e . |

DEVICE DONE J i H

DEVICE 250 MAX |

INT DISABLE

INTR

INTP IN
—
———
INTP QUT
—

INTA

DATAB-15

DS -5

CLR

DEVICE NOT DONE- DEVICE SETS DONE PROGRAM GETS CODE
NO INTERRUPT AND REQUESTS OF NEAREST DEVICE
REQUESTED INTERRUPT REQUESTING INTERRUPT

PROGRAM INTERRUPT

DONE AND INT REQ

PROGRAM CLEARS l

AlS

Standard Data Channel Transfers

Timing diagrams for the four types of data channel transfer at standard speed are shown together
on pages Al7 and Al18. Before considering the individual signals involved in these cycles it is
instructive to investigate their overall structure, noting their similarities and differences. Not all events
associated with a data channel transfer actually occur in the processor cycle devoted to it: there is
overlap so preliminary events occur in the preceding cycle, which may be the final cycle of an
instruction or another data channel cycle. In all cases a memory address is sent into the processor, in
the preceding cycle. For both data in and add to memory the preceding cycle is extended while the
data is sent in. Transfer operations within the processor cycle officially designated as the data channel
cycle for the given access occur only if a word is sent out, but this happens in data out, increment
memory and add to memory.

The events associated with a data channel request are similar to those of an interrupt request. A
device must have a DCH SYNC flipflop, which corresponds to the Done flag. It must also have a DCH
REQ flipflop and a net for transmitting the serial pﬁority signal to the next device, ie if the device
receives DCHP IN and its own DCH REQ flipflop is clear, it generates DCHP OUT. The DCHP signal
terminates at the first dévice whose DCH REQ flipflop is set. When a device requires access it sets DCH
SYNC. Once this flipflop is set the next RQENB from the processor places the data channel request
signal DCHR on the bus by setting DCH REQ. Synchronization must be on the leading edge of
RQENRB to ensure sufficient time for the serial DCHP function to settle down.

If a device is waiting for access, then after RQENB terminates in the final cycle of an instruction,
the processor turfts on DCHA, whose leading edge sets the DCH SEL flipflop in the nearest device that
is requesting service, e in that device that is receiving DCHP IN and whose DCH REQ flipflop is set.
The same priority conditions place a memory address from this device on the bus for the duration of
DCHA. When DCHA terminates, the processor strobes the address into its memory address register. In
data in or data out the address would usually be supplied by an address counter in the device so that
access is made to consecutive locations.

The 1 state of DCH SEL places the appropriate configuration of DCHMO and DCHM1 signals on
the bus to select the transfer mode. These signals remain on the bus as long as the flipflop remains set;
but there is no conflict with other cycles, for when DCHA sets DCH SEL in one device, it clears those
in all others.

The leading edge of DCHA also clears DCH SYNC. Then while the leading edge of the next
RQENB is setting request flipflops in other devices, it will clear DCH REQ in this device unless this
device has again set DCH SYNC and is therefore requesting access at the maximum rate.

The remaining functions associated with data channel access depend on the type of transfer being
made (we will first consider a single isolated request of each type).

Data In. As DCHA ends, the processor turns on DCHI and the final instruction cycle is extended
while DCHI holds the contents of the device data register on the bus. At the end of DCHI the
processor strobes the data into the memory buffer and begins the next processor cycle by generating
RQENB, which turns off DCHR. During the actual data channel cycle, the processor simply stores the
data in the addressed memory location.

Data Out. At the end of DCHA the processor begins the next cycle by generating RQENB, which
turns off DCHR. During this cycle the processor retrieves a word from the addressed memory location

and brings it into the memory buffer. It completes the cycle by placing the contents of the memory
buffer on the data lines and generating DCHO to load the word into the device data register.

Alé6

RQENB N 300MN |e———150 MIN 300MIN |
ocH s [T Areoman j I iy

= THE_PROCESSOR NOW
DCHR T Xi\ - STORES THE DATA

AN o /

DCHP IN)
DCHP QUT 500 MIN

DCHA 500 MIN
__________ /

DCH SEL 200 MAX
——————— - TOTAL

DCHI 200 MAX E 500 MIN b

200 MAX
DATAG-15 NMEMORY DATA IN
DATA STROBE ADDRESS 3 h
S

INTO CP L I

ocHMe

ocHMI T~

STANDARD DATA CHANNEL CYCLE: DATA IN

RQENB [\ 300 MIN 150 MIN 300 MIN L r—

DCH SYNC (;[
DCHR

DCHP IN

DCHP OUT 500 MIN

DCHA \(~.Esoo MN
200 MAX >

o

NS

TOTAL
DCHSEL _ _ _ - MN— o
DATAD-15 200 MAX MEMORY DATA OUT
ADDRESS |
DATA STROBE [; leel— 150 MIN
INTO CP , -
DCHO l 150 MIN —~—-l_|} 250

________ MIN
OCHMO ; El

STANDARD DATA CHANNEL CYCLE: DATA OUT

Al17

RQENB |\ 300 MIN 150 MIN 300 MIN [
ocH sne | " %50 MAX [./?L /250 MAX
AN

-

N

|

L

|

|

: N

DCHP IN |

|

DCHP QUT 500 MIN :

' |
DCHA 500 MIN [
_________ 200 MAX ! |
DCH SEL ¥ TOTAL /' | | |
————————— 0 MIN— - :
200 MAX ' - |

DATAQ-15 MEMORY | | MEMORY +1

ADDRESS 1 oouT | :
DATA STROBE | ! =150 MIN |
INTO CP] : - :
DCHO 1 150 MIN —~—-I_‘ll 20 !
________ i MIN i
DCHM® q | |
_________ Il Il
DCHM] _________:\S, | |
OVFLO (IF i |
RESULT >2'6) 350 MIN 150 MIN —————

STANDARD DATA CHANNEL CYCLE: INCREMENT MEMORY

D

ROENB N 300MIN le———150 My 300 MIN
P‘r = 250 MAX
DCH SYNC 250 MAX /\XL
.

DCHR : “ “\k | AY[-)

4

|
|
{7
|
|
DCHP IN |
|
DCHP OUT 500 MIN ' |
DCHA 500 MIN ' l_
__________ 200 MAX L ,
DCH SEL TOTAL | i
————————— {
|
DCHI 200 MAX 500 MIN ! !
+ 200 MAX | .
DATAQ-15 %:WEMORY pATA IN "0 MIN MEMORY + !
DATA STROBE ADDRESS = i { DATAOUT 5
INTO CP [1 I ! i = Mk
1150 ! I .
DCHO k I M!NW :
T 1
DCHM® { :
i n]
DCHMI | |
|

OVFLO (IF ‘
RESULT = 216 350 MIN 150 MIN——~

STANDARD DATA CHANNEL CYCLE: ADD TO MEMORY

AlS8

Increment Memory. The processor performs exactly the same operations as for data out with two
exceptions: after retrieving a word from the addressed memory location, instead of writing the same
word back into memory, the processor adds 1 to the word and writes the result back in memory; and

if that result is greater than or equal to 2'®, the processor sends an overflow pulse to the device at the
trailing edge of RQENB.

Add to Memory. The processor completes the preceding cycle by performing exactly the same
operations as for data in. Then during the data channel cycle it performs exactly the same operations
as for data out with two exceptions: after retrieving a word from the addressed memory location,
instead of writing the same word back into memory, the processor adds the data word brought in from
the device to the word taken from memory and stores the result; and if that result is greater than or
equal to 2'® | the processor sends an overflow pulse to the device at the trailing edge of RQENB.

Multiple Requests. If several devices are requesting access simultaneously or a single device is
requesting access at the maximum rate, the processor will execute a number of data channel cycles
consecutively before going on to an interrupt or the next instruction. When this occurs adjacent cycles
overlap in the same way that a single cycle overlaps the final cycle of the instruction preceding it. The
two timing diagrams on the next page show the sequence of events in a pair of consecutive data in
cycles and a pair of consecutive data out cycles. In both cases the events that occur within the final
instruction cycle for the first data channel cycle also occur within the first data channel cycle for the
second.

If the DCH SYNC flipflop in the device that is being serviced is clear at the leading edge of
RQENB in the data channel cycle, then RQENB clears DCH REQ in that device. But if DCH SYNC is
already set again, DCH REQ simply stays set, making a second request. In either case RQENB sets the
request flipflops in any other devices that require service.

If there is a second request from any source, the processor generates a second DCHA after
completing whatever operations are necessary for the first access. DCHA thus occurs at the end of
RQENB for data in, but following the output of data for any other mode. This second DCHA sets the
DCH SEL flipflop in the device that now has priority (clearing all others) and initiates whatever other
operations are necessary to prepare for the second transfer.

High Speed Data Channel Transfers

On page A21 are timing diagrams of the high speed data channel cycles for data in and data out.
Note that the sequence of 10 bus operations is the same as for standard transfers, but signal durations
and required device response times are generally shorter. Many of the high speed times are given as
typical, and these are approximately the times the designer should assume and use. Times listed as
maximal are especially critical; eg once RQENB goes on, DCHR must be returned within 75 ns for a
transfer to be executed at the high speed. Timing differentials between standard and high speed for the
other types of data channel cycles are the same as for those shown except as noted in the diagrams.

All device interfaces that use the high speed capability must be mounted in the main frame or an
expansion chassis and must be grouped at the processor end of the bus. The DCHP OUT signal out of
the last high speed interface must be connected not only to the next device on the bus but also to pin
1A95 in the 800 series, 5A12 in the Supernova computer. This connection defines the two classes of
interfaces: all interfaces on the bus before the return point operate at high speed, all beyond it at
standard speed.

A device having a data rate slightly lower than the maximum can be synchronized to the high
speed channel. Each time RQENB is generated, the device must respond by returning DCHR and
simultaneously grounding the WAIT signal in the high speed logic (pin 1A90 in the 800 series, SA63 in

Al19

}.__—- FIRST REQUEST

SECOND REOUEST———‘
SAME OR DIFFERENT DEVICE

Roens | | | |

Bl

DCH SYNC _,_‘L L |

e | |

- 1 1
i R |

o . 1
DATAB-15 | T | oara | | zﬂg[')“ROE%YS | oara L_

DATA STROBE
INTO CP

| | |

|

I‘— FIRST REQUEST

CONSECUTIVE DATA CHANNEL CYCLES: DATA IN

SECOND REQUEST

e
-

SAME OR DIFFERENT DEVICE

.

DCHR | [L
DCHA I | l I
L |

- M | oo T, L

DATA STROBE
INTO CP

I

DCHO

1

A20

CONSECUTIVE DATA CHANNEL CYCLES: DATA OUT

RQENB

OMIN | o T 300 MIN I

-

DCH SYNC | 75 MAX

DCHR S\ ‘13
]

DCHP IN

DCHP OUT 400 TYP ' 800 TYP :

e e

DCHA 500 TYF i NEXT DCHA FOR cowsecunvsﬂ1
_________ J
OCHSEL ;so ’me
DCHI 75 MAX W‘\
1 75 MAX -

DATA® - 15 QAED&%RSvg DATA IN (.l
DATA STROBE \ ﬂ ﬂ
INTO CP
pcwmg T
ochMy T TTTT==

- — —— — —————— ————t—— ——

¥600 TYPICAL FOR ADD TO MEMORY
HIGH SPEED DATA CHANNEL CYCLE: DATA IN

RQENB E 300MIN t—soo TYP 300 MIN
DCH SYNC I 75 MAX (‘]
%

DCHR
]
DCHP IN \
| T
DCHP OUT 400 TYP—\—/ 1300 h 1000 TYp ————]
I NEXT DCHA FOR CONSECUTIVE
DCHA ! CYCLES
________ —— ;-,75 MAX 7
DCH SEL TOTAL
__________ — []
[}
_ 75 MAX MEMORY DATA OUT

DATAS -15 ADDRESS | 100 TYP
DATA STROBE ! AN
INTO CP / rL l-/-h-&d

4 L 'l

1o 1
PCHO ! !
DCHMO T \\:l
DCHM1

*#300 TYPICAL FOR INCREMENT AND ADD TO MEMORY
HIGH SPEED DATA CHANNEL CYCLE: DATA OUT

the Supernova computer). Then the device actually initiates the transfer by returning WAIT to the
high state. Through this procedure the device effectively takes complete control of the processor,
timing and executing transfers by controlling WAIT. Although such operation completely shuts out
both the program and other channel service, it eliminates the need for multiple buffering and is par-
ticularly useful for handling small bursts of words at high speed.

III DESIGN OF INTERFACE EQUIPMENT

The logical and physical organization of the Nova computers with their in-out buses makes the
design and installation of interfaces for user equipment especially simple and convenient.

Basic Interface Networks

The networks discussed here are for use at a relatively basic level; eg the data channel request net
works only for isolated transfers — it cannot gain consecutive cycles.

Control flipflops used in device interfaces have a clock input, a synchronous data input, asynchronous
set and reset inputs, and complementary outputs. A positive transition at C sets the flipflop if D is high, clears
it if D is low. In the set state the flipflop 1 output is high, the 0 output is low. In general the D input must
reach a steady state some given time (typically 20 ns) before the positivé transition

at C. The outputs reflect the new state typically 30 ns later.* A ground level at S or

Rsets or clears the flipflop respectively, and these inputs take precedence over the I é Al

clock input. A small circle drawn at the D input means the flipflop is set when D is

low, cleared when D is high. A typical control flipflop suitable for device interfaces

is DGC#100-000017 . -1 r O
Every device must decode the device selection lines to generate a select ?

level that ensures that only the single addressed device responds to the
program. Decoding is performed by a simple NAND gate, but since the device selection lines provide
only one polarity, the inputs to the gate must be inverted for all device code bits that are Is.

The network that specifies the state of the device and requests interrupts contains four flipflops,
BUSY, DONE, INT DISABLE and INT REQ. The IO reset for all devices clears all of these flipflops
directly. With exception of the general reset, INT DISABLE is controlled exclusively by a particular
bit of the mask in an MSKO. Signals generated by the control function part of an 10 instruction affect
the flipflops only if the device has recognized its device code on the selection lines. The clear pulse
clears all but INT DISABLE; the start pulse clears DONE and INT REQ, but sets BUSY to place the
device in operation. Whenever this device is selected, the states of BUSY and DONE are placed on the
SELB and SELD lines.

When the device completes its operation it generates a completion signal that clears BUSY and
sets DONE. The signal need not act on both flipflops directly; it can just as well clear BUSY whose
state change sets DONE, or set DONE whose state change clears BUSY. Note that the completion
signal is guaranteed to set DONE only if its data input is independent of any logic signal, eg if D is held
at +3 volts. In the configuration shown here the input is BUSY(1), so the completion signal will not
set DONE if the program has cleared BUSY.

