Programmer’s
Reference
Manual

\ NOVA LINE
COMPUTERS

015-000023-00

Ordering No. 015-000023

©Data General Corporation 1974

All Rights Reserved.

Printed in the United States of America
Rev. 00, December 1974

NOTICE

Data General Corporation (DGC) has prepared this manual
for use by DGC personnel, Licensee's, and customers.
The information contained herein is the property of DGC
and shall not be reproduced in whole or in part without
DGC's prior written approval.

Users are cautioned that DGC reserves the right to make
changes without notice in the specifications and materials
contained herein and shall not be responsible for any
damages (including consequential) caused by reliance on
the materials presented, including, but not limited to
typographical, arithmetic, or listing errors.

NOVA, SUPERNOVA and NOVADISC are registered trade-~
marks of Data General Corporation, Southboro, Mass.

ECLIPSE is a trademark of Data General Corporation,
Southboro, Mass.

i

TABLE OF CONTENTS

SECTION 1
THE NOVA LINE COMPUTERS

IN T RO DU C T ION L ot it e e e e e e e e e et e e e e e e
Efficient Basic Instruction Set. i e e e
MU LY DAVIAC .« o vttt et ettt e e e e e e e
Floating Point ... e e e e e
Memory Allocation and Memory Managementt nnennnennena...
AT =D 24T o
Power Fail/Auto ReStartttt et e e e e e e e e e
Real-Time CloCK . .t e e e it e e e e e
INPUt/OUEPUL BUS . ettt ittt e et e e e e e

Device Addressability e
Interrupt Capabilily e
Data Channel e e e e e
Ease of Interfacingt e e
INPUL/OULPUL DEVICES « + v vttt vt e ettt et et e e e e e e e e e e e e e e e
L0 A= o -
=T T = -
Operating SyStems e e
(O 03 ¢ Tc3 St 13 (o) o

SECTION 2
INTERNAL STRUCTURE
INTRODUCTION . . oottt ettt et e et e e e e e e e e e e e

INFORMATION FORM AT S . 1ttt e e e e e e e e e e e e e
Bit Numbering

Octal Representation
Character CodeS ...ttt e et et e et e e
Information Representationttt e e

I g TS ottt e e P

Logical Quantities i e
Decimal NUmbers i e e

TABLE OF CONTENTS (Continued)

SECTION 3
INSTRUCTION SETS

ONE ACCUMULATOR-EFFECTIVE ADDRESS ... icvtrrooeronnsnsssnsaonnesscnsssssoes
TWO ACCUMULATOR-MULTIPLE OPERATION ... iiineiunrnanensonnnonsonnccssnanns
INPUT/OUTPUT ...vvnnnnne. S asaesssasascesessassenaecasacconasasaunansa crsercann

CODING AIDS

ADD .

LOGICAL OPERATIONS ...t .ieriooncsoncnnnsns deeanees crecsseseccscoaseseteeasnannnaaenna
COMPLEMENT ceaesans crsesanes crecesececsasercsans caeseacaasansasas .
.

AND .

ii

LI

i

QO L0 o L O LW O Ll W
i
Oy O U WL WU U W LR

[
i i 1
1 T -]

1

i

i

1

CO L LY L
i
COCoO W o

a

TABLE OF CONTENTS (Continued)

SECTION 4
INPUT/OQUTPUT

INTRODUCGTION . e e et e et et et et e e et et et e e e e et e et te e ae e ananaee s
OPERATION OF I/O DEVICES &ttt ottt ttttenteeataaaeeet et et iiieaaaanaaaeneeseenns
PRIORITY INTERRUPTS . . ottt v ittt ettt e e et a e e e et ettt aaaaanaeaneaeens
DATA CHANNEL o v e et e e e et e e e et ettt e e e e e et et ettt e a e eanaaas
CODING AIDS oot ettt ettt e e et et e et et e ettt e e e e e i

L/O INST RUCTIONS & oo ettt e ettt e e e e e e ettt e et e e a it e eneaananns

DA T A IN A it et et ae s sasaaaeeasaassessesonsnsassasasessanssanannos

DATA OUT A o v vooee et e et e e e e e e e e et ettt ettt ettt et eenas
DATA OUT B oo e vee e e e et e e et et e et e et e ettt ettt e et enae e,
DATA OUT C o v ooeee e e e e e e e e e e e e e e e e e e et et e eenes
L/O SKIP « ettt e e e e e ettt e e s
NO I/O TRANSFER v tttetteeeteee et e te e ettt e aiee e et iae e e ana e

CENTRAL PROCESSOR FUNCTIONS . ¢ ittt ittt itttnaeatasssateesnessanatosannsassesans

INTERRUPT ENABLE ot ettt ettt ettt et et et et ettt et ta e et ea et iaenan
INTERRUPT DISABLE . ot ottt e ettt e e et e et e e e e et e e e et ettt e e ie i en e
READ SWITCHES .« o vt ettt e e et e e e e e e et e et et ettt ettt
INTERRUPT ACKNOWLEDGE .« « c ettt et ee et te it et ettt e eae e
MASK OUT v v e
L/O RESET & v v ettt ettt et e e et et e e e e
HALT .« o et et e e e e e e e e e e e e
CPU SKIP oo e et et e e e e e e e e e e e e e

SECTION 5
PROCESSOR OPTIONS

INT RODUCTION ottt it ittt ittt e anat s e oot aseee s e sassaananssns

B L 0 = N 1 P

SKIPIF POWER FAIL FLAG IS ONE . . it it i ittt assnnannnnoss
SKIPIF POWER FAIL FLAGIS ZEROt it it ini e casnaaaasaes

Y LR S 2 U 0) 1 V2 5 U

NOV A MUL TP L Y/ DIV E o ottt ettt et ettt ettt et e e tiaenseaannnnensos
NON-NOVA MUL TP LY DIVIDE ottt ettt et ettt e ettt et et ae e e es
UL TIP LY o o et e e e e s e e e e e e
DIVIDE ot et e e e e e e e e e e e e e e

iii

TABLE OF CONTENTS (Continued)

SECTION 5 [Continued)
PROCESSOR OPTIONS

REAL-TIME CLOCK

aaaaaaaa

SELECT RTC FREQUENCY

MEMORY MANAGEMENT AND PROTECTION UNIT

Background to Address Translationceesocscoscosssens

MMPU INSTRUCTION SET ...

=========

.........................

LOAD MAP. s eescscsaceccsacessaresec e seescsasaascenncs cessncsrsesvosans
AOADDEVICEPROTECTION Cerosasassesoans cesecascsasssanas sesesssasase ses
LOAD PROTECTION CON"’I‘ROL seesscccssvescrcesacssnos coeaasonsenens vessaa
ENABLE USER MAP teceesessensacios seesnonos ceesaansacs crrecasenssanas
INITIATE PAGE CHECK ...
READ STATUS...... . ceesssecscssessserstacosestecustonsacoranea
READ INSTRUCTION ADDT{ESS Ceasesesecseracosaseans ceeusceceans
READ INVALID ADDRESS ... ccocecesssoconsonsconsaansns Gheevocessnsraoanaces
ENABLE SINGLE CYCLEcoceoocooaussssscsoccsocascosoconancaossssononsssos
SUPERVISOR CALL (.oviecnencnccsnocanosnscnnccncssosassansans Ciieessaseasecaass

SUPERVISOR PROGRAMMING .. couceesocscesscanasoasossssssscsssnscssassasosansss
Setting Up For Translalionceeeerorueernnaccaruosssaosesannsssooncnsconnnsssans
MMPU Protection ProCesSsSing . ..ceesesasceaasosccasscessosnrssassasscosssasscosnssa

I1/O ProteCtiOn . o.ucceosoocssocsnessnosasonescososassssosanasnsanasnssocuoss
Validity Protectioncceivievnvenoconnas cetcsssesascesascasasesees
Runaway Defer Protectionveeeneennerenoacsoacussss coecssescrnences
Wrile Protection ...cceescssceosoccscssonssocsacsoscsansss seeacosesescoco e
Device Interrupt Processingcoevossscosssasss sessasaoesosoan e fescescasanssans .

ADDRESSING TRANSLATIONvicvsooonococooroncasosesococesannsas crecevsneran
Map Feature Instruction Set venuiinnioreriecnvoocnsnansccocassnns seceecenos
ASSIGN LOWER LOGICAL MEMORY MAP chcescccsasanses cesecscesane
ASBIGN UPPER LOGICAL MEMORY MAP cenessesasens sceecasesse
WRITE PROTECT vvncvscensecse erenvssencssecenssaranse cenecacaaaas eseraanenn
READ STATUS .. .ccceess G eecescscesasecescccoanecsnaasenos cheecusorcasecaarenaan
SELECT MODE ..ccoccovccnssscsasssonsans fescesieesecansanaas s sessacsesssacs
ENTER USERMODE cecesscsecacenensaans dhsaceessanan Gessrenssnesnesans
MAP AN ADDRESS . ..vccvcncvcscesons secvenonns cecesssececssessscasesenosaansescas
READ MAPPED ADDRESS ..icocvsncsassscnna NN
SELECT PAGE WRITTEN CLXECK seevencancasnons ceseeaase sasees
READ PAGE WRITTEN FLAGS ... coivnvncarnnsnsosscs cesseasaas
CLEAR PAGE WRITTEN FLAGSovuvaee GReseccocessosataseccensonerasoseesioas
SKIP IF ANY VIOLATIONcovroocess ceeeaes ceeeenes
SKIP IF NO VIOLATION.
SKIPIF I/O VIOLATION s v rseosnsoconsssasaassscscsercascocacssssssnsasasases
SKIPIF NOI/O VIOLATION .. .cceiavevcncnaoncanns Ceeeesesiscscaencabaeceseaanons
SKIP IF VALIDITY VIOLATIONcccocuososonssscaoncscacoosanscconansonssosoens
SKIPIF NO VALIDITY VIOLATIONvvissenconsses
SKIP IF PROTECTION VIOLATION0eoees
SKIPIF NO PROTECTION VIOLATION L ... eiincvoanensoocososnuscoanscsssnsascn

(SR L N Ry B R RS IR 2 I I S
I
WD U GO OO0 00 Q0 =T -3 O O R

1

[|

i
ko ok ok fond ok ok ok
[S S wn B o B e B

1

L |

COLIES L R L B) L R PR) B 3
i

1

LR TS S S ST DN TR N | LI T R A D A T T
IO G T R U T O G e e e e i ol QO 02 GO G0 DO DD

CFTOGTY LY QY UST LT W AT LY O LT N O W W W LR AT L oo en
i
D T e e S ey

o

S

TABLE OF CONTENTS (Continued)

SECTION 5 (Continued)
PROCESSOR OPTIONS

FLOATING POINT ARITHMETICot iieoinioaananss .

Floating Point Unit Registers.....c..cvveaes

-
INSTRUCTION SET ..vvevverosnes e s sasassesssssarasaseracasassaarsessan ceeeeen sesenes
LOAD SINGLE eeees feiesasasesasseasaeasaos teececasasaseansa cenaesns

LOAD DOUBLE creeens .
STORE SINGLE00n.nn

STORE DOUBLE ...ccvvvucasoccansnoasscssaoansos D v

ADD SINGLEcccvens ces
ADD DOUBLEc... .o

.............

SUBTRACT SINGLE cesacccasressseren fseeas

SUBTRACT DOUBLE

MULTIPLY SINGLE eesessaseceseecesanaasens teeecersrocrsessacinon esasenes

MULTIPLY DOUBLE
DIVIDE SINGLE seraseos
DIVIDE DOUBLE
Temporary Buffer Instructions
MOVE FPAC TO TEMP.
MOVE TEMP TO FPAC....

ADD TEMP TO FPAC (SINGLE)..

ADD TEMP TO FPAC (DOUBLE)....cvacene

SUBTRACT TEMP FROM FPAC (SINGLE)

SUBTRACT TEMP FROM FPAC (DOUBLE) .
MULTIPLY FPAC BY TEMP (SINGLE)
MULTIPLY FPAC BY TEMP (DOUBLE)
DIVIDE FPAC BY TEMP (SINGLE) - - vse0tven

DIVIDE FPAC BY TEMP (DOUBLE)

eeeeeee

Shift and Logical Instructions....ocevceocococs Ce e sesessecasesassessasesessesissenns
ABSOLUTE VALUE........ e censcscasaessseausessens f s siaecneseessasasenssesas

CLEAR FPAC00ne

LOAD EXPONENTcvveeccccnsscssocssasass .

NEGATE [

NORMALIZEc000. caens
READ HIGH WORD ces
SCALE ...ceeiensoncsannsns NN

Status Instructions
READ STATUS . ..viencoceasn
WRITE STATUS .. cocuvnennns
Diagnostic Instructions
READ WORD 1....cnuvcanons
READWORD 2......c.0000..
READ WORD 3 .. .uveuvonscss
READWORD 4. ...0civevnnss
FPUCLOCK .ievvvvronnnsons

oooooooooooo

Mode Settings For The Fioatmg Point {jmt -

Normal Mode
Parallel Mode

oooooooooooo

Interrupt Enable and Dlsable

FLOATING POINT UNIT MNEMONICS

eeeeeee

aaaaaaa

sssssss

5-27

INTRODUCTION

DATA SWITCHES

TABLE OF CONTENTS (Continued)

SECTION 6
FRONT PANEL

..

..

CONSOLE SWITCHES .. oottt ettt et e et e e et e e e et e e e e e,
Accumulator Deposit--EXamineottt
Resel--8l0po i i i e e et e e

Memory Step--Inst Step
Program Load. o
Channel Start

Power ...

APPENDIX A

..

APPENDICES

I/O DEVICE CODES AND DATA GENERAL MNEMONICS ..t vvses e

APPENDIX B

OCTAL AND HEXADECIMAL CONVERSION - - & ettt ittt e et et et e e e e e e e e et e e

APPENDIX C

ASCII CHARACTER CODES . o\ttt ittt ettt e ettt e e e e e e e e e

APPENDIX D

DOUBLE PRECISION ARITHMETIC ...ttt et ettt e e e e e e e e e e

APPENDIX E

INSTRUCTION USE EXAMPLES ...\ttt ettt e e e e e e e e e e e e e e

APPENDIX F

INSTRUCTION EXECUTION TIMES ...\ttt ettt e e

vi

i
RN oS I o I)

1
G2 O Lo Lo bo b

R

SECTION |
THE NOVA LINE COMPUTERS

INTRODUCTION

The Data General Corporation NOVA" line of
computers are general purpose, four-accumulator,
stored-program computers, with a word length of
16 bits. The maximum amount of main memory is
32,768 16-bit words. For the NOVA 830 and
NOVA 840 computers with the MMPU feature, the
maximum amount of main memory is 131,072
16-bit words. The accumulators are also 16 bits
in length and are used for arithmetic and logical
operations. Furthermore, two of the accumulators
can be used as index registers. Memory can be
addressed either directly or by using indirect ad-
dresses. Chains of indirect addresses can be of
any length. A direct memory access (DMA) data
channel is provided to enable rapid data transfer
petween main memory and peripheral devices.

The flexible design of the NOVA line of computers
allows the convenient implementation of applica-
tions in all sectors of the data processing field.

The standard instruction set contains instructions
that perform fixed point arithmetic and logical
operations between accumulators, iransfer of
operands between accumulators and main memory,
transfer of program control, and input/output (I/0)
operations. Options are available that add insiruc-
tions to this set. These additional instructions
perform such operations as multiply /divide, float-
ing point calculations, memory allocation and pro-
tection, and memory management and protection.

The NOVA line of computers is made up of the
NOVA computer, the SUPERNOVA® computer,

the NOVA 1200 series, the NOVA 800 series, and
the NOVA 2 series. The NOVA 1200 series con-
sists of the NOVA 1200 computer, the NOVA 1210
computer, the NOVA 1220 computer, and the
NOVA 1200 Jumbo computer. The NOVA 800
series consists of the NOVA 800 computer, the
NOVA 820 computer, the NOVA 800 Jumbo com-~
puter, the NOVA 830 computer, and the NOVA
840 computer. The NOVA 2 series consists of the
NOVA 2/4 computer and the NOVA 2/10 computer.
While these computers differ in specifics such as
processing speed, they all share the same gen-
eral architecture. This means that, in general,
software is compatible across the entire line.

To a somewhat lesser degree, hardware is also
compatible across the line. The features of the
NOVA line are summarized below.

Efficient Basic Instruction Set

The basic instruction set for the NOVA line of
computers contains instructions that perform fixed
point arithmetic and logical operations between ac-
cumulators, transfer of operands between accu-
mulators and main memory, transfer of program
control, and I/0 operations. All instructions are
one 16-bit word in length. The arithmetic and
logical instructions have the capability to perform,
in one instruction, the following sequence: per-
form an operation, shift the result one bit left or
right, test the result of the shift, and then condi~
tionally skip the next instruction depending upon
the outcome of the test. In addition, it is possible
to perform this entire sequence without affecting
either of the operands. This means that compli-
cated numerical manipulation and testing can be
performed using a small number of instructions.

Multiply /Divide

The multiply/divide feature allows the multiplica-
tion and division of operands to be performed
quickly, without resorting to time-consuming soft-
ware routines. Two 16-bit fixed point operands
can be multiplied together to yield a 32-bit fixed
point result. A 16-bit fixed point operand can be
divided into a 32-bit fixed point operand to yield a
16-bit fixed point quotient and a 16-bit fixed point
remainder.

Floating Point

The floating point feature allows the manipulation
of both single precision (32 bits) and double preci-
sion (64 bits) floating point numbers. Single pre-
cision gives 6-7 significant decimal digits while
double precision gives 13-15 significant decimal
digits. The decimal range of a floating point num-
ber is approximately 5.4x10-79 to 7.2x10+ 75 in
either precision.

The floating point feature contains two 64-bit float-
ing point accumulators. Floating point caleulations
can take place between these two accumulators or
between one of the accumulators and operands in
main memory.

1-1o0i4

INTRODUCTION

Memory Allocotion and Memory Manogement

The memory allocation and protection (MAP) fea-
ture and the memory management and protection
unit (MMPU) feature perform logical-to-physical
address translation and memory protection. In ad-
dition, the MMPU feature allows the processor to
address up to 131,072 16-bit words of main mem -
ory.

to a user in blocks of 4086 words. Up
blocks may be allocated to 2 user. Th
feature allows the allocation of memory to a user
in blocks of 1024 words and up to 32 such blocks
may be allocated to a user. In both cases, 2 user
is prohibited from accessing those blocks of mem-
ory not allocated to him, thus protecting 2 user’'s
area of memory from unauthorized access. Both
features allow areas of memory to be write -
protected and areas of memory to be allocated to
more than one user, thus allowing the sharing of
data and procedure areas. The blocks of memory
allocated to a user do not have to be contiguous.

The address translation function which correlates
a logical address to the corresponding allocated
physical memory address is cailed an "address
map". The MAP feature is capable of holding the
mat for one user at a time and memory references
from the data channel are not mapped. The MMPU
feature also holds only one user map at a time, but
it has the capability of simultaneously mapping
memory references for the data channel.

In addition to translating addresses, these two fea-
tures also perform various protection functions. A
user is allowed to access only those blocks of mem-
ory allocated to him. This ensures that a user does
not reach out of his own areas of memory for either
instructions or data. Blocks of memory allocated to
a user may be write-protected so that the user may
not modify them. This allows blocks of memory
containing constants or non-self-modifying proce-
dures to be shared between users. The MAP fea-
ture detects and inhibits indirection chains that 20
deeper than two levels., The MMPU feature detects
and inhibits indirection chains that go deeper than

16 levels. In both cases, this protects the system
from becoming disabled by an indirection loop.
While the MAP feature provides total I/0 device
protection because the user is not allowed to issue
/0 instructions, the MMPU allows devices to be
declared accessible or inaccessible to a user on an
individual device code basis. This allows any device
to be controlled by the operating system or dedicated
to a user, depending upon user regquirements,

The MAP feature is available on the SUPERNOVA
computer, the NOVA 800 computer, and the NOVA
820 computer. The MMPU feature is available

on the NOVA 830 computer, and the NOVA 840
computer,

1-2

Memory

Memory is available in many forms for the differ-
ent members of the NOVA line. For the NOVA
computer, core memory is available in modules of
2, 4, and 8K 16-bil words. For the SUPERNOVA
computer, memory is available in both core and
semiconductor forms. Core memory is available
in modules of both 4 and 8K 16-bif words. Semi-
conductor memory is available in both read/write
and read-only forms in modules of 256, 512, and
1024 16-bit words. For the NOVA 1200 series of
computers, both core and semiconductor memory
is available. Core memory is available in modules
of 4, 8, and 16K 16-bit words. Semiconducior
memory is available in both read/write and read-
only forms in modules of 256, 512, and 1024 16-bit
words. For the NOVA 800 and 820 computers, core
memory is available in modules of 4 and 8K 18-bit
words. For the NOVA 830 computer, core mem-
ory is available in modules of 18K 16-bit words.
For the NOVA 840 computer, core memory is
available in modules of 8K 16-bit words. For

the NOVA 2 series of computers, core memory is
available in modules of 4, 8, and 16K 16-bit words.

o

Power Fail /Auto Restart

The power fail/auto restart feature of the NOVA
line provides a ""fail-soft” capability in the event
of unexpected power loss. In the event of power
failure, there is a delay of one to two milliseconds
before the processor shuts down. The power fail
portion of the feature senses the imminent loss of
power and interrupts the processor. The interrupt
service routine can then use this delay to store the
contents of the accumulators, the program restart
address, and other information that will be needed
to restart the system. One to two milliseconds is
enough time to execufe 200 to 1300 instructions de-
pending on the processor, so there is more than
encugh time to perform the power fail routine.

When power is restored, the action faken by the
auto-restart portion of the feature depends upon the
position of the power swiich on the front panel. If
the switch is in the "on' position, the processor
remains stopped after power is restored. If the
switch is in the "lock’ position, then 50 milli-
seconds after power is restored, the processor
executes the instruction contained in the first loca-
tion of main memory, restarting the interrupted
system.

Reci-Time Clock

The real-time clock feature of the NOVA line com-~
puters generates a sequence of pulses that is inde-
pendent of the timing of the processor. The clock
will interrupt the system at one of four program-
selectable frequencies. The freguencies are: ac
line frequency, 10Hz, 100Hz, and 1000Hz.

input/Quiput Bus

The input/output (I/0) bus is that portion of the
computer that carries commands and data between
the central processor and various peripheral de-
vices connected to it, The bus is made up of a six-
line device selection network, interrupt circuitry,
command circuitry, and sixteen data lines.

Device Addressability

Each 1/0 device in a NOVA line computer system
is connected to the six-line device selection net-
work in such a way that each device will only
respond to commands that contain its own device
code. The fact that the selection network is made
up of six lines gives 26 = 64 unique device codes.
Two of these codes are reserved for specific func-
tions, but there are still 62 device codes available
for use with 1/O devices.

Interrupt Capability

The interrupt circuitry contained in the I/0 bus
provides the capability for any I/O device to inter-
rupt the system when that device requires service.
When a device requests an interrupt, the processor
automatically transfers program control to the main
interrupt service routine. This routine can either
poll all the I/0 devices in the system to find out
which one initiated the interrupt or the routine can
use a special instruction to identify the source of
the interrupt.

The interrupt circuitry of the NOVA line also con-
tains the capability to implement up to sixteen levels
of priority interrupts. This is done with a 16-bit
priority mask. Each level of device priority is
associated with a bit in this mask. In order to
suppress interrupts from any priority level, the
corresponding bit in the mask is set to 1.

Data Channel

Handling data transfers between external devices
and memory under program control requires an
interrupt plus the execution of several instructions
for each word transferred. To allow greater
transfer rates, the 1/0 bus contains circuitry for
a direct memory access (DMA) data channel through
which a device, at its own request, can gain direct
access to main memory using 2 minimum of pro-
cessor time. At the maximum transfer rate, the
data channel effectively stops the processor, but
at lower rates, processing continues while data

is being transferred.

1-3

Ease of interfacing

Due to the straightforward logic and general design
of the NOVA line I/0 bus, customer-provided or
customer-designed 1/0 devices may be easily in-
terfaced to a NOVA line computer system. Informa-
tion on how to interface to the NOVA line may be
found in ""The Interface Manual” {(DGC 015-000031).

input/Output Devices

A comprehensive array of 1/0 devices is available
from Data General for the NOVA line. This wide
choice of devices, ranging from teletypewriters to
line printers to video displays for man-machine
interaction; and from paper tape to magnetic tape
to fixed and moving-head discs for data storage
allows a wide spectrum of possible configurations.
Also available are various multiplexors and tele-
communications adapters including an IBM 360/370
interface.

Scohware

The NOVA line is fully supported by proven Data
General software. Because all members of the
NOVA line are program compatible with each other,
it is possible to create a computer system that can
be easily altered or upgraded as the need arises.

Languages

In addition to an assembler and a macro-assem-
bler, there are powerful higher-level language
processors available for use with the NOVA line.
Language processors such as ALGOL, EXTENDED
BASIC, FORTRAN IV, and FORTRAN 5 can be
used to ease the job of implementing application
systems.

