Technical Manual

FUNDAMENTALS
OF
MINI-COMPUTER
HARDWARE

015-000022-02

%45

DATA GENERAL
TECHNICAL
MANUAL

FUNDAMENTALS
OF
MINI-COMPUTER
HARDWARE

Ordering No. 015-000022

©Data General Corporation 1972, 1973, 1974
All Rights Reserved.

Printed in the United States of America

Rev. 02, January 1974

NUMBER SYSTEMS &

ARITHMETIC OPERATIONS l &

LOGIC AND LOGIC CONVENTIONS I 4

COMPUTER ORGANIZATION

INSTRUCTION SET- MEMORY REFERENCE Ye&

ARITHMETIC LOGICAL INSTRUCTIONS (ALC) Y @i

INPUT-OUTPUT (10) INSTRUCTION

PROGRAM INTERRUPT AND DATA CHANNEL VT @i

CONSOLE

BASIC PROGRAMMING AND PROGRAMS X @

NOTICE

The materials contained herein are proprietary to Data General Corporation
(DGC) and have been prepared solely for use in DGC training Courses. No
other use of the materials for any other purpose, including but not limited
to the sale or manufacture of any of the items described, shall be made
without DGC's written permission. Reproduction of this material in whole
or in part is subject to DGC's prior written permission.

This publication was prepared by the Data General Corporation Education
Department. It is intended to supplement the material presented in Data
General's Fundamentals of Mini-Computer Hardware Course. PJS 2/74

Any comments concerning this publication should be forwarded to:

Education Department
Data General Corporation
Route 9

Southboro, MA. 01772

M

SYSTEM BASESuvant,

Radix

323 % s 8 3 8 3 8 s s ks s s e s BB E

RADIX POINTcovvnineneeas

NUMBER SYSTEM CONVERSIONS

Binary to Decimal

Octal to Decimal..

Decimal to Binary

Decimal to Octal ..
Binary to Octal .
Octal to Binary .

ADDITION

Binary Addition
Octal Addition ..

SUBTRACTION ...

Complementary Arithmetic

.

B

20 s s s s

.

.

5

.

B

»

-

-

.

-

.

.

.

»

s s 268 e e e e

Binary Subtraction ...
Octal Subtraction

MULTIPLICATION-BINARY

DIVISION-BINARY

LOGICAL AND...........

LOGICALOR............

LOGICAL EXCLUSIVE OR

s e 0

.

.

.

TABLE OF CONTENTS

SECTION I

NUMBER SYSTEMS

SECTION II

ARITHMETIC OPERATIONS

SIGNED NUMBER REPRESENTATIONi 0t iiiiininnninnnenns
Sign Bit Definitioniu ittt it

Range of Signed Numbers

GENERAL......

LOGIC GATES .
AND Gate ..
OR Gate ...

.

-

.

.

.

B

.

.

.

B

»

.

.

.

XOR Gate
Multiple Input Gates
Flip-flops.........

-

.

P I I I I I I I R R A R S Y

SECTION III

LOGIC AND LOGIC CONVENTIONS

Page

TABLE OF CONTENTS (Continued)

SECTION III (Continued)

LOGIC AND LOGIC CONVENTIONS

VeI TS ittt it ens st anseansaanosesnssassssnsaasasesaseasnssseasennsnsasens 3-8
B R E T = s e T T 3-8
Registers 3-6
Four Bit Shiff Regisler ...ttt it iaanaraannsssrsraanerasesnetosnsasesnas 3-1
SECTION IV
COMPUTER ORGANIZATION

DE FINITION S 4ttt ittt ittt s asaaneasenessssssansesunnsosessasoennnssassnssssesssness 4-1

COMPUTER ORGANIZATION L. ittt ittt ittt tneseaoansassoressssesesassssnsnnsnsasnens 4-2
I/O SECTION - INPUT /OU T PUT ottt innenstnenaercranoennsasonecneeasansnsenenns 4-4
MATOR REGISTE RS . ittt ittt ensetonaneneesasenasosecnssessuseseenssanssasssnssansasas 4-5
CPU Hardware RegiSters o ou ittt it ittt iieisnisassaensanonensaaansosssconsansas 4-5
Register Inferrelation v .. e it en et inennreneraeeeassocasesesssacnscnnens 4-6
GBI AL o ottt e sttt et e enesanasosesassssesseeanasssssesesssnsnenesascosssosnonas 4-6
SEALES (CFCLES) vttt et eeee s necae ettt e cianatenenaarasstesacansanenasaareenaenas 4-6 kY

Magnetic COre TheOTY vt vrntii e tenersensnsoeeranesassnssaasasssenssseessnssens 4-7
DETINIEIONS 2 v v e s v oeen e e e en s neoanonseaesensonesanenconosassassonsonssanssnacnnas 4-8
7oYYL 4-9
2 727 (PP 4-1
SENSE LT vttt ititeeenersneeeesossssnasssasascosisesnnasenassnnnsssenaonsssnnss 4-1

4-1

LI o s s s oo s oo essoenasesnenssssesnsosessnsasasssesssssnassosssnscanassssnsnsasen

SECTION V

INSTRUCTION SET - MEMORY REFERENCE

.
.

.

»

.

.

-

-

.

.

.

.

-

.

.

.

.
(3]

1

[y

INSTRUCTION WORD AND ADDRESSING ..ttt itiniinieiiiincnaraasnerancsoncessssansnnnn

BT T = R R

L0523 L= T
Fa N L b oY= =0 oV T
OO vttt i it s s enaenesoncossssasnesnensossanessssssssssssannsansanssancs
Page Zero MOGE «uvureininennnnteeeenasensessesssssoesesssonsssssnsssnensnssssas
Relative MOGe v uvr s s it s seenessouncesnaneesesareasssosnssesasseesnnasssssnssnsss
BaSE MOGE & it iines s ennaenssosassonsanesonansesssessonessssssnnssssonassssnsnss

‘
N
N
.
N
.
.
LT U O A On U1
LI B |
DN DD b ok bk ok ok

H

S

w
'

-]
K’M

MEMORY REFERENCE INSTRUCTIONS

o
i
b

ii

TABLE OF CONTENTS (Continued)

SECTION V {Continued)

INSTRUCTION SET - MEMORY REFERENCE

k1
L LT o= T

AUTO INDEX, DECREMEN T ittt ittt et ettt assanne e eeeee i,
AUto Index (InCTemIent) oottt ittt e et e te et ettt ee e et e s e e
P LR B T o e U= o

SECTION VI

ARITHMETIC LOGICAL INSTRUCTIONS (ALC)

SECONDARY OPERATIONS Lottt ittt ittt ta st ttananasesnenenaanoneneneneenenennans
F e T B o Ta LT
Load Shifted Left ... i i i i i ittt teenennnennannnneensnas
Load Shifted Right . ..o i i i i i i ittt it it eieaenenes
Do T B o
Carry and Carry Base, ittt ittt ettt ittt i e e
ALC Skips......... st ea e et et e ettt e e,

SECTION VII

INPUT-OUTPUT (I0) INSTRUCTION

iii

TABLE OF CONTENTS (Continued)

SECTION VIII

PROGRAM INTERRUPT AND DATA CHANNEL

8
General....... e e e assearesereseanaseeasaaen 8
CPU Mnemonics e e e seescasaaaaeer ey 8-
Basic Interrupt SEquencecoeriaaaonanes et eeesecenesarasassenacennoe e an 8
Interrupt Sequence Descriptionc.covvevnn 8
Polling Technique e e e e 8

DATA CHANNELviiirinnnnnns e raea e R 8-2
General........... e e eeeeeeaa eeeeaas et eeeeeseeesssessassaceasaane e 8-2
Data Channel Descriptionovvnnn et eeesereestasesseasasceranaaaaseneans 8-2
Modes vvvvennnnns Cerereseanas T 8-3

SECTION IX
CONSOLE
GENERAL et eereeaaaa e 9-1

REGISTERScvvvnn et eceeeaeaaaeaan 9-1
Addresso0.. Ceeee e et 9-1
DAt cvvvevvvnnrsnoescaesnnnnns e 9-1

Operational Indicators [T

SWITCHES ANDKEYS............. Ceenrarssiasessrencncnsans 9-1
Switches e Ceeeaae 9-1
Keys .oovennnnn e reee e Cereaeaaeee 9-1

SECTION X
BASIC PROGRAMMING AND PROGRAMS

GENERALc0nn e e Mrrescccsacansrresnasasennanan 10-1 .

LOADING PROGRAMS e et 10-1
Binary Loader.......veeneeninneenenn, 10-2

Diagnostic Programs...... e e ettt saearseaseree s - 10-3

NOVA DIAGNOSTIC PROGRAMS . ..iivivnentirecesanannnnss 10-3
Sample Diagnostic Loop RN e 16-3

APPENDICES
A GLOSSARY OF TERMS AND DEFINITIONS e e A-1
B ABBREVIATIONScovevnnenn seesreesasraeran s ee e B-1

C REFERENCESc.c0n. e ees sty C-1

s

iv

LIST OF ILLUSTRATIONS

Figure Title Page

3-1 Printed Circuil Boardttt it ettt ittt et enenans 3-1
3-2 BT~ G - o= o 5 3-2
3-3 a2 Lo O 5 o S 3-3
3-4 B o € e 3-4
3-5 Basic Register .. e e e e e e 3-6
3-6 Register Containing 8 Flip-flops . vv ittt it ettt et eieee e e ns 3-7
3-17 Decoded Register .. ittt ittt ettt et e, 3-7
3-8 Paralle]l Trans er oot it i e e e e e e 3-7
3-9 TS0 S R 16 o= b+ FC 5 L 3-7
3-10 Left Shift Transier o ...t i it i e ettt et er e enenanns 3-8
3-11 Right Shift Transfer ... i i i i it ittt ettt nenenns 3-9
3-12 Complement Transfer ...ttt it tteiiereetenenerneneeensnennenss 3-10
4-1 F O I o L0 o S 4-1
4-2 Instruction Register Decodingoviuinierinrnnnrennennnnnneennnnnnns 4-2
4-3 Master CloCK 4 vttt ittt ittt ittt et e et te ittt ettt e 4-2
4-4 Master Clock, Phase Timing, and Time State Timingcovvvvnnn... 4-2
4-5 B A o - 4-5
4-6 Register Interrelationuiiiiiiiiiiiiin ittt ittt iinnnnnnns 4-6
4-7 Core Mat With 16 Planesuuittevnerneerneeronereenenneenoeennnnenans 4-9
4-8 COre MOUNLINGS 4t v vt ts s it e s ts e sarienaeeeeenenennensnanenennonsnsns 4-9
4-9 L0 e T o - T o T 4-9
4-10 Address Selection ..ttt i i i e i e e i i, 4-9
4-11 Xoand Y SwilChes ..ttt it it e i e e e e e e 4-10
4-12 Read Currents oot ittt it it ittt ettt it e et ettt e aaneeas 4-10
4-13 Sense Line and Amplifier ..ottt ittt ittt it ittt it eratnenenns 4-11
4-14 Write and Inhibit Currentsuiiintnin ettt innsneenenenns 4-11
5-1 IR Bits 6-15 BreakadowWn . vv st vunine et tetennnennnnrennonenenernsenenenss 5-1
5-2 Subroutine Principlesttt i it i e i e 5-3
6-1 ALC DECOMING vttt ittt ettt et e et et 6-1
6-2 Adder Concept (ADD 3, 2) v ittt sttt ttr ettt 6-5
7-1 Done and Busy Flp-fl0pS o .itttiiteer ittt inineneneenenennaneneans 7-2
7-2 Paper Tape Reader I/0 Controls «uuuiniireennerineenneenneeneeennennns 7-5
7-3 Paper Tape Punch I/0 CONETOL wuervnsnserereseneneeeneanenenraenennnn, -5
7-4 CPU I/O Instruction DECOME « v vt v errne s snesnneeneseneenneeennsens 7-6
8-1 Data Channel Signal Transferiiieueeninrenernennenennsnneeneensns 8-3

This page intentionally left blank

vi

SECTION I

NUMBER SYSTEMS

SYSTEM BASES
Radix

To introduce the concept of number systems, look
first at that number system most familiar to us,
the decimal number system. The decimal number
system contains ten (10) different symbols
(0,1,2,3,4,5,6,7,8,9), thus it is base 10, or
radix 10.

In this same manner, it is possible to define a
multitude of number systems by simply specifying
a new base or radix. For examples, a number
system with the base 5 would contain 5 symbols
(0,1,2,3,4). A radix 16 number system would
contain 16 symbols (0,1,2,3,4,5,6,7,8,9,A,B,
C,D,E,F). It is insignificant that alphabetical
characters are used as the additional symbols.
The significance of the symbols is their relative
position in the complete set. It is the position
which determines the actual value of the symbol,
not the symbol itself.

It should be evident, from the following table, how
counting would proceed in various number systems.

RADIX: 10 2 3 4 8 16
0 0 0o 0 0 0
1 1 11 11
2 10 2 2 2 2
3 11 10 3 3 3
4 100 11 10 4 4
5 101 12 11 5 5
6 110 20 12 6 6
7 111 21 13 7T 7
8 1000 22 20 10 8
9 1001 100 21 11 9

10 1010 101 22 12 A
11 1011 102 23 13 B
12 1100 110 30 14 C
13 1101 111 31 15 D
14 1110 112 32 16 E
15 1111 120 33 17 F
16 10000 121 100 20 10
17 10001 122 101 21 11
18 10010 200 102 22 12
19 10011 201 103 23 13
20 10100 202 110 24 14
21 10101 210 111 25 15
22 10110 211 112 26 16
23 10111 212 113 27 17
24 11000 220 120 30 18
25 11001 221 121 31 19
26 11010 222 122 32 1A
27 11011 1000 123 33 1B
28 11100 1001 130 34 1C
29 11101 1002 131 35 1D

1-1

10 2 34 8 16 |
30 11110 1010 132 36 1E
31 11111 1011 133 37 1F
32 100000 1012 200 40 20
33 100001 1020 201 41 21
34 100010 1021 202 42 22
35 100011 1022 203 43 23
36 100100 1100 210 44 24
37 100101 1101 211 45 25
38 100110 1102 212 48 26
39 100111 1110 213 47 27
40 101000 1111 220 50 28

The radix 10 number is more generally known as
the decimal number system. Similar nomenclature
is used for other number systems.

Radix Nomenclature
10 Decimal
2 Binary
8 Octal
16 Hexadecimal

The binary number system (radix 2) contains 2
symbols (0,1). This has special significance
since most physical devices have 2 states, and
each state can be represented by one of the binary
symbols. For example, a switch has 2 states:
OFF (0) and ON (1); a door has 2 states:
CLOSED (0) and OPEN (1); numbered areas on a
computer card have 2 states: NO HOLE (0)

and HOLE (1); small areas on magnetic tape have
2 states: NOT MAGNETIZED (0) and
MAGNETIZED (1). 1t is for this reason that the
binary number is so widely used in computers.

In order to indicate which number system is being
used, the radix is subscripted at the end of the
number. For example, the decimal number 179.65
would be written as 179.6510; the octal number
734.26, as 734.26g; and the binary number
1011.01101 would be written as 1011.011019.

RADIX POINT

It has been shown how integer numbers (whole num-
bers, nonfractional numbers, etc.) are represented
in various number systems. In the decimal number
system, the fractional portion of a number is
separated from the integer portion by a decimal
point (ex: 123.24). This form of separation is
used in all the number systems. In general, the
point is called the radix point. In the decimal
number system, it is referred to as the decimal
point; in the binary number system as the binary
point; and in the octal number system as the
octal point.

Rev. 02

An example of fractional numbers in different num-

ber systems is shown:
Radix Example

2 10001101.01001101

3 10200121.21102

8 7536.0214

0

1 8930.6345

NUMBER SYSTEM CONVERSIONS
Binary to Decimal

Consider the number 2141¢9. This notation is
shorthand for

4x1 = 4
1x10 = 10
2x100 = 200

214

In the decimal number system, this seems re-
dundant, but it demonstrates the technique for
converting a number of any radix to its decimal
equivalent. In general, every number will have
the following format:

PR 3433323130- a_la_za_s R

where a, is the value of the digit, the subscript of
a is the digit's position relative to the radix point,
and R is the radix of the number. The following
formula is used to convert any number to its deci-
mal equivalent:

.....

+{a 4xR4)+(a3xR3)+asz 2)+(31le) +(aOXR0) +

(a_lxR‘1)+(a_2xR“2)+(a_3xR‘3)+. .. =Nyg

Example 1.1
Find N where 214.3610=N10
0
4xl()1 = 4x1 = 4
1}(102 = 1x10 = 10
2x10 = 2x100 = 200
3x10"§ = 3x1 = .3
6x10° = 6x.01 = .06
214,36

1-2

Example 1. 2

Find N where 1011.011015=Nyq

1x2‘]3_ = 1Ix1 = 1

1x22 = 1x2 = 2

Ox23 = 0

1x2_1 = 1x8 = 8

Gx2~2 = 0

1x2_3 = 1x. 25 = .25

1x2_4 = 1x.125 = . 125

Gx2~5 = 0

1x2 = 1x.03135 = .03125
11740625

1011. 011012 = 11. 4062510

QOctal to Decimal

A similar procedure is used to convert octal numbers
to decimal numbers.

Example 1.3

Find N where 1735. 24g=N1g

5x8(1) - 5xl - 5
3x8) =3x8 - 24
x82 = Tx64 - 448
1xg®, = 1x512 - 512
2x87) = 2x.125 - .25
4x8"2 = 4x.015625 = S 0625
989. 3125

1735. 24g = 989. 312510

Decimal to Binary

When converting a decimal number to a number in
some other base, it is necessary to consider the
integer portion (portion to the left of the decimal
point) and the fractional portion (portion to the
right of the decimal point) separately.

The procedure for converting the integer portion
of a decimal number to some other radix R is as
follows:

1. Divide the integer by R, and separate the

answer into a quotient and a remainder.

Record the remainder.

Divide the quotient by R, and separate the

answer into another quotient and a remainder.

4. Repeat steps 2 and 3 until a quotient of 0 is
obtained.

5. Record the remainders in reverse order of their
occurrence to form the converted number.

2.
3.

| ;
Siggpt

i

Example 1.4

Find N where 171(}:’\}2
Quotient Remainder
2 /17
2?5" 1 LSB
Hm*
2 éil__ 0
2/2 0
2/1 0
0 1 MSB
1719=100014
Example 1.5
Find N where 3910=Ng
Quotient Remainder
2 /39
2 /19 1 LSB
2 /9 1
2 /4 1
2 /2 0
2 /1 0
0 1 MSB

3910=100111y

The procedure for converting the fractional portion

of a decimal number to some other radix R is as
follows:

1. Multiply the fraction by R, and separate the
answer into an integer and a fraction.

2. Record the integer.

3. Multiply the fraction by R, and separate the
answer into another integer and a fraction.

4. Repeat steps 2 and 3 until a fractional answer
of 0 is obtained.

5. Record the integer portion of the answers in
the order of their occurrence to form the con-
verted fraction.

Example 1. 6
Find N where . 12510=N2
Integer Fraction
. 125x2=0 + . 250
. 250x2=0 l + . 500
.500x2=1 + . 000
. 1251p=. 0014

1-3

Example 1.7

Find N where . 510:N2
Integer Fraction
. Bx2=1 + .2
.2x2=0 l + .4
. 4x2=0 + .8
. 8x2=1 + .8
. 8x2=1 + .2

.610= 10019

The bar over a portion of a number indicates that
that portion of the number is repetitive. In the
above example, the group 1001 will repeat in-
definitely as

.10011001100110011001.

Example 1.8

Find N where .42510=N9g
Integer Fraction
. 425x2=0 + . 85
.85 x2=1 + LT
LT ox2=1 + .4
.4 x2=0 + .8
.8 x2=1 + .6
.6 x2=1 + .2
.2 x2=1 + .4
Example 1.9
Find N where 9.7519=Ng
2/9 . 75x2=1 l+.5
9 /4 . 1 .5 x2=1 ¢+0
2/2 + 0
2/1 + 0
0 + 1

9.7510=1001. 114

Decimal to Octal The relationship between the octal {radix 8) and
binary (radix 2) number systems is the key to

The conversion of decimal numbers to octal num- the conversion simplicity.

bers uses the same procedure.

g=23
Example 1. 10) where the magic number is 3.
Find N where 17619=Ng The procedure for converting binary numbers to

octal numbers is as follows:
Quotient Remainder ‘
1. Starting at the binary point, proceed to the left
8 /116 and partition the number into groups of 3 bits
(binary digits). -

0
822 * 2. Starting at the binary point, proceed to the
872 + 6 right and partition the number into groups of
0 . 9 3 bits.
3. Convert each group of 3 bits to its octal equiv-
17610-260g alent.
Example 1. 11 Example 1. 13
Find N where .310-Ng Find N where 1011010.10111019=Ng
Integer Fraction 001011010,101110100,
' 1 3 2 't 5 6 4
. 3x8= 2 + .4
. 4x8= 3 + .2 1011010. 10111019=132. 564g
. 2x8= 1 + .6
. 6x8= 4 + .8 NOTE: Zeroes should be added at the beginning and
. 8x8= 6 + .4 at the end of a number to complete a group

of 3 bits.