*Of course, any interface must be designed for the worst case of the components being used.
A22

¢ 7 — ROENB—{C 1 .
DEV ' SELD DEV INTR
DONE INT
DEV DEV INT REY
BUSY(N—D ¢ DlSABLE(Q)D,_O '
o DEV DONE(1)
)¢ Y
START
DEV 4
COMPLETE—-{C 1 _ owsko—c 7
DEV DEV @— SELB DEV
SELET BUSY INT
DISABLE
oo ¢ DATAX—D 0
CLEAR — T

DEV SELECT
|0RST—] >o—4

Once DONE has been set, and provided INT DISABLE is clear, the leading edge of the next
RQENB signal from the processor sets INT REQ, whose 1 state puts the INTR request signal on the
bus. RQENB is generated in every processor cycle, and as soon as either INT DISABLE is set or DONE
is cleared, the next RQENB clears INT REQ, dropping the request. In designing an interface do not
attempt to do without any of these flipflops if the device is connected to the interrupt. There is no
redundancy between DONE and INT REQ. Because of the serial nature of the priority-determining
signal on the bus, it is essential that request signals be synchronized by the processor. Hence DONE
must not generate INTR directly. Moreover INT REQ must change state only on the leading edge of
RQENB in order to ensure sufficient time for request acknowledgement to work properly. Remember
that although INTA may occur several cycles later than the request signal that causes an interrupt,
nonetheless the timing is still critical because RQENB occurs in every cycle, and the device that has
priority when INTA is given may not be the same device that caused the interrupt initially.

If the INTP line into a device is low, the device generates a high INTP signal for its own internal ‘

use; if “its INT REQ flipflop is clear it also transmits a low INTP signal out to the next device. The
terminators shown here are necessary only where the signal goes in and out of the board. Usually
several interfaces are on a single board, and the single stage shown here is replaced by a chain with
terminators at each end. If the system contains a large number of interfaces, timing becomes critical
and the chain on a board should be replaced by two circuits, one of which establishes the priority
among the devices on the board, while the other
quickly passes the signal along the bus if no device OV IDNETVP +5V
on the board is requesting an interrupt. Note that
if a board is removed, the input and output pins INTP IN ‘
must be jumpered to maintain the continuity of 0C INTP OUT
the signal on the bus.

Associated with the priority circuit is a logic
net that places the device code on data lines 1015
when INTA is true, INT REQ is 1, and INTP IN is true at this device. Drivers need be used only to
place 1s on the bus; a data line is automatically O (high) if no driver is attached.

For handling data channel requests a device must have a network containing three flipflops, DCH
SYNC, DCH REQ and DCH SEL. When the device requires access it sets DCH SYNC, whose 1 state
allows the leading edge of the next RQENB to set DCH REQ. As in the case of an interrupt request,

A23

DEV INT
= REQ(®) =

every device connected to the data channel must contain both of these flipflops as no asynchronous
requests can be allowed; DCH REQ must change state only on the leading edge of RQENB. Associated
with these flipflops is a priority circuit which is identical to the interrupt priority circuit, but which

DCHR
DEV READY—C T}— ROENB—C 1 OCHA—[C 1 —
DEV DEV DCHN”

DEV DCH SEL () DCH DCH

DEV DCH REQ(1) REQ SEL
D D 0
DEV DCHP ’
DEV BU T DEV DCHP T
RS IORST

passes DCHP if DCH REQ is 0. When this device has priority (ie when DCHP terminates here) the 1
state of DCH REQ allows the next DCHA to set DCH SEL. The 1 state of this flipflop generates the
mode signals to inform the processor of the type of :

transfer desired. Note that since drivers are 5V DEV gy

required only for Is on the mode lines, two drivers DCHP

are necessary only for add to memory, and none DCHPIN _—
are required for data out (the circuit illustrated oc DCHP OUT
above requests access to increment memory). DEV';(-::!

During the cycle in which this device is being
serviced, DCHA also clears DCH SYNC so it is
available in case the device wishes to set it again to request another transfer. Note that clearing BUSY
also clears DCH SYNC so that no device can belatedly gain access after the program has turned it off.

REQ (@)

Design Examples

Consider first a very simple device that is connected to neither the program interrupt nor the data
channel and thus needs no flags at all. Such a device is the one illustrated here, which allows the
program to read three switches and to control three relays through a buffer. Of the basic circuits
discussed above, the only one this device has is the NAND gate to decode the device selection lines.
Giving a DIA with device code 37 loads the contents of the switches into the left three bits of the
selected AC (an open switch is read as a 1). Note the use of open collector gates to drive the data lines,
and the use of a resistive voltage divider to generate standard logic. levels from the switch contacts. -
Giving a DOA with device code 37 loads the left three bits of the selected AC into the relay buffer to
control the three relays (a 1 from AC closes the relay contacts). Initially the contacts-are open as the .
buffer is cleared by IORST. If the device contained only the switch register or the relay buffer, we
would need only a single input gate, as the data transfer s1gnal from the processor could replace one of
the constant inputs to the device selection decoder. _

Note that many of the inputs from the bus are not in the polarities listed for bus signaIS.
Invariably any but the most complex interface would be mounted with a number of others on a single
board that draws only one load from any given bus line. In other words all the interfaces on the board
share the same set of receivers. All DGC-supplied boards are designed this way, and it is strongly
recommended that the user do likewise. Only an interface for a very complex device would require an
entire board.

A24

+5V +V

J_ Swo —B’_ DATA® c 1 =
+bV DATA® D © +V
% IORST —{>o —

A

4»—3"_ DATA1 S

+6V DATA1 D ¢ +V
% J_l -—
. ——)
H

o

RD

<#—19’— DATA2 1 —

DSP RD = RELAY DRIVER

DATA2 D ¢
DATOA —4[) D

SWITCH REGISTER, RELAY BUFFER

DEVICE CODE 37

Example: Punch. The interface for the high speed paper tape punch, which is illustrated on the
next page, shares a single board with the interfaces for the teletype, tape reader and real time clock.
The lower half ‘of the drawing contains circuits for functions common to all the interfaces. At the left
are the receivers for the data lines and other signals. At the right are nets that generate a common
select signal by decoding DSO-2 and generate common device code digits for INTA. The codes are
10—14 so bits 10 and 11 are 0, bit 12 is 1, but bit 13 is 1 only for the clock. (Both nets can be
jumpered so the codes can be 50-54 instead.) Across the bottom is a chain that receives INTP IN,
generates an individual acknowledgment signal for each device, and passes the priority signal along the
bus only if no device on the board has an INT REQ flipflop set.

In the middle are the standard circuits specifically for the punch. At the left is the gate that
determines when the punch is called by decoding DS3—5 gated by the common select level. At the
right is the net that places bits 14 and 15 of the punch code on the bus when an interrupt is
acknowledged for it. The remainder of the center section is taken up by the state-interrupt network
which is as described above (in this specific case INT DISABLE is controlled by mask bit 13).

The upper part of the drawing contains the 8-bit punch buffer and logic to turn on the solenoid
drivers in the punch at the appropriate time. A DOA that selects the punch (eg DOA AC,PTP) loads
the buffer from bits 8—15 of an AC. If BUSY is set, the advent of the proper position in the punch
operating cycle triggers a one-shot that allows 1s in the punch buffer to drive the lines to the punch
for 4.5 ms. Note that the leftmost driver always goes on — it punches the feed hole. The termination
of the delay generates a completion signal that clears BUSY and sets DONE.

A25

PUNCH

<l WA

ONE

PUN —{J PUN(D PUN] PUNZ PUN3 —J PUN4 .PUN5 PUN6 PUNT
BUSY(D) SHoT
DELAY oo MR MR
5y 45Ms | cp cP
of-compLeTe | | | Joc o b
K K
PUNCH FEED SWITCH PUN ¥)
SELECT :D’_QD
DATA OUT A DATAS DATAID DATAI2 DATAI4
COMMON DATA9 DATA11 DATAI3 DATAIS
SELECT
8053 SELECT —e 1 5 ROENB—C 1] _
0S4 PUN PUN INTR
DS pun | | DONE PUN INT A
BUSY(N—D @ D'SABLE‘WD-a D ¢
PUN DONE(N) o
INT ACK
START | PUN INT
PUN 4 REQ()
COMPLETE—C 1 ___ mMsko—c 3 :
PUN PUN _@J—SELB PUN
SELECT A INT
DISABLE
1D @ DATAI3—D @
CLEAR 5 T
PUN SELECT vy

10 RESET—] >0

oo] ey
DATA8 o—d >— DATAB DATIA o——{ >o—d >— DATA IN A = o555
DATA9 o—[>— DATA9 DATOA o—{>o— > DATA 0UT A . Qo—_ bs3
DATAIp o—[>—DATAIB INTA o— So—d >— INT ACK "54%32?
DATATI o—o[>— DATAIl STRT o—>o—o[>— START ﬁ% §
DATAIZ o—o >—DATA2 CLR o— So—d>— CLEAR RD ACK —
DATAI3 o—d>— DATAI3 MSKO o—d >—— MSKO

DATA4 o—o>>—DATAI4 ROENBo—d >——RQENB INT ACK

— INTP OUT ——i
DATATS o—— >— DATAIS ~ IORST D—Dwri oReser VT OUT oK AcK
10 RESET

+5v +5v

--o—0 DATAID

O DATAT2

o DATA13

— OINTP OUT
INTP IN ©

REQ(®)
= RD ACK TTI ACK CLK ACK =

PUNCH INTERFACE

A26

058 o—d >—1Dsp

RQENB o—d >—— RQENB

PHA DCH SEL(1) PHA DCH ADD
PHA DCH REQ{)
DCHA PHA DCH ADD
PHA DCHP

MSKO o——d >—— MsK0
{ DCHR

DCHA o—d >— DCHA

+5V PHA DCHP

+5V

CONV DONE(N—[C_ 1 ROENB—C__ T4 DcHA—{C 1
PHA PHA PHA
DCH DCH DCH
SYNC REQ SEL
PHA BUSY() TPHA DCHP T ~ PHAINT REQED) =
PHA DCH ADD TORST —4 i Dsd
IORST 0s1
Ds2
053 PHA SELECT
OVFLOW c 1 ROENE—C 1 054
PHA DCH SEL{1) PHA PHA 0S5 (ag)
DONE INT +3V
PHA REQ +3y PHA DCH
Busymy—+10 @ —_lDD-OD] SEL(Y) .. oDCHMI
1 7
STRT 0C Jo~o INTR
) PHA DONE(N) -
Lc 1 Msko—{C 1 oc o
g?LAECT PHA e o =
PHA BUSY(1
BUSY _JDISABLE BUSY() -0 SELB
oo 0 DATATG—ID @
- =] T NTho PHA INT REQ(1) E SATATG
\ PHA |NTP:. £ . (40)
10k 3T o] So——g—
7 LORsT
DATOA ADR EXTI(1) —__ ADC2 — —
PHA DATA] DATAG ADC7DATA11
SELECT
ADR EXT2()) —_ ADC3 ——— ADCB— _
¢ (- oDATAZ - opaTAT MOC8 DATAIZ
ADR
EXT1
— ADR EXT3(1) ___ - — - I
DATAl—19D @ m DATA3 ADC4 DATAB ADC - oDATAI3
e) ADCO— — ADC5 — ADCIG— —
- ADR @o«amm 0 DATA9 bcio - 0DATAI
EXT2 DATIA
DATA2—dD @ PHA
ADC! o - _ . _
SELECT DATAS ADCe DATAW) ADCH DATAIS
DCHA
PHA DCHP
PHA DCH
REQ())
ADC ouTPyTS PHA BUSY(T
0123456789101
MBIl I LI I I I 1] 1 1LSB ¢ 1
DETECTOR 12-BIT ANALOG TO DIGITAL CONVERTER o
ANALOG ADC D ¢
CONV DONE (@) ~— EQUIPMENT DONE
PHA BUSY(1)—): 9 PHA DCH ADD PHA BUSY(@)

PULSE HEIGHT ANALYZER INTERFACE

A27

At the left is an input from the punch feed switch. Holding this switch on keeps the buffer clear
and allows every synchronizing signal from the punch to trigger the one-shot and thus produce a
length of blank tape (ie tape with only feed holes punched.)

Example: Pulse Height Analyzer. The interface shown on page A27 uses the data channel as well as
programmed transfers. Its function is to increment the word in the memory location whose address is
equal to the output of an analog-to-digital converter. The upper half of the drawing contains only
standard circuits already described. At the right are the stages in the priority chains for the data
channel and program interrupt, the device selection net, the single driver required for the data channel
mode lines, and the net that supplies the device code for an interrupt acknowledgement. At the left
are the state-interrupt network and the data channel request logic (INT DISABLE is controlled by
mask bit 10). The gate in the upper left corner determines when the address is being sent in on the
data channel; it clears DCH SYNC and is also used by the interface logic to determine when the
address transfer is complete.

In the lower half of the drawing is the logic unique to this particular interface. At the bottom is
the analog equipment and digital logic to control it (this logic ‘may vary to match a specific analog
unit). Above it are the drivers and associated gating to place the address on the data lines. At the left is
a 3-bit address extension register that is loaded by the program. The converter supplies only the low
order twelve bits of the address; the program supplies the high order three bits and thus specifies a
block of 4096 words to be used as the data area.

To place the device in operation the program gives a DOAS AC,40, which supplies the address
extension and sets BUSY to enable the conversion equipment. When a pulse is detected, the converter
translates it to a 12-bit number and at completion generates ADC DONE. This pulse sets CONV
DONE, which disables the converter and sets DCH SYNC. The leading edge of the next RQENB sets
DCH REQ to generate DCHR. When DCHA turns on and this device has priority, DCH SEL is set,
generating DCHMI1 to specify an increment memory cycle, and the address from the extension register
and converter is placed on the data lines. The processor increments this location in memory and sends
the result back over the bus, but it is not used in this particular interface. The termination of DCHA
truns off the logic level DCH ADD, which in turn clears CONV DONE to reenable the converter.

If a location is incremented to 2!, the overflow pulse sent by the processor clears BUSY and
sets DONE, turning off the device and requesting an interrupt. (Clearing BUSY turns off the converter
and clears both CONV DONE and DCH SYNC.) The program can give a DIA AC,40 to read the
address and hence determine which location overflowed. The program can resume conversions simply
by setting BUSY (as by a DIAS AC,40 which reads and restarts), and it can stop the process at any
time by giving an NIOC to clear BUSY.

IV CONSTRUCTION OF INTERFACE EQUIPMENT

Data General supplies various types of hardware to facilitate the connection of customer designed
and built interfaces to the 10 bus. The most extensive is the general purpose interface, which contains
all of the ordinary circuitry needed for any interface (this is described below). Other items are more
primitive and allow for greater flexibility in organization and arrangement of components.

The illustration on the next page shows the layout and dimensions of a standard 15 X 15 circuit
board. Following that is an illustration of a standard pc board with a hole pattern for mounting 155
integrated circuits of the dual inline type with 14 or 16 pins. The middle three rows have wider
spacing to accommodate twenty-three 24- or 36-pin packages (each pair of the larger packages replaces

A28

three of the smaller). Next to each hole for an IC pin is a pin for wire wrap connected to it by printed
circuit wiring. The board is also available with sockets for 14- and 16-pin ICs or with neither sockets
nor pins.