Operating Systems

There is a wide array of operating systems avail-
able for the NOVA line. These range from the
Stand-alone Operating System (SOS) to the Real-
Time Operating System (RTOS) to the Real-Time
Disc Operating System (FDOS), tc the Mapped
Real-Time Disc Operating System (MRDOS). SOS,
RTOS, and RDOS software are designed for the
small to medium-size systems, while MRDOS
software is designed for the large system and
gives full software support for the Memory Manage-
ment and Protection Unit.

Conclusion

The internal features, software, and I/O devices

available with the NOVA line of computers ensure
that they will easily meet the continually changing
needs of the data processing industry.

INTRODUCTION

This page intentionally left blank.

i-4

SECTION 2
INTERNAL STRUCTURE

INTRODUCTION

The basic structure of a NOVA line data processing
system consists of a central processing unit

(CPU), some amount of main memory, the 1/0 bus,
the 1/0 devices connected to the I/0 bus, and a
console which is on the front panel of the main
computer chassis.

1/0 BUS

MEMOR/

TELETYPWRITER

CONSOLE

0601128 LINE
E PRINTER

Due to the general-purpose design of the NOVA
line, the type, size, and number of memory mod-
ules and 1/0 devices have no effect upon the inter-
nal logical structure of the CPU. This chapter

2-10f 10

deals with the addressing of information and the
logical representation of information within the
CPU, and is unaffected by those portions of the
system outside the CPU.

INFORMATION FORMATS

The basic piece of information within the processor
is the binary digit, or "bit"'. A bit is capable of
representing only two quantities, 0 and 1. How-
ever, a bit cannot represent both these values at
the same time. At any one point in time, a bit can
either represent a 0 or a 1, never both.

The normal unit of information within the CPU is
the "byte. A byte is made up of 8 bits. Because
each bit is capable of representing two quantities,
a byte is capable of representing 28 = 256 different
quantities. Two bytes may be combined to produce
a 16-bit unit called a "word". A word can repre-
sent 216 = 65,536 different quantities. I/0O devices
transfer information in units of bits, bytes, words,
or multiples of words called "records’, depending
upon the device.

Bit Numbering

In order to avoid confusion when talking about the
information contained in bytes and words, the bits
that make up these units of information are num-
bered from left to right, with the lefimost (high-
order) bit always numbered bit 0. The numbering
extends to the right and is always carried out in
the decimal number system. The rightmost (low-
order) bit in a byte is bit 7. The rightmost bit in
a word is bit 15.

WORD WORD
A —~ A ~
BYTE BYTE BYTE BYTE
0,1,2,3,4,5,6,7{0,1,2,3,4,5,6,7/0,1,2,3,4,5,6,7/0,1,2,3,4,5,6,7
01 23456789 10111213141501 2345678 9101112131415

INFORMATION FORMATS

Cctal Representation

Because talking about the binary data contained in
bytes and words would quickly become awkward and
confusing if each bit were described, the octal re-
presentation of binary information will be used in
this manual. To convert a piece of binary informa-
tion to its octal representation, the bits in the
quantity are separated into groups of three bits
each, starting from the right and proceeding to the
left, If the number of bits to be represented is not
evenly divisible into groups of three, the leftmost
group will contain one or two bits. Each group of
bits can now be represented by one of eight differ-
ent symbols. The digits 0-7 are used to represent
the guantities 0-7. Each encoded digit is called an
octal digit. Because each group of bits can contain
any one of 8 values, this representation is some-
times called "base 8" representation.

Another way to represent binary information is the
hexadecimal or ""hex' representation. In hexa-
decimal, the bits in the quantity are separated into
groups of four bits each and each group can be re-
presented by one of 16 different symbols. The
igits 0-9 are used to represent the guantities 0-8.
The letters A-F are used to represent the quantities
10-15. Because each group of bits can contain any
one of 16 values, this representation is sometimes
called ""base 16" representation.

The following table gives the correspondence be~
tween the various representations.

DECIMAL | BINARY | HEX | BINARY | OCTAL
0 . 0000 0 000 0
1 0001 1 G601 1
2 0010 2 010 2
3 0011 3 011 3
4 0100 4 100 4
5 0101 5 101 5
6 0110 8 1190 8
7 0111 7 111 7
8 1000 8 1100 10
9 1001 9 1001 11

10 1010 A 1010 12
11 1011 B 1011 13
12 1100 C 1100 14
13 1101 D 1101 i5
14 1110 E 1110 16
15 1111 F 1111 17

Cur pormal decimal numbering system is some-
times called ""base 10" representation. Because
it is sometimes possible {o confuse numbers writ -
ten in hex or octal with those writien in decimal, a
subscript denoting the base will be used in cases
where confusion might occur. The following ex-
amples illusirate this convention,

64, = 40 ., = 100

i0 16 8

- - 197
871{} = 5716 = LAS
6316 = 3F16 = ’3"?8

In the last example, it is obvious that 3¥ is a2 num-
ber written in hex, but the subscript is included to
erase any possible doubts.

Conversion tables for hex to decimal and octal to
decimal are contained in Appendix B of this manual.

Character Codes

Within the processor, all information is repre-
sented by binary quantities. The CPU does not re-
cognize certain bif combinations as characiers and
certain other kit combinations as numbers. Sooner
or later, however, this information must be trans-
ferred outside the computer in some form easily
understood by humans. For this reason, some
standard correspondence must be made between cer-
tain bit combinations and printable symbols. The
code used to implement this correspondence in 1/0
devices available with the NOVA line is called the
American Standard Code for Information Interchange
(ASCII). This code can represent 95 printable sym-
bols plus 33 control functions. A complete table of
the codes and their corresponding characters can

be found in Appendix C of this manual.

Information Representation

Even though the CPU does not intrinsically recog-
nize one information type from another, the differ-
ent instructions in the instruction set expect that
the information to be operated on will be in a spe-
cific format. In general, there are four different,
basic information formats, They are integers,
floating point numbers, logical quantities, and
decimal numbers.

S

integers ; Examples:

Integers can be represented as either signed or un- To form the negative of 4:

signed numbers and carried in either single or

multiple precision. Single precision integers are 4=0 000 000 000 000 100
two bytes long, while multiple preglsaon‘mtegers complement = 1 111 111 111 111 011
are four or more bytes long. Unsigned integers add 1 ! 1
use all the available bits to represent the magnitude 4. 7T IiTTIT 1T 100

of the number. A single two-byte word can repre-
sent any unsigned number in the inclusive range 0

to 85,535, Two words taken together as an un- To form the negative of 1 1158:

signed, double precision integer can represent any
number in the inclusive range 0 to 4,294, 967,295, }7158 =0 000 001 111 001 101
complement = 1 111 110 000 110 010

For signed operations, the two's complement num- add 1 + 1

bering system is used. In this system, the lefimost -17158 =1 111 110 000 110 011
N or high-order bit is used as a sign bit. If the sign

bit is 0, the number is positive and the remainder To form the negative of -17158:

of the bits in the number represent the magnitude

of the number as described above. If the sign bit -1‘7158 =1 111 110 000 110 011
N is 1, the number is negative and the remainder of

the bits represent the two's complement of the ;ggn;lalement j_ ¢ 000 o001 111 001 10(;

magnitude of the number. 1715, = 0 000 001 111 001 101

To create the negative of a number in the two's

complement scheme, complement all the bits of the To form the negative of 0:

number including the sign bit. After the comple-

menting process is finished, add 1 to the rightmost 0=0 000 000 000 000 00O
or low-order bit. If the two's complement of a complement = 1 111 111 111 111 111
negative number is formed, the result will be the add 1 + 1
corresponding positive number. There is only one 0=0 000 000 000 000 000
representation for zero in two's complement arith-

metic: it is the number with all bits zero. Form- Note that 0 is a positive number, i.e., its sign bit
ing the two's complement of zero will produce a is 0.

carry out of the high-order bit and leave the num-
ber with all bits zero.

2-3 INFORMATION FORMATS

st

Because the two's complement scheme has only one
representation for 0, there is always one more
negative number than there are non-negative num-
bers. The most negative number is a number with
a 1 in the sign bit and all other bits 0. The positive
value of this number can nof be represented in the
same number of bits as used to represent the nega-
tive number.

A single two-byte word can represent any signed
number in the inclusive range -32, 768 to + 32, 767.
Two words taken together as a signed, double pre-
cigion integer can represent any number in the in-~
clusive range -2,147,483 648 to + 2,147, 483, 647.

It is a property of numbers using the two's comple-
ment scheme that addition and subtraction of signed
mumbers are identical to addition and subtraction of
unsigned numbers. The CPU just treats the sign
bit a5 the most significant magnitude bit,

ﬂaqﬁng Point

The floating point feature of the NOVA line allows
operations on signed numbers having a much larger
rapge than those normally represented as integers,
It would take a 16-word multiple precision integer
to represent the range of a NOVA line floating
point number. - Since floating point numbers occupy
either two words for single precision or four words
for double precision, and the floating point feature
is mueh faster than multiple precision integer
software routines, floating point arithmetic is used
when numbers having a large range must be mani-
pulated.

A floating point number is made up of three parts:
the sign, the exponent, and the mantissa. The
value of a floating point number is defined to be:

(MANTISSA) X (16 RAISED TO THE TRUE VALUE
OF THE EXPONENT FIELD)

The number is signed according to the value of the
sign bit. If the sign bit is 0, the number is posi-
tive; if the sign bit is 1, the number is negative.

Floating point numbers are represented internally
by either 32 bits (single precision) or 64 hits
{double precision).

The formats are shown below:

Single Precision

Slewovent [, wantissa
o 1)
Double Precision
2
S| EXPONENT | MANTISSA
ik 4 : ¥ i3 ;' %% 13 i i 3 i e 5

g1 FE
Bit zero is the sign bit: 0 for positive, 1 for nega-
tive.

Bits 1-7 contain the exponent. This is the power to
which 16 must be raised in order to give the cor-
rect value to the number. So that the exponent field
may accommodate a large range, " Excess 847
representation is used. This means that the value
in the exponent field is 64 greater than the true
value of the exponent. If the exponent field is Zero,
the true value of the exponent is -64. If the expo -~
nent field is 64, the true value of the exponent is 0.
If the exponent field is 127, the true value of the
exponent is 63,

Bits 8-31 for single precision and bits 8-63 for
double precision contain the mantissa. This means
that bit 8 of the floating point number is bit 0 of the
mantissa. The mantissa is always a positive frac-
tion greater than or equal to 1/16 and less than 1.
The "binary point" can be thought of as being just .
to the left of bit 8. Continuing this concept then,
bit 8 represents the value 1/2, bit 9 represents

the value 1/4, bit 10 represents the value 1/8,

and so on.

In order to keep the mantissa in the range of 1/16
to 1, the results of floating point arithmetic are
"normalized". Normalization is the process
whereby the mantissa is shifted left one hex digit
at a time until the high-order four bits represent
a nonzero quantity. For every hex digit shifted,
the exponent is decreased by one. Since the
mantissa is shifted four bits at a time, it is pos-
sible for the high-order three bits of a normalized
mantissa to be zero.

Zero is represented by a floating point number with
all bits zero. This is true for both single and
double precision. This is known as ''true zero’ .
When a calculation results in a zero mantissa, the
floating point processor automatically converts the
mumber fo a true zero, Note that {rue zero is posi-
tive. It is not possible to obtain negative zero as
the result of a calculation.

Floating point operands in memory are represented
by two words for single precision and by four words
for double precision.

Single Precision

Word 1 |s EXPONENT MANTISSA BITS O-7 J
i i 1 1 i i

51 2 3'4 5 6'7 8 9'i10 11 1213 14 15

Word 2 { MANTISSA BITS 8-23 I
i i

o 1 2 3 4 85 6 7 8 9 101l 12°13 14 15

Double Precision

Word 1 |S| EXPONENT MANTISSA BITS 0-7 |
o1 2 B 4 8 6 7 8 9 10 1i 2 i3 14 I8
Word 2 f MANTISSA BITS B-23 f i
G 1 2z 3'4 5 607 8 9 10 1 (2'13 ia 15
Word 3 MANTISSA BITS 24-39 i
EREE] 3‘4;5 57T 8 8 o 1) 1213 14 18
Word 4 [| MANTISSABITS40-55 |
51 2z 3 4 85 s 7T 8 % {0 i i2 13 14 1%

Logical Quanities

Logical operations in the NOVA line can be per-
formed upon individual bits, bytes, or words.

When using the logical operations, guantilies oper-
ated on are treated as unstructured binary guanti-
ties. The number of bits, byvtes, or words
operated upon depends on the particular instruction.

Decimal Numbers

Decimal numbers may be represented internally in
two ways, character decimal and packed decimal.
In character decimal, the number is made up of a
string of ASCII characters and the sign, if present,
may appear in one of four places. The sign of the
number may be indicated by a leading or trailing
byte which contains the ASCII code for plus {2816}
or minus {2Dyg). Alfernatively, either the high-
order digit or the low-order digit of the number

may indicate the sign in addition to carrying a digit
of the number. The table below gives the corre-
spondence between certain ASCII characters and
the sign and digit values that they carry.

HEX
CODE

ASCIH
CHARACTER

DIGIT
VALUE

SIGN
VALUE

The formats are shown below:

B
41
42
43
44
45
46
47
48
49
D
4A
4B
4C
4D
4E
iF
50
51
52

4

R

H
00 - O W G0 DO e DD 00 W O LT e GO DD ke D
HOWOZZ DR A " T Qi U QWP

The digits that are not carrying the sign must be
valid ASCII characters for the digits 0-9
(3016"3916>'

Examples:
In the following examples, the hex value of a byte

is shown inside the box; the corresponding ASCII
character is shown beneath the box.

12,048 (leading sign) | 2B [32 [30 [34 |38

+ 2 0 4 8

-1, 756 (trailing sign) | 31 137 /35 (36 |2D

1 T 5 6 -

+1,850 (high-order sign) | 41 |38 |35 [30 |

A 8 5 0

-3,970 (low-order sign) | 33 {39 §37 | 7D {

38 7 ;

For packed decimal, each digit of the decimal num-
ber occupies one hex digit. The sign is specified
by a trailing hex digit. The number must start and
end on a byte boundary. In other words, the num-
ber cannot start or end halfway through a byte.
This means that a packed decimal number will al-
ways consist of an odd number of digits followed by
the sign. The sign must be either Cyg for plus or
Dyg for minus. The only valid codes for digits are
0-9

167

INFORMATION FORMATS

Examples:

In the following examples, the hex value of a digit
is shown within the box; the corresponding decimal
digit is shown beneath the box.

Byte Byte Byte
+ 2,048 lol2]olalslc
0 2 0 4 8 =+
+32,456 13l2T4]5]6]C
3 2 4 5 8 +
- 1,756 [oJ1J775]6]D
01 7 5 6 -
-25,989 l215]9]8]9]D
2 5 9 8 9 -

INFORMATION ADDRESSING

The information formats described in the preceding
section give a way of representing different types of
data with the CPU. Operations cannot be performed
upon these data types, however, unless they can be
addressed by the CPU. The address of a piece of
information is its location in main memory. Once
the CPU knows the address of a piece of informa-
tion, the desired operation can be performed.

Word Addressing

Main memory is partitioned into 2-byte words, and
each word has an address. The first word in mem-

2-6

ory has the address 0. The next word has the ad-
dress 1, the next word has the address 2, and so

on. Word addressing is used to address integers,
floating point numbers, and logical quantities that

~are formatted in units of words.

ADDRESS WORD
& I A)
. v o
T e o e e e e =t o o e e o E
oo T “"“-"""'""'"“"_“"’”"’"’"'”7
B : H
e o e a e e e o n a e d
T T T T T T T T T T T T T T T T e e e -1
E] ! ¢
e e e e e 4
4004 j BYTE BYTE
i i i § i i i i i i H i
01 234 5 6 7 8 9 101 12131 15
401, I BYTE I BYTE
i i] i i i i i i i i
0’1 2 345 67 8 9101 121314 15
202 | BYTE } BYTE
} i f 1 i] i i i i
O 1 2345 6 78 91011 1213 1415
e L
e L]
DG-00538

g™

Etlective Address Calculation

There are six instructions in the NOVA line in-
struction set that directly reference memory using
word addressing. These instructions use eleven
bits in the instruction to define the address of the
desired word. These eleven bits do not directly
specify the address, but are used in a calculation
which results in the address of the desired word.
The resultant address is called the "effective
address’ or "E", and the calculation is called the
"effective address calculation’.,

The eleven bits in an instruction that are used in
the effective address caleculation, are bits 5-15.
Their format is shown below i

@ DISPLACEMENT
5

0 1 1 13 14

INDEX|
6 7 8 39

R 5
Bit 5 is called the "indirect bit", bits 6 and 7 are
called the ""index bits', and bits 8-~15 are called
the "displacement bits'".

If the index bits are 00, the displacement is used as
an unsigned 8-bit number to address one of the first

2561g words in memory. This is called ""page
zero addressing' and this first block of 256 words
is known as '"page zero''.

If the index bits are 01, the displacement is treated

as a signed, two's complement number, which is

added to the address of the instruction to produce a
memory address.
sing'. By relative addressing, any instruction
which uses the effective address calculation can

This is called ""relative addres-

directly address any word in storage whose address

is in the range -128q to +1274¢ from the instruc-
tion.

If the index bits are 10, accumulator 2 is used as
an index register. If the index bits are 11, ac-
cumulator 3 is used as an index register. In this
form of word addressing, known as "index regis-
ter addressing’, the displacement is treated as a
signed, two's complement number which is added
to the contents of the selected index register to
produce a memory address. In index register ad-
dressing, the addition of the displacement fo the
contents of index register does not change the value
contained in the index register,

2-7

The result of the addition performed in relative
addressing and index register addressing is
“elipped” to 15 bits. In other words, the high-
order bit of the result is set to 0. For example,
if accumulator 2 is to be used as an index register
and contains the number 077774g, and the dis-
placement bits contain the number 012g, then the
result of the addition would be 000006g, not
1000064.

After one of the three types of addresses has been
computed from the index and displacement bits,
the indirect bit is tested. If this bit is zero, the
address already computed is taken as the effective
address. If the indirect bit is one, the word ad-
dressed by the result of the index and displacement
bits is assumed fo contain an address. In this
word bit 0 is the indirect bit and bits 1-15 contain
an address. If bit 0 of the referenced word is 1,
another level of indirection is indicated, and bits
1-15 contain the address of the next word in the
indirection chain. The processor will continue fo
follow this chain of indirect addresses until a word
ig retrieved with bit 0 set to 0. Bits 1-15 of this
word are taken to be the effective address.

If an indirect address points to a location in the
range 20-27g (auto-increment locations); that word
is fetched, the contents of the word are incre-
mented by one and written back into the location.
This updated value is then used to continue the ad~-
dressing chain. If an indirect address points to a
location in the range 30-373 {auto-decrement loca~-
tions), that word is fetched, the contents of the
word are decremented by one and written back into
the location., The updated value is then used to
continue the addressing chain.

NOTE When referencing auto-increment
and auto-decrement locations, the
state of bit 0 before the increment
or decrementis the condition upon
which the continuation of the indi-
rectionchain is based. For exam-
ple: if an auto-~-increment location
contains 177777g, and the location
is referenced as part of an indi-
rection chain, location 0 will be
the next address in the chain.

INFORMATION ADDRESSING

DIBPLACEMENT BT
GO VO INTERMEIATE
ADDRESS as
UNSIGNED NUMBER

BE-GEZE

An effective address is always 15 bits in length.
This means that an instruction which uses the
effective address calculation can address any one
of 32, 7681 words. This gives rise to the concept
of an ""address space', which, in the NOVA line,
contains 64K bytes or 32,768 2-byte words.

Addressing With The MMPU Feature

The concept of an address space was introduced in
the discussion of effective address calculation,
The "'program’ or "logical" address space is that
amount of memory that can be referenced by in-
structions in a program. The ""physical” address
space is that amount of physical memory that can
be referenced by the CPU. If the MMPU feature is
not installed, the physical address space available
to the CPU is B4K bytes or 32K words, and the log-
ical address space is egual to the physical address
space. Obviously, if the system containg less than
84K of physical memory, the usable address space
is reduced, but the maximum physical address
space of the NOVA 840 without the MMPU feature
is 64K. With the MMPU feature installed, the log-
ical address space is still 84K, but the maximum
physical address space is increased to 256K bytes.

Installation of the MMPU feature has no effect on
logical addressing. The addressing calculations
remain the same. The MMPU feature comes inio
play when the CPU tries to use a 15-bit address to
reference memory. The MMPU feature intercepts
the memory reference and the 15-bit address. The
MMPU feature then translates the 15-bit address
into a 17-bit address with the aid of address trans-
lation hardware and the logical-to-physical address
translation functions that have been set up by the
supervisor program. The resultant 17-bit address
is used to reference memory.

0—»
* 5 BT LOGICAL U
ADDRESS
@
256 K BYTES
MMPU OF PHYSICAL
FEATURE MEMORY
T
|
e
T7 BIT PHYSICAL
| ADDRESS R
377777, —»

DG -00542

o

PROGRAM EXECUTION

Programs for the NOVA line consist of sequences
of instructions that reside in main memory. The
order in which these instructions are executed de-
pends on a 15-bit counter called the "program
counter”. The program counter alwavs contains
the address of the instruction currently being exe -
cuted. After the completion of each instruction the
program counter is incremented by one and the next
instruction is fetched from this address. This
method of operation is called '"sequential operation”
and the instruction fetched from the location ad-
dressed by the incremented program counter is
called the "next sequential instruction'.

Program Flow Alteration

Sequential operation can be explicitly altered by the
programmer in two ways. Jump instructions alter
program flow by inserting a new value into the
program counter. Conditional skip instructions can
alter program flow by incrementing the program
counter an extra time if a specified test condition

is true. In the case of a conditional skip instruction
when the test condition is true, the next sequential
instruction is not executed because it is not ad-
dressed. After either a jump instruction or a

7
INCREASING
ADDRESSES o]

Jump |
i JUMP
| N PROGRAM
3 FLOW
LI
i U
3 c
‘s T
| 1
+ 0

§ 1 sxip
; r }PROGRAM
| SK FLOW
| J
§
§
|

DE-00543

successful conditional skip instruction, seguential
operation continues with the instruction addressed
by the updated value of the program counter,

Bacause the program counter is 15 bifs in length,
it can address 32, 768 separate memory locations.
The next memory location after 777773 is location
0, and the location before 0 is location 77777g. If
the program counter rolls from 77777g to 0 in the
course of sequential operation, no indication is
given and processing continues with the location
addressed by the updated value of the program
counter,

Program Flow Interruption

The normal flow of a program may be interrupted
by external or exceptional conditions such as [/O
interrupts or various kinds of faults. In this case,
the address of the next sequential instruction in
the interrupted program is saved by the CPU so0
that the 1,0 handler or the various fault handlers
can return control to the program at the correct
point. Once the address of the next sequential in-
struction in the program has been placed in the
program counter by the fault handler, sequential
operation of the program resumes.

SEQUENTIAL
. - APROGRAM
| FLOW 1/0
; INTERRUPT
; - OCCURS
P ¥
INCRE ASING
ADDRESSES %/
5 JUMP \
| 4 /
§ N]
s g
R
U 7
Y
¢
| i <
0
N 2 ETURN
s <A CONTINUED R
~2 | PROGRAM
FLOW
§
|
!
i
DG-CGO544

PROGRAM EXECUTION

This page intentionally left blank.

2-10

g

SECTION 3
INSTRUCTION SETS

INTRODUCTION

The instruction set implemented on the NOVA line
is divided into § instruction sets. There are in-
struction sets available for fixed point arithmetic,
logical operations, program flow alteration, float-
ing point arithmetic, and I/O operations. In addi-
tion, instruction sets which are a mixture of I/O
instructions are available for programming the
MMPU and MAP features, the RTC feature, the
power fail/auto-restart feature, and certain CPU
functions.

INSTRUCTION FORMATS

There are four different formats for instructions
on the NOVA line. These formats allow an exten-
sive instruction set while still keeping the instruc-
tion length to one word. The four formats and
their general layouts are described below.

NO ACCUMULATOR-EFFECTIVE ADDRESS

To o olprpcooe] @] NoEx] DISPLACEMENT |
o' 1 2 34 5 6 7 8 9 10 1 12 13 14 I5

In the No Accumulator-Effective Address format
instructions, bits 0-2 are 000, and bits 3-4 contain
the operation code. The effective address is com-
puted from bits 5-15 as described under " Effective
Address Calculation' .

ONE ACCUMULATOR-EFFECTIVE ADDRESS

z :
| o ppcoog Ac }@&EN?&X% DISPLACEMENT
o 1 2 3 4 5 & 7 8 9 0 i 12 i3 14 I8

In the One Accumulator-Effective Address format
instructions, bit 0 is 0, and bits 1-2 contain the
operation code. Bits 3-4 specify the accumulator
for the operation. The effective address is com-
puted from bits 5-15 as described under " Effective
Address Calculation' .