.30 = 23746,

Example 1. 14

Example 1. 12 Find N where 1111000.00011115=Ng
Find N where 253, 154=N
10778 001111000,000111100
8 /253 .15%8=1 + 2 1 7 0 * 0 7 4
831+ 5 .2x8=11+.6
.6 x8=4 +.8 1111000. 00011119=170. 074g
8/3 + i .8 x8=6 +.4
T .4 x8=3 +2
0 + 3

253.157(= 375.1T463g

Binary to Octal

The octal number system has been employed, in
most computer circles, as the standard number
system. It is far less tedious to perform con-
versions between decimal and octal systems than
between decimal and binary systems, and it is
relatively simple to perform conversions between
the octal and binary systems.

Rev. 02 1-4

g

Octal to Binary

The procedure for converting octal numbers to
| their binary equivalent is equally simple. Just

reverse the binary o octal conversion procedure.

To convert octal numbers to binary, perform the
following:

1. Starting at the octal point, proceed to the left
and convert each number to its 3 bit binary
equivalent.

2. Starting at the octal point, proceed to the
right and convert each number to its 3 bit
binary equivalent.

Example 1. 15

Find N where 173. 4.058=N2
1 (. 3 . 4 0 5
¢ ‘ 'S I ' v
001 111 011 . 100 000 101

173.4058=1111011. 1000001019

NOTE: Leading and trailing zeroes may be dropped.

Example 1,16

Find N where 37526.1024g=Ny

3 1 5 2 6 , 1 0 2 4

I D I A
011 111 101 010 110 * 001 000 010 100

37526.1024g = 11111101010110. 0010000101,

Rev. 02

This page intentionally left blank

St

SECTION I

ARITHMETIC OPERATIONS

ADDITION
Binary Addition

The addition of binary numbers follows the same

procedure as the more familiar addition of decimal

numbers.

To add two decimal numbers, proceed as follows:

1. Add the rightmost digit of each number to obtain

a sum digit and a carry digit.

2. Record the sum digit.

3. Add the next rightmost digit of each number,
plus the carry digit left from the previous ad-
dition, and obtain another sum digit and carry
digit.

4. Repeat steps 2 and 3, proceeding from right to

left, until all the digits have been added.
5. The number constructed from the individual
sum digits is the final sum.

Example 2.1

Add the two decimal numbers 566+624.

566
624
6+4=10 ““ where Carry=1l ’
Sum=0
1
566
624
1+6+2=9 -0 where Carry=0
Sum=9
01
566
624
0+5+6=11 ~90 where Carry=l1
Sum=1
101
0566
0624
1+0+0=1 190 where Carry=0
Sum=1
101 I
0566
0624

0524 |
1190 J

Thus 566+625=1190

Binary addition follows exactly the same five steps
used in decimal addition. But, it must be remem-

bered that the binary number system has only two

digits (0 and 1). The following table examines the

addition of all possible operands resulting from
the addition of two binary numbers:

Carry Bit A Bit B Carry Sum

Prop. Gen.
0 + 0 + 0 = 0 0
0 + 0 + 1 = 0 1
0 + 1 + 0 = 0 1
0 + 1 + 1 = 1 0
1 + 0 + 0 = 0 1
1 + 0 + 1 = 1 0
1 + 1 + 0 = 1 0
1 + 1 + 1 = 1 1

Example 2. 2

Add the two binary numbers 10111+10101.

10111
10101
1+1=10 where Carry=1
Sum=0
1
10111
10101
1+1+0=10 70 where Carry=1
Sum=0
11
10111
10161
1+1+1=11 00 where Carry=1
Sum=1
111
10111
10101
1+0+0=01 7100 where Carry=0
Sum=1
0111
10111
10101
0+1+1=10 1100 where Carry=1
Sum=0
10111
010111
010101
1+0+0=01 101100 where Carry=0
Sum=1
Thus 10111+10101=101100 j

Rev. 02

(

The following example shows a shorthand method of
keeping track of the sum and carry digits.

Example 2.3

Repeat the Example 2. 2 using the shorthand tech-
nique.

0 1 1 1
PNONINEN
1 0 1 1 0 0

Thus 10111 +10101=101100.

Example 2. 4

Add the two binary numbers 1101+10.

0 0 0
o NN NS

1 1 1 1

Thus 1101 +10=1111.

If the number of digits in the answer exceeds the
maximum allowable number of digits, the answer
is said to overflow, and the leftmost digit of the
answer is called the overflow digit.

If, in Example 2. 3, the maximum allowable num-
ber of digits is five, then there is an overflow, and
the overflow digit is 1. In Example 2. 4, there is
no overflow, so the overflow digit is 0.

Octal Addition
The procedure for performing octal addition is simi-
lar to that used for decimal and binary addition.
The fact to keep in mind is that the octal number
system has 8 digits (0 thru 7), and a carry occurs
when the sum exceeds 7.
In the following examples, assume the maximum
allowable number of digits is 5.
Example 2.5
Add the two octal numbers 23174 + 60165.
0 0 1 1
ANERNCRNEAN
6 0 1 6

3 6

le—0 3

4
5

1
Thus 23174+60165=103361.

NOTE: In this example, an overflow occurred.

Rev., 02 9-9

Example 4.6

Add the two octal numbers 7106 + 607, {

Thus 7106 + 607 = 7715, |

NOTE: In this example, no overflow occurred
since the sum did not exceed the maximum
allowable 5 digits.

SUBTRACTION
Complementary Arithmetic

In the previous section, the concept of "maximum
allowable number of digits' was introduced. This
concept is of great importance in the understand-
ing of complementary arithmetic.

If the maximum allowable number of digits is 6,
for example, then the decimal numbers
986327
and 1 9 8 6 3 2 7
represent the same magnitude since the leftmost
digit is an indication of overflow, and adds nothing

to the value of the rightmost, maximum allowable
6 digits.

The normal counting sequence from zero is as fol-
lows:

0 0 o0 0 0 0
0 0o 0 o6 o0 1
0 0 0 0 0 2
60 0 0 0 0 3
3
9 9 9 9 9 7
9 9 9 9 9 8
9 9 9 9 9 9
1 0 0 0 0 0 0
1 0 6 0 0 O 1

It should be evident, from the previous table,

that if 1 is added to the largest number, 999999,
zero is obtained and the normal counting sequence
is recycled.

G

|

What happens if the counting sequence is reversed?

LD OOOOO
OO OOO
WWwWwoO oo
WWOHOOOO
WP DODOOOO
=1 00 W O = b W

From this table, it can be seen that when 1 is
subtracted from zero, the number simply cycles
back through 999999, etc. But, 1 subtracted

from zero is -1. To restate this, disregarding +
and -, we say that, 999999 and 000001 are com-
plements. Likewise, 000002 and 999998 are
complements; 000003 and 999997 are complements;
etc. Note that every number has a complement
except 000000. The complement of 000000 is
000000.

To obtain the complement of a number, it is not
necessary to count forwards and backwards from
000000. Simply subtract the number from (the
largest possible number +1).

For the 6 digit maximum numbers used here, the
largest possible number is 999999, and the largest
possible number +1 is 1000000.

Example 2.7

Find the complement of 000004.

1 0 0 0 0 0 O (largest possible number +1)
- 0 0 0 0 0 4 (minus the number)
9 9 9 9 9 6 (complement of the number)

Example 2.8

Find the complement of 9231586.

1 0 0 0 0 0O
- 9 2 3 1 5 6 (number)
0 7 6 8 4 4 (complement)
Example 2. 9
1 0 0 0 0 0 O
- 0 0 0 0 0 O
1«——0 0 0 0 0 O

2-3

The complementary numbers obtained in Examples
2.7, 2.8 and 2. 9 are more correctly referred to
as the 10's (ten's) complement of the number
(999996 is the 10's complement of 000004, etc.).
This further restriction of the complement is used
to indicate the operand from which the number was
subtracted to obtain the complement. In Examples
2.7, 2.8 and 2. 9, this operand is the next power
of the base (in this case 10); thus the complement
obtained is the 10's complement.

It is interesting to note that the original number
was subtracted from the largest possible number
+1 in order to obtain the 10's complement. The
same result could be obtained if the number is
subtracted from the largest possible number, and
1 added to the answer,

Example 2.10

Find the 10's complement of 9231586.

9 9 9 9 9 9 (largest possible number)
-9 2 3 1 5 8 (number)
0 7 6 8 4 3
+ 1 (plus 1)
0 7 6 8 4 4 (10's complement)

NOTE: 076843 is known as the 9's complement of
9231586.

Therefore, an easier method of finding the 10's
complement of a number is as follows:

10's complement of X = 9's complement of X, plus 1

Example 2,11

Find the 10's complement of 000000.

9 9 9 9 9 9 (largest possible number)
-0 0 0 0 0 0 (X
99 9 9 9 9 (9s complement of X)
+ 1 (plus 1)
l«—0 0 0 0 0 0 (10's complement of X)

Now let's apply the general rules of complementa-
tion to the binary number system. In the binary
number system, the complement desired is the
2's complement of the number.

In the following examples, assume that the maximum

allowable number of bits (binary digits) is 7.

Rev. 02

Example 2,12

Find the 2's complement of 0000011.

1 00000 0 0 (largest possible number* +1)
- 0000011 X
1111101 (2's complement of X**)

*The largest possible number is 1111111,
**Direct binary subtraction follows the same rules
as direct decimal subtraction:

-

bt O e O

ononon

and borrow 1.

But, as was shown before, it is possible to sub-
tract the number from the largest possible number
and add 1 to the result.

Example 2.13

Find the 2's complement of 0000011.

(largest possible number)
x)

i
et @ bt
[N
- O b
pt| © bt

1
0
1
(plus 1)

(2's complement of X)

Q|4 Q=

1
1
0
1
11111 1

NOTE: 1111100 is known as the 1's complement of

0000011.

Therefore, the 2's complement of a binary number
may be obtained as follows:

2's complement of X = 1's complement of X, plus 1.

Example 2. 14

Find the 2's complement of 1011101.

Example 2. 15

Find the 2's complement of 600000.

1111 11 1 (largest possible number)
-0000000 X)
1111111 (I's complement of X)
+ 1 (plus 1)
=<0 0 0 0 0 0 0 (2's complement of X)

2-4

Looking closely at the 1's complements of the
numbers in Examples 2.13, 2.14 and 2.15, we see
that the 1's complement of the number is the num-
ber, with all the 0's chanﬂfed to 1's and the 1's
changed to 0's.

Example 2. 16

Find the 2's complement of 1110110,

x)

(1's complement of X)

{plus 1)
(2's complement of X)

- D
[se TS

111
000

10
01
+ 1
0001010

Example 2. 17
Find the 2's complement of 101101.

1101 X)

0 0.1 0 (I's complement of X)
+ 1 (plus 1)

0100 11 (2's complement of X)

Applying the rules of complementation to octal
numbers, we see that the 8's complement of a
number is the 7's complement of the number,

plus 1.

Example 2. 18

Find the 8's complement of 77341.
7 7 (largest possible number)
41

00436 ¢
+ 1 (plus 1)
3 7 (8's complement of X)

Example 2. 19

Find the 8's complement of 00000.

t
o =
o -
o =3

o+ ~do -3

7
0
7 (1's complement)
1
0

[y
$
O
[

(8's complement)

Binary Subtraction

By employing the techniques of complementary
arithmetic, it is possible to effect a subtraction
using the addition process.

To perform A-B, either of two methods may be
used:

1} direct subtraction of B from A; or
2) the addition of A to the complement of B.
Example 2. 20

Perform 78319-2519

Method 1: 7 8 3
- 2 5
7 5 8§ 783-25=1758
Method 2: 9 9 9-24=974 (9's complement of 25)
97441 =975 (10's complement of 25)

(A)

1=

783-25=758

Example 2. 21

Perform 1101 1012—10112

NOTE: First add leading 0's to make numbers the

same length.

Thus we are to perform 11011019-00010114

1101101 (A
1110101 (2's complement of B)
1«-1 1 0 0 010

1101101-1011=1100010

Example 2. 22
Perform 1010119-1010115 (A-A)

1 (A)

1 101
0 01 0 1 (2's complement of A)
00

Thus, a number plus its complement always equals

zZero.

Octal Subiraction

Octal subtraction (A-B) may be performed by ad-

ding A to the 8's complement of B.

Example 2. 23
Perform 6275g-31g
(Add leading 0's) 68275
6 5 (A)
+17
1o 4

6275-31=6244

Example 2. 24
Perform 7000g-76g

(A)

7000-76=6702

MULTIPLICATION
& BINARY

2 17
7 4 7 (8's complement of B)
2 4

7000

7 8 3 +7 7 0 2 (8's complement of B)
+9 7 5 (10's complement of B) le8 7 0 2

T 5 8

Binary multiplication is accomplished in a manner

similar to decimal multiplication.

Example 2. 25

Perform 129819x1019

1 8
0
0

DN O
W W Ol Do
QO CO Of b=t O

1
1 0

1298x10=12980

Example 2. 26
Perform 8735 10x6310
8 7365
X 6 3
26 20 b
52410

8735x63=550305

2-5

Rev. 02

Example 2. 27 Example 2. 30

Perform 101110015x109 Perform 1011000109+ 1109
10111001 111011
x10 110 101100010
00000000 110
10111001 1010
101110010 110
1000
1 10111001x10=101110010 110
01001
110
Example 2. 28 110
110

Perform 1011109x11019
101100010 = 110=111011

101110
x 1101
T 01110 LOGICAL AND
000000
101110 In the binary number system, additional operations
101110 exist over and above addition, subtraction, multi-
1001010110 plication, and division. These additional operations

are known as logical or Boolean operations.

101110x1101=1001010110
One such logical operation is the AND function.

It is interesting to note from Example 2. 25 that 10

times a decimal number simply appends a 0 to the Consider the drawbridge in the following figure:
right. From Example 2. 27, we see that 2 times a
binary number simply appends a 0 to the right. / \ / \
Y S
DIVISION-BINARY DCOOESS
Binary division follows the same procedures as The bridge consists of 2 spans which can be opened:
decimal division. A and B. Obviously, the path across this bridge is

continuous only if both A AND B are closed.

Example 2. 29 SPAN A SPAN B BRIDGE

Perform 228819+ 1319 OPEN OPEN OPEN
OPEN CLOSED OPEN
CLOSED OPEN OPEN

1373 ; g g CLOSED CLOSED CLOSED
l—g— 8 If the two states of each span are assigned the
9 1 binary values OPEN=0 and CLOSED=1, the table
7 g can be rewritten.
E—-—g— A AND B
A . B
2288+ 13=176 A B A B
0 0 0
0 1 0
1 0 0
1 1 1

Two binary numbers can be ANDed by simply
ANDing respective bits from each other.

Rev. 02
2-6

%

o

Example 2. 31

Perform 10111011 /A 00011011

10111011 (A
00011011 (B
000T1T1011(@&AB)

NOTE: Both corresponding bits in A and B must
be 1 for the resulting bit A'B to be a 1.

LOGICAL OR

Consider 2 drawbridges spanning a river as shown
in the following figure:

VAN
A
7

A path from one side of the river to the other exists
if A OR B or both is closed.

DGOOEI6

SPAN A SPAN B PATH
OPEN OPEN OPEN
OPEN CLOSED CLOSED

CLOSED OPEN CLOSED

CLOSED CLOSED CLOSED

If we assign binary values to the states of each
drawbridge, the table can be rewritten as follows:

A ORB

A + B
A B A VB
0 0 0
0 1 1
1 0 1
1 1 1

Notice that with the OR operation, if either of the
corresponding bits in A or B is a 1, the resulting
bit A + Bisa l.

Two binary numbers can be ORed by simply ORing
respective bits from each number.

2-7

Example 2. 32

Perform 10111011V 00011011

10111011 (4
00011011 (B
10111011 (A+B)

Example 2. 33
Perform 10111011 v 01000100
This is equivalent tv a Vv 1's complement of A.

(A)
{Al's complement of A)
{A +1's complement of A)

[K J =
ot b
okl OO o

11011
00100
11111

Thus, all 1's result when a number and its 1's
complement are ORed.

LOGICAL EXCLUSIVE OR

The logical OR function described in the previous
section is more precisely known as the logical

inclusive OR function.

The exclusive OR function can be defined as

follows: The resulting bit of A@ B is a 1 if either |
of the corresponding bits in A or B is a 1, but not

if both bits in A and B are a 1.

A B A@B
0 0 0
0 1 1
1 0 1
1 1 0

Example 2. 34

)
)
@B)

Perform 10111011 (300011011
1
0
1

] D bt
OO O
COf bt et
O bbb

011 (A
011 (B
000 (A

Rev. 02

SIGNED NUMBER
REPRESENTATION

Sign Bit Definition

In many applications where the use of both positive
and negative numbers is required, some method

to indicate the sign of the number must be employed.

In written text, this is done with the + and - signs.

The computer, however, works with binary numbers
and would not easily recognize a + or - sign. Another

method must be used to indicate the sign of the num
ber. One possibility is to define the leftmost bit of
the binary number fo be the sign indicator or sign
bit. A one {1) in this position would indicate that
the number represented by the bits to the right is
negative; a zero (0) would indicate that the number
is positive. Utilizing this technique of signed num-
ber representation, the sign bit is followed by the
absolute value of the number. Another method of
representing signed numbers employs the concept
of complementary numbers, as described in
Section II. B. It is this last method which will be
pursued further here.

If the maximum allowable number of bits is 4, then
the following numbers are possible:

0 0 0 O
00 0 1
0 0 1 0O
0 0 1 1
0 1 0 O
0 1 0 1
0 1 1 0
6 1 1 1
1 0 0 O
1 0 0 1
1 0 1 0
1 01 1
1 1 0 0
11 60 1
1 1 10
1 1 1 1

This set of 16 numbers is cyclic because adding 1
to 1111 brings us back to 0000.

Also, subtracting 1 from 0000, gives us 1111. If
this set of numbers is said to contain only positive
values, then the range of values is

0000 thru 1111
or 019 thru 1519

Suppose we divide this set in half, and define
one half as representing positive values, and
the other half negative values (A). Also, let's
restack the set so that 0000 is at the center (B).

Rev, 02

2-8

A B _C (decimal)
000 0" 0111 7
0001 0110 8
0010 Positive 10 1 0 1 5
0011 Numbers /0 1 0 0 4
0100 0011 3
0101 0010 2
0110 0001 1
0111, 0000 0
1000 1111 -1
1001 1110 -2
1 0 1 0| Negative 1101 -3
1 0 1 11 Numbers 1100 -4
1100 1011 -5
1101 1010 -8 |
1110 1 001 -7
1111 1000 -8

Notice that all the negative numbers have a 1 in
the leftmost bit position and all the positive num-
bers have a 0 in the leftmost bit position. Thus,
if 0000 is defined as being a positive number,
there is the same quantity of positive and negative
values.

NOTE: If the programmer is using the leftmost
bit for sign definition, care should be
taken not to overflow the range of values.

Example 2. 35
Perform 5+(-4)

5 0101
+ (-4) + 1100
I 1+=0001

Example 2. 36
Perform 6+(~6)

6 0110 !
+ (-8) +1110
0 1+—0000

Example 2. 37
Perform 7+2

7 0111
2 + 0010
9 1<+—1001

Note that in this example the desired result was not
obtained because the range has been exceeded.
1001 represents -7, not +9.

S

Range of Signed Numbers

In the 4-bit number set of the previous section, the
range of unsigned numbers is as follows:

0000 thru 1111
or 010 thru 1510
or Ogthru 17g

The range of signed numbers, however, from
table B is as follows:

1000 thru 0111
or -81g thru +71¢g
or -10g thru +7g

Example 2, 38

If a number set contains 16-bit numbers, the
ranges are as follows:

Unsigned
0000000000000000 thru 1111111111111111

or 019 thru 65,5351¢
or Og thru 177777g

Signed

1000000000000000 thru 0111111111111111
or -32,7681g thru +32, 7671
or -100000g thru +077777g

2-9

This page intentionally left blank

2-10

D

SECTION 1II

LOGIC AND LOGIC CONVENTIONS

GENERAL computer may have one to three PCB's which
provide the necessary Central Processor Unit
The various circuits, logic gates, logic con- logic. {(See Figure 3-1.)
ventions and integrated circuits common to
mini-computers are discussed in this section. 4, Logic Levels - a typical mini-computer has
two logic levels ground and plus three volts
Integrated circuits (IC's) are defined as a num- (+3V). Where ground might represent a
ber of minute circuits bonded onfo a small plug zero (0) and +3V and one (1).
in pack roughly 1/4" by 3/4" in size. IC's are -
also referred to as "Chips', "Bugs', "Dips"” 5. Symbols
or "Packs', a. ~ or - represent AND, For example
AnBor A-B.
Printed Circuit Board {PCB) - etched boards b. v or + represent OR. For example
upon which are mounted numerous IC's making Av Bor A+B.

up an element of computer logic. A typical

Figure 3-1 Printed Circuit Board

d. Three input - inverting [INPUT | OUTPUT]
(NEGATIVE NAND) ABC ”
A—0 LLL H
— X
S LLH L
LHL L
LHH L
HLL L
0600657 TRUTH TABLE HLH L
- HHL L
Vin | VIN | Vour
HHH L
L | L H
L H H OR Gate
H | L H
H H L a. Symbol

Figure 3-2 Logic Diagram

Definition: Will give a desired output when ANY

LOGIC GATES input condition is satisfied.
b. Two input - INPUT |OUTPUT
AND Gate noninverting
» . A B X
(OR)
A. Symbel L L L
INPUT | OUTPUT A
L H H
AB X 8 X
HL H
L L L HH H
b. TWQ mpu? - L H L
noninverting
HL L Output is high if either
A X or both inputs are high.
8 outeuT | HH H
INPUT c. Two input - inverting |INPUT |OUTPUT
Output is high if (NOR Gate) AB %
both inputs are
high. A . L L H
) *ILm L
NOTE: A straight line into a gate represents a
high condition. A straight line with a H L L
small circle will indicate a low condi- HH L
tion.o—

Output is low if either or

%
Definition: Will give a desired output when ALL both inputs are high.

input conditions are satisfied.