General purpose wiring item DGC order number
Blank board 1021
Board with pins only. 1022
Board with pins and 155 sockets 1023
Protective cover 1024

To construct and install an interface simply insert the ICs into the board, wire wrap the board pins to
each other and to the connector pins as required, and insert the board in a vacant slot. Blank boards
must be used for 24- and 36-pin ICs.

The sockets for the board are DGC#111-000030. Wire wrap pins are available on a reel, DGC#111-
000031; DGC#109-000036 30 AWG wire wrap wire is recommended. The following items are also available:

128-000070 Wire wrap gun

128-000061 Wire unwrap tool, 30 AWG
128-000066 Wire wrap 30 AWG bit
128-000065 Wire wrap sleeve, 30 AWG

1021 BLANK BOARD

A29

MYOMLMY AW ATJL VIO

SNOLLVDIdID3dS Q¥VOo8 LINJYID J g B £y ey

AWRL SBLV G LO™N S DNOH - =3
o “$IMINI SO z ~i'a 92383 0L0")
= ouve 3 MONEE NOISNAIONG WANIXYW ‘SIMIW IE°
pa—]
*=O2VO8 BHL INORY SININOSWOD 30 LHDIBH W O NIXYIW u/v | wiQ O.GUJ S v Q
. L via 230! el
) . - B DD QY v e e 2 YO
ne oot - VIO 209 396 <
> =7 LAvaO » | e - TA S V1O S00°FOWO " v
| wu.,.‘..u - S . JREEREE - - - ALD RIS 3von)
oL
R f— 23T Rl na i hlnom_,
B | L N , , .
DACAY NAONS 13dewYy L Ny ELS D3 5 ® g e T i + |J,I4l‘\Jv|¢x..w$. = =
=V Drave IML BMY SSie Lm3eva * e —3 - N - %v ym, NS N [N o
[0 LD NedNed Aﬁ > _ | “‘-mwo.
Za % wsa-c e L«a (Garny aoss OSET =
P \ H
DLO™ SimL N NMoHS aw i —-
N ve 3 =3 3IE ™Y D =P~ 3 St i
THed LAPBVYVL MAILVULSIDIW v NOiLac g ‘ H !
(5208 w108) '9'© ™o "8 S _mEmNNCaro~ I |
WO/ QY HOILT 40 An 1 08 Ci $30m 33 D 6 !
——————— i
ANNS SIS 3RANca oo h i
4G DIWa W\ Ol T VLav SaomE |
CATNIA MO BT B oL NvHa 8 |
D133 B 'Y 7 Q3 WIVYAN WY SWIONIL !
3A'S W3ATI0S NMOHSE TS T DNOAVIL D L H
©s oso | P
VO QO OO 40 WAWNIVY 3F ©L T MRS Ova L3OV O - 119 3TVWDS
NOILDNAAY CLUHG NQ 100 S w2 EL I N ! [V OO 66
SLIOBYL 3IO0H 3 NIIMLIIF A 1 BONOS anNv v 245y
P ATANOAEWOD NG NIOITRIVNIA T YNOS VYIS X S BADNIS
> . 0 A T =14 HWOMLDYV
LAOMTVS WO SMNOI{NINIG TVIINMYHOIAVY TT[ACTE KV a0 MiwLlag
SMNOILYDIADIES 3A0|R WY W4 SHIF S LoviNneD via _—
[Wavia GNOD F SNCILVIIAISIASS DA08V " 4 oo -
VA4 SHOLOINUNLDY JLVWIa HIONOS MG NIy €
'
€00 F GO ADNIMAAAY ITTATNMDIINL IVIBILYW T SLO"
3V8VYOINddY IWIANM Luvd SIHL OL ATday TNWHS i oLo*
190000-801 239G WIAWAN NOILVIIIIDIALS ASvHIahd °I oze”
S3a0n L
ML SO - — \~
38 oL 3INM i (43w oo's, 2 Q
BWIVH SSow D \S2a0 - oS Lo WOJﬂ.ﬂ_
©S ooz Shn Roinera ad _
™NROr S sy T Tmrit o) m '
WO/ T H3iB AC 3Dus !
112 3o / L - cog:
$370H 3, WO A VW L B e - - R RESSASIEYRS 2 .—» - 4 o — —_——— JR—] wao.oow »
LIoWVYL NowvdLSIOaYy
Amr X - e * OOV I i
- S oSt
. |
N —viBa oMLy ! ! *
v aTia Ai3Q
via omo- . m— ~iva3a .
/ - 1127 anvos
2007009 w1 o
(AnL 3NN SO0 ae oy - DvARQ Mmemany
SLO - OLe - e) \v Tiviag
o2, [l e vendIV cWoN | v
.\\ﬂ . SIS DSVA ST
‘] - TAT YIS VA3 6p T T L0 Dy e]
. | TANVLY IYIAIDIY ™NO M
tasL)oTE S ! QN = SVE SZID
* - * '\ _ ﬁ\!..%HU(ﬁn‘, TIVOOE e -
(a33) waa seo—" AT - B
avey > Y
#V6S
200, 2%y]
I;h »
(31vna anoe)) —1

"7 Wio ariinog
$o o€

(@rL) osex Qoo - = 7
ML 010 SuiVM Sacwud
(3Lvha GneDd Znyr:m'i
sm3s ~a
MVTANCD
HHL 8BS0 - ¥RO — o FSED-

A30

Also available is a special subassembly frame with two 100-pin connectors on one edge. This
frame occupies one slot, and eight 6%2 X 3%-inch boards can be mounted on it. These small boards are
available in the same configurations as the large boards discussed above. Each can hold twelve ICs with
14 or 16 pins or eight with 24 pins.

Subassembly item DGC order number
Frame 1001
Blank board 1002
Board with pins only 1003
Board with pins and 12 sockets 1004
Protective cover (for entire frame) 1014

To use the subassembly accessories for an interface insert the ICs into the small boards, attach the
boards to the frame (four screws per board), wire wrap the board pins to each other and to the
connector pins as required, and insert the frame in a vacant slot. Blank boards must be used for 24-pin
ICs.

Subassembly Accessories

A3l

General Purpose Interface

To further facilitate the addition of special peripheral equipment to the system, DGC has
available a general purpose interface that includes all of the ordinary circuitry needed to connect a
device to the 10 bus. This interface is mounted on a standard 15 X 15-inch board that has two 100-pin
connectors along one edge and is divided into two parts by several rows of wire wrap pins. These pins
number some 200, of which forty-eight are wired to edge connector pins corresponding to unused
positions on the computer back panel. One part of the board is reserved for customer logic, and is
configured for mounting sixty-five 14- or 16-pin ICs (sockets and extra wire wrap pins are also
available). The other part contains the DGC logic with various points connected to the wire wrap pins
or edge connector pins as appropriate.

Drawings on pages .34—A38 show the logic in the interface (wire wrap pins are indicated by
squares, connector pins by circles). The basic interface, option 4040, includes the board as described
above and those basic interface networks described in Part II that are necessary for handling almost
any device. Two other options are also available, either or both of which can be mounted on the same
board. 4041 is a pair of data registers; 4042 is the logic necessary for connecting to the data channel
(the control parts of this logic are also described in Part II). Tables referred to in the text are grouped
at the end of this section.

ST

General Purpose Interface Board
A32

Pins used for connecting the board to the device are those that are available at any slot. In the
1210, 1220 and 820, the rear connector is the standard paddle board and the wiring configuration to
it from the slot is the same as for any other device. Other machines use a 52-pin socket connector externally
and the correspondence of back panel signal pins to connector pins is given at the bottom of page A34.

Basic Interface 4040. Mounted on every board is the logic illustrated on pages A34 and A35. The
first drawing shows the circuitry that connects the interface to the data and control lines on the bus,
networks for passing the interrupt and data channel priority signals along the bus, and a device
selection net that allows a choice of any device code by putting in the appropriate jumpers. Note that
the output of this last net gates those control signals that should be received only by the selected
device. Connected to the data line drivers is an OR gate that is capable of driving all sixteen of them
for the transfer of a full word. The second drawing shows the Busy, Done and interrupt logic,
including a net that allows selection of any device code for reading by an INTA.

Table I lists all wire wrap pins associated with the basic interface logic and gives the fanout or
load factor for each.

Data Registers 4041. This option consists simply of the two 16-bit shift registers illustrated on
page A36. Each register can be cleared at MR and can receive serial data at J-K for right shifting under
control of clock input CP fed through an OR gate. The output register can receive parallel data,
enabled at PE through an OR gate, from the receivers for the IO bus data lines; its outputs are
available to the customer logic. The input register receives parallel data from the customer logic, and
its outputs are connected internally to the data line drivers in the 4040 (where they are available at
wire wrap pins). Table II lists the pins and fanout/load data for the 4041.

Data Channel Logic 4042. The final two drawings [pages A37 and A38] show the logic supplied
for connecting a device to the data channel. The first shows the standard flipflops and nets that handle
the data channel control signals on the bus. The second shows two 16-bit counters for keeping track of
the number of words processed and the current location for direct memory access. Each counter has
an OR-gated count input at CL1, an OR-gated data strobe input for receipt of parallel data from the
bus, and a full register clear input. The outputs of both registers are available to the customer logic,
and the current address is supplied to data line drivers enabled through an OR gate. Pins and
fanout/load data are given in Table III.

A33

(OYOP) NOILI3T13S 3DIA3Q ANV SIVNOIS SNA :3IVAUILNI 3SOdY¥Nd TVHIANID

_ NGt
v W
oss 272 (@) baa
CES g ant
Ano \k\—MQ\O _ v@lr A.m'ql’b NI NI
?) 26t/
OEL
V27 NI GINT
\.MY
2 123135

EpE]
di3

09

1 123736
3n3a

2H]

2™ vibg

& 100 viva

7S

& 42O LU

& Lo

414

! AP3T3S F21A3Q

L oy
1 s&

= bsv

=
P
b€

2 N30 guvg

MN3%5% youva
~ esy
T

.
751
L MWM viva

Ll

foz
LU Z A

(224

m 0/
T IM i
en LA

@ &0 A1D

o Lo
S0
HVMU

72274

lwvs
Pt Eoloa

u §%

-g (1) ¥bivaz |
&/ M

Nid 4O0LJO3NNOD o
Nid dVHM 34IM 0

222
L
2 O
220-6>
T \
CERLm
\
¥
\
NSE 1+
e)
85-/12 Wt
1F
)\
Urs
)
LS
i
ygor e
2N A m.
! :
9 o/ 4
A€
Erd + 2 on
Aae At A

%99 LM v \2e g

v by |, o—— -~ - - —d 227"
L, LIV SN
£1 4l o —— ———d 221

A vod e

.
[92n|(8
2l viwg o— ?m

659 sim

11 Lo o'.f..‘l@o[‘.
— 8ed pim o\ 20z

0l Yikd o— - - - -
sca oim

NI dLINI

T L2373
AT
k:
'
gL
9.7 i.w'_y
-8, hsng
gr3g - o 4nl it TN
e o7 g T ey (Wakea
e Q¢~.
29 -

(Ov0b) LdNYYILNI '3NOQ 'ASNG 13IV4HI LNI 3S0d¥Nd TVH3N3IO

NIid 40LJ3NNOD O
Nid dV¥M 3¥IM O

S |'szn €

1€ (Dwwoq
- o

o&ll 43577 OX
2 &

TILYUNI Y01 319V TIUNG SNid

9g! O———06249
52/ (—-04L998
Y2€/ O——obd
s€/ ———0 €98
gl O0———C 258
vo! ———0 I5€
v96 0———o0 6
vre/ o——o 8
£€/ O———o obd
2¢! O————0 ¢ed
Y2l O0———o0 %49
1€l O—¢ &9
28 O0——— 128
£6 O———c 429
68 O———os52d
or8 O—o0 €29
29 0—o0 ¢4
9 G——0 sid
2. g———o €9
Y2 ——o0 N9
L O——o0 %9

S ————o26V
0L O— I6Y
vy o——o 08¢

VoL F——0 684

vy o——oe8v
49 O———o8Y

£ 0——o098Y
89 O——o 98l
2 O——o ey
489 o———o €8t
49 o—ol8Y
LS O——oOo 6L

2 0—o8Y

9 0—oL

| O————o %Y
6y O———0 SLY
& o———oLlY
& o———Lt
v o——c 696
I o————0 49

L ——o s
62 0——o £

e 00— —o0 I

80— 65¢
¥8 0————0 LSY

6 O—O0 bt
o O—O0 LhY

A3S5

(lbOY) SY3LSI93Y V1VA :30VIHILNI 3S0dHNd TVHIN39

Nid H0LO3NNOD ©
Nid dVHM 3¥IM 0

£/ _13 v/

43181934 1Nd1NO

Y2E €€

L

Ag+

C@

]

Siuvg bruvg EWVT Tivivg 116IKT OorvabT 6VUVT 8 VUKT 4 vivg vk Swuva ¥ viva (174 T kg [(g
o
og ﬂﬁu\
< » 5 # 4 ? 5 [4 2 £ L 4 b 5 #
2zNn “\W en by e pen N een -
vILSID WY - vaiz/ o3V : eﬂu wILSI IV ¥ : wILEI OZH o ow
L AINS - ASIVS [L AINS o w,a LAINS wwo——
1)SIQ0 (T (WEGo (DT/To i [T () Ireo (1) orqo ::au () ng DEn W4q0 (1990 (1)SA0 (14go <= (Weao (nzgo (100 ogo = =1 L
EY & Hl I’z ET) € £ & » ! L € 1 s e i Q.M.-
s £/ 7" & € ’ £/ lw\ o . 6 £/ ”" ’ s ! 3 £ s /
o .7}) AS~
YV ¥ Y (%)
2 2z o e 14 2 > . 27 o 2 2 8 [4 2 k4
- 0 ' ! 1 {
<4 Yoz 52 92 £Z v2z qm\ 124 (474 4 (74 6 ves L8 85
= yog
§31S1934 LNdNI ok B \J_ _ﬂ
~V=
Ed +49l _ h
7 m..wv_ @)
W ac t X
n so- I ri: MRl
27> JRRLIEN
S+
2e
Siiydl 1 AT E'dval T iva T N ayax CIFT L0 4 6lvaT givex Luwer 2uvaT Slvax i T E400T TANTX 40 ouimx Ju
Qp: 5w y9sn 9l Qg y20 oAl 7 ewzp 2@ 220 wrg o A A &
As-
4 N - ‘- < 3 5 . L 2 2 * - = ~ as/
NE
ozn W siN /..rm 2in ~Pr VARG bl g v
wLS /oy S wILSIDZ Y “= >ILS5/DTY = vas/iey w_ [AS+
N N PN ER N
Lk - o—_— LIIWS N SO 2AIHS b LAIns g CA—
()s/dyal (Db/vival (DEVIVA] OZivivg] < [F \wival nonuvgs (éuvar (N3uval = (Veuvar ()uval ()Suvdl (Dyurgl < ()ELVTT (DZVET ()1 ()Olkal a
H ?
[z 7 7 I £ 3 r s/ U P Y] Iz I|_ 27 I3 % s/ e 4
l -2
A+