TWO ACCUMULATOR-MULTIPLE OPERATION

|

(1] acs [aco Jopcooe] sw | ¢ [#]| swe

i
o'+ 2 3 4 5 8 7 & 9 0 1 12 13 14 15

In the Two Accumulator-Multiple Operation format
instructions, bit 0 is 1, bits 1 and 2 specify the
source accumulator, bits 3 and 4 specify the desti-
nation accumulator, bits 5-7 contain the operation
code, bits 8 and 9 specify the action of the shifter,
bits 10 and 11 specify the value to which the carry
bit will be initialized, bit 12 specifies whether or
not the result will be loaded into the destination
accumulator, and bits 13-15 specify the skip test.
Each instruction in this format utilizes an arith-
metic unit whose logical organization is illustrated
below,

ORGANIZATION OF ARITHMETIC UNIT -

| 17 8178 3
FUNCTION
GENERATOR SHIFTER
BT ACS ACD i7 8ITS
6 BITS |16 BITS
CARRY T
INITIALIZER | | sxipsensor |

CARRY] |ACCUMULATORS
Tisir_Acpis BiTs S Gl7BITS

LOAD/NO LOAD

BE~00927

Each instruction specifies two accumulators o sup-
ply operands to the function generator, which per-
forms the function specified by bits 5-7 of the
instruction. The function generator also produces
a carry bit whose value depends upon three quan-~
tities: an initial value specified by the instruction,
the function performed, and the result obtained.
The initial value may be derived from the previous
value of the carry bit, or the instruction may
specify an independent value.

The 17-bit output of the function generator, made
up of the carry bit and the 18-bit function result,
then goes to the shifter. In the shifter, the 17-bit
result can be rotated one place right or left, or the

3-10f 8

INSTRUCTION FORMATS

two 8-bit halves of the function result can be swap-
ped without affecting the carry bit, The 17-bit out-
put of the shifter can then be tested for a skip. The
skip sensor can test whether the carry bit or the
rest of the 17-bit result is or is not equal to zero.
After the skip sensor has tested the shifter output,
it can be loaded into the carry bit and the destina-
tion accumulator, Note, however, that loading is
not necessary. An instruction in this format can
perform a complicated arithmetic and shifting
operation and test the result for a skip without af-
fecting the carry bit or either of the operands.

3-2

INPUT/OUTPUT

CONTROL
[0 ! 1] Ac opCODE[¥ T "DEVICE CODE |
o'+ 2 3 4 5 8 7 8 95 0 11 12 i3 14 15

In the Input/Qutput format instructions, bits 0-2
are 011, bits 3-4 specify the accumulator for the
operation, bits 5-7 contain the operation code, bits
8-9 specify the control signal to be used, and bits
10-15 contain the device code of the referenced
device.

-

CODING AIDS

In the descriptions of the separate instructions,
the general form of how the instruction is coded in
assembly language is given along with the instruc-
tion. The general form of how an instruction may
be coded has the following format:

MNEMONIC<optional mnemonics > OPERAND STRING

The mnemonic must be coded exactly as shown in
the instruction description. Some instructions
have optional mnemonics that may be appended to
the main mnemonic if the option is desired. The
operand string is made up of the operands for the
given instruction.

The symbols <> and = are used in this manual to
aid in defining the instructions. These symbols
are not coded; they act only to indicate how an as-
sembly language instruction may be written. Their
general definition is given below.

<> Indicates optional operands or mnemonics.
The operand enclosed in the brackets (e.g.,
<#>) may be coded or not, depending on
whether or not the associated option is de-
sired.

Indicates specific substitution is required.
Substitute the desired accumulator, address,
name, number, or mnemonic.

The following abbreviations are used throughout
this manual:

AC = Accumulator

ACS = Source Accumulator

ACD = Destination Accumulator
FPAC = Floating Point Accumulator

3-3

In the instructions that utilize an effective address,
the following coding conventions are used:

The indirect bit (bit 5) is set to 1 by coding
the symbol @ anywhere in the effective ad-
dress operand string.

The index bits are set by coding a comma
followed by one of the digits 0-3 as the last
operand of the operand siring. If no index

is coded, the bits are sef to 00. The charac-
ter " period"” (.) can be used to set the index
bits to 01. ' Period" can be read to mean
""address of the current instructions’”. When
the period is used, it is followed by either a
plus or a minus sign followed by the displace-
ment e.g., ".+T7"7, or . -2,

The displacement is coded as a signed number in
the current assembler radix. This radix is the
numbering system in which the programmer sup-
plies numbers to the assembler. The default radix
is Base 8 or octal. The assembler radix can be
changed by using the RADIX statement.

The assembler available with the NOVA line allows
the programmer to place labels on instructions or
locations in memory. When the assembler comes
upon a label in the operand string of an effective
address instruction, it aufomatically sets the index
and displacement bits to the correct values. For

a detailed discussion of the features and operation
of the NOVA line assembler, see the assembler
manual (DGC 093-000017).

The fixed point and logical instructions which use
the two accumulator-multiple operation format
have several options that can be obtained by ap-
pending suffixes to the instruction mnemonic and
by coding optional operands in the operand string.
The characters to be coded are given below with
their results.

CODING AIDS

The characters in the column titled ""class abbre-
viation" refer to specific fields in the two accu-
maulator ~multiple operation format., The characters
in the column titled '"coded character’ show the
various characters which may be coded for this
option. The numbers in the column titled " result
bits" show the bit settings in these fields resulting
from each coded character. The comments in the
column titled "operation” describe the effect of
these bit seftings.

CLASS CODED RESULT
ABRREVIATION | CHARACTER BITS OPERATION
C {option omitted) o0 Do not initialize the carry bit.

4 01 Initialize the carry bit to 0.

O 1 Initiaiize the carry bit to 1,

C 11 initialize the ecarry bit to the
complement of its present
value.

SH {option omitted) 00 Leave the result of the
v omitted) it

r})

Coded
Character Shifter Operation
L Lelt rotate one place. Bit § iz rotated
into the carry position, the carry bit
info bit 15.
Lj’" | PR §
L o =
R Right rotate one place. Bit 15 is ro-
tated into the carry position, the carry
bit into bit 0.
f !
L—@{ZM 0—15 -
s Swap the halves of the 16-bif result.

The carry is not affected.

E 0-7 i 8—i5
] |

A 4
0—7 }

8—15

S—

3-4

The following operands initiate operations that test
the result of the shift operation. If the tested con-
dition is true, the next sequential instruction is
skipped.

CLASS CODED RESULT
ABBHREVIATION | CHARACTER BITS OPERATION
SKIP {option omitted) 000 Hever skip.
SKP 401 Always skip.
84C 010 Skip if carry = 0.
SNC 011 Skip i carry % 0.
SZR 100 Skip if result = 0,
INR 101 Skip if result % 0.
SEZ 119 Skip if either carry or
result = 0.
s8N 111 Skip if both carry and
result = 0,

As an example of how to use these tables, assume
that accumulator 3 contains a signed, two's com-
plement number. Now consider the problem of
determining whether this number is positive or
negative. One way to defermine this would be to
place fhe number zero in ancther accumulator and
uge the SKIP [F ACS GREATER THAN ACD instruc-
tion, but this requires an extra instruction and alsc
destroys the previous contenis of the other aceu-
mulator. Another way to determine the sign of the
nber in accumulator 3 ig to use the MOVE in-
-uction and the power of the two accumulator -~
ultiple cperation format. With the MOVE
truction, the contents of AC3 can be place
shifted one bit to the left. This places J
g n the carry bit. The carry bit can then '
be tested for zero. In order to preserve the num-
ber in AC3, the instruction can prevent the output
¢ shifter from being loaded back inio AC3.

d in the oy
2

general form of the MOVE instruction is:

MOV<e><sh><#> acs,acd<, skip>

The general bit pattern of the MOVE instruction is:

skp |
(L 1

§2£

i3

To shift the number in AC3 one bit left without
destroying the number, and skip the next sequential
instruction if the bit shifted into the carry bit is
zero, the following instruction could be coded:

MOVL# 3,3,82C

This instruction would assemble into the following
bit pattern:

] [7
BRI

o

0 01
02

o i
1z 14

0]
s

_—

FIXED POINT ARITHMETIC

The fixed point instruction set performs binary
arithmetic on operands in accumulators. The op-
erands are 16 bits in length and can be either
signed or unsigned. The instruction set provides
for loading, storing, adding, and subtracting.

LOAD ACCUMULATOR
LDA ac,<@>displacement<, index>

DISPLACEMENT
10 11 12 13

olo 1] ac |@]moex|
0 i 2 3 4 5 6 7 8B 9

4 15

The word addressed by the effective address, "E'",
is placed in the specified accumulator. The pre-
vious contents of the AC are lost. The contents of
the location addressed by ""E' remain unchanged.

STORE ACCUMULATOR

STA ac, <@ >displacement<, index>

@ }s o{ ac [@|Dex |

% DISPLACEMENT |
o'r 2z 3 4 5 6 7 8 3

10 11 12 13 14 15

The contents of the specified accumulator are
placed in the word addressed by the effective ad-
dress, "E'". The previous contents of the location
addressed by "E' are lost. The contents of the
specified accumulator remain unchanged.

ADD
ADD<¢c ><sh><#> acs,acd<, skip >

| | Acs | acD |

i.SH
e} i 2 3 4

8 39

SKP |
34'

I R ¢
; ‘
5 6 7

13 5
The carry bit is initialized to the specified value.
The number in ACS is added to the number in ACD
and the result is placed in the shifter. If the addi-
tion produces a carry of 1 out of the high-order bit,
the carry bit is complemented. The specified shift
operation is performed and the result of the shift is
placed in ACD if the no-load bit is 0. If the skip
condition is true, the next sequential instruction is
skipped.

NOTE If the sum of the two numbers
being added is greater than
65,535,,, the carry bit is

10 J
complemented.

SUBTRACT

SUB< ¢ ><sh><#> acs,acd<, skip>

1] acs[aco [1 o

c
0 i

SH

3

o 1 2 3 4 5 8 7 8 9

L #
12

SKP
4

5

13

The carry bit is initialized to its specified value.
The number in ACS is subtracted from the number
in ACD by taking the two’s complement of the num-
ber in ACS and adding it to the number in ACD.
The result of the addition is placed in the shifter,
If the operation produces a carry of 1 out of the
high-order bit, the carry bit is complemented.
The specified shift operation is performed and the
result of the shift is placed in ACD if the no-load
bit is 0. If the skip condition is true, the next
sequential instruction is skipped.

NOTE If the number in ACS is less
than or equal to the number
in ACD the carry bit is com-
plemented.

NEGATE
NEG<e><sh><#> acs,acd<,skip>

C

1

[#] s«
o N !

iz 13 14

[1]Aacs [aco [o o 1] sH |
o'l 2 3 4 5 & 7 8 9 15
The carry bit is initialized to the specified value.
The two's complement of the number in ACS is
placed in the shifter. If the negate operation pro-
duces a carry of 1 out of the high-order bit, the
carry bit is complemented. The specified shift
operation is performed and the result is placed in
ACD if the no-load bit is 0. If the skip condition
is true, the next sequential instruction is skipped.

NOTE If ACS contains 0, the carry
bit is complemented.

ADD COMPLEMENT

ADC<e><sh><#> acs,acd<, skip>

s’H} c g#
10t 12

sk]

;iiACS
i3 14 15

ngDiz 0 0
s} !{2 3‘456-789

The carry bif is initialized to the specified value.
The logical complement of the number in ACS is ad-
ded to the number in ACD and the result is placed

in the shifter. If the addition produces a carry of 1
out of the high-order bit, the carry bit is comple-
mented. The specified shift operation is performed,
and the result of the shift is loaded into ACD if the
no-load bit is 0. If the skip condition is true, the
next sequential instruction is skipped.

NQTE If the number in ACS is less

than the number in ACD, the
carry bit is complemented.

FIXED POINT ARITHMETIC

. 12

c"" Ty bit is mzﬁaﬁm@ to iihef 3@@@;&&& value.
i ems ai zf&CS are piaced in %he shzf%er. The

. Ef ?he skz;; cwéz%mn is ﬁm, ‘é:he mm
3 ms%mm is sk;pped

Example:

The MOVE instruction can be used to perform a
signed divide by a power of 2 without using another
accumulator. The following sequence of instruc-
tions will divide the signed, two's complement
number in AC2 by 4 without using another accumu-
lator.

MOVL# 2,2,SZC
MOVOR 2,2,SKP

;SKIP IF POSITIVE

JSHIFT RIGHT WITH 1 AND
; SKIP

;SHIFT RIGHT WITH 0 AND
; SKIP

;SHIFT RIGHT WITH 1 AND
; SKIP

JSHIFT RIGHT WITH 0 AND
; DON'T SKIP

MOVZR 2,2,SKP
MOVOR 2,2,SKP

MOVZR 2,2

Shifting a number right one bit position is equiva-
lent to dividing the number by 2. To perform divi-
sion of a signed number in this manner, the bit
shifted into the high-order bit must be equal to the
sign bit. The first instruction determines whether
to shift ina O or a 1.

%ﬁCﬁSk&Eﬁ?

P%’Q<e ><$f§> #> acs, aﬁé< skz%:vb

%i{] skp |
e L

The emy - is ,:m%}ahzeé to the mzﬁeﬁ value.

"fﬁe zmmhe : m ACS is mzzrem&s&g«e{i ?&g one 3,;}::{ the

{ i"me@ aﬁﬁi the result of E:f}e shift

is loaded intfi}é@?;f‘ the no-load bit is 0. If the
skip condition is true, the next sequential instruc-
tion is skipped.

NOTE If the number in ACS is 1777TTg
the carry bit is complemented,

LOGICAL OPERATIONS

The logical instruction set performs logical opera-
tions on operands in accumulators. The operands
are 16 bits long and are treated as unstructured
binary quantities. The logical operations included
in this set are: AND, and COMPLEMENT.

COMPLEMENT
COM<c ><sh><#> acs,acd<,skip >

[1]acs [aco [0 0 of sH
"o 1 2 3 4 5 & 7 8 9

C
0

[#] skp |
! i
2 13 14 15

The carry bit is initialized to the specified value.
The logical complement of the number in ACS is
placed in the shifter. The specified shift operation
is performed and the result is placed in ACD if the
no-load bit is 0. If the skip condition is true, the
next sequential instruction is skipped.

3-7

AND
AND<¢ ><sh><#> acs,acd<, skip >

[1]acs [aco 1 1 1] sH
o 1 2 3 4 5 & 7 B 3

#
12 13

SKP J
i4 15

C
kS
10

1

The carry bit is initialized to the specified value.
The logical AND of ACS and ACD is placed in the
shifter. Each bit placed in the shifter is 1 only if
the corresponding bit in both ACS and ACD is one;
otherwise the result bit is 0. The specified shift
operation is performed and the result is placed in
ACD if the no-load bit is 0. If the skip condition
is true, the next sequential instruction is skipped.

LOGICAL OPERATIONS

PROGRAM FLOW ALTERATION

As stated previously, the normal method of pro-
gram execution is sequential. That is, the proces-~
sor will continue to retrieve instructions from
sequentially addressed locations in memory until
directed to do otherwise. Instructions are pro-
vided in the instruction set that alter this sequen-
tial flow. Program flow alteration is accomplished
by placing a new value in the program counter.
Sequential operations will then continue with the
instruction addressed by this new value. Instruc-
tions are provided that change the value of the
program counter, change the value of the program
counter and save a return address, or modify a
memory location by incrementing or decrementing
and skip the next sequential instruction if the result
is zero.

JUMP
JMP <@ >displacement<,index >

]

lo o o]o o|@]inoex]
o' 1 2 3 4 5 6 7

’05 Sf’LAiCEMENT
s 10 11 12 13

8 i4 ’55

The effective address, "E' is computed and placed
in the program counter. Sequential operation con-
tinues with the word addressed by the updated value

of the program counter.

JUMP TO SUBROUTINE
JSR <@ >displacement< ,index >

DISPLACEMENT, |

lo o ofo 1 [@]moex]
9 10 Il 12 13 14 15

o' 1 2 3 4 5 & 7

g

The effective address, "E" is computed. Then the
present value of the program counter is incre-
mented by one and the result is placed in AC3. "E"
is then placed in the program counter and sequential
operation continues with the word addressed by the
updated value of the program counter.

NOTE The computation of "E" is
completed before the incre-
mented program counter is
placed in AC3.

3-8

INCREMENT AND SKIP IF ZERO

ISZ <@ >displacement< , index >

o 0 o]t ol@]moex]
o' 1 2 3 4 5 8 7

BCSPL&C)EMENT
9 0 1 12 13

8 4 15

The word addressed by "E" is incremented by one
and the result is written back into that location. If
the updated value of the location is zero, the next
sequential instruction is skipped.

DECREMENT AND SKIP IF ZEROC

DSZ <@ >displacement< , index >

[o o ofi 1]@[moex] DISPLACEMENT

IR
|

i

G 1 2 3'a4 5 & 7 8 9 0 1 2 13 4 B
The word addressed by "E'" is decremented by one
and the result is written back into that location. If
the updated value of the location is zero, the next

sequential instruction is skipped.

SECTION 4
INPUT/OUTPUT

INTRODUCTION

In order for the processor to perform useful work
for the user, there must be some method for the
program to fransfer information outside the ma-
chine. The Input/Output {I/0) instruction set pro-
vides this facility. There are eight I/O instructions
which allow the program to communicate with I/0
devices, control the I/O interrupt system, control
certain processor options, and to perform certain
processor functions.

The NOVA line has a 6-bit device selection net-
work, corresponding to bits 10-15 in the I/O in~
struction format. FEach device is connected to
this network in such a way that each device will
only respond to commands with its own device code.
Each device also has two flags, Busy and Done,
which control its operation. When Busy and Done
are both 0, the device is idle and cannot perform
any operations. To start a device, the program
must set Busy to 1 and set Done to 0. When a
device has finished its operation, it sets Busy to
0 and Done to 1. The case of Busy and Done both
set to 1 is a2 meaningless situation and will pro-
duce unpredictable results.

The format for the I/0 instructions is illustrated
below.

o | zl Aic !or—: cops }con’fﬁo&} .DE\{iCE' CODE

i
0 1 2 3 4 5 6 7 8 9 10 Ii 12 13 14 i5

Bits 0-2 are 011, bits 3-4 specify the AC, bits 5-7
contain the operation code, bits 8-9 control the
Busy and Done flags in the device, and bits 10-15
specify the code of the device. The six bits pro-
vided for the device code in the 1/0 format mean
that 64 unique device codes are available for use.
Some of these device codes, however, are reserved
for the CPU and certain processor options. The
remaining device codes are available for referenc-
ing I/O units. Some of the codes have been assigned
to specific devices by Data General and the assem-
bler recognizes mnemonics for these devices. A
complete listing of device codes, the devices as-
signed to these codes, and the mnemonics assigned
to the devices is available in Appendix A.

4-10f 6

OPERATION OF 1/O DEVICES

In general, the operation of all I/0O devices is done
by manipulation of the Busy and Done flags, In
order to operate a device, the program must first
ensure that the device is not currently performing
some operation. After the program has deter-
mined that the device is available, it can start an
operation on the device by setting Busy to 1 and
Done to 0. Once a device has completed ifs opera-
tion, and set Busy to 0 and Done to 1, it is avail-
able for another operation. The program can
determine this condition in one of two ways. By
using the I/0 SKIP instruction, the program can
test the status of the Busy and Done flags. Another
way is to utilize the interrupt system that is stan-
dard on the NOVA line of computers. The inter-
rupt system is made up of an interrupt request line
to which each I/0 device is connected, an Interrupt
On flag in the CPU, and a 16-bit interrupt priority
mask. The Interrupt On flag controls the status of
the interrupt system. If the flag is set to 1, the
CPU will respond to and process interrupts. If the
flag is set to 0, the CPU will not respond fo any
interrupts. An interrupt is initiated by an I/O de-
vice when it completes its operation. Upon com-
pleting the operation, the device sets Busy to 0 and
Done to 1. At this time, the device also places an
interrupt request on the interrupt request line,
provided that the bit in the interrupt priority mask
which corresponds to the priority level of the de~
vice is 0. If the mask bit is 1, the device sets
Busy to 0 and Done to 1, but does not place an in-
terrupt request on the interrupt request line.

If the Interrupt On flag is 1 at the time the proces-
sor completes execution of any instruction, the
processor honors any request on the interrupt re-
quest line. If the Interrupt On flag is 0, the CPU
does not look at the interrupt request line; it just
goes on to the next sequential instruction. The
CPU honors an interrupt request by setting the In-
terrupt On flag to 0 so that no interrupts can inter-
rupt the first part of the interrupt service routine.
The CPU then places the updated program counter
into memory location 0 and executes a "JMP@1"
instruction. It is assumed that location 1 contains
the address, either direct or indirect, of the in-
terrupt service routine.

OPERATION OF 1/O DEVICES

Once the CPU has transferred control to the inter-
rupt service routine, it is up to that routine to
save any accumulators that will be used, save the
carry bit if it will be used, determine which device
requested the interrupt, and then service the inter-
rupt. The determination of which device needs
service can be done by 1/0 SKIP instructions or the
routine can use the INTERRUPT ACKNOWLEDGE
instruction.

The INTERRUPT ACKNOWLEDGE instruction re-
turns the 6-bit device code of the device requesting
the interrupt. If more than one device is request-
ing service, the code returned is the code of that
device requesting an interrupt which is physically
closest to the CPU on the I/O bus. After servicing
the device, the interrupt routine should restore all
saved values, set the Interrupt On flag to 1, and
return {o the interrupted program. The instruction
that sets the Interrupt On flag to 1 (INTERRUPT
ENABLE) allows the processor to execute one more
instruction before the next interrupt can take place.
In order to prevent the interrupt service routine
from going into a loop, this next instruction should
be the instruction that returns control to the inter-
rupted program. Since the updated value of the
program counter was placed in location 0 by the
CPU upon honoring the interrupt, all the interrupt
routine has to do, after restoring the AC's and the
carry bit, is execute an INTERRUPT ENABLE in-
struction, a "JMP@O0" instruction and control will
be returned to the interrupted program.

PRIORITY INTERRUPTS

If the Interrupt On flag remains 0 through the in-
terrupt service routine, the interrupt routine can-
not be interrupted and there is only one level of
device priority. This level is determined by either
the order in which the 1/0 SKIP instructions are
issued or (if INTERRUPT ACKNOWLEDGE is used)
by the physical location of the devices on the bus.
In a system with devices of widely differing speed,
such as a teletypewriter versus a fixed head disc,
the programmer may wish to set up a multiple level
interrupt scheme. Hardware and instructions are
available that allow the implementation of sixteen
levels of priority interrupts.

4-2

Each of the I/0 devices is connected to a bit in the
16-bit priority mask. Devices which operate at
roughly the same speed are connected to the same
bit in the mask. Ewen though the standard mask
bit assignments have the higher numberad bits as-
signed to lower speed devices, no implicit priority
ordering is intended. The manner in which these
priority levels are ordered is completely up fo the
programmer. The listing of device codes in
Appendix A also contains the standard Dats General
mask bit assignments.

The condition of the priority mask is aliered by

the MASK OUT instruction. If a bit in the priority

mask is sef to 1, then all devices in the priority

level corresponding to that bit will be prevented

from requesting an interrupt when they complete

an operation. In addition, all pending interrupt

requests from devices in that priority level are

disabled. -

To implement a multiple priority level interrupt
handler, the interrupt handler must be written in
such a way that it may be interrupted without dam-
age. For this to be possible, the main interrupt
routine must save the state of the machine upon re-
ceiving control. The state of the machine consists
of the four accumulators, the carry bit, and the
return address. This information should be stored
in a unique place each time the interrupt handler is
entered so that one level of interrupt does not over-
lay the return information that belongs to a lower
priority level. After saving the return information,
the interrupt routine must determine which device
requires service and jump to the correct service
routine. This can be done in the same manner as
for a single level interrupt handler.

After the correct service routine has received con-

trol, that routine should save the current priority -

mask, establish the new priority mask, and enable

the interrupt system with the INTERRUPT ENABLE
instruction. After servicing the interrupt, the g
routine should disable the interrupt system with the
INTERRUPT DISABLE instruction, reset the pri-

ority mask, restore the state of the machine, en-

able the interrupt system, and return control to the -
interrupted program.

DATA CHANNEL

Handling data transfers between external devices
and memory under program control requires an
interrupt plus the execution of several instructions
for each word transferred. To allow greater trans-
fer rates the NOVA line contains a data channel
through which a device, at its own request, can
gain direct access to memory using a2 minimum of
processor time.

When a device is ready to send or receive dafa, it
requests access to memory via the channel. At the
beginning of every memory cycle the processor
synchronizes any requests that are then being
made. At certain specified poinis during the exe-
cution of an instruction, the CPU pauses to honor
all previously synchronized requests. When a re-
quest is honored, a word is transferred directly
via the channel from the device to memory or from
memory to the device without specific action by the
program. All requests are honored according to
the relative position of the requesting devices on
the 1/0 bus. That device requesting data channel
service which is physically closest on the bus in
serviced first, then the next closest device, and

so on, until all requests have been honored. The
synchronization of new requests occurs concur-
rently with the honoring of other requests, so ifa
device continually requests the data channel, that
device can prevent all devices further out on the
bus from gaining access to the channel.

Following completion of an instruction, the proces-
sor handles all data channel requests, and then
honors all outstanding I/O interrupt requests.