¢. Two input - inverting INPUT | OUTPUT
(NAND Gate) AB %
L L H
A L H H
X
B HL H
HH L

Output is low if both
inputs-are high.

3-2

d. Three input - INPUT OQUTPUT Basic Logic Diagrams - The following illustrates
noninverting ABC X the applications and functions of two variables and
equivalents.
LLL L
A
8 x |LLH H GATES
¢ LHL H AND OR A B X
Sl DD F
HLL H — L H L
& 8 L L L
HLH H
H H L
I e B S I
—_—] L
HHH H 8 8 Lol L
, H H L
A — A
o L D D
) & L L t
a. Symbol
H H L
A—G X A"“"" x | H L L
XOR TRUTH TABLE B —0C B L H L
L L H
; T H H H
b. }é%% (Exclusive INPUT| OUTPUT A—ODD—X AW_D—X a ‘;, ::
’ AB X —a L
B B L L L
L L L o n
X H
2| DD
HL H B —3 B Eeon
HH L
o I i
X X
Output is high with 8"““’7..._}_ B L WL
one input Low and L L H
the other High. s H H L
A — x| A x| H L H
Definition: Will give a desired output only B —f B L H H
when both input signals are L L H
different. L L L
A L H H
B X1 H L H
H H L
D6OO698

Figure 3-3 Logic Chart

Multiple Input Gates

a. MULTIPLE INPUT AND/OR -
INVERTING

A

B
C

D

Qutput is low if both A and B are High or
both C and D are High.

INPUT |OUTPUT| INPUT A OUTPUT
ABCD X ABCD X
LLLL H HLLL H
LLLH H HLLH H
LLHL H HLHL H
LLHH L HLHH L
LHLL H HHLL L
LHLH H HHLH L
LHHL H HHHL L
LHHH L HHHH L
b. MULTIPLE INPUT AND/OR -

INVERTING

A

B

c X

D

QOutput is High if A or B is low and C or

D is low.

INPUT |OUTPUT| INPUT | OUTPUT
ABCD X ABCD X
LLLL H HLLL H
LLLH H HLLH H
LLHL H HLHL H
LLHH L HLHH L
LHLL H HHLL L
LHLH H HHLH L
LHHL H HHHL L
LHHH L HHHH L

3-4

Flip-Flops

-

e

A flip-flop is n device that has two stable
states. One siate is called the "SET”
state, and the other state is called the
"CLEAR' or "RESET" state. A flip-flop
can be in only one of its stable states at

a time. So it will be either setf or cleared.

In Figure 3-4 we have a symbol for a
U"SET-RESET" flip-flop. By applying

a logic high to the "S" or "SET" input

the flip-flop will become "SET". To
clear or reset the flip-flop we must apply
a logic high signal to the "R" or reset
input.

INPUTS

S R

| 0

OUTPUTS Q Q

Figure 3-4 Flip-flop

The outputs from the flip-flop are called
the "1' or ""0" outputs. Sometimes these
are referred to Q and Q respectively.

The levels on the output lines depends on
the state of the flip-flop. If the flip-flop
is "SET" the ""1'" output would be a logic
high and the ""0'" output would be a logic
low. If the flip-flop were reset, the ""1"
output would be a logic low and the ""0"
output would be a logic high.

STATE " "0
SET HIGH LOW
RESET LOW HIGH

Since the ""1" output is always high when
the flip-flop is set, this output is some-
times referred to as the "SET OUTPUT".
The same applies for the clear output.

f. "D type flip-flop: b. Reset-A J-K flip~flop can be

1. A VD" type flip-flop will set or reset one of two ways, It
reset upon state of "D input and can be directly reset or
a clock pulse. reset by applying a logic
low to the J input, a logic
CLOCK c o Q (SET) high to the K input and a
clock pulse.
JR— R LOW J i LOW
INPUT D 0 Q (RESET) oW
41— ¢
INPUT| QUTPUTS ¢ ock HIGH K 0 HIGH
o o | @ |IPULSE I
L L H I
h. th flop Applications: a
H Hi L oL A flip-flop,because of its two
stable states,can be utilized to
2. A "D type flip-flop can also have store 2 levels of information.
direct set and reset inputs which For example, if a flip-flop is set
override the "D" input. it is equal to "Yes" if reset it is
equal to "No''.
DIRECT
SET 2. Since in the binary system we only
deal in 1's and 0's a flip-flop would
be ideal to represent binary num-
cLock ¢! Q (SET) bers. If a flip-flop is set we say
it's storing a one '"1'". If cleared
- we say that it's storing a ""0".
INPUT D © Q (RESET)
3. If we take a J-K flip-flop and con-
DIRECT nect both J and K inputs to a high
RESET level we have what is called a tog-

gle flip-flop.

g. J-K type flip-flop:
1. A J-K flip-flop has an input con-

figuration different than other
HIGH J I — Q (SET
flip-flops, which allows it to be (5eT)
used many different ways. J WL CLOCK —— C
DIRECT
lsm. HIGH —— K ©
—J | p— Q(SET) cwcx}l]{l{{!}lllllll
cLock —| ¢ INPUT I Lo
i i !
—— K 0 }— Q(RESET) SET L 1 LT L
OUTPUT
; DIRECT
RESET 4. The clock input will alternately set
2. Rules:) and reset the flip-flop, so that the
a. Set-a J-K flip-flop can be output signal from the set side
set one of two ways. It can : looks as shown. Note that it takes
be directly set or set by ap- 2 complete clock cycles to produce
plying a logic high on the J 1 cycle from the set output.
input, a logic low on the K
input and a clock pulse. 5. By applying a signal to the clock
input and obtaining an output from
either the set or reset output, the
HIGH J : ?}—G—*j- signal developed will be exactly
JL CLOCK —— C one-half the frequency of the clock
input. This is a divide by 2 opera-
LOW —— K O Low tion which is an inherited char-

acteristic of a flip-flop.

3-5

8. J-K b. Pin Identification

INPUT| OUTPUT |CLOCK 7 - 8 - 9 Enables
DIRECT 15 Compiemeni
SET J-K Q) 16 -17 Select Input
Q NO Eaul L L No Select
(SET) | L7L | CHANGE L H A Input (4 bits)
cLock oM L | W[H L B Input (4 bits)
H H C Input (4 bits)
(RESET) | -y H L I
DIRECT ¢. Rules
CLEAR H-H | TOGGLE |J L
1 1) With 3 enables High and no select
the 4 outputs will be ground.
Inverters
2) With 1 enable Low and no select
a. Symbol the 4 outputs will be High.

3) With 1 enable Low and select the
4 outputs will be High.

4) With 3 enables High, select and
" . complement Low, the 4 outputs
b. Positive to Negative will follow the 4 selected inputs.
5) With 3 enables High, select and
X complement High, the 4 outputs
will be the one's complement of

the 4 selected inputs.

A

c. Negative to Positive
Registers

a. Definition:

A —Q X A device that can receive information
upon command, hold that information
without modification and transfer it
upon request,

Multiplexer b. Register Elements:

1. Most Registers are made up of

a. One of three inputs selected and pre- flip-flops. The number of flip-

sented as input to another element, flops in a particular register is
usually an Adder. dependent upon the amount of data

handled.
(OUTPUT)
X0 X1 X2 X3

¢. Register Configuration:
1. Registers could be shown in their

7
8 components parts as in Figure 3-5.
]
i5 DATA O DATAI DATA 2 DATA 3
18 LOAD
7 REGISTER
tAi 181 1Cl {AZ{BZ‘C2}A3}B31C31A4!B42C41
C 00D C ., D c ,2 D C ,3 0
IN
(INPUT) 220120 120 IZO
DG00736
D600E9S
Figure 3-5 Basic Register
Rev. 02

3-6

2. Sometimes when many flip-flops DATAQ DATA! DATA 2

DATA 3
make up a register it is shown as LOAD N
in Figure 3-8, A [1 I
C D Cc D C D C pi REGISTER
o 1 2 3 4 5 & 7 OUuTPUT fo*o*c"o‘
§§ Pl [P ‘:5 . MalM ot
INIRIRENEIN N A'—"8
NN ENE L L L
QQ QQ QQ Q0 0Q Q0 Q00 Q0
Lo,
8" 1 ! 1
LOAD—] 20 o 2 53 .4 o5 7 F-RESET
20 21 22 23 24 5 B 2 ¢ ol[c oLfc ol[c o
L offp off{t oflpr ofl
] 3 | | RESET
§ ! I T T i X ‘ g
i i
|

4 |
i H H
| i !
i | | 1 I

DATA DATA DATA DATA DATA {}ATA DATA DATA

° ! 2 3 4 5 6 4 To do the parallel transfer correctly the following
0600735 Figure 3-6 Register Containing 8 Flip-flops signals are enabled.

RESET H

peoorss Figure 3-8 Parallel Transfer

Here the register has 8 flip-flops, all are loaded with

the load input, and reset with the reset input. The "B"
outputs are from the Q and Q@ outputs of each flip- ﬂ
flop. A—B
3. A register's contents may be de- LOAD m
coded by using "AND'zates con- ‘s
nected to the register's outputs DGOO734

(As shown in Figure 3-7.)

DATA Q DATA | DATA 2 {kt the’end of the‘ load "Q" pu{se whzjxtever data was
in register ""A" is now in register "B'. Note that
T T } all bit positions were loaded at the same time.
C .o D c ., D C 2 D 2. Serial Transfer: (See Figure 3-9.)
127 o 12 0 1 2% o Moves the contents of one register
]‘ to another register - one bit at a
time.
4
SHIFT ' ,
J 1-%.: iHe {J |
C,0 C, C,2 C,3
i { k“ o« %o Kzo——xzo
-I - o ENABLE
A—B8
REGISTER
" Aﬂ
o] [2 3 4 5 6 7
D600700 Figure 3-7 Decoded Register ' ! !
rReaisTER || 2 T TP “*ti ‘
A three bit register is connected to 8 AND gates. ‘8" eI bl 23 2%
The AND gates decode the contents of the register. CLEAR - “i “i - T
Only one AND gate can be enabled at a time. g + + -
DATAC DATAI DATAZ2 DATA3
d. Transfers: {See Figure 3-8.) 60073
To be able to take the contents of one
register and load it into another. Figure 3-9 Serial Transfer
1. Parallel - transfers all data bits
simultaneously.

3-17

2.

Below are the required
signals needed to perform
the shift, and the contents
of each register after every
shift,

ENABLE | j
A—= B
SHIFT [J2] [3] 4]
CLEAR § %
&BK
D6o0732

b. The first thing done is to
clear the "B" register.

¢. Then the enable "A— B is
present (High).

d. If the "A' register had the
number 1010 in it, the
transfer would look like
this:

REGISTER
CLEAR A : 0 : 0
HBH
REGISTER| o 0 0 0
B
REGISTER
IST " Au O ‘ 0 I
SHIFT
PULSE REGISTER
o 0 0 o} o}
B
REGISTER
ZND qul 0 O | 0
SULSE
REGISTER | 0 0 0
B
REGISTER
SRD "A!t O o o l
SHIFT
PU REGISTER
LSE 1 " o * 0 0
B
REGISTER
4TH HAN 0 0 0 o
SHIFT
PULSE
RE(&lSIER | 0 | 0
B
DGOO7O!

After the fourth shift pulse the transfer is complete.

3-8

e. When doing a serial trans-
fer the number of clock
pulses (shift pulses) must
equal the total number of
flip-flops in the register,
not enough, or too many
shift pulses will result
in the loss of data being
transferred.

f. Shift Transfers:(Fig. 3-10)
1. Left shiff transfer -
the contents of one
register is shifted
left one place and
loaded into another

register.
20 | 2 3 REG"QS;{ER
(0] 2 [9) | 2 [¢) ! 2] A
ALS—B v 1
Loap * . . *
. EBA) I []
LEAR C,o0D} |C, D] [C,2 D] [C_3D]REGISTER
“B" 1 2 o {‘ 2. o)]“ 2 O }' 1 2 O # Bu
P
|
} i »*
CLEAR SEE EXPLANATION
nge BELOW

ALS-—‘B‘——————f"-~——_1——————~
LOAD I—_l

IIBII
0GO0730

Figure 3-10 Left Shift Transfer

2. Note that in the left shift:
23 in "A" is applied to
22 in "B
22 in "A" is applied to
21 in "B".
2l in"A" is applied to
20 in "B,

20 in "A" is treated in a
special way.

i

In some computers bit
2¥ in "A" is lost during
a left shift. In other
machines bit 20 is ap-
plied to a flip-flop which
indicates the state of
what 20 was. And still
in other machines bit
20 is applied to bit 23
in "B, so that the bit
is not lost. This is
called end around shift-
ing.

If "A" were equal to
00119 and then left
shifted transferred in-
to "B". "B'" would be
equal to 01109. Notice
that now ""B'' is twice
as much as what the
value was in "A".

A left shift of one place
actually multiplies the
contents of a register
by 2.

RIGHT SHIFT:(Fig. 3-11)
a) The contents of one
register is right
shifted one place
and loaded into
another register.

REGISTER

IIA

20

22 23

*———.—..._

LOAD
gt

L p3*

? ﬁ ARS—B

B

!

REGISTER
o it

20

D

el o

Dl |C

ol
CLEAR _|

-

D
22 (23

uBu

CLEAR _f?

nBu

ARS —-B —— L—

™

LOAD .

B
bGooreg

¥ SEE EXPLANATION
BELOW

Figure 3-11 Right Shift Transfer

3-9

b)

c)

d)

In Figure 3-11, a
right shift transfer
is accomplished by
taking flip-flop 20
in "A", and apply-
ing it to flip-flop
2lin"B". 2lin
"A' is sent to_ 22
in "B, and 2%in
"A" is sent to 23
in "B". Flip-flop
23 in "A" is handled
in a special way.

If "A" initially con-
tained 01105, a
right shift one to
"B" would give us
00119 in "B".
Looking at the value
of the data in A"
and "B, we see
that the number in
"B" is half of the
number in ""A".
Doing a right shift
causes the contents
of a register to be
divided by 2.

Flip-flop 23 in "A"
is handled one of
three ways.

1. It is lost - not
applied any-
where.

2. It is applied to
a special flip-
flop.

3. It is applied to
flip-flop 20 in
"B, so that
the bit value in
2° in "A" is not
lost.

6. COMPLEMENT TRANSFER
a) To obtain the 1's com-~

plement of a number
contained in a reg-
ister, all we have
to do is transfer
the 0's output of a
register into another
register.

¢ o] [c. o [P [c,°
12%0f |12 o] |12% 0] |1% 0

J

A—B T

0 O

LOAD
" 8 "

— (Y pt
- o+

CLEAR
HB"

‘I*--—““—‘

CLEAR
" B“

A—»8 ——— .

LOAD
”BH
peoo73s Figure 3-12 Complement Transfer

b) If register "A" had
the number 10109
and a complement
transfer to "B'' was
enabled, then "'B"
would have 01019
in it after the trans-
fer.

Four Bit Shift Register

a. Type A (Fairchild 9300)
Xt X2 X3 X4 OUTPUT

—J
INPUT QMR
SERIAL ENTRY cP
SHIFT RIGHT N PE

N

Al A2 A3 A4
PARALLEL ENTRY
INPUT

D6O0702

1)

Terms

MR - Master Reset

CP - Clock Pulse

PE - High (Load serially shift right)
PE - Low (Load parallel entry)

J,K - Serial entry

Operation

a) Load serially shift right on the
clock pulse - J,K is the serial
input to most significant bit,
while the 4 bits shift right and
the least significant bit is lost.

b) Parallel entry on the clock pulse -
the 4 inputs are loaded simultane-
ously in parallel.

b. Type B (Signetics 8271)

ouTPUT
Xl X2 X3 x4

L]

L s
— MR
SERIAL INPUT 10
-1 LD
13 lsn
CLOCK Al A2 A3 A4
PARALLEL ENTRY
INPUT
0600703
1) Terms

LD
L
L
H
H

SH
L.
H

L

H

DS - Data Input (Serial Data)

MR - Master Reset

LD - Load (Parallel)

SH - Shift (Right and load serially)

Truth Table

Effect when clocked

No change

Load serially and shift right
Load parallel entry

Load serially and shift right

NOTE: Shift overrides load.

2) Operation
a) With both LD, SH Low on the

b)

c)

clock, there is no change (in ef-
fect Hold as is)

Load Serially and shift right -

DS is the serial input. On the
clock pulse DS is loaded into the
most significant bit, all 4 bits
shift right and the least significant
bit is lost.

Parallel entry - on the clock pulse
the 4 inputs are loaded simul-
taneously in parallel.

3-11

This page intentionally left blank

3-12

10.

SECTION IV

COMPUTER ORGANIZATION

DEFINITIONS

CPU - Central Processor Unit,
ferred to as the "mainframe’.
the computer less Peripherals,

Frequently re-
Basically, it is

BIT - A unit of information. Contraction of
binary digit. The smallest unit of information
in a Binary system of notation. It represents
a cholce between two possible states, usually
"ONE'" and "ZERQ".

BYTE - A group of bits (usually eight} forming
a character.

WORD - A fixed number of bits treated as a unit
and capable of being stored in one memory loca-
tion. A word can be interpreted by the computer
as:

a. An Instruction word

b. A Memory Address word

c. A Data word

WORD LENGTH - A fixed number of bits normally

determining the size of the machine, i.e., 12 bit
machine, 16 bit machine, 24 bit machine, etc.

Figure 4-1 illustrates a typical 16 bit word. Note

that bits are numbered from left to right.

13|14/ 15]

lof1]2]s[4]s]6]7]e]o]10]11]12

Figure 4-1 A 16 bit Word

MSB - Most Significant Bit. Bit 0 in a great
number of mini-computers is the most significant
bit, while in a few, bit 15 is considered the most
significant bit.

SIGN BIT - In a computer where bit 0 is the
MSB, this bit is also regarded as the sign bit.

In a Signed Machine bit 0 is actually considered
the sign bit by the hardware. In an Unsigned
Machine, the Program itself regards bit 0 the
sign while to the Hardware, it is as any other bit.

PROGRAM - A group of sequential computer in-
structions, i. e., a series of step directions to
the computer.

HARDWARE - Physical components of a com-~
puter such as Logic chips, chassis, printed
circuit boards, etc.

SOFTWARE - Computer System Programs, in-
cluding tapes, listings and documentation.

11,

i2.

13.

14.

SERIAL MACHINE - Each bit of a word is
processed individually. The advantage here

is less logic required, therefore, cheaper.
However, processing each bit separately is
time-consuming, resulting in a slower machine.

PARALLEL MACHINE - Each bit of a word
processed simultaneously i, e., in parallel,
requires more logic and is more expensive
than the serial machine, It is, however,
much faster.

NIBBLE MACHINE - Unique to Data General
machine. A compromise between Serial and
Parallel machines. A Nibble is four bits,
therefore a Nibble machine processes four
bits simultaneously. Requires less logic
than parallel, is less expensive and still
nearly approaches the speed of a parallel
machine.

PERIPHERAL - A device external to the

"main frame’ providing outside communication
with the CPU. Referred to as IO (Input/Output)
devices.

A partial list of devices and direction of com-
munication:

TELETYPE®* - Input/Output device
PAPER TAPE READER - Input device
PAPER TAPE PUNCH - Output device
DISK - Input/Qutput device

DRUM - Input/Output device
MAGNETIC TAPE - Input/Output device
CASSETTES ~ Input/Output device
CRT DISPLAY - Input/Qutput device
LINE PRINTER - Output device
CARD READER -Input device

CARD PUNCH - OQutput device

* Teletype® is a registered trademark of Teletype Corporation, Skokie, Illinois. All references to teletypes
in this manual shall apply to this mark.

4-1

COMPUTER ORGANIZATION

1. Major Areas:
A basic computer is comprised of 5 sections.

Each section performs a specific job.

CONTROL
3 4
INPUT MEMORY QUTPUT
k
ARITHMETIC
DGOO704

a) Control Section - At all times governs
and times the actions of the computer.
it is made up of 3 areas.

1) Instruction Register and Instruc-
tion Decodes.
A computer must be told what to
do. The commands that tell it
what to do are called instructions.
The instructions are nothing more
than a group of binary bits which
represent what is desired of the machine.
The binary information is placed into a
register and the output of the register is
decoded. The decoded outputs are sig-
nals which are sent to other sections of
the machine and cause the necessary
actions to take place in order to per-
form the instruction.