A36

(200¢) TOHLNOD TINNVHD Viva :30V4N3ILNI 3SOd¥Nd TVH3IN3D

Nid 4O1J3NNOD ©
Nid dV¥M 3¥IM D ﬁ - Y L3523y 0r
ol N

#$ T Tglosafu 7 i
O
- £/
T
0" |g0° |8 |50 | S0
Toe> > 2> [92>
NS+
T - T
w
5 WAS wag
e — gn3dy

\’banﬁ70 - =3S W

1HOQ ° 73S vdaQ 965

G+

O:WN - 3 HOQ e £/
€2 4
_d2€n ()
gl Y\22J35 o1 (7 17}
P
ale a 2 lﬂu o aks wax
onds £ D
ha vn.w ose
wrsi— . 3 ¢t dnd
6 Nwm] ve AS +
o™ s
As¥
—Q
9z ”0w

A37

(2¥0b) SH3ILNNOD QYOM ANV SS3HAQV :3IVIYILNI 3SOdUNd TVY¥INIO

22 Ved
Nid HO1J33NNOD ©
%2012 oM ¥3LNNOD QHOM viva oM
ey 2/
S Nid dVNM 38IM o
we g%\ rgn
on
T 1e %
e < rI+7 8-
2|5 ien 2
aa \ SIwYT bukG B M nuvg orvg buvad swivg Lwba ombq SwkT ¥ hiva Eva T Twvg olbg o
8 ! ! £
. | i
+ _ or € _ " _ - + or € /| + o E ” + or e ” e
4 L (2] Ce o g ren 2000s wusa P7— 26N 27 aus ol 8cn Fo0Ws v P o5y
°] , 2L n00D '3 y »3enno 72 p VLoD 8 add wzi Mo S AS+
’ ’ / ! Gt
= - T LE) 59 27> g g e g wg qzm Awmw g b
(WstIM () wc\,‘_ (NEM (DTIM o (DNIM (DOIIM (DéoM (N8IM € (1) 2oM SIM (EIM (1) TN (I (1)o; &
s 6 2 4 -5 é 4 2 5 6 z £%
” < £/ 2 & s r £ £ £/ & ’ "
Z Z 2 3 - F7 Y 57
J 3 N, 7 2
o/ 8 2/ 2 =2 .WH 2 14 2 -l 2 (24
og 2 g pa g0/ £6 yaoos 64 2o/ V.4 1274 si 14 oz/ 44 Goz/
020065
ﬂ_ viva vo
%9019 V2 H31NNOD SS3M¥aav i1z
253 a5 o!
S5 E% G
Zén s+ ps+ ®
£ 21
S wabq mrabg EIWIVD zIvIbG A7 AT R Y TU A 7] 4 Lvtvg kg ST ARG Fubg TWWT THWT O KW ﬂ
s .
0/ € 4 + o/ £ 1" + o/ £ 7 L + o/ € "
_, 6N L s O VAL Swans e PF evn 39045 wiva P vrn Foows you O
8§97 N o> i vz rreD EN AL yFurvons 74170 LoD
z1 Aysmrg 418 o 77 poewg g = oy 7 s LY b 5dTm Ay 208 v
> \swo wyw> mewv> wmzvy P > Ltoms _wowa evs _wiva - Pg7 Wav2 W s mwa P e 0wy mwr 1oV Pg7
ST oo & z k2 S gor 6 z 2 5o € 2 2/ <[yozr 6 z 2
-a wDQI 60— 260 —a nwﬂ\n (24 Lo WW\M U— LI L2/ o2/ pnve2/
sl |8 slle 24 |« 2| | 20t g {2 ¢l |e 2] |e s| |2 & le 2 | | |n 2| e =f |n s| |9 ¢l |8
»ﬂlQ ov. ov-i obn 26N 201 2bn 201N 6zn 621 é2n 621 osN ogn o£N oen
>0 » 5= re 29 S0 >0 de e EX) 20 > 20 20 20 20
o/ I'd £/ / £l 14 o/ ’ 14 ’ ol T €/ T <! b o
o0
on
T kv roua oy ama fuura 8 vivad Liipd O yiva S ysvd sowa Y777} 720 1 éped. o kubkq A

Suvg 4l Low

SOCKET
CONNECTOR

W3O A W —

22
23
24
25
26

PADDLE BOARD

50*

17
18
16
15
14
13
12
11
10

[e W o]

4
19
20
22
21
24
23
26

EXTERNAL PIN CONFIGURATION

BACKPANEL

+5
Ground
Ground
Ground
A47
A49
AS7
AS59
A6l
A63
A65
A67
A69
A71
A73
A75
A76
A77
A78
A79
AS81
A83
A84
A85
A86
A87

SOCKET
CONNECTOR

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

PADDLE BOARD BACKPANEL

25
27
28
3

2

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
a4
45
46
47
48
49

*Pin 50 is grounded unless used for a special purpose, such as 60Hz signal

A88
A89
A90
A91
A92
B6

B11
B13
B15
B19
B23
B25
B27
B31
B34
B36
B38
B40
B48
B49
B51
B52
BS3
B54
B67
B69

A39

Signal

DATAO-DATAILS
IDATAO(1)-IDATA15(1)
OB1

OB2

RQENB

MSKO

DCHA

INT ACK

10 RESET

START

CLEAR

10 PULSE

DATA IN A

DATA OUT A
DATAINB

DATA OUTB
DATAINC

DATA OUTC
DEVICE SELECT-2
INT REQ(1)

INT DIS, D terminal
DONE, set terminal
DONE, clock terminal (C)
DONE(1)

DONE, D terminal gated internally

DATAO—-DATAIS pins

BUSY(1)
0 126A
1 123
2 124
3 122A
4 121
5 112A
6 118
7 112

*Without 4041 option [see Table I1].

A40

TABLEI BASIC INTERFACE 4040

8

9
10
11
12
13
14
15

94A
92A
94
91
88A
84
87
86A

Pin

See below ‘

See below
106
108A

51
85
57A
65
42
67A
74
45
41A
18
43A
14A
13
44
50
79
86
53A
56
82A
43
66

Fanout
10*

IDATAO(1)-IDATA15(1) pins

~N N W= O

97
110A
129
128

96

78
130A

73

8

9
10
11
12
13
14
15

90
105
130

T4A

90A
106A

78A
111

Load

[a—

Signal

Input register

ICP1

ICP2

IPE

IMR

J-K

IDATO-IDATIS
IDATAO(1)-IDATA15(1)

Output register
OCP1

0oCP2

OPEI1

OPE2

OMR

0JK

ODO0 (1)-0D 15(1)
DATAO-DATAL1S

TABLE II DATA REGISTERS 4041

IDATO—-IDATIS pins

0 12A
1 12
2 11
3 10A
4 22
5 21
6 20A
7 20

8

9
10
11
12
13
14
15

28A
28
27
26A
36
36A
35
34

ODO(1)—-0D15(1) pins

38
37
38A
39
75
T6A
40A
40

N AP W = O

8

9
10
11
12
13
14
15

18A
19
22A
23
26
25
24A
24

Pin Fanout

30A
31
32
15
14
See below
See below 5

32A

33

16A

17

16

30
See below 10
See below 9%

IDATAO(1)-IDATA15(1) pins

0o 97 8 90
1 110A 9 105
2 129 10 130
3 128 11 74A
4 96 12 90A
5 78 13 106A
6 130A 14 78A
7 73 15 111

DATAO—DATAIS pins

0 126A 8 94A
1 123 9 92A
2 124 10 94
3 122A 11 91
4 121 12 88A
5 112A 13 84
6 118 14 87
7 112 15 86A

*Reflects additional load on data line receivers due to register.

Load

-t
— N RN DA

[S o

A4l

TABLE III DATA CHANNEL LOGIC 4042

Signal

DCH SYNC(1)
DCH SYNC, set terminal
DCH SYNC, C terminal

DCH SYNC, D terminal gated internally

ADD ENABLE
DCH REQ(1)
DCH SEL(1)
DCHO

DCHI
OVERFLOW
CAEl

CAE2

CA RESET

CA DATA 1

CA DATA 2

CA CLOCK 1

CA CLOCK 2
CAO(1)-CA15(1)
WC RESET

WC DATA 1

WC DATA 2

WC CLOCK 1

WC CLOCK 2
WCOo(1)-WC15(1)

CAO0(1)-CA15(1) pins

0 128A 8 107
1 122 9 100
2 127 10 101
3 124A 11 109
4 117 12 92
5 116 13 935
6 118A 14 88
7 114A 15 96A

A42

Pin Fanout

51A 10
46
47
45A
47A
52
64 5
58 10
59A 10
65A 10

113

108

104A
59
60
61A
61

See below 3

110
63
64
62
63A

See below 3

WCO(1)—WC15(1) pins

0 120A 8 99
1 116A 9 100A
2 120 10 98
3 119 11 103
4 115 12 77
5 102A 13 80A
6 114 14 81
7 102 15 80

Load

— e N

CONNECTORS AND CONNECTOR PARTS

Complete Connectors

Paddle board (male)
Plug (female)

Connector Parts

50 dual-position connector
Key

Contacts (twin leaf)
Contact spring

Nova 1210, 1220, 820

Tools needed are available from AMP: crimper, 90268-1; extractor, 91073-1.

Nova 1200, 800; Nova, Supernova

Complete Connectors

100 pin
52 pin
25 pin
19 pin
9 pin
50 pin I70

Connector Parts

Plugs and sockets
9 pin

19 pin

25 pin

50 pin (I0)

52 pin

100 pin

Junction shells
9/19 pin
25/52 pin
50/100 pin

DGC Order Number
4192
1039B
DGC Part Number
111-000117
111-000116
111-000115
111-000123
DGC Order Number
Spare Parts List Spare Parts List
No.—Socket No.—Plug
2100 2101
2102 2103
2104 2105
2106 2107
2108 2109
2110 2111
DGC Part Number
Plug Socket
111-000001 111-000002
111-000007 111-000008
111-000003 111-000004
111-000005 111-000006
111-000009 111-000010
111-000011 111-000012
111-000019
111-000020
111-000021

A43

Screw lock assembly, male

9/19 pin
25/52 pin
50/100 pin

Screw lock assembly,
female

111-000023
111-000024
111-000025

111-000022

All tools needed are available in a tool kit, order number 1112.

A44

APPENDIX B
INSTALLATION

Every Nova line computer mounts in a standard 19-inch rack, has cooling fans at the rear, and
contains slots for 15 X 15-inch printed circuit boards or DGC subassembly frames. The slots are
numbered from the bottom up, and boards are inserted and removed from the right side. The table on
page A2 lists the number of slots and their use for the various computers. In the 1210, 1220 and 820,
the power supplies are beneath the space for the circuit boards; in other models the power supplies are
at the rear.

The first drawing of the group at the end of this appendix shows the way in which a Nova line
computer is packed; unpack the computer with care, and should reshipping ever be necessary, pack it
in exactly the same way (in particular cardboard spacers must be put between the circuit boards). The
second drawing shows in detail the mounting of the draw slides (the unit is shipped with the movable
parts of the slides attached). The remaining drawings show the physical layout and dimensions of the
various computers. Several inches should be left open at the back of the rack for cabling. The console
protrudes 1-9/16 inches at the front of the rack (Nova and Supernova computers, 1% inches), and the
entire unit slides out clear of the rack. In the following table the figures in parentheses are the depth
with the console.

Height Width Depth Weight
- (inches) (inches) (inches) (pounds)

Nova 1210 5% 19 19 (20-9/16) 43
Nova 1220, 820 10% 19 19 (209/16) 56
Nova 1200, 800 5% 19 21-3/8 (22-15/16) 50
Jumbo (1200, 800) 10% 19 21-3/8 (22-15/16) 100
Nova, Supernova computers 5, 19 20-1/4 (22) 60
Expansion chassis

1220, 820 10% 19 19 50

1200, 800 5% 19 21-3/8 40

Nova, Supernova

computers 5% 19 20-1/4 40
Teletype ASR33 45 22 19 56

It is recommended that the ambient temperature at the installation be maintained between 20°
and 30°C, but the temperature can vary from 0° to 55° without adverse effect (the equipment can be
stored in temperatures as high as 70°). The relative humidity can be as high as 90% noncondensating.
(Although all exposed surfaces are treated to prevent corrosion, exposure to extreme humidity for
long periods of time should be avoided.)

The computer uses 47 to 63 Hz single phase line power, generally either 115 or 230 vac with a
tolerance of +209% (Nova and Supernova computers, +10%); other frequencies and voltages are avail-
able on special order. The power source should be capable of supplying 15 amperes; the power cable
has a standard 3-wire plug and should be plugged into a receptacle rated at 15 amperes. The minimum
configuration of a computer is a processor, teletype interface, console and 4K or memory; the maxi-
mum configuration is the same but with 32K of memory.

Remaining
. +5Vde
Line Current Dissipation capacity
Nova 1200 . (115 Vac, amperes) (watts) (Amps)
Minimum 1.5 175 5.3
Maximum 24 275 3.6*

B1

Nova 1210

Minimum 1.5 175 33

Maximum 24 275 1.6*
Nova 1220

Minimum 20 230 13.3

Maximum 3.5 400 11.6*
Naova 800

Minimum 22 250 33

Maximum 3.1 350
Nova 820

Minimum 22 250 11.3

Maximum 3.7 425 6.2%*
Nova computer

Minimum 2.2 250 6.5

Maximum 3.5 400 2.7
Supernova computer

Minimum 2.2 , 250 4.5

Maximum 31 350 0.7
Supernova SC computer

Minimum 2.6 300 4.5

Maximum 52 600 0.7+
Nova 2/4

Minimum 4.0

Maximum 2.6 300 2.5
Nova 2/10

Minimum 20.0

Maximum 6.3 725 18.5
*(2) 16K Memory boards **(4) 8K Memory boards

***28K (The SC memories are packaged separately and draw 8.7 amps/1K module.)

Each memory module, regardless of size, requires about 1.7 amperes at +5 vdc. The +5 output of |
the 1210 power supply can deliver 10 amperes, the 1220-820 power supply can deliver 20 amperes,
and the +5 output of any other power supply can deliver 12 amperes. The 1220-820 expansion chassis
has a dual +5 supply with two 12-ampere outputs, each of which supplies five slots. The 1200-800
Jumbo chassis has two power supplies, one standard and one dual +5; the basic supply is for slots 1-7,
and the two dual outputs are for slots 8-12 and 13-17. In any chassis with the power supply at the
rear, the power supply end of the back panel has pins for wire wrapping that carry an unregulated —15
vdc for customer use; this source, which is separate from the slot connectors, supplies 2 amperes
maximum with a voltage tolerance of +20% and a maximum ripple of 1 volt.