After all data channel and 1/0 interrupt requests
have been serviced, the processor continues with
the next sequential instruction. The data channel
is fully described in the " Programmer's Reference
Manual for Peripherals', ordering number
015-000021.

CODING AIDS

The set of I/0 instructions has options that can be
obtained by appending mnemonics to the standard
mnemonic. These optional mnemonies and their
result are given below.

CLASS CODED RESULT
ABBREVIATION | CHARACTER BITS OPERATION
i {option omitted) [Does not affect the
Busy and Done flags.

S 01 Start the device by
setting Busy to 1 and
Done to 0.

C 10 Idle the device by set-
ting both Busy and Done
to 0.

P 11 Pulse the special in-out
bus contrel line. The
effect, if any, depends
upon the device.

4-3

1/O INSTRUCTIONS
DATAIN A

DIA<f> ac, device

[o 1+ 1] ac Jo o 1] F | DEVICE CODE |
o]

{2 3 4 5 8 7T 8 & 10 It 2 12 14 5

The contents of the A input buffer in the specified
device are placed in the specified AC. After the
data transfer, the Busy and Done flags are set
according to the funciion specified by F.

The number of data bits moved depends upon the
size of the buffer and the mode of operation of

the device. Bits in the AC that do not receive
data are set to 0.

DATAINB

DIB<f> ac,device

o t t] ac Jo 1+ 1] F | DEvIcE copE |
o1 2 3 4 5 & 7 & 9 10 11 12 13 14 15

i

The contents of the B input buffer in the specified
device are placed in the specified AC. After the
data transfer, the Busy and Done flags are set
according to the function specified by F.

The number of data bits moved depends upon the
size of the buffer and the mode of operation of
the device. Bits in the AC that do not receive
data are set to 0.

1/O INSTRUCTIONS

DATAINC DATAQUT C

DIC<{f> ac,device DOC<=_§__> ac, device

(0 1 t] ac i o [F [ToEvicecooE | fo 1 1] ac [1 1 o F _DEVICE CODE |
o i 2 3 4 5 s 7 € 9 10 it 12 13 14 15 O 2 3 4 5 8 7 8 9 0 il 12 13 i4 i5

The contents of the C input buffer in the specified
device are placed in the specified AC. After the
data transfer, the Busy and Done flags are set
according to the function specified by F.

The number of data bits moved depends upon the
size of the buffer and the mode of operation of the
device, Bits in the AC that do not receive data
are set to 0.

DATA QUT A
DOA<f> ac,device

1 t] ac Jo 1 of F | pEVICE copE |
O 1 2 3 4 5 6 7 8 9 1o 1 12 13 14 15

The contents of the specified AC are placed in the
A output buffer of the specified device. After the
data transfer, the Busy and Done flags are set
according to the function specified by ¥. The con-
tents of the specified AC remain unchanged.

The number of data bits moved depends upon the

size of the buffer and the mode of operation of the
device.

DATA OQUT B

DOB<f> ac,device

]

o t 1] ac v o o] F | pevice cooe
0O i 2 3 4 5 8 7 8 9 10 11 12 13 1458

The contents of the specified AC are placed in the
B output buffer of the specified device. After the
data transfer, the Busy and Done flags are set
according to the function specified by F. The con-
tents of the specified AC remain unchanged.

The number of data bits moved depends upon the
size of the buffer and the mode of operation of the
device.

4-4

The contents of the specified AC are placed in the
C output buffer of the specified device. After the
data transfer, the Busy and Done flags are set
according to the function specified by ¥. The con-
tents of the specified AC remain unchanged.

The number of data bits moved depends upon the
size of the buffer and the mode of operation of the
device.

The 1/O SKIP instruction enables the programmer
to make decisions based upon the values of the
Busy and Done flags. Which test is performed is
based upon the value of bits 8-9 in the instruction.
Bits 8-9 can be set by appending an optional mne-
monic to the I/O SKIP mnemonic. The optional
mnemonics and their results are given below.

CLASS CODED RESULT
ABBREVIATION| CHARACTER| BITS OPERATION
t BN 00 Tests for Busy = 1.
BZ 01 Tests for Busy = 0.
DN 10 Tests for Done = 1.
DZ 11 Tests for Done = 0.
1/0 SKIP
SKP<it> device
LO;’ 'f°;°!’g’ s{ T] DEVICE CODE
i i
0" 1 2 34 5 67 & 5 w0 1 213 4 5

If the test condition specified by T is true, the
next sequential instruction is skipped.

NO 1/0 TRANSFER

NIO<f> device
]ollia{o o}o{oo F _DEVICE CODE j
0o'1 2 3"a 5 87 8 S50 0 12713 14 B

The Busy and Done flags in the specified device
are set according to the function specified by F.

CENTRAL PROCESSOR FUNCTIONS

1/0 instructions with a device code of 77 perform
a number of special functions rather than control-
ling a specific device. In all but the I/O SKIP in~
struction, 1/0O instructions with a device code of
77 use bits 8-9 to control the condition of the
Interrupt On flag. An I/O SKIP instruction with a
device code of 77 uses bits 8-9 to either test the
state of the Interrupt On flag or to test the state of
the Power Fail flag. The mnemonics are the same
as for normal 1/0 instructions. . The table below
gives the result of these bits for instructions with
a device code of 77.

RESULT
BITS

CODED
CHARACTER

CLASS

ABBREVIATION OPERATION

Does not affect the
state of the Interrupt
On flag.

Set the Interrupt On
flag to 1.

60

{ {omitted)

10 Set the Interrupt On

flag to 0.

Does not affect the
state of the Interrupt
On flag.

Tests for Interrupt
On = 1.

Tests for Power
Fail = 1.

Tests for Power
Fail # 0.

00

BZ 01

DN

DZ 11 Tests for Power

Fail = 0.

The device code of 77 deals mainly with proces-
sor functions and has, therefore, been given the
mnemonic of CPU. In addition, many of the 1/0O
instructions that reference this device code have
been given special mnemonics. While these
special mnemonics are functionally equivalent to
the corresponding 1/0 instructions with a device
code of 77, there is the following limitation; the
mnemonics for controlling the state of the Inter-
rupt On flag cannot be appended to them. If the
programmer wishes to alter the state of the Inter-
rupt On flag while performing a MASK OUT in-
struction, for example, he must issue the
appropriate 1/0 instruction (DOB<f> ac,CPU)
instead of the corresponding special mnemonic
(MSKQO ac,CPU). If the special mnemonic is
used, bits 8-9 are set to 00. In describing the
instructions, the special mnemonic for the cor-
responding 1/0 instruction will be given first, fol-
lowed by the 1/0 instruction.

4-5

INTERRUPT ENABLE

INTEN
NIOS CPU
ot 1]oojoo ofo 1[vr 1 1 1 1 1]
o 1 2 % 4 5 & 7 8 9 0 Jt 2 13 14 15

The Interrupt On flag is set to 1. If the state of
the Interrupt On flag is changed by this instruction,
the CPU allows one more instruction to execute
before the first I/O interrupt can occur,

INTERRUPT DISABLE

INTDS

NIOC CPU

o 1 1]o ofo o ofr ol 1 1 1 11
o' 1 2 3 4 5 6 7 8 9 10 14 12 I3 14 15
The Interrupt On flag is set to 0.

READ SWITCHES

READS ac

D1A<i> e_z___q,CPU

EREN N - A E
o] 1 2 3 4 5 6 7 8 9 03 12 13 14 45

The setting of the console data switches is placed
in the specified AC. After the transfer, the Inter-
rupt On flag is set according to the function speci-
fied by F.

INTERRUPT ACKNOWLEDGE

INTA ac

DIB<{> ac,CPU

[0 1 o v [F [v]
o' 1 2 3 4 5 6 7 8 9 2 13 14 15

The six-bit device code of that device requesting an
interrupt which is physically closest to the CPU on
the bus is placed in bits 10-15 of the specified AC.
Bits 0-9 of the specified AC are set to 0. After the
transfer, the Interrupt On flag is set according to
the function specified by F.

CENTRAL PROCESSOR FUNCTIONS

MASK QUT HALT

MSKO ac HALT

DOB<f> ac,CPU DOC<f> ac,CPU

fo v ifac ool f [v v v] o v afac [t v o] Flv o v 0]
o' { 2 3 4 5 & 7 8 9 0 il iz i3 4 5 o'1 2 34 85 8 7 B 9 10 Il 12 i3 14 15
The contents of the specified AC are placed in the The Interrupt On flag is set according to the func-

priority mask. After the transfer, the Interrupt tion specified by F and then the processor is

On flag is set according to the function specified by stopped.

F. The contents of the specified AC remain un-

NOTE If the mnemonic DOC is used

changed.
to perform this function, an
NOTE A 1 in any bit disables in- accumulator must be coded to
terrupt requests from de- avoid assembly errors. Dur-
vices in the corresponding ing execution of this instruc-
priority level. tion, the AC field is ignored.
170 RESET CPU SKIP
IORST SKP<t> CPU
DIC<f> ac,CPU
= = o 1t tJoofr i] T N
[OlifACIIO%]FfliilIIJ 01 2 3'a 5 6 7 8 9 10 1l Iz 13 14 15
st T s 3 a5 et T e s 1o s a s If the test condition specified by T is true, the next

sequential instruction is skipped.
The Busy and Done flags in all I/O devices are set
to 0. The 16-bit priority mask is set to 0. The
Interrupt On flag is set according to the function
specified by F.

NOTES The assembler recognizes
the instruction IORST as
equivalent to DICC 0,CPU.

If the mnemonic DIC is used
to perform this function, an
accumulator must be coded
to avoid assembly errors.
Regardlessof how the in-
structionis coded, during ex~
exution, the AC field is ig-
nored and the contents of the
AC remain unchanged.

4-6

SECTION 5
PROCESSOR OPTIONS

INTRODUCTION

Optional equipment for the NOVA line computers
includes a power monitor with the facility for
automatic restart after a power failure, multiply/
divide, real-time clock.

POWER FAIL

In the NOVA line, when power is turned off and
then on again, core memory is unaliered. How-
ever, when the power is turned on, the state of the
accumulators, the program counter, and the var-
jous flags in the CPU is indeterminate. The power
fail option provides a 'fail-soft" capability in the
event of unexpected power loss.

In the event of power failure, there is a delay of
one to two milliseconds before the processor shuts
down. The power fail option senses the imminent
loss of power, sets the Power Fail flag, and re-
quests an interrupt. The interrupt service routine
can then use this delay to store the contents of the
accumulators, the carry bit, and the current pri-
ority mask. The interrupt service routine should
also save location 0 (to enable return to the inter-
rupted program), put a JUMP to the desired re-
start location in location 0, and then execute a
HALT. One to two milliseconds is enough time to
execute 200 to 1500 instructions depending on the
processor, so there is more than enough time to
perform the power fail routine.

When power is restored, the action taken by the
automatic restart portion of the power fail option
depends upon the position of the power switch on
the front panel. If the switch is in the "on' posi-
tion, the CPU remains stopped after power is re-
stored. If the switch is in the '"lock' position,
then 50ms after power is restored, the CPU exe-
cutes a ""JMP 0" instruction, restarting the inter-
rupted program.

The power fail option has no device code and no
interrupt disable bit in the priority mask. If does
not respond to the INTERRUPT ACKNOWLEDGE
instruction. The Power Fail flag can be tested by
the CPU SKIP instruction. Testing of the Power
Fail flag is described below.

SKIP IF POWER FAIL FLAG IS ONE

SKPDN CPU
[o v vJooft i it oft 1 1
o' 1 2 3 4 5 & 7 8 9 10 il 12 13 14 I5

If the Power Fail flag is 1 {i.e., power is failing),
the next sequential instruction is skipped.

SKIP IF POWER FAIL FLAG IS ZERO

SKPDZ CPU
[o 1 rfo ofr v 1 Wl
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

If the Power Fail flag is 0 (i.e., power is not fail-
ing), the next sequential instruction is skipped.

MULTIPLY /DIVIDE

Multiplication can be performed on the NOVA line
by software routines that utilize the standard in-
struction set, but if many of these operations are
required, a loss of efficiency can result. The
multiply/divide option provides the capability of
performing these operations in hardware, with a
corresponding increase in CPU efficiency and
utilization. Two versions of this option are avail-
able: one for the NOVA computer, and one for the
rest of the computers in the NOVA line. The two
versions of this option and the instructions for each
are described below.

NOVA MULTIPLY /DIVIDE

The multiply/divide option for the NOVA computer
is an I/0O device and is controlled by I/O instruc-
tions. The device code for the NOVA computer
multiply/divide option is 1. It has no Busy and
Done flags and does not respond to the INTERRUPT
ACKNOWLEDGE instruction. It has three buffers:
A, B, and C that can be writien and read using stand-
ard I/0 instructions. Multiplication and division is
controlled by the setting of the control field in the
1/0 instruction. The control field setting and the
resulting operation are described below.

5-1 of 29

POWER FAIL

COBED RESULT
N{CHARACTER] BITS

CPEHATION

{option 48 None
amitied)
K o1 The contents of the A and B

buffers are treated as an un-

] , double length integer,
with the A buffer being the

left half and the B buffer being
the right hall, This number is
divided by the unsigned integer
o0 ed in the C buffer. The
quotient is placed in the B buf-
fer and the remainder is placed
in the A buffer. The contents
of the C buffer remain unchanged,

The A buffer is set to 0.

kol

11 The unsigned integers contained
in the B and C buffers are mul-
tiplied together to form a double
length, unsigned, intermediate
result. The unsigned inleger
contained in the A buffer is added
to this number and the final result
is placed in the & and B buffers.
The left half is placed in the A
buffer and the right half is placed
in the B buffer. The contents of
the C buffer remain unchanged.

NON-NOVA MULTIPLY /DIVIDE

The multiply/divide option for the rest of the com-
puters in the NOVA line is a part of the CPU. For
compatibility, the instructions for the option are
I/0 instructions that reference device code 1.

The assenibler recognizes the mnemonics MUL
and DIV for these operations. The Mnemonics
and the 1/0 instructions generated along with a
description of the instructions appear below.

PAULTIPLY
MUL

DOCP 2, MDV

(o1 rfrofi 1 o[t 1o 00 0 0 1]
O 1 2 3 4 5 8 7 8 2 10 i 2 i3 14 15

The 16-bit unsigned number in AC1 is multiplied
by the 16-bit unsigned number in AC2 to yield a
32-bit unsigned intermediate result. The 16-bit
unsigned number in ACO is added fo the intermediate
result to produce the final result. The final result
is a 32-bit unsigned number and occupies ACO and
ACL. Bit 0 of ACO is the high-order bit of the re-
sult and bif 15 of AC1 is the low-order bit, The
contents of AC2 remain unchanged. The carry bit
remains unchanged. Because the result is a
double~length number, overflow cannot occur.

DIVIDE

DIV

DOCS 2, MDV

ot 1Jrofi 1T oo 1o o 00 o
61 2 3 4 8 67 8 8 0 11 23 4 s

The 32-bit unsigned number contained in ACO and
AC1 is divided by the 16-bit unsigned number in
AC2. The quotient and remainder are 16-bit un-
signed numbers and are placed in AC1 and ACO,
respectively. The carry bit is set to 0. The con-
tents of AC2 remain unchanged.

NOTE Before the divide operation
takes place, ACO is com-
paredto ACZ, If the number
in ACO is greater than or
equal to the number inAC2,
an overflow condition is in-
dicated. The carry bitis set
to 1and the operationis ter-
minated. All operands re-
main unchanged.

REAL-TIME CLOCK

The Real-Time Clock (RTC) option available on the
NOVA line generates a sequence of pulses that is
independent of the CPU timing. It will generate
I/0O interrupts at any one of four program select-
able frequencies. The Busy and Done flags of the
RTC option are controlled by bits 8-9 of the I/0
instruction. The RTC option is device code 14g and
has the mnemonic RTC. The interrupt disable bit
is priority mask bit 13.

Setting Busy allows the next pulse from the clock
to set Done, and the RTC option requests an I/0
interrupt if its interrupt disable bif is 0. A DATA
OUT A instruction to select the clock frequency
only has to be given once. After each interrupt, an
NIOS instruction will setf up the clock for the next
interrupt.

When Busy is first set the first interrupt can come
at any time up to the clock period. After the first
interrupt has occurred, succeeding interrupts

come at the clock frequency, provided that the pro-
gram always sets Busy before the clock period ex-
pires. After power up or I/O reset, the cloek is
set to the line frequency. After power up the line
frequency pulses are available immediately, but
five seconds must elapse before a steady pulse train
is available from the crystal for other frequencies.

The RTC frequency is selected by the following
instruction,

p—

SELECT RTC FREQUENCY

DOA<f> ac,RTC

[T oo a Jo 1 o] F Jo ol 1 00
0223456?89@32‘2‘!35435

The clock frequency is set according to bits 14-15
of the specified AC. The contents of the specified
AC remain unchanged.

AC BITS 14-15 FREQUENCY
00 AC line frequency
01 10Hz
10 100Hz
11 1000Hz

MEMORY MANAGEMENT AND
PROTECTION UNIT

BGckg(pund to Address Translation

The concept behind the Memory Management and
Protection Unit (MMPU) available with the NOVA
830 and NOVA 840 computers is that of '" Logical-
to-Physical Address Translation” . The amount of
memory required by a user's program is defined

to be his "' logical address space' . This space may
be as large as 32 1K pages. The areas of physical
storage assigned to the user are defined to be his

" physical address space” . The address transla-
tion function that converts addresses in the logical
space to addresses in the physical space is called
the '"address map' for that user. Each user has
his own, unique logical-to-physical address map.
In addition, there is a map for the data channel
which can be, but does not have to be equal to the
user map. The multiprogramming operating sys-
tem determines what these maps are to be, and then
transmits this information to the MMPU, The fol-
lowing instruction shows a possible two-user con-
figuration.

Figure 1 shows a 128K physical address space and
its utilization by a two-user multiprogramming
system. The supervisor resides in pages 0-7 of
physical space. The first 16 pages of user #1 are
in pages 8-23 of physical memory. The remain-
ing 16 pages of the address space for user #1 re-
side in pages 40-55 of physical space. User #2
also has his 32K of logical space split into two

5~

areas. Pages 0-15 of user #2 are in pages 24-39
of physical space and pages 24-39 of physical
space and pages 16-31 of user #2 are in pages
58-71 of physical space. The data channel is
capable of servicing both users. Any data chan-
nel reference to pages 0-15 of logical space will
be mapped to pages 0-15 of the logical space of
user #1. Any data channel reference fo logical
pages 16-31 will be mapped to pages 0-15 of the
logical space of user #2.

PHYSICAL USER 2
MEMORY LOGICAL
O o
SUPERVISOR
USER 1
LOGICAL
8] R e
el
16
15 23
15 24
=t
e 31
i <
oCH
LOBGICAL
E] T ©
40 i
R
SR
55 15
56
31
]
72
56 -00233 hey T

Figure 1 Logical-to-Physical Address Translation

3 BACKGROUND TO ADDRESS TRANSLATION

In order to manage memory efficiently, the operat-
ing system makes use of the validity and write
protect features of the MMPU. Figure 2 shows a
two-user configuration where these features are
used.

In Figure 2, a "W in a page means the page is
write-protected. By convention, mapping a logical
page to physical page 127 and write protecting it
makes that page validily profected. Both users
have declared that page 1 of their logical space is
to be write-protected.

Physical page 8 is the logical page 1 for user #
and physical page 10 is the logical page ! for user
User #1 is only using 13 pages of his 32 page
logical address space, so logical pages 13-31 have
been declared invalid for him. Any reference by
user #1 to logical pages 13-31 will cause a validity
error. User #2 is only using 21 pages of his logi-
cal address space, so logical pages 21-31 of his
iogical space have been declared invalid. Any
reference by user #2 to logical pages 21-31 will
result in a validity error.

PHYSICAL
MEMORY
0
SUPERVISOR]
USER | 7 USER 2
LOGICAL 8 w LOGICAL

0 9 e ——)
i 0w <y
2 i 2

12 <J 3

i3
8
9

=]

20
2 12
13 13

—
29 20
30 21
] Sl
33
34
el

3i 41 31

42

k> k-
DE-00232
LomTN07 W]

Figure 2 Logical-to-Physical Address Translation
With Write and Validity Protection

5-4

The MMPU resides between the memory and the
CPU, and the memory and the data channel, and

is transparent to all of them. When either the

CPU or the data channel requests a2 memory opera-
tion, the MMPU intercepts and services the re-
quest. the MMPU translates the 15 bit logical
address coming from the CPU or the data channel
into a 17 bit physical address. The memory opera-
tion is then performed using this 17 bit address.
The memory access cycle time is unchanged.

The MMPU operates in two modes called user mode
and supervisor mode. In user mode, all logical
addresses coming from the CPU are translated us-
ing the user map. Checking is also performed for
all protection features that are enabled. In super-
visor mode, the user map for logical pages 0-30 is
disabled and no protection checking is performed.
All addresses in the range 760005-77777g will be
translated using the user map for logical page 31.
This enables the supervisor to access portions of

5-

user space while in supervisor mode, withouf re-
sorting to lengthy use of the ENABLE SINGLE
CYCLE instruction. The data channel map can be
enabled or disabled in either of these modes.

The mapping information needed to service a CPU
or data channel request is given to the MMPU by
the operating system through I/0 instructions that
reference the MMPU. This information is trans-
mitted before the supervisor enables either the user
map or the data channel map.

When power is first turned on, or after an IORST
instruction, the MMPU is in the supervisor mode
and the data channel map is disabled. Logical

page 31 is mapped to physical page 31. On power
up, the user map, data channel map, and the device
protect codes are undefined. After the first LOAD
MAP instruction, logical page 31 is mapped accord-
ing to whatever address is in that portion of the
MMPU.

° BACKGROUND TO ADDRESS TRANSLATION

MMPU INSTRUCTION SET

The Memory Management and Protection Unit

is programmed with ten I/0O instructions. Through
the use of these instructions, the multiprogramm-
ing operating system tells the MMPU what the ad-
dress translation functions are to be. An address
translation function is called a "map' and the two
maps for the MMPU are the "user map' and the
""data channel map”. These two maps are sepa-
rate and independent. They can be enabled con-
currently. Enabling the user map allows the
MMPU to translate addresses for the CPU. Enabl-
ing the data channel map allows the MMPU to trans-
late addresses for the data channel.

The instructions for the MMPU are in the standard
I/0O format. The device code for the MMPU is 2.

LOAD MAP

DOA ac,MMPU

o 1 1A clo 1 ofo oo 0o 01 o

0:23’456‘789;0;11253:415

The contents of the specified AC are transferred to
the MMPU. The contents of the specified AC re-
main unchanged. The format of the AC is as
follows:

{ ol o i g j Logical Page ! H { Physical Page }
0O 1 2 3 4 5 & 7 8 9 10 i1 12 13 14 15
BITS CONTENTS

0 Must be 0.,
1 Must be 0,

2 0 = this instruction gives an address trans-
lation for the CPU (user map).

1 = this instruction gives an address trans-
lation for the data channel (data chan-

nel map).
3-7 Logical page number. This is an octal

number in the range 0-37,

8 0 = no write-protect for this page.

1 = this page is to be write -protected,

NOTE: A logical page is validity protected
by mapping it to physical page num-
ber 127 and setting the write-
protect bit.

NOTE: If both the data channel bit and the
write-protect bit are set, the write
protect bit is ignored,

9-15 | Physical page number. This is an octal

number in the range 0-177,

This is the instruction that sets up the translation
function from logical memory to physical memory,
After this instruction is issued and the correspond-
ing mapping feature enabled, any address in the

1K logical page is translated to the cerrespez}dmg
address in the 1K physical page.

Example:

Assume that a LOAD MAP instruction has been is-
sued with bit 2=0, logical page=24, and physical
page=105, With the user map enabled, the CPU
requests data from location 50302. The MMPU
will intercept this request, translate it, and re-
trieve the data from physical location 212302,

This LOAD MAP instruction, mapping logical page
24 to physical page 105, would allow the mapping
of all addresses in the range 50000-51777 of logi-
cal memory. Any request for an address in this
1K page would be translated to locations 212000~
213777 in physical memory.

NOTE All numbers in the above ex-
ample are octal.

LOAD DEVICE PROTECTION

DOA ac, MMPU

[o,:1a]Alc{o'xio[olo}olo’o.os:‘c

0O 1 2 3 4 5 67 8 9 10 1 12 13 14 15

The contents of the specified AC are transferred to
the MMPU, The contents of the specified AC re-
main unchanged., The format of the AC is as
follows:

g ¢ i H 1 i?nored i i?;é%' { Device Pm:teci Bifs }
0 ! 2 3 4 5 6 7 8 8 10 1 12 13 14 15
BITS CONTENTS

0 Must be 0,
1 Must be 1.

2-4 Ignored.

5-7 Device class. This is an octal number in
the range 0-7. This is the most significant
digit of the two-digit octal device code.

8-15 | Device protect bits. The second digit of

the two-digit octal device code is specified
by the position in this field. A one in any
bit protects the corresponding unit from re-
ceiving any commands directiy from the
user. For example, if bitg 5~7 are 010 and
bits 8-15 are 01010000, then devices 21 and
23 are protected.