DATAO DATAI DATAZ

LOAD IR

RPN

D
0 i 2
20 112 o] 1120

-—JD— SUBTRACT

12 MULTIPLY

—_{3—— DIVIDE

———{D— LEFT SHIFT
*4’:5)»— RIGHT SHIFT
‘; 6 }— STORE

——— 7) Lo
DGOO740

Figure 4-2 Instruction Register Decoding
Rev. 02

&

Y

For example:

Figure 4-2 shows an instruction register
which has three flip-flops. The out-
puts are decoded into one of 8 possible
instructions.

The instruction and codes for Figure 4-2 are
shown below:

001 = Left Shift
101 = Right Shift
011 = Store

111 = Load

000 = Add
100 = Subtract
010 = Multiply
110 = Divide

These decoded outpuis are sometimes called com-
mand enables.

2. Timing
Everything that occurs within a computer
must occur in a logical sequence. The
timing circuits develop the timing signals
which, along with the instruction decodes,
make things happen within the computer in
a nice orderly fashion. A main part of the
timing section is a circuit called "Master
Clock. This is a very accurate oscillator,
whose output signal will develop all other
timing signals within the computer.

LI L L L LS Tom:

MASTER
CLOCK ;:::
20MHz

DGOO727

Figure 4-3 Master Clock

In Figure 4-3 the Master Clock oscillator feeds
flip-flop #1, whose output is a 10MHz square wave.
One clock signal is not enough to perform all the
tasks within the computer. Therefore, the Master
Clock is used to produce 4 more timing signals,

MASTER
CLOCK
T|PULSE [T m_ T TIME STATE
FF FF Za F/F ONE
MASTER| | c JUR PAEA I P
CLOCK |17, #5 #+ #, | TIMESTATE
0 ZERO

) 0 of]
h_ia_ |

' .
| |
H i

0000

[
|
03

CLOCK
i .
ol | I [
Bl
02
A
03 3
]
04

D6o0741
Figure 4-4 Master Clock, Phase Timing, and
Time State Timing

Notice how the clock phase's are produced over and
over again by the master clock to keep track of our
clock phases, flip-flop #4 is used to develop a signal
called "Time State One" or "Time State Zero”.

This provides a means of specifying which group of
phase signals are being used. Below is a diagram of
the complete set of timing signals developed.

MASTER S T 1 O 6 I
Ty =

| D
ol S o L
oz ; 1
! !
03
04 oo !
TIME STATE
H
ONE]]

TIME STATE j |
ZERO

D602
These timing signals would be used to perform a

function within the machine along with the IR decodes.

For example:

a) At time state zero and phase 2
numbers could be added together.

b) At time state one, phase 1 data
could be parallel transferred from
one register to another.

3. Program Counter
Controls program sequence. Within the mem-
ory of a computer is a program which will
cause the computer to perform a function.
The program could be used to calculate pay-
roll or analyze sales for a company or kKeep
track of inventories. The program is made
up of individual instructions, in logical order,
to perform the desired function.

If we had a 10 instruction program it would be
stored in memory as follows:

ADDRESS 1. Inst. #1
ADDRESS 2. Inst. #2
ADDRESS 3. Inst. #3
ADDRESS 4. Inst. #4
ADDRESS 5. Inst., #5
ADDRESS 6. Inst. #6
ADDRESS 1. Inst. #7
ADDRESS 8. Inst. #8
ADDRESS 9. Inst. #9
ADDRESS 10, Inst, #10

To perform the program, the program counter
would start at address one and then be in-
cremented to address two and so on to address
ten. The program counter controls the se-
sequence in which instructions are executed.
The program counter is a register that con-
tains the address of the instruction being

4-3

executed, This address is then incremented
by one to obtain the next instruction,

Arithmetic Section- performs all of the
arithmetic and logical operations. The

basic arithmetic section has 2 input registers,
which hold the numbers used, an adder cir-
cuit which can only add, and a register to
hold the output of the adder (answer).

ARITHMETIC
REGISTER
A
MINUS | —— ADDER L PLUS |
[[

ENABLE ENABLE
REGISTER REGISTER
" A" i 8“

DATA DATA FROM

MEMORY
D600705

1. In adding two numbers together, one num-
ber would be in the ""A"" register and the
other number would be in the ""B'' register.
Upon command from the control section
the two numbers are added in the adder
and the resultant sum placed in the arith~-
metic register.

2. To perform subtraction, the minuend is
placed in the A" register and the subtra-
hend is placed in "B". Then the number in
the A" register is sent to the adder, the
complement (1's) of the number in "B’ is
sent to the adder. Here we are perform-
ing subtraction by the process of addition
using complementary arithmetic. Since
we're using 1's complement a signal
""Plus One' is enabled so that the correct
answer is placed in the arithmetic register.

3. To add one to a number, the number would
be placed in the "A" register. Then the
A" register would be enabled to the adder.
The "B'" register would be disabled so the
adder sees 0's from "B". The plus one
line is enabled and the number plus one is
placed into the arithmetic register.

4. To subtraci one from a number, the same
procedure for addition is followed except
the minus one line is brought up instead of
plus one. So that the arithmetic register
holds the number minus one.

if the contents of both registers are 1's in
that position.

10110="A" Register
01111="B" Register
00110= Arithmetic Register

Example: And

6. A logical OR produces a one in a bit position
if the contents of either register has a one
in that bit position.

"A' Register = 01011
"B Register = 10100
Logical "OR"

Example:
11111

Contents of Arithmetic Register is equal to
11111,

1/0 SECTION
INPUT/OUTPUT

Allows communications between the computer
and an external device, normally referred to as
a peripheral device.

A special set of instructions is necessary to
enable the computer to transfer data to and
from peripheral devices. These instructions
are called I/O instructions.

A logical AND produces a one in a bit position

8.

10.

Control signals allow the computer to conirol
a peripheral device. The computer could be
able to turn a device OFF or ON, move paper
or know the status of a piece of peripheral
equipment.

A DATA OUT to a teletype without knowing if
the teletype is turned on, could result in losing
all outputed data if the machine was turned off,

With control signals, the first step is to turn
the teletype on and wait for a signal from the
teletype that says its on. Then, output the
data. When through outputting, another con-
trol signal could be sent to turn the teletype
off.

The Data that comes from the computer to a
peripheral device, or from a peripheral device
to the computer must travel over special data
lines. These data lines are separate from the
control signals. The number of data lines
depends on the type of peripheral device. One
device may have 8 data lines while another will
have 186 data lines.

MAGNETIC DEVICE CODE 22

TAPE
#|

0o

COMPUTER

170 DEVICECODE 10

SECTION

Two of the Basic I/0 instructions are "DATA IN"

and'DATA OUT".

"DATA QOUT" enables the computer to talk to
another device. This is a transfer of data from
the computer to the peripheral device.

"DATA IN'" allows transfer of data from a
peripheral device to the computer.

Since there are usually many types of peripheral

equipment connected to a computer, there must

be some way in which to specify which device the

computer will talk to.
word, are '""Device-Codes' .
device would have its own code.

Each peripheral

As part of the instruction

Teletypes could

have a device code, say of "10"". A magnetic tape

could have a device code, say of "22". So if we

did a data out with a device code of 22 the computer

would only be talking with the magnetic tape unit
and no one else.

4-4

TELETYPE
#

TELETYPE
#2

DGOO706

CONTROL SIGNALS
DATA 0QUT

\

COMPUTER

PERIPHERAL

DATA IN DEVICE

170

0GO0707

MAJOR REGISTERS b. MEMORY ADDRESS (MA) - Supplies an
address to core memory. This address

General- A device which can receive information represents the location in core which is
upon command, hold that information without currently being referenced, The MA is
modification and transfer it upon request. normally loaded from PC and therefore,
receives an incremented address at the
a. Definition - consists of any number of bits end of each instruction. The NOVA com-
up to the word length of the machine. puter family of computers have a 15-bit MA
Normally comprised of flip-flops, one per capable of addressing 32K of core memory.
bit.
c. INSTRUCTION REGISTER (IR} - Contains
b. Functions the instruction word for the instruction
1) Decode an instruction. currently being executed. The IR receives
2) Store or retrieve data from core memory. its data from the location in core memory
3) Govern program sequence. as specified by MA. CPU logic decodes
4) Provide an address for core memory. the word in IR and causes various events
5) Modify data. to occur in the execution of the instruction.
Types d. MEMORY BUFFER (MB) - Data Read from
core memory is received by the MB. Data
a. Switch register - electro-mechanical switch written into core memory is obtained from
register. The 16 bit console data switches the MB. As its name implies, the MB d
fall into this type. acts as a buffer between memory and the
CPU.
b. Indicator Register - visual console indica-
tion consisting of lamps and lamp drivers. e. MEM REGISTER (MEM) - Actually a mem-
ory bus (not necessarily a flip-flop register)
¢. Memory - Ferrite core register (location receiving its data from the MB and com-
or address) in memory. municating with the CPU and in some cases,

the Data Bus.
d. CPU Registers - hardware registers con-

sisting of flip-flops. f. ACCUMULATOR (AC) - Involved in con-
junction with the Adder in all Arithmetic
Typical Registers - rigare 4-5 illustrates a typical and Logical computations performed by
3 bit register. All registers, regardless of size, the computer.
operate basically in the same manner. On a clock
pulse (herein labelled LOAD) each flip-flop either g. CARRY (CRY) - a one bit register useful in
sets/resets according to its D input. The output detecting overflow. Overflow can be de-
of the register could represent a count, a Time seribed as follows:
state or an instruction code, etc. Various areas
of the computer logic sampling this register would Adding two 16 bit numbers (assuming
react accordingly. a 16 bit machine) which results in a
T sum of 17 bits obviously creates a
LOAD e 1o LI¢ T—q L A g problem and results in the setting of
{CLOCK PULSE) Carry. The program monitoring the
REGO REGI REGZ Carry bit in this case would detect
P o te} M D Q@ o Q@ overflow, rescale the numbers and
| | | repeat the addition.
DATAO DATAI DATA2

in arithmetic computations, and in some
machines, similar to an accumulator. In
the Nova family of computers it is a tempo-
CPU Hardware Registers rary register, retaining the result of a com-
putation as performed by the Adder.

Figure 4-5 3 Bit Register

a. PROGRAM COUNTER (PC) - Controls

program sequence (order in which in- i. ACCUMULATOR BUFFER (ACB) - Tempo-
structions are executed). The PC is rary storage buffer receiving a result from
normally incremented at the beginning the Adder and normally transferring this
of each instruction and therefore is actually result to an Accumulator at the appropriate
pointing to the next instruction in the pro- time.

gram sequence.

4-5

MEMORY BUFFER OUT (MBO) - A CPU
register that communicates with memory
and the Data Bus.

MULTIPLIER QUOTIENT (MQ) - a register
involved in hardware Multiply/Divide.

DATA BUS - 16 Data lines (assuming a 16
bit machine) that provide communication be-

tween the CPU and IO (Input/Cutput) devices.
The bus is a Trans receiver (Bi-directional).

ADDER
<— MODIFIER
MEMORY INSTRUC-
BUFFER TION
OuUT REGISTER
(MBO) (IR)
[a4
2ND CYCLE ISTCYCLE
(DATA WORD) (INSTRUCTION WORD)
MODIFIED
WORD
MEM BUS
(MEM)
MEMORY
BUFFER
(MB)
MEMORY
CORE
ADDRESS
(MA) MEMORY
]
PROGRAM
COUNTER
(PC)
DGOO743

Figure 4-6 Register Interrelation

Register Interrelation (Refer to Figure 4-6)

a.

Figure 4-6 illustrates the path of data flow
necessary to modify a data word. The

4-6

particular instruction would be a 2 cycle in-
struction {covered in greater detail further
on in this manual).

1) Cycle one - instruction word is re-
trieved from memory {address
specified by MA) goes through the
MB to MEM BUS and thence to the
IR.

2) Cyele two - MA now contains address
as specified by the instruction word.
This is the address of the data word
to be modified. The word is re-
trieved from memory through the
MB to MEM BUS and to the MBO.
From the MBO to the Adder where
the word is modified and returned to
MBO. From MBO the modified word
is loaded into the MB and written in-
to memory.

MAJOR STATES
General

a. Major States are in effect machine cycles.

b. When running the machine goes from state
to state in logical order as required to ex-
ecute the running program.

¢. The machine can only be in one state at a
given time.

d. The order of states is governed by a logical

element called the Major States Device.
This device and associated logic is con-
tinuously looking ahead, in effect, deter-
mining the future state.

States (Cycles)

a.

KEY - a manual cycle entered as the result
of a Key action originating at the console,
Most console Keys result in the machine
entering this cycle. The Key cycle is a

non-memory, i.e., memory is not referenced.

KEYM (KEY MEMORY) - following the Key
cycle this cycle is entered by those keys
where referencing memory is a necessity.
The KEYM cycle differs from the Key cycle
in that it is a memory cyecle storing or
retrieving a word from memory. Start-
ing a program results initially in a Key
cycle, and once running this cycle as well
as KEYM should not occur again until the
program is halted and restarted.

s

w

¢. FETCH - does as its name implies, fetches 0 200 400 800 800
an instruction word from memory. The *
word retrieved from memory in this cycle CLOCK
can only be an instruetion word.

d. DEFER - Indirect Addressing. To go in- FETCH

directly through one address to reach
another, This cycle is also involved in
Auto-Indexing and Auto-Decrementing. PTGO ! PTGI ! PTG2 ! PTG3

These subjects are treated in greater de- TS0 TS|
tail in the next section of this manual. #CLOCK RATE 200ns

e. EXECUTE - Two cycle instructions must 0600719
follow the Fetch cycle with Execute. The
instruction word is retrieved from core in
Fetch and the instruction itself is executed
in the Execute cycle. Two cycle instruc-
tions must reference memory twice to
properly execute the instruction. This will
be further discussed in later sections,
however, memory can only be referenced
once per cycle - hence an instruction re-
quiring two memory references is a two
cycle instruction.

MEMORY
Magnetic Core Theory

Most computer memories are built around a simple q

structure called a core. A core is a donut shaped

object made of ferrous material. The material

make up of the core allows it to become magnetized

and to hold its magnatism. Because of the cores

f.. PROGRAM INTERRUPT (PI) - to be discus- shape, the magnetic field of the core will be in one
sed under later section. of two directions as shown.

g. DATA CHANNEL (DCH) - to be discussed
under later sections.
TIME STATES
Individual Major States are further sub-divided
into Time States.

The device generating individual Time States is
referred to as the Time State Generator (TSG). 0600718

Since a core will be used to store binary informa-
tion, one magnetic field direction would indicate
a "Binary One' and the opposite field direction
would indicate a "Binary Zero'.

Time States are in turn sub-divided into Proces-
sor Time States.

The device that sub-divides Time States is
called the Processor Time Generator (PTG).

Figure 6 illustrates the basic timing of a typical
mini-computer.

a. Fetch cycle consists of Time State Zero
(TS0) and Time State one (TS1).

b. TS0 in turn is divided into Processor Time .o " "
Zero (PTGO) and one (PTG1). ONE ZERO

0600716
c¢. TS1 in turn is divided into Processor Time
two (PTG2) and three (PTG3).

4-7

The way we magnetize a core is by passing current
through a wire. The magnetic field around the wire
will magnetize the core.

CURRENT DIRECTION

- MAGNETIC FIELD
AROUND A WIRE

. MAGNETIC FIELD OF CORE
DGOOTI7

A single wire is not appropriate for computer
memories. Instead, two wires are used. Each
wire will carry exactly half of the current neces-
sary to magnetize the core. At the intersection
of the two wires within the core, the magnetic
fields of the wires add together and are enough to
magnetize the core.

MAGNETIC
FIELD

1/2 CURRENT

7, MAGNETIC
FIELD

0600715

To magnetize the core in the opposite direction we
pass current through the wires in the opposite
direction.

! 172 CURRENT

— 1/2 CURRENT

o
| <D MaGNETIC FIELD
oGoo7I3

The wires that are used to magnetize the core are
usually called the "X" and "Y' drive lines. The
"X line is usually the horizontal wire and the
"Y' drive is usually the vertical wire.

Rev. 02

4-8

L

Y DRIVE

b

0t

X DRIVE

N

DGoO7iI4

Using this ability to magnetize a core in one

of two directions, information can be stored and
retrieved. This is the basis of a computer mem-
ory.

Definitions

a. MEMORY CYCLE - any major state where-
in the CPU references memory. Consists
of two separate identities, i.e., Read
followed by Write, each occurring in
separate time states.

b. READ - the first half of the memory cycle
wherein a word is ""Read'" out of the speci-
fied memory location.

c¢. STROBE - with Read is part of the Read
portion of the memory cycle.

d. WRITE - the second half of the memory
cycle where the word is rewritten into the
specified memory location. The rewritten
word might be the same word as Read out
or could be a modified word.

e. INHIBIT - A part of the write half of the
memory cycle.

f. DESTRUCTIVE READ OUT - Reading a
word out of the specified location in mem-
ory results in the zeroing of that location,
consequently the word is destroyed. The
write half of the cycle restores the word
or writes in a new modified word. De-
structive Read Qut is not necessarily a
desirable feature and memories were not
designed to operate in this manner. Un-
fortunately, it is the ""nature of the beast"
and must be tolerated.

SENSE AMPLIFIERS - involved in the read
portion of the cycle. Sense whether a given
bit of the word is a "one' or a ""zero'.

aa

h. FERRITE CORES - referred to as donuts,
smail circular magnetic cores capable of
being magnetized in either of two states
where magnetizing in one state represents
a ""zero' and in the opposite state a "one'".
Core diameters more or less determine the
speed of the memory. Cores currently in
use are 18mil in diameter.

i. MEMORY ADDRESS (MA) - as mentioned
previously, its content determines which
location in core is to be referenced.

j- MEMORY BUFFER (MB) - communicates
with core on both the Read and Write
portions of the Memory Cycle. Receives
the word from core memory when Reading,
while the word written in core memory
comes from the MB.

k. MEMORY SIZE - rated by the number of
locations (addresses) within the memory.
For instance, a 4K memory actually has
4096 decimal locations (7777 octal), while
an 8K memory has 8192 decimal locations
(17777 octal). Memories are currently
available in 2K, 4K, 8K and 16K versions.

1. PLANE - a plane contains 4096 (decimal)
cores representing for instance, all the bit
zeroes of 4096 locations. It stands to follow
that a 16 bit machine would necessarily re-
quire 16 planes, one for each bit.

m. MAT - a group of planes, one place for each

bit of the machine word as illustrated in
Figure 4-7,

I
HEinn
Do
oo

06007
Figure 4-7 Core Mat with 16 Planes

Description

| As stated previously, a plane contains 4096 deci-
mal cores. Each core on the plane is mounted at
the intersection of two wires called X and Y lines.
A plane can be visualized as a fine wire screen
or mesh (similar to a window screen) where a
core is mounted at the intersection of each hori-
zontal (and vertical) wire of the screen. (See
Figure 4-8.)

4-9

X X
DGoOTIZ
Figure 4-8 Core Mountings

A plane contains 64 x 64 = 4096 cores, and is actually
a 64 x 64 matrix. Figure 4-9 illustrates a plane utiliz-
ing a 4 x 4 matrix for the purpose of explanation.
The slanted lines represent the cores. Note that the
cores are mounted in opposition to each other, this
is to reduce the effect of noise. As stated previously,
the actual plane would be a 64 x 64 matrix with 4096
cores.

X

0600710
Figure 4-9 Core Plane

A 4K memory has 4096 locations. It is the function
of the Memory Address Register (MA) to specify
one of 4096 decimal locations when referencing
memory. Figure 4-10 illustrates address selection.

MA 1 2 3 56 78 9110 11 12 13 14 15

STACK Y SELECT X SELECT
SELEC

Figure 4-10 Address Selection

NOTE: that MA bits 1, 2, 3 select a particular 4K
memory (Stack Select) this is illustrated in
the following table:

MA123 4 -15
000 | XXXX 4K
001 | XXXX 8K
010 | XXXX 12K
011 XXXX 16K
100 | XXXX 20K
101 | XXXX 24K
110 | XXXX 28K
111 | XXXX 32K

Rev. 02

Stack Select in the NOVA Line computers is ac-
complished by utilizing jumpers, each 4K memory
board having its own unique jumper code reflect-
ing MA bits 1,2,3. MA bits 1-3 address up to

8 x 4K memories for a total of 32K. 7Y select bits
4-9 have a range from 0 - 64 decimal or 0 - 77
octal. The same being true of X select bits 10-15.
The uppermost location in a 4K memory is 7777
octal, MA bits 4-15 being all ones, therefore Y
select = 77 and X select = 77 or 7T777.

It should be noted at this point that Y select will in
effect select one of 64 (77 octal) Y switches while
X select selects one of 684 (77 octal) X switches.
Figure 4-11 illustrates switch selection.