Complete assembly instructions for the teletype are given in Section 574-100-201 of Bulletin
273B, Volume 1, Technical Manual, 32 and 33 Teletypewriter Sets. In particular, Part 6 of that
section describes the installation of the power pack, which is mounted inside the stand as shown in the
illustration on page 14. Plug the power pack cable into the pack. '

All connections to the processor are made at the back. Plug the teletype power cable into the
convenience outlet, or with the 1210, into a wall outlet. Connect the signal cable as shown in the
appropriate installation drawing at the end of this appendix. With a 1210, 1220 or 820, the signal
cable is plugged directly into the back panel and there is strain relief hardware at the rear of the
chassis. With the other computers the signal cable plugs into a socket at the rear (the signal plug has a
pair of captive bolts that should be screwed into the holes on either side of the socket). The

B2

configuration of the connectors at the rear depends on what other equipment is included in the
system, and for this, special installation information is provided. Complete information on the type
and arrangement of connectors is given in Part I of Appendix A.

Peripheral Equipment

In general the environmental requirements (temperature, humidity) of the peripheral equipment
are the same as those for the processor; for any special considerations refer to the option bulletin-or
the manufacturers manual. The physical dimensions and power requirements (at 115 vac) of the
peripheral equipment are as follows:

Height Width Depth Weight Power
(inches) (inches) (inches) (pounds) (watts)

Teletypes

4010A —33ASR 8% 22 18% 44 128

4010B—33KSR 8% 18% 18% 40 128

4010C—35KSR¢ 38% 20 24 136 250

4023A —37ASRD 36% 44% 27% 340 550

4023B—37KSRD 36% 32% 27% 221 550
Paper Tape Reader 7 19 9 19 230
Paper Tape Punch 14 19 20 60 65

Line Printers

4034A 22% 23% 22 185 330

4034B 46 48Y%% 24% 575 500

4034C, 4034D 11% 27% 20 118 300
Plotters

4017A 10 18 15% 33 175

4017B A 12% 19 12 35 175

4017C 10 39% 15% 53 175

4017D 41 46 45Y% 250 290

4017E 8% 17% 14 or 371%B 40 200
Card Readers

4016A, 4016B 13 23 125 68 400

4016C, 4016H 8% 11 18% 30 165

4016D, 40161 11 194 14 60 950 start,

400 run
4016E, 4016F, G, J K,L 16% 23V 18 77 1600 start,
600 run

Tape Transports, less adapater

40301 and 4030J 24 19 11 100 475
Magnetic Tape Adapter E

4030A ,B,C,D.EF,.G,H 5% 19 8% 15 15
Novadisc 12% 19 27 130 770
Cassette Tape (3-unit) 7 19 18 58 450
Fixed Head Disc 12% 19 18% 70 200
Disc Cartridge 6% 17% 2% 43 70F
Disc Pack 40 30 24 350 580G
Moving Head Disc Adapter 7 19 21 20

B3

A-D and D-A systems

4055A 3% 17 17 16 20

4055B 3% 17 17 20 40

40550 3% 17 17 20 25

4055P 3% 17 17 20 50

4056H 3% 17 17 20 55
IBM Interface Adapter 5k 19 12 20

A Rack model

B Trays fully extended

C Pedestal mounted

D Table mounted

E Mounts in separate rack with models 4030E and 4030F; otherwise below transport

F Uses dc power from adapter

G

DG-00089

B4

Requires 208 or 230 vac, £10%, 3 phase; turnon surge, 15 amperes for 5-7 seconds

STYROFOAM
(TOP)

NYLON STRAP
AND FASTENER

STYROFOAM SPACERS
(USED WITH 1220 & 820

STYROFOAM BLOCK
(USED AS A SHIM
FOR THE 820 1210 & 1220)

144 X 144 CARDBOARD
SPACERS

STYROFOAM
(BOTTOM)

CORRUGATED
BOX

NOVA LINE PACKAGING

ONILNNOW 3AlTS INIT YAON

13NoVHE 3as 97 % %2g-84
3g11S dOlS SdIT71IHd
NOILOIY S QV3HY3ANIg
M3HOS

919 x 2¢- o_*\;/,,

SdiT1IHd I
QV3H Nvd
M340S

AVOILY3A

S000 0000V BYGBBEOOO OO L
AN

1NN Sd3X
2€ -8y

A

/QQQSQGQ SN

BS

| SH31LNdWOD IS VAONYHINS ‘'VAONHIINS ‘'YAON :NOILV11V.LSNI

TSNY3 er NO YO,

AWLE™E y THNE AWM DISSYUD 30W3I> ONALYE
(9avoruas wwan 2 53N %) STWUR AJWA oL
TR WAL P STgY 3OO Nwasm T STve IR0

| PR TR A © % 2 v swIn FWWISSYIR [s3ion

_h:vg AN Fas
T - N TrTtTm T T T T - O0IR0e-T00 []

Lo NwaAy C e Lo g
@D - 1010 0w - 2% RN Suan o L aawsaa | b z
QO 2000 - B AMONL IR Gaa ey 2 %
— - = 00 - tC1veo ~20e Tilta e, 21
=3 —
kY E T z
> T
2 ERN [. e azta| V]2
gl CITAR N mme v Ao a3
7 =
ER I e -
- - - ; I T e
- < |2 wAON FIANS MLM ASSY WAOY A0S 32y
~ I HUM ASSY D% YAORAZans FRTy
T
g4 2
m.w) ON Livd NOILI¥353Q FYL.E RVE
3o A
Tall oevimget no

/.I viwTianans

VA \ .
W _ X 33 3705005 9AON

. L .
N ﬁ! = _ § ——
— = T T »\.L[L\L
|
+ - ﬁl\'(l/l\}\/)\l\./
T T ! 4 ADNN
A@w . YWaN
T T . P TEEr T 433 300
,A[| ; v 2 o, 333 SISSYND VAON oot U
1] el
= _
T _
!)
v :
— n i ' ! N i '
i & ¥ —
| , —_— i e i Y
- NV, Noud3s 98 MWud3gS
i
, \
A,ﬁq \ A3% IBVMQEYH
Iﬁ | NS PHIL-SISSYD
* N
—~b]

B6

00ZL YAON ‘008 YAON :NOILVT1VLSNI

ON Lavd NOILAI¥OS3Q EE

0071 WAON WO 00 WAON a3
OL2O00- 2009 2ANS LAOvuE | '

WNAMOMS £V AIWATLIV QNY MIAVA Hwow 282000 2008 31va a>wmis | 2| 2
2 .D,71vA3Q 33 13LONCHALvIAN ww Soso00 200V | (2i-op Sivaa inm [v] <

AMaw3s<y Q1S ®ILNo Lntow@ziviian Sy SRR T]

S SWILL 2MISA IGNE WILRO OL 1 W3 Tanime ‘SR AN auSY | 9 b
237IBMISSYIBL SoB™VE DS BAOWDH 258, L0 Samw || ©

I BWMAQAIDIOUS NOILVIIVAS NI Soing Pty tiasiz [v 2 |

[, - Jﬂ_.

Vil anwos ve N

2a 2!, 4

AL
- VBNV LOS M La39%3 P "i030 Wvu Wluwaa Foz R
/ AANIBYD LANSIIMAIV SANITT WOLNYHG / /
(amw (S (a3w)(2 \ / I —————— -- / / T
(aa) (s v | (132) Lan@v> os aet
(23wu(2 / -

|
l
— -
y _A_ — -
[]
]

N —T°T
'
m_ M- MIA
|
! S
(a2a)(¢ A
/\
! \\DH v
b \\DH
|
v
_ S™3anon 3sad s
.
A _ L] bl
. T
\vwi3n) 162 %0 12 aova ™1 o0 _ Huwl_l_ u T
" T VIAMIAA Q2QAMIWOIIN == - - —
'
'
m - - -
ﬁ\ Ibwllirua 33%
M3IA
= .
GC A Y %u
FHO®/08 SaWV S MR mvan S NOILYI0Y 370w .%r- . @/ _
Sen oearen AN an \'— (1] 7]
L37100 /v Q3HILIMS
- (] w i
[" w o
0 [t R B
-~ aso> 2) ,
A3mod olr 1o T e
CRRWEY 4 i
| ¥ g - 3QINS 9OLS NOILIIBA - NOWAYD =
- |
1 ﬂ.m Qavoa NoiLdo nd3 _ ' ”lv
1+t] o021 wAON aofimoman _ 1had
1+ -”o | — S3OVABILN! O WS ABGWIN mEs
AHVf _\ SAIVIHIING OF WO AuSWam P2
431) —_
= > S | Tdans a3amoa SITVIHILINI OT uS SESWan =
o> T ve /@ T] ﬁ SISvIUSIT OF wS LGORIN
T, - 1SAVHX3 uIv i L} SISVAUILNG OL u0 AWONaA N
! ! L <. ™MOWLEQ LOOY
TwoLdINMOS | i< Aw“v\ | Bos Q3wm < LoAg ! \ wAore |
9T TTvrowdo | | | | oL WA ©08 vaoN
1
\\ (430 5™MINAAD OV Ml_.r_ !
TAWWVI IRV h
Vv QL s3Ion -
/ﬁ_ . — |
o e - — (43w e
-~ i

(4T ONINI®O N3NV

e I

B7 -

ON L1avd
W 0221 VYAON 3y
0L 2000 -200 300S " 1OVEA | b |
2£2000-200 WV 3ANLS | 2] 7
OL000- 200 (5= Olw 3LVd INN| b m_
W asamIzn x e e.sdi kG ol
o OH_¥3aN18 M 39D
—_—H 26-8, LNN SdP| 8|S
T T T T aver x ez o, .
T |saiHd M Nwd m3wds | £ °
rS0000 - £21 3L 318 |[dv| L
£50000- €21 | L30ddNS 4334 NIvdLS [d/v| 8
8£5000- 2008 440-ONVIS X3H |d/v| 6
. (LSS) D1/
—* X @2 QH x3H m3uds | Y |C!
£L0000- £2! dWYTD 378D wia oy e | |1t
LESO00 200 93003 | 1|21
L90000-£21 LNNOW 311 318VD | 1| €1
TO1QIEXOR Y | 2 | b1
11HG “OH Nvd M 3805
Obb LINNSHd3% | 2| s! /
IR R J /
EECE W)
. _NMOHS Sy 318W3SSY ANV M3IA Jau—g
¥Y3Y 2 .D.71vi30 33S 3LON Q3LWDIONI Sy

A18W3SSY 30115 ¥3LN0 LNNOW ‘G31VDIONI Sy

S 3P SW3LI ONISN 3Q1NS ¥31N0 OL | W3LI

3IT18NW3SSY3dd ‘ST3NVY 301S IA0W3N
:3¥NA3D508d NOILY TIVLSNI

L2

g
370SN0D
ASMNENL H04 VDIdAL OSV -D-11vl3d 310N
S3IDvde :
321S 1IN4 :37vDS
S VITa
o
IR T A
AN
{ %
NY3L1vd 370H ’ -
als vir3 | % f
vidaL 4 —— -
bt oo
o !

*

(439

o___

334

L13INIBVYD IN3S3H43Y SIANIT WOLNVHJI

9

S L abed 0Z8 YAON ‘0ZZL YAON :NOILVYT1VLSNI

N

339

ST ONDWIS ivd WwoIL3A O 02 —-

\ o : — 61 -
L
!

- (4349) L3NI8YD OfF

V- M3IA

3017S dOLS NOILDI¥S :NOILNYD

(028 1 NdD ¥0 022 Ndd

N —

d (028 2 NdD _¥O0 NOILJO 0221 ¥O A¥OW3W

919,
V!

.] w S3VINILNT Ol H¥0 AHOWIN
S3IVAIINI Ol MO AHOW3IN

/ 53OV4H3LINI 01 ¥O AMOW3IW S

3OVIH3LNI OI HO AMON3IW

JOVIHILINI 0T ¥O A¥OW3IN

DVI¥3LNI_ Ol dO AHOW3W

i
T
!

S

o
.
{w

#* S3oV¥3LNI Of

/ ‘
/ 4\ S3OVI¥3LNI OT 0

===
-

£ 107S NI g33N913N0D 38 LSNIN 3S3HL
Q343040 3d¥v SNOILDO ¥ld ‘dld ‘ALl d1-

-

/IN 310N 33s

33y

"33

B8

R kA

v
IR
—
LA

—

2

£

<

M
..... L

n

1

=

I

g

u

Ly

1

»

1

]

i

=

P
2.

Q

"

z

A

X

M

A

n

J]

S

-]

d

N

W
]

A

r

H

3

3

[

>

(AS+) NO_¥Md B a

aND e v
ANS m OdHL | o
| “3nwn wnos | 30is w38ANN | 3015 531137

£d .

1NIWNNOISSY IWNOIS ONIMOTI04
wwﬁ SYH GNvV SSN8)1 TvNd3Lx3 SI €d

S7 J3WrQHI IDVAS
SHOLI3INNDD 40

Z 9bed 0z8 YAON ‘022l VAON :NOILV1TV.LSNI

(43 %, vz 80

110117307 1101140 11110139V NO 03134123dS SI INIWNOISSY NOILJO /80LD3INNOD

H3IGWAN MFDMYT v NTINDLSND FHL MO TV oL
JOV4HILINT 3189 Ot WWNMELX 3 HLIM Q3SN 34y

12 MOvd_NI_NCILYDOT

731093 G30N3W013Y

(3A08v 333) 0§5000-200 290

<

(1£10n0-L02 590) 3Dv443 LNI TWNOIS WNQA 0%
¥0 (2£1000-L02 390) 3OVAU3LNI IWNOIS OZXE H3HLI3 38 NV 2Id NEHL 8d €
31LWHI) SNId O[T 40

Id 7402 ¥3MOd

97 149

(UMLX T 1O LL
AHNOIINOD Y O 3 6 SLONS 2

3sNn4.9ove
dWVSl D/v

SLMVA 3S3IHL L

ZHO09/ 0S ' SIWVS
JYA 0£2/ Sl

110117201 NOILdO
HO1D3NNOD 138V

dAl
S370H 'wig 182"

\ID._.m vi3

-»{a

\thd:o J/¥ Q3HOLIMS

~

3HL NI _J3Dv44¥3LINI

vie

-»{a

€133HS NO 4-3 M3IIA NI NMOHS

38 NvD

53d41 "¥IHLO Q3¥IN03N 4I
‘A13AILI34S3Y_611000-11

2 L11000- 111 SYOLO3NNOD 090 HLIM J3LUNINN3L.

s37av.