NOTE: Code 77 functions such as HALT,
INTDS, IORST, etc., may be for-
bidden to the user by issuing this
instruction with the contents of the
specified AC set to 043401 (octal).

5-6

S

LOAD PROTECTION CONTROL

DOA ac, MMPU

[o 1 0jo 0jo0 00 I O]

o 1 1]AC
577 2 3 4 5 6 7 8 8 0 11 12 i3 14 18

The contents of the specified AC are transferrved o
the MMPU. The contents of the specified AC re-
main unchanged. The format of the AC is as
follows:

o, [T~ 1
", cga}z,/ol |
2 3 4 5 6 7

ignored §
1

I . ;
itoj2 13

i

8 9

1]

i
o] 10

CONTENTS

Must be 1.
1 Must be 1.
2 0
1
3 Write-protect,
0

disable defer protection.

1

enable defer protection.

i}

disable write-protection.

enable write-protection.

/O protect.

i

disable I/0 protection.

enable I/0 protection.

[y
i

5 Data channel map.
0 = disable data channel map.
1 = enable data channel map.

NOTE: If this bit is 1, the data channel
map is enabled immediately.

NOTE: Each protection may be enabled
independently of the others.

6-15 | Ignored.

This instruction controls the data channel map and
the protection features of the MMPU.

If a protection is disabled, the MMPU does no
checking for it, and if a viclation occurs, takes no
action. If a protection is enabled, the MMPU
checks each instruction for a violation of that pro-

tection and, if one is found, enters the supervisor
mode and transfers control ("traps') to a specific
physical location in the supervisor. These trap
locations and the conditions that cause the trap are
as follows:

TRAP
LOCATION (octal) TRAP CAUSE
40 1/0 protect violation
Validity violation
41 Runaway defer violation
Write viclation

5-7

These locations should contain jump instructions
that will {ransfer control to supervisor routines
that will determine the exact error and its severity
and then take action.

The trap operation is equi~

valent to a direct jump to
one of the trap lecations.

ENABLE USER MAP

NIOS MMPU
jo 1 1]o oJlo o olo 1|0 00 01 O
o i 2z 34 5 &' 7 8 9 0 It 12 13 14 5

The address translation function for the CPU is
enabled. Three fetch or defer cycles are allowed
to elapse, then all CPU requests for memory are
translated according to the previous LOAD MAP
instructions. Entry into a user program should be
done in the following manner:

;SOME COMBINATION OF

: LOAD PROTECTION

; CONTROL, LOAD DE-

; VICE PROTECTION, AND

; LOAD MAP,
NIOS 2
INTEN
JMP @ .+1
ADDR :USER START ADDRESS

The contents of ADDR and all succeeding CPU re-
quests for memory are mapped.

MMPU INSTRUCTIONS

INITIATE PAGE CHECK

DOA ac,MMPU

2011

EziAC}o;oiooIoaeoao
o+ 2 3

4 5 6 7 & 9 0 it 12 i3 14 15

The contents of the specified AC are transferred to
the MMPU for later use by READ STATUS. The
contents of the specified AC remain unchanged.
The format of the AC is as follows:

§ i I o ig i Logical Page ; ignored
o't 2 3 4 5 8 7 8 2 10 1 12 i3 14 15
BITS CONTENTS
0 Must be 1.
1 Must be 0.
2 Data channel bit.
0 = this instruction refers to the user map.
1 = this instruction refers to the data chan-
nel map.

3-7 Logical page. This is an octal number in
the range 0-37, and is the number of the
logical page for which status will be re-
quested.

8-15 | Ignored.

This instruction is used, in conjunction with the
READ STATUS instruction, to determine the trans-
lation function for a logical page. The INITIATE
PAGE CHECK instruction indicates to the MMPU
which map and logical page should be referenced
for the next READ STATUS instruction.

READ STATUS

DIC ac, MMPU

o 1 1jaclioi]ooflooo0oo0 1 0

i
o 1 2 3 &4 5 & 7 8 9 10 11 12 13 14 15

The status bits for the MMPU and the write -protect
bit and physical page number which correspond to
the logical page number given in the last INITIATE
PAGE CHECK instruction are placed in the speci-
fied AC, The previous contents of the specified
AC are lost. The format of the data placed in the
specified AC is as follows:

/6 5 F i ; 1
z "r%%‘ Vie g;@ f f;t Ple ’3 Physical Page .
7 8

o g 0 I 12 13 14 5

Y,
yiu

5-8

BITS MEANING IF SET

User mode. The last program interrupt
occurred while in user mode,

1 Write violation. A write violation has
occurred.

1/0 violation. An I/0O violation has oc-
curred.

Validify violation. A wvalidity violation has
occurred,

Single instruction map. The error oc-
curred in the map cycle of an ENABLE
SINGLE CYCLE instruction.

Reserved for future use.

Defer violation. The seventeenth level of
a defer loop has been detected.

Floating point. A write-protect violation
or validity vielation occurred during a
floating point unit data channel cycle.

Write-protect. This is the write-protect
bit associated with this physical page.

9-15 | Physical page. This is an octal number in
the range 0-177 and is the number of the
physical page which corresponds to the
logical page given in the last INITIATE

PAGE CHECK.

READ INSTRUCTION ADDRESS

DIA ac,MMPU

o 0

i

9

0,00 0 1
ST § I A - B)

.0
15

O i
o i 2

1ja clo o 1]
34 5 6 7 8

The logical address of the instruction that caused
the trap is placed in the specified AC. After the
instruction, bit 0 of the specified AC is cleared
and bits 1-15 contain the address as an octal num-
ber in the range 0-77777. The original contents
of the specified AC are lost.

READ INVALID ADDRESS

DIB ac, MMPU

i1]o ofo 000 1 0
i3 14 5

0 1 1ia clo 1
"t 2 34 5 8 7 8 9 0 1 12

The logical address which caused the trap is placed
in the specified AC. After the instruction, bit 0 of
the specified AC is cleared and bits 1-15 contain
the address as an octal number in the range
0-77777. The original contents of the specified

AC are lost.

ENABLE SINGLE CYCLE

NIOP MMPU
T

[0 1 1]o oJo o o]1 1]ooo0 o010
o 1 2 3 4 5 € 7 8 9 10 i 2 13 14 15

The data fetch portion of an instruction is trans-
lated using the user map. Two fetch or defer
cycles are allowed to elapse and the third fetch or
defer cycle is translated using the user map. Suc-
ceeding fetch or defer cycles are mapped until an
execute cycle occurs. Affer the first execute cycle,
the user map is disabled and succeeding instruc-
tions are done in supervisor mode.

NOTE No protection features are
enabled during this mapping
process.

This instruction can be used for at least two pur-
poses:

a) to access data out of logical memory when not
in user mode with a minimum of overhead.

b) to execute an instruction in the supervisor as if
it were a user instruction.

NOTE This instruction clears the
status register.

Example:

The following instructions will load the contents of
logical location 400g into ACO while in supervisor
mode:

NIOP 2

LDA 0,@.+2
JMP L+2
000400

5-9

PHYSICAL

LOGICAL MEMORY
Q O
400 b SUPERVISOR
|
| NIOP 2
R LDAD, @2
MP 42)
000400

7
2

5

z pr—
23
24

31 {:
39
a0
S 3

06-00235

127

Figure 3 Graphic Representation of Example

SUPERVISOR CALL

NIOC MMPU

o 1 1]o olo o oli 0lo0 00 1 0

|
0’1 2 3 4 5 6 7 8 9 10 1l 12 13 14 15

The MMPU disables I/O requests, enters the
supervisor mode and the next instruction is fetched
from location 42 (octal) of physical memory. This
instruction can be used to implement supervisor
functions at the discretion of the individual instal-
lation.

MMPU INSTRUCTIONS

SUPERVISOR PROGRAMMING FOR THE
MEMORY MANAGEMENT
AND PROTECTION UNIT

Setting Up For Translation

The information that allows the MMPU to translate
addresses comes from the mulliprogramming
supervisor. The instructions used are LOAD
MAP, LOAD DEVICE PROTECTION, and LCAD
PROTECTION CONTROL. By using the LOAD
MAP instruction, the supervisor gives the MMPU
a beginning physical address for each of the 32
logical pages. At any single pointf in time, all 32
pages should be described. If there is no physical
storage available to hold a logical page {(for in-
stance a machine with 16K of storage), then that
page should be mapped to physical pagenumber 127
and write-protected. If this is the case, any
attempted reference to this logical page will gen-
erate a validity trap. The LOAD MAP instruction
is also used to direct the actions of the data chan-
nel. If the user is allowed to directly initiate data
channel activity, the data channel map should be
the same as the user map. If, however, the con-
vention is that the supervisor will perform all 1/0,
the data channel map need not be the same as the
user map.

LOAD DEVICE PROTECTION tells the MMPU what
devices are to be declared inaccessible to the user.
If the user tries to access a protected device and
1/0 protect is enabled, the MMPU will generate an
1/0 protect trap and the supervisor can take appro-
priate action. This allows the implementation of
user dedicated devices.

NOTE Although the 8020 Floating
Point Processor is an /O
device and operatesthrough
the data channel, all float-
ing point operations are pro-
cessedusing the user map,

After issuing the desired LOAD MAP and LOAD
DEVICE PROTECTION instructions, the super-
visor can direct which protect features are to be
enabled by the LOAD PROTECTION CONTROL in-
struction. Each protect feature described in the
LOAD PROTECTION CONTROL instruction can be
enabled separately and independently of the others.
When the supervisor has established the parameters
for address translation, the ENABLE USER MAP
instruction tells the MMPU to begin translating
addresses. The MMPU will continue its mapping
function until it senses a protection violation, at
which point it will trap into the supervisor as
deseribed in the next section.

FAPPU Protection Processing

in order to achieve efficient processing, the
MMPU must perform its task uniil an exceptional
condition arises and then fell the supervisor about
the condition in a forthright manner. The MMPY
does this through the use of two trap locations and
three instructions. The trap locations are pre-
determined addresses in physical memory where
the supervisor places instructions that are eniries
into supervisor routines. When the MMPU senses
a violation of one of the enabled protect features,
it will disable address franslation, and direct the
CPU to fetch the next instruction from one of these
locations depending on the type of condition. The
trap locations and their corresponding condition
types are as follows:

PHYSICAL LOCATION CONDITION
{octal)
40 1/0 protect or validity
error
41 Runaway defer or wriie
protect error

The MMPU instructions that allow the supervisor
to determine what caused the trap are READ IN-
STRUCTION ADDRESS, READ INVALID ADDRESS,
and READ STATUS. Upon entry into the 1/O pro-
tect, validity error, runaway defer, or write-
protect error routines, the supervisor can use
these instructions fo determine the type of error
and its location. After learning this information,
the supervisor can take appropriate action and re-
start or abort the user,

The MMPU performs checking only for these pro-
tection features that are enabled. The four types
of protection and how they are handled in the
MMPU are discussed below,

1/O Protection

If 1/0 protection is enabled, the MMPU decodes all
1/0 instructions and then looks in the I/0 protect
table to see if the referenced device is user pro-
tected. If if is not, the MMPU takes no action. If
the device is protected, the MMPU does not allow
execution of the instruction. Instead, the MMPU
stores in both the INSTRUCTION ADDRESS and
INVALID ADDRESS registers the logical address of
the instruetion, disables 1/0 interrupt request,
enters the supervisor mode, and directs the CPU
to fetch the next instruction from physical location
40 {octal).

Yalidity Protection

By convention, validity protection can not be dis-
abled. Any logical page that is mapped to physical
page 127 and write-protected, is assumed to be
validity protected. The MMPU checks all CPU re-
quests for invalid addresses. If the address is
found to be valid, the MMPU proceeds with the re-
quired translation. If the address is invalid, the
MMPU stores the invalid address in the INVALID
ADDRESS register and stores the logical address
of the instruction in the INSTRUCTION ADDRESS
register. If the invalid address occurred in a
defer or execute cycle, the instruction is allowed
to complete with zeroes as data. Upon the com-
pletion of the instruction, the MMPU disables 1/0
interrupt requests, enters the supervisor mode,
and directs the CPU to fetch the next instruction
from physical location 40 (octal). If the invalid
address occurred in a fetch cycle, the MMPU im-
mediately disables the CPU interrupt system,
enters the supervisor mode and directs the CPU

to fetch the next instruction from physical location
40 (octal).

Runaway Defer Protection

If runaway defer protection is enabled, the MMPU
checks memory references to see if they are part
of a defer cycle. If the MMPU detects seventeen
consecutive defer cycle memory requests, it traps.
Upon receiving the seventeenth request, the MMPU
stores the address of the instruction that started
the defer loop in the INSTRUCTION ADDRESS reg-
ister and the address of the sixteenth level of the
defer loop is stored in the INVALID ADDRESS reg-~
ister. The MMPU then disables 1/O interrupt
requests, enters the supervisor mode, and directs
the CPU to fetch the next instruction from physical
location 41 (octal).

Write Protection

If write-protection is enabled, the MMPU monitors
all modify memory requests and determines whether
or not that logical page is write-protected. If the
page is not write-protected, the MMPU allows the

5-11

operation to proceed. If the page is write-protected,
the MMPU stores the instruction address in the
INSTRUCTION ADDRESS register and stores the
memory address in the INVALID ADDRESS register,
The MMPU then disables 1/0O interrupt requests,
enters the supervisor mode, and directs the CPU
to fetch the next instruction from physical location
41 {octal).

Device interrupt Processing

Because of the way in which the MMPU disables
1/0 interrupt requests upon entry to a trap routine,
the supervisor should execute an INTDS instruction
as soon as possible in the trap routine. If the
supervisor does not issue this INTDS instruction,
then upon issuing the INTEN instruction, the inter-
rupt system is enabled immediately, not after one
more fetch or defer cycle. This means that it is
possible for an interrupt service routine to begin
executing in user mode.

Example:
;ENTRY TO TRAP ROUTINE
;NO INTDS INSTRUCTION
NIOS 2 o
INTEN First interrupt could
JMP < @. +1 occur here
ADDR ;USER START ADDRESS

The installation of the MMPU causes a small
change in the normal device interrupt procedure.
Normally, when the CPU processes a device inter-
rupt, the Program Counter (PC) is stored in phys-
ical location 0 and the CPU does a jump indireet to
physical location 1. With the MMPU installed, the
PC is stored in logical location 0, the MMPU is
placed in supervisor mode, and the CPU does a
jump indirect to physical location 1. This is done
so that the supervisor's job of restarting the user
after handling the interrupt will be simplified.

MMPU PROGRAMMING

ADDRESS TRANSLATION USING
THE MAP FEATURE

The memory location and protection (MAP) feg-
ture available with the SUPERNOVA, NOVA 800,
and NOVA 820 computers also performs address
translation. The main differences between the
MAP feature and the MMPU feature are that the
MAP feature does not expand the physical address
space and the MAP feature does not translate ad-
dresses for the data channel. The MAP feature
does, however, provide information on which areas
of memory the user has modified. This simpli-
fies the task of swapping.

With the MAP feature, each user has a memory area
allocated to him and he cannoct gain access to the
rest of memory for either storage or retrieval of
information. Moreover, part of his allocated area
may be write-protected. The supervisor would do
this when part of the allocated area contains a pure
procedure to be used reentrantly by several users.
While the MAP feature is in user mode, the pro-
gram is further resiricted in that it is illegal to
issue any I/0 instruction except MULTIPLY and
DIVIDE. It is also illegal to use more than two
levels of indirect addressing. The violation of any
restriction by a user program causes the processor
to terminate the instruction immediately and return
control to the supervisor by initiating a program
interrupt request,

For allocation purposes, physical memory is divided
into blocks of 4096 words each, defined by the three
high-order address bits. For each user, the super-
vigsor establishes a map of the logical blocks used

by the program into the physical blocks of memory
and validates those logical blocks that are available
to the given user.

For protection purposes, physical memory is divided
into pages of 256 words each. The supervisor

5-12

establishes a protection scheme for all of this mem-
ory, and although a given user can access any loca-
tion in his allocated blocks, he cannot write in any
page that is protected. To save swapping time, a
Page Written flag is associated with each 256-word
page. When setting up a user program, the super-
visor should clear 2all the flags. Whenever the user
writes in a given page, ifs associated Page Written
flag is set. Then, when thal user goes on the in-
active list, the supervisor need rewrite on the
swapping disc only those pages that have actually
changed.

Note that these restirictions apply only to the user
program. Data channel transfers can occur while
the processor is in user mode, and access is made
to the physical locations addressed. An interrupt
always returns the MAP feature to supervisor
mode --the supervisor handles all interrupts,

Map Fedature Instruction Set

The MAP feature is programmed with 18 1/0 in-
structions. Through the use of these instructions,
the supervisor tells the MAP feature what the ad-
dress translation function is to be, tells the MAP
feature what pages are to be write-protected, and
interrogates the MAP feature as to the status of
the current user program.

The instructions for the MAP feature are in the

standard I/0 format. The device codes for the

MAP feature are 2, 23, and 4. The MAP feature
responds with device code 2 to the INTERRUPT
ACKNOWLEDGE instruction.

At power turnon, the MAP feature is in supervisor
mode and the mapping and protection data is in-
determinate., The I/0 reset switch places the MAP
feature in supervisor mode, but does not affect the
mapping and protection data.

ASSIGN LOWER LOGICAL MEMORY MAP

DOB ac, MAPO

i 0 o]o o[o o 00 I Of

0 I 1| AC
e 10 i1 12 3 14 15

o 1 2 3 4 5 & 7 8

The contents of the specified AC are transferred to
the MAP feature. The contents of the specified AC
remain unchanged. The format of the specified AC
is as follows:

gwezCAL BLOCK 3 § LOGICAL BLOCK a§s.os;ca; BLOCK 1[LOGICAL BLOCK O
0 1 2 3 4 5 & 7 B8 9 10 11 12 i3 14 i5

in each set of four bits the leftmost bit is the valid-
ity bit. A 1 in this bit makes references to that
logical block valid. A 0 in this bit makes references
to that logical block invalid. The remaining three
bits specify the high-order three bits of the phys-
ical memory block to which addresses in the cor-
responding logical block will be mapped.

ASSIGN UPPER LOGICAL MEMORY MAP

DOC ac,MAPO

| 0/0.0/0 0 00 I ©
0 1 2 3 4 5 6 7 8 9 10 U 12 I3 14 15

The contents of the specified AC are transferred to
the MAP feature. The contents of the specified AC
remain unchanged. The format of the specified AC
is as follows:

[LOGICAL BLOCK 7|LOGICAL BLOCK 6|LOGICAL BLOCK sé,omca;. BLOCK 4
i 1 i 3 i i i
' 0 1 12 13 14 15

o 1+ 2 3 4 5 & 7 8 9

In each set of four bifs the leftmost bit is the valid-
ity bit. A 1 in this bit makes references to that
logical block valid. A 0 in this bit makes references
to that logical block invalid. The remaining three
bits specify the high-order three bits of the phys-
ical memory block to which addresses in the cor-
responding logical block will be mapped.

WRITE PROTECT

DOA ac,MAPO

B t o] ac o o[o ofo o0 o0 1 o0

T e L
o 1 2 3

4 5 6 7 8 9 10 Il 12 13 14 15

The contents of the specified AC are transferred to
the MAP feature. The contents of the specified AC
remain unchanged. The format of the specified AC
is as follows:

L PROTECT PAGES T PHYSICAL HALF
7.6,5,4,.35,2 t.o% L , BLOCK
01 2 3 4 5 6 7 8 9 10 Il 12 3 14 15

Bits 12-15 specify the high-order four bits of a
2048 ~word half-block. Bits 0-7 select the eight
256 -word pages within this half-block. A 1 in any
of bits 0-7 protects the corresponding page from
being altered by the user. A 0 in any of bits 0-7
permits alteration. The first page in a half-block
is page 0, selected by bit 7.

READ STATUS

DIA ac,MAPI

o 1 1] ac Jo o 1]o ofo 0o 00 1 1]
6 { 2z 3 4 5 & 7 8 9 10 1l 12 13 14 15

The status register of the MAP feature is placed in
the specified AC. The previous contents of the
specified AC are lost. The format of the status
register is as follows:

[user § i IHDIRECT o ERRoR 2‘;2&?;’22;%?‘ i?wsmAL 8L00K Asmzsszs}
o s w0 1 iz 3 K’ 15
BITS CONTENTS

0 User Mode. The last interrupt occurred
while in user mode.

1-8 | Unused.

9 | Indirect Error. The last user instruction
attempted more than two levels of indirec-
tion.

10 | I/O Error. The last user instruction was
an 1/0 instruction other than MULTIPLY or
DIVIDE.

11 | Validity Error. The last user instruction
attempted to reference an invalid logical
address.

12 | Protection Error. The last user instruction
attempted to write in a write-protected page.

13-15! Physical block. These are the high-order

three bits of the last address mapped.

While the MAP feature is in user mode, the setting
of any of bits 9-12 by the MAP feature immediately
causes the MAP feature to enter the supervisor
mode and initiate a program interrupt request.

5-13

MAP INSTRUCTIONS

SELECT MODE

DOA<f> ac,MAP1

-

F
8

G i

o i

il

iiii AC IO;!,Oi
’ 5

2 3 4 5 6 7

[o 00 01
9 10 i1 12 i3 4

Bit 0 of the specified AC is placed in bit 0 of the
status register. Bits 1-15 of the status register
are set to 0. The contents of the specified AC re~-
main unchanged. After the data transfer is com-
plete, the function specified by F is performed.

If a Start command is issued with this instruction
(DOAS ac,MAPI) then the Interrupt On flag is set
to 1 and the MAP feature is placed in the mode
specified by bit 0 of the status register. If this bit
is 1, one more instruction will be executed before
entering user mode. If this bit is 0, the MAP fea~-
ture will remain in supervisor mode. If the Inter-
rupt On flag was 0 before being set to 1 by this
instruction, one more instruction will be executed
before the first interrupt can start.

ENTER USER MODE

NIOS MAP1
oll!llo|oioiololoi;[O(Oioiol‘lll
0O I 2 34 5 6 7 8 9 0 U 2 13 14 15

The Interrupt On flag is set to 1 and the MAP fea-
ture is placed in the mode specified by bit 0 of the
status register. If this bit is 1, one more instruc-
tion will be executed before entering user mode.

If this bit is 0, the MAP feature will remain in
supervisor mode. If the Interrupt On flag was 0
before being set to 1 by this instruction, one more
instruction will be executed before the first inter-
rupt can start.

MAP AN ADDRESS
DOB ac,MAP1

Lo,
—

The logical address contained in bits 1-15 of the
specified AC is mapped as if it were a write refer-
ence. Any violation will be indicated in the status
register. The contents of the specified AC remain
unchanged.

i AC {slo‘o{o’oto’oioao‘z!u]
3

i
2 "4 5 6 7 8 9 10 i1 12 13 14 15

5-14

READ MAPPED ADDRESS

DIB ac,MAPI1

000 0.1 1]
101 12 13 4 15

0

i

9

[o v 1] acTo 1 1]o
o'l 2 3 4 5 & 7 8

The physical address which is the result of the last
MAP AN ADDRESS instruction is placed in bits
1-15 of the specified AC. Bit 0 of the specified AC
is set to 0. The previous contents of the specified
AC are lost.

SELECT PAGE WRITTEN CHECK

DOB ac,MAP2

o 1 1| ac |

! 0,00 1,0 0
o I 2 3 4 5

0. 0jl0,0
6 7 8 8 10 Il 12 13 14 15

The 4096 word block of physical memory specified
by bits 12-15 of the specified AC is selected for
page written checking. If bit 15 of the specified
AC is 1, the block selected consists of the upper
2048 words of the physical block specified by bits
12-14 of the specified AC and the lower 2048 words
of the next higher physical block. The contents of
the specified AC remain unchanged.

READ PAGE WRITTEN FLAGS

DIA<f> ac, MAP2

1, 1] acJo,0 1[F Jooo 100

2 3 4 5 6 7 8 9 10 Il 12 13 14 15

Lo,
0

The page written flags associated with the cur-
rently selected 4096 block of physical memory are
placed in the specified AC. The previous contents
of the specified AC are lost. After the data trans-
fer, the function specified by F is performed.

If a Pulse command is issued with this instruction
(DIAP) then the next higher pair of contiguous half-
blocks is selected for page written checking. If no
command function is given then the next 4096 word
block selected for page writfen checking consists
of the upper half of the current block and the next
contiguous 2048 half-block.

The format of the specified AC is as follows:

PAGES WRITTEN INSPECIFIED HALF aocxi
7, 8, 5, 4,3, 2, 1,0
14

PAGES WRITTEN IN NEXT HALF BLOCK l
7,8 ,5%,4,3;,2; 1,0

3 5 6 7

o 1 2 4 8 9 10 it 12 I3 i5

CLEAR PAGE WRITTEN FLAGS

DOA 0,MAP2

[0+ 1Jo ofJo 1 o]Joo]Jo o0 1 00
5 ¢{ 2 3 4 5 & 7 8 9 10 il 12 i3 14 I5
All the page written flags are set to 0. Physical

block 0 is selected for page written checking. The
contents of ACO remain unchanged.