WAL &

: SWITCHES
-/
64 _ N "
SWITCHES -—/
_/
™
DGOO708
Figure 4-11 X and Y Switches
Read

Figure 4-12 illustrates Read portion of the memory
cycle. a 1/2X Read current is passed through the
selected X switch while a 1/2 Y Read current is
passed through the selected Y switch. Each core
(64) on the selected X and Y lines see a 1/2 current
| which is not sufficient to change the state of a
core. It will be noted that the selected core sees
a full Read current.

e

\ \ \1 is2"x
READ
CURRENT
i L
i .
/ | SEES FULL
[IRT .,\ k. CURRENT
kéap T 1"
CURRENT
X
DGOO709
Figure 4-12 Read Currents
Rev. 02

4-10

Sense Line

Referring to Figure 4-12, the selected core on the
plane sees a full Read current, and if the core is
magnetized in the one state it will change to the
opposite state (zero). If the selected core is initially
magnetized in the zero state, the direction of the
Read current will not change its state, it remains

a zero.

Figure 4-13 illustrates the addition of a third wire to
the core plane. This third wire when Reading acts
as a Sense Line. It is the function of this third wire
to sense a change from a one to a zero. The Sense
Line terminates in a Sense Amplifier which ampli-
fies the weak signal on the Sense Line. The ouiput
of individual sense amplifiers Anded with strobe is
the input to individual Memory Buffer Bits (MB). It
should be noted that a 16 bit machine has 16 planes,
consequently 16 Sense Lines and 16 Sense Ampli-
fiers. Note also, at the conclusion of Read, each
bit on a ""one' has gone to zero, i.e., Destructive
Read Out.

THE SENSE-INHIBIT WIRE ACTS AS
A SENSE LINE DURING THE READ
CYCLE, AND AS AN INHIBIT LINE
DURING THE WRITE CYCLE

SENSE-INHIBIT
WIRE

n xu

WIRE

U

LW Wy WIRE
«— | OUTPUT SIGNAL

——[/—-\—— REFERENCE VOLTAGE OF SENSE AMPLIFIER
O OUTPUT

SENSE WIRE VOLTAGE —#

TIME —

D6o0725

e

SENSE LINE

ﬁlﬁ D DIRECT
M SET
- [
c

STROBE MB{n)
D

DGOC737

Figure 4-13 Sense Line and Amplifier

Write

Passing a 1/2 X Write current and a 1/2 Y Write
current (in the opposite direction of Read) through
the selected X and Y lines results in Writing in
memory. Keep in mind that all bits in the selected
location are now zero as a result of Reading. Re-
versing the direction of current would magnetize
all bits in the selected location to the ""one' state.

STROBE A

Inhibit Line - the third wire which while Reading
in the Sense Line becomes on Write the Inhibit
Line. The bits that are to remain a zero are pre-
vented from switching to a one by the Inhibit Line.
(See Figure 4-14.)

172 "X"
WRITE
CURRENT

— GROUND

2 ETTE ' % | _+VINH %ZRH\'(E
T ONHIBIT CURRENT

CURRENT y— SOURCE) DN
Lz _ CURRENT

WRITE NG

CURRENT CANCELS)

DGOO726
Figure 4-14 Write and Inhibit Currents

° Ye3Ys2 Y3z Yz Y31 Y30 Y Yo

TO 3
SENSE
MEMORY ——(
circuitRY g MPEY _—<Ij@ —

0

I l h
AL 7 - X0
SENSE P
LINE ~
i

DIFFERENTIAL 2
AMPLIFIER
+VINH{I5V)

f

D6-000387

INHIBIT — ‘
circuitry 'NHO D_[:)

i W v}] AN

3 —X,
t ya Vi ‘_'XZ
. REnainie ,J*—” %
——
TG PRIV
(I)
INHIBIT e

£y D\ 1 e

AN

INH GATE A

l4—m—o +15v |

Simplified Schematic of the Core Memory's Sense and Inhibit Circuitry

4-11

Rev. 02

This page intentionally left blank

4-12

SECTION V

INSTRUCTION SET - MEMORY REFERENCE

GENERAL

A group of six (6) instructions which reference a
location in memory.

Instructions of this group will:
a. Move a data word from the CPU fo a location
in memory.

b. Move a data word from a location in memory
to the CPU.

¢. Modify the contents of a location in memory.

d. Alter the flow of the program, i.e., change
the sequence of instruction execution.

INSTRUCTION WORD
AND
ADDRESSING

Decoding

The instruction word is fetched from the specified
location in memory and is loaded into the Instruc-
tion Register (IR).

The six instructions decode as follows:

IR bits
JMP
JSR
ISZ

DSz
LDA
STA

0
0
0
0
0

OO0 M
Soo oM
B m oo
QO © s O

If the first three bits are zero it will be noted that
bits 3 and 4 decode one of four instructions. These
instructions do not require an accumulator (AC)

and are referred to as non AC instructions. With
the first three bits different from zero, the instruc-
tion is either LDA or STA either of which require
an accumulator (AC). It should be noted here that
the Nova family of computers each have four (4) Ac-
cumulators (ACO, AC1, AC2, AC3). Bits 3 and 4
decode one of the 4 Accumulators for the LDA or
STA instructions.

5-1

Cycles

The instructions JMP and JSR require one memory
cycle for execution and are therefore referred to
as Single cycle instructions.

Instructions ISZ, DSZ, LDA and STA require two
memory cycles for execution and are therefore
two cycle instructions.

Addressing

The content of IR bits 6-15 determine the location
in core specified by the instruction.

Bits 6 and 7 decode one of four address modes.

Bits 8-15 contain either an address or a displace-
ment, depending on the specified address mode.

Figure 5-1 illustrates the above.

IR 6-7 8-9-10-11-12-13 - 14 - 15
Mode
Modes
6~ 17
0 0 Page Zero
0 1 Relative
1 0 Base AC2
1 1 Base AC3

Figure 5-1 IR Bits 6-15 Breakdown
Page Zero Mode

1) Consists of memory locations 0-377 octal.

2) Bits 8-15 in this mode contain an address.
It will be noted that with eight address bits
available (8-15) the maximum address is
377 octal.

3) Page zero contains addresses that can be
reached directly from any area of core.

Relative Mode

1} An address calculated relative to the cur-
rent location.

2} Bits 8-15 in this mode contains a displace-
ment vice an address as in the page zero
mode.

3) To provide for both positive and negative
displacements bit 8 is the sign of the dis-
placement.

4y With bit 8 a sign bit, seven bits are avail-
able for displacement, thus the range is
+177 and -200. With a negative displace-
ment, bits 8-15 represent the 2's com-
plement of the displacement.

5) Examples:

500/Inst 50, 1

Current location =500
Displacement =+50
Calculated Address 550

NOTE: The 1 indicates Relative Mode (01)
500/Inst-50, 1
Current location =500

Displacement -50
Calculated Address 430 (octal)

Base Mode

1) An address calculated relative to AC2 or AC3.

2) Bits 8-15 in Base Mode contains a positive
or negative displacement with bit 8 the sign
of the displacement.

3) AC2 and AC3 are Index Accumulators.
4) Example:

500/Inst 100, 2

Assume AC2 = 1000
Displacement = +100
Calculated Address 1100

NOTE: The 2 indicates Base Mode AC2 (10)

500/Inst -70, 3

Assume AC3 =670
Displacement = -T70
Calculated Address 600

NOTE: The 3 indicates Base Mode AC3 (11)
5) In Base Mode the displacement range is the
same as in Relative Mode, i.e., +177,

-200. The displacement is added to or sub-
tracted from the contents AC2 or AC3.

Rev, 02

5-2

MEMORY REFERENCE INSTRUCTIONS

JMP - Aliers the normal program segquence,
i.e., transfers program control from one
area of the program to another. A single
cycle instruction.

Examples:
500/JMP 300
a) Address Mode - Page Zero
b) Action - transfer control from location

500 to location 300.
¢) Decoding
IR 0—1-2-3—4]516—7 i 8-9-10-11-12-13-14-15
0oo000QOOOIT1T O O O O O O
JMP PG ADDRESS = 300
ZERO

IR 0-
0

IR 0-
0

500/JMP 70,1
a) Address Mode - Relative

b) Action - Transfer control from location
500 to location 570

¢) Decoding

1-2—3-4’5‘6-7 8-9-10-11-12-13-14-15
oo0o0O0l0jO1l00 1 1 1 0 O O

JMP REL DSPL =170

500/JMP 50, 2

AC2=T700

a) Address Mode - Base AC2

b) Action - Transfer control from location

500 to location 750
c) Decoding

1-2—3-415 6-7]8-9-10-11-12-13-14-15
00000/l10l00 1 0 1 0 0 O

JMP BASE DSPL =50
AC2

NOTE: The address modes of the following instruc-

JSR

tions are varied to illustrate various modes.

- Jump to a subroutine (Jump and save the
return). Transfer program control to a
subroutine and save the return address.
The return address is stored in AC3.

Subroutine - a group of instructions utilized
many times in a program. Written as one
subroutine and called by the program via a
JSR. Figure 5-2 illustrates the principle
behind subroutines.

PROGRAM | JSR
YFLOW SUBROUTINE
/! T RETURN e
o JSR
BROUTINE
IDENTICAL ~__brrrr ggwm_fv o SUBROUTINE
INSTRUCTIONS ool ISR RETURN
\ T 7 " ISUBROUTINE
771 RETURN —+»
DGOO728

Figure 5-2 Subroutine Principles

If the 3 identical areas in Figure 5-2, contained 4
instructions each for a total of 12 instructions, it
can be seen that a saving results by writing a sub-
routine consisting of 5 instructions (1 additional
instruction for the return) plus 3 JSR's for a total
of 8. The JSR is a single cycle instruction.

Example:
500/JSR 50,1
a) Address Mode - Relative
b) Action-Jump to a subroutine at location
550.

¢) Decoding
IRO—1-2-3-4—[516 -7-18-9-10-11-12-13-14-15
00001001100 1 0 1 0 0 O
JSR REL

d) Octal - 004450

ISZ - Increment and skip if zero. Modifies a mem-
ory word. Increments the contents of the
specified memory location. Skip the next
instruection occurs if as a result of the in-
crement the contents of the addressed loca-
tion goes to zero. Normally used to in-
crement a counter. ISZ is a two cycle
instruection. ’

Examples:
500/1SZ -50,1
a) Address Mode - Relative

b) Action - Increment the contents of mem-
ory location 430, skip if zero.

¢) Decoding

iR 0-1-2-3- 41 {8910 11-12-13-14-15
ooot1oioio1i11 0 1 1 00 0

187 REL . (DSPL = -50)
d) Octal - 010730

DSZ - Decrement and skip if zero. Basically
the same as ISZ except decrement. DSZ
is a two cycle instruction.

Examples:
500/DSZ 200
a) Address Mode - Page Zero

b) Action - Decrement the contents of
memory location 200, skip if zero

¢} Decoding

IR G—l-2~3-4i‘316—’7§8—9—10-11—12 13-14-15
000t11loloolto 0 0 0 0 0 0
DSz PG (ADDRESS = 200)
ZERO

d) Octal - 014200

LDA - Load Accumulator from the specified mem-
ory location. Transfers a data word from
memory to the CPU. LDA is a two cycle
instruction.

Examples:
500/LDA 1,50,2 (AC2 = 700)
a) Address Mode - Base AC2

b) Action - Load AC1 with the contents of
memory location 750.

¢) Decoding

IR 0-1-2{3- 41 1 8-9-10-11-12-13-14-15
0

001101 00 1.0 1 0 0 O
LDA AC1 BASE
AC2

d) Octal - 025050

STA - Store the contents of the specified Accum-
ulator into the designated memory location.
Transfer a data word from the CPU to
Memory. STA is a two cycle instruction.

Examples:
500/STA 2, 377
a) Address Mode - Page Zero

b) Action - store the contents of AC2 into
memory location 377.

¢) Decoding

IR 0-—1-213 4‘ ’8 -718-9-10-11-12-13-14-15
01 0i1 0i0 11 1 1 1 111
STA AC2 PG ADDRESS 377

ZERO
d) Octal 050377

5-3

EXECUTION

Single cycle instructions are executed in a Fetch
cycle.

Two cycle instructions require a Fetch cycle fol-
lowed by Execute.

FETCH EXECUTE
JMP 1872
JSR DSZ
ISZ 7] LDA

DSz STA
LDA
STA

INDIRECT ADDRESSING
General

a) Memory Reference instructions can be
indirectly addressed.

b) An indirect instruction is also referred
to as a Deferred instruction.

¢) Basically Indirect implies going through
one location in memory to reach another.

d) Recalling address modes, Page zero mode
contains addresses 0-377 with any loca-
tion on the page directly addressable. In-
direct addressing might be utilized to
reach addresses that can not be reached
directly.

e) In the previous discussion regarding In-
struction descriptions it will be noted that
IR bit 5 was a zero in all cases. IR bit
5 in a Memory Reference Instruction is
the Defer or Indirect bit.

f) The Assembler convention for Defer is
the "AT" sign @.

Examples:

In location 500 we have an instruction that must
reference memory location 7560. This it cannot do
directly, however by going indirect through say
location 300 (which must contain 750) we could
reach 750.

500/LDA 2, @ 300
300/750

a) Address Mode - Page Zero, Indirect.

b) Action - Load AC2 indirect through 300.
This instruction would load AC2 with the
contents of memory location 750.

¢) The contents of memory location 300 (750)
is in this case treated as the effective ad-
dress of instruction.

5-4

d} Decoding

LDA ACZ PG ADDRESS 300
ZERO

NOTE: Bit 5 the defer/Indirect bit is set

500/STA 2, @ 150
150/1777

a) Address Mode - Page Zero, indirect.

b) Action - Store the contents of AC2 in-
direct through 150. This instruction
would store the contents of AC2 in
memory location 1777.

500/1SZ @ 50, 1
550/3000

a) Address Mode - Relative Indirect

b) Action - ISZ indirect through location
550. This instruction would increment
the contents of memory location 3000.
Note that the calculated address is 550.

Defer Cycle

Single cycle instructions indirectly addressed be-
come two cycle instructions Fetch followed by
Defer.

Two cycle instructions indirectly addressed be-
come three cycle instructions, Fetch, Defer and
Execute.

Multi-Level Defer
One indirect followed by another.

Bit 0 of the addressed location is the multi-level
Defer bit.

Example:

500/JMP @ 300
300/000700
700/next instruction

a) One level of Defer. Bit 0 of location
300 is a zero.

b) The next instruction executed would
come from location 700,

500/JMP @ 300 Programming Example:

300/100700
700/1000 a) It is desired to move 11 octal data words
1000/next instruction in core from one area to another in re-

verse order.
a) Two levels of Defer. Bit 0 of location
300 is a one. This would add one more
Defer cycele and cause the CPU to go in- 2000 4000
direct through location 700. ;

11 Octal
b) The next instruction executed would come Data Words i *
from location 1000.
2010 4010
/ J
| AUTO INDEX b) Routine
| Auto Increment LDA 2, @20 20/ 1777
STA 2, @30 30/ 4011
Memory locations 20-27 when addressed indirectly 1S7Z zéoL ggg/ -11
| are auto increment registers, JMP -3, 1

Example: .
¢) Explanation

JMP @ 20

20/1777 1) Note that Location 20 (Auto Increment)
contains a number one less than that de-
a) The contents of location 20 is incremented sired while Location 30 has a number
to 2000, and becomes the effective ad- one greater than that desired. Location
dress of the JMP. 200 has a count of -11 representing the (

. number of words to be moved.
b) 2000 is written into location 20.

2) The contents of Location 2000 is loaded

LDA 2, @ 23 (LDA) into AC2 (1777+1). The contents
23/725 of AC2 is stored (STA) in Location 4010
(4010-1). The ISZ increments Location
a) The contents of location 23 is incremented 200 but does not yet skip (not 0). The
to 726, and becomes the effective address JMP -3, 1 (1-3, Relative mode) re-
of the LDA. turns to the LDA instruction getting the

next data word. The Program would
remain in this loop until ISZ zeroes
Location 200 at which time the JMP
would be skipped and the program
would be released from the Loop.

b) 726 is written into location 23.

Auto Decrement

Memory locations 30-37 when addressed indirectly
are auto decrement registers.

Basically the same as auto increment except de-
crement.

Generally useful for incrementing or decrementing
addresses.

Rev. 02
5-5

This page intentionally left blank

5-6

SECTION VI

ARITHMETIC LOGICAL INSTRUCTIONS (ALC)

GENERAL
A group of instructions that perform Arithmeti-
cal or Logical operations.

Instructions in this class do not reference
memory.

ALC Instructions operate on data already in
the Accumulators.

All operations are performed between two
Accumulators.
a) Example:
ADD ACS, ACD
The operation is ADD

ACS - Source Accumulator (ACS0, ACS1,
ACS2, ACS3)

ACD - Destination Accumulator (ACDO,
ACD1, ACD2, ACD3)

b)

c)

d)

The result goes to the Destination Accumulator
with the Source undisturbed.

ACS and ACD may be the same Accumulator.

ALC's are single cycle instructions, executed
within a Fetch.

INSTRUCTION WORD
AND
DECODING

IR bit 0 set (1) signifies to the machine that
the instruction just retrieved from core is
an ALC.

IR bits 1-2 decode one of four Source Accumu-
lators (ACS).

IR bits 3-4 decode one of four Destination Ac-
cumulators (ACD).

There are 8 ALC instructions, These are de-

coded by IR bits 5-6-7.

Figure 6-1 illustrates the above,

IR 0 1-2 3-4 5-6-7
1
ALC ACS ACD OPERATION

Figure 6-1 ALC Decoding

6-1

6.

7.

Instructions

Ll = R e R R R

Description

1

LRI N e B ow I T A e B e B 2

COM
NEG
MOV
INC
ADC
5UB
ADD
AND

Pk D b 0D ped (D ek (D e

Bits

5
0

6
0

7
0

ACS,ACD

ACS,ACD

ACS,ACD

ACS,ACD

ACS,ACD

ACS,ACD

ACS,ACD

ACS,ACD

COM

NEG

MOV

INC

ADC

SUB

ADD

AND

;compute the 1's complement
;of the number in ACS, and
;put the result into ACD.
;compute the 2's complement
;{negative) of the number in
;ACS, and put the result into
;ACD.

;copy (move) the number in
;ACS into ACD.

;add one (increment) to the
;number in ACS and put the
:result into ACD.

;add the 1's complement of
;the number in ACS to the
;number in ACD and put the
:answer into ACD.,

;subtract the number in ACS
;from the number in ACD and
;put the answer into ACD,
;Subtraction is performed by
;taking the 1's complement
;of the number in ACS adding
:this to the number in ACD,
;then adding 1 to the result.
;(2's complement subtraction).
;add the number in ACS to
;the number in ACD and put
:the answer into ACD.
;perform a logical AND oper-
;ation between the number in
:ACS and the number in ACD
;and put the result into ACD.

Rev, 02

SECONDARY OPERATIONS

1. Load and NO Load

a) IR bit 12 of an ALC is the Load/No
Load bit.

1) IR 12 a "zero" -Load the result
of an ALC into the Destination
Accumulator.

2) IR 12 a "one" - Do Not Load the
result of an ALC into the Destina-
tion Accumulator.

3) The sharp sign (#) is the Assem-
bler convention for No Load.

4) The ability to Load or Not Load
provides the Programmer the
means to compare two data words
without disturbing either number
by not loading.

Examples:
1) ADD 3,2

a) Add the contents of ACS3 to the contents
of ACD2, put the sum in ACD2.

b) Instruction word

IR O0|1-213-45-6-17[8-09[10 - 1112
11 1j1 oft 1 olo olo o|o
ALCIACS3ACD2 ADD LOAD

2) ADD # 3,2

a) Add the contents of ACS3 to the contents
of ACD2, do not load the sum into ACD2.

b) Instruction word

IR 0{1~2 3-415-6-7/8-9]10-11[12
111 111 o1 1 0'0 000 01 wpo
ALCIACS3/ ACD2| ADD 3 [LOAD
Load Modes

a) IR bits 8-9 determine the manner in
which the result of an ALC is loaded
into the Destination Accumulator.

b} Modes
IR8 - 9
0 0 Load Direct
0 1 Load Shifted Left (L)
1 0 Load Shifted Right (R)
1 1 Load Swapped (8)
Rev. 02

6-2

¢) Load Direct
1) IR bits 8-9=00

2} The result of an ALC is loaded into
the Destination Accumulator (ACD)
directly {as is, no modification).

3) Example - MOV 2, 3
a) Move the contents of ACS2 directly into
ACD3 (no modification).

b) Instruction word

IR 011—23 3~4§5-6—78—910-11i12
110?11;010009 0/ 0
ALCIACS2 'ACD3 | MOV | DIR | LOAD

Load Shifted Left

1) IR bits 8-9=01

2) The result of an ALC is loaded into the
Destination Accumulator (ACD) shifted
Left one.

3) Shift Left

CARRY ' 0 RESULT 15

a) On a shift operation the result and the
Carry are shifted together (17 bit shift).
The Carry is a one bit extension of the
result and indicates overflow. Carry is
discussed in greater detail further in
this section.

Example:
SUBL 0, 1

a) Subtract the contents of ACSO from ACD1,]
put the difference shifted Left (note the
" L' of the instruction word) into ACD1.

b) Instruction word

IR 01 ~2 3-45-6-78-910-1112
10 00 11 0 10 1 0
ALC ACS0 ACD1 SUB LEFT LOAD

Load Shifted Right

1) IR bits 8-9=10

2) The result of an ALC is loaded into
the Destination Accumulator (ACD)
Shifted Right one.

3) Shift Right

i}

Example:
INCR 1,3

a) Increment the contents of ACS! and load
into ACD3 Shifted Right. (Note the
"R of the instruction word).