AANIIXT HLIIV. JLVN HOIHM (2£1000 - LO2

MO 1S1090 - L07 J0Q) SI¥Y0d LML 13ILNINA MIONLS
ONISN Q3JIA0Nd 3¥7 SINFNILIN!I TwNOILIGAY

900

Q)

(434) ONIN3JO T3Nvd %, 61

| 310N 33

334) ONINIO vy 2l 41

(439,
I— — —{ 4 P
o =N 1
g | [o " | L» =N
° CoA ! L E=:
i =: \
. .] e),
Lo,
H N.a O lig 8 [commmp— T cu— —] X
- ﬂla ' C) m D C)
a ¢ <01 H C D C D C >
.f 137N Hiv [E— d— G —]
|||I_ I T 1 . C > N ca— N - D
.M _ * ‘ ! C D C D C D
e 2 C D C D C)
". r O_,mo m C D C D C -
v 6d 8d~_ 8 H A C D C e — [
58 N 3 ' f vm: C D ¢ > C > v
=3 § ; [S— — l—
I 4“ ¢ -
L= . LIS . y R § [
(1v1d3gs) By
$3>v7a€ NOILISOd P,_ﬂ \\ / 9
{9a1) NOILISOd 02 NG 05— A -

|

(334) % 81

B9

€ abed 0z8 YAON ‘02ZL VAON :NOILVTTVLSNI

; RN iy APA ALY}
B A T RIS 2= R TSR EL RPNV RTIP IO «y:;,.:,,,,__v

O iy D) AR SIS e
IR R WV St 3218 14 3OS
h& ||¢ MITA
434 11 W3LI
¥04 aNIS
(S35v71d 92)
\!mm SNNOY - b
WIAWISIE | — o5 EEIVE| p
e H—
13-8- — (] TTARTA VILavd . i
e-9- —_— S -
e T s f— “
S —— e —— R
IS-8- — | 44 -
- 002 L~ 009" &
g — r _ B\ ol ome | Ly
Ov- 68— — v .+ — -
[—— or 434
o i : 1 S
S E rm a-g man ") 439 ﬂ
4Z2-9- —_—— % S
$2-8- I—r— St T
iz 4 ——— *® 13N dve SN | F—
Sl-g- [—— Zx 3 Q¥Y08 AddNS ¥3MOd - g —
£I-§- —— I
=i — % (850000 - 111 LOVINOD MWLM ¥11000-111 29G) ALL oL
V= ——— I 2d ¥O1D3NNOD FDVAM3LNI ‘ALL 18-v-€
@-v- # i l/ /l 1
L9-v~ — — _2 T Y I
e i \ \ /7
= — 3
90- V- e —— — A i = X . ny s | ;
Eer———1¢ j 7 [w—
ve-v— — H - e — ta- :)
e — N i N (S11000-111 29Q)
v —— ! ”T 1OVINOD HLIM
Y- — == 8_3aIs v 39S oY ' (611000-111 >9Q)
——— f =z o | , ; BN HOLD3NNOD ONILYW
—— ——c— M —- ——. ! T/
— v I ——— I —=)
—— P ; 2 rd g
——— 5 =z B | v2i0b NOILJO
—— 57 =z : : o d1d Ld
—— 6 - = o N
S ——v——— [} - z
—— == =z 7 ~ év NOILJO
—— . vI3 9d
— a : 81106 NOILdO
—— | —¥1d Sd
- o5
—— _ (S11000 111 D9Q)
—————— o LOVINOD HLIM
OND AV-NUHEV] ——4—— | (L11000-111 "290)
[305 vz | 305 gamnn L HOLDINNOD .ONILY
[__J3nvde xove vd r /E«Iu 33s)
(511000-111 390 -1IVLNOD HLIM ~vd
£11000- 111 390) HOLOINNOD TWNHILX3 ONILVW
(LN3NNOISSY TWNOIS ¥Q4 Z L33HS NO LHvH) 335)

(NMOHS HOLJ3NNOD 40 30IS ¥3IBNMN) £d

B10

L abed 0LZL VAON

‘NOILVTTVLSNI

Tpuz_m,\u IN3S34d3d S3NIT WOLNWYHG

.61
ONIDVES v oL 2V 02

ON Luvd NOILAI¥ISI0
3215 1In4 135
—_— 0121 YAON (Z133Hs 335) J-g MIR
0L2000-2008 3017S “L3dveE | b | !
4349 11 W3l
2£2000 -2008 v IEls | 2| 2 ¥04 anis (537914 0N
— —8Z-ONNOb- b
80£000 - 200V (2£-0) 31vId LON| b | ¢ N
(15S) 912/1 X 2 8, Sl IHd T e
— ‘M y3aNIE m3Ds | 8] Y Loy | -
——— ¢ @, LNN Sd3M| 8 | s ‘ o
_ 912/1 X 2€-0ls _,
. Salikd aH Nwd mas | 2] 2 ove | joorz- ooo.@_
¥S0000 - £71 311 38w |yv| o ds 03 v |,
B 1
£50000-£21 |180ddNS 431134 NIvYLS (8/v[@ .%ou
8£5000 - 2008 440- ONVLS X3H |8)v| © |t J ” o,m
— (1SS) 9 b /1 ! i
- X269 gH B33 M3s | 2|0 4302 ! Ao
£L0000-£21 | dWYTD 378vD wIdol/£| 1| 1! 80~ oge-
NMOHS SV 318W3ISSY ONV. MIIA Hv3Iy '
3 .D.vi39 335 ILON ‘G3LVOIONI SV
x18WIssy 30115 ¥3:N0 LNNOW “G3LVDIONI Sv
S 3 v SWILI ONISN 3310S ¥31N0 OL | WiLl
I19WISSY 4 *SIINVG OIS 3AOW3H
:33NA3008d NOILYTIVLSNI e

"3T0SNOD AIXNAINL H03 WOIdAL OSTv -D-1Ivi3a 310N

y ()
I
|7 q R
zmumwm\nh qm_._%: or Wﬂm. * - g@w
WAL | /s r o
Al .
9 |

S3xwid ez
371S 1IN 137v0S

RLZEL]

— e e
- = = - (N
(4391 L3N1GY) 0F -~ - -
Y-y MIR .
V-V 43y
D Thvi3a 33
/
e AR
30115 dOLS NOILDIHS INOILNYD :
) - \\

€ 107S OLNI d399N1d 38 OL (O/1) 3DV4H3LNI .».F.FV

S3YIN03y 'ALL ¥0d4 HOLD3NNOD T3NVAMOVE

Bi1

APPENDIX C
FLOATING POINT ARITHMETIC

Software is available for processing floating point numbers. For a given word length, floating point format sac-
rifices some precision for a much greater range in order of magnitude. The software interprets the two-word
floating point representation of a number as containing a sign (bit 0), a 7-bit characteristic, and a 24-bit proper
fraction. The characteristic is the coded exponent of the power of 16 that the fraction must be multiplied by to
give the number being represented.

For a positive number the sign is 0. The contents of bits 8~31 are interpreted as a binary fraction (it may
often be convenient to view this as six 4-bit hexadecimal digits), and the contents of bits 1—7 are interpreted as
an integral exponent in excess 64 (100g) code. Exponents from — 64 to + 63 are therefore represented by the
binary equivalents of 0~127 (0-177). The negative of a number is obtained simply by changing the sign bit to
I — the rest of the number remains in positive form. Zero is represented by all Os in sign, characteristic and
fraction. The routines always represent a zero result in this form (referred to as “true” zero), but they interpret
any operand with a zero fractional part as being zero.

+173,, = 42555 =
+.532¢X 16> = [0]100 001 0]10 101 101 0 000 000 000 000 000} =
01 78 31
+.1013,,X 162 = [0]1 000 010]1010 1101 0000 0000 0000 0000]
01 78 . 31

Most routines assume that all nonzero operands are normalized, and they normalize a nonzero
result. A floating point number is considered normalized if the fraction is greater than or equal to 1/16
and less than 1;in other words it has a 1 in the first four bits (bits 8-11 of the high order word). These
numbers thus have a fractional range of 1/16 to 1-2724(1-167 and an exponent range of —64 to +63.
This corresponds to a decimal range of approximately 5.4 X 1077 to 7.2 X 1075.

C1

APPENDIX D
INSTRUCTION MNEMONICS AND TIMING

The table beginning on the next page lists the instruction mnemonics in numerical order.
Following that is a listing in alphabetical order that gives the octal value, a short description of the
instruction, and the number of the page on which the full description appears in Chapter 2.
Instruction execution times in microseconds are listed on page D12.

The derivation of the instruction mnemonics is as follows.

LoaD
STore

Increment
Decrement

JuMP
Jump to SubRoutine

COMplement \
NEGate
MOVe current carry ~

INCrement } for carry bit YZero shift Left { ~
ADd Complement{ base value use JOne shift Right #
SUBtract Complement of current carry Swap bytes

ADD

AND /

SKiP {on Zero } {Carry
Skip omNonzero Result

if Either is Zero
if Both are Nonzero

} Accumulator

} and Skip if Zero

~

No 10 transfer
[A | d Start
Data{ n } B} buffer— 2" | Clear

Out

C special Pulse
skip it { 1 4 is {5 o=t
READ Switches
IO ReSeT
HALT
INTerrupt Acknowledge
MaSK Out

INTerrupt ENable
INTerrupt DiSable

MULtiply
DIVide

D1

INSTRUCTION MNEMONICS
NUMERIC LISTING

000000 JMP 062677 IORST 100350 COMOS#
000001 SKP 062700 DICP 100360 COMCS
000002 SZC 063000 DOC 100370 COMCS#
000003 SNC 063077 HALT 100400 NEG
000004 SZR 063100 DOCS 100410 NEG#
000005 SNR 063200 DOCC 100420 NEGZ
000006 SEZ 063300 DOCP 100430 NEGZ#
000007 SBN 063400 SKPBN 100440 NEGO
000010 # 063500 SKPBZ 100450 NEGO#
002000 @ 063600 SKPDN 100460 NEGC
004000 JSR 063700 SKPDZ 100470 NEGC#
010000 ISZ 073101 DIv 100500 NEGL
014000 DSz 073301 MUL 100510 NEGL#
020000 LDA 100000 @ 100520 NEGZL
040000 STA 100000 COM 100530 NEGZL#
060000 NIO 100010 COM# 100540 NEGOL
060100 NIOS 100020 COMZ 100550 NEGOL#
060177 INTEN 100030 COMZ# 100560 NEGCL
060200 NIOC 100040 COMO 100570 NEGCL#
060277 INTDS 100050 COMO# 100600 NEGR
060300 NIOP 100060 COMC 100610 NEGR#
060400 DIA 100070 COMC# 100620 NEGZR
060477 READS 100100 COML 100630 NEGZR#
060500 DIAS 100110 COML# 100640 NEGOR
060600 DIAC 100120 COMZL 100650 NEGOR#
060700 DIAP 100130 COMZL# 100660 NEGCR
061000 DOA 100140 COMOL 100670 NEGCR#
061100 DOAS 100150 COMOL# 100700 NEGS
061200 DOAC 100160 COMCL 100710 NEGS#
061300 DOAP 100170 COMCL# 100720 NEGZS
061400 DIB 100200 COMR 100730 NEGZS#
061477 INTA 100210 COMR# 100740 NEGOS
061500 DIBS 100220 COMZR 100750 NEGOS#
061600 DIBC 100230 COMZR# 100760 -NEGCS
061700 DIBP 100240 COMOR 100770 NEGCS#
062000 DOB 100250 COMOR# 101000 MOV
062077 MSKO 100260 COMCR 101010 MOV#
062100 DOBS 100270 COMCR# 101020 MOVZ
062200 DOBC 100300 COMS 101030 MOVZ#
062300 DOBP 100310 COMS# 101040 MOVO
062400 DIC 100320 COMZS 101050 MOVO#
062500 DICS 100330 COMZS# 101060 MOVC
062600 DICC 100340 COMOS 101070 MOVC#

D2

101100
101110

101120
101130
101140
101150
101160
101170
101200
101210
101220
101230
101240
101250
101260
101270
101300
101310
101320
101330
101340
101350
101360
101370
101400
101410
101420
101430
101440
101450
101460
101470
101500
101510
101520
101530
101540
101550
101560
101570
101600
101610
101620
101630
101640
101650

MOVL
MOVL#

MOVZL
MOVZL#
MOVOL
MOVOL#
MOVCL
MOVCL#
MOVR
MOVR#
MOVZR
MOVZR#
MOVOR
MOVOR#
MOVCR
MOVCR#
MOVS
MOVS#
MOVZS
MOVZS#
MOVOS
MOVOS#
MOVCS
MOVCS#
INC
INC#
INCZ
INCZ#
INCO
INCO#
INCC
INCC#
INCL
INCL#
INCZL
INCZL#
INCOL
INCOL#
INCCL
INCCL#
INCR
INCR#
INCZR
INCZR#
INCOR
INCOR#

101660
101670

101700
101710
101720
101730
101740
101750
101760
101770
102000
102010
102020
102030
102040
102050
102060
102070
102100
102110
102120
102130
102140
102150
102160
102170
102200
102210
102220
102230
102240
102250
102260
102270
102300
102310
102320
102330
102340
102350
102360
102370
102400
102410
102420
102430

INCCR
INCCR#

INCS
INCS#
INCZS
INCZS#
INCOS
INCOS#
INCCS
INCCS#
ADC
ADC#
ADCZ
ADCZ#
ADCO
ADCO#
ADCC
ADCC#
ADCL
ADCL#
ADCZL

-ADCZL#

ADCOL
ADCOL#
ADCCL
ADCCL#
ADCR
ADCR#
ADCZR
ADCZR#
ADCOR
ADCOR#
ADCCR
ADCCR#
ADCS
ADCS#
ADCZS
ADCZS#
ADCOS
ADCOS#
ADCCS
ADCCS#
SUB
SUB#
SUBZ
SUBZ#

102440
102450

102460
102470
102500
102510
102520
102530
102540
102550
102560
102570
102600
102610
102620
102630
102640
102650
102660
102670
102700
102710
102720
102730
102740
102750
102760
102770
103000
103010
103020
103030
103040
103050
103060
103070
103100
103110
103120
103130
103140
103150
103160
103170
103200
103210

SUBO
SUBO#
SUBC
SUBC#
SUBL

* SUBL#

SUBZL
SUBZL#
SUBOL
SUBOL#
SUBCL
SUBCL#
SUBR
SUBR#
SUBZR
SUBZR#
SUBOR
SUBOR#
SUBCR
SUBCR#
SUBS
SUBS#
SUBZS
SUBZS#
SUBOS
SUBOS#
SUBCS
SUBCS#
ADD
ADD#
ADDZ
ADDZ#
ADDO
ADDO#
ADDC
ADDC#
ADDL
ADDL#
ADDZL
ADDZL#
ADDOL
ADDOL#
ADDCL
ADDCL#
ADDR
ADDR#

D3

103220
103230
103240
103250
103260
103270
103300
103310
103320
103330
103340
103350
103360
103370
103400
103410

ADDZR
ADDZR#
ADDOR
ADDOR#
ADDCR
ADDCR#
ADDS
ADDS#
ADDZS
ADDZS#
ADDOS
ADDOS#
ADDCS
ADDCS#
AND
AND#

103420
103430
103440
103450
103460
103470
103500
103510
103520
103530
103540
103550
103560
103570
103600
103610

ANDZ
ANDZ#
ANDO
ANDO#
ANDC
ANDC#
ANDL
ANDL#
ANDZL
ANDZL#
ANDOL
ANDOL#
ANDCL
ANDCL#
ANDR
ANDR#

103620
103630
103640
103650
103660
103670
103700
103710
103720
103730
103740
103750
103760
103770

ANDZR
ANDZR#
ANDOR
ANDOR#
ANDCR
ANDCR#
ANDS
ANDS#
ANDZS
ANDZS#
ANDOS
ANDOS#
ANDCS
ANDCS#

ADCC

ADCCL

ADCCR

ADCCS

ADCL

ADCO
ADCOL

ADCOR

ADCOS

ADCR

ADCS

ADCZ
ADCZL

ADCZR

ADCZS

ADDC
ADDCL

ADDCR

ADDCS

ADDL
ADDO
ADDOL

102000
102060

102160

102260

102360

102100

102040
102140

102240

102340

102200

102300

102020
102120

102220

102320

103000
103060
103160

103260

103360

103100
103040
103140

INSTRUCTION MNEMONICS
ALPHABETIC LISTING

Add the complement of ACS to ACD; use Carry as base for carry bit.