SKIP IF ANY VIOLATION

SKPDN MAPO

[0 1 1Joofi 1 1][1 o]oo o o1 o]
c 1 2 3 4 5 6 7 8 9 10 I 12 13 4 15

If any of bits 9-12 of the status register are set to
1, the next sequential instruction is skipped.

SKIP IF NO VIOLATION

SKPDZ MAPO
o 1 1[o of1 1 1]1r 1]o 0o 00 1 of
o' 1 2 3'4 5 6 7 8 9 0 i 12 13 14 15

If none of bits 9-12 of the status register are set to
1, the next sequential instruction is skipped.

SKIP IF /0 VIOLATION

SKPBN MAPO
lo,'.‘lo.o!’.',’lo,oio 000 I 0]
o'l 2 3 4 5 6 7 8 9 10 I 2 s 4 18

If bit 10 of the status register is set to 1, the next
sequential instruction is skipped.

SKIP IF NO 1/0 VIOLATION

SKPBZ MAPO
0!1‘3101011,|!r[oiaio!olo‘oi|!o
o' 1 2 3'4 5 6 7 8 9 10 i 12 13 14 15

If bit 10 of the status register is set to 0, the next
sequential instruction is skipped.

5-15

SKIP IF VALIDITY VIOLATION

SKPDN MAP1

0.0 1/0 0|1 1 |
o | 2 3 &4 5 8 7

' oJo o o o 1 1]
8 9 W i 12 13 14 i

If bit 11 of the status register is set to 1, the next
sequential instruction is skipped.

SKIP IF NO VALIDITY VIOLATION
SKPDZ MAPI1

i

i5

r 1]o o1 1 1]

| lo 00 0 1
2 3 4 5 & 7

10 2 13 14

i

[o
o

b
8 9 i

If bit 11 of the status register is set to 0, the next
sequential instruction is skipped.

SKIP IF PROTECTION VIOLATION

SKPBN MAPI1
]oiailio‘o}sl;‘|§o;010‘o‘osozi;
01 2 3 4 5 6 7 8 9 10 11 1213 14 15

If bit 12 of the status register is set to 1, the next
sequential instruction is skipped.

SKIP IF NO PROTECTION VIOLATION

SKPBZ MAPI1
[o; 1o o};ixlxo)l 0 00 0 I |
0 1 2 3 4 5 6 7 8 9 10 I 12 13 14 15

If bit 12 of the status register is set to 0, the next
sequential instruction is skipped.

MAP INSTRUCTIONS

FLOATING POINT ARITHMETIC

In addition to performing f{ixed point arithmetic,
computers in the NOVA line can perform floating
point arithmetic if they are equipped with the float-
ing point unit. This feature provides the capability
to perform rapid and convenient arithmetic opera-
tions on numbers with a much larger range than
would be feasible using the fixed point arithmetic
instruction set. The precision with which these
numbers can be manipulated exceeds the precision
readily available with the fixed point instruction
set.

Flooting Peint Unit Registers

here are three registers available to the pro-
grammer in the Floating Point Unit (FPU).

]

{ accumulator (F
the Tempor r%zf* T
used for computa -~

rol and mo

! STATUS BITS | RESERVED %%%S@E BITS|
i . . I : ; ! ; : ! i
o 2 3 4 5 85 7 8 8 10 it 12 13 ia <]

5-18

BIT

STATUS REGISTER BITS

MEANING WHEN SET

%3

o

8-12
13

14

PPM

DMD

Indicates that any of bits
1-4 are set.

Overflow indicator meaning
during processing of an
FPU instruction, the FPU
dezec?eé an exponent over-
/. The result ig correct
Mcegz that the exponent |

o
&

in FPAC

Heserved for fulure use,

14

»

Interrupt Disable bit means
that the FPU will not inter-
rupt the program for an ex-
ponent overflow, exponent
underflow, or divide by
Zero.

Parallel processing mode
means that the FPU will not
request data channel cycles
for the entire time it is pro-
cessing an instruction.
Therefore, the programmer
musgt check the BUSY status
of the FPU before issuing
the next FPU instruction.

Diagnostic mode means that
the program can issue clock
pulses and monitor the pro-
gress of the FPU cycle by
cycle. The data channel
will not be held during this
mode.

S

INSTRUCTION SET

Because the FPU is considered an 1/O device by
the CPU, FPU instructions are really I/O instruc-
tions and take the 1/0 format. The device codes
for the FPU are as follows:

DEVICE
MNEMONIC CODE MEANING

FPU1 T4g Floating Point-Single
Precision

FPU2 758 Floating Point-Double
Precision

FPU 768 Floating Point Unit-
used for status in-
structions and in
diagnostic mode.

The programmer can either write 1/0 instructions
for the FPU, or he can use the .DUSR and .DIAC
functions of the assembler and define his own
mnemonics. A paper tape containing . DUSR and
.DIAC functions describing the DGC standard float-
ing point mnemonics is supplied with the FPU. A
detailed discussion of this tape can be found under
Floating Point Unit Mnemonics. In describing the
instructions available for the FPU, both the I/0
instruction and the corresponding DGC mnemonic
will be shown. For a further discussion of I/O in-
structions in general, see the I/O section of this
manual.

When processing a floating point instruction, the
FPU assumes the following:

1. In instructions that refer to operands in
memory, the accumulator specified by AC
is assumed to contain the address of the
first word of the storage that contains or
will receive a floating point number. This
area is either 2 or 4 words long, depending
on the precision specified.

2. In instructions that refer to an operand
coming from memory, the number is as-
sumed to be in the format described under
" Number Representation”. The number
is assumed to be normalized.

3. In arithmetic instructions, it is assumed
that a floating point number is already pre-
sent in FPAC.

5-17

LOAD SINGLE
.FLDS ac

DOB ac, FPUL

0 asxlac}x 00;3‘111 1 1 00

o
C 1 2 3 4 5 6 7 8 9 0 It i2 I3 14 i5

LOAD DOUBLE
.FLDD ac

DOBP ac,FPU2

o 1 1] afr oo 1]t 1t 11 01
01 2 3 4 5 & 7 8 9 0 1l i2 13 14 I5

The FPAC is loaded with the floating point number
contained in storage starting with the address in
the specified AC. The operation proceeds one word
at a time, starting with the most significant word.
Two words are transferred for single precision.
Four words are transferred for double precision.
The operand in storage and the address in the speci-
fied AC remain unchanged. For single precision,
the 32-bit floating point number goes into the high-
order 32 bits of FPAC and the low-order 32 bits of
FPAC are set to zero.

STORE SINGLE
.FSRS ac

DOBS ac,FPU1L

i i | ! 1

lo i l}A’CiISO o;oi:‘“ It 1 00
61 2 3 &4 s5 6 7 8 9 10 i 12 13 14 15

STORE DOUBLE
.FSRD ac

DOBS ac,FPUZ

ot 1t ac]t oojo 1]l 110 1]

4 5 6 7 8 9 10 11 iz 13 14 15

The FPAC is stored into memory starting at the
address contained in the specified AC. The opera-
tion proceeds one word at a time, starting with the
most significant word. Two words are transferred
for single precision. Four words are transferred
for double precision. The number in FPAC and
the address in the specified AC remain unchanged.

FLOATING POINT ARITHMETIC

ADD SINGLE
. FAS ac

DOA ac, FPU1

o 1 1] ac Jo 1 ofo o[t 1 11 00
o t 2 3 4 5 8 7 8 9 10 1 12 13 14 15
ADD DOUBLE

. FAD ac

DOA ac, FPU2

o 1 1] aJo i ofoofi 1 11 0 1]
o'l 2 3 4 5 8 7 8 9 10 1 12 13 14 15

The floating point number which starts at the ad-
dress contained in the specified AC is added to

the floating point number in the FPAC. The result
is normalized and remains in the FPAC. The op-
erand in storage is transferred to the FPU, most
significant word first, before the add operation
takes place. Two words are transferred for single
precision. Four words are fransferred for double
precision. The operand in storage and the ad-
dress in the specified AC remain unchanged. For
single precision, the low-order 32 bits of the
FPAC are turned to zero before the operation.

Floating point addition consists of an exponent
comparisen and a mantissa addition. The exponents
of the two numbers are compared, and the mantissa
of the number with the smaller exponent is shifted
right. This exponent alignment is accomplished by
taking the absolute value of the difference between
the two exponents and shifting the mantissa right
that number of hex digits. For double precision,
bits shifted out of the right end of the mantissa are
lost, and do not take part in the addition. For
single precision, the last 8 bits shifted out are re-
tained as hex "guard" digits. This increases the
accuracy of single precision addition. If all signif-
icant digits are shifted out of the mantissa, the
operation is equivalent to adding the number with the
larger exponent to zero. This requires a shift of at
least 8 hex digits in single precision and at least 14
hex digits in double precision.

After alignment, the FPU adds the mantissas to-
gether. The result of this addition is termed the
intermediate result. The sign of the result is
determined from the sings of the two operands by
the rules of algebra. If the mantissa addition
produced a carry out of the high-order bit, the
mantissa in the intermediate result is shifted right
one hex digit and the exponent is incremented by
one. If this shift produces an exponent overflow,
the OVF bit is set in the SR, and the instruction

5-18

is terminated. When this condition occurs, the
number in the FPAC is correct except that the ex-
ponent is 128 too small.

If there is no overflow, the mantissa of the inter-
mediate result is examined for leading hex zerces.
If the mantissa is found to be all zerces, a true
zero is placed in the FPAC and the instruction is
terminated.

If the mantissa is non-zero, the intermediate re-
sult is normalized, and the number placed in
FPAC. If the normalization results in an exponent
underflow, the UNF bit is set in the SR and the
instruction is terminated. The number in the
FPAC is correct except that the exponent is 128
too large.

Upon termination, the FPU sets the appropriate
condition code bits in the SR.

SUBTRACT SINGLE
.FS5 ac

DOAS ac, FPU1

[0 1 [acJo 1t ofo 1] 1T 1T 1 00|
i 1 5 i i 1 i i i H
0O i 2 34 5 &' 7 8 9 10 il 12 13 14 15
SUBTRACT DOUBLE

.FSD ac

DOAS ac, FPU2

[o 1] ac Jo ofo 11 1 1o 1]
o' 1 2z 3 4 5 6 7 8 8 10 0 12 13 14 15

The floating point number which starts at the ad-
dress contained in the specified AC is subtracted
from the floating point number in the FPAC. The
result is normalized and remains in the FPAC.
The operand in storage is transferred to the FPU,
most significant word first, before the subiract
operation takes place. Two words are transferred
for single precision. Four words are transferred
for double precision. The operand in storage and
the address in the specified AC remain unchanged.

Before the operation takes place, the sign bit of
the operand fetched from storage is inverted. Af-
ter the inversion, the operation is equivalent to
addition.

MULTIPLY SINGLE

DIVIDE SINGLE

.FMS ac .FDS ac

DOAP ac, FPUL DOA ac, FPUL

o I ‘{AF§O!,Oii,'1} 11 o oi {OslgiiAFIOiO)i‘(}P I 11 00
e} P2 3T 4 5 6 7 8 8 10 1 12 13 14 i5 o] ! 2 3 4 5 8 7 8 9 10 it 2 13 4 15
MULTIPLY DOUBLE DIVIDE DOUBLE

. FMD ac .FDD ac

DOAP ac, FPU2 DOAC ac, FPU2

0 1 1] AC !0'101',‘i’i’;’1’°1w {oxliiqciolaogxoxiia!:xot
o 2 3 4 5 6‘ 7 8 9 10 i1 2 13 i4 15 0 i 2 3)4 5 6i7 8 8 10 H 52{ 2 14 15

The floating point number in the FPAC is multi-
plied by the floating point number which starts at
the address contained in the specified AC. The
result is normalized and remains in the FPAC.
The operand in storage is transferred to the FPU,
most significant word first, before the multiply
operation takes place. Two words are transferred
for single precision. Four words are transferred
for double precision. The operand in storage and
the address in the specified AC remain unchanged.

For single precision, the low-order 32 bits of the
FPAC are ignored during the operation and are
zeroed in the result.

The mantissas of the two numbers are multiplied
together to give the mantissa of the intermediate
result. The exponents of the two numbers are ad-
ded together and 64 is subtracted. This subtraction
of 64 maintains the "Excess 64" notation. The re-
sult of the exponent manipulation becomes the ex-
ponent of the intermediate result. The sign of the
intermediate result is determined from the signs

of the fwo operands by the rules of algebra.

If the exponent processing produces either over-
flow or underflow, the result is held until normal-
ization, as that procedure may correct the
condition. If normalization does not correct the
condition, the corresponding bif in the SR is set.
The number in the FPAC is correct except that,
for exponent overflow, the exponent is 128 too
small, and for exponent underflow, the exponent
is 128 too large.

5-19

The floating point number in the FPAC is divided
by the floating point number which starts at the
address contained in the specified AC. The result
is normalized and remains in the FPAC. The
operand in storage is transferred to the FPU, most
significant word first, before the divide operation
takes place. Two words are transferred for single
precision. Four words are transferred for double
precision. The operand in storage and the address
in the specified AC remain unchanged.

For single precision, the low-order 32 bits of the
FPAC are ignored during the operation and are
zeroed in the result.

The operand from storage is checked for a zero
mantissa. If the mantissa is zero, the DVZ bit is
set in the SR and the instruction is terminated. The
number in the FPAC remains unchanged.

The two mantissas are then compared and if the
mantissa of the number in the FPAC is greater
than or equal to the mantissa of the operand from
storage, the mantissa of the number in the FPAC

is shifted right one hex digit and the exponent of

the number in the FPAC is increased by one. Since
all operands are assumed to be normalized, this
guarantees that the mantissa of the number in the
FPAC will always be less than the mantissa of the
operand from storage.

FLOATING POINT ARITHMETIC

The mantissa in the FPAC is then divided by the
mantissa from storage and the quotient is the
mantissa of the intermediate result.
from storage is subtracted from the exponent in
the FPAC and 64 is added fo this result, This
addition of 64 maintains the " Excess 64" notation.
The result of the exponent manipulation becomes
the exponent of the intermediate result. The sign
of the intermediate result is determined from the
sign of the two operands by the rules of algebra.

If the exponent processing produces either over-
flow or underflow, the resulf is held until normal-
ization, as that procedure may correct the
condition. If normalization does not correct the
condition, the corresponding bit in the SR is set.
The number in the FPAC is correct except that,
for exponent overflow, the exponent is 128 too
small, and for exponent underflow, the exponent
is 128 too large.

The exponent

5-20

Temporary Buffer Instructions

The Temporary Buffer, or TEMP, is an area
within the FPU capable of holding a single or dou-
ble precision floating point number. The following
instructions make use of this facility.

MOVE FPAC TO TEMP

.FMFT

NIOP FPU2

(o, 1 1Joofo oot W[r 1 7 1o 1]
C 1 2 3 4 5 & 7 8 9 10 i 12 13 14 18

The double precision floating point number in the
FPAC is moved to the TEMP buffer. The number
in the FPAC remains unchanged.

MOVE TEMP TO FPAC

.FMTF

NIOC FPU2

o!sfxio!o}oio‘ojn o[rlzlsll‘o;a]
01 2 3 4 5 6 7 8 & 10 11 12 13 14 i5

The double precision floating point number in the
TEMP buffer is moved to the FPAC. The number
in the TEMP buffer remains unchanged.

NOTE The operands in these two in-
structions are 64 bit floating
point numbers. If the previous
instructionthat referred to the
FPAC was a single precision
instruction, then that instruc-
tion zeroed the low-order half
of the FPAC and the FPAC can
be considered a double preci-
sion number with no problem.

ADD TEMP TO FPAC (SINGLE)

. FATS

DOC 0,FPU1

o 1 1Joofi 1 ofo ofI 1 1 I 0 0]
0 1 2 3 4 5 6 7 8 9 10 1 12 I3 14 15
ADD TEMP TO FPAC (DOUBLE)

. FATD

DOC 0, FPU2

o 1+ 1Jo o[t t ofooft 1t 1 1 0]
0’1 2 3 4 5 6 7 8 9 0 Il 12 i3 14 15

The floating point number in TEMP is added to the
floating point number in the FPAC and the normal-
ized result is placed in the FPAC. The number in
TEMP remains unchanged.

For single precision, only the high-order 32 bits
of TEMP and FPAC participate in the operation.

The ADD TEMP TO FPAC instruction is identical
to the ADD instruction described previously, ex-
cept that the second operand comes from TEMP,

not from memory.

5-21

SUBTRACT TEMP FROM FPAC (SINGLE)

. F3TS

DOC 0,FPUL

{oi;l@o Of’,’ ego :]1 1 1 0 oj
01 2 3 4 5 6 7 8 95 10 i 12 13 14 15

SUBTRACT TEMP FROM FPAC (DOUBLE)
. FSTD

DOCS 0,FPU2

(O

s i
4 15

0]
7

{OaillgOiO!liil

o 1 2 3 4 5 8

i; N
2 13

o |1
8 9 10 Il
The floating point number in TEMP is subtracted
from the floating point number in the FPAC and
the normalized result is placed in the FPAC. The
number in TEMP remains unchanged.

For single precision, only the high~order 32 bits
of TEMP and FPAC participate in the operation.

The SUBTRACT TEMP FROM FPAC instruction

is identical to the SUBTRACT instruction described
previously, except that the second operand comes
from TEMP, not from memory.

FLOATING POINT ARITHMETIC

MULTIPLY FPAC BY TEMP (SINGLE)

DIVIDE FPAC BY TEMP (SINGLE)

. FMTS . FDTS

DOCP 0, FPU1 DOCC 0,FPUIL

(ot tjooft 1ot i 111 0 o] ot 1foofi 1ot ofi 1 11 00
o 12 34 5 6 7 8 9 10 i1 12 i3 14 5 o 2 3 4 5 6 7 8 8 10 11 iz 13 14 5

MULTIPLY FPAC BY TEMP (DOUBLE) DIVIDE FPAC BY TEMP (DOUBLE)

. FMTD .FDTD

DOCP 9, FPU2 DOCC 0, FPU2

ot 1o ofi ot Wi 1o] [0 1joofi 1 ofr ofI 1 410 1]
o' 1 2 3 4 5 6 7 8 9 0 Il 12 I3 14 15 01 2 34 5 6 7 8 9 10 il 2 I3 14 15

The floating point number in the FPAC is multiplied
by the floating point number in TEMP and the nor-
malized resull is placed in the FPAC. The number
in TEMP remains unchanged.

For single precision, only the high-order 32 bits
of TEMP and FPAC participate in the operation.

The MULTIPLY FPAC BY TEMP instruction is
identical to the MULTIPLY instruction described
previously, except that the second operand comes
from TEMP not from memory.

The floating point number in the FPAC is divided
by the floating point number in TEMP and the
normalized result is placed in the FPAC. The
number in TEMP remains unchanged,

For single precision, only the high~order 32 bits
of TEMP and FPAC participate in the operation.

The DIVIDE FPAC BY TEMP instruction is iden~-
tical to the DIVIDE instruction described previ-
ously, except that the second operand comes from
TEMP not from memory.

Shift and Logical Instructions

The following FPU instructions are included to en-
able the programmer to convert numbers from in-
teger representation to floating point representation
and vice-versa. This section also contains in-
structions for logical operations and for working
with the Status Register.

ABSOLUTE VALUE

. FABS

NIOP FPU1

o 1 1o oo ool 1]l I 1 1 00
0 1 2 3 4 5 € 7 8 8 10 11 i2 13 14 15
The sign bit of the FPAC is forced to zero. Bits
1-63 of the FPAC remain unchanged.

CLEAR FPAC

.FCLR

NIOS FPU1

o 1 1JoofJoo ofo i1 1t 11 0o0]
o' 1 2 3 4 5 & 7 8 9 0 il 12 13 14 I5

All 64 bits of the FPAC are forced to zero. In
other words, the value of the FPAC is forced to
true zero.

LOAD EXPONENT
.FLDX’ ac

DOBC ac, FPU2

[Ac jl;olo}s.ogu 11 0 %}

!
: i i :
o + 2 3 4 5 & 7 8 g 10 i1 iz 13 14 I8

T

Bits 1-7 of the specified AC replace bits 1-7 of

the FPAC. Bits 0 and 8-15 of the specified AC are
ignored. Bits 0 and 8-63 of the FPAC remain un-
changed. The entire contents of the specified AC
remain unchanged.

NOTE The exponent is assumed to
be in'' Excess 64" represen-
tation.

5-23

NEGATE

. FNEG

NIOC FPU1L

o | ;jo ogoxo 0}1015 I 100}
0 1 2 3 4 5 6 7 8 9 0 1t 12 i3 14 15

The sign bit of the FPAC is inverted. Bits 1-63
of the FPAC remain unchanged.

NOTE If the number in the FPAC
is true zero, the sign bit of
the FPAC remains zero.

NORMALIZE

. FNRM

NIOS FPU2
olxIu}o‘oiogologo!tp‘z[z‘l10‘1
0 1 2 3 4 5 6 7 8 9 10 I 12 I3 14 15

The floating point number in the FPAC is norm-
alized. If all bits of the mantissa are zero, a true
zero is set in the FPAC. If an exponent underflow
occurs, the UNF bit in the SR is set and the number
is correct, except that the exponent is 128 too
large.

READ HIGH WORD
.FHWD ac

DIA ac, FPU1

io a(;% AC zo,o]qoio}c I o}

L
0 | 2 3 4 5 6 7 8 9 16 (Il 12 i3 14 15

The high-order 16 bits of the FPAC are placed in
the specified AC. The previous contents of the
specified AC are lost. The contents of the FPAC
remain unchanged.

FLOATING POINT ARITHMETIC

SCALE

.FSCL ac

DOB ac, FPU2

OiixAC!OO§OO*iiii
4 5 8 7 8 8 0 11 12 13 14 15

(o]
P
i

The mantissa of the floating point number in the
FPAC is shifted either right or left, depending
upon the contents of bits 1-7 of the specified AC.
The contents of the specified AC remain un-
changed.

Bits 1-7 of the specified AC are treated as an ex-
ponent in " Excess 64" representation. The dif-
ference between this exponent and the FPAC
exponent is computed and compared to zero. If the
difference is zero, the instruction is terminated.
If the difference is positive, the FPAC mantissa
is shifted right that number of hex digits. If the
difference is negative, the FPAC mantisss is
shifted left that number of hex digits and the MOF
bit in the SR is set. After the shift, the contents
of bits 1-7 of the specified AC replace the FPAC
exponent.

Bits shifted out either end of the mantissa are lost.

Stotus Instructions
READ STATUS
.FRST ac

DIAC ac, FPU

o1t ol 1 11 1 o]
6

The contents of the 16 bit status register are placed
in the specified AC in the format shown previously.
Bits 0-4 of the SR are set to zero,

WRITE STATUS

FWST ac

DOA ac, FPU

jo 1t 1t acfo rofoo]r 1t 11 0]

ot 2 3 4 5 8 7 8 9 {0 i 12 13 14 1§

The contents of the specified AC are placed in the
status register. The contents of the specified AC
remain unchanged.

5-24

Diagnostic instrudtiens

NOTE The following instructions
are for diagnostic use only.

READ WORD 1

DIA ac, FPUI

i 1] ac Jo o 1]0 O}l Pt oo
6Tz 374 5 67 8 8 i0 1 2 13 14 15
READ WORD 2

DIB ac, FPUL

o1] ac o 1 tjo o1 1 1 1 0 O
o i 2 3 4 5 6 7 8 9 0 It 12 13 14 15
READ WORD 3

DIA ac, FPU2
{ei;IAcioosgeogs:szoz
&) it 2 % 4 5 & 7 &8 9 0 i 1213 14 i5
READ WORD 4

DIB ac, FPU2

ot 1] ac Jo 1 ifo oft 1 I 1 O]
o' 1 2z 3 4 5 & 7 8 9 10 i 12 i3 14 15

These instructions read the four most significant
words of the FPU arithmetic unit, When the FPU
is idle, these words are words 1-4 of the FPAC.
When the FPU is in diagnostic mode, these instruc-
tions, along with the FPU CLOCK instruction, al-
low the program to monitor the output of the FPU
arithmetic unit,

FPU CLOCK

NIOP FPU

%o& irfoofo oot t]r v & 11 0}1
: i 3 i : i i : i

o 1 2 3 4 5 & 7 8 9 10 i1 2 i3 14 15

When placed in diagnostic mode (bit 15 of the SR)
and issued an instruction, the FPU will initiate
execution, request the data channel cycles required,
and halt. This instruction causes a single clock
pulse in the FPU. The results of any arithmetic
manipulation can then be monitored by the program
by the READ WORD instructions. An IORST will
force the FPU to the idle state or if enough FPU
CLOCK instructions occur, the FPU will eventually
go to the idle state by normal sequence.

NOTE Diagnostic commands are for
diagnostic purposes only and
are not supported in the As-
sembler. The user should use
the STORE FPAC instruction
to retrieve the FPAC.

FLOATING POINT ARITHMETIC

Miode Settings For The Flooting Point Unit

The low-order three bits of the Status Register
control the mode in which the FPU operates. The
mode can be changed with the WRITE STATUS in-
struction. Bits 13-15 of the Status Register and
the modes that they imply are summarized in the
following table.