CARRY RESULT

b) Instruction word

IR 01-23-45-6-7 8-010-1112
10 11 10 1 1 1 00 0 0
ALC ACS1 ACD3 INC RIGHT LOAD

Load Swap

1) IR bits 8-9=11

2) The result of an ALC is loaded into the
Destination Accumulator (ACD) with
the right and left Bytes of the result

swapped.
0 718 15
ACD
‘1o 718 15
RESULT

Lioad Swap is useful when outputting Data to an IO
device. For example, ACD2 might contain 2 char-
acters A and B as shown:

0] M

[t)

ACD2

a) We would output character "A' to the de-
vice and with a MOVS 2,2 exchange the con-
tents of ACD2 and output character "B'.

Carry and Carry Base

a) A one bit extension of an ALC result informs
the program of an overflow. Ina 16 bit
machine adding two numbers whose sum is
greater than 16 bits would result in over-
flow. The capacity of the registers (16 bits)
has been exceeded. CPU logic simply de-
tects overflow, sets a Flip-flop called Carry,
and frankly, could care less. If is the func-
tion of the Program to concern itself with
overflow and Carry.

6-3

c)

IR bits 10-11 allow the programmer to
establish a base for Carry as part of an ALC
operation.

Base

R 10-11 MNEMONIC
0 0 ASIS -

0 1 ZERO
1 0 SET
1 1 COMPLEMENT

Z
O
C

d)

e)

Overflow complements the Carry Flip-flop.

Examples and description:

Bits
10-11

AS IS 1,2 :the base value of the
;Carry bit is whatever
;the value of the Carry
;bit happens to be at the
;time this instruction
;is encountered. An
;overflow causes this
:base value to be
;completed.

;the base value of the
;Carry bit is forced to
:a zero. An overflow
:causes the Carry bit
;to become 1.,

;the base value of the
;Carry bit is forced to
;:a1l. An overflow
;ecauses the Carry bit
;to become zero.

;the base value of the
;Carry bit is the com-
;plement of whatever
;the value of the Carry
;bit happens to be at
;the time this instruc-
:tion is encountered.
;An overflow causes
;this base value fo be
;completed.

ZERO
ONE

1,2

COMPLEMENT

ALC Skips

a) IR bits 13-14-15 of an ALC instruction de~
code of eight ALC Skips.

b) It is possible to Skip on the state of Carry,
the result of an operation, either or both.

Rev. 02

¢) Skips

13 -14 - 15

bk ek ek ek (5D DD D
bk ek () D bk ek DD

bk (D) pmd D ped D ek €D

Never Skip
SKP
SZC
SNC
SZR
SNR
SEZ
SBN

d) Description

If the test
mnemonic
is

then

0 0 0/ (nothing)

Bits
1314 15

0/ 0] 1 SKP

01/ 0/8ZC

0/ 1]|1]SNC

10/ 0/SZR

1/1,0|8SEZ

1111 SBN

no test is made and the testing
phase of the instruction is ig-
nored.

(unconditional SKip) no test is
made and the testing phase of
the instruction is ignored. How-
ever, the next instruction in the
program sequence is skipped.

(Skip on Zero Carry) a test is
made on the Carry bit resulting
from the operation. If this new
Carry bit is zero, the next in-
struction in the program se-
quence is skipped.

(Skip on Non-zero Carry) a test
is made on the Carry bit result-
ing from the operation. If this
new Carry bit is nonzero, the
next instruction in the program
sequence is skipped.

(Skip on Zero Result) a test is
made on the 16-bit result from
the operation., If this 16-bit re-
sult is zero, the next instruction
in the program sequence is
skipped.

(Skip on Non-zero Result) a test
is made on the 16-bit result from
the operation. If this 16-bit re-
sult is nonzero, the next instruc-
tion in the program sequence is
skipped.

(Skip if Either or both are Zero)
a test is made on the 16-bit re-
sult and the new Carry bit. If
either or both are zero, the next
instruction in the program se-
quence is skipped.

(Skip if Both are Non-zero) a test
is made on the 16-bit result and
the new Carry bit. If both are
monzero, the next instruction in

the program sequence is skipped.

Rev. 02

6-4

ALC INSTRUCTION WORD

1. As seen, all 16 bits of an ALC instruction have
meaning to the CPU logic during the execution
of the Instruction.

2. Examples of ALC Instruction words:
a) SUBCL #2, 1, SZR

The instruction is Subtract {(ACS2, ACD1).
Carry Base is its complement (C).

Load Shifted Left (L),

Don't Load (#),

Skip a zero result (SZR).

LS LI S S

IR 0 1-2 3-4 5-6-7 8-9 10-11 12 13-14-15
1 10 01 10101 11 1 1 0 0
ALC ACS2 ACD1 SUB LEFT COMP LOAD SZR

6. Octal 146574
b)ADCOR 3, 2, SNC

1) The instruction is add complemented
(ACS3, ACD2).

2) Carry Base is SET (0).

3) Load Shifted Right (R).
4) Load.
5) Skip on a non-zero Carry. g

ALC ADDER CONCEPT

1. Figure 6-2 illustrates a typical mini-computer
Adder and associated registers.

a) The Adder receives two inputs simulta-
neously from two multiplexers. The
Source and Destination multiplexers are
communicating with the Accumulators.

b) The Adder performs the addition and its #
output representing the sum is loaded in-
to ACB.

¢) ACB (Accumulator Buffer) is a temporary
Buffer, helding the sum while a decision
is made as to the method of loading and
whether to load or not.

d) The ACB communicates with the Shifter
Element. It is here that the load direct,
Right or Swapped is accomplished.

e) The ALC Skip Logic looks at the output
of the Shifter and determines whether a
Skip condition has been or not been met.

ACB

ADDER
SOURCE DESTINATION
MULTi~ - MULTI-
PLEXER PLEXER

3
ACS3 ACD2
SKiP
LOAD LOGIC
SHIFTER

DG6O0720
Figure 6-2 Adder Concept (ADD 3, 2)

2. In summation, it can be seen that an ALC in-
struction is powerful and versatile, performing
up to 5 functions in one instruction word.

This page intentionally left blank

6-6

4

SECTION VII

INPUT-OUTPUT (I0) INSTRUCTION

GENERAL

1. The capability of a computer would be limited
if it had access only to its Memory and Arith-
metic Unit,

2. Input-Output (IO instructions allow the com-
puter to communicate with the "outside world".
Data can be transferred from the CPU to a
device and from a device to the CPU. Thus,
the name Input-Output, for the CPU "OQuiputs”
data to a device while a device ""Inputs" data
to the CPU. It should be noted here that ref-
erences to In or Out are always with respect
to the CPU.

3. Data is transferred from or to Accumulators
on communications between the CPU and devices.
INSTRUCTIONS

Instruction Word

5-6-7
XXX
INST

8-9
X X

10-11-12-13-14-15
XXX X XX
DEVICE CODE

011XX

IR O 1-2] 3-4
10 1AC

a) IRDbits 0 -1 - 2 =011 specifies IO.

b) IRbits 3 - 4 decode one of four ac-
cumulators.

¢) IR bits 5 - 6 - 7 decode one of eight
instructions.

d) IR bits 8 - 9 to be discussed further
in this section.

e) IR bits 10 - 15 are Device Code bits.

Instruction Set

IR5-6-17 Instruction
000 NIO
001 DIA
010 DOA
011 DIB
100 DOB
101 DIC
110 DOC
111 SKP

a) All instructions less NIO and SKP
require an Accumulator as part of
the instruction word.

7-1

b) The CPU has the ability to communicate
with three 16 bit Registers. Register
A, Bor C.

¢) The "'I" in the instruction Mnemonic in-
dicates incoming while the "O" out-
going.
10 Pulses

a) Decode by IR bits 8 - 9

IR 8 -9 Pulse MNE
0 0 NONE --
0 1 START S
1 0 CLEAR C
1 1 10 PLS P

b) IR bits 8 - 9 decode a pulse on any in-
struction other than SKP. The bits
determine a Skip condition on the SKP
instruction.

¢) Pulse Description

1) START (S) directed to a device ef-
fectively puts the device in mo-
tion, i.e., Start a device.

2) CLEAR (C) directed to a device
puts the device into an IDLE or
NULL state. Normally issued
to a device at the completion of
an operation

3) IOPLS (P) normally not seen by
standard devices. Provided for
the benefit of those designing
special interfaces.

Device Codes
a) General

1) Each device tied to the main-
frame sees an 10 Instruction as
issued by the CPU. The device
whose code is in IR bits 10 - 15
responds.

2) The six bits (10 - 15) allotted to
device selection allow for a maxi-
mum of 64 decimal codes (77
octal).

b) Typical devices, codes and Mnemonics

{(MNE})

Device Code MNE
High Speed Paper Tape Reader 12 PTR
High Speed Paper Tape Punch 13 PTP
Teletype (Input) 10 TTI
Teletype (Output) 11 TTO
DISK 20 DSK
Magnetic Tape 22 MTA

Typical Device Flags

a) Each device has (among others) two flags,
the BUSY and DONE. These are normally
D Type Flip-Flops.

b) A START pulse directed to a device will
SET the BUSY flag and CLEAR the DONE.
(See Figure 7-1.)

¢) The setting of BUSY normally is all that
is required to put a device into motion.

DIRECT
SET
c | c |
START
— BUSY E
(FROM CPU) S DON
D 0 D 0
] DIRECT
CLEAR
peoozet

Figure 7-1 Done and Busy Flip-flops

INSTRUCTION DESCRIPTION
NIO

a) No Input-Qutput - i.e., does not trans-

fer data.

b) Basically a command or control instruc-
tion. Utilized for instance to put a
device into operation.

¢} This command without the Mnemonic S, C
or P is in itself a NOP (NO Operation).
No pulse is Generated, therefore the
specified device does not respond.

d) Examples:

1) NIOS PTR (device code 12).

Instruction Word

IR 0-1-2] 3-4 }5~6-7 8-9 {10-11-12-13-14-15
011}0000001 0 01 0 1 0
10 (NOAC)} NIO |STRTIDEVICE CODE 12

Rev. 02

7-2

1. Action - A start pulse is directed {o the
High Speed Paper Tape Reader (PTR).
Busy is SET and the reader will fetch
one character {one line) from the paper
tape.

2. NIOC PTR

Instruction Word

IR 0-1-21 3-4 |5-6-7|8-9 [10-11-12-13-14-15
011, 00 (000/10,0 0 1 0 1 O
10 (NOAC)| NIO lCLR DEVICE CODE 12

1) Action - A clear pulse is directed to the
High Speed Paper Tape Reader. The
effect of this pulse is to clear both
Reader flags, Busy and Done. The
reader is now in an idle/null state.

3) NIOP - Not normally seen by standard
devices, principally for special device
interfaces.

DIA

a) Data In Register A.
b) An input instruction.

¢) Transfers a data word from a device
buffer into the Specified Accumulator.

d) Example:
1) DIA 3, PTR (Device Code 12)

Instruction Word

IR 0-1-2|3-415-6-7} 8-9 110-11-12-13-14-15
0 1 1 11 01,00 (0 0 1 0 1 O
AC3| DIA INONE DEVICE CODE 12

1) Action - Transfer a data word from
PRT character Buffer. Put the word
into Accumulator three (AC3).

2) DIA 2, TTI (Device Code 10)

Instruction Word

IR 0-1-2(3-4]5-6-T) 8- [10-11-12-13-14-13
01100,00 001001010
I0 |AC2| DIA INONE DEVICE CODE 10

1) Action - transfer a character in TTI's
buffer to Accumulator two (AC2).

2) DOA
a) Data Out Register A.
b) An Output instruction.

¢) Transfer a data word from the
specified AC to the device Buffer.

d) Example: SKP

1) DOA 0, PTP (Device Code 13) a) IO Skip instruction.
; . B} b) Does not pass data, therefore does not
Instruction Word require an Accumulator,
IR 0-1-2]3-415-6-7] 8-9 [10-11-12-13-14-15 c¢) IR Bits 8 - 9 have an entirely different
o11/00010,00 !0 0 1 0 1 1 meaning for this instruction than the
10 IACOIDOA INONE|DEVICE CODE 13 preceding seven.

d) Decoding and Mnemonics.
1)} Action - Transfer a character from

ACO to the High Speed Paper Tape IR 8 -9 MNE
Punch {PTP) Buffer. 0 0 BN
0 1 BZ
DIB 1 0 DN
11 DZ
a) Data In Register B
) & 1) B and D refer to the two device
b) An Input Instruction flags, Busy and Done.
¢) Transfer & data word from device 2) We have the ability to skip
Register B to the Specified Accumu- another state of Busy, not equal
lator. to zero (N) or equal to zero (Z).
d) Same as the DIA except Register B. ghe same is true of the Done
ag.
e) At this point, the following should be
mentioned. The smaller devices such e) Examples:
PTR, PTP and Teletype normally
communicate via Register A. These 1) SKPBN PTR.
devices transmit a character of 8 bits.)
They in effect utilized one-half of Instruction Word
Register A. The larger devices such
as Disks, Magnetic Tapes, etc., due IR 0-1-2] 3-4 |5-6-7/8-9|10-11-12-13-14-15
to their complexity, might utilize 01100111100 0 0 1 0 1 0
all three Registers A, B as well as C. IO |NONE! SKP {BN |DEVICE CODE 12
This will be further discussed in the
chapter dealing with Data Channel.
1) Action - Skip the following instruction if
DOB the Reader's Busy flag is set. Skip if the
Reader is Busy.
a) Data Out Register B. 9) SKPBZ PTR a
b) An OQutput instruction.
¢) Transfer a data word from the Instruction Word
designated Accumulator to device
Butfer B. IR 0-1-2| 3-4 |5-6-7|8-9/10-11-12-13-14-15
011001111010 0 1 0 10
DIC IO INONE! SKP |BZ | DEVICE CODE 12
a) Data IN Register C.) i
)) 1) Action - Skip the following instruction
b) An Input instruction. if the Reader's Busy flag is zero (Clear}.
¢} Transfer a data word from device Skip if the Reader is not Busy (Done).
Buffer C to the designated Accumu- 3) SKPDN PTR
lator. '
DOC Instruction Word
a) Data Out Register C. IR 0-1-2 3-4 5-6'7 8‘9‘10-11"12‘13-14-'15
i _ _ 011001111100 0 1 0 1 0
b) An Output instruction. I0 |NONE| SKP |DN | DEVICE CODE 12

¢) Transfer data word from the designated
Accumulator to device Buffer B.

7-3

1) Action - Skip the following instruction if the
Reader's Done flag is Set. Skip if the Reader
is Done.

2} SKPDZ PTR

Instruction Word

IR 0—1—2§ 3-4 15—6—7 8-9110-11-12-13-14-15
Blit@G}lllllGGiOlO
IO INONE! SKP {DZ IDEVICE CODE 12

1) Action - Skip the following instruction if the
Reader's Done flag is zero {BUSY).

The above Skip instructions can be directed to any
device, not necessarily restricted to the Reader as
illustrated.

PROGRAMMING EXAMPLES
1. General

a) The CPU and various devices com-
municate over an I0 BUS.

b) IO BUS Configuration.

1) Control Lines - a number of Lines
that govern the actions of devices.
Start and Clear as generated by
the CPU are examples of control
lines.

2) Data Bus - Bi-directional, capable
of transferring data in either di-
rection. The Bus in a 16 bit mach-
ine would include 16 data lines
{one per bit). The four Accumu-
lators (in the CPU) communicate
with the Bus on the CPU end while
device registers A, Bor C are
tied to the Bus on the device end.

2. Program Control of Paper Tape Reader,

a) The following illustrates the reading
of one character from the Paper Tape.

NIOS PTR
SKPDN PTR
JMP. -1

DIAS 2, PTR

b) Explanation - NIGS PTR

1)

2)

1)

2)

A START pulse is directed to the
Reader, setting its BUSY, clear-
ing its DONE. This puts the Reader
in motion and tape moves,

The character Read from Tape is
loaded into the Reader's Buffer.
(See Figure 7-2.)

Upon completion, tape stops, and

the State of the two flags is Re-
versed, i.e., Set Done, Clear Busy,
The character remains in the Reader’'s
Buffer.

SKPDN PTR
Jmp. -1

These two instructions allow the
program to detect completion on
the part of the Reader.

The above is referred to as a
"Listen Loop". In effect, listen
for the flag. The JMP. -1, says in
effect, jump current location minus
one. (Jump back to the SKPBN).

The program Loops between the two
instruction, until such time as the
Reader sets its Done flag. Setting
of Done releases the program from
the Loop.

When the speeds of the CPU and
Reader are considered, the reason
for the '"""Listen Loop' becomes
obvious. The CPU's speed is
measured in nanoseconds, while
that of the Reader in milliseconds.
The CPU must necessarily wait on
the device, this it does by looping
on the flag.

DIAS 2, PTR

Data In A (DIA) transfers the char-
acter in the Reader's Buffer over the
data bus to AC2.

The Start Pulse again puts the Reader
in motion, the Reader now reads the
second line of tape {character).

cPU
{AC2)
BUSY DONE DATA BUS
T ? DIA 2, PTR
SET CLR) 718 5
"START PULSE"
NIOS PTR DATA BUS
T 4
ZERO's s
8 om0
BUFFER
CHARACTER
FROM TAPE
READER
MECHANICS
DGOO722

Figure 7-2 Paper Tape Reader 1/O Controls

Program Control of Paper Tape Punch

a) The following illustrates the punching of
a character on Paper Tape.

DOAS 3, PTP
SKPDN PTP
JMP. -1

b) Explanation
1) DOAS 3, PTP

The DOA (Data Out A) transfers a character in
AC3 over the data bus to the Punch Buffer. The
Start Pulse activates the Punch, punching the
character in the Buffer.

2) SKPDN PTP
Same as for Paper Tape Reader, detect Punch

completion prior to sending the next character.
(See Figure 7-3.)

7-5

PUNCH
MECHANICS

PTP

BUFFER BUSY

DONE

CHARACTER T T

7le
DATA BUS

5 SET CLR

START PULSE

CPU
(AC)

DOA

0600723
Figure 7-3 Paper Tape Punch 1/0 Control

CPU IO INSTRUCTIONS

1. General

The Central Processor can be treated as
a device.

Device Code 77 has been assigned to the
Processor.

An IO instruction directed to a device
behaves in a predictable manner while

the same instruction directed to the CPU
(Device Code 77) will have an entirely dif-
ferent effect.

d) CPU Mnemonics - basically for the
benefit of the Programmer, having
meaning to a program called the As-

semblies and discussed in a later section.

2. Instructions/Mnemonics

a) READS
1) Equivalent to DIB X, CPU

2) Action-Read the 16 console data
switches into ACX.

Rev, 02

3} The DIB to a device would being
back a 16 bit data word from
Register B. To the CPU, the same
instruction beings back the 18 data

switches.

b} INTA - discussed under Program In-
terrupt.

¢) MSKO - discussed under Program In-
terrupt.

d} IORST - IC Reset - clear all IO Busy
and Done flags, ete.

e) HALT - Programmed Halt. Machine
Halts.

f) INTEN - discussed under Program In-
terrupt.

g) INTDS - discussed under Program In-
terrupt.

h) Figure 7-4 - illustrates the relationship

between a given mnemonic and its
equivalent IO instruction.

7-6

DEVICE

NIO
DIA
DOA
DIB
DOB
DIC
DOC
SKP

i

Bt bt OOk e DO

i

O OO O -]

P ek ek bk €D DO O W

CPU

READS
INTA
MSKO
IORST
HALT

DEVICE |DEVICE| CPU AND;{ CPU AND
8-9 |AND SKP| - SKP SKP SKP
0 0 NOP BN -- ION (1)
01(S)| START BZ INTEN |ION (0)
10 (C)| CLEAR DN INTDS |PWR LOW (1)
11(P); IOPLS DZ -- PWR LOW (0)

Figure 7-4 CPU I/O Instruction Decode

SECTION VIII

PROGRAM INTERRUPT AND DATA CHANNEL

PROGRAM INTERRUPT b) INTDS
General 1) Interrupt disable

An Interrupt System permits a Program to Start one 2) Equivalent to NIOC CPU
or more devices, allowing the Program to continue 3) Turns "OFF" the Interrupt System.
without waiting for the device(s) to finish,
Basic Interrupt Sequence
The following routine illustrates the advantage of
Program Interrupt.

Location Content Comment
) DOAS 2, PTP 300 INTEN ;Turns on Interrupt
SKPDN PTP 301 NICS PTR ;Start the Reader
JMP. -1 302 INST :Continue Main Program
;without waiting for Reader.
1. The DOAS transfers a character from AC2 over 303 INST :Reader will Interrupt when
the Data Bus to the Punch Buffer, while the Start L :Done.
Start pulse initiates the Punch. 700 INST
2. The remaining instructions form a ""Listen Loop', 701 INST DONE ;Reader sets Done
the Program looping for roughly 16 milliseconds 702 ;Interrupt occurs)
waiting for the Punch to finish. ;PC is stor_ed‘m location
0 702 ;Zero. Pointing to 702
3. It can be seen that the CPU, capable of executing 1 2000 :Address of Subroutine
an instruction in nanoseconds, is wasting a great
deal of computing time waiting for the device. 2000 INST ;Get character
The Interrupt eliminates this need to wait on the INST :from Reader, store in
device. INST ;memory and Start
INST ;Reader to get next
The completion of a task by a device signals an In- INST :character.
terrupt. The Program is automatically interrupted, INTEN :Turn Interrupt back '""ON"
leaves the main sequence of instructions, goes to a JMP@ 0 ;Return to main Program.
subroutine, handles the device and returns to the :Next instruction is in
main Program. :location 702.
The Program must turn on the Interrupt System
(Enable) before an Interrupt can occur. Interrupt Sequence Description
Data Channel has priority over Program Interrupt. 1) INTEN - Turns on the Interrupt (Enable).