Add the complement of ACS to ACD; use complement of Carry as
base for carry bit.

Add the complement of ACS to ACD; use complement of Carry as
base for carry bit; rotate left.

Add the complement of ACS to ACD; use complement of Carry as
base for carry bit; rotate right.

Add the complement of ACS to ACD; use complement of Carry as
base for carry bit; swap halves of result.

Add the complement of ACS to ACD; use Carry as base for carry bit;
rotate left.

Add the complement of ACS to ACD; use 1 as base for carry bit.

Add the complement of ACS to ACD; use ! as base for carry bit;
rotate left.

Add the complement of ACS to ACD; use 1 as base for carry bit;
rotate right.

Add the complement of ACS to ACD; use 1 as base for carry bit;
swap halves of result.

Add the complement of ACS to ACD; use Carry as base for carry bit;
rotate right.

Add the complement of ACS to ACD; use Carry as base for carry
bit; swap halves of result.

Add the complement of ACS to ACD; use O as base for carry bit.

Add the complement of ACS to ACD; use 0 as base for carry bit;
rotate left.

Add the complement of ACS to ACD; use 0 as base for carry bit;
rotate right.

Add the complement of ACS to ACD; use O as base for carry bit;
swap halves of result.

Add ACS to ACD; use Carry as base for carry bit.
Add ACS to ACD; use complement of Carry as base for carry bit.

Add ACS to ACD; use complement of Carry as base for carry bit;
rotate left.

Add ACS to ACD; use complement of Carry as base for carry bit;
rotate right.

Add ACS to ACD; use complement of Carry as base for carry bit;
swap halves of result.

Add ACS to ACD; use Carry as base for carry bit; rotate left.
Add ACS to ACD; use 1 as base for carry bit.
Add ACS to ACD; use 1 as base for carry bit; rotate left.

Page
2-16
2-16

2-16

2-16

2-16

2-16
2-16

2-16

2-16

2-16

2-16

2-16
2-16

2-15
2-15
2-15

2-15

2-15

2-15
2-15
2-15

D5

ADDOR
ADDOS
ADDR
ADDS

ADDZ

ADDZL
ADDZR
ADDZS

ANDC
ANDCL

ANDCR

ANDCS

ANDL
ANDO
ANDOL
ANDOR
ANDOS
ANDR
ANDS
ANDZ
ANDZL
ANDZR
ANDZS
COM
COMC

COMCL

COMCR

COMCS

COML

COMO
COMOL

103240
103340
103200
103300

103020
103120
103220
103320
103400
103460
103560

103660

103760

103500
103440
103540
103640
103740
103600
103700
103420
103520
103620
103720
100000
100060

100160

100260

100360

100100

100040
100140

Add ACS to ACD; use 1 as base for carry bit; rotate right.
Add ACS to ACD; use 1 as base for carry bit; swap halves of result.
Add ACS to ACD; use Carry as base for carry bit; rotate right.

Add ACS to ACD; use Carry as base for carry bit; swap halves of
result.

Add ACS to ACD; use O as base for carry bit.

Add ACS to ACD; use 0 as base for carry bit; rotate left.

Add ACS to ACD; use 0 as base for carry bit; rotate right.

Add ACS to ACD; use 0 as base for carry bit; swap halves of result.
And ACS with ACD; use Carry as carry bit.

And ACS with ACD; use complement of Carry as carry bit.

And ACS with ACD; use complement of Carry as carry bit; rotate
left.

And ACS with ACD; use complement of Carry as carry bit; rotate
right.

And ACS with ACD; use complement of Carry as carry bit; swap
halves of result.

And ACS with ACD; use Carry as carry bit; rotate left.

And ACS with ACD; use 1 as carry bit.

And ACS with ACD; use 1 as carry bit; rotate left.

And ACS with ACD; use 1 as carry bit; rotate right.

And ACS with ACD; use 1 as carry bit; swap halves of result.
And ACS with ACD; use Carry as carry bit; rotate right.

And ACS with ACD; use Carry as carry bit; swap halves of result.
And ACS with ACD; use O as carry bit.

And ACS with ACD; use 0 as carry bit; rotate left.

And ACS with ACD; use 0 as carry bit; rotate right.

And ACS with ACD; use 0 as carry bit; swap halves of result.
Place the complement of ACS in ACD; use Carry as carry bit.

Place the complement of ACS in ACD; use complement of Carry as
carry bit.

Place the complement of ACS in ACD; use complement of Carry as
carry bit; rotate left.

Place the complement of ACS in ACD; use complement of Carry as
carry bit; rotate right.

Place the complement of ACS in ACD; use complement of Carry as
carry bit; swap halves of result.

Place the complement of ACS in ACD;use Carry as carry bit; rotate
left.

Place the complement of ACS in ACD; use 1 as carry bit.
Place the complement of ACS in ACD; use 1 as carry bit; rotate left.

Page

2-15
2-15
2-15
2-15

2-15
2-15
2-15
2-15
2-16
2-16
2-16

2-16

2-16

2-16
2-16
2-16
2-16
2-16
2-16
2-16
2-16
2-16
2-16
2-16
2-14
2-14

2-14

2-14

2-14

2-14

2-14
2-14

COMOR

COMOS

COMR

COMS

COMZ
COMZL
COMZR

COMZS

DIA
DIAC
DIAP
DIAS
DIB
DIBC
DIBP
DIBS
DIC
DICC
DICP
DICS
DIV

DOA
DOAC
DOAP
DOAS
DOB
DOBC
DOBP
DOBS
DOC
DOCC
DOCP
DOCS
DSZ

100240

100340

100200

100300

100020
100120
100220

100320

060400
060600
060700
060500
061400
061600
061700
061500
062400
062600
062700
062500
073101

061000
061200
061300
061100
062000
062200
062300
062100
063000
063200
063300
063100
014000

Place the complement of ACS in ACD; use 1 as carry bit; rotate
right.

Place the complement of ACS in ACD; use 1 as carry bit; swap
halves of result.

Place the complement of ACS in ACD;use Carry as carry bit; rotate
right.

Place the complement of ACS in ACD; use Carry as carry bit; swap
halves of result.

Place the complement of ACS in ACD; use 0 as carry bit.
Place the complement of ACS in ACD; use 0 as carry bit; rotate left.

Place the complement of ACS in ACD; use O as carry bit; rotate
right.

Place the complement of ACS in ACD; use O as carry bit; swap
halves of resuit.

Data in, A buffer to AC.

Data in, A buffer to AC; clear device.

Data in, A buffer to AC; send special pulse to device.
Data in, A buffer to AC; start device.

Data in, B buffer to AC.

Data in, B buffer to AC; clear device.

Data in, B buffer to AC; send special pulse to device.
Data in, B buffer to AC; start device.

Data in, C buffer to AC.

Data in, C buffer to AC; clear device.

Data in, C buffer to AC; send special pulse to device.
Data in, C buffer to AC; start device.

If overflow, set Carry. Otherwise divide ACO-ACI by AC2. Put
quotient in ACI, remainder in ACO.

Data out, AC to A buffer.

Data out, AC to A buffer; clear device.

Data out, AC to A buffer; send special pulse to device.
Data out, AC to A buffer; start device.

Data out, AC to B buffer.

Data out, AC to B buffer; clear device.

Data out, AC to B buffer; send special pulse to device.
Data out, AC to B buffer; start device.

Data out, AC to C buffer.

Data out, AC to C buffer; clear device.

Data out, AC to C buffer; send special pulse to device.
Data out, AC to C buffer; start device.

Decrement location £ by 1 and skip if result is zero.

Page
2-14

2-14

2-14

2-14

214
214,
214

2-14

2-24
224
224
2-24
224
2-24
224
2:24
225
225
225
225
241

2-24
2-24
2-24
2-24
2-25
2-25
2-25
2-25
2-25
2-25
2-25
2-25
2-6

D7

HALT
INC
INCC

INCCL

INCCR

INCCS

INCL
INCO
INCOL
INCOR
INCOS

INCR
INCS

INCZ

INCZL
INCZR
INCZS

INTA

INTDS
INTEN
IORST

ISZ
JMP
JSR

LDA
MOV
MOVC
MOVCL
MOVCR

MOVCS

MOVL
D8

063077
101400
101460

101560

101660

101760

101500
101440
101540
101640
101740

101600
101700

101420
101520
101620
101720

061477

060277
060177
062677

010000
000000
004000

020000
101000
101060
101160
101260

101360

101100

e

Halt the processor (= DOC 0,CPU).

Place ACS + 1 in ACD; use Carry as base for carry bit.

Place ACS + 1 in ACD; use complement of Carry as base for carry
bit.

Place ACS + 1 in ACD; use complement of Carry as base for carry
bit; rotate left.

Place ACS + 1 in ACD; use complement of Carry as base for carry
bit; rotate right.

Place ACS + | in ACD; use complement of Carry as base for carry
bit; swap halves of result.

Place ACS + 1 in ACD; use Carry as base for carry bit; rotate left.
Place ACS + 1 in ACD; use 1 as base for carry bit.

Place ACS + 1 in ACD; use 1 as base for carry bit; rotate left.
Place ACS + 1 in ACD; use 1 as base for carry bit; rotate right.

Place ACS + 1 in ACD; use 1 as base for carry bit;‘swap halves of
result.

Place ACS + 1 in ACD; use Carry as base for carry bit; rotate right.

Place ACS + 1 in ACD; use Carry as base for carry bit; swap halves
of result.

Place ACS + 1 in ACD; use 0 as base for carry bit.
Place ACS + 1 in ACD; use 0 as base for carry bit; rotate left.
Place ACS + 1 in ACD; use O as base for carry bit; rotate right.

Place ACS + 1 in ACD; use 0 as base for carry bit; swap halves of
result.

Acknowledge interrupt by loading code of nearest device that is
requesting an interrupt into AC bits 10-15 (= DIB —,CPU).

Disable interrupt by clearing Interrupt On (= NIOC CPU).
Enable interrupt by setting Interrupt On (= NIOS CPU).

Clear all 10 devices, clear Interrupt On, reset clock to line frequency
(= DICC 0,CPU).

Increment location £ by 1 and skip if result is zero.
Jump to location £ (put £ in PC).

Load PC + 1 in AC3 and jump to subroutine at location £ (put F
in PC).

Load contents of location £ into AC.

Move ACS to ACD; use Carry as carry bit.

Move ACS to ACD; use complement of Carry as carry bit.

Move ACS to ACD; use complement of Carry as carry bit; rotate left.
Move ACS to ACD; use complement of Carry as carry bit; rotate

right.

Move ACS to ACD; use complement of Carry as carry bit; swap
halves of result.

Move ACS to ACD; use Carry as carry bit; rotate left.

Page
2-28
2-15
2-15

2-15
2-15
2-15

2-15
2-15
2-15
2-15
2-15

2-15
2-15

2-15
2-15
2-15
2-15

2-33

2-32
2-32
2-28

2-6
2-7
27

2-5

2-15
2-15
2-15
2-15

2-15

2-15

MOVO
MOVOL
MOVOR
MOVOS
MOVR
MOVS
MOVZ
MOVZL
MOVZR
MOVZS
MSKO

MUL
NEG
NEGC

NEGCL

NEGCR

NEGCS

NEGL

NEGO
NEGOL
NEGOR

NEGOS

NEGR
NEGS

NEGZ
NEGZL
NEGZR

NEGZS

NIO
NIOC
NIOP

101040
101140
101240
101340
101200
101300
101020
101120
101220
101320
062077

073301

100400
100460

100560

100660

100760

100500

100440
100540
100640

100740

100600
100700

100420
100520
100620

100720

060000
060200
060300

Move ACS to ACD; use 1 as carry bit.

Move ACS to ACD; use 1 as carry bit; rotate left.

Move ACS to ACD; use 1 as carry bit; rotate right.

Move ACS to ACD; use 1 as carry bit; swap halves of result.
Move ACS to ACD; use Carry as carry bit; rotate right.

Move ACS to ACD; use Carry as carry bit; swap halves of result.
Move ACS to ACD; use O as carry bit.

Move ACS t6 ACD; use 0 as carry bit; rotate left.

Move ACS to ACD; use 0 as carry bit; rotate right.

Move ACS to ACD; use O as carry bit; swap halves of result.

Set up Interrupt Disable flags according to mask in AC
(= DOB -,CPU).

Multiply AC1 by AC2, add product to ACO, put result in ACO-AC1.
Place negative of ACS in ACD; use Carry as base for carry bit.

Place negative of ACS in ACD; use complement of Carry as base for
carry bit.

Place negative of ACS in ACD; use complement of Carry as base for
carry bit; rotate left.

Place negative of ACS in ACD; use complement of Carry as base for
carry bit; rotate right.

Place negative of ACS in ACb; use complement of Carry as base for
carry bit; swap halves of result.

Place negative of ACS in ACD; use Carry as base for carry bit; rotate
left.

Place negative of ACS in ACD;use 1 as base for carry bit.
Place negative of ACS in ACD; use 1 as base for carry bit; rotate left.
Place negative of ACS in ACD; use 1 as base for carry bit; rotate

right.
Place negative of ACS in ACD; use 1 as base for carry bit; swap
halves of result.

Place negative of ACS in ACD; use Carry as carry bit; rotate right.

Place negative of ACS in ACD; use Carry as carry bit; swap halves of
result.

Place negative of ACS in ACD; use O as base for carry bit.
Place negative of ACS in ACD; use O as base for carry bit; rotate left.

Place negative of ACS in ACD; use O as base for carry bit; rotate
right.

Place negative of ACS in ACD; use O as base for carry bit; swap
halves of result.

No operation.
Clear device.

Send special pulse to device.

Page
2-15
2-15
2-15
2-15
2-15
2-15
2-15
2-15
2-15
2-15
2-33

241
2-15
2-15

2-15

2-15

2-15

2-15
2-15
2-15

2-15

2-15
2-15

2-15
2-15
2-15

2-15

2-23
2-23
2-23

NIOS
READS
SBN

SEZ

SKP
SKPBN
SKPBZ
SKPDN
SKPDZ
SNC

SNR

STA
SUB
SUBC

SUBCL

SUBCR

SUBCS

SUBL
SUBO
SUBOL
SUBOR
SUBOS

SUBR
SUBS

SUBZ

SUBZL
SUBZR
SUBZS

SZC

SZR

D10

060100
060477
000007

000006

000001
063400
063500
063600
063700
000003

000005

040000
102400
102460

102560
102660
102760

102500
102440
102540
102640
102740

102600
102700

102420
102520
102620
102720

000002

000004

Start device.
Read console data switches into AC (= DIA —,CPU).