Status Register Modes
=

BIT 131 BIT 14 | BIT 15 | PROCESSING MODE

O 0 0 MNormal mode ~~inter -
rupt enabled

1 G 0 Normal mode-infer -
rupt disabled

4] 1 0 Paralliel mode--~inter-
rupt enabled

1 1 0 Parallel mode--inter-
rupt disabled

X X 1 Diagnostic mode

Note: X = May be either zerc or one.

Normal Mode

The FPU is defined to be in normal modse when bits
14 and 15 of the Status Register are both set to 0.
In this mode, the FPU will request data channel cy-
cles whenever it is busy processing an instruction.
The FPU should always be assigned a lower DCH
priority than any device requiring the data channel
while the FPU is busy.

Normal mode imposes the following restrictions on
instruction ordering, if the FPU is running with
any NOVA line computer other than the NOVA 800
computer or the NOVA 820 computer.

1. FPU instructions must be separated by at
least one non-FPU instruction, which must
not modify the storage operand of the pre-
ceding FPU instructions,

2. The operand of a STORE FPAC instruc-
tion cannot be tested immediately after
the instruction. At least one machine
ceycle must elapse.

5-26

Examples:

LDA 1,PTRX ;LOAD ACL WITH

;POINTER TO X

LFLDS 1 :LOAD X TO FPAC-~
; SINGLE PRECISION
.FMS 1 MULTIPLY X BY

; ITSELF

In this case there is no non~FPU instruction be-
tween the LOAD and the MULTIPLY. Results will
be unpredictable.

;LOAD AC3 WITH
; POINTER TO X

LDA 3,PTRX

.FLDS 3 ;LOAD X TO FPAC--
; SINGLE PRECISION
STA 3,0,3 ;UBE X LOCATIONS
; AS HOLD AREA
. FNRM JNORMALIZE X

In this case the intervening instruction modifies
the location which holds the floating point number
X. The number loaded into the FPAC would have,
as its high-order 16 bits, the pointer to X.
LDA 1,PTRX ;LOAD AC1 WITH

; POINTER TO X
;LOAD X TO FPAC -~
; SINGLE PRECISION
;LOAD AC2 WITH
: POINTERTOY
LDA 3,PTRES ;LOAD AC3 WITH
; POINTER TO
; RESULT
;STORE FPAC INTO
; RESULT
LDA 1,RESULT ;LOAD AC1 WITH

; FIRST WORD OF

; RESULT

LFLDS 1

LDA 2,PTRY

.FSTS 3

In this case the last instruction of the example will
not produce the desired effect. Because of the re-
strictions discussed above, RESULT does not hold
the sum of X and Y at the time of the LDA instruc-
tion. After a floating store, one more instruction
cycle must elapse before the receiving area con-
tains the contents of the FPAC.

Parallel Mode

The FPU is defined to be in parallel mode when bit
14 is set to 1 and bit 15 is set to 0. In this mode,
the FPU will only request data channel cycles if
they are required to fetch or store an operand.
After the data channel is released, the CPU is free
to process instructions in parallel with the FPU.
BRefore the programmer issues another FPU in-
struction, however, he must ensure that the FPU
has finished processing the previous instruction.
This may be accomplished in either of two ways:

1. The number of non-FPU instructions be-
tween FPU instructions are of sufficient
number to guarantee that the FPU will be
idle.

2. The programmer must look at the BUSY
flag of the FPU and issue the next in-
struction when the FPU is not busy.

The advantage of parallel processing is that it al-

lows the programmer to use effectively the time

the FPU spends in processing instructions. This

time may be used for moving operands, updating

pointers, etc.

Example:
LDA 0,AOP 1 ;LOAD ADDRESS OF

; OP1

LOAD OP1 TO FPAC--

; SINGLE PRECISION

;SOME LIST OF IN-

; STRUCTIONS WHERE

; THE TOTAL EXECU-

; TION TIME IS GREAT-

; ER THAN THAT OF

; . FLDS

1,AOP 2 ;LOAD ADDRESS OF

; OP2

sMULTIPLY OP1 BY

; OP2--SINGLE PRECI~

; SION

;BUSY ?

;YES

;NO, STORE RESULT IN

; OP1

.FLDS 0O

LDA
JFMS 1
SKPBZ FPU

JMP . -1
.FSTS 1

5-27

interrupt Enable and Disable

To provide maximum flexibility, the FPU has an
interrupt disable bit in the status register (bit 13},
and is maskable via the MASK OUT instruction

(bit 5). If both these biis are set to 0, the FPU
will signal an interrupt for exponent overflow, ex-
ponent underflow, or divide by zero. These con-
ditions are represented by bits 1-3 in the status
register. Detailed discussions of these condilions
can be found in the section entitled "Floating Point
Unit Registers'”. If either or both of the interrupt
disable bits is set to 1, the FPU will not request an
interrupt for any of the above conditions, but will
set the representative bit in the status register and
set bit zero of the status register. These bits will
remain set to 1 until cleared by the programmer.

If running with interrupt disabled, it is the program-
mer's responsibility to test the status register
periodically in order to detect errors in floating
point processing.

NOTE The FPU returns 76g as the
device code in response to
the INTA instruction.

FLOATING POINT UNIT MNEMONICS

To enable implementation of the mnemonics used
throughout this manual, a paper tape (DGC Part
Number 090-001248) is supplied with each floating
point unit. This tape is in assembler-readable for-
mat and contains . DIAC and . DUSR instructions
which define the mnemonics. There are two ways
to use this tape, depending on whether or not the
user has a supervisor for his machine.

If the user’'s machine has no supervisor, then he
should read this tape into pass 1 of the assembler,
then read in his program. Affer the tape is read
into pass 1 of the assembler, the assembler will
correctly assemble all mnemonics used in this
manual. If the programmer plans on extensive use
of these mnemonics, it is advisable that he read in
this paper tape to pass 1 of his assembler and then
punch out this new version of the assembler. This
punched copy of the assembler will always under-
stand the floating point mnemonics.

If the user's machine has a supervisor, either DOS
or RDOS, then this paper tape should be put on disc
as a symbolic file and then specified (with /S switch)
as the first file in a multi-file assembly. If this
tape is not specified as the first file, floating point
mnemonics read into the assembler before this

tape is read in, will be flagged as errors.

A table of these .DUSR and . DIAC instructions
follows.

FLOATING POINT ARITHMETIC

.DUSR and . DIAC Instructions for Floating Point Unit Mnemonics

DEVICE CODES

.DUSR FPU= 76 ;FLOATING POINT PRIMARY CONTROL
.DUSR FPUl= 74 :FLOATING POINT SINGLE PRECISION
.DUSR FPU2= 75 ;FLOATING POINT DOUBLE PRECISION
MEMORY REFERENCE INSTRUCTIONS
.DIAC . FLDS= DOBP O0,FPUI :LOAD SINGLE
.DIAC . FLDD= DOBP O,FPU2 :LOAD DOUBLE
.DIAC . FSES= DOBS 0,FPU1 ;STORE SINGLE
.DIAC . FSRD= DOBS 0,FPUZ2 ;STORE DOUBLE
ARITHMETIC INSTRUCTIONS
.DIAC . FAS= DOA 0, FPUL (ADD SINGLE
.DIAC . FAD= DOA 0,FPU2 ;ADD DOUBLE
.DIAC . F88= DOAS 0, FPUL SUBTRACT SINGLE
.DIAC . FSD= DOAS 0,FPU2 SUBTRACT DOUBLE
.DIAC . FMB= DOAP 0,FPUL MULTIPLY SINGLE
.DIAC . FMD= DOAP O,FPUZ2 sMULTIPLY DOUBLE
.DIAC . FDS= DCAC 0,FPUI ;DIVIDE SINGLE
.DIAC . FDD= DOAC 0,FPU2 :DIVIDE DOUBLE
TEMP INSTRUCTIONS
.DUSR . FMFT: NIOP FPU2 :MOVE FPAC TO TEMP
.DUSR .FMTF= NIOC FPU2Z ;MOVE TEMP TO FPAC
.DUSR . FATS= DOC 0, FPU1 :ADD TEMP SINGLE
.DUSR .FATD= DOC 0, FPU2 :ADD TEMP DOUBLE
.DUSR . F8TS8= DOCS 0,FPUL ;SUBTRACT TEMP SINGLE
.DUSR . FSTD= DOCS 0,FPU2 ;SUBTRACT TEMP DOUBLE
.DUSR . FMTS= DOCP 0,FPU1 sMULTIPLY TEMP SINGLE
.DUSR .FMTD= DOCP 0,FPUZ ;MULTIPLY TEMP DOUBLE
.DUSR . FDTS= DOCC 0,FPUL ;DIVIDE TEMP SINGLE
.DUSR . FDTD= bDoCC 0,FPU2 ;DIVIDE TEMP DOUBLE
SHIFT AND LOGICAL INSTRUCTIONS
.DUSR .FABS= NIOP FpPU1 :ABSOLUTE VALUE
.DUSR . FCLR= NIOS FPU1 ;CLEAR FPAC
.DIAC . FLDX= DOBC 0,FPU2 :LOAD EXPONENT
.DUSR .FNEG= NIOC FPU1 NEGATE
.DUSR . FNRM= NIOS FPU2 :NORMALIZE
.DIAC . FSCL= DOB 0, FPU2 ;SCALE
.DIAC . FHWD= DIA 0, FPU1 ;READ HIGH WORD
STATUS INSTRUCTIONS
.DIAC . FRST= DIAC 0, FPU (READ BTATUS
.DIAC FWST= DOA 0,FPU TWRITE STATUS

5-28

This page intentionally left blank.

NOVA

SUPERNOVA

NOVA 800/1200

NOVA 2

TURNKEY

i

SECTION 6
FRONT PANEL

INTRODUCTION

FRONT PANEL LIGHTS

MEANING WHEN LIT

These 15 lights display what
is currently in the memory
address register.

The carry bit is 1.

These 16 lights display what
is currently on the memory bus.

The next CPU cycle will be used
by the data channel to gain ac-
cess to memory. (NOVA and
SUPERNOVA computers only.)

The next CPU cycle will be
used to follow an indirection
chain.

The next CPU cycle will be
used to execute an instruction.

The next CPU cycle will be used
to fetch an operand or instruc-
tion.

These 8 lights display the high-
order 8 bits of the instruction
just completed. (NOVA and
SUPERNOVA computers only.)

The Interrupt On flag is 1.

Two Accumulator-multiple
operation format instructions
are being executed out of read-
only memory and the CPU is
overlapping the execution of one
with the fetching of the next.
(SUPERNOVA computer only.)

The next CPU cycle will be used
to start a program interrupt by
storing the program counter in
location 0. (NOVA and SUPER-
NOVA computers only.)

The MAP feature is operating
in user mode. (SUPERNOVA
computers only.)

The CPU is executing instruc-
tions.

The front panels of the NOVA line computers LIGHT

contain all the function switches and display all the

information needed to operate them. As shown in ADDRESS

the figure, all the consoles are essentially the

same, except for minor differences in the lights.

The console at the top is for the NOVA computer, CARRY

beneath it is the SUPERNOVA computer console,

next is the console found on all NOVA 1200 and DATA

NOVA 800 computers, and next is the console for

the NOVA 2. The bottom console is a turnkey con- DCH

sole, which is available for all NOVA line com-

puters. This console is designed for those

computers that will be running in dedicated environ-

ments and contains only those switches needed to

initiate processing. These switches, and the one DEFER

light, operate exactly the same as those found on

the other consoles.
EXECUTE

The function and data switches on the consoles

allow the operator to perform many useful opera-

tions and the lights reflect the current state of the FETCH

machine., If a light is lit, it means the correspond-

ing bit is 1. If the light is not 1lit, the correspond-

ing bit is 0. The lights and their meanings are INSTRUCTION

described below.
ION
OVERLAP
PI
PROTECT
RUN

6-10f6

FRONT PANEL LIGHTS

DATA SWITCHES

Beneath the data lights is a row of 16 switches.
These switches are used to enter either data or
addresses and can be read using the READ
SWITCHES instruction. Only switches 1-15 are
used for entering addresses. When these switches
are in the up position, they represent a 1; when
down, they represent a 0.

CONSOLE SWITCHES

Beneath the data switches is a row of 10 function
switches. These switches are spring loaded.
When pushed up, they perform the function labeled
above the switch, and when pushed down, they
perform the function labeled below the switch.
When released, these switches return to a neufral
"off'" position. The switches and their functions
are explained below,

Accumulator Deposit--Examine

The left-hand four switches reference the four CPU
accumulators. The switches are numbered 0-3
from left to right. Each switch affects only its
corresponding accumulator. When one of these
switches is pushed up, the current setting of the
data switches is deposited into the corresponding
acecumulator. The data lights display the informa-
tion placed in the AC. When one of these switches
is pushed down, the contents of the corresponding
accumulator are displaved in the data lights.

Reset--Stop

When this switch is pushed up, the RESET function
is performed and an I/0O RESET instruction is ex-
ecuted, The CPU is stopped after completing the
current processor cycle. The Interrupt On flag,
the 16-bit priority mask, and all Busy and Done
flags are set to 0.

When this switch is pushed down, the STOP function
is performed. The CPU is stopped after complet-
ing the current instruction and before executing the
next instruction. If an I/O device requests an in-
terrupt during the execution of the current instruc-
tion, it is honored before the CPU is stopped. All
outstanding data channel requests are honored be-
fore the CPU is stopped. After the CPU is stopped,
the address lights display the address of the next
instruction to be executed, and the data lights dis-
play the current contents of the memory bus.

6-2

Start--Continue

When this switch is pushed up, the START function
is performed. The address indicated by data
switches 1-15 is placed in the program counter
and sequential operation of the processor begins
with the word addressed by the updated value of
the program counter.

When this switch is pushed down, the CONTINUE
function is performed. Sequential operation of the
processor continues from the current state of the
machine.

Deposit--Deposit Next

When this switch is pushed up, the DEPOSIT func~
tion is performed. The current setling of the data
switches is placed into the word addressed by the
current value of the program counter. The up-
dated value of the altered word is displayed in the
data lights.

When this switch is pushed down, the DEPOSIT
NEXT function is performed. The program
counter is incremented by one and the current
setting of the data switches is placed into the
word addressed by the updated value of the pro-
gram counter. The updated value of the program
counter is displayed in the address lights and

the updated value of the altered word is displayed
in the data lights.

Examine--Examine Next

When this switch is pushed up, the EXAMINE
function is performed. The address indicated by
data switches 1-15 is placed in the program
counter. This value is displayed in the address
lights. The contents of the word addressed by the
program counter are then read and displayed in
the data lights.

When this switch is pushed down, the EXAMINE
NEXT function is performed. The current value
of the program counter is incremented by one and
the new value is displayed in the address lights.
The contents of the word addressed by the updated
value of the program counter are then read and
displayed in the data lights.

Memory Step--Inst Step

When this switch is pushed up, the MEMORY STEP
function is performed. The CPU performs a single
processor cycle and stops. After the processor
stops, the lights indicate the next cycle to be
executed.

When this switch is pushed down, the INSTRUC-
TION SET function is performed. The instruction
contained in the word addressed by the current
value of the program counter is executed and then
the CPU is stopped. The address lights display
the updated value of the program counter and the
data lights display the contents of the memory
bus.

Program Load

In the NOVA 1200, NOVA 800, and NOVA 2 com-
puters, when this switch is pushed up, the
PROGRAM LOAD function is performed if the Pro-
oram Load option is installed on the machine. The
contents of the bootstrap read-only memory are
placed in memory location 0-37g and a " JMP or
instruction is performed. If the option is not in-
stalled, this switch has no effect.

In the SUPERNOVA computer, when this switch is
pushed up, the PROGRAM LOAD function is per-
formed. Thirty-three words are read from the de-
vice whose device code is set in data switches
10-15 on the console. These words are placed in
locations 0-40g of main memory. After the last
word is read, a "JMP 40" instruction is per-
formed.

Channel Start

When this switch is pushed down, the CHANNEL
START function is performed. A "JMP 377" in-
struction is placed in location 3778 of main mem-
ory. Thena DATA IN A with a Start (DIAS)
instruction is issued to the device whose device
code is set in data switches 10-15 on the console.
After the instruction is issued, a "JMP 377" in-
struction is performed.

6-3

Power

The POWER switch is a three position key switch.
The three positions are labeled "OFF", "ON" .
and "LOCK". With the switch in the OFF position
all power to the CPU is shut off and the machine
will not run. Turning the switch to the ON position
turns on the power and enables all the switches.

Turning the switch to the LOCK position enables
the key to be removed. While the CPU is proces-
sing and the switch is in the LOCK position, all
console functions are disabled. 1f the switch is
turned to the LOCK position while the CPU is
stopped or if the CPU executes a HALT instruction
while the switeh is in the LOCK position, all the
funection switches are enabled.

PROGRAM LOADING

Before a program can be executed, it must be
brought into memory. This requires that a loading
program already reside in memory. Inthe event
that there is no loading program in memory, a
small, specialized loading program is normally
placed in memory and used to read in the loading
program. This small loading program is called a
“hootstrap loader'. The function of the bootstrap
loader is to read in a more general-purpose load-
ing program which can be used to load the user’s
programs. Two methods are available for entering
a bootstrap loader into memory. The operator can
either enter it via the data switches and the deposit
switch, or, if the computer is so equipped, he can
use the program load option or the channel start
feature.

Manual Loading

When using 2 NOVA computer or a computer from
the NOVA 800, NOVA 1200, or NOVA 2 series
without the program load option, a bootstrap loader
must be entered into memory manually using the
swifches on the console. The following loader is
the bootstrap loader designed by DGC for use with
binary loader #091-000004.

CONSOLE SWITCHES

This loader reads in a specially formatted tape
from either the paper tape reader or the reader on
the console teletypewriter. This tape has only 4
bits per frame and the loader assembles these
frames into complete words. This bootsirap should
be placed in memory starting at that location which
is 20g less than the highest available memory loca-
tion. In other words, for the "X in the LOCA-
TION column, substitute 3 0 for a 4K system, a

1 for an 8K system, a 2 for a 12K system, and so
on. For the dashes in the CONTENTS column,
substitute 10g if the console teletypewriter is being
used, or 12g if the paper tape reader is being used.
After the bootstrap is entered, start it at location
X770,

Automatic Loading

When using a SUPERNOVA computer, a loading
program can be placed in memory by using either
the PROGRAM LOAD function or the CHANNEL
START function available on the conscle. The
PROGRAM LOAD function reads 66 bytes of data
from the device whose device code is set in data
switches 10-15. These 66 bytes are compressed
into 33 16-bit words and placed in memory loca-
tions 0-40g. The first two bytes read are placed
in location 0, with the first byte read being placed
in bits 0-7, and the second byte read being placed
in bits 8-15. This process continues until a word
is placed in location 40,. After a word has been
stored into location 4{)8, a "JMP 40" instruction
is executed,

This sequence is designed to be used with binary
loader #091-000041.

Alternatively, when using a SUPERNOVA computer,
the CHANNEL START function can be used to bring
in a loading program. The CHANNEL START func-
tion places a "JMP 377" instruction in location
3775 and then issues a DIAS instruction to the de-
vice whose device code is set in data switches
10-15. After issuing the DIAS instruction, a

TIMP 3777 instruction is executed. This sequence
initiates a data channel transfer from the device to
memory beginning at memory location 0. The CPU
will continue to execute the " JMP 377" instruction
until the data channel places a word in that location.
After a word has been placed in location 377g, it is
executed as an instruction. Typically, this word is
either a HALT or a JUMP into the data that the data
channel has placed in the first 3778 memory
locations.

When using a computer from the NOVA 800, NOVA
1200, or NOVA 2 series with the program load op-
tion, a loading program can be placed in memory
by using the PROGRAM LOAD funciion available on
the console.

To enter a loader program, the operator must
first set up the device that is to be used and set its
octal device code into data switches 10-15. If the
device is a data channel device, set data switch 0
to 1. 1If the device is a low-speed device, set data
switch 0 to 0. After this is done, push the
PROGRAM LOAD switch to the up position. The
bootstrap loader will be deposited into memory
locations (}-3?8 and started at location 0.

The bootsirap leader reads the data switches, sets
up its own 1/0 instructions with the specified de-
vice code, and then performs a program load pro-
cedure depending upon the state of data switch 0.

If the switch is a 1, the bootstrap loader starts the
device for data channel storage beginning at loca-
tion 0 and then loops at location 377g until a data
channel {ransfer places a word info that location.

Affer a word has been placed in location 377g, it
is executed as an instruction. Typically, this
word is either a HALT or a JUMP into the data
that the data channel has placed in the first 37?8
memory locations.

1f data switch 0 is a 0, the bootstrap loader reads
the loader program via programmed 1/0. The
device must supply 8-bit data bytes, and each pair
of bytes is stored as a single word in memory;
wherein the first and second bytes read become
the left and right halves of the word. To simplify
the positioning of the tape in the reader, the boot-
strap loader ignores leading null characters. It
does not begin storing any words until it reads a
non-zero synchronization byte. The first word
following this synchronization byte must be the
negative of the total number of words to be read,
including the first word. The number of words fo
be read, including the first word may not be
greater than 192,5. The bootstrap loader stores
these words beginning at memory location 1008.

BOOTSTRAP LOADER

After storing the last word read, it transfers
control to that location.

NOTE For proper program loading
via the data channel, the de-
vice used must be initiated for
readingby an I/ORESET fol-
lowed by an NIOS instruction.
Inaddition, it is up to the de-
viceto stop reading after 256
words have been read.

Listed below is the standard 32 word bootstrap
loader. This program is capable of loading in
either of the manners described above.

BEG: IORST :RESET ALL I/0
READS 0O ;READ SWITCHES INTO ACO
LDA 1,C77 ;:GET DEVICE MASK (000077)
AND 0,1 ;ISOLATE DEVICE CODE
coMm 1,1 ;- DEVICE CODE -1
LOOP: 1ISZ OP1 ;COUNT DEVICE CODE INTO ALL
1Sz oP2 ;I/0 INSTRUCTIONS
1ISZ OP3
INC 1,1,SZR ;DONE?
JMP LOOP ;NO, INCREMENT AGAIN
LDA 2,C377 YES, PUT JMP 377 INTO LOCATION 377
STA 2,377
OP1: 060077 ;START DEVICE: (NIOS 0) -1
MOVL 0,0,SZC ;LOW SPEED DEVICE? (TEST SWITCH 0)
C377: JMP 377
LOOP2: JSR GET+1 ;GET A FRAME
MOVC 0,0,SNR ;IS IT NON-ZERQ?
JMP LOOP2 ;NO, IGNORE AND GET ANOTHER
LOOP4: JSR GET ;YES, GET FULL WORD
STA 1,@Cc77
; (AUTOINCREMENT)
187 100 ;COUNT WORD - DONE?
JMP LOOP4 ;NO, GET ANOTHER
C71: JMP 77
GET: sSuBZ 1,1 ;CLEAR AC1, SET CARRY
OP2: ;
LOOP3: 063577 ;DONE?: (SKPDNO) -1
JMP LOOP3 NO, WAIT
OP3: 060477 ;YES, READ IN ACO: (DIAS0,0) -1
ADDCS 0,1,8NC
JMP L.OOP3 NO, GO BACK AFTERIT
MOVS 1,1 (YES, SWAP THEM
JMP 0.3 ;RETURN WITH FULL WORD
0 ;PADDING

;NO, GO TO 377 AND WAIT FOR CHANNEL

;STORE STARTING AT 100 2's COMPLEMENT OF WORD COUNT

;YES - LOCATION COUNTER AND JUMP TO LAST WORD

;ADD 2 FRAMES SWAPPED - GOT SECOND?

-5
6 PROGRAM LOADING

This page intentionally left blank.