An Interrupt cannot "break' the current instruc- 2) NIOS PTR - Starts Reader.
tion, i. e., the instruction has to be completed 3) Program continues.

before an Interrupt Request can be honored. 4) Assume executing the instruction in Location

701 when Reader sets Done. This instruction
must be completed before the Reader Interrupt
Request can be honored.

Once an Interrupt occurs, the hardware turns OFF
the Interrupt System.

CPU Mnemonics 5) The Program Counter {PC) is pointing to ad-
dress 702. This is the return Address. The
a) INTEN instruction in location 702 will be the first in-
struction executed upon returning to the main
1) Interrupt Enable. routine.
2) Equivalent to NIOS CPU. 6) The PC is stored in Location 0, while Loca-

3) Turns "ON" the Interrupt System. tion 1 contains the address of the subroutine.

8-1

7) The hardware forces a JMP @ 1 which trans-
fers Program control to the Subroutine.

8) When returning from the subroutine, the Inter-
rupt is turned on and return is accomplished.

Polling Technique

a) In the foregoing description of the basic inter-
rupt sequence, it was assumed that only one
device was in use.

b) When operating one device, using the Program
Interrupt, when an interrupt does occur, we as-
sumed that it was caused by the one device.

¢) Consider the case of two or more devices.

1) When an interrupt occurs, program
control is transferred to a Subroutine.

2) Within this subroutine it is the function
of the Program itself to determine which
device made the request. This can be

done by Sampling Flags (Pol the flags).

3) The following assumes four devices
working:

SKPDZ PTR ;Test Reader
JMP PTRSBR ;Exit Reader Subroutine
SKPDZ PTP ;Test Punch
JMP PTPSBR ;Exit Punch Subroutine
SKPDZ TTI ;Test TTI
JMP TTISBR ;Exit TTI Subroutine
SKPDZ TTO ;Test TTO
JMP TTOSBR ;Exit TTO Subroutine

a) If a device Done Flag is zero, it
did not request the interrupt.

b) Note that we have assigned a
priority to the devices. This was
accomplished by the sequence of
flags examined. Device speed is
the criteria here, i. e., PTR is
faster than PTP who in turn is

faster than TTI and TTO.
b) INTA

1) Interrupt acknowledge.
2) A CPU Mnemonic equivalent to a DIB X,
CPU.

The IO instruction DIB to a device would
bring back a data word.

3)

4) A DIB 2, CPU brings back a device
code. This is the code of the highest
priority device asking for an inter-
rupt. The six bit device code is loaded
into Accumulator bits 10 - 15. The
Program looking at these bits identifies

the device.

8-2

5) INTA does exactly what the Polling
technique did, Identify the device mak-
ing the interrupt request. Note that it
is a more sophisticated method, elim-
inating quite a few instructions.

DATA CHANNEL
General

1) Devices tied to the Interrupt are devices that
normally transfer a character at a time.

2) Devices tied to the channel transfer an entire

block of data. A Disk for instance, transfers

an entire sector while a Magnetic Tape would

transfer an entire record.

3) Data Channels are said to have direct access to
memory and transfer data at a high rate of speed.

The Data Channel steals a Data Channel cycle
from the CPU. The running program is not
aware that a block transfer is occurring.
Basically when the device is ready to transfer
a word, it momentarily interrupts the Program
by stealing a Data Channel cycle and passes the
word from or to memory.

Data Channel Description

1) The CPU communicates with a device through
its controller (Interface).

2) The controller in turn communicates with up to
8 devices. (Units 0 - 7). These would be
identical devices, i. e., 8 DISKS per controller

or 8 Tape Transports per controller.

Figure 8-1 illustrates the path of communication
between the CPU and a cpntroller.

RQENB {(Request Enable) - a clock
pulse sent out periodically by the CPU,
it looks for channel requests.

DCHR - Data Channel Request. The
device controller wants the channel.

DCHA - Data Channel acknowledge.

a)

b)
c)

1) The controller has the channel,

2) The controller must specify a
memory location.

3) The controller must specify the
mode, i. e., direction of trans-
fer. Derived from 2 mode bits

DCHMO and DCHM1.

d) DCHO - Data Channel OQut. Derived by
the CPU from the mode bits, Basically
the CPU indicates to the controller that
the CPU has retrieved a word from the
specified memory address, that the
word is on the Data Bus and tells the
controller to get the word.

e¢) DCHI - Data Channel In. Derived by
the CPU from the mode bits. Basically
the CPU tells the confroller to put a
data word on the Data Bus and that
the CPU will zet the word and write it
into the specified memory address.
MODE BITS
ADDRESS (CORE)
RQENB UNIT
DCHR 0
DCHA
CPU DCHO controLLER| [UN'T
DCHI
OVFLO] ouNIT
2
MODE BITS "
DCHMO DCHMI .
o) o ouT
¢] | INCREMENT
| O IN | o4 UNIT
7
D600724

Figure 8-1 Data Channel Signal Transfer

8-3

Modes

1} OUT - From the CPU to the controller (Device).
To a DISK or Magnetic Tape this would be a
write command.

2) INC - Increment mode. This mode provides

for the monitoring of events, i. e., the clos-

ing of Relay contacts. It keeps a running count
in a specified memory location. OVFLO

(See Figure 8-1) Overflow can only occur in the

increment mode. If we continuously increment

a given location in memory overflow will event-

uvally occur. This is detected by the CPU and

the device controller notified.

IN - From the controller (Device) to the CPU.
To a DISK or Magnetic Tape this would be a
Read Command.

The number of words to be transferred is deter-
mined by the controller.

Devices tied to the channel are also tied to the
Program Interrupt. The Data Channel is utilized
to pass the data while the Interrupt notifies the
program that the entire transfer (Block) is com-
plete.

s

SECTION IX

CONSOLE

GENERAL

1) Contains switches and keys for controlling the
operation of the computer. There are keys
capable of starting, resetting and examining
the various facets of the system.

2} Indicator registers provide the operator with
a visual indication of the computer status.

3) The console provides for manual control of
the computer.

REGISTERS

Address
a) 15 bit register.

b) Displays the current memory address.

Data
a) Displays a data word where the Data
word is:
1)
2)
3) An instruction word.
4) An Address.

Contents of a memory location.

Contents of an Accumulator.

Operation Indicators

a) RUN - Indicates the state of the mach-
ine, when LIT a program is

running, when OFF the computer

is halted.

b) ION - The Program Interrupt System is

ON (Enabled).

c¢) CARRY - An overflow has occurred
during an Arithmetic com~
putation.

d) FETCH - The next major state of the
machine will be Fetch.

e) DEFER - The next major state of the
machine will be Defer.

f) EXECUTE - The next major state of
the machine will be Ex-
ecute.

Switches

Keys

SWITCHES AND KEYS

a) 16 Console Data Switches.

b} In certain key functions the contents
of the switches is an Address.

¢) In other key functions the contents of
the switches is a data word.

a) Accumulator.

1) Four Keys, one for each ac-
cumulator.

2) Examine - allow the operator
to examine the contents of ACO,
AC1, AC2 or AC3.

3) Deposit.

Allow the operator to deposit data into ACO, ACI,
AC2 or ACS.

The data to be deposited is in the 17 Console Data
Switches.

Accumulator Examine or Deposit Keys are in-
effective with the computer running.

9-1

b) Reset.

1) Will HALT the computer at the
end of the current instruction.

2) Reset in addition to causing the
computer to Halt, also clears
out all IO (Input-Output) flags.

¢) Stop - HALTS computer at end of cur-
rent instruction.

d) START.

1) Starts a Program at the loca-
tion specified by the contents of
the Console Data Switches.

2) One of two keys capable of load-
ing an initial address.

3) Start is ineffective with the
computer running.

e) Continue - continue a program from
the point at which it was Halted. The
Halt could have been initiated by a pro-
grammed Halt (CPU MNE HALT) or
Key Stop. In either case pressing Con-
tinue allows the program to continue.
Continue is ineffective with the computer
running.

£} Deposit

1) Allows the operator to deposit
data into any core location.

2) The data to be deposited is in
the Console Data Switches.

3) Deposit cannot load an address,
therefore, the following pro-
cedure must be adhered to.

Assume that data word 17775 is
to be deposited into location 500.

a) Put 500 into Console Data
Switches.

b) Press Examine {(Examine
loads the address 500 into
PC, MA),

¢) Put data word 17775 into
Console Data Switches,

d) Press Deposit - loads 17775
into memory location 500,

Deposit is ineffective with the computer running.
g) Deposit Next

1) Allows the operator to deposit
data into sequential core loca-
tions.

2) The data to be deposited is in
the Console Data Switches.

3) Deposit next cannot load an ad-
dress, therefore, the following
must be adhered to:

Assume that the indicated data
is to be deposited into the fol-
lowing sequential locations:

700 17050
701 23450
702 17550
703 07756

a) Put address 700 into Console Data
Switches.

b) Press Key Examine {Loads Address).
¢} Put 17050 into Console Data Switches.

d) Press Deposit - loads 17050 into
Location 700,

e) Put 23450 into Console Data Switches.

f) Press Key Deposit Next - this loads
23450 into Location 701.

Rev. 02

9-2

g) Put 17550 into Console Data Switches,

h) Press Key Deposit Next - this loads |
17550 into Location 702.

i} Put 7756 into Console Data Switches,

j) Press Key Deposit Next - loads 7756 |
into Location 703.

k) Loading procedure is completed.

Deposit Next is ineffective with the computer run-
ning.

h} Examine
1) Allows the operator to examine the contents of

any memory location.

2) The Address of the location to be examined is
placed in the Console Data Switches.

3) The contents of a location is displayed in the
Data Register.

4) Examine is ineffective with the computer run-
ning.
i) Examine Next
1) Allows the operator to examine sequential loca-
tions in memory.
2) Procedure.

Assume we wish to examine locations 500 - 502.
a) Place address 500 in Console Data
Switches.

b) Press Examine - Contents of 500 is
displayed in Data Register.

¢} Press Examine Next - Contents of 501
is displayed in Data Register.

d) Press Examine Next - Contents of 502
is displayed in Data Register.

Examine Next is ineffective with the computer
running.

i) Memory Step

1) Allows the operator to examine the execution
of an instruction cycle/cycle.

2) Sometimes called Single Cycle or Single Step.

3) The computer executed one cycle and halts for
each Key action.

4) Example

LDA 3, @ 200

14
wd

a) A three cycle instruction.

Fetch Defer Execute
b) Pressing Memory Step puts the mach-
ine through a Fetch Cycle and Halt.

The Defer indicator is on indicating
that the next cycle is Defer.

¢) Pressing Memory Step now puts the
machine through a Defer cycle and
Halt, The Execute indicator is on
indicating that the next cycle is Execute.

Much can be determined about the logic state of the
machine with this key.

Careful observation of Console Indicators while
utilizing Memory Step can be an aid in Hardware
Debugging.

Memory Step is ineffective with the computer run-
ning.

Instruction Step - basically the same as Memory
Step, however, the machine executes the entire
instruction prior to halting.

k)

1) Program Load - an option that reads the

Bootstrap Loader {discussed next section)
from Read only Memory (ROM) into core.
Eliminates the need for loading the Boot-
strap Loader via the Console Switches.

Power Lock and Key

1) Three positions.

a) OFF

b) ON - Power on and with a Program
running, only Keys Stop and Reset
are operative. I. E., the Program
can be stopped. The Console Data
Switches can also be read by the
program (CPU MNE READS).

¢) LOCK - Power ON and with a Pro-
gram running, all Keys are {rozen,
i, e., the program cannot be halted.
Console Data Switches can be Read
by the Program. In the Lock posi-
tion and Program not running, Keys
Start and Continue are operative to
Start the Program, however, once
started these Keys are ineffective.

Typical Mini-Computer Console

9-3

This page intentionally left blank

9-4

SECTION X

BASIC PROGRAMMING

GENERAL

1. Assembler Language

a) Programs are written in assembler
language.
b} The following illustrates

LDA 2, 300
LDA 3, 301
ADD 2, 3
STA 3, 302
2. Machine Language
a) Assembler language has absolutely no
meaning to the computer, it being ca-
pable of recognizing only ones and zeroes.

b) A program written in assembler language

to be of use to the computer must be trans-

lated into machine language of 1's and 0's.
3. ASSEMBLER - a program that translates from as-
sembler language tc machine language. The as-
sembler takes a Source Tape (Assembler Language)
and from this tape creates an Object Tape (Ma-
chine language).

LOADING PROGRAMS

Before a program can be executed it must be brought
into memory. This requires that a loading program
already reside in memory. If the memory is empty,
one can use the automatic loading switches on the
SUPERNOVA computer, NOVA 800 or NOVA 1200,
but with the NOVA computer or with a NOVA 800 or
1200 without the program load option, one must use
the data switches to deposit a bootstrap loader,
which is ordinarily used only to being in a more
extensive binary loader. This latter program is
then used to read the object tapes of all other

10-1

AND PROGRAMS

programs. The binary loader usually resides in
high core where it is not disturbed by any of the
standard software. But if an undebugged user
routine inadvertently destroys the binary loader,
it can be restored by first reloading the bootstrap
manually.

Below are two versions of the standard bootstrap
loader, one for the teletype reader, the other for
the high speed reader. This program loads data
relatively to its own position in memory. Although
the bootstrap can be placed anywhere, the usual
procedure is to place it in high core, beginning at
the seventeenth (twenty-first octal) location from the
top, so that the binary loader also resides in high
core. The program is shown here for placement

at the top of a 4K memory.

The bootstrap loader reads a tape in a special
format in which each word is divided into four

4 bit characters. Each character occupies chan-
nels 1-4 (the right half) of a line on the tape.

The first character of a word, containing bits 0-3,
is indicated by a 1 in channel five. The tape can
begin with any number of blank lines. The first
two words are STA 1, 1, 1 and JMP . -4, which
are stored in the final two loader locations as
indicated in the listing. The third, fifth, ... words
are STA instructions that address AC1, the fourth,
sixth,....words are data. The bootstrap executes
each odd-numbered word to store the succeeding
data word in the location specified by the STA in-
struction. The final odd-numbered word is a
HALT, which stops the processor.

In the following listings the first two columns at
the left give each memory location and its contents
for a 4K memory. The remaining columns are a
standard program listing. To load the program
simply use the switches to place the octal numbers
in the locations specified. For a memory of any
other size, load the bootstrap beginning at a
location whose address is 20g less than the largest
address.

:BOOTSTRAP LOADER, TELETYPE VERSION

07757 126440 GET: SUBO 1,1
07760 063610 SKPDN TTI
07761 000777 JMP -1
07762 080510 DIAS 0,TTI
07763 127100 ADDL 1,1
07764 127100 ADDL 1,1
07765 107003 ADD 0,1,8NC
07766 000772 JMP GET+1
07767 001400 JMP 0,3
07770 060110 BSTRP: NIOS TTI
07771 004766 JSR GET
67772 044402 STA 1,.+2
077173 004764 JSR GET

:BOOTSTRAP LOADER, HIGH SPEED READER VERSION

07757 126440 GET: SUBO 1,1
07760 063612 SKPDN PTR
07761 000777 JMP 71
07762 060512 DIAS 0,PTR
07763 127100 ADDL 1,1
07764 127100 ADDL 1,1
07765 107003 ADD 0,1,SNC
07766 000772 JMP GET+1
07767 001400 JMP 0,3
07770 060112 BSTRP: NIOS PTR
077171 0041766 JSR GET
07772 044402 STA 1,.+2
07773 004764 JSR GET

To use the bootstrap to load the binary loader or
any other program in the special format, follow
these steps:

1. Put the special format tape in the reader and
turn it on.

2. Press RESET.

3. For a 4K system set the data switches to
00770 (7 less than the largest address).

Press START.
The bootstrap loader begins at location 7770.

Binary Loader

A standard loader for loading program tapes in the

type of object tape format generated by the assembler

(refer to the assembler manual) is available in
several forms. Program tape number 091-000004
(writeup 093-000003) is the binary loader for use
with the manually loaded bootstrap given at the
beginning of this section: 091-000036 (writeup
093-000051) is the binary loader prefaced by the
sizing and loading program for use with the NOVA
800 and 1200 program load; 081-000001 (writeup
093-000003) is the binary loader prefaced by both
the equivalent SUPERNOVA computer bootstrap
and the sizing program. Following an automatic

;Clear ACL1, Carry

(Wait for Done
:Read into ACO and restart reader

;Shift AC1 left 4 places

;Add in new word
;Full word not assembled yet
;Got full word, exit

;Enter here, start reader

:Get a word

:Store it to execute it

;Get another word

;This will contain an STA (first STA 1,.+1)
:This will contain JMP .4

:Clear AC1, Carry

;Wait for Done
' Read into ACO and restart reader

;Shift AC1 left 4 places

;Add in new word
;Full word not assembled yet
:Got full word, exit

;Enter here, start reader

;Get a word

;Store it to execute it

;Get another word

;This will contain an STA (first STA 1,.+1)
;This will contain JMP . -4

load, the operator can read an object tape on the
same device simply by pressing CONTINUE. To
load an object tape in any other circumstances,
follow this procedure.

1. Put the object tape in the paper tape reader or
teletype.

2. Set the data switches to x77717.

If you are using the paper tape reader, turn
on data switch 0; otherwise turn it off.

4. Press START.

If a starting address is given on the object tape,
control will be transferred to that location when
loading is complete. Otherwise, the loader will
halt with the address lights displaying x7740, and
the user must start the program from the console.

The binary loader computes a checksum over every
data block and start block read. If a checksum
failure occurs over a block, the loader halts with
xT726 displayed in the address lights. Reposition
the tape fo the beginning of the last block read

and press CONTINUE. If the checksum failure
again occurs, the object tape is probably in error.

10-2

Generate a new tape before attempting to load the
program again.

Diagnostic Programs

The NOVA computer Diagnostics are individual
programs which together test all logical operations
of the Computer system. Individually the programs
test various logic areas of the Computer and IO.
The majority of the diagnostic routines are capable
of diagnosing malfunctions down to the logic level.
The diagnostics provide a means of measuring the
performance of the system on a repeatable basis.
Copies of the diagnostic tapes as well as individual
program documentation are part of the software
package delivered with the NOVA computer. In-
dividual program documentation provides informa-
tion as to operating procedures, error interpretation,
console switch settings and logical areas tested.
Certain diagnostics are normally part of the daily
and weekly preventive maintenance routines.

NOVA DIAGNOSTIC PROGRAMS

Program Description

Address Test Routine to test the memory ad-
dress section logic.

Checkerboard III ¥ Worst case memory noise test,
Program verifies proper opera-
tion and sense amps, inhibit
drivers, and memory currents.

Nova Logic Test - Gate by gate test of CPU Logic

(less 10).
Nova Instruction Routine to test CPU clock logic,
Timer prints instruction times of basic

Nova instruction set.

Exerciser Reliability test - tests CPU
logic, TTY reader, punch, high
speed paper tape reader, paper
tape punch and real time clock.
Halts on error.

Arithmetic Test Exercises the arithmetic and
logical instructions of the Nova
Computers.

Sample Diagnostic Loop

1. Deposit data word in AC2.

Deposit program in core.

Start - Program halts - Load address in con-
sole switches and continue.

LOC
0000
0001
0002
0003
0004

Note:

10-3

063077 DOC 0, CPU ;Halt Inst.
060477 DIA 1, CPU ;Reads Switches

044011 STA 1, 11 :Store Addr
052011 STA 2, @ 11 ;Data to Addr
000001 JMP .-3 :Loop

The address can be varied by changing the
contents of the Console switches. The
above routine will store the contents of AC2
(Data word} into the address in AC1. It is
useful in monitoring Read/Write currents
and the Inhibit current.

This page intentionally left blank

10-4

APPENDIX A

GLOSSARY OF TERMS AND DEFINITIONS

ACCESS TIME

Time required to obtain information from storage
(read-time) or to put information away in storage
{write-time).

ADDRESS

(1) An identification, as represented by a name,
label, or number, for a register, location in
storage, or any other data source or network.

(2) Loosely, any part of an instruction that speci-
fies the location of an operand for the instruc-
tion.

ALGOL
International Algebraic Language.
ALPHANUMERIC

Pertaining to a character set that contains both
letters and numerals, and usually other characters.

ANALOG COMPUTER

Device using voltages, forces, fluid volume or
other continuously variable physical quantities
to represent numbers in calculations.

ASCII

American Standard Cord for Information Inter-
change.

AUTOMATIC SEND-RECEIVE SET (ASR)

A combination of teletype writer (TTY) trans-
mitter and receiver from either the keyboard
or paper tape.