Skip if both carry and result are nonzero (skip function in an arith-
metic or logical instruction).

Skip if either carry or result is zero (skip function in an arithmetic
or logical instruction).

Skip (skip function in an arithmetic or logical instruction).
Skip if Busy is 1.
Skip if Busy is 0.
Skip if Done is 1.
Skip if Done is 0.

Skip if carry bit is 1 (skip function in an arithmetic or logical
instruction).

Skip if result is nonzero (skip function in an arithmetic or logical
instruction).

Store AC in location E.
Subtract ACS from ACD; use Carry as base for carry bit.

Subtract ACS from ACD; use complement of Carry as base for carry
bit. '

Subtract ACS from ACD; use complement of Carry as base for carry
bit; rotate left.

Subtract ACS from ADC; use complement of Carry as base for carry
bit; rotate right.

Subtract ACS from ACD;use complement of Carry as base for carry
bit; swap halves of result.

Subtract ACS from ACD; use Carry as base for carry bit; rotate left.
Subtract ACS from ACD; use 1 as base for carry bit.

Subtract ACS from ACD; use 1 as base for carry bit; rotate left.
Subtract ACS from ACD; use 1 as base for carry bit; rotate right.

Subtract ACS from ACD; use 1 as base for carry bit; swap halves of
result.

Subtract ACS from ACD; use Carry as base for carry bit; rotate right.

Subtract ACS from ACD; use Carry as base for carry bit; swap halves
of result.

Subtract ACS from ACS; use O as base for carry bit.
Subtract ACS from ACD; use O as base for carry bit; rotate left.
Subtract ACS from ACD; use O as base for carry bit; rotate right.

Subtract ACS from ACD; use 0 as base for carry bit; swap halves of
result.

Skip if carry is O (skip function in an arithmetic or logical instruc-
tion).

Skip if result is zero (skip function in an arithmetic or logical in-
struction).

Page
2-23
2-27
2-13

2-13

2-13
2-23
2-23
2-23
2-23
2-13

2-13

2-16
2-16

2-16

2-16

2-16
2-16
2-16
2-16
2-16

2-16
2-16

2-16
2-16
2-16
2-16

2-13

2-13

002000

100000

000010

When this character appears in an instruction, the assembler places
a 1 in bit 5 to produce indirect addressing.

When this character appears with a 15-bit address, the assembler
places a 1 in bit 0, making the address indirect.

Appending this character to the mnemonic for an arithmetic or
logical instruction places a 1 in bit 12 to prevent the processor from
loading the 17-bit result in Carry and ACD. Thus the result of an

instruction can be tested for a skip without affecting Carry or the
accumulators.

Page
2-3

2-13

D11

INSTRUCTION EXECUTION TIMES

Supernova read-only time equals semiconductor time, except add .2 for LDA, STA, ISZ, DSZ if reference is to core.
Nova times are for core; for read-only subtract .2 except subtract .4 for LDA, STA, ISZ, DSZ if reference is to read-only
memory.

When two numbers are given, the one at the left of the slash is the time for an isolated transfer, the one at the right is

the minimum time between consecutive transfers. All times in microseconds. |
Supernova
SC Core 800 Series 1200 Series Nova
LDA 1.2 1.6 1.6 2.55 5.2
STA 1.2 1.6 1.6 2.55 5.5
ISZ, DSZ 1.4 1.8 1.8 3.15% 5.2
IMP .6 .8 .8 1.35 2.6
JSR 1.2 1.4 .8 1.35 35
Indirect addressing add .6 .8 .8 1.2 2.6
Base register addressing add 0] 0 0 0 3
Autoindexing add 2 2 2 .6 0
COM, NEG, MOV, INC 3% .8* 8* 1.35% 5.6
ADC, SUB, ADD, AND 3* 8* .8* 1.35% 59
*If skip occurs add i 8 2 1.35
10 input (except INTA) 2.8 2.9 2.2 2.55 4.4
NIO 3.2 33 2.2t 3.15 4.4
10 output 3.2 33 2.2% 3.15 4.7
1S,CorPadd .6
10 skips 2.8 29 1.4* 2.55 4.4
INTA 3.6 3.7 2.2 2.55 4.4
MUL 8.8 3.75 111
Average 3.7 3.8
Maximum 5.3 5.4
DIV 6.8 6.9 8.8 4.05 11.9
Unsuccessful 1.5 1.6 1.6 2.55
Interrupt 1.8 2.2 1.6 3.0 5.2
Latency 7 12
With multiply-divide 9 9 10.6
Without multiply-divide 5 5 4.6
Data Channel
Input 2.3 2.3 2.0 1.2 3.5
Output 2.8 2.8 2.0 1.2/1.8 4.4
Increment 2.8 2.8 2.2 1.8/2.4 4.4
Add 2.8 2.8 5.3.
Latency 3.6 7 12
With multiply-divide 9 9
Without multiply-divide 5 5
High speed channel
Input .8 8 .8
Output .8/1.0 .8/1.0 .8/1.0
Increment 1.0/1.2 1.0/1.2 1.0/1.2
Add 1.0/1.2 1.0/1.2
Latency
With 10 4.5 4.5 3.6
Without 10 2.5 2.5 2.0

T Add .3 if arithmetic or logical instruction is skipped, otherwise add .6.
D12

APPENDIX E
IN-OUT CODES

The table on the next two pages lists the in-out devices, their octal codes, mnemonics and DGC
option numbers. 4000 series options are for all machines or the Nova computer only, 8100 series
options are for the 1200 series (but occasionally for the 1200 and 800 series), 8200 for the 800 series
only, and 8000 for the Supernova computer only. Codes 40 and above are used in pairs (40-42, 42-43,
.. .) for receiver-transmitter sets in the high speed communications controller. The table beginning on
page E4 lists the complete teletype code. The lower case character set (codes 140-176) is not available
on the Model 33 or 35, but giving one of these codes causes the teletypewriter to print the correspond-
ing upper case character. Other differences between the 33-35 and the 37 are mentioned in the table.
The definitions of the control codes are those given by ASCII. Most control codes, however, have no
effect on the computer teletypewriter, and the definitions bear no necessary relation to the use of the
codes in conjunction with the software.

El

l
I

E2

Device
Code
(Octal)

00
01
02
03
04
05
06
07
10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31*
32
33
34
34*
35
36
37
40+
41e

42

43
44
45
46
47
50
51
52
53

IN-OUT DEVICES

Priority
Mnemonic Mask Bit Device
MDV — Multiply/Divide Option
MCAT 12 Multiprocessor adapter transmitter
MCAR 12 Multiprocessor adapter receiver
TTI 14 Teletype input
TTO 15 Teletype output
PTR 11 Paper tape reader
PTP 13 Paper tape punch
RTC 13 Real time clock option
PLT 12 Incremental plotter
CDR 10 Card reader
LPT 12 Line printer
DSK 9 Fixed head disc
ADCV 8 A/D converter
MTA 10 Magnetic tape
DACV — D/A converter
DCM 0 Data communications multiplexor
oTY 14 Asynchronous hardware multiplexor
IBMI} 13 IBM 360/370 interface
IBM2
DKP 7 Moving head disc
CAS 10 Cassette tape
MX1 } 11 Multi-Line Asynchronous controller
MX2 (MAC)
SCR 8 Synchronous communicationsreceiver
SCT 8 Synchronous communications
transmitter
DIO 7 Digital I/O
DIOT 6 Digital I/0 timer
MXM 12 Modem control for MAC
MCAT1 12 Second multiprocessor transmitter
MCARI1 12 Second multiprocessor receiver
TTI! 14 Second teletype input
TTO1 15 Second teletype output
PTR1 11 Second paper tape readér
PTP1 13 Second paper tape punch

Device

Code

(Octal) Mnemonic
54 RTC1
55 PLT1
56 CDRI1
57 LPT1
60 DSK1
61
62 MTA1
63
64* FPU1
65 FPU2
66 FPU
67
70 QTY!1
71*
o
73 DKP!1
74 CAS1
T4* FPU1
75 FPU2
76 FPU
77 CPU

* code returned by INTA

Priority
Mask Bit

13
12
10
12

9

10

5

wn

5

Device

Second real time clock option
Second incremental plotter
Second card reader

Second line printer

Second fixed head disc

Second magnetic tape

}Alternative location for floating point

Second asynchronous hardware
multiplexor

Second IBM 360/370 interface
Second moving head disc
Second cassette tape

}Floating point option

Central processor and console
functions

+ may be set up with any unused even device code 40 or greater
e may be set up with any unused odd device code 41 or greater

E3

Even
Parity
Bit

S = O = =0

—_ O

OO = O = = O =

O O = o= O =

O

O O = = O O =

7-Bit
Octal
Code

000
001
002
003
004
005

006
007
010

011
012

013
014
015
016
017
020
021
022

023
024
025
026
027
030
031
032
033

034
035
036
037
040
041
042

Character

NUL
SOH
STX
ETX
EOT
ENQ

ACK

BEL

BS

HT
LF

VT .
FF
CR
SO
St
DLE
DC1
DC2

SUB
ESC

ES
GS

us
SP

’”

TELETYPE CODE

Remarks

Null, tape feed. Repeats on Model 37. Control shift P on Model 33 and 35.
Start of heading; also SOM, start of message. Control A.

Start of text; also EOA, end of address. Control B.

End of text; also EOM, end of message. Control C.

End of transmission (END); shuts off TWX machines. Control D.

Enquiry (ENQRY); also WRU, “Who are you?” Triggers identification
(“Here is. . .”) at remote station if so equipped. Control E.

AcknoWledge ; also RU, “Are you. . .?” Control F. h

Rings the bell. Control G. _

Backspace; also FEO, format effector. Backspaces some machines.
Repeats on Model 37. Control H on Model 33 and 35.

Horizontal tab. Control I on Model 33 and 35.

Line feed or line space (NEW LINE); advances paper to next line. Repeats
on Model 37. Duplicated by control J on Model 33 and 35.

Vertical tab (VTAB). Control K on Model 33 and 35.

Form feed to top of next page (PAGE). Control L.

Carriage return to beginning of line. Control M on Model 33 and 35.

Shift out; changes ribbon color to red. Control N.

Shift in; changes ribbon color to black. Control O.

Data link escape. Control P (DCO).

Device control 1, turns transmitter (reader) on. Control Q (X ON).

Device control 2, turns punch or auxdliary on. Control R (TAPE, AUX
ON).

Device control 3, turns transmitter (reader) off. Control S (X OFF).

Device control 4, turns punch or auxiliary off. Control T (AUX OFF).
Negative acknowledge; also ERR, error. Control U.

Synchronous idle (SYNC). Control V.

End of transmission block; also LEM, logical end of medium. Control W.
Cancel (CANCL). Control X.

End of medium. Control Y.

Substitute. Control Z.

Escape, prefix. This code is also generated by control shift K on Model 33
and 35.

File separator, Control shift L on Model 33 and 35.

Group separator. Control shift M on Model 33 and 35.

Record separator. Control shift N on Model 33 and 35.
Unit separator. Control shift O on Model 33 and 35.
Space.

Even
Parity
Bit

O = O OO e e O OO O RO OO OO0 OO e OO O OO R O

7-Bit
Octal
Code

043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077
100
101
102
103
104
105
106
107
110
111
112
113
114
115

Character

+*vf\

-

O 00 3 N W e T |

wes e

ZERS~ZQOTEHOQAWP>E OV I A

Remarks

Accent acute or apostrophe.

Repeats on Model 37.

Repeats on Model 37.
Repeats on Model 37.

Repeats on Model 37.

ES

Even 7-Bit
Parity Octal
Code Character Remarks
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137 Repeats on Model 37.
140 Accent grave.
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160

161
162

163
164
165
166
167
170

E

Repeats on Model 37.

Shift K on Model 33 and 35.
Shift L on Model 33 and 35.
Shift M on Modet 33 and 35.

rp T TN Y g IO YO Z

O O i e D e OO D e O OO OO O OO O O OO OO =0 = O

¥ g €< g o~ ¥ MOT" o B Y TR DO0 MO Ao g

Repeats on Model 37.

tn
-

Even 7-Bit
Parity Octal

Bit Code Character Remarks
1 171 y
1 172 z
0 173]
1 174 |
0 175 !
0 176 - {On early versions of the Model 33 and 35, either of these codes may
be generated by either the ALT MODE or ESC key.
1 177 DEL Delete, rub out. Repeats on Model 37.
Keys That Generate No Codes
REPT Model 33 and 35 only: causes any other key that is struck to repeat continu-
ously until REPT is released.
PAPER ADVANCE Model 37 local line feed.
LOCAL RETURN Model 37 local carriage return.
LOCLF Model 33 and 35 local line feed.
LOC CR Model 33 and 35 local carriage return.
INTERRUPT, BREAK Opens the line (machine sends a continuous string of null characters).
PROCEED, BRK RLS Break release (not applicable).
HERE IS Transmits predetermined 20-character message.

E7

CUT ALONG DOTTED LINE

R TR IVE

READERS COMMENT FORM

DOCUMENT TITLE:

Your comments, accompanied by answers to the Did you find the material:
Sollowing questions, help us improve the quality o Useful .. YES () NO ()
and usefulness of our publications. If your answer « Complete..... YES () NO ()
to a question is “no” or requires qualification, e Accurate... YES () NO ()
please explain. * Well organized...... .. . YES () NO ()

. . Lo, o Well written................. YES () NO ()
How did you use this publication? « Well illustrated. YES () NO ()
() As an introduction to the subject. * Well indexed........ YES () NO ()
() As an aid for advanced knowledge. e Easy toread.............. YES () NO ()
() For information about operating procedures. e Easy to understand.. .. YES () NO ()
(} To instruct in a class.
() As a student in a class. We would appreciate any other comments; please
{) As a reference manual. label each comment as an addition, deletion, change,
() Other. or error and reference page numbers where applicable.

COMMENTS
PAGE| COL |PARA| LINE " FROM TO
b}
From
NAME........ooooiooeereeeeeeeeer, 111 (X Data General Corporation
FIRM i, DIV, i, ENGINEERING PUBLICATIONS
ADDRESS ...ttt et e COMMENT FORM
CITY s STATE............... ZIP.......... DG-00935
TELEPHONE ..., DATE ..ot
)

	0-0
	0-1
	0-2
	0-3
	0-4
	0-5
	0-6
	0-7
	1-01
	1-02
	1-03
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	A00
	A01
	A02
	A03
	A04
	A05
	A06
	A07
	A08
	A09
	A10
	A11
	A12
	A13
	A14
	A15
	A16
	A17
	A18
	A19
	A20
	A21
	A22
	A23
	A24
	A25
	A26
	A27
	A28
	A29
	A30
	A31
	A32
	A33
	A34
	A35
	A36
	A37
	A38
	A39
	A40
	A41
	A42
	A43
	A44
	B01
	B02
	B03
	B04
	B05
	B06
	B07
	B08
	B09
	B10
	B11
	C01
	D01
	D02
	D03
	D04
	D05
	D06
	D07
	D08
	D09
	D10
	D11
	D12
	E01
	E02
	E03
	E04
	E05
	E06
	E07
	E08