6-6

APPENDICES

1/O DEVICE CODES AND
DATA GENERAL MNEMONICS

OCTAL AND HEXADECIMAL
CONVERSION

ASCIl CHARACTER CODES

DOUBLE PRECISION ARITHMETIC
INSTRUCTION USE EXAMPLES

INSTRUCTION EXECUTION TIMES

A-lofd

/0 DEVICE CODES AND DATA GENERAL MNEMONICS

APPENDIX A

OCTAL

DEVICE PRIORITY

CODE MNEMONIC MASK BIT DEVICE NAME
00 ——— -- Unused
01 MDV - Multiply /Divide
02 MMPU - Memory Management and Protection Unit
022 MAPO)
03 MAP1 -~ Memory Allocation and Protection
04 MAP2 s
05
06 MCAT 12 - Multiprocessor adapter transmitter
o7 MCAR 12 Multiprocessor adapter receiver
10 TTI 14 TTY input
11 TTO 15 TTY output
12 PTR 11 Paper tape reader
13 PTP 13 Paper tape punch
14 RTC 13 Real-time clock
15 PLT 12 Incremental plotter
16 CDR 10 Card reader
17 LPT 12 Line printer
20 DSK 9 Fixed head disc
21 ADCV 8 A/D converter
22 MTA 10 Magnetic tape
23 DACYV -- D/A converter
24 DCM 0 Data communications multiplexor
25
28
27 ;
30 QTY 14 Asynchronous hardware multiplexor
30 SLA 14 Synchronous line adapter
312 IBM1 } 13 IBM 360,370 interface
32 IBM2
33 DKP 7 Moving head disc
34 CAS 10 Cassette tape

2

gg‘ h&; } 11 Multiline asynchronous controller
36 IPB 6 Interprocessor bus--half duplex
37 IvT 6 IPB watchdog timer
40 DPI 8 IPB full duplex input
41 DPO 8 IPB full duplex output
403 SCR 8 Synchronous communication receiver
414 SCT 8 Synchronous communication transmitier
42 DIO ki Digital 1/0
43 DIOT 6 Digital 1/0 timer

ZCOde returned by INTA
3Can be set up with any unused even device code equal to 40 or above

4Can be set up with any unused odd device code equal to 41 or above

A-2

APPENDIX A (Continued)

1/0 DEVICE CODES AND
DATA GENERAL MNEMONICS

OCTAL
DEVICE PRIORITY
CODE MNEMONIC MASK BIT DEVICE NAME

44 MXM 12 Modem control for MX1/MX2
45
46 MCAT1 12 Second multiprocessor transmitter
47 MCARI1 12 Second multiprocessor receiver
50 MMI1 14 Second TTY input
51 TTO1 15 Second TTY output
52 PTRI1 11 Second paper tape reader
53 PTP1 13 Second paper tape punch
54 RTC1 13 Second real-time clock
55 PLT1 12 Second incremental plotter
56 CDR1 10 Second card reader
57 LPT1 12 Second line printer
60 DSK1 9 Second fixed head disc
61
62 MTA1 10 Second magnetic tape
63
642 FPUL)
65 FPU2 5 Alternate location for fleating point
66 FPU j
67
70 QTY1 14 Second asynchronous hardware multiplexor
70 9 SLA1 14 Second synchronous line adapter
Zé } 13 Second IBM 360/370 interface
73 DKP1 7 Second moving head disc
742 CAS1 10 Second cassette tape
gg } 11 Second multiline asynchronous controller
742 FPUL
75 FPU2 5 Floating point
76 FPU 3
7 CPU -- Central processor and console functions

2Code returned by INTA

3Ca,n be set up with any unused even device code equal to 40 or above

4Can be set up with any unused odd device code equal to 41 or above

This page intentionally left blank

APPENDIX B
OCTAL AND HEXADECIMAL CONVERSION

To convert a number from octal or hexadecimal to
decimal, locate in each column of the appropriate
table the decimal equivalent for the octal or hex
digit in that position. Add the decimal equivalents
to obtain the decimal number

To convert a decimal number fo octal or hexa-
decimal:

1. Locate the largest decimal value in the
appropriate table that will fit into the
decimal number to be converted;

2. note its octal or hex equivalent and column
position;

3. find the decimal remainder.

Repeat the process on each remainder. When the

remainder is 0, all digits will have been generated.

8° g* 8° 82 | sl |g°
0 0 0 o | o 0
1| 32,768 | 4,09 | 512 | 64 1
2 | 65,536 | 8,192 | 1,024 | 128 | 16 | 2
3 | 98,304 | 12,228 | 1,536 | 192 | 24 | 3
4 | 131,072 | 16,384 | 2,048 | 256 | 32 | 4
5 | 163,840 | 20,480 | 2,560 | 320 | 40 | 5
6 | 196,608 | 24,576 | 3,072 | 384 | 48 | 6
7 | 220,376 | 28,672 | 3,584 | 448 | 56 | 7

16° 16 | 16 | 16% 16! |16°
0 0 0 0 ol o] o
1] 1,048,576 | 65,536 | 4,096 | 256 | 16| 1
2 | 2,097,152 | 131,072 | 8,192 | 512 | 32| 2
3 | 3,145,728 | 196,608 | 12,288 | 768 | 48 | 3
4| 4,194,304 | 262,144 | 16,384 |1,024 | 64 | 4
5 | 5,242,880 | 327,680 | 20,480 | 1,280 | 80 | 5
6 | 6,291,456 | 393,216 | 24,576 (1,536 | 96 | 6
7 | 7,340,032 | 458,752 | 28,672 1,792 [112 | 7
8 | 8,388,608 524,288 | 32,768 |2,048 |128 | 8
9 | 9,437,184 | 589,824 | 36,864 | 2,304 |144 | 9
A |10, 485,760 | 655,360 | 40,960 | 2,560 | 160 |10
B |11,534,336 | 720,896 | 45,056 | 2,816 |176 |11
C 12,582,912 | 786,432 | 49,152 | 3,072 |192 |12
D |13,631,488 | 851,968 | 53,248 | 3,328 | 208 |13
E 14,680,064 | 917,504 | 57,344 | 3,584 | 224 |14
F 15,728,640 | 983,040 | 61,440 | 3,840 |240 |15

B-1o0of 2

This page intentionally left blank.

B-2

APPENDIXC
ASCII CHARACTER CODES

To Produce
7-bit ASCII Control On TTY Mod 33, 35 Even Parity
Decimal Octal Character | Function Cntrl Shift Char 8-bit code
0 000 NUL Null v v P 000
1 001 SOH Start of Heading v A 201
2 002 3TX Start of Text v B 202
3 003 ETX End of Text v C 003
4 004 EOT End of Transmission v D 204
5 005 ENQ Enquiry v E 005
6 006 ACK Acknowledge v/ F 006
7 007 BEL Bell v G 207
8 010 BS Backspace v H 210
9 011 HT Horizontal Tab v I 011
10 012 NL New Line line feed 012
v J 0121
v line feed 212
11 013 vT Vertical Tab v K 213
12 014 FF Form Feed 4 L 014
13 015 RT Return return 215
v M 215
v return 0151
14 016 SO Shift Out v N 216
15 o017 SI Shift In v O 017
16 020 DLE Data Link Escape v P 220
17 021 DC1 Device Control 1 v Q 021
18 022 DC2 Device Control 2 v R 022
19 023 DC3 Device Control 3 v S 223
20 024 DC4 Device Control 4 v T 024
21 025 NAK Negative Acknowledge v U 225
22 026 SYN Synchronous Idle v A% 226
23 027 ETB End Transmission Block v w 027
24 030 CAN Cancel v X 030
25 031 EM End of Medium v Y 231
26 032 SUB Substitute v Z 232
27 033 ESC Escape esc 033
v v K 033
28 034 FS File Separator v v L 234
29 035 GS Group Separator v v M 035
30 0386 RS Record Separator v v N 038
31 037 Us Unit Separator v v O 2317
32 040 Sp Space space 240
33 041 ! v 1 041
34 042 " v 2 042
35 043 # v 3 243
38 044 3 v 4 044
37 045 % Vv 5 245
38 048 & v [248
39 047 ! Vv 7 047
40 050 { v 8 050
41 051) v g - 251

1
On even parity TTY's, these codes are odd parity.

C-1o0f 4

APPENDIX C (Continued)
ASCIlI CHARACTER CODES

To Produce
T-bit On TTY Mod 33,35 Even Parity
Decimal - Octal Character Cntrl Shift Char 8-bit Code

42 052 * v 252
43 053 + v oo 053
44 054 ,

45 055 - - 055
46 0586 . . 0586
47 057 / 257
48 060 0 0 080
49 061 1 1 261
50 062 2 2 262
51 083 3 3 063
52 064 4 4 264
53 065 5 5 065
54 066 6 6 066
55 067 7 7 267
56 070 8 8 270
57 071 9 9 071
58 072 : : 072
59 073 R ; 273
60 074 < v o, 074
61 075 = v - 275
62 076 > Voo 276
63 077 ? v o/ 077
64 100 @ v P 300
65 101 A A 101
66 102 B B 102
67 103 C C 303
68 104 D D 104
69 105 E E 305
70 106 F F 308
71 107 G G 107
72 110 H H 110
73 111 I 1 311
74 112 J J 312
75 113 K K 113
76 114 L L 314
77 115 M M 115
78 118 N N 116
79 117 O O 317
80 120 P P 120
81 121 Q Q 321
82 122 R R 322
83 123 3 S 123
84 124 T T 324

APPENDIX C (Continued)
ASCIl CHARACTER CODES

To Produce
T-bit On TTY Mod 33,35 Even Parity
Decimal Octal Character Cntrl Shift Char §-bit Code
85 125 U U 125
86 126 vV v 126
87 127 W W 327
88 130 X X 330
89 131 Y Y 131
90 132 Z Z 132
91 133 I v K 333
92 134 N v L 134
93 135] v M 335
94 136 A v N 336
95 137 - v 0 137
96 140 N 140
97 141 a 341
98 142 b 342
99 143 c 143
100 144 d 344
101 145 e 145
102 146 f 1486
103 147 g 347
104 150 h 350
105 151 i 151
106 152 j 152
107 153 k 353
108 154 1 154
109 155 m 355
110 156 n 356
111 157 0 157
112 160 p 360
113 161 q 161
114 162 r 162
115 163 s 363
116 164 t 164
117 165 u 365
118 166 v 366
119 167 W 167
120 170 X 170
121 171 y 371
122 172 zZ 372
123 173 { 173
124 174 E 374
125 175 } 175
126 176 ~ 178
127 1717 DEL rubout 377

This page intentionally left blank.

APPENDIX D
DOUBLE PRECISION ARITHMETIC

A double length number consists of two words con-
catenated into a 32-bit string wherein bit 0 is the
sign and bits 1-31 are the magnitude in two's com-
plement notation. The high-order part of a nega-
tive number is therefore in one's complement form
unless the low-order part is null (at the right only
0's are null regardiess of sign). Hence, in pro-
cessing double length numbers, two's complement
operations are usually confined to the low-order
parts, whereas one's complement operations are
generally required for the high-order parts.

Suppose we wish to negate the double length num-
ber whose high and low-order words respectively
are in ACO and AC1. We negate the low-order part,
but we simply complement the high-order part
unless the low order part is zero. Hence

NEG 1,1,SNR
NEG 0,0,SKP ;LOW ORDER ZERO
COM 0,0 :LOW ORDER NON-ZERO

Note that the magnifude parts of the sequence of
negative numbers from the most negative toward
zero are the positive numbers from zero upward.
In other words, the negative representation -x is
the sum of x and the most negative number. Hence,
in multiple precision arithmetic, low-order words
can be treated simply as positive numbers. In
unsigned addition a carry indicates that the low-
order result is just too large and the high-order
part must be increased. We add the number in
AC2 and AC3 to the number in ACO and AC1.

ADDZ 3,1,SZC
INC 0,0
ADD 2,0

In two's complement subtraction a carry should oc-
cur unless the subtrahend is too large. We could
increment as in addition, but since incrementing

in the high-order part is precisely the difference
between a one's complement and a two's comple-
ment, we can always manage with only two instruc-
tions. We subtract the number in AC2 and AC3
from that in ACO and AC1.

SUBZ 3,1,SZC
SUB 2,0,SKP
ADC 2,0

D-1 of 2

This page intentionally left blank.

APPENDIX E
INSTRUCTION USE EXAMPLES

On the following pages are examples of how
the instruction set of the NOVA 2 may be
used to perform some common functions.

1. Clear an AC and the carry bit.

SUBO AC,AC

2. Clear an AC and preserve the carry bit.
SUBC AC,AC

3. Generate the indicated constants.
SUBZL AC,AC ;GENERATE +1
ADC AC,AC ;GENERATE -1
ADCZL AC,AC ;GENERATE -2

4. Let ACX be any accumulator whose contents are zero.
Generate the indicated constants in ACX.

INCZL ACX,ACX ;GENERATE +2
INCOL ACX, ACX ;GENERATE +3
INCS ACX, ACX ;GENERATE + 4008
5. Subtract 1 from an accumulator without using a constant from memory.
NEG AC,AC
COM AC,AC
6. Check if both bytes in an accumulator are equal.
MOVS ACS,ACD
SUB ACS,ACD,SZR
JMP - ;NOT EQUAL
_—- _— :EQUAL
7. Check if two accumulators are both zero.
MOV ACS,ACS,SNR
SUB# ACS,ACD,SZR
JMP -— ;NOT BOTH ZERO
- -— ;BOTH ZERO

8. Check an ASCII character to make sure it is a decimal digit. The character is in ACS and is not
destroyed by the test. Accumulators ACX and ACY are destroyed.

LDA ACX, C60 :ACX=ASCII ZERO
LDA ACY,CT1 :ACY=ASCI NINE
ADCZ# ACY,ACS,SNC ;SKIPS IF (ACS) > 9
ADCZ# ACS,ACX,SZC ;SKIPS IF (ACS) >0

JMP - ;NOT DIGIT -
—— R ;DIGIT
C60: 60 ;ASCII ZERO
C1T1: 71 ;ASCII NINE
9. Test an accumulator for zero.
MOV AC,AC,SZR
JMP -—- ;NOT ZERO
- ——- ;ZERO

E-1o0f4

10.

11,

12.

13.

APPENDIX E (Continued)
INSTRUCTION USE EXAMPLES

Test an accumulator for -1.

COM# AC,AC,SZR
JMP - iNOT -1

- - ;-1

Test an accumulator for 2 or greater.
MOVZR# AC,AC,SNR
JMP -—- :LESS THAN 2
-——- ——— ;2 OR GREATER

Assume it is known that AC contains 0, 1, 2, or 3. Find out which one.
MOVZR# AC,AC,SEZ

JMP THREE ;JWAS 3
MOV AC,AC,SNR
JMP ZERO JWAS O
MOVZR# AC,AC,SZR
JMP TWO sWAS 2
-—— - ;WAS 1

Multiply an AC by the indicated value.
MOV ACX,ACX sMULTIPLY BY 1
MOVZL ACX ACX sMULTIPLY BY 2
MOVZL ACX,ACY sMULTIPLY BY 3
ADD ACY,ACX
ADDZL ACX,ACX sMULTIPLY BY 4
MOV ACX,ACY sMULTIPLY BY 5
ADDZL ACX,ACX
ADD ACY,ACX
MOVZL ACX,ACY sMULTIPLY BY 6
ADDZL ACY,ACX
MOVZL ACX,ACY sMULTIPLY BY 7
ADDZL ACY,ACY
SUB ACX, ACY ;JIN ACY
ADDZL, ACX,ACX sMULTIPLY BY 8
MOVZL ACX,ACX
MOVZL ACX,ACY JMULTIPLY BY 9
ADDZL ACY,ACY
ADD ACY, ACX
MOV ACX ACY sMULTIPLY BY 1010

ADDZL ACX,ACX
ADDZL ACY,ACX

MOVZL ACX,ACY ;MULTIPLY BY 124,
ADDZL ACY,ACX
MOVZL ACX,ACX

MOVZL ACX,ACY :MULTIPLY BY 18y,
ADDZL ACY,ACY ‘
ADDZL ACY,ACX

APPENDIX E (Continued)
INSTRUCTION USE EXAMPLES

14. Perform the inclusive OR of the operands in AC0O and AC1. The result is placed in AC1. The carry
bit is unchanged.

coM 0,0
AND 0,1
ADC 0,1

15 Perform the exclusive OR of the operands in ACO and AC1. The result is placed in AC1. The con-
tents of AC2 and the carry bit are destroyed.

MOV 1,2
ANDZL 0,2
ADD 0,1
SUB 2,1

16. Move 30 words from locations 2000g - 2035g to locations 3000g - 3035g. Two auto-increment loca-
tions are used to hold the source and destination addresses.

LDA 0,ADDRS ;SET UP SOURCE ADDRESS
STA 0,20
LDA 0,ADDRD ;SET UP DESTINATION ADDRESS
STA 0,21
LOOP: LDA 0,@20 .INCREMENT SOURCE ADDRESS AND GET WORD
STA 0,@21 .INCREMENT DESTINATION ADDRESS AND STORE WORD
DSZ CNT :DECREMENT COUNT
JMP LOOP :GO BACK FOR NEXT WORD
:SKIP HERE WHEN COUNT IS ZERO
ADDRS: 17717 :SOURCE ADDRESS MINUS ONE
ADDRD: 2777 :DESTINATION ADDRESS MINUS ONE
CNT: 36 ;WORD COUNT--365 EQUALS 301

17. Perform the following unsigned integer comparisons.

SUB# ACS,ACD,SZR ;SKIP IF CONTENTS OF ACS CONTENTS OF ACD

I

SUB# ACS,ACD,SNR ;SKIP IF CONTENTS OF ACS # CONTENTS OF ACD
ADCZ# ACS,ACD,SNC ;SKIP IF CONTENTS OF ACS < CONTENTS OF ACD
SUBZ# ACS,ACD,SNC ;SKIP IF CONTENTS OF ACS < CONTENTS OF ACD
SUBZ# ACS,ACD,SZC ;SKIP IF CONTENTS OF ACS > CONTENTS OF ACD
ADCZ# ACS,ACD,SZC SKIP IF CONTENTS OF ACS 3 CONTENTS OF ACD

E-3

18. Simulate the

. MPYU:
. MPYA:

.CB99:

19. Simulate the

. DIVL:
. DIVU:

.CC98:

.CC9%:

.CCO03:
. CC20:

APPENDIX E (Continued)
INSTRUCTION USE EXAMPLES

operation of the MULTIPLY instruction.

SUBC 0,0 ;CLEAR ACO,DON'T DISTURB CARRY
STA 3,.CB03 ;SAVE RETURN

LDA 3,.CB20 ;GET STEP COUNT

MOVR 1,1,SNC ;CHECK NEXT MULTIPLIER BIT
MOVR 0,08KP ;0 SHIFT

operation of the DIVIDE instruction.

SUB 0,0 ;INTEGER DIVIDE CLEAR HIGH PART
STA 3,.CC03 ;SAVE RETURN

SUB# 2,0,8zC ;TEST FOR OVERFLOW

JMP . CC98 ;YES, EXIT(ACO>AC2)

LDA 3,.CC20 ;GET STEP COUNT

MOVZL 1,1 ;SHIFT DIVIDEND LOW PART
MOVL 0,0 ;SHIFT DIVIDEND HIGH PART
SUB# 2,0,8zC ;DOES DIVISOR GO IN?

SUB 2,0 ;YES

MOVL 1,1 ;SHIFT DIVIDEND LOW PART
INC 3,3,8ZR ;COUNT STEP

JMP CC98 JITERATE LOOP

SUBO 3,3,SKP ;DONE,CLEAR CARRY

SUBZ 3,3 ;SET CARRY

JMP @. CCo3 ;RETURN

0

APPENDIX F
INSTRUCTION EXECUTION TIMES

SUPERNOVA read-only time equals semiconductor time, except
add 0. 2 for LDA, STA, ISZ, and DSZ if reference is to core.
NOVA times are for core; for read-only subtract 0. 2 except
subtract 0.4 for LDA, STA, ISZ, and DSZ if reference is to
read-only memory. When two numbers are given, the one at
the left of the slash is the time for an isolated transfer,

the one at the right is the minimum time between consecutive
transfers. All times are in microseconds.

SUPERNOVA 1200 800,820 NOVA 2
NOVA sSC CORE SERIES 840 830 8K 16K
LDA 5.2 1.2 1.6 2.55 1.6 2.0 1.8 2.0
STA 5.5 1.2 1.6 2.55 1.6 2.0 1.6 2.0
187, DSZ 5.2 1.4 1.8 3.15 1.8 2.2 1.7 2.1
JMP 5.6 0.6 0.8 1.35 0.8 1.0 0.8 1.0
JSR 3.5 1.2 1.4 1.35 0.8 1.0 1.1 1.2
COM, NEG, MOV. INC 5.6 0.3 0.8 1.35 0.8 1.0 0.8 1.0
ADC, SUB. ADD, AND 5.9 0.3 0.8 1.35 0.8 1.0 0.8 1.0
Each level of @, add 2.6 0.6 0.8 1.2 0.8 1.0 0.8 1.0
Each autoindex, add 0.0 0.2 0.2 0.8 0.2 0.2 0.5 0.5
Base register addr, add 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
If skip occurs, add 0.0 * 0.8 1.35 0.2 0.2 0.3 0.2
I O input (except INTA) 4.4 2.8 2.9 2.55 2.2 2.4 1.4 1.5
INTA 4.4 3.6 3.7 2.55 2.2 2.4 1.4 1.5
1 O output 4.7 3.2 3.3 3.15 2.2 2.4 1.6 1.7
NIO 4.4 3.2 3.3 3.15 2.2 2.4 1.6 1.7
1 O skips 4.4 2.8 2.9 2.55 1.4 1.6 1.1 1.2
If skip occurs, add 0.0 0.0 0.0 0.0 0.2 0.2 0.3 0.2
For S, C, or P: add 0.0 0.0 . 0.0 0.0 0.6 0.6 0.3 0.3
MUL
Average 11.1 3.7 3.8 3.75 8.8 9.0 6.1 6.2
Maximum 11.1 5.3 5.4 3.75 8.8 9.0 6.1 6.2
DIV
Successful 11.9 6.8 6.9 4,05 8.8 9.0 6.4 6.5
Unsuccessful 11.9 1.5 1.6 2.55 1.6 2.0 6.4 6.5
INTERRUPT LATENCY)
With MUL DIV 12.0 9.0 9.0 7.0 10.6 12.0 5.8 5.9
Without MUL DIV 12.0 5.0 5.0 7.0 4.6 6.0 1.9 2.3
DATA CHANNEL -
Input 3.5 2.3 2.3 1.2 2.0 2.2 2.0 2.1
Qutput 4.4 2.8 2.8 1.2 1.8 2.0 2.2 2.1 2.2
Increment 4.4 2.8 2.8 1.8 2.4 2.2 2.4 2.2 2.3
Add to memory 5.3 2.8 2.8 | emeeoo- ——— N A —- ——
Latency
With MUL DIV 17.3 11.8 11.8 9.4 5.8 6.4 5.2 5.3
Without MUL DIV 17.3 7.8 7.8 9.4 5.8 6.4 5.2 5.3
HIGH SPEED DATA CHANNEL
Input N A 0.8 0.8 N A 0.8 1.0 0.8 10.91.0
Qutput 0.8 1.0 0.8 1.0 0.8 1.0 1.0 1.2 1.2 1.3
Increment 1.0 1.2 1.0 1.2 1.0 1.2 1.2 1.4 1.3 1.4
Add to memory 1.0 1.2 1.0 1.2 | cmmmmee e N A — ——
Latency
With MUL DIV 5.7 5.7 4.8 5.4 4.3 4.4
Without MUL DIV 3.7 3.7 3.2 3.6 4,3 4.4

*g’e%}gﬂzmhipie operation instruction is skipped, add 0. 3: otherwise add 0.6
- /

F-1o0f2

This page intentionally left blank.

i
1]
:
¥
: READERS COMMENT FORM
H
1
]
]
)
¥
¥
i
: DOCUMENT TITLE: s
1
)
3 Your comments, accompanied by answers to the Did you find the material:
1 .) . . N
! Sfollowing questions, help us improve the quality o Useful U YES (I NO ()
1 . .
! and usefulness of our publications. If your answer . Complete YES () NO ()
! . - 0 - o . '
H to a question 15 Tnoor requires qualification, e Accurate UYES () NO ()
: ‘ { {
% please explain. e« Well organized. . YES (} NO ()
: How did hi blication? e Well written...YES () NO ()
w did you use this publication: X ‘ { - ‘
§ 0 y P . Well llustrated . YES () NO ()
i ()} As an introduction to the subject ¢ Well indexed. . . YES () NO ()
i {) As an aid for advanced knowledge. « Easy toread............... YES {) NO ()}
E ()} For information about operating procedures ¢ Easy to understand.... YES [) NO (}
f {) To instruct in a class.
¥ .
! () As a student in a class. We would appreciate any other comments; please
i) As a reference manual label each comment as an addition, deletion, change,
i £
i N .
uZ_j ! () Other ... T o or error and reference page numbers where applicable.
1
— ;
O, COMMENTS
Wt
o PAGE| COL |PARA| LINE FROM 10
ol
J '
O
zZ i
o
—
<!
i
2!
O s
1
i
¥
¥
¥
)
1
1
1
i
i 2
% :
1
)
¥
t
¥
]
1
)
i
¥
i
¥
1
i
1
1
3
i)
1
L
i
:
' From:
i .
; NAME.....oooooiiooe e TITLE e Data General Corporation
i FIRM i DIV, i ENGINEERING PUBLICATIONS
i ADDRESS ooo.oooooooo oo COMMENT FORM
P CITY e STATE ... 2P DG-00935
5 TELEPHONE ... o7 £
1
1
1
]
¥
1
i
t
:

FOLD DOWN FIRST FOLD DOWN

---—---_.._-----.--—-——-----—--_——_--_--......_..--_....,.-”.sa-g,‘a’;‘ae....--,.--__—---—-_-..-..---.-_----—-__...._-.._..--..—_

FIRST CLASS
PERMIT NO. 26

SOUTHBORO
MASS 01772

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

BUSINESS REPLY MAIL I
SRR
Postage will be paid by:]
I
DataGeneral E—
Southboro, Massachusetts 01772 I
u r ssachusetts
ATTENTION: Engineering Publications
FOLD uP SECOND FOLD UP

STAPLE

¥

	Cover
	i
	ii
	iii
	iv
	v
	vi
	1-1
	1-2
	1-3
	1-4
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	6-0
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	A-1
	A-2
	A-3
	A-4
	B-1
	B-2
	C-1
	C-2
	C-3
	C-4
	D-1
	D-2
	E-1
	E-2
	E-3
	E-4
	F-1
	F-2