BATCH-PROCESSING

A technique by which items to be processed must
be coded and collected into groups prior to proces-
sing.

BINARY CODED DECIMAL

Pertaining to a decimal notation in which the in-
dividual decimal digits are each represented by

a group of binary digits, e.g., inthe 8-4-2-1
binary coded decimal notation, the number twenty-

three is represented as 0010 0011 whereas in binary

notation, twenty-three is represented as 10111.

BINARY COMPUTER

Device using on-off switches {electro-mechanical
relays, vacuum tube or transistor circuits, mag-
netic rings, ete.) to represent numbers (in binary
number system) for calculations.

BINARY NUMBER

A number, usually consisting of more than one
figure, representing a sum, in which the in-
dividual quantity represented by each figure is
based on a radix of two. The figures used are
0 and 1.

BIT

A unit of information content. Contraction of
"binary digit" a bit is the smallest unit of informa-
tion in a binary system of notation. It is the
choice between two possible states, usually desig-
nated one and zero.

BLOCK DIAGRAM

A diagram of a system, computer in which selected
portions are represented by annotated boxed and
interconnecting lines.

BREAK

Hardware - controlled action which occurs between
instructions or between cycles of an instruction
that does not affect the normal sequence of instruc-
tion execution.

BUFFER

A storage device used to compensate for a dif-
ference in rate of flow of data or time of occur-
rence of events, when transmitting data from one

device to another. Either a hardware or software
storage area for date.

BYTE

A group of bits (usually six to eight) forming a
character.

CATHODE RAY TUBE (CRT)

A display device similar to a T. V.

CHANNEL

A path for electrical transmission between two or

more points. Also called a circuit, facility, line
link or path.

APPENDIX A (Continued)

GLOSSARY OF TERMS AND DEFINITIONS

CHARACTER

A digit, letter or other symbol, usually requiring
six to eight bits of storage.

COBOL (COMMON BUSINESS ORIENTED LANGUAGE)

A business data processing language.
COMMAND

Loosely, an instruction in machine language.
COMPILE

To prepare a machine language program from a
computer program written in high level program-
ming language.

COMPILER

A program that compiles.

COMPUTER, STORED PROGRAM

A digital computer that, under control of its own
instructions, can synthesize, alter and store in-

structions as though they were data and can sub-
sequently execute these new instructions.

COMPUTER WORD

A sequence of bits treated as a unit and capable of
being stored in one computer location.

DATA

Information recorded systematically.

DATA SET

A unit of data storage and retrieval in an operating
system, consisting of a collection of data in some
prescribed arrangement and described by control
information (label) that the system has access to.

DEBUG

To isolate and remove the mistakes from a routine
or malfunction from a computer.

DOWN-TIME

Time when a computer is not available for opera-
tion, usually because of a failure in the equipment.

DUPLEX

In communications, pertaining to a simultanecus
two-way and independent transmission in both
directions {cometimes referred to as "'full duplex’).
Contrast with half-duplex.

FIELD

A specified area used for a particular category of
data, e.g., a group of card column used to rep-
resent a wage rate or a set of bit locations in a

computer word used to express the address of the
operand.

FORTRAN {FORmula TRANslating system)

One of several specific procedure oriented lan-
guages.

HALF-DUPLEX

Pertaining to an alternate one-way-at-a-time,
independent transmission (sometimes referred
to as single). Contrast with duplex.

HARDWARE

The physical equipment or devices forming a
computer and peripheral equipment.

HIGH ORDER POSITION

The left most position in a number of word.
HOLLERITH CARD

A punched card.

INDEXING

Process of establishing memory addresses by
adding the value in an address field of an instruc-
tion to a value stored in a specified index register.
INTERRUPT

Caused by an action external to the running pro-
gram which changes the contents of the program

counter, thereby changing the sequence of instruc-
tion execution.

JOB
An externally specified unit of work (translation

or execution of a program) for the computing sys-
tem from the standpoint of operating system control.

APPENDIX A (Continued)

GLOSSARY OF TERMS AND DEFINITIONS

 JOB QUEUE

A line-up of jobs to be processed under operating
system control.

JUSTIFIED

To adjust exactly as to spacing, to align a set of
characters to RIGHT or LEFT margins.

LOAD
To put data into a register or storage or to put

a magnetic tape drive or to put cards into a card
reader or punch.

LOW-ORDER POSITION
The right most position in a number or word.

LOOPING

A sequence of instructions that are repeated until
a terminal condition prevails.

MACHINE LANGUAGE

A language designed for interpretation and use
by a machine without translation.

MACRO INSTRUCTION

An instruction that is replaced in a routine by a
predetermined sequence of machine instructions.

MAGNETIC CORE STORAGE
A storage device in which binary data is represented

by the direction of magnetization in each unit of an
array of magnetic material.

MAGNETIC DISC
A flat circular plate with a magnetic surface on

which data can be stored by selective magnetiza-
tion of portions of the flat surface.

MAGNETIC DRUM
A right circular cylinder with a magnetic surface

on which data can be stored by selective magneti-
zation of portions of the curved surface.

MAGNETIC TAPE

A tape with a magnetic surface on which data can
be stored by selective polarization of portions of
the surface.

MAIN FRAME

The central processor of the computer system.
This is synonymous with {CPU) and ceniral pro-
cessing unit. All that portion of a computer ex-
clusive of the input, output, peripheral and in
some instances, storage units.

MASKING

Process of setting or inhibiting internal program
controls to allow or prevent transfers which may
occur upon actions by the CPU.

MEDIUM

The material, or configuration thereof, on which
data is recorded, e.g., paper tape, cards,
magnetic tape.

MICROSECOND

. 000001 second; used to describe computer oper-
ation speed. One millonth of a second, 10-6.

MNEMONIC CODE

A code used in assembly languages to call to mind
some operation. For example,SUB might stand
for subtract or CRA might mean clear the accumu-
lator.

MODULE

The input to, or output from, a single execution of
an assembler, a compiler, or a loader; hence, a
program unit that is discrete and identifiable with
respect to compiling, combining with other units
{(linking), and loading.

MULTIPLEXING

The division of a transmission facility into two or
more channels.

MULTIPROCESSING

Technique for interleaving unrelated routines and
programs so that they run almost concurrently on
one central processor.

APPENDIX A {Continued)

GLOSSARY OF TERMS AND DEFINITIONS

NANOSECOND
A billionth of a second, 10-9 seconds.
NOISE

Loosely, any disturbance tending to interfere with
the normal operation of a device or system.

OBJECT PROGRAM

The program which is the output of an automatic
coding system. Often the object program is a
machine language program ready for execution, but
it may well be in an intermediate language.

OCTAL NUMBER

A number of one or more figures, representing

a sum in which the quantity represented by each

Figure is based on a radix of eight. The figures
used are 0, 1, 2, 3, 4, 5, 6, and 7.

ON-LINE

Connected directly to the central computer (e.g.,
an electric typewriter in direct communication
with computer processor).

OPERAND

That which is operated upon. An operand is usually
identified by an address part of an instruction.

OPERATING SYSTEM

An integrated collection of service routines for
supervising the sequencing of programs by a com-
puter. Operating systems may perform debugging,
input-output, accounting, compilation, and storage
assignment tasks. Synonymous with monitor sys-
tem and executive system.

OPERATION CODE

A code that represents specific operations.
OVERLAPPING

The act of reading information into or writing it
from a portion of memory while computing opera-

tions continue in other portions; input/output pro-
cessor and central processor share memory.

OVERLAY

A load module which is to be placed in main storage
locations occupied by another module; several
modules may occupy the same storage area at dif-
ferent times.

PERIPHERAL EQUIPMENT

The auxiliary machines which may be placed under
the control of the central computer. Examples of
this are card readers, card punches, magnetic tape
feeds and high-speed printers.

POLLING

A centrally controlled method of calling a number
of points to permit them to transmit information.

PROGRAM

A plan for solving a problem. A group of logical
instructions to a computer to solve a problem.

PSEUDO INSTRUCTION

A group of characters having the same general
form as a computer instruction, but never ex-
ecuted by the computer as an actual instruction
but a command to an assembler.

REAL-TIME PROCESSING

The processing of information or data in a suf-

ficiently rapid manner so that the results of the

processing are available in time to influence the
process being monitored.

RESPONSE TIME
The amount of time elapsed between generation of

an inquiry at a data communications terminal and
receipt of a response at that same terminal.

ROUTINE

A subdivision of a program consisting of two or
more instructions that are functionally related.

SOFTWARE
The totality of programs and routines used to ex-

tend the capabilities of computers, such as com-
pilers, assemblers, routines, and subroutines.

APPENDIX A (Continued)

GLOSSARY OF TERMS AND DEFINITIONS

SOURCE PROGRAM

A program written in a language designed for ease
of expression of a class of problems or procedures,
by humans. A generalor assembler or compiler
routine is used to perform the mechanics of trans-
lating the source program into an obiect program in
machine language.

SUBROUTINE
A portion of a routine that causes a computer to

carry out a well-defined mathematical or logical
operation.

TABLE

A collection of data, each item being uniquely
identified either by some label or by its relative
position.

TIMESHARE

To use a device for two or more interleaved pur-
poses.

This page intentionally left blank

APPENDIX B

ABBREVIATIONS

Listed below are the most commonly used ab-
breviations of registers, key operations, com-
ponents, instruction and signal names.

ACD

ACDP

ACEX

ACO

ACl

AC2

AC3

ACS

ACTGO, ACTG1

ALC

ALU

AND

AR

AUT INC + DEC

CARRY

CLK

CLR

CON DATA
CON INST
CON RQ
CONT
CPU

CPU CLK

CPU INST

CRY

D
DATIA
DATIB
DATIC
DATOA
DATOB

Destination Accumulator
Accumulator Deposit
Accumulator Examine
Accumulator 0
Accumulator 1
Accumulator 2
Accumulator 3

Source Accumulator

Accumulator Timing
Generator Qutputs 0 & 1

Arithmetic Logic Class
(instruction)

Arithmetic Logic Unit
AND (logic instruction)
Arithmetic Register

Autoincrement or Auto-
decrement

Carry (arithmetic
function)

Clock

Clear

Console Data

Console Instruction
Console Request

Continue Switch at Console
Central Processor Unit

Central Processor Unit
Clock

Central Processor Unit
Instruction

Carry

Defer

Data In A (I/O instruction)
Data In B (I/O instruction)
Data In C (I/O instruction)
Data Out A (I/O instruction)
Data Our B (I/O instruction)

DATOC
DATAOQ thru DATA1S

DCH

DCHA

DCHI

DCH INC
DCHM (0 or 1)

DCHO
DCHP IN
DCHP OUT
DCHR
DEFER

DIV

D MULT
DP

DPN

D SET
DSZ

DS0-DS5

E

EFA

EXEC

EX

EXN

F

FAST DCH

FETCH

HALT
INC PC

Data Out C {I1/0 instruction}

1/O Data bus signals,
16 bits wide

Data Channels

Data Channel Acknowledge
Data Channel In

Data Channels Increment

Data Channel Mode (0 or 1)
Code type of Data Channel
Cycle requested by Device

Data Channel Out

Data Channel Priority In
Data Channel Priority Out
Data Channel Request

Defer (instruction execu-
tion state)

Divide (instruction)
Destination Multiplexer
Deposit (Console function)

Deposit Next (Console
function)

Defer Set

Decrement and Skip if
Zero (instruction)

Device Select lines 0 thru 5
Execute

Effective Address

Execute

Examine (Console function)
Examine Next

Fetch

Fast (High Speed) Data
Channels

Fetch (State Accessing
next instruction from
Memory)

Halt (Machine State)

Increment Program
Counter

INH GATE A
INH GATE B
INHO thru INHI15

INHIBIT

INH TRANS
INTA
INTP IN

INTP OUT
INTR

INT RQ
IO OR1/O
ION
IORST

10 SKIP

I0 STUTTER

IO UNPROTECTED
IR0 thru IR15

ISTP

ISZ

JMP
JSR

KEY

KEYM
LDA

LOAD AC
LOAD ACB

LOAD AR
LOAD CRY
LOAD IR

APPENDIX B (Continued)

ABBREVIATIONS

Inhibit Gate A (Memory)
Inhibit Gate B (Memory)

Inhibit (Memory Buifer)
Register outputs 0 thru 15

Inhibit {(Memory Writing
function)

Inhibit Transmission
Interrupt Acknowledge

Interrupt Priority In {to
Device)

Interrupt Priority Out
(from Device)

Interrupt (Bus Signal
from Device)

Interrupt Request
Input/Qutput
Interrupt On
Input/Output Reset

Input/Output Skip (instruc-
tion)

Cycle extend for IO opera-
tion

Indicates IR contains 10
instruction

Instruction Register out-
puts O thru 15

Instruction Step (Console
switch)

Increment and Skip if
Zero (instruction)

Jump {instruction)

Jump to Subroutine (in-
struction)

Operational Cycle manually
implemented at the Console

Key Memory {(access cycle)

Load Accumulator (instruc-
tion)

Load Accumulator

Load Accumulator Buffer
(Shifter)

Load Arithmetic Register
Load Carry

Load Instruction Register

LOAD MBO

LOAD PC
MA LOAD
MA1 thru MA15

MB

MB CLEAR

MB LOAD

MBC8 thru MBC15

MBOO thru MBO15
MD1 thru MD15

MEM CLK
MEM OK

MEM OUT
MEMO thru MEM15

MQO thru MQ15

MSKO
MSTP

MTGO thru MTG3
MULTO thru MULT3
NON ACD INST

OVFLO

PC
PC CLK
PC TO MEM

PEND
PI

PI SET
PL

Load Memory Bus Qutputs
(CPU Interface Register)

Load Program Counter
Memory Address Load

Memory Address Register
Qutputs 1 thru 15

Memory Buffer
Memory Buffer Clear
Memory Buffer Load

Memory Buffer Computer
Qutputs 8 thru 15

Memory Buffer (bus)
Outputs 0 thru 15

Memory {(address) Data
(input lines) 1 thru 15

Memory Clock

Memory OK (Power Sup-
ply Monitor signal)

Memory (bus) Out

Memory Bus lines 0 thru
15

Multiplier Quotient Regis-
ter Qutputs 0 thru 15

Mask Out (instruction)

Memory Step {Console
switch)

Memory Timing Genera-
tor (signals) 0 thru 3

Multiplexer Output
(signals) 0 thru 3

Non Destination Accumu-
lator Instruction

Signal to Device that mem-
ory location being in-
cremented via Data Chan-
nels has Overflowed

Program Counter
Program Counter Clock

Program Counter to Mem-
ory

Pending, e.g., INT PEND
Program Interrupt
Program Interrupt Set

Program Load

PLUS ONE
PRESET

PTGO thru PTG3

PTGO thru PTGH

PWR LOW

PWR FAIL
READ CY
READ 1

READ 2

READ 1B

READ 2B

RESTART

RESTART ENABLE

RINHO thru RINHI15

ROM ENABLE

RQENB
RST
RUN

SARD

S BUFFER
SELB
SELD
SELECT

SET ION
SHIFT ACB
SHL

SHR

SLO thru SL15

APPENDIX B (Continued)

ABBREVIATIONS

Plus One (to the Adder)

Preset (Computer initializ-
ing signal)

Processor Timing (pulses)
0 thru 3

Processor Timing Genera-
tor (signals) 0 thru 5

Power Low (Power Moni-
tor output signal)

Power Fail
(Memory) Read Cycle

Read 1 (Memory Timing
signal, CPU-1)

Read 2 (Memory Timing
signal, CPU-1)

Read 1B (Memory Timing
signal, Memory)

Read 2B (Memory Timing
signal, Memory)

RESTART (power Monitor
ocutput signal)

Signal that permits RST
and STOP Console Key
functions

{Collector) Resistor, In-
hibit Driver

PL Read Only Memory
Enable

Request Enable
Restart {Console switch)

Primary operational re-
quirement for program
execution

Select Address

Source Buffer

Selected Busy {Bus‘ signal)
Selected Done (Bus signal)

Decoded (Memory) Select
signal

Set Interrupt On

Shift Accumulator Buffer
Shift Left

Shift Right

Sense Lines (Memory Stack
0 thru 15

B-3

S MULT

SNSO thru SNS15

STA

STOP
STOP INH

STRB A
STRB B
STRB C
STRB D
STROBE
STOP RQ
STRT
SWP

TS0

TS0 thru TS3
TS3

TTI

TTO

WRITE

WRITE AC

WRITE MEM

XOR
XRS

KWS

YRS

YWS

32 VNR

+ 810 thru +SL15

+ VINH

Source Multiplexer

Sense Amplifier Outputs
0 thru 15

Store Accumulator
{instruction)

{Processor) Stop

{(Processor) STOP IN -
HIBIT

Strobe A (Memory Stack)
Strobe B (Memory Stack)
Strobe C (Memory Stack)
Strobe D (Memory Stack)
Strobe {(gignal, CPU-1)
{Processor) Stop Request
Start (Console switch)
Swap (bytes)

Time State 0

Time State 0 thru 3
Time State 3

Teletype In (Teletype
Keyboard/Reader Buffer)

Teletype Out (Teletype
Teleprinter/Punch (Buffer)

Control function, Memory
Cycle Timing, CPU-1

Write Accumulator
(logically associated with
AC Write signal)

Write Memory (enable
X and Y Memory drivers)

Exclusive OR (Boolean)

X (plane) Read Source
(Memory Stack)

X (plane) Write Source
(Memory Stack)

Y {plane) Read Source
{Memory Stack)

Y {plane) Write Source
(Memory Stack)

+32 Volts, Not Regulated

Memory Stack Bipolar
sense inputs to Sense
Amplifiers

+ (Memory) Inhibit Voitage

*Viamp

+VMEM
+5 OK

APPENDIX B (Continued)

ABBREVIATIONS

+Lamp Voltage {(Console
indicators)

+Voltage Memory

+5Volt (power) Operating
properly

APPENDIX C

REFERENCES
Digital Computer Systems Principles 4. Standard Dictionary of Computers and
Second Edition ~ 1973 Information Processing
Herbert Hellerman State University of N. Y. Martin H. Welk, Chief, Data Management Div.
at Binghamton - McGraw-Hill U. 8. Army Research Office

Mayden Book Company, Inc.
Digital Computer Fundamentals

Third Edition - 1972 5. Pulse, digital and Switching Waveforms
Thomas . Bartee, Harvard University Millman & Taub

MeGraw-Hill MeGraw-Hill

Digital Systems Fundamentals 6. How fo Use the NOVA Computers

1972 Data General Corporation

John Motil, California State University Southboro, Mass.

Northridge

This page intentionally left blank

H
3
1
:
E READERS COMMENT FORM
;
L
H
L
3
3
i
i
i DOCUMENT TITLE: s
1
1
i Your comments, accompanied by answers to the Did you find the material:
3 following questions, help us improve the quality e Useful YES () NO ()
' ~ . . ~ i 3
H and usefulness of our publications. If your answer « Complete.... ... YES () NO ()
1 . B N . e .
H to a question is “mo’ or requires qualification, e Accurate ... YES () NO ()
i . { {
3 please explain. o Well organized . YES () NO (3
; d hi blication? o Well written . YES {) NO ()
id you use this publication!
§ How did yo P o Well llustrated YES () NO ()
: ()} As an introduction to the subject o Well indexed... ... YES () NO ()
E {) As an ad for advanced knowledge. o Easy toread. YES {} NO ()
S {y For information about operating procedures. e Easy to understand... YES {) NO ()
i () To instruct in a class.
E {) As a student in a class We would appreciate any other comments; please
% {} As a reference manual label each comment as an addition, deletion, change,
w s () Other. ... e or error and reference page numbers where applicable
Z
T
ol COMMENTS
1
L
o PAGE| COL |PARA| LINE FROM 10
O i
o
O
Z 1
(GR
i
<!
=
2!
O
i
i
1]
i
1
]
1
¥
]
3
¥
1]
¥
1
1
1
1
1
. 1
5 1
! i)
1
i
)
¥
]
1
1
i
1
1
H
¥
)
;
' From
) -
i NAME ..o TITLE oo Data General Corporation
3 FIRM o DIV. oo ENGINEERING PUBLICATIONS
i ADDRESSccooovevcooereecee oo COMMENT FORM
i CITY o STATE...ccooo....... ZIP ... DG-00935
E TELEPHONE _......cccccoccrrrnrrrcs YN (O
i
1
1
1
1
)
1
1

FOLD DOWN FIRST FOLD DOWN

o o 0 0 8N e S T """ o 52 7" " o o '~ - o " - = " 7 " " = -

FIRST CLASS
PERMIT NO 28

SOUTHBORO
MASS 01772

BUSINESS REPLY MAIL s]
Postage will be paid by: o]
]
DataGeneral [
Southboro, Massachusetts 01772

u ssachusetts I

ATTENTION: Engineering Publications

FOLD UP SECOND FOLD UP

	Cover
	Contents
	i
	ii
	iii
	iv
	v
	vi
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	2-1
	2-2
	2-3
	2-4
	2-5
	Untitled
	2-6
	2-7
	2-8
	2-9
	2-10
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	8-1
	8-2
	8-3
	9-1
	9-2
	9-3
	9-4
	10-1
	10-2
	10-3
	10-4
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	B-1
	B-2
	B-3
	B-4
	C-1
	C-2

